-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathcommon.py
373 lines (294 loc) · 9.94 KB
/
common.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
# Enrich the sns.scatterplot with the run information
import argparse
import json
import os
import numpy as np
import pandas as pd
import seaborn as sns
import torch
from torch_geometric.data import TemporalData
DGB_DATA_PATH = os.path.expanduser("~/data/dgb")
def to_tensor(*args):
return (torch.tensor(arg) for arg in args)
def to_numpy(*args):
return (arg.cpu().detach().numpy() for arg in args)
class EarlyStopping:
def __init__(self, min_delta=0.0, patience=10):
self.min_delta = min_delta
self.patience = patience
self.count = 0
self.best_value = None
def __call__(self, value):
"""
check if the value increases from the best value by at least min_delta
"""
if self.best_value is None:
self.best_value = value
return False
if value - self.best_value > self.min_delta:
self.best_value = value
self.count = 0
else:
self.count += 1
return self.count > self.patience
def add_common_arguments(parser):
parser.add_argument("--dataset", type=str, default="wikipedia")
def parse_args():
parser = argparse.ArgumentParser()
parser.add_argument("--dataset", type=str, default="wikipedia")
args = parser.parse_args()
return args
def save_results(results, path):
os.makedirs(path, exist_ok=True)
with open(os.path.join(path, "results.json"), "w") as f:
json.dump(results, f)
def get_last_runs(run_dir, n_last=10):
"""Get the last n_last runs."""
run_collection = RunCollection(run_dir, n_last=n_last)
return run_collection.df.dropna()
def load_json(fpath):
if not os.path.exists(fpath):
return None
with open(fpath, "r") as f:
config = json.load(f)
return config
def minmaxscale(x):
return (x - min(x)) / (max(x) - min(x))
def set_theme(fontsize=25):
import matplotlib.pyplot as plt
import seaborn as sns
plt.rcParams.update(
{
"font.size": fontsize,
"axes.titlesize": fontsize,
"axes.labelsize": fontsize,
"xtick.labelsize": fontsize,
"ytick.labelsize": fontsize,
"legend.fontsize": fontsize,
"legend.title_fontsize": fontsize,
"font.family": "serif",
# "annotation.fontsize": fontsize,
}
)
sns.set_style(
"whitegrid",
rc={
"axes.edgecolor": "0.15",
"axes.facecolor": "white",
"axes.grid": True,
"axes.linewidth": 1.0,
"figure.facecolor": "white",
"font.family": "serif",
# "axes.titlesize": fontsize,
# "axes.labelsize": fontsize,
# "xtick.labelsize": fontsize,
# "ytick.labelsize": fontsize,
# "legend.fontsize": fontsize,
# "legend.title_fontsize": fontsize,
},
)
class Run:
def __init__(self, path) -> None:
self.config = load_json(path + "/config.json")
self.config["id"] = path.split("/")[-1]
self.path = path
self.metrics = load_json(path + "/metrics.json")
self.df = pd.Series(self.config)
self.checkpoints = [path for path in os.listdir(path) if path.endswith(".pt")]
if len(self.checkpoints) == 0:
print(f"Warning: no checkpoint found in {path}")
# List dir absoulte path
class RunCollection:
def __init__(self, dir, n_last=None) -> None:
self.runs = [Run(os.path.join(dir, path)) for path in os.listdir(dir)[-n_last:]]
self.dir = dir
self.df = pd.DataFrame([run.config for run in self.runs])
def torch_compat(func):
def wrapper(*torch_args):
args = []
there_is_tensor = False
for arg in torch_args:
if torch.is_tensor(arg):
# If the input is a PyTorch tensor, convert it to a NumPy array
device = arg.device
there_is_tensor = True
arg = arg.cpu().numpy()
args.append(arg)
out = func(*args) # eventually this is a tuple of output
if there_is_tensor:
# Convert the output back to a PyTorch tensor
out = torch.tensor(out).to(device)
return out
return wrapper
def numpy_compat(func):
def wrapper(*numpy_args):
args = []
there_is_numpy = False
for arg in numpy_args:
if isinstance(arg, np.ndarray):
# If the input is a PyTorch tensor, convert it to a NumPy array
there_is_numpy = True
arg = torch.from_numpy(arg)
args.append(arg)
out = func(*args)
if there_is_numpy:
out = out.numpy()
return out
return wrapper
def traffic_plot_theme(fontsize=25, rc={}):
sns.set_theme(
style="whitegrid",
rc={
"axes.titlesize": fontsize,
"axes.labelsize": fontsize,
"xtick.labelsize": fontsize,
"ytick.labelsize": fontsize,
"legend.fontsize": fontsize,
"legend.title_fontsize": fontsize,
"font.family": "serif",
**rc,
},
)
def traffic_plot_theme(fontsize=25, rc={}):
sns.set_theme(
style="whitegrid",
rc={
"axes.titlesize": fontsize,
"axes.labelsize": fontsize,
"xtick.labelsize": fontsize,
"ytick.labelsize": fontsize,
"legend.fontsize": fontsize,
"legend.title_fontsize": fontsize,
"font.family": "serif",
**rc,
},
)
def train_val_test_split_dataframe(df, val_ratio, test_ratio):
"""
In place function to split a dataframe into train, val and test sets.
A 'split' column gets added to the dataframe.
"""
val_time, test_time = list(
np.quantile(df["t"], [(1 - val_ratio - test_ratio), (1 - test_ratio)])
)
df["t_scaled"] = minmaxscale(df["t"])
val_time_scaled, test_time_scaled = list(
np.quantile(df["t_scaled"], [(1 - val_ratio - test_ratio), (1 - test_ratio)])
)
train_mask = (df["t"] < val_time).values
val_mask = ((df["t"] >= val_time) & (df["t"] < test_time)).values
test_mask = (df["t"] >= test_time).values
df.loc[train_mask, "split"] = "train"
df.loc[val_mask, "split"] = "val"
df.loc[test_mask, "split"] = "test"
df.set_index("split", inplace=True)
df.test_time = test_time
df.val_time = val_time
df.val_time_scaled = val_time_scaled
df.test_time_scaled = test_time_scaled
df.val_ratio = val_ratio
df.test_ratio = test_ratio
# return df
train_mask = df.index == "train"
val_mask = df.index == "val"
test_mask = df.index == "test"
return train_mask, val_mask, test_mask
def df_to_temporal_data(df):
return TemporalData(
src=torch.tensor(df["src"].values),
dst=torch.tensor(df["dst"].values),
t=torch.tensor(df["t"].values).long(),
msg=torch.tensor(df["label"].values).reshape(-1, 1).float(),
)
def set_random_seed():
import random
import torch
random.seed(0)
np.random.seed(0)
torch.manual_seed(0)
torch.cuda.manual_seed(0)
torch.cuda.manual_seed_all(0)
torch.backends.cudnn.deterministic = True
torch.backends.cudnn.benchmark = False
def load_json(fpath):
if not os.path.exists(fpath):
return None
with open(fpath, "r") as f:
config = json.load(f)
return config
def minmaxscale(x):
return (x - min(x)) / (max(x) - min(x))
def set_theme(fontsize=25):
import matplotlib.pyplot as plt
import seaborn as sns
plt.rcParams.update({"font.size": fontsize})
sns.set_style(
"whitegrid",
rc={
"axes.edgecolor": "0.15",
"axes.facecolor": "white",
"axes.grid": True,
"axes.linewidth": 1.0,
"figure.facecolor": "white",
"font.family": "serif",
},
)
class Run:
def __init__(self, path) -> None:
self.config = load_json(path + "/config.json")
self.config["id"] = path.split("/")[-1]
self.path = path
self.metrics = load_json(path + "/metrics.json")
self.df = pd.Series(self.config)
# List dir absoulte path
class RunCollection:
def __init__(self, dir, n_last=None) -> None:
self.runs = [Run(os.path.join(dir, path)) for path in os.listdir(dir)[-n_last:]]
self.dir = dir
self.df = pd.DataFrame([run.config for run in self.runs])
def torch_compat(func):
def wrapper(*torch_args):
args = []
there_is_tensor = False
for arg in torch_args:
if torch.is_tensor(arg):
# If the input is a PyTorch tensor, convert it to a NumPy array
device = arg.device
there_is_tensor = True
arg = arg.cpu().numpy()
args.append(arg)
out = func(*args) # eventually this is a tuple of output
if there_is_tensor:
# Convert the output back to a PyTorch tensor
out = torch.tensor(out).to(device)
return out
return wrapper
def numpy_compat(func):
def wrapper(*numpy_args):
args = []
there_is_numpy = False
for arg in numpy_args:
if isinstance(arg, np.ndarray):
# If the input is a PyTorch tensor, convert it to a NumPy array
there_is_numpy = True
arg = torch.from_numpy(arg)
args.append(arg)
out = func(*args)
if there_is_numpy:
out = out.numpy()
return out
return wrapper
def traffic_plot_theme(fontsize=25, rc={}):
sns.set_theme(
style="whitegrid",
rc={
"axes.titlesize": fontsize,
"axes.labelsize": fontsize,
"xtick.labelsize": fontsize,
"ytick.labelsize": fontsize,
"legend.fontsize": fontsize,
"legend.title_fontsize": fontsize,
"font.family": "serif",
**rc,
},
)