forked from kamyu104/LeetCode-Solutions
-
Notifications
You must be signed in to change notification settings - Fork 0
/
count-primes.py
48 lines (42 loc) · 1.3 KB
/
count-primes.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
# Time: O(n/2 + n/3 + ... + n/p) = O(nlog(logn)), see https://mathoverflow.net/questions/4596/on-the-series-1-2-1-3-1-5-1-7-1-11
# Space: O(n)
class Solution(object):
# @param {integer} n
# @return {integer}
def countPrimes(self, n):
if n <= 2:
return 0
is_prime = [True]*(n//2)
cnt = len(is_prime)
for i in xrange(3, n, 2):
if i * i >= n:
break
if not is_prime[i//2]:
continue
for j in xrange(i*i, n, 2*i):
if not is_prime[j//2]:
continue
cnt -= 1
is_prime[j//2] = False
return cnt
# Time: O(n)
# Space: O(n)
class Solution_TLE(object):
def countPrimes(self, n):
"""
:type n: int
:rtype: int
"""
def linear_sieve_of_eratosthenes(n):
primes = []
spf = [-1]*(n+1) # the smallest prime factor
for i in xrange(2, n+1):
if spf[i] == -1:
spf[i] = i
primes.append(i)
for p in primes:
if i*p > n or p > spf[i]:
break
spf[i*p] = p
return primes
return len(linear_sieve_of_eratosthenes(n-1))