-
Notifications
You must be signed in to change notification settings - Fork 2
/
Copy pathtrain.py
140 lines (119 loc) · 6.75 KB
/
train.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
import tensorflow as tf
import numpy as np
from tqdm import tqdm
import argparse
from model.segmenter import Segmenter
from dataset.utils import create_tf_dataset
from metrics.confusion_matrix import ConfusionMatrix
from evaluation.utils import create_candidate, eval, print_metrics
@tf.function
def train_step(model, optimizer, loss, inputs, gold, mask, train_loss, train_acc, train_confusion_matrix):
with tf.GradientTape() as tape:
predictions = model(inputs, training=True)
loss_value = loss(gold, predictions, mask)
gradients = tape.gradient(loss_value, model.trainable_variables)
optimizer.apply_gradients(zip(gradients, model.trainable_variables))
train_loss(loss_value)
train_acc(gold, predictions)
train_confusion_matrix(gold, predictions)
@tf.function
def test_step(model, loss, inputs, gold, mask, validation_loss, validation_acc, validation_confusion_matrix):
predictions = model(inputs, training=False)
t_loss = loss(gold, predictions, mask)
validation_loss(t_loss)
validation_acc(gold, predictions)
validation_confusion_matrix(gold, predictions)
def main(bidirectional, num_classification_layers, train_path, max_sentences, test_size, batch_size, epochs, learning_rate, epsilon, clipnorm, save_path, test_data_path, test_gold_path, candidate_path, evaluation_every_epoch):
'''
Load Hugging Face tokenizer and model
'''
model = Segmenter(max_sentences, bidirectional, num_classification_layers)
'''
Create train and validation dataset
'''
train_dataset, validation_dataset, train_length, validation_length = create_tf_dataset(train_path, max_sentences, test_size, batch_size)
'''
Initialize optimizer and loss function for training
'''
optimizer = tf.keras.optimizers.Adam(learning_rate=learning_rate, epsilon=epsilon, clipnorm=clipnorm)
loss = tf.keras.losses.CategoricalCrossentropy()
'''
Define metrics
'''
train_loss = tf.keras.metrics.Mean(name='train_loss')
validation_loss = tf.keras.metrics.Mean(name='validation_loss')
train_acc = tf.keras.metrics.CategoricalAccuracy(name='train_accuracy')
validation_acc = tf.keras.metrics.CategoricalAccuracy(name='validation_accuracy')
train_confusion_matrix = ConfusionMatrix(2, name='train_confusion_matrix')
validation_confusion_matrix = ConfusionMatrix(2, name='validation_confusion_matrix')
'''
Training loop over epochs
'''
model_save_path_step_template = save_path+'segmenter_epoch_{epoch:04d}_loss_{loss:.3f}.h5'
template_epoch = '\nEpoch {}/{}: \nTrain Loss: {}, Acc: {}, Confusion matrix:\n{}\nValidation Loss: {}, Acc: {}, Confusion matrix:\n{}'
previus_validation_loss = 10000000
print('Evaluation every epoch: {}'.format(evaluation_every_epoch))
for epoch in range(epochs):
train_loss.reset_states()
validation_loss.reset_states()
train_acc.reset_states()
validation_acc.reset_states()
train_confusion_matrix.reset_states()
validation_confusion_matrix.reset_states()
for inputs, gold, mask in tqdm(train_dataset, desc="Training in progress", total=int(train_length/batch_size+1)):
train_step(model, optimizer, loss, inputs, gold, mask, train_loss, train_acc, train_confusion_matrix)
for inputs, gold, mask in tqdm(validation_dataset, desc="Validation in progress", total=int(validation_length/batch_size+1)):
test_step(model, loss, inputs, gold, mask, validation_loss, validation_acc, validation_confusion_matrix)
print(template_epoch.format(epoch+1,
epochs,
train_loss.result(),
train_acc.result(),
train_confusion_matrix.result(),
validation_loss.result(),
validation_acc.result(),
validation_confusion_matrix.result()
))
if evaluation_every_epoch == True:
create_candidate(model, test_data_path, candidate_path)
metrics = eval(test_gold_path, candidate_path)
print_metrics(metrics)
if previus_validation_loss > validation_loss.result().numpy():
previus_validation_loss = validation_loss.result().numpy()
model_save_path_step = model_save_path_step_template.format(epoch=epoch, loss=previus_validation_loss)
print('Saving: ', model_save_path_step)
model.save_weights(model_save_path_step, save_format='h5')
print('\n===========================================\n')
if __name__ == "__main__":
parser = argparse.ArgumentParser()
'''
Variables for dataset
'''
parser.add_argument("--bidirectional", type=bool, help="True if you want a bidirectional RNN", default=True)
parser.add_argument("--num_classification_layers", type=int, help="number classification layers", default=1)
'''
Variables for dataset
'''
parser.add_argument("--train_path", type=str, help="path to the train file", default="data/train.txt")
parser.add_argument("--max_sentences", type=int, help="Number max of sentences in the text", default=32)
parser.add_argument("--test_size", type=float, help="ratio of the test dataset", default=0.2)
parser.add_argument("--batch_size", type=int, help="batch size", default=12)
'''
Variables for training
'''
parser.add_argument("--epochs", type=int, help="number of epochs", default=5)
parser.add_argument("--learning_rate", type=float, help="learning rate", default=0.001)
parser.add_argument("--epsilon", type=float, help="epsilon", default=1e-8)
parser.add_argument("--clipnorm", type=float, help="clipnorm", default=1.0)
parser.add_argument("--save_path", type=str, help="path to the save folder", default="model/saved_weights/")
'''
Variables for evaluation
'''
parser.add_argument("--test_data_path", type=str, help="path to the test data file", default="data/test.data.txt")
parser.add_argument("--test_gold_path", type=str, help="path to the test gold file", default="data/test.gold.txt")
parser.add_argument("--candidate_path", type=str, help="path to the candidate file to save predictions", default="data/text.run.txt")
parser.add_argument("--evaluation_every_epoch", type=bool, help="True if you want to evaluate at every epochs", default=False)
'''
Run main
'''
args = parser.parse_args()
main(args.bidirectional, args.num_classification_layers, args.train_path, args.max_sentences, args.test_size, args.batch_size, args.epochs, args.learning_rate, args.epsilon, args.clipnorm, args.save_path, args.test_data_path, args.test_gold_path, args.candidate_path, args.evaluation_every_epoch)