forked from kamyu104/LeetCode-Solutions
-
Notifications
You must be signed in to change notification settings - Fork 0
/
domino-and-tromino-tiling.cpp
66 lines (62 loc) · 2.24 KB
/
domino-and-tromino-tiling.cpp
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
// Time: O(logn)
// Space: O(logn)
class Solution {
public:
int numTilings(int N) {
vector<vector<int>> T{{1, 0, 0, 1}, // #(|) = #(|) + #(=)
{1, 0, 1, 0}, // #(「) = #(|) + #(L)
{1, 1, 0, 0}, // #(L) = #(|) + #(「)
{1, 1, 1, 0}}; // #(=) = #(|) + #(「) + #(L)
return matrixMult({{1, 0, 0, 0}}, matrixExpo(T, N))[0][0]; // [a0, a(-1), a(-2), a(-3)] * T^N
}
private:
vector<vector<int>> matrixExpo(const vector<vector<int>>& A, int pow) {
vector<vector<int>> result(A.size(), vector<int>(A.size()));
vector<vector<int>> A_exp(A);
for (int i = 0; i < A.size(); ++i) {
result[i][i] = 1;
}
while (pow) {
if (pow % 2 == 1) {
result = matrixMult(result, A_exp);
}
A_exp = matrixMult(A_exp, A_exp);
pow /= 2;
}
return result;
}
vector<vector<int>> matrixMult(const vector<vector<int>>& A, const vector<vector<int>>& B) {
vector<vector<int>> result(A.size(), vector<int>(B[0].size()));
for (int i = 0; i < A.size(); ++i) {
for (int j = 0; j < B[0].size(); ++j) {
int64_t entry = 0;
for (int k = 0; k < B.size(); ++k) {
entry = (static_cast<int64_t>(A[i][k]) * B[k][j] % M + entry) % M;
}
result[i][j] = static_cast<int>(entry);
}
}
return result;
}
const int M = 1e9 + 7;
};
// Time: O(n)
// Space: O(1)
class Solution2 {
public:
int numTilings(int N) {
// Prove:
// dp[n] = dp[n-1](|) + dp[n-2](=) + 2*(dp[n-3](「」) + ... + d[0](「 = ... = 」))
// = dp[n-1] + dp[n-2] + dp[n-3] + dp[n-3] + 2*(dp[n-4] + ... + d[0])
// = dp[n-1] + dp[n-3] + (dp[n-2] + dp[n-3] + 2*(dp[n-4] + ... + d[0])
// = dp[n-1] + dp[n-3] + dp[n-1]
// = 2*dp[n-1] + dp[n-3]
const int M = 1e9 + 7;
vector<int> dp(3);
dp[0] = 1, dp[1] = 1, dp[2] = 2;
for (int i = 3; i <= N; ++i) {
dp[i % 3] = (2 * dp[(i - 1) % 3] % M + dp[(i - 3) % 3]) % M;
}
return dp[N % 3];
}
};