-
Notifications
You must be signed in to change notification settings - Fork 2
/
flower_novel_pruning.py
219 lines (164 loc) · 7.16 KB
/
flower_novel_pruning.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
#Load libraries
import os
import numpy as np
import torch
import glob
import torch.nn as nn
from torchvision.transforms import transforms
from torch.utils.data import DataLoader
from torch.optim import Adam
from torch.autograd import Variable
import torchvision
import pathlib
import matplotlib.pyplot as plt
from torch.nn.utils import prune
#checking for device
device=torch.device('cuda' if torch.cuda.is_available() else 'cpu')
print(device)
#Transforms
transformer=transforms.Compose([
transforms.Resize((180,180)),
transforms.RandomHorizontalFlip(),
transforms.ToTensor(), #0-255 to 0-1, numpy to tensors
transforms.Normalize([0.5,0.5,0.5], # 0-1 to [-1,1] , formula (x-mean)/std
[0.5,0.5,0.5])
])
#Dataloader
#Path for training and testing directory
train_path='C:\THIS PC\WPI\FALL 2021\CS 539 Machine Learning\Project\dataverse_files\\flowers\\flowers\\flower_photos\\train'
validation_path = 'C:\THIS PC\WPI\FALL 2021\CS 539 Machine Learning\Project\dataverse_files\\flowers\\flowers\\flower_photos\\validation'
test_path='C:\THIS PC\WPI\FALL 2021\CS 539 Machine Learning\Project\dataverse_files\\flowers\\flowers\\flower_photos\\test'
train_loader=DataLoader(
torchvision.datasets.ImageFolder(train_path,transform=transformer),
batch_size=32, shuffle=True
)
validation_loader=DataLoader(
torchvision.datasets.ImageFolder(validation_path,transform=transformer),
batch_size=32, shuffle=True
)
test_loader=DataLoader(
torchvision.datasets.ImageFolder(test_path,transform=transformer),
batch_size=32, shuffle=True
)
#categories
root=pathlib.Path(train_path)
classes=sorted([j.name.split('/')[-1] for j in root.iterdir()])
print(classes)
# CNN Network
class ConvNet(nn.Module):
def __init__(self, num_classes=6):
super(ConvNet, self).__init__()
# Output size after convolution filter
# ((w-f+2P)/s) +1
# Input shape= (32,3,180,180)
self.conv1 = nn.Conv2d(in_channels=3, out_channels=12, kernel_size=3, stride=1, padding=1)
# Shape= (32,12,180,180)
self.bn1 = nn.BatchNorm2d(num_features=12)
# Shape= (32,12,180,180)
self.relu1 = nn.ReLU()
# Shape= (32,12,180,180)
self.pool = nn.MaxPool2d(kernel_size=2)
# Reduce the image size be factor 2
# Shape= (32,12,90,90)
self.conv2 = nn.Conv2d(in_channels=12, out_channels=20, kernel_size=3, stride=1, padding=1)
# Shape= (32,20,90,90)
self.relu2 = nn.ReLU()
# Shape= (32,20,90,90)
self.conv3 = nn.Conv2d(in_channels=20, out_channels=32, kernel_size=3, stride=1, padding=1)
# Shape= (32,32,90,90)
self.bn3 = nn.BatchNorm2d(num_features=32)
# Shape= (32,32,90,90)
self.relu3 = nn.ReLU()
# Shape= (32,32,90,90)
self.stack1 = nn.Linear(in_features=90 * 90 * 32, out_features=32)
self.stack2 = nn.Linear(in_features=32, out_features=num_classes)
self.relu_stack1 = nn.ReLU()
self.tan_stack2 = nn.Tanh()
# Feed forwad function
def forward(self, input):
output = self.conv1(input)
output = self.bn1(output)
output = self.relu1(output)
output = self.pool(output)
output = self.conv2(output)
output = self.relu2(output)
output = self.conv3(output)
output = self.bn3(output)
output = self.relu3(output)
# Above output will be in matrix form, with shape (256,32,75,75)
output = output.view(-1, 32 * 90 * 90)
output = self.tan_stack2(self.stack2(self.relu_stack1(self.stack1(output))))
return output
model = ConvNet(num_classes=5).to(device)
# Optmizer and loss function
optimizer = Adam(model.parameters(), lr=0.0001, weight_decay=0.00001)
loss_function = nn.CrossEntropyLoss()
num_epochs = 600
EPOCHS = np.arange(0,num_epochs,1)
# calculating the size of training and testing images
train_count = len(glob.glob(train_path + '/**/*.jpg'))
validation_count = len(glob.glob(validation_path + '/**/*.jpg'))
test_count = len(glob.glob(test_path + '/**/*.jpg'))
print(train_count, validation_count, test_count)
# Model training and saving best model
best_accuracy = 0.0
Train_Performance = np.zeros(num_epochs)
Validation_Performance = np.zeros(num_epochs)
for epoch in range(num_epochs):
# Evaluation and training on training dataset
model.train()
train_accuracy = 0.0
train_loss = 0.0
if epoch in (200,400):
to_prune = ((model.stack1, "weight"), (model.stack2, "weight"))
prune.global_unstructured(to_prune, pruning_method=prune.L1Unstructured, amount=0.17)
for i, (images, labels) in enumerate(train_loader):
if torch.cuda.is_available():
images = Variable(images.cuda())
labels = Variable(labels.cuda())
optimizer.zero_grad()
outputs = model(images)
loss = loss_function(outputs, labels)
loss.backward()
optimizer.step()
train_loss += loss.cpu().data * images.size(0)
_, prediction = torch.max(outputs.data, 1)
train_accuracy += int(torch.sum(prediction == labels.data))
train_accuracy = train_accuracy / train_count
train_loss = train_loss / train_count
Train_Performance[epoch] = train_accuracy
# Evaluation on validation dataset
model.eval()
validation_accuracy = 0.0
for i, (images, labels) in enumerate(validation_loader):
if torch.cuda.is_available():
images = Variable(images.cuda())
labels = Variable(labels.cuda())
outputs = model(images)
_, prediction = torch.max(outputs.data, 1)
validation_accuracy += int(torch.sum(prediction == labels.data))
validation_accuracy = validation_accuracy / validation_count
Validation_Performance[epoch] = validation_accuracy
print('Epoch: ' + str(epoch) + ' Train Loss: ' + str(train_loss) + ' Train Accuracy: ' + str(
train_accuracy) + ' Validation Accuracy: ' + str(validation_accuracy))
# Save the best model
if (validation_accuracy > best_accuracy) and (epoch >= 399):
torch.save(model,'C:\THIS PC\WPI\FALL 2021\CS 539 Machine Learning\Project\Results\PruningNovel\\best_model.pth')
best_accuracy = validation_accuracy
best_model = torch.load('C:\THIS PC\WPI\FALL 2021\CS 539 Machine Learning\Project\Results\PruningNovel\\best_model.pth')
test_accuracy = 0.0
for i, (images, labels) in enumerate(test_loader):
if torch.cuda.is_available():
images = Variable(images.cuda())
labels = Variable(labels.cuda())
outputs = best_model(images)
_, prediction = torch.max(outputs.data, 1)
test_accuracy += int(torch.sum(prediction == labels.data))
test_accuracy = test_accuracy / test_count
print('Best Validation Accuracy: ' + str(best_accuracy))
print('Test Accuracy: ' + str(test_accuracy))
plt.plot(EPOCHS,Validation_Performance, label="Validation Accuracy")
plt.plot(EPOCHS,Train_Performance, label="Training Accuracy")
plt.legend()
plt.title('Model Training (Novel Pruning)')
plt.show()