Test automation is an efficient way of validating that your application code works as intended. While Electron doesn't actively maintain its own testing solution, this guide will go over a couple ways you can run end-to-end automated tests on your Electron app.
From ChromeDriver - WebDriver for Chrome:
WebDriver is an open source tool for automated testing of web apps across many browsers. It provides capabilities for navigating to web pages, user input, JavaScript execution, and more. ChromeDriver is a standalone server which implements WebDriver's wire protocol for Chromium. It is being developed by members of the Chromium and WebDriver teams.
There are a few ways that you can set up testing using WebDriver.
WebdriverIO (WDIO) is a test automation framework that provides a Node.js package for testing with WebDriver. Its ecosystem also includes various plugins (e.g. reporter and services) that can help you put together your test setup.
If you already have an existing WebdriverIO setup, it is recommended to update your dependencies and validate your existing configuration with how it is outlined in the docs.
If you don't use WebdriverIO in your project yet, you can add it by running the starter toolkit in your project root directory:
npm init wdio@latest ./
This starts a configuration wizard that helps you put together the right setup, installs all necessary packages, and generates a wdio.conf.js
configuration file. Make sure to select "Desktop Testing - of Electron Applications" on one of the first questions asking "What type of testing would you like to do?".
After running the configuration wizard, your wdio.conf.js
should include roughly the following content:
export const config = {
// ...
services: ['electron'],
capabilities: [{
browserName: 'electron',
'wdio:electronServiceOptions': {
// WebdriverIO can automatically find your bundled application
// if you use Electron Forge or electron-builder, otherwise you
// can define it here, e.g.:
// appBinaryPath: './path/to/bundled/application.exe',
appArgs: ['foo', 'bar=baz']
}
}]
// ...
}
Use the WebdriverIO API to interact with elements on the screen. The framework provides custom "matchers" that make asserting the state of your application easy, e.g.:
import { browser, $, expect } from '@wdio/globals'
describe('keyboard input', () => {
it('should detect keyboard input', async () => {
await browser.keys(['y', 'o'])
await expect($('keypress-count')).toHaveText('YO')
})
})
Furthermore, WebdriverIO allows you to access Electron APIs to get static information about your application:
import { browser, $, expect } from '@wdio/globals'
describe('when the make smaller button is clicked', () => {
it('should decrease the window height and width by 10 pixels', async () => {
const boundsBefore = await browser.electron.browserWindow('getBounds')
expect(boundsBefore.width).toEqual(210)
expect(boundsBefore.height).toEqual(310)
await $('.make-smaller').click()
const boundsAfter = await browser.electron.browserWindow('getBounds')
expect(boundsAfter.width).toEqual(200)
expect(boundsAfter.height).toEqual(300)
})
})
or to retrieve other Electron process information:
import fs from 'node:fs'
import path from 'node:path'
import { browser, expect } from '@wdio/globals'
const packageJson = JSON.parse(fs.readFileSync(path.join(__dirname, '..', 'package.json'), { encoding: 'utf-8' }))
const { name, version } = packageJson
describe('electron APIs', () => {
it('should retrieve app metadata through the electron API', async () => {
const appName = await browser.electron.app('getName')
expect(appName).toEqual(name)
const appVersion = await browser.electron.app('getVersion')
expect(appVersion).toEqual(version)
})
it('should pass args through to the launched application', async () => {
// custom args are set in the wdio.conf.js file as they need to be set before WDIO starts
const argv = await browser.electron.mainProcess('argv')
expect(argv).toContain('--foo')
expect(argv).toContain('--bar=baz')
})
})
To run your tests:
$ npx wdio run wdio.conf.js
WebdriverIO helps launch and shut down the application for you.
Find more documentation on Mocking Electron APIs and other useful resources in the official WebdriverIO documentation.
Selenium is a web automation framework that
exposes bindings to WebDriver APIs in many languages. Their Node.js bindings
are available under the selenium-webdriver
package on NPM.
In order to use Selenium with Electron, you need to download the electron-chromedriver
binary, and run it:
npm install --save-dev electron-chromedriver
./node_modules/.bin/chromedriver
Starting ChromeDriver (v2.10.291558) on port 9515
Only local connections are allowed.
Remember the port number 9515
, which will be used later.
Next, install Selenium into your project:
npm install --save-dev selenium-webdriver
Usage of selenium-webdriver
with Electron is the same as with
normal websites, except that you have to manually specify how to connect
ChromeDriver and where to find the binary of your Electron app:
const webdriver = require('selenium-webdriver')
const driver = new webdriver.Builder()
// The "9515" is the port opened by ChromeDriver.
.usingServer('http://localhost:9515')
.withCapabilities({
'goog:chromeOptions': {
// Here is the path to your Electron binary.
binary: '/Path-to-Your-App.app/Contents/MacOS/Electron'
}
})
.forBrowser('chrome') // note: use .forBrowser('electron') for selenium-webdriver <= 3.6.0
.build()
driver.get('https://www.google.com')
driver.findElement(webdriver.By.name('q')).sendKeys('webdriver')
driver.findElement(webdriver.By.name('btnG')).click()
driver.wait(() => {
return driver.getTitle().then((title) => {
return title === 'webdriver - Google Search'
})
}, 1000)
driver.quit()
Microsoft Playwright is an end-to-end testing framework built using browser-specific remote debugging protocols, similar to the Puppeteer headless Node.js API but geared towards end-to-end testing. Playwright has experimental Electron support via Electron's support for the Chrome DevTools Protocol (CDP).
You can install Playwright through your preferred Node.js package manager. It comes with its own test runner, which is built for end-to-end testing:
npm install --save-dev @playwright/test
:::caution Dependencies
This tutorial was written with @playwright/[email protected]
. Check out
Playwright's releases page to learn about
changes that might affect the code below.
:::
Playwright launches your app in development mode through the _electron.launch
API.
To point this API to your Electron app, you can pass the path to your main process
entry point (here, it is main.js
).
const { test, _electron: electron } = require('@playwright/test')
test('launch app', async () => {
const electronApp = await electron.launch({ args: ['main.js'] })
// close app
await electronApp.close()
})
After that, you will access to an instance of Playwright's ElectronApp
class. This
is a powerful class that has access to main process modules for example:
const { test, _electron: electron } = require('@playwright/test')
test('get isPackaged', async () => {
const electronApp = await electron.launch({ args: ['main.js'] })
const isPackaged = await electronApp.evaluate(async ({ app }) => {
// This runs in Electron's main process, parameter here is always
// the result of the require('electron') in the main app script.
return app.isPackaged
})
console.log(isPackaged) // false (because we're in development mode)
// close app
await electronApp.close()
})
It can also create individual Page objects from Electron BrowserWindow instances. For example, to grab the first BrowserWindow and save a screenshot:
const { test, _electron: electron } = require('@playwright/test')
test('save screenshot', async () => {
const electronApp = await electron.launch({ args: ['main.js'] })
const window = await electronApp.firstWindow()
await window.screenshot({ path: 'intro.png' })
// close app
await electronApp.close()
})
Putting all this together using the Playwright test-runner, let's create a example.spec.js
test file with a single test and assertion:
const { test, expect, _electron: electron } = require('@playwright/test')
test('example test', async () => {
const electronApp = await electron.launch({ args: ['.'] })
const isPackaged = await electronApp.evaluate(async ({ app }) => {
// This runs in Electron's main process, parameter here is always
// the result of the require('electron') in the main app script.
return app.isPackaged
})
expect(isPackaged).toBe(false)
// Wait for the first BrowserWindow to open
// and return its Page object
const window = await electronApp.firstWindow()
await window.screenshot({ path: 'intro.png' })
// close app
await electronApp.close()
})
Then, run Playwright Test using npx playwright test
. You should see the test pass in your
console, and have an intro.png
screenshot on your filesystem.
☁ $ npx playwright test
Running 1 test using 1 worker
✓ example.spec.js:4:1 › example test (1s)
:::info
Playwright Test will automatically run any files matching the .*(test|spec)\.(js|ts|mjs)
regex.
You can customize this match in the Playwright Test configuration options.
It also works with TypeScript out of the box.
:::
:::tip Further reading Check out Playwright's documentation for the full Electron and ElectronApplication class APIs. :::
It's also possible to write your own custom driver using Node.js' built-in IPC-over-STDIO. Custom test drivers require you to write additional app code, but have lower overhead and let you expose custom methods to your test suite.
To create a custom driver, we'll use Node.js' child_process
API.
The test suite will spawn the Electron process, then establish a simple messaging protocol:
const childProcess = require('node:child_process')
const electronPath = require('electron')
// spawn the process
const env = { /* ... */ }
const stdio = ['inherit', 'inherit', 'inherit', 'ipc']
const appProcess = childProcess.spawn(electronPath, ['./app'], { stdio, env })
// listen for IPC messages from the app
appProcess.on('message', (msg) => {
// ...
})
// send an IPC message to the app
appProcess.send({ my: 'message' })
From within the Electron app, you can listen for messages and send replies using the Node.js
process
API:
// listen for messages from the test suite
process.on('message', (msg) => {
// ...
})
// send a message to the test suite
process.send({ my: 'message' })
We can now communicate from the test suite to the Electron app using the appProcess
object.
For convenience, you may want to wrap appProcess
in a driver object that provides more
high-level functions. Here is an example of how you can do this. Let's start by creating
a TestDriver
class:
class TestDriver {
constructor ({ path, args, env }) {
this.rpcCalls = []
// start child process
env.APP_TEST_DRIVER = 1 // let the app know it should listen for messages
this.process = childProcess.spawn(path, args, { stdio: ['inherit', 'inherit', 'inherit', 'ipc'], env })
// handle rpc responses
this.process.on('message', (message) => {
// pop the handler
const rpcCall = this.rpcCalls[message.msgId]
if (!rpcCall) return
this.rpcCalls[message.msgId] = null
// reject/resolve
if (message.reject) rpcCall.reject(message.reject)
else rpcCall.resolve(message.resolve)
})
// wait for ready
this.isReady = this.rpc('isReady').catch((err) => {
console.error('Application failed to start', err)
this.stop()
process.exit(1)
})
}
// simple RPC call
// to use: driver.rpc('method', 1, 2, 3).then(...)
async rpc (cmd, ...args) {
// send rpc request
const msgId = this.rpcCalls.length
this.process.send({ msgId, cmd, args })
return new Promise((resolve, reject) => this.rpcCalls.push({ resolve, reject }))
}
stop () {
this.process.kill()
}
}
module.exports = { TestDriver }
In your app code, can then write a simple handler to receive RPC calls:
const METHODS = {
isReady () {
// do any setup needed
return true
}
// define your RPC-able methods here
}
const onMessage = async ({ msgId, cmd, args }) => {
let method = METHODS[cmd]
if (!method) method = () => new Error('Invalid method: ' + cmd)
try {
const resolve = await method(...args)
process.send({ msgId, resolve })
} catch (err) {
const reject = {
message: err.message,
stack: err.stack,
name: err.name
}
process.send({ msgId, reject })
}
}
if (process.env.APP_TEST_DRIVER) {
process.on('message', onMessage)
}
Then, in your test suite, you can use your TestDriver
class with the test automation
framework of your choosing. The following example uses
ava
, but other popular choices like Jest
or Mocha would work as well:
const test = require('ava')
const electronPath = require('electron')
const { TestDriver } = require('./testDriver')
const app = new TestDriver({
path: electronPath,
args: ['./app'],
env: {
NODE_ENV: 'test'
}
})
test.before(async t => {
await app.isReady
})
test.after.always('cleanup', async t => {
await app.stop()
})