-
Notifications
You must be signed in to change notification settings - Fork 368
/
ssim.py
86 lines (59 loc) · 2.58 KB
/
ssim.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
import numpy as np
from scipy import signal
from scipy.ndimage.filters import convolve
import tensorflow as tf
def _FSpecialGauss(size, sigma):
radius = size // 2
offset = 0.0
start, stop = -radius, radius + 1
if size % 2 == 0:
offset = 0.5
stop -= 1
x, y = np.mgrid[offset + start:stop, offset + start:stop]
g = np.exp(-((x**2 + y**2)/(2.0 * sigma**2)))
return g / g.sum()
def _SSIMForMultiScale(img1, img2, max_val=255, filter_size=11, filter_sigma=1.5, k1=0.01, k2=0.03):
img1 = img1.astype(np.float64)
img2 = img2.astype(np.float64)
_, height, width, _ = img1.shape
size = min(filter_size, height, width)
sigma = size * filter_sigma / filter_size if filter_size else 0
if filter_size:
window = np.reshape(_FSpecialGauss(size, sigma), (1, size, size, 1))
mu1 = signal.fftconvolve(img1, window, mode='valid')
mu2 = signal.fftconvolve(img2, window, mode='valid')
sigma11 = signal.fftconvolve(img1 * img1, window, mode='valid')
sigma22 = signal.fftconvolve(img2 * img2, window, mode='valid')
sigma12 = signal.fftconvolve(img1 * img2, window, mode='valid')
else:
mu1, mu2 = img1, img2
sigma11 = img1 * img1
sigma22 = img2 * img2
sigma12 = img1 * img2
mu11 = mu1 * mu1
mu22 = mu2 * mu2
mu12 = mu1 * mu2
sigma11 -= mu11
sigma22 -= mu22
sigma12 -= mu12
c1 = (k1 * max_val) ** 2
c2 = (k2 * max_val) ** 2
v1 = 2.0 * sigma12 + c2
v2 = sigma11 + sigma22 + c2
ssim = np.mean((((2.0 * mu12 + c1) * v1) / ((mu11 + mu22 + c1) * v2)))
cs = np.mean(v1 / v2)
return ssim, cs
def MultiScaleSSIM(img1, img2, max_val=255, filter_size=11, filter_sigma=1.5, k1=0.01, k2=0.03, weights=None):
weights = np.array(weights if weights else [0.0448, 0.2856, 0.3001, 0.2363, 0.1333])
levels = weights.size
downsample_filter = np.ones((1, 2, 2, 1)) / 4.0
im1, im2 = [x.astype(np.float64) for x in [img1, img2]]
mssim = np.array([])
mcs = np.array([])
for _ in range(levels):
ssim, cs = _SSIMForMultiScale(im1, im2, max_val=max_val, filter_size=filter_size, filter_sigma=filter_sigma, k1=k1, k2=k2)
mssim = np.append(mssim, ssim)
mcs = np.append(mcs, cs)
filtered = [convolve(im, downsample_filter, mode='reflect') for im in [im1, im2]]
im1, im2 = [x[:, ::2, ::2, :] for x in filtered]
return np.prod(mcs[0:levels-1] ** weights[0:levels-1]) * (mssim[levels-1] ** weights[levels-1])