-
Notifications
You must be signed in to change notification settings - Fork 2
/
main_finetune.py
860 lines (775 loc) · 27.8 KB
/
main_finetune.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
# --------------------------------------------------------
# References:
# SatMAE: https://github.com/sustainlab-group/SatMAE
# MAE: https://github.com/facebookresearch/mae
# --------------------------------------------------------
import argparse
import datetime
import json
import os
import time
import re
from pathlib import Path
from copy import copy
import numpy as np
import glob
from collections import OrderedDict
import torch
import torch.backends.cudnn as cudnn
import wandb
from torch.utils.tensorboard import SummaryWriter # type: ignore
# assert timm.__version__ == "0.3.2" # version check
import models_vit
import util.lr_decay as lrd
import util.misc as misc
from engine_finetune import (
evaluate,
train_one_epoch,
)
from timm.data.mixup import Mixup, mixup_target
from timm.loss import LabelSmoothingCrossEntropy, SoftTargetCrossEntropy
from timm.models.layers import trunc_normal_
from util.datasets import build_fmow_dataset
from util.misc import NativeScalerWithGradNormCount as NativeScaler
from util.pos_embed import interpolate_pos_embed
class FixedDeviceMixup(Mixup):
def __call__(self, x, target):
assert len(x) % 2 == 0, "Batch size should be even when using this"
if self.mode == "elem":
lam = self._mix_elem(x)
elif self.mode == "pair":
lam = self._mix_pair(x)
else:
lam = self._mix_batch(x)
device = x.device # Get the device of the input tensor
target = mixup_target(
target, self.num_classes, lam, self.label_smoothing, device=device
)
return x, target
Mixup = FixedDeviceMixup
def nullable_string(val):
if not val:
return None
return val
def to_list(x, sep):
return [int(y) for y in x.split(sep)]
def extract_model_name(dir_path):
parts = dir_path.split(os.sep)
if len(parts) >= 2:
model_part = parts[-2]
match = re.search(r"out_(.+?_.*?_.*?)(_.*?_|_)", model_part)
if match:
model_name = match.group(1)
next_word = re.search(r"_(.*?)_", match.group(2))
if next_word and next_word.group(1) not in ["xformers", "scaled"]:
model_name += next_word.group(1)
return model_name
if "mae" in parts[-1]:
return parts[-1].replace(".pth", "")
return None
def get_args_parser():
parser = argparse.ArgumentParser("Cross-MAE fine-tuning", add_help=False)
parser.add_argument(
"--batch_size",
default=512,
type=int,
help="Batch size per GPU (effective batch size is "
+ "batch_size * accum_iter * # gpus",
)
parser.add_argument("--epochs", default=100, type=int)
parser.add_argument(
"--accum_iter",
type=int,
default=1,
help="Accumulate gradient iterations (for increasing the "
+ "effective batch size under memory constraints)",
)
# Model parameters
parser.add_argument(
"--model_type",
type=nullable_string,
default=None,
choices=["vanilla", None],
help="Use channel model",
)
parser.add_argument(
"--model",
default="mae_vit_base",
type=str,
metavar="MODEL",
help="Name of model to train",
)
parser.add_argument(
"--input_size",
default=128,
type=int,
help="The size of the square-shaped input image",
)
parser.add_argument(
"--patch_size",
default=16,
type=int,
help="The size of the square-shaped patches across the image. "
+ "Must be a divisor of input_size (input_size % patch_size == 0)",
)
parser.add_argument(
"--drop_path",
type=float,
default=0.1,
metavar="PCT",
help="Drop path rate (default: 0.1 (B/L) 0.2 (H))",
)
# Optimizer parameters
parser.add_argument(
"--clip_grad",
type=float,
default=None,
metavar="NORM",
help="Clip gradient norm (default: None, no clipping)",
)
parser.add_argument(
"--weight_decay", type=float, default=0.05, help="weight decay (default: 0.05)"
)
parser.add_argument(
"--lr",
type=float,
default=None,
metavar="LR",
help=(
"Absolute LR. If None, it is set automatically based on absolute_lr ="
" base_lr * total_batch_size / 256"
),
)
parser.add_argument(
"--blr",
type=float,
default=1e-3,
metavar="LR",
help="base learning rate: absolute_lr = base_lr * total_batch_size / 256",
)
parser.add_argument(
"--layer_decay",
type=float,
default=0.75,
help="layer-wise lr decay from ELECTRA/BEiT",
)
parser.add_argument(
"--min_lr",
type=float,
default=1e-6,
metavar="LR",
help="Lower LR bound for cyclic schedulers that hit 0",
)
parser.add_argument(
"--warmup_epochs", type=int, default=5, metavar="N", help="epochs to warmup LR"
)
# Augmentation parameters
parser.add_argument(
"--color_jitter",
type=float,
default=None,
metavar="PCT",
help="Color jitter factor (enabled only when not using Auto/RandAug)",
)
parser.add_argument(
"--aa",
type=str,
default="rand-m9-mstd0.5-inc1",
metavar="NAME",
help=(
'Use AutoAugment policy. "v0" or "original". " + "(default:'
" rand-m9-mstd0.5-inc1)"
),
)
parser.add_argument(
"--smoothing", type=float, default=0.1, help="Label smoothing (default: 0.1)"
)
# * Random Erase params
parser.add_argument(
"--reprob",
type=float,
default=0.25,
metavar="PCT",
help="Random erase prob (default: 0.25)",
)
parser.add_argument(
"--remode",
type=str,
default="pixel",
help='Random erase mode (default: "pixel")',
)
parser.add_argument(
"--recount", type=int, default=1, help="Random erase count (default: 1)"
)
parser.add_argument(
"--resplit",
action="store_true",
default=False,
help="Do not random erase first (clean) augmentation split",
)
# * Mixup params
parser.add_argument(
"--mixup", type=float, default=0.8, help="mixup alpha, mixup enabled if > 0."
)
parser.add_argument(
"--cutmix", type=float, default=1.0, help="cutmix alpha, cutmix enabled if > 0."
)
parser.add_argument(
"--cutmix_minmax",
type=float,
nargs="+",
default=None,
help=(
"cutmix min/max ratio, overrides alpha and enables cutmix if set (default:"
" None)"
),
)
parser.add_argument(
"--mixup_prob",
type=float,
default=1.0,
help="Probability of performing mixup or cutmix when either/both is enabled",
)
parser.add_argument(
"--mixup_switch_prob",
type=float,
default=0.5,
help="Probability of switching to cutmix when both mixup and cutmix enabled",
)
parser.add_argument(
"--mixup_mode",
type=str,
default="batch",
help='How to apply mixup/cutmix params. Per "batch", "pair", or "elem"',
)
# * Finetuning params
parser.add_argument("--finetune", default="", help="finetune from checkpoint")
parser.add_argument("--use_psa", action="store_true")
parser.add_argument("--global_pool", action="store_true")
parser.set_defaults(global_pool=True)
parser.add_argument(
"--cls_token",
action="store_false",
dest="global_pool",
help="Use class token instead of global pool for classification",
)
# Dataset parameters
parser.add_argument(
"--train_path",
default="./train_64.csv",
type=str,
help="Train .csv path",
)
parser.add_argument(
"--test_path",
default="/data2/HDD_16TB/fmow-rgb-preproc/val_224.csvv",
type=str,
help="Test .csv path",
)
parser.add_argument(
"--dataset_type",
type=str,
default="rgb",
choices=[
"rgb",
"sentinel",
"euro_sat",
"naip",
"smart",
"spacenetv1",
"resisc45",
],
help="Whether to use fmow rgb, sentinel, or other dataset.",
)
parser.add_argument(
"--masked_bands",
default=None,
nargs="+",
type=int,
help="Sequence of band indices to mask (with mean val) in sentinel dataset",
)
parser.add_argument(
"--dropped_bands",
type=int,
nargs="+",
default=None,
help="Which bands (0 indexed) to drop from sentinel data.",
)
parser.add_argument(
"--nb_classes", default=62, type=int, help="number of the classification types"
)
parser.add_argument(
"--output_dir",
type=str,
default=None,
help=(
"Path used for saving trained model checkpoints and logs. If not specified,"
" the directory "
)
+ "name is automatically generated based on model config.",
)
parser.add_argument(
"--output_dir_base",
type=str,
default="./out",
help="Base directory to use for model checkpoints directory",
)
parser.add_argument(
"--val_img_path",
type=str,
default="./images/",
help="Path used for saving trained model checkpoints and logs",
)
parser.add_argument(
"--log_dir", default="./output_dir", help="path where to tensorboard log"
)
parser.add_argument(
"--device",
type=str,
default="cuda:0",
help="device to use for training / testing",
)
parser.add_argument("--seed", default=0, type=int)
parser.add_argument(
"--resume",
type=nullable_string,
default=None,
help="The path to the checkpoint to resume training from.",
)
parser.add_argument(
"--save_every",
type=int,
default=1,
help="How frequently (in epochs) to save ckpt",
)
parser.add_argument(
"--wandb_entity",
type=str,
default="utk-iccv23",
help="Wandb entity name, eg: utk-iccv23",
)
parser.add_argument(
"--wandb_project",
type=nullable_string,
default=None,
help="Wandb project name, eg: satmae",
)
# https://docs.wandb.ai/guides/runs/resuming
parser.add_argument(
"--wandb_id",
type=nullable_string,
default=None,
help="Wandb project id, eg: 83faqrtq",
)
parser.add_argument(
"--start_epoch", default=0, type=int, metavar="N", help="start epoch"
)
parser.add_argument("--eval", action="store_true", help="Perform evaluation only")
parser.add_argument(
"--dist_eval",
action="store_true",
default=False,
help=(
"Enabling distributed evaluation (recommended during training for faster"
" monitor"
),
)
parser.add_argument(
"--num_workers",
type=int,
default=10,
help=(
"The number of CPU workers to use for the data loader. Generally, this"
" should be set to "
)
+ "the number of CPU threads on your machine.",
)
parser.add_argument(
"--pin_mem",
action="store_true",
help=(
"Pin CPU memory in DataLoader for more efficient (sometimes) transfer to"
" GPU."
),
)
parser.add_argument("--no_pin_mem", action="store_false", dest="pin_mem")
parser.set_defaults(pin_mem=True)
# distributed training parameters
parser.add_argument(
"--world_size", default=1, type=int, help="Number of distributed processes"
)
parser.add_argument("--local_rank", default=os.getenv("LOCAL_RANK", 0), type=int)
parser.add_argument("--dist_on_itp", action="store_true")
parser.add_argument(
"--dist_url", default="env://", help="URL used to set up distributed training"
)
parser.add_argument(
"--transform_checkpoint_keys",
action="store_true",
default=False,
help=(
"Whether to attempt to fix errors with loading keys from saved checkpoints."
),
)
return parser
def main(args):
misc.init_distributed_mode(args)
# args.wandb_project = None
print(f"job dir: {os.path.dirname(os.path.realpath(__file__))}")
print("=" * 80)
print(f"{args}".replace(", ", ",\n"))
device = torch.device(args.device)
# fix the seed for reproducibility
seed = args.seed + misc.get_rank()
torch.manual_seed(seed)
np.random.seed(seed)
cudnn.benchmark = True
###########################################################################
print("=" * 80)
dataset_train = build_fmow_dataset(is_train=True, args=args)
dataset_val = build_fmow_dataset(is_train=False, args=args)
global_rank = misc.get_rank()
if args.distributed:
num_tasks = misc.get_world_size()
sampler_train = torch.utils.data.DistributedSampler( # type: ignore
dataset_train, num_replicas=num_tasks, rank=global_rank, shuffle=True
)
print(f"Sampler_train = {str(sampler_train)}")
if args.dist_eval:
if len(dataset_val) % num_tasks != 0:
print(
"Warning: Enabling distributed evaluation with an eval dataset not"
" divisible by process number. This will slightly alter validation"
" results as extra duplicate entries are added to achieve equal num"
" of samples per-process."
)
sampler_val = torch.utils.data.DistributedSampler( # type: ignore
dataset_val, num_replicas=num_tasks, rank=global_rank, shuffle=True
) # shuffle=True to reduce monitor bias
else:
sampler_val = torch.utils.data.SequentialSampler( # type: ignore
dataset_val
)
else:
sampler_train = torch.utils.data.RandomSampler(dataset_train) # type: ignore
sampler_val = torch.utils.data.SequentialSampler(dataset_val) # type: ignore
if global_rank == 0 and args.log_dir is not None and not args.eval:
os.makedirs(args.log_dir, exist_ok=True)
log_writer = SummaryWriter(log_dir=args.log_dir)
else:
log_writer = None
data_loader_train = torch.utils.data.DataLoader( # type: ignore
dataset_train,
sampler=sampler_train,
batch_size=args.batch_size,
num_workers=args.num_workers,
pin_memory=args.pin_mem,
drop_last=True,
)
data_loader_val = torch.utils.data.DataLoader( # type: ignore
dataset_val,
sampler=sampler_val,
batch_size=args.batch_size,
num_workers=args.num_workers,
pin_memory=args.pin_mem,
drop_last=False,
)
mixup_fn = None
mixup_active = args.mixup > 0 or args.cutmix > 0.0 or args.cutmix_minmax is not None
if mixup_active:
print("Mixup is activated!")
mixup_fn = Mixup(
mixup_alpha=args.mixup,
cutmix_alpha=args.cutmix,
cutmix_minmax=args.cutmix_minmax,
prob=args.mixup_prob,
switch_prob=args.mixup_switch_prob,
mode=args.mixup_mode,
label_smoothing=args.smoothing,
num_classes=args.nb_classes,
)
else:
print("Not using mixup")
#######################################################################################
# Define the model
model = models_vit.__dict__[args.model](
patch_size=args.patch_size,
img_size=args.input_size,
in_chans=dataset_train.in_c,
num_classes=args.nb_classes,
drop_path_rate=args.drop_path,
global_pool=args.global_pool,
)
if args.finetune and not args.eval:
checkpoint = torch.load(args.finetune, map_location="cpu")
print("Load pre-trained checkpoint from: %s" % args.finetune)
checkpoint_model = checkpoint["model"]
# Fix for mapping our models keys to ViT keys
if not args.transform_checkpoint_keys:
new_state_dict = checkpoint_model
else:
new_state_dict = OrderedDict()
xformer_mappings = {
".wrap_att.norm.": ".norm1.",
".wrap_att.sublayer.layer.in_proj_container.q_proj.": ".attn.qkv.", # splitting here
".wrap_att.sublayer.layer.in_proj_container.k_proj.": ".attn.qkv.",
".wrap_att.sublayer.layer.in_proj_container.v_proj.": ".attn.qkv.",
".wrap_att.sublayer.layer.proj.": ".attn.proj.",
".wrap_ff.norm.": ".norm2.",
".wrap_ff.sublayer.layer.mlp.0.": ".mlp.fc1.",
".wrap_ff.sublayer.layer.mlp.3.": ".mlp.fc2.",
}
for key, value in checkpoint_model.items():
if "encoder" in key:
if "encoder_" in key:
name = key.replace("encoder_", "")
elif "encoder.encoders" in key: # Xformers case
name = key
for source, target in xformer_mappings.items():
if source in key:
name = key.replace(source, target)
name = name.replace("encoder.encoders", "blocks")
else:
name = key.replace("encoder", "blocks")
new_state_dict[name] = value
elif key in {
"cls_token",
"patch_embed.proj.weight",
"patch_embed.proj.bias",
}:
name = key
new_state_dict[name] = value
# interpolate position embedding
interpolate_pos_embed(model, checkpoint_model)
msg = model.load_state_dict(checkpoint, strict=False)
print(msg)
# Print the keys that were actually loaded
pretrained_keys = set(new_state_dict.keys())
current_keys = set(model.state_dict().keys())
loaded_keys = pretrained_keys.intersection(current_keys)
loaded_keys = sorted(list(loaded_keys))
grouped_keys = {}
for key in loaded_keys:
main_key = key.split(".")[0]
if main_key not in grouped_keys:
grouped_keys[main_key] = []
grouped_keys[main_key].append(key)
print("Keys that were actually loaded:")
for main_key, sub_keys in grouped_keys.items():
print(f"{main_key}: {len(sub_keys)} weight(s)")
# TODO: change assert msg based on patch_embed
if args.global_pool:
print(set(msg.missing_keys))
# assert set(msg.missing_keys) == {'head.weight', 'head.bias', 'fc_norm.weight', 'fc_norm.bias'}
else:
print(set(msg.missing_keys))
# assert set(msg.missing_keys) == {'head.weight', 'head.bias'}
# manually initialize fc layer
trunc_normal_(model.head.weight, std=2e-5)
model = model.to(device)
model_without_ddp = model
print(f"Model = {str(model_without_ddp)}")
###########################################################################
print("=" * 80)
batch_size_eff = args.batch_size * args.accum_iter * misc.get_world_size()
print("accumulate grad iterations: %d" % args.accum_iter)
print("effective batch size: %d" % batch_size_eff)
n_parameters = sum(p.numel() for p in model.parameters() if p.requires_grad)
print("Model = %s" % str(model_without_ddp))
print("number of params (M): %.2f" % (n_parameters / 1.0e6))
if args.lr is None: # only base_lr is specified
args.lr = args.blr * batch_size_eff / 256
print("base lr: %.2e" % (args.lr * 256 / batch_size_eff))
print("actual lr: %.2e" % args.lr)
if args.distributed:
model = torch.nn.parallel.DistributedDataParallel(model, device_ids=[args.gpu])
model_without_ddp = model.module
###########################################################################
print("=" * 80)
# build optimizer with layer-wise lr decay (lrd)
if args.model_type is not None and args.model_type.startswith("resnet"):
param_groups = model_without_ddp.parameters()
else:
param_groups = lrd.param_groups_lrd(
model_without_ddp,
args.weight_decay,
no_weight_decay_list=model_without_ddp.no_weight_decay(),
layer_decay=args.layer_decay,
)
optimizer = torch.optim.AdamW(param_groups, lr=args.lr)
loss_scaler = NativeScaler()
if mixup_fn is not None:
# smoothing is handled with mixup label transform
criterion = SoftTargetCrossEntropy()
elif args.smoothing > 0.0:
criterion = LabelSmoothingCrossEntropy(smoothing=args.smoothing)
else:
criterion = torch.nn.CrossEntropyLoss()
print("criterion = %s" % str(criterion))
misc.load_model(
args=args,
model_without_ddp=model_without_ddp,
optimizer=optimizer,
loss_scaler=loss_scaler,
device=args.device,
)
print("=" * 80)
model_params = filter(lambda p: p.requires_grad, model.parameters())
model_num_params = sum(np.prod(p.size()) for p in model_params)
print(f"Trainable parameters: {model_num_params}")
#######################################################################################
model_name: str = "_".join(
[
args.model,
f"i{args.input_size}-p{args.patch_size}",
f"e{args.epochs}-we{args.warmup_epochs}",
f"b{args.batch_size}-a{args.accum_iter}",
f"-lr{args.lr}",
f"-mixup{args.mixup}",
f"-cutmix{args.cutmix}",
f"-smoothing{args.smoothing}",
"_cls_only" if not args.global_pool else "_global_pool",
f"CHKP{extract_model_name(args.finetune)}-finetune",
]
)
if args.output_dir is None:
args.output_dir = f"out_{model_name}"
if args.output_dir_base is not None:
args.output_dir = os.path.join(args.output_dir_base, args.output_dir)
# finding a new output directory if one already exists with the same name
if args.resume is None:
while os.path.exists(args.output_dir):
# print out if doesn't have any .pth files
if len(glob.glob(os.path.join(args.output_dir, "*.pth"))) == 0:
print(
f"INFO: {args.output_dir} already exists, but contains no .pth"
" files. You may want to delete it."
)
number = os.path.basename(args.output_dir).split("+")[-1]
number = int(number) + 1 if number.isdigit() else 1
args.output_dir = os.path.join(
os.path.dirname(args.output_dir), f"out_{model_name}+{number}"
)
print(f"Output directory: {args.output_dir}")
Path(args.output_dir).mkdir(parents=True, exist_ok=True)
print("=" * 80)
log_writer = None
if misc.is_main_process():
if args.wandb_entity is not None and args.wandb_project is not None:
wandb_id = (
wandb.util.generate_id()
if args.resume is None # type: ignore
else args.wandb_id
)
wandb.init(
entity=args.wandb_entity,
project=args.wandb_project,
name=model_name,
group=args.model,
job_type="finetune",
resume=None if args.resume is None else "must",
id=wandb_id,
)
wandb_args = copy(args)
if args.resume is not None:
wandb_args.start_epoch += 1
wandb.config.update(wandb_args, allow_val_change=True)
wandb.config.update(
{"num_params": model_num_params, "batch_size_eff": batch_size_eff}
)
wandb.watch(model)
else:
print("INFO: Not using WandB.")
# Logging
if args.output_dir is not None:
# output_dir_tb = os.path.join(args.output_dir, "tensorboard")
output_dir_tb = os.path.join("./logs")
log_writer = SummaryWriter(log_dir=output_dir_tb)
print(f"INFO: Tensorboard log path: {output_dir_tb}")
else:
print("INFO: Not logging to tensorboard.")
###########################################################################
if args.eval:
test_stats = evaluate(data_loader_val, model, device)
if "acc5" in test_stats:
print(
f"Evaluation on {len(dataset_val)} test images:"
f"\n\tacc1: {test_stats['acc1']:.2f}%"
f"\n\tacc5: {test_stats['acc5']:.2f}%, "
f"\n\tmacro_f1: {test_stats['macro_f1']:.2f}%, "
f"\n\tmicro_f1: {test_stats['micro_f1']:.2f}%"
)
else:
print(
f"Evaluation on {len(dataset_val)} test images:"
f"\n\tacc1: {test_stats['acc1']:.2f}%"
f"\n\tmacro_f1: {test_stats['macro_f1']:.2f}%, "
f"\n\tmicro_f1: {test_stats['micro_f1']:.2f}%"
)
exit(0)
print(f"Start training for {args.epochs} epochs")
start_time = time.time()
max_accuracy = 0.0
for epoch in range(args.start_epoch, args.epochs):
if args.distributed:
data_loader_train.sampler.set_epoch(epoch)
train_stats = train_one_epoch(
model,
criterion,
data_loader_train,
optimizer,
device,
epoch,
loss_scaler,
args.clip_grad,
mixup_fn,
log_writer=log_writer,
args=args,
)
log_stats = {
**{f"train_{k}": v for k, v in train_stats.items()},
"epoch": epoch,
}
if args.output_dir and (
(epoch % args.save_every == 0 and epoch >= 3 * args.epochs / 2)
or (epoch % 5 == 0 and epoch < 3 * args.epochs / 2)
or epoch + 1 == args.epochs
):
misc.save_model(
args=args,
model=model,
model_without_ddp=model_without_ddp,
optimizer=optimizer,
loss_scaler=loss_scaler,
epoch=epoch,
)
test_stats = evaluate(data_loader_val, model, device, args)
print(
f"Accuracy of the network on the {len(dataset_val)} test images:"
f" {test_stats['acc1']:.1f}%"
)
max_accuracy = max(max_accuracy, test_stats["acc1"])
print(f"Max accuracy: {max_accuracy:.2f}%")
if log_writer is not None:
log_writer.add_scalar("perf/test_acc1", test_stats["acc1"], epoch)
if "acc5" in test_stats:
log_writer.add_scalar("perf/test_acc5", test_stats["acc5"], epoch)
log_writer.add_scalar("perf/test_loss", test_stats["loss"], epoch)
log_writer.add_scalar("perf/test_macro_f1", test_stats["macro_f1"], epoch)
log_writer.add_scalar("perf/test_micro_f1", test_stats["micro_f1"], epoch)
if args.output_dir and misc.is_main_process():
if log_writer is not None:
log_writer.flush()
with open(
os.path.join(args.output_dir, "log.jsonl"), mode="a", encoding="utf-8"
) as f:
f.write(json.dumps(log_stats) + "\n")
total_time = time.time() - start_time
total_time_str = str(datetime.timedelta(seconds=int(total_time)))
print(f"Training time {total_time_str}")
if __name__ == "__main__":
args = get_args_parser()
args = args.parse_args()
if args.output_dir:
Path(args.output_dir).mkdir(parents=True, exist_ok=True)
main(args)