diff --git a/.github/codecov.yaml b/.github/codecov.yaml new file mode 100644 index 00000000..1b9c2cf7 --- /dev/null +++ b/.github/codecov.yaml @@ -0,0 +1,12 @@ +coverage: + status: + project: + default: + # set target (e.g. 60%) to fail the build if coverage is too low + target: 60% + patch: + default: + # basic just to show current patch + target: auto + threshold: 0% + base: auto \ No newline at end of file diff --git a/.github/workflows/tests.yml b/.github/workflows/tests.yml index aeb4f4b1..21588fe3 100644 --- a/.github/workflows/tests.yml +++ b/.github/workflows/tests.yml @@ -35,4 +35,10 @@ jobs: pip install -e ".[testing]" - name: Run pytest - run: pytest tests/test_* + run: pytest --cov=rl4co tests/*.py + + - name: Upload coverage reports to Codecov + uses: codecov/codecov-action@v3 + env: + CODECOV_TOKEN: ${{ secrets.CODECOV_TOKEN }} + diff --git a/README.md b/README.md index a73d01e6..3c959cf7 100644 --- a/README.md +++ b/README.md @@ -1,12 +1,14 @@
-![rl4co_titlebar_withlogo](https://github.com/kaist-silab/rl4co/assets/34462374/58e087eb-8791-4e92-a9da-fe0f680a11e4) + +

+ PyTorch Lightning base: TorchRL -config: Hydra [![Code style: black](https://img.shields.io/badge/code%20style-black-000000.svg)](https://github.com/psf/black)[![Slack](https://img.shields.io/badge/slack-chat-611f69.svg?logo=slack)](https://join.slack.com/t/rl4co/shared_invite/zt-1ytz2c1v4-0IkQ8NQH4TRXIX8PrRmDhQ) -![license](https://img.shields.io/badge/license-Apache%202.0-green.svg?)Open In Colab[![PyPI](https://img.shields.io/pypi/v/rl4co?logo=pypi)](https://pypi.org/project/rl4co) +config: Hydra [![Code style: black](https://img.shields.io/badge/code%20style-black-000000.svg)](https://github.com/psf/black) [![Slack](https://img.shields.io/badge/slack-chat-611f69.svg?logo=slack)](https://join.slack.com/t/rl4co/shared_invite/zt-1ytz2c1v4-0IkQ8NQH4TRXIX8PrRmDhQ) +![license](https://img.shields.io/badge/license-Apache%202.0-green.svg?) Open In Colab [![PyPI](https://img.shields.io/pypi/v/rl4co?logo=pypi)](https://pypi.org/project/rl4co) [![Test](https://github.com/kaist-silab/rl4co/actions/workflows/tests.yml/badge.svg)](https://github.com/kaist-silab/rl4co/actions/workflows/tests.yml) @@ -26,8 +28,7 @@ RL4CO is built upon: - [PyTorch Lightning](https://github.com/Lightning-AI/lightning): a lightweight PyTorch wrapper for high-performance AI research - [Hydra](https://github.com/facebookresearch/hydra): a framework for elegantly configuring complex applications -![image](https://github.com/kaist-silab/rl4co/assets/48984123/0db4efdd-1c93-4991-8f09-f3c6c1f35d60) - +![RL4CO Overview](https://github.com/kaist-silab/rl4co/assets/34462374/4d9a670f-ab7c-4fc8-9135-82d17cb6d0ee) ## Getting started Open In Colab @@ -105,41 +106,30 @@ python run.py -m experiment=tsp/am train.optimizer.lr=1e-3,1e-4,1e-5 ### Minimalistic Example -Here is a minimalistic example training the Attention Model with greedy rollout baseline on TSP in less than 50 lines of code: +Here is a minimalistic example training the Attention Model with greedy rollout baseline on TSP in less than 30 lines of code: ```python -from omegaconf import DictConfig -import lightning as L from rl4co.envs import TSPEnv -from rl4co.models.zoo.am import AttentionModel -from rl4co.tasks.rl4co import RL4COLitModule - -config = DictConfig( - {"data": { - "train_size": 100000, - "val_size": 10000, - "batch_size": 512, - }, - "optimizer": {"lr": 1e-4}} -) +from rl4co.models import AttentionModel +from rl4co.utils import RL4COTrainer # Environment, Model, and Lightning Module env = TSPEnv(num_loc=20) -model = AttentionModel(env) -lit_module = RL4COLitModule(config, env, model) +model = AttentionModel(env, + baseline="rollout", + train_data_size=100_000, + test_data_size=10_000, + optimizer_kwargs={'lr': 1e-4} + ) # Trainer -trainer = L.Trainer( - max_epochs=3, # only few epochs - accelerator="gpu", # use GPU if available, else you can use others as "cpu" - logger=None, # can replace with WandbLogger, TensorBoardLogger, etc. - precision="16-mixed", # Lightning will handle faster training with mixed precision - gradient_clip_val=1.0, # clip gradients to avoid exploding gradients - reload_dataloaders_every_n_epochs=1, # necessary for sampling new data -) +trainer = RL4COTrainer(max_epochs=3) # Fit the model -trainer.fit(lit_module) +trainer.fit(model) + +# Test the model +trainer.test(model) ``` diff --git a/configs/experiment/README.md b/configs/experiment/README.md new file mode 100644 index 00000000..8824f023 --- /dev/null +++ b/configs/experiment/README.md @@ -0,0 +1,3 @@ +# Refactored Experiments + +We made some major refactoring to RL4CO, so the older experiments versions will be updated to the more efficient standards. You may refer to the [older experiments](archive/README.md) to run the same as in our preprint. \ No newline at end of file diff --git a/configs/experiment/archive/README.md b/configs/experiment/archive/README.md new file mode 100644 index 00000000..99683c55 --- /dev/null +++ b/configs/experiment/archive/README.md @@ -0,0 +1,9 @@ +# Older experiment versions + +These experiments are the ones we ran in the first version of our paper. The only difference is that, from version `0.1.0`, we added several new features and made a major refactoring that simplifies our codebase! + +We will update the experiments with the refactored versions. To use these, you may use RL4CO no greater than version `0.0.6`: + +```bash +pip install rl4co<=0.0.6 +``` \ No newline at end of file diff --git a/configs/experiment/cvrp/am-critic.yaml b/configs/experiment/archive/cvrp/am-critic.yaml similarity index 100% rename from configs/experiment/cvrp/am-critic.yaml rename to configs/experiment/archive/cvrp/am-critic.yaml diff --git a/configs/experiment/cvrp/am-ppo.yaml b/configs/experiment/archive/cvrp/am-ppo.yaml similarity index 100% rename from configs/experiment/cvrp/am-ppo.yaml rename to configs/experiment/archive/cvrp/am-ppo.yaml diff --git a/configs/experiment/cvrp/am-samples-matter-xl.yaml b/configs/experiment/archive/cvrp/am-samples-matter-xl.yaml similarity index 100% rename from configs/experiment/cvrp/am-samples-matter-xl.yaml rename to configs/experiment/archive/cvrp/am-samples-matter-xl.yaml diff --git a/configs/experiment/cvrp/am-samples-matter.yaml b/configs/experiment/archive/cvrp/am-samples-matter.yaml similarity index 100% rename from configs/experiment/cvrp/am-samples-matter.yaml rename to configs/experiment/archive/cvrp/am-samples-matter.yaml diff --git a/configs/experiment/cvrp/am.yaml b/configs/experiment/archive/cvrp/am.yaml similarity index 100% rename from configs/experiment/cvrp/am.yaml rename to configs/experiment/archive/cvrp/am.yaml diff --git a/configs/experiment/cvrp/pomo.yaml b/configs/experiment/archive/cvrp/pomo.yaml similarity index 100% rename from configs/experiment/cvrp/pomo.yaml rename to configs/experiment/archive/cvrp/pomo.yaml diff --git a/configs/experiment/cvrp/symnco.yaml b/configs/experiment/archive/cvrp/symnco.yaml similarity index 99% rename from configs/experiment/cvrp/symnco.yaml rename to configs/experiment/archive/cvrp/symnco.yaml index 40543df0..d24ad0f9 100644 --- a/configs/experiment/cvrp/symnco.yaml +++ b/configs/experiment/archive/cvrp/symnco.yaml @@ -43,7 +43,7 @@ data: batch_size: 512 train_size: 1_280_000 val_size: 10_000 - + model: num_starts: 0 # 0 for no augmentation for multi-starts num_augment: 10 diff --git a/configs/experiment/dpp/am.yaml b/configs/experiment/archive/dpp/am.yaml similarity index 99% rename from configs/experiment/dpp/am.yaml rename to configs/experiment/archive/dpp/am.yaml index 141afd34..054b149c 100644 --- a/configs/experiment/dpp/am.yaml +++ b/configs/experiment/archive/dpp/am.yaml @@ -22,7 +22,7 @@ logger: tags: ${tags} group: "dpp" name: "am" - + seed: 12345 env: diff --git a/configs/experiment/mdpp/am-critic.yaml b/configs/experiment/archive/mdpp/am-critic.yaml similarity index 99% rename from configs/experiment/mdpp/am-critic.yaml rename to configs/experiment/archive/mdpp/am-critic.yaml index 51347e8a..a0253202 100644 --- a/configs/experiment/mdpp/am-critic.yaml +++ b/configs/experiment/archive/mdpp/am-critic.yaml @@ -50,4 +50,3 @@ model: _target_: rl4co.models.rl.reinforce.critic.CriticNetwork env: ${env} use_native_sdpa: ${model.use_native_sdpa} - \ No newline at end of file diff --git a/configs/experiment/mdpp/am-ppo.yaml b/configs/experiment/archive/mdpp/am-ppo.yaml similarity index 100% rename from configs/experiment/mdpp/am-ppo.yaml rename to configs/experiment/archive/mdpp/am-ppo.yaml diff --git a/configs/experiment/mdpp/am.yaml b/configs/experiment/archive/mdpp/am.yaml similarity index 100% rename from configs/experiment/mdpp/am.yaml rename to configs/experiment/archive/mdpp/am.yaml diff --git a/configs/experiment/mtsp/am.yaml b/configs/experiment/archive/mtsp/am.yaml similarity index 99% rename from configs/experiment/mtsp/am.yaml rename to configs/experiment/archive/mtsp/am.yaml index d669d76a..fccf85bb 100644 --- a/configs/experiment/mtsp/am.yaml +++ b/configs/experiment/archive/mtsp/am.yaml @@ -22,7 +22,7 @@ logger: tags: ${tags} group: "mtsp${env.num_loc}" name: "am" - + seed: 12345 env: diff --git a/configs/experiment/mtsp/symnco.yaml b/configs/experiment/archive/mtsp/symnco.yaml similarity index 99% rename from configs/experiment/mtsp/symnco.yaml rename to configs/experiment/archive/mtsp/symnco.yaml index 9ba5ba58..df598068 100644 --- a/configs/experiment/mtsp/symnco.yaml +++ b/configs/experiment/archive/mtsp/symnco.yaml @@ -29,7 +29,7 @@ env: num_loc: 20 min_num_agents: 5 max_num_agents: 5 - + trainer: min_epochs: 10 max_epochs: 100 diff --git a/configs/experiment/op/am.yaml b/configs/experiment/archive/op/am.yaml similarity index 100% rename from configs/experiment/op/am.yaml rename to configs/experiment/archive/op/am.yaml diff --git a/configs/experiment/pctsp/am-samples-matter-xl.yaml b/configs/experiment/archive/pctsp/am-samples-matter-xl.yaml similarity index 100% rename from configs/experiment/pctsp/am-samples-matter-xl.yaml rename to configs/experiment/archive/pctsp/am-samples-matter-xl.yaml diff --git a/configs/experiment/pctsp/am.yaml b/configs/experiment/archive/pctsp/am.yaml similarity index 100% rename from configs/experiment/pctsp/am.yaml rename to configs/experiment/archive/pctsp/am.yaml diff --git a/configs/experiment/pctsp/pomo.yaml b/configs/experiment/archive/pctsp/pomo.yaml similarity index 100% rename from configs/experiment/pctsp/pomo.yaml rename to configs/experiment/archive/pctsp/pomo.yaml diff --git a/configs/experiment/pctsp/symnco.yaml b/configs/experiment/archive/pctsp/symnco.yaml similarity index 99% rename from configs/experiment/pctsp/symnco.yaml rename to configs/experiment/archive/pctsp/symnco.yaml index 921e6dd7..50e2a8c9 100644 --- a/configs/experiment/pctsp/symnco.yaml +++ b/configs/experiment/archive/pctsp/symnco.yaml @@ -43,7 +43,7 @@ data: batch_size: 512 train_size: 1_280_000 val_size: 10_000 - + model: num_starts: 0 # 0 for no augmentation for multi-starts num_augment: 10 diff --git a/configs/experiment/pdp/am.yaml b/configs/experiment/archive/pdp/am.yaml similarity index 100% rename from configs/experiment/pdp/am.yaml rename to configs/experiment/archive/pdp/am.yaml diff --git a/configs/experiment/pdp/ham.yaml b/configs/experiment/archive/pdp/ham.yaml similarity index 99% rename from configs/experiment/pdp/ham.yaml rename to configs/experiment/archive/pdp/ham.yaml index d160f89f..cce11c2d 100644 --- a/configs/experiment/pdp/ham.yaml +++ b/configs/experiment/archive/pdp/ham.yaml @@ -22,7 +22,7 @@ logger: tags: ${tags} group: "tsp${env.num_loc}" name: "ham" - + seed: 12345 env: @@ -33,7 +33,7 @@ trainer: max_epochs: 100 gradient_clip_val: 1.0 accelerator: "gpu" - + train: optimizer: # _partial_: True diff --git a/configs/experiment/sdvrp/am.yaml b/configs/experiment/archive/sdvrp/am.yaml similarity index 100% rename from configs/experiment/sdvrp/am.yaml rename to configs/experiment/archive/sdvrp/am.yaml diff --git a/configs/experiment/test/am.yaml b/configs/experiment/archive/test/am.yaml similarity index 99% rename from configs/experiment/test/am.yaml rename to configs/experiment/archive/test/am.yaml index 2398de77..3b53ffd3 100644 --- a/configs/experiment/test/am.yaml +++ b/configs/experiment/archive/test/am.yaml @@ -29,7 +29,7 @@ logger: hydra: run: dir: ${paths.log_dir}/${mode}/runs/${logger.wandb.group}/${logger.wandb.name}/${now:%Y-%m-%d}_${now:%H-%M-%S} - + seed: 12345 env: diff --git a/configs/experiment/test/pomo.yaml b/configs/experiment/archive/test/pomo.yaml similarity index 100% rename from configs/experiment/test/pomo.yaml rename to configs/experiment/archive/test/pomo.yaml diff --git a/configs/experiment/transfer/am.yaml b/configs/experiment/archive/transfer/am.yaml similarity index 98% rename from configs/experiment/transfer/am.yaml rename to configs/experiment/archive/transfer/am.yaml index 5ab29c1c..302a4eb8 100644 --- a/configs/experiment/transfer/am.yaml +++ b/configs/experiment/archive/transfer/am.yaml @@ -8,7 +8,7 @@ defaults: # - override /logger: null # comment this line to enable logging - override /logger: wandb.yaml -transfer: # transfer to +transfer: # transfer to source: problem: 'cvrp' size: 50 diff --git a/configs/experiment/transfer/pomo.yaml b/configs/experiment/archive/transfer/pomo.yaml similarity index 98% rename from configs/experiment/transfer/pomo.yaml rename to configs/experiment/archive/transfer/pomo.yaml index 25700227..5335b6bd 100644 --- a/configs/experiment/transfer/pomo.yaml +++ b/configs/experiment/archive/transfer/pomo.yaml @@ -8,7 +8,7 @@ defaults: # - override /logger: null # comment this line to enable logging - override /logger: wandb.yaml -transfer: # transfer to +transfer: # transfer to source: problem: 'cvrp' size: 50 @@ -57,7 +57,7 @@ data: batch_size: 512 train_size: 1_280_000 val_size: 10_000 - + model: num_starts: ${transfer.target.size} # 0 for no augmentation for multi-starts num_augment: 0 diff --git a/configs/experiment/transfer/symnco.yaml b/configs/experiment/archive/transfer/symnco.yaml similarity index 98% rename from configs/experiment/transfer/symnco.yaml rename to configs/experiment/archive/transfer/symnco.yaml index 74b62dc0..554e1d8b 100644 --- a/configs/experiment/transfer/symnco.yaml +++ b/configs/experiment/archive/transfer/symnco.yaml @@ -8,7 +8,7 @@ defaults: # - override /logger: null # comment this line to enable logging - override /logger: wandb.yaml -transfer: # transfer to +transfer: # transfer to source: problem: 'tsp' size: 50 @@ -57,7 +57,7 @@ data: batch_size: 512 train_size: 1_280_000 val_size: 10_000 - + model: num_starts: 0 # 0 for no augmentation for multi-starts num_augment: 10 diff --git a/configs/experiment/tsp/am-critic.yaml b/configs/experiment/archive/tsp/am-critic.yaml similarity index 100% rename from configs/experiment/tsp/am-critic.yaml rename to configs/experiment/archive/tsp/am-critic.yaml diff --git a/configs/experiment/tsp/am-ppo.yaml b/configs/experiment/archive/tsp/am-ppo.yaml similarity index 100% rename from configs/experiment/tsp/am-ppo.yaml rename to configs/experiment/archive/tsp/am-ppo.yaml diff --git a/configs/experiment/tsp/am-samples-matter-xl.yaml b/configs/experiment/archive/tsp/am-samples-matter-xl.yaml similarity index 100% rename from configs/experiment/tsp/am-samples-matter-xl.yaml rename to configs/experiment/archive/tsp/am-samples-matter-xl.yaml diff --git a/configs/experiment/tsp/am-samples-matter.yaml b/configs/experiment/archive/tsp/am-samples-matter.yaml similarity index 100% rename from configs/experiment/tsp/am-samples-matter.yaml rename to configs/experiment/archive/tsp/am-samples-matter.yaml diff --git a/configs/experiment/archive/tsp/am.yaml b/configs/experiment/archive/tsp/am.yaml new file mode 100644 index 00000000..fc538336 --- /dev/null +++ b/configs/experiment/archive/tsp/am.yaml @@ -0,0 +1,46 @@ +# @package _global_ + +defaults: + - override /model: am.yaml + - override /env: tsp.yaml + - override /callbacks: default.yaml + - override /trainer: default.yaml + # - override /logger: null # comment this line to enable logging + - override /logger: wandb.yaml + +env: + num_loc: 50 + +tags: ["am", "tsp"] + +logger: + wandb: + project: "rl4co" + tags: ${tags} + group: "tsp${env.num_loc}" + name: "am-tsp${env.num_loc}" + +seed: 12345 + +trainer: + max_epochs: 100 + gradient_clip_val: 1.0 + accelerator: "gpu" + precision: "16-mixed" + +train: + optimizer: + _target_: torch.optim.Adam + lr: 1e-4 + weight_decay: 0 + scheduler: + _target_: torch.optim.lr_scheduler.MultiStepLR + milestones: [80, 95] + gamma: 0.1 + scheduler_interval: epoch + +data: + batch_size: 512 + train_size: 1_280_000 + val_size: 10_000 + diff --git a/configs/experiment/tsp/mdam.yaml b/configs/experiment/archive/tsp/mdam.yaml similarity index 99% rename from configs/experiment/tsp/mdam.yaml rename to configs/experiment/archive/tsp/mdam.yaml index 120869e3..8f7e4345 100644 --- a/configs/experiment/tsp/mdam.yaml +++ b/configs/experiment/archive/tsp/mdam.yaml @@ -22,7 +22,7 @@ logger: tags: ${tags} group: "tsp${env.num_loc}" name: "mdam" - + seed: 12345 env: diff --git a/configs/experiment/tsp/pomo.yaml b/configs/experiment/archive/tsp/pomo.yaml similarity index 100% rename from configs/experiment/tsp/pomo.yaml rename to configs/experiment/archive/tsp/pomo.yaml diff --git a/configs/experiment/tsp/ptrnet.yaml b/configs/experiment/archive/tsp/ptrnet.yaml similarity index 100% rename from configs/experiment/tsp/ptrnet.yaml rename to configs/experiment/archive/tsp/ptrnet.yaml diff --git a/configs/experiment/tsp/symnco.yaml b/configs/experiment/archive/tsp/symnco.yaml similarity index 99% rename from configs/experiment/tsp/symnco.yaml rename to configs/experiment/archive/tsp/symnco.yaml index 4c5809ee..31209576 100644 --- a/configs/experiment/tsp/symnco.yaml +++ b/configs/experiment/archive/tsp/symnco.yaml @@ -43,7 +43,7 @@ data: batch_size: 512 train_size: 1_280_000 val_size: 10_000 - + model: num_starts: 0 # 0 for no augmentation for multi-starts num_augment: 10 diff --git a/configs/experiment/base.yaml b/configs/experiment/base.yaml new file mode 100644 index 00000000..d14c59df --- /dev/null +++ b/configs/experiment/base.yaml @@ -0,0 +1,47 @@ +# @package _global_ +# Example configuration for experimenting. Trains the Attention Model on +# the TSP environment with 50 locations via REINFORCE with greedy rollout baseline. +# You may find comments on the most common hyperparameters below. + +# Override defaults: take configs from relative path +defaults: + - override /model: am.yaml + - override /env: tsp.yaml + - override /callbacks: default.yaml + - override /trainer: default.yaml + # - override /logger: null # comment this line to enable logging + - override /logger: wandb.yaml + +# Environment configuration +# Note that here we load by default the `.npz` files for the TSP environment +# that are automatically generated with seed following Kool et al. (2019). +env: + num_loc: 50 + data_dir: ${paths.root_dir}/data/tsp + val_file: tsp${env.num_loc}_val_seed4321.npz + test_file: tsp${env.num_loc}_test_seed1234.npz + +# Logging: we use Wandb in this case +logger: + wandb: + project: "rl4co" + tags: ["am", "tsp"] + group: "tsp${env.num_loc}" + name: "am-tsp${env.num_loc}" + +# Model: this contains the environment (which gets automatically passed to the model on +# initialization), the policy network and other hyperparameters. +# This is a `LightningModule` and can be trained with PyTorch Lightning. +model: + batch_size: 512 + train_data_size: 1_280_000 + val_data_size: 10_000 + test_data_size: 10_000 + optimizer_kwargs: + lr: 1e-4 + +# Trainer: this is a customized version of the PyTorch Lightning trainer. +trainer: + max_epochs: 100 + +seed: 1234 diff --git a/configs/experiment/tsp/am.yaml b/configs/experiment/tsp/am.yaml index fc538336..cfe2ffaa 100644 --- a/configs/experiment/tsp/am.yaml +++ b/configs/experiment/tsp/am.yaml @@ -5,42 +5,33 @@ defaults: - override /env: tsp.yaml - override /callbacks: default.yaml - override /trainer: default.yaml - # - override /logger: null # comment this line to enable logging - override /logger: wandb.yaml env: num_loc: 50 -tags: ["am", "tsp"] - logger: wandb: project: "rl4co" - tags: ${tags} + tags: ["am", "tsp"] group: "tsp${env.num_loc}" name: "am-tsp${env.num_loc}" -seed: 12345 - -trainer: - max_epochs: 100 - gradient_clip_val: 1.0 - accelerator: "gpu" - precision: "16-mixed" - -train: - optimizer: - _target_: torch.optim.Adam +model: + batch_size: 512 + train_data_size: 1_280_000 + val_data_size: 10_000 + test_data_size: 10_000 + optimizer_kwargs: lr: 1e-4 - weight_decay: 0 - scheduler: - _target_: torch.optim.lr_scheduler.MultiStepLR + lr_scheduler: + "MultiStepLR" + lr_scheduler_kwargs: milestones: [80, 95] gamma: 0.1 - scheduler_interval: epoch -data: - batch_size: 512 - train_size: 1_280_000 - val_size: 10_000 +trainer: + max_epochs: 100 + +seed: 1234 diff --git a/configs/main.yaml b/configs/main.yaml index 197d5741..636181f5 100644 --- a/configs/main.yaml +++ b/configs/main.yaml @@ -5,7 +5,6 @@ defaults: - _self_ - callbacks: default.yaml - - task: rl4co.yaml - logger: null # set logger here or use command line (e.g. `python train.py logger=tensorboard`) - trainer: default.yaml - paths: default.yaml @@ -16,7 +15,7 @@ defaults: # experiment configs allow for version control of specific hyperparameters # e.g. best hyperparameters for given model and datamodule - - experiment: tsp/am.yaml # set baseline experiment + - experiment: base.yaml # set baseline experiment # config for hyperparameter optimization - hparams_search: null @@ -53,7 +52,7 @@ ckpt_path: null seed: null #https://pytorch.org/docs/stable/generated/torch.set_float32_matmul_precision.html#torch.set_float32_matmul_precision -matmul_precision: "medium" +matmul_precision: "medium" # metrics to be logged metrics: @@ -61,4 +60,3 @@ metrics: val: ["reward"] test: ["reward"] log_on_step: True - \ No newline at end of file diff --git a/configs/model/am-ppo.yaml b/configs/model/am-ppo.yaml index c541af4e..b579c566 100644 --- a/configs/model/am-ppo.yaml +++ b/configs/model/am-ppo.yaml @@ -1,8 +1 @@ -_target_: rl4co.models.zoo.amppo.model.AttentionModel -# policy: -# _target_: rl4co.models.zoo.amppo.policy.AttentionModelPolicy -# env: ${env} -# embedding_dim: 128 - -# critic: -# _target_: rl4co.models.rl.reinforce.critic.CriticNetwork +_target_: rl4co.models.PPOModel \ No newline at end of file diff --git a/configs/model/am.yaml b/configs/model/am.yaml index 965b6089..774aa8c5 100644 --- a/configs/model/am.yaml +++ b/configs/model/am.yaml @@ -1,6 +1,3 @@ _target_: rl4co.models.AttentionModel -baseline: - _target_: rl4co.models.rl.reinforce.baselines.WarmupBaseline - baseline: - _target_: rl4co.models.rl.reinforce.baselines.RolloutBaseline +baseline: "rollout" \ No newline at end of file diff --git a/configs/model/default.yaml b/configs/model/default.yaml index 965b6089..73fb1a09 100644 --- a/configs/model/default.yaml +++ b/configs/model/default.yaml @@ -1,6 +1,2 @@ _target_: rl4co.models.AttentionModel - -baseline: - _target_: rl4co.models.rl.reinforce.baselines.WarmupBaseline - baseline: - _target_: rl4co.models.rl.reinforce.baselines.RolloutBaseline +baseline: "rollout" \ No newline at end of file diff --git a/configs/model/ham.yaml b/configs/model/ham.yaml index fb892e9b..f193f369 100644 --- a/configs/model/ham.yaml +++ b/configs/model/ham.yaml @@ -1,6 +1 @@ _target_: rl4co.models.HeterogeneousAttentionModel - -baseline: - _target_: rl4co.models.rl.reinforce.baselines.WarmupBaseline - baseline: - _target_: rl4co.models.rl.reinforce.baselines.RolloutBaseline diff --git a/configs/model/mdam.yaml b/configs/model/mdam.yaml index 41f64e57..4dcfebb1 100644 --- a/configs/model/mdam.yaml +++ b/configs/model/mdam.yaml @@ -1,6 +1 @@ -_target_: rl4co.models.MDAMPolicy - -baseline: - _target_: rl4co.models.rl.reinforce.baselines.WarmupBaseline - baseline: - _target_: rl4co.models.rl.reinforce.baselines.RolloutBaseline +_target_: rl4co.models.MDAM \ No newline at end of file diff --git a/configs/model/pomo.yaml b/configs/model/pomo.yaml index 539849df..5bbe77d9 100644 --- a/configs/model/pomo.yaml +++ b/configs/model/pomo.yaml @@ -1,6 +1 @@ -_target_: rl4co.models.POMO - -num_starts: ${env.num_loc} - -baseline: - _target_: rl4co.models.rl.reinforce.baselines.SharedBaseline +_target_: rl4co.models.POMO \ No newline at end of file diff --git a/configs/model/ptrnet.yaml b/configs/model/ptrnet.yaml index 231097db..d478b6d6 100644 --- a/configs/model/ptrnet.yaml +++ b/configs/model/ptrnet.yaml @@ -1,6 +1 @@ -_target_: rl4co.models.PointerNetwork - -baseline: - _target_: rl4co.models.rl.reinforce.baselines.WarmupBaseline - baseline: - _target_: rl4co.models.rl.reinforce.baselines.RolloutBaseline \ No newline at end of file +_target_: rl4co.models.PointerNetwork \ No newline at end of file diff --git a/configs/model/symnco.yaml b/configs/model/symnco.yaml index 33d79a3c..e0924175 100644 --- a/configs/model/symnco.yaml +++ b/configs/model/symnco.yaml @@ -1,5 +1,4 @@ _target_: rl4co.models.SymNCO -num_augment: 4 -num_starts: ${env.num_loc} - +num_augment: 8 +num_starts: ${env.num_loc} \ No newline at end of file diff --git a/configs/task/rl4co.yaml b/configs/task/rl4co.yaml deleted file mode 100644 index 6ec43a7d..00000000 --- a/configs/task/rl4co.yaml +++ /dev/null @@ -1,4 +0,0 @@ -_target_: rl4co.tasks.rl4co.RL4COLitModule - - - diff --git a/configs/trainer/default.yaml b/configs/trainer/default.yaml index cff4edbd..84df21f4 100644 --- a/configs/trainer/default.yaml +++ b/configs/trainer/default.yaml @@ -1,11 +1,11 @@ # Customized for RL4CO -_target_: lightning.pytorch.trainer.Trainer +_target_: rl4co.utils.trainer.RL4COTrainer default_root_dir: ${paths.output_dir} gradient_clip_val: 1.0 accelerator: "gpu" -precision: "16-mixed" +precision: "16-mixed" # Fast distributed training: comment out to use on single GPU # devices: 1 # change number of devices @@ -19,7 +19,4 @@ check_val_every_n_epoch: 1 # set True to to ensure deterministic results # makes training slower but gives more reproducibility than just setting seeds -deterministic: False - -# We must do this each epoch to ensure that the dataloaders are reloaded with new data -reload_dataloaders_every_n_epochs: 1 \ No newline at end of file +deterministic: False \ No newline at end of file diff --git a/docs/_content/api/algos/base.md b/docs/_content/api/algos/base.md new file mode 100644 index 00000000..375ce08a --- /dev/null +++ b/docs/_content/api/algos/base.md @@ -0,0 +1,10 @@ +# RL4CO LitModule + + +## RL4COLitModule + +```{eval-rst} +.. automodule:: rl4co.envs.common.base + :members: + :undoc-members: +``` diff --git a/docs/_content/api/algos/ppo.md b/docs/_content/api/algos/ppo.md new file mode 100644 index 00000000..f8c2fd70 --- /dev/null +++ b/docs/_content/api/algos/ppo.md @@ -0,0 +1 @@ +# PPO \ No newline at end of file diff --git a/docs/_content/api/algos/reinforce.md b/docs/_content/api/algos/reinforce.md new file mode 100644 index 00000000..54481de3 --- /dev/null +++ b/docs/_content/api/algos/reinforce.md @@ -0,0 +1,17 @@ +# Reinforce + +## REINFORCE + +```{eval-rst} +.. automodule:: rl4co.models.rl.reinforce.reinforce + :members: + :undoc-members: +``` + +## REINFORCE Baselines + +```{eval-rst} +.. automodule:: rl4co.models.rl.reinforce.baselines + :members: + :undoc-members: +``` \ No newline at end of file diff --git a/docs/_content/api/envs/base.md b/docs/_content/api/envs/base.md index 09c77da8..1db3c258 100644 --- a/docs/_content/api/envs/base.md +++ b/docs/_content/api/envs/base.md @@ -1,4 +1,4 @@ -# RL4CO Base Environment +# Base Environment ```{eval-rst} .. automodule:: rl4co.envs.common.base diff --git a/docs/_content/api/envs/eda.md b/docs/_content/api/envs/eda.md index 988419df..4d83cad3 100644 --- a/docs/_content/api/envs/eda.md +++ b/docs/_content/api/envs/eda.md @@ -1,4 +1,4 @@ -# EDA +# EDA Problems Environment for Electronic Design Automation (EDA) problems ## Decap Placement Problem (DPP) diff --git a/docs/_content/api/envs/routing.md b/docs/_content/api/envs/routing.md index 885a8c65..b02447da 100644 --- a/docs/_content/api/envs/routing.md +++ b/docs/_content/api/envs/routing.md @@ -1,4 +1,4 @@ -# Routing +# Routing Problems ## Asymmetric Traveling Salesman Problem (ATSP) diff --git a/docs/_content/api/envs/scheduling.md b/docs/_content/api/envs/scheduling.md index 023de966..95086732 100644 --- a/docs/_content/api/envs/scheduling.md +++ b/docs/_content/api/envs/scheduling.md @@ -1,4 +1,4 @@ -# Scheduling +# Scheduling Problems ## Flexible Flow Shop Problem (FFSP) diff --git a/docs/_content/api/models/base.md b/docs/_content/api/models/base.md new file mode 100644 index 00000000..b90db27f --- /dev/null +++ b/docs/_content/api/models/base.md @@ -0,0 +1,25 @@ +# Base Autoregressive Model + +## Policy + +```{eval-rst} +.. automodule:: rl4co.models.zoo.common.autoregressive.policy + :members: + :undoc-members: +``` + +## Encoder + +```{eval-rst} +.. automodule:: rl4co.models.zoo.common.autoregressive.encoder + :members: + :undoc-members: +``` + +## Decoder + +```{eval-rst} +.. automodule:: rl4co.models.zoo.common.autoregressive.decoder + :members: + :undoc-members: +``` \ No newline at end of file diff --git a/docs/_content/api/models/nn.md b/docs/_content/api/models/nn.md index 1d97a424..d9e2a385 100644 --- a/docs/_content/api/models/nn.md +++ b/docs/_content/api/models/nn.md @@ -5,7 +5,7 @@ ### Graph Attention Encoder ```{eval-rst} -.. automodule:: rl4co.models.nn.graph.gat +.. automodule:: rl4co.models.nn.graph.attnnet :members: :undoc-members: ``` diff --git a/docs/_content/api/models/rl.md b/docs/_content/api/models/rl.md index d5c0d78a..9d23d29f 100644 --- a/docs/_content/api/models/rl.md +++ b/docs/_content/api/models/rl.md @@ -1,27 +1,29 @@ # RL Algorithms -## PPO +## Common ```{eval-rst} -.. automodule:: rl4co.models.rl.ppo.model +.. automodule:: rl4co.models.rl.common.base :members: :undoc-members: ``` ```{eval-rst} -.. automodule:: rl4co.models.rl.ppo.task +.. automodule:: rl4co.models.rl.common.critic :members: :undoc-members: ``` -## REINFORCE +## PPO ```{eval-rst} -.. automodule:: rl4co.models.rl.reinforce.base +.. automodule:: rl4co.models.rl.ppo.ppo :members: :undoc-members: ``` +## REINFORCE + ```{eval-rst} .. automodule:: rl4co.models.rl.reinforce.baselines :members: @@ -29,7 +31,7 @@ ``` ```{eval-rst} -.. automodule:: rl4co.models.rl.reinforce.critic +.. automodule:: rl4co.models.rl.reinforce.reinforce :members: :undoc-members: ``` \ No newline at end of file diff --git a/docs/_content/api/models/zoo.md b/docs/_content/api/models/zoo.md index c9911071..f103c21b 100644 --- a/docs/_content/api/models/zoo.md +++ b/docs/_content/api/models/zoo.md @@ -14,28 +14,22 @@ :undoc-members: ``` -```{eval-rst} -.. automodule:: rl4co.models.zoo.am.decoder - :members: - :undoc-members: -``` - ## Attention Model (AM-PPO) ```{eval-rst} -.. automodule:: rl4co.models.zoo.amppo.model +.. automodule:: rl4co.models.zoo.ppo.model :members: :undoc-members: ``` ```{eval-rst} -.. automodule:: rl4co.models.zoo.amppo.policy +.. automodule:: rl4co.models.zoo.ppo.policy :members: :undoc-members: ``` ```{eval-rst} -.. automodule:: rl4co.models.zoo.amppo.decoder +.. automodule:: rl4co.models.zoo.ppo.decoder :members: :undoc-members: ``` @@ -164,21 +158,9 @@ :undoc-members: ``` -```{eval-rst} -.. automodule:: rl4co.models.zoo.symnco.decoder - :members: - :undoc-members: -``` - ```{eval-rst} .. automodule:: rl4co.models.zoo.symnco.losses :members: :undoc-members: ``` -```{eval-rst} -.. automodule:: rl4co.models.zoo.symnco.augmentations - :members: - :undoc-members: -``` - diff --git a/docs/_content/api/tasks.md b/docs/_content/api/tasks.md new file mode 100644 index 00000000..9d24f349 --- /dev/null +++ b/docs/_content/api/tasks.md @@ -0,0 +1,17 @@ +# Tasks + +## Train + +```{eval-rst} +.. automodule:: rl4co.tasks.train + :members: + :undoc-members: +``` + +## Evaluate + +```{eval-rst} +.. automodule:: rl4co.tasks.eval + :members: + :undoc-members: +``` \ No newline at end of file diff --git a/docs/_theme/rl4co/layout.html b/docs/_theme/rl4co/layout.html index c5e95742..1ff94343 100644 --- a/docs/_theme/rl4co/layout.html +++ b/docs/_theme/rl4co/layout.html @@ -550,7 +550,11 @@

Resources

  • - Lightning.ai + About +
  • + +
  • + About
  • diff --git a/docs/_theme/rl4co/static/images/logo.png b/docs/_theme/rl4co/static/images/logo.png index ba02e8e7..39b45bef 100644 Binary files a/docs/_theme/rl4co/static/images/logo.png and b/docs/_theme/rl4co/static/images/logo.png differ diff --git a/docs/conf.py b/docs/conf.py index 600e136c..649f60ed 100644 --- a/docs/conf.py +++ b/docs/conf.py @@ -5,16 +5,12 @@ # -- Project information ----------------------------------------------------- # https://www.sphinx-doc.org/en/master/usage/configuration.html#project-information -import sys - -sys.path.append("..") # ! add rl4co path -sys.path.insert(0, "../rl4co") # ! add rl4co path +import rl4co project = "rl4co" copyright = "Federico Berto, Chuanbo Hua, Junyoung Park" author = "Federico Berto, Chuanbo Hua, Junyoung Park, Minsu Kim, Hyeonah Kim, Jiwoo Son, Haeyeon Kim, Joungho Kim, Jinkyoo Park" -import rl4co release = rl4co.__version__ @@ -71,17 +67,17 @@ ".md": "markdown", } -intersphinx_mapping = { - "python": ("https://docs.python.org/3", None), - "torch": ("https://pytorch.org/docs/stable/", None), - "torchmetrics": ("https://torchmetrics.readthedocs.io/en/stable/", None), - "tensordict": ("https://pytorch-labs.github.io/tensordict/", None), - "torchrl": ("https://pytorch.org/rl/", None), - "torchaudio": ("https://pytorch.org/audio/stable/", None), - "torchtext": ("https://pytorch.org/text/stable/", None), - "torchvision": ("https://pytorch.org/vision/stable/", None), - "numpy": ("https://numpy.org/doc/stable/", None), -} +# intersphinx_mapping = { +# "python": ("https://docs.python.org/3", None), +# "torch": ("https://pytorch.org/docs/stable/", None), +# "torchmetrics": ("https://torchmetrics.readthedocs.io/en/stable/", None), +# "tensordict": ("https://pytorch-labs.github.io/tensordict/", None), +# "torchrl": ("https://pytorch.org/rl/", None), +# "torchaudio": ("https://pytorch.org/audio/stable/", None), +# "torchtext": ("https://pytorch.org/text/stable/", None), +# "torchvision": ("https://pytorch.org/vision/stable/", None), +# "numpy": ("https://numpy.org/doc/stable/", None), +# } autosummary_generate = True diff --git a/docs/index.md b/docs/index.md index 90a4b5c2..ff536e8e 100644 --- a/docs/index.md +++ b/docs/index.md @@ -1,7 +1,9 @@ # RL4CO
    -

    Welcome to RL4CO

    + + +

    An extensive Reinforcement Learning (RL) for Combinatorial Optimization (CO) benchmark. Our goal is to provide a unified framework for RL-based CO algorithms, and to facilitate reproducible research in this field, decoupling the science from the engineering. @@ -10,9 +12,11 @@ An extensive Reinforcement Learning (RL) for Combinatorial Optimization (CO) ben base: TorchRL config: Hydra [![Code style: black](https://img.shields.io/badge/code%20style-black-000000.svg)](https://github.com/psf/black) -![license](https://img.shields.io/badge/license-Apache%202.0-green.svg?)[![PyPI](https://img.shields.io/pypi/v/rl4co?logo=pypi)](https://pypi.org/project/rl4co) +![license](https://img.shields.io/badge/license-Apache%202.0-green.svg?) [![PyPI](https://img.shields.io/pypi/v/rl4co?logo=pypi)](https://pypi.org/project/rl4co) [![Test](https://github.com/kaist-silab/rl4co/actions/workflows/tests.yml/badge.svg)](https://github.com/kaist-silab/rl4co/actions/workflows/tests.yml) + +
    @@ -22,7 +26,9 @@ RL4CO is built upon: - [PyTorch Lightning](https://github.com/Lightning-AI/lightning): a lightweight PyTorch wrapper for high-performance AI research - [Hydra](https://github.com/facebookresearch/hydra): a framework for elegantly configuring complex applications -image +image + + ```{eval-rst} .. toctree:: @@ -35,12 +41,12 @@ RL4CO is built upon: .. toctree:: :maxdepth: 2 - :caption: Models: + :caption: Algorithms: + + _content/api/algos/base + _content/api/algos/reinforce + _content/api/algos/ppo - _content/api/models/zoo - _content/api/models/rl - _content/api/models/nn - _content/api/models/env_embeddings .. toctree:: :maxdepth: 2 @@ -51,11 +57,20 @@ RL4CO is built upon: _content/api/envs/routing _content/api/envs/scheduling +.. toctree:: + :maxdepth: 2 + :caption: Models: + + _content/api/models/base + _content/api/models/zoo + _content/api/models/nn + _content/api/models/env_embeddings .. toctree:: :maxdepth: 2 :caption: Additional API: + _content/api/tasks _content/api/data .. toctree:: diff --git a/notebooks/1-quickstart.ipynb b/notebooks/1-quickstart.ipynb index 43587395..b3d96821 100644 --- a/notebooks/1-quickstart.ipynb +++ b/notebooks/1-quickstart.ipynb @@ -58,54 +58,32 @@ }, { "cell_type": "code", - "execution_count": 2, + "execution_count": 1, "metadata": {}, "outputs": [ { "name": "stderr", "output_type": "stream", "text": [ - "/home/botu/miniconda3/envs/rl4co/lib/python3.10/site-packages/torchrl/__init__.py:26: UserWarning: failed to set start method to spawn, and current start method for mp is fork.\n", - " warn(\n", - "/home/botu/.local/lib/python3.10/site-packages/tqdm/auto.py:21: TqdmWarning: IProgress not found. Please update jupyter and ipywidgets. See https://ipywidgets.readthedocs.io/en/stable/user_install.html\n", - " from .autonotebook import tqdm as notebook_tqdm\n" + "2023-07-23 00:10:45.945252: I tensorflow/core/util/port.cc:110] oneDNN custom operations are on. You may see slightly different numerical results due to floating-point round-off errors from different computation orders. To turn them off, set the environment variable `TF_ENABLE_ONEDNN_OPTS=0`.\n", + "2023-07-23 00:10:45.966170: I tensorflow/core/platform/cpu_feature_guard.cc:182] This TensorFlow binary is optimized to use available CPU instructions in performance-critical operations.\n", + "To enable the following instructions: AVX2 AVX512F AVX512_VNNI AVX512_BF16 FMA, in other operations, rebuild TensorFlow with the appropriate compiler flags.\n", + "2023-07-23 00:10:46.298714: W tensorflow/compiler/tf2tensorrt/utils/py_utils.cc:38] TF-TRT Warning: Could not find TensorRT\n" ] } ], "source": [ - "from omegaconf import DictConfig\n", + "%load_ext autoreload\n", + "%autoreload 2\n", + "\n", + "import sys; sys.path.append(2*\"../\")\n", + "\n", "\n", "import torch\n", - "import lightning as L\n", "\n", "from rl4co.envs import TSPEnv\n", "from rl4co.models.zoo.am import AttentionModel\n", - "from rl4co.tasks.rl4co import RL4COLitModule" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "### Configuration\n", - "\n", - "This is can be either handled by Hydra or directly passed to the `RL4COLitModule`. You may add other parameters for it as well" - ] - }, - { - "cell_type": "code", - "execution_count": 3, - "metadata": {}, - "outputs": [], - "source": [ - "config = DictConfig(\n", - " {\"data\": {\n", - " \"train_size\": 100000,\n", - " \"val_size\": 10000,\n", - " \"batch_size\": 512,\n", - " },\n", - " \"optimizer\": {\"lr\": 1e-4}}\n", - ")" + "from rl4co.utils.trainer import RL4COTrainer" ] }, { @@ -117,13 +95,35 @@ }, { "cell_type": "code", - "execution_count": 4, + "execution_count": 3, "metadata": {}, - "outputs": [], + "outputs": [ + { + "name": "stderr", + "output_type": "stream", + "text": [ + "/home/botu/miniconda3/envs/rl4co/lib/python3.10/site-packages/lightning/pytorch/utilities/parsing.py:196: UserWarning: Attribute 'env' is an instance of `nn.Module` and is already saved during checkpointing. It is recommended to ignore them using `self.save_hyperparameters(ignore=['env'])`.\n", + " rank_zero_warn(\n", + "/home/botu/miniconda3/envs/rl4co/lib/python3.10/site-packages/lightning/pytorch/utilities/parsing.py:196: UserWarning: Attribute 'policy' is an instance of `nn.Module` and is already saved during checkpointing. It is recommended to ignore them using `self.save_hyperparameters(ignore=['policy'])`.\n", + " rank_zero_warn(\n", + "Using 16bit Automatic Mixed Precision (AMP)\n", + "GPU available: True (cuda), used: True\n", + "TPU available: False, using: 0 TPU cores\n", + "IPU available: False, using: 0 IPUs\n", + "HPU available: False, using: 0 HPUs\n" + ] + } + ], "source": [ - "env = TSPEnv(num_loc=20) # TorchRL env\n", - "model = AttentionModel(env) # default is REINFORCE with greedy rollout baseline\n", - "lit_module = RL4COLitModule(config, env, model) # custom LightningModule" + "# RL4CO env based on TorchRL\n", + "env = TSPEnv(num_loc=20) \n", + "\n", + "# Model: default is AM with REINFORCE and greedy rollout baseline\n", + "model = AttentionModel(env, \n", + " baseline='rollout',\n", + " train_data_size=100_000,\n", + " val_data_size=10_000) \n", + "trainer = RL4COTrainer(max_epochs=3)" ] }, { @@ -135,19 +135,19 @@ }, { "cell_type": "code", - "execution_count": 5, + "execution_count": 4, "metadata": {}, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ - "Tour lengths: ['10.50', '5.63', '5.66']\n" + "Tour lengths: ['6.30', '6.34', '7.38']\n" ] }, { "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAAiMAAAGdCAYAAADAAnMpAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjcuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/bCgiHAAAACXBIWXMAAA9hAAAPYQGoP6dpAACrDUlEQVR4nOyddVwU6/fHz1JLl6iAgXlV7EK9difqtbs7ri12d3d3Ynd3oWLAVQEDxaIUQbp25/z+8Md+GWZmWWB3ZxfO+/V67pXJ88zOzPOZ5znPORJERCAIgiAIghAJA7ENIAiCIAgib0NihCAIgiAIUSExQhAEQRCEqJAYIQiCIAhCVEiMEARBEAQhKiRGCIIgCIIQFRIjBEEQBEGICokRgiAIgiBExUhsA1SBYRgICQkBKysrkEgkYptDEARBEIQKICLExsaCs7MzGBgI93/ohRgJCQmBIkWKiG0GQRAEQRDZ4Nu3b1C4cGHB9XohRqysrADgT2Wsra1FtoYgCIIgCFWIiYmBIkWKKNpxIfRCjKQNzVhbW5MYIQiCIAg9IzMXC3JgJQiCIAhCVEiMEARBEAQhKiRGCIIgCIIQFRIjBEEQBEGICokRgiAIgiBEhcQIQRAEQRCiQmKEIAiCIAhRITFCEARBEISokBghCIIgCEJUsixG7t+/D+7u7uDs7AwSiQTOnj2b6T53796FatWqgVQqhVKlSsG+ffuyYSpBEARBELmRLIuR+Ph4qFy5MmzevFml7YOCgqBt27bQuHFj8PX1hfHjx8OQIUPg2rVrWTaWIAiCIIjcR5Zz07Ru3Rpat26t8vbbtm2D4sWLw+rVqwEAoFy5cvDw4UNYu3YttGzZMqunJwiCIAgil6Fxn5HHjx9Ds2bNWMtatmwJjx8/FtwnOTkZYmJiWIUgCIIgiNyJxsVIWFgYFCxYkLWsYMGCEBMTA4mJibz7LF26FGxsbBSlSJEimjaTIAiCIAiR0MnZNNOnT4fo6GhF+fbtm9gmEQRBEAShIbLsM5JVHB0dITw8nLUsPDwcrK2twczMjHcfqVQKUqlU06YRBEEQBKEDaLxnpE6dOnDr1i3Wshs3bkCdOnU0fWqCIAiCIPSALIuRuLg48PX1BV9fXwD4M3XX19cXvn79CgB/hlj69eun2H7EiBHw6dMnmDp1Krx9+xa2bNkCx48fhwkTJqinBgRBEARB6DVZFiPPnz+HqlWrQtWqVQEAYOLEiVC1alWYM2cOAACEhoYqhAkAQPHixeHSpUtw48YNqFy5MqxevRp27dpF03oJgiAIggAAAAkiothGZEZMTAzY2NhAdHQ0WFtbi20OQRAEQRAqoGr7rZOzaQiCIAiCyDuQGCEIgiAIQlRIjBAEQRAEISokRgiCIAiCEBUSIwRBEARBiAqJEYIgCIIgRIXECEEQBEEQokJihCAIgiAIUSExQhAEQRCEqJAYIQiCIAhCVEiMEARBEAQhKiRGCIIgCIIQFRIjBEEQBEGIipHYBhAEQRD6iZxB8A6KhB+xSVDAyhTcituDoYFEbLMIPYTECEEQBJFlrr4JhfkX/CE0OkmxzMnGFOa6u0KrCk4iWkboIzRMQxAEQWSJq29CYeShlywhAgAQFp0EIw+9hKtvQkWyjNBXSIwQBEEQKiNnEOZf8AfkWZe2bP4Ff5AzfFsQBD8kRgiCIAiV8Q6KhNDoJJAnRMOv61uBSWX3jiAAhEYngXdQpDgGEnoJ+YwQBEEQKvMj9o8QCfecCak/P0NK2Aco2GMJGJiYcrYjCFWhnhGCIAhCZUzliRB+bDak/vwMAAApoe/hx6kFgMiwtitgZcqzN0HwQz0jBEEQhEpERUXBhL7tIfXHp3RLJWBZoQlIJAb//xeAo82fab4EoSrUM0IQBEFkytu3b+Gvv/6CgIAA1nL7VmPBsmIzAPgjRAAA5rq7UrwRIkuQGCEIgiAEiY+Ph+nTp0P58uUhIiKCta54x/FgVbmF4m9HG1PY2qcaxRkhsgwN0xAEQRAc5HI57N+/H2bMmAHh4eGc9XPnzoXZc+ZSBFZCLZAYIQiCIFjcuHEDJk+eDK9eveJdX7t2bZg3bx4AANQpmU+LlhG5FRqmIQiCIAAA4M2bN9C6dWto0aKFoBAxMDAAT09PLVtG5HZIjBAEQeRxwsLCYNiwYVC5cmW4evWq0m1Hjx4NLi4uWrKMyCvQMA1BEEQeJSUlBZYvXw7Lly+H+Pj4TLc3MzODGTNmaMEyIq9BYoQgCCKPYmJiAj169ACpVApnzpyBJ0+eKN3+33//BUdHRy1ZR+QlJIio89mMYmJiwMbGBqKjo8Ha2lpscwiCIHIdiYmJULJkSQgN5c+4a21tDUFBQWBvT8HMCNVRtf0mnxGCIIg8TlJSEpQvX15QiAAATJ48mYQIoTFIjBAEQeRhkpKSoGLFihAUFMRabmhoqPi3g4MDjB8/XsuWEXkJEiMEQRB5lJSUFKhSpQoEBgaylv/111+wb98+xd/Tp08HKysrLVtH5CXIZ4QgCCIPkpqaClWrVgU/Pz/W8pIlS4Kfnx/I5XIoWLAgWFtbQ2BgIJiZmYlkKaHPqNp+02wagiCIPEZqairUqFGDI0RcXFzg9evXIJVKAQCgQ4cOUL9+fRIihMYhMUIQBJGHkMlkUKtWLU6E1cKFC4Ofnx9LeEyaNAkqVKigbROJPAiJEYIgiDyCTCaDv//+G3x8fFjLnZycwN/fHywsLFjLq1atqk3ziDwMObASBEHkAeRyOTRo0ACePXvGWl6wYEEICAggB1VCVEiMEARB5HLkcjk0btwYHj9+zFru4OAAAQEBYGNjI5JlBPEHEiMEQRC5GIZhoHnz5vDgwQPWcnt7ewgICAA7OzuRLCOI/0FihCAIIpfCMAy0bt0a7ty5w1pua2sL/v7+4ODgIJJlBMGGxAhBEEQuhGEYcHd3h+vXr7OWW1tbg5+fHxQsWFAkywiCC82m0RPkDIJ3UCT8iE2CAlam4FbcHgwNJGKbRRBKoftWHBAROnbsCJcvX2Ytt7S0hNevX4Ozs7NIlhEEPyRG9ICrb0Jh/gV/CI1OUixzsjGFue6u0KqCk4iWEYQwdN+KAyJC586d4cKFC6zl5ubm8N9//0HRokVFsowghKFhGh3n6ptQGHnoJeuFDgAQFp0EIw+9hKtvhLNsEoRYZOW+lTMIjz/+gnO+wfD44y+QMzqfoUJnQUTo0aMHnDlzhrXczMwMfHx8oESJEiJZRhDKoZ4RHUbOIMy/4A/pX80oS4VY38tgVa0dGBgYwvwL/tDc1ZG6vgmdIf19m/DxGQAyYF6qFgAAIABIABT37Q3/MOo9UROICH379oXjx4+zlkulUnjx4gX89ddfIllGEJlDYkSH8Q6KZL2kmeR4+HFyASR/94PUyBCwbz4CQqOTwDsoEuqUzCeipQTxP9Lu26Qvr+DnmSUAyIBdwwGAiGBgbAISIynEGZnA8EXv4KLfLwCjP8sMTC3B2M5J0XuytU81EiQqgogwaNAgOHz4MGu5iYkJPH36FMqVKyeSZQShGiRGdJgfsemESFIchB2ZBqk/PwMAQJzPJTCydgCb2l1Z2xGE2PyITYLkkHfw4/RCAHkqAABE3dkDllXbQLz/XcDkeAAA2J3OpUFiJIX8nWeDsZ0Tp/eEev2Ug4gwbNgw2LdvH2u5sbExeHl5QeXKlcUxjCCyAPmM6DAFrEwV/5ZILcCkAHu89/e9/RD35jZrO4IQm5jgj/Dj+BzAlETFMkNLe7Cp1QmcB20EaRFu4jUjW0cwti+s+BsBFL1+hDCICKNGjYJdu3axlhsZGcGDBw+gevXqIllGEFmDxIgO41bcHpxsTEECABKJBGzq9uJsE3llPUQHvtC+cQTBw/v372HyoK7A/H/vBwCAgbkNFOyxCIxsCoKRdQFw7LEYHJsOBDAwVGwji/kBTEoC53jU66ec8ePHw7Zt21jLDA0N4c6dO1CrVi2RrCKIrENiRIcxNJDAXHdXAPjTbY0p8ZxtkJFDt65dwNfXV7vGEUQGvnz5As2aNYMfP34olhlILaBgt4VgnK8IAPy5jyUGhjBt2nRw7LMSjOycwcDcBpz6rYHoR0ch6Qs7rT31+gkzadIk2LBhA2uZoaEhXL9+HerVq5fp/jSLidAlyGdEx2lVwQm29qkG8y/4w6dPvxXLJYZGgHIZAADExsZC69at4cmTJ+Di4iKSpUReJjQ0FJo2bQrfvn1TLDM1M4eS/ZdCnM3/hhcd/3+mTHNXR/B8VglM8q2HyFs7wdDKAaROpSH8xBxwaDMBLF0bgqPNnyBpBBcPDw9Ys2YNa5mBgQFcunQJmjRpkun+FAOG0DUkiKjzcjgmJgZsbGwgOjoarK2txTZHFOQMwvw122DhlFGKZZaWlhAXF6f4u2zZsvDo0SOwt6cXOKE9fv36BY0aNYI3b94olkmlUrh06RI0atxEMAJrWiwSAAAGEVJ/fobQvWMBAMCu0UA4vGERtK5IkUIzMmvWLFi8eDFrmUQigfPnz0O7du0y3T/tumd88ae5CdMsJkKdqNp+0zCNnmBoIAEbCXtM3czMDMzMzBR/v337Ftq3bw+JiYkZdycIjRATEwOtWrViCREjIyM4ceIENG3aFAwNJFCnZD7oUKUQ1CmZjzUzJq3Xz9HGFCQSCRjnLwYGFrYAABB1dy9c2bkM5HK5tquk08ybN49XiJw8eVIlIcIXuyiNtGXzL/jTkI2GoSEyLjRMo0ekH4sHAPj58yf07dsXDh8+DAzDAADAo0ePoE+fPnD8+HEwNDTkOwxBqIWEhARwd3eH58+fK5ZJJBI4ePAguLu7q3SMVhWcoLmro6L3ZMvbZnD9/EkAANi4cSN8//4dDh8+zBLdeZVFixbB/PnzOcuPHj0KnTp1UukYGWMXZST9LCaKXaQZaIiMH+oZ0SN+/vzJWXb+/HlYvnw5a9np06dhwoQJoAcjcISekpKSAp07d4b79++zlu/YsQN69OiRpWOl7z3p1Yn9dX/mzBlo1qwZ/Pr1K8c26zPLli2D2bNnc5YfOHAAunfvrvJx0mYnJX56AcHbh0D4iXkQ8+wcpP4O492OUC+U3kMYEiN6RMaeEQCA6OhoCAkJgRkzZrCWb9y4EVatWqUt04g8hEwmg169esHVq1dZy9esWQNDhgzJ0bGbNWvGWebl5QV169aFoKCgHB1bX1m9ejVMnz6ds3zXrl3Qt2/fLB2rgJUpyOOjIPqRJ8h+h0HSp+cQdXunIphi+u0I9ZJ+iEwW81MxAQGAhsgAsilGNm/eDMWKFQNTU1OoVasWeHt7K91+3bp1UKZMGTAzM4MiRYrAhAkTICmJlHdW4RMjAH9+j8GDB0O/fv1Yy6dOnQpHjhzRhmlEHoFhGBgyZAicOnWKtXzevHkwYcKEHB+/UKFC4Orqyln+7t07qFOnDrx4kbdi6qxfvx4mT57MWZ72zGeFsLAwOL55MYRsHwLJIQGsdSaOpQHgjxOrE81i0gjeQZEQ/CMSou7th5CdwyHu1XXW+jwf6A+ziKenJ5qYmOCePXvQz88Phw4dira2thgeHs67/eHDh1EqleLhw4cxKCgIr127hk5OTjhhwgSVzxkdHY0AgNHR0Vk1N1fh4uKC8Oee5ZRevXphSkoKtmjRgrXc2NgYb968KbbpRC6AYRgcM2YM596bNGkSMgyjtvOMGzdO8D63sLDAy5cvq+1cusymTZt4r8HatWuzdJzQ0FCcMGECmpmZ/e84EkPFvw0t7dHF4yIW+/9y5XWIZiqUh0lJScGhUxeigamV4rpLpBZYZPxxdPG4yCpnfb6Lba5aUbX9zrIYcXNzw9GjRyv+lsvl6OzsjEuXLuXdfvTo0dikSRPWsokTJ2LdunVVPieJkT+Ym5sLvqQBAF+8eIExMTFYtWpV1nJra2v877//xDaf0HOmT5/OueeGDh2qViGCiHjx4kWl97mhoSHu3r1brefUNbZt28Zb92XLlql8jJCQEBw/fjyampoqvZ5mpWqhi8dFrL3kJgkRNZCSkoIBAQF48uRJnD9/PtavXx+lUinvtbeu050jRrwCI8SuglrRiBhJTk5GQ0NDPHPmDGt5v379sH379rz7HD58GG1sbPDp06eIiPjx40csW7YsLl68WPA8SUlJGB0drSjfvn3L82IkLi5O6QsFALBp06bIMAyGhIRwelGcnZ3xy5cvYleD0FOWLFnC2xsnk8nUfq7Y2Fg0NjbO9H6fN2+e2oWQLrBz507e+i5YsECl/UNCQnDcuHGCIqR27drs33HUFPQKjECZPPddS02SkpKCfn5+eOLECZw3bx5269YNK1SooNK9CyBBi4rNsNCofQoRUuz/BWFu+x00IkaCg4MRANDLy4u1fMqUKejm5ia43/r169HY2BiNjIwQAHDEiBFKzzN37lzeHzAvi5FPnz6pcIMDXr16FRERAwIC0N7enrXO1dUVIyMjRa4JoW/wDRe0b98eU1JSNHbOhg0bqnS/Dx48WKN2aJu9e/fy1nPmzJmZ7hscHIz//vuv0p4QqVSKo0aNYi27cuWKFmqWO4iLi8PBgwejq6uroj3LajF1qYLOAzewekNy8xCZqmJE47Np7t69C0uWLIEtW7bAy5cv4fTp03Dp0iVYuHCh4D7Tp0+H6OhoRUkfYjqvIuS8CgBQrVo1KFOmDAD8CRPNMAyULVsWLly4AKam//OK9/f3hw4dOpDzMKEy+/fvhzFjxrCWNW3aFI4dOwbGxsYaO2/z5s0F17m6usLw4cNhzpw5UL169Vzzfjh06BAMHDiQs3zy5MmwaNEiwf2Cg4Ph33//hRIlSsCGDRuUPt+TJ0+GDx8+sJbVqFEj+0bnMSwsLGDatGlgbGwMMpks8x3SUbhwYbhy5QqcvnAJipZmO2k72phS5NusKJzsDNPUq1cPJ0+ezFp28OBBNDMzQ7lcrtJ5yWcE8cKFCwpl3bVrV5bSHjZsGCIifvv2Dfft24eBgYGK/U6fPo0SiYS1fdeuXVW+9kTe5eTJk2hgYMC6d/7++2+MjY3V+LmfPn0q+GVZvHhxjI+P17gN2uTo0aOc5xQAcOzYsYJDUd+/f8exY8cK+iNkLM7OzhgTE4N2dnaKZcWKFdNyTXMHCQkJOHjwYJV7Q/79919MTU1V7C+TM+gVGIFnfb7n+iEyjfSMmJiYQPXq1eHWrVuKZQzDwK1bt6BOnTq8+yQkJICBAfs0aZFBkYJyqcyPHz/A0tISTp48CYcOHQITExPFurSp1YULF4b+/ftDyZIlFev++ecf2LhxI+tYJ06cgEmTJmnHcEIvuXr1KvTs2VMR2RcAoEqVKnDp0iWwtLTU+PmrV68OdnZ2ir/T/zsoKIgTEl2fOX78OPTq1YvzPhw6dCisX78eJBIJ735JSUlga2sLjo6OKp1nxYoV8OPHD4iKilIsq1mzZvYNz6MgIjx48AACAgIy3VYqlcKNGzdg/fr1YGT0v4DnytIk5FmyqnI8PT1RKpXivn370N/fH4cNG4a2trYYFhaGiIh9+/bFadOmKbafO3cuWllZ4dGjR/HTp094/fp1LFmyJHbr1k3tyio3c+rUKfTz81P87ebmplDdhoaGmX4penh4cNT66tWrNW02oYfcu3eP43dQtmxZ/PHjh1bt6Ny5MwIAtmzZEu/du8eyx9jYmPU86CsnT57k7REZMGCAys65crkcz5w5g4aGhoJf5nXq1EGGYfDo0aOs5StWrNBwDXMPDMPghQsXWO9eZSV//vw0ixE1OLUXEXHjxo1YtGhRNDExQTc3N3zy5IliXcOGDbF///6Kv1NTU3HevHlYsmRJNDU1xSJFiuCoUaMwKipK5fORGOGSMd7Dw4cPlW4vl8uxT58+nAfm6NGjWrKY0Ae8vb3RysqKdY8UK1YMv337pnVbtm3bhlKpVDHsOHDgQJZd9evX1+vhxrNnz3KGwQAAe/bsmaV6hYSEYIUKFZQ2jM+ePUNExEmTJrGW3759W1PVyzXI5XI8ffo0J2SCslKiRAn8+PGj2KbrBBoVI9qGxAiXAwcOsG5+VQIhJScnY7NmzVj7mZiY4J07dzRuL6H7vH79mjMDy8nJSbSX6sePH3HhwoWKv3/+/In58uVj2aev8UbOnz/PK0S6dOmSJSHy6dMnLFGihNKGceDAgYrtGzRooFgukUjonaoEmUyGx44dw4oVK6osQgAAK1SogCEhuW9WTHYhMZLLCQgI4HxNqUJ0dDRWrlyZta+NjQ2+evVKwxYTusz79+/R0dGRdV/ky5dP9KGQjNN29+zZw7LR3t4ef/78KZJ12ePixYu8Qyru7u5Zitvi5+eHzs7OrGNIJBIcPXq04m8rKysMDQ1FxD+Nq4WFBWvojeCSmpqKhw4dwrJly2YqPBwdHVk9dnXq1KHwCRkgMZLLkcvlaG1trXgISpYsqfK+wcHBWLRoUdZDVahQIVG64gnx+fr1K+d+sLa2xhcvXohtGgeGYVhf9wB//Cv0hatXr/IKkVatWmUpXsrz5885vURGRkZ49OhRlMvlCmGZ3ifEz8+PtX2fPn00UUW9JSUlBffu3YulSpXKVISYm5vj3LlzMTY2ViGQW7ZsiXFxcWJXQ+cgMZIHaNq0KesB+fXrl8r7+vv7s6b4pXUvZsWXh9B/wsLC8K+//uK8aDPzQRITf39/TpTLu3fvim1Wpty4cYM3UFbTpk0xOTlZ5ePcu3eP49djamqKFy9eVGwzePBgLF26NOu4+/btY+2zfv16tdZPX0lOTsYdO3ZgsWLFMhUhEokEBw0ahN+//y9/zK5du7B79+5Z+g3zEiRG8gAZc4WkRV9VlQcPHnBiFDRs2BCTkpI0ZDGhS0RGRmKlSpVYv7+JiQlev35dbNMyZebMmSy7y5Ytq9P37a1bt3iFSP369bNk96VLlzgznSwtLTl+X2fPnsULFy6wlmV0en/06JE6qqa3JCYm4qZNm7BIkSKZihAAwObNm/POjgkKCtJIWoTcAomRPMDp06dZD4uquSvSwze1sHv37no9S4HInJiYGKxVqxbrd+cLaKirJCQkcBw3Fy1aJLZZvNy5c4c3X0nt2rUxISFB5eMcO3aMI2js7e3R29ubs21qaipnanD631uVcAC5lfj4eFy7di06OTmpJEIqVKiQ5Q894n+QGMkDfP/+nfXQuLu7Z+s469ev5zyAkyZNUrO1hK6QkJCAjRs35nQ/Hzx4UGzTssTVq1c5QxXpow/rAvfu3UMTExPO81WjRo0s+Rfs3LmT89Hg5OSEb968UWn/5ORkVi9o5cqVs1kj/SU2NhZXrFiBBQoUUEmEODo64q5du6jXI4eQGMkjpPemL1iwYLazmE6ePJnzMK5bt07N1hJik5KSgm3btuX81lu3bhXbtGzRvXt3Vj1atGihM5l8Hz58yBuqvUqVKhgTE6PycVatWsU5RvHixbM05frly5es/QcPHpydKukl0dHRuHjxYo7Dr1AxNzfHefPmaSXtQV6AxEgeoUOHDqwH6cuXL9k6jlwux549e3K+lo8fP65miwmxkMlknMYbQL+jcIaEhLBmlQHoRiA/Ly8v3uy55cuXx9+/f6t0DIZhcNasWZxjuLq6YnBwcJbs2b59O+sY27Zty0619IrIyEicN28e2traqiRCJBIJDh48OMvXllAOiZE8wuLFi1kP1MmTJ7N9rKSkJE73vYmJCd67d0+NFhNiIJfLcdCgQZwX8OzZs8U2Lcds2rSJ070u5qywJ0+eoJmZGedaly1bVuUZb3K5HMeOHcs7vBMREZFlm4YMGcI6ji5O21YXEREROHPmTI5IVVZatmxJods1BImRPMKNGzdYD9XUqVNzdLzfv39zIg7a2tqqPDZN6B4Mw+C4ceM4L+Bx48bpzJBGTpDJZFizZk1W3UaNGiWKLd7e3mhubs651iVLllQ5OFtqair269ePc4yGDRtm+x1YpUoV1gdGbpyGGh4ejlOnTmUFdsusVKxYkZxTNQyJkTxCVFQU6+Fq1KhRjo/57ds3LFy4MOu4RYoUYc2tJ/SH2bNnc17CgwYNylUzpl6+fMkKry6RSPDp06dateH58+doaWnJudYuLi6KRKKZkZSUhB07duQco23btlmaeZOehIQEVqA1Nze3bB1HVwkJCcEJEybw9kYJFScnJ9y9ezc5p2oBEiN5iPRBqywtLdXygL1584Yz1lqpUiWVx7sJ3WDFihWcF3G3bt1y5Ut4/PjxrHpWqVIFU1NTtXLuly9fcgKRAQAWLlxYZREfFxfHyR0FANijR48sRWfNyOPHj3Wi10jdfP36FUePHs3rJCxUyDlV+5AYyUNkzMarrnwid+/e5UxLbNKkSa7s4s2NbNu2jfcLO7f+fjExMZwevTVr1mj8vL6+vrz+CU5OTio7lEdGRmKdOnU4xxg+fHiOheOGDRtYx9y7d2+Ojic2QUFBOGzYMN7YLULFwMAAhwwZQgnsRIDESB5Cky+bY8eOcR7sXr165aou/tzIwYMHOXEpGjdunO2ufn0hYyBACwsL/Pr1q8bO9+rVK7SxseE8IwUKFMBPnz6pdIywsDBOJFyAP/5f6vDp6du3L+u4+ur/9eHDBxw4cCBvJFtlpVWrVpQIVERIjOQhMnbDjhw5Uq3HX7NmDe+LktBNzpw5w0nGVqtWrSzFttBXGIZBd3d3Vt07duyokXO9efOGk98J4E+24/fv36t0jC9fvmDp0qU5x1iyZInanIvLlSvHEmf6NkQXEBCAffr0YfkEqVIqVqyI165dE9v8PA+JkTxEYmIi62uhRo0aaj/HhAkTOA/7xo0b1X4eImdcv36dM7RWqVKlLCVR1Hc+f/7MmdFy7tw5tZ7D398f7e3tOc+EnZ0dBgQEqHSMt2/f8uZF2bx5s9rsjImJYfWQ1a9fX23H1jSvX7/G7t27c3r4MivknKpbkBjJY1SvXl3xMBobG2NiYqJajy+Xy7Fbt26sh14ikeCpU6fUeh4i+zx48IDTCJcuXVrlmRy5iYyOu0WLFlVbeve3b9+ig4MDpxG0trbG169fq3QMHx8fzJ8/P2t/Q0NDtYfkv3PnDuscEydOVOvxNcHLly+xU6dOgmJDSJxYWFjg/Pnz1fY7E+qBxEgeY8SIEawH88mTJ2o/R1JSEjZs2JB1HqlUig8ePFD7uYis8eLFC44TZdGiRbMdkVffSUlJ4cTLmTx5co6P++7dO46IAPgzi+3ly5cqHePhw4ccPxMTExM8e/Zsju3LyMqVK1nnOXLkiNrPoS6ePn2K7dq1ExQhQsM05Jyq25AYyWPs2bNHK0MoUVFRWL58eU7XtL+/v0bOR2SOn58fJ++Go6MjfvjwQWzTRMXLy4vT8+Dr65vt43348IE3yZq5uTlv5lw+rl27xum9srCwwJs3b2bbLmVk7M3UxXvi4cOH2LJlS0ERomzWTOvWrVXujSLEgcRIHuPNmzesh7Rv374aO9fXr1+xUKFCrPO5uLjQl4kIfPz4kZUsEeBPWnl6Qf9h2LBhrGtTu3btbM0E+/jxI2/KeVNTU3z06JFKxzh16hTHn8fW1hYfP36cZXtUpUSJEqxz6VLE3bt372KTJk0EhYZUKuU4YqeVSpUq4fXr18WuAqECJEbyGDKZjBUGuUyZMho936tXrzjDAlWqVKHfSIt8//4dixUrxvoNrKysVP5KzwtERkZyejOymiQuKCiII77ThlZUzdu0d+9ezjBDwYIFNZoPJSIignW+Zs2aaexcqsIwDF6/fh3r168vKEIsLCx4Q+oDADo7O+OePXvIOVWPIDGSB8noz6HpZGG3b9/mfOk1a9Ys1wbV0iV+/PiBZcuW5XylU1JDLocOHeL0Rqjq1Pv582dOILW0oYMbN26odIx169Zx9i9atKjK03+zy9WrV1nnnD59ukbPpwyGYfDSpUtYu3ZtQRFiY2PD6xicJlAWLFhAzql6CImRPMiUKVNYD7CmxqHTc/ToUc6Lo2/fvjrVHZzbiIqKYiU+S2scr1y5IrZpOgnDMNi0aVPW9erVq1em+3358gWLFi3Kub+NjIxUutYMw+D8+fM5+5cpU0ajgdjSWLRoEeu8Ysx8YxgGz549y5rtl7Hkz5+fNZyUvhgYGOCwYcMwNDRU67YT6oHESB7kxIkTrAd5yZIlWjlvRo99sb/CcjOxsbGcsOEGBgZ48uRJsU3Tad69e8fpxVPWs/Ht2zfOEFjatT5//nym52MYBidOnMjZv2rVqvjjxw91Vk2QDh06sM6tDQGUhlwuxxMnTvBGlk0/5KJMpJBzau6AxEge5PPnz6yHWVORJzPCMAz++++/nJfJli1btHL+vEJiYiLnCx8AcN++fWKbphfMmzePdd1Kly7NG48nODgYS5YsyStEVBF9MpkMBw8ezNm/Xr16Wk00md6xuWDBglrprZTJZHjkyBF0dXUVFBkuLi7YokULjjhMK+ScmrsgMZIHYRiG5axXqFAhrZ1bJpNhly5dOC/vM2fOaM2G3ExKSgq2b9+e8+KmKLiqk5SUxMpwDQA4Z84c1jYhISFYqlQpznWWSCQqxehITk7Grl27cvZv2bIlxsfHa6pqHIKDg1nnb9u2rUbPl5qaivv37+dc34zir1evXrwh9NN6Svbu3UvOqbkMEiN5lIxBg1RNX64OEhMTOV7yWZn6SPAjk8mwV69enJe3tobhchO3bt1iXUMTExN8+/YtIiKGhoYKNqaq9D7Fx8djq1atOPt26dJF607d586dY9kwb948jZwnOTkZd+7cKejzAQBYrlw5HD9+PG9vEwA5p+Z2SIzkUTI6zGm7Z+LXr1+sxFwAf+JepL3wiazBMAwnVgYA+eTkhD59+rCuZePGjTEsLIwzOymt7NixI9Nj/v79G+vVq8fZd9CgQaJ86c+aNYtlx6VLl9R6/KSkJNyyZQuvg29aqVy5Mi5evBj//vtv3vX67pwqkzPoFRiBZ32+o1dgBMrk5LTPB4mRPMqVK1dYD/yMGTO0bsOXL184AaKKFSumty8dsWAYBidNmsR5iY8ePZpmK+WA8PBwzlBBxsBxaWXTpk2ZHu/Hjx9YtWpVzr4TJkwQ7XfK2EMTHh6uluMmJCTg+vXreeOupJXq1avj9u3bOdFf05c2bdrgmzdv1GKTGFx5HYK1l9xEF4+LilJ7yU288poCP2aExEgeRVcCHfn6+qKVlRXLlmrVquWJNPbqgm9aaP/+/bMVQZRgs2PHDsGGMq2sWbMm0+N8+/aNt0dl/vz5ogkRhmFY6QGKFi2a42PGxcXhqlWrsGDBgoLXq3bt2njs2DGcMGGCYAj3ypUrqxyfRVe58joEi3lcxKJTL7DESLH/LyRI2JAYycOkH7+1sbERrfG6efMm56XUsmVLTElJEcUefWLNmjWcF3nnzp0xNTVVbNNyBXK5HN3c3AQb1qVLl2Z6jA8fPqCLiwtn33Xr1mmhBsIEBQWx7OnUqVO2jxUTE4NLly4VDEYGAFi/fn28fPkyrlmzJtc7p8rkDLotvIr2zUeicf5iWGT8cY4gqb3kJg3ZpIPESB6mR48erBeBmP4aGaNfpn3d0zCDMDt37uRcs1atWmFSUpLYpuUaIiMjBX1EVHH2fPXqFaeXwMDAAPfu3at54zPh+PHjWRZWGYmKisIFCxYIigsAwKZNm+KdO3fwxIkTgs6plpaWuHDhQq3OJNIUDMPgoo170Mjuf0N61rW6sMRIWvEKjBDbXJ2BxEgeJuNX9cGDB0W1Z9myZZyX1KxZs0S1SVc5evQoSiQS1rVq0KBBrniZ6wpRUVGCwbby58+f6cyXx48fcxppY2NjnQk8l5NIzBEREThr1ixO3qmMwvjRo0fo5eXFCcCXXpgNHz481/iJ3bt3D2vVqsWtq4EhFh59kCNGzvpobxajrkNiJA/z8OFD1gMzduxYUe1hGAbHjBnDeZCzmrAst3P+/Hk0MjJiXaMaNWrQfa9Gfv/+jTVr1hRsaAEAly1bJrj/rVu3WAkpAQDNzMzw6tWrWqyFcho3bsyyT5UcVT9+/EAPDw+0tLQUvC7u7u749OlTDAwM5I2lklbatm2Lfn5+mq+oFvDz80N3d3cl94sEC3RfTD0jSiAxkoeJj49npd6uVauW2CahTCbDf/75h/P1pEpo7bzAzZs3USqVsq5P+fLlMSKCXmrqIjo6WmmitvTi4tOnT5z9z549y/mNbGxs8OHDhyLUhh+5XM7q1ShdurTS7UNCQnDixImCWXIB/vicvHz5En/9+qXUObVKlSpayYelDYKDg3HIkCGcTMuKnrACxdGmbk8EALRrMpR8RpRAYiSPU7lyZcWDI5VKdSKTbkJCAtatW5fz4n/8+LHYpomKl5cX52u7VKlSGBJCXvnqIiYmRjDexdChQzlCuU2bNiy/poMHD7IEftqQzsuXL0WsFZeAgACWjUIJAb99+4Zjx45FU1NT3msikUiwe/fu+OrVK0xKSlLqnFqoUCHct29frpjl9fv3b5wxYwaamZnx1rVIkSI4eckGdJl6Hi0rtfjzfi1aiWbTKIHESB5n6NChrIfo+fPnYpuEiH/GpMuUKcOyzcHBQePp1HUVHx8ftLW1ZV2PwoUL4+fPn8U2LdcQGxvLG5AM4H9Tpb99+8YZokjzAdm8eTNnv8KFC+tkIL+DBw+y7Mw4Pfnz5884YsQIwbwwBgYG2KdPHwwICECGYfD48eOC0VUtLS1x0aJFucKfKTk5GdevXy84a8jW1hZXrlypyGV0+VUwGlv9//RpiQEWHudJcUYEIDGSx8kYR0GXktYFBQWho6Mjy74SJUpgWFiY2KZplYCAAMyfPz/rOhQoUADfvXsntmm5hri4OGzYsCFvA9OrVy/WVNN169ax1js7O+OcOXM4+5UuXVpnxWLGhJUPHjxARMTAwEAcPHgwxycprRgZGeGgQYPww4cPiIj46NEjpc6pI0aMyBXPq1wuR09PT0HBJZVKcfLkyfjr1y/Wfi9evGBtN2/NNhqaEYDESB7H19eX9bAMHDhQbJNYvHz5kvMlWqNGDYyNjRXbNK0QFBTEiWJpa2uLvr6+YpuWa4iPj+c4c6aVLl26cGK2pKam8kZSTV8qVaqk041w+qEoAwMDfPnyJfbr148zxJRWjI2Ncfjw4RgUFISIf0RLxoSX6Utuck69ffs21qhRg7eeEokE+/btKyg6FyxYwNq+e/fuWrZefyAxksdJTU1ljXuWL19ebJM4XL9+nfOl1rp161wfFC04OJjzJWZhYYFPnjwR27RcQ0JCAjZr1oy3oWnfvr3gPebt7c2ZWp1WateujZGRkVquiepkfOZtbGwE6yKVSnHMmDH49etXRMQ85Zz66tUrbN26taDgatmyZaYfBRkD5llbW+uEX54uQmKEYDmLSiQSnQzFvn//fs7LYNCgQbk2KNrPnz/R1dWV0zDcvn1bbNNyDYmJidiiRQvehqZ169ZKg8elpKRg6dKlOfs1adJE53vtMvaG8hUzMzOcMGGCwjk6KSkJV69ezfFbSiuFChXC/fv35wrn1K9fv+KAAQMEBVrVqlVVClUfFhbGe4zr169roRb6B4kRAidMmMB6WO7cuSO2SbwsXryY82DPnTtXbLPUzu/fvznBtoyMjPDChQtim5ZrSEpKEvzqbdasGSYkJAjum5CQgO3atePdd/Xq1VqsRdZ59uwZVqlSRVCEWFhY4NSpUxUJ8xiGwWPHjmHx4sV5t7e0tMTFixfnCufUqKgo9PDwEJw5VKxYMTx8+LDKgmvv3r28xxkzZoyGa6KfkBgh8OjRo6yHZcWKFWKbxAvDMDhy5EjOw71z506xTVMb8fHxnBkdBgYG6OnpKbZpuYakpCRs27Ytb0ORWRTbmJgYbNSokWBjbmVlhcHBwVqsjWp4eXkpHXKwtrbGmTNn4s+fPxX7PHr0SDDeiqGhYa5xTk3r9bG3t+etq729Pa5ZsybLaRaEfGqKFi2aa3t0cwKJEQI/fvzIeli6dOkitkmCyGQy7NChA+fFePHiRbFNyzFJSUm8wwa7d+8W27RcQ3JysmCkzNq1aysdooyIiOCNylq0aFHW3127dtVijZRz7949QZ+YtDJr1iyWj0tmzqnt2rXLFc6pcrkcDx06xJvEEADQ1NQUp02bplJk2owkJydzspGnL+SAzoXECKGRVOKaJD4+nvPFZm5ujt7e3mKblm1SU1M5AbUAANeuXSu2abmGlJQU7NixI2/jUKNGDfz9+7fgvsHBwRwfnrSGPDAwkNO1f/nyZS3WjA3DMHjz5k3BqcrpS5UqVRT7/fr1C8ePHy/onFq1alW8deuWaPVSJ9evXxecESWRSHDgwIH47du3bB//1q1bSq/7ggUL1Fib3AGJEQIREVu1asV6WHS9+/Xnz58cB8L8+fMr4h/oE3K5HPv27UsvLA2SkpKCnTt35m0YKleurHT2y6dPn3jjS6xcuVKxzZIlS1jrihUrpnU/CoZh8MqVK4JxPwCAEx11xIgRmJSUhKtWrRJ0Ti1cuDAeOHAgVzin+vj4CDotA/yZkvz69escnyejHx6f+CXYkBghEBE5QZv0wVny48ePWKBAAZbdpUqVwh8/fohtmsowDIOjRo3ivKymTJlC48pqIjU1VTBhW4UKFVh+Ehnx8/NDZ2dn1j4SiQR37NjB2i45OZnTczJ9+nRNVw0R/9xD58+fF4yFAQDo5OSE69at42TqHjZsmKBzqpWVFS5ZskSpM6++8PnzZ+zTp4/gDJmaNWuq1XH/r7/+yrRX6vt3ytibHhIjBCIiXrhwgfWgzJ49W2yTVOL58+ecfC1ubm4YFxcntmmZwjAMenh4cF5SI0aMICGiJlJTU7FHjx68jUGZMmUUs0b4ePbsGWv4EuDPrCYhZ+L79+9ztn3z5o2mqoZyuRxPnjypdHZMkSJFcPPmzYrw5AMGDMi0kTQ0NMSRI0cqvTb6wq9fv3DSpEmCYe1LliyJx44dU+vz9v79+0yvMQBlI88IiRECEf/MiU//oLRq1Upsk1TmypUrnMiRbdu25UTO1DX4pir37t07V3SH6wIymQx79+4t2Agpm/Vy9+5djgOiqakpXrp0Sek5Bw0axNqnXr16av89ZTIZHj16FMuXLy/Y0BUvXhx37NjBCbBVqlQppQ2ku7s7+vv7q9VeMUhMTMQVK1YIDj05ODjghg0bNBKAbO3atQjwZ0isV69erPO2bNkSK1WqhAB/YtkQ/4PECKEgvVe5vb29Xn2d883pHzp0qM7WYcOGDRx7O3bsqPMCSl+QyWTYr18/3oaoWLFiioiifFy8eJHjkGplZYX37t3L9LwRERGc3pRdu3appU6pqal44MABTgLJ9KV06dK4d+9eTuTYiIgI3uHAtFKtWrVcEVBPJpPhvn37sEiRIrz1NDMzw5kzZ2q0jejatSsuXLgQo6Oj8eHDh6zzz58/H+VyOZ45cwZr166t8wHytAmJEUJBxul8gYGBYpuUJTLmgQDQTSfQPXv2cOxs3rx5luMYEPzI5XLB4YjChQsr8qvwcfToUU7qgXz58uGzZ89UPn9GYWxvb58jP6aUlBTcvXs3lixZUlBMlCtXDg8fPswRs0lJSbhy5Uq0sbHh3a9IkSJ48OBBve+NS3PerVixIm89DQwMcOjQoVqJAZPecdnLy4tlR/ogjQzDUGj4dJAYIRSsWLGC9eAcOXJEbJOyBMMwOGzYMM6LaM+ePWKbpuD48eNoYGDAsq9u3bp64eOiD8jlchw8eDBvg+Tk5KR0ttX27ds5Do7Ozs5ZjqnBMAxnWm3//v2zXJekpCTctm0bFitWTFCEVKxYEY8dO8bKKpxmg6enp9J9u3XrliucU58/f45NmjQRrGf79u1Fi4vy+PFjli1z5swRxQ59gMQIoeDu3busB2fChAlim5RlUlNTOUGtDA0NRY37kMalS5c4MRyqVaumNL4FoTpyuZxXjAIAFihQAAMCAgT3XblyJWefEiVK4KdPn7JlS0BAAOe3VnW2RmJiIm7cuBELFy4s2MBWrVoVz5w5w9uj8eDBA6xVq5bgvmnl7du32aqbrvDp0yfs2bOnYP1q166N9+/fF9XGJ0+esGzSl4kBYkBihFAQGxvL+mqvW7eu2CZli7i4OE62TAsLiyx1taubO3fucPwQypUrp1fTkHUZoVQBacMsQrNaGIbBmTNncvYpX768Iklcdpk1axbrmGXKlFE6FBcfH49r1qxBR0dHwQbWzc0NL168yOsL9f79e+zUqZPgvulnnVlbW+vt0MzPnz9x3LhxgsHZSpcujSdPntQJf7GnT5+ybJs1a5bYJuksJEYIFuk99M3MzPTWofLHjx+cmQMFChTAjx8/at2Wp0+foqWlJcuW4sWLU5wBNcEwDI4ZM4a3YbK1tRUMvS2Xy3H06NGcfWrWrIkRERE5tishIYHj57Fw4ULOdjExMbh8+XLMnz+/oJCoW7cuXrt2jbeBjYiIwHHjxnF8XdL3vp0/f561rEmTJjmun7aJj4/HJUuWoLW1tWDv15YtWzjOu2Li7e3NsnHmzJlim6SzkBghWAwcOJD18OhzDoXAwEDOC7506dJKg1ypm1evXnGiXjo7O2e7+59gwzAMjhs3jrdxsrKyEuwNS01N5Y1626hRI6X5abLKtWvXWMeXSqUKv5Xfv3/jwoULBRO0AQA2btwYb9++zStCEhMTVXZOvXHjBmvd1KlT1VZHTSOTyXDXrl1YqFAhwR6fuXPnqvV3UxfPnz9n2aqtQHj6iEbFyKZNm9DFxQWlUim6ubnh06dPlW4fFRWFo0aNQkdHRzQxMcHSpUtnOq8/PSRGcs7WrVtZD0/GSJP6hre3N5qbm7PqVLt2ba2E6n737h0WLFiQdW4HB4dcEcdBF2AYBidOnCjYQD1+/Jh3v8TERN4cNe7u7hpx6MwYdK1Ro0Y4e/ZsQREBANiiRQt88OCBYL2PHj0q6JxqZWWFS5cuZdUlY7j6EydOqL2e6oZhGLxw4YJgPJW04GyhoaFimyrIixcvWDZPmzZNbJN0Fo2JEU9PTzQxMcE9e/agn58fDh06FG1tbQWj+iUnJ2ONGjWwTZs2+PDhQwwKCsK7d+9m6cucxEjOyajkhwwZIrZJOebSpUucoGjt27fX6BDUly9fOLEObGxs8OXLlxo7Z16CYRicMmUKbyNlZmYm6LgYGxuLTZs25ezTq1cvjXXvh4aGKhUe6Uvbtm3xyZMngse6f/8+xx8qfeM8evRo3ndsRl8SZdObdYEnT55ggwYNBK9Tp06d9MIB9+XLlyy7PTw8xDZJZ9GYGHFzc8PRo0cr/pbL5ejs7IxLly7l3X7r1q1YokSJHL0QSIzknOTkZJRKpYqHp3LlymKbpBZ27drFeaFpKux6aGgox1/F3NwcHz16pPZz5UUYhsHp06fzNlJSqVQws2xkZCQn23PafaBJZ86wsDBeAZS+dOzYEZ8/fy54jHfv3vFmdU4rHTp0UDpbKL0wdnBw0AnnTj4+fPggmEcI4I/vjD49Rz4+Piz79Wl4TNtoRIwkJyejoaEhnjlzhrW8X79+2L59e959Wrdujb1798ahQ4digQIFsHz58rh48WLO/Pn0JCUlYXR0tKJ8+/aNxIgaSP/CNjQ0zDUxMObOnct5uS1evFit5/j16xcn8JKJiQneuHFDrefJqzAMw5mlklaMjY3x6tWrvPuFhoYqwnBn/FLVVMP8/ft3HDduHGcWVfrStWtX/O+//wSP8fPnTxw7dqygc2r16tXx7t27Su3ImOpBF8OQh4eH45gxYwTrWbZsWTx79qzOiighfH19WfWYMmWK2CbpLBoRI8HBwQgA6OXlxVo+ZcoUdHNz492nTJkyKJVKcdCgQfj8+XP09PREe3t7nDdvnuB5+BoXEiM5Z+zYsazrKTR2rW8wDMMbEGv//v1qOX5MTAzWrFmT03V+9uxZtRyfEH7mjYyMBDNNf/78mTcni1AvbU758uULjho1SjA5W/oiNCSTlltFaHinaNGieOjQIZV6dC5evMjaV5diXcTFxeGCBQs4s83SiqOjI27fvl1vZ/W9evWKVZ9JkyaJbZLOojNipHTp0likSBFWT8jq1avR0dFR8DzUM6IZDh48yHqAVq9eLbZJaiM1NRXbtGnDaciuXbuWo+MmJCRwom5KJBI8fPiwmiwn+ML9A/wJ9X369GnefQICAjjBwyQSCW7ZskXt9n38+BGHDBkiGP/C0NCQ44xZuXJlVkMrl8vxyJEjrDxR6Yu1tTUuW7YsS462GQXc+fPn1V73rJKamorbt28XjKliaWmJCxcu1Pte2devX7PqNXHiRLFN0ll0ZpimQYMG2LRpU9ayy5cvIwCoHL+ffEbUw7t371gPUI8ePcQ2Sa3ExsZijRo1OC+/Fy9eZOt4ycnJ2Lp1a84Ldfv27Wq2PO+ScTZIemHh6enJu8/Lly85U7sNDQ3x4MGDarXt3bt32L9/f46TdFoxNjbGoUOH4sePHzE2NpYjjtLE/v379zk9a+ntHjNmTLaC5GUU3zkN5pYTGIbBM2fOYNmyZQV7uMaMGSM40UHfePPmDat++hjVWlto1IF1zJgxir/lcjkWKlRIsGt0+vTp6OLiwup2XLduHTo5Oal8ThIj6kEul7NSb5coUUJsk9ROeHg4lihRgtMlnNVZBqmpqZwEgwCAq1at0ozheZDly5cLDnMcOHCAd5+HDx9yhjikUimeO3dObXb5+flhr169OLmG0oqJiQmOGjUKv3z5wtrvzJkzrO3MzMywZcuWgnXs0KFDtmeOMAyDBQoUUByrUKFC6qh6tvDy8sK6desK1rNr165KcwfpI35+fqw6jh8/XmyTdBaNTu2VSqW4b98+9Pf3x2HDhqGtrS2GhYUhImLfvn1Zc66/fv2KVlZWOGbMGHz37h1evHgRCxQogIsWLVJ7ZYjMadasGesh0magMG3x/v17dHBwYNWzTJkyKkffFMoOmz4zJ5EzVq1aJdh47dq1i3efq1evopmZGWtbCwsLwVk2WeW///7Drl27cpLqpRVTU1McN26c0gi77du3F6xXWqlRo0amzqmZ8eXLF9YxO3bsmKPjZYe3b98qnQnUsGHDTGNQ6Sv+/v6suo4bN05sk3QWjQY927hxIxYtWhRNTEzQzc2N5azVsGFDTiZLLy8vrFWrFkqlUixRokSms2kyQmJEfcyYMYP1EF25ckVskzTCkydPOA3X33//nemYPMMwHEfftG5YffP411XWrl0r2IBt3ryZd58TJ05wfDbs7OyUxu5QlRcvXvAGS0sr5ubmOHny5EyDcCUmJgpOTQb445x6+PBhtUw3PnXqFOvYWfm4yymhoaE4YsQIweGr8uXLC+bZyS0EBASw6jx27FixTdJZKBw8wcvZs2dZD9H8+fPFNkljXLhwgdPV3rFjR6VCmC+52pAhQ3L1i1WbbNiwQbCxXrt2Le8+e/bs4fyOjo6O+OrVqxzZ8uTJE2zbtq2gPVZWVjhjxoxMew8zc06VSCS4YMECTExMzJG96Zk2bRrrHDl11FaFmJgYnDNnDisxX/pSqFAh3L17d5Y+NPWVjP536V0XCDYkRghe0mZEpZW2bduKbZJG2b59O+elOXr0aF5xsWzZMs62PXr0yBMvV22wefNmwYZ/2bJlvPusW7eOs62Li0uOfBAePHiALVq0ELTFxsYG586di79+/cr0WPfu3RN0Tk1f1D31M2OwNVVszS4pKSm4efNmlo9K+mJtbY1LlizRSioGXeH9+/ecdwrBD4kRQpD0iakKFCiQ67/6+YJpZWz8+BpKd3d3ncoUqs9s27ZNsKFesGABZ3uGYXDevHmcbcuWLYvfvn3L8vkZhsHbt29jo0aNBO2wt7fHRYsW4e/fvzM93rt375QO7WQMeW5oaKi25JQMw7CceDXliM4wDJ44cQJLly7NW0djY2McP358rvQ7y4wPHz6wrsWoUaPENklnITFCCJLR6ezz589im6RRGIbhdUhNmwq6f/9+zromTZqotVs9L7Njxw7BRpsv9TrDMDh+/HjOttWqVcvyFFiGYfDatWtKZ3vkz58fly9frlJ22B8/fiiNKFqjRg28d+8eIiIOHz6cta5WrVpq6WXL+FXevXv3HB8zI/fv3+cNsZ9WevbsiR8/flT7efWFwMBA1vUYOXKk2CbpLCRGCEEyxnY4fvy42CZpnJSUFGzVqhWr3kZGRjhnzhyOP0Lt2rUxNjZWbJNzBbt37xZs0CZPnszplZPJZDho0CDOtvXr11epxyINhmHw4sWLgsnnAP74naxZs0alAFyJiYm4bNkytLa25j0Wn3NqZGQkZ2hj69atql88AQ4fPsw6pjqnm/v7+yudEdSkSROluXbyCh8/fmRdl+HDh4ttks5CYoQQ5ObNm5xGIS8QGxuL1apVE3zRAvyJnBkZGSm2qbmCffv2CU6T/ffffzlCJCkpiTe2S+vWrVX2R5DL5Xj69Gmlv3PhwoVx48aNKkU7lcvleOjQISxatCjvsWxsbHD58uWCvWgZhYONjU2ms3IyY8KECaxj5nSaMOIfX7IhQ4YIxlapVKkSXrlyJdcP6apKUFAQ6/oMGzZMbJN0FhIjhCC/f/9mPUgNGzYU2yStERoaisWKFeN94ZYpUybXRIgUm4MHDwoKkeHDh3Matbi4ON4AYd26dVMpUrNMJsNjx45xkhmmLy4uLrht2zZMSkpSqQ53797lRPRN36s2duzYTP0lGIbhxPbp2bOnSucXol69eopjSSQSlYaXhIiOjsaZM2dypsGnlSJFiuC+ffvIiTsDnz9/Zl2noUOHim2SzkJihFBK+rDNFhYWeeplc+LECU5DaWxsnOOposQfDh8+LPiFPXDgQE6cjd+/f/P6dAwZMiTT+zI1NRUPHTokGIYcALBkyZK4Z88elZ2R3759ix06dBA83j///IPv3r1T+Xq8f/8epVIp6xjXr19Xef+M9TU3N1ccp1y5ctk6TnJyMq5fv54THDCt2Nra4ooVK8hvSoCMQeeGDBkitkk6C4kRQil9+/ZlPUyvX78W2ySt8ObNG8yXLx/vC7hevXr08s0hnp6egkKkd+/eHHERHh6OVatW5Ww7ceJEpUMCKSkpuHfvXt6svel7ug4ePKhyZtgfP37g6NGjBYN51axZE+/fv5+t6zJ//nzWsUqVKpWtey1jgrZ+/fplaX+GYdDT05OTMiGtmJiY4KRJkzQ6VTg38PXrV9Z1Gzx4sNgm6SwkRgilbNy4kfUw7dmzR2yTNM6HDx8Es4mmlc6dO+epXiJ1cuLECcGGvGvXrhxR8PXrVyxTpgxn24ULFwoKkeTkZNyxY4fgUBvAnwignp6eKv+OCQkJSp1TXVxc8OjRozmKnJqUlMSp6+zZs7N8nD179rCOsXHjRpX3vX37tuCwk0Qiwb59++b6mXXqIi2TfPoeP4IfEiOEUp4+fcp6mEaMGCG2SRrl27dvnAiZVlZW6OHhwXkx8zlXEso5ffq04HTXjh07coZI3r9/z+sUun79et7jJyYm4qZNm7BIkSKCIqRKlSp46tQplUWDKs6p6hyquH37Nuv4xsbGGBAQoHSfjPfhqFGjWMd4/Phxpud99eoVJ8Nv+tKiRQv08fHJSdXyHBmDRw4YMEBsk3QWEiOEUpKSkli5PqpVqya2SRojPDyc81VqZmam6HLnyyeycuVKka3WH86ePSsoRNq0acNxGP3vv/+wYMGCrO0MDAxw3759nGPHx8fj2rVr0cnJSbAxrVmzJp4/fz5LAvLu3btYvXp13uMZGRnhv//+q5FgXhmHRxs1aqTU7sOHD+OdO3cUf6eP9mpkZKRUKH39+hUHDBgg6EhctWpVvHHjhjqrl2cICQlhXcuM+diI/0FihMiU9F22mb3Y9JXIyEisXLky54v06tWrim0YhsF+/fpxXtZHjhwR0XL94MKFC5wEdmmlefPmnHvq8ePHaGtry9rOxMQET506xdouNjYWV6xYIRiCHOBP4sOsTjd9+/at0jganTp1wvfv36vl2vARHh6OdnZ2rHPu379fcPvDhw+joaEhrlq1CpOSktDExIQlJviIiopCDw8PNDU15a1jsWLF8NChQ2pJ2JdXCQ0NZV3TrPru5CVIjBCZkp0uX30iNjaWE0XS0NCQ0/Ah/vFFaN68OUe0qCs9fW7k0qVLrMYx4xd/xtggN27c4CRZMzc3Z80siY6OxsWLFws6GQP8mYp+69atLIkQTTqnZpWdO3eyzu3g4IARERG826aPCZRxxtHQoUMxOTkZ79+/j7Nnz0YfHx9cs2YN2tvb89bR3t4e16xZo/LUZkKYsLAw1rXt27ev2CbpLCRGiEzZu3cv64ESGq/XRxITE7FJkyacF/KBAwcE94mJicEqVaqwtre2tsb//vtPi5brB1evXuVMV03faGaMYHv27FmOcLGxscFHjx4h4p8erHnz5nF6TdKXZs2aKUKtq0pCQgIuXboUrayseI+pDufUrCKXyznCQmg2RsbZMxltTxN3pUuXFswabGpqih4eHhgVFaW1OuZ2wsPDWde4d+/eYpuks5AYITLFz88vVz5QKSkp2K5dO85LefPmzZnuGxISwnmpFypUCL9+/aoFy/WD69evCwoRNzc3znN64MABTo9EgQIF0MfHByMiInDmzJmCM1kA/kRg9fLyypKNcrkcDx48KOjwamNjgytXrhRtaPL169ccP5sHDx5wtvvx44fgdcmsSCQSHDBgAN27GiDj79KrVy+xTdJZSIwQmSKTyVhfjH/99ZfYJuUYmUyGPXr04LyYhVLU8+Hv788Z1y9fvjx9WSLirVu3BH0Rqlatygmlv2nTJs52RYoUQS8vL5w6dSpn2CZ9ad++PT579izLNt65c0cwHHyac6rQsIg2yTiTq3z58pxos3K5XDBui7LSpk0bCuKnQSIiIljXO6dRdXMzJEYIlciYUl2f87IwDINDhgzhvJj5MsNmxsOHDzmNbsOGDXOlk6+q3LlzRzBseMWKFVkNPMMwuHjxYs52JUqUwMGDBwseBwCwS5cu6Ovrm2X7AgIC0N3dXfC4mnZOzSrx8fGceClLly7lbJdx5pGyUqNGDbx9+7YItclb/Pr1i3Xde/ToIbZJOguJEUIlpk6dynqoshumWmyE0s6PHTs22zFDTp8+zZkW2a1btzw5C+HevXusMOTpi6urKyunD8MwOGXKFM52+fLlExzekUgk2LNnT3zz5k2WbQsPD8dRo0YJOqe6ubnxDoHoApcuXWLZamZmhp8+fWJtU6lSpUxFSIkSJdDT0zNP3ptiEBkZybr+3bt3F9sknYXECKESJ0+eZD1UixcvFtukbDF37lzOC3rAgAE5fjlnjFQLADhhwgQ1Wa0fPHjwQHA4pXTp0hgSEqLYViaT4bBhw3jFBt/+hoaG2K9fP3z79m2W7UpISMAlS5YIOqcWK1YMPT09dT6AXefOnVl2t27dWmFzYmIili5dWlCE2NnZ4fr161VKJkioj6ioKNbv0LVrV7FN0llIjBAqkTHHQocOHcQ2KcusWrWK85Lu2rWr2sK6Z+w9AgBcs2aNWo6t6zx69AgtLS0Fv8a/ffum2DYlJYXXX4evGBkZ4eDBgzEwMDDLNsnlcjxw4ICgc6qtra0iLoc+8P37d46gOnbsGO7fv19pxNnatWvTO1EkMmY+79Kli9gm6SwkRgiVYBiGNSbt5OQktklZYvv27ZyXdOvWrdX6pSiXy7F3796c83h6eqrtHLrIkydPBHsdihYtyspjkpCQgG3bts1UhJiYmOCIESOynQPl9u3bgs6pxsbGOH78eJ1wTs0q69ev54g1ZdfRxsaGktmJSExMDOv36Ny5s9gm6SwkRgiVyej09/37d7FNUonDhw9zuv8bNmyICQkJaj9XcnIyNm3alNOwpg/VnZvw9vYWnG5bqFAhVo9GdHS0YAK2tGJqaopjx45l9aRkBX9/f6XOqZ07d8YPHz6oq/paRyaTYbly5VTqVQIAXL58udgm52liY2NZv0enTp3ENklnITFCqMzChQtZD9bp06fFNilTzp49y3FYdHNzw5iYGI2d8/fv3xxnQhsbG3z9+rXGzikGz58/Fww+VrBgQZZ/x61bt5QGKjM3N8dJkyZhaGhotmwJDw/HkSNHCjqn1qpVCx8+fKiuqovCp0+fsGfPnoLXsESJEhwxqAnBTahOXFwc6zf5559/xDZJZyExQqjM1atXWQ/WtGnTxDZJKTdu3OBE86xQoYJWuq2Dg4M54/iFCxfO9he/rvHy5UtOjJW04uDgoJjt8vTpU2zWrJlgA2ppaYnTpk3DHz9+ZMuOhIQEXLx4seAwUfHixfHYsWM675yqjJ8/f+L48eMFc/ukCZELFy6wlu3atUts0/M88fHxrN9EH33ttAWJEUJlMs6Zb9KkidgmCfLo0SPOFNPSpUtn+8s7O/j5+XF6AypWrIi/f//Wmg2awNfXV2leE19fX3z06BG2bNlS6XDM7Nmzs+23keacWrhwYd7j65tzKh/x8fG4ZMkSwWGwjEHOeg0Zo/h3uXLlMDU1Vewq5HkSEhJYv1H79u3FNklnITFCZIlSpUopHixra2udjFfw8uVLtLGxYb0EihQpgl++fNG6Lffv3+fEzGjcuLHeNpKvXr0STE5nY2ODO3bs4M31k/HrMCdRam/fvo1Vq1blPbY+O6emIZPJcPfu3VioUCHeOlpYWOCcOXPwwIEDrOUS4/8F3/urz3y88jok85MRGiUpKYn1G7m7u4ttks5CYoTIEhnHrAMCAsQ2iYW/vz86ODiwbCxYsKCoETVPnDjBcaDt0aOHTgo5Zbx58wbz58/P20CamZlxkgfyfcnv3bs32+f39/fnzSWUVrp06aLXzqkMw+DFixexfPnyvPUzNDTEESNGKHr3GIbBGvW4wk9aqBy6TL2AxTwukiARmeTkZNZv065dO7FN0llUbb8NgCAAwM3NjfW3t7e3SJZwCQoKgmbNmkFERIRimZ2dHVy/fh1Kly4tml1dunSBtWvXspZ5enqCh4eHSBZlHX9/f2jSpAn8/PmTs87AwAASExPB19dXcH9TU1O4ePEiDBgwIMvnDg8Ph5EjR0LFihXh4sWLnPW1a9eGR48ewYkTJ6BUqVJZPr4u4O3tDY0bN4Z27dqBn58fZ/0///wDfn5+sHXrVnB0dAQAAAYBZLUHgsRIytrWrHRtAIkEAADmX/AHOYOarwDBi+T/f4c0GIYRyZLcA4kRAgC4YuTZs2ciWcImODgYmjZtCiEhIYpllpaWcPXqVahUqZKIlv1h3LhxMGnSJNayVatWwYYNG0SySHXevn0LTZo0gR8/fvCuz+wFa2VlBdevX4fWrVtn6bwJCQmwePFiKFWqFGzbtg3kcjlrffHixeHYsWPg5eUFf//9d5aOrSsEBgZC9+7doVatWnDv3j3O+rp168KjR4/g9OnTUKZMGdY676BIiDK0A5u6PTLshYr/hkYngXdQpIasJzIjoxhBJGGYU4zENoDQDapWrQqGhoaKhkEXekZ+/vwJzZs3h6CgIMUyU1NTuHDhAkc8icmKFSsgODgYPD09FcvGjx8Pzs7O0KVLFxEtE+b9+/fQpEkTCA8Pz9b+Dg4OcPXqVahevbrK+zAMA4cOHYKZM2fC9+/fOettbW1h9uzZMHr0aJBKpTxH0H1+/PgBCxcuhG3btoFMJuOsL1OmDCxbtgw6dOjAadAUx4hNAgAA65r/QLzfHZAYm4Jd0yFgWsiVdztC+5AYUT8kRggAADAzM4OKFSsquuR9fX0hJSUFTExMRLEnOjoaWrZsCQEBAYplRkZGcOrUKWjUqJEoNglhYGAA+/btg/DwcLhz5w4A/Hk59enTBwoWLAj169cX2UI2gYGB0LhxYwgNDc10WwcHB9bwGABAoUKF4MaNG1CuXDmVz3n79m2YNGkS75CPsbExjBkzBmbNmgX29vYqH1OXiI+Ph7Vr18KKFSsgNjaWs97R0RHmz58PgwYNAiMj5a/dAlamAAAgMTSCAt0WgKGFHUgMDAW3I7QPiRH1Q8M0hIL0vQ0pKSlw6PJ9Ucal4+PjoW3btuDj46NYZmBgAEeOHIE2bdpo3R5VkEqlcPr0aahQoYJiWXJyMrRv3x78/f1FtIzNx48foVGjRqxhLz7++usv6NatG0eIlCxZEh4+fKiyEPH394d27dpB06ZNeYVI165dISAgANasWaOXQkQmk8GOHTugdOnSMHv2bI4QsbS0hAULFkBgYCAMGzYsUyECAOBW3B6cbExBAgBGVg4cISIBACcbU3Arrn/XK7dAYkT9kBghFJgX+ov195Qtp6He8ttw9U3mX9DqIikpCf755x949OgRa/muXbuga9euWrMjO9ja2sKVK1egcOHCimW/f/+G1q1bZ9r4a4N3795BzZo1ITg4WHAbV1dXOHz4MPzzzz9w/Phx1roKFSrAgwcPoFixYpmeKzw8HEaMGAEVK1aES5cucdbXqVMHHj16BMePH4eSJUtmuS5ig4hw7tw5qFixIgwfPpzTy2RkZARjxoyBjx8/wuzZs8HCwkLlYxsaSGCu+58hmYwDOWl/z3V3BUMD/mEeQvOQA6v6ITFCAADA1TehcPwze5w+OfQ9hEUnwchDL7UiSFJTU6FHjx5w48YN1vL169fDwIEDNX5+dVC4cGG4cuUK2NjYKJZ9/foVWrduDTExMbz7yBmExx9/wTnfYHj88Zfae6OSk5Nh0aJFUL58eYiKiuLdpmjRonDixAn477//4NGjR7B8+XLWejc3N7h37x44OTkpPVd659Tt27dzXtIlSpSA48ePw6NHj/TWOfXx48dQv3596NixI7x9+5azvmvXruDv7w8bN26EAgUKZOscrSo4wdY+1cDRhj0U42hjClv7VINWFZT/DoTmSS9IqGdEDWh6jrE6oDgjmkUmZ7D2kptYdMo5lBj/L5CXcb6i6OJxEYt5XMTaS26iTK650NtCmXEXLVqksXNqkjt37nBC1jdt2pSTTfjK6xCsveQmunhcVJTaS26qJY5EQkICrl+/Hh0dHZXGCRkzZgzK5XJMSUnBPn36cNY3adIk05w/crkc9+3bJxjQy87ODtesWaO3QeEQEd++fYudOnUSvI4NGjTAJ0+eqPWcMjmDXoEReNbnO3oFRmj0GSSyRvpIuboctVpsKM4IoTLeQZEQGp0EEgNDMCn4v3gOstifwKQma3wqISLC6NGj4fDhw6zlHh4eMGPGDI2cU9M0atQIDhw4wFp269YtGDRokKK34OqbUBh56CWERiexvqxy2hsVHx8Pq1evhuLFi8O4ceMgLCxMcNstW7bAxo0bISUlBbp27QqHDh1irXd3d4dLly6BlZWV4DFu3boF1atXhwEDBnCGgIyNjWHixIkQGBgIEyZM0MtZMmFhYTBy5EgoX748nD59mrPe1dUVLly4AHfv3oVatWqp9dyGBhKoUzIfdKhSCOqUzEdDMzoE9YyoF5pNQ7CmCJr9VQcMLezAqmZHkDqVZjnPaWIqISLC1KlTYdu2bazlI0eOhKVLlwpOf9QHunfvDsHBwaw4JIcPH4bChQvD4iVLYcbBOxDz6ikkffaB5G9vwHnoNjCQWgDCH9+A+Rf8obmro8oNUGxsLGzevBlWr17NcTzlY/369TBy5EiIi4uDDh06wO3bt1nre/fuDXv37gVjY2Pe/f39/WHKlClw+fJl3vVdu3aFpUuX6qVPCMCf67l69WpYtWoVxMfHc9Y7OzvDggULoH///io5phK5CwMDA0UoBBIjakDznTQ5h4ZpNMvxm95oW78vGucvhgCA+f+ZyRo2SCtegerPC7Jw4UJOd3ffvn31LqS6MsaPH88dtsjnwFnm0H5qtq55VFQULliwQDDbLl9ZsWIFIv5JklirVi3O+pEjRwr+BmFhYTh8+HBOQre0UqdOHfTy8lLrNdQmKSkpuGXLFixQoABv/aytrXHJkiUYHx8vtqmEiKQfhq1Ssw4NoQmgavtNcj6P8vXrVzh+/Dh4enrCixcvFMuta3UG87/qsLaVwB/HOXVPJVy3bh3Mnj2bteyff/6BPXv2gIGB/o8gpqamwpMnT8DKygry5csHv379UqyL+sXtuUj6+hosyjVgLVPWG/Xr1y9Yt24dbNiwQdA5lo+FCxfClClTICwsDFq0aAGvX79mrZ8+fTosXryY0yuVkJAAa9asgeXLl0NcXBznuCVKlIDly5dD586d9bJHCxHh9OnTMGPGDHj//j1nvbGxMYwaNQpmzZoFDg4OIlhI6ApX34RCajpH84DQGKi3/DbMdXcl5+JsQmIkDxEaGgonTpxQhNrOiLRIBbBr0I+1TFNTCXfv3g0TJkxgLWvRogUcPXpUb7u8ERHevn0LN27cgBs3bsDdu3d5G20+JFILMDDmBrHiC2z18+dPWL16NWzevFnl46cxe/ZsmDVrFnz+/BmaNWsGHz9+ZK1ftmwZJ7eOXC6HgwcPwsyZM3mnKNvZ2cGcOXNg5MiReukTAgDw4MEDmDp1Kjx58oR3fc+ePWHRokVQokQJLVtG6Bppvl7sideo8PWi2U7ZQz/f+oTKREREwKlTp+DYsWNw9+5dwbFNJycnWHXgEGx8HAGh0f/7Gne0MVW72j927BgMHTqUtaxevXpw5swZvWvMwsPD4ebNm3Djxg24efOm0hgeQljV7gp2DfqCRPK/3iC+3qjQ0FBYtWoVbNu2DRISEviPZWXFGwEUAGDq1Kkwf/58ePv2LTRv3pwVkl0ikcCWLVtgxIgRrH1u3rwJkydPhv/++49zPGNjYxg7dizMmjUL7OzsslJlnSEgIACmTZsG58+f513fpEkTWL58OdSoUUPLlhG6iJxBmH/B//+zBKUTIwjZ9vUi/kBiJBfy+/dvOHv2LHh6esLNmzc5icgyYmhoCMePH4d69SpD9wYI3kGR8CM2CQpY/WkM1flQXbx4Efr06cMSRdWrV4eLFy+Cubm52s6jKRISEuD+/fsK8fHq1aucH9P/HlhXdwcjyz/CI2Nv1Pfv32HFihWwc+dOSEriDttIJBLo0KED+Pn5wYcPH3jPMW7cOFi2bBn4+PhAy5YtWQ6uhoaGcODAAejVq5dimZ+fH0yZMgWuXLnCe7xu3brB0qVL9banICQkBObNmwe7d+/mDVhVsWJFWLFiBbRs2VIvh5wIzZA28xAAQGJiqsiiLDH+8xGVfuZhnZL5xDJTP9GC/0qOIQdW1WAYBufOncuJb5FZWbNmjVbsu337NkqlUta5XV1d8efPn1o5f3aQyWTo7e2NS5YswcaNG2f52qpaTAqWxCLjj7PijHz+/BlHjBgheE4DAwPs06cPenl5YZUqVQSPPXLkSGQYBu/fv4/W1tasdVKpFM+fP6+ob2hoKA4bNkzQOfXvv//Wa+fU6OhonDlzJpqZmfHWr0iRIrhv3z6UyWRim0roIGd9vrMczItOvYD2LUahoZUDGucvhqbFqqJF+cbYoe9wXLFiBe7fvx+vXr2KPj4+GBISgqmpqWJXQeuo2n6TGMllyOVyPHr0KJYqVUqlRrBLly7IMJr3An/8+DFaWFiwzl2yZEkMDg7W+LmzyqdPn3D79u3YpUsXtLe3V1lQGBoaqrytvb09Ghsbs5ZVqdMQ7/mH4Lv3H3Dw4MFoZGTEu6+RkREOHDgQ379/j5GRkVi1alXB8wwePBjlcjleuXKF0wBbWlri7du3ERExLi4OFyxYwPmN0v9WJ0+e1Mq9ogmSk5Nxw4YN6ODAncUEAGhjY4MrVqzAhIQEsU0ldBivwAjemYYFey1DA3PbTJ97iUSCDg4OWL58eWzSpAn27NkTx48fj0uXLsW9e/diYmKi2FVUOyRG8jiJiYm8UzbTlzJlymjlmvr6+qKtLftBLVSoEAYFBWn83KoQGRmJJ0+exOHDh2OJEiWyJD7+/vtv7NSpExYsWDBL+92/fx+PHDnCWVeiRAnBXgljY2McNmwYfvr0CRH/TOmtXr264Hn69u2LMpkMjx8/zhE+9vb2+PTpU5TJZLhnzx50dnYWFE1r167lRI7VFxiGwWPHjmHJkiV562diYoKTJk3CX79+iW0qoQekRasuxiNICo3chyZOf6n8Hsj4gXHgwAGxq6cRSIzkYT5//oz16tVTevObm5vjmzdvNG7L27dvOfEa8ufPjwEBARo/txBJSUl4584dnDFjBrq5uQk2/kICbsyYMXj27Fn8/fs365gbNmwQjE2RvqxcuVKx34oVKzLdXiqV4ujRo/Hr16+K/X7//o1ubm6C+3Tr1g1TU1Nx9+7dnPo5OTnh69ev8caNG1i5cmWljXRkZKRWfxt1cufOHaxZsyZv/SQSCfbp00dnBDGhP1x5HYLF/j9NRnoxUszjIrpMOoMtO/XMkhCxsrLC69evi10tjUFiJI9y9OhRtLGxyfQBOHz4sMZt+fz5MxYuXJh1XltbW/Tx8dH4udPDMAy+fv0a16xZg61bt0Zzc3OVXxQODg7Yo0cP3L17N3758kXpeYKCgrB27dpKj9exY0fFUIePj4/SXCdmZmY4YcIEzlBWdHS00vP8888/mJKSgmvWrOGsK168OF6+fBlbt24tuH/37t3x48ePGvs9NM3r16+xTZs2gvVr3rw5vnz5UmwzCT1GWU4phmFw27ZtnN5IoTJy5Mhc3baRGMljxMTEYP/+/Xlv9oxfh2PGjNG4PSEhIZyucQsLC605PwYHB+P+/fuxT58+mSaKS19MTU2xefPmuGLFCvTx8VE5Eqynp2emIrBEiRIYFRWFz549w/bt2yvdViKR4L59+zjniYmJwb///ltwv7Zt22JSUhLOnTuXs6506dLYq1cvwZ6gunXr4uPHj9X9U2iNb9++4cCBAwXrV6VKlVz9BUpol8ySGD569Ejld4+5uTkOHjwYvb299dYvSwgSI3mIJ0+e8I6JW1hY4J49e/DHjx+KZbVq1dL4+H9ERASWL1+eZYtUKsWbN29q7JyxsbF48eJFHDduHLq6uqosPiQSCVarVg09PDzw5s2bWXYgi42NxYEDB2Z6HqlUinv37lXaI5HRAdbU1JQl3mJjY5UOv7Vo0QLj4+Nx3LhxnHVOTk6CPUKlSpXCU6dO6e1LMCoqCqdNm4ampqa89XNxccFDhw7lqhQDhH4QHByMderUUfl9lCaat27dmmvaOxIjeQCZTIaLFi3incVRs2ZNfP/+vWLbfPnyoYODA8vvQBNER0djjRo1WLYYGRmxpo+qg9TUVHz8+DEuWLAAGzRooHKXaFrjNGTIEPT09MzRtOIXL15g6dKlOce3tLTEbdu2sZaVK1dO0B5bW1ucN28efvz4kbNdvnz58N27dxgXF4cNGjQQPEbjxo0xJiYGBwwYwFknNDXY3t4e161bp7fOqUlJSbhmzRrBGU92dna4evXqXDlDgdAfkpOTccSIEbwfQsreUxYWFjhkyBB89uyZ3n4oIJIYyfV8/fqVt3GSSCQ4ffp0TElJYW3fsGFDvHHjhkZtio+Px/r163PsOXr0aI6PzTAMvn//Hrds2YL//POPSn4xacXa2ho7duyImzdvxvfv3+f4wZbL5bhq1SpeAVSzZk388OEDMgyTaRdtvnz5cPHixaz7+vPnz+jk5MTarlixYkqHZurVq4e/fv3Czp07q3Q9TExMcPLkyXrrnCqXy/Hw4cNYrFgx3vpJpVL08PDAqKgosU0lCAW7du1iJ9erUgWfP3+OQ4cOFZxSn1aqVq2K27Ztw5iYGLGrkWVIjORijh8/zpkqCwBYuHBhvHPnDu8+fn5+GrUpKSkJW7ZsybFp586d2T5mREQEHjt2DIcMGYIuLi4qiw8jIyOsX78+LliwAB8/fqzWQEOhoaHYokULXhHo4eGBSUlJeOXKFaXioUCBArhixQqMjY3lPYePjw9aWVmpVNdatWphSEgIr018pUePHoqpwfrIzZs3sVq1arx1k0gkOGDAAI33/hFEdnny5AkWKlQIAf6EN0gjJiYGt23bpjRmUFpvydChQ/H58+ci1iJrkBjJhSjzT+jSpYtosRJSU1N5v8qzGtk1MTERb968iR4eHlitWrVMuzHTF1dXVxw3bhxevHhRY18Ply5dwvz583PO7eTkhDdu3MDz588LTiVN227t2rUqpZ6/ceOGYNCztFK9enX8/PmzUuGTVurWrYtPnjzRyHXRBr6+vrxiN620bt0a//vvP7HNJIhMCQsLw/r166OJiQlvL+2zZ89U6i2pVq0abt++nfW+y8ypVgxIjOQyvL29eaOqWlhY4O7du0UbU5TL5divXz+OXfPmzVNpXx8fH1yxYgW2aNFC0AGRrxQsWBD79OmD+/btw+/fv2u0jklJSbxOoQCA7dq1w7179yoNx16kSBHctGlTlnwXEhMTsVKlSoLHrFSpEr59+xYrVqyo9Drpu3Pqly9fsF+/foLCtEaNGooosgShL6SkpODYsWOVtmnR0dG4detWpe8WgD8+asOGDcONx64KTjcWExIjuQSZTIZLlizh/UquUaMGy0lV2zAMg6NHj+bYNWnSJMHG7+vXr7hnzx7s2bMnby+DUDE3N8dWrVrh6tWr8dWrV1prXP39/XkDg0mlUhw4cCBn1lD6UqxYMdyxY0eWHUSTkpKwbdu2gsd1cHDA58+fK436am9vj+vXr9db59TIyEicPHkyJ5dRWilevDh6enrSDBlCr1HlPcYwDHp7e+PgwYMzjZFk4lgK7VuOUeS5SgvOJqYgITGSC/j69Ss2bNiQc8NJJBKcNm2a6A3N9OnTObYNHTqU9YBFR0fjuXPncMyYMVimTBmVxYdEIsGaNWvijBkz8M6dO5iUlKTVujEMgzt27OBNqFaoUCFB58m03oi9e/dynIhVITk5Gd3d3TO9PkJ5cExMTHDKlCl667yZmJiIK1eu5PWJAvjj9KvPIosgckJ0dDRu2bJFMHJyWrFt0I8VGbb2kpuiDdloVIxs2rQJXVxcUCqVopubGz59+lSl/Y4ePYoAgB06dMjS+fKiGDlx4gTa2dnxNoS60C29ZMkSjm29evXCxMREfPjwIc6dOxfr1q2bpeRxJUqUwOHDh+PJkydFzRUSGRkpODMlY9bb9KVs2bJ46NChbDvMpqSkYMeOHVW+XhmLPjunymQy3L9/PxYtWpS3bmZmZjhjxgxWCH6CyKswDINPnz7FwYMHo6lZht4SiQEWGrWfkzvHKzBCFFs1JkY8PT3RxMQE9+zZg35+fjh06FC0tbXF8PBwpfsFBQVhoUKFsH79+iRGlBAbG4uDBg3ifSF36tRJJxJ6bdy4kWNbxYoVsV27dirPAgH4EweiS5cuuG3bNp0JP37//n0sUqQIx1Zl+WsqVqyIx44dy1Ha+ZSUFKWh4ZU5s5UrV05vnVMZhsGrV68KfukZGBjg4MGDNe4XRBD6yuH7/mjffCQa5//TW2tk58SbWfisjzjPkMbEiJubG44ePVrxt1wuR2dnZ1y6dKngPjKZDP/++2/ctWsX9u/fn8SIAM+ePeMNomVubo47d+7UCSfEffv2ZfvL3djYGBs1aoSLFy9Gb2/vHDXe6iY1NRVnz56dpaR5VatWxdOnT+fYbyE1NRW7du0qeB5ls4rMzc3x3bt3aroK2uXFixfYtGlTwbq5u7trJZkjQegzXoER6OJxER0HbkQDc1u0qt6eV4zoes+IEWSBlJQUePHiBUyfPl2xzMDAAJo1awaPHz8W3G/BggVQoEABGDx4MDx48CDT8yQnJ0NycrLi75iYmKyYqXfI5XJYuXIlzJ49G2QyGWtdtWrV4MiRI1CmTBmRrANITEyEBw8ewKZNm+DChQtZ2rdixYrQvHlzaN68OdSvXx8sLCw0ZGX2+fz5M/Tu3Ru8vLxU2t7NzQ1mz54Nbdu2BYlEkqNzy2Qy6Nu3L5w4cUJwG0QUXJeQkABt2rQBLy8vKFCgQI5s0RZBQUEwa9YsOHLkCO96Nzc3WLlyJTRo0EDLlhGE/uFW3B5Mw/6Dr0cXAaYkgmXlFqz1EgBwtDEFt+L24hioIlkSIxERESCXy6FgwYKs5QULFoS3b9/y7vPw4UPYvXs3+Pr6qnyepUuXwvz587Nimt7y/ft36Nu3L9y9e5e1XCKRwJQpU2DhwoVgYmKiVZsYhgEfHx+4ceMG3LhxAx49esQSh8pwdnZWiI+mTZuCo6Ojhq3NGceOHYPhw4dDdHR0ptvWrVsX5syZA82bN8+xCAH4I0L79+8Pnp6eWdrP1tYWUlJSICEhAQAAPn78CO3atYM7d+7opNhL49evX7Bo0SLYsmULpKSkcNaXKlUKli5dCp07d1bL9SWI3A4iwuZNG+HDwdmADAOG1vnB2MFFsT7tKZrr7gqGBjr+TGWluyU4OBgBgJN5dcqUKejm5sbZPiYmBosVK4aXL19WLFNlmCYpKQmjo6MV5du3b7lymObkyZO8TqrOzs5469YtrdoSFBSEO3bswG7dumG+fPlUHqqwsLDAtm3b4rp169DPz08nhpJUQdUEdwCAjRo1wtu3b6u1bjKZDPv27Zvloa6iRYvi+/fv8dq1a5zp3m3atFFrtFl1kZCQgEuXLhV0/s2fPz9u2rQpW7OPCCKvkpqaiqNGjWI9SwVrueeNOCPJycloaGiIZ86cYS3v168ftm/fnrO9j48PAvyZhphWJBIJSiQSNDQ0xMDAQJXOm9t8RuLi4nDIkCG8L+Z//vkHIyI0P7YXFRWFp0+fxpEjR/IGU1NWpFIpjhs3Du/fv6+XUyxfvHjBm+U4Y2nRogU+ePBA7eeXy+W8Ce0yK3/99Rcr1Dmf/87gwYN1RhDKZDLcs2ePIvx1xmJubo5z5szRy3wbBCEmv3//5k0Bcf7CxbwTgdXNzQ3HjBmj+Fsul2OhQoV4HVgTExPx9evXrNKhQwds0qQJvn79WuWGLDeJkefPn+Nff/3FuYnMzMxw+/btGmtIkpOT8d69ezhr1iysVatWlhw1Wcq7YEGdmfmSVeRyOc6fPz/Turdt21Zjs1PkcjkOHjw4y9e9SpUqvDPWFi1axNlWlei3moRhGLx48SJWqFCBty6GhoY4fPhwDAkR94uNIPSRT58+oaurK28bkpCQILZ5HDQ6tVcqleK+ffvQ398fhw0bhra2thgWFoaIiH379sVp06YJ7p9XZ9PI5XJcvnw5b6bXqlWrYkBAgFrPxzAMvnnzBteuXYtt2rTJNM9B+pIvXz5s06YNZ5puvnz5NJ5wT1O8evVKaaAyAMCOHTtqNAGVXC4X7BFLK3z3R926dQWDmDEMg8OHD+fss2vXLo3VQxne3t7YqFEjwfr9888/ar/XCSKv8OjRI8HI1W3bthXbPF40GvRs48aNWLRoUTQxMUE3NzfWV2TDhg2xf//+gvvmRTHy/ft3bNKkCe8NNHnyZLVFFw0JCcGDBw9iv3790NnZWWXxIZVKsVmzZrhs2TJ88eIFfv78mRN8ytraGl+8eKEWO7XJ9+/fsX379krr37VrV40nWWMYRmmIdwDgDfjVokULjIuLU3rs1NRUTh0NDQ3x0qVLGq1TegIDA7Fbt26Cdfv777/x4cOHWrOHIHIbhw4dQhMTE8FnbMuWLWKbyAuFg9cRTp8+jfb29pwbJy3Ta06Ii4vDy5cv44QJEwS7xIVKlSpVcMqUKXj9+nVW115YWBhnGMnc3FzvGpIvX77g8OHDlQ7JdOrUSSs9Pb6+vryB1NKKgYEBb9Cvzp07qyxU4+PjsXbt2pzfzdvbW6N1+/HjB44dO1Yww3CZMmXwzJkzOuPHQhD6BsMwOGfOnEzf6V++fBHbVF5IjIhMXFwcDh06lPem6dChA/78+TPLx5TJZPj06VNctGgRNmzYkLdLX6gUKVIEBw0ahEePHsUfP37wHv/Xr1+cLLAmJiZ4/fr1nF4OrfHx40ccMmSIYOMIAFirVi18+/atxm0JDg7OdMaOoaEhr5AcMGBAlmfG/Pz5kxM0L3/+/Co7imeFuLg4XLhwoWDEXUdHR9y2bZtOzu4hCH0hISEBu3fvnun7vUKFCmKbKgiJERF58eIFb1I4MzMz3LZtW5a+EgMDA3Hr1q3YuXNn3mnAQsXa2ho7dOiAmzZtwrdv32Z6zpiYGKxVqxanocw4c0pXeffuHfbv319pT4idnR1rmrmmiI2NxTlz5mSaYdPAwIB3Vs+4ceOyHdX148ePWKBAAdbxSpUqJShAs0pqairu2LEDnZyceOtkaWmJ8+fPx9jYWLWcjyDyKmFhYZzeTqHi4eEhtrmCkBgRAblcjitWrODtsTAyMlIpdsivX7/wxIkTOGzYMCxevLjK4sPIyAjr1auH8+bNw0ePHmXpizQhIYHjdCiRSPDgwYM5uRxawc/PD3v16pXpDJk+ffpo3NNcJpPhjh070NHRMdPfSyKR8E55nTt3bo6HNJ49e8ZxWK5VqxbGx8dn+5gMw+DZs2exXLlygvff6NGjFY7sBEHkjOvXr+O8efNw8ODB2Lx5c6UfN5oIQaAuSIxome/fvyvNs5E/f37eRiYpKQlv376N06dPxxo1aijNQ5KxlC1bFseOHYvnz5/P9rVJTk7mdazcunVrTi+JRvnvv/+wa9eumV4vW1tbjffuMAyDV65cyZLfDp9H/Jo1a9Rm0+XLlzkZk93d3bM1bPL48WOsV6+eYF26dOmC79+/V5vtBEGwefHihWAGdDs7O50eDiUxokXOnDnD66SavrRp0wYR/zRc//33H65atQpbtmyJZmZmKjdgBQoUwF69euHevXvx27dvObZbJpPxzoBYsWJFjo+tKV68eIEdO3ZU6Xo1atRILddJGb6+vti8eXOVf0MAQBsbG9bfBgYGuHv3brXbtmfPHs65hw0bpnLPy7t375RmEm7QoIHeZgsmCH0hJSUFq1Spwnr20guTnj17im2iUkiMaIG4uDgcNmyYyg1j7969sWDBgio3WmZmZtiyZUtcuXIl+vr65jg7bHrkcjkOGjSIc87Zs2er7Rzq5MmTJ5lOjU3/oC5ZskSjWYG/f/+OAwcOzFJPFgBwhk+MjY3xxIkTGrNz/vz5HBsWLlyodJ+wsDAcOXKk4JeYq6srnj9/nmbIEIQWyBjY0MnJCS9duqT4+9ChQ2KbqBQSIxrm5cuXvE6qOSkSiQSrV6+O06ZNw1u3bmFiYqJGbGcYBv/991/O+ceNG6dzDcyDBw94wx4LleLFi2v0a11V51S+IpVKOWLzypUrGrMV8c9vzTera+/evbx1mzt3rmCAPGdnZ9y1a5dOdwkTRG7C39+fE1vk7NmziIjYp08fNDAw0Er6kJxAYkSNyOSMIt7/w/c/cMXKlVmaVqusFCtWDIcOHYrHjx/X2k01e/Zsjh2DBg1Sa89LTmAYBm/fvq00kidf6d27t8bukbRZJEI9W5mJk4xTja2trbXmdJaamsrpVTI0NFQIoZSUFNyyZYtg3aysrHDx4sU5coAlCCJryGQyrFOnDutZ7Natm2J9cHAwtmzZUkQLVYPEiJq48joEay+5iS4eF7HQ6ANoWqxqjsSHra0tdurUCbdu3YofPnzQek/EihUrODZ169ZNo0MaqsIwDF67dg3r1q0reP34hg4sLS3xwIEDGrPp8uXLWL58ecHejsxEU8aZPg4ODlqPZhsXF4dubm4sOywsLHDFihW8uZIA/gwh/fvvv2qbFkwQhOqsX7+e9Tzmy5ePk59KH55NEiNq4MrrECz2/6mY83eajQZm/CnQVS1ubm6iZrndunUrx6a2bduKnnk3LbFaxsYy49c5nxCpWbMmfvjwQSN2+fj4YLNmzQRt6tOnD86YMSNL90DhwoVFy80SHh6uUrZiAMAePXrobUJEgtB3Pn36xOlt1XXfECFIjOQQmZxR9IgUHnMQJUbSLDU6QmXs2LGi+GUcPHiQ42zZuHFjUbM8yuVyPH36NFarVk3wejk6OmLZsmU5yyUSCU6bNk0jQur79+84YMAAQefUhg0b4rNnz3DNmjVZ+u1LlSqFnz9/Vru9WeHKlStK81s0btwYnz17JqqNBJGXYRiG8xHUpk0bnfPnUxUSIznEKzACXf6/V8TF4yLaNRvBbgylligxs0YLSyulL3e+ou2ps6dPn+b0KtSqVQtjYmK0akcaMpkMjx07xgk9n764uLjg6NGjeeNxODk54c2bN9VuV0xMDM6aNUtwunWZMmXw3LlzyDAMpws1s1KxYkUMDQ1Vu82qEhwcjEOHDhUMDmdubo6nT5/W2xceQeQWdu/ezXo2rays8OvXr2KblW1Ubb+NgODlR2wS62+ram0h6bMPyKLDwcF9CpjkdwEAgPU9qkCHKoUAESElJQWSkpIgOTlZ8f/0/06/LCUlBUxMTDRej+vXr0OPHj1ALpcrllWqVAkuX74MVlZWGj9/emQyGRw7dgwWL14MAQEBvNuULFkSpkyZAn5+frBx40bOend3d9izZw84ODio1a49e/bAnDlzIDw8nLPewcEB5s+fD0OHDgVjY2PYvHkzjBs3TuXj165dGy5dugT29vZqs1lVYmJiYOXKlbBmzRpISEgQ3C4hIQH2798P7du3B0NDQy1aSBBEGiEhITBx4kTWshUrVkCRIkVEskiLaEcb5Qxd6Blx8biIRcZ5YtFJp1nLvAJ1d1rVgwcPOF/5pUuX1nrI7pSUFNy7dy8niRtk6HU4cOAAvnr1ijeDrVQqxU2bNqn1y51hGLx06RK6urry2iSVSnHatGn4+/dvxT7btm3LUo9IkyZNRMnTkpycjBs2bODtWQL4E3itc+fOnOUjR46k3hGCEAGGYbBDhw6cIWFdmeWYXWiYJoek+YwUyyBI0koxj4tYe8lNlMl188X9/PlztLZmO9wWLVpUq2mmk5OTcceOHUpz7JQvXx6PHj2qmDrLN0RSvnx5fPXqlVpt8/HxURq+v0+fPpxrtWPHjiwJkQ4dOmgsVowQDMPgsWPHBB1VTUxMcOLEiYpp5HypyZcsWaJVmwmCQDx27BjrOTQ1NdWYc742ITGiBtJm02QUJGnLrrwO0ao9quLn54f58uVj3diOjo5au7ETExNx8+bNWKRIEcGGunLlynjy5EmUy+X469cv3q/0tC91dTrZfvv2LVPn1OfPn3P2yziOm1np06cPpqSkqM1uVbhz5w7WrFlT0KbevXtjUFAQax+GYXgj8WpqqjRBEFx+/vzJ6cVcuXKl2GapBRIjaiJ9nJG0UnvJTZ0VIh8/fuSkd7e3t8fXr19r/Nzx8fG4bt06dHZ2FmwQa9SowQolfu/ePSxcuDBnO3t7e7UmuFPFOVUoxPm+ffuyFPZ99OjRWu1aff36tdJQ+c2bN8eXL18K7p+SkoKtW7dm7WNkZITXr1/XWh0IIi/Tp08f1vNXs2bNXBPpmMSIGkkfgdUrMEJnh2a+ffuGxYoVY93UVlZW6O3trdHzxsbG4ooVK7BAgQKCDWKdOnXwypUrisY+NTUVZ8+ezTu7Q50J7lJTU3Hbtm2CtuXPnx+3bNki2IvBNyVaWZkxY4bWfC6+ffuGgwYNEpwhU6VKFbx27ZpKx4qNjcXq1auz9re0tFQqYgiCyDnp88wA/Ak2qO5haTEhMZLHCA8P58TjMDU1xXv37mnsnNHR0bh48WLOkFDGYY+bN2+yGuigoCD8+++/OduqM8FdZs6ppqamOGPGDKX31OHDhwUber6yfPnyHNutCr9//8Zp06ahqakprx0uLi548ODBLPfOhIWFYYkSJVjHcnR05AztEAShHqKjozk9w3PnzhXbLLVCYiQPERUVxUkxbWxsrLEkbJGRkThv3jy0tbUVbJibNWvGK4Q8PT3RxsaGs706E9y9fPlSqXNq3759M3Xk9fT0VFmISCQS3L59u1psV0ZSUhKuXbtWUPzZ2dnhqlWrcuQ0++7dO87xy5Yti79+/VJjTQiCQEQcMYIdv6pChQqiR8RWNyRG8gixsbGcZEoGBgZ48uRJtZ8rIiICZ86cyZmlk760bt0avby8eO0cOHAg7z7qSnD37ds37Nevn+CwSqNGjVTKCXPixAne0PN8xcjICI8ePZpj25Uhl8vx8OHDgrOSpFIpTp06FSMjI9VyvsePH3N8a+rWrStqtF6CyG3cuXOH895++vSp2GapHRIjeYDExETeHoB9+/ap9Tzh4eE4depUwdTyAIDt27cX9E158eIFb4wRdSW4i4mJwZkzZwoOW5QtWxYvXLigki/H6dOnORl2hYqpqSlevHgxx/Yr4+bNm4Lh8iUSCfbv318j07XPnz/P6Rn6559/dCKhIkHoO/Hx8ViqVCnW8zVp0iSxzdIIJEZyOSkpKdi+fXtOA7Vx40a1nSMkJAQnTJggOAMFALBz587o4+PDu79cLsdVq1ahsbExZz91JLhLTU3FrVu3ZuqcqqpX+tmzZ1UWIpaWlnjnzp0c2a8MX19fbNmypeD5W7Vqhf/995/Gzo/IH+BtzJgxFBSNIHLI5MmTWc9VyZIlMT4+XmyzNAKJkVyMTCbDnj17choKdQWr+vr1K44ePRqlUv7kgBKJBHv06KF0unBoaCi2aNGCd9+cJrhjGAYvXLiA5cqVE+yxyMw5NSPnz5/nFU18xd7eXmMzlL58+aJ0qKl69ep469YtjZybj5kzZ3Js0JajLkHkRry9vTm9jpr8sBEbEiO5FIZhcOjQoZwGYvr06Tk+dlBQEA4bNkywUTY0NMS+fftiQECA0uNcunRJYwnuXr58iU2aNBEUCv369ctyUqlLly6pnOzQyckJ37x5k6M68BEZGYlTpkwRFIDFixfHI0eOaD00NMMw2L9/f449hw8f1qodBJEbSE5O5iQIHT58uNhmaRQSI7kQhmFw4sSJnIZh9OjROeo6//DhAw4cOFBwiMLIyAgHDx6MgYGBSo+TlJSE48aN4z2Gu7s7/vz5M9s2fv36VWmPQePGjVVyTs3I1atXVRYixYsXx48fP2a7DnwkJibiypUr0c7Ojvec+fLlw3Xr1mFSUpJaz5sVUlJSOENGxsbGGsmcTBC5mXnz5rGeo0KFCrFyX+VGSIzkQjLeyACA/fv3z/bXckBAAPbp00dwCquxsTGOGDFCpTgT/v7+GklwFx0djTNmzFCLc2pGrl+/LtgTkbG4urpicHBwturAh1wuxwMHDmDRokV5z2dmZobTp0/XmRdVTEwMx5HWysoKfX19xTaNIPSC169fc3qdNe0ArwuQGMllrF69mtNgde7cOVshg1+/fo3du3cX7GWQSqU4duxYlaKgMgyjkQR3qjinbt26Ndshk2/evCkocDKWGjVqKBLLqYNr167xCjeAP9P7Bg8ejN+/f1fb+dRFaGgoJ8Kvs7OzVpMvEoQ+IpPJ0M3NjfXs9OrVS2yztAKJkVwEX7bYVq1aZbnr/uXLl9ipUyfBRtfMzAwnTpyIISGq5d3RRIK7NOfUjNFk04qpqSnOnDkzR/fC7du3lc4QSl8aNmyotvvuxYsX2KxZM8FztWvXTiP+KOrk7du3aG9vz7K7XLlyaotxQhC5kVWrVnE+pnIybK1PkBjRQ/he6EeOHOH0YDRo0CBL08CePn2K7dq1E2wELS0t0cPDA8PDw1U+prIEd2fPnlX5OOl58eIFNm7cmNdGiUSSLedUPrvNzc1VEiJt27ZVS6CvT58+Ya9evQTP4+bmptGw/erm0aNHnF6l+vXr5yjyK0HkVj58+MD5+PH09BTbLK1BYkTPiIyMxNatW7OWnTt3jhMJtEaNGipfh0ePHimNVWFtbY2zZs3K0hCEsgR3jRs3ztbwwtevX7Fv376CdmbXOTUjDx48UBq4LX3p0aOHYPI8VYmIiMAJEyYIOsiWKlUKjx8/rpdxO86cOcO5B7p06aL12T4EocvI5XJs1KgR6zlp3769Xj7z2YXEiJ4xa9YsBADFjJWbN29ynCvLly+vknC4e/eu0umvdnZ2OH/+fIyKisqSjepOcBcdHY3Tp08X9N0oV64cXrx4US0P7qNHj9DS0lIlITJ8+PAcRRpNSEjApUuX8ubgSeui3bhxo97noNi8eTOnbuPGjctTL1qCUMb27dtZz4eNjY1aHeH1ARIjesSvX7/QysoKAQDnzZuHXl5enC/4UqVKKfXlYBgGb9y4gfXr1xdsZB0cHHDp0qXZuo7qTHCXkpKCmzdv5o1FAgBYoEAB3LZtW7adUzPy+PFjxfXNrEydOjXbjalMJsM9e/bwDl8BAJqbm+Ps2bNz1X08bdo0Tj1XrVoltlkEITrfvn3jvHd27twptllah8SIHjFjxgzFzers7Mxp9AsXLoyfP3/m3ZdhGLx06RLWrl1bsIEtWLAgrlq1CuPi4rJsmzoT3DEMg+fPnxd0TjUzM8NZs2ZhTExMlu0UwtvbW2liv/RlyZIl2RIiab9BhQoVeI9raGiIw4YNU9kxWJ9gGAb79OnDqbOmkwcShC7DMAy2bduW9Uw0bdo0T/YakhjREyIiIpQOHxQoUADfvXvH2Y9hGDx79ixWr15dcF9nZ2dcv359tp0w1Zng7vnz55yx07SSlvBNlanEWT2nra2tSkJk8+bN2TqHt7e3YL0AADt27JhpxFp9Jzk5mTNLyMTEBG/fvi22aQQhCocPH+b0iqo7YKK+QGJET5g+fbpgQ2Zra8sJKiWXy/HEiROCcSoAAIsWLYpbtmzJ9uwGdSa4+/LlC++Xc1pp0qQJvnz5Mlt2KuPly5eCUU0z9locPHgwy8cPDAzE7t27Cx63Tp06+PDhQ7XXS1eJjo7GKlWqsK6BtbV1tuPMEIS+Eh4ejvny5WM9C2vXrhXbLNEgMaIH/Pz5U2mviJWVFfbq1QuPHj2KEREReOTIEXR1dRXcvnjx4rhz584cOUaqK8FdZs6prq6ueOnSJY10W/r6+nJiYfAVExOTLE9D/vHjB44dO1Ywf89ff/2Fp0+fzpPdscHBwZyIsoUKFcrxdGyC0Cd69OjBegZq166dI4d4fYfEiB7g4eGh0hBCWsMptK506dK4b9++HE9FVUeCO1WcU7dv364259SMvHr1ivNVwlcsLCyylFslLi4OFy1aJOgIW7BgQdy6dWuOfwN9x9/fn9MjVb58+SzP3CIIfeTcuXOc97afn5/YZokKiREd58ePHyrFvBAK2Q7wZ+rrkSNHcqy61ZHgjmEYPHfuHJYpU4b3OJpwTs3ImzdvBEVQ+mJra4uPHz9W6Zipqam4c+dOdHJyEhQ18+fPx9jYWI3VS9948OABZ1p6w4YNRU32RxCaJioqivOeWLhwodhmiQ6JER1nypQpKveKZCyVKlXC48ePqyXAlDoS3GXmnDpgwAC1O6dmxM/PTzCPTcYejP/++y/T46WJq3LlyvEex8jICEeNGoVhYWEarZe+curUKY6Q7tatGwVFI3ItQ4YM4byn83pPKSKJEZ0mPDxc5ZDk6Uu1atXw7NmzanmhqyPBXWbOqU2bNkUfH58c25oZAQEBWLBgwUyvX9GiRfH9+/eZHu/x48dYr149weN06dJFpePkdTZs2MC5dhMnThTbLIJQOzdv3mTd54aGhvj8+XOxzdIJSIzoMJMmTcqSCKlVq5ZanT1zmuDu9+/fOG3aNE5XfFpxdXXFy5cva8WJ8927d4JDKOlLmTJlMnWkfPfuneB1AfiTf0XV4R3iD3w9gHl5ZgGR+4iLi8PixYuz7nEPDw+xzdIZSIzoEDI5g16BEXjW5zteeOyncsbYevXq4fXr19XaqOckwV1KSgpu2rQJHRwcBIdANOmcmpEPHz6gs7NzptexatWq+OPHD8HjhIWF4ahRozh5gNJKuXLl8Ny5c3lyhkxOkcvl2LNnT9b1lEgkePz4cbFNIwi1MH78eNb9Xbp0abUk2MwtkBjREa68DsHaS26ii8dFdPG4iJZV2mTaeDZp0gTv3Lmj1sYvJwnu0gKs/fXXX7z2mpmZ4ezZszXqnJqRwMBAwbDrGQXd79+/eY8RGxuL8+bNE5xe7eTkhDt37tSauMqtJCUlcXIlmZiY4N27d8U2jSByhJeXF8c36v79+2KbpVOQGNEBrrwOwWL/L0IK/3sErWq0V9pwtmzZUiOBsnKS4O7Zs2fYoEEDXnslEgkOHDgwW5l6c8KnT5+wSJEimQqRli1bYnx8PGf/lJQU3Lp1q6CfiZWVFS5atChb4fMJfn7//o2VKlViXWdbW1t88+aN2KYRRLZISkriOLiPGjVKbLN0DhIjIiOTM4oekaJTzqGhFf/QBgBgu3bt8OnTpxqxI7sJ7j5//oy9e/cWtLlZs2ac6LDaICgoCF1cXDIVIl26dOEEaGMYBk+fPi3Yw2NsbIz//vuv0iEdIvt8//6dIyILFy6sdTFLEOogLdN6WilatKhWe4f1BRIjIuMVGKEYmnHxuIjWbv9whzf+qoN7z97SyPmzm+Du9+/f6OHhIeicWr58ebxy5Yoo/hNfvnzhOIrxlUGDBnF6ex4+fMjbO5RWunfvjoGBgVqvU17jzZs3nHxBFStWFBxKIwhdxNfXF42MjFj38ZUrV8Q2SychMSIyZ32+s8RI4X+PoMTEDAEkaF62PjoN2oQuHhfxrI/6vwqzk+AuJSUFN27cqNQ5dceOHaL5T3z79g1LlCiRqRAZP348SygFBARghw4dBLdv1KgRent7i1KnvMq9e/c4EYUbN25MQdEIvSA1NZWToLRfv35im6WzqNp+GwChEQpYmbL+NjSzhnyt/gXnwVsgfwcPMMlfjHe7nMAwDKxevRpq164NHz58YK1zc3MDX19f6Nu3L2s5IsK5c+egQoUKMHbsWIiIiGCtNzMzgzlz5kBgYCAMHToUjIyM1GavqgQHB0Pjxo3h06dPSrebN28erFmzBiQSCYSGhsLw4cOhQoUKcO7cOc62FSpUgEuXLsHt27ehZs2amjKd4KFBgwZw6NAhkEgkimV37tyBgQMHAsMwIlpGEJmzevVqePHiheLvAgUKwNq1a0W0KHeg/ZYlj+BW3B6cbEwhLDoJ8P+XWZSrr1gvAQBHG1NwK26vlvOFhYVB//794fr166zlEokEPDw8YMGCBWBsbMxa9+zZM5g8eTLcv3+fczyJRAIDBw6EBQsWQKFChdRiY3YIDQ2FJk2aQGBgoNLt1q5dC+PHj4fY2FhYuXIlrF69GhISEjjbFS5cGBYuXAh9+/YFQ0NDTZlNZELXrl0hODgYJkyYoFh29OhRKFy4MKxYsUJEywhCmPfv38PcuXNZyzZv3gz29up5j+dptNNRkzP0cZgG8X+zaYqlG65x+f+/i3lcxCuvQ9RynqwmuPv8+TP26tVLcOiiefPmojinZiQ0NBTLli2b6dDM1q1bMTk5GTdu3CiYm8bGxgaXLVtG8/91jIkTJ3J+qw0bNohtFkFwkMvlnMjMnTp1EtssnYd8RnSEjHFGXDwuYu0lN9UiRLKa4O737984depUnXROzUh4eDi6urpmKkQAALdt24YlS5bkXWdiYoITJ07EiIgIsatE8CCXy7F79+6s30wikeDJkyfFNo0gWGzatIl1n9ra2mJoaKjYZuk8JEZ0iPQRWL0CI1Amz3ljn5UEd2nOqfny5eNtsB0dHXUquNePHz+wfPnyKgkRZaV3794YFBQkdnWITEhKSuIkWpRKpfjgwQOxTSMIRPzTm5wxOOLevXvFNksvIDGSS8lKgjuGYfDMmTO8M2sAAM3NzXHu3LkYGxsrYo3Y/Pz5EytWrJgjEdKsWTN88eKF2FUhskBUVBRWqFCB9Tva2dmhv7+/2KYReRyGYbBly5ase7NFixY60YOsD5AYyYVkJcGdt7c31q9fn3dbiUSCgwYN0rlgU79+/eLt7VG1VK5cGa9duyZ2NYhs8vXrVyxUqBDrNy1atCgGBweLbRqRh9m/fz/rnrSwsKAe1yxAYiSXoWqCu6CgIE5isvSlefPm+N9//4lYE34iIyOxatWq2RYiEokEt27dSl8res6rV6/Q2tqaIzLz8rNPiEdoaCja2dmx7seNGzeKbZZeoVExsmnTJnRxcUGpVIpubm5KQ5nv2LED69Wrh7a2tmhra4tNmzbNcujzvCxGVE1wFxUVhVOmTOEEk0orFSpUwKtXr4pcG36ioqI4QYSyW9zd3TEsLEzsKhE54Pbt25z7uFmzZpzw/gShaTL2RNetWxflcrnYZukVGhMjnp6eaGJignv27EE/Pz8cOnQo2traYnh4OO/2vXr1ws2bN6OPjw8GBATggAED0MbGJktDBHlVjKiS4C45ORk3bNig1Dl1165dSpPhicnv37+xRs2aahEiAID58+fHgQMH0hRePefo0aOc37ZPnz7U80VojZMnT7LuP6lUim/fvhXbLL1DY2LEzc0NR48erfhbLpejs7MzLl26VKX9ZTIZWllZ4f79+1U+Z14UI5kluEtL+qbMOXXevHk65ZyakejoaCxbKfs9IhYWFtigQQOcPHkyHj9+HIOCgqixykWsWrWK85tPmzZNbLOIPMCvX784Wb1VbeMINhoRI8nJyWhoaIhnzpxhLe/Xrx+2b99epWPExMSgqakpXrhwQXCbpKQkjI6OVpRv377lGTESGxuLAwYM4G180xLcPX36lBN8J73vxODBg3Xe6S8mJgZdq9RQWXgYGRlhtWrVcPjw4bh79258/fq1zvb2EOqBYRjeODqbN28W2zQil5PxHVy1alVMSUkR2yy9RCNiJDg4GAEAvby8WMunTJmCbm5uKh1j5MiRWKJECUxMTBTcZu7cubwNUm4XI5kluAsKCsIePXoINtgtW7bUSefUjMTGxmJdATH1vyJBO9d6uGbtWvTy8qJhlzyKXC7HLl26cAR3xg8iglAXV69e5XwI+fj4iG2W3qKTifKWLVsGnp6ecObMGTA1FU4QN336dIiOjlaUb9++adFK7ZNZgrv79+/D69evoUyZMuDp6cnZv2LFinD16lW4evUqVKpUSVtmZ4v4+Hho27YtPHr4UHAbidQcCo3eD9bu06C2e1+oU6cOmJmZadFKQlcwMDCAgwcPQv36/8vrhIjQs2dP8PLyEtEyIjcSGxsLw4YNYy3z8PCAKlWqiGNQHiJLifIcHBzA0NAQwsPDWcvDw8PB0dFR6b6rVq2CZcuWwc2bNzNtMKVSKUil0qyYprcoS3A3efJkcHJygmbNmkFkZCRnXycnJ1i0aBH0799fL5K+JSQkgLu7O29ivjSM8xeDAt3mg5Hln8RTP2KTtGUeoaOYmprCuXPnoF69euDv7w8AAElJSeDu7g5eXl5QpkwZkS0kcgszZsyAr1+/Kv4uW7YszJo1S0SL8g5Z6hkxMTGB6tWrw61btxTLGIaBW7duQZ06dQT3W7FiBSxcuBCuXr0KNWrUyL61uYzLly9DpUqVOELEyckJ5syZA2fOnIGJEydyhIi5uTnMmzcP3r9/D4MGDdILIZKYmAjt27eHO3fuCG5jU6c7OA3cCEaW+RTLClgJ96AReQc7Ozu4cuUKODs7K5ZFRkZCq1atICwsTETLiNzCw4cPYdOmTYq/JRIJ7N69W2kvPqFGsjr+4+npiVKpFPft24f+/v44bNgwtLW1VcR26Nu3L8vjfdmyZWhiYoInT57E0NBQRcnKLI/cNptGWYK7evXqYa1atXjXGRgY4JAhQzAkRD3ZfrVFYmIitmjRQqmPiG2jQZzMxrWX3FRLHh8i9+Dr64tWVlYc58KYmBixTSP0FJmcwTt+39HZpQTrvvr333/FNi1XoNGgZxs3bsSiRYuiiYkJurm54ZMnTxTrGjZsiP3791f87eLiwtv4zJ07V+Xz5SYxIpTgzsTERGngr1atWrHyzugLiYmJ2KpVK6WOqvlajuEIkWIeF9WS2ZjIfdy8eRONjY1Z91GLFi1otgORZdKyqlvXZjtJFyxURKfDIugTqrbfEkREdfa0aIKYmBiwsbGB6OhosLa2FtucbIGIsGvXLhg3bhwkJiay1uXLlw+io6NBJpNx9qtYsSKsWrUKWrRooS1T1UZycjJ06tQJLl++zLveyMgIJi/dCHdTS0No9P98Q5xsTGGuuyu0quCkLVMJPePIkSPQu3dv1rJ+/frBvn37QCKRiGQVoU9cfRMKIw+9hKSwQAg7MBEAGcW6gt0Xwb5Zg+gdpAZUbb+z5MBKZI/IyEgYNmwYnDp1irNOKpXCr1+/OMv1zTk1IykpKdC1a1dBIWJqagqnTp2CNm3agJxB8A6KhB+xSVDAyhTcituDoQE1KIQwvXr1gu/fv4OHh4di2YEDB6BIkSKwaNEiES0j9AE5gzD/gj8gAMQ8PcUSIhYVm4NZsSow/4I/NHd1pHeRltDq1N68xMqVKwER4f79+1C5cmWOEDEw+HPpk5OTWcstLCxg/vz58OHDB71xTs1IamoqdO/eHS5cuMC73srKCq5duwZt2rQBAABDAwnUKZkPOlQpBHVK5qOHn1CJKVOmwJgxY1jLFi9eDNu3bxfJIkJf8A6KVPTGOrSdANZunQAkBmBoaQ/2TQYDAkBodBJ4B3FnMRKagXpGNMDatWth6tSpEBkZCStWrACGYTjbZFxmYGAAgwYNggULFoCTk/52DaampkKPHj3g7NmzvOvz5ctHs6oItSCRSGDdunUQEhICp0+fViwfNWoUODk5Qfv27UW0jtBl0ocMkBiZgIG5NRTovhAAAAxMLXm3IzQL9Yyomc2bN8PEiRMB4E+QNz4hkpFWrVqBr68v7Ny5U6+FiEwmg969e7MahvQ4OzvD/fv3SYgQasPQ0BAOHToEdevWVSxjGAZ69OgBT548YW27b98+SEhI0LaJhA6SMWRASsh7SAl5B2YulZVuR2gOEiNqZOfOnZxuY2VUqlQJrl27BleuXIGKFStq0DLNI5PJoG/fvnDixAne9SVKlICHDx+Cq6urli0jcjtmZmZw/vx5KFu2rGJZYmIitGvXDt6/fw8AfwTK4sWLYe/evWKZSegQbsXtwcnGFNIGhFMivkDsy0uA8j+TCCTwx5Herbi9aDbmNUiMqInt27dzwggL4ezsDHv27IGXL1/q5SyZjMjlcujfvz9vqHoAgPLly8PDhw+hePHiWraMyCvY29vDlStXWJGgf/36Ba1atYLw8HC4e/cuBAYGwqpVq3hnrRF5C0MDCcx1//NhhKlJIIsKBXncL0h476UQKHPdXcl/TYuQGFEDixcvhhEjRmS6nYWFBSxYsADev38PAwcO1Evn1IzI5XIYOHAgHDlyhHd9zZo14d69e3o9/EToB8WKFYMrV66ApeX/xvyDgoKgbdu2sG7dOgAA+Pz5M5w8eVIkCwldolUFJ9japxpYJ4UrZtPEPj8PjjamsLVPNZrWq2VIjOQAhmGgX79+meYuMDAwgGHDhkFgYCDMnj0bLCwstGShZmEYBoYMGQIHDx7kXd+oUSO4desW5MuXj3c9QaibKlWqwOnTp8HI6H+++S9evGDN7Fq+fDnoQXglQgUQER48eABxcXHZ2r9VBScYX+1/fiHJIW9h8F8MNHdVnmuNUD8kRrJJWFgYVK9eXbAhTs/evXth+/btmSYT1CcYhoGhQ4fCvn37eNe7u7vD5cuXwcrKSruGEXme5s2bw549ewTX+/r6wo0bN7RoEaEpJBIJnDt3DmxsbKBatWowZswYOHLkCHz+/FllwXnp3lPW3+PnLoV6y2/D1TehmjCZEIDESDa4fPkylC1bFnx9fVXafvDgwbBw4cJcM1bNMAyMGDFC8IXfq1cvOHXqFJiZmWnZMoIA+PTpEyQkJEChQoUEt1m+fLkWLSI0yZw5cyB//vzg4+MDmzdvht69e0Px4sWhUKFC0KVLF1i7di08ffoUUlJSOPtefRMKV+57s5bFBzyA78EhMPLQSxIk2kTTcenVgVi5aWRyBr0CI/Csz3f0CozA+IREwQR3qpR69erhr1+/tFoHdcMwDI4cOVKwjiNGjEC5XC62mUQe5M2bN1iuXDmVn8dnz56JbTKhJvbt25fp7y2VSrFevXo4depUPHv2LIaEhmHtJTfRwMJWsY3ESIpgaIw2f/ekZJ1qgnLT5JCrb0Jh/gV/RZS+1Ihv8PvyKkgI/ajyMVxcXKB27dqKUqVKFb1OR42IMHbsWNi8eTPveg8PD1i6dCnlBiFE4927dzBq1Ci4fft2ptt27doVjh8/rgWriOyQmpoKUVFREBUVBZGRkaz/Z1z269cvePz4cZbPYWhTEDAlAUyLV4fE914gLVwe8necBknf/MC8lBsAABwdWhvqlCS/t+xCuWlyQFoCJYQ/DXDcf9cg6tZOQFmy4D7m5uZQs2ZNhfCoVatWrppBgogwfvx4QSGydOlSmDZtmpatIgg2ZcqUgZs3b8Lhw4dh4sSJ8PPnT8FtT506BYGBgVCqVCktWpi3YBgGYmJieAWFkLBI+392nVKzgjw6HIwLlAATp7/ArskQMLKwBQBQCBEAisKqLUiMZCB9AiUAgDifSxB5YxtnO1tbW2jbti3Uq1cPateuDRUqVGB58OcmEBEmTZoEGzZs4KyTSCSwefNmGDlypAiWEQQXiUQCffr0gbZt28L06dMFc9UwDAOrVq2Cbdu4zzfxPxAREhMTsyUofv/+rVIUam2TP39+aNKuM9wHVzApUELpthSFVTvQME0GHn/8BT13/i+MNJOcACF7RoM85s8XlsTEDOybj4IL66fnia47RAQPDw9YuXIlZ52hoSHs27cP+vTpI4JlBKEajx8/hhEjRsCrV68466RSKXz+/DlXzXQTIjU1FX7//i0oKJQJi4wJPXUNU1NTkMlkSicJGBkZgbu7OwwYMABat24NBoZGUG/5bQiLTgK+RlACAI42pvDQowkFP8sBNEyTTTJ2yRlIzSF/x+kQdmgKSAuXB4d2E8HIyiFPdN0hIsyYMYNXiEilUjh+/DglIyN0njp16sCLFy9g/fr1MHfuXIiPj1esS05Ohg0bNsCSJUtEtFB1EBFiYmKyJShiY2PFNl8phoaGYGdnB3Z2dmBvb6/S/9OKRCKBwoULw69fvzjHrVKlCgwYMAB69eoF+fPnZ62b6+4KIw+9BAkAS5BQFFbtQz0jGcjYM5JGcvBbMHEqDRKDP1FTc7tTEyLC7NmzYfHixZx1FhYWcP78eWjSpIkIlhFE9vn69SuMGzeOlVXaxsYGAj99hnN+kfAlMgFc7M2hb51iYGKkucgHiYmJmQoKPmERFRWlk8Me6bG2ts6yoLC3twcrK6tsO7/v378fBgwYoPjbwcEBevfuDQMGDIAqVaoo3TfjZAWAP3lp5rq7UhRWNaBq+01iJANyBvNc193x48ehW7durGXz5s2D+fPnc7a1s7ODK1euQK1atbRlHkGonfPnz8PYsWPh69evAABg33gQWLl1Uqw3kAAMrV8cprcRTuwok8mU+kso66nQh2GPrAiKtP/b2tqK4jvn5uYGPj4+0LZtWxgwYAC0adMGTExMVN5fziB4B0XCj9gkKGD1J0Febnm/iw2JkRyQNpsGgL/rLjflLfj69SuUKVMG3r17B0WLFgUAgIULF8KcOXM42zo6OsL169f1PsMwQQAAxMfHQ+v+Y+HB6f1gaGEHToM2Qkr4J2CS4v6/xEIlB0P4y86AV1jo+rCHgYFBtgSFnZ2dXgUsDA0NBU9PT+jduzcUKFBAbHOIDJAYySF5petu0KBBsHfvXli5ciVMnjwZlixZAjNnzuRsV7RoUbh16xZNgyRyDSkyBsrOvgJJPz5D5LXNYFq8GkQ/PCy2WRzShj2yKixyMuxBEOqCHFhzSKsKTtDc1TFXd935+/vD/v37AQDg2LFjIJPJeIVIWuyGwoULa9tEgtAYBx9/BgYBTPIXg4K9l0PCh6eZ75RNpFJplnso7O3tRRv2IAhtQ3e5EgwNJLnaSXXWrFkKZ7jnz5/D8+fPOdtUqVIFrl+/zvFCJwh950tkguLfEokBmBWvpnT7jMMeWREW+jTsQRBiQGIkj+Lt7Q1nzpxRus3ff/8Nly9fBhsbGy1ZRRDaw8XenPW3gbEUbBsNAAOpJRiY/q+Mb1MVRrSsDFZWVmBgQLlFCUITkBjJgyBipqHbGzduDBcvXgRzc3Ol2xGEvtK3TjFYfDkAmHRecza1urC2MZAATOhUT6PTfAmCAKAnLA9y8+ZNuHPnjtJt7t+/D506dYJdu3ZBRESEliwjCO1hYmQAQ+sXV7rN0PrFSYgQhBagpyyPgYgwffr0TLeTy+Vw+/Zt8Pf3J498ItcyvY0rDG9QHDL6pRtIAIY3UB5nhCAI9UHDNHmMU6dOwYsXLzLdrmfPnrBo0SIoUUJ5EimC0Hemt3GFSS3KwsHHn7UWgZUgCDYkRvIQMpkMpk6dqnSbRo0awcqVK6FGjRpasoogxMfEyAAG1yfhTRBiQWIkD7F8+XIICgriXVe+fHlYsWIFtG7dmoZlCIIgCK1CYiQXkz7fQsQnf94Q77a2trB69Wro378/GBoaimAlQRAEkdchMZJLSR/OPjn4LYR7zgDMkO2zV69esHPnTpq+SxAEQYgKiZFcSFqiPwSAxM++8PP0QkBZimK9oaERHD16BLp27SqekQRBEATx/5AYyWXIGYT5F/wBASAh8Cn8PLsUQC5TrJeYmEHZgcugU+cuwgchCIIgCC1Cc9dyGd5BkYpMwwamliCR/O8nNjC3BcdeyyHOtiR4B0WKZSJBEARBsCAxksv4EZuk+Ldp4fKQr91kAAMjMLTKD469l4NJwRKc7QiCIAhCTGiYJpdRwMqU9bdFmb9B0mkmmOR3ASPrAoLbEQRBEIRYUM9ILsOtuD042ZhC+kgh5iVrKoSIBACcbEzBrbi9KPYRBEEQREZIjOQyDA0kMNf9Tz6NjKHL0v6e6+4KhhmTcRAEQRCESJAYyYW0quAEW/tUA0cb9lCMo40pbO1TDVpVcBLJMoIgCILgQj4juZRWFZyguaujIgJrAas/QzPUI0IQBEHoGiRGcjGGBhKoUzKf2GYQBEEQhFJomIYgCIIgCFEhMUIQBEEQhKiQGCEIgiAIQlRIjBAEQRAEISokRgiCIAiCEBUSIwRBEARBiAqJEYIgCIIgRIXECEEQBEEQokJihCAIgiAIUSExQhAEQRCEqJAYIf6vvbuNbap8wwB+bR09hWQbmGXdhlWyKY7AcHFjpUOyYJosgaD7xCJmDAKiYRjDEnUytASULQQNCUwJKOAHtIoBYqCZwmAhwAhxdAm6AcGNF6OtLlHajJe99P5/WvkXOtyp6zmecv2S84Fnz9PdvTjZufesPSUiItIVmxEiIiLSFZsRIiIi0hWbESIiItIVmxEiIiLSVUzNSFNTE6ZMmQKLxQK73Y5z5849dP7+/fuRn58Pi8WCgoICeDyemIolIiKixKO6Gfn6669RW1sLl8uF8+fP49lnn0V5eTn++OOPqPPPnDmDl19+GcuXL4fX60VFRQUqKirw008//eviiYiIyPiSRETULLDb7Zg1axa2b98OAAiFQrDZbHjjjTdQV1f3wPzKykr09fXh8OHD4bHZs2ejsLAQO3bsGNX3DAQCSE9Px82bN5GWlqamXCIiItLJaK/fqnZG+vv70d7eDqfTee8BkpPhdDrR1tYWdU1bW1vEfAAoLy8fcT4A3L17F4FAIOIgIiKixKSqGent7cXQ0BCsVmvEuNVqhc/ni7rG5/Opmg8ADQ0NSE9PDx82m01NmURERGQg/8l307z77ru4efNm+Lhx44beJREREVGcpKiZnJGRAZPJBL/fHzHu9/uRlZUVdU1WVpaq+QCgKAoURVFTGhERERmUqp0Rs9mMoqIitLS0hMdCoRBaWlrgcDiirnE4HBHzAeDo0aMjziciIqJHi6qdEQCora1FdXU1iouLUVJSgq1bt6Kvrw/Lli0DACxZsgSTJ09GQ0MDAODNN99EWVkZPvroIyxYsAButxs//vgjdu7cObbPhIiIiAxJdTNSWVmJP//8E++//z58Ph8KCwvR3NwcfpHq9evXkZx8b8OltLQUX375JdatW4e1a9fi6aefxqFDhzBjxoyxexZERERkWKrvM6IH3meEiIjIeOJynxEiIiKiscZmhIiIiHTFZoSIiIh0xWaEiIiIdMVmhIiIiHTFZoSIiIh0xWaEiIiIdMVmhIiIiHTFZoSIiIh0pfp28HoYvklsIBDQuRIiIiIareHr9j/d7N0QzUgwGAQA2Gw2nSshIiIitYLBINLT00f8uiE+myYUCuG3335DamoqkpKSxuxxA4EAbDYbbty4wc+8iSPmrB1mrQ3mrA3mrI145iwiCAaDyMnJifgQ3fsZYmckOTkZjz/+eNwePy0tjSe6Bpizdpi1NpizNpizNuKV88N2RIbxBaxERESkKzYjREREpKtHuhlRFAUulwuKouhdSkJjztph1tpgztpgztr4L+RsiBewEhERUeJ6pHdGiIiISH9sRoiIiEhXbEaIiIhIV2xGiIiISFcJ34w0NTVhypQpsFgssNvtOHfu3EPn79+/H/n5+bBYLCgoKIDH49GoUmNTk/OuXbswd+5cTJo0CZMmTYLT6fzH/xe6R+05PcztdiMpKQkVFRXxLTBBqM3577//Rk1NDbKzs6EoCqZOncqfH6OgNuetW7fimWeewfjx42Gz2bBmzRrcuXNHo2qN6eTJk1i4cCFycnKQlJSEQ4cO/eOa1tZWPPfcc1AUBU899RT27t0b3yIlgbndbjGbzbJ79275+eef5dVXX5WJEyeK3++POv/06dNiMplk8+bN0tnZKevWrZNx48bJhQsXNK7cWNTmvHjxYmlqahKv1ytdXV2ydOlSSU9Pl19//VXjyo1HbdbDenp6ZPLkyTJ37lx56aWXtCnWwNTmfPfuXSkuLpb58+fLqVOnpKenR1pbW6Wjo0Pjyo1Fbc779u0TRVFk37590tPTI99//71kZ2fLmjVrNK7cWDwej9TX18uBAwcEgBw8ePCh87u7u2XChAlSW1srnZ2dsm3bNjGZTNLc3By3GhO6GSkpKZGamprwv4eGhiQnJ0caGhqizl+0aJEsWLAgYsxut8trr70W1zqNTm3O9xscHJTU1FT54osv4lViwogl68HBQSktLZXPPvtMqqur2YyMgtqcP/30U8nNzZX+/n6tSkwIanOuqamRF154IWKstrZW5syZE9c6E8lompG3335bpk+fHjFWWVkp5eXlcasrYf9M09/fj/b2djidzvBYcnIynE4n2traoq5pa2uLmA8A5eXlI86n2HK+361btzAwMIDHHnssXmUmhFiz3rBhAzIzM7F8+XItyjS8WHL+7rvv4HA4UFNTA6vVihkzZmDTpk0YGhrSqmzDiSXn0tJStLe3h/+U093dDY/Hg/nz52tS86NCj2uhIT4oLxa9vb0YGhqC1WqNGLdarbh48WLUNT6fL+p8n88XtzqNLpac7/fOO+8gJyfngZOfIsWS9alTp/D555+jo6NDgwoTQyw5d3d34/jx43jllVfg8Xhw5coVrFq1CgMDA3C5XFqUbTix5Lx48WL09vbi+eefh4hgcHAQr7/+OtauXatFyY+Mka6FgUAAt2/fxvjx48f8eybszggZQ2NjI9xuNw4ePAiLxaJ3OQklGAyiqqoKu3btQkZGht7lJLRQKITMzEzs3LkTRUVFqKysRH19PXbs2KF3aQmltbUVmzZtwieffILz58/jwIEDOHLkCDZu3Kh3afQvJezOSEZGBkwmE/x+f8S43+9HVlZW1DVZWVmq5lNsOQ/bsmULGhsbcezYMcycOTOeZSYEtVn/8ssvuHr1KhYuXBgeC4VCAICUlBRcunQJeXl58S3agGI5p7OzszFu3DiYTKbw2LRp0+Dz+dDf3w+z2RzXmo0olpzfe+89VFVVYcWKFQCAgoIC9PX1YeXKlaivr0dyMn+/HgsjXQvT0tLisisCJPDOiNlsRlFREVpaWsJjoVAILS0tcDgcUdc4HI6I+QBw9OjREedTbDkDwObNm7Fx40Y0NzejuLhYi1INT23W+fn5uHDhAjo6OsLHiy++iHnz5qGjowM2m03L8g0jlnN6zpw5uHLlSrjZA4DLly8jOzubjcgIYsn51q1bDzQcww2g8GPWxowu18K4vTT2P8DtdouiKLJ3717p7OyUlStXysSJE8Xn84mISFVVldTV1YXnnz59WlJSUmTLli3S1dUlLpeLb+0dBbU5NzY2itlslm+//VZ+//338BEMBvV6CoahNuv78d00o6M25+vXr0tqaqqsXr1aLl26JIcPH5bMzEz54IMP9HoKhqA2Z5fLJampqfLVV19Jd3e3/PDDD5KXlyeLFi3S6ykYQjAYFK/XK16vVwDIxx9/LF6vV65duyYiInV1dVJVVRWeP/zW3rfeeku6urqkqamJb+39t7Zt2yZPPPGEmM1mKSkpkbNnz4a/VlZWJtXV1RHzv/nmG5k6daqYzWaZPn26HDlyROOKjUlNzk8++aQAeOBwuVzaF25Aas/p/8dmZPTU5nzmzBmx2+2iKIrk5ubKhx9+KIODgxpXbTxqch4YGJD169dLXl6eWCwWsdlssmrVKvnrr7+0L9xATpw4EfVn7nC21dXVUlZW9sCawsJCMZvNkpubK3v27IlrjUki3NsiIiIi/STsa0aIiIjIGNiMEBERka7YjBAREZGu2IwQERGRrtiMEBERka7YjBAREZGu2IwQERGRrtiMEBERka7YjBAREZGu2IwQERGRrtiMEBERka7YjBAREZGu/ges8o8dAsQ1rAAAAABJRU5ErkJggg==", + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAiMAAAGdCAYAAADAAnMpAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjcuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/bCgiHAAAACXBIWXMAAA9hAAAPYQGoP6dpAACTeElEQVR4nOzdd1gU19cH8O/Slt5EmqBgL9gFRKyIJSroLxbEbqyxa+waey8xtmgk9gb2gr03WlSwYYwoNgQsSO+79/2D14nj0tndYeF8nmefZO5OObsuO2fv3HtGxBhjIIQQQggRiJrQARBCCCGkfKNkhBBCCCGComSEEEIIIYKiZIQQQgghgqJkhBBCCCGComSEEEIIIYKiZIQQQgghgqJkhBBCCCGC0hA6gMKQSqV4//49DAwMIBKJhA6HEEIIIYXAGENSUhKsra2hppZ3/4dKJCPv37+Hra2t0GEQQgghpBjevn0LGxubPJ9XiWTEwMAAQM6LMTQ0FDgaQgghhBRGYmIibG1tufN4XlQiGfl6acbQ0JCSEUIIIUTFFDTEggawEkIIIURQlIwQQgghRFCUjBBCCCFEUJSMEEIIIURQlIwQQgghRFCUjBBCCCFEUJSMEEIIIURQlIwQQgghRFCUjBBCCCFEUEVORm7evAkPDw9YW1tDJBLhxIkTBW5z/fp1NGnSBGKxGNWrV8euXbuKESohhBBCyqIiJyMpKSlo2LAhNm/eXKj1IyMj0bVrV7Rr1w5hYWGYNGkShg8fjgsXLhQ5WEIIIYSUPUW+N80PP/yAH374odDrb926Ffb29li7di0AoE6dOrh9+zbWrVuHTp06FfXwhBBCCCljFD5mJDAwEO7u7ry2Tp06ITAwMM9tMjIykJiYyHsQQgghpGxSeDISExMDCwsLXpuFhQUSExORlpaW6zbLly+HkZER97C1tVV0mIQQQggRSKmcTTNr1iwkJCRwj7dv3wodEiGEEEIUpMhjRorK0tISsbGxvLbY2FgYGhpCR0cn123EYjHEYrGiQyOEEEJIKaDwnhEXFxdcuXKF13bp0iW4uLgo+tCEEEIIUQFFTkaSk5MRFhaGsLAwADlTd8PCwvDmzRsAOZdYBg0axK0/evRovHz5EtOnT8c///yDP/74A4cOHcLkyZPl8woIIYQQotKKnIzcvXsXjRs3RuPGjQEAU6ZMQePGjTFv3jwAQHR0NJeYAIC9vT3OnDmDS5cuoWHDhli7di3++usvmtZLCCGEEACAiDHGhA6iIImJiTAyMkJCQgIMDQ2FDocQQgghhVDY83epnE1DCCGEkPKDkhFCCCGECIqSEUIIIYQIipIRQgghhAiKkhFCCCGECIqSEUIIIYQIipIRQgghhAiKkhFCCCGECIqSEUIIIYQIipIRQgghhAiKkhFCCCGECIqSEUIIIYQIipIRQgghhAiKkhFCCCGECIqSEUIIIYQIipIRQgghhAhKQ+gACCHlW2a2FHsDX+F1XCqqmOpioIsdtDTodxIh5QklI4QQwSw/Gw6fW5GQsv/alp59ihGt7DGrS13hAiOEKBUlI4QQQSw/G44/b0bKtEsZuHZKSAgpH6gvlBCidJnZUvjc4iciiSHHkfo8GJLUBACAz61IZGZLhQiPEKJk1DNCCFG6vYGveJdmpBkp+HJtB4CcRg0TK4gr1cHwrFBMG9wddevWhbq6ujDBEkIUjpIRQojSvY5L5S2nv32Cr4kIAGR/iUb2l2jsfXwVe9f+CgMDAzRv3hwuLi5o0aIFnJ2dYWxsrNygCSEKQ8kIIUTpqpjq8pYzYyLyXT8pKQmXLl3CpUuXAAAikQh169ZFixYt0KJFC7i4uKBmzZoQiUQKi5kQojgixhgreDVhJSYmwsjICAkJCTA0NBQ6HEJICWVmS1H713PcpRpJejLSngfh87kNAJMCauqAVFKkfVaoUAEuLi5c74mjoyP09PQUED0hpLAKe/6mZIQQIojcZtN8Pr8RyQ8uAADEOnrw7NYFmpqaCAoKwsuXL4u0f3V1dTRs2JDrOWnRogWqVKlCvSeEKBElI4SQUu/7OiNZ8TF4v21kTu/I/3NwcMDGjRtRp04dBAYGIjAwEAEBAfj777+RkZFRpONZWVlxiUmLFi3QpEkTiMVieb4kQsg3KBkhhKiE7yuw3tq+GLt375JZr0+fPlizZg1sbW1ztsvMRFhYGAICArhHVFRUkY6tpaWFpk2b8hIUKysrebwsQggoGSGEqKiIiAjUqlULUqlsjREdHR3Mnj0bU6dOhba2tszzb9++RUBAANd7Ehoaiuzs7CIdv0qVKlxi0qJFCzRo0AAaGjTWn5DioGSEEKKyBg4ciH379uX5vL29PdatWwdPT898x4Ckpqbi3r17vATl48ePRYpFV1cXTk5OXO+Ji4sLKlSoUKR9EFJeUTJCCFFZ//zzD+rWrYuCvp46deqE9evXo1atWoXaL2MML1684BKTgIAAPH78ONdemPzUrFmTN624bt26UFOjgtaEfI+SEUKISuvbty/8/PwKXE9DQwOTJk3Cr7/+Wqzvh8TERISEhHC9J4GBgUhISCjSPoyMjGSKstF3FSGUjBBCVNzjx49Rv379fNcxNjZGp06d0KVLF3Tt2lUul0+kUimePn3K6z159uxZkfYhEong4ODAm1ZcvXp1mlZMyh1KRgghKq9nz544duxYrs9Vr14d9+/fh4GBgcLj+Pz5M4KCgrjek+DgYKSmpha84TfMzMx4s3aaNWsGXV3dgjckRIVRMkIIUXlhYWFo3Lhxns9369YNx44dg6amphKjArKzs/Ho0SOu5yQwMBCRkZEFb/gNDQ0NNGrUiNd7YmtrS70npEyhZIQQUiZ0794dp06dAgBoa2sjPT2d9/yAAQOwe/duwQeQRkdH84qy3b17F5mZmUXah7W1NW9gbOPGjakoG1FplIwQQsqEu3fvwtHREQAwffp0iMViLF68mLfO+PHjsX79+lLVq5CRkYHQ0FCu5+TOnTuIjo4u0j7EYjGaNWvGm1ZsaWmpoIgJkT9KRggpJImUISQyDh+S0mFuoA0ne1Ooq5WekxoBunTpgnPnziE8PBy1a9fG+PHjsXnzZt46CxYswPz58wWKsGCMMbx584Y3MDYsLAwSSdFuCGhvb8/rPalfvz4VZSOlFiUjhBTC+cfRWHg6HNEJ/3X9WxlpY75HXXR2oLLgpUVgYCAmT56MoKAgADkzXgYOHIgDBw7w1tuwYQPGjx8vRIjFkpKSgrt37/KKsn3+/LlI+9DT04OzszPXe9K8eXOYmpoqKGJCioaSEUIKcP5xNH7edx/f/wF87RPZMqAJJSSlyIMHD9CwYUNuOSsrCz169MDZs2d56+3duxcDBgxQdnhywRjD8+fPeb0nT548KbD42/dq167NGxhbu3ZtwcfUkPKJkhFC8iGRMrRceRXRCelIe3kP2lUaQqT+X1e3CIClkTZuz3CjSzalWGpqKjp16oTbt29zberq6jhx4gS6desmYGTyk5CQgODgYK73JCgoCImJiUXah7GxMZo3b85d3nFyclLKlGhCKBkhJB+BLz7D2ycIqc8C8PHEMogrN4CZx1Ro6PO7tw+OaA6XanQfktIsPj4ebdu2xYMHD7g2bW1tXLhwAa1btxYwMsWQSCR4+vQpb1rxv//+W6R9qKmpoX79+rzek6pVq5aqAcCkbKBkhJB8nAyLws/rjyJm/3SwrAwAgJquMSwHroGm8X+zFdb3bYTujSoJFSYppNjYWLRs2RIRERFcm6GhIa5fv55vnZKy4uPHjwgKCuIu74SEhCAtLa1I+zA3N+fN2mnWrBl0dHQUFDEpLygZISQf/kHh6NGxDSRJn7g2kYYWKo3dC3VtPa6NekZUx6tXr+Dq6or3799zbRUrVsTt27dRs2ZNASNTvqysLDx8+JDXe/L69esi7UNDQwNNmjThVY21sbFRUMSkrKJkhJA8pKeno03btggJDubaRJpisKwMWPRbAW1bBxozoqLCw8PRqlUrxMXFcW2VK1fGnTt3yv2J9P3797yBsffv3y9yUTYbGxvetOJGjRpBS0tLQRGTsoCSEUJywRjDgAED+FNC1TUgtq6DjLePoFOjOSx+nAuAZtOoqpCQELi5uSElJYVrq127Nm7dugUzMzMBIytd0tPTcf/+fd604piYmCLtQ1tbG46OjrzLO+bm5gqKmKgiSkYIycXSpUsxd+5cXlu1XtPx5tpBZH1+C0CERr/sxvIh7pSIqLDLly+ja9euvF/+zZo1w9WrV2kWSR4YY3j16hWv9+Thw4dFLspWrVo1Xu+Jg4MD1NXVFRQ1Ke0oGSHkO8eOHUPPnj15bdOnT8f8BQthaKDPfelOmDAB69evFyJEIkfHjh1D7969IZVKuTY3NzecOXMG2traAkamOpKTk/H3339zvSeBgYG8S2CFoa+vD2dnZy5Bad68OYyNjRUTMCl1KBkh5BuhoaFo2bIl77bvnp6eOHbsGMLDw9GgQQOuXV9fH+/evYORkZEQoRI52r59O4YPH85r69GjBw4fPkwl1ItBKpXi33//5XpPAgMD8eTJkyLvp27durxpxTVr1qSibGUUJSOE/L/o6Gg4OTnh3bt3XFv9+vVx584dGBgYwNfXF97e3rxt1q5diylTpig7VKIAq1evxvTp03ltQ4cOxfbt26muhhx8+fIFwcHBXIISFBSE5OTkIu3D1NSUK8rm4uICJycn6OvrKyhiokyUjBACIC0tDW3btkVISAjXZm5ujpCQEFSpUgUAMHfuXCxdupS3XZUqVRAREUG/nsuIWbNmYcWKFby2X375BatXr6aERM4kEgmePHnCm1b8bf2XwlBTU0PDhg1504rt7Ozo30oFUTJCyj3GGPr374+DBw9ybVpaWrh27RpatGjBtf3vf//DiRMnZLY/cuSIzBgTopoYYxg9ejS2bdvGa1+2bBlmzZolUFTlx4cPHxAUFMQlKH///TfS09ML3vAbFhYWvIGxTZs2pbE/KoCSEVLuLVmyBL/++iuvbffu3Rg0aBCvrUaNGrn+cnN1deXd84SoNolEAm9vbxw+fJjXvmXLFowePVqgqMqnzMxMPHjwgDet+O3bt0Xah6amJpo2bcrrPbG2tlZQxKS4KBkh5drRo0fRq1cvXtuMGTNkuurT0tKgp6eX511RQ0JC4OjoqLA4iXJlZGTA09MTFy9e5NpEIhEOHjwILy8vASMj7969400rDg0NRVZWVpH2UblyZV7vScOGDaGpqamgiElhUDJCyq379++jZcuWvHtzdO/eHceOHZMZsR8aGoomTZrkuS9vb29+gTSi8lJSUuDu7o6goCCuTVNTE6dOnULnzp0FjIx8Ky0tDffu3eP1nnz48KFI+9DR0YGjoyMvQaHCd8pFyQgpl6Kjo+Ho6IioqCiurUGDBrhz506uo/P37t0rc9nmWxoaGoiMjCz3pcTLmri4OLRp0waPHz/m2nR0dHD58mXeeCJSejDG8PLlS9604ocPH/LqyBRGjRo1eNOK69atS0XZFIiSEVLuFGbmzPdmzpyJlStX5rvfmTNnYvny5XKNlQjv/fv3aNmyJSIjI7k2Y2Nj3Lhxg1d3hpReSUlJCAkJ4SUo8fHxRdqHoaEhryibs7Mz1RiSI0pGSLnCGEO/fv3g6+vLtWlpaeH69etwcXHJc7tu3brhzJkz+e7bxMQEb9++hZ6eXr7rEdXz4sULtGzZkndPFktLS9y+fRvVqlUTMDJSHFKpFM+ePeNNK3769GmR9iESiVCvXj3ewNgaNWrQtOJiKvT5mxXDpk2bWJUqVZhYLGZOTk4sODg43/XXrVvHatasybS1tZmNjQ2bNGkSS0tLK/TxEhISGACWkJBQnHBJObB48WIGgPfYs2dPgdvZ2dkxAMza2ppZW1tz2+rq6rJr166xESNGMGNjY/bHH38o4VUQITx48IAZGxvzPjv29vYsKipK6NCIHHz+/JmdOXOGzZ07l7m5uTE9PT2Z74qCHhUqVGDdunVjy5YtY9euXWPJyclCvyyVUdjzd5GTEV9fX6alpcV27NjBnjx5wn1Zx8bG5rr+/v37mVgsZvv372eRkZHswoULzMrKik2ePLnQx6RkhOTnyJEjMl8eM2fOLHC7pKQkBoANHjyYxcXFsR9//JG3j0+fPjHGGEtPT2ehoaEKfhVESHfu3GE6Ojq8f38HBwf2+fNnoUMjcpaVlcVCQ0PZ5s2b2YABA1jVqlWLnJyoq6uzpk2bsnHjxrEDBw6wV69eMalUKvRLK5UUlow4OTmxsWPHcssSiYRZW1uz5cuX57r+2LFjmZubG69typQpzNXVtdDHpGSE5OXevXsyJ5EePXowiURS4LYvXrxg/v7+3PKUKVN4+7l7964iQyelzLlz55impibvM9C8eXP6FVwOxMTEsOPHj7Np06YxV1dXJhaLi5ygWFlZsZ49e7K1a9eygIAAlp6eLvTLKhUUkoxkZGQwdXV1dvz4cV77oEGDmKenZ67b7N+/nxkZGXGXcl68eMFq167Nli5dmudx0tPTWUJCAvd4+/YtJSNExvv371mlSpV4XwgNGzZkSUlJxdrfhg0bePs6cuSInCMmpZ2vry8TiUS8z0HHjh3pxFLOZGRksKCgIPbbb7+x3r178y7hFvahpaXFWrRowX755Rd29OhR9v79+yLHcevWLbZmzRqV/vwpJBmJiopiAFhAQACvfdq0aczJySnP7davX880NTWZhoYGA8BGjx6d73Hmz5+f6z8uJSPkq9TUVObo6Mj7fJibm7PXr18Xe5+nTp3i7W/t2rVyjJioii1btsh89/Tu3ZtlZ2cLHRoRiFQqZa9fv2a+vr5swoQJrFmzZtz5rCgPOzs71q9fP7Zx40Z27949lpWVle9xv3z5wkQiEatatSo7cuSISl4KKjXJyLVr15iFhQXz8fFhDx8+ZMeOHWO2trZs0aJFeR6HekZIfqRSKevbt6/Mr5DvP5dF9eDBA94+x48fL6eIiapZunSpzIlk5MiRKnkyIIqRkpLCbty4wVasWME8PT2ZmZlZkZMTXV1d1rZtWzZ79mzm7+/PjVP7VqNGjbj1W7Vqxf7++28BXm3xlZrLNC1btmRTp07lte3du5fp6OgU6ro+YzRmhPAtWrRI5o967969Jd5vfHw8b58eHh5yiJaoIqlUKjOGCCjcwGhSPkmlUvb8+XO2e/duNmrUKNagQQOZS36FedSqVYsNGTKEbdu2jT1+/JhNmDBBZp2BAweyt2/fCv2SC0WhA1jHjRvHLUskElapUqU8B7A2adKETZ8+ndd24MABpqOjU+huT0pGyqdXr16xlJQUXtuhQ4dk/jBnzZolt2OamJhw+61fv77c9ktUj1QqZUOGDJH5vK1evVro0IiKSEhIYBcvXmQLFy5knTp1YkZGRkVOTtTU1HJt19HRYfPmzSv2GDllUejUXrFYzHbt2sXCw8PZyJEjmbGxMYuJiWGMMTZw4EDer4f58+czAwMDdvDgQfby5Ut28eJFVq1aNdanTx+5vxhStkyePJn9+eef3PLdu3eLPXOmsBo3bszt29DQkLrly7msrCzWo0cPmRPB9u3bhQ6NqCCJRMIeP37Mtm3bxoYOHcpq1apV5OTk+4eVlRXbsWNHrj/usyVSFhDxiZ0IfccCIj6xbInyv88UlowwxtjGjRtZ5cqVmZaWFnNycmJBQUHcc23atGGDBw/mlrOystiCBQtYtWrVmLa2NrO1tWVjxoxhX758KfTxKBkpf5KSkpihoSGrU6cOk0qlLCoqSmZEe0lmzuTl+xNPXFycXPdPVE9aWhpzc3OT+bV69OhRoUMjZcCnT5+Yv78/mz17Nmvbti3T1dUtVlLSqFEjdvXqVW6/5x69Z82XXWZVZvhzj+bLLrNzj4o+q6ckCnv+pnLwpFTasmULxowZAwA4ceIEli5dir///pt73sLCAiEhIahcubJcjzt58mT8/vvv3PL9+/fRuHFjuR6DqJ6kpCS4ubnh7t27XJuWlhbOnDkDd3d3ASMjZU12djYePnyIgIAAHD16FNevXy/S9p6envAYMQ1Lbyfg+5P714L2WwY0QWcHK3mEW6DCnr/V8nyGEIEwxrBp0yZuuU+fPrxERCwW48SJE3JPRADAzs6Ot/zq1Su5H4OoHgMDA5w7dw61a9fm2jIzM9GjRw/ejRkJKSkNDQ00adIEgwYNwocPH4q8/alTpzCye1t8OLkScZe34dv+hq//t/B0OCTS0tUPQckIKXWuXr2K8PBwbjkzM5P3/Pbt29G8eXOFHJuSEZIXMzMzXLp0iZcEp6Sk4IcffuB9XgkpKalUigEDBhTpc6WmpgYzMzNUtq8GdSMLpD67g6R7p5Bw5yBvPQYgOiEdIZFxco66ZDSEDoCQ723YsCHP55ydndGkSRMwxhRyF83vk5HXr1/L/RhEddnY2ODSpUto2bIlPn78CACIi4tDhw4dcOfOHZnPDyk6iZQhJDIOH5LSYW6gDSd7U6irla875m7evBkvX75Eq1atYGpqyj1MTEx4y98+DAwMIBKJMGjCbOzbtILbV8Kdg9CyqArdGvwfcB+S0pX9svJFY0ZIqRIZGYlq1aqhoI9lhQoV0KZNG6xfvx42NjZyO358fDxMTEy45e7du+PEiRNy2z8pG+7fv4927dohMTGRa6tevTpu374NCwsLASNTbecfR2Ph6XBEJ/x3orQy0sZ8j7pKG+OgqjIzMzFy5Ejs3r2b166uZ4KKPX+F2Komr/3giOZwqVZB4XHRmBGikv74448CExEgZwDr9OnT5ZqIAICxsTGMjIy4ZbpMQ3LTpEkTnD59Gtra2lxbREQEOnfujPj4eOECU2HnH0dj9O4QvHn9CpkfX3HtMQnp+HnffZx/HC1ccKXc58+f0aFDB5lERNPcHpaDfuMlIiLkJHhO9qZKjjJ/1DNCSo2UlBTY2Njk+2Wurq6OGTNmYN68eRCLxQqJo1GjRnjw4AEAwMjIiE4uJE+nT5/G//73P0gkEq6tZcuWuHDhAnR1dQWMrHTKysrC27dv8erVK94j8tUrhDz8B5mJnwEmhZZlDVgNXsdtJwJgaaSN2zPcyt0lm4L8+++/6Nq1KyIiInjtOtUcUdFjGkTi/z6HpXk2DY0ZIaXG/v378z3xOzg4YNeuXWjatKlC47Czs+OSkYSEBMTHx8PY2FihxySqycPDA7t27cLAgQO5ttu3b6NPnz44fvw4NDU1BYxO+bKysvDu3bucBCMyUibpiIqKglQqLXA/2QmxkKYnQ01bHwB/0KUyLi2oimvXrqFnz5748uULr33SpElwH/ILlpx9xrvkZVmKL3lRMkJKBcYYNm7cmOtzGhoamD17NubMmQMtLS2Fx1KlShXe8uvXrykZIXkaMGAAvnz5ggkTJnBtZ86cwZAhQ7B3716oqZWdq+HfJhu5Pd69e1eoZKMg0rREfDzzGyp6TIOalg7XXtoGXQppx44dGDVqFLKzs7k2dXV1bNq0CaNHjwYAdK5fSWUGA1MyQkqF69ev4/HjxzLtDRs2xK5du9CoUSOlxZLb9N6GDRsq7fhE9YwfPx6fP3/GwoULubYDBw7AxMQEGzduVMjML0VQVrLxPXV1dYj0zaBuZAENI3NoGFkg/c0jfDy2GOa9FkCkkfMjxNxAu4A9lX1SqRSzZs3CqlWreO2GhoY4fPgwOnbsyLWpq4lUpieJkhEiiO+n723YwO8V0dTUxNy5czFr1iyld3VTrRFSHPPnz0dcXByvh2/z5s2oUKECL0nJzf379yEWi1GvXj2FxpidnZ3vZRRFJhuVK1eGnZ1drg8LSyu0XXsTMQnpXGGuLxmpSPz7OD6eWA7z/82Blal+qRt0qWwpKSkYOHAgjh8/zmu3t7eHv78/6tatK1BkJUfJCFG676fvZSd8QNTJk9zzTZo0wa5du1C/fn1B4qNaI6Q4RCIRfv/9d3z58gX79u3j2hctWgRTU1NMnDiRt75EIsHp06exbt06BAQEIDq65LNFvk028urZ+HawrbwUlGxYW1tDQyP/0818j7r4ed99iJAzRkTT3A4AkPbib3z0X4vNvgdK7SUGZXj//j08PT1x7949XruLiwtOnDgBc3NzgSKTD0pGiFKdfxyNn/fd5379SLPSkXj3FMCkgLoGhoybBp81i6ChoSFY8aPvx4xQzwgpLDU1NezYsQPx8fHw9/fn2idNmgQTExMMGjQISUlJ2LlzJ9avX4+XL18CALp06QIzM7MC9y9ksmFrayuTZNjb2xc62ShIZwcrbBnQhPuholXRnnsu9Z9bOLp+Hn74668yNQansEJDQ+Hh4YGoqCheu7e3N3bs2MGbYq6qKBkhSiORMiw8Hc67eROTZCPp3kmoG1aE+Y+/4h+LuhCpqQta/MjExAQGBgZISkoCQMkIyVtuCbOmpiYOHTqETp064datW9y6P/30E44dO4br168jISGBt59+/foByEk2oqKi8r2Mosxk4+ujUqVKJU42CqOzgxU61LVESGQcoj7XQd+9k7nXu3PnTujr62P9+vUqMwZHHk6dOoV+/fohJSWF175gwQLMmzevzLwXVGeEKE3gi8/w9gnitcVd3orkx9fBMpKhbmQB41YDMGfccGy49kLQO042aNAAjx49ApCTnMTFla77OBDhFZQwJyQkoG3btggLCytwX05OTvjw4QPevn1bppONoqpXr57M/Vlmz56NpUuXChSR8jDG8Ntvv2HatGm8QpBisRg7d+6Et7e3gNEVHtUZIaVObtPyMmIiwDKSAQCShFh89l+L2SFHYdBqIHSqOfGyfqlUgqR7/lhopI0OdS0VesnGzs6OS0a+fPmCxMRESoQJ5/vLjV99rRa6qW8DJD8LKPQlhZLe+VdNTS3fyyilNdkoSIMGDWSSkWXLlkFfXx+zZs0SKCrFy8rKwrhx47Bt2zZee8WKFXHixAm0aNFCoMgUR/U+nURl5TYtT79+B8RF/cNrS//wCulHF0NcqQ6MWg+CJOkTNE1tkP4qFEmh5xDt2F3hxY9yqzUi1IBaUrrkdrkx7VUYtCyqQSQSIfnBBfy4dSgyEz7K7Zh5JRvf9myUxQJrDRo0gK+vr0z77Nmzoa+vj/HjxwsQlWLFx8ejd+/euHz5Mq+9bt268Pf3h729fR5bqjZKRojSONmbwspIm5u+x7Izkf76AXRrtoC6vinU9Uygb2KGTC1DqOmZgEkliDu3AVmfXkOzQmVkxb0DmBSS1ASFFz/KbXovJSMEAEIi43iXZqQZKfh4dDGYJAuACGBFv8xSXpONgjRo0CDP5yZMmAB9fX0MHTpUiREp1osXL9CtWzf88w//B1rHjh1x6NAh3n2zyhpKRojSqKuJeNP3oKGFip7TAfw3HmSSew2s8Q8Fy0oHy8qAJDVnoF/W5zfcfjJjImBu0EmhsVKtEZKX7xPh5AcXwbIzSrTPWrVq4f79+2ViVoQ85ZeMAMDw4cOhp6eHPn36KCkixbl9+zZ69OiBz58/89p//vlnbNiwQSUvsxVF+ZsjRQT1dfqepRH/S9fSSBtbBjTBOLca0E94iag/h+O9zyhIU+Nl9iFOeK3w4kdUa4Tk5dvLjYwxJD24kOe6hoaGcHZ2Rps2bWBra5vnek+fPsWCBQvkGWaZYGNjk29vgFQqRf/+/XnTqFXRvn370L59e14ioqamht9//x2bN28u84kIQMkIEUBnByvcnuGGgyOaY33fRjg4ojluz3BDZwcrqKuJsO6XITD/3xxALfc/wMosVuH1RqjWCMnL18uNIuQUOqvYYyb0G3eBSFO2VyMxMRHBwcG4ffs2HB0dcerUKSxfvjzX6ZirVq1CcHCwEl6B6hCJRAX2jmRnZ6NXr164evWqkqKSH8YY5s2bh4EDByIzM5Nr19PTw8mTJzFx4sQyM3W3IJSMEEF8vWdC90aV4FKtAi+56Oxghd3zR6FW//m5JiRRz58oPL4KFSpAT0+PW6ZkhHz19XIjkHN5UauiHSp0HAObsXtg6j4KmqY2MttIJBIcO3YMnp6e2LNnD1dX5FstW7bkatuQ/+SXjLRr1w5eXl748ccf4efnp1LvX1paGry9vbF48WJeu42NDe7cuYNu3boJFJkwKBkhpVJnBys82TUHyzdth/p3XZSvXr1SeN0PkUjEu1RDyQj5Vm6XG9XEuqjp1hsnrwfj8uXL+N///pfr1N6nT59i//79MnegvnXrFvbt26eQe8OosvySEQcHB/j6+uLAgQP4888/YWBgoMTIii82NhZubm7w8/PjtTdr1gwhISHl88acTAUkJCQwACwhIUHoUIgADh8+zNTV1RlyblnBALBLly4p/Lhdu3blHTMpKUnhxySqJVsiZQERn9iJ0HcsIOITy5ZIec+/fv2azZ49m1WsWJH3WcrvMXnyZCaVSvM4YvkTGBjIvTetWrVimpqa3LKWlhZ7+/at0CEWyaNHj1iVKlVk/t179uzJUlJShA5P7gp7/qaeEVLq9erVC/v37+f9yjx+6RZOhkUh8MVnSKSKKSJMg1hJQfK73AgAlStXxtKlS/H27Vvs3bsXzZs3L3Cf69atK9MFvYrKwcEBAGBtbY1jx45h2LBh3HOZmZlYvny5UKEV2fnz59GiRQuZ75JZs2bh0KFD0NXVFSgy4VEyQlSCl5cX9u7dyyUku05dw0TfMHj7BKHlyqs4/7jkdzz9Hg1iJfIiFosxYMAABAYG4t69e/jpp5/ynca7cuVKODo64s6dO7xS4OWRvr4+atasiYMHD8LMzAyzZ8/mXeLy8fHBmzdv8tlD6bB582Z07dqVN65FU1MTO3fuxLJly8rlDQC/Vb5fPVEppg3awfSHSQBEyIyN4Nq/luCWd0JCtUaIIjRp0gTbt2/Hu3fvsHr1alStWjXX9e7evYuWLVuiSZMm+Ouvv5CamqrkSEuPPXv2oHXr1gAAW1tbjBgxgnsuKysLy5YtEyq0AmVnZ2PChAkYN24cbzyQqakpLl26hCFDhggXXClCyQhRCV9LcOs5uKFCl4nIjo+FNCPnLpZffzcuPB0u10s2lIwQRapQoQKmTp2K58+f48yZM+jQoUOu64WFhWHEiBGoVKkSpkyZgoiIiFzXK8ucnZ15y7NmzYJYLOaWt2/fXir/PhMTE+Hp6YmNGzfy2mvUqIGgoCC0adNGoMhKH0pGiEr4tgS3fn13mHYah4zoCMTfOYjMj6/BAEQnpCMkUn6zbGjMCCkOxhivZkRB1NTU0KVLF1y8eBH37t2DmZlZruvFx8dj3bp1qFGjBn744Qf4+/sr5A6/qqBSpUoYNWoUt5ydnV3q7uT7+vVruLq64ty5c7z2tm3bIigoCDVq1BAostKJkhGiEr4vwa1j3wQJt/cj4fZ+fDq1EtKsjFzXKwkzMzPo6Ohwy6XxlxcpPVJTU7F9+3Y4OzvLlPQurA9aVqg8fDPUjSzyXe/8+fPw8PBAjRo1sHr16mIfT5XNnDmTN+5m586dePHihYAR/Sc4OBjOzs54/Pgxr/2nn37ChQsXYGqq2ArSqoiSEaISeCW4pRLE+s1FRlTOrcWzPr3Bl6s+MuuVFNUaIYXx4sULTJ06FTY2Nhg+fDjMzc1hZWVV5P2cfxyNn/fdx6dsLZh1nQx1PZMCt4mMjMT06dNhY2ODoUOH4u7du8V5CSrJysoKP//8M7cskUiwZMkSASPKcfjwYbRt2xaxsbG89hUrVuCvv/6SqS9DcoiYCgzVTkxMhJGRERISEmBoaCh0OEQAEilDy5VXuTv+pr34Gx+OLOStU8P7Vzzdt1CupeK7dOnC62ZNTk7mVWYlZYNEyhASGYcPSekwN9CGk71pvp8jqVSK8+fPY/PmzTh37hxvxsvhw4fRq1cvmW0YY4iPj0dUVJTM4927KFy7/xTpCZ8g/f+bQ1bwnI4vFzZzY6MAwNjYGDo6OoiOznuwtrOzM8aOHYvevXuX+RvvxcbGwt7eHmlpaQAAdXV1PH36VJBLIIwxLFu2DHPnzuW16+joYN++ffjxxx+VHlNpUNjzNyUjRGV8/eUI5Axa/XJ1OxL/Ps49r2dgiEcPwmBvby+3Y44ZMwZbtmzhlsPDw1GnTh257Z8I7/zjaCw8Hc6NSQIAKyNtzPeoi84O/B6OuLg47Ny5E1u2bMn1koCmpiZ2796NT58+4d27dzJJR1FmxJh2GgsmyUb89Z1g2f+NQalXrx6mTZuGPXv25Hs/FjMzM4wYMQKjR49G5cqVC31cVTN9+nSsXr2aWx44cCD27Nmj1BgyMjIwcuRImeNaWVnh1KlTaNasmVLjKU0oGSFl0rcnDibJQsy+6ciMec497+zsjFu3bkFTU1Mux1u5ciVmzpzJLZ89exY//PCDXPZNhPc1wf3+S/Brn8iWAU3Q2cEKoaGh2Lx5Mw4cOMD9Clc0E/dRyP4SjaR7p2SeE4vFcHBwgLa2Nj58+IDIyEhkZ2fnuh+RSISuXbti4sSJaN++fZm78drHjx9hb2+PlJScHiQ1NTWEh4ejVq1aSjn+p0+f8OOPP+LWrVu89kaNGuH06dOwsZG9V1F5UtjzN40ZISrl2zv+bujviH37D/DuRxEcHIxff/1Vbsej6b1l19fp4t8nIlmf3+XU55ZkYfzijXBp0YKrDaLIREQk1oNmhcrQtmsMvfru0KxgC1P3kTDrPhNQ5yfXGRkZuHfvHu7cuYPnz5/nmYgAOZcP/P390aFDB9SpUwcbNmxAQkKCwl6HslWsWBHjx4/nlqVSKRYtWqSUYz979gzNmzeXSUQ8PDxw69atcp+IFAX1jBCV5+vrC29vb17bhQsX0LFjxxLvOzg4mFfCe/r06Vi5cmWJ90uEF/jiM7x9gnhtGe+fIWbvL1A3NIc0PQUsMyWPrQtPTU0NVlZWqFSpkszDxsYGlSpVgqWVNTptCubGRH0vOy4KHw/NRWbCxxLHA+Tcon7gwIEYO3YsV25dlX3+/Bl2dnZITk4GkNMb9OTJE4VeUr169Sp69uyJ+Ph4XvvkyZOxevVqqKurK+zYqoR6Rki50bdvX979KoCc68YxMTEl3jfVGim7cpsGnhB4CAAgSfxQ7ETEy8sLx44dQ3BwMN69e4eMjAy8e/cOwcHBOHbsGDZu3IiZM2di4MCBaNeuHWrWrAlDA33M96gL4L9LRF+JAGiaVsKhy0FwdHQsdBympqYYO3YsLCxkpwmnpKRg69atqF+/Ptq0aYNDhw4hKyurWK+3NKhQoQImTpzILTPGsHDhwny2KJm//voLnTp14iUi6urq2Lp1K3777TdKRIqBekZImZCSkgJHR0c8ffqUa3N3d8eFCxdKdM8Hxhh0dXWRnp5z4nJ2dkZQUFABWxFV8H3PSHbiB0RtHQ4wqcy62traqFSpElJTU/OdyQLklCt/8uRJsW5nX9BgWsYYunTpgvPnzxdqf3Z2dhgwYAAqVKiAI0eO4M6dO3mua21tjZEjR2LkyJHFmpostLi4ONjb2yMxMRFATu/Iw4cP5drzI5FIMHPmTKxZs4bXbmRkhMOHD+dZRbc8owGspNx59OgRHB0dkZGRwbUtX76cNwC1OGrXro1nz54BACwsLOTS40KE9/10cWlGKpIfXkTi3VOQJH7IdRsNDQ306NEDbm5uSE1NRVhYGMLCwvD06VNeNdQJEyZg/fr1xY4rv2nGjDH07NkTx48fz2cvstq0aQM3Nze8fPkShw4dynP8i4aGBnr27ImxY8eiZcuWKjXgdf78+bzxIr169cLhw4flsu+UlBT0798fJ0+e5LXb29vjzJkzNMsuD5SMkHJp69atvEJI6urquHXrFlxcXIq9z86dO+PChQvccmpqKq8yK1Fd308XB3KK6qX9G4jEuyeREfU0z21bt26NyZMnw8PDA1lZWXjy5AnCwsIQGhqKhw8f4o8//lDYeIzs7Gz07NkTp07JzrQpiJ6eHjw9PWFsbIwLFy7g5cuXea5bv359jB07Fv3794e+vn5JQlaK+Ph42NnZ8QbohoWFoWHDhiXab1RUFDw9PXH//n1eu6urK44fP46KFSuWaP9lWaHP30wFJCQkMAAsISFB6FBIKSeVSlnPnj0Zcs4tDACrUqUKi4uLK/Y+R40axdvfP//8I8eIidDOPXrPmi+7zKrM8OcezZddZucevWdBQUHMy8uLqaur8z4D3z6qVavGNmzYwJKSkpQad3p6Omvfvn2uMQ0YMIB17NiRiUSiPOMGwOzt7dmAAQNYu3bt8l3XyMiITZw4kT179kypr7E4Fi5cyIv9f//7X4n2d+/ePWZtbS3znvTv35+lpaXJKeqyq7Dnb0pGSJkTFxfHqlSpwvvi6NmzJ5NKpcXa37Jly3j7On/+vJwjJkLLlkhZQMQndiL0HQuI+MSyJfzPyuvXr9nUqVOZoaFhnidsY2NjNm3aNPbmzRulxZ2YmMgcHR1lYhk2bBhjjLG3b9+yZcuWsZo1a+ablABgzs7O7IcffmAmJib5rtexY0d28uRJlp2drbTXWRTx8fEyr+H+/fvF2teJEyeYrq6uzHuwaNGiYn+flDeUjJByLSAgQObX7JYtW4q1rwMHDvD2s3XrVjlHS1RFYmIi+/3335m9vX2eJ2t1dXXWt29fFhISopSYPn36xOrWrcuLQVNTkwUFBXHrSKVSFhAQwEaOHJlvQgWA6enpMVdX1wITmCpVqrAVK1awjx8/KuV1FsWSJUt4sXp6ehZpe6lUylavXi3TWyQWi9nBgwcVFHXZRMkIKfeWL18u80Xy4MGDIu8nICCAt5+ZM2cqIFqiSrKzs9mxY8dYy5Yt8z1ht2zZkh09elThvQjv3r2T6Q00MTFhjx49klk3NTWVHThwoFCXcaytrVmDBg2YpqZmnuuIxWI2aNAgFhwcrNDXWBSJiYnM1NSUF+fff/9dqG0zMzPZ8OHDZV5nxYoVWUBAgIIjL3soGSHlnkQiYe7u7rwvlDp16rDk5OQi7ef9+/e8ffTt21dBERNVFBISwry9vfMdV2Jvb89+//13lpiYqLA4/v33X2Zubs47rpWVFXv58mWe27x586bQl3Hs7e1lTvDfPxwdHdmuXbtKxViK73+MdO3atcBt4uLich2HU69ePRYZGan4oMsgSkYIYYxFR0fLfEF/vZ5eWBKJhInFYm57FxcXBUVLVNmbN2/Y9OnTmbGxcZ4na0NDQ/bLL7+wV69eKSSG+/fvy1yGqVatGouOjs53u6JcxtHW1mZWVlb5rlOhQgU2ffp0QU/gSUlJzMzMjBfXt5euvhcREcFq1aol81o6derE4uPjlRh52ULJCCH/78KFCzJfMAcOHCjSPmrUqMH7tUlIXpKSktjGjRtZtWrV8jxZq6ursz59+uR7ciyumzdvMm1tbd7xGjRowL58+VKo7VNSUtj+/ftZhw4dCryMY2hoyEvUv3+IRCLm4eHBzp8/zyQSidxfa0FWrVolk1jk5ubNm6xChQoy8Y8dO5ZlZWUpOeqyhZIRQr4xY8YM3peMgYEBe/78eaG379ChA2/70tANTUq37OxsduLECda6det8T+guLi7s0KFDcj3p+fv7Mw0NDd5xXF1dWUpKSpH28+bNG7Z06VJeMp7XQ09PL9/na9SowdatW1fopEgekpOTZXpG79y5w1tnz549MmNi1NTU2IYNG5QWZ1lGyQgh38jMzGTOzs68L5ymTZuyjIyMQm0/YsQI3raqUG+BlB53795l/fv3l0kQvn1UqVKF/fbbb3L7ntu3b5/MMX744YdCf+a/JZVK2Z07d9iIESOYgYFBvkmHhoZGvj0qurq6bMSIESwsLEwur7Mgv/32G+/47u7ujLGcy69z5syRiU9fX5+dOXNGKbGVB5SMEPKdly9fMiMjI94Xz5QpUwq17dKlS3nbXbx4UcHRkrLo3bt3bObMmfnW8jAwMGCTJ0+Wy3iLjRs3yuzf29u7RJdMinIZJ79BvUDObKODBw8WK0EqrNTUVGZpack77qVLl1ifPn1k4rG1tS3WjDuSN0pGCMnFoUOHZL6A/P39C9zu+1+Z27ZtU0K0pKxKTk5mmzdvzvfyh5qaGuvVqxe7c+dOiQpsfV+RFAAbM2aMXIp2vX79mi1ZsoRVr169wMs4+T0sLS3ZvHnz2Lt370ocU27Wr18vk/B9H4OTk1OBA31J0VEyQkgevi/vbmZmVuCX4O3bt3nbzJ49W0nRkrJMIpGwU6dOsXbt2uV7snZ2dma+vr7FGlcilUrZhAkTZPY5d+5cub0OqVTKbt++zYYPH17gZZyCelJ69erFrl+/LtcKp2lpabmWdP/66N27N0tNTZXb8ch/KBkhJA+pqanMwcGB92XUtm3bfAtTvXv3jrd+v379lBgxKQ9CQ0PZoEGD8i0wVrlyZbZ69eoiDwKVSCRs4MCBMvtbt26d3F9HSkoK27dvH3N3dy/wMk5+j3r16rE//vhDbvf8+fnnn3M9zpw5cwSZ6VNeUDJCSD4eP37MdHR0eF9KixYtynN9iUTCO0m4uroqMVpSnkRFRbE5c+bkW2BMX1+fTZgwgb148aLQ+83MzGQeHh4y+9q1a5fCXos8LuMYGBiw8ePHs6dPnxY7jg0bNuSaGM2YMUOOr5bkhpIRQgrg4+PD+2JSU1NjN2/ezHP9b+tGVKpUSYmRkvIoJSWFbd26NddCXF8fIpGI/e9//2O3bt0q1GWN1NRUmanG6urq7MSJEwp9LfK6jNO+fXt2/PjxQl+uysrKYmPHjs1zf66urnTDOwWjZISQAkilUubl5cX7crKxsWGfPn3Kdf1vy0SLRCKWnp6u5IhJeSSRSNiZM2dyLVP+7aNZs2bswIEDLDMzM9/9xcfHsyZNmvC2FYvF7Nq1a0p5PSkpKWzv3r2sffv2xb6MY2try5YuXcpiY2PzPE5CQgLr3LmzzLbfT6++cOGCUl53eUXJCCGFEB8fL3MHVk9Pz1x/LQ0bNoy3XlGKphEiD2FhYWzIkCFMS0srzxO1jY0NW7lyJYuLi8tzP7GxsTL3ozEwMCj0zeTk5dWrV2zx4sX5VqvN76GlpcUGDBjAAgMDeX+zkZGRrF69ejLru7m5sXXr1vHamjdvTr0jCqTQZGTTpk2sSpUqTCwWMycnpwLv1vjlyxc2ZswYZmlpybS0tFiNGjWKVFSGkhGiSMHBwTK/lnKrvrh48WLeOpcvXxYgWkJy7rn066+/ytx75duHnp4eGzduXJ5J8+vXr5mNjQ1vGzMzsxKNzSguqVTKbt26xYYNG8b09fWLlZg0bdqU7dixg127dk2m6iqQc0+qzMxMlpmZKfMD5OzZs0p/zeWFwpIRX19fpqWlxXbs2MGePHnCRowYwYyNjfPsLsvIyGDNmjVjXbp0Ybdv32aRkZHs+vXrRaq+R8kIUbTVq1fL/OK6f/8+b509e/bw1vnrr78EipaQHKmpqWzbtm2sTp06eZ6kRSIR6969O7tx44ZMD8DTp09lEhobGxv2+vVrgV5RTg2Wr5dxipOU5Pb6V61axXvt27dv563j6OhIvSMKorBkxMnJiY0dO5ZblkgkzNrami1fvjzX9bds2cKqVq1a4HXM/FAyQhRNIpHIXF+uUaMG75bvN2/e5D0vzzoNhJSERCJh586dk7mH0vePJk2asL179/Iqnv79998yvRE1a9bMdzyGsrx69YotWrSIVa1atViJiJqaGps7d67M1N3MzEyZS0OnT58W6FWWbQpJRjIyMpi6ujo7fvw4r33QoEHM09Mz121++OEH1r9/fzZixAhmbm7O6tWrx5YuXZpvTYf09HSWkJDAPd6+fUvJCFG42NhYmbLRgwYN4p5/8+YN77kBAwYIGC0huXv48CH76aef8r2brrW1NVu2bBn7/PkzY4yxq1evyqzfpEmTUvOdK5VK2c2bN9lPP/1UrMs41apVY2vXruWNo9m1a5fM66XeEflTSDISFRXFALCAgABe+7Rp05iTk1Ou29SqVYuJxWL2008/sbt37zJfX19mamrKFixYkOdx5s+fn+sHqrT8YZCy6/LlyzIj/Hfv3s0Yy7kL67djS1q1aiVwtITkLTY2li1YsIBVrFgxz5O0rq4uGzNmDHv27Bk7fvw4U1NT4z3fpk2bUleZNDk5me3Zs4e5ubkVOSnR0dFhw4YNY/fv32dZWVky5fgVPcW5PCo1yUiNGjWYra0trydk7dq1zNLSMs/jUM8IEdL3d/LU09Pj7tL77cA3W1tbgSMlpGBpaWnsr7/+ynV2ybfjKjw8PNj06dNlnvPw8CjRZXZFefr0KbO1tS3W5RsArEWLFjJVWRs2bEjVWOWssMmIGorAzMwM6urqiI2N5bXHxsbC0tIy122srKxQs2ZNqKurc2116tRBTEwMMjMzc91GLBbD0NCQ9yBEWRYsWABXV1duOSUlBV5eXsjIyICdnR3XHhUVlednmJDSQltbG8OGDcOjR49w4cIFdO7cWWYdxhhOnz6NVatWwdramvfc6dOnMWzYMEilUmWFXKDLly+jefPmePv2La+9Xr160NPTK9Q+AgICsGXLFt656cGDBzhx4oQ8QyWFVKRkREtLC02bNsWVK1e4NqlUiitXrsDFxSXXbVxdXREREcH7IP/777+wsrKClpZWMcMmRHE0NDRw4MABGBsbc21hYWGYPn06LxmRSqV49+6d8gMkpBhEIhE6duyIc+fO4cmTJxgxYgTEYrHMeu/fv5dp27t3L6ZMmQLGmDJCzde2bdvQuXNnJCQkcG0aGhrYtm0bHj9+jJiYGOzevRvt2rUr1P4kEglv+ZdffpFpI0pQ1C4XX19fJhaL2a5du1h4eDgbOXIkMzY2ZjExMYwxxgYOHMhmzpzJrf/mzRtmYGDAxo0bx549e8b8/f2Zubk5W7Jkidy7eQiRp2PHjsl07Xp7e/OWr169KnSYhBTbhw8f2KJFi3Kty5HbI7/7NyladnY2mzJlikxMRkZGedb8iYyMZAsXLpSpK1LQw8bGhm3atIk3m44Uj0KLnm3cuJFVrlyZaWlpMScnJxYUFMQ916ZNGzZ48GDe+gEBAczZ2ZmJxWJWtWrVAmfTfI+SESKU7+9roaenx1vesWOH0CESUmLp6els586drH79+gWeqMePH6/0WSdJSUnM09NTJpaqVasWqkibRCJhN27cYEOHDpX5G87voaenx8aOHcuePHlS4DFu374tj5da5lA5eELkIC0tjTVo0CDPL6t58+YJHSIhciOVStnly5dZly5d8j1J29rasp07dyrl/kxv375ljRo1komhZcuW7OPHj0XeX1JSEtu9ezdr165dkXpL2rVrx44cOZLnTfqsrKzY1q1bS/pyyxxKRgiRk6dPnzJdXd1cv6C+rUNCSFny9OlTNmrUqHzrlVhYWLBFixaxDx8+KCSGu3fvMmtra5njDhgwQC6JUHEu41hbW7PFixdzQxO+ql69OgPAxo4dWypnHwmFkhFC5Gjnzp25fjG1bt1a6NAIUaiPHz+yOXPmyNy/6duHtrY2GzFiRKEuZxTWsWPHcv0RsHjxYrlfJpJIJOzq1avMxMSk0EmJuro669u3L7tz5w6TSqXMycmJ14uS192/yxtKRgiRI6lUyvr375/rQDdCyoNXr14VaqBr586d2cWLF4udMEilUrZy5UqZ4oPa2trMz89Pzq+K78SJE0W6dPP1UbduXVa5cmVeW9WqVdnjx48VGq8qKOz5W8RYKZirVYDExEQYGRkhISGBao4QwSQlJaFJkyaIiIjgtWdmZkJTU1OgqAhRnsjISLi6uiI6OrrAdR0cHDBp0iT0798f2trahdp/ZmYmxowZg+3bt/Pazc3NcerUKTg7Oxcr7sJijKFZs2a4f/8+19ajRw+EhYXh1atXRd6fgYEBDhw4gG7duskxStVS2PN3keqMEFKeGRgYwNfXF2pq/D+bRYsWCRQRIcplb2+PixcvwsTEhNcuEolk1n38+DGGDx+OypUrY8GCBfjw4UO++/7y5Qs6d+4sk4g4ODggODhY4YkIkPM6Fi5cyGt79OgR/vnnH1y/fh1DhgyBrq5uofeXlJQET09PrFy5slTUaCnVlNBLU2J0mYaUJp06deJ1x2poaLC///5b6LAIUZrAwECZKbLm5uYyN5r89iEWi9mwYcPYo0ePZPb3/PlzVrNmzVwv+Sj7e18qlTJHR0deHNu3b+eeT0pKYjt37mStWrUq0qWcfv36lbr7/CgDjRkhREF27Ngh80VTrVo1+nyScuXixYtMU1OT93fg6OjItm3bxpo0aZLvibljx47s3LlzTCqVshs3bjBTU1OZdcaNG5fnNFpFO3v2LC8WOzu7XGfIhIaGFmkmTtWqVdnz58+57bMlUhYQ8YmdCH3HAiI+sWxJ2btrMI0ZIURBrl27Bjc3N5l2b29v7N+/P9cua0LKoiNHjsDLy4t3u4/27dvD398fwcHBWLduHU6dOpXnJQpra2vExsbyyq+rqalh/fr1GDdunMLjzwtjDC1atEBQUBDXtm3bNowYMYJbfvXqFbp27Yrw8PAi7VskEqF79+5o3fMn+L3RQUxiBveclZE25nvURWcHq5K/iFKisOdvSkYIKaLIyEhUrVo11+d27NiBoUOHKjkiQoTj4+ODkSNH8tp+/PFH+Pn5QUNDAxEREVi/fj127NiB1NTUfPelp6eHw4cP44cfflBkyIVy8eJFdOrUiVuuXLkynj9/Di0tLSQnJ2P48OG4d+8eoqKikJaWVqxjaJhWgr5De+g5uEHDwAxff8ZsGdCkzCQklIwQoiBZWVnQ1tbO9S6murq6uHv3LurUqSNAZIQIY+XKlZg5cyavbdiwYfDx8eF6Cr98+QIfHx+sX78+15vxAYCmpib69++PyZMno0GDBgqPOz+MMbRq1Qp37tzh2rZs2YLRo0fLrBcfH4+oqCje4927d3j+/DnCw8Px8ePHfO96bNx2KIycewIARAAsjbRxe4Yb1NVUv5eVkhFCFKhKlSp48+YNgJxbtKenp3PPNWjQAEFBQdDR0REqPEKUbsaMGVi1ahWvberUqVi1ahWXkMTExKBbt264d+9egftr3749pkyZgs6dO8vMYPuKMYbQ0FA0adKk5C8gF1evXkX79u25ZRsbG0REROR6t+P8SKVSXL58GX/++Sf8z5xBZkbGN8+KUGnsbmjom/K2OTiiOVyqVShJ+KUCTe0lRIGqVKnC/X9WVhZMTf/7Inn48CGmTp0qRFiECGbFihUYPnw4r23NmjVYuXIlgJy/CycnJ5lEpFKlSrmOs7py5Qq6du2KunXr4s8//8z1Eo9IJELHjh1x6tQpOb6S/7Rr1w6tW7fmlt+9e4e//vqryPtRU1NDx44dcfToUey+8gAVfpgIsa0DAECnalOZRAQAPiSly7SVZZSMEFIMdnZ23P9LJBKsXr2a9/wff/yBY8eOKTkqQoQjEomwdetW9OzZk9c+a9YsjB8/Hq6urnj79i3vublz5+LNmzd4/vw5JkyYAH19fZn9Pnv2DKNHj0blypUxd+7cXAuu9ejRA7///rvca3mIRCKZOkLLli3j9YQWVRVLM+g36ADLfitgPdIHxm2H5LqeuUHhCsWVFZSMEFIM3yYjAFC9enVMnDiR1zZs2DC8fv1aiVERIix1dXXs378f7u7uvPZNmzYhOTmZW9bS0sKePXuwePFiqKmpoVq1ali/fj3evn2L1atXw9bWVmbfnz9/xtKlS1GlShUMHjwYYWFhAAB9fX0wxjB58mSMHz8e2dnZcn1Nbdq0Qbt27bjl9+/fY9u2bcXen5O9KayMtCECoGliBa2KdrznRciZVeNkL9tbUpZRMkJIMXyfjLx+/RorV65E48aNubb4+Hh4e3sjKytLydERIhyxWIzjx4/Dyckp1+eNTEwxf8tBVG/RBRIpvyfD2NgYU6dOxcuXL+Hr65vrPrKysrBnzx40btwYbm5uSElJ4Z7bvHkzPD09kZSUJNfX9H1V1uXLlxd7Bo26mgjzPeoCAL6/OPV1eb5H3TIxeLUoKBkhpBi+HTMC5NQcEIvF8PPz43U1BwYGYsGCBUqOjhBhSSQS6Onp5fKMCJqtR2Lbv2J4+wSh5cqrOP9Y9rKLhoYGvLy8EBQUhDt37qBXr165DmK9du0aPn36xGs7d+4cWrZsiXfv3snr5aBVq1a83p6YmBhs3bq12Pvr7GCFLQOawNKIfynG0ki7TE3rLQqaTUNIMbx48QLVq1fnln/66Sfunhr79u3DwIEDuedEIhEuXrwo03VNSFkUGRmJbt265VkMTE1bHxb9VkCrol2BdTWys7MRERGBJ0+e4NatWzh79ixevHiR7zTZr6ysrODv7y+3mTYBAQFwdXXlls3NzfHy5cs8kq7CkUgZQiLj8CEpHeYGOZdmylqPCE3tJUSBMjMzoa2tzQ2Yc3Nzw5UrV7jnhwwZgt27d3PLlpaWCAsLg4WFhdJjJURZAgMD0b17d3z8+JHXrqahBWl2JresYWoD62GbIVJThwiAhYEW9npVxdPwJ3jy5AkeP36MJ0+e4OnTp8jMzERu9PT0eJdocqOrqwtfX194eHiU+LUBQOfOnXHhwgVuedWqVZg2bZpc9l1WUTJCiILZ2tpyXcHVqlVDREQE91xycjKaNm2Kf//9l2vr1KkTzp49m2fNBEJUma+vL4YMGYKMb2poiEQijJ2xAEdiTBB7cBZYRgrUdAxh1KIvIM1G5sc3yPr0Glmf34BlZeSzdz5zc3MYGhry/ubyIhKJsG7dOkyYMIGbQlzcHong4GA0b96cWzYzM0NkZGSus4BIDqozQoiCfTtu5M2bN7z7a+jr68PPzw9aWlpc24ULF7B27VqlxkiIojHGsGjRInh7e/MSEV1dXRw/fhzuXsMgtqgK817zoGFqA8v+K6Ft64DMj6+R8vQ6MmOeFykRAYAPHz4UKhH5Gt+kSZMwYcIEZGdn4/zjaLRceRXePkGY6BuW79iV7zk7O6Nr167c8qdPn7Bp06YixU5yRz0jhBTTgAEDsH//fm757du3sLGx4a2zadMmjB8/nlvW0NDA7du34ezsrLQ4CVGU9PR0DB8+nPd3AOQUMjt9+jQaN26MwBef4e2Tc8M5JpVApKbOrSdJ/oKk0LNICjsLaWqCwuOt3aApEp1GQMPUGiLRf7/Fi3JPmLt378LR0ZFbNjU1RWRkJJ2b8kA9I4Qo2PfTe1+9eiWzztixY9G9e3duOTs7G3379kV8fLxigyNEwT5+/Ij27dvLJCJNmjRBcHAwN83927oa3yYiAKCubwKTVv3RbMZB+Pj8hfr16ys05n8e3sP7v0bjzZr/IXrPL1z711/kC0+Hy0w3/l6zZs3g6enJLcfFxWHjxo2KCLdcoWSEkGIqTDIiEomwY8cOXhGnV69eYeTIkXKvFkmIsoSHh8PZ2RkBAQG89h49euDmzZuoVKkS11aYuhoLf2yE4cOH4cGDB7h8+TLvUkhuateujYoVKxb/BUglYFn8OiEMQHRCOkIi4wrc/Pvp+mvXrkVCguJ7dsoySkYIKabcCp/lxtTUFAcOHOANXD18+HCx7nFBiNAuXbqEFi1aIDIyktc+bdo0HD16NNeproWtqyESidC+fXv4+/vj2bNnGDNmDHR1dWX2N2XKFHz48AHJyckIDw/H2bNn8ccff2DGjBnw8vJC8+bNYWlpme/r0Khgk2t7Ye4J07hxY/zvf//jlr98+YL169cXuB3JG40ZIaSYnj9/jpo1a3LLw4cPh4+PT57rL1myBL/++iu3rK2tjbt376JevXoKjZMQedm6dSvGjRvHG6ytoaGBLVu2yNwkLzfFmcUSFxeHv/76Cxs3buRmr7Vp0wbXr18v8Hjp6el48+YNXr16hat/P8GWM0HIToiFJOEjdKo1g5FLH5ltCnu33IcPH6Jhw4bcspGREV69egVjY+MCty1PaGovIQqWkZEBbe3/fum5u7vj0qVLea4vkUjQoUMHXLt2jWurV68eQkJCcv31R0hpIZFIMHXqVPz++++8dmNjYxw9ehRubm4KjyErKwvHjh3DunXrEBwcjDdv3uR6D5u8SKQMLVdeRUxCOnI76YmQ01Nze4ZboQuP9e7dG0eOHOGW582bJ1M6vryjAayEKJhYLIa1tTW3nNuYkW+pq6tj3759MDMz49qePHmCyZMnKypEQkosOTmZuyvut6pVq4agoCClJCIAoKmpyZWIDwwMzPXuvflRxD1h5s+fz9UuAYB169YhLq7gMSdEFiUjhJTAt+NG3rx5U2CZamtra15lVgDYtm0bDh06pIjwCCmRt2/fomXLlvD39+e1t2rVCkFBQahVq5YgcTVv3jzPG/HlR973hHFwcECfPv9d6klKSsJvv/1W5LgIXaYhpET69euHgwcPcstRUVG83pK8TJ06lVcAzdDQEGFhYbC3t1dInIQU1d27d+Hp6SnTAzFo0CBs27YNYrFYoMhKTp73hHn69Cnq1avHzY7T19dHZGQkrwe0PKPLNIQoQWGm9+Zm2bJlaNasGbecmJiIvn37IisrS47REVI8x44dQ+vWrWUSkaVLl2LXrl0qnYgAOZdsXKpVQPdGleBSrUKJbk5Xp04deHt7c8vJyclUabkYKBkhpASKm4xoaWnB19cXBgYGXFtISAjmzp0rx+gIKRrGGFasWIGePXsiLe2/Ohza2to4dOgQZs+ezRsjQXLMmzePN3V/48aNMjcLJPmjZISQEihsrZHcVKtWDdu2beO1rVq1indXUEKUJTMzE8OGDcOsWbN47RYWFrhx4wZ69+4tUGSlX61atdC/f39uOSUlBatXrxYwItVDyQghJfDtzfKAwveMfNW3b18MGzaM1zZw4MAizxQgpCTi4uLQqVMn7Ny5k9dev359BAcHF2uwaHnz66+/Ql39v3L3mzZtQmxsrIARqRZKRggpgcqVK/OWi5qMAMD69etRp04dbvnjx48YOHBggTNzCJGH58+fo3nz5jJFxLp06YLbt2/LJNwkdzVq1MDAgQO55bS0NKxcuVLAiFQLJSOElICOjg6v7HRxkhE9PT34+fnxBgVeuXKFvsiIwl2/fh3Ozs54/vw5r33ChAk4efIkzV4sou97R7Zs2UK9nIVEyQghJfR9rZHizJavX7++TFGpX3/9VeZGZITIy86dO9GxY0d8+fKFa1NXV8fmzZuxfv16aGhoCBidaqpatSqGDh3KLaenp2PFihUCRqQ6KBkhpIS+7cZOT08v9nXiUaNGoWfPntyyRCKBt7c372RBSElJpVLMmjULP/30E28quYGBAfz9/TFmzBgBo1N9c+bM4SVyf/75J6KiogSMSDVQMkJICRV3eu/3RCIRfHx8eMnNmzdvMHz48GL1thDyvdTUVPTp00fm13qVKlUQEBCAzp07CxRZ2WFnZ8cblJ6RkYHly5cLGJFqoGSEkBKSVzICACYmJjh48CDvuvOxY8ewdevWYu+TEACIjo5GmzZtcPToUV578+bNERwcDAcHB4EiK3tmz54NTU1NbtnHxwdv374VMKLSj5IRQkqoJLVGcuPi4oIlS5bw2iZPnoyHDx+WaL+k/Hrw4AGcnJxw9+5dXnvfvn1x9epVWFhYCBRZ2VS5cmWMGDGCW87MzMSyZcsEjKj0o2SEkBIqaa2R3EyfPh3u7u7cckZGBry8vJCSklLifZPyxd/fH66urnj37h2vfd68eThw4AB0dHQEiqxsmzVrFrS0tLjl7du3l/iHSllGyQghJaSIZERNTQ179+6Fubk51/bPP/9gwoQJJd43KR8YY/j999/RvXt3XhKrpaWFffv2YeHChVTaXYFsbGwwatQobjkrKwtLly4VMKLSjZIRQkpIV1eXlzTIIxkBAEtLS+zdu5fXtmPHDhw4cEAu+ydlV1ZWFsaMGYPJkyfziueZmZnhypUrvNLlRHFmzpwJbW1tbnnnzp2IjIwUMKLSi5IRQuTg23Ejr1+/ltvsl44dO2LGjBm8ttGjRyMiIkIu+ydlT3x8PLp27Soz6Ll27doIDg5Gy5YtBYqs/LG2tsbo0aO55ezsbJnxYCQHJSOEyMG3yUhaWppc79i5ePFiODs7c8tJSUno27cvMjMz5XYMUja8fPkSLVq0wKVLl3jt7u7uCAwMRNWqVQWKrPyaMWMGb1zO7t276cdELigZIUQOFDFu5CtNTU0cPHgQRkZGXNu9e/dk7q5KyreAgAA4Ozvj6dOnvPZRo0bh7NmzMDY2Fiawcs7S0pJXSE4ikVDvSC4oGSFEDuRZayQ39vb28PHx4bX99ttvOHPmjFyPQ1TTgQMH4Obmhk+fPnFtIpEIa9euxZYtW3g1L4jyTZ8+Hbq6utzy3r178e+//woYUelDyQghcqDoZAQAevfuzRudDwBDhgyhUtPlGGMMCxYsQP/+/ZGRkcG16+np4cSJE5gyZQrNmCkFzM3NMW7cOG5ZKpVi8eLFAkZU+lAyQogcyLvwWV7WrVvHq5T56dMnDBgwABKJRCHHI6VXeno6+vfvj4ULF/LaK1WqhNu3b8PT01OgyEhupk2bBn19fW75wIEDMpfUyjNKRgiRA0WOGfmWjo4OfH19eQPirl+/TtUdy5kPHz7Azc0NBw8e5LU3bdoUISEhaNSokTCBkTyZmZlh/Pjx3LJUKsWiRYsEjKh0oWSEEDnQ09ODmZkZt6yoZAQA6tWrhw0bNvDaFixYgFu3binsmKT0CA8Ph7OzMwIDA3nt//vf/3Djxg1YW1sLFBkpyC+//AIDAwNu2c/PD0+ePBEwotKDkhFC5OTbSzWvXr1S6J12hw0bBi8vL25ZKpWiX79++Pz5s8KOSYR38eJFuLi4yCS7M2bMwJEjR6CnpydMYKRQKlSogEmTJnHLjDGZy2zlFSUjhMjJt8lIamqqQhMDkUiEP//8E/b29lzbu3fv8NNPPyk0CSLC2bJlC7p06YLExESuTUNDA9u3b8eKFSugpkZf56pg8uTJvGn6hw8fxqNHjwSMqHSgTy8hcqKscSNfGRkZwdfXFxoaGlzbqVOnsGnTJoUelyiXRCLBpEmTMGbMGN5AZRMTE1y6dAk//fSTgNGRojIxMcHkyZN5bQsWLBAmmFKEkhFC5EQZ03u/5+TkhOXLl/Papk6ditDQUIUfmyheUlISunfvjvXr1/Paq1evjqCgILRt21aYwEiJTJo0iVeE7tixYwgLCxMsntKAkhFC5ESIZAQApkyZgs6dO3PLmZmZ8PLyQlJSklKOTxTj7du3aNmypUxhu9atWyMoKAg1a9YUKDJSUkZGRvjll194beW9d6RYycjmzZthZ2cHbW1tODs7IyQkpFDb+fr6QiQSoUePHsU5LCGlmrJqjXxPTU0Nu3fvhqWlJdf2/PlzXpElolr+/vtvODk54eHDh7z2IUOG4NKlS6hQoYJAkRF5mTBhAkxNTbnlkydP4t69ewJGJKwiJyN+fn6YMmUK5s+fj/v376Nhw4bo1KkTPnz4kO92r169wtSpU9GqVatiB0tIaabsMSPfMjc3x759+3jVNvfs2YM9e/YoLQYiH0eOHEGbNm0QExPDa1++fDl27NgBLS0tgSIj8mRoaIipU6fy2spz70iRk5HffvsNI0aMwNChQ1G3bl1s3boVurq62LFjR57bSCQSrlIg3TWSlFUGBga8XzrKTEYAoH379pg9ezavbcyYMXQPDBXBGMPy5cvRu3dvpKWlce06Ojo4cuQIZs6cSaXdy5hx48bx6hP5+/sX+kpDWVOkZCQzMxP37t2Du7v7fztQU+NuT52XRYsWwdzcHMOGDSvUcTIyMpCYmMh7EKIKlFlrJDcLFiyAq6srt5ySkgIvLy/efUtI6ZOZmYmhQ4fKJJOWlpa4ceMGevbsKVBkRJEMDAwwbdo0Xlt57R0pUjLy6dMnSCQSWFhY8NotLCxkuhS/un37NrZv3y5zx9H8LF++HEZGRtzD1ta2KGESIphvk5Hk5GR8+fJFqcfX0NDAgQMHeCP1w8LCMH36dKXGQQrv8+fP6NChA3bv3s1rb9CgAYKDg+Ho6ChQZEQZxo4di4oVK3LL586dy/fHfVml0Nk0SUlJGDhwIHx8fHhdUQWZNWsWEhISuMfbt28VGCUh8iPkuJGvKleuLHPZdMOGDTh16pTSYyH5+/fff9G8eXPcvHmT1961a1fcvn0blStXFigyoix6enqYMWMGr6089o4UKRkxMzODuro6YmNjee2xsbG8kfxfvXjxAq9evYKHhwc0NDSgoaGBPXv24NSpU9DQ0MCLFy9yPY5YLIahoSHvQYgqEGp67/f+97//YezYsby2oUOHUmJfily7dg3NmzdHREQEr33SpEk4efIk7x4mpGz7+eefeVccLl68iDt37ggYkfIVKRnR0tJC06ZNceXKFa5NKpXiypUrcHFxkVm/du3aePToEcLCwriHp6cn2rVrh7CwMLr8Qsqc0pKMAMCaNWvQoEEDbjkuLg79+/dHdna2YDGRHDt27EDHjh15l/HU1dWxZcsWrFu3Durq6gJGR5RNV1cXM2fO5LXNnz9foGiEUeTLNFOmTIGPjw92796Np0+f4ueff0ZKSgqGDh0KABg0aBBmzZoFANDW1oaDgwPvYWxsDAMDAzg4ONAUNVLmlKZkRFtbG35+ftDV1eXabt26hcWLFwsWU3knlUoxY8YMDBs2jJcUGhoa4uzZsxg9erSA0REhjRo1ClZWVtzylStXcOPGDQEjUq4iJyNeXl5Ys2YN5s2bh0aNGiEsLAznz5/nupjevHmD6OhouQdKiCr4fsyIsgqf5aV27drYvHkzr23x4sW4du2aQBGVXykpKejVqxdWrVrFa7ezs0NAQAA6duwoUGSkNNDR0eF+yH9VnnpHREwFbvGZmJgIIyMjJCQk0PgRUuqZmJggPj4eQM6MiAcPHggaD2MMAwcOxP79+7k2a2trhIWF8UbxE8V5//49PD09ZSpsuri44MSJEzA3NxcoMlKapKeno3r16oiKiuLarl69inbt2gkYVckU9vxN96YhRM6ErjXyPZFIhC1btqB69epc2/v37zFkyBDBYysPQkND4eTkJJOIeHt74+rVq5SIEI62tjbmzJnDa5s3b165+DulZIQQOfs2GUlMTOR6SYRkYGAAX19faGpqcm1nz57F77//LlxQ5cDp06fRqlUr3i9dIGfq5v79+6GtrS1QZKS0+umnn3iTO27fvs2bNFJWUTJCiJwJdcO8gjRt2lRmvMKMGTNw9+5dgSIquxhj+O2339C9e3ekpKRw7VpaWti/fz/mz59Ppd1JrsRiMebOnctrKw+9I5SMECJnpaHwWV4mTpyIbt26cctZWVno27cv3XJBjrKysjB69Gj88ssvvBNIxYoVce3aNfTr10/A6IgqGDJkCO97JDAwEBcvXhQwIsWjZIQQOStN03u/JxKJsHPnTlhbW3NtL168wOjRo8v8Ly9liI+PR5cuXbBt2zZee926dREcHIwWLVoIFBlRJVpaWvj11195bVNmzMaJ0HcIfPEZEmnZ+1ulZIQQOSvNyQiQU0n5wIEDUFP778//4MGD2LVrl3BBlQEvXryAi4sLLl++zGvv2LEjAgICYG9vL1BkRBUNGjSId5f78Af3MWrZX/D2CULLlVdx/nHZKqFByQghclZax4x8q02bNjK/vMaNG4enT58KFJFqu3PnDpo3b45//vmH1z569GicOXMGRkZGAkVGVJWmpiZ6DB3Pa4u/vR+MMcQkpOPnfffLVEJCyQghcmZsbMybT1/aeka+mjt3Llq3bs0tp6amom/fvkhLSxMwKtWzf/9+uLm54dOnT1ybSCTCunXr8Mcff0BDQ0PA6IiqkkgZ7qAuNEz+q8qaGROBtIgQfL1Is/B0eJm5ZEPJCCEK8H2tkdJIQ0MD+/fvh6mpKdf28OFDTJ06VcCoVAdjDPPmzcOAAQOQmZnJtevp6eHUqVOYNGkSzZgp59LS0nDw4EGcOHECFy5cwK1bt3Dv3j08ffoUr1+/xsePH5GcnAyJRCKzbUhkHGKSs2DUwpvXnhEVDgBgAKIT0hESGaeMl6JwlLITogB2dnZ4+PAhgJxBjQkJCaWyq97Gxga7du2Cp6cn1/bHH3+gffv2+PHHHwWMrHRLS0vD0KFD4efnx2u3sbGBv78/GjZsKFBkpDTR0dFBZGSkTCGz3IjFYujq6nKPLJEmopMlEGloQaSpDQ0jc1T4YSLE1rV4231ISldU+EpFPSOEKIAqjBv5ysPDAxMnTuS1DRs2rFTHLKTY2Fi4ubnJJCLNmjVDSEgIJSKEZ9asWRg+fHiB62VkZODLly+IiorC8+fP8erfcGS+f4asT29g3HYorH7aJJOIAIC5QdkonEfJCCEKUJprjeRm5cqVaNy4MbccHx8Pb29vZGVlCRhV6fP48WM4OzsjKCiI196zZ0/cuHGDd9dVQoCc8UO///476tatW+TtLJw9UGnEnzBs0hUiEf90LQJgZaQNJ3vT3HegYigZIUQBSvv03u+JxWL4+flBX1+fawsMDMSCBQuEC6qUOX/+PFq0aCHTYzRz5kwcOnQIurq6AkVGSpvs7GyEhIRg+fLl6NChA8zMzBAeHl7o7R0dHRESEoJdf/0JdW19fD/y6OvyfI+6UFcrG+OSaMwIIQqgaskIANSoUQNbtmzBwIEDubbly5ejXbt2cHd3FzAy4W3evBkTJkyAVCrl2jQ1NfHnn39i6NChAkZGSgOpVIonT57gypUruHr1Km7cuFGsqsYmJiZYvnw5hg8fDnV1dQDAlgFNsPB0OKIT/hsbYmmkjfkeddHZoez0xFEyQogCqNKYkW8NGDAAly9fxu7duwHkzBgZMGAAHjx4AAsLC4GjU77s7GxMmTIFGzdu5LWbmpri2LFjaNOmjUCRESExxvDixQsu+bh27Ro+fvxYon3+9NNPWLFiBSpWrMhr7+xghQ51LRESGYcPSekwN8i5NFNWekS+EjEVqAGdmJgIIyMjJCQk8Oo3EFJaMcZgaGiI5ORkAECTJk1kbiFfWiUnJ6Np06b4999/ubaOHTvi3LlzvKqtZV1SUhL69u2Ls2fP8tpr1KiBM2fOoEaNGgJFRoTw7t07XL16lXu8ffu20NtWr14dbm5uuHfvnsz3QMOGDfHHH3+U2VsFFPb8TT0jhCiASCSCnZ0dHj9+DEA1LtN8pa+vDz8/Pzg7O3P1My5evIg1a9Zg+vTpAkenHG/evEG3bt3w6NEjXnvbtm1x9OhRXm0WUjZ9+vQJ165d45KPb5PzglhbW6N9+/Zwc3ODm5sbKleuDABo0KABt46hoSEWL16MMWPGUGE8UM8IIQrj4eEBf39/blnVPr+bNm3C+PH/laPW0NDArVu30Lx5cwGjUryQkBB4enoiNjaW1z506FBs3boVWlpaAkVGFCkxMRE3b97kko8HDx4UetsKFSqgXbt2XAJSo0YNmYJ3ycnJMDIyglQqRf/+/bF69epyMfuKekYIEVhu40bq168vTDDFMHbsWFy+fBknT54EkDN+wtvbG6GhoTA2NhY2OAU5fPgwBg0ahPR0fiGpFStWYPr06VRRtQxJS0tDQEAAl3z8/fffuVZCzY2+vj7atGnDJR/169cv8BLm3bt3Ubt2bWzevBlt27aVwysoWygZIURBVD0ZEYlE2LFjBxo1asRdH3/16hVGjhwJPz+/MnViZoxh2bJlmDt3Lq9dR0cH+/bto2q0ZUBWVhb+/vtvLvkICAhARkZGobYVi8VwdXXlko+mTZtCU1OzSMevVq0awsLCirxdeUHJCCEKomqFz3JjamqKAwcOoE2bNty01sOHD8Pd3R0jR44UODr5yMjIwMiRI7Fnzx5eu5WVFU6dOoVmzZoJFBkpCalUigcPHuDq1au4cuUKbt68iZSUlEJtq66uDmdnZ27Mh4uLC7S1S1bp1NbWtkTbl3WUjBCiIKpYayQ3LVu2xMKFC/Hrr79ybRMnTkSLFi3g4OAgYGQl9+nTJ/z444+4desWr71hw4Y4ffo0nUBUCGMMz54945KP69evIy6ucDeRE4lEaNSoEZd8tGrVCgYGBgqOmHyLkhFCFKSsJCNAzv01vtZTAID09HR4eXnh77//VtnKo8+ePUPXrl3x4sULXnu3bt1w8OBBXjVaUjq9fv2aSz6uXr2K6OjoQm9bu3ZtLvlo27YtKlSooMBISUEoGSFEQSpUqAA9PT2ua1hVCp/lRl1dHfv27UPDhg3x6dMnAEB4eDgmTZqEbdu2CRxd0V29ehU9e/ZEfHw8r33y5MlYvXo1V/2SlC6xsbG8Wh8vX74s9LaVK1fmxny0a9cOlSpVUmCkpKgoGSFEQUQiEapUqcLdk0KVe0aAnNoJu3fvRteuXbk2Hx8ftG/fHl5eXgJGVjR//fUXfv75Z2RnZ3Nt6urq2Lx5M0aNGiVgZOR78fHxuH79Opd8PHnypNDbmpubcz0fbm5uqFq1apkadF3WUDJCiALZ2dlxycinT5+QnJys0t3/Xbp0wS+//IK1a9dybSNHjoSjoyOqVq0qYGQFk0qlmDlzJlavXs1rNzIywuHDh9GhQweBIiNfpaSk4Pbt21zycf/+fd79gPJjZGSEtm3bws3NDe3bt0fdunUp+VAhlIwQokC5Te+tV6+eMMHIybJly3Djxg3cvXsXQE5RI29vb9y6davUFgRLSUnBgAEDcOLECV67vb09/P39i3x7dyIfmZmZCAoK4pKPoKAgZGVlFWpbHR0dtGrViks+GjduTJfXVBglI4QoUFlMRrS0tODr64vGjRsjKSkJQE7V0rlz52LVqlUCRycrKioKnp6euH//Pq/d1dUVx48fl7kxGVEciUSC+/fvc8nHrVu3kJaWVqhtNTU10bx5cy75cHJyglgsVnDERFkoGSFEgcpCrZHcVKtWDdu2bYO3tzfXtnr1ari5uaFz584CRsZ3//59eHh44P3797z2/v3746+//ipx7YjyTCJlBd5JljGGJ0+ecMnH9evXkZCQUKj9q6mpoUmTJtygU1dXV+jp6SnipZBSgJIRQhSoLE3v/V7fvn1x+fJlbN++nWsbNGgQHjx4UCruuXHy5En069cPqampvPZFixZh7ty5NJ6gBM4/jsbC0+GITvivbL6VkTbmdauDmrppvBkvHz58KPR+69WrxyUfrVu3homJiSLCJ6UQJSOEKFBZTkYAYP369QgICMDTp08BAB8/fsSAAQNw8eJFwa7fM8bw22+/Ydq0afj2PqBisRi7du1C3759BYmrrDj/OBo/77uPr+9sdtInpL95hMevH8BjxQNIEj8Wel/VqlXjZru0a9cOFhYWigmalHqUjBCiQBUrVoSOjg53XVyVa43kRk9PD35+fnB0dOTu83H16lWsXLkSs2fPVno8WVlZGDt2LHx8fHjtFStWxMmTJ+Hi4qL0mMoSiZRh4enw/xKRhFhEbR1W6O2trKy4ng83NzeZy5ik/KJkhBAF+lpr5J9//gFQ9npGAKB+/fr4/fff8fPPP3Nt8+bNQ5s2beDq6qq0OL58+YLevXvjypUrvPZ69erB399fppeKFF1IZBzv0oy6oTnU9StAkvw51/VNTU3Rrl07LvmoVasWXR4juaJkhBAFs7Oz45KRDx8+IDU1VWVLqOdl1KhRuHz5Mo4ePQogZ9ZEv379EBoaClNTU4Uf/8WLF+jatSuePXvGa+/UqRP8/PxgZGSk8BjKgw9J6bxlkUgELauaSHse+E2jGrS1tWFibARDQ0NERkbiwIEDOHHiBHR0dKCrq5vnf9u1a6dSd7Ym8kPJCCEKltv03jp16ggTjIKIRCL4+Pjg7t273KWoN2/eYPjw4Th69KhCfw3funUL//vf//D5M//X+ZgxY7B+/XpoaNDXnLyYG8jOPjJo3AVa5vbISohB6uOrAJMiPS0V0WmpRbpXTNeuXakCbjmmJnQAhJR1uSUjZZGJiQkOHjzIG7h6/PhxbNmyRWHH3Lt3L9zd3XmJiJqaGtavX49NmzZRIiJnTvamsDLSxreppY59Yxi37IeKXafA0ns5tIyKXrfF09MTR48epboh5RglI4QoWFmtNZIbFxcXLFmyhNc2ZcoUPHjwQK7HkUqlmDt3LgYNGoTMzEyuXV9fH6dOncKECRNobIICqKuJMN8jp1rt9++uCIB25frYd+YG+vTpU+h9mpiYYM6cOaW2ei9RDkpGCFGwsj6993vTp0+Hu7s7t5yRkQEvLy/u7sUllZaWBm9vbyxdupTXbmtrizt37vBu5Efkr7ODFbYMaAJLI/4lG0sjbWwZ0AS9XevA19cXO3fuLFSRsi9fvsDZ2Rm1a9fGvHnzuHs5kfJFxL6diF9KJSYmwsjICAkJCTA0NBQ6HEKKJCYmhlcEzMvLC76+vgJGpHgxMTFo2LAhr+DV0KFDsWPHjhLtNzY2Ft27d0dwcDCv3cnJCSdPnoSlpWWJ9k8KrzAVWCMiItC/f3+EhIQUad8ODg7w8vKCl5cXatSoIc+wiZIV9vxNyQghCsYYg66uLtLTc2YiNG/eHIGBgQVspfouXryITp068dr27duH/v37F2t/jx49Qrdu3fDmzRtee+/evbF7927o6OgUO1aiOFlZWVi4cCGWLVuG4pxumjRpAi8vL/Tp04emZ6ugwp6/6TINIQr2tdbIV2X9Ms1XHTt2xIwZM3hto0ePRkRERJH3de7cObi6usokIrNnz4avry8lIqWYpqYmlixZguvXr8PW1pb33LBhw7Blyxa0bds2zzE+9+/fx4wZM2Bvb4/mzZtj3bp1iIqKUkboRJmYCkhISGAAWEJCgtChEFIsHTt2ZAC4R2pqqtAhKUVmZiZzdnbmvfYmTZqw9PT0Qu9jw4YNTE1NjbcPTU1NtmvXLgVGThQhLi6O9enTh/t37N27N/dcVFQUW79+PWvRogXv3zq3h0gkYq1atWKbNm1iMTExAr4iUpDCnr+pZ4QQJfi+e/n7X/hllaamJg4ePMgrOnb//n3MmjWrwG2zs7Mxbtw4TJgwAVKplGs3NTXF5cuXMXjwYIXETBTHxMQEvr6+2LVrF/T19fHixQvuOWtra0yYMAF37tzB69evsWbNGjg6Oua6H8YYbt26hXHjxsHa2hru7u7w8fGRqTVDVAclI4QoQXmbUfMte3t7mXvFrFu3Dv7+/nluk5iYCA8PD2zevJnXXrNmTQQHB6N169YKiZUonkgkwuDBgxEWFoaKFSvmOo6kcuXK+OWXXxASEoKIiAgsW7YMDRs2zHV/UqkUV65cwciRI2FpaYkffvgBu3btQnx8vIJfCZEnSkYIUYLyUvgsL71795aprjlkyJBcr/2/fv0arq6uOH/+PK+9Xbt2CAoKQvXq1RUaK1GOatWq4fTp04Vab9asWQgLC8PTp0+xYMGCPCsYZ2dn4/z58xg6dCgsLCzQvXt3HDhwAMnJyfIOn8gZJSOEKEF5KnyWl3Xr1sHBwYFb/vz5M/r37w+JRMK1BQUFwcnJCY8fP+ZtO2zYMJw/fx4mJiZKi5conqamZpGK09WuXRvz58/HkydP8PDhQ8yZMyfP5DQzMxOnTp1C//79UbFiRfTu3RtHjhxBamqqvMInckTJCCFKUJ4v03ylo6MjM/Plxo0bXPEyPz8/tG3bllebRCQSYdWqVfDx8aEKnYQjEolQv359LFmyBP/++y/u3r2LadOmyST9X6Wnp+PIkSPo3bs3zM3N0a9fP5w6dQoZGRlKjpzkheqMEKIEUqkUOjo6XOlyFxcXBAQECByVMP766y+MGDGCW1ZTU8OQIUNkCqLp6upi//796NGjh5IjJKqKMYbg4GD4+fnh0KFDeP/+fb7rGxkZoUePHvDy8oK7uzs0NTWVFGn5QUXPCCllatasiefPnwPImTlQXmslMMbg7e0NPz+/PNextrbG6dOn0aRJEyVGRsoSqVSK27dvw8/PD0eOHOH1uOXG1NQUPXv2hJeXF9q2bcu74SMpPkpGCCllOnTogMuXL3PL6enp5fYupQkJCWjYsGGuA3kbNWqE06dPw8bGRoDISFmUnZ2N69evw8/PD8eOHUNcXFy+65ubm6N3797w8vKCq6sr1NRoRENxUQVWQkqZ8lprJDfR0dHIysqSaXdwcMCtW7coESFypaGhwdUiiYmJwdmzZzF48OA8T44fPnzA5s2b0bp1a1SuXBmTJ09GUFCQzDRkiZQh8MVnnAyLQuCLz5BIS/1v+1KLekYIUZKlS5di7ty53PLFixfRoUMHASMSxuXLl9GrVy8kJCTIPKelpYXAwEC6PEOUIj09HRcuXICfnx9OnTpV4J2l7ezs0KdPH3h5eSFW0xKL/J8iOiGde97KSBvzPeqis4NVPnspX6hnhJBSprzXGgEAHx8fdO7cmZeIfDu1MzMzE3379kVSUpIQ4ZFyRltbm6tF8uHDBxw+fBg9e/aEtrZ2ruu/evUKq1atQtOmTeHZphmenvZB5sdX3PMxCen4ed99nH8craRXUHZQMkKIkpTnWiMSiQRTp07FyJEjeXVFjIyMcOjQIVhaWnJtz58/x9ixY4UIk5Rjurq66NWrFzfYdf/+/fD09MxzSnn2l2gkBPohesc4xPrOAZBz4xwAWHg6nC7ZFBElI4QoSXmtNZKcnIwff/wRa9eu5bVXrVoVgYGB6NWrF/bt28frIdm7dy/27Nmj7FAJAQAYGBigX79+OHnyJGJjY7Fz50507twZGhoaua6vWeG/uxEzANEJ6QiJzH+QLOGjZIQQJbGysuLVMSgPyci7d+/QqlUrnDp1itfesmVLBAcHc2W927dvj9mzZ/PWGTNmDJ49e6a0WAnJjbGxMYYMGYJz584hJiYGY35dCe0qDQDRf6dPLcsa+HxhE1LCb0CS8gUA8CEpPa9dklwUKxnZvHkz7OzsoK2tDWdnZ4SEhOS5ro+PD1q1agUTExOYmJjA3d093/UJKavU1dVRuXJlbrmsjxm5d+8enJ2dERYWxmsfMGAALl++DDMzM177ggUL4Orqyi2npKSgb9++SE+nL3VSOlSoUAEDBg+DRd9lsBm7G6YdRkO3ZgvoObSD2Lo2Pp1ejXebBuL9jnE4uH4x/P39afxTIRU5GfHz88OUKVMwf/583L9/Hw0bNkSnTp3yLChz/fp1eHt749q1awgMDIStrS06duxYbgs+kfLt23EjUVFRXEXWsubEiRNo3bq1TAXMxYsXY8+ePbnWV9HQ0MCBAwdgbGzMtYWFhWH69OmKDpeQQnOyN4WVkTY09Exg0KQbKv5vNkQiNejXd4dx60EAgKyPr+C36094eHjA1NQUrq6umD9/Pm7evFlm/+ZLqshTe52dneHo6IhNmzYByKlyZ2tri/Hjx2PmzJkFbi+RSGBiYoJNmzZh0KBBhTomTe0lZcWwYcN4Zc8jIiJQrVo1ASOSL8YY1qxZgxkzZvBqMojFYuzZswd9+vQpcB/Hjx/Hjz/+yGs7ceIEunfvLvd4CSmO84+j8fO++wD+G7Sas8AQd3krku6fyXNbXV1dtG7dGu3bt4e7uzsaNGhQpouqKWRqb2ZmJu7duwd3d/f/dqCmBnd3dwQGBhZqH6mpqcjKyoKpqWme62RkZCAxMZH3IKQsKMuDWDMzMzFixAhMnz6dl4iYm5vj+vXrhUpEAOB///ufzGyaoUOH4u3bt3KNl5Di6uxghS0DmsDSiD8F2MpYBwd3bEXPnj3z3DY1NRXnz5/HtGnT0LhxY1hYWMDLywvbtm3DixcvZAqrlRusCKKiohgAFhAQwGufNm0ac3JyKtQ+fv75Z1a1alWWlpaW5zrz589nyEk4eY+EhISihEtIqbNnzx7eZ3r79u1ChyQXcXFxrF27djJ/sw4ODiwyMrLI+0tLS2MNGjTg7atly5YsKytL/sETUkzZEikLiPjEToS+YwERn1i2RMoYy/n8tmrVKtfzWF4PXV1dtnbtWpadnS3wq5KvhISEQp2/ldo3tGLFCvj6+uL48eN5FpUBgFmzZiEhIYF70C8iUlaUxVojERERaN68Oa5du8Zr79y5M+7cuSPTG1QY2tra8PPzg66uLtd2+/ZtLFq0qKThEiI36moiuFSrgO6NKsGlWgWoq+VMT9fW1sbJkydRr169Qu3Hw8MD4eHhmDJlSrm9QV+RkhEzMzOoq6sjNjaW1x4bG8srWpSbNWvWYMWKFbh48SIaNGiQ77pisRiGhoa8ByFlQVm7THPz5k04Ozvj33//5bWPGzcOp0+fLtHfbu3atbF582Ze25IlS2SSHkJKIxMTE5w/f77A+yxVrFgRM2bMkPmhUt4UKRnR0tJC06ZNceXKFa5NKpXiypUrcHFxyXO7VatWYfHixTh//jyaNWtW/GgJUXHW1ta8wkmqnIzs2bMH7u7uvDugqqmpYcOGDdi4cWOeBaKKYvDgwejfvz+3zBhD//798fHjxxLvmxBFs7Gxwfnz53kzxL738eNHtGzZEsOGDcOnT5+UF1xpU9TrP76+vkwsFrNdu3ax8PBwNnLkSGZsbMxiYmIYY4wNHDiQzZw5k1t/xYoVTEtLix05coRFR0dzj6SkJLlfcyJEFdjb23PXiW1tbYUOp8gkEgmbPXu2zDVvAwMDdubMGbkfLzExkVWvXp13rB9++IFJJBK5H4sQRbh58yYTi8UFjhsxNTVlPj4+ZeqzXdjzd5GTEcYY27hxI6tcuTLT0tJiTk5OLCgoiHuuTZs2bPDgwdxylSpVcn3T58+fX+jjUTJCypJvB3qqqamxzMxMoUMqtJSUFNarVy+Zv+fKlSuzhw8fKuy4d+/eZZqamrxjrl27VmHHI0Tejh49ykQiEff5rVu3bp7nRxcXFxYWFiZ0yHKh0GRE2SgZIWXJkCFDeF88L1++FDqkQomOjmaOjo4yX5zOzs4sOjpa4cdft24d77iamposJCRE4cclRF42b97MfX5Hjx7NkpOT2cyZM5mGhobM35W6ujqbPHkyS0xMFDrsEimVs2kIIao5iPXhw4dwdnbG33//zWvv06cPrl27VuAAdnmYOHEiunXrxi1nZWWhb9++VIeIqIwxY8Zw92AyNzeHnp4eli9fjgcPHqBt27a8dSUSCdatW4fatWvj8OHDZb7+CCUjhCiZqiUjZ8+ehaurK968ecNrnzt3Lg4ePAgdHR2lxCESibBz505YW1tzbS9fvsSoUaPK/Bc1KTuWLFmCIUOGwNzcnGurW7curl69ir179/LaAeD9+/fo06cPfvjhB0RERCg7XKWhZIQQJfs+GSmtN8xjjGHDhg3w8PBAcnIy166lpYU9e/Zg8eLFSi9jbWZmhgMHDvCO6+vri507dyo1DkKKSyQSYdu2bejcubNM+4ABA/DPP/9gzJgxEIlEvOcvXLgABwcHLFy4sEzePJKSEUKUTBUKn2VnZ2PcuHGYOHEipFIp116hQgVcvnwZAwcOFCy2Nm3a4Ndff+W1jRs3Dk+fPhUoIkKKRlNTM897UpmYmGDz5s0IDg5G06ZNec9lZGRgwYIFqF+/Pi5duqSMUJWGkhFClMzGxoZXZbG0JSMJCQno1q0b/vjjD1577dq1ERwcjFatWgkU2X/mzp2L1q1bc8tpaWnw8vJCWlqagFERIj+Ojo4IDg7Gpk2bZIoHRkREoGPHjvDy8pK5M7aqomSEECXT0NDgVWUsTcnIq1ev4OrqigsXLvDa3dzcEBAQUGruMKyhoYH9+/fzbrj56NEj/PLLLwJGRYh8qaurY+zYsXj27Bn69esn8/yhQ4dQu3Zt/P7778jOzhYgQvmhZIQQAXw7buTdu3el4oskMDAQzs7OePLkCa99xIgROH/+PExMTASKLHc2NjbYtWsXr23Lli04evSoMAERoiCWlpbYv38/rly5glq1avGeS0pKwuTJk+Ho6IigoCCBIiw5SkYIEcC340YkEgmioqIEjCZnEGi7du3w4cMHrk0kEmHNmjX4888/oampKWB0efPw8MDEiRN5bcOGDStVvU2EyIubmxsePHiAJUuWyNxsNiwsDC4uLhg5ciTvFg2qgpIRQgRQWqb3MsawaNEieHt7IyMjg2vX1dXF8ePH8csvv8iM6i9tVq5cicaNG3PLCQkJ6NevH7KysgSMihDFEIvFmDNnDsLDw9G1a1eZ5318fFCrVi3s3LmTN/i8tKNkhBABlIZkJD09HQMHDsT8+fN57dbW1rh16xa6d++u9JiKQywWw8/PD/r6+lxbYGCgzOsipCyxt7fH6dOncfz4cdja2vKe+/TpE3766Se0adMGjx8/FijCoqFkhBABCF1r5OPHj3B3d8f+/ft57Y0bN0ZISAiaNGmi1HhKqkaNGtiyZQuvbcWKFWVu+iMh3xKJROjRowfCw8Mxbdo0mTtl3759G40aNcK0adN4tYJKI0pGCBGAkLVGwsPD4ezsjDt37vDae/TogVu3bqFSpUpKi0WeBgwYgMGDB3PLjDEMHDgQsbGxAkZFiOLp6+tj1apVCA0NlZl6L5FIsGbNGtSpUwfHjh0DYwwSKUPgi884GRaFwBefIZEKX8FYxFSgjnJiYiKMjIyQkJAgM9+aEFWUmZkJHR0d7ppuu3btcPXqVYUf99KlS+jduzcSEhJ47dOmTcOKFSuUXlFV3pKTk9G0aVP8+++/XFvHjh1x7tw5lX9thBQGYwx79uzB1KlT8enTJ5nnHVu1R5bzYHxR/29avJWRNuZ71EVnByu5x1PY8zf9dRIiAC0tLV4PhDJ6Rv7880/88MMPvEREQ0MDPj4+WLVqVZk4Wevr68PPzw9aWlpc28WLF7FmzRoBoyJEeUQiEQYPHoxnz55h1KhRMgPQ/751BQ9+H474AF+w7JxB3jEJ6fh5332cfxwtRMgAKBkhRDDfjht5+/YtJBKJQo4jkUgwZcoUjB49mncMY2NjXLhwAcOHD1fIcYXSqFEjrF27ltc2Z84cla7BQEhRmZqaYuvWrQgICECjRo14z7HsTCTc2oe0yPs5y//fvvB0uGCXbDQKXoUQoghVqlTBrVu3AOTcC+b9+/cyo+JLKjk5Gf369cPp06d57dWqVYO/vz9q164t1+OVFmPHjsXly5dx8uRJADnvr7e3N0JDQ2FsbCxscIQU04EDB3DlyhVoamoW6TFp0iQcOnUe504dA8vOBACIbetDp7oTt28GIDohHSGRcXCpVkHpr42SEUIEktv0XnkmI2/fvoWHhwcePHjAa2/VqhWOHTsGMzMzuR2rtBGJRNixYwcaNWqEt2/fAsh5f0eOHAk/Pz+u61oqleLFixeoUaOGkOESUijdu3fHxo0bS9bLp5ZzXyzTTmNzrSH0IUmYOwLTZRpCBKLIWiN3796Fs7OzTCIyaNAgXLp0qUwnIl+ZmpriwIEDvLEwhw8fho+PD7d86NAhrF69WojwCCkyPT29EvVo6tR0QaVR21Fp5DZoVbDJdR1zA+1c2xWNkhFCBKKoZOTYsWNo3bo1oqP5g9GWLl2KXbt2QSwWy+U4qqBly5ZYuHAhr23ixIl4/PgxsrOzsWDBAhw+fJhXfZaQ0ooxhs+fP6Nbt25F2s7a2hpHjhxFwyGLoWloBg0jC5l1RMiZVeNkbyq7AyWgZIQQgZSk8Flug10ZY1i5ciV69uyJtLQ0rl1bWxuHDh3C7NmzS31pd0WYNWsW2rVrxy2np6fDy8sLPj4+ePbsGeLj43Hu3DkBIyQkb4mJiThx4gRGjx6NqlWrolatWoWeHSYSiTB27Fg8ffoUPXv+iPkedXPav1/v//8736Mu1NWE+Y6gOiOECCQzMxPa2tr4+ifYvn17XL58ucDtoqKisHv3bsyePZu3r59//hk7duzgrWthYYGTJ0/C2dlZvsGrmPfv36Nhw4a8ugsikYh773v16oXDhw8LFR5RAc+fP0elSpWgq6tb7H1IpAwhkXH4kJQOc4OcXojvT/5SqRShoaG4cOECzp8/j8DAwGLd1dvBwQE+Pj5o3rw5r/3842gsPB2O6IT/xoaUhjojlIwQIiAbGxvujr3VqlVDREREvuszxtC9e3d8+PCBG8QWFxeHnj174vr167x169evj9OnT8tUey2vzp49m+uNxYCc+9vExsbCyMhIyVERVXH8+HH06dMHTZs2haurK/ewsJC95JGb/JKAxhXVcPHiRVy4cAEXL17Ex48fix2ntrY25s2bh6lTp+Z5t+3CJEXyQskIISqgZcuWXFl2TU1NpKen51t8zM/PD3379oWGhga+fPmC6OhodO3aFc+fP+et16VLFxw8eLDc/72kpqYiPDwcjx8/xuPHj7Fjxw58+fIl13W3b9+On376SckRElXBGEOHDh1w5coVXnv16tV5yUnt2rVl/obPP47Gz/vuc/U8mCQLGVH/ID3yHtIiQ5EZ+6JQMejo6KBNmzbo3LkzqlatCk9PT97z7du3x9atW1G9evViv055K/T5m6mAhIQEBoAlJCQIHQohctW/f3+GnCn+DAB79+5dnut+/PiRVaxYkVv3119/ZaamprztAbAJEyawrKwsJb6K0uvGjRvMyspK5j3K7eHm5iZ0uKSUe/z4MVNXV8/3c2Rqasq6devGli9fzm7evMmSU1JZ82WXWZUZ/qzKDH9mOXAtE2npFOozCYDVq1ePTZkyhV28eJGlpaVxsfj6+nLrVKhQge3evZtJpVIB353cFfb8TXVGCBFQbjfMy+tGdZMmTeJ13y5evJj3vJqaGjZs2ICxY8fKP1AV1bp1a4SGhmLAgAEFjse5du0aoqKiVPZGgaT4MjIy8OXLF8THx3P//fb/v20zMDBAfHx8nvuKi4uDv78//P39AQCamlpQq1gVYpu6EFeqA01ze67wWG6MjY3RoUMHdOrUCZ06dYKNTe5TcENDQwHkTNdfu3atyk/Xp2SEEAHlNr3X1dVVZr0zZ85g//79ee7HwMAAhw4dQufOneUdosqzsLDA+fPnsXTpUixYsIAbtPo9xhh8fX3xyy+/KDlCUlISiQSJiYn5JhL5PZeerrhCX1lZmcD7f5AREwHd+BjoqalBXKkOMt4+/v81RNCyqon/eXbBxMG94ejoCA2Ngk/NiYmJuHTpEtzd3RUWuzJRMkKIgApTayQxMRGjR4/Ocx9isRhXrlyBo6OjnKMrO9TV1TFv3jy0bNkS/fr1Q2xsbK7r7d+/n5IRATDGkJqaWqxEIj4+XuYu1KVJnQaNEWvhDN06raGukzNmQpIcBw1jS+jYN4G2XSOo6xhi4ojmRSrDvnHjRqirqysqbKWjZIQQARWm1sjMmTPx7t27PPeRkZGBzp07Y/jw4RgzZgzNnsmHm5sbwsLC0K9fP1y7dk3m+dDQUDx9+hR16tQRIDrVlpWVxSUHRUkkvv5/VlaW0C9BbqytrTFw4EAMGjQItWrXQcuVVxGTkM4NYDVo9AMMGv0AIKfGh2Uxio2VpUQEoNk0hAgqPT0dOjo63HKHDh1w8eJFbvnGjRto27Ztoffn4OCAw4cPl9kb4MmLRCLBwoULsWTJEpnLNnPmzMGSJUsEikw4jDEkJSUVK5H48uULUlJShH4JhaarqwtjY2MYGxvDxMSE99+C2oYNG4Zjx47J7FNbWxs//vgjBg8ejPbt2/OSha+zaYD/7pAL/FdsbMuAJgqp8VEa0NReQlSEtbU1V7q9Ro0a+PfffwEAaWlpaNCgQYG1RwCgc+fOmDRpEjp06JDv1GDCd/HiRQwYMIA3MNjOzg4vX75UyWq1hR2Imdtz8fHxkEqlQr+EQlFXV881aShMQmFkZFTsWyK8e/cOdnZ2vArIrVq1wuDBg9G7d+98z0/KLjZWWhT2/E2XaQgRmJ2dHZeMvH79GlKpFGpqaliwYEG+iYiOjg4GDx6MCRMm0GWFYurYsSPCwsLg7e2NmzdvAsgZt3Pr9h1oWtdRSlGob5XmgZjyZmBgUKyeCRMTE+jp6QmSLP7555+QSCSws7PD4MGDMXDgQFSrVq1Q23Z2sEKHupZKKzamaigZIURgdnZ2CAwMBJBT1v1M8FOYq6fmef8JGxsbjBs3DiNGjICpqTA3tSpLrK2tceXKFcybNw/Lly8HAPSZtgrabUdx6xT2F+y3AzGLcolDFQZifk9LS6tYPRPGxsYwMjIq1IyR0kQqlSI7OxvXr19Hq1atitUDqa4mKtIg1fJEtT4NhJRBEl3+l9OITf5IurpNpsvcxcUFEydOxI8//phnmWdSPBoaGli2bBl0bOthwS9j8PHhDVg7eiE78QOk6cl4kZ6CATeOw7OOESy0pWViIKZIJOKShOIkFN+OdSoP1NTUuGSVyB8lI4QI6PzjaFx5xx+2lXjvNNJiXgIA1DU00Kd3b0ycOLHc3+xO0SRShrPxlrAash6fTq1CQvBRJP19nLfOzgsCBZcHXV3dIl3e+LbNwMCAxheRUoOSEUIEIpEyLDwdDnVDc1572r+BUNM2gEGjzqja5kfsXeZF15WVICQyDtEJ6dAwrAgL7+VIvHtK4cfU0NAo8niJb3sztLS0FB4jIcpAyQghAuFOfkb8u36KbR1g3mse1DS1Eff/69F1ZsX7kPTf4E+Ruga0bQo3KNjQ0LBIicS3zwk1EJOQ0oaSEUIE8vXkp2FkgYo9f4W6vhk0jC2grq2f63pEscwNtHnL6kYWMHTpAzWxHtS09bn/rvBujtYOdjAxMYGhoaHKDcQkpDSivyJCBPL15CfS0IRu9bzHg3x/kiSK4WRvCisjba5Spoa+KUxaD+Ke/1opc5CHG102I0TOaPQSIQL5evLL67QmQs6U0qKWiSbFo64mwnyPugAg82/ydXm+R11KRAhRAEpGCBEInfxKn84OVtgyoAksjfi9UZZG2mW6ZDchQqNy8IQIrLyWiS7NJFJGlTIJkQO6Nw0hKoROfoSQsojuTUOICqEy0YSQ8ozGjBBCCCFEUJSMEEIIIURQlIwQQgghRFCUjBBCCCFEUJSMEEIIIURQlIwQQgghRFCUjBBCCCFEUJSMEEIIIURQlIwQQgghRFCUjBBCCCFEUJSMEEIIIURQlIwQQgghRFCUjBBCCCFEUMVKRjZv3gw7Oztoa2vD2dkZISEh+a5/+PBh1K5dG9ra2qhfvz7Onj1brGAJIYQQUvYUORnx8/PDlClTMH/+fNy/fx8NGzZEp06d8OHDh1zXDwgIgLe3N4YNG4bQ0FD06NEDPXr0wOPHj0scPCGEEEJUn4gxxoqygbOzMxwdHbFp0yYAgFQqha2tLcaPH4+ZM2fKrO/l5YWUlBT4+/tzbc2bN0ejRo2wdevWQh0zMTERRkZGSEhIgKGhYVHCJYQQQohACnv+LlLPSGZmJu7duwd3d/f/dqCmBnd3dwQGBua6TWBgIG99AOjUqVOe6wNARkYGEhMTeQ9CCCGElE1FSkY+ffoEiUQCCwsLXruFhQViYmJy3SYmJqZI6wPA8uXLYWRkxD1sbW2LEiYhhBBCVEipnE0za9YsJCQkcI+3b98KHRIhhBBCFESjKCubmZlBXV0dsbGxvPbY2FhYWlrmuo2lpWWR1gcAsVgMsVhclNAIIYQQoqKK1DOipaWFpk2b4sqVK1ybVCrFlStX4OLikus2Li4uvPUB4NKlS3muTwghhJDypUg9IwAwZcoUDB48GM2aNYOTkxN+//13pKSkYOjQoQCAQYMGoVKlSli+fDkAYOLEiWjTpg3Wrl2Lrl27wtfXF3fv3sW2bdvk+0oIIYQQopKKnIx4eXnh48ePmDdvHmJiYtCoUSOcP3+eG6T65s0bqKn91+HSokULHDhwAHPnzsXs2bNRo0YNnDhxAg4ODvJ7FYQQQghRWUWuMyIEqjNCCCGEqB6F1BkhhBBCCJE3SkYIIYQQIihKRgghhBAiKEpGCCGEECIoSkYIIYQQIihKRgghhBAiKEpGCCGEECIoSkYIIYQQIihKRgghhBAiqCKXgxfC1yKxiYmJAkdCCCGEkML6et4uqNi7SiQjSUlJAABbW1uBIyGEEEJIUSUlJcHIyCjP51Xi3jRSqRTv37+HgYEBRCKR3PabmJgIW1tbvH37lu55o0D0PisPvdfKQe+zctD7rByKfJ8ZY0hKSoK1tTXvJrrfU4meETU1NdjY2Chs/4aGhvRBVwJ6n5WH3mvloPdZOeh9Vg5Fvc/59Yh8RQNYCSGEECIoSkYIIYQQIqhynYyIxWLMnz8fYrFY6FDKNHqflYfea+Wg91k56H1WjtLwPqvEAFZCCCGElF3lumeEEEIIIcKjZIQQQgghgqJkhBBCCCGComSEEEIIIYIq88nI5s2bYWdnB21tbTg7OyMkJCTf9Q8fPozatWtDW1sb9evXx9mzZ5UUqWoryvvs4+ODVq1awcTEBCYmJnB3dy/w34X8p6if6a98fX0hEonQo0cPxQZYRhT1fY6Pj8fYsWNhZWUFsViMmjVr0vdHIRT1ff79999Rq1Yt6OjowNbWFpMnT0Z6erqSolVNN2/ehIeHB6ytrSESiXDixIkCt7l+/TqaNGkCsViM6tWrY9euXYoNkpVhvr6+TEtLi+3YsYM9efKEjRgxghkbG7PY2Nhc179z5w5TV1dnq1atYuHh4Wzu3LlMU1OTPXr0SMmRq5aivs/9+vVjmzdvZqGhoezp06dsyJAhzMjIiL17907Jkaueor7XX0VGRrJKlSqxVq1ase7duysnWBVW1Pc5IyODNWvWjHXp0oXdvn2bRUZGsuvXr7OwsDAlR65aivo+79+/n4nFYrZ//34WGRnJLly4wKysrNjkyZOVHLlqOXv2LJszZw47duwYA8COHz+e7/ovX75kurq6bMqUKSw8PJxt3LiRqaurs/PnzyssxjKdjDg5ObGxY8dyyxKJhFlbW7Ply5fnun6fPn1Y165deW3Ozs5s1KhRCo1T1RX1ff5ednY2MzAwYLt371ZUiGVGcd7r7Oxs1qJFC/bXX3+xwYMHUzJSCEV9n7ds2cKqVq3KMjMzlRVimVDU93ns2LHMzc2N1zZlyhTm6uqq0DjLksIkI9OnT2f16tXjtXl5ebFOnTopLK4ye5kmMzMT9+7dg7u7O9empqYGd3d3BAYG5rpNYGAgb30A6NSpU57rk+K9z99LTU1FVlYWTE1NFRVmmVDc93rRokUwNzfHsGHDlBGmyivO+3zq1Cm4uLhg7NixsLCwgIODA5YtWwaJRKKssFVOcd7nFi1a4N69e9ylnJcvX+Ls2bPo0qWLUmIuL4Q4F6rEjfKK49OnT5BIJLCwsOC1W1hY4J9//sl1m5iYmFzXj4mJUVicqq447/P3ZsyYAWtra5kPP+Erznt9+/ZtbN++HWFhYUqIsGwozvv88uVLXL16Ff3798fZs2cRERGBMWPGICsrC/Pnz1dG2CqnOO9zv3798OnTJ7Rs2RKMMWRnZ2P06NGYPXu2MkIuN/I6FyYmJiItLQ06OjpyP2aZ7RkhqmHFihXw9fXF8ePHoa2tLXQ4ZUpSUhIGDhwIHx8fmJmZCR1OmSaVSmFubo5t27ahadOm8PLywpw5c7B161ahQytTrl+/jmXLluGPP/7A/fv3cezYMZw5cwaLFy8WOjRSQmW2Z8TMzAzq6uqIjY3ltcfGxsLS0jLXbSwtLYu0Pine+/zVmjVrsGLFCly+fBkNGjRQZJhlQlHf6xcvXuDVq1fw8PDg2qRSKQBAQ0MDz549Q7Vq1RQbtAoqzmfaysoKmpqaUFdX59rq1KmDmJgYZGZmQktLS6Exq6LivM+//vorBg4ciOHDhwMA6tevj5SUFIwcORJz5syBmhr9vpaHvM6FhoaGCukVAcpwz4iWlhaaNm2KK1eucG1SqRRXrlyBi4tLrtu4uLjw1geAS5cu5bk+Kd77DACrVq3C4sWLcf78eTRr1kwZoaq8or7XtWvXxqNHjxAWFsY9PD090a5dO4SFhcHW1laZ4auM4nymXV1dERERwSV7APDvv//CysqKEpE8FOd9Tk1NlUk4viaAjG6zJjeCnAsVNjS2FPD19WVisZjt2rWLhYeHs5EjRzJjY2MWExPDGGNs4MCBbObMmdz6d+7cYRoaGmzNmjXs6dOnbP78+TS1txCK+j6vWLGCaWlpsSNHjrDo6GjukZSUJNRLUBlFfa+/R7NpCqeo7/ObN2+YgYEBGzduHHv27Bnz9/dn5ubmbMmSJUK9BJVQ1Pd5/vz5zMDAgB08eJC9fPmSXbx4kVWrVo316dNHqJegEpKSklhoaCgLDQ1lANhvv/3GQkND2evXrxljjM2cOZMNHDiQW//r1N5p06axp0+fss2bN9PU3pL6v3btGDVhMAzAsF1+vYQKEVyyOOmYo2T3EmbxBB7APXtmN/E2HkDh69TSYodmaH5SngcyJYGPjxBeQk6nUywWi0gpxXa7jdvt9nmuqqqo6/rb9W3bxnq9jpRSlGUZXdcNPPE49dnzcrmMyWTychwOh+EHH6G+z/RXYuT3+u75er3GbreL6XQaRVHE8XiM5/M58NTj02fPj8cjmqaJ1WoVs9ks5vN57Pf7uN/vww8+IpfL5cd37sdu67qOqqpe7tlsNpFSiqIo4nw+/+mMbxG+bQEA+fzbf0YAgHEQIwBAVmIEAMhKjAAAWYkRACArMQIAZCVGAICsxAgAkJUYAQCyEiMAQFZiBADISowAAFm9A2x2h5JWuxtWAAAAAElFTkSuQmCC", "text/plain": [ "
    " ] @@ -157,7 +157,7 @@ }, { "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAAiMAAAGdCAYAAADAAnMpAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjcuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/bCgiHAAAACXBIWXMAAA9hAAAPYQGoP6dpAACP2ElEQVR4nO3deVxN+f8H8NdtL22SFgnJWtGCbC2WkCX7TpaxzBhm0ZixfI19hBnDjLGMNbJExi5LZCkyBoVkF0JF0qr13s/vD78Ox610073n3tv7+Xj0eDif87nnvLtu977vZxUxxhgIIYQQQgSiIXQAhBBCCKnaKBkhhBBCiKAoGSGEEEKIoCgZIYQQQoigKBkhhBBCiKAoGSGEEEKIoCgZIYQQQoigKBkhhBBCiKC0hA6gPCQSCV68eAEjIyOIRCKhwyGEEEJIOTDGkJWVhVq1akFDo/T2D5VIRl68eAFbW1uhwyCEEEJIBSQmJqJ27dqlnleJZMTIyAjAu1/G2NhY4GgIIYQQUh6ZmZmwtbXlPsdLoxLJSHHXjLGxMSUjhBBCiIr51BALGsBKCCGEEEFRMkIIIYQQQVEyQgghhBBBUTJCCCGEEEFRMkIIIYQQQVEyQgghhBBBUTJCCCGEEEFRMkIIIYQQQVEyQgghhBBByZyMnD9/Hn5+fqhVqxZEIhEOHDjwycecPXsWbm5u0NXVRYMGDRAUFFSBUAkhhBCijmRORnJycuDs7IzVq1eXq35CQgJ69uyJjh07IjY2Ft9//z3Gjx+PEydOyBwsIYQQQtSPzHvTdO/eHd27dy93/XXr1sHOzg7Lly8HADRt2hRRUVFYsWIFunXrJuvtCSGEEKJm5D5mJDo6Gj4+Pryybt26ITo6utTH5OfnIzMzk/dDCCGEEPUk92QkOTkZlpaWvDJLS0tkZmYiNze3xMcEBgbCxMSE+7G1tZV3mIQQQggRiFLOppk5cyYyMjK4n8TERKFDIoQQQoicyDxmRFZWVlZISUnhlaWkpMDY2Bj6+volPkZXVxe6urryDo0QQgghSkDuLSNt27bF6dOneWXh4eFo27atvG9NCCGEEBUgczKSnZ2N2NhYxMbGAng3dTc2NhZPnz4F8K6LZdSoUVz9r776Co8ePcJPP/2EO3fuYM2aNdizZw+mTp1aOb8BIYQQQlSazMnIlStX4OrqCldXVwBAQEAAXF1dMWfOHABAUlISl5gAgJ2dHY4ePYrw8HA4Oztj+fLl2LhxI03rJYQQQggAQMQYY0IH8SmZmZkwMTFBRkYGjI2NhQ6HEEIIIeVQ3s9vpZxNQwghhJCqg5IRQgghhAiKkhFCCCGECIqSEUIIIYQIipIRQgghhAiKkhFCCCGECIqSEUIIIYQIipIRQgghhAiKkhFCCCGECIqSEUIIIYQIipIRQgghhAiKkhFCCCGECIqSEUIIIYQIipIRQgghhAiKkhFCCCGECIqSEUIIIYQIipIRQgghhAiKkhFCCCGECIqSEUIIIYQIipIRQgghhAiKkhFCCCGECIqSEUIIIYQIipIRQgghhAiKkhFCCCGECIqSEUIIIYQIipIRQgghhAhKS+gAiGoTSxguJ6ThZVYeLIz04G5nBk0NkdBhEUIIUSGUjJAKOx6XhPmH45GUkceVWZvoYa6fA3ydrAWMjBBCiCqhbhpSIcfjkjBp+zVeIgIAyRl5mLT9Go7HJQkUGSGEEFVDLSNEZmIJw/zD8WAflCVt+wFMXAhNAxNoGhhj7HkzTOruCksLC9SsWRPm5uaoWbMmatasCTMzM2hoUB5MCKlaqFu7dJSMEJldTkjjtYgwxlD4KgGsqACF/1+WA2Bu9P4SH6+hoQEzMzMuOfk4Wfn42NzcHLq6uvL/xQghRE6oW7tslIwQmb3M4nfNsMI8sKKCcj9eIpEgNTUVqampuH37drkeY2RkJFPyYmRkBJGIvnEQQoRX3K3NPiov7tZeO9KtyicklIwQmVkY6fGOJQW50DK1RlG6/MaJZGVlISsrC48ePSpXfV1dXS5BKStxKT42MzODpqam3OInhFRNxd3aRblZKHj5CBo6BtC1bggAYABEAOYfjkcXB6sq3WVDyQiRmbudGaxN9JCckQcGQMvQDDZfbkBWTBjSTq4BAGjo6GPwgL7o2KEDioqKkJqailevXnE/Hx4XFRVVeoz5+fl4/vw5nj9/Xq76H3YdlSd5qVmzJnUdEUKkMMbw5MkTxMbGIiYmBhEXLuO//65CnPkKAGDg4I2afj++rw8gKSMPlxPS0Na+hkBRC4+SESIzTQ0R5vo5YNL2axABXNOjoYsvsm+eRkHSXUgKchGyaxf2/fMPRo0ahWnTpqFx48ZS12KMISMjo8xk5ePjnJycSv+dPuw6Kq/irqPyJi/UdUSIeiksLER8fDxiY2O55CM2NhYZGRmlPqbgxb0Syz/u/q5qRIyxj7uxlE5mZiZMTEyQkZEBY2NjocMh/6+kAVnGb5/j1pqvIRGLeXVFIhH69u2Ln376CW3atPms++bm5sqUvKSlpX3W/SqLjo6OTMkLdR0RojwyMzNx/fp1XtJx69YtFBSUf7xcMduAf6ChzW9Z3TWhjVq2jJT385uSEfJZSpqqNv2nH7F8+fJSH+Pp6YmffvoJPXr0UMgU36KiIqSlpZU7eUlNTUVhYeGnLyxnIpEINWrU+ORg3Q/PUdcRIZ+HMYYXL15wCUdx8lHe8Wol0a5mCpGxBQpSHqJaUy+YdZvCJSMiAFYmeoia3kktx4xQMkIEk52dDQcHByQmJpZZz8HBAT/++COGDx8OHR0dBUX3aYwxZGZmljt5kVfXUUUYGhqWe9YRdR2Rqk4sFuPu3btS3SyydNd+SCQSoUGDBnB1dYWLiwtcXFzg6uqKvZE38K1/f7D8HFgMXgh9O9d39f//ceo8m4aSESKoQ4cOoU+fPuWqa2Njg++//x4TJ05U2f/fj7uOPpW8KFPXUVktLR8fU9cRUVU5OTm4efMmr8Xj5s2byM3NrdD1dHV10axZMy7hcHFxQbNmzWBkZMSrd+fOHXh5eeHVq3cDWGtPDoamYXUAVWOdkfJ+ftMAViIXvXv3Rt++fXHgwIFP1i0oKEBqairS0tJUNhnR19eHra0tbG1ty1X/466j8oyBkUfXUUFBAV68eIEXL16Uq75IJOItWFee8S96enqfvjAhlSglJYVLOIpbPO7du4eKfvc2MzPjtXa4uLigSZMm0NIq+yP08ePH8PHx4RIRc3Nz7P7eF6+y82kF1o9QywiRm8TERDg4OCA7O7vE8zo6Oti0aRMGDx6sVN00yujjrqPyJC+lPe+K9mHXUXmSF2NjY+o6IuUikUjw8OFDXhdLbGwskpIqvuaRnZ0dr4vFxcUFtWvXlvk1mZSUBE9PTzx8+JAr69ixIyIiIiocmyqilhEiOFtbWyxYsAABAQElni8oKMD27dvRp08fSkY+QSQSwcTEBCYmJmjQoEG5HvNh11F5kpe0tLQKf3MsS3Z2NrKzs5GQkFCu+h92HZWnC6lGjRrUdVQF5OXlIS4ujtficf369Qon3VpaWnB0dOS1eDg7O8PU1PSzY339+jW6dOnCS0QAoFmzZp99bXVFLSNEroqKitCqVSvExsaWWsfV1RVHjx6FtbX69puqgg+7jso7dVpZZh2ZmZmVe8p0zZo1qetIyaWlpUkNKr19+zbEHy0ZUF7Gxsa8LhZXV1c0bdpULrPPMjMz4ePjg//++0/q3Pr16zFhwoRKv6cyowGsRGlcvnwZbdq04b51t2/fHhcuXODVqVu3Lo4dO4amTZsKESKpgA+7jsqbvChT15EsyQt1HclH8WqlH0+j/dRMvLLUrl2b18Xi4uICOzs7hfz/5ebmwtfXF+fPny/xfHR09Gevs6RqKBkhSmXy5MlYs2YNtLS0kJaWhjVr1mDGjBm8OtWrV8ehQ4fg4eEhUJRE3vLy8mRKXuTVdSQrbW1tmZIX6jqSVpHVSsuioaGBpk2b8lo8XFxcYG5uXsmRl09BQQH69euHsLCwUutkZmZKzbZRd5SMEKWSkZGBJk2aoEGDBoiMjAQA7NixA2PHjuU19evq6mL79u0YOHCgUKESJVLcdSTLirvK0nVUvXp1mdZ8UYWuo/T0dDDGUL169TLrVeZqpQBgYGAAZ2dnXouHk5MT9PX1K3S9yiYWizFs2DCEhoaWWsfOzu6zFk5TVTSAlSgVExMTrFy5Enfv3uXKRowYAWtra/Tr1w+ZmZkA3m1wN3jwYPz+++/4/vvvBYqWKAstLS1YWFjAwsKiXPWLu45kSV7k0XXEGENaWhrS0tJ4r/myVKtWTaZZRyYmJgrvOtLV1YW9vT06d+6M8ePHw9PTE0lJSZW6WqmlpaXUNNoGDRoobUsTYwxffvllmYkIQINXP4VaRojCMMbw6tUrqQ+WGzduoEePHlI77AYEBODXX39VyJLxpOrKy8uTea8jZXjb1NLShqmZGWpZWZYrealRo8Yn18UoS1FREe7du4eAgACcOHECwLuuEolEUqHriUQiNGzYUGoarZWVVYVjVDTGGAICArBy5cpP1v3f//6HRYsWyT8oJUPdNESlPHv2DN27d0dcXByvfPDgwdi6datKNGGTqkEsFsu015Eydh19KnkxMDBAcnIybt++zbV43LhxA3l5FdtZtni1UldXVzR3doaORX0Y29ijrmUNlV7468GDBwgKCuKOL1y4gLNnz5ZYd9euXRg6dKhiAlMilIwQlZOeno5+/fpJ/TF7eXnhwIEDn+ynJkQZMcaQlZUlU/KiLLOOKkIkEqFu3brw8fGBt7c3XF1d0bhxY2hpaZW407e6LIkuFovh5OSEO3fulHg+Li4Ojo6OCo5KeJSMEJWUn5+PsWPHYteuXbzypk2b4tixY6hbt65AkRGiOB93Hb18+QqzQy7iTdpriLNegxW8hfhtBsRvMyDJzYQkNwuA8r2V+/j4YNy4cejbty/OPniDSduvSUWpLpvF7dq1C8OHD+eOnZ2doa+vj0uXLkFbWxs5OTnQ1tYWMEJhUDJCVJZEIsGsWbOwdOlSXrm1tTXCwsLg4uIiTGCEyFlcXBysra1Ro0YNXnn0w9cYtuESMqL3IPv6CVgM/QXapu/HVjCJGJK8bCztUQ82+oV48eIFbty4gdu3b+PRo0dISkpCWlpahcd3fC4zMzPoNOkASd1WeHv7HEy9RkNT//0UVxEAKxM9RE3vpJJdNiW1iuzfvx+urq5wdXWFra0trl+/LmCEwqFkhKi81atX45tvvuENFjQ0NMS+ffvQpUsXASMjRHbbtm3Djh07IBaLUVRUBLFYzP28ffsWz549Q1ZWFho1asSVF9fLyStEekYmWOG7HWY1q5nBcthiaNeoDXFuFgpePkJhyiM0N3iD10/ufdZqpTo6OqhevTr09fWhoaGB/Px8ZGZmIisrq9KeC337VrAYOFeqfNeENmhrX6OERyi3nTt3YsSIEdyxi4sLrl27BpFIhMOHD2PPnj0IDg4WMELhUDJC1MKBAwcwbNgw3sA5LS0tbNq0CaNGjRIwMkJkU1RUhKFDh+Kff/6plOtpGtYARBoQZ72q8DVsbW2llkmvV69eiVOGi7uODh8+jK+//rrc97Czs0N2XgFeJfFny9Uc8DMMGrTmlf0x1AV9XGwq9ssIRCwWw9HRkTeF+8CBA+jTpw93/PjxY9SrV0+A6IRH64wQtdC3b19ERETAz88Pr1+/BvDuTX306NFITEzErFmzaJluohK0tLSwc+dODBgwAEeOHPns64mzX5e7rqamJpo0acKbQuvs7CzTaqV6enqwsrLC33//XWqdGjVqoHXr1tzPixcv8NNPPyE1NZVfUUMLRRkvpR5vYaR6s+Z2797NS0RcXFzQu3dvXp2qmojIgpIRovTatm2LixcvwtfXl7fz6+zZs/H06VOsXr36s9ZPIORziSUMlxPS8DIrDxZGeiVOVxWLxTh16hRevHgh11iqVavGrVZanHw4OjpWymqla9as4cY+6Orqws3NDe7u7lzyUbwHzMuXLzFlypQSFwLTsbRHjZ5ToVOzHldWPGbE3c7ss2NUJLFYjAULFvDK5s2bR1+QKoDewYlKaNSoEaKjo9GrVy9cuXKFK1+/fj2eP3+O3bt3o1q1agJGSKqqsqardmxohtOnT2PPnj3Yu3cvcnJyKvXemtWqw9CmAbp5tsaArp5wcXGBvb29XFYrzcvLw4MHD/DXX3+hdevWaN68OXR0dKTqhYaG4uuvv5ZqDdHS0oZh26EwaT0A0Hz/0VP8sT3Xz0HlBq+GhITwWkVcXV2lWkVI+VRozMjq1avx66+/Ijk5Gc7Ozli1ahXc3d1Lrb9y5UqsXbsWT58+hbm5OQYOHIjAwMByL2RFY0ZIsezsbAwZMkRqM6pWrVrhyJEj5V42nJDKcDwuSWq6qiQ/B7kPr+Dt/UuQPL2GvLeVk4Boa2ujR48ecG/dGvqW9qhepyEa29VRmkXDXr58icmTJ2Pv3r1S51q0aIGgoCA8Qw21WWdELBbDwcEB9+7d48oOHjxIychHyv35zWQUEhLCdHR02ObNm9mtW7fYhAkTmKmpKUtJSSmx/o4dO5iuri7bsWMHS0hIYCdOnGDW1tZs6tSp5b5nRkYGA8AyMjJkDZeoocLCQjZhwgSGdwsrcD/169dn9+7dEzo8UkUUiSWszeJTrO70I6zu9CPMcvgSpmfnxqChJfXalOVHS0uLaWho8Mrq1KnDnj59KvSvXKrdu3czc3Nzqd9FW1ub/fLLL6ywsJCrWySWsIsPUtmBmGfs4oNUViSWCBh5xQUHB/N+Vzc3NyaRqObvIk/l/fyWORlxd3dnkydP5o7FYjGrVasWCwwMLLH+5MmTWadOnXhlAQEBrH379uW+JyUj5GMSiYQtXLhQ6s2vRo0aLDo6WujwSBVw8UEql4jUnX6EWQyc91lJSHEiYmxszCurVasWe/DggdC/bolSUlLYwIEDS/xdWrZsyW7evCl0iHJRWFjIGjVqxPt9Dx06JHRYSqm8n98y7UBWUFCAq1evwsfHhyvT0NCAj48PoqOjS3xMu3btcPXqVVy+fBkA8OjRI4SFhaFHjx6l3qd4XvuHP4R8SCQSYfbs2diyZQtv8Orr16/RqVMnHDx4UMDoSFXwMou/T4tuneYQaX00hkIkgkiGjR6Liop473c1a9bEqVOnYG9v/1mxVjbGGHbv3g0HBwepbhkdHR0sXrwY0dHRcHJyEihC+dq1axeve8bNzQ29evUSMCLVJ9MA1tTUVIjFYlhaWvLKLS0tS12Pf/jw4UhNTYWHhwcYYygqKsJXX32FWbNmlXqfwMBAzJ8/X5bQSBU1ZswYWFtbY+DAgdx+Hrm5uejfvz9WrVol03oIhMji42moGto60G/QGgVJ96DfqC0MGraBrk1T7JrYDo2ri/D8+XPu59y5c9i+fTvq1KkDY2NjPH/+HG/evOFdz9TUFOHh4WjatKkif61PSklJwddff419+/ZJnWvZsiW2bNmitkkI8C5hXLhwIa+MZtB8PrnvzX727FksXrwYa9aswbVr17Bv3z4cPXpU6j/zQzNnzkRGRgb3k5iYKO8wiQrr1q0bzp8/z9t6XCKRYPLkyZgxY4ZgS2AT9eZuZwZrEz18+BFUo/u3qPXlRph1Gg99WyfUql4NrevXQI0aNdC8eXN0794d48ePR79+/RAeHo4nT54gLCxMamCfnp4e9u7dC2dnZ8X+UmVgjCEkJASOjo5SiUhVaA0ptmvXLty/f587btGiBbWKVAKZZtMUFBTAwMAAe/fuRd++fbny0aNHIz09vcSmcU9PT7Rp0wa//vorV7Z9+3ZMnDgR2dnZ0ChHEybNpiHl8eTJE/j6+kq10o0YMQKbN28ucRoiIZ+jeDYNwN+mrrybvyUnJ8PLy4v34aavr49jx47B29tbDhFXTFmtIa1atcKWLVuqxI60RUVFaNq0KR48eMCVHT58mJKRMpT381umlhEdHR20aNECp0+f5sokEglOnz6Ntm3blviYt2/fSiUcxXPgZciDCPmkunXr4sKFC/Dw8OCV79ixA927d0dGRoZAkRF15etkjbUj3WBlwu+ysTLR+2Qi8vr1a3Tp0oWXiGhra2P//v1Kk4h8qjVkyZIluHjxYpVIRIB3e9B8mIi0bNkSPXv2FDAiNSLryNiQkBCmq6vLgoKCWHx8PJs4cSIzNTVlycnJjDHG/P392YwZM7j6c+fOZUZGRmzXrl3s0aNH7OTJk8ze3p4NHjy43Pek2TREFrm5uSWO8G/WrBlLTEwUOjyihmSdrpqens5atGjBe31qamqy/fv3KybgckhOTmb9+vUrcaZMq1at2K1bt4QOUaEKCwtZgwYNeM/DkSNHhA5L6cltai9jjK1atYrVqVOH6ejoMHd3d3bp0iXunLe3Nxs9ejR3XFhYyObNm8fs7e2Znp4es7W1ZV9//TV78+ZNue9HyQiRlVgsZlOnTpV6E61du7baTjckqiE7O5u1b9+e97oUiURsx44dQofGGHs3bX7nzp3MzMxM6u9HR0eHLVmyhLduSFURFBQklZDRuiKfJtdkRNEoGSEV9fvvvzORSMR7EzExMWERERFCh0aqoNzcXObj4yP1Ib9hwwahQ2OMMZaUlMT69u1bYmuIu7t7lWsNYexdq9f5O8nMyrYu7/k4evSo0KGpBLmsM0KIqpk6dSp2794NXV1driwjIwPdunXDzp07BYyMVDWFhYUYNGgQTp06xSv/448/MH78eIGieocxhp07d8LR0REHDhzgndPV1cXSpUtx4cIFODg4CBOgQI7HJcFjaQT6BSxBcuITrryRkwu6d+8uYGTqh5IRovYGDRqE8PBwVK9enSsrLCzEiBEjsGzZMhpITeROLBZj5MiROHLkCK988eLF+PbbbwWK6p3k5GT0798fI0aMQFpaGu+cu7s7YmJi8NNPP1W5nbGLZ0q9eJODjIu7eefSm/TBiVvJAkWmnigZIVWCp6cnLly4gDp16vDKp0+fjm+//RZisVigyIi6k0gkGD9+PPbs2cMrnzVrFmbOnClQVO9aQ3bs2AEHB4cSW0OWLVuGCxcuKN2ia4ogljDMPxwPBiDn1hkUpSdx53SsG0G/fkvMPxwPsYS+yFQWSkZIldG0aVNER0fDxcWFV/7XX39h4MCByM3NFSYworYYY/jmm28QFBTEK//uu++waNEiYYICkJSUhH79+mHkyJFSK7+2bt0aMTEx+PHHH6tca0ixywlp3M7CuQkxvHOm7YcDIhGSMvJwOSGtpIeTCqBkhFQptWrVwvnz59G1a1de+YEDB9C5c2ekpqYKFBlRN4wxTJ8+HWvWrOGVjx8/HitWrBBk+fDi1hBHR0epRSqremvIhz7cd8jcbxpq9PwBOtaNoWPdGHr1W5RYj3weSkZIlWNkZIQjR45g9OjRvPLo6Gi0b98ejx49Eigyok4WLlzIW3kaeLdX17p16wRJRJKSktC3b98SW0PatGmD2NhY/Pjjj9yilFXZh/sOiUQiMHEhjNsNgcUg/h40H+9PRCqOkhFSJWlra2PLli34+eefeeX37t1D27ZtceXKFYEiI+pg+fLlmDt3Lq+sb9++CAoKUviHPWMM27dvh6OjIw4dOsQ7p6uri19//RVRUVFo0qSJQuNSZh/vOyTOSEHmxV3Q0DME8G65f2sTPbjbmQkWo7qhZIRUWSKRCAsWLMD69et5HxAvX76Et7c3wsLCBIyOqKq1a9di2rRpvDJfX1+EhIRAW1tbobEkJSWhT58+8Pf3l2oNadu2LWJjYzFt2jRqDfmIpoYIc/3eTWMWASjKfImCpPvIe3SVS1Dm+jlAU4N26q0slIyQKm/ChAk4ePAgDAwMuLK3b9+id+/e2Lhxo4CREVWzbds2fP3117wyb29v/PPPP7y1buSNMYbg4GA4ODjg8OHDvHN6enr47bffEBkZSa0hZfhw36GizFcAgPQLu2BprPvJfYdIBch58bVKQSuwEkW4fPkyq1mzptTKk3PmzKFln8knhYaGMg0NDd5rp3Xr1iwzM1OhcTx//pz16tWrxFVU27Zty+7cuaPQeFRdkVjCLGvVfr/yatgxoUNSKbQCKyEyatWqFaKjo9GwYUNe+YIFC/DFF1+gsLBQoMiIsjt69CiGDRsGiUTClTk7O+PYsWMwMjJSSAyMMWzbtg2Ojo5Si6vp6elh+fLliIyMROPGjRUSj7pgEjFSU96vM7JwwXxaKFEOKBkh5AP29va4ePEi2rRpwysPCgpCr169kJWVJVBkRFlFRERgwIABKCoq4sqaNGmCkydP8lb9lacXL16gd+/eGD16NNLT03nn2rVrh9jYWAQEBNDYkAp4/vw5b1HES5cuITw8XMCI1BMlI4R8xNzcHKdPn0bfvn155SdPnoS3tzeSkpJKfiCpci5evIjevXsjPz+fK6tfvz5OnToFCwsLud//U60hv//+O86fP0+tIZ/h8ePHUmXz51PrSGWjZISQEhgYGGDv3r1SgxFjYmLQtm1b3L59W6DIiLK4evUqunfvjpycHK6sdu3aOH36NGxsbOR+/+fPn8PPz6/U1pDr169j6tSp1BrymZ48eSJVdvHiRZw+fVqAaNQXJSOElEJTUxN//fUXli5dyit/8uQJ2rdvj6ioKIEiI0KLi4tD165dkZmZyZVZWlri9OnTqFevnlzvzRjD1q1b4ejoiKNHj/LOfdga0qhRI7nGUVWU1DICUOtIZaNkhJAyiEQi/PTTT9ixYwdvjYg3b97Ax8cHe/fuFTA6IoT79+/Dx8eHt8OtmZkZwsPD5Z4APH/+HL169cKYMWOQkZHBO9e+fXvcuHGDWkMqWUktIwAQFRWFM2fOKDga9UXJCCHlMHz4cJw4cQLGxsZcWX5+PgYPHoyVK1cKFxhRqCdPnqBz585ISUnhyoyNjXHixAk0a9ZMbvdljCEoKAiOjo5Si/Hp6+tjxYoVOHfunNRMMPL5SktGgHetI6RyUDJCSDl17NgRUVFRvPEAjDFMnToVAQEBvGmdRP28ePECnTt3RmJiIldmYGCAo0ePomXLlnK7b3FryNixY6VaQzw8PHD9+nV8//331BoiJ6V10wDA+fPncfbsWYXFos4oGSFEBs2aNcOlS5fg5OTEK1+xYgWGDh2KvDzaxVMdvXr1Cl26dMHDhw+5Ml1dXRw8eBAeHh5yuSdjDFu2bCm1NWTlypXUGiJnEokET58+LbMOtY5UDkpGCJFR7dq1ERUVhY4dO/LKQ0ND0bVrV95YAqL60tPT0a1bN8THx3NlWlpaCA0NhY+Pj1zu+ezZM/Ts2RNffPFFqa0h3333HTQ06C1cnpKSkj652OHZs2dx7tw5BUWkvuiVTEgFmJiY4NixYxg+fDivPDIyEh4eHmX2MxPVkZWVhe7duyMmJoYr09DQwI4dO+Dn51fp92OMYfPmzXB0dMSxY8d456g1RPHK+jt2dHSEubk5AGodqQyUjBBSQbq6uggODsaMGTN45bdv30abNm0QGxsrTGCkUuTm5qJ37964dOkSr3zz5s0YPHhwpd/v2bNn6NGjB8aNG8ebMgwAnp6euHHjBrWGKFhxMqKvr48pU6bwznXp0gXJycm4cOEC3N3dkZCQIESI6kOuO+RUEtoojyi71atXS22SZmhoyE6cOCF0aKQC8vLyWPfu3aU2mlu9enWl30sikbBNmzYxY2Njqfvp6+uzP/74g4nF4kq/L/m0xYsXM0dHRxYXF8cyMzN5/zc+Pj5Ch6cSaKM8QhTo66+/xr59+6Cnp8eVZWdno2fPnti6dauAkRFZFRUVYfjw4VLdJMuWLZNakfdzJSYmltoa4uXlhRs3buDbb7+l1hCBtGnTBv/99x8cHR1hZGSEunXrcufi4uIEjEz90CuckErSp08fREREoEaNGlxZUVERxowZg0WLFtFqjSpAIpFg7Nix2LdvH6987ty5+PHHHyvtPowxbNq0CU5OTjh+/DjvnIGBAf7880+cOXMGDRo0qLR7Etl17NgR+vr63PGHs+iSk5Px+vVrIcJSS5SMELkSSxiiH77GwdjniH74GmKJen8gt23bFhcvXkT9+vV55T///DO++uor3s6uRLkwxjBp0iRs376dV/7DDz9g7ty5lXafxMREdO/eHePHjy+1NeSbb76h1hAl9PGU/lu3bgkUifrREjoAor6OxyVh/uF4JGW8X3vD2kQPc/0c4OtkLWBk8tWoUSNcvHgRvXr1wpUrV7jy9evX4/nz59i9ezeqVasmYITkY4wx/PDDD1i/fj2v/KuvvsKvv/4KkUhUKffYtGkTAgICkJWVxTtnYGCApUuX4uuvv6YkRIl9nIzExcXBy8tLoGjUC73qiVwcj0vCpO3XeIkIACRn5GHS9ms4HpckUGSKYWlpibNnz6Jnz5688qNHj6JDhw685cSJ8ObMmYMVK1bwykaNGoXVq1dXSiLy9OlT+Pr6YsKECVKJiLe3N27cuIEpU6ZQIqLkHB0decc0bqTy0CufVDqxhGH+4XgUZqch53Yk8l/c5c4Vd9LMPxyv9l021apVw4EDBzBhwgRe+ZUrV9CuXTvcu3dPoMjIh5YsWYJFixbxygYNGoRNmzZ9dnLAGMOGDRvg5OSEkydP8s4ZGBjgr7/+QkREBOzt7T/rPkQxmjRpwntNUDJSeaibhlQKxhgSEhJw/vx5/HP0FK6cjkDRm3etH4bOvtCt1fh9XQBJGXm4nJCGtvY1SrmietDS0sLff/+NunXrYvbs2Vz5o0eP0K5dOxw5cgRt2rQRMMKqbdWqVZg5cyavrGfPnti+fTu0tD7v7fHp06cYP348wsPDpc55e3tj8+bNUmOLiHLT19dHgwYNuC8St27dAmOsUlrPqjpKRkiFSCQSxMfHIzIyEufPn0dkZCSeP39eYt28xzEllr/Mqhr7uIhEIvzvf/9D7dq1MX78eG4Q6+vXr9GxY0eEhISgT58+AkdZ9WzevBnffvstr6xTp07Yu3cvdHR0Knxdxhg2btyIH374QapLplq1ali6dCkmTZpEXTIqysnJiUtG0tLSkJycDGtr9R0DpyiUjJByKSoqQkxMDC/5KO8eLEUZKRDnpEOzmimv3MJIr+QHqKnRo0fD2toaAwYMQHZ2NgAgLy8P/fv3x6pVqyp9DQtSupCQEIwfP55X1q5dOxw8eJC3Voysnjx5ggkTJpTYGtKhQwds2rSJWkNUnJOTE2/qd1xcHCUjlYCSEVKivLw8XL58mUs8Ll68yH2AloeGth60rRqgIOURdGs7QEPv/ewREQArEz2425nJIXLl1rVrV0RGRqJHjx5ISnrXjSWRSDB58mQ8ffoUixcvpm/Mcnbw4EGMHDmSt+6Lm5sbwsLCYGhoWKFrFo8NmTZtWomtIcuWLcNXX31F/7dqoKRBrF26dBEoGvVByYia+Nx+y6ysLFy8eBHnz5/H+fPncfnyZRQUFJT78aampvD09ISXlxc8PT2RrGmBoQP7gRW8hY6FHUSa2gDeJSIAMNfPAZoaVbOf1cXFBdHR0ejevTtu377NlS9duhSJiYnYvHkzdHV1BYxQfZ08eRKDBw+GWCzmyhwdHXHixAmYmJhU6JpPnjzB+PHjcerUKalzHTt2xKZNm2BnZ1fhmIlyobVG5IOSERVXVFSEv//+GzVr1pRp867U1FRERkZy3S4xMTGQSCTlfryVlRW8vLy4H0dHR963vlmzZiHvyXUAgKbB+zd5qyqwzkh51K1bF1FRUejbty8iIyO58p07dyIpKQn79++v8IcjKdn58+fRt29fXpLdoEEDhIeHc7uvyoIxhvXr12PatGlSrYbVqlXDr7/+ii+//JJaQ9RMw4YNoa2tjcLCQgA0o6bSyG97nMpDG+WVLCIigjVr1owBYDdu3Ciz7tOnT9mOHTvYl19+yRwcHKQ25PrUT/369dmYMWPYpk2b2P3795lEIin1Xvv37+c9ds5va9iBmGfs4oNUViQu/XFVUW5uLhs0aJDU892sWTOWmJgodHhq499//2VGRka857hOnTrsyZMnFbre48ePWefOnUv8W+nYsSN79OhRJf8GRJkUv+/i/zfEpI0MS1fez29KRlTQ48eP2cCBA7k/BhMTE94fg0QiYXfv3mUbN25ko0aNYvXq1ZM5+XB0dGSTJk1iu3btYs+ePSt3bHfv3pV60z927Jg8nga1IRaLWUBAgNT/gY2NzSeTTPJp169fZ9WrV+c9t9bW1uz+/fsyX0sikbC1a9cyQ0NDqf+vatWqsTVr1tAHUxUwdOhQ3v99QkKC0CEprfJ+flM3jQp5+/Ytli5dimXLliEv7/202NatW+PmzZvcYNPz58/LtMKnpqYm3NzcuDEfHh4evM3eyis7Oxv9+/eXGsBXs2ZNma9VlWhoaGD58uWwtbVFQEAAN7Dy+fPn8PDwwP79+9GpUyeBo1RNd+7cgY+PD968ecOVmZub49SpUzJvQvf48WOMGzcOERERUuc6deqETZs2oV69ep8bMlEBJY0bof/7z6SY3OjzVPWWEYlEwnbv3s1sbW1lbuEo6UdXV5d5eXmx2bNnsxMnTrDMzMxKiXHIkCEl3q+iTeFV0Z49e5iuri7v+dPW1mY7duwQOjSV8+jRI2ZjY8N7Lk1MTNi1a9dkuo5YLC61NcTQ0JCtW7euzG5Lon4OHDjAex0sWbJE6JCUFrWMqAixhOFyQhpeZuXBwujddNcPZ5lcv34d3333Hc6dO1fhexgZGaFdu3bcYNOWLVt+1loKJfnzzz+xe/fuEs9VZHBgVTVo0CBYWVmhT58+3Lf5wsJCjBgxAs+ePcOPP/5Iqz2Ww7Nnz9C5c2feQnzVqlXDsWPH4OrqWu7rlNUa0rlzZ2zcuJG+EVdBJW2YRz6PiLEPJtsrqczMTJiYmCAjIwPGxsZCh1NpytrVtpW1Dn7++Wf8/fffMs1yAYAaNWpwU2y9vLzg7Oz82UtblyUyMhKdOnXiVhb9kIGBAXJycuR2b3V1+/ZtdO/eHU+ePOGVT548GX/88Qc0NTUFikz5paSkwNvbG3fvvt8TSU9PD8eOHUOHDh3KdQ2JRIK///4bP/74o9Tr19DQEL/99hsmTpxIiWEVJZFIYGhoiNzcXADvpuvHxJS80nRVV97Pb0pGBFK8q63Uky8RIysmDAWXdyM7M73c13NwcMA333wDLy8vqc2c5CkpKQlubm5ITk4u8XzdunXx+PFjhcSibpKSktCzZ0+pN7m+ffti586d0NfXFygy5ZWWloYOHTrg5s2bXJm2tjYOHjyI7t27l+saCQkJGDduHM6cOSN1zsfHBxs3bkTdunUrLWaimlq2bImrV68CAHR1dZGTk0NfEkpQ3s9vmgAvgOJdbT9MRApfP0NmTBhebPkWaaf+likRAd5tvObm5gYHBweFJSKFhYUYNGhQqYkIQINXP4e1tTXOnTuHbt268coPHDiAzp07IzU1VaDIlFNmZiZ8fX15iYimpiZCQkLKlYhIJBKsWbMGzZo1k0pEDA0N8ffff+PkyZOUiBAA/K6a/Px8PHz4UMBoVB8lIwK4nJDG65opfPMCScEBeHNyLYoyXwEasnep5OXloU+fPkhMTKzMUMv0448/4sKFC2XWofEin8fIyAiHDx/G2LFjeeXR0dFo164dHj16JFBkwilpZeCcnBz06tUL//33H1cmEokQFBSE/v37f/KaCQkJ8PHxweTJk6W6ZXx8fBAXF0fdMoSHxo1ULhrAKoAPd6sV57zBy9B5YPlv3xVIilCz//+gX9cFC3rYoX2dasjMzCz3z7x587B+/Xq5Nxfu2rULf/zxxyfrUcvI59PW1samTZtga2uLBQsWcOX3799H27ZtceTIEbRq1UrACBVrxowZmDVrFpfo5ufno1+/fryVbAFg3bp1GDlyZJnXkkgkWLt2LaZPny6VhBgZGWH58uUYP348JSFESknJSHkSX1IySkYE8OFuteLsN5DkvV9KmhUV4NW+RTDvGYBGkzzRwF729T7krbCwEM+ePcPq1athZWWFtLQ0TJgwocS6lIxUDpFIhPnz58PW1hZfffUVt7fKy5cv0aFDB4SGhqJHjx4CRyl/T58+xerVq9GwYUNMmjQJhYWFGDx4sNQuuStWrMDEiRPLvNajR48wbtw4nD17Vupcly5dsHHjRtSpU6cywydq5OMN82iPms9D3TQCcLczg7WJHkQAdCzrw3L4EmgafrCDrUSM1CO/IfZkqGAxlkVbWxs//vgjvv76a/Tv35+32RsA3hbp1E1TucaPH49Dhw7BwMCAK3v79i169+6NDRs2CBiZYixevBgFBQXYvn07xGIxRo0ahUOHDvHqLFy4EN9//32p15BIJFi9ejWaN28ulYgYGRlh/fr1OHHiBCUipEy1a9fmDcikbprPpIA1Tz6bOi56duzmC1Zv+hFWb/oRVnf6EVbry41My9RaalGlwMBAoUMtU15eHjM3N+ct0JWUlMR69+7NALANGzYIHaJa+u+//5iFhYXU6+Xnn39W2wW4EhISmJaWFve79unTR+r3nzFjRpm//8OHD5m3t3eJi/N17dqVFugjMmnXrh33+tHS0mJ5eXlCh6R0yvv5TS0jAvF1ssbakW6wMnnXZaNtagXLEUthYMXfanzmzJmYMWMGt0S4sjl06BBvVkffvn1hZWWFkJAQtG/fnrpp5KRly5aIjo5Gw4YNeeULFy7E2LFjuR1F1cnChQt5a9kcPHiQd/6bb77B4sWLSxzfIZFI8Ndff6FZs2ZSCwgaGRlhw4YNOH78OLWGEJl8OG6kqKgI9+7dEzAaFaeY3OjzqGPLSLEisYRdfJDK7Wr78lUqa9OmjdS3tq+++ooVFRUJHa6Ubt268eI8ceIEd+7169e0gZScvXr1irVt27bEb/mVscy/srh//z7T1NQsdYuDL774otQN6h48eFBqa0i3bt2oNYRU2J9//sl7Pe3atUvokJQOtYyoCE0NEdra10AfFxu0ta+BmuY1EB4ejs6dO/PqrVu3Dv7+/kr1jffJkyc4efIkd1y3bl34+Phwx2ZmZrRUtpyZm5vj9OnT6NevH6/85MmT8PLyQlJSkkCRVa4FCxZwg3Y/JhKJYGRkhAsXLvDqSCQSrFq1Cs2bN5dqDTE2NsbGjRtx7Ngxag0hFfbxIFYaN/IZFJQcfRZ1bhkpTW5uLuvbt6/UN7mePXuyt2/fCh0eY4yxuXPn8mKbP3++0CFVWUVFRWzKlClSr5c6deqw+Ph4ocP7LLdv32YaGhrl2gTS3NychYaGsgcPHjAvL69SW0OePn0q9K9F1EBKSgrvteXeoRu7+CCVFYnVc9xWRVDLiIrT09NDaGgoRo0axSs/evQofH19kZmZKVBk74jFYmzevJk7FolEUgtzEcXR1NTEn3/+iWXLlvHKnz59ivbt20utwaFKFixYUK79mZycnLBjxw68ePECzZs3x/nz53nnjY2NsWnTJhw7dgy2trbyCpdUIRYWFjAxe7/8wrXYGxi24RI8lkbgeJx6tEoqCiUjSkxLSwtbtmzBN998wys/f/48OnXqJOhy4OHh4bzVXn19fekNXmAikQg//vgjdu7cCW1tba78zZs36NKlC0JDlXOqeFni4uIQEhJSZp2aNWti3bp1CA0NxaJFi/Ddd9/h7du3vDq+vr6Ii4vDF198QQuYkUpzPC4J+YY23HFRejIkhXlIzsjDpO3XKCGRASUjSk5DQwN//PEH5syZwyu/evUqvLy8eFukK9LGjRt5x+PHjxckDiJt2LBhOHHiBExMTLiy/Px8DBkyBCtXrhQusAqYP39+qTPJdHR08OOPP+Lu3bvIz8+Hm5ubVAuQsbExNm/ejLCwMEqWSaUq3mNM2/zDMUcMha+fcfuOzT8cD7FEOWdCKhtKRlRA8eqbv//+O6/89u3b8PDwwIMHDxQaz8uXL3nTKi0sLNCrVy+FxkDK1rFjR0RGRqJ27dpcGWMMU6dORUBAQLm6PYR2/fp17N27t8Rz/fv3R3x8PCZOnIg+ffrgu+++47ZzL+br64tbt25h7Nix1BpCKl3xHmPaNfkbJxa+egLg3SCSpIw8XE5IEyA61VOhZGT16tWoV68e9PT00Lp1a1y+fLnM+unp6Zg8eTKsra2hq6uLRo0aISwsrEIBV2VTp07Fpk2beLvyPn78GB4eHrhx44bC4ti2bRtvvYfRo0dDR0dHYfcn5dOsWTNER0ejWbNmvPIVK1Zg6NChyMvLK+WRwhBLGKIfvsbB2OeIfvgac+bMlarj6uqKs2fPIjQ0FEeOHEHz5s2lWkNMTEy41pAPkzFCKlPxHmO6Nk1h5NYLJu2Hw2rUChg0aV9iPVI2mfem2b17NwICArBu3Tq0bt0aK1euRLdu3XD37l1YWFhI1S8oKECXLl1gYWGBvXv3wsbGBk+ePIGpqWllxF/lfPHFFzAxMcGwYcO4ab4pKSnw9vbGsWPH0KZNG7nenzEm1UUzbtw4ud6TVFzt2rURGRmJ/v37IyIigisPDQ1FUlISDh48CDMzszKuoBjH45Iw/3A8t5t1fvIDJB963/pmZWWFxYsXY9SoUXj06BG8vb0RFRUldZ3u3btj/fr1lIQQubMw0gNjDIWvnuDtg39hNWIptIylPwM/3IuMlE7mlpHff/8dEyZMwNixY+Hg4IB169bBwMCAN7PiQ5s3b0ZaWhoOHDiA9u3bo169evD29oazs/NnB19VDRgwAIcPH+btT5Keng4fHx+cOnVKrve+cOEC7t69yx17enqicePGcr0n+TwmJiY4duwYRowYwSuPioqCh4cHnjx5IlBk7xyPS8Kk7de4RAQAMiK3AwBEWjoYOuE73Lt3D6NHj8aqVavg7OwslYiYmJhgy5YtOHr0KCUiRCFMCl4h/Z85SD38K/TqOEslIiIA1iZ6cLcTPtlXBTIlIwUFBbh69SpvYSsNDQ34+PggOjq6xMccOnQIbdu2xeTJk2FpaQknJycsXry41AWMgHeD7TIzM3k/hK9bt24IDw/nDVLMyclBz549sX//frndl1pFVJOOjg62bduGGTNm8Mpv376NNm3aICYmRiFxPH78mHdcPAiQAch/cRdFWanIf34HuY+uwKCpF2zGr8NjOz88f5EEb29vTJ06VWpsSI8ePXDr1i2MGTOGxoYQucvNzcXs2bPh4twcmQ/f/d2YtB7Aq1P8Kpzr5wBNDXpNlodMyUhqairEYjEsLS155ZaWlkhOTi7xMY8ePcLevXshFosRFhaGn3/+GcuXL8eiRYtKvU9gYCBMTEy4HxoFX7J27drh3LlzvO6xgoICDBw4EFu3bq30+2VkZPCmhxobG2PgwIGVfh8iHxoaGggMDMTq1at5446Sk5Ph5eXFW01XHrZv345Zs2bxyi4npCHx2XOkHv0dycE/IP1sEHIfXYHliF9Rs/dP0DCqgbunQkptDQkKCsKRI0dgY2MDQuTt6NGjcHR0xC+//MJ1k7ft5Is69vw9oqxM9LB2pBt8nayFCFM1ybKS2vPnzxkAdvHiRV75jz/+yNzd3Ut8TMOGDZmtrS1vX5Xly5czKyurUu+Tl5fHMjIyuJ/ExMQqtwKrLO7evcvq1KkjtdLkH3/8Uan3WbdundR+OUQ1HThwgOnr6/P+P7W0tNiWLVvkcr+DBw8yTU1N5uvry5Xl5uYy/29mMJG2Hi8OyxFL3+1kPeFvpmvjUOIqqj179mTPnj2TS6yEfOzJkyesX79+Jb4WL126JLXHGK3A+l55V2CVKRnJz89nmpqabP/+/bzyUaNGsd69e5f4GC8vL9a5c2deWVhYGAPA8vPzy3XfqrgcvKyePn3KGjduLPWHMn/+/ErbUr5ly5a8a1+5cqVSrkuEER0dzczNzaVeMwsXLqy01wxjjJ0+fZrp6uoyAKxNmzZMIpGwAwcOsPr165f45q5n34pV7ziOibR0pM6ZmJiwoKCgSo2PkNIUFBSwZcuWMQMDgxJfqx07dhQ6RKUnl2SEMcbc3d3ZlClTuGOxWMxsbGxYYGBgifVnzpzJ6taty9tRc+XKlcza2rrc96RkpHxSUlKYq6ur1B/M1KlTP/vNOyYmhndNFxcX+kBQA/fu3WP29vZSr5kJEyawwsLCz77+pUuXWLVq1bjrWltbsy5dupS8t4ymNjN06cF0rKWTamoNIYp27tw55ujoWOZeSB/uUk5KJrdkJCQkhOnq6rKgoCAWHx/PJk6cyExNTVlycjJjjDF/f382Y8YMrv7Tp0+ZkZERmzJlCrt79y47cuQIs7CwYIsWLar0X4Ywlp6ezjw8PKT+aMaOHftZHy4fb8L2119/VWLUREgpKSmsVatWUq+ZHj16sKysrApf98aNG6x69eplvpkX/+g3bMuM2w4usTXE0MiEbd26lZJfohAvX75ko0eP/uRr1tXVlV6T5SC3ZIQxxlatWsXq1KnDdHR0mLu7O7t06RJ3ztvbm40ePZpX/+LFi6x169ZMV1eX1a9fn/3yyy+8MSSfQsmIbHJycpivr6/UH8+AAQNYXl6ezNd7+/YtMzU1fd+MrqfH0tLS5BA5EUp2djbr1auX1GumZcuW3BcNWdy/f59ZWVl98g29WbNmLCgoiDm4tCzxvLu3D3v+/LkcfmNC+MRiMVu3bl25E+g9e/YIHbJKkGsyomiUjMguPz+fDR48WOoPqGvXriw7O1uma23fvp13jZEjR8opaiKkwsJCNnHiRKnXTP369dndu3fLfZ3ExERWt27dMt/Iq1WrxlatWsWWLVvG9PT0pM4bGZuwoCBqDSGKs2nTpk++bot/GjRoINMX6qqMkhHCioqK2Pjx46X+kNq1aydTy0aHDh14jz979qwcoyZCkkgk7JdffpF6zdSoUUNqFl1JXr58yZo0aVKuN/SaNWuWWO7n58devHihgN+WED6JRMLu3bvHFi9eXOZrd/369UKHqjIoGSGMsXd/XNOmTZP6Y2revHm5mt/v3bsn9Y2Avq2qv61btzItLS3e/72enp7UTLoPpaenMzc3t3IlIiX9VK9enQUHB9PriwgqPz+fde7cudTXqbW1dYW6u6uq8n5+0669ak4kEmHZsmX45ZdfeOU3btyAp6fnJ5cC/3iZ//Hjx9Mql1XAqFGjEBYWBiMjI64sLy8PAwYMwKq//uJtaCeWMLx9+xZ+fn64du1ahe7Xs2dP3Lp1CyNHjqTXFxGMRCLBmDFjcPr06VLrBAQEQFdXV4FRVQ0ixhgTOohPyczMhImJCTIyMmBsbCx0OCprzZo1mDx5Mq+sdu3aCA8PR5MmTaTqFxYWok6dOtzqupqamnj27BmsrKwUEi8RXmxsLHr06IGkpCReuXHrgTD1HgWRSAOW1TQhOfkrrkRFlHIVQEtLC2KxGB+/3VSvXh2rVq3C8OHDKQkhgps2bRqWL1/OK1uwYAF+++03ZGZmwtTUFE+ePKHPIRmU+/NbEc00n4u6aSpPcHAw09TU5DU7mpubs6tXr0rVPXDgAK9enz59FB8wEdyTJ0+Yg4P0SqgGDt7MdupeZtBYeiq5iYkJ69mzJwsICCh1rYbevXvT2BAiqA9XTv1m5gKp12hAQABjjLGvvvqKAWD/+9//BI5Y9dCYEVKqgwcPcitiFv8YGxuz8+fP8+r5+fnx6hw+fFigiInQXqW+Zkb1mku9WevZtWAAmKahGTNr5s3++PNPdv36dW7lyo9fZ/j/sSHbt2+nsSFEUMduvmBtFp9idacfYeZ+P0q9TocNG8Yt1nn16lWmp6fHUlJSBI5a9ZT385u6aaqoM2fOoHfv3sjOzubK9PX18c8//6B79+54/vw56tSpA4lEAgCoVasWnjx5Ai0tLaFCJgKKfvgaQ9eeR+rRFXh7JxIAYNSyD3Qs7KBb2xFaplYQiUTYNaENTAteYuzYsfj333+lrtOnTx+sW7eOuvqIoI7HJWHS9mtgAHIfx+Jl6DxAUsSdd27tgX/PneKNDQkKCsKYMWMUHquqK+/nN32yVFEdO3bE6dOn0b17d6SlpQF4tzV27969sWPHDjx48IBLRABg7NixlIhUYS+z8iDS0oF57x+RbmQOJhGjeif+YGYmEWPdqt+xe91y5Ofn8x5vZmaGVatWYdiwYTQ2hAhKLGGYfzgeDIAk/y1SDy7lJSLaFnbQ7vYjtLR1eI+jRES+6NOlCnN3d8f58+fRpUsXboBiUVERhg4diho1avDqfvHFF0KESJSEhZEeAEAk0kD1TuPAGOMlFYWpiUgNW4ltSXelHtu3b1+sXbuWWkOIUrickIakjDwAgIauAcz9puHVgUCwwjxoGlvAYtB8vMrXxOWENLS1r/GJq5HKQlN7qzhHR0dERUXBzs6OK2OMITU1lTvu3Lkz6tevL0R4REm425nB2kQPxelHcSLCJGJkXNqLF0HfouCjRMTMzAw7d+7Evn37KBEhSuNlVh7vWLe2A4zbDIJ2jTqwHLwAWoZmJdYj8kXJCEH9+vURFRUFR0fHEs+PGzdOwRERZaOpIcJcPwcA4BKSgtSnSN7+I9LPBQHiQl79vn374tatW9QtQ5ROcStfsbynN1Hw4g6sv1gF7Rq1S61H5IuSEQLg3QDVc+fOwdXVVercuXPneONHSNXw8dh2XydrrB3pBktDbWRcCkVS0LcoSLrHq0OtIUTZfdzKl/c4BrmPY8AK341zEgGwNtGDu52ZYDFWRZSMEE6NGjUwdOhQqfK///4bo0aNQmFhYQmPIuro4MGDuHLlilR5HY03EB+ajfRzWwFxEe9cv379EB8fT60hRKl93MqXm3ANEBch9+F/XIIy188Bmhr0GlYkSkYIhzGG4ODgEs/t2LEDAwYMQF4e9aOquxs3bmDEiBFISEjgyoqKirBkyRK4urriyn//8erXqFEDISEh+Oeff2BpaanocAmRWXErn6kkHUVpzwEAb+9egJWJHtaOdIOvk7XAEVY9lIwQzn///Ye4uDju+OMZNYcPH0aPHj2QlZWl6NCIgrx8+RK9e/dGTk4OHj9+DAC4desW2rVrh5kzZ6KgoIBXv3///rh16xaGDBlCrSFEpfg6WePL+u/XWRI/jcGJKa0pEREIJSOEs3HjRt7xL7/8IrWXzZkzZ9C5c2e8fv1akaERBcjPz8eAAQO4zRMfPHiAwMBAuLm54b9SWkP27t1LrSFEZZ06Fc79Oz8vF+EnTwgYTdVGK7ASAEB2djasra25FVmrVauGpKQkGBoa4ueff5ba9dfBwQHh4eGoVauWEOGSSsYYw7hx47Bly5ZP1h0wYADWrFkDCwsLBURGiHwUFRWhZs2aSE9P58qGDh2KXbt2CReUGirv5ze1jBAAQGhoKG9p+CFDhsDIyAgikQiLFi3Cr7/+yqsfHx8PDw8PPHr0SNGhEjlYuXLlJxMRc3Nz7N69G6GhoZSIEJX333//8RIRADhy5AiNixMIJSMEgHQXzfjx43nH06ZNw4YNG3jjAhISEuDh4cEbZ0JUz7FjxzBt2rQy6wwYMAC3bt3C4MGDaWwIUQsnT56UKsvOzkZ4eHgJtYm8UTJCEB8fj4sXL3LHDg4OaNOmjVS98ePHIyQkBNra2lxZUlISvL29cfnyZYXESirX7du3MXTo0DLXkalWrRr8/Pxgbm6uwMgIka8TJ0oeH7J3714FR0IASkYIgE2bNvGOx48fX+q338GDB+PQoUPQ19fnytLS0tC5c2dERETINU5SuV6/fg0/Pz9kZmaWWS8nJwdjxoxB69atceHCBQVFR4j8pKenl7irNAAcOnRIatYYkT9KRqq4/Px8bNu2jTvW1taGv79/mY/x9fXFyZMneYORsrOz0aNHDxw8eFBusZLKU1hYiEGDBuHhw4flfkxRURFOnjxJU7uJyouIiCi1NTA9PR1nzpxRcESEkpEq7tChQ7xN8fr161eu5ngPDw+cOXMGNWvW5MqKp4Zu375dLrGSihFLGKIfvsbB2OeIfvgaYgnDd99998k3XG1tbXTt2hV//fUXHj9+jJiYGMyfPx9GRkYKipwQ+Siti6YYddUoHk3treK6devGG8h18uRJdOnSpdyPv3v3Lrp06YLExERe+V9//SW1RglRvONxSZh/OJ7bMh0ARLdP4PGhVSXWr169Onr27InevXujW7du9PdG1A5jDHZ2dtx6OiUxNzdHUlIStLS0FBiZeirv5zclI1XY48ePUb9+fW5DtLp16+LRo0fQ0JCtwezp06fw8fHB/fv3eeWLFi3CrFmzaPaFQI7HJWHS9mv48A8893EsXu6ZA7D3TdT29vbo06cPevfujfbt29MbMFFr9+7dQ+PGjT9ZLyIiAh07dlRAROqN1hkhn7Rlyxbezqzjxo2TOREBgDp16iAyMhLOzs688tmzZ+Onn36S2v2VyJ9YwjD/cDwkTIKcO1FgjKEw7TlSDy4BGIOuTVPYdhuPm3G3cP/+fSxfvhze3t6UiBC192FLsJ2dHe+cs7MzdHV1AVBXjaLRO08VJRaLsXnzZu5YQ0MDY8aMqfD1LC0tcfbsWfTs2ZM3Tfi3335Deno61q1bB01Nzc8JmcjgckIaniW/xOsjvyP30RWYdhgLSW4WqnccB337VtCsZgoAyNKzpJYrUqWcPHkSrVu3RmBgIN6+fYtevXpx58aNG4fBgwfjjz/+wP79+yGRSCr0BY3Ijp7lKurkyZN49uwZd9ytWzfY2tp+1jVNTU1x8uRJdO3alVe+ceNGDBs2jKbLKVDUxYtICvoOuY+uAADSz2+DfoPWMGzehUtEAOBlFq02SaqW7777DtHR0ejYsSN0dHR45woKCmBpaYnFixfj0qVL9J6lQJSMVFElrS1SGapVq4ZDhw5hwIABvPLQ0FD06dMHb9++rZT7kJIxxvDnn39i1rgBEGe+en9CIkZOvPTsGQsjPQVGR4jwOnfuzLUGlpSMFDMxMYGeHv19KAolI1XQy5cveeuBWFhY8JoqP5euri5CQkLwxRdf8MqPHz+Obt26ISMjo9LuRd7LzMzEkCFD8N1336GosPD9CQ1NVO84DmZdJnFFIgDWJnpwtzNTfKCEKIkPV5MGQC0hAqJkpAratm0bioqKuOPRo0dLfUP4XFpaWti4cSOmTp3KK4+KikLHjh3x8uXLSr1fVXf9+nW0aNECoaGhvHJNwxqwGrYExu79uG+DxSNE5vo5QFODxouQqquslhGiWJSMVDGMMalN8caNGyeXe4lEIixfvhwLFizglcfExMDT0xNPnz6Vy32rEsYYNm3ahDZt2uDBgwe8c926dcP2o2dRz9GVV25looe1I93g62StyFAJUTqUjCgPmk1TxVy4cAF3797ljj09Pcs1576iRCIRfv75Z5iamuLbb7/lyu/duwcPDw+cOnUKjRo1ktv91dnbt2/x9ddfY+vWrbxykUiE+fPn43//+x80NDQwyMMRlxPS8DIrDxZG77pmqEWEEEpGlAklI1XMx60ilTVw9VO++eYbmJiY4IsvvoBYLAYAJCYmwtPTEydOnICLi4tC4lAXd+7cwaBBgxAXF8crt7CwwM6dO9G5c2euTFNDhLb2NRQdIiFKj5IR5UHdNFVIRkYG9uzZwx0bGxtj4MCBCrv/qFGjsHfvXt4bwMuXL9GhQwfaDVYGISEhaNWqlVQi4unpiZiYGF4iQggpHSUjyoOSkSpk165dyM3N5Y5HjBgBAwMDhcbQt29fhIWFoVq1alxZRkYGunTp8snNq6q6/Px8TJ48GcOGDUN2djbv3PTp0xEREYFatWoJFB0hqoeSEeVByUgVIlQXzcc6d+6MU6dOoXr16lxZbm4u/Pz8aAnmUiQkJMDDwwNr1qzhlVevXh2HDh3CkiVLaCl3QmREyYjyoGSkioiJicHVq1e5Y1dXV7i5uQkWT5s2bXDu3DlYWVlxZYWFhRgyZAhvmXoCHD58GG5ubrhy5QqvvGXLlrh27Rr8/PwEiowQ1UbJiPKgZKSK+HjFVXlN55VFs2bNEBkZiXr16nFlEokE48aNw4oVK4QLTEkUFhZi+vTp6N27N9LT03nnpkyZgqioKN5zRwiRDSUjyoOSkSogNzcX27dv54719PQwfPhwASN6r0GDBoiKikLTpk155QEBAZgzZ06V3fH3+fPn6NSpE5YtW8YrNzQ0REhICFatWsXtLkoIqRhNTU3eRpGUjAiHkpEqYN++fbwl2AcOHMgbryE0GxsbnD9/Hi1atOCVL1y4EN999x0kEolAkQnj1KlTcHV1RVRUFK+8WbNmuHLlCoYMGSJQZISoF5FIxGsdoWREOJSMVAHKMnC1LObm5oiIiIC3tzevfNWqVRgzZgxv+Xp1JRaLMX/+fHTt2hWvXr3inRs7diwuXbok1wXqCKmKPkxGCj/c04koFCUjau7+/fs4e/Ysd9ygQQN4eXkJF1AZjI2NcezYMfTs2ZNXHhwcjEGDBiEvT323u3/16hV69OiBefPm8bqm9PT0sGnTJmzevFnh07AJqQqoZUQ5UDKi5j6emTJ+/HheH6my0dfXx/79+6XGtBw4cAA9e/aUWl9DHVy4cAGurq44efIkr7xhw4b4999/pXY/JoRUHkpGlAMlI2qssLAQQUFB3LGmpiZGjx4tXEDlpK2tjeDgYHz11Ve88oiICPj4+CAtLU2gyCoXYwzLly+Ht7c3nj9/zjs3aNAgXLlyBc2bNxcoOkKqBkpGlAMlI2osLCwMycnJ3LGfnx9vXQ9lpqGhgTVr1mDmzJm88n///Rfe3t5ISkoSKLLKkZ6ejn79+mHatGncXj3Au0Rs1apV2L17N4yNjQWMkJCqgZIR5UDJiBpThYGrZRGJRFi8eDGWLFnCK4+Li4OnpycSEhIEiuzzXL16FW5ubjh48CCvvE6dOoiKisKUKVOUuiuNEHWira3N/ZuSEeFQMqKmnj9/jrCwMO7YxsYG3bp1EzCiips+fTrWrVvH+4B++PAhPDw8EB8fL2BksmGMYd26dWjXrp1UItWzZ0/ExMTA3d1doOgIqZqoZUQ5UDKipoKCgnjrc4wdO1al9y758ssvsXPnTt7v8OLFC3h5eUktk66MsrOzMXLkSEyaNIn3hqehoYHAwEAcOnQIZmZmAkZISNVEyYhyoGREDUkkEqnl39VhRsbQoUNx4MAB6OnpcWWvX79Gp06dcO7cOQEjK9utW7fQqlUr7Ny5k1duZWWFiIgIzJgxAxoa9KdIiBAoGVEO9A6ohs6cOcPrBujcuTPs7OwEjKjy9OzZEydOnICRkRFXlpWVBV9fXxw5ckTAyEoWHBwMd3d33Llzh1feqVMnxMbGSi3yRghRLEpGlAMlI2ro41YRVRu4+ileXl44c+YMatSowZXl5eWhX79+Uq0PQsnNzcXEiRMxatQovH37lndu9uzZOHnyJCwtLQWKjhBS7MNkRCwW82a3EcWhZETNvH79Gv/88w93bGZmhr59+woXkJy0aNECkZGRsLGx4cqKioowcuRIrF27VsDIgAcPHqBdu3bYsGEDr7xGjRo4duwYFi5cCE1NTYGiI4R86OOde2lJeGFQMqJmduzYwWtq9Pf3542xUCdNmzZFVFQU7O3tuTLGGL7++mup6cCKsm/fPrRo0QKxsbG88rZt2yImJga+vr6CxEUIKdnHyQh11QiDkhE1whiT+jY+btw4gaJRjHr16iEqKgrNmjXjlc+cORMzZszg7fMiTwUFBZg6dSoGDBiAzMxM3rmpU6fi7NmzsLW1VUgshJDyo2REOVAyokb+++8/xMXFccetW7eW+pBWR1ZWVjh37hzatGnDK1+6dCkmTZok9z7gxMREeHt7Y+XKlbxyY2Nj/PPPP/j999+l3vAIIcqBkhHlUKFkZPXq1ahXrx709PTQunVrXL58uVyPCwkJgUgkUssxDMpA1Vdc/RzVq1dHeHg4fHx8eOV///03Ro4cKbd+4GPHjsHV1RWXLl3ilbu6uuLatWvo37+/XO5LCKkclIwoB5mTkd27dyMgIABz587FtWvX4OzsjG7duuHly5dlPu7x48eYNm0aPD09KxwsKV12djZ27drFHVerVg1DhgwRMCLFMzQ0xJEjR9CvXz9eeUhICPr27Ss1q+VziMVizJ49Gz169MDr16955yZOnIiLFy/yxrIQQpQTJSPKQeZk5Pfff8eECRMwduxYODg4YN26dTAwMJDaqv5DYrEYI0aMwPz581G/fv3PCpiUbM+ePcjOzuaOhw4dyluLo6rQ1dXFnj17pHYnDgsLQ/fu3aXGc1REcnIyunTpgl9++YVXbmBggODgYPz9999qO2iYEHVDyYhykCkZKSgowNWrV3lN4RoaGvDx8UF0dHSpj1uwYAEsLCzKPZgyPz8fmZmZvB9StqrcRfMxLS0tbN68Gd9++y2v/Pz58+jYsSNevXpV4WufO3cOrq6uOHPmDK+8adOmuHz5MkaOHFnhaxNCFI+SEeUgUzKSmpoKsVgstViTpaUlb6v6D0VFRWHTpk1SszzKEhgYCBMTE+6HZiGU7datW7xk0NHREa1btxYwIuFpaGhg5cqVmDt3Lq/82rVr8PLywrNnz2S6nkQiQWBgIDp16iT1Wh8+fDguX74MR0fHz46bEKJYtM6IcpDrbJqsrCz4+/tjw4YNMDc3L/fjZs6ciYyMDO4nMTFRjlGqvo9XXB03bhxtQQ9AJBJh3rx5WLFiBa/8zp078PDwwIMHD8p1ndevX8PPzw+zZs3ibT6oo6ODdevWYfv27TA0NKzU2AkhikEtI8pBpm1czc3NoampiZSUFF55SkoKrKyspOo/fPgQjx8/hp+fH1dW/GaupaWFu3fvljjIT1dXF7q6urKEVmXl5+dj27Zt3LG2tjb8/f0FjEj5fP/99zAxMcH48eO519+TJ0/g4eGBkydPonnz5qU+9vLlyxg0aBCePn3KK7ezs8PevXvh5uYm19gJIfKlra3NO6ZkRBgytYzo6OigRYsWOH36NFcmkUhw+vRptG3bVqp+kyZNcPPmTcTGxnI/vXv3RseOHREbG0vdL5Xg0KFDvNkc/fr1k6kVqqoYO3YsQkNDeW88KSkp8Pb2LnG8E2MMq1atgoeHh1Qi0rdvX1y7do0SEULUALWMKAeZu2kCAgKwYcMGbN26Fbdv38akSZOQk5ODsWPHAgBGjRqFmTNnAgD09PTg5OTE+zE1NYWRkRGcnJxoIahKQANXy69///44cuQIDAwMuLL09HT4+PggPDycK8vMzMSQIUPw7bff8vqPtbS0sHz5cuzbtw+mpqaKDJ0QIieUjCgHmbppAGDIkCF49eoV5syZg+TkZLi4uOD48ePcoNanT59CQ4MWdpU3sYThYGQs70O0bt266Ny5s4BRKb+uXbsiPDwcPXv2RHp6OgDg7du36NWrF0JCQlC/fn0MGjQI9+/f5z3OxsYGu3fvRvv27QWImhAiL5SMKAeZkxEAmDJlCqZMmVLiubNnz5b52KCgoIrcknzgeFwS5h+Ox+0jm3h7r3j1GkyJYDm0a9cOZ8+eRdeuXbnF+goKCjBgwABoamqiqKiIV79r167Yvn07atasKUS4hBA5omREOdAnl4o5HpeESduv4cWbHGTffN8qApEGzkgccDwuSbjgVIizszOioqJQp04drowxxktERCIR5s+fj7CwMEpECFFTlIwoB0pGVIhYwjD/cDwYgLyEGIizUrlz+nZu0DKuifmH4yGWKGanWlXXsGFDbN26tcSxS9WqVcPJkycxZ84caGpqChAdIUQRKBlRDpSMqJDLCWlIysgDAIjfpkND7/1y74bOXcEAJGXk4XJCmkARqpbdu3fDz8+vxDefnJwcHD16lLeuCCFE/VAyohwqNGaECONlVh73b8NmPjBo4onMy/tR+PIR9O3dS6xHpOXn5+OHH37A6tWry6y3cuVKpKenY8OGDdDSoj8VQtQRJSPKgVpGVIiF0Uebr4kLkffoCsz7zoRIU6v0eoTz+PFjeHh4SCUipqamCA0NRffu3XnlQUFBGDJkCPLz8xUZJiFEQSgZUQ6UjKgQdzszWJvooXihd3FOOvJf3EHu/UsAABEAaxM9uNuZCRajMjt8+DBcXV1x5coVXnnLli0RExODgQMH4sCBAxgyZAjv/L59++Dn54ecnBxFhksIUQBKRpQDJSMqRFNDhLl+DgDeJR7it+kAgPTz2wCJGAAw188Bmhq0L82HioqKMH36dPTu3ZtbW6TY5MmTERUVhXr16gF498a0Y8cOTJgwgVcvPDwcXbp0wZs3bxQUNSFEESgZUQ6UjKgYXydrrB3pBisTPYhz0gEAha8TofnwPNaOdIOvk7WwASqZ58+fo1OnTli2bBmv3NDQECEhIfjrr7+k9kHS1NTE33//jZ9++olXHh0djQ4dOpS6QzUhRPVQMqIcKBlRQb5O1oia3gmjnE25svx/Q+Btb1rqY6qiU6dOwdXVFZGRkbxyJycnXLlyRao75kMikQhLly5FYGAgr/zGjRvw9PTEkydP5BIzIUSxKBlRDpSMqChNDREMJNnc8fPnz7Fq1SoBI1IeYrEYCxYsQNeuXfHq1SveuTFjxuDff/9F48aNy3WtGTNmYM2aNRCJ3nd9PXjwAB4eHrhz506lxk0IUTxVT0YKiiTYFPkIcw7GYVPkIxQUqeZyBDRfUYWlpKTwjgMDAzFhwgRUr15doIiE9+rVK4wcORInT57klevp6WH16tX44osvZL7mpEmTYGxsjNGjR0Msfjc259mzZ/D09MSJEydo915CVJgqJyOBYfHYEJmAD9e5/CXsNiZ42mFmDwfhAqsAahlRYR8nI+np6ViyZIlA0QjvwoULcHV1lUpEGjZsiEuXLlUoESk2YsQI7N+/nze+JDU1FR07dpTqBiKEqA5VTUYCw+Lx93l+IgIAEgb8fT4BgWHxwgRWQZSMqLCSBlL++eefePbsmQDRCIcxhuXLl6NDhw54/vw579ygQYNw5coVODs7f/Z9/Pz8cPz4cRgaGnJlmZmZ6Nq1K8LCwj77+oQQxdPW1uYdFxYWChRJ+RUUSbAhMqHMOhsiE1Sqy4aSERX2ccsIAOTl5WHevHmKD0Yg6enp6N+/P6ZNm8bb5E5bWxt//vkndu/eDWNj40q7X4cOHRAREQEzs/drueTl5aFPnz7YvXt3pd2HEKIYqtgyEhz9GBIGiN9mIPPaUeSnPOLt4A68ayEJjn4sTIAVQGNGVBRjrMRkBAC2bNmCH374AU2bNlVwVIp19epVDBo0CAkJ/G8IderUwZ49e9C6dWu53LdVq1Y4f/48unTpgqSkd7skFxUVYdiwYcjMzJRao4QQoryESkYYY8jNzUVGRgYyMjKQmZnJ/ftTxw+fv0JGRgbEuVmA5N2XME3DGjDz+RIGjdtx93iS9lYhv0tloGRERWVlZSEvr+Q9aCQSCWbNmoX9+/crOCrFYIzh77//xnfffSf1xtGzZ09s27aN13IhD46OjoiKikKXLl3w6NEjLq6JEyfizZs3UmuUEEKU08f7TikqGbl06RJ8fX2RmZlZ4Wtom9dBYepTAIA4+zU0DPitwHXNDD4rRkWibhoVVVqrSLEDBw4gOjpaQdEoTnZ2NkaOHIlJkybx3jQ0NDQQGBiIQ4cOyT0RKVa/fn1ERUXB0dGRVz59+nTMmjVLqtmUEKJ8RCIRr3VEUclI27ZtcebMGdSoUUPmx5qYmMCi3yww8fuuaZGWDnSt3y9ZoCEC/NvWq4xQFYKSERX1qWQEePehqE4fiPHx8XB3d8fOnTt55VZWVoiIiMCMGTOgoaHYl7S1tTXOnTsHd3d3XnlgYCAmT54MiUR1BpARUlUJkYwAgJubG86fPw9zc/NyP8bd3R0xMTEY29cHRW9ecOW6Nk0g0no/GHeCpx10tFTnI151IiU85UlGIiMj1WaWR3BwMFq1aoXbt2/zyjt27IiYmBh4e3sLFBlQo0YNnDp1Cp06deKVr127Fv7+/ioxOp+QqkyIZCQlJQUrV66Ev78/UlNTy/WYgIAAREZGws7ODs00X/DO6dZpDuBdi8iXXqq3zgiNGVFRZSUj06dPh0QiQXh4OGbNmgVfX19oamoqMLrKk5eXh2+//RYbNmyQOjd79mzMmzdPKX43IyMjHD16FEOHDsXBgwe58p07dyIrKwu7d++Gvr6+gBESQkqjqGTk7du3OHjwIIKDg3Hy5EluEcVPqV69OrZu3Qo/Pz+u7OzZs7w6fbt3gadHU/i3radSLSIcpgIyMjIYAJaRkSF0KEpjzpw5DABr06YNW7t2LQPA/cydO5er9/LlS5adnS1coJ/hwYMHzMXFhfe7AWA1atRgx44dEzq8EhUWFjJ/f3+pmDt06MAyMzOFDo8QUoI6depwf6uNGzeu1GuLxWIWERHBxo4dy4yMjKTeGz71065dO/bkyROp69rb23N19PX1WV5eXqXGXVnK+/mtgukTAd4tePb111/j3Llz6NOnD+/clStXuH/XrFkT1apVU3R4n23fvn1wc3NDbGwsr7xNmzaIiYmBr6+vMIF9gpaWFoKCgjBlyhRe+dmzZ9GpU6dyN8cSQhRHHi0j8fHxmDlzJurVq4dOnTphy5YtyMrKKrFuixYt0L17d6ny6dOn4+zZs6hTpw6vPDExEQ8fPuSO27dvL7X7uMpRUHL0WahlRNrt27d5xzY2NlyWbGlpySQSiUCRfZ78/Hz2/fffl/gNYerUqSw/P1/oEMtFIpGw2bNnS/0ODg4O7NmzZ0KHRwj5gIODA/c3amNjU+HrpKSksJUrVzI3N7dPtnjY2tqymTNnsvj4eMbY+9ZuAMzc3JyFhYWVep/g4GDetRYtWlThmOWtvJ/fNGZERTVp0oR33LJlS24p9JSUFDx79gy2trZChFZhiYmJGDJkiNSUZGNjY2zZsgX9+/cXKDLZiUQiLFy4EKamppg2bRpXHh8fD09PT4SHh8Pe3l7ACAkhxT6nZSQ3N5cbB3LixIkyx4EYGRlh4MCB8Pf3h7e3N2/2X2JiIgDA09MTu3btgo2NTanXOXPmDO+4Y8eOMsWsjKibRk20atWKd/xhV40qOH78OFxdXaUSERcXF1y9elWlEpEP/fDDD9i4cSPvTSchIQEeHh6Ii4sTMDJCSDFZkxGJRIIzZ87giy++gKWlJYYNG4awsLASExFNTU306NEDu3btQnJyMjZv3oyOHTtKLUPw7NkzzJ49GxEREWUmIgB/8KqBgQFatmz5yZiVHbWMqImPX4xXrlxBv379BIqm/MRiMebNm4dffvlFak2UCRMm4I8//lD5WSjjxo2DsbExRowYwU3zTU5OhpeXF44dOya3ZesJIeVT3mTk9u3bCA4Oxo4dO/D06dMyr+nm5gZ/f38MGzYMlpaWn4xhxYoVUgsoluTp06fcqs8A4OHhIbWkvSqiZERNtGjRgnesCi0jycnJGD58uFSTo4GBAdatWwd/f3+BIqt8gwYNgpGREfr374/c3FwAwJs3b9C5c2ccPHgQnTt3FjhCQqquspKRly9fYteuXQgODsbVq1fLvE7t2rUxcuRI+Pv7w8FBtnU+ypOIANJTejt06CDTfZQVJSNqwtzcHPXq1cPjx48BvEtGGGMQiUTCBlaKc+fOYejQoUhOTuaVN2nSBHv37i33H6Yq8fX1xcmTJ9GzZ09uP4qcnBz06NEDe/bskZoVRQhRjA+TEbFYjOzsbBw9ehTBwcE4fvx4meNADA0NMXDgQIwaNUpqHIg8qON4EYDGjKiVD8eNpKWlSe1mqwwkEgkCAwPRqVMnqURk+PDh+O+//9QyESnm4eGBs2fPombNmlxZQUEBBgwYgODgYAEjI6Tq0tbW5h3b2Nhg6NChOHr0aKnjQLp3746dO3ciJSUFW7ZsKXEciDx82DJSrVo1qVZxVUXJiBopadyIMklLS0Pv3r0xa9Ys3p4tOjo6WLt2LbZv3w5DQ0MBI1QMV1dXREZG8mY7icVijBo1Cn/99ZeAkRFS9dy5cwf37t3jlZW2k66bmxtWrFiB58+fIywsDMOGDYOBgeJ2xn38+DHX+g28m3nzcSKlqigZUSMfJyP//fefQJFIu3z5MlxdXXH06FFeuZ2dHaKjo/HVV18pbZeSPDRu3BhRUVFo1KgRr/ybb77BokWL1GqDQ0KUzcuXL/Hnn3+iVatWaNq0Ke7evVtq3dq1a2P69OmIi4vD1atX8f3335drQKo8qOt4EYDGjKgVZRzEyhjDX3/9hR9++EFqw7i+fftiy5YtMDU1FSY4gdWpUweRkZHo1q0bb6XZn3/+Genp6fj111+rVIJGiDzl5ubi8OHD2LZt2yfHgVSrVg2DBg3i1gNRhv2vAPUdLwIAIqYCX8EyMzNhYmKCjIwMGBsbCx2OUmvcuDHX5GhkZIT09HSF9GOWJDMzE+PHj0doaCivXEtLC0uXLsXUqVPpwxZAeno6evXqhQsXLvDKx40bh7///ltp3ggJUTUSiQSRkZEIDg5GaGhoqd0vH7t9+7bUwpJCY4yhXr163JRiIyMjpKWlQUtLudsUyvv5Td00aubDrpqsrCypvlBFuXHjBlq2bCmViNjY2ODs2bMICAigROT/mZqa4sSJE+jWrRuvfNOmTRg2bJjCtjQnRF3cuXMH//vf/1C/fn106NABmzZtKjURcXV1Rfv27XllyvgFICEhgbe2iaenp9InIrKgZETNKMNKrJs3b0br1q1x//59XnnXrl0RExMj9YdP3jULHzp0CAMHDuSVh4aGonfv3sjJyREoMkJUw6tXr7Bq1Sq4u7ujadOmWLx4MZ48eVJiXRsbG24cyLVr1+Du7s47r4xfANR5vAhAyYjaEXJGzdu3bzF27FiMGzcOeXl5XLlIJML8+fMRFhbGm9JK+HR0dBASEoJx48bxyotbTdLT04UJjBAllZeXhz179sDPzw+1atXCt99+W+rAfUNDQ4wePRqnTp3CkydPsGTJEm4ZgY9XMFXGZESdx4sANIBV7bi4uEBDQ4ObOquoZOTu3bsYOHCg1H4rNWvWxM6dO+Hj46OQOFSdpqYmNmzYABMTE/z+++9c+YULF9CxY0ecOHECFhYWAkZIiLAkEgmioqIQHByMPXv2lDkORENDA127doW/vz/69OmDatWqlVhP2ZMRxhivZcTY2BguLi6CxSMPlIyoGUNDQzRt2hS3bt0CAFy7dg1FRUVy7VvcvXs3xo8fj+zsbF65h4cHQkJCPrnpE+ETiUT47bffUL16dfz8889ceWxsLLfjb506dQSMkBDFu3v3LoKDg7F9+/ZSu1+Kubi4cPvCWFtbf/Layp6MPHz4EM+ePeOOvby81Gq8CEDJiFpq1aoVl4zk5ubi9u3baNasWaXfJz8/Hz/88ANWr14tde6nn37CL7/8onZ/MIoiEokwe/ZsmJqa4ptvvuHK7927Bw8PD4SHh6Nx48YCRkiI/L169QohISEIDg7+5LpJNjY2GDFiBPz9/eHk5CTTfZQ9GVH38SIAJSNqqWXLlggKCuKOr1y5UunJyOPHjzF48GCpNwhTU1Ns3boVvXv3rtT7VVVTpkyBiYkJxo4dy62LkJiYCE9PT5w4cQKurq4CR0hI5crLy8Phw4cRHByMY8eOoaioqNS61apVw4ABA+Dv74+OHTtWeBaMqiUj6jZeBKBkRC2VtBLr2LFjK+36hw8fxqhRo6QGVLZs2RJ79uyBnZ1dpd2LAP7+/jA2NsbgwYO5N8lXr16hY8eOOHr0KM1OIirvw3EgoaGhyMjIKLWuhoYGunTpAn9/f/Tt27fUcSCyUOZkhDHGG7xqamoKZ2dnASOSD5pNo4acnZ153SMVGcR6/fp1qbKioiJMnz4dvXv3lkpEJk+ejKioKEpE5KRPnz4ICwvjvfFmZGSgS5cuOH78uICREVJx9+7dw88//wx7e3t4e3tj48aNpSYizs7O+O233/Ds2TMcP34cI0aMqJREBFDuZOTBgwd48eIFd+zl5aWU66B8LmoZUUN6enpo1qwZYmJiALxLLAoKCqT+4Eqze/dubNu2jbePzIsXLzB06FBERkby6hoaGmLjxo0YMmRI5f0CpESdO3fG6dOn0b17d7x58wbAuzFBvXv3xo4dOzBo0CCBIyTk01JTU7lxIJcvXy6zbq1atbhxIPIY91ZMmZORj6f0quN4EYCSEbXVsmVLLhkpKCjAzZs3y7XVdEJCAiZOnMjbPffUqVMYPnw4Xr16xavr5OSEvXv30kBKBWrdujXOnz+PLl26IDk5GQBQWFiIoUOHIjMzU2qNEkKUQV5eHo4cOYJt27YpbByILJQ5GakK40UA6qZRWxVZibWwsBDDhw9HZmYmXrx4geTkZCxYsABdu3aVSkRGjx6Nf//9lxIRATg5OUl1iUkkEowfP563NgkhQireF2bixImwsrLCoEGDcPjw4RITkeL1QIKDg5GSkoKtW7fCx8dHYd0RypqMfDxepHr16mjevLmAEckPtYyoqZJWYv3yyy/LfMz8+fNx6dIl7tjb21tqbxs9PT2sXr0aX3zxReUFS2Rmb2+PyMhIdO3aFfHx8Vz5Dz/8gDdv3mDBggW09w8RxL1797j1QB4/flxmXWdnZ249kFq1aikmwBJoa2vzjpUlGbl37x7XAgq8e08WauNTeaNkRE05OjpCV1cX+fn5AD7dMnLmzBksXryYV/ZxItKwYUOEhoaq5UhuVWRjY4Nz586he/fuvP/fRYsWIT09HX/88YfavnER5ZKamordu3cjODgY//77b5l1ra2tuXEgyvItX1lbRqrKeBGAkhG1paOjA2dnZ26A2M2bN5Gbmwt9fX2puqmpqRg5ciQYY6Veb+DAgdi0aVOZW0ATxTM3N8fp06fRu3dvnDt3jiv/66+/kJ6eji1bttDCc0QuiseBBAcHIyws7JPjQPr37w9/f3906tRJ6WaDKGsyUlXGiwA0ZkStfThuRCwWlzhdlzGGsWPH8qaOfcze3h7Lli2jRERJGRsb49ixY+jVqxevfPv27Rg4cCBv00JCPgdjDFFRUfjyyy9hbW2NQYMG4dChQ6WOA+nSpQuCg4ORnJyMbdu2oUuXLkqXiADKmYx8vB9NjRo1ZF5ZVpVQMqLGyrOD719//YUjR46UeZ2HDx+iUaNGGDduHB48eFCpMZLKoa+vj3379mH48OG88oMHD6Jnz57IysoSKDKiDu7fv485c+bA3t4enp6eWL9+fam7SDdv3hy//vorEhMTcfLkSYwcOZI3O08ZKWMycufOHaSkpHDH6jxeBKBuGrVW0kqsH7p+/TqmTZtWrmsVFRXhxIkTqFWrFmbPng1dXd1Ki5NUDm1tbQQHB8PExARr167lyiMiIuDj44Njx47BzMxMwAiJKnn9+jU3DuTDge0lUcZxILL4OBkpLCwUKJL3qtJ4EYCSEbXWtGlTGBgY4O3btwD4LSM5OTkYOnToJ78B6Orqol+/fhg7diw6d+6slE2s5D0NDQ2sXr0apqamCAwM5MovX74Mb29vnDx5sly7mJKqKT8/nzcOpKwPZQMDA24ciKq/Nyhjy0hVGi8CUDKi1jQ1NeHm5oaoqCgAwO3bt3H6xhN0cKqD7777Dnfu3Cn1sW3atMGYMWMwZMgQmJqaKihiUhlEIhEWL14MU1NTTJ8+nSuPi4uDh4cHTp06Rcv2Ew5jDBcvXkRwcDB2795davcL8O611blzZ4waNQr9+vVT+u6X8lK2ZOTj8SLm5uZwcHAQLiAFoGREzZnXawr8fzLCGMOIpSEwkmThQcgmqbq1atXCqFGjMHr0aDRp0kTRoZJK9tNPP8HU1BRfffUVN1Pq0aNH8PDwQHh4uNq/uZGyPXjwgFsP5NGjR2XWbdasGfz9/TF8+HDY2NgoKELFUbZkJD4+nrfQpLqPFwEoGVFrx+OSEJVhwivLTbiGl1ffD1gt7oYZM2aMQlc8JIoxceJEmJiYYOTIkdyMhxcvXsDLywvHjh2TWqmXqLfXr19jz5492LZt2yfHgVhZWXHjQNR9bSFlS0aqWhcNQMmI2hJLGOYfjoeOVUNeeXbsMbCCt9Cxbgwbd19c3jQH5jVoUKM6GzJkCIyMjDBgwABumu/r16/RqVMnHD58WO0Hxqk7sYThckIaXmblwcJID+52ZtDUeL/6bn5+Po4ePYrg4GAcPXr0k+NA+vXrx40DqSpr1ChbMlLVBq8CFUxGVq9ejV9//RXJyclwdnbGqlWr4O7uXmLdDRs2YNu2bYiLiwMAtGjRAosXLy61PqkclxPSkJSRB63q1hDpGIAVvAU0NKFhYAqr4cugbW4LCYD76QzmNYSOlshbjx49cOLECfTq1Yub5pudnQ1fX1+EhobCz89P4AhJRRyPS8L8w/FIyni/loy1iR7m9GoKk6zH2LZtG/bs2cPt8lyS4nEg/v7+6NevH4yMjBQRulJRpmREIpHwFjCsWbNmlehSlTkZ2b17NwICArBu3Tq0bt0aK1euRLdu3XD37l1YWFhI1T979iyGDRuGdu3aQU9PD0uXLkXXrl1x69Yttex7VBYvs969OYlEGjD3mwYtY3NomdWGhpZOifWI+vPy8sKZM2fg6+uL1NRUAO++Nffr1w9bt27FiBEjBI6QyOJ4XBImbb+GD9dNLnzzArejzqD3srMoSk8q8/FOTk7cOJDatWvLN1glp0zJyK1bt7i/T+Bdq0hV2GdK5mTk999/x4QJEzB27FgAwLp163D06FFs3rwZM2bMkKq/Y8cO3vHGjRvxzz//4PTp0xg1alQFwyafYmGkx/3boEHprVAf1iPqr0WLFoiMjISPjw+eP38O4N3qvP7+/sjIyMDXX38tcISkPIq7YYsTkbcP/0Pmxd3If1H6DDng3TiQ4cOHc+NAqsKHXHl83B0lZDJSFceLADKuwFpQUICrV6/Cx8fn/QU0NODj44Po6OhyXePt27coLCwsc/Gl/Px8ZGZm8n6IbNztzGBtoofS3mpEeNec625H40WqmiZNmiAqKgoNGjTgyhhjmDx5MgIDA8vco4goh+Ju2GKS3KxSExF9fX2MGDECx48fR2JiIpYvXw4XFxdKRD4gEol4rSNCJiNVcbwIIGMykpqaCrFYDEtLS165paUlb5vjskyfPh21atXiJTQfCwwMhImJCfdja2srS5gEgKaGCHP93vUzfvyWU3w818+BN9CNVB316tVDZGSk1GqZs2bNwowZMyghUXLF3avi3CzkProKkaY2RNofroosgl5dZ3w7fwVSUlKwfft2dOvWrcoMSK0IZUhGPh4vYmlpWWWWWVDoK3PJkiUICQnB2bNnoadXevfAzJkzERAQwB1nZmZSQlIBvk7WWDvSTWqAm5WJHub6OcDXiVbirMqsrKxw9uxZ9OzZk9eyuWzZMqSnp2PNmjU01VuJFBYW4ubNm7h06RKOnDqP5+eiUJT2HNo168Fy6C8waNQOBSkPUc2pE6o17QAtY3MMHdGmSg5IrQhtbW3u30IlIzdv3kRaWhp3XFXGiwAyJiPm5ubQ1NTkbd4DACkpKbCysirzsb/99huWLFmCU6dOfXLvAl1dXdr7pJL4Olmji4NVmVP/SNVVvXp1hIeHo1+/fggPD+fK169fj4yMDGzbtk1qcB+RP8YYnj17hkuXLuHff//Fv//+iytXrkjtwKxdwxaWQxZB08AEZt0mQ6SlC5FIBBHefemgbtjyU4aWkao6XgSQMRnR0dFBixYtcPr0afTt2xfAu2al06dPY8qUKaU+btmyZfjll19w4sQJqc3biPxpaojQ1p7m75KSVatWDYcPH8bw4cOxb98+rnz37t3IzMzE3r17YWBgIGCE6i87OxtXrlzhEo9Lly4hKans2TA29epD1HMetKqZggHQ0H7X2kzdsBWjDMlIVR0vAlSgmyYgIACjR49Gy5Yt4e7ujpUrVyInJ4ebXTNq1CjY2Nhwm3QtXboUc+bMwc6dO1GvXj1ubImhoaHa7GtAiKrT1dXF7t27MWHCBAQFBXHlx44dg6+vLw4fPgwTE5PSL0BkxhjDn3/+ic2bNyMuLg4SiaTcj7W3t8e5c+dw840GdcNWEqGTEYlEgvPnz3PH1tbWaNSokcLjEIrMyciQIUPw6tUrzJkzB8nJyXBxccHx48e5Qa1Pnz7lraG/du1aFBQUYODAgbzrzJ07F/Pmzfu86AkhlUZLSwubNm2CiYkJ/vjjD648MjISnTp1wvHjx1GzZk0BI1QvIpEIEydOxJMnT3Djxo1yP87Ozg5nzpyBjY0NbGxA3bCVROhk5Pr167zF6arSeBEAEDEVGDafmZkJExMTZGRkwNjYWOhwCFFrjDEsWLBA6stCkyZNcPLkSRpMLgdnzpzBsGHDpMbjfaxOnTo4d+4c6tWrp5jAqhAXFxdcv34dwLtVT1++fKnQ+69YsYI3cWP9+vWYMGGCQmOQh/J+fqv3NoCEEJmJRCLMnTsXK1eu5JXfuXMHHh4euH//vjCBqanExEQEBQV98sPPxsYGERERlIjIidAtI1V5vAhAyQghpBTfffcdtmzZwut2ffr0KTw9PblvkKTiMjMzMWvWLDRq1Ajbtm0rc20Xa2trREREwN7eXoERVi1CJiNisZg3XsTGxoa3KGFVQMkIIaRUY8aMQWhoKO+NOiUlBR06dMDFixcFjEx1FRYWYvXq1WjQoAECAwOlput+zMLCAhEREVVqMKMQhExGYmNjkZGRwR1XtfEiACUjhJBP6N+/P44ePcqb3pueno4uXbrw1iYhZWOM4cCBA3BycsKUKVPw6tUr3nk9PT3MnDkTzs7OXJm5uTlOnz5dZVbhFNKHyYhYLJZpdtPnqsrrixSjZIQQ8kk+Pj44deoUTE1NubK3b9+iV69evLVJSMn+/fdfeHl5oV+/frh37x7vnEgkwujRo3Hv3j0sXryYm7FkZmaGU6dOwcnJSYiQq5yPF/crLCxU2L0/Tkaq2ngRgJIRQkg5tW3bFufOnePtTVVQUIBBgwbx1iYh7z169AhDhw5FmzZtEBUVJXW+c+fOuHbtGoKCgrhZSgYGBjA1NUV4eDivlYTIl7Y2PxnJzctXyH2Liop440VsbW1Rv359hdxbmVAyQggpt+bNmyMyMhJ169blyiQSCcaOHctbm6SqS0tLww8//IAmTZpg9+7dUucdHR0RFhaG8PBwuLi48M7VqlULJ06cgJubm4KiJcfjknDuQRqvzOe3UzgeV/YquJUhNjaWtzN9VRwvAlAyQgiRUcOGDREVFSU1juH777/HvHnzqvSOv/n5+fj999/RoEED/P7771JN/dbW1tiwYQNiY2PRvXv3Ej90fvvtN7i7uysq5CrveFwSJm2/hjwJ/+Mw5U0OJm2/JveE5OMpvVVxvAhAyQghpAJq166N8+fPS317nz9/PqZOnarQwX/KgDGG3bt3o2nTpvjhhx94K2kC7/b/mT9/Pu7fv4/x48dDS6v0xa+rVasm73DJ/xNLGOYfjgcDINLk/58wcREAYP7heIgl8kuwabzIO5SMEEIqpGbNmoiIiICnpyev/I8//sC4ceNQVFQkUGSKFRkZiTZt2mDo0KFISEjgndPQ0MDEiRNx//59zJkzhxINJXM5IY3b10c6GSkEA5CUkYfLCWklPPrzFRUVITIykjuuW7cu7Ozs5HIvZSfz3jSEEFLMxMQEx48fx6BBgxAWFsaVBwUFISMjA7t27YKurq6AEcrP3bt3MWPGDBw4cKDE8z179sTSpUvh6Oio2MBIub3Mer/Gi6GzL/TsWqDwzQvomNeBplGNEutVpmvXriErK4s7rqqtIgC1jBBCPpOBgQH279+PIUOG8Mr379+PXr16ITs7W6DI5OPVq1eYMmUKHB0dS0xEXF1dcfr0aRw5coQSESVnYaTH/VvHwg4GDdyha9UAb85shjjjVYn1KhONF3mPkhFCyGfT0dHBjh07MHHiRF75qVOn0KVLF6kxFKooNzcXgYGBsLe3x+rVqyEWi3nnbW1tERwcjCtXrqBTp04CRUlk4W5nBmsTPXw4jFi3tgNYYR6Stn6P7OsnYGWsC3c7M7ncn8aLvEfJCCGkUmhqamLdunWYPn06r/zSpUvw9vZGcnKyQJF9HolEgq1bt6JRo0aYNWsWr1kdAIyNjbFkyRLcvXsXI0eO5O3lQ5SbpoYIc/0cAIBLSEQiDVRz7ARWlI/Xx1dB9/yfyMrMKP0iFVRYWMgbL2JnZ8ebMl/V0F8NIaTSiEQiLFmyBIGBgbzymzdvwtPTE48fPxYmsAo6deoUWrRogTFjxuDZs2e8c1paWvjmm2/w4MEDTJ8+Hfr6+gJFST6Hr5M11o50g5XJ+66Yak7vW7bOnzgMFxcXREdHV+p9r169ipycHO64KreKAJSMEELkYMaMGVizZg1vHY0HDx7Aw8MDt2/flqqvbN04cXFx6NGjB7p06YLY2Fip8/3790d8fDz+/PNPbvl2orp8nawRNb0Tdk1ogz+GumDvj33h/UFy8OTJE3h6emLx4sVS3XMVReNF+CgZIYTIxaRJk7B9+3ZoampyZc+fP4eXlxeuXr3Kq/vdd9/h7t27ig5RSlJSEiZMmABnZ2ccO3ZM6nzxsu7//PMPGjZsKECERF40NURoa18DfVxs0Na+BsaOGcM7LxaL8b///Q9du3bFixcvPvt+NF6ET8RUYLnEzMxMmJiYICMjA8bGxkKHQwiRwZEjRzBo0CDk5b2fHmlkZIQjR47Ay8sLhYWFsLCwQNu2bXnTgxUpOzsbv/32G3799Ve8fftW6nz9+vWxZMkSDBw4sEou1V0VZWdnw8rKiteVUszc3BxBQUHo2bNnha5dUFCA6tWrc681e3t7PHjw4LPiVVbl/fymlhFCiFz16tULx44dg6GhIVeWlZWFbt26ISwsDBcvXkR6ejqOHTuGo0ePKjS2oqIirF+/Hg0bNsT8+fOlEhEzMzOsWLEC8fHxGDRoECUiVYihoSEGDhxY4rnU1FT06tULU6dORX6+7BvqXblyhfdaq+qtIgAlI4QQBejQoQPOnDmDGjXeLySVl5eHPn36YMaMGVzZ1KlTUVBQIPd4GGM4evQonJ2d8eWXX0rN9NHR0cG0adPw4MEDfP/992q7cBsp25iPumo+tnLlSrRt2xb37t2T6bofd9FU9fEiACUjhBAFadmyJc6fP49atWpxZUVFRbh06RJ3fP/+fbnv/nvt2jX4+PigV69eiI+Plzo/bNgw3L17F7/++iuqV68u11iIcvPy8kK9evXKrBMTEwM3NzcEBQWVuklkaGgoLl++zB1/PHjV29v7s2NVdZSMEEIUxsHBAVFRUahfv36pdRYuXCiXNUmePn0Kf39/tGjRAhEREVLnvb29cfnyZezcufOTH0CkatDQ0MCoUaM+WS8nJwcTJ07E8uXLSzyflZWFDh06YN++fSgoKMCFCxe4cw0aNEDt2rUrLWZVRckIIUShsrOz0b59+1LPZ2VlYebMmZV2v4yMDMyYMQONGjXC9u3bpc43btwYBw8exJkzZ9CqVatKuy9RD59KRlauXImYmBhkZ2dj2rRpJdYxNDREbm4uBg4ciPHjxyM3N5c792EXTVpaGtLT0yslblVDyQghRO4YY9iyZQvc3NzQvHlzBAcHl1k/KCiI16xdEQUFBVi1ahUaNGiApUuXSg00tLCwwJo1a3Dz5k307t2bBqeSEtnb28PLy6vU85GRkXB2doaOjk6pdYp3a2aMSb3237x5gzFjxqBx48ZwdXWFtrZ25QSuYigZIYTInUgkQp8+fdCzZ08YGRmV6zHffvstJBKJzPdijGHfvn1wdHTEt99+i9TUVN55fX19zJ49Gw8ePMCkSZOq7Js/Kb/Ro0dz/9bR0eEt+f/PP//gzz//LPPxH84k+9jevXuxdetW3Lt3D8uXL+cSl6qGkhFCiEKYmZlh4cKFePLkCebMmfPJNYP+/fffErtVynLp0iV4enpiwIABUus2iEQijB07Fvfu3cPChQvLnRQRMmjQIBgYGAAAvvrqKyxYsIB3ftq0abyB2B8rT4Lh4+ODAQMGfF6gqoypgIyMDAaAZWRkCB0KIaSSpKWlsblz5zITExMGoMQfKysrlpmZ+clrPXjwgA0aNKjU63Tt2pXFxsYq4Lci6srf35/p6OiwZ8+eMbFYzHx9fXmvsTp16rDU1NQSH3v79u1SX5sAmJaWFouPj1fwb6QY5f38ppYRQoggqlevjnnz5uHx48eYP38+TE1NpeokJyfjl19+gVjCEP3wNQ7GPkf0w9cQS95NoXz9+jWmTp2Kpk2bIjQ0VOrxzZo1w/Hjx3HixAk4OzvL+1ciamzMmDEYP348bGxsoKGhgeDgYN4smKdPn2LUqFEldi1+qmWk+DVcldFy8IQQpZCRkYFVq1bh999/522cp6WtA6dvN+CN1vsF0ywNNNAsMxr/bFpV4uyDWrVqYeHChRg9ejRvbxxCKkoikeDVq1ewtLTkyqKjo+Hl5YWioiKuLDAwkLeQH/BukKqZmVmJ161Vqxbu3Lmjtt2G5f38pmSEEKJUMjMzuaQkLS0NAKDfwB0WA+aAMQne3o7Em3NbIc58KfVYQ0NDTJ8+HVOnTq2yAwGJYq1YsQIBAQHcsYaGBiIiIngLmRUUFJS6iu+uXbswdOhQuccpFEpGCCEqLT0jE80HT8XzyL2Q5GbCrMskZN88hYLk+1J1NTU1MWHCBMybN4/3zZUQeWOMYcCAAdi/fz9XZmVlhdjYWN5rUUdHB4WFhbzHduzYEadPn1braeW0UR4hRKXdTi2Ehmt/2Hy5EabeY5B9MxwFLxOk6nl06oabN29i7dq1lIgQhROJRNi8eTNvVeHk5GQMHz4cYrGYK/u4pU5TUxOrVq1S60REFpSMEEKU0susPACAhq4BTNoMhOWwQBg28+HO61g1gOWwxZi2fFOVH/xHhGVqaorQ0FDewmcRERGYP38+d/zxWiPffvstHB0dFRajsqNkhBCilCyM9HjHGjr6MPXyh7aFHcz9psFq1O/Qq9Ncqh4hQnBzc5Pa5HHRokU4ceIEAH7LiJWVFebNm6fI8JQeJSOEEKXkbmcGaxM9fNiIrWlgAusxf6KaQwdoiDRgbaIHd7uSZykQomhffvklhg8fzh0zxjBy5EgcjLqJIo33A1h//fVXGv/4EUpGCCFKSVNDhLl+DgDAS0hEIhF3PNfPAZoa1OdOlINIJMLff/+NJk2acGWpqakYMnQIErPejR8xqtcMNZw7CRWi0qJkhBCitHydrLF2pBusTPhdMVYmelg70g2+TtYCRUZIyQwNDREaGgpdvfev2fzntyHJSgVEGjDqOBFf74jB8bgkAaNUPlpCB0AIIWXxdbJGFwcrXE5Iw8usPFgYveuaoRYRoqyaOjiidq9v8XDvMq6sKCMFevatoG1hBwCYfzgeXRys6HX8/ygZIYQoPU0NEdra1/h0RUKUwOWENBTZe8GweSyyb5zkyrVN3k09ZwCSMvJwOSGNXtf/j5IRQgghpBIVT0uv7vMl8pPuoSg9CdU7TYCRi2+J9QglI4QQQkilKp5urqGti5p9Z4JJxNAxr1NqPULJCCGEEFKpiqelJ2fkQdvMRuq8CO8GYdO09PdoNg0hhBBSiUqblv7hMU1L56NkhBBCCKlkNC1dNtRNQwghhMgBTUsvP0pGCCGEEDmhaenlQ900hBBCCBEUJSOEEEIIERQlI4QQQggRFCUjhBBCCBEUJSOEEEIIERQlI4QQQggRFCUjhBBCCBEUJSOEEEIIERQlI4QQQggRFCUjhBBCCBFUhZKR1atXo169etDT00Pr1q1x+fLlMuuHhoaiSZMm0NPTQ7NmzRAWFlahYAkhhBCifmRORnbv3o2AgADMnTsX165dg7OzM7p164aXL1+WWP/ixYsYNmwYxo0bh5iYGPTt2xd9+/ZFXFzcZwdPCCGEENUnYowxWR7QunVrtGrVCn/99RcAQCKRwNbWFt988w1mzJghVX/IkCHIycnBkSNHuLI2bdrAxcUF69atK9c9MzMzYWJigoyMDBgbG8sSLiGEEEIEUt7Pb5laRgoKCnD16lX4+Pi8v4CGBnx8fBAdHV3iY6Kjo3n1AaBbt26l1geA/Px8ZGZm8n4IIYQQop5kSkZSU1MhFothaWnJK7e0tERycnKJj0lOTpapPgAEBgbCxMSE+7G1tZUlTEIIIYSoEKWcTTNz5kxkZGRwP4mJiUKHRAghhBA50ZKlsrm5OTQ1NZGSksIrT0lJgZWVVYmPsbKykqk+AOjq6kJXV1eW0AghhBCiomRqGdHR0UGLFi1w+vRprkwikeD06dNo27ZtiY9p27Ytrz4AhIeHl1qfEEIIIVWLTC0jABAQEIDRo0ejZcuWcHd3x8qVK5GTk4OxY8cCAEaNGgUbGxsEBgYCAL777jt4e3tj+fLl6NmzJ0JCQnDlyhWsX7++cn8TQgghhKgkmZORIUOG4NWrV5gzZw6Sk5Ph4uKC48ePc4NUnz59Cg2N9w0u7dq1w86dOzF79mzMmjULDRs2xIEDB+Dk5FR5vwUhhBBCVJbM64wIgdYZIYQQQlSPXNYZIYQQQgipbJSMEEIIIURQlIwQQgghRFCUjBBCCCFEUJSMEEIIIURQlIwQQgghRFCUjBBCCCFEUJSMEEIIIURQlIwQQgghRFAyLwcvhOJFYjMzMwWOhBBCCCHlVfy5/anF3lUiGcnKygIA2NraChwJIYQQQmSVlZUFExOTUs+rxN40EokEL168gJGREUQiUaVdNzMzE7a2tkhMTKQ9b+SInmfFoedaMeh5Vgx6nhVDns8zYwxZWVmoVasWbxPdj6lEy4iGhgZq164tt+sbGxvTC10B6HlWHHquFYOeZ8Wg51kx5PU8l9UiUowGsBJCCCFEUJSMEEIIIURQVToZ0dXVxdy5c6Grqyt0KGqNnmfFoedaMeh5Vgx6nhVDGZ5nlRjASgghhBD1VaVbRgghhBAiPEpGCCGEECIoSkYIIYQQIihKRgghhBAiKLVPRlavXo169epBT08PrVu3xuXLl8usHxoaiiZNmkBPTw/NmjVDWFiYgiJVbbI8zxs2bICnpyeqV6+O6tWrw8fH55P/L+Q9WV/TxUJCQiASidC3b1/5BqgmZH2e09PTMXnyZFhbW0NXVxeNGjWi949ykPV5XrlyJRo3bgx9fX3Y2tpi6tSpyMvLU1C0qun8+fPw8/NDrVq1IBKJcODAgU8+5uzZs3Bzc4Ouri4aNGiAoKAg+QbJ1FhISAjT0dFhmzdvZrdu3WITJkxgpqamLCUlpcT6Fy5cYJqammzZsmUsPj6ezZ49m2lra7ObN28qOHLVIuvzPHz4cLZ69WoWExPDbt++zcaMGcNMTEzYs2fPFBy56pH1uS6WkJDAbGxsmKenJ+vTp49iglVhsj7P+fn5rGXLlqxHjx4sKiqKJSQksLNnz7LY2FgFR65aZH2ed+zYwXR1ddmOHTtYQkICO3HiBLO2tmZTp05VcOSqJSwsjP3vf/9j+/btYwDY/v37y6z/6NEjZmBgwAICAlh8fDxbtWoV09TUZMePH5dbjGqdjLi7u7PJkydzx2KxmNWqVYsFBgaWWH/w4MGsZ8+evLLWrVuzL7/8Uq5xqjpZn+ePFRUVMSMjI7Z161Z5hag2KvJcFxUVsXbt2rGNGzey0aNHUzJSDrI+z2vXrmX169dnBQUFigpRLcj6PE+ePJl16tSJVxYQEMDat28v1zjVSXmSkZ9++ok5OjryyoYMGcK6desmt7jUtpumoKAAV69ehY+PD1emoaEBHx8fREdHl/iY6OhoXn0A6NatW6n1ScWe54+9ffsWhYWFMDMzk1eYaqGiz/WCBQtgYWGBcePGKSJMlVeR5/nQoUNo27YtJk+eDEtLSzg5OWHx4sUQi8WKClvlVOR5bteuHa5evcp15Tx69AhhYWHo0aOHQmKuKoT4LFSJjfIqIjU1FWKxGJaWlrxyS0tL3Llzp8THJCcnl1g/OTlZbnGquoo8zx+bPn06atWqJfXiJ3wVea6joqKwadMmxMbGKiBC9VCR5/nRo0eIiIjAiBEjEBYWhgcPHuDrr79GYWEh5s6dq4iwVU5Fnufhw4cjNTUVHh4eYIyhqKgIX331FWbNmqWIkKuM0j4LMzMzkZubC319/Uq/p9q2jBDVsGTJEoSEhGD//v3Q09MTOhy1kpWVBX9/f2zYsAHm5uZCh6PWJBIJLCwssH79erRo0QJDhgzB//73P6xbt07o0NTK2bNnsXjxYqxZswbXrl3Dvn37cPToUSxcuFDo0MhnUtuWEXNzc2hqaiIlJYVXnpKSAisrqxIfY2VlJVN9UrHnudhvv/2GJUuW4NSpU2jevLk8w1QLsj7XDx8+xOPHj+Hn58eVSSQSAICWlhbu3r0Le3t7+Qatgirymra2toa2tjY0NTW5sqZNmyI5ORkFBQXQ0dGRa8yqqCLP888//wx/f3+MHz8eANCsWTPk5ORg4sSJ+N///gcNDfp+XRlK+yw0NjaWS6sIoMYtIzo6OmjRogVOnz7NlUkkEpw+fRpt27Yt8TFt27bl1QeA8PDwUuuTij3PALBs2TIsXLgQx48fR8uWLRURqsqT9blu0qQJbt68idjYWO6nd+/e6NixI2JjY2Fra6vI8FVGRV7T7du3x4MHD7hkDwDu3bsHa2trSkRKUZHn+e3bt1IJR3ECyGibtUojyGeh3IbGKoGQkBCmq6vLgoKCWHx8PJs4cSIzNTVlycnJjDHG/P392YwZM7j6Fy5cYFpaWuy3335jt2/fZnPnzqWpveUg6/O8ZMkSpqOjw/bu3cuSkpK4n6ysLKF+BZUh63P9MZpNUz6yPs9Pnz5lRkZGbMqUKezu3bvsyJEjzMLCgi1atEioX0ElyPo8z507lxkZGbFdu3axR48esZMnTzJ7e3s2ePBgoX4FlZCVlcViYmJYTEwMA8B+//13FhMTw548ecIYY2zGjBnM39+fq188tffHH39kt2/fZqtXr6apvZ9r1apVrE6dOkxHR4e5u7uzS5cucee8vb3Z6NGjefX37NnDGjVqxHR0dJijoyM7evSogiNWTbI8z3Xr1mUApH7mzp2r+MBVkKyv6Q9RMlJ+sj7PFy9eZK1bt2a6urqsfv367JdffmFFRUUKjlr1yPI8FxYWsnnz5jF7e3ump6fHbG1t2ddff83evHmj+MBVyJkzZ0p8zy1+bkePHs28vb2lHuPi4sJ0dHRY/fr12ZYtW+Qao4gxatsihBBCiHDUdswIIYQQQlQDJSOEEEIIERQlI4QQQggRFCUjhBBCCBEUJSOEEEIIERQlI4QQQggRFCUjhBBCCBEUJSOEEEIIERQlI4QQQggRFCUjhBBCCBEUJSOEEEIIERQlI4QQQggR1P8Bm4Du0xB+7i0AAAAASUVORK5CYII=", + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAiMAAAGdCAYAAADAAnMpAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjcuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/bCgiHAAAACXBIWXMAAA9hAAAPYQGoP6dpAACWpElEQVR4nOzddVhU6dsH8O8wpAoYtIDdHT9RsUWxUFGxuxVddzHWxnZtXXPFwsLCDhSxFUXF7kSUUEABaWbO+wcvRx5mQAamuT/XxbWee86cczMLzD1PCjiO40AIIYQQoiI6qk6AEEIIIYUbFSOEEEIIUSkqRgghhBCiUlSMEEIIIUSlqBghhBBCiEpRMUIIIYQQlaJihBBCCCEqRcUIIYQQQlRKV9UJ5IVYLEZYWBiMjY0hEAhUnQ4hhBBC8oDjOMTHx8PGxgY6Ojm3f2hEMRIWFgY7OztVp0EIIYSQfAgNDYWtrW2Oj2tEMWJsbAwg45sxMTFRcTaEEEIIyYu4uDjY2dnx7+M50YhiJLNrxsTEhIoRQgghRMP8bogFDWAlhBBCiEpRMUIIIYQQlaJihBBCCCEqRcUIIYQQQlSKihFCCCGEqBQVI4QQQghRKSpGCCGEEKJSVIwQQgghRKWoGCGEEEKISslcjFy7dg0uLi6wsbGBQCDA8ePHf/ucK1euoH79+jAwMEDFihWxa9eufKRKCCGEEG0kczGSkJCAOnXqYOPGjXk6/8OHD+jcuTNat26Nhw8f4s8//8TIkSNx/vx5mZMlhBBCiPaReW+ajh07omPHjnk+f8uWLShXrhxWrVoFAKhWrRpu3LiBNWvWwNnZWdbbE0IIIUTLKHyjvMDAQDg5OTExZ2dn/Pnnnzk+JyUlBSkpKfxxXFycotIjWkQk5hD0IQZf45NhYWyIRuVKQqiT++ZMmkKbvzdCCFF4MRIREQFLS0smZmlpibi4OCQlJcHIyEjiOUuXLsX8+fMVnRrRIn5PwzH/1HOExybzMWtTQ3i6VEeHmtYqzKzgtPl7I4QQQE1n08yYMQOxsbH8V2hoqKpTImrM72k4xu0NZt6sASAiNhnj9gbD72m4ijIrOG3+3gghJJPCixErKytERkYyscjISJiYmEhtFQEAAwMDmJiYMF+ESCMSc5h/6jk4KY9lxuafeg6RWNoZ6k3a9/bjxj7EBh5CemIsAM393gghJCuFFyNNmjRBQEAAE/P390eTJk0UfWtSCAR9iJFoNeDEIqTHfcv4N4Dw2GQEfYhRQXYFk/17S0/4gbigo/hxbTe+bB6GKL/1CHn7SiO/N0IIyUrmYuTnz594+PAhHj58CCBj6u7Dhw/x6dMnABldLIMHD+bPHzt2LN6/f49p06bh5cuX2LRpEw4dOoS//vpLPt8BKdS+xv96s/5xbQ/Ctrvj06oe+PLfSHCidKnnaYrsOf+4vB1cWsbAbi49FT8fnUf4DneMG9gDZ86cgVgsVkWahBBSYDIXI/fu3UO9evVQr149AICHhwfq1auHuXPnAgDCw8P5wgQAypUrhzNnzsDf3x916tTBqlWrsG3bNprWS+TCwtiQ/3f6z2ikRYUAYhEgFiHm8naI///NO+t5miJ7zikRb6We9+j2NXTp0gVVq1bFxo0b8fPnT2WkRwghciPgOE7tO5zj4uJgamqK2NhYGj9CGCIxh2bLLiEiNhk/bh/Bj6u7mMeFJhYo33ksnu/xhK5QLcdr5yjr98YB+OI1FgJdAxiUroKEpwF8K0l2pqamGDlyJCZMmICyZcsqNWdCCMkqr+/fmvXXmZBshDoCeLpUBwDol7KVeFwU9xVvfBagnVNbPHr0SNnpFUjW70308zvSYz4j7es7mDr0gu24XSjRaijMrWwknhcbG4tVq1ahQoUK6NWrF27cuAEN+MxBCCnEqBghGq9DTWtsHlgf1vblmbhesRL8vzP3Rxo3bhyioqKUnWK+ZX5vhlEv+VjCi2sobWWO/euXICw0BIcOHULTpk0lnisWi+Hr64vmzZujYcOG2LNnD1JTU5WZPiGE5Al10xCtkZScAuNiRSESiQAANWvWxNOnTyXOK168OObPn49x48ZBT09P2Wnmy5gxY7B161YAQMWqNfDy2ROJFViDgoKwbt06HDp0COnp6dIuAysrK4wfPx5jxoyBhYWFwvNWFFqRlhDNkNf3bypGiFapXLky3rx5AwAwMzNDtWrVcP36dannVq9eHWvXrkW7du2UmWK+VKlSBa9fv+aPnz59iho1akg9NywsDJs2bcKWLVsQHR0t9RwDAwP0798fkyZNQp06dRSSs6LQirSEaA4aM0IKpSpVqvD/joqKgoeHR47nPn/+HO3bt0e3bt3w7t07ZaSXL2FhYUwhAgA+Pj45nm9jY4NFixYhNDQUXl5eqFmzpsQ5KSkp2LlzJ+rWrYs2bdrgxIkTfIuSOqMVaQnRTlSMEK1StWpV5tjCwgLNmjXL9TknT55E9erVMX36dMTHxysyvXy5cuWKRMzHx+e3g1KNjIwwcuRIPH78GBcvXkSXLl2knnf58mV0794dlStXxrp169R2Y0ptXm2XkMKOihGiVbK2jADA69evMW/evN8+LzU1FcuWLUPlypVx4sQJBWWXP9KKkffv3yMoKChPzxcIBGjbti1OnTqF169fY+LEiShatKjUa/7555+wtbXFX3/9hffv3xc0dbnKuiJtypeXEKckMI9r8mq7hBR2VIwQrZK9GHn58iXatGkDR0fHXJ9XrVo1TJ06FYcOHULnzp0VmaLMLl++LDWeW1dNTipVqoR///0Xnz9/xqpVq6SuQxIfH4+1a9eiYsWK6N69O65cuaIWU4MzV6TlRGn4enQRPm8cgq/HlyI18r3U8wghmoOKEaJVshcjr169gkAgyLV1REdHBwsXLsTy5cvRvHlz6OrqKjjLvPv8+TPevpW+8urBgwfzPc6jePHi8PDwwNu3b3H06FG0aNFC4hyO43DixAm0bt0adevWxc6dO5GcrLo3+swVaRNf3YI48Qe4tGQkvbqJH7d8pJ5HCNEcVIwQrWJubo7ixYvzx69evQIAtG3bNsfWEbFYjH79+uH8+fPKSFEm0rpoMkVEROT6eF4IhUK4urri6tWrCA4OxpAhQ6Cvry9x3uPHjzF8+HDY29vD09MTERERBbpvfjQqVxLWpoaIf3iOiRet1goAIEDGrJpG5UoqPTdCSMFQMUK0ikAgYAaxvn37Funp6RAIBPD09GTOtbOz4/+dlpYGV1dX3LhxQ2m55sXvio39+/fL7V716tXDrl27EBISAk9PT6nrkHz79g0LFiyAvb09Bg8ejODgYLnd/3eEOgIMqaqDlFB27Zj0uG/IXGHE06U6rTdCiAaiYoRonaxdNWlpafjw4QNSU1Nx8eJFmJubAwDq1q2LW7duoUyZMvy5SUlJ6Ny5Mx48eKD0nHOS03iRTL6+vkhJkb5HTX5ZWVlh3rx5CAkJ4af/ZpeWloY9e/agQYMGaNGiBXx9fXNcaE2engb4SsQSnlyApYkBNg+sT+uMEKKhqBghGu/79+9YvHgxnj9/DkBy3MiJEyfQpEkTLF++HB06dAAADB48GLa2trh48SIsLS35c+Pi4uDs7Mx376jSp0+ffjujJTY2Fn5+fgq5v6GhIYYOHYrg4GBcuXIF3bt3h0Ag2epw/fp19OrVCxUrVsSqVavw48cPheTz8+dP7N69WyKeFvUJq1oVpUKEEA1GxQjReCVKlMC9e/dQo0YNVKtWTaI1YerUqXx3Qvv27dG8eXP0798fAFCxYkX4+/ujRIlf+9h8+/YNTk5OCAkJUd43IcXVq1f5f9vb2zOPOTg48K088uyqkUYgEKBly5Y4duwY3r59i7/++gvGxsYS54WEhGDKlCmwtbXFhAkTJBZqK6h9+/bluA7Mzh3b5XovQoiScRogNjaWA8DFxsaqOhWipu7cucMhY6mJXL9u377NffnyReL5t2/f5ooWLcqcW7FiRS4iIkIF302GYcOGcRUrVuR8fX25a9euMbktWLCAS0pK4rZt28Y1bNiQi4uLU2pusbGx3Lp167gKFSrk+np37tyZ8/f358RicYHuJxaLuTp16uR4n6JFiyr9NSCE/F5e37+pZYRohUaNGqFt27a/Pa9ixYqwsbGRiDs4OODkyZMwMDDgY2/fvkX79u3x/ft3ueaaVy4uLnj27Bl69OiBYsWKMY8lJCTA0NAQI0aMQFBQEJO3MpiYmOCPP/7Aq1evcPLkSbRp00bqeWfOnEG7du1Qq1YteHl5ISkpKV/3u337Nh49esQfZ7YKZUpISMCBAwfydW1CiOpRMUK0xsyZM3N9vHjx4ihZMudpn23atMHBgwchFAr52OPHj9GpUyf8/PlTbnnmlaurKz/NNvuKqQkJv1YfFQgEUqfjKoNQKISLiwsCAgLw6NEjjBgxQmph9OzZM4wePRp2dnaYNWsWvnz5ItN9Nm/ezBwXKVJE4pxt27bJljwhRG1QMUK0RuvWrdGoUaMcH69YsaLUAZhZdevWDd7e3sx5t2/fRvfu3VW64Ff2YkQVxdHv1K5dG9u2bUNoaCgWLlwIKysriXOio6OxZMkSlC1bFv3798/TkvZRUVE4ePAgf2xqaiq1mAkKCsLjx48L9k0QQlSCihGiNQQCQa6tIxUrVszTdQYMGIANGzYwsYCAAPTr108p01elkdZNo67Mzc0xe/ZshISE8NN/s0tPT4ePjw8cHBzQtGlTHDx4EGlpaVKvt3PnTqSmpvLHzs7OOf5/2L6dBrISoomoGCFaxcXFBTVq1JD6WF6LEQAYP348lixZwsSOHz+O4cOHQywWFyjH/NCElpHs9PX1MXDgQNy9exc3btxAr169oKMj+ScnMDAQffv2Rfny5bFs2TLExPza6E4sFmPLli3M+RUqVMjxnnv27FFpCxYhJH+oGCFaRUdHB9OnT5f6mCzFCADMmDEDf//9NxPbs2cPJk2apPSN43R1dZmxGOrcMpKdQCCAo6MjDh8+jPfv32Pq1KnMkv2ZPn/+jOnTp8PW1hZjx47FixcvcOHCBWatldatW+c65fr79+84duyYIr4NQogCUTFCtE7fvn2l7kYrazECAEuXLsWYMWOY2IYNGzB37tz8ppdvWVtHNKFlRJoyZcpg+fLlCA0NxcaNG1G5cmWJc5KSkvDff/+hevXqGDx4MPPYuHHjcOfOnVzv4eXlJdecCSGKR8UI0Tq6urqYNm2aRDw/xYhAIMDGjRv5RdIyLVq0CCtXrsx3jvmRddyIJrWMSFOsWDGMHz8eL168wNmzZ9G+fXup53379o3/t4mJCerVq4d3797leu3Lly/nuNMxIUQ9UTFCtNKwYcOYZd6LFSsmdeO3vBAKhdi1axe6dOnCxKdOnarUT+Ha0DKSnY6ODjp27Ijz58/j2bNnGDNmDIyMjKSeGxcXJ3WfnExZp/vu2LFD3qkSQhSIihGilQwNDTF58mT+OC/TenOjp6eHQ4cOoVWrVkx8zJgxzLRTRdKmlhFpqlevji1btvBTg6UNds36fVevXp15bMGCBbh8+TL69u2L/fv3q2zmEyFEdlSMEK01duxYfqBkEbPSCHwXDZE4/wNPjYyMcPLkSfzvf//jYxzHYeDAgThz5kxB0/2trC0j2liMZCpVqhQqV67821lLmRsjZoqMjESrVq3g4+ODu3fvIjExUZFpEkLkiIoRorVuhvxE0XoZXStPfxqhn9dtNFt2CX5Pw/N9TWNjY5w7d46ZPpyeno5evXoxG9spQtZiJC0tjVl7Q9ts2rSJOV67di369u0rtbUk04YNG7B48WJERUXB3NwcJiYmik6TECInVIwQreT3NBzj9gZDULMjBHoG0C2esR9NRGwyxu0NLlBBUqpUKVy4cAHly5fnY8nJyXBxccG9e/cKnHtONGnhs4J4/vw5U9hVqFABEydOhI+PD0JCQjBjxgypy/onJSVh9uzZsLOzw6hRo/D06VNlpk0IKQAqRojWEYk5zD/1HBwAYRFTFKvTAXolMpYmz+ykmX/qeYG6bGxsbHDx4kVm0734+Hh06NBBovtAXjRx4bP8yL7I2dixY/kWEVtbWyxZsgShoaH477//pI4DSk5OxrZt21CrVi04OTnh9OnTKlmojhCSd1SMEK0T9CEG4bEZq3By6WkoUqUZRMkJSHx1KyMGIDw2GUEfYnK5yu+VK1cO/v7+KFWqFB+Ljo5Gu3bt8OHDhwJdW5rC0DLy8+dPeHt788cGBgYYNmyYxHlFihThN97LTUBAAFxcXFClShWsX78e8fHxcs+ZEFJwVIwQrfM1/tdy4F+PzEfkvqmIOrYY344vBSdKl3peflWvXh1+fn4wNjbmY2FhYXByckJYWFiBr59VYWgZ8fHxQVxcHH/cp08fptjLztzcnP+3sbExxo8fL3VH37dv3+KPP/6Ara0tJk+erJBikRCSf1SMEK1jYWzI/1tobJblEQ6ihBip5xVEw4YNcfr0aRga/rre+/fv0b59e0RHR8vlHoD2t4xwHCcxcHXcuHG5PidrMRIfH481a9bg8+fPWLFiBezt7SXOj4uLw+rVq1GxYkX06NED165dU/rS/oQQSVSMEK3TqFxJWJsaQgBAaMx+qk6Pi4YAgLWpIRqVkxwEmV8tWrSAr68vdHV1+dizZ8/QsWNHuXUNaHvLyJ07d/Dw4UP+uF69enBwcMj1OVmLEQCIiopCiRIlMGXKFLx79w5HjhxBs2bNJJ4nFotx7NgxtGzZEg0aNMDu3buRkpIil++DECI7KkaI1hHqCODpkrEglm62YkQcHwUA8HSpDqFO/hdBk6ZTp07Yu3cvM6jy7t27cHFxQVJSUoGvr+0tI5s3b2aOx40b99uF6szMzJjjrMvH6+rqomfPnrh+/Tru3r2LgQMHQk9PT+IaDx48wJAhQ1CmTBnMnz8fkZGRBfguCCH5QcUI0Uodalpj88D6MLeyYeJF0mOxeWB9dKhprZD79unTB//99x8Tu3r1Knr37o20tLQCXTt7y4g2FSPR0dHMSrYmJiYS+wFJk71lJGsxklXDhg2xZ88ehISEYM6cORJFDJCxaNq8efNgb2+PYcOGMa00hBDFomKEaK0ONa2xb1InJuZaxUhhhUimUaNGSWyid/r0aQwZMgQikSjf183eMqJN3TQ7d+5kukkGDx4sUXxJI62bJjfW1tZYsGABQkNDsX37dtSqVUvinNTUVOzatQv16tVDq1atcPz48QL9fyOE/B4VI0Sr2dvZMsdhX74o5b6TJ0/G7NmzmZiPjw/c3d3zPWBSW1tGxGKxxNoivxu4mimvLSPZGRoaYvjw4Xj06BECAgLQtWtXqV1CV69ehaurKypVqoQ1a9YgNjY2T9cnhMiGihGi1czMzKCvr88ff/78WWn3XrBgASZOnMjE/vvvP8yYMSNf19PWAawXL17Eu3fv+OOWLVtKbIKXk/wWI5kEAgHatGmDEydO4PXr1/jjjz8kWqAA4MOHD/Dw8ICtrS0mTZqEt2/fynQfQkjuqBghWk0gEMDW9lfryBcltYxk3nvt2rUYPHgwE1+2bBmWLl0q8/W0dQCrrNN5sypoMZJVxYoVsW7dOnz+/Blr1qxBuXLlJM75+fMn/v33X1SuXBldu3bFpUuXaGowIXJAxQjRetmLEWUuDa6jo4Pt27eje/fuTHzmzJkSb8K/o40tI6GhoTh16hR/bGlpCVdX1zw/X57FSCZTU1P8+eefePPmDY4dO4ZWrVpJnMNxHE6dOoW2bduiTp062LFjB5KTC76IHiGFFRUjROtlLUbS09Px9etXpd5fV1cXBw4cgJOTExN3d3fH3r1783wdbWwZ8fLyYorDkSNHMt1qv2NqaspM15VHMZJJKBSie/fuuHz5Mh48eIChQ4dKze3JkycYMWIE7OzsMGfOHISH538TRkIKKypGiNYrXbo0c6zMcSOZDAwMcOzYMTRp0oSJDx06FCdPnszTNbStZSQtLQ1eXl78sY6ODkaPHi3TNQQCATNNV57FSFZ169bFzp078enTJ8yfPx+WlpYS50RFRWHRokUoU6YMBg0apNAdnAnRNlSMEK2XtWUEUE0xAmS0bJw5cwa1a9fmYyKRCL1790ZAQMBvn29gYAChUMgfa3rLyPHjxxEREcEfd+nSReoS7r+TtatGUcVIJktLS8ydOxchISHw9vZGvXr1JM5JS0vD3r178b///Q/NmjXDkSNHkJ6eLuVqhJBMVIwQrZe9GFHmINbsSpQogQsXLqBixYp8LCUlBd26dcOdO3dyfa5AIGBaRzS9ZUTaiqv5kbUYiY6OVsqaIAYGBhg8eDDu37+Pq1evokePHtDRkfxzevPmTbi5uaFChQpYsWIFvn//rvDcCNFEVIwQracuLSOZLC0tcfHiRdjZ2fGxhIQEdOzYEU+ePMn1uVnHjWhyy8iLFy9w+fJl/rh8+fJo3759vq6VtZuG4zjExMTkcrZ8CQQCfl+it2/fwsPDAyYmJhLnffr0CdOmTYOtrS3c3d3x6tUrpeVYmInEHALfRePEwy8IfBcNkZhmPqkrKkaI1lOHMSPZlSlTBv7+/syn+u/fv6Ndu3a5rmGRtWVEk4uR7IucjRkzRmrLQl4oYkZNfpQrVw6rVq3C58+fsX79eqb1K1NiYiI2bdqEqlWrolOnTrhw4QJNDVYQv6fhaLbsEvp53cakAw/Rz+s2mi27BL+nNMBYHVExQrSelZUVM9ZCHYoRAKhSpQrOnz8PU1NTPhYZGQknJ6ccc9SGbpqEhAR4e3vzxwYGBhg+fHi+ryfrkvCKZmxsjAkTJuDVq1c4deqUxCyqTOfOnYOzszNq1qyJrVu3IjExUcmZai+/p+EYtzcY4bHsdOuI2GSM2xtMBYkaomKEaD2hUAhr61/70ahyzEh29erVw5kzZ1CkSBE+FhISgnbt2kn9hK8N3TQHDhxgllV3c3OTunFdXqlLy0h2Ojo66NKlC/z9/fH48WOMHDkShoaGEuc9f/4cY8aMgZ2dHWbMmKE2xbKmEok5zD/1HNLamzJj8089py4bNUPFCCkUso4b+fz5s1o1jTs6OuLYsWPMehkvX76Es7OzxF4oWVtGkpKSNG4DN47jCrTiqjTqWoxkVatWLXh5eSE0NBSLFy9miuNMMTEx+Oeff1C2bFn069cPt2/fVkGmmi/oQwzCY5PBcWLE3jkKcQrb4sQBCI9NRtAH5Y0tIr9HxQgpFLKOG0lKSlK7WQ3t27eHj48PM27iwYMH6NKlC9N8n33hM01r2r979y6Cg4P54zp16kisvSIrTShGMpmZmWHmzJn4+PEj9u3bh//9738S54hEIhw4cABNmjRB48aNceDAAaSlpakgW830NT6jaybu9hH8uLIDYTvckRYVmuN5RD1QMUIKBXWbUSNNz549sX37diZ248YN9OzZE6mpqQA0f+EzadN5pe2WKwtNKkYy6evro3///rhz5w5u3bqF3r17M+OaMt25cwf9+vVDuXLlsHTpUkRHR6sgW81iYWyIxLdB+HFtNwBAFPcN4Xs8JAoSC2PJLjOiOlSMkEJBndYayc3QoUOxdu1aJubn54eBAwdCJBJp9JLwMTExOHDgAH9sbGyMAQMGFPi6mliMZBIIBGjSpAkOHjyI9+/fY9q0aShevLjEeV++fMHMmTNhZ2eHMWPG4Pnz58pPVgMkJCTg9M41+Oa7kIkblqkD3VIZraMCANamhmhUrqQKMiQ5oWKEFAqa0DKSadKkSZg/fz4TO3z4MEaPHs0MdAU0q2Vk165dzGZygwcPliiu8qNkyZJM64omFSNZ2dvbY9myZfj8+TM2b96MqlWrSpyTlJSErVu3okaNGmjfvj3Onj2r1I0f1dX379+xaNEi2NvbY8nixUCW4au6JW1h1tkDAoEOMn9KPF2qQ6hTsBY5Il9UjJBCQR3XGsnNnDlz8NdffzGxHTt24ObNm0xMU1pGxGKxxNoiBR24mkkoFKJUqVL8saYWI5mKFi2KsWPH4tmzZ/z0X2n8/f3RuXNnVKtWDZs2bdKowlReIiMjMX36dJQpUwZz5syRWPBOR98IFq6zoGOQUcRbmRpi88D66FBTcgAxUTFOA8TGxnIAuNjYWFWnQjTU+/fvOWR8XOIAcMOHD1d1Sr8lFou5ESNGMHln/zp//ryq08yTCxcuMHk3b95crtevWrUqf21ra2u5XlsdPH/+nBs7dixnZGSU48+CqakpN2XKFO7jx4+/vZ5YLFZC1orz8eNHzt3dnTM0NMz19+Pw4SPcrbdR3PEHn7lbb6O4dJFmf9+aKK/v39QyQgoFGxsb5lhdx4xkJRAI8N9//8HNzS3HczTl07C89qHJSdZxI1FRUWo1dVseqlWrhs2bN+Pz589YtmyZRLcjAMTGxmLlypUoX7483NzccOPGjRxfh6SkJEyaNEnjNvB7+fIlhg4diooVK2Ljxo1Mt192M2bMQK9ePdGkQil0q1saTSqUoq4ZdaaU0qiAqGWEyIOFhQX/ialGjRqqTifPUlJSuA4dOkj95Ld7925Vp/dboaGhnFAo5HO2sLDgkpOT5XqPHj16MK/L9+/f5Xp9dZOamsodPHiQa9KkSa4tAw0aNOD27NnDpaSkMM8Xi8WcUCjkOnbsqBF/V+/du8f17NmTEwgEuX6/mV/t27fn0tPTVZ024RTcMrJx40aULVsWhoaGcHBwQFBQUK7nr127FlWqVIGRkRHs7Ozw119/5VrREqIIWceNqPuYkaz09fXh6+uLZs2aSTx2/fp1FWQkGy8vL2ZxthEjRsDAwECu91C3JeEVTU9PD71798atW7dw584d9O/fH7q6uhLn3b9/H4MGDUKZMmWwcOFCfP36FUBGq5uxsTHOnTsHR0dHhISEKPtbyJNXr16hQ4cOaNiwIXx9ffPU4mVra4v9+/dLnSpN1JisVc6BAwc4fX19bseOHdyzZ8+4UaNGccWLF+ciIyOlnr9v3z7OwMCA27dvH/fhwwfu/PnznLW1NffXX3/l+Z7UMkLkwcXFhfn0FBcXp+qUZPLjxw+uYsWKzPcgFArVetxIamoqZ21tzecrEAi4Dx8+yP0+s2fPZl6XW7duyf0e6u7z58/czJkzuVKlSuXYYmBgYMANHz6ce/ToEWdnZ8fHLS0tudu3b6v6W5AgFou5mzdvcsOGDeOKFCny2xYRXV1dLjg4WNVpkyzy+v4tczHSqFEjzt3dnT8WiUScjY0Nt3TpUqnnu7u7c23atGFiHh4enKOjY57vScUIkYdx48Yxf7hevHih6pRkdvr0aYk/wEZGRtyNGzdUnZpUR44cYXLt0qWLQu6zbt065j4nTpxQyH00QWJiIufl5cXVqFEj1zfu7F0ehoaG3MGDB1Wdfo5evHjBFStWLNfvaceOHapOk2SjkG6a1NRU3L9/n9mFUkdHB05OTggMDJT6nKZNm+L+/ft8V8779+9x9uxZdOrUKcf7pKSkIC4ujvkipKA0ZeGz3NjZ2UnEkpKS0LlzZzx8+FD5Cf2GvPehyYkmL3wmb0ZGRhg5ciSePHnCT/+VhsvW5ZGcnIw+ffpg0aJFajcAOHOvptwGbHfv3h3Dhg1TYlZEnmQqRqKioiASiWBpacnELS0tERERIfU5/fv3x4IFC9CsWTPo6emhQoUKaNWqFWbOnJnjfZYuXQpTU1P+S9ofYEJkpWlrjUiTfTn4TLGxsWjfvj1evXql5Ixy9urVK1y6dIk/Llu2bI5rZhQUFSOSBAIBnJyccPr0abx69QoTJkzI8ecnqzlz5mDIkCFISUlRQpa/d+fOHTRr1gyfPn3K8RwzMzMcOnRIiVkReVP41N4rV65gyZIl2LRpE4KDg3H06FGcOXMGCxcuzPE5M2bMQGxsLP8VGiq5yREhstKkVVhzkn3FUn19ff7f3759Q7t27XL9o61M2Rc5Gzt2rMIGFVIxkrvKlStj/fr1+Pz5M9q3b//b8/fs2QMnJyeVDwT28/NDmzZtmD15su9lJBAIcP78eWbXa6J5ZCpGzMzMIBQKERkZycQjIyNhZWUl9Tlz5szBoEGDMHLkSNSqVQuurq5YsmQJli5dmuMyxgYGBjAxMWG+CCkobShGsn+ybdq0KRMLDQ2Fk5OTxO+osiUmJmLXrl38sb6+PoYPH66w+1Ex8ntisRgrV67EhQsX8nT+jRs34ODggJcvX/IxkZhD4LtonHj4BYHvoiESK647Z8+ePXBxcWF2ptbT05PoQho/fjzq16+vsDyIcshUjOjr66NBgwYICAjgY2KxGAEBATluA56YmMhsiw6A/3Skbv2SRLtl76bRxDEj2fem0dfXx8mTJ5mpsm/evEH79u3x/ft3ZafHO3DgAH78+MEf9+rVS6JgkCczMzPmmIoRVkJCAtzc3LB48WKZnvf+/Xs0btwYFy9ehN/TcDRbdgn9vG5j0oGH6Od1G82WXYLf03C557tq1SoMHjyYWZTNxMQEaWlpzHnW1tZYs2aN3O9PlE/mbhoPDw94eXnB29sbL168wLhx45CQkMAPHBo8eDBmzJjBn+/i4oLNmzfjwIED+PDhA/z9/TFnzhy4uLjQPHCiVMWKFYOpqSl/rIktIzo6OkxBkpCQgDZt2uDgwYPM79Pjx4/RuXNnla3QqugVV7PT19dnWlCpGGHFx8dj8ODBWLduHTw8PNCzZ0/873//g4WFxW+fGxsbC+cOHdB/0lx8fPUUaVG/us0jYpMxbm+w3AoSsViMqVOnYsqUKUy8dOnSSE1NZWIdOnTAvn37qHtGS0iukvMbffr0wbdv3zB37lxERESgbt268PPz4we1fvr0iWkJmT17NgQCAWbPno0vX77A3NwcLi4uMlfohMiDra0tYmNjAWhmMQJkdNVkNl1nFhvdunWDt7c3Bg0axLc4BgYGwtXVFadPn5b7ImO5uXv3Lu7du8cf16pVC46Ojgq/r7m5OT/zTtuKEY7jcPPmTdjb28Pe3l7m51tZWaFbt25SH0tKSsKnT5/w/v17PHr0CE+fPsXbt28RFhaG6OhoJCYmQiwS4fulbQCAorWcYNbpz4y8AAgAzD/1HO2qWxVoufW0tDSMGDECe/bsYeK1atVCXFwcs1Dm//73Pxw9ehRGRkb5vh9RLzIXIwAwYcIETJgwQepjV65cYW+gqwtPT094enrm51aEyJWtrS2ePXsGIOMNKyUlRalv1PJQrFgx/s026669AwYMQGxsLNzd3fnYxYsX0a9fPxw6dEjqCp2KIK1VJPugQ0UwNzfHu3fvAGhPMSISiXDs2DGsXLkSr1+/znHWYl4lJCTg/fv3eP/+Pd69e8f89+PHjxKtD9Kkfv3AHHMAwmOTEfQhBk0qlJL+pDzk5ebmhnPnzjHx1q1bQ1dXF0+ePOFj5ubm8PX1pUJEyyjnrxMhaiL7INawsDCUK1dORdnkT9YBq9m7YcaPH4/Y2Fhm6vyxY8cwYsQI7Ny5U2L8lrx9//4dPj4+/HGxYsUwcOBAhd4zU9YxKUlJSUhMTJQYY6MpEhISsHPnTqxZswbv378HAAwfPpyZPSUNx3GIjIyUKDTevXuHd+/eyWVgszhR+rpPX+Pzt8VHVFQUunTpgjt37jBxNzc3VKxYEUuXLuVjQqEQBw8epOUetBAVI6RQkbbWiKYVI1mn92ZtGcmUOTV+2bJlfGz37t0wNTXFunXrFNpKsWvXLqY5fdCgQTA2NlbY/bKSNqOmTJkySrl3bkRiDkEfYvA1PhkWxoZoVK5kjt0ZkZGR2LBhAzZt2oSYmBjmsb59+wLIWBQyJCREasHx/v17ZvaJPBgYGkFczBy6xa2hW9wKeiVspJ5nYWwo87VDQkLg7OwssT6Ou7s72rZtix49ejDx5cuXo3Xr1jLfh6g/KkZIoaJt03t//vwJjuMkCoylS5fix48f+O+///jY+vXrUbx4cSxYsEAheXEcJ7G2iKIHrmaljsWI39NwzD/1HOGxvwo0a1NDeLpUR4ea1nzsxYsXWL16NXbv3p1jV8nChQsxcuRIhIaGyn0moqWlJSpUqIDy5ctL/NfcwhLNl19GRGwypN1VAMDKNKPIksXTp0/h7OyMsLAwJr5w4UL06tULjRo1YuJ9+/bFX3/9JeN3RjQFFSOkUNGGYiRrywjHcUhOTpboPxcIBNi4cSPi4uKYbpOFCxfC1NQUkydPlntely5dwuvXr/ljR0dH1KpVS+73yYm6rTXi9zQc4/YGS7yBZ85A2TSgHorEvMHKlStx+vTp316vIDs06+npoWzZskyhkfnv8uXL/3ZlVk+X6hi3NxgCgPl+BFkel2Xw6o0bN+Di4sJM/9bR0cGWLVvQt29fODg4ID4+nn+sZs2a2LZtm1LGHhHVoGKEFCrasD9N9jeOnz9/Sh3MJxQK4e3tjfj4eObNbsqUKTAxMcGoUaMKlMeuXbvQo0cPfkpt9n1oxo8fX6Dry0qdihGRmMP8U8/BARCnpUBH79cgabFYhKRXN+HW0QMJX17nfBEZlShRIsfWDVtb2wItpdChpjU2D6wv0cpjJaWV53dOnjyJPn36MN15hoaG8PHxQbdu3eDm5oYXL17wjxUvXhzHjh3L01L2RHNRMUIKFW1rGQEyxo3ktKCYnp4eDh06hE6dOjEz3caMGQMTExP06dMn33n4+fnBx8cHp0+fxtevX3HixAn+MXNzc/Ts2TPf184PdSpGgj7EICzmJ+LunURckC+sB6+GjpEJfj6+gLi7JyCK+yrzNXV0dGBnZ5dj60aJEiUU8J380qGmNdpVt8rz+Bdptm3bhjFjxjCrb5uamuLUqVNo3rw5li1bBl9fX/4xgUCAffv2oWLFinL9Xoj6KfTFiCyDy4jmK168OIyMjJCUlARAM4uR7J8QpQ1izcrIyAgnT55E27ZtcffuXQAZ3TsDBw6EsbFxrjto5yYsLAzXr1/HuHHjYGtrC5FIxD82fPhwpU+ZVqdi5NqNmwj3/hNp3z4CAKLPb4SBbQ2khr2EQEcHkOjw+L26devi9u3bKl3kS6gjyNf0XY7jsGTJEsyePZuJ29jYwM/PD7Vq1YK/v7/EBqrz58/P988n0SyFuhjJ6+Ayoj0EAgFsbW3x5s0bANpRjORllVVjY2OcO3cOLVu25NdZSU9PR8+ePXH+/Hm0aNFC5jzCwzNW3dy+fTvzBikQCDBmzBiZr1dQ6lCMfP/+HTNmzMDWrVuZQabJH4JRrI4zijfNaIni0lORFvMF4+oaQvz9C168eIEXL17g1atXOe6WGxwcjCVLlmjcmk1isRiTJk3Chg0bmHiVKlVw/vx5lClTBh8/fkTfvn2ZFpOuXbti1qxZyk6XqEihLUZ+N7hs88D6VJBoqazFSHh4ONLT05W2IJg8SOumyYtSpUrhwoULaN68Ob92RXJyMrp06YLLly+jQYMGec6B4zi+GAHA7Blib2+Po0ePIiYmBtHR0WjVqhU/LVWRVLk/Dcdx2L9/Pzw8PPD1q2QXjFGlxjCwrsQf6+jqo0ylapg5oQ3TEisSiRASEoKXL1/yBUrmv2NiYrBo0SJ06dJFpv9XqpSSkoLBgwfj0KFDTLxRo0Y4c+YMzMzMkJSUhB49ejBTmStVqoTdu3crfF0coj405y+wHGUdXJaJ4zikfHkOQ9saclvemKinrONGxGIxIiMjJdYfUWf5aRnJZGNjg4sXL6JZs2b8lMr4+Hg4Ozvj2rVrqF69ep6uEx8fn2MRFBISwu8tUq9ePaxevTrP+RVE0aJFmS44ZRUjb968wfjx43Hx4kWJx4TG5ijVbiyMKjnwsdxmoAiFQn4MSNbuCY7jEBUVhRcvXjCzTNRZXFwcXF1dcenSJSbeoUMHHDlyBEWLFgXHcRgzZgwePHjAP160aFEcO3aM2UeKaL9CWXYGfYhhumbS46IQuf9vRO77G0kfHzLLGxPtI23hM02S35aRTOXKlYO/vz9KlfrV9x8dHY127drhw4cPuTzzl6ytIjkxNzfH8ePHlboKatauGkUXIykpKZg/fz5q1aolUYgIhUJMmTIFhy/eQvmGLZnHrEwNZW55FQgEMDc3R4sWLdCqVSt5pK9QkZGRaNWqlUQhMnDgQJw8eZIvqDdu3CixF82uXbtQo0YNpeVK1EOhbBnJumxxStgrRB6aCy4l4w961MllsBn5H4RFTPK9vDFRb9Jm1Dg4OORwtvopSMtIpurVq8PPzw9t2rThP2mHhYXByckJN27cgLV17m+U2Reqyk5XVxdHjhzJ16ZuBWFubo5Pnz4ByFhmXFEuXbqEcePGMeuqZGrcuDH+++8/1K5dGwDQtWGFQjVI/t27d3B2dub3Cco0efJkLF++nO96uX79usQiZtOmTUOvXr2UlitRH4WyZSTrssV65mUhLFqcPxYnxePL5mGIvX0YhqIkFWRHFE3Tp/cWtGUkU8OGDXHq1CkYGv76fXj//j3atWuH6OjoXJ/7u5aRf//9N1+DYgsqa8tIbGxsnjZ+k8XXr18xaNAgtG3bVqIQKV68OLZs2YKbN2/yhQjwawZKt7ql0aRCKa0uRB48eICmTZtKFCIrVqzAypUr+UIkLCwMbm5uSE9P589xcnKi3dwLsUJZjDQqVxLWpoYQANDRM4BZp78Awa+XgktPwY+r3ujRog7Gjx8vsW8C0WyavvCZPFpGMrVs2RK+vr7MAN5nz56hY8eOuY5NyK0YGT16NMaOHZvvnAoi+4waWVtHcvqexWIxtm7diipVqmDv3r0Sjw8YMAAvX77EmDFjCu2gy0uXLqFly5bMAF5dXV3s3r2bH0MEAKmpqejVqxezaV+ZMmXg4+OjUQPJiXwVyt8aoY4Ani4ZA/UEAAxKV4VJI1eJ8xITE7F582ZUrVoVXbp0QUBAgNz3hCDKV9jHjGTXqVMn7N27l1lq++7du+jatSs/GDS7nLppHB0dsX79epUt212Q6b2bNm3C4cOHJeJPnjxBs2bNMGbMGGb5ciBj1oe/vz/27t0LS0vLfOWsDQ4dOiRRwBYpUgQnT57EoEGDmHP//PNPBAYG8seGhoY4evSoxGwoUrgUymIE+LW8sZVpRhN18WYDoFcq5/7tM2fOwMnJCXXr1sXOnTuZpYyJZrGwsGA+gWlaMSLromd50adPH2ZTPQC4cuUK+vTpw0zbzSStZcTW1ha+vr6/3eZekfJbjBw/fhwTJkxgPq0nJCRg2rRpqFevHvPmCQD6+vrw9PTE48eP4eTkVPDENdjGjRvRt29fpkusVKlSuHTpEjp27Micu3PnTmzevJmJbdmyBfXr11dKrkSNcRogNjaWA8DFxsbK/drpIjF3620Ud/zBZ27H8YucUCjkkLE0Yq5fFhYW3Lx587jIyEi550QUr0yZMvz/y3Llyqk6HZmEhoYyP4vDhg2T27VXrFgh8bPev39/TiQSMee1bNmSOcfQ0JC7d++e3PLIr23btjF57d+//7fPuXXrFmdoaMgB4P744w+O4zju1KlTzM9I1q82bdpwL1++VPS3ovbEYjE3e/ZsidfHzs6Oe/HihcT5d+/e5QwMDJhz3d3dVZA5Uaa8vn8X+mIkuzlz5uSpGMn8MjAw4IYPH849fvxY4bkR+XF0dOT/H+rr63NisVjVKeXZ9+/fmZ/B3r17y/X60t5gxo4dy7xGlStXZh7ft2+fXHPIrxMnTjB5rVu3LtfzX716xZUqVYo/v3Xr1pyrq6vU33Vzc3Nuz549GvWzoihpaWncqFGjJF6jGjVqcKGhoRLnf/36lbOzs2POdXR05FJSUlSQPVEmKkbyKSUlhatbt65MBQkArnjx4tzJkycVnh+Rj969ezP//75+/arqlPIsNTWVyb1Tp05yvb5YLOYmTJgg8TM+ffp0viXRsEhRPj516lS53r8gbt26xeQ8e/bsHM+NiIjgypUrl6ff71GjRnHR0dFK/E7UV2JiIte9e3eJ18jR0ZGLiYmROD8tLY1r06YNc661tTUXFhamguyJsuX1/bvQjhnJib6+Pry9vfO8GVXNmjWxZcsWhIaGwsXFRcHZEXnR5Om9enp6zLgMeYwZyUogEGDdunUYPHgwE//nn39QrtMo9Nl4GcmJGfc0rfw/tBzwh1zvXxB5XRL+58+f6Ny5828XeatZsyZu3ryJrVu3omTJknLLU1P9+PEDzs7OOH78OBPv2rUr/P39pe4cPGPGDGbxMz09PRw5cuS3a9mQwoWKESlq166d582oOnXqhFGjRknMcCDqTZOLEYAdxFqQqb050dHRwfbt29G9e3cmHnp+O+KCjgEAdEvYwKTjZEzweQS/p79fkVUZ8jKANS0tDb1798b9+/dzvI6RkRGWLVuG4OBgNG3aVO55aqKwsDA0b94c169fZ+IjRoyAr68vjIyMJJ5z8OBBrFy5komtW7eOXlMigYqRHPz999/43//+99vzli9fjt69eyMxMVEJWRF50fS1RrIWv/JuGcmkq6uLAwcOoG1bdrZI7E0fQKgHix5zoGOYkcf8U88hEnMKyUMWpqamTKtm9mKE4ziMGzcO586dy/U6YrEYKSkpzC6yhdmrV6/QtGlTPH36lInPmjULXl5eUtcHefr0KYYPH87Ehg4dqrI1aIh6o2IkB7q6uvD29oaBgYHEY9kXNfL19UWrVq0QERGhrPRIAWn6WiOKbhnJZGBggBmrt8HApmqWKIcilRtDz8zu/4/UZy8ngUDAdNVkX/RswYIF2L59+2+vk5KSgrlz56JOnToS+6sUNkFBQXB0dERISAgfEwgE+Pfff7Fo0SKpa8r8+PEDrq6uzIe0Bg0aYNOmTSpbg4aoNypGclGtWjUsWrRIIj5jxgyJLdHv3r0LBwcHiU8ORD1pejeNMlpGMv0U68LcbR70zMsCAEybDYB5178lzlOXvZyydtWER3zlW2y2b9+OefPm5fk6NjY2aNy4MSIiIphlywsTPz8/tG7dmtkeQE9PDwcOHMDEiROlPkcsFmPAgAF4+/YtHzMzM8uxK4cQoJBulCeLv/76C8eOHcOtW7f42NWrV3H16lVUqlQJCxcu5OOfPn1C06ZNcfjwYTg7O6siXZJH1tbWEAgE/Iq6mlaMZG0ZUXQxYmFsCKFhMVj2WYjkkEcoWr1Vjuepmt/TcHxMEPLHP77HwHGpPzqX/Ib5E8fk+tyiRYuiVatWaNeuHdq1a4dq1aoV6k/xe/fuxbBhw5hCrFixYjh+/Djatm2b4/MWLFiAs2fP8sc6Ojo4cOAAypQpo9B8iWajlpHfEAqF2LVrF1PR37hxAzt37sSCBQskZt7Ex8ejc+fOEqsMEvWip6cHKysr/ljTxoxkLUZSU1OlrpIqL5l7OekWLSG1EBEAsDbN2I1WlfyehmPc3mCk6xtniXL48DgInpNGQiQSMefr6OjAwcEBs2fPxtWrVxETE4PTp09j0qRJqF69eqEuRFatWoVBgwYxhYiFhQWuXr2aayFy6tQpzJ8/n4n9888/uT6HEICKkTypVKkS/vnnHyb2119/ISQkBIMHD8bFixeZaX8ikQjjx4+Hh4eHxB9Aoj6yjhsJDQ3VqH2H5L0/TW6y7+WUVeaxp0t1le5GKxJzmH/qOTgAwiKmzGPfTi4Hl5bRhVShQgWMHTsWvr6+iIqKwu3bt7Fw4UK0aNFCpcvYqwuxWIypU6cyG9sBQPny5XHz5s1cl21/8+YNBg4cyMR69+4tcS1CpKFiJI8mTJiAVq1a8cfx8fEYMWIExGIxWrRogdu3b6NixYrMc9asWYMePXoovBmd5E/WcSMJCQmIi4tTYTaykefOvXmRfS+nTFamhtg8sD461FTtmhFBH2IQHptRcOgYmTCP6ZvZo6TzBNiM2YY95+9g8+bN6NGjh9Q1MQqztLQ0DB06VGIqbt26dXHz5k2Jv29Z/fz5E927d2d+h2rUqIHt27cX6hYmknc0ZiSPdHR0sGPHDtSuXZv/wx8QEIAtW7Zg/PjxqFSpEm7fvg1XV1dmHv7JkyfRokULnDp1CjY2NqpKn0ghbRCrqalpDmerF2W2jGTqUNMa7apbIehDDL7GJ8PCOKNrRpUtIpmyDp4tWrUZ9C3KQ6CrB6GJBfRMLSHQ1ZM4j/ySkJAANzc3iSnPbdq0wbFjx2BiYpLDMzOmSw8fPhzPnz/nY6ampjh27Bitv0TyjFpGZFCuXDmJTw1Tp07Fu3fvAGTsVOnv7y/RVBkcHIxGjRrh4cOHykqV5IEmz6hRdstIJqGOAE0qlEK3uqXRpEIptShEAHbwrF4pOxSp5ACjcvWhX8qWL0Syn0cyREVFoW3bthKFiJubG86ePZtrIQIAK1euxOHDh5nY3r17UalSJbnnSrQXFSMyGj16NNq3b88fJyYmYtiwYfziSAYGBti9ezcWLFjAPO/Lly9o1qwZzpw5o9R8Sc6yrzWiSYNYVdEyos4yB9nmVBqpyyBbdRMSEoJmzZrhzp07TNzd3R0+Pj5S11nK6uLFi5g+fToT8/T0RJcuXeSeK9FuVIzISCAQYNu2bcynhevXr2PdunXMOXPmzMH+/fsl9hDp2rUr1q9fr9SciXTUMqI9NGGQrbp5+vQpmjZtilevXjHxhQsXYv369RAKhTk8M0NISAj69u3LrFLbpUsXzJ07VyH5Eu1GxUg+2NnZMcUHAMycOVPil7pfv364dOkSsyKkWCzGH3/8gT/++INm2qiYJhcj1DIiSd0H2aqTGzduoHnz5ggLC+NjOjo62Lp1K2bPnv3bQadJSUno0aMHsxhaxYoVsWfPHokVqgnJEyXsIFxged2CWJnEYjHXpUsXZltsBwcHLi0tTeLct2/fclWqVJHYcrtz585cXFycCrInHJexFXrW/x8dO3ZUdUp5tn//fib3HTt2qDoltZEuEnO33kZxxx985m69jeLSRWJVp6RWTpw4wRkaGjI/P4aGhtyxY8fy9HyxWMwNGTKEeX7RokW5J0+eKDZxopHy+v5NJWw+CQQCbN26lZkeeOfOHaxatUri3AoVKiAwMBCtW7dm4mfOnEHz5s0RGhqq8HyJJCMjI2Z9GBozoh3UdZCtOti2bRtcXV2RnPxrVpGpqSkuXLggsUNzTjZv3gxvb28mtmPHDtSsWVOeqZJChoqRArC2tsaGDRuY2Ny5c6XuT1OiRAn4+flh2LBhTPzRo0dwcHDIdTtzojhZu2o0qZsm+5gRKkZIbjiOw5IlSzBq1ChmjIe1tTWuX7+O5s2b5+k6t27dwqRJk5jYlClT0Lt3b7nmSwofKkYKqF+/fujRowd/nJqaiiFDhkhdnltfXx/bt2/HkiVLmHh4eDhatGiBEydOKDxfwspajMTExDC7jKozGsBK8kosFmPSpEmYNWsWE69cuTJu3bqFWrVq5ek64eHh6NmzJ7NEfJs2bbB06VK55ksKJypGCkggEGDz5s3MINXg4OAcf0EFAgFmzJiBQ4cOwdDw10C7xMREuLq6YvXq1Rq1LLmmyz6IVVO6aqibhuRFSkoK+vXrJzGDr1GjRrh58ybKli2bp+ukpqaiV69eiIiI4GP29vY4cOAAdHVp7UxScFSMyIGFhQW2bNnCxBYuXIgHDx7k+Bw3NzdcvnwZFhYWfIzjOEyePBnjx48vtFuWK5umFiPUMkJ+Jy4uDp07d8ahQ4eYuLOzMwICApgPUL/j4eHB7FxuYGAAX19fmJubyy1fUrhRMSInPXv2RL9+/fjj9PR0DBkyBCkpKTk+p3Hjxrhz5w6qV6/OxLds2YLOnTsjNjZWYfmSDNkXPtOUcSPUMkJyExkZidatWyMgIICJDxw4EKdOnZJpmXZvb29s3LiRiW3evBkNGzaUS66EAFSMyNWGDRuYbemfPHkisRJrdmXLlsXNmzfRrl07Jn7hwgU4OjoiJCREIbmSDJq61gi1jJCcvHv3Do6OjggODmbikydPhre3N/T09HJ4pqTg4GCMGTOGiY0bN05iID4hBUXFiByVLFkSXl5eTOyff/5BUFBQrs8rXrw4zpw5g9GjRzPxZ8+ewcHB4bfPJ/mnqcWIoaEhs7gUtYwQAHjw4AEcHR35/bIyrVixAitXrpRpQbKoqCi4uroyrbtNmjTB2rVr5ZUuITwqRuSsS5cuGDp0KH8sFosxZMgQJCUl5fo8PT09bNmyBStWrGBWP4yMjETLli3h6+urqJQLNU0dMyIQCJjWEWoZIZcuXULLli0RGRnJx4RCIby9vTFlyhSZrpWeno6+ffvi06dPfMzKygpHjhxhtrggRF6oGFGANWvWMGMRXr58iTlz5vz2eQKBAFOmTIGvry+MjIz4eHJyMnr16oXly5fTTBs5MzExYfrPNaVlBGDHjVDLSOF2+PBhdOzYEfHx8XysSJEiOHXqFAYPHizz9WbNmsWMN9HV1cXhw4dhY2Mjl3wJyY6KEQUoXrw4tm/fzsRWr16Nmzdv5un5rq6uuHbtGjP+BAD+/vtvjBo1SuoaJiT/tGHhMypGCq+NGzeiT58+SE1N5WMlS5ZEQEAAOnbsKPP1Dh8+jOXLlzOxNWvWoFmzZgXOlZCcUDGiIM7OzswYEI7jMHTo0Dy/aTRs2BB37tyRWJBo+/bt6NixI378+CHPdAu1rMVIZGQk80ddnVE3TeHGcRzmzJmDCRMmMC2mdnZ2uHnzJho3bizzNZ89eyYxOHXw4MFwd3cvcL6E5IaKEQVauXIls6jQ27dvMWPGjDw/397eHjdu3ECHDh2YeEBAAJo0aYL379/LK9VCLWsxwnEcwsPDVZhN3lE3TeGVnp6OMWPGYNGiRUy8Ro0auHXrFqpWrSrzNX/8+AFXV1fmZ6levXrYsmXLb3fxJaSgqBhRIGNjY+zYsYOJrV+/HpcvX87zNUxMTHDq1CmMHz+eib98+RKNGzdGYGCgXHItzLKvNaIpg1iztowkJiYye44Q7ZWUlAQ3NzeJmXuOjo64fv26xKDsvBCLxRg8eDDevHnDx0qVKoWjR48y49cIURQqRhSsdevWmDhxIhMbPnw4M9Dsd3R1dbFhwwasXbuW+YTy7ds3tG7dGgcPHpRbvoWRpk7vzb5wlabsq0Py78ePH3B2dsbx48eZeNeuXeHv78/sIi6LRYsW4dSpU/yxjo4OfHx88rxcPCEFRcWIEixduhQVK1bkjz9+/CjzVDuBQIBJkybhxIkTzCfilJQU9O3bF4sXL6aZNvmkqcUILXxWuISFhaF58+a4fv06Ex8xYoTEDDxZnDlzBvPmzWNiS5YskViIkRBFomJECYoWLYpdu3YxrRpbt27F+fPnZb6Wi4sLrl+/LjHFbvbs2Rg2bJjGDL5UJ5pajNCS8IXHq1ev0LRpUzx9+pSJz5o1C15eXvnerO7t27cYMGAA80GmZ8+emDZtWoHyJURWVIwoiaOjIyZPnszERowYka9ZMfXq1UNQUBDq1q3LxL29vdG+fXvExMQUINPCRxvGjADUMqKtgoKCJLaGEAgE+Pfff7Fo0aJ8Dy79+fMnXF1dmT2wqlevjp07d9KAVaJ0VIwo0YIFC5hR7l++fMGff/6Zr2uVLl0a169fh4uLCxO/evUqGjdujLdv3xYk1ULFzMyMWVWSWkaIuvDz80Pr1q0RHR3Nx/T09ODj4yMxFk0WHMdh5MiRTEuLiYkJjh49CmNj4wLlTEh+UDGiREZGRvD29mb2h/D29sbJkyfzdb1ixYrh2LFjmDRpEhN/8+YNHBwcJPqWiXQCgUAjFz7L3jJCxYh22bt3L1xcXJiBycWKFcPZs2fRp0+fAl179erVEgPf9+zZgypVqhTouoTkFxUjStaoUSNMnz6diY0ePZr55CMLoVCItWvXYsOGDUyRExMTAycnJ+zdu7dA+RYWWYuRsLAwjZgmS9002mv16tUYNGgQ0tPT+ZiFhQWuXr0KJyenAl370qVLEmNC5syZg65duxbouoQUBBUjKjB37lxmZdXIyMgCNbkCgLu7O06fPs003aempmLQoEGYN28ezbT5jazjRtLT0/H161cVZpM31E2jfcRiMaZNmyYxvqx8+fK4efMm6tevX6Drf/r0CX369GGK7U6dOknMpiFE2fJVjGzcuBFly5aFoaFhnra4//HjB9zd3WFtbQ0DAwNUrlwZZ8+ezVfC2sDAwAC7d+9mRsD7+PgUeGfejh074ubNm7Czs2Pi8+fPx6BBg5itwAlLE2fUUMuIdklLS8OwYcOwYsUKJl63bl3cvHmTWR4gP5KTk9GzZ09ERUXxsQoVKmDv3r1MqyohqiDzT+DBgwfh4eEBT09PBAcHo06dOnB2ds7xk2RqairatWuHjx8/4siRI3j16hW8vLwkZjAUNnXr1pXYyXfs2LEF/kReu3Zt3LlzBw0aNGDi+/btg5OTE/OHiPyiicUItYxoj4SEBHTr1g27d+9m4q1bt8bVq1clNs2UFcdxcHd3x7179/hYkSJFcPTo0XwvlEaIXHEyatSoEefu7s4fi0QizsbGhlu6dKnU8zdv3syVL1+eS01NlfVWvNjYWA4AFxsbm+9rqKPU1FSuQYMGHAD+q0ePHpxYLC7wtX/+/Mm5uroy1wbAVahQgXv58qUcstcuvr6+zOu0fv16Vaf0Wzdu3GBynjdvnqpTIvkQFRXFOTg4SPyu9urVi0tOTpbLPTZv3ixxfR8fH7lcm5Dc5PX9W6aWkdTUVNy/f58ZQKWjowMnJ6cc90g5efIkmjRpAnd3d1haWqJmzZpYsmQJRCJRjvdJSUlBXFwc86WN9PT04O3tzUwrPXr0KHx8fAp87aJFi+LIkSMSK72+e/cOTZo0wZUrVwp8D22iiWuNUMuI5vv06ROaNWuGO3fuMHF3d3ccOHAABgYGBb5HYGAg/vjjDybm4eGBvn37FvjahMiLTMVIVFQURCIRLC0tmbilpSUiIiKkPuf9+/c4cuQIRCIRzp49izlz5mDVqlUSu01mtXTpUpiamvJf2cdAaJMaNWpgwYIFTGzChAkICwsr8LV1dHSwYsUK/PfffxAKhXz8+/fvaN++PXbt2lXge2gLTeymoTEjmu3p06do2rQpXr58ycQXLlyI9evXM7+z+RUREYFevXohLS2Nj7Vq1QrLli0r8LUJkSeFj1oSi8WwsLDA1q1b0aBBA/Tp0wezZs3Cli1bcnzOjBkzEBsby3+FhoYqOk2Vmjx5MhwcHPjj79+/Y/To0XKbATN69GicO3cOJiYmfCxzsNysWbM0YhqrollZWTF//DWhGKGWEc1148YNNG/enGmB09HRwdatWzF79my5rICalpYGNzc35oONra0tDh48mO/l4wlRFJmKETMzMwiFQkRGRjLxyMjIHAdYWVtbo3Llyswf+mrVqiEiIiLHfVQMDAxgYmLCfGkzXV1deHt7w9DQkI+dOXNGri0X7dq1w61bt1CmTBkmvmTJEvTv3x9JSUlyu5cmEgqFsLa25o81oRihlhHNdPLkSbRr147ZCsLAwAC+vr4YNWqU3O4zefJk3Lhxgz/W19fH0aNHYWFhIbd7ECIvMhUj+vr6aNCgAQICAviYWCxGQEAAmjRpIvU5jo6OePv2LfPp+/Xr17C2tmbGShR2VapUwZIlS5jYn3/+KddWoRo1auDOnTtMKwyQMUOqTZs2GrG2hiJlHTfy+fNntV+bpUiRIswxtYyov+3bt8PV1RXJycl8zNTUFBcuXED37t3ldp89e/Zg/fr1TGzTpk343//+J7d7ECJXso6MPXDgAGdgYMDt2rWLe/78OTd69GiuePHiXEREBMdxHDdo0CBu+vTp/PmfPn3ijI2NuQkTJnCvXr3iTp8+zVlYWHCLFi2S+2hcTScSibjmzZszI97btWsnl9k1WSUmJnJubm4So+vLli3LPXv2TK730iQ9e/ZkXo/o6GhVp/RbRkZGfL7NmjVTdTokB2KxmFu8eLHE75y1tTX3+PFjud4rODiYMzQ0ZO4zZswYud6DkLzK6/u3zMUIx3Hc+vXrOXt7e05fX59r1KgRd/v2bf6xli1bckOGDGHOv3XrFufg4MAZGBhw5cuX5xYvXsylp6fn+X6FpRjhOI57+/YtV6RIEeYPyZYtW+R+H5FIxM2YMUPij6OpqSnn7+8v9/tpgkmTJjGvxaNHj1Sd0m+ZmZnx+datW1fV6RApRCIRN3HiRInftcqVK3MfPnyQ672ioqK4smXLMvdp3Lix3KYIEyIrhRYjylaYihGO47iNGzcyf0yKFi3KvX//XiH32r59O6erq8vcT1dXl/Py8lLI/dTZihUrmNfhzJkzqk7pt7K+8VSqVEnV6ZBskpOTud69e0sUIo0aNeK+ffsm13ulp6dz7dq1Y+5jYWHBff78Wa73IUQWCllnhCjH2LFj0bZtW/44ISEBw4YNU8isl+HDh+PChQsoXrw4H0tPT8eoUaPw999/F6qZNtnXGtG0Qaw0gFW9xMXFoXPnzjh06BATd3Z2RkBAAMzMzOR6v9mzZ8Pf358/1tXVxeHDhwv9atdEM1AxooZ0dHSwY8cOGBsb87GrV69iw4YNCrlf69atERgYiPLlyzPx5cuXw83NjdnCXJtlX2tE0xY+owGs6iMyMhKtW7dmBvsDwMCBA3Hq1CmJadkF5evri3/++YeJrVq1Ci1atJDrfQhRFCpG1JS9vT3WrFnDxKZPn47Xr18r5H5Vq1bF7du30bRpUyZ+9OhRtGrVKsdF7bSJpi989vPnT7WfAVQYvHv3Do6OjggODmbikydPhre3N/T09OR6v+fPn2Po0KFMbODAgQXeCZwQZaJiRI0NHz4cHTt25I+TkpIwdOjQXJfSLwhzc3MEBASgX79+TPzu3btwcHDAkydPFHJfdWFjY8Mca0IxkvUTtlgspp2ZVezBgwdwdHTEu3fvmPiKFSuwcuVKue+OGxsbC1dXV6aLrm7duvjvv//ksnAaIcpCxYgaEwgE8PLyYsZzBAYGYvXq1Qq7p6GhIfbt24e5c+cy8U+fPsHR0RF+fn4Ku7eqGRgYMAtCaUIxQgufqY/Lly+jZcuWzKKQQqEQ3t7eEntEyYNYLMaQIUOY1tISJUrg6NGjEmvQEKLuqBhRc6VLl8a///7LxObMmYPnz58r7J4CgQDz58/H7t27mSbl+Ph4dOnSBZs3b1bYvVUt62A/TRszAtC4EVU5fPgwOnTogPj4eD5WpEgRnDx5EoMHD1bIPZcsWYITJ07wxwKBAD4+PihXrpxC7keIIlExogEGDhyIbt268ccpKSkYMmQI0tPTFXrfQYMG4eLFiyhZsiQfE4lEGD9+PDw8PBTWXaRKWceNxMbGMm8u6ih7ywgVI8q3adMm9OnTh9neomTJkggICECnTp0Ucs9z585JtF4uXrwYzs7OCrkfIYpGxYgGEAgE+O+//1CqVCk+du/ePYnR84rQokUL3L59G5UqVWLia9asQY8ePbSuW0DTZtRQN43qcByHuXPnwt3dnRk4bGdnhxs3bqBx48YKue+7d+/Qv39/5p6urq6YPn26Qu5HiDJQMaIhLC0tsWnTJia2YMECPHr0SOH3rlSpEgIDAyWmCZ48eRItWrRQ+zdsWWjajBrqplGN9PR0jBkzBgsXLmTiNWrUwK1bt1CtWjWF3DchIQGurq7MJntVq1bFrl27aMAq0WhUjGiQ3r17o3fv3vxxWloahgwZkuPux/JUqlQpXLhwAYMGDWLiDx48gIODAx4+fKjwHJQh+wJR6l5oUcuI8iUlJcHNzQ1eXl5M3NHREdevX5coaOWF4ziMGjWKmdVmbGyMY8eOaf3O5kT7UTGiYTZu3MjM+Hj06BEWLVqklHsbGBjA29tb4tPgly9f0KxZM5w5c0YpeSgStYyQ3Pz48QPOzs44fvw4E+/atSv8/f1RokQJhd173bp18PHxYWK7d+9G1apVFXZPQpSFihENY2Zmhq1btzKxJUuW4N69e0q5v0AgwOzZs7F//34YGBjw8YSEBHTt2lVi5o+m0bRihFpGlCcsLAwtWrTA9evXmfiIESPg6+sLIyMjhd37ypUrEtODZ82ahe7duyvsnoQoExUjGqhbt25Md4lIJMKQIUOQnJystBz69esnsb+GWCzGpEmTMHHiRIXP9FEUTdufhlpGlOPVq1do2rSpxMJ/s2bNgpeXF3R1dRV279DQUPTu3ZuZvebs7Iz58+cr7J6EKBsVIxpq3bp1zIqhz58/h6enp1JzcHR0xO3bt1GlShUmvmHDBnTr1k3tp8VKU6xYMZiamvLH6l6MUMuI4gUFBcHR0REhISF8TCAQ4N9//8WiRYsUOnA0OTkZPXv2xLdv3/hYuXLlsH//fgiFQoXdlxBlo2JEQ5UoUQLbtm1jYitXrkRgYKBS86hQoQICAwPRunVrJn727Fk0a9YMoaGhSs1HHrJ21aj7AFZqGVEsPz8/tG7dGtHR0XxMT08PPj4+Stn7ZeLEibh79y5/bGRkhGPHjjFr/xCiDagY0WAdO3bEiBEj+OPM5aGVvctuiRIl4Ofnh+HDhzPxx48fw8HBAffv31dqPgWVtRj59u2bUru/ZEWLninO3r174eLiwvw+FStWDGfPnkWfPn0Ufn8vLy+JDxzbtm1DnTp1FH5vQpSNihENt3r1atjb2/PHb968wcyZM5Weh76+PrZt24alS5cy8fDwcLRo0YJZtlrdZR/EGhYWpqJMfo+6aeRDJOYQ+C4aJx5+QeC7aKxctQqDBg1ixj5ZWFjg6tWrcHJyUng+d+7cwYQJE5jYn3/+if79+yv83oSoAhUjGs7ExAQ7duxgYuvWrcPVq1eVnotAIMD06dNx6NAhGBoa8vHExES4urpi9erVGrHFvSYNYqVumoLzexqOZssuoZ/XbfzhE4wO/UdjaraZK+XLl8fNmzdRv359hecTGRmJnj17MusHtWzZEsuXL1f4vQlRFSpGtEDbtm0xfvx4JjZs2DCVfUp2c3PDlStXmPVQOI7D5MmTMW7cOLWfaaNJS8JTy0jB+D0Nx7i9wQiPTQYnSkf02bWICzrKnFO3bl3cvHkTFStWVHg+aWlp6N27N/MzV7p0aRw8eJDZtJIQbUPFiJZYtmwZypcvzx9/+PAB06ZNU1k+Dg4OuHPnDqpXr87E//vvP3Tu3BmxsbEqyuz3NGmtEX19feZNilpG8k4k5jD/1HNwyCiWo04uR8LTS8w5JuXr4tLlK7CyslJKTlOnTsW1a9f4Y319ffj6+sLS0lIp9ydEVagY0RLFihWT2J9i8+bNuHjxospyKlu2LG7duoV27dox8QsXLsDR0REfP35UTWK/oUnFCMC2jlDLSN4FfYhBeGzG4GSBQIAi1VsC+PX7U6SKI4q7euJltHJa8vbt24d169YxsQ0bNsDBwUEp9ydElagY0SLNmzfHn3/+ycSGDx+u0lYIU1NTnDlzBqNHj2biz549g4ODA4KCglSUWc40acwIwI4boZaRvPsaz86SKlrFEcb1OwMAitXrDLOu0yDQ1ZM4TxEePnyIUaNGMbGRI0dKxAjRVlSMaJnFixejcuXK/HFoaCg8PDxUmFHGugxbtmzBypUrmZabr1+/omXLljhy5IgKs5NUokQJZmlvdR4zAlDLSH5ZGBtKxMTJP2Hq2B8l242FQEeY43nyFBMTgx49eiApKYmPNWrUCBs2bFDofQlRJ1SMaBkjIyN4e3tDR+fX/9odO3aofBM7gUCAyZMn4+jRo8wbfXJyMtzc3LBs2TK1mWkjEAiYrhpqGdFOjcqVhLWpIbKun6pjZIK4oKNIiw6FAIC1qSEalVPcAmMikQj9+/fHhw8f+Ji5uTl8fX2ZvZ8I0XZUjGihxo0bY+rUqUxs1KhRiImJUVFGv3Tv3h3Xrl2TGBA4ffp0jBo1CmlpaSrKjJW1GAkPD1frGUDUMpI/Qh0BPF0yBlhnFiQ6RUzApSXj27ElEKckwtOlOoQ6ilvu3dPTE+fPn/+Vk1CIw4cPS4xbIkTbUTGipebPn48aNWrwx+Hh4fjjjz9UmNEvDRs2xJ07d1CrVi0mvn37dnTo0AHfv39XUWa/ZB03IhaLERERocJscpe1ZSQ1NVWtCyd106GmNTYPrA8r04yuGGGRjH2J0mM+w+7pLjjXUNwsmuPHj2Px4sVMbOXKlWjZsqXC7kmIuqJiREsZGBjA29ub2Uxr3759OHbsmAqz+sXe3h43btxAx44dmfilS5fQtGlTvH//XkWZZdDktUaoq0Y2HWpa48bfbeAzqjFGtfu11PrNi2exYsUKhdzz5cuXGDx4MBPr378/Jk2apJD7EaLuqBjRYg0aNMCsWbOY2JgxY5gdQFXJxMQEJ0+ehLu7OxN/+fIlGjdujFu3bqkoM82a3ksLnxWcUEeAJhVKoXOjqkx8xowZuHTpUg7Pyp+4uDi4uroyu1rXrl0bW7duVegOwISoMypGtNysWbNQt25d/vjbt28YP3682gwW1dXVxfr167F27VrmD/G3b9/Qpk0bHDhwQCV5aVIxQkvCy4+5uTlzLBaL0bdvX7ntPi0WizF06FC8fPmSjxUvXhxHjx6VKCoJKUyoGNFy+vr62L17N7NK55EjR3Do0CEVZsUSCASYNGkSTpw4wfxBTklJQb9+/bBo0SKlF0+atNYItYzIj5mZmUTs27dvcHNzQ0pKSoGvv2zZMqarVCAQwMfHBxUqVCjwtQnRZFSMFAK1atXCvHnzmNj48ePVblCmi4sLrl+/DhsbGyY+Z84cDB06VC5vBnlFLSOFU8mSJZlp8Znu3LkjsaCgrM6fPy/Rbbpw4UJ06NChQNclRBtQMVJITJs2Df/73//445iYGIwZM0Ztumsy1atXD0FBQahXrx4T3717N9q3b6+06ckWFhbQ1dXljzVpACu1jOSfjo4OSpUqJfWxLVu2YNeuXfm67ocPH9CvXz/m961bt26YMWNGvq5HiLahYqSQ0NXVhbe3N7OQ0smTJ7Fnzx4VZiVd6dKlce3aNbi4uDDxa9euoXHjxnjz5o3Cc9DR0WG6aqhlpPDIPm4kq3HjxuHBgwcyXS8xMRGurq7MlPXKlStj9+7dUlthCCmM6DehEKlWrRoWLVrExP744w+1fKMtVqwYjh07JtE0/ubNGzRu3BjXr19XeA5Zi5EvX75ALBYr/J75QS0j8iVt3Eim5ORk9OzZM88tdBzHYfTo0Xj06BEfK1asGI4fPw4TE5MC50qItqBipJD566+/4OjoyB/HxsZi5MiRatddA2SsRrlmzRps3LiR+QQZExMDJycn7N27V6H3zzpuJDU1FVFRUQq9X35Ry4h85dYyAmR0uQwYMCBPxen69euxb98+Jubt7Y1q1aoVKEdCtA0VI4WMUCjEzp07mf1hzp8/j23btqkwq9yNHz8ep0+fllhpdNCgQZg3b57CCilNWfiMFj2Tr98VIwDg5+eHBQsW5HrOtWvXJDapnD59Onr06FGg/AjRRlSMFEKVKlXCsmXLmJiHhwc+fvyomoTyoGPHjrh58ybs7OyY+Pz58zFw4EAkJ8t/m3dNmVFD3TTylVsx4uvrixcvXuDy5cuoXr16jjO8vnz5Ajc3N4hEIj7Wvn17iW5SQkgGKkYKKXd3d7Ru3Zo//vnzJ4YPH6624yKAjFUq79y5g4YNGzLx/fv3w8nJSe4ry2pKMULdNPKVdcxI8+bNmcd8fX1RtWpVtGrVCr1795a6s25KSgp69uyJr1+/8rGyZcti//79zPYMhJBfqBgppHR0dLBjxw7mjezy5cvYtGmTCrP6PWtra1y5cgWurq5M/ObNm2jcuDFevXolt3tpysJn1DIiX5ktI2PGjMH58+dRokQJ/jFfX9/fDl6dNGkS7ty5wx8bGhri6NGjOU4ZJoRQMVKolS1bFqtWrWJif//9N96+fauijPKmaNGiOHLkCKZOncrE379/j8aNG+Py5ctyuY+mjBmhlhH5Mjc3h6urKzZu3AgjIyMMHDiQfywlJUViQGpW27dvx3///cfEvLy8JNbNIYSwqBgp5EaNGgVnZ2f+ODExEcOGDWP6utWRjo4Oli9fjq1btzJN3z9+/ED79u3zvThVVtbW1sx+OdQyUjjUrVuX6VIZOXIk87iXl5fUQdNBQUEYP348E5s4cSJTzBBCpKNipJATCATYtm0bTE1N+diNGzewbt06FWaVd6NGjcK5c+eYNRvS09MxbNgwzJo1q0BjYPT09GBlZcUfq2sxYmRkxBRN1DJSMGZmZjA0NOSPa9euzaxe/OTJE9y7d495ztevX9GzZ0+kpqbysebNm0u0PBJCpKNihMDW1hZr165lYjNnzmR2FlVn7dq1w61bt1CmTBkmvmTJEvTr1w9JSUn5vnb2VVgzPxGLxWJmIStVEggETOsItYzIX/bWkaxT4dPT09GnTx+mWLWxscGhQ4eYDSoJITmjYoQAAIYMGYIuXbrwxykpKRgyZAjS09NVmFXe1ahRA3fu3IGDgwMTP3ToENq0acPMbMhNVFQUEhMT+eOs40YSEhIQFxeH169fo02bNszuq6qWddwItYzIX9++fVGkSBH+eP/+/XzR9/fff+PKlSv8Y3p6ejhy5AjTqkYIyR0VIwRAxqfrrVu3MjMHgoKCsGLFChVmJRtLS0tcvnwZbm5uTPz27dtwcHDA8+fPf3sNsViMMmXKYMSIEbh27ZrEjJq///4btWvXxtWrV1GnTh255l8QWVtGqBiRPxMTE/Tp04c//vnzJw4fPgwfHx+sXr2aOXf9+vVo0qSJslMkRLNxGiA2NpYDwMXGxqo6Fa23f/9+DgD/paenxz1+/FjVaclEJBJxM2bMYL4PAJyJiQnn7+//2+cPHDiQf46urq7EdTK/3r9/r4TvJm9q167N52VhYaHqdLTSzZs3mf//derU4YyMjJjY8OHDObFYrOpUCVEbeX3/ppYRwujbty969uzJH6elpWHIkCFIS0tTYVay0dHRwZIlS7Bjxw7o6ury8bi4OHTo0AFeXl65Pn/ChAn8v3PqpjIxMUHZsmXlkq88UDeN4jVp0oTZU+bRo0fMeKSGDRti48aNzGBiQkjeUDFCGAKBAJs3b2aWxH7w4AEWL17MnPfu3Tu1L1CGDRuGCxcuoHjx4nxMJBJh9OjRmDZtWo4zbRo1aiSxymt2derUUas3nezdNOq8kq6mEggEEgNZM5mZmcHX15eZhUMIyTsqRogEc3NzbNmyhYktXrwYwcHB/PHkyZNx9epVZacms9atWyMwMBDly5dn4itWrICbmxszWDWTQCBgWkekUafxIoDkwmcFmUFEcjZo0CBmB2kgoyXu0KFDsLe3V1FWhGg+KkaIVD169ED//v354/T0dAwePBgpKSm4fPkyTpw4gePHj6suQRlUrVoVt2/fRtOmTZn40aNH0bJlS4SHh0s8p0+fPrku3123bl15p1kgtPCZcty6dUui1WngwIHMPk+EENlRMUJytH79emZ64rNnzzB37lx+W/QTJ05IXYlSHZmbmyMgIAD9+vVj4vfu3YODgwOePHnCxA0NDTFq1Kgcr6fuLSM0bkT+Xr16hUGDBknEIyIiVJANIdqFihGSo5IlS0oM9ly+fDkePnwIIGMRsKxdN+rO0NAQ+/btw9y5c5l4aGgoHB0d4efnx8THjh0r0SQPAEKhEDVq1FBorrKilhHFio+Ph6urK+Lj4yUe8/f3R0hIiAqyIkR7UDFCctWlSxcMHTo0x8c1pasmk0AgwPz587F7925mdcz4+Hh07twZmzdv5mNlypRB165dJa5RpUoVGBkZKSXfvKKWEcXhOA7Dhg3Dixcv+FjWgaocx2Hnzp2qSI0QrUHFCJEQHx+PVatWYfz48ejYsSOzumR2mlaMZBo0aBAuXryIkiVL8jGxWIzx48fDw8OD3yhQ2kBWdRsvAlDLiCItX74cvr6+/LFAIMCWLVuY2VQ7duxQ+80lCVFnVIwQCcbGxrC3t8euXbvg5+eHjx8/5nju06dP8fbtW+UlJ0ctWrTA7du3UalSJSa+Zs0a9OjRAz9//kSbNm1QtWpV5nF1Gy8CSBYj1DIiH/7+/pg5cyYTmzdvHoYMGYIOHTrwsdDQUPj7+ys7PUK0BhUjRCo3NzfcvHkTdnZ2vz33xIkTSshIMSpVqoTAwEC0aNGCiZ88eRItWrRAWFiYROuIOraMUDeN/H38+BF9+/ZlZs+4uLhg9uzZACQ3z1u2dhNOPPyCwHfREIk1Y2A3IeoiX8XIxo0bUbZsWRgaGsLBwQFBQUF5et6BAwcgEAjQvXv3/NyWKFm9evVw7949NGvWLNfzNLWrJlOpUqVw4cIFiZkSDx48gIODA+rWrQtjY2M+rgktI9RNUzBJSUno0aMHYmJi+FilSpWwZ88eflBzly5dYGFhwT9+xf8sJmy/gn5et9Fs2SX4PZWcMk4IkU7mYuTgwYPw8PCAp6cngoODUadOHTg7O/92V9SPHz9iypQpaN68eb6TJcpnYWGBgIAAjB49Osdzbt68meddcdWVgYEBvL29sXDhQib+5csXODs78y0nJcws8P6nrtp98qWWEfnhOA5jxozBgwcP+FjRokVx7NgxmJqa8jF9fX206Pxr6wSIRfj59BIAICI2GeP2BlNBQkgeyVyMrF69GqNGjcKwYcNQvXp1bNmyBUWKFMGOHTtyfI5IJMKAAQMwf/58iZUwifrT19fHli1bsHHjRgiFQonHOY7DqVOnVJCZfAkEAsyePRv79++HgYEBH09ISMCZs2cBAEnGtmr5yZdaRuRn48aN2LNnDxPbtWuXxHRukZjDm+KNmNjPxxfAcRwyS9X5p56rXeFKiDqSqRhJTU3F/fv34eTk9OsCOjpwcnJCYGBgjs9bsGABLCwsMGLEiDzdJyUlBXFxccwXUS2BQIDx48fD399f6sqkmt5Vk1W/fv1w6dIlmJmZ/Qr+/+JuosRYcGKR2n3ypZYR+bhx4wb++usvJjZt2jT06tVL4tygDzH4oW8OA9tfRUp6zGekff0AIGMb3/DYZAR9iJF4LiGEJVMxEhUVBZFIBEtLSyZuaWmZ4yqEN27cwPbt23+7U2pWS5cuhampKf+Vl0GURDlat26Nu3fvombNmkzc399fqz6NN23aFDdvBcLQnN1vJD3mC0Tx0Wr3yZdaRgouLCwMbm5uzE7NTk5OEptEZvoanwwAKFanPXSKFEex+l1gM3IL9C3LSz2PEJIzhc6miY+Px6BBg+Dl5cV+yvyNGTNmIDY2lv8KDQ1VYJZEVuXKlcOtW7eYgcgpKSk4d84Pge+itWZGQbROCZj1Xw7DMrUzAjq6MOsyGbqmGYMW1emTL7WMFExqaip69erFfKgqU6YMfHx8oKurK/U5FsYZC58VrdYCtuN3QkffCDoGRXM8jxCSM+m/ZTkwMzODUChEZGQkE4+MjGT2MMn07t07fPz4ES4uLnwsc5qcrq4uXr16hQoVKkg8z8DAgOmzJ+rH2NgYvr6+mD9/PhYsWAAAGL/kPxR1/rUyqbWpITxdqqNDTWtVpVkgX+OTITQsBgu3+Yi5sBkGdjVRpHITqeepGrWMFMyff/7JdDUbGhri6NGjuX6IalSuJKxNDRERm1GYpka8RfzDsyjebAAAQADAytQQjcqVzPEahJAMMrWM6Ovro0GDBggICOBjYrEYAQEBaNJE8o901apV8eTJEzx8+JD/6tq1K1q3bo2HDx9S94uG09HRwfz58zFz1VYI9AwQ8yIQnOhXE7e6jauQVeYnWoFQD6U6/oFiNdvkep4q0aJn+bdz505mGwAA2LJlC+rXr5/r84Q6Ani6VAeQUXikffuI+AfnwKWnIXNtVk+X6hDqCHK8BiEkg8zdNB4eHvDy8oK3tzdevHiBcePGISEhAcOGDQMADB48GDNmzACQ8emiZs2azFfx4sVhbGyMmjVrQl9fX77fDVE6kZjDpZTysBqwAgKDIkgOfYrUbx+RHhelduMqZJX5yTentxIBMlp/1OGTr1AoZPZLoWIkb+7du4dx48YxMXd3dwwZMiRPz+9Q0xqbB9ZHKd0UiBK+Q5z4Awkvr8PK1BCbB9bX2FZBQpRNpm4aAOjTpw++ffuGuXPnIiIiAnXr1oWfnx8/qPXTp09Sdzol2inoQwzCY5Ohb1ke1kPWIvFtEKL91oNLS4ZZ12kwKlOHH1fRpILkLBx1lvnJd9zeYAgAZC2n1PGTb9GiRZGcnNFlRN00v/ft2zf06NEDKSkpfMzR0RGrV6+W6TodalpDt3VxtPv/ca7mIQG4fmIFdIX0d5CQvJK5GAEyNg+TtoEYgFw3VQMy5usT7ZF1vISOkTESX92AKDZjTNHXg3NQvMUgmDj0UotxFfmR+cl3/qnnCI/99T1YqeF4mGLFiiE6OhoAtYz8Tnp6Ovr27csMjre2tsbhw4fz1WL7/NlT/t8vnz7CnduBcHR0lEuuhBQG+SpGCMmUdbxE2rePSPn0648yODF+XPVGStgrFOm3XwXZyUeHmtZoV90KQR9i8DU+GRbGGV0z6tIikinruBFqGcndjBkzcOnSJf5YT08PR44cgbV1/orLJ0+eMMfr1q2jYoQQGVA7IimQrOMq9C3Kw2rQSuiWYP+gJ725jfFu7fH48WPVJCkHQh0BmlQohW51S6NJhVJqV4gA7PReahnJ2cGDB7Fy5UomtnbtWjRt2jTf18xejBw9epSWJCBEBlSMkALJPqNA36IcrAevgVGlxsx5b9++RePGjSWW2Sbyk71lhOM0b9Cwoj19+hTDhw9nYkOHDpUYxCoLsViMp0+fMjGRSISNGzfm+5qEFDZUjJACyxxXYWWa0WWjY1gM5q4zYec8khnMnJSUhMGDB2PcuHHMoEEiH1lbRkQiEVJTU1WYjfr58eMHXF1dkZiYyMfq16+PTZs2QSDIf0vXhw8fpLZEbd26lbkXISRnVIwQuehQ0xo3/m4Dn1GNsa5vXRwY3RQfzm6Fv78/zM3NmXO3bNmCFi1a4NOnTyrKVjvRwmc5E4vFGDhwIN6+fcvHzMzMcPToURgZGeXyzN/L3kWT6fv379i7d2+Brk1IYUHFCJEbaeMq2rRpg+DgYDRuzHbbBAUFoX79+vD391dRttqHloTP2YIFC3DmzBn+WEdHBwcOHECZMmUKfO2cihEA+Pfff6m7jJA8oGKEKJytrS2uXr2KiRMnMvHo6Gg4Oztj8eLF/DYBJP9oFVbpTp8+jfnz5zOxf/75B23btpXL9XMrRp49e8asWE0IkY6KEaIU+vr6+Pfff7Fv3z4UKVKEj3Mch9mzZ6Nbt274/v27CjPUfNRNI+nNmzcYOHAgE3Nzc8OUKVPkdo/cihEgY5ovISR3VIwQperfvz/u3LmDypUrM/HTp0+jQYMGePDggYoy03zUTcP6+fMnunfvjtjYWD5Wo0YN7Nixo0ADVrNKTk7Gmzdvcj3nzJkzzFgVQogkKkaI0tWsWRN3795Fjx49mPiHDx/QtGlT7Ny5U0WZaTZqGfmF4zgMHz4cz58/52MmJiY4duyYRNFWEC9evIBIJJL6WOZMMo7jsGHDBrndkxBtRMUIUQkTExMcOXIEK1asgFAo5OPJyckYPnw4Ro8eze+zQvKGWkZ+WblyJQ4fPszE9u3bh0qVKsn1PpldNHp6eujduzfz2N9//41z585hwIABOHjwIOLi4uR6b0K0CRUjRGUEAgGmTJmCgIAAfqPFTF5eXmjWrBk+fvyomuQ0ELWMZAgICMD06dOZmKenJ7p06SL3ez158gQNGzZEcHAwli9fzjwWFhaGDh06YO/evXj9+nWOLSiEECpGiBpo2bIlgoODJfbyuH//Pho0aAA/Pz8VZaZZqGUECAkJQZ8+fZjZWV26dMHcuXMVcr8uXbogMDAQNWvWhI2NDbPIX9Z1dIyNjVGiRAmF5ECINqBihKgFGxsbXL58GX/++ScTj4mJQadOnTB//nya/vsbhb1lJCkpCT169OB3LgaAihUrYs+ePUyRIE8tW7aErm7GfqN6enqwsbHhH6NF/QjJOypGiNrQ09PDmjVrcPDgQeaNleM4zJs3D507d0ZMTIwKM1RvhbllhOM4jB8/HsHBwXysSJEiOHbsGIoXL660POzt7fl/h4aGUgFNSB5RMULUTu/evXH37l1UrVqVifv5+aF+/fq4f/++ijJTb4W5ZWTz5s3YtWsXE9u5cydq1qyp1DyyFiOpqamIjIxU6v0J0VRUjBC1VK1aNQQFBcHNzY2Jh4SEwNHREdu2bVNRZuqrsK7AeuvWLUyaNImJTZkyRWJ2izJkX16eumoIyRsqRojaMjY2xsGDB7FmzRq+Xx4AUlJSMGrUKIwYMQJJSUkqzFC9FMZumvDwcPTs2RPp6el8rE2bNli6dKlK8snaMgJQMUJIXlExQtSaQCDAn3/+icuXL8Pa2pp5bMeOHXB0dMT79+9VlJ16KWzdNKmpqXBzc0NERAQfs7e3x4EDB5jiVZmoGCEkf6gYIRqhWbNmCA4ORsuWLZn4gwcP0KBBA2ZH1sJKX1+feRPW9pYRDw8P3Lx5kz82MDCAr68vzM3NVZYTFSOE5A8VI0RjWFlZ4eLFixKbnP348YNfS6IwLywlEAiY1hFtbhnx9vbGxo0bmdjmzZvRsGFDFWWUIXsxEhISoqJMCNEsVIwQjaKrq4sVK1bgyJEjMDY2Zh5buHAhOnXqhKioKBVlp3pZx41oa8tIcHAwxo4dy8TGjRuHYcOGqSijX0xNTZmfS2oZISRvqBghGqlnz564e/cuqlevzsQvXLiA+vXrIygoSEWZqZa2t4xERUXB1dWV2beoSZMmWLt2reqSykIgEDAzaqgYISRvqBghGqtKlSq4c+cO+vXrx8RDQ0PRvHlzbNmyBRzHqSg71dDmlpH09HT07duXeYO3tLTEkSNHoK+vr8LMWFm7aqKjo7Xu/wMhikDFCNFoxYoVw759+7B+/Xpm8GZqairGjRuHoUOHIjExUYUZKpc2t4zMmjULAQEB/LGuri6OHDnCLMGuDrKPGwkNDVVRJoRoDipGiMYTCASYMGECrl27JvHGtHv3bjRp0gRv375VUXbKlbVlJCUlRWsG9B4+fFhiV9w1a9agWbNmKsooZzSjhhDZUTFCtEaTJk3w4MEDtG7dmok/fvwYDRs2xMmTJ1WUmfJo4yqsz549kxicOnjwYLi7u6soo9zRjBpCZEfFCNEqFhYWuHDhAv7++28mHhsbi27dumHmzJnMap3aRtsWPouNjYWrqytTVNWrVw9btmyBQCBQYWY5oyXhCZEdFSNE6+jq6uKff/7BsWPHYGJiwjy2dOlSODs74+vXrxLPW7VqlbJSVBhtWhJeLBZj0KBBePPmDR8rWbIkjh49CiMjIxVmljvqpiFEdlSMEK3VvXt33Lt3D7Vq1WLily5dQoMGDXD79m0+FhcXh6lTp+L48eNKzlK+tKllZNGiRTh16hR/rKOjgwMHDqBs2bKqSyoPbGxsoKPz608rFSOE/B4VI0SrVapUCbdv38bAgQOZ+OfPn9GiRQts3LgRHMfhwYMH4DgOI0eORFhYmIqyLThtaRk5c+YM5s2bx8SWLFmCdu3aqSYhGejq6qJ06dL8MRUjhPweFSNE6xUpUgS7d+/Gpk2boKenx8fT0tIwYcIEDBo0CNeuXQOQsS7EkCFDIBaLVZVugWhDy8jbt28xYMAAZo2Ynj17Ytq0aSrMSjZZu2pCQ0M19ueJEGWhYoQUCgKBAOPGjcP169dha2vLPLZv3z7MnTuXP7548SLWrFmj7BTlQtNbRhISEuDq6orY2Fg+Vr16dezcuVNtB6xKk7UYSUtLY3YWJoRIomKEFCoODg4IDg6Gk5NTrufNmDEDDx8+VE5ScqTJLSMcx2HEiBF4+vQpHzMxMcHRo0cl9iFSdzSjhhDZUDFCCh1zc3P4+flh1qxZOZ6TlpaGfv36adzqrZrcMrJmzRocPHiQie3ZswdVqlRRUUb5RzNqCJENFSOkUHr69CnevHmTa9P/y5cvMWXKFCVmVXCauujZ5cuXJcaEzJkzB127dlVRRgVDxQghsqFihBQqr1+/RpcuXVC3bl0cOnTotxvpbd68WaNWbtXEbppPnz6hd+/ezNL1HTt2hKenpwqzKhgqRgiRDRUjpFCpVKkSpk6dikGDBuV54awRI0YgPDxcwZnJh6Z10yQnJ6Nnz56IioriY+XLl8e+ffsgFApVmFnB0JLwhMiGihFSqAgEArRs2RK7d+9GeHg4Nm/ejIYNG+b6nKioKAwdOlQjpmdqUssIx3Fwd3fHvXv3+FiRIkVw7NgxlChRQoWZFZypqSlMTU35Y2oZISR3VIyQQsvU1BRjx47F3bt38ejRI/zxxx8oWbKk1HMvXLiAdevWAQBEYg6B76Jx4uEXBL6Lhkice1ePMmlSy8jWrVuxY8cOJrZ9+3bUrl1bRRnJV9bWESpGCMmdrqoTIEQd1K5dG+vWrcPy5ctx4sQJbN++Hf7+/syYkunTp8PAvhb2vBYgPDaZj1ubGsLTpTo61LRWReoMTWkZCQwMxMSJE5mYh4cH+vbtq6KM5M/e3h5PnjwBAMTExODnz58SxSIhJAO1jBCShYGBAXr37o3z58/jw4cPmDdvHr9mRGpqKv4cMwJfomKZ50TEJmPc3mD4PVX9uBIjIyNmhpA6toxERESgV69eSEtL42OtWrXCsmXLVJiV/GUfNxIaGqqiTAhRf1SMEJKDMmXKwNPTE+/fv8c5v/MoVasV0n6E4ccVtmshs+1k/qnnKu+y0dHRQZEiRfhjdWsZSUtLQ+/evZn9f2xtbXHw4EHo6mpXQy0NYiUk76gYIeQ3dHR0YFqxAYp1mgJb990Qmloh8V0QEl7dROq3jwAyCpLw2GQEfYhRaa4AO25E3VpGJk+ejOvXr/PH+vr68PX1hYWFhQqzUgya3ktI3mnXRxFCFORrfMYYkbToUPy4vAOZ7SGmTftC37ysxHmqlHXciDoVI3v27MH69euZ2KZNm9CoUSMVZaRYtCQ8IXlHLSOE5IGFsSEAQNfEEr86ZoC0mC9Sz1OlrMWIunTTPHjwAKNHj2Zio0ePxogRI1SUkeJRywgheUfFCCF50KhcSVibGkLXuBQEer8KjsxiRICMWTWNykmfGqxM6tZNEx0djR49eiA5+VerUePGjfHvv/+qMCvFs7a2ZhZuo2KEkJxRMUJIHgh1BPB0qQ6BQAC9kqX5ePr3LwCXsRiap0t1CHVUv8199m6a3y15r0gikQj9+/fHx48f+ZiFhQWOHDkCAwMDleWlDLq6uihd+tfPChUjhOSMihFC8qhDTWtsHlgfxpa/mt+5tBSUFCRg88D6arHOCMC2jHAch6SkJJXlMmfOHFy4cIE/1tXVxeHDh5k3aW2WtasmNDSU2X+HEPILFSOEyKBDTWuM69aMif3T1kxtChFAfRY+O3r0KJYuXcrEVq1ahRYtWqgkH1XIOog1PT0dERERKsyGEPVFxQghMqpWtSpz/PbNaxVlIp06LAn//PlzDBkyhIkNGDBAYtVVbUeDWAnJGypGCJFRlSpVmOPXr9WrGFF1y0hsbCxcXV2Z+9apUwdbt25lVoctDKgYISRvqBghREaVK1dmjl+9eqWiTKRTZcuIWCzGkCFDmAKtRIkSOHr0KLMybGFBxQgheUPFCCEyMjY2hrX1rzEi6laMqLJlZOnSpThx4gR/LBAI4OPjg/LlyystB3VCS8ITkjdUjBCSD1m7aj5+/IiUlBQVZsNSVcvIuXPnMGfOHCa2ePFiODs7K+X+6ohaRgjJGypGCMmHrMUIx3F4+/YtgIyN4Hbu3KmqtABItowooxh59+4d+vfvz6xp4urqiunTpyv83urMxMQExYsX54+pGCFEunwVIxs3bkTZsmVhaGgIBwcHBAUF5Xiul5cXmjdvjhIlSqBEiRJwcnLK9XxC1JFIJIJYLOaPsw9iffXqFV6/fo2mTZviyJEjyk6PoexumoSEBPTo0QM/fvzgY1WrVsWuXbsK3YBVabK2jlAxQoh0MhcjBw8ehIeHBzw9PREcHIw6derA2dkZX79+lXr+lStX0K9fP1y+fBmBgYGws7ND+/bt8eXLF6nnE6Ku2rZtC3d3dwQEBEiMgVi3bh3q1auHe/fuoVKlSirKMIMyu2k4jsOoUaPw+PFjPmZsbIxjx47BxMREYffVJFmLke/fvyM+Pl6F2eRdaroY26+/x9wTT7H9+nukpot//yRC8knmXXtXr16NUaNGYdiwYQCALVu24MyZM9ixY4fUJtl9+/Yxx9u2bYOvry8CAgIwePDgfKZNiHIJhUIMHDgQI0eOxKZNm2BkZMQ8fu3aNf7fFStWVHZ6DGW2jKxbtw4+Pj5MzNvbG1WzrcVSmGUfNxIaGorq1asr9J7v37+HlZVVvmcwLT37HF7XP0CcZSeBxWdfYFTzcpjRSbG5k8JJppaR1NRU3L9/H05OTr8uoKMDJycnBAYG5ukaiYmJSEtLQ8mSOW8olpKSgri4OOaLEFUbNGgQv4x5bkusF5aWkStXrmDKlClMbObMmXB1dVXI/TSVKmbUPHz4EMWKFUOlSpXQo0cPeHp64siRI3j16tVvl6RfevY5/rvGFiIAIOaA/659wNKzzxWYOSmsZGoZiYqKgkgkgqWlJRO3tLTEy5cv83SNv//+GzY2NkxBk93SpUsxf/58WVIjROH09fUxefJkeHh45HpeYWgZ+fz5M3r37s28sTk7O2PBggVyv5emy7okPKCccSM9evRAr169cPjwYbx9+xbHjh3jHzM0NET16tVRq1Yt1K5dG7Vq1UKtWrVgaWmJNBEHr+sfAACi5J9I/x4GA2t2XR2v6x8wuX1V6OvS/AciPzJ30xTEP//8gwMHDuDKlSswNDTM8bwZM2Ywf/Dj4uJgZ2enjBQJydWoUaOwaNEixMTESH1cV1dX4s1H2RTdMpKSkoKePXvi27dvfKxcuXLYv38/hEKhXO+lDVQ1vXf9+vW4dOkSoqOjmXhycjKCg4MRHBzMxM3MzGBmVxHfdMzBpSQg8c1tCHQNUHrUf9Ax+NXdI+aAPYEfMaJ54Vw7hiiGTMWImZkZhEIhIiMjmXhkZCSsrKxyfe7KlSvxzz//4OLFi6hdu3au5xoYGGj99uJEMxUrVgx//PEH5s2bJ/XxcuXKQVdXqTW+BEW3jEycOJGZEWdkZIRjx47l2vVamCm6GOE4DlFRUfj06ZPEl56eXp6vExUVhaioKPbaKYn4cWMfSrYdxcRDYhLlkjshmWT6q6mvr48GDRogICAA3bt3B5Cx/HNAQAAmTJiQ4/OWL1+OxYsX4/z582jYsGGBEiZE1SZOnIgVK1ZIbXFQdRcNoNh1Rry8vODl5SURq1OnjtzuoW2sra0hFAr5Li1Zi5GUlBSEhoZKLTYyv3Ibw1RQPx+eg2mT3hAWMeVjZUoWvqX9iWLJ/BHOw8MDQ4YMQcOGDdGoUSOsXbsWCQkJ/OyawYMHo3Tp0vzW4cuWLcPcuXOxf/9+lC1blt9Cu1ixYhLNyYRogpIlS2LMmDFYvXq1xGOqHrwKZHQVGRgY8KvCyqsYuXPnjsSHjkmTJmHAgAFyub62EgqFsLW15QeuZh3AynEcoqOj+aIiJCREotDI/JupCgZ2NVGy3VimENERAIOalFVZTkQ7yVyM9OnTB9++fcPcuXMRERGBunXrws/Pjx/U+unTJ+jo/BrYtHnzZqSmpqJXr17MdTw9PXNs6iZE3Xl4eGD9+vVIS0tj4urQMgJktI5kFiPy6KaJjIxEz549kZqaysdatmyJFStWFPja2iwlJQWfP39m1lz59OkT2rVrx7d2KLJVQ19fn/l/lp2enp7EzzAACIuVRInWw1GkWkuJhetGNS9Hg1eJ3Am4rOs3q6m4uDiYmpoiNjaWFlIiamPUqFHYtm0bEzt37hw6dOigoox+KVOmDN8dUKVKlTzPdpMmLS0NTk5OzFoqpUuXxv379yVm1hUmHMchJiZGamtGZiuHols1rKysYG9vjzJlysDe3l7i6/r16+jRo4fE88zNzZkByJmEQiEmTZqEYk36YM/9b8z0Xh0BaJ0RIrO8vn+rdqQdIRps2rRp2LFjB7NMvDq1jGQqaMvItGnTmEJEX18fvr6+Wl+IpKam4vPnz7l2oSQmKm4gp5GREVNYZC84bG1tfzvQf+/evfy/dXV1UbduXbx+/VpqIdKqVSts2LABNWrUAADM6i7GnsCPCIlJRJmSRTCoSVlqESEKQ8UIIflUqVIl9OrVC4cOHQKQ8ce+bNmyqk3q/2Udj1WQMSP79+/H2rVrmdiGDRvg4OCQ72uqg8xWDWmtGVnHaiiy4TizVSP7V2bRUapUqQLt7fP9+3ecPn0apUqVQpcuXRAcHIx79+5JnGdjY4NVq1ahT58+zP30dXVo+i5RGipGCCmA6dOn88WIubUt7obEolG5khDqqHaDOHm0jDx69AgjR45kYiNHjsSoUaNyeIb6yN6qIa3gUGSrhqGhIdOSkZKSwrRSLF68GDNnzlTY/QHg8ePHWLZsGR4+fAhvb2+Jx3V1dfHXX39hzpw5MDY2VmguhPwOFSOEFECknhVMK/8Psa/v4rteKfTzug1rU0N4ulRHh5rWKssra8tIeno6UlNToa+vn+fnx8TEwNXVlRlc2ahRI2zYsEGueeYHx3H4/v17rt0n4eHhCm3VsLS0zLH7xN7eHmZmZkwrw7Nnz5hiRNEbhYpEIjx79gwLFizA9+/fJR5v06YN1q9fr/A9cgjJKypGCMknv6fhGLc3GIYNeyL29V3olbABAETEJmPc3mBsHlhfZQWJtIXP8roomUgkQv/+/fHhwwc+Zm5ujiNHjihlMcLU1FR8+fIl1y4URe5EbGhomGPXSeZYjdxWkJZGmauwBgYGYsKECRIrrAIZA49Xr14NNze3AnUBESJvVIwQkg8iMYf5p56DA2BgWwMGpatBt3hG4cEBEACYf+o52lW3UkmXjbQl4fNajHh6euL8+fP8sVAoxOHDh+WyJUP2Vg1pBYcyWzWkFR3ZWzXkwdjYGCVKlOBbKRRRjHz9+hXTp0/Hzp07JR7T09ODh4cHZs+eTes7EbVExQgh+RD0IQbhsckAAIFAAJPGbhAIMmYacBwHCAQIj01G0IcYNKlQSun55WUV1vT0dBw/fpxZA+j48eNYvHgxc97KlSvRsmXLPN03LS2Nb9XIacqrIjbuy2RgYJDrVFdbW1sYGRkp7P65sbe3L1Axcu7cOXTs2FEinp6eji1btmDOnDn48eOHxONOTk5Yv349qlatKvM9CVEWKkYIyYev8RmFCCcWQaAjhDgtGUlv70BYrAQSnl9FidbDmfOULS/70/j5+cHDwwPdunWDnp4eXr58icGDBzPn9O/fH5MmTQKQUWT9+PEj1+6TsLAwhbZqWFhY5Drd1dzcXG27H+zt7fHo0SMAwI8fPxAXF5fndZMOHDiAP//8U2Ldkps3b8Ld3Z2/blZ2dnZYvXo1evbsqbavCSGZqBghJB8sjDPGDKSEvcL3S9sgTklAeswXJL68iSJVmkqcp2x52bl369atCA0NhY+PD7p3747u3bsjPj6ef9zKygqGhobo3LkzX3Aoo1Ujp/EaqmzVkAdp40Zq1qz52+dduHABgwcPhlgshlgsho6ODiIjIzFt2jTs3r1b4nw9PT1MmTIFs2bNkihKCVFXVIwQkg+NypWEtakhIlAdsfpGSA1/nfGAOB26JhYQALAyNUSjcqrZyTb7m1B8fDzfqhESEoJHjx7h1KlTAICxY8di7NixEsuSR0REYMeOHXLLydzcPMfuE3t7e1hYWGj1J/j8FCNBQUHo0aMHv2R7dHQ0fHx8MGfOHMTFxUmc7+zsjH///ReVK1eWX+KEKAEVI4Tkg1BHAE+X6hi3NxjFHfshIuRXM7muqQUAwNOlutIGr6alpSEsLIzvLsm6YioA9O7dO8c9UOSxN4q+vn6uU13t7Ow0ulVDHsqUKcMc/27cyMuXL9GpUyemVcvBwYGZ5ZTJ3t4ea9euRffu3bW6oCPai4oRQvKpQ01rbB5YH/NPGeJHmTpI/v+CxNTMGpOcKqFddSu53UvaWI2sYzbCwsKYZemzK2jBYW5unut0V3Nzc2aDTCJJlum9nz9/hrOzM6Kjo5l49kJEX18fU6dOxcyZM1GkSBH5JUuIklExQkgBdKhpjXbVrfCX4TSs9xgAAEg2LIE1F9/gwN3QPC1+lp6ezrdq5DQDRVqTvKJUrlwZ1atXR6NGjdC2bVvUrFmT3ujkIK/FSExMDJydnX/bctKxY0esW7cOlSpVkluOhKgKFSOEFJD/8wicijSFYZnaSA55DF2TjG6azMXPVnariMrFUnOcgfLly5dcWzXkoXTp0mjUqBHs7e0REBCAp0+f5nju69ev8fr1a/j7+8Pc3Bz/+9//FJpbYWFlZQVdXV2kp6cDkF6MJCQkoEuXLnj+/Hmu1/rnn38wbdo06pIhWoOKEUIKIOviZ6aO/ZES/gbfr+6CKO4b0mO/Ij3uG3otU9weKPr6+rCzs5PoOklKSsLEiRP584YOHYpFixYhPDw8T0u6Ozg4YO/evWqzC7E2EAqFsLW1xcePHwEAISEhzONpaWlwc3NDYGDgb681d+5cpKam4u+//5ZpmX9C1BUVI4QUQNbFzwztasLAugp+Pjgrt+ubmZnlOlbDwsJC6liN7J+sM6fk7ty5EyKRKMf7CYVCeHp6YsaMGdDVpT8P8lamTBm+GPny5QvS09Ohq6sLsViM4cOH49y5c3m6TmpqKubOnYtDhw7h+PHjqFChggKzJkTx6K8NIQWQfVGzYvU6ITnkYZ6eq6enl+M018yv/I7VkLbOiFgsxrZt23J8TuXKlbF3717qllGgrONGRCIRTgc+R5emNTF1ymRmI73cVKlSBa1bt0br1q3RsmVLWFpaKipdQpSGihFCCiD7omZ6JUvz/9YxMoGuiTmEJubo0rQ2HGpVZgoNS0tLhc1AkbYcfEBAgNRpoQAwbtw4rFixghbJUrA0Q3bdmbH/nYf+4n8Ren57js+pVKkSWrVqhdatW6NVq1awtlbdbtCEKAoVI4QUAL/4WWwyOAB6JW1gM3IzhMbm0NE35Bc/8/m7jVI3zJO2HLyXl5fEeZaWltixYwc6deqkrNQKLb+n4fD/xHaR/XwSgITH55lY+fLlmeLD1tZWmWkSohJUjBBSAFkXPxMAgFAPeqUydrfNLD2UufhZJgMDAwiFQn58SEj4Vzx/eJ85p3v37ti6dSvMzc2VmlthlDnQWWjCvtYJjy9AaGIBI/vasKxaH/4rxqNc2TI5XIUQ7UXFCCEF9Gvxs+f8YFYgo0UkL+uMKML5ZxGArgEgypjJ8+zVO4j+f0ppsWLFsG7dOgwbNoymhipJ5kBn3RLWMCxbD8JipcClJaFItRYoWsURAJAOIEJUDOVUmyohKkHFCCFykLn4WdCHGHyNT4aFcca+NMpuEQEyugPG7Q0G9AyBlIxiRJTwAwBgULoa/vXagWEdGys9r8Isc6CzXgkbWPZZ+NvzCClsqBghRE6EOgI0qVBKpTlkXfdEoJdlcK04HcWbD4Jp417Y+jABg505lRRKhVVed29W1S7PhKgabSZBiBbJuu6Jjv6vjekEBkVh2rQPoCNEeGwygj7EqCrFQilzoHNO5Z8AgLUKd3kmRNWoZYQQLZK1mb9Up0kAxwG6+tAxKJrjeUTxsg905rI8psqBzoSoC2oZIUSLZG3m17coD33LCtAvZQfdYiVzPI8oR+ZAZytT9rW3MjXE5oH1VTLQmRB1QS0jhGiR7OueZJe57gl1B6iGOg10JkSdUDFCiBah7gD1pw4DnQlRN9RNQ4iWoe4AQoimoZYRQrQQdQcQQjQJFSOEaCnqDiCEaArqpiGEEEKISlExQgghhBCVomKEEEIIISpFxQghhBBCVIqKEUIIIYSoFBUjhBBCCFEpKkYIIYQQolJUjBBCCCFEpagYIYQQQohKUTFCCCGEEJWiYoQQQgghKkXFCCGEEEJUiooRQgghhKgUFSOEEEIIUSkqRgghhBCiUlSMEEIIIUSlqBghhBBCiEpRMUIIIYQQlaJihBBCCCEqRcUIIYQQQlSKihFCCCGEqBQVI4QQQghRKSpGCCGEEKJSVIwQQgghRKWoGCGEEEKISuWrGNm4cSPKli0LQ0NDODg4ICgoKNfzDx8+jKpVq8LQ0BC1atXC2bNn85UsIYQQQrSPzMXIwYMH4eHhAU9PTwQHB6NOnTpwdnbG169fpZ5/69Yt9OvXDyNGjMCDBw/QvXt3dO/eHU+fPi1w8oQQQgjRfAKO4zhZnuDg4ID//e9/2LBhAwBALBbDzs4OEydOxPTp0yXO79OnDxISEnD69Gk+1rhxY9StWxdbtmzJ0z3j4uJgamqK2NhYmJiYyJIuIYQQQlQkr+/fMrWMpKam4v79+3Bycvp1AR0dODk5ITAwUOpzAgMDmfMBwNnZOcfzASAlJQVxcXHMFyGEEEK0k0zFSFRUFEQiESwtLZm4paUlIiIipD4nIiJCpvMBYOnSpTA1NeW/7OzsZEmTEEIIIRpELWfTzJgxA7GxsfxXaGioqlMihBBCiILoynKymZkZhEIhIiMjmXhkZCSsrKykPsfKykqm8wHAwMAABgYGsqRGCCGEEA0lU8uIvr4+GjRogICAAD4mFosREBCAJk2aSH1OkyZNmPMBwN/fP8fzCSGEEFK4yNQyAgAeHh4YMmQIGjZsiEaNGmHt2rVISEjAsGHDAACDBw9G6dKlsXTpUgDApEmT0LJlS6xatQqdO3fGgQMHcO/ePWzdulW+3wkhhBBCNJLMxUifPn3w7ds3zJ07FxEREahbty78/Pz4QaqfPn2Cjs6vBpemTZti//79mD17NmbOnIlKlSrh+PHjqFmzpvy+C0IIIYRoLJnXGVEFWmeEEEII0TwKWWeEEEIIIUTeqBghhBBCiEpRMUIIIYQQlaJihBBCCCEqRcUIIYQQQlSKihFCCCGEqBQVI4QQQghRKSpGCCGEEKJSVIwQQgghRKVkXg5eFTIXiY2Li1NxJoQQQgjJq8z37d8t9q4RxUh8fDwAwM7OTsWZEEIIIURW8fHxMDU1zfFxjdibRiwWIywsDMbGxhAIBHK7blxcHOzs7BAaGkp73igQvc7KQ6+1ctDrrBz0OiuHIl9njuMQHx8PGxsbZhPd7DSiZURHRwe2trYKu76JiQn9oCsBvc7KQ6+1ctDrrBz0OiuHol7n3FpEMtEAVkIIIYSoFBUjhBBCCFGpQl2MGBgYwNPTEwYGBqpORavR66w89ForB73OykGvs3Kow+usEQNYCSGEEKK9CnXLCCGEEEJUj4oRQgghhKgUFSOEEEIIUSkqRgghhBCiUlpfjGzcuBFly5aFoaEhHBwcEBQUlOv5hw8fRtWqVWFoaIhatWrh7NmzSspUs8nyOnt5eaF58+YoUaIESpQoAScnp9/+fyG/yPoznenAgQMQCATo3r27YhPUErK+zj9+/IC7uzusra1hYGCAypUr09+PPJD1dV67di2qVKkCIyMj2NnZ4a+//kJycrKSstVM165dg4uLC2xsbCAQCHD8+PHfPufKlSuoX78+DAwMULFiRezatUuxSXJa7MCBA5y+vj63Y8cO7tmzZ9yoUaO44sWLc5GRkVLPv3nzJicUCrnly5dzz58/52bPns3p6elxT548UXLmmkXW17l///7cxo0buQcPHnAvXrzghg4dypmamnKfP39WcuaaR9bXOtOHDx+40qVLc82bN+e6deumnGQ1mKyvc0pKCtewYUOuU6dO3I0bN7gPHz5wV65c4R4+fKjkzDWLrK/zvn37OAMDA27fvn3chw8fuPPnz3PW1tbcX3/9peTMNcvZs2e5WbNmcUePHuUAcMeOHcv1/Pfv33NFihThPDw8uOfPn3Pr16/nhEIh5+fnp7ActboYadSoEefu7s4fi0QizsbGhlu6dKnU83v37s117tyZiTk4OHBjxoxRaJ6aTtbXObv09HTO2NiY8/b2VlSKWiM/r3V6ejrXtGlTbtu2bdyQIUOoGMkDWV/nzZs3c+XLl+dSU1OVlaJWkPV1dnd359q0acPEPDw8OEdHR4XmqU3yUoxMmzaNq1GjBhPr06cP5+zsrLC8tLabJjU1Fffv34eTkxMf09HRgZOTEwIDA6U+JzAwkDkfAJydnXM8n+Tvdc4uMTERaWlpKFmypKLS1Ar5fa0XLFgACwsLjBgxQhlparz8vM4nT55EkyZN4O7uDktLS9SsWRNLliyBSCRSVtoaJz+vc9OmTXH//n2+K+f9+/c4e/YsOnXqpJScCwtVvBdqxEZ5+REVFQWRSARLS0smbmlpiZcvX0p9TkREhNTzIyIiFJanpsvP65zd33//DRsbG4kffsLKz2t948YNbN++HQ8fPlRChtohP6/z+/fvcenSJQwYMABnz57F27dvMX78eKSlpcHT01MZaWuc/LzO/fv3R1RUFJo1awaO45Ceno6xY8di5syZyki50MjpvTAuLg5JSUkwMjKS+z21tmWEaIZ//vkHBw4cwLFjx2BoaKjqdLRKfHw8Bg0aBC8vL5iZmak6Ha0mFothYWGBrVu3okGDBujTpw9mzZqFLVu2qDo1rXLlyhUsWbIEmzZtQnBwMI4ePYozZ85g4cKFqk6NFJDWtoyYmZlBKBQiMjKSiUdGRsLKykrqc6ysrGQ6n+Tvdc60cuVK/PPPP7h48SJq166tyDS1gqyv9bt37/Dx40e4uLjwMbFYDADQ1dXFq1evUKFCBcUmrYHy8zNtbW0NPT09CIVCPlatWjVEREQgNTUV+vr6Cs1ZE+XndZ4zZw4GDRqEkSNHAgBq1aqFhIQEjB49GrNmzYKODn2+loec3gtNTEwU0ioCaHHLiL6+Pho0aICAgAA+JhaLERAQgCZNmkh9TpMmTZjzAcDf3z/H80n+XmcAWL58ORYuXAg/Pz80bNhQGalqPFlf66pVq+LJkyd4+PAh/9W1a1e0bt0aDx8+hJ2dnTLT1xj5+Zl2dHTE27dv+WIPAF6/fg1ra2sqRHKQn9c5MTFRouDILAA52mZNblTyXqiwobFq4MCBA5yBgQG3a9cu7vnz59zo0aO54sWLcxERERzHcdygQYO46dOn8+ffvHmT09XV5VauXMm9ePGC8/T0pKm9eSDr6/zPP/9w+vr63JEjR7jw8HD+Kz4+XlXfgsaQ9bXOjmbT5I2sr/OnT584Y2NjbsKECdyrV6+406dPcxYWFtyiRYtU9S1oBFlfZ09PT87Y2Jjz8fHh3r9/z124cIGrUKEC17t3b1V9CxohPj6ee/DgAffgwQMOALd69WruwYMHXEhICMdxHDd9+nRu0KBB/PmZU3unTp3KvXjxgtu4cSNN7S2o9evXc/b29py+vj7XqFEj7vbt2/xjLVu25IYMGcKcf+jQIa5y5cqcvr4+V6NGDe7MmTNKzlgzyfI6lylThgMg8eXp6an8xDWQrD/TWVExkneyvs63bt3iHBwcOAMDA658+fLc4sWLufT0dCVnrXlkeZ3T0tL+r107tmEYBAIoqjQWS7gxC3gDj+KeKdjEozASI1yqVEmbnBy91yOdrkBfiOi9R601Simxrmu01mLO+fvBb2SM8fHOfe32PM84juPtzL7vsSxLbNsW13V9dcZHhLctACDP3/4ZAQDuQYwAAKnECACQSowAAKnECACQSowAAKnECACQSowAAKnECACQSowAAKnECACQSowAAKme0FQnUAWGNTUAAAAASUVORK5CYII=", "text/plain": [ "
    " ] @@ -167,7 +167,7 @@ }, { "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAAiMAAAGdCAYAAADAAnMpAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjcuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/bCgiHAAAACXBIWXMAAA9hAAAPYQGoP6dpAACDqUlEQVR4nO3dd1hTZxsH4F8StrIUZShuRQXrBhG3IDhQtO5ZrdYqatW6q0Wtu2q17q111D2r4sCJouAeuMHNFJkyk/f7w4+jxwRMMMkh4bmvK1d73pzx5BCTJ+8UMcYYCCGEEEIEIhY6AEIIIYQUbZSMEEIIIURQlIwQQgghRFCUjBBCCCFEUJSMEEIIIURQlIwQQgghRFCUjBBCCCFEUJSMEEIIIURQBkIHoAyZTIa3b9/C3NwcIpFI6HAIIYQQogTGGFJSUuDg4ACxOO/6D51IRt6+fQtHR0ehwyCEEEJIAbx69Qply5bN83mdSEbMzc0BfHwxFhYWAkdDCCGEEGUkJyfD0dGR+x7Pi04kI7lNMxYWFpSMEEIIITrma10sqAMrIYQQQgRFyQghhBBCBEXJCCGEEEIERckIIYQQQgRFyQghhBBCBEXJCCGEEEIERckIIYQQQgRFyQghhBBCBEXJCCGEEEIEpXIycuHCBfj6+sLBwQEikQgHDx786jHnzp1DvXr1YGxsjCpVqmDz5s0FCJUQQggh+kjlZCQtLQ21a9fGihUrlNo/MjIS7du3R8uWLXHr1i2MHj0agwcPxokTJ1QOlhBCCCH6R+W1adq2bYu2bdsqvf/q1atRsWJFLFq0CABQo0YNBAcH46+//oK3t7eqlyeEEEKIntF4n5GQkBB4enryyry9vRESEpLnMZmZmUhOTuY9CCGEEKKfNJ6MREdHw9bWlldma2uL5ORkpKenKzxm7ty5sLS05B6Ojo6aDpMQQgghAimUo2kmT56MpKQk7vHq1SuhQyKEEEKIhqjcZ0RVdnZ2iImJ4ZXFxMTAwsICpqamCo8xNjaGsbGxpkMjhBBCSCGg8ZoRd3d3BAUF8cpOnToFd3d3TV+aEEIIITpA5WQkNTUVt27dwq1btwB8HLp769YtvHz5EsDHJpb+/ftz+//888+IiIjAhAkT8PDhQ6xcuRK7d+/GmDFj1PMKCCGEEKLTVE5Grl27hrp166Ju3boAgLFjx6Ju3br4/fffAQBRUVFcYgIAFStWxNGjR3Hq1CnUrl0bixYtwvr162lYLyGEEEIAACLGGBM6iK9JTk6GpaUlkpKSYGFhIXQ4hBBCCFGCst/fhXI0DSGEEEKKDkpGCCGEECIoSkYIIYQQIihKRgghhBAiKEpGCCGEECIoSkYIIYQQIihKRgghhBAiKEpGCCGEECIoSkYIIYQQIihKRgghhBAiKEpGCCGEECIoSkYIIYQQIihKRgghhBAiKEpGCCGEECIoSkYIIYQQIihKRgghhBAiKEpGCCGEECIoSkYIIYQQIihKRgghhBAiKAOhAyCEEPKRVMYQGpmA2JQMlDY3gWvFEpCIRUKHRYjGUTJCCCGFQOC9KMw4Eo6opAyuzN7SBAG+NeHjYi9gZIRoHjXTEEKIwALvRWHYthu8RAQAopMyMGzbDQTeixIoMkK0g2pGCCFEg2QyGVJTU5GYmIjExEQkJSVx/5+YmIiE9++x5tRdJCclgWWmQZaZBhvfcZAUswYDIAIw40g4vGraUZMN0VuUjBBCSD5kMhmSk5N5CYSipCKv55KSkiCTyVS6pvRDMiTFrAEADEBUUgZCIxPgXrmkBl4hIcKjZIQQotdycnKQlJSkdPLwZXlycjIYY1qNWZaeLFcWm5KhYE9C9AMlI4SQQi0rK0uupkGVpCI1NVXol6AiEVhOllxpaXMTAWIhRDsoGSGEaFRmZmaBaiRy///Dhw9CvwSVSCQSFC9eHEZGRgA+1sx8+PABmZmZ+R5n5tQEJbz9ITYpBpHo09gCEQA7y4/DfAnRV5SMEELyxBhDenp6gWokch9f+xIubAwNDWFlZSX3sLS0zLf8yJEjWLFiBd68eYOkpCSVrtm530+4Ye8LkUiEzxuEcrurBvjWpM6rRK9RMkKKHMYYRKKi8cHOGENaWlqBOl7mPrKzs4V+GSoxMTHJN3n4WmJhampaoPeHs7MzjIyMMHHiREilUqWPmzlzJqZOnYoT96Pl5hmxo3lGSBEhYtrumVUAycnJsLS0RFJSEiwsLIQOh+ig6Oho7NixA5cvX8bu3bshFuvGFDtfDgstSDOHKl+MhYGZmZnSycOXz1laWsLERNi+FZcvX4afnx/i4uK+uu/SpUsxatQobptmYCX6Rtnvb6oZIXorPT0dhw8fxpYtW3Dy5ElIpVIsXrxYq4mIVCrlhoUWdDSHDvxe4DE3N1eqWSOv5wwNDYV+CQV2/fp1zJ8//6uJiFgsxqZNm9C/f39euUQsouG7pEiiZIQUeqr8WmSM4dKlS9iyZQt2796N5ORPQyTNzMwwcOBAla6dOyy0oM0cn19fV3yZLKjS3GFhYQEDg6L3sXLt2jXMmDED//3331f3NTIyws6dO9G5c2ctREbyQrVQhUvR+9QgOkXZ9ToiIiKwdetW/PPPP4iIiFB4riZNmiAsLEylpELXhoWKxeJvqpUwNzeHRCIR+mXojLCwMMyYMQNHjx5Van8zMzMcOnQInp6eGo6M5IfWASp8qM8IKbRy1+v48g2a+9tlYacqeH//Iv755x9cvHhR2+FphIGBgUqdLb8sK168eJHpnCukq1evYsaMGTh+/LjC50uWLIlx48YhICAAWVkf5wyxsrLCsWPH4O7urs1QyRe+9rmyqm89SkjUSNnvb0pGSKEklTE0mX+G98uFMYacxCjkJLxF2v0z+PDkisLJoYRkZGSkdJOGoufMzMwomSjEQkJCMGPGDJw4cULh8zY2Nhg3bhz8/f1RvHhxmJqaIiMjA7a2tjh58iS+++47LUdMPqfoc+VzuXO6BE9sRU02akIdWIlOC41M4H1gZCdGI27vDGQnvAY0mD+bmpoWuFbCyspK8JEcRDMuX76MGTNm4OTJkwqfL1WqFMaPH49hw4ahePHiXDljDOXKlcPp06dRtWpVbYVL8vDl5wrw8W8kS0uEpLg1rQMkIEpGSKH0+TocHx5fRvzRv8Cy0gEAxmWdYVymBjJfh0Ma+xQ52crVjtjY2GDChAl5JhaWlpYwNjbWyOshuik4OBgzZszA6dOnFT5funRpLgkpVqyY3PPVq1fHkSNH4OjoqOlQiRI+/1xJe3ARqbdPIPv9W8gyUuE4agdEEgO5/Yh2UDJCCqXP1+EwsHYAy/k08Vbm6/uwaNAJ1i1+wOb+dWCQEIng4GAEBwfj8uXLeP/+vcJzxsfHo3bt2mjTpo3G4ye67eLFi5gxYwaCgoIUPm9ra4sJEybg559/hpmZWZ7nOXPmDEqUoGncC4vS5ibISXmH5LADSLl+BJB9moMnM+oxTMrW5PYj2kXJCCmUXCuWgL2lCaKTMmBUqgIsPXoi6eI27vl3J1einHN9NK3uAIm4DJo0aQLg4yRhDx484JKT4OBgPH/+nDtu9OjRuH37tk7PZUE05/z585gxYwbOnj2r8Hk7OztMmDABQ4cOzTcJyUWJSOERERGBzQvm4+2GTWDSbBiXdUbm6/vc8xmRN2BatiatAyQQ3ZiGkhQ5ErEIAb4ff6WIAFi6dYWRbWXuedmHRBS7vkWuk5lYLIazszOGDh2KrVu3IjIyEq9fv8auXbswcuRImJiYYM2aNdp8KUQHnDt3Di1btkSLFi0UJiL29vZYsmQJIiIiMGbMGKUSEVI43L9/H/369UO1atWwdu1aMGk2RMbFULLNcN5+6ZE3AdA6QEKh0TSkUPt8PoCsuOeI2jwakOVwz+/duxfff/+9SufMysriVlQlRRdjDOfOncP06dNx4cIFhfs4ODhg0qRJGDx4MExNTbUcIfkW165dw5w5c3DgwAG554ZPmY0bxd1wY+lQZMU8+1goEmP3xbvo5lFTy5HqNxpNQ/SCj4s9vGra/X+mxDo4avkG6/6ayz0/bNgwNGvWDKVKlVL6nJSIFG2MMZw5cwYzZszIc36aMmXKcEkIjZDSHYwxXLhwAXPmzMlz5FPdunXx98yJgEiMgS86YOuapf8/WAa8vQ+AkhEhUDMNKfRy1+voVKcMVsyfgXr16nHPxcXFYcSIEQJGR3QFYwynTp1C06ZN4enpqTARKVu2LFasWIGnT59ixIgRlIjoCMYYjh07hiZNmqBFixZ5JiIAsGLFCkgkEkjEIgzq6cd7Lq/5Y4jmUTJCdIqhoSE2b97M64C6e/du7N27V8CoSGHGGMPJkyfh4eGBNm3a4NKlS3L7ODo6YuXKlXj69CmGDx9OSYiOkEql2LNnD+rVq4f27dvj8uXL+e4/aNAg3gy4jRs35g3JPnnypM4tTKkvKBkhOqdWrVoICAjglQ0fPlypJdtJ0cEYQ2BgIBo3bgxvb2+EhITI7VOuXDmsXr0aT548wbBhw2ieGR3y7Nkz1KlTB927d8etW7e+ur+VlRXmzZvHKzMyMkLLli257VevXuHhw4fqDpUogZIRopMmTpyI+vXrc9txcXHw9/cXMCJSWDDGcPz4cbi7u6Nt27a4cuWK3D7ly5fHmjVr8OTJEwwdOpSSEB1UuXJlBAUFYeHChahRo8ZX958zZ47CvmVfzjtETTXCoGSE6CQDAwNs3ryZ1xl1z5492LNnj4BRESExxnD06FG4ubmhXbt2uHr1qtw+FSpUwLp16/D48WP89NNP1JlZx5UuXRq//vordu/eDSsrqzz3q1evHn766SeFz3l7e/O28+tvQjSHkhGis1xcXOSaa/z9/am5pohhjOG///6Dq6srOnTogLCwMLl9KlasiPXr1+Px48cYPHgwJSF65NKlS2jatCkSExPz3GflypWQSCQKn6tatSrKly/PbZ87dw4ZGTQdvLZRMkJ02oQJE9CgQQNum5prig7GGA4fPoyGDRvC19cX165dk9uncuXK2LhxIx49eoQff/yRZt7VM0eOHIGnp2e+icjgwYPh5uaW5/MikYhXO5Kenq6wkzPRLEpGiE6j5pqihzGGQ4cOoX79+ujUqROuX78ut0/lypWxefNmPHz4EAMHDqQkRA9t2rQJnTt35tViWFpaIjAwkPs8sLa2xty5c/M6BefLphrqN6J9lIwQnefs7Izp06fzyoYPH47Y2FhhAiIaIZPJcODAAdSrVw9+fn64efOm3D5Vq1bFli1b8PDhQwwYMAAGBjSvo75hjGH+/PkYNGgQpNJPC93Z29vj4sWL8Pb2RrNmzQAAc+fOhY2NzVfP2apVK14zDvUb0T5KRoheGD9+PBo2bMhtx8fHU3ONnpDJZNi3bx/q1q2LLl26KBzGWa1aNWzduhXh4eHo378/JSF6SiaT4ddff8WkSZN45dWqVcPly5dRq1YtAICPjw8aNmyIwYMHK3VeKysrXlPO7du3ER0drb7AyVdRMkL0gqLmmr1792L37t0CRkW+hUwmw969e1GnTh107doVd+7ckdvHyckJ27ZtQ3h4OPr27UtJiB7LyspCv3798Ndff/HKGzRogODgYFSoUIEra9u2LTfTqrK+HOJLtSPaRckI0Rs1a9bEjBkzeGX+/v7UXKNjZDIZdu/ejdq1a6Nbt264e/eu3D7Vq1fHjh07cP/+ffTp00elLx2ie1JTU9GxY0fs2LGDV+7l5YWzZ8/KzR9Ss2ZNXk2pMmiIr7AoGSF6Zdy4cXLNNcOHD6cpnnWAVCrFrl27UKtWLfTo0QP37t2T26dmzZr4999/ce/ePfTq1YuSkCIgPj4erVu3lutU2qtXL/z3338oXry4Wq7ToEED3lwlJ0+ehEwmU8u5yddRMkL0iqLmmn379lFzTSEmlUrx77//olatWujZsyfCw8Pl9nF2dsauXbtw9+5d9OzZk5KQIuLFixdo0qQJQkNDeeWjRo3Ctm3b1DpfjIGBATw9PbntuLg43L59W23nJ/mjZITonbyaa2JiYgSKiCgilUqxY8cOuLi4oHfv3njw4IHcPi4uLti9ezfu3LmD7t27Qyymj6yi4t69e2jcuDEePXrEK587dy6WLFmikfcCDfEVToH+mitWrECFChVgYmICNzc3uaz1S0uWLIGTkxNMTU3h6OiIMWPG0Ax3RKPGjRsHV1dXbvvdu3fUXFNI5OTkYNu2bXB2dkafPn0ULkz23XffYe/evbh9+za6detGSUgRExwcjKZNm+Lt27dcmVgsxvr16zFp0iSIRCKNXJc6sQqIqWjnzp3MyMiIbdy4kd2/f58NGTKEWVlZsZiYGIX7b9++nRkbG7Pt27ezyMhIduLECWZvb8/GjBmj9DWTkpIYAJaUlKRquKQIu3//PjMyMmIAuMe///4rdFhFVnZ2Nvvnn39Y1apVeX+Tzx+1a9dm+/fvZ1KpVOhwiUAOHz7MTExMeO8LExMTdujQIa1cv3r16tx1DQ0NWUpKilauq6+U/f5WORlxdXVl/v7+3LZUKmUODg5s7ty5Cvf39/dnrVq14pWNHTuWeXh4KH1NSkZIQc2bN4/3oVayZEkWHR0tdFhFSnZ2Ntu8eTOrUqVKnklInTp12IEDBygJKeI2bNjAJBIJ771hZWXFLly4oLUYRo0axbv+kSNHtHZtfaTs97dKdZ9ZWVm4fv06r5OPWCyGp6cnQkJCFB7TuHFjXL9+nWvKiYiIwLFjx9CuXbs8r5OZmYnk5GTeg5CC+PXXX+Waa4YNG0bNNVqQnZ2NTZs2oXr16vjhhx/w9OlTuX3q1q2LQ4cO4caNG/Dz86PmmCKKMYZ58+bhxx9/5M2q6uDggAsXLqBp06Zai4WG+ApElQznzZs3DAC7fPkyr3z8+PHM1dU1z+OWLl3KDA0NmYGBAQPAfv7553yvExAQoPDXE9WMkIIIDw9nxsbGvPfSjh07hA5Lb2VlZbENGzawSpUq5VkTUr9+fXb48GEmk8mEDpcITCqVstGjR8u9R6pVq8YiIyO1Hk9qaiqvebdatWpaj0GfaKRmpCDOnTuHOXPmYOXKlbhx4wb279+Po0eP4o8//sjzmMmTJyMpKYl7vHr1StNhEj1Wo0YNzJw5k1c2YsQIGl2jZtnZ2Vi/fj2cnJzw448/IiIiQm6fBg0a4L///kNYWBh8fX15HRGzcmTYcDECvx+6hw0XI5CVQ3M86LvcWVWXLFnCK2/YsKHcrKraUqxYMTRp0oTbfvz4MZ4/f671OIocVTKczMxMJpFI2IEDB3jl/fv3Zx07dlR4TJMmTdi4ceN4ZVu3bmWmpqZKtw9TnxHyrXJycpibmxvvl1fnzp3pl7kaZGZmsrVr17Ly5cvnWRPi6urKjh49muf9nnP0Pqs46T9WfuKnR8VJ/7E5R+9r+dUQbUlJSWFt2rSRe6+0adNG8E6j8+fP58W0Zs0aQePRZRqpGTEyMkL9+vURFBTElclkMgQFBcHd3V3hMR8+fJBrB86dsIhRuz3REolEgs2bN8PY2JgrO3DgAHbu3ClgVLotKysLa9asQdWqVfHTTz/hxYsXcvu4ubnh+PHjuHLlCtq1a6dwSObcY+FYcyESsi8+DmQMWHMhEnOPyU+CRnRbXFwcWrVqJdcfo1evXjhy5IjaZlUtKBriq30qN9OMHTsW69atw5YtW/DgwQMMGzYMaWlpGDhwIACgf//+mDx5Mre/r68vVq1ahZ07dyIyMhKnTp3CtGnT4OvrS7MoEq2qXr26XPPgiBEjaHVOFWVmZmL16tWoUqUKfv75Z7x8+VJuH3d3dwQGBiIkJAQ+Pj55zguRlSPDuouRAABpejJk2fLzD627GElNNnokd1bVsLAwXvkvv/yi9llVC+q7776Dra0tt3369Gnk5OQIGFERUJBql2XLlrFy5coxIyMj5urqyq5cucI917x5czZgwABuOzs7m02fPp1VrlyZmZiYMEdHRzZ8+HD2/v17pa9HzTREXXJyclijRo14VbB+fn7UXKOEjIwMtmLFCla2bNk8m2M8PDzYyZMnlb6fa848YqW7BjAzJw8GiQEr4TOS11ST+1h/4ZmGXx3Rhjt37jAHBwe5983cuXML3b/Bvn378mK8dOmS0CHpJGW/v0WMFf62kuTkZFhaWiIpKQkWFhZCh0N03MOHD1GnTh1kZmZyZdu3b0fv3r0FjKrwysjIwPr16zFv3jy8efNG4T5NmjTB9OnT0apVK6Vmx3z8+DE2bdqEFWs3IiXh06rKRg5OKNH6JxjZV+Odp797eczs5PLtL4YI5uLFi/D19UVSUhJXJpFIsG7dOq5mvTDZtm0b+vXrx20HBARg+vTpwgWko5T9/qZB/aTIqV69OmbNmsUrGzlyJDXXfCEjIwPLli1D5cqVMXLkSIWJSLNmzRAUFIQLFy6gdevW+SYiycnJWL9+PTw8PODk5IR58+bxEhEAyHr7CCk3jyL6nzFIvXsasuyPCWP5EmbqfXFEqw4fPow2bdrwEhETExMcOHCgUCYiAODl5cXbpnVqNEwr9TTfiJppiLopaq7p1KlToasqFsKHDx/YkiVLmL29fZ7NMc2bN2dnz5796rmkUik7e/Ys69+/PzMzM8vzfACY2MySmTfoxOwHr2YG1h+r8sWmFsyyUVf2+GmE5l840Yj169czsVgsN6vqxYsXhQ7tq+rUqfPp/SkWs4SEBKFD0jmFZp4RQgojiUSCTZs28UbXHDp0CDt27BAwKmGlp6djyZIlqFSpEkaPHo2oqCi5fVq2bIlz587h3LlzaNGiRZ7nevHiBWbOnIkqVaqgZcuW+Oeff/Dhwwe5/SQSCaq7tkCpzr+h7PDNKNF6CIxKlkXJdr8AEEGWnoykK3tRvVoVdO7cGUFBQTQKT0cwxjB37lwMHjwYMtmnDsgODg64ePEiby6PwurzUTW5I0eJZlAyQoqsvJprFH0J67MPHz5g8eLFqFixIsaMGaOwuapVq1Y4f/48zpw5g+bNmys8T3p6Onbs2AEvLy9UrFgRAQEBiIyMVLhvzZo18eeff+L169d4cPUsxgzuDYmBIfe8SVlnWDToyG3LZDIcPHgQnp6eqFmzJlasWIGUlJRvfOVEU2QyGUaPHo0pU6bwyp2cnHD58mW4uOhG/x+aGl6LtFJP842omYZoSk5ODnN3d+dVIXfs2LFINNekpqayhQsXstKlS+fZdOLp6ZlvdbpMJmNXr15lQ4cOZZaWlvk2w1haWrKff/6ZXb16VeH9zcyWsvUXnrFpB++y9ReesfdJKfmu8Gtubs5GjBjBHjx4oMnbRFSUmZnJevbsqXDiu7i4OKHDU0lGRgavebFcuXJF4rNBnTS2aq8QKBkhmvTw4UO5Jcu3bt0qdFgak5qayhYsWMBKlSqV5xe9l5cXCw4OzvMcUVFR7M8//2Q1a9bMNwERiUTM09OTbd++nX348EHlWC9evMhEIlG+18iN99ChQywnJ+dbbg35RsnJyczLy0vu7+Pt7S34rKoF1a5dO95roeRXNZSMEKKChQsX8j5wrK2t2du3b4UOS61SUlLY/Pnz801CvL295RbCzJWZmcn279/PfH195ZZ5//JRsWJFNnPmTPb8+fNvjlvRImp5PcqXL8/mz5/P4uPjv/m6RDWxsbGsQYMGcn+TPn36sMzMTKHDK7ClS5fyXs/SpUuFDkmnUDJCiApycnJY48aNeR86vr6+elElm5yczObOnctsbGzy/BL38fFhISEhCo+/c+cOGzNmTL5JDABmZmbG+vfvz86ePav0ulPKSEtLy7e55sskcuLEiezVq1dquz75usjISIV/ozFjxqj1vSCEBw8e8F5Tu3bthA5Jp1AyQoiKHj16JNdc888//wgdVoElJSWx2bNnsxIlSuT55d2uXTt29epVuWPfvXvHli9fzurXr//VBKBx48Zs/fr1Gv33GRwcnG9zjUQiYUuXLmWpqakai4Eodvv2bYXDwOfNm6cXybxMJmPlypXjJd0ZGRlCh6UzKBkhpAAWLVrE+0C1srLSueaapKQkNmvWrHyTkA4dOrDQ0FDecTk5OSwwMJD16NGDGRkZ5ZuAODg4sEmTJrGHDx9q7XWNGTMm35hat27N3r17p7V4CGMXLlyQ67gskUjYxo0bhQ5NrQYPHsx7jUFBQdxzMpmMpaenCxhd4UbJCCEFkJOTwzw8PHSyuSYxMZHNnDmTWVtb5/mF7evry8LCwnjHPXnyhE2ZMiXfNWcAMCMjI9atWzd27Ngxlp2drfXXp0xzTZUqVaiDoZYcOHCAGRsb8+6/iYkJO3z4sNChqd2ePXt4r3PixImMsY9rrw0aNIjdvXtX4AgLL0pGCCkgXWuuef/+PZsxYwazsrLK80u6U6dO7Pr169wxKSkpbOPGjaxp06ZfbYapW7cu+/vvvwtFp9Avm2sqVKggF6+lpSU7fvy40KHqtXXr1imcVTW/EVi6LCEhgfd669Spw1JTU1n79u0ZAK3WEOoaSkYI+QaLFy+W+6B98+aN0GHxvH//ngUEBOQ7v4efnx+7ceMGY+xjdfL58+fZDz/8wIoVK5ZvAlKyZEk2atQodvPmTWFfpAKfN9ecOXOG/f3333Kje8RiMfvrr790okZLl8hkMjZ79my590uZMmXYvXv3hA5Prd68ecOb/v3L5SPq1avH/X9EBC1XkBdKRgj5Boqaazp06FAovtwSEhLY77//nm8S0qVLFy6RePnyJZs1axarUqVKvgmIWCxm7du3Z3v37i3UHfRym2skEgnXYfXkyZMKa4Z+/PFHnR5WWphIpVI2cuRIuXvs5OTEXrx4IXR4ahcREcHMzMxYpUqVWNeuXRUOW859vH79WuhwCy1KRgj5Ro8fP2ampqa8D50tW7YIFs+7d+/Y1KlTmYWFRZ4fit9//z27ffs2S09PZzt37mRt2rT56qRhTk5ObP78+TrVUTc4OJi5ubnxyh49esSqVasm9/qaNGnCYmJiBIpUP2RkZLAePXrI3Vs3Nzedm1VVFfPnz/9qMyYAFhsbK3SohRYlI4SowV9//SV4c018fDz77bffmLm5eZ4fht26dWO3b99mYWFhbPjw4fn2HwE+TqU+ZMgQdvny5UJR21MQd+7ckSt7//49a9OmjdzrLV++PLt9+7YAUeq+5ORk5unpKXdPfXx89H4odVZWFvvuu+++moy8f/9e6FALLUpGCFEDqVTKmjRpwvvgad++vVa+wOPi4tjkyZNZ8eLFFX4AikQi1r17d3bu3Dm2aNEi5uLi8tUPzZYtW7KtW7eytLQ0jccvlOzsbPbLL7/IvfZixYqxgwcPCh2eTomJiVHYPNG3b1+WlZUldHhaceXKla/WLurzv6dvRckIIWqiqLlm8+bNGrtebGwsmzhxYp6dTHOTkGXLljE/Pz9mYGCQ7wdl+fLlWUBAQJHrZLdu3TpmaGgod+/mzJmjs7VB2hQREaFwKPXYsWN1flZVVfn7++f7b0yIoe66gpIRQtToy+YaS0tLtXdai42NZRMmTMg3CWnfvj374YcfmK2tbb4fjiYmJqxPnz4sKCioyH1xfO78+fMKp8Hv3bt3gRbuKypu3brF7Ozs5O7b/Pnzi2Qil5iYyBwcHPL8d1kU74myKBkhRI0UNde0a9dOLR9CMTExbNy4cbylyj9/iMVi5urqymrVqvXVZphGjRqxNWvWsMTERDW8av0QERGhsAmrYcOGhW64dmFw/vx5uU7SEomEbdq0SejQBLV3716F/+aMjY2FDq1Qo2SEEDV78uSJXHPNt3xAR0dHs19//TXfJKRChQpfnZrdzs6OTZgwgYWHh6vvxeqZ5ORk1rFjR7l75+DgIDcjbVGmaFZVU1NTduTIEaFDE5xMJmO+vr5y76HixYsLHVqhRskIIRqwZMmSb26uiYqKYmPGjJFLbD6v9v3apGSGhoasS5cu7MiRI9RerSSpVMomT56ssElr586dQocnuLVr18rNqmptbc0uXbokdGiFxosXL+T+bZYoUULosAo1SkYI0QCpVCo3hXrbtm0VNtd8OXHY27dv2ejRo+Wmmlfl8d1337G//vqL5jX4Btu2bZP79Q+ATZ06tUj2r5HJZOyPP/6Qux/6OKuqOnw5O7OdnZ3QIRVqlIwQoiGKmmu+XKV069atbMaMGYyxj9NKjxo1qsBJiLW1NRsxYgS7fv06dZRTkytXrijsoNmlSxe9nzvjc1KpVOFIkerVq+vlrKrqkJ2dzZsKvly5ckKHVKhRMkKIBi1dupT34W1hYcFevXrF0tPT2dChQxkANn36dDZixAiFv8K/9hCLxczHx4ft3r27UE/NrstevXrF+1LJfdSuXZs9f/5c6PA0LiMjg3Xv3l3u9bu5uRWKRRELs2vXrnFNWmXKVWQHb75ml5/Gsxwp/Vj4krLf3yLGGEMhl5ycDEtLSyQlJcHCwkLocAiBTCZDy5YtceHCBa6sefPmSElJwY0bNwAABgYGyMnJUem8VatWxcCBA9G/f3+UKVNGrTETeR8+fMDAgQOxe/duXnnp0qVx4MABNG7cWKDINCslJQWdO3dGUFAQr7xt27bYs2cPihUrJlBkuqNzv59wcNs6GJZ0hMPgVQAAe0sTBPjWhI+LvcDRFR7Kfn+LtRgTIXpDLBZj48aNMDMz48rOnz/PJSIAlE5EihcvjkGDBiE4OBiPHj3C5MmTKRHREjMzM+zcuRMzZ87klcfGxqJly5bYvHmzMIFpUGxsLFq0aCGXiPTt2xeHDh2iREQJgfeicKNUG0jMSwESA648OikDw7bdQOC9KAGj002UjBBSQJUrV8bs2bMLfHzz5s2xefNmREdHY8OGDfDw8IBIJFJjhEQZIpEI06ZNw969e3nJZVZWFgYOHIhx48ZBKpUKGKH6REZGwsPDg5c0A8Cvv/6KLVu2wNDQUKDIdIdUxjDjSDhERqYo4fUzRJ8lI7nNDDOOhEMqK/SNDoUKJSOEFFBYWBjmz5+v0jGOjo6YOnUqnj59inPnzmHAgAH0S7SQ+P777xEcHAxHR0de+aJFi9CxY0ckJSUJFJl63L59G40bN8bTp0955QsWLMDChQshFtPXgTJCIxMQlZQBADCr6oZiNZrznmcAopIyEBqZIEB0uovefYSo6Pnz5/D19YWrqyuio6O/ur+xsTF69eqFkydPIjIyEn/88QcqV66shUiJqurWrYvQ0FC4u7vzyo8dOwZ3d3e5L3Jdcf78eTRr1oz3fpVIJNi8eTPGjx8vYGS6JzblYyIiTU9G1D+/IvVuEN6sG4r3ZzYo3I8oh5IRQhSQyhhCnr3DoVtvEPLsHaQyhsjISAwePBiVK1fGf//9p9R5nJyc8ObNG+zYsQNeXl6QSCQajpx8Kzs7O5w9exb9+/fnlT948ABubm44e/asQJEVzP79++Ht7Y3k5GSuzNTUFIcOHcKAAQMEjEw3lTY3+fg/IjGyoh4hOy4SOQlvkJMSr3g/ohSDr+9CSNESeC8KM46Ec1Wx2YnRyL62Fwm3TkMqVW10zKNHjzB06FBs374dxsbGmgiXaICxsTE2b96MWrVqYcKECcgddJiQkIA2bdrg77//xrBhwwSO8uvWrl2LYcOGQSaTcWXW1tY4evSoXO0PUY5rxRKwtzTB2+xMXjmTZgMARADsLE3gWrGEANHpLqoZIeQzgfeiMGzbDUQlZSD7fRTijy7B27U/Ie56oMqJSK59+/ahffv2SElJUXO0RJNEIhHGjRuHI0eOwNzcnCvPycnB8OHD4e/vj+zsbAEjzBtjDH/88QeGDh3KS0TKli2L4OBgSkS+gUQsQoBvTYgM+J19WU4WcrufB/jWhERMndFVQckIIf+X20s+tw985tuHSLt3GmCyfI8zNzdHhQoVUK9ePTg5OfGeMzExwaJFi/DLL78gMTFRM4ETjWrfvj1CQkJQqVIlXvnKlSvh4+ODhITC1VFRKpVi5MiR+P3333nlNWrUwOXLl1GzZk2BItMfPi72WN2vAUSSTwkJy8mCnaUJVvWtR/OMFAAlI4T83+e95AGgWI1mH+cRyCU2gGnVRpi/ZisePHiAmJgYZGVlITk5GZGRkbh+/TrCw8PRokUL7pCMjAycPHkSHTp0kBulQXSHs7Mzrl69yvvbAsCZM2fg6uqKBw8eCBPYFzIzM9GrVy+sWLGCV96oUSNcvHiR3oNq5ONiD4vin4aCVy5hhOCJrSgRKSBKRgj5vy97v4vEElg16weRoTEsXLug7PBNKN1lKpxcW6J69eooXbq03LwMYrEYGzZs4A3XPXHiBDZs4Pe0J7rHxsYGJ0+exNChQ3nlz549Q6NGjXD8+HGBIvsoOTkZ7dq1w549e3jlbdu2xenTp1GyZEmBItNfJiafOqkasBxqmvkGlIwQ8n+Ker8Xq9kcZYZugHXLQZAUs85zv89VqlRJbv6RsWPH4uXLl+oLlgjC0NAQq1atwvLly3kjo5KTk9GhQwcsXrwYQqywERMTg5YtW+LMmTO88n79+tGsqhr0eTKSkUFDeb8FJSOE/F9uL/nPf9uIxBJIill9/H98XHtCmV7yw4YN41Xpp6SkYPDgwYJ8URH1EolE8Pf3R2BgIKysrLhymUyGX3/9FT/++CMyMzPzPoGaRUREKJxVddy4cdi8eTPNqqpBnycj6enpAkai+ygZIeT/cnvJA8CXla2q9pLPXbvm81+kp06dwvr169UULRGap6cnQkND5Totb9q0Ca1bt0ZsbKzGY7h16xYaN26MZ8+e8cr//PNP/PnnnzSrqoaZmppy/081I9+G3qmEfMbHxR6r+taDnSW/KaYgveQrVqyIBQsW8Mp+/fVXaq7RI1WrVsWVK1fg7e3NK7906RIaNmyI27dva+za586dQ/PmzRETE8OVSSQSbNmyBePGjdPYdckn1EyjPiKmA/XGyi5BTIi6SGUMoZEJiE3JQGnzj00zBemcJpPJ4OnpyZu108vLCydOnKBF8fRITk4OJkyYgL/++otXXqxYMWzbtg1+fn5qvd6+ffvQu3dvZGVlcWWmpqbYu3cv2rVrp9Zrkby1bNkS586dA/CxP9Hnfw/ykbLf31QzQogCErEI7pVLolOdMnCvXLLAveQVja6h5hr9Y2BggMWLF2PDhg28PhppaWno3LkzZs+erbb+QmvWrEG3bt14X3wlSpTAmTNnKBHRsNevX/Om1f+8ZiQ7O5tb3fnZs2fYtWuX1uPTZZSMEKJhFStWxJ9//skro+Ya/TRo0CCcOXMGNjY2vPKpU6eid+/e39TJkTGGmTNn4ueff+YlNo6OjggODkajRo0KfG6inOzsbJQvXx5TpkxBdHQ0r88IALx8+RKjRo1CjRo1kJaWJlCUuomaaQjRAplMBi8vL97QS2qu0V/Pnz9Hx44dcffuXV55gwYNcPDgQZQpU0al80mlUowaNQorV67kldeoUQMnTpygycy0yNXVFWFhYTAyMoKFhQXi4z8tkGdqasolnC9evEC5cuWECrPQoGYaQgqR3Oaa4sWLc2WnTp3CunXrBIyKaEqFChVw6dIldOrUiVd+7do1NGzYEGFhYUqfKzMzEz179pRLRNzd3REcHEyJiJZ169YNAJCVlcVLRIBPw3urVq1KiYiKKBkhREsqVKigsLnmxYsXAkVENMnc3Bz79+/HlClTeOVRUVFo1qwZ/v3336+eIzk5GW3btsXevXt55e3bt8fp06dRogStDKttuclIflq3bq2FSPQLJSOEaNHQoUN5H1Spqak0GZoeE4vFmD17NrZv3w5jY2OuPCMjA71798bUqVN5q+p+LiYmBi1atOCNxAKAAQMG4MCBAzAzM1N4HNGsChUqwNXVNd99PD09tRSN/qBkhBAtEolEWL9+Pa+55vTp01i7dq2AURFN6927Ny5cuAB7e/48NbNnz8b333+P1NRUXvmzZ8/g4eGBmzdv8srHjx+PTZs20ayqAuvevXuez4lEIrRs2VKL0egHSkYI0TJFzTXjxo3D8+fPhQmIaEVux8cGDRrwyg8ePAgPDw+uue7mzZvw8PCQm1V14cKFWLBgAXV4LgS6du2a53P169en5rMCoGSEEAFQc03RVKZMGZw/fx49evTgld+5cwe169bHmGlz5GZVNTAwwNatW/Hrr79qO1ySh/Lly8PNzU3hc9REUzCUjBAiAJFIJDe6JigoCGvWrBEwKqINZmZm+Pfff/HHH3/wypPev8OSWb8hJSWFt+/hw4fRt29fbYdJviKvphpKRgqGkhFCBFK+fHksXLiQVzZ+/HhqrikCRCIRGvj9iFJ+UyAyNFa4T3ELKwQFBaFt27Zajo4oQ1FTjYmJCTw8PASIRvdRMkKIgH766SfeL6nU1FT8+OOPeY6wIPpBKmOYcSQcZk6NYeH2vcJ9RNZlUc2pupYjI8oqV64c3N3deWVNmjThTRFPlGcgdACEFGW5o2tq1arFVc+fOXMGa9aswbBhwwSOjuQnJCQEUVFRMDQ05D0MDAy+WnbjVTLexCdCJDaAeT1fpIVfQE7Ca975U17cQ72Grjh1/CiqVq0q0Ksk+enevTtCQkK4bWqiKTiaDp6QQmDt2rUYOnQot12sWDHcvXsXFStWFDAqkp/Hjx/Dw8NDbhZOVZlUrA+rpr0Re2AeIM2C7EMS73lra2vs2bOHJtIqhF6/fs2bAffatWuoX7++gBEVPjQdPCE6ZMiQIfDy8uK209LSqLmmkKtWrRqOHTvGW5FZFWIzS9j4jkfpbtNhbO8E+z7z4DB0PaxbDgLwafju+/fv4e3tLTcdPBFe2bJl4d64MQDA3NIK6eaOkMoK/e/7QqlAyciKFStQoUIFmJiYwM3NDaGhofnun5iYCH9/f9jb28PY2Jj7R0wI+Si3ucbc3JwrO3v2LI2uKeQaNmyIxYsXq3zcwIEDUW/sJhSv2ZybN8TA0hYSI1NYuHZB6a6/Q2L8aYZVqVQKf39/DB8+HNnZ2WqLn3ybwHtReGtdBwAgtXNG341haDL/DALvRQkbmA5SORnZtWsXxo4di4CAANy4cQO1a9eGt7c3YmNjFe6flZUFLy8vPH/+HHv37sWjR4+wbt06lVetJETflStXDosWLeKVjR8/HpGRkQJFRBT58OEDjh07hlGjRsHJyYnXvPY1VatWxZkzZ7Bx40b80aMRgM/rQMBtm1VuiBW7jqFy5cq851atWgVvb2+8e/fuG18F+VaB96IwbNsN5JT/ODW8SYU6AIDopAwM23aDEhIVqdxnxM3NDQ0bNsTy5csBfFwa3dHRESNHjsSkSZPk9l+9ejX+/PNPPHz4sMBTGFOfEVJUMMbg4+ODkydPcmUtW7bE6dOnIRZTq6oQGGMIDw9HYGAgAgMDcfHiRWRmZqp0DgMDA0yaNAm//fYbb7RF4L0ozDgSjqikDK7M3tIEAb414eNij3fv3qFbt25y69NUrlwZhw8fRs2aNb/txZECkcoYmsw/gzexCUi5eQwfnoTApsM4GFp/nO5fBMDO0gTBE1tBIi7aM+Yq+/2tUjKSlZUFMzMz7N27F35+flz5gAEDkJiYiEOHDskd065dO5QoUQJmZmY4dOgQSpUqhd69e2PixImQSCQKr5OZmcn7x56cnAxHR0dKRkiR8PLlS7i4uPAmv1qxYgWGDx8uYFRFy/v373H69GmcOHECgYGBePPmTYHP5e7ujrVr18LFxUXh81IZQ2hkAmJTMlDa3ASuFUvwvsCys7Pxyy+/YNWqVbzjzM3NsXPnTrRr167AsZGCCbz2BD1/+R0p149AlpkGsxrNYOM7Xm6q/n+HNIJ75ZICRVk4aKQDa3x8PKRSKWxtbXnltra2iI6OVnhMREQE9u7dC6lUimPHjmHatGlYtGgRZs2aled15s6dC0tLS+7xeW9lQvRduXLl5PohTJgwgZprNEgqlSI0NBQzZ86Eh4cHbGxs0L17d2zYsCHfRMTIyAitW7fGlClT5J4zNzfHypUrERwcnGciAgASsQjulUuiU50ycK9cUu6XtKGhIVauXIkVK1bwfsClpKSgQ4cOWLhwIS0joCXR0dEYP348Ojerg6TLOyHLTAMAZERcB8tKl9s/NiVDrozkgangzZs3DAC7fPkyr3z8+PHM1dVV4TFVq1Zljo6OLCcnhytbtGgRs7Ozy/M6GRkZLCkpiXu8evWKAWBJSUmqhEuIzpLJZMzb25sB4B4tWrRgUqlU6ND0xtu3b9nmzZtZz549WYkSJXj3Or9HlSpV2IgRI9iRI0dYSkoKY4yxM2fO8Pbp0qULe/36tdpjPn36NLO2tpaLacCAASwjI0Pt1yMfvXjxgvn7+zNjY+M83xc2HSey8hP/4z0uP40XOnTBJSUlKfX9rdKkZzY2NpBIJLxFnAAgJiYGdnZ2Co+xt7eHoaEhL6OvUaMGoqOjkZWVBSMjI7ljjI2NYWyseIpkQooCkUiEdevWwcXFBcnJyQCAc+fOYdWqVfD39xc4Ot2UlZWFS5cucU0vt2/fVuq4YsWKoVWrVvDx8YG3t7dcp1Lg40q7wMeF8JYvX85rxlan1q1bIzQ0FL6+vnj48CFXvmXLFjx58gT79++Xq7kmBffkyRPMmzcP//zzD3JychTsIYKZkwcs3bvDyLbSZ6Uf+4y4VqTVe5WlUjJiZGSE+vXrIygoiPvHJpPJEBQUhBEjRig8xsPDAzt27IBMJuM64D1+/Bj29vYKExFCyEeOjo5YvHgxBg8ezJVNmDABbdu2RaVKlfI5kuSKiIjgOp6ePXsWqampSh2XO0rQx8cHHh4eX/2sunXrFvz9/TFnzhyN92urUqUKrly5gp49eyIwMJArv3z5Mho2bIjDhw+jTp06Go1B3927dw9z5szBrl278pjrRwQz5xawcu8Ow5KKuxEE+NYs8p1XVaJqlcvOnTuZsbEx27x5MwsPD2c//fQTs7KyYtHR0Ywxxvr168cmTZrE7f/y5Utmbm7ORowYwR49esT+++8/Vrp0aTZr1iy1V/MQom8UNdc0b96cmmvykJqayv777z82YsQIVqVKFaWbXkqUKMF69uzJNm/ezN6+favydV+8eKGBV5O/nJwc9uuvv8q9FjMzM7Zv3z6tx6MPwsLCmJ+fX97vFYkBK1a7DTOyq8pMKtZjZfy3yjXN1J15gh2/q/p7SF8p+/2tcjLCGGPLli1j5cqVY0ZGRszV1ZVduXKFe6558+ZswIABvP0vX77M3NzcmLGxMatUqRKbPXs2rw/J11AyQoqyly9fMgsLC96H4rJly4QOq1CQyWTszp07bMGCBax169bMyMhIqeRDLBazxo0bsxkzZrCrV6+q9HlU2GzcuJEZGhrKvcaZM2cymUwmdHg64cKFC3JJ/+cPAwMDVq6yEzMuV4uJTT/9W5RYlmb2PyzlJSP7b6i/r5AuU/b7m9amIUQHbNiwgddcY2Zmhjt37ijsv6DvEhIScPr0aQQGBuLEiRN4+/atUseVKVOG6/fh6ekJa2trDUeqPcHBwejSpQvi4uJ45T169MDGjRthZmaWx5FFC2MML168wJs3b/Dq1SucPXsWR48e/aah2yXbjkLx79pw2zScl08j84wIhZIRUtQxxtCuXTteH4FmzZrh7Nmzej8ZmlQqRVhYGNfxNDQ0VKk1e4yMjNCsWTMuAXF2dpabB0KfvHjxAh07dsSdO3d45fXr18ehQ4do1uv/W7NmDYYPH66WdZ+Kf9cGJduOAkATneWFkhFC9Mzr16/h7OzMja4BgL///hsjR44UMCrNePv2LU6cOIETJ07g1KlTSEhIUOq4qlWrwsfHBz4+PmjevHmBF7HTVampqejXrx8OHjzIK7e3t8fBgwfh6uoqTGCFgFQqxZ49ezBnzhzcvXtX5eNNTEyQkfFp3hAjuyqw67MAIgMjbkr/VX3rwcfFXk0R6wdKRgjRQxs3bsSPP/7IbetLc01mZiYuXbrENb18+es+L8WLF+cNu6VRRh9HOAYEBMhNLGlsbIyNGzeid+/eAkUmjOzsbGzbtg1z587FkydPCnQOR0dHvHr1its2MDWH7YClMLAsDYA/hT/ho2SEED3EGEP79u1x/PhxrkxXm2uePn3KNb2cPXsWaWlpSh1Xp04dLvlo3LgxTRGQh3///ReDBg3i/ZoHgMmTJ2PWrFk6935RVUZGBjZu3IgFCxbgxYsXBTqHSCRC27ZteavMi0Qi/Hf0GKyrNcxzCn/yidLf35rrQ6s+NJqGkE9evXrFLC0teb39//77b6HD+qqUlBR2+PBh5u/vzypXrqz0sNuSJUuyXr16sS1btrCoqCihX4ZOCQ0NZfb29nL3tFOnTiw5OVno8DQiJSWFLVy4kNnZ2Sn9HlP0MDc3Z3PmzGFisVhulBJRnkaH9mobJSOE8G3cuFFubomnT58KHRaPTCZjt2/fZvPnz2etWrVSOPxU0UMsFjMPDw82c+ZMFhoaqtPDbguD169fswYNGsjd51q1arHIyEihw1Ob9+/fsz/++IOVLFnym5IQAKxSpUosKCiIlS5dmlfevn17muNHRZSMEKLHZDIZa9euHe+DslmzZoJ/UMbHx7OdO3eyH374QeEv8rweZcuWZYMHD2Z79uxhCQkJgr4GffThwwfWs2dPuftuY2PDLly4IHR43yQ2NpZNmTJFbi6erz1KlSrFfvvtN+bv788rb9myJXv79i1zd3eXS1Dovak6SkYI0XOvX7+Wa65ZunSpVmPIyclhly9fZgEBAczNzY2JRCKlvgiMjY2Zl5cXW7RoEbt//z5NzqUFMpmMzZ49W+5vYWhoyNavXy90eCp7/fo1Gz16NDMzM1MpCXF3d2fbtm3jFhYcP34895y/vz/LyspiI0eO5B1jYmLCbt68KewL1lGUjBBSBGzatIn3oWlqasqePHmi0Wu+fv2abdiwgXXv3l3hCrJ5PZycnNioUaPYsWPHWFpamkZjJHnbv38/K1asmNzfZ/To0Sw7O1vo8L4qMjKS/fzzz0rPtpubTAwaNIhdv35d7nyDBw9mBgYGbPXq1YwxxrZt2yZ3/ObNm7X9MvUGJSOEFAEymYy1b9+e98HZtGlTtTbXZGRksNOnT7Nx48YxFxcXpb8AzM3NmZ+fH1u9erVe9U3QB7du3WLlypWT+5t5e3uz9+/fCxLTlStXWEpKSp7PP3z4kA0YMIBJJBKl34OVKlViCxcuZO/evcvzvEOHDmXnzp1jjDF29+5duZqWn3/+We2vtSihZISQIkJRc82SJUsKfD6ZTMYeP37Mli1bxtq3b69SNXjdunXZ5MmT2fnz51lWVpYaXyVRt5iYGObh4aGwBuvx48dajSUwMJCZmZkp/Iy/desW69atm9JNgCKRiLVr144dPXpUqaQ8PT2dMcZYYmIiq1q1Ku9crq6uXHMOKRhKRggpQjZv3izXXKPKF0pycjI7dOgQGzZsGKtUqZLSyYeNjQ3r06cP++eff7iVu4nuyMjIYAMHDpT7u1pZWbFTp05pJYYdO3YwAwMDBoClpqZy5SEhIaxDhw5Kvxetra3ZuHHjCjSqTCaTya3Wa2NjI8hqzPqGkhFCihBFzTVNmjTJ85ehTCZjt27dYvPmzWMtWrRQetitRCJhTZo0YbNmzWJhYWGCj94h304mk7HFixfLzachkUjYsmXLNNq5eOnSpbxrpqens7Nnz7LWrVsrnYTUq1ePbdiw4Zv6Ic2bN493TrFYrLVkTN9RMkJIEaOoueavv/7ino+Li2M7duxgAwYMUGlCKEdHRzZkyBC2b98+wfoTEM07duyYwuGxQ4cOVXuTm0wmY1OnTpW7VqNGjZR6TxoZGbE+ffqwkJCQb06WTp8+LZeIzZkzR02vlFAyQkgR9GVzjZGREfP392eurq4qDbv19vZmixcvZuHh4TTstggJDw9nVapUkXtPtGjRgsXHx6vlGjk5OWzo0KFKJ8NfJsazZ89mMTExaonl5cuXrFSpUrxrdOzYkWr81EjZ729am4YQPfLq1Su0b99e5VVJq1evzq330qxZM5iZmWkoQlLYJSQkoFu3bjhz5gyvvFKlSjh8+DCcnZ0LfO7MzEz06dMH+/btU+m41q1bw9/fH76+vjAwMCjw9b+MpXnz5rh69SpXVqVKFYSFhcHKykot1yDKf3+r569KCBFERkYGLl68yC04d//+faWOs7CwQOvWrbkEpHz58hqOlOiKEiVKIDAwEGPGjMGKFSu48oiICLi7u2PHjh3o0KGDyudNTk5G586d5ZKcvJibm+OHH37A8OHDUb16dZWv9zVjx47lJSKmpqbYt28fJSICoWSEEB3CGMOTJ08QGBiIEydO4OzZs0hPT1fqWGdnZ3Tq1Ak+Pj5o1KgRDA0NNRwt0VWGhoZYvnw5nJ2dMXLkSEilUgBASkoKOnbsiPnz52PcuHEQifgr1UplDKGRCXKr2cbGxsLLywt37txR6vpt27bFjh07NJYYbN26FStXruSVrV27Ft99951Grke+jpppCCnkUlJScObMGQQGBiIwMBDPnz9X6jgjIyNkZWVx240bN8aFCxcgkUg0FCnRR2fPnkXXrl2RkJDAK+/fvz/WrFkDExMTAEDgvSjMOBKOqKQMbh97SxO0s4rCwkn+SE5OVum6Xl5e2LFjB2xsbL79RXzm9u3bcHd35yXx/v7+WL58uVqvQz5S9vubkhFCChmZTIbbt29zTS+XLl1CTk7OV4+TSCRo3LgxfHx84OPjg9KlS6NWrVpITEzk9lm0aBHGjh2rweiJPnr27Bl8fX3x4MEDXrm7uzv279+PW/EMw7bdQO6XCZNm48PjECRf3YesmGcqXcvW1hY1atRA9erV0aZNG3Tu3FlNrwJITExEgwYN8OzZp5gaNWqE8+fPw8jISG3XIZ9QMkKIDomLi8OpU6cQGBiIkydPIiYmRqnjypcvz/X7aNWqFSwtLXnPb926Ff379+e2TUxMcPv2bVSrVk2t8RP9l5SUhN69e+PYsWO8ckdHR1h1moLkYo4f9wvZjZTrRyBNe5/v+UqXLo369evD2dmZSz5q1KgBa2trjcQvk8ng5+eHI0eOcGWlSpXCjRs3ULZsWY1ck1AyQkihlpOTg6tXr3JNL9evX4cy/xRNTEzQokULLgFxcnKSa7f/HGMMnTp14n0AU3MNKSipVIpJkyZh4cKFvHKRoTFKth+LYk4eiD+yEGnh5+SONTAwRPPmzTB06FD4+vpyzTvaMnv2bEydOpXbFovFOH36NFq2bKnVOIoaSkYIKWRevnyJEydO4MSJEzh9+jSSkpKUOq5mzZrw9vaGj48PmjZtClNTU5WuGxUVBWdnZ7x//+mXKjXXkG+xefNmDB06lNcnCQAsm/SBcVlnxO6cwpUZWDvAvG57LJs+Gn2a1tR2qACAkydPwsfHh5fwz58/HxMmTBAknqKEkhFCBJaRkYELFy5wI1/Cw8OVOs7CwgJeXl7w9vaGt7c3ypUr982xbNu2Df369eO2TUxMcOvWLTg5OX3zuUnRdPnyZXTu3BmxsbG8cjOnJshOjIKBeUmY1+sAkwp1IBKJ8e+QRnCvXFLrcb548QL169fHu3fvuLLOnTtj3759+dYqEvWgZIQQLWOM4fHjx1zTy/nz55UedtugQQOu6cXNzU3tw24ZY/Dz88Phw4e5Mnd3d1y8eJGaa0iBvXz5Eh07dsTt27d55Ya2lVC6y+8wsLCBCICdpQmCJ7aCRKzdL/+MjAw0bdoU165d48qqVauGsLAw+i7REkpGCNGC5ORk3rDbFy9eKHVc6dKluaYXLy8vlCpVSsORKm6uWbhwIX799VeNX5vor9TUVHj7dcfloOO8ckkxa5TuMhXGDk5Y1bcefFzstR7b0KFDsXbtWm7bzMwMoaGh3zSLLFENJSOEaIBMJsOtW7e4ppfLly8rNezWwMAAHh4eXAJSu3ZtiMViLUTMt337dvTt25fbpuYaog4ymQx9h/+Kf9cs4ZWLDAwxbuZiLJg8Qusxbdq0CYMGDeKV/fvvv+jZs6fWYynKKBkhRE3i4uJw8uRJbtjtl23kealQoQJv2G1heO9Scw3RpH//3YkfBg5EVmYGr3zSpEmYPXu2RhLw7OxsZGZmonjx4lzZzZs30bhxY2RkfIrjl19+wZIlS9R+fZI/SkYIKaDs7GxcuXKFm3Tsxo0bSg27NTU15Q27rVatWqHsIKeouebPP//EuHHjBIyK6Itr166hU6dOePv2La/c19cX27dvh7m5uVqvd+jQITx58oR7/yYkJKBBgwaIjIzk9vHw8MDZs2dpCYQv5DV9vzpRMkKICl68eMEbdqvs1NXOzs68YbfanjuhoL5srjE2NsatW7c0siAZKXrevn0LPz8/hIWF8cpdXFxw+PBhVKxYUW3X8vX1xbVr1xAZGQkjIyP4+vryJmaztbXFjRs34ODgoLZrFgZxcXGwsbEp8A+evKbvD/Ctqdb+PZSMEJKP9PR03rDbL6e5zoulpSVv2K2jo6OGI9UMxhg6d+6MQ4cOcWWNGjVCcHAwNdcQtUhPT8fgwYOxY8cOXnnJkiWxf/9+NGvW7Juv8fbtWzg6OkImk2HlypWIi4tDQEAA97xEIsGZM2fUcq3CZtq0aViyZAmqVKmCKlWqoGrVqtx/q1atCltb2zwTlcB7Ubzp+3Pl7q3ODseUjBDyGcYYHj58yDW9nD9/nteenBeRSMQNu/Xx8YGrqysMDPRjsevo6Gg4OzvzFkBbsGABxo8fL2BURJ8wxjBv3jxMmTKFV25gYIBVq1Zh8ODB33T+uXPncucuWbIkEhISeE2q+jy5X3Z2Njw8PORqn3IVL15cYaJSqXIVfL/5PqKTM5H97hUkFqUhNjTmjlP3UGxKRkiRl5SUhKCgIC4BefnypVLH2dra8obdqnvV0MJkx44d6NOnD7dtbGyMmzdvokaNGgJGRfTNoUOH0KdPH6SlpfHKf/nlFyxcuLBACb5MJkO1atV4i959rmvXrti9e3eh7LelLo8fP0bdunXx4cMHlY4TGZlCYmkLaWI0RAZGsPEdB9OK9Xj7qGuSOkpGSJEjk8lw8+ZNbs6PkJAQSKXSrx5nYGCAJk2acB1Pv/vuO0GG3QqBMYYuXbrg4MGDXJmbmxsuXbpEzTVEre7cuYOOHTvKzcXj5eWFXbt2qbxA3rlz5/JcV8bU1BSBgYFo1KiRXq3Gm56ejqdPn+Lx48d49OgRHj9+jOPHjys9wu9zIiMzsKxPSYylRy9YNfn0w2RpzzroVKfMN8dMyQgpEmJjY3nDbuPi4pQ6rmLFilzTS8uWLdXew1+XKGquoXU7iCbExcWhS5cuCA4O5pVXq1YNR44cUWk16b59+2L79u357mNkZITatWtj8uTJ6Ny5c4Fi1jaZTIZXr15xCUdu0vHo0SO8fPlSqZF9+alUrQbe2dZHUvAOgMm4cttec2FSrha3TTUjClAyQnJlZ2cjJCSE63h648YNpY4zMzNDy5YtueaXKlWq6HX1rar+/fdf9O7dm9um5hqiKVlZWRg+fDg2bNjAK7eyssLu3bvh5eX11XO8f/8eDg4OX+33ZWxsjAULFmDEiBGFrrbz/fv3vEQj979PnjxRqj+bqho3bozJkyejtacXSlX5DmlvHnPPFf+uDUq2HQVAuD4j+tETj+i158+fc/0+goKCkJKSotRxLi4uXNNLkyZNdGbYrRB69uyJPXv24MCBAwCAzMxMDBw4kJpriNoZGRlh3bp1qFWrFsaOHQuZ7OOv88TERLRt2xaLFy/GyJEj8/2xsGPHjq9+YdeqVQvbt29HrVq18t1PkzIzM/Hs2TO5hOPx48dK1+J+jYGBQb6zQPv4+GDy5Mlo2rQpRCIR/vrrL14iIi5mBauWH2eqzb3jAb41tb6OENWMkELnw4cPOH/+PJeAPHr0SKnjrKys4OXlBR8fH7Rp0wZly5bVcKT6JSYmBs7OzrzVTam5hmjSiRMn0KNHDyQlJfHKhwwZguXLl+fZ36NevXq4efNmnucdPXo05s6dq5UfIIwxvHnzRmGzyvPnz7lk61uVKVMG1apVg5OTE/dfJycnREdHo0mTJrx9xWIxunbtikmTJqFu3bpc+fPnz+Hs7Mzr8GrTaRKKVf94PM0z8hWUjOg3xhgePHjANb2cP38emZmZXz1OJBLB1dWVa3pp2LCh3gy7FcrOnTvRq1cvbpuaa4imPXz4EL6+vnj69CmvvFmzZti3b5/caLYbN26gfv36Cs9lZ2eHzZs3w9vbW+1xJicnK2xWefz4scqjWfJibm7OSzRy/79q1aq86e4/N378eCxcuBDAx1qnAQMGYPz48ahatSpvP8YY2rVrh8DAQK6sffsOmLJkE+JSM2kGVmVQMqJ/EhMTERQUxCUgr169Uuo4Ozs7runFy8sLJUt+ewcr8gljDF27dsX+/fu5MldXV1y6dIkSPaIxCQkJ6N69O4KCgnjlFStWxOHDh+Hi4sKV+fv7Y+XKlXLn6NSpE9atW/dNK2BnZ2cjIiJCYS1HTExMgc/7OYlEgsqVK8vVclSrVg12dnYq9WVjjKFSpUqIi4vDzz//jDFjxqBMGcUjYL7sF1a8eHGEh4drfOJGSkZIoSKTyXD9+nWu6eXKlStKDbs1NDTkht36+PigVq1a1PFUwxQ118ybNw8TJ04UMCrtrKNBhJOdnY2xY8di+fLlvPLixYtjx44d8PX1RXp6Ouzt7XnNOqampliyZAmGDBmi1GcDYwzR0dEKazkiIiKU+lxShp2dncJmlYoVK6ptjZzIyEhs3boVI0aMQIkSJfLc7927d6hRowavn8rff/+NkSNHqiWO/FAyQgQXHR2NkydP4sSJEzh58iTi4+OVOq5SpUq8Ybd5VU8Szdm1axdvqXUjIyPcvHkTNWvWFCQeba2jQYS3Zs0ajBgxgtcpUyQSod/ISSjvWBZ/jPfnyuvVq4ft27crXFMpNTUVjx8/Vtisomwn+K8pVqwYqlWrJpd0VK1aFZaWlmq5hjoMGjQImzZt4ra1OZcQJSNE67KysnjDbvPrYPY5MzMztGrVimt+qVKlioYjJV/DGEO3bt2wb98+rqxhw4a4fPmy1ptrtLmOBikczp07h++//5439w0AiM2sIPuQCJFIhIkTJ2LatGl4+/atwlqOL1cNLiixWIyKFSsqrOVwcHAo9DW1Z86cQevWrbltAwMD3LhxQ2ujjCgZIVoRGRnJNb2cOXNG6V8ctWrV4mo/PDw8YGxs/PWDiFYpaq6ZO3cuJk2apPZrZWRkIC4uDrGxsbxHdEwM/jlzB6mJCR+/hIxMYdd7HnecuudEIIXHxuMh+LlfT2S/+2IZB5EIRrZVYGvKEP36BbKzs9VyvVKlSinsPFqpUiWd/XxKT09HrVq1eFPmT5kyBbNnz9ZaDJSMEI348OEDzp07xyUgjx8//vpBAKytrdGmTRt4e3ujTZs2eXayIoWLouaaGzduwNnZOd/jcnJy8O7dO4UJhqKHskmsyLgYyo3eJVeurtkiSeEglTE0mX8Gb2ITEH/kT6Q/U7wYnKpMTEwUNqtUq1ZN5enodcGUKVMwd+5cbrtKlSq4c+cOTE1NtRYDTXpG1IIxhvDwcK7p5cKFC0oNuxWLxXB1deWaXho2bEiTZ+mg7t27Y8+ePVxzTVZWFr7//nvMmjUL7969yzO5ePfu3TdPW60Iy0wDk2ZDJOF3AIxNUf+MlUQ4oZEJiErKgNjYDKW6TMX7sxuRcu2QUseKRCKUL19eYbNK2bJlC91MrJpy584d/Pnnn7yytWvXajURUQUlI0TO+/fvecNuX79+rdRxDg4O3Jwfnp6e+fbuJsJLT0/nkof8ajCio6N5xz169AjdunUTJGYDKzvIMj9AYsbvHFjanGbX1SefJ5cisQQlWg9B6r0zYBnyNWi1a9dGt27dUL16dTg5OaFy5cqF9gtXW6RSKQYPHszrBDxw4MA8FxYsDCgZIZBKpXLDbpWZNdDIyAhNmzblEhAXF5dC35lLn+Xk5CA+Pl6pBCM2NhapqamCxmtqagpbW1uULl0apUqVQunSpXmPt2/fYvuOHbhz+zYAwKJRV1g3/4F3jtw+I64VKfHVJ4qSS+sWPyAnMQapt45BlvHpvXv79m1UrVoVo0ePRrFixbQZZqG1YsUKhIV9atoqXbo0NzFaYUXJSBEVFRXFrXZ76tQpXifF/FSpUoVremnRogUNu9UgxhgSExN5CUR+CYayf0NNEYvFXHKRV4Lx+SOvL45Lly5h2rRpOHv27Kdzm1nBqlF33n5CrqNBNMu1YgnYW5ogOimDG0VlXvvjrKrmdX0Qt28WsmIjuP337t2LZ8+e4dChQxqfxKuwe/nyJaZMmcIrW7p0aaGvqaYOrEVEVlYWLl++jMDAQAQGBuL2/39tfk2xYsV4w24rV66s4Uj124cPH+SSiLwSjLi4OLWNFCioEiVKcMmDhYUFTp8+zVugrGXLllzS0KpVK7kZNFURFhaGadOm4cSJE3LPjfx9AcJM6tE8I0VI7pBuALxh3SIAsqwMON7bhEunjvKOsbW1xYEDB+Du7q69QAsRxhh8fX1x9Oin+9K2bVscPXpUsFprGk1DEBERwfX7OHPmjNLV8rVr1+aaXho3bqyzw9q0ITs7m9c08rUEIy0tTdB4ixUrpnTNhY2NjdxMkXv27EH37t0VntvAwABxcXGwsrJSKabbt2/j999/x+HDhxU+X6tWrY9z1ojENANrEZPfZHdtatpixowZmDlzJu8YIyMjrF+/Hv369dN2uILbvXs3evTowW0XK1YM9+/fR/ny5QWLiZKRIigtLQ3nzp3jEpAnT54odVyJEiV4w24dHBw0HGnhJZPJ5JpG8kswvpyUSdsMDAx4CUR+CUapUqW+uU09OTkZHTp0wMWLFxU+v2PHDt5Ce/kJDw9HQEAA9u7dm+9+J0+ehJeXl8qxEv3wtWUAdu/ejR9++AHp6em84yZMmIA5c+YUmVF879+/R40aNXhr6Pz1118YPXq0cEGBkpEigTGGe/fucR1PL168iKysrK8eJxaL4ebmxjW9NGjQQK//waalpeXZz+LLBCMuLo7XA10IJUuWVLr2wsrKSuPVrw8ePMDAgQPx+PFjvH//Pt99e/bsiX///TfffZ48eYIZM2Zgx44dXx3+2759e/z3338qx0yKluvXr6NTp0548+YNr7xDhw7Yvn17kfjeGDJkCNavX89tN2jQAFeuXBH8s52SET2VkJCA06dPcwmIslMelylThjfsVpcn+MnOzs63I+eXz6lree+CKl68uNK1FyVLllTbIlrqdO7cOXTt2vWrnWQtLCwQFxcHIyMjuefS0tIwevRobNq0SanFyCQSCe7evYsaNWoUOG5SdERFRcHPzw+hoaG8cmdnZxw+fBiVKlUSKDLNO3/+PFq0aMFtSyQSXLt2DXXq1BEsplyUjOgJqVSKa9eucU0vV69eVXrYbbNmzbgExNnZudAOu5XJZHj//n2+w1A/TzC+9utc0wwNDVVqGjEzMxM0XnWJiIhAx44dcf/+/Xz3O3XqFDw9PRU+9/btW+zcuRPbt2/HjRs38j3PiBEjsGzZsgLHS4qejIwMDB48GNu3b+eVlyxZEnv37uV9YeuLjIwM1K5dmzcb9oQJEzB//nwBo/qEkhEd9vbtW96wW2X7JVStWpVb76V58+aCjblnjOXbNPJlghEXF6e2ZbsLQiQSqdQ0YmlpWWgTO01LTk5Gnz598m06USaJyMzMhJeXV559TywtLfH06VPY2Nh8U7yk6GGMYf78+ZgyZQqvGdDAwAArVqzATz/9JGB06jdt2jTMmjWL265UqRLu3r1baH4EaTQZWbFiBf78809ER0ejdu3aWLZsGVxdXb963M6dO9GrVy906tQJBw8eVPp6+p6MvHz5Ek+ePMGJEydw4sQJ3LlzR6njihcvzht2q8lqyKysLKXWGcnd58vOZNpmbm6udHJRsmRJra9Eq8ukUil+++23PH95lStXDs+fP88zYUtPT0eXLl0QGBiY5zUWLVqEsWPHqiVeUjQdPnwYffr0kRtFOHLkSCxevFgv/s3fu3cPdevW5fVzy69mUggaS0Z27dqF/v37Y/Xq1XBzc8OSJUuwZ88ePHr0CKVLl87zuOfPn6NJkyaoVKkSSpQoUeSTkcePH2PJkiXYv38/4uPjla4ZqFOnDpd8NG7cWGHbvDJkMhkSEhKUWsQsLi4OiYmJBbqOuhgZGanUNFLUp4PWhm3btmHw4MEK1yq6efOmwvbq1NRUdOzYkTehGfCxdir3o6hy5cq4f/8+DSkn3+zu3bvo2LEjnj9/ziv39PTE7t27dbrvnEwmg4eHB65cucKV9e/fH1u2bBEwKnkaS0bc3NzQsGFDLF++HMDHG+Lo6IiRI0fmubS4VCpFs2bNMGjQIFy8eBGJiYlFLhlJTU3FuXPnsHfvXhw5ckTpppeSJUuiTZs28PHxQZs2bWBnZ6dwP8YYUlNTlUouYmNjER8fr1TfE00RiUSwsbFROsGwsLAosk0jhdnVq1fh5+cnt37NjBkz8Pvvv/PKEhMT0a5dO4SEhPDKx48fj9jYWO5DdP/+/ejcubNmAydFRlxcHLp27YoLFy7wyqtWrYojR47AyclJoMi+zYoVKzBixAhu28bGBg8ePCh0TZsaSUaysrJgZmaGvXv3ws/PjysfMGAAEhMTceiQ4lUVAwICcOfOHRw4cAA//PDDV5ORzMxM3q+t5ORkODo6Fqpk5Gtj3xljuHv3Lk6cOIHjx4/j4sWLSg0ZFYvFcHd3h7e3N1q1aoWyZcvmuzrq5w9lVtPVJAsLC5VGjQg95Iyox+vXr9GpUydeh9T69evj2rVr3Pa7d+/Qpk0buU6r06dP5yY88/PzQ/PmzXH27FlKPIlaZWVlwd/fnzf0FfjYN2nXrl3w9vYWKLKCef36NWrWrImUlE8LB27btg19+vQRMCrFlE1GVGo0y21OsLW15ZXb2tri4cOHCo8JDg7Ghg0bcOvWLaWvM3fuXMyYMUOV0LQqr1kBxzazh+z1Xa7vh7LDbs3NzVGmTBmYm5tDJBIhJiYGCxculPtlqW1GRkZKrzVSqlQpmJjQyqlFUdmyZXHx4kUMHDgQu3fvBvBx3odDwXeB4iUgyUjC5CE9cO/ePd5x8+fPx4QJEwAAXl5eKFasGBYvXkyJCFE7IyMjrF27FrVq1cKYMWO4WuGkpCS0a9cOixcvxqhRo3TivccYg7+/Py8R8fb2Ru/evQWM6ttptAdPSkoK+vXrh3Xr1qlUdTR58mRe57XcmpHCIHe9BAaAyaTIinqC9MjriIq4ge6/PQGY6k0fKSkpeSZz6iQWi3lNI1/r2JmbHBHyNWZmZti5cydcXFy4JHrQH6thWtkVMbt+Q04CfzKqZcuW8aqYzczM8M8//6BevXpajZsUHSKRCKNGjUL16tXRvXt3JCUlAfjY1WD06NG4d+8eVqxYUeB+eNqyf/9+3tIJpqamWLVqlc5/VquUjNjY2EAikfCmmwWAmJgYhX0Znj17hufPn8PX15cry81IDQwM8OjRI4ULrxkbGxfKzmtSGcOMI+Hcok1p98/h3bG/BI3J0tJS6aaREiVKUNMI0RiRSISGnQej1I10xB9djNTw80i+ug85STG8fdatW4cff/xR7vguXbpoM1xSRLVp0wZXr16Fr68vb8mM9evX49GjR9i3bx9KlSolYIR5S0xM5CXxADBz5kxUrFhRoIjUR6VkxMjICPXr10dQUBDXZ0QmkyEoKEjuBgFA9erVcffuXV7Z1KlTkZKSgqVLlxaa2g5lhUYm8JpmTCrUVvs1jI2NVWoaKYxJGymacpN1MycP2FnZI3rHRLCsz4Z4i8So3G0ifhg4SLggCQHg5OSEq1evokePHjh16hRXfvHiRbi6uuLw4cOoVauWgBEqNmnSJF5n8Xr16gm+9oy6qNxMM3bsWAwYMAANGjSAq6srlixZgrS0NAwcOBDAx6FFZcqUwdy5c2FiYgIXFxfe8bkren5ZrgtiUzJ42wbmNjC0KY/s+BcAALGpBSCWQJSRrPRQXQMDAxw+fBjVqlVD6dKlUbx4cZ2vbiNF0+fJupFtJdgP/BvxB+chK+YZIDZAqY4TkF2xMUIjE+BeuaTA0ZKiztraGseOHcOvv/6Kv//+myt//vw5GjdujO3bt6Njx44CRsh38eJFrFmzhtsWi8VYt26dXsyXAhQgGenRowfi4uLw+++/Izo6GnXq1EFgYCDXqfXly5cQi8VqD7QwKG0u30HT0r07mEwK04p1ISn2ccz65v51YJryGmFhYQgNDUVYWFiefUJycnLw33//YcWKFRqNnRBN+zJZN7Syh22vuYjdNxOWbt/DtHJDhfsRIhQDAwMsXboUzs7O8Pf350Y8pqamws/PD7Nnz8akSZME/4GYmZkpN3PsmDFj9KqPFU0HrwKpjKHJ/DOITsqAopsmAmBnaYLgia14w3yBj722r1+/ziUnoaGheP369cfjRCJcvXoVDRs21PyLIERDQp69Q691V+TKGWO8D/N/hzSimhFS6Jw/fx7ff/+93GKQffr0wfr16wUdLTh9+nTeCNMKFSrg3r17gi35oQpam0ZDckfTAOAlJLkftav61oOPi71S54qKikJYWBjCwsIgk8kwa9YswTNwQgrqW5J1QgqDvBaDdHV1xcGDB2Fvr9xnuzqFh4ejTp06yM7O5soCAwN1Zm4USkY0KK95RgJ8ayqdiBCij9SZrBMihLwWgyxTpgwOHTqE+vXray0WmUyGZs2a4dKlS1xZnz59sG3bNq3F8K0oGdGwr83ASkhRRck60XV5LQZpamqKzZs3o3v37lqJY/Xq1Rg2bBi3XbJkSTx48KDQDj1WhJIRQohgKFkn+mDr1q0YPHgwsrKyeOXTpk3D9OnTNTpY482bN6hZsyaSk5O5si1btqB///4au6YmUDJCCCGEfKMrV67Az89PbrLPLl264J9//tFYJ9Lvv/8e+/fv57Y9PT1x8uRJnetXqOz3t36OwSWEEELUoFGjRggLC0PdunV55fv370eTJk3w8uVLtV/z4MGDvETExMQEq1ev1rlERBWUjBBCCCH5cHR0xMWLF9G1a1de+a1bt9CwYUNcvnxZbddKTk6Gv78/r2z69OkKl07RJ5SMEEIIIV9RrFgx7Nq1C9OnT+eVx8bGomXLltiyZYtarjN58mTeiu+1a9fmLRyrrygZIYQQQpQgFosREBCA3bt3w9TUlCvPysrCDz/8gPHjxyu9FIgily9fxqpVq3jXW7duHQwNDb8pbl1AyQghhBCigm7duiE4OBhly5bllS9cuBAdO3bkjYBRVlZWFoYMGYLPx5SMGjWqyMzMTckIIYQQoqJ69eohLCwMjRo14pUfO3YM7u7uePbsmUrnmz9/PsLDw7nt8uXL448//lBLrLqAkhFCCCGkAOzs7HD27Fn069ePVx4eHg5XV1ecPXtWqfM8fPgQs2bN4pWtXLkSxYsXV1ushR0lI4QQQkgBmZiYYMuWLZg/fz5v6G1CQgLatGmDNWvW5Hu8TCbDTz/9xJtYrWfPnmjXrp3GYi6MKBkhhBBCvoFIJMKECRNw6NAhXm1GTk4Ofv75Z4wYMYK30N3nNmzYgIsXL3Lb1tbWWLJkiaZDLnQoGSGEEELUwNfXFyEhIahYsSKvfMWKFWjbti0SEhJ45VFRURg/fjyvbOHChbC1tdV4rIUNJSOEEEKImri4uCA0NBTNmzfnlQcFBcHNzQ0PHz7kyn755RckJSVx2y1btsTAgQO1FmthQmvTEEIIIWqWlZWFESNGYN26dbxyCwsL7Nq1C9nZ2ejYsSNXbmxsjLt376Jq1araDlWjlP3+NtBiTIQQQkiRYGRkhDVr1qBWrVoYM2YMNxlacnIy2rdvD3Nzc97+v//+u94lIqqgZhpCCCFEA0QiEUaOHInjx4/DysqKK5fJZLzmmVq1asn1HSlqKBkhhBBCNMjLywtXr15FtWrVFD4/f/78IjHle34oGSGEEEI0rFq1arh48aLCicyGDRuGO3fuCBBV4UHJCCGEEKIF69evR2pqqlz5ixcv0LhxYxw8eFD7QRUSlIwQQgghGvbkyRPMnDmTV2Zg8GkMSVpaGjp37ow5c+ZABwa5qh0lI4QQQogGMcYwdOhQZGZmcmXdunVDUFAQbGxsePv+9ttv6NOnD9LT07UdpqAoGSGEEEI0aNOmTbxF8ywtLfH333+jWbNmCA0NhYuLC2//f//9F82bN8fbt2+1HapgKBkhhBBCNCQmJgbjxo3jlf3555+ws7MDAFSsWBGXL1+Gr68vb5+wsDA0bNgQ165d01qsQqJkhBBCCNGQ0aNH4/3799x2s2bN8OOPP/L2MTc3x8GDBzFp0iRe+du3b9G0aVPs3LlTK7EKiZIRQgghRAOOHTvGSySMjIywdu1aiMXyX71isRhz587F1q1bYWxszJVnZGSgV69emDZtGmQymVbiFgIlI4QQQoiapaamYtiwYbyyqVOnwsnJKd/j+vbti/Pnz3PNOLlmzZqFrl27KhwarA8oGSGEEELUbNq0aXj58iW37ezsjIkTJyp1rJubG8LCwlCvXj1e+YEDB9CkSRO8ePFCrbEWBpSMEEIIIWoUFhaGv//+m9sWiURYt24djIyMlD5H2bJlcfHiRXTv3p1Xfvv2bbi6uuLSpUtqi7cwoGSEEEIIUZPs7GwMGTKE179j2LBhcHd3V/lcZmZm2Llzp9xkabGxsWjZsiU2b978reEWGpSMEEIIIWqyePFi3L59m9suU6YM5s6dW+DziUQiTJs2DXv37oWZmRlXnp2djYEDB2LcuHGQSqXfFHNhQMkIIYQQogbPnj3D9OnTeWXLly+HhYXFN5/7+++/R3BwMBwdHXnlixYtgq+vL5KSkr75GkKiZIQQQgj5RrlTvmdkZHBlXbp0gZ+fn9quUbduXYSGhqJRo0a88uPHj8Pd3R1Pnz5V27W0jZIRQggh5Btt3boVQUFB3LaFhQWWLVum9uvY2dnh7Nmz6N+/P6/8wYMHcHV1xZkzZ9R+TW2gZIQQQgj5BnFxcRg7diyvbP78+XBwcNDI9UxMTLB582b8+eefEIlEXPn79+/Rpk0brFq1SiPX1SRKRgghhJBvMGbMGLx7947bbtKkCX766SeNXlMkEmHcuHE4fPgwzM3NuXKpVIrhw4fD398f2dnZGo1BnSgZIYQQQgroxIkT2L59O7dtaGiY55TvmtChQweEhISgUqVKvPKVK1fCx8cHCQkJWonjW1EyQgghhBRAWloafv75Z17ZlClTUKNGDa3G4ezsjKtXr6J58+a88jNnzsDV1RUPHjzQajwFQckIIYQQUgABAQF4/vw5t129enVMnjxZkFhsbGxw8uRJDB06lFf+7NkzNGrUCMePH4dUxhDy7B0O3XqDkGfvIJUxQWJVRMQYKzzR5CE5ORmWlpZISkpSy3htQggh5FvcuHEDDRs25M20evHiRTRp0kTAqD4OMV65ciV++eUX3mRoYrEYjj4/gbm05zq92luaIMC3Jnxc7DUWj7Lf31QzQgghhKggJycHgwcP5iUiQ4cO1Woiklcth0gkgr+/PwIDA2FlZcXtL5PJ8OLYarw7thQs52PH1uikDAzbdgOB96K0FndeqGaEEEIIUcGiRYswbtw4btve3h7h4eG8L39NCrwXhRlHwvH47D5I0xJhYGUL2zLlMKl7U/RuWRcSiQQA8OTJE/j6+uLRo0e8403Kf4fSPWZDJBJBBMDO0gTBE1tBIhYpuNq3Ufb720DtVyaEEEL0VGRkJH7//Xde2bJly7SaiAzbdgMMgEml+ojaNBIsKx3vAPRfBwwyMESFCuVRsWJFVKxYEY29OiIiYS+y4yK5cxRzac011TAAUUkZCI1MgHvlklp5DYpQMkIIIYQogTGGn3/+GR8+fODKOnXqhC5dumjl+lIZw4wj4chtzpCYWsC8Tlskh+7n9snJycbTp0/znBrerEZzFHdpLVcem5KhYG/toWSEEEIIUcKOHTtw8uRJbtvc3BzLly/nzYKqSaGRCYhK+pQ0pD04z0tE8mJcrhYsG/cEy8mCacV6CvcpbW6itjgLgpIRQggh5Cvi4+MxevRoXtncuXNRtmxZrcUgV3shzv8rvE2bNpjy21RMupSF6KQMKOogmttnxLViCbXFWRA0moYQQgj5il9//RXx8fHctru7O4YNG6bVGD6vvZCmvUfa/XOwatoP4mJWvP08WrbB1atXceLECTRv1hQBvjUBfEw8Ppe7HeBbUyOdV1VByQghhBCSj9OnT+Off/7htrU95Xsu14olYG9pAhGA9+c2Q5aehGIurSFLSwQAmFVrjFojVuH86UC4urpyx/m42GNV33qws+Q3xdhZmmBV33oanWdEWdRMQwghhOThw4cPcrOaTpw4ES4uLlqPRSIWIcC3JgbO2460e0EwsLJDekQYzGo0g5V7dxiVqoAFfesprOXwcbGHV007hEYmIDYlA6XNPzbNCF0jkouSEUIIISQPM2fOREREBLddrVo1/Pbbb4LF41m9FMyubwYAyLIzUMy5JczrtFVqNlWJWCTo8N38UDJCCCGEKHDr1i0sXLiQV7Z27VqYmAg38mT16tWIeHgfAGCCbCzr16jQ1XIUBCUjhBBCyBekUimGDBnCW99l8ODBcivjalNsbCymTp3Kbad/+ICOtR20NrRYk6gDKyGEEPKFZcuW4dq1a9y2ra0tFixYIGBEwKRJk5CUlMRtM8aQkSHsZGXqQskIIYQQ8pkXL17waiAA4O+//4a1tbVAEQEhISHYtGmTXHlaWpoA0ahfgZKRFStWoEKFCjAxMYGbmxtCQ0Pz3HfdunVo2rQprK2tYW1tDU9Pz3z3J4QQQoTCGMOwYcN4X/IdOnRAt27dBItJKpVi+PDhCp8rssnIrl27MHbsWAQEBODGjRuoXbs2vL29ERsbq3D/c+fOoVevXjh79ixCQkLg6OiINm3a4M2bN98cPCGEEKJOu3btwvHjx7nt4sWLY+XKlYL2y1i9ejVu3bql8Dl9SUZEjDFFM8Tmyc3NDQ0bNsTy5csBADKZDI6Ojhg5ciQmTZr01eOlUimsra2xfPly9O/fX6lrKrsEMSGEEFJQCQkJqFGjBu/H9dKlSzFq1CjBYoqLi0O1atWQmJio8PnQ0FA0bNhQu0GpQNnvb5VqRrKysnD9+nV4enp+OoFYDE9PT4SEhCh1jg8fPiA7OxslSuQ9D35mZiaSk5N5D0IIIUSTxo8fz0tEXF1d4e/vL2BEHzut5pWIAPpTM6JSMhIfHw+pVApbW1teua2tLaKjo5U6x8SJE+Hg4MBLaL40d+5cWFpacg9HR0dVwiSEEEJUcvbsWWzcuJHbNjAwwLp16yCRSASLKSQkhBeTIkUyGflW8+bNw86dO3HgwIF8J42ZPHkykpKSuMerV6+0GCUhhJCiJD09HT/99BOvbPz48fjuu+8Eiuhjl4YRI0Z8dT99SUZUmvTMxsYGEokEMTExvPKYmBjY2dnle+zChQsxb948nD59+qt/YGNjYxgbG6sSGiGEEFIgs2bNwtOnT7ntKlWqYNq0aQJG9HGm1xs3bnx1P31JRlSqGTEyMkL9+vURFBTElclkMgQFBcHd3T3P4xYsWIA//vgDgYGBaNCgQcGjJYQQQtTozp07cpOZrVmzBqampgJFBKSkpODkyZOYOHEiDhw4gJUrV+a5r74kIypPBz927FgMGDAADRo0gKurK5YsWYK0tDQMHDgQANC/f3+UKVMGc+fOBQDMnz8fv//+O3bs2IEKFSpwfUuKFy+O4sWLq/GlEEIIIcrLnfI9JyeHKxs4cCBatWolYFSAubk5Dhw4wG2PHDmS9/z69evx119/4f79+0U3GenRowfi4uLw+++/Izo6GnXq1EFgYCDXqfXly5cQiz9VuKxatQpZWVno2rUr7zwBAQGYPn36t0VPCCGEKCk6OprXpWDlypW8SThLlSoltzBeYXD27Fnu/w0NDdGrVy907doVXbt21ZtkROV5RoRA84wQQgj5Fs+ePcPIkSNx9OhRiEQivHr1CjVr1kRqaiq3z44dO9CrVy8Bo5QXGxvLG8HapEkTXLx4EQCQnZ2NsLAwNG7cWKjwvkoj84wQQgghuujEiRM4fvw4Dh8+DMYYhg8fzktE2rZti549ewoYoWLnz5/nbbds2ZL7f0NDw0KdiKhC5WYaQgghRNcEBgYCAH755RckJSXhv//+454zMzMTfMr3vHzeRAPwkxF9QjUjhBBC9FpmZibOnDkD4OOKvD/88APv+VmzZqFChQraD0wJnycjxsbG+Y5c1WWUjBBCCNFrly5d4nX0/LyrZIMGDQRdeyY/UVFRePjwIbft7u6e74ShuoyaaQghhOi1z1fh/VJERAQaN24MBwcHODg4YNSoUXByctJidHk7d+4cb1tfm2gAqhkhhBCi53L7iyiSkJCA0NBQHDp0CJUrV0a1atW0GFn+ikp/EYBqRgghhOix169f4969e/nuY2Jigu3bt6NLly5aiko5nycjpqamcHV1FTAazaJkhBBCiN46ceJEvs+XKlUKR44cgZubm5YiUs7r16956+V4eHjo9ZptlIwQQgjRW/k10Tg5OeHYsWOoVKmSFiNSTlFqogGozwghhBA9lZOTg1OnTil8rnnz5rh8+XKhTEQASkYIIYQQvXD16lUkJSXJlfft2xcnTpxAiRIlBIhKOZ8nI8WKFdP7Fe8pGSGEEKKXFDXR/P777/jnn38Kdf+L58+f4/nz59x206ZNYWhoKFxAWkB9RgghhOgNqYwhNDIBsSkZ2Hvo05TvBgYGWL9+PQYMGCBgdMr5sommRYsWwgSiRZSMEEII0QuB96Iw40g4opIyIE1LxOu7twAAxcwtcPjgAbRq1UrYAJVU1PqLAJSMEEII0QOB96IwbNsN5E70nv78JgBAYlEalt2mI6t0DeGCUwFjjJeMmJubo169egJGpB3UZ4QQQohOk8oYZhwJBwOQkxwPxhgyIm/AyK4q7PstgpFNOcw4Eg6pjH31XEJ79uwZXr9+zW03a9YMBgb6X29AyQghhBCdFhqZgLfv05Acdghv1w9F6u1AiAyMYNtrLiTFrcEARCVlIDQyQehQv6ooNtEA1ExDCCFEx12/fRcx2yci8+3HFW7fn90E+0HLIDbir3Abm5IhRHgqKarJCNWMEEII0UnZ2dmYPXs2xvb05hIRAGBZH5B4fovc/qXNTeTKChPGGG+lXisrK9SuXVu4gLSIakYIIYTonJs3b2LQoEG4deuW3HOmlRvCusUgblsEwM7SBK4VC+8kZwDw+PFjREVFcdvNmzeHRCIRMCLtoWSEEEKIzsjIyMDMmTOxYMECSKVS3nNiUwuUaD0EZjVbQCQSAfiYiABAgG9NSMQiFGZFtYkGoGYaQgghhYhMJsvzucuXL6Nu3bqYO3euXCLSvXt3bD8ejCqN23KJCPCxRmRV33rwcbHXWMzqUpSTEaoZIYQQUihERUVhzZo1mD59Oq88LS0NU6ZMwbJly8AYf3iunZ0dVq1aBT8/PwBAt6afZmAtbf6xaaaw14gA8v1FSpYsCRcXF+EC0jJKRgghhAjuw4cP6NSpE6ysrHjlp0+fxpAhQ3hrteQaOHAgFi1aBGtra65MIhbBvXJJDUerfuHh4YiNjeW2W7RoAbG46DReFJ1XSgghpFCSyWQYMGAAwsLC8PLlSwBAYmIiBg8eDC8vL7lEpHz58jhx4gQ2btzIS0R0WVFuogEoGSGEECKwgIAA7N27FwDw8uVLHDlyBM7OztiwYQNvP5FIhJEjR+LevXto06aNEKFqTFFPRkTsywa4Qig5ORmWlpZISkqChYWF0OEQQghRk61bt6J///5f3a9atWrYsGEDmjRpooWolCOTyfD69Ws4OjryOs2qKjtHCptSpZCc+B4AYGtri6ioqG86Z2Gh7Pc31YwQQggRRHBwMAYPHpzvPhKJBBMnTsStW7cKVSICAGKxGJMmTYKDgwP8/Pwwb948nD17FikpKUqfI/BeFOqP3cAlIgCQU7oGTtyP1kTIhRbVjBBCCNG6iIgIuLm5IT4+Ps99vvvuO2zcuBH169fXYmSqefv2LapXr85LQMRiMZydndGoUSO4ubmhUaNGqF69utwEZrkrDSeFHcL7M+u48pLe/jCv01ZnhiTnR9nvbxpNQwghRKuSkpLQoUOHfBMRAKhTpw4cHR21FFXBODg4YMaMGRg7dixXJpPJcPfuXdy9exfr1n1MMszNzeHq6solJw0aunIrDWe8vMM7p3G57wAAM46Ew6umnU4MTf5WlIwQQgjRmpycHHTv3h0PHjz46r7//PMPDh06hOnTp8Pf3x+GhoZaiFBednY23r17h/j4eIWPz6dwz0tKSgqCgoIQFBTElUksbWHs4AQwGQxLV0R2/EtIzCxhYO3AW2lYF4cqq4qSEUIIIVozevRonDx5Uun9S5YsicjISDx58gQ1a9b85utLpVK8f/8+z8RC0SMpKembr6swlqQY5JhZoPh3bVCsRjNAJEZOUgyv46ourDSsDpSMEEIIUTupTH4m1JUrlmPFihX5HmdgYICmTZuiffv2aN++PZycnPIcVcIYQ1JSkkqJRUJCgtwsrtpWokQJtPbtimBxLRiVrsh7zqhUBd52YV9pWF0oGSGEEKJWgfeiMONIOKKSPv2qN4m+gydbpyrcv1SpUvDx8YGXlxdq166NrKwsxMfH49q1awgMDMw3ufhyjZrCSiQSwdPTEz/++CP8/PxgYGiEJvPPIDopA4pSI11ZaVhdaDQNIYQQtckdIcIAMGkOsuNfIjPqMRJOrwGk2dx+VlZWsLKygqGhIT58+ID4+HhkZmYKF/gXihcvDhsbG6UeJUqUQJMmTRARESF3nnLlymHgwIEYOHAgypcvz3su914B4CUkufVANJqGEEIIUZFUxrgRIgAgy0xD1OZRCvdNTExEYmKiVuIyNjZGqVKllE4uSpYsCRMT5ZtHgoKCeImIoaEh/Pz8MHjwYLRu3VpuSG8uHxd7rOpbT64Wyc7SBAG+NXU+EVEFJSOEEELUIjQygfelKjYprvZrSCQSXuKgTJJhZmam0dlM16xZAwBwcXHBjz/+iL59+8LGxkapY31c7OFV004nVxpWJ0pGCCGEqMWXIz9EYgnEJuaQZSiekVQkEqFEiRJK11jY2NjA0tKyUE2TnpycDFtbW1y9ehUNGzYsUGy6utKwOlEyQgghRC0UjfywcOsCABCbWkBiagGxmQX+6t8MXvWqwNraOs8mDF1hYWGBZcuWCR2GzqNkhBBCiFq4ViwBe0sT3ggRy0bduOdzR4h093Qrcs0QJH+0UB4hhBC1kIhFCPD9ODHZl6lG7naAb01KRIgcSkYIIYSoTe4IETtLfpONnaWJXgxVJZpBzTSEEELUikaIEFVRMkIIIUTtaIQIUQU10xBCCCFEUJSMEEIIIURQlIwQQgghRFCUjBBCCCFEUJSMEEIIIURQlIwQQgghRFCUjBBCCCFEUJSMEEIIIURQlIwQQgghRFCUjBBCCCFEUJSMEEIIIURQlIwQQgghRFAFSkZWrFiBChUqwMTEBG5ubggNDc13/z179qB69eowMTFBrVq1cOzYsQIFSwghhBD9o3IysmvXLowdOxYBAQG4ceMGateuDW9vb8TGxirc//Lly+jVqxd+/PFH3Lx5E35+fvDz88O9e/e+OXhCCCGE6D4RY4ypcoCbmxsaNmyI5cuXAwBkMhkcHR0xcuRITJo0SW7/Hj16IC0tDf/99x9X1qhRI9SpUwerV69W6prJycmwtLREUlISLCwsVAmXEEIIIQJR9vtbpZqRrKwsXL9+HZ6enp9OIBbD09MTISEhCo8JCQnh7Q8A3t7eee4PAJmZmUhOTuY9CCGEEKKfVEpG4uPjIZVKYWtryyu3tbVFdHS0wmOio6NV2h8A5s6dC0tLS+7h6OioSpiEEEII0SGFcjTN5MmTkZSUxD1evXoldEiEEEII0RADVXa2sbGBRCJBTEwMrzwmJgZ2dnYKj7Gzs1NpfwAwNjaGsbGxKqERQgghREepVDNiZGSE+vXrIygoiCuTyWQICgqCu7u7wmPc3d15+wPAqVOn8tyfEEIIIUWLSjUjADB27FgMGDAADRo0gKurK5YsWYK0tDQMHDgQANC/f3+UKVMGc+fOBQD88ssvaN68ORYtWoT27dtj586duHbtGtauXaveV0IIIYQQnaRyMtKjRw/ExcXh999/R3R0NOrUqYPAwECuk+rLly8hFn+qcGncuDF27NiBqVOnYsqUKahatSoOHjwIFxcX9b0KQgghhOgslecZEQLNM0IIIYToHo3MM0IIIYQQom6UjBBCCCFEUJSMEEIIIURQlIwQQgghRFCUjBBCCCFEUJSMEEIIIURQlIwQQgghRFCUjBBCCCFEUJSMEEIIIURQKk8HL4TcSWKTk5MFjoQQQgghysr93v7aZO86kYykpKQAABwdHQWOhBBCCCGqSklJgaWlZZ7P68TaNDKZDG/fvoW5uTlEIpHazpucnAxHR0e8evWK1rzRILrP2kP3WjvoPmsH3Wft0OR9ZowhJSUFDg4OvEV0v6QTNSNisRhly5bV2PktLCzoja4FdJ+1h+61dtB91g66z9qhqfucX41ILurASgghhBBBUTJCCCGEEEEV6WTE2NgYAQEBMDY2FjoUvUb3WXvoXmsH3WftoPusHYXhPutEB1ZCCCGE6K8iXTNCCCGEEOFRMkIIIYQQQVEyQgghhBBBUTJCCCGEEEHpfTKyYsUKVKhQASYmJnBzc0NoaGi+++/ZswfVq1eHiYkJatWqhWPHjmkpUt2myn1et24dmjZtCmtra1hbW8PT0/Orfxfyiarv6Vw7d+6ESCSCn5+fZgPUE6re58TERPj7+8Pe3h7GxsaoVq0afX4oQdX7vGTJEjg5OcHU1BSOjo4YM2YMMjIytBStbrpw4QJ8fX3h4OAAkUiEgwcPfvWYc+fOoV69ejA2NkaVKlWwefNmzQbJ9NjOnTuZkZER27hxI7t//z4bMmQIs7KyYjExMQr3v3TpEpNIJGzBggUsPDycTZ06lRkaGrK7d+9qOXLdoup97t27N1uxYgW7efMme/DgAfvhhx+YpaUle/36tZYj1z2q3utckZGRrEyZMqxp06asU6dO2glWh6l6nzMzM1mDBg1Yu3btWHBwMIuMjGTnzp1jt27d0nLkukXV+7x9+3ZmbGzMtm/fziIjI9mJEyeYvb09GzNmjJYj1y3Hjh1jv/32G9u/fz8DwA4cOJDv/hEREczMzIyNHTuWhYeHs2XLljGJRMICAwM1FqNeJyOurq7M39+f25ZKpczBwYHNnTtX4f7du3dn7du355W5ubmxoUOHajROXafqff5STk4OMzc3Z1u2bNFUiHqjIPc6JyeHNW7cmK1fv54NGDCAkhElqHqfV61axSpVqsSysrK0FaJeUPU++/v7s1atWvHKxo4dyzw8PDQapz5RJhmZMGECc3Z25pX16NGDeXt7aywuvW2mycrKwvXr1+Hp6cmVicVieHp6IiQkROExISEhvP0BwNvbO8/9ScHu85c+fPiA7OxslChRQlNh6oWC3uuZM2eidOnS+PHHH7URps4ryH0+fPgw3N3d4e/vD1tbW7i4uGDOnDmQSqXaClvnFOQ+N27cGNevX+eaciIiInDs2DG0a9dOKzEXFUJ8F+rEQnkFER8fD6lUCltbW165ra0tHj58qPCY6OhohftHR0drLE5dV5D7/KWJEyfCwcFB7s1P+Apyr4ODg7FhwwbcunVLCxHqh4Lc54iICJw5cwZ9+vTBsWPH8PTpUwwfPhzZ2dkICAjQRtg6pyD3uXfv3oiPj0eTJk3AGENOTg5+/vlnTJkyRRshFxl5fRcmJycjPT0dpqamar+m3taMEN0wb9487Ny5EwcOHICJiYnQ4eiVlJQU9OvXD+vWrYONjY3Q4eg1mUyG0qVLY+3atahfvz569OiB3377DatXrxY6NL1y7tw5zJkzBytXrsSNGzewf/9+HD16FH/88YfQoZFvpLc1IzY2NpBIJIiJieGVx8TEwM7OTuExdnZ2Ku1PCnafcy1cuBDz5s3D6dOn8d1332kyTL2g6r1+9uwZnj9/Dl9fX65MJpMBAAwMDPDo0SNUrlxZs0HroIK8p+3t7WFoaAiJRMKV1ahRA9HR0cjKyoKRkZFGY9ZFBbnP06ZNQ79+/TB48GAAQK1atZCWloaffvoJv/32G8Ri+n2tDnl9F1pYWGikVgTQ45oRIyMj1K9fH0FBQVyZTCZDUFAQ3N3dFR7j7u7O2x8ATp06lef+pGD3GQAWLFiAP/74A4GBgWjQoIE2QtV5qt7r6tWr4+7du7h16xb36NixI1q2bIlbt27B0dFRm+HrjIK8pz08PPD06VMu2QOAx48fw97enhKRPBTkPn/48EEu4chNABkts6Y2gnwXaqxrbCGwc+dOZmxszDZv3szCw8PZTz/9xKysrFh0dDRjjLF+/fqxSZMmcftfunSJGRgYsIULF7IHDx6wgIAAGtqrBFXv87x585iRkRHbu3cvi4qK4h4pKSlCvQSdoeq9/hKNplGOqvf55cuXzNzcnI0YMYI9evSI/ffff6x06dJs1qxZQr0EnaDqfQ4ICGDm5ubs33//ZREREezkyZOscuXKrHv37kK9BJ2QkpLCbt68yW7evMkAsMWLF7ObN2+yFy9eMMYYmzRpEuvXrx+3f+7Q3vHjx7MHDx6wFStW0NDeb7Vs2TJWrlw5ZmRkxFxdXdmVK1e455o3b84GDBjA23/37t2sWrVqzMjIiDk7O7OjR49qOWLdpMp9Ll++PAMg9wgICNB+4DpI1ff05ygZUZ6q9/ny5cvMzc2NGRsbs0qVKrHZs2eznJwcLUete1S5z9nZ2Wz69OmscuXKzMTEhDk6OrLhw4ez9+/faz9wHXL27FmFn7m593bAgAGsefPmcsfUqVOHGRkZsUqVKrFNmzZpNEYRY1S3RQghhBDh6G2fEUIIIYToBkpGCCGEECIoSkYIIYQQIihKRgghhBAiKEpGCCGEECIoSkYIIYQQIihKRgghhBAiKEpGCCGEECIoSkYIIYQQIihKRgghhBAiKEpGCCGEECIoSkYIIYQQIqj/ARSJJJ1cLzWpAAAAAElFTkSuQmCC", + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAiMAAAGdCAYAAADAAnMpAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjcuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/bCgiHAAAACXBIWXMAAA9hAAAPYQGoP6dpAACgIElEQVR4nOzdd1hT1xsH8G/C3sjGCeKeqHXg3iKKu+5Rt4h1ta66aq2jtu49696rLnC1bhTr3gtUVDbInsn5/cGPWy4JkDByM97P8+TRc3LvzZsAyZtzz3mviDHGQAghhBAiELHQARBCCCFEt1EyQgghhBBBUTJCCCGEEEFRMkIIIYQQQVEyQgghhBBBUTJCCCGEEEFRMkIIIYQQQVEyQgghhBBB6QsdgCKkUim+fPkCCwsLiEQiocMhhBBCiAIYY0hISEDp0qUhFuc9/qERyciXL19Qrlw5ocMghBBCSCGEhISgbNmyed6vEcmIhYUFgKwnY2lpKXA0hBBCCFFEfHw8ypUrx32O50UjkpHsUzOWlpaUjBBCCCEapqApFjSBlRBCCCGComSEEEIIIYKiZIQQQgghgqJkhBBCCCGComSEEEIIIYKiZIQQQgghgqJkhBBCCCGComSEEEIIIYKiZIQQQgghglI6Gbl27Rq8vb1RunRpiEQinDx5ssB9rly5gvr168PIyAiVKlXCzp07CxEqIYQQQrSR0slIUlIS6tati/Xr1yu0fXBwMLp06YI2bdrg4cOHmDx5MkaNGoXz588rHSwhhBBCtI/S16bp3LkzOnfurPD2mzZtgqurK5YvXw4AqF69Om7cuIGVK1eiU6dOyj48IYQQQrRMic8ZCQgIQPv27Xl9nTp1QkBAQJ77pKWlIT4+nncjhBBCiHYq8WQkLCwMjo6OvD5HR0fEx8cjJSVF7j5LliyBlZUVdytXrlxJh0kIIYQQgajlappZs2YhLi6Ou4WEhAgdEiGEEEJKiNJzRpTl5OSE8PBwXl94eDgsLS1hYmIidx8jIyMYGRmVdGiEEEIIUQMlPjLi4eGBy5cv8/ouXrwIDw+Pkn5oQgghhGgApZORxMREPHz4EA8fPgSQtXT34cOH+PjxI4CsUyxDhw7lth83bhyCgoIwffp0vHz5Ehs2bMDhw4cxZcqU4nkGhBBCCNFoSicj//77L+rVq4d69eoBAKZOnYp69eph3rx5AIDQ0FAuMQEAV1dXnD17FhcvXkTdunWxfPlybNu2jZb1EkIIIQQAIGKMMaGDKEh8fDysrKwQFxcHS0tLocMhhBBCiAIU/fxWy9U0hBBCCNEdlIwQQgghRFAlvrSXEKI7JFKGwOAYRCSkwsHCGI1cbaAnFgkdFiFEzVEyQggpFv5PQ7Hg9HOExqVyfc5WxpjvXQOetZwFjIwQou7oNA0hpMj8n4bCZ+99XiICAGFxqfDZex/+T0MFiowQogkoGSGEFIlEyrDg9HPIW5aX3bfg9HNIpGq/cI8QIhBKRgghRRIYHIPQuFQkvw1E2N7piAs4jMz4CO5+BiA0LhWBwTHCBUkIUWuUjBBCiiQiIevUTPLL60j7/Bxfr+3G540jkBryVO52hBCSGyUjhJAicbAwBpNkIPnNHa5PZGQGo9JVZbYjhBB5aDUNIaRIGrnawDj8CVh6MtdnWqkRRHoGAAARACerrGW+hBAiDyUjhJAiEYuAxKt/8vpMqzYDkJWIAMB87xpUb4ToDMYYRKKi/77rUt0eSkYIIUWybNkyfPkYzLVFBkYwdsm6kKYT1RkhOujFixcYOnQo6tevj0aNGqFRo0aoUaMG9PUV/8jVtbo9dKE8QkihnTlzBt7e3ry+dl164Ptf12n9NzlC8jN16lSsXLmSa5uamqJBgwZo3Lgxl6CUL19e7ghKdt2e3B/O2VtuHFxfYxISRT+/KRkhhBTK06dP4eHhgcTERF7/4cOH8e233woUFSHqIT4+HtWrV8eXL1/y3MbBwYFLTBo3boyGDRvC0soazX/7G19ik5D5NQwGNmV4+2TPwboxo61GJPqKfn7TaRpCiNIiIyPh7e0tk4iIxWJ07txZoKgIEU5SUhIiIyO5W0REBNzd3fNNRiIiInDmzBmcOXOG6yvnUhHRxmWQER2CzLgIOA36DYYOrtz9Oev2eLjZluRTUilKRgghSklPT0fv3r3x/v17mfvKli0Lc3Nz1QdFSDHLTi4iIiJ4CUbuhCP7/8nJyQUfVAEh74MABHHtiGO/wHnICuiZl+Jtp211eygZIYQojDEGHx8fXL9+Xe797u7uqg2IEAUwxngjF/klFdn/T0lJUXmcFhYWYCIxEuPjuD5JfCQSn1yElUdf3rbaVreHkhFCiMJWrlyJHTt25Hl/69atVRcM0VnZyYWioxZCJReKatGiBTp06IB169YhIiKCd59V0wGwbPLfHCxtrdtDyQghRCHnzp3DtGnT8t2mcuXKKoqGaBPGGBITExUetYiMjERqqvCnKSwsLODg4AB7e3vY29vz/m9vb4+kpCT4+PjI3dfe3h7Dhg3DqFGj8OHDB/Tu3Zs/B0skhm3H8TB39/yv6///amPdHkpGCCEFevbsGfr37w+pVJrvduXKlVNRRESdMcaQkJCgUFKR3U5LSxM6bFhaWspNKuQlHHZ2djA2zv9UyZw5c3htkUiEDh06YPTo0ejWrRsMDQ2xZ88ejBgxApmZmdx2JiYmmPH7JvjHl+HVGdHmuj2UjBBC8hUVFQVvb28kJCQUuG3ZsmVVEBFRtZzJhaKnRtQhubCysiowqch5MzIyKrbHzsjIwPbt2wEAZcqUwYgRIzBixAi4uLgAyHpNlyxZgp9++om3n52dHc6cOYPGjRtjDlVgJYSQLIGBgfD19YWVlRWsra0xc+ZMvHv3TmY7ExMT2Nho13lsbcUYQ3x8vFITOtPT04UOG1ZWVvmOWuQeuSjO5EJZ/v7+aNy4MUaPHg1PT0/o6elx90kkEkycOBEbNmzg7VOxYkX4+/tzpzv1xCKtWr6bHyp6RghR2NOnT1G7dm2591WuXBmvX79WcUQE+C+5UGZCpzokF9bW1gqNWjg4OMDOzg6GhoZCh6wwiUTCS0CypaSkYODAgTh58iSvv0GDBjh79iwcHR1VFKFqUNEzQkixW7dunUyfSCQCY4zmixQjxhji4uKUmtCZkZEhdNiwtrYuMKnI/r+mJRfKkpeIREdHo1u3brh16xavv3Pnzjh8+LBO1+ihZIQQopDY2Fjs2bNHpr9FixYwMzODvb29AFFpBsYYvn79qvCETnVJLkqVKqXUhE4DAwOhQ1Zb79+/h6enJ169esXrHz58ODZv3qzzrx0lI4QQhfz5559yq0z26dMHw4YNg5+fnwBRCSM7uSjoVEh2OyoqSi2SCxsbG4VGLSi5KF4PHjyAl5cXwsLCeP1z587FggUL5F4sT9fQnBFCSIEkEgmqVKmCoKAgmfs+ffqEMmXKyNlLc0ilUt7IRUFzL6KionhLMYViY2Oj0KiFvb09bG1tKbkQwMWLF9GrVy9eDRGxWIyNGzdizJgxAkamGjRnhBBSbPz8/OQmIh4eHmqZiGQnF8pM6JRIJILGLBKJ8hy5kJdw2NraQl+f3sLVWV41RA4dOgRvb28BI1M/9JtMCCnQ2rVr5fb37t1bJY8vlUoRGxur8ITOqKgotUkuFJ3QScmF9mCM4bfffsOsWbN4/TlriBA++s0nhOTr1atXuHDhgtz7CpuMSKVSxMTEKDyhU12SC1tbW4UndNrY2FByoYMkEgkmTZqE9evX8/pz1xAhfPSXQgjJl7zlvEBWXYTsapLZyYWiEzqjo6PVIrmws7NTaNTCwcEBNjY2cpdrEpItJSUFgwYNwokTJ3j92lpDpDhRMkIIkSGRSBATE4Pg4GCupHVuMTExqFWrFiIiIhAdHV3gdWtKmlgshq2trcITOim5IMUprxoinp6eOHLkiE7XEFEEJSOE6IDs5ELRCZ2KJBfBwcElGrNYLM5z5EJewlGqVClKLogg8qoh8t1332HLli20ikkBlIwQooEkEgmio6MVntAZHR0NoVfxZycXik7otLGxgVgsFjRmQgry8OFDdO7cmWqIFBElI4SogczMTC65UGRCpzokF3p6etzIhSIJRqlSpSi5IFrl4sWL6N27N++K1mKxGBs2bMDYsWMFjEzzUDJCSAnITi4Uva5ITEyMWiQXOZOIly9f4suXL3K3vXnzJpo0aULJBdFZedUQOXjwILp16yZgZJqJkhFCFJCZmYmoqCiFK3TGxsYKnlzo6+vLnBbJbxTD2tqaSy7evXuX5xLEqlWrwsPDg4afiU7Kq4aIra0tzpw5gyZNmggUmWajZITopOzkQtEJnTExMUKHDH19fYWSiuy2tbV1oROG9evX55lM9enThxIRopPyqiHi6uoKf39/VKlSRaDINB8lI0QrZGRkcCMXipwaiY2NFTpkLrlQdEJnUZILZSQmJmLHjh1cWyQS8RITVVVdJUSdUA2RkkXJCFFLGRkZMpdUz28UQx2SCwMDA4VHLezt7WFlZaWWIwx79+5FXFyc3PtcXV3h7u6u2oAIEVhMTAy6deuGmzdv8vqphkjxoWSEqER6errMaZH8RjG+fv0qdMgwMDBQeNTCwcEBlpaWaplcKIMxJlNxNeeoCJ2iIbrmw4cP8PT0xMuXL3n9VEOkeFEyQgolPT1d4VGLiIiIPL9pq5KhoaHC1xWxt7fXiuRCWVeuXMGzZ8+4dvalv7PRKRqiSx4+fAgvLy+Ehoby+ufMmYNffvlF594fShIlIwTAf8mFohM61SG5MDIyUmpCp4WFBb15FCD31XmTkpK4/5ctWxYNGzZUdUiECOLSpUvo1asX1RBREUpGBCSRMgQGxyAiIRUOFsZo5GoDPXHxfFimpaUplFRk/z8+Pr5YHrcospMLRU+NUHJRvD58+IC//vqLa1taWvJ+L3r37k11RYhO2Lt3L4YPH041RFSIkhGB+D8NxYLTzxEal8r1OVsZY753DXjWcpbZPjU1VakJneqQXBgbGys838Le3h7m5uaUXAho48aNvOvRODs7yyQjhGgzxhiWLVuGmTNn8vptbW1x+vRpeHh4CBSZ9hMxoSszKSA+Pp47d21paSl0OEXm/zQUPnvvI/uFT/nwCJKEaEiT4yBJjkOT0vowykziJRk5hwqFYmxsrNSETjMzM0ouNERKSgrKli3L1VMRi8UwNDREampWsuzk5IRPnz7RheiI1pJIJJg8ebLMBG6qIVI0in5+08iIikmkDAtOP0fODDDGfx0yv/43QeqCimIxMTFRakInJRfa68CBA7zCbo0bN0ZAQADX7tmzJyUiRGulpKRg8ODBOH78OK+/fv36OHv2LJycnASKTHdQMqJigcExvFMzACA2Lp416iYmJnkmEvISDjMzs2J5XKLZGGMyE1dNTEx4bTpFQ7RVTEwMunfvjhs3bvD6O3XqhCNHjsDCwkKgyHQLJSMqFpGQKtMnTZE/v8PU1FSpCZ2UXJDCuHnzJh4+fMi1a9eujcDAQK5ta2uLVq1aCRAZISXrw4cP6Ny5M168eMHrHzZsGLZu3Uo1RFSIkhEVc7Awlu3UM4BpteYwr9UOYlMr6JlaY49ve7SpVU71ARKdk3tUpFWrVnjy5AnX7tGjB/T16a2CaJdHjx6hc+fOVENETdA6PRVr5GoDZytj5Pw1FxuZIOVtIPRLlYaxcxWUK18eLWuUFSxGojs+f/6MY8eOcW0bGxuZiwLSKRqibS5fvowWLVrwEhGxWIyNGzdi4cKFlIgIgJIRFdMTizDfuwYA/JeQMAaWmY5o/7VgTIr53jWKrd4IIfnZtGkTJBIJ1x4+fDjOnj3Lta2srNCuXTshQiOkROzbtw+dO3fmrVA0NjbG8ePHMW7cOAEj022UjAjAs5YzNg6uDyer/5+y+f/q6rSQp+hm/FJunRFCiltaWhq2bNnCtcViMWrVqsWrrtutWzcYGhoKER4hxSq7hsjgwYORkZHB9dva2uLvv/9G9+7dBYyOUDIiEM9azrgxoy0OjG6C0lZGXP+uVb/i06dPAkZGdMXhw4cRERHBtbt16yazooBO0RBtIJFIMGnSJMyYMYPX7+Ligps3b1IxMzVAyYiA9MQieLjZwsLov/oN8fHxGD9+PDSgFh3RcLknro4fPx4nT57k2ubm5ujYsaOKoyKkeKWkpKBv374yv+/16tVDQEAAqlatKlBkJCdKRtRAznP2AHD69GkcPnxYoGiILrhz5w7u3r3LtWvWrAmRSITo6Giur0uXLjL1RgjRJDExMejYsaNMMbOOHTvi6tWrVMxMjVAyogZyXg8k2/fff4+oqCgBoiG6IPe3xAkTJsi8Yffp00eVIRFSrD5+/IjmzZvLnHocOnQozpw5Q8XM1EyhkpH169fDxcUFxsbGaNy4Ma9AkjyrVq1C1apVYWJignLlymHKlCncNS+I/GQkMjISU6ZMESAaou3CwsJ4I29WVlYYMGAATpw4wfWZmJigc+fOQoRHSJE9evQIHh4eMsXMZs+ejZ07dwpezEwiZQh4F42/Hn5GwLtoSKR0Wl7pSkaHDh3C1KlTsWnTJjRu3BirVq1Cp06d8OrVKzg4OMhsv3//fsycORM7duxA06ZN8fr1a3z33XcQiURYsWJFsTwJTScvGQGyLmM9cOBA+lAgxWrLli281QQjRozA48ePERYWxvV5enpSRV+ikS5fvoyePXvylu6KxWKsX79eLZbuKnvFdl2h9MjIihUrMHr0aAwfPhw1atTApk2bYGpqih07dsjd/tatW2jWrBkGDhwIFxcXdOzYEQMGDChwNEWX5JWMAMDYsWPV4oq9RDukp6dj06ZNXFskEsHX15dX+AygUzREM+3fv1+ta4hkX7E9NC6Vt0ghLC4VPnvvw/9paD57azelkpH09HTcu3cP7du3/+8AYjHat2/Pu8JnTk2bNsW9e/e45CMoKAjnzp2Dl5dXno+TlpaG+Ph43k2b5ZeMhISEYNasWSqMhmiz48eP86pOenl5wdXVlZeMGBoaomvXrkKER0ihMMbw+++/Y9CgQbxRPxsbG7WpIZJ9xfaMhGhE+61BzMX/vhRkpyULTj/X2VM2SiUjUVFRkEgkcHR05PU7OjryhnhzGjhwIH755Rc0b94cBgYGcHNzQ+vWrfHTTz/l+ThLliyBlZUVdytXTruv0ZJ7NU1u69evl5mERUhh5J64+v333+Pu3bu82jYdOnSApaWlqkMjpFCya4hMnz6d1+/i4oJbt26pTQ2RK08/4sXZ7fiydQwSH19A4sNzSA9/x93PAITGpSIwOCbvg2ixEl9Nc+XKFSxevBgbNmzA/fv3cfz4cZw9exYLFy7Mc59Zs2YhLi6Ou4WEhJR0mILKb2Qk26hRo2jSLymS+/fv49atW1y7SpUq6NChA52iIRorNTUV/fr1U+saIhKJBNu3b8e37Roj7uYBsIy0rDsYw9dre2S2l3dld12g1ARWOzs76OnpITw8nNcfHh6e53rtuXPnYsiQIRg1ahSArMuTJyUlYcyYMZg9ezbEYtl8yMjICEZGRjL92iqvZMTNzQ1//PEHHj16hMePH2PPnj0YPXq0iqMj2kLecl6RSMRLRvT19dGtWzdVh0aI0mJiYtCjRw9cv36d19+xY0ccPXpULZbunj9/HtOmTeNdBZsj1oOBvQuYVAKR+L/Cl3Kv7K4DlEpGDA0N0aBBA1y+fBk9evQAkPVBevnyZUyYMEHuPsnJyTIJh55e1gtPVUazZCcjrVq1QmxsLB4/fgwAePfuHZo0acK91oQUVmRkJA4cOMC1zc3NMWzYMDx8+BBBQUFcf5s2bWBjYyNEiIQo7OPHj/D09JRZujt06FBs3bpV8OspPXnyBNOmTcP58+fl3i8yNIXz8NUwsP5v9YwIgJOVMRq56ubfn9KnaaZOnYqtW7di165dePHiBXx8fJCUlIThw4cDyPplyDnh0tvbGxs3bsTBgwcRHByMixcvYu7cufD29uaSEl0nlUrRrVs3+Pn5oWfPnrz7/Pz8BIqKaJPt27cjLS2Na3/33XewtLSkUzRE4zx+/FhuDZGffvoJO3fuFDQR+fLlC0aNGgV3d/c8ExEAsGk3WiYRAaDbV2xnhbB27VpWvnx5ZmhoyBo1asRu377N3deqVSs2bNgwrp2RkcF+/vln5ubmxoyNjVm5cuXY+PHjWWxsrMKPFxcXxwCwuLi4woSr9qZOncoyMjIYY4zduXOHIWsuEwPA+vTpI3B0RNNlZGSwcuXK8X6vXr58yaRSKatatSrXJxaLWXh4uNDhEpKny5cvM0tLS97vslgsZhs2bBA0roSEBDZ//nxmamrKi03ezdbBiTX65RyrMOMMd2uy+BLze/JF0OdQUhT9/C5UMqJq2p6MSKVS7v8SiYTZ29tzv7iWlpYsPT1dwOiIpjt27BjvzbBjx46MMcaePn3K62/VqpWwgRKSj/379zMDAwPe76yxsTE7ceKEYDFlZmaybdu2MWdn5wKTkOzb77//zjIlUnbrbRQ7+eATu/U2imVKpAU/mIZS9PObrk2jBkSi/4blxGIxr+JqfHw8bt68KURYREvIW84LgE7REI3AGMMff/yBgQMHytQQyTl/UdXOnz+PevXqYdSoUbzaPfmxsrLCmDFjuCu2d3cvAw83W909NZMDJSNqqEuXLrz22bNnBYqEaLonT57gypUrXNvV1ZVLdo8ePcrbNvd8JUKEJpFIMHnyZEybNo3XX6FCBdy6dQtNmzZVeUxPnjyBp6cnPD095a+SyYePjw/V8MkDJSNqqGPHjrzJvefOnRMwGqLJ1q1bx2v7+vpCT08Pb9684b2RNm3aFGXKlFF1eITkKTU1Ff3798eaNWt4/e7u7oLUEFF0cmpeDA0NMXHixBKITDtQMqKGrK2t0axZM679/PlzvH//XriAiEaKjY3F3r17ubapqSlGjBgBQPYUTe/evVUaGyH5iY2N5eqF5NShQwdcvXoVzs6qu6BcYmIifv75Z1SuXBnbt29XqEilPMOGDVNp3JqGkhE1lfvaPTQ6QpS1Y8cOJCcnc+3BgwejVKlSAGRP0fTq1UulsRGSl48fP6J58+YyxcyGDBmCM2fOqOw0R3bl1CpVqmDBggW8vyUAsLW1xR9//IFTp05h6tSpqFSpUp7HEolE+PHHH0s6ZM2mmvm0RaPtq2nkefLkCW8GdpcuXYQOiWiQzMxM5urqyvsdevz4MWOMseDgYF7/N998I3C0hGR59OgRK126tMwKlFmzZvFWHZY0f39/Vrt2bbmrYYyMjNj06dN55Sni4+NZvXr18lxB06tXL5XFrm5oNY2Gq1mzJu8CgX///TdSUlIEjIhoknPnziE4OJhrt27dGrVr1waQdeXenOgUDVEHf//9N1q0aIEvX75wfSKRCOvXr8fixYt5qw5LSkGTUwcOHIiXL1/it99+g7W1NQAgIyMDffr0wYMHD/I8bu6L+BFZlIyoKZFIxFtVk5KSwlsVQUh+8lrOC8ieoqFkhAjt4MGD8PT0RHx8PNdnbGyMY8eOYfz48SX++AVNTm3RogUCAwOxb98+uLi4cP2MMYwePRoXLlzgbd+hQwfu/61atULjxo1LLHatoZqBmqLRxdM0jDF26tQp3lCfr6+v0CERDfDixQve7025cuW4Cr+fPn3i3VenTh2BoyW6TCqVsj/++EPmtIaNjQ27efNmiT9+QZVTK1euzE6cOJHnKaI5c+bI7PPbb7+xyMhIZmhoyACws2fPlvjzUGdUgVULJCYmMiMjI+6X3MXFRaXnTYlm8vX15b05LlmyhLtv7dq1vPsWLFggYKREl0kkEjZp0iSZD/MKFSqwFy9elOhjF1Q51dbWlq1duzbf6tebNm2S2W/ChAnce/SAAQNYrVq1dP49m5IRLdGpUyfeL/vz58+FDomosbi4OGZubs6bbBcZGcnd36pVK97v09OnTwWMluiqlJQU9u2338p8mLu7u7MvX0r2Gi3KTk6V59SpU0wsFvP27dmzJ8vMzOS2uXLlCtu9e3eJPhdNQMmIllizZg3vF/6PP/4QOiSixlavXs37fRk+fDh3X1hYGO8NtFq1ajr/rY2oXkxMDGvZsqVMItC+ffsSfY9//PixzJe7nLeBAwey4ODgAo9z584dZmJiwtu3adOmLDk5mbedVCrlTo/qMlpNoyVy1xuh0vAkL1KpVKbias6JqydPnuQVbOrdu7dKVigQki0kJATNmzfHtWvXeP2DBw/G2bNnS6SGSGEnp8rz9u1bdOnShbeysWrVqjh16hRMTEx424pEIujr6xfLc9AJKkqOikSXR0YYY7zLvOvr6+vs60Dy5+fnx/u21qxZM979HTp04N3/4MEDYQIlOimvGiIzZ84skRG6xMTEIk1OzS08PJy5ubnxjuHo6MiCgoKKPXZtQiMjWiTn6EhmZiYuXrwoYDREXeW3nDc6Ohp///03165YsSLq1q2rstiIbvvnn3/k1hBZt24dlixZUqwjdNmVUytXrpxn5dS1a9fi2bNn6NGjh0KPnZSUhK5du+Ldu3dcn7m5Oc6dOwdXV9dii12XUTKiAag0PCnI27dv4efnx7VLly7NK/F+6tQpSCQSrk2naIiqHDx4EJ06dZJbQ8TX17dYH+v8+fOoV68eRo0ahdDQUN59RkZGmD59Ot6+fYsJEybAwMBAoWNmZmaiX79+uHv3Ltenr6+Po0ePon79+sUavy6jZEQDtGjRAubm5lz73Llzhb5YE9FO69evB2OMa48bN473Zpv7wnh9+vRRWWxEd61YsQIDBgxARkYG11eqVClcunQJPXv2LLbHKahy6oABA2QqpyqCMYbx48fLzNXbunUrOnXqVNSwSU4qOWlURLo+Z4Qxxnr06ME7V3nv3j2hQyJqIiEhgVlaWnK/G4aGhiwsLIy7/+vXr1wBJvy/CBqtoiElSSKRsMmTJ8utIVKc5Qk+f/7MRo4cKbPMNvvWokULdufOnUIff+HChTLH/OWXX4otfl1Ac0a0TM7S8ACtqiH/2bNnD28IvG/fvnB0dOTaZ86cQXp6Otfu1asXnaIhJSY1NRUDBgzAqlWreP3u7u4ICAhA9erVi/wYSUlJ+Pnnn1G5cmVs375dZqS4cuXKOHHiBK5evYpGjRoV6jF27tyJuXPn8vpGjx6NOXPmFDpukg8VJUdFQiMjsmW8mzRpInRIRA1IpVJWo0YN3u9G7m+CPXv25N1//fp1gaIl2q6ka4gUR+VURfj7+zN9fX3esbt27Up1QwqBip5pIXd3d+4PQyQSsYiICKFDIgK7dOkS7w2zUaNGvPsTEhKYsbExd7+TkxOTSCQCRUu02cePH1nNmjVlEoTBgweztLS0Ih8/v8qphoaGClVOVcS9e/eYmZmZzN9VYmJikY+ti+g0jRbKuaqGMSa3gA/RLfkt5wUAPz8/pKamcu2ePXtCLKY/e1K8njx5Ag8PDzx79ozXP3PmTOzevRuGhoZFOnZBk1NfvXql9ORUed6/fw8vLy8kJSVxfW5ubjh9+jTMzMyKdGySP3pX0iC5543QEl/d9v79e5w+fZprOzg44Ntvv+VtQ6toSEn7559/0Lx5c3z+/JnrE4lEWLt2bZFqiChSOfXOnTvYv39/gZVTFREdHQ1PT0+Eh4dzfXZ2dvD394eDg0ORj0/yR7VqNUjjxo1hY2ODmJgYAIC/vz8yMzOp5LCO2rhxI2/i3tixY2FkZMS1U1JSeBOdbW1t0bJlS5XGSLTbwYMHMWzYMN4EaSMjI+zfv59X50YZSUlJ+P333/H777/LFCwDsianLlu2DN27dy+2idgpKSno1q0bXr16xfWZmJjgzJkzqFSpUrE8BskfjYxoED09PXh6enLt2NhY3LlzR8CIiFBSUlKwbds2rq2vr4+xY8fytrlw4QISExO5do8ePShxJcUmu4ZIzkQku4ZIYRIRRSqnrlmzRqnKqYo+7qBBg3Dr1i2uTywW4/Dhw2jcuHGxPAYpGCUjGoYunEcAYP/+/dwIGZC1XLdMmTK8begUDSkJUqkUU6dOxQ8//MDrL1++PG7evInmzZsrfcz8KqcaGhpylVO///57hSunKoIxhsmTJ+PEiRO8/g0bNqBr167F9jhEASqZTltEtJrmP1FRUUwkEnGzvOvWrSt0SETFpFIpq1u3br7LddPS0piVlRV3v5WVVbGsaCC6LTU1lfXt21dmNUvdunXZ58+flT7e48ePWadOneSukAHABgwYwIKDg4v/ifzfsmXLZB5z9uzZJfZ4uoiW9moxDw8P3h9PSEiI0CERFbp27Rrv5+/u7i5TUfXcuXO8bYYOHSpQtERbxMbGslatWsl8eLdr107p9+aSrpyqiH379sk87rBhw6g6cTGjpb1aLPeqmpwXSCPaT95y3tznz3Ofoundu3eJx0W0V0hICJo3b46rV6/y+gcNGoRz587B0tJSoeOoonKqIv7++2989913vL6OHTti69atVJ1YKCpKjoqERkb47t+/z8vmu3fvLnRIREVCQkKYnp4er+JkcnIyb5uMjAxma2vLbWNubs5SUlIEiphousePH7MyZcrIjCLMmDFD4QJ6ilROXbNmjUpOJT569Ih3LScArF69eiw+Pr7EH1sXKfr5TVPrNZC7uzucnZ25iV6XLl1CWloab1kn0U6bNm2CRCLh2qNGjYKJiQlvm6tXryI6Opprd+3aFcbGxiqLkWiPK1euoEePHoiLi+P6RCIR1qxZgwkTJih0jPPnz2PatGlyC5YZGhpi8uTJmDVrVpELlikiJCQEXl5evGs5VahQAWfPnoWFhUWJPz7JG52m0UAikYi3qiYpKQnXrl0TMCKiCqmpqdiyZQvXFovF8PHxkdmOTtGQ4nDo0CF06tSJl4gYGRnhyJEjCiUiqqycqoivX7+ic+fOvOJspUqVgp+fH5ydnUv88Un+KBnRUFSNVfccPnwYkZGRXLt79+6oUKECbxuJRILjx49zbRMTE3Tu3FllMRLtsGLFCvTv319uDZGCktuCKqc2b968WCunKiItLQ09evTglas3MjLC6dOni+UqwqQYqOi0UZHQnBFZ8fHxzMDAgDvnWblyZaFDIiVIKpWyb775hnee+++//5bZLvdKm169egkQLdFUEomETZkyRWZOR/ny5dnz58/z3TcxMZHNnz+fmZqayp0XUqlSJXb8+HGVr1aRSCSsX79+vFhEIhE7duyYSuPQVbS0Vwe0a9eO9wf2+vVroUMiJSQgIID3s65Vq5bcN/VJkybxttu3b58A0RJNlFcNkTp16uRbQ0SdJqfK88MPP8jEtGbNGkFi0UW0tFcH5K7GSqdqtFfu5bwTJkyQWYIolUp580UMDQ2piiRRyNevX+Hp6YnDhw/z+tu1a4dr166hdOnScvcrqHLqtGnTuMqpRblyb2GtXr0ay5cv5/VNmzZN5urWRA2oKDkqEhoZke/Fixe8bL9jx45Ch0RKQGhoKO+UnLW1NUtMTJTZ7vbt27zfh65duwoQLdE0ISEhrFatWjKjB4MGDcpzNEPoyqmKOHr0KK9aNQDWv39/hZcjk+JBIyM6oGrVqqhYsSLXvnLlCu/CaEQ7bN68GRkZGVx7xIgRMDMzk9mOVtEQZT19+hQeHh54+vQpr3/69OnYvXu3zGiGOk5Olef69esYNGgQGGNcX5s2bbBz506IxfSxp5ZUkxsVDY2M5G3ChAm8zP+vv/4SOiRSjNLS0piTkxNv4t27d+9ktpNKpczV1ZXbTl9fn0VHRwsQMdEUV65c4V2/KPv3S958isTERPbzzz+r3eRUeZ4/f85KlSolM8cqNjZW6NB0Eo2M6IjcS3zpKr7a5dixYwgLC+PaXbp04Y2GZXv48CGCg4O5dtu2bWFjY6OSGInmOXz4MDp27Ci3hkjO+RQSiQTbt29H5cqV8fPPPyM5OZl3HFtbW6xZswbPnj1Dz549BS+l/uXLF3h6eiI2NpbrK1u2LPz8/FRSy4QUHlVg1XCtWrWCiYkJUlJSAGRNYmWMCf6mQIqHvOvQyEOnaIiiVq5cialTp/L6rK2tcfr0aTRv3pzrK6hy6qRJk/DTTz+pzYd8fHw8vLy88PHjR67PysoKfn5+KFu2rICREYWoZqCmaOg0Tf66du3KG5J8/Pix0CGRYvDvv//yfq5Vq1aVO/lOKpWyqlWrctuJxWIWHh4uQMREnUkkEjZ16lSZUyzlypVjz54947bThMmpuaWlpbEOHTrw4jQ0NJRbi4eoFp2m0SG5l/jSqRrtIG85r7zJd8+fP8erV6+4dsuWLeHg4FDi8RHNkZaWhoEDB2LFihW8/jp16iAgIAA1atTQmMmpuTHGMHr0aFy8eJHXv2vXLrRp00agqIiyKBnRAlRvRPtERkbi4MGDXNvCwgLDhg2Tu+3Ro0d5bTpFQ3LKriFy6NAhXn/btm1x7do1WFtbY8GCBahcuTK2b98OqVTK265SpUo4fvw4rl27hkaNGqkydIXMmTMHu3fv5vX9/vvv6N+/v0ARkUJRzUBN0dBpmoLVrFmTG57U09NjMTExQodEimDRokW8Iefvv/8+z21r167N2za/aplEt+RVQ2TgwIEsOTk538qpNjY2bPXq1YJVTlXExo0bZeKeOHGiWqzqIVnoNI2OybmqRiKR4MKFCwJGQ4oiMzMTGzdu5PXldZXU169f8yYYNm3aNM9qmUS3PHv2TG4NkWnTpmHw4MFo3LhxvpVT3717h4kTJwpSOVURp06dgq+vL6+vd+/eWLFiBU3g10CUjGgJmjeiPU6ePIlPnz5x7U6dOqFKlSpyt6VVNJpNImUIeBeNvx5+RsC7aEikrOCdFHD16lU0b96c93skEokwY8YMPH78GF5eXnJXyQwYMACvXr3CsmXL1GaVjDy3b99G//79eaeUmjVrhj179kBPT0/AyEhh0dJeLdG0aVNYWVlxdQP8/PwglUqp2qAGkjdxNS+UjGgu/6ehWHD6OULjUrk+ZytjzPeuAc9azoU+7uHDhzFkyBCkp6dzfYaGhmjRogV+//13mTkhQNbk1D/++AONGzcu9OOqyps3b+Dt7c2VMwCAatWq4dSpUzAxMREwMlIU9EmlJQwMDNCxY0euHRUVhbt37woYESmMx48f49q1a1y7YsWK6Ny5s9xt379/j3v37nHtb775BhUqVCjxGEnR+T8Nhc/e+7xEBADC4lLhs/c+/J+G5rFn/latWoX+/fvzEhFjY2OIxWJcvnw538mpmpCIhIeHw9PTE1FRUVyfk5MT/Pz8qMifhqNkRIvkrsZKq2o0z7p163htX1/fPIedaVREM0mkDD+feobk4PsIO/ATMmK/cPdln6RZcPq5UqdspFIpfvzxR0yZMoV3PRaxWIzU1FSkpvKTHhsbG6xevVptKqcqIjExEV27dkVQUBDXZ25uDj8/P7VaakwKh5IRLeLp6clr07wRzRITE4O9e/dybVNTU4wYMSLP7SkZ0TxSqRS/b9mLB2vHI+LwPKR9fIy420d42zAAoXGpCAyOkXuMnKMeQFYNkUGDBmH58uVyHy8nTZmcmltmZib69euHf//9l+vT19fHsWPH4O7uLlxgpNhQMqJFHB0d0bBhQ65979493nVNiHrbsWMH7zz4kCFD8pxE+PnzZwQEBHDtOnXqoHLlyiUdIimkzMxM7Nu3D3Xq1MEsn6FID3vD3Zf05DIy46Nk9olISJXp+/TpE8aNG8e1s2uI5KxJk5f+/ftrxOTU3Bhj8PHxkRnp3bZtG+/UNNFslIxomdyravz8/ASKhChDIpFg/fr1vL78Jq4eP36c1+7Tp0+JxEWKJi0tDVu2bEHVqlUxePBgPHv2THYjJkVG1EeZbgcLY147NDQU7dq1w+PHjwFkJSYtWrTAlStX8o2hefPmuH37Ng4cOKCRpzMWLlyIbdu28fp+/fXXPIsAEs1EyYiWoXkjmuns2bN4//49127Tpg1q1aqV5/Z0ika9JSUlYdWqVXBzc8PYsWN58xyy6duUgUnVZgAAsdF/q0BEyFpV08j1vwmZERERaNeuHV6/fo2kpCQ8e/YMjRs3lqkhkpOmTU6VZ8eOHZg/fz6vb+zYsfjpp58EioiUFFraq2UaNGgABwcHREREAAAuXLiAjIwMGBgYCBwZyY+iV+cFslYUXL9+nWtXq1YNNWrUKLHYiOLi4uKwfv16rFy5krfiI6e6devCa7AP9oU54PPWsQCA9IhgGJWpjuxppPO9a0BPnNWKjo5G+/bt8eLFC67dsGFD3im9nGxsbDB//nyMGzdOY+aEyOPn54cxY8bw+ry9vbFu3TqNmHBLlEMjI1pGLBbzloLGx8fj5s2bAkZECvLixQtcunSJa5cvXx7e3t55bn/y5EnexEQ6RSO8yMhIzJ49G+XLl8fs2bPlJiJNmjTB6dOn8eDBAyz+cSyGlYuFJD4SQFYyAgBOVsbYOLg+V2fk69ev6NixI69AWWRkpNxERFMnp8pz7949fPvtt5BIJFxf48aNcfDgQejr03dorVSYWvPr1q1jFSpUYEZGRqxRo0bszp07+W4fGxvLxo8fz5ycnJihoSGrXLkyO3v2rMKPR9emUc6hQ4d412r48ccfhQ6J5GP8+PG8n9fSpUvz3T73pdIfPHigmkCJjJCQEDZ58mRmamoq9/ouAFi7du3Y33//LXO9lLZt23LbVK3TgN16G8UyJf9tExcXxxo1apTncXPe+vfvz4KCglT99EtEUFAQc3R05D2/SpUqsYiICKFDI4Wg6Oe30snIwYMHmaGhIduxYwd79uwZGz16NLO2tmbh4eFyt09LS2PffPMN8/LyYjdu3GDBwcHsypUr7OHDhwo/JiUjyomNjWV6enrcH3KNGjWEDonk4evXr8zMzIz7WRkbG7OoqKg8t4+KiuL9bCtWrEgXBRPA27dv2ejRo5mBgUGeCUK3bt3Y7du35e7/7Nkz3rZmZmZMIpFw9yckJLCmTZsWmITUr18/z8fQRJGRkaxKlSq852hvb8/evn0rdGikkEosGWnUqBHz9fXl2hKJhJUuXZotWbJE7vYbN25kFStWZOnp6co+FIeSEeW1bNmS9wcdHBwsdEhEjlWrVvF+TiNGjMh3+x07dvC2nz59uooiJYwx9vTpUzZo0CAmFovlJgdisZj179+fPXr0KN/j+Pj4yOz75s0bxhhjSUlJrHXr1gUmImZmZuzixYuqeNoqkZSUxDw8PHjP0dTUlAUGBgodGimCErlqb3p6Ou7du4f27dtzfWKxGO3bt+fVPMjp1KlT8PDwgK+vLxwdHVGrVi0sXryYdy4wt7S0NMTHx/NuRDm5l/jSqhr1I5VKZSqu5jdxFaBVNEL5999/0bNnT9SqVQv79u2TKSamr6+PESNG4OXLlzhw4ADq1KmT57Hi4uKwe/dumf5Hjx4hNTUVPXr0KHC5LpC1YqdDhw74/vvvkZycrPRzUicSiQSDBg3ifY6IxWIcPnyYVzuJaDFlMpzPnz8zAOzWrVu8/mnTprFGjRrJ3adq1arMyMiIjRgxgv3777/s4MGDzMbGhv388895Ps78+fPlfhOgkRHFPXnyhPfadenSReiQSC7nzp3j/YyaN2+e7/Zfv37lnRYoV64cnaIpQVKplF25coV17Ngxz9EJY2Nj9v3337MPHz4ofNzco2HZt1mzZjEvLy+F5ojkvDk4OLAff/yRZWZmluCrUXKkUinz9fWVeV5btmwROjRSDErkNE1hkpHKlSuzcuXK8f5Qli9fzpycnPJ8nNTUVBYXF8fdQkJCKBlRklQqZeXKleP+sE1MTFhycrLQYZEcOnfuzHvzPXToUL7b7927l7f95MmTVRSpbpFKpezcuXOsWbNmeSYAFhYWbMaMGSwsLEypY0skEla6vKvcY5aysy8w8TAwMGCNGjViEydOZPv372dBQUEan5AuXbpU5nnOnTtX6LBIMVE0GVFqjZSdnR309PQQHh7O6w8PD4eTk5PcfZydnWFgYMC72Ff16tURFhaG9PR0ucvPjIyMYGRkpExoJBeRSIQuXbpg06ZNAICUlBRcuXIlzyvAEtV68+YNrzpumTJl0LNnz3z3oVM0JUsqleLEiRNYvHgx7t+/L3cbGxsbTJ48GRMmTECpUqWUfoxFmw/gy8dguffFRkXmuV+PHj0wffp01KtXD8bGxnlup2n27duHmTNn8vqGDx+OBQsWCBQREYpSc0YMDQ3RoEEDXL58meuTSqW4fPkyPDw85O7TrFkzvH37lneO9fXr13B2dtbodfCaIPe8EbpwnvrIXfp93Lhx+RamS0xM5CUvzs7OaNq0aYnFp0syMjKwe/du1KxZE3369JGbiDg7O2P58uX48OED5s6dW6hERCJlWLluI0yqeMCm43iuX2SQd3JhaGiIw4cP48SJE/Dw8NCqROTy5csYPnw4r8/T0xObN2+moma6SNkhl4MHDzIjIyO2c+dO9vz5czZmzBhmbW3NDVcOGTKEzZw5k9v+48ePzMLCgk2YMIG9evWKnTlzhjk4OLBff/212Id5CF9iYiIzMjLihj5dXFw0fkhXGyQkJDBLS0vu52JoaJjn0vhshw8f5g1jjx8/XkXRaq+UlBS2ceNG5uLikudpERcXF7Zx40aWkpJS5Me7+SaSlZ10kFWYcYaV8dnJzGq1ZQYOFZmxawNmXq+rzGNbW1uzK1euFMMzVT8PHz5kFhYWvOdbv359lpCQIHRopJiVyGkaAOjXrx8iIyMxb948hIWFwd3dHf7+/nB0dAQAfPz4EWLxfwMu5cqVw/nz5zFlyhTUqVMHZcqUwaRJkzBjxozC5E5ECWZmZmjdujXOnz8PAHj//j1evnyJ6tWrCxyZbtu9ezdvhVi/fv3g4OCQ7z50iqb4JCYmYvPmzVi+fDlCQ0PlblOtWjXMmjULAwYMKLZLKUQmpkHP2BwAoG9pB7suU8GYFF+v7ER8IP/Ch2XLloW/vz9q1qxZLI+tTj5+/AgvLy8kJCRwfS4uLjh79izMzc0FjIwIScQYY0IHUZD4+HhYWVkhLi4OlpaWQoejUdauXYuJEydy7T/++AM//PCDgBHpNsYYatasyV1nBAACAwPzXb6YkpICe3t7JCUlAciauxUaGkplsZUUGxuLtWvXYvXq1YiJiZG7Tb169TB79mz07NmT96WqOAS8i8aArbe5NsvMQNS5VUh+cZW3nVvVGrhy6TzKli1brI+vDmJjY9G8eXM8f/6c67OxscGtW7dQtWpVASMjJUXRz2+6No2Wo3kj6uXy5cu8RKRx48YF1lG4cOECl4gAWZMZKRFRXHh4OGbOnIkKFSpg/vz5chORZs2a4dy5c7h37x569+5d7IkIADRytYGzlTFEAKRpSYg4Ol8mEbGs6I7AgJtamYhk11DJmYgYGxvj9OnTlIgQSka0nZubG+8P/fr161RETkDKXJ03G52iKZyQkBBMnDgRLi4u+O2333inBbJ17NgRV69exY0bN9C5c+cSnTipJxZhvncNZCZEIWzfDKR+eMy736x6S+w5cgI2paxLLAahSKVSDBs2DNeuXeP6RCIR9u/fTxOxSRZVTGApKprAWjRTpkzhTRQ7evSo0CHppKCgICYSibifg6OjI0tLS8t3n7S0NGZlZcWb1FjQPrru9evXbMSIEfleN6Znz56ClBl/9uwZs3cqLROPc/Nv2dlHn1Qej6pMnTpV5jmvW7dO6LCICpRIOXiimbp06cJrU2l4YWzYsAEsxxStMWPGFLi8/fLly4iLi+Pa3bp1oyXxeXjy5AkGDBiAatWqYceOHcjIyODdLxaLMWjQIDx9+hTHjx9XeZnx69evo1mzZogM+8L1iUQiTJr9K0KuHoJXnTIqjUdVVq1ahRUrVvD6pk+fDl9fX4EiImpJNblR0dDISNGkpaUxc3Nz7huJk5MT7wqhpOQlJSWxUqVKcT8DfX199vnz5wL3GzlyJO/b5F9//aWCaDXL7du3mbe3d56jIIaGhmzMmDGCXvn1yJEjvGX22XEVVHVX0x0+fJg3GgiADRo0iN5/dEiJXbVXCJSMFF3Pnj15bwj37t0TOiSdsmXLFt7r369fvwL3ycjIYLa2ttw+5ubmxVLvQhtIpVJ2+fJl1q5duzyTEBMTEzZ58mT26ZOwpz/WrFkj84FsZWWltTVEsl29epUZGhrynnfbtm3pNKOOodM0hIdW1QiHMab01XkB4OrVq4iOjubaXbt21aoKnIXBGMOZM2fQtGlTtGvXjlcNOpulpSV++uknfPjwAStXrkSZMsKc/pBKpZg+fTomTpzIOz1XtmxZ3LhxA61atRIkLlV49uwZunfvjvT0dK6vTp06OH78OJ1mJPKpIjMqKhoZKbrsixxm35o0aSJ0SDrj6tWrvNe+Xr16ClXCHTduHG+/I0eOqCBa9ZSZmckOHTrE6tatm+dIiJ2dHVu0aBH7+vWr0OGytLQ0NnDgQJkYa9WqxUJCQoQOr0R9/vyZd5FOAKxs2bKCj1ARYdBpGiLD3d2de3MQiUQsMjJS6JB0Qp8+fXhvzDt27Chwn8zMTObo6Mg75ZCYmKiCaNVLeno627FjB6tSpUqeSUiZMmXYypUr1eb1+fr1q9zTR61bt2axsbFCh1ei4uLiWJ06dWROST19+lTo0IhA6DQNkZFzVQ1jDP7+/gJGoxtCQkJw4sQJrm1ra4v+/fsXuN+tW7d4V8fu3LkzzMzMSiRGdZSSkoL169ejUqVKGDFiBF6/fi2zTcWKFbFlyxa8e/cOkydPVovX58uXL2jZsqXM6aN+/frB398f1tbWwgSmAunp6ejVqxceP/6vfoqhoSH++usvrSxrT4oXJSM6JPe8EVriW/I2bdoEiUTCtUePHg0TE5MC9zt69Civ3adPn2KPTR0lJCRg2bJlcHV1xYQJE/Dx40eZbWrWrIl9+/bh1atXGD16NIyMjASIVNbz58/h4eHB+zAGgB9++AH79+9XmzhLAmMMI0eOlEnCdu/erdVzY0gxUsk4TRHRaZrikZmZyWxsbLjh01KlSrGMjAyhw9JaKSkpzM7Ojnu9xWIx+/DhQ4H7SSQSVrZsWd4SUG3/3Y+KimLz58/nLX/Offvmm2/YiRMn1HJZ6LVr15i1tTUvXpFIxFauXCl0aCoxc+ZMmZ/X8uXLhQ6LqAGaM0Lkyj2p7saNG0KHpLV27tzJe6179eql0H63b9/m7de1a9cSjlQ4X758YT/++CMzMzPLMwlp2bIlO3/+vEKTfoVw9OhRnawhkm39+vUyP7PJkycLHRZREzRnhMiVuxorLfEtGYyxQl2HBtCNUzTv37+Hr68vXF1d8ccff/AuBJitc+fOuH79Oq5evYqOHTuW6HVjCmvt2rX49ttvkZaWxvVZWVnh/Pnz6Nu3r4CRqcZff/0l83vdp08fLF++XKCIiMZSTW5UNDQyUnyioqJ4BZjq1q0rdEha6datWzJLOhX5Zi+VSpmrqyu3n76+PouJiVFBxKrx8uVLNmzYMKavry93FEQkErE+ffqofVE+iUTCpk+fLndlz5MnT4QOTyVu3brFjI2Nec+/RYsWVJiP8NDICJHL1tYWTZo04dqPHj3Cp0+fBIxIO8kbFVHkm/3Dhw8RHBzMtdu2bYtSpUoVe3yq9vDhQ/Tt2xfVq1fHrl27kJmZybtfT08PQ4cOxbNnz3DkyBHUr19foEgLlp6ejqFDh2LZsmW8/lq1auH27duoVauWQJGpzuvXr+Ht7Y3U1FSur3r16jh58qTOF+YjhUPJiA7KfarGz89PoEi0U2hoKI4cOcK1ra2tMWjQIIX21bZTNLdu3UKXLl1Qr149HDlyhFeJFACMjIzg4+ODN2/eYNeuXahevbpAkSomPj4eXl5e2LdvH6+/VatWuH79OsqWLStQZKoTFhYGT09PXnVgZ2dn+Pv7w8bGRsDIiCajZEQHUWn4krV582beN/+RI0cqVAODMYZjx45xbbFYjB49epREiCWKMYZLly6hTZs2aNasmdwl5GZmZvjhhx8QHByMDRs2wNXVVYBIlZNXDZG+ffvi/PnzWl1DJFtiYiK6du3KG72zsLDAuXPnUL58eQEjIxpPFeeMiormjBQvqVTKnJ2dufO8ZmZmLDU1VeiwtEJaWhpzcnLizYF49+6dQvs+ffpUpmKnJpFIJOzkyZOsUaNGea6Msba2ZnPnzmVRUVFCh6uU58+fs/Lly8s8n6lTp6rlUuOSkJ6ezjp37sx7/vr6+uzChQtCh0bUGM0ZIXkSiUS80ZGkpCRcu3ZNwIi0x9GjRxEWFsa1u3btiooVKyq8b06acoomMzMT+/fvR926ddGjRw8EBgbKbOPg4IClS5fiw4cP+OWXX2BraytApIVz48YNNGvWTKYA24oVK7B8+XKIxdr/NsoYw7hx42RO6e7YsQMdOnQQKCqiVVSTGxUNjYwUv+PHj1NdgBLQpEkT3uuqzLfG2rVr8/b9/PlzCUZadGlpaWzr1q3Mzc0tz5GQcuXKsTVr1rCkpCShwy2UY8eOya0hcvDgQaFDU6n58+fL/GwXL14sdFhEA1DRM5Kv+Ph4ZmBgwL2xVK5cWeiQNN7du3d5b9bVqlVTuFDXq1evePs2a9ashKMtvKSkJLZ69Wpeldjct8qVK7Pt27eztLQ0ocMttLVr1/KWwQNZF337559/hA5NpbZt2ybz8/Xx8VHbInREvdBpGpIvCwsLtGzZkmu/efMGb968ETAizZd7Oe+ECRMULtSVc+IqAPTu3bvY4ioucXFxWLJkCVxcXDBp0iS5S8Jr166NAwcO4MWLFxgxYgQMDQ0FiLRopFIpZsyYge+//563+qdMmTK4ceMGWrduLVxwKnbu3DmMHTuW19etWzesXbtWLYvQEQ2mmtyoaGhkpGQsX76c921n1apVQoekscLDw5mhoSH3WlpYWLD4+HiF92/QoAHvZ/H+/fsSjFY5kZGRbM6cOczKyirPkZDGjRuzU6dOafy35bS0NDZo0CCZ51ezZk328eNHocNTqbt37zJTU1Pe69CkSRONPeVGhEEjI6RAueuN0FV8C2/r1q1IT0/n2sOHD4eFhYVC+wYHB+PevXtcu2HDhqhQoUKxx6isL1++YOrUqahQoQJ+/fVXxMXFyWzTtm1bXLp0CQEBAfD29tbob8vx8fHo0qWL3BoiN27cQLly5QSKTPWCgoLQpUsXJCcnc32VK1fG6dOnYWpqKmBkRFvpCx0AEU6VKlVQsWJFBAUFAQCuXLmCxMREmJubCxyZZsnIyMDGjRt5fb6+vgrvf/z4cV5b6FM0QUFBWLZsGf78809egpVT165dMXv2bF41X0325csXeHl54dGjR7z+vn37Yvfu3TAyMhIoMtWLjIyEp6cnIiIiuD4HBwf4+/vDzs5OwMiINqORER0mEol4oyPp6en4+++/BYxIM508eRKfP3/m2p6enqhSpYrC+6vLfJHnz59jyJAhqFKlCjZv3iyTiIhEIvTt2xcPHz7E6dOntSYRefHiBTw8PGQSkSlTpuDAgQM6lYgkJyejW7duvPljpqamOHv2rMJL1AkpDEpGdFzuaqx0qkZ58iauKurTp08ICAjg2nXr1kWlSpWKLTZF3Lt3D71790bNmjWxd+9eSCQS3v36+voYPnw4Xr58iUOHDqFu3boqja8k3bx5U24NkeXLl2PFihU6UUMkm0QiwcCBA3H79m2uT09PD0eOHME333wjYGREJ6hoDkuR0ATWkpOSksJMTEy4CWply5bV+EmIqvTw4UPeBD83NzelKnKuWbOGt/8vv/xSgtHyXbt2jXXq1CnPSalGRkbM19dXrSbTFqfjx4/LXHXW0NCQHThwQOjQVE4qlTIfHx+Z34Ft27YJHRrRcFRnhCisa9euvDegx48fCx2Sxhg5ciTvtVuxYoVS+7dq1Yq3/7Nnz0oo0ixSqZT5+/uzFi1a5JmEmJubs+nTp7PQ0NASjUVIVEOEb/HixTK/B/Pnzxc6LKIFKBkhCtu4cSPvTWjJkiVCh6QRoqKieN+sTU1NWWxsrML7h4WF8T4Qq1evXmKxSiQSduzYMZklxDlvNjY2bMGCBSw6OrrE4hCaRCJhM2bMkHnuZcqU0dkkfPfu3TKvx8iRI2mElBQLWtpLFEbzRgpnx44dSE1N5dpDhw5V6sqtJ0+e5BXVKomJq5mZmdi7dy9q166N3r1785YQZ3NycsLvv/+O9+/fY968eVp7Gfj09HQMGzYMv/32G6+/Zs2aCAgIQO3atQWKTDgXL17EiBEjeH2dO3fGxo0bNXqZNtFAqsmNioZGRkperVq1uG9Fenp6LCYmRuiQ1FpmZiZzcXHhfZt8+vSpUsfo0KEDb/8HDx4UW3ypqals06ZNzNXVNc+RkAoVKrD169ezlJSUYntcdRUXF8fat28v8xq0bNlSZ3/XHzx4wCwsLHivR4MGDVhCQoLQoREtQiMjRCk5R0ckEgkuXLggYDTq78yZM3j//j3Xbtu2LWrWrKnw/tHR0bxl1G5ubsWySiUpKQkrVqxAxYoVMW7cOAQHB8tsU7VqVezcuRNv3rzB+PHjYWxsXOTHVWehoaFo2bIlLl26xOv/9ttvcf78eZQqVUqgyITz4cMHeHl5ISEhgetzdXXF2bNnqc4QEQQlIwSAbDXWs2fPChSJZsi9nPf7779Xav9Tp07xltD27t27SMPiX79+xa+//ooKFSrghx9+wJcvX2S2cXd3x+HDh/Hs2TMMGzYMBgYGhX48TfHy5Uu5NUQmT56MgwcPan0iJk9MTAw6d+6M0NBQrs/W1hb+/v5wdHQUMDKi01Q0UlMkdJqm5KWnp/OuPWJnZ6fUElVd8uzZM5nTHZmZmUodo0uXLrxjBAYGFiqW8PBwNmvWLGZpaZnn6ZimTZuys2fP6tyExBs3bjAbGxuZ12P58uVChyaYlJQUmZVUxsbG7NatW0KHRrQUnaYhSjEwMECnTp24dlRUFO7evStgROpr3bp1vPb48eOhp6en8P5xcXG802Dly5dXuqjUp0+fMGnSJLi4uGDJkiWIj4+X2aZDhw74559/cOPGDXh5eenUhMQTJ06gffv2iImJ4foMDAxw4MABTJ06VcDIhCOVSjFkyBBcv36d6xOLxTh48CA8PDwEjIwQOk1DcqBVNQWLi4vD7t27ubaxsTFGjhyp1DHOnDmDjIwMrt2rVy+FE4W3b99i9OjRqFixItasWYOUlBSZbbp37447d+7gwoULaN26tU4lIQCwfv169O7dm7fSydLSEufPn0f//v0FjExYP/zwA44ePcrrW7t2Lbp37y5QRITkoKKRmiKh0zSqERYWJjOznvCtXLlSph6Dsnr06ME7xo0bNwrc58mTJ2zAgAFMLBbLPRUjFovZgAEDdLZWBmNZBd1mzpxJNUTkWL58uczrMnPmTKHDIjqAip6RQmnYsCHvDUubq3AqSyKRsEqVKvFen4cPHyp1jISEBF6hNGdn53zn5ty5c4d17949z/kgBgYGbNSoUezNmzdFfXoaLS0tjQ0ZMkTm9alZsyb7+PGj0OGpXKZEym69jWInH3xiv6zeKvO6DB48WOfmEBFhKPr5rV/8Yy1Ek3l5efHmivj5+WH48OECRqQ+/P398fbtW67dokULpZfj+vn58U4f9OzZU+ZibIwxXL16FYsWLZJZjprNxMQEo0ePxo8//ohy5copFYO2iY+PR+/evWVeq5YtW+LkyZM6t3TX/2koFpx+jtC4VKR+fIzww/N497dv3x7bt2/XudN3RL3RnBHCk3uJL80b+U9Rl/MCkDln36dPH+7/jDGcO3cOzZs3R5s2beQmIpaWlpg1axbev3+P1atX63wiEhoailatWlENkf/zfxoKn733ERqXivTID4g4vgiQZHL3u1apgWPHjsHQ0FDAKAmRJWIsRz1qNRUfHw8rKyvExcXB0tJS6HC0mlQqhbOzMyIiIgBkffhFRUXpRE2K/Lx+/RpVq1bl2mXKlEFwcLBSr0tKSgrs7e2RlJQEALCzs0NoaChEIhGOHz+OxYsX4+HDh3L3tbW1xeTJkzFhwgSlSs5rs5cvX8LT0xMfPnzg9U+aNAkrVqyQGXHSdhIpQ/Pf/kZoXCoyE6IQtudHSBKiuPv1LOxR13ctAhf1hZ6YRkWIaij6+a1bf62kQGKxGJ07d+ba8fHxuHnzpoARqYf169fz2j4+PkonaBcuXOASEQDo1q0b9u3bh5o1a6Jv375yE5HSpUtjxYoV+PDhA+bMmUOJyP/dunULzZo1k0lE/vjjD6xcuVLnEhEACAyOQWhc1ilAaXIcmOS/FVtiIzM49F2AaGaOwOCYvA5BiGB07y+WFIiW+PIlJCTgzz//5NqGhoYYPXq00sfJfYrmzJkz+O677/Dq1SuZbV1dXbF582YEBQVhypQpMDMzUz5wLXXy5Em0a9dOpobI/v378cMPP+jsXIiIhP/mIhk6usGu23TolyoN6OnDvvdcGNqVl9mOEHVByQiR0bFjR14RL10vDb97927eNTz69+8PBwcHpY6Rnp6OU6dO8fqyT4XlVL16dezZswevX7/GmDFjYGRkVLigtdSGDRvk1hDx9/fHgAEDBIxMeA4W/5W2l2akIf7OcTgN/h0OvefBuFwtudsRoi4oGSEyrK2t0axZM679/Plz3kXhdAljTKbiqrITV2NiYjBixAi5VVKz1a9fH8eOHcPTp08xePBg6OvTQrecGGP46aef4OvrC6lUyvWXLl0a169fR9u2bQWMTj00crWBs5UxRADibu5HZswn6JlawcS1PgBABMDZyhiNXG0EjZMQeSgZIXLRqposly5dwsuXL7l2kyZNFC7dHh4ejhkzZqBChQrYt2+f3G1atGgBf39//Pvvv+jVq5dOznUoSHp6Or777jssWbKE11+jRg0EBASgTp06AkWmXvTEIsz3roG00DeIDzyBnGsTsk9czfeuQZNXiVqidz4iF80byVKY5bwfP37EhAkT4OLigmXLliExMVFmm44dO+LatWu4du0aOnXqpLPzHAqSkJCArl278krwA1lJ3I0bN1C+fHmBIlNPbavYwihgC8CkQI5kxMnKGBsH14dnLWcBoyMkbzQWTOSqWbMmypcvj48fPwIA/v77b6SkpMDExETgyFQnKCgIZ86c4dqOjo68uiC5vX79GkuXLsWePXuQmZmZ53adOnWCv79/scaqjUJDQ9GlSxc8ePCA19+nTx/s2bMHxsY09yG3ZcuW4f2bFwAAG1N9rO7vDgeLrFMzNCJC1BmNjBC5RCIRb3QkJSUFV65cES4gAWzYsIE31D127Fi5xaIePXqEfv36oVq1avjzzz9lEpHcox6FWYmja16+fAkPDw+ZRGTSpEk4dOgQJSJyPH/+HAsXLuTa+mKgu3sZeLjZUiJC1B4lIyRPueeN6NKqmqSkJGzfvp1r6+vrY+zYsbxtbt++DW9vb7i7u+Pw4cPIXT/Q0NAQY8aMgY3NfxMGTUxM4OnpWbLBa7i8aoj8/vvvOltDpCASiQQjR45Eeno616cB9SwJ4dBfNclTmzZteEtLz549qzNvcPv27cPXr1+5dp8+fVC6dGkwxnD58mW0bdsWHh4evNM42UxNTTFlyhQEBQVh0KBBiI6O5u7z8vKimiH5yKuGyL59+/Djjz/S3Jo8rFu3Drdv3+b15Vx1RIi6o2SE5MnMzAxt2rTh2u/fv+etLNFWjDGZiasTJkzAqVOn4OHhgfbt2+Off/6R2c/Kygpz5szBhw8fsGLFCpQpUwbHjh3jbdO7d+8SjV2Tbdy4Mc8aIgMHDhQwMvUWHByMn376SaafkhGiSWgCK8mXl5cXb7LluXPnUL16dQEjKnlXr17F06dPubaLiwt8fHzw5MkTudvb29tjypQpGD9+PKysrLh+qVSK48ePc21DQ0OZU18kK/mbM2cOFi9ezOsvXbo0/Pz8aOluPhhjGDNmDJKTk2Xuo2SEaBIaGSH50sV5I7lHRd6/fy83ESlbtixWr16N9+/fY9asWbxEBAACAwPx6dMnrt2pUye60GMuGRkZ+O6772QSkerVq1MNEQXs3LlT7tWdAUpGiGYpVDKyfv16uLi4wNjYGI0bN0ZgYKBC+x08eBAikQg9evQozMMSAVSsWJF3tdrr16/nW0lU071+/RonTpzIdxs3Nzds3boV7969w8SJE2Fqaip3OzpFkz+qIVI0oaGhmDp1ap7368r8LqIdlE5GDh06hKlTp2L+/Pm4f/8+6tati06dOsm9zkZO79+/x48//ogWLVoUOlgijJyjI5mZmbh48aKA0ZSM+Ph4/Pbbb6hXr16eb+K1atXC/v378fLlS4waNUruMt9sjDFeMqKvr49u3boVe9yaKiwsDK1atcKFCxd4/X369MGFCxd4K5CILMYYxo8fz5tknRuNjBBNonQysmLFCowePRrDhw9HjRo1sGnTJpiammLHjh157iORSDBo0CAsWLAAFStWLFLARPW0uRprdHQ05s2bhwoVKmDmzJlyz703bNgQJ0+exKNHjzBgwACFrhvz4MEDBAcHc+127dqhVKlSxRq7pnr16pXcGiITJ07EwYMHqYaIAo4dO4aTJ0/muw0lI0STKDWBNT09Hffu3cOsWbO4PrFYjPbt2yMgICDP/X755Rc4ODhg5MiRuH79eoGPk5aWhrS0NK6tzacFNEGLFi1gbm7OlTU/d+4cpFKpRtd7+PLlC1asWIFNmzYhKSlJ7jb29vbYv38/2rVrp/SSUjpFI19AQAC6du3KW7oLZNUQ+eGHH2jprgJiYmLg6+vLtfX19eVW/KVkhGgSpT5NoqKiIJFI4OjoyOt3dHREWFiY3H1u3LiB7du3Y+vWrQo/zpIlS2BlZcXdypUrp0yYpJgZGhqiQ4cOXDssLAwPHz4ULqAiCA4Oho+PD1xdXbF8+fI8ExEAOHLkCNq3b6/0ByRjDEePHuXaYrGY5kkhq4ZI27ZtqYZIEQUGBmLu3Lm4evUqYmNjUbt2bbnbUTJCNEmJfrVNSEjAkCFDsHXrVtjZ2Sm836xZsxAXF8fdQkJCSjBKoghNP1Xz8uVLDBs2DJUrV8amTZt4lSoB2ZLttWvXRsuWLQv1WM+ePcPr16+5dqtWrWBvb1+oY2mLTZs2ydQQsbCwgJ+fH9UQUZKnpycmTJiAli1bIjk5mXe6q1GjRli6dCkAmsBKNItSp2ns7Oygp6eH8PBwXn94eDicnJxktn/37h3ev38Pb29vri87W9fX18erV6/g5uYms5+RkRGv8icRXu5k5OzZs5gzZ45A0SjuwYMHWLRoEY4fPy73zVlPTw+DBw9GZGQkL8H6/vvvC/1NnU7R/Icxhrlz52LRokW8fmdnZ/j5+aFu3boCRaYd/Pz8eO0uXbpgxowZKFWqlEJXmCZEbTAlNWrUiE2YMIFrSyQSVqZMGbZkyRKZbVNSUtiTJ094t+7du7O2bduyJ0+esLS0NIUeMy4ujgFgcXFxyoZLipG7uzsDwAAwkUjEIiMjhQ4pTzdu3GCdO3fm4s19MzIyYuPHj2fBwcHs8+fPTF9fn7uvVKlSLCkpqdCPXbt2bd7r9Pnz52J8ZpojPT2dDRs2TOa1r169Onv//r3Q4WmFnj178l7bf//9l7vv6NGjAkZGSBZFP7+VTkYOHjzIjIyM2M6dO9nz58/ZmDFjmLW1NQsLC2OMMTZkyBA2c+bMPPcfNmwY6969u1KPScmIepg9ezbvjW/Pnj1Ch8QjlUrZ+fPnWcuWLfNMQszNzdm0adPYly9fuP3mzZvH2+bHH38sdAyvXr3iHatZs2bF8dQ0Tnx8POvUqZPM69+8eXMWHR0tdHhaITU1lZmbm3OvrZOTE5NIJEKHRQiPop/fSpeD79evHyIjIzFv3jyEhYXB3d0d/v7+3KTWjx8/avQqC5I3Ly8v3nD7uXPnMHjwYAEjyiKVSnHq1CksWrQI//77r9xtSpUqhYkTJ2LixIm8Ghbp6enYvHkz1xaJRBg/fnyhY6FTNFkTnLt06YL79+/z+nv37o29e/fS0t1icv36dW6FG5D190nvvURjqSg5KhIaGVEPmZmZzMbGhnc6IyMjQ7B4MjIy2N69e1nNmjXzHAlxdHRkv/32G4uPj5d7jL179/K279atW5Fiql+/Pu94Hz58KNLxNM3Lly+Zi4uLzM/h+++/Z5mZmUKHp1UmT57Me43ptMx/MiVSduttFDv54BO79TaKZUqkQoeks0psZIToLj09PXh6emL//v0AgNjYWNy5cwfNmjVTaRxpaWnYvXs3li5diqCgILnblC9fHtOnT8eIESNgYmKS57FyX4emKJP+goODeaMBDRs21KmS5gEBAfD29kZ0dDSvf9myZbR0twTknHBtYGDAW36vy/yfhmLB6ecIjftv5ZazlTHme9eAZy1nASMj+aExPaIUIS+cl5SUhFWrVsHNzQ1jxoyRm4hUqVIFO3bswJs3b+Dr65tvInL37l3cuXOHa1evXh3t2rUrdHw5r9AL6NYpmr/++gtt27blJSLZNUSmTZtGiUgxe/v2LW/5eIsWLegijMhKRHz23uclIgAQFpcKn7334f80VKDISEEoGSFK6dSpE++8dHHUGymoOFNcXBwWL14MFxcXTJkyBZ8/f5bZpm7dujh06BCeP3+O4cOH53vdmGy5R0UmTJhQpA/NnIXOAN1JRjZt2oRevXpRDREVyv0lIPeXBF0kkTIsOP0cDIA0Iw2SpK/cfdmL+hecfg6JlOqvqCNKRohSbG1t0aRJE6796NEjfPr0qVDHYoxh1qxZeZ5qiYyMxOzZs1G+fHnMnj0bUVFRMts0adIEp0+fxoMHD9C3b1/o6ekp9NgRERE4dOgQ17a0tMTQoUML9TwA4NOnT7h9+zbXrlu3LipVqlTo42kCxhjmzJkDHx8fXkLp7OyM69evF2mUieSPkhFZgcEx+PI1GYnP/sGXreMQfWE9734GIDQuFYHBMfIPQARFc0aI0ry8vHDr1i2u7efnh9GjRyt1jMzMTIwdOxY7duzA2LFjefd9+vQJy5cvx5YtW+ReuA7IuvDc7Nmz0bp160KNZmzZsoVXhXX48OEwNzdX+jjZTpw4wWv36dOn0MfSBBkZGRgzZgx27tzJ669WrRr8/f1RoUIFYQLTAYmJibh69SrXdnNzQ5UqVQSMSD1cvX4dYXtmID006/RVSkIk4gJPID30NUR6+hDpG0Kkb4hlYWdQu7w9jI2NlbrZ2dnRqbCSpJLptEVEq2nUy4MHD3iz+JWtG5OcnMy6devG7f/p0yfGGGNv375lo0ePZgYGBnmujvH29ma3b98uUvzp6emsdOnSvOO+fv26SMfMXdvk+fPnRTqeOktISJBbQ6RZs2ZUQ0QFTp48KbNSSZcFBQWxvn37yn2/MHR0Y/bf/sL0zG3yfE9R5Fa1alVebSKiuBIreiYESkbUi1Qq5X2Ym5mZsdTUVIX2jYmJYc2bN+f9oV++fJkNGjSIicViuW8EYrGY9e/fnz169KhY4j906BDv+J6enkU6XlhYGBOJRLwKo9oqNDRUZvkyANarVy+WnJwsdHg6YfTo0bzX3t/fX+iQBPH161c2ffp0ZmhoKD8Rca7CHAf9zirMOMPKTtzPTKs0pUREAIp+ftOcEaI0kUjEu1ZNUlISrl27VuB+X758QcuWLXHjxg1ef7t27bBv3z6Ziaz6+voYMWIEXr58iQMHDqBOnTrFEn9xLucFsq5Gy3Jc90ZbT9G8fv0aTZs2lSlmNmHCBBw+fDjflUukeDDGeJPGTU1N0apVKwEjUr3MzExs2rQJlStXxrJly2QueqlnYQ877x/hNOQPGJetDgDQN7GEfY9ZmLpwpVKnY0uXLo1//vkHzs60JLikUTJCCkXZq/hmf5A9ffq0wGMbGxvj+++/x7t377B9+3ZUrly5SLHm9PDhQ14yVKlSJXh6ehbpmLqwiub27dto2rQpgoODef2//fYb1qxZo/DEYVI0jx494q0ma9++vU5VtD1//jzc3d3h4+ODyMhI3n1mZmb49ddfcfRyACp5eEIk+u/jzcnKGJuGNMDyOZPx8OFDeHh4KPR4X758QYsWLTBr1iw8ePCAroRcklQxTFNUdJpG/cTHx/PmdlSuXDnPbQMDA5mdnV2Bw6EWFhZsxowZ3HWOSsKIESN4j7ly5coiHS8qKorp6elxx3Nzc2NSqXZVe/zrr7+YiYkJ73UzMDBge/fuFTo0nfPrr7/yfg6bN28WOiSVePbsWZ4XvhSJRGzkyJG8UykFVWDNyMhgCxYs4P3tKnJzc3Njs2bNYg8ePNC6v/OSQnNGSIlr165dgZNAL1y4wMzMzAr8I7e0tGSvXr0q0XijoqKYsbExb67L169fi3TMHTt28J7HjBkziila9bBp0yaZuTwWFhbs4sWLQoemkzw8PHg/i5CQEKFDKlERERHMx8cnz6ShTZs27MGDB4U+fkBAAHNzcyvUXJJKlSqxn376iRKTAlAyQkrcihUreH+cHUfOYNuuvWNpGVlXDj1w4EC+K2Ny38qUKcNu3bpVYvEuXbqU93g+Pj5FPqaXlxfvmIGBgcUQqfCkUimbM2eOzM/I2dm5SG/+pPAiIyN5E6Xr1KkjdEglJjU1lS1btoxZWlrKfa+oUqUKO3XqVLEkAQkJCWzkyJEyj9GpUyfWvn37PCfW57xVrlyZzZ49mz18+FAmJl2/Tg4lI6TEvXz5kvcHaexSj1WYcYa5zjzDuo79iffGqehNX1+frV+/vthjzcjIYOXLl+c91rNnz4p0zK9fv/KSrfLly2vFN6T09HT23XffyfxsqlWrxt6/fy90eDor90UdZ82aJXRIxU4qlbIjR44wV1dXue8PpUqVYqtXr2ZpaWnF/tjHjx9ntra23GP5+voyxhgLDw9nmzZtYu3atVMoMalSpQqbPXs2e/ToETv3+DNrsvgSqzDjDHdrsvgS83uiO6tzKBkhJW7RmadM39r5vz9EPX1WdvIRZuXRT6HEw9TUlNWrV48NHDiQ/fLLL+zw4cPs8ePHLCUlpdhjPX78OO+x27VrV+Rj5v5wmDJlSjFEKqyEhATm6ekp87OiGiLCGzBgAO9ncuPGDaFDKlaBgYEyy/5zfkmZPHlyif8Ofv78mXXs2JEbGcktOzFp27atQomJvk1ZZuXRjzmPWMfKTz/NKsw4w1z+f9OVhISSEVKi0jIkzHXmGWbRwDvX6IhsDQonJyfWunVrNm7cOLZ69Wp2/vx59uHDByaRSFQWb5s2bXgxnTx5ssjH7NGjh1Z9OISFhbEGDRrI/Px69uxJNUQElpGRwUqVKsX9TGxsbFhmZqbQYRWLkJAQNnjw4Dw/0Lt3717i88lykkgkbPXq1axmzZr5bhceHs42btyocGJi33suNzri8v8REl04ZaPo57eIMfVfqxQfHw8rKyvExcVROV41sf16EBaefYGUoHuIODIfgAh6FrbQs7CDcblaMLAtCwPbcvipf1t87+UuaKzPnj1DrVq1uLaLiwvevn1bpOWoiYmJsLe35y4O5+zsjE+fPvEuIqhJXr9+DU9PT5mlu76+vli9ejUt3RXYjRs30KJFC649cOBA7Nu3T8CIii4xMRHLli3DH3/8gZSUFJn73d3dsXz5crRt21aA6IBXr16hSpUqCl1uIjw8HCdOnMDhw4dx9epVmZpJIn1DlP1+P8SG/GXYB0Y3gYebbbHGrW4U/fyma9OQQvkQk3XNGOPytWHXbQZMXOtBbCxbTCgyQ/hfsXXr1vHa48ePV/rD9ePHj3jx4gU6deoEIKuuSs6r1Pbq1UtjE5Hbt2+ja9euiI6O5vUvXboU06dPL9KVjEnx0KYL40mlUuzatQuzZ89GaGiozP1OTk5YtGgRhg0bJmgSXLVqVYW3dXR0xLhx4zBu3DiEh4dj/uod2LnvANJCngFMCv1SpWUSEQCISEiVczTdpJnvnkRwFWxMAWRl/GbVW8hNRHJuJ5SvX79i9+7dXNvExAQjR45U+jiJiYno3r07V9zt2LFjvPs1tdDZ6dOn0bZtW14ioq+vjz179mDGjBmUiKiJnEUFxWIxlxRrmitXruCbb77BiBEjZBIRY2NjzJ07F2/evMGIESM0djTO0dERw0aOgdOAJXAatgJicxsYla0pd1sHC90pWFcQSkZIoQzxcIG4gM8psShrOyH9+eefvCv/Dho0CDY2NkofJz09HWlpaejZsyeOHDnC+6Zqb2/PG0LXFJs3b0aPHj14Q+QWFhY4d+4cBg8eLGBkJKeQkBA8fvyYazdp0gS2tpo1tP/mzRv07NkTbdq0wYMHD2TuHzx4MF6/fo1ffvmlSFfPVheNXG1gnRaOyGOLIE2MgYU7v8qzCICzlTEauSr/XqStKBkhhWKoL8boFq75bjO6hSsM9YX7FZNKpVi/fj2vr7DXocm+/kV6ejr69u2LpKQk7r4ePXpALBYjJCQEly9fxvv37wsdsyowxjBv3jyMGzeOd27byckJ165dQ4cOHQSMjuSW+1ILmnSKJjY2FlOmTEGNGjVw8uRJmfubNWuGO3fuYM+ePShXrpzqAywhtwNu4d2OHyBJiITY1BoG9hW4+7K/w833rgG9gr7R6RDhT+gTjTXLqwYAYOv1YEhzTIMWi7ISkez7heLn54d3795x7ZYtWxb6Ynu5L8aV06lTp7Bv3z4kJyejVq1auHv3bqEeQxUyMjIwduxY/Pnnn7z+atWqwc/PDy4uLsIERvKkifNFMjIysHHjRixYsAAxMTEy97u4uGDZsmXo06eP1p0KPHnyJAYMGMDNKStVqZ7MdXLme9eAZy26+B6PKpb2FBUt7VVvaRkStu3aOzb35BNeBVahderUibe07siRI4U+1uXLlwtcumdgYKDW1UmphojmSUlJYaamptzPqkyZMmpdWE8qlbJTp06xKlWqyP0bsbS0ZL/99luJ1BJSBxs3bpRZ5rtly1aqwEp1Roiuyl0dtmzZsiwjI6PQx/Pz8yswGVmyZEkxPoPiRTVENJO/vz/v5zV69GihQ8rTw4cPZa5XlX0Ti8Vs3LhxLDw8XOgwS0Rel08AoPNVixX9/KbTNEQr5Z4r4uPjA339wv+653eaBsg69z1t2rRCH78kvXnzBp6enggKCuL1jx8/HmvWrNHYVQu6QBNO0YSFhWHu3LnYvn07mJyyVZ06dcLy5ctRs6b8FSWaLjMzE2PHjsWOHTtk7nNzc0OFChXk7EVyo2SEaJ2EhATs3LmTaxsZGWH06NFFOmZGRkae95mbm2P37t1q+aF+584ddO3aFVFRUbz+JUuW0NJdNccY4yUjhoaGaNeunYAR8aWkpGDlypVYsmQJEhMTZe6vUaMGli9fDk9PTzl7a4ekpCT069dPJmnM1r59exVHpLkoGSFaZ9euXUhISODa/fv3h729fZGOmd/IyKpVq1CxYsUiHb8knDlzBn379uUt3dXX18eOHTswZMgQASMjinj16hVvNKt169ZqseyVMYYDBw5g5syZCAkJkbnfzs4Ov/zyC0aPHl2k0Uh1FxkZia5duyIwMDDPbdQpeVR32vubQnSSVCqVqbha2OW8OeWVjHh7e2PEiBFFPn5x27JlC3x8fHhLd83NzXH8+HFauqsh1PEUza1btzB16lTcuXNH5j5DQ0NMmjQJs2fPhpWVlQDRqU5QUBA8PT3x5s2bPLcRiURo06aNCqPSbJSMEK1y6dIlvHr1imt7eHigQYMGRT6uvGTE3t4eW7duLbFTHRIpQ2BwDCISUuFgkVUgqaC6BIwxzJ8/HwsXLuT1Ozk54dy5c6hXr16JxEqKX+5kxMvLS6BIgPfv32PmzJk4dOiQ3Pv79OmD3377TS1HCIvb/fv34eXlhfDw8Hy3c3d3h52dnYqi0nyUjBCtsnbtWl67OEZFAPnJyNatW+Ho6Fgsx8/N/2koFpx+jtC4/65d4VxAfYK8aohUrVoV/v7+VENEg8THx+P69etcu0qVKqhUqZIgcSxZsgQrV65EWlqazP3ffPMNVq5ciebNm6s8NiE8evQIXbt2LTARAWi+iLKoAivRGkFBQbxvk05OTsV2zZjcyciIESPQvXv3Yjl2bv5PQ+Gz9z4vEQGAsLhU+Oy9D/+nshcXy752Tu5EpGnTprh58yYlIhrm4sWLyMzM5NqqPkWTmZmJzZs3o1KlSli6dKlMIlK2bFns2bMHd+7c0ZlEBADq1q2LL1++ICkpCe/fv8/3MhA0X0Q5lIwQrbF+/Xre0sKxY8fC0NCwWI6dMxlxdXXFqlWriuW4uUmkDAtOP88qUJBrmWR2a8Hp55DkKHkbHh6O1q1bw8/Pj7d9jx49cOnSJY27jgkRdr7IhQsXUK9ePYwbNw6RkZG8+0xNTfHLL7/g1atXGDx4sMZeqbqoTE1N8fbtW97oVU6GhoY6laQVB938TSJaJykpibfOX19fH2PHji3ycSVShoB30Xj0IWtprEgkwq5du2BhYVHkY8sTGByD0LhUpIY8Rfi+6UgLfc27nwEIjUtFYHBWie03b96gadOmuHfvHm+78ePH4+jRozAxMSmROEnJkUqlvOvRWFhYqORCjC9evECXLl3QqVMnPH36lHefSCTC8OHD8ebNG8ydOxempsJejVtoaWlpGD9+PK9v1KhR3Ovi4eEBMzMzIULTWDRnhGiFvXv34uvXr1z722+/hbNz0a79kHPexteHWUsYnVv0RVKpop+7T09PR1hYGD5//owvX75w/955+hZhT14j7fNLQJKBsD0/wKJ+V1i3GAKx0X8fABEJqQgMDESXLl2ohoiWuX//Pm9OQocOHYpthE+eqKgo/Pzzz9i0aRMkEonM/a1bt8aKFSto8nMOf/zxB16//u+LQqVKlbB27VpUqVIF06dPp/kihUDJCNF4jLFin7iaPW8j+2QIk2bCwN4FBg37w2fvfWwcXD/PiaSxsbF4//49L8nI+f/Pnz/LDH/niTEkv7kD61bDeN1v7l7FwMmjkZyczPXp6+tj+/btGDp0aGGeMlETqjpFk5aWhrVr1+LXX39FXFyczP2VKlXCH3/8gW7dulFim0NQUBB+/fVXXt/69ethbGyMyZMnY+/evTRfpBAoGSEa78qVK3j27BnXbtCgAZo0aaL0ce7fv4/69evz5m2kfnqOjOgQACLYef8I6BsAyJq30aGGk9yltjExMRgwYABvibEyRHr6YJL/Ji/atB8LsYFx1n0ARK8vY8bvq2VqiBw7dgwdO3Ys1GMS9ZHzFA0AdO7cuViPzxjD8ePHMX36dJlLBACAtbU15s+fj/Hjx5foiIwmYozh+++/567ICwB9+/bl/u4MDAzw559/Fvrq4LqM5owQjSdvVETZb3IxMTHo0qUL4uPj/5u38eExIg7PQ4z/WohNrWBo7wJAdt5Gbm5ubrh16xZatmypVAxGRkbw8PDgJSImbg1hUqlRVoMxxF7fh+ATK3mJiJOTE65du0aJiBaIiIjA3bt3uXb9+vWLfLoxp3///RetWrVCnz59ZBIRfX19TJw4EW/fvsXkyZMpEZHjxIkTMvN5Vq5cydumfv36Wl15tqRQMkI02ocPH/DXX39xbTs7O/Tr10/p4/z6668ICwvDuXPnEJGQipSge4g4+jNYRtY3oK//7EDSi2u8fSISUuUdCgBgY2ODM2fOoHr16go9funSpbFy5UoEBARwfSJ9A5RqPxYikQhMkonky+sRd+sAb7+qVasiICCAzudrCT8/P94qquI6RfPp0ycMGzYMDRs2lLsCxNvbG0+fPsXq1atp9VUeEhMTMWnSJF7fwoULUbp0aYEi0i6UvhGNtnHjRt4owZgxY2BsbKzUMd6+fcuVkD9x4gS+aSdBxPGFQI4RCrGpFQzsyvP2c7CQ/zgfP37E5s2bsW3bNkRERBT4+I0bN8ahQ4dkhuPnzv4JnkN64EN4NNb85IuAe5d493t4eOD06dP04aFFinu+SFJSEpYtW4bff/+dd42ibHXq1MGKFStojoMCFixYgE+fPnFtd3d3+Pr6ChiRlmEaIC4ujgFgcXFxQodC1EhycjKzsbFhyDpzwvT09FhISIjSx+nVqxd3DGNjY6avr8+1ATA9cxtWetRGVmHGGVZhxhnmMuMMa7L4EsuUSLljSCQSduHCBda9e3cmFot5++d3GzZsGEtJSWHLli3j9bu5ubGUlBQWHh7OvvnmG5n9evTowZKTk4vz5SQCS09PZ5aWltzP2N7enkkkkkIdSyKRsJ07d7LSpUvL/b1zdHRk27ZtY5mZmcX8LLTT48ePmZ6eHvf6iUQiFhAQIHRYGkHRz29KRojG2r59O+8Ntk+fPkof49q1a/kmC3qW9qz0mK28RMRlxhnm9+QLY4yxmJgYtnLlSla5cmWFExAATCwWsxUrVjCpVMpCQkKYmZkZ7/5z586xN2/eMDc3N5l9x48fTx8iWujKlSu8n/PQoUPz3Nbf3589ePAgz+PUr19f7u+dsbExmz17NouPjy+hZ6F9JBIJa9asGe91HDNmjNBhaQxKRohWk0qlzN3dnfcGcfXqVaWOIZFIWMOGDfNMGJzKlGf1pu3jEpEK/x8R8Xvyhd2/f5+NGjWKmZiY5Jtw9OzZk+3bt4/Xb21tzfz9/bk4vv32W5lRjzt37jA7OzuZYy5evJhJpdJ8nhXRVNOmTeP9rA8ePCh3u3/++YcZGxuzixcv8vrfvHnDevbsmefv48CBA9mHDx9U8VS0yo4dO3ivo729PYuOjhY6LI1ByQjRajdu3OC9QdSpU0fpD+ncSULum6GhIevRoyf7de0OdijgDbvy7DPbtWs38/DwyHc/R0dHNmfOHPbx40fGGGPPnj3j7qtatSp79eoVF8P58+d5+5qYmLAdO3YwU1NTXr++vj7btWtXsb6GRL3UqFHjvxE5PT0WGxsrs82tW7e4UbTjx48zxrJG56ZMmcIMDAzk/j56eHiw27dvq/jZaIeoqChma2vLez137twpdFgahZIRotX69evHe4PYunWrUvsnJyez8uXLK3xapWzZsjJvSrlvLVq0YAcOHGBpaWm8x8pOnDp37sy+fv3K9aempsqc3unRowfv3DQAZm5uzs6fP18srxtRT8HBwbyfecuWLWW2uXfvHrOysuK22b59O1u7dm2ev5cVKlRgBw8epJG0Ihg1apTM3zi9nsqhZIRorc+fP/MmmZYqVYolJSUpdYwlS5YolISYmZkxkUiU7/3jxo1jjx49yvOxTp06xaZPny4zz2PRokW8Y8n7UHF0dGT37t0r1OtENMe6det4P/fffvuNd/+TJ09kfj+MjY3l/k5aWFiwpUuXspSUFIGejXa4efOmzOjk06dPhQ5L41AyQrTW3LlzeW8S06ZNU2r/8PBwZmFhkW8SkntFTe5btWrV2Nq1a3kjHXmR96EQHByc73wTAKxKlSosKChIqedGNFPnzp15P/ucH3qvXr1ijo6OBSbOYrGYjR07loWFhQn4TLRDRkYGq1OnDu/1nT59utBhaSRKRohWSk1NZQ4ODrw34ODgYKWO4ePjo/DpmZw3PT091rt3b3b58uUiD9X26NEj38fy8PBgkZGRRXoMohmSkpJ4oxzly5fnfr+CgoJY2bJlC/zd7NChA3v8+LHAz0R7rFixgvf6litXjiUmJgodlkZS9PObip4RjXLkyBFeITFvb2+4uLjkub1EyhAYHIOIhFQ4WBjDPCUMmzdvVuoxnZycMGbMGIwePRply5YtbOicc+fO4eTJk3ne3717d+zfv1/nL9OuK/755x/etU66dOkCkUiET58+oV27drxCW/IMGTIEu3btoovZFZNPnz5h3rx5vL41a9bAzMxMoIh0AyUjRKMoc3Ve/6ehWHD6OULj/nujjzv5C69ia35atmwJX19f9OjRo9iu05GamppvzD4+Pli7di309PSK5fGI+pNXdTUsLAzt2rVDcHBwgfvv2bMHsbGx2Lx5M5UmLwZTpkxBYmIi1+7atSu6d+8uYES6ga5NQzRGYGAgAgMDuXaNGjXQtm1budv6Pw2Fz977XCLCmBRfAw7j66tAudtnMzc3h4+PD548eYKrV6+ib9++xXrBsN9++03ulVIBYNGiRVi/fj0lIjokUyLF8b9Oc21jY2PUrl0bHTp0wOvXrxU+zpkzZ+Du7s67yB5Rnr+/P44ePcq1TUxMsHbtWhp1UgEaGSEaI/eoyIQJE+S+SUikDAtOPwf7fzv1w2NE+61BZlxYnseuUaMGxo8fjyFDhsDS0rI4w+a8e/cOixYtkunX19fHtm3bMGzYsBJ5XKKe/J+GYsbWswj/8t9pGKOyNdHOsyvevnha4P6lSpWCh4cHmjZtiqZNm6Jhw4YwNzcvyZC1WkpKCiZMmMDrmzt3br6ngUnxoWSEaITw8HAcOnSIa1tZWWHIkCFytw0MjuGdmtEzt5GbiOjp6aFXr14YP348WrVqVaLffhhj6NmzJzIyMnj95ubmOHbsGDp27Fhij03UT/bI3ddHN3n9SZEhiIuTf3HF6tWr85KPqlWrQiymwe3isnTpUrx7945rV6tWDT/88IOAEekWSkaIRtiyZQvvg3z48OF5fguMSEjltQ1sy8KofG2kfXwCICs5Ma/bCSvn/YDhHRuUXND/xxjDwIED8eTJE16/nZ0dzp8/j/r165d4DER95By5Swn6l3df5v8TEbGBMVo290Cz/yceTZo0gY2NjQDR6obXr19j6dKlvL4NGzYU6ylakj9KRojay8jIwKZNm3h9+V2628HCWKbPskE3xAOwqNcFppWbQKSnj2puLsUcqazMzEyMHj0aBw8e5PXb29vjzp07cHV1LfEYiHrJHrljTAo9U2uIDIzBMlIhMjJFqZZDYVi6GgwdXLF4bDN4uNkKHa7WY4zB19cX6enpXN/gwYPRpk0bAaPSPZSMELV3/PhxfPnyhWt37twZlSpVynP7Rq42cLYyRlhcKjdvxLSKB0yreAAARACcrIzRyLVkv2kmJSWhX79+MqslTE1N8fjxYzg5OZXo4xP1lD1yJxKJYd9jJqQZ6Uj79AwsMx2mlRvLbEdK1uHDh3Hp0iWubWVlhT/++EPAiHQTnXAkak+Z5bwAoCcWYb53DQBZiUdO2e353jWgJy65OSIRERFo06aNTCICACdPnqRERIflHrkTGxjCxLUeLxGRtx0pfvHx8ZgyZQqvb/HixXB0dBQoIt1FyQhRaw8ePMDNm/9N8qtcuTI6depU4H6etZyxcXB9OFnx39CdrIyxcXB9eNZyLvZYs719+xZNmzaVu8xy8ODB6NChQ4k9NlF/2SN3eaXCIgDOKhi5I1mrZUJDQ7n2N998g7FjxwoYke4qVDKyfv16uLi4wNjYGI0bN+bVfsht69ataNGiBUqVKoVSpUqhffv2+W5PSE65R0V8fX0VXkHgWcsZN2a0xYHRTbC6vzsOjG6CGzPalmgicvfuXTRt2pQ3Kz8bDf8SQD1G7kjWF51169ZxbbFYjE2bNlGdH4EonYwcOnQIU6dOxfz583H//n3UrVsXnTp14pXozunKlSsYMGAA/vnnHwQEBKBcuXLo2LEjPn/+XOTgiXaLiorC/v37ubaZmRm+++47pY6hJxbBw80W3d3LwMPNtkTf4M+ePYvWrVsjMjJS7v2LFi2i4V8CQNiROwJIpVL4+PjwqjGPHz8eDRqU/Oo6kgdlL3rTqFEj5uvry7UlEgkrXbo0W7JkiUL7Z2ZmMgsLC7Zr1y6FH5MulKeblixZwrtY1fjx44UOKU/btm1jenp6eV7IrF69eiwzM1PoMImayZRI2a23Uezkg0/s1tsolikp2gUYiWI2bdrE+/t0dHRksbGxQoellUrkQnnp6em4d+8eZs2axfWJxWK0b98eAQEBCh0jOTkZGRkZ+a6ZT0tLQ1paGteOj49XJkyiBTIzM7FhwwZeX+7qiOqAMYaFCxdi/vz5+W63YcMGGv4lMrJH7ojqREREYObMmby+FStWwNraWpiACAAlT9NERUVBIpHIDDU7OjoiLCzvUts5zZgxA6VLl0b79u3z3GbJkiWwsrLibuXKlVMmTKIFTp06hZCQEK7dvn17VK9eXcCIZGVmZmLs2LEyiYiJiQmvPXLkSDRp0kSVoRFC8jB9+nR8/fqVa7dr1w4DBgwQLiACQMWraZYuXYqDBw/ixIkTMDbOe9narFmzEBcXx91yfigR3aDscl5VS0pKQs+ePbF161Zef6VKlZCSksK1S5UqJVPZkRAijGvXrmHXrl1c28DAAOvXr6cL4akBpU7T2NnZQU9PD+Hh4bz+8PDwAusm/PHHH1i6dCkuXbqEOnXq5LutkZERjIyMlAmNaJEnT57gypUrXNvFxQVdunQRLqBcIiMj0bVrV5lVYZ07d8aDBw94fUuWLIGdnZ0qwyOEyJGeng4fHx9e3/Tp01G1alWBIiI5KTUyYmhoiAYNGuDy5ctcn1QqxeXLl+Hh4ZHnfsuWLcPChQvh7++Pb775pvDREp2Qc7kdkLWcV13mW7x79w5NmzaVSUTGjh2LKlWq8E5XNmzYEKNGjVJ1iIQQOVauXInnz59zbVdXV8yePVvAiAiPsjNjDx48yIyMjNjOnTvZ8+fP2ZgxY5i1tTULCwtjjDE2ZMgQNnPmTG77pUuXMkNDQ3b06FEWGhrK3RISEop9Ni7RfDExMczU1JSb5W5iYsKio6OFDosxxlhgYCCzt7eXWSnz66+/skePHvFW04hEInb37l2hQyaEMMbev3/Pe18BwM6ePSt0WDqhRFbTAEC/fv0QGRmJefPmISwsDO7u7vD39+cmtX78+JFXlGrjxo1IT09Hnz59eMeZP38+fv75Z6WTJ6Ld/vzzTyQnJ3PtwYMHq8XVSs+dO4dvv/2WF5uenh62bduGYcOGoVWrVpBIJNx9Y8eOpVFAQtTEpEmTeH+7vXr1gpeXl4ARkdxEjDFW8GbCio+Ph5WVFeLi4mBpaSl0OKSESCQSVKlSBUFBQVzf48ePUbt2bQGjAnbs2IExY8bwkg0jIyOcPHkSnp6e2LNnD4YOHcrdZ2dnh1evXqlFEkWIrjt9+jS6devGtc3MzPDixQtapakiin5+07VpiNrw8/PjJSKtWrUSNBFhjOGXX37ByJEjZRIRExMTNGzYEF+/fsWPP/7I2++3336jRIQQNZCUlCSzEu/nn3+mREQNKX2ahpCSok7LeTMzMzF+/Hi5S3ejo6MRGxuLadOmwdzcnHcpBA8PD6VL1hNCSsaiRYvw4cMHrl2rVi1MmjRJwIhIXug0DVELr169QrVq1bh2uXLlEBQUBH191efLSUlJ6N+/P86cOcPrb9y4MZYuXYo2bdpwfWKxmLu+hVgsxr179+Du7q7KcAkhcrx48QJ169ZFRkYG13fjxg00a9ZMwKh0D52mIRol93JeHx8fQRKRyMhItGvXTiYR6datG/7++288fPiQ15/zQlu+vr6UiBCiBhhjGD9+PC8RGTFiBCUiaoxGRojg4uPjUaZMGSQmJgLImpPx6dMnlRcLe/fuHTw9PfH27Vte/5gxY7B+/Xro6+ujW7duOH36tNz9bW1t4ezsDHt7e5QvXx4rV65EqVKlVBE6ISSH3JPKbWxs8OrVKypAKABFP79pzggR3K5du7hEBAAGDBig8jeNf//9F126dOHN/wCAhQsXYvbs2RCJRMjMzMTVq1fzPEZ0dDSio6NhbW2NhQsXUiJCiABiY2PlTiqnRES9UTJCBCWVSmVO0ah64qqfnx++/fZbJCUlcX16enrYunUrhg8fzvXdv3+/wCtIlylTBufPn0fNmjVLLF5CSN5mz54tM6l8xIgRAkZEFEFzRoigLl68iNevX3Ptpk2bon79+ip7/D///BPe3t68RMTMzAynT5/mJSIA8Pfff+d7rGrVquHWrVuUiBAikMDAQGzatIlr6+npYdOmTbxCnEQ90U+ICEqo5byMMSxcuBAjRozg1RBxcHDAlStX0LlzZ5l98ktGGjdujBs3bqB8+fIlEi8hJH8SiQQ+Pj7IOQ1y4sSJBV6YlagHmsBKBPPu3TtUrlyZe/NwcnLChw8fYGhoWKKPm1cNkcqVK8Pf3x8VK1aU2Sc9PR3W1tZISUmRuc/LywuHDx+GmZlZicVMCMnfunXreF9mypQpgxcvXsDCwkLAqAgt7SVqb/369bxvMePGjSvxRCQpKQk9e/aUSUQaN26Mmzdvyk1EAODOnTtyE5GhQ4fi5MmTlIgQIqDQ0FCZK/CuWrWKEhENQskIEURiYiJ27NjBtQ0MDDB27NgSfcy8aoh4e3vj77//hr29fZ77yjtFM336dOzcuRMGBgbFHishRHE//PADb3K5p6cnevfuLWBERFm0moYIYu/evYiLi+Pa3377LZycnErs8YKCguDp6Yk3b97w+nPWEMlNImUIDI5BREIqTp49z7tv+fLlmDp1aonFSwhRzKVLl3DgwAGubWRkhLVr10IkEgkYFVEWJSNE5RhjKl3Oe+/ePXh5eeVbQyQ3/6ehWHD6OULjUiHNSEXIvbsAAD19fezauRODBg0qsXgJIYpJS0uDr68vr++nn35CpUqVBIqIFBadpiEq988//+DZs2dc+5tvvkHjxo1L5LH8/f3RqlUrXiKip6eHHTt2YM6cOXkmIj577yM0LhUAkPb5JSDNhMjAGHY958K2blulYrh69SpSU1OL9kQIITJ+//13XmmAypUrY8aMGQJGRAqLkhGicvKW85bEkOrOnTvRtWtXXg0RU1NTuTVEskmkDAtOP0fOJWaJjy9CZGQGhz7zYVKxARacfg6JVPFFaLdu3YKrqytWrFjBi4UQUnhBQUFYtGgRr2/9+vUwMjISKCJSFLS0l6jUhw8fULFiRe4Cc/b29ggJCSnWNxDGGBYtWoS5c+fy+h0cHHD27Fl88803ee4b8C4aA7be5vV9XNEbLCMNgAj61o4wsC2HXm0bo33TBqhevTqqV6+e7+/lixcvUKNGDQCAnZ0dpk6dCl9fX/pdJqSQGGPo0qUL/Pz8uL5+/frh4MGDAkZF5KFr0xC1tGHDBt6VbseMGVOsiUhmZiZ8fX2xZcsWXn+lSpXg7+8PNze3fPePSOCfTpGkpYBlpP+/xZD5NQyZX8Ow791d7MuxOrhs2bKoXr06atSogRo1anD/t7W1RbVq1VClShW8fv0aUVFR+Omnn7Bs2TJMmjQJkyZNomvYEKKkEydO8BIRCwsLrFixQsCISFHRyAhRmZSUFJQtWxYxMTEAsuZuvH//HmXLli2W4ycnJ6N///4yV9Vt1KgRzpw5k+/S3Wy5R0bSwt4ibNfkQsfk4OCA6tWr4+PHjwgODpa538LCAr6+vpg6dWqe8eVc1eNgYYxGrjbQE9NKAaKbEhMTUb16dXz69InrW716NSZOnChgVCQvNDJC1M7+/fu5RAQAevXqVWyJSGRkJLy9vXHnzh1ef9euXXHw4EGFi5I1crWBs5UxwuJSwQDom9vCpsM4pEeFICM6BBnRHyFN+qpwXBERETKreHJKSEjA0qVLsWbNGowbNw4//vgjnJ2duftzrurJ5mxljPneNeBZy1neIQnRaj///DMvEalXrx7Gjx8vYESkONDICFEJxhjq1auHR48ecX3Xrl1DixYtinzsvGqIjB49Ghs2bJBbQyQ/2atpAPAmsmaPRSzzdkVpxOL58+d4/vw5Xrx4gefPnyMkJKQIzyKLkZERRo0ahenTp+N5vAF89t5H7j/Q7Dg2Dq6vVQlJWloa9PX1oaenJ3QoRE09fvwY9evX564nJRKJEBAQUGKr8UjRKfr5TckIUYnr16+jZcuWXLtu3bp48OBBkVfR5FVD5Jdffslz6a4iCjMikZCQgJcvX8okKUFBQVD2z8zAwACl6raHfoPeMLB2QmrIU0SdWQ6xkdn/b6Yws7BCv2ZVYW1tDWtra1hZWcn8P/tfTVhhkJSUBA8PD3h5eWHo0KHcpF9CAEAqlaJFixa4desW1zd27FjeVXqJ+qFkhKiVvn374siRI1x727ZtGDlyZJGO6e/vjz59+vCWy+rp6WHLli0YMWJEkY4NFN9cjYULF2LevHmFC0IkhlmNVjAsXQ2xFzcW7hgAjI2NZRIUeUlLXn3m5uYqqWj5448/Yvny5QCABg0aYOjQoRgwYIBC832IdtuxYwfvPcPe3h6vXr2iCeBqjpIRojY+f/6MChUqcEOrNjY2+PTpE0xMTAp9zJ07d2L06NHIzMzk+kxNTXH06FF07ty5yDEXl8DAQDRr1owXpzx6enooV64cKlasCFdXV6Sa2OH8Byn0rZ2gb+WI5Hd3EeO3WkVRyxKLxbCysipUIpO9nyLX8AkKCkKlSpV4I0n6+vrcaEnXrl3zHeWhyb7aKTo6GlWrVkV0dDTXt2vXLgwdOlTAqIgiaAIrURubNm3iEhEAGDVqVKETEcYYFi9ejDlz5vD67e3tcfbsWTRs2LBIsRanhIQEDBw4kEtE7OzsuGQj97/lypXjfVgHvIvGjRyresT6htC3KQNpWhKkqUmAJEOlz0UqlSI2NhaxsbGFPoapqalCiYybmxvevn3L7ZeZmYlTp07h1KlTKFWqFPr164ehQ4eiSZMmvNEamuyrvWbMmMFLRFq2bIkhQ4YIGBEpbjQyQkpUWloaypcvz83pEIvFCAoKQoUKFZQ+VmZmJiZMmIDNmzfz+hWtIaJqT548QVBQEFxdXeHq6qrU5cwlUobmv/3NrerJjWWmw85Qgj1DaiExIR5fv37F169fERcXx/s3r76EhITie6ICqVSpEoYOHYohQ4bgZaIRb7JvStA9iAyNoWdsCT0TC2wc2RJd3MsJGq+y7t+/jxo1asDY2FjoUAR169YtNGvWjGvr6+vj4cOHqFmzpoBREUXRaRqiFvbs2cMbSu3RowdOnDih9HGSk5MxYMAAnDp1itevTA0RTVPQqp6irKaRSCSIj49XKoHJ/f+CTj2pkoVLHRhUaw2zas0gNjLDx+W9wTLTeNtYWVnB1tYWNjY2sLW15d3y6rO0tBTs6q/btm3DtGnTMHDgQIwYMQL169fXuSvRZmZmokGDBnj8+DHXN2PGDCxdulTAqIgyKBkhaqFRo0a4e/cu1758+TLatlXuQnNRUVHw9vbG7dv8Mu1dunTBoUOHFK4hoonU9dQDYwzJyckKJzDy+pKTk4s9LgPb8rBuOQSRJxYVvLEC9PX1ZRIVRZKZ4li9lJSUhDJlyiAuLg4AUKdOHQwfPhyDBg1SKPnWhvkzK1aswA8//MC1y5cvj+fPn2v137y2oWSECO7OnTto0qQJ165ZsyaePHmi1Le74q4hoom04UNFnoyMDJlk5fPnzxgxYgRvjlFexGIx6tati9JV3XEn2QFGZatD38IOmQlR+Lzhu5J/AvkwMzNTahTG1tYW1tbWEIv51y6dNGkS1qxZw+szMDBAt27dMGLECHTs2FHu34C6JrHK+PTpE6pXr47ExESu7+TJk+jevbuAURFl0QRWIrjcV+edMGGCUolIXjVEFixYgLlz5+rMkLWeWAQPN1uhwyh2BgYGsLOzg52dHdc3Z86cPBMRExMTNGnSBM2bN0fz5s3RpEkTWFpaypTwFxsYo1T7sZCmxEOakgBJSgKkKfFwMZciLSke0dHRiI+PL9HnlpSUhKSkJHz8+FHhfUQiEUqVKsVLUOSNHmVkZODYsWM4duwYnJ2dMWzYMAwfPhxVqlQB8N/pvdzfMsPiUuGz977GFMubMmUKLxHx9vamRESL0cgIKRFhYWEoX748MjKyVn1YWVnh06dPMDc3V2j/8+fPo3fv3jI1RDZv3lzk+iREPQUHB6N69epIS8ua62FnZ8clHs2bN0f9+vXlLg8uaLKvCICTlTFuzGjLjShlZGQgJiYG0dHR3L+5b/L609PT5TyCemjevDmGDfsOWz45ICKVP8LCMjMg0jeQ+1qoI39/f94SfRMTEzx//hwuLi7CBUUKhUZGiKC2bNnCJSIAMGLECIUTkV27dmHUqFEyNUSOHDkCLy+vYo+VqIfNmzdjwIABXPJRpUoVhUa/9MQizPeuAZ+99yGC/Mm+871r8D58DQwM4OjoCEdHR4Xjy54no2jikt0XGxurdAXewrhx4wZu3LgBkYExTKs1h3nt9jAqWxOZceEI2/MDLBv2gEWDbgiNAwKDY9R2tC0lJQW+vr68vnnz5lEiouVoZIQUu/T0dLi4uCA0NBRA1vDz69evUalSpXz3Y4xhyZIlmD17Nq9fHWuIEPWjrvMkJBIJvn79qlDikvNW1Am+eua2MKvdDpkxn5H86mZWn4U9rFsNxdYFk9CzvnoudZ43bx4WLlzItatXr46HDx/C0NBQwKhIYdEEViKYgwcPYsCAAVzby8sLZ8+ezXcfiUSCCRMmyFxnws3NDefPn1e7GiJEPWnTZN/U1FR07NgR169fL3BbQ0ND1K9fHxWqu+NyjDWMSleDvqUd0r68QtieH2S2r1qzDjauXYU2bdqUROiF9vr1a9SuXZt3Ouyff/5B69athQuKFAmdpiGCyT1x9fvvv893++TkZAwcOBB//fUXr79hw4Y4c+YMHBwcij1Gop20abLvxYsX80xEypUrhyZNmsDDwwMeHh6oV68ejIyMZObPiE0sYVLFAymvA3j7v3r2GG3btkXXrl2xbNkyVK9eXQXPKH+MMfj6+vISkSFDhlAioiNoZIQUq/v376NBgwZcu3Llynj58qXMksVsedUQ8fLywuHDh6meANFJqampqFGjBoKDg2FkZIQGDRrwko8yZcrkua+8YnmpIU8R+88OpIe+ltleT08Po0ePxs8//6zUHJrilntE1draGi9fvhQ0JlJ0dJqGCGL48OHYuXMn1169ejUmTpwod9vg4GB4enri9Wv+G+SoUaOwceNGnaghQog8N2/exN27d+Hh4QF3d3eli6jJmz/jZGmENoZvcXD9b3j//r3MPubm5pgxYwamTp0KU1PToj4FpcTFxaFatWoICwvj+jZs2AAfHx+VxkGKHyUjROUiIyNRrlw5bmmmubk5Pnz4AAsLC5klmffv34eXlxfCw8N5/T///DPmzZunMzVECCkpec2fSUtLw7p16/Drr7/i69evMvuVKVMGv/76K4YMGQI9PT25x05JSSnSVbdzy13crWHDhggICMjz8YnmUPTzW/7YOSGFsG3bNi4RAYBhw4Zhz549Mqdgzp8/j1atWvESET09PWzbtg3z58+nRISQYpA9f6a7exl4uNlyE3mNjIzwww8/4O3bt5gyZYrMF4XPnz9j+PDhqF+/Pi5evCj32NOmTcP9+/eLJc779+9j3bp1XFssFmPTpk2UiOgYSkZIscjMzMTGjRt5fd9++y3mzJnDe0PbvXs3unbtyqusaGpqir/++ouKmRGiQra2tlixYgVevHiBb7/9Vub+x48fo2PHjujcuTOePHnCu+/z58/o0KEDHj16VKQYJBIJfHx8IJVKuT5fX1/Ur1+/SMclmoeSEVIs/vrrL4SEhHDtDh06YN26dUhMTMTFixfBGMPixYsxbNgwXjEze3t7XLlyBV26dBEibEJ0npubGw4fPoxbt26hadOmMvf7+/vD3d0do0aNwpcvXwBklbuPiYlB+/bt8ezZs0I/9tatWxEYGMi1nZyceDVGiO6gZIQUi9zLeT08PHD06FEAQGBgIEaOHClTzMzNzQ23bt2iYmaEqAEPDw/cuHEDR48elanrI5VKsX37dlSuXBk///wzoqKiAGSthmvXrh1evnyp9ONFRERg1qxZvL4VK1bAysqq8E+CaCyawEqK7PHjx6hbty7Xzi7bLG/GfjaqIUKI+kpPT8emTZuwYMECxMTEFLi9s7Mzrl69isqVKyv8GMOGDcPu3bu5drt27XDx4kWaM6ZlaAIrUZmck8+ArBGP/BIRLy8v/PPPP5SIEKKmDA0NMXHiRLx79w7Tpk0rsBR7aGgo2rZti+DgYIWOf/XqVV4iYmhoiA0bNlAiosMoGSFFEhMTg71793JtExMTXL16Nc/ty5Qpg3Xr1lExM0I0gLW1NZYtW4ZXr15h4MCB+W776dMntGnTBh8/fsx3u/T0dJn6ITNmzECVKlWKHC/RXJSMkCLZsWMHUlJSuLa1tTVvgmpunz9/RqVKleDt7Y3Tp0/nuy0hRD24uLjAx8cHTk5O+W734cMHtGnTBp8/f85zm5UrV+LFixdcu2LFijJzR4juoWSEFJpEIsH69et5fdlX6s2PVCrF9evXERAQILfoEiFEfaSlpWHGjBlo2bIlr0JqXoKCgtC2bVu57wUfPnzAL7/8wutbt25dsRZQI5qJkhFSaGfPnuXNDcldPEme0qVL4/fff8fHjx+xePFi2NnZlWCEhJCiYIxhw4YNOH36NJRZ6/D69Wu0a9cOERERALKqwQa8i0bfYWOQnJzMbde7d2907ty52OMmmodW05BC69ixY54VGnOrWrUqpk+fjkGDBil9nQ1CiPC+fv2KwMBA3LlzB7dv38bt27cLXGlTu3ZtzF6/H6tuhOPdv1cRefy/GiLGJqZ48/oVypYtW9KhEwEp+vlNVyIjSpNIGQ5fuqNQItKkSRPMmDED3bp1y/PKvYQQ9WdtbY2OHTuiY8eOALJGTd69e8clJnfu3MHDhw9588CePHmCoX26w673XMRc2sw7nkmT/nj6VQ+UixCARkaIkrKvBvrs6Eok3D+b53ZeXl6YMWMGWrRoQcv1CNERKSkpuH///v8TlDs4dfEK0uMioWfpAEl8BLedgb0LSg9bBWcbc9yY0Za7bg7RPjQyQoqd/9NQ+Oy9D0laMhKf/i1zv1hPDwMHDMD06dNRu3ZtASIkhAjJxMQEzZo1Q7NmzRDwLhp33W4jMyEaaV9eIu3TcyS9uApp0lfYdBwP6OkjNC4VgcEx8HCzFTp0IjBKRohCJFKGBaefgwFIfHIJLP2/5bwQiWFRvwsqte2PnUsH0LccQggiElIBAPoWttCv2gxmVZvButkApAT9C+OyNWS2I7qNkhGikMDgGITGZb1pZMZ+ASACkHWGz6HfQphUqIuY/29H33IIIQ4WxjJ9YmNzmNVoXeB2RPdQMkIUkvPbi02HcTCv3xUJ989CEhcGkwp15W5HCNFdjVxt4GxljLC4VMibmCgC4GRljEauNqoOjaghWt5AFJL724uhbVnYdhgLhz7z892OEKKb9MQizPfOOh2T+8Rtdnu+dw06rUsAFDIZWb9+PVxcXGBsbIzGjRsjMDAw3+2PHDmCatWqwdjYGLVr18a5c+cKFSwRTva3nLzeNkQAnOlbDiEkB89aztg4uD6crPhfUpysjLFxcH141nIWKDKibpQ+TXPo0CFMnToVmzZtQuPGjbFq1Sp06tQJr169knsV1lu3bmHAgAFYsmQJunbtiv3796NHjx64f/8+atWqVSxPgpS87G85Pnvv55gtkoW+5RBC8uJZyxkdajghMDgGEQmpcLDI+tJC7xUkJ6XrjDRu3BgNGzbkLhsvlUpRrlw5fP/995g5c6bM9v369UNSUhLOnDnD9TVp0gTu7u7YtGmTQo9JdUbUR3adkezJrEDWiMh87xr0LYcQQghPidQZSU9Px71793hXWBSLxWjfvj0CAgLk7hMQEICpU6fy+jp16oSTJ0/m+ThpaWlIS0vj2vHx8cqESUoQfcshhBBS3JRKRqKioiCRSODo6Mjrd3R0xMuXL+XuExYWJnf7/K7+uGTJEixYsECZ0IgK6YlFtHyXEEJIsVHL1TSzZs1CXFwcdwsJCRE6JEIIIYSUEKVGRuzs7KCnp4fw8HBef3h4OJycnOTu4+TkpNT2AGBkZERXdiWEEEJ0hFIjI4aGhmjQoAEuX77M9UmlUly+fBkeHh5y9/Hw8OBtDwAXL17Mc3tCCCGE6Ball/ZOnToVw4YNwzfffINGjRph1apVSEpKwvDhwwEAQ4cORZkyZbBkyRIAwKRJk9CqVSssX74cXbp0wcGDB/Hvv/9iy5YtxftMCCGEEKKRlE5G+vXrh8jISMybNw9hYWFwd3eHv78/N0n148ePEIv/G3Bp2rQp9u/fjzlz5uCnn35C5cqVcfLkSaoxQgghhBAAhagzIgSqM0IIIYRoHkU/v9VyNQ0hhBBCdAclI4QQQggRFCUjhBBCCBEUJSOEEEIIERQlI4QQQggRFCUjhBBCCBEUJSPkf+3dbUhT/RsH8Eun2wzmQ4i61So0zDAjUhQ1kUIQDKtXCsYwqCxcbxQqyWKRZSISgViRPdgLaVRoRA57sCQ0I7ANJM2w2RM1QSgcWencdb9y//9Ky7O7nXOf9f3AXnT8Hfvu28Fzddx2AAAAJIVhBAAAACSFYQQAAAAkJfjj4KUw+yGxExMTEicBAACAhZo9b//uw95lMYw4nU4iItLr9RInAQAAAKGcTidFRETM+3VZ3JvG7XbThw8fSKPRUFBQ0B/7vhMTE6TX6+ndu3e4540foWfxoGtxoGdxoGdx+LNnZian00k6nc7rJro/ksWVkeDgYFq6dKnfvn94eDgOdBGgZ/Gga3GgZ3GgZ3H4q+dfXRGZhRewAgAAgKQwjAAAAICk/uphRKVSkclkIpVKJXWUgIaexYOuxYGexYGexfFf6FkWL2AFAACAwPVXXxkBAAAA6WEYAQAAAElhGAEAAABJYRgBAAAASQX8MNLU1EQrVqwgtVpNGRkZ9PTp01+uv379OiUlJZFaraaUlBSyWCwiJZU3IT03NzdTTk4ORUVFUVRUFOXl5f323wX+R+gxPctsNlNQUBBt27bNvwEDhNCeP3/+TEajkbRaLalUKkpMTMTPjwUQ2vPp06dp1apVFBYWRnq9nioqKujbt28ipZWnR48eUWFhIel0OgoKCqKbN2/+dp/u7m5av349qVQqWrlyJbW0tPg3JAcws9nMSqWSL126xM+fP+fdu3dzZGQkj42Nzbm+t7eXFQoF19fX8+DgIB8+fJhDQ0N5YGBA5OTyIrTnkpISbmpqYqvVykNDQ7xjxw6OiIjg9+/fi5xcfoR2PWt0dJSXLFnCOTk5vHXrVnHCypjQnr9//85paWlcUFDAPT09PDo6yt3d3Wyz2UROLi9Ce25tbWWVSsWtra08OjrKd+7cYa1WyxUVFSInlxeLxcLV1dXc1tbGRMTt7e2/XG+323nRokVcWVnJg4OD3NjYyAqFgjs7O/2WMaCHkfT0dDYajZ4/z8zMsE6n45MnT865vqioiDdv3uy1LSMjg/fs2ePXnHIntOcfuVwu1mg0fOXKFX9FDBi+dO1yuTgrK4svXLjApaWlGEYWQGjPZ8+e5fj4eJ6amhIrYkAQ2rPRaORNmzZ5bausrOTs7Gy/5gwkCxlGDhw4wMnJyV7biouLOT8/32+5AvbXNFNTU9Tf3095eXmebcHBwZSXl0d9fX1z7tPX1+e1nogoPz9/3vXgW88/mpycpOnpaVq8eLG/YgYEX7s+duwYxcTE0M6dO8WIKXu+9Hzr1i3KzMwko9FIsbGxtGbNGqqtraWZmRmxYsuOLz1nZWVRf3+/51c5drudLBYLFRQUiJL5byHFuVAWN8rzxfj4OM3MzFBsbKzX9tjYWHrx4sWc+zgcjjnXOxwOv+WUO196/tHBgwdJp9P9dPCDN1+67unpoYsXL5LNZhMhYWDwpWe73U4PHjyg7du3k8VioZGRESovL6fp6WkymUxixJYdX3ouKSmh8fFx2rBhAzEzuVwu2rt3Lx06dEiMyH+N+c6FExMT9PXrVwoLC/vjf2fAXhkBeairqyOz2Uzt7e2kVquljhNQnE4nGQwGam5upujoaKnjBDS3200xMTF0/vx5Sk1NpeLiYqqurqZz585JHS2gdHd3U21tLZ05c4aePXtGbW1t1NHRQTU1NVJHg38pYK+MREdHk0KhoLGxMa/tY2NjFBcXN+c+cXFxgtaDbz3PamhooLq6Orp//z6tXbvWnzEDgtCuX716Ra9fv6bCwkLPNrfbTUREISEhNDw8TAkJCf4NLUO+HNNarZZCQ0NJoVB4tq1evZocDgdNTU2RUqn0a2Y58qXnI0eOkMFgoF27dhERUUpKCn358oXKysqourqagoPx/+s/Yb5zYXh4uF+uihAF8JURpVJJqamp1NXV5dnmdrupq6uLMjMz59wnMzPTaz0R0b179+ZdD771TERUX19PNTU11NnZSWlpaWJElT2hXSclJdHAwADZbDbPY8uWLbRx40ay2Wyk1+vFjC8bvhzT2dnZNDIy4hn2iIhevnxJWq0Wg8g8fOl5cnLyp4FjdgBk3Gbtj5HkXOi3l8b+B5jNZlapVNzS0sKDg4NcVlbGkZGR7HA4mJnZYDBwVVWVZ31vby+HhIRwQ0MDDw0Nsclkwlt7F0Boz3V1daxUKvnGjRv88eNHz8PpdEr1FGRDaNc/wrtpFkZoz2/fvmWNRsP79u3j4eFhvn37NsfExPDx48elegqyILRnk8nEGo2Gr169yna7ne/evcsJCQlcVFQk1VOQBafTyVarla1WKxMRnzp1iq1WK79584aZmauqqthgMHjWz761d//+/Tw0NMRNTU14a++/1djYyMuWLWOlUsnp6en85MkTz9dyc3O5tLTUa/21a9c4MTGRlUolJycnc0dHh8iJ5UlIz8uXL2ci+ulhMpnEDy5DQo/p/4dhZOGE9vz48WPOyMhglUrF8fHxfOLECXa5XCKnlh8hPU9PT/PRo0c5ISGB1Wo16/V6Li8v50+fPokfXEYePnw458/c2W5LS0s5Nzf3p33WrVvHSqWS4+Pj+fLly37NGMSMa1sAAAAgnYB9zQgAAADIA4YRAAAAkBSGEQAAAJAUhhEAAACQFIYRAAAAkBSGEQAAAJAUhhEAAACQFIYRAAAAkBSGEQAAAJAUhhEAAACQFIYRAAAAkBSGEQAAAJDUP26/HSlo0kDlAAAAAElFTkSuQmCC", "text/plain": [ "
    " ] @@ -180,7 +180,7 @@ "# Greedy rollouts over untrained model\n", "device = torch.device(\"cuda\" if torch.cuda.is_available() else \"cpu\")\n", "td_init = env.reset(batch_size=[3]).to(device)\n", - "model = lit_module.model.to(device)\n", + "model = model.to(device)\n", "out = model(td_init, phase=\"test\", decode_type=\"greedy\", return_actions=True)\n", "\n", "# Plotting\n", @@ -193,14 +193,14 @@ "cell_type": "markdown", "metadata": {}, "source": [ - "### Lightning Trainer\n", + "### Trainer\n", "\n", - "The Lightning Trainer handles the logging, checkpointing and more for you" + "The RL4CO trainer is a wrapper around PyTorch Lightning's `Trainer` class which adds some functionality and more efficient defaults" ] }, { "cell_type": "code", - "execution_count": 6, + "execution_count": 5, "metadata": {}, "outputs": [ { @@ -211,21 +211,17 @@ "GPU available: True (cuda), used: True\n", "TPU available: False, using: 0 TPU cores\n", "IPU available: False, using: 0 IPUs\n", - "HPU available: False, using: 0 HPUs\n", - "/home/botu/.local/lib/python3.10/site-packages/lightning/pytorch/trainer/connectors/logger_connector/logger_connector.py:67: UserWarning: Starting from v1.9.0, `tensorboardX` has been removed as a dependency of the `lightning.pytorch` package, due to potential conflicts with other packages in the ML ecosystem. For this reason, `logger=True` will use `CSVLogger` as the default logger, unless the `tensorboard` or `tensorboardX` packages are found. Please `pip install lightning[extra]` or one of them to enable TensorBoard support by default\n", - " warning_cache.warn(\n" + "HPU available: False, using: 0 HPUs\n" ] } ], "source": [ - "# Lightning Trainer with few epochs\n", - "trainer = L.Trainer(\n", - " max_epochs=3, # only few epochs for showcasing training\n", - " accelerator=\"gpu\", # use GPU if available, else you can use others as \"cpu\"\n", - " logger=None, # can replace with WandbLogger, TensorBoardLogger, etc.\n", - " precision=\"16-mixed\", # Faster training with Lightning with mixed precision\n", - " gradient_clip_val=1.0, # clip gradients to avoid exploding gradients\n", - " reload_dataloaders_every_n_epochs=1, # necessary for sampling new data\n", + "from rl4co.utils.trainer import RL4COTrainer\n", + "\n", + "trainer = RL4COTrainer(\n", + " max_epochs=3,\n", + " accelerator=\"gpu\",\n", + " logger=None,\n", ")" ] }, @@ -238,16 +234,9 @@ }, { "cell_type": "code", - "execution_count": 7, + "execution_count": 6, "metadata": {}, "outputs": [ - { - "name": "stderr", - "output_type": "stream", - "text": [ - "You are using a CUDA device ('NVIDIA GeForce RTX 3090') that has Tensor Cores. To properly utilize them, you should set `torch.set_float32_matmul_precision('medium' | 'high')` which will trade-off precision for performance. For more details, read https://pytorch.org/docs/stable/generated/torch.set_float32_matmul_precision.html#torch.set_float32_matmul_precision\n" - ] - }, { "name": "stderr", "output_type": "stream", @@ -255,60 +244,109 @@ "val_file not set. Generating dataset instead\n", "test_file not set. Generating dataset instead\n", "LOCAL_RANK: 0 - CUDA_VISIBLE_DEVICES: [0]\n", - "No optimizer specified, using default\n", "\n", - " | Name | Type | Params\n", - "-----------------------------------------\n", - "0 | env | TSPEnv | 0 \n", - "1 | model | AttentionModel | 1.4 M \n", - "-----------------------------------------\n", + " | Name | Type | Params\n", + "--------------------------------------------------\n", + "0 | env | TSPEnv | 0 \n", + "1 | policy | AttentionModelPolicy | 710 K \n", + "2 | baseline | WarmupBaseline | 710 K \n", + "--------------------------------------------------\n", "1.4 M Trainable params\n", "0 Non-trainable params\n", "1.4 M Total params\n", - "5.669 Total estimated model params size (MB)\n" + "5.681 Total estimated model params size (MB)\n" ] }, { - "name": "stdout", - "output_type": "stream", - "text": [ - " " - ] + "data": { + "application/vnd.jupyter.widget-view+json": { + "model_id": "2f806cfd0c694ef3958879f98da2a670", + "version_major": 2, + "version_minor": 0 + }, + "text/plain": [ + "Sanity Checking: 0it [00:00, ?it/s]" + ] + }, + "metadata": {}, + "output_type": "display_data" }, { "name": "stderr", "output_type": "stream", "text": [ - "/home/botu/.local/lib/python3.10/site-packages/lightning/pytorch/trainer/connectors/data_connector.py:430: PossibleUserWarning: The dataloader, val_dataloader, does not have many workers which may be a bottleneck. Consider increasing the value of the `num_workers` argument` (try 32 which is the number of cpus on this machine) in the `DataLoader` init to improve performance.\n", + "/home/botu/miniconda3/envs/rl4co/lib/python3.10/site-packages/lightning/pytorch/trainer/connectors/data_connector.py:432: PossibleUserWarning: The dataloader, val_dataloader, does not have many workers which may be a bottleneck. Consider increasing the value of the `num_workers` argument` (try 32 which is the number of cpus on this machine) in the `DataLoader` init to improve performance.\n", " rank_zero_warn(\n", - "/home/botu/.local/lib/python3.10/site-packages/lightning/pytorch/trainer/connectors/data_connector.py:430: PossibleUserWarning: The dataloader, train_dataloader, does not have many workers which may be a bottleneck. Consider increasing the value of the `num_workers` argument` (try 32 which is the number of cpus on this machine) in the `DataLoader` init to improve performance.\n", + "/home/botu/miniconda3/envs/rl4co/lib/python3.10/site-packages/lightning/pytorch/trainer/connectors/data_connector.py:432: PossibleUserWarning: The dataloader, train_dataloader, does not have many workers which may be a bottleneck. Consider increasing the value of the `num_workers` argument` (try 32 which is the number of cpus on this machine) in the `DataLoader` init to improve performance.\n", " rank_zero_warn(\n" ] }, { - "name": "stdout", - "output_type": "stream", - "text": [ - "Epoch 2: 100%|██████████| 196/196 [00:06<00:00, 31.37it/s, v_num=4, train/reward=-4.14, train/loss=-.0728, val/reward=-4.10] " - ] + "data": { + "application/vnd.jupyter.widget-view+json": { + "model_id": "5da2a603d5dc4bd9bbe9fbd4b5a89f9e", + "version_major": 2, + "version_minor": 0 + }, + "text/plain": [ + "Training: 0it [00:00, ?it/s]" + ] + }, + "metadata": {}, + "output_type": "display_data" }, { - "name": "stderr", - "output_type": "stream", - "text": [ - "`Trainer.fit` stopped: `max_epochs=3` reached.\n" - ] + "data": { + "application/vnd.jupyter.widget-view+json": { + "model_id": "92689fcc00274024bb4fe642a306bd65", + "version_major": 2, + "version_minor": 0 + }, + "text/plain": [ + "Validation: 0it [00:00, ?it/s]" + ] + }, + "metadata": {}, + "output_type": "display_data" }, { - "name": "stdout", + "data": { + "application/vnd.jupyter.widget-view+json": { + "model_id": "9418f02223404fc88cee89a19d19e09f", + "version_major": 2, + "version_minor": 0 + }, + "text/plain": [ + "Validation: 0it [00:00, ?it/s]" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "data": { + "application/vnd.jupyter.widget-view+json": { + "model_id": "b4b58b21acd44045bd6c5b0c71b69e70", + "version_major": 2, + "version_minor": 0 + }, + "text/plain": [ + "Validation: 0it [00:00, ?it/s]" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "name": "stderr", "output_type": "stream", "text": [ - "Epoch 2: 100%|██████████| 196/196 [00:10<00:00, 18.50it/s, v_num=4, train/reward=-4.14, train/loss=-.0728, val/reward=-4.10]\n" + "`Trainer.fit` stopped: `max_epochs=3` reached.\n" ] } ], "source": [ - "trainer.fit(lit_module)" + "trainer.fit(model)" ] }, { @@ -320,19 +358,19 @@ }, { "cell_type": "code", - "execution_count": 8, + "execution_count": 7, "metadata": {}, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ - "Tour lengths: ['4.03', '3.88', '4.21']\n" + "Tour lengths: ['3.56', '3.69', '4.36']\n" ] }, { "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAAiMAAAGdCAYAAADAAnMpAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjcuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/bCgiHAAAACXBIWXMAAA9hAAAPYQGoP6dpAABs70lEQVR4nO3deVwU9f8H8Ney3AgIooCK4i1o3qJ4lBoIaaiV5pFHaaKkHZpllmdm+vU2Mw/UrLyvPFJR8UjNAwNJDVFRFC8ORe57d35/+GNyXMBdjh0WXs/HYx8075nZfe9I7Hs/8zkUgiAIICIiIpKJkdwJEBERUeXGYoSIiIhkxWKEiIiIZMVihIiIiGTFYoSIiIhkxWKEiIiIZMVihIiIiGTFYoSIiIhkZSx3AtpQq9V4+PAhrK2toVAo5E6HiIiItCAIAlJTU1GzZk0YGRXe/mEQxcjDhw/h4uIidxpERERUDPfu3UPt2rUL3W8QxYi1tTWAZ2/GxsZG5myIiIhIGykpKXBxcRE/xwtjEMVI/q0ZGxsbFiNEREQG5mVdLNiBlYiIiGTFYoSIiIhkxWKEiIiIZMVihIiIiGTFYoSIiIhkxWKEiIiIZMVihIiIiGTFYoSIiIhkxWKEiIiIZKVzMXLq1Cn4+fmhZs2aUCgU2LNnz0vPOXnyJNq0aQMzMzM0bNgQGzZsKEaqREREVBHpXIykp6ejZcuWWLFihVbHR0dHo3fv3ujevTvCw8Px2Wef4cMPP8Thw4d1TpaIiIgqHp3XpnnjjTfwxhtvaH38qlWrUK9ePSxatAgA4ObmhjNnzmDJkiXw8fHR9eWJiIioginzPiPnzp2Dl5eXJObj44Nz584Vek52djZSUlIkDyIiIqqYyrwYiY2NhaOjoyTm6OiIlJQUZGZmFnjO3LlzYWtrKz5cXFzKOk0iIiKSSbkcTTNlyhQkJyeLj3v37smdEhEREZURnfuM6MrJyQlxcXGSWFxcHGxsbGBhYVHgOWZmZjAzMyvr1IiIiKgcKPOWEU9PTxw7dkwSO3r0KDw9Pcv6pYmIiMgA6FyMpKWlITw8HOHh4QCeDd0NDw9HTEwMgGe3WIYPHy4eP3bsWNy+fRtffvklIiMj8dNPP2H79u2YMGFC6bwDIiIiMmg6FyN///03WrdujdatWwMAJk6ciNatW2P69OkAgEePHomFCQDUq1cPBw4cwNGjR9GyZUssWrQIa9eu5bBeIiIiAgAoBEEQ5E7iZVJSUmBra4vk5GTY2NjInQ4RERFpQdvP73I5moaIiIgqDxYjREREJCsWI0RERCQrFiNEREQkKxYjREREJCsWI0RERCQrFiNEREQkKxYjREREJCsWI0RERCQrFiNEREQkKxYjREREJCsWI0RERCQrFiNEREQkK2O5EyAiIsOkUgsIiU5EfGoWalibw6OePZRGCrnTIgPEYoSIiHQWdPURZu2PwKPkLDHmbGuOGX7u8G3uLGNmZIh4m4aIiHQSdPURAjaGSQoRAIhNzkLAxjAEXX0kU2ZkqFiMEBGR1lRqAbP2R0AoYF9+bNb+CKjUBR1BVDAWI0REpLWQ6EQ8Ss6CIKiRlxyvsV8A8Cg5CyHRifpPjgwW+4wQEVUyp0+fxgcffAAjIyMYGxvDxMRE41FY/EFyNp7cSUZeagKyboXCvH4b2L02AqY16kteIz41q5BXJ9LEYoSIqJLp2rUrJk2ahICAgOI/idIEgICs26F4dDsUjoPnwrzOK+LuGtbmJU+UKg3epiEiqoTGjh2LmTNn6nyeUqlEtZY9AFWuGDO2c4ZZbXcAgALPRtV41LMvpUypMmAxQkRUySQkJGDTpk2IioqCkZH2HwPt27dHaGgoGthKz7HxeBsKIyXyZxiZ4efO+UZIJ7xNQ0RUweXm5uL8+fM4fPgwgoKCEBYWBkHQfrSLlZUVvv/+e4wbNw7Xrl1DyKlgcZ+RVVVUaf46AMCJ84xQMbEYISKqgO7evYvDhw/j8OHDCA4ORkpKSrGe580338SKFStQp04dAMCCBQsk+/3HjofvUA/OwEolohB0KY9lkpKSAltbWyQnJ8PGxkbudIiIyp3MzEycOnUKQUFBCAoKQmRkpFbn2djYICMjA3l5eZK4k5MTli9fjnfeeQcKxbMCIyYmBg0aNBCPrVKlCmJiYmBnZ1e6b4YqDG0/v9kyQkRkgARBQGRkJIKCgnD48GH8+eefyMp6+XBahUKBtm3bwtfXFz4+PmjVqhWqVq0qOWbMmDGYN2+eRnzJkiWSomXMmDEsRKhUsBghIjIQycnJOHbsmFiAxMTEaHWeo6MjfHx84OPjA29vb1SvXl3c9/fff0OlUgEA3NzcsGbNGnTp0kXjORITExEYGChum5iYYMKECSV8R0TPsBghIiqn1Go1wsLCxOLj3LlzYuFQFGNjY3Tu3Fls/WjZsmWho2YuXboEU1NTfPPNN5g8eTLMzMwKPO6nn35Cenq6uD106FDUqlWreG+M6AUsRoiIypG4uDgcOXIEQUFBOHLkCB4/fqzVefXq1ROLj+7du2vdv87CwgL//PMPmjZtWugxmZmZ+OGHHySxL774QqvnJ9IGixEiIhnl5ubi7Nmz4rDbS5cuaXWehYUFunfvDl9fX/j6+qJhw4ZiR1NdDB069KXH/Pzzz0hISBC3+/TpAzc3N51fi6gwLEaIiPQsOjpaLD6OHz+O1NRUrc5r3ry52PrRpUsXmJuX/ZTreXl5WLRokSQ2efLkMn9dqlxYjBARlbGMjAycPHlSLEBu3Lih1XlVq1aFt7c3fH190bNnT9SuXbuMM9W0a9cu3L59W9zu3LkzOnXqpPc8qGJjMUJEVMoEQUBERITY8fTUqVPIzs5+6XkKhQIeHh7w8fGBr68v2rdvD2Nj+f5MC4KA//3vf5IYW0WoLLAYISIqBU+fPkVwcLA46+n9+/e1Os/JyUns9+Hl5YVq1aqVcabaO3bsmKQPi7u7O3r37i1jRlRRsRghIioGlUqF0NBQsfXj/PnzUKvVLz3PxMQEXbt2FVs/XnnllWJ1PNWHF1tFvvjiC50W1iPSFosRIiItPXr0SDLsNjExUavzGjRoILZ+dOvWDVWqVCnjTEsuNDQUwcH/LYhXu3ZtDBkyRMaMqCJjMUJEVIicnBz89ddfYuvHP//8o9V5VlZW6NGjhzjracOGDcs405LbtWsX3n77bbGV5sUF8SZMmABTU1M5UqNKgAvlERE959atW5Jht8/POlqUFi1aiK0fnTp1KnQm0/Kqffv2GDBgAL788kvcunULjRs3Fm87Va1aFTExMbC2tpY5SzI0XCiPiEgLaWlpkmG3UVFRWp1nb2+Pnj17wsfHBz179kTNmjXLONOyIwgCbt68iSlTpqBVq1bYs2ePpP/LRx99xEKEyhSLESKqVARBwNWrVxEUFISgoCCcOXMGOTk5Lz3PyMgIHTp0ECcda9euHZRKpR4yLntPnjxBcnIyAGDQoEHIzMwU95mZmeGTTz6RKzWqJFiMEFGB1Gp1hRk5kZiYiKNHj4rDbh8+fKjVebVq1RJHvXh5ecHOzq6MM5XHzZs3xf9++vSpZN/QoUNhaWmJhIQEZGVlwdraGlWrVtVzhlTRsRghogKlpaWhV69e6Ny5M9588014enrKOgGXLlQqFS5evCh2PA0JCdFq2K2pqSleffVVsfWjWbNm5XbYbWl6vhh50bp167Bu3ToAgKurK86dO6evtKgSMYy/LASVWkBIdCLiU7NQw9ocHvXsoTSq+H8kST42Njbw9fXFtGnTMH/+fNjb26NXr17w8/ODj48PbG1tX/oc+vy9ffjwodjv4+jRoxrf8AvTuHFjsfh47bXXYGVlVSb5lWdFFSP5qlWrhqCgIDg5OekhI6psOJrGAARdfYRZ+yPwKDlLjDnbmmOGnzt8mzvLmBlVdMnJyahXr57GB7uxsTFeffVV+Pn54c033yxw6OqLv7eCoEbNqpal9nubnZ2NM2fOiK0fV65c0eq8KlWq4PXXXxcLkHr16pU4F0M3aNAgbNu2rdD95ubmOH78ODw9PfWYFVUE2n5+sxgp54KuPkLAxjDk/yNl3gmHkJuF/O+WY1+rjzZ17bV6rpL+Uxvy+Yace0nPL+lrb9iwAYcPHy7ymKZNm8LPzw9+fn7w9PREcGSC5PcWABKPr0UV924wc2qIlUPbiAWJtq0ngiAgKipKbP04ceIEMjIytHoPrVu3Fvt+eHp6cr6MF7Rr1w6hoaEF7jMyMsLu3bvRt29fPWdFFQGLkQpApRbQ5X/HJS0iD9aMRt7TRzJmRVQ0e3t7GNVpDdRpC4v6bWFkZoXcpFgkn96I9MjTsOs6DI29B+OvKd44GhFbZKtfamoqTpw4IbZ+PL96bFEcHBzQs2dP+Pr6wtvbm7cWiiAIAqpWrYqUlJQC9//0008ICAjQc1ZUUXCekQogJDpR8kcaAASVSqZsiLSTmJgIJB4Dwo8BShPYduyPnIQ7yLzxrOPj0z83IDw6FLPr/YhfLqdKWk8EQcDdGxEYMn4jXDJu4Fr4ReTm5r70NZVKJTw9PcXWjzZt2lSYkUBlLSEhodBCZMqUKSxESC9YjJRj8alZGjEh7+XLkBPJycKqChS1W8GioQcs6reF0tIWiUdXSo7JjrmC70b1hp3PeFg17YKcuFtI+XsfsqLDoEp/1j/lZd1PXVxcxBlPe/ToweGmxVRY59Vhw4Zhzpw5es6GKisWI+VYDWtzjZhdt5F4emId1FlpMHdtDYt6rTHqtcaoX127hbdKOkzRkM835NxLen5Jzt28eTOOHj1a5DH169cXO7Oa1mqG4b+EiftUaU+RdfeyxjmqrDQ83jsPmbe9YNmoI9KvHivyNczMzNCtWzex9aNp06aVYthtWStoxlkvLy+sXbuW15f0hsVIOeZRzx7OtuaITc4Sm7KrvPI6IKjx5NAyZEWHQvXkDpoPX4xhw4ayWZpKXVpaGiZNmqQRNzIygqenp9hp1c3NTfzgUqkFye+twtgE1d+eCiEvG0JuDoS8HFgaqZCakQEhLwdCbjYgCFAYm2m0/NWu1xD9+74JHx8fvPrqq7C0tNTH265UXmwZadWqFXbt2sVOvqRXLEbKMaWRAjP83BGwMQwKQCxIrJp1R/K5bchLikVuyhO8//4I/PTTCixbtgwdO3aUM2WqYFasWIEnT54AAKytreHj4wM/Pz/06tULDg4OBZ7z4u+tkXkVGJk/a7nL/579qVcjLAmWfgia1WmO7PvXYOHaCub12sCiXhtsn9QHng2qldXbq9TyRzGdvPhfq1WdOnVw4MCBSjVQgMoHjqYxAAXNM6KM+hO3dy3QOHbo0KGYN28eatWqpc8UqQJKS0vD66+/jo4dO8LPzw+vvvqqTt+Wi5ofx9vdCV3+d1zS6qdKewojC2solMZQAHCyNceZyT04uV8ZeP7f5tGGT5ETdwtKC2v8tPUP+Pd5Ve70qALh0N4K5sW5GNq42KCZuxtu3bqlcaylpSW++uorTJo0CRYWFjJkSxVBXl4elEplifoNFDWHSP4cOgAkI2ryX+35uUio9Dw/d5EgCLi39F0Iqjw4DfoO5rWb8bq/xLFjx3DmzBm8++67cHNzkzudco/FSCXwyy+/4P333y90f926dbFgwQL079+fHdGoXOLswvr14txFWfcjELfpS1i16Amzmk1hZGwCOxsrLBzUHlaWFjAzM4O5ubnk8XzM2Ni40v1tyczMRN26dZGQkIBmzZrh3XffxYABA3QqTCrT8h4sRiqBvLw8uLm5Fdgb/nldu3bFsmXL0Lp1az1lRqS9yvSHWW7nbj3B4MDz4nbSX5uRfGZzsZ/PyMhIo0AprHDRNabtsUqlsjQujU6+++47TJs2TRLTtjCpbAU4i5FK4tdff8WIESNeepxCocDIkSMxZ84cODo66iEzIipv9oY/wKdbw8Xt1EsHkXjkJ/kSKgXGxsalXuC8LJaRkYG2bdsiO7vgeZ+aN2+OAQMGaBQmLy7vka8i35pkMVJJ5OXlwd3d/aWrblpaWsLb2xtDhw5F//799ZQdEZUnL7aMpIYHIfHwjzJmVPHlFyZvv9Mfo/c90phVO19F7bRdpsXIihUrsGDBAsTGxqJly5ZYvnw5PDw8Cj1+6dKlWLlyJWJiYuDg4ID+/ftj7ty5MDfXnNSrJG+mstq4cSOGDRtW6P6lS5fC39+fnVmJKrn8PiP5o5jyUh8j93EMhLxcCKpcIC8H1qYCPu3mipzsbGRlZSH7/38+/ygoVlhcm+n8KwsTh7qwaNIZZtVdYdHYs8D+NltGd6xQw9nLrBjZtm0bhg8fjlWrVqFDhw5YunQpduzYgevXr6NGjRoax2/evBkjR47E+vXr0alTJ9y4cQPvv/8+Bg0ahMWLF5fqm6ms8vLy0KxZM9y4caPA/XXq1MGZM2fg4uKi58yIqLzR9ygmtVpd4oKmJEVRZmYm1Gp1qb2fklKYWUHITofStgasW/WCVbPuMLb+r/hYNqgV+raqOFMzlFkx0qFDB7Rv3x4//visaU+tVsPFxQUff/wxvvrqK43jx48fj2vXruHYsf+mev78889x4cIFnDlzplTfTGW2adMmDB06tND9jRs3xunTpwssGImocqlsnSjz8vJKpZUnP56WloZNmzZp9drm5ubo2rUrGrfphN1x9ki9fARpYQfE/fY+42HdylfcrqwtIzrNwJqTk4PQ0FBMmTJFjBkZGcHLywvnzp0r8JxOnTph48aNCAkJgYeHB27fvo2DBw8WeVshOztb0jGosBUl6T+DBg3C7Nmzcf36dSgUCqxduxYBAQHIyckBANy4cQM9e/bEiRMnYGdnJ3O2RCQn3+bO8HZ3qjSjmIyNjVGlShVUqaLdGl4vExgYWGgxolAo0LZtW3h5ecHLywudO3eGubk5VGoBF+ccxt/b/huFozA2hZVb12f/jWd9Rjzq2ZdKjoZGp2Lk8ePHUKlUGqMxHB0dERkZWeA5Q4YMwePHj9GlSxcIgoC8vDyMHTsWX3/9daGvM3fuXMyaNUuX1Co9pVKJ6dOn47333kP37t0xcuRI2NnZYcCAAVCpVACAf/75B7169cLRo0dL7X9KIjJMSiNFhfoGri8ZGRmYMWOGJFa/fn14eXnB29sb3bt3R7VqmtdVaaRAT5uHCMn878u1RaOOMDKzEm+RzfBzr7AF4cuU+cpqJ0+exPfff4+ffvoJYWFh2L17Nw4cOIDZs2cXes6UKVOQnJwsPu7du1fWaVYIAwcORNOmTTF8+HAAwFtvvYUNGzZIjjl//jz69u2LrKyCe3QTEVHhli1bhuzsbAwYMACrV6/GrVu3cOvWLaxevRr9+/cvsBDJd+XEPsl2lWY9ADxrEamIw3p1oVOfkZycHFhaWmLnzp3o16+fGB8xYgSSkpKwd+9ejXO6du2Kjh07YsGC/9ZR2bhxI/z9/ZGWlqbVSrPsM6K9vXv3okePHrC2thZjK1euxEcffSQ5zs/PD7t27YKJiYm+UyQiMlg3b95EgwYNdF4lPSEhATVr1kReXh4AoFr1GlhzMATOdlUq9C0ybT+/dbqapqamaNu2raQzqlqtxrFjx+Dp6VngORkZGRr/aPkz5hnAFCcGp2/fvpJCBAACAgLwv//9TxLbv38/RowYId7CISKil2vUqJHOhQgAbNmyRSxEAOCDEcPxdru68GxQrcIWIrrQqc8IAEycOBEjRoxAu3bt4OHhgaVLlyI9PR0ffPABAGD48OGoVasW5s6dC+DZN/DFixejdevW6NChA6KiojBt2jT4+fnJMo1vZfXll18iJSUFc+bMEWNbtmxBlSpVsHr16kq3vgQRkT798ssvkm1tZs6uTHQuRgYOHIiEhARMnz4dsbGxaNWqFYKCgsROrTExMZKqcerUqVAoFJg6dSoePHiA6tWrw8/PT/KhSPoxe/ZspKSkYPny5WIsMDAQNjY2WLBgAQsSIqIycPXqVYSFhYnbbdq0QfPmzWXMqPzhdPCVjFqtxsiRIzWq9G+//VZj4SciIiq5L774AgsXLhS3ly1bhk8++UTGjPSnTPqMkOEzMjLC2rVr8c4770ji06dPx9KlS+VJioiogsrLy8PGjRvFbWNjYwwePFjGjMonFiOVkLGxMTZt2gRfX19JfMKECVi3bp1MWRERVTzBwcGIjY0Vt3v37o3q1avLmFH5xGKkkjIzM8OuXbvQtWtXSXz06NHYtm2bTFkREVUs7LiqHRYjlZilpSX++OMPtGvXTowJgoChQ4fiwIEDRZxJREQvk5ycjD179ojb9vb26N27t3wJlWMsRio5GxsbBAUFwd3dXYzl5eWhf//+OHnypHyJEREZuO3bt0tmux48eDBMTU1lzKj8YjFCqFatGo4ePYr69euLsaysLPj5+SEkJETGzIiIDBdv0WiPxQgBAGrWrIng4GDUqlVLjKWlpcHX1xdXrlyRMTMiIsMTFRWFv/76S9x2c3OT3BInKRYjJKpXrx6Cg4Ph4OAgxp4+fQpvb2/cvHlTxsyIiAzLr7/+KtkeMWIEJ5YsAosRkmjatCmOHDkCW1tbMRYXFwcvLy/ExMTImBkRkWFQq9WSYsTIyAhDhw6VMaPyj8UIaWjdujUOHjwIS0tLMRYTEwMvLy/ExcXJmBkRUfl36tQp3L17V9z28vKS3AInTSxGqECdOnXC3r17JT2/b968iZ49e+Lp06cyZkZEVL6x46ruWIxQoby8vLBt2zbJ6sqXL1/GG2+8gdTUVBkzIyIqn9LT07Fz505x29raGv369ZMvIQPBYoSK1K9fP2zYsEHS8erChQvo27evZPw8EVFl9O+//+LGjRvi9u+//460tDRx+91335Xc8qaCsRihlxo6dCh++uknSezEiRMYMGAAcnNzZcqKiEh+t27dgre3N+7duweAt2iKi8UIaWXs2LGYP3++JPbHH39g+PDhUKlUMmVFRCSvpKQkxMTEwNvbG2FhYTh27Ji4r169eujSpYuM2RkOFiOktS+++AJTp06VxLZu3YqxY8dCEASZsiIikk9SUhIA4Pr16+jSpYvkb+Hw4cM5t4iWWIyQTr799lt8/PHHktjatWsxadIkFiREVOnkFyMAkJmZKdl39+5djBo1Cj4+PnjzzTeRkZGh5+wMh7HcCZBhUSgUWLp0KVJTU7FhwwYxvnjxYtja2mL69OnyJUdEpGdFTXWQ/zfSxMQEf/31FzuyFoEtI6QzIyMjBAYGon///pL4jBkzsGTJEpmyIiLSv+dbRgqzaNEitG/fvuyTMWAsRqhYjI2NsWnTJvj6+kriEydOxNq1a2XKiohIv15WjPTv3x/jx4/XTzIGjMUIFZupqSl27dqFV199VRL39/fHtm3bZMqKiEh/iipGGjRogLVr17ITqxZYjFCJWFpaYv/+/ZKlsQVBwNChQ3HgwAEZMyMiKnuF9RkxNTXF9u3bJYuOUuFYjFCJ2djYICgoCM2aNRNjeXl5eOedd3DixAkZMyMiKluFtYwsXboUbdq00W8yBozFCJWKatWq4ejRo2jQoIEYy87ORp8+fXDhwgUZMyMiKjsFFSMDBw7E2LFj9Z+MAWMxQqXG2dkZwcHBkqWy09LS8MYbb+Dy5csyZkZEVPrUajVSUlIkscaNGyMwMJD9RHTEYoRKlaurK4KDg1G9enUx9vTpU/Ts2VOymBQRkaFLTk6WTPZobm6OHTt2wNraWsasDBOLESp1TZs2xZEjRyQdt+Li4uDl5YWYmBgZMyMiKj0v3qJZvnw5WrRoIU8yBo7FCJWJVq1a4dChQ7CyshJj9+7dw+uvv47Y2FgZMyMiKjmVWsCfV+6I2++9NxSjRo2SLyEDx2KEyoynpyf27t0LU1NTMRYVFYWePXsiMTFRxsyIiIov6OojdPnfcXy15TwAwNi+Nm40HIjD//KLVnGxGKEy9frrr2P79u1QKpVi7MqVK+jVqxdSU1NlzIyISHdBVx8hYGMYHiVnQZ2VBoWxGar3+woJWQoEbAxD0NVHcqdokFiMUJnr27cvfvnlF0nv8gsXLqBv374aq1wSEZVXKrWAWfsjkH7jLOK2ToUqIwn2PT+CaXVX5HdjnbU/Aio1VzDXFYsR0ov33nsPK1eulMROnDiBAQMGIDc3V6asiIi098fZq/jn56lI+P17ZN0NR27iQ1R55XVxvwDgUXIWQqJ5G1pXLEZIb8aMGYMFCxZIYgcOHMCwYcOgUqlkyoqIqGgqlQorVqzAYN9OyLx5XoynXvoDuU/uaRwfn5qlz/QqBBYjpFeTJk3CtGnTJLFt27ZhzJgxkvH6RETlwZUrV9ClSxeMHz8emelpkn0m1VwgqDW/SNWwNtdXehWGsdwJUOUza9YspKSkYNmyZWJs3bp1sLGxwaJFizhzIRHJLjMzE9999x3mz5+PvLw8yT6FsRlsuwyBTbu+UCj/+xhVAHCyNYdHPXs9Z2v4WIyQ3ikUCixevBgpKSn4+eefxfiSJUtga2uLGTNmyJgdEVV2x48fx5gxYxAVFaWxr02n1xD3yjCYVHXC8225+V+hZvi5Q2nEL1S64m0akoWRkRECAwMxYMAASXzmzJlYvHixTFkRUWX25MkTfPDBB3j99dc1ChEHBwds3LgRf585gbXje8HJVnorxsnWHCuHtoFvc2d9plxhKAQDuFGfkpICW1tbJCcnw8bGRu50qBTl5OSgX79+OHTokCS+Zs0ajB49WqasiKgyEQQBmzdvxmeffYbHjx9r7H///fexcOFCVKtWTYyp1AJCohMRn5qFGtbPbs2wRUSTtp/fLEZIdpmZmXjjjTfw559/ijGFQoHNmzdj0KBBMmZGRBXd7du3ERAQgCNHjmjsa9iwIVavXo0ePXrIkFnFoO3nN2/TkOwsLCywb98+tG/fXowJgoBhw4Zh//79MmZGRBVVXl4eFixYgObNm2sUIsbGxvj6669x+fJlFiJ6wmKEygUbGxscOnQIzZs3F2N5eXkYMGAAjh8/LmNmRFTR/P3332jfvj2+/PJLjVmgO3bsiLCwMMyZMwcWFhYyZVj5sBihcqNatWo4cuQIGjRoIMays7PRp08fnD9/vogziYheLi0tDRMmTECHDh0QHh4u2WdtbY0ff/wRZ86cwSuvvCJPgpUYixEqV5ydnREcHIzatWuLsfT0dLzxxhu4fPmyjJkRkSE7cOAAmjVrhqVLl0KtVkv29evXDxERERg3bpxkUU/SHxYjVO64uroiODgY1atXF2NJSUnw9vbGjRs3ZMyMiAxNbGwsBg4ciDfffBMxMTGSfTVr1sTu3bvx+++/S74Akf6xGKFyqUmTJjh69CiqVq0qxuLj4+Hl5YW7d+/KlxgRGQS1Wo3AwEC4ublh+/btkn0KhQIfffQRIiIi8NZbb8mUIT2PxQiVWy1btsTBgwdhZWUlxu7duwcvLy/ExsbKmBkRlWeRkZHo1q0b/P39kZSUJNnXrFkznDlzBitWrICtra08CZIGFiNUrnl6emLv3r0wMzMTY1FRUfD29kZiIpfpJqL/ZGdnY9asWWjZsiVOnz4t2WdmZobvvvsOYWFh6NSpk0wZUmFYjFC59/rrr2P79u2SjmVXr17FG2+8gdTUVBkzI6Ly4vTp02jVqhVmzpyJnJwcyb5u3brh8uXL+Oabb2BqaipThlQUFiNkEPr06YNff/1VsqJvSEgI+vTpozFPABFVHklJSRgzZgxeffVVREZGSvbZ2dlh/fr1OH78OBo3bixThqQNFiNkMIYMGYJVq1ZJYidPnsSAAQM0vgkRUcUmCAJ27NgBNzc3rFmzRmP/kCFDEBkZiQ8++EDyJYbKJxYjZFD8/f2xcOFCSezAgQMYNmwYVCqVTFkRkT7FxMSgT58+ePfddzU6s7u6uuLQoUPYtGkTatSoIVOGpCsWI2RwPv/8c0yfPl0S2759O/z9/TUmMyKiikOlUmHZsmVwd3fHH3/8IdmnVCoxadIkXL16Fb6+vjJlSMVlLHcCRMUxc+ZMpKSkYOnSpWJs/fr1sLa2xpIlS9gsS1TBhIeHw9/fHxcvXtTY17ZtWwQGBqJ169YyZEalgS0jZJAUCgUWL16MUaNGSeLLli3DzJkz5UmKiEpdRkYGJk+ejHbt2mkUIpaWlli8eDHOnz/PQsTAsWWEDJZCocDq1auRmpoqmWHx22+/hY2NDT7//HMZsyOikjpy5AjGjh2L6OhojX1vvPEGVq5cibp168qQGZU2toyQQVMqlfjtt9/Qq1cvSXzSpEkF9rAnovIvISEBw4YNg4+Pj0YhUqNGDWzduhUHDhxgIVKBFKsYWbFiBVxdXWFubo4OHTogJCSkyOOTkpIwbtw4ODs7w8zMDI0bN8bBgweLlTDRi0xNTbFz50689tprkvjYsWOxZcsWmbIiIl0JgoBffvkFbm5u2Lhxo8b+Dz/8EJGRkRg4cCD7hVUwOhcj27Ztw8SJEzFjxgyEhYWhZcuW8PHxQXx8fIHH5+TkwNvbG3fu3MHOnTtx/fp1BAYGolatWiVOniifhYUF9u/fDw8PDzEmCAKGDRuGffv2yZgZEWkjKioKXl5eeP/99/HkyRPJviZNmuDkyZMIDAyEnZ2dTBlSmRJ05OHhIYwbN07cVqlUQs2aNYW5c+cWePzKlSuF+vXrCzk5Obq+lCg5OVkAICQnJxf7OahyePLkidC8eXMBgPgwMzMTgoOD5U6NiAqQk5MjfP/994K5ubnk/1sAgomJiTB9+nQhMzNT7jSpmLT9/NapZSQnJwehoaHw8vISY0ZGRvDy8sK5c+cKPGffvn3w9PTEuHHj4OjoiObNm+P7778vcoKq7OxspKSkSB5E2rC3t8fRo0fRsGFDMZadnY2+ffsW+jtKRPI4f/482rZti6+//hpZWVmSfZ07d0Z4eDhmzZoFc3NzmTIkfdGpGHn8+DFUKhUcHR0lcUdHx0KXdL99+zZ27twJlUqFgwcPYtq0aVi0aBG+++67Ql9n7ty5sLW1FR8uLi66pEmVnJOTE4KDgyW/N+np6ejVqxf++ecfGTMjIgBISUnBxx9/jE6dOuHKlSuSfba2tli1ahVOnToFd3d3mTIkfSvz0TRqtRo1atTAmjVr0LZtWwwcOBDffPONxhojz5syZQqSk5PFx71798o6Tapg6tati+DgYMl00ElJSejZsyeuX78uY2ZEldvevXvh7u6OH3/8EYIgSPb1798f165dw5gxY2BkxMGelYlO/9oODg5QKpWIi4uTxOPi4uDk5FTgOc7OzmjcuLFk+Xc3NzfExsYWuriZmZkZbGxsJA8iXTVu3BhHjhxB1apVxVh8fDy8vLxw9+5d+RIjqoQePnyId955B/369cODBw8k+2rXro29e/dix44dcHZ2lilDkpNOxYipqSnatm2LY8eOiTG1Wo1jx47B09OzwHM6d+6MqKgoyZohN27cgLOzM0xNTYuZNpF2WrZsiUOHDsHKykqM3b9/H6+//joePXokY2ZElYNarcbKlSvh5uaG3bt3S/YpFAp88skniIiIQJ8+fWTKkMoDndvBJk6ciMDAQPzyyy+4du0aAgICkJ6ejg8++AAAMHz4cEyZMkU8PiAgAImJifj0009x48YNHDhwAN9//z3GjRtXeu+CqAgdO3bEvn37YGZmJsZu3bqFnj17agwhJKLS8++//6Jr16746KOPNAYitGjRAufPn8eyZctgbW0tU4ZUbhRnqM7y5cuFOnXqCKampoKHh4dw/vx5cd9rr70mjBgxQnL82bNnhQ4dOghmZmZC/fr1hTlz5gh5eXlavx6H9lJp2Ldvn2BsbCwZOti+fXshJSVF7tSIKpTMzExh6tSpgomJicZwXXNzc2HevHklmu6BDIe2n98KQXihB1E5lJKSAltbWyQnJ7P/CJXI1q1bMWTIEEnHuddeew2HDh2ChYWFjJkRVQwnT56Ev78/bt68qbHPy8sLq1atQoMGDWTIjOSg7ec3uytTpTJo0CCsXr1aEvvzzz/Rv3//QjtUE9HLJSYmYtSoUejevbtGIVKtWjX8+uuvOHLkCAsRKhCLEap0Ro8ejUWLFkliBw8exNChQ4ucjI+INAmCgC1btsDNzQ3r16/X2D98+HBERkZi2LBhXE+GCsVihCql/PWVnrdjxw6MHj1aMvKLiAp3584d9OrVC0OGDNFYn6x+/fo4evQofvnlFzg4OMiUIRkKFiNUac2YMQMTJkyQxH7++WdMmDBBYzImIvpPXl4eFi1ahGbNmiEoKEiyT6lU4quvvsKVK1ckS4cQFcVY7gSI5KJQKLBo0SKkpqZi7dq1YvyHH36Ara0tvv32WxmzIyqfQkND4e/vj7CwMI19Hh4eCAwMRIsWLWTIjAwZW0aoUlMoFFi1ahUGDhwoic+ePRsLFy6UKSui8ic9PR2ff/45PDw8NAqRKlWq4IcffsDZs2dZiFCxsGWEKj2lUolff/0VaWlpOHDggBj/4osvYGNjA39/fxmzI5LfoUOHEBAQUOAyCn369MGPP/7IBU2pRNgyQoRnSx3s2LED3bp1k8THjh2LzZs3y5MUkczi4uIwePBg9OrVS6MQcXZ2xs6dO7Fnzx4WIlRiLEaI/p+FhQX27dsHDw8PMSYIAoYPH469e/fKmBmRfgmCgHXr1qFp06bYunWrxv6xY8ciIiIC77zzDofrUqlgMUL0HGtraxw6dAivvPKKGFOpVHj33XcRHBwsY2ZE+nH9+nV0794dH374IZKSkiT73NzccObMGaxcuVKyGjZRSbEYIXqBvb09jhw5gkaNGomxnJwc9O3bF+fOnZMxM6Kyk5OTg9mzZ6NFixb4888/JftMTU3x7bff4tKlS+jcubNMGVJFxmKEqABOTk4IDg6W3AvPyMhAr169EB4eLl9iRGXgr7/+QuvWrTF9+nSNZRFeffVVXL58GdOmTZOsfE1UmliMEBWiTp06CA4ORo0aNcRYUlISevbsievXr8uYGVHpSE5ORkBAALp06YKIiAjJvqpVq2Lt2rU4ceIEmjRpIlOGVFmwGCEqQuPGjXH06FHJ/fGEhAR4eXnhzp07suVFVBKCIGDXrl1wc3PDqlWrNPYPGjQIkZGRGDVqFIyM+DFBZY+/ZUQv0aJFCwQFBcHKykqM3b9/H15eXnj06JGMmREVLCUlpdAlDe7du4d+/fqhf//+Gr+/devWxYEDB7BlyxY4OjrqI1UiACxGiLTSoUMH7N+/X3LP/NatW/D29saTJ09kzIxIKjc3F++88w5SU1MlcZVKheXLl8Pd3R379u2T7DMyMsLEiRNx9epV9OrVS5/pEgFgMUKkte7du2Pnzp0wNv5v4uJ///0Xvr6+SElJkTEzomcEQcDYsWMRHByMhw8fivHLly+jU6dO+OSTT5CWliY5p3Xr1ggJCcGiRYtQpUoVfadMBIDFCJFO3nzzTWzcuFEy0dPff/8NPz8/ZGRkyJgZEfD9999j/fr1AICHDx8iMzMTU6ZMQdu2bRESEiI51tLSEgsXLkRISAjatm0rR7pEIhYjRDoaOHAg1qxZI4mdOnUK/fv31xgWSaQvmzZtwtSpU8XtHTt24JVXXsG8efOQl5cnOdbX1xdXr17F559/LmnpI5KLQiisl1M5kpKSAltbWyQnJ8PGxkbudIgAAEuWLMHEiRMlsf79+2PLli38A0969eeff8Lb2xu5ublFHle9enUsW7YMgwYN4jTupBfafn6zZYSomCZMmICZM2dKYjt37sTo0aOhVqvlSYoqnWvXrqFfv34vLURGjhyJyMhIDB48mIUIlTssRohKYPr06RqtIxs2bMCECRMKHVpJVFri4uLQq1cvjTVkntewYUMcP34c69atg729vf6SI9IBixGiElAoFFi4cCE+/PBDSfyHH37A9OnTZcqKKoOMjAz4+fm9dPK9lJQU3Lt3j8UxlWssRohKSKFQYNWqVRg0aJAk/t1332HBggUyZUUVmUqlwnvvvYeLFy++9Nj4+HiMGDFCXGOGqDxiLzuiUqBUKvHrr78iLS0Nf/zxhxj/8ssvYWNjgzFjxsiYHRkqlVpASHQi4lOzUMPaHB717KE0UuDzzz/Hnj17tHoOhUKB9u3bo3v37sjMzCzbhImKicUIUSkxMTHB9u3b0bt3b5w4cUKMBwQEoEqVKnjvvfdkzI4MTdDVR5i1PwKPkrPEmLOtOVomn8XqZcuKPNfR0RG+vr7w8fGBt7c3HBwcyjpdohLh0F6iUpaamgpvb29cuHBBjCmVSuzatQt9+/aVMTMyFEFXHyFgYxhe/OOcefM84nfPAV7YY2Jigs6dO4sFSIsWLbjAHZUL2n5+sxghKgOJiYno3r275B69qakpDhw4AC8vLxkzo/JOpRbQ5X/HJS0imdFhyLp3FSkXfgfUz4bw1qtXD2+88QZ8fHzQvXt3WFtby5UyUaG0/fzmbRqiMmBvb48jR46ga9euuHnzJgAgJycHffv2xdGjR9GpUyeZM6TyKiQ6UVKIAEDK3/uQdfvv5yIKpGZkIjw8HE+fPsX58+dRt25duLq6om7duqhbty4sLCz0mzhRCbAYISojjo6OCA4ORteuXRETEwPg2XDMXr164cSJE2jdurXMGVJ5FJ+apRFTpSW+EBHwOC4Wj+Nicfbs2QKfp0aNGpLiJP+/83+yJYXKExYjRGWoTp06YkESFxcHAEhOToaPjw9OnTqFpk2bypwhlTc1rM01Yqr0F4uRl4uPj0d8fLzGAnn57O3tNVpTni9YqlatyplaSW/YZ4QkChtKSAVTqVQAnnVQLcrly5fRrVs3PH36VIzVqlULZ86cgaura1mmSAYmv89IbHKW2E01695V5CXHIS85HqrkeBhlPEYNRSru3r370mngi8va2lqjNeX5/65evTqLFXopdmAlnRU2lHCGnzt8mzvLmFn5pVar0bNnT9SvXx9vvfUWevToATMzswKPvXDhAry8vJCWlibG6tevj9OnT6NmzZr6SpkMQP5oGkA6bib/o3/l0Dbwbe4MtVqN2NhY3LlzB3fv3i3wZ1aW5m2f0mBhYVHg7Z/8/3ZycuKIHmIxQropbCjhi3/8SNPmzZvFOURsbGzQu3dvvP322/D19UWVKlUkx548eRJvvPGG5APC3d0dCzf8jhwTK7ZGkag0vhwIgoCEhIRCC5U7d+5IiuPSZGpqijp16hTaslKrVi2ubl0JsBghrRU0lDDl733Iib8NhZExFEZKWJmbYlBHV5iZmsLY2Fh8mJiYFLmtzTG6bpe3puG8vDw0adIEt2/flsTNzMzQs2dPvP322/Dz80O1atUAAAcOHEC/fv2Ql5cnHmvq1BCOg76HkZklW6NIVNa3TQVBwNOnTwssVvL/+/lbi6VJqVSidu3aGi0r+T9dXFxgampaJq8NAIsWLULr1q3RvXv3cvc3pSJhMUJaO3frCQYHnpfE4nd9i8yogju+yU2pVJZpsVOccw4dOoTdu3cXmfNrr72Gt956C/369cPZs2cxePBgqNVq8Riz2s1Q491ZUJo868DI1igqD1JSUiTFyYs/ExISyuR1FQoFatasWWCh4urqijp16pRo+PLatWsxevRotGjRAp999hkGDx4Mc3PNzsNUMixGSGt7wx/g063hAICcxzHIuh36bJKlO5fkTawCa+/hgah0Uzz994wkXrXrMNh2GggFACdbc5yZ3IO3bKhcy8jIQExMTKH9Vh4+fFhmr/388OWC+q4UNXw5KSkJjo6OyMnJEZ8rICAAAQEBcHR0LLOcKxsWI6S1Hccuwn/WcqRHnkZuwh1Uf+sbpF46yGJEzyybdoHDm5OgUP53H33L6I7wbFBNxqyISiY7Oxv37t0rtGXl/v37khbC0vTi8OUXf44aNQq///675BxTU1MMGTIEn332GVq2bFnoc3PkoXZYjFCRYmJisH37dmzduhWhoaFi3KbDO7Dr9gFUmakQ8rIBtRpQq+BgqcQvH7SDoFYhLy8Pubm5yMvLEx8v2y7OOWW1nT8cV27GVZ1gUb8tVFlpUChNUM33YyiMpEOElw1qhb6tasmUIVHZy83NxYMHDwrttxITE1Nmw5eNjIyKLIS6d++Ozz77DL1795YM3+fIQ+2xGCENjx49wo4dO7Bt27YCZ200c2kOp0FzgOc+ECviaBpBEKBSqUq1YPr5559x6NChIl/XwsIC3bt3h6+vLxzdO+DLowliPgAK7ETHlhGq7FQqVZHDl+/evVtmw5fzNWjQAJ9++inef/99/HU3jSMPdcBihAAAjx8/xq5du7Bt2zacPHkShf1zOzs7Y+HmQ1h+7jGrfR0lJSWhfv36BY46cHNzg6+vL3x9ffHqq6+KHeQKmtjqeewzQqQdQRAQHx9f6G2gu3fvltrwZVtbW1i+0hNGzX1hbPusX0lqeBCgzoNVs+5Qmlnx/9sXsBipxJKSkrBnzx5s3boVwcHBL70toVQqcfLkSXTp0oX3QYth+vTpmD17NoBns1Z6eXmJS7nXrVu30PO0ndiKiIpPEAQkJiZqjAi6ffs29u/fX7wnVRjBslFHWLfrg8f75kOVlgiFsRks3brCutUb2DV9ODo1dCjdN2KgWIxUQoIgYNasWZg7d67YQ1wbixcvxoQJE8ows4rr8ePHePvtt9G5c2f4+vrC09NTp7kReO+ZSB7Lly/HJ598ovXxdevWRfU6DXEjpypMHOrCtHpd5CQ+wJN98zWOdW3khi8+G4/33nsPtra2pZm2wWExUkmp1Wps374d06ZNQ1RU1EuP79+/P7Zv385Jf4pJEIQSXzu2RhHp161bt9CiRQtkZGRo7HNyckLz5s3FR7NmzeDu7g4bGxuNOZkSg9cgNXRfoa9jaWmJQYMGYcyYMWjfvn2l/DvLYqSSy8rKQrdu3XDhwoVCj2nSpAlCQkJ4TYmo0lCr1ejRoweuXLkiKTjyf+bPlFyQgvp6ZcdGIe2fIKRH/AkhJ7PQc1u2bIkxY8ZgyJAhL20tSUtLg4WFxUsX4DQELEYqsbt372Lo0KE4c+ZMocdYWloiJCQEzZo102NmRETyysrKwtOnT+Hk5FSslorC+noJ2RlIv3YK9vdP4+a//xR6vqWlJQYPHgx/f/9CW0siIiLw+eefY/PmzbCzs9M5x/JE289vLqlYwWzduhUtW7YsshABgMDAQBYiRFTpmJubw9nZudi3THybO2Pl0DZwspVOHV+zhj02LvwaN66GIzQ0FGPGjNFYKBN4NmPtunXr0KFDB7Rp0wYrV65ESkqK5Jjq1asjKCgI7dq1w5UrV4qVp6Fhy0gFkZqaio8//hi//PKLxr727dvj4sWL4vb48eOxfPlyfaZHRFShaNPXKzU1FVu2bMGaNWskk0u+yMrKSmwtadeuHdRqNUxNTaFWq2FpaYmff/4Z7777blm/pTLB2zSVyIULF/Dee+/h1q1bkriVlRWWL1+ON998EzVq1AAAdOjQAadOnSrT1TCJiEgqNDQUa9aswebNm4uc96R169bw9/fHlClTkJSUJMa/+OILfP/99zA2Ni703PKIxUgloFKpMG/ePMyYMUNjLpH27dtj06ZNaNSoEQDAwcEBCoUCYWFhcHFxkSNdIqJKL7+1ZPXq1QgLC9PpXC8vL2zdurXITrblDfuMVHD37t1Djx49MHXqVEkholAoMGXKFPz1119iIQIAzZs3x5YtW1iIEBHJyNraGv7+/ggNDcXff/+N0aNHw8rKSqtzg4OD0a5dO4SHh5dtkjJgy4gB2rFjB/z9/SVNeABQu3Zt/Pbbb+jWrZvGOREREXB3d9dPgkREpLXU1FRs3rwZq1evxqVLL18t3cLCAmvXrsWQIUP0kF3JsGWkAkpLS8PIkSPx7rvvahQi/fv3xz///FNgIQKAhQgRUTllbW2NMWPGIDQ0FAMHDnzp8ZmZmXjvvfcwceJE5OXliXGVWsC5W0+wN/wBzt16ApW63Lc1iAyrJ0wldvHiRQwZMkRjVlUrKyv88MMP+OCDDyrl7H5ERBVBXl4exo4di23btml9zpIlS3Dp0iVs374doXF5Br20BG/TlHMqlQrz58/H9OnTJRUwALRr1w6bN2+W9A0hIiLDkpaWhoEDB+LgwYPFOr+6U00Y+3wJU6eGknh5WHSTo2kqgHv37mHYsGH4888/JXGFQoHJkydj1qxZHKJLRGTgsrOzcf/+fcTFxb30kZqaWvCTKE1g12M0bNr0koQVAJxszXFmcg9Z1rzS9vO7WLdpVqxYgQULFiA2NhYtW7bE8uXL4eHh8dLztm7disGDB6Nv377Ys2dPcV660ti5cyf8/f3x9OlTSbxWrVr47bff0L17d5kyIyKi0mRmZoYGDRqgQYMGLz02IyMD8fHxYnFy9sotrDochrzEh3h6bA2y7oajut8XUBibAHg2Zf2j5CyERCfCs0H5HRKscwfWbdu2YeLEiZgxYwbCwsLQsmVL+Pj4ID4+vsjz7ty5g0mTJqFr167FTrYySEtLw6hRozBgwACNQuTtt9/G5cuXWYgQEVVSlpaWcHV1RYcOHdCnTx949n4Xtp4DocpIBtR5yLxxFo82fIqc+GjJefGpWYU8Y/mgczGyePFijB49Gh988AHc3d2xatUqWFpaYv369YWeo1Kp8N5772HWrFmoX79+iRKuyP7++2+0adNG41paWloiMDAQO3fuhL29vUzZERFReVPD2hzp/x5HVvR/083npcTDyMxS47jyTKdiJCcnB6GhofDy8vrvCYyM4OXlhXPnzhV63rfffosaNWpg1KhRWr1OdnY2UlJSJI+KLH8mVU9PT9y8eVOyr02bNggLC8OHH37I0TJERCRR1zIXScfXSmJVXxsBY1tHAM/6jDjbPls7pzzTqRh5/PgxVCoVHB0dJXFHR0fExsYWeM6ZM2ewbt06BAYGav06c+fOha2trfioyLOG3r9/H15eXpgyZYpktIxCocCXX36Jc+fOoUmTJjJmSERE5dWnn3wMVeZ/nVrNarnDuk1vAP+Nppnh5y5L51VdlOmkZ6mpqRg2bBgCAwPh4OCg9XlTpkxBcnKy+Lh3714ZZimfXbt2oUWLFjh58qQkXrNmTQQHB+N///sfR8sQEVGBdu/ejZ07d4rbCmMTVHvjEygUzz7anWzNZR3WqwudRtM4ODhAqVQiLi5OEo+Li4OTk5PG8bdu3cKdO3fg5+cnxtRq9bMXNjbG9evXC+w9bGZmBjMzM11SMyjp6en47LPPsHbtWo19b731FgIDAw1qISQiItKvp0+f4qOPPpLEZs+aiR4D+yM+NQs1rJ/dminvLSL5dCpGTE1N0bZtWxw7dgz9+vUD8Ky4OHbsGMaPH69xfNOmTXHlyhVJbOrUqUhNTcWyZcsq9O2XwoSGhmLIkCG4ceOGJG5hYYGlS5di9OjR7BtCRERFmjhxoqRhoHXr1vjyiy9gYmIiY1bFp/M8IxMnTsSIESPQrl07eHh4YOnSpUhPT8cHH3wAABg+fDhq1aqFuXPnwtzcHM2bN5ecX7VqVQDQiFd0arUaCxcuxNSpU5GbmyvZ17p1a2zevBlNmzaVKTsiIjIUhw8fxoYNG8RtpVKJdevWGWwhAhSjGBk4cCASEhIwffp0xMbGolWrVggKChI7tcbExMDIiOvvPe/BgwcYPnw4jh8/rrFv0qRJ+O677yr0bSkiIiodqamp8Pf3l8QmT56M1q1by5RR6eB08GXs999/x4cffojExERJ3NnZGb/++qtkmDQREVFRPv74Y/z444/idtOmTXHp0iWYm5fPeUS0/fxmE0YZSU9Ph7+/P95++22NQqRv3764fPkyCxEiItLamTNnsGLFCnFboVBg3bp15bYQ0UWx1qahooWFhWHIkCG4fv26JG5hYYElS5bA39+fnVSJiEhrWVlZ+PDDD/H8zYyPP/4YnTp1kjGr0sOWkVKkVquxYMECdOzYUaMQadWqFUJDQzFmzBgWIkREpJNZs2ZJPldcXV0xZ84cGTMqXSxGSsmDBw/Qs2dPfPnllxqjZT7//HOcP38ebm5uMmVHRESGKiwsDAsWLJDE1qxZgypVqsiUUenjbZpSsGfPHowaNarATqq//PILvL29ZcqMiIgMWW5uLkaNGgWVSiXGRo4cWeE+V9gyUgLp6ekYM2YM3nrrLY1CpE+fPrh8+XKF+4UhIiL9mT9/PsLDw8VtJycnLFy4UL6EyghbRorp0qVLGDx4cIGdVBcvXsy+IUREVCLXrl3Dt99+K4mtXLkSdnZ2MmVUdliMaEGlFhASnYj41Cw4WJni7N5f8M3XX2v0DWnZsiW2bNnCviFERFQiKpUKo0aNQk5Ojhh79913xaVYKhoWIy8RdPURZu2PwKPkLOSlJeLJgSXIunNJ47gJEyZg7ty5nEmViIhKbMWKFTh37py4bW9vjx9++EHGjMoWi5EiBF19hICNYRAAZNy8gCeHlkGdmSI5xsnJCb/88gt69uwpT5JERFShREdHY8qUKZLYsmXLxGVXKiIWI4VQqQXM2h8BAYAq/Ske75sPIS9bckzVph1x6eReODnWkCdJIiKqUARBgL+/PzIyMsRYr1698N5778mYVdnjaJpChEQn4lFyFgBAaWWHqt3eF/cpjE1h7x0Amz7fIDpNKVOGRERU0fz8888IDg4Wt62trbFq1aoKPyCCLSOFiE/NkmxbNOyAtPAgQKGAg98XMK1et8DjiIiIiuPhw4eYOHGiJDZ//ny4uLjIlJH+sGWkEDWspQsPGds4IPfpI9h2GiwWIgUdR0REpCtBEPDRRx8hOTlZjL366qvw9/eXMSv9YTFSCI969nC2NUd+w5hCYQRj2xp4cmAxsh/dgAKAs605POrZy5kmERFVADt27MDevXvFbXNzc6xduxZGRpXjY7pyvMtiUBopMMPPHQDEgsS4qiOEvGzE7/wWuUmxmOHnDqVRxb6PR0REZevx48cYP368JDZ79mw0atRIpoz0j8VIEXybO2Pl0DZwsn12K8akqjMAQJ2RBKMj89ChFm/REBFRyUyYMAEJCQnidrt27fDZZ5/Jl5AMWIy8hG9zZ5yZ3ANbRnfEgO5txfi96Ci89dZbyM7OLuJsIiKiwh08eBAbN24Ut01MTLB+/XoYG1eu8SUsRrSgNFLAs0E19H21jST+559/YtSoURAEQabMiIjIUKWkpGDMmDGS2Ndff41XXnlFpozkw2JEB/Xr19eIbdq0CdOmTZMhGyIiMmSTJ0/G/fv3xe1mzZrh66+/ljEj+bAY0UG9evUKjM+ZMwdr167VczZERGSoTp48iVWrVonbRkZGWL9+PUxNTWXMSj4sRnRgZWUFJyenAveNHTsWhw8f1nNGRERkaDIyMvDhhx9KYp999hk8PDxkykh+LEZ0VNCtGuDZcs/9+/fHP//8o+eMiIjIkMyYMQO3bt0Stxs0aIDZs2fLmJH8WIzoqEGDBoXuS0tLQ+/evSX3AImIiPJdvHgRixcvlsQCAwNhaWkpU0blA4sRHRXWMpLvwYMH6N27N1JSUvSUERERGYKcnByMHDkSarVajPn7+6N79+4yZlU+sBjR0cuKEQC4fPkyBgwYgNzcXD1kREREhmDu3Lm4evWquF2rVi3Mnz9fxozKj8o1q0opKOo2Tb9+/fDBBx8gMzMTGRkZuHPnTqWazpeIiAp29epVzJkzRxJbvXo1bG1tZcqofGExoqPnW0aUSiXUarU46dmZM2ewefNmWFhYyJUeERGVMyqVCiNHjpS0lg8ZMgS9e/eWMavyhbdpdOTk5CQWG0uWLEHfvn3FfY8fP8avv/4qV2pERFQOLV26FBcvXhS3HRwcsGzZMhkzKn9YjOhIoVCgfv36GDlyJMaPH49JkyZJ9i9atEjSOYmIiCqvqKgojVm6ly9fDgcHB5kyKp9YjBTD0KFD8dNPP0GhUKBTp07o2LGjuO/mzZvYv3+/jNkREVF5oFarMXr0aGRmZoqxPn36YODAgTJmVT6xGCmGyZMnw8zMDMCzlpLPP/9csn/RokVypEVEROVIYGAgTp48KW7b2tpi5cqVUCgU8iVVTrEYKYYXf5Heeustybo1p0+fxoULF/SdFhERlRP379/HF198IYktXLgQNWvWlCmj8o3FSClQKpWYOHGiJMbWESKiykkQBIwdOxapqali7PXXX8eoUaNkzKp8YzFSSj744APY2dmJ27t27cLt27dlzIiIiOSwefNmHDhwQNy2tLTEmjVreHumCCxGSomVlRU++ugjcVutVmPp0qXyJURERHoXHx+PTz/9VBKbM2eOVrN3V2YsRkrR+PHjYWpqKm6vX78eiYmJMmZERET69Mknn+DJkyfidseOHfHxxx/LmJFhYDFSipycnDBs2DBxOz09HatXr5YxIyIi0pe9e/di27Zt4rapqSnWrVsHpVIpY1aGgcVIKXuxI+sPP/yA7OxsmbIhIiJ9SEpKQkBAgCQ2bdo0uLu7y5SRYWExUsrc3d3Rq1cvcTs2NhabN2+WMSMiIiprkyZNwqNHj8TtFi1aYPLkyTJmZFhYjJSBF6eIX7hwobiYHhERVSzHjh3DunXrxG2lUon169fDxMRExqwMC4uRMtCtWze0adNG3I6IiEBQUJCMGRERUVlIT0/H6NGjJbFJkyahbdu2MmVkmFiMlAGFQqHROjL9u3nYG/4A5249gUrNVhIioorgm2++QXR0tLjduHFjzJgxQ8aMDJNCMID7BykpKbC1tUVycjJsbGzkTkcrubm5aNiwIWJiYsSY8/vLYOrYAM625pjh5w7f5s4yZkhERCVx7tw5dO7cWXIb/tSpU+jatauMWZUv2n5+s2WkjJiYmMB34EhJLCXkdwBAbHIWAjaGIejqo4JOJSKici47OxujRo2SFCLjxo1jIVJMLEbKiEotIMyiNRSmlmIs/dop5KUkIP9Xd9b+CN6yISIyQN999x2uXbsmbtepUwdz586VMSPDxmKkjIREJyIhWwnrVr4AAIWxKaq07An8/9oEAoBHyVkIieYMrUREhuSff/7BvHnzJLE1a9bA2tpapowMn7HcCVRU8alZAADrtn0AIyWUlrawad+v0OOIiKj8y8vLw8iRI5GXlyfGRowYAR8fHxmzMnxsGSkjNazNAQBKK1vkxN0GBHWRxxERUfm3aNEihIWFiduOjo5YvHixjBlVDCxGyohHPXs4WZvg8R+LkRUdChOHupL9CgDOtubwqGcvT4JERFSkFwebXr9+XWPY7ooVK2Bvz7/jJcVipIwYKQD78N+QEXkaAGDiUEfcp/j/nzP83KE0UhRwNhERySk1NRVr1qwRt9VqNT788EPJWmNvv/023nnnHTnSq3BYjJSRr7/+God2bgQAKM0sobR2EPc52Zpj5dA2nGeEiKicCg4OxuTJk5GQkAAAWLlyJc6cOSPut7Ozw4oVK+RKr8JhB9YyMH/+fElP6/ZtWmKxvyfiU7NQw/rZrRm2iBARlV8HDhxAcnIyvvnmG3zzzTf46quvJPuXLFkCJycnmbKreFiMlLLAwECNlRqbN2sGzwbVZMqIiIh0IQgCDh48CABYu3YtLl68iLS0NHG/j48Phg8fLld6FRJv05Si7du3Y8yYMRrxZs2ayZANEREVx6VLl/Do0bMZsgVBQHh4uLivSpUqWL16NRQKtm6XJraMlJKgoCAMHTpUo/c1ADRv3lyGjIiIqDgOHDhQ6L7XXnsNN27cQGZmJlxcXGBlZaXHzCquYrWMrFixAq6urjA3N0eHDh0QEhJS6LGBgYHo2rUr7OzsYGdnBy8vryKPN0R//fUX3n77beTm5ha4ny0jRESGo6hi5MCBA+jZsyfc3NzQtm1b3Lt3T4+ZVVw6FyPbtm3DxIkTMWPGDISFhaFly5bw8fFBfHx8gcefPHkSgwcPxokTJ3Du3Dm4uLigZ8+eePDgQYmTLw/Cw8PRu3dvZGZmFrjfzs6OnZxeQqUWcO7WE+wNf4Bzt55wvR4ikk1CQoJWX5hff/118TONSk4hFHRfoQgdOnRA+/bt8eOPPwJ4NvbaxcUFH3/8sUZv44KoVCrY2dnhxx9/1LoDkLZLEOvbzZs30aVLl0ILMQDo0qULTp8+rcesDEvQ1UeYtT8Cj5L/mxbf2dYcM/zcOfSZiPTu119/xYgRI4o8xt/fHz/++CNMTEz0lJXh0vbzW6c+Izk5OQgNDcWUKVPEmJGREby8vHDu3DmtniMjIwO5ublFzliXnZ0tmVgmJSVFlzT14v79+/Dy8iqyEAHYX6QoQVcfIWBjGF6shmOTsxCwMazIuVgEQUBiYiJu376N6Ohoyc8HDx5g27ZteOWVV8r+TRBRhfLHH38Uuk+hUGDhwoWYMGECO7CWMp2KkcePH0OlUsHR0VESd3R0RGRkpFbPMXnyZNSsWRNeXl6FHjN37lzMmjVLl9T06vHjx/D29kZMTMxLj2V/kYKp1AJm7Y+AACDt6jEojM1g1bQLgGcrGisAzNgdDhejJNy9E61RcNy+fRupqakFPvfChQtZiBCRznJzc3H48OEC91lZWWHz5s3o06ePnrOqHPQ6mmbevHnYunUrTp48CXPzwheImzJlCiZOnChup6SklKv7cgqFAnv27IFCoYCRkRFmzpyJTZs2FXgsi5GChUQn4lFyFlL+3ounxwIBI2Oos9KQ/TASeU8fIi8pFnfSEtF8xsuf63k9e/bEhAkTyiZpIqrQ/vrrrwJb4mvVqoU//vgDrVq10n9SlYROxYiDgwOUSiXi4uIk8bi4uJd20ly4cCHmzZuH4OBgtGjRoshjzczMYGZmpktqelWtWjVUq/ZsErP4+Hjs3r1b3KdUKqFWq8UhvixGChaXkomk05uQfHbLs4A6D0+PB6JarwnIvB2K7IfXi/W8Dg4OWLduHdzd3eHm5sYFrIhIawWNomnXrh327t2LmjVrypBR5aFTMWJqaoq2bdvi2LFj6NevH4BnHViPHTuG8ePHF3re/PnzMWfOHBw+fBjt2rUrUcLlzaJFiyQjad5//324uLhg5syZqF69OmrUqCFjduWTWq3GpqXf/leI/D8T+9owr/MKrJp2QdXOg5B8YReyrwYjNzdH6+fevHkzNm/eLG47OjrCzc0N7u7uYoHi7u4OR0dH3vMlIokXi5G3334bv/32GywtLWXKqPLQeTTNtm3bMGLECKxevRoeHh5YunQptm/fjsjISDg6OmL48OGoVasW5s6dCwD43//+h+nTp2Pz5s3o3Lmz+DxVqlRBlSpVtHrN8jqa5vHjx3B1dUV6ejqAZ60iN27cQN26deHr64u8vDycOHFC5izLl9zcXIwcORIbN26UxM1cmqPGO9NhZPbsf3oFni0ouG1oEyxZvAirV68udPh0cdjZ2YmFyfPFiouLC4sUokpEpRYQEp2IK5E3MObNTmJ8ypQp+O6772BkxInKS6JMRtMAwMCBA5GQkIDp06cjNjYWrVq1QlBQkNipNSYmRvKPt3LlSuTk5KB///6S55kxYwZmzpyp68uXK4sXLxYLEQAYNmwY6tevDwDYtGkT1q1bJ1dq5VJmZiYGDhyI/fv3S+IWDdrDoe9XMDJ5dmsuvxSY4eeOOi7OWLJkCaZMmYLFixdjxYoVkjUiiuvp06c4e/Yszp49K4lbWVnBzc1NozWlfv36UCqVJX5dIio/np9aICX02d8lhdIYE2YuwPdTP5M3uUpG55YROZTHlpEnT57A1dVV/GA0MjJCZGQkGjVqJB6jVqtZVf+/lJQU9OnTB3/++ack3r3320jv6I+4tDwxVtQ8I0+ePMEPP/yAZcuWITk5WbKvb9+++PrrrxEREYGIiAhcu3YNERERiI6OLnCafl2YmZmhSZMmGq0pjRo1gqmpaYmem4j078WpBeK2T0fOo5uo8dbXMK/zSpFTC5D2tP38ZjFSTNOmTcN3330nbg8dOhS//fabjBmVXwkJCfD19UVYWJgkPm7cOPzwww8QoEBIdCLiU7NQw9ocHvXsoTQq+lZJcnIyVqxYgcWLF+PJkycAgKpVqyI+Pl5jIqLMzExcv35dUqBEREQgKioKeXl5BT291pRKJRo2bKhxu6dJkya8z0xUTqnUArr877g42aI6JwuxGyeher8pMLGvJd4mPjO5x0v/FlHRWIyUoadPn8LV1VUcAqZQKHDt2jU0adJE5szKn3v37sHb2xvXr0tHx0ybNg2zZs0qcf+MtLQ0rF69GgsWLEBcXByCg4Px+uuva3VuTk4OoqKiJAXKtWvXEBkZKZl0rzgUCgVcXV01ihQ3N7dy8TtMVJmdu/UEg9acg0KhQF7qE2RcPwOFqSWsmnRGZnSYOOfRltEd4dmgmszZGjYWI2Vo5syZkknZBg8eLBnBQc/cuHEDXl5eGgtJLVmyBJ999lmpvlZmZibWrVuHjIwMfPnllyV6LpVKhejoaLFIef5nafRXqVWrVoEjfBwcHEr83ET0cnvDHyDgh9+RdGYTjG1qIDV0H5RV7AEjJazcXoNdt/cBAMsGtULfVrXkTdbAsRgpI8nJyahbt67YX0GhUODq1atwd3eXNa/y5tKlS/Dx8UFCQoIYMzIywrp16/D++++X2esKglBmo2EEQcD9+/c1bvdERETg6dOnJX5+BwcHjQLFzc0NNWvW5AgfolJ07tYTDA48j9jfJiH7oXT28Gpvfo4qzboDYMtIaSiz0TSV3Q8//CDpODlgwAAWIi84ffo03nzzTclMhqampti2bZs4P01ZKcsPbYVCARcXF7i4uMDHx0eMC4KA+Ph4jVaUiIgIxMbGav38jx8/xqlTp3Dq1ClJ3MbGpsDbPXXr1mUHaaJi8KhnD2dbc2S064OEfdJixLS6q9hnxKMeJ03UF7aM6JiHq6ur5Fvw5cuXuQ7Kcw4cOID+/fsjK+u/VXitrKywd+9erftyVCRPnz7V6JMSERGh1bpGL2NhYSEZhpz/s0GDBjA25vcMoqIEXX2Esb+E4P6qUVClPesEDyMl6k7cCYXShKNpSglbRsrAjz/+KClE3nnnHRYiz9myZQuGDx8uGaFib2+PQ4cOwcPDQ8bM5GNnZ4dOnTqhU6dOknhaWhoiIyM1WlNu3boFtVqt1XNnZmYiLCxMY5SSiYkJGjdurNGa0rhx43K9zAKRPvk2d8aqER7wv9wX946sB/BsFmhne+tCpxagssOWES2lpqbC1dUViYmJYiw8PBwtW7aUJZ/yZuXKlRg3bpxkPo+aNWviyJEjXJ9HB1lZWbhx44ZGa8qNGzeQm5tbouc2MjJCgwYNNPqkNG3aVOvZkIkqmrj4BNSpUwc52Vlo1a03fgzcgI71q3FIbylhy0gp++mnnySFSL9+/ViI4Fl/ie+//x5Tp06VxBs0aICjR4+iXr16MmVmmMzNzdGiRQuNxSRzc3Nx69YtjT4pkZGRWk+Tr1arcfPmTdy8eRN79+6V7Ktbt67G7R43NzfY2dmV2nsjKo8uxefB9pXuSPj7EO6oq+G9tReKnHiRygZbRrSQnp4OV1dXPH78WIyFhoaiTZs2es+lPBEEAZMmTcLixYsl8RYtWuDw4cMvXcmZSk6tVuPu3bsaI3yuXbtW4FLounJyctIY4ePu7o7q1atzhA8ZvPxZWLPjo/Ho549R/Z3psGzoIS5JwX4jJceWkVKQv4DSmhXLJIWIn59fpS9E8vLy4O/vj59//lkS79SpE/744w9+o9YTIyMj1KtXD/Xq1UPv3r3FuCAIePjwoUaflH///VecsVYbsbGxiI2NxfHjxyVxe3v7Akf41K5dm0UKyUoQBGRkZODp06d4+vQpEhMTC/z55EkiDl+KQmZqCtRZaTAyrwLT6q7PngPP1siatT8C3u5OvGWjB2wZKUT+AkoPHifhwaoPoc5IEveFhISgffv2esmjPMrOzsaQIUOwe/duSdzHxwe7du2ClZWVTJmRNhISEjRu90RERODhw4clfm5ra2s0bdpUozXF1dWVCw2STnJzcyXFQ1GFxYs/c3JydH49pU111Bq7XqOY5lwjJcOWkRJ4fgGltPDDkkLEon5bPLGoLVtucktLS0O/fv1w7NgxSXzAgAHYuHEjF40zANWrV0f16tXx6quvSuLJyckFFil37tzR+rlTU1Nx8eJFXLx4URI3NzdHkyZNNFpTGjZsqLGWEFUcarUaKSkpGsWCNgVFacx2rAshL7fAVr341KwCjqbSxmLkBSq1gFn7IyAAUOdmI+XCTsl+206DK23TXWJiInr16oULFy5I4qNHj8bKlSv5zdfA2draomPHjujYsaMknp6ejuvXr2v0SYmKioJKpdLqubOysvDPP//gn3/+kcSNjY3RqFEjjY6zTZo0gYWFRam9N33KzMyEmZlZhZmQThAEZGZmFqugSEpK0nqoulwUZlYwMq8CpWXVAvfXsDbXb0KVFIuRF4REJ4orOUIQUKWVL1L+3gchOx3mrq1hVqspHiVnISQ6sVI13T18+BA9e/bEv//+K4lPnjwZc+fOZT+BCszKygpt2rTR6CeVnZ2NqKgojQndrl+/rnUzeV5eHq5du4Zr165J4gqFAvXr1y9whI+1tXWpvbfSIggCLly4gA0bNiAqKgpHjx6VOyUN+bc9inProzi3PfTJwsICdnZ2sLe3l/wsKJb/07aqHfqsDkNcWi4K6qvAWVj1i31GXrA3/AE+3RouieUk3EXCrm8hCGoYV3WC0soe3u2aomvLRnB2dpY8bGxsKtwH861bt+Dt7Y3o6GhJfN68eZg8ebJMWVF5lZeXh+joaI3bPZGRkUhPTy/x89euXbvANXyqVdP/l4MHDx5g48aN2LBhAyIjn00rvm7dOowcObJMXi//tkdBRcPLCgp93/bQlVKpLLJ4KGqfuXnxWi/yb8kDkBQkHE1TerhQXjHlL6D0InVuNhKDliM94mSR51tYWGgUKDVr1hT/u1GjRgY198bly5fh4+MjWWNFoVBg9erVGD16tIyZkaFRq9W4d+9egWv4JCUllfj5a9SooVGguLu7w8nJ6aVfEHLy1Pjt3B3cTcxAXXtLDPN0halxwbdZsrKysHfvXmzYsAFHjhyR3Iaws7PD/fv3YWlpWehr5d/2KE5BYQi3PWxsbAotGooqLKytrWX5Ipc/WEFsEQc4z0gpYjFSTCq1gC7/O47Y5CyNpjtBEJB68Xc8PbkBEHT/g1C/fn0cOnQIjRs3LpVcS9PDhw9Rs2ZNSezcuXPo1auX5IPCxMQEGzduxLvvvqvnDKmiEgQBsbGxBXaejY+PL/HzV61aVWMIsru7O1xcXGBkZIS5ByMQeDoa6uf+hzdSAKO71sOUXu5ijhcvXsSGDRuwZcuWQounzp07Y+DAgS8tLLKzs0v8vsqSubl5sQqKqlWrGuS6SPnTOMSnZqGG9bNbM5WtT2BZYTFSAi9ruvuwfgoWTv5Ip29zHTt2xL59+1C9evVSy7O0XLhwAcuXL8fGjRvF2JEjR/DWW28hIyNDjFlYWGD37t3w9fWVI02qhJ48eaJRpFy7dg337t0r8XNbWVmhqrMrksxqwKSaC0wc6sC8bisYmf7X5D+4eRXYPXzWF+TFfi3lXf5tj6IKioIKCzs7O4PtPEzlD4uREnpZ011UVBT69u2LiIiIlz6Xo6MjQkJCUKdOnbJMuVjUajU6duyIqKgoxMfHw9jYGDt37sSQIUMka6HY2triwIED6Ny5s4zZEj2TkpKCyMhIjULl9u3bKMmftNrjfoORuRUyokKQfiUYmdFhxWoFLU02NjZaFRQvFhZy3fYgeh6LkVLwsqa71NRUDB8+HHv27Hnpc5mamqJ///4ICAhA586dy80fiZ9//lnsbHf69GlERkZizJgxkvvSjo6OOHz4MNfioXIvMzMTN27c0Bjhc/PmTclq0gVRmFrC3nssnp5cD3V6UqnmZWZmBnt7e50LCkO97UGUj8WInqjVasyePRszZ87U+pzmzZsjICAAQ4cOlfX9JCcno3HjxuJ9+ebNm+Pq1auSY1xdXXH06FE0bNhQjhSJSkVubq44DDm/QDl+Lgzx96Mh5D0btmpWyw1OQxdAyMtBdmwUsh9cQ/aDa1DE30BGcuJLXuEZGxsbbNiwAQ4ODpLigrc9qLJiMaJne/bswbBhw3QaPmdlZYWhQ4ciICBAllaHzz//XGORu+e5u7vjyJEjqFWrlh6zItKPdadv49v9V5GXHI/cJ/egUBjBokE7jeOm9mqKbjUFnD17VnxcvXq10NtBP/30EwICAso6fSKDwGJEBv/++y/69u2LW7duibE1a9YgIiICGzZsKLLDq6enJwICAjBgwIBij5nXxbVr19CiRYtCm67bt2+PQ4cOyTJ3A5E+5OSp0XTaIckomhcZKYDI2W9oDPNNTk7GhQsX8Ndff+Hs2bM4f/68+EXE3t4eN27c4P87RND+87tizFdcTjRr1gwhISHw9vYWYw4ODliyZAkePHiA9evXF7rA3rlz5zB8+HDUrl0bX3zxBaKiososT0EQ8NlnnxV5D71hw4aIjIwsUWdAovLM1NgIo7sWPefP6K71CpxvxNbWFj179sSsWbNw9OhRJCUlITw8HD/99BN69eqF9evXl1XaRBUSW0bKQF5eHr766issWrQIgYGB+PDDDyX7Q0NDsXLlSmzevBmZmZmFPo+3tzcCAgLg5+dXqp3Y9u7di379+ml1bKNGjfD111/j/fffL7XXJypPtJlnhIiKh7dpyoFNmzbhyZMn+OSTTwrcn5SUhF9//RUrV64Up5IuSK1atTB69GiMHj1aY2IyXWVlZcHd3V1javeC1K5dG1OmTMHIkSP1cuuISC66zMBKRNpjMVJO5ObmvnSJdEEQ8Oeff2LlypXYvXt3obdPlEol+vbti4CAAPTo0aNYq4LOmTMHU6dOLfKYOnXqiK0hZmZmOr8GERERwGLEYMXGxmLdunVYs2YNYmJiCj2uUaNGGDt2LN5//33Y22u3quS9e/fQtGlTyayqz6tXrx6++eYbDBs2DKampsXKn4iIKB+LEQOnUqlw8OBBrFy5EkFBQYV2JDU3N8fAgQMREBAADw8PyWRqL07atuyb8di2bavGczRs2BBTp07FkCFDXtqKQ0REpC0WIxVIdHQ0Vq9ejXXr1uHx48eFHte6dWsEBARgyJAhOB2dIpnOPuveVcRt/kpyfJMmTTB16lQMGjSIszwSEVGpYzFSAWVnZ2PXrl1YtWoVTp8+XehxllWsoWz8Gqq07gVThzoQ1Co82vApchPuAADqNGiM/303CwMGDIBSqdRT9kREVNmwGKngrl69ipUrV+K3335DampqoceZuTSHRf12SPpzA0yqu6Jqp0Go374H/prixSWyiYioTLEYqSTS0tKwadMmrFy5Ev/884/GfqWtI4xtHWHT9k1YNOoIheLZCJwtozvCswFniCQiorLDGVgriSpVqmDMmDG4dOkSzp49i2693wGU/3VCrfKKNxwHzYFl405iIQIA8alZcqRLRESkgcVIBaFQKODp6Ynvl61G7XG/wK77SJg41IV16zckI2zy1bDmJGZERFQ+cAhFBeNRzx61nWog1uJt2Hi8rbFfAcDJ1hwe9bSbm4SIiKissWWkglEaKTDD79l6Gi+2h+Rvz/BzZ+dVIiIqN1iMVEC+zZ2xcmgbONlKb8U42Zpj5dA28G3uLFNmREREmnibpoLybe4Mb3cnyQysHvXs2SJCRETlDouRCkxppODwXSIiKvd4m4aIiIhkxWKEiIiIZMVihIiIiGTFYoSIiIhkxWKEiIiIZMVihIiIiGTFYoSIiIhkxWKEiIiIZMVihIiIiGTFYoSIiIhkxWKEiIiIZMVihIiIiGTFYoSIiIhkxWKEiIiIZMVihIiIiGRVrGJkxYoVcHV1hbm5OTp06ICQkJAij9+xYweaNm0Kc3NzvPLKKzh48GCxkiUiIqKKR+diZNu2bZg4cSJmzJiBsLAwtGzZEj4+PoiPjy/w+LNnz2Lw4MEYNWoULl26hH79+qFfv364evVqiZMnIiIiw6cQBEHQ5YQOHTqgffv2+PHHHwEAarUaLi4u+Pjjj/HVV19pHD9w4ECkp6fjjz/+EGMdO3ZEq1atsGrVKq1eMyUlBba2tkhOToaNjY0u6RIREZFMtP381qllJCcnB6GhofDy8vrvCYyM4OXlhXPnzhV4zrlz5yTHA4CPj0+hxwNAdnY2UlJSJA8iIiKqmHQqRh4/fgyVSgVHR0dJ3NHREbGxsQWeExsbq9PxADB37lzY2tqKDxcXF13SJCIiIgNSLkfTTJkyBcnJyeLj3r17cqdEREREZcRYl4MdHBygVCoRFxcnicfFxcHJyanAc5ycnHQ6HgDMzMxgZmamS2pERERkoHRqGTE1NUXbtm1x7NgxMaZWq3Hs2DF4enoWeI6np6fkeAA4evRooccTERFR5aJTywgATJw4ESNGjEC7du3g4eGBpUuXIj09HR988AEAYPjw4ahVqxbmzp0LAPj000/x2muvYdGiRejduze2bt2Kv//+G2vWrCndd0JEREQGSediZODAgUhISMD06dMRGxuLVq1aISgoSOykGhMTAyOj/xpcOnXqhM2bN2Pq1Kn4+uuv0ahRI+zZswfNmzcvvXdBREREBkvneUbkwHlGiIiIDE+ZzDNCREREVNpYjBAREZGsWIwQERGRrFiMEBERkaxYjBAREZGsWIwQERGRrFiMEBERkaxYjBAREZGsWIwQERGRrHSeDl4O+ZPEpqSkyJwJERERaSv/c/tlk70bRDGSmpoKAHBxcZE5EyIiItJVamoqbG1tC91vEGvTqNVqPHz4ENbW1lAoFKX2vCkpKXBxccG9e/e45k0Z4nXWH15r/eB11g9eZ/0oy+ssCAJSU1NRs2ZNySK6LzKIlhEjIyPUrl27zJ7fxsaGv+h6wOusP7zW+sHrrB+8zvpRVte5qBaRfOzASkRERLJiMUJERESyqtTFiJmZGWbMmAEzMzO5U6nQeJ31h9daP3id9YPXWT/Kw3U2iA6sREREVHFV6pYRIiIikh+LESIiIpIVixEiIiKSFYsRIiIiklWFL0ZWrFgBV1dXmJubo0OHDggJCSny+B07dqBp06YwNzfHK6+8goMHD+opU8Omy3UODAxE165dYWdnBzs7O3h5eb3034X+o+vvdL6tW7dCoVCgX79+ZZtgBaHrdU5KSsK4cePg7OwMMzMzNG7cmH8/tKDrdV66dCmaNGkCCwsLuLi4YMKECcjKytJTtobp1KlT8PPzQ82aNaFQKLBnz56XnnPy5Em0adMGZmZmaNiwITZs2FC2SQoV2NatWwVTU1Nh/fr1wr///iuMHj1aqFq1qhAXF1fg8X/99ZegVCqF+fPnCxEREcLUqVMFExMT4cqVK3rO3LDoep2HDBkirFixQrh06ZJw7do14f333xdsbW2F+/fv6zlzw6Prtc4XHR0t1KpVS+jatavQt29f/SRrwHS9ztnZ2UK7du2EXr16CWfOnBGio6OFkydPCuHh4XrO3LDoep03bdokmJmZCZs2bRKio6OFw4cPC87OzsKECRP0nLlhOXjwoPDNN98Iu3fvFgAIv//+e5HH3759W7C0tBQmTpwoRERECMuXLxeUSqUQFBRUZjlW6GLEw8NDGDdunLitUqmEmjVrCnPnzi3w+HfffVfo3bu3JNahQwdhzJgxZZqnodP1Or8oLy9PsLa2Fn755ZeySrHCKM61zsvLEzp16iSsXbtWGDFiBIsRLeh6nVeuXCnUr19fyMnJ0VeKFYKu13ncuHFCjx49JLGJEycKnTt3LtM8KxJtipEvv/xSaNasmSQ2cOBAwcfHp8zyqrC3aXJychAaGgovLy8xZmRkBC8vL5w7d67Ac86dOyc5HgB8fHwKPZ6Kd51flJGRgdzcXNjb25dVmhVCca/1t99+ixo1amDUqFH6SNPgFec679u3D56enhg3bhwcHR3RvHlzfP/991CpVPpK2+AU5zp36tQJoaGh4q2c27dv4+DBg+jVq5decq4s5PgsNIiF8orj8ePHUKlUcHR0lMQdHR0RGRlZ4DmxsbEFHh8bG1tmeRq64lznF02ePBk1a9bU+OUnqeJc6zNnzmDdunUIDw/XQ4YVQ3Gu8+3bt3H8+HG89957OHjwIKKiovDRRx8hNzcXM2bM0EfaBqc413nIkCF4/PgxunTpAkEQkJeXh7Fjx+Lrr7/WR8qVRmGfhSkpKcjMzISFhUWpv2aFbRkhwzBv3jxs3boVv//+O8zNzeVOp0JJTU3FsGHDEBgYCAcHB7nTqdDUajVq1KiBNWvWoG3bthg4cCC++eYbrFq1Su7UKpSTJ0/i+++/x08//YSwsDDs3r0bBw4cwOzZs+VOjUqowraMODg4QKlUIi4uThKPi4uDk5NTgec4OTnpdDwV7zrnW7hwIebNm4fg4GC0aNGiLNOsEHS91rdu3cKdO3fg5+cnxtRqNQDA2NgY169fR4MGDco2aQNUnN9pZ2dnmJiYQKlUijE3NzfExsYiJycHpqamZZqzISrOdZ42bRqGDRuGDz/8EADwyiuvID09Hf7+/vjmm29gZMTv16WhsM9CGxubMmkVASpwy4ipqSnatm2LY8eOiTG1Wo1jx47B09OzwHM8PT0lxwPA0aNHCz2einedAWD+/PmYPXs2goKC0K5dO32kavB0vdZNmzbFlStXEB4eLj769OmD7t27Izw8HC4uLvpM32AU53e6c+fOiIqKEos9ALhx4wacnZ1ZiBSiONc5IyNDo+DILwAFLrNWamT5LCyzrrHlwNatWwUzMzNhw4YNQkREhODv7y9UrVpViI2NFQRBEIYNGyZ89dVX4vF//fWXYGxsLCxcuFC4du2aMGPGDA7t1YKu13nevHmCqampsHPnTuHRo0fiIzU1Va63YDB0vdYv4mga7eh6nWNiYgRra2th/PjxwvXr14U//vhDqFGjhvDdd9/J9RYMgq7XecaMGYK1tbWwZcsW4fbt28KRI0eEBg0aCO+++65cb8EgpKamCpcuXRIuXbokABAWL14sXLp0Sbh7964gCILw1VdfCcOGDROPzx/a+8UXXwjXrl0TVqxYwaG9JbV8+XKhTp06gqmpqeDh4SGcP39e3Pfaa68JI0aMkBy/fft2oXHjxoKpqanQrFkz4cCBA3rO2DDpcp3r1q0rANB4zJgxQ/+JGyBdf6efx2JEe7pe57NnzwodOnQQzMzMhPr16wtz5swR8vLy9Jy14dHlOufm5gozZ84UGjRoIJibmwsuLi7CRx99JDx9+lT/iRuQEydOFPg3N//ajhgxQnjttdc0zmnVqpVgamoq1K9fX/j555/LNEeFILBti4iIiORTYfuMEBERkWFgMUJERESyYjFCREREsmIxQkRERLJiMUJERESyYjFCREREsmIxQkRERLJiMUJERESyYjFCREREsmIxQkRERLJiMUJERESyYjFCREREsvo/MFx1hiFoZecAAAAASUVORK5CYII=", + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAiMAAAGdCAYAAADAAnMpAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjcuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/bCgiHAAAACXBIWXMAAA9hAAAPYQGoP6dpAABs5UlEQVR4nO3dd1gUV9sG8HuXrlJEpKioiLH3jl2DYi9JXo3GEjUmGmPy6quxxRCNPZqYWCNqTDSWxN6CGmxBUSKIDexdKRZcUPru+f7wY2Rosgg7LHv/rmsvmbMzs88uyDyc88w5KiGEABEREZFC1EoHQERERKaNyQgREREpiskIERERKYrJCBERESmKyQgREREpiskIERERKYrJCBERESmKyQgREREpylzpAPJCp9Ph4cOHsLW1hUqlUjocIiIiygMhBOLj41GuXDmo1Tn3fxhFMvLw4UO4u7srHQYRERHlw71791ChQoUcnzeKZMTW1hbAyzdjZ2encDRERESUF3FxcXB3d5eu4zkximQkfWjGzs6OyQgREZGReV2JBQtYiYiISFFMRoiIiEhRTEaIiIhIUUxGiIiISFFMRoiIiEhRTEaIiIhIUUxGiIiISFFMRoiIiEhRTEaIiIhIUXonI8ePH0fPnj1Rrlw5qFQq7Ny587XHHD16FI0aNYKVlRWqVq2KdevW5SNUIiIiKo70TkZevHiB+vXrY9myZXna/9atW+jevTs6dOiAsLAw/Pe//8VHH32EAwcO6B0sERERFT96r03TtWtXdO3aNc/7r1y5Eh4eHli0aBEAoGbNmggMDMQPP/wAHx8ffV+eiIiIiplCrxkJCgqCt7e3rM3HxwdBQUE5HpOcnIy4uDjZg4iIiIqnQk9GoqKi4OLiImtzcXFBXFwcEhMTsz1m7ty5sLe3lx7u7u6FHSYREREppEjeTTNlyhRoNBrpce/ePaVDIiIiokKid82IvlxdXREdHS1ri46Ohp2dHWxsbLI9xsrKClZWVoUdGhERERUBhd4z4uXlhYCAAFnboUOH4OXlVdgvTUREREZA72Tk+fPnCAsLQ1hYGICXt+6GhYXh7t27AF4OsQwZMkTaf9SoUbh58ya+/PJLXL58GcuXL8cff/yBcePGFcw7ICIiIqOmdzJy5swZNGzYEA0bNgQAjB8/Hg0bNsTXX38NAIiMjJQSEwDw8PDAvn37cOjQIdSvXx+LFi3C6tWreVsvERERAQBUQgihdBCvExcXB3t7e2g0GtjZ2SkdDhEREeVBXq/fRfJuGiIiIjIdTEaIiIhIUUxGiIiISFFMRoiIiEhRTEaIiIhIUUxGiIiISFFMRoiIiEhRTEaIiIhIUUxGiIiISFFMRoiIiEhRTEaIiIhIUUxGiIiISFFMRoiIiEhRTEaIiIhIUUxGiIiISFFMRoiIiEhR5koHQESmTasTCL71FDHxSXC2tUYzD0eYqVVKh0VEBsRkhIgU438xEjP2hCNSkyS1udlbw7dnLXSp46ZgZERkSBymISJF+F+MxOgNobJEBACiNEkYvSEU/hcjFYqMiAyNyQgRGZxWJ+C7/SySHlxGXMgeJN4MkZ4T///vjD3h0OpE9icgomKFwzREVOiSk5Nx4cIFnDlzBmfOnMHxk6dx7XI4IHQAgBI128GmSmNpfwEgUpOE4FtP4eVZRqGoichQmIwQUYFKTU3FpUuXpMTjzJkzOH/+PFJTU3M8JvnhZaTFPYK5XVlZe0x8Ug5HEFFxwmSEiPItLS0NERERssTj3LlzSE5O1us8Wk00YrbNhOughVBbWEntzrbWBR0yERVBTEaIKE+0Wi2uXr0qSzzOnj2LxMREvc9lZWUF87IeUJf1hKVrVVi4eiJq3X/x9MBSlOk+HmqVCq72L2/zJaLij8kIEWWh0+lw48YNWeIRGhqK58+f630uCwsL1KtXD02aNJEetWvXRsCVxxi9IRTAyxoRs5Kl8eLSEVg6V4F9s77w7VmL840QmQgmI0QmTgiBW7duyRKPkJAQxMXF6X0uMzMz1KlTR5Z41K1bF1ZWVln27VLHDSsGNZLmGTEr5Qjt8yeIPfoLJrzvzXlGiEyISghR5O+di4uLg729PTQaDezs7JQOh8hoCSFw7949WeJx5swZxMbG6n0utVqNWrVqoUmTJmjcuDGaNGmC+vXrw8bGRq/zpM/A+sXwAfj3+CEAQOnSpfHvv//C09NT77iIqOjI6/WbPSNExZQQAg8fPpR6OtITj0ePHul9LpVKherVq8t6PBo0aICSJUu+cZxmahW8PMugYQ0P/Hv8ZVtsbCz69OmDoKAglCpV6o1fg4iKNiYjRMVEdHR0lh6PqKiofJ2ratWqssSjYcOGhd4r6eYmH5a5ePEihg4dij///BNqNednJCrOmIwQGaHHjx/LejvOnDmD+/fv5+tcHh4essSjUaNGcHBwKNiA8yBzMgIA27dvx+zZszF9+nSDx0NEhsNkhKiIi42NlSUeISEhuH37dr7O5e7uLks8GjdujDJlisYMp66urtm2f/3116hfvz569epl4IiIyFCYjBAVkJCQENSrVw8WFhb5PkdcXBxCQ0NlPR43btzI17nKlSsnSzoaN24MFxeXfMdW2LLrGUk3aNAgnD59GjVr1jRgRERkKExGiN7QtWvX8NVXX+HixYu4dOlSno97/vw5wsLCZInHlStX8hVD2bJl0bRpU1nyUa5cuXydSym5JSPx8fHo3bs3goODFRlCIqLCxWSEKJ+ioqIwc+ZM+Pn5IS0tDV988UWO+yYkJODcuXOyxOPy5cvQ6XR6v66jo6NsqKVJkyaoUKECVCrjniDsdb02165dw4ABA7B3716YmZkZKCoiMgQmI0R60mg0+O677/DDDz8gISFBau/UqROAlyvUnj9/XpZ4XLp0CVqtVu/Xsre3z5J4VKpUyegTj+xYWlrCyckJjx8/znEff39/TJs2DfPmzTNgZERU2DjpGVEeJSUlYfny5ZgzZw6ePHmS5fmBAwfi8uXLuHDhQq4r1OakVKlS0uRh6Q9PT89imXjkpF69erhw4cJr99u0aRPef/99A0RERG+Ck54R5VH6DKAx8Ulwtn25OFvGNVG0Wi3Wr18PX19f3L17N8fzbNy4Mc+vWaJECTRq1EiWeLz11lsmP5+Gm5tbtsmIhYUFwsPDoVar8eTJEyQmJkIIYVKJGlFxxmSETJr/xUhpbZR0bvbW8O1ZCz61XbFnzx5MnTpVr8LUzKytrdGgQQNZ4lGjRg3WPWQjYxFr06ZN8e+//wIAUlNTsW3bNkyaNAlVqlRRKjwiKiRMRshk+V+MxOgNocg8ThmlScKweevhGL4V4Wf/1euclpaWqF+/vmy9llq1ar3R7b6mJD0ZmTdvHvr06YMaNWpIz/3888+YOHGiyfceERVHTEbIJGl1AjP2hEMASIt7DHM7JwBAyqPbeHbsVyTe+Bf6TqRuY2ODc+fO4a233irweE2Fm5sbRo0ahS+//BIqlQodO3bE4cOHAQC3bt3CgQMH0LVrV4WjJKKCxj8xyCQF33qKSE0SUp9F4aHfx3i0+zvEnzuAJ38tQUrMbcBM/zw9MTERAwYMQFJS0ut3pmz16NEDS5YskWpBRo8eLXt+xYoVSoRFRIWMd9OQSdoV9gBfbA5DzNYZSLzxcihGZWmDsr0mwcazCYQQ0CW/wOR2rqjj+HJOkejoaOnfzF9nvHvmo48+gp+fn1JvrVhJTU1FxYoVpQX/1Go1bt26hYoVKyocGRHlBe+mIcqFs601Eq6flhKRdBbOHgAAlUoFM+tSaFSvDrw8c1+7RQiB2NhYWXISGxuL0qVLF1r8psLCwgIfffQRZs2aBQDQ6XTw8/PDt99+q3BkRFSQ2DNCJun5iwQ4uXsiOfZVZUjpjh/BrmkfAIAKgKu9NQIndZTd5kuGd+/ePVSuXFmardbV1RV3795lUTCREcjr9Zs1I2SSvlswX5aIWDhVgm2jHgBeJiIA4NuzFhORIsDd3R09evSQtqOiorBz507lAiKiAsdkhEzO9evXMX/+fFmbY+fRUP1/0aqrvTVWDGqELnVyXriNDCtzIevKlSsVioSICgNrRsikCCHw+eefIzk5WWobNGgwPv3moxxnYCXlde7cGR4eHrh16xYA4PDhw7hy5QqqV6+ucGREVBDYM0ImZdeuXfjrr7+kbTs7O3z33QJ4eZZB7wbl4eVZholIEaRWq/HJJ5/I2tg7QlR8MBkhk5GQkIAvvvhC1vbtt9/C1dVVoYhIH8OHD4elpaW0vW7dOtmqyURkvJiMkMmYPXu2bKG7+vXr49NPP1UwItJH2bJl8d5770nbz549wx9//KFgRERUUJiMkEm4evUqvvvuO1nbsmXLYG7OsiljMmrUKNk2Z2QlKh6YjFCxJ4TA2LFjZbOkfvjhh2jVqpWCUVF+tG7dGrVr15a2g4ODERoaqmBERFQQmIxQsbdt2zYcPHhQ2ra3t89yay8ZB5VKxfVqiIohJiNUrD1//hzjxo2Ttc2ePRvOzs4KRURvavDgwShZsqS0vXHjRmg0GgUjIqI3xWSEirVZs2bh/v370nbDhg2z1B2QcbGzs8MHH3wgbSckJGD9+vUKRkREb4rJCBVbERERWLRokaxt+fLlMDMzUygiKijZFbIawTJbRJQDJiNULAkh8NlnnyEtLU1qGzFiBFq0aKFgVFRQGjZsiObNm0vb4eHh+OeffxSMiIjeRL6SkWXLlqFy5cqwtrZG8+bNERwcnOv+ixcvRvXq1WFjYwN3d3eMGzcOSUlJ+QqYKC/++OMPHD58WNouXbo05s6dq2BEVNBYyEpUfOidjGzZsgXjx4+Hr68vQkNDUb9+ffj4+CAmJibb/Tdu3IjJkyfD19cXERERWLNmDbZs2YKpU6e+cfBE2YmPj8f48eNlbXPnzkXZsmUViogKQ79+/VC6dGlpe9u2bTn+HiKiok3vZOT777/HyJEjMWzYMNSqVQsrV65EiRIlsHbt2mz3P3nyJFq1aoWBAweicuXK6Ny5MwYMGPDa3hSi/Jo5cyYePnwobTdp0gQfffSRghFRYbCxscGHH34obaempub4e4iIija9kpGUlBSEhITA29v71QnUanh7eyMoKCjbY1q2bImQkBAp+bh58yb279+Pbt265fg6ycnJiIuLkz2I8uLSpUtYvHixtK1SqVi0WoxlLmT9+eefodVqFYqGiPJLr2Tk8ePH0Gq1cHFxkbW7uLggKioq22MGDhyImTNnonXr1rCwsICnpyfat2+f6zDN3LlzYW9vLz3c3d31CZNMlBACY8aMkRWtjhw5Ek2bNlUwKipM1apVw9tvvy1t3759GwcOHFAwIiLKj0K/m+bo0aOYM2cOli9fjtDQUGzfvh379u3Dt99+m+MxU6ZMgUajkR737t0r7DCpGNi0aROOHTsmbZcpUwZz5sxRMCIyhMyFrCtXrlQoEiLKL71WCXNycoKZmRmio6Nl7dHR0Tkuwz59+nQMHjxYGrOvW7cuXrx4gY8//hjTpk2DWp01H7KysoKVlZU+oZGJi4uLw//+9z9Z27x581CmTBmFIiJD6dWrF9zc3BAZGQkA2LdvH+7evYuKFSsqHBkR5ZVePSOWlpZo3LgxAgICpDadToeAgAB4eXlle0xCQkKWhCN9/J6TFFFB8fX1lQ0VNmvWDMOHD1cwIjIUCwsLWYGyTqfDqlWrFIyIiPSl9zDN+PHj4efnh19//RUREREYPXo0Xrx4gWHDhgEAhgwZgilTpkj79+zZEytWrMDmzZtx69YtHDp0CNOnT0fPnj1ZVEj5cvDgQTx//lzaPn/+PJYsWSJtpxetZtfrRsXTyJEjZd/v1atXIyUlRcGIiJSn1QkE3XiCXWEPEHTjCbS6otsBoNcwDQD0798fjx49wtdff42oqCg0aNAA/v7+UlHr3bt3Zb8UvvrqK6hUKnz11Vd48OABypYti549e2L27NkF9y7IpPz222/466+/8MMPP0hFqxnvoBg9ejQaN26sYIRkaO7u7ujZsyd27doF4OXQ8a5du/Cf//xH4ciIlOF/MRIz9oQjUvNqglE3e2v49qyFLnXcFIwseyphBGMlcXFxsLe3h0ajgZ2dndLhkIKEEKhQoQKioqJw6tQpXL58GUOGDJGed3JywtWrV2WTYZFp8Pf3R9euXaXtDh06yGbhJdOj0+mg0+lgbq73391GSQiB58+fY+fpK5i86TS0yS9gbucMc7uXEz6q/n+/FYMaGSwhyev12zS+Q1RsXL16VZrQbMSIEVmKqRcsWMBExER17twZVapUwc2bNwEAR44cweXLl1GjRg2FIyNDu3z5MtavX49//vnHqBLSlJQUPHv2DBqNRu9/0x86nU52ztIdP4Jd0z4AAIGXCcmMPeHoVMsVZmpVlhiUwmSEjMqRI0ekry9cuCB7zsvLC0OHDjV0SFREqNVqfPLJJ5g0aZLUtnLlStkkeFR8PX78GFu2bMFvv/0mTbI5b948g/WK6HQ6PH/+PN/JxLNnzwplzba0uEeybQEgUpOE4FtP4eVZdO42ZDJCRiW3v3KaN2+OvXv3omzZsnByckKlSpVgaWlpwOhIacOGDcP06dOl4tVff/0Vc+bMQYkSJRSOjPJKqxMIvvUUMfFJcLa1RjMPxxz/gk9OTsa+ffuwfv167Nu3D6mpqdJz1tbWei0DkZycnK/eiIxfF8WqB5GWmm17THzRWqyWyQgZDZ1OJ+sZyWzx4sXSX8HDhw/Hzz//bKDIqKgoW7Ys3nvvPWzcuBEA8OzZM2zZskW624+KtrwUXQohcPr0afz222/YvHkzYmNjsz1X/fr1sX///jwnF8nJyQZ5jwXJwsICDg4O0mzlpUqVwp0Hkbh96xagTYVNtZYoUa1Ftsc621obONrcsYCVjMaFCxdQr1691+43depUzJo1CypV0RkPJcMJDAxEmzZtpO2mTZtyYU4j4H8xEqM3hEIndBBpqVBbvJz4Mv1/8TcdyuLevwfx22+/4dq1a8oFWoBsbW2lZCI//1pbW0OlUuHRo0dYvHgxli5dKq3lZlWhFlwGzs/ye1AFwNXeGoGTOhqkZoQFrFTs5KUQ7ccff8Tnn39ugGioqGrVqhXq1KmDixcvAgD+/fdfhISE8HbvIkyrE5j2+3E8O7kPz88fRMnaHeDQZhB0yQlIuHICzy8G4MP5F5UOU8bS0lLWK6FvMmFnZ/fGc21FRkZi4cKFWLlyJRISEqR2tVqNMp1GQa1SIWNvQ3rq4duzVpEqXgWYjJARyW2IxsLCAr/99hvef/99A0ZERZFKpcLo0aMxZswYqW3FihVYvXq1glFRdtLS0uDv74/5i5ch9PBBQLy8E+T5+UMwL10ez46tg/b5k0J5bTs7uzfulVDK3bt3sWDBAqxevTrb4aVPP/0U3T95L8uQlyvnGXkzHKYhrVaLMmXKQKPRZHmuZMmS2LFjBzp16qRAZFQUxcXFoVy5cnjx4gUAoESJEnjw4AEcHByUDYwAAHfu3MGaNWuwdu1aPHjwINt9yr77NWw8myD18V0k3w9H8v1wlIi9jkeR9/P0Gra2tliyZAlKly6dJZmwtbU1yhnAr1+/jnnz5uHXX3+VrU6eUca5lvQpBi4sHKahYiUsLCzbRMTJyQl//fUXmjRpokBUVFTZ2dnhgw8+kNaoSUhIwPr16zF27FiFIzNdqamp2L17N/z8/HDw4MFc7zyxrlQfaqsSUKnUsCxbGZZlK8O2YTdsGtkCFSwTcOLECfzzzz8IDAzEhQsXsj1XfHw8dDodevXqVZhvyyDCw8MxZ84cbNq0Kcs8IpnNmzdPmmvJTK0qUrfv5oY9I6QIfTP27777Dl9++aWsrXLlyjhw4ACqVatW2OGSEQoLC0PDhg2l7Zo1a+LSpUssbDawa9euYfXq1Vi3bh1iYmJy3M/C1hElar+NkvU6w6K0fBght6LLZ8+eISgoSEpOgoODpaELFxcXXL161WivG2fPnsXs2bOxffv2PN023LRpU5w6dapIrcvFnhEqsvKzZkLmepF69erhr7/+Qrly5Qo1VjJeDRo0QIsWLXDq1CkAQEREBI4fP4527dopHFnxl5SUhO3bt8PPzw9Hjx7NcT+VSoWuXbti5MiRMK/UCGO3vJzIUJ+iSwcHB3Tt2lVaCiA5ORkhISEIDAxEYGAgVqxYIZsIz5gkJyfD0dERpUqVQnx8fK77qlQqLFu2rEglIvpgzwgZVPrte5l/6DKumdCwrBouLi5S78nDp/EY3L4OEhNejv+3bdsWu3bt4vg/vdavv/6KDz/8UNp+//33sWnTJuUCKuYuXboEPz8/rF+/Hk+fPs1xP3d3d4wYMQLDhw+Hu7u71F4Yi7sJIYy+NywhIQGzZs3C3Llzc9zno48+gp+fnwGjypu8Xr+ZjJDBaHUCrecflv2iAQCh00KlNpO6Yt3+XY4uH36BXy6lIlKThOQHEYjaMBEA0PLtrgjYu13RSnYyHomJiShfvrw0MZaFhQXu3bsnrTL+popCgaDSXrx4gT/++AN+fn4ICgrKcT8zMzP06tULI0eOROfOnXMsIOVnmtWpU6fQrVu3HCd4K126NK5evQonJycDR/Z6HKahIif41tMsiUiaJgbRf3wNx06jYOVWDXeu3cKZvXuxNzAUJet2gi7hmXS7X6n6XfCg0SgcvR5bJG9No6LHxsYGw4YNw/fffw/gZRHl2rVrMWXKlDc+t7Et0V7QQkND4efnh40bN0oTbWXH09MTH330ET788EO4urq+9rzGVHRpCP7+/nj33Xdl84hkNmvWrCKZiOiDPSNkMLvCHuCLzWHStvbFM0T+Nh7auJyL2myb9kFqzC1Yla8J+9YfQK1SGXT2QDJ+V69eRfXq1aXtSpUq4caNG290a2dehhuLY0ISFxeHjRs3ws/PD6GhoTnuZ2lpiXfeeQcjR45E+/btjbaOQWmbNm3CkCFDZLfx2tnZoUOHDti1axeAl7VRZ86cKbK3Kuf1+s2fEDKYzGshPN73fa6JCADEhx1AiZpt4dBmEFT/P5tg+oqTRHlRrVo1vP3229L2nTt34O/vn+/zaXUCM/aEZ0lEgFeFlzP2hEOrK/J/5+WJEAJBQUEYPnw43NzcMHr06BwTkZo1a+L777/HgwcPsGnTJnTs2JGJSD4tXboUH3zwgSwRcXFxwfHjxzF16lTZfkU1EdEHf0rIYJp5OMLN3lr669HR+xOY2ZbN9RgLx3Kwre+Tpb2orThJRdvo0aNl2ytXrsz3udKHG1NjI/Hkr5+gS5Z3nxeXhPnp06f48ccfUa9ePbRs2RK//PJLtkMFNjY2GDp0KAIDA3Hp0iWMGzfO6IcMlCSEwDfffIOxY8fKbuetUqUKTpw4gfr166NJkyYoW7YsBg8ejFatWikYbcFhMkIGY6ZWwbdnLQAvu7MtHMvDddACmDtWyPGYtCf3kBb3KEt7UVtxkoq2Xr16wc3t1bDJvn37cOfOnTwff+zYMVy/fh3Ay0RYaFPxePcCPD9/EJG/jMWTQyuR/OAyhHg1IZUxJsxCCBw9ehQffPABypUrh//+97/SGj+ZNWjQAMuWLcPDhw+xbt06tGrVyujvWlGaVqvFZ599hhkzZsja69Wrh8DAQHh6egJ4ufZMv379MH/+fCXCLBRMRsigutRxw4pBjeBqbw0hBLTPn8LS2SPH/UVaCmKPrJW2VXhZJNjMw9EA0VJxYWFhgZEjR0rbQghpdta8+O2336QLhLOtNZ4d+w0pUS9Xjk3TROPFpSOI2jAR95cNwZO/fkLC9dOwtzCeYZqYmBgsWLAA1atXR4cOHbBx48Zs1zwpVaoUPv74Y/z7778IDQ3Fp59+ylvsC0hKSgo++OADLF++XNbeunVrHDt2TJZMA8DChQuztBk1YQQ0Go0AIDQajdKhUAHQ6XRi5cqfRSXPtwRe9mq/9uEyYK6oPGmvqDxpr/jrwkOl3wIZobt37wq1Wi39TDk7O4vk5OTXHpeYmCjs7OyESqUSly5dEnv27svy8+nUe7Io/fZIWZuNjY3o3bu3WLNmjYiOjjbAO3zl0aNHr91Hq9UKf39/8e677wpzc/Nc//81b95crF69WsTHxxsgetMTHx8vOnfunOVz79Gjh3jx4oXS4b2RvF6/mYyQIjQajZg9e7ZwdHTMUzJiUbayaP7tASYi9EZ69+4t+7nasmXLa4/ZunWrtH+nTp1E2bJlZecoVd9HVJq0V1T8co8oVS/rBQWAUKlUomXLlmLevHkiIiJC6HS6Qnl/aWlp4quvvhIzZszIcZ/79++LmTNnikqVKuX6f87BwUGMHTtWnDt3rlBipZceP34smjdvnuXzHzJkiEhJSVE6vDfGZISMQlxcnJg/f36WX/DZPX5askTpcMnI+fv7y36m2rdv/9pj+vbtm+PPpI1zJeE+fquoNGmvqDRpr2g28y9Rp1HWC0vmx1tvvSX+97//iePHj4vU1NQCeW9PnjwRPj4+AoBYvny57LnU1FSxa9cu0aNHD1nvUHaPtm3bivXr14uEhIQCiYtydvfuXVGzZs0s34Px48cLrVardHgFgskIGZXnz5+L77//Xri6uub4S7J06dJ56n4myolWqxVVqlSR/VyFh4fnuH9sbKywtLTM9ufR0tJShJ07L05efyx2nr0vTl5/LNK0OhETE/PaXoeMjzJlyoghQ4aIbdu2iaSkpHy9r7NnzwoPDw/pnNu2bRNCCHHz5k0xbdo0Ua5cuVxjcHJyEhMmTBCXL1/O1+uT/iIiIoS7u3uW78XcuXMLredMCUxGyCglJCSIn376KcdfnqNGjRJpWl2WCwBRXs2fP1/2M/X555/nuO/q1atzvYg7OjqKtm3bitGjR4tdu3ZJx50/f16UKlUqzwmJu7u72LRpU74uQr/99puwtraWnW/y5MmiU6dOQqVS5fq6nTp1En/88Ueeameo4Pz777/CyclJ9r1Qq9XCz89P6dAKHJMRMmqJiYli+fLlWf5yUKlUou5nK6Ru8UqT9ooWc/5mLQnlWUxMjKy3w97ePsciwQ4dOuQpmejatWuWXrudO3e+NhkoUaKEmDlzZr6KFJOTk8Vnn32W54Qn/eHm5iamTZsmbt68ma/Pj97MoUOHsiSqlpaWUm9WcZPX6zdv7aUiydraGqNHj8b169exatUqVK5cGQAghMDVHUtkkwFFaZIwekMo/C9GKhQtGZOyZcviP//5j7St0WiwefPmLPs9ePAAR48ezfVcarUac+fOxd69e7NM9NW7d2/Mnj071+O1Wi2sra1hZWWV9zcAIDIyEh07dsTSpUvztL9arUaPHj2wa9cu3L17F7NmzYKHR8631FPh2Lp1K7p3747nz59Lbba2tvD398c777yjYGTKYzJCRZqlpSVGjhyJiMtXUOXdCTB3cEPyg3AkRByT9klPS4rTFNxUuDLPyLpixYos+2zevFmW9Gbm5uaGI0eOYPLkyTlOeT558mQMHDgwx3MkJyfjyy+/ROvWrXH58uU8xX7ixAk0atQIJ06ceO2+lSpVwsyZM3Hnzh3s2bMHvXr1grk510dVws8//4x+/fohJSVFaitbtiyOHDmCDh06KBhZ0cBkhIzC2fvx0FZtj3IjV6JMj//h+fmD0KUkQmjTINJSIFA8puAmw2jZsiXq1KkjbZ85cwZnzpyR7fP777/neLy3tzfCwsLQtm3bXF9HpVJh9erVaNq0aa77nTp1Cg0aNMB3332HlNQ0BN14gl1hDxB044mUYAshsHTpUrRv3x5RUVGve4twd3dHcHAwpk+fjgoVcp7lmAqXEAKzZ8/GqFGjZMltpUqVEBgYiMaNGysYXdHBZISMQvrU2iq1Gazd68CqYn082jYL9358Hy8ijmfZjyg3KpUq1/VqIiIicPbs2WyPmzFjBvz9/eHs7Jyn17KxscHOnTtRrlw5qW3YsGHo06ePbL/0XpIynvXw3rw/8cXmMAzwO4XW8w9j5783MHToUIwdO1a2cFpu7t27h7Zt2+L27dt52p8Knk6nw7hx4/DVV1/J2mvXro0TJ06gWrVqCkVW9DAZIaOQcS0a7fOn0PyzHkl3z0GkJiHp7oVs9yPKzaBBg1CyZElpe+PGjXj27Jn0dWbOzs44dOgQvv76a71XSS1Xrhx27doFa+uXP5/NmzfH9u3b8fvvv8PRUb60wfN7EXj4y+fQnN4OodPi3p3b6NejE9avX6/nOwSuXLkCLy8vnDt3Tu9j6c2kpqZi6NCh+PHHH2XtLVq0wPHjx1G+fHmFIiuaOHhIRiF9xd8oTRIsXatCZWkDkZIIAEi6ex4QAm4ONlyzhvLMzs4OgwYNws8//wwASExMxMQ5P2HYx59mSUbatWuHTZs2vdFaIE2aNMG6devw/vvvo3LlylCpVBg4cCA6duyITz4Zhd27d73aWZsKTeDvMCthh9jDq6FLep7lfJaWlnB2doazszPKli372q/JcBISEvCf//wH+/fvl7V36dIFW7dulSXB9BKTETIK6Sv+jt4QCrXaDNYVaiPx5ssxfm3cI6RpouE7uBvM1Fw1lPJu1KhRUjICAL+uXY09D20QffOm1DZt2jR88803BVL42b9/f1y8eFG6OwwAXF1dMWnRapzQVUXs3z9LiYdtk15IibkFu2bvQG1jB7OSDpj1fit0bFgVzs7OsLW15Sq5RVBsbCx69OiBkydPytoHDBiAdevWwdLSUqHIijYmI2Q00lf8nbEnHM8q1pWSEQDoVz4OXeoUoxUsySCizF1gVa46kh9eAQCkPrmHuODtAAC1jR1mfL8CX43K+W6Y/JgxYwZ0Op2s7dHzZJSq3QE2lRrgycFl0CU9h0PbwVCp5CPpLm/VRdWq7N4vqh4+fAgfHx9cvHhR1j527FgsXrw4x7uuiMkIGZkuddzQqZYr1tXQ4aOjv0jtT66HKRcUGSWtTmDGnnCUathNSkYAIPFmCKzK10TZXl9iX6wLpuhEgfa4qdXqLBel9Fons1KlUbbvNIiUxCyJSMb9qOi5du0aOnfunKVgeObMmfjqq6/Yi/UaTNPI6JipVRjaswNsbW2ltiNHjuQ6JwRRZsG3niJSk4QS1VtDbf3qZ0llZg7n/8yEmV1Zg90unl4TpcLLO3bUViVkz6sAuNlbsyaqiDp79ixat24tS0RUKhWWL1+O6dOnMxHJAyYjZJTMzc1lczzcu3cPt27dUjAiMjbpt4GrLaxQqq43rCvVh2O3/8L9801QW9lk2a8wpddEAS8Tj4zSt3171mJNVBF07NgxtG/fHjExMVKbhYUFNm/enOX2ccoZkxEyWu3bt5dtv27qbqKMMg55OHQYBpf3Z8O2rjdUZuY57leY0muiXO3lr+dqb40VgxqxJqoI2rlzJ3x8fBAXFye1lSxZEvv27UO/fv0UjMz4sGaEjFZ2ycjw4cOVCYaMTsbbxZFNfYYKLxMBQw6NpNdEBd96ipj4JDjbvnx99ogUPWvXrsXIkSNlxciOjo7466+/0KxZMwUjM07sGSGj1aBBA9jZ2UnbrBshfRTVoREztQpenmXQu0F5eHmWYSJSBC1YsAAjRoyQJSIVKlRAYGAgE5F8YjJCRitz3cj9+/dxM8P8EESvw6ER0ocQAhMnTsSkSZNk7dWrV8eJEydQs2ZNhSIzfhymIaPWvn177N27V9o+evQoPD09FYyIjA2HRigv0tLSMHLkSKxbt07W3rRpU+zfvx9OTk7KBFZMsGeEjBqLWKkgcGiEcpOYmIh33303SyLi7e2NgIAAJiIFgMkIGbXMdSNHjx5l3QgRFRiNRoMuXbpg9+7dsvb33nsPe/fulc13RPnHZISMmpmZWZa6kRs3bigYEREVF9HR0Wjfvj2OHz8uax81ahQ2b94MKysrhSIrfpiMkNHr0KGDbJtDNUT0pm7evIlWrVohLCxM1j59+nQsX74cZmZmygRWTDEZIaPHuhEiKkjnz59Hq1atsvSy/vjjj5g5cyandy8ETEbI6NWvXx/29vbSNutGiCi/AgMD0a5dO0RFRUlt5ubm2LBhAz7//HMFIyvemIyQ0ctcN/LgwQNcv35dwYiIyBjt27cPnTp1wrNnz6Q2Gxsb7N69Gx988IFygZkAJiNULLBuhIjexPr169G7d28kJb1aGNHBwQF///03unbtqmBkpoHJCBULrBshovxavHgxhgwZAq1WK7W5ubnh+PHjaNmypYKRmQ4mI1Qs1KtXDw4ODtI260aI6HWEEJg2bRrGjRsna69atSpOnjyJunXrKhSZ6WEyQsVC5rqRhw8fsm6EiHKk1WoxatQozJkzR9besGFDnDhxApUrV1YmMBPFZISKjcx1I0eOHFEoEiIqypKTk9G/f3+sWrVK1t6uXTscPXoUzs7OCkVmupiMULHBuhEiep34+Hh069YN27Ztk7X36dMH/v7+suUlyHCYjFCxUa9ePZQuXVraZt0IEWX06NEjdOjQAYcPH5a1jxgxAn/++Sesra0VioyYjFCxoVarZXUjkZGRuHbtmoIREVFRcefOHbRu3RohISGy9kmTJsHPzw/m5uYKRUZAPpORZcuWoXLlyrC2tkbz5s0RHByc6/7Pnj3DmDFj4ObmBisrK1SrVg379+/PV8BEuck8VMO6ESK6dOkSWrVqhatXr8raFy5ciHnz5nF69yJA72Rky5YtGD9+PHx9fREaGor69evDx8cHMTEx2e6fkpKCTp064fbt29i6dSuuXLkCPz8/lC9f/o2DJ8qMk58RUUanTp1CmzZt8ODBA6nNzMwMv/zyC/73v/8pGBllpBJ6Dqo3b94cTZs2xdKlSwEAOp0O7u7uGDt2LCZPnpxl/5UrV+K7777D5cuXYWFhka8g4+LiYG9vD41Gw+IiypVOp4OTkxNiY2MBAK6urnj48CH/8iEyQQcOHMA777yDhIQEqc3a2hpbtmxBr169FIzMdOT1+q1Xz0hKSgpCQkLg7e396gRqNby9vREUFJTtMbt374aXlxfGjBkDFxcX1KlTB3PmzJHNdJdZcnIy4uLiZA+ivFCr1WjXrp20HRUVlaVrloiKv82bN6Nnz56yRMTOzg4HDhxgIlIE6ZWMPH78GFqtFi4uLrJ2FxcX2QqHGd28eRNbt26FVqvF/v37MX36dCxatAizZs3K8XXmzp0Le3t76eHu7q5PmGTieIsvkWlbtmwZBg4ciNTUVKnNxcUFx44dkxW5U9FR6HfT6HQ6ODs7Y9WqVWjcuDH69++PadOmYeXKlTkeM2XKFGg0Gulx7969wg6TihFOfkZkmoQQ+Oabb/DZZ5/Jbuv38PDAiRMn0KBBA+WCo1zpdS+Tk5MTzMzMEB0dLWuPjo6Gq6trtse4ubnBwsICZmZmUlvNmjURFRWFlJQUWFpaZjnGysoKVlZW+oRGJKlTpw4cHR3x9OlTAK/mG2HdCFHxpdPp8Pnnn2PZsmWy9nr16sHf3x9ubm4KRUZ5oVfPiKWlJRo3boyAgACpTafTISAgAF5eXtke06pVK1y/fh06nU5qu3r1Ktzc3LJNRIjeVOa6kejoaFy5ckXBiIioMKWkpGDgwIFZEpHWrVvj2LFjTESMgN7DNOPHj4efnx9+/fVXREREYPTo0Xjx4gWGDRsGABgyZAimTJki7T969Gg8ffoUX3zxBa5evYp9+/Zhzpw5GDNmTMG9C6JMWDdCZBqeP3+Onj17YsuWLbL2Hj164MCBA7LVvKno0nvKuf79++PRo0f4+uuvERUVhQYNGsDf318qar179y7U6lc5jru7Ow4cOIBx48ahXr16KF++PL744gtMmjSp4N4FUSbZTX42atQoZYIhokLx5MkTdO/eHadPn5a1DxkyBKtXr873dBJkeHrPM6IEzjNC+kovnH7y5AkAwNnZGVFRUawbISom7t+/j86dOyMiIkLWPn78eHz33XeyP4pJOYUyzwiRschcNxITE4PLly8rGBERFZQrV66gVatWWRKRuXPnYuHChUxEjBC/Y1RssW6EqPg5c+YMWrdujbt370ptarUaq1atwuTJk9n7aaSYjFCxxUXziIqXgIAAdOjQAY8fP5baLC0t8eeff2LkyJEKRkZviskIFVu1a9eGk5OTtJ0+3wgRGZ+tW7eiW7dueP78udRWqlQp/PXXX3jnnXcUjIwKApMRKrYy1408evQoyxgzERV9q1atQr9+/ZCSkiK1OTk54ejRo+jYsaOCkVFBYTJCxRrrRoiMlxACc+bMwSeffCLr1axYsSJOnDiBxo0bKxgdFSQmI1SsMRkhMk46nQ7jx4/HtGnTZO21atXCyZMnUa1aNYUiKzhanUDQjSfYFfYAQTeeQKsz3WFkvSc9IzImtWrVgpOTk1TwxnVqiIq+1NRUDB8+HBs2bJC1t2jRAvv27YOjo6NCkRUc/4uRmLEnHJGaJKnNzd4avj1roUsd05u+nj0jVKyp1WpZ78ijR48QHh6uXEBElKuEhAT07ds3SyLSpUsX/P3338UmERm9IRSRmiTZ8FOUJgmjN4TC/2KkgtEpg8kIFXscqiEyDrGxsejcuTP27dsnax8wYAB27dqFkiVLKhRZwdHqBL7eegbxFwIQvfkrxB5eLT2XnpbM2BNuckM2TEao2GMyQlT0PXz4EO3atcOJEydk7Z999hk2bNhg9Ku8p6amYt++fejS+12cmf0fPNn/A5LuhOFF+FHoUhKl/QSASE0Sgm89VS5YBTAZoWKvVq1aKFu2rLR99OhR6HQ6BSMiooyuX7+OVq1a4cKFC7L2GTNm4Keffipy07s/f/4c9+7de+1+QggEBwfj888/R/ny5dGjRw/8vXcHRFqytI8uQYNn/2zIcmxMfFKWtuKsaH2HiQqBSqWS9Y48fvyYdSNERcTZs2fRqlUr3L59W2pTqVRYvnw5vv766yJXbH7u3Dk0adIEDx8+zHGfGzduYObMmahevTqaN2+OJUuW4NGjR9nua1bKES8u/wOh08ranW2tCzTuoo7JCJkEDtUQFT3Hjh1D+/btERMTI7VZWFhg06ZNGD16tIKRZSWEwIoVK9C8eXNcuXIFFStWlD3/+PFjLF++HC1btkTVqlXh6+uLa9euZXsu8xJ2sG3YHa6DvoNdqw+ge/4UCVdOAgBUeHlXTTMP4y/U1Qdv7SWTkF0y8tlnnykTDJGJ0uoEgm89RUx8Ei6fOgzf/45EcvKrIYuSJUti+/bt6Ny5s4JRZvXs2TN89NFH2LZtG4CX6+G4uLggMTERe/fuxYYNG7B//36kpaXleA4rKyv06tULgwcPBirUw+dbLgIAEq4HAwA0p/5AyRqtAZUKvj1rwUxdtHqEChuTETIJNWvWhLOzs/QX2LFjx6DT6YrcWDRRcZVxXo3n5w/hif8SQLyq3XJ0dMT+/fvRvHnz154rOTkZV69eRWxsLNq2bVuYYSM4OBj9+/eXDSOVKFECI0eOxNatWxEXF5fjselDxIMGDcK7774Le3t76TkLC0vM2BOOmNiXt/GmxtyCdfR5LJ4wzCTnGVEJI1g5LC4uDvb29tBoNLCzs1M6HDJS/fv3xx9//CFtnz9/HnXr1lUwIiLTkD6vhgCgOb0Nz47+InveycUNx48EoGbNmrL2tLQ0XL9+HZcuXcLFixelf69evQqtVov9+/eja9euhRKzTqfDDz/8gMmTJ+fa45GdOnXqYPDgwRgwYADc3d1z3E+rE6hdrwGuXDoPAPBq2RInAgOLXJ3Mm8jr9Zs9I2Qy2rdvL0tGjh49ymSEqJBpdQIz9oRDAEi8dTZLImLuWAEVBs+DuYUldu/eLUs8IiIiZIvjZTRs2LBCS0QeP36MoUOHYv/+/Xk+ply5chg4cCAGDx6MevXq5ekYtQqIvHdb2g46eRL//PNPoff2FEXsGSGTERERgVq1aknb77zzjjQGTESFI+jGEwzwOwXgZRHo04PL8TzsLwCA2sYOZrZlkBb7ECI1ObfTyJQrVw6XLl2Cg4NDvmLKWLvibPuyWDS9RuPYsWMYOHBgrnfLpLO1tcW7776LQYMGoX379jAzM9MrjsePH8umHQAAHx8f+Pv763Weoow9I0SZ1KhRg3UjRAaWcb4MlUoFx86jkfYsGimPbkGXGAddYs41Fzl58uQJWrZsicqVK6NSpUqoXLmy7GsXF5cchzpyWhPmq27VEbJrLWbMmJHneYjGjBmDOXPm5HtY5fr161naDhw4gJCQEJNbkZjJCJmM9GKy9KGaJ0+e4OLFi3nuUiUi/WWeL0OlUsP5vemAAHRJzxF/dj/iw/ZDl6DJ8zmTk5MRERGBiIiIbJ+3trZGxYoVsyQrkdqSWHzqGdSlHKFSvfoj5P6Dh3iv13gk3T2v13ubN28e0tLSsGDBgnwlJDdu3Mi2fe7cudi6dave5zNmTEbIpHTo0CFL3QiTEaLC08zDEW721ojSJElrr6jMLAAAZqVKo3SbD1DdZzBGlnuIn376McssrPmRlJSEq1ev4urVq9nvoDaHpYsn3IYsQuLNEDze971eyVBGCxcuxPPnz7Fs2TK9e1mz6xkBgO3btyMiIiJLQW9xxmSETEp28418/vnnygRDZALM1C/nzRi9IRQqvFoMDng5wRcAzHinAbrU6YoRI4bj8OHD+OGHH7IslpdRjRo18OTJkxxnNX0tXRogdIg9tg7xofugtrSBuWMFqK1KoH4VN1RwdoSdnV2OD1tb2yxt+RnuzSkZEUJg/vz5WLduXf7enxFiASuZFCEE3NzcEB0dDeDl3AaPHj1i3QhRIcupVsO3Z61s59W4evUqfvzxR6xbtw4JCQmy51atWoWRI0fixYsXuHv3Lm7fvo3bt2/jzp07sn+joqJyjMemWkuU7T0JKrW86PTH9xugd4Pyb/hu86Zly5YICgrK9jkzMzNcv34dlStXNkgshSWv128mI2Ry3n//fWzZskXaPnfuHIdqiAwgt7tYcvL06VOsXr0aS5Yswf379wEA7dq1y9OSDklJSVKycvjfS1ix7xTSNNHQah7BxrMJ7L36ZTlm08gW8PIsk6/3py9nZ+dce3c+/fRTLFu2zCCxFBYmI0Q5+PnnnzFq1Chpe/Hixfjiiy8UjIiIXic1NRXbt2/HDz/8gNOnT+Pu3bu5TiiWmVYn0Hr+YVntSkYqAK721gic1NEgU7GnX9dyY2Vlhdu3b8PV1bXQ4ykseb1+s2+aTA4XzSMyPhYWFujfvz9OnTqFoKAgREZG6nV8eu0K8KpWJV36tiHXhMnpTpqMkpOT8cMPPxggGuUxGSGTU61aNdlfGunzjRCRcWjRogWaNWum93Fd6rhhxaBGcLWX327sam+NFYMaGXRNmIzJSMbJGAFgypQp2L59OwYNGoRNmzYhNjbWYHEphXfTkMlJn29k8+bNAIDY2FhcuHAB9evXVzgyIipsXeq4oVMtV71rVwra9evXYWNjgx9++AGdO3dGlSpVpOfu3r2LOXPmoG/fvkhJSZGtbFxcMRkhk5QxGQGAI0eOMBkhMhFmapXBilRzYm9vj9DQUNSoUQM6nQ7W1tZISnp5p9GVK1ek/SwtLWFpaalUmAbDYRoySR06dJBts26EiAxp9OjRqFGjBgBArVajWrVq0nOXL1+GEdxbUqCYjJBJeuutt+Dm9mp8+Pjx46wbISLFVK9eXfr6+fPnehfoGjsmI2SS0utG0sXGxuL8ef3WpSAiKijpvSTpLl++rFAkymAyQiYr8y2+R44cUSYQIjJ5TEaITBTrRoioqMg4TAPIi1hNAZMRMllVq1ZFuXLlpO3jx49Dq9UqGBERmarMyQh7RohMROa6kWfPnrFuhIgUUapUKZQv/2qBPvaMEJkQTg1PREVFxrqRO3fuZFmtuDhjMkImjUWsRFRUZC5ivXr1qkKRGB6TETJpVatWlXWNsm6EiJRiykWsTEbIpGWuG9FoNDh37pxyARGRyTLl23uZjJDJY90IERUFTEaITBjrRoioKChfvjxKlCghbXOYhsiEeHp6okKFCtI260aISAlqtVpWN3LlyhWTWTOLyQiZvMx1I3FxcQgLC1MsHiIyXRmTkYSEBDx48EDBaAyHyQgRWDdCREWDqdaNMBkhApMRIioamIwQmbAqVarA3d1d2j5+/DjS0tIUjIiITJGpzjXCZIQIrBshoqKhWrVqsm32jBCZGA7VEJHSSpQogUqVKknbTEaITAyTESIqCjIO1Tx48ADx8fEKRmMYTEaI/p+HhwfrRohIcaa4YB6TEaL/p1Kp0KFDB2k7Pj4eZ8+eVTAiIjJFpljEymSEKAMO1RCR0kzx9l4mI0QZMBkhIqUxGSEycZUrV0bFihWl7X/++Yd1I0RkUG5ubihVqpS0zWGaHCxbtgyVK1eGtbU1mjdvjuDg4Dwdt3nzZqhUKvTp0yc/L0tU6LKrGwkNDVUwIiIyNSqVStY7cvXq1WK/YJ7eyciWLVswfvx4+Pr6IjQ0FPXr14ePjw9iYmJyPe727duYMGEC2rRpk+9giQyBQzVEpLSMyUhSUhLu3r2rYDSFT+9k5Pvvv8fIkSMxbNgw1KpVCytXrkSJEiWwdu3aHI/RarX44IMPMGPGDFSpUuWNAiYqbExGiEhpme+oKe51I3olIykpKQgJCYG3t/erE6jV8Pb2RlBQUI7HzZw5E87OzhgxYkSeXic5ORlxcXGyB5GhVK5cWTYDIutGiMjQTK2IVa9k5PHjx9BqtXBxcZG1u7i4ICoqKttjAgMDsWbNGvj5+eX5debOnQt7e3vpkXEiKiJDyNg78vz5c4SEhCgXDBGZHFOba6RQ76aJj4/H4MGD4efnBycnpzwfN2XKFGg0Gulx7969QoySKKuMRawAh2qIyLDeeustqFQqabu494yY67Ozk5MTzMzMEB0dLWuPjo6Gq6trlv1v3LiB27dvo2fPnlJbekWwubk5rly5Ak9PzyzHWVlZwcrKSp/QiApUu3btZNtHjx7FpEmTFIqGiEyNtbU1PDw8cPPmTQDFPxnRq2fE0tISjRs3RkBAgNSm0+kQEBAALy+vLPvXqFEDFy5cQFhYmPTo1asXOnTogLCwMA6/UJFVuXJlVK5cWdoODAxEamqqcgERkcnJOFQTFRUFjUajYDSFS+9hmvHjx8PPzw+//vorIiIiMHr0aLx48QLDhg0DAAwZMgRTpkwB8DKzq1Onjuzh4OAAW1tb1KlTB5aWlgX7bogKEOtGiEhJmYtYi3PdiN7JSP/+/bFw4UJ8/fXXaNCgAcLCwuDv7y8Vtd69exeRkZEFHiiRobFuhIiUZEpFrCohhFA6iNeJi4uDvb09NBoN7OzslA6HTMSdO3dkQzU+Pj7w9/dXLiAiMinHjh2T9dBOnToVs2fPVi6gfMjr9Ztr0xDloFKlSvDw8JC2WTdCRIZkSnONMBkhykXGv0pevHjBuhEiMhhnZ2fY29tL28V5mIbJCFEuMk8Nf+TIEWUCISKTk3nBvGvXrhXb2aCZjBDlguvUEJGSMiYjKSkpuH37tnLBFCImI0S5qFixomxxR9aNEJEhZb6jZufRf6HVFfn7TvTGZIToNTL2jiQkJODMmTPKBUNEJiWhhHwtuDkb/0br+Yfhf7F4TaHBZIToNVg3QkRK8L8YibUXkmVtqU8fIEqThNEbQotVQsJkhOg1WDdCRIam1QnM2BMOcwc3QPXqUp365D7SB2lm7AkvNkM2TEaIXsPd3V22oOOJEyeQkpKiYEREVNwF33qKSE0SVOYWMHd4tRBt6tP7AAABIFKThOBbTxWKsGDptWovkalq3749bty4AeBV3UjLli0VjoqIiquY+CTpa9uG3aF98RQWzlVg5VwFQgioVKos+xkz9owQ5QGHaojIkJxtraWvbao2RdLdCyhZsy0snNylRCTzfsaMyQhRHrCIlYgMqZmHI9zsrZH6+B6iN06GmW0ZWRKiAuBmb41mHo7KBVmAmIwQ5UGFChVQtWpVaZt1I0RUmMzUKgyuJhC1aTK0z5/CqlxN6bn0lMS3Zy2YqVXZn8DIMBkhyqOMvSOJiYn4999/lQuGiIq14OBgTPvoP9AlaAAAVuVfzcTqam+NFYMaoUsdN6XCK3AsYCXKo/bt22P16tXS9tGjR9GqVSsFIyKi4igwMBDdunVDfHw8AMDCwgKbpw6EJuVljUgzD8di0yOSjj0jRHnEuhEiKmx///03fHx8pEQEABo3boz2tcqjd4Py8PIsU+wSEYDJCFGelS9fHm+99Za0ffLkSSQnJ+dyBBFR3u3btw89evRAQkKCrN0UphFgMkKkB9aNEFFh2LZtG/r27ZvtHzhMRohIhvONEFFB+/3339G/f/8cVwT38vIycESGx2SESA9MRoioIK1evRqDBw+GVqvN9vlKlSqhXLlyBo7K8JiMEOmhXLlyqFatmrR94sQJ1o0QUb4sWbIEI0eOhBA5L3ZnCkM0AJMRIr1l7B1JSkpCcHCwcsEQkVFasGABPv/889fux2SEiLLFoRoiehMbN27ETz/9BDs7O6jVuV+GmYwQUbbatWsn22YyQkT6GDhwIO7fvw+NRoNnz57BxcUl2/1KlCiBevXqGTg6ZTAZIdJT5roRzjdCRPm1YMECREdHS9sZe0qaNWsGc3PTmCidyQhRPnTo0EH6OikpCadPn1YwGiIyRvfu3cPChQtlbbt370aZMmUAmM4QDcBkhChfWDdCRG9q6tSpSEpKkrYHDRqE7t27Y/ny5QCYjBDRa7BuhIjeRHBwMDZs2CBt29jYYM6cOQCAfv36oX///mjRooVS4RkckxGifHBzc0P16tWl7ZMnT8r+wiEq7rQ6gaAbT7Ar7AGCbjyBVpfzXBkkJ4TA+PHjZW0TJkyAu7u7tL1mzRppuMYUmEZlDFEh6NChA65cuQIASE5OxunTp7P0mBAVR/4XIzFjTzgiNa8ScDd7a/j2rIUuddwUjMw4bN26FSdOnJC23dzc8OWXX8r2KVmypKHDUhR7RojyiXUjZIr8L0Zi9IZQWSICAFGaJIzeEAr/i5EKRWYckpKSMGnSJFnb7NmzUapUKYUiKhqYjBDlE+tGyNRodQIz9oQj44CMEDq8iDgOndABAGbsCeeQTS6WLFmCW7duSdsNGjTAkCFDFIyoaGAyQpRPrq6uqFGjhrQdFBTEuhEq1oJvPc3SI6IJ+gOPdy/Ao23fIi3pOSI1SQi+9VShCIu2mJgYzJo1S9b2/fffw8zMTKGIig4mI0RvIONQTXJyMk6dOqVcMESFLCb+ZSIihEDSnfOI/nMGNIEbAQCJN/5F1LovkBx1XdqP5L755hvExcVJ271795bNWWTKmIwQvYHMv0g4VEPFWdlSVki8cw7RGycjevNUQGiB/x+eAYA0TTSiNkxE0L4/cl2J1hRdunQJP//8s7Rtbm6OBQsWKBhR0cJkhOgNsG6ETIEQAn///Te+HNYXMZunIfn+JdhUaQLn/8yAQ/vhgCrDpUSbivlfjcewYcOQkJCgXNBFzIQJE6DTvUrcPvvsM9myEqaOyQjRG3BxcUHNmjWl7VOnTrFuhIoNIQQOHjyI1q1bo1OnTjgRGPjyCbU5HN8eCZVKBfvm78BlwByYlSwtO/bXX3+Fl5cXrl27pkDkRYu/vz/8/f2l7dKlS2P69OkKRlT0MBkhekOZ60aCgoKUC4aoAAghcODAAbRs2RI+Pj44efKk7Pl3h3wEdw9PadvavQ7qf/4z6jbxku13/vx5NGnSBNu3bzdI3EVRWloa/ve//8navvnmGzg6OioUUdHEZIToDbFuhIoLIQT++usveHl5oUuXLtkWZDs7O2Ptj/MROKkjNo1sgR/fb4BNI1sgeNZ7CA06nmUOjbi4OLz77ruYMGECUlNTDfVWiozVq1cjPDxc2q5WrRpGjx6tYERFk0oYQZVRXFwc7O3todFoYGdnp3Q4RDIxMTFwcXGRttu2bYtjx44pGBGRfoQQ2L9/P2bOnIng4OBc912zZg2GDx+e6z67d+/GkCFDoNFoZO2tW7fGli1bUK5cuTeO2RhoNBq89dZbePTokdS2a9cu9OrVS8GoDCuv12/2jBC9IWdnZ9SqVUvaPnXqFBITExWMiChvhBDYu3cvmjVrhh49erw2EWnSpAk+/PDD1563V69eCAkJQYMGDWTtgYGBaNiwocn0Hs6ZM0eWiHTs2BE9e/ZUMKKii8kIUQHIWDeSkpLC+UaoyEtLS8PYsWPRs2dPnDlzJk/H/PTTT1Cr83bZ8PT0xMmTJzFixAhZe0xMDN5++23MmzdPdndJcXPr1i0sXrxY2lapVFi0aBFUKpVyQRVhTEaICkDmupEjR44oFAlR3pibm2Pp0qWIiIjA1KlTUaFChVz3HzRoELy8vHLdJzMbGxusXr0aa9euhbW1tdSu0+kwZcoU9OnTB7GxsfmKv6ibPHkyUlJSpO3hw4dn6SmiV1gzQlQAMteNtGnTBsePH1cwIqK8e/bsGbp3757lrpl0JUuWxNWrV9+o1iMsLAzvvfcebty4IWv38PDA1q1b0ahRo3yfu6g5ceIEWrduLW2XLFkS165dg5ub6a1ozJoRIgNydnZG7dq1pe3Tp09zwicyCtHR0Wjfvn2OiQgATJs27Y2LThs0aIAzZ86gT58+svZbt26hZcuWWL16dbGYtVWn02H8+PGytilTpphkIqIPJiNEBYR1I2Rs7ty5gzZt2uDcuXOy9ox/wVapUgXjxo0rkNdzcHDA9u3bsWDBAtnicMnJyRg5ciSGDx9u9En8pk2bZIXA7u7uWZITyorJCFEByZiMAKwboaLtypUraNOmTZYZUpcuXYoJEyZI299//72s3uNNqVQqTJw4EYcPH4arq6vsuXXr1hn1rK0JCQmYPHmyrG3u3LmwsbFRKCLjwWSEqIBwnRoyFmfPnkWbNm1w7949qc3MzAy//fYbxowZgx49egAAOnXqVGhzYrRt2xahoaFo27atrN2YZ2394YcfcP/+fWm7WbNmGDBggIIRGQ8mI0QFpGzZsqhTp460zboRKooCAwPRvn172fwXlpaW2LZtGwYPHgzgZX1HpUqVsHjx4kK9FdXNzQ0BAQH48ssvZe3GOGtrZGQk5s6dK2v7/vvv83wrtKnjp0RUgDIO1aSmpnKdGipS/P390blzZ8TFxUltJUuWxP79+9G7d2+pTaVSYevWrbLJ/AqLubk55s+fj507d8Le3l723KJFi/D222/j4cOHhR7Hm5o+fTpevHghbffr1w+tWrVSMCLjwmSEqABlrhvhUA0VFX/++Sd69eolmx24dOnSCAgIwNtvv51l/yZNmhgyPPTu3RshISGoX7++rP2ff/5Bo0aNiuT/Ja1OIOjGEyzecghr166V2i0tLTFv3jwFIzM+TEaIClDmuhEWsVJRsGbNGrz//vuyIQ9XV1ccP34czZs3VzAyOU9PTwQFBWVZ+yY6OrrIzdrqfzESrecfxvurgjBl0gTZbcn//e9/4eHhoWB0xofJCFEBcnJyQt26daXt4OBgWdctkaEtWrQIH330kewi7uHhgcDAQFmNU1FhY2ODNWvWYM2aNdnO2tq3b1/FZ231vxiJ0RtCEalJQuKNYCTdOS89py5hj2Z9cl9IkLJiMkJUwFg3QkWBEALTp0+X3aYLALVq1cI///wDT09PhSLLm+HDhyMoKAhVqlSRte/evRuNGzfG2bNnFYlLqxOYsSccAoDQpiL2yFrZ8w6tP8DCo/eh1Rn/BG6GxGSEqICxboSUptPp8Pnnn2PWrFmy9iZNmuDYsWMoX768QpHpp0GDBggJCZEV1wIvZ2318vJSZNbW4FtPEalJAgCItFRYu9cBVC8vpRZOFVGqvg8iNUkIvvXUoHEZOyYjRAUs87wJrBshQ0pLS8PQoUOxdOlSWXu7du0QEBAAJycnhSLLHwcHB+zYsQPz588vErO2xsQnSV+rrUqgTJexcOo9GWalysDGsxl0iXFZ9qPXy1cysmzZMlSuXBnW1tZo3ry5bOrbzPz8/NCmTRuULl0apUuXhre3d677Exk7Jycn1KtXT9pm3QgZSlJSEt577z1s2LBB1t6jRw/89ddfRrvQqEqlwpdffomAgADZgpTAq1lbr1+/bpBYnG2zzkZbsnpL2LcZhLjTW3F/6WA8XPsZNv34Lfbu3Yv4+HiDxGXs9E5GtmzZgvHjx8PX1xehoaGoX78+fHx8EBMTk+3+R48exYABA3DkyBEEBQXB3d0dnTt3xoMHD944eKKiKuNQTVpaWq6LkBEVhPj4eHTv3h27du2StQ8cOBDbt28vFlOSt2vXDmfPns121tbGjRtjx44dhR5DMw9HuNlbI/NUcLb1OsGh7RAAQOqj29iy7mf07NkTjo6OaNWqFXx9fXH8+HGkpKQUeozGSCX0HHBr3rw5mjZtKnUB6nQ6uLu7Y+zYsVnm5M+OVqtF6dKlsXTpUgwZMiRPr5nXJYiJioodO3bgnXfekbanTp2K2bNnKxgRFWdPnz5Ft27dcPr0aVn7qFGjsGzZsmI3C2haWhqmTp2K7777LstzEyZMwJw5c2BhYVFor59+Nw0AyC6gQuDp3ysRH7ovx2NLlCiBtm3b4u2334a3tzfq1atX7L4/GeX1+q3XJ5CSkoKQkBB4e3u/OoFaDW9v7zzfMZCQkIDU1FQ4OjrmuE9ycjLi4uJkDyJj0rZtW9k02qwbocISGRmJdu3aZUlEpkyZguXLlxfLC525uTkWLFiAHTt2ZJm1deHChXj77bcRGRlZaK/fpY4bVgxqBFd7+ZCNm4MNNq1diXfffTfHYxMSEuDv74+JEyeiYcOGcHFxQf/+/bFq1SrcuHHD4AW5RYbQw4MHDwQAcfLkSVn7xIkTRbNmzfJ0jtGjR4sqVaqIxMTEHPfx9fUVeJlwyh4ajUafcIkUVb9+feln19zcXMTHxysdEhUzN2/eFFWqVMnyu3LevHlKh2Yw169fl/1fS3+4uLiII0eOFOprp2l14uT1x2Ln2fvi5PXHIk2rE0IIkZiYKNq0aZPtdSynR4kSJcSiRYtEWlpaocZsaBqNJk/Xb4OmzPPmzcPmzZuxY8eOXJeknjJlCjQajfTIuLIkkbFg3QgVpvDwcLRu3Ro3b96U2lQqFVauXIlJkyYpGJlhpc/aOmzYMFl7+qyt8+fPL7RZW83UKnh5lkHvBuXh5VkGZuqXvaHW1tbYtWsXateunafz9OzZE+Hh4Rg/frzsjiFTolcy4uTkBDMzM0RHR8vao6Oj4erqmuuxCxcuxLx583Dw4EHZnQbZsbKygp2dnexBZGw43wgVljNnzqBt27ayBeTMzc3x+++/45NPPlEwMmXY2Nhg7dq12c7aOnnyZPTt2xfPnj0zaEylS5eGv78/KlSokOt+ZcuWxaRJk1CpUiUDRVY06ZWMWFpaonHjxggICJDadDodAgIC4OXlleNxCxYswLfffgt/f3+DL75EpJTMdSNMRqggHDt2DB07dsSTJ0+kNmtra+zcuRMDBgxQMDLlDR8+HCdPniwys7ZWqFAB/v7+cHBwyHGfR48eoXXr1hgxYgQeP35suOCKGn3HfzZv3iysrKzEunXrRHh4uPj444+Fg4ODiIqKEkIIMXjwYDF58mRp/3nz5glLS0uxdetWERkZKT30GT/P65gTUVHDuhEqSHv27BHW1tayWgNbW1tx9OhRpUMrUmJjY0WvXr2y1GVYWVmJ1atXGzye48ePCysrq9fWjTg6Ogo/Pz+h1WoNHmNhyev1W+9kRAghlixZIipWrCgsLS1Fs2bNxKlTp6Tn2rVrJ4YOHSptV6pUKdsP3dfXN8+vx2SEjNV///tf2c+9v7+/0iGRkdq4caMwNzeX/TyVKVNGnDlzRunQiiSdTifmz58v1Gp1luvPsGHDxIsXLwwaz7Zt24RKpZJiqFWrVo7XRy8vLxEWFmbQ+ApLoSYjhsZkhIzVzp07Zb9kMvYaEuXVihUrZBcyAKJcuXLi0qVLSodW5B09elS4uLhkueDXr19fXLt2zaCxLFu2THr9UaNGiefPn4vJkydnSTIBCDMzMzFu3DgRFxdn0BgLWpG8m4bI1LRp04Z1I/RG5s2bh9GjR8vmn/D09ERgYCBq1aqlYGTGIX3W1jZt2sjaz507h8aNG2Pnzp0Gi+XTTz/F1KlTAQDOzs4oWbIk5s6di3PnzmUpeNdqtfjhhx9Qo0YN/Pnnn8V+/hEmI0SFyNHREfXr15e2//33X65VQXkihMDkyZMxZcoUWXudOnXwzz//wMPDQ6HIjI+bmxsOHz6MiRMnytrj4uLQt29fTJw4EWlpaQaJZdasWfjwww/h7OwstdWqVQuHDx/G+vXrZe0A8PDhQ/Tr1w9du3Y12Po7SmAyQlTIOnToIH2t1Wpx4sQJBaMhY6DVavHpp59i/vz5svbmzZvj2LFjcHNzUygy45Vx1tbM00UsXLgQHTt2LNRZW9OpVCqsWrUKXbp0ydI+aNAgXL58GZ9++qmsRxUADhw4gDp16mDGjBlISip+KwIzGSEqZJxvhPSRmpqKwYMHY+XKlbL2t99+G3///XeuS2nQ6/Xp0wchISFZ5rv6559/0LBhQxw7dqzQY7CwsICnp2e2z5UuXRrLli3D6dOn0bhxY9lzycnJ+Oabb1C3bl0cOnSo0OM0JCYjRIWMdSOUV4mJiejbty82bdoka+/Tpw/27t2LUqVKKRRZ8VK1alWcOnUq21lbO3bsiPnz5yteo9G0aVOcPn0aS5cuzdKTc/36dXTu3Bn9+/eXTXxnzJiMEBWy0qVLo0GDBtL2mTNnWDdCWcTFxaFr167Yt0++4uuQIUPw559/5rqEBukvfdbW1atXw8rKSmpPn7W1T58+Bp+1NTMzMzOMGTMGV65cwcCBA7M8/8cff6BGjRpYvHixwWpeCguTESIDyFw3EhgYqGA0VNQ8fvwYHTt2zDJEMHbsWPzyyy8wNzdXKLLib8SIEQgKCspx1tawsDBlAsvA1dUVv//+OwICAlC9enXZc/Hx8Rg3bhyaNm2KU6dOKRThm2MyQmQArBuhnDx48ABt27ZFSEiIrH369On48ccfoVbz13Rha9iwIc6cOYNevXrJ2m/evIkWLVpgzZo1CkUm17FjR5w7dw6zZs3K0lMWFhYGLy8vfPzxx3j69KlCEeYff8qJDIB1I5Sd69evo3Xr1oiIiJC1L1q0CDNnzsxyRwUVntKlS2PHjh2YN2+eLAFMTk7GRx99hOHDhyMxMVHBCF+ysrLCtGnTEB4eju7du2d53s/PD9WrV8cvv/xSaKsVFwYmI0QG4ODggIYNG0rbISEhiIuLUzAiUtqFCxfQpk0b3L59W2pTq9VYs2YNxo8fr1xgJkytVmPSpEkICAiAi4uL7LlffvkFXl5e2c71ER4ebvD6Eg8PD+zZswc7duyAu7u77LnHjx9j+PDhaNeuHS5evGjQuPKLyQiRgWQcqmHdiGk7ffo02rVrh6ioKKnNwsICW7ZswfDhwxWMjICX/1f1mbX1wIEDGDVqlMHvwFGpVOjTpw/Cw8MxceLELLVFgYGBaNCgASZOnIjnz58bNDZ9MRkhMpCMRawAh2pMVUBAAN5++23ExsZKbTY2NtizZw/ee+89BSOjjNzc3BAQEIAJEybI2tNnbf3yyy+lO1hCQ0OxZcsW/Pbbb0qEilKlSmHBggXZJlBarRYLFy5EzZo1sX37dgghoNUJBN14gl1hDxB04wm0OuWnmlcJpW+mzoO4uDjY29tDo9Fkud+ayFg8e/YMZcqUkcZxmzZtiuDgYIWjIkPatWsX+vXrh5SUFKnN3t4ee/fuRevWrRWMjHKzY8cOfPjhh1mGVtu2bYvNmzfD29sb4eHhKFmyJMLCwlC1alWFIn25jMBvv/2GCRMm4PHjx1meb9rmbaQ2H4pYs1eT57nZW8O3Zy10qVPwM/vm9frNZITIgJo0aSLdNaFWqxEbG8ufaROxfv16DBs2DFqtVmorW7YsDh48KJuHhoqma9eu4b333sP58+dl7S4uLnj06JH0R0aTJk1w4sQJWFpaKhGm5OnTp5g6dSpWrVqVZfhIZW4JO69+sG/2LlTmFkgvk14xqFGBJyR5vX5zmIbIgDLWjeh0OtaNmIilS5diyJAhskTE3d0d//zzDxMRI/HWW28hKCgIH374oaw9OjpadtfKmTNn4Ovra+DosnJ0dMTKlStx8uTJLD9jIi0Fmn82IPFW6Mvt/2+fsSdcsSEb9owQGdC+ffvQo0cPaXvChAn47rvvFIyICpMQArNnz8b06dNl7dWqVcOhQ4dQsWJFhSKj/BJCYM2aNfjss8+QnJyc7T4qlQp///03OnbsWKCvvXHjRgQEBMDCwkKvh1qtxh+7/fHX7u0QaS+HCK3c68JlwJwst49vGtkCXp5lCizmvF6/Oa0fkQG1bt0aarVa+ksqcxFrQkICSpQooUBkVNCEEJg4cSIWLVoka69fvz4OHDiQ5dZRMg4qlQrdunWDt7d3lqn70wkhMHjwYJw/fx5lyhTchb13795YsmTJm820qjYDADj6jMl2HpuYeGVWBOYwDZEB2dvbo1GjRtJ2aGgoNBoNgJd3Wfzvf/9TKjQqQFqtFiNHjsySiLRq1QpHjx5lImKkbt++jU8//RQeHh45JiLpHj58iBEjRhTo7b4lS5bE3r17UaNGjXwdb1PNC+U/WYPyH6+CZZkK2e7jbKvMGkhMRogMLLu6kbVr16JLly5Gv9gVASkpKRgwYECWKcQ7d+6MAwcOwMHBQZnA6I0IIRASEoIbN24gNTU1T8fs2rULP//8c4HG8OTJE9lQb16UK1cOW7duQ/0Pv4WFnRPM7bMmwyq8vKummYdj1hMYAJMRokKWlpaGX375BefOnYNWq82yTs0XX3yBESNGIC0tDSVLllQmSCoQCQkJ6N27N/78809Z+3vvvYfdu3fz+2vEVCoV3n33XRw4cAC3b9/GzJkz4eHh8drjxo0bh/Dw8Hy/blxcHHbu3IlRo0ahSpUqqF69OhYuXJjnmMeMGYOIiAi8++478O1Z62V75v3+/1/fnrVgplZmCQLWjBAVMnNzc1y/fh3Dhw9HyZIlUbt2bdnzN27ckL4uVaqUocOjAvLs2TP06NEDJ06ckLUPHz4cq1atgpmZmUKRUUGrWLEipk+fjmnTpuH48eNYu3Yttm7dmu3aNUlJSRgwYABOnz4Ntbkl1gfdxp2nCajkWAKDvSrD0lzeJ6DT6XD27FkcOHAA/v7+CAoKylePaZ06deDn54cWLVpIbV3quGHFoEaYsScckZpXtSGuhTjPSF7xbhoiA3jx4gVq1qyJe/fu5brf3LlzMXnyZANFRQUlJiYGPj4+WZabHz9+PBYuXMgF70yARqPBH3/8gbVr12ZbYNqy9yBE1nwfGe+cVauAkW08MLxxGRw8eBAHDhzAwYMH8ejRo3zHYW1tja+//hoTJkyAhYVFtvtodQLBt54iJj4JzrYvh2YKq0eEk54RFTFbt27Ff/7zn1z3+emnnzB27FgDRUQF4d69e/D29sbVq1dl7d9++y2mTZvGRMQERURE4JdffsFvv/2G6Ohoqd35PV/YeDaF0KYi+cFlJN4KQdKts0iJvpHL2V6xsbFBu3bt0KVLF1SpUgW9evWSPf/2229j5cqVis4Am1mer9/CCGg0GgFAaDQapUMhyjedTie8vb0FXs4xlO1j7dq1SodJerhy5YqoWLFilu/jTz/9pHRoVASkpKSIbTt2ihJvtRBQmwl1CQdR9r1vhMrSJtffAxkftWvXFuPHjxcHDx4UiYmJ0rk3b94s7VOmTBnx66+/Cp1Op+C7zV5er9+sGSEyEJVKhSVLlqBu3bo5jgGzZsR4hIWFwcfHBzExMVKbmZkZ1q5diyFDhigYGRUVFhYWiC1TF2Xf+QraF7F4cekIkm6egUjNfrI0AHBwcECnTp3g4+MDHx8fVKiQ/S24Z8+eBQAMGTIEixYtgpOTU6G8B0NhMkJkQDVq1MC4ceNynHWVd1sYhxMnTqB79+7SHDEAYGlpiS1btqBPnz7KBUZFzp2nCQAAs5KlYdfsHQghkBxzCyn3L/3/HipYulVDi7YdMe+LwWjatCnMzV9/aY6Li8OhQ4fg7e1diNEbDpMRIgObPn06fv/9dzx8+DDLc+wZKfoOHjyIvn37IiEhQWorWbIkdu7cWWwuDFRwKjnKZ1RWqVQoVbs9kku7wcajEawrN4CZjR2GdK8JL68qeT7vkiVLitUdWpxnhMjAbG1tc5wngMlI0bZt2zb06NFDlog4ODjg77//ZiJC2RrsVRmZb1SxbdAVTt3+i5I128LMxg5q1cv99FGcEhGAyQiRIt5//320a9cuSzuHaYquX375Bf369ZPNvuni4oJjx47J5nIgysjSXI2RbXKfHG1kG48s842YGtN+90QKUalUWLp0aZa/btgz8uZ+//13hIaGypZ1f1OLFy/G8OHDZeesVKkSAgMDUa9evQJ7HSqepnSrhU/aemTpIVGrgE/aemBKt1rKBFaEsGaESCF16tTB2LFjsXjxYqmNycibS0lJQePGjeHi4oIuXbqgS5cu6Ny5Mxwd877mRvqkUNFxidiz9kesXSofVqtRowYOHTqU450ORJlN6VYL/+tc47UzsJoqTnpGpCCNRoPq1atLEyNt+/c23EqXKtQZEYu7tLQ01K5dWzYJmVqtRvPmzdG1a1d07doVjRo1glqd/UXA/2IkZuwJx8NnCYgN8EN8yB7Z840bN8Zff/2FsmXLFur7ICoOOAMrkZGYMOcnLJr2BWBmgUoTdgB4uXqm0mtFGLPNmzdjwIABOT5ftmxZ+Pj4oGvXrujcubM0R4P/xUiM3hAKnU6LJ3/9hBcXA2TH1WncAicOH+DvIaI8yuv1m8M0RAryvxiJrRoPWJWvidSnD6T2KE0SRm8IxYpBjfKdkAghkJaWBq1Wi7S0NJP6+nVLvD969AgbNmzAhg0boFKp0KxZM/h06YJtMU7QlaqIpFtnsyQiNp5NUaLXdJQsZZuv7wcR5Yw9I0QK0eoEWs8/jEhNElKibyJm6wxYlHGHEFpApwV0OpirBaqVLZGvC3JBFnCaErWNHWyqNIbaxh7xZ3YCAErUbAun7uOhMjPHppEt4OVZRtkgiYwEe0aIirjgW0+lZbwtXaqgZO32iDu9TbZPMoCz9xUIzgSZmZvDokJdlKjmBZuqzWFuWwYqM3Pokp/DsdNoqNQv73yKiU96zZmISF9MRogUkvmiVqJ66yzJCL2kVqthbm4Oc3NzmJmZvfZrlUqFixcvvva8JUqUQNeuXdG3b1+UreWFj7dEyJ53aDcUAGQr7zrbWhfsmyMiJiNESsl8UVOZmQMqNaBSv/wrXK2GSqWGXQlrWFtZ5OkiXBy/NjMzkyUDebF9+3a8++672T5XpkwZ9OzZE3379kWnTp1gY2MD4OWwmZv/LURpkpA+dp3xdVUAXO2t0cwj77cIE1HeMBkhUkgzD0e42VtLFz9LZw9U+nK39Hz6xS9wUkfe5qsHIQRmz54ta3N3d0ffvn3Rt29ftG7dOtuFyMzUKvj2rIXRG0KhApCxmC790/ftWYvfC6JCwGSESCG8+BUOf39/hIaGolatWlIC0qhRozz1rnSp44YVgxphxp5wqZ4HeJkU8lZrosLDu2mIFJY+yVbGix/nGcm/v//+GxUrVkS1atXyfY70GVhj4pPgbGvNSeiI8omTnhEZEV78iKg44q29REbETK3i3BVEZLK4Qg8REREpiskIERERKYrJCBERESmKyQgREREpiskIERERKYrJCBERESmKyQgREREpiskIERERKYrJCBERESmKyQgREREpiskIERERKYrJCBERESmKyQgREREpKl/JyLJly1C5cmVYW1ujefPmCA4OznX/P//8EzVq1IC1tTXq1q2L/fv35ytYIiIiKn70Tka2bNmC8ePHw9fXF6Ghoahfvz58fHwQExOT7f4nT57EgAEDMGLECJw9exZ9+vRBnz59cPHixTcOnoiIiIyfSggh9DmgefPmaNq0KZYuXQoA0Ol0cHd3x9ixYzF58uQs+/fv3x8vXrzA3r17pbYWLVqgQYMGWLlyZZ5eMy4uDvb29tBoNLCzs9MnXCIiIlJIXq/fevWMpKSkICQkBN7e3q9OoFbD29sbQUFB2R4TFBQk2x8AfHx8ctwfAJKTkxEXFyd7EBERUfGkVzLy+PFjaLVauLi4yNpdXFwQFRWV7TFRUVF67Q8Ac+fOhb29vfRwd3fXJ0wiIiIyIkXybpopU6ZAo9FIj3v37ikdEhERERUSc312dnJygpmZGaKjo2Xt0dHRcHV1zfYYV1dXvfYHACsrK1hZWekTGhERERkpvXpGLC0t0bhxYwQEBEhtOp0OAQEB8PLyyvYYLy8v2f4AcOjQoRz3JyIiItOiV88IAIwfPx5Dhw5FkyZN0KxZMyxevBgvXrzAsGHDAABDhgxB+fLlMXfuXADAF198gXbt2mHRokXo3r07Nm/ejDNnzmDVqlUF+06IiIjIKOmdjPTv3x+PHj3C119/jaioKDRo0AD+/v5Skerdu3ehVr/qcGnZsiU2btyIr776ClOnTsVbb72FnTt3ok6dOgX3LoiIiMho6T3PiBI4zwgREZHxKZR5RoiIiIgKGpMRIiIiUhSTESIiIlIUkxEiIiJSFJMRIiIiUhSTESIiIlIUkxEiIiJSFJMRIiIiUhSTESIiIlKU3tPBKyF9kti4uDiFIyEiIqK8Sr9uv26yd6NIRuLj4wEA7u7uCkdCRERE+oqPj4e9vX2OzxvF2jQ6nQ4PHz6Era0tVCpVgZ03Li4O7u7uuHfvHte8KUT8nA2Hn7Vh8HM2DH7OhlGYn7MQAvHx8ShXrpxsEd3MjKJnRK1Wo0KFCoV2fjs7O/6gGwA/Z8PhZ20Y/JwNg5+zYRTW55xbj0g6FrASERGRopiMEBERkaJMOhmxsrKCr68vrKyslA6lWOPnbDj8rA2Dn7Nh8HM2jKLwORtFASsREREVXybdM0JERETKYzJCREREimIyQkRERIpiMkJERESKKvbJyLJly1C5cmVYW1ujefPmCA4OznX/P//8EzVq1IC1tTXq1q2L/fv3GyhS46bP5+zn54c2bdqgdOnSKF26NLy9vV/7faFX9P2ZTrd582aoVCr06dOncAMsJvT9nJ89e4YxY8bAzc0NVlZWqFatGn9/5IG+n/PixYtRvXp12NjYwN3dHePGjUNSUpKBojVOx48fR8+ePVGuXDmoVCrs3LnztcccPXoUjRo1gpWVFapWrYp169YVbpCiGNu8ebOwtLQUa9euFZcuXRIjR44UDg4OIjo6Otv9T5w4IczMzMSCBQtEeHi4+Oqrr4SFhYW4cOGCgSM3Lvp+zgMHDhTLli0TZ8+eFREREeLDDz8U9vb24v79+waO3Pjo+1mnu3Xrlihfvrxo06aN6N27t2GCNWL6fs7JycmiSZMmolu3biIwMFDcunVLHD16VISFhRk4cuOi7+f8+++/CysrK/H777+LW7duiQMHDgg3Nzcxbtw4A0duXPbv3y+mTZsmtm/fLgCIHTt25Lr/zZs3RYkSJcT48eNFeHi4WLJkiTAzMxP+/v6FFmOxTkaaNWsmxowZI21rtVpRrlw5MXfu3Gz379evn+jevbusrXnz5uKTTz4p1DiNnb6fc2ZpaWnC1tZW/Prrr4UVYrGRn886LS1NtGzZUqxevVoMHTqUyUge6Ps5r1ixQlSpUkWkpKQYKsRiQd/PecyYMaJjx46ytvHjx4tWrVoVapzFSV6SkS+//FLUrl1b1ta/f3/h4+NTaHEV22GalJQUhISEwNvbW2pTq9Xw9vZGUFBQtscEBQXJ9gcAHx+fHPen/H3OmSUkJCA1NRWOjo6FFWaxkN/PeubMmXB2dsaIESMMEabRy8/nvHv3bnh5eWHMmDFwcXFBnTp1MGfOHGi1WkOFbXTy8zm3bNkSISEh0lDOzZs3sX//fnTr1s0gMZsKJa6FRrFQXn48fvwYWq0WLi4usnYXFxdcvnw522OioqKy3T8qKqrQ4jR2+fmcM5s0aRLKlSuX5Yef5PLzWQcGBmLNmjUICwszQITFQ34+55s3b+Lw4cP44IMPsH//fly/fh2ffvopUlNT4evra4iwjU5+PueBAwfi8ePHaN26NYQQSEtLw6hRozB16lRDhGwycroWxsXFITExETY2NgX+msW2Z4SMw7x587B582bs2LED1tbWSodTrMTHx2Pw4MHw8/ODk5OT0uEUazqdDs7Ozli1ahUaN26M/v37Y9q0aVi5cqXSoRUrR48exZw5c7B8+XKEhoZi+/bt2LdvH7799lulQ6M3VGx7RpycnGBmZobo6GhZe3R0NFxdXbM9xtXVVa/9KX+fc7qFCxdi3rx5+Pvvv1GvXr3CDLNY0PezvnHjBm7fvo2ePXtKbTqdDgBgbm6OK1euwNPTs3CDNkL5+Zl2c3ODhYUFzMzMpLaaNWsiKioKKSkpsLS0LNSYjVF+Pufp06dj8ODB+OijjwAAdevWxYsXL/Dxxx9j2rRpUKv593VByOlaaGdnVyi9IkAx7hmxtLRE48aNERAQILXpdDoEBATAy8sr22O8vLxk+wPAoUOHctyf8vc5A8CCBQvw7bffwt/fH02aNDFEqEZP38+6Ro0auHDhAsLCwqRHr1690KFDB4SFhcHd3d2Q4RuN/PxMt2rVCtevX5eSPQC4evUq3NzcmIjkID+fc0JCQpaEIz0BFFxmrcAoci0stNLYImDz5s3CyspKrFu3ToSHh4uPP/5YODg4iKioKCGEEIMHDxaTJ0+W9j9x4oQwNzcXCxcuFBEREcLX15e39uaBvp/zvHnzhKWlpdi6dauIjIyUHvHx8Uq9BaOh72edGe+myRt9P+e7d+8KW1tb8dlnn4krV66IvXv3CmdnZzFr1iyl3oJR0Pdz9vX1Fba2tmLTpk3i5s2b4uDBg8LT01P069dPqbdgFOLj48XZs2fF2bNnBQDx/fffi7Nnz4o7d+4IIYSYPHmyGDx4sLR/+q29EydOFBEREWLZsmW8tfdNLVmyRFSsWFFYWlqKZs2aiVOnTknPtWvXTgwdOlS2/x9//CGqVasmLC0tRe3atcW+ffsMHLFx0udzrlSpkgCQ5eHr62v4wI2Qvj/TGTEZyTt9P+eTJ0+K5s2bCysrK1GlShUxe/ZskZaWZuCojY8+n3Nqaqr45ptvhKenp7C2thbu7u7i008/FbGxsYYP3IgcOXIk29+56Z/t0KFDRbt27bIc06BBA2FpaSmqVKkifvnll0KNUSUE+7aIiIhIOcW2ZoSIiIiMA5MRIiIiUhSTESIiIlIUkxEiIiJSFJMRIiIiUhSTESIiIlIUkxEiIiJSFJMRIiIiUhSTESIiIlIUkxEiIiJSFJMRIiIiUhSTESIiIlLU/wF/QrWTHULR9AAAAABJRU5ErkJggg==", "text/plain": [ "
    " ] @@ -342,7 +380,7 @@ }, { "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAAiMAAAGdCAYAAADAAnMpAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjcuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/bCgiHAAAACXBIWXMAAA9hAAAPYQGoP6dpAABy+UlEQVR4nO3deXxMV/8H8M9kskxCEiKyIPZdiDURitLUvqTt76naaatF7ZSiqFK7Si2lqgtV1dJHVEWUWGIJIQQRe0IsSSyRVdaZ8/vDk1sjE8lEMjcz+bxfr3nVPffce79zm8x8c+5ZFEIIASIiIiKZmMkdABEREZVtTEaIiIhIVkxGiIiISFZMRoiIiEhWTEaIiIhIVkxGiIiISFZMRoiIiEhWTEaIiIhIVuZyB1AYGo0G9+/fh62tLRQKhdzhEBERUSEIIZCSkoIqVarAzCz/9g+jSEbu378PNzc3ucMgIiKiIrhz5w6qVauW736jSEZsbW0BPHszdnZ2MkdDREREhZGcnAw3Nzfpezw/RpGM5D6asbOzYzJCRERkZArqYsEOrERERCQrJiNEREQkKyYjREREJCsmI0RERCQrJiNEREQkKyYjREREJCsmI0RERCQrJiNEREQkKyYjREREJCu9k5Hg4GD06dMHVapUgUKhgL+/f4HHHD58GC1btoSVlRXq1q2Ln3/+uQihEhERkSnSOxlJS0uDh4cH1q5dW6j60dHR6NWrFzp37ozw8HBMnDgRH374Ifbt26d3sERERGR69F6bpkePHujRo0eh669fvx61atXCihUrAACNGjXCsWPHsHLlSnTr1k3fyxMREZGJKfE+IyEhIfDx8dEq69atG0JCQvI9JjMzE8nJyVovIiIiMk0lnozExcXB2dlZq8zZ2RnJyclIT0/XecyiRYtgb28vvdzc3Eo6TCIiIpJJqRxNM2PGDCQlJUmvO3fuyB0SERERlRC9+4zoy8XFBfHx8Vpl8fHxsLOzg7W1tc5jrKysYGVlVdKhERERUSlQ4i0j3t7eCAoK0irbv38/vL29S/rSREREZAT0TkZSU1MRHh6O8PBwAM+G7oaHhyMmJgbAs0csQ4cOleqPGjUKUVFRmDZtGq5cuYJvv/0Wf/zxByZNmlQ874CIiIiMmt7JyJkzZ9CiRQu0aNECADB58mS0aNECc+bMAQDExsZKiQkA1KpVC3v27MH+/fvh4eGBFStWYOPGjRzWS0RERAAAhRBCyB1EQZKTk2Fvb4+kpCTY2dnJHQ4REREVQmG/v0vlaBoiIiIqO5iMEBERkayYjBAREZGsmIwQERGRrJiMEBERkayYjBAREZGsmIwQERGRrJiMEBERkayYjBAREZGsmIwQERGRrJiMEBERkayYjBAREZGsmIwQERGRrJiMEBERkayYjBAREZGsmIwQERGRrJiMEBERkayYjBAREZGsmIwQERGRrJiMEBERkayYjBAREZGsmIwQERGRrJiMEBERkayYjBAREZGsmIwQERGRrJiMEBERkazM5Q6AjJtaIxAanYAHKRlwslXBs5YDlGYKucMiIiIjwmSEiiwwIhbzdkciNilDKnO1V2Fun8bo7u4qY2RERGRM+JiGiiQwIhajt5zVSkQAIC4pA6O3nEVgRKxMkRERkbFhywjpTa0RmLc7EuK5soc7F0KTnQELh6qwcKiGyQ8j0Wjue6juVg0KBR/bEBHxsXb+mIyQ3kKjE7RaRDQaDdJvn4fITENG9FkAQAKAmj9OQ7ly5VC/fn3Ur18fDRo0kF7169eHra2tTO+AiMiw+Fj75ZiMkN4epPz7yyQ0aiQd2wqRmaazblpaGs6dO4dz587l2VelShWt5CT33zVr1oRSqSyx+ImIDCn3sbZ4oTz3sfa6wS3LfELCZIT05mSrAgCInCw83L0MEICyvAPUqQl6nef+/fu4f/8+Dh06pFVuaWmJunXr6kxUKlWqVGzvg4iopOl6rJ1LAFAAmLc7Em82dinTj2yYjJDePGs5oLKVGhG/zUVGzEVU6j0FTm/PgibzKbKf3EdOwl1YpcWjvWMWrl+/hqtXr+Lp06eFPn9WVhYiIyMRGRmZZ1+lSpW0HvfkJit16tSBlZVVcb5NIqJXlvtYWwgNMu9cgpWbu1Y/OgEgNikDodEJ8K5Tdv/YYjJCenv08AGebJ+FjJgIAIDKrSkAwMzKBiqXuoBLXa1mRyEE7t27h6tXr+Z53b59G0Lo+ptBt8ePH+PEiRM4ceKEVrmZmRlq1aqlM1FxdXVlJ1oiKrKwsDBMnDgRCoUCZmZm0kupVGpt6yq/n5SBRzFJyEl5iMw7l2BRuSYqdv4AqprNtT6Xnn/8XRYphD7fBDJJTk6Gvb09kpKSYGdnJ3c4ZVp0dDS6du2KGzduAABUlarC+cPvpP36dsjKyMjAjRs3dCYqiYmJxRKzra1tng60DRo0QL169VCuXLliuQYRmbZVq1ZhwoQJRT+B0hxQ50ibTv+ZB+varaTt30a2NcmWkcJ+f7NlhArtwoUL6NatG+Li4qSywW/1wPsj2xZ5qJpKpYK7uzvc3d21yoUQePTokc4k5ebNm8jJycnnjHmlpKQgLCwMYWFhefZVq1YtT5LSoEEDVK9eHWZmnIaHiJ4ZP348Hj9+jC+//FKv45RKJezqe+HJ5X9bcy0cq0NVqwWAZ31GXOyffXaWZUxGqFCOHTuG3r17IykpSau8c+fOJZLNKxQKVK5cGZUrV8Zrr72mtS87OxvR0dG4du1ankQlPj5er+vcvXsXd+/eRVBQkFa5lZUV6tWrpzNRqVChwqu+PSIyImq1GqdOnUJOTg6srKyQmZlZqOOaN2+O77//Hv8ZMARPniu3bz8QCoUZcv9sm9uncZnuvArwMQ0Vwu7du/Huu+8iIyPvM8179+6hSpUqMkSlW2JiIq5du5YnUbl27ZrO+IvCyclJ52Of2rVrw8LColiuQUTyevz4Mfbt24c9e/YgMDAQCQmFHy1oZWWFuXPnYurUqfD398e7774r7bNwrA7X99dAoTArE/OMFPb7m8kIvdSmTZvwwQcfQK1W59lXv359XL16VYao9KfRaHDnzh2t5CT33zExMcVyDXNzc9SuXVtnouLk5MROtESlmBAC58+fx549exAQEICTJ09Co9HofZ727dtj48aNaNiwITQaDZo1a4ZLly5J+xes+gHuHbqVmRlYmYzQK1u+fDk+/fTTfPd//PHHWL9+vQEjKhlPnz7F9evXdSYqycnJxXINe3t7nfOm1KtXD9bW1sVyDSLST0pKCg4cOICAgAAEBATg/v37BR6jUChgbm6O7OxsrfLy5ctjyZIlGDVqlNTfbPv27VqtIu7u7jh//nyZ6o/GDqxUZEIIfPbZZ1i6dOlL673++uuGCaiE2djYwMPDAx4eHlrlQgjEx8fn6Zdy7do1REVF6Wwtyk9SUhJCQ0MRGhqqVa5QKFC9enWdiUq1atXK1IcWUUkTQuDatWtS60dwcHCepEKXChUqoHv37ujZsye6d++Otm3bIioqStrfo0cPrF+/HtWrV5fKNBoN5s2bp3WeuXPn8nc6H2wZIS05OTn46KOP8NNPPxVYNzY2Fi4uLgaIqvTJyspCVFSUztE+jx49KpZrWFtbayUnz/+bvwdEhZORkYHDhw8jICAAe/bs0UoiXqZZs2bo1asXevbsibZt28Lc/Nnf7rnfR8CzSRj9/PwwaNCgPI9h//jjD/Tv31/abtq0KcLDw8tcMsKWEdJbeno63nvvPfz1118F1m3YsGGZTUSAZ1PWN2zYEA0bNsyzLyEhQedIn+vXryMrK6vQ10hPT8f58+dx/vz5PPtcXFx0TvBWq1Yt6UOTqKyKiYmRko+goCCkp6cXeEy5cuXg4+ODnj17omfPnqhWrZrOehcvXgQAvPfee/jmm2/g5OSUp45arWariJ7YMkKS7OxsxMXF4fHjx3j8+DF27dqF1atX66w7evRofPvttwaO0Lip1WrExMTobE25d+9esVzDwsICderU0ZmoODo6shMtmaTs7GyEhIRIj18iIiIKdVy9evWk1o+OHTsWakmJ3D/W+vbtm2+d33//He+995603axZM5w7d65MJiPswEqvJCsrCx4eHrhy5YrO/b///rtWxyx6NampqTqHJF+9ehVpabpXRNZXxYoVdc6bUqdOHahUqmK5BpGhxMfHIzAwEAEBAdi3b1+eOZB0sbS0xOuvvy61ftSrV6/Y41Kr1WjWrJnW2lp//vkn3n777WK/ljFgMkKvZNmyZZg2bZq0XbduXdjY2ODChQsAgLi4ODg7O8sVXpkhhMD9+/d1jvS5detWkYYevsjMzAw1atTQmahUqVKFrSkkyc7Olm0uHY1Gg7CwMKn14/Tp04U6rlq1aujZsyd69eqFLl26oHz58iUa57Zt2zBgwABpuyy3igBMRugV3Lt3Dw0aNND6i3zv3r2oVKkS2rZti4YNG2qNmyd5ZGZm5lnXJzdZ0WeCppcpV66cznlT6tevX+If6qSbWiMQGp1Q5CUYXsXatWuxa9cu+Pr6wtfXt8QnPExMTMQ///yDgIAA7N27Fw8ePCjwGDMzM7Rr1056/NK0aVODJdRqtRpNmzbF5cuXpbKy3CoCMBmhVzBgwABs27ZN2vb19cXOnTsBAJMnT0ZmZibWrl0rV3hUCC+u65ObpNy4caNQQxkLo0qVKjpbU2rUqAGlUlks1yBtgRGxmLc7ErFJ/84mbMhZPNPS0lCzZk1pxJiXlxfeeust+Pr6okGDBoU6x8uSKSEELl26JHU+PX78eKGG0Ds6OqJHjx7o1asXunbtiooVKxb9Tb6C3377DQMHDpS2PTw8cPbs2TLbKgIwGaEiOnToELp06SJtq1QqXL58GTVr1gTw7MPowoUL8Pb2lilCehU5OTm4deuWzrlTYmNji+UaVlZWqFu3rs4WFQeHsr0Y2KsIjIjF6C1n8eIHdu7f/OsGtzRIQrJw4ULMmjUrT3mjRo2kxKR169Y6WyN0JVNO1gK9HBMQFxGCgICAQs+I3KpVK6n1o3Xr1rInwGq1Gu7u7lr97P773//irbfekjEq+TEZIb1lZ2ejRYsWWo9g5s2bhzlz5sgYFRlKcnKyzg60165dK9TQyMJwdHTUmaTUqVMHlpaWxXINU6TWCLy25KD0JZ525RiST+0AFGZQmCkBhRmsLC3QppYjLCzMYW5uDqVSqfXfVyl7fl9aWhomTpz40nirVasmPcrp2LEjLCwstJKpnKR4PL0RivSbZ5ARcwFQF9xaZ2dnh65du6Jnz57o0aNHqZtagK0iujEZIb2tXLkSkydPlrZr166NS5cucaRFGafRaHDv3j2dQ5JjYmJQHB8hSqUStWrVyjO5W4MGDeDi4lLmO9GG3HyMAd+flLaTw3bjyYHvZIyo8CpWrIjevfvglKY20p3dYWahQsL+9Ug5+3eBxzZu3FjqfNq+fftSuxClrlaRnTt3wtfXV76gSgkmI6SX2NhYNGjQACkpKVLZ7t270bt3bxmjotIuPT09Tyfa3FdhhloWhp2dnZSgvDgjrY2NTbFcY/fu3bh9+zY++OCDElsraPPmzfj111+hVquRk5MDtVqt9XpZWVpGNpKeZgJCA6sqDWDpXBdJJ34rkThLksLcCqraLaGq7oEnB/Kua2VppcKbPm9IQ29zHw+Xdlu3bsWgQYOk7ebNm+Ps2bNlPokGmIyQnoYMGYItW7ZI271798bu3btljIiMmRACDx48yDMc+erVq4iKikJOTk6xXMfNzS3PKJ8GDRqgevXqejWP37t3D9WqVUPlypUxceJEjBkzBhUqVCiWGHPl5OTgvffew59//lm0EygtUKHDENi16YfU8EAkHt0CoVEDQiP9F5rCr5dkSOXt7KGp0gzWtVvDulZLKKxscHfVQIicTCjtnWFTpzWsa7fB6imD8G7bunKH+1JCCBw9ehQdO3YE8KxVpEmTJlormPv7+6Nfv35yhViqMBmhQnv+Fwt41gHx0qVLqFOnjoxRkanKzs7WWtfn+WSlMEM3C0OlUqFevXo6E5X8kgxvb2+cPPnsUYidnR3GjBmDiRMnFut8OllZWXjnnXfw998FP6J4XuvWrZHVfjSSVc55OrACzzqxutircGx6FyggkJOTI7Wq6Prvy/YVVOfOnTtaj3Pz06pVK/To0QM9evSAulIdDPnpjNb+p1dPwKKSG8wrVZNaEH4b2RbedSrpdW8MLSYmBq1bt0Z4eDiqVKmCX3/9FYMHD5b2s1VEG9emoULJycnB2LFjtcqmTZvGRIRKjIWFhZQgvCgxMVFnB9rr168jIyNDx9l0y8jIwMWLF6V1RJ7n5OSkc96Ufv36SclIcnIyFi9eDD8/P7z//vv49NNPX/rIoDBzf6jVapw+fVqvRw/m5uaYO3cupk+fjqCrjzB6y1koAK2EJPcqc/s0/t81FbC0tCyxDsEvfl7kcnBwQNeuXdGjRw9069ZNK4lTawRc7VWIS8qQYrdp0E7rPbjYP7tvpd3Fixfx8OFDDBw4EP/88w++/PJLrf1ffPEFE5EiYMtIGbd69WqMHz9e2q5RowYiIyOL7Vk8UXHQaDQ61/W5du0a7ty5U+LXVyqVGDhwIKZPn44mTZpo7XvZ3B+d6zkgKCgI/v7++OuvvxAfH1/oazZr1gybNm1C8+bNC3UtQwzrvX37NurVqyfNVdO6dWup9cPT0/Olw2tzR9MAupMpQw1NflVLlizBZ599BgBo164dTpw4Ie1r0aIFwsLCmIw8p0Qf06xduxbLli1DXFwcPDw8sHr1anh6euZb38/PD+vWrUNMTAwcHR3xf//3f1i0aFGhR2kwGSkZ8fHxaNCggVZHQ/YAJ2OTlpaG69ev6+xEm5qaWuzX69evH2bMmAEvLy+dc39oMtOQfvMMnl4/CRFzFulP9VtbyMzMDJ999hnmzJmjc+E2OWdgnT59Ou7evYsePXqga9euOlesfRm5k6niMHjwYPz666869+3ateulC+iVRSWWjPz+++8YOnQo1q9fDy8vL/j5+WH79u24evWqzh/MrVu34v3338ePP/6Idu3a4dq1axg+fDjee+89fP3118X6Zkg/I0aMwM8//yxtd+/eHQEBAczqySQIIRAXF6czSYmOjn7ldX06d+mCuJrdkObYGAqFAhl3IpAU8gcybl8ANC/voGtubg4hRJ7ZRRs0aIBNmzbBy8vrlWIrKUKIV/58kDOZKg4eHh7SGl0v8vHxgUKhgEKhQIsWLbBo0aIy/3laYsmIl5cX2rRpgzVr1gB41nzq5uaGcePGSU1Xzxs7diwuX76MoKAgqWzKlCk4deoUjh07VqxvhgovJCQE7dr9+8zW0tISERERJbKKJVFpk5mZqdWJ9urVq/jll1+KNMrH0qUe7Nv+BzC3wMMd8/KtV65cOXTv3h1vvfUWevTogerVq0vrPykUCkyaNAkLFiwosaHF9Oqys7NRrly5ApdUaNiwIYKDg1G5cmUDRVZ6Ffb7W6+p4bKyshAWFgYfH59/T2BmBh8fH4SEhOg8pl27dggLC0NoaCgAICoqCgEBAejZs2e+18nMzERycrLWi4qPWq3GJ598olU2ZcoUJiJUZlhZWaFRo0bw9fXF9OnT0b59+yIlIkrbylBYWiM9OgwiJwsKS+1EwszaDm/064/du3fj4cOH2LFjBwYNGoTU1FQpEalduzaOHDmCFStWMBEp5a5du1ZgIlKjRg3s37+fiYie9BpN8+jRI6jV6jxD3ZydnbVmnnvewIED8ejRI7z22msQ4tmQs1GjRmHmzJn5XmfRokWYNy//vzDo1WzYsAHnzp2Ttt3c3HSuNUFUFly/fh0TJkzQuU+hUMDNzQ316tVD3bp1UbduXenfD2GP4b+c16r/9MoxZMVeg3V9b9jUawurqo0w/+P2eYar5q7qOmbMGCxZsoQrIBsJXaOznufq6oqgoCBUq1bNQBGZjhIf2nv48GEsXLgQ3377Lby8vHDjxg1MmDAB8+fPx+zZs3UeM2PGDK1x7MnJyXBzcyvpUMuER48e5Uk8vv76a5QrV06miIjkk52djWHDhqFy5cpo166dlHDkJh21atXKt6P9s+GqV7WGq1bqMR4KC9WzfgPIf7hqWloa9u/fr9XKTKXfy5IRBwcH7N+/n9MiFJFeyYijoyOUSmWe4Wnx8fH5Llo0e/ZsDBkyBB9++CEAoGnTpkhLS8NHH32EWbNm6Zwl0crKSmcvcnp1M2bMwJMnT6RtHx8fvPPOOzJGRCSvQ4cOFenzRmmmwNw+jbXm/jD732OavHN/aHv77beLHjDJJiIiQme5ra0tAgMD8wz7psLTq8+IpaUlWrVqpdUZVaPRICgoKN8l5Z8+fZon4cgdi24EU5yYlNDQUPzwww/Strm5OVavXl3me3tT2WVhYfFKf/h0d3fFusEt4WKv3XriYq8ymnkzqPB0tYyoVCr8/fffaNOmjQwRmQ69H9NMnjwZw4YNQ+vWreHp6Qk/Pz+kpaVhxIgRAIChQ4eiatWqWLRoEQCgT58++Prrr9GiRQvpMc3s2bPRp0+fl06QQ8Urt9Pq8wngpEmT0LBhQxmjIjJ+3d1d8WZjF6MerkoFS0lJQXR0tFaZubk5/vzzT63lNKho9E5G+vfvj4cPH2LOnDmIi4tD8+bNERgYKHVqjYmJ0WoJ+fzzz6FQKPD555/j3r17qFy5Mvr06YOvvvqq+N4FFejHH3/EmTP/rg1RpUqVfPvsEJF+lGaKUr+mCr2aS5cuaW2bmZlh69atLx0ZSoXH6eDLgISEBNSvXx+PHz+Wyn777Te89957MkZFRFT65U7StmXTD/h2/nSp/IcffsD7778vY2TGgQvlkWTWrFlaiUjnzp3Rv39/GSMiIir9np++PuHAv5N0fjRtHhORYqZXB1YyPmFhYfjuu++kbXZaJSIqWO66Q7nr6GQ9vAUAqPDaIPyjaIXAiFgZozM9TEZMmEajydNpdfz48Rx+RkT0EmqNwLzdkdL8MUIIZD+8Dbs2b8Gu3bPH2/N2R0KtKfW9HIwGkxET9vPPP+PUqVPStouLC+bOnStjREREpV9odILWysKatETY1PdGhc7vQ6FQQACITcpAaHSCfEGaGCYjJurJkyd5Fi5ctmwZOwATERXgQcqzRESoc5B64R8kntiGnKR4PDnwnc569OrYgdVEzZkzBw8fPpS2O3TogEGDBskYERGRcXCy/d8kdmZKJAR9D5GVDgBQpz7RXY9eGVtGTFB4eDi+/fZbaVupVGLNmjXstEpEVAietRzgaq+CmUIBi0rVpfLshLsQ6mwoALjms+4QFQ2TERMjhMDYsWOh0Wiksk8++QTNmjWTMSoiIuORu+4QAFhWrvHvDo0aOQn3AeS/7hAVDZMRE/PLL7/g+PHj0raTkxPmzZsnY0RERMYnd92hSm7aq/CWexrLdYdKAJMRE5KUlIRp06ZplS1ZsgQVKlSQJyAiIiPW3d0V341/S6vs3bpgIlICmIyYkC+++ALx8fHStre3N4YOHSpjRERExq1ZU3et7cgX1qih4sFkxERcvHgRq1evlrbNzMywdu1arUULiYhIPy4uLnBw+LejakREhIzRmC5+U5mA3E6rarVaKhs1ahRatGghY1RERMZPoVDA3f3f1pGbN28iPT1dxohME5MRE/Dbb78hODhY2nZ0dMT8+fNljIiIyHQ8n4xoNBpcuXJFxmhME5MRI5ecnIypU6dqlS1atEirWZGIiIruxfW8+Kim+DEZMXLz589HbOy/q0d6enpyaWsiomL0fMsIwGSkJDAZMWKRkZHw8/OTthUKBTutEhEVsxdbRi5xRE2x47eWkRJCYNy4ccjJyZHKRo4cidatW8sYFRGR6alUqRJcXf+dW4QtI8WPyYiR2r59Ow4ePChtOzg4YOHChTJGRERkup5vHbl9+zaSk5NljMb0MBkxQqmpqZg8ebJW2cKFC1GpUiWZIiIiMm0v9huJjIyUKRLTxGTECC1YsAD37t2Ttlu2bIkPP/xQxoiIiEwbO7GWLCYjRubq1av4+uuvtcrWrl0LpVIpU0RERKbvxWSEnViLF5MRIyKEwPjx45GdnS2Vvf/++2jbtq2MURERmb7GjRtrbbNlpHgxGTEiO3fuxD///CNtV6hQAYsXL5YxIiKissHW1hY1atSQtpmMFC8mI0bi6dOnmDRpklbZggULULlyZZkiIiIqW55/VBMXF4fHjx/LGI1pYTJiJBYuXIiYmBhp28PDAx9//LGMERWOWiMQcvMxdoXfQ8jNx1BrhNwhEREVCfuNlBxzuQOggt24cQPLli3TKlu7di3MzUv3/77AiFjM2x2J2KQMqczVXoW5fRqju7vrS44kIip9dK1R07FjR5miMS1sGSnlhBCYMGECsrKypLKhQ4eiffv2MkZVsMCIWIzeclYrEQGAuKQMjN5yFoERsfkcSURUOnF4b8lhMlLK7d69GwEBAdK2nZ0dli5dKmNEBVNrBObtjkR2agLSLh9F5v2r0r7chzTzdkfq/cjm6dOnuHPnjtYU+EREhtKwYUOttb+YjBSf0t3OX8alp6djwoQJWmVffvklnJ2dZYoof0IIREdHIzg4GH/uOYAzQQeR8+RZ60d5j+6wqtJAqqvRqHE3Nh5/HDiF6uXUSEhIwOPHj/O8XizPyMjAiBEj8MMPP8j1NomoDLO2tkbdunVx7do1AM/6jAghoFAoZI7M+DEZKcWWLFmCW7duSdvu7u745JNP5AvoORqNBpGRkTh69CiCg4Nx9OhRrVlhn5dxNwJJp/6L1PN7oXmaDE1mGgBg4Gr9runl5YV169bxF5+IZNOkSRMpGUlISEBcXJzWInpUNExGSqmoqKg8c4jI2Wk1JycH586d00o+EhISCnfs47so794FVlUb4snBH5AVe7Xgg17g6uqK//73v7CystL7WCKi4uLu7o6dO3dK2xEREUxGigGTkVJq0qRJyMzMlLYHDhxo0F7bGRkZCA0NlRKPEydOIDU1tdDHm1moYFmlIazcmkDl1gRmqnJQVWsMlyHL8fRyMJKPbkZWYnyhz5eamooPPvgA3t7eaNu2Lby8vGBvb1+Ut0ZEVGS6OrG++eabMkVjOpiMlEIBAQH466+/pO3y5cvnGdr7old9bpmSkoITJ04gODgYwcHBCA0N1RrBU5AKFSqgQ4cO6NixIzp06ICHlq4Y9/vFZ7E9V89MoUD5xp3ww9zRuBK0HV999VWhluJOSUlBYGAgAgMDAQAKhQKNGzeWkhNvb+88ncuIiIob5xopGQohRKmfhSo5ORn29vZISkqCnZ2d3OGUqIyMDLi7u+PmzZtS2fLlyzFlyhSd9XNycvDdd9+hcuXKePfddwt9nUePHuHo0aPSY5dz585Bo9EU+ngXFxd07NhRejVp0iRPIlCYeUYePnyIefPmYf369VCr1YW+vi729vbw8vKCt7c3vL294enpiYoVK77SOYmInpednY1y5cpJa4R5eXnh5MmTMkdVehX2+5vJSCmzYMECzJ49W9pu1KgRzp8/DwsLizx1Dx06hAkTJuDixYu4cOECmjZtmu9579y5o9XfIzIyUq+4ateuLbV6dOzYEXXq1ClUS4xaIxAanYAHKRlwslXBs5YDlGZ5j7ty5QqmTZuG3bt359lnZ2eHihUr4vbt23rFDDy7f8+3njRu3JitJ0T0Spo2bSoN6y1fvjySkpL4uZIPJiNG6Pbt22jUqBHS09OlsqCgIHTp0iVPvalTp2LHjh0AnrUIJCQkSL8MQghcv35dSj6Cg4O1RuUURpMmTaRWjw4dOqBq1aqv9uYK6eDBg5gyZQrCw8OlskqVKuHBgweIj4/HyZMnERISgpCQEJw5cwYZGRn5n0wHOzs7eHp6Sq0nXl5ecHBwKOZ3QUSmbMCAAdi2bZu0HR0djZo1a8oXUClW6O9vYQSSkpIEAJGUlCR3KCXq7bffFnjWxUIAEO+++67W/rS0NDFnzhyhUqm06nXt2lWEh4eLVatWif/85z/C2dlZa39BL6VSKdq0aSMmT54s/P39xaNHj2S6A8+o1Wrx888/i6pVq0oxXrhwIU+9rKwscfr0abFq1SoxcOBAUatWLb3ed+6rQYMGYvjw4WL9+vXi/PnzIicnR4Z3TUTGYsGCBVqfIX///bcQQoiMjAwxe/ZsmaMrXQr7/c2WkVLin3/+Qbdu3aTtcuXK4cqVK6hWrRqEENi+fTumTp2KO3fuvPK1rKys4OXlJbV6eHt7w9bW9pXPW9yePn2KFStWYMmSJVi0aBHGjRtX4DFxcXE4deqU1Hpy+vRprZamwihfvnye1hNHR8eivg0iMnK5X5O5j6b9/f3x1ltvSfsXL16Mt99+G/3790dOTg4uXLggS5ylER/TGAm1RuDYlVgM7NkB929HSeWLFy/G9OnTcf78eUyYMAFHjhwp8jVsbW3Rrl076bFL69atoVKpiiN8g4iNjcWJEyfwzjvv6H1sdnY2Ll68iJCQEOkRz/OdgwurXr16Wn1P3N3dS/1ChURUfIYPHw4bGxv07dsXbm5uWqNqGjdujJiYGKSmpqJ37946+76VVUxGjEDuaJMr+35B4pFNUnm1mnUQeuIo5s+fj++++06vUS7Asz4Wz3c29fDw4Bfncx48eKDVehIaGoqnT5/qdY5y5cqhTZs2UutJ27ZtUbly5RKKmIjkFhwcjE6dOgEAbGxs8v3MGDt2LFav1nN6aRPGZKSUy13VNjv5Ie5vHAWR/e8EZ7YtekLcPIHU5MRCn69x48YYN24cOnbsyPk29JSTk4OIiAgpOTl58iSuX7+u93nq1Kmj1XrSrFkzJoFEJqRz5844fPjwS+ssW7YMU6dONUxARoDJSCmm1gi8tuQgYpMy8GjPSqRFBEn7FJY2EFn6/ZUOACqVCkeOHIGnp2dxhlpmPXr0KE/riT4z0ALP/npq3bq1VutJaVzkkIgK5/Dhw+jcufNL6/zxxx/4z3/+Y6CISj8mI6VYyM3HGPD9s0ly1GlP8OTQT0i7dBAAoLAqD5GdAWhy9D6vi4sLQkND4ebmVqzxEqBWq3Hp0iWt1pOrV/VfY6dWrVparSceHh4655AhotKpU6dOCA4Oznd/aGgo2rRpY8CISjcmI6XYrvB7mLAtXKss4+5l5Dy5j/JN3wAAiJxsfNmzFtpXL4fk5ORCv2rVqoUNGzZAqVTK8M7KlsePH+PUqVNSx9hTp04hJSVFr3OoVKo8rSdcdIuo9Dp48CDeeOONfPfHx8fDycnJgBGVbkxGSrHnW0Ze5reRbeFdp5IBIqLioFarcfnyZa3Wk8uXL+t9nho1ami1njRv3hyWlpYlEDER6UsIgY4dO+LYsWN59llbWyMtLe2V1gkzNUxGSrHcPiNxSRnQdfMVAFzsVTg2vYvOqdPJeDx58iRP60lSUpJe57CyskKrVq20Wk8MNSMuEeUVFBQEHx+fPOUNGzYs0h8gpozJSCmXO5oG0F7VNjf1WDe4pbSYHJkOjUaDK1euaLWeREZGQt9fQzc3N63WkxYtWsDKyqqEoiai5wkh0KFDBxw/flyrvFu3btLK4vQMkxEjUJhVbcn0JSYmIjQ0VEpOTp48icTERL3OYWlpiZYtW2q1nrAjM1HJ2b9/P7p27apV9vHHH2P9+vUyRVQ6MRkxEoVd1ZbKDo1Gg6tXr0qPdk6ePImIiAi9W0+qVq2q1XrSsmVLo5p5l6g0E0Kgffv2CAkJkcoWLlyIGTNmyBhV6cNkhMiEJCcn52k9SUhI0OscFhYWaNGihVbrSfXq1dnZjqiI9u3bh+7du0vbW7duxYABA2SMqPRhMkJkwoQQuHbtmtR6EhISgoiICL2XDnB1ddVqPWnVqhWsra1LKGoi0yKEgLe3N06dOgUAWPyTPzp2eI0t3M9hMkJUxqSkpOD06dNaiwI+fvxYr3OYm5ujefPmWq0nNWvWZOsJUT7mr/sVc8YMBgBUHfMzzG0d2ffvOUxGiMo4IQRu3Lih1Xpy4cIFvVtPnJ2dtVpPWrduDRsbmxKKmsh4BEbEYtQvYYj9ZQqy4qNQfep/oVCYcVTkc5iMEFEeqampOHPmjFbrycOHD/U6h1KphIeHh1brSe3atdl6QmXK82uMpd88jYQDG1D14++l/Zwv6hkmI0RUICEEoqKitJKT8+fPQ61W63UeJycnqeWkbdu2aNOmDcqVK1dCURPJL3cm7ayHt5B8ZjfMVDZw6PxBnnplfSbtwn5/F2md+bVr16JmzZpQqVTw8vJCaGjoS+snJibik08+gaurK6ysrFC/fn0EBAQU5dJEVIwUCgXq1KmDwYMHY82aNQgLC0NSUhKOHDmCxYsXo1+/foVaZ+PBgwf466+/MGPGDHTu3Bn29vZo2bIlxowZg19++QU3btwocGiyWiMQcvMxdoXfQ8jNx1BrSv3fSVSGPUjJQE7yQzz4Yy7SLuxDVux1aDLTdNajgundMvL7779j6NChWL9+Pby8vODn54ft27fj6tWrOj+0srKy0L59ezg5OWHmzJmoWrUqbt++jQoVKsDDw6NQ12TLCJF8hBC4deuWVutJeHg4cnL0W1na0dFRq/XE09MT5cuXB8AJAMn47Dt7E326dkH24xipzKp6Uzi/t1DrkSVbRkroMY2XlxfatGmDNWvWAHg2QZObmxvGjRuHzz77LE/99evXY9myZbhy5UqRl0pnMkJUujx9+hRnz56VOsaGhIQgLi5Or3OYmZmhadOmqFq/GULTHGFZtSHMK1aRPsjZCZBKi+PHj6N9+/bSdnp6Ot7s2hXHn18sT2kB5/cWQFWtCQD2GclVIslIVlYWbGxssGPHDvj6+krlw4YNQ2JiInbt2pXnmJ49e8LBwQE2NjbYtWsXKleujIEDB2L69On5LnOfmZmJzMxMrTfj5ubGZISolBJCICYmRqv15Ny5c8jOztbrPGYqW1R+exZUbu4A+IFO8rt06RK6d++O6OhomJubQ61W4z//+Q927tz5XC0FKvvOgE2Ddv/beoaJdOGTEXN9Tvro0SOo1Wo4OztrlTs7O+PKlSs6j4mKisLBgwcxaNAgBAQE4MaNGxgzZgyys7Mxd+5cnccsWrQI8+bN0yc0IpKRQqFAjRo1UKNGDbz33nsAgIyMjDytJ/fv33/peTQZKTC3d5G2BYDYpAyERieU6aZuks/SpUtx9+5d7N27F71798b48eNfSESAmn3HQvwvEQGeJdB8xKgfvZKRotBoNHBycsKGDRugVCrRqlUr3Lt3D8uWLcs3GZkxYwYmT54sbee2jBCR8VCpVGjXrh3atfv3Q/rOnTtarSdnws4iJztL2m+mKg9zO8c852InQJLD7du3sXXrVgDA999/jwsXLuDbb7/VqjNr1izM+3I+1xh7RXolI46OjlAqlYiPj9cqj4+Ph4uLi85jXF1dYWFhofVIplGjRoiLi0NWVhYsLS3zHGNlZcXl0IlMULVq1dC6dWukp6cjOTkZ9+Ie4M6tKACA0q4yrOu00Xmcky0X+CPDW7FihdRR+++//8bu3bu19o8YMQLz58+HQqFgy90r0isZsbS0RKtWrRAUFCT1GdFoNAgKCsLYsWN1HtO+fXts3boVGo0GZmbPRhJfu3YNrq6uOhMRIjIdGo0GEREROHr0qPTS9ajGuq4nKvvOhEKp/ZGU22fEs5aDgSImeubhw4fYuHGjtP1i98oePXrgu+++42R/xUTvxzSTJ0/GsGHD0Lp1a3h6esLPzw9paWkYMWIEAGDo0KGoWrUqFi1aBAAYPXo01qxZgwkTJmDcuHG4fv06Fi5ciPHjxxfvOyEi2WVlZeHMmTNS4nH8+HEkJia+9BgPz/Z40mEKzJTmeP7jPvcjfm6fxmzyJoNbtWoV0tPTde6ztbXFvHnzYG5e4j0dygy972T//v3x8OFDzJkzB3FxcWjevDkCAwOlTq0xMTFSCwgAuLm5Yd++fZg0aRKaNWuGqlWrYsKECZg+fXrxvQsiktVvv/2GDRs24NSpU/l+gOvSpk0bBB3Yi+O3U/PMM8JOgCSXlJQUafqK/PZ7enqiatWq6Nq1Kz7++GN4eXkZMELTw+ngieiVZWRkYP78+ViyZEmhp5Jv0qQJjhw5gkqVnj1rV2sEOwFSqbBixQpMnTq1wHrW1taYPXs2pkyZwm4H+eDaNERkcGfPnsWgQYPyHeqfq3bt2jh27BhcXdnqQaVLZmYmateuXeAw9D59+mDVqlWoWbOmYQIzUiUyzwgRUX7S0tLg7++PW7duvbRelSpVcODAASYiVCr98ssvL01EqlevjtWrV6Nv374GjMr0MRkhIr28+DilTc2K2LH9D3z66ae4e/fuS4+tVKkS9u/fj1q1ahkoWqLCU6vVWLp0qc595ubmmDp1Kj7//HOuSF0CmIwQUaG9uKBdZtwNpB3eiJTbEQUea2tri8DAQDRu3LikwyQqkp07d+L69et5yl9//XWsXbuWP7sliMkIERVKYEQsRm85CwFAnZaIxODNSL2wH0DebmeDBw+GEAK//vorgGezsf79999o3bq1YYMmeonnW/kql7eSpqTI5eTkhBUrVmDQoEGcT6SEMRkhogKpNQLzdkdKaUd6VBhSL/yTp17r1q2xatUqeHt746uvvgLwrHn7zz//RMeOHQ0YMdHLvdjKlx59Dg/OngXwbK2l0aNHY8GCBahYsaKcYZYZZgVXIaKyLjQ6QWsOEJuG7WHpXFfaNitXAZV6ToTf1gB4e3sDACpUqACFQoEtW7agZ8+eBo+ZKD+5rXzP/0wnn9oOALB0qYuVW/dg7dq1TEQMiC0jRFSg3IXqhEaN1IsH8PTqcVT0+Qjx22bBrnVf2Hv3h5mVDR6l/bvoXYUKFfDdd9+hf//+coVNlMeLrXwAkHn/KjJib8DhzVGwbd4D26ItMVYjOM+NATEZIaICOZazRNqVY0g8ugU5CXdR+Z05UFVrjGqjf4KyXAWp3vML2r3zzjtQqbjAHZUuL7byCSGQevEAzMzMYFW1EWCmRGxSBkKjE7j4nQHxMQ0R5UsIgX/++QcTBvTAo12LkZNwF1bVm0qr6+YmIgoAri8saMdEhEqj3FY+AFCnPcGDHV8gNXwvNBmpeLRnJUROdp56VPKYjBCRTqdOncIbb7yBbt26ISwsTCp3eH2E1sgCLmhHxuT51juYmSM7PkrazH54C4kntuWtRyWOyQgRabl06RLeeusttG3bFocOHdLa16lHP9Ro2EyrzMVehXWDW3JBOzIKnrUc4GqvggKA0toWDt3Hau1PPrkdtim3tFr5qORxbRoiAgDcunULc+fOxS+//AJdHwsWFha4cuUKatSsxQXtyKjljqYBns2S82jPSqRFBEn73WrXw7VLF/iosRgU9vubLSNEZVx8fDzGjx+P+vXrY/PmzToTEQD45JNPULt2bSjNFPCuUwn9mleFd51KTETI6HR3d8W6wS3hYv8s2XB4YySU5f/trHon6jrmzJkjV3hlEltGiMqopKQkLF++HCtXrkRaWtpL69rb2+PmzZuoVImjC8h0PD8Da9TZ45j8wb/D0BUKBY4dO4Z27drJGKHx46q9RJSvP//8Ex999BESEhIKVX/mzJlMRMjk5LbyAQCav4vLJw/g+++/B/BsJNnw4cMRHh4OGxsbGaMsG/iYhqgMevvttxEYGIjJkyejWrVqL63r5uaGcePGGSgyIvksX74c1atXl7avX7+OWbNmyRhR2cFkhKgMUigUaNOmDVasWIGFCxe+tO6CBQtgbW1toMiI5GNnZ4cff/xRq+ybb75BcHCwTBGVHUxGiMqwTZs2YdiwYfnu9/DwwKBBgwwYEZG83njjDYwZM0baFkJgxIgRSE1NlTEq08dkhKiM+vHHHzFixAit0TMvPhtftmwZlEqloUMjktWSJUtQu3ZtaTsqKgrTp0+XMSLTx2SEqAzasGEDPvjgA61EpEmTJggNDYWZ2bOPha5du+LNN9+UK0Qi2ZQvXx4//fST1kzD3377LYKCgl5yFL0KJiNEZcy6devw8ccfa5U1bdoUhw4dQpMmTdCpUycoFAosWbJEpgiJ5NexY0dMmDBBq+z9999HcnKyTBGZNiYjRCZOrREIufkYu8LvYcrcJVrPwwGgefPmOHjwICpXrgwA+L//+z8MGTIEzZs3lyFaotLjq6++Qr169aTtmJgYTJ06VcaITBcnPSMyYYERsZi3OxKxSRlIPr0LTw5+r7W/ZcuW2L9/Pxwc/l2HIzY2FtnZ2VpDHInKqpCQELz22mvQaDRS2d69e9G9e3cZozIenA6eqIzLXX8jNikDyaH/zZOI1GvigQMHDmglIgDg6urKRITof7y9vTFlyhStsg8//BCJiYnyBGSimIwQmSC1RmDe7kgIAE9vhOLJIe25EyxdG8D+7Xmws68gS3xExuTLL79Eo0aNpO179+5h4sSJ8gVkgpiMEJkAIQTUajWys7ORkZGBI5fu4N6DBKgzUmHpWh82DdpLda2qNIRz/y/xMMscodGFmw6eqCxTqVTYtGmT1jD3TZs2Yffu3TJGZVq4Ng1RKXX8+HEMGjQImZmZUKvV0Gg0UKvVWq/csuefZ7/Iys0dDt3HAQozqFMfw+n/voCZ1bP5RB6kZBjq7RAZtTZt2uCzzz7DV199JZV99NFHiIiI4LpNxYAdWIlKsa1bt2Lw4MEoyq+pwtwSFToOg23rPlAozCDUORDqHJhZqqQ6v41s++9CYUT0UpmZmWjTpg0uXrwolQ0cOBC//vqrjFGVbuzASmQCBg4ciI0bN+p9nFfbtmg2fgPs2/SDQvHs11yhNJcSEQUAV3sVPGs5vOQsRPQ8KysrbN68Gebm/z5U2Lp1K/773//KGJVpYDJCVEolJyfj999/x/79+2FpaVmoYywtLbFkyRIcP3YMi0d0BfAs8Xhe7vbcPo2hNHtxLxG9TPPmzTF79mytslGjRuHhw4cyRWQa+JiGqBS5f/8+/vrrL/j7++PgwYPIzs4u9LGtWrXCpk2b0KRJE6ns+XlGcrnaqzC3T2N0d3ct1tiJyors7Gy0bdsWZ8+elcr+7//+D3/88YfWFPJU+O9vJiNEMrty5Qr8/f3h7++PU6dO6X28ubk55syZg88++wwWFhZ59qs1AqHRCXiQkgEn22ePZtgiQvRqIiIi0LJlS60/GLZt24b+/fvLGFXpw2SEqJTSaDQ4deqUlIBcu3atwGNye+s/fvxYq7xZs2bYtGkTp24nksGiRYswc+ZMadvBwQGXLl2Ci4uLjFGVLuzASlSKZGZmYu/evfj4449RtWpVtGvXDkuXLn1pIlKrVi1MmjQJR44cQVxcHNzc3KR9SqUSn3/+OU6fPs1EhEgmn376KTw9PaXthIQEjBo1qkij38o6towQlZDExEQEBATA398fe/fuRWpqaoHHtGjRAr6+vvD19UXTpk2l589qtRrly5dHRkYGGjVqhE2bNqFNmzYl/RaIqACXL19GixYtkJmZKZVt3rwZQ4YMkTGq0oOPaYhkcPfuXakD6qFDh5CTk/PS+kqlEp06dYKvry/69u2LGjVq6KwXFRWFunXrYurUqfjyyy+hUql01iMiw1uxYoXWar4VKlRAREQEqlatKmNUpQOTESIDEEIgMjJS6v9x5syZAo+xsbFB9+7d4evri169euVZqE6XCxcuIDU1Fe3atSuOsImoGKnVanTq1AnHjx+Xynr06IE9e/aU+dE1TEaISoharUZISAh27doFf39/3Lhxo8BjKleujL59+8LX1xdvvPEGrK2tDRApERnK9evX4eHhgfT0dKnshx9+wPvvvy9jVPJjMkJUjNLT0xEUFAR/f3/89ddfhZrgqE6dOlL/D29vb61FtojI9KxatQoTJkyQtm1tbREREYHq1avLGJW8mIwQvaKEhATs2bMHu3btQmBgINLS0go8pnXr1lIC0rhx4zLfREtUlmg0GnTp0gVHjhyRynx8fPDPP/+U2c8CJiNERRATEyM9fjly5AjUavVL65ubm6Nz587o168f+vbtqzX8lojKnqioKDRr1kzrj5d169Zh1KhRMkYlHyYjRIUghEBERITUAfX56Z3zU758efTo0QO+vr7o2bMnKlSoUPKBEpHRWL9+PUaPHi1tlytXDhcvXkStWrVkjEoeTEaI8qFWq3H8+HEpAYmOji7wGGdnZ/Tr1w++vr7o3Lkzh9YSUb6EEOjatSsOHDgglXXq1AkHDx6EmVnZmmuUyQjRc54+fYr9+/dj165d2L17Nx49elTgMfXq1cNbb70FX19feHl5lbkPESIqupiYGLi7uyMlJUUqW7VqFcaNGydjVIbHZITKvMePH+Pvv/+Gv78/9u3bpzXkLj9eXl5SC0jDhg3LbKczInp1P/zwAz788ENp29raGufPn0e9evVkjMqwmIxQmRQdHY1du3Zh165dCA4OhkajeWl9CwsLdOnSRZoBtUqVKgaKlIhMnRACvXr1wt69e6Wy9u3b48iRI2VmqD+TESoThBA4f/681P/j/PnzBR5ja2uLXr16oV+/fujRowfs7e0NECkRlUX37t2Du7s7EhMTpbLly5djypQp8gVlQExGyGTl5OTg6NGj8Pf3x65du3D79u0Cj3F1dZUev7z++uuwsrIyQKRERMAvv/yCoUOHSttWVlYIDw9Hw4YNZYzKMJiMkElJS0vDP//8A39/f/z9999ISEgo8JhGjRpJE5C1bt2aHVCJSBZCCPj6+uKvv/6Syjw9PXH8+HGYm5vLGFnJYzJCRu/hw4fYvXs3/P39sX//fmRkZLy0vkKhQNu2beHr64t+/fqhQYMGBoqUiOjl4uLi0KRJE60/pBYtWoTPPvtMxqhKHpMRMko3b96UZkA9fvx4gR1QLS0t4ePjA19fX/Tp0wcuLi4GipSISD/btm3DgAEDpG1LS0uEhYXB3d1dxqhKFpMRMgpCCJw9e1bq/3Hx4sUCj7G3t0evXr3g6+uL7t27w9bW1gCREhG9GiEE3n33XezYsUMqa9myJU6ePAkLCwsZIys5TEao1MrOzkZwcLCUgNy5c6fAY6pWrSr1/+jYsSMsLS0NECkRUfF6+PAhmjRporXy97x58zBnzhwZoyo5TEaoVElNTUVgYCD8/f2xZ88erWFu+WnSpImUgLRq1YoTkBGRSfjvf/+Ld955R9o2NzfH6dOn0bx5c/mCKiFMRkh28fHxUgfUAwcOIDMz86X1FQoF2rdvL3VArVu3roEiJSIyrEGDBmHr1q3SdrNmzXD69GmTa/Ut7Pd3kcY6rl27FjVr1oRKpYKXlxdCQ0MLddy2bdugUCjg6+tblMuSEbh+/TqWLVuG9u3bw9XVFSNHjsSePXvyTUSsrKzQu3dvbNy4EXFxcTh69CimTJnCRISITNrq1au1OtxfuHAB8+fPlzEieendMvL7779j6NChWL9+Pby8vODn54ft27fj6tWrcHJyyve4W7du4bXXXkPt2rXh4OAAf3//Ql+TLSOll0ajwZkzZ6QRMJGRkQUeU7FiRfTu3Ru+vr7o2rUrypcvb4BIiYhKl927d6Nv377StlKpREhICNq0aSNjVMWrxB7TeHl5oU2bNlizZg2AZ19Gbm5uGDduXL7jpdVqNTp27Ij3338fR48eRWJiIpMRI5aVlYXDhw9LHVDv379f4DHVq1eXZkDt0KGDyfYcJyLSx/Dhw7Fp0yZpu3HjxggLC4NKpZIxquJT2O9vvaZ+y8rKQlhYGGbMmCGVmZmZwcfHByEhIfke9+WXX8LJyQkffPABjh49WuB1MjMztZr1k5OT9QmTSkBycjL27t2LXbt2Yc+ePYX6f9KsWTOpA2rz5s3ZAZWI6AV+fn44cOAA7t27BwCIjIzE3LlzsWTJEpkjMyy9kpFHjx5BrVbD2dlZq9zZ2RlXrlzRecyxY8fwww8/IDw8vNDXWbRoEebNm6dPaFQCYmNj8ddff8Hf3x9BQUHIzs5+aX0zMzN06NBB6oBaq1YtA0VKRGScKlSogI0bN6JHjx5S2fLly+Hr6wtvb28ZIzOsEp0UPyUlBUOGDMH3338PR0fHQh83Y8YMTJ48WdpOTk6Gm5tbSYRIL7hy5YrU/+PkyZMF1re2tkbXrl3h6+uL3r176/X/mYiIgO7du2PkyJH4/vvvATzr/jB8+HCcO3cONjY2MkdnGHolI46OjlAqlYiPj9cqj4+P1zkN982bN3Hr1i306dNHKsud3tvc3BxXr15FnTp18hxnZWXFVVUNRKPRIDQ0FP7+/vD398fVq1cLPKZSpUro06cPfH198eabb5aZXxYiopKyfPly7Nu3DzExMQCAa9eu4fPPP8fXX38t1blx4waqVKlikp+5RerA6unpidWrVwN49mVWvXp1jB07Nk8H1oyMDNy4cUOr7PPPP0dKSgq++eYb1K9fv1BjqtmBtXhlZmbi4MGD2LVrF3bt2oW4uLgCj6lZs6bU/6N9+/Ymv9IkEZGhBQUFwcfHR9pWKBQ4cuQIOnToAAB46623MHz4cPTr10+uEPVWIh1YAWDy5MkYNmwYWrduDU9PT/j5+SEtLQ0jRowAAAwdOhRVq1bFokWLoFKp8iwAVKFCBQAw6YWBSqOkpCQEBATA398fe/fuRUpKSoHHtGjRQur/0axZM3ZAJSIqQW+88QbGjBmDb7/9FsCztWyGDx+OCxcuSC3YFStWNKpkpLD0Tkb69++Phw8fYs6cOYiLi0Pz5s0RGBgodWqNiYmBmVmR5lIjPag1AqHRCXiQkgEnWxU8azlAaaadLNy7d09q/Th06FCBHVCVSiU6duwoJSA1atQoybdAREQvWLJkCQIDAxEVFQUAiIqKwqeffiqNWN29ezfUajWUSqWcYRY7TgdvhAIjYjFvdyRikzKkMld7Feb0boQaykSp/8fp06cLPJeNjQ26d+8OX19f9OrVCw4ODiUZOhERFSA4OBivv/468vt6Dg4Olh7dlHYl9piG5BUYEYvRW84i90dUaNTIvH8VkYdOou+yEOQ8iS3wHI6Ojujbty98fX3h4+MDa2vrkg2aiIgKrWPHjpgwYQL8/Px07vf39zeaZKSwmIwYEbVGYN7uSCkRSY8Kw6M9K6F5mljgsbVr18Zbb70ljV03tSY+IiJjlpaWhpUrV+L69euIjo7G9evX863r7++P5cuXm1Q/PiYjRiQ0OkHr0Yy5vfNLE5FWrVpJI2CaNGliUj+4RESmpFy5cmjTpg2WL1+OpKSkl9aNiorCpUuXTGogCJMRI/IgJUNr29yhKpR2TlAnP3hWYKaEyq0phg74P3w+ZigniiMiMiLdunVDaGgo+vbtW+CcT/7+/iaVjHDYixFxstVeOElkpgFCA+sG7VGp9xRUG/crnN9bgOEfjmIiQkRkhOrXr49Tp05pTQ+vy65duwwUkWEwGTEinrUc4GqvQu7DFnVaItQpj1C+8eso36QzzFXl4Wr/bJgvEREZJ3t7e+zevRuffvppvnXOnDmDO3fuGDCqksVkxIgozRSY26cxAEABQP2//iKJwZsBjRoAMLdP4zzzjRARkXFRKpVYunQpNm/enO/yKH/99ZeBoyo5TEaMTHd3V6wb3BIu9iqo0xIBANmP70B5MxjrBrdEd3dXeQMkIqJiM2TIEAQHB8PVNe9nuyk9qmEyYoS6u7vi2PQuGOpRQSrLPLUNnepUyPcYIiIyTp6enjhz5gzatGmjVX7o0CEkJibKE1QxYzJipJRmCthoUqXte/fuSYsXEhGRaalSpQqOHDmCwYMHS2U5OTnYsycAITcfY1f4PYTcfAy1ptRPqq4Th/Yasfj4eK3tRYsWYeTIkahYsaJMERERUUmxtrbG5s2b0axZM0yfPh1CCIxfsgG2Pe2lOq72Kszt09joHtmzZcSIvZiMJCYmYvHixTJFQ0REJU2hUODTTz/FF2s2Q2FpgydXQyFy/l0ENS4pA6O3nEVgRMFLg5QmTEaMWFxcXJ6yVatW4e7duzJEQ0REhqDWCOxNcoXr0BUws6mAjJgL0r7chzTzdkca1SMbJiNG7MWWEQDIyMjAF198YfhgiIjIIHKXBslJegDkZCIzVnu2VgEgNikDodEJ8gRYBExGjJQQQmcyAgA//fQTLl++bOCIiIjIEB6kZECdlohHASuhTk1A0rHf8OTIzxDq7Dz1jAWTESOVkpKCjAzdP2gajQYzZ840cERERGQIlctb4fHeb6D531xTgMDTaych/jf5Za4XlxApzZiMGKn8WkVy+fv7IyQkxEDREBGRoZzZ+xvSb57+t0Bpjsp9p8HM4lnyoQCMbmkQJiNGqqBkBIA09IuIiExDREQEpr2wZk3FTsNh6VwbAKS1y4xtaRAmI0aqMMnI0aNHERAQYIBoiIiopKWnp2PAgAHIzMyUyuzrtYZt677Stou9yiiXBuGkZ0bqZcnI9OnTodFosH//fsycORPdu3eHUqk0YHRERFTcpk+fjoiICGm7cuXKOHf4L8SkW+JBSgacbJ89mjGmFpFcTEaMVG4y0rZtWwwbNgyjR4+W9qlUKml478OHD5GRkYFy5crJESYRERWDPXv25Fny46effkLVKq6oKlNMxYmPaYxUXFwcxowZgyNHjqBfv35a+86cOSP9u3LlykxEiIiMWFxcHEaMGKFVNnbsWPTq1UumiIqfQhhBD8fk5GTY29sjKSkJdnZ2codTKly5cgUNGzaUtqtVq4Z79+4BAJydnREbGwuFwvia6oiI6F8ajQY9e/bEvn37pDJ3d3eEhobC2tpaxsgKp7Df32wZMVLPJyIA0Lp1a+nf8fHxnBKeiMgErFq1SisRsbKywm+//WYUiYg+mIyYiDZt2mhtP/+ohoiIjE94eDimT5+uVbZ8+XK4u7vLFFHJYTJiIp5vGQGYjBARGbOnT59i4MCByMrKksp69eqFTz75RMaoSg6TERPRqlUrrW0mI0RExmvKlClaa4w5Ozvjxx9/NNm+gExGTISjoyNq1qwpbZ85c4azrxIRGaFdu3Zh/fr1WmWbNm2Ck5OTTBGVPCYjJuT5fiMJCQmIjo6WMRoiItLX/fv38cEHH2iVTZo0Cd26dZMpIsNgMmJC2G+EiMh4aTQaDB06FI8fP5bKPDw8sGjRIhmjMgwmIybkxWTk9OnT+dQkIqLSZsWKFQgKCpK2ra2tsXXrVlhZWckYlWEwGTEh7MRKRGScwsLCMGvWLK2yr7/+Go0bN5YpIsNiMmJC7O3tUb9+fWk7LCwMGo1GxoiIiKggqampGDBgALKzs6Wyfv364eOPP5YxKsNiMmJinn9Uk5KSgmvXrskYDRERFWTixIm4fv26tO3q6oqNGzea7DBeXZiMmBjOxEpEZDx27NiBH374QdpWKBT45Zdf4OjoKGNUhsdkxMRwRA0RkXG4c+cORo4cqVU2depUvPHGGzJFJB8mIyamefPmMDP7938rkxEiotJHrVZjyJAhSExMlMpatmyJBQsWyBeUjJiMmJjy5cujUaNG0vbZs2eRk5MjY0RERPSiJUuW4MiRI9K2jY0Ntm7dCktLSxmjkg+TERP0fL+R9PR0rfUNiIhIXqdOncKcOXO0ylatWoUGDRrIFJH8mIyYIPYbISIqnVJSUjBw4ECo1Wqp7J133sH7778vY1TyYzJigjgTKxFR6TRu3DhERUVJ29WqVcOGDRvK1DBeXZiMmCAPDw+Ym5tL22wZISKS37Zt27Bp0yZpW6FQYMuWLXBwcJAxqtKByYgJUqlUaNq0qbR9/vx5ZGVlyRgREVHZduvWLYwaNUqrbMaMGejUqZNMEZUuTEZM1POParKysnDx4kUZoyEiKrtycnIwePBgJCUlSWWenp744osv5AuqlGEyYqI4EysRUemwcOFCHD9+XNouX748fv31V1hYWMgYVenCZMREcUQNEZH8Tpw4gXnz5mmVrVmzBnXr1pUpotKJyYiJatKkCaysrKRtJiNERIaVlJSEQYMGaa2e/t5772Ho0KEyRlU6MRkxUZaWlvDw8JC2L168iPT0dBkjIiIqW8aMGYNbt25J2zVq1MC6devK/DBeXZiMmLDn+42o1WqcP39exmiIiMqOLVu2YOvWrdK2mZkZtmzZggoVKsgXVCnGZMSEsd8IEZHhRUVFYcyYMVpln3/+OV577TWZIir9mIyYMM7ESkRkWNnZ2Rg4cCBSUlKkMm9vb8yePVvGqEo/JiMmrFGjRrCxsZG22TJCRFSyvvzyS5w6dUratrOzw6+//qo1KzblxWTEhCmVSrRs2VLavnz5MoIu3IZaI2SMiojINAUHB2PhwoVaZevWrUOtWrVkish4MBkxcY41G0n/FkJg0JJteG3JQQRGxMoYFRGRaXny5AkGDx6sNYx38ODBGDhwoIxRGQ8mIyYsMCIWx5LstcqyYq8jLikDo7ecZUJCRFQMhBAYNWoU7ty5I5XVqlULa9eulTEq48JkxESpNQLzdkfC0qWeVnlm3A3kPqSZtzuySI9shBDIyckphiiJ6FWpNQIhNx9jV/g9hNx8zMewMvj555/xxx9/SNtKpRJbt26FnZ2djFEZlyL1qFm7di2WLVuGuLg4eHh4YPXq1fD09NRZ9/vvv8fmzZsREREBAGjVqhUWLlyYb30qHqHRCYhNyoB5RVcoLG0gsp5CYW4JCA3U6SnQZKbhdvxTfPf7U7iVfzZTYHJyMpKSkgr8d/ny5XHixAlUq1ZN7rdJVKYFRsRi3u5IxCZlSGWu9irM7dMY3d1dZYys7Lh+/TrGjRunVfbFF1+gbdu2MkVknBRCCL3S6N9//x1Dhw7F+vXr4eXlBT8/P2zfvh1Xr16Fk5NTnvqDBg1C+/bt0a5dO6hUKixZsgQ7d+7EpUuXULVq1UJdMzk5Gfb29khKSmKmWUi7wu9hwrZwAMDTG6Ewt3NETvIjPDnwHXKS4ot8XpVKheDg4DwL8RGRYQVGxGL0lrN48QM8d27PdYNbMiEpYVlZWWjfvr3WSMUOHTrg0KFDUCqVMkZWehT2+1vvZMTLywtt2rTBmjVrAAAajQZubm4YN24cPvvsswKPV6vVqFixItasWVPo+fmZjOgv5OZjDPj+ZJ5ykZOF5NCdSDr5B0R2pt7n/eOPP/Cf//ynOEIkoiJSawReW3IQsUkZ0GRnQqFQPGv5/B8FABd7FY5N7wKlGaceLw5CiDzTuM+YMQOLFy+Wtu3t7XHhwgVUr17d0OGVWoX9/tarz0hWVhbCwsLg4+Pz7wnMzODj44OQkJBCnePp06fIzs6Gg4NDvnUyMzORnJys9SL9eNZygKu9Ci9+DCnMLWHfrj+qjvwOjs3f0OuclpaW2Lp1K77++mucPn2a/UaIZBIanYD7iU+ReukQ7n8/CslndmntFwBikzIQGp0gT4Am6KuvvkJGxr+Pww4dOoQlS5Zo1dmwYQMTkSLSq8/Io0ePoFar4ezsrFXu7OyMK1euFOoc06dPR5UqVbQSmhctWrQoz5LLpB+lmQJz+zTG6C1noQC0mnIVAMxtHfHLL7/ALjka48ePR1hYWIHnzMrKgr+/P/z9/QEA5cqVg7e3Nzp06ICOHTvCy8sL1tbWJfF2iOg5B4KCELdpJrLibwIAkkK2w8yqPAABc3tnmNs7QWlXGQ9SMl5+IiqU7OxsrFy5EuXKlcOkSZPw+PFjDBkyBM8/WBgxYgTeffddGaM0bno9prl//z6qVq2KEydOwNvbWyqfNm0ajhw5ojXrnC6LFy/G0qVLcfjwYTRr1izfepmZmcjM/PcRQnJyMtzc3PiYpggK08FNo9Hg559/xowZM/DgwYMiX8vCwgKtW7dGhw4d0KFDB7Rv3x4VK1Z85fdARM9ERkZi2rRp2LNnT5595T26Q536GOk3/132oWKlyqhXpxZq1qyJGjVqoGbNmtKrRo0aKFeunCHDN1p79+5Fz5494ejoiJs3b2L48OHYuXOntL9u3bo4d+4cypcvL2OUpVOJ9BnJysqCjY0NduzYAV9fX6l82LBhSExMxK5du/I9dvny5ViwYAEOHDiQZ82UgrDPyKtRawRCoxPwICUDTrYqeNZy0PkcOTk5GfPnz8c333yD7OxsrX0KhQLOzs6Ii4sr9HUVCgXc3d2l5KRDhw6F7rRMRP+Ki4vD3LlzsXHjRq1JtXJZutZHxS4fwKpKQzw5uBEpYbsLdV5HR0et5CT332+++SasrKyK+20YrWHDhmHz5s0AAE9PT4SGhkr7zM3NceLECXbqz0eJdmD19PTE6tWrATz7q7p69eoYO3Zsvh1Yly5diq+++gr79u0r0nAnJiOGde3aNUyePDnPX1/3799HWloagoODcfToURw9ehQ3b97U69y1a9fWSk7q1auXp1MYET2TlpaGFStWYOnSpUhLS8uz39zeGRU7DYN1ww7S75ECQHLYbiQe/F5n4vIySqUSq1evxujRo4sjfJOQkZEBJycnrYXvnrdo0aJCDd4oqwr9/S30tG3bNmFlZSV+/vlnERkZKT766CNRoUIFERcXJ4QQYsiQIeKzzz6T6i9evFhYWlqKHTt2iNjYWOmVkpJS6GsmJSUJACIpKUnfcOkVBAQEiAYNGgg863IiduzYkafOvXv3xO+//y7Gjh0rPDw8hEKhkOoX5uXs7Czeeecd4efnJ86ePStycnJkeKdEpUtOTo7YuHGjcHV11fl7U7FiRfH111+LXWHRou3CA6LG9L+lV9uFB8Tei/fFnj17RPny5Qv9u1ixYkURFBQk91svdXbu3JnvPatbt664e/eu0Gg0codZahX2+1vvZEQIIVavXi2qV68uLC0thaenpzh58qS0r1OnTmLYsGHSdo0aNXT+T5w7d26hr8dkRD6ZmZlixYoVws7OTkycOLHA+k+ePBF79uwR06dPF+3atRMWFhZ6JSd2dnaie/fu4quvvhLBwcEiPT3dAO+SqHTQaDQiICBAuLu76/z9sLS0FFOmTBEJCQnSMTlqjThx45HwP3dXnLjxSOSo//1iPH/+vHBzcyvU796XX34psrKy5HjbpVr//v0LvHf29vbC29tb67uQnins97fej2nkwMc08nvw4AF27NiBMWPG6HVceno6QkNDpcc6J06cQGpqaqGPt7S0hKenp/RYp127drC3ty/4QCIjEx4ejk8//RQHDhzQuf+9997DwoUL9V4BNjY2Fn369CnUiLmqVati7Nix+Oijj146/UJZkZaWBicnJzx9+vSl9WxtbfHTTz/hnXfeMVBkxqPE+ozIgcmI6cjJycH58+elfifHjh3Dw4cPC328mZkZPDw8tPqdvDjUnMiY3L17F59//jk2b94MXR/HHTp0wPLly19pCY20tDQMGTJEawTIy1hbW2PYsGGYOHEiGjRoUOTrGrtt27ZhwIABL63j7u6OP//8E/Xr1zdQVMalxPqMyIGPaUyXRqMRly9fFhs2bBBDhgwRNWvW1OuxDgBRr1498f7774uffvpJ3Lhxg89vySgkJSWJmTNnCpVKpfPnukGDBsLf37/Yfp7VarWYNm1anuuYm5u/9PerZ8+eYv/+/WXy96pfv34vvTeDBw8WqampcodZqpVonxFDYzJStty5c0ds3bpVjBo1SjRp0kTv5KRKlSqif//+Ys2aNeL8+fNCrVbL/ZaIJFlZWWLt2rWicuXKOn9+K1euLNauXVti/Tc2bNiglYCMHTtWBAYGim7dur3098rd3V1s3LixzPTjSkxMFJaWlvn23Vm3bl2ZTND0xWSETMajR4/Erl27xNSpU4WXl1eBf8m9+KpQoYLo1auXWLx4sTh+/LjIzMyU+y1RGaTRaMTOnTtF/fr1df6cqlQqMXPmTIN8zu3fv1/Y29sLAGLEiBFS+aVLl8TIkSPzba3JTZbmzJkjjaA0VT///LPO91+9enURGhoqd3hGg8kImazU1FQRFBQkvvjiC9GlSxdhY2OjV3KiUqnE66+/LmbPni3++ecfvYaZExXFqVOnRIcOHXT+PCoUCjFs2DBx584dg8YUGRkpatWqJf7v//4vz76HDx+KBQsW5Du0OLd1YNiwYSI8PNygcRtK9+7d87znbt26iUePHskdmlHhaBoqM7Kzs3H27FlpxM6xY8eQkFD4BcKUSiVatGghdYh97bXXULly5RKMmMqK6OhozJw5E9u2bdO538fHB8uWLUPz5s0NG9j/PHjwAN999x1mz56tc39WVhZ+//13rFy5EufOncv3PJ07d8akSZPQq1cvmJnptf5qqfH8TNWW2Wno490YarUawLPZpOfOnYvPP/8cSqVS5kiNC0fTUJml0Whw+fJlHD16VBq1c/fuXb3O0ahRI60ROzVq1CihaMkUJSQk4KuvvsKaNWuQlZWVZ7+7uzuWLVuGbt26yT4DsRCiwBiEEDh69ChWrlyJXbt26Rz1Azxbo2XChAkYPny4Ua3T8uIaXinhe5Gwby0AwMHBAVu3bkW3bt3kDNFoMRkh+h8hBG7fvi21nBw9erTQq0zncnNz00pOGjVqZLR/AVLJyczMxNq1a7FgwQI8efIkz35XV1fMnz8fw4cPN9q/sG/evInVq1fjhx9+yHfOoAoVKmDkyJEYO3YsqlevbuAI9RMYEYvRW87i+S/CuN9mIjPmAixd62HDz79iWFeuO1NUTEaIXuLhw4c4duyYlJycPXtWr3U8KlWqhNdee01KTlq0aAELC4sSjJhKMyEE/vjjD8yYMQPR0dF59pcrVw7Tpk3DlClTTGal3KSkJPzwww9YtWoVbt++rbOOUqnEO++8g0mTJhVpXbKSptYIvLbkoNaq5jmpCbi3dhjKt+iJSl0+hGslWxyb3kXn4qJUMCYjRHpISUlBSEiIlJycOnUKGRkZBR/4PzY2NvD29paSk7Zt28LGxqYEI6bS4tixY5g6dSpOnTqVZ5+ZmRlGjhyJL774Ai4uLjJEV/JycnLg7+8PPz8/HD9+PN96bdu2xaRJk/D222/D3NzcgBHmL+TmYwz4/qRWWXLY33h6PQSOPSbA3N4JAPDbyLbwrlNJjhCNHpMRoleQmZmJsLAwrU6xSUlJhT7e3NwcrVq1QseOHdGhQwe0b9+e02ubmGvXrmH69Onw9/fXub93795YsmQJGjdubNjAZBQaGgo/Pz9s374dOTk5Ouu4ublh3LhxGDlyJCpUqGDYAF+wK/weJmwLl7azH93BA/+vkPP4LixdG8Bl0GIolBb45r3m6Ne8qnyBGjEmI0TFSK1WIyIiQqvfSWxsrF7ncHd31+p3Uq1atRKKlkrSw4cPMW/ePHz33Xc6v3BbtmyJ5cuXo3PnzjJEVzrcvXsXa9euxXfffaez7wzw7NHViBEjMGHCBNStW9fAET7zfMuIJjsT9777AJq0RGm/bau+cPD5iC0jr4DJCFEJEkIgKipKKzm5fv26XueoWbOmlJh07NgR9evXl31kBeUvPT0dfn5+WLRoEVJSUvLsr169OhYuXIgBAwawc/P/pKWlYfPmzfDz88O1a9d01lEoFOjduzcmTZqE119/3aC/A7l9RuKSMiAApEUexqPdy7Xq1BswB5e3fME+I0XEZITIwOLi4rSSk/Pnz+c7BFIXJycnrU6xHh4epebZelmm0WiwZcsWzJo1S+cQcTs7O8yaNQvjx4+HSqWSIcLST6PRIDAwECtXrsx3VWIA8PDwwMSJEzFgwABYWVkZJLbc0TTAs5nNHu9bg9TwQGm/dbnyuBB+TrbWG2PHZIRIZklJSThx4oSUnISGhuqccyI/tra2Wp1iPT09YW1tXYIR04uCgoIwdepUhIeH59lnbm6OMWPGYPbs2XB0dDR8cEbq4sWL8PPzw6+//orMzEyddZydnTFmzBiMGjUKTk5OJR7T8/OMiJwsxG35FFnxN6X9zZs3x4kTJ/j7VwRMRohKmYyMDISGhkrJyYkTJ3Q29+fH0tISbdq0kZKT9u3bw97evgQjLrsiIiIwbdo07N27V+f+d955B4sWLUK9evUMHJnpePDgAdavX4+1a9fiwYMHOutYWVlh8ODBmDhxItzd3Us0nudnYM1KiMXIt320Oq2PHDkSGzZsKNEYTBGTEaJSLicnBxcuXNB6tJPfh7IuCoUCzZo1k/qcdOjQwWSHjxpKbGws5syZgx9//FHnvDNt27bFihUr0K5dOxmiM02ZmZn47bffsHLlSly4cCHfej4+Ppg0aRK6d+9ukD45O3fuxNtvv61VtnnzZgwZMqTEr21KmIwQGRkhBK5du6aVnOiaQOtl6tatqzVip06dOuwUWwipqalYvnw5li1bhqdPn+bZX6dOHSxevBjvvPMO72cJEULg8OHDWLlyJf7+++98+1s1aNAAEydOxJAhQ0p8ArnJkydj5cqV0raNjQ1Onz5dpoZrvyomI0Qm4N69e1rJycWLF/U63sXFRWvEjru7u9FOQ15Ut2/fzndtoZycHPz000+YM2cO4uLi8ux3cHDAnDlzMHr0aFhaWpZ0qPQ/169fxzfffIOffvpJZ3IIABUrVsTHH3+MsWPHomrVkpkDJCsrC506dcLJk/9OjNaoUSOEhoYa1do7cmIyQmSCEhIScPz4cSk5OXPmTL6TS+lib2+P9u3bSwlK69atDTZqQQ63b99Gp06dEBUVpdW0L4TA3r178emnnyIyMjLPcVZWVhg/fjxmzpwp+8RcZdmTJ0+wceNGrF69Gnfu3NFZx9zcHO+++y4mTpyINm2Kfw2ZO3fuoEWLFnj8+LFUNmjQIPzyyy9sJSuEQn9/CyOQlJQkAIikpCS5QyEqVdLS0sTBgwfFvHnzhI+PjyhXrpzAsxGKhXqpVCrRsWNHMWvWLBEYGCiSk5PlfkvFJiYmRtSqVUsAECkpKVJ5WFiY6NKlS773ZNCgQeLWrVsyRk4vysrKEtu2bRNeXl4v/Xlu37692LFjh8jJySnW6wcEBOS51oYNG4r1GqaqsN/fTEaITEhWVpYIDQ0Vy5cvF/369ROVKlXSKzkxMzMTrVq1EhMnThR//vmniI+Pl/stFcm9e/dE3bp1pfcVHx8vbt++LYYMGZLve+/UqZM4ffq03KFTAUJCQsS7774rlEplvv8va9asKVasWCESExOL7bqzZs3SuoaVlZU4e/asVp0DBw4U2/VMRWG/v/mYhsiEaTQaXLlyRavfSUxMjF7naNCggVa/kxo1apTq5um4uDi8/vrruHr1qlQ2YsQIbN26Vee8Fg0bNsTSpUvRu3fvUv2+SFtMTAzWrFmDDRs25LtulK2tLd5//32MHz8etWvXfqXr5eTk4M0338Thw4elsjp16iAsLAz29vZ48uQJateujYsXL3Kph+fwMQ0R6XT79m2xZcsW8dFHH4lGjRrp1XICQFSrVk0MGDBAfPvtt+LixYtCrVbL/ZYkDx48EI0bNy7U+3BychLr1q0T2dnZcodNryAlJUWsXr1aqyXsxZdCoRC+vr7iyJEjQqPRFPlasbGxwtnZWevc77zzjtBoNGLOnDkCgFi0aFExvjvjx5YRIiqUR48e4dixY1LLydmzZ6FWqwt9vIODg1an2FatWsHCwqIEI9bt8ePH6NKly0vnqgAAa2trTJkyBdOmTYOtra2BoqOSptFosGfPHqxcuRKHDh3Kt17Lli0xadIkvPvuu0UaIXXo0CH4+PhozUMzb948fP3110hKSkKDBg1w+fJltrL9D0fTEFGRpKam4uTJkwgODsbRo0dx8uRJZGRkFPp4a2trrWns27ZtW+LzQTx58gRvvPEGzp0799J6I0aMwPz580tsKCiVDuHh4fDz88Nvv/2W7xIMrq6u+OSTT/Dxxx/rPZ3/V199hc8//zzf/SEhIWjbtq1e5zRVTEaIqFhkZWUhLCxMajk5duwYEhMTC328ubk5WrZsKSUnr732GipVKr7l2JOSkuDj44MzZ84UWPett97Cd999h8qVKxfb9an0iouLw7p167Bu3To8fPhQZx2VSoWhQ4di4sSJaNSoUaHOq9Fo0KtXLwQGBurc//HHH2P9+vVFjtuUMBkhohKh0Whw6dIlHD16VGo9uX//vl7naNy4sTSFfYcOHeDm5vbS+lk5GvwScgu3E56ihoMNhnjXhKW5GZKTk9GtWzetSakK4uTkhO+//x59+/bVK2YyXhkZGfj111/h5+eHiIiIfOt169YNkyZNQteuXfM8ZsnJycGVK1cQHh6O8PBwafFLXezt7REXF8dVnMFkhIgMRAiB6OhorRE7165d0+scNWrU0JrGvmHDhtKXwaKASHx/NBqa5z6pzBTA0NZOCPKbjGPHjhX6Os7OzvDy8kLbtm0xZswYLjRYxgghEBQUhJUrVyIgICDfeo0bN8bEiRMxePBgaaXerKwszJ49G0uXLi3UtbZt24b+/fsXS9zGjMkIEckmPj5e6hQbHByM8+fP61x4Lj+Ojo547bXXkOVYH2ezXGHpXBsKs3+nsddkZ+DBjnnIjMl/enwrKyu0bNlSSj68vLxK/bBkMpwrV67gm2++waZNm5Cenq6zTqVKlTBq1Ch88skncHV1BQD8888/GDp0KOLj4196/u7du+e76nNZwmSEiEqN5ORknDhxQmo5CQ0N1TnnR34UltawqtIQNg3ao1yTznj453xk3A7XqlO3bl2txMPDw4PryVCBEhISsGHDBqxZswb37t3TWcfCwgLvvfceJk2ahBYtWiA+Ph7Dhg3Dvn378j2vmZkZYmJiynxnaSYjRFRqZWRk4MyZM1Jycvz4cSQnJxd4XLlmb0KdkoCs+1dg6VofVlUaYFg/H8x+v5/eIyKInpednY3t27dj5cqVL+0M3bFjR0yaNAm9evXCqlWrMGPGDGRnZ+usu3jxYkyfPr2kQjYKTEaIyGio1WpcuHBBq9+JrmbwCl0+hE3tVjB3qAqF4tnCd0O9a+DLfu6GDplMlBACJ06cwMqVK7Fz5858Hy/WqVMH48ePh4eHBz744APcvHkzT51GjRrh0qVLZfrRIJMRIjJaQggs+u0gvt7yFzLuRCLzbgRyEuNQdfSPMLdz0qo7u1cjfNDh1ab6JtIlOjoaa9aswcaNG/NtubOzs8PQoUNx584d7Nq1K8/+U6dOwdPTs6RDLbWYjBCRUcvK0aDh7L3SKJqc1ASYl3fQqmOmAK7M7wFLczMZIqSyIjk5GT/99BO++eYbREdH66xjZmaGVq1a4eLFi1qTBI4aNQpDpy7Ag5QMONmq4FnLAUqzstNSwmSEiIzeooBIfBes+8MfAD7uWAszejY2YERUlqnVavz111/w8/NDcHBwvvVsbGzw9OlTAIBSVR5VP9kMhfmzztSu9irM7dMY3d1dDRKz3Ar7/c0/J4io1JrRszE+7lgLL/4haaZgIkKGp1Qq8dZbb+HIkSM4c+YMBg8erHMdptxEBADUGalIvXRY2o5LysDoLWcRGBFriJCNBltGiKjUy28GViK53b9/H99++y3Wr1+Px48f666kMEP55t1RsfP7MLNQQQHAxV6FY9O7mPwjGz6mISIiMpCnT59iy5Yt8PPzw+XLl/PsN3eohiofrtMaWfPbyLbwrlN86zSVRnxMQ0REZCA2Njb46KOPcOnSJcxduwWqWi219ts275FniO+DlMKvhm3qzOUOgIiIyFQoFAp069YdP8dUQNajGKSc2YX06LMo37x7nrpOtlxILxeTESIiomLkWcsBrvYqxKE6LLuPg1DnQKH89+s2t8+IZy2H/E9SxvAxDRERUTFSmikwt8+zkV4KIE8iAgBz+zQ2+c6r+mAyQkREVMy6u7ti3eCWcLHXfhTjYq/CusEty8w8I4XFxzREREQloLu7K95s7ILQ6IQyOwNrYTEZISIiKiFKM4XJD98tDnxMQ0RERLJiMkJERESyYjJCREREsmIyQkRERLJiMkJERESyYjJCREREsmIyQkRERLJiMkJERESyYjJCREREsmIyQkRERLIqUjKydu1a1KxZEyqVCl5eXggNDX1p/e3bt6Nhw4ZQqVRo2rQpAgICihQsERERmR69k5Hff/8dkydPxty5c3H27Fl4eHigW7duePDggc76J06cwIABA/DBBx/g3Llz8PX1ha+vLyIiIl45eCIiIjJ+CiGE0OcALy8vtGnTBmvWrAEAaDQauLm5Ydy4cfjss8/y1O/fvz/S0tLw999/S2Vt27ZF8+bNsX79+kJdMzk5Gfb29khKSoKdnZ0+4RIREZFMCvv9rVfLSFZWFsLCwuDj4/PvCczM4OPjg5CQEJ3HhISEaNUHgG7duuVbHwAyMzORnJys9SIiIiLTpFcy8ujRI6jVajg7O2uVOzs7Iy4uTucxcXFxetUHgEWLFsHe3l56ubm56RMmERERGZFSOZpmxowZSEpKkl537tyROyQiIiIqIeb6VHZ0dIRSqUR8fLxWeXx8PFxcXHQe4+Liold9ALCysoKVlZU+oREREZGR0qtlxNLSEq1atUJQUJBUptFoEBQUBG9vb53HeHt7a9UHgP379+dbn4iIiMoWvVpGAGDy5MkYNmwYWrduDU9PT/j5+SEtLQ0jRowAAAwdOhRVq1bFokWLAAATJkxAp06dsGLFCvTq1Qvbtm3DmTNnsGHDhuJ9J0RERGSU9E5G+vfvj4cPH2LOnDmIi4tD8+bNERgYKHVSjYmJgZnZvw0u7dq1w9atW/H5559j5syZqFevHvz9/eHu7l5874KIiIiMlt7zjMiB84wQEREZnxKZZ4SIiIiouDEZISIiIlkxGSEiIiJZMRkhIiIiWTEZISIiIlkxGSEiIiJZMRkhIiIiWTEZISIiIlkxGSEiIiJZ6T0dvBxyJ4lNTk6WORIiIiIqrNzv7YImezeKZCQlJQUA4ObmJnMkREREpK+UlBTY29vnu98o1qbRaDS4f/8+bG1toVAoiu28ycnJcHNzw507d7jmTQnifTYc3mvD4H02DN5nwyjJ+yyEQEpKCqpUqaK1iO6LjKJlxMzMDNWqVSux89vZ2fEH3QB4nw2H99oweJ8Ng/fZMErqPr+sRSQXO7ASERGRrJiMEBERkazKdDJiZWWFuXPnwsrKSu5QTBrvs+HwXhsG77Nh8D4bRmm4z0bRgZWIiIhMV5luGSEiIiL5MRkhIiIiWTEZISIiIlkxGSEiIiJZmXwysnbtWtSsWRMqlQpeXl4IDQ19af3t27ejYcOGUKlUaNq0KQICAgwUqXHT5z5///336NChAypWrIiKFSvCx8enwP8v9C99f6Zzbdu2DQqFAr6+viUboInQ9z4nJibik08+gaurK6ysrFC/fn1+fhSCvvfZz88PDRo0gLW1Ndzc3DBp0iRkZGQYKFrjFBwcjD59+qBKlSpQKBTw9/cv8JjDhw+jZcuWsLKyQt26dfHzzz+XbJDChG3btk1YWlqKH3/8UVy6dEmMHDlSVKhQQcTHx+usf/z4caFUKsXSpUtFZGSk+Pzzz4WFhYW4ePGigSM3Lvre54EDB4q1a9eKc+fOicuXL4vhw4cLe3t7cffuXQNHbnz0vde5oqOjRdWqVUWHDh1Ev379DBOsEdP3PmdmZorWrVuLnj17imPHjono6Ghx+PBhER4ebuDIjYu+9/nXX38VVlZW4tdffxXR0dFi3759wtXVVUyaNMnAkRuXgIAAMWvWLPHf//5XABA7d+58af2oqChhY2MjJk+eLCIjI8Xq1auFUqkUgYGBJRajSScjnp6e4pNPPpG21Wq1qFKlili0aJHO+u+++67o1auXVpmXl5f4+OOPSzROY6fvfX5RTk6OsLW1FZs2bSqpEE1GUe51Tk6OaNeundi4caMYNmwYk5FC0Pc+r1u3TtSuXVtkZWUZKkSToO99/uSTT0SXLl20yiZPnizat29fonGaksIkI9OmTRNNmjTRKuvfv7/o1q1bicVlso9psrKyEBYWBh8fH6nMzMwMPj4+CAkJ0XlMSEiIVn0A6NatW771qWj3+UVPnz5FdnY2HBwcSipMk1DUe/3ll1/CyckJH3zwgSHCNHpFuc9//fUXvL298cknn8DZ2Rnu7u5YuHAh1Gq1ocI2OkW5z+3atUNYWJj0KCcqKgoBAQHo2bOnQWIuK+T4LjSKhfKK4tGjR1Cr1XB2dtYqd3Z2xpUrV3QeExcXp7N+XFxcicVp7Ipyn180ffp0VKlSJc8PP2kryr0+duwYfvjhB4SHhxsgQtNQlPscFRWFgwcPYtCgQQgICMCNGzcwZswYZGdnY+7cuYYI2+gU5T4PHDgQjx49wmuvvQYhBHJycjBq1CjMnDnTECGXGfl9FyYnJyM9PR3W1tbFfk2TbRkh47B48WJs27YNO3fuhEqlkjsck5KSkoIhQ4bg+++/h6Ojo9zhmDSNRgMnJyds2LABrVq1Qv/+/TFr1iysX79e7tBMyuHDh7Fw4UJ8++23OHv2LP773/9iz549mD9/vtyh0Ssy2ZYRR0dHKJVKxMfHa5XHx8fDxcVF5zEuLi561aei3edcy5cvx+LFi3HgwAE0a9asJMM0Cfre65s3b+LWrVvo06ePVKbRaAAA5ubmuHr1KurUqVOyQRuhovxMu7q6wsLCAkqlUipr1KgR4uLikJWVBUtLyxKN2RgV5T7Pnj0bQ4YMwYcffggAaNq0KdLS0vDRRx9h1qxZMDPj39fFIb/vQjs7uxJpFQFMuGXE0tISrVq1QlBQkFSm0WgQFBQEb29vncd4e3tr1QeA/fv351ufinafAWDp0qWYP38+AgMD0bp1a0OEavT0vdcNGzbExYsXER4eLr369u2Lzp07Izw8HG5uboYM32gU5We6ffv2uHHjhpTsAcC1a9fg6urKRCQfRbnPT58+zZNw5CaAgsusFRtZvgtLrGtsKbBt2zZhZWUlfv75ZxEZGSk++ugjUaFCBREXFyeEEGLIkCHis88+k+ofP35cmJubi+XLl4vLly+LuXPncmhvIeh7nxcvXiwsLS3Fjh07RGxsrPRKSUmR6y0YDX3v9Ys4mqZw9L3PMTExwtbWVowdO1ZcvXpV/P3338LJyUksWLBArrdgFPS9z3PnzhW2trbit99+E1FRUeKff/4RderUEe+++65cb8EopKSkiHPnzolz584JAOLrr78W586dE7dv3xZCCPHZZ5+JIUOGSPVzh/Z++umn4vLly2Lt2rUc2vuqVq9eLapXry4sLS2Fp6enOHnypLSvU6dOYtiwYVr1//jjD1G/fn1haWkpmjRpIvbs2WPgiI2TPve5Ro0aAkCe19y5cw0fuBHS92f6eUxGCk/f+3zixAnh5eUlrKysRO3atcVXX30lcnJyDBy18dHnPmdnZ4svvvhC1KlTR6hUKuHm5ibGjBkjnjx5YvjAjcihQ4d0fubm3tthw4aJTp065TmmefPmwtLSUtSuXVv89NNPJRqjQgi2bREREZF8TLbPCBERERkHJiNEREQkKyYjREREJCsmI0RERCQrJiNEREQkKyYjREREJCsmI0RERCQrJiNEREQkKyYjREREJCsmI0RERCQrJiNEREQkKyYjREREJKv/B0EN5RGB8K0dAAAAAElFTkSuQmCC", + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAiMAAAGdCAYAAADAAnMpAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjcuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/bCgiHAAAACXBIWXMAAA9hAAAPYQGoP6dpAABrcElEQVR4nO3dd1QU198G8Gd3YSlKlaoSeyexBsQSe9RENFEjsfeuMZLErkRjTdSfGnuvsSRqrMEoahIVRUWiBsWGxihgARdE6u68f/AyOlJkEZjd5fmcs+c4d2aW767KPnvnzr0KQRAEEBEREclEKXcBREREVLwxjBAREZGsGEaIiIhIVgwjREREJCuGESIiIpIVwwgRERHJimGEiIiIZMUwQkRERLIyk7uAvNDpdHj48CFsbGygUCjkLoeIiIjyQBAEJCQkoHTp0lAqc+7/MIow8vDhQ3h4eMhdBhEREeXD/fv3UbZs2Rz3G0UYsbGxAZDxYmxtbWWuhoiIiPIiPj4eHh4e4ud4TowijGRemrG1tWUYISIiMjJvGmLBAaxEREQkK4YRIiIikhXDCBEREcmKYYSIiIhkxTBCREREsmIYISIiIlkxjBAREZGsGEaIiIhIVgwjREREJCu9w8iff/4JX19flC5dGgqFAr/++usbzzl58iTq1asHCwsLVK5cGRs3bsxHqURERGSK9A4jiYmJqF27NpYtW5an4yMjI/Hxxx+jRYsWCAsLw5dffolBgwbhyJEjehdLREREpkfvtWnat2+P9u3b5/n4lStXokKFCliwYAEAoEaNGjh16hT+97//oW3btvr+eKJCp9VqERwcDDMzMzRs2FDucoiITF6hL5QXHByM1q1bS9ratm2LL7/8MsdzUlJSkJKSIm7Hx8cXVnlkQrQ6ASGRsXiUkAwXG0t4VXCESpn74kyZnj9/jqNHj2Lfvn04dOgQNBoNbt26VcgV593bvDYiIkNX6GEkOjoarq6ukjZXV1fEx8cjKSkJVlZWWc6ZM2cOpk+fXtilkQkJvBqF6QfCEaVJFtvc7SwR4FsT7Tzdsz3n4cOHOHDgAPbv34+goCBJAB48eDDeeeedQq87L/Lz2oiIjEmhh5H8mDhxIvz9/cXt+Ph4eHh4yFgRGbLAq1EYvjUUwmvt0ZpkDN8aihW96qGdpzsEQcCVK1ewb98+7N+/HxcuXMj2+czMzDBp0qTCLzwXgiBAp9Mh8MpDjNwWCuH/X51CZQ4g62vL7XliYmJw69YtyaNUqVJYunTpG5f1JiIqCoUeRtzc3BATEyNpi4mJga2tbba9IgBgYWEBCwuLwi6NTIBWJ2D6gfAsQQRARps2Df7/24JD1vdx4MAB3Lt3743PqVQq8eGHH0IQBPGh0+nealufc3JiXuodlB60XHxtCgDTD4SjVXUXxERHZQkcmY/ExETJ85QoUQJhYWEMIkRkMAo9jPj4+ODw4cOStqNHj8LHx6ewfzQVAyGRsZLLFwCQ/iIeL66dRMp/15B05yKE1Be4psdzpqam4ubNmwVbaAEQoEPyvctIi3uA9NiHSHsWhQdxD1Fy+iOkpiS/+Qn+3+LFi1G5cuVCrJSISD96h5Hnz59LBvZFRkYiLCwMjo6OeOeddzBx4kQ8ePAAmzdvBgAMGzYMS5cuxbhx4zBgwAAcP34cu3btwqFDhwruVVCx9Sjh5Yfwsz+34MXNs0iLfQAIWpg5lYOQ+kLG6gqYAKhKOuD51eNIDD8B6LR6P4WzszMsLS1x4cIFVKtWDTY2NoVQKBGRfvQOIxcuXECLFi3E7cyxHX379sXGjRsRFRWFf//9V9xfoUIFHDp0CGPHjsXixYtRtmxZrF27lrf1UoFwsbEU/5z+/CnSnry8DOPyyUQozNRIun0eNdJuIfTsX0hKSnrjc5qZmaFs2bJQKBRQKBRQKpXin/Oznd/n0CSlI+z+M+D/L6eobJ1hXsoDTh9/CfumPRAfshfP/z4CIT01z+/X48eP0atXL3Hb3d0d1apVkzyqV6+OcuXKQaVS5fl5iYjehkLI7SK1gYiPj4ednR00Gg1sbW3lLocMiFYnoMm844jWJOPZ2V/w7I+N4j7nLlNRorI33OwscWp8S6SmJOPEiRM4dOgQDh48KAnNr1KpVIiIiEClSpWK6FVk79XXlt1/UgWAUqoktBFCsWL5cmg0mgL72ZmzJb8eVKpVqwYHB4cC+zlEZNry+vnNMEJGL/Numhc3z+LRnpliu0Pz/rDz7pLtHSeCIOCff/7BwYMHcejQIZw5cwY6nU7c369fP2zYsKHIXkNOMl8bAEkgyRx6mvnaNBoNVqxYgf/973949OhRodbk7OyM6tWrZwkpFSpUgLm5eaH+bCIyLgwjVKwEXo3ChHWB+HvRALHNuUF7bN6wLk9zcTx9+hRHjhzBwYMHERgYCI1Gg+vXr6NKlSqFWXae6DPPSFJSEtavX48ffvgh2zuHFixYAEtLS0RERIiPe/fu5XoXT16ZmZmhUqVK2V72cXJyeuvnJyLjwzBCxU5ScgpsSpaAVpsxsLNxkyY49ddfej9Peno6goODodPp0KxZs4IuM1/0nYE1LS0N27dvx9y5c3Ht2st7iSZNmoRZs2ZJjk1KSsKtW7ckAeX69euIiIgosNmPHR0ds73kU6lSpXzdxs8ZaYmMA8MIFUtVq1YVb8t1cnLC48ePZa5IXjqdDvv27cOcOXNw/vx5VKtWDdeuXcvTHCOZE6a9GlIyH3fu3JFc1sovpVKJChUqiD0orwYVV1fXbOvkjLRExoNhhIolX19fHDx4UNx++vQpHB0dZazIMAiCgKCgIMyZMwdLlixBrVq13ur5UlNTcfv2bbEH5dVHbGxsgdRsa2ubpSflidIRc89ooDCX9qa8PoaGiAwDwwgVS9988w3mz58vbp85c4YT7L0mNTUVarW60J7/yZMnWQLK9evXcfv2baSnpxfAT1BAZecCc8cysPPuCsty7/1/K8Q7p3jJhsgw5PXz2yDXpiHKr2rVqkm2IyIiGEZeU5hBBMi4PObk5ITGjRtL2tPS0hAZGZntZR/97gASoNXEQKuJgU1931dagShNMkIiY+FTqVTBvBgiKhIMI2RSXg8j169fl6kSep25uTmqVq2KqlWrwtfXV7IvLi4ON27ckAyejYiIwM2bN5GamsukbtmMKXl1Vl4iMg4MI2RSsusZIcPn4OAAb29veHt7S9q1Wi3u3buHiIgIHDkdinWHTiMt9gHSY/+D9kU8nl8+BuuKDSTnvDorLxEZB4YRMinOzs6wt7fHs2fPADCMGDuVSoWKFSuiYsWK+LBtO5wr8XJG2sTrf+HJwQXQvtBAZW0njhnxqsABy0TGRil3AUQFSaFQoHr16uL2rVu3JIMm79+/L0dZVABUSgUCfGsCyBismvroLqBNR+I/J8W7aQJ8a3LwKpERYhghk/PqpZrMQZOpqamYMGECpk6dKmNl9LbaebpjRa96cLOzROrDjF6v55ePwNXWgrf1EhkxhhEyenFxcZg1axbCw8MBZB03sm/fPvj4+GDevHmoWLGiHCVSAWrn6Y4/v2kOs9g7AIC0J/9iQfMSDCJERoxhhIyeg4MDLly4gFq1aqFGjRo4ceKEZP8333yD0NCMxebkXomXCsbtWzfxPOHlVPUb1q+TsRoielsMI2QSJk6cCCDjVt6jR4/meFzlypWLqiQqRCEhIZLtHTt2ICEhQaZqiOhtMYyQSfDy8kKrVq3eeBzDiGk4d+6cZDsxMRE7duyQqRoielsMI2QyJk2alOt+e3t7rlNjIl7vGQGAtWvXylAJERUEhhEyGS1atICXl1eO+ytXrpyn1WrJsCUnJ+Pvv//O0h4SEoLLly/LUBERvS2GETIZCoUi194RXqIxDWFhYUhLS8t237p1HMhKZIwYRsik+Pr6olatWtnuYxgxDa+PF3nVli1bkJzMtWmIjA3DCJkUpVKJCRMmZLuPYcQ0ZDdeJFNcXBz27t1bhNUQUUFgGCGT8/nnn6N8+fJZ2hlGTENuPSMAsGbNmiKqhIgKCsMImRwzMzOMGzcuSzvDiPF78uQJbt++nesxJ06cwK1bt4qoIiIqCAwjZJL69+8PV1dXcbtkyZJwcXGRsSIqCOfPn89xn7W1tfjn9evXF0U5RFRAGEbIJFlaWuKrr74St3lbr2nIvERTu3ZtBAQESPbNmDEDJ06cwOeff46ffvpJslozERk2hhEyWcOGDYO9vT0AwNqpDIJvP4VWJ8hbFL2ViIgILF68GBcuXMDHH38s2ffkyRM0b94c27dvx/nz5/HixQuZqiQifZnJXQBRYTl97zlK1O2AZye24upzK3RfcxbudpYI8K3JFV6N1OrVq2FjYwMAcHZ2lux7/Pix+OfX9xGRYWPPCJmkwKtRGL41FArP9lCYW8DMvjQAIFqTjOFbQxF4NUrmCik/MoMIkHsYISLjwjBCJkerEzD9QDgEACprO5Ss3Q4qaxskhB6ETtABAKYfCOclGyNXokQJWFlZidsMI0TGi2GETE5IZCyiNC9n4bRp8AniLx5E7NGVePzLDKS/0CBKk4yQyFgZq6SC8GrvCMMIkfFiGCGT8yhBOh14UsQppNzLWFgt6c4FRG0YjeR/r2Q5jowPwwiRaWAYIZPjYmMp/lkQBCQ/CJfs1z6PRcyOyTiwYQm0Wm1Rl0cF6NUwotFokJqaKmM1RJRfDCNkcrwqOMLdzhIKZKzk6/zJJDi0GAgoX7l5TNBh3ZLv0apVKzx48EC2WuntvD6I9cmTJzJVQkRvg2GETI5KqUCAb00AEAOJrdencOv1Pczs3STH/vHHH6hTpw4OHz4sQ6X0tpycnCTbvFRDZJwYRsgktfN0x4pe9eBm9/KSjYV7VdT5YiU+aNdRcuyTJ0/w8ccf4+uvv2Y3v5Hh7b1EpoGTnpHJaufpjjY13RASGYtHCclwsbGEVwVHKBUdsXbtWnzxxRdITn45iHXBggX4888/sWPHDlSsWFHGyimveJmGyDSwZ4RMmkqpgE+lUuhUpwx8KpWCSqmAQqHA4MGDcf78edSsWVNy/Pnz51G3bl3s2rVLpopJH+wZITINDCNUbHl6euL8+fMYNGiQpD0+Ph5+fn4YOnQokpKSZKqO8oJhhMg0MIxQsWZtbY01a9Zg+/btkqnGgYx1ULy8vBAeHp7D2SQ3hhEi08AwQgTg888/R2hoKOrXry9pv3r1Kho0aIB169ZBEDh9vKFhGCEyDQwjRP+vcuXKOHPmDMaOHStpT0pKwqBBg9CzZ0/Ex8fLVB1lx87ODubm5uI2wwiRcWIYIXqFWq3GwoULceDAATg6Okr2bd++HfXq1cPFixdlqo5ep1AoJHONMIwQGSeGEaJsdOjQAX///TeaNm0qab99+zZ8fHywaNEiXrYxEFyfhsj4MYwQ5aBs2bI4fvw4pk2bBoVCIbanpaVh7Nix6NSpE54+fSpjhQRIw8jTp0+53hCREWIYIcqFmZkZpk+fjqCgILi7u0v2HThwAHXq1MFff/0lU3UESKeEFwQBsbGxMlZDhkSrExB8+yn2hT1A8O2n0OrYm2moGEaI8qBFixYICwtDu3btJO3//fcfmjdvjpkzZ/IbuUx4Rw1lJ/BqFJrMO47ua85izI4wdF9zFk3mHUfg1Si5S6NsMIwQ5ZGLiwsOHTqEH374AWZmL1dS0Ol0mDp1Kj788ENERfEXXVHjlPD0usCrURi+NRRRmmRJe7QmGcO3hjKQGCCGESI9KJVKfP311zh16hTKly8v2Xf8+HHUrl0bgYGB8hRXTLFnhF6l1QmYfiAcAoD057FIe/qfuC/zIs30A+G8ZGNgGEaI8sHb2xuXLl3CZ599Jml//Pgx2rdvj/HjxyMtLU2m6ooXhhHK9OzZM/yweiv++WURHq4djgfL+iDu5AbJMQKAKE0yQiI5tsiQcNVeonyyt7fHzp070apVK3z55ZeSFYC///57/PHHH9ixY0eWHhQqWAwjxVdSUhJOnz6NoKAgBAUF4eLFi9DpdJJjku+GQdBpoVCqJO2PEqSXcEheDCNEb0GhUGDo0KFo1KgRunXrhuvXr4v7zp07hzp16mDdunXo0qWLjFWaNoYR0yYIAuLj4xEdHY3//vsPp0+fxtmzZ3H16lU8ePAgS/jIcn56ClKjb8GidDVJu4uNZWGWTXpiGCEqAO+++y4uXLiA0aNHY8OGl93CGo0GXbt2xfDhw7Fw4UJYWvIXYEFjGDE9T58+Rd++fREeHo6HDx8iJSVF/ydRKGFRtiYsy9WGqqTDy2YAbnaW8KrgmPO5VOQYRogKSIkSJbB+/Xq0atUKw4YNw/Pnz8V9K1aswOnTp7Fz505Ur15dxipNj6OjIxQKhTgjLsOIcbt37x6CgoLEP7+p5+N1VlZW6DH8axxFbSjNLfHqMNXMqQsDfGtCpVRkdzrJhANYiQpYz549ERoainr16knaL1++jPr162Pjxo2cSr4AqVQqlCpVStxmGDEujx8/xq5duzB06FBUrlwZ5cuXx8CBA3Ho0CG9g0jdunVx/fp1rF0wA6v6N4KbnbQn0s3OEit61UM7T/ccnoHkohCM4LdifHw87OzsoNFoYGtrK3c5RHmSkpKCcePGYcmSJVn29erVC8uXL4eNjY0MlZmeGjVqiON13N3d8fDhQ5kropw8f/4cf/75pzjo9O+//y6Q5+3evTvWrl0La2trsU2rExASGYtHCclwscm4NMMekaKV189vhhGiQrZ//37069cPcXFxkvYqVapg586dqFu3rkyVmY4PPvhAnJbf3NwcKSkpkvWESD6pqak4e/asGD7OnTuH9PT0Ant+pVKJuXPn4uuvv+bfuQHK6+c3x4wQFbKOHTvi77//Rvfu3XH69Gmx/ebNm2jYsCHmz5+PUaNG8RfpW3h1EGtaWho0Gg3s7e3lK6gY0+l0CAsLE8PHX3/9hRcvXuTp3FfH/uSFvb09duzYgbZt2+a3XDIQ+RozsmzZMpQvXx6Wlpbw9vZGSEhIrscvWrQI1apVg5WVFTw8PDB27FjJnAxEps7DwwMnT57E5MmTJaEjNTUVX3zxBTp37swF3t4Cp4SXjyAIuHnzJlauXImuXbvC2dkZ9evXx7hx43DkyJFcg4hKpYKbmxvUarX4XNlp1KhRlm/VNWvWxPnz5xlETIWgpx07dghqtVpYv3698M8//wiDBw8W7O3thZiYmGyP37Ztm2BhYSFs27ZNiIyMFI4cOSK4u7sLY8eOzfPP1Gg0AgBBo9HoWy6RwTl27Jjg5uYmIGMySPHxzjvvCKdPn5a7PKM0ZcoUyXt55swZuUsyaQ8ePBC2bNki9OvXT/Dw8Mjybzm3h6enp9C+fXuhZs2auR5XsmRJYdiwYUJYWJggCILg4OAg7vvkk0+E+Ph4md8Fyou8fn7rHUa8vLyEkSNHittarVYoXbq0MGfOnGyPHzlypNCyZUtJm7+/v9C4ceM8/0yGETI10dHRwocffpjlF7BKpRJmz54taLVauUs0KosXL5a8j/v27ZO7JJMSFxcn7N27Vxg1apRQo0YNvcJHhQoVhEGDBgmLFy8WRo0aJTg7O+d6/HvvvSesWLFCEjbS0tLE/d9++y3/fxiRvH5+6zVmJDU1FRcvXsTEiRPFNqVSidatWyM4ODjbcxo1aoStW7ciJCQEXl5euHPnDg4fPozevXvn+HNSUlIkk9zEx8frUyaRwXN1dcVvv/2GH374AZMnT4ZWqwUAaLVaTJo0CcePH8eWLVvg5uYmc6XGgROfFay8TLOeE2dnZ7Rq1QqtWrVC8+bNER4ejpUrV2LdunU5XoaxsLBAt27dMHz4cDRs2DDL+Km4uDiULFkSW7duRadOnd769ZHh0SuMPHnyBFqtFq6urpJ2V1dXyTTYr+rRoweePHmCJk2aQBAEpKenY9iwYZg0aVKOP2fOnDmYPn26PqURGR2lUonx48fjgw8+QPfu3XHv3j1x37Fjx1C7dm1s3boVbdq0kbFK48Aw8nbS09Nx4cIFMXycOXMmz7OelixZEs2aNRMDiKenJ2JiYrB27Vq0bNkS9+/fz/HcypUrY9iwYejXr59krpjXCYKAs2fPolatWnq/NjIS+nS3PHjwINvrsd98843g5eWV7TknTpwQXF1dhTVr1giXL18W9uzZI3h4eAgzZszI8eckJycLGo1GfNy/f5+XacikxcbGCp07d87SZa1QKISJEycKqampcpdo0MLCwiTvm7+/v9wlGTSdTidcuXJFWLRokeDr6yvY2trm+bKLWq0WmjVrJsyYMUM4ffq0+G9Tp9MJx44dE7p27SqYmZnleL5KpRI6d+4sHD16lJdbioFCuUzj5OQElUqFmJgYSXtMTEyO3clTp05F7969MWjQIAAZa3gkJiZiyJAhmDx5MpTKrDf0WFhYwMLCQp/SiIyag4MDfvnlF6xYsQL+/v7it1JBEDBnzhz88ccf+Omnn1CuXDmZKzVM7Bl5s7t374o9H8ePH8/yezwnCoUC9erVy7js0qIlLMvWRHy6UpxETPMsDhs3bsSqVatw48aNHJ+nTJkyGDJkCAYOHIgyZcoU1MsiE6FXGFGr1ahfvz6CgoLwySefAMi4pzwoKAijRo3K9pwXL15kCRwqVcZSzoLhz7dGVGQUCgVGjBiBxo0bw8/PDxEREeK+M2fOoE6dOtiwYYP4f49ecnJykmybWhg5duwYPD099RpD9PjxY5w4cQJBQUE4duwY7ty5k+dzq1WrJhn34ejoiMCrUZh+IBxRJy9DEASkPoxAevjviP/nT6Sm5DxVQ9u2bTFs2DB06NABZmac2opyoG+Xy44dOwQLCwth48aNQnh4uDBkyBDB3t5eiI6OFgRBEHr37i1MmDBBPD4gIECwsbERtm/fLty5c0f4/fffhUqVKgndunUr8G4eIlORkJAg9O3bN9tu7lGjRglJSUlyl2hwXr3UUL9+fbnLKRAPHjwQ/Pz8BGtrayEtLS3XYxMSEoRDhw4J/v7+Qu3atfW646VMmTJCnz59hE2bNgn379/P8ty/XXkolB9/UCg3/qBQqv0YwdylYq7P5+TkJIwbN064detWYb01ZCQK5TINAPj5+eHx48eYNm0aoqOjUadOHQQGBoqDWv/9919JT8iUKVOgUCgwZcoUPHjwAM7OzvD19cWsWbP0/dFExUbJkiWxceNGtGrVCsOHD0diYqK4b+nSpTh16hR27tyJqlWrylilYXF2dhbvvDP2npH09HQsW7YMU6dORUJCApo0aZKlV+Ftplm3t7dHy5Ytxd6PqlWr5jgDsFYnYPqBcHH126Q7F5H2KPteliZNmmDYsGHo2rUrL7WTXrg2DZGBi4iIgJ+fX5YFxUqUKIEVK1bkept8ceLj44OzZ88CyFhGPq9TkBua4OBgDB8+XPL37e/vjx9++CHf06xbWVmhSZMmYvioW7eueLn8jfXcforua86K28//OYGnBxeI2wq1FUrUaokVM8ej10dN8/gqqbjg2jREJqJatWo4e/YsvvnmGyxdulRsT0xMRJ8+fRAUFISlS5eiZMmSMlYpv1cHsSYlJeHFixeSFVwN3dOnTzFhwgSsXbs2y77ffvsNGzduzPOSASqVCl5eXmL48PHxyXdPxaOEjPEg2hcaxB5dCauqjWDmWBYKMzVs6n6EEjWbQam2gk3pivl6fiKAYYTIKFhaWuLHH39Ey5YtMWDAADx79kzct2nTJpw9exY7d+5E7dq15StSZtndUWMIdx+9aRl7nU6HjRs3Yty4cXj69Gm2z3Ht2rU3/px3331XDB8ffPBBgfUiu9hYIvH6KcQeXQGF0gxOHb6CVbn3oLSylVzacbGxLJCfR8UTwwiREfn0009Rr1499OjRA2fOnBHbIyIi4O3tjYULF2L48OHFcgVgQwwj4h0ompd3m7jbWSLAtybaebrj8uXLGD58uOTvMq8qVKggho+WLVvCxcWlIEsHADx69AgLJ4zCk30/AwDsmvaCQmUGlbWdeIwCgJtdRsgiyi+GESIjU65cOZw8eRIBAQGYO3eueIt8SkoKRo4ciePHj2Pt2rWwt7eXt9AiZmhzjQRejcLwraF4fVBetCYZQ9edQoPYIOzbtlZcCuBNXp1mvVWrVqhQoULBF/2KXbt2YeTIkS9XQFaZwbZ2O8kxmZE3wLempLeHSF8MI0RGyNzcHLNnz0aLFi3Qq1cvPHr0SNy3e/duXLhwATt27EDDhg1lrLJoGVIYefUOFF1aCpTmGeM1BEFAYsRpxAWtxr/P8zb+I1ONGjWwcePGQr9L5dGjRxg5ciR++eUXSXurjz5BYmk3SS+P2yu9PERvg2GEyIi1adMGf//9N3r37o1jx46J7ffu3UPTpk0xa9YsfP3119nOdGxqDCmMhETG4mHsc8Rf2I/4kN1w77MQgjYdsUdXIvnupXw9559//ol+/fph27ZthfL3KQiC2BuS3diV2VO+Qf0G7+c6/oUov4p9GHnT4LK8ePHiBUJCQnDq1Cmkp6fj22+/LZxiibLh5uaGI0eOYN68eZg6darY7Z+eno7x48fj+PHj2Lx5c6GMKTAkhhRG/jx1GlGbvkTa47sAgKdHlsGqsjcs33kXFu5VIaSnQpeeCu93SsLZSoGkpKQ3PlJSUrBjxw6UK1cOc+fOLdB6Y2JiMGLECOzZsyfb/V5eXvDy8gIA+FTKeUE7ovwq1mHkTYPLchITE4PTp0/j9OnTOHXqFEJDQ8XJhjLnOSAqSkqlEhMnThRXAH51pdQjR46IKwC3atUqy7larRZKpdLoB70aQhiJi4vDxIkTsXr1aslyF8mRoShZuy1K1PtYcvx3gxvm+cNdp9MhOTkZSUlJEAShQP6+BEHAzp07MWrUqBzv5AGQ43IfRAXF9Ptuc5A5uOzVIAJkDC4bvjUUgVejAGT8Z71+/TrWrVuH/v37o0qVKnBzc0OXLl2wcOFChISEiEGkT58+8Pb2LvLXQpSpcePGCAsLy7J+TXR0NNq0aYMpU6ZkmaUzLCws27ktjI2c69MIgoBt27ahevXqWLVqVZZ1t6yqNISFexVxW4GMLz763IGiVCphbW2NUqVKFUgQiYmJQdeuXdG9e/dcg4izszO6dev21j+PKDfFsmfk9emNgYxfJikPwmHhVhWpMbcw9Jt9qG0eg+DgMy9Hk+dCoVCgW7duiIyMhIODA2xtbYvFdXoyPI6OjtizZw+WLVuGr776CqmpqQAy/o3PmjVLXAHYw8MDAHDlyhWMHj0aXl5eRj1PSYkSJWBlZYWkpCQARRdGbt68iREjRkjG7GRS2TijVJthsKry8kuK3HegCIKAHTt2YNSoUXmaRG3IkCGc2p0KXbEMIyGRsZIekfT4J3i8dxZSo28CShWgy7jm/q8ezykIAjp06CBuKxQK2Nrawt7ePtuHg4NDjvvs7e1hY2PDMEP5plAoMGrUKHEF4Js3b4r7Tp06Ja4A3LFjR1y9ehUpKSno1q0bLly4ABsbGxkrfzvOzs7499+M/7mFHUZSUlIwd+5czJkzBykpKZJ9KpUKY8eORaPPhuL7oHsGdQfK06dPERkZCW9vb5w5cwYajSbHY1UqFYYNG1aE1VFxVSzXptkX9gBjdoQBAFIeRiBm1zQIKRkLkSksSkBpZQPts+i3/jlvQ6lUws7OLtfAkluoKVmypNGPAaCCkZCQgBEjRmDr1q1Z9o0ZMwZ///03Tp48CQDo3r07tm3bZrT/dho0aICLFy8CAOzs7CQz1Rak48ePY/jw4bhx40aWfQ0bNsSqVavw3nvvASiYQfKFRavVokOHDggMDMx2f9euXfHzzz8XcVVkSrg2TS5enbbY3Lk8VCXskf7/YURISYRl1Uaw6fA1fHRXceLwr4X2Cy03Op0OcXFxiIuLy9f5KpUKdnZ2b+yBySnQWFtbG+0HEknZ2Nhgy5YtaN26NUaMGCFZXG3x4sWSY7dv344WLVpg8ODBRV1mgXh1EKtGo0FqairUanWBPf+jR4/w1VdfZRvs7O3tMXfuXAwePFjSq6lSKgz2DpQlS5bkGEQAYPTo0UVYDRVnxbJnRKsT0GTecURrkiEASHlwHdHbxgGCTjymWt/Z+Gf9BKSlpuDgwYPYtGkTfvvttxxnS/Tw8ED37t3x7NkzPHv2DHFxceKfM7fzury3ITAzM9PrstLrx1haWjLMGKDr16/Dz88Ply9fzvEYCwsLnDt3zijHj/Tp0wdbtmwRtx88eIDSpUvn+fyEhIRsL1PpdDqsXbsW48ePz/bLSc+ePbFgwQK4urrmq245/Pbbb+jQoQN0upe/98qUKYMHDx4AyFjr5u+//+b/Y3oref38LpZhBHh5Nw0ACADiTm5A/Lnd4v5SLm64eT0cDg4OYltMTAy2b9+OTZs2ISwsTPJ8KpUK9+7dQ5kyZbL9eYIgICkpKUtAeXX79cfr+/M6bbQhUKvVeo+TefUYDpgrPElJSfD398fKlStzPKZq1apGOX7kq6++wsKFC8XtsLCwPIeq5cuXw9LSEgMGDJC0X7lyBUOHDkVwcHCWc6pUqYLly5ejdevWb1d4EQsPD4ePjw/i4+PFtrZt22L58uWoWrUqtFotVq9ebbQ9ZGQ4eJnmDdp5umNFr3riPCP2TXoi6dZ5pD3NGPz29FE0xowZg82bN4vnuLq64ssvv8SXX36Jy5cvY/Pmzdi6dStiYmKg1WqxatUqzJgxI9ufp1AoYG1tDWtra72+qWUSBAGJiYl6hZlXj9FoNJJvQIUtNTUVjx49kkxTrg9LS0u9x8m8+ijIrnlTIggCjh8/jpCQkFyPu3HjBoYOHWp040fyO9fIr7/+ilGjRmHWrFliW2JiIqZPn46FCxdm+SKgVqsxceJETJgwAZaWxrVa7dOnT9GxY0dJEKlWrRp27NgBe3t7dO7cGUePHkWPHj1krJKKm2LbM5Lp1cFlsfeuY3CXtpJfPL/++is6deqU4/np6en4/fffsWnTJpw7dw4REREG+a1ep9Ph+fPnb+x9yS3MGBNra+t8jZWxt7eHnZ0dzM3N5X4JBS4kJARffPEFzp07l+dzVq1ahSFDhhRiVQVr3bp1GDRokLj9008/oXv37rmeExwcjJYtWyI5ORlffPEFFi9ejIMHD2LUqFG4d+9eluNbtmyJ5cuXo1q1agVef2FLS0vDhx9+KA5YBgAHBwecO3cOVapkzIMSHByM3bt3Y/78+TJVSaaEl2nyadq0afjuu+/EbRcXF/zzzz9ZJlTKzrNnz6BUKgu9RjlotVokJCTk6XJSdvsTEhLkfgl6KVGiRL7GymSGGZVKJfdLyCI9PR3Hjx/H1q1bsWfPHiQmJr7xHGMbP7J//37Jl4fFixfjiy++yPH4GzduoFGjRuKkXy1atIC9vT327t2b5VhnZ2csXLgQPXv2NKreokyCIGD48OFYtWqV2KZSqRAYGJjlMlNcXJzkEjVRfjGM5FNqaiq8vb0lY0K6deuGnTt3FurPNXXp6emIj4/P8/iY1x/Pnz+X+yXoxcbGJl9jZezt7YtkwrzExETs378fW7duxZEjR3Idj1SlShVcvHgRNjY2Bn2bKpDxrb5Ro0bi9pQpUyRfLl4VExMDHx8fREZGvvF5Bw8ejLlz58LRMe8zphqapUuXZrk7ZtmyZRgxYoRMFVFxwDDyFi5fvowGDRogLS1NbNu5cyenRJZRWloaNBpNvsPMq7ezGrqcJszLa6gpWbKkXmHm0aNH2LVrF7Zu3ZrjJZzu3buj98T5mHHwmt5rORWlmzdvomrVquL20KFDsx2o+/z5czRv3lyckyQnnp6eWLVqlSTgGKOjR4+iffv2ktA5fPhwLF++XMaqqDhgGHlLs2bNwpQpU8TtUqVK4Z9//jGqW/fopdTU1DwP9s3ukZyc/OYfYiBymzDvTYHmyZMn2LdvH7Zt24Zbt25JnrdU21EoWaedpC2zT2RFr3oGEUiePXsmubzQuXNn7N69W3JMWloaOnXqhN9++y3H57GyssK3336LsWPHGv34oRs3bsDb2xvPXrkluWXLlggMDDT610aGj3fTvKXx48dj3759OH/+PICMEehDhw7F3r17jfJ6cXGnVqvh4uICFxeXfJ2fnJwMjUaj9+3YmW2v9rIVtoKYMM/e3h5ly5ZFSkoKnj17hrS0NDz9fRmS/wuHVWUvlKjeBEDGbfEKANMPhKNNTTfZL9lkDj7OfL9fv5smc9xEbkEEyHgPU1JSivQOtMIQFxcHX19fSRCpVKkSfv75ZwYRMijsGcnFtWvXULduXcm6E5s3b0bv3r2LrAYyfoIgIDk5OU+Xk3I6xpAmzLOu0QzOHb/J0r59cEODmGm0dOnSiIrKWHW7Ro0aCA8PF/dNnz4d3377bZ6fq1q1ali+fDlatmxZ0GUWuvT0dHz00Uc4evSo2GZra4uzZ8+iRo0aMlZGxQl7RgpAjRo1MHPmTHzzzctfvKNHj0bLli1znNyM6HUKhQJWVlawsrKCu7v+lzIEQcCLFy/yPD4mu/0F+Q1fYZb9HC6PEgzjUpazs7MYRqKiH0GrE6BSKrBu3Tq9gkjp0qXRsGFDREdHIz09HWZmxvXr0t/fXxJElEoldu7cySBCBsm4/nfJYOzYsdi7dy/OnDkDIGO9i8GDB+PQoUO8XENFQqFQoESJEihRokS+QrAgCFnmmNEn0Gg0GrzagWpmm/1t7q+u+SSXwKtRuJv48rbqZ3GxaDznKD52fIzpo4fmem6JEiXQvHlztGnTBm3atEGNGjWM9v/4qlWr8OOPP0raFixYgHbt2uVwBpG8GEbeQKVSYePGjahduzaSkpIAZKzpsH79egwcOFDm6ojeTKFQwMbGBjY2NvDw8ND7/LR0LRp9dxDRj2KhTXkOpaW0q1UBwM0u4zZfOWUu8ZCufnUKewGRl0MQsHcWhNduX1YqlXj//ffF8NGwYUOTmLn35MmTGDVqlKRt0KBBGDNmjEwVEb0Zx4zk0ZIlSyT/mW1sbHDlyhWUK1dOlnqIitLrazllMpS7aTIXv4zSJCP22CokXDwg7lNY2kBIzph0r1KlSmL4aNGihclN7HX79m14eXkhNjZWbGvatCmOHTtmEkGLjE9eP78Ld2YlEzJq1Cg0b95c3E5ISMDAgQONfrQ9UV5kruXkZie9FONmZyl7EAGAkMhYcf4TpZX0F57a6R04th2F0kPXYsuRc1ixYgU6d+5sckEkPj4evr6+kiBSvnx57N69m0GEDB4v0+SRUqnE+vXr8d5774mzgQYFBWHlypWcwZCKhXae7mhT080gZ2B9dfBsiepNoHapCIWZOVS2LjC3c4XCzDzLcaZEq9Wie/fuuHbtmthWsmRJHDhwIMvigUSGiD0jeqhQoUKWxaO++eYb3L59W6aKiIqWSqmAT6VS6FSnDHwqlTKIIAJIB8+al/KAdRVvWFWoB3WpsmIQef04UzJ+/HgcPnxY3FYoFNi+fTs8PT1lrIoo7xhG9DRkyBB8+OGH4vaLFy/Qv39/Xq4hkpFXBUe421kip2ikQMbU9XIPsi0MGzZswIIFCyRt8+bNQ4cOHWSqiEh/DCN6UigUWLt2rWQgzl9//YXFixfLWBVR8aZSKhDgWxMAsgSSzO0A35oG05NTUE6dOoWhQ6W3LPfp0wdff/21TBUR5Q/DSD54eHhkCR+TJk1CRESETBURkaEPsi1od+/eRefOnSVLDfj4+GDVqlVGOz8KFV+8tTefBEFAx44dcfDgQbHN29sbp06dMrqZGolMiVYnGOQg24KUkJCAxo0b48qVK2Kbh4cHzp8/z8U8yaDw1t5CplAosHr1asntgefOncty7ZaIipahDrItKDqdDr169ZIEEWtra+zfv59BhIwWw8hbcHd3x9KlSyVt06ZNw9WrV2WqiIhM3ZQpU7B//35J25YtW1CnTh15CiIqAAwjb6l79+7o3LmzuJ2amoq+ffsW6ZLxRFQ8bN26FXPmzJG0zZw5U/I7iMgYMYy8JYVCgRUrVsDJ6eXiYaGhoVl+YRARvY2zZ89i0KBBkrbu3btj0qRJMlVEVHAYRgqAi4sLVq5cKWn77rvvcOnSJZkqIiJTcv/+fXzyySdISUkR295//32sW7eOd86QSWAYKSBdunRB9+7dxe309HT07dtX8suDiEhfiYmJ6NSpE2JiYsS20qVL49dff4WVlZWMlREVHIaRArR06VK4ubmJ21euXMGMGTNkrIiIjJlOp0Pfvn0lvaxWVlbYt28fSpcuLWNlRAWLYaQAOTo6Ys2aNZK2uXPnIiQkRKaKiMiYTZ8+Hbt375a0bdy4EQ0aNJCpIqLCwTBSwDp06IB+/fqJ25nfbJKSkuQrioiMzs6dO7P0rE6bNg3dunWTqSKiwsMwUgj+97//oUyZMuL29evXMXXqVBkrIiJjcuHCBcmXGgDo2rUrAgIC5CmIqJAxjBQCe3t7rFu3TtK2cOFCnD59WqaKiMhYPHz4EJ06dUJycrLYVrduXWzcuBFKJX9lk2niv+xC0rZtWwwZMkTcFgQB/fr1Q2JiooxVEZEhS0pKwieffIKHDx+Kba6urti3bx9KlCghY2VEhYthpBDNnz8f5cuXF7dv3bqFiRMnylcQERksQRAwYMAAnD9/XmyzsLDAvn374OHhIWNlRIWPYaQQ2djYYP369ZK2H3/8ESdOnJCpIiIyVLNnz8aOHTskbevWrYO3t7dMFREVHYaRQtaiRQuMHj1a0jZgwAAkJCTIVBERGZq9e/diypQpkraJEyeiZ8+eMlVEVLQYRorAnDlzULlyZXH77t27+Prrr2WsiIgMRVhYGHr16iVp69SpE2bOnClTRURFj2GkCJQoUQIbN26UrCGxevVqHDlyRMaqiEhuMTEx6NixI168eCG2vfvuu9iyZQvvnKFihf/ai0jjxo3x1VdfSdoGDhyIZ8+eyVMQEckqOTkZn376Ke7fvy+2OTs748CBA7CxsZGxMqKixzBShGbMmIHq1auL2w8ePMCXX34pX0FEJAtBEDB06FAEBweLbebm5tizZw/KlSsnY2VE8mAYKUJWVlbYtGmTpPt106ZN2L9/v4xVEVFRmz9/PjZv3ixpW716NZo0aSJTRUTyYhgpYl5eXpgwYYKkbciQIXj69KlMFRFRUTpw4ADGjx8vafvqq6+yTP9OVJwwjMhg2rRpePfdd8XtmJiYLLf/EpHpuXr1Knr06AFBEMS2jz76CPPmzZOxKiL55SuMLFu2DOXLl4elpSW8vb0REhKS6/HPnj3DyJEj4e7uDgsLC1StWhWHDx/OV8GmwMLCAps3b4aZmZnYtn379ixLhROR6Xj8+DF8fX3x/Plzsa1mzZrYvn07VCqVjJURyU/vMLJz5074+/sjICAAoaGhqF27Ntq2bYtHjx5le3xqairatGmDu3fv4pdffkFERATWrFkjWdW2OKpTp06WlXyHDRuW4/tIRMYrNTUVXbp0wd27d8U2R0dH7N+/H7a2tvIVRmQgFMKr/YV54O3tjffffx9Lly4FAOh0Onh4eGD06NFZxkIAwMqVK/HDDz/g+vXrMDc3z1eR8fHxsLOzg0ajMan/uGlpafDx8cHFixfFts6dO+OXX36RzElCRMZLEAQMHjxYspK3mZkZjh49iubNm8tXGFERyOvnt149I6mpqbh48SJat2798gmUSrRu3Vpyi9qr9u/fDx8fH4wcORKurq7w9PTE7NmzodVqc/w5KSkpiI+PlzxMkbm5OTZt2gS1Wi227dmzB9u3b5exKiIqSIsXL5YEESDjUjeDCNFLeoWRJ0+eQKvVwtXVVdLu6uqK6OjobM+5c+cOfvnlF2i1Whw+fBhTp07FggULcp3qeM6cObCzsxMfprxiZa1atTBjxgxJ26hRoyRLiBORcQoMDMwy2eHo0aMxZMgQmSoiMkyFfjeNTqeDi4sLVq9ejfr168PPzw+TJ0/GypUrczxn4sSJ0Gg04uPVGQpN0VdffSVZmTMuLg5DhgyBnlfQiMiAXL9+HX5+ftDpdGJbmzZtsHDhQhmrIjJMeoURJycnqFQqxMTESNpjYmLg5uaW7Tnu7u6oWrWqZLR4jRo1EB0djdTU1GzPsbCwgK2treRhyszMzLBp0yZYWlqKbYcOHcLGjRvlK4qI8i02Nha+vr6SS8xVq1bFzp07JXfREVEGvcKIWq1G/fr1ERQUJLbpdDoEBQXBx8cn23MaN26MW7duSb4d3LhxA+7u7pKxEsVdtWrVMHv2bEnbl19+afK9QkSmJi0tDZ999hlu3bolttnb2+PAgQNwcHCQsTIiw6X3ZRp/f3+sWbMGmzZtwrVr1zB8+HAkJiaif//+AIA+ffpg4sSJ4vHDhw9HbGwsxowZgxs3buDQoUOYPXs2Ro4cWXCvwkSMGTMGTZs2Fbfj4+MxcOBAXq4hMiJjxozB8ePHxW2VSoVdu3ahatWqMlZFZNj07i/08/PD48ePMW3aNERHR6NOnToIDAwUB7X++++/krVXPDw8cOTIEYwdOxbvvfceypQpgzFjxmSZDpky7kzasGED3nvvPXFJ8aNHj2L16tUYOnSozNUR0ZssX74cK1askLQtWrQIbdq0kakiIuOg9zwjcjDVeUZysnz5cknPUYkSJXDlyhVUqFBBxqqIKDdBQUFo27atZNqCYcOGYfny5Zw3iIqtQplnhIrGsGHD0KpVK3E78zLYq+NuiMhw3Lx5E5999pkkiDRv3hxLlixhECHKA4YRA6RUKrF+/XrY2NiIbX/88Yc46y0RGY5nz57B19cXcXFxYlulSpXwyy+/5HvWaaLihmHEQL3zzjv43//+J2mbMGECbty4IVNFRPS69PR0+Pn5ISIiQmyztbXFgQMHUKpUKRkrIzIuDCMGbMCAAWjfvr24nZSUhH79+uU6lT4RFZ2vv/4av//+u7itVCqxY8cO1KhRQ8aqiIwPw4gBUygUWLNmDezt7cW24OBgzuBIZADWrFmDxYsXS9rmz58v+QJBRHnDMGLgypQpgyVLlkjapk6divDwcJkqIqI//vgDI0aMkLQNGDAAX375pTwFERk5hhEj0KtXL3Tq1EncTklJQd++fZGeni5jVUTF0507d9ClSxfJ/78mTZrwFl6it8AwYgQUCgVWrVolGRB34cIFzJ07V8aqiIqf+Ph4+Pr64unTp2JbuXLlsGfPHlhYWMhYGZFxYxgxEq6urli+fLmkbcaMGfj7779lqoioeNFqtejRo4fkEmnJkiVx4MABODs7y1gZkfFjGDEi3bp1Q7du3cTttLQ09O3bN8fVj4mo4EycOBGHDh0StxUKBbZt24Z3331XxqqITAPDiJFZtmwZXFxcxO2///4bM2fOlLEiItO3ceNG/PDDD5K2OXPmoGPHjjJVRGRaGEaMjJOTE1avXi1pmz17Ni5cuCBTRUSm7fTp01kWquzduzfGjRsnU0VEpodhxAh16tQJvXv3Fre1Wi369u2L5ORkGasiMj337t3Dp59+KrkU2rBhQ6xevZp3zhAVIIYRI7V48WKULl1a3A4PD0dAQICMFRGZlufPn6Njx454/Pix2Fa2bFns3bsXlpaWMlZGZHoYRoyUg4MD1q5dK2mbP38+goODZaqIyHTodDr07t0bly9fFtusra2xf/9+uLm5yVgZkWliGDFi7du3x8CBA8VtnU6Hvn374sWLFzJWRWT8pk6dil9//VXStnnzZtStW1eegohMHMOIkVu4cCHeeecdcfvmzZuYNGmSjBURGR+tTkDw7afYF/YA0/+3CrNnz5bsnzFjBrp06SJTdUSmTyEIgiB3EW8SHx8POzs7aDQa2Nrayl2OwQkKCkLr1q0lbSdPnkSzZs1kqojIeARejcL0A+GI0iQj5WEEon+aAGjTxP2ff/45fvrpJw5YJcqHvH5+s2fEBLRq1SrLol39+/fH8+fPZaqIyDgEXo3C8K2hiNIkIz3+CR7vmSkJIlVq1cb69esZRIgKGcOIiZg3bx4qVqwobkdGRnIeBKJcaHUCph8IhwBAl5aCx3u+gzYxTtyvKukImw4TobbgnTNEhY1hxESULFkSGzdulHyDW7FiBY4dOyZjVUSGKyQyFlGajLl5FGbmsKrsLe5TmKnh3HkKnqIkQiJj5SqRqNhgGDEhTZs2xZdffilpGzBgADQajTwFERmwRwkvJwlUKJSwb9IDtg27QWFugVLtx8DCvWqW44iocDCMmJhZs2ahatWq4vb9+/fh7+8vY0VEhsnFJuvlF238Izi0HIwSNZvlehwRFSyGERNjZWWFTZs2Qal8+Ve7fv16yWqjRAR4VXCEu50lXh2aqrSyRdzxtUh98i8UANztLOFVwVGuEomKDYYRE9SwYUN88803krbBgwcjNpbXvokyqZQKBPjWBAAxkCitbSGkJePx3tnQpbxAgG9NqJS8k4aosDGMmKjp06ejVq1a4nZUVBS++OILGSsiMjztPN2xolc9uNllXIpRWdsBANJj/4PH1Y1oW4tTvxMVBYYRE2VhYYFNmzZBpVKJbdu2bcPevXtlrIrI8LTzdMep8S2xfXBDDG5TW2w/fewwfvjhBxkrIyo+GEZMWP369TF58mRJ29ChQyWrkBJRxiUbn0ql8LFXdUn7xIkTcfz4cZmqIio+GEZM3OTJk1GnTh1x+/HjxxgxYgSMYBUAoiLn7Ows2dbpdPj8889x//59mSoiKh4YRkycWq3G5s2bYW5uLrb98ssv2LVrl4xVERkmJyenLG2PHz/GZ599hpSUFBkqIioeGEaKgXfffRfffvutpG3EiBGIjo6WpyAiA+Xo6Ci5LT7TuXPnskwoSEQFh2GkmBg3bhzef/99cTs2NhZDhw7l5RqiVyiVSpQqVSrbfStXrsTGjRuLtiCiYoJhpJgwMzPDpk2bYGFhIbbt378fW7ZskbEqIsPz+riRVw0fPhyXLl0qwmqIigeGkWKkRo0amDlzpqTtiy++wH///SdTRUSGJ7txI5mSk5PRpUsXTiBIVMAYRoqZsWPHonHjxuK2RqPBoEGDeLmG6P/l1jMCAJGRkejZsyd0Ol0RVURk+hhGihmVSoUNGzbAyspKbDty5AjWrl0rY1VEhuNNYQQAAgMDMWPGjCKohqh4YBgphqpUqYJ58+ZJ2vz9/XH37l15CiIyILmFkd27d+PatWs4ceIEatasydt9iQoIw0gxNXLkSLRo0ULcfv78OQYMGMCuZyr2Xh0z0rRpU8m+3bt3o3r16mjevDm6desmGRBORPnHMFJMKZVKrF+/HiVLlhTbTpw4geXLl8tYFZH8MntGhg4diiNHjsDBwUHct3v3bg5eJSoEDCPFWPny5bFgwQJJ2/jx43Hr1i2ZKiKSn7OzMz799FMsW7YMVlZW6NWrl7gvJSUF27Ztk7E6ItOkEIzgNor4+HjY2dlBo9HA1tZW7nJMiiAIaN++PY4cOSK2NWnSBCdPnpSs+EtUXDx58gQlS5aEpaUlAODy5cuoXfvlar7vvvsu/v77bygUCrlKJDIaef38Zs9IMadQKLB27VrY2dmJbadOncLixYtlrIpIPk5OTmIQAYD33ntPMnvxlStXcOHCBTlKIzJZDCOEsmXLYtGiRZK2SZMm4fr16/IURGRgBg0aJNnmrfBEBYthhAAAffv2RYcOHcTtlJQU9O3bF+np6TJWRWQYPv/8c1hbW4vbP/30E54/fy5jRUSmhWGEAGRcrlm9erXkzoGQkBD88MMPMlZFZBhsbW3h5+cnbj9//hw///yzjBURmRaGERK5u7tj2bJlkraAgABcuXJFpoqIDAcv1RAVHoYRkvj888/RpUsXcTstLQ19+/ZFWlqajFURyc/Hxwc1atQQt8+cOYPw8HAZKyIyHQwjJKFQKLBixQrJlNiXLl3CrFmzJMfdvn2bAYWKFYVCkaV3ZN26dTJVQ2RaGEYoC2dnZ6xcuVLSNmvWLISGhorbX331Ff7444+iLo1IVr1794a5ubm4vXnzZqSmpspYEZFpYBihbHXu3Bk9evQQt9PT09GnTx+kpKTgxIkT2LdvH3799Vf5CiSSgbOzMz755BNx+8mTJ9i/f798BRGZCIYRytGPP/4INzc3cfuff/7BtGnT4O/vDwDYt28fjGACX6ICxYGsRAWP08FTrg4ePAhfX98c91+4cAH169cvwoqI5KXT6VCxYkXcu3cPQMZYksjISJQrV07myogMD6eDpwLRoUMH9OvXL8f9vFRDxY1SqcSAAQPEbUEQsGHDBhkrIjJ+7BmhLBISErB69Wrcvn0bkZGRuH79Ou7evZvtsZ6enpyHhIqd+/fvo1y5cuJlSg8PD0RGRnJxSaLXsGeE8s3GxgbvvPMONm7ciMDAwByDCABcvXoVt27dKrriiAyAh4cH2rVrJ27fv38fR48elbEiIuPGMELZ+uyzz3D69Gl4eHi88dh9+/YVQUVEhuX1gazzFi3HvrAHCL79FFqdwXc4ExmUfIWRZcuWoXz58rC0tIS3tzdCQkLydN6OHTugUCgkt8aR4apbty4uXLiAJk2a5Hocx41QcdShQwe4uLiI2yePHsaodSfRfc1ZNJl3HIFXo2Ssjsi46B1Gdu7cCX9/fwQEBCA0NBS1a9dG27Zt8ejRo1zPu3v3Lr7++ms0bdo038VS0XNxcUFQUBCGDBmS4zGnT59+49+/nAIDA/Hnn38iMTEx38+h1QkIvv2U33xJpFar8cHHL5dOgE6L51ePAwCiNckYvjWUgYQoj/QOIwsXLsTgwYPRv39/1KxZEytXroS1tTXWr1+f4zlarRY9e/bE9OnTUbFixbcqmIqeWq3GypUrsWzZsmwH6AmCgAMHDshQWd7Y2dmhWbNmsLOzQ926dTFs2DBs2LAB165dg06ne+P5gVej0GTecXRfcxZjdoTxmy8ByAioN+29JG3PL/8OQRCQGVWnHwhncCXKA73CSGpqKi5evIjWrVu/fAKlEq1bt0ZwcHCO582YMQMuLi4YOHBgnn5OSkoK4uPjJQ+Sl0KhwIgRI3D06FGUKlUqy35DvlTj4+ODAQMGQKvVIiwsDKtWrcKAAQNQs2ZNODo6ok2bNpgyZQoOHjyIx48fS84NvBqF4VtDEaVJlrTzmy+FRMbimdoZFmVriW3psf8h7VEkAEAAEKVJRkhkrEwVEhkPM30OfvLkCbRaLVxdXSXtrq6uuH79erbnnDp1CuvWrUNYWFief86cOXMwffp0fUqjItKiRQucP38eHTt2xNWrV8X2o0eP4vnz5yhZsqSM1eVs7ty52Lt3L+Li4iTtGo0Gx44dw7Fjx8S2ChUqoGHDhnjfywvrIlTQlfCAwsxccp4AQIGMb75tarpBpVQUwasgQ/IoISOglqz9IdJiH8C6WmOUfO9DqF0rZnscEeVMrzCir4SEBPTu3Rtr1qyBk5NTns+bOHGiOOU4kHGfcl7u6qCiUaFCBZw5cwZ9+vQRe0RSUlLw22+BKFuvBR4lJMPFxhJeFRwL9UM6KSkJT548ER+PHz/OdVuj0eTpeSMjIxEZGYnt27dnNKjMYGbnBrVbZahdK0JIS4GdTzdAqRK/+fpUytpbRKbNxcYSAFCixgcoUeMDCFotYrZPhOOHw2HhXjXLcUSUM73CiJOTE1QqFWJiYiTtMTExkjVMMt2+fRt3796VTCeeeY3ezMwMERERqFSpUpbzLCwsYGFhoU9pVMRsbGywe/duTJ8+HTNmzAAAjJi9CiXaWonHuNtZIsC3Jtp5ur/x+dLT0xEbG5slQGQXKjLbXrx4UWivL5NCbYUSNT5AWlwUXoSfxIvwkwAA2wadoLCwBsBvvsWVVwVHuNtZIlrz/z1lKnOo3Sojeus3sG/cA3YNu8LdoQS8KjjKXSqRwdMrjKjVatSvXx9BQUHi7bk6nQ5BQUEYNWpUluOrV6+eZXbOKVOmICEhAYsXL2Zvh5FTKpWYPn060u3KYs6E0Yi9Fgzr1qMApQpCSiLuxz1E/3lhGNbQGe9Ya3MNGa9fPpFb48aN0bzj59gc7Q6l2hJPDi1Cyiv7dakvoPz/MMJvvsWTSqlAgG9NDN8aCgUyAknJ2m3xPOw3PPtrC5IiL2L62g28hEeUB3pfpvH390ffvn3RoEEDeHl5YdGiRUhMTET//v0BAH369EGZMmUwZ84cWFpawtPTU3K+vb09AGRpJ+Ok1Qk4nlIRbj1/wKM93yHuz81IuLAP0GnFY77dKl99SqUSTk5OcHJyQmJiori4WXZcXFzQt29fDBgwANWrV4dWJyBo3nFEa5KhVEsDh5CaDAUANztLfvMtxtp5umNFr3qYfiAcUZpkqF0rwdylItIe3UHKf+H4olsbqJYtQ8+ePaFQMJQQ5UTvMOLn54fHjx9j2rRpiI6ORp06dRAYGCgOav3333+hVHJi1+IiJDL2/38JV4R730XQnP1ZEkQKmr29vRguXn04Oztn22ZnZyf+e/T19c0SRpRKJdq3b4+BAweiQ4cOMDd/OVD11W++SrWV5DwhLePSTIBvTX7zLebaebqjTU03hETG4lFCMv6yGooF08cDyBjv1rt3bxw6dAgrVqwQv4wRkRQXyqO3si/sAcbsCBO3k/+9gpjtE/N0rqWlJZydnbMNEtkFjFKlSknCgj7u3buHChUqiAubVaxYEQMGDEC/fv1QpkyZXM8NvBqFIV9Nwf3fX86lU3PQAiwY0z1P42GoeImLi0Pp0qWRnCwdS+Th4YEtW7agWbNmMlVGVPTy+vldqHfTkOl7fbyEyqYULDw8obK2g9LKFiorWyitbfHFR/XgU6uCJGBYW1sXWZ1r166FWq1Gly5dMHDgQDRv3jzPPXjtPN3h/9F7GPv7y7bZvlUYRChbDg4O6Nq1K7ZulV6fvH//Plq0aIFx48ZhxowZUKvVMlVIZHgYRuitvLyjIBkCAHOH0nDrMVfcnzmuYuqXLWW9nFGnTh1ERUXBwcEhX+fbvZbok17kf2p5Mn2DBg3KEkaAjNmK582bh6NHj2Lbtm2oXr26DNURGR4O7qC3kjmuAsgIHq/K3DaEcRVdunTJdxABkGUyt+fPn79tSWTCPvjgA1SuXDnH/aGhoahXrx5WrFgBI7hSTlToGEborWXeUeBmJ71k42ZniRW96pnE5YzXw0hCQoJMlZAxUCgUGDRoUK7HJCUlYcSIEejYsaNBLzRJVBR4mYYKxOt3FBTFDKxFycbGRrLNnhF6k759+2LKlClIT0/P9biDBw/iww8/xMGDB1G2bNkiqo7IsLBnhAqMSqmAT6VS6FSnDHwqlTKZIALwMg3pz83NTTL79Ot8fHzw66+/4r///sOlS5cYRKhYYxghygNepqH8yO1STWhoKMqWLYsyZcpwQjQq9hhGiPKAl2koP9q2bSuZx8bM7OWV8ZSUFHTp0gVPnz6VozQig8IwQpQHvExD+aFSqTBgwAAAGYNajxw5IllU9N69e+jZsye02sKbtZjIGDCMEOWBtbW1pCudl2korwYMGACFQoFPPvkELVu2xM8//yzpITly5Ai+/fZb+QokMgAMI0R5oFAoJL0j7BmhvCpfvjxat26NiRMzlklo0qQJFixYIDlm5syZOHDggBzlERkEhhGiPGIYofxatmwZ3n//fXF79OjR6NGjh+SY3r1749atW0VdGpFBYBghyqNXwwgv05A+qlSpItlWKBRYvXo1PD09xTaNRoPOnTvjxYsXRV0ekewYRojy6NU7atgzQm+rRIkS2LNnj2Ql0ytXrmDIkCGcIp6KHYYRojziZRoqaFWqVMHmzZslbdu2bcOyZctkqohIHgwjRHn0ahhJSUlBWlqajNWQqejUqRMmTZokaRs7dizOnDkjU0VERY9hhCiPOPEZFZYZM2agTZs24nZ6ejq6du2K6OhoGasiKjoMI0R5xInPqLCoVCr89NNPeOedd8S2qKgo+Pn5sQeOigWGEaI84vo0VJicnJywe/duqNVqse3PP//EhAkTZKyKqGgwjBDlES/TUGFr0KBBlsGrCxcuxK5du2SqiKhoMIwQ5REv01BRGDRoUJbVfgcMGIB//vlHpoqICh/DCFEe8TINFZUff/wR9evXF7cTExPRuXNnxMfHy1gVUeFhGCHKI/aMUFGxtLTE7t274ejoKLbduHED/fr144RoZJIYRojyiGNGqCiVK1cO27dvl6wWvXfvXnz//fcyVkVUOBhGiPLoTZdp+I2VCtqHH36ImTNnStomTZqEoKAgmSoiKhwMI0S5CA4Ohk6nA5DzZZr79++jb9++iIuLK/L6yPRNmDABHTt2FLd1Oh0+//xz3L9/X8aqiAoWwwhRLjZs2ICaNWtixYoVUCql/12io6MxdepUVK1aFZcuXZJc3ycqKEqlEps2bULlypXFtidPnqBr165ISUmRsTKigqMQjKBvOT4+HnZ2dtBoNJIVLokK2x9//IHmzZsDAKysrJCUlJTtcaNHj8aSJUuKsDIqbq5cuYKGDRvixYsXYtvQoUOxcuVKGasiyl1eP7/ZM0KUi6ZNm6Js2bIAkGMQAYBmzZoVVUlUTL377rtYu3atpG3VqlXYsGGDTBURFRyGEaJcKJVKdO/e/Y3HffDBB0VQDRV33bt3xxdffCFpGz58OEJDQ2WqiKhgMIwQvUGPHj1y3V+rVi04OzsXUTVU3P3www9o3LixuJ2SkoIuXbrg6dOnMlZF9HYYRojeoHbt2qhZs2aO+zPHlBAVBbVajV27dsHNzU1su3v3Lnr27AmtVitjZUT5xzBC9AYKhSLX3hGOF6GiVrp0aezatQsqlUpsO3LkCGbMmCFjVUT5xzBClAe5jRthGCE5NG3aFPPnz5e0zZgxAwcPHpSpIqL8YxghyoOKFSvCx8cnS3uNGjXg4uIiQ0VEwJgxY+Dn5ydp6927N27fvi1TRUT5wzBClEfZXarheBGSk0KhwNq1a1GrVi2x7dmzZ+jcubNkPhIiQ8cwQpRH3bp1k1yjB3iJhuRXsmRJ7NmzR7KQ4+XLlzF06FCul0RGg2GEKI9cXFzQpk0bSRvDCBmCqlWrYtOmTZK2rVu3Yvny5TJVRKQfhhEiPfTs2VP8c7Vq1SS3VxLJ6dNPP8WECRMkbV9++SXOnDkjU0VEeccwQqSHTp06wcrKCgBQ3vN9BN9+Cq2OXeFkGL777ju0atVK3E5PT8dnn32GmJgYGasiejOGESI9nL73HNZVGgIALqa6o/uas2gy7zgCr0bJXBkRYGZmhu3bt8PDw0Nse/jwIfz8/JCeni5jZUS5YxghyqPAq1EYvjUUyipNAAAWHp4AgGhNMoZvDWUgIYPg7OyMX375BWq1Wmz7448/slzCITIkDCNEeaDVCZh+IBwCAKsK9aAuXQ1mNqUAAJkXaaYfCOclGzIIXl5e+PHHHyVtCxYswM8//yxTRUS5YxghyoOQyFhEaZIBAIJOB5v6vkiMOI3Ux3cz2gBEaZIREhkrX5FErxg8eDAGDBggaevfvz+uXbsmU0VEOTOTuwAiY/AoISOIJP/3D2K2TUBmf4hdo8+hdi6f5TgiuSkUCixduhRhYWEIDQ0FACQmJuLTTz9FSEgIbG1tZa6Q6CX2jBDlgYuNJQDAzNYVLy/MAGmxD7I9jsgQWFlZYffu3XB0dBTbIiIi0L9/f06IRgaFYYQoD7wqOMLdzhJmNqWgMH8ZODLDiAKAu50lvCo45vAMRPIoX748fvrpJygUCrFtz549WRbZI5ITwwhRHqiUCgT41oRCoYC5YxmxPT3uASDoAAABvjWhUipyegoi2bRt2xYzZsyQtE2YMAHHjx+XqSIiKYYRojxq5+mOFb3qwcb1HbFNSEuBoyIRK3rVQztPdxmrI8rdpEmT0KFDB3Fbp9Ph888/x/3792WsiigDwwiRHtp5umN4pyaStrmtnBhEyOAplUps2bIFlSpVEtseP36Mzz77DCkpKTJWRsQwQqS3GtWrS7Zv3bwhUyVE+rG3t8eePXvEJQ0A4Ny5cxg7dqyMVRExjBDprVq1apLtGzcYRsh4vPfee1i9erWkbcWKFVlW/SUqSgwjRHqqWrWqZDsiIkKmSojyp1evXhg1apSkbdiwYbh06ZJMFVFxxzBCpCcbGxu4u78cI8IwQsZowYIF8PHxEbeTk5PRpUsXxMZyFmEqegwjRPnw6qWau3fvcgAgGR21Wo2ff/4ZLi4uYltkZCR69eoFnU4nY2VUHDGMEOXDq2FEEATcunULAJCWloYNGzbIVRaRXsqUKYNdu3ZBpVKJbb/99luWOUmIClu+wsiyZctQvnx5WFpawtvbGyEhITkeu2bNGjRt2hQODg5wcHBA69atcz2eyBBptVrJt8XXB7FGRETgxo0baNSoEX755ZeiLo8o35o1a4bvv/9e0jZ9+nQcOnRIpoqoONI7jOzcuRP+/v4ICAhAaGgoateujbZt2+LRo0fZHn/y5El0794dJ06cQHBwMDw8PPDhhx/iwYMH2R5PZKhatWqFkSNHIigoCBUrVpTsW7x4MerWrYsLFy6gSpUqMlVIlD9jx47FZ599Jmnr1asX5u48iWn7rmLdX3eQms5LN1R4FIKeqyV5e3vj/fffx9KlSwFkzOLn4eGB0aNHY8KECW88X6vVwsHBAUuXLkWfPn3y9DPj4+NhZ2cHjUbDlSZJNuvWrcOgQYMAZCxAlpSUlO1xP/74Y5Y7FYgMXUJCAry9vXHt2jWxzdylAtx6/QCluSWUCmBw0wqY+FFNGaskY5PXz2+9ekZSU1Nx8eJFtG7d+uUTKJVo3bo1goOD8/QcL168QFpammQVydelpKQgPj5e8iCSW+/evVGmTMa6NDkFEQDsGSGjZGNjgz179sDCqoTYlvYoErFHlkEQBOgEYNWfkZhzOFzGKslU6RVGnjx5Aq1WC1dXV0m7q6sroqOj8/Qc48ePR+nSpSWB5nVz5syBnZ2d+PDw8NCnTKJCoVar8dVXX73xuMqVKxdBNUQFr2LlqrBrN0bSlvjPCTy/dFjcXvNXJC/ZUIEr0rtp5s6dix07dmDv3r2wtLTM8biJEydCo9GIDy7kRIZi8ODBufbqmZmZoVy5ckVYEVHB2RJ8F1ZVG8HWu4vYprJ1htr9ZW+fTsg4jqgg6RVGnJycoFKpEBMTI2mPiYmBm5tbrufOnz8fc+fOxe+//4733nsv12MtLCxga2sreRAZgpIlS+KLL77IcX+FChVgZmZWhBURFZx7sS8gCDpYV2sClb07VLbOcO0xFxbuVbMcR1SQ9AojarUa9evXR1BQkNim0+kQFBQkmcnvdd9//z2+++47BAYGokGDBvmvlsgAjB49GiVKlMh2Hy/RkLHR6XS4cuUKlixZgoML/PHfkh6I3jwWQmoSXP1mwtzONcs55RytZaiUTJneX+H8/f3Rt29fNGjQAF5eXli0aBESExPRv39/AECfPn1QpkwZzJkzBwAwb948TJs2DT/99BPKly8vji0pWbIkSpYsWYAvhahoODo6YujQoVi4cGGWfRy8SoZOEARcu3YNJ06cwIkTJ/DHH3/gyZMnkmMUFiXg6vcdzB3LZDlfqQB6+5QvomqpuNA7jPj5+eHx48eYNm0aoqOjUadOHQQGBoqDWv/9918olS87XFasWIHU1FR07dpV8jwBAQH49ttv3656Ipn4+/vjxx9/RFpamqSdPSNkaARBwI0bN8TwcfLkyRznhQIAM3M1SnWZCrVLhWz3D25aAWozTt5NBUvveUbkwHlGyBANHjwYa9eulbT99ttvaNeunUwVEWWIiYnB/v37xfARFRWVp/OUSiX27NmDcPMqWPNXJHSvfDpwnhHKj7x+fnOkHVE+jRs3DuvXr5dME8+eETIEdnZ2uHv3Ln7++Wekp6fn+bw1a9agU6dO6ATgqw+rY0vwXdyLfYFyjtbo7VOePSJUaNgzQvQW/Pz8sGvXLgAZt/UmJSXxbhoyGJcvX8agQYNw/vz5Nx47d+5cjB8/vgiqouKkUGZgJSKpV5dAcHYvi/P3NNDqDD7fUzHh7u4OT0/PNx7n7++PcePGFUFFRNljGCF6CzHmbrCr+j4AIM68FLqvOYsm844j8GrertETFQatVovly5ejWrVq2LBhQ67H9u7dGz/88AMUCkURVUeUFcMIUT4FXo3C8K2hsGyQMVuluUNpAEC0JhnDt4YykJAsgoOD4eXlhZEjRyIuLi7XYz/66COsW7dOcgckkRz4L5AoH7Q6AdMPhEMAYFG2FizK1ICZvTsAIPMizfQD4bxkQ0Xm0aNHGDBgABo1aoTQ0FDJPnNzcwwdOlTS1qhRI/z8888wNzcvyjKJssUwQpQPIZGxiNIkAwAUCgVsG34m9owIggABQJQmGSGRsTJWScVBeno6li5dmuMlmdatW+Py5ctYsmSJ2FarVi0cOHAA1tacSZUMA4f9E+XDo4SMICLotFAoVdClJSPp1jmoSjogMfwPOLQYIDmOqDCcPn0aI0eOxN9//51ln4eHBxYuXIguXbqI40FsbW1hb2+PI0eO5LrgI1FRYxghygcXm4xVp1MeRiDu+FroUhKRHvsAL66fhnW1RlmOIypIMTExGDduHDZv3pxln7m5Ob7++mtMnjw5yxpK1atXx+bNm1GmTNZp3onkxDBClA9eFRzhbmeJaNSERm2F1KgbGTt06TCzdYECgJudJbwq8NsnFZz09HQsX74cU6dORXx8fJb9bdu2xZIlS1C1atVszgb27t2L0qVLF3aZRHrjmBGifFApFQjwzZgW275xd8k+MzsXAECAb02olLxdkgrGX3/9hfr162PMmDFZgsg777yDPXv24LfffssxiABgECGDxTBClE/tPN2xolc9lPdsAMtytcV2Oyd3fNm6CtrUdJOxOjIVUVFR6N27Nz744ANcvnxZsk+tVmPy5Mm4du0aPv30U84VQkaLYYToLbTzdMep8S0xeMzL2SuTLR3wv2M3OfkZvZW0tDT873//Q7Vq1bB169Ys+9u3b4+rV69i5syZvCuGjB7DCNFbOhoejQMxdrAs9x4AwMw24zINJz+j/Prjjz9Qr149+Pv7IyEhQbKvfPny+PXXX3Ho0CFUqVJFpgqJChbDCNFbeHXyM7vGPaCwKIGkyFCkxT2E7v/XoHybyc9SUlIKsFoydA8fPkTPnj3RvHlzXL16VbLPwsIC06ZNQ3h4ODp16sRLMmRSeDcN0Vt4dfIzSw9PlKjWBE/2zQUAKK1soXavgjj3aljs+gR9O7VGqVKl9Hr+Pn36oFWrVhgwYABXA5aZIAi4cuUKPD09C3z69LS0NCxZsgTffvstnj9/nmV/hw4dsGjRIlSqVKlAfy6RoWDPCNFbeH1SMwuPWuKfdUnxSL5zEZrTP+GrgZ/DyckJVapUQa9evbBkyRKcO3fujT0fNWrUwNChQ/Hee+/hwIEDEAROLy8XhUKBJUuWwNnZGV27dsWKFStw48YNvf9OtDoBwbefYl/YAwTffopjQcdRp04dfP3111mCSIUKFbB//34cOHCAQYRMmkIwgt9u8fHxsLOzg0ajga2trdzlEImCbz9F9zVnxe24E+sRH7Inz+er1WrUqVMHXl5e8Pb2hre3NypXrix2wf/5559o1qyZeHyzZs0wf/58NGjQoOBeBOXZgwcPUKVKFSQlJYltZcuWRatWrcRHbrfPBl6NwvQD4YjSJCM94Qnijq/Di+t/ZTnO0tISEyZMwLhx42BlZVUor4WoKOT185thhOgtaHUCmsw7jmhNMgQAqY/uICkyDKlREUh5eAPahMd6P6eDg4MYTurWrYvPPvsM6enpkmM+//xzzJ49GxUqVCigV0J5NXnyZMyePTvH/dWrVxeDSfPmzeHg4ADg5SrPOm0a4i/sh+b0dghpWZcL6NixIxYtWsS/WzIJDCNERSTzQwZ4uWIvACgApD+PxYCq6UiLvolz587h/PnzWe6OyC+1Wo1Ro0Zh8uTJ2a4zotUJCImMxaOEZLjYZMwGW1wnYdPpdEhKSiqQx6NHj3D06NE8/VylUol69eqhRcuWOPC4FBIdKgOCgIdrh0Gb8ERyrIVjafy8aTV8O3xcGG8BkSwYRoiK0Kvd75nc7SwR4FsT7TzdxTatVouIiAicO3dOfFy5cgVarTbfP9ve3h6TJ0/GqFGjYGlpqVc9cklLSyuwcJCXh8HclaQyg1X5urAsVxtxx9cCABRmFrD1+Qx2Xp2xY/gH8Kmk3yBnIkPGMEJUxPLbE/HixQtcvHgRISEhYkD5999/9f755cqVw6xZs+DwbnOM/CkMr//HzqxkRa96kkAiCAJSUlKKJBS8ePECSUlJbxW+jJHawgJm5RvAunpTWFVqAIWZBR7tnAqF2hKOrQbDzM4VALD48zroVIeL2JHpYBghMmLR0dE4e/YsBg0ahKdPn+p1bokyVVGyaT9xErZHe2ZCl5IIIS0VQnoKVLo0lLKEGBCSk5N5l04hUKvVaN++Pfz8/OBSqxEG/iSdN0SXlgKluYWkbfvghuwZIZOS189vTlxAZIDc3Nxw5coVvYMIACQ+uIHEHZNgVel92Dfrh+R7lyGkvhD3pwF4UIC1GgpLS0tYWVnl+2FtbZ2n4yIjI+Ht7Z1tDebm5vjwww/h5+eHjh07ws7ODkBGr5m73S1xoDMASRDhKs9U3DGMEBmggwcPIiAgINdjbG1t4ezsDCcnJzg7O8PZ2RlxOgucvJcClbUdlFa2ENJToTBXS8JIUVAoFHn+cC+IwGBhYVHgE5HlZPz48ZJtlUqF1q1bo1u3bvj000/Fu2ckx/z/Ks/Dt4ZCgawDnQGu8kzFG8MIkYFJTEzEvn37MGzYMEnQePXPpUqVgoWFRZZzg28/xaVX5j0BMgZIQqmCwkwNhZkFFGZqlHW2g6NtSb16BPR5qNVqk5yu/OHDh9i6dSuUSiWaN28OPz8/dO7cGU5OTm88N3OV59cHFrsZ0MBiIrlwzAiRCXl93hMAEHRaKJQqAC8vB5wa35LfwvNhz549iI6ORpcuXeDq6pqv5+At11SccMwIUTGU3eWAV4MIwMsBb6Nz585v/RwqpYKDVIlew7VpiExM5uUANztLSbubnWWW23qJiAwBe0aITFA7T3e0qenGywFEZBQYRohMFC8HEJGx4GUaIiIikhXDCBEREcmKYYSIiIhkxTBCREREsmIYISIiIlkxjBAREZGsGEaIiIhIVgwjREREJCuGESIiIpIVwwgRERHJimGEiIiIZMUwQkRERLJiGCEiIiJZMYwQERGRrBhGiIiISFYMI0RERCQrhhEiIiKSFcMIERERyYphhIiIiGTFMEJERESyYhghIiIiWTGMEBERkawYRoiIiEhWDCNEREQkK4YRIiIiklW+wsiyZctQvnx5WFpawtvbGyEhIbke//PPP6N69eqwtLTEu+++i8OHD+erWCIiIjI9eoeRnTt3wt/fHwEBAQgNDUXt2rXRtm1bPHr0KNvjz5w5g+7du2PgwIG4dOkSPvnkE3zyySe4evXqWxdPRERExk8hCIKgzwne3t54//33sXTpUgCATqeDh4cHRo8ejQkTJmQ53s/PD4mJiTh48KDY1rBhQ9SpUwcrV67M08+Mj4+HnZ0dNBoNbG1t9SmXiIiIZJLXz2+9ekZSU1Nx8eJFtG7d+uUTKJVo3bo1goODsz0nODhYcjwAtG3bNsfjASAlJQXx8fGSBxEREZkmvcLIkydPoNVq4erqKml3dXVFdHR0tudER0frdTwAzJkzB3Z2duLDw8NDnzKJiIjIiBjk3TQTJ06ERqMRH/fv35e7JCIiIiokZvoc7OTkBJVKhZiYGEl7TEwM3Nzcsj3Hzc1Nr+MBwMLCAhYWFvqURkREREZKr54RtVqN+vXrIygoSGzT6XQICgqCj49Ptuf4+PhIjgeAo0eP5ng8ERERFS969YwAgL+/P/r27YsGDRrAy8sLixYtQmJiIvr37w8A6NOnD8qUKYM5c+YAAMaMGYNmzZphwYIF+Pjjj7Fjxw5cuHABq1evLthXQkREREZJ7zDi5+eHx48fY9q0aYiOjkadOnUQGBgoDlL9999/oVS+7HBp1KgRfvrpJ0yZMgWTJk1ClSpV8Ouvv8LT07PgXgUREREZLb3nGZED5xkhIiIyPoUyzwgRERFRQWMYISIiIlkxjBAREZGsGEaIiIhIVgwjREREJCuGESIiIpIVwwgRERHJimGEiIiIZMUwQkRERLLSezp4OWROEhsfHy9zJURERJRXmZ/bb5rs3SjCSEJCAgDAw8ND5kqIiIhIXwkJCbCzs8txv1GsTaPT6fDw4UPY2NhAoVAU2PPGx8fDw8MD9+/f55o3hYjvc9Hhe100+D4XDb7PRaMw32dBEJCQkIDSpUtLFtF9nVH0jCiVSpQtW7bQnt/W1pb/0IsA3+eiw/e6aPB9Lhp8n4tGYb3PufWIZOIAViIiIpIVwwgRERHJqliHEQsLCwQEBMDCwkLuUkwa3+eiw/e6aPB9Lhp8n4uGIbzPRjGAlYiIiExXse4ZISIiIvkxjBAREZGsGEaIiIhIVgwjREREJCuTDyPLli1D+fLlYWlpCW9vb4SEhOR6/M8//4zq1avD0tIS7777Lg4fPlxElRo3fd7nNWvWoGnTpnBwcICDgwNat279xr8Xeknff9OZduzYAYVCgU8++aRwCzQR+r7Pz549w8iRI+Hu7g4LCwtUrVqVvz/yQN/3edGiRahWrRqsrKzg4eGBsWPHIjk5uYiqNU5//vknfH19Ubp0aSgUCvz6669vPOfkyZOoV68eLCwsULlyZWzcuLFwixRM2I4dOwS1Wi2sX79e+Oeff4TBgwcL9vb2QkxMTLbHnz59WlCpVML3338vhIeHC1OmTBHMzc2FK1euFHHlxkXf97lHjx7CsmXLhEuXLgnXrl0T+vXrJ9jZ2Qn//fdfEVdufPR9rzNFRkYKZcqUEZo2bSp06tSpaIo1Yvq+zykpKUKDBg2Ejz76SDh16pQQGRkpnDx5UggLCyviyo2Lvu/ztm3bBAsLC2Hbtm1CZGSkcOTIEcHd3V0YO3ZsEVduXA4fPixMnjxZ2LNnjwBA2Lt3b67H37lzR7C2thb8/f2F8PBw4ccffxRUKpUQGBhYaDWadBjx8vISRo4cKW5rtVqhdOnSwpw5c7I9vlu3bsLHH38safP29haGDh1aqHUaO33f59elp6cLNjY2wqZNmwqrRJORn/c6PT1daNSokbB27Vqhb9++DCN5oO/7vGLFCqFixYpCampqUZVoEvR9n0eOHCm0bNlS0ubv7y80bty4UOs0JXkJI+PGjRNq1aolafPz8xPatm1baHWZ7GWa1NRUXLx4Ea1btxbblEolWrdujeDg4GzPCQ4OlhwPAG3bts3xeMrf+/y6Fy9eIC0tDY6OjoVVpknI73s9Y8YMuLi4YODAgUVRptHLz/u8f/9++Pj4YOTIkXB1dYWnpydmz54NrVZbVGUbnfy8z40aNcLFixfFSzl37tzB4cOH8dFHHxVJzcWFHJ+FRrFQXn48efIEWq0Wrq6uknZXV1dcv34923Oio6OzPT46OrrQ6jR2+XmfXzd+/HiULl06yz9+ksrPe33q1CmsW7cOYWFhRVChacjP+3znzh0cP34cPXv2xOHDh3Hr1i2MGDECaWlpCAgIKIqyjU5+3ucePXrgyZMnaNKkCQRBQHp6OoYNG4ZJkyYVRcnFRk6fhfHx8UhKSoKVlVWB/0yT7Rkh4zB37lzs2LEDe/fuhaWlpdzlmJSEhAT07t0ba9asgZOTk9zlmDSdTgcXFxesXr0a9evXh5+fHyZPnoyVK1fKXZpJOXnyJGbPno3ly5cjNDQUe/bswaFDh/Ddd9/JXRq9JZPtGXFycoJKpUJMTIykPSYmBm5ubtme4+bmptfxlL/3OdP8+fMxd+5cHDt2DO+9915hlmkS9H2vb9++jbt378LX11ds0+l0AAAzMzNERESgUqVKhVu0EcrPv2l3d3eYm5tDpVKJbTVq1EB0dDRSU1OhVqsLtWZjlJ/3eerUqejduzcGDRoEAHj33XeRmJiIIUOGYPLkyVAq+f26IOT0WWhra1sovSKACfeMqNVq1K9fH0FBQWKbTqdDUFAQfHx8sj3Hx8dHcjwAHD16NMfjKX/vMwB8//33+O677xAYGIgGDRoURalGT9/3unr16rhy5QrCwsLER8eOHdGiRQuEhYXBw8OjKMs3Gvn5N924cWPcunVLDHsAcOPGDbi7uzOI5CA/7/OLFy+yBI7MAChwmbUCI8tnYaENjTUAO3bsECwsLISNGzcK4eHhwpAhQwR7e3shOjpaEARB6N27tzBhwgTx+NOnTwtmZmbC/PnzhWvXrgkBAQG8tTcP9H2f586dK6jVauGXX34RoqKixEdCQoJcL8Fo6Ptev4530+SNvu/zv//+K9jY2AijRo0SIiIihIMHDwouLi7CzJkz5XoJRkHf9zkgIECwsbERtm/fLty5c0f4/fffhUqVKgndunWT6yUYhYSEBOHSpUvCpUuXBADCwoULhUuXLgn37t0TBEEQJkyYIPTu3Vs8PvPW3m+++Ua4du2asGzZMt7a+7Z+/PFH4Z133hHUarXg5eUlnD17VtzXrFkzoW/fvpLjd+3aJVStWlVQq9VCrVq1hEOHDhVxxcZJn/e5XLlyAoAsj4CAgKIv3Ajp+2/6VQwjeafv+3zmzBnB29tbsLCwECpWrCjMmjVLSE9PL+KqjY8+73NaWprw7bffCpUqVRIsLS0FDw8PYcSIEUJcXFzRF25ETpw4ke3v3Mz3tm/fvkKzZs2ynFOnTh1BrVYLFStWFDZs2FCoNSoEgX1bREREJB+THTNCRERExoFhhIiIiGTFMEJERESyYhghIiIiWTGMEBERkawYRoiIiEhWDCNEREQkK4YRIiIikhXDCBEREcmKYYSIiIhkxTBCREREsmIYISIiIln9H0rlhQleswxbAAAAAElFTkSuQmCC", "text/plain": [ "
    " ] @@ -352,7 +390,7 @@ }, { "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAAiMAAAGdCAYAAADAAnMpAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjcuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/bCgiHAAAACXBIWXMAAA9hAAAPYQGoP6dpAABz1ElEQVR4nO3dd1hT598G8DuErYAgG1HR1lWtAwVx71H3HnVvxa212qE/21rU1i1urbZate69iltRUNyjDpyV6QBEWcnz/uFL6jGgCUIOgftzXbk0T85JvjlicnPOMxRCCAEiIiIimZjIXQARERHlbwwjREREJCuGESIiIpIVwwgRERHJimGEiIiIZMUwQkRERLJiGCEiIiJZMYwQERGRrEzlLkAXarUaT548gY2NDRQKhdzlEBERkQ6EEEhISIC7uztMTDI//2EUYeTJkyfw9PSUuwwiIiLKgkePHqFIkSKZPm4UYcTGxgbAmzdja2srczVERESki/j4eHh6emq+xzNjFGEk/dKMra0twwgREZGR+VAXC3ZgJSIiIlkxjBAREZGsGEaIiIhIVgwjREREJCuGESIiIpIVwwgRERHJimGEiIiIZMUwQkRERLJiGCEiIiJZ6R1Gjh8/jlatWsHd3R0KhQLbt2//4D5Hjx5FlSpVYGFhgU8++QSrV6/OQqlERESUF+kdRhITE1GxYkUEBgbqtP29e/fQokUL1K9fHxcvXsTo0aMxYMAAHDhwQO9iiYiIKO/Re22a5s2bo3nz5jpvv2TJEnh5eWHWrFkAgLJly+LkyZOYM2cOmjZtqu/LExERUR6T431GgoOD0ahRI0lb06ZNERwcnOk+ycnJiI+Pl9yIiIgob8rxMBIZGQkXFxdJm4uLC+Lj4/H69esM9wkICICdnZ3m5unpmdNlEhERkUxy5WiaSZMmIS4uTnN79OiR3CURERFRDtG7z4i+XF1dERUVJWmLioqCra0trKysMtzHwsICFhYWOV0aERER5QI5fmbEz88PQUFBkrZDhw7Bz88vp1+aiIiIjIDeYeTly5e4ePEiLl68CODN0N2LFy/i4cOHAN5cYunVq5dm+yFDhiA8PBwTJkzAzZs3sWjRIvz1118YM2ZM9rwDIiIiMmp6h5Fz586hcuXKqFy5MgBg7NixqFy5MiZPngwAiIiI0AQTAPDy8sKePXtw6NAhVKxYEbNmzcKKFSs4rJeIiIgAAAohhJC7iA+Jj4+HnZ0d4uLiYGtrK3c5REREpANdv79z5WgaIiIiyj8YRoiIiEhWDCNEREQkK4YRIiIikhXDCBEREcmKYYSIiIhkxTBCREREsmIYISIiIlkxjBAREZGsGEaIiIhIVgwjREREJCuGESIiIpIVwwgRERHJimGEiIiIZMUwQkRERLJiGCEiIiJZMYwQERGRrBhGiIiISFYMI0RERCQrU7kLICKiN1RqgZB7zxCdkARnG0v4eDlAaaKQuyyiHMcwQkSUC+y/GoGpu64jIi5J0+ZmZ4kprcqhWXk3GSsjynm8TENEJLP9VyMwdG2YJIgAQGRcEoauDcP+qxEyVUZkGDwzQkQkI5VaYOqu6xBvtcWH7kBK9D2Y2rvCrJArxgeGo9L/usDF2QkKBS/bUN7DMEJEJKOQe8+0zoi8vnceSffCNPdjAbgtGQkbGxuUKFFCcytZsqTmz6JFi8Lc3NzA1RNlD4YRIiIZRSe8CSJpCbF4fTcUafGxSHsRmeG2CQkJuHTpEi5duqT1mImJCTw9PSUB5e3QYm9vn6Pvg+hjMIwQEclACIGLFy9i1+oNiPhrK1Ii78DEuhBce/2KhNDtej+fWq3GgwcP8ODBAxw+fFjr8UKFCmmdTUkPK56enjA15dcByUchhBAf3kxe8fHxsLOzQ1xcHGxtbeUuh4goS5KSknDkyBHs2rULu3btwuPHj/97UGkK124BsPAoC6FKQ1p8DNJeRCLtRQQsXsfCz0mF8PC7uHv3LhISErK1LlNTUxQrVizTsMLPXcoqXb+/GUaIiHJQTEwM9uzZg507d+LgwYNITEzMcDvHFmNRsHwDSUfW9K6qi3tU0QzvFULg2bNnuHv3LsLDwzV/pv/98ePHyO6PdUdHxwz7qZQoUQIeHh4wMeHATMoYwwgRkQyEELhx4wZ27tyJXbt2ITg4+IPh4Ouvv0a9HqOyZZ6R5ORk3L9/XxJQ3v77q1evsvzeMmJubg4vL68M+6l4eXmhQIEC2fp66bZu3YpPPvkEn3/+eY48P2UPhhEiIgN6/vw5fvzxR+zYsQPh4eE679e6dWts27YNJiYmOT4DqxAC0dHRWgEl/c+IiOyfz8TFxSXTTrWurq5ZHqq8Y8cOtG3bFo0bN8b48ePRuHFjDnvOhRhGiIgM7PTp0xg1ahTOnTun0/YVKlTAqVOnYGNjk8OV6ebVq1e4f/9+hmElPDwcycnJ2fp6VlZW8PLyyjCseHl5wdLSMtN9k5OT4eLigri4OABvjuX48ePRtWtXDnHORRhGKM/geh1kTNRqNX7//XcMHjwYKSkpmW7n5OSE0NBQFCtWzIDVZZ1arUZERESGl37Cw8MRHR2d7a/p4eGhdTYl/e9OTk7o168fVq9eLdnH3d0do0aNwqBBg1CoUKFMn5ufK4bBMEJ5AtfrIGNz//59DBgwAEFBQZluY25ujsOHD6NmzZoGrCxnJSQk4N69exmGlfv37yM1NTVbX69gwYKwtrbONAQVLFgQAwYMwOjRo7UCHz9XDIdhhIxe+nod6T+gIi0VClOzDEcYEMlNrVZjyZIlmDBhQqYjZtKtXr0avXv3NlBl8lOpVHj8+HGG/VTCw8Px7NmzHHttpVKJTp06Ydy4cahatarW50o6fq7kDIYRMmoqtUCtGYclv7k8+W0EIAQsi1WEVfFKKPaZN4Int+SpVZJdeHg4+vfvj6NHj2o9plAoJKNpvvrqK8ycOdOA1eV+L1680ASVd8PKw4cPoVKpsuV16tarh8iijfDa9XNACChMlJLHFQBc7Sxx8usG/FzJJgwjZNSC7z5Ft+VnNPfT4mPw7+K+0o1MlKhQyRttvmiChg0bws/PDxYWFgaulPIztVqNwMBATJw4UWvIbMGCBTFr1iwcOXIEGzZsAAC0bNkS27dvh1KpzOjpKAOpqal49OhRhv1ULl68mKU5VZR2roA6FQ6Nh8L60+paj68fWB1+JQtnR/n5nq7f35z/l3Kl9PU60iU9vKK9kVqFK2EhuBIWgp9++glWVlaoVasWGjRogIYNG6JKlSr80Kccc+fOHfTv3x/Hjx/Xeqxx48ZYvnw5ihUrhnv37gEAPvvsM6xbt44/k3oyMzPTdFp92+7du9GqVSu9nsvUzBwoUBiql08h0lIQs2MGXLtPh4V7acl2737+UM5jGKFcydlGOqTPxKIAYKIEhBrI5Deh169f49ChQzh06BAAwM7ODvXq1UPDhg3RsGFDlC1blvMQ0EdTqVRYsGABvvnmG7x+/VrymK2tLWbPno1+/fppftaKFy8OR0dH7Nq1i2d2s8nTp08xcODATB+3tbVF2bJlJbcyZcrg0Ll/MKJfN4i0/x/lpEpF9JYf4TF4OUzMrTT7v/v5QzmPYYRyJR8vB7jZWSIyLgkCgPWnvjB3KYmUiNuwq/UlRNJLpD2+gleRmU8uFRcXhx07dmDHjh0AAFdXV81Zk4YNGxrNkErKPW7duoV+/frh1KlTWo81a9YMy5Ytg6enp6T9008/xdatW+Hl5WWoMvO84cOHIzIyEu7u7pqg8XbwyGgytT179mB8/85QJ70VIJVmKNx0mCaIpPcZ8fFyMOC7IYB9RigXS+/1DgACQMz26Xj1z0kozK3g1uMXrBzTHlWclTh69CiCgoIQFBSEu3fv6vz8JUuWRMOGDdGgQQM0aNAATk5OOfROyNipVCrMnTsX3333HZKSpKfw7ezsMHfuXPTu3TvDM29CCJ6Ry0ZJSUm4dOkSypQpAzs7O532WbNmDfr37y/pCKuwKADnDt/D0rP8m/v/387RNNmLHVgpT3h7PoDnR1YhPmQrAMDZvQguh52Di4uLZPv05dPTw0lkZKTOr/X5559rwkmdOnX4s0YAgJs3b6Jv3744c+aM1mMtWrTA0qVL4eHhIUNl9CFCCPzyyy/4+uuvJe32js4o0u0nxFu7a9o4z0jOYBihPCN9psTVK5Zg2fTvNO2+vr44cuQIrKysMtwvfcGy9HBy5MgRzdTRH6JUKuHj46MJJ35+fu+dmpryHpVKhdmzZ+P777/Xmga9UKFCmDdvHnr27MmzHrmUWq3GV199hdmzZ0vaP/30Uxw4cABFixXnDKwGwDBCeU5Gvec7d+6M9evX67SEuUqlQlhYGIKCgnD48GGcPHlSqwNiZiwtLVGrVi1NOPH29uaoiDzs+vXr6Nu3L0JCQrQea926NZYsWQI3N/4GnVulpqaiX79+WLt2raTd29sbe/fuhbOzs0yV5T8MI5TnXLlyJcPlwr/77jv8+OOPej9fcnIygoODNWdOzp49q/PkSm+P1GnQoAHKlSvH35DzgLS0NPzyyy/43//+p7WujIODAxYsWIBu3brx3zoXS0xMRMeOHbF//35Je6NGjbB169ZcsyhhfsEwQnlO+s9BRtasWYNevXp91PMnJCTg+PHjmnBy6dIlnfd9e6ROgwYNULx48Y+qhQzv6tWr6Nu3b4Yr7rZt2xaLFy+Gq6urDJWRrp4+fYoWLVrg7NmzkvauXbtizZo1XM1XBgwjlCc5ODjg+fPnWu1mZmb4+++/UadOnWx7rZiYGBw5ckQTTu7cuaPzviVKlNAMIa5fvz5PC+diqampmDlzJqZOnaq1mFvhwoWxcOFCdOnShWdDcrmHDx+iadOmuHnzpqR9xIgRmDt3rk6Xcin7MYxQnlS5cmVcvHgxw8ccHBxw9uxZfPLJJzny2g8fPtT0NwkKCkJERITO+1aoUEETTjhSJ/e4fPky+vTpgwsXLmg91rFjRyxcuFBrxBblPteuXUPTpk3x77//StqnTZuGSZMmMUjKiGGE8qS2bdtqJjHLSKlSpXDmzBnY29vnaB1CCNy8eVMTTo4cOYIXL17otK9SqUS1atU04YQjdQwvJSUFAQEBmDZtmtbZECcnJwQGBqJTp04yVUf6OHXqFFq2bCn5/2diYoKlS5diwIAB8hVGABhGKI8aNWoU5s+f/95t6tevj/379xv0+rBKpcKFCxc04eTEiRN6jdSpWbOmJpxUqVIFpqacHDmnXLx4EX369MmwT1CXLl2wYMECToBnJHbv3o1OnTpJJqKztLTEhg0b0KZNGxkro3QMI5QnzZ49G+PGjfvgdv369cOKFStkOz2bnJyMM2fOaMLJ2bNnkZaWptO+dnZ2qFu3riaccKRO9khJScG0adPw888/a/1bODs7Y9GiRejQoYNM1ZG+Vq9ejQEDBkhGwNnZ2WHXrl2oXbu2jJXR2xhGKE/aunVrpl8Yffv2RbNmzZCQkICEhAR06NBBa50QuSQkJODEiROacJJZv5eMuLi4SNbU4Ugd/YWFhaFPnz64ckV79efu3btj3rx5cHR0lKEy0pcQAjNnzsTEiRMl7W5ubti/f3+Gw/9JPgwjlCedP38eVatWBQBYWFhIZsYsV64crl69ahRnEWJjY3HkyBFNOLl9+7bO+5YoUUIyjJgjdTKXnJyMH3/8EdOnT9eaQ8bFxQVLlixB27Zt5SmO9KZWqzF+/HjMmTNH0l6qVCkcOHCAQT0XYhihPCk2NhZOTk4wMTHBrl278L///Q+hoaGaxw8ePIjGjRvLWGHWPHz4ULKmjr4jddLDSd26dfl/5P+Fhoaib9++uHbtmtZjPXv2xNy5c+HgwNVZjUVKSgr69euHdevWSdqrVq2KvXv3sp9PLqXz97cwAnFxcQKAiIuLk7sUkplarRbW1tZi1qxZQggh1q1bJ/BmUV8BQDRv3lzmCj+eWq0WN27cEAsXLhTt27cX9vb2kvf4vptSqRTVq1cX33zzjQgKChKvX7+W++0Y3OvXr8XEiROFiYmJ1vFxc3MTO3fulLtE0lNCQoJo2rSp1r9n48aNRXx8vNzl0Xvo+v3NMyNkdGbPno0xY8ZAoVAgJSUFXl5eePLkiebxGzduoEyZMjJWmL1UKhUuXrwoGanz6tUrnfZNH6mTfubE29s7T4/UOXv2LPr27YsbN25oPdanTx/Mnj07x4d9U/aKjY1FixYttNYJ6tatG1avXs1ZVXM5nhmhfGPatGmS35aGDh0qd0k5KikpSRw7dkxMnjxZ1KpVS5iamup85sTW1la0bt1azJ07V1y5ckWo1Wq53062ePXqlfjqq68yPBvi4eEh9uzZI3eJlAX3798XpUuX1vo3HTlypFCpVHKXRzrgmRHKN2JjY+Hp6amZa8Da2hqPHj3KN/0BXr58qRmpExQUlKWROulnTry8vHKu0BwSHByMvn374p9//tF6rF+/fpg1axYKFSpk+MLoo1y9ehVNmzaVnPUEgJ9//hkTJ040io7qlMNnRhYuXCiKFSsmLCwshI+Pjzh79ux7t58zZ44oVaqUsLS0FEWKFBGjR4/W61o2z4zQhwwaNEjym9OMGTPkLkk2MTExYtOmTWLIkCHi008/1fmsCQDh5eUlBgwYINavXy8iIyP1fu2DBw+KtLS0HHhX2hITE8XYsWOFQqHQeh9FihQR+/fvN0gdlP1OnDghChUqJPk3NTExEStWrJC7NNKTrt/feoeRDRs2CHNzc7Fq1Spx7do1MXDgQFGoUCERFRWV4fbr1q0TFhYWYt26deLevXviwIEDws3NTYwZM0bn12QYoQ+5du2a1pdRSkqK3GXlCg8fPhSrV68WPXv2FO7u7nqFk/Lly4tRo0aJHTt2iBcvXnzwtQYNGiQqV64szpw5k6Pv6cSJE5kGrUGDBvGzwojt3LlTWFpaSv5NLS0txY4dO+QujbIgx8KIj4+P8Pf319xXqVTC3d1dBAQEZLi9v7+/aNCggaRt7NixombNmjq/JsMI6aJJkyaSD7ANGzbIXVKuo1arxc2bN0VgYGCWRur4+vqKb775Rvz9998Znt1csWKFACAUCoUYNGiQiI2Nzdb6X758KUaNGpXh2ZCiRYuKgwcPZuvrkWGtWrVKKJVKyb9roUKFxPHjx+UujbIoR8JIcnKyUCqVYtu2bZL2Xr16idatW2e4z7p164SdnZ3mUs7du3dFmTJlxLRp0zJ9naSkJBEXF6e5PXr0iGGEPmjv3r2SD7Hq1avLXVKul5aWJs6fPy9mzpwpmjZtKqytrXUOJxYWFqJBgwZi2rRp4syZMyI1NVVcvnxZsk3hwoXFypUrs6Wz4bFjx0TJkiUzrGXIkCEc4mnE1Gq1CAgI0Pp3dXd3F5cvX5a7PPoIORJG/v33XwFAnD59WtL+1VdfCR8fn0z3mzdvnjAzM9P0+h8yZMh7X2fKlCkZfuAwjND7qFQqrZ73wcHBcpdlVJKTk8Xx48fFlClTsjRS54svvsjwsRo1aohLly5lqaaEhAQxfPjwDJ+3ePHiIigoKJuPAhmSSqUSo0eP1vq3LVWqlLh3757c5dFHyjVh5MiRI8LFxUUsX75cXL58WWzdulV4enqKH374IdPX4ZkRyqrFixdLPtC6du0qd0lGLSEhQezbt0+MHz9eVK5cOcPLI/pc5hkzZkym/4/TVGpx+k6s2H7hsTh9J1akqdTi8OHDwsvLK8Pn8/f3FwkJCQY+IpSdkpOTRffu3bX+batVqyaio6PlLo+yQY4M7U1JSYG1tTU2b94sWc+hd+/eePHiBXbs2KG1T+3atVG9enX88ssvmra1a9di0KBBePnyJUxMTD74uhzaS7pKTEyEp6cnnj9/DgBQKpW4f/8+ihQpInNlecPTp09x9OhRzTDiW7du6f0cbm5umDNnDjp37qwZnrn/agSm7rqOiLg3w7PVya+QEvwHos7u0tq/RIkSWLlyJerVq/dR74Xk9fLlS3To0AEHDx6UtDdp0gRbtmxBwYIFZaqMspOu398fTgJvMTc3h7e3N4KCgjRtarUaQUFB8PPzy3CfV69eaQUOpVIJANAjBxHppECBAhg0aJDmvkqlQmBgoIwV5S2FCxdGhw4dsGjRIvzzzz949OgR1qxZg169esHDw0On54iIiEDXrl3RpEkT/PPPP9h/NQJD14Zpgsjr+xfxZNXwDIPIyJEjcfnyZQYRIxcTE4MGDRpoBZFu3bph165dDCL5kb6nXDZs2CAsLCzE6tWrxfXr18WgQYNEoUKFNHMS9OzZU0ycOFGz/ZQpU4SNjY1Yv369CA8PFwcPHhQlS5YUnTt3zvbTPERCvBnK+naPfHt7e/Hy5Uu5y8rzNm/erPelGzMzM+FRr7vwHLtZeI7ZJApWapbhdp988glHVOQR9+/fF6VKldL6Nx41ahRnVc2DcmxorxBCLFiwQBQtWlSYm5sLHx8fyZwCdevWFb1799bcT01NFf/73/9EyZIlhaWlpfD09BTDhg0Tz58/1/n1GEZIX126dJF80C1evFjukvK006dPa80Noc9NaeciHNtMEqb2786DohA2VduIw1ceyv0WKRtcvnw5w7luAgIC8szSBCTF6eApXztz5ozk0mGZMmVw7do1nfookX5u374NPz8/PH36VNNmYmICa2trWFlZaW5v30//e8xrgdDHiVCYmkNhagGzQq54um8+AAFTBw8Ubj4alkXKYl7XSmhTSbfLQJQ7nTx5Eq1atcKLFy80bSYmJli+fDn69esnX2GUo3T9/s67y3dSvla9enVUr14dZ86cAQDcvHkTBw8eRLNmzWSuLO+xsbFBSEiIJGSYmZnptHZI8N2n6Lb8jKQtJfYBFAoT2NX6EiZmFgAAZxvLHKmdDGPnzp3o0qWLZv0o4M2K0hs3bkTr1q1lrIxyC/6aSHnW6NGjJffnzp0rSx15naurK0qUKAE3NzfY2dnB3Nxc50XMfLwc4GZnibe3tq/fH/b1+8HEzAIKAG52lvDxyh+LHuZFK1euRLt27SRBpFChQjh06BCDCGkwjFCe1b59e8mQ3gMHDuD69esyVkTvUpooMKVVOQDQBJL0IJN+f0qrclCacIVWYyOEQEBAAAYMGAC1Wq1pd3d3x4kTJ1CrVi0Zq6PchmGE8iwzMzMMHz5c0jZv3jyZqqHMNCvvhsU9qsDVTnopxtXOEot7VEGz8m4yVUZZpVarMXr0aHzzzTeS9tKlS+P06dMoX768TJVRbsUOrJSnPXv2DEWKFMHr168BvLlO/fjxYxQuXFjmyuhdKrVAyL1niE5IgrPNm0szPCNifFJSUtCnTx+sX79e0u7j44M9e/bA0dFRpspIDjky6RmRsXFwcEDv3r0195OSkrBs2TIZK6LMKE0U8CtZGG0qecCvZGEGESOUkJCAli1bagWRpk2bIigoiEGEMsUwQnneqFGjJPcXLlyI1NRUmaohypvSZ1U9dOiQpP3LL7/Ezp07OasqvRfDCOV5ZcqUQfPmzTX3nzx5gs2bN8tYEVHecv/+fdSqVQvnzp2TtI8ZMwa///47zM3NZaqMjAXDCOUL7w7znTNnDtdGIsoGly9fRo0aNbQWTZw+fTpmzZrFiQZJJ/wpoXyhcePGKFu2rOZ+aGgogoODZayIyPidOHECderUQUREhKZNqVRi1apV+Prrr3Web4aIYYTyBYVCwUnQiLLRjh070LhxY8TFxWnarKyssH37dvTt21fGysgYMYxQvtGjRw84OPw3k+eWLVvw4MEDGSsiMk4rVqxA+/btkZycrGkrVKgQ/v77b7Rs2VLGyshYMYxQvmFtbY0hQ4Zo7qvVagQGBspYEZFxEULg559/xsCBAyWzqnp4eODkyZOoUaOGjNWRMWMYoXxl2LBhMDX9b33I5cuX4+XLlzJWRGQc1Go1Ro0ahW+//VbSnj6r6meffSZTZZQXMIxQvuLh4YHOnTtr7r948QJr1qyRsSKi3C8lJQVffvklFixYIGn39fXFyZMnUbRoUZkqo7yCYYTynXcnQZs3b57klDMR/SchIQEtWrTAhg0bJO3NmjXjrKqUbRhGKN/x8fGRXNu+ffs29u3bJ2NFRLlTdHQ0GjRogL///lvS3qNHD+zcuRMFChSQqTLKaxhGKF8aM2aM5D6H+RJJ3bt3L8NZVceOHYs1a9bAzMxMpsooL2IYoXypbdu2kuvcf//9N65evSpjRUS5R/qsqrdv35a0z5w5k7OqUo7gTxTlS6amphgxYoSkbd68eTJVQ5R7HD9+HHXq1EFkZKSmTalU4rfffsNXX30lY2WUlzGMUL7Vv39/yTXvP/74AzExMTJWRCSv7du3o0mTJhnOqtqnTx/5CqM8j2GE8i17e3vJB2xycjKWLl0qX0FEMlqxYgU6dOggmVXV3t6es6qSQTCMUL42cuRIyf3AwECkpKTIVA2R4QkhMG3atAxnVT1x4gRnVSWDYBihfK1UqVKS3/oiIyPx119/yVgRkeGo1WqMHDkS3333naS9TJkynFWVDIphhPK9d1fznTNnDoQQ8hRDZCDJycno1q0bFi5cKGnnrKq6U6kFgu8+xY6L/yL47lOo1PzcyCrTD29ClLc1aNAA5cuX1wztDQsLw6lTp1CrVi2ZKyPKGQkJCWjXrh2CgoIk7c2bN8emTZs4mZkO9l+NwNRd1xERl6Rpc7OzxJRW5dCsvJuMlRknnhmhfE+hUGR4doQoL4qOjkb9+vW1gkjPnj2xY8cOBhEd7L8agaFrwyRBBAAi45IwdG0Y9l+NkKky48UwQgSge/fukjU2tm/fjnv37slYEVH2u3fvHmrWrInz589L2seNG4fVq1fnm1lVnzx5gvDwcLx48ULvS7IqtcDUXdeR0V7pbVN3XeclGz3xMg0R3sylMGTIEPz0008A3nTsW7hwIWbNmiVzZUTZ49KlS2jWrJlkMjMA+OWXXzB+/HiZqpJHamoqfH19ERsbC6VSCXt7ezg4OKBw4cJwcHCQ/P3dtvsJCvwb/QwKcysoFAqt5xYAIuKSEHLvGfxKFjb8mzNSCmEEPfXi4+NhZ2eHuLg42Nrayl0O5VEREREoVqwYUlNTAQC2trZ4/PgxbGxsZK6M6OMcO3YMrVu3Rnx8vKZNqVRi1apV6NWrl4yVyefYsWNo1KgR0tLSsvgMCijMLKC0eRM4rEv6wL5Bf82j87pWQptKHtlQqXHT9fubl2mI/p+bmxu6du2quR8fH4+xP81lL3kyatu2bUPTpk0lQcTKygo7d+7Mt0EEAOrWrYv58+dnaV8TiwKwq90DIjUJac/+fXNLiJVs42xjmR1l5hu8TEP0llGjRuGPP/7Q3F+9bDEOohLcC1mzlzwZnWXLlmHo0KGSyczs7e2xZ88e+Pn5yViZPFJTU3Hp0iUEBwcjODgYp0+f1mt/U1NTDBs2DKds6yLmFRB34r/PCqF6c0ZVAcDVzhI+Xg7ZWXqexzBC9JYYC3dYFPkMyY+vAQDSXkTg9Z1QRH7qi6Frw7C4RxUGEsr1hBD46aefMHnyZEl7kSJFcODAAZQrV06mygwrOjpaEzqCg4Nx7tw5vH79OkvP1aZNG8ycOROlSpXC/qsRGPLHOcnjIi0F6T1IprQqB6WJdn8SyhzDCNH/S+8lb1u1DWL+P4wAQMKFPbD+1BcKvOkl37icKz9oKNdSqVQYNWoUAgMDJe1ly5bFgQMH4OnpKVNlOSstLQ1XrlyRhI/w8PCPft7KlStj9uzZqFevnqatWXk3LOlZFV/MMtOcERFpKXDlPCNZxjBC9P9C7j1DRFwSrD71hdLOBSItGTaVW8Cm8hcA2Euecr/k5GT06tVLa0mD6tWrY/fu3ShcOO/83MbGxuLMmTOa8BEaGorExES9nsPOzg4lS5ZEWFiY1mPu7u74+eef0bNnT5iYaHevbFbeDbYFrTUrHJd0MMfJrxvwF5UsYhgh+n/RCUkQahVe3z0HUxsnmDkWRaGa3TLcjii3iY+PR7t27XD48GFJ+xdffIG//vrLqCczU6lUuHbtmuSsx+3bt/V+nnLlysHPz09zK1OmDFatWoWBAwdqtrG2tsaECRMwfvz4Dx4zS0tLTRgxFWkMIh+BYYQIwOPHj7HrtwX497dVUCXEwtTeHc6d/pfhtuwlT7lNVFQUvvjiC63f8Hv16oUVK1YY3WRmz58/x5kzZzTBIyQkBAkJCXo9h42NDapXr64JHr6+vrC3t9fa7ujRowDezMTcp08f/PTTT3B3d9fpNSwt//ssSEriLykfg2GE8i2VSoWDBw9iyZIl2L17938jDhQmcGwxFibm0tDBXvIkt2vXrmmtpBseHo4mTZrg7t27kvavvvoKM2bMyHBirtxErVbjxo0bmuARHByMmzdv6v08pUuXlpz1KFeuHJRK5Xv3EULg2LFjaNCgAWbNmoVKlSrp9Zpvh5GsdoylNxhGKN+JiIjAqlWrsHz5cjx48EDrcbvqnWDpUUYy3TN7yZPcHj16hJYtW+Lu3buaPgwXL15E8+bNjWpW1bi4OJw9e1YTPs6ePau51KGrAgUKwNfXVxM8qlevnqX+MPHx8Vi0aBFatmyZpdBmZWWl+TvPjHwchhHKF9RqNYKCgrB06VLs2LEj01kXK1eujKmBM/Dz/juSRbDYS57kNm7cONy/fx9hYWGoWrUqjh49ijZt2kgmMzM1NcWqVavQs2dPGSv9j1qtxq1btyRnPa5fv673ejCffPKJ5KxH+fLlYWr68V9fdnZ2aNWqVZb352Wa7MMwQnlaTEwMfvvtNyxbtkzrNPa7LCwssHbtWpQrVwxfVCyKkHvPEJ2QBGebN5dmeEaE5HLo0CFs2rQJAHDgwAE8fPgQ3bp1Q0pKimYba2trbN68Gc2bN5erTCQkJODs2bOa4HHmzBk8f/5cr+ewsrKCj4+P5KyHs7NzDlX8cRhGsg/DCOVJZ8+exdy5c7FlyxbNWjMfEhAQoJkMSmmi4PBdyhWSk5MxfPhwzf358+cjNjZWMquqg4MD9uzZg+rVqxusLiEEbt++rQkewcHBuHr1qqQuXXh5eUnOenz++ee5tsPt48ePYWtrq1lj5e0wkpqaCpVKBaVSibt37+LcuXPo0qWLXKUaHYYRypM+/fRTlC9fHkFBQYiJifng9vXq1cOoUaMMUBmRfubMmYNbt25p7kdHR0se9/T0xIEDB1C2bNkcrePly5cIDQ2VnPWIjY398I5vsbCwQLVq1SThw9XVNYcqzn6pqakoVqwYhg4dipEjR0r6jADAw4cPMWfOHCxZsgRLliyRqUrjxFV7KU97/fo1AgIC8OOPP2a6ja2tLS5fvoxixYoZsDKiD3v48CHKli2LV69eZfh4uXLlsH///myfVVUIgfDwcMlZj8uXL0OlUun1PEWLFpUEj0qVKsHc3DxbazU0Hx8fhIaGwtzcHLa2tpJAZmVlpRlV8+DBAxQtWlSuMnMNXb+/eWaE8rSwsDAsW7bsvdvMnz+fQYRypbFjx2YaRIA3o0oOHz6Mjh07ftSkZq9evcK5c+ck4ePdMzAfYm5uDm9vb0n48PDwyHJNuVWnTp0QGhqKlJQUrTND6UHk008/ZRDRE8+MUJ4khMDSpUsxcuTI9/YZadeuHbZs2ZLr52Kg/OfAgQNo1qyZTtva2Nhg7NixmDx5coZTl79NCIEHDx5IgsfFixczHWGWGXd3d9SoUUMTPKpUqQILCwu9nsMY3b9/H15eXu/dZsiQIVi8eLGBKsrdeGaE8q30Dn8rVqyQtFtaWsLV1RX3798HADg7O2Pp0qUMIpTrJCcnY8SIETptW6xYMUyYMAF9+/bNMIgkJSXh/PnzkvARERGhVz2mpqaoUqWK5KyHp6dnvvy/U7x4cfj4+CAkJCTTbRo1amTAivIGhhHKU/7991906NABZ8+elbQXLVoU27Ztw86dOzF16lQAwIoVK+Dk5CRHmUTv9euvv35w7ZXSpUtj0qRJ6N69u2T0yaNHjyTBIywsTOcRZelcXV0lwcPb21urs2Z+1rlz50zDiEKhQP369Q1ckfFjGKE849SpU+jYsaPWbJT169fHxo0b4eTkhKioKABA//79P2qyI6Kccv/+fUybNi3TxytXroxvvvkG7dq1Q1pamtZZj8ePH+v1ekqlEpUqVZKEj+LFi+fLsx666tixY6Yz3Hp7e8PBgUtG6IthhPKEpUuXYsSIEVq/AY4ePRq//PKLZrZGHx8feHl5Yc6cOXKUSaRFpRaSCfZmjBuT4TonNWvWxJAhQ2BpaYkzZ85gzpw5OH/+PJKTk/V6PScnJ0nwqFq1qlGv6CuHYsWKwdfXV+sMLMBLNFnFMEJGLf3a+vLlyyXtlpaWWLZsmda02IULF8aePXtgY2NjyDKJMrT/agSm7rquWXrg9d1QRO/YLtmmTJkycHd3x507d/Se5t3ExASff/65JHyULFmSZz2yQefOnRlGshFH05DRevLkCTp06IAzZ85I2j09PbF9+3ZUqVJFpsqIPmz/1QgMXRumWZAxLS4aEb+Pg/rVm+nTTUxM9J7N1MHBQRI8qlWrxuCdQx4+fKg1JYClpSWeP38umZk1v+NoGsrTTp8+jQ4dOmj1D6lXrx7++usvdkylXE2lFpi667omiMTs/AWvbhyTbPOhIKJQKFC+fHlJ+ChVqhTPehhI+oRuwcHBmrZatWoxiGQRwwgZnWXLlmH48OFa/UNGjRqFX375Jdeua0GULuTeM8mq0CZWHz7jW6hQIVSvXl0TPHx8fGBnZ5eTZdIHdO7cWRJGeIkm6xhGyGjo2z+EKLeKTpCu8GpZvBJehu2StJkVLoq6tWuga8tG8PPzQ5kyZT44oRkZVseOHTFmzBjNfYaRrGMYIaPw5MkTdOzYUfJbCPCmf8i2bdvg7e0tU2VE+nO2kZ7Kt/QoA8vilWHhXgYWHmVg7l4aSsuC+GFgda4enYsVKVIEfjVqIPj0adjYFcJrG0+o1AJKE14q01eWYnZgYCCKFy8OS0tL+Pr6vncmOgB48eIF/P394ebmBgsLC5QqVQp79+7NUsGU/wQHB6Nq1apaQaRu3bo4d+4cgwgZHR8vB7jZWSL9K0tpbQeXLj+iUO0vYVXCG6aWBeFmZwkfL85XkZvtvxqBJ/aVAAAq18/QY1Uoas04jP1X9ZvhlrIQRjZu3IixY8diypQpCAsLQ8WKFdG0adNMF1VKSUlB48aNcf/+fWzevBn//PMPli9fnicXUKLst2zZMtStW1dr+uqRI0fi0KFDcHZ2lqkyoqxTmigwpVU5AMC7v0On35/Sqhx/w87F0kdDpRXzAfDmUhsARMYlYejaMAYSPekdRmbPno2BAweib9++KFeuHJYsWQJra2usWrUqw+1XrVqFZ8+eYfv27ahZsyaKFy+OunXromLFih9dPOVdKSkpGDJkCAYPHizpqGphYYE1a9Zg3rx57KhKRq1ZeTcs7lEFrnbSSzaudpZY3KMKmpV3k6ky+pC3R0OZ2jjCokg5WBarBACaEVJTd12HSp3rZ87INfTqM5KSkoLz589j0qRJmjYTExM0atRI6xR6up07d8LPzw/+/v7YsWMHnJyc0L17d3z99ddQKpUZ7pOcnCyZVTA+Pl6fMsnIRUREoGPHjjh9+rSkvUiRIti2bRuqVq0qU2VE2atZeTc0LucqmYHVx8uBZ0RyubdHQyU9uIyClZrDtJCr5nEBICIuCSH3nrHPj470CiOxsbFQqVRwcXGRtLu4uODmzZsZ7hMeHo7Dhw/jyy+/xN69e3Hnzh0MGzYMqampmDJlSob7BAQEaBYzo/wlODgYHTp00LosU6dOHWzatImXZSjPUZoo+IVlZCLj3kzXL4RAzPYAqFOToFCawfoTXyhM/ztj++6oKcpcjo8TU6vVcHZ2xrJly+Dt7Y0uXbrg22+/xZIlSzLdZ9KkSYiLi9PcHj16lNNlUi6wfPnyDPuHjBgxAn///TeDCBHJbv/VCPy45wYAQBUfDXVSAqBKRerTR5IgAmiPmqLM6XVmxNHREUqlUrPyabqoqCi4urpmuI+bmxvMzMwkl2TKli2LyMhIpKSkwNzcXGsfCwsLWFhY6FMaGbGUlBSMHDkSS5culbRbWFhgyZIl6NOnjzyFERG95d0p/FNi7gMAbH3aw65GV812Crzp+8PRULrT68yIubk5vL29ERQUpGlTq9UICgqCn59fhvvUrFkTd+7ckUxtfOvWLbi5uWUYRCh/iYiIQP369bWCSJEiRXDixAkGESLKFdI7rapSk/Hy8kE8P7IKqTEPULBSMxSq11drGn6OhtKP3pdpxo4di+XLl2PNmjW4ceMGhg4disTERPTt2xcA0KtXL0kH16FDh+LZs2cYNWoUbt26hT179uDnn3+Gv79/9r0LMkpnzpxB1apVtTqq1qlTB+fOnUO1atVkqoyISGrr0fO4vi0Q/y7qjaf75iM+ZBtMrO3g0GSYJIg4FDDjaKgs0HsG1i5duiAmJgaTJ09GZGQkKlWqhP3792s6tT58+FAyZbGnpycOHDiAMWPG4PPPP4eHhwdGjRqFr7/+OvveBRmdFStWwN/fHykpKZL24cOHY/bs2Ry2S0SyU6vV2L9/PwIDA7Fv3z5IF7kXSHv+BAqF9Hf671t+xiCSBQohPbq5kq5LEFPul5KSgtGjR2Px4sWSdvYPIaLc4tmzZ/jtt9+waNEihIeHZ7qdZbHP4dL1Z0nbek7hL6Hr9zfXpiGDiYyMRMeOHXHq1ClJu4eHB7Zt28bLMkQkq7CwMAQGBuLPP/9EUlImw3JNlLAuXRM2VVrCwqOsppmdVj8OwwgZxNmzZ9G+fXs8efJE0l67dm1s2rRJa+4aIiJDSE5OxubNm7Fw4UKcOXMm0+3c3d3RoG13HFV8DtOCDnj7kgKn8P94DCOU41auXIlhw4Zp9Q/x9/fH7NmzOaqKiAzu0aNHWLJkCZYvX46YmJhMt6tXrx78/f3Rpk0bmJmZYf/VCEzddV0zAyvw5ozIlFbl2FfkIzCMUI7JrH+Iubk5lixZohmBRURkCEIIHD58GIGBgdixY4dkyom3FShQAL169cKwYcNQvnx5yWOcwj9nMIxQjoiMjESnTp1w8uRJSbuHhwe2bt0KHx8fmSojovwmPj4ea9aswaJFizJdugQAypQpA39/f/Tq1eu9nS05hX/2YxihbHf27Fl06NAB//77r6S9Vq1a2Lx5M/uHEJFBXLt2DYGBgfjjjz/w8uXLDLcxMTFBmzZt4O/vjwYNGmhNXkaGwTBC2WrVqlUYOnSoVv+QYcOGYc6cOewfQkQ5KjU1FTt27MDChQtx7NixTLdzcnLCwIEDMXjwYBQtWtSAFVJGGEYoW6SkpGDMmDFYtGiRpN3c3ByLFy9Gv379ZKqMiPKDyMhILFu2DEuXLtUatfc2Pz8/+Pv7o2PHjlwDLRdhGKGPFhUVhY4dO2r1D3F3d8fWrVvh6+srU2VElJcJIXDq1CkEBgZiy5YtSE1NzXA7S0tLdO/eHf7+/qhSpYqBqyRdMIzQRwkJCUH79u21+ofUrFkTmzdvznQ1ZyKirEpMTMSff/6JhQsX4vLly5luV6JECQwdOhT9+vWDgwMnI8vN9F4ojyjdb7/9hjp16mgFkaFDh+Lw4cMMIkSks7i4OMyfP/+929y+fRtjxoyBh4cHBg0alGEQUSgU+OKLL7Bnzx7cvn0b48ePZxAxAgwjpLfU1FQMHz4c/fr1Q3Jysqbd3NwcK1aswKJFi9hRlYh0duvWLfj6+mY4A6pKpcKuXbvQrFkzlCpVCnPnzkVcXJzWdvb29hg3bhxu376NPXv24IsvvpAs2kq5Gy/TkF6ioqLQqVMnnDhxQtLO/iFElBUHDx5Ely5d8OLFCzRs2FDTHhsbi5UrV2LJkiW4f/9+pvtXrlwZw4cPR9euXWFtbW2AiiknMIyQzkJDQ9GuXTv2DyGijyaEwPz58zF27FjNTKgODg4IDQ3FwoULsXHjRsmZ17eZmZmhc+fO8Pf3R/Xq1Tk3SB6gEEKID28mL12XIKacs3r1agwZMkTrw2Ho0KGYO3cuL8sQkc6Sk5Ph7++PlStXStptbW0RHx+f6X5FihTBkCFDMGDAAE6eaCR0/f7mmRF6r9TUVIwdOxYLFy6UtJubmyMwMBADBgyQqTIiMkbR0dFo3749Tp06pfVYZkGkYcOG8Pf3R6tWrWBqyq+tvIj/qpSp6OhodOrUCcePH5e0u7m5YevWrahevbpMlRGRMbp48SJat26NR48efXBbGxsb9O7dG8OGDUPZsmUNUB3JiWGEMnTu3Dm0a9cOjx8/lrTXqFEDmzdvhpsbl8omIimVWmS6mu2WLVvQq1cvvHr16oPP88svv2Dw4MGwsbHJ6ZIpl2AYIS1r1qzB4MGDtfqHDBkyBPPmzWP/ECLSsv9qBKbuuo6IuCRNm5udJb5vUQYhW5dj6tSpOj/Xpk2b0LNnT4aRfIRhhDRSU1Mxbtw4LFiwQNJuZmaGwMBADBw4UKbKiCg32381AkPXhuHd0RBPYl6gU6fOeHXrtF7PFxISAl9fX+zduxflypXLvkIp12IYIQDv7x+yZcsW+Pn5yVQZEeVmKrXA1F3XNUFEnfIaiTdOQKFQIO7MJqQ9z3zRurdZWVnBw8NDcgsNDUXZsmU5dDcfYBghnDt3Du3bt9fqVMb+IUT0ISH3nkkuzaTFReHZfu1p3ZVKJaytrWFnZ4fChQvDzc0Nnp6eKFmyJMqUKYNPPvkEbm5usLe3Z/jIhxhG8rnff/8dgwYN0uofMnjwYMyfP5/9Q4jovaITkiT3VQmxGW6nUqmQkJCAhIQEPH78GJcuXcpwOzMzM7i4uMDV1fWDtwIFCmT7+yF5MIzkU6mpqRg/frzWwlRmZmZYuHAhBg0aJFNlRGRMnG0sJfdVrxM+6vlSU1Px+PFjrZF8GSlYsKBOocXZ2RlmZmYfVRflLIaRfCg6OhqdO3fGsWPHJO3sH0JE+vLxcoCbnSUi45IgAFgW+QyOrcZD9fI5VIlvbqbJ8ShqlYLIyEjExsYiuyb+fvnyJe7cuYM7d+58cFtHR0edgouDgwMvE8mA08HnM+fPn0e7du20+of4+flh8+bNcHd3l6kyIjJW6aNpAEhG1KR/pS/uUQXNyr/pe5aamoqYmBhERkZ+8JaQ8HFnWbLCmC4Tbd26FcWKFYO3t7esdbwPp4MnLZn1Dxk4cCAWLFgACwsLmSojImPWrLwbFveoojXPiKudJaa0KqcJIsCbL3t3d3edfvFJTExEVFSUTsElNTU1W96LMV0msra2RtWqVeHt7Y0hQ4agW7dusgekrOKZkXwgNTUVX331FebNmydpZ/8QIspO75uBNScJIfD8+XOdQkt2XibSR05cJlKpVPDy8tKc6ba1tUXPnj0xePBgVKhQISffjs50/f5mGMnjYmJi0LlzZxw9elTS7urqii1btqBGjRryFEZEJIO8dplo8uTJ+PHHH7Wep0aNGhgyZAg6duwIKyurDF/LEOGRYYQy7R9SvXp1bNmyhf1DiIjeQ47LRPooWLAgChQogKioqEy3sbe3R58+fTB48GCULl1a057Z9P3vXlb7WAwj+dwff/yBQYMGISlJOgfAgAEDsHDhQvYPISLKJsZwmQgA6tWrhyFDhsC6VHWM3HgVqpQkpL14AjMnLygUigw7HH8shpF86n39QxYsWIDBgwfLVBkREeWGy0QKE1PA1Awi5TUAoMjwtVAWKPTmMbzpeHzy6wbZcsmGo2nyoff1D9m8eTNq1qwpT2FERAQg+0cT3bhxAy9fvtSrBqFOA1LSNPdTYh/C6v/DiAAQEZeEkHvP4FeysF7P+zEYRvKIsLAwtGvXDg8fPpS0+/r6YsuWLfDw8JCpMiIiyooCBQqgRIkSKFGiBADg9evXuHPnDm7duoV//vkHV65cwYULFz76ddJeRALFPpe0vTvNf05jGMkD1q5di4EDB7J/CBGRkVOr1Xj06JEmcPzzzz+avz98+DDb+psobZ1gZu8Bs8Jvbu96d5r/nMYwYsTS0tIwYcIEzJkzR9JuZmaG+fPnY/DgwZzWmIgoF3r+/LkkaKT/efv2ba1fLLPKzs4OpUuXRunSpVGqVCmULl0an3xaCoN3PEbMa+lsuenS+4z4eDlkSw26YhgxUjExMejSpQuOHDkiaXdxccGWLVvYP4SISGbJycm4e/euVuC4desWYmJisuU1zMzMULJkSa3QUapUKTg5OWX4C+kPps4YujYMCmQ8ff+UVuUMMlnd2xhGjBD7hxAR6ScyMhJPnjxBlSpVsvV5hRD4999/M7yscv/+fajV6mx5HQ8PD0nQSP+zePHiMDXV76tcn+n7DYVhxMisW7cOAwYM0DqN179/fwQGBrJ/CBHRW8LDwzFz5kysXr1aa6ShPuLj4zO8rHLr1i28evUqW2q1sbHRBI23Q8enn36KggULZstrpGtW3g2Ny7nKMn1/RhhGjERm/UNMTU0xf/58DBkyhP1DiIj+3+XLlzF9+nRs3LgRarUaHh4e8PHxee8+qampCA8PzzBwREZGZktdSqUSJUuWzPAsh6urq0E/x5UmCoMO330fhhEjEBsbiy5duuDw4cOSdhcXF2zevBm1atWSqTIiw5FrETYyLidPnsT06dOxZ88eSXv79u1hYmICIQQiIyMzvKwSHh4OlUqVLXW4urpqBY7SpUvDy8srR1bwNXYMI7nchQsX0K5dOzx48EDS7uPjgy1btqBIkSIyVUZkOIZaR4NyH11CqBAC+/btQ0BAAE6ePJnh85w9exZVq1bFrVu3sm1mU2tr60wvq9jZ2WXLa+QXnA4+F/vzzz8xYMAAvH79WtLer18/BAYGwtLSsOPAieSw/2oEhq4N0xqGmBPraFDu8qEQmpaWhk2bNmH69Om4fPlyjtRgYmICLy+vDC+reHh48PL4B3BtGiOWlpaGr7/+GrNnz5a0m5qaYt68eRg6dCj/A1CekpSUhJiYGERHR0tukVFR+P3wZbx88QzqVy+gMLeCa/fpmv2yex0Nyj3eF0LVaSloY30be9YtRXh4eLa8npOTU4ZnOUqUKMGBAR+Ba9MYqdjYWHTt2hVBQUGSdmdnZ2zevBm1a9eWqTIi3aWlpeHp06cZBoyMbrqeNldYFJDcl2sdDcpZKrXA1F3XJUEkLT4GideOQiiAl+d2YkHic72f19LSEqVKlcrwLIe9vX32vQHSG8NILnLx4kW0bdtWq39ItWrVsHXrVvYPIdkIIRAXF4fo6GidAsbTp09zZJl0kZwIoUqFQintAGjodTQoZ4Xceya5NKNOTUbU+m+Q9iIiy89pamqKkJAQVKhQITtKpGzGMJJLrF+/Hv3799fqH9K3b18sWrSI/UMo271+/VoTHnQJGKmpqXKXDNNCrlAnv4LSWto50NDraFDOejtcCiHw7OAiSRAxLeSKgpWbo8kntjBJiMKdO3dw+/ZtxMXFZfqcaWlp6NmzJ86ePcvLLrkQw4jM0tLSMHHiRMyaNUvSbmpqirlz52LYsGHsH0I6SUtLQ2xsrM4BQ99lx7OblZUVXFxc4OzsDCcnJzg7O0tuT548wbo//8TlS5cAALbVO8K+bh/Jc8i1jgblLEm4VKVB/Tpe8njai0jEB29Cjd6rMap3BwBvQktsbKwmmNy+fVvy9/j4eFy6dAnff/89Zs6caci3QzpgGJHR06dP0aVLlwz7h2zatAl16tSRqTLKDYQQePHihSRAvC9gPH36VNZ6lUqlJExkFDDevhUoUCDD5zl16hS+//57ybpLJtaFUKh6Z8l2cq6jQTnLx8sBbnaWiIxLAkzN4NThe8Sd/BNxpzdotlEnvcTYfp2REj0d48ePh0KhgJOTE5ycnODn5yd5vvSgcvv2bYSHh+P169ewsrIy9Nui9+BoGplcunQJbdu2xf379yXtVatWxdatW+Hp6SlPYZSjXr16pRUiMgsYMTExsl8acXBw0DlcFCpUCCYmJll+rdDQUHz//fc4cOCA1mMjJs9EqGUVzjOSj6SPpgH+W8zt1a1gxO6ZDZEivZzdtWtXrFixItOAS/Lh0N5cbMOGDejXr59W/5A+ffpg8eLF7B9iRFJTUyWXRj4UMBITE2Wtt0CBAjqHC0dHR4PMFHnp0iVMnjwZO3fuzPDxChUq4MKFC4DChDOw5jMZzTNilxSFp9un4d8H0iG9n3/+ObZv3w4vLy9Dl0nvwTCSC6WlpWHSpEn49ddfJe2mpqaYM2cO/P392T9EZmq1WuvSyPsCxrNnz2St19TUVOdLI05OTrnqN8fr169jypQp2Lx583u3O3jwIBo3bmygqii3yWgG1oT4OPTo0UNryncHBwds3LgRjRo1kqlaehfDSC7z9OlTdO3aFX///bek3cnJCZs3b2b/kByUmJiYaT+LdwNGTEwM0tLSZK23cOHCel0aMbYAe/v2bUydOhV//vnnB4f/tmjRArt37zZQZWRM1Go1pkyZgp9++knSbmJighkzZmDcuHFG938jL2IYyUUuXbqEdu3a4d69e5J29g/JmtTU1Pd25Hz3sexa3jurChYsqPPZi8KFC+fZRbQSExMxevRo/PbbbzotRqZUKnHlyhWULVvWANWRsdq6dSt69+6tNTqsW7duWLFiBaytrWWqjACGkVwjs/4hvXv3xuLFi9mjG29+w3n+/Pl7h6G+HTCeP9d/5sXsZGZmptelEX4Y/ufJkyfYsGED1q1bh7CwsPduO3z4cCxYsMBAlZExu379Otq0aYM7d+5I2itWrIht27axH4mMGEZklpaWhm+++Qa//PKLpF2pVGLOnDkYPnx4nj2FKIR476WRdwNGTExMti3bnRUKhUKvSyN2dnZ59t/OUJKTk9G4cWOcOHEiw8ft7Oxw584dODo6GrgyMlYvXrzAl19+ib1790ra2Y9EXjm6Nk1gYCB++eUXREZGomLFiliwYAF8fHw+uN+GDRvQrVs3tGnTBtu3b8/KSxuFZ8+eoWvXrjh06JCk3cnJCZs2bULdunUl7VFRUXB2ds7VX3ApKSk6zdKZvs27Z4IMzcbGRudwUbhwYZiacsodQ3n9+jXat2+faRABgMmTJzOIkF4KFSqEnTt3YsqUKZg2bZqm/dmzZ2jatClmzpyJsWPH5urP2fxM7zMjGzduRK9evbBkyRL4+vpi7ty52LRpE/755x84Oztnut/9+/dRq1YtlChRAg4ODnqFEWM6M3L58mW0bdtWq3+It7c3tm7diqJFiwIAVCoVDh48iGXLluHVq1cZzq2Qk9RqNZ49e6bTImYxMTF48eKFQet7l7m5uV6XRnj5K3d6+fIlWrduLZnQDHhzdir9o6hkyZK4du0ap+ymLNu6dSt69eqlNZS+e/fuWL58OS+dGlCOXabx9fVFtWrVsHDhQgBvvtQ8PT0xYsQITJw4McN9VCoV6tSpg379+uHEiRN48eJFngwjGzduRL9+/bQ6TKaHNysrKzx+/BirVq3CypUr8fDhQwBvzhh16dLlo15bCIGXL1/qFC6io6MRGxsLtVr9Ua/5MRQKBRwdHXUOGLa2tvyNxsi9ePECX3zxBYKDgyXtX331FaKjo7FmzRoAb75I2rVrJ0eJlIdcu3YNbdu21epHUqlSJWzbtg3FixeXp7B8Jkcu06SkpOD8+fOYNGmSps3ExASNGjXS+oB52w8//ABnZ2f079//vadm0yUnJyM5OVlzPz4+/j1by+Ptse+Frc2wY8Wv+DWD/iGzZ8/G0KFDsW/fPixbtgz79u2ThIDChQujbdu2Gb5GcnKyzkuwR0dHS46ZHGxtbfUaNaJUKmWtlwzn6dOnaNKkiVan1f/973+aCc/WrFmDunXrZvr/gUgfn332GUJCQvDll19i3759mvaLFy+iatWq+Ouvv9CgQQMZK6S36RVGYmNjoVKp4OLiIml3cXHBzZs3M9zn5MmTWLlyJS5evKjz6wQEBGDq1Kn6lGZQb88KqHqdgNidM5F0/4JkG0dHRyxYsABXr15F8eLF8eTJkwyfq1ixYvjpp58yDBdyhzBzc3PNQma6XBrhzLGULiVNjT+C7+PBs1coJBKx6rsBuHbtqmSbGTNmYMKECQCAxo0bo0CBApg9ezbPgFG2sbe3x65du/D9998jICBA0/706VM0btwYv/zyC8aMGcOfuVwgR3vtJSQkoGfPnli+fLlendEmTZqEsWPHau7Hx8fnmrk40tdLEABSou8hZts0pL2IlGzj5eWFIkWKoHv37h+c1CksLOyDQxyzi4mJieTSyIc6dtrY2PA/KektYO91LD9xD2oBpMXHImrjt0h79q9kmwULFmD48OGa+9bW1vj9999RpUoVQ5dLeZxSqcTPP/+MKlWqoE+fPpp+JGq1GuPGjUNYWBiWLVvGfiQy0yuMODo6QqlUIioqStIeFRUFV1dXre3v3r2L+/fvo1WrVpq29EsUpqam+Oeff1CyZEmt/SwsLHJl5zWVWmDqrusQAERaCqI3TYHqpXQ6cIWpGe7du6fVgTWn2NnZ6XxpxMHBgZdGKEcF7L2Opcff/OynvohE9IZvkRb33+eFQqHA8uXL0b9/f61927dvb7A6Kf/p2LEjypQpg7Zt2+Lu3bua9nXr1uH69evYtm0bihUrJmOF+ZteYcTc3Bze3t4ICgrSXNdVq9UICgqS/JaTrkyZMrhy5Yqk7bvvvkNCQgLmzZuXa8526Crk3jPNgk0KU3M4NBuBmM3Sy0ki7eNWWbWwsNDr0khuDG2UP6WkqbH8xH8hPO7kOkkQgcIEji3HomfvvjJURwSUL18eoaGh6Natm2QE44ULFzT9SOrXry9jhfmX3pdpxo4di969e6Nq1arw8fHB3LlzkZiYiL5933zA9OrVCx4eHggICIClpSXKly8v2b9QoUIAoNVuDKITkiT3rUtWg12tL5FwbgcKft4E6tQkpETcgjr2AdJ0DCWmpqbYuXMnSpUqBWdnZxQsWJCXRsgo/RF8H+q3rko6NPFH6tN/kRJ5CzAxhVPrCbAuXQN/BN9H/9ol5CuU8jV7e3vs2bMH3333HaZPn65pj42NRePGjfHrr79i1KhR/Bw2ML3DSJcuXRATE4PJkycjMjISlSpVwv79+zWdWh8+fAgTE5NsLzQ3cLbR7qBpV6MLbCo2g7KgvaZtda9KsEp4jNDQUISEhCA0NDTTDr5paWnYvXs3AgMDc6xuIkN48Ew6pN3E3BKFm49E5LqvUOCz+rD0qpzhdkSGplQqERAQoOlHkj4dg0qlwpgxY3D+/HksW7aM8xUZEKeD14NKLVBrxmFExiUho4OmAOBqZ4mTXzeA0kSaquPi4nD+/HlNOAkJCcHjx4/f7KdQ4OzZs6hWrVrOvwmiHLLyRDh+3HNDqz0+bC+eH1oEhbk1ClZoiK/HjMS3X3Jqbsodrly5grZt2yI8PFzSXqVKFWzbtk0zUSVlDdemySHpo2kASAJJevRY3KMKmpV30+m5IiIiEBoaitDQUKjVavz00088NUhGKyVNjTLf75NcqgHeTMgXvfE7JD24pGlr3Lgx/P390bJlS3aqJtk9e/YM3bp1w8GDByXtjo6O2LRpE+rVqydPYXkAw0gOenuekXRudpaY0qqczkGEKC96ezTN29LiovFklT9EinTNomLFimHIkCHo378/nJycDFUmkRaVSoVvv/0WM2bMkLQrlUrMmjULI0eO5C+LWcAwksPenoHV2cYSPl4OWpdmiPKjt+cZSWeiACq+DMX2hRlPZmhhYYEuXbpg+PDhvFxJsvrrr7/Qt2/f9y7rQbpjGCEi2bw9A2sxB2v09CsOM6UCTZs21VrN+l3VqlXD8OHD0blzZ87qS7LQdcFT+jCGESLKdR4+fIjy5csjISHhg9s6OjpiwIABGDJkCCejIoPLrB+Jk5MTNm3ahLp168pUmXHR9fs7b47BJaJcqWjRopg9e7ZO28bGxmLevHmYNWuW1ilzopzm4OCAvXv3atZPShcTE4OGDRti/vz5H1zug3THMEJEBtW/f380bdr0vdu4uLggICAAjx8/xvz587luCMlCqVRixowZ2LBhg+RnUKVSYdSoUejbty+SkpLe8wykK4YRIjKo9PVp3nfKNjk5GVWqVIGDg4MBKyPKWJcuXXD69Gl4eXlJ2tesWYPatWvj0aNHMlWWdzCMEJHBeXp6Ys6cOZk+/uLFCzRv3hzz5s3jqXDKFSpWrIjQ0FA0btxY0n7u3Dl4e3vj+PHjMlWWNzCMEJEs+vbti+bNm0va3l74Ua1WY/To0Rg4cCBSUlIMXR6RlsKFC2Pv3r346quvJO3p/UgWLlzI8JxFDCNEJIv0yzV2dnYAgAIFCuDcuXP45JNPJNutXLkSDRs2RHR0tBxlEkmYmppi5syZWL9+vWTOkbS0NIwYMQL9+vVjP5IsYBghItl4eHhg7ty5AIDq1aujfPnyOHv2LBo1kq5dc/LkSfj4+ODSpUsZPAuR4XXt2hXBwcEoXry4pH316tWoU6eOZu0x0g3DCBHJqnfv3mjRogVq1KgB4M2Qyn379mHEiBGS7R48eICaNWti27ZtcpRJpKVixYo4d+4cGjZsKGkPDQ2Ft7c3Tpw4IVNlxodhhIhkpVAosGzZMkn/EVNTU8yfPx/Lli2Dqamppj0xMRHt27fHjz/+yGvzlCsULlwY+/fvx/jx4yXt0dHRaNCgAQIDA/mzqgPOwEpEudrx48fRoUMHxMbGSto7d+6M3377jXOQUK7x559/YsCAAXj9WrogZN++fbFo0aJ8ubwBZ2AlojyhTp06CA0NRYUKFSTtf/31F2rXrs1r85RrdO/eHadPn9ZavuC3335D3bp1+bP6HgwjRJTrFS9eHKdPn0abNm0k7WFhYahatSrOnDkjU2VEUpUqVcK5c+fQoEEDSXtISAi8vb1x8uRJmSrL3RhGiMgoFCxYEFu3bsW3334raY+KikLdunXx+++/y1QZkZSjoyMOHDiAsWPHStqjo6NRv359LFq0iP1I3sEwQkRGw8TEBD/99BPWr18vuf6ekpKC3r17Y8KECVCpVDJWSPSGqakpZs2ahXXr1kl+VtPS0uDv74+BAwciOTlZxgpzF4YRIjI6Xbt2xYkTJ+Dh4SFp/+WXX9C6dWvExcXJVBmRVGb9SFauXIm6devi33//lamy3IVhhIiMUtWqVREaGgpfX19J+969e+Hn54c7d+7IVBmRVOXKlTPsR3L27Fn2I/l/DCNEZLTc3Nxw9OhR9OzZU9J+48YN+Pj4ICgoSKbKiKTS+5GMGTNG0h4VFYX69etjyZIl+bofCcMIERk1S0tLrFmzBjNmzIBCodC0P3/+HE2bNuWkU5RrmJqaYvbs2fjjjz+0+pEMHToUgwYNyrf9SBhGiMjoKRQKTJgwATt37oSNjY2mXaVSYfjw4Rg6dChX/qVco0ePHjh16hSKFi0qaV+xYgXq1auHJ0+eyFSZfBhGiCjPaNmyJYKDg1GiRAlJ+9KlS9GkSROtWVyJ5FKlShWcO3cO9evXl7SfOXMG3t7eOH36tEyVyYNhhIjylM8++wwhISFaH/LHjh1DtWrVcOXKFZkqI5JycnLCwYMHMXr0aEl7ZGQk6tWrh6VLl8pTmAwYRogozylcuDAOHDgAf39/Sfv9+/dRo0YN7NixQ6bKiKRMTU0xZ84c/P7775J+JKmpqRgyZEi+6UfCMEJEeZKZmRkWLlyIxYsXS1b+ffnyJdq1a4eAgAB2bKVco2fPnjh58iQ8PT0l7cuXL0f9+vXzfD8ShhEiytOGDBmCQ4cOwcHBQdMmhMA333yDL7/8UmuFVSK5eHt74/z586hXr56kPTg4GN7e3ggODpanMANgGCGiPK9evXoIDQ3FZ599Jmlfv3496tSpw1kwKddI70cyatQoSXtkZCTq1q2LZcuWae0TGhqKW7duGarEHMEwQkT5QokSJXD69Gm0atVK0n7u3DlUq1YNISEhMlVGJGVmZoa5c+dizZo1sLCw0LSnpqZi8ODBGDx4sKQfSfrEf2lpaXKUmy0YRogo37C1tcX27dsxadIkSXtERATq1KmDdevWyVQZkbZevXrh1KlTWv1Ili1bhvr16yMiIgLAm2nlQ0JCEBAQIEeZ2YJhhIjyFRMTE/z8889Yu3at5LfO5ORk9OjRA5MmTYJarZaxQqL/eHt749y5c6hbt66k/e1+JGfPngUA/PDDDzh//rwcZX40hTCC7uTx8fGws7NDXFwcbG1t5S6HiPKIkJAQtG3bVvMbZrpWrVph7dq1/LyhXCM1NRXjxo3DggULJO1mZmZITU3V3C9btizOnz8PKysrQ5eYIV2/v3lmhIjyLR8fH4SGhqJq1aqS9l27dqFGjRoIDw+XqTIiKTMzM8yfPx+rV6/W6kfyths3buDbb781dHkfjWGEiPI1Dw8PHD9+HN27d5e0X7t2DT4+Pjh69Kg8hRFloHfv3jhx4gSKFCmS6TZz5szBkSNHDFjVx2MYIaJ8z8rKCmvXrkVAQIBk5d+nT5+icePGWLx4sYzVEf0nOTkZly5dkszWmpHevXsjLi7OQFV9PIYRIiK8Wfl34sSJ2L59OwoWLKhpT0tLw7Bhw+Dv7691SpzIUNRqNWbNmoXixYtj4MCBuHPnznu3f/TokdZcJbkZwwgR0Vtat26N4OBgFC9eXNK+aNEiNG3aFE+fPpWnMMrXTExM0K1bNwwbNkxrqG9m1qxZg23btuVwZdmDo2mIiDIQGxuLjh074tixY5L2EiVKYNeuXShXrpxMlVF+p1KpsG/fPixduhR79+5971B0R0dHXLlyBa6urgas8D8cTUNE9BEcHR1x8OBBDB48WNIeHh6O6tWrY/fu3TJVRvmdUqlEy5YtsWvXLty7dw/ff/893NzcMtw2NjYWgwYNghACKrVA8N2n2HHxXwTffQqVOveci+CZESKiD1i0aBFGjhwJlUqlaVMoFAgICMCECRMknV6J5JCamordu3dj6dKlOHDggNbjQyb+gN2hd4HPmkFpZQMAcLOzxJRW5dCsfMZBJjvo+v3NMEJEpIOgoCB06tQJz58/l7T36NEDy5cv/+DoBqLspFILhNx7huiEJDjbWMLHywFKkzehODw8HMuXL8eqVasQHR2t2cfMsSjc+y/S3E+P0It7VMmxQMIwQkSUze7cuYPWrVvjxo0bknYfHx9s374901PlRNlp/9UITN11HRFxSZq2d89yREZGYubMmVi0aJFmUT2ljSNcuk+HWaH/+o8oALjaWeLk1w00YSY7sc8IEVE2++STTxAcHIwvvvhC0h4SEoJq1arh3LlzMlVG+cX+qxEYujZMEkQAIDIuCUPXhmFtUBhGjRoFLy8vzJkzR7K6ryohFtEbv5fsJwBExCUh5N4zQ5SfKYYRIiI92NnZYefOnZgwYYKk/d9//0Xt2rWxYcMGmSqjvE6lFpi66zoyupyRGheNpwcC0atpdcyfPx9JSUkZbAWoXscjowsi0QkZb28oDCNERHpSKpWYMWMGfv/9d5ibm2vak5KS0K1bN3z77bdc+ZeyXci9Z4iIS4JQpUKV9BIAkPr8CWL3zsO/ywYi4eI+CFXmE/MpTC1gW6UloE7TeszZRt4+TwwjRERZ1LNnTxw7dkxrDoeff/4Z7du3R0JCgkyVUV6UfvYi6fF1PJ7XDU9+G4nnfy+DwtQMBT6rD4uiFaC0dYKJScZf7SItGUpbJyiUZpo2Bd70N/HxcjDEW8iUqayvTkRk5KpXr47Q0FC0adMGYWFhmvYdO3agZs2a2LFjB7y8vGSskPKK9LMXyQ8uAxBIjQ5HanQ4HNtMRIEytTTb/dHHG+5mibh37x7u3buHv89exu5Tl5AWF4W44L9gUaQczB2LakbTTGlVLkc6r+qDYYSI6CMVKVIEJ06cQL9+/bBx40ZN+5UrV+Dj44MtW7agTp06MlZIeYGPlwPc7CwR+fCKpN2yaAUA/42MqVHKBUoTBUqWLAkAGDhQOgJHiDeXEF0NMM+Irji0l4gomwgh8PPPP+O7776TtJuammLRokUYOHCgTJVRXrE95C7a+ZXR9PswcyoO934LdZoz5H1zk+QUDu0lIjIwhUKBb7/9Flu3bkWBAgU07WlpaRg0aBBGjhyJtDTtzoNEurJ+cVfSATX9rIirneUHJy9TmijgV7Iw2lTygF/JwrJfmnkbwwgRUTZr164dTp8+jWLFiknaFyxYgObNm+PZM3nndCDjdeTIEcl9/y/bYP3A6jj5dYNccbklqxhGiIhywOeff47Q0FDUrl1b0v7333/D19dXaxZXIl28HUYUCgW+6t0u153lyAqGESKiHOLk5IS///4bAwYMkLTfuXMH1atXx759+2SqjIxRQkKCZJbfihUrwsFB3iG52YVhhIgoB5mbm2PZsmWYP38+lEqlpj0+Ph4tW7bErFmzMpwRk+hdJ06ckKwcXb9+fRmryV5ZCiOBgYEoXrw4LC0t4evri5CQkEy3Xb58OWrXrg17e3vY29ujUaNG792eiCivUSgUGDFiBPbt24dChQpp2tVqNcaPH4++fftK1hAhysi7/UXydRjZuHEjxo4diylTpiAsLAwVK1ZE06ZNJcsUv+3o0aPo1q0bjhw5guDgYHh6eqJJkyb4999/P7p4IiJj0rhxY5w9exalS5eWtK9Zswb169dHZGSkTJWRMXg7jJiYmOSpuWv0nmfE19cX1apVw8KFCwG8Sfaenp4YMWIEJk6c+MH9VSoV7O3tsXDhQvTq1Uun1+Q8I0SUl8TFxaFr167Yv3+/pL1IkSLYsWMHqlSpIlNllFu9ePEChQsX1qx5VLVqVYSGhspc1YflyDwjKSkpOH/+PBo1avTfE5iYoFGjRggODtbpOV69eoXU1NT3drpJTk5GfHy85EZElFfY2dlh9+7dGDdunKT98ePHqFWrFjZt2iRTZZRbHT9+XLL4Yl66RAPoGUZiY2OhUqng4uIiaXdxcdH59OLXX38Nd3d3SaB5V0BAAOzs7DQ3T09PfcokIsr1lEolfv31V/z222+SlX9fv36Nzp07Y8qUKVz5lzTycn8RwMCjaaZPn44NGzZg27ZtsLTMfLniSZMmIS4uTnN79OiRAaskIjKcPn364MiRI3B2dpa0//DDD+jUqRMSExNlqoxyk7fDiFKpRK1atd6ztfHRK4w4OjpCqVQiKipK0h4VFaW1hPa7fv31V0yfPh0HDx7E559//t5tLSwsYGtrK7kREeVVNWrUQGhoKCpVqiRp37p1K2rWrIkHDx7IUxjlCk+fPsWlS5c096tVqwYbGxsZK8p+eoURc3NzeHt7IygoSNOmVqsRFBQEPz+/TPebOXMmfvzxR+zfvx9Vq1bNerVERHlU0aJFcfLkSXTq1EnSfunSJVSrVg0nT56UqTKS27FjxyT389olGiALl2nGjh2L5cuXY82aNbhx4waGDh2KxMRE9O3bFwDQq1cvTJo0SbP9jBkz8P3332PVqlUoXrw4IiMjERkZiZcvX2bfuyAiygMKFCiAjRs3YurUqZL2mJgYNGjQACtXrpSpMpLT0aNHJfcZRgB06dIFv/76KyZPnoxKlSrh4sWL2L9/v6ZT68OHDxEREaHZfvHixUhJSUHHjh3h5uamuf3666/Z9y6IiPIIhUKByZMnY/PmzbC2tta0p6amYsCAARgzZgxX/s1n3u4vYmZmhpo1a8pYTc7Qe54ROXCeESLKjy5evIjWrVtrdeJv0qQJNm7cKJnNlfKmmJgYSefmWrVq4cSJEzJWpJ8cmWeEiIgMp1KlSggNDUWNGjUk7QcPHoSvry/++ecfmSojQ8kPl2gAhhEiolzNxcUFhw8fRr9+/STtt27dgq+vLw4ePChTZWQIeX1+kXQMI0REuZyFhQVWrFiBOXPmwMTkv4/tuLg4NG/eHHPnzuXKv3nU22HEwsLivSNXjRnDCBGREVAoFBg9ejT27t0LOzs7TbtarcaYMWMwYMAArvybx0RERODmzZua+35+fu+dMNSYMYwQERmRpk2b4uzZs/j0008l7atWrULDhg0zXUGdjE9+6S8CMIwQERmd0qVL4+zZs2jcuLGk/dSpU6hWrRouXrwoT2GUrfJLfxGAYYSIyCjZ29tj7969GD16tKT94cOHqFmzJrZu3SpPYZRt3g4jVlZW8PHxkbGanMUwQkRkpExNTTFnzhysXLkSZmZmmvZXr16hQ4cO+OGHH9ix1Ug9fvwYd+7c0dyvWbMmLCwsZKwoZzGMEBEZuX79+uHw4cNwcnKStE+ZMgVdunThyr9G6N1LNPXq1ZOnEANhGCEiygNq1aqF0NBQVKxYUdK+adMm1K5dW2sWV8rd8lN/EYBhhIgozyhWrBhOnjyJdu3aSdovXLiAatWqITg4WKbKSF9vh5ECBQqgWrVqMlaT8xhGiIjykIIFC2Lz5s2YPHmypD0qKgr16tXDmjVrZKqM3ufGjRuav9+/fx/379/X3K9Vq5akT1BexDBCRJTHmJiYYOrUqfjrr79gZWWlaU9JSUGfPn0wfvx4qFQqGSvMOSq1QPDdp9hx8V8E330Kldo4OvC2bNkSu3fvBpD/LtEAgKncBRARUc7o1KkTSpYsiTZt2uDx48ea9lmzZuHatWvYsGGDZDZXY7f/agSm7rqOiLgkTZubnSWmtCqHZuXdZKzsw4QQaNOmDebNm4eQkBDJY/khjCiEEYz70nUJYiIi0hYZGYl27drhzJkzkvYyZcpg586dWrO5GqP9VyMwdG0Y3v1CU/z/n4t7VMnVgaRChQq4evUqgDdDttPS0gAANjY2CA8PR1hYGM6cOYPChQvD399fzlL1ouv3Ny/TEBHlca6urjhy5Ah69eolab958yZ8fX3x999/y1RZ9lCpBabuug4BIC0+VjK3Svrfpu66nqsv2RQsWFDz9/QgAgCJiYlwcnJC06ZNERAQgC+++EKO8nIcwwgRUT5gaWmJ1atX49dff5Ws/Pv8+XM0a9YMCxYsMNoJ0kLuPcOT54mID92BJysG4+WlA5LHBYCIuCSE3HsmT4E6KFCgQIbtarVa8/eJEyfCy8vLUCUZFPuMEBHlEwqFAuPGjUO5cuXQtWtXxMfHAwBUKhVGjhyJK1euYOHChTA3N5e5Uv2cv3QFUeu+RvKTNyvcPj+yCupXcXh97zwABaB4c7Fm4N8F4WTzZtVbhUIBxf+3v+/vjo6OWLJkieTMRU7ILIykK1GiBCZMmJCjNciJYYSIKJ9p3rw5zpw5g9atW0umHF++fDlu3ryJLVu2aM3mmhulpqZi5syZmDr1B6SmpmjaRcorpMQ+gG21tnh6cBHUiS8AANf0nPfNxsYGhw8fzvEgAnw4jMybN08yMiqv4WUaIqJ8qGzZsjh79iwaNmwoaT9x4gSqVauGy5cvy1SZbi5cuAAfHx989913kiACAFYlq8G+Xj9Yl6oB9/6LUKBcPb2f38rKCnv27EHVqlWzqeL3e18YadWqFVq2bGmQOuTCMEJElE85ODhg3759GDFihKT9wYMHqFGjBrZv3y5PYe+RlJSEb775BtWqVcPFixclj5lY2cKx5Tg4dZgMU1tHAICplS2cWo3H5Hmr4OrqqvPrlCxZEuHh4YiJicnO8jOVWRixsLDA3LlzDVKDnBhGiIjyMTMzM8yfPx/Lli2Dqel/V+4TExPRrl07TJs2zaAdW9/usPmu06dPo3LlyggICNCatK1z585Yt+8kPqnRXNPnAwBc7SyxuEcVTB3ZF9euXdMaUZSZq1evok+fPnB1dUWtWrUwc+ZM3LhxI8eORWZhZOLEiShRokSOvGauIoxAXFycACDi4uLkLoWIKM86duyYcHR0FHgzAEVz69q1q0hMTMzx13/y5ImYMmWKVvvLly/FyJEjhUKh0KrN1dVVbNu2TbNtmkotTt+JFdsvPBan78SKNJVa6/l27dol3N3dtZ5Ll9snn3wixowZI44cOSJSUlKy7b1PmzZN67W8vLzEq1evsu015KDr9zfDCBERaYSHh4sKFSpofTF6e3uLx48f59jrJiYmimrVqonGjRtL2g8dOiSKFy+eYTDo27evePbsWZZe79mzZ6JPnz4ZPq+ZmZlOwaRQoUKie/fuYv369eL58+cf9f7nzp2r9fw7d+78qOfMDRhGiIgoS+Lj40WbNm0yPAtx5syZbH89lUolOnbsKACI0qVLCyGEeP78uejfv3+GIaBYsWLiwIED2fLae/fuFR4eHpLnDwgIEGfOnBHffPONKF++vE7BxNTUVDRo0EDMnTtX3L17V+86li9fLnm+Fi1aZMv7kxvDCBERZZlKpRLffvut1peuhYWF+OOPP7L1tb777jvN81tZWYmdO3dmeBlFoVCIESNGiISEhGx9/RcvXkiCT8+ePSWPh4eHi3nz5olGjRoJU1NTncLJZ599JiZOnChOnz4t0tLSPljDn3/+KTnGd+7cydb3KBeGESIi+mjr168XlpaWWl+2EyZM0OlL9kN+//13nb7cS5UqJU6cOJEN7yhz+/fvF0WKFBGVK1fOdJsXL16IjRs3ii+//FLY29vrVLuTk5Po27ev2Lp1a4ZBKk2lFjOW/KHZ/rvvv8/Jt2lQDCNERJQtQkNDMzxT0aJFi4/6XD5x4oQwNzd/7xe5UqkUX3/9tcE6csbFxYmRI0fqFLRSU1PF0aNHxbhx48Snn36qUzCxsLAQzZs3F4sXLxaPHj0S+648EdV//ls4d/npzfu1cxE+U/eIfVeeGODd5jxdv7+5ai8REX1QREQE2rZtq7W8fbly5bBz506ULFlSr+cLDw+Hr68vYmNjM93m888/x6pVq+Dt7Z2lmg3tn3/+wc6dO7Fr1y6cOnXqvcOU05m7lITVJz4wtXXB031z4dT+exT41BdA7l9pWBdctZeIiLKNm5sbjh07hh49ekjar1+/Dh8fHxw+fFjn54qLi0PLli3fG0QAoFKlSvD09MxSvXIoXbo0vvrqKxw/fhxRUVH4/fff0bFjR9jY2GS6T0rUXcSdWo+n++bC3PUTWH3iYzQrDWcnhhEiItKJpaUlfv/9d8yYMUMysdizZ8/QpEkTLFq06IPPkZaWhs6dO+PGjRsf3Pb3339HqVKlMHfuXKSmpn5U7Ybm6OiInj17YtOmTYiJicGBAwcwfPhwFC1aNMPtFabmcPhilOa4CuT+lYazE8MIERHpTKFQYMKECdi5c6fkN36VSgV/f38MHTr0vcFh9OjROHjwoM6vV7hwYdy7dw+3b9/+qLrlZGFhgSZNmmDBggW4f/8+Ll26hO7DvoK5WynNNpbFK8HCyUtr3+iEJEOWKhv2GSEioiy5du0aWrdujfDwcEl7vXr1sGHjXwhPMEF0QhKcbSzh4+WARYELMXLkyPc+p6mpKWrXro0WLVqgRYsWKF26tOQsTF4RfPcpui0/g7SXz/D6bihMbZ1g5VVFa7v1A6vDr2RhGSrMHrp+fzOMEBFRlj19+hSdOnXCkSNHJO0W9q5waPc9zJ2KAQAsIy/j9h/fZdip08nJCc2bN0fLli3RpEkT2NnZGaR2OanUArVmHEZkXBIy+hJW4M26Oie/bgClifGGMYYRIiIyiNTUVIwePVqrz4jC3AqOrcbD1M4FkWu/gkh5rXmscuXKaNGiBVq2bImqVatCqVQaumzZ7b8agaFrwwBAEkjSo0d+Gk3DMEJERNkiMHARRowcCaH+b0VdE+tCgNIMIikelsUqwbVCDRydNxZFPYvIV2gusv9qBKbuuo6IuP/6hrjZWWJKq3JGH0QA3b+/TTN9hIiISA9VmnWBc+c4xGwPgDopAVCawqbyF7BwLw3LohWgMDWHGsC/KVbIeExJ/tOsvBsal3NFyL1nkv41xnxpJisYRoiIKFtEJyTBstjncO09BzFbfoCtTwcUrNAww+3oP0oThVF3Us0ODCNERJQtnG0sAQBmhVzh1nseFKZm792OKB3nGSEiomzh4+UANztLKIAMg4gCb/pD+Hg5GLw2yt0YRoiIKFsoTRSY0qocgP9GhKRLvz+lVbl81x+CPoxhhIiIsk2z8m5Y3KMKXO2kl2Jc7SzzxFBVyhnsM0JERNmKI0RIXwwjRESU7ThChPTByzREREQkK4YRIiIikhXDCBEREcmKYYSIiIhkxTBCREREsmIYISIiIlkxjBAREZGsGEaIiIhIVgwjREREJCuGESIiIpIVwwgRERHJimGEiIiIZJWlMBIYGIjixYvD0tISvr6+CAkJee/2mzZtQpkyZWBpaYkKFSpg7969WSqWiIiI8h69w8jGjRsxduxYTJkyBWFhYahYsSKaNm2K6OjoDLc/ffo0unXrhv79++PChQto27Yt2rZti6tXr3508URERGT8FEIIoc8Ovr6+qFatGhYuXAgAUKvV8PT0xIgRIzBx4kSt7bt06YLExETs3r1b01a9enVUqlQJS5Ys0ek14+PjYWdnh7i4ONja2upTLhEREclE1+9vvc6MpKSk4Pz582jUqNF/T2BigkaNGiE4ODjDfYKDgyXbA0DTpk0z3R4AkpOTER8fL7kRERFR3qRXGImNjYVKpYKLi4uk3cXFBZGRkRnuExkZqdf2ABAQEAA7OzvNzdPTU58yiYiIyIjkytE0kyZNQlxcnOb26NEjuUsiIiKiHGKqz8aOjo5QKpWIioqStEdFRcHV1TXDfVxdXfXaHgAsLCxgYWGhT2lERERkpPQ6M2Jubg5vb28EBQVp2tRqNYKCguDn55fhPn5+fpLtAeDQoUOZbk9ERET5i15nRgBg7Nix6N27N6pWrQofHx/MnTsXiYmJ6Nu3LwCgV69e8PDwQEBAAABg1KhRqFu3LmbNmoUWLVpgw4YNOHfuHJYtW5a974SIiIiMkt5hpEuXLoiJicHkyZMRGRmJSpUqYf/+/ZpOqg8fPoSJyX8nXGrUqIE///wT3333Hb755ht8+umn2L59O8qXL59974KIiIiMlt7zjMiB84wQEREZnxyZZ4SIiIgouzGMEBERkawYRoiIiEhWDCNEREQkK4YRIiIikhXDCBEREcmKYYSIiIhkxTBCREREsmIYISIiIlnpPR28HNIniY2Pj5e5EiIiItJV+vf2hyZ7N4owkpCQAADw9PSUuRIiIiLSV0JCAuzs7DJ93CjWplGr1Xjy5AlsbGygUCiy7Xnj4+Ph6emJR48ecc2bHMTjbDg81obB42wYPM6GkZPHWQiBhIQEuLu7SxbRfZdRnBkxMTFBkSJFcuz5bW1t+YNuADzOhsNjbRg8zobB42wYOXWc33dGJB07sBIREZGsGEaIiIhIVvk6jFhYWGDKlCmwsLCQu5Q8jcfZcHisDYPH2TB4nA0jNxxno+jASkRERHlXvj4zQkRERPJjGCEiIiJZMYwQERGRrBhGiIiISFZ5PowEBgaiePHisLS0hK+vL0JCQt67/aZNm1CmTBlYWlqiQoUK2Lt3r4EqNW76HOfly5ejdu3asLe3h729PRo1avTBfxf6j74/0+k2bNgAhUKBtm3b5myBeYS+x/nFixfw9/eHm5sbLCwsUKpUKX5+6EDf4zx37lyULl0aVlZW8PT0xJgxY5CUlGSgao3T8ePH0apVK7i7u0OhUGD79u0f3Ofo0aOoUqUKLCws8Mknn2D16tU5W6TIwzZs2CDMzc3FqlWrxLVr18TAgQNFoUKFRFRUVIbbnzp1SiiVSjFz5kxx/fp18d133wkzMzNx5coVA1duXPQ9zt27dxeBgYHiwoUL4saNG6JPnz7Czs5OPH782MCVGx99j3W6e/fuCQ8PD1G7dm3Rpk0bwxRrxPQ9zsnJyaJq1ariiy++ECdPnhT37t0TR48eFRcvXjRw5cZF3+O8bt06YWFhIdatWyfu3bsnDhw4INzc3MSYMWMMXLlx2bt3r/j222/F1q1bBQCxbdu2924fHh4urK2txdixY8X169fFggULhFKpFPv378+xGvN0GPHx8RH+/v6a+yqVSri7u4uAgIAMt+/cubNo0aKFpM3X11cMHjw4R+s0dvoe53elpaUJGxsbsWbNmpwqMc/IyrFOS0sTNWrUECtWrBC9e/dmGNGBvsd58eLFokSJEiIlJcVQJeYJ+h5nf39/0aBBA0nb2LFjRc2aNXO0zrxElzAyYcIE8dlnn0naunTpIpo2bZpjdeXZyzQpKSk4f/48GjVqpGkzMTFBo0aNEBwcnOE+wcHBku0BoGnTppluT1k7zu969eoVUlNT4eDgkFNl5glZPdY//PADnJ2d0b9/f0OUafSycpx37twJPz8/+Pv7w8XFBeXLl8fPP/8MlUplqLKNTlaOc40aNXD+/HnNpZzw8HDs3bsXX3zxhUFqzi/k+C40ioXysiI2NhYqlQouLi6SdhcXF9y8eTPDfSIjIzPcPjIyMsfqNHZZOc7v+vrrr+Hu7q71w09SWTnWJ0+exMqVK3Hx4kUDVJg3ZOU4h4eH4/Dhw/jyyy+xd+9e3LlzB8OGDUNqaiqmTJliiLKNTlaOc/fu3REbG4tatWpBCIG0tDQMGTIE33zzjSFKzjcy+y6Mj4/H69evYWVlle2vmWfPjJBxmD59OjZs2IBt27bB0tJS7nLylISEBPTs2RPLly+Ho6Oj3OXkaWq1Gs7Ozli2bBm8vb3RpUsXfPvtt1iyZIncpeUpR48exc8//4xFixYhLCwMW7duxZ49e/Djjz/KXRp9pDx7ZsTR0RFKpRJRUVGS9qioKLi6uma4j6urq17bU9aOc7pff/0V06dPx99//43PP/88J8vME/Q91nfv3sX9+/fRqlUrTZtarQYAmJqa4p9//kHJkiVztmgjlJWfaTc3N5iZmUGpVGraypYti8jISKSkpMDc3DxHazZGWTnO33//PXr27IkBAwYAACpUqIDExEQMGjQI3377LUxM+Pt1dsjsu9DW1jZHzooAefjMiLm5Oby9vREUFKRpU6vVCAoKgp+fX4b7+Pn5SbYHgEOHDmW6PWXtOAPAzJkz8eOPP2L//v2oWrWqIUo1evoe6zJlyuDKlSu4ePGi5ta6dWvUr18fFy9ehKenpyHLNxpZ+ZmuWbMm7ty5owl7AHDr1i24ubkxiGQiK8f51atXWoEjPQAKLrOWbWT5LsyxrrG5wIYNG4SFhYVYvXq1uH79uhg0aJAoVKiQiIyMFEII0bNnTzFx4kTN9qdOnRKmpqbi119/FTdu3BBTpkzh0F4d6Hucp0+fLszNzcXmzZtFRESE5paQkCDXWzAa+h7rd3E0jW70Pc4PHz4UNjY2Yvjw4eKff/4Ru3fvFs7OzuKnn36S6y0YBX2P85QpU4SNjY1Yv369CA8PFwcPHhQlS5YUnTt3lustGIWEhARx4cIFceHCBQFAzJ49W1y4cEE8ePBACCHExIkTRc+ePTXbpw/t/eqrr8SNGzdEYGAgh/Z+rAULFoiiRYsKc3Nz4ePjI86cOaN5rG7duqJ3796S7f/66y9RqlQpYW5uLj777DOxZ88eA1dsnPQ5zsWKFRMAtG5TpkwxfOFGSN+f6bcxjOhO3+N8+vRp4evrKywsLESJEiXEtGnTRFpamoGrNj76HOfU1FTxv//9T5QsWVJYWloKT09PMWzYMPH8+XPDF25Ejhw5kuFnbvqx7d27t6hbt67WPpUqVRLm5uaiRIkS4rfffsvRGhVC8NwWERERySfP9hkhIiIi48AwQkRERLJiGCEiIiJZMYwQERGRrBhGiIiISFYMI0RERCQrhhEiIiKSFcMIERERyYphhIiIiGTFMEJERESyYhghIiIiWTGMEBERkaz+D6KwLgJONe05AAAAAElFTkSuQmCC", + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAiMAAAGdCAYAAADAAnMpAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjcuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/bCgiHAAAACXBIWXMAAA9hAAAPYQGoP6dpAAB9NElEQVR4nO3dd1hT1xsH8G8SNgKCyBQXbnEgCoLiRMGtddviqBNRq9RdBUfdo26te1esVevEWZwgCuLe4GaIKHsm9/cHP65ewwqS3Iz38zx52nPuyJsIycu97zlHwDAMA0IIIYQQngj5DoAQQgghmo2SEUIIIYTwipIRQgghhPCKkhFCCCGE8IqSEUIIIYTwipIRQgghhPCKkhFCCCGE8IqSEUIIIYTwSovvAEpCIpHg/fv3MDIygkAg4DscQgghhJQAwzBISUmBjY0NhMLCr3+oRDLy/v172NnZ8R0GIYQQQkrhzZs3qFSpUqHbVSIZMTIyApD3YoyNjXmOhhBCCCElkZycDDs7O/Z7vDAqkYzk35oxNjamZIQQQghRMcWVWFABKyGEEEJ4RckIIYQQQnhFyQghhBBCeEXJCCGEEEJ4RckIIYQQQnhFyQghhBBCeEXJCCGEEEJ4RckIIYQQQnhFyQghhBBCeCVzMnL58mV069YNNjY2EAgEOHr0aLHHBAcHo0mTJtDV1UWNGjWwc+fOUoRKCCGEEHUkczKSlpaGRo0aYf369SXaPzo6Gl26dEHbtm0RGRmJiRMnYsSIEThz5ozMwRJCCCFE/ci8Nk2nTp3QqVOnEu+/adMmVKtWDStWrAAA1K1bF1evXsUff/wBT09PWZ+eEEIIIWpG7jUjISEh8PDw4PR5enoiJCSk0GOysrKQnJzMeRBCCCFEPck9GYmNjYWlpSWnz9LSEsnJycjIyCjwmEWLFsHExIR92NnZyTtMQgghhPBEKUfTzJgxA0lJSezjzZs3fIdECCGEEDmRuWZEVlZWVoiLi+P0xcXFwdjYGPr6+gUeo6urC11dXXmHRgghhBAlIPcrI66urrhw4QKn79y5c3B1dZX3UxNCCCFEBcicjKSmpiIyMhKRkZEA8obuRkZG4vXr1wDybrEMHjyY3X/MmDGIiorC1KlT8fjxY2zYsAEHDx7EpEmTyuYVEEIIIUSlyZyM3Lp1C46OjnB0dAQA+Pn5wdHREf7+/gCAmJgYNjEBgGrVquHkyZM4d+4cGjVqhBUrVmDr1q00rJcQQgghAAABwzAM30EUJzk5GSYmJkhKSoKxsTHf4RBCCCGkBEr6/a2Uo2kIIYQQojkoGSGEEEIIr+Q+tJcQojnEEgZh0YmIT8mEhZEenKuZQSQU8B0WIUTJUTJCCCkTQfdjMPf4Q8QkZbJ91iZ6COhWD14O1jxGRghRdnSbhhDy3YLux8BnbwTexSVAkv1lmYfYpEz47I1A0P0YHqMjhCg7ujJCCCkVhmHw/PlzXL16DdM3HsKn6PvISXiNCl0mopxD+7x9AAgAzD3+EB3qWdEtG0JIgSgZIYSUSEZGBsLDw3H9+nX28eHDB6n9Ml/dhWH9thAI8i68MgBikjIRFp0IV/sKCo6aEKIKKBkhhBQoJiaGTTquXbuGiIgI5OTkFHtc1vsnSDi6GBW6TIJQ58v6U/EpmUUcRQjRZJSMEEKQm5uL+/fvs4nH9evX8fLlS9lOItKGrlVN6Faqh4xXdxC7dwoq/jAL2uWtAAAWRnplHzghRC1QMkKIBvr8+TNu3LjBJh43btxAamqqTOewtLREixYt4Ormhp3PdZBqaAdoaQMAhCEH8fnybsTumoSKPaejWkMXOFczk8dLIYSoAUpGCFFzDMPgxYsXnKseDx48gCwrQQiFQjRo0AAtWrSAm5sb3NzcULVqVQgEeQWpDv8fTQPk1YgY1HLF58u7IclMQVzgbPSqOhdCQTt5vDxC1JYmzdtDyQghaiYzMxO3bt0qttC0KMbGxnB1dWUTD2dn5yLXlfBysMbGn5qw84xoV7CDllkl5Ca+BRgJNi2ejez4aGzYsAG6urrf+xIJUXuaNm8PLZRHiIr7utD0+vXrCA8PL1Gh6ddq1KjBJh5ubm6oV68eRCKRzLF8/ZfcP5uWYc+fqznbXV1d8c8//8DaWv0+TAkpK/nz9nz75Zx/TWTjT01UJiEp6fc3JSOEqBCxWIx79+5xko/o6GiZzqGrq4umTZuyiYerqyssLS3LPNawsDC4uLhI9dva2uLIkSNo1qxZmT8nIapOLGHQcslFvE9MQXbsC+ja1uFsFwCwMtHD1WntVOKWTUm/v+k2DSFKLCkpCaGhoWziERoaWupC0/zko0mTJgq5VdK0aVPY2Njg/fv3nP53797B3d0dW7duxU8//ST3OAhRJWHRiXjz5jU+HF2CnA8vYeW9HDoW1djt6jpvDyUjhCiJrwtN84tNS1to6ubmxiYgXxeaKpJQKETPnj2xYcMGqW1ZWVnw9vbGnTt3sHjx4lLdEiJEHZ0+fQoxO36BJDMFABB/MAA2IzdBqGvA2U/d5u2hZIQQnmRmZrIzmuaPcilNoWnz5s3ZxKO4QlNFKywZybd8+XLcvXsXBw4cgKmpqQIjI0S5iMVizJkzB7///ju3Py0R6U+uolzDjpx+dZu3h5IRQhQkJiYGISEhbOJRmkJTe3t7zi2X0haaKkqbNm3Y+8WFOXv2LJydnXHs2DHUrVtXgdERohzi4uIwaNAgXLx48ZstAmiZ2XISkfyaEXWbt4eSEULkQCwW4/79+2ziUZpCUx0dHTRr1kzuhabypK2tja5du2Lfvn1F7vf8+XO4urri9OnTcHV1VVB0hPDvypUr6N+/P2JiuCtbi8pVgDj1I/DVmJr8m60B3eqpRPGqLCgZIaQMqHKhqbz16tWr0GSkdu3aWLVqFapXr44qVaqoxeslpCQYhsHy5csxY8YMiMVizrYBAwbgvyvXEZf6EeLUT2y/lRrPM0LJCCEy+rbQ9Pr167h//75MhaYCgQANGzbkzO1RrVo1XgpN5c3T0xO6urrIysqS2vbkyRPk5OSgVq1aPERGCD8+ffqEoUOH4tixY5x+HR0drF69GhKJBAcOHAAAMNnpWNqjNuwsTGkGVkI02deFpvmP+Ph4mc5hZGTEmdHUxcVFqQpN5alcuXLo2LEjjh8/DgCoVasWnj59ym4fOXIkHjx4gAoV1GeYIiGFCQ8PR9++faVu21atWhWHDh1CnTp1UKNGDc62ZlYiVKum3r8flIwQ8o3Y2FipGU2zs7NlOoe9vT3nqkf9+vWVutBU3nr27Injx4+jUqVKuHHjBlq1aoV79+4ByCveGzduHP766y+eoyREfhiGwebNmzFhwgSpz5Nu3bph165dMDU1xaJFixAbG8vZHhsbi2rVqkGdUTJCNFp+oenXc3uUptD06xlN3dzcVK7QVN66desGoVCIRYsWoXz58ti9ezeaNWuG3NxcAMCBAwfQq1cv9OvXj+dICSl7aWlpGDNmDPbu3cvpF4lEWLhwISZPngyhUIjExEQsWbJE6vhvkxN1RMkI0ShJSUm4ceMGm3jcuHEDKSkpMp3D0tKSM6mYuhSaylPFihXh5+eHQYMGAQAaN26MgIAAzJ49m91n7NixaNWqFaysrPgKk5Ay9+jRI/Tp0wcPHz7k9FtZWSEwMBCtWrVi+xYvXlzgMPhvR9qoI1qbhqgthmEQFRXFmVSsNIWmDRo04IxyUddCU3mTSCQQCoVsOzc3F66urrh16xbb1717dxw9epTeX6IW/vrrL4wcORJpaWmc/rZt22L//v2cxPvt27eoWbMmMjOlZ1adPXs25s2bJ/d45YHWpiEahwpNldvXiQgAaGlpYdeuXWjSpAk70ubYsWPYs2cPBg8ezEeIhJSJrKws+Pn5FTj78MyZMzF37lxoaXG/fufNm1dgIgLQbRpClBoVmqq+evXqYcGCBZg8eTLbN2HCBLRt2xZ2dnY8RkZI6bx8+RJ9+/blXPEDADMzM+zZswedO3eWOubJkyfYvn17oeekZIQQJfFtoen169cRFRUl0zm+LTR1dXWl+gQlMHHiRBw5cgTXrl0DkFfXM3z4cJw5c4Zu1xCVcuLECQwePBifPn3i9Ds7O+PgwYOoUqVKgcfNmjVLauKzr2lCMkI1I0QpfV1omj+jqayFphYWFpxaDycnJyo0VVLPnz9Ho0aNkJ6ezvZt3LgRY8aM4TEqQkomNzcXs2fPxuLFi6W2jR8/HsuXL4eOjk6Bx968eRPOzs5Fnt/Ozg6vX78uk1gVraTf35SMEN59XWiaX2xa2kLT/MSjRYsWVGiqYjZs2ABfX1+2bWhoiLt376J69eo8RkVI0WJiYjBw4EBcunSJ01+uXDls3boV/fv3L/L4Dh064Pz580Xuo62tjaysLJX8PKNkhCitzMxMREREcEa5lKbQtHnz5mziQYWmqk8ikcDT05Pzwezu7o7g4GCp4ldClEFwcDAGDBiAuLg4Tn/9+vXxzz//oHbt2kUef+HCBYwbNw4dO3ZEx44dsXr1apw7d47drqenxxa1fvz4EWZmqrdSLyUjRGnExsYiJCSETTxKU2havXp1ztweVGiqnl6/fo0GDRogOTmZ7Vu5ciUmTZrEY1SEcEkkEixZsgSzZs2CRCLhbPP29sbGjRthaGhY7HkyMzOhp6fHtitXrow3b94AyJub57///sMPP/yAp0+f4sGDB6hXr17ZvhAFoKG9hBdisRgPHjxgE4/SFpo6OTmxiQcVmmqOypUrY9WqVfj555/ZvhkzZqBTp06oU6cOj5ERkicxMRGDBw/GyZMnOf26urpYu3YtRowYUeLbKV8nIvHx8WwiAgBOTk6oX78+bt68iaFDhyI2NlYlk5GSomSEfJfk5GTcuHGDTT7KotC0SZMmnF9SolmGDh2Kw4cP48SJEwDy5mwYMmQIrl27JjU3AyGKdPPmTfTt2xevXr3i9Nvb2+Pvv/+Go6Njqc8dHh7OaTdt2hQAYGxsjH/++afAmVnVCf1mkxJjGAbR0dGcqx737t37rkJTNzc3VK9eXSULs4h8CAQCbN68GQ4ODkhMTAQAhIWFYenSpZg5cybP0RFNxDAMNmzYgEmTJiEnJ4ezrWfPntixYwfKly//Xc/xbTLi5OTE/r9AIPju8ys7SkZIobKysqRmNP22UKs4Xxea5s9oamJiIqeIibqwtrbG+vXrMXDgQLZvzpw56NKlCxo1asRjZETTpKSkYNSoUThw4ACnXyQSYenSpZg0aVKZ/DFVVDKiCaiAlbDi4uI4icetW7dKXWiaX2xKhaaktBiGQf/+/fH333+zfY0aNUJYWFihczYQUpYePHiA3r1748mTJ5x+GxsbBAYGomXLlmX2XHZ2dnj79i2AvOLVuLg4tbhiTAWsGiIuLg7z58/HsmXLoK+vX+Lj8gtNv04+Xrx4IdNz5xea5iceVGhKypJAIMCGDRtw6dIlduj3nTt3MH/+fMyfP5/n6Ii627NnD8aMGcOZiA8APDw8sG/fPlhYWJTZc8XHx7OJCJBXL6IOiYgsKBlRUZmZmVi9ejUWLFiAevXqFZuI5Bea5s/tUdpC06+H11KhKZE3c3NzbNmyBT169GD7Fi1ahG7duhU7ayUhpZGZmYlffvkFmzdv5vQLBALMnj0b/v7+ZX61V9Nv0QCUjKgchmFw6NAhTJ06FS9fvgQAtG7dWmqf6OhozqRipSk0dXBw4IxyoUJTwofu3btj8ODB2L17N4C8q3pDhgxBRESETFcDCSnOixcv0LdvX9y+fZvTX6FCBezbtw+enp5yeV5KRigZUSk3b96En58frl69yul3cXHhTCpGhaZE3axevRoXLlzAu3fvAACPHz/G7NmzsXz5cp4jI+ri6NGjGDp0qNQQWldXVwQGBsp1FelvV/jVxGSEClhVwNu3bzFz5kzs2bOnwO1CoVBqFsDifF1o6ubmBgcHByo0JUrt7NmznL9MBQIBLl26BHd3dx6jIqouJycHM2fOLDCxnThxIpYsWSL3gumvi1ctLCwQGxurNlehqYBVBYglDMKiExGfkgkLIz04VzODSPjlBzAtLQ1Lly7FsmXLkJGRUeh5iktEvi40zZ/R1NrausxeByGK0LFjR4wePRp//vkngLzbkUOHDsWdO3dQrlw5nqMjqujdu3cYMGCA1NVmIyMj7NixA71795Z7DN8Wrzo5OalNIiILSkZ4EnQ/BnOPP0RMUibbZ22ih4Bu9dCxniX27NmDmTNn4v379zKfO7/QNP/h5OREhaZELSxbtgxnz55FdHQ0ACAqKgpTp07Fhg0beI6MqJoLFy5g4MCB+PDhA6e/YcOGOHToEGrWrKmQOKheJA8lIzwIuh8Dn70R+Pb+WGxSJoYt2g2jyP149vCuTOccOnQo2rZtixYtWlChKVFb+X+xtm3bli3I3rhxI3r16oUOHTrwHB1RBRKJBAsXLoS/v79UUf/PP/+MdevWKbQwmupF8lAyomBiCYO5xx9KJSI5n2Px+b/tSH96HbGlOK9AIIC3tzclIUTttW7dGhMnTsQff/zB9v3888+4f/8+FV2TIiUkJMDb2xtBQUGcfj09PWzYsAHDhg1TeEyFrUmjaYR8B6BpwqIT2VszDMMg+8NLJJ7/E7G7/ZCbFA/tCnYQGZpCW1u2gqkdO3ZgzZo18giZEKWzYMEC1K5dm22/ffsWEydO5C8govRCQ0PRpEkTqUSkZs2aCA0N5SURAbjJiIWFBWxtbXmJg290ZUTB4lO+1Iik3j6FxHMb2bah2wAYN+0OAFjVvxE61jbDp0+fkJiYiE+fPnH+v6C+TZs2oXnz5nBxcVH46yJEkfT19bFr1y64ubmxBdw7d+7EDz/8gG7duvEcHVEmDMNgzZo1mDx5MnJzcznb+vTpg23btvE2SjMuLo6KV/+PkhEFszD6UkiqV6UhZ1vGi5tsMmJprA8DAwMYGBhobKZMSFFcXFwwffp0LFy4kO0bOXIkHjx4gAoVKvAYGVEWycnJGD58OA4dOsTp19LSwooVKzB+/Hhev/ypePULuk2jYM7VzGBtogcBAC2zStAq/2Utl8w398BkZ8LaJG+YLyGkaP7+/mjY8EtSHxcXB19fXx4jIsri7t27aNq0qVQiUqlSJVy+fBkTJkzg/SoE1Yt8QcmIgomEAgR0qwcAEAoE0K/+1Q+fOBeZr+4goFs9znwjhJCC6erqYteuXdDS+nKRNzAwEAcPHuQxKsK3nTt3wsXFBc+ePeP0e3p64vbt23B1deUpMi66MvIFJSM88HKwxsafmsDKRA/69s0425qKXsLLgSYkI6SkGjdujICAAE7f2LFjERtbmnFpRJVlZGRg+PDhGDZsGDIzv9TnCQQCzJs3D6dOnYK5uTmPEXJR8eoXNB08j8QSBlcevYNn05rI/v8vTqVKlfD69WveLx8Sokpyc3Ph5uaGmzdvsn3du3fH0aNH6XdJQzx79gx9+/bFnTt3OP0VK1bE/v374eHhwVNkBYuLi4OV1Zfb9J06dcKpU6d4jEg+Svr9TVdGeCQSCtCmfiV0aN+e7Xv79i3u37/PY1SEqB4tLS3s2rULurq6bN+xY8fYlX6Jevvnn3/g5OQklYi0aNECt2/fVrpEBKB6kW9RMqIEunTpwmmfPHmSp0gIUV1169bFggULOH0TJkzAmzdveIqIyFt2djYmTZqEPn36ICUlhbNt8uTJ+O+//5T21gfVi3BRMqIEOnfuzGmr46U6QhRh4sSJaNmyJdvOH9qpAnejiYzevHmDNm3aYNWqVZx+ExMTHDlyBMuWLYO2tjY/wZUAJSNcpUpG1q9fj6pVq0JPTw8uLi4ICwsrcv9Vq1ahdu3a0NfXh52dHSZNmsQpLtJ0VapUQf369dn29evX8enTJx4jIkQ1iUQi7Ny5EwYGBmzfuXPn2JV+iXo4c+YMHB0dERISwul3dHREeHg4evbsyU9gJSSWMLge+uV7U9OLV4FSJCOBgYHw8/NDQEAAIiIi0KhRI3h6eiI+Pr7A/ffv34/p06cjICAAjx49wrZt2xAYGIiZM2d+d/Dq5OurI2KxGGfPnuUxGkJUl729PZYtW8bpmzx5Ml68eMFTRKSsiMVizJkzB506dcLHjx8520aNGoXr16/D3t6ep+hKJuh+DJxn/YMPcTFsX7ZpVZx5oNmjv2RORlauXImRI0di2LBhqFevHjZt2gQDAwNs3769wP2vX7+OFi1aYNCgQahatSo6duyIgQMHFns1RdNQ3QghZWfMmDGcosW0tDQMGzaMnTqeqJ4PHz7Ay8sLc+fO5dx2y18a4M8//4Senl4RZ+Bf/ortb59xBykwFarDZ28Egu7HFHKk+pMpGcnOzkZ4eDjnl1woFMLDw0Pqclk+Nzc3hIeHs8lHVFQUTp06JVUn8bWsrCwkJydzHurOzc2Ns+Lo6dOn6YOTkFISCoVSa45cuXIFq1ev5jEqUlrXrl2Do6Mjzp8/z+mvXbs2wsLCMHjwYJ4iK7mvV2zPin3O2aZjVQMAMPf4Q4glmlnfJFMykpCQALFYDEtLS06/paVloRMMDRo0CPPmzUPLli2hra0Ne3t7tGnTpsjbNIsWLYKJiQn7sLOzkyVMlaStrY2OHTuy7YSEBM6cCYQQ2VSuXFkq+ZgxYwYePXrEU0REVgzDYMWKFWjdujXevXvH2da/f3/cvHkTDg4OPEUnm69XbNev5ohyjl1gUK8NtCvYQceyBhgAMUmZCItO5DdQnsh9NE1wcDAWLlyIDRs2ICIiAocPH8bJkycxf/78Qo+ZMWMGkpKS2IemDM2jUTWElK0hQ4aga9eubDsrKwtDhgyRWr2VKJ/Pnz+jd+/emDx5MsRiMduvra2NdevW4a+//oKRkRGPEZaMWCzGvXv3sHfXNiScWo33W8cidt906FdthIrdJsNmxEZoGX+ZFfbrld01iUyr9pqbm0MkEiEuLo7T/+1Mcl+bPXs2vL29MWLECABAgwYNkJaWhlGjRuG3336DUCidD+nq6nImL9IUnTp14rRPnjyJuXPn8hQNIapPIBBg8+bNcHBwQGJi3l+cN2/exNKlS6mIXolFRkaiT58+UkXHlStXxt9//w1nZ2eeIitefHw8bty4gdDQUISGhiIsLAypqalfdhAIYd5tCgxquRV4/Ncru2sSma6M6OjowMnJCRcuXGD7JBIJLly4UOjCQ+np6VIJh0gkAgAa+/8NS0tLzix84eHhtL4GId/J2toaGzZs4PTNmTNHarZOwj+GYbB161Y0b95cKhHp3LkzIiIilCoRyc7Oxq1bt7Bu3Tr89NNPsLe3h6WlJbp3746FCxfi4sWL3yQiAph3mQTDuu5S5xIAGr1iu0xXRgDAz88PQ4YMQdOmTeHs7IxVq1axleoAMHjwYNja2mLRokUAgG7dumHlypVwdHSEi4sLnj9/jtmzZ6Nbt25sUkK+6NKlC27dusW2T58+zb63hJDS6d+/Pw4fPsyu5puTk4PBgwfj5s2b0NHR4Tk6AuT94Tp27Fjs2rWL0y8UCvH7779j2rRpBV5JV7SQkBD8888/CA0NRXh4uExzZk2cuxxH02oDAL7+Uzx/9SSNXrGdKYW1a9cylStXZnR0dBhnZ2cmNDSU3da6dWtmyJAhbDsnJ4eZM2cOY29vz+jp6TF2dnbM2LFjmU+fPpX4+ZKSkhgATFJSUmnCVSk3btxgkPdzygBg+vTpw3dIhKiFDx8+MBYWFpzfr99++43vsAjDMI8fP2YcHBw4/zYAGEtLS+bixYt8h8eRnJzMjBgxQirW4h6bNm1iGIZhTt97zzRfeJ6pMu0E+2i+8Dxz+t57nl+ZfJT0+5tW7VUyEokEVlZW+PDhAwDA2NgYCQkJSj2tMSGq4tixY+jRowfbFolEuH79ulJd+tc0Bw8exPDhw7m3MwC0atUKBw4cgLW1NU+RFe3kyZMYMWJEiW6lr1mzBuPHj2fbYgmDsOhExKdkwsIo79aMul4RoVV7VZRQKOQUsiYnJ+PatWs8RkSI+ujevTuGDBnCtsViMYYMGYKMjAweo9JMWVlZGD9+PPr37y+ViEyfPh0XLlxQ2kQEyFsp2sys+PqOZcuWcRIRIG/Fdlf7CujR2Bau9hXUNhGRBSUjSujb2VhpiC8hZWfVqlWoVKkS2378+DFmzZrFY0Sa59WrV2jVqhXWrVvH6S9fvjyOHz+ORYsWQUtL5pJGhbh79y48PT3h5eWFhw8fFrnvggULMHnyZAVFptooGVFCHTt25BT30tTwhJSd8uXLY9u2bZy+P/74A1euXOEpIs1y+vRpNGnSRGpJECcnJ0RERHDmhVEm79+/x/Dhw9G4ceMSrR3m7+9Pw8dlQMmIEipfvjxatGjBth8+fIiXL1/yFxAhaqZjx44YM2YM22YYBkOHDpW6XUDKjlgsxqxZs9C5c2d2zpd8Y8eOxbVr11CtWjWeoitcamoq5syZg5o1a2L79u1SU1LUrFkTbdu25fRNnz4dc+bMUWCUqo+SESVFs7ESIl/Lli3jfPlFRUVh6tSpPEakvuLi4tCxY0csWLCA029oaIh9+/Zh/fr1SjfRpVgsxtatW1GzZk3MnTsX6enpnO0VKlTA2rVr8eDBA04yMmnSJCxcuBACAdWByIKSESVFdSOEyFe5cuWwc+dOzpfGxo0bS3QJnpTc5cuX4ejoiIsXL3L669ati5s3b2LQoEE8RVa4M2fOoHHjxhg5cqTUaBldXV1MmzYNL168wLhx46CtrQ1DQ0MAgK+vL1asWEGJSClQMqKk6tevz1kg8OLFi1TxT0gZa9WqFSZOnMjpGz58OD5//sxLPOpEIpFg6dKlaNeuHWJiYjjbfvzxR4SFhaFu3bo8RVewr4tT79+/L7V90KBBePLkCRYvXsxZZd3Q0BAjR47EmjVrKBEpJUpGlJRAIOBcHcnIyEBwcDB/ARGiphYsWIDatWuz7bdv32LSpEk8RqT6Pn36hJ49e2LatGmcRe50dHSwadMm7NmzB+XKleMxQq7iilPd3d0RFhaGffv2oUqVKlLbO3XqhE2bNinFDLGqit45JfZt3QiNqiGk7Onr62P37t2cL5KdO3fi2LFjPEalusLDw9GkSRMcP36c01+tWjVcv34do0ePVpqrByUpTj1y5AguXbqEZs2aFXqeypUrUyLynejdU2Lt2rXjFHWdPHmSFhckRA6cnZ0xffp0Tt+oUaPw8eNHniJSPQzDYNOmTXBzc5Ma/de9e3eEh4fDycmJn+C+IUtxas+ePZUmeVJnlIwoMUNDQ7Rp04Ztv3z5Eo8fP+YvIELUmL+/Pxo2bMi24+Li4Ovry2NEqiM1NRXe3t7w8fFBdnY22y8SibB06VIcPXoUpqamPEb4RXHFqVOnTuUUpxLFoGREydEQX0IUQ1dXF7t37+Z8AQUGBiIwMJDHqJTfo0eP4OzsjH379nH6ra2tcfHiRUyZMkUpriyUpDj18ePHWLJkCac4lSgGJSNKjupGCFGcRo0aISAggNM3duzYEi2Gpon279+PZs2a4dGjR5z+tm3b4vbt22jVqhVPkX0hS3Fq1apVFR8gAUDJiNKrUaMGatWqxbavXLmC5ORkHiMiRL1NmzaNU6yYmJiIUaNGUb3WV7KysjB27Fj8+OOPSEtL42z77bffcO7cOVhaWvIUXZ6yKk4likHJiAr4eohvbm4uzp07x2M0hKg3LS0t7Nq1i1M8fvz4cezevZvHqJRHdHQ0WrRogY0bN3L6zczMcOrUKfz++++ctbUUjYpTVRMlIyqA6kYIUay6deti4cKFnL4JEybgzZs3PEWkHI4fP44mTZogPDyc0+/s7Izbt2+jU6dOPEWWpyTFqc+fP6fiVCVEyYgKcHd350wQdOrUKUgkEh4jIkT9/fLLL3B3d2fbycnJ+PnnnzXydk1ubi6mT5+O7t27S81OO378eFy5cgWVK1fmJzjIVpxavnx5xQdIikXJiArQ1dWFh4cH246NjUVkZCR/ARGiAUQiEXbs2AEDAwO27/z589i0aROPUSleTEwM2rdvjyVLlnD6y5Urh8DAQKxZswY6Ojq8xEbFqeqDkhEVQQvnEaJ49vb2WL58OadvypQpePHiBU8RKdZ///0HR0dHXL58mdPv4OCAW7duoV+/frzERcWp6oeSERXx7b1YGuJLiGKMGTMGHTp0YNtpaWkYNmwYZ80VdSORSLBw4UJ4eHggLi6Os23IkCG4ceMGZz0fRRGLxdi2bRtq1apFxalqhpIRFWFra4vGjRuz7Rs3biAhIYG/gAjREAKBANu2bYOxsTHbd+XKFaxevZrHqOTn48eP6NatG3777TdObZquri62bt0qdetKUfKLU0eMGCG1CjAVp6o+SkZUyNejahiGQVBQEI/REKI57OzspJKPmTNnSk32perCwsLQpEkTqdvA9vb2CA0NxfDhwxV+tYGKUzUDJSMqhOpGCOHPkCFD0K1bN7adlZWFIUOGIDc3l8eoygbDMFi3bh1atmyJ169fc7b16tUL4eHhnCuzikDFqZqFkhEV4uLiAjMzM7YdFBSkFh+EhKgCgUCAzZs3c34Hb968KTXKRNWkpKRg4MCBGD9+PHJycth+LS0trFixAv/8849C12qh4lTNRMmIChGJRPDy8mLbnz59wo0bN3iMiBDNYmVlhQ0bNnD65s6dizt37vAU0fe5f/8+mjVrJrUYoK2tLYKDg+Hn56ew2zJUnKrZKBlRMbRwHiH86t+/P2dIa05ODgYPHozs7Gweo5Ldnj174OzsjCdPnnD6O3TogNu3b6NFixYKi4WKUwklIyrGy8uL8xcB1Y0Qonjr16/nLAR39+5dzJs3j8eISi4zMxOjRo3C4MGDkZGRwfYLBAIEBATg9OnTqFixokJiKa44deDAgVScqiEoGVExFSpUQPPmzdn2nTt38PbtWx4jIkTzmJubY/PmzZy+RYsWKf1t0xcvXsDV1RVbtmzh9JubmyMoKAhz5sxRyCJ3JSlOvXHjBvbv30/FqRqCkhEV9O2omtOnT/MUCSGaq3v37hgyZAjblkgkGDJkCOdqgzI5evQonJycpJaScHV1xe3bt9GxY0e5xyBLcaqzs7Pc4yHKg5IRFUR1I4Qoh1WrVqFSpUps+8mTJ5g1axaPEUnLycnB5MmT0atXLyQlJXG2TZo0CZcuXeK8Bnmg4lRSHAGjAktQJicnw8TEBElJSZxZEDUVwzCwtbVlC70MDQ3x8eNH6Orq8hwZIZrn7Nmz8PT0ZNsCgQDBwcFo1aoVj1HleffuHfr3749r165x+o2NjbF9+3b07t1b7jGcOXMGkydPLrAmREdHBxMnTsSMGTOoJkRNlfT7m66MqCCBQMC5OpKWlia1kBUhRDE6duwIHx8fts0wDIYOHYrU1FQeo8pbYdjR0VEqEWnYsCFu3bol90Tk3r17xRanPnnyhIpTCQBKRlQWzcZKiPJYunQpqlevzrajo6MxZcoUXmKRSCSYP38+OnbsiA8fPnC2DR8+HKGhoahZs6bcnv/9+/cYMWIEFacSmVAyoqI8PDw44+2pboQQ/pQrVw47duzg1Dps2rSpwC9jeUpISEDnzp3h7+/PKQ7V19fHjh07sHXrVujr68vlub8uTt22bRtnkT2AilNJ0SgZUVFGRkace9LPnj3Ds2fPeIyIEM3WqlUrTJo0idM3fPhwfP78WSHPHxISAkdHR5w5c4bTX7NmTdy4cQNDhw6Vy/OWpDh1zZo1VJxKikTJiAr7dlQN3aohhF+///476tSpw7bfvn2LiRMnltn5L1y4gIiICE4fwzBYvXo1WrVqJTXnUN++fXHr1i00aNCgzGL4WlEzp+ro6LAzp44fP55mTiVFomREhVEyQohy0dfXx65duyAUfvlo3bVrF44dO/bd5/7w4QO8vb0RHh7O9iUnJ6Nv376YOHEiZ9FMbW1trF69GoGBgXIZgUjFqaSsUTKiwmrXrs0pmgsODkZaWhqPERFCnJ2dMWPGDE7fqFGjkJCQUOpzMgyDn3/+GTExMbh9+zaAvKnUmzZtin/++Yezr52dHS5fvowJEyaU+S0RKk4l8kLJiAr7dohvdnY2Lly4wGNEhBAA8Pf3R8OGDdl2XFwcfH19S32+devW4cSJEwCA27dvY8eOHXBxcZGqE/P09ERERARnyYiyQMWpRN4oGVFxNMSXEOWjo6OD3bt3c+okDh48iMDAQJnPdefOHc4w4dDQUPz888/IzMxk+wQCAebPn49Tp07B3Nz8+4L/SkmLU+/fv0/FqeS7UDKi4lq3bs0Zqnfy5Emp9R4IIYrXqFEjBAQEcPrGjh2L2NjYEp8jPT0dAwYMQFZWVqH7WFhY4Ny5c5g1axanVuV7yVKcqqOjU2bPSzQTJSMqTl9fH+3bt2fbb9++LbCgjBCieNOmTUOzZs3YdmJiIkaOHFniPxgmTZqEx48fF7q9ZcuWuH37Nucz4Hvdu3cPXl5eVJxKFIqSETVAC+cRopy0tLSwe/du6OnpsX0nTpzArl27ij320KFD2Lx5c5H7ZGdn4/bt22VyNfTr4tRv5yoB8hIfKk4l8kLJiBqgIb6EKK86depgwYIFnL5ffvkFb968KfSY169fY+TIkcWeOywsDF27dkXTpk0RFBRUqviKK06tUaMGDh8+jMuXL1NxKpEbSkbUQJUqVVC/fn22ff36dXz69InHiAghX/vll1/g7u7OtpOTk/Hzzz8XeEUjNzcXP/74Y4lnbnV1dcWYMWPg6uoqU0yyzJzaq1cvKk4lckXJiJr4elSNWCxW+JoYhJDCiUQi7NixA4aGhmzf+fPnsWnTJql9FyxYgKtXrxZ5PhsbG0yfPh2PHz/G9evXMXLkSJiYmJQ4HipOJcpGwKjA0Ivk5GSYmJggKSlJLrMJqoNLly6hTZs2bNvb2xu7d+/mLyBCiJRNmzbBx8eHbRsYGGDn8UvQMbOGhZEest4+QPt2baVulQB5SULPnj0xbNgwdOjQASKRSObnv3fvHqZMmVJgTQiQV5y6cOFCqgkhZaak39+UjKiJnJwcVKxYEUlJSQAAc3NzxMXFlelQP0LI92EYBp6enjh37hzbp1upHiwHLoIkOwPxO8cjO+kD55imTZti2LBhGDBgAMzMzEr1vO/fv4e/vz927NhRYKLTsmVLrFixgmpCSJkr6fc3fVOpCW1tbXTs2JFtJyQk4ObNmzxGRAj5lkAgwLZt22BQzojty3r7EMm3jiHx9Bo2ESlvZo5ff/0V9+7dw82bNzF27NhSJSJUnEpUBSUjaoRmYyVE+dnYVoK1lw+n7/Pl3Uh/Fgr9Wq6w6D0btSbtxZKly+Dg4FCq56DiVKJqKBlRI15eXpw2zTdCiPIJi05ETnV36NfIuxKhZWoD46Y9UGncHlj0+g36NVwQl5qLsOjEUp3/zJkzcHR0LLQ4dcqUKVScSpSOFt8BkLJjaWmJZs2asbdnwsPDERsbCysrK54jI4Tki0/JhEAgQAXP8Ug2PwYTtwEQausWuJ8sqDiVqDK6MqJmvp0A7fTp0zxFQggpiIVR3mysonKmMG09pMBE5Ov9ikMzpxJ1QMmImqG6EUKUm3M1M1ib6KGwKg0BAGsTPThXK7pglYpTiTqhZETNODk5wcLCgm2fPXsWOTk5PEZECPmaSChAQLd6ACCVkOS3A7rVg0hYcLpCxalEHVEyomaEQiE6derEtpOTk3Ht2jUeIyKEfMvLwRobf2oCKxPurRgrEz1s/KkJvBysCzyOilOJuipVMrJ+/XpUrVoVenp6cHFxQVhYWJH7f/78Gb6+vrC2toauri5q1apFtw/kiBbOI0T5eTlY4+q0dvhrZHOsHtAYf41sjqvT2hWYiNy7dw9eXl7w8vLCvXv3pLYPHDgQT548wdKlS1G+fHkFRE9I2ZI5GQkMDISfnx8CAgIQERGBRo0awdPTE/Hx8QXun52djQ4dOuDly5c4dOgQnjx5gi1btsDW1va7gycF69ixI2eqaBriS4hyEgkFcLWvgB6NbeFqX0Hq1gwVpxJNIfN08C4uLmjWrBnWrVsHAJBIJLCzs8P48eMxffp0qf03bdqEZcuW4fHjx9DW1i5VkDQdvOxat26Ny5cvs+3o6Gj6sCJERaSlpWHZsmVYtmyZVE0IkFecunTpUvTs2ZNqQohSk8t08NnZ2QgPD4eHh8eXEwiF8PDwQEhISIHHHDt2DK6urvD19YWlpSUcHBywcOFCiMXiQp8nKysLycnJnAeRDY2qIUT15Ben1qxZs8DiVDMzM6xevZqKU4nakSkZSUhIgFgshqWlJaff0tISsbGxBR4TFRWFQ4cOQSwW49SpU5g9ezZWrFiB33//vdDnWbRoEUxMTNiHnZ2dLGESUN0IIcpMLGEQ8uIj/o18h5AXHyGWMCUqTn3x4gUmTJhAxalE7ch9BlaJRAILCwts3rwZIpEITk5OePfuHZYtW4aAgIACj5kxYwb8/PzYdnJyMiUkMqpfvz7s7Ozw5s0bAMDFixeRkZEBfX19niMjRLMF3Y/B3OMPEZOUN8Nq9oeXSL+yE0nPbhW4P82cSjSBTMmIubk5RCIR4uLiOP1xcXGFTjlubW0NbW1tTkFl3bp1ERsbi+zs7AIzfF1dXejqFjwrISkZgUCALl26YNOmTQCAjIwMBAcHc4b9EkIUK+h+DHz2RoABkJvyEUlX9yH13nmAkUjt27JlSyxfvhwuLi6KD5QQBZPpNo2Ojg6cnJxw4cIFtk8ikeDChQtwdXUt8JgWLVrg+fPnnNkBnz59Cmtra7rUKGff3qqhUTWE8EcsYTD3+EPkjxhIvXsWqXfPSiUiX8+cSokI0RQyD+318/PDli1bsGvXLjx69Ag+Pj5IS0vDsGHDAACDBw/GjBkz2P19fHyQmJiIX375BU+fPsXJkyexcOFC+Pr6lt2rIAVq164d5wrTyZMnIePgKUJIGQmLTmRvzQCAcbNeEBqasm2hnhFM24/CtmOXqTiVaByZa0b69++PDx8+wN/fH7GxsWjcuDGCgoLYotbXr19DKPyS49jZ2eHMmTOYNGkSGjZsCFtbW/zyyy+YNm1a2b0KUiBDQ0O0adOGnZ/g5cuXePz4MerWrctzZIRonm9X4RXq6EHHojoyX92BcdPuMHHtB6FeOXzKkr5lQ4i6K1UB67hx4zBu3LgCtwUHB0v1ubq6IjQ0tDRPRb5Tly5dOJMlnTp1ipIRQnhQ0Cq8OlY1kJsUB+PmfSHUK1fofoSoO1qbRs1R3QghyqGg1Xp1LKsjN/Et4v8OAJOVXqLVeglRR5SMqDl7e3vUrl2bbV+5coUmkSOEBwWt1qtTsSoAIDvmKeL+mYdpHlULXa2XEHVGyYgG+PrqSG5uLs6dO8djNIRorm9X69UqbwWBdl6Redab+9g02xdZWVl8hkgILygZ0QA0NTwhyuPr1XrXDHJCvXoO7LYzZ85g4MCByM3N5TFCQhSPkhEN4O7ujnLlyrHtU6dOceZ9IYQo1ter9bo5N+FsO3LkCIYOHUq/o0SjUDKiAXR0dNChQwe2HRsbi8jISP4CIoSwGjZsKNW3b98++Pj40LxARGNQMqIhaFQNIcqpoGQEADZv3oxff/2VEhKiESgZ0RC0ii8hyqlBgwaFbvvjjz8wZ84cxQVDCE8oGdEQNjY2aNy4Mdu+ceMGEhIS+AuIEAIAMDU1LXJV8nnz5mHp0qUKjIgQxaNkRIN8PaqGYRgEBQXxGA0hJF9ht2ryTZs2DRs2bFBQNIQoHiUjGoRu1RCinIpLRgDA19cXu3btUkA0hCheqdamIarJxcUFZmZmSExMBAAEBQUhNzcXWlr0Y0AIn4pKRipVqgRbW1sIBAJs27YNTk5OcHBwKHR/QlQRfQtpEJFIBC8vL+zfvx8A8OnTJ9y4cQMtWrTgOTJCNFtRyUjlypVx9epVCAQ0TTxRX3SbRsN8OxsrDfElhH+1atWCrm7etPDGxsaoVKkSu+369es4e/YsX6ERohCUjGgYT09PCIVf/tmpboQQ/mlpaaF+/foAgC1btkgN5/X396f5Rohao2REw1SoUAHNmzdn23fu3MHbt295jIgQAuTdqhkzZgz69euHwYMHo3r16uy2sLAw+sOBqDVKRjTQt6NqTp8+zVMkhJB8AwYMwMqVKwEA2tra8Pf352ynqyNEnVEyooGoboQQ5ePp6Ql9fX22/eOPP6JmzZpsOyIiAseOHeMjNELkjpIRDdSoUSNYW1uz7fPnzyMrK4vHiAgh39LS0kJAQACnLyAggFbzJWqJkhENJBAIOLdq0tLScPnyZR4jIoQUZMCAAahTpw7bvnPnDo4ePcpfQITICSUjGurbWzVUHEeI8hGJRHR1hGgESkY0lIeHB7S1tdk21Y0Qopz69u3LDvsFgPv37+PQoUM8RkRI2aNkREMZGRmhVatWbPvZs2d49uwZjxERQgoiEomk5h2ZM2cOxGIxPwERIgeUjGgwWjiPENXwww8/cKaMf/ToEQIDA3mMiJCyRcmIBqO6EUJUg1AoxNy5czl9c+fORW5uLk8REVK2KBnRYLVq1eLM8hgcHIzU1FQeIyKEFKZHjx5wdHRk20+fPmUXvSRE1VEyosEEAgHn6kh2djYuXrzIY0SEkMIIBALMmzeP0zdv3jzk5OTwFBEhZYeSEQ1HdSOEqI4uXbqgWbNmbPvFixfYs2cPjxERUjYoGdFwbdq04UxBffLkSVr/ghAlVdDVkfnz5yM7O5uniAgpG5SMaDg9PT20b9+ebb99+xb379/nMSJCSFE8PT3h6urKtl++fImdO3fyFxAhZYCSEUIL5xGiQgq6OvL777/T+lJEpVEyQqhuhBAV0759e7i7u7PtN2/eYPv27TxGRMj3oWSEoHLlynBwcGDb169fx6dPn3iMiBBSlIKujixYsACZmZk8RUTI96FkhADgXh0Ri8U4e/Ysj9EQQorTpk0btGnThm2/e/cOW7Zs4S8gQr4DJSMEANWNEKKKvp2VdeHChcjIyOApGkJKj5IRAgBwdXWFiYkJ2z59+jQtU06IkmvVqhU8PDzYdmxsLDZt2sRjRISUDiUjBACgra0NT09Ptp2QkICbN2/yGBEhpCS+vTqyePFipKWl8RQNIaVDyQhh0agaQlSPm5sbvLy82HZ8fDw2bNjAY0SEyI6SEcLq1KkTp011I4Sohm+vjixZsgQpKSk8RUOI7CgZISwLCwvOuhfh4eGIjY3lMSJCSEk4Ozuja9eubPvjx4+YOncp/o18h5AXHyGW0BIPRLlRMkI4vh1Vc/r0aZ4iIYTI4turI5vXr8L4XdcxcEsoWi65iKD7MTxFRkjxKBkhHFQ3QohqatKkCVzbfakdkWSmIvnWvwCA2KRM+OyNoISEKC1KRgiHk5MTLCws2PbZs2eRk5PDY0SEkJIQSxik1u/F6Uu+eRSSzFTk36SZe/wh3bIhSomSEcIhFAo5hazJycm4du0ajxERQkoiLDoRyQa2MKjd4kunRIys2OcAAAZATFImwqIT+QmQkCJQMkKkfHurhkbVEKL84lPy1qUxaTEQAh19GDn/AJMWA5Ed+wyp9y8i49Ud5Hx8i1dxH3mOlBBpAoZhlP6aXXJyMkxMTJCUlARjY2O+w1F7nz9/hrm5OcRiMQCgXr16ePDgAc9REUKKEvLiIwZuCQUASLLSIdQ1gCQrDQnHliEj6hZnX2NjY9ja2ko9KlWqxP6/hYUFhEL6e5V8n5J+f1MyQgrUunVrXL58mW1HR0ejatWq/AVECCmSWMKg5ZKLiE3KxNcf6oxEjM+XdyP5xj8ynU9LSwvW1tawtbWFm5sblixZAi0trbINmqi9kn5/U9pLCvTtEF8aVUOIchMJBQjoVg8AIPiqXyAUwazNMJh38YO2jm6Jz5ebm4s3b94gNzcXkydPpkSEyBUlI6RANMSXENXj5WCNjT81gZWJHqffykQPexZPxpXLl2BtbV3i8/Xs2RPBwcEyHUNIaVCqSwpUv359VK5cGa9fvwYAXLx4ERkZGdDX1+c5MkJIUbwcrNGhnhXCohMRn5IJCyM9OFczg0goAGCNmzdvomfPnrh161ax55JIJAgJCUH79u0hEAiK3Z+Q0qIrI6RAAoGAc3UkIyMDwcHB/AVECCkxkVAAV/sK6NHYFq72Ff6fiOSxtbXF5cuXMXDgwGLPc+zYMXTo0AF169bF2rVrkZSUJM+wiQajZIQU6tu6ERriS4h60NfXx759+7Bw4cISXfF48uQJJkyYAFtbW/j4+OD+/fsKiJJoEhpNQwqVlpaGChUqICsrCwBQtWpVREVF0eVaQtTIsWPH8OOPPyI1NZXtq1mzJpKSkhAfH1/oca1bt4avry969uwJbW1tRYRKVBCNpiHfzdDQEG3btmXbL1++xOPHj3mMiBBS1rp3747Q0FBUr16d7XNxccHr16+xb98+uLm5FXjcpUuX0K9fP1StWhXz5s1DTAyte0NKj5IRUiQaVUOI+qtfvz7CwsLQpk0bAMCnT5+gq6uLQYMG4dq1a4iIiMDw4cMLLGB///49AgICULlyZQwYMABXr16FClxwJ0qGkhFSJKobIUQzVKhQAWfPnoWPjw8SE7nr1zg6OmLr1q149+4dVqxYAXt7e6njc3NzERgYCHd3dzRu3BibN29GWlqaosInKq5Uycj69etRtWpV6OnpwcXFBWFhYSU67sCBAxAIBOjZs2dpnpbwoHr16qhduzbbvnLlCpKTk3mMiBAiL9ra2tiwYQP8/f0L3G5qago/Pz88ffoUp06dQpcuXQqsIbt79y5Gjx4NW1tbTJo0Cc+ePZN36ETFyZyMBAYGws/PDwEBAYiIiECjRo3g6elZZKETkFdvMHnyZLi7u5c6WMKPr6+O5Obm4ty5czxGQwiRNy8vryK356/ufeLECTx//hyTJ0+Gqamp1H5JSUlYtWoVatWqBU9PTxw7doxd84qQr8mcjKxcuRIjR47EsGHDUK9ePWzatAkGBgbYvn17oceIxWL8+OOPmDt3LqdIiqgGqhshhBSmevXqWLZsGd69e4ft27ejSZMmBe539uxZ9OjRA/b29liyZAkSEhIUHClRZjIlI9nZ2QgPD4eHh8eXEwiF8PDwQEhISKHHzZs3DxYWFhg+fHiJnicrKwvJycmcB+GPu7s7ypUrx7ZPnToFiUTCY0SEEGWjr6+PYcOG4datWwgJCcFPP/0EHR0dqf1evXqF6dOno1KlShg6dChu3rzJQ7RE2ciUjCQkJEAsFsPS0pLTb2lpidjY2AKPuXr1KrZt24YtW7aU+HkWLVoEExMT9mFnZydLmKSM6ejooEOHDmw7NjYWkZGR/AVECFFaAoEAzZs3x549e/DmzRssWLCgwM/wrKws7Nq1C87OznB2dsbu3buRmZnJQ8REGch1NE1KSgq8vb2xZcsWmJubl/i4GTNmICkpiX28efNGjlGSkqBRNYQQWVlYWGDmzJmIiorC4cOH0b59+wL3u3nzJoYMGQI7OztMnz4dL1++VGyghHcyJSPm5uYQiUSIi4vj9MfFxcHKykpq/xcvXuDly5fo1q0btLS0oKWlhd27d+PYsWPQ0tLCixcvCnweXV1dGBsbcx6EX506deK0qW6EEFJSWlpa6NWrF86fP4+HDx9i3LhxMDIyktovISEBS5Ysgb29PXr06IGzZ8/SLWENIVMyoqOjAycnJ1y4cIHtk0gkuHDhAlxdXaX2r1OnDu7du4fIyEj20b17d7Rt2xaRkZF0+0WF2NjYwNHRkW3fuHGDU4CWv7ovIYQUJX/RvXfv3mHDhg2oV6+e1D4SiQTHjh2Dp6cn6tSpg9WrV+Pz58+KD5YojMy3afz8/LBlyxbs2rULjx49go+PD9LS0jBs2DAAwODBgzFjxgwAgJ6eHhwcHDiP8uXLw8jICA4ODgUWNxHl9fWoGoZhEBQUBAC4c+cOp6iZEEKKY2RkxC66999//6FPnz4QiURS+z179gwTJ06Era0tRo8ejbt37/IQLZE3mZOR/v37Y/ny5fD390fjxo0RGRmJoKAgtqj19evXtEaBmvq2buTUqVO4evUqWrduXew8M4QQUhCBQIA2bdrg77//xsuXLzF79mypQRIAkJ6ejs2bN6NRo0Zo1aoVAgMDkZOTw0PERB5o1V5SpHv37rEjmiQSCSwtLfHx40cAeQvpSSQSZGRkwNTUVGoKaUIIKY3s7Gz8888/WL9+Pa5du1boflZWVhg9ejRGjRoFGxsbtl8sYRAWnYj4lExYGOnBuZoZREJabZwPJf3+pmSEFOnatWtwd3eHiYkJGjZsiKdPnxY4jLtChQo0iREhpMxFRkZiw4YN2Lt3LzIyMgrcJ79Adty4cUgzrYF5Jx4hJunLMGFrEz0EdKsHLwdrRYVN/o+SEVJmJkyYgLVr1xa5T8WKFelWDSFEbj59+oSdO3di/fr1hY7EBABt8yowatIFhvXbQqiTt8pw/jWRjT81oYREwSgZIWUmNTUV9evXL3LETFET3xFCSFmRSCQ4e/Ys1q9fj5MnT6KwrzCBjgFMmveBiWu/vDYAKxM9XJ3Wjm7ZKFBJv7/lOukZUQ/lypXD5s2bi9xHKKQfJUKI/AmFQnh5eeH48eN48eIFpkyZAjMzM6n9mOx0QPDlc4kBEJOUibBoqm1TRnRlhJTYkCFDsHv37gK3VapUiWbKJYTwIiMjA9OWbcKfGzcgO/Z5XqdIG+bdpyD90RUIRFoQaOlAoKWD9g62aFC5IvT09GR6mJub0/dPKZT0+1tLgTERFbdy5UoEBQUVWBtCV0YIIXzR19fHwB8H49+0msiOeYqUiBMQaOnCsJYbhNr6+HjqD4hT866IHA0Hjsp4/tq1a+O///6jZESO6BuElFiFChWwbt26ArdRMkII4ZNzNTPYlNeHnk1tmHf9FWaevgAA/WqOsP55HQxquZXqvPmJiLU1Fb7KE32DEJn06dMHPXv2lOqnZIQQwieRUICAbnlTywuQN5laPi19Y1TsOQN+8/9AuXLlSnxOGxsbSkQUhL5BiEwEAgHWr18PExMTTj8lI4QQvnk5WGPjT01gZaLH6bcy0cMmbyesmDURkZGRBa6lVpD379/D3d0dM2bMwO3btwsduUO+HxWwklLZunUrRo4cybZr1aqFJ0+e8BgRIYTkKW4G1tzcXCxcuBDz5s2DWCwu8Xnt7e3Rr18/9OvXD40aNeJcfSEFo3lGiFwxDIP27dvjv//+A5C3EufDhw95jooQQkouNDQUP/30U5GTqBWmRo0a6NevH/r27UuJSRFonhEiVwKBAFu2bIG+ft4Mh5m5DP6NfIeQFx8hlih9fksIIWjevDkiIyMxfPhwqW2enp7w8PAo9Bb08+fPsXDhQjg6OqJ27dqYNWsW7ty5I3UrRyxhEPLiI30+FoOujJDvMnJKALYunwftilVh83PeSBtaB4IQomqOHDmCkSNHsguB+vr6Yt26dYiPj8eRI0fw999/47///oNEIinyPLVq1ULfvn3Rr18/vBOYa/w6OXSbhshd0P0YjNl9EzF7J4MR58JmWN76NbQOBCFEFb1//x7Dhg3D2bNn4enpiaCgIM72/MTk4MGDCA4OLjYx0TKrBMPaLWBQ1x3a5lUgEAg07vORkhEiV2IJg5ZLLiImKRPZH17i4+k10KvSCFpG5jCo0xJaBia0DgQhROVIJBKsW7cOmzdvxv379wvdLz4+HocPH8bff/9dosSkYu/ZMKjhAkCz1smhZITIVciLjxi4JZRtp97/Dx9PrwIkYkAghF41RxjWa4MDv4+DR6OqvMVJCCGl8eTJE9SqVatEhalxcXHsFZNLly5JJSYCLR1UGr8fQh3ukOO/RjaHq32FMo1b2VABK5Gr+JRMTpvJzcpLRACAkSAzKhwfT6xAl+Z1MXDgQBw/fhzZ2dk8REoIIbKrXbt2iUfIWFpaYsyYMbh48SLev3+P0TMWQrdyA3ahPi1TG6lEBJD+HNVklIyQUrEw4v5iZb1/XOB+2ZmZOHDgALp37w4rKyuMHj26wL8cCCFEHVhaWmLI8FGwGrgIVkNWQljODLqV6he477efo5qMkhFSKs7VzGBtoscWY5l3ngjrn9fBuHkfiIwrFnjMp0+fsHnzZrRp0wZVqlTB1KlTERkZSbMaEkLUinM1M5TPisOHfxZAkpoIo8ZenO0C5I2qca5mxk+ASohqRkipBd2Pgc/eCAAA54eIkSDr3SM45T5E6PkT7FC5wtStWxeDBg3CwIEDYW9vL7+ACSFEAa5duwavzl2RmvwZQoPyqDRuNwT/v2VDo2kKRldGSKkVtg6EdXkD7JjujRMHdiImJgYnT57EoEGDYGBgUOB5Hj16hNmzZ6NGjRpo3rw51q5di7i4OEW8BEIIKVNHjx6Fh4cHUpM/AwBMaziyiQiQN4pGUxIRWdCVEfLdilsHIl9aWhqOHTuG/fv3IygoCLm5uYWeUygUwsPDA4MGDUKvXr3o350QovQ2bdoEX19fTk3c5s1b4NCuV7Gfj+qKhvYSpfbx40ccOnQI+/btw5UrV4rcV09PD127dsWgQYPQuXNn6OrqKihKQggpHsMw8Pf3x++//y617eXLl6hSpQoPUSkHSkaIynj9+jUOHDiA/fv3486dO0Xua2Jigj59+mDQoEFo3bo1RCKRgqIkhBBpubm5GD16NLZv3y61zd7eHs+fP+chKuVBNSNEZVSuXJkdWXP//n3MnDkTVatWLXDfpKQkbNu2De3bt4ednR38/Pxw69atYkfkPHjwAH///bccoieEaKq0tDT07NmzwEQEADw8PBQckeqiKyNEKTEMg9DQUOzfvx+BgYH48OFDkfvXqlULgwYNwqBBg1CzZk2p7TExMbCxscHIkSOxatWqQotpCSGkJD58+ICuXbsiLCys0H0OHjyIvn37KjAq5UO3aYjayMnJwYULF7B//34cOXIEqampRe7ftGlTDBo0CAMGDIC1dV7FukQigYGBAbKyslC3bl0EBgaiQYMGigifEKJmoqKi4OXlhWfPnhW6j0AgQHx8PMzNzRUYmfKhZISopfT0dJw4cQL79+/HqVOnkJOTU+i+AoEA7dq1w6BBg/DDDz+gefPmePLkCQBAV1cXK1euhI+PT4mnfFa0ko5SIoQoTkREBDp37lzs9AOOjo6IiIhQUFTKi5IRovYSExPxzz//YP/+/bh06VKRdSM6OjrQ0tJCeno6p79Xr17YunUrzMzKbibEt2/f4uXLl3BwcED58uVLdY6g+zGYe/whYpK+rF1hbaKHgG71aH4CQnhy584ddOrUCTExMcXuO2XKFCxdulQBUSk3SkaIRnn79i0CAwOxb98+3L59W6ZjK1WqhP3798Pd3b1MYsnKyoKjoyMePXqESpUqoUGDBnBwcECDBg3QoEED1KlTB3p6ha9JkT+z7be/mJo2cyMhyio9PR0fPnyAt7d3oVMTBAUFwdPTU8GRKR9KRojGevToEf766y/s378fL168KNExQqEQ/v7+mDVrVpkMF75x4wbc3NwKXBBQJBKhZs2anCTFwcEB1atXBwRCtFxyEa+eP0ZKxEmYuA2AltGXJcYFyJvB8eq0dnTLhhAeXbhwodDRMjo6OkhMTIShoaGCo1I+lIwQjccwDG7evInt27fjzz//LNExrVq1wt69e2FnZwfg++o2pkyZguXLl5c4Xj09PZhVtETsxyRI0j8DAIydf4Bp25+l9v1rZHO42leQ6ieEyF9WVhYaNmyIp0+fsn0jRozA/v37kZ6ejtatWyM4OJi/AJVISb+/tRQYEyEKJRAIUL9+/RJfHQGAy5cvo3Hjxti+fTt07Z2LrdtITk7G69ev8erVK6n/RkVFyRRvZmYm3r95xelLffAfyrcaDIGI+6san5IJQgg/li9fzklEatSogbVr16JWrVqYOnUqzS9SCpSMELWVkpKCLl26FDvd/LcSExPRs2dPGDXpAtO2wyHQ0kFGdASy46ORmPwBP2yPh7UoFYlx7/H582f5BP9/TFY6suOjoWvNnTvFwqjwmhNCiPxERUVJTfu+fv166OnpYeLEidi7dy/at2/PU3Sqi5IRora2bdsGY2NjtG7dGqmpqUhJSUFqair7KKie42spESeR+eYBKnafhpRbx5ARdYvdJts1D9lpmdrAyLELDBu0h0ivHNufXzPiXK3sRv8QQkqGYRiMHz8emZlfrkz269cPHTt2BABoa2tjx44daNiwIV8hqiyqGSEaiWEYZGZmcpKT/Ef48xgsP3kHTE4mJNkZAMMgJ/Et0u6dL/H5tbW1YWdnh7i4OKSlpZXoGKFQiG7dusG58wBsfmEIgUDIGVFDo2kI4dfhw4fRu3dvtm1kZITHjx/DxsaGx6iUG9WMEFIEgUAAfX196Ovro2LFipxt6RXfodwrbnFoUih3XRuBriGqVK4Mh9r2qFKlCqpUqYLKlSuz/7WyskJSUhI7A2xRKlasiJEjR2L06NGoXLkyAKBJAfOMWNE8I4TwJjU1Fb/88gunb/78+ZSIlBFKRgj5RkH1GAa13KBdsSq0jCtCy7gihLqG2F/IiJbXr19j9uzZWLduHbKysgp9nhYtWmDs2LHo3bs3dHV1Odu8HKzRoZ4VzcBKiJKYO3cu3r59y7YbN24MX19fHiNSL5SMEPIN52pmsDbRQ2xSJhjk3dLRNrOFtpktgILrNiQSCS5cuID169fj+PHjhdajGBgY4KeffoKPjw8aN25cZBwioYCG7xKiBO7du4c//viDbQsEAmzcuBFaWvQVWlbonSTkGyKhAAHd6mHMnnAk3zoG/WpNoG2eN+9I/nWJgG71IBIK8OnTJ+zatQsbNmwoctGs2rVrY+zYsRg8eHCpp4gnhCieRCKBj48PxGIx2zdy5Eg0b96cx6jUDyUjhBSgbU0z1HqyB+cuHoTB2J1sf37dhmVOLEaMmI39+/cjIyOjwHMIhUL06NEDvr6+aNeundIuyEcIKdyuXbtw7do1tl2xYkUsWrSIx4jUEyUjhHwjNjYWP/zwA0JCQgAAe8e2R1KOAOV1BHh16wLmjpyF0NDQQo+3tLTEyJEjMWrUKHYmV0KI6vn48SOmTJnC6Vu2bFmZLqxJ8lAyQshXbt26hZ49e+Ldu3cA8qZor2qYiz///BNbt25FQkJCoce6u7tj7Nix+OGHH6Cjo6OokAkhcjJ9+nR8/PiRbbu7u2Pw4ME8RqS+KBkh5P/279+P4cOHcyY0ysrKQvXq1VHYdDyGhobw9vaGj48PTXREiBq5fv06tm7dyra1tLSwceNGut0qJ5SMEI0nFosxa9YsLF68WGpbYUlI3bp1MXbsWHh7e8PExETeIRJCFCg3Nxc+Pj6cPj8/P9SvX5+niNQfJSNEoyUnJ2PQoEE4efJksfuKRCL07NkTvr6+aNOmDf2FRIiaWrt2Le7evcu27ezs4O/vz2NE6o+SEaLWxBKm0InDnj17hh49euDRo0fFnqdt27bYs2cPbG1t5R0yIYRHb9++lUo81qxZA0NDQ54i0gyUjBC1FVTAlOrW/x+aK4q5j379+pV41d3g4GAcPHgQEydOpCsihKixSZMmITU1lW137doVPXr04DEizUAL5RG1FHQ/Bj57IyD1w80wSL51DEnB24pdtbcgvr6+WLVqFc28SMpEUVfuiOIFBQWhU6dObFtfXx8PHz5E1apV+QtKxdFCeURjiSUM5h5/KJWIMLk5+HhmPdLuF7/6rkAggIWFBWxsbGBra8v5b2xsLCpVqiSf4InGKOrKHS2GqHgZGRkYN24cp2/27NmUiCgIJSNE7YRFJ3I+4AEgN/kj4gJ/Q27iWwh0DaFVzgyN61RHXfsqBSYcVlZW0NbW5ukVEHVX2JW72KRM+OyNwMafmlBComCLFy/Gixcv2HadOnXw66+/8hiRZqFkhKid+JQviYgkOxNp988j6cZhiJPjUaHbVJSr1woA8NuAxujRmApSiWIVduUOABjkrX809/hDdKhnRbdsFOTp06dSQ/s3bNhAkxcqkJDvAAgpaxZGeuz/Z768jcRzmyBOjgcApN4+WeB+hCjKt1fuGEaCtIeXkHzz37w2gJikTIRFJ/IUoWZhGAa+vr7Izs5m+3766Se0bduWx6g0D10ZIWrHuZoZrE30EJuUCf0aztAqb43czzEAgKy3D5Ad8xRV6jSEczVaX4IoXv6VO4aR4NN/O5D+5CrEyR8g0NKFYd1WEJUz5exH5OvgwYM4f/5LHZmJiQmWL1/OY0Saia6MELUjEgoQ0K0eAEAoFMGoaXfO9uSbR/OG99IlcMIDc0MdpD2+ipjt45EaeRri5A8AACY3C0mhf7P70ZU7+UtOTsakSZM4fQsXLoSlpSVPEWkuSkaIWvJysMbGn5rAykQP5Rp0gFCvHLst4+k11DPO4TE6ookkEgkOHz6MsX08kPDvYuQkvEL51kMBoYjdJyXyNMQpCbA20aMrdwowe/ZsxMTEsO2mTZti9OjRPEakuUqVjKxfvx5Vq1aFnp4eXFxcEBYWVui+W7Zsgbu7O0xNTWFqagoPD48i9yekrHg5WOPqtHYI9G2DXgOHsP0SsRhr167lMTKiSRiGwdGjR+Hk5ITevXuz04zr2jnAuEkXlGvQ4cvO4hwkhf5NV+4U4Pbt21i3bh3bFgqF2LRpE0QiURFHEXmRORkJDAyEn58fAgICEBERgUaNGsHT0xPx8fEF7h8cHIyBAwfiv//+Q0hICOzs7NCxY0d2iXZC5EkkFMDVvgJWz5/Bmahs8+bNSElJ4TEyou4YhsGxY8fg5OSEXr16ITIykt0mEAiwfMUKWJfXh4lbP0D05Wcz4945unInZxKJBD4+PpyJD8eOHQsnJyceo9JwjIycnZ0ZX19fti0WixkbGxtm0aJFJTo+NzeXMTIyYnbt2lXi50xKSmIAMElJSbKGSwjrp59+YpA3WIEBwPzxxx98h0TUkEQiYU6cOME0bdqU8/P29WPEiBEMwzBMrljCXH+ewHTuP4SzfdSoUTy/CvW2adMmzvttaWnJfPr0ie+w1FJJv79lujKSnZ2N8PBweHh4sH1CoRAeHh4ICQkp0TnS09ORk5MDM7PC74dmZWUhOTmZ8yDke31bqLZ69Wrk5ubyFA1RNwzD4PTp02jevDm6du2KW7duFbifkZERfv/9dwBfrtxtXrEAurq67D7bt29HdHS0QuLWNPHx8Zg+fTqnb+XKlShfvjw/AREAMt6mSUhIgFgslqo0trS0RGxsbInOMW3aNNjY2HASmm8tWrQIJiYm7MPOzk6WMAkpUJMmTdCmTRu2/fLlSxw9epS3eIh6YBgGZ86cgaurKzp37lxsTdysWbOkPkNtbW0xZswYtp2bm8smLKRsTZ06lbNAZvv27TFw4ED+AiIAFDyaZvHixThw4ACOHDkCPb3Ch63NmDEDSUlJ7OPNmzcKjJKoMz8/P0575cqVPEVC1MHDhw/RokULeHl54caNG8Xub29vj19++aXAbdOnT4e+vj7b3rVrF54/f15msRLg8uXL2LVrF9vW1tbG+vXraSVuJSBTMmJubg6RSIS4uDhOf1xcHKysrIo8dvny5Vi8eDHOnj2Lhg0bFrmvrq4ujI2NOQ9CykKXLl1Qq1Ytth0SElLiW4yEfKtu3bpYv349Jk2aVKK5KZYvX865HfM1Kysr+Pr6sm2xWIx58+aVWayaLjs7Gz4+Ppy+qVOnonbt2jxFRDhkLUZxdnZmxo0bx7bFYjFja2tbZAHrkiVLGGNjYyYkJETWp2MYhgpYSdnauHEjp3itT58+fIdE1MCTJ08YY2PjQotW27Vrx0gkkiLPER8fzxgaGrLHCIVC5tGjRwp6Bept8eLFnH+PatWqMenp6XyHpfZK+v0tczJy4MABRldXl9m5cyfz8OFDZtSoUUz58uWZ2NhYhmEYxtvbm5k+fTq7/+LFixkdHR3m0KFDTExMDPtISUkp8xdDSEmkpaUxZmZmnA/8qKgovsMiKuzBgweMtbV1oYmIUChk7ty5U6JzTZ8+nXPsgAED5By9+nv58iVjYGDAeV9PnjzJd1gaQW7JCMMwzNq1a5nKlSszOjo6jLOzMxMaGspua926NTNkyBC2XaVKlQJ/OQMCAkr8fJSMkLL222+/cX4eJ06cyG7Lzs5mjh8/zmN0RJWEh4czFSpUKDQRAcCMHj26xOdLSEhgjIyM2GMFAgFz7949Ob4C9dejRw/Ov8cPP/zAd0gao6Tf3wKGYQpayVqpJCcnw8TEBElJSVQ/QspETEwMqlSpgpycvMmlypUrh7dv38LExARjx45FQkICDh48yHOURNldu3YNnTt35kw/oK+vj8DAQPz000/sZ9ezZ89QsWLFEp/X398f8+fPZ9t9+vTB33//XcQRpDDHjx9H9+5f1qcyNDTEo0ePaJSmgpT0+5vWpiEaydraGoMGDWLbqamp2LJlCzZu3IiNGzfSHA+kWOfOnUPHjh05iYiRkRGCgoLQrVs3dOrUCUBeYiFLIgLkzYljYmLCtg8dOoQ7d+6UTeAaJC0tDePHj+f0zZkzhxIRJUTJCNFY3w7zXbx4MSZMmAAAlIyQIv3777/o2rUr0tPT2T4zMzNcuHABrVq1AgB0794dtWrVwrhx42Q+v6mpKX799VdOX0BAwPcFrYEWLFiAV69esW0HB4dCh1YTftFtGqJRnj59ik+fPsHQ0BCGhoYYNGgQQkNDC9w3OTkZRkZGCo6QKLt9+/ZhyJAhEIvFbJ+lpSXOnz8PBwcHtu/Tp08IDQ1lr5DIKjk5GVWrVsWnT5/Yvlu3btH6KSX06NEjNGrUiL0VCwBXr15FixYteIxK89BtGkIKoK2tje7du6NBgwaoXr16oYkIQFdHiLQ///wT3t7enESkcuXKuHLlCicRAfKubpQ2EQEAY2NjTJkyhdNHV0dKhmEYjB07lpOI/Pzzz5SIKDFKRohGqVatGo4dO1bkDMD5KBkhX1u+fDnGjBmDry8m16xZE1euXEHNmjXl8pzjx4+Hubk52z558mSJZnrVdHv37kVwcDDbNjMzw5IlS/gLiBSLkhGicVxcXLB3795i96NkhAB5f2UHBARIXaVo0KABrly5gsqVK8vtucuVK4dp06Zx+vz9/eX2fOrg06dPmDx5MqdvyZIlnKSOKB9KRohG6t27N5YuXVrkPpSMEIZh8Ouvv0pNy+7s7Izg4OASTQH/vcaOHct5nrNnz+Lq1atyf15V9dtvvyE+Pp5tu7q64ueff+YxIlISlIwQjTV58mSMHj260O2UjGg2sViMUaNG4Y8//uD0t2nTBufPn4eZmZlC4jAwMJBa8p5qRwoWFhaGTZs2sW2RSIRNmzZBKKSvOmVH/0JEYwkEAqxbtw6enp4FbqdkRHPl5OTA29sbW7du5fR36tQJp06dUvgoq9GjR8PGxoZtX7x4kVMTQfKSRx8fH05Nz4QJE4pdmJUoB0pGiEbT0tLCwYMH0aBBA6lt0dHRUIGR76SMZWZmonfv3vjrr784/X369MHRo0ehr6+v8Jj09fUxc+ZMTp+/vz/9fH5l48aNiIiIYNu2traYO3cujxERWVAyQjSesbExTp48CWtra05/WloaEhISeIqK8CE1NRVdu3bF8ePHOf1Dhw7FX3/9BR0dHZ4iA0aMGIFKlSqx7StXruDChQu8xaNMYmJi8Ntvv3H6Vq1aRfMEqRBKRggBYGdnhxMnTsDAwIDTT7dqNMfnz5/RsWNHqS/4cePGYdu2bdDS0uIpsjy6urqYNWsWp4+ujuT59ddfOdPye3l5oXfv3jxGRGRFyQgh/9ekSRMcOHCAU+x2JvQu/o18h5AXHyGW0Ie+uvrw4QPatm2LkJAQTv+MGTOwZs0apSmAHDZsGKpWrcq2Q0JCEBQUxF9ASuD8+fOcW2q6urpYu3YtBAIBj1ERWSnHbxghSqJbt25YtWoV2155+Cp+ORCJgVtC0XLJRQTdj+EvOCIX7969Q6tWrRAZGcnpX7RoERYuXKhUX2o6OjqYPXs2p+/bqyN37tzRmKslWVlZ8PX15fTNnDkTNWrU4CkiUlqUjBDyjZpt+8DIqRsAIPdzHNsfm5QJn70RlJCokaioKLi7u+Px48ec/nXr1kkNp1UW3t7esLe3Z9u3bt3CiRMnAORN+NWjRw+8f/+er/AUatmyZXj69CnbrlmzptQkcUQ1UDJCyFfEEgZzjz+EabsR0LNvhpzPsey2/L815x5/SLds1MDDhw/h7u7OqQsSCoXYuXOn1F/bykRbW1tqFlZ/f39IJBKMGDECr169wt27d3mKTnGioqKwYMECTt/69euhq6vLU0Tke1AyQshXwqITEZOUiey4KIhTEsBkpXO2MwBikjIRFp3IT4CkTERERKB169acKwja2toIDAzEkCFDeIysZAYNGoTatWuz7cjISPTu3RuHDx8GkHerRp0xDINx48YhMzOT7evfvz86dOjAY1Tke1AyQshXXsV9ROKFLYjd8yty4qOR+/k9xGmfpfaLT8mUPpiohGvXrqFt27acYdt6enr4999/0adPHx4jKzktLS2pWViPHj3K/r+6Xxk5cuQITp8+zbaNjIywcuVKHiMi34vfsWqEKJFTp05h0qgxSHn3hu2TZKbi08WtMO/GXXjLwqj4VX/LiljCICw6EfEpmbAw0oNzNTOIhMpTVKlKzp8/jx49eiA9/csVr3LlyuHEiRNo3bo1j5EVj2EYrFy5ElFRUZBIJMjNzYVQKIREIpHaV52vjKSmpuKXX37h9P3++++cGWqJ6qFkhGi8uLg4TJw4EQcOHJDaJipnBoNabmxbAMDKJC8hUISg+zGYe/whYpK+XImxNtFDQLd68HKwLuJI8q1///0X/fr1Q3Z2NttnamqKoKAgODs78xhZyQgEAvTs2ROtWrUqtkD1yZMnyMzMhJ6e4pJmRZkzZw7evn3Lth0dHTF27FgeIyJlgW7TEI3FMAy2bduGOnXqFJCICGDk2AU2IzbCoLbb/3vyBHSrp5ArE0H3Y+CzN4KTiADqO6onKysLYrFYLuf+66+/0Lt3b04iYmlpiUuXLqlEIpLP3t4e58+fR8WKFYvcTywW49GjRwqKSnHu3r3LGXovEAiwceNG3iekI9+P/gWJRnry5AlGjx6NS5cuSW2rX78+fp6+EH+/MeQkAlYKvCKRP6onf8xO5pv7SDixAkJdw/8/DOB9xgT9W9RG+fLlUb58eZiYmEj9f/5/VWGEQW5uLpo1a4bOnTtj8ODBqFevXpmcd8uWLRg9ejRn7g07OzucP38etWrVKpPnUKS6devi7NmzaNu2LT5//lzofnfu3IGjo6PiApMziUQCHx8fTsI6atQouLi48BgVKSuUjBCNkp2djSVLluD333/n/JUMfJlQaurUqdDR0cEvPNZq5I/qYRgGEOciNyUR4uQPEOMDu08GgPWR50t0Pj09PakEpaCkpbC+cuXKyX3yL0NDQ3Ts2BFLlizBkiVL4OTkhMGDB2PgwIHFXgkozMqVK/Hrr79y+mrUqIELFy6gcuXKZRE2Lxo3bozTp0+jQ4cOSE1NLXAfdSti3blzJ65fv862K1asiEWLFvEYESlLAkYFpupLTk6GiYkJkpKSYGxszHc4REVdv34dI0eOxMOHD6W2tW7dGn/++SdnuOT3unnzJu7cuYOMjAykp6ez//36/wvb9jk5Fclp6WBysqBbqR70azTD5/92lFlsshIKhTAxMSlVIpN/nLa2drHPExUVhRo1anCuYmhpabFXS7p27VrkVZ78Yt+45Awc37EG29cu42x3cHDAuXPnYGVlVfo3Q4lcunQJXl5enCGu+dq3b4/z50uWrCq7jx8/onbt2vj48SPbt2vXLgwePJjHqEhJlPT7m5IRovaSkpIwY8YMbNy4UWqbqakpli9fjmHDhpX5X/4JCQlo37596f9CFYpQvuWPMHbpjfTHV/H52n5IstIgyUwDxDllGqsiGBgYlCiRWbFiBZ4/f17gOUxNTdG/f38MHjwYzZs35/yb5Rf7vv+cgU//bUPKzaOcY5s1a4agoCCYmSmm+FhRgoKC0L17d+TkcH8mzM3NER8fr1TT2ZfWiBEjsG3bNrbdqlUrBAcHq8VrU3eUjBAC4PDhwxg3bhxiYqSLPQcOHIg//vgDlpaWcnv+jx8/wsPDQ2rdk+LY29tDv+MkpBpXRUG/oExuNsx1xNjj7YDUlGR8/vwZnz9/RlJSEue/hfWlpKSUyevjU40aNTB48GB4e3vjcaoufPZGQCIRI/HsBqTeOcPZ18GpOa5dPKO2nx9HjhxB3759pQqA379/D2tr1R51df36dbRo0YJta2lpITIyEvXr1+cxKlJSlIwQjfb27VuMGzcO//77r9S2KlWqYOPGjejUqZPc42AYBleuXEHHjh2RlZVVomOGDRuG1atX49qrVPjsjcg7z1fb8/8W3PhTk1IX04rFYiQnJ8uUwHz7/7m5uaV6bnkwqtoQ2nXaQM+uPuIOzII45UttjX41JzgMmYuQ2Z3Ven6Wffv2wdvbm3OL6/Tp0/Dy8uIxqu+Tm5sLJycnztXFadOmYfHixTxGRWRR0u9vKmAlakUsFmPjxo2YOXOm1F//QqEQEydOxNy5c1GuXDm5xvHkyRMEBgbiwIEDJR5iWb58eWzevBl9+/YFAHg5GGHjT02k5hkpi1E9IpEIpqamMDU1LdXxDMMgPT29xAlMQX1fTzz2vVJe3gVe3oV2hcowceuPz1f2QpL+GQa13GDebQriM/KKgl3tK5TZcyqbH3/8Eenp6Rg1ahTbd/y/EGRZNVDZyfLWrFnDSUQqV64stWoxUQ+UjBC1ce/ePYwaNQqhoaFS2xwdHbFlyxY4OTnJ7fmjo6PZBETWGTBbtWqFPXv2SI3w8HKwRod6Vko3A6tAIIChoSEMDQ1LPfNlTk6OVLLy7t07/PzzzyWab0QoFKJRo0awqd0YN9ItoFupLrSMzAEAuja1kXrnDEzbj4RAKAKgGVP4jxw5EmlpaZg0aRIAYNeJyzgpyJtHRdUmy3v79q3UlPdr1qyBoaEhTxEReaJkhKi8jIwM/P7771i6dKnUrQMDAwPMmzcPv/zyi1wmRnr79i0OHjyIAwcO4ObNmzIfLxKJMG/ePEybNg0ikajgfYQCtfyLXltbG+bm5jA3N2f7Zs2aVWgioq+vj+bNm6Nly5Zo2bIlmjdvDmNjY4S8+IiBW7gJqI5FNZh1GMPpU+QU/nyq49Ef5d0j8PnKHmTHf1mROH+yvO+5vadIkyZN4gxb7tatG3r06MFjRESeKBkhKu3ixYsYPXp0gaMvPD09sXHjRlSrVq1MnzM2NhaHDh1CYGAgrl69WuS+AoEA7u7u6N+/P06cOMFZ3Mve3h779+9XqRlA5Sk6OhrLly9n2+bm5mzi0bJlSzRp0qTA4cHO1cxgbaKH2KTMAot9FT2FP5/yJ8szdu0HSU4GksOOgMn9/ygbLW0IAMw9/hAd6lnxfnWtKEFBQTh06BDb1tfXx5o1a3iMiMgbJSNEJX38+BFTpkzBjh3Sc29UrFgRq1atwsCBA8ts6F9CQgIOHz6MwMBABAcHF7g42deaN2+O/v37o2/fvrC1tQUA7N27l90+dOhQrFmzBkZGRmUSnzr4888/MXDgQDb5qFWrVon+/URCAQK61YPP3ggIUHCxr6Km8Odb/mR5AoEA5VsNAZOThYxXkfh4ahWMm/WEkVN3xCQpd/1MRkYGfH19OX3+/v6oWrUqPwERhaBkhKgUhmHw119/YeLEifjw4YPU9mHDhmHZsmWoUOH7P2g/f/6Mo0ePIjAwEOfOnSu2jqFJkybo378/+vXrV+AH54sXL2BiYoLNmzejX79+3x2fuvmeERJeDtZyK/ZVJV/XxQgEApi2H4kPRxZCkp6Ez5d2ISXiFMq3HozYpIYAlDMZWbRoEaKioth23bp14efnx2NERBEoGSEqIzo6Gj4+Pjhz5ozUtho1auDPP/9Eu3btvus5UlNTcezYMQQGBiIoKEhqyvhvOTg4oH///ujfvz9q1qxZ6H4pKSmoU6dOgUWqpGwoa7GvIn1bF5Md8wwZz77U04hTPuDjiRWYEX0O5deuQtu2bRUdYpGePn2KJUuWcPo2bNgAHR0dniIiikLJCFF6ubm5WLVqFfz9/ZGRkcHZpqWlhWnTpuG3336Dvr5+qc6fkZGBkydPIjAwECdOnChwau2v1axZEwMGDED//v1LPPGSrq4uLl68WGiRKikb6lrsW1Lf1s8I9Y2hX8sVGU9DOPs9eXAX7dq1Q9euXbF06VLUrVuXn4C/wjAMfH19OX8AeHt7o02bNvwFRRSGJj0jSi08PBwjR47E7du3pbY1b94cW7ZsgYODg8znzcrKwpkzZxAYGIhjx44VuthYvipVqrAJSOPGjWkaaqK0gu7HSE2Wl/nmPj79tx3ZMU+l9heJRBg5ciTmzJkj19mIi3PgwAEMHDiQbZcvXx6PHz/mNSby/WgGVqLSUlNTERAQgFWrVkkVixoZGWHRokUYM2aMTFcacnJycPHiRRw4cABHjhxBUlJSkfvb2Niwt2CcnZ0pASEqI3+dHk79jLEu2uo8x4H1S/Dy5UupY8qVK4dp06bBz88PBgYGCow2b/2oOnXqIDY2lu3bsGEDfHx8FBoHKXsl/v5mVEBSUhIDgElKSuI7FKIAJ0+eZKpUqcIg7w87zqNHjx7MmzdvSnyu3Nxc5uLFi8yoUaOYChUqFHjOrx8WFhbM2LFjmcuXLzNisViOr5IQ+coVS5jrzxOYo7ffMtefJzC5YgnDMAyTmZnJLF++nClfvnyBvwO2trbMjh07mNzc3ELPnZ6eXqaxTpgwgRNDs2bNinx+ojpK+v1NyQhRGrGxscyAAQMK/IC0trZmDh8+XKLziMVi5urVq8y4ceMYKyurYhMQMzMzZsSIEcz58+eZnJwcOb9KQpRDQkICM2nSJEZbW7vA34uGDRsyZ8+eLfBYX19fJjw8vEziCA8PZ4RCIfu8QqGwzM5N+EfJCFE6Hz58KLBfIpEwW7duLfAvNYFAwIwdO5b5/PlzkeeWSCRMWFgY8+uvvzKVKlUqNgExNjZmBg8ezJw8eZLJysqSx8slRCU8f/6c6du3b6G/K15eXszdu3c5x/Ts2ZMxMzNjIiMjv+u5c3NzGWdnZ87zjR8//rvOSZQLJSNEqVy+fJnx9vaW6n/y5AnTunXrAj8E69evz1y7dq3Qc0okEiYyMpKZMWMGU7169WITEAMDA2bAgAHMkSNHmIyMDHm+XEJUzvXr1xk3N7cCf3eEQiEzfPhw5t27dwzDMEyHDh0YAIy5uTlz//79Uj/nxo0bOc9jZWVV7B8eRLVQMkKUxuPHjxlTU1OmZcuWbF9WVhYzf/58RldXV+qDT0dHh5k/f36hVywePnzIBAQEMLVr1y42AdHV1WV++OEHJjAwkElNTVXUSyZEJUkkEubQoUOMvb19oQl9QEAA4+joyPZZWloyjx49kvm54uLipK6G7t+/Xw6vivCJkhGiFOLi4tirFvb29gzDMMy1a9eYevXqFfhh17p1a+bx48dS53n+/DmzYMECpkGDBsUmINra2kzXrl2ZPXv20M8MIaWQlZXFrF69mjEzMyv29y2/puvp06cyPcfgwYM552jfvj0jkUjk9IoIXygZIbxLT09nXFxc2A8bPT09xsfHp8APM1NTU2bbtm2cD6NXr14xy5YtY5ycnIr9MBSJREzHjh2Zbdu2MYmJiTy+akLUx6dPn5gpU6YwOjo6xf4OVqpUiYmKiirReYODg6Wuhj558kTOr4bwgZIRwiuxWMz88MMPJfqrasCAAUxsbCzDMAzz/v17ZvXq1YXeu/76IRAImDZt2jAbN25k4uPjeX7FhKiv6OhoZtCgQcX+TlapUoV59epVkefKyspi6tatyzlu9uzZCnolRNFK+v1N08ETuZg6dSoOHz5c5D5VqlTBhg0b0KxZM/zzzz8IDAzEpUuXwBQzD5+bmxv69++PPn36wMbGpizDJoQUoGrVqvDx8cHFixc5E5N969WrV2jbti0uX77Mrlb9rT/++AOPHj1i29WrV8eMGTPKPGaiWmgGVlLm1q9fj3HjxhW5z+jRo9GwYUP8+++/uHDhQrEr4jo5OWHAgAHo168fLTRHiAJlZWXB398fy5YtK/YPhXy1atVCcHAwrK25qyW/evUK9erVQ3p6Ott36tQpdOrUqUxjJsqjpN/fdGWElKnjx49jwoQJxe63efPmYj/YGjRowCYgNWrUKKsQCSElxDAMNmzYgOPHj5c4EQHyVt9t3749goODYWFhgexcCfaEvMTSycM5iUjv3r0pESEA6MoIKUPh4eFo1aoV58NGVrVr12YXpFOGlUQJIXk+f/6MsLAw3LhxA6GhoQgNDUViYmKRxzRo0ADdZ2zE/rufkfr0Bj4cns9u09HTx4tnT1GpUiV5h054RAvlEbkRSxiERSciPiUTFkZ6cK5mhrdvXqN58+ZF3k8uTJUqVTBw4EAMGDAADRs2pAXpCFEBDMPgxYsXbGJy48YNREZGIjc3l7OftkV1VOw9G3H7pkGcHM/2m7b9GVMm/4oZnespOnSiQJSMELkoaDXQijq5iN8/Fa9fSC9PXphKlSqhX79+GDBgAJo2bUoJCCFqICMjAxEREQgNDUVIaCiOnr0EcfIHiIwtOImIdsWqsB6yCiItLTye3wk6WkIeoybyRDUjpMwF3Y+Bz94I5GevjESMzJeRuH16NcSpRV+uBQBLS0v07dsXAwYMgKurK4RC+gAiRJ3o6+ujRYsWaNGiBbZdicIt+0fITfmIrPdPkPX2PtIeXYYk7TPMOo6FQKQFCQPsCXmJ4e7V+Q6d8IySEVIiYgmDuccfsolI8q1jSAo5CEn65yKPq1ChAnr37o0BAwagVatWEIlEco+VEMK/V4l5tWNaRhWgVdsNhrXdUL7FIGRE3YJepXpS+xHNRskIKZGw6ETOrRkIBIUmIiYmJujVqxcGDBiAdu3aQVtbWzFBEkKURhUzA6k+oV45GNZrU+x+RPPQdXJSIvEpmZy2QU1X4Ks6D4G2HgzqtcbMP7YjLi4OO3bsgKenJyUihGgob9eqEBZTCiYU5O1HCF0ZISViYaTHaWsZm0O/elMItHRgUMcd+vZNIdTWQ9duzaGrq8tTlIQQZaGjJcRI92r483J0ofuMdK9GxasEQCmvjKxfvx5Vq1aFnp4eXFxcEBYWVuT+f//9N+rUqQM9PT00aNAAp06dKlWwhD/O1cxgbaKHr//QqdjbHxV7zoBhnZYQaevB2iRvmC8hhADAjM71MLpVNakrJEIBMLpVNRrWS1gyJyOBgYHw8/NDQEAAIiIi0KhRI3h6eiI+Pr7A/a9fv46BAwdi+PDhuH37Nnr27ImePXvi/v373x08URyRUICAbnkfHPmfK/nDcfPbAd3qQVTcdVlCiEaZ0bkeHs/vhNld6mKwaxXM7lIXj+d3okSEcMg8z4iLiwuaNWuGdevWAQAkEgns7Owwfvx4TJ8+XWr//v37Iy0tDSdOnGD7mjdvjsaNG2PTpk0lek6aZ0R5FDTPiLWJHgK61YOXg3URRxJCCNE0cplnJDs7G+Hh4ZwVFoVCITw8PBASElLgMSEhIfDz8+P0eXp64ujRo4U+T1ZWFrKysth2cnKyLGESOfJysEaHelZSM7DSFRFCCCGlJVMykpCQALFYDEtLS06/paUlHj9+XOAxsbGxBe5f1LThixYtwty5c2UJjSiQSCiAq30FvsMghBCiJpSyjHnGjBlISkpiH2/evOE7JEIIIYTIiUxXRszNzSESiRAXF8fpj4uLg5WVVYHHWFlZybQ/AOjq6tLwUEIIIURDyHRlREdHB05OTrhw4QLbJ5FIcOHCBbi6uhZ4jKurK2d/ADh37lyh+xNCCCFEs8g86Zmfnx+GDBmCpk2bwtnZGatWrUJaWhqGDRsGABg8eDBsbW2xaNEiAMAvv/yC1q1bY8WKFejSpQsOHDiAW7duYfPmzWX7SgghhBCikmRORvr3748PHz7A398fsbGxaNy4MYKCgtgi1devX3NWY3Vzc8P+/fsxa9YszJw5EzVr1sTRo0fh4OBQdq+CEEIIISpL5nlG+EDzjBBCCCGqp6Tf30o5moYQQgghmoOSEUIIIYTwipIRQgghhPCKkhFCCCGE8IqSEUIIIYTwipIRQgghhPCKkhFCCCGE8IqSEUIIIYTwipIRQgghhPBK5ung+ZA/SWxycjLPkRBCCCGkpPK/t4ub7F0lkpGUlBQAgJ2dHc+REEIIIURWKSkpMDExKXS7SqxNI5FI8P79exgZGUEgEJTZeZOTk2FnZ4c3b97QmjdyRO+z4tB7rRj0PisGvc+KIc/3mWEYpKSkwMbGhrOI7rdU4sqIUChEpUqV5HZ+Y2Nj+kFXAHqfFYfea8Wg91kx6H1WDHm9z0VdEclHBayEEEII4RUlI4QQQgjhlUYnI7q6uggICICuri7foag1ep8Vh95rxaD3WTHofVYMZXifVaKAlRBCCCHqS6OvjBBCCCGEf5SMEEIIIYRXlIwQQgghhFeUjBBCCCGEV2qfjKxfvx5Vq1aFnp4eXFxcEBYWVuT+f//9N+rUqQM9PT00aNAAp06dUlCkqk2W93nLli1wd3eHqakpTE1N4eHhUey/C/lC1p/pfAcOHIBAIEDPnj3lG6CakPV9/vz5M3x9fWFtbQ1dXV3UqlWLPj9KQNb3edWqVahduzb09fVhZ2eHSZMmITMzU0HRqqbLly+jW7dusLGxgUAgwNGjR4s9Jjg4GE2aNIGuri5q1KiBnTt3yjdIRo0dOHCA0dHRYbZv3848ePCAGTlyJFO+fHkmLi6uwP2vXbvGiEQiZunSpczDhw+ZWbNmMdra2sy9e/cUHLlqkfV9HjRoELN+/Xrm9u3bzKNHj5ihQ4cyJiYmzNu3bxUcueqR9b3OFx0dzdja2jLu7u5Mjx49FBOsCpP1fc7KymKaNm3KdO7cmbl69SoTHR3NBAcHM5GRkQqOXLXI+j7v27eP0dXVZfbt28dER0czZ86cYaytrZlJkyYpOHLVcurUKea3335jDh8+zABgjhw5UuT+UVFRjIGBAePn58c8fPiQWbt2LSMSiZigoCC5xajWyYizszPj6+vLtsViMWNjY8MsWrSowP379evHdOnShdPn4uLCjB49Wq5xqjpZ3+dv5ebmMkZGRsyuXbvkFaLaKM17nZuby7i5uTFbt25lhgwZQslICcj6Pm/cuJGpXr06k52dragQ1YKs77Ovry/Trl07Tp+fnx/TokULucapTkqSjEydOpWpX78+p69///6Mp6en3OJS29s02dnZCA8Ph4eHB9snFArh4eGBkJCQAo8JCQnh7A8Anp6ehe5PSvc+fys9PR05OTkwMzOTV5hqobTv9bx582BhYYHhw4crIkyVV5r3+dixY3B1dYWvry8sLS3h4OCAhQsXQiwWKypslVOa99nNzQ3h4eHsrZyoqCicOnUKnTt3VkjMmoKP70KVWCivNBISEiAWi2Fpacnpt7S0xOPHjws8JjY2tsD9Y2Nj5RanqivN+/ytadOmwcbGRuqHn3CV5r2+evUqtm3bhsjISAVEqB5K8z5HRUXh4sWL+PHHH3Hq1Ck8f/4cY8eORU5ODgICAhQRtsopzfs8aNAgJCQkoGXLlmAYBrm5uRgzZgxmzpypiJA1RmHfhcnJycjIyIC+vn6ZP6faXhkhqmHx4sU4cOAAjhw5Aj09Pb7DUSspKSnw9vbGli1bYG5uznc4ak0ikcDCwgKbN2+Gk5MT+vfvj99++w2bNm3iOzS1EhwcjIULF2LDhg2IiIjA4cOHcfLkScyfP5/v0Mh3UtsrI+bm5hCJRIiLi+P0x8XFwcrKqsBjrKysZNqflO59zrd8+XIsXrwY58+fR8OGDeUZplqQ9b1+8eIFXr58iW7durF9EokEAKClpYUnT57A3t5evkGroNL8TFtbW0NbWxsikYjtq1u3LmJjY5GdnQ0dHR25xqyKSvM+z549G97e3hgxYgQAoEGDBkhLS8OoUaPw22+/QSikv6/LQmHfhcbGxnK5KgKo8ZURHR0dODk54cKFC2yfRCLBhQsX4OrqWuAxrq6unP0B4Ny5c4XuT0r3PgPA0qVLMX/+fAQFBaFp06aKCFXlyfpe16lTB/fu3UNkZCT76N69O9q2bYvIyEjY2dkpMnyVUZqf6RYtWuD58+dssgcAT58+hbW1NSUihSjN+5yeni6VcOQngAwts1ZmePkulFtprBI4cOAAo6ury+zcuZN5+PAhM2rUKKZ8+fJMbGwswzAM4+3tzUyfPp3d/9q1a4yWlhazfPly5tGjR0xAQAAN7S0BWd/nxYsXMzo6OsyhQ4eYmJgY9pGSksLXS1AZsr7X36LRNCUj6/v8+vVrxsjIiBk3bhzz5MkT5sSJE4yFhQXz+++/8/USVIKs73NAQABjZGTE/PXXX0xUVBRz9uxZxt7enunXrx9fL0ElpKSkMLdv32Zu377NAGBWrlzJ3L59m3n16hXDMAwzffp0xtvbm90/f2jvlClTmEePHjHr16+nob3fa+3atUzlypUZHR0dxtnZmQkNDWW3tW7dmhkyZAhn/4MHDzK1atVidHR0mPr16zMnT55UcMSqSZb3uUqVKgwAqUdAQIDiA1dBsv5Mf42SkZKT9X2+fv064+Liwujq6jLVq1dnFixYwOTm5io4atUjy/uck5PDzJkzh7G3t2f09PQYOzs7ZuzYscynT58UH7gK+e+//wr8zM1/b4cMGcK0bt1a6pjGjRszOjo6TPXq1ZkdO3bINUYBw9C1LUIIIYTwR21rRgghhBCiGigZIYQQQgivKBkhhBBCCK8oGSGEEEIIrygZIYQQQgivKBkhhBBCCK8oGSGEEEIIrygZIYQQQgivKBkhhBBCCK8oGSGEEEIIrygZIYQQQgivKBkhhBBCCK/+BzENnCRF0EayAAAAAElFTkSuQmCC", "text/plain": [ "
    " ] @@ -363,7 +401,7 @@ ], "source": [ "# Greedy rollouts over trained model (same states as previous plot)\n", - "model = lit_module.model.to(device)\n", + "model = model.to(device)\n", "out = model(td_init, phase=\"test\", decode_type=\"greedy\", return_actions=True)\n", "\n", "# Plotting\n", diff --git a/notebooks/examples/1-example-sdvrp.ipynb b/notebooks/examples/1-example-sdvrp.ipynb index b4c6011b..8beb0036 100644 --- a/notebooks/examples/1-example-sdvrp.ipynb +++ b/notebooks/examples/1-example-sdvrp.ipynb @@ -57,6 +57,10 @@ "name": "stderr", "output_type": "stream", "text": [ + "2023-07-23 00:12:34.022428: I tensorflow/core/util/port.cc:110] oneDNN custom operations are on. You may see slightly different numerical results due to floating-point round-off errors from different computation orders. To turn them off, set the environment variable `TF_ENABLE_ONEDNN_OPTS=0`.\n", + "2023-07-23 00:12:34.042563: I tensorflow/core/platform/cpu_feature_guard.cc:182] This TensorFlow binary is optimized to use available CPU instructions in performance-critical operations.\n", + "To enable the following instructions: AVX2 AVX512F AVX512_VNNI AVX512_BF16 FMA, in other operations, rebuild TensorFlow with the appropriate compiler flags.\n", + "2023-07-23 00:12:34.372727: W tensorflow/compiler/tf2tensorrt/utils/py_utils.cc:38] TF-TRT Warning: Could not find TensorRT\n", "/home/botu/miniconda3/envs/rl4co/lib/python3.10/site-packages/torchrl/__init__.py:26: UserWarning: failed to set start method to spawn, and current start method for mp is fork.\n", " warn(\n" ] @@ -66,15 +70,12 @@ "%load_ext autoreload\n", "%autoreload 2\n", "\n", - "from omegaconf import DictConfig\n", - "\n", "import torch\n", - "import lightning as L\n", "from lightning.pytorch.callbacks import ModelCheckpoint, RichModelSummary\n", "\n", "from rl4co.envs import SDVRPEnv\n", "from rl4co.models.zoo.am import AttentionModel\n", - "from rl4co.tasks.rl4co import RL4COLitModule" + "from rl4co.utils.trainer import RL4COTrainer" ] }, { @@ -84,31 +85,6 @@ "## Main Setup" ] }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "### Configuration\n", - "\n", - "This is can be either handled by Hydra or directly passed to the `RL4COLitModule`. You may add other parameters for it as well" - ] - }, - { - "cell_type": "code", - "execution_count": 3, - "metadata": {}, - "outputs": [], - "source": [ - "config = DictConfig(\n", - " {\"data\": {\n", - " \"train_size\": 100000,\n", - " \"val_size\": 10000,\n", - " \"batch_size\": 512,\n", - " },\n", - " \"optimizer\": {\"lr\": 1e-4}}\n", - ")" - ] - }, { "cell_type": "markdown", "metadata": {}, @@ -118,7 +94,7 @@ }, { "cell_type": "code", - "execution_count": 4, + "execution_count": 3, "metadata": {}, "outputs": [ { @@ -127,15 +103,27 @@ "text": [ "/home/botu/miniconda3/envs/rl4co/lib/python3.10/site-packages/lightning/pytorch/utilities/parsing.py:196: UserWarning: Attribute 'env' is an instance of `nn.Module` and is already saved during checkpointing. It is recommended to ignore them using `self.save_hyperparameters(ignore=['env'])`.\n", " rank_zero_warn(\n", - "/home/botu/miniconda3/envs/rl4co/lib/python3.10/site-packages/lightning/pytorch/utilities/parsing.py:196: UserWarning: Attribute 'model' is an instance of `nn.Module` and is already saved during checkpointing. It is recommended to ignore them using `self.save_hyperparameters(ignore=['model'])`.\n", - " rank_zero_warn(\n" + "/home/botu/miniconda3/envs/rl4co/lib/python3.10/site-packages/lightning/pytorch/utilities/parsing.py:196: UserWarning: Attribute 'policy' is an instance of `nn.Module` and is already saved during checkpointing. It is recommended to ignore them using `self.save_hyperparameters(ignore=['policy'])`.\n", + " rank_zero_warn(\n", + "Using 16bit Automatic Mixed Precision (AMP)\n", + "GPU available: True (cuda), used: True\n", + "TPU available: False, using: 0 TPU cores\n", + "IPU available: False, using: 0 IPUs\n", + "HPU available: False, using: 0 HPUs\n" ] } ], "source": [ - "env = SDVRPEnv(num_loc=20) # TorchRL environment\n", - "model = AttentionModel(env) # default is REINFORCE with greedy rollout baseline\n", - "lit_module = RL4COLitModule(config, env, model) # custom LightningModule" + "# RL4CO env based on TorchRL\n", + "env = SDVRPEnv(num_loc=20) \n", + "\n", + "# Model: default is AM with REINFORCE and greedy rollout baseline\n", + "model = AttentionModel(env, \n", + " baseline='rollout',\n", + " train_data_size=100_000, # really small size for demo\n", + " val_data_size=10_000)\n", + " \n", + "trainer = RL4COTrainer(max_epochs=3)" ] }, { @@ -147,19 +135,19 @@ }, { "cell_type": "code", - "execution_count": 5, + "execution_count": 4, "metadata": {}, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ - "Tour lengths: ['19.33', '12.53', '18.37']\n" + "Tour lengths: ['14.51', '16.32', '10.78']\n" ] }, { "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAAiMAAAGdCAYAAADAAnMpAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjcuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/bCgiHAAAACXBIWXMAAA9hAAAPYQGoP6dpAAD0kElEQVR4nOzdd1xTZ9vA8d85GSQQ9gZBcO+9te7W0WrtsHvY3T7ddtg+T3ff7tq97bB7uKpWrXXvvfdiyl4BQgjJSc77RxCkoIKKAbm//fARTu6Tcx20yZV7XLekqqqKIAiCIAiCh8ieDkAQBEEQhKZNJCOCIAiCIHiUSEYEQRAEQfAokYwIgiAIguBRIhkRBEEQBMGjRDIiCIIgCIJHiWREEARBEASPEsmIIAiCIAgepfV0ALXhcrlIT0/H19cXSZI8HY4gCIIgCLWgqirFxcVERUUhy6fu/2gUyUh6ejoxMTGeDkMQBEEQhLOQmppKs2bNTvl4o0hGfH19AffN+Pn5eTgaQRAEQRBqo6ioiJiYmIr38VNpFMnIiaEZPz8/kYwIgiAIQiNzpikWYgKrIAiCIAgeJZIRQRAEQRA8SiQjgiAIgiB4lEhGBEEQBEHwqEYxgVUQhLrLt5VgUcoqfjZpvQgy+HgwIkEQhJqJZEQQLkL5thKe3zofRXVVHNNKMq/2GicSEkEQGhwxTCMIFyGLUlYlEQFQVFeVnhJBEISGQiQjgiAIgiB4lEhGBEEQBEHwqDonI6tXr2bcuHFERUUhSRJ//vnnGc9ZuXIlPXr0wMvLi1atWjF9+vSzCFUQBEEQhItRnZORkpISunbtyqefflqr9omJiVx++eUMGzaMnTt38thjj3H33XezePHiOgcrCIIgCMLFp86racaMGcOYMWNq3f6LL74gPj6eqVOnAtC+fXvWrl3L+++/z6hRo+p6eUEQBEEQLjL1Pmdkw4YNjBw5ssqxUaNGsWHDhlOeU1ZWRlFRUZUvQRAEQRAuTvWejGRmZhIeHl7lWHh4OEVFRZSWltZ4zhtvvIG/v3/FV0xMTH2HKQgXlYIyq6dDEARBqLUGuZrm2WefpbCwsOIrNTXV0yEJQqNgcdj4fP9qPtu/usbHd+elXeCIBEEQzqzeK7BGRESQlZVV5VhWVhZ+fn4YjcYaz/Hy8sLLy6u+QxOEi4rFUcY7u5aSWXrqYc35KXswaHWMjG53yjYleVaMgUZkWaqPMAVBEKqp92Skf//+LFy4sMqxJUuW0L9///q+tCA0Kb8f21qRiPhovRgQHk+0TwBWh53teakcLcoBYGbCdtr6hxNjCqw4V7E72fPnQdZ+spmENSncMes6ulzd3iP3IQhC01PnZMRisXD06NGKnxMTE9m5cydBQUHExsby7LPPkpaWxg8//ADA/fffzyeffMLTTz/NnXfeyfLly/njjz9YsGDB+bsLQWjizGVWtuamAOCt1fHf7qMIMZgqHh/RrB2zE3ey+Ph+VGBlxmFubd2X/CQzG77axvovt2HNL0Uq7w1xuVRP3IYgCE1UnZORrVu3MmzYsIqfJ0+eDMDtt9/O9OnTycjIICUlpeLx+Ph4FixYwOOPP86HH35Is2bN+Prrr8WyXkE4j3bkpeJS3QnEkMg2FYlIYUYxfhEmJElibGxHVmUcxmZ3sGXOXkqWH+HQP8eQZAnV6T5XLU9CfIJrHkIVhMZE7FzdeNQ5GRk6dCiqeupPTTVVVx06dCg7duyo66UEQailQrut4vs2/mEAlFnsvNzsfSSNhH+0L76hPuhz8pFSbEguOFTe/kQicjKfEO8LEbYg1Buxc3XjUu9zRgRBqH96WVPx/YllvV4mPX3u7MaW73ai2BQCY/1JzckDF6jA6aanvtPlC2StjEavQe+tw8ukxxhgwDvIiCnMB79IE/7RvgTGBRAcH0hoq0AMfob6vUlBqIPT7VwdhEhGGhqRjAjCRaB1eW8IwKqMI/QPb4EsSdwwbTz97+7Bp8O+Z/ecg9ieCMHV04eAzwopW13gHqKpYX5I+7GtKC2wYS0oxVZkx5pfSmFGMS6Hk3+9vlfx7wTGEOCFT5A3pjBv/CJM+DfzI7B5AMHxAYS2DhIJjCAIgEhGBOGi0MovlChvf9KthSRb8vn20Hquie9OoJc3MX2iGb3oCuaPnYf+nRyUUTaumnEVpi0OZv1nIebUQk4eedV567h3wc2nvJbT6aLweBG5R/PJTzJTkFpIUbqF4kwLJbnWygSmoJSijGKcZ0pgNBIaLy16oxYvXz2GAAM+QUZMoeU9MM38CIz1J7hFICGtgjD6iwRGEC42IhkRhIuAJElc16InH+1dgQuVLTnJbMtJIdLbH4tSRqFcCrPj8bo/Fd3iYlYMX8RjG+/m2UMPsfztdSx5bQ2qS8WluPAOPP2bvUYjE9Q8gKDmAbWOz+VyYU6tTGDMqUUUphdTnFWewOSfSGBsFGVYcDpcNfbYnFAtgfF3DyH5hvngG2kiINqPwOb+BMW7ExjvAJHACEJDJpIRQbhItA+M4O52A/nu8AYcLicuVNKs5soG3jKxf/Ym5G0zu37Zx0vR7/HoujsY9cIQet3ahdmPLGL/X0cwhZ7/yauyfPYJTN6xAvKSzJhTCv+VwNiwFZXVMYHRoDfq0P9rDoxvhInAZn4ExPoTHB9ASOtgkcAIwgUkkhFBuIj0DI2lhV8IazKOsjE7EbO9FK0s08I3hCGRrekaHI38s8z6wXHM/M9C3un6JTd8O54+t3fjnvk3cWjJMXRGnadvA6iawLSu5Tkul4vC48XkHssnL9GMOdWdwFiySrDklGAtsFFWVEap2UZxZu0TGJ3xX5N4Q73xjfQlINq3cghJJDCCcNYk9XTrdBuIoqIi/P39KSwsxM/Pz9PhCMJFIXV7Bp8M/g57iYO+d3fnhmnjPR2SR7hcLorSisk5VkB+YkFFAlOcWUJJzok5MGWUWewoNqV2CYxeg+7EKiT/Ez0w3vhGVA4hnZgD4x0oarrUhxRLPq/t+Lva8f91H02sKcgDETVNtX3/Fj0jgtBExfSI5OX0ybzXexqbvt5B6pZ0Hl1/J3pvvadDu6BkWSYgxp+AGH8YGlerc1wuF0XpFnKO5lOQVEBBShGF6UXuBKZiDkwZtsKy2vfAnJTAGPzLVyGFetcwByYQnyBRB0a4uIhkRBCaMIOfgWcOPMiPN81m5+/7eCn6fR5dfyfh7UM9HVqDJssyAc38CGjmB8TV6pwTCUzusfJVSMknzYE50QNTWJnAZDpyTpvASBoJrb5yCMkQ4FU+hHSiDkzlKqTgloGYgptOAqOqKonFeZ4OQ6gDMUwjCI2ETXEwN3k3O/NSKXaUEeMTyPUtexLnG3zKcw6Zs5iRsJ0MayGBXt6Mje3EgPAWVdqsSD/MkuMHKNyUi+65dOQyuPnbCfS8qXN935JwBi6Xi6KM8gQm0UxBSiFF6cUUZVZNYOwlDhw2B0776XtgqiUw/pUJjG+ECf9m5XNgyifxNsYEJtdm4Yv9a0gtKajx8T6hzZnUpj8aWb7AkTVNYphGEC4yPxzZRLq1kDvaDiBAb2RTdiLv71nOSz0vJ9Cr+ptGrs3CJ/tWMjiyNXe1G8BBcyY/Ht6Ev95Ax8AoALbkJDMzYTs3tepNfMcQ5rbazMFHt/HTzbNJXJfCtZ9efqFvUziJLMsERPsREO0Hg2t3jsvlojjTPYSUn1jongOTVuROYE4eQioqozjbUqcERm/SY6xIYLzxjfB1V+KN9Se4RQAhrYIxeXArgYIyK+/sWoLZXnrKNptzknGqKne3G4gsna4OsXAhiWREEBoBu1NhR24q/+k4uGLvmXHNu7A7P41VGUeYENe12jmrMo4QYjAxsUUPACK9/TlamMPStEMVycjStIMMimjJwIiWANw3eiRTvipE+9Rx1n22leRNaTy89k70BvFS0VjIsox/lB/+UXVPYHKPFbhXIaW4E5ji8lVIpfk2SovKKCsqw5JdgtPurHsCE1g5idc/yreiEm9IqyB8QryRzkNiMDNhe0UiEmYwMT6uK52DoihVHKzPOsbClH0oqottuSn0youlR0jsOV9TOD/EK8wF9u9dJEHsJHm2mtKOnC5VxYWKVtJUOa6TtRwryqnxnISiXNoFRFQ51iEwkj8StgOguJykFOczplmHisdlSaJDZDQl34Xg/UIWe+Yc5OXo93hs412Etj71cJDQuJ2cwLS8pHmtznG5XFiyreQezSc3oYDC1EIK04qr9MCUFpZRVlyHBEbnnsSr99FVrELyCS3fSiDal4DYyq0E/p3AFNpL2Z6XCoCP1ounul6Gn9691Nqg0XF5bGfCjX5MO7gOcA9PimSk4RDJyAVU0y6SIHaSPBtNbUdOg1ZHC98QFqbuJdLbDz+9gc05ySQU5RJmNNV4TpHDVvFifIKf3oDN6cDuVLAqdlyo+NbQJrO0iIdmX8/KqRuY+9Q/vNnhM2799Rq6XdsBQQB3AuMXYcIvwkSLQbV7Uz85gclPKnBP4k1zT+K15FQOIZVZ7FhyrLVOYLRGLRhldF4K+MkERQaybeR2IjuHY7fYCe8QQni7UHqGxDLXsItsm4XDhdmUKg6M2oZRV6epE8nIBVTTLpIgdpI8G01xR8472/bn+8ObmLL5T2QkYk2B9A5tToolv96uOfSJ/sT2jeaLy37k+4kzSHysL1e9P7reridc3M46gckpT2ASyxOYdAvFmcXuBKZ8Eq+lqBQ5V4FklbxdGcz7O6PiOWL7RPH4pnuQJIkYUxDZNgsAVsUukpEGQiQjQqOTaS1kXtLuGh87Wphz0RY0CjX68mTXkZQ5FWxOB/56I18dWEuIoeaeET+dgSK7rcqxIrsNg0aHXqNFliRkJIpraOOvq+wtaTEolhdSHue9Xl+x+oNNJG88zkOrJqHVi5cPof7JsoxfuAm/cBMtBp46gVmbeZQfj2wGYEx0B0aHtceaV8o73b6kxWD30JOqqqSVmCvOEYlIwyHWNgmNyoGCTF7fsZg9Bek1Pv57wjYWpOy9wFFdWF4aLf56IyUOO/sLMuga3KzGdi38Qjhozqxy7IA5kxZ+IQBoZQ2xvkEcMGdVPO5SVQ6e1OYEU4g3zyU8QocrWpO8MY2Xot8nL7HmpZOC4AkdAiKRcM8hWZedgNNLIqh5AA6rg+C4AAB256eRWVoEQAvfELy1TavAX0MmkhGh0cgptfD5gdWUuRTAPSmta1Azeoc0r7K0dV7ybjZnJ3koyvqzryCdvfnp5Nos7C/I4L09S4nw9mNged2QOYk7+e7Q+or2QyJbk2uzMCtxB5nWQlamH2ZbTgojo9tWtBkZ3Y61mUfZkJVAhrWQX45uwe5SqtUiAfcn1Hvm38Tlr4+gJM/K620+Yc/cg/V/44JQC0EGH7oGRwPu+VJTdy9lR3oyTrsT2UfD0rSDfHOw8v+PYVFtPBWqUAPRzyo0GsvSD1LmdCcinYOiuLvtQAzl3awuVeWf4/uZk7QLgIUpe+kd2vy8LBdsKEoVB3OSdmEus+Kt1dMjJIYJcV0rijcV2kvJL7NWtA8xmHio41BmJGxnedohAry8ubVN34plvQC9Q5tjcdiYl7ybIruNZqZAHuk4DD/9qfdLGfnsIJr3i+arsT/z7YTfGfb0AMa/dWn93bgg1NLEFj04VpRLscNGmtXMF4uW4g38vHY9SsvK1WCdg6LoFSpW0jQkogLrBXSqjZtAbN50JorLyRMbZ2NzOtDJGt7qMwEfnVe1dm/vWlKx1PWpLiNpVV6TQzj/irMsTO01jcLjRbS4JJYHlt+OVis6WwXPyrAW8vn+1WSVFqOfkoZ2gxVnOy/KvnInH71Dm3Nb677oNeKz+IVQ2/dv8cohNAoFZaXYnA7AXSvjRCLyn4P/odumbmwvctfO6B1aWSMh3Vp44QNtQnzDTbyQ/CjtRrUkYU0KL0e/R0GK+J0LnhXp7c+LPS/nBjqh3eDuKdQcLmOgPpYXeozl7nYDRSLSAIlkRGgkKjvwZCqHXsyKmd2W3fTc0pMW61qwybKqhjOE+iLLMvf9fQujXx6KJbuE11p/xP6FRzwdltDEyUjsf2EHkux+rZBUiFjiItonwLOBCackhmkuEKfLxbzk3fx9fH+Nj0/peikt/MROqaficDl5YsMsylwKXhotb/W5qmJZXoothUn7JrHCvKK8tYQ/4bQ2xWHU6FDL0xIXLk78c2/n045vO3zriVu5aB1acoxpV/yK0+7k0ucuYeyrwz0dktBE7Zl7kG8n/F7lmCnUm5fSJqPRaU5xllAfavv+LZKRC8DuVPhs/2oO/GuZ5cniTME83nl4xYRMobqfjmxmTeZRwD0cc3ubfujkyheW7xMXck/CNTiwneopKnT06cjefhf3EmBPKEwv4r1e0yjKsNB6eBz3Lr5VzCMRLiilTOH1tp9gTi2qVr311l+voccNnTwUWdMkkpEG5OuD69iSk1zxc5S3P+FGX3JsFo6fVICna3Az/tOhljtbNUGZ1kL+b8ffOFxOAAL0RnqHxmHQaNmdn0ayJR9VVZnreJlsTj9UMKPTDK4Nv/ZChN3kKIqLLy/7kaMrkvCLNDF56z3uTdsE4RzZFAdzk3ezMy+VYkcZMT6BXN+yJ3G+lStllr+zjvlTllYbp1Vl0LQ1cs2Ka6stXV+Rfpglxw9QaC+lmSmQG1r2JN63aq0d4eyIZKSBSC8p5OXtCwAwaLQ80GFwlc3LjhZm8+n+VVgV9+TM/3YbTXNfsarmVHbmHWfagbU1ltU/oV9EJM9n3kq6Pb1iiOZk7bzbsa/fPmRJfGKvTwufW86S19ag8dJwz/wbaXtpS0+HJDRyXx1YS7q1kJta9SZAb2RTdiJL0w7xUs/LCfTypjjLwqstPsJhdZzyOcq+iOHB60ZXLHHfkpPM9EMbuKlVb+J9Q1iWfpDtuSm83HNctb2dhLoTq2kaiBPDCuDe8v3fu6i28g9jQvNuNbYXqusW3Iynul5Kl6Bo/l1BJMYnkLvaDmBSq6HM7jIbjVTz2PAR6xE+T/28/oNt4sb+33DuWXATuFS+uOwnFr+y6swnCcIp2J0KO3JTuSa+G238wwgz+jKueRfCjCZWZbh7Qpe9ufa0iQgShP5lZ2naoYpDS9MOMiiiJQMjWhLl48/Nrfqgl7WszzpW37cknEQkI/XseEllyex+YXEApFuLabHgC17YuwarYqdveFyN7U+wu5wkWMysyUnFotjrO+QGL843mAc7DuGNPhN4qOMQHugwmOe6j+F/3UfTJywOSZLo49+Hd1u9W+1cGRknTh468hD65Xo+SPngwt9AE9JhbGv+d/QRTGE+/P3iSr4Y/RMu16l7tQThVFyqigsV7b8+ZOhkbUVtoZZD4+h+fUfajmpJTO8oMMogg867fC6eCq4DpSQU5QLu+kUpxfm0P+lDoixJtAuIqGgjXBhisXU9c500CqYtn2y5pSCDdJuFVw+s59UD6wnSGwiWJOK9DGQ7Vf63ZzXJ1kKOWgpIKikku8xaMdgwteswJrfp44E7aXgCvbyrlIH/t0diHmGleSXzc+bjxD3P5OeOP9PZ1Jnh24eT7cjm8SOP8/TRp3mz5ZtMbj75QoXepATG+vNi2mQ+GzadQ4uP8UrzD5m89R78wmve4E8QamLQ6mjhG8LC1L1EevvhpzewOSeZhKJcwozuf0udr2xH5yvbVZzz2KCp6DKcvH3saVwulbLiMg5asvgiYR12p4JVseNCxfdfwzF+ekPFHjbChSF6RupZmNG34vudeccBuDK6DbZrnmRGvytp5xtEvt3GkbJS/ikq4M+c47x5cAO/pRxgU34GWSclIgBDRQnjWpMkie/af0eUl3tsuLWxNRPDJ9LR1JGswVkc7HuQcH04DtXBE0efQLdcxztJ73g46ouTVivzyJo7Gf70AAqPF/Fq3AccWZnk6bCERubOtv1RVZiy+U8eXPs7K9IOubd9qDZoW67Eiezt/hAoyxJGfwNao/gM3hCJZKSenTxr+8+kXeTbSip+vjamHeuH3cwzMW0IOqkioAtw1jDxsqVPAN0Dwus13otNgC6AOV3m4Kfx481Wb1aZR9LW1JbMSzI53PcwkfpIFFXh6WNPo1um482kNz0Y9cVr3FuXcuec63E5VT4b/j1L31zr6ZCERiTU6MuTXUfy0YDreLPvBJ7tPhqn6iLEcIpetmIX+FYd1imy2zBodOg1Wkw6L2Qkiu22am38dWLy6oUkUsR61sovlBa+ISQU51JQZuXFbX/RNyyeGJ9AjpcUsCkniTKnwrWhkRyz21mWn3XK5xoSGnNRbfz2b6vSj7Aq4wh5ZRbAXdb5itjOdAqKOuU523JSmJu8mzybhTCjL1fHd6NzUHTF46qqkpav426vr1l+xEFy1jJuatWbcGPlrO7WptakX5LOUctRhuwYQro9nWePPcvzx57nxRYv8lz8c/V3001Q5wnt+O+hh3i/z9cseHYZiWtTuGveDciy+Gwk1I6XRouXRkuJw87+ggyuju9eYzup0Im9Y9V/VwfMmbTwcy/b1coaYn2DOGDOoltIDOAeWj9ozhS7+l5g4v/+eiZJEve1H0RYeeZudzlZk3mUX45tYXXm0YpdaIO9fPh94ESebdfvlM/1bdIeNDPeoteS6SRZzBci/AsqwMvIVfFd+W/30fy322jaBUTw2f7VpJ9Ui+Vkx4py+PrgOgZGtOC5HmPoFtyMz/evIe2k9ouPH2B5+iFubdOfZ7pdhpes5aO9KypqlZyslakVaZekkdg/kWh9NAoKzyc8j3aZlpePvVxPd900BccH8lLa4zTvF83+BUf4vxYfYcm1nvlEoUnbV5DO3vx0cm0W9hdk8N6epUR4+zGwvAd6TuJOvju0vqK9VOhECZSYlbiDTGshK9MPsy0nhZHRbSvajIxux9rMo2zISiDDWsgvR7dgdynVapEI9UvUGblALA4bc5N2syk7iTKXUnFcJ2voGxbHlc274Kc3oqoqj+9cxodHt1W0kYB4b3+sToXMssphHp0kc2l4HL/3H4dJe3F2KT6+YSbXxHdnUET1GhVfHViL3aXwUMehFcfe3LmYGJ9Abm7dB1VVeXrTHC5t1p7LmrUHoFSx8+TG2Uxq04/e5aubTiXJmsQl2y/heJl7ro8GDf+N+y+vtHzlvN2fAHMe/5vVH2xCZ9Ry/5JbaTFQzIsSarY1J5k5Sbswl1nx1urpERLDhLiuGLV6AKYf2kBeWQlPdBkJwOPSyzSfGI/lmVAyrIUEeHlzeWynGoqeHeKf4wcostvcRc9a9CTeTxQ9Ox9E0bMGqlSxc8ichdXpwKjR0cY/HB+dvkobVVW5f/tivkrYBbiTkY+6j+ShVj0BeHXfOt49vJmik5b5GjVaJjXvzEddh6PVNv7RN5fqYltOCtMPb+R/3ccQ5eNfrc0zm/9kZHQ7RkZXzp6fl7ybXXnHeb7HWHJKLTy3dR7PdR9DjCmwos27u5YSYwrg+pa9ahXLcdtxBm4dSEpZCuBOSqbETuG11q+d410KJ+ycsY8fb5qNy+niyncvY+jk/p4OSWjkFLvCU16v0fv2rtw0fYKnw2myRNGzBsqo1dMtJIYB4S3oHhJTLREB99DO5z1GcUtsR/fPSFzXrPIN9/mOAym86nEcVz3B7c07YpA1lDoVPk/YgW7OVIL+/IAPDm25YPd0PqWVmHlk3R88uPZ3fj66hfs7XFJjIgLuSWZ+/5pk5qczUFg+Ga3IUeo+VsOyvUL7mfevOaGZoRnJg5JJHZhKc6/mOHHyesrraJdpmXJkSl1uTziFbhM78sz+/2AMNDD3iX/49urfRT0S4ZwUpbvnnnkHGz0ciVAbIhlpoGRJ4rveY7kzrjN3xncmzOBTrY1Wq2V6nysoveZJCsY9yojQWDSSRIGjjMd3L0ea8RYxf33GX+mNp6pruNGX53qM4ZluoxgS2ZrphzaSXlLo6bAAd1KSNCiJjIEZxBviceLk7ZS30SzT8NSRpzwdXqMX2jqYl9KeIKZXJHvmHOT11p9Qki/mkQhnx5zmrhPiE3LqWkRCwyGSkQZMK8t803ss03qNOWPbAIOBpUNvRLn2afZddied/UKQgOOlxYxbNwt5xlt0+vtr9pqz6z/wc6CVNYQZfWnuG8RV8d1oZgpgefqhGtv66Q0UOf61JM9hw7+8J8RP5/5EVFTTsr1z2HMiwhBBwsAEMgZm0MLQAhcu3k15F80yDZMPi8Jp50Jv0DJ5y70M/E8v8hIKeDnmA5I2Hfd0WEIjVJTh7hnxDav+QU5oeBr/5IIGoDY7Sf7bIXMWMxK2k2EtJNDLm7E1Tqo6u50kO/iHsnvUXQD8nX6M+7YvJqW0mH3FeXRe8h0aSWJQcDNm9h9/6vX5DYSquks216SFbwgHzZlV5owcKMikRfnvKMTgg5/OwEFzZsWckVLFQWJxLkMiW51zbBGGCI4NPEauLZd+2/txrPQY76e+z4epH/JQ9EN82O7Dc75GU3Xtp5cTNyCWX2+fw0f9v2HCh6MZ/HBfT4clNCLFWe5kxC+iYb/GCW6iZ+Q8+OHIJg6YM7mj7QBe6DGWDoERvL9nOQVlNXcx59osfLJvJW0DwnmuxxhGRLflx8Ob2FeQXtFmS04yMxO2c3lsJ/7XfQzNfAL4aO+Kap/yz2R0VEuSr/gP6sQpfNR1BEE6A05VZVVuKqHzP8Uw611u2TQPRVHO/GT1bE7iTg4XZpNrs5BWYi7/OYs+5atevju0njmJOyvaj4huy76CDJYcP0CmtZD5ybtJtuQztLw+gCRJjIhux8LUvezKO05aiZnvDm8gwMtYUVPgfAgxhHB0wFFyBubQ2tgaFy4+SvsIzTINDx98+Lxdp6npdXNnnt7zAAZ/A3Me+Zvvb5gp5pEItWbJca889I30PUNLoSEQq2nOkd2p8Oj6Gfyn4+AqxbZe27GIjoFRTIjrWu2cWYk72Jufzos9L684Nu3AWqxOB492GgbAGzsXE2cK4sZWvQF3IZ5nN//JsKg2jI7peE4xK4rCE3tW8HXibqzOyiTET6vnsda9eLnTJef0/Gfrh8MbOWjOotBeilGrI9ongFHNOtAhMBKAqbuXEuzlw6S2lSst3EXPdpFnKzll0bP5yXtYk3kUq2KnlX8oN7XsTbh3/f07MtvN9N3Wl8PWw4B7c757o+7l8/Zip+CzYbfa+XDgt6TvzCK0TTCTt9yNwe/iXMounD8zH1zIus+28ErWE/iGid4RT6nt+7cYpjlHtdlJ8t8SinJpd9IukQAdAiP5I2E7ULmT5JhmHSoeP587SWq1Wj7sfikfdr8Ui2Lj5o1/sSgzkSLFzisH1vPKgfWEeXkztcswbonrdM7Xq63b2py64BtQUTvgZD1DY+l5mv16JElifFwXxsd1Oef4aitAH8Ch/ocw283039afg9aDfJH+BV+mf8ndUXfzVfuvLlgsFwO9t56ndtzPb3fPY9M3O3gx+n0eWjWJmB6Rng5NaMCs+e7VdGICa+MghmnO0ck7SZrLrLhUFxuzE0koyqXQXlrjOUUOW43LTW1OB3angsVRdsqdJAsddRumOROT1sDcQddiv/YpksfcT+/ACGQgu8zKrVsWIM94i9YLv2RDbtp5vW5TEKAP4ED/A5gvMdPBuwMqKtPSpyEvk7lr312eDq/RueHr8dzw3ZU4rA7e7z2N9V9t9XRIQgNWai4FCbHNQCMh/pbOgzrvJNlAxZr82TzydpwTp7Bm6E209AkA4GiJmQErfkIz4y36Lv2B45aGsdS2sfDX+7Ov/z6KhxTTyacTKirfZn6LvEzm9n23ezq8RqXvpG48ufM+9CY9M+5bwE+3zfZ0SEIDZSssQ9aIt7jGQvxNnQd13UnST2eocblpQ9pJclBoDEfH3odr4hS+73U5YV7euIDNBRnELPoC/cx3mLBuFrYGMPG1sTBpTezpt4fiIcV09umMisoPmT8gL5O5Zd8tng6v0YjqHM5LaZOJ6BjKth/38GbHT7FZ7Gc+UWhSyortyFrxFtdYiL+p88hLo8Vfb6zYSbJrcLMa27Xwcy9JPdmpdpI84cROki08sF/CbfGdyBr/MOrEKTzfvj++Wj0O1cXc9KMY50zFZ/ZUHtuxtEGsyGkMTFoTu/vtxjLEQldTV1RUfs78GXmZzI17b/R0eI2CwaRnyt7/0OvWLmTtz+WlqKmk7T71jtdC01NWYker15y5odAgiGTkPKjrTpJDIluTa7M0yp0kX+k0mKLyUvQ3x7THS9ZgdSp8eHQbujlTCf7zQz49su3MTyTgo/VhZ9+dlA4ppYepByoqv2X9hrxM5ro913k6vEbh5h+u4rovr8Be4mBq9y/Z9N0OT4ckNBAOqwOtQazRaCzE0t7zoK47SULVomeNfSfJXJuFazfMY23ecZwn/XOK9fbjy+6XMTqq+o67QnU2xcagbYPYZnEncxISV4dezcwuMz0cWcOXuj2DT4dMp8xip++d3bjhmys9HZLgYc8GvIl3oJHnEx/1dChNmti1V/CI3eYsbtw4nwPFeZz4hyUBnf1C+KPflbT1b3jJVENjU2wM3j6YLcXuzQ4lJK4MuZI5Xed4OLKGzVZk473eX5NzOI/ILmE8tuEu9N7VN6IUmoanvV8juEUgU/b+x9OhNGkiGRE8bu7xwzy4cwlppZaKY1pJYkhoDDP7XkWAQRSuOh2bYmPYjmFsLNpYcWx88HhmdZqFViu6n2vicrn46ebZ7PhtHwZ/Lx5dfycRHcI8HZbgAU/oXiWmVySPbbjb06E0abV9/xZzRoR6c2WzNhy/4kHUiVN4t/NQAnReKKrKsuwUAud/iHHWu0za/JeY+HoKBq2BDb034BjiYIDfAADm5c1Dt0rHFTuvEL+3GsiyzG2/XsvVn4yhrNjO212+YOvPuz0dluABLqcLg7/4wNNYiJ4R4YJSFIVHdi1nevIeSv9Viv7ptn35X4cBHoyuYVMUhWE7h7G2cG3FsTFBY5jXeZ7oKalB8ubjfDbsB+xWBwPu78nEz6/wdEjCBeJyuXhC8yrdru/I7b9d6+lwmjQxTCM0eBbFxvUb5rMkKwmHWrkBWoSXDx92G851sR1Oc3bTpSgKI3aNYLV5dcWxywIvY0GXBSIp+Rer2cZ7vb4i71gBzXpE8PC6u9CLFRYXPUuuledD32HgA7249rPLz3yCUG9EMiI0Kkct+Vy/YR47zVmcSEskoLUpkJ/6XEHv4ChPhtcgKYrCpbsuZaV5ZcWxEYEj+LvL36dMSvJtJViUsoqfTVovggw+9R2qR7lcLr6/bia7Zx3AGGjgsY13EdZGTKS+mKXtzuLdrl9w2fODGfPKME+H06SJZERotFZnpzBpy0ISrZVl5zWSRJ/ASGYPvIqIU1S2baoURWH07tEsK1hWcWxYwDD+6fpPlaQk31bC81vno5zUC6WVZF7tNe6iT0gAVn2wkT8nL0bWyNzy89V0v+7cdr8WGq4Di47w1dhfuOqj0Qx+uK+nw2nSxARWodEaHBZLwuX3o06cwtc9RxPqZcSpqmzITydy/qd4zXqHa9fPEaXoy2m1Wpb2WIpjiIPLAi8DYIV5BbpVOoZsG1Ix0dWilFVJRAAU1VWlp+RiNuSxfjy85g40Opkfrp/J7EcXeTokoZ4UZbpX8PmGiw8ujYVIRoQG7a4WXcke/wjqxClMadsXk0aH3eViVtphjHOmYpr9Hk/uXO7pMBsErVbL4h6LcQxxMDpoNACrzavRrdIxeOtgsfoGaDEwlhdSHicwLoA1H23m/X5fo9jF7+ViY8mxAuAf5evhSITaOqtk5NNPPyUuLg6DwUDfvn3ZvHnzadt/8MEHtG3bFqPRSExMDI8//jg2m+205wjCv73ZZSjFV0+m9KonuK5ZW/SyTInTwdQjW5BmvEXo3I/4KmGnp8P0OK1Wy6Lui3AMcTA2eCwAawrX0HJbOH/aX2rySYkpxJvnjj1Mx3FtSNmUxktR75GbkO/psITzyJJTAoBvpOgZaSzqnIz8/vvvTJ48mRdffJHt27fTtWtXRo0aRXZ2do3tf/nlF5555hlefPFFDhw4wDfffMPvv//Of//733MOXmiaDFotv/efQNk1T5Ex7kEGBUejkSRy7aXct20x0oy3iF/wOcuzkjwdqkdptVoWdFuAY4iD8cHjAcjmCN+6bmeO/YUmnZTIsszd827kirdGUpJfyhttP2X37AOeDks4T6y5pQD4R4s5ho1FnSew9u3bl969e/PJJ58A7pnqMTExPPzwwzzzzDPV2j/00EMcOHCAZcsqJ9c98cQTbNq0ibVr11ZrXxMxgVWoje35Gdy86S8OWfIrStHLQFf/UP4YMIFWpiBPhudxKZZ8Ltl0KSlsrzgWSgvW9lxDm4Cmu1rp6Kokvhz9M4pNYdiTAxj/zqWeDkk4R99c9Rt7/zzE++qLng6lyauXCax2u51t27YxcmTlhm+yLDNy5Eg2bNhQ4zkDBgxg27ZtFUM5CQkJLFy4kLFjx57yOmVlZRQVFVX5EoQz6REUyYEx9+CaOIWZ/a4kyuCDC9hRmEPrRdPQzXyb0at/p8jedIcIR+uf4F79z8RJvQDIIYG226Lpvbk3NqVp/l5aDYnjheRHCYjxY8W76/lo0LcoiuvMJwoNVqnZhiRLng5DqIM6JSO5ubk4nU7Cw8OrHA8PDyczM7PGc2666SZeeeUVBg0ahE6no2XLlgwdOvS0wzRvvPEG/v7+FV8xMTF1CVMQuCamHWnjHkKdOIU3Og2uKEW/OCsJ/7kf4j3rXe7ZsrDJDlVcpnuce/U/Ey/1BSS2Fm/FuMpIz009m2RS4htm4vmkR2k3uiWJ61J5OXoq+clmT4clnCVbURmyVqzPaEzq/W9r5cqVvP7663z22Wds376d2bNns2DBAl599dVTnvPss89SWFhY8ZWamlrfYQoXsWfa96dgwmM4rnqCu+I6Y5A1lLqcfJ20B92cqQT++QHvHNx45idqxOxOhZ25x6sdv1T3CEl9crgh7AYkJLZbtmNcZaTbpm5YFasHIvUcWZa5b9EtjHl1GJYcK6+3/ph9fx3ydFjCWbBbHGh0IhlpTOo0Z8Rut+Pt7c3MmTOZMGFCxfHbb78ds9nM3Llzq51zySWX0K9fP955552KYz/99BP33nsvFosFWT7zPxgxZ0Q438w2G9dv+pPlOSkoJ/0vEGXw4ePul3J1s7YejO78SrHk8+m+VZjtpTU+3tovlAc7DsGo1XPL3lv4JesX1PJZN118urCu1zpM2qa1KuHQsgS+vvwXlDInI/97CZe/NtzTIQl18FKz93CUKryW97SnQ2ny6mXOiF6vp2fPnlUmo7pcLpYtW0b//v1rPMdqtVZLODQaDQCNoPircJEKMBhYPOQGHNc+zeFR99DVPxQZSLeVcM2GP5FnvEWHv6exPT/D06Gek0xrEe/vWVYlETFotGilyv8njxTl8Mm+VSguJz91+gnXCBe3RtyKhMTukt34rvKl88bOWBSLJ27BI9qOaMFzCY/gF2Vi6etr+GTYdDGPpBFxlCrojGIPosakzv1YkydPZtq0aXz//fccOHCABx54gJKSEu644w4AbrvtNp599tmK9uPGjePzzz/nt99+IzExkSVLlvD8888zbty4iqREEDyptV8QOy+7E+fEKfxzyXU09/ZDBQ4U59Nz2Q9oZ77NJct/ItvW+N6MZyZux6o4AIj3DWZK18v4oP9EPhwwkTvb9sdH6wXA0aIcNmQlVpz3Q8cfcI1wMSliEhISe0v24rvKl44bOlJkbxoTyv2j/Hg++XFaj4jn2MpkXol5H/PxpnHvjZ1SpqD30Xs6DKEOzmpvmk8++YR33nmHzMxMunXrxkcffUTfvu76/0OHDiUuLo7p06cD7n0zXnvtNX788UfS0tIIDQ1l3LhxvPbaawQEBNTqemKYRvCEL45t57m9a8k7qVdBL2uYENWK73tfgaGB75Cba7Pw3JZ5qECA3sjLva7AoNFVaXPYnMXUPe6ezhifQJ7rMabG57p73918m/ltxfBNe+/2rO+5ngB9QH3eQoOx8IXlLHl1DRq9hrvm3UD7Ua08HZJwGk96/R8RnUJ5ctt9ng6lyRMb5QnCefTEzuV8mbCTEqej4phJq+Phlj14vctQzwV2Gmszj/HjkU0AXBHbmXHNOwPwzk4zo2KMdAl294q8tmMRKZYCAN7tezW+esMpn/O+A/cxLX1aRVLSxrsNm3puahJJyf5FR/h2wm847S5GvTiE0S8N9XRIwilM1rxCi8GxPLRikqdDafLERnmCcB5N7TYcS3kp+qujW6OXZSyKgzcObUKa8RZh8z5iesIuT4dZhe2kxCnc6N6jQ3G5+O/mfLrOTKPVL8n8cKiIMIPvSeecfqnzl+2/xDXCxQNRDyAjc9h6mMA1gbRd3xaz3Vwv99FQdBjTmv8deQRTuA+LX17F55f9iMsl5pE0RKpLxRhw6qRaaHhEz4ggnKXjlkKu2zSPzQUZOE/636iFtz/f97mcQaGerY+zMTuR7w65ixEOj2rL9S17ApBc5ODBdbksSinF/Vaq4q0tI9q7iG4hzbEqUOxQKbK7sDhclCgqVkXl5lYmPr0kpMo1Hj74MJ+lfYar/JlaGVuxoccGQgxV211MFMXF5yO+J2F1Cv7Rvkzeei9+EU1rtVFDZrcpTDG+Rp9J3bjxuys9HU6TJ3pGBKGeNTP5s37ErSjXPs3m4bfSxhSIBCRYC7lk5S9oZrxFryXTSbKYPRJfp8AodLJ7kvj6rGPk2dybhzX30/HXmEiK7mhOn1B3W6ti4EhRKDMSSlmQUsrqDBs78+wcLVLIsDoptLvw0VWvaPlxu49xjnDyaLNHkZE5WnqU0HWhtFzXklxb7gW71wtJq5V5eNUdDJ8ykMK0Yl6N+4AjyxPPfKJwQRSmuScZe4cYPRyJUBciGRGE86B3cBSHxtyLa+IUfu07jggvdyn6beYs4hd9iX7mO1y+ZgaWC1jd1KTzok9oc8A9/PLWrn9YkX6YPFsJaSVmFhzfSY/QTVwfvx0ZJ3Dq8tkaCR7p5H/Kxz9o+wHOEU4mx0xGRibBlkDoulBarGtBpq3m6syN3bg3R3Ln3OtxuVQ+G/kDS15f4+mQBKA4w73qzRTq4+FIhLoQwzSCUI9e2buOqUc2U6TYK44ZNVomNe/MR12Ho63nFTkWRxlv7/qHrNLi07YLN7ThzZ1BOGqYAiEB17f04deR4dUfPIWnjjzF+ynv48QJQHOv5mzstZEIQ0Rdwm8U8pIKeL/P15TkWGk/thV3z7+xVsUchfqx4499/HD9TG74djx97+ju6XCaPDFMIwgNwAudBlJ41eM4rnqC25p3dJeidyp8nrAD3ZypBP35AR8c2lJv1zfpvHiyy0jaB9ScBGglmcuateelXj34dkhojW1U4LdjJVz2V3qt9/J5p/U7KCMUno19Fg0aksuSiVwXSfO1zTluq16WvjELjgvkpeOPEzegGQcWHuXV+I+w5JR4OqwmqzjL3TMi5vE0LqJnRBAuMLPNxrUb57AyN7XKxNdmRl8+73EZV0TVTw2LVEsBG7ITyLOVoJFkmpuC6B/eAr+TlvI+vTGPd3cVciIqGfDSQKmz8nla+mlZenkEcX61Lyr1vyP/462Utyp6SmK8Yljfaz3NDM3Ow501HH9OXsyq9zeiM2i5f8mttBgU6+mQmpxFL6zgn1dX8+Su+4nuUvvePKF+iDojgtAI7DPncOOmeewtyq1IACSgg18wv/cdT8eAsAsaj9OlMu7vTP45XoqzPKA/R4VzeTMvrluaw9zkEytwIEAvM31oCFfG1/4T6IvHXuS1pNcqkpJofTRre64lzjvu/N6IB+2atZ8fbpiFy+li/NuXMuzJAZ4OqUmZ+Z8FrPt8K6/mPIUpxNvT4TR5IhkRhEbm7/Rj3Lt9Maknze/QSBKDgpsxs/94QgwXptu5yO6i1+zjHClUiDNpOXpjDBq5cnLr69vzeWWbmbLyrEQnwVPd/HmtT3Ctr/Fqwqu8kvgKCu5hnyh9FKu6r6KV6eKobJpzNI8P+n6DNb+UThPacses68Q8kgvk+xtmsvP3fUx1Pi9+5w2ASEYEoRH7+PBWXtq/jnxH5eobL1nDtc3aMr3nmHqf+Hq00MHgeem80SeI29v61thm+XEr1y3NJq88K5GAUTEG5l8WVuv4Xkt8jZcSXqpISiL1kazuvvqiSErsNoVPBn9H6pZ0guIDmLz1HnyCxCf1+vbF6J849M8x3ne96OlQBEQyIggXBUVReGLPCr5O3I31pOqoflo9j7fqRXdfPzZlJ1HksOGvNzIgPJ6xMZ2QpFMv0z1kzmJGwnYyrIUEenkzNrYTA8JbVGmzIv0w/6QeoMhRSjNTIDe07Em8b82FzDItCsMXZHDAXFnxtY2flmXjomhmql1S8lbSWzyX8ByK6r7HCH0EK7uvpK2pba3Ob8hmPrSQdZ9uQeet5T/LbiOun2eL4V3sPuj/NalbM5jqeN7ToQiIZEQQLjoWxcbNG/9iUWYiDtXdG6EBwryMvNRhID39Q/n+yEYmNO/K8Oia38RzbRZe3raAwZGtGRTRkoPmTP44tp2HOg2hY2AUAFtykpl+aAM3tepNvG8Iy9IPsj03hZd7jqsy2fXfFEXhmiU5zE8prZj/EqiX+XlYKGPialfz4d3kd/nvsf/iUN2JTZgujOU9ltPR1LF2v6QGavtve/j5ljmoLpUJH4xm8CN9PR3SReutTp+Rl1DA29b/eTqUepdvK8GilFX8bNJ6EWRoWPVVRDIiCBexZIuZCWt+50BJEWVq5TBJK6OJm6Nb8WL3UTWeNytxB3vz03mx5+UVx6YdWIvV6eDRTsMAeGPnYuJMQdzYqjcALlXl2c1/MiyqDaNjapcUvLo1n9d2VM4r0cvwbLcAXuodVKvzP0j5gKePPl2RlITqQlnRY0WjTkqyDubwYf9vKTXb6DqxA7f9do2Y01APXo3/EGtBKW+Yn/F0KPUq31bC81vno6iVxYG0ksyrvcY1qIRE1BkRhItYc1MAr3UcxOTYNszvP4GWPgFIwJFSCy8d3Ylmxlv0XfoDxy2FVc5LKMql3b9qjnQIjCShyF26XXE5SSnOr1KXRJYk2gVEVLSpjed7BWG7pwV/jwknyEvG7oKXt5uRv0xg3KKMM9YreSz2MezD7XzU+iN0ko4cRw6dNnUidHUou4t31zqOhiS8XSgvpU8mulsEu2bs5812n2I1X7iKvE2F3epAZ6jfOVUNgUUpq5KIACiqq0pPSWMikhFBaKRGx3SgV2hz/krcxqV+ftwTEcP/WvUgzMsbF7C5IIOYRV+gn/kOE9bNwqYoFDls1YZa/PQGbE4HdqeCxVGGCxXfGtoUOur+xjkq1oe8SXGk3hxLG38dKvBXSim6b1Jo91sqmZbTJyUPxz6MfbidT1p/gl7Sk+vIpevmroSsCmF74fY6x+NpeqOOJ3fcR/97e5BzJJ+Xm71HytZ0T4d1UVFsCjqjztNhCHUkkhFBaKS25SSzOTuJu9oO4LnuY5jUpj9WWyF/9r0cdeIUnm/fH1+tHofqYm76UYxzpvJ56hF+SjlQ60qq50szk5ZDN8TguCuWsTFGJOBQoYPIn1MInp7EktTTVyx9MPZByoaX8Xnrz9FLevKUPHpu7UnwquBGmZRc9+U4bvx+Ag6bwgd9v2bt5/VXhbepUexOvEy1L8gnNAwiGRGERmpW4k5GxXSgd1gc0T4B9AuPZ0R0Oxal7gfglU6DKSovRX9zTHu8ZA15ioNf0o+hmzOV4D8/5NMj2yiy2zBodOg1Wkw6L2Qkiu1Ve0GK7Db8daeevFpbWq2WBWMjcd3Xgud7+KOXIb/MxWULszBMS+D/tuWf9vz7Y++nbHgZ09pOw0vyIl/Jr0hKtpgb1xt6n9u68tTO+/Ay6Zn1n4X8eMtsT4d0UXApLrx8RTLS2IhkRBAaKbtLQf7XTruyJKFSdU66Vqvlp37jsV3zJNO7DaGXbwAaSSLfYeOhnUsZsmYm8/MyWZyRgFbWEOsbxAFzVsX5LlXloDmTFn41L+09W6/0DqbsnhbMHxVGgF6mzAXPb3XPK7nq79PPK7m72d3Yhtv4rt13FUlJn219CFwVyAbzhvMaZ32K7BTOS+mTiewcxvaf9/BGh0+xFTfOMf+GwuV0YfD38nQYQh2JZEQQGqkuQdEsTN3Lnvw0cm0WduSmsvT4QboFV+73MidxJ98dWl/x8+UxnejnG8DvPS9l+aBr6eATgE6SSbRZGb12BvKMt/g1M5kl6QfZkJVAhrWQX45uwe5SqtUiOV+uiDNRcEcciTc2o7WfFhX4M9k9r6Tj76efVzIpehK24Tamt5+OQTZgVswM2DaAwFWBrC1YWy/xnm9ePnqe3v0AvSd1JftALi9Fv8fxnRmeDqtRcrlcoIIx0OjpUIQ6EsmIIDRSN7TsRY+QWH45uoWXti1gZuIOLolsxZXNu1S0KbSXkl9mrfg5xGDioY5DOVCQycxjW5gQGsmyS67hz/5XEW00oQJ7igv4LiuNS9fOZvyqXzhalMsjHYfhp6/fF/g4Pz2Hb4zFcVcso5oZkID9Zve8kpDpSSw/bj3lubdH3U7psFJ+7vBzRVJyyfZLCFgZ0GiSkpu+m8D1X4/DXuLgvZ7T2PhN45sL42klue5/I94iGWl0RJ0RQRCqmHpwE/93cANmR+VwgUHWcH1MO77uMbreS9Gf7L+b3LsIO8pfpbxkeKlXIM90Dzzteb9l/sadB+6k1FUKgJ/Gj/ld5jM4aHB9h3zOju/M4JPB0ykrttPnjm7c+O2Vng6p0UjdnsF7Pb/ishcHM+alYZ4Op97YnQp/p+5nQereao890/Uy4s/zkOq5EEXPBEE4J4qi8PCuZXyfvJfSf5Wif7ptX/7X4cLtRjs30cKklbmY7e66CjJwVZyR30aEnjY5mpk5k9sO3FYlKZnTeQ7Dg4dfiLDPmq24jPf7fE32wVwiO4fx2Ma70HuLSZlnsn/BYaZd8SvXfDqWQf/p7elw6kVaiZlP960ir6zmFWgRRj8e7TyMIK+GUfhMJCOCIJw3FsXG9Rvm8U9WcpVCSxFePnzUfTgTYzpckDiSiuyMXJDJsaLK5KhToI4V4yIJMZ46KZmdNZtb99+K1eXuxjdpTMzuPJtLgy+t95jPxY83z2L7L3sx+HnxyPo7iewY5umQGrSN32zn97vnc/uMiXS79sL8m7yQ8m0lvL5zMcUn1fwxab1wqi5KnZV7Q4UbfXmm2yi8tZ5PYEUyIghCvThqyef6DfPYac7iRFoiAa1NgfzU5wp6B0fVewyKojDm72yWpdkq1g6FGGRmXRrG4KhT74w7N3suN++7mRKX+1OlSTYxo/MMRoeMrveYz9baz7Yw++FFIMGN311J71u7ejqkBmvJG2tY+N/lPLz2DloMjPV0OOfd9EMb2JCdCECsKZCbWvYmzjcYgAPmTH4+uoVcmwVwT1YfH9fllM91oYhy8IIg1ItWpiC2XToJ58QprBpyI/He/qjAYUsBfZb/iHbm2wxc9iOZ5S+K9UGr1bLkiihc97XgyS5+6CTItbkYMj8T49cJTN1prvG8K8OuxDLMwvzO8/GRfbC4LIzZNQbTChN/Zf9Vb/Gei0H/6c1jG+9GZ9Dyy21/8vt98z0dUoN1YgJrQLOL70OrxVHGlpxkAIwaHY92Gk68XwiSJCFJEh0CI3mk09CK5f5rMo/idLlO95QNikhGBEE4a4PDYkm4/H7UiVP4uudoQvRGnKrK+vx0Iud/itesd7h2/Rxs9Vjx9Z3+IdjvbcHMS0Px00nYnPDkpnw0XyZw/ZLMGuuVXBF2BZZhFhZ1XYRJNlHiKmHcnnGYVpiYmz233mI9W7G9o3jx+GRCWgWx8avtvNv9S+yljjOf2MRY88rnBkWaPBzJ+ZdQlFsxRNo3LA6Tzl1LZdc3Bzg4KwGAcKMfnYLcPZNFDhsZpYU1P1kDJJIRQRDOi7tadCXnykdQJ05hSpu+mDQ67C4Xs9IOY5wzFdPs93hq5/J6u/41LXwpvDOeI9dHE++rxQX8kWBF900KXWekkm+rnpSMDhlN8bBiFndbjEnjTkom7JmAzwofZmc1rIqo3gEGnj30IF0ndiBtZyYvRb1H1qHab17YFFgL3MmIVn/xbZRXdtKckBCDO9laNnk9i+5ezfLHN1R7zH3Ohd324VyIZEQQhPPuza5DKb56MqVXPcF1zdqil2VKnA7ePbIFacZbhM79iK8SdtbLtVsFeJFwUyyld8UyLMpdr2R3voPg71MI/z6JdRnVN/y7LPgyiocWs7TbUvw0flhdVq7Zew3eK7yZmTmzXuI8G7IsM+mPiUz4YBSlhTbe7vgZ23+rvryzqSo125Bk6cwNG6GTN688XJDFN11msOX9Pfg1N3Hn7msqHjtalFN5znnYwuFCEcmIIAj1xqDV8nv/CZRd8xQZ4x5kUHA0Gkki117KfdsWI814i/gFX7A8K6lerr18nHteyaOdfNFKkG1zMWheOt5fJ/DxHnO1c0YEj6BwaCHLui3DT+NHqauUifsm4r3Cm98yfzvvMZ6tIY/249F1d6LRa/jxxlnMeniRp0NqEMqK7cjai/NtrZVfKH6KF4alZRR2P0TOnnyCOwRwf8KNGALcScfOvOOkWNz7O8X4BBJqaDzDVWI1jSAIF9z2/Axu3vQXhyz5FathZKCrfyh/DJhAK1NQvVz3t8PF3Ls2l+LyKmoycGMrH34cHoYkVf9EvTp/NeN3j6fQ6R57N8gGvmn3DTdF3lQv8dVVSb6V93pNIz/RTEzvKB5Ze8dFOURRW6+1+ZiiDAtvFT/r6VDOi7JiO2nrMklZlUHS0jQyt+Vw4n8Ye7xE9xX96RESg1N1sTk7ieXph3GWzyu5rXVfBka09GD0bmJpryAIjcKs1AM8snMZ6bbKIk5aSWJEWHNm9L+yXrqaDxXYGLUwi2SLs+JY92Ady6+IJMBQ/c18bcFaxu0eh1kxA+6k5Mu2X3Jb1G3nPba6crlcfHf1H+ydewjvYCOPbbqb0Jb1k8w1dC9Fv4dSpvB/uU97OpSzlro2g6Pzkklalkb2zjxUl4qslXAplW/VTiOk/G2CGhJogB4hMdzTbhDyKR6/kEQyIghCo/PmgQ28dWhTlVL0RlnDLbEd+az7pee9FL1NUbhsQRZrM8sqemjCjTJzR0XQN7x6ErTBvIGxu8ZWJCVekhdftP2CSdGTzmtcZ2PZ2+v465mlyBqZ2367hq7XXHxFv87kf8Fvo/PW8VLq454O5ay4nC7e8/0WpdR52na+L0SxZ6Sl+g7dksyQqNZcE98djdQwhqtEMiIIQqOlKAr37/iHn1P2Y3NVvjAH6Lz4b7t+PNWu33m/5sNrs/liv4UTH0CNGni3fxD/6RhQre1m82ZG7xpNgVIAuJOST9t+yl3Rd533uOri6Ookvhz1M4pNYcjk/kyYeplH47nQppheJ6CZH88efMjToZy13d8dZOGdq075uM5Hy8OZt2HR2tmQnUB2aTEgEe0TQP+w+CoTXRsCkYwIgnBRMNtsXL/pT5bnpKCc9HIVZfDh4+6XcnWztuf1ej8cLuLBNXlYyrMSjQQ3t/Lh++Hh1dpuLdzKqJ2jyFfckwb1kp6P23zMvc3uPa8x1UVxtoX3ek3DnFpE3IBmPLji9iYzj+RJ/atEdgnnia2e+/2fDyuf3cTGN3dWOy5pJHo82JFLPxx44YM6SyIZEQThonO4KI/rNs5lT2FOlVL07XyD+KnPFfQIijxv19qXZ2PMoixSSyp7ZnqG6FlxeQS+/5pXsr1wO5ftvIw8JQ9wJyUftvqQ+2PvP2/x1IXL5eLrcb9yYOFRfEK9mbzlHoKaB3gklgtpsuYVWg5pzoPLb/d0KOekIKGQL1vWvHrr3sM3ENTa/wJHdPZEMiIIwkVtSWYi92z7m2RrUcUxjSQxICiaWQOuPG/LGm2Kwsi/MlmXZa84FmmU+WtMBD1Cq3aJ7y7ezYgdI8h1uIuR6SQd77d6nwdjHzwvsdTVktdWs/D5FWi0MnfMuo6O485vL1JD87j0Mp2vaseds6/3dChn7fDcRGZP+AcArVGD0+5CdapIGonmw6O54Z/LPRxh3YhkRBCEJuOLY9t5bu9a8uylFce8ZA0TolrxQ+8r0J+nia8PrM5m2kELzvJXTW8tvN8vmHs7Vv2kurt4NyN3jCTH4S5ApZN0vN3qbR6LfeyM18i3lWBRKifwmrReBBnOfjv4w8sSmXb5zyhlTkY8M5Ar3hh51s/VkNmtdqb4vEHfu7pzw9fjPR3OWVnxv01sfGMnAPlPG/Aa4kfAHWacOXZUF0xcMIaWY6tvAHjInMWMhO1kWAsJ9PJmbGwnBoS3qPrc6YdZcvwAhfZSmpkCuaFlT+J9Q+r9nkQyIghCk/TEjmV8mbiLkpPKZ5u0Oh5p1ZPXOg85L9eYfqiIh9bmUXLSvJJJbXz4emjVeSX7LPsYvn042Y5swJ2UvNXqLR6PrXm1R76thOe3zq/YgwTcKyRe7TXunBKSwoxi3u81jcL0YloObs79y25De5EVB8s5ksfrbT5h2FMDGP/2pZ4Op85+G72AxMXHUXXQ6aPODJjUheTifH7+ex0R91kwhXvzwLGbqlWYzbVZeHnbAgZHtmZQREsOmjP549h2Huo0hI6B7n1qtuQkM/3QBm5q1Zt43xCWpR9ke24KL/cch189T3gVu/YKgtAkTe0+Akt5Kfqro1ujl2QsioPXD25EmvEWYfM+YnrCrnO6xqS2fljuimfXNVFEe8s4VfjmUAnSlwn0nX0cS/k+OB1NHckanMXBvgeJ0EfgUB1MPjIZ3XId7yS9U+15LUpZlUQEQFFdVXpKzoZ/pC8vpD5Gm5HxHFudzCsx72M+XnTmExsRc1oxAKZQbw9HUnefx/9M0uLjqD4QPK814+8fQIjBRM/QWNr0bIb/by2Z+NeYGkvdr8o4QojBxMQWPYj09mdYVFt6hMSwNO1QRZulaQcZFNGSgREtifLx5+ZWfdDLWtZnHbuQt3laIhkRBOGiZNBqmTXgasqufYrUMffTPygKjSSRU1bKHdv+Rp7xFi0XfMHanNSzvkaXEAPHb42j+PZY+oXqAdicY8f3+xSif0xiV657H5y2prZkXJJRkZQoqsLTx55Gt0zHm0lvnpf7PRNZlnlgyW1c9uJgijMt/F/Ljzjw99ELcu0LoTizPBkJbzwl0G0WG+/6fENhkgWNl0ynzX1JDiomq3weVKqlgKNFOXTrF09ox5oL2SUU5dIuIKLKsQ6BkSQUuectKS4nKcX5tD+pjSxJtAuIqGjTEIhkRBCEi14zkz/rR9yKcu3TbB5+K21MgQAkWAu5ZOUvaGa8Ra8l00mymM/q+U0GLRuuboZ6XwvuauuDRoJ0q4tus9IxfZPA9EPuN5cTScmRvkeI0kehoPDssWfRLdPxWsJr5+t2T2vMS8O4d9HNAHw15mcWvbjigly3vhVnuSv4+oaf/XDWhZSzL48P/L9HsSr4RHnzlO0ermjflV6hzXlx2188sPZXXtuxiBHRbekbFn/K5yly2KoNtfjpDdicDuxOBYujDBdqtfojfnoDhY7qm0Z6ikhGBEFoUnoHR3FozL24Jk7h177jiPDywQVsM2cRv+hL9DPf4Yo1M7AoZ/dC/fXQcJR7W/D1JSH4aKFEgTtW5qL9KoH7VrnnjrQytSLtkjQS+ycSrY9GQeG5xOdosSmMrcqs83i3NWs/uhXPHXsE3wgT/7yyms9H/oDT6TrziQ2YJdsKQEC0r4cjObO9Px7mm04zwQXNBkfwcNqtAGzLSWZzdhJ3tR3Ac93HMKlNf5YcP8CGrAQPR1z/RDIiCEKTdUNsBzLGP4Q6cQovtx+En1aPQ3WxIDMB3zkf4j17Kv/Z9g+KotT5ue/q4IflrhZsuzqKqPJ5JV8dtCB9mcCAOe55JXHecRy/5DiJ/RNppm+GEyfbXbOZZr+VLcqMerjjSgHN/Hgh9XFaDmnO4WWJvBL7AUUZxfV6zfpUkudORvybNewaHEseXctft7l7o3o92olbVl1Z8disxJ2MiulA77A4on0C6Bcez4jodixK3X/K5/PTGSiyV02ci+w2DBodeo0Wk84LGYniGtr418O+T2dLJCOCIAjAC50GUnjV4ziueoLbmnfAIGsodSp8nrAD3ZypBP35AR8c2lLn5+0RaiCtfF5J7/J5JRuy3fNKYn5KZl+ejTjvOFIvSWVj1934EIyKix2uP8uTkt/P961W0GplHlo5iRHPDKIovZhX4z/k8LLG+Sm8NN+9rNvgp/dwJKf24yV/su2jfQCM/3UYIz+oWknV7lKQqTpJVZakanvQnKyFXwgHzZlVjh0wZ9LCz71sVytriPUN4oA5q+Jxl6py8KQ2DYFIRgRBEE6i1Wr5vs84Sq95koJxjzIiNBaNJFHgKOPx3cuRZrxFzF+f8Vd63SZ/mgxaNpfPK7m9tXteyfESJ51mpuP7TSI/HC4i0hDNzfqPuEn+EB9CypOSecRvCmPKkSn1dMdwxRsjuGveDagulc8v/ZF/Xltdb9eqL1azDST3RN2GRlEUPo76kbS1WSDDXXuvpcMNbaq16xIUzcLUvezJTyPXZmFHbipLjx+kW3CzijZzEnfy3aH1FT8PiWxNrs3CrMQdZFoLWZl+mG05KYyMrixwNzK6HWszj7IhK4EMayG/HN2C3aVUq0XiSaLOiCAIQi3sM+dw46Z57C3KrficKgEd/UL4re94OgaE1vk5P99n5smN+VjLR4FkXLQLyGJQVDIAFsXMPNdLWMgpf1xmcuxk3mldfVnw+ZCfbOb93tOw5FhpN6YV9/x1Y4N8c6/J+32ncXx7JlMdz3s6lCpsZhsfR/yIs8yFzkfLo7m3ozXUXITPpjiYm7ybnXmpFDvK8Ncb6R3anCtiO6GVNQBMP7SBvLISnuhSWbzu5KJnAV7eXF5j0bND/HP8AEV2m7voWYuexF+AnhFR9EwQBKGe/J1+jHu3Lya1tHKOhUaSGBTcjJn9xxNSx1L0Px1O4t7VpZQ69bhTHJVwYzGXx+xHq3UnJYv5P/JcGYA7KXks5jGmtpl6Hu/KTXE4+WzY9ySuSyUgxo/JW+/BN6zhL5d9s+On5Ceaedv6P0+HUiF9SzY/9J0DKvjH+/JAwk2eDumCE8mIIAjCBfDx4a28tH8d+Sctk/SSNVzbrC3Te45Be4ZS9DmlFl7evgCHy4lNgX9SO5NZ6s2JpMRHW8blsQcIMJTRPzKK17Lv4Wipe4hIRuah6If4sN2H5/2+5j75DyunbkBr0HLf4ptpNTjuvF/jfHol7gNshWW8XlB/w1l1sf2LffzzwFoAWoyN4boFYz0ckWeIZEQQBOECUhSFx3et4Nvk3Vidlatv/LR6Hm/dm5c6DarxvBkJ21madhCAXiGx3NluABpJ5pZlWfx2rKR8HxwVneRkeHQSc0cPp9hhZsD2ARwpPQK4k5L/RP+Hj9t9fF7vadfsA/xw/UxcThfj3hzJ8Kcb7tb1z4W9g6yReSXjCU+Hwl+TlrP3e/ffTf/nezDkld4ejshzRDIiCILgIRbFxs0b/2JRZiKOk8q7h3t5817X4dzUvCPgXtXw5MbZlChlaCWZt/pehUnnhaqqSJJ7VcXHe8w8sTEXh8v9s0aSeKijLx8MDMVsN9N3W18OWw8D7qTk3qh7+bz95+ftXnKO5fNB36+x5pXScXwb7pxzfYOcR/KM/5uYQrx57tgjHo3ju56zyNrurmx6zfxRtL4izqPxeJrYm0YQBMFDTFoDcwddi/3ap0gccx+9AyKQgawyKzdv/gt5xlu0Xvglq7OTKSnfd6alXygmnRcAkyblEBiYxC+/WLintR+brvLiyuZ7MGocOFWVD/cWI3+ZwIS/rezqvY+CSwpo790eFy6+SP8CeZnMvQfuPS/3EtoyiJfTJxPbN5p98w7zWsuPsZTX9GhInHYFvY/OY9dXFIUPgqeTtT0XSSNxf+KNTT4RqQuRjAiCINSjOFMAmy+9HefEKawZehMtfQIAOFpiZtjq3/kqM5U5uZlkl1kqzgkJkTGbXdx8czaBgUncONyBbaeOW9tu5/dhNroF61CBVRk2jN+k0H1GEXPbb6fgkgI6eHdARWVa+jTkZTJ377/7nO9Bq9fy+Ma7GfRwH/KTzLwS8z6J689+T5/64HK4MPh5eeTalkwL7xm/xZZfht5PxxO2OwmIE734dSGGaQRBEDzgh8S9PLVnOdllpRXHdJLE2MiWPKUdzaB+Wfz+exhffVXEsuWloErofBQmTPTii6nR+PnBbavy+P1oCScGgvx0Et8MCWF0c4n+W/uzt2QvABISt0XcxvSO08857h2/7+Wnm2fjcqlMeG8UQx7rd87PeT48Lr9M+zGtuHfBzRf0uknLj/PbiAUABHcI4J5911/Q6zd0YphGEAShAbstvhNZ4x/h7/7j6O7tiw5wqCpz048yKOUT+GE2X5Su4pGvspm0YAudrk1Ho4EZ052EhKTQq1cm11tMOO9rwbt9gzBooMihMnFpDoHfZnOZawXFQ4rp4tMFFZXvM79HXiZzy75bzinu7td34ul9/8EYYODPxxczfeIfuFye3dfG5XKBCsaAC1vefMNbOyoSkbYTW4hE5ByIZEQQBMGDLoloxWWhUdwREcOdIZG08vJGiwReTlZ47+XKbYv5tSQF/7v2svywlqVLI+jTx4vdu+1MmJCFn18iBz91kDohljXjIgk1yCgqvLenCL9vsgnNWUT+wAK6mrqiovJz5s/Iy2Ru2nP2NS/C24bwUvoTRPeIYNfMA7zR5hN3BVQPKc50D3F5B3tfsGvOmfgPq57ZDMDQt/tw1R+XXrBrX4xEMiIIguBB3lo9j3YaRqDeG61Wy/DAYO6MaAZ3XAl/tEdSZMpUlXXFhQxYPYM7bd/z8pwyiorimDzZD51O4uuviwkNTeE/o3P53BRCzm2xdA5yzytZlm4j6Pt8io/NY2/XQnqYeqCi8mv2r8jLZK7bc91Zxa03aHly2330v68nuccKeLnZe6RsSTu/v5xaKkx3JyOmEOMFud60Dr9zaGYiSHDTynH0e6r7BbnuxeyskpFPP/2UuLg4DAYDffv2ZfPmzadtbzabefDBB4mMjMTLy4s2bdqwcOHCswpYEAThYhPp7c//uo9mbExH/HQGLFl6sOphZkeCnrqSXzqMo4NvMBKQYi1i9NoZ+C16h6Wj5rI+wcSKFZH07+/Fvn0Orr02m/iwVHot8iJtXBTXxnsjAwnFCp1m5XJs30x+jc2ll28vVFRmZM9AXiZz7e5rzyr26764gpt+mIDDpvBBv69Z+1ndNxM8V0Xp7kq4PqE+9XodRVF4z/9b8g6YkXUSD6XfTOyQqHq9ZlNR52Tk999/Z/Lkybz44ots376drl27MmrUKLKzs2tsb7fbufTSS0lKSmLmzJkcOnSIadOmER0dfc7BC4IgXCx89QaujOvKm30n0D1zcPlRiYIMLXNeDmbvqLtwTZzCn/2vItpoQgV2F+bS7p9vuDT3Y7zfWENqTgRPP+2PwSDx3XcWoqPTOTDZwS8BobzdJxCDDIUOlRuXF7Jr5+88aUijt29vVFRm5cxCXiZz1a6r6hx771u78tSu+/Hy9WLWgwv54aZZXMi1ESeGafwi6q9svTmpiKmGb7EXOTCGeDHZeiemerxeU1Pn1TR9+/ald+/efPLJJ4B74lBMTAwPP/wwzzzzTLX2X3zxBe+88w4HDx5Epzu7NeBiNY0gCE3J+PGZLFhg5eR5oZ99FsIDD1R9/Zt6cBP/d3ADZkdZxTGDrOH6mHZMsg7h+eeLWL++DJcLfHwkrrnGhyufMHLfjjxybe4nl4BhUTKW8BvYXLypMobg8czqNOuM5exPZrfa+aDfN2TsySasXTCPb7obg1/9Typd8tpqFj63gkc33Elcv5jz/vyH5yYye8I/AIT3COGObdec92tcrOqlAqvdbsfb25uZM2cyYcKEiuO33347ZrOZuXPnVjtn7NixBAUF4e3tzdy5cwkNDeWmm25iypQpaDSaGq9TVlZGWVnl/1xFRUXExMSIZEQQhIteWZlKYGASpaVVX5q1Wti4MZqePavX0lAUhYd3LeP75L2U/qsU/eQWfSn7vS1ff11MTo47AWnfXseDT/nyuU8x+wocFe3jfSUC429ju3VtxbHLgy/nz05/1ikp+fXOuWz+bideJj0Prp5ETPfIWp97NuY8/jerP9jEC8mPERjrf16fe/Eza9nx1j4A4m9tzqVfXUKQoX6Hgy4m9bK0Nzc3F6fTSXh4eJXj4eHhZGZm1nhOQkICM2fOxOl0snDhQp5//nmmTp3K//3f/53yOm+88Qb+/v4VXzEx5z/TFQRBaIjWrrVVS0QAVBWuvjoTs9lZ7TGtVsvnPUdhvfoJiq96lLER8WglmSLFzkuH1/BG96/RfP0XrywqYfBgLw4dcvDQnfkk3qFww2oDY0KNyEBiscr23d/jm3KU9vphACzIW4BulY6xO8aiKEq1a9fkxm+v5Pqvx2G3Oni/1zQ2fL39nH4nZ1JSXhHWN8r3vD7vj5fNY/tb+1CBnMl6lt+Tz/Nb55NvKzmv1xHq2DOSnp5OdHQ069evp3///hXHn376aVatWsWmTZuqndOmTRtsNhuJiYkVPSHvvfce77zzDhkZGTVeR/SMCIJwsXCpLuYn72FTdhJFDhv+eiMDwuMZG9OpYv+Zkz3xRB4ffVRITe/7Gg1ccYU3c+aEI0kSK9IPs+T4AQrtpTQzBXJDy57E+4ZUtD9qyef6DfPYac6qKIwmAa28A7lky1AWfKEnK8v9SNu2Ojo+rGWBvpSy8sYayUVUy0dJpXLBwWWBl7Ggy4Ja9ZSk7c7i40HfUlZsp9dtXbj5+7rPR6mNaeN+Yf9fR3hfffG8Pefn8T9TmGRBleD4F0aU9pX3+7/uo4k1BZ23a13MatszUvt+NyAkJASNRkNWVlaV41lZWURERNR4TmRkJDqdrsqQTPv27cnMzMRut6PX66ud4+XlhZeXZ8r61ka+rQSLUlblmEnrJbruBEGo5u/UA6zKOModbfsR6e1PcnE+3x/ZiFGjZ3h022rt580rqTERkSQVVZWYO9fK9u12XLGZzEzYzk2tehPvG8Ky9IN8tHcFL/cch5/ePU+jlSmIbZdOAmB1dgqTtiwk0VrIEWsBRzrOQfOJRGcpCtOX/dm83MGhhxwYDBKDr9eze5Ads1Mm9ejHwIcExjxDgdcs/in4B90qHSMCR/B3l79Pm5REdwnnpfQn+KDvNLb+sJvj2zN4dMPdGEzVX/fPha2wDElTPbE7q+ey2Pgk/GcUq4LsJXNsthf41umtUjgLdRqm0ev19OzZk2XLllUcc7lcLFu2rEpPyckGDhzI0aNHq1ToO3z4MJGRkTUmIg1dvq2E57fO57Udf1f5El13giDUJKE4h27B0XQOiibEYKJnaCwdAiJJLM6r1jYpycHRowqSpIJU2WkdECDTbYSNUQ+YWbgwgh499CxNO8igiJYMjGhJlI8/N7fqg17Wsj7rWI1xDA6LJeHy+1EnTuHrnqMJ0Rtxqip7XGlsuGcmmt9m0f79XfgGqaz+vgzzPSrxH8lElMqATEHq23D0MEbLLaDCsoJl6FbpGL5t+GmHbwwmPc/se5CeN3cmc28OL0e/R8berFO2Pxu2ojI02nMvm5WzL48P/L9HsSp4RxoJ3dWxxkQkqYa/O+Hc1Plvb/LkyUybNo3vv/+eAwcO8MADD1BSUsIdd9wBwG233cazzz5b0f6BBx4gPz+fRx99lMOHD7NgwQJef/11HnzwwfN3FxeQRSlDUauXPlZUV7XeEkEQhBa+oRw0Z5FlLQIg1VLA0aIcOgVVn9RpNEqMGmWk94Ri7nihlBUr3D3OgwZ58fGPBlrfdIwxY7xxqi5SivNpH1DZIy1LEu0CIkgoyj1jTHe16ErOlY+gTpzClDZ9MWl02FUXB6IPk/PBDIy/zSX2/gRSDrnIfNyF7jGIPCwjqRpKM1+GY4fRmO8BVWaFeQW6VTqGbht62qTklp+u5trPx1JmsfNOty/Z/P2uOv4mT81e4kCjr3lBRG3t++Uw33SaCS4IHRBC6mwTG7OTamz789Et/J2675yuJ1RV576n66+/npycHF544QUyMzPp1q0bf//9d8Wk1pSUFGS5MseJiYlh8eLFPP7443Tp0oXo6GgeffRRpkyZcv7uQhAEoYEaHdMBm9PBi9v+QpIkVFXlyriu9A2Lr9Y2PFzL339H8vzWrQwIb8HQGG98fCT273fgpzdgczqwOxWsih0XKr76qstm/fQGMkuL6hTfm12H8mbXodgUhds2/8XcjCOUYidl+DYYtg3vYhO6H3qQ8Z77NT5gFBRfrsGZ8wzkPoUU9DFq4GesMq9Ct0rHoIBBrOi6osbhm4H39ya2dzSfDJnOr5P+JHFdCtd/Na5O8dbEXmJH63X2QylLHl3Lto/cyUWXh9ux8uZ8iuzuDQw1SLTwC8Gg1ZNUlEex4i57PydpF4Fe3jX+PQp1d1Z/ew899BAPPfRQjY+tXLmy2rH+/fuzcePGs7mUIAhCo7YtJ5nN2Unc1XYAUT4BpFoK+CNhGwF6I/3DW5zx/JgYLUlJCnBun/zPxKDV8seACQBk2ixMXP8nG/LTsfpZ4KHV8CAYkkIp/KgH6mI/NLEg36fBoT4G+Y9AwOcQ9AlrzWvRrdIxwG8Aq7qvqpaUxPSM4qW0ybzfexobp20nZUsaj667E7332Q/bO2wKXmc5D+WnwXM5vsa9GnTcz8NIGlRGYbK7rH2cbzAPtL+EAC/3njdO1cWilH3MT9kDwPzkPfQOjUOuYSKyUDdib5o6KlUcZ24kCE1Uvq2EFEt+la+mPpdqVuJORsV0oHdYHNE+AfQLj2dEdDsWpe4/5Tl+OgNFdvcn8G7d9NhsKpkFNgwaHXqNFpPOCxmJYnvVzemK7Db8dedeZCzCYGLN8FtQrn2abSNuo60pCEkCW3wO6nuL4edZSNdswvFaGTwO2n0y5D8ICfsg5xlwGVhftB7dKh39t/SvNnxj9DfwzMEH6XZdB9J3ZvFS9PtkHcg563iVMid6n7oV1VQUhY+jfnQnIjLctfdaOtzYmjUZ7jk3EhL3tBtYkYgAaCSZK5p3pq2/u5cox2bhkPn8zn9pqkQyUgc7clP5ZN/KUz6+OuMortOslHapLsxO8/kPTBAaADG5u2Z2l4JM1U/OsiShcurXihZ+IRw0uz+tDx3q3vxtwZocWvi5l+1qZQ2xvkEcOOmN0KWqHDRnVrQ5X3oERXJwzD24Jk5hZr/xRBl9QOdC6Z8C381D+mwuStZeeMiFtECGnHvKk5L/gsubjUUb0a3S0XdzX2xKZfIkyzK3/z6Rqz4aja3QxtudP2fbr3tqjMFudeBUqs/Vq7h3h7PGnhFLppW8Q+Zqx21mG++bvqMkw4rOR8uTJXcR2jGYEsVOgd1ds6SVXyghBhM2u4uH5+bS/7PKTQD7hsVVfJ9aUnCmX6FQCyIZqaU9+Wl8eWAtdldlwSGDpmr345rMo8xO3FHtXEVV+KX4FzqmdiQyOZISV9N9YRYuXmJyd826BEWzMHUve/LTyLVZ2JGbytLjB+kW3KyizZzEnXx3aH3Fz0MiW5NrszArcQf9LnMCKjsPFTPypKXAI6PbsTbzKBuyEsiwFvLL0S3YXQoDajH0c7auiWlP2riHUCdO4Y1OgwnQe6Ga7HDtAfh1FuplC2FmInzqhKS74NgeyH4enCY2F2/GuMpI7829qyQlgx/uyyMb7kLjpeWnm2Yz66Gqm6gWZVr4v5Yf8fs9804Zl0txYfCv3iP053VL+K77TDJ3VE7qTducxTthP+Ioc+Ef78sTlrvQGtyv5Sd/mCwu1TPg8+OYXkrik41FHM1zYLW7/33rT3rtP90HUKH2xOLpWnCqLn4+sqXik0yP4BjGx3Uh0tsfi8PGivTDLEzZhwuVJWkH6R/egmifAGwuG9OLp/OG+Q1SlJSK51PU2lUxFITGpFSxezqEBumGlr2Ym7ybX45uodhRhr/eyCWRrbgitlNFm0J7Kfll1oqfQwwmHuo4lBkJ21luPYRvZBcK1sXQMbByh9jeoc2xOGzMS95Nkd1GM1Mgj3Qchp/eeEHu65n2/XmmvXsI5v4d//Bzyn5s4SXw0FZwbYUjQfBzJ+g/CVpMAv8fIfg9thZvxbjSSA/fHqzruQ6D1kBc32a8mPoY7/f+mrWfbiF503EeWnMnO607WHntVoozLWz9YTdjXh5WY7l3VQVjQNXaVNl78txDMBLMGLOQW7dczbG/knnwz1w2PTECAJ0MT76QiJdGQq+V8NJCnq07VpsOFQmwE2GSee+KYG7sWlnddVfe8YrvQw1is7zzoc4b5XmCpzfK25GbyhcH1gDQ1j+cxzoPrzZhaVHqPv5Mci9V6x0RSUHIVt42v02uKxeJql2yJfEleMveCMLFYmN2Ij8d3oSjhp4RgMtjOzG+eZcLHNXFo1mzZEpKVAoK4jwdymmZbTau3/Qny3NSUFyqu9yrXYbdEWDpCB0CIOgnCH4PNIWgQjffbqzruQ5vrTcul4vp185gz5yDLL/WxO77n6Tl2i5c8dJVaDQylzzchwnvj65yTZvFzrO+b9D37u7cMG18xfFF965i93eHUBWVUh8dn93ahzZHcggyl/LXpe1qcTcu7rnEzOdjeqCRKgcR9uSn8em+Vai4i12+2XcCOrl+Jxc3ZvVSgbWp2l9QWbZ+ZHQ7ZEnC5rLxQeEHGCQDXniR453HFtMW0rwO8LWUiCu/svfj32PDeqnxFXsThFPZnJ3Ed4c2VDmmleQqQzYLUvbio9UzIrrqm4Cqqlj//hvz66/jSEqieUpKjSXSm7p27XQsX27D5XJVKZ3Q0AQYDCwecgMAhwpzuX7TPPYU5uDqmQ6kQ4kOjrSHrDUQPg+CprLTshOflT50MXVhXa913Dn7eqa/s4IPOj4IqsSxQbvZNb453eb1ZN0X27jshSF4B1b2/hSmFgJgCqn8gGcrKGPvD0dQFRWXBL9e3oncAG/ye8SwqJvMmiMyhbZTz0Hx1pdx3ZDdSDonL25Np394PN5aL/YVpLMnP72i3fDoNiIROU9EMlILpc7KFTSR3u7MLkvJ4tn8Z6s2rGWnjS6hbrO+pZMmv0k1/Ccju/+UZDRoKv7UoEEradGiRSfp0EpavPBCJ+nwkrzwkrwwSkYMkgGjZMRb8sYkmTBpTPjKvvhKvvjL/gTIAQRoAgiSggjVhuKHX5128BQuXmVOhV+Pban4uU9oHJfHdiLC2488Wwn/HN/PyowjgHtVSa/Q5vjrjaiKguWPPyh47TUc+/eDJIEkiUTkFAYMMLBsmY2NG+0MGHDuq2UuhLb+Iey87E4AlmQmcs+2v0mWiqB9AqgJUOQLBd9BwB4Ifo/dJbvxXelHJ1NHlMDbwetAxXOtfHARkfujCD8WyQcP/kXIVW0qHivZ416FsyfNTPoMd+906V8ZOO3u+X1LBrXkSHwwAKok8d3OEh4eEcn/ray5Hou3TuLHm31Ymq3iVN0rZuYlV59Y2zMkljExHc/Db0oAkYzUio+2ciwysTiPUKMvkdpI1katxabaKFVL2Vt6kJ+OLyXVsJMibRac5jU1VhOLoiooKDjL/3Oproo/VVRcuP883X/VqP/6swE5kVCd/Ge1ZAoZWZKRkdFImhoTKr2kR4f7z38nVN6yNz6SDz6SDybZnVD5y/4VCVWgJpBgOZgQOQSTVozzng+bs5Owli937xEcw51t+1ckFMEGH25s1RsVWJVxBKfqYl3iHgYu2UzBW2/hPH4cTnzKV1VohNtDXCjjxnnz6qtmFiwoOatk5N/7aV3ovbQujYgn6fIHAPji2Hae27uWPL9SkA6CqoPM18B4FPyns7dkL8Q95X4dO/E6KruY/eZs7rztLvLmH8VrWCxSecXVkiz3ggDFqMNidaC6VBx/pYMKe9uEsXJg5YReVZb4w2lEXWYGTc09TL/eEMb4Nj50CTcyL3k3hwqrLt0N9PJmeFRbRka3RZYabi9VYyOSkVroHtKMlRmHAfjn+AG6h8Sgl/UMNA6saFOSGcnA4igovo1u0X6s9fmVXy2/okGDQuWQjUEykByXfMHvwabYyCeffCWffFc+ec48itQiilzur2JXMVaXFYtqodRVSimllKql2Fw27KqdMrUMO3YcqgMHDncydXJCpTpxnfhPrfiuSuJ0qu+raKAJVU29Uyd/L5/4T3InVho0VRKqEz1TOnTupAp3MqWX9Bhkd8+UESNG2YhJMuEte+Mr++In+7m/JD+CNcEEyAGEaEMIIQS91vNv3nsLKrusL2vWHkmSUPLzsfz8M7K3N5LJxJCCPAoObyFu2z5abNlDbulJtTFO2rNK0tWtx7Ap6dlTjyTBhg11X5V0Ysn1ycNmWknm1V7jPLK55/0te3B/yx4APLFjGV8m7qLEWARSGJinMH7nl+zsmEDKydXyJRdl/nnMefkfrn9qHMq2TAJHxAFQVupOhk3h3vh467BvL8CR7yAr2Ic/xnVyJ7on9bi5NDJah5MwP4nMEpWTB2teGB7A+A7u30kr/1AmdxlBlrWIREseTpeLIC8f2gSEVZlDIpwfIhmphbb+4UR6+5NhLSS1pIB3dy1hTGwnWvmFkmMrZnnaYTbnJAHu+gETo4bygOEKngl4hv/l/4/51vlo0ODEidZDv3KD1kAUUURpo87cuIGyKBZyXbnkufIocBZgdpkpdBVS6CrE4rJQ7CrGolqwqlZ3QqWWYlNt2NTqCZWCgkN14FSd1RMqtTKR+ncPFVDt5yrUU3zfAJzTcB9adw+VpK1IpnSSjjyNDXuQikbVkWX5A5PVRPD+PFot+ht9GYRlQ5e9MPo0cZ2gWiwcq2mY5sSx8qEcZLniS5Jl0GiQtFrQapF0OiS9HkmvB4MByWhENhqRfHyQTCZkX19kf380AQHIwcFoQkLQhIUhh4ejjY5Ga2qYPWayLBMQIHPoUN2LLta05PrEcusgPLvT+NTuI5jafQQ2ReGmzfNYf3A1772ZgFOGX66BT66DvMDyxpKLzO7bWX9zHKPnmnjqs/HIssRfO3JZBtx4Q1ciOoTx5f9+xeal5fuJ3VA0UpVE5AQ/o8yye6Po+EEaqKCRYHQbIy+OCKzWNtzbj3DvC79woqkRyUgtSJLEpDb9mLp7KXaXkyRLPp/vX11j24nxPQgpX+rV2asz8yLnsdG2kSl5U1htWy0mr54Dk9aECRNxxHk6lLOiKApFFJGn5JGr5mJ2misSqmK12J1MOS2UUEKJq6RKMnUiobKrdsooQ1GViqRKUT043Kel4lXkeOlu9zfNgY8rn6PzHuixDW75GeKTwEXNBY7sWtjfEXR20DtA6wCdA7SKilYBrVNF4wSN04nsAlkB2eXe3PbkTW7PZdbJv29Z/fcTSpXfSIAkyZVJkkZTkSCdSI7QaiuSI8nLy/3l7e3uNfLxQTaZkPz90fj5IQcFoQkORg4JQRsejjYyEiIiKuZnxcdr2b27bsunSxU7m7Nr7olVTqqZVOPvQlUpdTrxvgDzwwxaLbMHXM1d2V8AoHHBjbNh4jyYdgt8cyVYyuenbpk0h6j9wfxx33xumDYea557SXRAMz/m3ryUvCNFfHdzLwr8jTUmIgD5isT6lDKu6+zDb7tLaB6o5ecbwpFlMWfJU8TS3jpILM7lm4PrybFZqj1m0Gi5Jr4HgyNb1XiuqqosK11GoauQa0zX1HeoglAv7IqdfPLJVXIxu8ysL9jPovQd2CUrgT5aOoWGUeqyUqKWYFWtWF1WjloyyHcUoUgKA/Y4uPfNbNruLMUpu990TkiPlhm/xu+0PVRQfYivWkLlBJ8SMFncf/qUgI8VvMu/jKVVvwy28q8y8LKBlx30ZeV/2iuTI115gqRVyr+coFFwJ0gukJ0gq/WXIKmAKrmfTC3/ckmgyuU/yyd+lsqPSTglcMkSquzuUVJlDaqswaXRotV4EeoTjN7bVK33KNHPn2lGI4cNBv5s2RJDRDiaE71HAQHncDen9/JyH24ZYa1yzCmDxQQf3wG/XAZ2L/cvI2TnZXxe8igmvFny6moGXtmXtSuz+f7abuQH+ZQPz5x4lup/Ay2DtMy7LZy7ZuXy7bWhtA8THxTrQ23fv0UyUkcu1cW+ggy25qRQ7LDhpdHSLiCCvqFxGLRizFtoWhwuJ89unkuxwz0PpENgJGNiOtLcFES61cw/xw+wPTcVAJ2s4c0+E/DR6rHOn0/e00/jOHTI/elVVdG1aUPsoUP1HrNVsZKr5pLrrNo7VagWUux091CVqCWUqCUV86dsLnfvVJla5u6hOsX8KRcunGplL9WJJEpTpmAqVvEpVvGxqO7EqASMVvC2geGkxMhocydFBps7KTKUuZOiE0mS3uFOkHTlCZJOqUyQNOVJknwiQTrpqz56jyqSIrnyT5fsTiBcmvLvNTV8aSWcGgmnVsKlk3DqJFxaDW29bRiXn/q65gD48SoffrlUQ1FAEVJpHE5LOE+uiuQH5wvkBflQptdg1EkMb2kkO7uIUoeKS5IJCTZRqqjYHC5KFZVwk4Y190Wx+Ph+5iTtYnhUW65v2fOU970tJ4W5ybvJs1kIM/pydXw3OgdFV8anqsxP3sOazKOUOh209Avhpla9CTc27SEekYwIgnBB7M1P59N9q3CdYVxnUpt+VXapVZ1Oin/8kfz//hdnRgb6Ll2I2bWrvsNttCwWF76+SVw90YtvfvEhV8kljzzMipkCV4F7Mrrqnoy+Nucg6WV5KJINg04mzMeIpHFiU22YFQvZ1jy0Fju+RQpBJSq+VnBYjKilerxtCsZSBW+bE6NNIai4EKPNhVd5UqT/V1J0otdIZ3cnRDUlR5oaEqRz7T0qDQNNroTe5X6CDs+sYXzHlnw2IYxQk3ulzVczdmGxOjB567h3Ytdqz5FUnMdXB9Zi1Opo4x9+ymTkWFEO7+5ayoT4rnQJimZzdhKLjx/gf91HE+0TAMDfqfv5O3Ufk9r2J8Tgw7yk3aRZzbzU84omXYtEFD0TBOGC6BQUxX86Dub7wxspdlRf7WHQ6LipVS/6hsVXOS5pNPhNmoTphhsonjYNOeT8bvB2sTGZZAwGiX27XQRoAwjQBtCK6sPCBWVWsvbPpRUqfjoDr/Yeh0FTtdc2w1rIy9sW4NRDqmRgK1oKtHZcAdWvu3jQICQJjpWUkGQpId1mI9deRn6ZnSLFQYnTiVVxYne5cKgqisuFC/eeLdXSU6cTyANnCpACZAE5IBcQ513AvP0leP/31L8DSQteLcHUBvQpkBarYtoGrpZQ8nwvtN61X/Zsczr45tB6bm3dl4Wpe0/bdlnaIToGRTKqWQcArozrygFzJivTD3Nz6z7uYfi0g4yN7VSx59Adbfvz5MbZ7MxNpfdJG+sJNRPJiCAI56xzUDRv9JnAttwUduUex6KUYdTq6RQYRZ+w5tXeDE8mGwz4P/zwBYy28YqO1pCaevq9rY4WZlfMoxkQ0aLid//Svn0ctZRQrDg4XGwhuURPqUvFPaX41BNjR61de+bAnIXgSgVnGrgywZUDrgKgCNQSUMvwN9jpGA6tQyAuACL8INgbTHrQadyjdYF/QE2LlzWAvwR+CsiHgEPgioWvx3Xn08w3mPHxIEbXIREB+PXoVjoHRtE+MOKMyUhCcS4j/1U9uENgZMUeNbm2EoocNtoHRFQ8btTqifcNIaE4VyQjtSCSEWB+8m7+Sqn6jzHc6Mcrva445Tli/FAQqtLJGvqFxdPvXz0gwvnTubOeY8es2GwuDIaaa12UnbRKJsircunuu4cOU+KsaQXNydXFTuKyges43hxDdibjdGbidOXjdBXjctlQcXDyDBKtDO3DoG0oxAdBtB+EmsDPC7y0cPJCFVUtP1OV0Eh6tE4TYSUyPuacKsmIFggETFQO5wC4WkGboTeR8OmDyHI4I0fWba+vLdlJpFjy+W/32iw6hyK7DT9d1WTHT2eg0O6eK1XkKHUf0/+rjb6yjXB6IhkpF+Xtz2Odh1f8rDlNWepjRTl8fXBdlfHDz/evqTJ+uPj4AZanH6oyfvjR3hVNfvxQEISzd8klBv7808o//5QyfnzNNUL8T3pDPFqYw5DI1gCkX3E5WhSWZyxnVcYq5iQtI8eWg9UloyCBywqqFXffhJMTicbJa1tiA6jo3WgeAGG+4O8FBm3lCmeoWmdMQosGE3oiMdGFEMYTKl2NUvotypHn0Sfno80vQyqD0pbuc7yAAMCb6mmSGg+D7h5O0jMTgBDatdOj1dZ+xkl+WQm/J2znsc7DxGtxAyKSkXKyJOFfy623xfihIAiecOWV3jzxRD5LllQmI4qisC1/G0uPL2VH3g6OFh7laFEKZa5Sph10cM8aV/XlzzXSEGD0pkNEAG1CJJoHqET4KkT5WjDqlPK6KjWdJyNjREcI3rQhiOFESLdgoFmVVvayhZRmP4bXkd+RssGrGAwnekg04PTVor3qSgKtswj4puYJraoepn3gxeZr7wZ8AC133+1bh98gpBTnU+yw8dr2vyuOuVA5UpjNyvTDfDro+mpl3v30BoocVXs4ihy2isTPT+d+7yiy26q8jxTZbcSYAuoUX1MlkpFy2aXFPL1pDjpZpoVvCFfFdTtlqWQxfig0FavSj7Aq4wh5Ze7aOpHe/lwR25lOQaeu5FubIcw/EraxKTuZMqeDZj6BXBPfjTYB4fV+P43JscJj/J36N5tzNnO46DAZJRkUOgrhlUA+8c/hk2nV6x3VTEIr6TBqDAQZfOjRTKVDeBktQxRCTXaMOidITty9IcXlX+7eDcWlxaXKaCQvtPhjIA4/+hHBDQTQ/7RXVZTdWIseRHNsA/o0J7p890obifJlwF4S+LdH0386hPVGC6izZyOvmHXKlTU5/4PHv3gMyaFFlYKQJXjwwboNfbcLiOCFHmOrHPv+8EYivP0Y1axDjfvNtPAN4aA5s8rr/oGCTFr4uiddhxh88NMZOGjOJMbkruJaqjhILM5lyClqTwlViWQEiPcNYVKb/oR7+1JoL+Wv5L28s3sJL/a4vMbaIWL8UGgqAryMXBXflTCjL6iwITuRz/av5rnuo4kqH5I8WW2GMP9M2sXy9MMV5yRZ8pi6Zxmv9Lzioi+7bbaZ+fv436zLWse+gn0cLzlOflk+JUoJDpd7e4IzCi4Bh8G9+7bGC1+9L2GGMFr4tqB7cGcGNfchMGA3qfZ1aHQ5aDU2ZMkBOIDiKkMpJ1QOpUSVD6WMo6x0DDNSs7k+JoZY7ZnnZChKJjbrw7gy/8Ir0YY2B3yt5ckHoGpB9Q1E0/6/SN2e5OQBEnX5crjySrBY3JufRwCZJzWQQR0BV/dsg/3FnqiASw0kOsbJ9LnVd9Q9oaS0evl8g1ZHtDagyjEvjRYfrVfFv9HvDq0nQO/NVfHdABgR3ZZ3dy9lyfEDdA6KYktOMsmWfG5p3cf9+5MkRkS3Y2HqXsKMvoQYTMxN3k2Al5FuITFn/N0JIhkBqPIpr5lPIPG+ITy7eS5bc1MYFNHSg5EJgmd1Da7a1T4hriurMo6QUJxXYzJSmyHMNZnHarzW9rxUxng3vi3ZFUVhReYKVqSvYE/+HpIsSeSU5mBRLJQ5y3CqzloNk0hIaCQNelmPSWcixCuEWFMsHQM7MjhyMCMiRmAymBh79Xqsuq288/vv2EhEoQAXmcAuYA4uIA/w1lYmHKoq43TpKHP4UlwaQV5RF1pKdzA2dgTyqebHecNTbavv1VJ53zbKbE+hFP2CPiEfXQb4FIJUXlVXlUE16HGGj0E78AskU0S151A3bICxY8Fsdh/oDMqLsD0Eel0PcnZ5Tbww+PJt2HjVI+7hIkyAjn5DS7BYz7xfj15Xt7kh+WXWKns5tfQL5e62A5mbvIs/k3YRZvTlgQ6XVCQvAKOatcfuVPjpyGasip1W/qE80lHMS6ktkYzUwFurJ9zoS05pcY2Pi/FDoSlyqS625aRgdyoV3dP/VpshzBKl5p1n00rM5zXec7U7dzeLjy9ma+5WjhUdI9OWSZG9CJtiQ1GVWs7DcM+o0Mt6vLXeBHoFEu0dTbuAdvQP78/o6NFEmiKrtC8jjyx+JJ8llHAQO+tw8SGbcPeaPDHb3a6oylkSEv8eSrmRAKkfBWVWNmUnkWMrRkYi1hTINc3iMNaxYrSiKDjs72G3foImIxV9MhhzQbKf3Pshofq1Q+77NlLzK5CoeR8idd8+GDoUcnPdB9oCL8GibnBTS/hQM528K1Yw9pvvQYasd+Gp+ROQksIAcBGIJDkZPtqF9gz3oddpGNDt9BuEPtFl5Gl/BugZGkvP0NhTPockSYyP68L4uC6nvZZQM5GM1MDmdJBjs9DvFBNaxfih0JSklZh5a+c/OFxOvDRa7u9wCVE+/jW2re0QZk0sNRRMO9/SLGksSl3ExuyNHCo8RFpJGgX2AkqVUhwuB64qG8qfmoSETtJh1Brx1/sTbgynlV8reoX24tKoS+kScuo3JAWFPP4il9kk8z6HScNJMSoKp9ud8MRQiiWnOZ8/dw3DB7XkkVuvRsvp62sEenkzOqZDre7r38psf2CzvQLmA3gluNBngqHEvcxWBffwiSEIqfUkpN5vuTcIPA01KQkGDEDNyHAfaAHSC3CsG1zbErwcQ8nR/oNO0qF+eQsFR+YQOKCIW/r6Unr3tZVJD4G0agn/ubF6VdW6KrSU8c2sPdwyrgNhQXVbIiycPyIZAWYmbKdLUDRBBh8K7aXMT96DjETv0OaAGD8UmrZwoy/P9RhDqeJge24K0w9t5IkuI0+ZkFxoFpuFf9L/YXXmavYV7CO1JJW8sjxKHCXYXfaKHYzPREJCK2nd8zB0voQaQok3xdM1uCsjokcwMGxgxQ66Z1LMbjL5ETPrsZGAghkXZZx+K2QNMobyVSltCWIEEdyKgao9J0qgiyu+SsKVamTyrXUr9HUmimMDVuuTuGxb0SXb8ToOfmZAqez9QKuH0AFIAz+FoA61KuOuZmZC376QkuL+OVpCfkHF2gMeiYWfg418cmQGpdsimR+eyIThrZE1GvyXH2fIr5ey7q4xSLYTG9n5AjruuafmBQZC4ySSEdzlk78+tJ4SRxkmnRet/EJ5pttl+JYPu4jxQ6Ep08oa9wRWoLlvEEmWPJanH6pIvk9W2yHMmph0XhXfK4rCxpyNLEtbxs68nSRYEsguzabYUVzneRiy5B4m8dH6EOQVRIxPDB2DOnJJxCWMjBpJgCGgNr+GKmzkks1P5UMpB7CTg4tS4HQTUN1DKToC8KJ55VAK/ep0ba1WxtdXYv/+U1dNrS1FSaLU+jBOZSVyjgWvRDBlg2Q7KfmQJSRTHHR7GqnD/XV6ftVsdichh8snLAcDz4PUX+XbYLg3DkZqLsPGYmgHKf5FzPznMPuO5tK5TSi33rKH9b89QfNWegbc48+s6bmUOQKBMh5/vDnrd6ZxLMVM17ZhbNydjq3MSYtm/lw6oDleevfbm6qqbNydwZ7DOZTaFIL8DQzq2Yz4aHcy/c0s9wTYn+bvB+D/27vv8Kiq9IHj3zt90hNCCkmAhJLQI72KIIKCiLoqllXEtu7ace1df9h1sbD2tmtBZRUVEUGKVKWETgiEkAoJ6X3KnTm/P26YEAiQHpKcz/PkIXPn3HvPvUxm3jnlPZGhPlx1Yc2uRqn5yWAEuLXP2NM+L/sPJamaNuWz9g/dM3Vh5tsyOVqZSErJdo5U7qVCLcbpqsRq9OfjpHxuXVv7B6xOgcv6QbENfkuuHodhNVgJMAXQxasLsf6xDO88nAujLqS7X/dGXaPWlfIjeSyilG3YOVyvrhRtVsogOnMJwVyGAfMp92mIrgNtZKQK7tnwDVD3Kdc/pW0myvwrQwLWEqUk4ZUqsGaBvlQbeCoAp85ImjWG1KDRDBz9LKGBkac85qkIm00LQnbu1Db4AI8DE2CrF8zoBU57FNv1PzOAAdXXFe5H50ArB9ILKT0K336dhdGksPTXcXQO9mLieenc8lfw8ynFWDUotajUTlJqAZee3wuHw8WyDams+COdqedqizIm7M1h654cJo3qRkiQF7uT8/hhZTKzZvQj0M/CtdP68OXPiVwxuTedAqzodHVp65GamgxGJEk6pe8PbadfUBeCzF7YXSqbjqayvziHu/tPALQuTD0uUA6xMWcjuwsPkFNp57mENEqdBbiFwI3A6a7kr6tPdRYFl9OJW6gYFSMWgwVfoy9h1jBifGMYExlFfM9fcBn34UUcyyckNsm1VXelrK+aldKQrpRJVV0pJ88UaU5xfYzsWa9wR/fJ+AfoTjnlWlVVHI5nKSr/nM5qHv80lmI+BPp8UJzHtX4oRg4FjeQ/na5gxsDLCbZ4cyB1J6uTt/L0kPA6t+gKVYVx4+CPP7QNJuAhUC6GQj1cHQPLAuGa/fcxM/MfDJh48hi6IH8LOfnl/HXa7wgBr8+Lp3dMEACHUzojRCHPvFidk0Z1ublwbDS+3lo3zoQRXVm04gDjh0XhbTWyZU8Ow/qHERetHePcIZFkHCkhYW8O54/shtWifQxazAa8rfUb1Cs1HRmMSJJ0Eptq47es3/j64CrSdmRQ7MinTM2jzJlPuZrP+/vsZ+wm0SkGDIoRBfAyeGFQLOgUK77GYCK9BxHh1Q9/Yyj64xbRG9a5GzfFjkanKAhcpPMvDvIorqqBpTbSEIga3aanvIaqrpR8llNRr64UC0b8MdMNf0YRynUEMKwOd63lTBsdwv8+zGPjch2zZvnVmHIdpPsfdtvLCHEQXbEL00EIzQFd+XHBBwr7fQZwOGwqE859DqHX8+8/v+eCyD4NyhotVBUuvBBWrNA26IC7dCjXunEBz3WBZyIhgACOkMj2o5XYT/H/IIB3X83C4RCMmeSL6lfCW18kAPDDL1Y6hxo4Z1j1QGM/b5MnEAHo0tkbIaCg2IZBr6O80kmXEJ8a54gI8SG38NSDqaWWJ4ORdqzAVk7ZcdMofQzmU2aVldo/VVXZVrCNZZnL2Ja/jZSSFHJsOZQ4SrC77PWarqpX9Bh1RrwMXgSZg4jwiqBvYF/GhIxhStcpBFtqTv3dnJvGh/vWex4PCOxCrH8oigL7inLYVXjYU66nX2eGd1HYw/WU8GeN47ipxEkeJjof15XyPaVsb1BXii/xBDOdYP6CgbbzrXj6dG3Wx8qVNq6+ehPpRU9ze7dDhCiHce8E7wzQFwMuLQBxKgbKjIH4hw5DGTsf/LqTlLaTHfmZTDAYyKssa3DWaHHppfDDD9UbZllQ/mFD4GaFL1zSCyoM8CiPMpe5VYUOnfJ4S5fkkLCxDG9fPdfdFs6VU2IBKC11c88NRxg3zsTwAS3bEiU1PxmMtFMFtnKe2PITqqj+BmFQdDw3dLoMSNqZQ8WHWJq5lD+O/sGBkgMcLj9MsbOYCrUC1a3WebqqDh1GnRGrXpuuGu4VTi+/XgzvPJzJUZOJDYhtcB1XZO3z/H59rxE1kglOiuzD9vxM3tm7BnCzT30Vt/gPQlFrPdZaQqlrV4o3cQR6ZqW0jw8wVU3EbLybNb9n0qvXIRwH7XRLBUMuKPbq1g9F0YN/Dxj8DPfkwI29RzL8uKCisVmjxV//Cl9+WZ1Z7ZLO8HAuit5GrgEmxsJub+hCF3JIwgefWo9zvISduXw07zCKAgt/HMHu9CPodAr+PmZefSkf4VaYc18QVkt14FhS7qCswoGPl9Y6ciS3HEXRunvMJj3eViOHj5YRFVa9hk3W0TLCgrX3QX3VGBEh6haIS81DBiPtVJlqrxGIAKjCTZlqJwgZjJztTkwbnlWepU1XrU/acKqnq1r0lhPShp/DxC4TGdF5RJ2nqzZUbmUph0rzAYjwCmBMaIznOZUKSvgDr06/MG3wIqxeB9EpZ2qfEZ6ulGMJvs7GrpSmoqp52CrvxqX+ghBFUA7mQzAqC/T7qoMPm86KYvbFEn05yuh/geG4wCJnQZPVR/zjH/Duu9VByLkx8NIhFF0uLuCubvBOqPbae4d/czu1z8Bxud2UVzpxuwUVNiepWSVcNWMTTofg1r9FM2l8FwqWlvLjymTGDYlkwYJSvH0EnaIKyc7DE0wY9DqWrjvE+KFR2J0uVm1Kp3e3IM/4j2H9w9iw/TABvmY6B3mxJzmP3MJKzwBXL4sRg15HalYxPl4mDHrFMxNHajnyjktSC1FVld+zf2flkZXszN/ZJGnDvY3eWtpw7670D+pfI2342aLQXr0IfZ/AMJSq9OMb6E0lBzzPeR2fb0pQ67KtCnpieI7uPNJMtW19qmrDYX8Mp+NLhMgBl8CYAV7pYCjAk/PD5VbYm92DuEEh6Me8ybs5RXS2+DZqyvXpskaLhx6CV18Fd9WXnPhYeOcwii4FAfzqb2JqTwduPfShDzvZieE0HzGpWSW8980OdIqC2axn8YJ8slIddO5s5p13hwJw2aRerEvI4qdVqWRm+TDhIjsl5UqNgaYBvmZ6dQ3ku98OYHOoxEQGcP7I6pmO5/QJwe5w8fuWDCpsKp38LcyY2JNAP+3adTqFCcOj+GPnETZsP0xEiJza2xpkMCJJjXQsbfjW/K0klySTU6mNw6hUKxudNjw2IJZRIaOYEjmFCJ+IMx/kLHT8TIyS45r8Q5mJjUN40x8fzmFFioHfs9PoErSN8T2ScJpWVY3/0IGnq0mh8jTjDdqqyso3cdjmIUQ64EJXCJZkMBwFXeVxXS/owDsS+t/NCz/dxBPPFLJyZTgTQqyI7BUNnnJ9uqzR035Zj3h8JLiqjt27F3xmRdFp03aLDCb693OQZXagR88i/scMZpz2ei8cG82FY6M9jxf/lMWviw6gKHAovXpFXZNRz8QRXflloRcOewlz/t6NyeNObtkdFBfCoLiQWs+lKAqj4rsw6jQp4Qf07syA3p1PW2epeclgRJJqcaTsCEsyl7AxZ2OTpQ33M/kRZg2rc9rw9qKLdwAWvQGbS2V7fgalDhu+Jgs9eM5TxuZysunoj7jcFg7nj2FQj1ewYiOX78jmcwpZDYBApeK41pS2ym5bhM32FMKdCDjBAeaDYMzSBp4eS7euABh9IWIyyrnvQtXA4O8PbSf+gkp4Ar77NZ+i7nknTblubNboPz+Zz9PPv0GnI7lapbt1g+8uQlHfg6o5Tbf08ObjTmUAjGMca1hT73uhqiqXzdgAwBdfjcBiOfljacGCcqxWhcmTZRdzeyWDEanDKLOVsTx7OWuPrGV3wW7Sy9ObLG14d5/uDOw0kInhEzk37NxmH4fRlpj1BkaGRLP6yAEcbhfz9/7O7NhRhFr9AMi3lfPfA396Zn4NDo6qGkhpoQs30YWbsJPDUb4lm/9iJeY0Zzs7qepWKsrvw+3aAlSCGwzZYDoEhrzqnB8AKAYI7IMy/HnodnGtxyt12khUNmMJiGND1hFiymzc3X8CfQO11PGNyRq96rv/cuXz87k0NUurTpcu8OsrKJU3gfouAH8EdmdUr1SgDDNm1rKWYQ0csxPT7ReEgHPPDeaqmScnkszOVsnMdHHhhafO3iu1fYpoA0OIS0pK8Pf3p7i4GD8/v9auTpuQVprP89t/PWn7Y+dcSFefoFPuJ4RAFSpGXduY5lhb2vDcylxKnaXYXLYGpQ33MnjRydypSdKGS5oCeznPb1tK6XGL4XX1CUKvKKSWFnj+jyx6A4/ETyHM6+xY96ahVDUTW8VdqOpKjq2vq5SBORmMh0FXcfyQGEVr8eg9C4a+APUIZIODUzEaFY4c6dboOosffoBrroHKymMHhxU/orhmgjMDAKchmJj+djJN2ormV3Il3/BNg8/5z/u3Me/1ZCwWHWWVf6m1zF135fH22yX8/ns4554rA5K2pq6f3/LrWzuUkJfOokM7an1ub+GRUwYjO/N3csuaW8i353Pw6oPNWcUzSipKYmnGUjbnbuZAyQGyK7IpchRhc9nqPV31xLThvfx7MbLzyCZJGy7VTZDZm7v7T+Ct3as9AynTywpqlPEymLij77ltMhBR1TLstgdQnQsRIh8QoIIxDcxpoC8C3McFIHorhI6GsfOhEVOmY2IMJCQ0bo0asXIlzJgBZVp3CwEBsHQpSsCLUDy6qpSR53qP5smA3wHwxZed7KQ73Rt83qSkYua9ngzA7sQppyy3cGE53t6KDETaORmMtDNLM/bwfWrtgQjA96k7cAk307pWrwdR7izn6a1P8/ru1xFCIBDYXXbM+qZdTyPPlseSdG0cRmJRIpkVmRTaC6lQK+o9XdWoGDEbzPgZ/TxpwwcHD2ZyxGQGBQ2S3SRnoa4+QTw9ZBrrsg+yNjuZXJv24Rdo9mJsaA/ODe+Jn6ltfOCoqorT8SIO+/sIkcWxAba6XLAcBONRUBzHd73owbcbxD8KfW5usnoMG2Zh82YHhw45iI42nXmH44jNm2HyZCgq0jb4+MD336MMSIa00VCsXVN28F+IiVlCJVogcg/3MI95ja77OQN/A+CRR+Po3r322V/p6SrZ2S4uucSr1uel9kO+Y7cjuwqyagQikV7+xFZlVEwsyuZwRTEAP6btIsI7kPhOkSxOW8zt627nSMWRGq0NRyuPEuUTdcZz2lQbKw+v5Pcjv7OrYBdppWnk2nMpV8uxu+z1GoehV/SY9WZ8DD4EW4Lp5tONAUEDmBA+gfO6nIfFYDnjcaSzm7fRzJSovkyJ6ouzauZHW1nJ2mb7Envl/yHEAaAqIVtl1cDTTNCXnTAb2RQAXafD6H9DM021njLFyr//XcIPP1Rw7711C0bEnj1w3nmQl6dtsFrhiy9QLuwLe0ZAmvY+gaUvF/YN41fD/wAIIYQkkgggoNH1Hj3yNxwON926efHc3AGnLPd//1cIwGOPNf6c0tlNBiPtyLLM6gXELuk2kGld+9d4/teMvXyXuh2Ab1PW8szWb1iUtggdupO6PVZkreBIxRES8hI4WHpQm67qLMGuNk3a8NEho7mw64UnpQ2XOo6zPQhxOtZQWfkAbtcOoGqsixsMGVrSMUMBNbteFCN0GgSj/gXhp18JvKlMnqy1JP3+u4177z19WZGaCmPGwGEt9T5mM7z/Psq110LicNi1Tduu82FD3KuM97kTlb0oKLzCK9zP/U1S588+TWHTn4XodJCUfOruGYBFi8rx81MYPlx+EWnvZDDSTuTZythffBSAUKsfU6P6nVTmnKBgPty7g99zviPXfpBjKbVrG38xe83sU57rWNpwi95CgCmAMK8wevn1YkTnEY1OGy5JrUVVk6msuAuXug4o82zXFYF5PxizT+h6QQGvcIj7m9b90gpdgxaLDi8vhd27Tz1uRGRnw8iRkJambTAa4fXXUe68E1LvhYRZVSV1qJFzGd7lG7ZVZU3tQQ/2se+0ycvqo6xM5ZabtgLw89Jxp+1OPXjQQW6umyuukF00HYEMRtqJ3MrqN8+BQRGeLJfDvh/GzoKdON3OOrdmAER4RTCs8zBP2vCRnUfKcRjSKT266Qfy7eUnbR8f3otre9Y+5XNrbjo/pO0k31ZGiNWXy6PjGRBUndhNCMFPabtYm51MpctJD79gru05zDMluLFUtQh75T2o6mKEKMSz3o1T63oxpSroykTNrheDN4SPh3HvgU9kk9SjsSIjDWRknLyOjygqghEjYP9+bYNeD888g/LYY1C4FDabQVQFMb6T+E+f65nNbNy40aHjC77gaq5u0rrGdPsZIWD6JeFccMHp1wp69tkiAJ54IrBJ6yCdneSnSzuhU6rfMp3HZWHs6dcTt3AT6hWKl96L3Eo7aeXZlDlzybenoVN0uE9Yw8agGLi9z+08PvjxFqu/1LY9Ej8F93HB7uHyYubtXsmQ4JPzRgAcLMnlw33ruTR6EAODIth0NJV39q7lsXMu9OS++DUzkZWHk7gxdhTBFm9+TN3Jm7tX8fSQixvUxaOqKg77Ezgd/0GIbDxZXV1gyAFzsg5Dnvu4rhehDTz16wlDnoWeV9X7nC1h4EAj+/c7KStz4+OjQ9hsWkvIjqrxYzod3H8/yssvg1oE2yLBqeUQwRCGrf9m4kxjSUNrIRnGMDaxqcnredOsPykocODjY+D7H87cjbV4cQUBAToGDmzagfTS2UkGI+1EuJc/OkXBLQQJeelcEXMORp2er87/ylPG6Xbx+OYfiXNUoqBwd/9hfJ/6Ne8nvk96eToGxeAZD5Jdmd2KVyO1Nb4nrPa6NGMvnS0+9PavPUX3iqwk+gWFMyWyLwAzug8isSib1Yf3c12v4QghWJG1j6ld+xPfSWuBmB07in/+8R3b8zJOu6T98WyV72K3vYYQh4DjZmuVg3WfDmMWKA53VfBRFZyYgyBmJox6veZic2ep8eOtLFxYwdLFJfzlzamwcaP2hKLA3/6G8s472uOk6VC8uOo5I/T4lrlBu3kcbaC6ESO/8Rvncm6T13Hz5nz+8590AJIPXXTG8nv2OCgocHPttTLjakchg5F2ws9kIb5TJAl5GZQ4bXyatJHre4/AoteSl9ldKl8kb6LIoSU0GtQpgr6BPekb+BiPxD/C70d+54N9H7Dw0EKcbidHK4+25uVIbZjqdvHn0VQmRcR5ugtPlFKaV2OdFIC+geHsyM8EIM9WTonTRp+A6qZ8q8FEtG8wKaV5pwxGHPal2GyP4nbtAY4bR+EC0yE9poMK+lK1ZvChM0PnoTD6Teg8uGEX3YoumWbm8F3zueSaNwCXFoRccw3KF19oBbLnQ/rdeK638+3kRT9HHHHko62mPI1pLGZxs9Vx7KhVALz6r4EEB585wDs2i+bJJ2UXTUchg5F25KKofuzMz0IVbrbkpbO78AgDgrqgoLCrIItKlxMAg6LjouMGuOoUHRO6TGBClwnMt8/n64Nf0y/w5AGwklQX67IPUqE66OYb6Els5mMwE2Sp/pZb4rDhZ6z5oeRntFBctZBeiVMLmv1OaHHxM1WXAVDVnVSU34vb9SdQUaOsLlePNdGAIc+J4nZT3TJStdjcgPtg4L2Nv+BWJC67jKhFi5gL2DBhnD4V5ccftSfL90DiaHBrGWCx9oc+2/iH4W7eQVsUzgsvEkggluYbdD6g31JcLkHffr7ce2/dzvPLLxV06qQjNrZ+uVOktksGI+1IV58gbuszlg/2rcfpdmFzOdmcm1ajjEHRcXPcGLr7dqr1GIHmQG7ve3tLVFdqhwps5Sw4uAUBvLl7tWe7QdHx3NDpNQKShtCJErpbvqKo4GKguOaTdh2WvRZMGSo6hwMt+KgKQIx+EDkZxr3jWWyuLRM33ACffw5Vq3m8a5rFY9YnKPixB6gqJA6BSm1VXXS+ELeOZB8v4gmgHG2g8a3cyvu836z1fP21fSTuLcVgUNi5+8I67ZOQYKO4WDB7tuyi6UhkMNLODOoUyaPxF/JbViKbctNqJJYa2rkbF0TE1VgcS5KaUlZFUa1ztlThpky1E4T2AeNnsnjSwqNWwvaXUL2H41/VEuJn1PJnFFUUYXA8jOpcgBC5/CVU4On5cYEx3QfLfoGutAIFN57WEcUAgX1h+EvQtW4fgm2BuOsumD/fE4QwYgSsW8c3Fxyl6Hcb7pQ70eXNryqtg8jXoMu9XMZlLGIRAEEEkUQSwTRvUJaXZ+PBf+4CYO2GCXXeb+7cIgCeeCKgGWolna1kMNIOdfH254beI7mqxxDybdq3oE5mbyyGtrH4ndR2HRvzcSYxvsHsK8pmUqcQWDoNjv6Bf+jlRPf5J5UVr2Cyz+fR3sX4uYpwVg11EEIhNac3XQ+UE3T0KIpwUp0PRAFLCMTeCEPmtkrOj+YkHn0UXnoJ3FU3Y+BA2LgRxUvLwfGXC7bw9t/uR8lN1qYC+V0EcUvYwAYmYMZRNX7maZ7mKZ5qkTr3jP4FgBtnd2PYsNpbYmuzbFklISG6eqe3l9q29vUXK9Vg0RtlK4jUYtxCsD0/65TPrzqcxKzeowA4PyKWj7Z+Tfn22XhVpKMAg8p+oGen77BXNZh46/Wkl8YQdggC0gpQnOXEi/0nLDY3Bsb+GwJ6Neu1tRbx4ovw+OPgqupu6t0b/vwTJSBAe+zIgz2DuOP8wwggPbc33SavB1MwoxnNRrSZNVFEsZ/9WGiZ2UGXXrKOsjKVTp1MfPjx8Drvt3GjjbIywV//2jzp86WzlwxGJElqEj+l7aTUaTvl8ykleQghcKl/EFr0D55L34HOIVCqehxM5S4qK80YCyOw7K5AKT1KJ1JQ0NKRlen9UL1j8Ip/AOKabrG5s5F49124+25waoPO6dpVC0LCjksUtm8qlGitDygmBlz9A116DORvF69mJjNx40ZB4QM+4GZa7n4tX5bN4p+OoChwMHVavfadO/fYWjRyFk1HI4MRSZIabUd+Jr9k7K2xzaQz4HCr+BtyuSTsM3r6JFJUYMOQDz7r0GahnjDAxH+JHUg57iAB0G0Gyqi38W2mxebOJuLLL+Gmm8BetRZOeDisW4cSE1Nd6PA8yLyf6qm6d6JEv0V6wUGS3pzFb2ir4Q5gAAkkNFkq97pQVZVpF60F4JNPh+LjU79zr1plIzxcT2Sk/GjqaOT/eBvSFlNuS+2fy+3mi+TNnuUGhgYHcmn4V5jEEoQoQAht0KkQoM9S8PlTaMlNaz2aDjoPgZGvt9hic2cD8cMPcM01UKlNaSY4GFatQul/3GKXZTth31hwl2qPrQOhz1YwGHiLtyjLfAh8KjFg4Cd+4kJafuBu7x6/4nbDyFFB/PWG6Hrtu3JlJRUVgltvlbNoOiIZjLQhbSHlttTxbM9PZajffxgWuAZ/YyE6RYD72EovCjpdKLk5AwhYn0CAq6Bq6ykYfWDGRuggrz2xZg1MmwZlVQNx/f3hl19QRo2qLqSqkHgOVO7WHuv8oM8G8O5HGWX0ohfZZIOXAo/fS8adrxAW1vJv7Y8+upP09ArMZh3rNpxf7/1feqmw6jgBTVwzqS3QtXYFpLrzNVnwN1k9PzsLsuqccjvcy58Z3QfR1SeQ1Ye1hbNOTLkd6R3I7NhRFNkr2Z6X0ZKXJrUxNtunFBfGUlRgJEbXg8mhiwgwFqAoAkUJwKC7Ap+Mpwn4fTj+/yuk55rfCHYVoHAsEDlFOOIsgbwtLXchrURs3owIDITx47VAxMcHli1DKSqqGYgc+gckGKsCER1EvQlDi8G7Hw/wAL74kk02Fiw899MGmHsXP/5YccrzNpfU1DJefiEJgB27JjfoGGvW2ImK0hMSIr8jd0QNCkbmz59P9+7dsVgsjBgxgk2b6rao0oIFC1AUhUsvvbQhp5WOcyzl9ujQHqdNuR0XUHNlzL6B4aSU5gFnTrktScc4HSspKR5GUYGFogIFW8VshNgPqKjCwv7Sfry6/0WEVxn+gYX4uJ7A8OfTkLsJvMIhYgrvRT/NYz3+xX+6/hPiH4KISWDyrz6JUtUakvFra1xiixBJSYiQEBg+HIqKwGqF//0PpbQU5YILqgsW/ACbTZBbta6M/8Uw3AXhd5FJJv748yqvAnAd11FJJXeOHwrA6tWVLXxV0L+P9n92/z970bOXb733X7KkHJtNcM017X9ckFS7eoegX3/9NXPmzOHdd99lxIgRzJs3jylTppCUlERISO3f0AFSU1P55z//ybhx4xpVYUmzPT+TStXB6NBT98s2VcptqeNR1SQqK+7CpW4AThynZEKn74/F8gIm82S+OLCJNdnJAKSWFWhZVjsNhCk/QNRU0BkoslewbdMiBGAK6AVDqmZZCAHlmZCXAHlbtX+DBrTkpbYIkZmpJSg7fFjbYDLBe++h3HhjzYKOPNg9ANSqhSqNETBgNxgCAC3w+JIvAfDDjz3sIRJtIcGAAANmM2zf7qAlnXfuSmw2NxERVl56Jb5Bx3jlFS2b7iOP+J+hpNRe1btl5PXXX+fWW29l9uzZ9O3bl3fffRcvLy8+/vjjU+7jcrm47rrreOaZZ4g5flS41GDrsw/SLyicALNXa1dFagdUNY+y0usoLgykqEChrCQOl7ocLRDRoyi9sFjfIyBIEBBkx89/Kyaz1hw/qGpVXYBfM/agVmX9pdsloNO+7/ySsccz2in+uPIoCvhEQfcZMPRZuHAxRF/W/BfcQkReHiI6GqKitEDEYIA33kCx208ORPZNge2dtUBEMUOvX+CcTDAEkEACVqyeQOQBHqCYYk8gckyXLgYyMtQWujr4ekE669bmV03jbdiAWbfbzYYNNqKjDQQEyC6ajqpewYjD4WDr1q1MmjSp+gA6HZMmTWLjsWWra/Hss88SEhLCzTfXba673W6npKSkxo9ULd9WTmJRDmPDep62XI2U21VKnLaTUm6XnNAKUuKoLiO1T6rqpKL8nxQXhlNUoKOspDOq80uEKAJ0KEoXTJZH8fFzEhCk4h+4H4v1tlqP1TcwnBCr1jSfWlbAaztXsKsgi3Kng9TSfD7at4HVRw4AoFd0jAs//eu2PRBlZYg+faBzZ0hNBb0enn0WxelEufvumoUPvwab9FCyTHsccg8Ms0Gg9uE+kYkMYQg2bIQRRimlvMzLtZ63Xz8jZWUCh8PdjFensdlU/nrtnwAs+nEMhgZmvf3++0ocDmSisw6uXq+evLw8XC4XoaGhNbaHhoayb9++WvdZt24dH330Edu3b6/zeV544QWeeeaZ+lStQ9mQcxBfo5kBQV1OW86Tcvu4pdoTC7OJ8dXWpAi2eONntLCvKJsoHy3JUKXq5FBpHuM7wAdGR1NZ+RYO2zyESKN6BVsABUUJwmCYjtk6D0NVl0Bd6RSF2b1H8fquFTjdLlJK83h7z++1lr0yZjBB5vY7dVPYbDB6NGzbpm3Q6eC++1BeffXkwmU7Yd8YcFfNpLGeA302eVLZL2UpF3MxLlwoKLzBG9zFXac9/7hxFhYvrmTlykouvLB573N01yUIAVMuCmPaxad/Lzqdf/2rCEWBBx8MaLrKSW1Os86mKS0t5frrr+eDDz4gOLjuizI98sgjFBcXe34yMuTMjmPcQrAhJ4VRoTHolZr/fZ8kbeD7Q9s9j8+PiGVP4RGWZyaSXVHMT2k7SSsr4LwuvQFQFIXzI+JYkrGbHfmZZJUX8cn+jQSYrcQHR7XkZUnNwG7/keKiQRQVmCgqULBX3o0QKWiBiA96w1R8/A4QEOTGPzAfb99P6x2IHBPjF8y9/SfS6RSBhllv4Ppew5lQ9dprb4SqIsaM0QakbtumdT/deiuKy3VyIKKqsLMf7B2kBSI6fxiwDwYkgMGAisoABnARF+HCRW9648BxxkAEYPp07f7/+mvzDmL9+9+2kJtrx8tbz89LGj4O0O12s2mTnZ49Dfj4yMmdHVm9WkaCg4PR6/Xk5OTU2J6Tk0NYWNhJ5Q8ePEhqairTp0/3bHNXLfRkMBhISkqiR48eJ+1nNpsxm831qVqHsa8omwJ7BWNCTx57U2CvQDluymQPv87cEjuGH9J2sCh1ByFWX/7ed1yN9WqmRPbB4VL5/MAmKlQHPf07c3e/CTLHSBukqglUlN+H27UZOPHDyIJOH4/V+gpGU/MkE+vp35nnhk1nV34WW/MyKHPaMOuN9AkMY0Tn7u1yoUahqnDRRfCblvUURYGZM1G++qr2HVJug7wPqh7ooNt8CL3d8/RHfMSt3IpAoEfPN3zD5Vxe5/r06WNCp4NNm+wNvKIz27GjiA/ePwTA/uSpjTrWV1+V43TCjTfWfwaO1L4oQghx5mLVRowYwfDhw3nrrbcALbjo2rUrd955Jw8//HCNsjabjeTk5BrbHn/8cUpLS3njjTfo3bs3JtOZV2YsKSnB39+f4uJi/PxkZlBJAlDVLGwVd6GqK4ATx1UZUHS9MVsew2K5tjWq1+6JK66A//2vesPFF6P89FPthQu+g+Srgaq1ZvwvgdgfPE/bsNGb3mSgtQKPYhQb2NCgeoWEpAJw9Gj3Bu1/JhbjQlRVMPeF/jz0cJ9GHWvEiEw2b3ZQXt4dq1W2jLRHdf38rveIozlz5jBr1iyGDh3K8OHDmTdvHuXl5cyePRuAG264gYiICF544QUsFgv9j09nDARUrTZ54nZJkk5PVW3YbXNQnQsRIg84/nuEDkWJxGT+O0bTPxs8mFA6MzFrFvz3v9q0ZIDzzoPly1Fqu+e2bK07Rj2qPTZGwYCdnqm6AM/wDE/zNAAmTKxmNaMYdfKx6qhnTyN//tk8LSOD45ehqoJevX0aHYi43W62bnUQF2eUgYhU/2Bk5syZ5Obm8uSTT5KdnU18fDxLly71DGpNT09Hp5MvLElqLFVVcTpexmF/DyEy8SyMBmiDTjtjMF6J2fIaBoOc/dTcxF13wfz51UHI8OGwfn3tQQhA4iQoXaH9rpih508QWJ3YLI88YomlAC1F/mVcxnd81+h6jhhhZuNGO4mJDvr0OXPLc139e/4Bdu4oRq9X2LXngjPvcAYff1yGywW33CK7aKQGdNO0BtlNI3UUdtuX2GxzEW4tu2lNfhgMk7B4vY3BEN4a1QNgacYevk/dwcQusczsMeSU5drLIo3iscfgxReharwb/fvDxo0oPqeYinr4Rch8FK3lSoHQ+6DbazWK3MZtfIA2dsQHH7axjZ40zQy2pUvLueiiHF56KZAHHwxskmMWFdkIDtS6oNatn8DI0XWfkHAqgwdnsmOHg8rK7phM8gtse1XXz2/5CpCkVuR0rKOkeBRFBVaKChQqK65DuPeiBSJWdPrx+PhtrUo2VoyP3/9aNRBJLc1nzZFkIo8bBF2bY4s0jgmL4fHBFxHfKZJ39q4lq7zIU+bYIo3X9RrOw/GTMesMvLl7FU6369QHbkHilVcQBgM8/7wWiPTqBYWFKLt21R6IlCXAFh/IfAQQ4DUYBjtqBCJJJOGNtycQuYM7KKW0yQIRgIkTtfxBa9c2XRblmG6/AHD1tVFNEoioqpsdOxz062eUgYgEyGBEklqUqiZTWjKVogJfigoUysvG4Xb9AdgAI4puEFavRVXBRwV+/qsxGAa3drUBsLmcfJS0get7jcDLcPrm/7a8SKN4912EyQQPPgguF3TtCkeOoOzfj1I15q0G1QY7YmHvEHCXgz4ABh6A/ls9OUMApjGNOOKooIJggimggLd5u8nrbzLp8PFR2LPH2STHm3nlBkpKVAICjHz+xcgmOea775bidsPtt59drWBS65HBiCQ1I1Utorz0RooLO1VlOu2FS/0FKENLsx6D2fpmVfDhwD9gO2bLjNaudq2+St7CgMAu9Ak8eRr/idriIo3iyy8RViv8/e/gdEJYGBw4gJKWhlJL6gIAUm6CBCvY9wN66PYeDCkES3VLxxrWYMLEEpYA8AIvkEsugTRNF0ptoqIMHD7c+BamNWuO8r+FWQCkZlzc6OMd8957Jej1cNttcryIpJFD7iWpCamqisP+JE7HZwiRzcmDTsMwmv6KyfxCm5rxsvloKullBTx6Tt3WH2lLizSKxYth5kyoqNA2dOoEK1eiDBx46p3yFkLKNXjG9QRcBr1PHnw6jGFsYQsA3elOIolYaP7BxoMGmUhMdFJc7MLfv2E5g1RVZdIELZPuO+8NwcenaV6vNpubPXucDB5swmCQ34cljXwlSFIj2Srfo7iwF0UFBspKjDjsLyDEYcCNogRiMF6Hj19uVabTI3h5v9KmApECezlfpyRwc9zodpUMT6xdi/Dzg+nTtUDE31+bHZOXd+pAxJYNCSGQciWggrErDC49KRBZwAL06NnCFnTo+IzPOMShFglEACZM0MaN/PxzRYOP0Td2GW43DB4cwK23Nd0Cp2+9VYIQcMcdsotGqtZ23hEl6SzhsC/FZnsMt2s3cOJy7d7oDWOwer2JwRDbGtVrcumlBZQ6bcxNWOrZ5kZwoPgoqw/vZ/7YmehOWJqgPos0+pus1WUcNqJ8AprpSjQiIQEmTYLCQm2Dtzd89x3K5Mmn33HveVBWteaOYoHeP4P/xBpFVFRiiSWFFADO4Rw2sQlDC7/VXnKJF3/7G/z2m41rr61/V8izz+wmJaUco1Fh09bGT+M93scfl2IwwKxZcmE8qZoMRiTpDFR1DxXld1cNND3xm6YZnX4gVuuLGE0Ta9u9zYsLCOPJwTXTfn+2/w/CvPyYEtn3pEAEzs5FGkVSEowbB7m52gaLBf77X5Qrrjj9jllzIesJqqfqPgDdXjqp2Cu8wkM8hEBgwMBSlnI+5zf5ddRFWJgBoxESEuqf/Cwzs4xnn04EYOu2SWcoXT8VFW6SkpwMH26W+aikGmQwIkknUNU8bBV34HItQ4iiE541VA06fQSL5cZWqF3LsxiMRJywgJ5Zb8DbYPasc/RJ0gYCTF5cFh0PaIs0vrrzN5ZnJjIgqAubc9NIKyvgr72GAzUXaQyx+hJs8eGHtJ3NskijyMyEkSMhSxuIickE//43ys03n37Hss2QeB6IqgDUaxjEbagxQwagiCJ605tctCBnClNYylJaW2iontTU+s+o6dN7GQD/uDOGvv0CmrROr79ejBBwzz2yi0aqSQYjUoenpVl/CNW5ACFyOTnNeheM5lswmR5rU2M9WtLZuEijyMuDESMgResywWCAV15Buffe0++o2mDPoKoZMoA+EPptqjFD5ph7uZc3eAMAK1Y2s5l+9GuS+jdWXJyR336z4Xa769wKMXnSaiorXYSGmXnzrVMntGuozz4rxWiEmTNrX91Z6rhkBlapw9HSrL+Bw/42QmQAx0+BVFCUIAzGyzFbXsdgkP3abY0oK9NStSdqXQ3o9fDkkyhPPnnmnQ/eCPmfVT3QQ/f3IeSmk4qlksoABlBGGQCzmMWnfNok9W8qTz9dwDPPFLF2bThjx1rPWP777zK58i8bURQorbgMi6VpA++SEjf+/qmMHWtm7dqIM+8gtQvNtlCeJLVFdttCbLZnEO4kPCuneviiN0zA6vUGBkP3Vqid1BSEzQZjxkBCgrZBp4N770V57bXT7wiQtwBSrsczVTfwCuj1ba1Fr+RKFrIQgAACSCSRMM6ce6WlTZvmxTPPFLFkScUZgxGbTeWqKzYC8M3CUU0eiAC8/LI2YPif/wxo8mNLbZ8MRqR2SVU3UVF+P27XFrTspsezoNMPwcvrFQzGhq+OKp0dhKrChAmwbp22QVHgpptQPvzwzDvbMmHPOeCqSrRm6g79d0EtLWKb2cxYxuKomkH1KI8yl7lNdBVNb8gQE4oCGzeeeRBrz+glCAETz+/MZZdHNkt9Pv+8HLMZZsyQXTTSyWQwIrULqppGZcXduNRVQOkJzxpRdLFYLE9htpxh5oTUZghVhWnTYNmy6o1XXYXy9ddn3llVIWkClB8LYCzQ+1fwP7fW4udyLmtZC0AEERzgAFbO3PXRmnQ6HQEBOpKSTj+I9Z67t5Gdbcdq1bPst/OapS4FBSppaSoTJ8rVpaXayblVUpukqmWUl91KcWFwVZr17rjUH9ECET2K0h2z5VV8/JxVadZ3yUCkHRFXXglGY3UgMnUqOJ11C0Qyn4EEU1UgokD4ozCsstZA5Ad+wICBtaxFQeFd3iWTzLM+EDkmJsZAbu6p08Lv3VPE/LeSAUjcf4Y8K43wwgtFADz4oH+znUNq22TLiNQmqKqKwzEXp/1DT3bTagqKEoLBeA1my4sYDPLbV3slZs+Gzz6DY+Pux4+H335Dqcssp9KNsO98EFoqerxHQuzak6bqgpa8bCADSUQbBNuXvuxgR4snL2usIUPMbN3qID1dpWvXk+s+5JzfAHjy6T5ERjbfYO0FC8qxWhWmTJFdNFLtZMuIdNay2T6juDCOogKjlmbd9jRCZKIFIv4YDFfh43ekKs16Dt4+82Qg0k6Je+9F6PXw6adaIDJ0KNjtKKtXnzkQUW2woyckjtYCEX0QDDwE/TbWGoi8y7uYMJFIInr0/MRP7GFPmwtEAC64QGvB+fHH8pOeGzF0OU6nICbGiyef6t9sdcjOVsnMdDF+vPzblE6t7f11Se2W07GKysqHcLt2AicOuvNCrx+B1fsNDIYBrVE9qRWIJ5+E558HV1VXQ//+sHEjik8dv8UfuA4Kv6x6oIfoj6HzDbUWLaOMWGI5zGFAGyfyO7838gpa14UXegHw+++V3HlndRfJxx+lsHVrETod7E2a0qx1mDu3CICHHw5o1vNIbZsMRqRWo6pJVYNO1wMnfnMzodP3x2KZi8lct5VipfZDvPYaPPywNtAUoEcP2LwZJTCwbgfI+xJSbsCTQybwauj11SmLP8ZjPM/zAJgxs5a1DGNYI67g7ODjo8NqVdi5s3oQa1mZym23bAXgt1Xjmz2R38KF5Xh7K4wf3zbG2UitQwYjUotR1SJslXfiUpcgROEJz+pRlGjMlvuxWG9vlfpJrU+8/z7ceSc4qz48o6JgwwaUyDpON7Wlwp4h4CrQHptioP+OWqfqAmSTTR/6UEQRoOUQ+YZvGncRZ5mICD2ZmarncfeuiwG4/IoIzj03pFnPnZ6ukp3t4pJLZCAinZ4MRqRmo6oqDvsjOB2fI0QOJ6dZD8NomoXJ/KxMs97BiQULYPZssFXlhAkNhXXrUHrWcdE8VYWk8VC+QXusWCF2GfiNPeUuN3Ijn6FlW/XFl53spDvdG3EVZ6f+/U0kJ1dgs7m57ZbNFBU68fMz8M23o5v93P/3f9qXjkcfrWOLltRhyU8AqUlVVs7HYXsdIdKoNc26YTpm6zwMJyy8JnVMYulS+MtfoKJqMbqgIFi5EmXQoLofJPNJOPx/eFbV7fI4RD57yuJ72MMwhlGJNqvmHu5hHvMafA1nu/HjLSxaVMFbb+bw5RfpAKSkXdQi5160qBxfX4URI+TgVen0ZDAiNYrDvpjKyscR7r2cnGbdB71hHFavNzEYmmdZeKltEuvWaQnLSkq0DX5+8PPPKGNP3ZJxkpJ1kDT5uKm6YyF2Va0zZI6ZwhSWoeUmCSGEJJIIIKCBV9E2zJjhxX33FfDIw9o05TffjicgoPmDg4MHHeTmuvnLX7ya/VxS2yeDEaleVHUbFeX34XZtgqpvltUs6PTxWK2vYDTV40NF6jBEQgJccAEUVI3p8PaGhQtRLqzHIGW1DHYPBMch7bG+E/TbDpZTjytZwQou5EJUVBQUXuEV7uf+hl9IGxIdbQJU3MLCoIH+/OOOXi1y3ueeKwLgiSdkF410ZjIYkU5LVbOxVdyJqi4HSk541oCi64XZ8hgWy3WtUT2pjRAHDsDYsXD0qLbBYoH//hflinpmxT1wDRQuqHpggJjPIPjaUxZXURnGMLazHYAe9GAf+9pkzpCGeuWlfUAFAm+27Wj+cSLH/PRTBQEBOgYNMrfYOaW2q+P8RUp1oqo27LY5qM6FCJHHyYNOIzGZb8NoekgOOpXOSGRmwsiRkJWlbTCZ4N//Rrn55vod6OinkHoLnnFIQddBz89Pu8t/+A+zmY0bNzp0fMEXXM3V9b6Gtiw728YjD+9CIRyU8BY77549DgoK3Fx7rcy4KtWN/DTp4FRVxel4FYf9neOymx6joCidMRj/gtnyOgaDnJ4n1Y3Iy4MRIyAlRdtgMMDLL6Pcd1/9DnTiVF1zT+i3C06TadeGjTjiSCMNgOEM50/+bMBVtH2xPZcAMGCgLzt3KuzcaWfgwOZvqTg2i+bJJ2UXjVQ3Mh18B2S3LaC4qJ8nzbrd9ghCpKMFIn4YDJfh45dRlWb9KN4+78hARKoTUVaG6NcPOnfWAhG9Hp58EsXprF8goqqwewTsjNYCEcUL+myAQQdOG4jMZS5WrKSRhhEja1nbYQORaVPXUl7uonNnE//6V28AfvyxokXO/csvFXTqpCM21tQi55PaPtky0gE4HeuprPwnbtd2wHbCs1Z0+mF4ef8Lg2FwK9ROag+EzQZjxkBCgrZBp4O77kKZN6/+B8t4DI68gGeqbsQzEPHEaXfJI4844sgnH4CLuZif+Kn+524nfl58mF9/yUZR4FD6NAwG7Xvn+vUn/v03vYQEG8XFghtvlF00Ut3JYKQdUtVUKivuwKWuAcpOeNaIouuDxfIsZsuM1qie1I4IVYWJE2HtWm2DosCNN6J8/HH9D1a8BvZPAVH1gelzLsSt0gKb0/gH/+Ad3gHACy8SSCCW2Pqfv51QVZVLL1kPwOdfjsBi0d7m/fwU9u51NPv5j61F8+STAc1+Lqn9kMFIO6Cqxdgr70VVf6xKs378oFM9itINk+VerNa7WquKUjsjVBWmT4elS6s3XnEFyrff1v9gahns7g8ObYwHhmDou+20U3UBkkkmnnjKq9Y1upVbeZ/363/+dqZH9FKEgDFjOzHz6q6e7d26GUhKOjEXUNNbvrySkBBd1ZRiSaobGYy0Qaqq4nA8hdP+KUJkc/Kg0zCMpuswmV/AYDC2VjWldkpceSUsXFi94aKL4McfURoyu+rAlVB47FgGiPkvBJ95xstlXMYiFgEQRBBJJBFMcP3P38489MB2sjIrsVh0/L52Yo3n4uPN7NrlJD9fpVOn5nnr/+MPG6WlgmuvreOqypJURQ5gbUHCXUx52Sycjvr3ZdsqP6C4sDdFBQbKSow4bM8jxGHAjaIEYDBei49fbtWg0yN4eb8qAxGpSYlbbkHodNWByLnngtOJsmRJ/QORnI9gk6E6EOk0C4Y7zxiIrGMdJkyeQOQZniGffBmIAAeTy3jt1QMA7No75aTnzz9fG/j700/NN4h17lxtFs3jj8tZNFL9yJaRRiiwlXPUVkK504lRp8ffZMHXaCHIcvLALbc7k7KSybjdiQj3YYym6ac9tsP+Kzbbo7hdu4ET+3m90RvGYPV6A4MhrukuSJJqIebMgTfeAHdVC9yQIdoidpYGpBS3JcOeYeAq0h6be0O/HaedIXPMKEbxB38AEEUU+9mPBbnmyTED+/8KwIOPxBIdfXLLxPTpWlr2lStt3HijX7PUYeVKG+HheiIj5UeLVD/yFdMAQgjWZSfzRfLmGqMzAHSKwpODpxLu5e/Z5lJ3UlY6uSqJGKjqWoSwoyjV8/1VdQ+V5ffgcm0ETvzmYkanH4DV+iJG0/nNc1GSdALx1FMwdy64qhKN9esHf/yB4tOAJnhVhX2joGKL9ljnrQ1O9Rl2xl0XspCZzMSNGwWFD/iAm6ln0rR2buzoFdjtbrp29eL55wfWWiYoyIDJBNu22ZulDitXVlJRIbjlFjmLRqo/GYzUk1sIvkjexLrsg6d8/t29a7l/4Pn4maw4nb9RXnop2pTaY6vY2rHbl6I6vsLl+hUhik44igFFicFsfRiLZXazXYsk1Ua8/jo89JAWQAD06KEFIcEN7ApJewByXqN6qu5zEPHYGXdTUelHP/azH4CBDGQrWztUKve6+Pw/h/hjYwE6Hew/eHL3zPHCwvSkpanNUo+XXtK6aB57LKBZji+1b/Kvup4Wp++qEYgEmqxEegdS5Kgko1z7Y8yuLGH+3jXcF3cYW8WtaANMa7ah2CouPe6RDkUJx2i+CZPpSZlmXWoV4sMP4Y47wFHVLRgZCRs3okSeflbLKRWvhP1TQVR9E/edAH1W1mnXt3iLe7gHgcCAgcUsZgqn/6DtiMrKVGbfqLU2/fjzmDO+d/Tta2Lp0kpU1e3JPdJU1qyxExWlJyREvn9J9SdfNfVQoTpYlqktw62gcEPvEYwMiUanKABklBUyf8/vFDrK6WH5AFvF/05zND1G042YLfMwGOTIc6n1iG++gVmzwFaV3yM0FNauRenVwNVd1TLY1Q+c6dpjQwj03QGWsDPuWkYZvehFNtkAnM/5/MZvDatHB9Cj+88IARdPD+fCC7ucsfzYsRaWLq1kzRo7Eyc2XVblX34px2YTXHONfC+TGkbOpqmHP48ewunWulrODe/J6NAYTyACEGbO4J5e83i+7/VMDjldIKLRsp7KP16pdYilSxE+PjBzphaIBAXB1q0o2dkND0T2Xw4JvlWBiBFivoXBOXUKRB7gAXzxJZtsLFjYxjYZiJzGLTdtIj/fgY+PnkU/jq3TPpdcog1i/eWX8iatyyuvFAPw8MP+ZygpSbWTLSP1kFFW6Pl9ZEg0AC41jfLyS3G7EgE7VrQOGSG0ZJQaA9p4keO7alyozjUYTdNaouqS5CHWrYNp06CkRNvg5wc//4wytm4faLXKeRfS7sQzLir4Zoj5sE67ZpJJP/pRglaf67iOzzn9irwd3baEAj79REsSl3xoap33GzDAjE4Hf/zRdINYhRCsX28jOtpAYKD8SJEaRr5y6sElqoMJs167dYquE25XIjpdVwzGCzCabuTJbVkU2CvobK7kqfgwVHUTLvVPVNcfIIo9x1DV1TIYkVqM2LkTJkyAgqoVcL294dtvUS66qOEHrUyCvSOrp+pa+kDfhDpN1QUt8PiSLwHwx5/d7CaSBo5R6UBGjdDG3rz86gCCg+s3vTkwUMeBA003iPX77ytwOOCvf5WtvFLDyWCkHoIt1X9sO/KziPAOQKfzISCoevGpjLJCCuxa4iFvYwRG04WegEMIgdt9CJe6CZdrC0bjxS17AVKHJJKTYexYyMnRNlgs8MknKFefOdPpKakq7BsBFccWxvOGuDXgU7fFFhNIYAxjsFUt3PggD/ISLzW8Ph3IoP6/oqqCuD6+zLm//nmGevQwsHVr061R8/rrRSgKPPhgQJMdU+p45JiRehgVGs2xnpflWXs5XF5U43mby8mCg1s8j0eH9qjxvKIo6PUxmMxXY/V6FYNxfDPXWOrIRGYmIioKevXSAhGjEd57D6WysnGBSNr9kGCsCkQUiHwZhpbVORCZyESGMAQbNsIIo5RSGYjU0bx5SezZU4Jer7B774UNOsawYRZcLjh4sPEBidvtZtMmOz17GvDxkR8nUsPJV089BFt8GBysLTxVoTqZu20pn+7/g3XZB1mUuoMntywmuSQXAD+jhREh3VuxtlJHJQoKED17QlQUZGaCwQCvvILicKDcdlvDD1y4HDZbIOd17bHvJBjuhi4P1Gn3pSzFgIFVrEJB4U3e5AhH8EE279dFXp6Nf963E4B1Gyc0+DiTJ2uzaH78sfFp4b/6qhynE2680bfRx5I6NtlNU0/X9xpOrq2M9LICVOFmY04KG3NSapSx6o38o9+5WOTaMFILEmVlMHIk7NmjbdDr4ZFHUJ57rnEHVotg1wBwZmqPDWHQfxeY6pYETUXlHM5hN7sB6E1v9rBHJi9DW1KiTK05mNTHYOaPlSUMGhRARET19NteMb8A8NcbujJsWKcGn/NYMLJmjY377mvwYQB4881iFAXuu0/OopEaR74b1JPVYOL+gefzY9pO1menYHNVL8mtoDCwUwSXdR9UIx28JDUnYbdrY0K2HEu1roM770R5443GHzxpBhT/qP2uGKHHtxA0o867f8RH3MqtCAR69HzDN1zO5Y2vVztQYCvniS0/oQp3je1qiY7PLtbj52/gk0+HM+PSCC6/bD2lpSpBQUY+/WxEo85rsejw8lLYtatx3TRut5uEBAdxcUasVtnILjWODEYawKI3clXMEC7pNpDEwmxKnDbMegO9/UJqXSRPkpqDUFU4/3xYs0bboCgwaxbKJ580/uDZ8yH9brTswUDn2yH6nTrvbsNGL3qRidaaMprRrGd94+vVjpSp9pMCEYC8VG3WXmmJyl8u28C0i8P5efERUCAlrWkGvUdFGUhPb9yMmk8+KUNV4ZZbZBeN1HgyGGkEi97IOcFRrV0NqYMRqgozZsCSJdUb//IXlIULG3/wyiTYMxzcVTlILP2g73Zt3EkdPcMzPM3TAJgwsZrVjGJU4+vWQRSlav8eyyTw8+IjADzzdB98fJrmLXvAACNJSU7KytwNHng6f35JVSNc86wALHUssm1NktoQMXOmNivmWCAyZQo4nY0PRFQVdsXDrjgtENH5aCncB+6ucyCSSy6d6OQJRC7jMuzYZSBST0VpCgajctL2//u/fbz15gGEOHGt8PqbMEEbN/LLLw0bxKqqbnbscNCvnxGTSX6MSI0nX0WS1AaI225D6HTwzTfahrFjtSBk6VKUxi6seOgebapu5Q5AB5GvwtBS8Kl9Kfra3MZthBBCAQX44MMBDvAd3zWuXh1UYYqC6jw54HA6Bffds53LLlnf6IDkkku07uTlyysbtP+775bidsPtt8tWEalpyG6aE+wvPsqyzL2klxVS7Kjk733GEX+Grpikohy+TUngSEUxgWYvpnbtz+jQmBplVh3ez/LMRIodlUT6BHJ1jyFE+zZwSXapwxD33w/z5oG7amzB4MGwfj2KpX5ZN2tVuBSSZ4CoGsjoNwXiltbrEPvYxxCGUIH2DftO7uQt3mp83TqwwpSTW0VAGxIkBBxMKcfhcGM26xt8jshIAwYDbN3asLTw779fgl4Pt90mx4tITUO2jJzA4VKJ9A7kmh5D61Q+z1bG23tWExsQyuODL+L8iFj+u/9P9hQe9pTZnJvGwpQEpnXtz2PnXESkdwBv7l5FicN2miNLHZl45hmEwQCvv64FIn37QmkpytatjQ9EnIWwLQIOXKQFIsZwiM+tdyAyjWn0oQ8VVBBMMIUUykCkkRzlUFl4cjCiKBAebuHDj4eybccFjQpEjgkJ0XPoUP0HsTocbvbscTJokAmDQX6ESE1DvpJO0D+oC5d2H1Tngam/HzlAsMWHK2MGE+7lz4QusQwOjuK3rCRPmd+y9jE2rAdjwnrQxduf63oOx6QzsCHnYHNdhtRGiXnzEEYjPP00uFwQEwO5uSh79qD4NEFysH3TYFsQOA+DYoKeP8E5h+ucMwRgDWswYWIJ2riVF3iBXHIJIKDx9esgnG4Xa44kn7S9OK1mIKIoEBRk4l9vxHMgZSo3zo5usgAgNtZIUZEbt/vkGT2n89ZbJbjdcMcdsotGajqym6aRUkryiAuouTx638BwvknR1uxQ3S7SSwu4KLKv53mdohAXEEZKSV6L1lU6e4lPPoHbbwdHVZdJRAT88QdKZBMtGnfkLci4l+qpun+H6H/X+zDDGMYWtHwm0USzl71YaIIuow7E7lJ5a/dqDpQcPem5pOMmSHl563j0sb7cdXcvvL2b/q161Cgzq1bZ2LrVwbBhdf8//PDDUgwGuPFGmTlXajqyZaSRSpw2/Ew1/5D9TBZsLicOl0qZ044bgW8tZYqdspumoxMLFyKsVrjpJi0QCQmBfftQMjObJhAp3wNb/CGjKmeIdQAMdtY7EPmSL9GjZwtb0KHjcz4nhRQZiDTAV8mbawQisf6hTIqIY6BfBEk/6QFB9/Nc3LRIx30PNk8gAjB1qhcAP/1U9xk1FRVukpKcDBliRqeTHx9S05EtI5LUCsTy5XDZZVBerm0IDITffkMZXLfF5s5IVSFxMFTu0h7r/KDPBvDuV7/DoBJLLCloSx4MZjB/8qdM5d5AhfYK/jiaCoBZb+C+ARM9A9lHDf8NhMLAaTqGPaRSSSWbc1MZG9azWeoyapQZRYGNG+v+pej114sRAu65R3bRSE1LhraN5Ge0nDQQtcRhw6I3YtIb8DGa0aFQWksZf6P8VtnRiI0bEf7+MHmyFoj4+cHvv6MUFDRdIHLozqqpursAHUS9CUOL6x2IvMIrmDCRQgoGDKxgBVvZKgORRtiYcwiBNi13UkScJxD5/PM0Nm8uJC7Ol+++Os9Tfl12840r0+l0+PkpJCY6z1y4ymeflWI0wsyZMtO01LQaFIzMnz+f7t27Y7FYGDFiBJs2bTpl2Q8++IBx48YRGBhIYGAgkyZNOm35tibGL5h9Rdk1tiUWZRPjp73JGHR6uvoGkViU43neLQT7jisjtX9i505Ep04wejSUlICXF/z0E0pxMcq55zbNSQoWw2YT5M7XHvtNheEuCL+rXocpoogQQniQBxEILuRCnDiZyMSmqWcHdrSyxPP7OZ20QfLZ2TZuvWkzVquePzZPortvJwJNXlXlS5u1PtHRRo4eddWpbEmJm+RklREjZBeN1PTq/Yr6+uuvmTNnDk899RQJCQkMGjSIKVOmcPToyYOxAFavXs0111zDqlWr2LhxI1FRUUyePJmsrKxGV7452FxOMsoKySgrBCDPXk5GWSEFNq05/ftD2/kkaYOn/PjwXuTZyvjfoW1kVxSz+vB+tuamMyki1lNmUkQc67KT2ZiTwpGKYr5M3ozDrZ6Ui0Rqf0RyMiI8HAYNgoICsFjgq69QystRLm6adUZw5EFCOCRPB+EEYxcYXAhxP9f7UPdwD4EEkksuVqzsZje/8EvT1FNCUapny6hCCwLsdhddulj53/ej8fExIITwrFmjUHvOkaYyeLAZpxOOHDnzFN9XXikC4P77A5q1TlLHpIh6pvIbMWIEw4YN4+233wa0lRujoqK46667ePjhh8+4v8vlIjAwkLfffpsbbrihTucsKSnB39+f4uJi/Pyat68yqSiH13etOGn7qJBobowdxadJG8m3l3P/wEk19jmW9CzA7MW0WpOeJbEsM5ESh01LehYzhGjZMtJuiexsGD4cMjK0DUYjvPkmyu23N+2J9k2BkmXa74oJev4AgRfW+zCppDKAAZRRBsBsZvMxHzdlTSW0af7fVs20O79LLFf1GHJSmcTCbObtXglog1vnDDy/2erz1VelXHttLu+9F8xtt53+vTU6Op0jR1RsNvklSqq7un5+16vz1+FwsHXrVh555BHPNp1Ox6RJk9i4cWOdjlFRUYHT6SQoKOiUZex2O3Z7dWbAkpKSU5ZtarEBobw37tpTPn9j7MnrbBxLeHY6E7rEMqFL7GnLSG2fKCqCYcMguSqHhMEAzz+P8sADTXuiw69D5gNUT9W9G6LfaNChruRKFqKtbRNIIHvZSxhhZ9hLaoiRIdF8f2g7qnCz6sh+evqHcE6nSE+LydHKUr5Mru7GHhfePINXj5k2zRvIZdWqytMGIwUFKqmpKhMnynFuUvOoVzCSl5eHy+UiNDS0xvbQ0FD27dtXp2M89NBDdOnShUmTJp2yzAsvvMAzzzxTn6pJUqsSZWUwahTs3q1t0Ong4YdR5s5t2hOV7YR9Y8CttWBgHQR9ttRrVd1jNrOZsYzFgZbb5HEe5zmea8raSifwMZqZ0CWW5VmJuIXgvcS1dPUJpIdfZ/Jt5ewuOIy7aoBrhFcA53Rqojwzp+Dnp8NiUdixw3Haci++WAzAgw/6N2t9pI6rRYfFv/jiiyxYsIDVq1djOU1K60ceeYQ5c+Z4HpeUlBAVVbeMqJLUkoSqaoNSN2/WNigK3HUXyhsNa6U4JVWFvfFg26M91vlBv01gbVhr2zjGsY51AEQQQTLJMmdIC7ksehBFjgo256YBkF5WSHrVGLVjQqy+3NlvPAZd49O+n0l4uJ709NOPGfnqqzKsVoUpU+QsGql51GsAa3BwMHq9npycnBrbc3JyCAs7fbPuq6++yosvvsiyZcsYOPD0q4GazWb8/Pxq/EjS2USoKuK887SxIJs3a0HIrFkobnfTByKHbtem6tr2ADro+rY2VbcBgcgP/IABA+tYh4LCe7xHJpkyEGlBekXHTbGjubH3SLr61Oyu9jNamBbVn4cHTSHI0jIf/P36GSkvFzgctaeFz85Wycx0MX68fI1IzadeLSMmk4khQ4awYsUKLr30UkAbwLpixQruvPPOU+738ssvM3fuXH799VeGDq3bAnSSdLYS06fD4sXVGy67DOW775r+RAU/wMErtRkyAP6XQOwPDTqUispABpJIIgB96csOdsicIa1EpyiMCo1hZEg0ebZySpyVWPRGwqx+6Ft42uy551pZvLiSFSsqueiikwOg558vAuDhhwNatF5Sx1LvV/2cOXP44IMP+Oyzz0hMTOTvf/875eXlzJ49G4AbbrihxgDXl156iSeeeIKPP/6Y7t27k52dTXZ2NmVlZU13FZLUAsQ11yB0uupAZPJkcDqbPhCx50JCGCRfWjVVN1KbqtvAQOQd3sGEiUQS0aPnJ35iD3tkIHIWUBSFzlYfevh1JsI7oMUDEYBLLtFymixdWonN5ubbb8tqTPVduLAcb2+F8eOtLV43qeOo97vRzJkzyc3N5cknnyQ7O5v4+HiWLl3qGdSanp5eIyHOO++8g8Ph4IorrqhxnKeeeoqnn366cbWXpBYg/vY3+OADODYLfswYWL0apQGDRs8ocRKUVk0tV8zaqrqBFzToUGWUEUsshzkMwLmcy+/83lQ1ldqJ2FgTOh1s3mznzz/tXHXVURQFxo61cNFFVo4ccTF9ugxEpOZV7zwjraEl84xI0jHigQfg9dfh2BLr55wDGzagnGbwdYMdfgUyH4KqmRSEzoFurzX4cI/xGM/zPABmzGxgA4NponTzUrsTEpIKwPr1EfTureXG0emqX/pDh5r4+9/9uOwybwIDm39QrdR+1PXzWwYjknQC8dxz8Mwz4KpKk92nD2zahOLTDEumlyXAvnPBXbVgntdgiPuzQVN1AbLJpg99KKIIgJnMZAELmqiy0pk8uukH8u3lJ20fH96La3sOq3Wfrbnp/JC2k3xbGSFWXy6PjmdAUITneSEEP6XtYm12MpUuJz38grm25zBCrU33XjhmTBZ//GGnsjIaq/WQJwg55lhgYjDAjTf68sEHnZvs3FL71ixJzySpPRNvvQVz5mjTaAGio7UgJLgZMuWqNth7Dtiq8vPoA6Dvn2Dt3eBD3sAN/Jf/AuCHHzvYQXe6N76uUp09Ej/FkycE4HB5MfN2r2RIcNdayx8syeXDfeu5NHoQA4Mi2HQ0lXf2ruWxcy4kwjsAgF8zE1l5OIkbY0cRbPHmx9SdvLl7FU8PuRhjE039HT7czIYNdtbuyKVzqELOkZrfUY8FJ6oKpaW1z7qRpMaQqx1JHZ749FOE2Qx3362923bpAocOoaSkNE8gknILJFirAhE9dHsHhhQ2OBDZyU6sWD2ByBzmUEyxDERaga/Jgr/J6vnZWZBFZ4sPvf1Dai2/IiuJfkHhTInsS7iXPzO6D6KrTyCrD+8HtFaRFVn7mNq1P/GdIon0DmR27CiK7JVsz8tosnqPmah9FDzy0R50oUW1llEUmDHDi//8p/ZrkaTGkMGI1GGJ775DWK0wezY4HNC5M+zbh5KVhdK9e9OfMG8hbDJC3kfaY/9LYbgKoQ1fr2YKUxjEIGzYCCWUYop5jYaPNZGajup28efRVEaH9qixQN7xUkrziAuomaOpb2A4KaV5AFXTfm30Oa6M1WAi2jfYU6YpxI9xA4KcnX74R9lQ9DVbPxQFLr3Ui2+/DcVkat7F+6SOSQYjUocjli9H+PjAX/4CNhsEBsKWLShHj6LENsP6QbZsSAiBlCsBFYxdYXARxH7f4EMuZzlGjCxjGQoKr/Ea2WTjhxxTdbbYnp9JpepgdGj0KcuUOGz4GWsOiPYzWih22LTnnZXaNtMJZUzVZZqCyaTDYHVTkGrFr4sdRHXAoSjwl7948/XXoRiNMhCRmoccMyJ1GGLjRrjoIijW1tnA1xd++gll/PjmO+neCVC2WvtdsUDvn8F/YoMPp6IylKHsYAcAPelJIokyZ8hZaH32QfoFhRNg9mrtqpyRTXXiE2Kn5LAFvwgbwn0s6BBcfLmJr74KwWCQgYjUfGTLiNTuiT17EMHB2hoyxcXg5aUFISUlzReIHH4RNumqAhEFQh+EYZWNCkQ+5VNMmNjBDnTo+IZvOMABGYichfJt5SQW5TA27PSr7vqZLJQ4a7ZwlDht+Fe1hPgZtfweJSe0gpQ4qss0hhCC5ZmJvLl7NZ16leN2KlgCqhfN6zEpj6fmIwMRqdnJYERqt0RqKiI8HPr3h/x8MJvhiy9QystRLr64eU5athm2+EDmI4AAr6Ew2AHdXmrwIW3Y6E53ZjMbgWA4w3Hh4kqubLp6S01qQ85BfI1mBgR1OW25GN9g9hVl19iWWJhNjK82cDrY4o2f0VKjTKXq5FBpnqdMY/yYtpOFh7bhFC66nFMCKBzd6w0I/CIqmfDYQb46tIl828nTlSWpKclgRGp3RHY2ols3bWpudra2mN0776DYbCjXXts8J1VtsCMW9g7XcoboA2DgAei/ucE5QwDmMhcrVtJIw4iRtazlT/5sunpLTc4tBBtyUhgVGoNeqfkW+0nSBr4/tN3z+PyIWPYUHmF5ZiLZFcX8lLaTtLICzuuizaxSFIXzI+JYkrGbHfmZZJUX8cn+jQSYrcQHN24l89TSfJZk7PE8nnGJti6NbXM0Oj3M+vggOj2UOu18mby5UeeSpDOR7btSuyGKimD4cDhwQNug18PcuSgPPdS8Jz44G/I/rXqgh27vQejNjTpkHnnEEUc++QBMZzo/8mPj6im1iH1F2RTYKxgTGnPScwX2ChSquzx6+HXmltgx/JC2g0WpOwix+vL3vuM8OUYApkT2weFS+fzAJipUBz39O3N3vwmNzjGyqmr6MMCMboOY2rUfr4alkZ0huOhCC89PmMxzCb9Q5Khkd+FhjlaWEmL1bdQ5JelUZAZWqc0TNpsWhOzapW3Q6eChh1Cef755T5y3AFKuB6qSpAVeAb2+bfRh/87feZd3AfDCiwQSiKUZZvlIHZYQgns2fIvdrWLVG3l5xGWY9AYuvjibn3+u4D//6cz11/uyNGMP36dqg6Uvj45nSmTfVq651NbIDKxSmyaEAJsNxXrqBbqEqmqL1m3apG1QFPjHP1Defrt5K2fL0rKnqrnaY1N36L8LDI1LF59MMvHEU47WP/83/uYJSiSpKTndLuxuLYiO9A7EpNc+Ctxu7bvpsZV8o48bl1LmtLdwLaWORAYj0tnprrvg668RBw6gBATUeEqoKkyeDKtWaRsUBf76V5T//Kd56yQEJJ4HZWuqzmuB3r+C/7mNPvSlXMoP/ABAEEEkkUQwzZD9VZIAg06PTlFwC0GurRS3cKNTdDz5ZABjxljw9dXGuhytLPXsY9HLjwup+cgBrNJZR/zvfzB/PuTlwb/+VfO5GTO0AanHApFLL0Vxu5s/EMl6FjbrqwIRBcIeqZqq27hAZB3rMGHyBCLP8iz55MtARGpWOkXxZHUtclSytSq1/MiRVh57LBCdTsHldrP6SPW4kj4B4a1SV6ljkKGudFYRaWlaenZF0VoiXn0VcdddcM898NVX2jaASZPgl19QGjFTpU5K/4B9E0FomTDxHgmxaxs1Q+aYkYz0zIzpSleSSMJC43NHSFJdjA/vxZ7CIwD8d/+fVKoORoZEY9IbyCov4rtD28gsLwKgq08g0b6dWrG2UnsngxGpRaWW5nO4vBidohBk9ibY4k2QRZtSKFQVrr4aKiurg46KCm3NmGNGj4bff2/+IES1wZ4BYE/WHuuDoN9WsHRv9KEXspCZzMSNGwWFj/mYG7mx0ceVpPoYGBRBfKdItudnYnerfJG8ma8PbsVqMFF6XCI2g6Lj6h5DT7m+jiQ1BRmMSC0iqSiHxem72F98tMZ2BYX7BkwkNiAUnn4a/vyzOhA5Xv/+sHkziqUFWg6Sr4eCz6se6KH7hxByY6MPq6LShz4kowU4gxjEFrbIDKpSq1AUhVvixvBp0ka25KUDoAp3jUDEy2Ditrix9PDrfKrDSFKTkO+CUrP7LWsf36Yk1PqcQPD2ntU8kK8n6vnnaw9EdDqYMKH5A5G8LyFlFtVTda+GXl81yaHnMY85zEEgMGBgCUu4gAua5NiS1FBGnZ5b4sYwqTSO348c4GBJLk63mwCzlREh3RkZEo3VYGrtakodgAxGpGa1PS+jRiDib7LQw68zTpeLpOKjONwqpoJCOl99L0IIam0IdrvhnXcQDzyAEtW4rJO1smXAnnPApSUYwxQN/Xc2eqouQBll9KQnOeQAMIlJLGd5o48rSU1FURSi/YKJ9pODpqXWI4MRqdkIIVicvtvz+KKoflzSbQC6qhTZlaqT5R+8xtQ7HkV/ptx7qgqvvgpvvNF0FVRVSBoP5Ru0x4oVYpeB39gmOfw/+Sev8RoAFiz8yZ8MZGCTHFuSJKk9kcGI1GzSygrIKC8EoJtPEDO6DfQMghO7d2O56iouTkwEQNXrONyzG5Hh3dAZDNpsFYNBS+l+7GdsPYKEyn1Q+D2EP6zNzDlR5lNw+DlAAAp0eRwin23kFVcdmkz60Y8SSgC4juv4nM/PsJckSVLHJYMRqdlkVU0LBBjWuRuKoiDcbi2o2LgRAKVPH75+6RFWBWjrbDwzZBphXv6NO7HbAQcuB1simLpC8HXVz5Wsh6QLjpuqOxpif2+SqboA13ItX6GNM/HHn93sJpLIJjm2JDXGsdTuE7vEMrPHkFOW25qbzg9pO8m3lRFi9eXy6HgGBEV4nhdC8FPaLtZmJ1PpctLDL5hrew4j1CqX6pAaTiY9k5rN8R0vx1YvVXQ6yM3VpugmJ6Ps3UtZr+oFxdxNsVLSkRfAtk/7PX0OuMpALYftPWDfWC0Q0XeCganQb32TBCIJJGDB4glEHuZhiiiSgYh0VkgtzWfNkWQij1uArzYHS3L5cN96xoTF8Pjgi4jvFMk7e9fW+GLxa2YiKw8ncV2v4TwcPxmzzsCbu1fhdLua9yKkdk0GI1KzCT1uhc/t+Zme35UDB1DWr0fp0QOHS2VP4WFAy2cQZPE67TELbOWklxXU+CmwlVcXqNgFWf+HJxRS82D3cEjwAUcKYIDo/8CQPLB0a5LrnMhEhjAEO3bCCaeUUl7ghSY5tiQ1ls3l5KOkDVzfawReZ5gZsyIriX5B4UyJ7Eu4lz8zug+iq08gq6tW+BVCsCJrH1O79ie+UySR3oHMjh1Fkb2S7VVZXCWpIWQ3jdRsevh1JsTqy9HKUpKKc1hzJJlzw3t6nncJNwsObqFCdQIwtHM3LHrjKY9XYCvniS0/oQp3je0GRcdzQ6cTZDZDyg3UbJNxg10bl0LQddCz6cZu/MIvTGc6LlwoKLzFW9zBHU12fElqCl8lb2FAYBf6BIaxJGP3acumlOYxKSKuxra+geHsqPoykWcrp8Rp86SSB7AaTET7BpNSmsewkO5NXn+pY5DBiNRsdIrChZF9+c8BLeX5F8mb2JBzkPhOkdhdKptyU8mratXQK7qT3gSPV6k6+Tlj90mBCGiJmoocFQQV/hsqdlAzGKniN7XJAhEVlXji2cMeAPrQh53slMnLpLPO5qOppJcV8Og5F9apfInDhp+xZj4fP6OFYoeWCK3EqY218jOdUMZUXUaSGkJ200jNanRoTI0g41BpPt+n7mBJxh5PIKJTFGb3HkmUT2CtxyhxVPLyjmWsyz54yvMsS/4BkfEYtQYiACVLoLjx+T0+4iNMmNjDHvTo+Z7v2cteGYhIZ50CezlfpyRwc9xojDp9a1dHkk5LvoNKzUpRFK6IPocon0CWZSSSVVFU4/k+AWFc3LU/Pf1Dat1fCMG7iWs5XFGsHQ/o5R9CJ4s3R8pLSC3LR8HNVY4HQec8XU0g9Q4YuBeU+r/sbdjoRS8y0ZqrxzCGdayr93EkqaWklxZQ6rQxN2GpZ5sbwYHio6w+vJ/5Y2d6cv4c42eyUOKs2cJR4rThX9US4me0atscNvxN1uoyDhtRPgHNdCVSRyCDEanZKYrCyJBoRnTuTnpZIbm2UnSKjijvADofN8i1NvuKcjhYkgdAgMnKvQMmEn7c1N+MnDWEpF6AWXEgBAiF2rO4IsBdAa5yMNRv6vDTPM0zPAOACROrWc0oRtXrGJLU0uICwnhy8NQa2z7b/wdhXn5Miex7UiACEOMbzL6i7BqtmYmF2cT4atlZgy3e+Bkt7CvK9rRkVqpODpXmMf648WCSVF8yGJFajKIodPMNoptvUJ33WZed7Pn9ipjB1YGI2wGHbiIq/wuEAjZh5jfXFMICBjI0LB70AWAIAH1g1b/+oNSvqTqbbPrSl0K0xG2Xczn/43/1OoYktRaLwUiEIaDGNrPegLfBTETVFN9PkjYQYPLisuh4AM6PiOXVnb+xPDORAUFd2JybRlpZAX/tNRzQ/obPj4hjScZuQqy+BFt8+CFtJwFmK/HBzbBUg9RhyGBEOqsd657RKzoGd6p6syv4Hxy8XssXYoqiNOIdHtinlevnDmdo0IRGn/cWbuEjPgLABx92spNooht9XEk6mxTYK1COa0vs4deZW2LH8EPaDhal7iDE6svf+47zBC8AUyL74HCpfH5gExWqg57+nbm73wQ5LkVqFBmMSG3HsfdMYxjoTBD1JoTcgnBUAt8Dpxy+Wmd72MMwhlGJNmvgLu7iTd5s5FEl6exw/8BJp30MMKRzV4Z07nrKYyiKwiXdB3JJd7nOktR0ZDAiNcr+4qMsy9xLelkhxY5K/t5n3Bmba5OKcvg2JYEjFcUEmr2Y2rU/o0NjapRZdXg/yzMTKbBrM25cws3O/CzOCY4C3zEwpMhTdmtuuuf3sEakpJ7GNJawBIDOdGY/+wkgoMHHkyRJkupGTu2VGsXhUon0DuSaHkPrVD7PVsbbe1YTGxDK44Mv4vyIWP67/09PFlaAzblpLExJYFrX/lzbY5hn+9cHt5JnK6txvIyyQhan7/I8HhvWo97XsIY1mDCxhCUoKLzESxzlqAxEJEmSWohsGZEapX9QF/oHdalz+d+PHCDY4sOVMYMBCPfyJ7k4l9+ykugXqB3nt6x9jA3rwZiwHriFYE12MhnlhRQ6Knhqy2IGB3cl3MuftLJ8duZn4a7qnBkYFFGjb/tMBILhDGcLWwCIJpokkjBy6iywkiRJUtOTLSNSi0opySPuuFTSoKWbTqmavqu6XaSXFnjSTesUhTv6jcei1+JmVbjZlJvKD2k72J6f6QlEuvsEMTu27tNtv+RLDBjYwhZ06PiCL0ghRQYikiRJrUC2jEgtqsRpqzWVtM3lxOFSqVAduBH4Hlcm0OzFqJAYtualowqXZy0b0FJVnxvek8mRfTHrz/xyVlGJJZYUUgAYylD+5E90Mi6XJElqNTIYkdoEo15PkMWb+wecz6HSfCpdTnwMJrr7dsJQxymFr/AKD/EQAoERI8tZznjGN3PNJUmSpDORwYjUovyMFkpOWFCrxGHDojdi0hvQKQo6FEprKeNvtGDSG4gNCK3XOYsooje9ySUXgKlM5Wd+btyFSJIkSU1Gtk1LLSrGT0s3fbzEomxi/LR00wadnq6+QSQW5XiedwvBvuPK1Mc93EMggeSSixUru9ktAxFJkqSzjAxGpEaxuZxklBWSUaalTM+zl5NRVkhB1Yq83x/azidJGzzlx4f3Is9Wxv8ObSO7opjVh/ezNTedSRGxnjKTIuJYl53MxpwUjlQU82XyZhxu9aRcJKdziEP44utJWHYzN1NBBf3o1xSXLUmSJDUh2U0jNUpaaQGv71rhefxtSgIAo0KiuTF2FMWOSgrsFZ7ngy0+3NnvPL5NSWBlVhImvYFAsxfvJa7DpNMT49eZy7vHc0XMOfyYtpMSh41In0Du7jcBv+NWCd2am84PaTvJt5URYvXl8uh4BgRFAHAFV/A/oa0hE14Sx7S9D9HXJ4qcniWENiIpmiRJktQ8FCFEYzNoN7uSkhL8/f0pLi7Gz09+mLQnb+xexbDO3ejuE4RLCBal7uBwRRFPD7n4lLNjDpbk8uqO37g0ehADgyLYdDSVXzMTuficcC7znowDBzq3gSn77uH50HsJtnjzY+pOsqqOK9fQkCRJahl1/fyW3TRSq7qn/wRGh8bQxTuAKJ9Abuw9kgJ7BWllBafcZ0VWEv2CwpkS2ZdwL39mdB/Epp6fM81rAg4cRIpI7t30Bff63Ux8p0givQOZHTuKInsl2/MyWvDqJEmSpLqQwYh0Vql0aTlEvA2mU5ZJKa1OnLaIRRgwsDXsZ8yqF+/xHgm2RMqcqidxGoDVYCLaN5iU0rzmvQBJkiSp3uSYEems4RaCb1K20sOv82nTupc4bHgbjcQRRxJJAPQrH87kXf/ktpFXctCpTeGtLbla8QlThiVJkqTWJ4MR6azxVfJmDpcX88CgC05bLst3L+OCb8CFEz16FrEIn+LeLGZ3C9VUkiRJakoyGJHOCl8lb2ZXwWH+OWgSgWavWsuUUUZvenNk4BEAzuM8VrEKgB+dO/GvagnxM2qzbkocNvyPm4FT4rAR5RPQjFchSZIkNYQcMyK1KiEEXyVvZnt+Jj7nJJFu2V9ruUd5FF98OcIR/OydeWL/F55ABCCxMJsYXy0pWrDFGz+jpUZytUrVyaHSPE8ZSZIk6ewhgxGpVX11cAt/Hk2lZ79KnjA9zCViBocdeThcKgBHOEJIRXdeEC8AcA3XkODYQ26uwvLMRLIrivkpbSdpZQWc16U3AIqicH5EHEsydrMjP5Os8iI+2b+RALOV+OCoVrtWSZIkqXaym0ZqdgW2cspUe41tPgYzQRZvfj9yAJfi5H79AyAUssjiwqM38K7xbd4NfZr/8l+wQnBlFAle64kiCvzgltgx/JC2g0WpOwix+vL3vuNqDHqdEtkHh0vl8wObqFAd9PTvzN39JsgcI5IkSWchmfRMalYFtnKe2PITqnDX2G5QdDw3dDpBFm9e4iUe4REE1S9FEyYcOAC4n/t5lVdbtN6SJElS49X181u2jEjNqky1nxSIAKjCTZlqp5IinubpGoEIgAMHoYSSTDI++LRUdSVJkqRWIMeMSM3q2IJ5p3I/9+PEWetzd3KnDEQkSZI6ABmMSM1CVK0z807i2lOW+bZiMV/zNS5ctT7/DM+QSGJzVVGSJEk6S8hgRGoWP6Tt5JeMPTW2WfVGz+9uXDzhdw+cZsSSispt3NZcVZQkSZLOEg0KRubPn0/37t2xWCyMGDGCTZs2nbb8t99+S1xcHBaLhQEDBrBkyZIGVVZqG3IqS1haFYgowNSofrw64nLmjb6S/xt6CYNDuvD5iDuptBRpO9QSkFiwEEMMccS1WL0lSZKk1lHvYOTrr79mzpw5PPXUUyQkJDBo0CCmTJnC0aNHay2/YcMGrrnmGm6++Wa2bdvGpZdeyqWXXsru3TJ1d3u15kiyJ76Y2rU/M7oPwrcqO2qCdT139r4Am6kEBETlx3Nz+d18wAf8wi/sYhdFFFFBBQc5yAd80HoXIkmSJLWIek/tHTFiBMOGDePtt98GwO12ExUVxV133cXDDz98UvmZM2dSXl7O4sWLPdtGjhxJfHw87777bp3OKaf2ti3PbP2ZwxXFKCi8OvJyfIxmKqjgMi5jGcvQo+cq+1/x3TQZgOGdu3Nz3OhWrrUkSZLU1Or6+V2vlhGHw8HWrVuZNGlS9QF0OiZNmsTGjRtr3Wfjxo01ygNMmTLllOUB7HY7JSUlNX6ktqPSpc2O8TGa8TGaAW0w6jKWMZzhHOUo7yjveMrbXbXPppEkSZI6hnoFI3l5ebhcLkJDQ2tsDw0NJTs7u9Z9srOz61Ue4IUXXsDf39/zExUlU3i3JT4GLQApddrIs5UB8AIv8DM/8yd/EkQQh0rzPeW9qwIWSZIkqWM6K2fTPPLIIxQXF3t+MjIyWrtKUj2cc9z6L0vSdyOEQIeOqUwFQHW7PANcAQbL9WIkSZI6tHplYA0ODkav15OTk1Nje05ODmFhYbXuExYWVq/yAGazGbNZfltuq8aG9WBJ+m5U4WZ9TgoVqpNJEbGEWH05VJrPLxl7PC0jwRYf+gWGt3KNJUmSpNZUr5YRk8nEkCFDWLFihWeb2+1mxYoVjBo1qtZ9Ro0aVaM8wPLly09ZXmr7/E1Wru05zPN4W34Gr+z8jQf+/J5/713jCUSMOj03xY5Cp5yVDXSSJElSC6n32jRz5sxh1qxZDB06lOHDhzNv3jzKy8uZPXs2ADfccAMRERG88IK25Ps999zD+PHjee2115g2bRoLFixgy5YtvP/++017JdJZZUxYD4w6PV8d3EKF6jjp+WCLNzfFjqaHX+dWqJ0kSZJ0Nql3MDJz5kxyc3N58sknyc7OJj4+nqVLl3oGqaanp6PTVX/THT16NF9++SWPP/44jz76KL169WLRokX079+/6a5COisND+lOfKdINuemkViUjc3lxMdg5pzgKAYEdZEtIpIkSRLQgDwjrUHmGZEkSZKktqdZ8oxIkiRJkiQ1NRmMSJIkSZLUquo9ZkSSfj98gN+PHCDfriU0C/fy5+KuA+gf1OWU+2zNTeeHtJ3k28oIsfpyeXQ8A4IiPM8LIfgpbRdrs5OpdDnp4RfMtT2HEWqV3XKSJEntnWwZkeotwGzlsuhBPHrOhTwafyFxAWH8e+8aDpcX1Vr+YEkuH+5bz5iwGB4ffBHxnSJ5Z+9aso4r/2tmIisPJ3Fdr+E8HD8Zs87Am7tX4XS7WuaiJEmSpFYjgxGp3gZ1imRAUAShVj9Cvfy4tPsgzHoDKceleD/eiqwk+gWFMyWyL+Fe/szoPoiuPoGsPrwf0FpFVmTtY2rX/sR3iiTSO5DZsaMosleyPU9m35UkSWrvZDAiNYpbuNl8NBWHSyXGN7jWMimlecQF1My42zcwnJTSPADybOWUOG30Oa6M1WAi2jfYU0aSJElqv+SYEalBssqLeGn7MpxuF2a9gdv7jqOLt3+tZUscNvyMlhrb/IwWih027XlnpbbNdEIZU3UZSZIkqf2SwYjUIKFWXx4ffBGVqpOEvHQ+TfqD+wdOOmVAIkmSJEmnIrtppAYx6PSEWH3p5hvEZdHxRPoEsPJwUq1l/UwWSpw1WzhKnDb8q1pC/IxWbdsJrSAljuoykiRJUvvVJlpGjiWJLSkpaeWaSKfiVFUq7LZa/4+6WvzZnZfJcN/qqb+787KItPpRUlKCSQh8DWa2Z6fiH6IHwOZycqg0j+EBEfL/XZIkqY069v59xmTvog3IyMgQgPw5S36G3TZThA2KEz5hwSIwJkoMu22muHX1f0XE0P4CEOc9ersYdttMT/nQ/r3ELSs/EwNmThX+XcPFkNmXi5tXfCYCoyM9ZQZde7GY9fP7otuYwSIwJkpMnnufuHrBv4TeZGz165U/8kf+yB/507ifjIyM037Ot4m1adxuN4cPH8bX1xdFUZrsuCUlJURFRZGRkSHXvKmHbzJ2kFyaR4lqx6I3EG7xY0JID3r7aivwvpO8gUCTF1d3jQe0+3zu9X9h5gsPU6zaCTZ7My08jj5+oZ5jCiFYlrOfP/LTsbmcdPcO4vLI/nQ2+7TGJbZZ8jXdMuR9bhnyPreM5rzPQghKS0vp0qVLjUV0T9QmgpHmIhfgaxnyPrccea9bhrzPLUPe55ZxNtxnOYBVkiRJkqRWJYMRSZIkSZJaVYcORsxmM0899RRms7m1q9KuyfvccuS9bhnyPrcMeZ9bxtlwnzv0mBFJkiRJklpfh24ZkSRJkiSp9clgRJIkSZKkViWDEUmSJEmSWpUMRiRJkiRJalXtPhiZP38+3bt3x2KxMGLECDZt2nTa8t9++y1xcXFYLBYGDBjAkiVLWqimbVt97vMHH3zAuHHjCAwMJDAwkEmTJp3x/0WqVt/X9DELFixAURQuvfTS5q1gO1Hf+1xUVMQdd9xBeHg4ZrOZ3r17y/ePOqjvfZ43bx6xsbFYrVaioqK47777sNlsp92no1uzZg3Tp0+nS5cuKIrCokWLzrjP6tWrGTx4MGazmZ49e/Lpp582byWbeVmZVrVgwQJhMpnExx9/LPbs2SNuvfVWERAQIHJycmotv379eqHX68XLL78s9u7dKx5//HFhNBrFrl27WrjmbUt97/O1114r5s+fL7Zt2yYSExPFjTfeKPz9/UVmZmYL17ztqe+9PubQoUMiIiJCjBs3TsyYMaNlKtuG1fc+2+12MXToUDF16lSxbt06cejQIbF69Wqxffv2Fq5521Lf+/zFF18Is9ksvvjiC3Ho0CHx66+/ivDwcHHfffe1cM3bliVLlojHHntMfPfddwIQ33///WnLp6SkCC8vLzFnzhyxd+9e8dZbbwm9Xi+WLl3abHVs18HI8OHDxR133OF57HK5RJcuXcQLL7xQa/mrrrpKTJs2rca2ESNGiL/97W/NWs+2rr73+USqqgpfX1/x2WefNVcV242G3GtVVcXo0aPFhx9+KGbNmiWDkTqo731+5513RExMjHA4HC1VxXahvvf5jjvuEBMnTqyxbc6cOWLMmDHNWs/2pC7ByIMPPij69etXY9vMmTPFlClTmq1e7babxuFwsHXrViZNmuTZptPpmDRpEhs3bqx1n40bN9YoDzBlypRTlpcadp9PVFFRgdPpJCgoqLmq2S409F4/++yzhISEcPPNN7dENdu8htznH3/8kVGjRnHHHXcQGhpK//79ef7553G5XC1V7TanIfd59OjRbN261dOVk5KSwpIlS5g6dWqL1LmjaI3PQkOzHbmV5eXl4XK5CA0NrbE9NDSUffv21bpPdnZ2reWzs7ObrZ5tXUPu84keeughunTpctKLX6qpIfd63bp1fPTRR2zfvr0Fatg+NOQ+p6SksHLlSq677jqWLFlCcnIy//jHP3A6nTz11FMtUe02pyH3+dprryUvL4+xY8cihEBVVW6//XYeffTRlqhyh3Gqz8KSkhIqKyuxWq1Nfs522zIitQ0vvvgiCxYs4Pvvv8disbR2ddqV0tJSrr/+ej744AOCg4NbuzrtmtvtJiQkhPfff58hQ4Ywc+ZMHnvsMd59993Wrlq7snr1ap5//nn+/e9/k5CQwHfffcfPP//Mc88919pVkxqp3baMBAcHo9frycnJqbE9JyeHsLCwWvcJCwurV3mpYff5mFdffZUXX3yR3377jYEDBzZnNduF+t7rgwcPkpqayvTp0z3b3G43AAaDgaSkJHr06NG8lW6DGvKaDg8Px2g0otfrPdv69OlDdnY2DocDk8nUrHVuixpyn5944gmuv/56brnlFgAGDBhAeXk5t912G4899hg6nfx+3RRO9Vno5+fXLK0i0I5bRkwmE0OGDGHFihWebW63mxUrVjBq1Kha9xk1alSN8gDLly8/ZXmpYfcZ4OWXX+a5555j6dKlDB06tCWq2ubV917HxcWxa9cutm/f7vm55JJLmDBhAtu3bycqKqolq99mNOQ1PWbMGJKTkz3BHsD+/fsJDw+XgcgpNOQ+V1RUnBRwHAsAhVxmrcm0ymdhsw2NPQssWLBAmM1m8emnn4q9e/eK2267TQQEBIjs7GwhhBDXX3+9ePjhhz3l169fLwwGg3j11VdFYmKieOqpp+TU3jqo731+8cUXhclkEgsXLhRHjhzx/JSWlrbWJbQZ9b3XJ5Kzaeqmvvc5PT1d+Pr6ijvvvFMkJSWJxYsXi5CQEPF///d/rXUJbUJ97/NTTz0lfH19xVdffSVSUlLEsmXLRI8ePcRVV13VWpfQJpSWlopt27aJbdu2CUC8/vrrYtu2bSItLU0IIcTDDz8srr/+ek/5Y1N7H3jgAZGYmCjmz58vp/Y21ltvvSW6du0qTCaTGD58uPjjjz88z40fP17MmjWrRvlvvvlG9O7dW5hMJtGvXz/x888/t3CN26b63Odu3boJ4KSfp556quUr3gbV9zV9PBmM1F197/OGDRvEiBEjhNlsFjExMWLu3LlCVdUWrnXbU5/77HQ6xdNPPy169OghLBaLiIqKEv/4xz9EYWFhy1e8DVm1alWt77nH7u2sWbPE+PHjT9onPj5emEwmERMTIz755JNmraMihGzbkiRJkiSp9bTbMSOSJEmSJLUNMhiRJEmSJKlVyWBEkiRJkqRWJYMRSZIkSZJalQxGJEmSJElqVTIYkSRJkiSpVclgRJIkSZKkViWDEUmSJEmSWpUMRiRJkiRJalUyGJEkSZIkqVXJYESSJEmSpFYlgxFJkiRJklrV/wMiLbgciM+oQQAAAABJRU5ErkJggg==", + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAiMAAAGdCAYAAADAAnMpAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjcuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/bCgiHAAAACXBIWXMAAA9hAAAPYQGoP6dpAAEAAElEQVR4nOzdd1zT1/rA8U8mIUDYe6MgCgqKuPfeo+NaO+y8bW9rd3u71+3v3t7e7r33tGodde89UBFR2XvvEUIIISS/P6IoBa1aEMHzfr18vST5jhOF5OGc5zyPxGKxWBAEQRAEQegi0q4egCAIgiAIVzcRjAiCIAiC0KVEMCIIgiAIQpcSwYggCIIgCF1KBCOCIAiCIHQpEYwIgiAIgtClRDAiCIIgCEKXEsGIIAiCIAhdSt7VA7gQZrOZoqIiHBwckEgkXT0cQRAEQRAugMVioa6uDh8fH6TSc89/dItgpKioCH9//64ehiAIgiAIlyA/Px8/P79zPt8tghEHBwfA+mI0Gk0Xj0YQBEEQhAuh1Wrx9/dv+Rw/l24RjJxemtFoNCIYEQRBEIRu5s9SLEQCqyAIgiAIXUoEI4IgCIIgdCkRjAiCIAiC0KVEMCIIgiAIQpcSwYggCIIgCF1KBCOCIAiCIHQpEYwIgiAIgtClRDAiCIIgCEKXEsGIIAiCIAhd6qKDkV27djF79mx8fHyQSCSsXLnyT8/ZsWMHgwYNwsbGht69e/PNN99cwlAFQRAEQeiJLjoYqa+vJyoqig8//PCCjs/OzmbmzJmMHz+ehIQEHn74Ye666y42btx40YMVBEEQBKHnuejeNNOnT2f69OkXfPwnn3xCcHAwb775JgB9+/Zlz549vP3220ydOvViby8IgiAIQg/T6Tkj+/fvZ9KkSa0emzp1Kvv37z/nOY2NjWi12lZ/BEEQBEHomTo9GCkpKcHT07PVY56enmi1WhoaGto959VXX8XR0bHlj7+/f2cPUxAEQRCELnJF7qZ5+umnqa2tbfmTn5/f1UMSBEEQBKGTXHTOyMXy8vKitLS01WOlpaVoNBpsbW3bPcfGxgYbG5vOHpogCIIgCFeATp8ZGT58OFu3bm312ObNmxk+fHhn31oQBEEQhG7gooMRnU5HQkICCQkJgHXrbkJCAnl5eYB1iWXRokUtx997771kZWXxz3/+k5SUFD766CN+/fVXHnnkkY55BYIgCIIgdGsXHYwcPnyYgQMHMnDgQAAeffRRBg4cyAsvvABAcXFxS2ACEBwczNq1a9m8eTNRUVG8+eabfPHFF2JbryAIgiAIAEgsFoulqwfxZ7RaLY6OjtTW1qLRaLp6OIIgCIIgXIAL/fy+InfTCIIgCIJw9RDBiCAIgiAIXUoEI4IgCIIgdCkRjAiCIAiC0KVEMCIIgiAIQpcSwYggCIIgCF1KBCOCIAiCIHQpEYwIgiAIgtClRDAiCIIgCEKXEsGIIAiCIAhdSgQjgiAIgiB0KRGMCIIgCILQpUQwIgiCIAhCl5J39QB6qipDPTpTY6vH7OU2uKjsumhEgiAIgnBlEsFIJ6gy1PP84d8xWcytHpdLpLwyeLYISARBEAThLGKZphPoTI1tAhEAk8XcZrZEEARBEK52IhgRBEEQBKFLiWBEEARBEIQuJYIRQRAEQRC6lAhGBEEQBEHoUiIYEQRBEAShS4lgRBAEQRCELiWCEUEQBEEQupQIRjqY1tjAiuyEcz5fWF9z2cYiCIIgCN2BqMDagWqNDfzv2GYqDLpzHvNDehwuNnb0cfK8jCMTBEEQhCuXCEY60Nep+1sCEVuZgoFu/vipnag2NhBfkUdlYz0mi5lPknfz+IBJNJ9VpVX0rREEQRCuViIY6SAF9dUk15QA4KS05anoqTjbqFuenxc0gA+TdpFUXYzeZOT/jq7HbLG0PC/61giCIAhXK5Ez0kEOluW0/H2af7+WQKSxzojFbEEulXF98MCWY84ORED0rREEQRCuXiIY6SDVjfqWv/dz8gag+GgZrzt9zrp/7MDcbMbHzglnpfpclxAEQRCEq5IIRjqIXHLmn/L0DIdbuDM2TkriPzvJ1yOWkXewiIZmY1cNURAEQRCuSCIY6SDBDm4tf99bkgmAwlbBqKdjkCqklJ2o4tthv6H6Tw2Yzee4iiAIgiBcfUQw0kGGeARhI7PmA+8tzWJTQTImczMDFoWDBXo/GEqzrxT7tUa8r61Fnmvq4hELgiAIwpVBBCMdxFauYGZAZMvXy7OP8lTcSr4sO4jJT0ry68mUfqxBe4MKaZUFz0VaHL7Qt7rG2rwTNDaLIEUQBEG4uohgpANN8e3LVL9+LV/XNTVysrqYJpUFSTN4Lqql/hobSr/UYHaU4PidAc+bapBWWJdtEioLePfENowiIBEEQRCuIiIY6UASiYRrgqN5YsAkYtwCkJ1Kam12l2ABpDUWPO7RghQ028Nwne+FIt+Mz/U1aFZak14ztRWszD3Wha9CEARBEC4vUfSsE/R29KC3owfNZjMNzUaWNP1OEaUASGst+Nxfz3UbIgj4zYfsrfn8Om8dmrfqUW1spOxNe/aWZDIncAAqmaKLX4kgCIIgdD4xM9KJZFIp9goVuqL6lsckZrA0NPPDxJWkrMrCIdyFx8rvJHiyP8qTJnzm1MD2eo5XFnbdwAVBEAThMhIzI5dBfVlDq68tZmhuMvPrvHWsxANLtD8KhSe1fir8Citxe87IFz/H4fCrK2HhdkilImYUBEEQei4RjHQyo85Is6G57RMWkADzKSOrwZYDBmeySiWkWVwBCZyEzyL2I8GC0kaKRiPHw0OJv7+K0FA1/fs7EBurITLSHrlcBCuCIAgXospQ36r1hmhSemUQwchFMJiaWJWbSEJlPnVNjfjbObOgVwxBDq7nPCcxLf/cF5SA2QIaZQXzvmimqlGP2QzaIgkhv3mRsTyPWoucYjtnyqUKMjMbOHmyng0bKltdRqGQ4OAgw81NiZ+fDb16qYmMtCcmRkNMjAMqlfhvFgRBqDLU8/zh3zGd1TFdNCm9MohPqYvwXfpBivS13N5nBE5KWw6WZfP28W28FDOzVYfe0yoMOn46sB/nsx6zSEBiAbtgO4be3Z9vPzmGT4EemcmDKkAqBRc/ePrH4VjeGMx3E1ZQk5WFvY+aW47Oxy3cmdxcPXFxWhIS6khNrScnx0BJSSMFBQbS0/Vs21bdahwyGdjby3F1VeDjY0NIiC0REfYMHOjA0KFOaDTi20AQhJ5PZ2psFYjAmSalLohgpCuJT6ELZGw2cbQin/sixhDm6AHA7MABJFYVsrM4nXlBUW3O2VmcjmOdsuVri40EQ5QM2zgTRWNMbJhUjONqE//LDab3zQ0M/xZkSLCVK9lXmsm0wAgeyFzE5sf3cOCtBD6J+JFRzw1m3MvDCAxUc/31Xu2OtbzcSFxcLUePaklOric7u4GiokbKy43k5DSwZ09Nq+OlUlCrZTg7K/D2VhIcbEvfvnZER2sYOlSDl5eq4/4hBUEQBOEPRDBygcwWC2YsyCWyVo8rpHIyteXtnpOlrSB4gDfK2Wr6zA3BZ64vb6VvoemmMuzXGCm+sw51vIUG5BzPdsBpmYz3XxhMfEU+WdqKlutMfmMU/W/uw49TVrP7X4dJ+jWDRdvnY+/VfiTv7q5k5kx3Zs50b/d5nc7UEqycPFlPZqaewsJGKiubKC5uJC5O2+p4iQRUKilOTgq8vJQEBdnSp4+aAQMcGDrUkaAglUiyFQRBEC6ZCEYukEquIMTBjXX5J/BWa9AoVcSV55KlrcDD1r7dc7RNBiIjfZi+enTLYwsZwvezN+P4nh7l4SbqGs/8F+x+T81KFwMRt9hQ0tA6IPCKdueRkttZdcsWTvyUxrv+3zDtg7HE3BPJxbK3lzNhgisTJrSf62I0mjl6VMuRI1pOnNCRnq6noMBAeXkTJ0/qOHq0rs05NjZSHB1leHjYEBCgIizMmrcyZIgjERFiR5AgCIJwbiIYuQh39BnOt2kHeTJuJVIkBNg7E+seSJ6u6oKvIZNK0U9W4vSenvBv5ez4w/MvvZTFzDwVIxa3PVcqlTL/xylE3d6XpfPXse7eHSR+l8JNG+egtFe2PeESKZVShg51YuhQp3afN5vNJCXVc+iQluPH60hN1ZOfb6C0tJH0dD0nTuhYt671OdYkWznu7gr8/VX07q0mIsKe2FgNAwdqUCpFsCIIgnC1EsHIRXC3deDxqEk0NpswNDfhqLTls+Q9uKnanxnRKFRojYZWj2mNBpQuNmgC7KlKrEYrcUZisWBB0nLM2q8MVFXLeHKpBZlM8sfLEjLJn8fK7+SX2WvJ3pLPmx5fMv/nqYTPDenYF3wOUqmUyEgHIiMd2n3ebDaTm2sgLq72VJKtntzcBkpKjOTlGUhL07NlS+sATi6XYGcnw81Nga+vDSEhavr1syMmRsOQIY7Y24tvVUEQhJ5KvMNfAhuZHBuZnPomI0nVxVwTPLDd40I0bpyoKmr1WHJNCSEaN2LuDWb7MwfQIkdC62AEYP9KMwsWHOOnnwa0O2sgV8m5efNcjv+Yyu93bGXpvHWEzQni+uUzkHZx3RGpVEpwsJrgYDULFni3e0xJiYG4OC1Hj2pJSdGTna2nuNhIaamR7OwGdu2q+cM1rUm2rq4KvL1tCA62pV8/O6KjHRg2zAk3t46bGRIEQRAuL4nFYrF09SD+jFarxdHRkdraWjQaTZeN42R1ERYLeKk1lDXUsTz7KAqpjCcGTEYmlfJzxiGOVxVhaG7CaG7GWamm2qhnvE8YIz1DSKkpZUnmERZHjsUxVcrXw5fxM94kYw+0nQGRSGDKFFf++aU9WwpTqDU24GfvzA29Ygh2cGs5Tl9l4MdJKyk5WoHKScnCdbPxG95+ENBdaLUmDh2q5cgRLUlJOrKyGlqSbHU6E81/qCMnkYCtrRRnZ2uSbWCgLeHhdkRFOTB0qIbAwLZbrwVBuHrk1FXya+YRMusq2jw3xa8v84OikUravg8Lf82Ffn6LYOQiHC7PZUXOMWoa9ajlSga5+TMvKApbuZL6JiNPx63ERibnvogxOChUlDXUUWc0sLkwhWJ9LU42amYGRDLCM4Q9/znM9mcP8DEBFNN266wUC2Yk+AYqmPllKYsiYgl2cGNrUQrxFXm8HDMbjbL1efvfiGfrU/uxNFsYeHcEMz4e22MTRw0GE0eO1BEfr+XkSR0ZGQ3k5xuoqDBSV9dMU1Pbb2uVSoqjo7WSbWCgNcl2wAAHBg/W0LevSLIVhJ7qeFUhnyTtblNj5GxDPYK4LWy4CEg6mAhGLrPfshPI1JbzRNTkCzr+mzHLyd9TzH8tIehPrZadXq6RYSaSOh57LZK8iXmEOLqwsHcsYN1i/HTcSsb7hDHNP6LNdWtytXw/fiU12VocfOy4eds83Po4tzmupzOZzJw4oePwYS3Hj+tIT68nL89AWZkRrdZEY2Pbb3ul8nSSrZKAABt697YjMtKOwYMdiY52QKEQwYogdDcVBh0vH1mL0WydTnVUqohw9sFWpiBTW0GO7kxF6/lBUe2+rwqX7kI/v0XOSAdJrCygn7M3nybvJr22DCelmrHeoYz27t3mWJPBROH+EpotoOd03RILwYpGipvk9HJtYM/JmajcbXhgbwIzA/u1nCuVSAh38mpVh+RsToEaHshaxKbH9nDw7QQ+6fcjo18cwtgXhnTGy75iyeVSoqM1REe3/81vNpvJzGwgLk5LYqK1km1urnVHUG5uA6mp9Wza1DbJ1t7emmTr56eiVy9b+vWzlt2PjdWgVosfJ0G40mwvSmsJRAa5+nNH+AgU0jP1oo5W5PNp8m4swJbCFCb6hrd6Xrg8xLtnByk36NhZnM4kv3Cm+0eQU1fFkqwjyKVShnu23uUis5ER+8AA9uhyGL7FiF22lkE29fh62/BTgyMJpWoqtEacnMCMBYc/LMdolKo2dUj+aMqboxhwcxg/TFnNrhfjSPolnVu2zTtnobSrjVQqJTTUjtBQO266qf38mqIiAwcP1nLsWB1JSfXk5DRQUtJIcbGRrKwGduxoW3b/dJKtj48NwcFq+va1Y9Aga3E4FxeRZCsIl5PZYmZ/aRZg7UFzU2hsS6BhNpuRSqUMdPNnkFsARyryqGtq5HhVIYPcArpy2FclEYx0EAsQaO/C/KBoAALsXSjS17CzOL1NMCKRSJjy1mh2H67h6UcDSOi3G7lEhq6onr+9EsbBJ+t46vqDfHJwdNsbXQSvgR48WnoHK2/ezMmf03nX/1umfziGQXdffKG0q5GPj4r581XMn+/Z7vPV1Ubi4rTEx1vL7mdl6SkqMlJZaSQ/38C+fbWtjpdIQK0+nWRrQ1CQtex+VJQ9Q4c64ecnyu4LQkeqbzJSbzICEOrogb1ChdlsZsHeE+wqrSZ/3miUcmtAcqQiD4CyhrZFHYXOJ4KRDuKoVOGtdmz1mLetI0crzt21V6NQoVeY8Ip2o+SoddklaoYjfi+Vsz/Rgr3CBikS6tqpVeKouLAPLqlUyjU/TT1VKG09a+/ZQeJ3qdy4YXaHFkrraN2hzbezs5KpU92YOtWt3ef1ehPx8XUcPmxNss3M1FNQ0EhFhZGEBOvjZ5NIrJVsnZzkeHpadwSFhamJinIgNlZDaKhaJNkKwkU4OxnVZDaTX9/A8I2HKGwwMsDJHqPZjBIpJvOZ7XmSdnY2Cp1PBCMdpJfGndI/LJ2UNmhxsTn3B+jpOiQLXohl6fz1ACRsz6BvtJEt+x3Y81sBAb1dSK4pJdrNH7AmsKbUlDDeJ+zixjc5gMcr7uTnWWvI2VrAmx5fcc0vU+kzJ/giX2nn6yltvtVqOaNGOTNqVPsJxCaTmWPHrEHJ6bL7+fnWJNvk5HqOHdO1OUeplODoeDrJ1lrJtn9/ewYP1jBggAPyLq4xIwhXErVcibNSTVWjnh9ydDxxYi8Aj4YH8GbMmffQuLKclr/72jld5lEKIIKRDjPJN5zXjm1iXd5JBrsHkFNXye6SDG4OPZM4uiI7gRqjntv7jABgrHcoO4rSOBmlReooo7m2meKUcu57aTjbpubx8uJE/nd8AN+k7ifIwYUgB1e2FqZiNJsY4Xnx1VblKjm3bJnH8R9S+P3Obfw6dy195gVz3dLpXV4o7WxXS5tvuVxKTIwjMTGO7T5vNptJS9MTF1fL8eM60tKslWxLS605K0lJ9UBlq3MUitNJtkr8/Gxayu7HxGgYPNgBlUr8yAs9m6G5maTaehKq6zhWrWNjiSOpOjustZwsfBobxt1hgYD1l7vNhckk1ZQA4GpjRz/n9ruhC51LvDN1kCAHV/7RdwwrchJYm3ccN5U9fwuJYajHmZmHWmMDVY36lq/dVPYsjhjH0qx4qu9S4fhmPS5bLMz7sB9BsnROlMqIdQ9E12RgdW4iWqMBP3tnHowYj0Zpe8lj7X9zOL1mBPHDxJWkrszmTY8vWbh2VrcvlNbTSKVSwsPtCQ9vv90AQF5eA3Fx1iRbayVba5JtUZGBjAw927e3TbK1s5Ph6qrEx8eGXr1s6dvXnkGDHBgyRIOT05W7dCcI7bFYLHyVWcSO0moOVWlJ1+o5/auMDLAuwFgDkXmeFSSWV/FZcz52ciVJNSVUGM7MQM4MiEQquXJ+MbuaXFKdkQ8//JDXX3+dkpISoqKieP/99xky5NxbR9955x0+/vhj8vLycHNz47rrruPVV19FpbqwvIfuUGfkr9IW6HjX/xuQwPPmxdw9Zhuf7zbxzkNuPPTOoE67797/HWH7MwewNFsYdG8k0z8c0+V5CXm6Kv59dEObx58dOI0Ae5cuGFH3VVFhJC6ulqNH60hOtlayLSpqpKqqCb2+uU0lW6kUbG1luLgo8PZWEhxsrWQbHW3dEeTtLZJshSuLyWzGeelOdKbm8x4Xo2kkxqn2nM/PDIhkTuCAjh7eVa/Tip4tWbKERYsW8cknnzB06FDeeecdli5dSmpqKh4eHm2O/+mnn7jjjjv46quvGDFiBGlpadx2223ccMMNvPXWWx36Yrq71zSfYqxr4oHsRWAvx9d9B2G2TRzVz+3U+1bn1PL9+JXU5tTh4GfHLdvm4RradYXSRDBy+eh0Jg4f1raU3c/M1FNY2EhFRRM6XTMmU+u3B4nEWsnWyUmOl5cNgYEq+vSxlt0fMsSR4GBVlwezwtVnSU4JN+w9cc7nbaQSEmYM4lhFJvtKszE0N7U819fJi0m+4US6+FyOoV51Oi0YGTp0KLGxsXzwwQeAdV3b39+fBx54gKeeeqrN8YsXLyY5OZmtW7e2PPbYY49x8OBB9uzZ06Evprv7/e5tJHyeRNicIBasmkW0eiUZDUpKqidg79T5v5FufGQ3ce8eQyKRMOalIYx5PrbT79keEYxcOYxGa5LtoUO1nDihIyPDmmRbXt5EXZ0Jo7Ht24eNjRRHRxkeHjb4+9sQFmZH//72xMY6Ehkpyu4LneMfccl8ml7IH78jZRJ4IMyftwf3AcDYbKK0oQ6TpRkXGzsc/8KSt/DnOqUCq9Fo5MiRIzz99NMtj0mlUiZNmsT+/fvbPWfEiBH88MMPxMXFMWTIELKysli3bh233HLLOe/T2NhIY+OZbZ1a7fkLfPUUU98dRcLnSWRttm4HvuVOfx7/oJIn5u3j4x0TOv/+b4+m/819+Gnqana+cJCkX9K5efs87D1Ek7mrlVIpJTbWkdjYcyfZJiXVc/iwtZJtWpqevDxrJduMDD0nTuhYv75tkq217L61km1o6OkkWwcGDdJgYyOqXwoXz02paBOIAMgkEv4ZEdTytVImx9/+6muRcaW7qGCkoqKC5uZmPD1bF4Hy9PQkJSWl3XNuvPFGKioqGDVqFBaLBZPJxL333sszzzxzzvu8+uqrvPzyyxcztB5BaatEIpNgamimJkfLQ29H8eoHG9iyp+GyjcEnxoNHy+5gxY2bSFqSwbt+3zD9o7EMukv0axDakkqlREY6EBnp0O7zFouF3NyGU5VsdaSmnq5kay0Ml5amZ+vWtmX3rUm2Cnx9bejVS02/fnYMGqQhNtYRjUbk3Qut9V+znxO19QDIJdBssRailEngnt6+eNvadO0AhT/V6T/VO3bs4D//+Q8fffQRQ4cOJSMjg4ceeohXXnmF559/vt1znn76aR599NGWr7VaLf7+/p091CuCcy9HqtJq2PrkPq5dMo1Idwt7ym1I3FPGgFFtc3I6g1Qq5dpfphF9ey5Lr13P2r9vJ/HbFG7cOBulunN3WxTW17AiO6Hd51KrS8UyTTcjkUgIClITFKRmwYL2jyktbeTgwVoSErQkJ+vJztZTXGykrMxITk4Du3fXtDpeKrWW3XdxOV1235bwcDUDB2oYNswJd3exI+hqkaPT0+f3/RjNFmQSiJ82hHRdA9ftPg6AFAlPRVx5tZSEti4qZ8RoNKJWq1m2bBnz5s1refzWW2+lpqaGVatWtTln9OjRDBs2jNdff73lsR9++IG7774bnU53QevHV0vOCMCae7Zx9LMkZCopzzTcx+afspl6Uxozg5v5PWvGZR+PyWDi5xm/k7O9ELlazrVLphI2q3N+uJOqi/k4aVdLU6v2TPePYF5QVKfcX7gyabUmDh2qJT7+dJJtA4WFjVRWNqHTmdrsCJJIwNZWipOTdUdQYKBtS5LtsGEaAgPFsmNP8PrJHP6ZkAFY6KWWcJ13PbpmA45KW07oXFld1MD9YX58EBve7vmpNaUszYqnWF+Ls42aGQGRbeo3bS9KY3NBMrXGBvzsnbmhVwzBDu1XXBba1yk5I0qlkpiYGLZu3doSjJjNZrZu3crixYvbPUev17cJOGQy65rwJewq7vFCZwZz9LMkmg1mjv+cxuQbw/C7OZEj2V1ToliuknPLtvkc+y6ZtX/fzpLZa+kzP4Trfp3WoYXSyht0fJK0uyUQUcuUhDt7YiOVk64tb6kFsD7/JJ62Dm36/Qg9l0YjZ+JEVyZOdG33eYPBxNGjZ8ruZ2Q0UFBgoLzcSGKijiNH2vYaUamkODrK8fCwVrLt00dN//7Wsvt9+4ok2ytdzLqDxFdb/18X+qvwUpRxU9gwvNWO5NZVUZN2gHt7hfDygPbfJyoMOj44uYMx3qHcGT6ClJoSvk87iKNSRYSzdVfNofJclmXFc2PvWIId3NhalMJ7J7bzcsxsNEqxxb2jXfQyzaOPPsqtt97K4MGDGTJkCO+88w719fXcfvvtACxatAhfX19effVVAGbPns1bb73FwIEDW5Zpnn/+eWbPnt0SlAhn9Jp2Zjlq76uH6b8wjOERKn49IeHnN1NY+Fj7UX5ni1rUl9CZQXw/cSWpK7KshdLWz8ZvaMdUK9xalEKj2WS9l6sfd/UZgVJm/fa0WCxsLUplaVY8AOvyTzLUI7hV3wnh6qVSyRk+3Jnhw89ddj8pqZ5Dh2pJTNSRnl5Pfn4jpaWNpKXVc/y4jrVrW5+jVJ5OslXi729DaKiayEh7Bg92JCrKAaWy5wcrf+wPBV3fI6qw3kDv1fswmM3IJLB/ymAOliagUfjS38UXsBaTPFSei0JqxNWm/SW7ncXpuKnsuT7EWsPJW+1IRm05WwpTW4KRLYUpjPLqxUivXgDc1HsIJ6qK2FeayTR/kUPX0S46GFmwYAHl5eW88MILlJSUEB0dzYYNG1qSWvPy8lr9VvHcc88hkUh47rnnKCwsxN3dndmzZ/Pvf/+7415FDyJXylFqFJgMzZSfqEJfZeD1ZcNYGb6P915J67JgBEDtass9CQvZ+9/DbH/2IF8PW0bMfZFMe/+vFUozmZvZX5oNgEIq49bQoS2BCFjzDib5hnOssoC02jLKGupIry2jj1P73XRNJrPo0SK0kMulDBjgwIAB7SfZms1msrIaOHjw9I6genJyrDuCcnMbSE2tZ/Pmtkm21rL7Cnx9VfTubUu/fvankmw12Nl17yTb9vpDQdf2iHo/JY8Hj6QB4GerJHvOCORyOeV6d/aUZFCq1+Kp1pCvqyZDW871IQPPea0sbQXhTq1/kern7M2vp37hMZmbyaurYrpfv5bnpRIJ4U5eZGkrOuHVCZf0E7N48eJzLsvs2LGj9Q3kcl588UVefPHFS7nVVcklxJHS45VggR3PH2DGh+MIURhJrpVjMpmQy7v2jW7kU4PptyCU78ev4MhHJ0hbncMt2+fh2tvpkq5XY2xoKULUz8kLO4U18/2ee06ya1cNzz0Xwty57gx2DySttgyAYn0t/ko3Tp7Ucfy4juPH60hIqCMxsY6GBjPFxWNxdFR0yOsVejapVErv3nb07m3HTTe13xKhqMhwakdQHSkp9WRlWcvuFxdb+wTt3Nm27P7pJFtfXxuCg9X07WvHwIEODBvmiItL1yTZWiwWDh3SMniwBqn03DOL7fWHgq7rETVyYxz7KqwlHv7ey4fPhp0JEqb598PQ3MSLR9YgkUiwWCzMDYpq1Yrjj7RNhjZLLRqlCkNzE8ZmE3qTETMWHNo5pqTh6ig1cbl17/C9h/IZ5kVJQgUKezknf05nxofjmDvLlddW6Hnppjj+b8mIrh4izsGOPJhzGxse2sWh9xP5uM+PjHl5CGOe+4uF0s5aejEaLaSl1XPzzceRySAy1ob8ckeUdhZWVeZTVpTD6bQjhUJCU5P1C0dHOfb24ltb6Dg+Pirmz1cxf377s3E1NUYOHtRy9GgdSUk6srL0FBUZqaw0UlBgYN++1mXIJRJQq08n2doQFGTdERQd7cCQIU74+3dOTsKWLVVMmXKE0aOd+OabSEJC2ibzGptN7CvJPOc1mv6YMdyJKgwGAlfuQ99sRgrsmDSI0Z6td9QdKc8lriyHO/uMwMfOiXxdNb9mHcFJaStyy7oR8Y59BQqbFUT8Jydw6+dCcVwZOTsK+NdPw/jYdiO/rSjj/7p6gGeZ9u4YBtzSh5+m/c7O508VStt2cYXSnJS2qGRyDM0mkquL0ZuMqOVKvv46kn/9qzcLFx5j795aEg81Ymk+PdvR+g3xdCAil0uYPdsdmUzkkwiXj5OTkqlT3Zg6tf2dFnq9ifj4Oo4c0XLihLXsfkFBIxUVRhISrMm3Z5NIrJVsnZzkeHpadwSFhakZMMDa0DA0VH1JS6NpafVIJLB/fy0REfv43//CuP9+/5ZZEr3JyLvHt5GjqzrnNX7JPMyjAyZhK+/cmccv0wu4K85av8pLpSR/7oh2Z4WXZycw1b8fsR5BAPjaOVHZWM/6/KRzBiMahQqt0dDqMa3RgEqmQCmTI5VIkCKhrp1jHBUiebUziGDkChQyxZrEauNg/WHf8fxBbtt9LeEaE8e0NhRmaPHtfeVscfYZ7MmjZXfw2w2bSF5qLZQ24+OxDLzzwpK85FIZwzyC2VGcjtHczHdpB7mjz3BrpUR/Fbt2xbLgnoMs+/LsN+z2gw2TycLs2e4d8KoEoeOo1XJGjXJm1KhzJ9kmJlqDkuPHdaSnW8vul5UZSU6u59gxXZtzlEoJjo6nk2ytlWz797dn8GANAwY4tJs3lZtrQC63ziKaTBYefDCFJUtK+OabSHr1suXzlL2tApFgBzc8VPaUNtSRo7NW0s2rr+br1H3cFzG2g/512pqw+Qjby6xLXzcHefH9yMhzHms0m5D+4f1AKpFgabceq1WIxo0TVUWtHkuuKSFEYw0m5VIZAQ4uJNeUEu1mfT82Wyyk1JQw3ifskl6TcH6X1LX3crua6oyc9j/Hz1BqlNg4KKhMq+Ep/T38/FYai54uYGEU/JQwpauH2K709bksv349TfUmAkb7sHDDrAsqlFbWUMcr8etatvY6KFQMdg9AJVNwvKqQgvoaaoukbHhcQ23B+WNoR0cZ48a5cP/9/kyeLGoCCN2f2WwmPV3PwYO1HD+uIy1NT25uA6WlRmpqTDQ2mvnjO7lCcTrJVomfnw29e6s5dMhaCffsY+VyCTIZPPGSLyXDEpDKrLtmHuo/vlWRwey6Ct47sQO9yQjAcwOnd3hZ9RpDI/6r9qEzNSMBNo6PZrLP+X+Gv0ndT3JNCTeHDsFb7Ui+rpof0uMY4RXCtcHWJNYV2QnUGPXc3se6xF1h0PHykbWM8wljpGcIKTWlLMk8wuLIsa229n6Tup+bQ4cQ5ODK1sJUjlTk8nLMLDSin80F67RGeV3hagxGPh/0C2XHK5n1+QRW376VsS8PYcwLQ/CWrEYpsZBr7txOvn+FUW/kl5lryd1RiEIt59ql0widEfSn552oKuKT5N00nafo2VS/fmT/5sSTT6bT3Ny2o6ybm3U2qbzcmhCrUEgYMMCem27y5p57/FCrxWSg0DPl5TUQF3c6yVZPTk4DxcWN1NQ0ode3DVbaY+fRzLD7dTy9KIqJQW1nALYXpfFL5mEAxnqHcmPvjmum+VNWMTftPwlY+8zkzx+J6gKS9Q2mJlblJpJQmU9dUyOOSlti3QOZFRCJXGotH/FN6n4qG+t5bMCklvPOLnrmZKNmZrtFz1LZVJCM1miwFj0LiSFYI37BuRgiGOnm1t2/gyMfneAfaTfxWf9fULupeLjgdmYErWVDrpxtS8MZd11gVw/zvI59m8yav2/H3GQm/NoQrv3lzwul5euqWZ9/kqOV+ZjP+tYMdnBlsm9fYtwDAKiqMjJmzCFOnqxvOUYqhTfe6MMjjwRSVtbIu+/m8dtvpaSl6TGf2hjg769i5kw3Hn00kNDQrquXIAiXW0WFkZCQ3dTVXVgCqqOjDHt7ORIJLF8exZAhTuhNRh7ZvwyAUI0Hj0dN+pOrXJiZ2+JZV2xdHrrOz52lY0WV5Z5CBCPdXPr6HH6ZsYYJrw2ncH8pqSuzuDfpRgrLjQwem8AYzya2lczu6mH+KX2Fnu8nrKLseCUqFxtu3DAH39j2dyScTWtsoKC+BrPFgqvKDm91+11jX3sti6eeymj5eteuwYwe3Trb3mQy88svJXz5ZSFxcbXo9dbIRKORMWKEE/fe68/s2W6i6qbQoxkMzdjabm3zuFQKZjNIZNbuctYdvdYcDBsbKba2Un77LYrx410xmJp4aP9SAHpr3HkiavJfGpOu0YTfqt3UNlmXZVaMGcBc/8vTg0u4PC7081u8+16hek22zgDkbC9kwmvDAdj21D6ix3gRKG3keGn32C2idlNzT+JCxv9nGI01Rr4aupT1D+z80/M0Slv6OXsT6eJzzkAE4MknQzh6dBhKpfXfY9y4wzz7bHqrY+RyKTff7MP27bHU10/i6NFhLFrkjVotY8OGSubNS8DGZitRUft49dUstFrTX3vRgnCFqagw8s47ue0+d3rWUK6Q4OBlJmCEkX8860pBwRgaGiZSXT2B8eOtpfiPVOS1nOdp+9d+MfwttxTNsh3UNjXjpJCjvW6cCESuYmJm5Ar2P6fPUNoreLjgdt4N+Ib6sgae0t/DvWO38/meZt55yI2H3hnU1cO8YFWZNXw/YSXaPB0af3tu2T4Pl15OHXLtykoju3ZVc889SZSXN+Hra8PatQOJijr/90tNjZEPPshnyZJSkpN1LU3XvL1tmDrVlcceCyQysv3KnYJwpTEazWzdWsmWLZUcPqwlPb2Bigpjy9b301QqKb172zJpkitTplj7/uToy3nzuHXmxFmp5rEBE3G3PfO9X6rX8ubxrdQaGwB4MmpKy+6Ti3XtzmP8VlAOwEwfV9aMP3e1VKF7E8s0PcAXg5dQeqyCZ5vuZ++rh9n2zAFmfj6ekHnB+LrvIMy2iaP6KzeR9VzWP7CTwx8eRyKRMPZfQxj9bMclwZnNZh56KJUPP8zHYoFbbvHm668jkMn+fBLQbDazYkUZn31WwL59teh01sjEzk7K0KGO3HWXHwsWeIrlHKHLmc1mEhN1rF9fwb59NSQn11NU1EhDw5mqqRIJODnJCQqyJSrKgdGjnXBzUzBxomu75eotFguvJ24m81S5c7lEyiC3APzsnCiorya+Ir+lKmuYoweP9p+I5CL7QxlMJnxX7KHKaEIC/DwykgVBHdPfSrgyiWCkB1i/2PqhfV/aTTgHO/If1ce49HbkvpSbibZdSYZBSUn1BOydrvwiPGaLmd9zj3OwLMdairlChu1jVZBpxL2/C4u2zUPt1rZQ2qW2+TaV2DJjRjwZGQ04Osr55Zf+TJt2cfVHkpN1vP12LuvXV1BQYG0YJpVCnz52XHedJw8+GICbW9eU9RauHsXFBtaurWDXrmqOHasjL89Aba2p1e4YOzspPj4qIiLsGDHCiRkz3IiIuPgZvVpjA28lbj1vyXMftSOP9J940Z1rNxSWM2PHMSyARi4jd+4InFQ2Fz1GoXsRwUgPkLkpj5+mrmbCq8MY+dRgvh33G3k7i3ik+HY++VcyT3xcxT/GK/ho2/iuHuqfWpd3ki2FKdze50yb729T9hP6pYyab0uQKqTM/Gw80bf1bTnndC2AMd6hjPLqRUpNCb9mxrdbC+DsNt/xFXktbb5ffz2bZ57JwGSyMGmSCytWRF9SqXidzsTHH+fz888lHD+uw2Sy/th4eCiYNMmVhx8OJDb23LktgvBnDAYTmzZVsXVrFUeO1JKZ2UBFRVPL9xpYC525uysJC1MTG+vIlCmujB3r3KGNIeubjKzLP8G+0kz0pqaWx+3kSkZ69WKGfwS28osLwhfuPs4veaUATPJ0ZvOkmA4br3BlE8FID2A2mfm34iNCpvhz08a55O8r5puRy4m6PZwZn43DS7EBZ1kz6aYrf6nmg5M70ChULAob1vLYJ0m7UUhljMnyYfn1G2jSmwgY68PCddZCacuzj3KiqogXY2a2nPN58h70zU08FGkNwF5N2EiQvQsLT9U7MFssPB23kvE+YS1tvisrjcycGc/Bg1psbKR8+GE4d97pd8mvxWw2s3FjJR99lM/u3TXU1loTXm1tpcTEaLjjDl9uucVbdA4W2mU2mzlypI7168s5cKCWlBQ9xcWNGAxnllikUnB2VhAUZMvAgQ6MG+fC9Omul7XBnrHZRKa2oqU9Qy+NW6tu2hfCZDLhu3IvZY3WoObrYX25rZdvZwxXuEJd6Oe3qAB1BZPKpaiclJSftO6/9x/hja2rDcnLMpnz1SQi3C3sLbfh+N4y+o+8srPQQxzO3eY7NDyIR8vv4Ofpa8jbWcRb7l9x7bLpZPl0TJtvV1clBw4MY8mSYu644yR33ZXEe+/lsX79IHx8Ln6JSyqVMn26O9OnW5d9srP1vP12Lr//Xs7evTXs2VPDnXeepHdvW+bN8+DhhwMv6T5C95eX18DateXs3l3D8eM68vIaqKtrbrXEYm8vIyhIRUSEPaNGOTFzpvsVUQNHKZPT1/nS8zl2lVQxfms8ZsBOJiVn3gjcVOLnQGifmBm5wn0R+yslR8t5znQ/ABsf3kXcu4ncsHYWOTUWpt6UxsyQZn7PnNHFIz0/s8XCypxjbCpIatXme7p/6/41CV8ns/Yea6G0hvsdGPXEIGYE9m95/nhVIR+c3Mn7I/6G3mTkybiV/DNqMr00Z/JBlmcfJa22jKejp7YZh8FgYsGC46xeXY5MBs88E8K//tW7w16nwWDiiy+K+P77Io4dq6Ox0frj5eqqYNw4Zx58MIAxY1z+5CpCd6PTmdi4sYJt26qJj9eSmamnqqqJsxvc2thI8PCwoU8fNUOGODJ1qisjRjj1yBm0O/ed5KvsYgBGuTmxe+rgLh6R0FXEzEgP4Tfck+LDZVSkVuPWx5mx/xpG3HuJ7Hwpjrvi/obfzYkcybrya45caJvv6Nv7EjorkO8nrKT8wyriN+wn+hcPfAb/eaG0C6FSyVm1aiC7d1dxzTXHeOWVLL75poh16wZ2yBZelUrO4sUBLF5srROzbVslH36Yz44d1SxfXsby5WXY2EiIjnZg0SIf7rjDB5VK/Bh2F2azmX37atm0qZKDB2tISdFTWmqksfHMEotMBi4uCmJiNAwapGH8eBemTXNDo+n5/88mk4nA1fsoarD2r/l4cBj39gno4lEJ3UHP/+no5sLmBHPo/eMkL8tg9LOxqDRKPKPcKD5chlFvZHiEil9PSFjydgoLHgnv6uGe08W0+bZzV3Pv8Rt55X9LaX6ljC+HLCX2gQFMe3dMh7X5Hj3ahdLSsTzwQCoff5zPgAH7ufVWH778sl+Hbt2dMMGVCROsBaOKigy8804uK1aUERen5eBBLYsXpxAYqGL2bHceeyyQwMC2O4qErpGVpWfNmnL27KnhxAkdBQWGNqXUHRxk9OplS//+9owa5czMmW4EB1+Z/4c7i9LZWZxOZaO1A7C32pFZAf2JdPE55zlHyvNYlZtIpUGHh60D1wRH09/lTM6HxWLh99zj7C7JoNRgYmmxEwazFFuZlKw5I/BSi2UZ4cKIZZornLnZzL/lHxE82Z+bN1kTVZOWZ7D8ug2MeHIQobdHEBq+n0FORvZXz+ni0Z7bo/uXMTcwirE+oS2Prc8/yb7SLF4Z3H5Z++XZRzmekYfzndVo83U4Btij+DEAo5PkDwmsrizsbZ0Gbi+B9c+kpuqYMeMoWVkNODnJ+fXXAZ3e7ddkMvPtt0V8800Rhw9rW5IXnZzkjBrlxH33+bfkpAidq7a2ifXrK9i+vYqjR+vIzm6gqqqppTIpWIuEeXoqCQ+3Y9gw6xLL0KGO3armzLHKAqQSCR62DmCB/WXZbCpI5rmB0/Cxc2pzfKa2nDeObWFecBQDXHyJK8thY0Eyzw6chu+p4zfkJ7Eh/yRV5gC+z7VuBx6gaeTwzOkoTjWpE65uYpmmh5DKpKicbCg/UdnyWL9re7NaLSfh62Qm/ncEIQoDyTUKTCYT8gvoctkVBrj4si7/BC4qdUub7y0FKYzwOjMr8sc232O9Q9lRlEbE9v74vFtF8iepNM9Ppv8TERBpPWeSbzjfpO4nyMGlpc230WxqU4vkfPr0sSczczSvvprFCy9kMmVKPFOmWLcBd1aXX7lcyp13+rXs6jl4sIZ3381j69ZK1qypYM2aChQKCf3723PjjV7cc4//JW1JFs4wmczs3l3Npk2VxMVpSUurp6zMiNF45vcxmcya3zN0qCMxMRomTHBhypT2i4R1N1GurXeQzQuKYmdxOll1le0GI1sLU4lw8WbqqQTxuUFRJNeUsKMojZtCh2CxWNicn8LqUmey9XWAhP9GBZNXc4iEivyWWVBBuBDd/yfsKuAS6khxfHmrx8LmBXPyp3SKj5Qyd6Ybr63U89JNcfzfkhFdNMrzu6HXYFblJvJTxqGWNt+jvXszKyCy5ZhaYwNVjfqWr91U9iyOGGcteva3WhwnemH3YBXJT57g0x+LuWXrXGLdA9E1GVidm9jS5vvBiPFolLYXPcannw7hrrt8mTnzKJs2VeHquoOPPurL7bd3/lbEoUOd+OknJ8DaR+Tdd3NZtqyMhIQ64uPrePzxdPz8bJg5041HHgmkTx/7Th9Td5aSomPt2gr27q3h5EkdhYWN1NefWWKRSECjkdOnjx39+9szZowzM2e64+d3dSwrmC1mjpTnYWw2EeLQ/ixgVl0Fk3xbL/32c/bmWGUBADtLSvgszw5dM9hIJaTMHk6QvZo3jmWTVVchghHhoohlmm7g9A6ae5NuxL2vdSdGbV4d7wV+S/AUf/62aibuthvxUzRx0jivawfbycwmM8sXbCDltyykSimzPhtP1K19//zEi/Tjj8X8/e8naWgwEx3twPr1A/HyuvwfVGazmSVLSvn88wLi4mqpr7euHTg4yBg+3JF77/Vn7lz3brVc0JEqK42sW1fBjh1VJCTUkZNjoKam9RKLra0Ub28bwsPtGD7ckWnT3Bg0yOGq/DcrrK/htYRNNJmbsZHJuTN8RKsckLPdt+cXbgsbxpCzgoodRWmsyTuBRBHJGynWxnsDHNUcmzWy5ZjPkvcAcHffUZ33QoRuQyzT9CBhc0KIezeR5OWZuD9nDUYcAxxwCtGQu60QuVxKuMbEMa0NhRlafHv33IBNKpdy/fIZpK3J5rcFG1l921aOfZPCwnWzUNgqOuw+N93kzbXXunPddYmsXVuBn98uXnghhBde6LhtwBdCKpWycKE3Cxd6A5CYWMfbb+eycWMlmzZVsWlTFTIZ9Otnz9/+5snixf44OfW8EvVGo5kdO6rYvLmSQ4e0pKfrKS9v3QBOLpfg5qZgxAgnBg/WMHGiC5MmuYjdSmfxtHXguUHTaTA1EV+RxzepB3hswCR87C6serDFYuH3EiVp9dbuvdPca/hlnAg6hL9OzIx0A2azNYk1aIIft2yZ1/L4wfeOsemh3Ux+eyRpDTbc+kwBC6Php6NTumysl5NRb+TnaWvI212Ewk7O9cun02tqYIffZ8eOKq69NoGqKhMBASrWrRt4SX0/OlpNjZEPPyxgyZISkpLO7jisZMoUa4n66Oju9fNisVg4cULHunXWBnBJSTqKihrR61s3gHN0lBMYqCIqyuHUEotbl8xcdXdvH9+Ku8qBm0OHtHnuqbiVTPINb1mqSarRMXj9PhrMUhQSCfsm9efz1C08N3A6/vbOLee9cWwL/vZOLOglaosIohx8j/O6y+fIVTIeKbqj5TGz2cyrqk/Q+NnzQNYivCWrUUos5Jqv/PLwHenolydZ94+dmJvM9Ptbb+b/PKXDp+DNZjP/+Ecyn39eCMAdd/jw2Wcduw34rzCbzaxeXc4nnxSwb19NyxZUtVrKkCHWjsMLF15ZHYdLSw2sXVvJzp1VJCZal1j+2ABOrZbi42NDv372DB9ubQAXGWl3Rb2O7uytxK242Ki5rc/wNs99lrwHo9nE4ohxvJCQwSsncwAL4fYWkudOwWKx8M+DK5ji15fJftal0gZTE48fWM5tYcNEzogAiGCkx/ly2FKKD5e1VGI97cdpq8namMcDOYu4ccxuNuTJ2bY0nHHXdfwMwZVMV6bnhwkrKT9Zha2rips2zcF7UMeXyE9Otm4DzslpwNlZzrJlUS11RK4kqak63nknj7Vry8nPP9NxOCxMzbXXevLww4GXreOwwWBi69Zqtmyp5PBhLRkZ+jYN4BQKawO40FBbYmMdmTTJlfHjXVAqRdDRUVZkJxDh4oOLjZrGZtOprbpJPBg5nn7O3nydug8npZr5wdHAqa29iVvYVeVBUp0ZCTDFrZYvR01qtbV3Y8FJbgsbjpvKnlW5iRTWV/NSzCyxtVcARDDS42x6dA8H307g7uML8Yw88+FXfLScLwYtod8NoYTcE0Xs+ATGeDWxrbj92h093a5XDrHrpTgsFgtDHhjA1HfHdMp9/v3vLF58MZPmZgvTp7uyfHkUtrZXZm6CXm/ik08K+PHHYo4f17XkWbi7K5g40ZUHH/Rn+HDnP7nKnzObzRw9WseGDRXs319LcnI9xcWNNDS0bgDn5CQnKMiWqCgHxo1zZsYM98sWGF3Nvks7QEpNKbXGBmzlCnztnJjq149+ztZ8pDcTt+BqY9cyS5Kh1TFg7X4azBIcZCbuDDJxR9jAcxY905uM9HZ058ZesXiqr873aaEtEYz0MDk7C/l+3ArGvBTL2BeHtnruLa8vMdY18VT9vfSSrUJrllFumdVFI+16lenVfD9hFXUFOhwDHbhl+zycgy8sQe+Pqgz16EyNLV/by21wUVmbmJWVNTJjRjxHjtShUkn57LN+3HLLuatZXik2bqzgo4/y2bWrmpoaa8dhlUpKTIwDt93my6JFPn86I1FYaGDt2nJ27aohMbGOvDwDWm3rJRY7Oym+vtYGcCNHOjJjhjt9+4otyd3Bf45n8WxiFgC97G1JmTn0iq1hJFzZRDDSw7QksY7345at81o9t+3pfez9bzzXLJnKO+/n8cWeZt55yI2H3hnUNYO9ApjNZjYs3sWRj08gkUoY/+owRv4z5qKuUWWo5/nDv2OynPnNXi6R8srg2S0BCcB33xVy773JNDSYiYlxYN26QXh42HTYa+lMubl63norj99/LycnpwGLxZogGhJiy/z5Htx9ty8nT9azdWvVqQZwDVRUGFs1gFMqJXh4KAkLszaAmzzZlTFjnHtkA7irwaB1BzhabS0Z/2i4P2/G9OniEQndmQhGeqA3XD9HqpTxaPEdrR436o38z+Ez3CNdWbB1Lr7uO+ijNhJfP69rBnoFKThYws/Tf8dQ3YhHlCu3bJ2H2vXCCqLl6ar499ENbR5/duA0Auxbd97V601cd90x1q+vRC6X8NJLvXj22QuvAtvVzGYze/fW8tprWezZU0ttranNMRKJtQFccLAtAwc6MH68C9Onu/bIrcRXowKdgd6/76XRbEEmgbgpgxnk5tTVwxK6uQv9/Ba/unQjLmFO6Msa2jyuVCvxHuxB2fFKVHIpoSojaXoluhpDO1e5uvgN9eKxsjvpMz+EsmOVvOPzNce+S+7w+6jVctati2HLlhgcHGQ891wGwcG7SE7Wdfi9/qrcXD0ffZTHwoWJREbuxdFxKzLZFsaMOcTatZXU1pqwt5cREGCDr68NarX1bcJigbo6ExIJ9O9vz/z57iIQ6SHeSc7Ff9UeGs0W/NU2GP42TgQiwmUlZka6kc2P7+HAmwncfWwBngNaN1FLX5/DLzPWEPtAf06Y7Hji4yr+MV7BR9vGd9Forzypq7P57YaNmBpMBE3wY+HaWcjPUxDrYmZGzmY2m7n77iS++qoIgL//3ZePP+572bej6nQmNmyoYNs26xJLVpa1AdzZSyw2NhI8PW3o00fN0KGOTJ3qxogRbRvAFRUZePfdPFasKCMzU4/ZbJ0pCQiwdhx+9NHAK7ZbrXB+wzbEcbDS2uTu3t6+fDy04ysaC1cvsUzTA+XtKeLb0b8x5sVYxr40tM3zrzl+ilQu5ZHS2/FSbMBZZiLdNO/yD/QKZtQZ+Wn67+TvKUZhp+D65dPOWSjtUoOR006erGPmzKPk5hpwcVHw229RjB375+ddLLPZzL59tWzcWMHBg7WkpuopLW2ksbF1AzgXFwUhIbYMGnS6AZwbGs3FJyWaTGZ++KGYr74q5PBhbctuGUfHMx2Hp01zFbVArnClegPBq/fR0GxGCuyaHMNIj7++q0oQzibKwfdAfiO8QAK5O4vafb7f9b1J+DKZogNlRLhZ2Feh4uT+ciKGi1b0pyntldy2+1riPzvB+sW7+Gna7/S7IZT5P07ukA9Pi8VCVlYDvXqpiYhwICdnDP/6Vwb/+lcW48YdZuZMN5YtG3DJJcozM/WsWVPOnj01nDiho6DAgE7X3OoYjUZG795q+vd3YPRoJ2bOdCMwsONmLeRyKbfd5sttt1m3eB46VMu77+ayeXMla9dWsHZtBXK5hMhIexYu9OK++0TH4SvNZ2n53HMoFQBvlZK8uSPEbhmhS4mZkW7mDbcvkMolPFpyZ5vndGV63vb8ioAxPvjcM5CpN6UxM6SZ3zNndMFIr3y60nq+n7CKiqQqbN1U3LSxdaG0pOpi3j2xvc1555oZ0WpN3HPPSX75pZTdu2MZNerMb5klJQamTz9KQkIdtrZSPv88gptu8j7n2GpqjKxfX8n27VUcPVpHdnYD1dWtG8CpVFK8vJSEh9sxbJi1AVxsrKZLZyQqKox88EEeS5eWkppa37Ik5Otrw/Tp1o7D/fqJ7b1dadymw+wsrwHg1mBvvhkR0bUDEno0sUzTQ309chmFB0p5rvn+dp//qO+PVKXX8JT+HkJUazFZJBRZ5lzmUXYvO18+yO5/HcJigaEPRzPmf0NZknWEA6XZmGn74zEnsD8zA/q3eiw+Xsu11yaQn2/AbIY33+zDI4+0Xf755ptC/vGPZAwGM4MHa/j992iSkurZvLmSuLha0tL0lJUZMRpbN4BzdVXQq5ctMTEaJk50ZfJkF9TqK/s3WbPZzNKlpXz+eSEHDtRSX2+NTOztrR2H777bj2uu8RDLOZdJjaERv5V7qW+2VlPdMmEgE7yvvOrBQs8igpEeavMTeznwxlHuOvK3dsudH/0qiTV3bmPc/w3l/Z8rWXpSypK3A/jbw+FdMNruoyK1mh8mrqSusB585BS9rcbsfe4P++tDBjHJNxyLxcIHH+Tz6KOpWCwWmputwcMtt3jz1VeRrc5JTtaxbl05O3dWs3VrVavmb2BNCNVo5AQEqBgwwIExY5yYMcMdP7+e0QDuxIk63nrL2nG4qMhaSE4mg7597bn+eg8efDBA7M7pJN9lFXHr/iQA3G0U5M0biUosywiXgQhGeqj8fcV8M3I5o54bzPhXhrV53mw281/1p6jdbblmy3xCw/czyMnI/moxO/JnzGYz7920FO0v5SCF+nvt6P9wBAH2zjSYmjhaWUB2XQUAEuD+oEk8t7iQ1avL21wrIEDFxIkuHDtWR05OAzU1plZLLLa2UhwdZVRUmDCZLPj62rBlyyDCw7u+G/DloNWa+PDDPH75pYSkpPqWPjVeXkomT3bl4YcDGDTo0qrmCq1N3RrPppIqABb4e/DLmAFdPCLhaiKCkR7qdCXWgDE+3LrjmnaP+XXeWlJXZfOP5BsZPWAXxU0KKpqmigS1P1HfZOTJuBWQaMD9nzqkOgue0W7cvHUeahfr7MSK7AQ2FCRRekLOzhed0VZaWgUZfySXS3B3V9C7t5rBgzVMmuTKhAnOLQmsZrOZO+88ybffFgNw771+fPBB+FW1dGE2m1mzpoJPPsln794atNozHYdjYzXccYcvN97oLSq6XiRdownflbvRmpqRAKvHDmCWX8c3jxSE8xHBSA/2hvsXSKQSHittm8QK1iWHj8N/pM/cYA5LNLy+soHnb3DgXz+3bRMunLG3JJPv0g8CMNajN7Iny0lblY1UKWXUW2Mxhnlx9Fgtr3+SQkXm6Y6kknNeb//+WIYNu7CtkseP1zFzZjz5+Y24uSlYsSK6VQLs1SQ9vZ63385l7doK8vKshfukUggNVXPNNZ48/HBAtym331WW5Zbwtz0nsAAuSjmF80eJZRmhS4gKrD2Ya5gTDRUNnCuOdOvjjIOfHRkb8vjXj0PR0MTy38ou8yi7nxrjmeq2/Vy9WbByJtetmE6hUcH2xdt5Zcomnnoinapc+akY5NyBCEBhofGC792/vwN5eWN54YUQqqubGD36EHPnHqWxsfnPT+5hQkPt+OijfuTmjqG+fgJvvx3GwIEasrMbePXVbDw9d+Luvp0bbjjG3r3VXT3cK87c7QlcfyoQmePjRuX140QgIlzxRDDSDQWM9sFihuL4trkKp8XcG0lzYzPJv2QQrjGRaVRSmKG9jKPsfpRSWcvfa5usv5H3ndcL3cJYcl1cGUslvdAjtZhpZ5NNGy+8kMGzz6bz88/FpKbqMJ9vPeeUl1/uTV7eGKKi7Fm9uhwXl+0sWVJyya+pu1Or5Tz8cBCHDw+jsXEymzYNYu5cd5qbLSxZUsqoUYewtd3CiBEH+eyzfIzGP/837qkMJhMuv+5gdVEFEmDZqP6sGh/d1cMShAsilmm6oYIDxXw9fDkjnxnMhH+3TWIFMBlN/Ff9KS6hTtjdHM1tzxVy40D4MX7KZR5t95GlreC1Y5sA8Ldz5pmB05BKzsx+HPn0BOsX78RsslA/UUHDvb4MM8Zw8qSOpCQdJ07oKC5upL7+3B+ICoUEe3sZLi4KvLxsCAxUERamJjLSnsGDNfj7q1ryRb74ooDFi5NpbLQwdKiGtWsH4eoqdpuclpfXwDvv5LJqVTnZ2Wc6DgcH2zJ3rjuPPBKEv3/P2In0Z9YUlDFnZyIWQCOXUThvNPY2YjZE6HoiZ6QHa0liHeXDrbvaT2IF+GbMb+TvLuKR0jvo7bkVG4mZXPPcyzjS7sVisfDvoxvIr7dO/Q/zCOLa4EFolCosFgvptWV8vX83in+Uocg1I3dVcPuWa/CKbl3htrnZwqFDtXh7K6muNnH0aB1JSToyMhrIzzdQWtpITY2JhobmVn1iTlMqJTg4yHF1VeDhoSQzU09xsRGZDJ59NpiXXw69HP8c3YrRaObrrwv59tsi4uPraGy0BoTOznLGjnVm8eIAJk7smTU1FuxK5Nd86zLsFC8XNk4c1MUjEoQzRDDSw73p/gVIJDxW1n4SK0Du7kK+G7OC6Dv78vFmAxvy5Gxf3pex1wRcxpF2L8nVJbx3YntLsTOZREqAvTP1TY2UGc504PX73ozkyxprobRHopny5qhLup/BYCIhQcexY3UkJdWTmamnoMBAeXkTNTVNGAzmdnfrKJXg6KjAzU2Jr68NwcG2hIfbERXlQEyMw1Vfr2PPnmreey+P7durqKhoAqxB3oABDtx8szd//7vvFV807s8YTCb8V+ylwmh9fd8N78ctIT5dPCpBaE0EIz3cN6OXU7CvmGea7jvvNtDXXT/HYrIwacUchkxMYIxXE9uKZ1/GkXY/R8rz+Cp1HyZL+8st/nbOPBA5jqZsA99PWIGuSI9TiIZF2+fjGNDxdULq6kzEx2s5cqSWTz8tIC3NmmhrayvBbAaj0cIff4olEmu5eEdHOe7uSvz8bAgOVtO3rx3R0Q4MGuTQ7T+ML1RJiYF3383nt99Kycg403HY31/FrFluPPpoEL16da+Ow5uLKpi6PQELYC+TkT9vBE4qscNIuPKIYKSH2/b0Pvb+N5474q7HN9bznMetf2Anhz84zg3rZjNtVgJas5RyiwhG/kyFQcfO4nQOlGajbTIgQUKQgwtjvUMZ7B6I4lSyq9lsZt29Ozj6eRISmYSJr41g+GMDO3VsCQlaZs06SmFhI+7uClaujCYszI74eC2JiXWkpOjJzm6gqMhARUUTdXWmVh18T5NKrcXXnJysy0H+/ip69bKlXz97oqIciIpyQKnsWTnuJpOZn34q5ssvCzl06EzHYY1GxsiRTvzjH/7MnOl2Rdd5uW3fCb7NtiY1j3V3YseUwV08IkE4NxGM9HCFh0r5ashSRjwVw8RXz10/xFBj4HWXL/CJ9eSAwoUv9jbz3qNuPPCmWFe+UM1mMxKJpFUy6x/l7S3il1lraKwx4jXIjVu2zkPl1LnJk88+m85//5uN2Qzz53vwyy8Dzhs8FBYaOHJEy/HjOtLS6snJaaC42EhlpRGdrrlVP5zTZDJQq2U4OSnw9FQSEKCid281ERF2DBqkITzcrlsXIzt8uJb33stj06ZKSkutW7HlcgkREXbccIM3993nj0ZzZcwgmUwmAlbto9hgHeensX24O8y/i0clCOcngpEezmw282/FR/iP8Oa23dee99hPo36m/EQld2cvIihwL+HqRuLr512egV5FzCYzS69dR9rqHGQ2MmZ/PZH+C8M69Z4FBQZmzIjn+HEddnZSvvkmkuuu87qka5nNZnJyrAHLiRM60tP15OY2UFJipKqqCZ2uuaVs+9nkcgl2djKcnRV4e1sDltBQ6w6hQYM09Ople0XPNJxWVWXk/fetHYdTUs50HPbxsWH6dFceeSSQiIiuKde/p6yasZuPYAZsZVKy5ozAS3117BQSujcRjFwF3vT4ErDwWNld5z3u5JJ0frthIyOfjuGRt0vJNCgpqZ6AfSf/5n61SlmRyYobN2EyNBM8yZ8bfp+JXNW5v11/+mk+Dz2UQmOjhREjHFmzZiDOzh2fxGo2m0lOrichwbqVOSNDT16eNWCpqWmivr79HUKntzS7uirw9rYhKMi2ZUvzoEEaAgJsO3ysf4XZbGb58jI++6yAAwdq0emsL8rOTsawYdaOw9ddd3k6Dv/jYDKfZBQCMMxVw/5pQzr9noLQUUQwchX4Zsxv5O8p4lnT+ZNYAV61+wQbBwXN8wfwz0+quW+ikg+3jLs8A72CPBO3isrG+jaPj/UO5cbese2ec6Q8j1W5iVQadHjYOnBNcDT9XXxbnrdYLPyee5zdJRk0NDfRS+PG9d7RbJ6znYL9JSjtFVy/cgYhEzt3Sr2uzsTcuUfZvr0ahULCa6+F8sgjQZ16z/YYjWZOnKhr2dKcmWnd0lxWZqSmxoRe39zuDiEbGwn29nLc3BT4+FgDlvBwO/r3tyc21hE3t67bIXTyZB1vv53Hhg0VFBae6Tjcp48d11/vyYMPBuDi0rHjM5lMBK3eR2GDdVnmxQhf7ujtib3cBheVXYfeSxA6iwhGrgLbnj3A3v8c5vYD1+E39PxT88tv2EDSkgxuP3Qt0bFHcJaZSDfNuzwDvYLUGQ0t23YBiupreefENh7tP5E+Tm0TgTO15bxxbAvzgqMY4OJLXFkOGwuSeXbgNHztnADYkJ/EhvyT3NZnOG4qO1bnJFKor+GlmFkc+zSJjQ/uwmyyEHljGHO/n9Tpv02vXVvGjTceR6ttJixMzYYNgwgOvrJ2i+j1Jo4dqyMhoY7k5HoyMxtObWk2UltroqHB3O4OIRsbKRqNrGVLc0iINWAZMMCBwYMdL0t+R12diY8/zufnn0s4cULXsnTl6alk0iRrx+HBg/9ax+HDFTUM23SYZgtIMXODTwX2p16aXCLllcGzRUAidAsiGLkKFB8p5YvBSxnxz4FMfG3keY+tydXyftB3hEwN4LMjEvZVKEjYF0PEcPfzntfTLck8wvGqQl4ZPBtJOwmqnyXvwWg2sThiXMtj/03YiL+dMzeFDsFisfDPgyuY7NeXKX59AWgwGXn8wG/cFjaMWI8g6orr+X7CCipTalC723Lzljl4Dujcf3eTycytt57gp59KkErhwQcDePPNsG6Ru3FabW0TR45oSUzUkZJST3a2nsLCRsrLjWi1zTQ2th+w2NqevaVZRUiILX37WmuwDBzYsVuazWYz69ZV8PHHBezdW0NtrQmwjuF0x+GbbmrdcdhisbB7dzUjRji1m/z7yOFU3knNB8BVYeRa75o2xzw7cBoB9i4d9joEobOIYOQqYLFY+Lf8Q/yGe3PbnvMnsQK8H/wt2sJ6Bn0+hZm3ZTKrVzOrM2ZchpFemUzmZv55cCWTfMOZERDR7jFPxVmfn+Qb3vLY6txEjlUW8PygGZQ36Hju8GqeGzgdf/szXXbfOLYFf3snFvQ6s+1yxwsH2PPvw1gsMOyxaCa/fmmF0i7GkSO1zJmTQFFRIx4eClavHsjQoU6dft/LpayssWWHUEqKdYdQUVEjFRVN6HTn29Isw8lJjqdn6y3NAwc6EBl56VuaMzP1vPVWLmvXlpOXZ8Bisd6vVy8111zjwcMPB5CaqmfcuMNERdnz7bf9iYqyJsWaTCb6rD1Als7aF2melwwPZXG791kcMbbVUqEgXKku9PP7ytizJlwSiUSCrZstFSkX1rk09sEBbH50L67aevwkBg5nnr/rbE+XUFlAg8nICM/gcx6jNRrQKFon+moUKmqN1g8MbZO1AJlG+YdjlGeOOW3cv4YRsTCMHyau5MAbCaT+lsUtnVQo7bSYGEcKC8fy1FNpvP56DsOGxXHttR789NP5twF3Fx4eNkyf7s706eeeaSooOL2luY60NP2pLc2NVFY2cfy4jvj4ujbnnN7S7Ox8ZktzaKiaiAhrwNK3r127s0y9eqn58MO+fPhhXwwGE599Vsj33xeTmFjHa6/l8NprOdjbW2vUHD+uIyZmP089Fcy1D3gyZGscJgsopRLuDjBgNNee8zV9k3qAJ6Im46UWv5wJPYMIRro5t77O5O0qwmw2/+kU/JAHo9j6z/3EvXOMYf08WHpSytL3Urn+wT6XabRXlr0lmUS4eONkc/nyKdz7uvBQwW2svWcHCV8k8X7Id0x6YwTDHu7cQmn//W8Y993nz/Tp8SxfXoar63a++y6S+fPPXTCvp/DzU+Hnp2LuXI92nzebzWRmNhAfX8fJk223NBcVNXLoUNuO16e3NLu4nN7SbNuypTkmRkNwsIoHHwzkwQcDAdi6tZIPPshnw4aKU/e1Xuff67L5d+8ckEM/RzvuDjKQVGMNROQSKRHOPvioNVQY6jleXYih2YTO1MiHSTt5adBMZN1o6U0QzkUEI91cwBgf8nYWUbC/hICR5+9LIZVJCRzvS/bmfJ7bMpFVk47z9otXZzBSaagnuaaUe/uNPu9xGqUKbVPrGQ5tkwHHUzMhGoV1S6rWaMBReWZ7qtZowN/eqd1rSqVSZn8+gahbw/ll1ho2P7KXEz+kcfOWuZ1aKC0gwJaTJ0fy0Ud5PPJIKtdcc4yRI51Ysyb6qu5lI5VKCQ21IzT03AmhJpOZlJR64uO1nDxZT0aG/lTTQyMVFUby8hrYt6/tTIZS2XpLc2CgLRERdhw9WmcNRm4HJkjABLxhIS9Lz6cTdQy8SYqPn5InoibjYXtm5kzXZODNxK0U6Wspa6gjobKAGHfRa0ro/i4ppP7www8JCgpCpVIxdOhQ4uLiznt8TU0N999/P97e3tjY2BAWFsa6desuacBCa+HzewGQtir7go6f+OowADK/Okmw3EBSjQyTydRp47tS7SvNxEFhQ3+X8wdwIQ5upNSUtHosubqEEAc3ANxUdmgUqlbHNJiayK6raDnmXAJG+fB4xV2Ezgqi+Eg5b3l9zfGf0y7xFV24++4LoLx8PGPGOLF3bw0eHjt5773cTr9vdyaXS4mMdGDRIl9eey2M5cujiYsbRm7uGLTaiZhMU2hsnMShQ0P5/PN+PPJIAHPmuBMRYY+trYyiokb27Knh+++LOXKkDrMKeF0CE6VQCjxogWOgqzOTvFLNT9c789FkB175ZwHp6We2otsrVPwtJKbl632lWZf/H0MQOsFFByNLlizh0Ucf5cUXXyQ+Pp6oqCimTp1KWVlZu8cbjUYmT55MTk4Oy5YtIzU1lc8//xxfX5F81RG8B7ojkUrI39N+olub42M8UXvYkroqizmzXKlFwb9uOdTJo7yymC0W9pVmMdwzBJmk9Y/A16n7WJGd0PL1RN8+nKwuZnNBMiX6Wn7PTSRXV8U4H2tlVYlEwkTfcNbln+BYZQGF9TV8nbYfJxtbot3+vK6IVC7lht9ncd2yaUgksPLGTfw4dRUmY+cGiBqNnJ07h7BqVTQqlZSHHkqlb9895ObqO/W+PZlSKWXwYEfuusuPt94KZ9WqgcTHD6egYCw63SSam6eg001AM04GH0jAC9hhhsct0CZtRYJeZ+GDD/IJC9uLSrWZTz+17rAJd/LERmqd1C43tM13EYTu6KKDkbfeeou///3v3H777fTr149PPvkEtVrNV1991e7xX331FVVVVaxcuZKRI0cSFBTE2LFjiYqK+suDF6zU7ioq02ou+Pjo2/vSVG/ipuvdcaCJ5b+1H0j2VCk1JVQ16hnpGdLmuapGPbXGhpave2ncuavPSHaXZPBK/HriK/L5R7/RLTVGAKb69WW8dx9+SI/jP0c30NjcxIMR41ua6V2Ivtf25pHSO/Ed5knWpnzedPuS7G0Ff+l1Xog5czyoqhrPggWepKToCQnZw+OPp2JuryqZ8JeN2HEI7Z1mkADvWOAL6+MymTWZ3LePhNi7dcx+r5oVG/rx+ef9uPlmb4KD1fTpY11GMlnMNJ/qKC3l6k5CF3qOi9raazQaUavVLFu2jHnz5rU8fuutt1JTU8OqVavanDNjxgxcXFxQq9WsWrUKd3d3brzxRp588klksvbfrBsbG2lsbGz5WqvV4u/vL7b2nsN341eQu7PwgiqxAhj1Rl5z+AzPAW58kWlLYp2SnOxReAV1Td8NobVDHyWy6aHdmE0W+t/ShznfTLws9UEOHaplzpyjlJQY8fJSsnr1QGJj/1rxLsEqR6cn/Pf9NJotUG6BlyzI6yWYTBY8PZXcdpsPt9ziQ6ZdFmvzTwAwKyCS2YED2lzrQFk2X6fuB2CIeyB3hp+/xpAgdKUL3dp7Ue9wFRUVNDc34+nZOgPf09OTkpKSds/Jyspi2bJlNDc3s27dOp5//nnefPNN/u///u+c93n11VdxdHRs+ePvLzpTnk/gWB+wQMG+9v8P/kipVuId40HpsQrufTiIRmQ8fs2BTh6lcKFi7xvAA7m34trHiePfp/KO99eUJpZ3/n1jHSksHMPjjwdSVmZkyJCD3HDDMUwmMUvyV7yZlEvwqn00mi34SZXwiAVVo5SFC73YsiWGwsKx/Pe/YURE2DPSqxeSU7MdGwuSOVZZwNm/L2bXVbAsK77l69FevS/76xGEztDpv26ZzWY8PDz47LPPiImJYcGCBTz77LN88skn5zzn6aefpra2tuVPfn5+Zw+zWwu/xrrckLLiwpPZxr40BCzgq63Fk0b2JIhcgSuJxsee+1JuZuQzg6kvb+Cz6CVsfXJvp99XKpXy+ut9yMoaRXi4HUuWlOLisp3Vq6+upbyOMmR9HI8fTQdgcagv+QvHEBc3lPLycXz3XX8mTnRtWaIBcFXZMdrLmpTeZG7mo6Rd/PvoBr5PP8jrxzbz34RN1DVZZ43DnTwJdWx/u7IgdDcXFYy4ubkhk8koLS1t9XhpaSleXu33RvH29iYsLKzVkkzfvn0pKSnBaDS2e46NjQ0ajabVH+HcPAdYk1gL9l1YEitA6IwglA4Kjv+QysAAKXkWFTt/y+vEUQqXYsK/h3HvyRux91Kz739H+aD3d9TmdX7SYmCgmuTkkbz3Xh8MBjNz5yYwdmwcWu3Vt/PqUpToDdj+so1DVVqkwL4pg3l/iLVdQGysI/b2566qsKBXDNGufi1f59dXs6ckkwztmdmxYAdX7g4f3W4LA0Hoji4qGFEqlcTExLB169aWx8xmM1u3bmX48OHtnjNy5EgyMjJaJcSlpaXh7e2NUnn11jboaGoP24tKYgXoe10vGiobeeixQKRY+Nf9iZ0zOOEvOV0oLer2cKoztbwf8h0H3z12We79wAOBlJWNZdQoJ3btqsHdfTsffSSC1vP5ODUP7xV7MDSb8bFV0rhgHMPdnS74fLlUxj19R3Fb2LA2/Wc8bB24PmQQjw2YhJ1CvH8KPcdF96ZZsmQJt956K59++ilDhgzhnXfe4ddffyUlJQVPT08WLVqEr68vr776KgD5+flERERw66238sADD5Cens4dd9zBgw8+yLPPPntB9xS9af7c9xNXkrO94IKTWAF0JfW87f01AWN9+NduGVqzlHLL7E4eqfBX5O0p4peZa2jUGvEe7MHNm+d0aqG0s61YUcqiRSfQ6Zrp18+O9esHERBg++cnXkVGbzzEngpr8bM7gr35ckT7PY8uRlVjPfVNRlQyBa4qO6RiNkToRjolgRVgwYIFvPHGG7zwwgtER0eTkJDAhg0bWpJa8/LyKC4+s1zg7+/Pxo0bOXToEAMGDODBBx/koYce4qmnnrqElyWcy+kk1rxdRRd8jr2XHa5hTuTvKWb8EHsqsOH9x4524iiFvypglA+Plt9B75mBFB8u4y2vrzn5a/pluff8+Z5UVo7nuus8SUqqJzh4N08+2flF2rqDCoMB+1+2saeiFimwc+KgDglEAFxs7PC3d8bd1l4EIkKPJbr29hBlJyr5tP/PDH0kmilvXXg32PjPT7L27u0MfjqGa1+tIVxtJL5+bieOVOgoScsyWHXLZkyGZnpNC+Bvq2YgV16eDg8HD9Ywd24CpaVGvL1tWLMmmkGDrs5twN9kFnL7gWQAPGwUFM4biVwuOm0IAnTizIhwZfKIdEUik5B/EUmsANF39kWmlJL2QyqhqkbS9Ap0NYY/P1Hocv2usxZK8xnqSeaGPN50/5KcHZ1fKA1g6FAniorG8MgjAZSWNhITc5Abb0y86rYBT9pypCUQuTHQk9LrxopARBAugZgZ6UHe9vkKk6GZJ6r+flHn/TJnDem/5yC5IZrnf9Fz30QlH24Z1zmDFDrFoQ8S2fSItVDagEV9mP315SmUBpCdrWfatHjS0vRoNDJ+/nkAM2a4X5Z7d5UaQyMBq/ZRZ2pGAqwbF8U03z9/zTuL0tlZnE5low4Ab7UjswL6E3meHklHyvNYlZtIpUGHh60D1wRH09/lTDsNi8XC77nH2V2SQUNzE700btzYOxZPW/FeKXQ9MTNyFXLr54KhpvGiS3lP/O8IAHrpa3DByKYdNZ0wOqEzxS62FkpzCXMi8btU3vH5mtITlZfl3sHBalJTR/H222E0NJiZOfMoEyYcQqfrmduAf8kuwXn5bupMzbgo5egXjLugQATAycaW+cFRPDNwGs9ETyPcyYuPknZRVF/T7vGZ2nK+SNnLSK8Qnhs0nWhXPz5O2k3hWcdvLEhmW1EqN4UO4anoKdhI5bx3YjtN5uYOeLWCcHmIYKQHCRznCxbI3XHhSawA7v1csPexI3tTPhFuFnKaVSTHVXTSKIXOovGx5/7Umxn5dAz1ZQ18NuBntj6977Ld/+GHgygpGcuIEY5s316Nm9v2luZuPcXs7Qks3Gct1z7fz53K68ehuohlmShXP/q7+OJpq8FTrWFeUBQ2MjlZde0HjlsLU4lw8WaqXz+81Y7MDYoiwN6ZHUXWxGGLxcLWwhRmBEQS7eqHn50zt/cZTk1jAwkVPevfXujZRDDSg/S91lq5MW119kWfG3NPBM2GZhbNc8aEhCdvjOvo4QmXyYT/DOfe4wux81Sz77/xfBD2PdoC3WW5t4uLkr17h7J06QDkcgn33ptM//77KCjo3nlIukYTzr/uYE1RBRJg+aj+/Db2rzX7NFvMHCrLwdhsIsTBrd1jsuoqCHdqXVCyn7M3WXXWXxYqDPVomwz0PesYW7mSYAe3lmMEoTsQwUgP4t7XBYns4iqxnjbiqUFIZBKa9ubiJ2nkSGbPnGK/WrhHuPJw4W1E3RZOdXot7wd/S9z7l6dQGsB113lRVTWB+fM9OHFCR2DgLp555vJsQe5oq/LL0CzbQU2TCSeFHO1147gm0PPPTzyHwvoaHtz7K/fvWcKPGYe4t99ofOza34mkNRrQKFrXkdEoVNQarcGdtsnaYVqj/MMxyjPHCEJ3IIKRHsbOw5aq9NqLPk+ulOM3zIuK5GqGhsopQsWy91M7YYTC5SKVSpnz9SQW7ZyPQq1g44O7+XLIrxi07bdh6GhKpZTffotmz55YXF0VvPpqNn5+O0lI0F7yNasM9eTpqlr9qTLUd+CoW7tu5zHm7UrEAszwdqH6b+Owt/lru2U8bR14btB0noqeyljvUL5JPUBR/cX/zApCTyKCkR7GPdLVmsTafPFbLMf931AA5gyQocTMWy+IYKQnCBzjay2UNj2QokNlvOX5JUnLMi7b/UeOdKakZCwPPOBPUVEjAwceYNGi4+fcBrxvXw0pKW0DjCpDPc8f/p1/H93Q6s/zh3/v8IDEYDLhtnQnywus/WB+HB7B2gmDOuTacqkMD1sHAh1cmB8cjZ+9E9uK2v9Z0yhVaJtaz3Bomww4npoJ0SisFXC1f5gF0RrPHCMI3YEIRnqYwLHWLYI52wsv+tygcX6onGwo2ZxLsNxAUo0Mk0ks1/QEcqWchetmc82SqQAsv34DP81Yjcl4ef5/pVIp773Xl7S0kfTubcv33xfj5raD9evLWx2Xna1n4sTDTJlymIaG1rtBdKZGTJa2AYzJYkZnauywsW4uqkC9ZAeVxibs5TKqrx3NjSHeHXb9P7JYwHSOnS8hDm6k1JS0eiy5uqQlx8RNZYdGoWp1TIOpiey6inPmoQjClUgEIz1M3+t6A5C2OuuSzo+4MZTGWiOTB6upRcErtx7qyOEJXSzib6E8WnonPrEeZK7P4y33r8jddfGB66Xq3duO9PTR/O9/odTXNzNjxlEmTTqMTmfCYrHw978n0dRkpqCgkf/9L+eyjeu0m/ecYMr2BCzAeA9n6haMx0ll02HXX5GdQFptGRUGHYX1Nae+LmWIRxAAX6fuY0V2QsvxE337cLK6mM0FyZToa/k9N5FcXRXjfMIAkEgkTPQNZ13+CY5VFlBYX8PXaftxsrEl2s2/w8YtCJ1NFD3rgf5P/iFeA92469CCiz5XX2XgTdcv8Ih154lD9vgrTZxsFOXhe6K494+x6ZE9WJotRN0WzqwvJ1y2QmkAVVVGZsyI5+BBLTY2Um6+2YsvvzyzLV2plJCcPJKQEDUAeboq/n10Q7vXenbgtDYdbi+GyWTCb9U+Sg3WfJovhoRzZ6ifdZyG+lYzL/ZyG1xUdpd0n+/SDpBSU0qtsQFbuQJfOyem+vWjn7N15uXNxC242thxW58zXdCtRc+OUWmo/9OiZ3qTkd6O7tzYKxZPtXiv7E468vvsSnKhn98iGOmB3vH7GmN9E/+svvuSzv+k/09UJFWz2s6PxDolOdmj8Apy6OBRClcCbYGO7yasoDq9FjsvNbdsmYt7hOtlHcOSJcXcfvsJGhpavxXJ5RKmTnVlzRprrkZnBSO7SqoYvzUeM6CWScmdNwI3lTXf4nSeytnLQ3KJlFcGz+4RHxTClaEnf5+JCqxXMfcIFxprjJgvsU/IyGcGYzFbmDVQQSMyHr/mQAePULhSaPzsWZx2CyOeGkR9qZ5P+v/Mtmf2X9YxLFjgzbx5HvyxIa3JZGHt2grWrrXmlTSYmjr83ncfSGLsqUBkhJsj9TdMaAlEoP08lY7OUREE8X0mgpEeKWi8dQo3e+ulVWDsvzAMua0c+7QSPGlkT4K+I4cnXIEmvjqCuxMXYudhy95Xj/Bh2Pdoiy5PobRNmyr4+edS2pujlUrhvvuS2ZCZwnsntp/zGvl11Rd1T5PJhN9vu/g807os9MHgMPZOjb2oawiC0HFEMNIDhZ+uxPr7xVdiPS1sdhD1JXqivSzkWVTsWiFKS/d0npGuPFx0OwMW9aEqvZb3A7/l0AeJnXpPvb6ZO+882WZW5DSzGfLyDDz77+R2d9Kc9lPmITK15ed8/mxxFTWoft1BYYMRlVRK0bxR3N8n4FKGLwhCBxHBSA/kGuqMVC6h8EDpJV9j4mvW5nlT/ZuQAC/fd/mqdwpdRyqVMvfbydyyfR5yWzkbHtjFl0OXdlqhtOrqJhoazG1mRWQyCXL5mQgl/ms12bsVDHYL4O/hI3liwGQW9hqMn50TYJ3S/jbtAOY/SYF76FAKQzceptkCg5wdaFg4AW87UY9D6DrNZjNJ1e1Xze6Mpckr1V8rJShcsew81VRlXHpVR6cgDY5BDtQllBIolXO8RMStV5OgcX48VnEnv85dR+aGPN72/JJ5P0ym77W9O/Q+vr4qKirGo9WaKCw0UFTUSGFhY8vfD6aWcjK+AX2llK0vODJe4kPU4/4oFFJ6O7ozyqsX/zu2mVxdFaUNdaTUlLTsTDmbyWQibM0BsuutxcFizX5E6l2oNZhxVJ37e7u+6epZsxcuv1pjAx+c3EGerv1lxo+TdrM4Yiy9HS+sK3R3Jj5heiiP/q401l56EitY29Kbm8yMCIRybPjwiYSOG6BwxZMr5dy4fg7X/DIFiwWWXbeBn2f+3imF0jQaOX372jNxoiuLFvnw9NMhvP9+X6b+p46bV1Rz5+YqHnjIj+efzyRq6AEe+iAfU7MFuVTGFL++LddJqCxoc+3EKi2qX3eQXW9AKZWQNWc4Sek2fH1ER8Tb+ezObmhzjsHUxHdpB3n/xI52x3uu32QF4UIZmpt45/i2VoGInVyJs9K25euGZiPvndxOYX1NF4zw8hLBSA8VeCqJNXPzped6DH0oCqlcQrS5Blua+fKj3I4antCNRCwI49GS2/Ee7EHGulzecv+KvD1Ff35iB6hvsi4PeTqqeefNfmzZMZi0AY68V9iE6vls/P+by8xPzfy2J5KtCb1YeUzO4QIDZrM1CH/yaDpR6+NotkB/RzsaF05EjQ31TdblnOK6ZsZ+VsyT6ysxmqyPGUxNvHV8K3tLM2mm/WWfFTnH2FGUdhn+BYSealdxBkV66+y1i42ahyLH8+awa/nv0Pm8FDOTPo7WZoyNzSZ+O6sQXk8lgpEeqt/11un09L+QxCqVSwkY60tDbh2hNo2k6RXoakQn0KuRyknFXYf+xpR3RmOsb+Lb0b+x+o4tLR/6ncVWrgCgprGBtXvKmf5uAc1uNoyWmvlgrhsjA1Q0mS1U1anJLHJj6WFHYj8sQvZsDpKP9vO/k7lggUF485BHBFlVRtIqzqzDmy1gAV7fVUvMBwUklRpZnn2UXF0VADYyOaM8e7Ow12DmBQ4g8KxaJr9kHqGg/uJ28QgCWAvV7So+08X6/oix9HP2RnIqk9tb7cjiiLE4K60F/05WF1FhuDy727qKKHrWg/1b8SEe/V35e/wNl3yNwkOlfDVkKRW9vXkvw4H7Jyn5YPO4jhuk0O1oC3R8N34F1RmdXyjt54xDbMjNYtsGPwpWW6CumR++789NE61Bgdli5q3EbaRryzCZpAx2GMHxMhmfVKRikZmhSQYZPtCs+NN7ySQgk8KQ8Fz6BhSjksl5MnoKvqeSZMH6IbI0O56thdbGdqO8enFL6NBOee1Cz1VlqOfpQ6sACNV48HjUJCwWC9/H15FVZeKlydbv799zE1mTdwKA28KGMdwzpMvGfKku9PNbJLD2YPbedlRnXnq7dgDfWE/U7io8C8twwYaN29uurwtXF42fPYvTb2Hrk3vZ9/pRPun/M6OeHcz4V4b95WtbLBYyK03szTWwJ9fA1gx3sqtdre9U44y8MFXHrNHWNfV8XTWrco+Rri0DwNPOlhKFkY+rc0AGYQ5qUudYd4WVaE3szG5gf14jK5Pqya1p25iu2QLNzbDnZCAHU3y5bpCRY/lKGtyaCHKWI5dJkEgkzAkcwN6STAzNJg6V5XJT71ikEjHJLFy4RrM178pshpN5rkw5XExahZHcmmZUcgkvTnJGIpHgYnOm+mpjc89uWiqCkR7MI9KVjPW5mIwm5MpL/68ecGtfDrxxlAiHJvbX2ZJyqJLw2MtbMly48kx8bSSRN4Xx4+TV7Pm/wyQvzeDmbfPQ+Nhf1HUKak0sSdSxJ8fArmwDVQ3WpR+5FM7Ovx4/MpMS91r+eTANhVRG01mdbqVIWFrsQoYuB4B/9gvktYGhLc97aeQsiHJgQZQDOdUm8mr058gGsQASmpplLDui5udDZ7rhzuxjy5rbvFHJFAQ7uJFcU0Kj2USDqQk7Rcc10xN6NpPJzC/xJpbviaRKa4cFCVJJA7cMtGdJoo5nxjm2LNdknFU7R3NWYmtPJML5HixoorXRV9amv1awbOyLsSCBsc56TEh48saDHTE8oQfwHODOw8W30/+WPlSm1lgLpX10cYXSnt9UxePrqlidrG8JROCsQMRiwd+pmdCgM7N8ZwciRrOCL/PdydA1IpPAselDWgUif5RUZmwViMhOlTPp46bgxsEmrht1jL9PP8iWxRZynwxg851euKmluKhlLedojWdypxRSGYJwPo1NZt7eXUP/d/KxeSGHR9fWUqW1w9lBz/C+2Wz8h5lrIuwwmOD6/tZgvrC+hriyHABsZQoi2tmy3pOImZEerO91vdjy+F7S1+YSNiv4kq+jtFfiPcid4vhy/CUOHM7owEEK3Z5UKmXed5OJuq0vv85by4b7d3H8+1Ru3jwXpb3yT89/YaIzK5P0aBvPkQwrkfDKJC9mR8xhV0kGKTUlNDabcFCoSNNr+CbTuiMh2F5F2sxhyOXnflszmy3kVJ+Z7o7wUHBDlD3XRtrR10NJem0ZbyRalyL3lmYwKiqEACc1fo4yFKdijixtBYX6GgD87ZxRysTbqNCW3mjm3b21fHdUR2p5ExasgW+Ul5K7hzgwpJeWT1Osv9gtyynl4PEoQpxtsbXV8XtuAVsKU1uqDo/06oVND/8+69mv7irnFKhBqpBSeKDkzw/+E6NfHMKvc9YyyMXIqioNy95P5boH+nTAKIWeIniCtVDakjlrydqYz5vuXzL/pymEz+91/vNcFKxa5MnEL4oxt7N24qqWckOUPTZyCfOCooAoAGLWHSS+2hqIPBjmx7ux4X86RokE7huuwctezrWRdoS6tU5s7a1xx0ftSJG+lpy6Sn5Ij+Oa4GhK6szsyDKQUVvGl6n7Wo4f433uGRihe6oy1LdqUGcvt7ngzrl1BjNv7anlx4Q6MipNWLAuN8b6Kbl3qIZbB9kjlVoXJCwWDeO8w9hRnEZuqSMJ+Soc7fT8J6F1Y9IgexfmBA7osNd3pRLBSA9n76WmOuvSK7Ge1md2MEp7BTHN1azDnrdeEMGI0JZcKeemDXM5uSSNVbduZek16wmdFcT1v01Hpjj3csaYYFuca42UO7SeSZFK4KERjticVRq+QGcg9Pe9GMwWZBLYP2UwsW5OFzQ+iUTCO7Pczvv8tcED+eDkTixY2FuaSVx5DvrmgdTWweuJe1qO9bNzYphH0AXdV+geqgz1PH/491Z9kOQSKa8Mnn3OgKRab+KN3bX8fKye7FOzbgopDA+w4f7hGm4YYNcSgJxNIpFwQ68Y8ivs+DxeCUiwkZ9ZfpQgIdY9kJt6x/b4WREQwUiP5znAlfS1fz2JFSD8ml4kfpdCL1kDyTVKTCbTeafEhatXxIIwek0N4IdJq0hfk8Ob7l9yw9pZBIz0aXNsTZ0Rn3vSaAhUI9U2YdEoWnI65FK4d+iZ7YDvp+Tx4BFrsTF/tZKs2SM6/Hsw0sWH2/sM49u0gzRbzDSZm5FIjTSZzySp+ts580DkOLFE08PoTI1tGjKaLGZ0pkZcOBOMlOtMvLazhqXH68mrtQYQNjIYE2zDQyOcmNfPtt0A5I/25Tby4loVpytsyLFllFcvXG3sGeYZ1Go3TU8nfpJ6uKAJfqSvzSVzQz595lx63gjA+FeHkfhdCsOcGvmm0o5XbjvEyz8M76CRCj2NyknFXYcXcOCdo2x5fB/fjvqN6Dv7MvOz8S1v1HsS6xjzVh4Wf1uCGwuZ8rciNh3pR16F9U140UAH3O2tMyojN8axr8KaxHpzoCN91BU8dGAZzjZqZgREMuIPNRi2F6WxuSCZWmMDfvbO3NArhmCHc8+KnG2oRzDBDm7sKE7jQGkOSrkZrVlCkL0LY7xDGeIRJBJXrzJFWhP/3VHDbyfrKdRaAxCVXMLE3ioeGeHIzL4XFzgcyDMw5atijM1n1iYrdXJu6jUEqfQcbax7MFH0rIerzavjvcBvGXh3BLM+Hf+Xr/dh2PdUZNTypiUYf6WJk41zO2CUQk9Xm1fH9+NXUJ2lxd5bzc1b5/FFfCPP7NaCrZTRLmV8+3AfHBQq0qu1LPzeSG61mZMP++HhaCZw5T70zWakwO9j+rI+bw9jvEMZ5dWLlJoSfs2MZ3HkWCKcrTMvh8pz+SZ1Pzf2jiXYwY2tRSnEV+TxcsxsNMqL79I7+ctCtmY0Yn61+xWdEi5cnq6Kfx/d0PJ1nV7J0SwfKiu9Ka+3flSqFRLGBKt4fJQjE0PVl3SfwwWNjPu8iIYmS5s8qZx/+hPo/OdF+roLUfRMAMAxwAGpQkrRwb+exAow9NFo1v9jJ+FKA8eNakpy6vAKcuiQaws9l2OAA4szF7H5iT0ceDOBG2buZNvcSCQSCwuic/n51kktx7p527PrbhOHCgzs15Zx15YUALxUSvLnjmBV/nHcVPZcHzIIsJbOzqgtZ0thakswsqUwhVFevRjpZU2evan3EE5UFbGvNJNp/hEXPX53OzkWGjGbzRc0/S50X7X1NiRk+JJb7ozBKAck2CkszA635Z9jnRgV9NfqfRwtamTCF0UY2glEAFLLm3pUMHKhRDByFXDwVlOd9dcqsZ426O4INj60mxEqHYeMDjxx7QG+PzK5Q64t9HzjXx3G7QUOFAbYo86p47aqY4y4K4xPk3eTXluGk1LNWO9QRnv35rZDqWwvs/Z+uSXIi+9GRgLWrbXhTl6trtvP2Ztfs+IBMJmbyaurYrpfv5bnpRIJ4U5eZGkrLmnc7nbWJZmiOjN+jiIY6WmSSo28uqOGNan11DREA6CUNxPsWUVUSBHvThhNwFl9iS7E2aXcT1OaXfl+exj1xvYDEQnwVnwCq8ry8LB14JrgaPq7+LY8b7FY+D33OLtLMmhobqKXxo0be8fiadv9VwxEMHIV8BjgRvqaHEyNJuQ2f+2/XCqVEjLZH/PaXDxxYffRzm2UJvQcJZVGAh9IwxjkgG2uns8lpaTvqSNt9lF8nwvhwUXjyamr4sf0I8zZlUONyfrmvHF8NJN9zuR6aJsMbZZaNEoVhuYmjM0m9CYjZiw4tHNMSYOW6kY9v2UncLK6CKO5GXeVPbeGDSPI4dxVhVU21iZlTx9cTaCzvMNzVITL72hRI//dUcOm9AZqDNb3MUeVhF7elUT3KsRV89dbX/ioHXm4/4SWr5NKTfyyqxKzxdKmwjCARGJG0ezGc4MiiCvL4eOk3Tw7cFpLf6SNBclsK0rltj7DcVPZsTonkfdObOelmFndPodJhPhXgeBTlVgz1ud1yPUm/tfa72OAbQN5FhV7VhV0yHWFnmvDwRq8H8/A6GdL73ID+p8iufGXqVR85QR2Ukrvz2DrlG1kV9vwRb4LNSYLbkoF+gXjWgUif5XZbOb1Y5uRSaU8EDmOl2Jmcn3IIOzk5y7OVmHQkWm0/oY7xmUEE3378H3aQU5WF7Ucc6g8l2VZ8cwMiOTZgdPxs3PivRPbW1VqFbrewTwD878vwfGlbAa9X8ivx+uRSeGWgfasvlPJU3PTmTgwo00gomtqPMcVz08qkeCotG35M9zfgdJnA9lzjw8PDHdsKaR3ugqw2SJFp7fHW+3I3KAoAuyd2VFk3T1msVjYWpjCjIBIol398LNz5vY+w6lpbCCh4q9V2b4SiGDkKtD3ut4ApK/N6ZDreUS6Yu+tJsZUhQR46R8JHXJdoWd68rN8pn9bChoFf9NISP/izPKJfS97gldGETzZnx9djdx2JIVmC4xyaaD8+rGo2tm2q1Go2nzIa40GVDIFSpkce4UNUiTUtXNMQ3MTzjZqbgsbRrCDG24qe/o5e+Nue+68p53F6biprcFKvUHFeJ8+DHLzZ8upzr3QOkfFx86Rm3oPQSmVs68085L+zYSOsyurgVnfFOPwYjbDPi5iZZIelVzCnYMdyHjcj/LnArlmSDFrineRXdf+Mt7Xqfsoqr/4ek1lDXX88+AKnj20ii9T9lJlqEcqlTAySMUbM5yxWMDfUcaTY51wsrMGPAW1ZyoE93P2JuvUmCoM9WibDPQ9a4nSVq4k2MGt5ZjuTCzTXAU0fvbWJNa40g675qC7I9j18iGCJQ0kFnfv6UGh84x6NJW9EhmYLHw8zZF753i0er6Xxp1CfR2v36mhtkmNSm/mjldycZumwjzZjFTe9velEI0bJ6qKWj2WXFNCiMY6gyKXyghwcCG5ppRoN38AzBYLKTUlNJvNDHDxbTdH5VyytBVEuljzBYrrrFs6OztHRfhrNqfreXN3LbtzDOibrMkZ3g4ybh6o5ulxzgQ4nfno21Wcwfr8ky1fOyltCbR3RW9qJFNbgRkL2qZG3j+5nRcGzcD2PLNoZwt2cOO2sOF4qh2oNTawJvcErydu5sVBM1HJFfye0oDJDHcMduClSS5U221ijOtQ+jl5tlxDo1BReyqo1jZZZ2vaW6Ks7QEzcCIYuUo4+NhR00FJrAAjn4ph9yuHGaSsZ6nBnQ+fSOD+16M77PpC92YymfC+PYUKX1ukhQaOvhTIgF7tdPOVePCvlGyMFhMuShk/D/Fj6+Z85F9oeWPZF9ywZhZHfMqoMeq5vY91eXCsdyg7itJYnn2UkZ4hpNSUcqQ8j8WRY1suO8k3nG9S9xPk4EKQgytbC1Mxmk00mkzsLE5nkl840/0jyKmrYknWEeRSKcM929+2q20y0MfV+gFQVm8NRi4mR0W4PH5PruedPbXsy2vEYLIGIH6OMv4eYceTY53w1rT9uGs2m1mbd7zl6+uCBzLRtw9SiTUIrmqs56OTu8ivr6aqUc/e0iwm+f552wGwFs87zc/OmWAHN56OW8XhijxGefXi3b3WmZZHRzm1HBfiKmGAx9XZAVoEI1cJzyhX0lbnYDKYkKv++n+7XCXHd5gnTftKsMWFrz7OFcGIAEBOiYHej2XQHKBGk6un9KtwVO18z83fmcDKggpAwkhnI1GaOvZq9cx6bxzyYXVsfdJaKE35qAfSW5xbznNT2bM4YhxLs+LZVpiKk42aW8KGtmzrBYh1D0TXZGB1biJaowE/e2cejBjP64lbCLB3YX5QNAAB9i4U6WvYWZx+zmAEQHGqHH1FffM5jxEuL7PZzG8n9by3r5aD+Y0YT/3XBDrJWTDAjidGO+Jmf/73uuPVRdQYrTMOA1x8mezXt9XzLjZ23NFnBC/HrwWssygXGoz8kVquxNPWgfKGOgD25zUS6CRDo7IGPhqlCm3TH5YWmww4ngpyNQrrlmKt0YCj8sz2Yq3RgL+90yWN6UoigpGrRPAkf9JW57B/+QkC5wa0PH4xTaD+aPz/DeP7CSvpI9OTWm+LrtaAvePFF5QSeo5ftlWx8MdS8FbRv6aRxJ8i2xxjMJnwXbGHKqMJCfDrqP5cF9h6qy6PWbtOfz9hJTVvlWH/i46KbdW49bEGJX2cPHlu0PTzjmW8Tx/G+7Tun+SoVOGtdmz1mLetI0fPkwB4OkdFJrGlusG6/eHsHBWpRHLOHBVHhfh56Ehms5mfj9Xz4X4thwsbaTq1GyXERc7CKDseH+WIk/rMx1p+fSXDNr2Mu42GQS6B9HfyJ9LRj/5OfniqHMnXVbccO8wjGL3JwCfp2/kxZx83BA7jiX4z8bFzJMDehTxdFaUNWprMzZe0c8XQ3ES5QccwpS3bMhswmCxc1//Me2+IgxspNSWtgp3k6hJCTu3IclPZoVGoSKkpwd/e+nPQYGoiu66CsedZZuwuRDBylfCa5YPlQVjzUxw1AUktj/9ZE6jzCRrvh8pJSWx9LQnNDjx93QHe3zyuA0ctdCf/eCePTzINoJZxl7eCzx9r+wa5obCcGTuOYQE0chkFc0fhoGq/wJNToIYHMhex6bE9HHw7gU/6/cjo52MZ+9LQSx5jL407pX9YOilt0J63B8jpHBWFzAXtqS2gF5qjMt4n7JLHKlg1N5v5Jl7HJwe1JBQbMZmtW75D3RTcHG3PIyMdsVe1vxfDTm5DSUMtRQ01nKwtwGyxYD7V+chJocbX1gWd0UhFk5ZvC7fQaLYmj0qREONypn2G8qzgw3yBRcuXZcUzwMUXF5UdtcYGfs89jvRU87sbfqpGKjHTPzgfsH4fTfTtwxuJW9hckEx/Fx8OleeSq6vi5tAhgLWx3kTfcNbln8DD1gE3lT2rchNxsrFt+b7rzkQwcrVwl4EclCmmVg+31wTqYkTcEEbDJydwwcjG7X99X77QPQ26P4WjtnJoaObHBe7c+P/snXd8FOX2h5+Z7cmm90oChARC7x0EBESqvSNivZZ7xYp69Xrvz957BbuiqIAggvTeIZRAQgnppJdNstk68/tjQ0IglEA68/iJZGfe2T072Z33O+e855wrz0zHvXnDfualuxZRjwnyZcWY3hf03GPfGkr322P5Yewi1r+4g4M/H+X2NVMxBtf/MzsmLI7X9v7N0vRE+gZEklpWyIaco9UXfIAFxxPqXKNiNFgos+tYm334gteonF6LROHCcDgkPt9Rxhc7ytifY8MpgyBA5wAN03t78PAgTwza8yeD+uqMDPLvyOaCI2c0wCuxmymxm2tt6+IZyuz4SdzUbgBq0TU9ltoqq7NVPDX6WsLkXBRbzXyZvJkKuxWjRkdHzwCe7jkWD62e9ccthPtVIIs13rQOngHcHTuERWl7WZi6l0CDBw90GVZdYwRgXHhnbE4H3x/Zjtlho6NXAI/EX9Hqa4yAIkYuK5wBIuoTDVukbORLA9n16QG6qSvY5PAiaUchcf3OXjxKoW1hsTgImpmEKdINVbqZpNc70DGsdrlsh8NB6MJN5FvtAHw1sDN3dgir6+nOSnDPAB7NuYuFt60g8acjvBfxDVd9NJze954ZBjoXUR5+PNB5OAtSE/gz3VVW/ob2fRgQWHMXXGqrpMhaM0mdXKPyx7YTOKlkRVbmBa9R8dReWunwywmrXeLjrSbm7irjYJ4dSQZRgPggDTP7evDAAE+0dWRXnY+pEX3YXHDknGNiDKGMDujBI/FX0NmnJmRol5z8eHRHtTdkcHB7BOHCmtjd03londt3ZFgot8nc1iGUO2MDau3rExBJn4DIOo8Dl3dkclR3Jkd1vyAbWhNKo7zLhPTyIj69aj76jXayVniDruZL/Wyv8fUudXwqn3b9kSOJJt4hmkkdnSw6MqEBLFZo6SQer6D786lI4Qb8MivJ+SoW9Wl1QdacKGLM6t1IgLtKJHXqYPz1l7aO4tiKdOZf8xf2cjvhg4O5dflktMYLS7e8FGLeTCenzEnZi5fW/VqhBrNN4v3NpXyzu5zkfDsyrgJg3YO13Nvfg7v7eqC+CAEC8FfWXh7d/SNHynKqQzOnIyLwSMx4zJaa/T18w+jsE0yZ3cqW3JRqYapTqflPn6vPGdK7EK7/IYdfD5jbXEO8s6E0ylM4A0tfNYaNdgyb7VRe0XDpY0Nm9yb/tpVEYGHn0cuv9fXlyOdL8rlvUSEE6hhksbP5uzObz921OZGvjp8AYFiAN+vH9m2Q1+5wZSSP589k3qQ/Ob4yg7cC53LNvLHETm7ckIinTiS9xHH+gQrnpMwi8fbGUn5IKONooQMZUIvQL1zL/QM8md7beFHNCB0OB8/u/405x9ZRaCuvtU9EqCVIRARUgshvwx5hQmgPPju0gb1FWQDsLcqq/v0kGlHFvXFDL1mIAKw8asHfTbwshEh9UMTIZYBdcrI6K5nKETq8361Et7W2GMkoK7okz0jXW2JZcvcaetrL+cMZwIKPDjPtQWXhXlvl1pdT+DHXAVqBx2J0vHl/7cVzDoeDdn9sJrvSBsAnfTtxf+zZXc8Xg1qv5rYVU9j/fRKLZ67mlylLiZ0SzXW/XlVnobSGwFsvntFLROHCKDY7eHNDKT/treB4sUvQaUQYFKnjwUGe3NTd/aIESGZ5ATO3z2F93mEskr16u4hAtDGAV3tcz3XtBjBr1w98cHgFDllCRECn0vDnyFlcEeQqVHdfl2GsyDzEmuzD1am+4Foo28UnhMntup+zd9GFcijXRolF4vZeddTcucxRxEgbx+Z08EHiWg6X5oGfCJozF7F+f3QH7lo9Pf3CL+o1BEEgZmIUFb+m8Bd+vPFckiJG2iix9xzksLcOyhwsvieEiYN8au3fkl/C0L93IgEGlUjK5MEEuzVeemu32+LoMCGKH8YsJHnRcd4KmMPNSycSPiikwV/L101Ekl3ppRczcV5u5Jc7eH19Cb/sqyC91FUERKeC4dE6/jnYm6ldDBd1Hhdl7ObJhHkcLcut5e3QiWqG+nfiy4EziTLWXosxMawX7yQvR0TAqNaxYtRT9PfvUL1fJYiMj4jnyvDOHC7Jo9hmRi2ItPd0tQxoKF5dVwLAUyO8G+w52wqKGGnj/HY8wSVEqHJNBmlQ5ToZFRrL3sJMCq0VSMh8mbSJ//aZeNE1R0a9NohDvx6jk1DBoRI9DofjjPUDCq2XcrODoLuTMLdzQ5NuJv39TgT71V6n8eC2Q3x81OXe7ufryfar+tf1VA2Om6+ee3bfxOY3drN69ha+Gvwbve+L56qPRzSoaAhwd2UsFJkl/I2KGKmLbJODV9eW8HtiBVkmlwDRqwVGd9Tz6GAvru5c/+uLw+Hgqb2/8PXxDRTZKmrt89W4c2f7YbzW44ZzXm+GBXbCqNajV2lYM3o2Xb3rvvFSCWKtBawNzV/JZrz0AvFBjb/GqbWhzBZtmAq7lU1Vjbo0oorHuo/m0OQD7P4skesie3Jd+17MSdrMroJ07JKTdSeOMC2650W9lm97bzwjjfTJKCURD166cwcvfD+oAd+NQnOxJbGMIa9lIEcYCM2uJO2buFoXfofDQYfFW0g3uxp9vd07hkc7t2tyOwc/0ZsuN3TkuysWsvuzRI4sSeX2NVPxi/E5/8EXQKDRJUZSSxznrex5OZFWbOeVtSUsOmQmp6p3j5tGYHwnA48P9WJ0jFu9nzO1PJ+7t85hY8Hh6tof4Lqh6ugRxCs9buCayAtfg6QR1awdM5tgvRdhbhcfkr4U0krs5Jslro2v//m4HFC+UW2YkyIDYFhwB6I9/FHfEsuujw+Qn1hEcM8AbuzQh4TCTJyyxObclIsWIwD9HuxGyVNb8MDOL/PzeOH7BnojCs3GGz/n8OSaEvDTMEaUWPFN7YWquwtL6b98B04ZdKJA0qRBRBmb72Lr3c6Th1Pu4O9ZG9n2bgKfxP3A8Bf6M/z5S/fShHq4LpdZJicNsxS39XK0wMbLa0tZklRBfoVrIY1RKzApzsCTI7wZGlX/lOZf07bx9N75HC/PrxV+0YtqhgfGMqf/TMKNZ9avuVBOLWLWHLy2tgSAJ5UQTZ0oYqQNU2CpcWl283XVdQjo5ror2PbeXqZ8NQYvrYF2Rl9Sygow2S0XXeoYYOCsXqx5divxznISbJ7kpJYRHHX21uwKLZtJ/z7KkjJXtan/9nbn37eH1tr/xK7DvJmUDkAPbyMJVw9sDjPrZOzbQ+l2Wyd+GPcH617YTuLJQmmBFy+UQj1d34us0sszo+Zgro1X1pbwV7KZwqqy+J46gWvj3XhqhDf9Iuq3NsjhcPBYwk98e3zTGcXH/LRGZnYYwUvdrr3kcO8z2xdRaK04Y/uIkBhu6divzmN25aezKG0fhZZyAg0eXBPds/oaCiDLMovT9rMh5yiVTjsdPP25pWM/ggxnT11ddNCMu1agfz3P0+WCIkbaMKpTivNUOlwrzY8sTgUgfGBNXNTiPGUV+gUW9KkLUS0SMSyUvmvy2IoPT1y7le92XXnRz6fQfETOSCQjUI9QYmPtv8IZ3rPmIut0OolbspWj5a6sg//r3p5nu7W8SqMhvQOZlXsXC29dQeK8I7wX/jVXfTyC3nefmYZ8IZxsO3+i7PJplpeQbeWVtSX8faSSkqpS+D4GkZu6uzN7pDfdQ+pXIuCoKYe7t81lS+FRbKeFX2I8gnmz141MDL+wyrwXyuye42p5WrIrSnn3wGr6+Ned4XXMlM+XSZuYGt2D7r5hbM9L5ZODG3i21/jqaqjLMw+xOjuZO2MH4a9354/Ufbx/YA3/6TOxzpu5vHIH2WVOruqkFME7G4oYacO0OyUVbUteCr18wln/3x3ETIyiz32uypWpZYVkm12trCPcfVAJl7Ywb9TLA0kb9BvBWNiwp8XX01M4jYISG+H/OIy1nRv6NDMnPuuEt0fNYrvEknJ6Lt2GQ5bRCAIHJw6go2fLTVMURZFrfhpHj7s6M3/aX/x5zxr2fZPELcsnoXWr3yLCdlViJLe8bYuRbekWXltXwqpjlZisru+wn5vI7b2MzB7hTed6Lr6cl7qFZ/b+SlpFwWnhFw1XBHVm7oC7CXbzbsi3UAsPbW1PxLKMgwTojXTyCqxz/KqsZOJ9QxgX7kr7nRLVg0MlOazNPsytMf2RZZlVWUlMiOxanYE4I3YQj2/9nYSCDPoFRp3xnG+ud11jHxvqdcY+BReKGGnDdPMNxVtroMRWyf6ibL7/cDVFh0u45sexgOsOYW7y5urxwxug82P4wBAM/np6FJhYIQewcVEmQ6dcXMqwQtOyYmcJ4z7MRg43EJ1nIeW0jrvPJxzlf4mpAHT2cOPg5MHNYOXF0eHKSB4vmMlPVy8hdXUmb/nP5Zp544idfOHrCLwMrjvegoq2J0bWp1Ty+voS1h13lSoHCHQXub6bkdkjvejgd+ECxOFw8PDu75mXtvWM8Iu/1sh9HUfxn65TmyXbziE52ZaXypiwuLOWdU8pK6jVORdctUb2FmYCrvC3yW6hs3eNd9mg1hLt4U9KWUGdYuSX/RWurKKLWMx7uaCIkTaMShCZ3K473x7ZhmafjdRZSUhhIovdDlO6dy9HTfnVY4MMngwMbJgFXt3viKPw7X2sIID/PJDASkWMtHienZPFy7vKwUvDNe4Cv73epdb++MWbOWhyTSzPxLfjpZ4xzWHmJaHWq7l91VT2fnuIP+9Zwy9T/iR2anuumz/+gguliQIUV7aNymcrjph5a0MpG1ItmO0uARLioeL2Xm48PdKnOix1ISSXZHP39jlsL0zBJteINZUgEusRzLu9b+HK0Obvp5JQmEmlw8bgoLNf60w2C56a2t4UT42eUpurqZ3J7gpPep7mcfHU1oyp9XwWibQSByPbK2tFzoUiRto4g4Pac+Szo6S/eARBBmsHFbsK0muNCTR48EjXkWhVDfNxGPGf/mx7J4EOspl9J5SPWEtn5BOHWecUwSnz/hgPHr6m5o7vqKmcLku2YZdl1AIkTBhIvHfLDctcCD3u6EzMxGi+H7WA5IUpvBU4h5v/mkT4gPPXl9CIVK+daI0sPlTBuxtL2ZxuxeJwCZBwLxX3xLvz1AhvQjwv/Pv6bcoGnt+3gHRzQa3OLwaVhtGB8Xw1aCb++pYVltiUc4x43xC8dU3noXhnoytE8/CglnUuWhrKTNGGqSy28MeMVWQsOs5Jh6SjQ82f3E/nzoiQGIaHxGBQN1yfBJ2HluCe/vTeU8LPhPHxU3v5x2s9Guz5FRoGh8NB6Ixk8sP0iDkWdvy7Hb071QiNl/en8Oy+FAA6GA0kXT2gzRSyc/PVc2/CzWx6fRdrntnKVwN/pc/9XRn/0fBzFkrTqgVM1tYjRiRJ4vdEM+9vLmVbhhVbldOinbeaG7u788QwrwuumWJxWHho5w/MT9+OyVFZa1+AzpOHO13J7M5Xt9jPSKGlgkMludzfZdg5x3lq9ZjstT0cJrsFrypPiKfGtQjVZLPgdUpXZpPNQoTR+4zn+3FvORoRpnZRFq+ei4v61Hz00Ue88cYb5OTk0KNHDz744AP69z9/Hv+8efO4+eabmTJlCgsXLryYl1a4QLK25zL/2r8oP1GT0iaoBK6KjKdb365oRBEvreGC22HXl2HP9yNz2l8YcDLno1RFjLQwMvNsRD96GEekG8Z0M/lz4tDray4Hvf/cyp4SV7OxWXERvNUntrlMbVSGPNmHLte7CqXt+vQAh5ekcvvqKWctlGZQC1TYWvbCbEmS+GlvBR9tNbEz04q9Sju191VzSw8jjw31xNvtwi79iSWZ3LN9DjsLU7GfFn7p7BHCe31uY1TIxWUnNTWbc4/hodHRzTf0nOPae/iTVJJTa93IoeIc2nu4apz4693x1OhJKskhwuj6nFQ67BwvK2DEaevuLDaJIwV2BkTolBYC56HeYuTnn39m1qxZfPrppwwYMIB3332XcePGkZycTGBg3auTAVJTU3n88ccZNuzcqlTh0pBlmW3vJLDySdfCVNlZc+EUBAG1KBJgaHw3e9zUDhjcNXSpKCOpwoi53IZbE7R5Vzg/v64t4vrvciFUT3yxlQM/1CxUzSy30HHxJqySjEqA7eP60duvbbuXfaK9eCR1Osv/uZ7tH+zjk7gfGf5if4Y/56pBIcsyFTaZ4koJjShQbHGyMLGC4kqJEouTCC8113Vr3tCVJEl8taucT7eZSDhhwyG5mrzF+Gu4raeRR4d4YdRf2GT45ZE1/C9xERnmolrhFzeVlnHB3fh8wJ0tLvxyPiRZZnNuCoOC2p+RMfhV8ma8tW7VBR9Hh8Xy5r6VrMg8RDffUHbkp5FWXsRtMa4bbkEQGB0Wx9KMAwQaPPDXG1mUtg9vnYGe/rWbRn68zYQM3N9fqbd0PuotRt5++23uueceZsyYAcCnn37Kn3/+ydy5c3n66afrPMbpdHLrrbfy4osvsmHDBkpKSi7JaIUzKbJUUGKqYN30jWQuy657kAA0kiekLuKuaU+f71LZhTdPX7uF95ePaLLXVqibh99P58PDFnBXcWegmq/eqLmTe/dQGo/uPgJApJuOY5MGtViXe2Mw7r3hdLs9lh/HL2bdv7dxcN4R0v5vNG9sr8B5mjNk2ve51b9H+zSPGHE4JD7fUcYXO8rYn2PD6apPR+cADdN7e/DwIE8M2vMLEIvDwv3bv2VB5k5MjprwhAAE6734Z6exPN11UiO+k8YnqSSHIquZIUFn1sMpspoRqLkudvAM4O7YISxK28vC1L0EGjx4oMuw6hojAOPCO2NzOvj+yHbMDhsdvQJ4JP6KM2qMfL27DJUAt/du3eusmoJ6XWlsNhu7du1i9uzZ1dtEUWTMmDFs2bLlrMf997//JTAwkJkzZ7Jhw4bzvo7VasVqtVY/NplM9THzsqPIUsG/dy5GSLYRuNwEAgh1eZKb2Ls86uVB7PsuGT9sLFtVef4DFBqVvg8nsUunBouTr68PYPq4mtLaA5dtZ1uh63v2QMcwPh7QubnMbFZC+wYxK+8uFtzyNwd/Psqh/23DObbrWccLyNzYo36Fvy4Fq13i460mvtpVRmKeHUl2ZfjEB2mY2deDBwZ4or2AzKB9xencs20ue4rTzgi/dPUK48O+dzA0sO2E5rr4hPDZsFvq3PdY9zFnbOsTEEmfgLqLooHLOzI5qjuTo86eIeRwSCTm2ukerFVCNBdAvcRIQUEBTqeToKCgWtuDgoJISkqq85iNGzcyZ84cEhISLvh1XnnlFV588cX6mHbZsjhtH0vSD7gedFKT+40Xnl+ZMayxu5wgpwkQQWicUsd14RluxLejFz2Omljv9CVpRyFx/fzOf6BCg+JwOAiYnkRJpBuqjEoSX44mNtKVTZBjttD+j81UOiVEYMPYvgwO8G5We5sbURS5dt54uk9PQ3XDX2ztGUl+gAfSWbyK13S/uPYJF4rZJvH+5lK+2V1Ocr4dGVAJ0CNYy739Pbi7rwfqCxAgnx5eyf8lLia7srjWZcFdpeWqkB580X8G3nrlDr6h+Hp3OZIMd/VVzumF0Kg+2LKyMm6//Xa++OIL/P0vvMHR7NmzmTVrVvVjk8lERETEOY64vAnQG8m3uBYbOqJUFL3ogfpmO8H3lQEgqgUkhwzIFFkr+LGBSx2fi4GP9iT1wU2swY+nb93OwsNXNeRbVzgPyelm4p85jjPSDZ8MM3lf13Tc/fxwBvftSAYgVK8lbcrgyyoscz5irmrHk/l3Y75hNS8FninEBUEiOqiIII+G6Qp8KuUWibc2lvJDQhlHCx3IgFqEfuFa7h/gyfTexvPebZdbLdy/8ysWZe2h/LTwS4jei8firuKxLhMa3HYFF59tNyEIcF//+t3EXa7U68rj7++PSqUiNze31vbc3FyCg8/M0T927BipqalMmlQTb5Qk19JutVpNcnIyHTp0OOM4nU6HTtd0rs/WTl0ZMR6/WUGGK98eQsbGEyT9noLkkDlmKmjwUsfnovf98Sx/dAPtbJXsOKK4KpuSuUsLmLmgAIJ19Kuws/37mnDDiL93sj6/BIAZ0SHMHdw6MiKaGrVezf/9MZZdLx/h71IB6RQBIMsiXaNygEuvXAxQYnbwxoZS5u2tIKXY1bdFI8KgSB0PDfbkxm7u5xUgOwpSuH/H1+wrScch16QgqwWR7t6RfNj3DgYFNIy9CmdHkiQSTtiI89dcUNhMoZ5iRKvV0qdPH1atWsXUqVMB10lftWoVDz300Bnj4+Li2L9/f61tzz33HGVlZbz33nuKt6OBKLKc1pHSLOG20oZbqIGBj/Zi4KO9yN1XwI4P97G5VwGjvGsLx0stdXwuRFGk/ZgIei0tYgEhLPjoMNMe7HRR71PhwrnjtVS+y7KBTuSf0VrefdAV/y62WIhYuJkKp4QArBzVi1EhSujsfHz5YDQd3kjHenJ5hSzjqzUT5FN+Sc9bUO7gtfUl/LKvgvRS15PrVDA8Wsc/B3sztYvhvALkg6S/efXQEk5UltQKvxhVOiaF9eLzfndh1CnVP5uS+fsrcEhwey8lRHOh1NsnO2vWLKZPn07fvn3p378/7777LhUVFdXZNXfccQdhYWG88sor6PV6unatvfjL29sb4IztCvWnwm4luSS31h0QgPtfNnBC8As1K8eDuvsz8fNRLN04r0FLHV8Io14dxIGlP7MEiTf/naSIkUamy32HOOSpgXInC2YEMXWYLwDfpmQzfctBAAJ0GjKmDkGnhGUuiDAvNY8M0/PG2kqoyrwYuugY3gcqkL+p38rwbJODV9eW8HtiBVkmlwDRqwVGd9Tz6GAvru7sfs7jy60WZm7/kj+z91LhrFnoLwChBm+e7jyRh+PG1ssmhYblo60mBOCRwa0rBbo5qfeV6MYbbyQ/P5/nn3+enJwcevbsybJly6oXtaanpysrh5uACruNN/etrO64W41ZwuMnC/ZOKtZ3PkFodjJXhDbvqvigbv74BxvonFPOwWIDDodDWZvQCJSbHQTfnURFOzc06WZS3ulEeKCrtsu4Vbv5O6cIgJsiA/lpWPP3CWlNZFWUEBpyBIM2iEqbFlGUiS/IwbDPwS/bFzJz3bX4dvA+6/FpxXZeWVvCokNmcspcAsRNIzC+k4HHh3qdt4HalvyjPLjja/aVZuKsFX5R0dMnks/6zaC3X1RDvFWFBmB7hpVoHzXuOmUuvFAuakZ46KGH6gzLAKxdu/acx3799dcX85IKp/Fzys5qIeKm1jIoMIowN2/2PriHgnyJwuddRXZ+PrabTl5B1YtTG7rU8YXS854u9P5fIvvw5KUZO3jhu0EX/VwKZ7IjqZwBL6cjRxgIyqok8xvXQtVyq4OwhRswOZwIwB8jujMx/OzFCRXOZFd+OnOTN+OQJfrHWli3PwZvo5nCeZ54vVeB/FslH3X6npH/HcCwZ/tVH3es0MZLa0pZklRBfoVLQBi1ApPiDDw5wpuhUecuD/7GwT95O2kZuZbS2uEXtZ5p4X34tO903LRK+KWl8VdSBVYn3Njj3B4uhdoot6etkFJbJTvy0wBXU6pneo4jwOCBw+pk4/rVmKfpiR4WxuHSPGTk6sWp0LCljuvDsGf6sv5/O/HEzvxfcnnhu4t+KoXTePfXHB5dUQL+Gq6QJVZ/61qM+mtaDjdsPIAM+GrVZE0bil7xSNWLFFMBXyZvQpJdcqBrRCnr98sMiLKhFkRK/+lOxTgdgY+Xsfa5bWxYkEriw4NZnmansKq7r6dO4Np4N54a4U2/iLOLhxJLOXdvn8tfJ/ZhdtqqtwtAhMGXZ+Incn+nM2tiKLQs3t3sukl8fJgSoqkPypWpFbK7IL364hhk8KDYakYQBDZ9t4+sZ3Wo+rlxR8xA/rd7KVbJwabcFG7p2K+qjHHDlTquD2q9mohBwXTfYmKnzZu8TDOB4U3XObOtMu2FYywslUAU+Hc3N/47w1UvZsqaBP7ILgBgapg/C0b2bEYrWy9/pu+v/q4NDIzmlo79mL8+iyEhHfjXgO58fXgLq0OKWPZiLKVH3SlyN8BBC76yk5t6eTF7pDfdQ86eGbg+9xAP7/yeRFNWrfCLRlDRxzeKz/rPoLvP2YtvKbQ8NqZaCfdS4XuB/X8UXChnqxVSYqupZqpVqfkyeTMVdiuynwNPs4bH+ownwGCknYcvh0vzcMoSVsmBXqVp0FLH9WXkf/uTcOVfbMSPx6Zs4rtdV17S813uRN+VSKq/HqHEzsqHwxjVxwuLw0Ho7xsptjsQgF+HduOadkHnfS6FMym0VJBYfAIAX50bd8QMQCWK+BhEEnNt3D7PyspjkZRZXSnwel8H09ydxL65EUOBmcgRocRNmXjG8760fxEfHF5BntVUK/ziqdZzbUQ/Pu53O3q1En5pjWxKrcRsl7k7XgnR1BdFjLRCtKeIgsFB7RkU1J5DC47x67V/cd1v4wkweCDLci3RcqqQaIhSxxdD+zGRhHsJhJZa2LCnZXc+bcmUlNkIue8wlnZu6NLMZH7cCX9vLUsy85i8bh8y4KlWkTV1GEad8hW/WDIraiqV9guIYlOqldfXl3A4305yvh2AQHeRXpEWQkIP4eVu46keYwl/+DbmXf0naWuzeDtgLlf8NIxXvVawPOcAlaeFXyLd/PhP12nM6Di86d+gQoPzxnpXiOapEd7Na0grRLlStUI6etYsQFx34ggDAqNJ+OIgof2D6HyNa11HUkkueZWuCqztPfzP6FTZXHS5sSO9Ps/iLzmQjYsyGTolvLlNalWs3lXKmA+ykMMNtMutJPVHV4r8jev38UtGHgDjQnxZNqp3c5rZJpBkmcx8T/YdD+Wbvz2wOlxeEpUAThk+nuLLAwO9mXdsJ2uybVXHSGjdtIT/2InXlmwmw1rE7LLNUA7IrpuCfn7RfN7/LuK9lc9+W2NNSiVBRpFQT2VqrS/KGWuFdPIKJMTgyYlKE8fLCpm7ej0nlqUxac4oZFkmsfgE3xzeWj1+REhMM1pbm1EvDWTj51/zF4G8+I8EVihi5IJ58Zts/rO1DLw1TNbDornxWBwOIhZsosDmulP/flAXbm0f2syWtm6WHKrgnY2lbEq3Y3V0AWQ8DQ7u7+/HUyO8CTSquHN+Pg/9UURWqYTsm4XD4SCh/DiDVmykwFZVCM0dcIPAEwaGLgymb3Io0/+aSmhfJWzWFtl3worJKnN9M3RwbgsoYqQVIggC17XvzYeJ65BtEhk3HkAF/Bmbys87DlNkNVePbe/hT7+Ads1n7Gm4+bvRrosXnQ6Wszdb29zmtBrGPHWEVXYBJJk3h3jw2PXBrMguYNyaBGTAqFaRMWUw3nqljUJ9kSSJ3xPNvL+5lO0Z1uoqq+28VUQE5dE+4jh6rYOpHfoS4unKOvv6+gC2ZRXx0v4lCIGbkdU13zkBgXbufrzYbRp3tB8GwEb7TtZu2cac/vPp+2A3rvpgRJO/T4XG5dV1JQA8PULJorkYBFmWW3zw3mQy4eXlRWlpKZ6eStOhk2w6coRl16xCe8CBrIKsNb619nfw9OcfXUZg1LSsCWrvN4d47c6t/EQYHz0ZxD9e69HcJrVYHA4HEXclkxOiRzhhYdsz7egXZ2T65gN8ezwHgBGBPqy9sk8zW9q6kCSJn/ZW8NFWEzszrdirElna+6q5pYeRx4Z64u2mZnteKnOSN1cfJ4t2luclkFlZ5MqyEQBZAElHH/8Qfhh0H7HedXumio6V8N2ohZjSy/GMNHL76qnnLJSm0Lrw+28qAIXPRzWrHS2NC52/Fc9IK6U0vYy9k7ahPeyotV0tiLT39GdESAy9/CNazFqRU+l2eyyx96zBYHcy56NURYychcw8G+0fPYw90g33NDM5X8ah10LIb+vJsbjWKHzWL5Z7Oyk9ni4ESZL4alc5n24zkXDChkNyaYkYfw239TTy6BAvjPra35dePmHkOwtZmpOAVbLX2qcV1bTXh5C272YqLQZGD/cm1vvsfX58O3jzz7Q7+evhdez8aD8fd/qBK/5vAENm922Mt6vQhBwrtFFUKXFTdyWL5mJRxEgrJCchnx/G/kFlkYWTy/0FJ7zf+zq0bpo6u/i2JERRpMvEKLotMHGwwgNzuQ03oxKyOZVFG4uYOjcXQg3EFVk59GNXNuYVM2LFLiTATSWSOnUwAXolBfRcOBwSn+8o44sdZezPseGUQRCgc4CG6b09eHiQJwZtbQGSYy7hzq1fsC4vCctpAsRDZaCvVwwx7i7vR7i7N6MHGbnpa4HX15ciCvDK+HM3HrzqgxF0vyOOn8b/wepntnLgpyPcvnoKbv5K3Z3WyqtrlSyaS0UJ07Qyji1P45dpf+G0OZGdtf90j6RPxyvCo5ksqx+FR4p5ptOvfE47Hh6r4/3lSgz9JP/6KIP3DlWCCLeFavju6Wge2HaIT49mATDQz5Mt4/s3s5UtF5tD4uOtJubuLCMxz44kgyhAfJCGmX09eGCA5xlt3Zdk7uaxPfM4WpaLdEr1D52oZrB/DF8OvIto90COmvLJrTQhIBDq7kWU0Q9BELDYJGLeziCz1MnskV68PO78nZAlh8RvNy0j6bcURK3IxM+voMf0zg1+PhQan+CX0jDbJUz/iW5uU1ocSpimDZIw9yBL7lmDLMtQh4Q0F1hajRjxi/EhNkyNf5aVZasqz3/AZcKAfyazXa0Cq8SXU/2ZPs6byAXryTC7wjLv9enEI3FKRc7TMdsk3t9cyje7y0nOtyPjSsHtEazl3v4e3N3XA/UpAsThcDB733zmpqynyFZR67l8NO7c0X4Ib/a46YyGjjFegcR4ndnbR68VSZ4VQae3MnhlrctD8n9jzy1IRLXI9b9O4MjSVH67fhl/3LmKvV8ncdOfV6N1UzyFrYVsk4PccieTO5+715DCuVHESAtlcdo+lqQfqH5sWGXF78WKcxwBe4+m8YlzG4WWcgINHlwT3ZNuvmHV+2VZZnHafjbkHKXSaaeDpz+3dOxHkKF5vE0DHupGz9nJrHX6kbyriNg+vuc/qI3icDgInJ5EcaQbYkYl+/4XRaWHHf0va3HKoBdFjkwaTLhRCcucpNwi8dbGUn7YW87RApcAUYvQL1zL/QM8md7bWKuDeGZ5ATO2fcmG/MNYpZq1ViIC7Y2BvNbzRq6JvPj1G25akcOPuQTJS2tKERH479jzf6ZjJkQxK/8ufrpqiatQWuBcrp1/FTFXtZwsOIWz8/r6EgCeGO7drHa0dpQwTQtlcdo+dhdk8K9uowDI31fI6vs3krurAEEtIDvO/LMVP29k3D396e4bxva8VJZnHuLZXuOrS70vyzjIsoxE7owdhL/enT9S95FlLuE/fSZecqn3i0FySDyh+Zx3iGZyjMTCw1c1uQ0tgaNZlcQ9dQxnhBte6WZy58bx9P5jvJucAUBvHw92TRjQzFa2DErMDt7YUMq8vRWkFLsEhUaEfuE6HhrsyY3d3GsJkN/Td/JUwjxSyvPPCL8MC+jE3AF3E2H0b1AbzTaJmDczyC5z8vwob1688sJF9p45iSx9YB2SXaLz9R25Zt7YWu9HoeUR+WoahWaJiv8qIZq6UMI0bQBREPDSulx/Xn3D6bjzJnIS8tn16QF2f5boGiTgCtkIEGr3YFx4FwCmRPXgUElOdcdeWZZZlZXEhMiu9PRzFRqbETuIx7f+TkJBBv0Co5r+/alFeowMImqtmZ1Hml4MtQS+/buA6b/kQ7Ce3mU2tn0TR+yfW0kptwDwSo8OPN318r7IFZQ7eG19Cb/sqyC91FUERKeC4dE6/jnYm6ldDNUTtsPhYNaeH/k2ZSPFdnOt5/HVujOzwwhe7nZdrfBLsdXM78cTSCzOxiY5CdAbmd5pIFEeZw+zJJfkMj9lNyfMpfjo3JgQ2ZXBQe0Bl4fkyOMRxL57mP9bU8QO0zaGdRC5qUMfoj3OLXx6zYwnZlI0349eyKH5R3l7dSa3LJukFEproRSbHWSUOrmyo+KxvFQUMdKCyass48ltC9CIIu09/JkW1ZPgngFEDgth92eJtB8XiSmjjIKDxSCDX2XtL0QXnxD2FmYCUGCpwGS30Nk7uHq/Qa0l2sOflLKCZhEjAKNeHsjCwX+zgBAWfHqEafe3nGqxjc1db6TyVboN9Cr+EanlgTuCMfyyFocMWlEg8eoBdPS8PKs5ZpscvLq2hN8TK8gyuQSIXi0wuqOeRwd7cXXnmhTK1PJ87tr6JZsLjpwRfunoEcSbvW5iUnjd5fEr7Dbe2LuCTt5BPNx1JB4aPXmVZbirz75mo8BSzoeJaxkeEsPMuMEkleTw3eFteGn1xPu4smwSSzO4euBelmzpyV87OxGgLeb9yjW82GcSntpzT1zGQDfu338L6/9vB+tf2M6c/vPp/3B3xr2n9K9paby5wZVF8+hQpdDZpaKIkRZKtIc/d3YaRJCbB6W2SpakHeCNfSt4offVbPi/XQgqgRsXTkClU5G1LZcPX1tM6OiQWs/hqdFTanPdYZvsrkWip18IPbU1Y5qD8EEh9PCysaRU4s1nDl02YqTbA4c4YNSA2cn824PY41VItz9dJfzjPd04MGlwM1vY9KSXOHhlbTELD5rJKXMJEDeNwPhOBh4f6sXomJrU13mpW3l273xSKwpqhV/0ooaRQXHM7X83Ie4+533N5ZkH8dG5cWengdXb/PXnFoDrThzBX2/k+vYugRPi5sXR0nxWZiVXi5GVWUmMCG3Pm/+MIeatDL7d7Mvk/sVszj3G+Ij4Czofw5/rR/yNHfl+9CK2v7+P5EUp3L5mGj7RysTXUvh5XwVaFVwVq9QXuVQUMdJC6epbU8Ux3N2HaA9/Zm9fxMbEZAqTiml3RRhqvevPFz4wGNNjHvh0ap0LQAfNiCP+3RwOFRtwOBxnZDC0JSwWBwEzkyiPdEOdbubIWx0Zv303yVmukMILXaP5T48OzWxl03Gs0MZLa0pZklRBfoWrDKpRKzApzsCTI7wZGuUKUzocDv6x/Wt+SttKyWnhF3+tkXs7XsGLXafV+7OzrzCTLj4hfHZoA0dK8/DWujEiJIZhIR3PekyKqYC4UzyM4PJC/pKy22Wr5CS9rIirwrtg1IsceSyCjm9lsGRHNB7qPMbXo0adX4wPD6fewbKH17Pr4wN81PF7rnhlIEOeVCruNjdmm0RKkYMhUS2rwnVrpe1e9dsYbmotQQYP9n1wEIAxr9e+c/bU6jHZa3s4THYLXlWeEE+N66Juslmq16GcfBxh9G5Ey8/P8BcH0O3d70jAi5fv2snz3w48/0GtkN2Hy+n3vzSkCAMBmWbWfxBOp2WbsMsyakFg/4QBxHm3/bDMoVwbr6wtYelhM4VmlwDx1AlcE+/G0yO86Rfh+sweNeUwfMVbbCtMwXZK+EUliMR6BPNWr1sYH9b9kmzJt5Sz7sQRxoTHcVVEPKllRfycsgu1KDKoag3I6Zjsljo9jBanHZvTgdlhQ0LGo2qMUe/Ksun8fhI/bQkk3ljM7CvO77U5iSiKTPhopKtQ2lWLWf3UFg78cJjbVymF0pqT9zaVIgMPDrw8kioaG0WMtBIsTjv5lWX4LizEGOp2xoK29h7+JJXkMCYsrnrboeIc2lctmPPXu+Op0ZNUkkOE0XUhrHTYOV5WwIhz3AU2BXpPLQO7G1i0z84vP+fw/LfNak6j8NHCXB5aWgwBOoY5nFz5pIHOf+0EIMbDwOHJQ5rZwsYlIdvKq2tLWH6kkhKLS4D4GERu6u7O7JHedA9x3V1+m7KBGxYtIK2iEPmU8ItBpWF0YDxzBt5FoMG7weySgXZGX6ZF9QQg0uhLtrmEdSeOnFWMXAyeepHXp1p4+g87z/wtIorw1IgLFyQA4QOCeSxvJr/duIyk31N4N+xrrv7iCnrcoRRKaw6+21OOWoQbuikhmoZAESMtlF9TdtPdNwxfvTultkoWp+1HnWCDQif9X+nOV8mb8da6MS26JwCjw2J5c99KVmQeoptvKDvy00grL+K2GFelTkEQGB0Wx9KMAwQaPPDXG1mUtg9vnYGe/s3f2+SKFwbQ49rt7LB5k5dpJjC87dzxXfffFH4rdIJaYHZnPX+GZPD8PlfNmCe6tOP1Xm1zncy2dAuvrSth1bFKTFaXsPBzE7mjl5GnR3jTOUiLxWHhkV3f88uG7ZQ6ahe/C9B58mDMKJ7tMrnRQndeWj0hbrXXYIQYvNhTkHHWYzw1ekynrbMy2SzoVRq0KjWiICAiUHbaGJts5dErbby62IunlxUjIPBkPcuHi2qR63+bwOElx/n9xuX8Md1VKO2WpZOqw7YKjY/NIZFcYKd3qFZJvW4glE9vC6XYaubL5M1U2K0YNTo6egYQ+q4ds1pk0OO92XpwNQI1PWg6eAZwd+wQFqXtZWHqXgINHjzQZVh1jRGAceGdsTkdfH9kO2aHjY5eATwSf0Wz1Bg5nc7XdKCHeg0bHH48Pm0T3+64srlNahA6zDxIip8OwWTnq7t8uTczEVupjEqAXeP708O3bbl416dU8vr6EtYdt1BucwmQQHeR67sZmT3Siw5+WhJLMrl7+6vsKDyOXXZWH6sSRDp7hPBen9sYFXJhizwvlQ6eAeRWmmpty6004as7+91ue09/DhRl19p2qCSH9p4uL6RaVBHp4cuhktxqoS/JMkklOVwR2onDs8Lp9FYmTy0rQhTg8YsoltVpYjSz8u/ix/FLSFuTxZv+c7j+t/F0GKcUSmsKvthRhiTDPf3a1ve3OVGKnrUSCpKL+STuBzpOaMfNf05qbnMahQW3/c3DP1SiEeC4NKW5zbkkSspshNx3GEs7N7RpZp6dZeCF5OMAtHPXcXTioDazUHfFETNvbShlQ6oFs911OQnxUDG1ixtPj/Qh0lvNnKNr+e+BhWSYi2p1MjCotIwL7soXA2bgr2/6LJHUskJe2/s3kyK70zcgktSyQr47so3bYvozINBV32XB8QRKbGZmxLrWaRVYynlx15+MDO3EkKD2JJXk8vOxXTzUdUR1Ns2O/DS+Tt7CbTH9ifLwY1VWMrsK0nixz0Q8tQZKzA5i3sqkwCzx5gRfHhvmfdHvYfeXifz1D1ehtC43xTDthyuVu/VGpvf7mezNsWH9b1StNgMKZ3Kh87ciRloJ8yYt4ciSVB44dCv+cfWLNbcWTBnl3By5gGUEsv6PeIZMCm9uky6KDfvKGPFWBnKwjvA8C8E3lLGzqByAh2LC+KB/64/xLzlUwTsbS9mcbsVSVQ043EvFtfHuPDXCGx83B//Y8R2/ZezA5KgJVwhAoM6ThztdybPdWobg3FeYxYLUBPIqy/DXGxkTFlcrm+br5C0UWit4rPuY6m2nFj3z1rlx9SlFz06yJjuZvzMPYbJZCDf6cFP7PkR71hQ9KzE76PhWJoVmibev9uXRod4X/R7K88x8P2oh+YlFGPz13Lp8MiG9z+yho3DpSJKE9rlUugRq2Pev5g9xt3QUMdKGkBwSr7h9ikeYO48cn97c5jQqLwZ/w/9yg7kixMaK7NbnAXrp+2ye21QGepFRbk42d8vG4pQQgY1j+zIowLu5TbwoJEni90Qz728uZXuGFWtVdKWdt5obu7vzxDAvsu3Z3LPtK/YUp54RfunqGcaH/e5gaGBsM72DlkmR2UHMm5kUVUq8c7Uv/7oEQQKw/r/bWf/idmQZBvyrJ2PfHtowhipU8+3uMqbPz79kj9blglIOvg2x5a09SHaJQU/0am5TGp2rnu3Fz48cZf8JTXObUm/GzT7C3xZAlpnc3cYf2hPghFCDlrTJg1tdWEaSJH7aW8FHW03szLRidyXB0N5XzS09jDw21JN5mWt5KXEJb/xRO/zirtJyVUh3vuh/F97nKSJ2OePrpubI4+HEvJnJo3+61pA8MsT7op9v+PP9ib85hu9GLWLbOwkkLTjGHWun4d3u8ruJayw+3WpCAB4coJzThkTxjLQC3gn7ispCC0+b72vzsWBJkrhZ9S2/EMons4O4/+UezW3SeXE4HLSbmUx2sB4hx0rXSSb2W11hmZkdQvhyYNMsxmwIJEniq13lfLrNRMIJGw7JFVqJ8ddwW08j9/TX8eT+71iQuYvy08IvQXovZsWN54kuVzeb/a2VgnIHnd7OpLhS4v1Jvjw82PuSnk+SJJY9tJ5dnxxAUAmMemUQg5+ouyS+woUjSRL6f6cS7ash+TElRHMhKGGaNsKJ3Xl82ecXOl/fket+Gd/c5jQJc0Yu4OF1eroYrOw0T21uc85JTqGNyIcPY2/nhi6jHNXVBZglV1hmzejeDA9u+VVxHQ6Jz3eU8eWOMvbl2HDKIAjQOUDD9N5GhsQW868935BQko7jlPCLWhDp5h3BR32nMyigeWvVtAVOFSQfTvbjwUGXvqA3c1sOP121GEuxlaCe/ty2aipuvkpTt4tlYWIF077P5YXR3vxnTMv/brcEFDHSRvhu9EJSV2fySNp0vCI9mtucJiFnbz5Teq7hIEZyy8bgZjx707Lm5M8txUz8/AQE6Ah0lpDXuxiAQJ2GrKlDWnRYxuaQ+Hiribk7y0jMsyPJIAoQH6RhZl8PZJ/tvJG8hBOVJaeFX3RMDOvJl/1mYtQpk1pDU1DuyrIpsUh8NNmPfzSAIJEcEr/esIzkBSmotCKT5oyi221x5z9Q4QxGfZHNmhQLpS9E4alv217qhkJZM9IGcFgcpK3Lwi/W+7IRIgDBPQLooTez3eLN7Gu38N7yEc1t0hk88VkGb+4zg6eawLBc8vxd/VJubRfE90O7NbN1dWO2Sby/uZRvdpeTXGBHlkElQM8QLbf11rJVms/S7AT+lWaFNNcxAhBq8OaJzhP4V9zl4ZlrTvyNapIfCyf2rUwe/KMQUYD7B16aIBHVIjf8PoHkP47z+03LWXj7ShK+TuLmJROVQmn1ZEu6lXbeakWINALKJ7EFs+H/diI7ZYY917e5TWlyrn+kIwteL2bZyormNuUMhsxKZrOgArsTXf8c8tQSArB0ZA/GhwU0t3m1KLdIvLWxlB/2lnO0wI4MqEXoF6ZlTLcS/ir/mX2lGcxKk6qPUQsiPbwj+azfDPr4Rzef8ZcpgVWCpNNbGTywqBBRELi3ARZLxk6O5rG8u/hx/GJSV2XyZsAcrv/9KjpcGdkAVrd9Vh+rxOKQub5b26kO3ZJQwjQtmLcCv8Re4eDpivub25Qmx15pZ7zbL6zHj8Rd/enUu/njsw6Hg+A7kygMN4DJBIMLQQA/rZrMaUPRt5CwTInZwRsbSpm3t4KUYleDOY0I/cJ1RHXcw+qy5eRaSmuFX4xqPVPCevNp3zuV8EsLIa/cQae3Mii1yHw+zZ97+jfctW/35wf466H1SHaJ+JtjmPq9UijtfFz99QmWJleS+2wkgcaW8V1vDShhmlZO2voszPkWetx5ecZ2NQYNg6MF1hwXePKGrSw8OqFZ7UnJrqTTEyk4I91QaXJwDq4AQeCa8AB+G9H8GT8F5Q5eW1/CL/sqSC91LTLVqWBIlIQUsoy9lQlsdtrYnO8aLwDhBl9mx0/kH53GnP2JFZqNQKOapEcjiH07g3sXFCACMxtIkPS+tyudJkfz3eiFJP50hOMrM7j17ykE92xZnr2WxPrjFkI8VIoQaSQUz0gLZe7gX8naksOjuXdhDLw83YLHlqcxdvxu7Iiky81XrXPe6iJu/jEXvFWI7bOQvJwIwO/DujM1svmqXGabHLy2roTfDlSQZXIJEINaoEtEIYW+f5BhT8cp14RfNIKKXj7t+Lz/DHr4Kj1MWgs5Jgexb2dgssp8eY0/Mxu4H8q6F7ex4b87XIXSHu3J2LeUQmmnsyPDQv+Ps7l/gAefTFUEW31QsmlaMbZyG695fk5gdz/uS7i5uc1pVqaI3/GHHMTvn0Qz7f6m72573ztpfJ5iBb0NuuWACrw1ajKmDMWoa/o7pPQSB6+sLWbhQTM5ZS4B4qYRCGu3nwLjKkqcxbXCL55qPddE9OOTfrejVyvhl9ZKtslB3NsZlFll5l7rz4y+DXsdLEgu5vvRCynLqsA72pPb10xVCqWdwvU/5PDrATOpT0bQzqf1FWRsThQx0opZ/q/1bH9vHzcsmkDs5PbnP6AN8801y7h3AfTzsLDRNLVJX7vng0nsNajBvQhiTCDAhFA//ryiaSvhHiu08dKaUpYkVZBf4fJ0GLR2PNutpkS/Byu1i49FuPnyfNepzOw4skntVGhcThUkX1/rz/QGFiSSJPHXP9ax+7NEBJXA6NcGM+ixtl/1+ULweTEVtQj5/45qblNaHYoYacW87vM5yPBkyb3NbUqzU55nZmjQn2RgINc+vklqd1gsDoLuSsLUTg/BWeBnBwF+GtyVm6KDG/31AQ7m2nhlbQl/HTZTaHYJEDf3AtThyyjXHkeipviYRlDRzy+az/vfRbx362wuqHBhZJY66Px2BuU2mW+uD+CO3g2f8p+55QQ/TViMpcRGcC9/bl15eRdKO5Rro8u7mdzRy8g3NyjNB+uLsoC1lXJkaSrWEht9H2qZtSqaGmOgG93dLeyt8OKlO3fwwveDGvX19h8rp+d/0pA6qiA6DbQyHmoV6VMG463XNeprJ2RbeXVtCcuPVFJikQAJve8hdJHrsKrzMAs1Y73UBm5o15/3+9yqhF8uI8K91ByaFUHntzO4c34+ogC39WpYQRI+KITH8u9m/nV/cXjRcd4N/YpJc0fR7ZbLs8nhq+tKAHhqhHez2tHWUTwjLYwves0jZ28BT5Tci96zZVYebWq2fryfcQ+m005lZZ/jmkZ7nU//yOOBJUUQZYbIIhBgdJAPK8f0abTX3JZu4bV1Jaw6VonJKgNWNCEbkbz34FSVu+IugIBAO3c/Xuw2jTvaD2s0exRaB+klDrq8k4HZJvPdDQHc2sCC5CRJi1JYcPNyHJVOosdEcNPiqy+7QmkB/0vFLsmUvKDU3LkYFM9IK8RcWEnO3gJC+wcpQuQU+t8fT9cHE9nt9CIv00xgeMNnF938Ugrz8mzQtQB8LSDAl/3jmBnT8GGPDccreX19CWtTLJTbZNAWoApejWA8iizasFcJEK2oZoBfe77odxex3qENbodC6yXSW83BRyPo8nYGt/+SjyjCzT0aXpDETWnPY3kz+WHcHxxfmcFbAXO4fuEE2o++PJrEpRXbKTBLXNv18sxobEoUMdKCWPXUZpBh9KuNG4pobYiiyLBYFZuTVcy6ah3f77+qQZ+/0z0HORIoQo9s0Em4qUTSpg7GX99w4Y8VR8y8taGUDakWzHYneBxGiNgAhhOAhLNKgHhr3Lil3SDe631ri+5to9D8RHqrSXw0nPh3Mrl1Xj4icGMjCBKtUcuMTdex67MDLHtoHT+MWUTXWzox5bsxbb5Q2msnQzTDvZvVjssBJUzTgnjV+Blqg4rH8+9ublNaHAWHi+kZuwE9To7K0yg8UsK+b5PI2JDN9b9PwHARC+zKzQ4C706isrsTwvJBkBkS4M3Gcf0axOYlhyp4Z2Mpm9OtWCQL+G4Dvz2gKa4Ov4gIRLn78389ruPmKEWEKtSftGI7Xd7JpNIuM+/mQG7obmy01yrPqeC7KxZSkFSMW4CBW/+e3KYLpYW9nEapVaL8RSVEc7EoYZpWxv6fDmOvsNPv4e7NbUqLxL+TD13EclZJfrwS8yOOo0XV+yryK+stRrYkljH49VQYUgZeZhDgw76xPBh78X06JEliQaKZ9zaXsj3DilWVDwGbICYZVJXVAkQnqhnkH8MX/WfQ0bNpsnMU2i7tfDQc+FcYXd/N4qaf8hCA6xtJkBiD3Xng0K2s+882NvxvB1/0/pmBj/XkyjfaXqG0vHIH2WVOJsQamtuUywJFjLQQNv5vB4IoMOKFhrkrbys47U6OLUtn79eH6C2VsBo/NhyVONWH4Ble94X3+x+y+eV4Lj882RUPbU2hotd+PMHTWwthZAFonehFkeNTBhPsVn/viiRJ/LS3go+2mtieWYnTPQn8dkBcBgiOagHio3HjjuihvNnzJiX8otDgRPtqOfCvMOLfzeLGn/IQBbi2W+N5SEb8ZwBdbozh+zEL2fpmAsm/p3D7mmltqrv4G+tLAJg19NK6JitcGEqYpgVgyiznvYivaTcyjDvWTGtuc1oUX/SeR86eAgSVgOyU+YlQSlFzP+kAaD00PGW674zjrFYJ/4lrKL9Tpku5GwfuHYQgCFz93FGWasshugAE6OvnwY6rBtTLJkmS+GpXOZ9tN7EzpxTZZwd47Qd9AQgyyCAKAu2NgbzW8wauiVQEpkLTcKzQRrf3srDYZebfGsS1Xd0b9fUkSWLp/WvZ88VBBJXAmDcHM/BfbaNQWtRr6eSWO6n8nxKiuRSUME0rYsUTmwAY88bgZrak5RF3TQdy9hQgO12auQcm5hFKHloCsZ3VK/LDT9mUj5VAhoNGM3f/nMiy5RLZfSrAuwKAN3t15LH4qAuyw+GQ+HxHGV/sKCOhOA38toPHYYirqBV+GRrQibkD7ibS6H/J711Bob508NOy/59hdHs3i+t/yOW3W4OY1oiCRBRFJn4+iu7T45g3cQkrHt3Ege8Pc9vKKei9W2/9G5NFIq3EwRXtW+97aG0oYqSZkSSJ5IUpGEPcCO0b1NzmtDiGPdcPjbuGFbM2AtCJcgw4ScCTsRTgFXWmW1iWZV5YnALX1FQJm2vPgRECaJxoBRXJkwcRZTx3up7NIfHxVhNf7CjloHU3+OwF3wxXRVYAAXy17tzVfjivdL9eCb8otAg6+GnZ+0gYPd7P4tofcllwexBTujSuhyRySCiP59/N/GuXcviPVN4O/opJX42m282dGvV1G4t3NpYC8MhgJUTTVChXz2Zmz5cHcVqc9FMqrp4V32mR+ByLpfjjZNQydKOMfXgwRiwk227j8/l7a40/uN9C5gArSIB4smpYKWj+RuuMxnrH02d9LbNN4v3NpXyx6wQp4mbwOgSBtcMvHT2Ceb3nTUyJ6N2I71pB4eKJCXAJku7vZzHt+1wW3hbE5EYWJKJa5MZFE0lacIwFt/zNwlv+Zt/Xh7hx8dWota1rqvlxbzkaFUzurCxebSpa1yekDbL5td2IaoHBTzZelc/WzuaEbGz9fNA9EIP10yP0kExsx5sUyUBnTzXlZnut8b8erIBpp9ROpwiEvwEbNvEo5WYbRreaonLlFom3N5Xyyf595Gi2g/E4BFdVP5VBr9IwIjCOL/vPIFwJvyi0EmICtCQ8EkbPKkGy6PYgJnZuXEECEDetA4/lz+SHsX+Q8ncGb/nP4YaFVxM9qnX0TbLYJI4U2BkQoWvzdVRaEooYaUYKjxRTkmKi44R2iGrlQ382bHZXUzjNAD8M3lrk1w7i77SxF096B7thcKvJlMnOtpPV1wmSACJAHrAScLrEhWCj6/tLSXhkIq+uLeKjY6sp1yWCIRsC7SADCPjpjNzbYST/7XaNEn5RaLXEniJIpnyXy+I7gpgQ1/iCRGvUMmPzdez8ZD/LH1nP96MX0u32WCZ/PbrFT/AfbzMhA/cPaHvJEi0ZJZumGZk3eQlHFqdy/8FbCOjs29zmtFg+n7+XcrMdo5uGe6/vQfqGbO4avob1+LHs/TBGPVwT4hr37C7+7lJc9SgbWA1I1YtMkQVQaaDSAFpTTfgFNZ08A3in962MD1NqvSi0LQ7l2uj1YSZ2J00mSE5iyi7n+9ELKUwqwT3QwK0rJhPUveUWSuv+bgYH8+zY/i+qxQun1sCFzt/KmW4mJKfEsWXpeLXzUIRIPYkcFsrU64JwIPDWKynV2xMOlfF3h5Iq70YasIoaISKDNht8l0HAHPDehlbQMTGkByemvY/z1rkcmvSaIkQU2iSdg7TseigcjQiTvs3lr+SKJnttz1Aj/zh0G8P+3ZeK/Eo+7/kzK5/c1GSvXx8cDonEPDvdgrWKEGlilLPdTGx9OwHJLjHo8baRk9/UPDR/DBFYSDrhcuz9truIXqv2gE4G4QiwDpBBkECfAn6LwWcVaPJBhrvajcV6y+csvuIxgt28m/OtKCg0CfFBWnY97BIkE7/JZfnhphMkACP/O5D7E2/BGOzGljf28GHHbylNL2tSG87HV7vLkWSY2bftFG8DKLJUkF5eVOunyNK0f//zoQTDm4nt7+1FpVPR5x9dm9uUVsuE3lq+2g13vLOX7/Ql4JUJjh2gKQLBDoYj4HbQVYr9ZDCyKiyzNSe/OU1XUGgW4oO07HwwjD4fZTHh61yWzQjmypim60gb0NmXf2beyZ/3rSXhy4N80P5brnxrKAP+2aPJbDgXn283IQpwb/+2I0aKLBX8e+diHLJUa7taEPlf30n46psuZHcuFM9IM5CTkE9ZVgUxk5SY5KXw758GY/3lBb6LGw/ht4NhDnhsAJ8/IeAXMO4CsdI1+NTkGgGSK46Rak7F4XA0i+0KCs1F1xAdOx8MQy3C+K9yWHnE3KSvL4oik74YxfQN16A1avj7Xxv4su/PWEosTWrH6UiSRMIJG7H+GrRtKKGg3GE9Q4gAOGSJcoe1GSyqG8Uz0gyseNwVLx37ZttrLtWUhHbyguOHQWUCjQyGjNqi4xw4fVcRveX8ZZ6FU/8TBEREVIIKFSrUohqNoEEraNGJOgyiATeVG24qNzxVnnhqPPFT+eGn8SNQE0iIPoQIbQSR+kj89UqKsELz0S1Ex44Hw+j3URbjvsrh7xnBjG5CDwlA5NBQZuXdxa/X/MWRP9N4O/grpnwzmvgbm6dQ2vz9FTgkuL134/X0UTg7FyVGPvroI9544w1ycnLo0aMHH3zwAf37969z7BdffMG3337LgQMHAOjTpw8vv/zyWce3dRw2B2lrs/Dt5I1Xu7bjCmwuUnqmE+HnVp1+63Q6+bvob54+9jT7Kva5smeEMxPGIrXRGNUGKqVKrJIVm2zDITuwS3acOJFkCUmWkJGRcP1bnXh28unOvNloME4VQaIgVosgtaBGLajRiC4RpBf11SLIqDLipfbCW+2Nj8aHAE0AgZpAwvRhhOvCidZHo1cr5a0VXHQP0bHtH2EM+LhKkMwMYVSHpi3ypdaquWnJJA79dpSFt63g95v+JuGrJG78Y0KTF0r7cIsJAfinUnW1Waj3X/vnn39m1qxZfPrppwwYMIB3332XcePGkZycTGBg4Bnj165dy80338zgwYPR6/W89tprjB07lsTERMLCwhrkTbQmNv7fTmSnzLDn+ja3KW2C6KDaqWIqlYqrAq5ivP94Hl70Ib/o3yJfk4aAgEyNKPmsy8eM9xvfYHZYHBYyLZlkWDM4YTvBCdsJ8mx5FDuKKbYXY3KYKHeWUyFVUClVYnFasMk2bJJLBDlkB5IsVQsh+ZT/nLKrzgqNnIQvVLmVThVB1V6gKhGkFV1eIJ2ow110x03thofoUS2CfNW+BOoCCdIGEa4LJ9IQSag6VKnV0kLpGeoSJP0/zmLsnBOsvDuEke2bvupo52s7En1lJD+OXUTK8nTe8p/DjX9cTdTIpiuUtiPTSntfNW7athOiaU3Uu87IgAED6NevHx9++CHgirNFRETw8MMP8/TTZy+zfRKn04mPjw8ffvghd9xxxwW9ZluqM/JW4BzsFXaerri/uU1pNZxeZ6Q+x5nMFvZ7L2O57yfk2fKqBcna3msZ4TOisUxuMkpsJaRb00mvTCfHnkOuLZd8Wz4ljhJKHaWUOkqpcFZglswuL5DTilW2YpftOGQHTtlZLYJkWa4lgpqKCw6FqXQYBJcXyF3ljqfKEy+NF75qX1coTBtIqDaUMF0YUboofPVKyvyFsjvLwsCPs5Fkmk2QnGTHx/v4+58bkBwy3e+IZdJXjV8obWlSBVd/k8szI714aZxfo75WU5NeXsRLe5bVue/ZXuOJNDbu96RRuvbabDZ27drF7Nmzq7eJosiYMWPYsmXLBT2H2WzGbrfj63v2E2C1WrFaaxbWmEym+pjZYknfmI05v5Lud8Q2tymXDSIqhtim8sngJ3g/433+7/j/USFVYFS1jbiwt9Ybb6033T2arj6Kw+Egx5FDhiWDLEsWJ2wnyLfnU2AroNjp8gKVOcuocLi8QJVSJTbJ5QWqFkGnhMKqw2AtMBSmE3TV64HcVe4YVUY81Z4uL5DG1xUK0wYSpgsjQhdBO327VhkK6x2mZ8sDoQz6JJsxX55g9d0hDG8mQdLvH92Jndqe765YyL5vkzm2PJ1bV04lqGvjiYR3N7ka4z02TAnRNBf1EiMFBQU4nU6Cgmp3lw0KCiIpKemCnuOpp54iNDSUMWPGnHXMK6+8wosvvlgf01oFq57aDMDoN4Y0syWXH24qN56Oepp7wu5heeFyenko9V0uFrVaTbg6nHB90/YasTgspFnSyLJmkWnNJNeWS4G9gEJ7ISWOEsocZS4R5KzAIlmwSGeGwpyyEwmpRYTCREQEQagVCtMIGrSiFq2oxSAaXCJI7Y6HygNPlSc+ah/8tK4F0cHaYEL1obTTtyNYHXzJobA+4Xo2PxDK4E+yGfXlCdbeG8LQqOYRJJ6hRh5Mvo3Vz25l0ys7+bz7Twx+qjejXxncKK+3Kc1KuJcKX7e2F04st589Y6YlFWBv0jP/6quvMm/ePNauXYtef/a7h9mzZzNr1qzqxyaTiYiIiKYwsdGwldvI2ppDYHc/jIFNu2q9rVBRaT+jQ+/5xp+On8aPW4JvaUizFJoIvVpPrDGWWGPTehZLbCWkVKaQac0kx+YKhRXaCylyFFFqL6XMWUa5sxyz04xFtlSvB7LLdhySywt0UgSdGgpz4AAZ7PKZn9OG5qyhMKFGBOkEHTqVjoixHqSkdGPYSneGds4n2tsNX7Uv/hr/6lBYuD6cKH0U3lrvRrV71EsD6XZLDN+NWcTmV3dz6Ndj3LFmGp7hDefZ3Jhaidkuc3d8y6i3caH8kvsLb6e/zXPRz3G139UIwpmphLvy05mbvPmsz/Fn+gHu6TwUjahqTFMviHqJEX9/f1QqFbm5ubW25+bmEhwcfM5j33zzTV599VVWrlxJ9+7ndinrdDp0Ol19TGvxrP33NmQJRrw4oLlNaXVoNSrAjixzRofeCz9eQeHi8NZ601vbm970brLXdDgcnHCcIK0yjUxrJvm2fHKsORQ5iqrXA5U5yzA7zVRIFVglqysr7FQv0EkRdJoX6IxQWF1EJgCw0QIbcy7uPdS1IPr0UJhW1NZkhakMuIs1oTAvtZdrLZAxEP+d/thfl8j8OpO3O8xhwpsj6f9wwxRKe3O9K0Tz1AjvBnm+pmKbaRvbTNuYtHcSQ7yG8FbMWwzwqplf9hdl8UXSplrrv7w0eioctuq6I3uLsvjm8FZmxg6uU8w0JfUSI1qtlj59+rBq1SqmTp0KuBawrlq1ioceeuisx73++uu89NJLLF++nL59L88skr1fH0LnqSVuavvmNqXVMbhnKJsTsqu799YHrUbF4J6hjWCVgkLjoVariVBHEKFvWo9wuaOcdEs6WdYs1mVl8vIKJ7K6jKsHHETvVkypo7TaC1QpVVaHwuyS/ZyhMAnp0kNhk6t+gBdlXM244YzaQqeHwkTB9aNChUbUoKYmK0wv6kkWuqLuouOelCK81d54q7zx0/oRpAkiSBtEmD6MaH00/mr/FpUVVumsRCNosMt2tpZuZeDOgVwTcA2vdnyVDoYOzDu2s1qI9Atox9SoHvjrjdicDrbmHeeXlN3YJSc78tMYFtyRWO+g87xi41LvMztr1iymT59O37596d+/P++++y4VFRXMmDEDgDvuuIOwsDBeeeUVAF577TWef/55fvzxR6KiosjJcclso9GI0dg2FhGejyNLU7GU2JTS7xdJpyhfOkUpmREKCo2NUW2ki7ELXYxduNIPrva2MPyzbJYvnsLG+0IZENk4i3MLLAWkWlLJsmVxwnKCPHueKxTmdIXCTE4TFc4KKp2VVDorcSTJaPMMWDzMmNoXY3ez1ekFOhkKO+eC6NBDSMDSwkt7D6eHwlSoqtPjNYKmOitMr9KjF/W4iW54qD3wUHlUe4F8Nb4Ea4MJ1gQTYYigvaE9RnXd82SlVFktNpy4hN4fBX+wKH8R1/nfiqZyIG6CFzGegdwVOxixyvOhVakZHhKDShD59sg2ANaeONzsYqTeqb0AH374YXXRs549e/L+++8zYIDLPTRy5EiioqL4+uuvAYiKiiItLe2M53jhhRf4z3/+c0Gv19pTe7/oM4+cPQU8UXIvek9tc5vT7CzbeJyDx1zffFEQ0OtU+PsYiIv2I76jX5O6C0vLrcz5bT+3TepCoK+ylkdB4XQ2pVYy8osTAGy+P5R+ES0jW+jgr0dZdPsKHBYnHcZHcsOi+hVKczgcTPvlIEuOFPPuzVnI+jzyrfkUOYoochTV1AaqSo0/tTaQXbbjlJ11hsKAJk2NPxdqdLTTtSPeI45AbSBuKjeuDbiW4T7DcUhOnti2ALPDhptayzuDrmsUGxoltfckDz300FnDMmvXrq31ODU19WJeos1gLrKQs6eA0H6BihA5hagwT8YNiUaSZMwWO6lZJtZsT+dwWhFTR8Ugis0bv1RQUHAxJMrAmntCGPn5CQZ/ms2WB0LpG978gqTLdR1pPzaSH65cxLFl6bwVMIebFk+k3fALK6apVqvZfNQTX8GTf3ZquppD5Y5y0ixpZFgyyLZmk2fPI9+WT7G9mBJHSbUXqMJZUVMhWrJVV4l2yi4BZJNt5xU9Dqwcsx7mmPVw9bYyRxnDfYajFlX46twwO2zYnM3fo6vlBMDaKKue2gwyjHp5UHOb0qJQiSLuBg0AHu5agvzcCQlw59e/D5N4tIBunQKw2Bys35nJsfQSnJJEkJ87I/tFEFDlwdickMWx9BJ6xAaydV82FquT9uFeXDm4HbqqOyRZltm67wT7D+dTaXHg66VnaJ9wosNc9QTm/LYfgO8XHwQgPMjIDePjmvp0KCi0aIZGGVh7b5Ug+SSbzS1EkOg9tczcdj07PtzH349u4NsRC+hxZxwT54w6b6G0owU2iiolbu7RtFk0RrWReGM88cb4S3qeK3dfycrilbW2qVDhxEmoph0x0jg6ioO5teNARgTHYJbMlDhKMIqusE+53UqO2VXDy6hp/oQRpe5tI5M47wgGPz3Ro1t3anJTEBniSYCPgSPpxQAsWXsMc6WdaWNiuHWiK4wy/+/DVFprVHxJmZXk1CKmjo7hmjEx5BWZWbU1vXr/7oO57ErMZXjfCG6fHE+7MC8WrT5KscnVIfSWqzsDcN3YTtx3Qw8mXdGxCd+xgkLrYWiUgdV3hyDJMPiTbHZmNm+X3VPp91B3Hj4+Hd8YL/Z+ncS7YV+Tn3juRSCvrnNl0TzdyrJoTmKWarotqwXXzdcgr0Es6bGELb13EasagUrQsCIziUqnA6PaSLg+vDode2nGgeqsmj4BkU1u/+koYqQRSfz5MPZyO73u7tLcprQafL30mMptZOWWkVNgZuLIDgT7u+PjqWdEvwh0WhVH0oqrxzucEuOHRhPo60Z4sAdXDIgkObWousbIzsRc+nUNJi7aF18vPcP7hBPgY2D3QVd6ukHv+hLrdWrcDRoMOsVZqKBwNoa3N7DypCD5NJvdWS1HkHiGG3nw8O0Mmd2Hilwzn3b7idXPnL0y+JIkM546ge4hze8VuBjMTpcYERCY7D+ZbX23saHvBq72v5pIox8xnq5ecYXWCl5JWMbGnGPkVZaRXJLLZwc3sCorGQARgREhMc32Pk6iXHkbkfX/3YEgCgx/oV9zm9JqkHFl6uUXV2J3OPlkXkKt/Q6nRElZTUVBT3ctHu41a3FCA9yRZSgqtaBWiVRU2gkNrL0aPSzQSH5xZSO+CwWFtsvI9gb+nhnC2DknGPhJNtv/EUbP0JYzoY96eRDdbu3Ed2MWsemVXRz69Si3r65dKC3b5CC33MmUzq130foNQTcw2Gswj0Y+Ske3Mz260zsN4LW9KyizW8i3lPNdVebM6VzfvjdBhuZPDFHESCNhyi6n4GAxkcND0VStjVA4P0WlFjw9dNjsTtwNGq4fd2a1Tb1WKWKmoNCcjOpgYPldIYyde4IBH2ex48GwFuVhCIj3419Zd7Jk5mr2fp3EB9HfMPadYfR7yFVw87V1JQA8Prz19qKZHTX7nPsDDB482eNK5iZv5njZmSErd7WO69r3YnBQy6h9pYiRRmLl45sAGPOm0ofmQkk/YaKguJLenYPwcNdQUWlHFAW8jGe/yJkqbJSbbRjdXN6RE/kVCIIr3KPTqnA3aMjOKyci2KP6mKy8coL9XYvWVFVZOy2pR4OCQmtgdEcDf88IZuxXOfT7qOUJElEUmfzVGLpPj+PnKX+y7OH17PsumVtXTOH3xArcNEKz9d5pKgINHjzVYyyp5YXsyE/DZLOgFVXEeAXSN6BdiygDfxJFjDQCkiSRvCAF92A3wvo1byGZlopTkqiotNdK7d2+/wTtw73o0sEPQYDQACN/rD7KsD7h+HjpqTDbScksoWOkT7WYUKtElm08zoi+EVjtTtZsT6dTO9/qTJ1+XYPZnJCNt4eOAF83Eo8WkF9cyYThrrsBN70GtUokNasUo5sWtUqozsRRUFA4N6Nj3Fg2I5jxVYJk14NhdG1BggQgamQ4j+XPZP7Uvzj6Vxqvhn5F1kNjuLJT2xYiJxEEgWgPf6I9/JvblHOiXHUbgYQ5h3BYnAx9qFtzm9JiSc0y8dkvexEFAZ1ORYCPgSv6R9YqejZtTAwbd2exfFMqlVYH7gYNYUHGaqEB4O2hIybSh99XHsFic9A+3JvRA2tWhvfqHIjV5mTdzgzMFgd+XnqmjOqIj6crLVEUBa7oH8HWfSfYnJBNWKCS2qugUB+ujHFj6Z1BTPg6l74fZbGzBQoStVbNzUsnkfjLEf77v/3IgsDAxQdw3BZYr0JpCo3HRVVgbWpaWwXWDzt8S2l6GbMrH0BUKwlLjcXJOiO3T760fH0FBYVL56/kCiZ+k4tGhF0PhxMf1DKLPHZ4NZWCLDOPf7ganaeWG5dcTbthF1YoTaH+NGoFVoWzU3SshOIUEx3GRypCREFB4bLhqlh3lkwPYuI3ufT5MJM9D4XTuYUJkgqrxPFSiaFdvRj3/jD+fnQj3w5fQI8ZcUz88vyF0loSz2xfRKG14oztI0JiuKVj3Rmcu/LTWZS2j0JLOYEGD66J7kk33xohJssyi9P2syHnKJVOOx08/bmlY78mybZRxMglUmSpoNxRk2q67l8bAbjyLWXhqoKCwuXFVbHuLL4jiEnf5tL7wyx2PxTWogTJ+5tLkYEHB3nSv3sYcdM68O2oBez9Komjf6Vz+8opBMT7NbeZF8TsnuOQTikHn11RyrsHVtPHv+4CZsdM+XyZtImp0T3o7hvG9rxUPjm4gWd7jSfM3RuA5ZmHWJ2dzJ2xg/DXu/NH6j7eP7CG//SZ2OiLXVuPDGyBFFkq+PfOxby0Z5nrZ9dSji9LxxjhTkCX1vGBbs0M7hmmhGgUFFoYE+LcWXR7EDanTO8Ps0jOtzW3SdV8t6cctQjXd3UtgPcMN/LQ4dsZ/HTvmkJpz25tZisvDA+tHi+tofpnX1EWAXojnbwC6xy/KiuZeN8QxoV3IcTNiylRPYg0+rA229W3RpZlVmUlMSGyKz39wgl392FG7CBKrJUkFGQ0+vtRxMhFIssyh0pyqsvpAhh/sSI4IO6hM2tjKCgoKFwuTOzszoLbgrA6ZXq+n8XhFiBIbA6JpAI7PUO0Z4RjRr8ymHv33Yx7oIFNL+/ko9jvMWWXN5Ol9cchOdmWl8rgoA5n7XqeUlZAnHdwrW1dfEJIKSsAoMBSgcluofMpYwxqLdEe/tVjGhNFjFwEFXYb7x1Yw7enVbQzzrcia2DbyEIKLWfG8hQUFBQuFyZ3qRIkDpke72dxpJkFyefby5BluK9/3esfgrr68a/sGXS/I5aiwyV80O4bdny8r4mtvDgSCjOpdNgYHBR91jEmmwVPTe3mhp4aPaU2V0l/k91VldpTe9oYbc2YxkQRI/XE5nTwfuIaDpXk1NquOepAlS9ROVjDCWsZb+1biakJ/oAKCgoKLZUpXdz57daWIUjm7CxDFODO3sazjhFFkSnfXMltq6eiNqhZ9uB65g6cj8XU/J6dc7Ep5xjxviF461pveXtFjNSTNScOk1pVWtdDo2N6p4F8OORGBs/3RgBUjwYAruZEi9Nah6pWUFBQaCymdXUJEotDpscHWRwrbPqJXZIk9ufYiA/UoL6ALMfoK8J5rGAm7cdFkrUtl3eC5pC04FgTWFp/Ci0VHCrJZWjwuTuOe2r1mOy1b5BNdgteVZ4QT42rCNzpN9EmW82YxkQRI/VAkmXWnzhS/fjh+CsYHNQelSyQu6eAqFFhPDZ+PDrRlaS0LS+VSkfLVtQKCgoKjc20ru7MvzUIi12m23tNL0i+21OOU4Y7+3icf3AVaq2aW5dN5pp5Y5FlmH/NX8ybuBiHzdGIltafzbnH8NDo6OYbes5x7T38STrNo3+oOIf2VZVZ/fXueGr0tcZUOuwcLyuoHtOYKGKkHuRWmiioWgsS5x1EOw9fAHZ/nkh5jpnRrw7GR+dGv8B2AFglB0dN+c1mr4KCgkJL4dqu7vxySyAWu0z397I4XtR0guTTbWUIwD8G1L9eRvyNnZiVM4OQPgEc+TONtwPnkr4xu+GNvAgkWWZzbgqDgtqjEmpP518lb2bB8YTqx6PDYkksPsGKzEPkmEtZnLaPtPIiRoZ2Alxl40eHxbE04wB7CzPJqijhq8Nb8NYZ6Okf0ejvRREj9cB8ipcjxK2m2+PGl3cCsOa5rRz67SjBmhr1XemwA+C0OTFllXNiTz7Hlqex77skkhamNJHlCgoKCs3Pdd2MzLs5kEq7TNd3s0grtjf6a0qSxK4sKzH+GvTai5vy9N567t55I2PfHYat3M43w35n8d2rkCTp/Ac3IkklORRZzQypo/NukdVMqa2y+nEHzwDujh3Chpyj/G/3X+wuyOCBLsOqa4wAjAvvzBUhsXx/ZDsv71mG1WnnkfgrmqShnlIOvh7kmk08v2sJ4PrDPtnjSgDK88wkfJnIkSVpZG7JAXcRp0pC8hHxkvU4iuzYys/80qkNKp6uuP+sqVgKCgoKbZGf95Zx87x83DQCiY+G085Hc/6DLpIFByq45odcXhzjw/OjfS75+UrTy/hu1AKKj5kwhrhx26qpBHT2bQBL2yYXOn8rnpF6EGjwILiqLO4xUz6HS3IBMAa6MfSZfszYfB3XbZ+ELURAZQJNmoQ53VynEBFUAp2v66gIEQUFhcuOG3t48MNNAZjtMvHvZJJe0njrMN7fXArAv4Z4nWfkheEV6cFDR+9g8JO9KM8x82nXH1n7fOsolNaSUcRIPRAEoTq+BvDRwXUszzxIqa2ScruVDSeOMte5i7w5npRNPncJZNkp0+e+ro1tsoKCgkKL5OYeHnx3g0uQdHkno9EEydYMK+281XjqG3a6G/3aEO5NuBE3fwMb/reTj+OaplBakaWC9PKiWj9FbaCulRKmqSdOSeL9xDUkVXlFzkao3pO410WO/J6CXEdYUeel5eHjt2PwMTSSpQoKCgotnx/2lHH7L/m4awUOzYog3KvhWqatOmJmzNwcnhjmxesTGqdFhyRJ/HHnKvZ/l4yoFhj3/nD6PtCtUV7rZAsSx2mTiloQ+V/fSfjq3RvldS8FJUzTSKhEkQe7jKB/QLuzjonzDmJWjzFc+/04IoaEIKjODMVYS2286TeHL3rP4/Di441psoKCgkKL5dZeHnx7QwAVNpnOb2eQWdpwHpK3NrpCNI8Pb5gQTV2IosjUb6/ktlWuQml//WMdXw3+FVt5w2cLlTusZwgRAIcs1WrY2hpRPCOXQI7ZxMaco2RWlCAjE6j3YEhwB6I8ahS4pdTKV4N+pfBICbLDdapFjciU769k6xt7OLErD2TQemqIv6kTo14ZhJvvpReYOb2bsFGta5GqWUFBQQHg291lTJ+fj4dOIGlWBKGel+4hMb5wHC+dSNYzZ795bEgcNgc/T/qTlL8zUBtUTPthLHHTOjTIc5fZLPx6fDdb81Lr3D+757hac09L4ULnb0WMNAGmrHLm9J9PRa4ZBIi/oSPTfhgHgMVkY93zW9n3bTKWYisIENjNj+HP96PzteeuqHc26nLltWQ3noKCggLANztN3PlbQYMIkh0ZFvp/nM0DAzz4eGpAA1p5fvb/dJjFM1bhtDrpNDmK63+bgHgBlV/PRn5lGe/sX02h9exrQ7r7hvFAl2GIQssKeChhmhaEZ5iR21ZOQeOuRnbI9D5l4areU8u4d4fzRNE93LpyCmH9g8jbX8iv1y3jVY/P+OOulZTnmev1enW58tqCG09BQaFtM72vJ3Ov9afM6grZZJsuPmTz2voSAJ4a6d0wxtWDbjfXFEo7/EcqbwZ8SfqmiyuUZpecfJC4tlqIqBCI8w6if0AUIYaayX1fURaLUltvCxLFM9KEZG3LIXnRca54aeA5U3pt5TbWvbidvV8lUVno6hMQEO/LsH/3Jf7GTmc97iQHi0/w3oE1Z2x/ttd4Io1KPryCgkLLZs4OE3f/XoCnTiB5VgTBVR4SWZZ5YUUxKhFeGHPua5n3i6loRcj7d1QTWHx2tr69h5VPbkZ2yvS6pwsTPh2JKF64H2BzbgrfHHalDoe4efFI/MhaHu7dBRl8kbQRSZbRiCpeHzANN/W5szmbEiVMc5H8lZHInoIMcipNaEUV7T0DuCaqJ8Fu537dXfnpLErbR6GlnECDB9dE96Sbb1j1flmWWZy2nw05R6l02ung6c8tHfsRZDj386atz2LNM1vJ3JKDLMlo3NXEXdOB0a8NxiOkdshFkiUWpu5jZeYhnJz5Z21n9OXB+BF4aevO4JElmbR1WQT19Mfg0/iNkRQUFBTOxpfbTdyzoEaQBHmoePiPQj7aakKvFij4dzvcz1JR9WCujfh3M7mjl5FvbghsYsvPpDS9jO+uWEBxigljqBu3r56Gf+yFFWB7fe/fHDMVAPBkjyvp4HlmyOmnoztYW9U37aYOfbki9Pw3rU2FIkYukvcOrKFfQDuijL44ZZmFqXvJNpfwnz4T0anqjl8eM+Xz5t6VTI3uQXffMLbnpbI88xDP9hpfXWp3WcZBlmUkcmfsIPz17vyRuo+sque9kFK79ko76/+7k4Q5BzHnu0r8+sf5MPTZPnS7LQ5ZlvnuyHY25Z67s2Sg3siTPcbicUoXRlmWOfzHcVY/s4WCg8WMfn0wg5/ofYFnTEFBQaFx+HybifsWFuCphald3Pg2oSZk/e1VnkyO0uF0OCkuN1NutSDZZWSnxP/thAW5IisHqYlyE5AcMpJdQnZKSA4Jp0NGdkiu7VXbZIeM5JCQnFX/OiRkp1z12PW8klNCdoLkcCI55er9stM1VnbKOKv+lSXplP0ysiRTcKiI0jRXLRLPSCNeER7IkmufJMkgVT2nJCPLMrITcipKkSUZFQIBRk+CuvtTWVhJ4eESHjp2Oyq1iqOl+byxbwUAw4M7cmtM/2b5e9WFIkYaiDKbhce3/c5j3cfQyatuhf35oY3YJAcPxY+s3vZqwnIi3H24NaY/sizz5LYFXBnembHhnQGodNh4fOvv3NlpIP0Co+plU8bmbFbP3krGphPIThm1QU3QVUHsuKUCKVBERGBQUDRdfELQqdQcLc1nc+4xTHbXmpFBgdHcGTsIWZY5tiyd1c9sITehAEF0hY6Gv9CP4c+3nA+zgkJjIUkSSOC0O3HaqyYhmxPJIeO0O12P7bJr8nHIOO1S1TbXpCU7JNc2Z+3JTjo5sZ2c7KomyerJrurYkxOffOo26ZTJzyEhS1Ttl1yT1inbZKfrd6nWvzWT3xm/V/9w5ja5Zhun/C7LuCZJ2XUcctVYWQap6l/51H9rxsApv8sAp26v6/GZpIZ58/UtA5FUNV4Q0SnR+XAuNy7aU+cx317fF4daxV0/bbukz0eDcXpU/pT3KqiE6muvIFT9T6g6RBCwya51M4IoYNBp8YvzwVHpIDehgDs3XkPEkFCOmwp4de/fAAwL7shtrVCMNFx1mTZKpdNVyt39HDG4lLICxoTF1drWxSeEvYWZABRYKjDZLXT2Dq7eb1BrifbwJ6WsoN5iJGJwKNPXXYPD4mDjyzvZ/XkiWb9nEfI7OMJFuj0Wz3X/HFC9LqWbbxgjQmN4cddSLE47O/JS6Z8ayJZ/7yJ7R171F0GWZESN6LoYKVwykiQh2VwTisMmVd9tSVUTmtNWNRnZnLUnNoeMZHdW35FV/26Xqia2U+/YpFqTndNRc5d2ckJzOuSaScxZ+/fquzvJ9fqydMqd3Mntp0xoktN193Zy8nNNWKdMjvKZEx4n7/rkUybBUye2Uye0k+NqTXYAVeM5ZWKra8KDMye56m1tlKqJzvV1F+p+LFB9PTg54Qmnbj/5r+j6t3qMeHK7gCi4Js3qceLJx6f8XvWDCOJp205Ouqf/Lqpcj8Xq7SKCCkSViKwS2OgXiCTWns0llciRuGB6tO+Fw2lhS+FxEEFWQbmo5WhAAGMcZYx5cwiiWkRUC4hqEUEloNKIrtdUi6ftE1FphKptIqJGRKUWEDUiokpE0IioNCIqtQpRU7VdLSJqBFQaVdV7uLC1IJIk8ccdK9n/w2EEQWD8B8PPWpH7pT3LSC8vAuC5XlcRYfRBckq8F/41h349RsSQUHYXZlSPDzJ41Pk8LR1FjJwDSZb5JWUXHTwDanU2PB2TzYKnpvYaC0+NnlKba/Gpye4Kq3hqTxujrRlzMaj1akb+dyADn+/D43N/wuszM7oEB0mP7ueTTzPodXcXOk5oh9aoRZRk+tlC2f1HEsYFVn5L/YuTGWCnig9ZksnansuOD/edchd3ygTokJCcXLTLUj5513dy0jvLXZzkPDl5VY2rclmenNhcE9Vpd3in3sGdOrFJ1HkXd/IO7oy7OVk+OZ+dnAnrvrM7Oaatcsr1/9SJrXrt9Wl3cKdPcid/r57sxJpJTxCr9osCohoEUawZXz2BAVWTnyi6JkRB5TpePHk3ecrvwun/ijX7RPWp+6ompapJ0PUj1kyKKgFRrXJNiGoRQRQRT/6uqpmcXONqb1NpBKjap9K4JjjXpCWgqprgRFXNRKbSiK5JUSOgUqsQ1AJqbdUkd/JftVivBY9tBUmSuX9hAX/vKKtzv00QcNzVk75RVpbvqamIveFAFKQL/PPeUAZ1av71InUhiiJTvx9L9xmdmT91KUvvX8u+b5O4dflktMbaN75DgzrwY5UY+f7odh6JH4m7RkeXGzqS+PMRIv8dw5rsw4CrhMOAwOgmfz8NgSJGzsFPR3eQXVHKE1XdeVsq5Q4r9s5qCt71pJdnOP22+nJ0WRorn9zMyic21xp76pKpusrUy06ZY3+lc+yv9MYz+CyTXPXj0+7gaibAqgnq5L8nJ7bqu7jak13Nndspk9upE5t4cpxYfQfomqxObqu5Y0M8c9KrvpNTnbJPLVZvr57c1GLNhKhy/a6q+t21repu7OSkqBFck536lAny5ARYPZmpXHd0p/x+cmKrnuBUAiptzV3eyYmt1mR3GU5yCq2DubvK+OIsQgRAJcL8/eX0jKz9GU7L9UWtctI9tOVPb+1HR/BY/kzmTf6T4ysyeCtwLtN+GkvclPbVYwYERrE04wAltkrSM/J5rvIP+gVEoR2lofx9M5//50/s17uSEoYEdzjjpre10PL/Ws3ET0d3sL8om8d7jMFH53bOsZ5aPSZ7bQ+HyW7Bq+pD4alxfVBMNkutTBaTzUKE0fuSbdWratpv5zvL6XOfy+WXtiGbjI3ZhPQJRFQJbMs/zu5fknBbZ0dVJLsEwGl39oJKIG5ae3rd3eUMN6ZKc/L3KjelWkR1clLUqqoeu1yWLjetMtEpKChcHBNi3XhggAc/76ugqFJCLYLjlBsopwS/J5bjH5FQvc1sUWO2aogIKGHjiRJu6uiD2MI7o6v1am77ewr7f0hm8czVzJ+6lE5Torn+16sQ1SJ6tYaH4kfy0etLcPu/UgpfM7Ju4BEwSoQB3h9WYuulIaZvONe3b72JB4oYOQ1Zlpl3bCcJhZnM6j4af73xvMe09/AnqSSn1rqRQ8U5tPfwB8Bf746nRk9SSQ4RRpdvotJh53hZASNCLq7K6qkYNToijT6klxeTWVFCUkkOcd7BtBsWSrthoQBYnHYSdu6i9FEjpn/K3JXbi4SX95G7twBBJSA7XapEEAW8oz3pMK5pyicrKCgo1EWop5qPpwbwwWR/1h238PO+cn7ZV0GJRUIUQJLB5hQ4kOFOp3DX4vy9x0MBge7R2azLKcMqObiz07nrOrUUut0aS4er2vHDlQs5vOg4bwV8yc1LJxE+KATPIjVeb1fgkF3iI6evBnWu7LqflCHk4QquXdPlgjIzWyrKretp/HRsJ9vyUpkZOxi9SkOprZJSWyU2Z00lwK+SN7PgeEL149FhsSQWn2BF5iFyzKUsTttHWnkRI6tyvQVBYHRYHEszDrC3MJOsihK+OrwFb52Bnv4RDWL3iJCavPLPD21kS24Kdsnpypgx5fPe/jUU21xpcfF+YfS/oQv37LmRm5dOIqS3K2/9pChRFrAqKCi0FFSiwKgOBj6bFkD+c+1YMTOYSfGgEl1ukk2J7elkDOWaqJ7kFgSjESXC/F3hna15x9mQc+5yBy0JN1899+y6iTFvDsFaZuerwb+x5L7VLLjtb5wWJwDqdCcT90cxSeXKzBQAyezkh1GLyNqW04zWXxpKau9p3Lfhxzq3T+80kMFBrjjeW/tW4qdz587YQdX7XUXP9lJoqThv0TOzw0ZHrwBu6dCPoPMUU7tQnJLEO/tXc8SUV71NI6rQiCrMjprukQaVhqd6jiXEraaLpSzLpK7OZN1/tpOx8QRDnunDqJcGoaCgoNASeTVhOcdKi9iRHM7BtFBGdXDj55sDCXwpjSmd3XlqrJXPkzYCEGLw5IU+V7cK78iplKSZ+O6KhZQcN9XeIYBbgIGhs/vw96yN1aF2QRRQ61XcumIKEYNDmt7gs6DUGbkMqXTY+TJpIweKT9S531tr4B9dRtDO4+xllHMS8vGK9MDQAJ2DFRQUFBqavMoy/r1zMQDh7t4M9hzJxG9y6RKoYXe2jQP/Cic+SMsbe1dw1JQPwDM9x5/zutdSyUss5PPu8870VgsQMSSErG25SPZTFtKIoNKpGPP7SDqOjGwRjVGVOiOXIYaqhU5HTfmsP3GE1PIinJKEn96dQUHt6esfifYsVWRPEtyzabtbKigoKNSHYmtNFdbO3sGMbu/GkunBjJt7AqNWoHOA6xrXxSe4WowUWytanRhx2pz8ftPyMwumAciQufkEZ7gSJHBYnCybsorC1z157t5pBLSSuiOKGGljCIJAjFcgMWepFqugoKDQmlGfkqVXXlVVenRHA/8Z402pRa7O4iuzW085puUu7FyXfYR1J45QaHWViQ9x82JiZDfy3kwj/0DRWY+TpLp1iiADNvB9xsQLPRYjakQ6eAZcUC+05kQRIwoKCgoKrYYwN290ohqr5GB3YQbX2Xtj1Oh4blSN58NVaToNAJUgtuhu5d46A9OiexBo8AAZtuQd5+OD6+n2d43bQxBBUIm1QjJ1VZgXcFWhtfTXUDFZh1MFMR4B6EQ17x9Yc8G90JoDJZtGQUFBQaHVoFdrGFDVQsPqdPDJwfUUWMqr9xdbzXx2cAPlDpdnpLd/RIsuBNbDL5xuvmEEGTwJcvNkalQPdCo18Qv68o/Dt3HTnxMZ+84w+twXT/SVEYghmlpKRAbkqscxk6N5PG8mlW/54Rjqes9JpbmMCY+jxFpJQkHGmQa0EBTPSCvhbK68rr6hZz3GleGzj0JL+XkzfCqddjp4+rd4V56CgoLCuIgu7CrIoMJh5agpn+d2/EGUhx+iIHLcVIBUlWKiV6m5OrLuni8tEUmW2JWfjs3poKNvIH7uXvjFeNca8/T2hfib9JivPorTU0DnUFF6tQbrcC3SQicVBidmh42rwuP5KzMRgO15aRfdC62pUDwjrYSTrrxneo3nmZ7jifMO5uOD68muKKlz/DFTPl8mbWJIcHue630VPf3C+eTgBrJOGb888xCrs5O5NaY/T/ccW+3Ks0vOpnlTCgoKCheBv97II11H4lHVE0wGjpcVcsyUXy1E3NQaHowfWauMQUslq6KERzb9woMbf+aHozu4v8swQt3rtttks1Dh4yRrhQ85v/tw7/FbaNc/BGuQwLFl6aQmuWqNDAqu6VGTXl50yb3QGhtFjLQSzubKSykrrHP8qqxk4n1DGBfehRA3L6ZE9SDS6MPaqoZKsiyzKiuJCZFd6ekXTri7DzNiB7V4V56CgoICQJSHH//pM4Ep7Xrgp6tJYfXWGrg6siv/6TORTq1kIX+QwYPnel/F0z3HMSIkhq+Tt5JdUXrW8ZIsV/fwcjca6HJdR3ReWkS1SGm6q+CbVlQhVsVzpJZfwUMJ07RGTnXlnSw5fzopZQW1ytMDdPEJYW9hJgAFlgpMdgudvYOr9xvU2hbvylNQUFA4iVGjZ0JkPFdFdMEmOZGR0YnqVlfgTC2qXAtYgXYevqSWF7I6O5nbYvqfMdZTq8dwSj+yvUWZmOwW/DyNPG2+liJ7JfN3HmJ3QUa1l8hfb2ywXmiNhSJGWhFZFSW8lvA3dsmJTqU+ryvPU1N70ZanpsZNZ7JXuradtrCrpbvyFBQUFE5HEAR056mh1JqQZXCcJVze3sO/Vq2VP1L34a7R0d7DH5Vahb/KHQ+Njr/SE6vH9PWP5KvDWxqkF1pjoYRpWhH1deUpKCgoKLRsFhxP4HBpHgWWcrIqSqoe59K/yjtdVy+01PJCfKu6yRdaK0gvL6LSaWdTzjF+Pb4Hi9NBWVU2UYDeyPb81AbthdYYtB0peRlQX1eeyV7bw2GyW/Cq8oR4agyubTYLXlpDzZgW7spTUFC4vFiWkciC1L2MCo3lxg59zjqutWYPltktfJ28hVJbJQa1hjB3bx7pegVdfFz9ZYqsZoRTcnk7eAZwd+wQfk9NqPU8O/LT2JGfVmubgCvV2U/vziPxV7TYGiOgiJFWzflceUklObXWjRwqzqleY+Kvd8dToyepJIcIow/g6m1zvKygRbvyFBQULh9SywpZf+Io4e7e5xx3MntwanQPuvuGsT0vlU8ObuDZXuMJqzr2ZPbgnbGD8Ne780fqvhZRCOyOTgPPuf+x7mPO2NYnIJI+AZGYbBYWpiawPT+tVhakWhDp7R/JNdE98anyoLR0FDHSSlhwPIF431B8dW5YnQ6256VyuDSXR7peAbhced5aN6ZF9wRcrrw3961kReYhuvmGsiM/jbTyomoviiAIjA6LY2nGAQINHvjrjSxK29fiXXkKCgqXBxannTnJm7k9ZgBLMw6cc+yp2YMAU6J6cKgkh7XZh7k1pv8Z2YMAM2IH8fjW30koyGi1C/Y9tXru6DSQa6J7cagkB7PDhkGlIc47uEUXeqsLRYy0Ei7WlbcobS8LU/cSaPDggS7Dqu8SAMaFd8bmdPD9ke2YHTY6egW0eFeegoLC5cFPR3fSzSeUzj7B5xUjl3v2oFGjo19Au+Y245JQxEgr4VJceWdDEAQmR3VnclT3S7ZPQUFBoaHYkZdKenkRz/Qaf0HjlezB1o+STaOgoKCg0GIoslbwc8puZsYNVry0lxGKZ0RBQUFBocWQXlZEmd3CS7uXVW+TkDlSmsfa7MN8NPRGRKH2fXRbzB48XJrH35kHSS8vptRWyQOdh513PV9ySS7zU3ZzwlyKj86NCZFdGRzUvtaYNdmHWZF5iFJbJeFGH27q0IfosxTPbEouyjPy0UcfERUVhV6vZ8CAAWzfvv2c4+fPn09cXBx6vZ5u3bqxdOnSizJWQUFBQaFtE+cdzPO9J/Bc76uqf9oZfekfGMVzva86Q4hATfbgqZwte/AkJ7MHz1bFurmxOR2Eu/twc4e+FzS+wFLOh4lrifUO4rneVzE6LJbvDm8jsTi7esyO/DR+TdnN1ZFdebbXVYS7e/P+gTWYWkCoqt5i5Oeff2bWrFm88MIL7N69mx49ejBu3Djy8vLqHL9582ZuvvlmZs6cyZ49e5g6dSpTp07lwIFzL0hSUFBQULj80Fct0D/1R6dS467WVS/Ar6sQWGLxCVZkHiLHXMritH2klRcxMrQTUDt7cG9hJlkVJXx1eEuLzh7s6hvK1Kge9LpA+9adOIK/3sj17XsT4ubFFaGx9PaPYGVWcvWYlVlJDA3uwJDgDoS6e3Frx/5oRTWbc4811tu4YOotRt5++23uueceZsyYQZcuXfj0009xc3Nj7ty5dY5/7733GD9+PE888QSdO3fmf//7H7179+bDDz+8ZOMVFBQUFC4/iqxmSm2V1Y9PZg9uyDnK/3b/xe6CjDqzB68IieX7I9t5ec8yrE57m8oeTDEVEHdKthC4MopSTAWAqyZVellRrYwiURCI8w6uHtOc1GvNiM1mY9euXcyePbt6myiKjBkzhi1bttR5zJYtW5g1a1atbePGjWPhwoVnfR2r1YrVaq1+bDKZ6mOmgoKCgkIb4vRsQSV78ExMdkud2UIWpx2b04HZYUNCxqOOMTmVzT/H1sszUlBQgNPpJCgoqNb2oKAgcnJy6jwmJyenXuMBXnnlFby8vKp/IiJaphtNQUFBQUFB4dJpkam9s2fPprS0tPonIyOjuU1SUFBQUFBosXhq9GcsRDXZLOhVGrQqNUaNDhGBsjrGeGmav1prvcSIv78/KpWK3NzcWttzc3MJDg6u85jg4OB6jQfQ6XR4enrW+lFQUFBQUFCom/aedWQUleTQ3tOVLaQWVUR6+HKopGY+lmSZpFPGNCf1EiNarZY+ffqwatWq6m2SJLFq1SoGDRpU5zGDBg2qNR5gxYoVZx2voKCgoKBwuWNx2skoLyajvBiAAmsFGeXFFFkqAFe/sq+SN1ePHxESQ4GlnN+O7yHHXMra7MPsyk9nTFhs9ZgxYXFszDnKltwUTphL+fHoDmyS44xaJM1BvYuezZo1i+nTp9O3b1/69+/Pu+++S0VFBTNmzADgjjvuICwsjFdeeQWAf/7zn4wYMYK33nqLq6++mnnz5rFz504+//zzhn0nCgoKCgoKbYS0siLe3l9zIz8/ZTcAgwKjuTN2EKW2Soqs5ur9/nojD8WPZH7KblZnJeOtc+P2TgOI9wmtHtMvoB3ldgt/pO3DZLMQbvThkfgr8DylEFxzIciyLNf3oA8//JA33niDnJwcevbsyfvvv8+AAQMAGDlyJFFRUXz99dfV4+fPn89zzz1HamoqMTExvP7660yYMOGCX89kMuHl5UVpaakSslFQUFBQUGglXOj8fVFipKlRxIiCgoKCgkLr40Ln7xaZTaOgoKCgoKBw+aCIEQUFBQUFBYVmRREjCgoKCgoKCs2KIkYUFBQUFBQUmhVFjCgoKCgoKCg0K4oYUVBQUFBQUGhWFDGioKCgoKCg0KwoYkRBQUFBQUGhWVHEiIKCgoKCgkKzUu/eNM3BySKxJpOpmS1RUFBQUFBQZv/uAwAACCFJREFUuFBOztvnK/beKsRIWVkZABEREc1siYKCgoKCgkJ9KSsrw8vL66z7W0VvGkmSyM7OxsPDA0EQGux5TSYTERERZGRkKD1vGhHlPDcdyrluGpTz3DQo57lpaMzzLMsyZWVlhIaGIopnXxnSKjwjoigSHh7eaM/v6empfNCbAOU8Nx3KuW4alPPcNCjnuWlorPN8Lo/ISZQFrAoKCgoKCgrNiiJGFBQUFBQUFJqVy1qM6HQ6XnjhBXQ6XXOb0qZRznPToZzrpkE5z02Dcp6bhpZwnlvFAlYFBQUFBQWFtstl7RlRUFBQUFBQaH4UMaKgoKCgoKDQrChiREFBQUFBQaFZUcSIgoKCgoKCQrPS5sXIRx99RFRUFHq9ngEDBrB9+/Zzjp8/fz5xcXHo9Xq6devG0qVLm8jS1k19zvMXX3zBsGHD8PHxwcfHhzFjxpz376JQQ30/0yeZN28egiAwderUxjWwjVDf81xSUsKDDz5ISEgIOp2OTp06KdePC6C+5/ndd98lNjYWg8FAREQEjz76KBaLpYmsbZ2sX7+eSZMmERoaiiAILFy48LzHrF27lt69e6PT6ejYsSNff/114xopt2HmzZsna7Vaee7cuXJiYqJ8zz33yN7e3nJubm6d4zdt2iSrVCr59ddflw8ePCg/99xzskajkffv39/Elrcu6nueb7nlFvmjjz6S9+zZIx86dEi+8847ZS8vLzkzM7OJLW991Pdcn+T48eNyWFiYPGzYMHnKlClNY2wrpr7n2Wq1yn379pUnTJggb9y4UT5+/Li8du1aOSEhoYktb13U9zz/8MMPsk6nk3/44Qf5+PHj8vLly+WQkBD50UcfbWLLWxdLly6Vn332Wfn333+XAXnBggXnHJ+SkiK7ubnJs2bNkg8ePCh/8MEHskqlkpctW9ZoNrZpMdK/f3/5wQcfrH7sdDrl0NBQ+ZVXXqlz/A033CBfffXVtbYNGDBAvu+++xrVztZOfc/z6TgcDtnDw0P+5ptvGsvENsPFnGuHwyEPHjxY/vLLL+Xp06crYuQCqO95/uSTT+T27dvLNputqUxsE9T3PD/44IPyqFGjam2bNWuWPGTIkEa1sy1xIWLkySeflOPj42ttu/HGG+Vx48Y1ml1tNkxjs9nYtWsXY8aMqd4miiJjxoxhy5YtdR6zZcuWWuMBxv1/e3cY0kQfxwH8+7R1sxeLCNmmYMIGUZQiKMlKkF4FQb4sUA5fFBLTt6EoceJsDBm+kSKUqHdJREGkRDXtRUVvaoMgU3SUbzxBCBwZOLff88rxmArucnfPre8H7s35P/zuy+H9vO3YhQu7ridjPf9ubW0NmUwGR48eLVbMkmC064GBAXg8Hly9etWMmLZnpOdnz54hGAyis7MTXq8Xp0+fRiQSQTabNSu27Rjp+ezZs/j48WP+rZxUKoXJyUlcvHjRlMx/Cyuuhbb4ojwjVlZWkM1m4fV6t+z3er34+vXrjsfour7jel3Xi5bT7oz0/Lvu7m5UVlZuO/lpKyNdv337Fvfu3UMymTQhYWkw0nMqlcLU1BTa2towOTmJ+fl5hEIhZDIZaJpmRmzbMdJza2srVlZW0NTUBBHBxsYGrl+/jt7eXjMi/zV2uxaurq7i169fOHTo0L7/zpK9M0L2EI1GMT4+jqdPn6KsrMzqOCUlnU5DVVWMjY2hvLzc6jglLZfLwePxYHR0FPX19bhy5Qr6+vpw9+5dq6OVlDdv3iASieDOnTv49OkTnjx5gomJCYTDYauj0R8q2Tsj5eXlcDgcWF5e3rJ/eXkZPp9vx2N8Pl9B68lYz5tisRii0Shev36N2traYsYsCYV2vbCwgG/fvuHSpUv5fblcDgDgdDoxOzuLQCBQ3NA2ZOScrqiowMGDB+FwOPL7Tp48CV3Xsb6+DkVRiprZjoz0fPPmTaiqimvXrgEAampq8PPnT3R0dKCvrw8HDvD/6/2w27Xw8OHDRbkrApTwnRFFUVBfX494PJ7fl8vlEI/HEQwGdzwmGAxuWQ8Ar1692nU9GesZAIaGhhAOh/HixQs0NDSYEdX2Cu36xIkT+Pz5M5LJZH5raWnB+fPnkUwmUVVVZWZ82zByTp87dw7z8/P5YQ8A5ubmUFFRwUFkF0Z6Xltb2zZwbA6Awq9Z2zeWXAuL9tHY/4Hx8XFxuVzy4MED+fLli3R0dMiRI0dE13UREVFVVXp6evLr3717J06nU2KxmMzMzIimaXy0dw8K7TkajYqiKPL48WNZWlrKb+l02qqXYBuFdv07Pk2zN4X2vLi4KG63W7q6umR2dlaeP38uHo9HBgcHrXoJtlBoz5qmidvtlocPH0oqlZKXL19KIBCQy5cvW/USbCGdTksikZBEIiEAZHh4WBKJhHz//l1ERHp6ekRV1fz6zUd7b9y4ITMzM3L79m0+2vunRkZG5NixY6Ioipw5c0Y+fPiQ/1lzc7O0t7dvWf/o0SM5fvy4KIoip06dkomJCZMT21MhPVdXVwuAbZumaeYHt6FCz+n/4jCyd4X2/P79e2lsbBSXyyV+v19u3bolGxsbJqe2n0J6zmQy0t/fL4FAQMrKyqSqqkpCoZD8+PHD/OA2Mj09vePf3M1u29vbpbm5edsxdXV1oiiK+P1+uX//flEz/iPCe1tERERknZL9zAgRERHZA4cRIiIishSHESIiIrIUhxEiIiKyFIcRIiIishSHESIiIrIUhxEiIiKyFIcRIiIishSHESIiIrIUhxEiIiKyFIcRIiIishSHESIiIrLUv9iDBovJeqfAAAAAAElFTkSuQmCC", "text/plain": [ "
    " ] @@ -169,7 +157,7 @@ }, { "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAAiMAAAGdCAYAAADAAnMpAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjcuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/bCgiHAAAACXBIWXMAAA9hAAAPYQGoP6dpAAEAAElEQVR4nOzdd3gUVRfA4d/WbHrvhYQEQgkJEHpHUJqIIEhRURS7YsEPxYYFOyhgBVEBC2Kh9yYgvYSElkIIJIH0XjdbZr8/FgKRBJKQBtz3efIk2bkzczcsO2fv3HuOzGQymRAEQRAEQWgk8sbugCAIgiAItzcRjAiCIAiC0KhEMCIIgiAIQqMSwYggCIIgCI1KBCOCIAiCIDQqEYwIgiAIgtCoRDAiCIIgCEKjEsGIIAiCIAiNStnYHagOSZJISUnB1tYWmUzW2N0RBEEQBKEaTCYThYWFeHl5IZdXPf5xUwQjKSkp+Pr6NnY3BEEQBEGoheTkZHx8fKrcflMEI7a2toD5ydjZ2TVybwRBEARBqI6CggJ8fX3Lr+NVuSmCkUu3Zuzs7EQwIgiCIAg3metNsRATWAVBEARBaFQiGBEEQRAEoVGJYEQQBEEQhEYlghFBEARBEBqVCEYEQRAEQWhUIhgRBEEQBKFR3RRLe4WGlaMtpshQVv67jdICJ411I/ZIEARBuJWJYESoIEdbzFuH12AwSeWPKWVy3u80XAQkgiAIQr0Qt2mECooMZRUCEQCDSaowUiIIgiAIdanGwciuXbsYPnw4Xl5eyGQyVq5ced19duzYQceOHbGwsCAoKIhFixbVoquCIAiCINyKahyMFBcXExYWxtdff12t9mfPnmXYsGH079+fyMhIXnzxRSZPnsymTZtq3FlBEARBEG49NZ4zMmTIEIYMGVLt9t999x0BAQHMnj0bgNatW7N7926++OILBg0aVNPTC/Uso7Sw0seNklTp44IgCIJwo+p9zsi+ffsYOHBghccGDRrEvn37qtynrKyMgoKCCl9C/dJLRn6M3cv3MXsq3T4/ZjcXivMatlOCIAjCbaHeg5G0tDTc3d0rPObu7k5BQQGlpaWV7vPRRx9hb29f/uXr61vf3bytSSYT38fs4UDGuQqPX1ljMbeshNnHtpJeKgJDQRAEoW41ydU006dPJz8/v/wrOTm5sbt0S4vISiIq+zwAarmCMc07Mqf7aL7pNZ4XQvrja+0IQLFBxx9nIhqzq4IgCMItqN7zjHh4eJCenl7hsfT0dOzs7LC0tKx0HwsLCywsLOq7a8JFO1JOl//8aHAPOrhcHolq4+hJgK0L7xxZS56ulJO5KWSWFuFqadMYXRUEQRBuQfU+MtK9e3e2bdtW4bEtW7bQvXv3+j61UA1ao57TBRkAuFna0t7ZB4DUVB3ff28OIi2VKvp4BgFgAk7mpjRKXwVBEIRbU42DkaKiIiIjI4mMjATMS3cjIyNJSkoCzLdYJk6cWN7+qaeeIiEhgWnTphETE8M333zDH3/8wUsvvVQ3z0C4IVqDvvxnTyt7ZDLzTJHhw6N54okzbNmSB4CXlUN5u1KjHkEQBEGoKzUORg4fPkyHDh3o0KEDAC+//DIdOnTg7bffBiA1NbU8MAEICAhg3bp1bNmyhbCwMGbPns3ChQvFst4mwkqpLp+oer4oF8lkAmDFimCUShnDh58iMVFLUlFO+T7WSnUj9FQQBEG4VclMpotXnyasoKAAe3t78vPzsbOza+zu3HLmHN9OdF4aAJOCu9PNLQCABQvSePLJBFQqGZP+SgPHUuTI+LDLCBwtrBqzy4IgCMJNoLrX7ya5mkZoWP29Wpb//HPcAVafO0aOtpiHJjkRHKpAr5f4aYILBi2EOfuIQEQQBEGoU2JkRMBkMvFj7D4OZp67atuFCAvWvegJmNDYmYiOD8Hf1aGhuygIgiDchMTIiFBtMpmMR4K70d+rJbIKqc7Ava3uUiu0BXKCfaJZtiyLmyCGFQRBEG4SYmREqCBbW8zutHjOFmZjNEk4WVjzYlcZBfkVa9P07m3LN980JyTEupF6KgiCIDR11b1+i2BEuK6QkKOcPFkxdb9MZv56/nlP3n3XF3v7es+fJwiCINxkxG0aoc74+2uuesxkAkmCefNSadEigqwskXtEEARBqB0RjAjX5eurRqmUVbrNZIIOHayxs1M0cK8EQRCEW4UYW78NrEk8xtqkExUec7e0471Od1e5z5HMJFYlHiNbW0SczBUTldURMmHraaDZKyf5OjaNCUGdcbcUt9EEQRCEmhHByG3Cy8qeF9vdUf67Qlb5SAfAmYJMFsbs4d6AMEKdvPlo/2m2G8yrauRy8+0ZMNH/1Rx2fObEuif8aLeyjHkn/uGd8LtRycUoiSAIglB94jbNbUIuk2Gvtiz/slFdPQ/kkm0XYmnr5MkgnzZ4WtlzT3tzkTxk4O6u4pdfgrBxN3L8d0emv+ZNyjmJRZPtyCsrJTIruYGekSAIgnCrEMHIbSKjtJBpB1bwxqFV/BCzhxxtcZVtEwqzaOXgUf57mzZWWFpDlzFlxMZ25K5RVvR5NYusRDnnz+sZM8aZiMOlnPrVhYTCrIZ4OoIgCMItRNymuQ0E2LrwSMvuuFvZkq8rZW3iCT47toUZHYehUaqual+g02J3xciJl5ea9XEurE06ga2tgoyCUnw6aQkKVrFkSSZHj4aSkKBlx3wTHl5FjH2rIZ+dIAiCcLMTIyO3gRAnL8Jd/fCxdqStoxfPh/SjxKDncFbS9Xe+hj9XBiKXw7Bh0ezf3w6/Dnr+eF/FkiUZddRzQRAE4XYggpHbkJVSjbulLZmlhZVut1NrKNBrKzxWoNdirzaPltipzCtrnH1kTJniSUqKntdfT+LxL/XYe0hMmhTP7t359fskBEEQhFuGCEZuQ1qjnkxtEfbqypbrQnNbF2Ly0io8Fp2bRnNbFwBcNNbYqTTE5KUxe3YzPDxUzP48hXP5Ocz/0wO5HAYMOEVioraywwuCIAhCBSIYuQ38lRBBXF46WdoizhRk8t2pf5Ejo7NrMwB+it3LirOR5e0HeAdzMjeVLeejSSvJZ03iMRKLcujn1RIwF9Yb4N2K9cknOJ6bwo9/eyNXSuye68y9nZuzZk1r9HoT7dtHUVRkaIynLAi3tBxtMUlFORW+rjUpXRCaOjGB9TaQW1bCwti9FOvLsFFZEGTnymvt78L24m2XnLKSCtV6A+1cmRzck1WJUaw8F4WbpS1Pt+mNt7VDeZtBPq3RGQ38cvogJZKOvpNd2fa1FV/NTeell7yYNy+A558/S1hYFKdPd0AuF3GvINSFHG0xbx1eg8FUsXilUibn/U7DcdKI4pXCzUcUyhPqhMEg4ex8iNJSibS0Tjg5qXj++QS++iqNvn1t2bGjXWN3UahEjraYIkNZ+e82SgtxMWvikopy+ODoxkq3vdFhMH42Tg3cI0GoWnWv32JkRKgTSqWc339vydCh0QwdGs3+/aF8+WVzTp8uZdOmfCZPjmfhwqDG7qZwhco+YYtP14IgNAYxdi7UmSFDHLnzTnsOHCjit9/My3vXr29NcLAlP/yQwWefnW/kHgpXKjKUXTXUbzBJFUZKBEEQGoIIRoQ6tXJlMBqNjMmTE9BqJeRyORER7XB2VjJtWhIrVogMrYJwI0oN+sbugiDUORGMCHXKykrJd981p7RUYtSomPLHoqLC0GhkjBkTR2RkUSP3UhBuTsdzLvD1yZ1Vbl+fdAK9ZGzAHglC3RDBiFDnHn7YnfBwazZsyGPr1lwAvL0t2LUrBJMJevQ4QVqarpF7KQg3l9i8dL45tYsy6fJyeWulGsUVK+GOZp9nUew+boJ1CYJQgQhGhHqxfn1rlEoYMyYOSTLPS+jc2ZalS1tSWioRFhaFVitd5yiCIACYTCZ+iz+EdDHICHPy5t3wYXzefTRf9BjDuMBOqOQKAA5nJRGTl96Y3RWEGhPBiFAv3NzUfPCBH3l5RiZNOlP++P33uzBzpi8ZGXo6dz5WHqgIglC1uPwM0koLAPC3ceLJNr3xsLIHwEKhpL9XSyYEdS5vvyM1rlH6KQi1JYIRod5Mm+ZDUJAFS5ZkVpgn8sYbvjz0kCsnTpQwYkRsI/ZQEG4Op/JSy3/u7xWMQibHaJDY9s4e0k5kAtDV1R8bpQUA0f8p5yAITZ0IRoR6tXFjG2Qyc2XfKy1Z0oLu3W1YuzaXqVPPNlLvbl+5ZSVsv1B5IFigEzWFmhqt4fI8EXdLWwAyTmWz/d19bHt7DwAKuRyXi/lhyoyG8ls6gnAzEMGIUK8CAy154QVzZd9XXz1XYduuXSH4+an5/PNUFiwQn+QaSlxeOu8eWce+jMqDwO9jdnM6P6OBeyVci63KovznhELz8vjN03ehUCuwsFMD5iW/KSXmatk2SgvkMtnVBxKEJkoEI0K9u1TZd9aslAqVfJVKOceOtcfOTsFTTyWwbVte43XyNpFaks9Xp3ZSajTnqpAjo5mNE81snMrXZGiNBr46uZO0koLG66hQQUcX3/Kft12IZfus/cStP4tfTy8yTmYDsPn8KXQXl/Ve2V4QbgYiGBHqnVwuZ/XqVkgSDB5c8XaNvb2Sw4dDUSplDBkSzenTpY3Uy9vD+qQTlBnNQ/5tHD35uOu9vN5hMK93GMzHXe6ljYMHAFqjng3JJxuzq8IVvKwdaGnvBkB2YSHb3tiD0laJ3yAfUo9n8uOpPay/+O8lg/IK24JwsxDBiNAgOne2Zfx4F2JiSpkzJ6XCthYtLNm0qQ0Gg4lOnY6Rl2eo4ijCjSjSlxGRlQyAtdKCJ1v3wl5tWb7dwcKKJ1r3xkqpAuBwZiLFepEavqmY2KIrtioNNp/lg85E7nPWrEs+iVQmEfnd5cDxnmZhFSpsC8LNQAQjQoNZsiQIOzsF06YlkpNTMaV1//72LFgQSEGBkdDQSAwGseS3riUX5ZbXounk6odGYQ46hnbex9DO+wGwVKoId2kGmOvUnC/Oa5S+CldztbTlabfuaDaXYvRUUDbEGnmKOXC3WVCApkDGuMBODPVr28g9FYSaE8GI0GAuVfbV600MHRp91fbJk9155RUvkpN19O59ohF6eGszmC6nCbdWqst/3n1Uz4bDRp7v+w9lJYYK24wmERQ2JVsf+gdMcM+SQfTzbIG9ueICsjIInaegr0eLxu2gINSSCEaEBjVkiCMDB1as7Hulzz7z5557HNm/v4gHHxSJm+qSs4V1+c8ncy/nrZj1dQtAxrJdBiYHreLIgaTybU4WVg3ZReEakvalkLQ3Bb+e3vQY2Ia7bdqgjy4p356wOYndsw41Yg8FofZEMCI0uFWrKlb2/a8VK4Jp186KX3/N4r33khuhh7cmTyt7fK0dAUgsymFPmjkz7shRLgD4UMyFVD1R4/MpuEuH6W3Y+cEZ/v3lDAlHstAWi2qxjWnZhLXI5DD+j+EAxK5PuKrN5un/krj3QkN3TRBumLKxOyDcfi5V9n3kkTOMGhXD+vVtKmyXy+UcPhyKn98RZsxIJjjYkrFjXRqpt7cOmUzGQJ9W/BS7D4Alpw8QlXOBTi5+aKxkJKidKMmToUeOj7aIljvyKPr3OCbj5eRZ9h6W+IY44BfqxIjX2mHnqmmsp3NbOfzTcfLOFdB+YhvsvGwAiF1zBplCVuHfB2Dp6NVMOfEIVk6WlR1KEJokmekmKO9YUFCAvb09+fn52NnZNXZ3hDrSqVMUR44Us3VrGwYMcLhqe0aGjoCACLRaiX372tGli23Dd/IWYzKZ+P3MYXaknq7w+OrnPUiLssAzoITUs5duzciwQUcL8gigADUVR7Fm7BpCq97uDdTzW9uaxGOsTao4T8rd0o73Ot2NJEnMdPgKo97IW/nPo1QrMZQZeM/hS4xa41XHkilktBwSwIOr7mVt0gn+TYun1Kgn0M6FCUGdcbcU76FCw6nu9VvcphEazaXKvqNHx1ZaMM/NTc3evSHIZNC37wnOnxfLTG+UTGZecTG2eTgOVyzrbTGoCJDhGibDnKnCnAKtCBVHcWUlgezHnSw0IJPRe2KgCETqmJeVPZ92HVn+NS1sIAAb/7eTskIdA97tiVJtHszeu/FkpYEIgMloInZtAos+3Mj2lFgeaNGF19rfhYVcybwT/6CXKt9PEBqTCEaERlNVZd8rhYXZ8PffwWi1Jtq3j6KkROQguVEymYw7vIP5sPMInmnTh5H+7fnfE82RyUCT6kbFLOLmwERCRiJ2bMWPrcpmjP6ocxVHF2pLLpNhr7Ys/7JRadAWaNk3LwJrNyv6TOtS3nbv38fhP9nerxzitrBVE5uZxlC/ENo7++Bj7cik4O7klZUSmSXmYQlNjwhGhEZVVWXfK40Y4cysWc3IzjbQocOxSkdRhJpTyOWEOfsw2LcNwwND8POz4PixEjp2tK60vQkZYEKuVmDvLKab1bWM0kKmHVjBG4dW8UPMHnK0xfwxYT2SwcSoHwZVaFsQmQcm8y0Zl2BHVFZKZPYKVHN9mZb8JE+lTSJvtIbWFzPqAlgq1QTYupTXthGEpkQEI0Kjq6qy75WmTvXm8cfdiIvTMmRI1e2E2hsyxIHSUokOHaxRVhprmPBWa+ldnMAUv784fyq33vqSoy0mqSin/CtHW1xv52oKAmxdeKRld6aE9GNCUGeytMV8un0DsesTcG/nQqu7Ayu0L3jbgX7bB/JO8Qu8FPMY/r19MJUYKeqswN7HlkKDuQaUnbriBGM7tYZ8UZVZaIJEMCI0umtV9r3SggVB9Otnx+bN+Tz7bOW3dYTamzLFE4CUFB2GSu6GNbPUcia/L2PfDqUwU8u0dqtY/kFUnfcjR1vMW4fX8MHRjeVfbx1ec0sHJCFOXoS7+uFj7UhbRy+eD+mHYUEmJiWMWzb8qvaShxL7tg4oLcxRo083T2R6MKWI25jCzUkEI0KTMHt2M9zdr67s+1/btrUhMNCCb75J58svU6psd7uSTBKrzkXx+sFVPLdnGW8cWs26pONcb9FcbF46f5fuxDW4jFP5qajUFbdbYCCtVMXTP61hx52xtFjngqWnij/fPMr0jqspzq+7ycVFhrLytPWXGEwSRYbbZwJz0sZk1GuKsb3fHbfWzldtt1NrKNBf/n/SckgAAJpY8+RUO5V5cnLBf0ZBCnRa7NViObbQ9IhgRGgS5HI5a9ZUXtn3v+0iI8NwcFDwwgvn2LCh/m4V3Iw2JkezMzWe8UGdeCd8GKP827PpfDT/pFSdzTZLW8RXJ3cQ7OBOsI89yYc0uIaYqyfL5TB1og0z3laiVJj46zlHhpd1IyjIFZvfVbQf5cW5ozk87fEHR1YnVXkOoWb+nrwRyU1Bx7fbV7q9ua0LMXlp5b/7dPbAZCVDc8ycmM5FY42dSlOhTalBz9nCLJrbipw9QtMjghGhybhWZd8r2dgoiYwMQ62Wcc890Zw8eesO39dUQmEm7Z29aefkjYvGhnBXP9o4eHK2MLvKfXamnsZFY8OY5h15eJw3Rp2M5i1VqDQm1q5tzazFoTCykMnvGyiTFDwwMIEBmhA0KhVhc7yZ8ntfTJKJWSO28+X4nWKCcS38lRBBXF46Wdoiln/yDyXppeiecqSHv7nWzE+xe1lxNrK8/QDvYE7mprLlfDRpJfmsSz6BIUiF4oh5JEQmkzHAuxXrk08QlX2eC8V5/BS3DwcLS9q7+DbGUxSEaxLBiNCkXKuy75WaNdOwbVsbJAm6dj1OVpauAXvZdDW3dSUmL530kgLAXKk3viCTECfPKvdJKMii1cVVFxMnuiKTgT5PxePrUxgyxBGDZCSpMIdHHm/Js+OsyUNNp4D9BFm7kVCQRfexAXx94X582jqw9/ezPOP9Jymx+Q3yfG8VuWUlLIzdy4wDazj4bRSm5mpefWUkthdvqeSUlZCvKy1vH2jnyuTgnvybFs/7ERuIyErG2coabdLlWjWDfFrT3zOYX04f5MOjGykz6pnStj8quaLBn58gXI9Ynyc0KZcq+w4dGs3QodHs3x9aZduePe1ZtCiIiRPjCQ2N4ty5cNTq2zu+HuzbBq1Rz4wja5HJZJhMJkb4h9HVLaDKfQr02vJVF2q1HD8/C04d1BKm1KMzGigx6JAwYavW8PnSjpyN38PKwxo+H1zIxLXmZBd2Lho+O3Evv79xhFUfHeeVNisY+2E4I15t1yDP+2b3eOteAPz58HoiEy8w8sdBuFvbl2+fGjrwqn3CXf0Id/Ur//2PoHVE7c+lJE+LlYMGmUzGPf6h3ONf9f8hQWgqbu93bqFJul5l3ys99JAbb77pTWqqnu7djzdQD5uuI5mJHMw4x2PBPXizwxAeadmdLeej2Zd+dVG1qgwebE9hjoySnMrfHlYc6klXLx0xF+xY9VTF0atxH4TzweHhWDmo+f21I7zReQ2lhWLUqjoKUoqI+uUUDv52dJpU8yAuoK/59svpSgroCUJTJ4IRoUm6XmXfK73/fjPGjHEmIqKY0aNjGqiHTdPfZyMZ5NuGzm7+eFs70M09gAHerdiQfKrKfexUmgqrLp5//uIS3wPWqBVKbFQWyJFReEWb/Rf608qngAMHHLmv694Kx2ve0Znv0sfRYZgPCYezecp9GUc3iKyf1/P7/WswSTD2t7trtX+ru5sDcGa7mEgs3HxEMCI0SZcq+5aWStx33/UDjD/+CCY83Jq//87hjTcSG6CHTZNOMiD/T55wuUyGiaqX9ja3q7gyo21baxx9DZz9x1wdVilX4GfrRHReenkbyWTi7t9L8LYuYeVBiVcePFrhmEqlnGlrB/LsL70xGkx8OnQbX0/cdd3JrSnFeaz7T8G4S/LKSit9/FaQtD+FxD0X8OvhhV93r1odw9bDBrlSTmrktUcTBaEpEsGI0GQ9/LA74eHWrF+fx7Zteddtv39/O7y8VHz44QUWL74935BDnbxZn3yC4zkXyNIWcTQrma3nY2jv7FPeZsXZSH6KvTya0dezBVnaIv4+e5S0knx2pMQR0L+IpMNqdDpz8DDQuxW70+LZl55Aakk+v8UfwiA3su1oRxzQMe/XIr774Orlw70eCOTr82PwamXP7p8TeM73T9LiK5/ceiQziQ+ObiQy+3yl2xfG7CEu/9b8d/1j/Fpkchj/5z03dBxrV0tyzxbUUa8EoeGIYERo0q5X2fdKSqWc48fbY2Mj59FH49m9+/Zb0TEusBMdXfz4Lf4Q7xxZx19nj9LbM4gRzS5PYszXlZJTdnnVhYvGhufa9iM6N433Izaw5UIMw3r4YDTIWLTIfPHv7NqM0c07sDrxGDMjNpBcnMuUtv0JbuHM+h2hWGBk6pupbFl+9ZJsezdLZkePZPi0EHJTS3k5eCVrZ1cc/ThTkMnC2D3lyc4s5Epa2bsTZOeK4uJIT5lk4OuTO8ksLazzv1tjOrLoBLnnCgh7oA12XjY3dCznFo6U5op078LNR2a6XmrGJqCgoAB7e3vy8/Oxs7Nr7O4IDezTT8/z6qtJPPywK4sWtbhu+1OnSggLi0QulxEb2wF/f5FxsqZ0OgmNZj89e9ry77/Xn0y59LtzTHo6CQ1GDp8IJ6ht5f9P4w9l8tFdWyjJ0xHUzYU3ttyFxkbN3OPbOXXxVlE3twDGB3VCo1ABUKjT8mPs3vLtfTyCeKBFl0qPf7ORJImZjl9h1Bl5K/95lOobW+C44X872D3rMFOOP4x7iGsd9VIQaq+6128xMiI0eZcq+y5eXHVl3yu1aWPFmjWt0etNdOgQRVGRqNdRU2q1HF9fNRER1UsoN/4pf954zoliVPRod4iCvMpX0AR1dmV++v2EDfYmfn8WT7ov49818eWBhrOFNRNbdi0PRABs1Romt+qFhcJ8oT6QcQ6tseocNDeTTdN2Ulag444ZPW44EAEIussfgJh1Z2/4WILQkEQwItwULlX2vfvu6lXsHTzYkXnzAsjLMxIWFiWygtbCoEEOlJRInDhRvYDkrS9DePAuFVkmDe3cdmGorNoeoFQreW3DnTy1qBdGvcQ39+ym5CM9kiTR1c0fhUyOyWRi7rgd/PLKQQCsVWrCnMzzXsokA+klN/+tGm2Blr1zj2Llaknf17rWyTED+pr/Rkl7L9TJ8QShoYhgRLgpXKrse+HCtSv7Xum55zx57jkPEhLK6N//ZP128BZ0qYrvl1+mVnufnzZ1pX9LA0l6K8Ldd16zbd+Hg/gqaQwOzS0xbDBRPMaA/oK50Fvq6QIO/HmOTV/GkH7GPCHTUnl5tEQy3fzB5Z8PrEcySIxaOKjOjqlUK1FZq8g4WXX6f0FoikQwItw0qlvZ90pfftmcQYPs2bWrkMmT4+u5h7eWkBBrrKzkbNyYV6P9tsX2JcShlGM5lgxsteuabR08rJgWOQD1/XJMmfB3n2NsmHuS7x/fi7OvNU7eVsy9fydlWj3Hc8yf9mWAk8a6ls+qaciMzSZmbQJuIS60vieoTo9t721DQcr1b2cKQlNSq2Dk66+/xt/fH41GQ9euXTl48OA128+ZM4fg4GAsLS3x9fXlpZdeQqsVM76FmqluZd//Wr++Na1aWfLDDxl89lnly0aFynXsaE1ysq58iW91Hc3si6+qhO2xCh4dfO33B38bZwL+54TVN0qwhCUvHiJmVzpjP+zAi3/1J/lELjOf2Fi+Aqitoxf2astaP6emYOmYNQCM/2N4nR/bLcQFQ6kBnVbMlRJuHjUORpYtW8bLL7/MjBkziIiIICwsjEGDBpGRUfn6/99++43XXnuNGTNmEB0dzQ8//MCyZct4/fXXb7jzwu2nupV9rySXy4mICMXFRcm0aUmsWJFVz728dTz4oCsmE+VLfKtLqVRyPL03LjItP28q48MXq75NJpPJuNOnNcoQOZZfX35Lmv/4XvbEn8H5USvif86mcLwO42mJO31a1fr5NAWx68+QfjyL4KEBuLV2rvPj+/f2BuDMlts3+Z9w86lxMPL555/z+OOPM2nSJNq0acN3332HlZUVP/74Y6Xt9+7dS8+ePZkwYQL+/v7cddddjB8//rqjKYJQlepW9r2SpaWCyMgwNBoZY8bEcfSoGMaujkmT3JDJ4JdfMmu8r72jBbsjw7HCwHtzs/lzwbkq2/Zwb04/zxZo3zKPwKgnyTCUSawbe4qsRPO/lekCFD9mYO0jJ0mMyqnV82kK/p60CblSxuhfh9XL8YOHBQJwZqsIRoSbR42CEZ1Ox5EjRxg48HIFSblczsCBA9m3b1+l+/To0YMjR46UBx8JCQmsX7+eoUOHVnmesrIyCgoKKnwJwiWXKvvq9SaGDq3+7Rpvbwt27QrBZIKePU+QliYKuF2PWi3Hx0fNkSPVW1HzXy1DHVj2Z0sUmHj0yXMc3FX5qJRMJsNhvRWmZLAepEIzSYXNn0pkXmDcQIV3qqNrz/Na+9XMHrmdxGM3V1Cy69ODFGeU0O35jlg51E/+G5cWjsjkMi4cTrt+Y0FoImoUjGRlZWE0GnF3d6/wuLu7O2lplb/wJ0yYwHvvvUevXr1QqVQEBgbSr1+/a96m+eijj7C3ty//8vX1rUk3hdvAlZV9ly6t/qf2zp1t+f33lpSWSoSFRV23CJ9weYnvyZO1C0gGj/bms/c80aFgSN9jpJ0vuapNSYGO3/53BI2Nkm/WjOXFkDt4sGtXnjrck25P+MMV/0yS0ZynMWJNMq+FrebzUdtJOp5bq741JIPOwLYZe1Dbqhgyq2+9nsvSWUN2fF69nkO4NeRoi0kqyin/ytHW7v/5jar31TQ7duzgww8/5JtvviEiIoLly5ezbt063n///Sr3mT59Ovn5+eVfycmi4qdwtUuVfR977EyNgooxY1yYOdOXjAw9nTqJHCTX88ILNV/i+1/PvNWSZ8dZk4eajv570f5ncuXno/7BoJN4alFv1ColrR096OvVgj6eLXhhfj/uePzqzLuXgpIjq5N5NXQV+5Y17URfK5/YgkFrZNgXdyCX1+9br1Nze0qyb93CgkLdyNEW89bhNXxwdGP511uH1zRKQFKj/xEuLi4oFArS09MrPJ6eno6Hh0el+7z11ls89NBDTJ48mXbt2jFy5Eg+/PBDPvrooyovAhYWFtjZ2VX4EoT/qmll3yu98YYvDz3kysmTpYwYEVtPPbw1hIRYY2kpZ+PGG6v18/nSjtzTSUaq0ZJQlx3ljx/fmsLJbakEdXWh633NKt03/B6/ax7b2c8a/w5ON9S/+lSQUkTkz6dwaGZHp8eun17/Rnl1dMdkNJGbePvVZxKqr8hQVl4P6hKDSaLIUNbgfalRMKJWqwkPD2fbtm3lj0mSxLZt2+jevXul+5SUlFz1KUChUABwE5TFEZq4mlb2vdKSJS3o0cOGtWtzmTq1aX+qrk//HaatbKi2Y0drkpLKarzE979WHOpJFy8dp4ut6O7zD5IkMXfsDuRKGf9bO7DK/fxCHavcFj7Cl0+PjcCzpf0N9a0+/T52DSbJxP2/1c+k1f8KHGAO6mLWnmmQ8wk3n2J9GbtTK8+9lFbS8PM0a1wM4eWXX+bhhx+mU6dOdOnShTlz5lBcXMykSZMAmDhxIt7e3nz00UcADB8+nM8//5wOHTrQtWtX4uPjeeuttxg+fHh5UCIIN2L9+tZ4ex9m9OhYsrM712gIfOfOEAIDI/j881SCgy154onKR/huVZeGaf/76Ugpk/N+p+HlycUeeMCFPXsKWbIkk8mT3Ss71DVJJok1icc5kHGOzn9oKZxoy/4EewZ6bMI9R8fod9tj53L1hM7YvHT+TIggpTgPmSWYLt15kAEXP8vEJqTzzuF1FFuU4WPjyLjAcAJsXWrcx/qSdCCFxN0X8O3hRbMe3g1yzqBB/gAk/nuB7s92bJBzCjePtJJ85pz4h9yyq+dvAfwYuxedZKSXR2CD9anGNy7Hjh3LrFmzePvtt2nfvj2RkZFs3LixfFJrUlISqamX7y2/+eabTJ06lTfffJM2bdrw2GOPMWjQIObPn193z0K4rbm5qfngAz/y8ow8+mjNPgkqlXKOH2+PnZ2Cp55KqPHoys2usmFauHqodtIkd2Qy+PnnmuUbuWRjcjQ7U+MZH9SJd8KH8cOu1vg5F7Er05YcK1vue7v9VftkaYv46uQOgh3ceSt8KG5tbACQycG1mQ2t+5rfcwqiy7hwbwEDTrXCx9qBeSf+oUDXdJIq/jF+HchgQj0kOKuKxkaNUqMg7ZjIqSNUVKwvuyoQ8bNxpIWdKxZy8/iECfjl9IHyrMcNoVazqJ577jkSExMpKyvjwIEDdO16ucjTjh07WLRoUfnvSqWSGTNmEB8fT2lpKUlJSXz99dc4ODjcaN8FoVxNK/teyc5OyZEjoSiVMoYMiSYurvJPC7ei6t4q1WhubIlvQmEm7Z29aefkjYvGhu7eAfRtlYUTWnaUuDH/g7ir9tmZehoXjQ1jmnfE08qesO7mInCOA634OOoe3tw+CHUnBZhAaZTz55ORnHsyF6WkYG9607g9EbH4BLln82n/QBvsvG0b9Ny2HtbkJ4u0CEJFO1NPlwciPtYOvN9pOG90GMIrYXfyWbdR9PNsCZgDkpXnohpsOoWoTSPcMmpa2fdKQUGWbNrUBoPBRKdOx8nLu/VTaZ8rzGZBzJ4qt8flVZyoftddDhQXS0RHm9/IUk8XkHCkep+8m9u6EpOXTvrFe9HLvjqCfo+esXeXosbIy2+msm1FxYy6CQVZtHK4fNtsxGvtGLakDYq3wcpOjYQJzTsK5AoZMjm07OnGqX/SSJ9YRGRk41etlSSJtVO2o7RQcO/Cuxr8/K6tndEV6TEYxGoxwcxkMrErzTxPRAY82bo3bpaXg2QLhZJxgeH42Zgng58vzuNsYcMUXazxnBFBaKouVfadMyeVV189xyef+Ndo//797VmwIJDHHz9DaGgkCQkdUSpvzXj9XGE2nx/bRplUddD159mjOFpYE+5qXskyZYqnub7PzES6qLPYtfgMTj5WfJV0/3XPN9i3DVqjnhlH1oIBCmfpUHnJ+WLFMHosTGLS00ncNyqWwydsCGprXj1XoNdip748j8TJ25qwYd78ezIendFAiUEHdnDPnBBWPnkco15i0tddWTT9AFFjU1g0eT+PzOt2g3+p6ikr0jG39U8E3dWMgTN7Yedpw6ZXd1FWoOPOD3uhsmj4t1q/Hl7EbThL0p7zNO977dVIQsMwGiX0ZRIGnRGD1ohBJ6Evu/RdQtJf/F0vYdCZ2xn1EoYyCaPBhKHMiNFg3ma82MZoMGHQGZEMJox6CaNBwqg3mb8bTEh6CaPR/FiZXs/5zHyQwEqm5mePg/i1cyLtTCGl+TqmrR2ITCajh3tzkorMCQUTi7Jpblf/c7BEMCLcUmbPbsbSpVnMmpXCM8940KxZzbJcTp7sTmxsKbNmpdC79wn27Qutp542Hskk8UPMnvJAxNPSnq7u/nhZ2pNdVsyBjHOcKzJ/Gloct59gB3dsVBb4uMiwVRjY/lsiZcp0TCYoKzFW65xHMhM5mHGOx4J7sHbSSfKTMnH40YJD2ecY/1Rz4k8W8t5X+fRod4j4nN7YOair/Xw6jfMjcXUuR9edp/1QH4Zsbs22qXFs+jKGw2uTeGpTL+w8NdgoLeq02m+Otrh8Xk3+mQLyzxdy5KcTRP0WQ69XwtnzxRGsXC3pN71hAqL/ajm0OVvf2sPpTYn1HoxIkvnCqNMaMeok9FrzRVR38fulC6uh7PKFVK8zYtSbLv5uvPjdfGE1X2AlpIsXXunihdWgv/iY3oRkNGHUX7wIG6SL3y8+bpCQjCYkgwnJePHnSr5M0sWfJROmS98lEyaJK342YTJx9XeTCS5+N5ko/xnTxbnVTXmxqAwKKSNCcZ6ojSnotUYs7VUYDRIKpRwrpaq8qaGB8jCJYES4pVyq7Nuly3EGD44mOrpDjY/x2Wf+xMWVsnp1Lg8+GMcvv7Ssh542npO5qWRozfNqmtk48b+wO1HJL69s6+fVkoUxeziSlUSZZGD7qVgKlmjZ9FUMvkZH4nHAYDAhx/zGXB1/n41kkG8bNMfVxK3PJLCLC93v8GdD8im6uzfnrS/bkRB7gMVbZLRz38WZ4n7YqTRXTUQt0GnRKFSoFUrkMhlyZBTqtLy88g6e9f6Dv9+NpFvXZrT72oNjb6WSvaaED1pvRvOKAqu7VRVWCFXHpYts+SfYixfTrIIi5kWaE7VhAEWCAXvkYJKh05rYNPMwJhS4h3mz+Zvoy59UddLFC6oJg9580TVe/HRrvPS7wWS++OqlixdcCWP5hfXiNuPlnyXp4raL38svsEaJEmz58/PTrFyUYr5oGi9eZE3mC26lF9tKL7IAl39vsmTm2w/IzCUGuOJnmQxkcnMDuQyQyZDLZSAHuVxmbqMwt5UrZCjUcmRy83uKXMHF24HmbZe/5OU/K5RyjDKJs8XZmBQm8yQIpXm/dq5eWKrVKFQy5EoZCpUChVKGUiVHrpSjUMlQqOQoVHKUKrl5m1ph/l1t3q5UK1Cq5Cgt5ChUClQWF9tbKFCqze1UF7dJBnOgZzSaMJRJlBXrKSs2UFyoY2HkHnRJRqR9Joxx4OhlxfiPw+k6uln53+xEzuVbps51GMBf85/OdBMk+ygoKMDe3p78/HyRAE2olvHj4/j99yy++MKfF1/0qvH+kiTRvv0xjh8v4d13fXn77VunJMGiuP3sS08A4Ok2fWjv7IMkmTh/MhcHTyskg0RaUSGf/bMZ3V8Sxn9MYASTBJlo2IYfd5KEM1pUFnLGftgRg86E8dIboP7iELJBQrp4ET7gcBavXAcSfsrGYJBoP8SbHMdici1L8E9yKb+wrj1g5JDWiTaKXPrdUYRWY8D5rHX5J9kCNy0SEtbJFkiSiWLPMuSlMlTpSox6ieJcHViBzBFMuYABuFSCSAYyBchl8isuuHDpo2yT/jR7xUUWzBfWChdZGSC/9LP5oimTg1RgXgutdrY2X0jlF7cpzBfgChdYuflCaf4uRyaXoVBeceFVyssvunKlDOXFbQqV4uIF1rxNobq0XV5+gTVvU6BUyy5eYC9ejC9eUFWXLrwWChQqGSqLyxdepVqBQi03P6aWo9aYL7xypbzeM9nWVFJRDh8c3XjV4290GFw+D6O+rZ19gl9fOVyttm1fc2fajDtRay6PS8TmpfPF8e2YMGGttOCTrvdW+LBSU9W9fouREeGW9PPPQaxfn8u0aYlMnOiKk5Pq+jtdQS6Xc/hwKH5+R5gxI5ngYEvGjm06uStuROEVow3NL+bjiNubzru9r34T/S9ntKgwkoI1zmjRl0n8MrV6b3xxXK4hFLnxAlgAEhzXpZgvplYQpIFirYlTRmest5bRopmWVG0B8hIZJksTksqEMktBSZne/Kk1XY7e04DcXo5CL0fhJMN4xvypX+YMyC/GFxlAmTmgsmmuxtXF9uKF9eKnW+XFn5VyFIorflaZL8BKtRy54vIn2GKpjL3ZCaA0BzjKC3rs1hVy8bP4xe8mzB/AZZhMEn2md6flsObmT7gWMlRqJQqLS59oL19o6/Ii+2X7xWSeyua9zMl1cjyh6fMLrV7QY/GknOShucyK3koP9+ZYKdUcz0nhUGYipotReT+vFjcUiNSECEaEW9Klyr5Dh0YzdGg0+/fXfO6HWi3n2LEwAgIimDAhjoAAC7p0adjlmfXBQnH5v32Wtgg7tQbfEEcGT2lNxNpkMhKKUKjlmAIlJB2QYP7kbZLMI88elJCKFe3IRqGSM33jQPNQ8sULqkqtuDx0bGG+0KYk5fNWl3WowxXYfqzGXm1JZ9dm3O0XgvLim92i2H1klxWzpE0/mlvt4LDenZahrgTPKCK1JB8HCyuG+YXQw715hefzT0osm89Hk1dWijUqSmboMfxjwn+0E32ntkAvGTiWc4G4nzIp+9pIfryWtoM9ef7L2herSyrKIeJoUvnv6u16LNdVPRnYtZUTPR5rjXOgQ63PWRue7d1Ii8qkOKsEaxerBj230DhC7/Si3Z1enPwnFclw9VCfTC6j2R0O5Eww36pNLMohsejq6tftnLwY5htS7/0t75e4TSPcyu688yRbt+bz228tGD/etVbHOHasmI4do1CpZJw+3REfH4s67mXD2pUaz6/xBwHo7NqMya16lm8zmUzsXXaWhc/vRZtlABk4hlrSooUbR1YmYTJBvNGWg7hzLwlYq0z8opt43XNObb2ClJh8PjgynOYdna/bPidLSyu3PeSa1Lz7ghOvz2l7zfYGychrB1dRqNdiMpgwjgFtvoEvz43Gydt8z3vVuSjW7j9O8RQDpkzwaGHHjF2DcfCo+UX6v8PxFmuLsf20Yh0YmUKGSTLR59UuDHinB8pGWFETsfgEfz+ykfsWD6HjxGv/DYUb1xRu0wAkn8hlWuiqq287ysDaXs2smJEkKXNYeS6KCyV5FZpYK9X082rJMN8QFHUwQlfd63fTuuEmCHWstpV9rxQaas3ffwej1Zpo3z6KkpKbOwdJF7dmaBTm21aHMhNZGn+YfJ15boHWqKegZyma5QosZymR+0NuVCkH/0rEuZk1YUO88VGVAjLSsCqvnHstm7+JJiUmn25j/asViAA4uWjYHRmOFQben5vNXwsTr9n+VG4ahXrz7adOHs347Ni92LlYMHfMDkoKzStehvmF4OBvhfWfSlRD5KSdLuA5v7/YtaTy+hzXYpAqriKSlZowya74XQ6O/vY8te8BBn3Up1ECEYDgYeZRpIR/kq7TUqgLKcWVFyZsyM/8iceymTNmR+Xzn0zw+MIeOLhbEurszVsdhzAt7E7GNg9ndEAHnmjVi4+73Ms9zULrJBCpCRGMCLe0G6nse6URI5yZNasZ2dkGOnQ4VmXF6ZuBRqHi/uaX65XsSI3j1QMref3gKl7Zv5yV56KQMKHqImfk1jDmxI8idJAXmWeLObr2PI62MmzlelKxRmlx7bcQbZGOn18+hIW1kmeX9KpRP1uGOrDsz5bIMTHp8bMc2V11grWcssuZYds4euLkZc3TS3oRty+Dl7yWIkkmlHIFwQ7uyOVyLKcreXJVDxQqGd8+vJuPh26pVnIwk8nEpuRTzD2xo8LjskLp8pu/DHq8EM6U4w/j29WzRs+5rlm7WKFQyUmLrF0af6F6ivVlzD2+nZ/i9lW6/Y+ECIr09VsJNz+jlPfv2MhrYWtIic0nbIg3Ks3l+R5yhYyeE5rT9T7/8sdkMhmBdq7c4R3MnT6tCXf1Q61onMBZBCPCLe9GKvteaepUbx5/3I24OC2DB9c8y2tT0tMjkPGBnZDLLk21NJFdVlyhTs1A71aMCmiPe6Ad0zfexY/54xnwVDD6UiM+UgGpWBMy0IuivKrfZD+/bweGMoknf+yJUl3zN7nBo7359F1PylBwV+9jpJ2vPFW/8opJdsUX3/RD7/TB3UNFQZGJz9r/hkFnLN8GEHKXF/PTxxLU1YWoDRd4yu13Eg5XHfCYTCZ+jT/EiiNHUHyWiSJBX75NvVuLDJBsZXj/HMLg2f1QWdZs0nR9sXazIvecSAtfX8qMBuac2M6pvLQq28QXZDLn+Ha0Rn2VbWrLoDPw7aTdPO25jFP/pNG8kzNzztzHa+vvZMT0dsjk5jlfti4WTPq66/UP2EhEMCLcFtavb41SCaNHx97QqMaCBUH062fHli35PPts06h/Ulv9vFoys9M9DPFti4elHbYqC1w0NvTxCOLtjkMZ07xjebAC5uJrk7/tzk9FDzBglCc6FGxdk8kTTkt5/46NXIjOq3D8k9tTOL45headXeh+f0Ct+/ns2y15dqwVeajp6L8Xrfbq22QBtpdv/+xNT0C6GFTNSp6Aoy0kH89lTpefiU4xF/G0V1viZGGFxkbN+/vv5oFZnSjJ1/NGl7X89mrlq4MOZp7j37R41BFlWK4swfHRTEJ/UHG3KhhVqoTRWU7On+5E+eWwO63pvDacWzqizS+7qUfzmrLN56NJKsoFwFZlwYNBXZjTfQxzuo/hoRZdsVWZEy8mF+ey+XzdfohZ+dExHrVfyq5F8Tj5WPP2zsF8cGg47gHmifbDprbF1lmDyQTP/NwHa4emO99NTGAVbhuffnqeV19N4uGHXVm0qEWtjyNJEi1bHuXMmTLmzvVnypSa5zG52Wm1EpaW++kaqqa38TznT+YB4BlsxwOfdqLD3T486baMkjwd36Tcj72b5Q2fc2TnPaw8DC2tS4ktGnjV9k+jtnCmwLx8uKubP2Obd8JapebCiWzmtFtEARrs0WLsp6bd2FaMG98Hjf3lN+fU0/m813cjeamleLWy5+2dg8v7bTKZ+DByI0lFuWhWFmPzRT6YzJNU5Qo5Jkli4J7B/FYWZf47WNoxI3zY5cRbjWjT9F3s+vggzx59CK/27o3dnVuKUZKYfmgV+bpSZMh4s+NgfKwdK7RJKc7j/YgNSJiwU2n4qMuICiN5tXHg70QWPrmXouwyLO1UPPR5Z/o/Zk7OuDPlNDtTT5NdZl4tY3tKQ3CRBw+92KXK4x3JTGJV4jGytUW4WdoyKqA97Zy8y7ebTCbWJB7n37R4So16Au1cmBDUGXfL61+PxQRWQfiPG6nseyW5XE5kZBiOjgpefPEc69dfvSzuVqfRyPH2VnPijIHPTtzL53EjaXeXF2mnC5g1YjuPWP9KUXYZ90wPqZNABGDFoZ509tQRV2xFd99/rtp+r39Y+UjOgYxzvHpwBXOOb+dnw2HyBthSgDXJOFGyQ0HM08eY6fQV83v+xs6PDpByNB33QDu+Pj+GXg80JyUmn+d8/2TPUnNyuPTSwvJPv456C+SKi7e3jCaMF+uCHHloP81OmD8Fp5YWkFycWyfP+0a1GOQPQNy6hMbtyC0oqSinfPJ3qJNXeSCyYUMusbHmW4pe1g6EOpsv7AV6baXLaKsrISKbl4OXM2f0P5QW6Bg+LYSFuePLAxEABwtLRgaE8XqHwbzefjCdBjZjX6cEUorzKj3mmYJMFsbsoadHc97sOIT2zj58e+pfLlzRftP5aLanxPJAiy681v4uLORK5p34B71UvXIQ1SGCEeG2ciOVfa9kY6Pk6NEw1GoZI0bEcOJE8fV3usXceac9xcUSsbEleLaw5/VNd/Fj/gS6jw9ArzW/Sa377CTfPbqbkgLddY5WPQdT+hNoWcL+82pGd9tbYVtLezcmB/dEKTO/reklI9F5aZwtzEY23RrzDFMZeViShBPZkiVn96ay5c3dfN3xZz50+5rlj25i5NRgpq0bgFwh46sJu/hg2Cais1LLz2OtVV1MeVpRTnwexc8kYDstG7RSeZn2xubXyweApL0p12kp1FSx4fLr+lIgIkkmxo6No3v341dtA8wFHmsoL62E9/pt4I3wNaSeLqDLfc1YmDOeCZ90uipBXpizD+2cvHG3tMPdyo57/cOwUChJqKL67rYLsbR18mSQTxs8rewZ4R+Gn40jO1LiAPOoyLYLMQz1C6G9sw8+1o5MCu5OXlkpkVnJNX4uVRHBiHBbuVTZ98IFPa++eu6GjtWsmYZt29ogSdCt23Gysurmgnujdqac5r0j63lh7x+8sPcPPo7cVKHWRGWOZCbx9uG1PLv7d949so7jORcqbDeZTKw+d4z/7V/Oc3uW8cXxbTz4lHnIdd68yxdqjY2axEjzJ78hL7XB0kHNzp/imez4GzMHbLpqXkltnMjph6eilBUHJP734NEK28Jd/ZgRPow7vIIrFPtys7PFrvmlookyTP8JSozIKM3WcnTxSY78cJwOQ335Nm0sfh0dObE+lQXt9mGIM8+5SM3IxWi6ev6FSTKBDNSROuR5UoNlrrwepVKO2kZFRvTtN4JX36yUlws6nr+Yr2PWrAsUFhp55hmP8m1XjjJcuc/1GHQGvnn4X57x/oPonekEdnFh3tn7eOmv/mhsrn8cySRxKOMcOqOhPNvyfyUUZtHKwaPCY20cPUkoNE/mztIWU6DX0vqKNpZKNQG2LuVt6oIIRoTbzuzZzXB3VzFrVgqJidrr73ANPXvas2hREMXFEqGhUeh0jT9J8L/DtK0cPPjm1K46H6bdLt+PxlLGhg2X222dH0tKdD7dxjRj4uddmJ82jlfXD8S7tQMnt6fySpuVTG29goi1tf9EpdEoORTfHXt0zPu1iPkfxFXY7mZpy9jAcGZ3u4/Z3e5jTvfRvN9pOKE9vJFVeMerGJTkyKxxC3Xlro/6AGBlp+bZnb2xeEIOhVDyuAHt9wZkxSao4p/Z2ElD7s+uyD3VDZrk6nrsfWwpTK39rUmhcs1snLC7OEH1ePYFYlKymTEjGYUCXn/dPCKVWpJPVM55AGxVmmq/LpbPjORRu9/4d8kZnH1tmPHvYGYeuBvXZtfPAn2hOI8pe/7g2d3L+DX+EE+16Y2XtX2lbQt02vLncImdSkP+xbIRBXrzbSg79X/aqC+3qQsiGBFuO5cq+0oSdbJE96GH3HjrLW9SU/V063b8+jvUs4Ycpm3XU8a5c2UYDBLaEgNLXjhgzinyS+/y47cf4nN5XsmdXqTG5fPZ8G086baU1Z8er9UqD29/a9ZvC0WNkZffTGXbyqtHfuQyOTYqCyyVamQyGc3CnIDKJpReDEpMlrSe3AkL24qfOC0eVGL9sxKZA+h+lsjbo+LKgRG5QobKWon1O37kznJEclcS7uqHjarprFxwb+eCQWtEV9I0Ru9uFQq5nN6eQQAYTSYGDDmGVmsiMFCD0sLEvvQEPj+2DeniOpFeHoHXHTHb98dZHndeyp9vRaLUKHhqUS++PDeaVr08rrnfldwtbXmz4xBeaz+Ivp4tWBS7v8qEbE2FCEaE21LnzraMG+dCTEwpc+bc+L30995rxv33O3P0aDGjR9c+uVpdq+9h2s73SJhM8OuvmXwxajv6MoknfuhRaU4Rzxb2vL75LhbmTuCOx1tQWmhg6atHeMT6V+ZPrvm8km53uLDga3+MyLhvZCzxJ6+dS8MvzMl8K+Uq5sf8/RQMeLp1+aOSyURUtvl2lcJPjvUKJcoBMkpKVVzAAS3mi4qsqzUZS5xJvMMAMhmWClWD1vSoDv8+5k/p8ZvONW5HbkF3+bTGtsCJ5ZM9STlmDkA9Ribz/N4/WBS3n4KLmYF9rB0Y7NOmyuMkHM7ipZZ/M2/sTkoL9YyY3o6FOePp+3BQjfuklCtws7Slma0TIwPa42PjwPaU2Erb2qk15X28pECvxf7iSIidyjwBveA/oyAFustt6oIIRoTb1s8/B2Fnp2DatERycm48GdGyZcGEh1vz9985vPHGtdOX17eGGqZt29s8UXX+3PMc25RCQLgzPcZWLGT3X1Z2ah5f0JNFxQ/wwKxOWNqp2PHD5XklKTHV/wQ3/hl/3njOkWJU9Gh3iIK8qgOaZmGOlTxqQo6J1gEgT0pnfvdfMRoljCaJH2P3sjbp8kiXXC7HaoYKL2UeMiAFB1JaOpD6vjVGV3NgYq204PmQfrhbNa0UBK2GBwIQv1Wkha9LkmTipwXZfDPGnuzTasCETG6i5ZCKE9pb2rvxYsgdaJRXJ8LLSSnh3T4beKPzWtLjC+k2phkL8yYw7sPwOqvebDJdXcLgkua2LsT8J2FbdG5a+YcXF401dipNhTalBj1nC7Oq/IBTG6Jqr3DbMlf2bcHQoTEMGxbNvn01r+z7X/v3t8Pf/wgffniBli01PPxw4+R1uDRMW2rQE5GVxKLY/UwNHVhlQFJbSgsZ3t4qTh0tIEAhY9raAdXeVy6Xc/fUEO6eGsLR9cn8+r/DnNyeytTWK/Bubc8Dn3WiwzDf8vYbkk9yNCuZtNIC1HIFze1cGeXfnre+bMeZmAMs2SqjnfsuzhT3Q6m8/NZ2ZQ4Fhb0MY/6l0RHzdwUSrZa34+APUVz4Kp237phPy3mhHCq4HFB6WNrha+1Izrk88gwpeNjlc8HZCW2cEkYZ8f7Giv69guntEXRV0NYUODazR6aQkXIkvbG7css4fbqUSZPi2bOn8OIj5luAfsEQaG9OwudpZU8vj0Ca27pclXNGpzXw/eS97FmagEmCoG6uvLCsLy5+NjfUrxVnI2nr5IWThRVlRgMHM84Rl5/OlJD+APwUuxcHtRUjA9oDMMA7mFnHtrLlfDTtnLw4lJlIYlEOD7Yw5yWRyWQM8G7F+uQTuFna4qKxYVXiMRwsLGnv4ltVN2pMBCPCbW3IECcGDrRn69Z8li7NrHVl30uUSjnHjrWnWbMjPProGQIDNfTqVbcBQLX6cXGYFqCZrRPnirLZnhJb/gZzpZoM09qrL+cMKdBp8bVxINi2lO2o6fZkm1pVwAXoMNSXDkN9SYnN56fn9nNyeyqf3r0NO1cNd/+vLcOmtiUuP4N+Xi3xt3HCaDKx8lwUc09s553wu1m0pStJLXfyz2krOrnvJDLbHBRdmpx7b0AYoU7efNJuK+m7zRcPR2UZrXq5sW9HPpvHRPLc/iGclB/j5NenOPnYEZjhiNxRyeOtetHx4pvu0rdXY/C0ovR3H6xlRZQtNlD2o0TKg4WUvK3H7p2mF4hcYuVsSXZCXmN346ZnNJr44osU3ngjCWMlhSL/92wAz7avuiaRJEksf/8Yqz46hqFMwjXAhmd/6UNwD7c66V+hXsui2H3k60qxVKrwtnZgSkh/2jia+5RTVoLsirlTgXauTA7uyarEKFaei8LN0pan2/TG29qhvM0gn9bojAZ+OX2QEoOOIHtXprTtX6crxkQwItz2Vq0Kxtn5EI89doaRI53RaG5saNTJScWBA6GEhUUyYMApYmI6EBDQuBep6gzTDvRuVf5YVcO0vjbmWx2Xhmk7yHywiYkBmhMnr15F3mvxCrbnjS2DKCnQ8cvUQ+z+JYHfph3hz7cj6fVgc9rP9sHK2jzB9JGW3XjlwHISi3Joae/G9ri+tHPcRlSOJXe12cXmU30qTM4F6D+sBX9GHaXjbB9eeKQfcqWckz1/pGCfio3DD/Ha3pEssDRwbu5pHB/LpPXvncoDkbM7kznxVxxjfh6KVZgLs49txeJhJYFDHTj/VAHL343i8Iok3to5GJsmmHbbKdCB8wdSr99QqFJ8fCljx8YREVF1XqF27aoOyPcuS+DHp/dTnKvDyl7FEwt70PvBms8JuZaJLbtdc/vU0KuzF4e7+hHu6lflPjKZjHv8Q7nH/8ZHj6si5owIt726qux7pTZtrFi7tjV6vYmOHaMoKrq6nkp9WXE2krj8DLK0RVwozrv4ezpd3PwB8zDtirOR5e0HeAdzMjeVLeejSSvJZ03iMRKLcujnZc7qeOUwbVT2eS4U5/FT3D4cLCzZMCEaKwxo1LB+fd1lHLWyU/PE9+Z5JRM+64SlrYp/Fp5msuNvfHDnJlLi8im9WHTM+oq8DUcz++KrKmFrtILJQw5eNTl3+LR2jI5sT3F4GQqVgixtMaaPLLBU6Tm+L5dtX0Zh+Zg7+R87IisyET/0MOcPpaIvM/DLvStxa+NM6ITWtLBzxeHiKFGOZzHfpt1Pl9HNSDqWyzMeyzi0onHnDFXGp5M7JslE9pmmkRn2ZrRoUeY1AxEAB4erP+PHH8rkxaC/+XLcLsqKDYx8M5Tvc8bXeSByMxO1aQThok6dojhypJitW9swYIBDnRzz669Tee65szRvbsHp0x3qbELatSyJ209MXnqFYdpBPm3Kh2lnH9uKs4U1jwR3L9/HPK8iimxt8XVrU1wapvXf58wfT0bSdXQzlp135sCBInS6biiV9fMcI9aZ55WkRJsnuFoPVOP5mC3vjxteoV1OlpZWbnvINakZ/k4arz3duTwQA9iREsfapBPM6jaKMwWZfBq1hafpzqw+21HITHhvcSZbXYoiUY/9i9nIi0yEjQ4m6tcYRi4cRKfH2gHw+sFVZJcVo5YrcLe0I7UkH4sEFZkvFmPIleg6uhlTlvVFLpfzT0ocW85Hk68rxcfGkXGB4QTU4eS/6oheHc8vI1YybE5/erwQ3qDnvtnllpWw/GwkxzNTiFhuyYEFDhjLZBgrGWxMSgrH19eC2Lx0lkYd4tzCXMr+MCKTQbeR/jzxQy80VuaApSm8Lupbda/fIhgRhIsyMnR4ex/GxkZBdnbnOgscpkxJ4Msv0+jTx5adO9vVyTEbm7bEwBNOvyFXyFiYO55v52cwZco5Fi8OYuLEurn3XZWU2Hw+eXszmZuLMeWBnZuG4dNCGPpSm/J/s7hjeXQOO4pepuCD+da89Pjli29lwcinXUfy93N72fJ9EtaeBhTLrAFol+1M+oSTSKUSzQf48tjWsYC5JskHRzcC5mmLA7xb0csjkJi8NJadOoLmLTXp+4uwc9MwcnU71uiPMyGoMwG2LmxLiSEiK4l3w4c36GRXndbAu5ZzaHtfCyb8NaLBznuzK9br+ODoBlo6uNPXMwhblYaY5DymPZbFvn+vTvlfWNiVAkMhb723ltL5Bkyl4DHIltIXyni+az/aOpoLax7KTGRR7L5Gf13UN1EoTxBqyM1NzcyZfuTlGXn00borAT9vXnMGDbJn165CJk+Or7PjNqY59/2Dvkzi8YU9UaqVPPaYOQBZvDij3s+9UxGH5csqPom7h36PBVFaoOfXVw7ziPWvfP/EHrRFOlqGOrDsz5bIZSbeeaqQiN2X01ZXNTnXYbozDl1MFKeqMH1mXs4c45yDUmP+FJuwLZkdH+2nWK/j19MHy49np7ZkTPOOeFrZ098rmHBvPwK+d2bUjDAKM7UsuesQ7rvt6OkRiJe1PQ8EdUEtV7I3ve5eY9Wh1ihRWipJP1F3KbxvB5vOn8LRwopHWnYjwNYFF40N3QK8iDqixcJChpvb5dsycjms/ySKaS1WUTLHgKuHDe/vG8YXG+4jvJkfWy9czvWx9UIMvTwCG/110VSIYEQQrvDqqz4EBlqwZMmNVfb9r/XrW9OqlSU//JDBp5+er7PjNoaTO1KJ2niBgHBneo435xSxslLi7a3i4MH6SzluMplYGn+IyOzzvBR6B76uTjy5sJd5Xskn4WhsVWz//jSP2pvnlYSF2TBxphatpODOPsdIO2/+FFvV5Nxj2efp83MIlvYGitbIMB3UofilAF2uDqsH3VA5q9ny+m7eHf8T5y5WXlXK5LR39qnQzzaOniQUZDHmnQ7MPHo38lYyoqdnML3jaorzdchlMlo5eJBQ0PBBgZ2nNfnnRVr4mjiWfZ5mNk7Mj/6XV/b/zcyIDYybcpiSEokvvvCnrMyElZUcR3s5liYDK2YeQ+4qo/OPPsw9M5qgruYVepdeF2CeTJ5UmFMhkWBjvi6aAhGMCMJ/bNpkXnlxo5V9rySXy4mICMXFRcmrryaxYsXN+YYjSRJzx+xAXklOkYEDHSgqkjhzprRezr30zGEOZJzjseAeaBQq8nWl5OtKMZgkhk9rx4KMcXT83Ru7HhpObE3l5ZYrUP1dyICJaeSZ1IQH7mX56aNVTs7N0Bbyb0YCboscUChMaF81YLmsCEOgkqQnlKQudcLopUD1dyG2b2Zjo7TATq3B0aLi6gk7tQatUY/OaMCplRVWnyppc787547m8LTHMo6sTjLX9dDXXV2P6nJr44y+WI/B0Pg1lG4Wmdoidqaexs3S1rxEVuHPuqVlBLSD4GAr8vONhClyGJAfy2BlMqNmhOG3yIHWAyou773ydVGkL0PChG1l9V4a4XXRFIhgRBD+oy4r+17J0lJBVFR7NBoZY8bEERFx831C/XnqIQqzyhgxvd1VOUWee878KW/u3PpZProz9TSlRj2zj29j2oEV5V+Hsy5nFZW3ltFtYTNmnbqXtnd4khlRhP2SYnq4pZOis+StoamV5lDo7xmM0WTCaJJwD3Sk79PN0BsV5OZbUfThxQmFGjm5v7piaKXCYlcZzaeWoKjGW6hMLmPC952YsqwvJsnErBHbOfhRYhWp6euXX0/zpORzO+uu9PutzgT42Tgx0r89fjZOfPiYDl2xnOGv5/HsiEOoMOJdmEnfCQH8VjCWMe90QCavrAaScC0iz4ggVGL27GYsXZrFrFkpPPOMB82a1c2EMi8vNbt2hdCt23F69TpBQkJHPDyqX1K8MWUmFrJpXjSOXlbc/37Hq7Z36mSLRiNj3bpc5s2r+/PP7z3hum2uzKHw5rZBFOWV8cvLh9j7WwLFZHI03o2HfaPYm+5aXoL9Ug6FfRkJtHbwZGLLruwLjiCSGLKxwWGZnqk/DKVAr0UtV9L8mAvLR64ldt1ZpNeLyPuyYl2fAp0WjUKFWqFELpMhR0ahTkv3+wNoe4cn7/fbSNL3eVgcUpLyez5ewQ2XFK/V3c3ZPP1f4jedJWhAswY7783MXq3B08r8b7R+fQ5HjhTTvmUJ6U9kcK6oOV6WeubHj8HJ63JwbqfSVFrLpbLXxX/b2KtuncmrNSFGRgShEnVd2fdKnTvb8vvvLSktlQgLi0KrvTmGzD8dtg2TBK+suqPKNmFh1pw9W9ZkbgPYOFjw1I+9WFTyIO98HEgQeRwtsWeA7Wo+HLSZtPjLdXAC7VxJLy1AW6Blw9QdOFkasLTTk7/cxLnvL9DJtRmhzt7YqCyYuPY+Oj3eDtn2YiIfOUhJ3uWLSnReGs3tzKMpSrkCP1snovPMadjtXDR8cnwEjh9oKIs28EqbFaz+tOEqPbuHuIIMkg+mXb+xAFx+XRgMBh4afQor9LSISyGzmS1alLw/P6RCIALQ3K6Sei/XeF2AuTBjzBVtbjciGBGEKtR1Zd8rjRnjwsyZvmRk6OnUKQpJahoX76psWxDL+ZN5dBnlR/NOVb9Zjh/vgskEv//etObEyOVy7nm1HcdL78JTXsoBPNi+OYeXWqzgfyEridp0noHerUgozOKLR5Zh0Em0/6kzmp+sUchM/DItgqxzBaw4G8lPsXsBGLlgEN3eDkcRpeWDjgs4ffoCO1LiOJKZxEDv4PJzD/Ruxe60ePalJ5Baks9v8Yew6K/g9X/vwspBzdJXj/BG5zWUFtasanFtWTpYkB0nEp9V10DvVsQdymCA52pySuWEO+bg9IOaOL0nGo2MBx5wqfC6AOjr2YIsbRF/nz1KWkl+tV8XOslAD/drF5q8VYk8I4JwDQaDhLPzIUpLJdLSOuHkdHXVzRsxceJpfv45k7vvdmDNmqrLizcmbYmBJ5yXIpPDD7njUaqrvrtbUmLA2vogAwbYsXVrSAP2svounCumXcABilExJiAP6Vw2JhPYu2toOdqezO9OUjbOBtsXfRjo3YoLH6eyal48tmojPY61JbusuMLtoFXf7Wb/KweQPBTIv/BheJeOV11Q/kmJZfP5aAp0WnNyq+bhBNi5YDBIfDFyOxFrz6O2VPDiX/3oMLTuio9V5uvwJaQdz+J93cv1ep5bQdy+DL56YBdpZ4vZoGiGXXMDj/5SShtTEBO65TJypBPLl7diUey+q14XsXnp/JkQQWpJPg4WVgzzC6n26+JWIpKeCUIdWb8+h2HDYujWzaZOKvv+V8+ex9i7t4iXX/Zk9uyAOj/+jfp46BaiNlzg2V960+uBwOu29/Y+RGGhkYKCa9fIaEz7t2dx54ATSMiY8ZOK6Jgz6H+UMGaaUGGgx8MteeSrbuXzSl7z/5XERD2Ow03IpllelaX21Mo4frtvDZKtDN0CL7TeMgLtXJgQ1Bl3y+u/Z+35LYHvJu3GoJPo9WBznl7cq96y9S6fvJEjP5zgtdSnsPW4sQqxt6qspCLm3r+D+ANZyOQQ4x7A0VQlq1e3ZvhwJ0aMiGb16lzi4jrQooXl9Q94GxNJzwShjgwdaq7su39/EUuXZtb58XfuDKFZMws+/zyVBQua1r38mH/TiNpwAf+OTtUKRMC8xLewsP6W+NaFbne4MP+rZhiR8clTWtz6ORIyRoUH+ais1OxcnMCj9r/x0eDNpJ8pYFLEACzdDeStgb67fGnv7MO3p/7lQnEeAG3ubUnIhu5ItjIsHrrAqHOBWMiVzDvxD/oqChReqeeE5nyVPAavVvbs/iWBZ33+JPV0/nX3q43m/c0F0WLXna2X49/MtCUG5oz5hyn+fxF/IItWfdx5csPdHE1V0aGDDcOHOyFJEps25eHrqxaBSB0SwYggVMOqVcFoNDIee+xMnU84VSrlHDsWhp2dgqeeSmDbtrw6PX5tSZLEF/eZc4q8uu7qSp9VubTEd968phVY/deop3y49/UcCsrU/DLagtzvU/EJtOKH4om8vLI/Hi3sOLYphReDljN73D94v+WKAom1b0TT3dAMPxtHdqTEAeaEbEfs0uj6Zy9UKiXbHtxBq40a8spKicyq3jJaezdLZkePZPi0EPLSSpnaaiVrZ5+o8+fdcpj5VsFZsby3nCRJ/P76ESY7/MaBvxJxD7Ljg0N3M2PnECY9lYhMBitWmOd7/PRTJmVlJp56yuM6RxVqQgQjglAN9VHZ90p2dkqOHAlFqZQxZEg0cXFX17xoaL++cpiCTC3DXw25KqfItXTubF7iu3ZtTj327sYtjT/MqEd9eWCAitRiK1YbWjJh1T0AdB7RjM9jRvHpiRG07udB0YEy4p/LRWmlQo+CN1r/Zc6oWWieqJulLaZAr6VTSBBT4x/D0lnDtlf+xWWLsbxNdU34pBMzD9yNpZ2KX185zFvd1qItqrvJrVYOGhRqOamR9Z+6/2awc3E8k52Wsuqj41jaqnjhz758ETeK5p1cWLAgjbNny3joIdfy5f2zZqWgUMArr3g1cs9vLSIYEYRqevhhd8LDrVm/Pq9eRi+CgizZvLkNBoOJTp2Ok5dnqPNzVFdWUhEb5p7CwdOScR/UvMJraGjTWuL7X4cyzpFUlMPIgPZM7GOkP4nEmJwZ0udkhXa+bR15+5/B2C+3oO2THhiMADKKDErW9o0gr9gcNBbozbek7NQabD1seOXcEzj42aF/P5XYz2u+NDywswvz0+8nbLA38QeyeNJ9GVGb6q6MgI27NXlJBXV2vJtRzO40nvf/k+8e2Y1Ba+T+mR34Pns83Uab520ZDBIvvXQOKys5339vvkWZkaEjJqaUnj1tUavF5bMuib+mINTA+vWtUSph9OjYelmO26+fPQsWBFJYaCQ0NLLRLuafDNuKSYKp18gpci1NdYkvQE5ZMcsSInisVQ/KsrRsf28fXdpk0S4gn6gcDXe12XXVPjILGXe914rFJQ8y+r0w5EgUJkLqsCI+HrKZ7KSKI1kaGzUvnZmM4i47yr5JZ+Edy2r8elGqlby24U6eXtQLo17i48Fb+XbS7jp53bkEO1FWoGvyS8rrQ2ZiIW92Xcu7vTeSnVxMn4cD+bFgAiPfCKvQbvLkM5SUSMye7V8eeLzxhjnb78yZfg3e71udCEYEoQbc3NS8/37dV/a90uTJ7vzvf14kJ+vo3bvu5wxcz/aFsZw/kUfnkX4EdXat1TGeeMJcxXfRoqZ3KyCpMIdCvZYPIjby9pQlSAoTeW860O2nHAJ9CtgarWDy0IMV9rFTayjQa5HL5dz3Vgc+iboHhcwIRRJRG1P4IvQfSucYOLztcmp6pVKO3cf+WI514ew/yXzVfgkGXc1Hu/o8HMRXSWPwaGHHrkXxPN/sL9LPFt7Q38C3myeYIOVI+vUb3yK0RTq+GP0PUwL+5szBLFr38+CbC/fz9KLeVy1XT0zUsmRJJv7+FhXmhvzxRzZOTgp69264rLm3CxGMCEINvfZa/VT2vdKnn/ozYoQj+/cX8eCDcfVyjspoSwwsev4gaisFU37vU+vjWFkp8fSs3yq+tdXKwYO3Ow7l/sSWaJYV43uXD76t3OjmEcDqvR1xlmlZvKGMj16+fMumuW3FjJo+oS54vWMDJhlWSgOt+rhh2CaxcOg+nvZcxsYvT1GsK+NcUQ6D5vWj/UNtSD+exedBP6AtqHkhNAcPK76IG8XQl9uQc6GEl1ssZ8O8U7X+G7QY7A9A7LqEWh/jZiFJEr+9epjJTr9z8O9EPFva8dHR4bz9z+Aq50KNGhWLyQR//tmy/LFNm3IpKDAyYULtAnTh2kQwIgi1sGFD3Vf2/a/ly4Np186KX3/N4r33Gmblw7z7d6DXGpk8v/s1k5tVR1Nd4qtRqnBT2rDzyX9RaRQ8tmwUFgol1koL2vi6sftoODZKA+/NyebvH8wjHQO8gzmZm8qW89GkleSzJvEYRXeY8GurosSgxJhRwNh9HbB+RUVhiZbFUw7yZItlSBuhlZUnY5YMpferXchPLmRWwEIKUmoXpD00uwvv7R2KhY2SJS8cZEbP9WhLaj7a4tfdPPkyeX/9FDVsKv75IY7JDktZ8+kJrOxVvPhXfz6PGYV/e+cq91m7NoeIiGLuusueTp1syx9/551kZDJ47z1xi6Y+iGBEEGqhRQtLnn++7iv7Xkkul3P4cCju7ipmzEjm99/rPsfJlWJ2p3F03Xn8OzjR+8GgGz7e88833SW+y8atRV9i4O4vB6C2qlioMDjMgUkLS5FjYtLkBCJ2ZxFo58rk4J78mxbP+xEbiMhK5uk2vfn4xINYKw3ER5di+qWUe55th8dGG2w+VaGwk5H3gZYn7X/n46Fb6PBkB4bN6U9pjpbPWywk41Tt5tO06ObGgoyxtLvTi7i9GTzl9jsnt9esXIFcLsfCVk1mTNNe8VRb0bvSeM7vDxZM3otBLzH2w44syBxP1/uuXRxQkiQeeSQepRKWLbucul2rlTh4sIiQECscHUV92fogMrAKQi1JkoSX1xEyM/UkJHSss8q+/5WRoSMgIAKtVmLv3nZ07Wp7/Z1qSJIknvb4g6KcMr5MGnNV4a/a0mj24eOjJj6+5ity6kvSvhTm9/gN93YuTDn2SJXtvnonlpffzcBWpudkUjc8fCr/m6SczObVkJUAfHLiXrzaXv7UfXB5IktfO0LaafPKFb9QR3re487BD3cjU8h5dNsYAnrXPv37jh9Ps/DJvRgNJvo/3oLJ33WvdubWuSE/kR2fx3val2p9/qYm/Wwhc8fs4OyRbGRyGX0eDmTyd92qPcr3xhuJfPjhBV5/3ZsPPrgcuLz9dhLvv3+eX38NYsIEt/rq/i1JZGAVhHpWn5V9r+TmpmbfvnbIZNCv3wmSk2s+5+B6fvufOafI3f9rW2eBCEBoqFWTWuIrSRK/3LsSmVzGw+vvu2bb594J5pn7rcgzqQn334tWW/ntEK+2zox+vS1G5LzdfkWFbV1GNeOLuFF8cnwErfq4k3w8l6UzY8h08KTYqGRh3z848Xft5wT1e7QF8xLH4B5oyz/fn2ZKwN9kJlZvcqtHqCvGMmOt5rA0NdoiHbNHbuPFwL85eySbtnd48m3q/Tz1Y69qByJ5eQY+/fQCzs5K3n+/YoC4cGE6lpZyEYjUIxGMCMINqM/KvlcKDbVm+fJgtFoTHToco6QW8wSqkpVUxPo5p3DwsGT8R53q7LgA48a5IkmwbFnTWOK74ZWdFGeU0HtaZ+x9rj/CNGdZOMM7QorRkjCXHVW2G/FBN4KCLSk2KHmz5dKrtvuFODJj5xAWZI2j90OBlBQZSZXsSDbZs2D0RnZ9cbjWz8nJy4o58fcx6PlWZCcV82LgcjZ/c/3g2L+vDwCnN56r9bkbmyRJ/DL1IJMdl3J4ZTJewfZ8HDWcN7cNwt6tZqnax46NxWCARYuCKowunThRTGqqnmHDHOu6+8IVxG0aQbhB9V3Z90qzZ1/glVcSadlSQ3R0+zoppjYtdCXJx/N4f/8wgrrW7UqBoiIDtrYHGTjQni1b2tbpsWsqNzGf2c0XYuNuxWspT9do3y6e2zmUpqG7Txl7k/tX2e5x9UKK9QrGTAtm5Cc9qmxnMEis+ugYGz4/SXGeHgVGvAOtmbp1GG7+tb8NF7s7jU+GbaO0QE+rPu5M33Qnak3lIwP55wv51Hc+nZ8M5d7v7qr1ORvLtgWx/DL1ENoiA3auGiZ/353OI649J6Qqhw8X0rnzcTp2tObIkYr5Ru6++xTr1uVx5kxHmjevn1uxtzJxm0YQGohSKWfp0hbo9SaGDau/2zUAU6d68/jjbsTFaRk06MbPteOn0yQfz6PTvb51HogA2NiYl/geOND4S3wXD1mOSTLx4KqRNd73YOodBFqWsO+8mjHd91bZ7v3jo1AisfzTaM4fq3o0SKmUc99b7VmY+wDPLO6JpUIi6UwpLwT8xavtV9V4Quolwb08+C59LG36exCzK50nXX8nelflE4jtfWyRK2U3Xa6Rk9tTeNb3DxY+uQ+jwcT4T8KZnzGu1oEIwJgxcchk5hVsV5IkiS1b8vHzU4tApJ6JYEQQ6kB9V/a90oIFQfTrZ8fWrfk8+2ztE6/ptAZ+fGY/aksFzy/tW4c9rOiOO+wpLDRy9mzjzU3Y/81RMqOzCRnTEp/OtStwdiKnHx6KUpbvl3h1YmSlbTyCnbj/nXYYkfNOx5UYDNe/ndZ7Ygu+LZlEWHMTDpSSHJXDzAGbeNprGZu/jq5xllS1Rslb2wczeX53dFoj7/XdyA/P7Ku0rZWLJbln66c6cF1LP1PA9PDVzBywmdyUUvpPbsGP+eO5Z1q7Gzru/PlpnDtXxsSJrldNQv/++wx0OhPPPiuK4tU3cZtGEOpIUZEBV9dDyGQycnK6oNHUX6wvSRItWx7lzJky5s71Z8qUmhft+mz4ViLWnueZn3vVyVLeqhw4UEi3bsd58UVPvvgioN7OUxVtgZYPXb9BoVbwRvazN5Q/5cK5YtoFHKAYFV9+5MkTr1X+d3snZBmxJ0tpHqjmg/gJ1Tq2JEn80P8PEnadp8zJkcwiFQadhIWVgr6PtmD8J53QWNWs79nJxbzbZwOZ54pw9bfh7V2DcfG1Kd++oPdSkvamMNM4tUbHbUglBTq+fuhfItYkgwlCBnry/NK+2Lnc+EiFTifh6GjOtpuf3wWlsuL/2eDgCM6c0aLVdrtqm1A94jaNIDQwG5v6rex7JblcTmRkGI6OCl588Rzr19csX0TsnnQi1p6nWXvHeg1EALp2tcXCovGq+P46cjVGncR9i4bccCI3b39r1m8LRY2Rl6ZfYPuqym+nvHNiLLZqA2fPlPHX1D3VOrZcLufxneMIuz8Yy5xcQj21jHqzHUqNgs1fxfCY3a98evfWaq+WAXD2tWbe2dEMfCqYzHNFvND8b7YtiL38fDp7YJJMZERnV/uYDUWSJBa/dIDHnZcSsToZ79b2fHJ8BG9sGVQngQjA44+b6898/rn/VcFGWpqOuDgtvXvbiUCkAYi/sCDUofqu7HslGxslR4+GoVbLGDEihhMniqu1nyRJfD7qH2RyGdPW3VmvfbykXTsrEhIafolv7IazJGxPwre7FyH3tbz+DtXQ7Q4X5n/VDCMyRt0bS/zJyqvfzjw5GiVGVn0eQ1JE9Wv0jFs2nB4vdiQvsYC47/YzJ3oEU/7oi2uADUfXnWeK/9+81n4VJ3dUP3vqY992560dg1FrFCx8ch8z79iIvsxA0J3+AMSub1pp4bfOj+Ux+9/YOCcaGycLXll1B7NOjsQvpO5WtCQmavn550wCAix48smrb8NMn54IwAcfiIyrDUEEI4JQx+q7su+VmjXTsG1bGyQJunU7TlaW7rr7/PbqEQoytNz9St3mFLmWceNckCT488+G+wQuSRJ/jF+DXCln4tqaT1q9lgnPBjD9aUeKUNGj3SEK8q7+u7sFOTB+ZgeMyHi3y+pqzR+5ZNgXdzDokz6UZJUyO3AhLdo7MOf0fXwcOZzgXm4kHstlZv9NPOP9B1u+janW66xNXw/mZ46jVR93Tv6TxpNuyzBYWgCQuPtC9Z98PTq+LYVnfP7gh6f2IRlNPDCrE/PTxxF+T90HBCNHmuvP/PVXcKXb//47B2dnJT16iKkBDUEEI4JQxxqisu+Veva0Z/HiIIqLJUJDo9Dpqr4wZSUVsf7zk9h7aBj3Ucd679slTz7pDsBPPzVcFd/lj21Cm6/jzg96YeVUs5wT1THjm3Y8MEBJlklDqPuuSoONIW+E0yrUhhKjkjdbLKvR8ftM68J9i4egK9YzL+Qnkg6k0CzMmXf+HcqCzHH0fKA5hVlafnxmP4/a/caiF/ZTVnrtgEetUTJj5xAmfd2VsmIDM/tvpkhhScbJxs0Dk3o6n9c6rOLDgZvJTytlwJMt+aHgAe6eGlIv51u7NoejR4sZNMiejh1trtq+fn0OhYVGHnxQFMVrKGICqyDUk6CgIyQklBEREUr79le/4dW1SymrO3SwJiIirNI2l3KKvLt3KC27N2w2SU/PQ5SUSOTnd633c6WfzGReu8U4BtjzypnH6/Vc/YN2suOMijBnLZFZd1Ta5knNQgrKFIx4Pohx83rX6PinN51l8bDlADy48l5a3R1Yvs1gkFj5wTE2zj1Fca4OuUJG+yHePPJVV1ybXTtfSWZiIe/22Uh2UjHWMh2fnn+wwUbKLikp0PHVhF0cXXcegHZ3eTFlaR9snOpvGa0kSbi5HSY/30h2dmfs7K6eR9S1axSHDhWTl9el0u1C9dXrBNavv/4af39/NBoNXbt25eDBg9dsn5eXx7PPPounpycWFha0bNmS9evX1+bUgnDTaIjKvld67z0/xo515ujRYkaPvnoC7c7F8SQfzyN8hG+DByJgXuJbUGAkMbH+l/guGWZOy/7wulH1fq5/4vvS1r6UqGwNg9rsqrTNBzH3o8LIui/jOHeoZnk9WgwK4OmDD6JQyvn5nhUcWnisfJtSKWf0jPYszJnAlGV9cfW3IWLtxXklHVZxamfVRQpdm9ky7+x9+PspKDEpmdLsT3b8dLpGfastSZJYNGU/jzsv5ei68/iEOPDpiRG8vumueg1EAN58M5nsbAOvvupVaaBRUmLg8OFiQkOtRCDSgGocjCxbtoyXX36ZGTNmEBERQVhYGIMGDSIjo/LhV51Ox5133sm5c+f466+/iI2N5fvvv8fb2/uGOy8ITVlDVPb9r99/DyY83Jq//87h9dcTyx/XaQ388PQ+1JYKpvxefzlFruW55zwBmDu3fsvW/zNzH3mJBXSeHIprq6pLxdelyKy++KpK2BKt4PFhV384c/G348FPO2JExvvdazZ/BMC7ozsvxjyKha2alY9vZvt7Vyde635/AHPi7+Ojo8MJ7ulGYlQu7/fbyDM+f7B1fuXzl+RyOUOntMKHPBRKGfMf3cOHd27CoKu7cgP/tfmbaB61+41NX8Zg62LBtHUD+Oz4vfi2rf9063l5Bj77zFx/5r33Ki9QOHPmBSQJXn/dp977I1xW49s0Xbt2pXPnznz11VeAOcL19fXl+eef57XXXruq/Xfffcdnn31GTEwMKlXt0mSL2zTCzaqhKvteyWCQ8Pc/woULehYtCuThh935bMQ2IlYn8/TiXvSZWL9Lea9Fo9mHn58FcXH1M1+lKKOYT7y/w8JWzetZz9ZJuvzqysnSEuy2hzyTBe+/7Mhrs69Ofz8z/C9ORhTh56vkk6QHa3yOkpxS5rb5iaL0Ero8HcaIb6peDVWQpWXxCwc4+FeiOV+JtZL+k1sw/uPwCiniM6KzmdvmJ7o824GIo2XE7c3Ayl7F9E131WlW3mNbUvjukd3kppSgtlIw9oOODH2xYUsEDBp0ks2b81m3rhVDhzpV2sbD4xCFhUaKi7s1aN9uVfVym0an03HkyBEGDhx4+QByOQMHDmTfvsoz/K1evZru3bvz7LPP4u7uTkhICB9++CFGo7HK85SVlVFQUFDhSxBuRg1V2fdKSqWcY8faY2Mj59FHz/Dr1+eIWJ2MX6hjowYiACEhVpw5o623VUY/370CyWBi3J/3NGggAuDkomHn4XCs0PPu59n8/UPSVW3ePDIaOwsjScl6fn16Z43PYeVkydRzT+DcwoGD30bxy70rqmxr56Lh+V/78lPxg4yaEYZSLWfj3Ggm2fzKZ/dsJSvJnKLfrbUzMrmM9KgM3t0zlIlzuqAtMvBW93X8PPXat+CrIyU2n1fDVvHRXZvJTy9l4NPB/JD/QIMHIocPF7J5cz7h4dZVBiKRkUWkp+sZPlwUxWtoNfrfmpWVhdFoxN3dvcLj7u7upKVVfm8yISGBv/76C6PRyPr163nrrbeYPXs2M2fOrPI8H330Efb29uVfvr6VD6cJws3gysq+c+fWX2XfKzk5qTh4MBS5HJ58LhG9TMG0dQOvv2M9GzvW+eIS37pPgBb1ezTnD6URdJc/QQNqX6fkRrTp6MDSpS2RYWLS5AQidl+9SuWjePP8kY3fxZOwr+a3rNQaJS/GPIpvV0+iV53hu26/XjO4UyrljHmng3leye99cfG3JmLNeZ5v9hdT2y9nx8Y41A5qMk+b/02GvNCGz+NG4eRtxfrPT/Fy8HLy0kpq3M+ivDI+GbaVqa1WkHQsl7DB3szPGMtj33RvlCRiVdWfudL06eYA8pNPGuf1czur91eEeeayGwsWLCA8PJyxY8fyxhtv8N1331W5z/Tp08nPzy//Sk5Oru9uCkK9+vnnIOzsFPzvf4nk5Ogb5JytW1sx7V4ZeuRsVfujtrdokPNey6XkUj/+WLfF2Qw6Ayse24TSQsEDK+6p02PX1NBx3nzylgdaFNzZ5xhp5yteyJ18bHn4i84YkfFBr3U1nj8C5hG3p/Y/QOsRgSQfSGVOqx/Raa9/nO5jA5gbP5rX9g1E0U5GyrEC5g/Zy5kCDVkZenK05sR57s1t+TJxNH0nBZEaV8Bzfn+xa0l8tfpmMEj89Px+nnT5ncj15/Ft58CsU/fy2oY7631yalW+/TaVc+fKePhhV/z8Ku+DJEls25aPv79Fg9xOFSqqUTDi4uKCQqEgPb3iG0l6ejoeHpUXEvL09KRly5YoFIryx1q3bk1aWho6XeUJmiwsLLCzs6vwJQg3s4as7HtJ9vlizi6Po79tFvllCsLCouo9Cdv12Nkp8fBQsX9/3VbxXTZuLfoSA3d/OQC1lbpOj10bz78XzNP3W5FnUhPuvxftfwKFAS+GEdLFnhJJyXT/pbU+z4MrR9LlqTCyT+cxO2ABJTml1drPMcQK669V2KxUohwgw2BUkGZy4CXnv1ny0kF0WoM54PmxF9M33YlCJePbh3fz8dAt/PtzPG/3WEdRbtlVx9345SkmO/zG5q9isHPT8Or6gXx67F68WzvU+jneKJ1OYurURKys5Hz/fWCV7b77Lh293sRzz4mieI2hRsGIWq0mPDycbdu2lT9mjia30b1790r36dmzJ/Hx8RXeBOPi4vD09EStbvw3DUFoKA1Z2Rfgs7u3YpJMzNvUk+ef9+Ds2TL69z9Z7+e9nv7963aJb9K+FE6tiMe9nQudHw+tk2PWhbnLwhneEVKMloS5Xj0/5PUD92GvMXL+goGfn9hR6/OM+PZOBrzbg6K0EmYFfE9uYvWr8Mod5VjNUOHwloQ7+chMJjbMOWWeVzJiG1lJRYTe5c389LEEdXUhasMFvn14N6f3ZfLFff9gvJjeP2rTeZ72XMbiKQfBZGL07PZMj7sTp95WJBXllI+4NIbJk89QWirxxRdX15+50hdfpKBUwgsveDZg74RLanyb5uWXX+b7779n8eLFREdH8/TTT1NcXMykSZMAmDhxItOnTy9v//TTT5OTk8MLL7xAXFwc69at48MPP+TZZ5+tu2chCDeJFSuC0WhkPPbYGbTa+hul2Lk4nsSoXDreY84pMm9ecwYNsmfXrkIee6x6w+315dlnzXPO5s278SW+kiTxy70rkcllPLz+vhs+Xl1beaQXnTzKiCuypIffjqu2f3J2LGqMbPr+DPG7az+f6I63e3Dv93dRVqhjTqsfuRBRs9tghm4arNDT925bnl/aB5dm1kSsTub5Zn8xPXw15yJzeH//3fR5JJBL6y9P/ZPGd5N2My10JR8P3kpBppa7nmvFp+n3sr1LDB8c3Vj+9dbhNY0SkCQmavnll0yaN7fgiSeqHvG4cKGM+Pgy+vYVRfEaS43/6mPHjmXWrFm8/fbbtG/fnsjISDZu3Fg+qTUpKYnU1MtvMr6+vmzatIlDhw4RGhrKlClTeOGFFypdBiwItzobGyXffFO/lX11WgM/Pr0PlaWCF5Zdzimyfn1rWrWy5McfM/j00/P1cu7q6NnTHrVaxpo1uTd8rI3/20lxRgm9XumEvc+1M442lkOpdxBoWcL+ZBVjelTMD2LvYcOkr7pgQsaHfWs3f+SSzpNDeXDVSIx6ie+6/sLpTWerv7ONHFSQfSKHHuOaM/fMaD44fDcte7hy7mgO7/beyLO+fxCzKx1kl3fb/UsCycfzaD/Uh/lZ45j0ZTcKjFoMpoqBtsEkUWS4+rZOfbtUf+bPP6uetArw+uvmiasffigmrjYWkQ5eEBpBeHgUERHFbN3ahgEDHOr02LPu3caRVck8+WNP+k1qUWGbVivh63uYrCwDy5e3ZORIlzo9d3V16hTF0aPF6PXdar0ENzcxn9nNF2LtZsX01KfruId1S6s1EGC9k0zJgqkP2fDJkvYVtn/cYwVR+/Lx9pQzK2XiDZ0r6UAKC/v8jlEvMXrJEDo8ePUS2qSiHD44urHCY45j0tGUyHmn4IUKj+dnlLL4hQMc+DMRyVj55WLk26GMeacDm85Hsz7pBGXS1UFVB2cfHg3ugVrRMFlNV6/OYcSIGAYPdijPhlwVW9v9aDRyMjO7NEjfbif1mg5eEIQbs2GDubLvmDF1W9k3bl8GR1Yl49vO4apABECjkRMV1R6NRsaYMXFERNTtRNLquv9+8xLfv/6q/RLfJUOXY5JMPLT63rrrWD3RaJQcPtMNO3TM+bmQBR9XvFX22t6ROFgauZBqZPGj22/oXH5dvZhyYhJqKxV/PbSBXZ9WL1eIsZkCfaH+qtejvZslU5b2wzfEocp9V7x3jOd7/sXf8RGVBiIAR7PP8+XJHeilqnNM1RVJkpg0KR6VSsayZS2v2Xb16hyKiiQmThRF8RqTCEYEoRG4ual57z0/cnONPPZY3VX2/XzUdmRyGdPWVp1TxMtLza5dIZhM0KvXCdLSKl/VVp+eeurGlvju/+YoGaeyaTu6JT6db44Jh97+1qzb2g41Rl6afoHtqyrOEfn47DjUGNny01litl+dMK0mXFo4MjVhMlYulmx6dRfrXrp+gKNva15QkLSvYr+Ork/mCbelJEZd+7Za9r5iikYYMMZJdHD2ZUJgZyYGdaWbmz9KmflSE5efwYak+p9E/cYbSeTkGHjtNe/r1pd5771kZDJ45x2Rz6oxiWBEEBrJ9Ok+BAZasHhxJpGRNz5CsXT6YfLTtAx9uQ0ufteuEty5sy3LlrWktFQiLCyqXifTVsbOTom7e+2W+GqLdKx/eQdqaxX3/zq0HnpXf7oPcOW7L5thRMaoe2NJiL6cXdre3ZpHv+2KCRmf3rn5huaPANi4WfO/xMdx8Ldj75wIlt6/unxbWSXH1nc159Y4vfEcAMknc/lfu5V8OmwbhVnVnO9RCMWPG/Db7ERfrxb09AxkUnAPXgkdiPziZJNdaafrdXQkL8/ArFkpuLgoeeeda9eXKSoyEBFRTPv21tjaiqJ4jUkEI4LQiOqqsm9OSglrPj2JnZuGCZ+EV2uf0aNdmDnTl4wMPZ06NXwOkv797cnPN5KUVLMlvr/euxJjmZH7Fg1Gqb75LiAPPBfA9KcdKUJF97aHKMi7PDLV96l2tO/tRKmkZJrPbzd8LrWVmpdOT8azgxsn/ozj+z5LWXvuGHNP/nNVW0Mr898yflcyHw7azLSQVZw/mUfHu31oN9ALALlChoWNEjs3Da7+Nvi2c6B5N2cUHUHmCmgAE/z80iE+GryZ0kLzcwuwc6GDi3nkoVBfRmxe3Sa9u9L998diMMDixUHXnY/0/vvnMZngzTdF4dbGJiawCkIje+GFs8ybl8q0aV588ol/rY7xWodVJEbm8s7uIQT3dL/+Dld4+OHTLFmSyd13O7BmzbUn+tWl3bvz6d37JK+84sVnn/lXa5+4jWdZPORvfLt58tS+B+q3g/XsoQH7+XW7kWYWpZwu6odSeTmwesbmB3KL5dz5kC+PLrnxNP6SJLFk6HJObzqHoZmSvB9cQF3xQi0ZJCzuyiPXYIWEHP8OTkxZ1hfPFvZIRgnJaEKpVlx17OSiXGYe3QBAD9fmtI3z4tdXDpN2ugALayU/5E9AoZCzM+U0v505ZH7uLbrSy6PqBGS1dehQIV26HCc83JrDh8Ou297d/RDFxUaKikRRvPoiJrAKwk3iiy+a4e6uYtaslFolAtu1JJ7EyFw6DPOpcSACsHhxC3r0sGHt2jymTq3BctAb1KuXeYnv6tXVm8QqSRLLxq9FrpQzcd2oeu5d/ft5Wzf6Bho4V2ZFJ49dFbZ9fG48aoxs/zmRU1tubP4ImNPHh//WHe1gSxSJBhzHZdDRwouHgrrwWHAPvNc5UDTEQLbBBgsM9Fjsz0cR9+DZwt68v0JeaSACoJZffjzPUEqne/z4Im4UL/zRj7uebYVCYb7M5OpKKt2nLlWn/swlhw8XkpGhZ8SIyovmCQ1LBCOC0MhupLKvTmvgh6f2odIomPJHv1r3YefOEJo1s+Dzz1OZP7/yopf1ISTEivj46lXxXTF5M9q8Mu6c2RMrJ8sG6F39+ye+L23sS4nK1jC47eWAxM7FiscX9sCEjM8Gbb4qnXxtbE+Jo+h1R0oftEGRJZE7Mhrlv3J+aLef6E8yUCsVOLUuxYMC4t3T0BqrV0PJ1dIGB7X53yM6N430UvM8mG5j/JnwSScAdEYD+9ITAJAhI8iu7leufPNNKomJZTzySNX1Z670xhvmIO+jj/zqvC9CzYlgRBCagNpW9v1y/E50pUYmfdUVjVXt508olXKOHQvDzk7B008nsG1bXq2PVROXlvguX37t0ZH0k5lELDqBY3N7+rzatUH61lCisvriqyph8ykFTwy7vAy312Nt6NjfGa1JyXTfX2/oHCUGHadyzckoLZ/3pNe7vYhNVTJ37C6KsssY+lIbfip4gOAHPJEB0u4iTuZUL0OuXCanl0cQACZMfH1yJ/H5mVyaAZBeWsDXp3aSpzPXzWnn5IWTxvqGns9/6XQSr7xirj+zYMH1b/9IksQ//xTQvLlFtQIXof6JYEQQmoiaVvaNP5DJ4ZXmnCL9H7t2LoXqsLNTEhERikolY8iQaGJja142vqaeftq8xPeHHzKu2W7J3SsAmLj25r89819KpZLIlF44y7T8tL6MT6aeKt82dfsInGwk0rIkvh+3pdbnKNSZb/9JeRL5L2pZMiMGrUmFtUyHvzyHcR91RC6X0+4e8+tIdbSMAn31iu4BDPAOxk1jXsGVXlrIZ8e28Obh1bx7ZB1vH15LzMUJqxYKJff6X38uR01dqj8zd25AtdK5f/llGnq9iSlTbo5l4bcDEYwIQhNR08q+s0duRybnmjlFaiow0JJNm9pgMJjo3Pk4eXk3fnvgWi4t8d23r7DKNjs+2EfeuQI6PdYOt9bO9dqfxuLkomHn4XCsMPDO51msWHR5nsinyRNQY2TnsmSOb0is1fHlRhmln+gputdAzr5SPAKsCbItJNDNwJ0zuqOyMI+qFdkZMSlAeVqPWl79kTYrpZoX2t2Bp+XlCYpZ2mJSSi4X7bNWqpnSth/e1g61eg5VOXv2cv2ZyZOrN2dq3rxUVCoZzz8vKvQ2FSIYEYQmpLqVfZdOP0xeailDX7x+TpGa6tfPnu+/D6Sw0EhoaCQGQ/0u+e3Xz478fCPnz1+dy6I4q4Rt7+xF42jBiPl31ms/Glubjg4sXdoSGSYenpRA1L5sAKwdNDy1uDcm4PNhW2o8f2TVJ8eY6rYC/ToTKksDnnZ5WJ1NpO1Qf144NYl+b5hXkuiMBvakn0FykKNINdLSvmaToV00NrzRcQgPt+xGgK0zKrkChUyOh6UdowLa816n4QTZu9XomNUxalQMJhP8/ff1J60CJCVpSUgoo39/u1qXIhDqnljaKwhNTFGRAVfXQ8hkMnJyuqDRVHzDzEkp4Xm/P7FxtuDb1Pvr7Q112rRzfPZZCl272rB/f2i9nAPg33/z6dPnJP/7nxeffupfYdu3XX/h/ME0Jm0ZQ9DA26OI2ZdvxzL1/QxsZXpiU7rh4mEFwBd3rubg1mzcnWXMyXqk0n1TjqaTcTKbrLgcTm1PIWp/ASVGJRbocaYYDeZARnrUkQmfDqatkxdymYyU4nx+P3OY2Px07J/PRHVMzwfSKw31lGtt1aps7r03liFDHFi/vnrL0h94II7ffsvi0KF2dOrUNIsr3kqqe/0WwYggNEE//ZTOo4+eYehQB9atq/gmO73jas4dzWHGv4Np1at+h5nvvTeaVatymTDBhV9/vfF5KVWxsNhHQIAFMTEdyx+LWhbDH+PWEnRnMyZtHlNv526KXhhzhK/+KsVDoeVMUT80GvMtk+fsfiS7UEa/0Z48+efgCvtcOJLGN51+wYCMXKwpxAIlEk4UY42uvNiurpOags/NBRLtVBosFEoytZcz4dp+V4jFb4VMOf4w7iFNt16LJEm4uh6msNBIVlbn66Z9v8TGZj9WVnIyMkRRvIYg8owIwk1s0iR3Ona0Zv36vAorW/79JZ5zR3NoP9Sn3gMRMOdrCA214rffsnjvveR6O0/btlacPn15ia9BZ2DFoxtRWCgYv3xEvZ23qZr7Zzh3d4QUoxXtXXeWP/5J0gQsMPLvXylErkqosI+Vpy1Ftg4k40QxapwpxpdcbK4IRGQKGQ4z/Mv3KdBrKwQiNkoLht9vvm0Ts7bi8ZuamtSfuWTFiiyKiyUmTar720XCjREjI4LQRGVk6PD2PoytrYKsrM4Y9RKTnZZikmBB9vgbWspbEzqdhJ/fEdLT9Sxd2oJx4+r+0/JHH53n9deT+Ouvltx3nwu/3reKU8tPM2L+nXR5ou5XX9wsOnts53C6hh6+OvYk9QPg4G9xzH1gNyqZxHclj6CUw/dP7uffJWcwSRL2Mi0OphIUVHxrlylkdHu2A0Pm9CMq+wK7Uk+TVJSD0WTCRWNND/fmdHdvjtqkYIb6C1oNb85Dq82rlzYkn+RoVjJppQWo5Qqa27kyyr89HlbXfj8+kpnEqsRjZGuLcLO0ZVRAe9o5XU69bjKZWJN4nH/T4ik16gm0c2FCUGfcLa993Lw8A66uB3F0VJKW1qnatyo7dowiMrKYgoIu2NjcfKUEbkZiZEQQbnL/rez75fhd6EqMPPJllwYLRADUanMOEisrOQ88cJoDB6pe+VJbzzxzeYlv0v4UTi0/jVuIy20diAAcTO1PoGUJ+5JV3N9zLwBdJrSk6xB3ykwKpjgu4VH7pexaFI+TjxVv7xzCqOkhVwUiAEqNkv5vdUMhk9PRxZcX293B591HM7fHGN7qOJQB3q2wUqpRqhSorFVknMou3zcuP4N+Xi15LewuXgi5A6MkMffEdsqMVU+mPVOQycKYPfT0aM6bHYfQ3tmHb0/9y4XivPI2m85Hsz0llgdadOG19ndhIVcy78Q/1y2kN2bMpfozLaodiBQVGYiMLKZjR2sRiDRBIhgRhCasvLLvogx2rriAT4gDd0yu3qqBuuTmpmbfvnbIZNC37wmSk2uetv5a7O2VuLmp2Le3kF/vXYlMLuPhWyDl+42SyWScyO6Lu1zL8r0S0x+JBKDrY+aAo1Arx2Qw8sTCHnyVOIYzf51k54cHLu575YGg3+tdsXaxqtZ57X1sKEgpLv/9hZD+9HBvjpe1A742jjzSshs5ZSUkFlWdrG7bhVjaOnkyyKcNnlb2jPAPw8/GkR0pccD/2TvL6KiuNgo/4xN3D1EgggV3K7Q4hUKRUqPUqJe2X0uNOvWWtlCoK65F20Jxdw2BECPunsno92NIICSBuHGetbIWmTn33pNJmPvOOe/e27wqsi3hPCN92hPm5I23lQPTg3qTXVzEifTKtwQPH85j69YcunWzYsQIhyr9PABz5lzGZII332xV5WMEDYcoRgSCJs7mzaHIMXIUN17eWHeeItWlY0crVq8OprjYRFjYKQoL69aDZPBgW7Jz9GSkFNPvha7Y+4gtWQC1hYLDkT2xRcvnv+YxyWUVX07cDnIZcgwY9EZkOg2f+H3H/q+PY9fKhpmHp2HhqEZy5R3eytmCPs9VLc0ZwK29M/oiPdpKZMRFV6zireTKSs8RlZdOsH3ZvqZQBw+i8tIBsw9Jrk5DyDVjLORK/G2cS8dUxN13X0AqhTVrgqv88wD89lsa1tZSxo4VWTRNEVGMCARNnKM/n6M7KSRgzacLKn+TbgjGjnXk0099yczU07nzqSplylSV+++yASRcsnTnjg8H1Nl5WwLWFlKmdShEhYHN6U549vbkh6ypPLdiIBLg55kHyIrNpcsTHfD5rwvzjQdJe8Ua05Vfz+3v90dpqajw3BHZKbx3bDNP7lnK64f/Yl9KFL79vAG49E8MANsTL/DqoXU8uWcpHxzfwi8X9hNo63JDA7NcrQZbRVmrdVuFmpwrbrAlDq+2yuvGKK+OuZ6S/JkHHnDB21t1o5esDIcO5ZGermf8+JZpmtcSEMWIQNCEyUwsZP3HZwh10uHmJueTT2qW7FuXvPCCF48+6sqFCxqGDatesN+NuPj23zhSxDmXAGFGdQW9Vs+3D+7mCa/lpJ9O506fHHRI+XG/gpjzeRz8aD+u5KFBQa61AxlPWXE+J5XpQX149ckJeDzqiyFYScA9ARWeP12TzzdndxBk78brXUYwxCuI3y8cRDrYbKR3aVsch9NiWRl1jFE+7Xmt8wiKDXqictOZElD1lZa6oCR/xsqqavkz1/Lqq2bn2g8+EKF4TRXxP14gaMJ8MmYrRoOJWasHs359SI2SfeuDRYtaM3iwLVu35vDkk5dqfb6DC0+Qei4DTzsjl+INdbri0lxZ8/5JHrJdzK5fL+HUypo5u4fze+ydvPy4PfkouL37EeKOpNB5VCuc7SAjX8rRry4ywT+MtnauuFrY8NSiu7H+szW70yr+He1Muoiz2pq7A7rgYWnHYM8guji34pAsEYlUQsKRZLYmnKefeyB93QPZmXSBYoMea4WKc9k3DtKzVarJ1ZUtnHN1GuyurITYKsxJv7nXrYLkaq+OuZaHHoqsVv5MCXq9kZ07c2ndWlWt1RRBwyKKEYGgibLnz0vEHMuk0wgvQga41zjZt77YujWUwEAVCxak1Go+mnwtG5/bjsJKwZRZbTEYYO3aG6f4tmQOrIzmEeclLH/9OHKVjMd/6cfXMRMJ7ueOXm+kdeIlRhFJAtYsl3fknrVj+SR+KiqJnvxFJqL/Ti5zPqVMwaXciqMFonIr6evITcfCSU3GpSzi8jIJtnNjSeRhTmTE83zH22jn4ElU7o23DANsnDmfXXYu4VnJBNiYDdec1VbYKtRlxhTpdUTnpZeOKSE6WsPixekEBqqYMaN6NvVffZWMXg/PPedZreMEDYsoRgSCJoheq+eHR/ehUMt4buXg0serm+xbn0ilUk6c6ISDg4znn49h06aaFRCLx6/DUGxgws/DefIZswfFDz/cOMW3JRJ1JJ3n265m3t07KcrVcefsDvyQNZWBD7QGIO5gInNd53P+r0vc0UXKAH8t0XprunvsQm2t5rlVQ5AAq2ccJzkzG6PJyIHUaKJy08nRVpzAm6vTVNizoTHocAi0ozBTgxETB9JiOJgaw4ygPqhlClQyORnFhWivkfb+HLGPNdEnSr8f4hXE2awk/o0PJ7kwh/Wxp4jNz2SQp9nJVyKRMMQrmE2Xz3AyI56Egmx+vrAfe5UFYc5lFS/jx5vzZ1aurL6S7OuvzaF4M2dWr4gRNCxCbC0QNEG+vmc3xYUGHl7Uu4ynSEmy76hR5xk1Kpz9++svM6YqWFvLOX68E0FBx7nzzvMcP96J9u2tqnz8xb+jubQ1llY9Pehwt/lG4+p64xTflkZ2ciHzJu/k/K4UJBLodbcvj/3Sv8zvfcMz29j/zXEkEgnDPx5A/5d68CTQzn4bJ9ItGN5+F1vODKDbhHMcXJnG64NXovjGCh9rB7q7+BJ3AwluZXh0cSXhQDKSPCMniAfgs9Pbyow5kh5HHzdzP0pmcSESruqJA21deDioL+tiT7I25iSuFjbMDO1fpul1mHcIWoOePy4eolCvpbWdC8+0G4xCKisds3ZtBidPFjJihD1hYdULhYyN1RATU8zw4faiD6mJI4oRgaCJEXk4jUOrYvEKtWPIo+U/CY4c6ciQIXZs25bD0qVp9eKIWh18fdVs2xbKgAFn6dXrNDExXXB2rlzyWYLRaGTplA1I5VLu2zC+9PGBA21ZsSKD+PjiFr3Hr9Xo+f7R/ez98xImI7Tu5cKzywaWSWHOis3hh4HLyI7Nxc7Hhod3TMbR3770+ZPpA/G32ME/Zy14bMxhFq0fzbNOv5B6Ska3uZa8sGk434XvwVld8U3cVqGusGdDLVPQdogfRxacQh6l4+EpQ8usVvwcsZ8ivba0EAF4oWN52XlXFx+6ulTeNCqRSBjr15GxfhUX1UajkYceikShkLB0afWzkV55JQ6AuXNF42pTR5SKAkET4/Nx25FI4eVNlXuKrF0bhFot4aGHLqHRNH6zZ9++dvz2W2sKCox07HgSrfbmc1r76D9ososZ+k7fMmZcJW6sX3994wbJ5orRaGTVOyeYYb+YPb9fwtnXmrf2jODd/aPKFCJ7Pj/CZ4E/kB2bS88nwvhf7GNlChEAuVzOyaR+OEk0/LRBw8cvneOjhHtRSwwc25zBrj/Pci4riU5O3hXOJcC2gr6O7GQCbJ1pPcwPALvzEJ6dcnX+JhPnr4ypb2bPjiMry8Crr1Y9f+Za/vorEzc3RbVXVAQNjyhGBIImxNLXjpKVWMiwp0Jw8a083tzaWs6CBQEUFRmZMOF8A86wcqZNc+WNN7xJStLRq9fpG45NPZfO0Z/O4OBvx8DZPcs8N2iQHQqFhL/+yqrP6TYK+5ZF8ajLUlbOOYFSLWPmb/34KmoiQX2v9jNocjUs6PY7m1/YgcpGyWP77mHs/MoLU0dnNTuPdMUSPXM+TefnxWd5eG1fJMBPj+zHBSv6XlnBWBN9gp8j9pUeO9CjDemafFZFHye5MIcdiRc4mhbHUK8gVFZK5GoZVof07EmOZH9KFEmFOSyOPIzWqC+zKlIfZGbq+PzzRFxc5Lz1VvVXNpYvT6ewUITiNRdEMSIQNBGykwtZ/9EZbJxV3PdF95uOryzZtzF55x0fJk924vjxghsWSb+NWg3A/ZVYvrdrZ8HFi0UtRuIbeTiN59qs4uspuyjO1zP+9Y58nzmVAfe1LjPuzKoLzHX7loSjKQSNCmB22pP49L65CiS0iz1LlrRFgonZj2fyo/Ykdk/JKC6SkTgiGdmVfokcbRGZxYWlxzmrrXmq3SDCs5J599hm/k04z31te9LOwXxNGw9rdOGFTAzozF+xp3jv2GYuF2TxTLvB2Cot6vAVKs+kSeb8md9+a1Oj4z/4IB6pFN54w+vmgwWNjugZEQiaCB+P3obRYOL5VYOr3Gy3eXMIXl5HuPvuCNLTuzeJJr2lS4OIjDzJ6tWZvPpqLB984Fvm+R1zD5AVk0vXGe1xDanYEXPiRCdOnChk3bpMxo+v/+2A+iIzsZCvJu8gYk8qEgn0nuLHoz/2Kxd0qNcbWTJhHef/uoRcJWPqijG0n1g95cjIKV58dC6fF95NZd0kVyISe/HekuWkZEj4YuhfPL91LA8G9S53XInhWUW4hDiSFZ1Df9c2DPZsuEykgwfz2LYtl27drBg+vOr5MyXk5uo5daqQbt2ssGzAUElBzWn8dy6BQMDeJVFEH82g03Czp0hVuT7Zt6lw4EAHvLwUzJ2bwK+/Xu03KEgvZNube1Hbqxj33R2VHv/kkx5A85X4ajV6vpm2i6e8lxOxJ5W2fVz5Ou5unlkyqFwhcq1k17OrKy8nz6x2IVLC0+8E8fhES7JNSjp57+O96CmoJTqObEtn3y/VN8vz6WNeIYnbE1+j+dSUSZMiapQ/U0JJKN5bb4lQvOaCKEYEgkZGr9Xz/SP7UKikPLdq8M0PuI7SZN9f0zhxIr8eZlh95HIpp06FYW0t5aGHLrF7dw4Av41ejVFvYsryMTdcxbG3l+PiImffvuYl8TUajax46zgz7Bazd3EULv7WvHtgFG/vHYmTd3nJ8/qnt7Ko92KKc7QM/3gATx65H0v78u6j1eGrFV0Z1RkSDZZ089zDC5vuQIKJRdP3UpBdvSiBtiPMfSEX/46p1ZyqwzffJBEXp2X6dNcaq6l+/z0NGxspI0eKULzmgihGBIJG5ptpuyku0PPAVz3LfWquKps3hwIwenTjW8WX4Oio4NChjkilEoYOPceWb84QfzCZwKG+tLnd76bHDxxoR3a2gcREbf1Ptg7YuySKR52Xsvrtkygt5Tz5R3/mXZpI657lpddZsTl84vcdB745gV0rG2ZFzqD/Sz3qbC5/HetHNzcNEfmWPPZYNAOn+KBFxkvei6t1Ho8wF5BA/MGGUTZptUZeeikGKyspCxfWrEF2794cMjL0TJggQvGaE6IYEQgakagj6RxcGYtXSMWeIlWlTRsLnn7ag4QEHa+8ElN3E6wlISGWbNgQjE5nYsbTCZiUcu5Zc2eVjp05s0Ti2/jW9zci8mAazwau5Jt7dlFcoOeuOZ34PmMK/aZVHOZWFcluXXAwcRABFoXsj1OwNc4KdxcpWQVSPh20rsrnkEqlqO1UpF9oGGXT9OmRaDSmaufPXMsbb1wGKNerJGjaSEwmk6mxJ3EzcnNzsbOzIycnB1tb28aejkBQZzzhvZzspEK+iJyAm3/lUt6qYDQa8fQ8SlqajqioLvj61m65vy55ovNGvjthRysnuJTap8qNtkrlfgID1YSHd67nGVafjPgCvpq8kwv7zM2pfaYG8OiPfVCqK17d0uRq+Om2FSQcTUFtr+KBTROqpJSpDUWFOgJsdpFmVPH8NEvSFx9Da5Ly+Pc96f9wuyqd45vOv5J6NoN3tLPqda7R0RoCA48REKAiMrJmicB6vRELiwMEBKiJiOhSxzMU1ISq3r/FyohA0Egsf+MYWQmF3PFkcK0LETB/il2/PrjJJPuWEHcwEYcT4YxyTCYmQ8qgQWerfGxoaNOT+GoK9Xw1dQdP+6zgwr5Ugvq58k38JJ76c0Clhci1kt3g0VWX7NYWC0sFByN6YouWr/4sIOjhTkgw8cMj+8lNL7z5CQD3MFcMOiMFVRxfU8aNq3n+TAmff56IXg+zZolQvOaGKEYEgkYgJ7WIdXNPY+2k4v4v665XoKkl+xqNRv4ctxaJVMKvx+9g+HB7du/OY8aMyCodP3GiEwYDrF/f+AZoRqOR5W8c4xGHxexfGoNrgA3vHhrFW7tH4uhpWeExer2R38euYcnEv8AEU1eM4b71d9V4C6Im+LS2Zv0/7VFg4L3vCwkY7IkWGS/7LqnS8QGDzIqUiI1R9TbHNWvSOXWqkJEjq58/cy0LFqSgVEp45BFhdNbcEMWIQNAIfDxqK0aDiedWDqpzb5CmlOz7zyu7yE8upO+srtj72LJxYzDBwRb89FMqH398c7loiTX899+n3GRk/bL7j0gecVrKmvdOobKS8/TSAXwZOYHW3SvPBYo7mMhcl/mcX197yW5t6Xu7K99+5YseCV9vV+PgJCW7UMbH/dfe9NigUeZG0qgdl+tlbkajkRkzLqFQSFi2rPr5MyVER2uIjS3m9tvtmoTfjqB6iN+YQNDA7FsWRdSRDDoO86TdII86P39Jsq9OZ2LUqMbbrsmOy2XPZ0exdrdk2EcDAPNW0vHjnXB2lvPyy3GsXp1+w3M4OioaVeJ7YX8qzwSsZMF9e9AW6Zn4dhjfpU+hz+QbKz1KJbt5WoZ/OrBOJLu15b6n/Xn5MXvyULAq0xslOk7uyWTnwhtb91s5WyJTSEk6UT+eL6+8Ys6fee01b6yta25Q9r//xQLw4YeicbU5IooRgaAB0Wv1fDfD7Cny/Orb6u065mRfWw4cyGfZshvf8OuLX0euwmQ0MW3tuDKfVNVqKSdPhqFWS5g06QLHjt3YG2XAAFuyshpW4psel88bvTcyp88m0mPz6XdvAD9m38OEN8Nu+Kk7Mzq7rGT34gz6v3Bza/+G4u2FHZkySE6aSc0uuS8mTPw08yA5yTf+HVi5WpIdk1vn87k2f2bOnNoZlG3cmIW7u4L27cv7uQiaPqIYEQgakPn3mj1F7p9Xc0+RqrJ2bTBqteSKXLJhG0APLjpB6tkMQu9qg0/P8s2Enp5Kdu9uj8kE/fqdITm58kKjROL7zTf173WhKdQzb9J2nvFbSeSBNIL7u/HN5Uk8+Xvlzakl7PnsMJ+3+bHeJbu15Y/tvRgQoCdGb80ZpTtaZLwSsOyGxzi1dUCTU1znjcR33x2BwQC//16z/JkSlixJo6jIyMMPi16R5oooRgSCBiLqWAYHVsTiGWzH0Mfqv3fg2mTfiRMbLtlXk69l47PbUVgpmLxkVKXjunWzYdmythQVGenY8USlBdOQIfYoFBLWrs2sryljNBpZ+upRHrZfzIEVsbi1tuX9w6OZs2tEpc2pJZSm7L64s0opu02BHZcGEmpbxGmtA3EyO7KLZHzYe3Wl41v19AATJJ1Iq7M5HDyYx3//5dK9uxXDhlU/f+Za5s5NQCqF114T9u/NFVGMCAQNxGdjtyGRwP82NdyNqiTZd+PGhkv2XTx+HYZiAxN+GoZceePVhIkTnfngAx/S0vR07Xqy0k/eISEWXLhQPxLfnb9G8rDjEtbNPY2FjYJnlg3kiwt3EdDt5gF9jSXZrQtOZgzEW17IfoMb6ag4dSCbbV+frHBsm2F+AFzYXHeKmrvvNufPrF5ds/yZErKz9Zw5U0iPHtao1eKW1lwRvzmBoAFY8dZxMhMKub2OPEWqw+bNIcjl5jf/+vbruPhvDJe2xuLdw50Ok6p2k5k925v773fh3Lkixo6teAVnwgSzxHfDhuw6m+v5Pck87beShQ/uQa8xcPd7nfkufQq9J/nf9Fi93sjvY1Y3qmS3tsjlck4m9cNJomEH3uSg5NdnDpOVWLZZuChbg3sXNwDi9tWNXPzrrxO5fFnLQw/VPH+mhDfeiBOheC0A4cAqENQzOalFPOG5HEt7JYtSJzeK7HDu3HhefTWOBx904eefa7c/XxlGo5H3neajzdfyStJMrJxvvL1xPX37nmLfvnyef96Dzz8vWxBkZupwcjrM6NEOrF8fUqt5psXmMW/STi4dSkcihX73BvLo971vuopTQtzBRH4dvgpNdjGeXV2ZvnVSoytlasO5o9n07nYcHVJuJw4PdTELix6muFDP56P+JmVfLEMfC+Loz2ewcrHkxahHanU9rdaInd1BZDIJ2dk9al3AOTkdRK+HnJyetTqPoH4QDqwCQRPh49HbzJ4iywc2mv9BQyT7rnvsXzTZxQx5p2+1CxGA3bvb4+ur4osvkli0KLnMc46OCpyd5ezdW3NFhyZfyxcTt/OM/youHUonZKAbCxIm8cSv/atciPz11FYW9Wpakt3aEtrVnsWLzQXqTrxJ0yh5q+NynvddxqkdaWRqlUTvjseulQ15SbX/23nwQXP+zNdf1zx/poQ9e3LIzDRw990iFK+5I4oRgaAe2b88mqjD6XS4w5N2tzVuL8HVZN+6b2ZNDc/gyI+nsfezZdDsXjU6h1Qq5dSpTtjaypg5M6pcj0uJxPdGypuKMBqNLH75CA87LuXQqlg82tjy/tExvLljBPbuVSuaSiS7B+efwN7XtslJdmvLqKnefPi6G4XI2YMH504XkJVufp11yEk6m4lrOyf0GgPFBTWXWF+6VMTSpem0bq1i+nS3Ws/7tdfiAPjgA59an0vQuIhiRCCoJ/RaPYse2otcJWXWqkGNPZ1rkn21zJ4dU6fn/m2UWYlx/4bxtTqPra2cY8c6olBIGDEinIiIq3kojz9uvnl9/XXVJb7bf7zAww5LWP/xGSztFDy3chCfR9xFQJeqf5LefZ1k96WYR5ukZLe2PPNuMFPaFZKOBYdwx4Sk9LkCnRznIEcAIv+OqfE1xo+PwGSCVatq17QK5u2evXvzCA62wNVVWevzCRoXUYwIBPXE/Pv3UFyg577Pu6O2bhpvll984Yubm4KPP04kNlZTJ+fc+eFBsqJz6Dq9PW7tKrdHryqBgRb8/Xcoer2J7t1Pk52tB+D22x2Qy6sm8Q3flcxTviv47uF96LVGJn/Qhe/SptJzgl+V51GYrWF+t9/Y0owkuzVFX6zn21Hr0Z1NpBfJxGLHaUoKNhOFKLBxM5uJXdoWW6NrrFqVzunThYwaZU/HjrU3Jvvss0QMBnjxxeahXhLcGNHAKhDUA1HHMnit63o8g+34LLx2qwV1zeHDefTocZrgYAvCwzvX6lwF6YV86LEQpbWC1zKerNOemB9/TOHhhy/RqpWSqKguyOVSOnU6wdmzhWi1vSq8Vkp0Hl9N2kHUkQwkUhjwQGseXtiryj0hJZxZFcGKezeh1xgIHh3A1DXjmpVSprr8/sRuNn1bEl4o4Tz2nMCVbqTQmhxkGGl/pw1562NRBtji8UHlzaJKhYw+YZ609XMsfcxoNOLkdJiCAiOZmd1rZftego/PEVJTdRQW9hRZNE0Y0cAqEDQin4274imyYUhjT6UcdZns+/uYNRj1RqYsHV3nN4QZM9z43/88uXxZS79+Z4CrEt9Nm7LLjNXka/n8rv94LnAVUUcyCB3szrdJk3n8p37VKkT0eiO/jVnNkonrm61ktyYc+TsFrtmWCSKbtmRxFFcSsMKAlNxzuUisFehSisgv1FX6lZmjYd+Jsn9XL78cR3a2gddfr13+TAkXLxZx+bKWYcPsRSHSQhC/RYGgjln59gkyLxcydGYwboFNcyWvLpJ9z6yM4PKBJAKG+NBm2M29OWrCRx/5ceedDhw8mM+0aRd48klz30hJiq/RaOSPlw7zsMMSDq+JwzPIjrknxvDGf8Oxc7Wo1rVKUnYjNkQ1espuQ/PeodHc93l3XAPMHjgSTISRhhf57MODDFTkxmlRuFtiytdhbamo8EtypZ7R6gyl587M1PHFF4m4uip488268QJ55RXzVtHcuSIUr6VQv+EYAsEtRk5qEWvePYm1o4oHv+7R2NOplJJk31GjzjNqVDj793es1vF6rZ6VD25BppIxbe24+pnkFVavDqJz51MsXpxOUJAFzs5y9uzJ478fIvh91hE0eTpsXFQ8sqgP3cfX7Ob015NbObjgBBKZhOGfDmxRSpmqYOOkZuTz7RjxXCjhO5NZ+MoB0g7l0MuUxA5asQsvLIp1DBnoxpELp5nQ2Qen1uUt3L9bcZL8wrLF7cSJ5vyZP/5oXSdzNRqNbNqUhaengtDQ6kvIBU0TsTIiENQhn4wxe4o804ieIlWlNsm+y6dtQlegY9SXg+u9OVcqlXL4cEfc3BTMmXMZT0fIytSx4JEDGHRGpsztynepU2tUiGRGZ/Ox7yIOLmiZkt3qIpFICB3kQfsXAgibF0zbKR7cYZ2CEiP/4cO/f5mzac5vuFSl8+3fn8f27bn06GHN7bfXLn+mhMWL09FoTDzySO2lwYKmQ9N+txQImhEHVkZz6VA67Yd60GFI8+jwr0myb9zBRM6uvIBrqBM9Hw+r3wleQamUsnVdADZSHREXNJiQYAzz46ecqdz5SocanbNEspsTl9eiJbs1RWErx/cud37Pmcprj1qhQ8qKFHd0SMi4mF2lc0yebM6fWbOm9lLeEj780ByKN3u2d52dU9D4iGJEIKgD9HojCx/ci1wp5YU1gxt7OlWmusm+JpOJP8etRSKVcP+muxpghlCYq+XTcdt4v/d6BhvjrvhfmDhTYF1tlQxckex2vTUku3WBVCrh5UXdee1ZZ4xIWEIoBZnFNz1u3jxz/syMGa54etbN6llmpo6zZ4vo1csalUrcvloS4rcpENQBC+7bRXGBnns/azqeIlWlOsm+f7+yi/zkQvo+3wUHX7t6nZfRaOT3WYd4xGkJR9ddxivYjq9OjmTFunaAhIsXi8nPr54b6JmVEXzk/i2Jx1KbXcpuY/PGl6E8Nsma+GAP7kvxJzO78sZnrdbIK6/EYmUlZcGCgDqbw+uvmx1X33lHOK62NGpUjMyfPx8/Pz/UajU9e/bk0KFDVTpu6dKlSCQSxo0bV5PLCgRNkpgTGexfGoNHkC3DnqpdiFtjUZVk3+y4XPZ8egRrN0uGfTywXuezdVEEM+wWs+mLc1g7qnhx3W18em48vh2dGDvWkTvuMBdCQUEnq5REXCrZvXs9cOtIduuaD5b1xMZJgsFRhcd9MfxYiQHdbwu0aDQm5s+vff7MtSxZko6dnYwhQ+zr7JyCpkG1/0qWLVvGrFmzmDNnDseOHaNTp04MGzaM1NTUGx4XExPDiy++SP/+/Ws8WYGgKfLpWLOnyMsbm+9Sv6urknfe8SEry8CMGRU3J/42ajUmo4lpa8fVW3PumW2JPOm9nB8f34/BYOKej7uyKGUKXceW/ST855/mYLfERB3DhoXf8JxxB25dyW59sH5RG5BIkErh4T+yCL77Aqu3ZqIpNheF6SlGDu8z0KaNmgceqLsm0//+yyE728CUKSIUryVSbQfWnj170r17d7755hvAvJTaqlUrnn76aV555ZUKjzEYDAwYMICHHnqI3bt3k52dzdq1a6t8TeHAKmiqrHrnBCvnnGDozCBmLOjd2NOpNa1bHyUqqphjxzoSFmZd+vih706y7rF/CR3fmmmrx9X5dZMu5vDV5J3EHM9EKpMw6KHWTF/Q+4afqp2dD5GTo0evh5kz3ViwILDcmGslu8M+GnBLK2WqQ4lE19pSwaN3dyrzXIHGiPV9MTwzwoYLpwrZEqMDhRRMJiRaI6Z8A+Qb6BykpkOgihBfFZ2D1AzsaoW6Fn0e/fufZs+ePNLSuuHs3Ly2Qm9lqnr/rlb3l1ar5ejRo8yePbv0MalUytChQ9m/f3+lx73zzju4uroyY8YMdu/efdPrFBcXU1x8tUEqN7fmseECQX2Rm65h9bsnsXJUMv2byu2xmxObN4cSFHSc0aPPEx/fDYDiAi0bn/kPhaWcyUtH1+n1CnO1zJ+2i2Mb48EEHW735KnFA7B1Vt/02P79bVi7Ngt/fxXffptCUJAFzz5r7v/IjM7mh0HLyInLw97XlhnbJwmlTB1hpZaiUsA/JzWEz/MlZEok5w2ARIJJJQOVDBxMHC+E42eK4awWNuURokrl3B/lC8aqoNUa2b8/j5AQC1GItFCqVaamp6djMBhwcyu79Obm5kZycnKFx+zZs4cff/yR77//vsrXmTt3LnZ2dqVfrVrVjWufQFCXfDJ6K0a9iWeWDmryniJVpaJk38V3rUNfbGD8T8NrpF6pCKPRyK/PHuQRpyUc2xCPd6g9H52+k1f/uaNKhQjAY4+5AzBpkhMODjKefz6GjRszy0p2nxSS3frAx0lObLo5wPDoz/4oNAa4dpFdKjF/Sa5azI/vbX39aarMhx8mYDDAyy+LZuOWSr2+g+bl5XHffffx/fff4+zsXOXjZs+eTU5OTunX5cuX63GWAkH1ObgqlsiD6bQb4kHH21vWG+QXX/ji6mpO9t35RySR/8Ti3d2dTpPrxivinwXhPGS7mC1fhWPjpOKl9UP45Mw4fNpXzxTrjjvskMth48Zsjh/vhFIhYdLo06x8cZ9Zsrv/HsZ+03z7eJoyXQNUFGlNZOXpsbSQMWecXZnCowxGE74SI+8/WfP+ke++S0GlknDffbVPhRY0Tar1McfZ2RmZTEZKSkqZx1NSUnB3dy83/tKlS8TExDBmzJjSx0o63+VyOREREQQGll+2U6lUqFSq6kxNIGgwzJ4iu5Erpcxa3Xw8RaqKVCplw4ZgevQ4zRMPhHOXXMJ9G2qfPHzq30QWPriHrMRClBYy7v2sG6Nmta/VPIODLTl/vpCcgzE8bDrOL4Tym6wT58N74eZetRUWQeUUFOn4bsXJco+r9XLAgmcWRNA/QI8FRkhSgZvKvCJSgskEBhP/fl5zg7Lw8EISErSMG+fQYlYgBeWp1m9WqVTStWtXtm3bVvqY0Whk27Zt9O5dvnkvODiY06dPc+LEidKvsWPHMnjwYE6cOCG2XwTNkoUP7EGTr2fap92wtG2Z+9fdu9twR0Ah54xOFN7RHWtXqxqfKzEih1fC1jH3jn/ISSliyONB/Jg7rVaFSAnj7nRAr4f5k7fiJCvmrWfsyTYo6dzlNFpt1RxlBeVRKmSAuZaoKJm3jUMRYOJkvJT8Qh0LPtXAybzyJ5JIQCGl44MxnIoorNFcZs82h+J9+KEIxWvJVHsDeNasWTzwwAN069aNHj168OWXX1JQUMD06dMBuP/++/Hy8mLu3Lmo1Wraty/7hmNvbw9Q7nGBoDkQeyqDvYuj8Ghry/CnQxt7OvVGangGXaNOcFwSxtf/WvFapg5HR0W1zpGfXcz8abs5sSkegI7DPHl68QCsHetmxSJufyLGrzcgoxMRdj58EXMHlvZqcu3iePfdeHr1Os2xY51ufiJBOfqEebLvRGKZ9N1rsQaUMkjKU5ByWcKl8yb8W5swGIuIk1iYixCjCW+pEWOhkUR7OZ1mJTA6UMH6r/yqPA+j0ciWLdl4eysJChKheC2ZahcjkydPJi0tjTfffJPk5GTCwsLYsmVLaVNrXFycWEoTtFg+GfOf2VNkU8vuRfht9GokEvhyfiDTnkiqVrKvXm/k9+cPsfXbCIwGE6062PPsskF4hdjX2fyulew6Wpo4I3fH0t5c5Lzzjg8XLhSxbFkGEyacZ9WqustFuVVo6+dIWz/HG475av9lLibpWLzIhFQKe3Z2QS8Bv5lxmOQgMZjY+lkrgvzUfPZrKi/+nsWGJCPqweHsW+BLl5CbFxe//ppGcbGJxx4ToXgtnWr7jDQGwmdE0BRY/d4JVrxxgiGPteXhhX0aezr1xq6PDvL3K7vpMr09E34aztChZ9i2LZelS9syefKNG9G3fH2OpbOPUVygx97dgsd+6kvYiLoLNKtIsjtjVhJr12aRmtoNF5er22bdu5/kyJECZs/24oMPxBL/lj3RnLuUAYBUIkGtkuHsYEGwvxPtWjshqawBtRIeWpDGz//lwrpUHpvhwsKFrQG4f048v5/T8nxvCz6f5VE6XqPR0/buS1yWy0BrYlRAPj+9HYSrY+VFSWjocS5cKKKwsBdKpfiQ2xyp6v1bFCMCQRXITdcw02MZFjYKvkuf0mJX/wrSC/nQYyFKawWvZTyJVColP1+Pi8thJBIJmZk9UKvL/+wn/45n4fS9ZCcVobKUMfmDrox4tm63sXZ/epi/X9mFyWCi11NhjPnavDq1eXMWI0eG8+ab3rz99lWnVr3eiJ/fURISdPzyS2CduoE2R7bsiaZQo2NYX3+MRhOFGh0xCbkcOp2El5s1425rg1Ra9YJk6e48pn6VhvJQNgWXwkoN6oxGI3uOFzKga8VS3q//TOO5XzIw2iuxyCxm5zwfurcv35OUnq7FxeUI/frZsHt3zZKZBY1PvZieCQS3Kp+M2YZRb+LpJQNabCEC8PuYNRj1RiYvGV36c5Yk+z700CUmTjzPhg1Xi4yE8GzmTd7B5dPZSGUSbn8imPvn9ajTPJLCbA0/D1lO4rFU1PYqHtg8AZ9eV+XUw4aZJb6rV2eWKUbkcimnToXh63uU6dMv4e+vZsCA+g33a+rIpFKsLMy9PzZWStycrPBwsWLlPxc4G5lOh7YuaLR6dh2J51JcNgajETcnKwZ1b4XLlRWMfScSuBSXzbrFBtBb0n20gi17orm9jy8qpRypVEr/LlbsP5nI6QtpFGn0ONqp6dfVG38vO56e5kKxNoYlW5Ucs7Wi5+xE7milYcuCsgXHq6+aQ/HefVeE4t0KtNx3VYGgjji8JpbIA2m0u82DTsPqbsuhqXFmZQSXDyQRcJsPbYf7l3nu2mTf//7LIT+rmA9H/MuLoWu5fDqbTiO8WJQ+hYfm96rTQqRMyu6YQHPKbq+yvi7XSnyvD81zdFRw6FBHZDIJt99+juhoTZ3NraXg42GLi4MFF+OyANiw4xKFRTrGD23DtNGhuDpasuKfCxQV60uPiU/UsOGvfOQaAwlGa1IzC9l2IK70+WPnUjh6NoUB3Vpx39h2+HrZse6/SLJyza//vWNCmXaHjk/GqqDIwN9pVigHh7PnWH7pOZYvz8DBQcagQbd2AXmrIIoRgeAG6PVGFjywx+wpsqbleYqUoNfqWfXgFmQqGdPWjatwzObNIchlMGHkKR51XsrJLQn4dHTgs/PjeWXT7Vjb1503kF5v5LfRV1J2JVdSdv8aX2mhM368I3o9/PNPTrnnQkIs2bAhGJ3ORJcuJ8nN1VdwhlsbRzs1uflaElLySE4vZPSgQNydrXCwVTOweytUShkXY7NKx29YoUOrgTaBauIzTQzu6UNETCYFRToAjpxNoXt7d4L9HXG0UzOgqzcuDhYcO2f2qLJQmxfl77/TCe2W1gTo9OjsFPR/M4lBj0SxdWsWOTkGpk6tulmmoHkjtmkEghuw6ME9aPJ0PPBVjxbrKQKw4t5NaAt0jJk/BLV1xT/n0cUX6StNYmexB5EWTny/JqxeVori9ify68hVaLKL8erqxoNb7y5VylTGU0+58+678SxalMzw4eWdXIcNc+Cbb/x58slowsJOEhnZuUVvt1UXEyAB0rKK0OkNfLv0RJnn9QYj2XnmvLCD+wvZv93ImDEO+HS2InxLLnlaJSYTZOZokMukFBTp8HQt2zPi5WpNWlZRuWvL5XIurW3Lj6szeGR+GjuzZex8IxEUErFFcwshihGBoBJiT2WwZ3EU7m1sWrSnSPzhJM6suIBLiBO9nuhc7vnjmy6zaMZecpI1+FnJibaDIxmOmNzs63wu10p2R3w6kH5VTNl1dVXi6Chn9+4KjLeu8MQTHkREaPjqqyQGDTrLrl2iKbKEzBwNtjYqtDoDVhYK7h4WVG6MWinDaDTyyQcZOLrAn3+24WCUlm+25LLmcCE2tZzDjLuceGCsHcETL3HJVQV3ODP2xcvs+SmglmcWNAfERwOBoBI+HfsfEuB/G1u2p8jvd65FIpXwwOa7yjx++WwWL3VYy8ejtpGXVsywp4P5Ifsetu4zFyyjR5+vszlkRmfzse8iDi44gb2vLbMiZ1S5ECmhf38bMjL0pKdrKx0zb54/w4fbs3t3Hg89dLG2024RxCXlkp5VRBsfB9ycLCko0iGVSnCwVZf5slArePHFWJLijdx1rxykRga3VyMBdp/NRyIxb/eolDKsLBQkpuaXuU5Caj6OduYVLtkV1c71Yk65XM69YRbwTzoUGNibB/LB4fy7TyS3t3REMSIQVMCa90+SHlvA4Ifb4NGm5TbQbXl5J/lJBfR5rgsOvuafMz9TwwfD/uF/7dcRfyabzqO8+S5jKg9+ZW5OrSjZtzbs/vRqym6vp66k7PrZV/s8jz5qlu5+803FCeIlbNwYTHCwBT//nMbHH8fXZMrNFoPRSEGRjrwCLSkZBRw8lcS6/yIJ8LYjNNAJHw9bPF2s+eu/SGIScsjJLyYxNZ89x+IJv5jDV18l4R8oo0MXOVv2RJORrcHVFuLTNLT1dSxV6nRv787hM8lERGeSmaNh99F40rKK6BJq/h1ZqhXIZVJiEnIoKNJRrL3ax/PddymoMVH8dwAh6DHYKrhjbgq9HrjUKK+ZoGEQPiMCwXXkZWh43H0ZamsF32e0XE+RnPg8PvH9DktnC15JehyjEX556gDbf7iI0WDCN8yBZ5cPqrAYMxqNeHgcJT1dR1RUF3x9q2/xXk6yu2UCPj1rnoBsNBpRqQ4QEmLJqVNhNxyr0Rhp1eoI6el6Vq1qy113tfxGyetNz1QqGS4VmJ5pdQb2HEvgYmwWRcV6rCwUeLlZ88mcfHZsz2fRb25Y2Gno2NaFA6eSWHFczr5YFek/+mBpYe43MplMHDiZxOmLaRRq9DhdI+0t4fSFNA6cSiK/UIuXqzWThgdz9mwB7dufZMIER1auNDvnLt2czbRPkjE6KZGla9nwrifD+4n7QHNBmJ4JBDVkTt+NXNiXxitbhrZoKe9XHX8h5XQ6j+27h9P7M1n++nG0RQYcvCyZ+Us/Ogy9cWFw+HAePXqcJjjYgvDw8r0mN+L0ighW3rcJfbGB4LGBTF11Z51Igtu3P05ERBHFxb1uWkQmJmoJDDyKTmfi0KGOdOlSsUmXAPbuzaFfv7P06mXNZ986cSkum/vGtgNg9p8ZfLg2h0NzPeneuna5Q2PGhLNhQxYXLnSmTRuL0sf1ej2dp0VzRiMBE3SxhaN/tK7VtQQNQ1Xv3y3zI59AUEMOr4vlwr40Qge7t+hC5PD3p0g5nY5zLx/eH7eLP144gkQq4aEFvVgQP+mmhQiYk30nT3bi/Pki5s1LrNJ1SyS7SyddkeyuHMN96yqX7FaXEonvv/+Wl/hej6enkt27zYGd/fqdITm58l6TW50pUy4ilVJhzs+Enmb31JUHCmp1DaPRyD//ZNOqlbJMIQLmXpLTy9qw4klnpPl6jhVLkd92nnXbs2t1TUHTQRQjAsEV9Hoj395n9hR5Ye1tjT2dekNbqGX1U/+RKrHh0IFC8jOLGf5cCD/l3sPtM6sXKvfHH22wtZXx0kuxZGbqbjg2bn8ic13mE7ExCq9ubrySPJP2E8qrNmrD00+bs1AWLUqp0vhu3WxYurQtRUVGOnY8gUZjvPlBtxiff55IfLyWRx5xw9OzvOy7S4ASqQR2h9fOUO6nn9LQak3MnOle6ZiJd9hT/E9rwhRGDNZyxn2RTtjUSPR64R3T3BHFiEBwhUUP7aUoT8c9H3VtsZ4iuekaXmq1mFitLfkmJV3GtuL7jKk88EXPGvXGyOVSlixpg05nYvTo8ArHmEwm/npyK4v6LKY4T8uIzwbxxOH7sLCr3ZJ+RZRIfHftqrr6YuJEZz74wIe0ND1du54s5+J6K6PRGHnttVisraXMn2925e0T5lW6RQNmB1wXWxkRiTcuRm/Gp58mIJPBSy/deFVOLpdzfHFr1j7vjCxfz0m9FNUdkaz6N7tW1xc0LqIYEQiAuDNZ7PnjEm6tbRjxXLubH9DM0OuNfPfIXh53W0pqpgk7SxNfRk7gpXVDal14jRzpyJAhtuzfn8+yZellnsuMzuYTv+9KJbsvXHqYfrO61ep6N6Nfv5tLfK9n9mxvHnjAhXPnihg7tu4ky82d+++/iEZjYv78AGSyym8X7VopyMo31riQS07WEhGhoV8/mypv2d052B79f8F0URoxWsuZ+E067SddFKskzRRRjAgEwCejtwHwvw0tz1Nk/Senecj2T7b/cBELkw4faTafRE/BLbDumsHXrg1GrZYwfXpk6VbH7k8OXSPZ7cxLMY+Wyofrk0ceMctH58+v2lZNCb/80oa+fW3YuDGbWbOi62NqzYqLF4tYuTKDtm3V3H+/6w3HDm5ngQnYfqZmWzWvv27OtXnvveo7rh79szUbX3JBlqvnrEmG6o5Ilm7OrtE8BI2HKEYEtzxr554iPTafwTPa4BnUcjxFDq+L5THXpSz+31FkMgk9+tngbsph+Nu9sHYtH9leG0qSfYuKjNx15znmd/2NLf/bhcpGyWMH7mHM10Pq9Ho3YuRIe2QyWLUqo9rH7trVDl9fFV98kcSiRTf2K2npjB9/HpMJVq++eV/P3b3Nf09rDxfW6ForVmTg6CinX7+a/f8b2d8O/fZgeliYMFrJmLowndC7L4hVkmaEKEYEtzT5mRpWvnkcS3slDy/q3djTqRNiT2XwQsgaPh+3nfysYkbNCuXDQ8NI3xuNva8tg1+vn59z+nQ3OvrDP/9kc+ZYDsFjr6Ts1sI7pCZIpVKCgiwIDy+fg1KVY0+d6oSdnYyZM6PYti277ifYDFi+PJ2zZ4u4804H2rW7eeEa5KVELoV9EdVfGdm8OYvcXAPTptXe6+Xgb4H8M9sNWa6OcOQo74jkt78ya31eQf0jihHBLc0nY//DoDfx9OIBzd7cLCe1iPeG/M0rndaTGJFDt3Gt+CFzKvd+1oM/Rq8F4P4N4+vl2nqdgd9Gr+b26ANYomO5VRemrakb75CaMG6cI3q9iX//zbr54OuwtZVz9GhHFAoJI0aEExFRs0/7zRWj0cijj15CqZSweHGbKh/n4SAjMrn6Taxvv30ZiQTeeaduQvFu72OLfnsIfazBZCXjgZ8yaXuXWCVp6jTvd1+BoBYcXhfLhb2phAxyJ2xE8/UU0Wv1LHxoDzM9lnP2vyT8uzrx5aUJvLBmCBY2SnZ9fIjMqBw6398Ot/YudX59s2R3AREbowjo5sJLb/iRWSBhxozGs+8ukfguXFi9vpESAgMt+PvvUPR6E927nyI7+9a5kb3wQiw5OQbefNMbS8uqZ6l28FGSW2RCo616E6tGY+Tw4Xzat7fE3r5uc1v3/hzAzjc9kOfouSiToxwWyY+rq791J2gYRDEiuCXR6418e/8eZAopL65rvp4i6z48zUN2S9j5cySOXha8vn0YHxwZg5u/OUO1MLOIf1/bg9pOyV0/DavTa5eR7OZrGfG5WbL7xjv+BAaq+PXXNE6erJ0RVk1xd1fi4CCrlsT3egYNsuP77wPJyzN7kOj1LV/ym56u5euvk3B3V/Daa62qdeztHc1GZZuOVX177N13L2M0wmuv1c+HgQHdrdFtD2aAHZgsZDz8WxaB48QqSVNEFCOCW5LvZuylKFfH1A+7NEtPkcNrYnnUZQlLZx9FrpDyyPe9+SZuEu0GeZQZ99voNRj1RiYtGVOn21AVSnafvyrZ3bw5FIBRoyr2HmkI+va1JT1df1MzthsxY4Yb//ufJ5cva+nX70wdzq5pMmFCBAYD/Pln22ofO6mP2U5/w7Gqb2v99FMqFhZSJk+u32ygnT8EsPsdDxQ5OqIU5lWShdfJ0AWNiyhGBLcccWey2P37JdwCbRg1q31jT6daxJzIYFbwaj6/azuFOVpGv9SeH7KnctvD5RUPZ1Zd4PL+RPwHtyJohH+dzaEqkt26TvatCSUS35ul+N6Mjz7yY9w4Bw4ezGfatAt1MbUmyd69OezalUfv3tbcdlv1VS2ejnKUcjh0sWpNrKdOFZCcrGP0aIdqX6sm9OtijXZ7CEOczKskM5dk4zc2QqySNBFEUJ7gluMZ/5WkxebzWfj4ZiPlzUktYt7knYTvSAYJ9Bjvw8xf+6G2rnhVR6/V877jfAw6A6+mPYHatvZup9VN2a2LZN/aYDQaUSoP0K6dJSdPhtX6XJ07n+LUqULeeqsVc+ZUbwujOeDtfYSkJC0JCd1wd6/ZamHgU3EkZxso+OPmxe/IkefYvDmbqKgu+Ps37N/GwVMFDHg2Dq2zCkmWjnnTHXl6WvX6qTI1BeTri8s8Zi1X4aiuW9l8c6eq9++67RgSCJo4f318mrSYfAbNaN0sChG9Vs/3j+5n9++XMBkhoLszz60YiIuvzQ2PW3HvJrQFOsbMH1Inhcjp5edZef/maqXsSqVSNmwIpkeP0wwfHl7tZN/aIpVKadu2ZhLfis51+HBHfH2P8tZbl2nbVs3UqXXfDNxYfP55IgkJWh5/3K3GhQhAF38lKw8UkltoxNay8r8Po9HItm05+PqqGrwQAejZ0Yri7SEMfzKavwulPLMyh4+XZHJxZSBq9c1vi5maAt44sh69qWwfkVwi5d1uY0RBUgPENo3gliE/U8Py149haafgke/6NPZ0bsqa90/ykO1idv16CadWVszZPZz3D42+aSESfySZMysu4BLsSK8nalcAlEh2l07ecCVld2y1UnZrkuxbl4wb54hOZ6oTvxClUsrJk52wtJRy770XOXgwr/YTbAJoNEZefTUWG5ur+TM1ZXiYJQBrDubfcNyiRSlotSaefNKtVterLVvm+3P0Uy9U2TriLRRYjL7EZ7+m3vS4fH1xuUIEQG8yllstEVQNUYwIbhk+vfM/DDoTTzVxT5EDK6N5xHkJy18/jlwl47Gf+vJ1zN0E96s8zfRa/hi7BolUwgNbJtRqHrH7Ekolu17d3JidMpP2E6rf2FidZN+65qmnzA29335bN26qrq5K9u/vgEQCAweeIS6udkm1TYH7779IcbGJBQsCav3/YkJPczGy+cSNV6O++CIJuRyef75hDfEqokuIJZrtIYzxlIJKyotrc/EaFYFGI3pJGpKm+44sENQhR/+KI2JPKsED3Og8smnu90cdy+D5tquZd/dOinJ1jH2lPT9kTWXQ9KobT/09exd5SQX0fqZzjXNgjEYj6574l+/6Likj2a3pdk9Vkn3rC0/P2kt8r6djRyvWrAmmuNhE586nKCxsvjetCxfM+TNBQWruvffG+TNVwd5ajoVSwtGoylcHEhO1XLyooX9/20YzxauIv+b5cfJzL9TZehItFViMucSHP9bMp0ZQfZrOX4JAUE/o9Ubm37cbmULKC03QUyQ7uZC3B27mta7rSY7MpedEX37Ivoepc7tV65NqTnweuz8+jJWrJSM+G1SjuWRGZ/Op3/cc+vYk9n7lJbs15UbJvvVNnz42pKXVTuJ7PWPGOPLZZ35kZurp3PlUjdNqG5uS/JlVq26eP1NVfF3kXM6ovEB79dVYAN5/37fOrllXdAyypGh7MON9ZKCQMHtjPh4jzpPfjAvO5oIoRgQtnu8fNnuKTJnbBWt7VWNPpxStRs/8+3fzhNdyzu9KoXVPZ76OmchzKwajrobzZQm/jlyFyWjintVja7TcvvuTQ3ze+kdy4vPo/XRnXoqu25TdipJ9G4ISie+CBXUbfDdrliePPebKhQsahg1rPD+VmrJ8eTrnzlU9f6aq9GitolgHqZW41q5enYGTk5zevW/c+9SYrP7MlzNfeWORrSXZSoHNnZd4d5F5lSRXq2FN9IlKj43Pz26YSbYwRDEiaNFcPpvFrt8u4RpgzegXmoaniNFoZNU7J5hhv5g9v1/C2ceat/aM4N0Do3H2sa7ROQ//cIqU0+mE3BmIX9/quVkWZmv4psuVlF07JY/tv4fRX9V9yu61yb4TJ56v8/NXxpgxDshksHJl3VuBL1zYmsGDbdm6NYcnnmg8+/vqUtP8maowqou5b2T5/vLuuxs2ZJKXZ+S++5q+Eqlda0sK/wthcqAcFBLe/Dsfl2HneXf/P5zLrryw/ePiQc5lJTXgTFsGohgRtGg+HbsNgP9tGNrIMzGzb1kUj7osZeWcEyjVMmb+2o+voicS1LfmqgJtoZYNT29DYSln0tIx1Tr29PLzfOj+LUnHUwm5M5DZqfWbsjt9uhtdulixcWM2//2XU2/XuZYSie+5c7WX+FbE1q2htG6t4ttvUxpFMVQTZs0y58+89VarauXPVIUxXc3FyL+nyjuxloTivf120+zbqoilH/lyfr43ltla0m0UfPp+EIfXu6KWKejjFsCkgC7c4R2Cs9r8QcKAie/C91CgE6qa6iCKEUGLZf0np0mNymfgg63xCrFv1LlcOpzOc21W8fWUXRTn67nz1Q58nzmVAfe3rvW5F9/1F3qNgfE/DENZBY8EMPuX/DZqFUsnb0AigXtWjeXetVWX7NaGzZtDkMth4sTzDdZrceedZolvfRRAUqmU48c74eAg4/nnY9i4sWlH1qelafnmG3P+zOzZdZ8JY6GSYqOWcCJGW+bxwkI9R48W0KmTJba2zcviKsjfkovrPQm0TwCZhOOR/ix5uz2TfXswxCuYCf6deafraDo4mgv5IoOOfSlRjTzr5oUoRgQtkvzsYpa9dgwLOwWP/tB4niKZiYW81X8Tr/fYQOqlPHpN9uP7rHuY8n7XOpEXX/ovjot/x+DV1Y1OU0OqdEzsvgTmui4gYlM0Xt3dmZ0yk3Z3VV+yW1NcXZW8844PWVmGBkv2LUnxrSuJ7/VYW8s5frwTSqWEcePOc+ZM4wQEVoXa5M9UlQA3BYlZhjKPvftuPCZT/YXi1TcH06IZ8kA8kx4+gTqrmDSDFIeJkfyxMQuTyYRMKmWif5fS8QdSoxtxts0PUYwIWiSfjTV7ijz9Z+N4img1er6ZtounvJcTsSeVNr1d+CpmIs8uHVSj5tSKMBqNLLn7LyQyCfdvuqtK49fNLJHs6hj5xSCeOHRvnTi0VpfZs70bNNnX01OJvb2MnTvrb2vI11fN9u3tMRqhV6/TpKdrb35QA7NnTw67d+fRp0/N8meqSu+2KvQGiEq++hr89FMalpZSJk6s31C8+iKr2LztZO+qJ2qjFz885YJBIuG+nzPp93gMAO6WtjiprMqMF1QNUYwIWhzHNlzm/O4Ugvu70XlUw+5NG41GVrx1nBl2i9m7OAoXf2ve3jeSd/aNqnFzamX89cRWijI13PZmb6xdb6yGyIy6ItldeFWy2/e52kt2a0NDJ/v27WuW+GZXovKoC3r3tuG331pTUGCkY8eTaLVNS/I7ZcoFpFJYtSq4Xq8ztlvZJtZjx/JJTdUxdqxjvV63PpFLZKX/ztcVM/F2ewL9VUj0JrQXzY6zBqORIoO5AJNLZRWeR1AxohgRtCgMBiPfTNuFTCHhhb8a1lNk75IoHnVeyuq3T6K0lPPkH/2Zd2kibXvX3kzqetIiMjj83SnsfGy47c0bb0Pt+vhKym58Hr2fqXvJbk0xJ/u6N1iy78MPm5uE58+vX6XDtGmuvPmmN0lJOnr1Ol2v16oOn32WQEKCjsceq13+TFW4vaMFAP+dMTcNl3iLfPihT71etz4JsHUq/feOhEtM+iKFpGwjHw235sj2PE6dKuBYehyFerOfjb+NU2WnElSASO0VtCgWPrSHnT9Hcs/HXRnzUocGuWbkwTS+vmcnqVH5yJVSxr7cgQlvdaqz7aGDC0+w4/0DjPryNtrd1QaJRMJnrX8gMyqbZ049gFv7imWShdkafrptOUnHU1E7qHhwy0Ra9fCokznVFQ2Z7FuS4tuhgyXHj4fV23VKmDIlgmXLMrjrLsd6X4m4GRqNEXv7gyiVErKzezTI1qXDgzFYKCTEL2qFWn0Qb28lUVFd6/269YXGoOPlg2tJyZCycU0IBXkqtrzhxuAQSwICjtG1v4KApy9SoDevjDzbfjChDk3r/1tjIFJ7BbccCeHZ7PwlEtcA6wYpRDLiC/hq8k4u7EtFIoE+U/157Ke+VVa0VJWEw8nkxuezZOJftB0VgEcnZzIvZRN2f2ilhcjp5edZcf9mDMUGQu4MZMrKm6fsNgYNmewrlUpp08aCs2frR+J7PUuXBnHp0klWr87k1Vdj+eCDxnMcve8+c/7Mjz8GNlgPVZCHnMOXtCxYkIJOZyptIm6OGI0mdp3RceDvzhw6JwEkeHjlsKXgBOERjrj2MLJuiZo+rkraT9ASau9OsH3VsqQEZkQxImgxfDx6K1D/niJajZ6F0/dwYFkMJhO07evKM0sH4uRdNy6WmZqCMsmf6XFXmy4vbonmwsYoZGoZd353R7lj9Vo9f45fx4VN0cjVMu5ZNbZBlTI1oSTZd9myDObNS+TZZ+vP5+TOOx346KNEduzIYdCg+t+q2r+/A35+x5g7N4GgIDUPPNDwKbUREYWsWmXOn5k2re63DCujX4iag5FaPvzaHIr39NPN7+acU2Dk1515zNuYQ1SqHonkaiHXe0AsBfpizmUlYRVoBViwb54TDlJbvvioD1KJpPEm3gwR2zSCFsGGz87w54tHGPBgIDN/7l8v1zAajaycc4L1H59BrzXiFmjDU4sH0LpH3blJZmoKeOPI+jLx5A73pyKLKd906dHZlbt+Go5nmPkGE7M3nt9HrUaTo8WruzsPbZ3YKEqZmqDXG3F0PIxGYyQ5uRuOjop6uU5CQjHe3ke5+24nli+vuzyWG5GZqcPX9ygFBUZ27GjHgAEN26/Trt1xzp0r4uzZToSG1p3t+83Ye76Ifm8kwb4shoaq+fffdg127dpy9rKWb7bk8Mv2fIr1Jq6/S1qp4fPZSZzMvIzeZOTiP1Zsf+/q+8A99zjzww+BWFiIJlaxTSO4ZcjPLmbp7GNY2Cp49Ie+9XKN3X9E8svThyjM1mLloOTxX3rRd2pAnV8nX19cphABkGQYKhybfCqNBV1/5/YP+pIdk8ehhSeRyCSM/GJQoytlqotcLmXp0jaMGnWe0aPD2bevY71cx8tLdUXiW3cpvjfD0VHBoUMd6djxJLfffo7z5zvj798wReKyZeb8mXHjHBq0EAGzvBeDCewVfPBB82lc/ftEIcPfT0YmBUMFYiipBG5rb8mjoX0xmIxo9Dp+P5fJdq76iixdmk54eBHr1wfj5dV08rCaMk1vE1kgqCaf3fkfBp2RJ3/vj0xWt3/SF/an8kzAShbctwdtkZ4Jb4XxXfqUeilEKkRvQppX8eKlyWjCZDSx/Z0DTUqyW1MaKtm3Tx8bUlN19SrxvZ6QEEs2bAhGpzPRpctJcnPr/9rX5s/8+Wfd5s9UBalUClk6JO5KundvuqF419M1QEVHX2W51ZBrua29WS0kk0ixUqjQFJm4thXHaIRTpwoICzvJgQN59TzjloEoRgTNmuObLnN+VwpB/VzpOrbuPn2lx+XzRu+NzOmzifTYfPpNC+DH7HuYOCesQU3UpBkV+1RIpBIUlnKQgK5QT+9nujQZyW5tWLs2GJVKwkMP1V+y78MPm7e16suNtTKGDXNg/nx/srMNhIWdrHcr/OefjyU318Dbb9d9/kxVWLcuA1K1mOwVDWb7Xxc428rY954no7pYUlHXh9EEg0LLrmwVFBiRSsuONhggM1NP//5n+PXX1HqccctAFCOCZovRaOSbe8yeIi+uqxtPEU2hnnmTtvOM30oiD6QR3N+Nby5P4sk/BtS5SqYi0jT5Zb6XXrdFI5FJQAKWTmp0BXrU9ipmHprG6HkN66lSX1hby/n22wAKC+sv2ffOOx2RyWDFirpP8b0ZM2d68MwzHkRHFzNo0Nl6u05qqpb58835M6+80jj26+++Gw85OpBK2BPevELjrNRSVr3ogoN1+XLERi2hg09Zn5bCQgMV9asajaDXm3jwwUhOnGi6EQFNAdEzImi2fP/oPgpzdEz9qCvWjrXbgzcajSx//TgbPj2LQWfEvY0NTy8eSEC3hrGuLtRr+eXCAU5mxJd5/PpixMHfjuzYXArSipq0ZLc2TJ/uxjffJJcm+9a1bflViW/j2HXPm+fPhQtFbNmSzUMPXeSnn+p+C2XiRHP+zJIljaOkys/Xc+xYAcFdrDgPrDlUwIB2Fo0yl6qyPvYUG+LOlH5/6rg7mfl+9Gyj4nBkMSZAAgxsZ4FMZq48jqbFsS72FBsuyjGYbK6MMCORgMkE9i4SOk3O4bvcDbQ57cw9rbvjZiGEGNfTst7FBLcMiRE57PgpEhd/a8b+r3aeIrt+jeRhxyWsm3satY2cZ5YN5IsLExqsENEYdHxx+r9yhQiAaqP5hmmSg7ytBZmR2UhlEqatbriU3cagvpN9x451QKs11WtWzY3YuDGYkBALfv45jY8/Lv97rw27dl3Nn2kI+XJFvP22ORRv7uveyKSwJ0LTKPOoLp6Wdnzcczy2cbdxYLcv3dvIOfCBFxtnu2OhlGA0wW3tzR98LuWm8cP5vfR1D6C9lQ+YzIWI7IqARiaD/31lyb0r4/nyrfa82vUOVFI5X53Zjs5YcVP6rUzLfCcTNEsyNQXE5WeW+crUVLy0+fEos6fIS+uH1Ph6EXtTeNpvJd8+uAedxsDd74bxXdoUek/yr/E5a8KmuLPE5Ztj563kSkb5tOeJ0AHM8O6FxTkDRmswKUF3oQjbMHtmp8wkdHzT9g6pLfWd7FtiwLVgQcP2jZQglUo5dqwTzs5yXn45jlWr6q5hd+rUhsmfuRG//pqKlZWUceOccLOTcTFJ12hzqQ5SiYT1+/V8urYQLwc5+94xb3EN72zJgfe9GNPVkgk9zRlT2xIiaOfowTDvUNDKKakvOvSHQYNs0etNpHvEMCagPWFO3nhbOTA9qDfZxUWcSL/cWD9ik0Vs0wiaBBX5awDIJVLe7TYGR/VVWeLGz8+QcimP/vcH0qqdQ7WvlRabx7xJO7l0KB2JFPrfH8jDi3o3SE/I9WgNevYkRwLmzvwXOg7Fy8oegPVvbYV8A1I9mKRQ8JQt6gc9UdncGlLB2bO9+eGHFH79NY3nn/ekY8e6k6Z6e5slvjt2NJzE93rUaiknT4bRuvUxJk++wKFDarp0KRumaDKZkFTDPOuTT+JJTNTxxBP1nz9TGUeO5JGWpmfaNPPKYgcfJX+fLEKvNzb5lbzIlGLmLk3A2UXHy4/mkqt3xlFu/rvr4Kvkr1euGrdF5aUz1Mtc8I0f74ijo5yQ8blk2CfymHc33D0Oc2i5ireGXz3GQq7E38aZqLx0urv6NejP1tRp2n8ZgluGivw1AIp26ElOunrDKMjRsuSVK54iP1bPU0RTqOeLidt5xn8Vlw6lEzLQjQUJk3ji1/6NUogAROamlWZZdHFuVVqIXPwnhgPfnMCoN+ES6oT1+iA0k6xJKMwu1+TaktmyxZzsO3Jk3Sf79u7d8BLf6/H0VLJrl9kMrF+/MyQna0uf++WXVOztD3HsWNV+30VFBt544zI2NjK+/rphV/euZfbsOAA+/NBsfz+kg7lXZMvJhrHhrynWJgdWLW2PXqvgxyftKaSAT079i0Zf8apOrlaDrcK8ZTNxojNffx1AaLAlOVoNrq5Keg5SEbHBhuzkssWkrVJNjrZ5bFs1JKIYETRZDJdNFL2h55OwbWz/6SImk4nP7txW6ilS1U9ZRqORxS8f4WH7xRxaFYtHG1vePzqGN3eMwN7dsp5/ihuTr7uqMvC7kvJpNBr58651SGQS7v5zFM+dnU5AkEeFx7R06jPZd8aMxpH4Xk+3bjYsXdqWoiIjHTueoKjIwJtvxjF9eiS5uQb++iuzSucpyZ9ZuDCgQeXn16LXG9mxI4eAABXe3uYVvEm9zSsLfx1pnIbhqqDRGpn8roGCQhnLn3dnbLtWPN1+EIV6HUfS42p0ztffd8Wgl/C/WWJLpiqIYkTQZDFlmF2HNLl6vpuxl5faryV8Zwpt+1bdU2THTxd52GEJ6z8+g4WtgmdXDOTziLsI6NI04r1VsqsrMqlFZnMkqVTK+O9v58EtEwi7JwSAlKKrxklq2a21u/rFF364uir4+ONEYmPr7hPl+PGOSKWNI/G9nokTnfngAx/S0vR4eBw2y2Kv8M8/N2+yDQ8vZPXqTIKDLbjnnrqLJ6gu33yTjF4Pzz13tXj2dVWgkMGBC01zNcBkMtFjdgJpuUY+uMeBcT3MxZOlXImbhQ1pRRWbltkq1eTqyv5MuToNdkrzakmPTo60HprP1r9zKSy8uvqWq706RnAVUYwImiwlxUgJCefMb8ptejmj1dx4aT18dzJP+a5g0Yy96LVGJr3Xme/Tp9JrYuMtX1dEa1tXFFJz+/3B1Ghyteal7E5TQ2k91A+AhIJswrOSAHBQWeJueWvJAkuSfY1GGD687rZrzBJfdaNJfK/n8cfdcXVVkJNTdrvy8OE8CgtvrL6YMCECkwlWr26YvJ3K+PrrJBQKCU8+WTYUz8tRTlRq422H3YgJn6ZwOk7HtP7WzB5/tQdNY9CRpsnHTlmxJDnAxpnz2WVX1cKzkgmwMffKOKut6DFZg14r4cUXYwEo0uuIzksvHSO4iihGBE0WYyZUZIG46fNzvBi6ljPbEss9lxKdx2vd1/POgC1kxhcw4MHW/JQzlfGvdar/CdcAK4WSHi5+AGgMej4//R/hWcmYTCYMJiPH0uP46sx2SsqyAe6tkUpuvf+2Jcm+588XMW9e+d97TRk71hGt1sSuXY0j8S0hJkZDz56nyMgo35+g18PevZVbii9ZkkZ4eBHjxzsSEtJ4245xcRqioooZPNi23DZRmJ+SAo2Jgnpy1a0pbyzNZM2hQroFKhk3Op4L2Smka/K5lJvGwnO7kSKhu4u59+XniH2siT5ReuwQryDOZiXxb3w4yYU5rI89RWx+JoM8zUo3iUTCtNva4NW1iN+XJXM5L5OfL+zHXmVBmHOrxvhxmzQitVfQJIjLz+T941vKPKZZqEe73Ag3+EA19/gY/MKc0ORrWXD/Hg6vjQMThA5255mlA7FzbdpGSwDZxYXMPfE32dqrDX5qmRyDyVTGj8Dbyp6XOt2OWlY/ibZNnfpI9o2PL6ZVq6NMnuzE0qWNs6oQFaWhe/dT5OToMVSwACKXS3jxRU/mzvUt95zRaMTB4TDFxUYyM7s3iu17Cffcc4ElS9I5erRjOVXQt3/n8MQPGSx+1oWp/ZpGTs2SPXncMy8NDwcZcQta8fPFfVzMTaNAV4y1QkVrWxfG+XXCxcI8389ObcVJZcWDQb1Lz2E2PTtJhqYAVwsb7vIPo4OjV+nzJpOJmZ8cZNHLRsZ8mcLg22y5J7A7brfQ6mZV79+iGBE0CSoqRoo+0KP71wjXvUFL5RJMRhMjng1l8twuLH/9OFvmncOgM+ERZMszSwfiF9Y0ekKqSkpRLvPP7iKlqGKpaYCNMzNDB2B7i+81b9qUyahR5+nd27rOkn3t7Q+iUklJSeleJ+erLidOFHDbbWfJytIjlZotxK+nSxcrtuwJ4FxWMnk6DQqpDC8re+a9lscPCzP46CMf/ve/xrF9L8Ha+gBWVrIKX8f0XD0uM+KY1t+aP55xbYTZleVwpIZeryaiVkqIXdAKZ9v6K+KMRiOWlgexs5M32t9YY1LV+/et1QknaFYY003lChEA/y5OPPJ9Hy4dTucxl2Vo8nTYuKh4ZFEfuo8v/+mxOeBmYcucLiM5kRHPnpRLpBblIQW8rBzo7xFIiL0H0mr4TbRUSpJ9t23LZdmydCZPrv3ee+/eNmzZkk12th57+4Z/SwwLsyIpqRurVmXw1VdJHDyYj1xu3p4p4fjxAv63YwNK66ufHQuzpPz5XStc3OSNXoisWpVOQYGxXK9ICc62ctQKCUcuNb4SLDlLz8A5SUgksO89z3otRMDcm3TPPc78/HMamzZlMnKkY71er7lSo83n+fPn4+fnh1qtpmfPnhw6dKjSsd9//z39+/fHwcEBBwcHhg4desPxglsPg8nIqYyEco8bU66+8UplEizsFDz6Qx+mzO3KJ6O38v3D+zDojEyZ25XvUqc220KkBJlUSlcXH55tP5j3u4/l3e5jeTy0P+0cPEUhcg11nexbIvFduLDxJL4qlZR77nHhwIGOnDjRiYceckOtLnl7NmEyQdzBsluO/77uiskI/V5PJDKncVNh33svHokE5sypvCjycZYTm9a4TaxanZFOL8VTpDWx/Hk3Ovk1jIHgl1/6I5XCCy/ENsj1miPVLkaWLVvGrFmzmDNnDseOHaNTp04MGzaM1NSK/zPs2LGDqVOnsn37dvbv30+rVq244447SEgof/MR3Hpo9Drmnd7O+rjT5Z4zXdOn2P/+QF7bOox/v43g/SF/k5lQxKCHzM2pd75Su2waQfOirpN977qr6Uh8ATp1smLRokBSUroxfY4MCwfz8uD+rx1pbePK7V4hOMT4kXJahVv7Ylw6FbHg3C7ydY0jnc3N1XPyZCFdu1rdsGelW6ASjc5Eem7jFSQ9ZieSmmPkvSkO3NWr7hx9b4atrZzbbrPj/PkiwsObhnqrqVHtYuTzzz/nkUceYfr06YSGhrJw4UIsLS356aefKhz/559/8sQTTxAWFkZwcDA//PADRqORbdu21XryguaNyWTih4i9ROSklD7mrLKijZ0r6kSFeYtGBepPpUTGp/F6jw1EH82g3W0efJs0icd+7IdcKXYab0WmT3ejc2er0mTf2iCVSmndWs2ZM03rJiG1MGB5ewz3ro0nbGoORZlyMpa2YWJAZzZ8ZE6OnfmVefWwQK9lT3JUo8zzrbcuYzLBnDk3VoiM7GxW+qw62Div892fJXMyVsuUvla8NqH6MRK1ZcGCAACeeKJxfk9NnWq9k2u1Wo4ePcrs2bNLH5NKpQwdOpT9+/dX6RyFhYXodDocHSvfNysuLqa4+OreYm5u4+VHCOqPyNw0Tmealz8s5QoeCe5HiL15z/m95/4m360YbR8DmpeNJBhycA+25bllA/Ht2LyaU6+PJgdzj8g73UZXekxJNHmGJr/SLv31safZnRxJkUFHoO2tF02+ZUsIXl5HmDjxPOnp3WvlOjp2rCOffprInj059OvXOEm313M4LRad0YBEAq+860pSDw+efz4GjcbA2bNFfP99AGN7WfHGkfUA7Eu5xPBWoQ0+z99+S8PaWsro0TfuhbizuxWQxt8nCnns9ob9O31rWSYrDxTSxV/JkufcGvTaJbRpY0H79pbs3JlLZqauTtRgLYlq/e9NT0/HYDDg5lb2l+nm5kZyctX2W19++WU8PT0ZOnRopWPmzp2LnZ1d6VerVkKT3RLZlXSx9N93B3Ql1MEDiUTC7t8vcW57Mmgk6NeYkNiAxfsyRv4b0uwKkRJKoslLvv7XqfK//2ujyV/vMoIwJ2++PbebhILs0jF/x4fzX2IE09r04JWwWzOavC6TfZ9+2lwEz5+fcpORDce1zp9hTt48+6wHTzzhxrx5ybRrZ8GMGW64WtjgfSXPKLUon4YWRx48mEdGhp677rr5/0trCylWKgknYrQ3HVuXLNubx9srs3G3l7H/fc8Gvfb1fP65LyYTPPdcTKPOoynSoO5JH374IUuXLmXNmjWo1ZVLFGfPnk1OTk7p1+XLwtu/JRKTZ96jV0hlpcZCUUfT+e6RfQBYO6kY+V47bP5SougvIzqvaezp1wSpRIKd0qL0y1pR+d//tdHkHpZ23OnXCR9rB3YkXgDMqyLbEs4z0kdEk8+e7U1AgIpff03j1KmCGp/Hx0eNnZ2M7dsb1/zsWq5tWtabDEgkEt5/35fgYDWzZ3uXpvmWFKCN0eP86qvmhsyKPFAqIsBVTkJmw/WMHInUcM+8NCyVEk5+4oVS0biGgbff7oC7u4Jly9LR65uWAVxjU63fjLOzMzKZjJSUsp8eUlJScHevWNJVwqeffsqHH37IP//8Q8eON/YHUKlU2NralvkStDxKUnpVUnmpJfr53SmYDCYemNeDLy5OYNQLV5edDRWk+jYXUovy+N/BNbx2eB0/nt9LpqbyG2dUXjrB9mX/P4U6eBCVlw5AuqaAXJ2mdEsLykaT32rUVbJvr17WpKToyG3EBstrKUlwBjiYGgOAvb2c8PAuTJtmzp+JycsozS3ytnIoLVAaAr3eyK5dubRpo8bTU1mlY3q2VaPVQ1wDqGqSs/QMuCLh3f2uB66NINuuiNde80arNfH++0LEcS3VKkaUSiVdu3Yt03xa0ozau3fvSo/7+OOPeffdd9myZQvdunWr+WwFLQpHlbmbPV9fXLpKMvK5dvyYPZXhz4QilUo4k5VYbnxzw9/GmQfb9uaZ9oO4p3V30jVVjyYvwVZxNXY8V2d2ar3eAO1WjSZv08aCp56qfbLvQw+Zt58bU+J7LV2dfbCUm/sKDqbGsCc5ssw2TLomn18uHCj9vr976wad37x5SeVC8W7GmK7mJtYV+/Pra1qAWcIb9lICRVoTS59zpUtA0zELfOIJN6yspHUaa9ASqPaa1axZs/j+++/59ddfCQ8PZ+bMmRQUFDB9+nQA7r///jINrh999BFvvPEGP/30E35+fiQnJ5OcnEx+fv3+MQqaPr3drobWrYg6htZg/rSktjZ/ysoqLmRT3NkKxzcn2jt60tXFB28rB9o5eNY6mlxQni+/vJrsGxdXs4Js4kSzxHf58qaxHaiUyRnm3a70+98vHuKtoxv58+Ih5p/dyRtH1pNUaN5WclVb09PVr0Hn9/XXySiVEh5/vOoNocPDzF4pW08X3WRk7ej1WiIpOQbeutuBib2tb35AAyKVSpkxw42sLAPLlt16K5mVUe1iZPLkyXz66ae8+eabhIWFceLECbZs2VLa1BoXF0dSUlLp+G+//RatVsvEiRPx8PAo/fr000/r7qcQNEu6u/iVrgBE5qbx1tGNbLl8jmPpl1kVfZx3jm0iS2uWAba1c8XHumU4F9Y2mtxWYX5Dz71uFeRWjiaXSqWsX1+7ZF+pVEpgoJrTp5uOxHeYdwiDPNqUfp9clMuu5EhOZSZgvLJK4qSy4un2g1HJGm4bIjpaQ2xsMUOG2FVLxaRUSLGzlHA6rv6aWKd8kcLxaC2TelsxZ1LDS3irwkcf+SKTwezZwgSthBp18zz11FPExsZSXFzMwYMH6dmzZ+lzO3bs4Jdffin9PiYmBpPJVO7rrbfequ3cBc0clUzOE6EDSt9EM4oLWBNzgkXhu/knPpxCvfkNy1ltxYygPo051TqlLqLJbRXqMmNENDn06GFO9g0Pr3my75gxDmi1JvbubRqNrBKJhCmB3XgspD9tbMtmutgo1Ixo1Y5XOw/D1aJhw+dKbqIfflh91+M27gqSs+tH9fXOyiyW7SsgzE/JslmNI+GtCmq1lNGjHYiOLubw4coTmW8lRFCeoNFJKMhmedRRzmeXbYyWSaR0dW7F3QFdsK3kxt0cWBl1jI6OXjiqrcjRFrE+9jSX87N4q+sobJRqfo7Yh73SkvH+YYBZ2vvpqa3c5RdGB0dPDqfFsvnyOV7rPLy0qXHL5XP8HX+WB9v2xlltzbrYUyQUZPFW19GlzcC3IrVN9o2N1eDnd4ypU51ZvLhtPc2y5mQVF5KjLUIpleFmYYusFt4qtcHS8gB2djKSkqof/PbsT+l8tTmXc194E+JdtcbXqrBifz6TPk/FzU5G3LetGl05czNKEqN79LDm4MG6CX1sioigPEGzwcvKnuc7DCG5MJfw7GSKDTqsFSo6Ono16yKkhKziQn6I2FcmmvyVsDuwubKlkllciISrKohAWxceDurLutiTrI05iauFDTND+5dRVwzzDkFr0PPHxUMU6rW0tnPhmXaDb+lCBEAul7J0aRtGjTrP6NHh1U729fVVY2vbtCS+1+KgssRBZdmoc1i2LJ2iIiPPP1/1xtVrGd/Tiq8257J8XwFzJtVNMXI8WsPUL1OxUEo40QQkvFXB21tFt25WHDqUT1KSFg+PuivMmiNiZUQgELQ4hg49w7ZtuSxd2rbayb7Dhp3ln39yyMnpgW09J7o2Rzp1OsGZM4Xk5fW4YRZNZRiNRuRTYhgYqmb7W7U3IUvN1uP/5GU0OhMHP/CkW+vm0zd14EAevXufZvx4R1avDm7s6dQLVb1/N/3yUSAQCKpJbZJ9SyS+ixY1DYlvUyI7W8/p04V062Zdo0IEzI3CjtZSzl2ufROrOYU3gUKticXPujSrQgSgVy8bfH1VrF+fiVbbfH2U6gJRjAgEghZHbZJ9777bLPFdtqz+Jb4XclL55uwO/ndwDY/tXlwlB92I7BTeO7aZJ/cs5fXDf7EvpXzw2vbEC7x6aB1P7lnK3BN/E11HZnhz5phD8d56q3YRHSFeCtLyjBiNtbsB93k9keRsA29OtGdy34Zt4q0r3nuvFXq9UNaIYkRQr2j0OpZdOsrsQ2t5au8yPjrxT6nBWWU05putoOVQ02TfEolvQ6T4ag16vK0cmBpYNTPIdE0+35zdQZC9G693GcEQryB+v3CQs9eYAx5Oi2Vl1DFG+bTntc4j8Lay56sz28tJwWvCH3+kYWMjY8SI2klmB4SoMZngcGTNV0fu+TKFo1FaJvS05O3JzVf2f++9rtjZyfjuu6aTi9QYiGJEUK/8dvEg4dnJTA/qw5tdRhLq4M4Xp/8jq7jiN/rGfrMVtCy2bAlBLoeJE89X61P46NEOFBeb2L+/fmWX7R09GefXic7OVVtp2Jl0EWe1NXcHdMHD0o7BnkF0cW7F1oSI0jFbE87Tzz2Qvu6BeFrZMa11D5RSOftSahcmuHdvDpmZeiZOrP2Nf0Ivs5vyqoM1yxN6f1UWS/YW0NFXycoXbxxF0hx4+ml38vONt/TWoChGBPWG1qDnePplJviH0dbOFVcLG8b4dsTVwpqd1yT2XktjvtkKWh41TfZ99lmzUuSbb5JuMrJhicqtJLco17wyqDcaiMvLLJNbJJVICLZ3Lx1TU157zbyF9MEH1fcWuZ4uAWqkEtgdbv4AodWZOHqpmFOxxTc9dtWBAl5fmoWrrZTDcxs3hbeumDOnFQqFhHfeubWCLq9FFCOCesNoMmHEhFxSVm6qkMq5lJtW4TGN+WYraJnUJNm3ROJbne2dhiBXp6kwk0hj0KE16MnXFWPEVCobv3ZMjq7mK4d6vZE9e3Jp21aNu3vtJKgGg4mzl7VYqyUcjy6m6//isb4vmm6vJHDnxzfeqjgVU8zkL1JQKyQc/8S7WUh4q4JcLuXuu51ITNQ1ub+5hqJl/CYFTRK1XEGAjTObLp8hu7gQo8nIgdRoonLTydFWnE3RWG+2gpZNTZJ9e/a0JjlZR35+00jxbUw+/TQRgwFeeKHmKxE7zxbR7/UEbO6Pof2seHKLTBTr4Vi0Fp0BJBII9ZFUmmidnqunz+uJmEyw6x0PPB1blux63jw/JBJ4/vnoxp5KoyCKEUG98lBQb0wmePnQWp7cs4ztCRF0d/EtY/IlENQ3NUn2feghs/36okVNp7HQVqGuMJNILVOglMmxVqiQIiGvotwiRc1lr99+aw7Fe/hh15sProTYdD17I4op0lZsbWUymcizjeCNI+vLFSR6vZFOLyZQUGzit6dd6N7MJLxVwdlZSb9+Npw6VUh09K33wUoUI4J6xcXChhc7DeWrPpP4sOc4ZncejsFkxFldcZJmY73ZClo+1U32nTTJCakUli5tOtt/AbYV5BZlJxNgazZ2k0tl+Ng4En5NtILRZOL8NWOqy6VLRcTFabn99uqF4l3PfQOsmdTbCmmln0MkeLXKQW8ykq8v2zvS5/VEErMMvDrejmn9m6eEtyosWBAAwMyZt17/myhGBA2CSibHTmlBgU7LuawkOjl5VziuMd5sBbcG1U32lUqlBATUb4qvxqDjcn4Wl/OzAEgvLuByflbpysCa6BP8HLGvdPxAjzaka/JZFX2c5MIcdiRe4GhaHEO9gkrHDPUKZk9yJPtTokgqzGFx5GG0Rj193AJqNMeXX655KN61SCQSfnrChbaeCmQV3HmsrIuxtSvfwHrfV6kcvqRlXHdL3r/HqVZzaOq0b29F27Zq/v0355bbHhTFiKBeOZuVyJnMRNI1+ZzLSuLz01txt7Sl75U3xqbwZiu4dahusm+JxPfgwfqR+MbmZfLe8c28d3wzACuijvHe8c38FXsKgBxtEZnXyOCd1dY81W4Q4VnJvHtsM/8mnOe+tj1p53C1l6O7iy8TAzrzV+wp3ju2mcsFWTzTbnCNc542bcrGw0NB+/ZWtfhJzVippax/2R0LZdmNWonESCvf7HLj567J4o/d+bRvpWDVizXfImpOfPKJH0YjzJoV09hTaVBENo2gXjmSFsuamJNkFxdiKVfSxbkV4/w6YSE3d+T/ErGfjOICXug4tPSYiOwUVkQdI6kwB3uVJaN82pcrNLYnRvBPfDi5Wg3e1g5MCeiKv1gZEVSBa5N9U1K64eBQebJvTIwGf/9jTJvmzB9/NL0U3/rmzz9TuffeSN54w5t33vGps/NuOFrAmA/L9uIMHXGBgDaZALzWeThHz6q469MUXGylxH3rg1p563x2dnU9RF6egYKCnrXaGmsKVPX+LYoRgUBwy7FpUyajRp2nd2/rmyb72tkdxMpKSmJi9waaXdOhQ4cTnDtXSEFBL9Tqur0pPvd7PPP+KgYkgIn7HzmK2sK8NTHBZSgj5+SjkEm4+HUrvJ1alnLmZnz8cTwvvxzHRx/58L//Vbyl3VwQQXkCgUBQCSNHOjJkiC379+ezbNmNG1R79LAmKenWk/hmZuo4e7aQnj2t67wQSS3Kwy74BJ5euQAoVfrSQkRTKGfsu3mYTLD9LY9brhABePFFT9RqCZ98cvOtxJaCKEYEAsEtSVWTfadPdwHgu+9SG2pqTYI33ojDZIK3365dKN71pGvy+eTkvyRrcrl91AXAhEplAMBohJVLOlCshWenaOjV9tZUyEmlUu67z4X0dD1//VX/gY1NAVGMCASCW5KqJvtOnux8ReJbsWtwS2XJknTs7GTcfnvtQvGu54+Lh8i9YlDoaadicBc93nZqHmzbi61rOlNYoCSsayIFLieIy8+s02s3Jz7/3A+pFF566dZI8xXFiEAguGWpSrKvTCYlIEDFqVP1n+LbVNi1K4esLAOTJtWtlDa5MIfwK9J9B5Ulr3UewcQu7kQmwsEjTsQkqOgRaqBHX3NGy47EijOsbgWsreXcfrsdFy5oOHOmZoGCzQlRjAgEgluaqiT7jh7tWK8S36bG66/HAfDee3WnoAE4lh5f+u8hnkFYKVR0C1ChM8CLv2UwfZA1O97wQyUz94kcz4ir0+s3N779NhCAJ56IauSZ1D+iGBEIBLc01yb7Pvxwxc6XzzxjTvGdP7/lR7xrtUb27csjONgCV9faheJdT/41+VH+NmYpvo+zufBo66Hgu8ddsJAr8bK0B6BQr8Ngqryfp6Xj76+mY0dL9uzJIyND29jTqVdEMSIQCG55SpJ9f/ml4mRff381NjYytm7NbvjJNTCffJKAwWBWdNQ1avlVT5dUjXmVyd1Bzpy7HVj1ohtymQSDyUi6Jh8AhVSG9BbPsfryS39MJnjmmZjGnkq9IooRgUAg4ObJvj173hoS34ULU1CpJKUqorok1N699N//JUSUrnq8NcmBEG/zKszhtNjSBtcQe3ckklu7GBk82A5PTwUrVmSg17fcVSJRjAgEAgE3T/Z98EHzzfmHH1quxDciopD4eC3Dh9vXi/NnoK1L6RbM5YIsvj23i8SCbACKDXp2JF7gz4uHSscP8mxT53Nojrz5Zit0OhNvvXW5sadSbwgHVoFAILiC0WjEw+Mo6ek6oqO74ONz1edCrzeiUh2gWzdrDh68sWtrc+Wuu86zZk0m586FERJiWS/XiMxJ5YvT/6G/phfERqGmSK8t81gX51Y8Gtzvll8ZKcHG5gAymYTs7J4AZGoKyqUbW8tVOKprnyFUlwg7eIFAIKgBBw/m0avXaUJCLDh3rnOZ51q3PkpCgpaiot6NNLv6w2g0YmV1ECcnOfHx9Wt9fzYrke/D91Jk0FX4fA8XX+5v2wuFVFav82hOvPBCNJ9/nsTvv7dm5EQr3jiyvkzxBiCXSHm325gmVZAIO3iBQCCoAT17Vp7sO2qUIxqNiUOHWp7E9/ff09BoTDz6qPvNB9eSdg6efNDjTiYHdMXfxgkHpSWuFjb0cQtgdtgwZgT3FYXIdcyd64tcDq+/fpl8fXG5QgRAbzKWWy1pLoiVEYFAILiOypJ9L10qonXr49x3nwu//day+hnatTvO+fNFFBX1QnkLJeQ2JyZMOM/q1Zms2ebDZsWuCse81nk4PtaODTyzyhErIwKBQFBD5HIpS5e2QaczMWrUVXVNYKAFNjZStm3LbrzJ1QPp6VrOnSuid28bUYg0YebPDwBgzostr4la/NUJBAJBBVSW7NujhzWJiTpyc3Xs25fLG2/EMXToWc6ebb528a+/blZpvPNO3TquCuoWd3clPXtac+q4hvzUlnX7vvWymQUCgaCKrF0bjLPzYR56KJI773QkJ0dPYKCabdtycXU9QnGxCYkETCaIjy+mXbv6UaDUN8uWpWNvL+O22+xqfa6s4kJWR5/gbFYiWqMBF7U1D7TthZ9N5Tk3EdkprIg6RlJhDg4qS0b6tKePW0CZMdsTL/BvfDg52iK8rR2YEti11MX1VuLrr/3p0eM0e79wZtjclrNCIooRgUAgqISSZN+HHrqEq+sh8vKuNg0WF5vb7Uq67sLCmo6CoTr8918O2dkGHn/crdbnKtBp+eTkv7S1d+Pp9oOwUahJLcrDSl65rXy6Jp9vzu5ggEcbZgT34Xx2Mr9fOIidUk07B7ML7OG0WFZGHeOe1t3xt3FmW+J5vjqznbe7jsFWqa703C0R73ZGHDwNxO23QF8MclXZ59M1BU2qZ6SqtKx1HoFAIKhjpk93Q6WSlClErsfZWY6bW93muDQUb7xREorXqtbn+jv+HA4qSx5s2wt/G2ec1daEOnjgYmFT6TE7ky7irLbm7oAueFjaMdgziC7OrdiaEFE6ZmvCefq5B9LXPRBPKzumte6BUipnX0rFWUItlcv5WXx88h86P5KBySjh0EKHcmN+vXCAhCtGcs0JUYwIBALBTdixo12lz0kk0K2bdQPOpu7Qao0cOJBHaKgFTk61L6ZOZcTja+3IovDdvHhgFe8d28zupMgbHhOVm06wfVk5caiDB1G55j4dvdFAXF4mIdeMkUokBNu7l45pCWRl6Rk48AxvvhlHVJSm3PMGk5GF4bsp1OtoPaQQtY2Ri5vsmBLQlds8g7BTmFeINAYdC8/twtjMAgZFMSIQCAQ3oVcvW556quJtDJkMAtvLiMvPJFNTPmSvKfHaa7FMn36RPXtyMZlMzJ2bgNEIL7/sVSfnT9PkszPpIq4WNjzTfjADPNqwLOoo+1OiKj0mV6cpt9Viq1SjMejQGvTk64oxYsKmgjE5uvI37eZKaqqOXbtyeffdeAIDjzFo0Bn+/DONoiIDACczEkoDBH2sHXjjNR+Ki0AR7cHkwK68020MrazMKyWpmnxOZyZWeq2miChGBAKBoAp8/XUgHh6Kco/r9RBhE877x7fwxpH1Tbog2bQpi19+SaN//zO0bn2Mzz9PQKWCe++tm0ZQE+Bj7ch4vzB8rB0Z4NGafu6B7Ey6WCfnb8lc/7e1e3cu9957EVfXwzz++CVW/BdT2p803i+MV15qRUiIBZ99Zi461HIFd/pdjSk4kBrdYHOvC0QDq0AgEFSRnTvbExR0nOutIp1aa4GrDpiONM1m1latVJw4YZYgR0VddeocOzaCRx5xY+RIexSKmn9GtVOq8bAsq8jxsLDjeHrlAW+2CjW52rIrHLlaDWqZAqVMjlQiQYqEvArGlGxNtARsbGSo1RI0GvMfl/HKLkt+vpHvv0/BuEiG3MIHBz8teZ1zSU7KICtLz9q1mWzalMXIkQ6E2nuUni+7uKgxfowaI4oRgUAgqCIlyb5ff51c+phEZsLWS1/6fVNWM3h4KJHLzas517JlSxYbN2bh4iLn4MGO+PvX7CYfaOtCSlFumcdSinJxVFVenAXYOnPmui2F8OxkAmzNqzVyqQwfG0fCs1MIczY32RpNJs5nJzPYs22N5tmY6PVGIiKKOHu2iAsXioiO1hAfryU5WYdWW7Eheklhoi+Skn5BSayTBm9PNaGhlpw/X0irVuZ+n7xrtq3k9ZC6XJ+IYkQgEAiqwewPHPnxjwQKs6VgkiBTmJBc877/ffgepgf1poerX6PN8XpKEl4tnfQVPm8wgFQKtrYy7O1rflsY6hXMRyf/YVPcWbq5+BCTl8Hu5EjubdOjdMya6BNkawuZHtQHgIEebdiReIFV0cfp6xbA+ewUjqbF8VT7gWXO+0vEfvxsHPGzcWJbQgRao76cF0ljUlio5/TpIsLDC7l4UUNMTDEJCcWkpOjJytKTl2dAozGWFhbXIpGAUimhsoBiqRRkCuj2SCbt7splXGAHRvkElRu3K/lqs3BJMddcEMWIQCAQVJECXTFfn9vJ7R/oWDfTA4nMiFJtwt/aicsFWehNRoyY+DliP7ZKdTmVSGOQqSkoTXg9p7VBr3cEyt71ZDLo2NGKf/4JxcGh5rcFPxsnZoYMYE3MCTbGncZZbc2kgK70dPUvHZOjLSKz+KpbrbPamqfaDWJF1DH+S4jAXmXJfW17lnqMAHR38SVfp+Gv2FPkajV4WzvwTLvB2CotajzXqpKeruXUqSLOny8kMlJDbGwxiYla0tJ0ZGcbKCgwUFxsKrd1B+YiQqWSYmMjo1UrJa6uCry8VPj5KWnd2oLgYDUdOlhha2t+ze+++zyrVmWWnqvEUG/ECAfe/dyVhSl/A7Ax7iz2Skt6ufkjk0gxmIzsT4lmy+Vz5uOA/u6t6/21qUtEMSIQCARVZEfSRTKKC3BrB+1u13H2XyWF2XCf6yAc3CSsiDrGvpQojJhYG3OSV8Iavxi5NuHV0lHP9YWIVAoDB9qybl0I1ta1T8rt6ORFR6fK1TkPBvUu91iQvRuvdxlxw/MO9gxisGf51YCaYDQaiY3Vcvp0IRERhURFFRMXV0xyso70dB05OQYKC43odBVvm8jloFZLsbWV4elpgaurHG9vFf7+atq2VdOunSXBwRbVzvnx8FAik0nQ601IpeDsrODbbwMYP94RiUTCIGlbdiRdwGAy8tvFg6yLPYWHpS2JBTnkXrNFM9gzCGd185Kbi2JEIBAIqoDRZCr1zJAg4Z9VnenbMZKYmGLWr8/k8cc9uK9NT2LyMkgszCE6L4PL+Vm0si5vTNVYWDoZynwvkcCECU788UebFhGQp9UaOX++iLNnC7lwQXOlH6OY1FQ9GRk6cnPNWyXX98yUoFBIsLSUYmcnIzBQjbu7Ah8fFQEBKoKCLOnQwRJfXyXSeurH8PBQotebIwZmznTn/fd9sLO7epueFNiFYoOO/VeUMjnaInK0ZRtV+7gFMDGgc73Mrz4RxYhAIBBUgRxtEVla8/ZCWztXPG3s2Lw5hNDQE3z5ZRKPP+6BVCKhj1sAK6OPAxCVl96oxUiRXseBlKsSz+uLkSeecOerr/yRSitpVmgi5ObqOXOmkPDwIiIji4iJ0ZKQUExqqo6sLAN5eQaKiyvvx1CpJFhZyXBzU+DiosDTU4mvr4rWrdUEB1vSvr0Frq6N76B7++327N6dy5w5rejZs7xrrUwi5YG2vejh6sf2xAucyUrEaDIhlUjo4OjFII82hNi7I6ms+aQJI4oRgUAgqAL6a+50VgrzjSs42JLBg205fDgfnc6IQiHFWnE1LMRQ0d2xgUgryuPLM9tLjbIALByuFiPdZ2Qx5TXXRi1EkpO1nD5dwPnzRURGFhMXpyEx0bxVUtKPodVW3o+hVpv7MXx9Vbi5ya/0Y5iLjNBQS9q1s8Dauvnc5rp1s2bTptAbjpFIJIQ6eBDq4IHRZKTYYEAlkyGVNO+VrebzWxIIBIJGxE6pLm0WvJCdis5oQCGVsWlTCHK5FJnMfFM/m5VUeoyjqnFSfIv0OuZdV4h4WtqRn2kuonx6FdL5gRz+iDyEncqCDo5148AK5n6MS5eKOXOmgIgIDVFRGi5f1pKcrCUjQ09u7s37MSwsZNjayvDyUuLursDbW0lAgJq2bS1o186CoCAL5PLmffOtC6QSKRYt5HUQxYhAIBBUAaVMThfnVhxOiyVfX8z62NOM9+uESnW16fNCdgpH0szBc9ZyFe0cPSs7Xb2yOzmStCuFiIelHY8G98XTyp7ZK2Oxt0/m7e9t2Z+ViglYG3OS9g6eN13a12iMnDtXyLlzV6Wr8fHFpKToyMzUl/ZjGAwVH69Umvsx7O3ltG4tx8NDiY+PksBAs6qkfXtLvL3rrx9D0LQRxYhAIBBUkSGeQRxJi8WEOaE2Kjed3m7+WMgVnMpM5GBqNCbMn/gHerZBIa29OqW6mEwmdl1jv/5YSD88LO3Q6038+msq06a58EA7f5JOZBKTn0lkcg7L/o4jN05FZKS5yEhM1JKaqiM7W09+vvGm/RjW1jI8PZW4uMjx9Ly6VRISYkH79pY4Opa30ReUJ6u4kNXRJziblYjWaMBFbc0DbXvhZ+NU6TER2SmsiDpGUmEODipLRvq0L+e/sj3xAv/Gh5OjLcLb2oEpgV3xt2laPiSiGBEIBIIq4m/rzN0BXVgedQyAi7mpXMxNLTeuvYMHo1q1b+jpAVCg15auigTaOpfas3/0UTxJSTqiojSEhBwnKtoWndYGkPAbCWXOIZNd7cfw91dd8cdQ4u+vok0bC0JDzV+WluIWUlcU6LR8cvJf2tq78XT7Qdgo1KQW5WElr7yxNl2TzzdndzDAow0zgvtwPjuZ3y8cxE6pLvVpOZwWy8qoY9zTujv+Ns5sSzzPV2e283bXMeUCChsT8ZckEAgE1WCIVzB2SgvWxZ4itSivzHMWMgUDPdow1rcjskbabjBcEx1vec2NbP/+PFQqCXl5BlxcFBjleoqscrF20dOzvQtjuvvSvr0lgYFq0Y/RCPwdfw4HlSUPtu1V+tjNvEJ2Jl3EWW3N3QFdAPOWXGROGlsTIkqLka0J5+nnHkhf90AAprXuwZnMRPalXGJ4q3b19NNUH1GMCAQCQTXp5uJLF2cfLuSkEJuXicFkxFltTScnb1Syxn1btZarUEhl6IwGLuakUWzQo5LJ2bAhFL3ehFxu7g355cIB9qeYV3UeDgqmu2vTWra/1TiVEU+ogweLwndzMScVe6UlAz3a0N+jcifVqNz0ci6/oQ4epSt3eqOBuLxMRnhfVehIJRKC7d2Jyk2vnx+khohiRCAQCGpAyZt6U7B8vxaZVEoPF1/2pkShMehYE3OCyQFdkUgkpYVIZE4aB68YZ1nIFHR08m7MKQuANE0+O5MuMtQ7mBGt2hGTl8myqKPIpVJ6V5LBk6vTlNtqsVWq0Rh0aA16CvVajJiwqWBM8nWBho2NKEYEAoGghXGbVxD7UszNtNsTLxCTl0Eft0Cs5ErOZCVyMDUG4xXzjgEebRp9NUcAJsDX2pHxfmEA+Fg7kliYzc6ki5UWIy0J8RcoEAgELQxvKwemte7OH5GHAIjOyyA6L6PcuBB7d8b6dmjo6QkqVTKXiQAAEEtJREFUwE6pLm02LsHDwo7j6ZcrPcZWoSZXqynzWK5Wg1qmQCmTI5VIkCIhr4Ixdoqm07wKohgRCASCUnYmXmRn0kUyiq96dIz26UD7G/iFHE2LY13sKTI0+bha2HCXf1gZEzGTycT62NPsTo6kyKAj0NaZe1p3x83Ctl5/lv4erbFVqlkTc5Kkwpwyz6llCgZ4tGasb0fkjSA/FpQn0NaFlOu2TlKKcnFUWVV6TICtM2cyE8s8Fp6dTICtuf9HLpXhY+NIeHYKYc6tAHPG0vnsZAZ7tq3jn6B2iGJEIBAIrmCvsmC8fydcLWzABPtTo1lwbhevdx6Op5V9ufGXctP44fxexvl3oqOjF4dSY/j23G5e6zwcryvj/44P57/ECB4M6o2z2oq/Yk7x1ZntvNV1dL37kHRy8qajoxeXctOIzstAbzLipLJqEo22grIM9Qrmo5P/sCnuLN1cfIjJy2B3ciT3tulROmZN9AmytYVMD+oDwECPNuxIvMCq6OP0dQvgfHYKR9PieKr9wDLn/SViP342jvjZOLEtIQKtUV/Oi6SxqZF+a/78+fj5+aFWq+nZsyeHDh264fgVK1YQHByMWq2mQ4cObNq0qUaTFQgEgvqkk5M3HRy9cLOwxc3SlnF+nVDJ5ERVsMUBsC0hgnaOHgzzDsXD0o47/TrhY+3AjsQLgHlVZFvCeUb6tCfMyRtvKwemB/Umu7iIEzdYfq9LJBIJre1cud07hBGt2tHD1U8UIk0QPxsnZoYM4HBaDG8f3cjGuDNMCuhKT1f/0jE52iIyiwtLv3dWW/NUu0GEZyXz7rHN/Jtwnvva9iyV9QJ0d/FlYkBn/oo9xXvHNnO5IItn2g3GVmnRoD/fzaj2X+SyZcuYNWsWCxcupGfPnnz55ZcMGzaMiIgIXF1dy43ft28fU6dOZe7cuYwePZrFixczbtw4jh07Rvv2jWMKJBAIBDfDaDJyNC0OrUFPQCVulVF56Qz1Ci7zWKiDBycz4gFI1xSQq9MQco3ixkKuxN/Gmai8dLq7+tXb/AXNj45OXnR0qjwn6MGg3uUeC7J34/UuI2543sGeQQz2DKr1/OqTaq+MfP755zzyyCNMnz6d0NBQFi5ciKWlJT/99FOF4+fNm8fw4cN56aWXCAkJ4d1336VLly588803tZ68QCAQ1DUJBdk8s3c5T+5Zxp+Rh3k8tD+eVnYVjs3VarC9rhHQVqEm50rDYK6uyPxYBdLKnOuaCgWCW5lqrYxotVqOHj3K7NmzSx+TSqUMHTqU/fv3V3jM/v37mTVrVpnHhg0bxtq1ayu9TnFxMcXFxaXf5+Y2LT20QCBoubhZ2PB6lxEU6XUcS4/jl4gDvNBxaKUFSVNgy+WzrIk5yW2eQUwO7FrpuKbabCsQVGtlJD09HYPBgJubW5nH3dzcSE5OrvCY5OTkao0HmDt3LnZ2dqVfrVq1qs40BQKBoMbIpTJcLWzwtXFkvH8Y3tb2/JcYUeFYW6WaXN11skmdBrsrKyG2CvO+fEXyS7s6ygWJyctgV1Ik3hU02F5LSbNtX/cAXu8ygjAnb749t5uEguzSMSXNttPa9OCVsDtQSeV8dWY7OmMlUbwCQR3RJAMIZs+eTU5OTunX5csN0+glEAgE12MymW21KyLAxpnz2WU/WIVnJZf2mDirrbBVqMuMKdLriM5Lr7QPpTpoDDp+jNjHfW16lsmhqYjm0GwruHWpVjHi7OyMTCYjJSWlzOMpKSm4u1dsiezu7l6t8QAqlQpbW9syXwKBQFDfrIk+wYWcVNI1+SQUZF/5PoUeVxpNf47Yx5roE6Xjh3gFcTYriX/jw0kuzGF97Cli8zMZdMXDQSKRMMQrmE2Xz3AyI56Egmx+vrAfe5VFqe9DbVgSeYQODp6EONzckj4qr+Ick6g8c0bJzZptBYL6pFo9I0qlkq5du7Jt2zbGjRsHgNFoZNu2bTz11FMVHtO7d2+2bdvGc889V/rYv//+S+/e5buCBQKBoDHJ02n4JWI/OdoiLOQKvKzseab9YEIdPADILC5EgqR0fKCtCw8H9WVd7EnWxpzE1cKGmaH9Sz1GAIZ5h6A16Pnj4iEK9Vpa27nwTLvBtfYYOZwaQ1x+Jq92Hl6l8aLZVtCUqba0d9asWTzwwAN069aNHj168OWXX1JQUMD06dMBuP/++/Hy8mLu3LkAPPvsswwcOJDPPvuMUaNGsXTpUo4cOcJ3331Xtz+JQCAQ1JL7r4lvr4gXOg4t91hXFx+6uvhUeoxEImGsX0fG+nWs9fxKyCwuYFnUMZ7rUPuiRiBoClS7GJk8eTJpaWm8+eabJCcnExYWxpYtW0qbVOPi4pBKr+7+9OnTh8WLF/P666/z6quv0qZNG9auXSs8RgQCgaCGxOVlkqfT8P6xLaWPGTFxMSeVHYkXmN9vMlJJ2V346jTb2l1jiJWr1dDK2r6efhKBwIzEZLoS3diEyc3Nxc7OjpycHNE/IhAIbnk0eh0ZxQVlHvv1wgHcLW0Z5h1aZpuohO/C96A16nmq3aDSxz468Q/eVvZMa9MDk8nE/w6u4Q7vEG73DgHMzbYvHljFg217CYM2QY2o6v1beAILBAJBM0MtV+Alty/zmEomx0quKi1Efo7Yh73SkvH+YYC52fbTU1v5Nz6cDo6eHE6LJTY/szT75NpmW1cLG5zV1qyLPVVnzbYCwY0QxYhAIBC0QJpSs61AcDPENo1AIBAIBIJ6oar37yZpeiYQCAQCgeDWQRQjAoFAIBAIGhVRjAgEAoFAIGhURDEiEAgEAoGgURHFiEAgEAgEgkZFFCMCgUAgEAgalWbhM1KiPs7NzW3kmQgEAoFAIKgqJfftm7mINItiJC8vD4BWrYQLoEAgEAgEzY28vDzs7Owqfb5ZmJ4ZjUYSExOxsbFBIpHc/IAqkpubS6tWrbh8+bIwU6tHxOvccIjXumEQr3PDIF7nhqE+X2eTyUReXh6enp5lQnSvp1msjEilUry9vevt/La2tuIPvQEQr3PDIV7rhkG8zg2DeJ0bhvp6nW+0IlKCaGAVCAQCgUDQqIhiRCAQCAQCQaNySxcjKpWKOXPmoFKpGnsqLRrxOjcc4rVuGMTr3DCI17lhaAqvc7NoYBUIBAKBQNByuaVXRgQCgUAgEDQ+ohgRCAQCgUDQqIhiRCAQCAQCQaMiihGBQCAQCASNSosvRubPn4+fnx9qtZqePXty6NChG45fsWIFwcHBqNVqOnTowP/bu9+QpvYwDuBfnZ5pYGmIuoUFLqywIlIUNZFCEAyrVwrGMKgsXG8UKmnFIsuGSARiRfbHXkgjQiNy2B9rhGZvbANpy7CtImgDoUiymtPnvnL3rvRez247557d5wN74c/fwe++Htzj2casVqtESZVNTM+dnZ0oKSlBSkoKUlJSUFZW9o+/F/Ynsef0HIvFgpiYGOzatSuyAaOE2J4/f/4Mg8EAjUYDtVqN7Oxs/vuxCGJ7Pn/+PNasWYPExERkZmaioaEB379/lyitMj19+hSVlZXQarWIiYnBnTt3/vEYm82GzZs3Q61WY/Xq1ejq6opsSIpiFouFBEGga9eu0cuXL2n//v2UnJxMPp9v3v1DQ0OkUqmotbWVnE4nHT9+nOLj42l0dFTi5Moitueamhrq6Oggu91OLpeL9uzZQ8uWLaMPHz5InFx5xHY9x+Px0IoVK6ikpIR27twpTVgFE9vzjx8/KC8vjyoqKmhwcJA8Hg/ZbDZyOBwSJ1cWsT13d3eTWq2m7u5u8ng8dP/+fdJoNNTQ0CBxcmWxWq1kNBqpp6eHAFBvb+/f7ne73bRkyRJqbGwkp9NJ7e3tpFKpqL+/P2IZo3oYyc/PJ4PBEPx6ZmaGtFotnT17dt79VVVVtH379pC1goICOnDgQERzKp3Ynn8WCAQoKSmJbty4EamIUSOcrgOBABUVFdGVK1eotraWh5FFENvzxYsXKSsri/x+v1QRo4LYng0GA23bti1krbGxkYqLiyOaM5osZhg5cuQI5eTkhKxVV1dTeXl5xHJF7dM0fr8fIyMjKCsrC67FxsairKwMw8PD8x4zPDwcsh8AysvLF9zPwuv5Z1NTU5iensby5csjFTMqhNv1qVOnkJaWhr1790oRU/HC6fnu3bsoLCyEwWBAeno61q9fj5aWFszMzEgVW3HC6bmoqAgjIyPBp3LcbjesVisqKiokyfx/IcdjoSI+KC8cExMTmJmZQXp6esh6eno6Xr16Ne8xXq933v1erzdiOZUunJ5/dvToUWi12l9OfhYqnK4HBwdx9epVOBwOCRJGh3B6drvdePz4MXbv3g2r1Yrx8XHU19djenoaJpNJitiKE07PNTU1mJiYwJYtW0BECAQCOHjwII4dOyZF5P+NhR4Lv3z5gm/fviExMfG3/8yovTLClMFsNsNisaC3txcJCQlyx4kqk5OT0Ov16OzsRGpqqtxxotrs7CzS0tJw+fJl5Obmorq6GkajEZcuXZI7WlSx2WxoaWnBhQsX8OLFC/T09KCvrw/Nzc1yR2P/UtReGUlNTYVKpYLP5wtZ9/l8yMjImPeYjIwMUftZeD3PaWtrg9lsxqNHj7Bx48ZIxowKYrt+8+YN3r59i8rKyuDa7OwsACAuLg5jY2PQ6XSRDa1A4ZzTGo0G8fHxUKlUwbV169bB6/XC7/dDEISIZlaicHo+ceIE9Ho99u3bBwDYsGEDvn79irq6OhiNRsTG8v/Xv8NCj4VLly6NyFURIIqvjAiCgNzcXAwMDATXZmdnMTAwgMLCwnmPKSwsDNkPAA8fPlxwPwuvZwBobW1Fc3Mz+vv7kZeXJ0VUxRPb9dq1azE6OgqHwxG87dixA1u3boXD4UBmZqaU8RUjnHO6uLgY4+PjwWEPAF6/fg2NRsODyALC6XlqauqXgWNuACT+mLXfRpbHwoi9NPY/wGKxkFqtpq6uLnI6nVRXV0fJycnk9XqJiEiv11NTU1Nw/9DQEMXFxVFbWxu5XC4ymUz81t5FENuz2WwmQRDo9u3b9PHjx+BtcnJSrrugGGK7/hm/m2ZxxPb8/v17SkpKokOHDtHY2Bjdu3eP0tLS6PTp03LdBUUQ27PJZKKkpCS6efMmud1uevDgAel0OqqqqpLrLijC5OQk2e12stvtBIDOnTtHdrud3r17R0RETU1NpNfrg/vn3tp7+PBhcrlc1NHRwW/t/bfa29tp5cqVJAgC5efn0/Pnz4PfKy0tpdra2pD9t27douzsbBIEgXJycqivr0/ixMokpudVq1YRgF9uJpNJ+uAKJPac/iseRhZPbM/Pnj2jgoICUqvVlJWVRWfOnKFAICBxauUR0/P09DSdPHmSdDodJSQkUGZmJtXX19OnT5+kD64gT548mfdv7ly3tbW1VFpa+ssxmzZtIkEQKCsri65fvx7RjDFEfG2LMcYYY/KJ2teMMMYYY0wZeBhhjDHGmKx4GGGMMcaYrHgYYYwxxpiseBhhjDHGmKx4GGGMMcaYrHgYYYwxxpiseBhhjDHGmKx4GGGMMcaYrHgYYYwxxpiseBhhjDHGmKx4GGGMMcaYrP4AUH3PhVBlKe0AAAAASUVORK5CYII=", + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAiMAAAGdCAYAAADAAnMpAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjcuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/bCgiHAAAACXBIWXMAAA9hAAAPYQGoP6dpAAEAAElEQVR4nOzdd3yTVdvA8d+d1TTp3rsFyt57T1FE4RVBZbn3wIV7Pj4uHjcqbgVR2UvEhUzZe69Cge490jRp0+RO8v4RbKlNoYUu4Hz98LG950nXfeWcc11HcjqdTgRBEARBEBqJorEbIAiCIAjClU0EI4IgCIIgNCoRjAiCIAiC0KhEMCIIgiAIQqMSwYggCIIgCI1KBCOCIAiCIDQqEYwIgiAIgtCoRDAiCIIgCEKjUjV2A2rC4XCQkZGBt7c3kiQ1dnMEQRAEQagBp9NJcXExERERKBTV939cEsFIRkYG0dHRjd0MQRAEQRAuQGpqKlFRUdXuvySCEW9vb8D1Ynx8fBq5NYIgCIIg1ITRaCQ6Orr8OV6dSyIY+WdoxsfHRwQjgiAIgnCJOd8UCzGBVRAEQRCERiWCEUEQBEEQGpUIRgRBEARBaFQiGBEEQRAEoVGJYEQQBEEQhEYlghFBEARBEBqVCEYEQRAEQWhUIhgRBEEQBKFRiWBEEARBEIRGVetgZMOGDYwePZqIiAgkSeLnn38+7znr16+nW7dueHh4EB8fz/fff38BTRUEQRAE4XJU62DEbDbTuXNnPvvssxodf/r0aa6//nqGDh3Kvn37eOKJJ7j33ntZuXJlrRsrCIIgCMLlp9Zr04wcOZKRI0fW+Pgvv/ySZs2a8cEHHwDQtm1bNm3axEcffcSIESNqe3tBEARBEC4z9T5nZOvWrQwfPrzSthEjRrB169ZqzykrK8NoNFb6JwiCIAjC5aneg5GsrCxCQ0MrbQsNDcVoNFJaWur2nGnTpuHr61v+Lzo6ur6bKQiCIAhCI2mS2TQvvPACRUVF5f9SU1Mbu0mCIAiCINSTWs8Zqa2wsDCys7MrbcvOzsbHxwdPT0+353h4eODh4VHfTRMEQRAEoQmo956Rvn37smbNmkrbVq1aRd++fev71oIgCIIgXAJq3TNiMplITEws//z06dPs27ePgIAAYmJieOGFF0hPT+eHH34A4MEHH2TGjBk8++yz3H333axdu5aFCxfy22+/1d2rEARBEOpUgcWMSS4r/9xL5UGAVt+ILRIuZ7UORnbt2sXQoUPLP586dSoAd9xxB99//z2ZmZmkpKSU72/WrBm//fYbTz75JB9//DFRUVF8++23Iq1XEAShiSqwmHll1wpkp6N8m0pS8EaP0SIgEepFrYORIUOG4HQ6q93vrrrqkCFD2Lt3b21vJQiCIDQCk1xWKRABkJ0OTHIZAYhgRKh7TTKbRhAEQWgcmSVF/JK03+2+E0U5Ddwa4UpR79k0giAIwqXhaGEWXxzZQJlDdrt/4ak9WOwy18d0aOCWCZc70TMiCIIgkFtq4oujFYGIVqmmS2AUPYNj8ffQlR/3S/IBduQkNVIrhcuV6BkRBEEQWJNxjDK7KxDpFBDJPW36oVWqAXA4naxMO8LPZ4Zvfk85RM/gWCRJarT2CpcX0TMiCIJwhbM57GzNPg2AWqHkzlZ9ygMRAIUkMTK6PS18ggHILDVy0pjbKG0VLk8iGBEEQbjCGcpKsNhtALT3D0evdlXA/pgnuZPOWLEC0DM4pvycjJKihm+ocNkSwYggCMIV7uxiDRIVQy/FFJDIAcbTnGIMKM56ZFRf4EEQak8EI4IgCFc4fw8dGoUSgCOGTEplVy/Jy8zmNl4gl3RGE8Ia47ryc8I8fRqlrcLlSQQjgiAIVzi1QknvkGYAlNll5iTuwOawA/AAb3MnryA7baxt/QApraejDcykuW9gYzZZuMxIznOVU20ijEYjvr6+FBUV4eMjonFBEIS6llVSxJt7/ywPQvw0nvQMjkOrVLG/IJ1tQR9TGP1n+fF6fOjFCHpzLT25mlCiG6vpQhNW0+e3CEYEQRAEAPblp/HN0U1VSsH/43iPJ7Bpc/lnWokCJQ5cwUsU8fTleoZxCx3p11BNFpq4mj6/xTCNIAiCAECXwCie6Xw1nQOjKk1kBYjW+zPO9gxnb/4nEAFII5FFfMwL3IBTTG8VakkUPRMEQRDKxXkH8nC7QRSWlZBmLsTudBKk1ROp88MiDeJn/osFs9tzJRS8wKwqgYwgnI8IRgRBEIQq/D10lcrAA3iiZwS38ivfYafq+jXP8TX9GdVQTRQuI2KYRhAEQaix/+N+t4GIAiVDGN8ILRIuByIYEQRBEGqsNd1oQaezhmIk9PjgwM5IfEkjsVHbJ1yaxDCNIAjCFeDvjBP8nXmC/DITAOE6X0bFdKRDQES15+zOTWF58gHyLSZCPL0Z26wLHQMiuZGHeJ+HUTgVNC8ZRNDBhzkZMY/c6GVMoBUfS6vpzrCGemnCZUD0jAiCIFwB/Dw8ubFZZ17sei0vdrmWNn5hfH5kAxlmg9vjTxpz+fbYZvqHNeflbiPpEhjFF0c2km42cDWT0KIj3NoRn4P3cmvLvnwa+B1tMu4BnDzuvIoVfNegr0+4tIlgRBAE4QrQOTCKjgGRhHr6EKrzYUxcZzyUKk4V57s9fk16Au0DwhkR1Y5wnS83xHUmxsuf9RnH0ePDD86DRO57jlFR3egSGEWU3p9PQz+n2aFnAXiHe/mC5xryJQqXMBGMCIIbBRYzKaaC8n8FFvepjIJwKXI4HezMScJql2nuHeT2mFPFebTxC6u0rZ1/OKeK8wBQW4IxW520PesYT5WGzo6rGZk2A4A5vMtL3FRPr0K4nIg5I4LwLwUWM6/sWlGpCqVKUvBGj9EEaPWN2DJBuDjpZgPv7PsLm8OOh1LFg+0GEqH3dXus0WrBR62ttM1HraXIanHtt5W6tmn+dYxGC6bOfMVWHqAff7OE++jFN+yoh1ckXC5Ez4gg/ItJLqtSDlt2OjDJZY3UIkGoG6Ge3rzcbSTPdxnB4PCWfJ+wjQxzUb3cqz19WEIKCpQcZSdjiXV7nB27qNgqiGBEEAThSqFSKAnx9CbWO4Abm3UhysuPtRkJbo/10Wgx2iyVthltFnzP9IT4qD1d26z/OsZacUwoUfyFCQ2e5JDCNfgin1WjJJtUbqE5s3mrzl6jcGkSwYggnKXAYuav1KNu99XXO0hBaCxOJ8gOu9t9zb2DOGbIqrTtaGFW+RyTIK0eH7W20jGlso3TxXmV5qFo0fIXRvwIpgQjV6HDiAEjhTzBcLJJYSEfYcNaD69QuFSIYEQQzjhpzOWNvX+wMy/Z7f5Zx7eyKetktefbnDaWGZeRbHV/viA0pmWn93G8KIc8i4l0s+HM59n0CokDYFbCFpad3ld+/FWRrTlcmMmqtKNklRSxIvkAyaYChkS0AkCSJK6KbMPvqYfYn59GutnArONb8fPwpEtQdKV7q1DxKznE0g47Nq7Dn8cYSjqu3ycjBWxmRYN8HYSmSUxgFQRcPSIzDq+nRLYBrgmrzX2CUEsKThXnU2p3bf/pxHYCPHS08w8vP7fEUcLMwpn8L+9/pMvpPBv4LO+EvdMor0MQqlNss/B9wlaKrKV4qtRE6v14rMPQ8p/lgrKSSgvctfAJ5t7W/VmevJ+fk/YT4unNQ+0GEqn3Kz9mRFRbrHaZn07soES2Eu8bzGPth6JWKN22YQ6HeYJr2MUqEtlfvl2Bkp/5kiGMq58XLzR5IhgRBGB1+rHyQKS1byj3temP95lxb5vDzpLTe1mXcRwnsCL5IO38wzHYDXxe8Dnv572PwWHAiRMlShSS6HAUmp7bW/U55/6nOg2vsq17cAzdg2OqPUeSJP4vrhP/F9epRm1w4iSCZlW2O7Czy7mGD3//Ha+SyBpdS6NW0q9LBK3iAmp0vNC0iWBEuOLZHHa2ZJ8CQK1QVgpE/tl2S/PuJBiyySgp4pApkYdTf2N28bdYnBYcVGTeKFCgkTQN/hoE4VIwi9f5ha/d7pOcEkeiltJu34M1vJqNLfsyRDBymRDBiHDFy7eYy4dhOvhHlAcij2U+xt/mv1FLakocJeRqCyjQFOCQbGB0fy0bNuYY5rCnZA86hQ69Qo+3whsvhRfeCm/8lH74Kf0IUAbgr/AnWBlMmCoMrUrr/oKCcJnYw3pm8lq1+50KB0mtl9HjxEMonOd+NJlLbTidYLW5n3wrXHpEMCJc8Rxn1RTRKCvGuo+VHeO49TgOpwMbNlctBAnOGlZ366TtJCdt1U90vVj/jOuf/f9//lOgQCEpUKAoHzJSokQlqVBJKtSSGjVqNJIGD4UHHniglbRoFVp0Ch06yRVAeSm88FH64Kfww1fhS4AqAD+FH8GqYEJVoXjhhUol/nwINTcj8zskfRjeXjJGRV75z+zZPYsWbQEdb8qkP6POea2vF+3HVGKr7yYLDUj8NRGueP4eehSShMPp5EhhJjaHHbVCyV9xf1U6bvrBtewpSmCv53KOadfgxImdyu/MJCQm+Eygl2cvihxFmOwmTA4TxY5iSpwllDpKKXWUUuYsK/9nc9qwOq3YsCE7ZexOO3bs2J12HDhcRaGcThw4cP7rP6DSx2c2uP+4kZw9KVJy898/wZMCBUpJiRIlSkmJGnV5AKWRNK4ASjoreJJ05b1PekmPt9IbX4Wvq/dJ4Ye/0p8gVRAhqhCCpCARPDWyXeb9HCxwpQFf6zeE60L6karez3Z5NXZVmetnVYKXuZl1lDZuY4UGJ347hSuep0pNt8BoduWlUGwrY+npfdzSvBuSVPEQ3ZGTxFFDFp748n+Oh/gl/ktez/svsw2zUaKsVMhpgH4ADwc83BgvpUZMsoksOYtcey4Gu4FCeyGF9kIMDgPFjmLMdrPr/04zJY4SypxllDpLsTgtWJ1WV+DktGFzuoIn2SmXB092XAGUw+kKnM4OoIAqgdSZje4/bkT/7nUC13ygf3qfJEly9Tz9E0BJSlS4Aqd/AigPyaP8n1bS4il5VgmefBQ++Cp9Xb1PygAClYEEK4MJVgWjV10+Sw+km22kl5aUF5NYbdjESsPfTPSdyPDd8yn1yCE/ZitH2v2ADQs3EMEy0lCI6hNXDBGMCAIwPKoNu/NSceJkbUZCef0FD4WK/flpHDmrsNPVkW1p5hHHrMhZPBv0LC9mv8jPxT+jRIkde5OfwOql8iJeFU888Y3dlBqxyBby5DxyHDnk2/PLA6giexFFzorep3+CpxJHCRanpbzn6ezgyea0IXOm9+ns4OlfARTAv3uhKvWCNbEA6ly9T2cP3Z3d+/TP0J0KVUXPk8IDDa4eKJ1CV+3QnbfCG3+lvyt4UgUTpArCF99qe5925loosFrgzNSof4L3BUULcbZYQJ/csYw59gBftZvF7XTkFIcYTzw/cggtunr/+gmNTwQjggA08w5iUnxP5ibuwAmkmQ2knVUA6h8DwlowOLxl+edtPdqyLGYZO0t38lz2c6wzryNAKWb31yWtSkuUKoooohq7KTUiyzIGDGTL2eTL+eTb8ymyF2FwGChyFGG0GzE7zJgcJkqcZ4Inh6XS0F15AEVF75MDR42G7ppi71N/uT/fS29xynaKk9JJ1z/FSXLJBQm2BC9iS/AiXjysQo8vsQHBPLa9H0fNS9mq2s3D4z9q+EYLDUoEI4JwxqDweAI8dKxIOUhScX6lfUFaPcMj2zIkvGWl4Zt/9PTsydq4tZwoO0EzTdU6CsKVQ6VSEUQQQaqg8x/cRJw9dFcePNkNGBwGjA4jxfZiShwl5b1PpY5SyiirGLpzWLFiLQ+cZKeMjIzD6QqcQh2hdHB2oK29LQBKXBPFzZg5KZ3kuHScXCkXT7sXfo5Q7LnBtIjuisNuZ9i072D0adCJ36vLmQhGBOEsHQIi6BAQQaqpkBRTAU6cBGu9aekbgsJNEPJvLT1anvcYQWhq6mvozirLzDxhZF7qKhyRjvIg5B969HRydqKjo2N5kH+07Bh/Gzehi16EqtVfWBVQtqgFHqNWQ+CwOm2f0HSIYEQQ3Ij28ifay7+xmyEIlwSDRebTIwX8nlrCcaMVo9WBXGk4qB3HIvfRhjbVTkq1O+28m/kFHcNP8ebgDdwx+Rl+bJOH+dgeMqc7iQm9CkXUPdD6gwZ5TULDEsGIIAiCUCOJBgszjhpYm1FCssmGyeY8q0pIZWoJ/DyU9A1QcItXKWFEVJpo+w+7047FYWGF7U1e772FQA8z2za0Z8ufvQhePgCPsTeQug+SX4S4N79DypjJaH1XEqRBZEtDgc71+ZKFBiI5nc4mMBf83IxGI76+vhQVFeHj49PYzREEQbisbc0u4YsjBrbmlJBRaqdUdrqd9yoBGgUEe6roEuDB5HgfborVU1hYSGZmJjabDafTiSRJ2Jw21JK60vl2p4xdMhMQ/jC+ugTXNSXo1v4LrtEFMev4TTg8JY5aXMerIyDqGfBs67q7JDlBGwshN0LwKPAfCIqmnc12panp81v0jAhXnD9TD7MsaT/DIlozvkX3ao/bnZvC8uQD5FtMhHh6M7ZZFzoGVCzi5XQ6WZF8kI1ZiZTabbTwcWXkhHqKgFlo+mRZZnlKCT+cKGJvQRm5pTJlDvfJNhKgU0mEeyrpE+zJ/W18GRThVelaaWlpFBaeYv/+M6nRTifFjmJ2mXcxP38+e0sP8VvL5YSog137kVGrDISGP4BWm1x+razUQMrS/bnzrRhwOlFIrgeVDNgy4PST4H89hN7tROkFWJIhdQakTAeVL/Q7BNpLI/NKqCCCEeGKklScz4bMRKLOWgbdnZPGXL49tpkxzTrTKSCSHTlJfHFkIy91vbZ8CfWVaUdZm5HAna37EqTV80vSAT45tI7Xuo+qdgl1QWhoFlnmu4Qilpw2cdhgpbDMjq2a/nAF4K2WiNGrGRKuY0p7P1r7uV83yWKxkJSUhNlsLt/mdDrJkXNYa1zLnPw5ZMlZROmieK3Vl7z9SSuOxa4kRO2ai6VU5RASeT8qdUUNH7usYNWaLvShmF37M0n5di234RryOXsOSuEfYNwI4VPAZxBIyK7Wa+NAHXhxXzChUYhgRLhiWOw2vkvYwm0te/N76qFzHrsmPYH2AeGMiGoHwA1xnTlqyGJ9xnEmt+yF0+lkTfoxrovpQJdA17uwu1r35eltS9mXl0rPkLj6fjmCUEmeRebTQwX8kVbCSaOVIpsDezVBh1ICX7WCeF8N10XpeKR9AEHa8z8OCgoKSE9Px2q1lm9zOB0kW5NZWriUJQVLsGLFS+XF022f5vH4l7j57WzuXZEGw9aSoUwB+qJSnyY48kGUqsop9EqVg10b29NZUUKZyYYqzdVjopag9OzX4gB7MaS9Dfq/IOIxBZpmLaDHalB61vZLJzQBIhgRrhjzEnfR0T+Ctv5h5w1GThXnMTyyTaVt7fzD2Z+fBkCexYzRZqGtX1j5fk+VhmbeQZwqzhPBiFBvEgwWZhw2sD6zhGSzDfN5JpEGeChp56fhpmbe3N3aB20t1uiRZZnMzEzy8/Ox2ysq0DqcDo5ZjvF1ztdsMm8CQCWpGBk5koWDFqJwaHjkyzz8Xz0BV+2DLvnghHWG7kTqv2Vch3mgdL/0ddnmWNQSqOxOQo2uXhOlu6z6M8GJeTck3uugxe7v8NBcOrVdhMpEMCJcEXbmJJFiKuDFrtfW6Hij1YKPunL3tI9aS5HVNZPOaHMt5OWj+dcxmopjBOFibMww8+UxA9tzS8k8zyRS7ZlJpN0DPbgt3pf/i9Fd8MKAFouFlJQUTCYTZ+c3OHFyoPQAb6e/zUnryTP3lmjn046FgxbS3r89DoeDaYuK+O+PadjanYZJx0HhxMOuYufImzg6M5spvzRj4S1xLJr4IkiVX1FyUgjxWWoUKietIvwYFuoAlQqVTaZaTtB1AnXKGOiQX/1xQpMmghHhsldQZmbBqT080XGomMshNCmyLLM42cycE0b2FpSRZ5GxnmMSqV4lEaFT0idYx4NtfekXVjeL6RUVFZGamkpZWVnle0oSh6yHeDrpaXJtueXbgzRBvN/9fe6Iv6N825x1xTzyWS5FnkUwZhf4lqGWFdwqt+S6oFiWv3yc94/4IKu9ebPH76gUDqw2JSrJiULlwGZTcnhtO/Q4cDrAZrZB0mkAVNXUG1RJEP7RS3i3/xTJUQCrvWCIAc4EYkWmMr5bcpBbR7cjJECscdOUiWBEuOylFBdQbLPw1p4/y7c5cHKiKIf1Gcf5bMB4FFLlQkw+Gi1GW+UeDqPNgu+ZnhAftWtc2mi14KupGKM2Wi1Ee/nV0yu5NBVYzJjkioecl8qDAO3lsyJtTVhkmS+PFrEs2cRRgxVDDSaRxnlpGBqhY0pbX+KrmUR6MTIyMsjJyak0/AKgVCpJVaRyX8J9ZFuyy7drlVruan4Xn/T4pFKvy4aDpdz2QQ4pBTbouxtauIKWVlpftg8eR5nNybSHdvBNYRieKjvrPv0fEWEbwKlEPraNUs/JeDc7gVptx7IpDgCnA6wmGxScAFl2P0wD+Hdtgc/D/wH1m7A+HKxZsE4PQ/NB5eX+JKFJEsGIcNlr4xfGq92uq7Rt9vFthOl8GBHVrkogAtDcO4hjhqxK80aOFmbR3Ns1Jh2k1eOj1nLMkFVeqbVUtnG6OI/B4ZfGargNocBi5pVdK5CdFbMaVJKCN3qMviwDkiyTzKdHC1iZbuak0UbxOSaRqiTw0Sho5aPhumgdj7YLwK8Gk0gvlCzLJCUlYTQa+Xd5KY1GA35w675bOWg4WL7IngIF/YP7s3TIUoK0ledjnEi3MuHdHPYklkFcMlx9FDROfOwaXvPtzpMju+NwOLhr0BrmecXi77TwxoPbCA/9AQC9JoH9CiUnT3yP/tBUhl67C9P2eCSFhNPhJDfLREnWMXSAQqGAMzNjPJUSoe8/SNLUL8jdc5LE3SkcSjVRavmV6/1epIXmL6S1fjAoi++WJAHw04ojAESFenHLtZXngglNgwhGhMueVqUmUuVXaZuHUoVe5VGepjsrYQt+Gh03NusCwFWRrXn/wGpWpR2lY0AEO3OTSTYVcGvLXoCr+/qqyDb8nnqIEE9vgrReLE8+gJ+HJ12Cohvw1TVtJrmsUiACIDsdmOQyArh0g5HDBa5KpBsyzKSYZUrkc08iDdQq6eDnwc3Nvbi9Ze0mkV4Mk8lEcnIyFkvVeUx6vZ6wqDDu3XUvv6T9gs1pK98Xp49jdr/ZDAobVOW8AqPMrR/k8seuEtCZYeR2CCkDJ9we05qJtnjKrHasJVZu6reW3yLiCbOWsHtBHk7FIzidCvx0v/HrehmV0sHB2cV88efTPHW7k7hXY+mWYWfXjP2o9CokqxWbVoc04nrUh47hnZpMiM2Ecson+Owswjh3LqWPPcCgBQsJCdBxKPE7DMnP010/B2lDCJOGHWDuWgs3XdOKQD9PFIrzry8lNA4RjAgCUFBWUqlUdQufYO5t3Z/lyfv5OWk/IZ7ePNRuYHnwAjAiqi1Wu8xPJ3ZQIluJ9w3msfZiXsrlZG26iW+OFbHjzCRSi/0ck0iVEiFaJd2DtNzdypfrY7zcrvBc37Kzs8nOzsZms1XarlAo8PPzIzo6mvePvs+0vdMw7qzIaPFR+fByh5d5puMzbq9rtTp4+It8Zq0uxuGwQ8fd0DUPJAjX6jhyzST8tFr+3HQam9HKNb3/5u/YVrR0mNjzSxBmWxdwOtm57yO6te1PVl4iD47vzKNX7yYIif99N47ZvxwleEgYT7/Uk637M5i9fRGTJ/bBO8CbVkDBqFEo1/6G5dlniJ4zh52rNxC6cw3he9fjO3Ysg7pHMSfzRfwkiGcOoUc7o1f8gtajHXpPtdvXJTQNIhgRrkhPdRp+zs8BugfH0D04ptprSJLE/8V14v/iOtV5+4SGI8sy80+ZmHuymP2FFvItdsqq6eb4ZxJppE5F/1BPHmrrR8+Qxp0YKcsyKSkpFBUV4XBUbrharSY0NJTQ0FDWZ67nxi03krypotqpWlJzQ/QN/NT/JzxUHm6v73A4eHNBEW8vLKTMBnifgmsTQOdEicQPvYczKaZ1+fGmlGI++CifbbEt6OlZwqY5bSgs1QNOTqc+SIFhOLmFpdhkO88/vo40p4Zbhqr5YsEBZLsDQ3EZSrUShUqBOiwU7wDv8mvrv/kOZ4twpPk/Uva/99k19WMGPj+OtPHj8T0TfEWGeLG38BXiw5yQNZe7Q8ZRVLAQAv6v7r7oQp0TwYggCE1KqsnG41uzGd/ch/Et6q60vski89XxIpYnmzhWVEZh2b9Xlq2glMBL5ZpEelWkjkfb+RLnU/eTSC9USUkJycnJlJSUVNnn6elJTEwMXl5e5FnyuHHdjWzJ24LjzECShEQn/04sHrSYeJ9zz2/6aV0xj32VT6HJAWUGuGo3NHdNRh4RGs2fg26odPzepad4bXoxh0NiuD7Kxq9fdiCnKBCQUUrtOHF6Cj7eGqw2O3pPNb99m4M3Kt6dOQyfANfXV6s5R89iYCD5YXEEZp3GWmahNCwGe9sOqI4eImXsWGKWLq04tvMcSqQIdJkfEHjyBtDOgqg7z/u1FRqHCEYEQagXRwuzWJq01+2+E0U5xHgFVNm++LSRuzdkUWxzPTgvJBjJMFn55LCBVRlmThWffxKpn0ZBK18No2O8eLCNX71OIr0YeXl5ZGRkVBl+kSQJX19fYmNjUalUyLLMlJ1TmH16NhZ7xVyRUG0oM3rO4Ka4m857rw0HS7n9oxySc+xgKYO4PTC8EBTgp/HgwPAJRHt5Vzrnj/f38fDiMlKDQrmjs5nv3+5EnrETTgqQ8KPEvJW8wuN0axuKt15N+lEjx8s0DAh2EBvn57YdRrMVU4kVL51r8bvMXDOnB9zI0MUf4jHlXvTXP0/pD7/i3TOO4mXLkPPySM8xERbkmo/kjH+LJYdjGRfwKBy5C6zZ0Py52nzZhQbSNH/rBEG4pG3ITGRu4g638ysAFp7ag93p5JqotgCYbQ4e35rNd8eLymfuHCwsq+ZslwP5FmYcKWRjVglp55lEqlFAoIeSjv4eTIj35rbm3hdcFKyhyLJMeno6hYWFVdJvVSoVwcHBRERElG/7/sT3PLPnGfKseeXbdEod97e8n496flSje55ItzL+nRz2nioD2QGW43BrMvg6kID3O/ZnapuuVc6b+cgmXjqgI9/Pn8eH2ejfRUuOYTIODuJwaElJPcjOQ4k0j/KlXYtAJAnWfpeNCnhlVg+KTGWYS2ycSjMQH+NfHkyolAr+3HSawT2iKbPZWbcjhZDb74PFH8Ivy+j53HS27MtgwJTnUM14h729B5H72o9cN6i56/Vr1WTY+3HYeybti++GE88jWXOgzQe1/G4I9a1p/zYKgnDJOVGUUykQCfLQ09ovFEmSOGbIJs9iAmDJ6b2E63yQHYHcvCad0ybXO/5/zjtdbMPmcLI23cR3CUXszLOQXYNJpGGeSnoEabmnlS/Xxni7ObLpslgsJCcnYzabq6TfarVaoqKi8PX1Ld92qPAQt2y4hWPGY+XpuEpJyZCQISwetBg/rV+N7ltglJn0fi4r95SCwwlp6XBDAnR0BYQ9/ILZOnSc2wDujVF/8ZE5nFKdmplTgwnSGcgv+gMH87DJev5c9wf+vmaG9oqhfXwgkiRx+nAhu1Kgc7CDk2Yjh5YVoPdUExnqVWmiqZ+3By1j/Fm6+gQWq0zzKD+u6hsLnp5QWkrXcA1l1lB2qCfScflSvE8d5Zqiffj7uFbjVigkhvaKZusBFbssC7k1eDKqlA9dPSSdfqrV90aoX5Lz3z/xTZDRaMTX15eioiJ8fMTy7ILQlM04vJ6DBRmAK0X6pmbdUJzJKnE6naxIOchvKYdwOiGztBl/pvnjcFJtr8a/KXAtZx+pVzEgVMfDbf3oFnzpLo5WWFhIWlpapcXnwDX84u3tTXR0NFptxXyVEmsJt2y8hZWZK5GdFWXS473i+bH/j/QJ6VPje1utDh78PJ/Za4tx2J0osw3YI4/AhCJQgk6lYtOQsXQNCKlyrl128ETf35jlFw8SrHg3hqFd9FhsqygquQYAX90atOphVc69JnoJq9Ng0Yx2jHukrdu2bdmXzskUA7f9X/uqO6c8ADO/huHXwC8rATDv3ElSr16gUND+Xz1J5Qq3ws5+ro8DRkCPP90fJ9SZmj6/Rc+IIAh1xlBWwqEzgUiAh45xzbqWByIANrsTiy2WdRllJBbrcVK14NzZdCqJ1r4aro7Q82h7P6K8NPXa/oYgyzJZWVnk5eW5rX4aFBREWFhYlV6IV/e9ykdHP8Ikm8q3+Wv8eaPzGzzS5pFatcHhcPDG/CKmLXJlyKhNJTgyE7A/kQ1BrrDwqZZdeL/LALfnW4os3NtnJYti26JzyGz5Lp620RpkOa08ENFr3ncbiJSYrOxIs9NMaa82EDmv6Z+5gpH1a8s36Xv2xKNzZ8r27+fUkCE0X7++6nn+faHfMdjSFgpWwrZe0GfHhbVBqFMiGBEEoc7kWEzlQyidA6NQnqlue9XvKWzJLsVSPpPUG9eAjBNwX4tDJcGLnQN5qeulvxKrLMucPn2a4uJit9VPo6Ki8Pf3r3Len2l/cu+2e0kvTa84XqHhlphbmNV31gXNe/lhTTGPf52PwexAbbPBnlPYbkuHPq7JrvF6Hw5eM6nawmyFp4u465q/WdGyPcFY2Te3FWEBromz+eY4VxtVE/DyfMrt+Q9dtYoiVDx9e4Tb/TWiUoG3DxQbISUFYlwp+HG7dpGg0VD6999YEhPRxrvJFvJqDYMyYEMUGHfCxtYwMOHC2yLUiXO/LanGZ599RlxcHFqtlt69e7Njx7kjy+nTp9O6dWs8PT2Jjo7mySefdFsRUBCES9vZYYXjrIeuj1pBc2814+K8eKVLIC91sjC52QEGhyUzKEyJ5sxforMXRHMCRw3nnsTalBmNRg4fPszu3bvZv39/eRl2SZLw8vKiffv2dO/enY4dO1YKRNJMafT6vRfKH5WMXDeS9NJ0FCjoEdCD1BtTKZtcxo8Df6x1ILL+YCmxdyVzx0e5mEwyqoPJ2Ep3wMcnoa8FtULBX4NGc+K626sNRFK2ZnDTiM0sb92BOK2NU0vbEBbgOrbAHATYUUqd8NfPq7Ydf+0oJgwrL8903+vyj35dIt0P0fzjkcdd/7/tlvJNKpWK4NdfB+BU9+7Vn6sNg2EGkDRQehzWX0RgJNSJWs8ZWbBgAbfffjtffvklvXv3Zvr06SxatIiEhARCQqqOK86dO5e7776bmTNn0q9fP44fP86dd97JhAkT+PDDD2t0TzFnRBAuDUarhee2L8OBEx+1lrd73VClIq3D6eCVXb+WT2R9s8f/oVPpWJlmZllyMcuTTeWpvR39NRwY17zBX8eFysjIIDc3F1muvOS9UqnE39+fyMhIt0GELMvcs+0eFiQvoMxREYBFeEbwVZ+vGBU16oLblJDmypDZf9qKAie69FxMaSnwcj6E20GCW2Na8WPva855nYPzE7jvjVS2N2tO90CZHbPiz6wZA3nGttidx5AIIMQ3v9prvHnnJl6ZncOdfbTM2npdtcfVmE4CpRKKK3+9j/j64jQaCZ42jZDnn6/+fFmG9X7gMIPSFwbnla/4K9SNmj6/ax2M9O7dm549ezJjxgzANfYYHR3No48+yvNuvulTpkzh6NGjrFmzpnzbU089xfbt29m0aVOdvhhBEBrfV0c2sic/FYC+oc2ZHN+zPCCxOxwsPLWH9ZnHAWjrF8YTHSvPK7A5nGzMKmFZUjEhWhWvdGu6wzSyLJOcnExRUVGV4Re1Wk1ERARBQdW3/4uEL3hp30sUWgvLt3mpvHiszWO81fWti2pbXpHM5Pdz+GuvBXASYC6mYMNJuM8Aw0oBCNPqOHqmjPu5rH5rJ1MXlXIwKorrW0v8+kGz8n2F5nFY5aWAmkB9yTl7bFqo5pFvV5JRPAZdXcz/iQ6G/DzYvh86VlRCtpw4wclWrUCSaG21nr8XaV0Q2PJBoYUhhaBqOgXuLnX1MoHVarWye/duXnjhhfJtCoWC4cOHs3XrVrfn9OvXj59++okdO3bQq1cvTp06xe+//85tt91W7X3KysooK6t4d2A0Gqs9VhCEpmVEdDv2F6RjdzrYmn2KwwUZdAmMQiFJ7MtPw2B1PQglJEZGV+2GVyskhkXoGRbRNBfSM5lMpKSkUFpaWmWfTqcjJiYGvb76tu/M3cnkzZM5UXyifJtKUnFN+DUs6L8AL63XRbXPanXwwGd5/LDWhMPpJERpI3/1cQraGGG2ATxAKUnM7D6M25udfwLpnHvW8tpBHaciInhwqJYvnqoY0jCVvnEmEJEI1Gec86G/6NMjnLZruDqauglEAF59Ax5/CO6cBLsPlW/WtmyJ58CBlG7cSHLv3rTYvfvc1xmaBxtiwZIC67xhYC7UMC1aqBu1Ckb+mf0dGhpaaXtoaCjHjh1ze86kSZPIy8tjwIABOJ1OZFnmwQcf5MUXX6z2PtOmTeO///1vbZomCEITEecdyN2t+zIzYSt2pwOjzcKGrMRKx0hI3NqyF639Qqu5StOSm5tLZmam28XnfH19iYmJOeeDuNhSzNiNY1mXvQ6705VBIyHR2rs1CwYtoFPAxa9v5HA4eH2egf8tNlBmgyCtg7ItJ8kpNsLr+RAtgwRXh0Tz1+AbanS96df8xoelEWQH+vDGrX68OKmil8di/RWz9VUAfPUbUKnO3YP15rMH8EDJ16uuvrgXerb7HnQFI8eOVNnVfMMGDiuVWPbsoWTPHnTdup37WoOSYXMnMB+EDYGuz7VRdddW4ZzqfXBs/fr1vP3223z++ef07t2bxMREHn/8cd544w1eeeUVt+e88MILTJ06tfxzo9FIdLRYll0QLhU9gmMJ0nrxV9pR9uanlk9mlZDoFBjJiKi2tPAJbuRWVk+WZdLS0igsLDzn4nPn88zuZ/g84XNK7BVryARqAnmn6zvc0+qeOmvvrFVGnvwmn6ISJz5aCEnJIHVPDtxWBKPMAPhpNOwdfgtxXn7nvZ5cJvNKz5/5JqAVxd5aZj4dym1XVXSxy3ISRaWjAfDy+ASt6tyTUQ9syuaYRUUnbzuxrc9//1qJiISMdFizCq6qHOiEffYZWQ89RNKAAbRzs45PFf0PwI7BYNgAG2Kgzz7wEQthNoRazRmxWq3odDoWL17MmDFjyrffcccdGAwGli9fXuWcgQMH0qdPH957773ybT/99BP3338/JpOpfALUuYg5I4Jw6Sq2WsguLQacBHt646tpmgXKLBYLSUlJmM3mKvu0Wi2xsbF4eZ1/CGVp8lIe2fEIWZasivMVWm5rfhuf9/y8TsvQr91fyp0f5ZCaZ8dDBa0cRRz89TS0ssCLheDpRAL+17Evz7Y5R3bJWcx5JTzT8xd+bNEJu0rJr+/EMKxzxfdMli3km70AOx6qO/DTf3/eaw4KXsSWPAWrFnVj6E3Nznt8rfy8FCaNg9g4OHq6yu6jwcE48vLwnzqViA9qWAZ+71jIXeb6uPsaCKxaL0WomXqZM6LRaOjevTtr1qwpD0YcDgdr1qxhypQpbs8pKSmpEnAola7JbJdA8VdBEC6St0aLt6ZpTggsKCggPT3dbfVTHx8f4uLiahQ8nC4+zdi/x7K/cH95WXYFCvoE9WHJoCWE6cPqtN1HU61MeDeHA6etKBTQJ0Rm3/wjHLTLKKbl42hmAwm6+QWzvZoy7u7kHs1n6jVrWNSuKxol7Pg8jg5xHpWOyTeHAHZUih41CkTys0rYmwfxamvdByIAY8aCJEFystvd8QcPcjw8nMIPPyTkrbdQnWeyLgBdl8LhByH9K9h9FXScD+Hj67jhwtlqHaJPnTqVO+64gx49etCrVy+mT5+O2WzmrrvuAuD2228nMjKSadOmATB69Gg+/PBDunbtWj5M88orrzB69OjyoEQQBKEhyLJMZmYm+fn5bqufhoSEEB4ejiS5L8T272tN3jKZZSnLsDkr5pLE6GKY2XcmV0VcVeftzyuSmfheDqv3ueo09Y5TkPbrMbYll6C8qRhuKsahAE+lko2Dx9I9sOZzck6tTeHpO3byS8du+KnsHJjVgojAyo+IXGNLoBhJCibQe2eNrvvAVaswoeTRJ+shEPlH8xZwMhHm/ACTb6+0Sx0WhteYMZh+/plTHTvS6sSJai7yL+2/BE0gnH4bDk4AWx7E1K7SrVBztQ5Gxo8fT25uLq+++ipZWVl06dKFP//8s3z8NCUlpVJPyMsvv4wkSbz88sukp6cTHBzM6NGjeeuti0tbEwRBqAmLxUJKSgomk6lKb6yHhwdRUVH4+fnV+HofHP6ANw68QZFcVL7NR+XDsx2e5aWOL9VVsyuxWB08MCOPn9aZcDihY4wKzyMpbP8sB2JtSN/nYde5Xtvj8Z2Y3nVQra6/Z9ZhXnjjFH916kKMl4PDs1ripavco11gGoXDmQhoCNBl1Oi6sizz9xEL0ZKTR97pUas21cpXs2D4QHj5uSrBCEDssmUcVquxJSZSvGoV3lfXcBJty7fAIwKOTXH9K8twbRPqnFgoTxCEWlmRfIBfUw5V2hbq6cPrPaovzLU7N4XlyQfIt5gI8fRmbLMudAyILN/vdDpZkXyQjVmJlNpttPAJYlJ8T0I9L+z33WAwkJaWVqlEAFBe/TQmJqbS4nPnsyl7E7dtvo0kc1L5NrWkZlTUKOYOmIu2nupSOBwO/jPHwHtLXRkyMcFKequNLJ2ZiN0po37LgK15GUjQXO/D4XOUca/O6le28toiI5vjW9IlQmLn57GoVJUDkeLSlymxvoUrhTcflapq6Xp3po5ew0e/FvHYCG8+/rMOs2jc8VKCwwEl7h9phsWLSb/5ZlCraf+vYbnzyloEB85Ueo28D9p/fZGNvXLUW9GzxiCCEUFoOlYkH2BPXmqlYmVKScJL7f6BfNKYy/v7VzOmWWc6BUSyIyeJlWlHeanrtUTq/QD4M/UIf6Ye5s7WfQnS6vkl6QDpJQZe6z6qSgVXd2RZJicnh5ycHLfDL4GBgYSHh9dq8mieJY9x68exOW9zpXTcDn4dWDRwEa39Wtf4Whfiu7+MTP02H2OJEz+9gls7w0/vHcRgsKEdU4JlggEUoJYkful3PddGxNX6HvMn/cm7hzzYGxPLyM4afn+raiprqXUpxtJxAPjpd+Ch6lnj68cq5mF2Ksiy1XzeygXr3QUO7oe33oMnn3Z7SEJ0NHJaGj633Ub0Dz/U7vr5a13zRwCCx0DXZRfV3CuFCEYEQagXK5IPsC8/jVe61ayc99dHN2F1yExpP6R82//2rSRa78/klr1wOp08u30ZV0e15ZooVxGuUtnK09uWcmerPvQMiXN7XVmWSUpKKl/z5WwajYaIiAgCAwNr9dpkWebJ3U/y3cnvKLVXFDUL8Qjhox4fMan5pFpd70Ks2VfCndNzScuz46GWeHCYllVfHebIYSPKcBn+l4fd05VuPCEqnnl9r631PRwOB58PWsqnZRGcCAnl3mu8+PrxqvNLZDmBfHMbALw9vkKnvb/G9/jm1T3c/0YSY1opWJYwptZtrLXjCdClDfj5Q0aB20Nkk4kEb28AWhcWoqrF8BwAxgOwrQvgBL+B0GvDRTX5SlAv2TSCIAgAOaXFPLt9GWqFgubeQdwY14UArfuqo6eK8xge2abStnb+4ezPTwMgz2LGaLPQ1q8i48RTpaGZdxCnivMqBSMmk4nk5GS3C23q9fryBTxra+6puTyx6wlyy3Ir2qD05P4W9/NBjw8aZLL94WQrE9/L5mCSDaUC7himw7Q1mU8eT8fpdOD9djHFLcwgQaiHJ4evmUigVlfr+1hLrPyv8yK+CWlNRrAfr93qx6sTqwZtrhTedgBo1Q/WKhAB+PB/CehR8e3ftQ+WLkir1q51agyFruEaN2UjVF5e+N59N0UzZ5LYvj1t0tPdXOgcfDrBoBRXtVbDRtjcEfofrKMXcGUTwYggCLXSzDuIO1v1JVTnTZG1lF+TD/HegVX8p9v1aFXqKscbrRZ8/jWE46PWUmR1BRRGm6sHwudf6b8+GtcxWVlZZGdnV1l8TqFQ4O/vT1RU1AUNARwuPMz4DeM5YjxSno6rlJQMCB7Az4N/xq+ByoHnGGQmvZfDmv2ur8e13T3p62Hk7Re3UVbmIGCMTMGEHIoVrmXWv+s+jDubt7ugexkzTLzefQmzW3XBoNfx7ZMh3HW1+3er+eYgwIFK0Rdf3Re1us/fS5M4YdPQJ8BOYFjtA6YL1rsfbNkILz0L0953e0jUd99RNGcO9owMDPPn4zdhQu3uoY2CQfmwMRjMh1yBySD3acVCzYlgRBCEWukQULE2SZTen2beQbywYzm78lIYENbioq8vyzIpKSnEm5V4oSa9pOLdq1qtJiwszO0K4TVhkS1M2DiB39J/Q3ZWBDfNvZozu99sBoSeu5JoXbJYHdz3aR5z17syZLq10PD0UDVPP7KbPzMs6MJB+04OBVpXO4cFRbJm6I0XfL/Mfbm8fvUfzOnckzKNml/fjGBEN/e9WbnGZoAZSQoj0HtLre/17F3bUaBk+qKG+3oC8NNCaB4O331VbTACEPvXXyQPHkz6rbfWPhgB17o1Q4thvb9rPZu1QTA011XvRLggIhgRBOGi6FQaQj29yS0tdrvfR6PFaKs8rGK0WfA90xPio/ZEi4ITCceRrBUBgg9qynDg5enKfqlJ9dPqvLH/Dd478h7FckUb/dR+vNzxZZ5q/9QFX/dCOBwOXvmpkPeXFmGVIS5ExfS7fHn/xX1M+iQfhQLC3y0hM84AgI9Kze6rxxNfgzLu1Un49TRv37WFBd16o9Qo2P5xDF2ae7g9tsB0NQ5nEuBBgC611vdKSzRy0KigtVamx7CI859Ql8LCQK0GkwlkGarpMfMaNAhN69ZYExJIuv564n77rfb3UmlhSDFsCAY5H9Z4wxBDtfcUzu38tdgFQRDOwWK3kWsxVVvmvbl3EMcMWZW2HS3MoqXGjwMHDpByJIHbPOPLAxFJkvDy8WG2JRFNTAjt2rW7oEBkVcYqYpbEIP0o8eqBVymWi9EoNEyInYBtoo3CCYUNHoh8u9KI//hk3l5YhF6r4IcngxilL2Dc0LVs2pRPi5sVOOdlkBlnQALeat+bohsfuKhAZPuMfbxy3w7m9OiFTq/k6Mxm1QYixpJnsNlX40rhzbqg4a/7h6+mFAUvvll1ReYGcc1I1/8fvPuchzU75EpPN//+O5a0tAu7l0oFwwpBEw4OM6zTg2y6sGtd4UQ2jSAItbL41B46BUQSoNVTZC1lRfJBUk2FvNb9erw1WmYlbMFPo+PGZl2AM6m9B1ZzY3RHwmU1BQYDWqcClVTxXqgYmW3WHEa26kqQ1ovlyQdINxfWOLX3H1nmLG78+0Z25O/AgSvjREKia0BXlgxeQpxXXF1+KWps5R4z90zPI73AjlYt8fJ4P2LlIh5++ADFxTIhMWrK/pdFkcpVF6WzbyC7ht180emwK5/awKeL8/m9Qyci/RQc/iYWH53796ClZfMxWiYCEKDfj1pV+wXiyiwyYZ5L8VfYOWWfeFFtv2AmE4R4g1YLBaXnPDTruefIf/ddFAEBtM3Pv7j7bmwNpccBJQxKA23dLgFwqRLZNIIg1IvCshK+TdiC2VaGl9qDeJ9gnu9yTfn6MwVlJUi4xs4tFgtyZgF3eMajzLVglcrQO5XYJSdarZbo6Gh8fHxwOp0Ykw/y04kdlMhW4n2Deaz90BrXGHlw+4P8lPQTZY6KImfhnuF80esLboi5oX6+EDVwKKmMie/lcCjZlSFz3zXePDxExYRbdpKQYMLDQ0HHT+0cDHVVNNUqlGwYMpaetSjjXp25N6zg66Mq/u7YmY7RSnZ/Eo1a7T4QkeXD5YGIt3b2BQUiAI9cvQoDKh6d0IgPYi8v0HqCpdQVmJyjVy3snXco+OwzHAUF5H36KUGPPnrh9x2YANt6gXEnbIiAfkfBq35r0VxORM+IIAh16lyLz3l7exMXF4daXTXrpra+Of4Nz+99ngJrRU0JvVLPw60f5t3u71709S9GVoHMpPdzWHfANVfmuh6efP1wAI/cv4flyzORJOhzp56dIxORz2TyPBrfkU+6Dr7oe9tlB1/2ms8sWxi7Y+MY3lnLyjfCql0hXZZN5Jt9AQda9WP46j6+4HtHSvOxA1nOC5gUWpceuBt+nAXXXgdLzz0fpPTAAU517gySRHuH4+LvvXsk5P/p+rjnFvDve/HXvISJnhFBEBqELMtkZWWRl5fntvppcHAwoaGhdVKBc0/+HiZunMiJ4hOV0nGvCruKJQOW4KW98EmudcFidXDPx7nM32DG4YTu8RoWPBfC/JmnaB69HavVQev2Okz/zWKrw9UbEqfz5uiIybUu4+5OqcHC9E7zmB3SioSYMO4a7s3MJ4LPeY5rFV4HKsXgiwpE3nloCxlomNxNc8HXqDOffe0KRtasOu+hnp06oe3RA8uuXZzq35/mmzdf3L27/wEHboWsObCzH3RZASHVL5UguIieEUEQaq2srIyUlBSKi4vdVj+NiorC379m65ecj8li4qZNN7E6a3WlsuwtvVsyb+A8ugV2q5P7XAyHw8FLPxTy4c9nMmRCVfw4NZiyrGImT95JdnYZvr4q+nyiZKXnaQBUksTSvtcxOrJuVrMtPF3E+z0W8WPrzqT5+/PyxABevzXgnOfkGqNwONNRSFEE+9Q+c+ZsLVXzyLErySweg86rCQQkIT5gKobjqRBVtcz92WRZJkGjAaeTFocOoW1fB5Nvjz0FKR+6Pm77LUTfc/HXvASJnhFBEOpUUVERqampbhef0+v1xMbGXlD10+q8uPdFPjn6CWa7uXxbgCaAt7q8xYOtH6yz+1ysr/8w8vTMfIpLnQR4K/j0gUCGtFIxduw2tm8vRKmUGP9sCMt7HWSlwxVM3RTZgkX9RtZZG1K2ZDB95O/82KUnhV56vpwSwv0jz/3GLb94CA5nOuB50YHI8q8TOGnXMCzC2TQCEYAHHoYP3oHbx8Pac/d2qFQqQt59l5xnnuFUnz60K3afpl4rbT4ATSgkPgdH7wVrLrR4/uKve5kSPSOCIFQrIyOD3NzcKtVPlUol/v7+REZG1ukCaMtTlvPwjofJKK1Yot5D4cGkuEl83fvr+l9srRb+3G3mno/zyCiwo9VIvDrBj2fG+vLww/v47rskHA4YOMSfgqcyOVzqmtcS7KHlyDWTCLqAMu7VObjgOJ/fv5k5PXtj0WpY+mo4o3q5L2b2j6KSx7HYPgEUBOqLUKkubnirq34+R0tUHNo/lPhOtVsPqF7pJFeJ+GL5/McCR/39cRgMBL3yCqGvv143bUj7Ho7c5fo45nFoM71urnuJED0jgiDUmizLJCcnU1RUVGX4Ra1WExERQVBQUJ3eM8mUxLi/x7G3YG/5PBAFCnoG9mTZoGWEe4XX6f0u1sGkMia8m8ORFFeGzAMjvZnxQCA//piCn98GzGY70dGejPxcxzelB3GWugo6fdV9KPc2r9vaGxv/t5NZ7x5lbp9+SB4qtnwQSY+W5+6dKimbfSYQgUD9gYsORI7uzOFIiYoOerlpBSIA/gFQWABHDkO783/tm+3dy8lmzch7800CX321boLfqDtBEwT7RkPKx1CWC53nXPx1LzMiGBGEK5zJZCIlJYXS0qo1GXQ6HbGxseh0dbu+iCzL3L7ldpakLsHqqMi6idJF8U2fb7g2soEWV6uFrAKZie/lsP6gBQkY1dOTH58KJimxmLZtV5GYaEarVfDyR835JHY7X5faABgcFMH6oWPrvD0rHljD3J9zWNS7L156Jfs/iyY29NxZSlZ5L8WWOwHw0c5Dpbr44Ojh0X8jo+Ctz3tc9LXq3POvwHNPwp0TYceB8x6ujYtDd/XVlKxaRVKXLsSfKYx20UJGQa8dsKMXZM+FXXnQY2XdXPsyIYZpBOEKlJ2dTXZ2NjabrdJ2hUKBr68vMTEx9TIk8smRT/jPgf9gsBnKt3mpvHi67dP8p8t/6vx+daHE4uDeT3JZsNGVIdOjpYb5z4YQrIcJE3byxx/ZSBJMmBBFxr1p/J3vGmLyUanZOexmWvmeexJpbTkcDn669meWHIUVnToT5q/k8BdR+Huf+/slywbyzQGAE0/10/jo3rvothQbLET6/0KYys5xWyMVOTsfnQSSAsz28x97xmGVCux2Yjdvxqtfv7priykRtrQCnODdDfrurrtrN1FimEYQhHKyLJOamorBYMDxr1oKarWa0NBQQkMvvtCWO1tztnLr5ls5ZTpVvk0lqbgu8joWDFyAVlV3k17rksPh4IXZhXy0vAibDM1DVfzwVDB923jw2mvH+N//ErDZnHTu7MukLwN4IXUzjnyQgP+2680r7XvWeZtsFpkvu89jmTWQdZ3b0DZaxb6Po9Bozr2yhyzL5JvDACdq5fA6CUQA7hu8imJUvP5IbJ1cr16EhUNWJmzYAIMG1eiU8JkzybzjDlKuuop2bnoML5hXPAzKgQ1hULwHNraEgSfq7vqXMNEzIgiXKYvFQlJSEmazuco+rVZLbGzsRS0+dy4Gi4EbN9zIxpyNldJx2/q0ZeGghbT3b6R1S2roy9+NPDvLlSET6K3gs4cCGT/Im99/z+KOO3aRl2clIEDNB1934Dn1WnLKXA+sjj6B7Lnq4su4u2PKKWFGpzksCWrOrrhmDO2kZfWb1RczO1uOMQKnMxOF1Ixgn1PnPb4mZFkmUr0EteQkzdHIRc7OZdF8uGMiNGsBhxNrfNqxsDDs2dn4PfggkV98Ubdtkk2wLhCcVtCEwZDMur1+E1LT57cIRgThMpKfn09GRobb6qc+Pj7ExcXVa0bKEzue4OvErym1V7ybDPII4oMeH3B789vr7b515fedZu79JI/MQjueGolXJ/rx/M3+pKSUMHbsNnbvNqBSSTz9dEtOjU5jYbrr4aZVKFk7eAx9g+pnsm324Xw+77uIhS07ciwsjMlDvfnp6ZAanZtf3A/ZsRXQE+pbd4u4PX/TOt5ZUsiDQ/V8sXZEnV23XujPBGzmmldYlfPySAh2FYxrXVKCytP9QpAXTJbhb3+wm0DpA4PzL8sVf0UwIghXAFmWycjIoKCgwG3105CQECIi6ncZ9/mn5vP47sfJseSUb/NUenJX87v4uMfHTSodtzoHTpcx8d0cjqSeWUNmhDefPuDKDLn33j388EMKTidcfXUw988IZ9KBldjO/Ol8qHkHPu8+pN7adnJNCt+O/o05XXqQ5h/Aczf7Me3OmmWtFJkfwCJ/jSuF14yqDofE4pTzKHYoyLaNa/rf43YtIOkU/LQIxt5U49NSxo+neOFC1HFxtDp9un7ati4YbHmg0MKQQmiiw5YXSgQjgnCZslgsJCcnYzabq6Tfenh4EB0dja+vb7224XjRcW7acBOHDIcqpeP2D+7P0iFLCdLWbfpvfcnIl5n4XjYbDpW5MmR6efLD1GD8vFR89dUppk49SEmJnbg4HT/N787teb9zqsRVECtW58WhERPwqseHx57vDvPTo5v4sWcf8r28mPFQEA+Pqtn3tsTyNcVlDwAQqD+BShVfZ+2a/dZ+7nw5kVEtFKxIvLHOrltvNmyAawdDeAScTK/VqYc1GrDZiPrlF3xHj66n9sWBJRkkFQzMBa1f/dynEYhgRBAuIwaDgbS0NLfVT728vIiJianT6qfuWGQLkzdNZkXaCmzOiiycOH0cs/vNZlBYzSYHNgUlFgd3f5zLwk1mnE7o1cqVIdMsTMOuXYXcfPN2kpJK0OmUfPhhR472SuPjRFdqqEqSWNTnWsZEtajXNq59ZQtLPzrCD336UeLpwZIXw7ih77mLmf2jTN6JwdwLAB/PJXhq6ja1uL3HPJKsKhJPjyA87hL5m6xXgNMJJbV75Bl//ZXU0aNBpaL9v7LP6tSWzmA6ACig/0nQx9XfvRqQyKYRhEuYLMtkZ2eTm5vrdvglMDCQ8PDwBuke/9/B/zHt0DSMsrF8m6/Kl5c6vMQzHZ+p9/vXJYfDwXPfF/DxciM2O7QIV/Hj1BD6ttViMFi5+uqNrF6diyTBnXfG8PC7UQzeuIzSRNf34MbI5iztd129t3PJ5D/547dsfuo/ELRqNr8TQe82NQs2ZTkfg7k3ADrNi3UeiGz7M43jVjU9/eyXTiAC0K4DHD4In38KDz9a49N8Ro1CHReHLSmJlJtvJmbRovppX7/9sGMwGDbA5ubQZw/4dKmfezVBomdEEJoIWZY5ffp0tYvPRUREEBjYMBUu12as5a6td5FSklK+TS2pGRM9hjn956BWnbu4VlP0+a9FPPd9ASaLkyAfBZ8/FMTNA71cKbwvHObDDxORZSfdu/uxaFEPxiX+zl5DHgBBGi2HRkwkVFuznokL5XA4mDVwMWtP2FnQoyc6nZK9n0bSIrxm6724Unj1gBW18noCvH6t8zb281/AToOSjX/0oc+1516Arkk5fAh6doSAAEjLr9WpssVCwpkJrK1zc1HVcRXiSvbeBLlLXB93XwOBw+rvXg1ADNMIwiWguLiYlJQULBZLpe2SJKHT6YiLi6v34Zd/5JbmMmb9GLblbcOBK+tAQqKTfycWD1pMvE/dzTloSL+dyZDJOpMh89okf569yQ+A5cszuOuu3RQW2ggO1jB7dg8ONUvnuYNbceIq4/5Zt8E82KJjje5VYDFjkiuG0rxUHgTUMIApM1n5svNc1pd5s7xzF0L8lRz6LIog35r3fuUYQ3A6c1FI8QT71H39iswkI/HNVhKnkTlc1kSLnJ2Lt6uYWW2HagDSH34YwxdfoAwJoU12dj007ixHHoK0L10fd5wH4U04dfo8xDCNIDRRWVlZZGdnV1l8TqFQ4O/vT1RUVINlJ8iyzCM7H+GHUz9gcVQERGHaMD7t+Sk3xdU886Cp2XfKlSFzLM2GSgEPX+/Dx/cFoFIpOH3axJgx2zlwoAi1WuI//2nDnU9H0GXVQooOutKiBwSGs3HYuBrfr8Bi5pVdK5CdFemjKknBGz1GlwckDrsDhbJqXZCitGI+7zyXNX6RrOnSjlaRavZ/Gon2PMXMzpZf3AOnMxfwrpdABOD+4WsoQcGzr7arl+vXux69YPtWePVFeP3tWp0a+fnnFM2ahT0nh4Lvvyfgzjvrp40A7b4AdTCcfgMOTnSt+Btb86GlS5HoGRGEeibLMikpKRQVFbmtfhoeHk7wmXoGDeX7E9/zzJ5nyLPmlW/TKXU82PJBPuj5QYO2pa5l5MtMeDebjYddGTL/11vHD0+F4KNTYLU6uOOOXSxYkIbTCdddF8qCBb0Zu/s3VuWkAuClUrNr2M20rmUZ94P56cw48neV7S91vZYYrwDKTFZmtPmRzre3Yfjb/Svauyebb/ov4rfmbdjZrDkD2nnw9//Ca1TM7B8G852UybMBJYF6U52m8P5DlmVC1UvwVjhIsl+CvSIAaWnQKhq8vSHbeP7j/8W8dStJ/fqBQkF7e83Ly1+wlM/g2BTXx81ehJZv1f8965joGRGERmQ2m0lJSaGkpKTKPp1OR3R0dL1VP63OgYIDTNg4gWPGY+XpuEpJyZCQISwetBi/Szyd0Fzq4K7puSze4sqQ6d3agwXPhpQvHvfxxyd4/vnDWCwO4uP1LFnSh33eGfj98RV2nEjAK2178N8OfWp97wKLmS+ObHC7r6isFLxgz5zjGNNNbJq2C+8IL3pP6cyxX04yZ9wfLO7clWOhYYwfqGf+c7Ury2+2fHomEIFAfWK9BCIAj16zhgLU3Hejf71cv0FERYFaDcXFrqJjteyB1Pfti0eHDpQdOsTp4cNptnp1PTX0jJhHQBMKB26G029DWTZ0+LZ+79lIRDAiCHUkLy+PjIyMKovPSZKEn59fvS0+dy4mi4nxm8fzV+ZfyM6KYaF4r3jmDphLz+C6Xz+loTkcDp6ZWcCnK1wZMvHhKn56KqQ8+2Tz5nwmTNhBWloper2SmTO7cePEMNr+NZesMlew2N47gH3Db7ng749JLsOO+07mErtr2OfuRVYKBw7irq1b+OOx9WTty2Xb7GPM6dWbVL8Anh7ry3v31G5ipEXehKnsMQB8PVegUsVdUPtrYsX6QkKQeHP+wHq7R4MYOhz++gOmPABfflfr0+P27iVBo6FkzRosSUlo4+Lqvo1nC7sJNH/DrsGQ8R1Y86Hbsvq9ZyMQwYggXCBZlklPT6egoKDK8ItKpSIkJITw8PopD34+r+57lY+OfoRJrij/7a/x543Ob/BIm0capU314dMVRbw425UhE+yj4POHg7hpgKvHKS/Pwk03befvv/NRKOC+++L4/PMu3LFrNXevcGWZeCgUrB40hgHB9VulduPKTI5p/cDDyfzuPbl1xzY2/HiCH/sNJM/bi+n3BfL4DX61uqYsZ1NkdtV20WteR6sZVfcNP+PDx7eT7tQwvpO66VdbPZ+fFkKINyyad0HBiEqlIviVV8h9/XVOd+1K28LCemjkvwQMgr6HYGtHyPsZdgyEXhvr/74NSMwZEYRaOFf1U61WS3R0dKP9jP6R9gf3bbuP9NKKCpMahYbxseOZ2Wfmpf8QOcuK7Wbu+zSPbIMdnYfE65P9eWqsH+DqKXnqqYN8+ukp7HYnffr4s2RJHw4rcrh+02/Yzkwwvb9ZO77qUTdpkymmAt7a+6fbfXe37su7jxayrNgHp0KB5HQSn5NNrpc3slLJjHv9uWNC7YJWVwqvDrChUY3FX7+kDl5F9Vqp55ElK0kv/D+8/S6DcuUBnmCxQE4xXOBw6RFvb5wmE8HvvkvIMw1Ub8eSBhtiAQfo20P/Qw1z34sg5owIQh0pKCggPT3d7eJz3t7eNGvWrNEe9GmmNMZuGMvu/N3l6bgKFHQL6MaywcuI8rqE6kDUwJ5EC5PeyyUh3YZKCVNG+fDRva4MGYAFC1J54IG9FBXJhIV58NNPPek/OICOf80l0eyasBjt6cWRa+u3jPvZSgpt/GHQ4VS72uiUJE6EhOJhs/HA1o3kJygoHjIB77Ca1zApMIcCNpRS23oPRP78IZGTsoZBoY7LIxABGDMO5s+Bu2+DhRc25NF81y5OtmlD7nPPEfDkkw3zN0AbBYPyYWMwmA/D3zEwOOX8510CRM+IIPyLLMtkZWWRl5fntvppcHAwoaGhjRaAyLLM3dvuZmHyQsocFTUtIjwj+KrPV4yKqr/u+saSlufKkNl8pAxJght665g91ZUhA5CQUMzYsds4cqQYjUbBf/7ThhdfbMPT+zbxwYl9gKuM+4I+IxgbVff1UvbmpfLlUffd5h4/x/Jpgvuej+FHj9D/1EmaDYvijjU1SyPOM3bG7jwA+BLqa7jAFtdcd6/5HDKr2LdjEG171myl4CZPlsFHDRoNGMrOf3w1TvXvT+mWLWh79KDFzp112MDzkC2wPgAcpaAKgEHZTXbFX9EzIgi1YLFYSElJwWQyuV18LjIyEn//xs0i+OzYZ7yy/xUKrRVj1F4qLx5r8xhvdb30Uv5qwlTi4K6Pc1iypQSnE/q28WDesyHEhrgyZEpKZG67bRfLlmXgdMKYMeHMmdOTY5YCdEu/pNTumrR7Q0QcP/evnyDtQH463x7b7H6n08lvu1RIegdON6m6q9u2IyrCg9ETazZMYzBPPBOIKAnU5533+IuVeCCfw2YV7XTy5ROIgOvBrfcCswmysiAs7IIu03zzZg4rFFh27aJkzx503brVcUOrodLCECNsCAa5ANb7wRBD5YAkexmUnoa4qQ3TposkghHhilVUVERqaqrbxef0ej2xsbENVv20OjtzdzJp8yQSixPLt6kkFdeEX8OC/gvw0jZsenBDcTgcPPVdATN+NSLboWWEijlPh9CzVcX34913j/Pqq0coK3PQpo0XS5f2oWVLHX3WLWG3IReAQI0Hh0ZMJKyevk6ppkK+OrqxUqGzs9l+cXLKKwgkqdpr/OjfgjfGxJz3XqbS9ymT5wMQqE9qkJ65B0euw4rEa9O71vu9Gtzd98OnH8Lt4+GvqvVhair0k0/IfvRRkgYOpJ3ZXIcNPA+VCoYVwvpIsGbAOh0MLQCVF+T8DPvPFCwMnwwetUsXbwximEa4omRkZJCbm1ul+qlSqSQgIICIiIhGn+hZZCnipo03sS57HXana5hIQqKNTxvmD5xPp4BOjdq++vbxcgMv/ViI2eIk2FfBlw8HM7Z/xXyK9etzmTRpB5mZZfj4qPj88y5MnhzDB8f28szBzTgBCfikyyCmtKzfr9WMQ+s5WJjhdp/qhMzB94PZ2KxVpWBEpQTZDgrJVQtlTB89U2/0RaWsPmCx2NZSVHIVAL66NWjV9b9eSYnJSrj3zwQr7STKl2iRs3P5Z6hGqYRi+fzHn8PRwEAcBQUEPPMM4e++W0cNrIVNraHkOKCEjnPh0GRwyoACWr3XqL0jYphGEHDNr0hKSsJoNFYZflGr1URERBBUn4te1cIzu5/h84TPKbFXFEoL1ATyTtd3uKfVPY3YsoaxfKuZ+2fkklPkQOch8dG9ATwxxq98f1aWhXHjtrFlSwFKpcSjjzZn+vROpJeY8f/5Gww2Vw9Xv4AwNl9V/2XsC8vMVQKRKL0fvmpPMtdlwgtFbBrSzxUZnQmRIgIVjOqp59puOoZ19sRXf/4qq7KcUR6I6DXvNkggAnD/4L8wouKl+6Ib5H4NTqUCP38wFMLxBGjV+oIv1eLQIU5ERFDw3nsEv/UWKnUDLyQ5IAG29QbjDjg4/qwdDkj/7pIYqhHBiHDZMZlMpKSkUFpaWmWfXq8nJiYGnU7XCC2ramnyUh7Z8QhZlqzybVqFltua38bnPT9v9F6ahrD7hIVJ7+dy/EyGzGOjffjgnooMGYfDwZQp+/nqq9M4HDBwYCCLF/cmJETLtRuWszL7TBl3pYptw26ivV/DBJebs06Vf6xRKHmq03DivAP55b7VZM0uZMlV/XFKEl4+ZXTqlUl0syJeG9SPNv41L/3vSuGNdd1DNQEvzwZKIQVW7zERDjz7Rd8Gu2eDe+YFeOlZuGMibN1zwZfRhIejHzUK86+/crpDB1omJNRhI2uo/bewtSvwrzL15iNg3Ac+Xaos5Ai1W8yxPl3+f+mEK0J2djbZ2dlVqp8qFAr8/PyIjo5uMg/2RGMiN224iQOFB8rLsitQ0CeoD0sGLSFMf2GT6S41KbkyE9/NZstRV4bM2H46Zj8Rgpeuorfgp59SePjhfRQXy0RGapk/vxcDBgQxNzmB2xevxn6mt+vFNt15q2PDPjQPFlTUc+kYEEGcdyAAhzbnMLtXX4w6P164p4h876PlxzmqqdJanQJzMCCjlDrir59XJ+2uiVcnbyAbDfcM8GywezaKJ59xBSMH91/0peJWrOCwSoX1+HGK167Fe1jD9GABUHISdlVzP0kFGbMp0LSsspAjVF3MsbE0jb/OglBLsiyTmpqKwWBwu/hcaGgooaFNZ9KWLMtM2jyJn1N/xuasCJhidDHM6juLYREN+IerkZlKHNwxPYdlW10ZMv3aejDv2VBigiv+HB06VMS4cds5ftyEh4eC99/vwFNPtcJgsRCxYiaZFtdQVltvfw4MH98ogWaupaK6bVZJMU6nky1HLbzboS+O4jIe3reVSfED+fSs1eaDazGRNs/YHicGJAII8jlQl00/r5/mp+OPks9WXd2g920UIaGQkw1bNkG/ARd1qciffiJ94kRSRo6kfdmFpwzXimyCnUPBlg/ugl2nDJk/UBz+nNuJ1rLTgUkuIwARjAhCjVgsFpKSkjC7mbHu6elJTExMgy8+dz4fHP6ANw68QZFcVL7NR+XDCx1e4PmOzzdiyxqe3e7KkPnsN1eGTKtINXOeDqZHy4oMGZNJZtKkHaxYkYUkwS23RDJ7dne0WhV3bF/FDymu7m8PhYK/Bv4fg0Iar6ibRMWE0/QSA2szEth+KJTiUichAR6okwv4eeBvsNAbFAq81R4Ee3rX6NqF5puwO48AKgL02ec9vi7N++Agpx0aRsZJeGivgEfEW+/CfXfAA3fDweMXdSm/CRPIfuop5IwM0u6+m6iZM+uokefgKANNMJSl4pqgJAH/CjpsBWw89DnQxu0lkosLiPGq3SrVdU1k0whNWl5eHpmZmW6rn/r4+BAXF9dkhl/+sSl7E7dtvo0kc1L5NrWkZlTUKOYOmIu2gSp/NiUf/Wzg5R8LKSlzEuKr4OspwdzQt/I7sddfP8pbbx3DanXSoYMPS5f2pmVLb9ZmpzJy0wqsZ3rA7o5ty3e9rmqMl1HJtL1/kmQqqLStlW8IYY4Y3put4NgRO53TUunjfwrLNC96BMVwX9vzv/M2lb6J2foKIBGoz0Clathhu46e8zlpUXL8xAii4q+Qv7c6yZXxZHafol0bssFAwpmaRK2Li1E11BskSxrk/ga5v0D+anBaAQX/DA7mEMKrnh+5PVWJxJQOQ2jnX/dradX0+S2CEaFJkWWZjIwMCgoKqlQ/ValUBAcHExFRv4uaXYg8Sx5j149lS96WSum4Hfw6sGjgIlr7XfhM/UvZsi1mHvgsl9wiB3oPibdu96+yINyqVdnceusucnLK8PNT8+23XRk3LgpZlmm/ah7HTa5epUhPPceundhgZdzPZ33Gcead3OV2n9MJa5bHk3Q0AL/SEnrGJvPjF0PO2zNisf5JUelIAHz1G9CqGnaF3F1rM+h31Ra6+tjZXjT+/CdcLtrEQUoyzFsKN9x40ZdLvfNOjLNno4qMpHVa2sW3r7bsJVCwDkfOCkrTf0KPGSewWf1/FDZ/kzCdN3mlJrbnJpNZ4vr90qs8mNbrBjyUdfvmTgQjwiXjXIvPeXh4EB0dja+vbyO1rnqyLPP4rseZdWoWpfaKzJ0QbQgfd/+YCc0nNGLrGtfO4xYmv5/DiQy5fA2ZD+4JQHFWFdK0tBLGjt3Ozp2FKJUSTz4ZzzvvtEehUPDc/s28e3wvAEpJYl7vq7k5ulVjvRy3LLKNV3atwGizAKBAqjJBNeWoN3t+iibX25ue0QpWfRhbXsL+32Q5iXxzMwC8PD5Br320fl+AGwMCF7KtQMm6n3sw8IbYBr9/o1mzCkZfA5FRcCK1Ti552MMDrFYiFy3C76b6TzV3Z19+Gl8c/pvuts3ca/8SCSdSsxehpatis93pYMbhvzlSmAnAbS17MSCsbpdLEMGI0KQVFhaSnp7utvqpl5cXMTExjV79tDpzT83liV1PkFuWW77NU+nJ/fH381HPj5DOUW3zcpeSKzPhf9lsTXBlyIzrp2PW45UzZGTZwYMP7mXWrGQcDhg2LIhFi/oQEKDhgCGXfmuXYD5Txv26sFh+Gzi6sV7OeZ025jH90Dosdlu1x4Sc1LLxbU82xrdE7aHg+yeCmTC4cg+JLFvIN3sBdjxUt+Onn13PLa8qP6uE2PDfiFbLHLVehkXOzkevcHVpldTNI7F41SpSrrkGlErayxdXVO1CfXtsMztzkwF4vGUr2h2+CuxGiJkKbT4AIKk4n2n7VgLQxi+UJzvW7RCoKHomNCmyLJOdnU1ubq7bxeeCgoIICwtrcvM//nG48DDjN4zniPFIeTquUlIyIHgAPw/+GT+tX+M2sJEVlzi4/aMclm9zZcj0b+fB/GdDiQqq/P387rskHn98P2aznZgYTxYu7EXv3oHIskzv1QvZUZgDQIDag/3DJxLVxCYk/1sznyCe63wNS5P2cqggo1K/iIdSRd+Q5ozp25ndOfv58c2NzO/dm4nv5fLNymJ+ey0MrcYVpOWbQwE7KkW3RglEAO4d/BdmlDz1fN0vJHhJaN0Wjh2B776Cex646Mt5X3016pYtsZ04QfINNxC7fHkdNLJ2jFZL+cfNgzrD4EzY0g5SPgSPCGj2FHHegagVSmwOe6XjG5roGRHqjSzLnD59muLi4irDLxqNhsjISAICGncG97lYZAvjN47n9/TfkZ0V72yaezVndr/ZDAi9uDTAy4EsO3jy2wK+/MOVIdM6Us3cZ4LpFl+5V2vPnkJuvnk7p06V4Omp4N13OzJlSgsAph/fx9T9m8rLuE/vPIDHWnVp8NdysfIsJo4X5VBml/FRa2nvH45WVVGJ8/thS0hcn85fY4ey06JH7yGx4PkQerXuisN5AkkKIsQn9xx3qD+yLBOmXoJecpDsuAJ7RQD27YF+3SEoCFLq5vsgWywkeLpqtbTKzER9gQvyXagZh9dzsMBVJfg/3a4jQu8HDhkO3QbtvgOVDqPVwjPblwIQ5xXAC12vrdM2iJ4RoVEUFxeTkpKCxVI5wm5Ki8+dzxv73+C9I+9RLBeXb/NT+/Fqx1d5sv2TjdiypuWDZQZe/cmVIRPqp+TrR4P4v96VM2SMRiu33LKDlStzkCSYPDmamTO7o9EoSDOZ6LR6HoVnyrj39g9l05Abm2zv2PkEab0IOkcdkdv+upH3w77huqVrmfD5GJ7/085vu16ne8sTSGgI0Gc2YGsre2rUOvJRc/uopjc3q8F06eZapyav7lZDVmm1BEydSsGHH5LYoQNt6/DaNdHKN7Q8GFmfeYJJ8T1BoYJOFQX0/s6sSGdu5dd4tZlEz4hw0TIzM8nJyamy+JxCocDf35+oqKgm/4BZlbGKu7feTVpJxcx3jULDuOhx/NDvhybf/oa0ZLOZhz7LJdfoQK+VmHa7P4/+n1+lYxwOB6+8coR33z2BLDvp0sWXpUt706yZ62F9/cZf+D0rBQC9UsXWYTfRsYHKuNfGizuWk19Wta7N4PCWrj/sbuzOTWF58gHyLSZCPL0Z26wLHQMiAchNKOTz9j/ijFARsPQ0t8S/T6HJj6teXM+8Z1oxuGPjVDyNUcyn1CmRaRt3Zf+sD+oNu3bAS6/BS/+ps8se0elwlpYS9sUXBD74YJ1d93xMtjKe276svNjZ9TEduDqyDZ4qDWV2mQ2ZJ1h6eh8OnEjAGz1G17gWTk2JCaxCvZFlmZSUFIqKitxWPw0PDyc4uObrbzSWLHMWN/59Izvyd+A4UyRIQqJrQFeWDF5CnFdc4zawidmR4MqQScyUUSvh0dE+vHd35QwZgF9/zeTOO3eTn28lMFDNrFndGT3alY69IOU4k3esKi/j/myrrrzTuX+Dv5aaKrZaKmXIZJiLmH5oLVM7XkVrN+8iTxpzeX//asY060yngEh25CSxMu0oL3W9lki9HwCzvlpF0cdrGL/pXSQF/G/9PL5d0AlzsYbJQ7z5YWpQla9pffrsuV1MeTeFce2ULD58Q4Pdt0lKToK2zcDHB7KKznt4TZXs2cPp7t1BoaD9v+bM1beVaUdYenpf+edqhZJgrRf5FjNljoo3kFdHtuWm5l3r/P5imEaoU2azmZSUFEpKSqrs0+l0REdHN7nqp+7Issz92+9nbtJcyhwVmTzhnuF80esLboi5wv8Yu5GcbWPCuzlsO5Mhc/MAPd8/EYxOW/mBmZxsZsyYbezbV4RKJfHii6144412KBQKTLKFNn/MJf1MGfdWXn4cvnpCk34XXl2viFapppVviNtzFp/ai0qh5JekA2zLPs3YZl2I8fJnfcZxJrfshcPh4GinFB5dPx2Anxe+wJMTh2P2XsOm5Z2Zs97Eyj0l/PHfsEqVaevTpx+dwAsV3/5dt3MFLkmxca7VfI1GkGXXx3VA160b2m7dsOzZw6mBA2m+cWOdXLcmrolsi81uZ0XKQQBsDjsZJZUDraERrRjbrEuDtcmdpvuXQGh0eXl5ZGRkuF18ztfXl5iYmCb9MDnb18e/5oW9L1BgraiYqVfqeaT1I7zT/Z1GbFnTZSxxcPuHOfyyrQQnMLC9B3OfqZohY7U6uPvu3cydm4rTCSNGhLBwYS98fDQA3LNjDTOTXYvFaRQK/hgwmmGhTX9Z+he6jKjUK5JaXMinR9bTPSjGbfr2SWMup4rz6BQQwdhmXdmRk8QXRzbSP7Q5p4pdcwWWnt7JvfHPoFaXsXXazWR+EsKXfmto1dqf4Y8Xk7CjBf+dW0ivJzN4YKQ3nz0UWK+9JOsWnybRpqFfkAO/oKaxknWjGzQE1q6GJx+FT7+os8vGbt9OgkZD6aZNWBIS0LZumEKIkiQxKrYj3YKiWZ95gv35aZhlK55KNe0DIhgS3rJ8kcfGJIZphHKyLJOenk5BQUGV4ReVSkVISAjh4RdfLvjfy1jX1xLWe/L3MHHjRE4Un6iUjjs8bDiLByzGqxaLll1JZNnB498U8PUfRmQHtIlSM+/ZELo096hy7Oefn+Tppw9SWuqgeXMdixb1pls3VynsDTlpXLPxF8rO/CzdHtOa2b0v3YXXPjm0jsOFmfyv5w34u/l5/froJvbkpXB36370CokD4H/7VqKUFGSXFvNe7xvZm9WCCM/TOKR+6Ir+4JOWsymLltD/0Jwgfx/ubzuAk5lWhr+URVKOTESAkr/eCKd9rKZeXlNPnwUcKFayc+NAOg1oOgtLNiqDASL8wVMH+VV7xi5GzjvvkPv880je3rQzGuv02k2VGKYRauRc1U+1Wi0xMTF4e9fdhKYCi7nKMtbnWsLa6XRisBrw9/Cv0fVNFhPjNo1jTdaaSmXZW3m3Yt7AeXQL7FY3L+Qy9f4SA6/OKaTU6iTMX8k3jwYxqlfV78v27fnccssOUlJK0euVfPNNV+6911U9VJZlOqyaT4LJAECEVsfhqyfh18SzqM5Fdtg5Zsgi1NPHbSACnOn9qNxj0s4/nM1ZJwFIN7QiUneao0Xd6Rq2Gl9fT8b+OIJFt/6B6b9pBE1vB0CLcA2nZ8bw1Ld5fLTcSMcpaTwz1pd37qrbd6+nDxdyqFhBa09ZBCJn8/MDDw8oLQGLBerw5zbkuefIe/ttnEYjOW+8Qcgrr9TZtS91DTdLSmgyCgoKOHjwILt37+bw4cOYTCacTmf54nOdO3eme/futG/fvk4DEQCTXFZlGet/lrD+N4fTwV1b7iJqSRR5lnOnxL2490W85nrhvcibvzL/wu60E6AJ4IveX+C4zUHCmAQRiJzDoo0mgicl8cysApQK+OzBQDJ/jK0SiBQUWLnqqg306fM3aWml3HVXLAbD6PJA5MWDW1Av+5IEkwGlJDGn99Wkj777kg5EADZmJWJ3OhkR1bbaY4xWCzqVurw8PICPWkuJbGVA8DxUUiLZpVHMS36ivLhUh1taoXk4BM1fpRi/zqh0vQ/uDeLAp5GE+il5d0kRze9J4XRW5QUjL8aDI9dShoJX3ulUZ9e8bIw6M3fsrlvr/NLNd+8GIPc//6mSgXglu6Cekc8++4z33nuPrKwsOnfuzKeffkqvXr2qPd5gMPDSSy+xdOlSCgoKiI2NZfr06Vx33XUX3HCh5mRZJisri7y8PLfVT4ODgwkNDW1S8z+cTieP73yc2admIyGxIHkBj7R+pNIxy1OW89COh8gsrajP4KHwYFLcJL7u/XWTej1N1bZjFm59P4eTWa4Mmadv9OGdu6pmyDgcDp577jDTpyciy0569vRn6dLeREW55hkcNuTRe+3i8jLuI0Kj+XPQ5TMZeHXaMVSSgj6hzc55XIinN8cMWQyPrFiqPV6/jT6Bi3Gg4qsTb+Ct9uSYIYtoL1dvX8B9kZw+bsT5SSZHBpyg3biW5ed2iPMgfXY0D36Wzzcri4m/P43XJ/vz0via9RRWp8RkZXuqnWZKOzc/2u6irnVZ+mY2LFkIf6yo80tr4+PxHDqU0nXrSOrenfj9+y/4Wn+kHmZvXipZpUY0CiXNfYIZG9eFMN25pzOcK/0cXH9/VyQfZGNWIqV2Gy18gpgU35NQz/qbJlHrv9YLFixg6tSpfPnll/Tu3Zvp06czYsQIEhISCAmpOsPcarVy9dVXExISwuLFi4mMjCQ5ORk/P7+6aL9QDYvFQkpKSnmvx9k8PDyIjIzE3//i/qBdCGsN09pe3f8qMxJmlH8+M3Emj7R+hCRTEuP+Hsfegr3l80AUKOgZ2JOfB/9MmL5hKxxeqpKybYx/J5sdx61IEowfpGfmY1UzZACWLEnn3nv3YDDYCAnx4IcfujNihOvr7HQ66b92CVsLsgDwU3twYPgEor3qtketMeWWmsgrM9M1MBqlVPnrMythC34aHTc264KPRkucdyB/Z55gVdpROgZEcKLwN26J+wSQUKj+RiaJnsGx/J56iBBPb4K0Xpww5mB/yg/vdbksnvgnT5wOxyeyYj6TQqHg60eDuedqb677bxYv/1jInPUm1r4VTljAhQXcj1y9miJUPH1r01sBu0nQakGnhxKzqwhaUN3WwGm+di2HlUrKDhzAvHUr+r59L+g6x4tyGBLRijivAOxOJz8n7efjQ2t5rfuoalffPWnM5dtjmyuln39xZGOl9POVaUdZm5HAna37EqTV80vSAT45tI7Xuo9CrVBe6Ms+p1pPYO3duzc9e/ZkxgzXg8LhcBAdHc2jjz7K888/X+X4L7/8kvfee49jx46hVqur7K8JMYG1ZoqKikhNTXW7+FxjVz+VHXZWJB9kbcZxrI6qXZOjYzsyKqYjAB8c+YCndz9d5Ri1pMbmrMjsidZF823fb7km4pr6a/hlpshs57YPcvh1RylOYFAHD+Y9E0pEYNU/XImJJm68cRuHDhlRqyVefrkNr75aMUzx2YkDPLpvQ3kZ9/c79mdqm7qvU9DYZh7bzPbcZP7T/ToidH6V9n1wYDWBHnrubN2Xr49uwuqQ6RvSnOXJ+ymxpvN4m8dRKWz4es7EU3MHz25fxtWRbbDYZTZmJVIiW7E7HdzUrCuxh3XMufZnfKK9eCLpLrdZNA6Hg8nv5zJ/gxmVEj68J6BKwbmaCJfmA5DpvHJXlj6vJx+Fr2bAkKvg99V1fvmC774j8957kbRa2pWWnv+EGii2Wnh6+1Ke6jS82vTzf35Op7QfUr7tf/tWEq33Z3LLXjidTtfPaVRbrjkzLFkqW3l621LubNWHnmcmZ9dUTZ/ftZozYrVa2b17N8OHD6+4gELB8OHD2bp1q9tzfvnlF/r27csjjzxCaGgoHTp04O23364yXHC2srIyjEZjpX+XO4fDQXZ2dq3HEDMyMti/fz+7d+8mMTGxPBD5Z/ilc+fOdOvWjdatWzdaIGJ3OPjy6Eb+TDviNhABWJF8kD9Tj/DNiW/cBiIANqcNb5U3/+30X5y3OUkZlyICkRqSZQcPfZ5L4MRkVuwopW20mn2fRvL3/yKrBCIWi8z48dtp1eovDh0yMmpUGAUFo8sDkSyLicCfv2HKmUCkh18w1hsfvCwDEYfTyQljLiOi2lUJRGYlbKG5dxB3tna9q70qsjWHCzMpKDPzYKvuPNZmKmqFFSsPo/O4E0mSuCqyDX+kHSbWO4AnOg6jfUAEgVo9gyNa0XJELH2ndsWYamLR+D/ctkehUDDv2VDWvBWOTiPx2NcF9Hg8jQJjzf9uvHn3JrLQcG1v8cbunN77yPX/TX/Xy+UD7rkHZXAwTouF9Mceq5Nrlp5ZPVqvqj776lRxHm38Kvcgt/MPL08/z7OYMdostD3rGE+VhmbeQeXH1Ida9fH9M+cgNLTyzOvQ0FCOHTvm9pxTp06xdu1aJk+ezO+//05iYiIPP/wwNpuN//zHfbndadOm8d///rc2Tbuk2e12EhMTy4dUws6xmJIsyyQlJWE0Gt0uPhceHk5QHXcpXqw/0w6Xr4+gkCS6BkbTzCuQMofMwYJ0kkyu2h/vHfqCtXkzqr1OqEcoGTdnoJDEvOvaeGdxIf+da6DU6iTcX8m3jwVxXU/3GSEffniCl146jMXioFUrPUuW9KFDh4r1Sm7Y9Cu/ZCYBoFOq2DRkLF0D3L8DuxwcM2RRUFZC/9DmVfYVlJUgnZU908InmHtb92d58n6ClI8R7llKkTyM1kEVP9Mjotpitcv8dGIHJbKVeN9gHms/tLzre8QHgzi9NpWjixPZ891hut3T3m27hnX2JHdOLOOmZfPrzlLCb0/h6ylB3DH8/AHGrB9S8UXJZ6uHn/fYK5pKBb5+UGSAk4nQou5XM44/coSE4GAMn35K6LvvorqIN4wOp5OFp3bTwie4fLjFHaPVgo+68n181FqKzkyqNtpcvTQ+mn8do6k4pj7U+ww/h8NBSEgIX3/9NUqlku7du5Oens57771XbTDywgsvMHXq1PLPjUYj0dFNv0jS2ZKLC9iTl4JJLkMtKYj2CqCNbyiBnpVrW8iyzIkTJ8ormxYWFlYJRkwmEykpKZS66cr7Z/jF07Nx1rQ4H5vDzrqME4ArxfaJDsMqldEeFduRhae28MiO28iznTrntbLLslmftZ5h4cPqtc2XiwUbTTzyeR75xQ68PCU+fziQh65zvxDapk15TJiwg/R0C15eKmbP7srtt8eW71+alsgt21aWl3F/qmUX3u9y+a9a3M4/nK8GTnK776lOVR/m3YNjiPEYgMOZikKKpHXQmkr7JUni/+I68X9x1Wew3LXxZj4I/5YVD6whdlAEgS3dz+3SaBSs+E84y7eamfR+DndOz+O7VcX8/p9wvHTuA/Ylnx3ltF3D1VGg86qf2iWXlSeehv++DHdMhE076/zyqqAgvMeNo3jJEk61b0+rkycv+FrzEneSYS7imc6XZi2fWgUjQUFBKJVKsrOzK23Pzs6u9t18eHg4arUapbJi0kvbtm3JysrCarWi0VT9hfDw8MDDo2qBpUuB2WblpxPb2ZOf6nb/3a360Ts0DgCbzcbx48crrXBbUlKCzWajoKCA7Oxst9VP/fz8iI6OviSyRY4WZlF8JtWxW1B0pUBkwekFvH3obQ4YDrg9Vy2pceJEdlZ0Qc8+NVsEI+ex5Wgpt32Qy6ksGbUKnh3ny7Q7/N3OQcjJsXDTTdvZuDEfhQIeeqgZM2Z0Lj/WJFto9+c8UktdxZ/i9T4cvGYS2kvgZ68x5BcPweFMBTwJ9kk77/HueHhpuG3VjXzXbyHf9V/IUxn3oVRV3xt4Q189uXNiGfV6FusOWAi5NZkfnwphXP+qvV+vP7MfD5R89del+cBqcM+95ApG9u2pt1vELF7MYbUa26lTGP/4A5+RI2t9jXmJOzlYkMHTnYfj73HuSro+Gm2l9HMAo82C75meEB+1642t0WrBV1PxJtdotRDt5VfrttVUrf6iaDQaunfvzpo1axgzZgzg6vlYs2YNU6ZMcXtO//79mTt3Lg6Ho/wP3PHjxwkPD3cbiFzKzDYr7x9YVaXu/9lmHd+CWqmgg08YCQkJWK1V6wYcOFD54axWqwkNDa0yPHYpKCyrWMumnb+reqvD4cB/oT9Gm2suUJRnFD39r8NL6k6p08CNzeIx2/NJK0kj1ZxKsimZJHMSGaUZldJ4hcpOZ1m55Z0cdp2wopBg4iA931aTIeNwOHjiiQN8/vlp7HYn/foFsGRJH8LCKrpm79+1lm9OHwFALSn4bcD1XB0WW+VagktRyRPIjr8BBYH6nIu6VnSfcIa+3od1r2xjzsifuX3V2HMer9MqWPt2BD+tK+beT3K5aVo213b3ZPlLoWg0ru//gc3ZHCtV0cnbTlxbv4tq3xUlOBhyc2HXTujhfqXmixW1eDFpY8aQesMNtHfzTKiO0+lk/sld7MtPY2qnqwiqQVXp5t5BVdLPjxZm0dzbNbwfpNXjo9ZWSj8vlW2cLs5jcHjdD1X9o9Zvb6ZOncodd9xBjx496NWrF9OnT8dsNnPXXXcBcPvttxMZGcm0adMAeOihh5gxYwaPP/44jz76KCdOnODtt9/msTqasNOUzE3cUR6IeChUdA2KIsYrgGJrGXvzXbngTmDx8V0o9C2wn2OyqqenJzExMZfE4nPnojrr3bjJ5ppcq1AoGBU5ihbeLXi+w/PoVDqmH1zLUUMWnnhxTcQ1bn+pLoGVCxqFwSRz2we5/LbTlSEzpKOWec+EVJv2OW9eKg8+uBejUSY83IO5c3sxZEjFKsubcjMYvuHn8jLut8a04sfeYqLwuZSU/YDF9jEAAfr9qFQX/3s7+OXenPwrhVOrU9nywW76PdX9vOfcOtSbUT09GfFqFn/uLiVwcjJLXwjl6m46pty4ATsK3vmmfh6ol63X3oZH7oN7b4N97udGXizfG24gKyYGOSWF1IkTiZ43r0bnzTu5ix05STzcbhBapZoiq2so31OpRnMmtffs9HNwTbR+/8Dq8vTznbnJJJsKuLWlq1bYPxOtz04/X558AD8PT7oE1d90iQtam2bGjBnlRc+6dOnCJ598Qu/evQEYMmQIcXFxfP/99+XHb926lSeffJJ9+/YRGRnJPffcw3PPPVdp6OZcLoXU3gKLmRd3/oITJzqVhue7XFOpQIzD6WBWwlZK8g308QhFkiSqLrXlIkkSXbp0adBlxOtLhtnAf/f8DkCopw//6X5dlVoNuaUmXtm1AidO/DSeTOt1g5ikWgOy7GDKl/l8+1cxdge0j1Ez95kQOjVzP8R59KiRsWO3ceyYCQ8PBa+/3o5nn2111vVkOq9ewJHiQgDCPHQcvebSLuPeEGzyAQrMnQHw1s5B5+F+jsmFkK0y74d9i8VQxv27JhDRrea9o1/8XsTjX+Vjs8MN3TSsfmMrUSqZY7aJdda+K4ZOAkkCs+P8x14g2WQi4UzF69aFhahqUIvrgY1z3W6/o1Uf+p2ZdH12+vk/XEXP9pNvMZ+36Nk/E60ntehJ6HmKqblT0+e3WCivjqxMPcLSpH0AjIrpyOhYV80Mh8OBwWAgOzu7fJIqUF5+vTrx8fH4+rqfbHipeW//KhKNuQD0Co5lfIseeKldD8zMkiK+PbaZNLMBqPy1E6o3bWEhr883YLE6iQhwZciM7OE+Q6akRGby5J38/HMmkgQ33hjBjz/2QKer6Dl59dA23jy6CyeglCRmdh/G7c2qL30uuMiyiXyzD+DEUz0VH90HdX6P7MP5fNlpDhovNU9n34daW/MO7RyDzPCXMjmYbIO8Yp7qKvP+F+fvYRH+pVUMpKXCkhUwclS93Sb9oYcwfPklyrAw2mReHkPSIhhpYPMSd7E+8zgAz3a+mhY+wVitVg4ePFh+jEKhIM9RyqkyIwqFgqFBzSktLXU7byQoKIjY2MtjfD6xKIcPDq7BceZHTSUpaOETTJlDJqk4v/w4fw8dL3cdWR6oCFXN+7uYKV/mU1DswNtT4r27A3lgZPW/E9OmHeO1145htTpo186bxYt707ZtxfEJRQX0WLsIk+yaKH11SDR/Db58yrjXt+wiT8CCWjmcAK9V9XafHZ/v5/dH1hPZO5T7ttWuUJksywSGrcLUuRkOTw13Dffm28cCL4ue1wbzx68wbjRExcDx5Hq91WGtFsrKCJ89m4Dbb6/XezUEsWpvA1O7mRuh0Wjw8fHB29u7PBPphR3LKbSXoHYquS/eNRnI4XBgsVgoLS0t/9dUU3UvRLxvCPe1GcB3xzYjOx3ITgcJRZUzsgI99DzWYYgIRKqx6XApt32YS1K2jEYFz9/sy1u3uc+QAVi7NofJk3eSlVWGj4+KH37ozvjxlcd7B65dwqZ817svP7WGvcNvIa4eZ8tfbnKMkYAFhRRbr4EIQK+HO3Pi9yRO/JbEmpe2cNVb/Wp87nNj/8aYX8qdinQ2h7dk1upifttpZuUb4XRpLn7famTkKNcwTVpKvd8qdvVqkgcOJPPuuy+LYKSmRGhcR5r7VBQa25iVWP5xy5YtCQsLQ6VScbgwk0Kra6jmn5nL4Oox0el0BAYGEhUVRcuWLd2u83Mp6xYUzWvdr+eqyNbozqoOGKL14qZmXXml20jCdJfHsFRdOplppccTaQx8LpOUHJlJg/UULYxj2h3u39lmZJTSt+86rrpqE7m5Vp54ogWFhaMqBSJfnjyIctEMNuVnIgHvdOxL4Zj7RSBSC/nF/XE6MwAdwT5JDXLPib+Mxitcz8ZpO0n6u+Zpw4t/zSEQG9/8MZjj38Tw4i2+5BkddHssnSe+rr+Kmped+DMLGM7+rl5v4zVgAJp27cBu5/SIEfV6r6ZEDNPUEbvDwfM7fi7P3742uh3XRXfAQ6nC6XRyoiiHbxO2lM92vr/NALoHxzRmkxuNw+mkVLahlCS0qgtbr+hyV1gsc+sHufyxy5UhM7STlrlPV58hI8sOpkzZzzffnMbhgMGDA1m8uDdBQRWTT7MsJjqunE/emSqK3fyC2T503CVRr6YpKSp5CIvtS1wpvGZUqoab4FuYbOTT+NkoNAqeSr8HT79z3/ubV/dw/xtJ3NBKwc8JY8q3J6RZGf5yJml5dqKDlKx+M5xWUZdXqYU6t2snDOoFwSGQnH3+4y+CLMsknFnLrcXp02jj4ur1fvVJzBlpBFuzT/H98W3ln2uVapp5B2IoKyGztGJ9nebeQTzdeXiVrBJBsFodTPkqn5mrXBkyHWLVzHsmhA5x1Xenz56dxJQp+zGZ7ERFeTJ/fi/69w+sdMzYLb+xLP00AJ5KFRsH30j3wEuvbk1jK7F8S3HZfQAE6o+hUrVu8DYcmHOMpbeuJLhdAI8cvu2cx7bVzCPVpiIpfSRBEVXTjR//Ko9PVxiRJHjxFj/euC2gvpp9efBSgsMBJfX/2Mx+6SXy3n4bhZ8fbQsL6/1+9aVeFsoTzq1vaHNuata1PGXXYrdx1JBVKRBp5h3II+0HiUBEqMThcPDWgkJ8xyfzzcpiwvyU/Pl6KAc/i642EDlwoIiWLVdy5517kGUnH33UkdTUkZUCkeVpp1Av/qw8EHk8vhMlYx8UgcgFKJN3lgciPp6LGyUQAeg0uQ0dJ7cm90gBvz68ttrjNvycxAmbhs4BTreBCMDHDwSx55NIgnwUvLnAQKv7UkjJrd1inVeUTl1c/39vWr3fKvStt5D0ehwGA7kf1H2WVlMjekbqQYqpgHUZx9mVm4zV4VqdOM4rgMERregVHItKUbP6KsKVYc66Yh79Kp9CkwOfMxky958jQ8Zkcq2q+/vv2UgSjB8fxaxZ3dCelfJpki20XzmflBITAM31PhwWZdwvmCwbyDcHAE506hfx1r3VqO1xOBx80nI2hlNGJiwfRZv/a1HlmN6+C9hrVLJlTT96DIs47/Xu+TiP79eYUCpg2h0BPDPOr55afwk7mQgdW7oW0Mus/94Ky+HDnOzQASSJ1lbrJTmkKoZpmgCH00GpLKNRKstX5bzc/Zl6mGVJ+xkW0ZrxLaqvZ+AqunOAfIvpvEV3Su02WvgEMSm+Z6VCcpe6jYdKuf3DXJJyXBkyT4/15Y1bq8+QAXjttSO8/XYCNpuTjh19WLasDy1aVH7X+/Du9Xxx6hAAaknil37Xc21EXH2+lMuaLMvkm/WAFbVyJAFevzd2kwAw5ZTwUcxMcDp5IvluvMMq6sykJRpp1XIlLbR2DpbWPBV40+FSRr+ejcHsoGOcmtVvhhPid+k9AOuVjxpkGYw218q+9exk375Ytm1D26sXLbZvr/f71TUxTNMEKCQFerXmiglEkorz+X/27ju8yXJ94Pg3O22TdO/dsrdM2SIoggsnCi7U4z6ec9Dj3h7Hcf3cExU9KigKqIjsKXuVWQqle++mTZtmvO/vj5RCaQsttE1bns919dK+ed7kzkua3HnG/WzITSbiNNtXAxwzFzLn8CZGh8TxzOApDPKP4JNDG8muLXwGsDwrkTU5SczsPpwnBl2KTqnm/QNrsdf2NHVmR7NtDPlHFuOeyCWj0MGtEwyU/xTDK7c1Xfvhzz/zCApawosvHsZgULNw4Qj27ZtULxHZUpSLxy+f1CUiN0V0w3b9gyIROUclVeGADaUivsMkIgCGIE+mL7wcp01izoU/IkknqoPec8kqqlHyxMt9W3SfY/p6UPh9FNeN9mR/mp2I2zP47E/zmU88n4wa6/rv44+0y8NFb9wICgXW7dupPmXfsq5EJCNCq7A67XyZtJlbu4+ot3S3Mauzk+jrF8rkiD6EenpzdcxAogy+rMtxFY2TZZnV2YeZGtWPQf4RRHj5MqvnSMpqqkkoanw35M6gxOxg6vO59Lg3i93HbEwcqCf3f1F8+0gQem3jf4oZGVUMHbqGqVM3U1pq57HHulNUdDnXXHOiF8nhcNB/+Q+MWvsLVslJsM6DoivvZN7Iy9rrqXVZxRXDkOUCwECgKfmM7dtbj6mxDP/7QMrTK1g4czkANVYHW9McxCptzHy05dWM1WolPz8ZwrKXgtFpFNz3UREXPpKNuartSqF3Kt/95Prvt227xPc4tVpN8DvvAJA6qvn1ZTobkYwIrWJe8k76+4bR2zfkjG1TKoro5VO/XR/fUFIqXDUPiqwWzHYrvU9q46HWEmsMqGvTmdhsEne/V0jQLRn8uaua/jEaDnwUwapXwprsAnc4JGbN2klMzDJ27Spj0qRACgsv57//7V+v9+Slg9vRLvqUA+YSlMDXQy4m76q78Neffhtx4czKLbNwSDsBFf5ehe4Op0lT37+IoP7+HJh/hIRvE3no0pWUombmjeFnPvk0Jg/2ovCHaCYP9mBbUg1BM9OYt76ilaLuxAICQKsFiwWs1vZ5yH/+E6WvL7LFQt5TT7XLY7Y3MRjYAkfKC1iRdYiMylLKbdXc33vsGXcxTCrLZ0HKbnKryvHVeTI1ql/dBkbHrc05wsqsRMpt1UQYfLkpfgixJxVF6+h2FKSRUVnCUxc075u42WbFpKlfH8Gk0VNeW//CbHfVYjFpT2mjPdGmM3CtkCnn1Z/KsNplIgJUfPVwIJcMPn2i8NlnKcyevZ+qKifR0Z4sWDCcYcPqL7k8UlvGvaK2jPvFAeGsnnBNmz2X843F+hFWx1wA/L2OtGstkbNx51838HbYHH67ayVLHUEEAy9+P+ac71evVbLspVB+/quSW98pZMabhcxZXsHvz4XgqT+Pv8tOuQJ+XQj3zoJvmrfD7rmK3bePY5GRFL/2GgEvvdQpJ7Oeznn8amo5m9NBhJcvN8cPbVb7ImslHx5cR0+fYJ4ZPIWJ4T3535FtHCzNqWuzozCdn1N2c3lUP56+YAoRXj68f2At5k7yoVtSY+HHlN3c1WvUeTM3pjn+t6YC/xkZPPd9KToNzHk4gMy50adNRHbuLCU2dhn33ZeALMPHHw8iLe2yBonIRWsX0nPFD1Q47JjUGo5OuUUkIq3I6viLypqHAPD2+B21Ou4MZ7if3qTjlmXTyHSoyUHLxAsMrbr3zPVjDBR+F82YPjrW7LMSODOd37ZZWu3+O52vv3f997dF7faQ+ogIvGorsqYOGNBuj9teulZq1cb6+YXRz+/0S+ROtj73KAF6AzfEDQYg1NOb5PJCVmUn0dfXdT+rsg8zJiSe0SGupXkzuw3nQEkOm/OPcVlkyyafuUNGRQkVdiuv7F5Wd0zCVXF2Xc4RPhozHeUpNVVMWn1dpdrjzHYr3rU9ISaNa18es82Kt/bEHj1mm5XIDl6yfP3+am57p4CMQidaNTwz3YcXZ/qc9oOhrMzGjTduY+XKQhQKuP32KD7/fDDaU+aRfJFygPt2rUMCFMB/+o7gqT7D2vYJnWccjiLKLeMA8NK+iF7bdju0trboMeFsUHjjIzuY2Aa1ywyeSja+Ec7XK83c91ERV7+cz1XDPVjwRHCD12qXp9eDhwdUV0NZGfj4tMvDxixbxkG1GltiIpUbNmAYN65dHrc9nGevoPaVYm5iboTZNe/BITnJqCipNzdCqVDQyyekrk1H18snhOcGT+WZwVPqfqINfgwPiuGZwVMaJCLgqkB7uCyv3rHE0ry6/XoC9F6YNPp6baoddlIriurt6dORHMmyMfjhLC560lVi+7aLXStkXr7Vr8lERJIknnzyAIGBf7ByZSFDhviQlnYZc+cOrffmXmStIui3OdxTm4gM9PbHds19IhFpZa4lvGGAjEY1DYPHc+4OqUV+m5PEUVnPYE01Gasz2fp+Qps8zqxLTOR+G8XgeC2/ba8m8JZ01u2vbpPH6tBuusX131unt+vDhn37LQDpl17aro/b1kQy0obMdmuj8x6sTjs2p4NKew0SMsbG5kbYO8cwjV6tIdzLp96PTqXGS60jvHaJ79dJm1mUmlB3zsTwnhwszWVlViJ5VeX8nr6P9MoSLgrrAYBCoWBieC+WZh5gb3EW2ZYyvj6yBR+dxxnn6LS34nIHlz2bS8/7stiTYmPSINcKmW9mN71CBuC333IIDPyD118/go+Phj/+GMXOnRcTFVV/GOeGzX8S+PtXFNZY0StVbL/4BhIuvbnLjRd3BCWWEMCOStETP0P7db+3luf/sQctMh9unILOW8vyf60nb1/bTLz1M6nZ9V4E7/7NjyqrzIQnc5n5Zn695cVd3nsfu/67vukquG3Bd8YMVCEhUFND9j33tOtjtyWRjAhtrqSmqm6DQIB4UyB39xzNxrxkXt79J7uLMrm/z9i65AVgckRvJoT25Luj23l1zzJqnHYe7juhw8xLsdkk7ny3gOBbM1i+p5oBsVoOfRLByv80vUIGIDW1kkGDVnP11VupqHDw7LO9yM+fytSp9XvQluSkovn5I37OPgbA37v1p/q6+xkmyri3iSLzYGSKARMBpsPuDqfFEncUcKhKTV8vB71HBDFrw/UAzB3/C46ativv/o+rfUj/OopeERp+WG8haGYGO450ji9S50ytBqPJVQAtPa1dH7pbYiIAZV98gaOysl0fu62Ir1dtyKTRN5iIarZZ0as0aFVqlAoFShRUNNLGW9OxZ++fziMDJp32d4AhgVGn3bVYoVBwVcwArorpWBO1JEnipfnlvL6glBo7RAao+PqfgUwcdPoVMjaba6nuvHlZyDJMmRLM/PnDMJnq12SxOhz0Wv496VWuJZQxnkYSJ88UZdzbUJllJk55D64lvMXuDuesPHDlehwoefkjV9XjkAGBXPr2OJb/awPfXLyQuzbd2GaPHeavJvHTSP4zv5Tnvy9l+Owc7r3MyMcPNF3Er8t48B/w+stw202wfuuZ27cStY8PphkzMP/wA8f69KFnRgYAks1G2dy5eI4ejb5vx59zeLIu/kpxrzhTI3MjyvKIM7nmPaiVKqKMfiSWndiOWpJlDp/URug4vlltxv/mDF78oRS9RsFX/wggY270GRORDz5Ixtv7N374IYv4eC8SEi5m6dLRDRKRv+9aj8eiT0mvqkBdW8Y99fLbRSLShiqr36HG8QMA/l5pnXL4q6LMyu58mXi1jam3d687PvKfFxA/OYrMzbmsfaHtPyifucmX5C8iiAlS89myCiLuyORguq3NH9etnnvJ9d/dO9v9oSO//x40GhyZmZQvXIhl7VqO9e1L7r33UvLhh+0ez7kSyUgLWJ12MitLyax0bZBUVGMhs7KUEqtridui1AS+Ttpc1358aHeKrJX8krqHvKpy1uUcYVdhBpPCT+z2OSm8F3/lJbMlP4XcqnJ+SN6BTXI0qEUiuM/afdVEz0rnjv8rotom8fzNPpTMj2bWJaffJ2fLlmKiov7k4Yf3oVIp+OqrwRw9OpmBA33qtdtRnI/HL5/wYcp+AK4Pj8d+/YNcGR7bVk9JAKz2tVhsrpLe3p4rUKsj3BzR2fnb+JWYUXP/gw3fM2YsuRqvIA/Wv7SNjE05jZzdumJDtKR+FcWj15jIK3XS/6EsHvuqc/Y2NZt/ADidsDeh3R868vffAci6/nrSLr4YW6prd25HYcct0tcUsVFeCySV5fPO/tUNjo8MiuWOniOZm7SF4hpLvWGJk4ue+eg8ubzRomdJrMhKxGyzuoqexQ0hVvSMuN3hLBs3/beAvak2lAq47WIDnz0YcMZljEVFVm64YTvr1hWhVMJdd8Xw8ceDUKvrn+dwOBi6ZgF7y11v1oE6PYcunUGAqJ7aquzOfVisL2L0+D9UStfQoMORR7ElFAAv7esYPB53Z4hnzeFwEK75GY0CsqTGN8QrPlbGhz2/Ra1X8UjO3ehNunaJ7WC6jUueySW31ElssJrVr4QQG3L6rSI6pS8+hX/cD736wO6D7fawstNJySefkPfww3DKx7jHyJHEbd7cxJntS+zaKwhnqajcwcy3ClixxzWX59IL9Hz/aBAB3qfvwpckiUcfPcD77x/D6ZQZMcKXhQsvJCzMo0HbVw7t4NmD25BxdU9+NmQCd8d1rjHezqKi+hGqbO+gUATg67UMhTyQYosH4ECrvhFfrx/dHeJZe/KGdbz+cwn3XeTJJ2ubroCc8G0ii29fQVB/fx7Yd0u7xSdJEg98XMxnyypQKuDFmb48c5Nvuz1+u/FUgEIBltrVRFYr7NwOQ4e7apK0supdu8i+805qmtg4TxMXR49jx1r9cc+GSEYEoYVsNol7Pyri2zWVSDIMitMy/7Egekac+dvczz9ncffduykvdxAcrOP774cxcWJQg3bJlWUMWfkj5toy7uMDwlg34dpWfy7CCUUV/XFKBwAVoKn9rwWVoj8Bps69C2qsah5mSUluzXVotadPlhfctJSDPx5lxMODmPLe+HaK0GXHEStTns+juEKid4SGVa+EEubf+ebnNKlbBORkwwuvwJHDsPgXqKqCHxfDlVe3+sMlDxhAzf79Td6uNJnoXV7e6o97Npr7+S3mjAjnPUmSeP67EkzT05i7upKIABVrXwtlz/sRZ0xEkpIq6NdvJTfcsJ3qaon//KcPeXmXN5qITFy7iO5/foe5tox70qUzRCLSxiS5FKd0vOvcCVgBC+CBv3Gv+wJrBd++tpc0ScuoOO0ZExGA6364DO9oI9veT+Don2ltH+BJhvXQU/B9FDPGe5GYZSd6Vgbv/1bWrjG0CUmCTRuhT22v5gtPw0/zXIkIuDbVawORP/2Ex+jRTYdlNlNcWU5GZUndz/G5jR2V6BkRzmtfrzTzry+KKa+S8fFS8u7f/Lh90plfY1arg1tu2cnChTnIMlx9dSg//DAMT8+GHwpzUw5x1641dWXcX+wzgmf7iuqp7cFq/5XyqmmN3uaheRCjx7soFJ3zG3pf/TzSatQkp04mNKZ574sVeRbejf4KFAr+lXEnhqD2n5+0bn81V7+ch7lKZnC8lpUvh+Bn6oT/Bp99DP/9D+TlumqOOBqp53IsB0JD2+ThZUmibO5c8v71LySLxTWJ9iRfL/6ECr8Trwu1QsnLQ6/ET+/VJvE0RfSMCMJprE6oJvKOdO58rwirXeaFGb4Uz4tqViLy5ptH8PFZwi+/5NCjh4EDByayePHIBolIkbWK4N++ZFZtItLf5CrjLhKR9mN3rKOpckrV9o8pq7oKWe58Rbq2Ls/iSI2GAT5SsxMRAGOIFzf8NBVnjZMvR/7kloqpF/X3oPC7aK4a7sHuYzZCb8tg7kpzu8dxzjZtcCUi0GgiImu0ZBi0bdYroVAq8b3zTrofPYr39IYl6bWlZfV+d8gSWZayBu06CtEzIpxXDmXYuPmNAval2VAq4faLjXz6gH+zNvrasKGQm27aQW6uFaNRzSefDGLmzMYLt928ZRnzs5IB0CtVrBk/jZEBbfMNSXApsVoorrHglCX0KjUmjQeSfThO6VATZygBGX/DPtSqfu0Z6jkb5fsjO8pUbPhjBCOntnyLhN/vX8OuT/cz4NZeXPvt5DaIsHmWbLcw/b8FVNXIjOmj488XQjF4dpLvyNXVcOPVsHa1a7jmFAWhQTw79/+A9umVqFy1ipQ7bkOV7UqQ/nz6Po5OHluvjV6l5u99J9DNO7DN4jiVmMAqCCcpLHcw480CViW4vgVPHuzBD48GNqt7OD/fynXXbWXTphKUSnjggTjee29Ao9Ull+WkcdXmP7DX/lndH9ePj4dc1KrPRajP5nSwIiuR3zPqT+jzVFl4vM89KBQnH1UAMgqM6LV346l9ALWqW3uGe85y08x0i11OjNbBwZqbz/p+PuzzLUWJpVz3w2T639yrFSNsmSqrxJUv5bFmnxW9VsF3jwRy3WiD2+JpkZoauPk6WP4nyCcSEhk4MHQgH77yWN2xpy+4jChDG2ynXOtASQ6f7F7Blf/+LxEJh7Eavdi6+XfskkSyuRBHbXyeag3PXDAV/3YarhHDNIIAWG0St79TQMgtGaxKsHJBnJbDn0aw7KXQMyYikiTx4IMJhIUtZdOmEsaM8Sc3dyoffDCoQSJidTiI/+Mbpmxagl2WifY0UHHN3SIRaWOlNVW8mrC8QSICEO21/5REBNTKvpg85hBoysPk8U6nS0QA7p20miqUPPZsn3O6n7s234jaQ82i21ZSmu6+YRJPvZLVr4bxw78DkWWZ618r4LLncrHaOsGmezodzF/oWjFz0otNUigoCm04ib0tLcnYj0OnZdH7z2IPCcKjwsKtKRX8a8BE/jtiWt3u8FUOO6uyO97+SyIZEbokSZJ45n8leN+YxrdrKokMdK2Q2d2MFTIA332XgY/PEj7+OIWQED3r149l48bxBAU1rBnwzz0b8Fj0KSm1ZdwXjZxC2uV3YFB33v2FOgOb08F7B9aSW3ViCWOIh5EYgz8apYrroz4BXPWgqqSr8PXahJ9hHx7au1AoOmdhOYfDwaZjNqKVNm5/ZuA53ZeHj56ZS69Gckhumz9yspvHGyn4PoYRPXUs311N4Ix0lu/u2CtAANBq4buf4Nob6g4pZZmikPYbCsmylJJa4SqeGO7pQ9/dCaBUkn3HHUiShEGj5+5eo+o2Gt2Sn4Jdcp7mHtufSEaELufLFWZ8b0rnlR/L8NIr+d8jgaR9Fc1F/RsWHzvVwYPl9Oy5gltv3YnNJvHWW/3Izp7KuHEN31h2lxTgufAT3kt21aq4JjwO+/UPMi0ivtWfk9DQlvzUukQkQG/gqUGX8eLQK3nygsm8MOBTNEoH1Q49byR+zNfH7kajGoni1K6STubhyaspQcP0aSFnbtwMsRdFMOapYVTmWpg/bUmr3Oe5MHkq2fp2OJ8+GECNXeay5/K57tU8HI4O3kuiVmOb8w3Hpk5GxjUYWBRcf1nvX7nHaKtZEce3KAEYERSDNjSUwKefRi4tJf8R15YHBo2efr5hAFQ77RRbO9ZuvyIZEbqMVXuqiLw9nbvfL8Jmh5dv8aXohyhumWA847mVlQ6uvnoz/fqt5ujRSq6/Ppyysit45JEeDdo6HA4Gr5zPkNU/Ue10EqDVk3flLBaOmtoWT0towoa8o3X//7deo4k2usbjLTXv4JTWocCfBVmLsDi8ya+uIKk8v6m76jR+W1tKIHZe+XHsmRs306RXRhE2LJgjv6ey/eOOUQTu3ikmsr6Jon+MhoWbqwicmcGmQ9XuDqtJdsnJe4c38uZDt1Du45oX0W1//aGQ9XlHmXdsZ5skJNJJ96lVuXo/gl56CXV4ODWJiQ1uO/WcjkAkI0KndzDdxoAHM7nk2TxyS53cfamR8h+jeeYm32ZtYf6f/yTi7/87v/2WR9++RpKSLmHBghHo9Q3nlLx5eBfaRZ+yp6wIJfDJ4PEUXn03we28dv98Z3M66pYpRnj5EGP0B8BqX0Kl9VEUCj8CjBmMDjmRTKaYO/eGbf/3z21ky1om9Pds9d2F71h3LTqTlj//vo78gx3jOgX5qNn3YSRvzPKjolpizGO53PF/BW4fTmrMHxkHSDYXIquUvP7528jAuK17mdltGAP8wuvarc89yt6S7FZ//ED9iQm/e4tP3H/3tDRili0DXAnTwRLXShuVQomvrmMNVYpkROi0CsocTHwqh34PZrE/3c6UIR4UfBfFFw8HNmup7sqV+QQH/8Gzzybi6almwYLhHDhwCd27N+xJSassw2fR5zy2fwsyMMY/FOcND3FffP82eGbCmThOWrngpT6x8ZvVNhfQ4mfYg1LpieGk2xxyxxojb6lPP0rBiIMv1k06c+MW0npquX3ttciyzNxxC3DYGing5Sb/vs6HlC+j6B6q5pvVlYTemkFCSo27w6pjl5xsyHUt41cqFNw3/hoUQSHoCgsZFxzPg33Hc2v34XXt12QntXoM3byDCKhNSBLL8tha4Nq9V1mbtEqyzC+pe6h0uK7b4IBIPNQda9NCkYwInY7VJnHLWwWE3prBmn1WhsRrOfJZBEtfPPMKGYDs7CpGjFjLpZduorjYxuzZ3Sguvpzrr298C/lL1i8m9s/vKHfYMKg1HL50Bhsvvq61n5bQAnqVBg+VBoDUiiKqHTYAfLx+JtCYhbp2d96Dpbl15/jpOm/v1Yrvkkl2aBkSrMDkd+a5T2cjbHAwl/x3NNUlNfzvksVt8hhnKypQzZEvonhmug9FZonBD2fz8KdF7g4LgMNleVhqP+SHBES5eulm/9tVe+SbrwAYFRxPkIfrS05SeT5mW+sOOSkVCi4N7133+9dJW/i//atZm5PEssxDvLx7KWtzjgCgQMGkcPct5W6KSEaETkOSJJ7+thjvG9P4fl0lUYFqNv43lJ3vRdA9/MxZvsMhcffdu4iKWsb27aVMmBBAQcHlvP124zVDvk1NRL3gI1YVZKEAnus9lIpr7qWnd9vVChCaR6lQMDwoBgCb5GRhakLdWLxS6Zo4mFFZwqZ8186lGqWKC/xbXhyso3jyvp2okfno17bd4G70v4cSOzGS9A3ZbHh1e5s+1tl4+VY/Dn8aQUSAig+WmIm6I52kLJtbYyq3najg2927djnvfQ+BUgmffgi4Xq/dTUGNntNaxoV2Y1zIiaXqh8vymX9sF4vSEsipneitAG7pPqxuWLMj6YQbAgjnoznLzTwypxhztYyvQclX9/ozsxkTU4/78ss0/vGPvVgsTiIjPfjxx+GMHNn4H2SZ1UrvFT+QV+Pa7Kqv0Y+ESTe2+ji9cG4mhPVgY14ykiyzIS+ZTEspY0LiMWj0HCrNZfNJyxdHBcfhpelY3dLNlbyvmIMWNb09HfQZ0fa1K25ZNo23Q79gzTNbiJsYScSIjlU5uHu4loy50fzjsyI++N1Mn/uzeOpGH16+1T1fErTKE5NCS2vfM9Bq4Z+PQr8BJ912YpmyTtX67yUKhYIZ3YYRYfBlZVYihaeslokzBnBFdD/61q6o6WhEBVahQ1u+28Jd7xaRXeJEr1HwzE0+PHmDd7MmpgIkJJRy/fXbOXbMgoeHkjfe6M9DDzW99Hbm1hX8kOnqztQplawaN40xgR3zj1eAzfkpfHtkK6d7E4s3BfDPfhejbYMPgPYwKfxn1uQoWPRZP66+p2e7PGbRkVI+6vM/NB5qHsm9G52hYyZyCSk1TH42l4JyiW6hala/GkZUYPv+O5fUWHhq+2/IyHhrPXh56JUNko28KjMv7FqCDPhqPXl1+FUoFW03MCHJMsnlBRRaK1EqFEQafInw8m2zxzsdUQ5e6NQOpNVw85sFHEi3o1LCnZcY+fDe5u0hA2A225g+fTvLlhWgUMCMGZF89dWQJs9fmZfO5X/9gb12YuQ9sX34bOjFrfZ8hLazrzibhWkJ9Yqfgesb66jgeK6LHdRpE5GqShthxsUEqpwcdZx96fezsWvOAX7/22pCLgjkvt0z2vWxW0KSJO56r4i5qytRKeG12/3493U+7RrDxwfX162S6ekdzIxuwwjxNCHLMkfNhfzvyFYKansqrooewOVRnWsvpHMhkhGhU8orcXDzmwWs229FAUwZ6sH3jwbiY2jeh4kkSTz/fCL//e8R7HaZQYO8WbhwBLGxje91YXU46L/iB5ItrnLYkR4GDl12k6ie2skcf9NPNRfhkJ34aD075IqBlrp16BK+22Xj9XtCePyzUe3++POvW8LhhccY+cgFTH5rXLs/fktsOlTNFS/mU2aR6B+tYdUroQT5tE8SmmMp5797l2N1nliFFOJhwiY5KDk+dAMEexh5ctDkTv+6bAmRjAidSnWNxN3vFzJ/gwVJhiHdtPz4eBDxoc3/o126NI/bbttJcbENPz8NX389hKuuanqI5dGEv3j7aAIAaoWCHy+czLURnW+vEqHrClHMRwnkyDe55fElSeLd6K8xZ1Vy64ppxF8S7ZY4msvhkLjpzQJ+2VSFRgUf3BfAvVPa5zPjmLmQjw5uqFtZc6owT2/+3veiNt25tyMSyYjQKbhWyJTyzuJybA6IDVbz7exAxvRt/vLF9HQL1167ld27y1GrFfz73935z3/6NDmvZHdJAWPWLaS69lvM1WExLB59Ras8H0FoLc/dsoGXvy/irtEezPlritviKM+q4L24uShVCmZn342nX8fvNVy+28L1rxZQaZUZ3kPL8pdCmt27ei4s9ho256ewOT/FNV8DBREGX8aFdGNIYFTd3jBn48/Mg+wpyiSv2oxWqSLOFMi1MYMI8Tz9Z+Kuwgx+Td9HsbWSIA8j18YOov9JhdhkWeb39P1szEum2mkn3hTAjG7DCPZonc9akYwIHd7nf5p59KtiKqpl/IxKPrzPn5vHN3+FjM3mWqr73XeZyDJcemkQP/44HB+fxntTHA4HF679hV1lhQD4a3UcmHwzIfpOsl25cF6JU82jTFKRW30tukaqAbenQ78c5afrl+LX3YeHj9zu1liay2aTuPqVfJbtqkangS8fDmzRCryO5r0DaxkWGE2MwQ+nLLM4bS85VWW8MOSKJlfnHDMX8tbeVUyLHcgAv3C2F6SxPCuRpy+4jHAvHwCWZR5iWeZB7ug5kgC9F7+l7SO79n7PJXk6TiQjQof1504Ld79fRE6JE71WwXM3+fDkjS2b6f3xxyk8+uh+qqudxMZ68sW8QfQdaCSkiS7Qtw/v4d/7N9VtYvX+oHE81H1Ao22FjuFIeQErsg6RUVlKua2a+3uPZVDA6WuFJJXlsyBlN7lV5fjqPJka1Y9RwXH12qzNOcLKrETKbdVEGHy5KX4IscaAJu7RPea/c4AZjyQxOVrBn2nXujscAH69exV7vjzIoFl9mPbVJe4Op9l+2WTh1rcLqLbJTBigZ8lzIXjqO3+JrQqblUe3LeSRAZPo4d34ku/PE//CJjl4qO9FdcdeT1hOpJcvM7sPR5ZlHtu2iEsienNphKtoWrXDxqNbF3JHjwsZVlvL51w09/O78/+LCJ3GvtQa+t6fydQX8skvc3LfFCMVP0W3KBHZsaOEmJg/efDBBBQK+OyzQRxOvoQHS1cxZOVPWBz2eu0zKyvwXfw5j9YmIqP8QpBueEgkIp2AzekgwsuXm+OHNqt9kbWSDw+uo6dPMM8MnsLE8J7878g2Dpbm1LXZUZjOzym7uTyqH09fMIUILx/eP7AWcxsUoToXrz69Hz0Sn6/sOCu6rp4zCf8ePiR8fYgDC464O5xmu260FwXfRTO2r461+6wEzkznt22WM5/YwVU7Xe91XqeZDJtSUUQvn/o7PPfxDSWlwlW9tshqwWy30vukNh5qLbHGgLo27aVzrncTOpXcEgc3v1HA+gOuFTJXDPPgf480f4UMQGmpjRtu2Mbq1YUolTBrVjSff34BarWS1xJ3cqSiDAXw0qEd/HeAa9XBZRt+ZXl+JgAGlZqtF19PX5+O9Q1YaFo/vzD6+TW/xsv63KME6A3cEDcYgFBPb5LLC1mVnVRX6GlV9mHGhMQzOsRVa2Zmt+EcKMlhc/4xLovs2/pP4izsXpfDYauGC0xOIrv7uDuceu7aMp13wuewcOZyIkeG4h3ROYY9DJ5KNvw3nLkrzdz7URFXv5zPFcM8+OXJ4GaXCzhuWeZBFqXt5eKwnkyPH9Jku7acqyHJMj+l7CLeFFg33NIYs82KSVN/jo9Jo6+rAGu2u8rSm7SntNHq26RK7OmInhGhzVRZJW5+I5+I2zNYf8DKsO5akr+I4PfnQ5udiBRVVXDfP3cQGPgHq1cXMmCwkYQj4/nqqyGo1UqOVZbzwqHtyIAEvH1kD28k7kL980d1ichTvYZQce19IhHp4lLMTXwLNLu+4TkkJxkVJfW+BSoVCnr5hNS16Qgevv4vJBS89e2F7g6lAU8/PTf/diWSXWLOhT92yB10T+eOS0zkfhvFkHgtS3ZUE3hLOmv2Nn+fmLSKYjbkJhNxmgQAXHM15hzexOiQOJ4ZPIVB/hF8cmgj2bU7TQMsz0pkTU4SM7sP54lBl6JTqnn/wNq6qsGnMy95BzmWcv7Wa3SzY+/oRDIitDpJknj862J8bkpj/gYLMcFqNr0Zyvb/iyCuBUt1v5l/jIiQFXz2XiYao8SUt2xc+G4hn+aupMRqQZZl7t21FudJ056csszjB7bglGV6G32xX3Mfr/Qf2RZPU+hgzHZro9/wrE47NqeDSnsNEjLGxr4F2jvGME1xXhV7ixV019gYe3XHXEYbf0k0o/49mIpsCz9dv9Td4bSYn0nNzvcieO8eP6pqZCY+ncvNb+SfMbGyOu18mbSZW7uPwPMMdUJWZyfR1y+UyRF9CPX05uqYgUQZfFlXu1mdLMuszj7M1Kh+DPKPIMLLl1k9R1JWU01CUeZp73te8g72l+Qwe8BEfHWep21r0uoxn/LaNtuteNf+DZg0rlWLpw5Tmm0n2rQXkYwIreqTpeX4TE/njV/KMXkq+fHxII7NiWJU7+Yv1T12rJIBA1Zxx817sVfDkFl2bvuthsjhrjcLhyxR6ajhx8yjrC7IqpeMHPdUr8Ecumym2E9G6FTuvmgllaiY/UT7lH0/W5e+MZaQwYEcXnSMnV/sd3c4Z+Xhq3zI+DqKPpEa5m+wEDQzg+1JTSel85J30t83jN6+IU22Oa4t5mrIssy85B0kFGfxrwEXE9CMVYBxxgAOl+XVO5ZYmkdc7YTtAL0XJo2+Xptqh53UiqK6Nu1FJCNCq1i6w0Lorek88HExDie8focvRT/EcOPY5i+btVod3HTTNrp3X8H+/WaiR0rctqSGIbMadlvuL83joT0bGr0fBfDJsYOUdrBJiULbMmn0jX7D06s0aFVqDBodShRUNPYtUOP+2hkOh4ONSVaiFDX87aXB7g7njO7ceD1ag4Y/7l9LYVKpu8M5K6F+ag5+Esl/bvWl1CIx4pEc7v2wsEEvyY6CNDIqS7gmdlCz7rct5mrMO7aTbQVp3NVzFHqVhnJbNeW2amwnVX39Omkzi1IT6n6fGN6Tg6W5rMxKJK+qnN/T95FeWcJFYT0A1+Z6E8N7sTTzAHuLs8i2lPH1kS346DzOuHKttYmvjcI52Zvi2kMmMdO1h8z9U428f48/anXL8tx33z3Kk08exGqViIjVMuJZM/6nKYb6yJ6NFNvsjd4mA+X2Gp7av5VPhlzUojiEzivOFMCBkpx6xxLL8ogzub7hqZUqoox+JJbl173RSrLM4bI8JtS+ObvTI1eupRgNt13u7e5QmkXrqeW2VdcwZ+RPfDX6Jx7N+xuqFv7ddxRPT/dlxngvJj2dx+fLKvh9WxUr/hNKv2gtJTUWfkzZzT/7T2iVuhtna33uUQDe3r+63vHbe1xYt3y9pKYKBYq62+JNgdzdczS/pu9lcdpegjyM3N9nbL1Jr5MjemNzOvju6HaqHDa6eQfycN/2f64iGRHOSk6xg5vfzGfDgRoUwFXDPfj2kSC8vVr2At60qZjp07eRnW3FYFDz8Zy+HOi5C0ftyMsAv3CGBEThp/Mkp6qcv/KO8b/sdI7UOOrdj1qhQIECCRmnLCMBX6cl8vHg8SgUioYPLHR4VqedwuoT26AX1VjIrCzFS63FT+/FotQEymxVzOrpWj01PrQ763KO8EvqHkYHx3G4LJ9dhRk81G983X1MCu/F3KQtxBj9iDH6szo7CZvkaFCLxB0WLS8mAAVvLBp/5sYdRMSIUC5+ZRRrntrMd5MXc/vqjlET5WzEhmg59mUUj31VzFuLyhnwUBaPXOPNzKuqqLBbeWX3srq2EjJHywtYl3OEj8ZMb7ADb0vmanhrTwxhm21WIg0+jcb32dgzb1b4yIBJDY4NCYxiSGBUk+coFAquihnAVTHuLXcgkhGhRaqsEne+V8hPf1mQZRjeQ8v8x4KIDWnZxk9FRVauvXYbGzcWo1TCfffF8uGHA/kz6yAJGa4u0rEh3bil+/C6c0x6A7fs3kS21ZWIKIEeBm/iDD4E6z0J0nkQpPcgSOf6/x5GH5GIdGLpFSW8c9K3wAUpuwEYGRTLHT1HUm6rrrcJWYDewEN9L2JBym7WZCfho/Pk1h4j6pb1AgwLjKbSbuW39H2YbVYiDL483HcCJm3z5zS1hY+f2EmmrOW6PqpON89p3JPDOLY8ndQ1mfz1xk7GPNa8ujAd1Rt3+nP7RCOXPJvLWwvL+XmTknnPXkpk4Il/l2+ObCXE08TkiD4NEhE4MVdjUnivumNNzdWINLjqLB2fqzE+9PzcH0tUYO3CSqwWKk/atMmg1p31Jk2SJPHYVyW8/7sZuxPiQ9X8b3YQI3u3bKxdkiT+9a/9fPRRCk6nzMiRfixceCEhIa77+c/uP8m0uMafXxt2NX56LyRJ4skDW3j7SAJOWSZS78lFRg0eKhUjg+O4o0fHWwIpCC3RSzuPbLuazMLL8Qk4/QqJjshhc/B26JdUl1r52/abCB8a7O6QzpkkSTz4STGf/lmBUgHPz/DluZtdicPb+1YR4eVbV2fk66TN+Gg96+aUHDMX8ta+VVwbM4j+fmHsKEznz8xDDcqwL886yB09RhKgN/Br+j6yLaWtVoa9o2ju53fnSsGFZiuxWnh25+845BMTsdQKJS8PvbLFCclHS8p5Ym4JlVaZAJOSTx4I4PoxLd/PZf78TO69dw9ms4OQEB3ffz+Miy+uX8b4+I6XRo2+Ls4n9m/hzSN7CNJ5sGDkZQzy9uPf2xa52tsb3yFTEDqLtT+nkmzXMipA6pSJCIBaq+bOv67n437f8+3EhTySexdaz5b1lnY0SqWSTx4M5M5LjEx5IY/nvy9l3vpKVr8S2qBtZ56r0VGIZKSLqnTU1EtE4MSSWD+al4ws2W7hbx8UkVfqxEOr4I1Zfvz7Op8Wx5KYaOa667aRmFiBVqvktdf68kQTSxc9VFqgikp7jWtGulbPS31HYNJoearXEJRKJUll+SfaqzUtjkcQOpLH7tyOChUfLhrn7lDOSWBvf6Z+eBF/PLCWueN/4Z4dN7s7pFYxrIeegu+iuO2dIr5fV0n0rAzeumso06/2qWvTmedqdBRnNfX5o48+IiYmBr1ez4gRI9i+fXuzzps/fz4KhYJp06adzcMK7WTPsRp635fJlS/lU1Tu5MHLTZh/im5xIlJV5eDaa7fSt+8qEhMruOaaMEpLr2gyEQHo6+f61iHjKgoEoFereabPMJRKJbIssyIr8UR734bfUgShs0hLLONghZJeegcDxnT+oY1h9w+gx1Wx5OwsYOWTm9wdTqtRKpV892gQa18LxVOv4J9flDD44SxKzI4znyw0S4uTkR9//JHZs2fz/PPPs3v3bgYOHMjkyZMpKCg47XlpaWk8+uijjB079qyDFdpWdrGDsY9lM/gf2SRl2bn6Qk+K58fw4f0BLV6q+/rrSfj5LWHRohx69TJy6NAkFi68EE/P03fGjQvpXtfduSzrED+n7KGsdpJiblU5cw5v4kDtxmdGjY7BAU1/8xCEju6+y1ZjRckzb3Sdb8c3LboCQ6gXm17fScra01cT7Wwu6u9B8Q/RXD3Ckz0pNkJvy+DrlWZ3h9UltHgC64gRIxg2bBgffvgh4JrkExkZyd///neeeOKJRs9xOp2MGzeOO++8k40bN1JWVsbixYub/ZhiAmvL7S7K5LPEjQ2OP33BZUQZ/Oodq6ySmPVeAb9srkKW4cKeOuY/FkR0cMuHQNasKWDmzB3k5dVgMqn5/PMLmD69ZcVz/sjYz2/p9as66lRqak4q7qMA7uk9lsHtXJhHEFqLtcpOqNci/FROjjm6xpDGcWUZZt6P/walRskjOXfh4eP+onKtbcl2C9P/W0BVjczoPjqWvRCKwbNz1llpS839/G7RlbPZbOzatYtJk06MjymVSiZNmsSWLVuaPO+ll14iKCiIu+66q1mPU1NTg9lsrvcjNE+lvYaPD65vNBEB2JibzPH8U5IkHplThN/Nafy8qYr4EDVb3wpjy9vhLU5E8vKsjBq1jokT/6Kw0MbDD8dTWnpFixMRgKmR/bgqekC9CWEnJyI6pZq7eo0WiYjQqd0/cSVlqJl1S9d7HftEmbjmu8k4qh18OfInd4fTJq4Y7kXxvGgmDtSz6VANgbek8/NflWc+UWhUiyawFhUV4XQ6CQ6uP7YZHBzM4cOHGz3nr7/+4ssvvyQhIaHZj/Paa6/x4osvtiQ0AbDYbby9bxU5VeVNttmQl4xSoaTwUDee+rYUi1Um0KTkkwcDuG60gawiB/+3uIybxxsI8T3zy8PplHjwwb188UUqkgTjxvnzyy8jCAg4+29CCoWCy6P6MTIolg15ySSW5mJ1OjBodFwQEMnIoDi8NJ17pr4gLN9qJgR4Zu4Yd4fSJvpP78HRpans+/Ywv9+3mis/nejukFqdXqtk1SthzFtfwax3C7nh9QIuvcDMr8+GoNeKXpKWaNPVNBUVFdx666188cUXBAQ0f9OdJ598ktmzZ9f9bjabiYzset8eWtuitIS6RMSo0TE2pBsRBl9qHA72lWSxpziL9KM+3PWBgeqqEjx1Ct66y49HrvFh62Er01/P5+dNFiQZfLxUzLrEeNrH++abdB56KIHKSicRER7MmzeMMWNab3MlP70X02IGMi1mYKvdpyB0BK/c/Re5aLltuM7dobSpaV9fQuamXHZ9doBul8XQe1q8u0NqEzePN3L5MC8mP5vLij1WAmaks+CJIKYMPbu6TuejFiUjAQEBqFQq8vPz6x3Pz88nJKThTobHjh0jLS2NK6+8su7Y8Q2I1Go1SUlJxMc3fHHqdDp0uq79R9raLHYbWwtSAdcwxuMDLyXQ40QyEeiM4NV3MsnMA4VCZtwoM8tm92fxtmqG/jOLXck21CqQamcQGTyarly6f3851123laNHLej1St55pz//+lf3Nn1+gtCVfDU3E29UfLL6CneH0qaUSiV3b72RdyK+YsH0pfwzdRamsJbXKOoMTJ5Ktrwdzud/mnno0yKmvpDPtaM8+fGxoBYvADgftegKabVahgwZwurVJ0o0S5LE6tWrGTlyZIP2vXr1Yv/+/SQkJNT9XHXVVUyYMIGEhATR29GK9pdmY5dcu9uODI6rS0QyCh088XUx/R7KIjtfQfde5Uy/JwGruoyYuzOZ8WYBe47ZAHCctDmu0aPhS6Oy0sEVV2xmwIDVJCdbuOmmCEpLrxCJiCC0wMJPDpPq1DI8QoWnoesPN3oFeHLToiuQbBJfjvypwY64Xc09U0xkfRPFgFgtCzdXETgzg78OVrs7rA6vxcM0s2fP5vbbb2fo0KEMHz6cd999F4vFwqxZswC47bbbCA8P57XXXkOv19OvX7965/v4+AA0OC6cm5O3RY+v3aXU4ZTpdncGdicoFeBjUJCdbuToZxfUtnS9KUiNrKf6aoWZbUk1BJiUBHqr+HNhBt99cQxHtYP+/U0sWnQh8fEt/4bzZ+ZB9hRlkldtRqtUEWcK5NqYQYR4nn6V1K7CDH5N30extZIgDyPXxg6iv1943e2yLPN7+n425iVT7bQTbwpgRrdhBHuI1VdCx/LSIwnoUPPZsq43h6Ip3afEMOKfg9j2bgI/37yMG3+c6u6Q2lSQj5q9H0Tw9sIyHp9bwtjHc7l9ooGv/hGAUil6SRrT4mRk+vTpFBYW8txzz5GXl8egQYNYtmxZ3aTWjIwMcbHdQKc6sfqlyGoBQK1S8PR0H7w9lahVCiqqJX7Ylc6hRAOSdPoN5BZsqmLBpqqTjujhor4A7Ae6/7MAlbIAtUqBVgU6jQK9VoGnTomXXoHRQ4HJU4mPlwpfgxI/o4oAk5JDUgkDAuMZF+SLv7eCVfn7ee/AGl4YcgU6VeMvx2PmQuYc3sS02IEM8Atne0EanxzaWG+fh+VZiazJSeKOniMJ0HvxW9o+3j+wtsvt8yB0bvs2F5BYrWaAwUlsX193h9OupvzfeNLWZHHop6PsmXKQC+7o6+6Q2twj1/pw41gDk57O5ZvVlSzdWcWyF0MY3K3rLXU+V2KjvC4iv9rMczuXAOCv8+KFIZejPeXD/Zi5kDf2rkRyKsg5FM2mdaFUWmWcjfSa/v64L4/N3k9iYgVKvZqxU8IZcXEIpZUyZZUS5VVOKqpkKq0SlhqZ6hoZq13GZpexO2UczsZ7XBqS0Xk4kB0qlKjQqhsmNmq/AvQeDqJVMXWJTbJyL6FGL6ZG9SPYW8nnGUuZEtOLSyN6A1DtsPHo1oXc0eNChgXFnNvFFYRWMj5oAZsKlSyfdwETb4pzdzjtrqbSxlshX+CwOnko6Tb8433cHVK7ee67El75sQxZhgevMPHePX7nxRf35n5+i2SkC3l3/xoSy/IA6OEdxE3xQwn38sEpS+wtzmJe8k7Mdtdwzoz4YQwwxfHSvFI++N2MAnCcnJSs3A82JxMnBvLTTyPw8zu7sW2HQ6KgXCK3xEF+mZOCMieFZolis5OSSomiqmqyFCkoi6KpsqgbTWzUOhtWqxrJeaY/XBmFQoFK4eoVMvpZUCsVqO2Gej02Rg8lvgYVPl5K/IxKAkwqAr2VBPuqCfFREeavxiSKFwmtrKyoisjAPwhTO0iyd60iZy2RsSmHr8YuwDPQg0ey70Z1Hk3uPJptY9IzuWQUOonwV7HyP6H0iuza84ZEMnIeyrKU8sbelfUKhPlqPamR7FQ57HXHYo3+PDJgUt3wxdFsO7O/LGLJ9mqQZVAoiDqQxM8LRjBsmF+Dx2ktkizz8aH1VDnsPDbwkibbPfDXfO7ocSGD/aIoKJfIK3WwLjON7UWpDFGOJMNczgFrEv7mPlRWqjBXS1RWS1RrS7DVKKkoMWJzyNgdMg4Jmjt/TqGgLrHRqEFf22PjoVNi0CsweCgweZw8FFU/sQn2UREuEhuh1g39fuPngw4+eDSSh94c5u5w3GrdS9tY9/xW4idHceuya9wdTrv75+dFvP+7q5jnkzd488pt/m6OqO009/Nb7NrbhUR4+fJw3wl8mriBCnsNAKW2qnptupuCuL/P2HrzKCryKzk4dy+YlSj6RWDw05GeNqXN452XvIMcSzn/Pk0icjK1WkmYv5IwfzVmTyU5HtX8+0IfjpntvLG3iDdG+OOt9ahr/3liOgD39O7f4L4cDolCc22PTamTgnInheUSxRVOSiokSi0S5irXT6VVwmKVqbbJVFplSiod55zY6DQKPBpJbLy9VPg1kdiE+akweSpRKE4/30foeBwOB+sPVhOhkM/7RATgoudGcGxFOseWZ7Dl3T2M/OcFZz6pC3n3ngDuvMTIJc/k8upP5fy40cLqV0KJDjp/dyEXyUgX0807kJeHXsXWglS25KdQbLWgUiqJMfgxLrQ7fXxDUdZ+mJWV2Zg+fTsrVhSgUMBtt0by6ac9cdL2H3bzknewvySHRwdOwlfnedq2Jq2+bnjpOLPdirfWNQnMpHElIGabtV4yYrZZiTT4NHqfarWSUD8loX7n/idQL7GpHYoqMksUmZ2UVkqUVNZPbKqsMlU2GcvZJjaAStm8xMbXoMTf6PoJ8lER6K0m1E9FqK8Sk6fyvBiz7gievG49hWh46AyFBM8nt6+5lreC57DikQ3EXBRB6KBAd4fUrgbE6sj9XxR/+6CYr1ZWEH93Jq/e5stj159fE5uPE8M05yFJknj66UO89dZRHA6ZwYO9WbjwQqKj275aoCzLzD+2k4TiLGYPmNispbefJ/6FTXLwUN+L6o79N2EFEV4+zOw+HFmWeWzbIi6N6M0ldRNY7Ty69ZdON4HV4ZAoMkvkNJHYlFZKlFdJVFS7fqpqZKpqZGpsMjVnMxRF04mNl06B0dM1x8ZHJDbnJFo5D4usJM9+HWq1+A54XP7+Qj4dNA+tUcOjeX9Doz8/r83mxGqueDGf0kqJftEaVr8SSpBP17gWYpimEyqxWqh01NT9blDr8NO3boLw2285zJq1i5ISO/7+WubOHcIVV4S26mOczrxjO9lekMYDfcahV2kot7mKAXmoNHWrf75O2oyP1pNrYgcBMDG8J2/tW8XKrET6+4WxozCd9MoSbuk+HHDtZTMxvBdLMw8Q5GEkQG/g1/R9+Og8GNTJNtNTq5WE+CkJaaUemyKzRG6pk7xSB4XlEoXlzrqhqDKL6+fUxObkHhunRKOrrRqjAJRK0JyU2NStijpNYhPorSLIR02Ir4owv66X2Mx5fg8Zso6reyhFInKK4P6BTH53HMseXs83E37h7i3T3R2SW4zq7UHBd1HMeLOQBZsshN+ewfv3+nP/VG93h9ZuRM9IB1FitfDszt9xyCfe+dUKJS8PvbJVEpLU1EquuWYbe/eWo1YreOKJHrz4Yu92f9O/d+MPjR6/vceFjAp2LXV8e98q/HVe3NHzRFVfV9GzvRRbLWcselblsNHNO5AZ8cMIPkMxNaF5JEmioEwir8xJbsnpE5vK6pOWe5/UY9OaiY3h1Do2BiUBJiUB3iqCfY5PHu4YiU0f3TwybGpSMqcQFNE1S6Gfq++mLib5z3TGPTuci19qWM37fLJydxXXvpZPZbXM8B5alr8Ugo+hYRK7ZLuFId10rTLU3JbEappOJqOyhFf2LGtw/OkLLiPK4FrR8nv6PpZkHKh3e7CHiZeGNr2/xdacNJ56Yzdb5so4amD8FG8Wzh2HyeRaTiYqlwrtrdHExuysW+5dVjsU5ZpjI2OxSq2S2KhVoFUrTiQ2Wtdy7+OJjbenq4aNr0FJYG1iE+R9osfG26vlic2m3zO46KrtDPeT2FR8Y8sv1nnC6ZD4v8gvqcyvYtaG64keE37mk7owm01i2iv5/LmrGp0Gvnw4kJkTTsw3Wr6risuez+PiAXpWvRLaoSe1i2GaLirM05t/9r+47nfVaV6E//lwL+++d5TiZCXxvTz458f+HNKkUqGqwoQrGRGVS4X2plSeGIoaFHduG2JKkkRh+YmhqIIy1/yaU+fYnJrYVNXIlJ7DUNTxxEZ7fI6N9tTJw65aNkvfPIzsZ+CKF3uzOqGKEF81ob5KfAzu77HpSFRqJXdtvpEPenzDd5MX80ju3ehN5+9mqVqtkqUvhrJos4WZbxVwy9uFzFlRwR/Ph1DjkLn9/wpRAGv2WVm2q5opQ0+/CKAzEMlIJ6NUKOqtGGnMtm3F3HDDdjIzq/GLUTBnzmDuuisGgNcTyliXc6Ru4ufq7MNMjerHIP8IAGb1HMmjWxeSUJTZqSZ+CucnpVJJsK9r+TOce2LjmjzsJL/MQX6pK7E5ebl3ed0cG5kq64l5NqWVDhy1lYfrJTZ9ugHw1DInLMur93iNJTZ6jaJBgT4fLyU+BlW9ycNB3qq65d5dJbHxjfXm6q8vYdGtK/hq9AIe2H+Lu0Nyu2tGeVHwXTSXv5TLuv1WAmemM6y7jiKzExnXnmP//KKYSy7wQK3quL0jzSGSkU6moLqCx7YtQqNUEmcM4JqYQXVzSkpKbFx//VbWri1CqYSJj0v8+4E+TI6KqTu/j28oe4uzANceNma7ld4+IXW3e6i1xBoDSKkoEsmIcF5RKpUE+ShrVzGce2JzabffWZ0Djz8cR78pMRSUNTV5+ERiU22TKbc46rZUOJseG83xoahGEhtvTyW+RtWJOTYmFSG+HSexGXhLb44uTePAvCMs/ftapn4wwW2xdBQGTyXrXw/n29UV3PVeIesPnChzIMlwJNvOlysquHdK5x5aF8lIJxJrDOCOHiMJ9jRSbqtmSfoB3ty3kmcHTeHZJ5N4771jOJ0yw4f7snDhhbyS+iu++vrddyaNnvLaHX7NdtdKFpO2/qZNJu2JNoIgtJzdJrE7tYYYpZPX32hYdK8ljvfY5JU6ya1dFXVqYlNukWorD58Yimq1xEZ9fI6NAi8P13DU8Tk2pyY2wT6u5CbEV4Wf8ewSm2u/m0zWlly2f7iP+Mkx9LwitsX30RVdNsQTg4eSMkvDf8invi3h5vEGTJ5KapwONuYlk1fl2uYjxNPEQL9wAjw6do0bkYx0Iv38wur+P8LLl1hjAHd9t5io6/6kOEsiKEjHd98N5ZJLXDsok+qmQAWhizt1GT7UX4r/0OSVlKLmgRuDz/mxTu6xGRB77j02JRW1Q1GlTvLLnRSVOyk8eY5NI4mN1SZTbpGwFzlcm2BK0JyVDy1JbHwMSvyNruEo4/9dSfKsJcyZsZKH9txMZKxXlxiKOluyLHPvh4VUVDeeUZZVSry2oJQR47NYk51EjeSod/tPKbu5NmYQkyP7tEe4Z0UkI53U0aMVXHPNNg4eUuHlK/Hyy7155pne9dq0ReVSQTjfnboM314FTgcYvE8sxV+6sZxg4IX/jXZvsKdQKpUEeCsJ8FbDOXY4NJXYFFe4tlUoq2x8KKrZic3o8QC89Y9CoAAFihOJjerkoSgFnnrlKXNsTiQ2gd6uOTYhvipC/c6+x8adft5kYfHWqiZvl2R445cybgo4isHkaLTNwrQEHLLE5VH92irMcyKSkQ6gxulgZ2F6o7eVWi11S3sBrFYHt966i19+yQZg5H0Szz7SjynxvRucG2cM4HBZHpPCe9UdSyzNI84YAECA3guTRs/hsjwiDa4SxNUOO6kVRYwP7dZqz08QupJKR029ekCb31dzZLmK7pOdXPNCCQlz95Mja5kxWNuli5y1RWKTV+okt+T4XlFO9n5/mPLNWVQPjEAxLLq2jo2rx6bKVpvYVEvYHefQY3NSYuOhU+ClV56yKkpZu9xb5apj460i2Nc1x6a9EhulAqICVWQXO+sNt2lU4HC6nrMkKVgyvzc337OPwQGRxBr8sctO9pfkkFJRBMBv6fvoZgqkp8+599i1tq77l9JJFFkref/AOvKrzY3e/lniX8zqNYphgdHc/84avn2xnCqzRM+BHtz4phqLoYIxka53gvO5cqkguIvTrkB2wtHlKi5ZugMPJDyR+WTVRHeH1mmcnNj0iznphmkX8lG//1H45zaumenDwJm9mrqLOicnNnmlTvLLnLUF+lz7RJVWOOsv964+t8QGjm+p4EpstBoFHk0kNj5etZtgGlUE+pzUY+Orwt/UdGJz3WgD14024HDKZBY6SMlzcCzPTkqeneQcO2uTSigp1mEu9eDIipG8ODuidoUZTI3qx5+ZB1mctheAVdmHO2QyIoqeuZHVYefVhGXkV1fUHQvSG9CrNWRXluGs/VPIS1Cw9VUDBXl2gnpLjJ3tIL6/jm6mQC4P78+OtRY8PVXsC94vKpcKQhs7tUDhhjfVJC1VITuPL62UAQV9+hh5/PEe3HRTJFpt5xoW6Eis5hreDp2D0+bk70duxze2/UqkS5KrCJ9rubcruXHVsZFqC/Q5KbPUr2NTVSNjtcvU2Gv3ijrHxOb4UFRTiY1dXckO82H0Hg48q4JZv8EPGQWfPRjI9WNcFX+dssTT23+j1FaFAnj7wuvw0rRPHRdRgbUTWJmVyM+pewAI9jByV8/RRBtdQzKV9hq+3LGD1+7LI3+/AoVSwf33xfHBBwNQKpWkpFj48ss0vvgilcJCG/36mdi/f5I7n44gnBdOTUY2f6Dm0CIVkqN+nQel0vUhFBysY8eOCURGdv7CVO6StiGLuRf9giHYk9nZd3W6OR/QMLGp67ExSxSflNgcn2NjscpU10hU22VsdhnbWSQ2w3to2faOq4bU3KQtbClwrWp4bvBUwr182uaJnkJUYO3gZFlmfe7Rut/v7T227sUhyzIL5+XxyJ2FOJ1KgvtLXPJyDf8YE87PP+fw6acprF1bhEqlwOl0vSwDArTueBqCcN5T6xs/LkmuhMRkUmM0irfacxEzLoJxTw9jw392MO+q35m55Gp3h9RiSqUSP5MSP5Oac51CejyxyS2VWJOSxeIjR6iu0hCtDWdEeCh6Law/YGVw/InPhQr7idVf6g6YzIm/EDeptNdQaK0EIN4UUJeIzJmTyquvJpGaWkV8vBfT7vcmUZlKwvdqhty+icpyCVVtlfbjiYhSCWFhp6/KKghC29DoZZrqX54yJYQffhiGyaRp36C6oItfHsWxlRkc/SONbR8mMOKhQe4OyW1OJDYQEBjAAfVWAAL0Fv4+pAcqpZL7Ttrxt9hq4VBZLgBGjZ4AfcfbsLHjpUfnCbvsrPt/g+bEV6sff8wiLc21hOvYMQtvP5rD0tk6DixQU1numkbtdNa/L1l2LfWdMyeV9esLKSgQBcsEob2odUAj5R+eeqonv/02UiQireiOddej89ay7B8byD9Q6O5wOoRgTxM9vV0TUouslXyZtJmKk4pW5laV88mhDUi1GfOYkHhUio730S96RtzEqNGjVihxyBLJ5QXYnA60KjV//DEapRJqaiQKCmqYu3MXc9/NJ3OrEllqfO8BWYYdO8rYsWNPveNqtQKdTonBoMbHR4O/v5bgYD0REXqioz3p1s1Ajx4G4uMNYoKdIJwltQfIsutvU6FwbXL2zTdDmT49ws2RdT0avZo71l3P50N+4Otxv/Bo3t2oteJjbFrMQN7etwqHLLGrKIO9xVnEmQKwOR2kVZbUtfPVejIxrKcbI22a+Fd0E41SxeCAKLYXpmFx2Pgj4wDTYgbWJQVqtRICyigMzeGy1yUcJRrK/hfBwl9y6ybGnezFF3vTt6+R5GQLGRnVZGdXk59vpbjYRnm5g8zMapKTLXVDO6dSKl1vop6eKoxGDX5+GoKCdISG6omK8iQuzpNu3Yz06WPE11fMTxHOTyU1Fn48trPeMZXm+B+jjF+QhpV/juOCC3zaPbbzReigQC55cywrHtnItxMXcefGG9wdktvFmQK4p/cYvji8CbvkxCFLHCkvqNfGV+fJP/pNwKhtYpKTm4lkxI0mhvdke2EaAMuyDpFaUczokDg81Vr2l+SwKe8YztriSlP6x3P9z4NZsSKfe+7ZQ0ZGVb1x6sGDfbjiitAzPqYkSeTmWjl8uJKjRytJS6siM7OK3FwrRUU2SkttlJXZyM21kpBQ3uRYuFqtwMNDhcGgwsdHS0CAq9clMtKD6GgPunUz0KuXkdhYz045810QTlVkreTNvSsps1XXO1651DVuavJ0cvlnNjTRVYBP+wd4Hhk1ezDJy9JIWZnJupe2cdFzI9wdktsN9I/ghSGXsy7nKFvyU+q2KwjyMDI2pBtjQuLxVHfcL5Jiaa+brco+zIKU3adt08M7iIf7TUCjdM1ctVqdvP56Eq+8koQkyUgSbNt2EcOH+532fs6GxeLg8OEKjh6tJCXFQnp6FTk5VvLzaygpsVFebsdicWKzORvMZTlOqQSdTomnpxpvbzW+vlqCg3WEhXkQGelBfLwXPXq4khejUYyvCx3TG3tXcszsmqdg1OgYGhBFuJcPn0etYZ/DkyFLFWgMSvQqDa8Ou6rd6jicr5wOibfD5lBVVM2dm24gamTYmU86T8iyjNVpR6FQoFOqUSgaH+JvD6LOSCeyoyCNxel7KbJa6h3XKlWMCYnn2tgL6hKRkx09Wsl99+1hw4YisrKmEBzs3u43SZLIyKiq63VJT68iK8tKbm41RUU2ysrsVFY6qK52Yrc3/rJTKE70uhiNrrkugYE6QkL0RER4EBvrSXy8F717m4iI0IteF6FdpFUU81rCcgD8dV48OWgyRq2e7Suzef3SpfS9KJSQD43sK3Ft03B97AVcEtFwiwahdRUfLeXD3v9DrVfzaN7d6Awd95v/+UokI52MJMskluWSVlGMQ5Lw1xsYHBB5xm41WZYpLbXj59f5/gjLy20kJVWQlFRJamoVGRmuXpeCghqKi21UVBzvdZEazJE5TqVyTdL18lLh7a3Bz09LUJCOiAgPoqI8iIvzomdPAz16GPH0FKOSwtn5KWUXq7OTALil23DG1u7ddGnP39h8xEZu6ZVYtDU8v2sJAFEGX56+YIrb4j2f7P76IL/duYrggQHcnzDT3eEIpxBFzzoZpUJBX98w+vq2rKtRoVB0ykQEwNtby/Dh/gwf7n/Gtg6HREqKhaSkCo4ds5CWVkV2djV5eTUUFdVQVmYnL89KWloVDkfTvS4ajRIPDyUmkwYfH9ck3ZAQ11yX2FjXCqPevU0EB2tFr4tQp6zmxDyRXrX7eqycd4yVR+yMjVZj9NGhrlaTsVxPaYkd023VTd2V0MoGz+pL8tI0Dv2czLLZG7jsnXHuDkk4CyIZEToFtVpJjx5GevQwNqt9UZFrku6RI5WkpVnIzKyu63UpLbVhNjsoKKjhwAFzk5N0VSoFer0SLy/XXJeAAB3BwTrCwz2IjvYkLs6LXr0MdO9uFEuju7iTh0nLbVYCPYxcMD4YbzWkp1fx4K1b+f73AsrLQaVTc/EdDYdVhbZz/Y9TeDdmLlv/bw/xk6PpPjna3SG1qiPlBazIOkRGZSnltmru7z32jJuZJpXlsyBlN7lV5fjqPJka1Y9RwXH12qzNOcLKrETKbdVEGHy5KX4IsbW7urc3kYwIXVJAgJ4xY/SMGXPmPyybTSI5uZLDhyvqJulmZVVTUODqdSkvd5CTYyUlparJpdHH60t4eqowmVyTdAMDtXWTdGNjj0/SNRAQ0DGX1glNizcFsrV2X4+NeUeJNwVw8Gg1cf182JNQxiffZSPjmiSo8XC1F9qPUqnk7q038m7s18yf9juzM+/EK6Dr7AVkczqI8PJldHA8nyZuPGP7ImslHx5cx7jQ7tzVaxSHy/L435FteGv1db3vOwrT+TllNzO6DSPWGMDqnMO8f2AtLw65EpMblv+KZKQNSbLE7+n72VaQhtluxVvrwajgWKZG9jvt7ObOltF2dlqtkj59TPTpc+b5SLIsk5dXw+HDFSQnu1YYZWVVk5trpbCwhtJSO2VldnJza7DbpdMujdbr6xekCwnREx7uGi5y9boYiYvzctWcEdxqeFA0v6Tuxup08N28DJ7/oYTMozZUKgWgqLdxmdZLppd3MBm1xaYMah1+ei+3xH0+MYUZuH7+FH669g++HPkTDx+9w90htZp+fmH082v+EP763KME6A3cEDcYgFBPb5LLC1mVnVSXjKzKPsyYkHhGh8QDMLPbcA6U5LA5/xiXRfZt/SdxBiIZaUPLMhNZn5vMrJ4XEurpTXpFCd8c3YqHSsvF4Y1XweuMGe35RKFQEBqqJzRUz4QJZ/72W13t4MiRyrq5LicK0p1YGp2RUc3Ro80rSGcyuRKXwEAt4eEeREZ6EhvrSc+eBnr3NmIydc75Qx2dXqXh6uiBzDu6i03/p6HGbANo9N/MK9/BL6+upWqKHtmoRK1Q8vLQK0VC0g76XNONwX/rx+4vDrB41gqmfX2pu0NyixRzEb18Quod6+Mbyk+1ZSQckpOMihKmRPSpu12pUNDLJ4QUc1G7xnqcSEbaUEpFIYP8w+nvFw5AgN7AjsJ0UiuKmzynM2a0QtM8PNQMHOjDwIE+Z2wrSRLZ2VYSEytITrbUzXXJy7NSWOgqRldSYiM7uxqHo+nN2TQaBXr9iaXRAQFaQkOP97p4ER/vmusSHS0K0rXEhLAeVDttlL53gD8f1VJdBrKzYQ+np8OJ8SMLxs8tVF+qw3KtJ5WDavBDJCPt4arPJ5K+MZuEuYl0mxJDvxt7uDukdme2Wxt8MTVp9ViddmxOB1UOGxJyg2qsJq2evGpze4ZaRyQjbSjOGMhfecnkV5kJ9jSRWVlKsrmQG+IuaPKczpjRCq1DqVQSGelJZKQnlzbjC11Fhb22IJ2FY8cqycx09boUFBzvdXGQmmrh8OGKJpdGuwrSqfDyOtHrEhSkIyxMXzdJt2dPV0G6831ptEKh4PKo/vS/Ppxx3RL5z115FCXL9faMUiDjgYRCBmzg8WcNnktqWPLZMsb9ayi9r41HpRGTW9va3Vtu5O2wL1l4y3IiLgzBJ6prloToSs7vd5c2dllkH6xOO8/vWoJCoUCWZa6OGciIoNgmz+mMGa3gHkajhmHD/Bg27MyVd51OifR0V0G65GRXQbrjvS7HC9IVFtaQmVl12oJ0x5dGG40afH1P9LpERHgQE+OapNuzp4GwsK5bkC7K4MfDY0Zz9x4Ht9y6g0ULc+vdrjtpBomitipxwY5Cfr7pT4Y/NJCpH1zUjtGenzx89MxYciXfTlzElyN/4l+Zd3bZ12NjTBo9Zlv93dvNNit6lQatSo1SoUCJot7uvsfbeGvcM9QvkpE2tKswne0FadzVcxRhXj5kVpbyU8oufLQejDxlQqogtCWVSklcnIG4OEOz2peW2khMdG0DkJpqISPDtX+Rq9fFjtlsp6iohoMHz1yQzmBwLY0+vmt0WJiemBgv4uI8a5dre6HXd763Ik9PNT8vuJBnnjnIa68dAUAGdDS8IAqFAo9APRfcJYZR20vcxVGMfnwIm/67ix+v/YObF1/p7pDaTZwpgAMlOfWOJZblEWdyLXJQK1VEGf1ILMuvWyIsyTKHy/KYEOaeYa3O9w7QifySmsDkyD4MC4oBINzLh+IaC39mHmoyGemMGa3Q9fj6ahk1yp9Ro5pXkC45uZKkpMraXaNdS6Pz8o7vGm0nN9dKaurpC9Jptcq6bQD8/FyTdEND9acsjTYSFNRxXudKpYL/vNKHYu9CPn+yBOT6K2sAZAXoYj24Z/V0MVzQzi55fQwpqzJJ+jWFHZ/tY9i9A9wd0lmxOu0UVlfW/V5UYyGzshQvtRY/vReLUhMos1Uxq+coAMaHdmddzhF+Sd3D6OA4Dpfls6swg4f6ja+7j0nhvZibtIUYox8xRn9WZydhkxwNVm62F5GMtCGb5EBJ/QluSoUCucHb1QmdMaMVzm9qtZJevUz06tW8D9qCAmu9zRezslwF6QoLbfUK0u3bd/ql0TqdEqNRjbf3yUujXXNdunUz0KOHge7dDc1eGm112Pk1fR8JxZlU2GuI9PJlevwQYoxNJ2RJZfl8fvgvGFXDlDcULPu3tl7PiAyghIz/6Hgy4w+iSvzEMvx2NmvDdbwVMoelD6wjZlw4gb3PnGB3NOkVJbyzf3Xd78c3Vx0ZFMsdPUdSbqumpKaq7vYAvYGH+l7EgpTdrMlOwkfnya09RtSr8D0sMJpKu5Xf0vdhtlmJMPjycN8JmLQe7ffETiL2pmlDc5O2kFiWxy3dhxPq6U1mZSnfHd3OqJA4rot1TWI9NaMtslby4q4/uCisR11G++OxXTzUb3y9pb1zk7ZwS/fhdRntrqJ0XhxyhdteSILQFqxWB8nJx7cBqCI9vap2afTxXhcHFosDq1Vq1tJoo1GDn5+mdpKua/+i2FhPunc3skt3kGIqmNFtGD5aD7YVpLIqO4kXhlyOr65hAa0iayUv7PoDu+SaGKIAdIuq8fm/yrqvIJqLTdTsMCMZlJR948/QqFj2lmSJZfjtLHtnPl8Mn4+Hn55Hcu5CrRXfw9uL2CivAzj1m5a31oNhgdFcEdUPdW156blJWyiusfDIgEl1551c9MxH58nljRY9S2JFVmJdRntT3BBiTeLblnD+kiSJ3Fxr3STd1NQqMjNdc12KimyUltqpqLBTXS01WZBOqQKV0rU02mBQ4dO/BpNeR5QuoHaSrqvXpWdPA3s4wuaCFCwOV82Rq6MHkrgji4rrDwMw+Z2xrL2ogKpVpageK8AZpmT8lomsyk1iQlgPsQy/nf31xk5WPb6JmIvCuWPt9e4O57whkhFBEITTsFgcJCVVcORIJUeOmVlbvR9tUhCl6Yq6gnROrxqs5VBd1rCeiEIpo/EEpx3UeggP8GLC7Vq8dyaz+S8fliRfxTMHFnFt7CCW/30DhsVWtCMMhH7Th2qHjQf6jm8kKqEtzb34F9LWZjHxtVGMfWKYu8M5L4hdewVBEE7Dy0vN4MG+DB7sC4AuIRu1UuKunqMwafVsL0xnbtJWgjwMvDD4cjIzq+sK0qWnV7Gj5ih5RyQKksBWqaCk2M6uTXaGP21gxzIVW/cUImlkQj1NVMw2oslwwrZKyuZkY53ZvA0fhdZ164preCvkC1Y/tZnYiZFEDAs580lCuxDJiCAIAnBnz5F8c2Qbj29fjBIFUQZfhgVGk1FZglKpJDrai+joE1VUn92ZhkOSKKmxAPDc4ImU1Fj48OB6kpMvxRSg5LedkFFZBkDJOyYib62k7J1sFDFhMMgNT/I8p1IrufOvG/i433d8O3Ehj+bdjdZTbKHQEZw/VWAEQRBOI9DDyKMDJ/H+qBt5fcQ0nrzgMpyyRIC+8dosJo2egJP2m1mctpdyWzV6lYaYSCMmnR4lCv7KS3Y1UCq5ctNU5DgN0mO5HFud0R5PSzhFYC8/Lv94ArYKO1+P+9nd4Qi1RDIiCIJwEp1KjbfWA4vdxqHSXAb6RzTaLs4UQIXNiqdaA8C+kmwWpu4lQO9FtqWMrQVpqBQKimt7ToI9TPQNj8D6YSAKrYLvp/xK8dHSdntewglD7+lPz2lx5O4qZMVjG90djoBIRgRBEAA4WJrDgZIciqyVHCrN5Z39qwjxNDG6diXbotQEvk7aXNd+fGh3imss9PQOrlvKa3HUkGUp46XdS/nf0W3YZVfNEY1CxTUxA5l/bCd2E1y/YAqSQ+LzYfOxmmva+6kKwPRfLscY7sXmN3eLXqoOQCQjgiAIQLXDzrxjO3l+5xK+TtpCN1Mg/+g3AVXtniZNFZYqslpclZEVDVfcAPhqPfHUaJhzeBOZllIe7juB/pO6cflHE6gpt/HpoB+QmqqpL7QZpVLJXZtvRKlRMu/K36kqsZ75JKHNiKW9giAIrUCSZRLLcjlYmovV4cBLo2WwfyQxRn8UTSQqS/++lu0f7iNmQgR3rLmunSMWAA78dISfp/+Jf08f/n74dneH0+WIOiOCIAidwLeXLCRlVSZD7+vPFZ9c7O5wzkuLZ60gYW4ig+/uy1VfTDrzCUKzNffzWwzTCIIguNEty6fhG+/Nzk/3s+3DBHeHc16a9vWl+HX3Yfecgxz65ai7wzkviWREEATBjZRKJfclzEDvo+PPh9dzbGW6u0M6L921+QbUehU/37wMc07lmU8QWpUYphEEQWjC7+n7WJJxoN6xYA8TLw29oslzdhVm8Gv6PoqtlQR5GLk2dhD9/cLrbpdlmd/T97MxL5lqp514UwAzug1DmyfzQa9vQYYHD96Cf3ffNnteQuOSV6Tz3eTFmCIN/DNtFkql+L5+rsQwjSAIQisI8/TmjRHX1P08NrDpOQXHzIXMObyJ0SFxPDN4CoP8I/jk0EayLWV1bZZnJbImJ4mZ3YfzxKBL0SnVvH9gLYZoA7csm+Za8jtULPl1h26XRjNy9gWYMyv5efqf7g7nvCKSEUEQhNNQKhR4az3qfgwafZNtV2cn0dcvlMkRfQj19ObqmIFEGXxZl3MEcPWKrM4+zNSofgzyjyDCy5dZPUdSVlNNQlEmcRMiufyTCdSYbXw68Hux5NcNJr89jpBBARz6OZndXx50dzjnDZGMCIIgnEZBdQWPbVvE0zt+5cvDmyixWppsm1JRRC+f+puv9fENJaWiCIAiqwWz3Urvk9p4qLXEGgPq2gy7dwAjHh5EWVoF31y8sA2ekXAmszbegNag4fd7V4sque1EJCOCIAhNiDUGcEePkTzc7yJmdBtGkdXCm/tWYnXYG21vtlkxndJzYtLoKbe5CmqZ7dWuY9pT2mhPtAGY8t544i6JJH19Nr/ft7o1n5LQDDqDlltXTkOWZL4c/RNOh+ihamtnlYx89NFHxMTEoNfrGTFiBNu3b2+y7RdffMHYsWPx9fXF19eXSZMmnba9IAhCR9HPL4whgVFEePnS1zeMv/e7iCqHnZ1FbV8+/JZl0/Dr7sOuzw6w9f2ENn88ob7IC8OY8NKFVBVa+X7KYneH0+W1OBn58ccfmT17Ns8//zy7d+9m4MCBTJ48mYKCgkbbr1u3jptvvpm1a9eyZcsWIiMjufTSS8nOzj7n4AVBENqTp1pLsIeRwuqKRm83afWY7fXLipvtVrxre0JMGg/XMdspbWwn2hynVCq5d/fN6H11LPvneo4uE0t+29v4Z0YQNTaMlFWZbHp7l7vD6dJanIy88847/O1vf2PWrFn06dOHTz/9FE9PT7766qtG23///fc88MADDBo0iF69ejFnzhwkSWL1atH1KAhC52J12im0VuKt9Wj09jhjAIfL8uodSyzNI84YAECA3guTRl+vTbXDTmpFUV2bk+kMWu7ddTMqjZJ5V/1GYZKYv9Deblt1DXpfHSv//Rc5u/PdHU6X1aJkxGazsWvXLiZNOrG0TalUMmnSJLZs2dKs+6iqqsJut+Pn59dkm5qaGsxmc70fQRCE9vZzym6OlOVTZK3kmLmQTw9tRImCYYHRAHydtJlFqQl17SeG9+RgaS4rsxLJqyrn9/R9pFeWcFFYDwAUCgUTw3uxNPMAe4uzyLaU8fWRLfjoPBgUENloDL6x3tyy/Bokh8QXw+ZRXSY2dGtPaq2aWRtvQKFQ8M2EhditDneH1CW1KBkpKirC6XQSHBxc73hwcDB5eXlNnFXf448/TlhYWL2E5lSvvfYa3t7edT+RkY3/kQqCILSl0poq5iRt5vmdS/g88S+81FqeGHQpxtohlZKaKspt1XXt402B3N1zNBvzknl595/sLsrk/j5jCffyqWszOaI3E0J78t3R7by6Zxk1TjsP952ARqlqMo7YiyK44rOLsVXYxS6/bhDc158pH4ynxmxj7vif3R1Ol9SiCqw5OTmEh4ezefNmRo4cWXf8scceY/369Wzbtu2057/++uu88cYbrFu3jgEDBjTZrqamhpqaEwV/zGYzkZGRogKrIAjntWX/2sDWd/cQNTaMOzfc4O5wzjvfX/ErR/9IY+xTw5j4yih3h9MptEkF1oCAAFQqFfn59cfN8vPzCQkJaeIsl7feeovXX3+dFStWnDYRAdDpdJhMpno/giAI57vL/m8c8ZOjyNiYw2/3iHl37e3m367EEOrFxtd2kLYhy93hdCktSka0Wi1DhgypN/n0+GTUk3tKTvXGG2/w8ssvs2zZMoYOHXr20QqCIJznZi69Gv8ePuz+4gBb3t3j7nDOK0qlkru23IhSpeS7y34V83daUYtX08yePZsvvviCb775hsTERO6//34sFguzZs0C4LbbbuPJJ5+sa//f//6XZ599lq+++oqYmBjy8vLIy8ujslLsiigIgtBSSqWSe/e4lvwun72Bo3+muTuk84pvtIlp31yCo9rBV6MXuDucLqPFycj06dN56623eO655xg0aBAJCQksW7asblJrRkYGubm5de0/+eQTbDYb119/PaGhoXU/b731Vus9C0EQhPOI1lPLvXtm1C75/Z3CxGJ3h3ReGTCjF/1v6UnhoRKWPLDG3eF0CS2awOouzZ0AIwiCcD5J25DF3It+QWvQ8K+MO/HwaXoTP6F1SZLE+92/oSzFzE2/XkGvq+LdHVKH1CYTWAVBEISOI2ZcBFd9Mcm15HfgD2IPlXakVCq5e8t0VDoVC25YSkVe0xsollgtZFSW1Ps53YaL5yPRMyIIgtDJLX9kA1ve2UPUmDDu3CiW/LanI0tT+eHy3/CONvKPlDtQKpXUVNr444G1VBVWM3XRJTy783cccv1EUa1Q8vLQK/HTe7kp8vYhekYEQRDOE5PfHke3KdFk/JXDr3evcnc455UeU2MZ/veBlKdXsHDmcgoOFfPZ4Hns+99hkpenU1pW2SARAXDIEpWOmkbu8fwkkhFBEIQuYMaSq/Dv6cOeLw+y+e3d7g7nvDL1/YsI6u/PgflH+HTQD5SmlLtukKHkgNhPqDlEMiIIgtAFHN/l18NPx4p/b+TI0lR3h3TecNQ4CB/mWlEq2SVkZ+3sBwUU7xPJSHOIZEQQBKGLqFvyq1Ux/2qx5Lc9lKaW88WIH0mYe6jBbUqVgpK9JW6IqvMRyYggCEIX4hNl4rZV1yA5Zb4Y/iPVpaJKaFuxVzv4fOg88vcW0ci0ECSHTOGuovYPrBMSyYggCEIXEz0mnKu+nISt0s4nA79vcsmvWHJ6btR6FSP+cQEaTzUKpaLRNmVJ5eDo8ItW3U7t7gAEQRCE1jd4Vl+KDhWz+a09zB3/M3dturHe7SVWy3m95LQ1KBQKLnpuBMMfGsi29xPY8s5u7BZ7vV4S2SGjTnPi6CY+bk9H9IwIgiB0UZe+OY7ul8eQuTmXxXeurHdbpaNGLDltJZ5+eia8cCGzM+9iwssj0Xlr4aSOEk2irdHzVmYlIjU2vnMeEsmIIAhCF3bzb1cS0MuXhK8PsemtXe4Op0vTe+sY99RwZmfdRdRT3ZF0ruOG/1WjVigJ1hvRKk/0kGwvTGdBith5GUQyIgiC0KUplUru2XUTHv56Vv77L5KWiCW/bc2uk9k9pYL83wOo6atGnSdxf8kQXhp2JW9feC3T44agVLi6TtbkJJFfZXZzxO4nkhFBEIQuTuup5d7dN6PSqfjxmt/JPyBWeLSlLfkp2CUn6BX0/WUoPa6IZckdqylLN6NVqbk4vCdXRPWva78+76gbo+0YRDIiCIJwHvCJMnH76muRJZk5I39i+9FjTbatcjQ+x0FoniPlBXX/P8YvjvHPj0ClUTJ3wi+UZ7p6QcaHdq9rc/Sk9ucrMb1XEAThPBE1Oowr50zitztXkTB5K/zoC+qG30nnHtnKowMmEaA3uCHKzqWqxEr2tjxydxdQmFhCaUo5RWnFBJfbUVhhrvTDSa2rOfDjUUY/OgSDRodOqaZGcmBzOt0Wf0chkhFBEITzSPI4KxUzPDD8UI3/38vRfRNDpJcv5bZqjpQXICFTWlPFhwfX88wFl6FWqtwdsltV5FlcycaeQooOl1CaaqYy10J1iRVHtaNBsTOFSgEeSiQfJc5AJd37hDN6xgACe/uh1qswhRsBSK8ooUZyAOCt9Wjvp9XhiGREEAShi5Blmcq8KryCPVE2UoSrwmZlfe5RHPcZ0KY50W22MWyuF1M/GAVAkbWS9w+sJb+6gtyqcvYUZTIsKKadn0X7Ksswk709j7w9RRQllVKWVk5lbhXWshrs1Q44pV6ZUq1Ea9BgDDNgijDg182boL7+hA4JJmxIIBoPDftLsvnw4HoAcrx0xAyMQqc68XHrlCQWp++t+31YYHS7PNeOTCQjgiAIXUTunkI+HzIPva+O+EujiL80mrhJkfhEmQDYWpBaV1vkgm+GUXlnKjs+2UfPq+OInxRFgN7AzG7DeWf/agA25h3r1MmIJEmUpprJ3ppH3r4iipNKKUszY8l3JRuOGmfDZEOjRGfSYooy4h1hwK+7D0H9/AkbFkzIwADU2jN/bPb1DSXIw0hBdQWZllJe3bOMieG9iDH6kVNVzursJDIqXXvWeKl1DO/E17i1iGREEAShizCEeAJgLa3h0M/JHPzRtUrDJ8ZEtynRpPe1ooiVkI1KhhijUL0cwpL71vD91F+55ttL6X9TT3p4B2HS6DHbreRUlbnx2ZyZJEkUJpaSsyOP/H3FFCeVUp5ZQWV+FTXlNpw1DediqLRKdN5afOO88Y4y4tfDh+D+AYQPCyawrz+qRubQtJRSoeRvvUbz9r7VWJ128qrNfJ+8vUE7dW27k3tNzlfiCgiC0GWUWC31qoca1Lrzqqy5KcyAZ6AHVYXVJ7axB8rSzOz6/ACyUyYYQAn/k+YBoNIpUetVVOad2JPmeA0Myc1bqjgdEvn7i8jZkU/B/iKKj5ZRnlFBVWE1NWYbTlvD6qUqvQq9tw7/Hj54RxsJ6OFL8IAAwocH49/TF6WyfRaRRhn8eGzgJXx7ZCtplQ137g319OaWbsPo5h3ULvF0dCIZEQShS2hsr5XzcZ+V8OHBHF2a1mD44XhyogAkPUQ82Y0rrhhOUF8/lGolitoEJLWimDJbNQAhnsY2jdVhc5C3p5DsHfkUHCyh5GgZ5qzaZKPCjmQ/dXYoqPVq9D46Avv44x1jJKCnLyEDA4i4MBTvaGO7JRvNEe7lw5MXXEZaRTEJxVlY7DXo1Rr6+YbRwzuo7poLIhkRBKGLaGyvleP7rPjRNZMRSZJIXZtF0uJjZGzOpTS5nBrz6WuEVN7mScUsT0o1lVwcByrNidUyFTYrPyTvqPt9dHD8OcVnq7KRs7OA3N2FFBwopvRYGeasSqqKrNgqbUin7marAI2HGr2vDp9Yb3xjTQT08iVkUCDhI0Lwjmjb5KitxBj9iTH6uzuMDk0kI4IgCJ2AJEnk7MgncWEy6RtzKE4qpbq0pq4HRKlWYAjxwr+XLznb8+udq1ApUOtVXPfDFLb3KmRT/jFskpM3966kn18Y3UxBFFkr2VGYhtXpWm7qr/M64yoPq7mG7B355O4qoPBQCaXHyjFnV1JdbMVmsdcbKgJQKEHtocHDT49/Tx98Y70J6O1HyCBXz4YhyLP1LpjQqYhkRBAEoQMqTCzmwE9HSV+XTeGhYqqKqutqWiiUCryCPIi9OJLYCRH0vr47gT19AagqruaNgM/r7kehUuDXzYcZv1+Jf3df4pxRFFkrSSrPRwb2l+SwvySn3mObNHoe6nsRjnIHaVszydtT6Eo2UsupyHHV2LBbHMjSqcmGAo2XGg8/PUH9/PGNdyUboYODiBgRjIePvk2vmdB5iWREEATBzcoyzBxccJTUVZnk7y+iMq/qRK+CAjz89ESMDCV6XDh9ru9G2ODgJu/L098DU6QBc2YlAL2v7cbVX01CZ9ACoFWp+Xu/i1iVfZj1+xOpSqhAc9SOOt2JOk9GX6pAUVHK59VzoZGCXlqDBq9AT0wXeOEb501gP39CLwgkfHhI3WN0dU9t/5XiGkuD4+NDuzOj27BGz9lVmMGv6fsotlYS5GHk2thB9PcLr7tdlmV+T9/Pxrxkqp124k0BzOg2jGAPU5s9j45EJCOCIAjtyFJUxaEFyRxbmUHengLM2ZZ6EzV13lpCLwgkclQYva6JJ3pcWIsnZUaNCefgj0cY+9RQAvv5s/G1nRQdLqE8zUxlXhXVZTU4qh3oZTi5r0KpVqAxavGsK+jlQ1BfP8KGBhM6JAiNXnxkADw5aDLSSTOEcyzlvHtgDUMCohptf8xcyJzDm5gWO5ABfuFsL0jjk0MbefqCywj38gFgeVYia3KSuKPnSAL0XvyWto/3D6zlhSFXoDkPquCKV5YgCEIbqam0cXjxMY4uTSN3VwHlGRU4rCdqX2i8NAT08iXiwlB6XhlL/OSoZhXVgtqCXsfKydqeT/7eQldBr/QKLPlVVJdakSWZDf/ZUe+c4wW9vKOMeEe6ko3g/gGEDg1qdkEvAYza+sNNyzIPEag30KOJZbqrs5Po6xfK5Ig+AFwdM5DEsjzW5RxhZvfhyLLM6uzDTI3qxyD/CABm9RzJo1sXknAeVMEFkYwIgiC0CofNQfKf6ST9nkr2tjxKU8uxWxx1t6v1KryjjYQNDabH5TH0vCoOrVfTwxqSJFF4qMS17HVfMcVHSinPqKCy4MwFvfy6+eAdacS/hy9B/f0JHx5MYJ/WKegl1OeQnGwrSGNSeK8ml+qmVBQxKbxXvWN9fEPZW5wFQJHVgtlupbdPSN3tHmotscYAUiqKRDIiCILQWTiklu98Kssyh35JJqivP4G9/Zp9niRJpK3L4vDiFDI351BytP6SWpVWiTHcQOjgQOIvjabP9d3x9Kv/bdrpkMjZnU/OzoKzKujlE23Cv4cPwQMDCR8W1K4FvYQTEoqzqHbYGBUc22Qbs82KSVP/39+k0VNus7put7vquphO6XExaU+06epEMiIIQqcmyRLLsxJZmZXY6O0p5iKiDA0TjbJ0M4tnrSRtbRYDb+vNNd9c2vj9SxI5uwpI/DmZjL9yKDpcSnWptcGS2qgxYcROiqTvDd3xjjDisDnI3V1Izs58Vj+1mZLkMsyZFVQVNaOgV19/V/XQXn6EDPBvdkGv39P3sSTjQL1jwR4mXhp6RZPniImV52ZT3jH6+oXioxPLks+FSEYEQei0JFnii8RN7C7ObLLNvGM70anUjAyOA1wfrjs/28/y2Rtx2l29KSXJZXXtCw+XcPCno6Sty3ItqS08eUkteAZ6EjshgsjRofh196GqyErhwRJKksvY+fE+Nry03a0FvcI8vfln/4vrfledpsqnmFh5boqtFhLL8rmvz9jTtjNpXXv9nMxst+Jd2xNi0ni4jtmseGs9TrSxWYk0+LRu0B2USEYEQei0lmUeqktEFEBfn1Cijf7USA72FWdRYHUtb/326DaiDH54FihYPGsl6euz691Pzs583o6Y02BJrdagwRRpRGvUoFQpsZbXYC2pIW19Nqlrsurdh0IJGk8Net/6Bb1CL3AlG+1V0EupUNT7QDsdMbHy3GzOP4ZRo6O/X9hp28UZAzhclldv3khiaR5xxgAAAvRemDR6DpflEWlw1YupdthJrShifGi3tnsCHYhIRgRB6JTskpM1OUmAKxF5qO9F9DvpQ+G62AuYl7yDDXnJSE6Jn19cQ/n/ZSE5G+7+5rRJVOZaUKiUKJS4ejVksFXYsVXYXY+hUqDxVOPpf6KgV2BvP0I6WEGvguoKHtu2CI1SSZwxgGtiBjW5N4+YWHn2JFlmc34KI4PjUCnqD599nbQZH60n18QOAmBieE/e2reKlVmJ9PcLY0dhOumVJdzSfTgACoWCieG9WJp5gCAPIwF6A7+m78NH58GggMj2fmpuIZIRQRA6pYMlOVTYXTv0DgmIqpeIOO1OMrfmovi/fILWFaEslSk9w/3JgNZTjWeAB6ZwL1ey0defsCHBhA0N6hQFvWKNAdzRYyTBnkbKbdUsST/Am/tW8vzgy9GrNQ3ai4mVZ+9wWR4lNVWMrh3+O1lJTRUKTgyPxZsCubvnaH5N38vitL0EeRi5v8/YuqEwgMkRvbE5HXx3dDtVDhvdvAN5uO+E82YoTCQjgiB0SkUnVcDs739iwuV/Az6juvjEB+Xxt3IZON0eqXesuY6Y8RGtG2Q7Ozkhi/DyJdYYwJPbf2VnUQZjQs5t0zuhvj6+oXw2dkajtz0yYFKDY0MCoxgS2HhRNHD1jlwVM4CrYga0WoydiUhGBEHolJQnpRZWh73u/0MHB6LSqggbGkT02HB+cR4kLTUfjzU2AtfIVBdZUaoVDSaYlqWZYXy7hd8uPNVagj2MFFZXNHq7mFgpdBQiGREEoVOKNp5YrrulIJXxod1RKBTctuLauuNF1kqO7ShD7qNFNcibR76/ioz12ez7LomDC45gtzhQqBTITpmy9MY/sDszq9NOobWSC5uY0ComVgodhaiQIwhCpxRnDCDM0xuAtIpiFqTuxn5S4bNiq4XPE/9Cri0IMiakG2q1iriJUUz7+hIeK7yXGxZMpcflsSg1yoZ1Pzqhn1N2c6Qs35WEmQv59NBGlCgYFhgNuCZWLkpNqGs/MbwnB0tzWZmVSF5VOb+n7yO9soSLwnoA9SdW7i3OIttSxtdHtpxXEyuF9qGQZbnh1PIOxmw24+3tTXl5OSaTKLQjCIJLQnEWnxzaUPe7l1pHL59gqh02Dpfl121m5q314NkLpjTYU+Q4W5UdtV6NUnm6WSUd3xeJf3HUXIjFXoNBo6ObKZBpMQMJ9HDVMHl73yr8dV7c0XNk3Tmuomd7KbZazlj07PjEyhnxwwj2FO/Fwpk19/NbJCOCIHRq63OOMu/YDpp6I/PWevCPfhPqrVwQBKF9NPfzW8wZEQShUxsf1p1oox+rs5PYXZSBo7ZcqkmjZ2xINy4K69FgaaogCB2L6BkRBKHLqHE6KLdVo1Yo8dF5oFSIaXGC4E6iZ0QQhPOOTqUmyKN19ngRBKH9iK8NgiAIgiC4lUhGBEEQBEFwKzFMIwhCh2V12Pk1fR8JxZlU2GuI9PJlevwQYoz+TZ6TVJbPgpTd5FaV46vzZGpUP0adsn/I2pwjrMxKpNxWTYTBl5vihxBbW+hLEIT2J3pGBEHosL49uo3Esjxm9RzFc4On0sc3hP/bv4bSmqpG2xdZK/nw4Dp6+gTzzOApTAzvyf+ObONgaU5dmx2F6fycspvLo/rx9AVTiPDy4f0DazGf5xu/CYI7iWREEIQOyeZ0sKcok+tiB9HDO4ggDyNXRg8gyMPA+tyjjZ6zPvcoAXoDN8QNJtTTmwlhPRkcEMmq7KS6NquyDzMmJJ7RIfGEeXkzs9twtEo1m/OPtddTEwThFCIZEQShQ5JkGQkZtaL+FuoapZpj5sJGz0kxF9HLJ6TesT6+oaSYiwBwSE4yKkrofVIbpUJBL5+QujaCILQ/kYwIgtAh6dUa4owBLM08QFlNFZIssbUglRRzEeW26kbPMdutDQqcmbR6rE47NqeDSnsNEnKDsvAmrZ5yuximEQR3ERNYBUHosO7sOZJvjmzj8e2LUaIgyuDLsMBoMipL3B2aIAitSCQjgiB0WIEeRh4dOIkapwOr04631oPPE/8iQG9otL1Jo28wEdVss6JXadCq1CgVCpQoqGikjbdGlIwXBHcRwzSCIHR4OpUab60HFruNQ6W5DPSPaLRdnCmAw2V59Y4lluURZ3It21UrVUQZ/Ugsy6+7XZJlDp/URhCE9ieSEUEQOqyDpTkcKMmhyFrJodJc3tm/ihBPE6Nr64YsSk3g66TNde3Hh3anyFrJL6l7yKsqZ13OEXYVZjApvGddm0nhvfgrL5kt+SnkVpXzQ/IObJKjQS0SQRDajximEQShw6p22FmUtpeymio81VoGB0QyLWYgKqXre1S5rZqSk2qOBOgNPNT3Ihak7GZNdhI+Ok9u7TGCvr5hdW2GBUZTabfyW/o+zDYrEQZfHu47AZPWo92fnyAILmLXXkEQBEEQ2kRzP7/Papjmo48+IiYmBr1ez4gRI9i+fftp2y9YsIBevXqh1+vp378/S5cuPZuHFQRBEAShC2pxMvLjjz8ye/Zsnn/+eXbv3s3AgQOZPHkyBQUFjbbfvHkzN998M3fddRd79uxh2rRpTJs2jQMHDpxz8IIgCIIgdH4tHqYZMWIEw4YN48MPPwRAkiQiIyP5+9//zhNPPNGg/fTp07FYLCxZsqTu2IUXXsigQYP49NNPm/WYYphGEARBEDqfNhmmsdls7Nq1i0mTJp24A6WSSZMmsWXLlkbP2bJlS732AJMnT26yPUBNTQ1ms7nejyAIgiAIXVOLkpGioiKcTifBwcH1jgcHB5OXl9foOXl5eS1qD/Daa6/h7e1d9xMZGdmSMAVBEARB6EQ6ZJ2RJ598kvLy8rqfzMxMd4ckCIIgCEIbaVGdkYCAAFQqFfn5+fWO5+fnExIS0ug5ISEhLWoPoNPp0Ol0LQlNEARBEIROqkU9I1qtliFDhrB69eq6Y5IksXr1akaOHNnoOSNHjqzXHmDlypVNthcEQRAE4fzS4gqss2fP5vbbb2fo0KEMHz6cd999F4vFwqxZswC47bbbCA8P57XXXgPgH//4B+PHj+ftt9/m8ssvZ/78+ezcuZPPP/+8dZ+JIAiCIAidUouTkenTp1NYWMhzzz1HXl4egwYNYtmyZXWTVDMyMlAqT3S4jBo1ih9++IFnnnmGp556iu7du7N48WL69evXes9CEARBEIROS5SDFwRBEAShTbRpOXhBEARBEITWIpIRQRAEQRDcSiQjgiAIgiC4lUhGBEEQBEFwK5GMCIIgCILgViIZEQRBEATBrUQyIgiCIAiCW4lkRBAEQRAEtxLJiCAIgiAIbtXicvDucLxIrNlsdnMkgiAIgiA01/HP7TMVe+8UyUhFRQUAkZGRbo5EEARBEISWqqiowNvbu8nbO8XeNJIkkZOTg9FoRKFQtNr9ms1mIiMjyczMFHvetCFxnduPuNbtQ1zn9iGuc/toy+ssyzIVFRWEhYXV20T3VJ2iZ0SpVBIREdFm928ymcQLvR2I69x+xLVuH+I6tw9xndtHW13n0/WIHCcmsAqCIAiC4FYiGREEQRAEwa3O62REp9Px/PPPo9Pp3B1Klyauc/sR17p9iOvcPsR1bh8d4Tp3igmsgiAIgiB0Xed1z4ggCIIgCO4nkhFBEARBENxKJCOCIAiCILiVSEYEQRAEQXCrLp+MfPTRR8TExKDX6xkxYgTbt28/bfsFCxbQq1cv9Ho9/fv3Z+nSpe0UaefWkuv8xRdfMHbsWHx9ffH19WXSpEln/HcRTmjpa/q4+fPno1AomDZtWtsG2EW09DqXlZXx4IMPEhoaik6no0ePHuL9oxlaep3fffddevbsiYeHB5GRkfzrX//CarW2U7Sd04YNG7jyyisJCwtDoVCwePHiM56zbt06Bg8ejE6no1u3bsydO7dtg5S7sPnz58tarVb+6quv5IMHD8p/+9vfZB8fHzk/P7/R9ps2bZJVKpX8xhtvyIcOHZKfeeYZWaPRyPv372/nyDuXll7nGTNmyB999JG8Z88eOTExUb7jjjtkb29vOSsrq50j73xaeq2PS01NlcPDw+WxY8fKV199dfsE24m19DrX1NTIQ4cOladOnSr/9ddfcmpqqrxu3To5ISGhnSPvXFp6nb///ntZp9PJ33//vZyamiovX75cDg0Nlf/1r3+1c+Sdy9KlS+Wnn35aXrhwoQzIixYtOm37lJQU2dPTU549e7Z86NAh+YMPPpBVKpW8bNmyNouxSycjw4cPlx988MG6351OpxwWFia/9tprjba/8cYb5csvv7zesREjRsj33ntvm8bZ2bX0Op/K4XDIRqNR/uabb9oqxC7jbK61w+GQR40aJc+ZM0e+/fbbRTLSDC29zp988okcFxcn22y29gqxS2jpdX7wwQfliy++uN6x2bNny6NHj27TOLuS5iQjjz32mNy3b996x6ZPny5Pnjy5zeLqssM0NpuNXbt2MWnSpLpjSqWSSZMmsWXLlkbP2bJlS732AJMnT26yvXB21/lUVVVV2O12/Pz82irMLuFsr/VLL71EUFAQd911V3uE2emdzXX+7bffGDlyJA8++CDBwcH069ePV199FafT2V5hdzpnc51HjRrFrl276oZyUlJSWLp0KVOnTm2XmM8X7vgs7BQb5Z2NoqIinE4nwcHB9Y4HBwdz+PDhRs/Jy8trtH1eXl6bxdnZnc11PtXjjz9OWFhYgxe/UN/ZXOu//vqLL7/8koSEhHaIsGs4m+uckpLCmjVrmDlzJkuXLiU5OZkHHngAu93O888/3x5hdzpnc51nzJhBUVERY8aMQZZlHA4H9913H0899VR7hHzeaOqz0Gw2U11djYeHR6s/ZpftGRE6h9dff5358+ezaNEi9Hq9u8PpUioqKrj11lv54osvCAgIcHc4XZokSQQFBfH5558zZMgQpk+fztNPP82nn37q7tC6lHXr1vHqq6/y8ccfs3v3bhYuXMgff/zByy+/7O7QhHPUZXtGAgICUKlU5Ofn1zuen59PSEhIo+eEhIS0qL1wdtf5uLfeeovXX3+dVatWMWDAgLYMs0to6bU+duwYaWlpXHnllXXHJEkCQK1Wk5SURHx8fNsG3QmdzWs6NDQUjUaDSqWqO9a7d2/y8vKw2Wxotdo2jbkzOpvr/Oyzz3Lrrbdy9913A9C/f38sFgv33HMPTz/9NEql+H7dGpr6LDSZTG3SKwJduGdEq9UyZMgQVq9eXXdMkiRWr17NyJEjGz1n5MiR9doDrFy5ssn2wtldZ4A33niDl19+mWXLljF06ND2CLXTa+m17tWrF/v37ychIaHu56qrrmLChAkkJCQQGRnZnuF3Gmfzmh49ejTJycl1yR7AkSNHCA0NFYlIE87mOldVVTVIOI4ngLLYZq3VuOWzsM2mxnYA8+fPl3U6nTx37lz50KFD8j333CP7+PjI1JuLZAAAAg9JREFUeXl5sizL8q233io/8cQTde03bdokq9Vq+a233pITExPl559/XiztbYaWXufXX39d1mq18s8//yzn5ubW/VRUVLjrKXQaLb3WpxKraZqnpdc5IyNDNhqN8kMPPSQnJSXJS5YskYOCguT//Oc/7noKnUJLr/Pzzz8vG41Ged68eXJKSoq8YsUKOT4+Xr7xxhvd9RQ6hYqKCnnPnj3ynj17ZEB+55135D179sjp6emyLMvyE088Id9666117Y8v7f33v/8tJyYmyh999JFY2nuuPvjgAzkqKkrWarXy8OHD5a1bt9bdNn78ePn222+v1/6nn36Se/ToIWu1Wrlv377yH3/80c4Rd04tuc7R0dEy0ODn+eefb//AO6GWvqZPJpKR5mvpdd68ebM8YsQIWafTyXFxcfIrr7wiOxyOdo6682nJdbbb7fILL7wgx8fHy3q9Xo6MjJQfeOABubS0tP0D70TWrl3b6Hvu8Wt7++23y+PHj29wzqBBg2StVivHxcXJX3/9dZvGqJBl0bclCIIgCIL7dNk5I4IgCIIgdA4iGREEQRAEwa1EMiIIgiAIgluJZEQQBEEQBLcSyYggCIIgCG4lkhFBEARBENxKJCOCIAiCILiVSEYEQRAEQXArkYwIgiAIguBWIhkRBEEQBMGtRDIiCML/t1vHAgAAAACD/K2HsacoAljJCACwClqVlG+cPDHCAAAAAElFTkSuQmCC", "text/plain": [ "
    " ] @@ -179,7 +167,7 @@ }, { "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAAiMAAAGdCAYAAADAAnMpAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjcuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/bCgiHAAAACXBIWXMAAA9hAAAPYQGoP6dpAADceElEQVR4nOzdd1wU19rA8d9sB5al9yJgwQ72WBNb1CSmV9N7LzflJqb35L3pPTe93JiixiTWxNhb7IoFRUWK9L4ssGV25/1jEEVAEVEUzvd++FyZPTN7ZgPss+ec5zmSoigKgiAIgiAIbUTT1h0QBEEQBKFjE8GIIAiCIAhtSgQjgiAIgiC0KRGMCIIgCILQpkQwIgiCIAhCmxLBiCAIgiAIbUoEI4IgCIIgtCkRjAiCIAiC0KZ0bd2B5vB4POTm5uLr64skSW3dHUEQBEEQmkFRFCorK4mMjESjaXr844wIRnJzc4mJiWnrbgiCIAiC0ALZ2dlER0c3+fgZEYz4+voC6s1YLJY27o0gCIIgCM1htVqJiYmpex9vyhkRjBycmrFYLCIYEU5Yqb0Km+yo+96sMxJo8mnDHgmCILRvx1picUYEI4LQWkrtVTyzYTay4qk7ppM0vDRwsghIBEEQ2ojIphE6FJvsqBeIAMiKp95IiSAIgnBqiWBEEARBEIQ2JYIRQRAEQRDalAhGBEEQBEFoUyIYEQRBEAShTYlgRBAEQRCENiWCEaFDsctyW3dBEARBOIKoMyJ0CG6Ph98yt7IkN63Rx9cVZhLjEyD2PhIEQWgDxz0ysnz5ciZPnkxkZCSSJPHbb78d85ylS5fSv39/jEYjXbp04ZtvvmlBVwWhZdyKh09TV/DXgVRcHnejbRbmpDJz/5ZT2zFBEAQBaEEwUlVVRVJSEh999FGz2u/fv5/zzz+f0aNHs2XLFh566CFuu+02/vzzz+PurCC0xMIDu0gpzQFAK2kYHNKJqxIGcHlcP7r7hR1ql5NKSklOW3VTEAShwzruaZpJkyYxadKkZrf/9NNPiY+P56233gKgR48erFy5knfeeYcJEyYc79MLwnFxKx6W5O6u+/7+XufQIyC87vvxMT1Ykrubn/ZtBGBR7i76BkWd8n4KgiB0ZCd9AeuaNWsYN25cvWMTJkxgzZo1TZ7jcDiwWq31vgShJfZUFFLurAGgb2BUXSDi9BwqCX92RDdCTWYAdpUXUFHbXhAEQTg1Tnowkp+fT1hYWL1jYWFhWK1Wamoa/6P/2muv4efnV/cVExNzsrsptFNljuq6f/fwPzQiEv7HbPr+9RcAGkmi+2GPlTtEMCIIgnAqnZapvVOnTqWioqLuKzs7u627JJyh9Bpt3b8rXGqQIXs8lLlchBtNhz1mP+yc0/LXQhAEod066am94eHhFBQU1DtWUFCAxWLBy8ur0XOMRiNGo/Fkd03oABJ8g5EABfinYD8XxPZheWExAKNCQgAodVSxvTQXALPOSKiXbxv1VhAEoWM66cHI0KFDmTdvXr1jCxcuZOjQoSf7qQWBQJMPfQKjSCnNodxZw6c7V7CgTB35OD8inJyqcr7evQa3oq4hGRHeGd1hoymCIAjCyXfcwYjNZmPv3r113+/fv58tW7YQGBhIbGwsU6dOJScnh++++w6Au+66iw8//JB///vf3HLLLSxevJhffvmFuXPntt5dCMJRXNipL7vK83F63Gwvy2Vhvh6QmLN/DQeqyuvaBRi8GRvVvc36KQiC0FEd9+T4hg0b6NevH/369QPg4Ycfpl+/fjz77LMA5OXlkZWVVdc+Pj6euXPnsnDhQpKSknjrrbf44osvRFqvcMrEmAO4t9fZmLR6ilwSLgAUsmzldW0Cjd482Gc0FoOpiasIgiAIJ4ukKIrS1p04FqvVip+fHxUVFVgslrbujnCG2m+rYMDCRZTJ6pTMhYEu+vtbGBnehaFhCXjp9G3cQ0EQhPalue/fYm8aoUPwKAp3bUqhXD5UX6RvWB+e6927DXslCEJ7VWqvwiY76r4364wEmnzasEenNxGMCB3Cq6m7+OuIrK75+QW8JIIRQRBaWam9imc2zEZWDn340UkaXho4WQQkTRAFFYR2b2FBAc/u2NHg+KayMkqdzjbokSAI7ZlNdtQLRABkxVNvpESoT4yMCGc8j+JhduY21hZmYHXZ8TN4MSwsnvNienOgpoYr1/xTV2vkcApw9z9/EqypIsDozXmxvRkWllCvzZLcNBYeSKXCWUO0OYCrOw8g3jf4VN2aIAhChyCCEeGMtyA7lWV5e7k58SwivP3IrCzl2z3/oJN0PLM7l0pZxtPIeRIKRbKed8+axK7yfL5PW4ufwUSvgEgA1hdlMiN9E1O6DCLeN5hFubt4f/sSXhgwWWTdCIIgtCIxTSOc8dIri0gOiqJPYBTBJjMDQmLp6R/BhtIiNpaV4VYUdJLU4DwFiR02F+FeFkZHJtI/OIa/cw7t8Pt3zi5GhHdmeHhnIn38uLbLYAwaHasL9p3K2xMEQWj3RDAinPESfEPYVV5AQbW6u3O2rYy91iLGRcSQdcH5/D58GE/16E6QvmHqbqHDwe7KSgB6BkSQblVLxcseN1mVpfU21zu4od7BNoIgCELrENM0whlvYkxP7G4Xz22cgyRJKIrCRXFJDAmNByDKy4sLIyP5YI9aOfjApIk8tmkRBoM/Jr0voSZ1ysViMGF3u3C6ZaplJx4UfI+YjrEYTOTXWE/tDQqCILRzIhgRzngbizJZV5jBrYnDiPTxJ9tWxi/pG/E3eDH0sAWp5S4XEhBlNtPZW8OwsGAmxfRqu44LgiAIgAhGhHZg5v4tTIjpyaDQOACifPwpcVQxP3tnvWDEA3hp1U3wLHoTVqe93nWsTjsmrR6DVodGktAgUdlIGz+9WLwqCELTXG53W3fhjCPWjAhnPKdHRkP9BaoaSUI5LJl3eWEhAAk+3ur/W4LZVZ5f75zU8nwSLGrark6jJdY3kNTyQ4XSPIrCrsPaCIIgHE72uPktYyvv71jS6ONp5QWNHhdEMCK0A30Do5iXvZ1tpTkU221sLs7m7wO7SA6Krmvz/Lb1AFwWpR47O6IrxXYbM/dvJr+6gqW5aWwsymJcVGLdOeOiurMyfy9rCtLJq65g2t71OD1yg1okgiAIssfNJzuXMz97B3a33Gib6fs3szxvb6OPdXRimkY4413deSC/Z6Ywbe96Kl0O/AxejIzowgWxh0q9p1XZAYXHuqvBRrDJzH29zmF6+iYW5+zG3+jN9d2G1NUYARgU0gmby84fmSlYnXaizQE80Gs0FoPXqb5FQRBOc3OytrO9LA9QR2aTA6OJ9Q3EIbvYWppDbnUFANP2rifeN4gYc0Bbdve0I3btFToE3YyZuBUF5YrL27orgiCcYRRFoWfPA1gsGi6/3IdLLvGhS5dDpQKcbpnH1/1GtexEg8S/+oyhm39YvfN/Sd/I4tw0AIaFJXBjt7NO+X20hea+f4tpGqFDcCsKJo34cRcE4fhJkkRBgZt16xw88UQpXbtm06NHNs8+W8rmzQ5SSnKoltV9rgaHdqoXiBw8/+K4ZLy0agCzvigTl0cscj2cmKYR2r0tpaUAxHiJ6RVBEFqmZ089q1Y58NTuLbFrl4tXXy3npZfKCQpXCOiTgMcjsckZwnvWbIqKPBQXuxk71ot58yIwanV08wtla2kOLo8bm8tBgNG7bW/qNCKCEaHde323WuL9vIjwY7QUBEFoXO/eBtaudSAftjb1YAZvSb5ESX4oAOkAuAgI0JCYqOeccw6VAqiSD+0SrpXESO3hRDAitHsriksAeLpHjzbuiSAIZwK7XebLL23MnFnNzp1OSks9uFzHOkshvK+Vq54t4Z1LxyIdsR9WfrWVfdYiAIKMPvjqjSen82coEYwI7V6hwwFAsEkUKxME4ZDcXJkPP6zgzz9rSE+Xqaz00FS9Mo2Guimaw0kS9Omj55zndmMPKaQG+HHfBi6NT8ZUu0Ykv9rKZ6kr6yofjYro0iBY6ehEMCK0e7KiYBCLVwWhw1q/3s7HH1ewerWTnByZmhql0cACQK+HwEANvXoZuPRSb2691YzJpCMrS6ZTp6y6dgeDk0ce8eOVVwLZbdPw0Y5CFGBZ3h7WFu6nq18o1bKrbkQE1FGRkeFdT/Idn3lEMCK0axk2GwARYlREENo1WZaZMaOGadNsbN7spLjYjcMBjRWvkCTw8oKwMB0DBxq4+WYz551nPur1o6O1mEwSdruCVqsGLNOmhTJunLoItU9gFNd3HcL/9qzDg4LdLbOtNLfeNYKMPjzYezQ+ekOr3Xd7IYIRoV17OXUXAONCQ9q4J4IgtAabTeaTTyr5449qdu1yUV7uqbeo9HAaDZjNErGxOkaNMnLvvRZ69WrZBxONRqJrVx3btrk47zxvvvoqhOBgbb02w8M7E+cbxOLc3awrzMBZm74bZPRhVERXRkV0wVsnApHGiKJnQrsWN3cemdXVpE+aSLz56J98BEE4fezd6+DDD60sWWInI0Omqkppcj2HTgcWi4Zu3XScd543d99tITi49T9rz51bTWmpm+uuMx9zzYfb46HSZUen0eCjM3bYNSLNff8WIyNCu5ZnV3fdFYGIIJyeli6t5vPPK1m71kFenkxNTdNTK0YjBAVp6NPHwNVXm7nuOm90ulP3Nnb++c2vC6LVaPAXdUSaTQQjQrvm9HjQddBPJIJwupBlme++q+bnn21s3+6kuNiD09l4W0kCb2+IiNBx1llG7rjDl1GjxJt6eyeCEaHdKq4dFQk1inx+QTgViotlPvrIyvz51ezZI2O1Nr2eQ6tV13PExekYM8bEffdZSEgQv6sdlQhGhHbr5dRUAEYGB7dxTwShfdmxw86HH1pZvtxBdra6nuNoqbL+/hq6d9dz0UU+3HmnGbP5zHvrscsufs9MYUtJNpUuBzE+AVzVeQBxvkFNnrO7vIDp6ZvIq64gwOjNebG9GRaWUK/Nktw0Fh5IpcJZQ7Q5gKs7DyDet+P9zTrzfiIEoZnm5eUDMLVH9zbuiSCcmebMsfHNN5Vs2OCkoODoqbImE4SEaOnXz8D115u5+GKvU7qe42T7bs9acqsruDlxGP4GL9YW7uedbYt5fsD5je4xU2y38eGOpYyK6Mqt3Yexqzyf79PW4mcw0SsgElA3zJuRvokpXQYR7xvMotxdvL99CS8MmIzF0LHKEbSfn5QWKrVXYZMd9Y6ZdUYCTT5t1COhtWTX1ACQ5O/fth0RhNPY8ZQ+12jAx0ciMlLH8OEG7r7bj0GD2v+bptMts7k4m3t6jaKbn7oHzeROfUkpzWFZ3h4ujktqcM6yvD0Em8xckdAfgAhvP/ZWFPF3zu66YOTvnF2MCO/M8PDOAFzbZTDbS3NZXbCPiTG9TtHdnR46dDBSaq/imQ2zkZX644s6ScNLAyeLgOQMZ/d40IrFq4IAwIEDMh98UMHffx+79LlWq6bKdu6sY/x4L+65x4/o6I77duFRFDwo6KT6dUX0Gl296qqHS7cW092//uacPQMi+CV9EwCyx01WZSmTonvWPa6RJLr7h5NuLW7lOzj9ddyfLiCtorBBIAIgKx7KHNUiGDmD2WpXzQUZRIEhoWNZv97ORx9VsGaNg5wc9zFLnwcFqaXPL7/cm5tuUkufC/WZdHoSfIOZl72dCG8LFoOJdUWZpFuLCfVqvGyA1WVvMNViMZiwu1043TLVshMPCr6NtMmvsZ60ezldddifuoUHUpmxf3OTj3+T9g+P9B0r8sTPUP/ZpVZeHRIY2MY9EYTWd7D0+Q8/2NiyxUlRkRuns3mlz2+91ZeJE8UHreN1S+JQvk1by+PrfkODRKw5gEEhnciylbZ119qFDhmMrClIrxeImLQ6on38sbmcdRFpob2SD3Ys5YnkCeg12qYuJZymfs1R94T4d2K3Nu6JILRcW5U+FxoK8fLl0aRxONwydrcLP4MXn6WuJNjU+MiIRW/C6rTXO2Z12jFp9Ri0OjSShAaJykba+Ok73n+3DheMuBUPv2ek1H0/KaYX58X0wqBVX4rMylL+m7qCEkcVB6rK2VCUydAjUrGE09/+qioARoSIPWmE09/xlj7389PQtevJLX0uNM6o1WHU6qhyOdlZlsel8f0abZdgCWb7ERvlpZbnk2BR03Z1Gi2xvoGklheQHBwDqGtTdpXnMzqy432I6nA/wdtLcylzVgPQOyCiwSroTr6B3Jw4lDdT/gbUFdFHBiOOKidZ63LIWJ1N3NAYuo6JPzWdF5qtxu1G09adEIQjLF5czeefW1m/3tns0udJSQauvPLUlz4X6ttRlouiQLi3hcKaSmbu30y4t4Xhte8Ps/ZvodxZzc2JwwA4O6IrS3PTmLl/M8PDEthVXsDGoizu63123TXHRXXnm91riPMNJM43iEU5u3F65Aa1SDqCDveTvb+ypO7fB9OpAD4e9x1hPUMYfFMyXfqFE+rlS2FNJRmVpZTlWMlcnc3+VdnsW5ZBbkohikf9CzLoxiQRjJxmnLKMAgSIxavCcToy1b8laf6yLPPtt9X88ouNbduclJQcu/R5ZKSOIUNE6fPTWY3sYlbGVsod1XjrDPQPjuHiuCS0GvVjT4WzhlJHdV37YJOZ+3qdw/T0TSzO2Y2/0Zvruw2pS+sFGBTSCZvLzh+ZKViddqLNATzQazQWg9cpv7+21uGCEfmwZeU+OrX0sN3mJH1FFnsW7WflB+vUBw0SJi1IGnix6h0ANDoNHrn+svS4odGnpuNCs324dx8A/fz82rgnwpmksVT/o6X5Hyx9Pm9eNXv3Nr/0+dixXtx/v4W4OBEsn0kGhnRiYEinJh+/KXFog2OJ/mE83X/SUa87OjKR0ZGJJ9y/M12HC0aCTIc+dWwvyyXRPwyT2cCbjqfJ217Ami82sfGH7VQVVzcY5j8yEAHoPKrpH06hbfyQnQ3APV06H6OlIBxikx0NUv1lxcP6LVX89m0Vy5c7yMqSqa5u/6XPBeFU63C/JQOCOzEjfTOy4mFZ7h6GhMYR7RMAQETvMC5+ZwJld1lYl5eB/tlc9Curm76YBIvfWsPkN8/F7N/xVj+frtIqKwG4NFqMWgnNI8syC+c6+OvjrhTt9sFepsftVD+OfIatXtuOUPpcEE41SVEaWz51erFarfj5+VFRUYHFYjnh632XtpZVBepQvl6jZVhYAt39w6hw1rAyfx8HqsrrHrtgXSR/PbIYBeBor5QEXv4muo6NZ/Ib5xIc53/C/RRaRjN9BgCeKy5v454Ipxu7Xebzz238+ms1qalNlT6v/UWXQGd00ylGzzmjvLnrLj8GDhQfOgTheDT3/btDhvJXdu5PTnU5GZUluDxuluXtYVnennptNJLELYlD6T88lk49Ivj6sl+QHTKKW/1DJWkkzn3ubIrTStj1516qSmqoKbOTMiOVlBnqbrFGXwOdzorigtfHEdM/skE/hNYn1y5e9ROfUju0lpQ+j44DXe9MelxSgDn40OKPp/pNJNYsiucJwsnUIf9im7R6/tVnDLP2b2VNQToOT/1VZ7HmQC6P70eifxgAPSZ24V9rb+O/k36gMq8Sj1tB8Sj0uqAbMf0j6s6z2+zMe3IJW2fupDK/Ckelk7SF+3l74ecA6L10RCaHM/GFs+k+vsupu+EO5PusLAB6tcIImnD6W7PGzn//e7D0uUx1deOpsgAGAwQGNl36PMtWyiubc05RzwVBOFyHnKY5XI3sZGtJDuXOanQaLV0sIcT5BjXatrKwii8u/JGstTnovfW8bn0CjbbpahayLLPo1VWs+2YL5VkVeNz1X2qtUUtoYhCjHxvOoOv6tup9dVTDFy1mdWkpXw/oz00JHS9Xvz063tLnJhOEh+sYMOD4Sp+rwciCBsfFyIggtFxz3787fDByvFx2mV8fmI/RbODitycc9/krP13PivfXUbK3FLer/pJ8jU5DULw/Q+8cwMgHB4sFcS3gN+s3rLKM65KLxet3hrHZZD78sJK5c4+v9PnIka1T+lwEI4LQ+kQwcoZI+XUnC19ZSf7OQmR7/UltSSvhF+lL/2t6M/6F0WI3zWYQi1dPf3v3OvjgA7X0eWZm80qfd+um4/zzvbnzzpNX+lwEI4LQ+sQC1jNE30t70vfSnnXfp6/MYu5TiziwMQ9nlYvybCuL/7Oaxf9ZjaQBnxAfek3uxgVviHTixiiAWSc2NjwdHCx9vm6dWvrcbm9e6fOrrzYzZcqpLX1uc9lZkbe30cfKHNUiGBGEk6zdjYzMz97B5uJs8musGDRaEiwhXBqXTLj30c/bWJTF75kplNhthHr5cml8Mn0Co+oeVxSF2ZnbWJG/lxq3i86WYKZ0GUSY18kdqcnbUcicJ/4mfUUWdqujfnqxBF4BJrqOEenEAL8eOMBla/6hv78/G8ePa+vudAjHW/rcy+v0K32eZSvlg+1LsbrsjT6ukzTc0WMESUGibo0gHK8OO03z3vYlDArpRJw5ELei8FvGVnKry3l+wAUYtY1/0tpnLeLNrX9zcXwSfQOjWFeYwZ8HUnmq30SifPwBWJC9kwXZO7gpcSjBJh/+yEghp/a6es2p+yRenm9jzqN/1aUTH1n7xOhroNPQaC54bWyHSycet3QZi4qKeKdvHx5KFOWVW9ORpc8rKo6eKuvrq6FTJ22blz5fy1p+4zeu4zp60avB42WOal7ZvIDKwwKRaB9/dJKWbFsp7tpfMJ2k4dGkccT7Bp+yvgtCe9Bhg5EjVTrtPLr2Vx7pO45ufqGNtvksdSVOj8x9vc6pO/b6lj+J8Qng2q6DURSFf6+dxfjoHpwb3QNQs3Ae/edXbup2FoNC41p6ayfsyHTigxv4HdSe04kVRUGSpLrvg377nVKXSyxePQEpKXY+/NDKqlXNL33eo4eeCy88PUufP8mTvMZrAAxjGPdwD5dxGSbUKc5f0jeyKGc3APG+QdzWfTjBJjMANpeDaXvXs7FYTRfvGRDBg71Ht8FdCMKZS6wZqVXjVssr+uia/mSWXlnMuKju9Y71DIhga8kBAIrtVVhddnr4h9c97qUzEO8bTHplcZsGIyaziUvfn8Sl76ubMcmyzN+vrmJ9bTqxq0Ymc80B/nvuDwDojFpCEoMY8+/hDLz2zE4nHr5kCem2KgYHBjIgIICy2lKaWq1YM3I0siwzd66db7+tZONGJ4WFbhyOo6fKhoZq6d9fLX1+4YVnTunzYILRoMGDh3/4h9Ws5l7u5XZu52bPrawpSAfUkY+7e47C77DdUs16I7ckDiWjsoQSRxU7y/IoqrER4mVuq9sRhHbrzPiL0kIeReGX9I10toTUTbc0xuq0Y9HXXwxq0ZuocKpDt1ZXjXrMcEQbw6E2pwudTsfEZ89m4rNn1x1b+cl6VnywlpK9ZcgON3kphfxw3Sx+uG4WGr2GoLgzM53YoNFQ4HAwNy+P+fn5dTNWwb//wcDAQAYGBHBbQjzxPse3BXx7cbD0+cyZaunzsrLGSp+rNBrw8ZGIitIxYoSBe+7xo3//M3+BdDDBeFCHdg7+fwUVvMM7vKl5k6BenQioiiFeF81Uw3Ls2CmggGCC+ZZv0Wm0nBUaz9zs7QBk2EpEMCIIJ8GZ887TAj/uXU9uVQWPJY1v6660qRF3D2LE3YPqvt/6607+PiyduGhPKX88upA/Hl2ophNH1aYTP396pxOfFx7BiqJiPKiB50GlLhd/FRTwV0EBJq2GZ3r2bPoi7UBLSp937qzj3HO9uP9+P8LDT9//xsdjN7tZxjK2sIV97COHHHLJbbStG/UFKrFkUmLJZC+wsPYxCYkwwuraeusPjaq6m5qzEgThhLSPv0KN+HHveraV5vJo0jgCjEdfsW8xmBqspLe67PjVjoRY9OrQrdVprzeMa3XaiTH7t27HT4GkS3uSdLR04iwri/9vNYv/77B04gsTueA/40+rdOIJ4WE8vm1bo49pJYkuZjMPd+t2int18rRm6fPTXTHFLGUp61lPGmlkkUUxxVixYseOCxcePChH3b3yGGpPtVRH0L94PC/F3k5/qT/e1P97saMsr+7fgcf4WyIIQsucOX+dmklRFH7at4EtJQd4uO/YusVoR5PgG8yu8vx660ZSy/JJqF05H2zywaI3sas8nxhzAAA1sov9lcWcHXHmLwpNGBHL/cturvs+b0chcx7/m/SVajqxraCKtZ9vYu3nm+rSibuNieeCNk4n7uvnR7DBQPERuaQS6hTO78OH4XMGTTuBup7jl1+qmTatiq1bj1363MtLLX0+aJCBm29ufunzU8mOndWsZg1r2MlOMsigkELKKaeaapw4ceM+rsBCqv2fHj0mTPjgQyCBRBFFZzqTTDJnczZ69HSmc71zD64hGS+NZ0jaDRQWqFs62DQBeMfUDza2lhxgZ20wEmT0oYtfyAm+GoIgNObM+kvdDD/u28C6wgzu6TkKk1ZPhVNd7+Gl1WOoTe39evdq/A3eXBKfDMDYqETeTPmbhQdS6RMYyfqiTDJtpVzXdTAAkiQxNqo787K3E+rlS7DJzO+ZKfgbvUgOjmmT+zyZInqFcvucKXXfq+nEf7Lrz33q7sSldrbOSGXr4bsTt0E6sSRJnB8RwQ9ZWciHvVsrwLeDBpHo63vK+nK8ystlPv20ktmzq0hLk49Z+tzXVy19fs45Ru6+20LPnm0zQiUjk0oqy1nOVraSTjp55FFKKVVU4cCBjFy3PqO5NGjQocOAAW+88cefMMKIJ54+9GEoQzmLs9Ad558sK9YGzxNOOB/xERdxEakh+bxXsASAWRlb2VVewJDQOPQaLVtKDrChKLPu3DFRiWikpveiEgSh5dpdau+dK6Y1evzGbmcxLEzdOO2tlL8JMvpwU+LQusfVomdbKbFXHbPoWbXspItfCFM6DyLsGMXU2iO7zc6cqYvZ9mtq4+nE3joik1qeTrzpx23sW57JRW9NwOCtJy2jlNVbcnG6Gi6EWEclX5Jf79gY/LgKNY3boNcyLDmSbnFtU0HzyNLnNlvTqbJHlj6/914L/v4n9/NCPvksZjEb2UgaaeSQQzHFVFLZ4ukQCQkNGgwY8MILX3wJIYQYYuhBDwYzmLM5G3/8T96N1VJQMGBARkaHjsd4jKd4Ch8OjSDNydzG7KzGp/sOGhTSiVsSh6E5LJVcEIRjE3VGhFNGlmX+fmUl67/ZSnl2w92J1XTiYMY8PoyBU46dTvz2oM/J3pBLZFIYd8y7llnrMimtaDxryYab57yy1bkZBWI9Bu5zRKDl0JtGoJ+Jmy7ujSwrvPRSGZs2Ofjjj/B6NUpO1KJF1XzxRfNKnxsMEBysoW/f1i19bsfOClbUTYdkkkkhhVRQQQ01LZ4OOThqYcSIGTNBBBFJJF3pSn/6M5KRdOH0na48i7PwxZeP+IhuNL6GaE1BOnOytlFsr6p33KwzMjYqkYkxPcWoiCC0wEkNRj766CPeeOMN8vPzSUpK4oMPPmDw4MFNtn/33Xf55JNPyMrKIjg4mMsvv5zXXnsNk6l5Q80iGDnzqLsTq+nEDXYn1h/cnXggIx8YVO+N2Fnt4gnLayhuBY1WwifYm6B/DcId7oMkgY+XvsFzPcQ+avCgQ+Jl4gioHcqvqnGhKGD21jN+YE+uurqA9dF/wLPv82vMx1wSOOa47ul4S597e0NEhI6zzlJLn48c2fzFjzIyKaSwkpX1pkPKKa+bDnHjbtF0iBZt3XRIAAGEE0488fSlL8MZzgAGHPd0SHvgUTzsKi8g21aGgkKIyZe+QVHoNVpK7VXYZEe99madkUDT6bdGRxBOJyctGPn555+54YYb+PTTTxkyZAjvvvsu06dPZ/fu3YSGNqxwOm3aNG655Ra++uorhg0bRlpaGjfddBNXX301b7/9dqvejHD62jJzJ4tePcruxFG+DLi2D/Gj4vhi0g/1HkMjEXhXP0JHxnDHFUkNru03axZW2c2vQ8/ikuhD+4d8Nn0rtmoXOzZ68ePyfGrefBbGrcZLgXszHuGN+Dcb7Wtxscz771fw5581zS59Hh+vZcwYL+67r/HS55lksoxlbGITe9jDAQ5QQgk2bNix162zON5RCy1a9Ojxwgs//AghhFhi66ZDRjISP/yafU2hoVJ7Fc9smI2s1A/8dJKGlwZOFgGJIBzFSQtGhgwZwqBBg/jwww8B8Hg8xMTEcP/99/PEE080aH/fffeRmprKokWL6o498sgjrF27lpUrV7bqzQhnjiPTiZsjZEpPpv7v8gbTK+aZv1Ll8aBccXm94+99u5VvvnazZdyX8PhnRHs83Ob2cLMdNB4DpbkVfPihlZUrHWRnN7/0+cTLoMstm9hmXk8qqWSSSRFFWLFSQw0uXCc0HWLCVDcdEk103XTIKEYRR1yzrym0jixbKa9sXtDoY0/1myh29BWEozgp5eCdTicbN25k6tSpdcc0Gg3jxo1jzZo1jZ4zbNgw/ve//7Fu3ToGDx5Meno68+bN4/rrr2/yeRwOBw7HoSFRq9XaZFvhzNRUOnHqgr0o7sbfxIum7eQb53Su/+EydIZDJd8dikKo0Viv7eo1NTz192qq/vc8Q0OKuMuucL5LzbTRAZUeD0lJuYAHovNhYAZ0y0DqloGmeybaztlIUYV4zDbckhsXHoqAImB5M+7v8HUWPvjgjz/hhNOFLiSRxHCG05e+HXI6RBAE4UjH9ZewuLgYt9tNWFhYveNhYWHs2rWr0XOmTJlCcXExI0aMQFEUZFnmrrvu4sknn2zyeV577TVeeOGF4+macIaL6BXKzb9exVTLa8hNzYkAKTNSeWzGy/hHWxh8azLdb+4DNUWMiUpm8eJqPvhpP/MqVsDUd7j0izTuq4FeVSADh+9YU6WXwd0FJIXD1rqiAO7ar4MkpLq004PTIaGEEkssPenJWZzFcIZjRpQJPx3ZZRe/Z6awpSSbSpeDGJ8Aruo8gDjfoCbP2V1ewPT0TeRVV+Crb3pt24c7llLlchJtDuDqzgPErr6C0EIn/WPZ0qVLefXVV/n4448ZMmQIe/fu5cEHH+Sll17imWeeafScqVOn8vDDD9d9b7VaiYlpf/U8hPr+XpLDyoE98bVW4Vduw1Jhw7fKjqR4wANIoNFpUDwK5QesfPP5Dp4ueZV/rnkB80fP8em1RZzzzmYed0FnD+ir6opsNvhBrwFCPGaMOnWdRRRRdKMbAxjA2ZxNFFEI7cN3e9aSW13BzYnD8Dd4sbZwP+9sW8zzA85vtDpzsd3GhzuWMiqiK7d2H8bqgnT+OpDa6LVHhndhQHAnFuXu4v3tS3hhwOQGe1gJgnBsxxWMBAcHo9VqKSgoqHe8oKCA8PDwRs955plnuP7667ntttsA6NOnD1VVVdxxxx089dRTaDQN0+WMRiPGI4bdhfbvl7Vl/DMyud4xjaLg63YRpJOJDNASHBHA6kw7RVUelPCZPJ5mBUXB9tAr3PbFQwT9AYZbQWsEbKC1AVUg2Q59YYPuMuy5sRIlqBI4AGyufUYJkChHg/rrYUCSjIAZJAuSFIhGCkOjjUaj6YxW2xtJk4xOJ0ZFTkdOt8zm4mzu6TWKbn7qAvvJnfqSUprDsrw9XBzXcEH0srw9BJvMXJHQH1BrjDQVjCQFRRPp48e1XQazvTSX1QX7mBjT6+TdkCC0U8cVjBgMBgYMGMCiRYu4+OKLAXUB66JFi7jvvvsaPae6urpBwHFwi/czoMSJcApdNSSAr5fWL0PqkSQqdAYqMJBepkBZNQBS/AcQ9zEXJ8jsXjuRp3yf5tqLnyYnNZWAKZ8QuWcPBurNwACg1B6QFCjrEY/PeTWAHUVxoE7meGq/5Nove229kCJQ1JEWD7UPHZVU+3WsoCYGjSZBBDUniUdR8KCgk7T1jus1OvZZixo9J91aTHf/xj9cNUUjSXT3DyfdWtzivgpCR3bc0zQPP/wwN954IwMHDmTw4MG8++67VFVVcfPN6mLEG264gaioKF577TUAJk+ezNtvv02/fv3qpmmeeeYZJk+eXBeUCALAhAmxdN+Rza6iJrJrjLkQvBxd4mvImir8NH4MfOkCMh6exgjnp6zZ25WhI16hbNQoympqYNcuNHv2oNuzB6+0NHz378fHbsfo8WCPAWVsCn4BzXvzl2U7sBNZ3o7HswfFnYVHyUdRilE8FUAVpy6oMQE+h4IaTTgaTbQIahph0ulJ8A1mXvZ2IrwtWAwm1hVlkm4tJtSr8dfI6rLXm2pxNFWn/wgWg4n8GrHYXhBa4riDkauuuoqioiKeffZZ8vPzSU5OZsGCBXWLWrOysuqNhDz99NNIksTTTz9NTk4OISEhTJ48mVdeeaX17kJoFzJKndgch+XWSk7w3whByyBkEfikgwKyBFq0zFwwl38nPIZZVjjXmYFvj2TmrPuB8LOuV3eQS07G07s3Tp0OpyRR4fFAbi6kpaFf8Qe9w5tfhEynMwH90en6n9A9HgpqtuHx7G1hUFP7hncwqGl6ve9hDgY12tqvowU1XdBqe7aboOaWxKF8m7aWx9f9hgaJWHMAg0I6Ean/EGv5vzB5v4Fef3GjFXnXFu7nhz3rm7z2/soSkdorCK1AlIMX2lR5lczVPxeyeJ8dlweQXBDxKwQvgaCVoK0BjxY09d9xp3WZRka3cp555wFsPjJGB9zjex6f91vC2oyZEByilkFtgnb+TJKffvUk393J0zCoycSjFDQjqDnRX/djBTVBaDRhp2VQ43DL2N0u/AxefJa6krMsU4n1UmsdaXUj8fJ+H50umTe2LiTWHEgn30C+3t14yYKDJOCOHiPpHxzD17vXUCM7uafX2afgbgThzHBS6owIQmuQZZlbfi1h+rYq7IeNgFuMEpOGbeRn7ZPq4g6p9o3ziEDEorWgPOjD2qGzMRlkDE71TeE9xzwWlfVhWf6nnB3ybONP7nZDURHdX38f5bn/g0svhR9/RGqFvWFOpdYdqdlRO/10PEGNq/brZI3UHAxqYtBoOqPT9QIp6YSCGqNWh1Gro8rlZGdZHueFHJoOdMursVn7ozfcQne/q9lQnMeq/H11jwcYvQkwePNI37Fk28p4f8cSqmUXCvD9nrX08A9nV3k+oyMb3/tGEISjO7P+AgtntMfnl/DxP1ZszkOfzr10MCXJh08vDkKn0+FROpG2dDqb3b83eg2NoqXvhpGk/r2HBa/M4vZA0NSuGdQ74a/83XQbtpPV++5ACg6FI7O1FIXt29+hf3AwZGbCjBkwYwZKjx6weDFSE1lh7ZUa1AxApxtwQtepH9Skobiz8XjyUCg9hUGNDtAfFtT4IUmBFDoicCsR+JkSKJM78Wumg3BvCxad/bCKu+qTuZzfMMLyI7aai1hhnwDo6WQOJNtWxvVdB6PTaIm3BDOl8yC+3L0aBaiWnXy0YxlOj1y3M7ggCMdHTNMIJ9UHK8t5fkk5pdWH1oLoNTCpmxc/XBWC2dQwHs6uqCb2r3EQsBakhvXZ77/zKdYNXsG6UStYGqkwogA0h/0U/9BLYs+ByUzu0sjoiM2G5plb6fHj1xiDBsEFF8DixYe22A0IgO+/Rzr//BO+d+H4NSeoUZQawMmJTD8pylFn8VAUkBUd260DyajuR7ylM0NDzUhSKDr9aDQaf6anb+LvHLXYo5dWz4O9RxNvEUXPBOFwYppGaDPfbSrm8QWV5FceeoPQSnBWjIFfrg0n0nL0H7sYP2/Ot1zDXI6Yr1cgbH8Ukl1i3dkrUCSFQeX1AxGAKTsVpgyeywW5tyMFh6mjI2435ORATAyeN35gx7/ewNg/h95/q8+hPPUUvPkmlJXBBReg6PXwr38h/d//tcZLIjRT64/UbDuU/eTJrwtqJKkKRSngaEGMXiPTz/8f+vn/A0CNmlWOt8+vGIyXcElcUl0wEuXjLwIRQTgBYmREaBVrsuzc9Eshe0rkehvEBZirGZ+8j0/Gjm/27qaP7XmMN7PUHXWD9cGUyWW4FTd4YPLHV5HSdQPZCfuZGOBhbkXD8z0S1HjB674XcHH082ogUlzMnL/u5PbbF5BbVoZkMsHKlWj/eI7ef2xFZ44DQFm4EK6+GkpL1YtJEowaBQsWqOcI7UZ5qQlwHHFUB8jkO3rxV8F40ip780y//gSZZHWExpOP3nApGk0wmZWlvLpF3UCvT2Ak9/U65xTfgSCc/sTIiHDS7S12cNWPRWzJc+I5LKQ1ezkY2WsfMaGVdcdssoNADgUjC1buZ+e+EkAtGGUyagkO8OJnr/8ww/EVSDCz90wG+g1k8NrBFLgK0Hg06Iv1ZJ6nLiy8yRsU66F1rgdpFPCugauC5lNTdCeagBBS1j/L8/cf4EvtJNI6p5GycCHakSNx95zO1mHjyLr9UoZf+zyh48dDSQlKcTGMGQPbtsGyZeDlhRITA/PnI/USFTbPdIrion4gogE06A3XYjQ9SGa+kR2VWwD4M9fBDd3OOuJ8hT8P7Kz7vk+A2D5AEE6ECEaE41JeJXP5j4Us229HPmw5R5hZw/9NDGR0otzkdusH2d12AOKiLEwYHo/Ho1Btd3HN1utZ4piFQfFicf+/GR44DIBZgb8xJn0MXTb0YOGFs9WRdQnOqeaoSwV6Z7t5Mup1PEsHkznhabyYQrY7m/6F/dk5eSfb/vwTZ1AQfDGN2LfeonB9PKFf7QOdGSk4GFJSUGQZbrwRfv4ZsrOhd28UHx94912k2i0OhDOPohwKlCUpBKPpAQzGO9Bo1JLxw8PszM7chsvjZlVBOgATYnoS5mUht6qC+dnb2VicBYBJq2dIaNwpvwdBaE9EMCIck90uc/OsYmbtqMZxWIaDv0nDoyMtPDXmUNGnLFvpUa+1vGw54zeP50Ht6wzXTMbHSw/AkJRkUpVU9Bh4JncOlk5dIRDsTpnKynBetM2l3CuXd8x3ggTdTBBSocYih2cBuzVQ4K8jxyeA9YW+vHfNLVR/XoSUtZtXshbxds+rSVVSGbp7DGsmLCYvJ4ec/RlIjz2GY80ItvSMoOD5p5kw5XEANeX3hx/ghx9QPv0UHnkEqqrg9ttR7roLrrkG6fvvW/X1Fk4+SfLHaHoMrTYZveFyJMlQ73Gz3sSVCQP4Ye86AFYVpLOqIB2tpMGt1F9UPaXLQEw6/SnruyC0R2LNiNAoWZZ5dH4ZX2ywUXVYKq63Hm7qb+a9CwLRNVKbI8tW2ujIyFP9JhJrDuSabdfwU+FPaNDwNJ/zwthbCF8RToGzAL2kp3BEIbMX5ODjrefScd2Y8ddudFoNZyVFYjRo2bqrkOUXz0NnSeeG194nV+sg3xZMQWYstwVtIjNAyxvyz5wf1Y9AvYURw5ZgGFZNzYP5+EoGdoy5nu7FnanWWhmvncRf8fM4kF9BxsZ1eIUHqmtFHrgP3wsr6fZKFjRyj0pKCpx/Phw4cOhg376waJE6oiK0G8vz9vBL+iZcjeQZGzRaru0ymLPC4tugZ4JwZmju+3fDLXOFDu2tFeUEvpiB/pks3ltdSZVTwaCFy3p5UfNcLFUvJvDRxaGNBiLHUuYqY2bRTAAUFF7lLrwXe1PgLMCsMVM9qhp/gz+BfiasNic5BZXkF1dzwTmdCQ/2IcBi4pzBsRgKJHSF3XnE9yKGFMAfjqlc/cAa3DoIc7p5dNQ4dmeU0ifZj4hIE87V3oSU+lKJk9t3LGJ/5z14yxYWuudzZd6V+JpNrCsOQFNZDf7+8O33VGadzY6RfshZ0xrch9S3L1J2NtTUwMiR6iLXlBQICUEJCUFZvPhE/zMIp4lREV15ffBFXBqfTDe/UGJ8Akj0C+OKhP68PvgSEYgIQisR0zQCP22t5OE5JeTZDg0/azUwopORn68OI+wYqbjN9WPBj8iKWnJVQUFWXMi4CNIFUXz2od1Oa5eEUFRWg0t288lPW+oek3dbwQPeSQHkVucCEGIKx9fHQLUXGKshMsQHRYHSCjur/hlDl7h5lD8UhPR9JX8WZJBW5uDrioVc7z+a6dXT8ZOD6cEtRPUdgOKqJHvvXqRHHsG+dgRbB9xFyNTniX04rcH9SCYTLF+u9vmxx+C996C4GMaORTEY4MknkZ57rlVeO6HtmPUmJkT3ZEJ0z7buiiC0W2JkpINanl5Nlzey0ExN55qfisizedBIkBShZ9e/IpFfSWDpHVGtFogAfJ7zef0DtUWndBodmTWZdYdLK+xYfI04XW58vPRcN7ln3ZfXbwUAjHk4mRK7mo0Tpo0GwOEjoXGDbC+ou1ZYmImzxvjicWjot1At1T162Y+ESuG8lTkbgC8cn7A9cGlt+zCShwxBslrhrLPgx18p+lzDrot9kMtWNHlv0htvIDmd8Ntv6uiK0wnPP4+i0aBMmKAuhBUEQRAaJYKRDmR3oZ3k97PRPpnO2Z/ns69UfYPsHKhj2e3huF9NYMsDMSSGtn49jdTqHWyxbalXg+SgElcJYzaNochZRFaeleKyGrrGBhAW5E1VjQuNRiLAYiLAYsK6Sy0s0nNyPBUu9d+K3RtbtRNnQBASkJt6D5IEgX4mjAYtV90chkYLWz+X6eYTgKwoPJu5kh6WziyLWAbANz0e53PbJwDodDr6jxmDj0YDfn7w7XdU+V7Kjr4TKftl+FHvU7roIqSyMjXzpnt3tZTnX3+BXo+SkICyd28rvqqCIAjtg5imaeeKbTKXTytkZaYd92FJABFmDW+eH8iU5NZbEFxst7HwwK5GH/sh/zs0aPDQsLy7rMik29O5ft1dnJ/5FAnRfvTsHIQkQWSImT8W72XkgGgC/Ex4XAqaAD35xVVUy9WAhE6rYcHK/QyKvg14HU9xKt06BdZl6gxNjuS8y0uY83MZvs/HYnrUygqyyQ+0ca33KGaG/sqVBVfytPMxQooCudHveowGHd379aO4uJjMtDR48EHkYcNIv/1xAv72JeH9zWDq0uRrIUVHQ2qqOiJy9dUwaxbs3w9du6KYzfDJJ0jXXdcaL7vQAh7Fw+zMbawtzMDqsuNn8GJYWDznxfRGOkqd+N3lBUxP30RedQUBRm/Oi+3dYD+aJblpLDyQSoWzhmhzAFd3HkC8r1jYLAhHI0ZG2iG7Xeay/+VhfDqdkFeyWLZfDUQCvDS8MTEA5bUEcp+Ka9VAZFtpDi9snMu6oowGj7kVmWlF39YLRCQkJEX9o29xBzOi5jLGVd/A6MGxXDSmCxqNhCRJXDKuK1Fhvvy5KoMv31kLgLG3Hz5eeuxuOxIS/r5GusYGsCDlchQg2J7N2LNi656rX49QHn+iJ94+GlI2VfKQazAAN2ydgyzLXGq5hFed/0VC4p7yO3hj+ay6c4ODg0kaPBippgYGDYJfZ1G2Kpbtg/piX33sYELS6ZBmzEByu+Gdd8DLC2w2uP56FJ0O5Y47WvJyCydoQXYqy/L2ck2XgTw/4HwujUvmzwOpLMltuDbooGK7jQ93LCXRP4yn+09ibFQi36etZUdZbl2b9UWZzEjfxPmxvXmq3ySiffx5f/sSrE77qbgtQThjidTedkKWZR6cU8o3m2xUH9oZHR+DxO0DfXljkn+LMmCaI7OylP9s/Qu5tv6CFokYcyAePGTZyvjL+TYZbKxrr5N0jPAbwQXBFzApaBI9fHoc9dPoQV8mTacopZQLp4+j5+Wd0X+hR1Ekvg7bzPUXqlVRXd9IuHVguq7hj/Vjj2zhnbf3EBXtReTXpfxTlkc3cwC7J6kBwZtlb/JY6WMALItYxijvUfXO37VzJ1VVVerUy4cfwh+/EnqflpjnM0Hn3+zXS1m/Hi68EPLzDx0cMAD+/hvJv/nXEVruwx1LsehN9SqrfrpzBXqNllu7D2v0nJn7N7O9NJfnBhzaRPHz1JVUu1082Hs0AK9t+ZM4cyDXdBkEgEdRmLruN0ZHdmNijKjcK3Q8IrW3g3hlcSkBL6ipuB+vVQMRoxau7utNzXOx2F6I553JwSctEAGYnZVSF4j0D4rhP2ddwtR+E3iq3ySMwevrApFIevNI6JuUjiplyYAlPNLpEXqaezYrEAEo3V0OQM/LOwPqULv2iJlGpxcYmvgQ+sZbyeh0EjkHavgo4Hx0kkSarYxP920C4NGAR3ncTy12dnbe2Wy2b653fveePekUH6/udfPAA/B/b1H4kcTusZHIaY3sENwEadAgpLw8qKxUF8kCbNwIAQEoYWEoq1c3+1pCyyT4hrCrvICCaisA2bYy9lqL6B0Y0eQ56dZiuvuH1zvWMyCCdKuaCSZ73GRVltLjsDYaSaK7f3hdG0EQGieCkTPQtxushL+SgTQ1nacXllNu96DTwNjOJoqfisX+cgI/XhOOyXTylwSV2KvYXqoOUwcYvbm1+zDMenUB7PPpz/NB7rvo0HG1/g0uMEzFVRmLUfJq0XO5HR40+kOBiwcP+iMqZzrMGiQP2G3rGr3Gx5/2B2DcmOUsO+daAO7ZtBB7bbbL68Gvc4dZHSkZkDOADGdGvfODg4NJGjQIyeVSRzNm/oqtNIFtI96m6P0QOI6sGclsRlqzBklR4O671QJrhYUwfDiKlxeK2DH4pJkY05OBIZ14buMc7l75I69sns/YqESGhDZdN8TqsmMx1F/cbTGYsLtdON0yNpcDDwq+jbSpcIlpGkE4GhGMnCEWplUT/39ZSFPTuWlmMQW1qbj9Iw3seSQK1ysJ/H1bJEHmU7smOdNWUpcfMyQ0Dp1GC8BdqXfxwv4XiDBEUDSyiDEh6giA3e0iv8Z63M+zZ04GAAFd/esdd2scdVM0AE7/KCSgIu3uRq9zy60J+PhosVplsv92c154AgrQef6ndW3+G/ZfLve+HAWFhOwEiuX6n2p1Oh39hw7F7OsLvr7w1dd4zr+CrKdqSL/aFznv6+O+P+njj9UA56efwGIBux2eeEJNDb7wQpEa3Mo2FmWyrjCDWxOH8XS/SdzUbSgLD6SypnYfGkEQTi0RjJzGUnLt9Hk3G83UdM79Op+MchkJ6BqkY9VdkbhfTWDj/dF0CTa2WR9lz6FFqT46tR8ej4dZRbPo5t2N9KHp+Bv88dEf6qPb0zCj5lhWvahO9Qx6uE+94wZN/ZERr4QnANAU7WjyWvMXjATg5hvXM3fkFZg0WnLtVbywfWVdm+kR0xlrGouCQnhmODbZ1uA6iYmJxHfurE7b3HsvvP0OZYtM7Bh2H9bpnY/7HgGkq65CqqhQM2+6dFHXp8yeraYGd+uGkpHRousK9c3cv4UJMT0ZFBpHlI8/Z4XFMzaqO/OzdzZ5jkVvarAQ1eq0Y9LqMWh1mPVGNEhUNtLGT9/66fKC0J6IYOQ0k2+VGfHJAXRPppP0QS7bC1woQKRFw8wpIXheSyDt0ViGdTo9/rgFmXzq/n0wq0Cj0bBn2B5Sh6Ri0pnwKAo7yvLq2gUYvY/7eYq2lQGQfGuPese9dfWv5RdxD4oEpkoHTRk2IoSwMCNOp4cXX9jOlnE3AfB86irK7YfeSP6O+ptBhkG4cROYGYhTdja4VmBgIEkDB6JVFOjXD379FdnSmT23FpB9jwkqWlYaXoqLQ9qzB1wuOO88teT8nj0QH4/i54cyc2aLriuonB4ZDfXXKmkkqdE6OAclWILZVZ5f71hqeT4JFjVtV6fREusbSGr5oaJ7HkVh12FtBEFonAhGTgM2u8xF3+ZheCqdiNeyWJXlxK1AoLeG988PRHktgZypcVzax7etu9pAvG8wISYzALvKC9hUnA2ARWdBo1F/vP7O2UWxXR1Z6OEfjn8LghG33Y1Gd+jNo9iuTp1Y9A1XZ7sMaln4o1m7YQwAL7+YSqJfMDd2Uqd64hd8Wq/duph1dNd3x4UL/0x/5EamS3Q6HcmDBmHx8wOzGb74Eq64ksLv9ewcdQGOZSOO614PJ+l0SHPnInk88PLLYDSC1QqXX46i16M8+GCLr92R9Q2MYl72draV5lBst7G5OJu/D+wiOSi6rs2s/Vv4evehxcRnR3Sl2G5j5v7N5FdXsDQ3jY1FWYyLSqxrMy6qOyvz97KmIJ286gqm7V2P0yM3qEUiCEJ9HTq1t9RehU2u/wnarDMSeNin/ZNFlmXu/r2EH7ZUUXPY+5vZIHH3EAv/OS/opPehtSzJTeOnfRvqvh8QHEu/oGhkxcO6wgx2HvZp8v5e59A7MPK4rp+1PJdpZ88moKuFO9OuAeD3jN+5eOHFnBV6FmsuWlOvvW26hHc5aG4/+o92394L2Lmjkiuvjmbaj0OxzHqHStnJ3Qn9+HjAufXaxmbEku3OxiJZqEioaPKapaWl7N+7FzQa2LIFHnsUSZKJelAm7NGN4HPi6Z3K8uVw+eVQVKQekCQ1K+evv5DM5hO+fkdgl138npnClpJsKl0O/AxeDArpxAWxvevWPX2zew0ljioe6Tuu7rzDi575G705v9GiZ7v560AqVqddLXqWMIB4MTIidFDNff/usMFIqb2KZzbMrktJPUgnaXhp4OSTFpA8+1cJ7622YnUcetlNOriijw9fXRp0UlNwTxaPovBt2hr+Kcw4arvzY3tzYae+x33970f+Rs7KAsa+M5RBD6nnv7TxJZ7d9CyXdLqEX8/9tV774gUGgrNcVF46Hd/gy5u8rt0uY/ZSC5zZXZdQLNuJmP0RAPsn3Umc2b9e+5D9IRR7ignRhFAYX9jkdWVZZntKiro2xmaDhx6CfXvxHegm4f1L0PVpuBNwSyjl5TB2LGzadOhgRATMmYPUv3+rPIcgCMKJEHVGjsEmOxoEIgCy4mkwWnKivlxvJfRlNRX3pSUVWB0Keg1M6Gqi7OlYal5K4Lsrw87IQATUufYbuw3lkrhkfBtZqBdk9OGGrkNaFIgAFGxSN8Trd9+hXVP3WfcBEO/bMBVTDlTLtFftm3rU65pMOs6dGAbAyOFLCTeZ+Xc3tTprr7++bNC+KL4IX8mXIk8RcRlxTV5Xp9OR3L8/fv7+6rTN558jXX0NlRu0bBv/B+Ufm8HZdDDTXJK/P9LGjWpq8M03g1YLeXkwYACKtzfKBx+c8HMIgiCcCh02GGmJ7zZVcvWPBTRnMGluqo1Or2ciTU3ntl+LKapSU3EHRxvY/1g0zlcSWHBLJP4+Z2YAciSNJDExpievDb6IO3uM5JK4ZC6NT+aB3ufw8qDJDA9vWXYJgFwtI2mlesHagaoDAPQMaLitu7nbWyiAriTjmNeeN38UkgTr15VRUmLn/5JGE2Lwototc8XqWQ3al8aWYsJEpjuTXllHn3Lp0qULCZ3V+1buvBPpvffxOPXsexz2Xx+LnPHEMfvXXNJXXyHJMnz9tRoA1dTAAw+gaLUoV1whUoMFQTitiWCkmb7fVMlN04v4OaWKf7IaHznZlGOn59tqKu4F3xWSVeFGAnqE6Fl3j5qKu/beaOICDY2e3x7oNVr6B8cwMaYnE6J70isgEo3U8h+zvE3qughLTP1ps0K7OrIwIHhAg3PM/pNQNGCyNe8N+J771JGUwQMWAZB+vlr0bEZOGptK8+q11el0lHUqQ4eOna6dDM0eetRrBwQEkNSvH1qtFqVvX/h1FnTpSuk8PTtHf0DV9GCQW68glnTTTUiVlbBrF3TqBB4PzJihpgb37ImSn3/siwiCIJxiIhhphp9TbNw4vUj9tK2BaVsP1Zw4UC4z9GM1FXfAh7mkFqmpuDF+WmZfH4rntQR2PhzDoJjTIxX3TLPk3/8A0OeWxHrHy53lAPT2793oeS7jsTNqDnrv/X5odRKZmdWkpJRj1pl4s885AAxd8r8G7U06EyWdStCi5R/nP0zMnXjU6+t0OpL79cM/IEAdtfjsMzTXXIOrWMOuW+3kPGKBgvpZPIqiMDPdRpnD3bybOIKUmIiUkaGOkIwdqy5yTU2FiAiUwECUOXNadF1BEISToUMGI26Ph9X5TVdaLHMcehebtaOKKT8V1lUfkD3wv82VTPwqF8NT6cT8Xxb/ZKupuMHeGj65KAjltQSynujEBT1FZsOJylurjoCcNTW53vEquQqgyXU2Dm/QuRp9qFHvva9ef8zZSwF4pPsQOnlbcHo8jF7ScMGpRWfhQKcDSEj8WfMnV+ddfczn6Ny5M527qKMwnjvvRPP++6DTk/+VkZ0THsa5qEtdOflv02xcvrCQh1eXNP8mGiGZTEh//62mBj/5JBgMUFYGkyejGAwojz9+QtcXBEFoDR0um8blcfPxjmX10k2P5K018HDfsaQcMHLx9/m4PTRZCslilHhwmIUXzz1zUnGP15FpkDE+AVzVeQBxvk3f8+EpkAFGb85rNAUyjYUHUqlw1qgpkJ0HEO9bPwXydem/SFqJx+U76h33+dqHarkapYn03aK/TIRkOCg773UCopv3hmvx+ZXqajfTZw7lkkujkWUZwyx1/clfI69kfHjDxbJ77XvpmtMVgLt97+bj0I+P+TyyLLN9+3bcsgxVVUj/+hfKnj1IeoXYRxxU3TCLHn/2osatIAHbr4ymZ0DrTe0pCxfCNddASW2gI0kwahQsWIBkEiN4giC0HpFN04Tp6ZvqBSJdLMGMjujGgOAYTFr1U3a128kjSzZwyff5yE0EIl0DtbheiqXi+fh2HYgAfLdnLanl+dycOIxn+59Hz4Bw3tm2uN4I0uGK7TY+3LGURP8wnu4/ibFRiXyftrauQivA+qJMZqRv4vzY3jzVbxLRPv68v31JvXLbxbvVqqvmiIZF0lzuow97uEPU1FZn5nvNvs/fZg8H4LopawF11OXbgep28ZNWTm/0nC6mLmyMUkvVf1L5CU+VPHXM59HpdCQnJxMQGAg+Pij//S+6KVPwuCQyXzfivOkKngp8HQCtBE+sLW32PTSHNH48UnGxWqekTx+15PyyZeDlhRIbi7JtW6s+nyAIwrF0qGDE6rSzMl9NCdVrtDzSdxyPJZ3L1V0GckePkbw66GLifYNYtSOG6asTcHmaHjTKtXmQlfb/8jndMpuLs7ksPplufqGEevkyuVNfQr3MLMvb0+g5y/L2EGwyc0VCfyK8/RgdmUj/4Bj+ztld1+bvnF2MCO/M8PDORPr4cW2XwRg0OlYX7Ktrs/gRtZhZz2saZuK4FTfSEeW8D+ff9WMUQF9W0GSbI40ZE0ZIiAGHw8Nrr6p7lFwf35s+lmDcikLyX181el5/U38WhauLX18tf5V3y99t1vMlJCTQpWtXkCTkO+5A++GHoDNgXafjvHt+YLsyimBtAbMzq1mdfyhIK7VXkWUrrfdVaq9q9n0eJAUHI6WkqCXnp0xRU4Ozs6FvXxSzGeWzz477moIgCC3R/t9ND7O2cD/u2toioyO70c0vtO6x7XkOrvhfMU/90pUdmVFwlDc6gCqnwvy0mpPZ3dOCR1HwoKCTtPWO6zU69lmLGj0n3VpMd//wesd6BkSQblVLuMseN1mVpfQ4rI1GkujuH17XBuDACnUEa+SLgxo8h4Jy1CwdkzkZjwZMtuPblG/12rEAPPfMoY32No29Ea0ksbWiiGmZjW/AN8ZnDDNCZwDwr5J/8Z31u2Y9n5+fH0nJyeh0Oty9esHvv2Ho0gV3lYT9sXJWLxrDfYFf89g/JSiKUles75XNC+p9PbNhdosCEqgtOf/DD2pq8CefgLc3VFXBnXei6HQo113XousKgiA0V4cKRgprKuv+3T8oBoB9JU6CX8qgz/s5zE+zY9BCZEAVZ3Xfz/CeB7j3LAvnJXrRNUiHsf77MfN3NzNd4wxm0ulJ8A1mXvZ2yh3VeBQP/xTuJ91aTIWz8WDM6rJjMdRfe2AxmLC7XTjdMjaXAw8Kvo20qXAdGgFwWl2gAZ2p4SJVBQXtEQHSkVwmMBxnvBgfb6ZbohmPB2664dB0zdzhaiXX69bNaXR/GoDLfC/jv0H/BeDGohv5o/KPZj2nTqcjvkcfPsz1we3ljePzzzFedx0eSUPpbB23P/42b9WMZ+6evfyRmdJksb6c6vLju9lGSHfdhVRVBVu3QnS0uiPxDz+gSBJKUhJKcfGxLyIIgnCcOlQwcjh37brd+AAdPnqJKUk+pD0cTfWL8dxwzj76JhQwoHMBH14UzNybIkh7NJaal+LJfzKWf+6O5MerQ3lslH/b3sQpckviUBQFHl/3G/eu/JklObsZFNLpqNMkJ6o80wqAT6hXk20MmqMv6nT4SGhdIB9nHY91G8YD8L/vs+oCjwkRCYwKjkYBuv35RZPn3uF/B68FvAbARYUXsbJ6ZbOec+raEr7NM3LpdgslLg3O225D99FHSDodziIN+ruySPq0D5HFLzZ5jW92/0N+ddP75hwPqW9fpOxsNTV45Eh1kWtKCoSEoAQHoyxu2W7EgiAIjelQwUiUj3/dv9cXZQDqdveZT3Tih6vD6BpiIL2ymNLahZmR3v71zpckiTBfHUNiTVydZKZrsP4U9bxthXj58mjSON4fdiWvD7mYqf0m4lY8BJsaT1226E31FqKCul7HpNVj0Oow641okKhspI1fbTn5xY+q9UW6Xdb0bqdeuqYDFQC7xRsJqMh8+Fi3WI/ZrGPM2BAAxpy9rO74stHXopc07K+u4N3d65s8/4nAJ3jM7zEARuaNJMWecszn7Oqnp4e/niJZx8QUC0vK9Lh79ED54w9MXbviRkvh53qi71vG69V30NdsZnxUd/oHx2DQqCNHNtnBRzuW4fK0rDZJYySTCWn5cjU1+NFHQa9Xs3DGjkUxGlFeeKHVnksQhI6rQwUjg0Pj0NfuyLk8by+birPqPV5qr+L7tLV134+M6HJK+3e6M2p1+Bm8qHI52VmWR9Jh260fLsESzK4jUqdTy/NJqN25VKfREusbSGr5ocWlHkVh12FtMhflAHD26wMbXL/aqQaLZt0x6riEnwOAnP3zsW/uCPMWjECSYPXqUsrLDwVN/4xR10/8K2UxtqOMuPwn+D/car4VgOScZDKcGUd9vof6+rPzqhhqbotn/5RO9Enswna3Hx4vL+yffYbXddfhQaJ6r5b918BVCy7lctMS7uwxklcHXUhUbeBcaLexuTj7uO+3OaQ33kByOuH338HfH5xOeP55FI0GZcIEUXJeEIQW61DBiLfOwNhItZKnB4X/pq7klc0L+CV9I//duYKnN8wmr0adHgjz8mVgcGxbdve0saMsl+2luRTbbewsy+PtbX8T7m1heG3dkFn7t/D17tV17c+O6Eqx3cbM/ZvJr65gaW4aG4uyGBd1qIrquKjurMzfy5qCdPKqK5i2dz1Oj1xXi8RR7gQJTOaGdS/WF6mjEgHGgKP2OyjxfyiAsaLsuO9Zp9Nx+51qXw6WiQfoHxjBJVFqXZGEeUfPNvki7Asu8b4EBYXO2Z0plo+93kIjScT56pkQ481NQ7rSPTERJAnnLbeg+/RTTIqC260h81UTe254Gnl9LL4aHVd1PlQWf9VhGUkng3ThhUhlZWrmTffuamrwX3+pJefj41H2NJ5lJQiC0JQOFYwAXBTXl8Ehneq+z7KVsihnN5tKsusybYKMPtzf6xwM2vaxid2JqpFd/LhvA89tmMPXu9fQxRLCg71Ho9WoPz4Vzpq6qS2AYJOZ+3qdQ2pZPi9tms/CnF1c320IvQIi69oMCunE5Qn9+CMzhZc3zSe7qowHeo3GYvDCVlwDCngFN16Aa3PpZgDCvcIbffwgnc4fjw6MVS2r6/fxJwPQaiXS06tJ3XloLcavwy7FS6ujyFHD1JSlR73GrxG/MsY0Bg8ewjPDscm2o7Y/kq+vLxv11dg8LjyJ3XAsWIBP5y5oPB6sa7Vsn1yC9RsT3eTl+OjUNTSHL9Q+maToaKTUVDU1+LLLQKOBjAzo1g3F1xflu+ZlFAmCIHS4CqygTgn8U7ifxTm7ya469KnZR2dkeHgC50b1aJDpIZw6s29YzI7v99D7xq5c8M2YBo/fveJuPt31KXf3uJuPRxy94mnNNAmDHbS3tOzH/IMP0vjXA1sJCNRTVHJx3fEMWznx89XMmfzJ9xLWxPqZgwZmD2SjcyN69FR3qm6yjH1jPktdycbiLEboQ+mp8wfA8N13aD79FLtRDUCCL3TBfVG8Kr9MkNGHVwdfdHw32kqUd99Vy87X1KYxabVwyy1IomaJIHRIogLrUWgkiWFhCTzVbyIvDryAR/uO48nkifzfkIu5LL6fCETaWPp8dc3DOW82viNulk1d69PNr9sxr+XwkdDIIMvlLerL/fd3w+SloazUxdw5hyrIxpn9uSshWe3H/M+PeZ0NMRvopu+GCxeWTEuT6cGNia5deL3SVUien6RO29x4I87vvsPHoyBJUPyHgYrrCni78Hr6G7OOfsGTSHroIaTqali3DsLD1dTgzz9XU4MHDkQpL2+zvgmCcPrqkMHIQZIkEeZloatfKJ18A+sWtwptq6bEDhKYgxvPlsmvURfH9g/qf8xrOfwCkIDStBtb3J8Zv6pB0VVXrKl3/JMBE/DXG7HKTm5dN++Y19kdu5sobRQ11BCSHdLs5x8WloCmNo16fsEeNDHB6PV6PF26UPXXX3h3647e5cRVKLHrFi9GfPcI7Dr/OO6w9UmDBiHl5UFlJZx1lnpw40YICEAJC0NZ2byUZ0EQOoYOHYwIpx97pR0UMAUYm2xT5lCn1gaHDj7m9bQxV6j/yGt5XYyJEyMJDDJgt3t4+61d9R7bM/E2AL7K3MZe27H3kDkQd4BATSDlnnLC9x99zctB/kbvuswuWfHw6e5VzHXnUmYAxWik6tNPke6+B59qda1NzmdGdk5ZgmuRF9j3Hufdti7JbEZaswZJUeDuu0Gng8JCGDkSxcsL5fXX27R/giCcHkQwIpxWlv57HQCdxkU12aZSVhdomnTHnk7z7/SumlFjbVmp9INWrVHXrkx9fHu948EmM8/0UEdO+vzZ+N41RyqJL8EsmSnwFJCQ2XQdlcNdmdCf5MNSqTNspUyvSOPXmgw8gPO666j58Ud8FAmt4qFmj4ZtV2gp/aA7pN/R9IVPIenjj5FcLvj5Z7BYwG6HqVPV1ODJk0VqsCB0YO1qAevszBTmZNV/swjzsvDiwAuaPGdjURa/Z6ZQYrcR6uXLpfHJ9Ak89EaoKAqzM7exIn8vNW4XnS3BTOkyiDCvE19IKzT0fvh3VBfUcHf2tfhFN74o1PdrX2yyDeX25v3oyl9LyHowXXdiP+qJXeaxb18Vt9wax2df1N8vJ+KPD8l3VHFBRGdmj7i87nhejQ234iHau/7PiyzLmDPNOHDQR9+HlNhjF0bzKB5WF+xnSe5uDlSV1x0PMHhziSEGnVsBpxOff/0Lz8aN1HibQAHLUDfxL+rR9U8HQ/AJvQatScnIgPHjYe9hozddu8JffyHFxbVVtwRBaEXNff9ud8HIpuJsHupzKANDK0mY9Y1/gt5nLeLNrX9zcXwSfQOjWFeYwZ8HUnmq38S6aq0LsneyIHsHNyUOJdjkwx8ZKeRUl/P8gAvEGpOT4HXtf0GBJzx3NtnG+KURp8fZ7GCk+icJow20t53Yj3plpYsAy28ggd15Sb2MGLss4zXrLQBWj76Os4Ii+WL/Vh7csoh+/mGsGtNwszm7bMc30xcZmWHGYayKXtWsfiiKQrHdRqXLgUmrI8zbglbSkJWVRVFRESgK+p9/xvTmm9h8zSgKaM0eOr9qx3f8cxD97Am9Dq1NkWW46CKYP1+tWQLqyMmXXyJdfvnRTxYE4bTWYbNpNJKEn8Gr7qupQARgUc5uegVGMCG6JxHeflwUl0SsOYCluWmA+kd/Uc4uzovtTXJQNNE+AdycOJRyRw1bTlKVy45MtsvgAYPl6GX23Yr7uPbFsZs1aDxgr9p2Qv3z9dUzclQwKDBh3Ip6j5l0Oj5MHgfAqKU/cN6K6dyx8U9q3DI7rY0XOzPpTBR1KkKDhtWO1ZyXe16z+iFJEiFeviRYgon08Udbu3txbGwsibVF0lxXX03V9OmYkTC53bhtEmkPeJE59RXYHA3HuV/PySTpdEhz56ol5195BUwmsFrhiitQ9HqUBx9s6y4KgnCStbtgpLCmkn+vncVT63/ny12rjrqtenplE1vdV6pvHsX2Kqwue72t7r10BuJ9g+vaCK1n2VPqepHYsyOO2s6jeI4rGHH5h6l71Oy560S6B8DCRSMBWLasGJut/hqHe7sOINzojawoLCjYX3e83OXA6nJQaq8iy1Za91Vqr8Jf509WpywkJObXzOfa/GtPqH9ms5mkpCQMBgOeuDgq//wTTXIyvrYq0EgU/2Zg2xVl2Od6Q+E3J/RcJ4P05JNINTWwbBmEhIAsw/vvq6nBw4ah2I6vaJwgCGeGdhWMxPsGc1O3oTzQ+xymdBlEsb2KN1IWYpddjba3Ou1Yjhg5sehNVNRu4GZ1qYWbLI1tde88fT5ZthepP6llzEe/1Xh9kYMUFLRS86fI9HH3AqAp3NTyztXS6XTcdLNawXdg/7/qjpc6a7hqze/kH1aJ9nCbSvN4ZsNsXtm8oO7rmQ2zKbVXEaWLIjUqFYBpVdO4v/D+E+5jnz59CA0LA4OB6vffx/7vf+NntaHX6XAWSOy4wZv8N+6AlN7qG/5pRho1CqmwEMrKoH9tCveaNeDrixIZibJxY9t2UBCEVtWugpHegZEMCIkl2ieAXgGR3N/7HKplFxuK264IlNB8tnz1jTyoi/8x2+q1zd8xOTD6KTWjprJ1AsgvvhqMViuxd08V+/ba2F5RRPcFXzAzZ3eT56Rai5Frtxs4SFY82GQH87N3MDN1PzcVfoTWY+BD64f8O+/pY/ZjY1EWz26Yw70rf+KFjXPZVppT7/Ho6GgO+EGlIuO68koqZv2Kl9uNj90BikTOpwZSb0nHtcwIZQtb9mKcZJK/P9LGjWpq8M03qxVd8/Jg4EAUb2+UDz5o6y4KgtAK2lUwciRvnYEwL1+Kmtirw2IwYXUdsY29y45f7UiIRa8W3bI2ttW9qNLaqmRZXS+iNzcvyDBpj+/1lw1gbHzQokVefq03AMOGLqLIUY3V5WiyrVaSyKy2Nvl4WkUh50R245W+U/if/3Q0aHmj6lXeKX2vyXP2WYv4Ytcqhocn8HT/SSQHRfPJzhXkHJZl8+eBVJYUpuMbG45Hp0GJjqHir79QBg/Gt9KG1miiereGbVd6UfrFJEhtWHr/dCJ99RWSLMPXX4PZrJacf+ABFK0W5YorRGqwIJzB2nUwYne7KLLb8DM0XskzwbeRre7L8knwVdMfg00+WPSmem1qZBf7K4vr2gitY9WL6uZ3UcNCj9ruYBl1s+7oe8EcyeEN+qbjheP22GPdMZk0lBQ7kbca2XfendzQqTcSavBxOEVRjhqMPNh7NMPCEoj08efqkAv5KvA7NGh4uPQhvrd+3+g5x7P4ekBYHIOS+hEYEoxHp6XqvfewP/kkviUleOv0KC7Y/6KJvQ+uwb3aCLZjpxm3Jemmm5AqK2HXLujUCTwemDFD3TW4Z0+U/PxjX0QQhNNKuwpGZqRvIq28gGK7jX3WIj7duQINEoNqd+n9evdqZu3fUtd+bFQiO8ryWHgglfzqCmZnppBpK+WcSHXPE0mSGBvVnXnZ29lacoCcqnK+TluDv9GL5OCYtrjFdmvHd+qb6Dn/Oeuo7VLK1DdKP4PfcV3fYdYhecBWvqBlHWzEtJ+GAHDpRauJ8vLlq0HnsWX8zZwdov5sHAxJPMA/xQca71cjn+YneU3mguKnALih6Abm2ubWe3yGbQY/ub6qt/i61F5FlI8/u8oLyLKVsq+iqMHi64ROcazWlOHAg+vSS6n44w90Hg8WWzWS3kDFGh3bLtNhm9kP9jZMRT7dSImJSBkZavG0sWNBkiA1FSIiUAIDUebMaesuCoLQTO0qGClzVPPF7tU8t2EOn6WuxEdn4Inkc+s2vit1VFPhrKlr39kSwm2Jw1mRv5eXNs1nU3E2d/ccWVdjBGBCdA9GRyTyvz3reHXzAhxuFw/0Gi1qjLSyygNq1lN40tFHnDYVq4tQQ01HH0E5kiuwExJgS3ukRf1rzIUXReMfoKemxs2HH+wBoK9/KIvOvoYFI68g0Tewrm1GE1ldX6etodh+KEPEoyj8kr6R4V4jeDnwZQAuKLiANTXqvjgfV3zMFQVXsNT7WzQ6J6AGIs9smM3K/H0U2it5ZfMC3t62CGi4+Nrby5sdPk4MBgNKZCTWv/5CHjECv7IyTAEBuG0Su+/zIuvF6bDBF+yn/yiDZDQi/f23mhr85JNgMKgLXydPRjEYUB57rK27KAjCMbSromfCmUmWZd7Uf4neR8cjtluP2vbhNQ/zzvZ3uLHLjXwz+ptmP4e16Ccss66hOFZP8ETnCfb4kJ07yunbeyFarYRDrl+ga11hBo9t/ovlVnUvnbF+gUwIi6NGdpFTXV7XLszLlyf7TcSk1fPDnnXsKMvjsaTxBBi9eaToEd62vg3AQ5aHeNf6bt15r5g+4Mmo+8iylfLK5sZHfP4z5JJ605Sfpaob1N3RYwQ5OTnk5+erRdLmzMHnhRdwm81UajXg9mAI99D1zWpMyf+GTv/XGi/XKaMsXAjXXAMlJeoBSYKRI+HPP5FMYr2XIJwqHbbomXDm2fCuWowsbMCx1+FkVGYA0NWv63E9hyXkajwSmCobT/NuqZ69/ImL98btVrjvnkPpph5FYXZmCt29zVwSqO7Qu9Raxv29RvPsgPN4tv95hHn5AlBQU8magnR+3LuebaW5PNx3LAFGbwDeCnmLG3xuAKgXiEiKhkXOP4/Zv6Mtvo6KiqJXr15qkbTJk6mYNw90OnwrrBhCQnDmS+y4wYf8D9+BTWEgn9j+PqeSNH48UnExFBVBnz5qZdfly8HLCyU2FiXl9F4XIwgdTYuCkY8++oi4uDhMJhNDhgxh3bp1R21fXl7OvffeS0REBEajkW7dujFv3rG3XBc6hi3/VXfCHfXqoGO0hLzqPAD6BvU97ueRjWBoxYyagzZsGgvAfz9Nx+12A7C7vIDC2umX4SGxPN19KG5F4aLVMwGI8vHntu7D667xR+Y2tpQc4F99xxBsOrQ416N48NM2XB+jSB5WuRcjK01nkPjojMdcfG0ymRgwYABGoxElNJTKP/9EPuccvPfvxzc45FAK8B2VuJabIf+jlrxEbUYKDkZKSQGXC6ZMUVODs7MhKQnFbEb57LO27qIgCLQgGPn55595+OGHee6559i0aRNJSUlMmDCBwsLCRts7nU7Gjx9PRkYGM2bMYPfu3Xz++edERTW9K6vQsVRkqKnXscMjj9m2xKEOuw8NO3phtMY4vEHfejM0dfz9TZw1NBBFgfMmqtMg+ytL6h4fFpbAS31GMSQwgr8KMvglWw2+Ys2BxPgEAFAtO7mh6xBMWj0VzhoqnDXUyA5uLbyVD6yN19JwSNW8lz2t3pqTww0O7dTsxde9e/cmIiICtFpq3ngD28svI2VkYHE40foHqCnAV/hQ+sODsLXbaVko7WgknQ7phx/U1OBPPgFvb6iqgjvvRNHpUK67jjNgxloQ2q3jXjMyZMgQBg0axIcffgiAx+MhJiaG+++/nyeeeKJB+08//ZQ33niDXbt2odc3v1DV4cSakfbtdem/aL20PFZ92zHbhv8vnIKagmZvkne4oj9NhGQ6KJ/8Mf4Rd7ekq02SZRmTfhYAtppLWFiQypwsdfrpnp6jSAqKxuq0Ez7nIy6I6MIvQy8C4O2UReyuKGj0msa4nXzgfKXJ59SgYbB9Mv3KrsLdyK/xk8kT2FqSw4r8vVTLTrr4hTCl8yDCvJv+HbLb7ezYsQMAqbQU89VXoy0tRR48GNvOnYCC33A38c860HafBYEXNev1OR0pKSlw/vlw4LBMp759YdEipGCRui8IreGkrBlxOp1s3LiRcePGHbqARsO4ceNYs2ZNo+f88ccfDB06lHvvvZewsDB69+7Nq6++Wjec3RiHw4HVaq33JbRPmz5V3/hC+wYeo6WqRq45dqMmeIJ7AGBPf73F12iKTqdjyrWxAAzs/zeBtWs+AHaUqVNLFoOJ/AvurQtEqlzOuj2OvHV6PhlxDf8dOaXu67GIO7nd93Z8JXVtiZb6GVwePGSYNtTL/jpcuaOaC+P68sZZl/LRiKv5V5+xRw1E4NC0jclkQgkMpHLBAhxjx6Jbtw5/sxnJaKJilY5tl3thm3sp7Bh2/C/WaULq2xcpO1stnjZqlLrINSUFQkJQgoNRFi1q6y4KQodxXMFIcXExbrebsLCwesfDwsLUVfmNSE9PZ8aMGbjdbubNm8czzzzDW2+9xcsvv9zk87z22mv4+fnVfcXEiJoe7dXG97cDMOL5Ac1q73S3fJ7Ft+vHKIChPOeYbVviu/8NQaOBXamVBNkCMNSmf6/K38f+2p17D6baehSFmfs34/KoQfmQ0Hg0RxRLi9HF8FnoZxTGFTI9bDqTvCehRVtvk8B8ckix72i0P1/uXsPeiqIW3UuvXr3UaRuNhprXX8f2n//gyc/Hr6wM76Qk3JUSu+/xIus/G2GdHmzrW/Q8pwPJZEJatkxNDX70UdDr1SycceNQjEaU559v6y4KQrt30rNpPB4PoaGhfPbZZwwYMICrrrqKp556ik8//bTJc6ZOnUpFRUXdV3Z29snuptBGyvZWANB5YqdmtXcpLc+G8bYMRdGA0db0qNyJev6FXgCMHraSEeFdAHUPmjdT/ua7tLVsKMpkaW4ar21ZwKoCdWNAraThnIhuTV7TpDFxuflyZkfMJj8unw+CPyBR06vu8d+CniPI6MOg4Fj6BETWBUEOj8xHO5dS1sTmfccSGRlJr169kDQa5DFjqFy8GHdAAIZVqwjs1x80Wop+NbDtWgOOxYNh9yUtep7TifTGG0hOJ/z+O/j7g9MJL7yAotGgnHuuKDkvCCfJcQUjwcHBaLVaCgrqz3EXFBQQHh7e6DkRERF069YNrfbQEHOPHj3Iz8/H6Wz8U67RaMRisdT7Etonj0tBa2z+j6FH8aA5gRjaaQJDy2d6junJp3tiNGooKnIQlBVJNz+1OJuseFhVsI/Pd63ix30byLKptUckJG7sNoTwY0yfHBSsDeZuyz1cXvwqlxa8jsajx6mtZk3Uu9zWYwT39T6H1wdfUld5tVp2saS2RHxLmEwm+vfvr07bWCxUzp+PY8IEPCtWYPF4MHTujDNfYvv1PhR8PQfW+4A9o8XPd7qQLrwQqaxMzbzp3l1NDV64UC05Hx+Pktby11QQhIaO66+6wWBgwIABLDpsLtXj8bBo0SKGDm08u2H48OHs3bsXj+fQjqVpaWlERERgMBha2G3hTHX4eumdP6l/0IN6BjT/fBQ0UsuDEYe3hM4JHnfr1hs53P+m1ZaJn7yGB3qPZnxUd0yN7DIc4xPA/b3PZkho/HFdP62igCK7jWB3DK/XzCFUE8pS+1IeLH4QAB+9gZsTh6KtfZ1W5e/Dc8SOwcer3rTNyy9je/99FJsN761bCb7wIvBIHPjISOo9Cq7V8bD//hN6vtOFFB2NlJqqpgZfdhloNJCRAYmJKL6+KN9919ZdFIR24bj/qj/88MN8/vnnfPvtt6SmpnL33XdTVVXFzTffDMANN9zA1KlT69rffffdlJaW8uCDD5KWlsbcuXN59dVXuffee1vvLoQzwqqXN/FuwDfMmDyfdW+nsOIZtUjYWU/2O67r6DUty8oCcPh6IQFl2c+0+BrHcsml0fj56aiucvPNF5lcntCf/xtyMbcmDuPSuGSuTOjPE0nn8lS/ifQKOHY685EO35l3aGgCOZ1ySNAl8H7F+zxTot6Xn8GLRH91bZdNdjQoftYS9aZthg2jctky3CEhyNOmEdS5M9rAIKp3qSnAZbM+gY1BIJcf87pnAkmnQ5oxA8nthnfeAS8vsNngxhvV1OA77mjrLgrCGe24g5GrrrqKN998k2effZbk5GS2bNnCggUL6ha1ZmVlkZeXV9c+JiaGP//8k/Xr19O3b18eeOABHnzwwUbTgIX2TZLAUeFk37wsljy2hrK9apbUti928c//bSHnnwLcrmOv5zBqjS3ugxKujuDJ2V+1+BrNsWjpaADuv1fdS8ek1TM4NI4JMT0ZG9WdeEsw0hELVpvr8CReraRBp9GxI2YHUdoo8tx5hz0mNXrOiTg4bePl5QU+PlTOm4dj8mTcW7fim5+P/xVXojgl0p8zsffpatxrAyD3jVZ69tOD9NBDSNXVsG4dRESA2w2ff44iSSgDBqCUl7d1FwXhjCP2phFOmcwlOfw4ppGdVCV1h2TFo5B4eTyXTD+3yWtIn0tEekeSc23LMmKc9lz030VRHi4RcOGJTV0cS3ynOWRn1fDAg114+93jG/05mu2luXywYykAfQOjuLfX2YA6ZarRqJ8vqlxOHl83C5fHjUmr5+2zLkOrad316nl5eeTm5oKioN28Ge877kALeN16K/m//45it6P19dDl/+yYe0dDn32g07VqH04His0G48fDP/8cOhgaCjNnIo0Y0XYdE4TTgNibRjjtRAwKRdI0MhqggOJRY+IeV3Zu8vwMawYAfvqG5dGby2CKxKMFY9XJj8HXb1Tr8Xzw/t5WvW6PgHACDGodk5TSHP4p2A9QF4i4PG5+2LuuLm14WFh8qwcioC5OPzht4+7fn8qVK3GHhlLz5ZcEmkz4nH027koNu+/xIvv9PNhkgOJprd6PtiaZzUhr1iApCtx9txpwFRbCyJEoXl4or7d+XRtBaG/EyIhwSn3ZdzpF20obfWzUy4MY9lT/Js/9ae9PXLPkGkaGjWT5hctb3IeaHyT0DtDdcmI/+rMzU5iTtb3esTAvCy8OvKDu+7MGLWTDhnImnRfO7Lkj2ViUxe+ZKZTYbYR6+XJpfDJ9Ag9tjaAoCrMzt7Eify81bhedLcFM6TKIMK/6P/eLc3bzc/qhjfk6W4LpHRBFjdvJusIMyp1qypBeo+XZ/ucRWrsp38mSmppKdXU1KAqm//wH0/TpoNHg89pr5LzyCng8GCI8dHuzGmN8P+iz6aT2p60pP/8Md9wBBws2SpJa7XXWLKR2ODokCE0RIyPCaafUXkXAsEAkXf3REUkDva7rytBjLGTdVqaWV4/wjjihfjjMEloZZLkVFnV6+/GfIZfUff07aVy9x1euUdeOzJ+Xz86ifL7YtYrh4Qk83X8SyUHRfLJzRb0FqX8eSGVx7m6u7TqYJ5LPxajR8f72JXWjHAeNjuzGqNo6JgD7rMX8nrmVvw6k1gUiOknDHd1HnPRABNR0/aioKJAk7I8/TuX//ofb46Hq8ccJO+ccjF274syrTQGetg3W6aCi5QHl6U666iqkigrYvx+6dFFTg+fMUVODu3ZFycho6y4KwmlFBCPCKVFqr+KZDbNZGXYART40IiFpJSLPCmPSF2cfc0Hn/kp1OqKzpempnOZwWCxIQOm+W07oOgAaScLP4FX3Zdab6j2u0+m4/MpoAK6esppegRFMiO5JhLcfF8UlEWsOYGltHRBFUViUs4vzYnuTHBRNtE8ANycOpdxRw5bi+oX/JEliSpdB3NB1CJHe9aetJCSSAqP4d9K59A06dRtShoeHq9M2koS7e3cq16zBHRmJ448/8N63j4jnX1BTgD80knqfAdems2HXxFPWv7YgxcUh7dmjpgafd546QrJ3L8THo/j5ocyY0dZdFITTgghGhFPCJjuQFQ+O3oeK3ymAd6QXl/0+AZ1R2/TJtXKq1EWrvf17n1BfNFGTay8494SuA1BYU8m/187iqfW/8+WuVZTaqxq0+ennoWg0kLpYJsxVv6ZKz4CIuv1piu1VWF32uoJlAF46A/G+wXVtDidJEsPDO/Ns//N4Mnkid/YYwT09R/Hq4Au5p9fZdPJt3n4/relgto23tzfo9VT+/jv2G29EsVqpefRR4l58EW1AINWpGrZd7kP5goWw3gtqdp/yvp5Kkk6HNHeuWnL+lVfAZFKncK64AkWvR3nggbbuoiC0KRGMCCfd3opCpu1R9y6RwyQ8tXGHoodO3/XEO9irWdcprlHfkAeFDjqh/gQkfK7uUWOtPKHrxPsGc1O3oTzQ+xymdBlEsb2KN1IWYpcbFlSb+lQPFA88cmV6veMWvYmK2hogVpc6vXJw/5q6NoZDbRojSRKdfAPpHxxLUlA0gUafE7qv1tCjRw+io6PVaZv776fy119xA+UPP0xQWBjBt92O4pTY94wX+55TcG/pDvtubutunxLSk08i1dTA8uUQEgKyDB98oKYGDx2qZucIQgcjghHhpFpbuJ+3Uhax31aiHpAkJEUdFSl4zcBc7W7mZG5r1rXKXeUAJPgmnFCfdDoTbh2YTjCjpndgJANCYon2CaBXQCT39z6HatnFhuKsBm1feLE3fjGQu8fF6pUt27zuTBMWFnZo2iY2lsq1a5Hj4nBu2ID88cd0mT4dyWiifIWebZd5Y1v9HWzwA2fDUaD2SBo5EqmwEMrKoH/twu1//gFfX5TISJQNG9q2g4JwColgRDhpMitL+SbtHzy1Jbf8DV4MDYtHUgA92AerxctmZ21jY1HDN/AjVcvqhm+H73PUUk4v0J/4+tV6vHUGwrx8KappfMRl0vPqr9ukSSvqjllddvxqR0IsenWE6MhqqVbnoTZnmoPTNj4+PqDVYps+Hcd994HTSfGkScTcfDPmc845lAL8cQ1sCYEDz7Z1108Zyd8faeNGNTX45ptBq4W8PBg0CMXbG+WDD9q6i4Jw0olgRDhpFuak4qnNHB8R3plXB1/EZea+oEDs8AgujU+uazs/ewfHyjJ3uB2t1je7WULjBmcrbupmd7sostvwMzQ+7TRqaDjBnSWqbG6+/UadrkktyyfBNxiAYJMPFr2JXeX5lDmq+XLXav61ejp7rIVsLs4mo7LkqM+/u7yAlzfN596VP/H0+j9YXZDeoM2S3DSeXPc79678ide2/Mn+RtainAzdu3cnJiYGJImam26icv583ID1zTcxpqQQN306aLQUTjey7TpvHFtegs2R0AoZT2cS6auvkGQZvvkGzGaoqYEHHkDRalEuv1zsGiy0WyIYEU6KKpeTTbUZIL56I1d3HohW0pDy1S4Ahj7RjwnRPYkzq4sss6vKyK4qO+o1XZ7W29zO5R+i7lGz+9YWX2NG+ibSygsottvYZy3i050r0CAxKKQTAF/vXs2s/Vvq2o+NSmT8/8mAwt13b2J2ZgqZtlLOiewGqGs/xkZ1Z27Wdl7ZNB+7WybKx58AozdTugzCR9f0xpLFdhsf7lhKon8YT/efxNioRL5PW8uOsty6NuuLMpmRvonzY3vzVL9JRPv48/72Ja2yb01zhIaGkpSUpE7bhIRQuW4dcrduuLOyKD//fLpOn46hSxc1BfhaHwpnFMEmbyj4/JT073Qi3XgjUmUl7NoFcXHg8cDMmWpqcM+eKPn5bd1FQWhVIhgRTooShw137U6xfQKj0GvUqZV9c7OQNBA3Xk057R8cW3dOfrX1qNf0KB4kWrafy5F0sWoQoin85xgtm1bmqOaL3at5bsMcPktdiY/OwBPJ5+JbO6VS6qimorbmB0BnSwgPjRpOp2ESTruHL77dy909RxLl41/XZkJ0DyK8/ah2O9lZlotWo+FfvcfQNyiakKPUC1mWt4dgk5krEvoT4e3H6MhE+gfH8HfOoSyVv3N2MSK8M8PDOxPp48e1XQZj0OhYXbCvxa/B8dLpdPTv3x+z2QwaDbZp03A8/TR4PBRNmEBw585Evf5/4JHIft9I6n0mXDvvgJSe6kLPIykKVK6AVgxUTydSYiLS/v1gt8O4cWpqcGoqRESgBAaizGlkewVBOAOJYEQ46TyHTb/4x1uIGh5eV7rcfdhjxwozPHjQSK3zIxvU6VU1o6ay5phtm3J7jxH8Z8glfDTiav5vyCXc3mNEvYDhkb7juClxaL1zBoTEsmrmZEBi3vPuetVXQR0dqZGdnBPRjb5BUeRUlfP5rlWsyDt6Sfl0azHdD0sJhtq0Yas6DSN73GRVltZLG9ZIEt39w+vanEqJiYnExqqBaM3FF1O5eDFujYbqmTOpfvJJeqWm1k8BXrIbNhmhbEH9CxV/A6mjIK99l1yXjEakhQvV1OCnngKDQV34OnkyisGA8thjbd1FQTghIhgRTooQky+62sAhpfQADrf6qfbCaWO5bvlFgFrka31RRt05kYeNEDRFJ7VeKW3ZcOIZNS0RHm4iqZ8figKXXLKqweNFdhvL8vYQ6uXLA71HMyqiKz+nb2RNI2tADrK67I2mBNvdLpxuGZvLgQelbtTm8DYVrrZZlxESEkJSUhIajQa3xULl2rW4k5NRrFZyYmKIe/ppgm+9TU0BftqLfS/qce+aBDvVjQFxZEDmfeq/814DV0Gb3MepJr38MpLDAX/9BUFBakG1N99E0WhQzj4bxd6x1tkI7YMIRoSTwkunr1s7US27+C7tH5zuQ8PsHsXDbxlbya2uACDeN6jedEVTjFpjq/XR6QX61lsTe1zWrhsDwOzfcpGPmH5QgFhzIJfEJRNrDmRURBdGhHdmWd6eNujpyaXT6ejXr586bSNJVH7xBY633wag5M470axaRa+NG9UU4GVqCnD1lpWwzgBpF4On9j+gxwkHnm+z+2gL0vjxSMXFUFQEffqoU1bLl4OXF0psLEpKSlt3URCaTQQjwklzbnSPurUiG4qzmLrud/63Zx0/7dvA0+tns+DAzrq258c2r6qql7Z5BdKaw27WInmg2rqy1a7ZXDqdjosujgRgyODF9R7zM5iIOKLEe4SXH2WO6iavZ9GbGk0JNmn1GLQ6zHojGiQqG0sb1rd92nBiYiKdOqnBa82oUVSuWoVHp8O5YQM5ffrQc/VqzKNG4a7UkHqnF9n/BWq2Agf37HFD0WdQs6vumqX2KrJspfW+GquQe6aTgoORUlLUEZJrr1VTg7OzISkJxWxG+eyztu6iIByTCEaEkybSx5/buw+vC0hssoMV+XtZkptGiePQm8JVCQMarJ04Uqld3enX19B6m765AqKQgMo997faNY/HzFnDkSTYurmC/PxDQUJnSwgFNfUX8xbUWI9aWTXBEsyu8voZFqnl+SRY1LRhnUZLrG8gqeWHpjI8isKuw9q0teDg4EPTNkYj1n/+wX3OOeB0kpOYSFDv3nSeORP0Ggp/MbL9Bu8j6qNpIPvfwKG9kF7ZvKDe1zMbZrfLgARqS87/739qavAnn4C3N1RVwZ13ouh0KNddh+J2H/tCgtAGRDAinFRJQdE8kXwug0I6oT1s8akE9A6I5OE+YxkTlXjM66wrXAdAoLH19lsxdX4aAG3RzmO0PHkefUxN6x08YGHdsXFR3UmvLGZe1g4KaypZV5jBivy9nBPZta7NrP1b+Hr36rrvz47oSrHdxsz9m8mvrmBpbhobi7IYd9hrOy6qOyvz97KmIJ286gqm7V2P0yMzLOzEKtq2poPTNr6+atBZ+eabuL75BoCK//yH8jtuo+/fkQSe68KRI7Ftig+FfxxcRyRD+WzkiqXMy96BXJvNdThZ8Rwzhbw9kO66C6mqCrZuhehocLvhhx9Ap0Pp2xeluGNUuRXOHJJyrEpTpwGr1Yqfnx8VFRVYLJa27o7QQjaXg/xqKwoKwSYzAUbvZp/7+pbXmbp+KhfHXsysCbNarU/K5xK2APC9vO1+DbwMM3C5FNasG8OgQUEApJTkMCtjC4U1lQSbzIyL6s7IiC5153yzew0ljioe6Tuu7tju8gKmp28ir7oCf6M358f2bhBoLMndzV8HUrE67USbA7g6YQDxp8nIyJGKi4vJzMwEQOt24zN6NJrqarTBEPkpOEo07H3aC08N+PTy0O0/NUgmKCSBZx0v0lR+lo/OwCN9xzVrjVJ7odjtMGECrFihri0BdfHrzz8jjR3btp0T2rXmvn+LYEQ4I9yy9Ba+3vM1D/Z6kHeHvdtq13V+K4EEhhva7tfg22/SufXmjfj66iizXtJm/TgdybLMtm3b8HjUUY7gT+9D/uIf0EDQv8D3Ytg71YRtixaNERKeq8FviIeVrhF877mbRL8won38KXfWsKMsF3vtIuoAozcvDLgAo7b1srPOFMpjj8F776lrTEBNE37iCaQXXmjbjgntUnPfv8U0jXBGOFB1AIDuft1b9bpOb9C1UUbNQTfelIDZrKWyUmbatMy27cxp5shpm+K7PsT1+2+gQMlbcGCKF10+u5OoByLxyLD3SS/2vWRkqGYl7/q9x8O9R3Nl5wHc0WMErw66iE61FX/LHNX10so7EumNN5CcTvjjD/D3B6cTXnxRTQ0eP16UnBfahAhGhDNCob0QgAEhA1r1unZfPRoFKoqmtep1j9eCP0cBcOtN69u0H6erbt26ER8fD0BVVDSVGzaihIQgZ9eQ0fM9THGPUfDrj8g6PeVL9aRc7IN76wbYHA5Vaoqrj97IlC6D6q65Mv/UVZ49HUmTJyOVlamZN927q9M3f/+tlpyPj0fZvfvYFxGEViKCEaHFluXu4cWN83hw9S88uPoXXt/yJ9tLc496zsaiLJ7dMId7V/7ECxvnsq00p97jiqLwR0YKj/3zK/et+pl3ti2ioMZKmUNddNgvsF+r3oMcpC4KrdnXtrvEnjUsmPBwIy6XwnPPbm/TvpyuAgMDSUpKQqvV4lYUKubPR3rgAQBK7riDiIce56s/PiKnT1c81RK77/Em9a5K2JEMuW8AEOcbRIBBXatU2MTuyh2NFB2NlJqqTttcdhloNJCRAd27o/j6onz3XVt3UegARDAitJi/0YtL4pN4st9EnkyeSHf/cD7euZzcqvJG2++zFvHFrlUMD0/g6f6TSA6K5pOdK8g5rP2fB1JZnLubTr5V5FfP4veMj7l84R0U29XV//Ny5rE8bznbSrdR4aw44Xswd30fBdCXtv30yD/r1UJor72S2sY9OX3pdDqSk5Pr5p7LbrgB19KloNFg2ZbKw2NvZMX91+Hz3Reg0VC9S8fGCT7Y0s2AGuwe3DOptfY5ai8knQ5pxgwktxveeQe8vMBmgxtvVFODb7utrbsotGMiGBFaLCkomj6BUYR5WQjztnBxXBJGrY70Jra6X5Szm16BEUyI7kmEtx8XxSURaw5gaW4aoL5RLMrZxXmxvcmtTmVmxs+sKviD1QUzqHarBb8u+usizp5zNn1n9qXHLz1O+B7M/mNRNGC0tf08eXS0md69LXg8cPVVa9q6O6e1rl27Hpq2MZuxrl+PPb4TWpfMnVMeoXjBfJJKSjDEx4MMuyf9m/Rbb2VXeQHW2vL3HSmb5nhJDz2EVF0N69ZBRISaGvzllyiShDJgAEp5eVt3UWhnRDAitAqP4mF9YQZOt0yCb+OpoumVTWzmVqmOehTbq7C67PTwD+fWxFuRkJAVGQ8NCzVJSEzuNLlV+u4ygrHp4qan1D/r1TTLGb8caFAmXqjv8Gkbj6Jgnz6Tnf9Wp23CP/uW9Pg4emzaROTLLwNQ9ssv/9/efcdHVaWPH//cmclk0ivpCWkkAQKBREBQRBRFxbprdxFd27q2lZ9+V9aCa9/VVVdFd3Wtqy6KvaKA0hRBCQmQBiGB9N7LZDIz9/fHDQORBEhIMkl43q/XvK65c+7Nc68hc3LPeZ5DY9JkDA0tAN1SpUXPlGnTUMrKoLkZTjxR25meDn5+qMHBqBuHvnqxGJ2kMyKOSWlrA7f/8D63bHyPd/J/5g8TZhPm4dNj2yaLGe9flR73djHR2FWivKlTW0HX22gizjuOOaGnofTyI+pu8ODRaY8OyDV0uIPBMiCnOmYmk4FzFmgdtpNmfu/kaIa//cM2Pj7az1zYpVeTs/orbC4G9CWlFBqNpPu78NM3yzF7uGFoa+faK/8fsz9YzdSACCdHP3Ionp4omzahqCr88Y9gMEBVFcyejermhvrE6F41WQw+6YyIYxLs5sV9qWdzz5T5zAkdxxt5P1HWeuxzOQCuTbgJlUOraALcnXIvgaaBKdbV4W1CAepKHhqQ8x2rz76YjaLA1l8aqKmRFViPRnx8PLGxsShAqO8Yan/8gdKUJBRVJfHqWxj7l4d4a8Wz5J4xC4Dxr60gO3mSPH3qB2XZMpTOTlixAry9wWyGJUu01ODzzpPUYNEv0hkRx8Sg0xPk5sVYL38uiplChKcv35X1nBLobTQ5xuv3a+o049O1rL23i7YI3v4F304JnYunS/cOh4KCjzGUhfG/H7BrsAelAtBR+OKwWVTtjj9pQwjT09Y4LYaRxs/Pj5SUFAx6A0ZFj/ur/2XLk0sBSFq3hdvPuQGvpfcS8+MPKEYjncXFZPr7U/fpp06OfGRSLr4YpbERCgshPl5LDf7iCy01eNw41L17nR2iGEGkMyIGlKqC1d7zYlyxXj0s5lZf4ZhjEmjywNvF5GijU3Qk+53FwWW9VVRODr4Gg27gKmf6JL6qZdQ0VHUtqPYVz2T/l4e2LXdah+Spp6diMCgUFbWxLb3OKTGMRPuHbfx8fVFQSJx7Hi3btqL4eGNqaSN5yhwMW34mtbYWj1mzQFUp/N3vyJ0378gnFz1SoqNRdu/WUoMXLABFgfx8iIlB9fFB/eADZ4coRgDpjIh++7gwg12NVdSYWyhtbej6upLpQdEAvJ73Ix8XZjjanx6eSFZ9OatKcqhoa+TzfdvZ11LHqWHaYnGKonB6eBJfFe8ks7aEqvZmEn1OQa8c6HhEe55AuEfygMSvotJBBW2mEux6MLWpzJtyH7+ZdR3nTv8TJyQ+R4vVeeVZn1+mPbE5/bR1TothpIqLiyMuLg4Am02l6fu1uF52GQA1119P8YwZJH3zDbHLl4Oi0Lp5M1v9/WndKTVe+ksxGFC++ALFbofHHgOTCZqa4JJLUF1cULtqwgjRE+mMiH5r7jTzRt4mlv7yBc/sWMPellpuT57LBL9QAOo62mi0tDvax3mP4frEk9hQkc/D6V+TXlPMzRNmd0uxnB8xnrmhiby1azP/yf0BV70HcZ4zHe/PDPod0PvTl6NVyMOsx4+NhLKNM7C4gakN/L0KMegtqCo0tI49pu9xrG64MRZ3Dz1NjVY++KDYqbGMRL6+vgeybex2Ku++G9OaNaDTYdmyhT0mE26JiaTU1WGMjobOTnJnzqTghhucHfqIpyxZgtLeDuvXw5gxYLXC889rqcEzZ6K2tDg7RDHMyEJ5Ytgpaa3n2R3f0dypPZXY3bCR7ytewk3vw8JxLwIQ4xXA4kmnY+znQmcFPEQhSx1fT/kS/Evhu+txdNHXZCzlD/G3E9W1nokzrF9fxWlz1uHqqqPV/FunxTHSFRQUUF+vVfF1d3fH7eyzsXWtCOzz5z8T+MQTlD3zDOUPaJV4dd7eTMrMxBA4PFc0HmnUhgY4/XQtLXi/0FD49FOUadN6PU6MfLJQnhiROmxWXsha5+iImPQG4n20VNeJvjMc7Qqba1m+55d+f59o/oI3J6KgdWaaxmgzU7y66rVZOj2oa3Z+HYpTTgliTJArHR12Hnk4y9nhONXXxVk8tm0lt//4Pnf99CEvZq+noq3piMdtrS7ijbpsVrQXYlZttLW1UffRR3guWQJAw9/+xua0STwzI5I3P11G7bhobE1NZMbEUPbkk4N9WccFxdcXZetWLTX42mtBr4fycpg+HdXdHfX5550donAy6YyIYWVL1V7qO7QKZGM9/Xls2gWcGKTVg7g64Vz+nHImrl2TVzdVFjra9pUOA5N4Dx1ugEJtV8kJ/2Kw23WU1qaiDpN/Hps2a2XiH3ow28mRONeuxipODUvgnpQzuSP5NGx2O//c+R0dtt5TSQ9eguCO1DOo9jOwz9qC3W6n5Le/xT0jg/YAXwLTd3L9ab/jDusY8v/7Ar/cuhAVKH/oIbZPnCgpwANIee01FKsV3ngDPD2hvR1uvx1Vr0e9+GJJDT5ODY/ftkJ0+aHywEqqV8VPx8PF1bFI3kT/icR6B3J6eCIAdlR+qirs9/cyEcVE3gJUGkNABXyqQKezU1Y3sKsDH4voaE+Sxntht8PCq35ydjhOc0fyXGYFxxLm4Uukpx/XJJxIXUcb+1p6zzb69RIEF8alssvVTJFBe/JW2tlJ+pcrqDrzVAwdHTD/HM59aBk7FpxC57efainARUVaCvBnnw3VpR4XlEWLUJqbITcXoqPBbocPP9RSgydMQK2oOOI5xOghnRExrFR2raTq5+rOWC9trkZFu/ZLKdIjEoCpgZGHtO+vMVxIBLeAosNmAI8GsNv1VNZPOqbzDrSft2qpp/97t1j+Su/SbusEwMNg7LVNb0sQZNkbiY+PR1Ug2eCH/rGn8P3PfwDofH8FV914H/u8jFoK8MyZWgrwVVeRe8YZg3dBxyklMRGlsBA6OmDePC01OCcHQkNR/fxQv/jC2SGKISCdETGs7F9J1Wa3s39udbxPPFGeUY7OyP5VV2FgfoDjeQoX+zg63LU1aqoaJ2C1m4584BByczMw74wgAE49RVJ97arK+wVbifMec9gF7w63BIGPjw/eMRHstTajU1X2TpmC+5496Hx8CMrZw5QTTqfxtddI+vZbYt55R0sB/ukn0v39ac06vufvDAbFaERZtUpLDb7vPjAaoaEBzjsP1WhEvftuZ4coBpF0RsSwEt61rk1Tp5ldjVUA3DT+JvZdsQ+TQftQ2VK1z9E+7BhXXlVVlVXFe/g68yZafUFnhbLKiY73PyrMoM06PBau+fqbU1AU+GlTHQ0Nx3eZ+P/l/0xZayM3JJ10TOcxGPR8aynDw1f7uSurr6fjp5/IvuFK9JZOaq67juIZM/A//3wtBXjsWNTOTnJPPJHCm24aiEsRPVAefhilowO+/RYCArSCak89pZWcnzMH1Xx8//yPRtIZEcPK7JADGSxv52+hur17PYJtNcWsLd8FgItOz4lBMf3+XqqqsqIgnY/3ZlLXGkyTuysKkFKd62iT01DB09vX0G7t7Pf3GSiKovCHm2MBOGHq8Vsm/n/5P7OjrozFk0/Hz9X9sG2PdgkCz5BAEhK04nutra143nArGR+92a0miXXvXibt3EloV/pv3bvvsi08HGtXyrAYeMoZZ6DU1EB1NUyapJV4Xr8e3NxQIyNRt293dohigEhnRAwrqYGRhLlrf6VWtTfzwNbPeTF7Pe/t2cqj21byr5wN2LuGb04NTcDTxbXf3yu7oZw1XevoKECxUavjMbW5kDkh8Zi6apgUt9bzyd6M/l/UAHp+WRp6vcLevW1kZzU4O5whpaoq/8v/mYzaEu6cfBqBJs8jHtOXJQi8vLxISUlBp9fjrbgQHTEet+Ji9FFR0NFB6bhx1PzlL4TdfTcphYXovL2xNzWRGRVF2T/+MSjXLDRKYCDK9u3aE5KrrtJSg0tKICUF1dMT9eWXnR2iOEbSGRHDikGn59aJpxLU9UFjV1Uya0v4riyPooOyJk4IjOKimJRj+l7fle5y/PdlcSdwygmvaRk1Na1cOW4690yZj4tOD2hpxMPh6QjAM89q133KyWudG8gQ+9+eX9hctZfrEmdh0rvQaGmn0dKO5aDU3mNdgqCyo4VNxiZ+ttWiAOXl5bSvXIlP13yFxscfZ290NPj6MrW0FL/LLweg/MEH2ZGcLJOLB5liMKC8/baWGvzSS+DuDq2tcNNNqAYD6u9+J6nBI5RUYBXDUmtnB6tKc9lYsYfmgx6zR3r4cVp4IicGxaBTlMOc4fDarZ3cuWkFKlrmzmPTzken6FBfVlAV0N2g/bN4e/cWNlTkA3B94iymda2742xe7h/R3m7jo09mcv4FEc4OZ0jctOHdHvcvSjiRWcHa8NU/tq8mwNWDaxIPLCGwtbqIT/dlUmtuJcjNi9/ETGGSf7jjfVVV+XzfDjZU5NNmtRDvM4Yr46bhblPYtUvrsCqKQpzJRM3UqWCxgE5H6Pff437KKbTu3EnuKadof7UrCrH/+x9+CxYM4p0QB1O3b9cW6CspObBz0iT47jsUqaDrdEf7+S2dETGsWe02ytua6LBZ8TaaGGPyRDmGTsh+1e0t3PeLVjfihMAobhh/MgC2/yjo7KDcqP2z+KmqkNfzNgFwaWwqp4cnHfP3HgirVlVw9pkbMJl0tLRLmfjBYrVayc7OprNTeyoWFhaG9YILsPz8MwDul15K6HvvAZA7bx6tmzcD4DFrFknffOOcoI9TqtkM8+fDhg3a3BLQJr++/z7Kaac5N7jjmJSDF6OCQacn0tOPeJ8xBLl5DUhHBMCo1zv+u7aj1fHfqlvXOjQt2jyDOvOB91z7uQ7OYDjjjBACAo2YzXb+9rccZ4czahkMBiZPnkxg11/YZWVlNL/xBgH//jcAbe+/T6GfH9aWFpJWrz6QAvzjj6QHBNCWfXxXzR1KismEsm6dlhp8113g4gK1tXD66aiurqhdE4/F8CSdEXFc8nYxEeqm9dILm2vZ26wtSmMYM1erdJL1HJ12GxsrDlSEHecT5IRIe/fjptMBeOBeqXkx2MaOHUtiolb5t729nYITTiC4shLFxwd7QwP7vLxoeuMNRwqwS2QkqsVCzowZFN58s5OjP/4oTz6JYrHAZ5+Br682tPbww1pq8BlnyLySYUg6I+K4pCgKp4SOc3z9UvZ6dtSVYh9/IwCWfZ+zLGud46nJeN8Qgt2G1xBhXLwn4xI8sdlUrr92i7PDGfU8PT1JSUnBxcUFVVXJKy7GlJ2N+29+A0D1tddSPHOm9jQlO5vQ++8HoO7tt8mIiMDa0ODE6I9PynnnodTXQ3ExJCVpwzerV2sl52NiUPPynB2i6CJzRsSQq+9o46PCDLLqy7DYbYwxebIo4USivQJ6PSavoZIVBemUtzXi5+rOOVHJjkmL+31ftotVJTk0WtqJ8PTj8rg0Yrx6n8BmsVn5e+YqilsP1InwcjHx5Pbf0q6YuDPpVQBcdQbuTjmDSE+/Y7zygdfSYsXX62MAzJ0XYTAMn6Gk0ayoqIjq6moATCYT0WVlVJx1lra+iqsr4Tt3YoqPx1pTw46UFOxN2urCYY88Qugddzgz9OOaarXC5ZfDxx9r/69AW6xv2TKUq692bnCjlMwZEcNSa6eFJzNXodfpuC35VB5MW8AlsamHXV+kxtzCC1lrSfQN5r7Uszk9PJH/7tpMVn2Zo83P1fv4oCCdBVHJ3Dv1bCI8fHlu5/c0WXqv1GjUG7g9eS4xB3WCmjvNqIBJ1RZS8zAYuTX51GHZEQHw9DQw51StwzXvtPVOjub4ERUV5Ri2MZvN5AUEENzYeEhNEkNgoJYCfNllAJTddx87Jk2SFGAnUQwGlA8+QLHZ4JlnwM0NWlpg0SItNfj6650d4nFLnoyIIfVRYQZ7mqq5O+XoFxz7sHAbO+vKWJp2IF3ylZyNtNk6uSN5LgCPZ3xDtKc/V8RPA7T6JEu2fMLcsATOipzY43n3s6l2tteWsr58N/ta6nli55W4qBbWLMhhZlAsHi69d5SGA6vVipvxY1QVGpovwtNTno4MFavVSk5ODhaLtmRAaGgoxmeeofGppwAwREcTvns3BoOB1h07yJ0zR0sB1um0FOBzznFm+AJQf/4ZLrgAyssP7ExNhTVrUHx9nRbXaCFPRsSwtL22hLGe/vw7ZwN3/fQhj6R/zYby/MMeU9DU88qrBU01gJb+W9Rcx/iD2ugUhSTfEEebw9ErOqYGRnLHpNN4euZvMXpFoQDz3NRh3xEBLePj99dHA5A29VvnBnOcMRgMTJo0iaAgbXJzeXk5lddcQ3huLhiNWPfuZZ+rK23r1+MxaRJpdXW4n3AC2O0UXHYZeWef7eQrEMq0aShlZdDcDCeeqO1MTwc/P9TgYNSNG50b4HFCOiNiSFWbW1hXvpsgNy9uT57LKaHjeK9gK5sqC3o9pqnTjLfxVyuvGk2YbZ1YbFZaOjuwo+LVQ5vGzn4sqBVyirbd+Wzfj3WSf788Db1eYU9+K3l5jc4O57gTGRnZbdgmq6WF8MZGjGlpYLdTPmcO5VdcAcD4778n5r//BUWhZeNG0gMCaM/NPdzpxRBQPD1RNm1CUVX44x/BYICqKpg9G9XNDfWJJ5wd4qgmnRExpFQgytOfi6KnEOXpzymh8ZwcEse68t3ODu2ASX/StuVrnRlFnz3x90kAzJ611rmBHKf2Z9sYjdrTtKysLPSffUbASy8B0LZ8uaMmif+FF2opwBERqBYL2dOmsffWW50ZvjiIsmwZSmcnrFgB3t5gNsOSJVpq8HnnSWrwIJDOiBhSPkYToV0L4e0X6uZDfUdbr8d4u5gOmYjaZDFj0rtg1BvwdHFFh0JzD208DUbe27OVJVs+4dYf3uNvGd86aor0Jk8fhA0dezs6ue/nz/ixh6c235ft4i9bPuWWjct5POMbCpuPPBw02O5cnIjJpKOuzsLKlWVHPkAMuP3DNsHBwYA2bFNy8smMra9H8fbuVpPEYDAwOSeH0HvvBaD2zTfJiIyUFOBhRLn4YpTGRigshPh4LTX4iy+01OCEBNS9e50d4qghnRExpOK8x1DZ3tRtX2V7E/6uHr0eE+vdw8qrDRXEemtZJAadnigvf3IaKh3v21WV3IYK6jvayGmo4NrEWTyQeg4T/EJ4Zsd3vXZ+9mfuWHSuRJqLBixzZ6i8t0Jbk+XiizY5OZLjW0REBElJ2tIBHR0dZO7ZQ1hlJe4XXQRoNUlKZs0CIOyee7RVgL28sDU0kBkZSflzzzktdnEoJToaZfdubfLxggWgKLB7N8TEoPr4oH7wgbNDHPGkMyKG1LzwJAqaa/iqKIuq9ma2VO1lQ0U+p4YdKED2cWEGr+f96Ph6Tug4aswtfFi4jYq2RtaW7WJrdRHzwhO7nXdjRT6bKgsob2vk3fyf6bB1Ut7WxG9jppDgE0SQmxfnjZ1MkJtnr8NC68p3E2jyxE2nR4+NuWGJpAZGsrr0QHGk1aW5nBwSx0khcYR5+HBV/HSMOgM/Vu7p8ZxDacG5Yfj7u2A223n2WSno5EweHh6kpaV1G7axP/88Id9+CzodHZs2scdkomPPHi0FuKwMv0suAaDs3nvZMXmypAAPM4rBgPLFF1rJ+cceA5MJmprgkktQXVxQb7vN2SGOWNIZEUMq2iuAm8efws/Ve/nr1i/5smgnl8amMSMoxtGm0dJO3UFPLgJNntw68VRy6it4OP1rVpXmsjBhBhP9whxtpo0Zy8WxU/ls33YeSf+a4tZ6/jD+FOyoGBR9txhcdAb2NFX3GJ8jc8crWttRtmFAM3eGwvoftHTnP9+1w8mRCIBJkyYREqL9vFRUVFAYGsrYjg70kZHQ0UFJfDy1XUM1sa+9RuKGDeDigqWwkMyAAOq//tqZ4YteKEuWoLS3w/r1EBQEViu88AKqoqDOnIna0uLsEEeUfnVGli1bRnR0NCaTiRkzZrBly9GVol6+fDmKonDhhRf259uKUWJyQDhL0xaw7OTL+esJ5zI7NL7b+9ckzuT/TZ7Xbd/+gmfLTr6cR6edf0j1VYC5YYk8Pv1Clp18OUumzCfJL4RYr0C+Kt5JQ0cbdtXOT1WFFDTV0Ghp7zE2R+ZOxHxtR/aywc3cGQRJST7Exrpjs6n84aZfnB2OAMLDw5kwYQLQNWyTmUlQbi7ed90FQMNjj7EvJgar1YrnlClaCnBXJk7BpZeSJ/VIhi1l9myUykqor9fqkwD89BN4eaGGhWl1TMQR9bkz8t5777F48WKWLl1Keno6KSkpzJ8/n6qqqsMet3fvXu666y5mz57d72CF6KvfJ85EVeHPWz7hlo3v8X1pHtPGjEXhCKv/TrpT21b+NPhBDoItW7VF9F59pVAe9Q8Tbm5upKWl4erqCkBOTg4dd9zRY00SgPFr1xL9+utaCvCGDaQHBmLetcuZlyAOQ/H1Rdm6VUsN/v3vQa/XCqlNn47q7o76/PPODnFY63Nn5Omnn+aGG27g2muvZcKECfzrX//C3d2d1157rddjbDYbV111FX/961+JjT30L1ohBssYNy/uSpnHc7Mu5YkZF7Jk6lnYVDuBJs8e2zsydzzDtR3tlUeduePjYurhjM7h62ti1skBqCqcc5YUbRpOkpOTCQ0NBaCyspLdFgtjW1sxpqYeUpMk4OKLD6QAd3SQlZbG3ttvd2b44igor76KYrXCG29oa9+0t8Ptt6Pq9agXXyypwT3oU2fEYrGwdetW5s078Ahdp9Mxb948Nm3qffb+Qw89RFBQENddd91RfZ+Ojg6ampq6vYQ4Fq56Az5GN1o7LWTXl5MSENFju26ZO4oe7OajztzZ32a4+O57rXjbd2uqaWmRX37DSVhYGBMnassUWCwWMjMz8V+/vntNEn9/rC0tB1KA//IXAGpff52MqCis8ntx2FMWLUJpbobcXIiO1hbn+/BDLTV4wgTUioojnuN40afOSE1NDTabzZFDv19wcDAVvdzUjRs38uqrr/LKK68c9fd5/PHH8fHxcbwiIyP7EqYQDln1ZeysK6PG3EJ2fTlP71hNiLs3J3XNOTlc5k6Hix8qsLVy7xEzdyx2a4/zWJzJYDCw8OooAKanrXJyNOLXTCYTaWlpmEzaE7Xc3FyaFyw4UJOkvl6rSfLmmwCELVnCxN270Xl6YquvJzM8nIply5x5CeIoKYmJKIWF0NEB8+ZpqcE5ORAaiurnh/rFF84O0ekGNZumubmZhQsX8sorrxAYePR/NS5ZsoTGxkbHq7i4eBCjFKNZu7WT/+35haW/fMHreZuI9x7DHclz0eu0H/3DZe6s85yBAtzo03HEzJ3bJ87F2+g21Jd3RK+/OQOdDnbtamHPHpndPxxNnDjRMWxTVVVFTnExUbW1uHdN9K++5hpHTRJTSAhTy8vx/e1vASi95x52TJki84JGCMVoRFm1SksNvu8+MBqhoQHOOw/VaES9++5B+9515laKWuq6verMrYP2/fqqT6v2WiwW3N3d+eCDD7plxCxatIiGhgY+/fTTbu0zMjKYOnUqev2B1Eq73Q5owzt5eXnExcUd8fvKqr3CKbY9Dj//BSLOgXO+dHY0/fbEE9nctySLwDFGKqoucHY4ohdms5ns7Gz2/0pOTExE2bSJirPO0h7vm0xE5uRgjI4GoGXrVvLmzdNSSnU64laswPfMM514BaI/1FWr4IoroLarMrSiwOzZ8M03KKaBmYdWZ27l/l8+x6rau+03KDoePuE8/E29F508VoOyaq/RaCQtLY01a9Y49tntdtasWcPMmTMPaZ+UlMSOHTvIyMhwvM4//3zmzp1LRkaGDL+I4W18VwGjum3OjeMY3XPPBFxdddRUW/juu8ojHyCcwmQykZqa6hi2ycvLozYxUatJEhEBZjPFMTHU3ncfAJ5paaTV1+PeNfF1z29/S96CBc68BNEPyhlnoNTUQHU1TJqklZxfvx7c3FAjI1G3bz+q8xzuuUKLteOQjgiAVbXTYu3od+wDqc/DNIsXL+aVV17hzTffJCcnh5tvvpnW1lauvfZaAK6++mqWLFkCaP+4kpOTu718fX3x8vIiOTnZUZlQiGFpf8ZN+/AoZnYs3v3fDAAuPO8HJ0cijuTgYZvq6mqys7OJKCzEe/FiABoefZR9cXGOoZnx69YR/dprWgrw+vWSAjxCKYGBKNu3a0+6rrpKSw0uKYGUFFRPT9SXX+71WLW4GCIiUP/73yGMeGD1uTNy2WWX8dRTT/HAAw8wZcoUMjIyWLlypWNSa1FREeXl5QMeqBBOoRhA7XR2FMfsgosi8PV1oa3NxosvDqMVkkWP9mfbKIpCZ2cnmZmZuP31r4RnZ2s1SQoKtJokGzYAEHDJJVoKcFiYIwV435/+5NyLEP2i6PUob7+tpQa/9BK4u0NrK9x0E6rBgPq73x2aGvz881BWBr//PeqPP/Z84mGuT3NGnEXmjAineSsIzNXwezMYXJ0dzTHZvr2B1JRVGAwK5s6LnR2OOErZ2dm0t2sVg8eMGUNUVBTFaWlY0tMB8LjySkLeecfRvvSRR6j4298A0Pv5kZydjcGz57o6YmRQt2/XFugrKTmwc9Ik+O47bX2csDBobgadDnx9IT0dZexYR9Oiljoe3bayx3PfO/Usojz9By32QZkzIsRxx0+rBUHuq86NYwBMnuzL2LHuWK0qd9w+sufBHE8mTJhAWJiWzVVdXc327dsJ3bzZUZOk9d13KQwIwNq1Fkr4ffdpKcAeHloKcGgolV1txcikTJ6MUlysFU875RRtkuuOHTBmDISEaB0R0CY6NzbCOed0WxvHarc5KfKjJ50RIQ5n3FXads9y58YxQH7ZppWJf/GFfCdHIvoiNDT0kGEbw+9+d6AmSV0d+7y9aXrrLaArBbiiAt+LLgKg5P/+j51Tp0oK8AinmEwo69ZpqcF33QUuLtoQzsFsNq3I2lVXodrtbK8t5fmsdb2eM7d+eExql86IEIcTf422bch2ahgDxc/PxPQZfl1l4tc7OxzRB/uzbdzd3QEt26akoYHYxkatJomqUr1oESUnneQ4Ju6tt0hcuxYMBjry88kMCKDhoGxIMXIpTz4JH3/c85t2O3z2GVWLb+fF7PW0WS29nufDvdvYWl00SFEePZkzIsSRvKxopeFvGB1/VVqtVkwu2i+xlvaLMJkMTo5I9FVFRQWlpaUAuLi4MGHCBMyrV1O5YEGPNUkAsmfPpj0jAwDPU08l8fPPnRC5GEjqaadpacC23odhVvzhctZceR7jfIKYMWYsQW7eVLc3s6mqgPwmLVPQpHfhb9MvxGRwGfAYZc6IEANFZwR1+I+5Hi2DwcDlV2g1fqafsNrJ0Yj+CAkJOWTYRj3ppENrkjzwgOOYCRs2MPbVV7UU4LVrtRTgggInXoU4FurOnfD99712RNSu18X/Ws4/LryFxZUqs0PHkegbzMmh8dw1+QymBmi/B8y2TjZX7R2y2HsinREhjsTUtZSBucGpYQykt989EZ0OsrOa2bdPysSPRL8ettm1axfFxcVEFxcfqEny8MPdapIEXnopKVVVuISGainAKSnsu/NOp12DOAZlZeDmBj4+WjZNYiJMm6atffPb35J74VnsnpSI1aDHva4B5cwzUaOjUbvWOlIUhQVRyY7Tbat17rIr0hkR4kgCT9C2O59zbhwD7P6lEwCYNeM7J0cijsX48eOJiNBWoa6rqyMzMxO/v/2N8KysAzVJTCbaNm4EwGAyMXnXLkK61kGp+c9/yBg71pGNI0YG5cwzUdraUBoaUEpLUXJzUbZs0da++eADPl96J08ve4DbvnsLdfcuuOACKC2Fa65B/ec/AYjw8EWHAkCrkyuxSmdEiCMZf4O2Lfr08O1GmPsfmIjRqKOysoMNG6qcHY44BsHBwY5hG6vVSmZmJh3h4cR1dGCcOhVsNspnz6biqqscx4Q/8MCBFOC6Oi0F+N//duJViIHkdtD8j4rQMSiffKJl3ixdCrfcAkCVuRk72rRRN71zK6JLZ0SIIxl7rrZt3OPcOAbBG/+dBsC5Z290ciTiWO0ftvHw0BY9y8/Pp7CwkMj0dAJefBE4tCbJ/hRgn/PPB6DkrrvYmZoqKcCjwES/UMd/f1uSA3StGvzggygGQ7f9ABMOau8M0hkR4qgo0Nns7CAG3KWXRuHtbaC11cZrr8pkxtEgKSnJsQjp/mEbzxtu6LUmCUD8O++QuGaNlgK8ezeZAQE0fv+9sy5BDICZwbEYdXoAfqoq5L+7N1Nj1jqhteZW3s3/mY0V2h9YBkXHySGxTosVJLVXiKPzqhvYzHDjsP/n0mfb0uuYlrZGysSPMlarle3btztWc42Pj8fHx4fyCy6g7bPPAHA9+WQiuta32e/gFGCv008n4ZNPhjJsMYA2Vuzhv7s3d9tn0rtgtnVfb+vyuBOYG5YwKDFIaq8QA8mt6xFm016nhjEYpqb6Ex7hhtWqctddGc4ORwwQg8FAamoqnl3r0uTn51NQUEDop58S/PXXoNPRsXEje9zcsOzd6zhuwoYNjH35ZVAUmtesIX3MGEkBHqFODonjqvhpGJQDH/UHd0T0io7LYtMGrSPSF/JkRIij8d3vIP8dmHgHnPSss6MZcNXVZkKDPkdRoNN+ibPDEQOsurqaoiKtyqZeryc5WUvpLImOxtZVPM33gQcI+OtfHcdYzWayJk3CWlEBwJibbiLqqaeGOHIxEJos7WysKGB7XQltVgvuBiOT/MM4OSQeH6Pb4H7vo/z8ls6IEEej6mf4ZDr4ToBLs5wdzaCYnraK9PQGFpwbyqefnwzAxo01fPRhCY89PgmTSe/kCMWxsFqt7NixA7vdDkBcXBy+vr5U33knTc8+C4AhLo7w3FwMhgNVeUuWLqXy6acB0AcEkLxzp6wCLI6adEaEGGgvK2DwgN+PznoMB5eJ/yX9dJY+kM2XX5QDsOqHk4ibbHK09TS44m/ycEqc4tjk5eXR0pVN4+vrS1xcHOasLEqnToXOTtDrCV27FveTT3YcYy4pIfuEE1C7FmWLePppgm+4wSnxi5FFOiNCDLSXu8Zdb7Q7N45BdO45G1j5tfZYXq9XsNm0Xw/nL7MxZtKB6zYoOh4+4TzpkIxQNTU17Nu3DzgwbGMwGChOTcWybRsAHlddRcjbb3c7Lv/KK2nsWtPGNSGBpM2buz1FEeLXjvbzW36KhDhaBnewth653QjU1NTJk3/P4/vvDhQ/298RAbCYu//NYlXttFg78Ec6IyNRYGAgvr6+7NixA5vNRmZmJrGxsUSmp9OwbBm1t95K6zvvUPj110Tu2+cYlol/911atmwhb/58OnbtIjMwkPhPP8VnzhwnX9Hxqb6jjY8KM8iqL8NitzHG5MmihBOJ9gro9Zi8hkpWFKRT3taIn6s750QlMyu4e1rv92W7WFWSQ6OlnQhPPy6PSyPGK3BQr0WyaYQ4Wh5R2rbqF+fGMcA2baolduyX/O3xHDo6en7q4+RK0WIQGAwGpk6dipeXFwAFBQXk5+fje8stjK2tRfHy6rEmief06aTV12OaNAlsNvLPPZddv/mNsy7juNXaaeHJzFXodTpuSz6VB9MWcElsKh6G3iup1phbeCFrLYm+wdyXejanhyfy312byaovc7T5uXofHxSksyAqmXunnk2Ehy/P7fyeJot5UK9HOiNCHK3w07XtzuedG8cAs9tVOjrsKIrSaxubdEZGrYSEBMaOHQtAY2MjGRkZ4O1NbFMT7uefD6pK9aJFlJxySrfjJv74I2NfeklLAV61SksBLix0whUcn74pycbP1Z1rEk4kxiuQQJMnE/xCGePm1esx68p3E2jy5JLYVELdfZgblkhqYCSrS/McbVaX5nJySBwnhcQR5uHDVfHTMeoM/Fg5uBWopTMixNFKvkPbVo6u0uknnRRI5s4zOWGaX69trJYhDEgMucDAQFJSUtDpdI5hm/r6+gM1SRSFjg0bDqlJEvi735FSVYUhOBjVbCZr8mSK/vxn513IcWR7bQljPf35d84G7vrpQx5J/5oN5fmHPaagqYYk35Bu+yb4hVLQVAOA1W6jqLmO8Qe10SkKSb4hjjaDRTojQhwt33ht21bu3DgGQWysJ+s3nsajj09Cb1DQ67s/JbF19P7URIwOPQ3b7N69G8+zzmKsxYI+LAzMZopjYqg9qB6JwWQiJT+f4DvvBKD6xRfJiImRVYAHWbW5hXXluwly8+L25LmcEjqO9wq2sqmy9wJ1TZ1mvI2mbvu8jSbMtk4sNistnR3YUfHqoU1jpwzTCDGM6LSy8KOQXq/w53uS+GnL6cTGdp+Y2tOckeZBHkMWzpGQkEB0dDSgZUJkdJWGjy4txesO7elgw4MPsi8+vtuCehEPPcTEnBwUd3dsNTXaKsCvvjrU4R83VCDK05+LoqcQ5enPKaHxnBwSx7ry3c4OrV+kMyJEX7h4AsM+G/6YTJ3qR3rmmVx8/RjHvqIeRqb+k/sje5trhzAyMVQCAgJISUlBr9c7hm3q6uoIevZZwnfuBBcXrHv2sM9kou2HHxzHmSIiSK2sxHvBAgBK/vQndk6bJqsADwIfo4lQd59u+0LdfKjvaOv1GG8X0yETUZssZkx6F4x6A54uruhQDvlDo8lixsel+9OSgSadESH6wqdrqGbfl86NY5AVmqvwvbqcU5daAZWK7XrG+4YQ7x2IDm3Ips1m4bmdaw/7y0+MXAaDgSlTpjhqQxQWFrJ7925MEycSZ7HgkpICNhvlJ59MxcKF3Y4dt3w5Cd98A3o9Hbm5ZAYG0vSrBfnEsYnzHkNle1O3fZXtTfi79p5uH+sdSG5DRbd9OQ0VxHprabsGnZ4oL39yGiod79tVldyD2gwW6YwI0ReR2l985P7HuXEMss/2bUdFJe50leSTTaBCw4dB3J1yJo9Pv4B4b+2pSau1gzUHzcQXo8+4ceOIiYkBtGGbbdu2YbVaicrIIOC55wBoffttCgMCus0T8Zo1i7SGBkzJyWCzsfucc9h9sawKPVDmhSdR0FzDV0VZVLU3s6VqLxsq8jk1bJyjzceFGbye96Pj6zmh46gxt/Bh4TYq2hpZW7aLrdVFzAtP7HbejRX5bKosoLytkXfzf8Zitx5Si2SgSQVWIfrCXANvjQH3cPhdibOjGRQlrfU8nP41AGHuPtwzaT7+3p+i10ND80XodDoaLe38ZcunWFU7HgYjf59xEQadrF0zmlmtVnbu3InNZgMgOjqagIAArDU1FMXGojY3g6Iw5u238b7yym7HVr/5JkW33QaqimIyMeGXXzB1pROL/tteW8rHezOoam8m0OTJvPAkZofGO95/I28TtR2t/L/J8xz7Di565uvqzoIei57l8W1JDk0Ws1b0LDaNmH4+GZFy8EIMlpcV0Bnh+tFZfOOHij28tXszAL+JnsL8yAk883Qed/+/7dy5OIEn/5ECwItZ68is01Z8fSjtXILd5d/m8SA/P5/GxkYAvLy8SEjQlp8vO/982veXip89m4j167sdZzWbyZo4EWuVVuV3zC23EPXEE0MYuXCGo/38lmEaIfpK0YN99BbesB/094lJ7wLAnYsTCQ4xkZnZ4HjPtes9ANvw/5tGDJD4+HhiY7W/pJubmx3DNmGffXZITRJryYGnhwaTiZQ9ewjuysipXraMjNhYrGbJyhLSGRGi74xdM9hHaYZAoOnA8vDbu558AOwrXsC3q7U1SDrtNnIatHorOkXBz9V9aIMUTuXn5+fItrHb7WRmZlJTU3NITZJ9kZHdapIARDzyCBOzs7UU4OpqMseMofqNN5xzIWLYkM6IEH3lO0Hb7nn78O1GqETfIPy7Ohc768tIrykCwGDQfl2oqsonezNp7tSGqVIDInEzuPR8MjFq7c+28fHROuf79u0jLy8Pg8FwaE2SceO6pfeaIiO1FOCzzwag6LbbyJoxY+gvQgwb0hkRoq9iL9W2u0dnZ0Sn6JgXnuT4+t85G3khay0bK/JZU5rLYxkrWV2aC4AC3dqK4098fDxxcXEAtLS0OIZtutUkyc9nn8lE+6ZN3Y4d9/77JHz9Nej1mLOz2errKynAxymZwCpEX1nN8JobmMbA1VXOjmZQ2FWVt3b9xKaqwy98dmX8NOaEjjtsG3F8+HW2zdixYwkM1DIwiqZMoTMzEwDPhQsJPmgV4P2yZszAnJ0NgPdZZzFuxYohilwMJpnAKsRgMXRVIuyod24cg0inKFydcCKXxKbiZzx0Pkikhx+3TJgjHRHhsH/YxtfXFzgwbAN0q0nS8t//ajVJ2tu7HT9x82ai/vlPAJpWriQ9KAhzyehMnxeHkicjQvTHK0ZQO+HGYf/P55jZVDu5DRVUt7egU3REefox1tMfRZHF80TPGhsbyc/XVpBVFIXJkydjMBi0miQxMagtLb3WJLGazWRNmIC1uhqA4DvuIOKRR4b8GsTAkCcjQgwmU4C2NY/+lUn1io6JfmGcGpbAKaHxRHsFSEdEHJaPj48j20ZVVTIzM6mursYQGEhsczNuCxaAqlJ91VWUzJnT7ViDyURKQQFBt90GQOU//0mmpACPetIZEaI//LXCX+S+5Nw4hBim9g/b+Pn5AVBUVERurjbxOeyLLwj+4gutJsn69YfUJAGIfOwxJu7cieLmhrW6msygIKrffHPIr0MMDemMCNEfCddo28KPnBqGEMNdbGws8fFaifLW1lbS09Pp7OzEc8ECxlos6A6uSfLww92ONY0dS2pVFd7z54OqUnTrrWTNnOmMyxCDTOaMCNEfViu85gJGP7imztnR9Et9RxsfFWaQVV+GxW5jjMmTRQknEu0V0OsxB69r4efqzjk9rmuxi1UlOTRa2rV1LeLSiPEa3BU/xfBntVrJyspy1BuJiIggODgYgKo77qC5a4KrYdw4wrOzMRgM3Y5v2rCB3eedBzYb6PUkfPUVXrNmDe1FiD6TOSNCDKb9vyg7mw7fbphq7bTwZOYq9DodtyWfyoNpC7gkNhUPg7HXY2rMLbyQtZZE32DuSz2b08MT+e+uzWTVlzna/Fy9jw8K0lkQlcy9U88mwsOX53Z+T5NFxvuPdwaDgZSUFPz9/QEoKSlxDNsE/fOfB2qS7N7dY00S79mzSa2vxzRhAths7Jo/n92XXjrk1yEGh3RGhOgvnSuoNmdH0S/flGTj5+rONQknEuMVSKDJkwl+oYxx8+r1mHXluwk0eXJJbCqh7j7MDUskNTCS1aV5jjarS3M5OSSOk0LiCPPw4ar46Rh1Bn6s3DMUlyVGgJiYGMaN01LC9w/bmM1mTBMnEmex4DJ5MthslM2aReWiRd2OVRSlewrw11+THhwsKcCjgHRGhOgvN+0RMy0Vzo2jH7bXljDW059/52zgrp8+5JH0r9lQnn/YYwqaakjyDem2b4JfKAVNNQBY7TaKmusYf1AbnaKQ5BviaCMEgLe3NykpKbi4uKCqKllZWVRWVgIQlZl5oCbJW29RGBh4SCbNmN//npSqKvRjxqC2tZE1fjwl99035NchBo50RoTor6Dp2jbrGefG0Q/V5hbWle8myM2L25PnckroON4r2MqmyoJej2nqNONtNHXb5200YbZ1YrFZaenswI6KVw9tGjtlmEZ0ZzAYmDx5MgEB2hylkpIScnJyAPC97TbGVlejeHpir61ln7s7Tf/7X/fj3dyYUlDAmD/+EehKAY6LkxTgEUo6I0L01/ibtW3xSufG0Q8qEOXpz0XRU4jy9OeU0HhODoljXfluZ4cmjjPR0dEkJCQA0NbW5hi2cdQkOeccrSbJlVdSeuqphxwf9be/aSnAJhPWqioyg4KoeXt0rhs1mklnRIj+ijhN2zYffv2W4cjHaCLU3afbvlA3H+o72no9xtvFdMhE1CaLGZPeBaPegKeLKzoUmnto4+PS/WmJEAfz8vI6ZNimokIb/gz78kuCP/8cFAXzunXscXc/pCaJaexYUqur8TrjDFBV9t18M1mSaTOiSGdEiGOiQGers4PoszjvMVS2d88Eqmxvwt/Vo9djYr0DyW3oPj8mp6GCWG8tbdeg0xPl5U9OQ6XjfbuqkntQGyF6s3/YZv/ieqWlpWR3LZznee65B2qStLf3WJMEIOGjj4j/4gttFeAdO9jq60vL5s1Deh2if6QzIsSx0JsAu7Oj6LN54UkUNNfwVVEWVe3NbKnay4aKfE4NO7Dw3ceFGbye96Pj6zmh46gxt/Bh4TYq2hpZW7aLrdVFzAtP7HbejRX5bKosoLytkXfzf8Zitx5Si0SI3owdO5bERO1nqr29/cCwjcFATGkpXrfeCkDDAw+wLyHBUbdkP585c0ipqcE1KQlsNvLmzSP/V+vfiOFHip4JcSyWJ0DTbrh4J/hPdHY0fbK9tpSP92ZQ1d5MoMmTeeFJzA6Nd7z/Rt4majta+X+T5zn2HVz0zNfVnQU9Fj3L49uSHJosZq3oWWwaMfJkRPSR1WolOzubzs5OAEJDQwkLCwPAvGMHpWlp0NkJej1hGzbg1kNl1spXX6XkT38CQHF3Z8LWrZgiIobsGsTRf35LZ0SIY7H2etj1KiTeAHNednY0Qow6RUVFVHet4GsymZg48UCnv2jyZDp37ADAc9Eigt9445DjrS0t7ExOxlZbC0Dw4sVE/PWvgx+4AKQCqxBDY/Kd2rZ8nXPjEGKUioqKcgzbmM1mx7ANQNT27QQ8o6XWt7z5Zo81SQyenkzZu5cxf/gDAJVPP01mfLykAA8z0hkR4ljsH5ppkwqQQgwWT09PUlJSMBqNjmybsjJtGQLfP/3p0Joky5cfco6oJ59kYmamlgJcWamlAP+qdolwHumMCHHMdGBtd3YQQoxqBoOBSZMmERQUBEB5eTlZWVnae7+uSXLFFT3WJDHFxmopwPPmaSnAN95I1kknDeVliF5IZ0SIY+XijlZGTAgx2CIjI0lKSgK0YZutW7c6hm2OpiYJQMLHH2spwDod5u3btRTgLVuG9DpEd9IZEeJYecZo27L1zo1DiOOEh4eHY9gG6DZs46hJEhrqqElS9+ijh5zDZ84cUmprcU1I0FKATz+d/KuuGtLrEAdIZ0SIYxU5X9tmL3NuHEIcR/YP2wQHawtWlpeXs3PnTsd7MWVleHWtW1N/333sS0w8pCaJwWBg4ubNhNxxBwCNn31GekgI5vLyIbwSAdIZEeLYJf8/bVv5k3PjEOI4FBER4Ri26ejo6DZsE7RsGeGZmeDignXXLvaZTJh//rnb8bX33IP50UdJeOcd9AEBqK2tZCUkUPrQQ0N+Lccz6YwIcaw8Q7Rte+Xh2wkhBoWHhwdpaWndhm1KS0sBME2eTJzFgsukSWCzUTp9OpXXXgtA2zff0PiPfwDQ8OCDpBQWMubGGwGoePJJtickSArwEOlXZ2TZsmVER0djMpmYMWMGWw4z8eeVV15h9uzZ+Pn54efnx7x58w7bXogRSdGDvcPZUQhxXJs0aRIhIdofBxUVFY5hG/hVTZI33qAgIICKK64ARQHAsm0bbZ9/TtQ//uFIAe4sL9dSgN97b+gv5jjT587Ie++9x+LFi1m6dCnp6emkpKQwf/58qqqqemy/du1arrjiCr7//ns2bdpEZGQkZ555pqPXKsSo4OKlbX81Ji2EGFrh4eGMHz8eODBs09amrUa9vyYJHh6odXWo9fWwvwi5TkftkiWodvuBFODTTtNSgK+/nuzZs511SceFPpeDnzFjBtOmTeOFF14AwG63ExkZyW233cY999xzxONtNht+fn688MILXH311Uf1PaUcvBj2Pp4B1Vvg9Pcg7lJnRyOEAHbu3ElHh/bEMjg4mIiudWkannqK2rvv7vGYoP/9D6/LLwegtr2FilUrMS+8Dux2MBhIXL0az7S0obmAUWBQysFbLBa2bt3KvHkHFs7S6XTMmzePTZs2HdU52tra6OzsxN/fv9c2HR0dNDU1dXsJMaxFX6Rtc193bhxCCIfk5GRCQ0MBqKysZMeOHbRu3kztYf5wrrv3XtrM7Xy6N5O//PIZz/lZePmT56mLCEa1Wsk79VTyFy4cqks4bvSpM1JTU4PNZnOkUu0XHBxMRUXFUZ3jz3/+M2FhYd06NL/2+OOP4+Pj43hFRkb2JUwhht54bVlz6jKcGoYQoruwsDDH4noWi4W8mhrsPj69trcWFLDisT/zVXHWgZ0GAx+8/BA/3HQZKtDwySdsCwnBfJSfe+LIhjSb5oknnmD58uV8/PHHmEymXtstWbKExsZGx6u4uHgIoxSiH0ye2tZc69w4hBCHMJlMpKWl4arXowYH0/Tll1jmztXe1Ou1VxcVmPnoMvRt2hIPYe4+xHsH4qozkH3Babz+/j8xe3lgb20la9w4Sh9+2AlXNPr0ac6IxWLB3d2dDz74gAsvvNCxf9GiRTQ0NPDpp5/2euxTTz3FI488wurVqznhhBP6FKTMGREjwisuoFrhRikNL8RwVVZWRnlXtVZjXR2hv/yCLTubjowMLHm5KFYbADaDHtPmH4hKnQFAh83Kp3szWVOWB8C8f31A7GerAHAJDWVCdjYGg8EJVzS8DcqcEaPRSFpaGmvWrHHss9vtrFmzhpkzZ/Z63N///ncefvhhVq5c2eeOiBAjhquftrVKXQIhhquwsDAmJiej6HRYAgLYN38+Hv/6F1E7d/L2xg95+d1/UB0Vit5qo/OEmTS9rs0Dc9UbuCQ2lTjvMQCs/sPFmNZ+i+LqqqUA+/tT8/77zry0Ea3PwzSLFy/mlVde4c033yQnJ4ebb76Z1tZWru0qInP11VezZMkSR/u//e1v3H///bz22mtER0dTUVFBRUUFLS0tA3cVQgwHfsnaNucV58YhhDgsk8lEamqqY7pAXl4eBfv2Um5ppSEihO8+eY2QTz8FNzeqf/97ys45B7vViqIonBQc6zhPcZAPqTU1eJ56qpYCfN11ZJ9yipOuamTrc2fksssu46mnnuKBBx5gypQpZGRksHLlSsek1qKiIsoPquv/0ksvYbFYuPjiiwkNDXW8nnrqqYG7CiGGg3Fdi2wVrHBuHEKIozJx4kRHtk19TS2Xm7RFLz0MRjzOP5+Y6mpcZ8zAvHYtdNUq8TAYHcfbVG1IJ/Hzz4n78EPQ6Wjfto2tfn60bN06tBczwvW5zogzyJwRMSJYrfCaC7gGwKIaZ0cjhDhKZrOZ7OxsVFXFrqp80VHEPTPOxa2r42FvakLX9dnz9u4tbKjIB+CahBOZedCTEqvVSs60aVjytfd9L7qIuLfeGuKrGV4GZc6IEOIw9k9eszQ4NQwhRN/sH7ZpV+wowHmuUWzIymD/3+r7OyIFTTVsqiwAtDkkUwO6l50wGAxM2raN8CeeAKDh44/ZFhoqKcBHQTojQgwknRG6Ht0KIUaWuKQEfrJUA+DfqWNj+s+sK8pha3URb+3azFPbV2NV7QDMDonHZHDp8Twht9xCSnk5ej8/7C0tZI0bR9ljjw3ZdYxE0hkRYiCZArWtuc65cQgh+izU3Ye0uETebt+DDRV39LhXtfJR7s/8ULkHW1dHJNEnmAujUw57LoOnJ1OKigi87joAyh9/nO1JSVhl/aoeSWdEiIEU2JW6vuOfzo1DCNEvM4NjuX7ibL7VVVNla0cBLnIby0mGIEx6F84IH89tyafiotMf8VwAY599lolbt2opwKWlZPr7U/vBB4N7ESOQTGAVYiDt+wK+OQ8CU+E3MpteiJFKVVUKmmsoKS/Ho6UTABeDgYkTJ/a7uFneggW0rF8PgHtaGuPXrh2ocIctmcAqhDOMPVfbNuY7Nw4hxDFRFIU47zHMSZxM8sSJ6BQFq9VKZmYmzc3N/Tpn4pdfErT8HdAptG3dylY/P/ZsWk+duXWAox95pDMixIBToFOK+gkxWuzPtnF3dwdg165d7N27t8/nqTO38oRPGy9/8gINYWNQrVbqz1zAqovPO+47JNIZEWKg6V0Bu7OjEEIMsPHjxxMREQFAbW0tmZmZfZqQ2mLt0LJxDAbe/88j/HjDxQDErfuZwph4rDXHb30iWdVHiIHmFgothdBUAN6xR24vhBgSuxqr+LYkm6KWehot7dw8fjZTAiMPe0xeQyUrCtIpb2vEz9Wdc6KSSZ04kezsbMewTYOvkTW1BTRa2onw9OOy2FRcGs3o9XrCwsJ6PXfWRWeQd8ZMrvz9/ZhaWsiMiSH03nsJu+eegb70YU+ejAgx0EJmadsdzzg3DiFENxablQgPP66IO7oFW2vMLbyQtZZE32DuSz2b08MT+e+uzexpryM1NRUPDw9UVcW7voMzPaK4d+rZRHj4sjJnK1VVVZSXl9PR0XHY72H19OSt95/B9corACh/9FG2jx9/3KUAS2dEiIGWfIe2LVlz+HZCiCGV7B/GhdEpTD3C05D91pXvJtDkySWxqYS6+zA3LJHUwEhWl+YBkJSUxCalDjsqXmY71fl7OT94PNP0gY5zVBxl9VXvfzzB+M2bUYxGOktKyPT3p+6TT/p8jSOVdEaEGGhB07Rta5Fz4xBCHJOCphqSfEO67ZvgF0pBkza3w2q3kd1WiyFyDEpXtk3+7t0oyoH2NTU1R3w6sp/7hAmk1tbiOXs2qCqFCxeSM3fugF3PcCadESEGhQLWNmcHIYQ4Bk2dZryNpm77vI0mzLZOLDYrLZ0d2FHxdfNg6tSp6PVaITQFpdsxB69kfzQSv/qK2PffB52Otl9+Yau/Py0ZGcd0LcOddEaEGAwGd2DY1xMUQgyQ2tpabLae16Wqra096qcj+/mdfTYptbUYY2Kgs5O82bMpuP76gQh1WJLOiBCDwTNK21b97Nw4hBD95u1iosli7ravyWLGpHfBqDfg6eKKDoWmlhaKig4/LLu3pJjl+b/0/n5z7SH7DAYDk7ZvJ+zRRwGof+89toWF9TsFuM7cSlFLneM1nGqbSGdEiMEQNk/b7nzOuXEIIfot1juQ3IbuE1BzGiqI9dYmqBp0eqK8/KmrqeVIK6s01zdQ1dLY6/v/y/+FHXWlPb4XevvtpBQXo/f1xd7cTGZMDGV//3uPbc27d9PWw5BOnbmV+3/5nEe3rXS87v/l82HTIZHOiBCDIflP2rbiB6eGIYQ4wGzrpLilnuKWegBqOlopbql3fCB/XJjB63k/OtrPCR1HjbmFDwu3UdHWyNqyXWytLmJeeKKjzbzwJD5r2kNngCdeYwJoNNhpslu6fV8VFUVRuNh1LN4urswNTeB38dM5N2oSIW7aei12VP6T+wMtnT0P5xh8fZlSXIz/woUAlD/8MNsnTOiWAmytqyNv/nx2LViAtaGh2/GOgmsHsap2Wqx9Gz4aLFL0TIjB4NtV7Ky9bxPXhBCDZ19zHU/vOJByv6IgHYCZQTFckziTRks7dR0HJp4Hmjy5deKprChI57vSPHxd3VmYMIOJfgcKmU0bM5aWTjOfluTQZDET4enH5YlpjPX0x2w2U1xXzaaSXUw0+GFQdFzuEs34sPGO0vLnRE3k3zkbyawtwWyz8mNlAWdGjO/1GmJefJHgW28ld/ZsOouLyfT3J+btt/E77zz23XYb1ro6UFUqnnmGiL/+daBv4aCRVXuFGCwv6wEVbpTS8EIcr1YUpLO6NBeAawOScWnXVgCOiIggODgYgMq2Jh7Y+gUAkR5+3Jd69lGdO++ss2j5QXv6aoyJwVJY6HhPMRpJ3rEDY1cF2KKWOh7dtvKQc9w79SyiPP37eXVHJqv2CuFsLl5IRo0Qx7eGg560xMbEkJSUhE6no6SkhJKSEgCC3b3xc9WelDRY2o/63IkrVxK7fDkoSreOCIBqs1H2yCMDcAVDQzojQgwWnzhtW/ipc+MQQjiNi/7AbIgmSzseHh6kpKTg7e1NUFAQAJ12G22d2jwTF13fPpZ9zzoLt7S0Q9+w2ah9+23ac3P7H/wQks6IEIMl6nxtm/eac+MQQjhNvPeB0vDryvMB0Ol0jBs3DqPRCMDmqr102K1d7cf06fyVzz5L+y+9pAwrCqX338/OujJez9vUY5Oc+qMrVz/YpDMixGDZv0ZNTe+1BYQQo9u0MdG46V0A2FK9l8/2bcds0+aN2FU7v1Tv4/2CrY72c0LHHfW523NzKX344d4b2O00rlzJ++//h7K2ntOKP9qbwef7dhz19xwskk0jxGAx+Wpbc/8KFAkhRj5XvYELolNYvkf7o+TLop2sLs0lwsOXWnNrtzkiqQGRxPXlyYjdjltSEub8fNT9FV4VBcVgQO3UOjwqcO6Sp3n1o+cI8vRjvG8wOkVHbkMF5e1NAHxRtINwD19Sj3IBwcEgnREhBpOih1/VHBBCHF/mhiXQbu3k032ZAHTYrOxp6v5HSop/ONcmzkRRlJ5O0SO3CROY8NNPqKpKZ3k5Hfn5mPPzMe/ejXn3bqrTf8FYXYveauOG39xOwtcr8R433XH8NyXZfFSY4fhv6YwIMVoZfaGjFqxWMMg/NyGOV+dETWSSfxhry7XCae22TgyKjiTfYE4JHcck/3B0feiIHExRFIxhYRjDwvA65RQAGi3t/GPzx2C1cfbjLxOxKYPdZ5xByP/9H+H33w/AmeHj+blqH8Wt9extrqW0tYFwD9+BuuQ+kd+OQgwm3wlQuQHy34Sk65wdjRDCiSI9/Vg4bgYLx83AZrejU5Q+PQnpi+r2Zq2wgEFP24vPMKHTg13nnkvF3/9OwxdfMH7TJnQ6HVMCIihu1SrSVrU3O60zIhNYhRhMcZdp293vODcOIcSwotfpBq0jAnQ7t1W14TZ+PJN278b/8ssxRkWh60oh7lRtPR4z1KQzIsRg2v80pH6nc+MQQhxXQty80SvaR3xGTQkWmxWdTkfMK68wbsUKAGxd2Tz7hbv7OiNUQIZphBhcBpO27ah3bhxCiEFhV+18vm8Hm6v20tRpxsfoxqzgGM6JTD7sk4a8hkpWFKRT3taIn6s750QlMys4tlub78t2saokh0ZLu7bmTVwaMV6BvZyxOw8XV1IDI/m5eh8t1g7e2PUTixJOxLWrCFun3cb7e7ZS07VI4HjfEMa4efbzLhw76YwIMdgUF1A7nR2FEGIQrCzOYV15Ptcmnkiouw/7mut4c/dPuOmNnHbQ6r4HqzG38ELWWk4JHcd1SbPIbajgv7s242M0ORbh+7l6Hx8UpHNl/DRivAJZU5bLczu/569p5+FtNB1VbGdFTmBbTTFW1c7WmiJyGiqY7B+OXlHYXldGc6cZAB0K50QlD8wN6ScZphFisJkCtK25xblxCCEGXEFzNVMCwpnkH06gyZO0MVFM8A2lsLm212PWle8m0OTJJbGphLr7MDcskdTASFaX5jnarC7N5eSQOE4KiSPMw4er4qdj1Bn4sXLPUccW4eHHjeNPxkWnB6DNauGnqkJ+qCzo1hFZlHAiCT5B/bwDA0M6I0IMtoCp2jbnBefGIYQYcLFeY8htqKSyTSsgVtxST35TNcn+ob0eU9BUQ5JvSLd9E/xCKeiqPWK12yhqrmP8QW10ikKSb4ijzdFKCYhgyZT5zAyKwaAc+MjXKQonBEbx5ylncmJwTJ/OORhkmEaIwZb4eyj5GvZ+DFPvcXY0QogBdFbkBMy2TpZu/QJFUVBVlQuiU5gR1PsHfFOn+ZChFm+jCbOtE4vNSpvVgh0Vrx7aVHRVTe2LcA9frkmcyWVxJ1BtbkZVIdDkgYeLa5/PNVikMyLEYBt7obZt3OXUMIQQA29r9T62VO3lusRZhHn4UtxSz/sFW/E1ujHzVxNSnc3N4EKUp7+zw+iRdEaEGGz7K692Njs3DiHEgPuwMIP5kROYFhQNaE8hajta+bo4u9fOiLeLiSaLudu+JosZk94Fo96ATlHQodDcQxsfl6ObvDrSyJwRIYaCzhUOKi4khBgdLHYrOrqn8OoUBVWrf9qjWO9Achsquu3Laagg1ltL2zXo9ER5+ZPTUOl4366q5B7UZrSRJyNCDAW3YGgtgpYS8IxwdjRCiAEy2T+cr4p34m9yJ9Tdh+KWelaX5DIr5MBTkY8LM2iwtHFt4iwA5oSOY23ZLj4s3MZJwbHkNlSytbqIW5PnOI6ZF57EG3mbiPbyJ9orgDWleVjs1kNqkdR3tPFRYQZZ9WVY7DbGmDxZlHAi0V4BvcY82DVO+kM6I0IMheAToaAIdv4TTnzS2dEIIQbI5XEn8Om+7byb/zPNnR34GN2YHRrPuQfV7Wi0tFPX0eb4OtDkya0TT2VFQTrflebh6+rOwoQZjhojANPGjKWl08xn+7bTZDET4enH7RPn4m10c7Rp7bTwZOYqEnyDuS35VLxcTFS1N+NhMPYa71DVOOkrRVXV3p8lDRNNTU34+PjQ2NiIt7e3s8MRou/K1sMXc8BvElyy3dnRCCFGgY8KM9jTVM3dKWcc9TEfFm5jZ10ZS9MWOPa9krORNlsndyTPBeDxjG+I9vTnivhpgDZEtGTLJ8wNS+CsyIl9ivFoP7/lyYgQQyFMW9ablkLnxiGEGDW215YwwS+Uf+dsYHdjFb5Gd+aEjmN2aHyvx/RW4+T9gnTgQI2TsyMmON7vb42TvpDOiBBDRoHOtiM3E0KIo1BtbmFd+W7mRSRxduRE9jbX8V7BVgw6Xa+ZPENd4+RoSWdEiKFicAOrdEaEEANDBcZ6+nNR9BQAojz9KWtrYF357mFX4+RIJLVXiKHi3pVFU5fl3DiEEKOCj9FEqLtPt32hbj7Ud/T+R8+Rapx4urg6pcaJdEaEGCqhXWl7259xbhxCiFEhznsMlb8aOqlsb8Lf1aPXY4ZrjRPpjAgxVCbdoW0r1h/Yp6raSwgh+mheeBIFzTV8VZRFVXszW6r2sqEin1PDxjnafFyYwet5Pzq+nhM6jhpzCx8WbqOirZG1ZbvYWl3EvPDEbufdWJHPpsoCytsaeTf/5x5rnAwkmTMixFBx61qiu3kvrL8JajOgPguiL4TT3nZiYEKIkSjaK4Cbx5/Cx3sz+LJoB4EmTy6NTeu2SN9g1TgZaFJnRIjBtPsdyH0F6nZAR92B/YoBVKv23xNvg5Oec058QggxiKTOiBDDQcVGKF936P79HRGAsecNXTxCCDEMyZwRIQbTjCfAIxIUfc/vG9wPTGwVQojjlHRGhBhMRh8444Oe31P0EHk26HtfR0IIIY4H0hkRYrAFTYfpTxy6X7XB2AuGPh4hhBhmpDMixFCYvBjCz/jVcI0CUec4LSQhhBgupDMixFBQdHDa26iufqhoZZxrfJJZXVNF1SCu9yCEECOBdEaEGCLb2zp5M+JPACjAOsN4VhRu4/5fvuCDgm3YVbtT4xNCCGeRzogQQ2B9+W6WZa9jk0sM9Xo/AFr17o73V5Xm8EruD9IhEUIcl/rVGVm2bBnR0dGYTCZmzJjBli1bDtt+xYoVJCUlYTKZmDRpEl999VW/ghViJNrbXMu7+b84vl4fdjUApxoaGO8b4tifXlPMNyU5Qx6fEEI4W587I++99x6LFy9m6dKlpKenk5KSwvz586mqquqx/Y8//sgVV1zBddddx7Zt27jwwgu58MIL2blz5zEHL8RIsKY0DxWt0PHpYYlccNpjAETRzJ8mncZtE09F6Wr7XWkeNrs8HRFCHF/63Bl5+umnueGGG7j22muZMGEC//rXv3B3d+e1117rsf0///lPzjrrLO6++27Gjx/Pww8/TGpqKi+88MIxBy/EcGexWUmvKQLAw2DkopgpKK7uWrGzVm1/sn8YUwIiAWjqNJPdUO60eIUQwhn61BmxWCxs3bqVefPmHTiBTse8efPYtGlTj8ds2rSpW3uA+fPn99oeoKOjg6ampm4vIUaiBks71q55IEm+IbjoulJ73UOhtczRbpL/gUWqaswtQxqjEEI4W586IzU1NdhsNoKDg7vtDw4OpqKiosdjKioq+tQe4PHHH8fHx8fxioyM7EuYQgwbeuXAP7F2q+XAG3FXQtjcA+/ZOns8RgghjgfD8rfekiVLaGxsdLyKi4udHZIQ/eLn6oa3iwmA3IZK6syt2hvTHoKzPgfArqpsqixwHBPtFTDkcQohhDP1qTMSGBiIXq+nsrKy2/7KykpCQkJ6PCYkJKRP7QFcXV3x9vbu9hJiJNIpOk4OiQPAjsq/czdSu79DAnTYrCzf8wslrQ0AjPX0J8rT3xmhCiGE0/SpM2I0GklLS2PNmjWOfXa7nTVr1jBz5swej5k5c2a39gCrVq3qtb0Qo83csER8jG6AluZ738+f8cyONbyUvZ4/b/6YdeW7Aa0Q2vljJzsxUiGEcI4+D9MsXryYV155hTfffJOcnBxuvvlmWltbufbaawG4+uqrWbJkiaP9HXfcwcqVK/nHP/5Bbm4uDz74IL/88gu33nrrwF2FEMOYt9HE7cmnOjokdlRyGyrJqC1xzBXRoXB1wokkHzSRVQghjheGvh5w2WWXUV1dzQMPPEBFRQVTpkxh5cqVjkmqRUVF6HQH+jizZs3i3Xff5b777uMvf/kL48aN45NPPiE5OXngrkKIYS7Cw4/7p57N2vLdbKjIp9HSDoCLTs+0MWM5PTyRCA8/J0cphBDOoaiqqjo7iCNpamrCx8eHxsZGmT8iRjy7qtJoaceuqngbTQfSfYUQYpQ52s/vPj8ZEUIcG52i4OfqfuSGQghxnBiWqb1CCCGEOH5IZ0QIIYQQTiXDNEIco12NVXxbkk1RSz2NlnZuHj+bKYGHrxqc11DJioJ0ytsa8XN155yoZGYFx3Zr833ZLlaV5NBoaSfC04/L49KI8QoczEsRQginkCcjQhwji81KhIcfV8SdcFTta8wtvJC1lkTfYO5LPZvTwxP5767NZNUfWKvm5+p9fFCQzoKoZO6dejYRHr48t/N7mizmwboMIYRwGnkyIsQxSvYP61N9kHXluwk0eXJJbCoAoe4+5DdWs7o0j4l+2nlWl+ZyckgcJ3VVb70qfjo768r4sXIPZ0VOHPiLEEIIJ5InI0IMsYKmGpJ8uy+HMMEvlIKmGgCsdhtFzXWMP6iNTlFI8g1xtBFCiNFEOiNCDLGmTjPeRlO3fd5GE2ZbJxablZbODuyoePXQprFThmmEEKOPdEaEEEII4VQjYs7I/iKxTU1NTo5EiCNra28/7M+qh86Fmpambm2qmhow6QyYW9uw2+3oUKhsrGcMro42ta3NuCsG+XcghBgx9v++OmKxd3UEKC4uVgF5yWvYv25c/4469uS0w7aZ/ofL1YvfeKLbvtPuv0U9+8n/c3x94b/+qs664+oDbRRFvfKD59WUq85z+jXKS17ykldfX8XFxYf9nB8Ra9PY7XbKysrw8vJCUZQBO29TUxORkZEUFxfLmjeDaLTf5w6blRpLKwDP7trAeWETiPMMwF1vxM/oxlflOTR2mrkiaioAdR1tPLVrHbMCxjLdP4r8lho+Lc3i9zHTSPQOAiCjvoz3ijP4bcQkIt192VBdyPbGcu5OPBUvF9deYxnt93q4kPs8NOQ+D43BvM+qqtLc3ExYWFi3RXR/bUQM0+h0OiIiIgbt/N7e3vKDPgRG633Oa6jk2V0bHF9/XpYNwMygGK5JnIm53E6LvdNx7d54c5vLqawoSOeHmr34urqzMGEG0w4qenaKtzc2F4VvS3JospiJ8PTjjuS5hHsfXdGz0Xqvhxu5z0ND7vPQGKz77OPjc8Q2I+LJyGCR1YCHhtznoSP3emjIfR4acp+HxnC4z5JNI4QQQginOq47I66urixduhRX197H4MWxk/s8dOReDw25z0ND7vPQGA73+bgephFCCCGE8x3XT0aEEEII4XzSGRFCCCGEU0lnRAghhBBOJZ0RIYQQQjjVqO+MLFu2jOjoaEwmEzNmzGDLli2Hbb9ixQqSkpIwmUxMmjSJr776aogiHdn6cp9feeUVZs+ejZ+fH35+fsybN++I/1/EAX39md5v+fLlKIrChRdeOLgBjhJ9vc8NDQ3ccssthIaG4urqSkJCgvz+OAp9vc/PPvssiYmJuLm5ERkZyZ133onZLKtZH8769es577zzCAsLQ1EUPvnkkyMes3btWlJTU3F1dSU+Pp433nhjcIMc7HVlnGn58uWq0WhUX3vtNTUrK0u94YYbVF9fX7WysrLH9j/88IOq1+vVv//972p2drZ63333qS4uLuqOHTuGOPKRpa/3+corr1SXLVumbtu2Tc3JyVGvueYa1cfHRy0pKRniyEeevt7r/QoLC9Xw8HB19uzZ6gUXXDA0wY5gfb3PHR0d6gknnKCec8456saNG9XCwkJ17dq1akZGxhBHPrL09T6/8847qqurq/rOO++ohYWF6jfffKOGhoaqd9555xBHPrJ89dVX6r333qt+9NFHKqB+/PHHh21fUFCguru7q4sXL1azs7PV559/XtXr9erKlSsHLcZR3RmZPn26essttzi+ttlsalhYmPr444/32P7SSy9VFyxY0G3fjBkz1JtuumlQ4xzp+nqff81qtapeXl7qm2++OVghjhr9uddWq1WdNWuW+p///EddtGiRdEaOQl/v80svvaTGxsaqFotlqEIcFfp6n2+55Rb1tNNO67Zv8eLF6kknnTSocY4mR9MZ+b//+z914sSJ3fZddtll6vz58wctrlE7TGOxWNi6dSvz5s1z7NPpdMybN49Nmzb1eMymTZu6tQeYP39+r+1F/+7zr7W1tdHZ2Ym/v/9ghTkq9PdeP/TQQwQFBXHdddcNRZgjXn/u82effcbMmTO55ZZbCA4OJjk5mcceewybzTZUYY84/bnPs2bNYuvWrY6hnIKCAr766ivOOeecIYn5eOGMz8IRsVBef9TU1GCz2QgODu62Pzg4mNzc3B6Pqaio6LF9RUXFoMU50vXnPv/an//8Z8LCwg754Rfd9edeb9y4kVdffZWMjIwhiHB06M99Ligo4LvvvuOqq67iq6++Ij8/nz/+8Y90dnaydOnSoQh7xOnPfb7yyiupqanh5JNPRlVVrFYrf/jDH/jLX/4yFCEfN3r7LGxqaqK9vR03N7cB/56j9smIGBmeeOIJli9fzscff4zJZHJ2OKNKc3MzCxcu5JVXXiEw8OhW+xX9Y7fbCQoK4uWXXyYtLY3LLruMe++9l3/961/ODm1UWbt2LY899hgvvvgi6enpfPTRR3z55Zc8/PDDzg5NHKNR+2QkMDAQvV5PZWVlt/2VlZWEhIT0eExISEif2ov+3ef9nnrqKZ544glWr17N5MmTBzPMUaGv93rPnj3s3buX8847z7HPbrcDYDAYyMvLIy4ubnCDHoH68zMdGhqKi4sLer3esW/8+PFUVFRgsVgwGo2DGvNI1J/7fP/997Nw4UKuv/56ACZNmkRrays33ngj9957Lzqd/H09EHr7LPT29h6UpyIwip+MGI1G0tLSWLNmjWOf3W5nzZo1zJw5s8djZs6c2a09wKpVq3ptL/p3nwH+/ve/8/DDD7Ny5UpOOOGEoQh1xOvrvU5KSmLHjh1kZGQ4Xueffz5z584lIyODyMjIoQx/xOjPz/RJJ51Efn6+o7MHsGvXLkJDQ6Uj0ov+3Oe2trZDOhz7O4CqLLM2YJzyWThoU2OHgeXLl6uurq7qG2+8oWZnZ6s33nij6uvrq1ZUVKiqqqoLFy5U77nnHkf7H374QTUYDOpTTz2l5uTkqEuXLpXU3qPQ1/v8xBNPqEajUf3ggw/U8vJyx6u5udlZlzBi9PVe/5pk0xydvt7noqIi1cvLS7311lvVvLw89YsvvlCDgoLURx55xFmXMCL09T4vXbpU9fLyUv/3v/+pBQUF6rfffqvGxcWpl156qbMuYURobm5Wt23bpm7btk0F1Kefflrdtm2bum/fPlVVVfWee+5RFy5c6Gi/P7X37rvvVnNyctRly5ZJau+xev7559WoqCjVaDSq06dPV3/66SfHe3PmzFEXLVrUrf3777+vJiQkqEajUZ04caL65ZdfDnHEI1Nf7vPYsWNV4JDX0qVLhz7wEaivP9MHk87I0evrff7xxx/VGTNmqK6urmpsbKz66KOPqlardYijHnn6cp87OzvVBx98UI2Li1NNJpMaGRmp/vGPf1Tr6+uHPvAR5Pvvv+/xd+7+e7to0SJ1zpw5hxwzZcoU1Wg0qrGxserrr78+qDEqqirPtoQQQgjhPKN2zogQQgghRgbpjAghhBDCqaQzIoQQQginks6IEEIIIZxKOiNCCCGEcCrpjAghhBDCqaQzIoQQQginks6IEEIIIZxKOiNCCCGEcCrpjAghhBDCqaQzIoQQQginks6IEEIIIZzq/wPemrCgoT8zbAAAAABJRU5ErkJggg==", + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAiMAAAGdCAYAAADAAnMpAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjcuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/bCgiHAAAACXBIWXMAAA9hAAAPYQGoP6dpAADaqElEQVR4nOzddXgUVxfA4d/6xjZKPJAAIVhwd6doKdSg1A1aalRpS92+utBCnRotFCju7k7QhABxd92szn5/LATSJBBoQuy+z5OHzc6dmTtLsnty595zZDabzYYgCIIgCEItkdd2BwRBEARBaNxEMCIIgiAIQq0SwYggCIIgCLVKBCOCIAiCINQqEYwIgiAIglCrRDAiCIIgCEKtEsGIIAiCIAi1SgQjgiAIgiDUKmVtd6AqJEkiJSUFFxcXZDJZbXdHEARBEIQqsNlsFBYW4u/vj1xe+fhHvQhGUlJSCAoKqu1uCIIgCIJwHRITEwkMDKx0e70IRlxcXAD7xeh0ulrujSAIgiAIVVFQUEBQUFDp53hl6kUwcvHWjE6nE8GIIAiCINQzV5tiISawCoIgCIJQq0QwIgiCIAhCrRLBiCAIgiAItUoEI4IgCIIg1CoRjAiCIAiCUKtEMCIIgiAIQq0SwYggCIIgCLVKBCOCIAiCINQqEYwIgiAIglCrrjkY2bFjB+PGjcPf3x+ZTMayZcuuus+2bdvo0qULGo2Gli1bMn/+/OvoqiAIgiAIDdE1ByPFxcV07NiRr7/+ukrtY2NjGTNmDIMHDyYiIoKnn36ahx56iPXr119zZwVBEARBaHiuuTbNqFGjGDVqVJXbz5s3j5CQED755BMA2rRpw65du/jss88YOXLktZ5eEARBEIQGpsbnjOzdu5dhw4aVeW7kyJHs3bu30n2MRiMFBQVlvgRBEARBaJhqPBhJS0vDx8enzHM+Pj4UFBRQUlJS4T7vv/8+rq6upV9BQUE13U1BEARBEGpJnVxNM2vWLPLz80u/EhMTa7tLgiAIgiDUkGueM3KtfH19SU9PL/Nceno6Op0OBweHCvfRaDRoNJqa7pogCIIgCHVAjY+M9O7dm82bN5d5buPGjfTu3bumTy0IgiAIQj1wzcFIUVERERERREREAPaluxERESQkJAD2Wyz33HNPaftp06YRExPDCy+8QFRUFN988w2LFi3imWeeqZ4rEARBEAShXrvm2zSHDh1i8ODBpd/PnDkTgHvvvZf58+eTmppaGpgAhISEsHr1ap555hm++OILAgMD+eGHHxr0st4cQzFFFmOZ55yVGjy0TrXUI0EQBEGou2Q2m81W2524moKCAlxdXcnPz0en09V2d64ox1DM7EMrsdikMs8rZXLe7jZOBCSCIAhCo1HVz+86uZqmPiuyGMsFIgAWm1RutEQQBEEQBBGMCIIgCIJQy0QwIgiCIAhCrRLBiCAIgiAItUoEI4IgCIIg1CoRjAiCIAiCUKtEMFKNzJKVXannKt2eb6q4MKAgCIIgNGYiGKkmJquFr05uY3ta5cHI/DP7SCnOv4G9EgRBEIS6TwQj1eTP84c4k3+pIGCorgmD/VrR2TMQtVwB2HOQfH16Gyarpba6KQiCIAh1To1X7W0Mco169qbHAqCRK3kqfDAtdE1KtxeaDHxxciuJxblkGYo5lJVAH5/mtdVdQRAEQahTxMhINdibHosNe1b9YYGtywQiAC5qLZNbdiv9flfa+RvaP0EQBEGoy8TISDVILykofdzZMwiApBQz7YcnMaiXA/26a5DLlRRqPHFqmk26vqCyQwmCIAhCoyOCkWogu+zxxRESrVaG1QI79htYt02P0QQQCrREqZb4xyeB0BAlXdprGNBLy+DeDmi1YqBKEARBaHxEMFIN/J3cSh8fyIinqbMHXh5KPpjlwZOvZxO9PZADcZl8suwcmbFO6NOdycyxEptoYcMOAx98Y19ho1FDE08FzZsq6djGHqQM66fFzVX8NwmCIAgNl8xms9lquxNXU9USxLWlwGTgpQPLsNoklDI509r2J9wjAH2JRNOeCdwyVoPvxENklBQC8FDrvnRv0gxJkjgeaWbzrhL2HTUQdc5MUqqVgkIJ6bL/FZUSPNwUBAcpCW+tpk9XDSMHOeLvI4IUQRAEoe6q6ue3CEaqycLzh9mScqb0+xAXT1rqmvDVx0p2rHRixMwzBHfLw9/RlVc634TywnLfypyPM7FhRwn7jhg5ecZEQoqF3HwJq/VSG4Uc3FzlBPkraddKTa/OGoYPcCCshbqmLlMQBEEQqkwEIzeYVZL4LmoXEdlJZZ6P2ubFju9agszGhKeT+OGxbnhqna77PGkZFjbtLGHXQQPHI03EJlrIzrNiNl9qI5OBzllGgK+S1i1V9OykYUhfB7qEq5HLxbwUQRAE4cYQwUgtkGwSu9Ni2JJyhhS9fR5I3GF3NnwSBtgAGc8+6soHL3mgVMqueKxrVVAgsXl3CTsPlHD0lInz8WYysyUMxrL/vU6OMvy8FbRqrqJruIYhfRzo002DWi2CFEEQBKF6iWCkFtlsNtJKCig0Gdi4wcaMZ/Wl22QyGNxHy99zffBwv/KtmupgMkns3G9gy94SjpwwER1rJj3DSnFJ2f92rUaGj5ecFs1UdAlX07+HA0P6OODsLIIUQRAE4fqIYKSO+OXvQu6bmVnmOYUC/H0UrJrvS4c2mlrplyRJHDxmYsvuEg5EGIk6byYlzUJhsY3LfyLUKvD0UNA8SEmHNmr699AyfIADXh5i8qwgCIJwZSIYqSO+/b2AabOyyj2vUIBKKePXz5tw21jnWuhZ5SLPmtiwQ8/+o0ZORZtJSrWQVyAhSZfaKBXg7ianaYCS8DA1vbtqGTnAgWZBqtrruCAIglCnVPXzW/x5W8MMRhtyOWU+yAGsVrBabdw+PYNtngoG9naonQ5WoE2omjah5VfkJCRb2LhTz+6DRk6eMRKfZOHYaROHj5uY/3cRAHI5uLrICfRT0DZUTa8uGob1c6BtK5WYPCsIgiBUSIyMVMHLB5aTbSwu9/xAv1CmtOxe4T6HMxNYHn+cjQtdOPB3IJK17IRVhRyQ22g3KJued8XTxseDKS274+NQv0Z+AHJyLWzcWcKuA0YiThuJTbSQmWPFZLrURiYDZycZ/j5KWrdQ0a2DhqH9HOjZWazwEQRBaKjEbZpqVGgyIHHpZUopzufzk1uYGT6UMDefcu3PF2Ty8bFNTAjpyIY/3Plinh6r5VIwIpPBnfdZcO59isd6dMdL68SKuOMk6/N4o+tYVFfJQVJf6PUSW/aUsGO/gaMnjZyNs5CRZaXEUPZHztFBhm8TBS2DlXQN1zCwt5aBPUV6fEEQhPpO3KapRi5qbZnv1yWeponWmVau3hW235x8hnYefowMbMsWazZWSwkA7l5WWjdzZO9hI8q257g1vDWdPAMBuD+sN8/tW0pEViLdvYNr9HpuFEdHOWOHOTF2WNm8KhaLxJ5DRrbsLuHQCSPRMRZSMyzEJNjT47//9aX0+N6eCpo3U9KxrYYBPR0Y3s8BnU4EKYIgCA2JCEaukUWysj8jjmEBrZHJKs4VElOYxbCA1gB0aquhTzcNvcfm49whjufa3IRbeCz7V3rw7ljf0n0clGpCXLyIKcxqMMFIZZRKOQN6OTCgV9l5MpIkEXHKxObdBvZfSI+fnGZlx34j2/cZ+fIne7VjlRI83S+lx+97IT2+r/eN+3HOMRRTZDGWfu+s1ODxH5LZCYIgNGYiGLlGEdlJlFhM9PEJqbRNgcmATmUfTZk8wZnJE5zZllLMqgQDzs5yhg2TsXGjFzHRMoK6XNpPp9aSbzLU9CXUWXK5nC7hWrqEa8ttOxtrYuO/0uMfPGZk3xEj3y+w1/xRKMBNJ6epv5L2YfbJs8MHOBAaUr3p8XMMxcw+tBKL7dKsZKVMztvdxomARBAE4TqIYOQa7U47TzsPP9w0jtd9jNdedGLL9nyefzOfA8vdqq9zDVhoiJrQEDWP3Vv2+bQMCxt22NPjn4gyEZdo4eQZE0dPmfhtqX2Fz8X0+IF+F9Ljd9YytK+WTu2ub/JskcVYJhABsNgkiixGPBDBiCAIwrUSwcg1yDYUE5mXzrS2/a/YTqfWUmAuO8JRYDbgemHuSWiAE22HRXNotT+JKRaC/O3/DQUmA0HObjXS94bK11vJPbe6cM+tLmWez8u3sHm3kV0HSjh6ykhMvIXz8RZORZtZsuZSRlxnJxl+TRS0aqGiW7i9hk+fbhqUSjEvRRAE4UYRwcg12JN+HheVhnAP/yu2a+7iRVReWum8EYDI3DSau3gB4KV1oufoXI6v8mf6rExW/eJHicVMbGEWA/1a1ug1NBZurkomjVYyaXTZkQqDQWLnAQNb95Rw5KSJs7FmktOtnI2zsHpzCW9+ngeAg1aGt5eCls2UdAnXMKCnliF9HHB0FEGKIAhCdRPBSBVJNht70mPo7dMchazsB9LPZ/bgpnbklpBOAAwNCOPj45vYmBRJuIc/BzPjiS/KYWpoDwBkMhm3dGzJtn5ZbNjtSXRmDpsyT+KmcaCTV9CNvrRGRauVM3yAI8MHlL3NZrFcSo9/8JiRM+fNJKdb2JJsYfNuAx/Ns6/wUavB3U0Gbm3xbKbHN6yAwPB8tC7W2rgcQRCEBkEEI1UUlZdGjlFPX5/m5bblGPXIuLSypoWuCQ+F9WV5/DGWxR3D28GF6W37E+DkVtpmZGAbpt5xnNd2ynl03hHGT5DxZLvBDSbHSH2jVMrp3VVL765lJ89KkkTkOQsbS9Pj2yfPFpx1IT1ax+mNvoANmdzGErd8QgL1hLe2r6AaMcCRpgHiV0wQBOFqRNKzWubbOZ68AivF0cEoFOIWQH2QUJTDu0fXUZipJumEK+nRLuQkOSLluVCQb8Ny2SDJxfT4Qf5K2oaq7Onx+zvSpqVSZJ4VBKHBExlY64k5P+fzxGvZvP6MG2/M9Kjt7ghXka4vYFn8MY5kJZbbNqPdQMI9AsjKsbBxRwm7Dho5diE9flaOFZP5UluZDFwupsdvaU+PP6y/A907ivT4giA0HCIYqSckScK1TTwKBeSdrjx3iVD7jmUn8X3UbsxSxfNDNHIlT7QfRGglmXmLiiS27i1hx/4Sjp40cS7OTEa2VHF6fG8FocEqunZQM6iXAwN7aVGrRZAiCEL9IoKReuSFd7P5aF4+P33sxf13NLzrawjiCrP56NjG0vwiKpmcYBdPJJuNuMJsrBdqF2kVKl7pfBPeDi7ljmGWJDZnpNHS2YWWzpe2m0z29Phb95Zw6LiRszFmUjKsFOvL/mpqNTKaeMpp0UxFp7ZqBvR0YGhfkR5fEIS6SwQj9YjJJOEcFoe3l4Kkg81quztCBeac2saJnBQAunk15a7QHjgq7ZldC0wl/HRmL5F5aQD0823B3aE9S/eNLMjn57gYfoo9T7bJxIMhLfihW8/yJ/kXSZI4etLE5l0lHIgwEnnOTHKahYIiG5f/1qpU4OmmICRISYc2avp00zJigMMNTY8vCIJQEVEorx5Rq+XcNtaJBcuK2bxLz9B+15/dVah+OYZiTl4IRNw1jtwf1hvlZauedGoHHmnTj1kHlmGwWjiQEcfIwHCWp6bwXcw5DuXmoJDJsNpsKGQyPNRVS08vl8vp2kFL1w7l0+NHx9jT4+89Yl/hk5hi4cAxI3uPGPn2j0vp8d1d7enx24Wp6d1Fw4gBDrQIrt70+IIgCP+VGBmpI3JyLXh1TKBtqIqTm0WukbokIjuJuad3ADAysC0TL+STmbJvN2mGEoIcHXFTqUksyCChKI8cCyRbZJglGzLg8sTxcuCTjl14ulXrf5+mWqSkW9i4Xc/uQ0aOX0iPn5NnxWy5rA8y0LnICfRT2NPjd9IyrL8DHdqoxORZQRCqlRgZqWc83JUM7qNly24Dp8+aaBsq/nqtK6zSpXDCQakqfbw/J4u44mKkina6MIfk35G+BKxJTcZP68AYf1+clZpq7au/j5J7b9dx7+1ln8/Lt7Bpl4GdBwxEnDISk2DhbKyZk2fMLF79r/T43krCmivp1lHLkD5aencV6fEFQahZYmSkDjkba6LVgCQG9NSwfXFAbXdHuCCuMJv3I9YD9oR2L3QcXma73mJhf04mLx/ZwbEiKyXX8RslA1RyOQ5yOe5qDYEODrR3daO/VxPG+Prhqil/q6Y6GAwS2/eXsG2PgSMnjZyNs5CeaUX/r4tw0MrwaXIhPX57DQN7axnUS6THFwThysQE1nqq04gkjkeZSD/alCaeYuCqLrDZbLx1ZA0pentK+Pta9aL3vzLxrks8zT9xEQA4aTzZmGvhVEF+uZERgNsDg0gpKSGxRE+eyYTeasVis1XY9t9kgFImw0GhwF2tJlDrSFtXV/p7NWGcrz9u2uoJWiwWif1HjWzdY+DgMQNnYiykpFsoKi47eVajBi8PBc2bKunYRkO/nhqG93PAw1387AqCIIKRemvXgRL6T0rltjGOLJrnW9vdES7YnXaeX8/uL/2+vbs/XbyCsNokDmTEc7Ygo3TbE+0G0drNl8/PnmH2yWOYbTasl/2aFd1yO07Kyj+sC81GVqWmsiMzg1P5+SSW6Mk1myixWjFL0jUHLW4XgpY2Oh39vbwZ6+eP53UGLZIkceqMmY077St8TkebSEqzkl8ocdndLJRK8HCT0yxAWZoef+RARwL9RJAiCI2JCEbqsWa94klJs1IYFYxWK4bB6wKbzcaf5w+xPfXsFduNbxbOmKbhpd/HFhfx6OEDbEy3L/t1VigpnHh7ZbtfkyKLkbWpqWzNyOBUQT6JenvQordasUhSJXNZyvp30OKvcaCNTkc/ryaM9w/E6xqClrgEMxt2lLDniIGTZ0wkJFnIzZfKpcd3012WHr+zhuEDHGlTR+dIWSQLSrkIoATheolgpB5bsKyQu57I5KkHdHz+pldtd0e4wGazsS31LOuTTpNr1JfZ5uPgwpim7enpXT6Lrs1m46/EeGYcPUSggyPHRoy+UV0G7EHLhrR0tqanc6Ign0R9MTnXGbRoFQrcVCr8tPagpY+XF+P9A/HVVr4cPSPLwsadJew6aOB4pInYRAvZFaXHd5YRcCE9fveOGob2c6Bbh5pLjy9JNk6dMRPe5lIgFB2Xw56IFExmK6dUe/jW+TmeLPyalpbOVz2eWqWgTyd/WgWLsg6CcJEIRuo5z/A4DEYbhVHNxHLLOkaySUTmpZGuL0QmgwBHN0JdvZHJZFfcr8BsxmC14l1N8zqqm8FiYV1aKlsz0zmel0diiZ4ckxH9hdtD1xq0uKpU+GkcaH0haBnnG0CAk1Np26IiiS17Sti+r4Sjp0ycjzeTkSVhMJZ9S3JylOHbREGr5iq6hmsY1EtL/57/PT3+uysSePX7NO5s1pR573njqpMzf9lJcvINWLHwP5/byFYl4W7x44X0RahtZf/fzAozVkXZ0gCeTo48Or7Lf+qXIDQkIhip596fk8vL/8vl49kePPuIW213RxBKGSwWNqansTkjnZP5ucTr7UFL8TUGLYp/BS1hOhf6eHhxk5cfcadVbNtTwqETRqJjzKRlVpwe39tTTotgFZ3bqenfw54e38WlakFK81/WE+uYDTEu+G5tyT/vhXD8/BmK9GZ2Ov/FMtdPQAYym5zBxsncoX++dF+T3MTJJuewycr2SWaT8V6P8Xhonf59OkFolEQwUs9JkoRTq3icnWRkHguu7e4IwjUzWCxsy0hnY3oaxwvyiC/Wk20yUmy1XHvQIlegU6nQmbVoMp2wnXeh6IQL2fGKCtPje7lfSo/fr7uW4QMc8PYqO/fD5edlFDnrwWo/k2xTAKMVnvTok8b7/jdjkBdf1g8Z27tsp797fwASinJ49+i6Cvv8SuebaOosbtUIAoikZ/WeXC7n/tudmftbIYtXF3HrGOfa7pIgXBOtUslN/gHc5H/lnDkWi4WtWRlsSEvjeH4ecfpiskxG9BYLJknCYrNRZLVQZLWQQgl45IIH0P2yg9hAbpEjK1Fhy1eTka4lNcmBPXucmLfYCQzK0vT4zQLs6fGLuxjt+yrsB7CNSGJ1ZhZbchdhDCgp00cZMu45fQ+nep3CUeFIkdlYnS+VIDR6YmSkDtPrJXRt42gWoOT87qa13Z0G7eUDy8k2Fpd7fqBfKFNadq9gDzicmcDy+ONkG4rwdnBhYkgnwj0uffDabDZWxp9gZ9o5SqxmWui8mNKyOz4OjednuDpZLBa2ZWeyMS2NiPxc4oqL7SMtF4KWK4602LCnvzXLoUQJ+UoI1pdvJ0sGtxdBVv5tUY6cGYEzGOs0jX9iI0orNf/7PPe26kkf3xbXeZWC0LCI2zQNxC0PpbFsvZ59K/zp2bluTnxsCApNBi7P4JFSnM/nJ7cwM3woYW4+5dqfL8jk42ObmBDSkQ4eARzIiGN9UiSvdL6JACc3wJ4IbV3iKe4L642X1okVccdJ1ufxRtexqC4rtCdUL4vFwq7sLDakp3I0L4/Y4iKyTUaKLg9abNjvAf2b8/9AdRJklYc245Sz8ZNXXltIjowZ7QfSzt3/v16KINR7IhhpINIyLPh3TaBLuJpDawJruzuNxsLzhzmRk8zb3cZVuErmu8hdmCQLM9oNKn3ug4j1BDm5c1doD2w2Gy/s/4fhgW0YEdgGgBKLief2LeW+Vr3o7h18g65EqMj7KxN42bCr7JOK8+D6Gtgu/H9XMDqCDTxkMFD+NrcFjWRYQBu8tE58vnwfiQ4ZFDvaR9fc1Y6822M8CplYCSc0blX9/Ba/KXWcr7eS3l01HD5hIj7RfPUdhP/MIlnZnxFHH58WlS7XjSnMorVb2Qy5bd39iCnMAiDLUEyB2UCby9o4KNWEuHiVthFqz/Hk8rfksHhDyXi0RcNoahzMcI+RBKtagckJLBoUcvsbZokNStxm82Xuozip5MhkMpzMjgSk+eNstOdbyTXpOZadfGMvShDqMTGBtR6Y+54XHUcmM+3lLNb+5lfb3WnwIrKTKLGY6ONTPoHZRQUmAzpV2dtmOpWWfJPBvt1snwCpU/+rjfpSG6H2nDckgfkQ2EyACSVmAhwUmHIdMUlyMmTFJGTrweYDOW2QuRuwjt7MA5ve5F7HX+iXHc3q7ke5JcaJ41kq9G4uqF2c0EpO2MwqNDJHIs/9SdeclnTXdWeK75TavmRBqNNEMFIPdGirIayFig07SigokNDpxIBWTdqddp52Hn64aSrPKirUb4HhMRxMPoQMGXKZDKvNRnzRhdsylw+GFTuBVoFt3HqIvA+LXwt+3/8gfUJfZOw+GOEAkWFmjrfL4YQlh5gCiL3wFVesYGexlfZO7UUwIghXIT7V6onPXvdAkuCpN8QQf03KNhQTmZdOP9+WV2ynU2spMJcd4SgwG3C9MBKiUznYn/vXKEiB6VIbofb82v9uvLXugA2rTaLimsk28C6C25eCyQnV0ZfRKq3QO4i1qn7IAHUJdIyAe1bD7H0wSw+vtoAv+sMX/a083QFeD51+Yy9OEOohEYzUE6MGO+HrrWDBsiIslqqkixKux57087ioNIR7XHklRHMXL6Ly0so8F5mbRnMXey0hL60TOpW2TJsSi5nYwqzSNkLtcVY78ojD1EoqINvALwMGHoFBu+wrb1IHILvwdimT28htOgvrhYGziwMpLvnQ9RhMXAETVkHfaOjrCAM8RHp4Qbia6wpGvv76a4KDg9FqtfTs2ZMDBw5csf3nn39OWFgYDg4OBAUF8cwzz2AwiPvm1+qNZ9wxmeGNT3NruysNkmSzsSc9ht4+zcutgvj5zB7+iY0o/X5oQBinclPZmBRJmj6flfHHiS/KYZB/KwBkMhlDA1qzJvEkx7KTSC7O4+fovbhpHOjkFXQjL0uohCzJFYwKykQkWgN0Ow1dzoCj/kKkIYOC5pgksFjtocfuwjxy3F3LHo/LApMC6HwcBu/1wVvW6wZcjSDUb9ccjCxcuJCZM2fy+uuvc+TIETp27MjIkSPJyMiosP2CBQt46aWXeP3114mMjOTHH39k4cKFvPzyy/+5843No1N1uDjJ+OrngtruSoMUlZdGjlFPX5/m5bblGPXkmy5l5Wyha8JDYX3ZmXaOt4+s5UhWItPb9i/NMQIwMrANg/3C+P3sAd47ug6j1cyT7QaLHCO1LM9QSNPFt/K24zugtl6IIGwQnAyDDkOTHHvDi++ONhkY3QEZtvRLI2YRuq4Vpiq5yKYE1w5v1cxFCEIDc815Rnr27En37t2ZM2cOYK+hEhQUxBNPPMFLL71Urv2MGTOIjIxk8+bNpc89++yz7N+/n127dpVrX5HGnGfk317+IJv3v87n2w+8eOSuxv1aCMK1GrXxWdalHgRAJVMwN+hpXtz4B9n3rwP3wsp33P0xxE7gHjcDLb3SSXZJp7nDSZ5New95Ydk5rzYABezvr6abfz5KxBwhofGqkTwjJpOJw4cPM2zYsEsHkMsZNmwYe/furXCfPn36cPjw4dJbOTExMaxZs4bRo0dXeh6j0UhBQUGZL8HurefcUavgjc/ErRpBqKoPTvyO4teBpYHItFY3Y7p7K738hpOrb24PRK70Z5nRDZVchnuwD7PHDOHj3rfQye82jN5lR7kuHiLOF6L9TSzAkVS21sxFCUIDck3BSFZWFlarFR+fsumxfXx8SEtLq3CfKVOm8NZbb9GvXz9UKhUtWrRg0KBBV7xN8/777+Pq6lr6FRQk7rFfpFTKuXO8M6npVtZvryBxkyAIpXZnnMD714nMOvId2GT0t/Xna9XnDC0Yy/zFiXQcFIe08D6cvroNSjQgVXLjxeiOWYIjGSYAnFVaRgR2QhY4pLTJxRERm9J+x2fIThfAxkaGsJ+nAMgvMvLpL4fIyKmgLo4gNGI1vppm27ZtvPfee3zzzTccOXKEpUuXsnr1at5+++1K95k1axb5+fmlX4mJiTXdzXrlizc9kMvg6TdyarsrglArCs16TubGVLq9yFBEyJLb6LfucTJtWTSTNyXipl9YfevrTBoRRtRpOQ89ZQ/m25nP8eybfXhl9McQc5M9qvj3KInRDYBjWUYuv7OtdJuEdGHk2SaHOcG9SevgiE0DAYmFjN9k/0PqDF+yjDbVdfmC0OBcU9IzLy8vFAoF6enpZZ5PT0/H19e3wn1mz57N3XffzUMPPQRAeHg4xcXFPPLII7zyyivI5eXjIY1Gg0ajuZauNSpurkqG9deyYYeBk1FG2rcWr5XQMOQYiimyGMs856zU4KF1Kv3eZrMxadtstqYdIfLm32ipK1uzafyWl1iZtAcApUzB601mEq5pQ7hPMwDe/iiDj78HhcXMkNAkeh04j9ZNw6Nbp/I/ywtYrAqU8T2wtNh7qaCeyR2AApONTccziI1Ow2C00ia4Df0DQK6XUzTwS/74pR9vOxmIvGkA7hEmXDMSGbOiG2vGR1BAFEvM7UD5E7+vPA1AoI8zt99UedE9QWgsrikYUavVdO3alc2bNzNhwgTAPoF18+bNzJgxo8J99Hp9uYBDobDfZ60HNfrqrHnvedG8XxLTZmWx65+Aq+8gCHVcjqGY2YdWYrGVzaOjlMl5u9u40oBk/vm1bEw9iBwZMw/NYcWQDwD45ORfvHBkbmn15ftbjOKnvrNYtysWo8kKwKR7Y1i6WUJtKmJsmxw6nIoFVzXTDk1hVMpdWAJK6J1yJ333j2PX2Qns6/clcm0eWknHxRsrO87n88TQUEwmKyt3niPZ/WtO+KvRJfnx0kAtz26QMWjlMnbdMhqXQ+BRdIgW/wxnb98ivJrsxeP2UbTJm0t758nI5VdajyMIjcc136aZOXMm33//Pb/88guRkZFMnz6d4uJi7r//fgDuueceZs2aVdp+3LhxzJ07l7/++ovY2Fg2btzI7NmzGTduXGlQIly7kGZqurRXs+ewkbQMS213RxD+syKLsVwgAmCxSaWjJUnFGTx54AsAJGysTNrD15FLcf5jBM8d+QYJG+1dQzBP2cJPfWeVOU7P4dEs3WxDq8/hkZEGuhyNwmaw4vtGFw5pIjngvxqlpOaflt/y3INjyZVG47l6HYuyNpM3rTlzOqoY46DnoYFN8fZwxOho4JwugZzkHjze9hY6eQYSfTaX2QMdOVcSwl0LfqSoB0ha6F2ykUf3F1MQ/wgyhYEor3s54HA7DhpRkUMQ4Dpq09xxxx1kZmby2muvkZaWRqdOnVi3bl3ppNaEhIQyIyGvvvoqMpmMV199leTkZJo0acK4ceN49913q+8qGqk573jRZ0IKj72SxdLvK75NJggNhc1m46G9H1JiNZV5fsbBzwFwUzmzb9Q8wtyaltlutdp49Q09J2OdcSxK5bUnXVD8tJ/CIjPN/9cDApy4UxqODYnpB+awKO8cNhuk5uropDZiynJEpZDR2U2O1lOimad9qe7m5DME+7piTgOVSc1N/u05bz2KzTGH9weGMHP/QF776S3efuA1HA/KcCo8zoPHbHwX8Sdu46aSqFjGInyZSBJKUSZMaOSu6zdgxowZld6W2bZtW9kTKJW8/vrrvP7669dzKuEKenfVEhykZMVGPSUlEg4OIru/UD9JNonI3IpX5F30a8w61qdUnO15avBwfhswu9zzRUUS054qJinbGee8eL77MoiCuQdJSS6m/6zupLR25YD3WnLUaTTP7cyb/e8G4J/zxRTsyMfDP4le4d0rPGdMYRaDfcI4RdlVbSn6fF4Z0ITVp3L4Qn4Xob8mc8893+J0CByKTzDM+jtHTm5E0XEMBtL5Ey1jOIQHnarwSglCwyQ+veq5/83ywGqF598VK2uE+qnEYuLzE1tZGhdRaZutKaeYsf/zSrevStlLnqls0rKUdAvebaNIynLAPe88yxeFodwQTcrBdFrf0oJWT4STkVvMt81fAeCBgx+TaSjk9RMrmHv2JEq5lVk92xHi4VF6zIJiE0V6+8hMgckARQpkMvBw1aJRK1BpZJgL7fNAvrnNjea2LJ6TP83Odbeg7waSA7RXrKTnuRe5iyI86IYNK6voTASVrzAUhIZOBCP13O3jnPF0l/PjwkIkSRTQE+oXyWZjXuROzuRfWqGnU2kJdHJDeaE+kM1m44UjX1JkKansMBSYinnz2PzS709GGWnW5RwGq5Im+dG8O8cb8/44Tv4VjVfXJjR/oxvLt5xjWbf3sChMDFAOoKW7P/v2ZfCA/wDOZQcQ6GBm7YEznEy81DelQs66XbFk5ujRlmiJiSymVTMPnBxUAPg0U+Oco+NMbA7FxVYmNC3AQW7joTOvknYunJLuYNRqCDPux/xPC4ab9tKB1wA4zmuspkd1vryCUG+IYKQBePExNwwGGx/Ny6/trgjCNTmRk0xUnv3D3kmp5vG2A/lfz1uY3WU0H/eayADf5ixI/J0M06WAQI4MlUyJSqZAfiERu4SNb6NXALB5p56OQ+OQbOCZFcWXfzSnKD6XPR8cQtnJA8XMtiSmFdC8u4XdPsuRIWO723ZuGRZKoI8LG/dnkG+S0UNuw8XmwOH8+NJzu7loCG3qztJNZwlIDUDtBEN7XZqjovGTsHjp2X4okW1bUvA0apnVW0O6v47bv/0CQ2EA5h5GSjSOqEpiSF88kE68yWgOA3KyOcgCnDGQV/MvviDUIWLWVAPw7CM6Xv8klw/n5vPiY+613R1BqLIdqWdLH08N7UkHz0vL1OefX8OM/Z8jYR/xc1W60t0rjGBnb3RqR1xVzriqndCpnHBVOdFKF8TPi/J58Jl05FYLXnlniUq/iaLoXH54cz0qrYKn19+Ks7cjAC7ZLgB87PAxAGqVgiE9m/J3sQO29EJeHteSzam7sKkcy/S5Y2tvOrb25rvIXZRIxWgvWxETlZdOUEs37grtaB/R2f8PIwI9uTNHxwJFM+5/+Cve//kFgnuew3pARlPDHvgnAK9bkpmCkSX4YySTRXgwmBUEMbZmXnhBqGNEMNIAyOVyHrrTha/mF/DX8kLuvNmltrskCFVyriALsN+a6XQhENmbcZI7d75JQnE6apmS25uNxFFmT1g21D+M21t0rfBYb3ySzZufZqAyG/DVn+NcwXhKMkr4eeBikMFDe+8oDUQ+0H9AEUXo0DHTcSYA/8RG0M7DnzVxRTipbMQURRKdn86T7QcDEJGVhGS6lI5gaEAYHx/fxMakSMI9/DmYGU98UQ5TQ+23WmQyGUMDWrMm8STP9e3J/kQT629uh/fjr/L5z49Q0t2E4wE58pIUWOqHcmIqd5DBFm4miRVsZRwteJC+/FADr7wg1C3iNk0D8eErHigV8NIHooCeUH+YJXsyMheVFvmFOSK/xqwnqTiD+1uMpviuDbzd+ZFy7f/t3qdSefOzPDTGAprbYogrmAAWiXmd/sBisHLHkrH4dmgCgMVi4eUSe22sg64HS49RaDbwY9Re0vQWwjzTiCvK5sn2g2nr7gdAidWM9bJEjS10TXgorC87087x9pG1HMlKZHrb/gQ4uZW2GRnYhsF+YSw4f4ghHY/jrDCxvFsnfnn4J1DI0feQkDQKMKTBEm8AhrCcXvwMwHl+ZAnNS0eHBKGhktnqQRrUqpYgbuxufTSNJWv07FrqR9/uDrXdHUG4qpcPLCfbWIxcJuODHhNwVTtgkSxkGPLwd/QCYF3iaf65sNJmfLNwxjQNL91fkiSG3pbEtgMWHIoyaO+WyYHYcUiSxNdtfyPrTC4jPuxH3+e7le7TJ68Pe6176aXoxV63stXGvzmWz+PbsvlhqBcPtq/+95r18cWMWZxC2Ik05oRl0/3eW8AKjgfUyI0mUHvCrfbRoiKSWEYLJEzIUHEzUehoXu19EoSaVNXPbzEy0oB8864XMhnMmJ1d210RhCrp4R0M2FfVLI2NQLLZUMqVpYFIjrGYTclRpe27NwkufWwySbQZEM+2AxacCpLp1zyfA7HjAPhjzHKyzuTS+cF2ZQKRc5Zz7LXuRYaMnc47y/Xnt6giZMA9bZyr/2KBkc2cmNHFndOdA/hgvZzM6GWgAH0PE5JaC6Zs+Nu+lNiZQKZixIVW2DCzjBZE8XWN9EsQapsIRhoQby8l/bpriDhl4nyc6eo7CEItG+DXsnQJ776MWD46tpF96bFE56WzMv4E7x5ZR6HZAEAHjwC8HezzofLyLQR2iSE6TsIlN5ab+1rZcHgkAGuf2sa5dfE07R/AhB+Glzlf13z7fJN3HN5BqSw/ZS4i00SIqxKVoubeGj8f7EVHFzmbxrfl7WmFWKXf7AFJHwOS2gnMufD3pYnot3CGVtiTTB5gBhsZWWN9E4TaIoKRBmbu+/b74tNmZdVyTwTh6jw0TtzXqheyC0t0Ywqz+Dl6L5+c2MyqhBOlNWmaaJ25+8LE0PhEMwFdYsnMA9fsszx4hzN/rBkEwIFvjrHvywjcQnTcv21SmXN9rv+cAgpwxpmXHV8u15e9KQYMVhvjQhzLbatuu6Y2xQkbS+7szCdDrSidPwRA36cYSa0Dcx4scgWLve5UL75iGJsBGals4C88sWCo8X4Kwo0igpEGpl0rNW1DVWzebSAvXxTQE+q+7t7BzGg3EB+H8qvAZMjo4hnECx1HoFM7cOiYgdC+cZQYbLhnRjHrWT8++7EnAOc3xrN6xlY0rmqmR9xVrlr4zBL7qpl9rvsq7Mec4/Y8PU93rvl5ac5qORsnB6F3UbNgcCsW3dUKpYN99EPfpxBJ7QGWAljqURqQ+DOE2ylAiQ4TOSzAiQz21HhfBeFGEMFIA/T5G57YbDBjtkgRL9QP7T38ebPrWJ5uP4QxQe0ZHtCaW0M681738Tzatj86tZYVG4rpOSYRq9mCZ8ZpPvusFS++0xGAzDM5/D5mOQqVnEcPT0Gr05Q5/sD8gdiw0UXRhXbKdhX2YXOiAZ1aRrBOXePXC9DTT8sb/b0439qbn41KDv94H3LNzYANfZ98JE0TsBTCErfSgESLM1PIx5v+gMQ6+nKYF29IfwWhJonVNA1UQLd4MnOsFJ8JRqUSMadQv839NZ/HX85EYTbgnnWGXxb3YNQtQQCU5Bn4tOmPmIrM3LflVkIGBZbZN84SR0h+CDJkmFxNFc4VyTNYcP82gVHNHFgzwe+GXNNFAxcmsSPVyJTv9vP+D4PwajkByXIQ0OK4zxW5IR0UjjApHy7r+wk+4igvAOBGOOM5fkP7LQhVIVbTNHJvPeeO2QyzPxJ5R4T6bdb72Tz2ciZKUxEemZGs2TWgNBCxWiTmdvgDU6GZ8d8PKxeIAHQp6ALAq9pXKwxEAOYcsxfZeyT8xv+xs3GSP55K+GdqFz6/dQ0odyBTBAMG9L1N4OAPVj0s0ZWOkACE8zzjiUKGgjxO8AeOGBBzxYT6SQQjDdSDd+rQucj4+tcC6sHglyBUaPLj6XzwdR7aklw8s8+w58xIuvVuUrr9p/6LyE8spM9zXej6YPty+88rmUeuLRdHHHnL6a1Kz7PobBEKGYwPufH5edRKOTsnB2HWKvn7to580+svHJqcB5k72HIp7q0GhyCwlsBilzIBiRthTMaAAwFYKWERTYhh0Q2/BkH4r0Qw0oA99YArRcU25v5WUNtdEQQA1iWe4tGdC1h4/vAV2x3MiKPb9L38taIYx6J0vIznOZ46jhah9pELm83Gp48tImlfGkWPOXP6HjPpJeV/zh/XPw7ATtfyOUUukiSJyBwzrd1V5Sa93ihtPNXMGeZNUrAHS9v4s3jKOrRNMgAtNikOfV8fcAwGyQCLncFyaSWNEiW3kUQwdwKwizvYweRauQ5BuF4iGGnAXnvaDbUa3vosr7a7IgjEFWazI/UcgZelS6/I6cx0pj6TxuFVPjjnJ+KrTWTMSjA5Xcqd8/3/1pD3bQrOPV156oNb0MiVfHlya5l08cPzhyMhES4Pp4uyS6XnWxdfgsUGk1o6/edr/C8e7aBjQksn9g5pyeLTBRz94TRa71xAgWQ5hL5/ODg1B8kIi13LBCQAA/iTAfwNQBx/8TcBWBAr6oT6QQQjDZhSKeeuCS6kZ1lZvbm4trsjNGIGq5kfz+zh7tCeOCorX62SlWNh+B0ZRG/3wjXnPIHKLCITJhHs7s62lGgATiw6Q+Jb51C01PL0trtp6uLJ/WG9yTOWEJGVCECyJZlNlk0AHHE5csW+zT1hH1F5omPtT45fMsYbfwc5y6Z24ZfX95N5ogCtdxIgQzKuxDBgFLiEgmSCv3XlApJgbuV2MlHgQAkp/ImWXE7VzsUIwjUQwUgD9/nrnsjlMPMtscxXqD1/njtEuLs/bdx9K21z5ryJ4J4JpEZrcc86SwtPPaeybkGtVtLW3Y+YwiySD6WzeOo6rIEK7lg3DpXWPiHVQakmxMWLmEL7BM6OBfYlvy9oXqh00upFu1KMNHGQ4+VY+0XM5XI5+ycHIlMrWHRfd+YNW4LV4IHWMwIAS8nXGAc+DC5hYDPD3y5gLCpzDC1e3IUeNzpgw8pK2nOCj2rhagSh6kQw0sDpdHJGDnQgOsZMxCljbXdHaIQOZsSRUJTDLSGdKm2z60AJ4UMT0Reb8ciIIryricMJN5fO4dCptOTnFPPTgL9BDrn/c8UvwKPMMXRqLfkmA/NL5pNty8YBB/7n/L8r9i2hwEKeUWJwYN0pLBnoouSP0T5k+bqwYkRrfui9EKWmA1r3NQCYi17APPQN0LUDmwWWupcLSADGc4x2F5b+HuUF1tL/Rl6GIFwTEYw0AvMupIif/rJY9ifcWDnGYhbGHOHB1n1QyRUVtlm4opCBk1KQjEY8Mk7TfmoRH/3TsUwbq8mKalYmlhILA37tj+RV8bEAHtI/BMBm3ear9u/LiDwAZtSBWzSXu7WVMw+E64jo1YwNjo4se2gjSodRqHVzATDmTcYybB64drgQkLiBIa/ccbryP25iDyAnk10swBUD5QMXQahtIhhpBJoGKOnWQc2+I0ZS0sWENuHGSSjModBs4N0j65i+80+m7/yT6PwMtqacYfrOP/loXi53Pp6B3KTHI+M0t9/hQ69pDhSYL82FkCSJvXfvQXXExND3+tBhXCsACkxl50sUmAwscPwcK1Zay1vTW9X7qv1bEatHLYf+AXVnZOSiH4Y1oZWrktW3d2TtmkSO/XYatfM0lE6zADDk9Mcycgm4dwGbFf7xqjAg8aY3UyhGjQcWCliEjmQ23uCrEYQrE8FII/HNu/aS7NNnZdZyT4TGpLWbL691Gc2rXUaVfjVz9qCHdzDWTf144Z0c1IZ8PDIjeeyZ5nzzRx+au3gRlZdWeow/x6/EvKsQp8d8GTCrB15aJ3QqbZk2JRYzZwqT2O60FIATLieu2jeLJHE+z0LHJjcm/fv12HunPyq1nIUP9+DP6VvJjMxG6/oeCu1dABgywrAM3wzu3S4LSMqPgCrRcifZ+DESsLGZEezjsRt8NYJQORGMNBLdO2lp0UzJ6s0l6PVSbXdHaCS0ShUBTm5lvjQKJX9848j3P5nR6rNxz4nmrk88eONj+/LboQFhnMpNZWNSJIuf30T06liKpjoy9YObAJDJZAwNaM2axJMcy04iuTiPn6P3sr7pZ4CNpzRPXXXSKsCCM8VIwJQw5xp8Bf4bD62SVTf7UuDuwD93duL7voswGyw4ePyOXDUQkDBkeGMZvhc8e9kDkqU+UFLxHx3DWUdP7Ld6opnLP7S6gVcjCJUTwUgj8uErnlglmPlWdm13RWikLBaJ3z51Y8tSHY4FKbjmxnDr9050GH0px0cLXRMeCuvL1pXHOP7lScz9tNzzyWgCLuQnkWwSZu/z9PUL5vezB3jv6DpOcJBEx+NoZBo+d/68Sn35+dSFFPDt6tZ8kX8b2tSR57u5ER3ux/Zwf37qb88l4thkGzJFG8CMIcMdRu4Fr36ABP/4gj6twuOFMY2JxCJDRSFn+R0NRSTduAsShAqIQnmNjHenOAqLbBRHN6u1bJNC41RUJNF+eBLxiWZc8hJwKk7n7y2D6De4/HLfmC0J/DJsKRoXNc/EP4CDm7Z021bzVoYUDKGpvClfO33NWPVYlNlKrFjZ4bKD/uqqrRpx/joWd62cxAebVds11qRufyZxJM3IfV/u4rabmzHq80EAFKX6gi0dZL44+6XCxkGQuR2QwfgEcC5fr+eipbSgiBgAevEDrXiw5i9EaFREoTyhQi/PcMNgtPH+nPza7orQiCSnWWjWK574RDNuOedw1qez6djICgOR7HN5/HbTMuRKOY8emlwmEAFIl9IBSJKSGFc4Dt9sX6xYaSlrWeVA5GSWiWKLjZHNHP/7xd0gOyb546yR89fDPdn0w2lOLz0LgLNfGuAEtjSK09vB8G3gPRSwwYqmUBRX6TEncp4WFwKQfTzEZsbV+HUIQkVEMNLIPPmADkcHGR9/J4IR4cY4ftpIaP8EcnMtuGdF4WTKY3/MGNp1cC/X1lBg5NuuC5AsElPXTsAztHybbFs2MmRI2Oc+pWMPTm5T3Ybepq9Sn76IsP/8P93J9Xov64ZzVMvZMskPo5OKxQ90Z+HkteTG2a9D650HqLBZT6PPHAbDNoHvCOwBSfMrBiR9+YHBrARkJLOKhXiLNPLCDSeCkUZGLpfz6F0u5OVL/LaksLa7IzRw67cX03V0MsZiM+6Zp9FRzImMCQQFu5RrK0kS33T4HWOBibFzh9BiaNMKj5ktZaOgfJ6R/5n+R6vcViwzLbtqv9bF63FSymjvVXdX0lSkm4+WD/p6ktDcgy3DQvmux19YLRJKpRKtdwYgRzJvpiTnHhiyHvxGUxqQFJyr9LhBjOV2ClDijJFMFqAhk4M37LoEQQQjjdAHszxQKuGVD0WKeKHm/LywgFF3p2EzGvDIOIWHg5nTORNx99BU3H7gYvLjC+n1dGe6P9qh0uNeHBn5NwmJZFsytxTeQpQ1qtL99SaJpCIr3X0r7kdd93w3N4Y2dWDX8FYc93Dml6FLAFAq3dB6nwHAavgNY/5rMHg1+I8HbLCqFeSdqfS4WpyZQiGe9AAk1tKDo7x2A65IEEQw0iip1XImjXIiMcXK9r0ltd0doQF687NcHnguE6WxGM+M0/g3kROZPRHHSuq//HP/BhJ2pRA6KphRnw284rGzpezSWzSXU6JEi5ZPHD8hTB5W6f7fnbIXxru/bfnRmfpi3QRfmjgo+PvB7hw/ns3mV/cAoFS2ROuxEwBz8duYin+EQcshYCJggzVtIO/KhfPGsJ8OvAXACd5mFV1r9FoEAUQw0mjNeccTmQyeeE2kiBeq1wPPZvLGJzloSvLwyIgkNNSBo8njUSorfrvZ+eEhIuafxquNO1NWjS+3PcdQTEJRTulXojkFK9Zy7QYqB3La7TQzHWYik5UfOblowZki5MCUMKdK29R1Srmc3bf7I2mULJjWm60fHOTsujj7Nm0/1K5/AGDKfwiLYQMMXAJBt2MPSNpD7vErHr8TsxnLMWQoyOEIf+CEgbyavSihURPBSCPl5aFkYC8tJ6LMnDlvqu3uCA2AJEkMn5zCz4sKcdBn4pZ9lu69PdgVNabSZeSn/znHphd34eilZdqRu8q1O5GTzMsHV/Du0XWlXyf0l+Y+yJHjKnPlV+df2ajbSIgi5Kr9PJ5lormrEmU9X9oe6q7m26FeZPo4s/bWDvx58woKUux1Z9ROU1A5vw+AIWckFtNJ6L8Qmk6x77y2I2QfueLxPejAZAxo8cWKnkV4EM/yGr0mofGq37+Nwn8y7/0LKeJFAT3hPzKZJDqOSGbTLgNO+Um45MYxakIAK/cMr3Sf1IhMFt22GqVWwfRjU1FpL93Csdls/BMXwZxT27FRNhVSnuZSgq7b1bcT7RbN3Zq7rzgactGu5BKMVri5ef1Z0nslD7bTcWuoE0d6N+NYO1++6/EXkmS/haXRvYTSYRoAhqwOWCxp0O8PCL7bvvP6rpB15UmqSpTcTipB3ALY2M4EdnJPTV6S0EiJYKQRC2uhpn2Yim17DWTniKV8wvXJy7cQ0ieRk1EmXHJicSlM4d5Hm/PzP5Xn/ChMK+aHPgvBBvfvuA2df9mU7GsTT7Eu8XTp9yqZAl8HF7Idz2OT2cAGNyU8z8TM5/GWe1e5r18ds88XeaqT27VdZB22cJQ3QS4Klk3tQpzJxh9jLo1eaN3nIteMAWwYMgKxWAzQ51dofiG52YYekLn3qucYzFL68gsAsfzGYpqJ5b9CtRLBSCP35Vte2Gzw+KsiRbxw7WLjTTTrnUhKmgW37LM46TN5/q12fDivR6X7WEwW5nb6A0uJhUkLbiKwe9nEZwUmA6sTTgIgA25u1pGPe0/kzW7j2Bz8KQCj41+kaVEnNidHkVlS9SXqW5NKcNPICdJdvXZNfSGXy9l3ewBKlZzfnujL6c1J7Pzg0oiHo+cq5MougBVDhjsWiwV6/QAt7aMmbOwD6buuep4W3MMkUpGjQU8Cf+JAPpUvFxaEayGCkUZucB8HAv0ULFlbjMkkCugJVbf/qIE2Q5IoLLDinhmJ1pDHx993Z+bs8Er3kSSJb7v9SXG6nsFv9iL8jvKrXvakn8dis/8sDvZvxeim7dAqVPxs+Jk88higGsA0L/vcBxuwI61qH4hZeguZJRL9/Ovnkt4r8XdWsnC0DwU6Lcvu78rGl3cTt/PS7SxH78PI5E0BA4ZMH/uTPeZC6Az74839IXXLVc/jhC9TMaCjDTYsLCeU03xVA1ckNDYiGBF453kPLBaY9YHIOyJUzfL1xfSZkILZYMEz/SQaUxG/ruzPXQ+1uOJ+CyetIuNENuFTwhj0Wq8K25zNzyh9PNDPXlXWJJmYUTwDLVrWu6xnkF+rCttfyZzj9ls008IbZn2rCS2ceLS9C1FtfTnUL4TfRi5Dn31p6b6TbzzI3MCWQ3H6hf+n7l9B2FP2x1uHQsrGqp2L07TGvt8hnmQ9Q6rzUoRGSAQjAvfe5oKbTs63vxeWTn4ThMrM+TmfWx5KR2424pl2AqXVwMq9Qxk+NuCK+218cSdRy2II6OHDrX+MqrSdSbq0bNdDY59ousS8BD16PnX8FK1ci7NKg1Jmf/syWcsv863I4rPFKGUwqplDldrXR/OGNqGNu4q1E9uT6OHId93/LPM7rW2SCWiwWWPQZ1wIBrt+Dq2fsz/eNgKSVlXpXD34nBHYC/Kls5U/cceCoVqvR2g8RDAiAPDMw64Ul9j46ueC2u6KUIe98G42T7yWhcpcjEfaSVSY2Rk5mm69mlxxvyM/n2LXh4fRBTrz4O47rtjWVX0pWDiTb687M1kzmWjXaKY7TAcgpjCr9FaOq1pb/iD/IkkSUblm2nqoGny16j23++GgkvPbk/1ITdOz6PY1pdvsaeOzAAWSZT8l2RPtG7p8BG1m2R/vGAeJVVvC68sApqBHhRtm8liAI2nsqOYrEhqDhv1bKVTZq0+6olHDu1/l1XZXhDrqzsfS+WheHlpjPm7pp9GoJA4njqdl2JVve8TtSGL5gxtRO6uYfmwqikqSn13UvUmz0scr4k9gstpXbYQqQwGwSFaWx11K2tXDO/iqfV8ZW4LVBreFOl+1bX3nplWy9mZfDBolf87ow+kl59g/J6J0u1LpjNY7DpBhNf6DIe9p+4bO70G72fbHOydAwtIqnU+Jlsnk4s1AwMYGBnKQZytsW0QCFspnff53YrscQ3FVL1doIEQwIgD2Gfn33OpCZrbEsnXijUC4RJIk+k5IZuHKYhyLM9FlRuPsJOdE+i34+l85X0dubD6/Dl+KXCHnkQN34uhx9VGMcA9/vLT2oCGhKId3j65jR+o54gtz2JsewwcRG0pHTFxUWrp6VVxQ73LfnrCP+D3esf6mgL8WAwMdeLm7K4kBbuwY34a1T20j+VB66XalMhCtxyEALPovMBZ+Zt/Q8S0It6eCZ9ckiPuryue8iW10w36cSD5lOe3KbM/lJMsJYy8PlXk+x1DM7EMryyS2m31opQhIGhkRjAilPp3tiVwOz70jlvkKdnq9ROuBSew5bMSlwJ7MzMtLzamsW3B1u3LFW2ORiXldFmA1S0xZNZ4mbTyrdE65TM6jbfqhVdiX36aVFPDHuQO8F7GO+dH7SCzOBUAlV/BI676oFVdfprsn1YCPgxx3bcNZ0ns17/bxpKePmu2DWxLb0ov5gxdjKDCWbldqu6B1XwGAuXAmZv2FkZDw2dDBnr2VPZMhZkGVz9mWpxlPFDKU5HOa33GgmDRM5LOV8VgxEMtfFBJTuk+RxVh6y+0ii02iyGL89+GFBkwEI0IpZ2c5o4c4cD7ewqFjYiJaY5eRZSG4TwJnY8245pzHqSCFpiGOHEudgPYqH+qSJDG34x8Y8oyM/nIQoSODr+ncTZ09eL7jcIKdPSrcHuDoxszwobRy87nqsWLzTeSbbAxt2nAnrlZm263+uGrkLHi0F9nI+aHXwjLblQ7jULnMAcCYNwmL4UICtPYvQaeP7I/33QUx86t8TjfCmEwJjjRFwsAS/FjPYIpJAECGjFN8+J+vTWhYRDAilDH3PftExMdeESniG7PIsyaa900kM9uKe9YZHPTZhHdxY9+5sZUWvLvc/CFLyI3Jp8eMDvSc0em6+hDo5M6szjcxq9NIRgW1Y6BfKDcFtuW5DsOY3WUUzXVeVTrOFxH2WzRPdHS9rn7UZ1qlnG23+iMp5Pz+/ADSo3JYet/6Mm00Lo+jdLKvpjHk9MViibNvaPscdLlw+2bf/XDuxyqfV4mSW4knhLsAyOUotgvFDW1YOcdPlJD23y5OaFBEMCKUEeinpGdnDQePmUhIFumeG6Nte0roOCIJvd6KZ/opNMYCBo7wYcPhm6q0EmX5wxuJ355Mi+FNGfPVf88/EeziyYTgjkxp2Z1bQjoR6updpTo0F62M1aNVyOjld/X5Kg1RpyYaPu7vQaarA+vv68qxXyI58vOpMm20rh+h0Nir+hoyWmCx2Avu0fpp6GofOeHAQxA975rO3aKSOjY2JE7z6TVeidCQiWBEKOebd+339qe/nFnLPRFutD+XFTL0zlQkixWP1BOozHpuvbsZf60fXKX993xymCM/nMKzlRtT102o2c5WgUWSiM230KnJlee3NHTPdHFjZFMHDnYM4Ez3QFY8vIn0U2Xnhjl4LkSu6gdIGDI87WnjAcIeh25z7Y8PTYeoqmVcLSKO7dyOPal/WTasRDEHI7nkGvQV7m+1iZxHjYkIRoRyuoRrCQ1RsW5bCUVF4g2hsfjg61ymPJGJEjMeKcdQWY089kJrvvq1d5X2j1pxnvXP7cTBQ8u0o1PqRD6PXyKLsAFTwxr+kt6rWXWzD94Ocv6e0pkcdwd+7LsQU4m5TBvHJjuRKVoBJgwZl004bjUNevxgf3zkSYi8+qjGDiZjJh/+VXX5IquthMXZL/NNZMV5Sb6L3EXShcnKQsMns9lsFf+k1CEFBQW4urqSn5+PTtcwUznXNas2FTPu/nQevMOFHz6+ckIrof577OVM5v5WiIPMgHPSSRQ2iTc+7cijz7Sp0v5pxzOZ12UBcqWcJ6Pvxa3plX9Po/Mz2JB0moSiXPJNJUxv059OXkFX3OdMXjp/xxwhVZ+Pu8aR0U3b08eneZk2W1Oi2ZgUSb6phEBnd1adDWVvCugfD0ZbhbkuDd35PBNhvybhaLQwY9Y6mnb0ZNrhu8q1K0r1BlsmyP0xuUWXrmxxSFiIV8RjAMg6fQhtn6/0XId5iXgWU0QMYEOGHJCVzh0BkCQ5+/d+jyRVfAvNUanmxY7D8XVsfPN9Goqqfn6LYESolG/nOPIKJIrOBFdp0qJQP427P5VVm0pwsRXimByFDBtfL+jFxMnBVdq/OEvPZ8E/YSmx8sCu22ja2/+q+5zMSeFcQSbNnD2YF7nzqsFIlqGINw+vZoBfKP18WxCVl8ai80eY0X4g7dzt5zuYGc/8M3uZ0rI7IS5ebE6J4pmtjjgrnYl7IKRK19IY/BpZyL0bMmmbnMetH+2g+2MdGPt12bk9NpuN4lRnQE+KIYhPkj8o3daleA+P5HwNgCz8HQh/5YrnM1FADkfJ5hBZHCCLfaUrawAsFg2eyTsY5BeOs0pDZG4ay+KOlS7hbu3mwzPhQ6vp6oUbraqf3+ITRqjUq0+6YzTBO1/k1XZXhBpgsUh0HZXEqk0luFmzcUyORCaz8deGAVUORCwmC990+ANzsYVbfh1ZpUAEoL2HPxOCO9L5KqMhF21PPYuX1pnbmnfBz9GVwf5hdPEKYlPymdI2m5Kj6Ofbgr6+LfB3cqWda0eyS5zo4V9UpXM0Fve0ceHOVk6cDnAjYkwYB785zslF0aXbY7Yk8lnwTyQdOoQNJX6aRB72fb90+xGnPszzeML+zYlX4fibVzyfGh2+DKQdzzKQhUwinqKoFZw88TwWixalwkhhs4GgTkAhk9Pew5/nOgzDU+MEQFReOmn6/Op/IYQ6RQQjQqUeu9cFZ0cZn/8o3ggamoICiRb9Ejly0oiHIQVt6nnkclh/cAQDh1ctoAD4vtdCilKLGTi7Bx3val1j/Y0pyKK1m2+Z59q6+xFTYF+CbpGsJBTm0OayNl9FFAA2wpuIeQf/9sfIJgS7KFkxrBUZIW4suWstWedy2f3JYT6dvI6zJohenUyc4hA2ZIQ5nuQ2r+9K949w6kVm11/s35x8AyKuPDpyOckmcSKriPy8TkQdXkArZiBhYAXtOMevAGiVKgb6h5bucyInpVquW6i7RDAiVEoulzP9Hh35hTZ++ksU0GsoklLtycwSki14FsahzkpCqZSxO3oMHbpWnGSsIn/duoq0o5m0u6MVQ97qU4M9hgKzAd2/CuLp1FoMVjMmq4UisxEJGy6XtdmQUIK71oRSUb4WSmMnl8vZe4c/aoWM+U/0wyCX80273/jf33HMe2Ewf9/fjbjdycyNPs0HCfYEZT112xnmtqT0GIaAsTBgpf2b0+/B0RerdG6j1YJ0YXaAv6MrvWRfcRN7kKNlD/ehv5B/JMjJvXSfYoupOi5bqMNEMCJc0TvPu6NSwmufiL8uG4KIU0ZC+yeSm2/FKzcaVX4mGgc5hxPHE9Ki6nVbNr2ym8gl5/Dr6s3tf42uwR5fnyKTREqxlbae5qs3bqR8nZQsGeuDUSZj+d1dWDKpAysnd8aqkJHTxJn0c4VYjRLZFn++SbFX9L3JYyldnbZdOkjgWBi41v448kM4XHGBvMtpFErkF/LEpOjzsdokvOnNbaTQh59xxD66lXjZShonZeNemt0YiGBEuCK1Ws5tY51ITrOyeWfF+QCE+mHt1mK6jUnGZJJoknkKZXE+OjcVx9Mm4O1b9VTpx347zc73DuLi78TD++6swR5folNpKTCVLVFQYDKgVahQK5Q4qzTIkVF4oc3Fwng9fPW4qhpnsrOqCIvKYPiaSCLD/Tje48L8HZkMm1xGmq8zqrP2XCMxhvYsSJ8GwGSf72muPXnpIAE3weDN9sdnPoVDT13xnHKZnPALk47zTSXsS48F7HNLWnIvAAaLme0pZ0v3Cfeo+q1DoX4SwYhwVV+95YlMBk+9IQro1Vc//FnAmHvTkctseKYeQ2HU4+vvwIn0m9Hpqv5XZ8LuFP65bwMqJxXTj92F4gatsmqu8yIqr2z68Mi8tNKU8Eq5gqYuHkTm2SvT/nmmCLkMlMrUKqeNb2yi18TyyksH2DqsFUg2uDyrrc1GWqArqshLI0tHivuzNnsSAI/5vw+WS5Ne8RsCQ7dfOPCXcOCxK557kH+r0sd/nDvIyvgT5JtKsNokTuQk8/HxTWQb7VV7W7v5iKW9jcB1vZN8/fXXBAcHo9Vq6dmzJwcOHLhi+7y8PB5//HH8/PzQaDS0atWKNWvWXFeHhRvPw13JkD5aTkWbOX1W3Lutb177OIeHX8jCQSXhHn8EhcVEaBsXDieOQ62uehXb3Ph85g9dgkwu4+F9d+Dk5XjdfTJYzSQW5ZJYZB+KzzIWk1iUW1o2/p/YCH4+s6e0/UC/ULIMRSyJPUqaPp9tKdEczkxgWEBYaZthAa3ZlXaOvekxnMwxEupehNlmKZeLRLAv3f3crObvB7pjVitAXjZLqlyykRbohiqq7G2uzfkT2Zc/CAB3fR8slstqWPkMgGE77Y/PzYX9j1R6/jZuvvS+8P9itUmsSjjBC/v/4bFdfzHn1PbSWzSOSjWTW3T/bxcr1AvXXE974cKFzJw5k3nz5tGzZ08+//xzRo4cyZkzZ/D29i7X3mQyMXz4cLy9vVm8eDEBAQHEx8fj5uZWHf0XbpC573vRakAS02dlsn1xQG13R6ii+2Zm8MvfRbg5WtBEH0WGjR79vFi+c9g1HcdYZOLbzguwmqzctepmfNr/t9GG+MIcPj2xufT7v2OOANDbO4T7wnqTbyohx3jptqCX1pkZ7Qbxd8wRtiSfwU3jyN2tepbmGAHo3qQZRWYDP0VGYbS2prVnHk+2G4xO3fiq9V5Nmt7K9/FGZICtgjo/kkJOcpAbqu3l59wszn4YN1U2rZ1OYMjwQ+tdiFJ54VaYdz8Yvgc29oHz34Nkgd4/lTuGTCbj7tAeaBVKtqVEV5ijtYnWmWlt++PrKHJLNQbXnPSsZ8+edO/enTlz7MWTJEkiKCiIJ554gpdeeqlc+3nz5vHRRx8RFRWFSqW6rk6KpGd1Q6eRSRyPNJF2pCneXtccxwo3kCRJDJ+cxpY9BnxdjNgijyEDRk8M4Mcl/a/5WF+1/pWcs3mM+nwgvZ7qXDOdria3rk5jyTk9KQ82xc9Z/JxW5kyuiXcP5PHHmSJkgPVfnwRyi8SsF1aTtdITm0v5QfTXQt7EVR4NOKD1LkCpvOy1zjoIG3rYHze7C/r+Xmk/sgxF7Ew9R0xhFmbJirvakZ4+IYR7+KOQiZkE9V2NJD0zmUwcPnyYYcMu/VUll8sZNmwYe/furXCfFStW0Lt3bx5//HF8fHxo37497733HlartcL2AEajkYKCgjJfQu2b87YnNhs8/mrW1RsLtcZkkggflsyWPQaauRaVBiL3PdbymgMRgF9H/EPO2Ty6TQuv84EIwLYkAx5auQhEriLMXc2vI72JvieI+9o6o5CB4rJBEkkpJ8vHGcffiyvc/63Y1zHiA5RgyPQru9GrO4w8bH8c/wfsmlxpP7y0ztwS0olnOwzjpU4jebRtfzp5BopApJG5pv/trKwsrFYrPj4+ZZ738fEhLS2twn1iYmJYvHgxVquVNWvWMHv2bD755BPeeeedSs/z/vvv4+rqWvoVFFS1LI1CzerXw4FmAQqWrdNjMIgCenVRTq6F4N6JnD5rpoVLDsZTp5EBL7zVnve/7nbNx1v12BZiNycSMiSIcXPrfkruDL2FbIPEAH+xgqaqWrip+GGYNzH3NeWR9i4oZDYuFrc728UbpxUlKFIq/uPxvfivAR3YsihODy270bMLjDpmf5zwF+y4reYuQqj3ajz0lCQJb29vvvvuO7p27codd9zBK6+8wrx58yrdZ9asWeTn55d+JSYm1nQ3hSp6/yUPLFZ48f2c2u6K8C/n40wE90kkNcNKS00KxZHnAPjw2648M7v9NR9v3xdHOTj3OB4tXbln4y3V3d0a8UWEPVvw9A7idu61aqpTMmewJ3eHH6elexZgY+/IUBReWpq+YaSrUwBqednRpiKLkVMcAtTYrOfQZ/Yte1D3DjD6JCCDpMWwvX78HAk33jUFI15eXigUCtLT08s8n56ejq+vb4X7+Pn50apVKxQKRelzbdq0IS0tDZOp4pUZGo0GnU5X5kuoGyZPcMHDTc4PCwqRJDE6UlfsPWyg7dAkiopttLDFUnQ+CYCflvbl7kdCr7J3edFrY1n7zHa07hqmHb0Lubx+DJkvPadHJYcRza5/pU9jdiInBbWyhCEh5xnVPAqDpCbn87GY40ow35fAG11Gl9aMuSi2JB+tdzYgRzLvoSTbPgKSa9TzY9QeZkZG8oL/PPQyB2zJy2DruErPfyYvnXeOrOXxXX/x6sEV7EmPKddma0o0Lx9YzuO7/uL9iPXEForbxg3BNb3DqNVqunbtyubNl2bBS5LE5s2b6d27d4X79O3bl3PnzpX54IqOjsbPzw+1WmTVq4+ee9QVvcHGZ9+LuTx1wZI1xfSbmILVCs30URQnZyKTwT/bhzDqlmu/xZl+Kps/x69AoVYw7egUNM714/dUkiTO5plp51E/+lsX7b2QgAygg4+Z//Xz4Kt4E9aZPcg4kc2Jj08xPrhDmX0skoRS6YzW+zwgw2pcTH7OTD46thGFXM4T7QfxQq8pJPTbhg05pK6CreWz9mYZiphzahthbj682mUUQwPC+C16P6dyL9WlOZgZz+KYI4xp2p5XOo8i0MmNL09uLZcQT6h/rvnPnZkzZ/L999/zyy+/EBkZyfTp0ykuLub+++8H4J577mHWrFml7adPn05OTg5PPfUU0dHRrF69mvfee4/HH3+8+q5CuKFefMwVrUbGB1/n1XZXGr0vfszj1kfTUavAP/s4huwCFArYFDGSXgPKL7W/Gn2OgR96/oVNsnHvpom4N6s/yaaWntNjtcGdYU5XbyxUKMtwqcJxnrGE+9sqGRig5W2fJji+2JNtb+xFs63sB7+Hxj4KpVQGo/XYD4C85DPaOERwX6tehLh44aV1pnVQD+Tj7QELqWth8/Ayx7meysx3teyBWq5kT/r5GnpFhBvlmoORO+64g48//pjXXnuNTp06ERERwbp160ontSYkJJCamlraPigoiPXr13Pw4EE6dOjAk08+yVNPPVXhMmChfpDL5dx/uzNZuRKLV4vy7LXl2beyePqNHFydwTPpCOYiAyq1nN1nx9K2g/vVD/AvVovENx1+w1RsZsLPI2jWr37lk/n+lH2kbnp4/Qmg6hr5ZTlHbNj4O/YIr/TQIdmg27QO6AJdWHbnepSRl26x9/AOLn2s1HZH47YECTk3e7zJgshveG7fEt45spadqefAORjGJwAySN8Em4aU7ns9lZnlMhmt3XxL2wj113XdCJ4xYwbx8fEYjUb2799Pz549S7dt27aN+fPnl2nfu3dv9u3bh8Fg4Pz587z88stl5pAI9c/Hr3qiUMCL74mJrLXhtmlpfPp9AX5e4Hj2EFajBSdnBUcSx9MsxPm6jvlD74UUJhfTf1Z3Ot3Ttpp7XPP2phrxdVSg09SP+S11UTPnslWbI7KT+CduHwBJhmy8vg/FJgOPp/KgSMLHwQUvbdmfN5XjRL6/UFhvjO5JngzzZIBfKAtjDrM3PQarKh7LyB8AOWRshY0DgOurzHyxTb5Z3Kap78RvrXBdHB3ljBvmSEyChf1HxRvBjSJJEn1uTmbxaj1hTW3Yjh3AZpXwbKImInUCXt7Xt6R10Z1rSDmUTpuJLRj2Xt+r71DHnM01UWi2MbypyLb6X/T3a1nuuTR9IQDzo6LY7ZBE/ksuyAzgNS2XB8L6VHicGGN71ufNQCGz4lEyhD5NtPTzbUFKzneUZA/CYHoK283xgBxb5k4Ma3tgkazkGfUkFOWUlgUQGg8RjAjXbe57XsiAx18RQ6Q3gl4v0WpAEnuPGOkWZiV/z0GwQdMQR44kjcfZ+foyHG99Yy+nFkbj28mLO5dUvtKhLvsiwn6L5qlOYuXdf9HU2YNOnoH/etZ+66bQqAHAcJMDJaO0KBOsHH78YIXHcVVrKVHdhUIzCbBhyGhGuPZvRuj+B1jAVoSkjCNndAw2ZGhyD3JTyldsSz3Lu0fXMfvQSnIMxVeszHxRgckgKjM3ACIYEa6br7eS3l01HD5hIj6xfA0LofqkZVho1juB8/EWBoUbSdpsz27ZoYsbe8+NvaaCd5c78WcU297cj7OvIw/vv7M6u3xDrY7V46CU0dVHfCj9V/eH9aa126XElmqFPeGZWbr0cRHyURu82npw/Lcojvx4stwxWuiakF5SgIPnYmTKXoBEM9mHlxUGVmIxrqVI6cIzfl8jIWeAfguTc34EwGKTKLIYr1iZGUCy2Yi6rI1Qf4lgRPhP5r5nfxN4dJYYHakpp6JNtOiXSFaOxIjwQqLW2rNaDhzpw/rDN113DpCk/aksmboelaOS6cemorzOgKa2mSwS8YUWujQRS3qrg1ah4sl2g7k7tAeBTm5olPZgxCIpCHHx5P5WvZnWtj8P77sTtbOKFY9sJv1kZpljDAtoTUxhFmsSjmOSt67gLBZyCv5mRdxxDEpXZvrNxYKSgcVbeCTzMwAOZSZcsTJzqj6fBecOYpJEZeaG4JoL5dUGUSivbmszKJHoWDO5J4LR6UR8W5227C7hpqmpWK0wLDSb41vsSxhvvbsZX/1acW6fqshPKuTL0PlYzRLTjkzBt0OT6uryDfft8QKmbc3i2yFePBIu3h+qk81mI8eox+vbdKaEOfDHTWVr0KQcSee77n+idlHzXMpDqB0vBYQnss5jyZ9KS+0+KigMDMD3mb8TVWDfqLQY+CTtMTQ2I9udhrLW93FuDu5YLtDYmnKGDUmRFJgMBDq7c2fzroSIkZE6q0YK5QlCRT593QNJgiffEKMj1en3JYUMm2xfJj/AP7k0EJn+XNh/CkRMehNzO/2BxWDljqVj63UgAvBrVKG9EGCb61tFJFROJpPhqbXnbbn8Ns1F/l18GPXlIIz5Jn7s93eZbaHKLwl1qDwQAZgclF/62KLU8qzvN1iRM7B4M2+nz6pwxGOwfxjv95jA1/3uZFankSIQaSDEyIhQLfy7xpOda6U4OhilUsS4/9X7c3J5+X+5ODnKCFecJS7SvoR69ocdeOz56192K0kSc9r+RvaZXEZ83J++z3atri7XGoc5sfg6KYi9v2ltd6VekGwSK+NPsD8jjgKzAVe1A318Qhgd1B5ZJZGD7IsYRjSz0b9pNKn6fNw1joxu2r40WFh42ypOLz6H78wQEu+AfFMJndyymdhkORrrxYzd5ctH5MvG8ta5shV9lRYDX6Q+ggIrMpdWMO5Muf2E+kOMjAg31OvPuGMyw+uf5tZ2V+q96bMyefl/uTTxkNNCf7I0EPl8fo//FIgA/DF6OdlncunyULsGEYgcSjdgsNoYGyxq0VTVusRItqeeY3LLbrzRdQwTgzuxPimSrSnRle4jl9nINSVXmqr9toWj0XZwJvXrWLqc9eSVzqPQarrxTszDSB7nULu8h0xxcZTj0seOk3Utsn8FKRallqf8vkNCia0wGlZce20lof4RwYhQLR6dqsPFWcacn0W9muslSRKj70ll3u+FtGiqwCPpCBlJ9nwLv6zszx33/rdJemue3Mq59fE0GxDAzd8Pv/oO9cCXF5b0Pt1ZjJhWxcsHlrM8/hjFFiNzTm3nlYMr+C5qFy4qDbGF2RXuczgzAQelCYsNTuemkmUoKpOq3WazsSrhJAmfOGIJUnLsqSMUxRddStWeqUft8iKO3udw8NyJ0uEeJJt9GbpSbmWcx2+oZAr8HHRoFfZJ1Ballif9vkWSqaDoHCwXE1QbOhGMCNVmxr06CopsfPeHCEiulcUi0XV0Cmu3ltCjgxJrxAHyc0zI5bB811BGjP1vqdn3f3OM/V8dw725K/dtnVRNva59GxNK0KlltHATK2mqYlankdwU2BZ3tSPPdxjG0+3t6dj1FhPtPfzKtT9fkMkPUbtRyG1IVh2dPAOZe3onycV5pana1ydFsjk5CpsGunzRBUpszJ+6HKPRVCZVu0wmQ6Hph+TyLW/Gf8fW3Juw2WCA2wb+19mVN7qN5ZNek7g7tAdKmRyLUstjvj8gyTVQHAvLmt3Q10q4sUQwIlSbt55zR62CNz4Tt2quRUGBRPM+iUScMjFmoIrUjXsx6K0olTK2HB9Fj77/bYLp+Y3xrJmxFY2rmmlHp1z3UuC6psAokaa30ttX5BapKhe1lpuDO9LDO5iPj2/ii5NbABgR0Iae3iHl2m9OPkM7Dz8UMhtmScXNwR1p6uzOtpTo0lTtm5IiGRLQGhvQuV8og1/tgfKYibkT/q4wVfu+9FiKrGpW5dzNPqM994gtfzySJRalXEE/35ZMCO5ob6xU8lenraDQgj4B/rn2KtRC/dAw3pWEOkGplHPneGdS062s3y7SOVdFQrI9mVliqpV7xik5+uduzGYbWgcF+86PJazdfyv6lhmVw+9jlqNQyZl+9C60Ok019bz2fX3cvhLj4fYutdyT+uVwZjwHMuK4r1VvtAoVXTyD2Jgcxd70mHJtYwrtxeuUcgnzhakdbd39iCm8tHKu0GIk1PVSwDxkVm9sU93IX59F0i9x5Y55tiCj9HGY94No3VcCFvSZHZGs9uP2822J/ELm17PFOTCpEBQOUJIES/2r4VUQ6hoRjAjV6os3PZDL4ek3RAG9qzlywkDYwETyCyQev03Gxnl7kCTQuak4kjSegKZO/+n4JXkGvuvxJ5JF4p4NE3EPqf/VbHMMxSQU5ZBQlMPvUfkoZHBLCzF59VosiY1gZFBblHI5RquFO1p0ZWhAa9Ymni7XtsBkQKfSIpeBRbIvvNSptOSbDBSYDKjl9jkePg66MqnaA15sjq2Lluz341GdsZQ5plmylj52UzugdBiLxvV7sBViLp4HgINShVZpn1dikqygVMKkAlA4gSEVlpSt7ivUfyIYEaqVm6uSYf20RJ0zczLKWNvdqbNWbSqmx7gUzGYbT99hYcln+7HZwMdfy9Hkm3H3+G8jGFaLxDcdfsdUaObm74cRPPDf9UbqnzN56bxycAXvHl3Hu0fXEZVrQacpIdeor+2u1SsmyYIcGbvTztPOww83jSNymQwblWd5kKPAaitb8iEyL40AJ3uAq5TLy6Rql8vk+MxphdVbQcH0GApSikr3c1VfKmYYnW8fJVE5PYijdzQa3asAJBbloreYAHvAYj+JEiblgdIZjOmwxPu/vRBCnSKCEaHazbuQIn6aSBFfoe9+L2D8A+koFfDkzXr+/OQIAC1bu3AofjyOjv89LftP/RZRkFhE3+e70uXB9v/5eLXJLFmZf2Yvn57YjHThAzMxX4dkkxPsms23UbvIEwFJlXXwCGBVwglO56XRwSOQo1mJbEqKKlMg75/YCH4+swedWkuB2YAcLZLNxpLYo6To81HIZBzOTGCAr33ZbYHJUCZVe1ZJEVnqEvT/80SWZ+W77n8iSfb7PN2bXJqIuirhJCUWe5AjV9qPZZUklsVFlLa5vD1KJUzMBaUOjJmwWCQ8ayhEMCJUu5Bmarq0V7PnsJG0DMvVd2hEXvkwm0dnZeHiLOOhQbn8+ZW9yFi3Pl5sPzWqWhLGLZm6jqT9aYSNb86ID/v/5+PVJqtN4tvInezNiC3z/OksX8BGuyZpxBfl8MnxTRT9a6KkULE7W3TDU+uEDFgUc5jFsUfp79eSm5t1KG2Tbyohx6inuYsXUXlpqORKik0uROamsT31LAarmbtb9aS3Twg6lZaovDS6N2nGrc07szzuOPHFOZglK0+OHUH/l7pTmFLMH6OXAxDm6kOAoxsAqfp83jm6hi3JZ4gtzGJvegwfHFvPyVx75mFHpbr8xFqlEiblgMoVTNnwt8eNeNmEGlY/K2MJdd6cd7zoMyGFx17JYun34v4uwD1PZfDb0iICfBUMCUxkyU9JAIy8OYD5y6onaNj+zn6O/xGFd7gnd/4ztlqOWZv2pcdyIseeWEstVzCmaXt6eYew5HQGrhqJABc1uUYLGYYilsUdZ2poj1rucd2nVijJN5UwIrAtE0M6ldn285k9uKkduS/MXm7gfEEmHx/fhFrpjcWooaNnACn6fF7oOIIAJzcAhga0Zk3iSbwdXGjl6kNkXjqKYhmvdx2DSq4g5D0v4ncmc259PDveP8CAWT14uE1fPjq2kWKLiSxDMQtjDpfrp1Im5+HWfXG4MHekDIUCbsuDv93BnGv/9zaxiq8+EyMjQo3o3VVLSJCSFRv16PXl00A3JpIkMei2FH5bWkT7MBVdtefYuMweiNz1cPNqC0ROLopmy+y9OHk78MiByfV+Ca/NZiuTFfTRNv25KagdCpmWPKPE9HBXXugwHM2FSZT7M2JL5xkIlYvKSyPHqKdvBXVfcox68k0lpd+30DXhobC+KBVFqOR6jmQlMr1t/9JABGBkYBsG+4Xx+9kDvHd0HUarmSfbDUYlV5S2uXfzRBy9HNj8yh7idiTh5+jKCx1HEKqreN6Hv6Mrz4QPoa17+dwnZdyWC2oPMOfBIlewiJHY+krUphFqzKKVRdzxWAaP3aPj63cb571dg0Gi803JRJ03M7y/FsPRCM5G2ZPCPflya2a926lazpN8KJ3ve/6FQqPg6Zj7cfH9bytx6oJco56XDiwDIMjJnVe7jALg51MFPLApi/P3BdHcVcUfZw+wI+0cAI+26UcXL1Gjprp1/zOJY1kmTE9cfybUnJg8vgr7FblKzsyEB3Dysq+CSirO5WhWEkVmIw5KFW3dfAl19a60Tk6FFjcBU5Z9cuvEXPutHKFOELVphFp3+zhnPN3l/LSosHTyWmOSlWMhpE8iUefN3DvJkawdB0sDkbe/7FxtgUhBShE/9V8EMnhw120NIhABKLZcWo3V1PnSvID3D+Yhl8GxTFO5bWJkpGZolTKk//hnq0dzNyYtuAlLiYXvey4sfU8IdHJnXLNwJrfsxoTgjrRy87m2QATg1kzQeIOlCJa4iRGSekgEI0KNevExNwwGGx/Ozb964wbkbKyJkD6JpGVaeXGaM/t+2U1qsn34e87vvXjoibBqOY/ZYGFuxz+wGKzcvnA0/l18quW4dYGD4lKK9xR9XunjFeN9GeivYeLqdKZtziS2MK/CfYTq46D478EIQPvbWtHj8Q7kxuSz6PY1//2Al5uUDlpfsBbDEnHLpr4RwYhQo559RIeDVsZH8xpPMLL7YAnthyZRrLfx0YvOLHp3O/l5ZmQyWLBuAJPuCq6W80iSxLddF6DPKmHY+31pO6lhVTf10Dji72jPYxFbmM3ZCzkpWnuo2TzJn3lDvPglspAH17uyKaYl8Xme2CR3zNY6f+e53nFQyq6QheTajJkzBL/OTYhcco79cyKq6agXTEwFhwCw6mGJTgQk9YiYMyLUuCdnZ/HV/AIWfNWEyRMaduruRSuLmDwjA7kMvn7NibenbcNitqFQwPLdw+jas/rmzvw+Zhln18TR8d42TJw/stqOW5dsS4nmz/OHAHBUqrgluBO9vENQyuWcyElh7snTfBvRArg0rK+QQYhOSQcvNe081bT1UNPWQ0W4l/rah/8FACavTeev6GJsT1VtzkiuUc/S2AhO5aZgkqw00Tpzb6teBLt4AmDSm/jY/wdMhSYe3j+ZgG4+nMlL5++YI6Tq83HXODK6aXv6/GuS7daUaDYmRZJvKiHQ2Z07W3QlxKWC36llTUGfCHIt3Foo5pDUoqp+fotgRKhxBoOES+s4AvyUxO1tuJMLP/0uj2ffzsFBK+ObV9S88uBOJAnUajmbj99Ey7Dq+9ldN3M7ez87SlAfPx7afUe1HbeusUhWPj+xtUw9EwA5stIEaBFpvhxIacblAQmAXMaFNOb27+cPb8K9bRt2MFxTHtiYyc+nCyl5PBjtVXLhFJtNvHt0La3cfBjo1xIXlZaMkkKaaJ1p4nDp9U8/lc3cDr+jclRyX8ydfBC9iQF+ofTzbUFUXhqLzh9hRvuBtHO316I5mBnP/DN7mdKyOyEuXmxOieJIVgJvdh2HTl1BscTlIVAcB3IN3JoHSlFQsTaICaxCnaHVyrl5pCPxSRZ2Hyy5+g710DNvZPHs2zl4uMn5+nkZsx6wByJOzgr2x46t1kDk4LfH2fvZUVybuXD/jtuq7bh1kVKuYEa7gXT0CCjzvHTZTYMRwQb8HBX/3hXJZg9EZIC7Rs7IZg7l2ghV46SyB3p5xqtPRF+fdBp3jSP3tepFiIsXXlpn2rr7lQlEAHzaeTL+h2GYisz8dOsyvLTO3Na8C36Orgz2D6OLVxCbks+Utt+UHEU/3xb09W2Bv5Mrd7XsgVquZE/6+Yo7cnMsOLcAyQiLXcEikuLVZWLsSrghvnnXi6VrE5gxO5uj6+p/nZTLTXw4jX/W6QkOUvLcpBJefvQoAB5eavacHYurW/VNqozZksCq6VvQ6NQ8dnwqCkXD/3tCq1TxWLuBxBVmszPtHAlFuUg2iSZaF/r6Nqedux8tnIq5f2NmhfvbgN9HeuPrJN7urpfzhWAk1yBxtcVax7OTaOvux7eROzmbn4Gb2pGBfqH092tZrm2X+9sRty2JY79G4vyLM3S9tK2tux+LYuylEiySlYTCHEYFti3dLpfJaO3mS0zBFcpOjD8HK8OgMBr+1sFtBWKEpI4Sv53CDeHtpaRfdw07Dxg5H2eiRXD9X/VgsUj0vSWFAxEmundUM6FjDu88Z698GhjsyM7I0Wi11fcrln02l99uWoZcKefRQ5PR6v5bMb36JtjFs3TOwb9Nbe3MOwdyicm3lJtoObGFI6NDRGXf/8JZZQ96C0xXHxnJNBSxPfUswwJbMyqoHXGFOSyMOYxSLqd3BYnWJv4ykoPpcRR+ncrRrqfpfK894NCptRisZkxWC3qLCQkbLv+6HaNTa0krKbhyh8adgZVtoTAS/nax5yHROFfxyoUbpeH/WSXUGXPfbwI0jAJ6RUUSrQYkcSDCxISRjvT3S+ar9+yBSJsOruw9O7ZaAxFDgZFvu/2JZJGYunYCnqHu1XbshkApl/F+X48ygcjFN7el5/U8sjmzUea6qS4XR0aqEozYsOd+uSW4E02dPRjg15J+vi3Ynnq20n2Ur/oi81Gy/MGNpJ/Krq5uXzLuNOjag80CS93BWHT1fYQbSgQjwg3TrpWatqEqNu82kJdff5fcpaRbCO6TQGyihSfv16HLjGbBD/ZCbv0GN2HT0ZHVUvDuIqtF4psOv2MsMDFu3hBaDG24k4D/i0ktnQj3VCO/MI9VrZCxfZIfLVyVfH+ykObzk0gsrL8/d7XJWW3/ec6vwpwRV7UWvwtLsi/yc3Al9wqVlXUujgTPb49NsvFTv0WYDRYKTAa0ChVqhRJnlQY5MgpNZed9FJgMuKqqeNtl7Alw7XAhIHEDQ17V9hNuCBGMCDfUF294YrPBjNk5td2V63Iyykho/0SycyU+fMWdcxuPsmGFvZDb+NsD+XvL0GqvCfPzoMXkxxfS+5nOdHukw9V3qEei8zOYc2obL+z/h0d3LiAiK/Gq+5zJS+edI2t5fNdfvHpwBXvSYwD7HIIP+nqUJuca3CyRhXHLebBTJPe3VRBfaKH5zwn8cPIqw/pCOa4XbtMUmq8ejLTQNSH9X7dO0ksK8NBUPtmkuc6LBM9iRn02EEOekZ/6LSIyL43mOvuyXaVcQVMXDyLz0kv3kWw2oi5rUyVjjoF7F7BZ4R8vEZDUISIYEW6oYQMcCfBVsGhVEaYqDPnWJZt36uk8KhmD0cbvX3qx7LPdHNlnH1J+YEYo3y7sV+3n/Of+DSTuTiF0dDA3fTqw2o9f20xWC4FO7kxu0a1K7bMMRcw5tY0wNx9e7TKKoQFh/Ba9n1O59oBwVLADvfyglUcmL3cL4JXOowh0csPV+QBrbvZAo5Tx8OYsRixNwWSpXz9/tclFU/XbNMMCWhNTmMWahFNklBRyICOOnWnnGOR/KSnfP7ER/HxmT+n3A/1CyTIUkTwemt3ajJTDGZz46wzDAsLKHHdX2jn2pseQqs9nwbmDmCRLuVwkVzXqMHh0vywgqf+3jRsCEYwIN9ybz7pjNsPsj+tPye9fFhUw/K405DJY/bMXHz62hZho+33n599sz7tfdb3KEa7dzg8OEjH/NE3aejBl5fhqP35d0N7DnwnBHensFVSl9ttTz15xCahMJmNc6Fne6C2nn1/ZJaAyRTIZDzWjj5+GjYkGfH5I4FC6WO5ZFW5q+9LpIvPV01IFu3gyvc0ADmbG8ebh1axOOMntzbvS0zuktE2+qYScy27beGmdmdFuEJG5aRx+0oBpoBbXdwqQbSkubdO9STNubd6ZFfHHeefIWhKLc3my3WB06utYsn3TAfDqbQ9IlvqAPu3ajyFUK7GaRrjhHrxTx7NvZfPNrwW8/5J7nS91/84Xucz+OBdnJxnrf/HkvhEbKSwwA/DBN125d3r1p2E/vfQcm2btxtHLgUcPT6nzr9GNElOQRWs33zLP/XsJaGJRDqODKl4CelOQnN23B/DpkTye35VDj79SeLGbK+/3rXiVjmCnuzBnpKgKt2kAOngG0MEzoNLt94X1LvfcxdEugOLFej4N+pG/71zLk2e9cQ+2z0EZ7B/GYP/qqevEiD2woT9k7YJlATAhGRx9r76fUCPEO5xQK558wJWiYhvzfius7a5c0cMvZDL741y8veRs/sWNKYPWlQYi3y7sXSOBSMqRdBbdvhqlVsH0Y3ehqsZVOfVdgdlQLtvm5UtAi8zGSpeA5psvjYLM7OJG1N2B+Dgq+OBQPu1+SyTHICa3VsZda/+oKK7CyEh1cPJyZOraW5CsEt/1+AtrTd1SG7ETvAcCEizzh6KkmjmPcFUiGBFqxWtPu6FRw9tf5NV2VyokSRI3TU3lhz8LCWuh4p8vHJnYbwNGg4RMDos2DWL87c2q/byFacX82O9vsMEDO29H5y/yIdSUUHc1yQ8GcWcrJ07nmPH/IYElZ4uvvmMj5Ka5ODJy46qHhAwKZMhbvdFnlvDL0CU1d6Jh28BnKGCDFU2hKK7mziVUSgQjQq1QKuVMmeBCWqaVVZvq1geAySTRaWQy67eXMKCnhi+fk3Hr4C1YLTaUKhlr9w+n/9DqH861mCzM7fg7lhILt/45ioBuPtV+jvpOp9JSUMHyzutdAiqXy/lzlA9Lx9hf61vXpHP7mnSRk+RfLtajKbnBk34HvtqT5sOaEr8jmc2z91x9h+s1dBP4jsQekDSHgnM1dy6hQiIYEWrN5697IpfDs2/XnWW+efkWmvdN5ESUmSkTnHh8nJF7x+3CJtlr7OyIHE3HbtU/v0CSJL7t9ifFGSUMebs37W9vVe3naAia67yIyis72bA6loDe0tKJlIeaEu6p4u+zxfj/mMiZXFPNXEQ9pq/inJHqNHXtBJz9nNjxzgHObYiruRMNWQd+owEbrGoFeWeuuotQfUQwItQanU7OyIEORMeYiThlrO3uEJ9oJrh3IslpVmY97kq/Zjk8dd8BAFx0SvbHjiOkRc1Uff1r4ioyTmTT4a7WDHy1Z42coy4yWM0kFuWSWGRfWZVlLCaxKJccg320rLIloEtij5Kmz2dbSjSHMxOqZQmoh1bJ8alBvNzdlQy9lba/JfHx4bzqv+h6SgaUWG58kXeFUs4jB+5EoZazYPxKCtNqcCR18GoImADYYE0bEZDcQDKbzXbjf7quUVVLEAv1T0KyhWa9EujVRcPe5ZXPvq9pB48Z6D8xBZMZvn7Hk8wTscz9OAoAbx8NO6PHoNPVTD2djS/uZNeHhwns6cvD++6skXPUVWfy0vn0xOZyz/f2DuG+sN7MP7OXbGMxz3YYVmafv2OOkKrPx03jyJim7csFGltTzrAhKZICk4FAZ3fubN6VkGtIjnUo3cCIf9LINUr08tWw+RY/HNWN+2835Zcx9PbTsPO22vk9PbMqhgXjVuAS4MzMhAdqdoXZjlshaQkgg9EnwK1dzZ2rgavq57cIRoRa131MEoeOm0g+1BR/nxu/cmTFhmImPmIf1l/2gw/rfz3B4t/iAAhu6cT2U6NQq2umX0d+PMnyhzahC3Lm6ZgHUFRjGnnhvzFZJMavTGd9QglOShkrxvkypOl15LRoINRfxdDRS83BybVXdXvDizvZ/eFhQkcHM3X1hJo92a7JkPCX/fGoCHDvWLPna6Cq+vkt3vmEWvfNu/a/WKfPqrgEfE2a+2s+Ex5KR6WUsXeZH398fLA0EOnU3Z3dZ8bUWCASuy2J5Q9vQu2iYvqxqSIQqWPUSjnrbvHjp2FeGCUbQ/9JZfqWG/8zWlcoZDKM1tr923XE//oT1NuPs2vi2PnhoZo9Wb8/odkU++O1nSDrSM2er5ET735CreveSUuLZkpWby5Br79xE+RmvZ/NY69ko3OWcWqTP688uJ1t6+2TIweN9GHtgZE1NhScG5vPbyOXIlfKeeTgZBzdq1jsS7jh7m+nI/a+poTolMw7UUjIzwkkNcKCewo5GK213Qu4b9skHDy1bHppFwm7U2r2ZH3/gOB77Y83dIXMvTV7vkZMBCNCnfDRK55YJZj5Vg2UD6/AlBnpfPBNPoF+CqK2+TN56AZOHMkD4Na7g/lz3eAaO7ehwMi8LguwmiWmrr6ZJmEeNXYuoXoEuiiJub8p08JdiCuwEDI/gR9PNa6Ce0oZmGp5ZARAqVby8N47kCtk/DJ8KfqcGk7p32c+NH/Q/nhjH8jYVbPna6REMCLUCbeMcqKJp5xfFhfVaI4HSZIYMCmZP5cX06GNmsMrvRkevoaEGPsM/UdntuKrX3vV6PnndV6AIc/I6DmDaTG8+hOnCTVn7pAmbL7FD41cxkObsrjpn1TM1saRk0Qpl2GSaj8YAfAMdWfi7zdhKbHwXY8/az4vTK8foOU0++NN/SF9R82erxESwYhQZ7w8ww2D0cZ7X+XXyPENBok2g5PZecDITYMcWPWdK31CV5OVYV9WPOu9cN74pEuNnPui+UOWkBuTT88nOtLzMTEhrj4a0tSBjIeb0dtXw/qEEry/T+BwIyi4p1bIMNeRYAQg/I4wuk0LJ/d8PounrKv5E/aYC6Ez7I83D4TULTV/zkZEBCNCnfHkAzqcHGR8+n31ByOZ2Raa9U4gOsbMI1Nc+OxFB/q1XkvxhXv/H3/fnSdn1ezyveUPbyR+ezItRjRl9Jc1dxtIqHmOajl77gjgo34eFJgkuv+Vwit7bswtxtqikkMt5Dy7onFzh+LT0YtTC6M5OO94zZ+w+1cQ9pT98dahkLKx5s/ZSIhgRKgz5HI5j9zlQm6+xO9LyhbQyzEUk1CUU/p1MSlWVZw5b6J5n0QysiTeec6d+8fYGNZpPSajBDL4aWlf7nqoRXVfThm7PznMkR9O4RnmztS1E2r0XMKN81xXN07fHYi3o4L3DubT4feGW3BPo5BhqUMjIxc9tOd2NDo1qx/fQmrEDVjt1PVzaPOC/fG2EZC0qubP2QiIPCNCnWIySTiFxeHnrSBhv30+RY6hmNmHVmKxXfqzTCmT83a3cXhona54vF0HShhyZyoWC8z/tAlNFHk8OGk3NhvIFbBkyxB6DfCu0WuKWnGeP29eiYOnlpkJD6B2rJnkaULtkSSJO9dl8vfZYjQK+GuUDxNaXPlns75p/1siMQUW9I+H1HZXykk7nsm8zgtQOSl5LuVhNM434Hfs6MsQ+b79cf9lEHRzzZ+zHhJ5RoR6Sa2WM2mUE4kpVrbtKQGgyGIsE4gAWGwSRRb7XI/jkUY6jUwql1J+4YpCBt6Wis0GG//whex0HphoD0RUahkbj4ys8UAk7Xgmf01chVKrYNrRKSIQaaDkcjmLRvuweLS94N4tq9K5c23DKrinVciw1sGREQDfDk0YO3cwpkIzP/RZeGNO2vk9aPea/fHOCZCw9Mact4ESwYhQ58x5xxOZDJ58PatK7T/7Pp9jp00Mn5JKXKIZgI/n5XHn45loNTKOrg3g2NYYXpxmT5Lk6KRgZ9QY2nZwr7FrACjK0PND74Vgg/u33YpbkBjVa+gmhdoL7rXzULEwupiAHxM520AK7mmUMurAyt5KdXukA+FTwsg4kc3yh2/QXI6Ob0L4W/bHuyZB3F835rwNkAhGhDrHy0PJwF5aTkSZOXP+ym/kBYUSf62wzx/Jy5cYNjmVh5/P4Pl3c/B0l3N+VxAL5pzgo9dPAuDmoWJ/zDiahTjX6DVYTBbmdvwds/7/7d13eJRV9sDx75TMTNqk90oCSSABQg29K1IErIiIiG1t667ourYVy28tu+rqWlcQK0hRVJogBFCRXkIIJAGSkN7bpE0mM/P+/pgwEEiQIJlJwv08T54nmbkz78lLmDlz33vPMXLTV5MJTgjo0OMJnYenRknKvBCeGuxGcb2JmC/zeKu5hk1XplHK6OwX9W/8cjJeUe4cWnKMI8vSbHPQvv+Afs2Xa3bNgcwvbHPcbkYkI0Kn9NGrzSXin7n47Mjy72tpbLS8QhpNkJljZMmKWsKDFWTvDuUfD+/h0/dPARAQrGF/9gy8fTu+2unihBXUFtUzblECfefEdPjxhM7n1ZFe7J0diFYl5/FfKxi5Kp96Q9e9bOOokNHZo5fL5dy39zYcnJV8N38zpekVtjlw3FMQ/4bl+z3zIfMz2xy3GxHJiNApRUeq6BvtwI7deioq2n4J/PBLnaW3ebMzn9xiejpw+5TtrP8mD4BevV3ZkzEdFxeHjgwbgBU3raMoqYzY2VGMf2F4hx9P6LyG+GsovjeUa0M17CpsxHdJNjvyGuwd1mVxUsp+f1An4Oiu4a7Em5DMEp8MX0mTrXY39XkcBr5t+X7PAjjxsW2O202IZETotP77kjeSBM//s/UX76PHjCSnGlqdOt60o4GfUpyRgMHDPdmR0nGdd8+19ZnfSF2TQeAgX25dMbXDjyd0fiqlnM03BLJ4ojeNRonx3xby8LZLWw/VmTg5WN4uukLF2eCEACa/MZqGykY+HbvadgeO+QsMes/y/YE/wYkPbXfsLk4kI0KnNW6EI0EBcjZuNmBs5cPNslWNKBRtPVqG3tmX0GG9WLfr2g5reHeupC+O8+ur+3ENcubePbd1+PGEruXeOC0Zd4US5qrkg6M6Ij/LoaC269QkcW7uKl3d2PmTEYARCwcRPSOC/H3FbFr4s+0OHP0wDP6f5fsDD0Hau7Y7dhcmkhGh00oqzyNm1klMJhn7V4S2uK9JL2f1d42Yzu8ies40iaezkedetM16jZzfCvh+wU+oXBx4KHkeCqX4ryVcKFSrJPOuYO6LcyWz2kj4pzl83kUa7jk7WC7TVHWhdS+3fTcdt1BXdv/nMKk/ZNjuwFH3Q8Inlu8PPQrH37Tdsbuoy3rFfP/99wkPD0ej0ZCQkMC+ffsu6XErVqxAJpMxa9asyzmscBVJryrmf6m/Ejm6FJWTkdREPzxVLjgrLXU69q8OxtgkByRkzZey5WYjmvpy3CoyePKGGsrTophxbccXnqrMruazid8ik8u4d89tOHl2/AJZoeuSy+V8PNGHrTf44yCXcdfWMqZ+X4ixk9ckcVFZ3i6qusjMCDRXdd4/B4VawapbNlCVbcPEL/JuGPa55fukJyDlNdsduwtqdzKycuVKFi5cyKJFizh06BD9+/dn8uTJlJSUXPRxp0+f5oknnmD06NGXHaxwdZAkiVWZBzE3z3JMvrkeY6OCXlnjeGPYTYwyjeLYZn9Awiu8jtk3G/CrOIZPwSHcKzN59cVgXv+vbZrQNdYa+GjAckwGE3N+mIFfrJdNjit0fRNDnSi+L4yhfip+zG7A7+McDpd03oZ7Ls0zI13lMs0ZLr5OzN0wE7PRzMcJKzAZbRh/xJ0w4mvL98lPw9GXbXfsLqbdychbb73Ffffdx4IFC+jTpw8fffQRTk5OLF26tM3HmEwm5s6dy4svvkhERMQfCljo/jJrysirqwIg1MWDNS/FERqoZNX6OjZtb+CB+030jZVz+7uHGH1DCj+/k4Ssvg4Z8PZnQ3nwid42idNsNvPRgGXoKxuZ8vZYoqZ2vjLZQufmopKz97ZgXh/pQVWjmUFfF/D8bhttR20n1+YFrDpDJy820orIiaGMWzSMuuJ6vrjWxpVSw2+Dkc2LaI8+D8kv2vb4XUS7khGDwcDBgweZNGnS2SeQy5k0aRK7d+9u83EvvfQSvr6+3HPPPZd0nMbGRnQ6XYsv4epxovrsLNsY/14oFUr+70kPNv/cwPULipg0ypFd34QhHVOw5wkZktlyqebztaOZPd92ye4X13xHxalqhjzYj2GPDrDZcYXu58nBHqTcEYyPo5yX91XRf1keVZ2s4Z5WbZkZ0XWhNSPnGr9oGOHjgzm9PY/tL7T9ftUhwm629K8BSHkBkp617fG7gHYlI2VlZZhMJvz8/Frc7ufnR1FRUauP2blzJ5988gmLFy++5OO8+uqruLm5Wb9CQkLaE6bQxTWdsyrVQ+0EwPSJTijkMLifim8/9mP5xyfZ/pwBJEAOq3aM5drrg2wW47oHE8nalkuPiSFM/2CCzY4rdF+9vVQU3hvKTT2dSC4zELAkl7UZl96duqOdmRmp6aLJCMCdP92Ii78TO17cS0Zijm0PHjITxqyzfH/8FTj89wvHmPTQVHPh7VeBDl3yX1NTw7x581i8eDHe3t6X/Linn36a6upq61dubm4HRil0Nq6qswtAT+ossyQe7gqObg1iz9og/r0omecfSwJA5gDXfC5jxGh/m8W3553DHPjoKJ493bjzpxtsdlyh+5PL5XwzzZ/VU3wxSxIz1xczd1PnaLjnpra8XdQ22T+Wy6VQWiq0yh3kLJ/2A7Ul9bYNIHg6jP3R8n3qv+Dg42fvq8+H9b1hxzTbxtRJtCsZ8fb2RqFQUFxc3OL24uJi/P0vfDPIyMjg9OnTXH/99SiVSpRKJV988QVr165FqVSSkdH6Viu1Wo1Wq23xJVw9BnqHIG/eIvNL4UnK9LUA9O6l5vF79/HfV1IBUDhKTFwuMXFouHV8RzuxMYsfH/sZRw81DybNtUn9EuHqc3OUC/n3hNLbw4Hl6XWELM0lo8q+DffczsyMdOFkBMA9VMutq6dhbDTx8eCvbZ/oBV0H4xMt36e/BQf+Ag2FsHUM1GVD6a9Qd/V9AG/XK6lKpWLQoEEkJiZabzObzSQmJjJ8+IVlr2NiYjh69ChJSUnWrxkzZjB+/HiSkpLE5RehVW4qRwZ7hwFQb2zi1cOb+TH3GDdP2crXS7MAcHCXuGa1hJMfjA+MsklcxcfK+XrmWhQqBX86fDsqZ5VNjitcnbydlBy/M4S/DXSjsM5E9Bd5vHO4ym7xuGssFQbrm7reAtbz9Z4ZyfCFA6nOrWHFDettH0DABJjYXIjtxH9hXQzU5WC97pyzyvYx2Vm7P9YtXLiQxYsX8/nnn5OamsqDDz5IXV0dCxYsAODOO+/k6aefBkCj0RAXF9fiy93dHVdXV+Li4lCpxIu50LrZkYPwd7TMiOkMjSy8LpnfNpUBEho/iWtWSai0cEN4PKEunh0eT11ZPUsSViCZJe5KvAmPMLcOP6YgAPxrtBe7bw3ExUHGX3+pYPTqfBrsMDvh3nyZpq4bJCMA1705hqChfqSvzWTXWwdtH4DfGBi91vK9UQfSmQXLEpxeZvt47Kzdycjs2bN54403eP7554mPjycpKYlNmzZZF7Xm5ORQWFh4xQMVri4uDmr+1n8Scc6BbL9DRtVxy2UYbSRM+lrCw1XNvF4JXBfSp8NjMRnNfNh/GYa6JmZ9ei2hIwM7/JiCcK6EAA0l94UxMUTDzoJGfBdn82u+bRvuOTW3dqqzZZ2ODrbg51tw9NSw+Ylfydtr4/ctfSkk/Y0L34YlqDwMtZm2jcfOZJLUWpuxzkWn0+Hm5kZ1dbVYP3IVqa4yMLbPRooLLYWgIoaoeXhZED3dfBngHYKDvM3GNFfU/wYvp+BgCWOeHcrE/xthk2MKQls+Pqrj4e1lGCV4pJ+Wd8df+uaAP0r2TiazIpz47nrbLRjvaKXpFbwf+yVKtYLH8+/F0d0GFZQby2HLaKg5AdL5PS0A5ND/nxD7FBX6OmqNjdZ7XJRqPDUdX1n6SrnU9++Ob2MqCJehMK+ecXE/oqtuAmDqjcF88u0om8ex6raNFBwsofdNPUUiInQK9/fVcl2YE6O/yee9ZB2bsuv59ZZA/J07/uVcBjQYO/3n13bxifbkhs8ns+aOTXw8dAV/Truz4xem568HXSrI2vpAZUY6/RW/et7E8lP7OfeMy2Uy/jFgKoHO3etSsdgKIHQ6J1KrGRG1wZqI3PGnCLskIttf2M2xlSfwH+DDbd9Mt/nxBaEtoVolWXeFcE+sK6eqjYQuzeGr1I6vTyGTQYOp+1ymOaP/3BgG3htLxckq1szb3PEH7DEPJiRCz/tB3TyzJWuZTMqqj7E19QfOT/3MksSbyVvJqinr+DhtSCQjQqdyYHcpE/tvQt9gmbr863N9+PdHQ20ex5Flaex4cS8u/k7ct2e2zY8vCL9HLpezZJIPm2b54SCXMe+nUqb/0LEN9xQy0HezmZEzZi6+Bt++Xhxdns6BxUc79mAyOfhPgCEfwA1FMOlXiHoYNJbLX2fO8AOl/wHASemA1uHs5aNaYyPvHN1OUX11x8ZpQ2LNiGAXz+z7gfLGltUla07DzofkNFnKivDS2wO47y/R1vsPlubwQ3Yy5fpafB1dubFHPH09z1ZdlSSJddlH+bXoFA2mJiK13tzecwh+ju37m8nbW8iSEatQOir4a9bduPg4XfbvKQi2UGswM/7bAg6UGPDSyEm8MYD+PuorfhzNe5nEeKhImht8xZ+7M2isNfBm4BIMdU08cPh2/Pv52DYAycye1FU0pX/EqAbL1t/y4DvwHP0FcpmM3NpKVmQc4JSuFID+XsE81GeMbWNsp0t9/xYzI4JdPB0/mX8l3GD96pPem50PyWhqzk/e+2pYi0QkQ1fKkrTfGOkfwXMDpxDvFcyHx38lv7mhHsDmvFS2FaQzt9dQnoq/FrVcyX9TttNkbm2BWOuqcnQsHfsNMjnct2e2SESELsFFJWf/nGBeGeFBpd7MgOX5vLin8oofRyGT0Wjq9J9fL5vaRcWCX24BYOno1RjqbVtozoyMdXVOfOV9P38PeBdkDnjnfYX8+OsAhLh48Oe4cbipHAFILs+norHztAz4I0QyItiFq0qDm8oRN5UjX7yVxesPpmPUW65JL/txDDfNDW8xPjE/nVjPACYH9yHAyY2Z4f0JdfFgR8EJwDIrkpifxtTQOOK9ggl29mBB9HCqGhtIKru0aoaGegMfDViOqdHE7G+n4xdn409FgvAHPT3Eg+Q7gvF2lPPC3koGLMtD13jlLtso5XTrZAQgIN6HaR+Mp1FnYMkI2xYfq2iss1ac9vOKQXZTCai84cjTkPJPADQKB0b4WRqCSkicPKexaFcmkhHBrhY9dohXnk4GJFQuMtbtmsSE6y6s45FZU0aMe8vthH08AshsXsRVpq9D16Sn9zljHJUqerh6W8dcjNls5qMBy2mo0HPtG6OJmRH5x34xQbCTWC8VRfeGckOkE0llBvwWZ7M+68p8enaQyzB082QEYMif+hE7O4riI2WsezDx9x9whRhMZzs1e2lcQOUOMzJA7Qsp/wdGy0yN9zlbextNnau78+USyYhgNw/O2cXHb58AmYRrBKz5dTyDElqvmaAz6Fss4ALQOmioNlhqkOiaLAWgtKrzxqjOjrmYr6Z8T/mJKgbeF8vIxwddzq8jCJ2GXC5nzXR/VkzxwSxJXL+2mDs3l/zhPiwOchlNZksyIkkSBpOEydw9k5Obl1+HZ083Dnx0lKNfp9nkmC7nvMZl6kqRJAlUWrg+AybvB6Wlavmp6lLruPNfF7sqkYwINmc2m7l10na+X2Fp4e0RJePuT30ZGOdnl3g2/HkbGT/lEDY2iJkfX2OXGAShI8yOciX3nlBiPBz4Mq2W0KW5ZFVf+jqIfx+sYsDyPKI/zyVsaQ4l9SZKG8w4vpeF8r9ZqN/LYsK33bPitlwu5769c1A6Kllz52bKT175NTjn06o0RLn5AlDcUMOeEksvLlQu4BEHQH5dFftLswFwVDjQ2yOgw+OyBZGMCDZlNJqZPOgnfk20dH72DnJg5HsSk6OjL/o4rUqDrqnlDIeuSY9b80yI1sGyoEt33iyIznB2TGv2vp/EvveS8Yhw465tN7X79xGEzs7XSUnqnSEsHKCloM5Er8/zeC/p0raEntY1kVRq4ERVEzk1RsxYtp3qTRJn5lj6eDl0VOh25+SpYf6WGzGbJBYPX4nR0PGXRMYHnn0t/PzEXpad3Eemroz8uio25KTw7yNbMEqWsz/KPxK1onvULhXJiGAz9fVGRkZtICWpCoDwni68uD0Sdxc1fT0v3u8lwtWbtKqiFrelVhYR4Wq5rOOtcUbroGkxpsHYRFZNmXXM+U5uPs3GP+9A467mwSNzO77qoiDY0ZtjvPntlkCcHWT8+edyxq7OR/87fWaeG+qBRiFr834Z8PhA9ysbaCcTOjKQSa+NoqFcz2fjvu3w4w3wCmaUv2XNmoTEL0WneP3IT7x0aCNrs5NpMFmKQYa5eDI9rG+Hx2Mr4tVXsInyMj1Dw9eR07yQru9AD34+PoX9lacZ7heBQtbyT/HT9F18l5Vk/XliUDTHKgvZkpdKUX0167KTya6tYFxgFAAymYyJQTFszE3hSHke+XVVfHpiN+5qR+K9Qy6IpzS1nOXT16JwkPPAodtRu4gO0kL3NzzQ0nBvfLCGXwoa8f04m98K2m64F+Cs5PGBbshbyUeUMrgh0ome7t13ZuSM0U8OptfUcHJ3F/LTk7926LFkMhlzew5lWmgcqlb6b8mAwd6hPNZ3IhpF9zn3ouiZ0OFys2uZ0HcTtTWWKc7Rk/xYsXksadXFvJOynZcGTcfPqeW/65vJW/FSO3NX9HDrbZaiZ0co19f9btGzeqOBnm4+3B455ILnrq/Q85+wTzDUNbFgx82Ej+meBZwE4WI+TK7mzzvKMUnw13gt/xnbxuLxRjNhn+ZQ1coW4S03eDIp1L2DI+0czGYz/wlbii6vltvXzSB6ekSHH7PeaGBvSRa5tZWYJAkfjQvD/HrgrXHp8GNfKZf6/i2SEaFDHTtSybRhW2jUW17IZt0Wyodf26/hnMlo5u0elheUmUuvYeCCWLvFIgj2lq1rYvTqAnJrTfRyd2DnLQH4Ol24BuHV/aU8s0uH5XM5yJDwc67hxpg0Xh58fZfqIvtH1BTV8Z/wpSBJ/CVjAW7BrvYOqdMTFVgFu/ttezGTB/9kTUQWPNLLrokIwCcjV6LLq2XU3weJRES46oVpHTi9IIS7ertwsqqJ4E9yWJZ2YcO9W6LkuDgYONM1RUJGvH8BRsncor19d+fq78zta2dgMpj5eMjXmH5nzY1w6UQyInSIdatzuGXidkzNTbWeeCGOV961b/2Ob+b+SP6+YmJmRXDNa6PtGosgdBZyuZxPr/Vl40w/lHIZd2wuZebalg33Gs0GhgblYJkZkXBXNxCirbJXyHbV89owxv5jKLVF9Xw15Xt7h9NtdI89QUKn8ukHJ3nm4YPWn195fxALHuplx4hgx0t7OLo8Hd++Xsz+drpdYxGEzmhKuDNF94Yx4dsC1mY1ELA4h+03BlBsyOKbzMNEekjszA3HYHKgv18+suZFramVRYS6eNo3eBub8NIITv+cT+bWHH7+v72MfS7hkh97orqEn/KOk1NbSbWhgQd7j251kf250quKWZ15iML6ajzUTkwNjbOWhD9je8EJtuSlUm1oINjFg9siB9GjjZ2EnZGYGRGuqDdeONoiEfnfyuF2T0RSVp1g+6I9OPs58acDc8QWXkFog1Yt58Dtwbw8zINyvZl+y/N46rcizEjIZNDT3dJaIcytwvqYNaeT2F2caa+Q7WZ+4k04+zqy7fndZO3Iu+THGUxGgp09mBM5+JLGl+lree/YDqLd/Xhu4BQmBkXz5Ym9HKsssI7ZX5rNN5mHmBYax7MDphDs7M5/U7ZfUHepMxOvysIV8+QD+3nzxWMAyOWwaus4ZtwaZteY8vYX8c2cH3FwUvLQkbkoVWIyUBB+z3MJHuy61Ru1wsiBwlC+TY1jiHcvnhgYY7l/4BSG+/awjl+RcQC9scle4dqFQinnvn23IVfI+WrKd9SV1V/S4+I8A5kV3p8BvzMbcsbPhSfx1rhwS8RAApzcGB8YzUDvELbmp1vHbM1PY5R/JCP9Iwl0dmNuz6Go5Ep2FWdc1u9mDyIZEa6Iu2/8lS//Z/nDd1DJ2Lj3GkZP9P+dR3UsXUEtn45ZDTK457fZuPhdHSv+BeFKqGjK4Y6+Bwlzq6C8wZnHd3hjMFnqWrg4ODM/ahhDfCwfNvQmI3tLTtsxWvvwCHPjllVTMepN/G/w13+4909rMnVtNAnVWWapjGYTOTUVLZqEymUyYtz9rWO6ApGMCH+I2Wxm5uit/PhdPgCOTnJ2HJtK/8Fedo2rSW/kw/5fYdSbuHX1NALifewajyB0NSmVhcjlMDnyBB9P0uKqkvPXn8sBaGgyI5PJuCao9znjC9p6qm6tzw09GfZoPNXZNay8ecMVf35dk77VBqB6UxMGk5HapkbMSLi21iS0SVymEa4CBoORcXGb2LfTkn27e6rYk3E9ET3tu/febDbz0YBl1JfpmfT6KPrc0NOu8QhCV3TmsotSJue+WB/S7wxhUqilB9TBUkuzvYBzCgo2XGWXac415Z1xBA7yJe27DPa8c9je4XRJIhkRLotOZ2BY5AZOpuoA8A90ZG/WdHz9He0cGSyfvpaytEoGLOjD6CcvbZGYIAgtOTtYWiQYJTOF9dU4O8hZNdWXH673Y2aE5ZJndm3FBeOvVnfvvBWNu5ofH/uZvP1Fv/+AS6R10LTaAFSjcEClUOLioEaOjJrWmoQ6tN0ktLMRyYjQbiVFDST0WE9hnqWnRWSUK3syp6HV2v/FaNPCnzn542lCRwUya+m19g5HELqs/l5n2yRsyElBkiQclXJmRDijUsgwSxI/5h6zjon3urrbKjholNy761Zkchmfj/8Wve7KFIOL0LbSJLSqiAitZduuUq4g1NWT1Kpi6/1mSSLtnDFdgUhGhHbJPKljeM/1VFVYpmkHDPXkl9QpqNX236Wy/3/J7P7PYdzCXFnw8832DkcQurThvhGo5Zb/1/tLs/ko9VcydKXojU2kVxXzbsp2jlUWAuCiVDPYx7475zoDn95ezFp6DYa6JhYnrGh1jN7URG5tJbm1lQCUNdaRW1tJhd7SRPS7rCQ+Td9lHT82oBdl+lq+zTpMUX01OwpOcLA0h0lB0dYxk4Ji2Fl0it3FmRTWV7P81H4MZuMFtUg6M/u/gwhdxuH95cwclUiTwbJifPx1ASz/caydo7LISMxh/YPbUGtVPJR8h6glIgh/kLODijt6DeWT5jfGpPI8ksovrKchR8Zd0cNwaKXD7NUo/s4+ZO3II+nT46y5czM3fjG5xf3ZNRW8dTTR+vPqzEMADPftwV3Rw6k2NFDReHabsLfGhUdix7E68xDb8tNxVzsxLyqBWI9A65ghPmHUNulZm52MzqAn2MWDR2PHo1XZ/7L5pRKN8oRLsu3HAu68/ldMJsufy83zwnn3i2F2jsqi/GQl78V+iUwGDx+/E69Id3uHJAidRoW+7oL+MS5K9SU3tztQms2yU/upNxouuM/VQcP8qIQW3bMFi/div6D0eAUzP7mGgXdfvX2wRNde4Yr55qvTPHrnHs78pdz/WBQvvjXQvkE1a6jS85+wpTTWGJi/9UYiJoTaOyRB6DQq9HX848A6jFLL+hdKmbxd3XYNJiP7SrNJqSigwWTAWammv1cQA71DxYxIGxprGnkjcAlNDUYeTJqLX1zXWb9xJV3q+7e4TCNc1P/eSuOFx5OsPz/9Sl8efbpzZPkmo5kP+y+jUWfg+v9NEImIIJyn1th4QSICWLvtenJpyYhKoWSUfySj/COvdIjdltpVzYKfb+bjIV/zyahVPFF4HypHB3uH1WmJC+tCm156MqlFIvLv/w3uNIkIwKdjV1OdU8OIxwcy+P5+9g5HEAShhcCBfkx5ZxyN1QaWjlpl73A6NZGMCK36y117+PDfaQDIZLB0zUjuuL/zFA9bM38zubsKiZrWg8lvjLF3OIIgCK1KeCSe3jf1pPBQKesf3mbvcDotcZmmG/qjC9bmTv2ZbT9atuwpFLBq63hGjPO74nFerl9e3ceRL1LxifViztrr7R2OIHRJB0tz+Cx9D+WNtQAEOLkxPbQvcZ6BF33MD9nJlOtr8XV05cYe8S0Wr0qSxLrso/xadIoGUxORWm9u7zkEP8ere63fraum8t9en7P/g2R6jA8m9uYoe4fU6YhkpJv5IwvWzGYzUxO2cuSApaqiSi1j495rie3v0aExt8fxb0+S+MwunHwc+dOBOWILryBcJleVhht69MfX0RUk2F2SxQfHf+G5AdcR6Ox+wfgMXSlL0n5jVo/+9PMMYl/JaT48/ivPDriOoObxm/NS2VaQzl3Rw/HWOLP2dDL/TdnOC4OmX9ULXeVyOfftnc1boUv5Zs4m/Af4il1/5xGv5N3M7y1Ya4teb2RU9EZrIuLsquSX1GmdKhEpOFTMqtkbUToqefDIXBw0IpcWhMsV5eZLX88g/By1+DlpmRXeH7VCSWZNeavjE/PTifUMYHJwHwKc3JgZ3p9QFw92FJwALLMiiflpTA2NI94rmGBnDxZED6eqsYGkslxb/mqdkrO3E/M2z8JsMrNk2AqMBqO9Q+pURDJyFTpysIIa3dmmVlWVjST0WE/WKct0rae3ij2nphPWw8VeIV6gpqiOT0atBuDuX25BG9B5YhOErs4smdlfchqDyUiEa+tbUDNr2mhlX2NplFmmr0PXpG/Ryt5RqaKHq7d1zNUufHQwE/85kvoyPZ9PXGPvcDoV8dHyKlOYX8/UoT8RF+/BtzsmUF1pYEK/TeiqLclJUIgTO45PwcWl82xBa9Ib+bD/VxgbjNy6eipBgzvP+hVB6Mry66p4Peknmswm1AolD/QZTaCzW6tjdQY92vMar2kdNFQ3N2jTNVl6VbXW7r7a0HVa2Xe0MU8PIfvnPE5tzmbr0zuZ9Oooe4fUKYiZkavMt19lA5BypIqbJ2xnVPQGayIS1UfLrlNTO1UiYjab+XjI19SVNDDx/4aLhV+CcIkaTUZ+LjzZ5v0NRgN+jq48N3AKT8VPZmxALz5L30NBXbUNo7w6zd04E9dAZ3597QAnf8yydzidgkhGriKSJPHV4gzMZjCbJI4cqECvt6wvGTLCm+1Hr0Ol6lyTZStuWE9JSjn95sUw5tkEe4cjCF1CvdHAW8lb2VmU0eaYz0/spaapEV9HV8JcPbmhRzzBLu5sK0hvdbxWpUHXdF6b+iY9bs0zIVoHSx+U1trdu6m6Tit7W5DL5dy/fw4KlZyvZ61DV1Br75DsTiQjV5GU/dVkZ1z4Rx8Y4sgPOyd2up0pm//2C+lrMwke5s9NX1xn73AEocv4NH03p2sti9FlWBarjvXvSax7AApkAJQ31vHh8V8wn9MRRJLAaDa1+pwRrq20sq8ssq4x8dY4o3XQtBjTYGwiq6aszXUoVzNtoAtzvr8ek8Ey+2s2X7jx4GrSud59hA61YVk+reUbBbkNvPzkEdsHdBGHPklh1xuHcAtx5e5fb7V3OILQZeTXVZFckQ+As1LNcwOn8Hi/SdzeayiP9h3PS0Oux0tt2eKfXVvB3pJM8uuq+C4riRPVxQz1DQfg0/RdfJeVZH3eiUHRHKssZEteKkX11azLTia7toJxgZZLpzKZjIlBMWzMTeFIeR75dVV8emI37mpH4r1DbHoOuopeU3ow+ukh1BTUsWzaD/YOx64615y80GFMjbDxywLaSr4/fCMNDy8Vf36qj20Da0XWjjx+uG8ralcVDybPRaEUObMgXKpzL81cHxZHsHPL7fneGhdujhjI/1J/BSyXa1wc1AQ5u/No3HjCTO6k/ZBBwfeZFKY0EveyO72uCydS68O90SP5IfsI358+gq+jKw/2GW2tMQIwObg3BpORr07uo95ooKebD4/Gjr+qa4z8nkmvjCT713xObcrm11f3MfrpofYOyS5EMtKNlOlrWZd9tNX79j4DxqbWGzTL5WA2w3uvpfLwk72Ry2UdGeZFlWdU8eXkNciVcu7bfxuO7uJasyC0R1GDzvr9QG9L88jK7Go+7L+M2Jt7EXtLL2KG+6OQyTGZTfhXODGrOprsX/P5accmKjMsC1hlChmSSaIq++zzDfIJZZBP2w0pZTIZM8L7MSNc9Ipqj/mJN/Jm0BK2PruLkJGBhI8JtndINieSkW4iu6aCd1K2UWc0XHDfgUVQtr9lgqFUyjAaJRxUckZN8OWa6UFcOyPQromIXtfI/wYtx9Rk5s7NN+AT7Wm3WAShO5Ca14Nsf34PTXVNHF+TwaFPjiGTy/BSS8gaQTLDd2QjU8qQjOesHzFZvg8bHdTqcwtXjlKl5N49t/FezBd8ed33LMy5G2dvJ3uHZVMiGekG6poMvHdshzURUcuV9PHwx0nhwDtz8yg4aALOvsj4BzoyeWYQ10wPZPg4X5yc7P9nYDab+TB+GY3VBqZ/MIHIa8LsHZIgdEmBTm4cr7T0ltpfmk3kCWeOfJHK5LfGMPyvAyhLr2TT2oOk//M48oZzkg/jhTOnajcVPr3FhwJb8Ip056Zl17F69kYWJ6zk0ZPzO92mgo5k/3ch4Q/7rTjDuuUuUuvNw33GoZYpuXbgZgqOmlA4gMkEYTPMxNyk5MPbpuCoVNk56pY+G/8tVVk6hj0az5AHxRSvIFyuUf6RbM23dNzecCoZz+tLUGtVJPw5HplMRrJrKTuHl8Jab1w+rcPl83okoLU5UZPBxDdzfiT21iiiZ0SI9VsdLO7WKLJ/yWPf+8msnr2R2aun2zskmxHJSDdw7oK1+b2GITXKGB63nrzsepQOMmJi3Zj1vpZk02nAyKGyXEb6R9ot3vN9f+8Wsn/Jp+d1YUx5Z5y9wxGELi3AyY2B3iEcKstF9c8KTPUmVM/4sTYvmdTKIrKbt/wil1F7jwvGMCVur+iQzCA7b4G7ZJJIWXmClJUnQAbOvk4EDvKl96xI4uZEo3bpXB9quoNp700gZ1chx785xd73kkh4JN7eIdmESEa6OLNkprh5wVqwszuKWhUJseupKGsEGQwY6sVXG8aQay4jOeU00HKBm7399u8DHP7kGN4xHszdMNPe4QhCtzA/ahhVaVXUbS3BGKQg6zojWbnHW4xRyRVcH9qP4L+6kz44m6R5+5BqzcjOKTNy96+34h6u5ciXqZxYn0XxkVJObjzNyY2nWXt/Ihp3NX79vOk1rQfx83vj6td2V3Dh0t2z8xbeCFzCj3/ZQfDwAIIGdf8WGDJJklrfYtGJ6HQ63NzcqK6uRqvV2jucTsUsmXlw5woAXCu0fH+HnrpaSzdIvwANW49ch7ePhpSKAt49tgOAa4N7c1OPAfYK2Sr1hwxWzFqHk5eGx3LuRuUkPmUJwpXyTtRnVJyqoml5EOVBTS3uC3DU8mT/a3FyOPt/riK7mncnLseU1YjMDHKNnOd0D6NwaLkt11BvIGXlSVLXnKLgQDG1xfXWJWkOzkq8YzyJvCaUAQti8Y7qPF2/u5rilDI+7L8MBycljxfch8a1a74+Xur7t5gZ6eLkMjkBjlpSj+hY/2AN5ibLld97/xLFC2/Go1BYrvEeKMuxPibAqfVGWLZUlFzKypvWo9QoeCBprkhEBOEK2v9hMhUnq+g7J5obZ08mr66KT9N3U1Bv2bb7QJ/RODmoMBnNnP45jx7jgvEMc2PW9mksn70ezW4Dyn7OFyQiAConFQMXxDJwQSwAJqOZkxuzSFl5gtxdBRQllVJ4sISdrx1AoVLgEaklfGww/ef1JnREoE3PQ1fmF+fNjMUT+eGerSwZtoJHjt1p75A6lEhGugH3k778en8NUvP13hlzgnn57YHW+w+W5rCn2NKMyVHhwCDvtusE2EJtST1Lhq8ECRb8fDNuwa52jUcQupMmvZFNC3/GwUnJjCUTKTpUStHeIkyJxXicbkBZYubzhq9RaBTUFtYhmeH2dTOInh5BVIA/Va+64fRNA4HxPpd0PIVSTsyMSGJmnF2HlvNbAUe+SuX0jjwqM6opS63kwEdHkSlkuIW4EDIikLjZUURN73FV7Rhpr4F3x5G1I4/kL9P4/u6fmLX0WnuH1GFEMtLFffd1Nv+am4kkyQCJqLvMqO8r4PMTe9CqNKRXFZNVU24dPykoBrXCfv/sRoORD/t/RVO9kZtXTCF4aIDdYhGErs5sNlOWVkne3iKKj5RSll5Jzs4CjHoTMoWMfzp/YB0rA1QykNSg8NHgEaalJr+O2Ft7ET7OUmSruKEG5DLqb3XCxcv9suMKHRlI6MizsyCl6RUkfXacjC05lKVVcHR5OkeXp4MMXPycCBzsR+8bexI3u5eYJT3PTV9cR8H+Yg5/epzwccHE32n/KtkdQawZ6cKWvJvOPx49DIBMBiNeVOA1rqnN8cN8ezA/ahhymf0Km30Q/xXFR8oY98Iwxi8aZrc4BKGrqDxdTd7uQgqTSilNraDqtI664nr01QZMja03tZMpZfj388a9hxs+fTwJGOBLSlA5iY2WnXeDfnEj/7mTDF84kMlvjEYmkyFJEp+k72J/aTYAt/ccwtiAXh3yO9UU1ZH0RSonN2RRnFyGvqrRep+jhxq//j5ETbcsir3ain+1Rq9r5I3AxRj1Jh4+egc+vb3sHdIlu9T3b5GMdFGvPZvMO69YVser1DLW7pxESJyGH3OPsbfkNI1mo3VssLM7EwKjGeEXgcyOicjXN64j7bsM+s6J5ublU+wWhyB0JjXFdeTuKqTocAklxyuoyqqmprAefVUjxgbjBeMVagVqdxWGWCW1PWU0hsjwDNRyw7BBbJmaSHVODX/NWIBHj5Zrw3adOMmqpb/g9HU9yjwTsmf8WPjcTNzUTpTr69iYm9KiTECYiydzeg6mhw067jbWGji6PI207zMpOFhMXWmDdVGsysUB796e9Lw2lPgFsXhFund4PJ1R3v4iFiesQOOu5omC+3DQdI0LGyIZ6caeuG8fy5ZkAuDprWL70Sn4+jta728wNpFXV0mT2YSbypFAJze7JiEAW5/5jV9f3U/QED/u3zfHrrEIgi01VOnJ211IwaESSo9VUJFZRU1+HQ2VeprqjecWRwZA7iBHrVXh7OuEe5gr3lEe+PX3IXiYP94xHsjlcj5O3UlBfTW39xyCu8qRvSVZbFuThHZhBQPvjWXm4msAMNQ1kb4ukwNfppC1OReZqflwSije4g0KOa4OamqaGlvEMDOsH+WNdRwqy+HFQdejVdm2R5TJaCb9hwxSVp8kb3churxaJLPlRCnUCjwj3egxIZj+d/YheIi/TWOzpz3vHObHv/5M4GA//rS/a7yOimSkC6jQ11FrPPsi4KJU46mx7NOXJIk7pv1CRJQrL/1ngDWZmDf9Z7ZusJR6junrxuYD16BSde4M+fDnx/j+ri24Brnw2Om7RRVHoVsx1BvI319Cwf4iilPKqTxVjS6/hvpyPU11Ruub6BlypQyViwonH0fcQlzxinLHr683QUP98Y/3+d3/HwaTkb/sWs1DsWPo62npG9NYa+DlqP+hcJDzXPr9ZG7JJXl5GmnfZ2DUm0ABnHNFp36WBt3CC19LZcDtPYcyJqAnZkni6X3fMz4wiutCYv/oafpDzGYzOTsLSP4qjdO/5FOVVY3JYFmxL1fKcAvVEjIygL63RdPzurBuvSj26xvWkvZ9JsMeje8SRSLF1t5OrkJfxz8OrMMonS15qJTJeXnw9XhqnDm0t5xtPxay7cdCAoIceeDxaKYmbOHIgUoAptwQyNI1Y+wV/iU7vTOPH+7egsrFgYeS7xCJiNDlGA1GipLKyN9XRHFyGeUnq9Dl1VBX2oChtsnaUO4MmVyGysUBZ29HXONd8erphm9fLwKH+BE02P8PT6+bJQkzEkrZ2W23K29aj7zYhMPSYN6N+YLq7BrkShnmM/1mzltaMveBCfzqUcCxygI81c44KR3Iq6tiXq8Ea3VmuUxGjLs/mbqyPxTvlSCXywkfE9yim21xShlJn6eSuTWHsvRKkr9MI/nLNJCBa4AzgUP86HOTpUtxV7mkcSlmfzudtyM+Zc9/kwgbF0yfG3raO6Qr4rL+hd5//33+/e9/U1RURP/+/Xn33XcZOnRoq2MXL17MF198QUpKCgCDBg3ilVdeaXP81aLW2NgiEQEwSmZqjY144swn755AoZRhMkq8/OQRPvh3GuWlllmUx/7Rhydf6vz9Wyqzq/li4hpkcjn377sNJ0/bTvUKwqUwm82UHCsnf28RRUdKKT9RRXVODXUlDTTWGDA3nVcjXQYqJwccvTT49PbEI9INv1gvAgf7EZTgj0ar7tB4NUoHIly92ZibQoCTlqr9lZzamkP9zY4QqyR+Wg/2f5B8NhE5j9pNRd+JPVHonEmpLOCFQdOoNxr4+77v8Xdq+clVq9J0qorN5/KL82byv0dbf67Oq+HI58c58WM2JSllpP+QSfoPmXx352YcvTT49/chZkYE/eb17tKvRXK5nD8dmMNbIZ+wevZGHj05H48w+9eO+qPanYysXLmShQsX8tFHH5GQkMDbb7/N5MmTSU9Px9fX94LxO3bsYM6cOYwYMQKNRsPrr7/Otddey7FjxwgKEq2pW1NarGfdqlxM57yYlJfqkTnIuO4jJTnRqbyeVMTsyEGEu7a9qjq9qpjVmYcorK/GQ+3E1NA4RvhFtBizveAEW/JSqTY0EOziwW2Rg67IgrXGWgMfxS/H1GTmjg0zu9Tqb6F7MZvNVGZWk7eniKKkUsrSKqnK1lFbXE9jdaN1ut9KBkqNEkcPNR49vHGPcMO3jycBA30JHh6Ai4/9d3fcHT2cz0/s5e/7vsf9mSpUWhm9FsZQQA3T3huPTC5j33tHLnicXCmjz409u+UMpVuwK2OeTWDMswmAZQfK0WXppP2QQcGhErK25ZK1LZcf//ozKlcHfPt40fO6MOIX9Olyb+bO3k7c8eMNfDbhGxYPWcHjBfd1+X/Tdicjb731Fvfddx8LFiwA4KOPPmLDhg0sXbqUp5566oLxy5Yta/HzkiVL+Pbbb0lMTOTOO7t3RbnLtWxJBmbz+Z9qZDhoYP7gIfTu5cnekiz+c3QbLwyahof6whfHMn0t7x3bwZiAXtwTM4K0qiK+PLEXN5WGWA/L/v/9pdl8k3mI23sOoYerN4kFafw3ZfsfXrBmNpv5MH4Z+qpGpvx3LL2m9Ljs5xKES6ErqCV3VwGFh5u3v2ZVU1vUvCNFf+H2V6VagdpdjXdvTzzCtXj39iQg3ofg4QG4h3b+dWk+jq480X8SW174jZ07Sxj21wHkahV4m1yQyWRM/e84ipPLyP4lv8XjzEaJPjdZtuvqDHo0CgdUCiVymQw5MmoM+hbjdQY9bg5dcxZBo1Uz5MF+1i7gRoORtO8zObb6BHl7isjfX0ze3iJ2vLgXpUaBZy93IiaE0H9+HwIHXPjBurPpMS6YCS8NZ9s/dvP5pG+5e8ct9g7pD2lXMmIwGDh48CBPP/209Ta5XM6kSZPYvXv3JT1HfX09TU1NeHp6tjmmsbGRxsazCzt1us45TdgRjEYzS987idncyn318MwtKWzcew3Xh/UjuSKfnwtPMiu8/wVjfy48ibfGhVsiLJVYA5zcOFVdytb8dGsysjU/jVH+kdZrxHN7DiWlooBdxRl/aMHa55PWUJlRzZCH+jHsz/bvgSN0ffUVenJ3FVh2pByvoDKjmprCOvSVepoaLtyRolBZdqR4RLjhHq7FO/rsjhSvXu7dYoFjfYWeXf88gKOnhlGvJ/CPA+sY5R/Je8d2kL0tH83eUhSucqSac9alOSrpMTEEgNSqIiK03tYZVDMSn57Yw2xTEyP8IjBLEmlVRYwPjOqwGVRbUqqUxN0aRdytUYDlQ1PW9jyOLksje2cBZWmVlBwtZ887SciVctzDXAkdHUjfOTFETArplH8zY59L4PTP+WRuzSHx+V1MfGmE9T5DXRMlKWUEJ3SNwpLtSkbKysowmUz4+bXsIOjn50daWtolPcff//53AgMDmTRpUptjXn31VV588cX2hNalFNRVsz47pdX7Nn6fR2mRvtX7zCbIPFHDI3fs5sv1Y3GQK8nQlbY6NlNXRox7yy1vfTwCWJV5CACj2UROTQVTgs9W87sSC9bWPZjI6e15REwKZfr7Ey77eYSrS2Otgby9RRQcLKEkpYzKjGp0+bU0lOtpqm/ivOVVyJVy1K4OaINdcQu17Ejx7+9N0NAAfOO8uvyU9e85VlnA1tt3YDJKDP40gbdTtuHvpKWXmy8VP5Xg+EQphjgHpq28joavStjx4l4kwHmCB+XmOtIKijlYmsOdUQnWGdQE33DWnE7iixN7MJlNZNdWYjAbcVSqWJVx8IrPoNqbXC4ncmIokRPPtscoPFLKkc+Pk5mYS/nJKpI+SyXps1RkcnAJcCY4wZ/Ym3vR+6aeKDvJLsY7fpzFWyFL+OXlfYSPDiLymjDKT1Wx/PofKEur5LHTd+Me1vln+2x6Nl977TVWrFjBjh070Gja/iN++umnWbhwofVnnU5HSEiILULscIfKcvkk7bcLFq+e8c6iC5M6udzywU8yg6OzAv8gR/aUZJGpK8PX0aXV59E16S94odCqNOhNTRhMRuqNBsxIuLYy5nIXrO16+xAHPjqKZy935m2edVnPIXRPRoORggMlFOwvpuhoGRUnq9Dl1VJf1oChrpUdKYrmHSl+TmiDXfDqZdn+GjjEj8CBvijVneONwF5O78ynPLGE+juc2OybxUBtCLPC+5O27CT5D6ZBhANVr7qjcVcx7IXhKFQKEp/dRe04B14+9CPuaifmRSVQUF/dYgZVKZezJiuJZaf2E+bqxaOx41mRebBDZlA7o4D+PgS8Ndb6c1WOjqTPjnNqUzYlx8pJXZNB6hpLYTgnbw0BA3yJnhFBvzticHS3T2KmUMq5f/8c3on8lGXXr2XGkklseHCbZcYQyN9X1P2SEW9vbxQKBcXFxS1uLy4uxt//4oVn3njjDV577TW2bt1Kv34X3wmiVqtRqzt2Rbo9ZNWUtUhE1HIlEVpvJEkiQ1fGwf+YqM1p+RgnZwXDxvgyYIw7xWGFVAdUUKvIYHt+BUN8wsiprbDDb3Kh9PWZbF74C46eGh5Mur1TTmkKHcdkNFN8tHn76xHL9tfqHJ1l+2tNE2Zjy+RbJgeH5h0pvnFeeEa64xPnRdBgX4KG+qN2Ef1J2mI2mzm64CAKZLz4nzus5dKPfp3G9wss2+j//Ot8/pax1vqYMc8Mpe+caNzDtS0KIP77yJYWM6jjA6NRyZWsyjzE0/GTO2wGtatwD9Uy7vlhjHve0rqioUpP8pdppK3NpCiphIwtOWRsyWHjn3eg1qrwjfOi13VhxN8Vi1uI7RqAugW7cuvqaXw9cx3fzdtsKRgjWWYQ8/cXE3tLlM1iuVztSkZUKhWDBg0iMTGRWbNmAZb/GImJiTzyyCNtPu5f//oX//znP9m8eTODBw/+QwF3ZRtyUqyJyFCfcOb2GoJG4QDA808c5PSak4CEcwiMvs2Dv9w6lLh4d5TWKef+NJqM6E1NuKkc+Th1J96a1mdGtA4adK0sRuuIBWvFKaWsuGEdCpWCBw7fLhpddUNms5nyk1Xk7SmkKKmM8nTLjpS6knoadYZWd6Q4OCrReGjw6ulu3ZESONiP4GEBXXprpb399LedNJTrGfPcUGsicuzbE3wzdxMOTkoePjYPbaALZLR83Pnl4cE+M6hdmaO7hoQ/x5Pw53gAjI1Gjn1ziuPfniR/XxG5uwvJ3VXItuf3oHRU4hXlTsTEEOLv6oN/30vrgnw59NWNHPj46NkbmicazUYzubstRTIvVmSzM2j3XOfChQuZP38+gwcPZujQobz99tvU1dVZd9fceeedBAUF8eqrrwLw+uuv8/zzz7N8+XLCw8MpKioCwMXFBReX1t9Iu6OKxjpSKgoA8FA5MT8qAaXcUrTo9X8ks/jNkyiUMiYtkaGOMKGUVdGrv8s5iYiFWqFErVBS12TgeGUhN/ZofYFohNbberwzzixYA1DKFYS6epJaVUy8t+US2LkL1i5VXVk9i4etRDJLLPjlpi6xE0FoXVWOjtzdhRQdLqU0rYKqLMv2V31VY6sN2ZQaBRp3NT6xXtYdKYEDfQkeFoA26Or5v91RJEni4OIUwscG4R1tWfCvK6hlz9uHcfZzYuLLlsWKaWszWHXLRpQaJQ8fnSf+D9qQUq2k/9wY+s+NASxJe8aWHI5+nU7OzgJKj1VQfKSM3W8dRu4gxz1cS9iYIPrdHk34uOArMoNccrycZdN/oDqnptX7Cw6WUFZXw6LDG9osstkZtDsZmT17NqWlpTz//PMUFRURHx/Ppk2brItac3JyWpzgDz/8EIPBwM0339zieRYtWsQLL7zwx6LvQvLrqqwL/gf7hFkTkYfv2M2aZdn4BWjYdnQKGyqS2FmUgVEyU1hfTU83SzZ9rLIASQJ/Jy0lDTV8m3UYfyctI5vrhnyXlUSVoZ4F0ZYXqLEBvdhRcIJvsw4z0i+CtCrLgrVH4s5eD50UFMNn6bsJd/Uk3NWLxPx0DGbjBbVI2mI0GPmw3zKa6ozc+OVkQocH/v6DBLupLalvTjZKKDlWTmWWjtrCOhoqGzHq29iR4qbGK8od91At3r098I/3JXiYPx49tOJSXAerzq1h3Z8SkStljPzbYMY8N5SvZ65DMkvcunoqACc3n2bFDetQqi2zkq3NflyMLWdQrwZyuZxek8PpNTncelv+wWKSv0glc3suFSerOPzJMQ5/cgyZXIZrUPOi2Fui6H1DJAoHRdtP3oZNj/1MVVbbs1TGBiP5qaUXLbLZGVzWKrBHHnmkzcsyO3bsaPHz6dOnL+cQ3Y7pnBZAaoXltJvNZg7vLad3Xzc2HbgWlUqBuursP4n5nD+eBmMT350+QlVjPU5KFQO9LQvWFM1vCNWGBioa663jvTUuPBI7jtWZh9iWn25dsHZmWy/AEJ8wapv0rM1ORmfQE+ziwaOx49Gqzjbdu5glI1ZRU1jHmOeG0v+O3pd3YoQrRq9rJHd3IYWHSihJKacys5qa/DrqKxrabsjmqsI9zLIjxbL91ZvgBH98+niJZMPO6koaAEttkJ2v7+fA/47SUKEnYlIo4aODydyWw7KpPyBXyrn/wO34RLddLqEttppBvZoFDfIjaNDZHaiVWdUc/uw4pzZnU3qsnOPfnOL4N6cAcPJxJHCQLzEzI+k3Nxq16++vnZy55Bp2vn6Ag4uPYjZJFywGByg5UAqdfK3x1b0k3YZ8zlnbkVyRz/TQOORyOTuOXYdSKUcul2OWJI5WnC1SdO56kME+YQz2CWvz+e+KHn7BbdHufjw3cMpF4xofGM34wOj2/CoArLx1A4UHS+hzSy/rdLHQsZr0RvL3F1Gwv5jio+VUZFSjy6uhoUxv2ZFivnBHitpVhWuAM9oQS/dX3zgvghL8CRjg2+23v3Z19aVnP1xIZmiosMxOyGRw7JsTrL7tR2QKGfftnYNfrKXCsd7URGlDrfVxZY115NZW4qxU4alxtssMqtCSRw83Jrw4nAkvWl6z68sbSPoylRPrsihKKuXUpmxObcpm/YPbULup8IvzptfUcOLv6mNZC3QetxBXpr03nrHPJ7D33ST2vHMYQ21Tiw8fO7YkQ+yFMyDJ5fmEurQ/ie0IomuvjUiSxCtJm627X26LHHzBJ4sNOSmszU4GIMbdj8f6TrR5nJdi2/O7+PnlfQQM9OGBg3PtHU63YTKaKUoqJW9fESXNDdmqc2uoL23AUGu4oNeITC5D5WzZkaINdsGzp7sl2RjiR+BgX7GQuItL+uI4383/6cI75IDZsiNpwa+3Ejbi7GxnelUxbx1NvOAhw317cFf0cD5L3015Yx2P95vU4jFn2ka4q52Y1mrbiHR+yku1zqDeFjGIHtquVfSsq2jSGzm26gTH15yiYF8xNUV11sTCwUmJV7QHkZNC6T+/jzUJPVdjjYEDHx/lt38dODu75iKjZGPrC2inh8ZxfVjH9Tq71PdvkYzY0IHSbBan/Wb9OcrNl4HeIZglif2l2WTVlFvv+3PsOOI8O98ajCNfpbJm3mZcA5z56+kFnabwT1dgNpspTa0kf0+htSFbVbZl+2ujrvWGbA5OShw9NWgDXfCIbO6RMtiP4AR/u9U1EGzjtzcPsuXJnRfMeJ1r7oaZRE0V7Ra6M7PZzMkfT5Oy4gS5vxVQlVNjvRSjUMlx7+FG+Jgg+s2LIXRkoPXy6m85p1j9wc9o36wBIzh/HkHMmHAkSeJYVQE5tZXWYzzcZyz9vDqmV5xIRjqpNVlJbM47ftExs8L7M6UTFhPK2V3A0lGrUDoqeez03dZthcJZlVnV5OwqpPhIc4+UbB11xfXoqw0X7kg505DNXY1LoDPu4VpLsjHIkmy4+neOhWWCfWx5aie73jp0YZIKyFVyrnltFMMejUeuEJfbrjZ5+wo58kUqWdvzqMiotr62yBQytEEuBA/3J3VwLQWDmsAEUX83IhU28aeDt+MaYHld+SkvlW+zDgOWD8bnzpZdSZf6/i0+1trYjT3iCXDS8mPuMYobWm7FCnRyY3poXwb5hLbxaPupytHx2fhvkcll3Ldn9lWbiNQU1ZH7WwGFSaWUHm/ekVJUj75S32pDNoVagcZNhXe0B+7hWnxiPPAf2LwjpYt1ChU6VoW+jhJ9DfVGA2q5kuKCylYXIwYO8WP26mldoqqm0DGChwYQPPRsz5nyk5Uc/uw4GT/lUJZawbGVJ2El+AEyTwWBY8PJycln5U3ruWvHzShVCq4JimFnUQbFDTpOVJdQrq/Dy47bfMXMiJ1IksQpXSnFzYWDAp3c6eHq1aI6YmdhqDfwVshSGir13L52BtHTu+/CtYYqPbm7mnekHGvekVJQR0NF6w3Z5A5yNFoVzn5Olh0pMZ74N+9I8Yr2EDtShN8lSRK/FJ3k61MHWvx5uf+9EvXuJs59RRj11GAmvTKyU75OCJ3HntSTrHxvB+pdBpyyJMy1Jmti69fPm4eO3AHAqoyDJBakA/B434lEufu1+ZyXS8yMdHIymYxebr70cuvcrarNZjMfxi+noULP5P+M6fKJiKHeQN7eYgoPFFOcUk7FqapzGrIZL7g+L1fKULmqcA1ysSQbUR749fUmKMEPv34+YkeK8IeYJTNfnNjL7pKsC+5zSDG2SERu+OJa4uf1uWCcIJzPydeJ+tucqb/NmcFBMdwQ0p/Cw6XsevOg9TINWHZfnaGw8wcnkYwIFy0T/NV131NxsorBf+rLiL8OtFeIl8xoMFJ4qJT8/UUUJ5dRcarasiOlrAFDbRsN2ZwdcPa1NGTz7GXZkRI8xJ+AQb44aMR/EaHjfHf6SItExFPtRKCTG+VFOsw1JdaZEqfXQ0QtH+GShbh4IEOGhGVzxMzw/gQP9efWldOsYxqMTRwqywXAQa4gwMm+l43FK+1VrkJfxz8OrGu1TPDuv+0lY0sO4eODuf6jltuMi46UovFQ27z0tNlspiSlnLw9hRQnl1l2pOTUUF9aT6PuIg3ZPDX49vGy7EiJ9SJwiB9BQ/zQaLtfQ0aha9AZ9CTmW6bI5TIZd0UNY6hPODKZjG9e38RRLFcFq59xpXh4I2lVxfT2uHhDUkEA8FA70c8riCPleVQZGliavos7eibg7GDZ7q8z6PnsxG4ammdGhviE4aS0bykAkYxcQeuyk1mfk9LiNj9HLS8Nnt7mYw6W5vBDdjLl+lp8HV25sUc8fT3PbrGSJIl12Uf5tegUDaYmIrXe3N5zCH6OfzwJSKsq4ofTya2WCd769h6OvXcUj0g35m+90Xqfob6JrU//xt53k+hzUy9mr552/tP+IWazmcqMakvZ8iNllKVVUJVdY2nIVt14kYZsajwi3HHvobUkG4Msi0Sv1oW2Que3uzgTU/P/vYmB0ST4WrboZibmcPSrNJBDv9fj2ZJgqZD6S9FJkYwIl2x6aBzHKgowSmYOleWSUlFAb3d/TM0VdM+87msUSiYH2//yn0hGrrBAJzf+2neC9WfFRRaaZehKWZL2G7N69KefZxD7Sk7z4fFfeXbAdQQ5uwOwOS+VbQXp3BU9HG+NM2tPJ/PflO28MGg6DvL29zE4Y1t+OiszD7Z6n2pPIynPHEXl5sCDSXOtizCzd+azZt5mS0MmCcrSKi7r2NV5NeTuKqQoqZTS1HKqTjfvSKlqbHVHirUhWx9Py46U3l4EDPAheFiATdt0C8KVlF179v/P8OYiY421Br6etQ6ZHOYn3kTomCB+2f0NjWZji7oQgvB7Ql08eaDPaP6XupMmswmD2cSRcyp8A2gUDjzUZwz+TvbfGCKSkStMLpPhdom9XRLz04n1DLBmpTPD+5NaVcSOghPM7TUUSZJIzE9jamgc8V7BACyIHs4Te9aQVJbLEN/wy4oxuTy/RSLirnKkp9YHo2TmRFIerk9XgxJKlrhTLmvAp0FO4rO/sfvtw8jkMusiz6rs1psz1ZXVk7e7iILmHSlVWTpqCmtpqLh4QzbPSHfcwpp3pMT7EDLMH49IN7EjReiWzK30qypKKsXYaGLqe+PpMS4ESZJQyhU0mo0telUJwqXo6xnE8wOnkpifzp6STPQmIwBOShUj/SKYEBjddbv2ChdX0lDDk3u/w0EuJ8LVmxvC49v8x86sKWNSUEyL2/p4BHCkPA+AMn0duiY9vd3PTs06KlX0cPUms6bsspORDblnLyVdF9KHmWH9kMvkNDUY+feIj2k0Q/nb7jT5yVi3fh8Nz+RRdboaJFosADXUNLHq1g1U59VQk19n2ZHS0MT5r5lypRy1VoVbqCvuoa54Rbvj19eb4GEB+MaJhmzC1enc3lPJ5flMCIombFQQz9Y8hFJteWnOrCmjrnlxuZf6wr4kgvB7fB1dmdNzMLdEDLB0aJaBm8oRhaxzve6KZOQK6uHqzV1Rw/FzcqXa0MD67BT+nbyFRQOnoVE6XDBeZ9CjPa8Nt9ZBQ3Vzu25dk6WvgFZ13hjV2THtlVdXyenmsvPBzu7MCuuPTCbDbJZYc+dmmuqNTF86keWqZFz+Ukn+4RIuVtHg2OqTlh0pLg44+zvhFuKKVy93fPt6ETzUH/8BPqJkvCC0YrhfD7bkpwLwY+4x+noG4uPoak1EGoxNrMo8ZB0/wr9rb6sX7EspV3SaWZDWiHeJK+jcXjLBzh70cPXm6X0/cKAsh1H+kXaM7KyCumrr90N8wqzFkz4ZuZK8PUU4+zqy8b7taI2XNiV809fX0e+2mN8fKAhCC0HO7sR6BHCsshBdk56XDm1kmG8PIrTeFDfU8FtRBromy4cOD5UTg707X2VmQbhSRDLSgZyUKvwcXSk9r+z7GVqVxvpic4auSY9b80yI1sGy9kRn0LdYh6Iz6Alxcb+smKRzFmycSUQkSaKxpgn/eG8irwnDvYeWffJ8Mnfn4ZBuxOmgEXOTucV6EbB0ja0trL/gGIIgXJq7o4fzRnIihfXVGMwmfik6xS9Fp1qMcVKqeCh2DCqFeLkWui/x192B9KYmSvW1DGtjQWuEqzdpVUUt1o2kVhYR4Wppze2tcUbroCGtqogQFw/AMnWbVVPG2ICelxXTuVuCD5flMjm4DzKZjIeP3mFNTprMJlbuPUVdHxcUMjlP9Z7G6XU5HPkyjaztuec8m0RVVuuLWAVB+H0uDhr+1u8avj+dxJ6SLAzms7vJZMjo7xXEjeHx+HWC3Q5C5/JzwUl+LjxJeWMtAAHNvc0u1u3dnqUkfo9IRq6gbzIP0c8zCE+NM9WGBtZlH0WOjCE+YQB8mr4Ld5UTN/SIB2BiUDRvJG9lS14qfT0D2V+aTXZtBXf0GgpYZi4mBsWwMTcFX0dXvDUu/JCdjLvakXjvkMuKMczFk2Bnd/LqqsiqKWdLXiqTgmKsiYhJMrMi44C1IutA7xA8vFzxuCuWAXfFUlNUx7HVJznyRSoFB4rRVzde7HCCIPwOZwcVc3sN5cYe8aRUFlLb1IhGoSTa3Q9Pdee9xi/Yl7vakRt69MfX0RUk2F2SxQfHf+G5AdcR2Fwa4lz2LCVxKUSjvCtocepOTupKqWtqxMVBTU+tD7PC++PjaKmF8WbyVrzUztwVPdz6GEumeoRyfd3vZqr1RgM93Xy4PXLIH/qktL80myVpv1l/DnH2oL9XMEazif2l2ZQ31gGWbcpPx08m1MWz1eepytahclXh5Klp9X5BEATBdh7b/Q039RjQ6hrFj1N3YjAbeSR2nPW215I2E+LsYS0l8eTe77gmuDfXBltaDzQYDTyxZw13RQ277N2bolGeHdzXe9RF73+836QLbhvkE8ogn7YXpslkMmaE92NGeL8/HN8ZQ3zCKKyvZkNztdjcukpy61oWVJJjKU/dViICiBbmgiAInYBZMnOwNAeDyWi9zH8+e5WSuFQiGblKzQjrR7CzO5vzUq1bfc/o4xHAtJBYenbyjsKCIAhXs/y6Kl5P+okmswm1QskDfUYT6Nx6wzt7lJJoD5GMXMUGeocy0DuU/LoqShtqkMlkBDm7tyjGJAjC5TtRXcJPecfJqa2k2tDAg71H/+56r/SqYlZnHqKwvhoPtRNTQ+MY4deyxsj2ghNsyUul2tBAsIsHt0UOokcbn4iF7svP0ZXnBk5p7sCbw2fpe3i836Q2E5LOrHOVYBPsIsjZnXjvEPp7BYtERBCuIIPJSLCzB3MiB1/S+DJ9Le8d20G0ux/PDZzCxKBovjyxl2OVBdYx+0uz+SbzENNC43h2wBSCnd35b8p2S3VN4aqilCvwdXQlzNWTG3rEE+zizraC9FbHtqeURIsxhrNjOpJIRgRBEDpInGcgs8L7M+ASd7/9XHgSb40Lt0QMJMDJjfGB0Qz0DmFr/tk3mK35aYzyj2SkfySBzm7M7TkUlVzJruKMjvo1hC5CksBovrDZKJwtJXGutkpJnHGmlERb61CuJJGMCIIgdBKZujJizllACJY1XJm6MsDyRpNTU9FikaFcJiPG3d86Rrg6fJeVxInqEsr0teTXVTX/XMzQ5oWmn6bv4rusJOv4iUHRHKssZEteKkX11azLTia7toJxgVFAy1ISR8rzyK+r4tMTu/9QKYn2EGtGuqEfc49xuCyXogYdKrmCCK0PN4bH/26b6M5cEEcQrga6Jn2rCwj1piYMJiP1RgNmJFxbGVPUIAoQXk1qmvR8lr6bakMDjkoHgpzdeTRuPH08AgCoaKxHdk5nsUitD/dGj+SH7CN8f/oIvo6uPNhntLXGCMDk4N4YTEa+OrnPWkri0djxHV5jBEQy0i2dqC5hXGAU4S6emCSJ708f4Z2UbbwwaLq1Vfn5OntBHEEQBOGsO6OGXfT+zlJK4lKJyzTd0F/ixjPCL4JAZ3dCXDy4K2oYFY31ZNdWtPmYxPx0Yj0DmBzchwAnN2aG9yfUxYMdBScAy6xIYn4aU0PjiPcKJtjZgwXRw6lqbCCpLLfN5xUE4dJpHTStLiDUKBxQKZS4OKiRI6OmtUWGDqL4oNB1iWTkKtBgagLAWalqc0xmTRvXqmss16F/ryCOIAh/XIS2lUWGVUVEaC0LCJVyBaGunqRWFVvvN0sSaeeMEYSuSCQj3ZxZkliVeZBIrU+La4Pn6+wFcQShK9KbmsitrSS31lLhuKyxjtzaSir0lpYL32Ul8Wn6Luv4sQG9KNPX8m3WYYrqq9lRcIKDpTlMCoq2jpkUFMPOolPsLs6ksL6a5af2YzAbL6hFIghdiVgz0s19fWo/BXXV/K3/NfYORRCuOtk1Fbx1NNH68+rMQwAM9+3BXdHDqTY0UNFYb73fW+PCI7HjWJ15iG356birnZgXlUCsx9lOrEN8wqht0rM2OxmdQU+wiwePxo5H20Z3cEHoCkQy0o19fWo/RysKeKL/JDzUThcd256COG7nvOjpDHpCXNyvbOCC0E1Eu/vxv9G3t3n/uU0zz33McwOnXPR5xwdGMz4w+qJjBKErEZdpuiFJkvj61H6SyvN4rN+ES6qq2tkL4giCIAjdl0hGuqGvMw6wt+Q090SPQKNwoNrQQLWhAYPJaB3T1QriCIIgCN2XuEzTDf1ceBKAN8+5Vg0wP2qYdZFbVyuIIwiCIHRfMkmSJHsH8Xt0Oh1ubm5UV1ej1Ypqn4IgCILQFVzq+7e4TCMIgiAIgl2JZEQQBEEQBLsSyYggCIIgCHYlkhFBEARBEOxKJCOCIAiCINiVSEYEQRAEQbArkYwIgiAIgmBXIhkRBEEQBMGuRDIiCIIgCIJdiWREEARBEAS7EsmIIAiCIAh2JZIRQRAEQRDsSiQjgiAIgiDYlUhGBEEQBEGwK5GMCIIgCIJgVyIZEQRBEATBrkQyIgiCIAiCXYlkRBAEQRAEuxLJiCAIgiAIdiWSEUEQBEEQ7OqykpH333+f8PBwNBoNCQkJ7Nu376LjV69eTUxMDBqNhr59+7Jx48bLClYQBEEQhO6n3cnIypUrWbhwIYsWLeLQoUP079+fyZMnU1JS0ur4Xbt2MWfOHO655x4OHz7MrFmzmDVrFikpKX84eEEQBEEQuj6ZJElSex6QkJDAkCFDeO+99wAwm82EhITw5z//maeeeuqC8bNnz6auro7169dbbxs2bBjx8fF89NFHl3RMnU6Hm5sb1dXVaLXa9oQrCIIgCIKdXOr7d7tmRgwGAwcPHmTSpElnn0AuZ9KkSezevbvVx+zevbvFeIDJkye3OR6gsbERnU7X4ksQBEEQhO6pXclIWVkZJpMJPz+/Frf7+flRVFTU6mOKioraNR7g1Vdfxc3NzfoVEhLSnjAFQRAEQehCOuVumqeffprq6mrrV25urr1DEgRBEAShgyjbM9jb2xuFQkFxcXGL24uLi/H392/1Mf7+/u0aD6BWq1Gr1e0JTRAEQRCELqpdMyMqlYpBgwaRmJhovc1sNpOYmMjw4cNbfczw4cNbjAfYsmVLm+MFQRAEQbi6tGtmBGDhwoXMnz+fwYMHM3ToUN5++23q6upYsGABAHfeeSdBQUG8+uqrAPzlL39h7NixvPnmm0ybNo0VK1Zw4MABPv744yv7mwiCIAiC0CW1OxmZPXs2paWlPP/88xQVFREfH8+mTZusi1RzcnKQy89OuIwYMYLly5fz3HPP8cwzz9CrVy++//574uLirtxvIQiCIAhCl9XuOiP2IOqMCIIgCELX0yF1RgRBEARBEK40kYwIgiAIgmBXIhkRBEEQBMGuRDIiCIIgCIJdiWREEARBEAS7EsmIIAiCIAh2JZIRQRAEQRDsSiQjgiAIgiDYlUhGBEEQBEGwq3aXg7eHM0VidTqdnSMRBEEQBOFSnXnf/r1i710iGampqQEgJCTEzpEIgiAIgtBeNTU1uLm5tXl/l+hNYzabKSgowNXVFZlMdsWeV6fTERISQm5uruh504HEebYdca5tQ5xn2xDn2TY68jxLkkRNTQ2BgYEtmuier0vMjMjlcoKDgzvs+bVarfhDtwFxnm1HnGvbEOfZNsR5to2OOs8XmxE5QyxgFQRBEATBrkQyIgiCIAiCXV3VyYharWbRokWo1Wp7h9KtifNsO+Jc24Y4z7YhzrNtdIbz3CUWsAqCIAiC0H1d1TMjgiAIgiDYn0hGBEEQBEGwK5GMCIIgCIJgVyIZEQRBEATBrrp9MvL+++8THh6ORqMhISGBffv2XXT86tWriYmJQaPR0LdvXzZu3GijSLu29pznxYsXM3r0aDw8PPDw8GDSpEm/++8inNXev+kzVqxYgUwmY9asWR0bYDfR3vNcVVXFww8/TEBAAGq1mqioKPH6cQnae57ffvttoqOjcXR0JCQkhMceewy9Xm+jaLumX375heuvv57AwEBkMhnff//97z5mx44dDBw4ELVaTc+ePfnss886NkipG1uxYoWkUqmkpUuXSseOHZPuu+8+yd3dXSouLm51/G+//SYpFArpX//6l3T8+HHpueeekxwcHKSjR4/aOPKupb3n+fbbb5fef/996fDhw1Jqaqp01113SW5ublJeXp6NI+962nuuz8jKypKCgoKk0aNHSzNnzrRNsF1Ye89zY2OjNHjwYGnq1KnSzp07paysLGnHjh1SUlKSjSPvWtp7npctWyap1Wpp2bJlUlZWlrR582YpICBAeuyxx2wcedeyceNG6dlnn5XWrFkjAdJ333130fGZmZmSk5OTtHDhQun48ePSu+++KykUCmnTpk0dFmO3TkaGDh0qPfzww9afTSaTFBgYKL366qutjr/11luladOmtbgtISFB+tOf/tShcXZ17T3P5zMajZKrq6v0+eefd1SI3cblnGuj0SiNGDFCWrJkiTR//nyRjFyC9p7nDz/8UIqIiJAMBoOtQuwW2nueH374YWnChAktblu4cKE0cuTIDo2zO7mUZOTJJ5+UYmNjW9w2e/ZsafLkyR0WV7e9TGMwGDh48CCTJk2y3iaXy5k0aRK7d+9u9TG7d+9uMR5g8uTJbY4XLu88n6++vp6mpiY8PT07Ksxu4XLP9UsvvYSvry/33HOPLcLs8i7nPK9du5bhw4fz8MMP4+fnR1xcHK+88gomk8lWYXc5l3OeR4wYwcGDB62XcjIzM9m4cSNTp061ScxXC3u8F3aJRnmXo6ysDJPJhJ+fX4vb/fz8SEtLa/UxRUVFrY4vKirqsDi7uss5z+f7+9//TmBg4AV//EJLl3Oud+7cySeffEJSUpINIuweLuc8Z2Zmsm3bNubOncvGjRs5deoUDz30EE1NTSxatMgWYXc5l3Oeb7/9dsrKyhg1ahSSJGE0GnnggQd45plnbBHyVaOt90KdTkdDQwOOjo5X/JjddmZE6Bpee+01VqxYwXfffYdGo7F3ON1KTU0N8+bNY/HixXh7e9s7nG7NbDbj6+vLxx9/zKBBg5g9ezbPPvssH330kb1D61Z27NjBK6+8wgcffMChQ4dYs2YNGzZs4OWXX7Z3aMIf1G1nRry9vVEoFBQXF7e4vbi4GH9//1Yf4+/v367xwuWd5zPeeOMNXnvtNbZu3Uq/fv06Msxuob3nOiMjg9OnT3P99ddbbzObzQAolUrS09OJjIzs2KC7oMv5mw4ICMDBwQGFQmG9rXfv3hQVFWEwGFCpVB0ac1d0Oef5H//4B/PmzePee+8FoG/fvtTV1XH//ffz7LPPIpeLz9dXQlvvhVqttkNmRaAbz4yoVCoGDRpEYmKi9Taz2UxiYiLDhw9v9THDhw9vMR5gy5YtbY4XLu88A/zrX//i5ZdfZtOmTQwePNgWoXZ57T3XMTExHD16lKSkJOvXjBkzGD9+PElJSYSEhNgy/C7jcv6mR44cyalTp6zJHsCJEycICAgQiUgbLuc819fXX5BwnEkAJdFm7Yqxy3thhy2N7QRWrFghqdVq6bPPPpOOHz8u3X///ZK7u7tUVFQkSZIkzZs3T3rqqaes43/77TdJqVRKb7zxhpSamiotWrRIbO29BO09z6+99pqkUqmkb775RiosLLR+1dTU2OtX6DLae67PJ3bTXJr2nuecnBzJ1dVVeuSRR6T09HRp/fr1kq+vr/R///d/9voVuoT2nudFixZJrq6u0tdffy1lZmZKP/30kxQZGSndeuut9voVuoSamhrp8OHD0uHDhyVAeuutt6TDhw9L2dnZkiRJ0lNPPSXNmzfPOv7M1t6//e1vUmpqqvT++++Lrb1/1LvvviuFhoZKKpVKGjp0qLRnzx7rfWPHjpXmz5/fYvyqVaukqKgoSaVSSbGxsdKGDRtsHHHX1J7zHBYWJgEXfC1atMj2gXdB7f2bPpdIRi5de8/zrl27pISEBEmtVksRERHSP//5T8loNNo46q6nPee5qalJeuGFF6TIyEhJo9FIISEh0kMPPSRVVlbaPvAuZPv27a2+5p45t/Pnz5fGjh17wWPi4+MllUolRURESJ9++mmHxiiTJDG3JQiCIAiC/XTbNSOCIAiCIHQNIhkRBEEQBMGuRDIiCIIgCIJdiWREEARBEAS7EsmIIAiCIAh2JZIRQRAEQRDsSiQjgiAIgiDYlUhGBEEQBEGwK5GMCIIgCIJgVyIZEQRBEATBrkQyIgiCIAiCXYlkRBAEQRAEu/p/ISI1UihgACgAAAAASUVORK5CYII=", "text/plain": [ "
    " ] @@ -192,7 +180,7 @@ "# Greedy rollouts over untrained model\n", "device = torch.device(\"cuda\" if torch.cuda.is_available() else \"cpu\")\n", "td_init = env.reset(batch_size=[3]).to(device)\n", - "model = lit_module.model.to(device)\n", + "model = model.to(device)\n", "out = model(td_init, phase=\"test\", decode_type=\"greedy\", return_actions=True)\n", "\n", "# Plotting\n", @@ -219,7 +207,7 @@ }, { "cell_type": "code", - "execution_count": 6, + "execution_count": 5, "metadata": {}, "outputs": [], "source": [ @@ -254,6 +242,16 @@ "We make sure we're logged into W&B so that our experiments can be associated with our account. You may comment the below line if you don't want to use it." ] }, + { + "cell_type": "code", + "execution_count": 6, + "metadata": {}, + "outputs": [], + "source": [ + "# import wandb\n", + "# wandb.login()" + ] + }, { "cell_type": "code", "execution_count": 7, @@ -263,31 +261,30 @@ "name": "stderr", "output_type": "stream", "text": [ - "Failed to detect the name of this notebook, you can set it manually with the WANDB_NOTEBOOK_NAME environment variable to enable code saving.\n", + "Failed to detect the name of this notebook, you can set it manually with the WANDB_NOTEBOOK_NAME environment variable to enable code saving.\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ "\u001b[34m\u001b[1mwandb\u001b[0m: Currently logged in as: \u001b[33msilab-kaist\u001b[0m. Use \u001b[1m`wandb login --relogin`\u001b[0m to force relogin\n" ] }, { "data": { + "application/vnd.jupyter.widget-view+json": { + "model_id": "d2e83087bf3043a1b44f80fa51bc0de5", + "version_major": 2, + "version_minor": 0 + }, "text/plain": [ - "True" + "VBox(children=(Label(value='Waiting for wandb.init()...\\r'), FloatProgress(value=0.016668193321675063, max=1.0…" ] }, - "execution_count": 7, "metadata": {}, - "output_type": "execute_result" - } - ], - "source": [ - "import wandb\n", - "wandb.login()" - ] - }, - { - "cell_type": "code", - "execution_count": 8, - "metadata": {}, - "outputs": [ + "output_type": "display_data" + }, { "data": { "text/html": [ @@ -303,7 +300,7 @@ { "data": { "text/html": [ - "Run data is saved locally in ./wandb/run-20230710_154131-9izwsr3n" + "Run data is saved locally in ./wandb/run-20230723_001237-9t1v3c73" ], "text/plain": [ "" @@ -315,7 +312,7 @@ { "data": { "text/html": [ - "Syncing run sdvrp-am to Weights & Biases (docs)
    " + "Syncing run sdvrp-am to Weights & Biases (docs)
    " ], "text/plain": [ "" @@ -339,7 +336,7 @@ { "data": { "text/html": [ - " View run at https://wandb.ai/silab-kaist/rl4co/runs/9izwsr3n" + " View run at https://wandb.ai/silab-kaist/rl4co/runs/9t1v3c73" ], "text/plain": [ "" @@ -364,19 +361,21 @@ "cell_type": "markdown", "metadata": {}, "source": [ - "### Lightning Trainer" + "### Trainer\n", + "\n", + "The RL4CO trainer is a wrapper around PyTorch Lightning's `Trainer` class which adds some functionality and more efficient defaults" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ - "The Lightning Trainer handles the logging, checkpointing and more for you. " + "The Trainer handles the logging, checkpointing and more for you. " ] }, { "cell_type": "code", - "execution_count": 9, + "execution_count": 8, "metadata": {}, "outputs": [ { @@ -393,15 +392,13 @@ } ], "source": [ - "# Lightning Trainer with few epochs\n", - "trainer = L.Trainer(\n", - " max_epochs=3, # only few epochs for showcasing training\n", - " accelerator=\"gpu\", # use GPU if available, else you can use others as \"cpu\"\n", - " logger=logger, # can replace with WandbLogger, TensorBoardLogger, etc.\n", - " precision=\"16-mixed\", # Faster training with Lightning with mixed precision\n", - " gradient_clip_val=1.0, # clip gradients to avoid exploding gradients\n", - " reload_dataloaders_every_n_epochs=1, # necessary for sampling new data,\n", - " callbacks=callbacks, # may add other callbacks here\n", + "from rl4co.utils.trainer import RL4COTrainer\n", + "\n", + "trainer = RL4COTrainer(\n", + " max_epochs=2,\n", + " accelerator=\"gpu\",\n", + " logger=logger,\n", + " callbacks=callbacks,\n", ")" ] }, @@ -414,56 +411,64 @@ }, { "cell_type": "code", - "execution_count": 10, + "execution_count": 9, "metadata": {}, "outputs": [ { "name": "stderr", "output_type": "stream", "text": [ - "You are using a CUDA device ('NVIDIA GeForce RTX 3090') that has Tensor Cores. To properly utilize them, you should set `torch.set_float32_matmul_precision('medium' | 'high')` which will trade-off precision for performance. For more details, read https://pytorch.org/docs/stable/generated/torch.set_float32_matmul_precision.html#torch.set_float32_matmul_precision\n" - ] - }, - { - "name": "stderr", - "output_type": "stream", - "text": [ + "/home/botu/miniconda3/envs/rl4co/lib/python3.10/site-packages/lightning/pytorch/callbacks/model_checkpoint.py:615: UserWarning: Checkpoint directory /home/botu/Dev/rl4co/notebooks/examples/checkpoints exists and is not empty.\n", + " rank_zero_warn(f\"Checkpoint directory {dirpath} exists and is not empty.\")\n", "val_file not set. Generating dataset instead\n", "test_file not set. Generating dataset instead\n", - "LOCAL_RANK: 0 - CUDA_VISIBLE_DEVICES: [0]\n", - "No optimizer specified, using default\n" + "LOCAL_RANK: 0 - CUDA_VISIBLE_DEVICES: [0]\n" ] }, { "data": { "text/html": [ - "
    ┏━━━┳━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━┳━━━━━━━━━━━━━━━━━━━━━━━┳━━━━━━━━┓\n",
    -       "┃    Name                            Type                   Params ┃\n",
    -       "┡━━━╇━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━╇━━━━━━━━━━━━━━━━━━━━━━━╇━━━━━━━━┩\n",
    -       "│ 0 │ env                            │ SDVRPEnv              │      0 │\n",
    -       "│ 1 │ model                          │ AttentionModel        │  1.4 M │\n",
    -       "│ 2 │ model.policy                   │ AttentionModelPolicy  │  692 K │\n",
    -       "│ 3 │ model.policy.encoder           │ GraphAttentionEncoder │  594 K │\n",
    -       "│ 4 │ model.policy.decoder           │ Decoder               │ 98.8 K │\n",
    -       "│ 5 │ model.baseline                 │ WarmupBaseline        │  692 K │\n",
    -       "│ 6 │ model.baseline.baseline        │ RolloutBaseline       │  692 K │\n",
    -       "│ 7 │ model.baseline.warmup_baseline │ ExponentialBaseline   │      0 │\n",
    -       "└───┴────────────────────────────────┴───────────────────────┴────────┘\n",
    +       "
    ┏━━━━┳━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━┳━━━━━━━━━━━━━━━━━━━━━━━┳━━━━━━━━┓\n",
    +       "┃     Name                                    Type                   Params ┃\n",
    +       "┡━━━━╇━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━╇━━━━━━━━━━━━━━━━━━━━━━━╇━━━━━━━━┩\n",
    +       "│ 0  │ env                                    │ SDVRPEnv              │      0 │\n",
    +       "│ 1  │ policy                                 │ AttentionModelPolicy  │  694 K │\n",
    +       "│ 2  │ policy.encoder                         │ GraphAttentionEncoder │  595 K │\n",
    +       "│ 3  │ policy.encoder.init_embedding          │ VRPInitEmbedding      │    896 │\n",
    +       "│ 4  │ policy.encoder.net                     │ GraphAttentionNetwork │  594 K │\n",
    +       "│ 5  │ policy.decoder                         │ AutoregressiveDecoder │ 98.8 K │\n",
    +       "│ 6  │ policy.decoder.context_embedding       │ VRPContext            │ 16.5 K │\n",
    +       "│ 7  │ policy.decoder.dynamic_embedding       │ SDVRPDynamicEmbedding │    384 │\n",
    +       "│ 8  │ policy.decoder.project_node_embeddings │ Linear                │ 49.2 K │\n",
    +       "│ 9  │ policy.decoder.project_fixed_context   │ Linear                │ 16.4 K │\n",
    +       "│ 10 │ policy.decoder.logit_attention         │ LogitAttention        │ 16.4 K │\n",
    +       "│ 11 │ baseline                               │ WarmupBaseline        │  694 K │\n",
    +       "│ 12 │ baseline.baseline                      │ RolloutBaseline       │  694 K │\n",
    +       "│ 13 │ baseline.baseline.model                │ AttentionModelPolicy  │  694 K │\n",
    +       "│ 14 │ baseline.warmup_baseline               │ ExponentialBaseline   │      0 │\n",
    +       "└────┴────────────────────────────────────────┴───────────────────────┴────────┘\n",
            "
    \n" ], "text/plain": [ - "┏━━━┳━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━┳━━━━━━━━━━━━━━━━━━━━━━━┳━━━━━━━━┓\n", - "┃\u001b[1;35m \u001b[0m\u001b[1;35m \u001b[0m\u001b[1;35m \u001b[0m┃\u001b[1;35m \u001b[0m\u001b[1;35mName \u001b[0m\u001b[1;35m \u001b[0m┃\u001b[1;35m \u001b[0m\u001b[1;35mType \u001b[0m\u001b[1;35m \u001b[0m┃\u001b[1;35m \u001b[0m\u001b[1;35mParams\u001b[0m\u001b[1;35m \u001b[0m┃\n", - "┡━━━╇━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━╇━━━━━━━━━━━━━━━━━━━━━━━╇━━━━━━━━┩\n", - "│\u001b[2m \u001b[0m\u001b[2m0\u001b[0m\u001b[2m \u001b[0m│ env │ SDVRPEnv │ 0 │\n", - "│\u001b[2m \u001b[0m\u001b[2m1\u001b[0m\u001b[2m \u001b[0m│ model │ AttentionModel │ 1.4 M │\n", - "│\u001b[2m \u001b[0m\u001b[2m2\u001b[0m\u001b[2m \u001b[0m│ model.policy │ AttentionModelPolicy │ 692 K │\n", - "│\u001b[2m \u001b[0m\u001b[2m3\u001b[0m\u001b[2m \u001b[0m│ model.policy.encoder │ GraphAttentionEncoder │ 594 K │\n", - "│\u001b[2m \u001b[0m\u001b[2m4\u001b[0m\u001b[2m \u001b[0m│ model.policy.decoder │ Decoder │ 98.8 K │\n", - "│\u001b[2m \u001b[0m\u001b[2m5\u001b[0m\u001b[2m \u001b[0m│ model.baseline │ WarmupBaseline │ 692 K │\n", - "│\u001b[2m \u001b[0m\u001b[2m6\u001b[0m\u001b[2m \u001b[0m│ model.baseline.baseline │ RolloutBaseline │ 692 K │\n", - "│\u001b[2m \u001b[0m\u001b[2m7\u001b[0m\u001b[2m \u001b[0m│ model.baseline.warmup_baseline │ ExponentialBaseline │ 0 │\n", - "└───┴────────────────────────────────┴───────────────────────┴────────┘\n" + "┏━━━━┳━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━┳━━━━━━━━━━━━━━━━━━━━━━━┳━━━━━━━━┓\n", + "┃\u001b[1;35m \u001b[0m\u001b[1;35m \u001b[0m\u001b[1;35m \u001b[0m┃\u001b[1;35m \u001b[0m\u001b[1;35mName \u001b[0m\u001b[1;35m \u001b[0m┃\u001b[1;35m \u001b[0m\u001b[1;35mType \u001b[0m\u001b[1;35m \u001b[0m┃\u001b[1;35m \u001b[0m\u001b[1;35mParams\u001b[0m\u001b[1;35m \u001b[0m┃\n", + "┡━━━━╇━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━╇━━━━━━━━━━━━━━━━━━━━━━━╇━━━━━━━━┩\n", + "│\u001b[2m \u001b[0m\u001b[2m0 \u001b[0m\u001b[2m \u001b[0m│ env │ SDVRPEnv │ 0 │\n", + "│\u001b[2m \u001b[0m\u001b[2m1 \u001b[0m\u001b[2m \u001b[0m│ policy │ AttentionModelPolicy │ 694 K │\n", + "│\u001b[2m \u001b[0m\u001b[2m2 \u001b[0m\u001b[2m \u001b[0m│ policy.encoder │ GraphAttentionEncoder │ 595 K │\n", + "│\u001b[2m \u001b[0m\u001b[2m3 \u001b[0m\u001b[2m \u001b[0m│ policy.encoder.init_embedding │ VRPInitEmbedding │ 896 │\n", + "│\u001b[2m \u001b[0m\u001b[2m4 \u001b[0m\u001b[2m \u001b[0m│ policy.encoder.net │ GraphAttentionNetwork │ 594 K │\n", + "│\u001b[2m \u001b[0m\u001b[2m5 \u001b[0m\u001b[2m \u001b[0m│ policy.decoder │ AutoregressiveDecoder │ 98.8 K │\n", + "│\u001b[2m \u001b[0m\u001b[2m6 \u001b[0m\u001b[2m \u001b[0m│ policy.decoder.context_embedding │ VRPContext │ 16.5 K │\n", + "│\u001b[2m \u001b[0m\u001b[2m7 \u001b[0m\u001b[2m \u001b[0m│ policy.decoder.dynamic_embedding │ SDVRPDynamicEmbedding │ 384 │\n", + "│\u001b[2m \u001b[0m\u001b[2m8 \u001b[0m\u001b[2m \u001b[0m│ policy.decoder.project_node_embeddings │ Linear │ 49.2 K │\n", + "│\u001b[2m \u001b[0m\u001b[2m9 \u001b[0m\u001b[2m \u001b[0m│ policy.decoder.project_fixed_context │ Linear │ 16.4 K │\n", + "│\u001b[2m \u001b[0m\u001b[2m10\u001b[0m\u001b[2m \u001b[0m│ policy.decoder.logit_attention │ LogitAttention │ 16.4 K │\n", + "│\u001b[2m \u001b[0m\u001b[2m11\u001b[0m\u001b[2m \u001b[0m│ baseline │ WarmupBaseline │ 694 K │\n", + "│\u001b[2m \u001b[0m\u001b[2m12\u001b[0m\u001b[2m \u001b[0m│ baseline.baseline │ RolloutBaseline │ 694 K │\n", + "│\u001b[2m \u001b[0m\u001b[2m13\u001b[0m\u001b[2m \u001b[0m│ baseline.baseline.model │ AttentionModelPolicy │ 694 K │\n", + "│\u001b[2m \u001b[0m\u001b[2m14\u001b[0m\u001b[2m \u001b[0m│ baseline.warmup_baseline │ ExponentialBaseline │ 0 │\n", + "└────┴────────────────────────────────────────┴───────────────────────┴────────┘\n" ] }, "metadata": {}, @@ -491,7 +496,7 @@ { "data": { "application/vnd.jupyter.widget-view+json": { - "model_id": "12ece566b1324443b6513e4ce45583a1", + "model_id": "b09270c01f97472b84b66fd7dfc4e7af", "version_major": 2, "version_minor": 0 }, @@ -515,7 +520,7 @@ { "data": { "application/vnd.jupyter.widget-view+json": { - "model_id": "af283bfeda964ac8b122fef2c4aef53a", + "model_id": "26c9ac5e5f994dd39d7e375b52f367aa", "version_major": 2, "version_minor": 0 }, @@ -529,21 +534,7 @@ { "data": { "application/vnd.jupyter.widget-view+json": { - "model_id": "ecd7e75d87fe43339fe0918b5c738b26", - "version_major": 2, - "version_minor": 0 - }, - "text/plain": [ - "Validation: 0it [00:00, ?it/s]" - ] - }, - "metadata": {}, - "output_type": "display_data" - }, - { - "data": { - "application/vnd.jupyter.widget-view+json": { - "model_id": "37d0b02d1db34667ac62104cddc3d856", + "model_id": "e97b5d5ac8104b2ab7618bb9c0e204fb", "version_major": 2, "version_minor": 0 }, @@ -557,7 +548,7 @@ { "data": { "application/vnd.jupyter.widget-view+json": { - "model_id": "c01fd90970714d67859c2264411b7114", + "model_id": "6f672d7708694c99b48c21a0ff9f4921", "version_major": 2, "version_minor": 0 }, @@ -572,12 +563,12 @@ "name": "stderr", "output_type": "stream", "text": [ - "`Trainer.fit` stopped: `max_epochs=3` reached.\n" + "`Trainer.fit` stopped: `max_epochs=2` reached.\n" ] } ], "source": [ - "trainer.fit(lit_module)" + "trainer.fit(model)" ] }, { @@ -598,19 +589,19 @@ }, { "cell_type": "code", - "execution_count": 11, + "execution_count": 10, "metadata": {}, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ - "Tour lengths: ['6.99', '6.68', '7.79']\n" + "Tour lengths: ['6.73', '6.81', '8.23']\n" ] }, { "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAAiMAAAGdCAYAAADAAnMpAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjcuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/bCgiHAAAACXBIWXMAAA9hAAAPYQGoP6dpAADGfUlEQVR4nOzdd3wb9fnA8c+dTsPykPe2YzvDiTOcSRYjIWEECLNsKNAWWn4UWmhL2VBoaUsLpZRVyipl770SQgKB7OkkHnHseO8ly7Ysne5+f5yjxIkdMmzLdr7v10uv2NJJes52pEff8TySrus6giAIgiAIASIHOgBBEARBEI5tIhkRBEEQBCGgRDIiCIIgCEJAiWREEARBEISAEsmIIAiCIAgBJZIRQRAEQRACSiQjgiAIgiAElEhGBEEQBEEIKCXQARwKTdOorKwkNDQUSZICHY4gCIIgCIdA13VaW1tJTExElnsf/xgSyUhlZSUpKSmBDkMQBEEQhCNQVlZGcnJyr7cPiWQkNDQUME4mLCwswNEIgiAIgnAonE4nKSkp/vfx3gyJZGTP1ExYWJhIRgRBEARhiPmhJRZiAasgCIIgCAElkhFBEARBEAJKJCOCIAiCIASUSEYEQRAEQQioIbGAVRCEw9fobsOldvq/D1GsRNqCAxiRIAhCz0QyIgjDUKO7jbvXf4Sqa/7rFEnmgemLRUIiCMKgI6ZpBGEYcqmd3RIRAFXXuo2UCIIgDBYiGREEQRAEIaBEMiIIgiAIQkAddjLyzTffsHjxYhITE5Ekiffff/8H77N8+XKmTp2K1Wpl1KhRvPjii0cQqiAIgiAIw9FhJyNtbW1kZ2fzxBNPHNLxxcXFnHnmmcyfP5/Nmzfz61//mp/97Gd88cUXhx2sIAiCIAjDz2Hvplm0aBGLFi065OOffvpp0tPTefjhhwEYN24cK1eu5B//+AennXba4T69IAiCIAjDTL+vGVm1ahULFy7sdt1pp53GqlWrer1PZ2cnTqez20UQBEEQhOGp35OR6upq4uLiul0XFxeH0+mko6Ojx/v8+c9/xuFw+C8pKSn9HaYgDCtNne2BDkEQBOGQDcrdNLfffjstLS3+S1lZWaBDEoQhweV189SOb3hyxzc93r61oWKAIxIEQfhh/V6BNT4+npqamm7X1dTUEBYWRlBQUI/3sVqtWK3W/g5NEIYVl7eTv21ZSnVH79OaH5XmYFPMLEwaO4CRCYIgHFy/JyOzZ8/m008/7XbdkiVLmD17dn8/tSAcU97Ytd6fiAQrVubEpZMUHE6718PGhjIKnXUAvF20kUxHHCkhEYEMVxAEwe+wkxGXy0VhYaH/++LiYjZv3kxkZCSpqancfvvtVFRU8NJLLwHwi1/8gscff5xbb72Vn/zkJyxbtow333yTTz75pO/OQhCOcc2d7ayvLwXArpi5Y8ppRNtC/LcvSB7Lu8Wb+aJ8BzqwvKqAK0fPDFC0giAI3R32mpH169czZcoUpkyZAsAtt9zClClTuOeeewCoqqqitLTUf3x6ejqffPIJS5YsITs7m4cffphnn31WbOsVhD60qaEMTdcBOClhjD8R8WiV+LQ2AM5IHY/NZHz+WFdXgt51vCAMV43uNkpdjf5Lo7st0CEJvTjskZF58+Yd9EWsp+qq8+bNY9OmTYf7VIIgHKIWj9v/9ShHG3Xqszj1z2nW3yVYmsUY6WtsJisjQqLIb6mh06fS6VOxKeYARi0I/Ud0rh5a+n3NiCAI/UvTNEJs33L6mGeJDy3AbeqgVAO7NA2HtJgW/TMK1Pmkm96iqdP4ZCgBZtkU2MAFoR8drHN1JCIZGWxEMiIIQ5CqOanTnqRJe50OthMRqRKuQ4fXQV3rHBZEP0qwaQIAbdoadqnns80zmTjHqTR0nkJaaBImeVDu7BcE4RgkkhFBGCI6tO3U+B7BqX+Ol8qua03YGEu4fBEv5oym1GVModY2tXBBejsRVjtB0nForo9wW09idtqrzBrxKviyKFVPJliaRbA8EysjkSQpcCcnCMIxTSQjgjBIaZpGs/4W9dp/aNNXo2FMsciEECqdQrR8HeHS+chdIxznp1Xz2Lav0dBZV1fChrpSEuwOXGonLZ4OIoLu4EcT70CSAGUHddpO6ngcfGDCQbA0mxB5Dg7pbOxydgDPXBCEY41IRgRhEFG1Rmq1x2jS3sJNPuADwEwSkdKlxJp+TZA8vsf7jouI52dj5/JCwSq8mg8NnYr2Zv/tTR0jqGs9ntiw7wAd8Ppv89GCU/8Cp+9zGnmD8ZZt/XeSgiAI+xHJiCAEWJu2nlrfozj1pajsqVasEMREIuVLiZb/D0UOOehj7DEtJpWMsGi+rSpkdW0xzZ4OFFkmIzSakxJGMypiJAW+Wb3cWwdkUpR/9sVpCYIgHDKRjAjCANM0lUb9FRp8z9PGOnSMhpEyDsKkM4g13UAop/unXw5XhNXO2WmTODttUg+3phCinYBL/549oy77SjY9TJi84IieVxAE4UiJZEQQBoBHq6ZO+ydN2rt0UghogISZVMKls4g13YxNHjkgscSbbqNQPfOA62XCiebaAYlBEARhXyIZEYR+0qqtpNb3GK361/ioB0DCgp1pRJquJEa6Flm2DXhcYdIibIztWpOiAwoywWg0k+NLJlP6niB53IDHJQh9Rdd1ilsbAh2GcBhEMiIIfUTTPDToL9Dg+y/tbESnEwATkTik84gx3YDjKKZA3KqXD0q2srmhjFZvJynBEVw8chppoVG93ie/uYa3ijZS1d5ChNXOGakTmBOXQbzpNnb7rgYkNC2YT3P/ji6XsGD0P8jRJjPK/CKRpkuPOFZBCJR6t4und3xLWVtTj7cvKc/l6jGzRZ2dQUYkI4JwFDxaKTXaP2jWPsRDMcZIg4SVDBzyOcTJv8Yip/TJc720cw2V7S1ckzmHcEsQa2qL+UfOMu6bdiYRVvsBx9e7XTy+fTknJozmp2PnkNdczf8K1uCw2BgXfinlvt/j1ev4PP8mTk6YT3poNMurxhMVeRtF0mW4tJWkmp/ok9gFYSA0dbbzty1LaPZ09HrM2roSfLrOz8bORRa1dQYNkYwIwmFq0ZZS53scl/4NPoxPXxI2gplNlOkqoqSrkWVLnz6nx6eyqb6M/xt/ImMcsQAsHjGJrY0VrKjayblpB9YFWVG1k2hbCBdmTAUgwe6gsKWOpRX5jI9IJEN5k9eLVjAq+HTmxhvrVS7JuJg71+mcMuYvSPYnafOsIVNZGZDpJEE4XG8XbfQnIrG2EM5Oy2ZiZCIdqpfva3bxael2VF1jQ30p0xtSmRqdGuCIhT1EMjLAGt1tuNTObteFKFbRuOkI7P+z/KGfo09vQcONWYo7rOfRtHbqtGdo1F6mgxx0PAAoxBAuXUys6SZC5TlHdhKHGoOuo6GjSN37yZhlhV3Ouh7vU+SsZ2x4fLfrsiISeLNoIwBBzGVjVQU/H7f3GFmSGONII7fin5w25jFa9PfYqiYxVlmNTR7dx2clCH2nxdPBxoYyAIIVK7/LPpUwi5FE20xmzkydSFxQGP/J+w6ArysLRDIyiIhkZAD11EUSRCfJI3G4HTnd+k4KvPMx4WC8ZfsPPr5bK6TG9wgt+id4KWNPDQ4ro4mQLyBGvgmLfHhJzdGwKWYyQqP5tGwbCfYwwiw21taVUOSsJzao5xokTq/b/2K8R5jFhtvnxeNTaVc9aOiE9nBMdYeTUeZ3qVYfpkL7HdvVLNJNrxFp+lG/naMgHI1tjZVoXR3lT4gf6f/bX7KknhEjghgzJphp0al8YNtCrdtFQUstHaqXING5elAQycgA6qmLJIhOkkficDpytmtbKVBPxkcjXiro1IuxSundjtE0DScfU+d7Gpf+HRpOAGTshEgnEi3/lAjpUmQ5cP9lfpI5m/8WrOH3a99HRiI1JIIZMSModTX223PGK78hWJvJTvVUin0X4tJ+Tar5H/32fIJwpNpUj//rlJAIALxejTPO2MTIkUHk5s5FkiRSQiKpdbsAaFc9IhkZJEQyIgw51e0tfLh7a4+3FbbUkRoS6f/epa1mp3oqGu3sGd1o0T4m1nTjAZ1vQQVAIZ5w6RxiTb8mWJ7a/yd0iGKCQvlt9kI6fSpunxeHJYhnclcSbet5ZCTMbMPpcXe7zulxYzOZsZgUZElCRqK1h2Mc5r2jJaHy8UxSStmhTqdOf5R2z2rGKCv6fF2MIBwN+z5JRWVbC8SA2SwTFCSTn9/Oyy9XccUVCVS0NfuPE4nI4CGSEWFIyW2q5qkd39CpqT3e/kbRBjp8Xs5MnYBTW0qhurhrjceeURSdKt9fqPb95YDOtxHyRcTKv0SRI3t87MHCalKwmhTavB52NFVxfvqUHo/LCItmW2Nlt+tym6vJCIsGQJFNpIZGkttcw+RoY8ePpuvkNVczP3FMt/spcjQTlCJ2+c7BqX/ctY5kLTa5+wiTIARKVngCEhI6Ot9WF7IgaSzBZgudnRqTJ4dwzTXb8Ea0Uu0wRj0zQqOxKyKhHizERmthyKjrcPFU7t5ExGYykx2ZzIzoEd22tn5YspW1Tc+wU13UVetj3+kcHZVKVFoIlU4h3fQWUxQP4y3bSFTuGdSJyPamSrY1VlLvdrGjqYpHcpYSbw9jblwGAO8Vb+aF/O/9x5+UMJp6t4t3ijdR3d7C8soCNtSVsjAp03/MwqSxrKwuZFVNEVXtLbxauA6PpjKn6zH3Jcsyo80fkSg/iI8GtqtjaPJ90P8nLgiHINIWTHZUEmCsl3p461LWV5bh8ehccZWxvusXF+9mz2zO/gm3EFhiZEQYMr6qzKPTZyQiEyMT+VnmXGxdw6yarvNl+Q7e272FcTFLkO0vHvSx0pWXiJDP7++Q+1SH6uW93Vto7mzHrliYGp3CuWnZ/uJNLZ4OGjvb/cdH20L45fh5vFW0kWUV+YRb7Vw5ZibjIxL9x8yIGYHL6+bDkq04PW6SQyK4afx8wixBvcaRoNxOiDaLneoZFPnOJU6/lWTlr/134oJwiC7MmMouZz2tXjcV7c38+bPvgEhe37aVmTdqfP9oCF/cHsZtL4QwPUbspBlMRDIiDAmq5mNVTTEAZtnENWNm+xMRAJVKpiV+hzXsr4QFFf3Aoym0+D4acsnI9JgRTI8Z0evtV2fOPuC6zPA47pq66KCPOz8xk/mJmQc9Zn+h8nwmKMXkqdOp0R6izbOK0cqygC7wFYRoWwi/mbSAp3Z8Q01HK+ueMxaz7/7OwvnPtLBrqY2KdRaC149EHi8mBgYT8cohDHqa1k515yYSHN8SZq1lRJibOmkJzWoMLv073Ho+KrWAjF3JorkjHq/PSrTdhSTv6U8hASaMRaoqzfqH6LqGJIkXpCNlkeOZoJRS6DuDVv0LctQkxinrsMjiE6cQOAl2B/dOO5N3VxbxzCrjg0lDgcIUy0huWTqSqRmb+fm1eZx1RhwxMWLNyGAhkhFhwGmaiodi3OTTqe/Co5fg0ctR9VpU6vHRjI9WdNzoeAEdTHDKPjW3GjQJC8YogUwI6aZ/ECafzncNDbxZuA6Ay0bNYG58FB36Njr0HDr0HNr1Tbj1bWi0otGKCUcAfgLDhyzLjJE/p1K9nyrtXrapoxmpvIdDPiPQoQnHMBmJJ+9pQpZB0wBdon5JDJl3RfPWW9mceeYm5s9fx7ZtcwMdqtBFJCMDxKdpbKgr7fV2VfP1elu7tolK373EmW4mVJ7fH+EdFU3TUKnBTR6deiEefTcevRwvVah6HSpNXW/+7fvtbNmfjIQVGTsKkZiIxCzFYiYBE4m8u6uBho4YOrwp3D/16h635W2s3+T/Oj4oDEWKJFQ6kVBO9F+v6zo6bmSp93URwuFJVO4hWJvNLvUsCtUziZfvIkl5INBhCceoDz+sY/nyvY3ydB0ee6yE3/8+jTPOiOHii+N4440a7ruvkPvuGxXASIU9JF3vKlk3iDmdThwOBy0tLYSFhQU6nMPm8ak8ueMbcpurez0mLSSKmyee3G0dhE93UuG7mzrtX4BOvHwbScqfByBiUDUnneTj1gvo1Ivx6mV4qcSr1+KjER8taLSh0Qn0lkhJSJiRCUImFBMRKFI0ZuKxSElYpDSs0khsjMVMKvIPdNF8eedavq0uBIyFl1eNmYVZ3lse/ZuqnbzSNSoSYwvh/umLRSOsAebRKslTp+OlilDpZEaZvhDrSIQB1dmpkZm5krIytzEqso/XXpvIJZckoGka8fEraGjwkpMzh6ysnmv1CEfvUN+/xavEAHhp55puiUii3UFcUCh1bhflXQV4drsaeL5gFf+XdSK6rtOkvUmZ70ZUGjCKdSl4qT3iGDTNQyeFuPUCPPouOvVSvFTg1Wvw0dA1NeLaZ2qkNwoyNmRCMJOCQhSKFIeFJCxSKlYpA6uUiY1Rfd5cbWFSJqtri/FqPtbVlbCzpZYZMWnYTApbGyso2acS6ekpWSIRCQCLnMgEpZSdvlNp1ZexTU1lrLIei5z4w3cWhB/gVr18ULKVzQ1ltHo7SQmO4OKR00gLjfIf89hjJZSWutn/Y7Yk69xy/xZS53cwJy6Dr76aTnb2KhYsWM8r6+JZWplPi6eD5JAILhk5jfTQ6AE+u2ObGBnpZ5VtLfxh4ycA2EwK12ed2K15WWFLLU/sWEG7aiQAv58yGtV6G636MoxFl3t/PWHSmYw2fwzsmRopp8O/7sKYGlGpQtXr95ka6eiaGunt12xCxoqEHRNhKESiSLFYSMQspWCR0rBJo7GROShqcGxuKOc/uSt7LKu/x8KksfwofQqSSEYCqkK9k2rtQSSsjFQ+wiGfEuiQhCHumdyVVLa3cNmoGYRbglhTW8zSinzum3YmEVY7NTWdZGR8S3t7768P5z3dwgMXzWV8RCJ33rmTBx8s5sTfunjwN9mkh0bzVWUeG+tL+cO0xQf0dhIOnxgZGST2TCuA0fJ9/y6qoxyxnDtiMm8Ufce0pLdpNH+G5M8buicQTv1zNnrsXcnFwaZGLMjYkQnDwoiuqZEELFIyFikNizSKIDJRSPzBqZHBZnJUMr/LPoVPSreR01jR7SeUEhzBqcnjmBEzQiQig0CS8idCtLnsUs+lUD2VBPkPJCr3BDosYYjy+FQ21Zfxf+NPZIwjFjBeU7c2VrCiaifnpmXzl78UHzQRkSSo/DiSpXPzGR+RyJ/+NJp31xWw8tFg2k91kHiKg8tHHce2xkq+r9nF6SnjB+r0jnkiGeln5W17F1HNik0DoEPLYZd6ATLBgERktJOfRO3ih98/dayk+6dGzCRjlUZ0TY2MwUrGMdEvJC00ihvGn0RTZzvlbU34dJ0oazDJweEiCRlkHPIZTFAKyVVnUKXdS5v3e0aaPh1ySbAQeJquo6GjSKZu15tlhV3OOgDmzYukqspDc7OXxkYvm7e1oHZCkM1Ee7uGrkNVrkyRsx4wNg7M/Y2T3auiOO+8zdTWzsNuVxgbHu8/RhgYIhnpZ9o+s2BK12JLD1V4qEBnT7VMGa/PiiTpmE0ejCr9B2b3EhbGW7b3f9BDRITV3q0MvDA4WeRUJioVFKjzcepfsE0d0bWOJC7QoQlDiE0xkxEazadl20iwhxFmsbG2roQiZz2xQcYC1HPOieWcc2L998k4/hPaqszU7FqIpum0tqoUuKp5tqgKj0+lXfVgsus88I8UfndtGYsWbWTFiuMIs9io7nAG6lSPSeLjST+LDQr1f725oRwAh3wqUy1tZJsbGWF6EdSxyJLWlYjssedXs/eTvo4bn97W/0ELQh+TZYWxlm+Jk3+Hl3K2qWm0assDHZYwxPwkcza6Dr9f+z43rHyDryvyjWlZeh4R7WyDPZ9XZFnC4TBjCzrwbe+8i6KZPz+Cb75p5plnyvrzFIReiJGRfjYnLoPva4wqgO/v3sKYsFgibUaJYkWKwKReyHvbI6hzuwizVnFF1i4Uy0o6Kehq8tZ93YhL+xaH6fSBPg1B6BPJykME+2ZT5LuIAvVkEuUHSVBuC3RYwhARExTKb7MX0ulTcfu8OCxBPJO7kmhbz1tzO1tlImO7X+f0uLGZzFhMCrIkISPR6nHz6adTiIlZwQ035PHwyiAcIWLx6kASyUg/GxUWQ0ZoNEWt9TR1tnPvho+ZGZtOSnAE5W1NrKnb7W/+5lCymBh8i39Laoe2nXrtOVq0j+mkCPBR6FuE5LNgZQxh8qlEyz8jSB4XwDPsOysqd7KiaicNnS7AKOt8VupEJkT2vi10Q10pH5RspcHtIjYolPPTJzMxMsl/u67rfFSSw7fVhXT4vIwMi+ayUTOICxpau7KGkwjTeYyXCshTj6NSux2XdyUjTR+KdSTCIbOaFKwmhTavhx1NVZyfPqXH49wtMrbxnm7X5TZXkxFmbNtVZBOpoZHkNtcwOTqFDz6YzIIFG3jinmb++Wx6v5+HsJf439/PJEni5+OOJ7Yrc/doPr6tLuTVXev4prrQn4hEWYO5PuvEbrUxguTxpCiPMMFSwDSLyjhlCzHSjVjJoJN8arVH2KFmsdFjY4cnm3L197i1XQE5z74Qbg3ivPRs7phyOndMPp2x4fE8ueMbKrtqsexvl7OOZ/O+Y258BndNXcTkqGSe2vEtFfsc/0V5Lssq87l89HHcNvlUrLLCY9u+xnuQirdC/7PJ6UxSKghmFk79E7arGaiaWDAoHNz2pkq2NVZS73axo6mKR3KWEm8PY25cBgDvFW/mhfzv/ce7WyQsET7eKd5EdXsLyysL2FBXysKkvY0hFyaNZWV1Iatqihg3S+HMG2UKvrTw5eMDfnrHNDEyMgDCrXZ+P/lUPti9lTW1u+nUVP9tZtnEzNg0zhkx6aBt2wHs8iRS5cf837dp66n3PU+r/hUd7KBD20qN9hASNmyMwyEvIlq+Dqvce6fXwSQ7Krnb9+emZbOiaidFrQ0kBocfcPxXFfmMj0zgtOQsAM5Jyya3uZrllQVcPvo4dF3nq4o8zkidwOSux74mcza/Xf0um+vLmNG1u0kIDFm2MNayilLvzdTpj7JVTWW0soRQWfQLEXrWoXp5b/cWmjvbsSsWpkancG5aNqauUbUWTweNne3+431eiGmPIbepmmUV+YRb7Vw5ZibjI/aOts6IGYHL6+bDkq04PW7mXB3Bpo8VHv1bBT++NIXJk8Uo6kAQycgACTHbuHz0cZyfPpn85hrafV6CTGbGOOIINh/ZdtxgeTrB8nT/9y5tFQ2+F2jVv6aDrXRom7qKTgURRBYO+Syi5Z9hkZMP8qiDg6YbvXw8PpWMXiohFrXWszBpbLfrsiIS2NK1ULje3YbT62bcPrVdghQL6V3TZiIZGRxSzf8gxDebYt/lFKgnkCz/nTjllkCHJQxC02NGMD2m9w9XV2fO9n/t8Rg7EuPsodw1dc5BH3d+YibzE/eOllzwmYusrO9ZuHADtbUniSnEASCSkQEWpFiYHJ3SL48dIs8mRN77n7FV+6YrOfmGdjbTrm2gSvsDMsHYGI9DXtyVnMQf5FEHVkVbM3/d/CVezYfVpPCLrBNIDO65s67T4ybM3H2RWZjZRovHbdzu7TCu26+KYphl7zHC4BBpugi7NIU8dSbl2m9o9a4kw/S2eBMQjlhlpfF/PCrqwIaaPyQzM4T77x/FXXcVcvHFObz1VnZfhyfsR/xPH8ZC5RNJM7/ARMsupigeRilLiZSuRCGadtZTpd1NjprAJk8oeZ45VKl/Cfi8fVxQKHdNXcRtk0/jpITRvJi/msq2loDGJAwMmzyaSUoldqbRor/HdnU0qtb4w3cUhB5UVHQCEB19ZCPPd96ZwcSJIbz9dg0ffXTkfcGEQyOSkWOELMs45AWkm19iomU3UxQvo5RPiZAuxUQEbaymUrudLWoMmzwO8jwnUK0+POBvBopsIjYolBGhkZyXPpnkkHCWVeb3eGyYxYbT232Ew+l14+gaCQkzG2twnPuNgjg9e48RBhdZtjHOsp5o6Xo8FJGjpuDS1gQ6LGEIqqoykpHY2COvSr1s2XQsFomLL96Ky6X+8B2EIyamafrAoXSS3F9+cw1vFW2kqr2FCKudM1InMKdrRfgeX1cWsKQ8t186ScqyjINFOORFgNF4z8nHNPhepk3/nja+o01bSYX2W2Qc2KXJhMvnESVdgyIP3IIuXTdKNvckIzSavObqbutGcpuq/WtMom3BhJlt5DVXkxISARgL4Ipb6zkpYVT/By8csRHmJwnxzWW37yry1dkkmx4jzvTLQIclDCE1NcaW3vj4I09GoqMtPP/8BK64IodTTtnAqlUz+yo8YT9iZKQPvLRzDbnN1VyTOYd7pp5BVkQ8/8hZRtM+q7r3Ve928fj25WSGx3HX1EUsSMrkfwVr2N5U6T9mXV0Jbxdt5MzUCdw5ZRHJweE8tu3rAz7l9xVZlgmXz2ak+U0mWcqZonjIML1NuHQ+Juy49G8o9/2aLaqDzZ5ICrwLqfU9iaq5+iyG94o3U9BSS73bRUVbc9f3NRzXtdD0hfzvea94s//4BUmZbG+qYkl5LtXtLXxUspUSVyPzEscAxrbqBUlj+bRsG1sayqloa+aFglWEW4P6bd2O0HeiTJeTpeRgwkG570Z2eS9B03pvgiYI+6qrM5KRhATrUT3O5ZcncPrpUaxe3cJjj5X0RWhCD8TIyFE6lE6S+1tRtZNoWwgXZkwFjOJehS11LK3I9285W1qRx/HxI5kbPxJgwDtJyrJCBBcQYboAAE1TadbfoVF7jTZ9Na36V7T6vqKMGzARiV2aToR8AVHSFcjykfWLafW6eTF/FS2eDoIUM0nB4dw0YT5ZEQkANHa2dyv7PDIshp9lzuWDki28v3sLsUGhXJ91Akn7bAM+LXkcHp/KyzvX0q56GOWI4abx8zHLpv2fXhiEguRxTFIqyFPn0Ky/wQ51E2OVdQM6OicMTXV1XgCSk49+SvaDD6YQG7ucW27J55xzYhgxQvTE6msiGTlKh9JJcn9FznrGhnffwZIVkcCbRRsBY1qitLWRRV31MwBkSQpoJ0lZVojkYiJNFwOgaR6a9Ddp1F6nXV9Lq/4lrb4vKeXnmIgmWJpBhHwxkdLFyPKhvRj8eMysg97+m0kLD7huWkwq02JSe72PJEmcnTaJs9MmHVIMwuAjy3ayLJvZ7f0ZDfpz5KhJjFFWECxPDXRowiDW2GgkI9HRh7+bZn8Wi8wnn0zh+OPXMW/eeoqLTzzqxxS6E9M0R2nfTpLNne1ousbq2mKKnPW0eDp6vI/T6+5xu6nb58XjU3F5O9HQCe1pS6p3cGxJlWULUaYrGG3+mGxLLVOUDkaYnidMOh3QceqfUeK7mk1qEFs8cRR6F9PgewVN8/zgYwtCT9LMzzLC9AIa7eSpM6jzPRPokIRBrLnZiyTRZ9vD586N4Prrk9m9282NN+b2yWMKe4lkpA8cbifJ4UiWbUSbrmG0+TMmW+qZorSRavo3odIp6Ki06B+z23cFm1QbWzwJFHrPo9H3JpomVqgLhy7adDXjlM3IhFDq+znF3h8HOiRhkGppUTGZ+vY1+PHHx5KaauPxx8tYvbq5Tx/7WCemafrA4XaSDDPbetxu2lMnyf2PcZiHxpZUWbYTw3XEmK4DQNWcNOov06y9Q7u+kRb9fVp87wMSZuIJluYQKV+OQzobWaznEA7CLk9kolJBvjqLRv1/tHs2kKmsQZF7/v8mHJtaW30oSt8mI7Iss3z5dEaPXsmiRRupq5uHoojP9H1B/BT7kNWk4LAE+TtJ7t9rZY+MMGNL6r566yS5h6br5O1zzFCjyGHEmv6PMeavmGxpIltpItn0KCGciI92mvV3KPKdzybVzFZPMru8l9CsfSx2Twg9UuQQxlu2ESldiZsd5KiJtGtbAx2WMIi0tfmwWPp+dDo93c5f/zqG5maV887b3OePf6wSyUgfONxOkicljKbe7TrkTpJV7S28WrgOj6YeUItkqFLkcOJMvyLTspwplmaylQaS5L8RzFx8OGnW32CXurgrOUmlyHs5LdoXIjkRukk3v0Sq6d9otJGrTqHe90KgQxIGifZ2HzZb/7zF/eY3aUybFsbHH9fz5pvVP3wH4QdJuq7rgQ7ihzidThwOBy0tLYSFDb4tfevrSnrsJBmkGMV2XsxfRUNnW7fdIPsWPQu32jmzx6Jn+XxZnovT4zaKnmVMI32IjowcLo9WS4P2HC3aR3SQg8aeeiYyFlIIkU4iynQVIcwT/UsE2rSNFKgnoeEiSvoJaebnAh2SEGDh4cuIiFD6beeL06kSF7ccXdeprj6J8PAjL642nB3q+7dIRoQhwaNVUq89S4v2CW62o9HWdYsJCyMIlU4iyvQTQuXjAxqnEDiq5iRPnUEnBQQxibHKqiOueSMMfXb7UjIygti2bW6/Pcc771Tzox9tZcqUUDZunP3DdzgGHer7t/hIKQwJFjmRROUexlnWMMXiYqJSQrx8N0FMxksVDfoLFKgnsMFjZptnDCXe60RPk2OMIoeRpeQSIV1CB1vZoibSoe0IdFhCgHi9OqGh/btH44IL4jn33Bg2bWrlr38t7tfnGu7EyIgwLLi1Yhq0/9CifYabPHT27ERSsDKSMGkBUaafikJZx4ga3+OU+24CZNJM/yXKdHmgQxIGmCx/yamnRvH559P69XlUVSMubjnNzSr5+cczapQYjduXGBkRjik2OZ0k5UGyLJuYaulgvFJAnPw7bIzDw27q9CfJU6ex0WNhuyeLUu+vaNdyAh220E/iTL9krLIaGSu7fVdQ4r0+0CEJA0jTNHQdwsP7v3qFosh88cU0dB3mzVsnFtkfIZGMCMOSTR5NsvIQ4y1bmWpxk6VsI1a+GStj6GQXdfpj5KqT2Oixst0zkTL1N3RooqricBIsH8dEpQIrI6nXn2aHZzqaNjgqGAv9q7HRKKYYGXn0peAPxfTpDm6+OZWKik5+8QvxOnIkRDIiHBOC5PGkKI8w3rKNqZZOxilbiJFuxEoGneRTqz3CDjWLjR4bOzzZlKu/x63tDHTYfa7R3Uapq9F/aXS3/fCdhjBFDidLKSBcuoAONrBVTcStFQQ6LKGfVVZ2AhAdPXA7XB5+eCwjRwbxn/9UsGJF44A973AhKrAKxyS7PIlU+TH/923aeup9z9Oqf0UHO+jQtlKjPYSEDRvjcMiLiJKvxSanBS7oo9TobuPu9R+h6nuHkRVJ5oHpi4m0BQcwsv4lyzIj5bepUR+lXLuF7ep40k2vEGm6KNChCf2kosIYAYuJGZiRkT2WL59Bevq3LF68ibq6eVitopr0oRIjI4IABMvTGWF+kgmWfKZZvGQq3xMtXYuFZDrYSrX2INvVdDZ67OR6plOp3otHKwt02IfFpXZ2S0QAVF3DpXYGKKKBFaf8mjHKt0iYKfZdTKn3V4EOSegn1dVGQ864OOuAPm9yso1//jOT1lYfZ521aUCfe6gTyYgg9CBEns0I8zNMsOxkmkVljLKCKOkazCTQzmaqtPvJUVPZ5Akh1zOTSvWPeLSqQIct/IBQeS6TlFIspBnrhjyzRCfpYaiuzvidJiYObDIC8H//l8qcOQ6WLm3kpZcqBvz5h6ojSkaeeOIJ0tLSsNlszJw5k7Vr1x70+EcffZTMzEyCgoJISUnh5ptvxu0WC8mEoSNUPpE08/NMtOxiiuJhlLKUSOlKFKJpZz1V2t3kqIls8oSS55lDlfoXvFpdoMMWeqDI0YxXduGQFtPOmq51JEWBDkvoQ3uSkYSEgU9GAL74Yhp2u8zPfraD2tpjY+TxaB12MvLGG29wyy23cO+997Jx40ays7M57bTTqK2t7fH4V199ldtuu417772X3NxcnnvuOd544w3uuOOOow5eEAJBlmUc8gLSzS8x0bKbKYqXUcqnREiXYiKCNlZTqd3OVjWWTR4HeZ4TqFYfRtXEorbBQpZlRpk/JEn+Kz4a2a5m0uR7L9BhCX2kvt4LQFJSYEq0h4QovPVWNl6vzsknrw9IDEPNYScjjzzyCNdeey3XXHMNWVlZPP3009jtdp5//vkej//++++ZO3cul112GWlpaZx66qlceumlPziaIghDhZGcLCLD/CqTLKVMUVRGKh8QLl2IiVDa+I4K7bdsUaPY5Akn3zOPGt8/UbWWQId+zItXbmWMsgwJhSLf+ZSpvwt0SEIfaG42khGbLXB7NM44I4ZLLoln+/Y27ruvMGBxDBWHlYx4PB42bNjAwoV7G77JsszChQtZtWpVj/eZM2cOGzZs8CcfRUVFfPrpp5xxxhm9Pk9nZydOp7PbRRCGClmWCZfPZqT5TSZZypmieMgwvU24dD4m7Lj4hnLfr9mihrPZE0GBdwG1vidRNdcPP3gvWrRP8eni/8mRCJXnMUEpwUwKtdrfyfMcj6apgQ5LOArNzSqDoX/mK69MICbGzP33F7F9e2ugwxnUDuvXVV9fj8/nIy4urtv1cXFxVFf33Eb5sssu4/777+f444/HbDYzcuRI5s2bd9Bpmj//+c84HA7/JSUl5XDCFIRBRZYVIkwXMNL8DpMslUxRPKSbXschnYOElVZ9GWW+G9iihrLZE0WB9zTqfM+gae2H9Pjt2lYK1TPJ887Eo5f289kMTxY5lgnKbsKk02njO3LUJDq1kkCHJRwhp1NFUaRAh4EsyyxbNh2ABQs2iOqsB9HvuePy5ct58MEHefLJJ9m4cSPvvvsun3zyCQ888ECv97n99ttpaWnxX8rKhtYWSkE4GFlWiDRdzCjz+2RbqpmidJJm+h9h0plImGjVv6TU93M2qcFs9sSw03sG9b4Xe60e2qovA2Tc7CTXO402bcMBx3h8Kpvry3u8/xBoTzUgZFlmtPkzEuQHUKljuzqaZu3jQIclHAGXy4fZPAiGRoAJE0K5/fZ0amo8XHXV9kCHM2gdVqM8j8eD3W7n7bff5txzz/Vff9VVV9Hc3MwHH3xwwH1OOOEEZs2axd/+9jf/dS+//DLXXXcdLpcL+RDG0kSjPOFYomluGvVXadLeok1fh48G/20KMQRLM4mQLyFCuhBZtlDoXUyL/imgASYkzGQobxAunw1AqauRJ7avoNnT0ePzjQ6L4YbxJxGkBGax32DUon3FLvVMdDqJl+8gSflToEMSDkNy8go6OjQaGuYHOhS/ceO+Iy+vjS++mMqpp0YHOpwB0y+N8iwWC9OmTeOrr77yX6dpGl999RWzZ8/u8T7t7e0HJBwmk1GVTnwiE4QDybKNaNNPGG3+jMmWeqYobaSa/k2odAo6Plr0j9ntu4JNqpXNnjha9M8wEhEAHzqd7FLPpdb3GNXtTv6R81W3RMRmUlCkvf8ndzrreHz7ClTNN7AnOog55AVMUIowk0C19iD53vliHckQ0tGhERQ0OEZG9lixYjpms8T552+mvV38Le3vsH9bt9xyC//5z3/473//S25uLtdffz1tbW1cc801APz4xz/m9ttv9x+/ePFinnrqKV5//XWKi4tZsmQJd999N4sXL/YnJYIg9E6W7cSYrmOM+UsmWxrIVlpIMT1OqDQfnXZg/yRCB3TKfL9ivetqOroqrKaHRvH77FN5dPaF/HPOhfwkczbBilGHodBZx6qa4gE9r8HOIicyQSklVFqAS19OjpqCR+t5qksYXDo7NYKDB9f7S2yslX//O4u2No3TT98Y6HAGncPe93TxxRdTV1fHPffcQ3V1NZMnT+bzzz/3L2otLS3tNhJy1113IUkSd911FxUVFcTExLB48WL+9Ccx7CkIR0KRw4jlBmJNN1Dje5hy363sHRnpLt7xHpdN/prviu7gV+N/5J+KUSQTM2PTibDYeTjHGOlcUbWTExJGDdRpDAmyrDBGXkqFejfV2h/Zpo5kpPIhDvm0QIcmHITXqxESMriSEYBrrkni5ZcrWbasiWeeKeO668TmjD0Oa81IoIg1I4LQs53eM3DqX9BTMqLrIEl7/1WII0Q6CauURqi8AId8KgB/2vQZpa4mAP4+83xCLbaBPIUho0X7jF3queh4SJDvI1G5N9AhCb0wmb7kxBMj+PrrGYEO5QBut0pMzArcbo2SkhNITBze/9/6Zc2IIAiDh66ruPQVGImIAhhbGSVshEgn4u64ji/yb+G1zY/gc/2XaPknePQSarSHKFd/63+cWFuo/2u3T8xl98YhL2KCshOFOKq0+yjwniq2ag5Smgbh4YOzKb3NpvDBB5NRVZ1580R11j1EMiIIQ5SGGwkLVkYSJV1BqulpxilbmGJ2kWlegeK5jZLmabg8cRQ3jSdJeZBxltXEyjfjpQJdV9F0nd2uvbt1QsxiR83BWORUJirlhHAirfoStqmpeLSeaywJgeF2Gwl1eLg5wJH07uSTo7j66kR27mzn1lvzAx3OoCCSEUEYokxSCNnmRiZYCkkzv0CM6Trs8iQkyZgrnxCRiFk2vv6+ZhcN7jYAIuVL8dFIo/Y6a2qLqe+6flx4vNjeewhkWSHTsoI4+fd4qWCbmoZTWxbosIQuFRVGk7zo6MGbjAA891wWCQlW/v73EjZuFK0hRDIiCEOYJPVeZTLEbOW4mBGAMf3y1y1f8nVlAR2ecaCbyO+4j5cK1viPn5c4pt/jHU6Slb8w0vQBoLFTXUiV+udAhyQAVVXG7rGYmMGdWMuyzNdfT0OS4NRTN6Kqx/aUn0hGBGEYOz99CnFBxpqQFk8Hr+9az53rPqSuLQWLuQgNo6HYnLgMsiOTAhnqkBRuOpvxSgEK0VRqd7DTe6ZYRxJglZVDIxkByMwM4f77R9HQ4OWSS7YGOpyAEsmIIAxjIWYrv520kHHh8d2uz6udhyTpTIhdzqnJ47hy9HEHHWURemeV05iolBPMbJz6p2xT0/FqdYEO65hVU2MkI/Hxgz8ZAbjzzgwmTQrhnXdq+fDD2kCHEzAiGRGEYS7MEsSvJ57MXVMWsSApk8lRydj1q9B1mfnpG7kgfQqyJF4KjoYsWxhr+b5rcXApOeoIWrWVgQ7rmFRXZ4z2JSUNnS2zX389HYtF4pJLttLaemzuaBOvQIJwjEgJieCijGlcn3Ui142bR5CURSfbxLRCH0pRHiHd9BY6XgrUE6lWHw50SMec+npjAWtiojXAkRy6yEgLL744gY4OjVNOOTa3+4pkRBCOUVHy1YCPRv2lQIcyrESafsR4JRcTEVRov6XQe55I+AZQY6MxMhIZOTjrjPTm0ksTWLQoijVrnDz66O5AhzPgRDIiCMeoWPkGQKLO93SgQxl2bPIoJikV2JlOi/4+29XRqFpjoMM6JjQ3q0gSh9QRfrB5//0pOBwKv/1tASUl7YEOZ0ANrdRREAQ/Tdf4qCSHNbW7cXrdOCxBzIlL54yUCQddjJrfXMNbRRupam9h3sjjSXFsRFO0bi/eX1cWsKQ8lxZPB8khEVwychrpocdO2/O+IMs2xlnWUer9JXX6E+SoKYxWviJEnhXo0Ia1lhYVk2loLsa2WGQ++2wKc+asY9689RQXnxjokAbM0EsdBUEA4POyXFZUFXLpqOncN+1Mzk+bzBfluXxdWdDrferdLh7fvpzM8DjumrqICNM8zEobm1r2TtWsqyvh7aKNnJk6gTunLCI5OJzHtn2N0+MeiNMadlLNj5NuehWNTvLVOdT4/hXokIa11lYVs3loJiMAs2dH8H//l8Lu3W5uvDH3oMc2utsodTX6L41dBQyHIpGMCMIQVdRax+SoJCZGJhFtC2FaTCpZ4QkUtzb0ep8VVTuJtoVwYcZUEuwO5kXfitdnpbjjbf8xSyvyOD5+JHPjR5IY7ODyUcdhkRW+r9k1EKc1LEWaLiVL2YYJB+W+m9jlvUisI+knbW0+LJah/db2xBPjGDHCxuOPl7FqVdMBt2uaTqO7jbvXf8SfNn3uv9y9/qMhm5AM7d+YIBzDMkJjyGuuoabdCUCZq4lCZx0TIhN6vU+Rs56x+9QcUeQQPN5RhAdvAkDVfJS2NnarSyJLEmPD4yly1vfTmRwbguSxTFIqCWIyzfpb7FDHomrNgQ5r2Glv92GzDf23tq+/no7JBGecsclfnXXr1lbGj/+O88/fjEvtRNW7J7SqruFSOwMR7lETa0YEYYg6PSULt8/LvRs+RpIkdF3nnLRsZsam93ofp9dNmKV7/QWrdibB9oeo836EWVuAhk7ofseEWWxUdzj75TyOJbIcRJZlEyXe66jX/0OOmswYZTnB8vRAhzZsuN0akZGDuy/NoUhPt/PQQ2P4zW8KOOecTSxYEMXvf78TVdWpqfEAIwIdYp8a+umjIByjNtSVsLZ2Nz/NnMNdUxZx9ZjZLCnPZVVN0WE9js13NV6flXr9sX6KVNjfCPMzjDD9Fw03eepMan1PBTqkYcPj0QkJGR6fs2+5JY1Jk0L49NMGfvObAlRVB6ChwUur0xfg6PqWSEYEYYh6p3gzp6VkMSM2jaTgcGbFpbMgaSyfle3o9T5hZtsBC1FdXgvlLdl08B0hZisyEq37HeP0uHGYh05Fy6Eg2vRjximbkQmhzPd/FHmvCHRIw4Kq6oSGmgIdRp94881qioo6erytuHB4LSgXyYggDFEeTUWm+64BWZLQ0Xu9T0ZYNHnN1d2uy22upr1jFjoddPAtqaGR5DbX+G/XdJ285moywsTW3r5mlycwUanAxkSa9FfY7slC1VyBDmtI8/l0HI6hPTLS1qZyxRVbufjirbS19TwCUiSSEUEQBoNJkUl8WraNnMYK6t0uNtWXsbQ8j8lRyf5j3ivezAv53/u/PylhNPVuF+8Ub6K6vYXllQVsqCtlsuNnAFT7/s7CpLGsrC5kVU0RVe0tvFq4Do+mMicuY8DP8VigyCGMt2wlUroKN7nkqIm0a5sDHdaQpGkaug4REUN7zcjXXzfxyivGhwa9h88WiiJRtHN4JSNDO30UhGPYJSOn80HJVl4tXEertxOHJYgTEkZxVuoE/zEtng4aO/dWcoy2hfDL8fN4q2gjyyryCbfauXLMTCZFZrDVk4BLX86MmBG4vG4+LNmK0+MmOSSCm8bPJ8wSFIjTPGakm18kxHc8pb6fk6tOY4TpGaJNPw10WENKfb1RCn6oJyNnnhnNu+9m87vfFbBr14HTNJqmU7TTTe/75oYeSdd7yrsGF6fTicPhoKWlhbCwsECHIwjDUon3eur1pxmrrCVYnhHocI5Z7dpm8tUT0HARJV1Dmvn5QIc0ZGzc2MK0aWu4994M7rtvVKDDOWqqqvHCC5XceedO6uu93UZJUseYOP3ZmgPuc1v2qaQPoinVQ33/FtM0giAAEG+6DYBq318CHMmxzS5P7lpHMpYG/QW2eyahacdWn5IjVVVl1NiIjbUEOJK+oSgy116bzO7dJ/LHP44iONjEnk4PZYVqj1M4LxasprFz6BU+E8mIIAgAWOURKMTg1JcGOpRjniKHMd6SS4R0GW5y2KIm0qFtD3RYg151tQcYPsnIHna7iTvuyGBT3jSmXOQBdHRNomabiRDFSpBp77RUdYeTR3OW0a56AhfwERDJiCAIfg7pTDSctGs5gQ5FADLMr5BiegKNVnao2TT4Xg50SINaba3xBpyQYA1wJP3ju7Zcpt/g5Jynm7HYdcr+m8hfpp/LP2b/iF9NmE+0LQSAmo5WlpbnBTjawyOSEUEQ/OJNtwNiqmYwiTX9H2OV1cjY2O27khLvLwId0qBVX28kI8nJwy8ZcXk7WVdXAkDaRJmPP53ClvUdPPRQCZIkkRWRwE0T5vm3+39bXYhvCPU/EsmIIAh+NnkMJiJw6p8HOhRhH8HyDCYq5VgZRb3+b3Z4pqJpw2trZ19oaDB20yQkDL8CfUXOen8vmpmxaZxyUix33JHBvfcW8tprVQDEBYUxITIRMFo/VHW0BCzewyWSEUEQugmTTsNHI25tZ6BDEfahyOFkKfmESxfSwSa2qom4tfxAhzWoNDWpAEO+a29POn1e/9d7pmOysoLRNPj973cecJtxH3XgAjxKw+83JgjCUdk7VfPnAEci7E+WZUaa3yTZ9Cg+mtmujqfR90agwxo0mpu9yMP0XW3f5pU7m2u55JItXHZZDuecE8u2bbP9txU66/beZwi1cBimvzZBEI6UXZ6ETBgt+ieBDkXoRZzpV2Qq3yFhodh3CaXemwId0qDQ2upDUaQfPnAIGhUWQ5jZhqcdbj+9jTfeqOGii+J4991swsKM3TSbG8opdTUCkBIcQcw+oySDnUhGBEE4QKh0Miq1eLSyQIci9CJEns0kpRwL6dTp/yLXcxyaNrS2c/Y1l0sdllM0AIpsYrQnnVcviMRZYWLCuW6ueEimsr2FUlcjbxdt5Jnclf7j5yeOQZKGTmImysELgnCAeNOttKjvU+X7CyPkJwIdjtALRY5kvFJIke98WvQP2KomMlZZg00eGejQAqKtTcNqHZ7JyJIl9fzyzHq8qsycX7Uy4YJOPi7N4ePSA7fhT41OYfYQ6yU1PH9rgiAclRB5NjLBtOjvBzoU4QfIsswo8/skyX/FRyPb1bE0+d4JdFgB4Xb7CAoafm9r//pXCaedthGATz+fzM+uT0DiwFEPRZJZkJTJz8bORR5CoyIgRkYEQehFiHQiTv0zPFotFjk20OEIPyBeuZVgbRY71dMo8v2IWP0WUpSHAx3WgOrs1IiJGV7VV6+7bjv/+U8F4eEKGzfOIj3dDsRyzohsVtUWUdvRCkgkBYczOza920LXoUQkI4Ig9CjO9Fuc6mfUaA+RIv890OEIhyBUPpEJSgl56nRqtUdo86xmjPI1sjy83qB74/HohIQMj7c1VdWYP389K1c2M3q0nY0bZ3U7t0hbMGemTgxghH1r+I1nCYLQJ8Lkk5Gw0aS9FehQhMNgkWOZoOwmTFpEG9+ToybTqZUEOqwB4fPphIWZAh3GUWtu9pCRsZKVK5s5/fQo8vLmDJskqzciGREEoVch0hy8lKJqzYEORTgMsiwz2vwpCfIfUalnuzqaZu2jQIfV7zQNwsPNP3zgILZ9eyspKd9SVubmlltS+eyzacjDtXjKPoZ3qiUIwlGJNf2KVnUZNdrDJMkPBDqcY0Kjuw2X2un/PkSxEmkLPqLHSlTuJFibxS71THapZxMv30aSMjyL2bW3G9VGIyOH7tvaBx/WcMmVm0HROf/pVmxTC/ik1MsZKRMOuk03v7mGt4o2UtXeQoTVzhmpE5iz326arysLWFKeS4ung+SQCC4ZOY300Oh+PqNDN3R/a4Ig9Ltw+WwkLDRqr5GESEb6W6O7jbvXf+TvQQLGDokHpi8+4oTEIS9gglJMnjqdau0vuDyrGK0sRZaH18t/RYWRwEVGDs2Rkb/8pZi77ikgLMnH48+O4tS5iZS0NvLfnasJMlk4OSmzx/vVu108vn05JyaM5qdj55DXXM3/CtbgsNgYH2H0qVlXV8LbRRu5bNQM0kOj+aoyj8e2fc0fpi0mbJAseB3+Yz+CIBwVO8fhoQif1hboUIY9l9rZLREBUHWt20jJkbDICUxQygiVFuJiBTlqCh6t/Kgec7DZk4wMxd00V1yRw+237yQuU+MPr4dz2YIxRNtCmBaTSlZ4AsWtDb3ed0XVTqJtIVyYMZUEu4P5iZlMjU5hacXevkVLK/I4Pn4kc+NHkhjs4PJRx2GRFb6v2TUQp3dIRDIiCMJBxZp+CejUav8MdCjCUZBlmTHmJSTI96JSzTZ1JC3a8OnOXF1tJCNxcUMnGfF4NKZPX80rr1QxcWIIT76XRJVUR027E4AyVxOFzjomRCb0+hhFznrGhsd3uy4rIoEiZz0AquajtLWRcfscI0sSY8Pj/ccMBsNrnE4QhD4XLl0IXEGj9j8SuCPQ4QhHKVG5j2BtJrvUcylUF5Eg30uicl+gwzpqNTVGKfy4OGuAIzk0tbWdZGevorrawwUXxPL225PRdB2fSePeDR8jSRK6rnNOWjYzY9N7fRyn133AVEuYxYbb58XjU2lXPWjoB9QfCbPYqO5w9su5HQkxMiIIwkHJsoydKbjJP+Z7nwwXDnkRE5RdKMRTpf2BAu9CNM0X6LCOSm2t8beZlDT4k5H161tIS/uW6moP99yTwdtvTwZgQ10Ja2t389PMOdw1ZRFXj5nNkvJcVtUUBTbgASCSEUEQflCM6eeATp32ZKBDEfqIRU5molJGiHQSrfpXbFNT8WhVgQ7riDU0eAFITh7cycgbb1Qxc+YaPB6NN96YxB/+MMp/2zvFmzktJYsZsWkkBYczKy6dBUlj+axsR6+PF2a24fS4u13n9LixmcxYTAohZisyEq09HOMwD47FqyCSEUEQDkGkdBVgol57PtChCH1IlhUyzcuJl2/DSyXb1HSc2rJAh3VEGhuNZCQsbPCuPrj77p1cckkONpvMunWzuOii7ms9PJqKvF/PGVmS0NF7fcyMsGjymqu7XZfbXE1GmLFtV5FNpIZGkttc479d03Xy9jlmMBDJiCAIP0iWFYKYgJvtaJoa6HCEPpak/JmRygeAxk51IZXqnwId0mFrbvYiSQzKAmGapnHeeZv44x+LSUiwUFx8AlOmhB1w3KTIJD4t20ZOYwX1bheb6stYWp7H5Khk/zHvFW/mhfzv/d+flDCaereLd4o3Ud3ewvLKAjbUlbJwn63AC5PGsrK6kFU1RVS1t/Bq4To8mnpALZJAGrwppCAIg0qU6WeU+26kQX+eGK4LdDjDzi5nHW/s2tDjbd9V7yJpZDgmqf/eaMPlsxmv7CRPnUGVdhdt3u8Yafp4UL6596SlRcVkGnydat1ulRkz1rJtm4sZM8L4/vvjUJSef6aXjJzOByVbebVwHa3eThyWIE5IGMVZqRP8x7R4OmjsbPd/H20L4Zfj5/FW0UaWVeQTbrVz5ZiZ/hojADNiRuDyuvmwZCtOj5vkkAhuGj+fMEtQ/534YZJ0Xe99/GeQcDqdOBwOWlpaCAs7MJsUBKH/aZqHTWoQQUwhy7I+0OEMK5sbynkmdyW+/WqM7Cs7MomfjzsBUz8nB5rmoUA9mTa+w0wKY5X1Q6Jr8/jx31Fc3EF7+8JAh+JXXu5m8uRVNDR4ufLKBF56afg0tjtUh/r+PTRSXkEQAk6WLdgYSweb0bTe3zSFw1PX4eLZvO/8iUiU1c5J8aNYlJzFGMfeJGBLYwUfleb0ezyybGGsZSWx8i14KWObOoJW7Zt+f96j1dbmw2odPG9p333XxKhRK2lo8PLXv44+JhORwzF4fnOCIAx6UfJVgI8m/dVAhzJsLK8qwNu1rXZ6dCoPzDiby0Yfx7npk/nNpIX8esLJ/kWNyysL6PQNzJqdFOVhMkzvoKNSoM6jWv3bgDzvkWpv92GzDY63tOeeK+eEE9bh8+l89NFkbr219zohgmFw/OYEQRgSYuVfAhJ1PrHFty9ous6qmmLA6EFz6agZmCS528jTuIh4ZsYZb2YdPi+bG8oGLL4I0/mMV/IwEUmFdiuF3nMH7ahYZ6eG3W4KdBjcckseP/vZDkJCTGzZMpuzzhr8U1yDgUhGBEE4ZLJsx8oo2lk/aN+UhhK3z0tbV9+ZkWExhJiNGhk/XZNL+Jtfc8PaPJo9HrIjk/z3qXe7BjRGmzySSUoldo6jRf+A7epIVK1xQGM4FB6PTnBw4JIRTdM47bT1/OMfpaSm2igtPYGsrJCAxTPUiN00giAclkj5Mqq0P9Cif0AE5wU6nCFt35oSnn22TGeG2ZGQeHJnOU/uLCdckUiwBJNs9/J5VQcbW4qodXuoc3uocnuo6uikvtOos7HjrNnEB/Vt4S9ZtjDOsoZS703U6f9iq5rMGOUrQuTZffo8R8Pr1QgLC0wy4nKpTJmyisLCDk48MZyvv54+ZHYhDRYiGREE4bDEyrdQpf2BWu0xIkwiGTkaVpNCrC2EWreL4tYGqttbiLc7uG18OreNT+eLynquW5NHabubZjWY3HZYUu/EhBNZkvDpOvuOTznMCuGW/ntZTzU/RohvLsW+y8lX55Js+gdxpl/12/MdDk0Dh2Pg39J27Wpn2rTVtLSo/OIXyTz1VNaAxzAciNRNEITDoshhWEijTV8V6FCGPEmSOD5hbznwZ/O+p8Hd5v9+YUIkT00L55KEWkxo0FWJ0wd490tETJLET0YmYjP17+hApOlixivbMRFOue/X7PJeGPApO03T0HUIDzcP6PMuXVrPuHHf4XSq/OtfY0UichTEyIggCIctQr6IGu0hWrQvccinBjqcIe2E+FF8XVlAU2c7ZW1N3LX+Q7LCEwgxW8lrrqbZ00GYGa5IbmBZYyLl7d4ei4P7dJ3rRiX1cEvfs8mZTFIqyVPn0qy/zQ41k7HKOhQ5fECef3/V1UaTvKiogUtGHn+8lJtuykNRJJYsmcaCBVED9tzDkRgZEQThsMXLvwOgxvdIgCMZ+uyKhV9NmE+ExQ4YO2y2NVWyuraYZk+H/7iL0ifx3akzibVZ6K3Q6JRPV/PbDQUDETaybCPLsoFo6ed0UkiOmkybtm5Annt/lZXGIuDo6IFJRn7xi+3ceGMeDodCXt5ckYj0gSNKRp544gnS0tKw2WzMnDmTtWvXHvT45uZmbrjhBhISErBarYwZM4ZPP/30iAIWBCHwFDkaM0m06d8GOpRhIcHu4M4pp3NGynjC9umkKiGRHZXMLRMXcEbqeFKCbSw5eSo2k+mAF2+bLOHWdB7OK0V6ZSmjP/iO7c39v/NmhPlp0kwvoeEmT51FbQC2fe9JRmJiLP36PJqmceKJa/n3vysYPdpOWdmJZGTY+/U5jxWHPU3zxhtvcMstt/D0008zc+ZMHn30UU477TTy8/OJjT1wP7XH4+GUU04hNjaWt99+m6SkJEpKSggPD++L+AVBCJBw6Xzq9H/Rqq0kVD4+0OEMeaEWG+ekZXPWiIk0uNtQNR8Oi51gc/c32IkRIXx0UjanLtuE1tXNI0wxUX3BibSpXs5cvpV1DU4KXR1M+GQ1Vlni56OS+OeMsf0We5TpSuzSVPLUuZT5bsClrSTDPHCF8aqrjWQkPr5vdxHtq7nZQ3b2akpL3Zx+ehSffDJF7JjpQ4f9k3zkkUe49tprueaaa8jKyuLpp5/Gbrfz/PM9txZ//vnnaWxs5P3332fu3LmkpaVx0kknkZ2dfdTBC4IQOPGm2wCo8Q3uypxDjUmSiQ0KJTE4/IBEZI/58ZG8PGe8//urRyYSpJiIttlYc/pxaJcv5PHpYwhTTHRqOo8VlCO9spSRH6xka6OzX+IOkseTrVRiYyJN+mts84xD1frnufZXV2dsa05I6J9kZPv2VlJSvqW01M0tt6Ty2WfTRCLSxw7rp+nxeNiwYQMLF+5tRCTLMgsXLmTVqp5X1n/44YfMnj2bG264gbi4OCZMmMCDDz6Iz+fr9Xk6OztxOp3dLoIgDC4WORGFeFr1rwMdyjHp4rR4/jFtDDaTzC9GJx9w+w2ZqbRcPJ+mC05gdnQYElDkcpP92Vqsr33F9Wty+zwmWbYz3rKVKOkaOskjR02iXdvc58+zv/p6YwFrYmLfJyOvvFNK9uRVtLX7+NuTI7jzTyl9/hzCYSYj9fX1+Hw+4uLiul0fFxdHdXV1j/cpKiri7bffxufz8emnn3L33Xfz8MMP88c//rHX5/nzn/+Mw+HwX1JSxC9fEAajcGkxGq20aRsCHcox6ddjU2n80UmMcwT3eky4zcr3pxmjJU/PyCRMMeHRdJ4urEB6ZSnp769kY31zn8aVZn6eEaZn0WgnV51Gne/ZPn38/TU0GCMjfZ2M3PunfK74US5IOov/1czOCRu4e/1HNO6z/VroG/2+tVfTNGJjY3nmmWcwmUxMmzaNiooK/va3v3Hvvff2eJ/bb7+dW265xf+90+kUCYkgDEJxptupV/9Dte+vjJTfDHQ4g5Kma3xUksOa2t04vW4cliDmxKVzRsoEJKmXbTFAfnMNbxVtpKq9hQirnTNSJzAnLqPbMV9XFrCkPJcWTwfJIRFcMnIa6aHRvT7mz8ek8PMxKTS7O1m8Iofv6pvZ3eZm2hfrMUsSP86I5+npmSjK0b81RJt+il2aQb56PKW+a3FpK0k3v3jUj9uTpiYjGVGUvps6ufLKHF5+uQqbQ+f855oJiTVqqai6hkvtJJLeE0Dh8B3WX1x0dDQmk4mamppu19fU1BAfH9/jfRISEjCbzZj2KcQzbtw4qqur8Xg8WCwHzolarVas1v5biHS0Gt1tuLr6SewRoliJtIk/TuHYYpPTMRFFq74EAF334dK/xaWvIlb+JSYpNMARBt7nZbmsqCrkmsxZJNgdlLQ28t+dqwkyWTg5KbPH+9S7XTy+fTknJozmp2PnkNdczf8K1uCw2BgfkQjAuroS3i7ayGWjZpAeGs1XlXk8tu1r/jBtMWEWW4+Pu0e4zcq3p00H4MVdFdy8YSfNXpXndlXx3K4qUuxW3jh+IrNjwo/q3O3yJCYqleSrM2nU/0u7ZwOZyioUuW97trS0qPRVrTePR2Pu3LWsX+8kM8vG3H+Wowzet6Nh47CSEYvFwrRp0/jqq68499xzAWPk46uvvuKXv/xlj/eZO3cur776Kpqm+Rf8FBQUkJCQ0GMiMtg1utu4e/1HqHr3ioOKJPPA9MUiIRGOOWGcThOvsMt7Ea36V/gwmqiFSicSIs0NcHSBV9Rax+SoJCZ2NbuLtoWwrq6E4taGXu+zomon0bYQLsyYChhbfwtb6lhake9PRpZW5HF8/Ejmxo8E4PJRx7GtsZLva3Zxesr4Xh97f1ePTOLqkUm4OlXO+mYL39Y2UdbeyZwvjdGSy9LiePa4sUc8WqLIIYy3bKfYewWN+ivkqElkKt9hlycc0eP1xOlUUZTeR5kOVW1tJ9nZq6iu9rD43CjO+0snq2sPPG53awOpIZFH/XzCXoc9pnXLLbfwn//8h//+97/k5uZy/fXX09bWxjXXXAPAj3/8Y26//Xb/8ddffz2NjY386le/oqCggE8++YQHH3yQG264oe/OYgC51M4DEhHYO3QnCMcCTXfTrH1EsfcqWngfgGb9bX8iAmCVRgYousElIzSGvOYaatqNhfhlriYKnXVMiEzo9T5FznrGhncfbc6KSKDIWQ+AqvkobW1k3D7HyJLE2PB4/zGHK8SqsPyUafguX8jLs7OItCh4dZ3/FldjfmM5ye9+w8rapiN6bIB088ukmp5Cw0WuOpl630tH/Fj7a2vzYbEc3RTNxo0tpKV9S3W1h5t+n0Dm70tYXbu7x2NfKVzH52Xbj+r5hO4OO9W9+OKLqaur45577qG6uprJkyfz+eef+xe1lpaWdtvylJKSwhdffMHNN9/MpEmTSEpK4le/+hW///3v++4sBEEYUDu82XRSgPESsqfb7N4i5TLBKMT1dNdjzukpWbh9Xu7d8DGSJKHrOuekZTMzNr3X+zi97gOmWsIsNtw+Lx6fSrvqQUMntIdjqjuOfvfh5RmJXJ6RiKtT5bxvt7CspomKDg8nLNmAIklcmBrLS7PGHfZoSYzpF9ilGRSoJ1Hiu4o2bSUjzM8cdbxtbRpW65EnI2+8UcVll+UgSfDfV8aybeQGWjxuAExIZIRFY1Ms7HY20Koa17+3ewsRVvtBf4/CoTuicbdf/vKXvU7LLF++/IDrZs+ezerVq4/kqQRBGIQi5Iuo1v7I3kSkO6s06qCLM48lG+pKWFu7m59mziExOJwyVxNvFm0g3BLE7P0WpA42IVaFJQunAfB6cTU3rM+j0aPyWkkNr5XUkBhk4eXZE5ifcOhTFsHyNCYqFeSpM6jX/0ObZx1jle+Q5SOvZOp2+wgJObJppHvuKeSBB4qw22W+/XYGVdGltJQYZfjTQqO4ftwJhFuN2Hy6xmel2/moNAeAj0pymBGThiz+1o+aqNpymDpUb6BDEISASzTdT1xXf5oD6CY0dTSlrkZKXY3H/DbId4o3c1pKFjNi00gKDmdWXDoLksbyWdmOXu8TZrbh7PpkvofT48ZmMmMxKYSYrchItPZwjMN88MWrR+qS9HgaLpxHx8XzOD0hEhmo7PBw8rKNmF9dykXfbEVVe05O96fIDrKUPMKli+hgM1vVJDq0I6970tmpERx8eCtYNU3j/PM388ADRSQkWCguPoEpU8L4tmoXYJTiv3bsXH8iAkZBurNGTCTTYYz61bld5DfX9Pj4wuERychh2FRfxuPbl/d6+zdVhf7yzIIwnEmSRJLpr8TKNx9wm6brrKyEP236nD9t+vyYr8vg0VRkun9yliUJvcfeu4aMsGjymrvXbsptriYjzNi2q8gmUkMjyd3njVDTdfL2Oaa/2BSFz06eiu/yhbxz/ESiLWZUHd4qq8X8xnIS3vmGJZU/vG5FlmVGmt8g2fQYPlrYoU6k0ffaEcXk9eqEhByYjFRXd5Kff+Dfntutkp29mvfeq2XGjDBKS08kNtZKm+qhydMOwKiwGKJtIbhVNzfm38jsdbP9958Zm+b/uqztyNfRCHuJZOQQ5TRW8O/clXi0vZVjbabuw4LfVhfybvGmgQ5NEAJCkiSSTQ8TI9/U7XpZ1mhx711Yeawv7p4UmcSnZdvIaayg3u1iU30ZS8vzmBy1t2rqe8WbeSH/e//3JyWMpt7t4p3iTVS3t7C8soANdaUs3Gcr8MKksaysLmRVTRFV7S28WrgOj6YeUIukP50/Io66C0+i4+J5nJUYjUmCareHU7/ejPLqUs5fseUHR0viTDeSqaxCxkqx7zJKvTcedhyqquNwHDhNc9FFW5gyZRWbNu1dR1NW1kFyxlK2bXdy5ZUJrF07y1+fZN8Pk63UM2fdHEJWhPB4+eMUdhTSrhqJimWf137xAbRv9HvRs+HAp2u8snOd/5PM1KgUzk6bRILdgcvr5uvKAj4t3Y6GzpKKPGbHZZAUHN79QRpq4Mu34JtP4cY/QtbUgT8RQehjkiSRYnoUUKnT9nZrbXH3vlPkWHPJyOl8ULKVVwvX0ertxGEJ4oSEUZyVundra4ung8bOdv/30bYQfjl+Hm8VbWRZRT7hVjtXjpnp39YLMCNmBC6vmw9LtuL0uEkOieCm8fMJswQN6PmBMVry0fzJAHxcXstPVudS1+nlvfI6zG8sJ9Zq5vnZ4zgz6cBmqgAh8kwmKmXkqjOo0x+nzbOaTOVbZPnQppx0HcLDu7+d5eS08u23zUgSLFq0kbXrZ1C6u5OT3r0K7X8fA/C6ZOadr81YZSsW2YJVstLgcdFOE3q98Xofb47nkTGPcGn8pf7H3tJQ7v86xta3NVOOVSIZOQRbGyr8Q3eZjjiuHXe8f8FSiNnG4hGTUGQT7+/eAsDyygIuH30cuJzw1Xvw8f9g3degdW0JXnylSEaEYUOSJCobf8OuznzGxn0F0G1kBGBzQ/kxW5fBppi5eOQ0Lh45rddjrs6cfcB1meFx3DV10UEfe35iJvMTey6cFihnJcdS+6NYVFXlwpXb+KiyntpOL2ct34pJgkUJ0bx1wgRs++3EUeRIxis7KfL9iBb9Pb5pG4Wl8zPmRE886PO5XMbIS0SEudv1//pXKYoioao69Z2NjFwxFvX76cg1e6t5e3UvXt1Lu9bOgSSujbiXp6bcjUnaO4mQ01jB+roSwCh2OSkq6XB+PEIvxDTNIdjRVOX/emHSWCMR0XV46n4o2Aod7cxLGI0iySheDyx7D26+AE6Kgbuv7p6IACSJrWDC8LG2djcv5K/mm91X43RHo+tgkrrP339Suo2vKvIOvLOuw7efwVUnwCkpxvfCsKAoCu/Nm4x62UI+m5dNvM2CT4ePK+sJemM5MW+t4IOy7hXFZFlmlPldovk7PpzUm05lZcPrB32esjJjEW909N5kpKnJy0svVaGqOsg+fL9/EDW+HM7+iA/uvA6H4jjoY9oJ52rzM0hto7l3/cd8UprD15UFPL59OY9vX+Ff7XNy0hjMch+Vfj3GiZGRQ9Dh27uDJsEeZnyRvwWeute4AEGRsfzV00Gwq9VYqrYnYYHuiQhAUlq/xywIA6HTp/LarnVd38lU1P2LcSmX8odZYWieU/myfAfLq3YCxq6S6TEjcFiCQFXhizfhP3+Coh2AZPyfEVskh6XTk2KouiAGVVW59PvtvFdeR73Hy7nfbEUGTk2I5L0TJ/lHS1aUX8ptW+L4+5z7iAy9mmVV31G65ud4vAd2e8/LMdYjFVbU88xbxpbcJR+34fF0ve5e9RJM72rkKOncv+5Jbpx/I38s7blZq12287/R77F0dzU+XaPO7eLDkpwDjpsWncqiw6h0KxycSEYOQfA+jQmKWxuICQqFMZPgr6/BfT+DoBDcJ5+Da8UHBLta0QHpYJ/wfn0+pI6CURMgaxpMmgl2Me8oDD1ra3fT3rXdfWpUCpdnHE+u+iDN2juk287j0lEz0DHKm/t0je9357Bow1p4/q9QUw7+4W8dlKHXHmKo2L+fVqB6aSmKwlsnZgOwrKqBK77fTpXbw+dVjQS9sZxIi8K/jxvL0zsrqGmP5ydfP8o90x/mtNTHiZu2ktzlT4DW/e+kpsb4+zMH6bjavWiaztKP243PgsevhMv3GVkxaaxLfZ51RXqv736vTXiNs2PmMSm0jg9LtpLf0n3rboTVzsmJmSxMykSWxORCXxHJyCGYEp3M8qoCAL4sz2VKdIoxNLfoEhiZBZdMx/Luc7x13a9pDQvnxpefJbSqtOchZ0mCbWth66ru18smCAqG8CiIS4aUkUayMn4GZE0H+5EXBBKE/rKtqdL/9anJ45AkCUfH6ehvP0pb9hzkoCjmmxtobVhH9tfbmbI6B73DGFaXAPZtrWDuPucv9I2e+mkNhl5aJydEUXnBiaiqypWrcnm7rJZGj8pzpf+ktGMcGol0+mzcueYOcptGc9OkZ5l59mJ2fvs/PB1712l4OjwAxMWZCbGbydnYSXOjBqklcNtDRmHgfQfczD7oNBNvSaBWq0Jj78/lnrR7ODvmbABGOWK4ZdICatqdFLsa8GkakdZgxoTHdltDIvQNkYwcgkxHHAl2B1XtLZS1NfH3LUtYlDqBUWEx1CUksuX+Jznznuv55dMP88ZFV9H55gZCX/i78elPkmGf7cDMPgWe/gLaXbB9HWzfAIXboKwQaiuguR6qSmDjt92DMJkgKAQioo1kJXU0jO5KVsZNg0Hc5VgYvvYtApgQbMzDO9aZCXnUC9yAKxsqn4NrfgGWuoM/lt7hwnOahK6w30UCk/GvrkjoJhkUGV3Z868JFAXdrIBiBosFzBYw25AsQWANAkswkiUEyRqKZHMg28PBFoVsj0a2x6LY45DtScjDcGdET/209my3jiTwjT0VReG1EybyGvBt5Q7sFOOb/BzvlM3m2R1X0NgZwcsFF7GzOYOH5tzPxFPOJUN5iwjTOQDs3rQTcHHtJVlkZYUw7S+rILgN/nQPmL3Qw8xfmNnB1zOWMn6NMc1iwsTpUadzb8a9BxwbZw8jbs/0vNBvRDJyCCRJ4uoxs3h461I8mo/drkae2vHN3gMcdtbc83fu+vMdXPzmf5EsEXDrP+Dk8+D2K6Bsl/EJ0KRAUlcNAHsIzJhvXHrickLOGtixHgp3QPkuI1lpqIHyYli/ovvxJsV4zMgYiEuBEaNh9CQjWRk7WXzqFPpFsHnvkHmpq4kxjliCjr8NdcyrSEEO5N/9mtgdm/j+wm/J/rCAiPI2dAmkHgYNdYtEx0Q7qBqSzweqjqRqSKpuXNw6sqohqT4klW4X2QtS10U+iiLJugk0M+h7LvsmRXu+N0n+JMlIlLr+VUz7JEgKKAqYFXTznuTIimSxgsWOZLEbCZItBKwOJFsYUlAkpqAoJHs0JnsccnACclA88hF2ywXoUD2srS3p8TZVO3D9RaClK1BT9jtMVTfzI8eXnHPy/bxUms3L+ReypnY6ly15mmfm3QpB5xKn30qy8lcaGoyRkeRkGy+8UM7GTS3wyF0QX91jIgLglOv53vk9F8VexOu1rzPCNoJXJrwipl0CSNL1wb983el04nA4aGlpISwscBlqcWs9z+V9T53bdcBtNpPChXFjOP6G86ByN8w7Gx59D7weePJeePFvxrTNr/8KP7n16INpbuxKVjZA0XYjQamrhJZGcLcfOEWkmCE4FCJiID7VSFbGZMPE44zpoKN4wROOXatri3kh35hyzAqP58YJ843dZu+/APf8BP3l1bxg9bGmq/vpz9o1Zrz0uPG3K8vdF3cnjoDPdx91TJqqorlr0dqq0Npq0Nrr8Lkb0Dua0DtaoLMFvdMFnS50Tzt4O6DTje7tNP6/ql4krxe8Kqi+ruRH6/paB5++N0FSQfLpexMjL92/7kqOpKN43983OdL2T5D2HT3akyCZJHRFRjdJeE06mknGZ5KNfxUTPpMJVVHAbCEiJAKT1d41ghSMZN1n9CgoHKyRyPYoZHsssj0OxZ5kjCr1k093fkecc09tERVQ0O2b6Ah/m6fLRvLWrjNRJB9/mf1H5iasxSGdzat//jv337+bF18cz49feRj9ypcgrp5uBW57SEpGBo3kw0kf8tPcn/J81vOMCx7Xb+d1LDvU92+RjBwmTdfY3lTF+rpSWr1urCaFseHxzIxJw6aYjV0C15wIW1ZB5mR4ZY0xbLx1DTx+N9zykDFS0d8aamHrasjbCLt2GMlKfRU4m6Czo+dkJSQMImMhYQSMGGMs0p0401gXI4tPDMKBvJqP29d+QKvXWAeSFZHAopTxjMCM5YQoakeN5Z6b7wLALJv4y3HnEqJYYPlH8I9bYXf+3p1nI8bAR/mBPJ1+o7ldaB1VqG01aB216O216B1NaB1N6O4WdE+rkRx1tqF7OsDTAZ5O8HaC6gFvV4Kk+vwJEqrWNXKkgY99EiT9gJGjA5Ijb8+jU4dCl/dJjMz7jRrtkxztGUViz/TaPlNsxiiSAmaT8dpjNqObLayNO4GYcfs1YdV9IJmASjzmt3mj0sTrpQs4eex3XDP+FWqqxnPPQ9kUn/U6RDUDECQHcXLEydRW+ujQ3GgmD9GxCh2+Dtyamw6tgzhLHN9O+5Yvynfw3u4tnJyYedBaMBvqSvmgZCsNbhexQaGcnz6ZiZF7167ous5HJTl8W11Ih8/LyLBoLhs1g7igY3uKRyQjgXbrpfD56xCTCO/kQPggK/hUU24kSHmboCjXGM2prwJnM3S6Yf++GWYLhDggKg4SUiFtLGRmG8nKiNEiWTmGbWus5IntK9D2+5u58893kFxeys1/fwZ3kJ2rx8zq3qXW5zMKAj52B9RVGcnv21sGOPrh6akd37C5q0ro6LBYLhs1ncTgcHRdJ7+lhv/lf09rew1hnmZOiYhkRkgoWkcDuBu7EiQnemcruqcNPG1GcuQfPeo0kiO1++gRXSNIRnK0NzFiv9Ejo9GzFUx2NNmObrKjmezoZjtt6VlUnX99zye1561K10h6459YC7ey63dPIllsSD4vx7ecyFkJ5/PE2CeIscQA8MxbW3C1ewmxm7nuwuwDHnJ3awPP5K4kSDEzxhHXazKyy1nH37cs5dz0bCZFJrG2djdflOdy55TT/dW2Py/bwedl27k6czbRtmA+3L2VivZm7pt21jFdi0QkI4PBY3fCsw8a0yOvbzDetIeKihLIWQ15m6E4Fyp2G+tVWpthv06hAFisRrISHQ+JaZCWaYwMZc826qqI+hHDWk5jBf8tWE2rd+/20fHbNnPTU3/jm3mnYb3rKWbG9lLsr9MN7/wHwqPhjEt7PkY4ZE2d7dy+9gN0dMLMNh6YsRibqfuasar2Fv6w4RN0jK2qD844u9f1EqqqoqoqXq/X/7XP5/P/u+eiaZr/X03T0HUdrWsaTtd1+uStRtcB3fhXkpBUD0GlO2nvyGPSFQ9g3u88D5aMuH1e/rTpcy4bOYNPy7aRHBzRazLyTO5KPJrKL8fP81/3l81fkBIcweWjj0PXdW5d8x6nJI/j1GRjuqdD9fDb1e9y9ZhZzNinsd6x5lDfv8VCgf50058gOQP+cC2cNx7+/SXMmBfoqA5N0gjjcvrFB96maVBRDFtWQ/5m2J0HlSVGslKcb1Sl3Z/VBqHhEBVvJCcZ4/YmK/EpBx4vDCkTI5P483HnsqG+lC315bjUTpSTzsL70r85Yf0qpN4SETD+Ni47/OZoQs8KW2r9fbTmxGf4E5HKyko0TcNsNtPW2sol9pF4fT4USWLL1q1I+t6k4UgTB0mSul0URUGWZf/FZDIhyzKKomAymTCZTCiK4r+0+lZTWRhxwOPq6EhI6BKYZIXQ0FCirQqOK2ciZU2DJz457A88rxWuZ2JEIuMi4vm0bNtBjy1qrWdh0thu12VFJPh71NS723B63YwL39sGIUixkB4aTVFr/TGdjBwqkYwAH5Vs5ePS7n+McUFh3D/9rF7vc8jzh4kRBN/7ML969I+EXbcQ0x+eh7N/3G/nMiBk2aiDkjISzrr8wNs1zVgLkLO2K1nJh6pSI1kp2mFct+z9fe4gGW9IYREQk2CUy88YB2OnGMlKdPyBzyEMOmbZxKzYdGbtm3icew288k9Y9gGcfE7ggjuGdO6zSybSunfrbk1NDZqmIcsyuq4TjAmfLKNhJB8m2XRYiYPZbO6WbBwtTdOore2pu7OO6oOKep2mDhM/u2AKNDXAxVONEZIHXjzsRGRd7W5KXY3cMeX0Qzre6XETZu7etC/MbKOla5TY6TUqv4ZZ9jvGsvcY4eBEMtIl0e7g1xNP9n9vOsgf9y5nHc/mfddt/vCpHd92mz/8ojyXZZX5xvzhxPm8F53Mwr/+npS7rkIqL4L/u6+fzyiAZNlIJjLGAVcdeLumGbVVctYaoyi786G6FJrqjO93bOh+vCQZtSIckV3JSgZkZBnNBifNMmqvCIPTjX+EV/8FT94jkpEB4tjnDbGwpY6TEozp4eDgYKP3y6hR6LrOvRs+pqajFYCHZp5nlOkfYK2trdTV1dHa2oqqqsCeDx5GpTJ7sJ20EWn87+MCXO1eHOZOeP4h+Ned4FPh6t9BVM+dgHvT2NnGG0Ub+fXE+cf0Wo7BRiQjXWRJOuT/jF9V5DM+MoHTkrMAOCctm9zman+3Xl3X+aoijzNSJzA5KhmAS+ecw+2/aefev/+BiKf/YBQ5+/PL/XY+g5osG4sVx0zq+XZVNZKSnDWwMwdKdxojK011xoLbbeu6Hy/JYOtKVmKTjKmxkVlGMbhJsyAsvN9PSeiFPcT4HWz53tjhteeNw9lkJKXhUYGNbxjKdMQRrFhoUz2sry/hFNdYUkMiMZvNeDxGTY5VtcX+RGSMI3bAEhGPx0NdXR3Nzc243XtHDGRZJjQ0lIiICMoryrCYbaSkpPjXGMg+L9mb32LOqmegvQX/AvvLbjrsGEpbG2n1uvnTxs/912no7GypZXllAU8cf/EB62fCLDac3u4jHE6v25/4hZmNn5/T4+72s3R63KSEhB92jMcikYx0qe1o5dY172GWZTJCozkvbXKvpZKPdP4wOSqJJf94lYtuvxY+ecXYwfLCN2Inyv4UxRj1yJra8+0ej5GUbF9nJC2lhcbuoKY62L7e2NK8L1kGW7CxoykmaW+pfdEX6AetqNzJiqqdNHQatXUS7A7OSp3IhMjEXu+z/xTmxb+4g7HXnwWP/A4u/Dn6G0+if/4GxRmjeeTme0gOjuCC9MmMCY8bqNMa1iwmhRMSRvF52Q40XefvW5eyIDGTUVoQnZ1u/rdzDd9VF/mPn584pt9i0TSNpqYmGhoaaGtr8y9oBbDZbISHhxMTE4PFsrd4XmRkJLIsI0mSsePqk1e45F+3EtzavUcMtiCIS+JwjQ2P556pZ3S77r8Fq4m3h3FaclaPC3kzQqPJa67u9rqf21RNRqgxKhttCybMbCOvuZqUEGPNS4fqpbi1npMSRh12jMcikYwA6aHRXD1mNnH2UFo8HXxcso2/bV3CvVPPNGqH7Odo5g+bNdXYvvjLxbDyUzhrtPG9eEM8dBaLkURMmtnz7W63Ubl2+3oozIGSQqgtN0rtV5cbn9L31VNfoNETjZ5Ax3hfoHBrEOelZxMbFAq68Yn6yR3fcNeU00nsmpLcV09TmM/s3MBfQxyYP/4ffPQSumxC1nx4McqS73Y18HDOV9w/7SxRdruPnJkygZ0ttexy1tPpU/m0bDvnW0cQJVtZ3VLkX+B6QvwopkT17QLy9vZ26urqcDqd/pEYMMq+h4WFERMTc9BdFSaTyVgL8tV78OhtUFJAMNIBdcvqwkfw3ts9LJbfR1vHgeV4bYqZJCW823VWk0KwYvVPs7+Q/z3hFjvnpU8GYEFSJn/fupQl5blMjExkXV0JJa5Grhh9HGAs3F2QNJZPy7YRGxRKtC2ED0q2Em4NYnK0WKB/KEQyAt0+5SUHR5AeGs3taz9gfX0px8eP7PsnlGV48hN48EZ4/XE4bQS8tVnsKukrNhtMPd649KTdZTQr3L4Bdm03RlYOuS9QitFxefQEmHCcMRW0z6e64Sa7a5pxj3PTsllRtZOi1oYek5FuU5h5mznnjSc548P/onj3vinJmg9NkmgNc3S778aGMhbZRUv2vmAxKdw0YT6vF65nTe1udHTCZQuSJDHFHMVWrZlTk8ZxRuoEYwTiKKiqSn19PU1NTXR0dPh34siyTHBwMBEREURFRaEcTpXnvM1w8/n+b6X9atj4JBO1USNxtR9a7X+L+fDWhjR2tndLf0aGxfCzzLl8ULKF93dvITYolOuzTvAnLwCnJY/D41N5eeda2lUPoxwx3DRerEs5VCIZ6YFdsRAXFEpd15zq/vps/vCOfxmfwv92M5w1Bv77LYyf3rcnIxzIHgLHnWxcerKnL9D29UayUl4ENfv2BVre/XiT0lVqvytZGTHGGFkZPwPGTRk2pfY1XWNDXSken+ofnt6ffwpzdwFcNAUkCXMP20Q1SaYtuPtoYEVbc3+EfcyymcxcnTmbc9Ky2VS2C6XFSAgnm6P40dg5hAcf2Wispmn+hadtbW1dC08NFosFh8NBTEwMQUFHsQ4lMxuuvw+e/oOxgH3ftgEYyYkrfhQh9h/uuWUxm5gzufdpRYDfTFp40O8BpsWkMi0mtdfHkCSJs9MmcXZaL2vhhIMaHq+Sfczt81LndjGrl0VdfTp/eOWvja2st1wAl8+Ch9+CBef1y3kJhygkzOiuPPuUnm9vbjQKwu3YuDdZqa+C2kpjlGXtsu7H+/sCxRqjXyNGGy+2E44zFvEO8jVDFW3N/HXzl3g1H1aTwi+yTiAx2NHjsf4pzPgUOOca+OCFnh9UAldwaLerXN6etnUKRyvCaidZs9KKkYxIQG1FJY7Row95VMTtdlNXV0dLSwudnXt/TyaTibCwMKKioggPDz/kLb6fryxmx64GwNg8YLOaiI4IYmx6FONHRSHJMlx/L8xcAL+7yKjQuw9Z15h57kJmnnRgVdXD1eLq5Ll3crhicRaxkcfulGygiWQEeLtoI5Mik4i0BdPi6eCjkhxkJGbEjAAGYP7w5HPgldVw9QnG0OTvHoErbx6o0xcOV3gknHCGcelJfU1XX6BNRl2V8iKorza2L5fkw+ol3Y9XLBASCpFdpfZHjDH6F004ztgeHeBkJS4olLumLqJD9bKxvpQX81fzm0kLe01IAGNq6/7njOZ3T913wM2ypuEKCT3wfkKfc7vdtLZ2H+VtbW2lpaWF8PDwHu+jaRoNDQ00NjbS3t7uX3gqSRJBQUH+hafmo+gGnpYUxmlz09E0nXa3l90VTr5eW0pBSSPnnjwaWZaMqdbkkQckI0BX6QBhuBDJCEb55Gfzv6fN20mI2cqosBhum3wqoV3TLgMyfzh+Ony8E36UDX+7Bcp2wR2P9+dpC/0lOs5IMHurq1FTblSvzdsExXlGNdv6auPfoh3w3efdjzdbjdGaqDjjzX1EpjGykj3bmObr52RFkU3GAlZgRGgku10NLKvM9yff++o2hSlJcP29bLKayH7sXmQd0I03NVnXce03TRBitvbreRyr6uvre7y+tLSUsLAw/2iGy+Xy1/zweveuxTCbzYSHhxMdHU1oaN8lkCZZJjjISGZCgy3ERQWTEBPM218WsL2wnoljYuh87Sksm75j/cyrcUamMm/JX5BVD5LZAolpfL+5gl2lzWRnxrJ6ayXuTh8ZyQ5OmTMCq8V4e9N1ndVbq8gpqKPDrRLpsHH8tGTSk4xk+rl3cgB4+aMdACTHhXDR6WN7iFjoTyIZAa4d18tCxy4DNn8YlwxflBgJyetPGJ+oH/844J+MhT4Wlwyn/si49GRPX6DcjUZBuIrd0FBtTAEVbgM+6X68xdpVaj/O6AuUPrZ7X6A+puug7lPlc189TWF+OfU4Gu96lAUP3Ybe2YHUtYZk/5GRpB4WxAo9O9Qt15qmUVdX1+NjeL1edu7cic/nw+12+8vA1+udlPva0CwKizOnkXCwEbA+lpoQRkxEEDtLm5gY3I762N24YkaR8oeHsYbY2XD8fDL+eR0RiXHGrhugubWT/N2NnLtgNB6Pjy+/381Xq0s540SjKePGHTVs2F7DwtkjiI20s62wng+WFXLVOeOJCLNx2ZnjePWTXH506hiiwoOMERlhwIlkZLCxhxgjJD85CVZ+1pWYbBjWOzaE/fxQX6CyXcYC27zNRl+gqlIjWdnTF2j5h93vs6cvUHSCkaz4S+3PMhKjg3iveDPjIxOJtNrp9Kmsrd1NQUsNN02YDxzGFOaiK9EnnIDn2gVYWhqROHDNSF2HE03Xem3YJux1qFuum5qautX22J/LZSQzVquVcsnNspYSLsucyYSurrOP71g+4F1nIx026hrbab/2bBSvG8dDz6MkGl3Pj1s8j+c8bzMjK4Y9H/NUn8bpx6cTGmy8Rs6fmcr7X+3kpBkpBAeZWb+9hhkT4hmbbjzGidOSKatysnFHDQtmjSDIZrwN2qyKf6RGGHgiGRmMZBle/Bbu+LHRYv30EfBOjih7Lhh/GyNGG5ezrjjwdk0zpn5y1hiJSXG+sV25sdZYbJu3CZa9t/d4qasvUOj+fYGmQvYsWr1uXsxfRYungyDFTFJwODdNmE9WRAJw6FOYiXYHryletv7uPu574HfYOjtps3cvKvhdTTEeTeMnmXOQRZfngzrULdfV1dW9Poau60iSRGxsLMnJyfx3zXuckprlrxp9TeZsfrv6XTbXlw1oozcdGL3qVezl+Xxy1p8oyrND3kb/7apPo7l978hcWLDFn4gAJMYEo+vQ2OJGMcm0dXhJjO0+JZgUG0JdU0e/n4tw6EQyMpg9+JKxJuCp++D0NHht3WEt2mp0t+FS9658D1GsvVaVFYYJWTZK4Y/M6vl2VTXWpWxdDQU5UFLQVWq/tse+QD+WJKPSZdg+fYFGZhnVayfOOuQpzHV1Jayo2gkRUfzp1ge470+3cc3uckpnnEZecw05TZX+40aFxTCvH6uCDjf7brlOC46gpqbGX/Njz6iIT9fQJQkFCZPJRExMDPnOWkram7g8buKg6jrrzdvKzCWPUDd6FhVTzuSK0zIPOMZmEbU7hhuRjAx2199rfFq9+2pjyubJz2DWgu7HdLqhrtLoydKl0d3G3es/QtX3DtEqkswD0xeLhORYpig/3Bcof7NRFK6gqy9QdZlRaj+3t75A9q6+QIlG8pzRlaxMmgWhxnqDryry/Hc57YTzMZ2xlTFL3mPMrx5iYfI4NjeU89SOb4xjK/M5MWG0GB35AXu2XAfpMiOUEK4IHkVNQbH/dovF4q94+tuNH3L1mFnIFU0oikJSUhI7pTa2txRjsVhwOluAwHedLS2qZvbbd+KzBNHxwCu0rW9EliUcIb0vbna2eXC1ewixG6MjVXVtSJIx3WO1mAgOMlNZ6yIlfu+0YEWti/ho43XQ1LVGRO+hHo4wcEQyMhSc/WNjy+fPT4WfnwL3/gfO/6lxm9cDN5wBm76DL8v8jchcame3RASM0tsutZNIRDIi9EJRjJ1dvRXf6+w0hsy3rd/bxLCmHJrrYHtFj32BNJudn9lsNIdH0hafzKRT2uGkxfDxy7BqCcw9jclRyYxxxFLQUkttRyslrgbSeymsdqzb02yuqbmJK20ZyEhouk6d101CaDipsQlERET0WPNDlmV8vp4XHw80n6bR1uHttrVXefR3TKktgD++QMq4dBJLPHy4rJATpiUT4bDR1u6lqLyZUakR/mRCMcl8vrKYk6an0On18fXaUsaMiPSv/5gxIZ7vN1cSHmolJtLO9sJ66po6/Atc7TYziklmd0ULIXYLikny78QRBo74iQ8VM+bBe9vhkmlw38+MnTY3/hHu/SmsW2Ec88GL8JNbAxmlMNxZrcYunezZPd/e3g65G4wmhoXboLQQtbqE4MY6IpoakYsKkL7fpyjc3VfDMqOGRFZEAgUttQA0dXaQLsqQAMaOmMbGRhobGw9oNme37a358UT+tzQq7UyJOrAT8p4t13Gy7K+YGuius7srnPz7zS3IkoTVamL87hXMXP8K+olnIi2+EoDzFo5m5cYKvvhuNx2dKsFBZpLiQrotNA0PtTI6NYJ3l+7E7VHJSA5nway904RTxsXS6fGxYn0Z7W6VKIeNc04eRUSYce6yLDH/uBRWb63i+82VJMWKrb2BIJKRoWTEaPhsN1wwEZ59EJa9b8z/7/HGk3D1b8VWYCFw7HaYdoJx6VLhrOcvW74EYE5oLFeFJhpFrL5+H/aZFnB69i4oNB/jf8NtbW3+ZnP71vxQFAWHw0F0dPQBzeYOZct1oinW/3iB7Dp7+vHpnH58+t4rinLhwVvAEYX06Pv+qy1mEyfPTOXkmb2XUQDIHhtL9tjYHm+TJInZkxOZfZCS8BPHxDBxTMxhnYPQt0QyMtSER8JnxXDmyO6JCBi7JtZ81XsZc0EIgMTgcGwmBbdPZX1bA+dnHU/oyKxua5/cPi9ra0sAMEkyI0IO/HQ/nKmqSl1dHc3Nzb02m4uJifFPvbxXvJnx+uFvuR4basehy3xUsnXwdJ3VNPjJPECHZ78aNr2chMMjfutD0eolxoLV/ZlM8OZTIhkRBhWrSWFWbDrLq3bi0Xw8sWMF12TOJi7I+GTf4G7jfzvX+Hd+TY1OOWAh5XCjaRpOp5P6+npcLle3dRxWq9W/8LS3ZnNHuuV6U3EB2XI4G+vLBk/X2d9eZGw9/8W9RmVh4Zgk6UNgCbHT6cThcNDS0nLA0OQxZ/t6uOoE8HYa47L7k2X4soySICsPbv7igJvvnHI6qSGRAxCoIOzV2NnGg5s+p3WfZnipIZGYJIndrY3oXS3ibSaF2yefRrx94Kp+DpSDNZsLDg4mOjoah8NxyM3mjkRpaSl1dXVMnDgRy2AopPjl2/DbC2FMNry9OdDRCP3gUN+/xcjIUHPvT+FgW+10qHzlEZ47/qQeb97RVCWSEWHARVqDuWnCfP61bbm/d02pq7HbMXbFwg1ZJw6bRORQms3FxsaiDOC0xJ7Gdp2dnYFPRprq4fYrjHVDzy8PbCxCwIlkZKi5+9/w2WtGqfjSncZ1JgV8xgp5dA3HG09TO3VyjwtZ39u9BZ+ucWbqxIGLWRAwRkLum3YmK6t38W11IXVuoxR5hNXO8XEjOTFhFGGWnqclhorW1lbq6+t7bTYXExNDSEjIQR6hf+1JQDweT8Bi8LvmJGOE97EPICw80NEIASaSkaEme5Zx4Z9QW2ksWF291Oj02mhsiwxub+NH77zMqqtuJLOromJuczWV7UZhow9LckgKjvCXfRaEgRJstnJaShanpWTh7dr5MZB9T/qax+Ohvr6e5uZmf7M5MBaehoSEEBkZSVRUVL9OvRyOQZOMPHq7sQD/jMtg3tmBjUUYFMSakeFC13nhixcI/+ZzzvjiA8yqivzHF6Frvz7AF2U7eHf3ZsBY0HZrtljoKgiHQ9M0mpubaWhooK2t7YCFpw6Hg9jYWKzW3iuGBpLH4yEnJ4eYmBhSUw++Xbbf5KyDK2ZCVDwsLRelCIY5sWbkGFPf2cbqYBssOpctZ1/GvZ9+CHf+2Og7cu0dIEmcmjyO1bXFVLa3sMtZR027kzi7SO4E4WA6Ojqora3F6XR2G1FQFIXw8HCio6MJDQ0dNKMfB7Nnfcq+U0gDyuOBX5xqNGh8YYVIRAQ/kYwME3UdLv/XE2JHIP3hOUgYAY/fBZ+/Ae9uRZIkJkUl+adr6twukYwIfeKOtR/Q0Nl2wPUnJYzmslEzerzPhrpSPijZSoPbRWxQKOenT2ZiZJL/dl3X+agkh2+rC+nweRkZFs1lo2b4twT3F1VVaWhooKmpifb2dv/UiyRJ2O12IiIiiI6OHtCFp31lT8IUsJLwNy6G1mb47SNGEUdB6DL0/jcJPdq3qZhX8xmfPE5aDE//AUbsraDo3edFSDQiE/rK7ZNPQ2PvjG9lWwuPblvGtOiepwJ2Oet4Nu87zk3PZlJkEmtrd/PUjm+5c8rp/toXX5Tnsqwyn6szZxNtC+bD3Vt5bNvX3DftrD5dZ6Jpmn/hqcvl8pdLh+7N5ux2e589ZyBJktTtHAfMu8/Bqi8hew78+OaBf35hUBPJyDCRYHcgS0bDrI31pfwoeTzmWy+GkePhoTcAI0nZUF8KgIRE4jDZQikEXuh+Rco+L9tBjC2EMY6eS3R/VZHP+MgETkvOAuCctGxym6tZXlnA5aOPQ9d1vqrI44zUCf6F1tdkzua3q99lc33ZUbe093g81NbW0tLSgtu9d6u8LMuEhoYSFRXVa7O5oU6SpIEfGakphwd+AUHB8O8lA/vcwpAgkpFhIsxiY3JUMhvry3B63ZTduIj00kKkf34AZjOdPpVXCtfS3NX/IzsqiXDr8PikJwwuquZjTe1uFiaNRepl9K2otZ6FSd2bkWVFJLCloRyAencbTq+bcV27wQCCFAvpodEUtdYfdjLSW7M5SZKw2Wz+bbcBr70xAGRZ7tZsb0BcfaJRfuDxJUb/IkHYj0hGhpFFKePZ2lBB4u5C0tesoDohmU8SopDyviensYIOn7FoTZFkFqWMD3C0wnC1snoX7aqHEaER/sJmIYqVSFuw/xinx02YuftoSpjZRktXQT+n10ia9y8LH2bZe8wP6a3ZnNlsxuFwEBMTQ2josdca2GQyDewC1geuh4piuOh6o/u4IPRAJCPDSGpIJNeNO57UO/4PXZJ47Prf0lhX0u0YRZL56di5pIUeW43IhIHR6G7j9V3r0YHHti33X69IMg9MX9wtIelre5rNNTU1HVDzo6dmc8cqk8k0cHVG1i6Dt56GpAy468mBeU5hSBLJyDCT/foz0NxE7qILaY2Jh30KS02PGcEpSWO7NccShL5U0d5MT4WLVF3DpXYSiZGMhFls/rLwmqZRXV1Nm7sDR9dISJjZqMTq9Lhx7FOV1elxkxIS7r/fDzWbi42NxWYb3k33DpfJZGJAyku1t8ONZxsVol9c0f/PJwxpIhkZThpq4dkHITyKcX9+nb/rPhrcxnbLKGswNsUc4ACF4W7Pmo8fkhEaTV5zNfPiRlFYWEhbWxudUgcZodEARNuCCTPbyGuuJiUkAoAO1UtFayMzrbFs27btgGZzDoeDqKiofm82N9Tt6U+jaVr//px+fgp0tMH9z0OcqPYsHJxIRoaT/2/vvsOjKrMHjn+nZGYS0pn0QgoQCFVAEBBRQUFsWHZRXESsu5ZdxbJ2LKuo67rsKoq6tt+qi2XXjqCgiCKK0iEFQkghIb2XybT7++MmEwYSSCCZSTmf58ljcuedmzPXkDl57/uec9sF4HDAs++DVosJrcyCCI9xKgrbywvaffzbwkwWDp0MwIyYFF7atZ6tu3eic6h/pQc7dEyKHgqoC0tnxAzjy7zdBNo06BtsVDfWMd+UhLbehtWLzeZ6u5ZrZbVau2/W6P+egx0/wpRZMHdR93wP0afIv+C+Ys37sPsXOO0cmHi2t6MR/dBnuTuptbW/uDS7pgxFUdBoNET7+HOlXzJOu1OtiQMEaQ2E+fhRW1tLaWkpUbU25hkS0FfU06Q4aFQchAWHkhgV49Vmc71dy46hpqam7klGcvfBc3dDQDD889OuP7/okyQZ6Qvsdnj4WvAxwrL/eTsa0Q/tKD/Il/lpbscMWj1WZ2txraLGWj7O3cE55sHs27cPnMpRhfd27drl+lyr1RISGERoaCihoaFy66WLtNym6ZYdNU4nLDoDFAVe+Rr6wVZp0TUkGelF2iu5fd3a1UxsrIf7l4Of+1+MPbXktug7HE4n72T9gtK8dHWcOY6LBo0myi+IGquFbwozWZ2/BwVIL8wjvrz9gltarZawsDDCwsJ6bLO53q7lunbLjpr7fgdlRXD9fTBiQtefX/RZkoz0Im2V3H594/8Y/8m7MGgoXHGz2/ieVHJb9F3byw9S3VxMb3hwJDcMO9014xFoMDE3YQw+ClhKqhikG4CCgob2WxHExMS0WyxNnLyWZKTLZ0a++QS+/I9a9fmPT3btuUWfJ/OevUiAwUSQwdf1sbOigAXvvYlWccKLq44af3jJ7Si/IC5OGEO8fwjrC/cCHFVyO3ZACItSJlPV1Mj2snxPvzzRS+2pLHR9fk7sMLQaDYqiUFRURH5+PmlpaURW2EnQ+6PRaI6ZiDidThoaGjwRdr/VsoC1S/vT1FTBPVeot4rf2NB15xX9xgklI8uXLychIQGTycSkSZPYvHlzh563cuVKNBoNc+fOPZFvKw5jdzqoWvsBo3f8guayGyEu+agx2bVlDDusnDaoJbeza8uA45fcFqIjGu2tf2FH+ar9jurr6ykoKKC0tBSTyURCQgKfOgr4T2M2P9hLiYyMJCAgAJ3u6Nm36upqj8Xen3VpMnLtdLBa4Kl3IDi0684r+o1O36Z57733WLx4MStWrGDSpEksW7aMWbNmkZmZSXh4202xAHJycrjrrruYNm3aSQUsVDsP7OGyla9jCx6ITzuVDT1RclsIf5/WtR05dRWEmgbg7+9PXFwcBQUFNDY24m8OpbipDgWo0juIiVHXLSmKgs1mo6GhwfXh6+vbzncSXaVLO/cufxj27oRzLodzLuuac4p+p9MzI8899xw33HADixYtIjU1lRUrVuDn58frr7/e7nMcDgdXXXUVjz76KElJSScVsFA5/vFnQior8Fn6DsguA+FFYwa2FrRak78He3PV3/DwcIYOHYrFYiF3XxZmrZq0jD1svEajwWAwEBwcTHR0NIMHDyYkJMSzL6Af6rLOvRnb4ZW/QGg4/PW9kz+f6Lc69S5mtVrZsmULM2fObD2BVsvMmTPZtGlTu8977LHHCA8P57rrruvQ92lqaqKmpsbtQ7Sq+vpDxm34mpLJZ8PUWe2OO7zkdosam6XNkttuY6ytY4Q4ntSQKMJ91YZzOXUV/G3nOnZVFFBvs1LqtLDfaAUFLjYOIkkXwLSowV6OWOh0upPv3Gu3ww0z1Doxr6+XP4rESenUbZqysjIcDgcRERFuxyMiIsjIyGjzOT/88AOvvfYa27dv7/D3Wbp0KY8++mhnQus/7Hacz/yJ8lAz4c+8f8yhLSW3D2/Vnl5ZdNyS2wdqy5gubxiig7QaDYuGTua5XeuwOR1k15bxwh73XiShGgNzTYOYYYzGVlUHEd3XME8cn1arPfmZkT/NheoKuP1pSBreJXGJ/qtbU9na2loWLFjAq6++itls7vDz7rvvPqqrq10f+fmys6OFc8l1hBYXkrHgVnQBwW6PvZH5Ix8d2O76ekZMCnsqD/H1wXSKGqr5LHcnuXUVnHlEye1V+bvZUX6Qgvoq3ti7iWCjL2PNcR58VaK3Swo0c/vIsxlobDvJqNc6sUUGodfpOHjwIAcPdqyHjegeJz0z8tm/4fsvYOREuPaergtM9Fudmhkxm83odDqKi4vdjhcXFxMZGXnU+P3795OTk8OFF17oOtbyD0Cv15OZmUly8tG7QIxGoxQ8akvWHpRV7/DjpGmkzPvjUQ9XNDW4bZtMDgzj+pSpfJK7g49zdhDuG8AfUqe59auZFTscq8PO2/s202C3MjgojD+OOEtqjIhOGxwUxuOnXsiu8gK2lOVTZ7Ng1PkwPCSSSWEJmPQ+2CPtpKWlUVxcjNVqlTVkXnJSvXzKimDJdWDyg3+t67qgRL+mUTrZS3rSpElMnDiR559/HlCTi/j4eG699Vbuvfdet7EWi4WsrCy3Yw8++CC1tbX84x//YOjQoa4+CcdSU1NDUFAQ1dXVBAb248qg5yVBYQ58nA6JKd6ORogT4nQ6ycjIUHfZ+PszZMgQKfXuYQcOHKCiooJTTjml89f+gqGQtw9e/gomn9M9AYo+o6Pv351OjxcvXszChQuZMGECEydOZNmyZdTX17NokdqZ8eqrryYmJoalS5diMpkYOXKk2/ODg4MBjjoujuONv0LBAbUDpiQiohfTarUMGzaM/fv3U1NTQ1paGqmpqZKQeFBLf5qmpqbObaV+6k9qInLJdZKIiC7V6WRk3rx5lJaW8vDDD1NUVMTYsWNZvXq1a1FrXl6e/FLpajVV8PwD4B8Ej/zL29EIcdK0Wi1DhgwhJyeH8vJydu3axYgRI07u9oHosJZkxGq1djwZ2foDvPtPiIyHJa90Y3SiP+r0bRpv6Pe3aa6ZDls3wPOfwfQLvB2N6OdW5+/ho5wdnB2dwrzk8e2O62iTxn1FB5mqD6NOsTNsyBBigzu+2F2cmMrKSrKzs4mPjycsLOz4T7BY4KxwsDTCqv0QFd/9QYo+oaPv3zKF0dN9v0pNRE45XRIR4XU5teVsOJRF7GGLoNvS0qRxamQSD447j7EDY3kp7XsK6qtcY1qaNM4YMpqgyDAGaHTs3bePKqkr1O063bn397Ogvhbuf0ESEdEtJBnpyZxO+PN80OvhH594OxrRz1kcNl7L/JEFQybhpz/2wvPONmkcHptAUlIyWjRk7s2ksrLSEy+p32rZONChkvD/eUH9g2ji2fCbm7o5MtFfSTLSkz12E9RVwy2PS/Mp4XX/yfqVUSHRDA85ehv/kU6kSWNE6EB26Gtpwkl2dvZRJQRE12lZm2Oz2Y498OABePp28A+EF7/s/sBEvyXJSE91IBM+eg2iB8F19x5/vBDd6JeSHPLqKrgkcWyHxp9ok0Zfky97fa3opDiaRxxzZsTphGumqf99aTV0oAyDECdKkpGe6rYLQQGe/9zbkYh+rqKpnveyt3LdsCkeKYbn1GoYOXIkPj4+FBcXk52d3e3fsz86brO8h6+FkgJYcAeMmey5wES/JPvoeqJ3/qHu5T//Khgi9ViEd+XVVlBrs/DE1tWuY04U9lWXsL5wL8tPn4dW4/53TWeaNAYZWreW1lgtxPkHo9frGTlyJBkZGVRWVpKRkcHQoUOlbEAXOmZ/mu9XwadvQUIK3P03zwYm+iVJRnqauhp47h4YEACPv+ntaIRgWHAkD4+b43bsrb0/EekXyKzY1KMSEeiaJo1SHK17abXatvvT1NXA4svBxwBvbPB8YKJfkn/VPc0dl4LNCo+9oe6iEcLLTHofYgYEu30YdXoG6I2uPkfd1aSxpTia2WymqamJXbt2dWwHiDiudpvlXX82NDWqfwwNDPd4XKJ/kne7nmTTWvh5HYyaBOdc5u1ohOiw7m7SOGjQIHx8fDh06BC7du1i+PDhmEymo8aJjtPpdBxV8/Llv0DaFjjrYphzpXcCE/2SVGDtKZxOmB6mTpF+cwhCpAqlEEcqKysjNzcXjUbDkCFDCAgI8HZIvVZWVhbV1dWMH99cRXffbrh8NAQNVH8Hycys6AJSgbW3efI2qK6Amx6SRESIdpjNZgYPHoyiKOzdu1eKo52Ellojdrsd7Ha47iz1gde+lUREeJwkIz3BwQPwwUsQEQu/f9jb0QjRowUFBTF8+HA0Go0URzsJhzfL487fQFUZ3PyY7OATXiHJSE9wyxxQFCn5LkQH+fn5MXLkSFdxtPz8fG+H1Ou4kpENX8K3H8PwcXDTg94NSvRbkox42/sr4EAGnPsbSB3n7WiE6DUMBoOrOFpJSYkUR+uklmZ5mn//DYy+6u0ZIbxEkhFvamiAZ24H3wHw5NvejkaIXqelOJqvr6+rOFqb21XFUVqa5TkNJnjuQ7X/jBBeIsmIN915GVib4JF/Sd8HIU5QS3G0wMBA6uvrSUtLk4SkA4wvLQGgftqFMG3OcUYL0b0kGfGWXzfAxtWQOh7Ou8Lb0QjRq0lxtE7a+TPaN59F09RI47QLvB2NEJKMeIXTqc6KaHXwgjTCE6KrDBo0iKioKOx2O7t27cJisRz/Sf2N1Qq/nwVaLRiMx26WJ4SHSDLiDc/eCZVlcO2fwRzp7WiE6FOio6MZNGgQTqeTtLQ0amtrvR1Sz3LLHKirhj8vQ6PTywyS6BEkGfG0Q3nwzj/BHAV/fMLb0QjRJx1ZHK2iosLbIfUMH76itpwYNw2uvBWNRiPra0SPIMmIp916AShOWPaRtyMRok87vDjagQMHpDjaoTx44hbwC4AVXwHH6NwrhIdJMuJJH78B+3bBWXNh9CRvRyNEnyfF0Zo5nXDNNHDY4cVV0NxksN3OvUJ4mCQjnmKxqH+VGH3h6f94Oxoh+o0ji6Pt37/f2yF53mM3qTMjV94G4053Hdbr9Ud37hXCCyQZ8ZR75kFTIzy0wvVXiRDCMw4vjlZVVdW/iqNtWgv/+xfEDYb7/un2kE6n81JQQriTZMQTdmyC9Z/C0NFw0dXejkaIfkmr1TJ8+HCCgoL6T3G0hjr408Wg94E3Nxz1cEt/GtlRI7xNkpGu9t3nsOOn1q+dTrj9EnVP//IvvBeXEAKNRsPgwYPdiqPZbDZvh9V9rp8Blga1ynNY1FEPtyQjTU1Nno5MCDeSjHS1+34HCybDozdCTSX84z4oL4YFiyEi1tvRCSFQi6NFR0djt9vZvXt33yyO9vozsHuzWuq9nRlZSUZET6FResHqpZqaGoKCgqiuriYwsAc3c7I2wYTm9SBaHQwIUIsLBZvh2yJ1dkQI0WOUlZWRm5uLRqNhyJAhBAQEeDukrpGdDpeOhIBg+LYY9Po2h1VXV5OVlUVsbCwRERGejVH0Cx19/5Z3x65UUdL6udMBtVWgKBAZBwelvbkQPU2fLI7mdMJ1Z6m/e15d124iAmA0GgGwWq2eik6INkky0pXKito+vncHzE2FV/4CNvlHL0RP0ueKo91zhXpr+IYHYdjYYw41NHcLlwWswtskGelK7SUjDgfYbfDCQ/DeS56NSQhxXH2mONrX/4WvPoAho+DWx447XNt861iSEeFtkox0pfaSEW3zXv6Lr5GtvUL0UC3F0QwGQ+8sjlZVAfdeBQYjvHH0Nt72aDQaSUaE17V/M1EcV4WlnhJLDfU2Gz5aHfGF2QTpdGjcWnJrIH4wLHkVxk/zWqxCiOPT6/WMGDGCjIwMV3G0oUOHumYQerRrp4OtCZZ9DIHBHX6aRqPB4fY7SwjPk2TkBCiKwg9FWbyT9QuHb0W6cu+vTG/5R63VqYWGbnkMfnc7NG+hE0L0bFqtltTUVLKysqiuriYtLY3U1NSenZD8837I2g2zr4CzL+7UU6VZnugJevC/rp7JqSi8nbWZt49IRABSMvegaf7cdvps+CwTFt0tiYgQvdCRxdF67I6TPb/Ca0+BORKeeqfTT9dqtTIzIrxOkpFO+jxvFz8Utd5LDjH4MiokmiS9L+ElxTg1GpbfeAfPXn8bjkgpciZEb3Z4cbQ9e/b0vOJoVivceA5oNPDa+hOqZaTT6aRZnvA6uU3TCQ12K18dTAdAg4arh07itPBEtBoN/O1unDo9f3voWbLMA6G2nF3lBYw1x3k5aiHEyYiKisJgMJCTk0NaWlrPKo72x4vUekZ3/Q0SU07oFJKMiJ5AZkY64eeSA9ic6nTmGVGDmRKRpCYimTvg7b+j/cMSZk+/1DV+Q1GWt0IVQnShgQMHMmTIkJ5VHO3jN+DHNTBmMly9+IRPo28uiibrRoQ3STLSCfl1la7PTwtPVD+x2eCmcyFqEFxzFyNCovHXq1UN8w4bL4To3QIDA3tOcbSSQnjsRvAdAC+vPalTSede0RNIMtIJjsOmMo265jtc+3ap/WcO5cGrT6K12zDo1LoiTkX+0hCiLzmyOFpeXp53ArlmGtjt8Pyn4Od3UqdqmRmRZnnCmyQZ6QSzyd/1+Y7yAvWT1HHwQyVcfx+8/BjOyUEM+W4NAGGHjRdC9A2HF0crLS31fHG0v9yi9rr6zU0w8eyTPl1LSXibzXbS5xLiREky0gmTIxJdW3e/LkijsL5K/cLkC7c8hvXZ93CgsOjfK/jzX5dwhu9Ab4UqhOhGLcXR/Pz8XMXRPLLm4pf18P6LEJ0AD63oklNKszzRE0gy0glmkz/jzPEANNhtPLFtNW/u/Ykfivbzcc4OHgzUc/vTL5I2fBSJOVlMmT9VetEI0UdptVqGDx9OUFAQ9fX1pKWldW9C0tAAt14AOj289X2XnVaSEdETaJResKerpqaGoKAgqqurCQwM9GosjXYrz+36hry69lfT++p8uLfGRuQjN0FDHQwdAy+vgYERHoxUCOEpeXl5lJaWotfrGT58uOvWx/FUWOqps7uv1fDXGwk1DTh68NWnw/aNsORfcNl1XRE2oO6i2bZtGyEhISQlJXXZeYWAjr9/S52RTvLVG7hz9Aw+zd3JxqJsLI7W+6waNIweGMMlCWOI9AuCsy+Hu+fBtx/DzFj445NqRVYhRJ8SHx+Pj48PhYWF7Nmzh2HDhuHr6+s2xmazoSiKK1GpsNTz0K+fYT9iobteo+XxCRe6JyT/XqYmIqed06WJCEjnXtEzyMzISbA4bKRXFlFjs2DU6RkaGN72XzSbv4E7LlOLEyWkwMtfQVS8x+MVQnSv8vJycnJy0Gg0bsXRmpqayMjIQK/Xk5qaikajIa+ugie2rW7zPA+cMpt4/1D1i/z9cOFQGBAI3xZDB2ddOmPr1q2YTCZSU1O7/Nyif+vo+7esGTkJJp0Pp5jjmB41hNPCE9tOREBd8f5dKcyZDzmZcF4ivPiIR2MVQnS/toqj2Ww29u7di91ux2Kx0NDQ0PETOp3qNl5FgRVfdUsiAmrnXil6JrxJkhFP0evVJlZvb4KgUFjxKJyXBLn7vB2ZEKILBQYGurr8HjhwgPT0dLfFoaWlpR0/2f0LoPQQLLoHRp3aDdGqpFme8DZJRjxt9GnqVOulN0BBDlyUAn+909tRCSG6kK+vr+uWx5H1OyoqKjr2xr/+U1j1LiSlwu1PdUeYLjqdTmZGhFfJAtYj7K0u4auDaeTVVVJtbeQPw6cdt9ldZlUxH2Rv5VBDNSFGP+bEj2RKhPuq9G8L9/L1wXSqrY3E+odwxZ1PknjlLXDzefDv52DNe/DiKhg6ujtfnhDCAxRFobCwsN3HKisrwXSMvwVrq+CueeBjhDe+654gD6PVaqVZnvAqmRk5gtVhJ3ZACFcmT+jQ+DJLHS/sWU9KcAQPjjuPGTEp/Hvvz+ypbP1F9EtpLh9mb+X8+JE8cMp5xA4I5p+7v6UmMQW+PggL7oDSQvjNWHj89+p9YiFEr1VQUHDMZnrHu1UTcevFYLXA0rchxNzV4R1Fr9dLMiK8SpKRI4wMjWZuwhhOOc5sSIvvDu3DbPLnN0njiPIL4qzoFMaZ41hbkOkas7Ygg9Mjk5kamUz0gCCuGjwRg1bPj8X7QauFu5+Dj9PVHTYfvAxnRcKuzd31EoUQ3aipqem4TfQaGhr4+WDbXb0v+OK/GPfthpmXwbmXd0eIR5HOvcLbJBk5Sdk1ZQwLjnQ7lhoSRXZNGQB2p4O82gqGHzZGq9EwLDjSNQaAxBRYnQM3PAjV5XDVJLjvdzJLIkQvYzQaGTx4MGFhYe0WP1NQaKqqPep4TH4O53/5EbUBgRx89OXuDtWlJRmRWiPCWyQZOUk1NguBBpPbsUCDCYvDhtVhp87WhBOFgDbGVNssR5/wtsfhi2wYNBS+eAfOMKv9KIQQvUZQUBDx8fGMGjWKkSNHEh8fT1BQkKvAmAYNw/RB+KEjJSiCmTHDmBAczeLnlwLw1z89yAvp39Pk8Exy0JI0Sede4S2SjPREMYPgs0z401Kor4HrzoLbLwXpHSFEr2M0GgkLC2Pw4MEMGj6UTy15ZNtrUYDfBQzllpTT+U3SOG748G386+v47rKFFEfFUNnUwC+lOR6JUZIR4W2SjJykQB8TNVb3GY4aqwWTzgeDTo+/jxEtGmrbGBPk4z5bcpTr7lUXuA4ZBd98BNPN8P2qrn4JQoiusncXnB6q9pF54SH4aS001Lse/qkkhyJnI2uthZSE+mDU+5CRkUH9ri3w6Vsw5yoS73jWNf6Hov0eCbslGZFmecJbTigZWb58OQkJCZhMJiZNmsTmze0vtnz11VeZNm0aISEhhISEMHPmzGOO722SAs1kVBW5HUuvKiIpUF0Br9fqiA8IJb2qdUGbU1HIOGzMMZkj4b874b7nockCt5wPfzgPLG3c4hFCeJfBCDWVah+Z156CG8+BKUFw5amw7F58Nq7G1KhWYB1jCiSlMh+fihIyGh0ULLgH5bHXSAgYSIjBD4CSxqPXlXRL2M3JiKwZEd7S6Toj7733HosXL2bFihVMmjSJZcuWMWvWLDIzMwkPDz9q/Pr167nyyiuZMmUKJpOJp59+mnPPPZc9e/YQExPTJS+iK1kcNkob61xflzXVk19XyQC9gVDTAD46sJ0qawOLUqYAMD1qCOsL9/LfA9uYGpFERlUxW0rzuHXkdNc5ZsYM483MTSQEhJIQMJB1BZlYnfajapEc05W3wnnz4ebZsHE1nDEQ/vKWx1bbCyE6YNAQ8A+CumpoWe/hdMCeXyF9G+c4HcwEnBoNuuattMnxKWTevoyi6ZdSdyCH6OhoV/M8DRqPhN2ygPXIAm1CeEqnG+VNmjSJU089lRdeeAFQt4LFxcVx2223ce+99x73+Q6Hg5CQEF544QWuvvrqDn1PTzbKy6wq5rld6446Pjk8kWtSJvNm5ibKm+q5c/RMt+e0FD0LNvpxfptFzzL56mA6NVaLWvQsaTyJHZkZacsnb8FjN4GtCcafAcu/AD//EzuXEKJr3XoBfP8lKO3vhGs0mth5/V1MOm8hxCWDRkN1dTXZ2dk4nU7y7XV8ZS1gcFAEi0fP8EjYW7Zswd/fn5SUFI98P9E/dPT9u1PJiNVqxc/Pjw8//JC5c+e6ji9cuJCqqio++eST456jtraW8PBwPvjgAy644II2xzQ1NbktpKqpqSEuLq7Hde31qroauPVC2LpBnRp+6GW4eKG3oxKif8rYru5+++Vbdd2Ivf21F9+cNZsPLpkPej03DDudUwbGotGoMyCFtZXsycwgBB8cKGhDAzg1aZhHXoJ07hXdoaPJSKdu05SVleFwOIiIiHA7HhERQUZGRofO8ec//5no6GhmzpzZ7pilS5fy6KOPdia0/sc/EN78Dta8Dw9do368txxeXA3Bod6OToi+y2qFbz+Gtf+DXT9D8cHWWzI6HQSbofyIomdaLWi08NAKKsaOw1mQDorCy+nfE+8fQnJgGOWWenZXFOJEIUkbwJmmSLSV9ezZs4fBgwdjNBq79WVpNBpplie8xqO9aZ566ilWrlzJ+vXrMZna30ly3333sXjxYtfXLTMjog2zfgvTL4Lb58KPa+DsSLhnGVxxs7cjE6JvKD4In/0bNq6BrF1QfViZd98B6m63U8+EOfNhxASwNMLkQPcExT8I/vkpnDKVSxQnVdYGfinNBSCvrpK8ukq3b1lnhOThw6g+VEJVVRW7d+8mLCyM2NhYV62SribN8oQ3dSoZMZvN6HS6o0odFxcXExkZ2c6zVM8++yxPPfUUa9euZfToYzeDMxqN3f5XQJ9iMsGK1eq237vnwZO3wIcvw4o16m4cIUTHOJ2wZQOsfk+9BZqfrfaIAdBoICQMJp8LZ1wAc65su2+MyRdSxkDaFnVGJHG4uq4rKh4AnUbLtSlTGBESxTeFe8mra01uAn1MTIsczIyYYQzwMWBODqC+vp79+/dTWlpKRUUFycnJBAQEdPlL12q1soBVeE2nkhGDwcD48eNZt26da82I0+lk3bp13Hrrre0+75lnnuGJJ55gzZo1TJjQsQZ04gRMmwMbyuGeK9S6JOfEwW1PwLX3eDsyIXqmuhq1Y/b6z9TkoayodeGpjwGiB8HYqXDub2DqbDW56IjxZ6jnO2suPPF/4DfA7WGtRsPkiCROC0+kzFJPja0Rk86HSN9AdEd8jwEDBjB69GgKCgooKipi7969BAYGkpyc3KWzJDqdTuqMCK/p9G6a9957j4ULF/Lyyy8zceJEli1bxvvvv09GRgYRERFcffXVxMTEsHSpWtb46aef5uGHH+bdd99l6tSprvP4+/vj79+xHSCe3E3TZ/yyHm6/RG1FnpACL3/l+stMiH5rfxp88Tb8tA4OZKgVjlv4B0FyKpw2Ey5YoG7TPVGlh2Dzt+rsiabrtudarVaysrJobGxEo9EQFxdHWFhYl5x737591NTUMH78+C45nxDQTQtYAebNm0dpaSkPP/wwRUVFjB07ltWrV7sWtebl5bll6y+99BJWq5XLL3evh7FkyRIeeeSRzn570VGnngnfl8MDV6ur/M9LhBsegFse83ZkQniG3Q4bvoC1H8KOTXAoD+zNtyG0WgiLhkkz4KyL4ZzfgJ9f133vsCg4f37Xna+ZwWAgNTWV8vJy8vLyyMvLo6SkhCFDhrTblK+jDu/c213rUoRoT6dnRrxBZkZO0s6f4bYLobIUohPgpdVql2Ah+pLyYvj8bfjhS9i7EyrLgOZfb0ZfiB8M46ersxWjT+v4LZceyul0cuDAAaqqqgAIDw8nJibmhBOJ/Px8SkpKGDFixDE3GAjRGd02MyJ6odGT4Nsi+MvN8OErMHc4/O52uPPZXv8LWfRjO36CVe/Clu8gLwssDa2PBZth4llw+hy44CqPLeS+f/MnlDfVH3V8etQQ5g8+tc3nbCnN45PcnZRb6gj3DeDSxLGMCm2tTq0oCp/l7uL7oiwaHTaSA83MH3wqEb7qupG6ujqys7MpKSmhoqKCpKSkdhe4NjQ0YDKZ2kxYDm+WJ8mI8DSZGelv9u5Ue9uUFqpTyS+thqHH3t0khNc1NKi3W779WC2tXlKollkH0PtAZDyMOQ1mXgbTLwS9d/7OqrVacNL6K7Wwvpplu79h8agZpARHHDV+f00pz+5Yy9zEMYwOjWFzSQ5rDqbzwCmziRkQDMDq/DRW5+/hmpTJmE0D+DRnJwUNVTwy/gJ8tDrXuVoWuAJtLnCtr68nIyOD0NBQEhMTj4olv/gQJQcL8Y8YiG+w+nvWX28k1DTgqLFCdJTMjIi2DR0N6wrgr3fC23+Hy8fCZdfDQytklkT0HPn71doem76G7D1QW9362IAASB2nrvc4/3cweIT34jxCgMF9RmF1fhphJn+GBh3dtwtgXUEmI0KjmBWrVj29OGEM6VVFrC/cy1VDJqIoCusKMpgTP5KxA2MBWJQymbt++h/by/I5NTzBda6YmBjCwsLIysqipqaG7du3Ex8fj9lsRlEUcnPVuiYVFRWYzWa32ZMKSz2v7tvExb6DWJ+fydYD5QDoNVoen3ChJCSi20ky0l/d/Tf47e/h97Pgv6+qW4Gf/0y9ly6EJzmdakGxrz+AbRuhMAdszVtMNVowR8C4aeqMx+wr1OrDvYDd6eDnkhxmxgxzlXs/UnZtGTNj3Mu9p4ZEsaP8IEDztl8Lw4NbbzP56g0kBpjJri1zS0agdYFrWVkZeXl55ObmUlxcTEhICI2Nja5xubm5pKamumZO6uxNVCrqNffTtL4t2BUndfYmQpFkRHQvSUb6s0FD4MtsWP4wvPoE/G6yWkXyL295bZpb9ANVFbDqHXWnS+Z2qCiBlrvFBhPEDVaTj9nzYML0Xjtjt738II12K1Mijr4l0qLGaiHQx302JdDHRHVzobUam5pABB4x4xJoaB3TFrPZTGhoKNnZ2VRXV3Po0CG3x5uamigpKXErVmnFiaIo+Gp65/UWvZu84wh1u+8l16mzJKveVSu5/v2/MPFsb0cm+oL0beoul1/XQ04mNB62wDMoVE08ps6G86/qU7VwNhbtZ0RoFMHGLtwy3AlarZbk5GQyMzOprz96UW1hYSGhoaEYDAYszVueFcCokbcF4XnyUydU0YPg0wx4/Rl4/gG4foZaPfKv78FJ1i8Q/UhTk7rIdF1LE7mCw3q06CEiVi2lPuMSOPuSPvuzVW6pJ72qmN+nTjvmuECDiRqb+wxHjc1CUPNMSKCPr3rMaiHI4Ns6xmohzj/4uHFUVVW1mYiAuksnLy+PAyYbn+TsBMCJggn3mZHKpgbi/aX5puhekowId9feAxddDb+frb6pnDEQnv4PTL/A25GJnuhQnjrrsXENZO2GmiOayA0dDaeepd7+Sx3nvTg97Mfi/QT4GBkVGn3McUkBZjKqitzWjaRXFpEUoPa8MZsGEOhjIqOqiDj/EAAa7TYO1JYxPWrwMc/tcDjIy8s75pjq6mp+Lj6ITVF3JjlQ8NHo3Mb8e9/PxA4IYaAsYhXdSJIRcTRzJHy4HVa+CM/crhZMm3wu/P2jrq1SKXoXp1O91bL6fdj6PRw8oolcaLh6u+WM8+G8+RDcP/+adioKPxZnMzkiCd0R6y/eyPyRYIMflySOBWBGTArP7lzL1wfTGRUazS+lueTWVfC7IRMB0Gg0zIgZxqr83YT7BmA2+fNJ7k6Cjb6MNR+7k3lDQwN2u93tmEaj4fBqDoqicK4xhncb9zPCHIPBoscInB83ko3F+6myNlJra+LdrF+4beSZJ31thGiPJCOifVfcrO5euPk82PQVTDfD42+oCwtF31dXA1+uhO8+g/QtUFbs3kQuJhFOmaqWUp9ybq9daNrVMqqKqGhqYGpE0lGPVTQ1oKF1Z01yYBjXp0zlk9wdfJyzg3DfAP6QOs1VYwRgVuxwrA47b+/bTIPdyuCgMP444iy3GiNtCQgIYNSoUVitVmw221EfxbVVGBTQomG+32CGRCZRUVFBY2MjFyWM5OyYoTy+9UuqrI3sriykpLGWcN+u7xYsBEjRM9FRn7wFj98E1iZ1weELn7e/xdLplDem3ihrj3rLZXNLE7na1scCgtUmcpPPhQsXQOzRb7Si91AUhT/9+AFNTjtmnS8Lw0ZQW1OL0WjE6XQyerRaCHF1/h4+ytkBwKWJY131UIToKCl6JrrWxQvhnMvg1gvg1+9gejg8+CJccq37uIztcMNMePL/YNocr4QqOsBuV2c81v5XLatedHgTOR2ER8Np56hN5GZeLrfn+hib00GTU72FEzIggCGDh1BVVUVOTg5OpxOHw4FOpyOxee0KQJ2tyVvhin5AkhHRcX7+8Pp6+OpDeHAhLLkO3n8JXlqjrg+w2eD+BVBdrvbB+SwTDEZvRy0Ayorcm8hVlbU+ZvKDpOEw4Ux1oenoSV4LU3iGXqtDq9HgVBRKLbUoKISEhGA0GqmqqkKnU28BlTS2zo6ZdPJ2IbqP/HSJzjv3cnV75h2XwsYv4exIuPs5dY3B/j3qmKI8+Pff4bp7vRtrf+R0wo5N6nqPliZyTS3VNzUQYobTZqhN5M6/CgYe3TNF9G1ajYbhwZHsqTxElbWRLWX5nBo2CD8/P/yaZ8EcTifrD+11PWd4cJS3whX9gKwZESfn+y/hnnnu6wtaGE3wxX51yl90n4YG+Op9WP+J2kSutFBNSEBtIhc1CMZMhnMuV2+dSXVdAewoP8iLaRsAMGr1XJ50CqeFJ2LQ6Smor+J/B7axu1Kt3BrvH8L9Y2e3W9ZeiPZ09P1bkhFx8hobYWY01Fa5H9fp1N04S992HcqpLaewvhqtRkOocQBm0wBpwtVZufvg83/DT2thfxrUHd5ELlC95TJpBlzwO/VzIdqgKAor0r9ne3MfHFAb4/nqDdQeVohNr9GyePQMkgPDvBGm6OVkAavwnA9eOjoRAXA44It34IpbyRyUyOd5u9hbXeI2RIOGO0ad3WZ7dUFzE7nV8NUHsH0jFOYe0UQuUu3fMv0imP1btaOtEB2g0Wi4fthU3szcxK9lanE0u+J0S0T89AZuHHa6JCKi28nMiDg5eVlwyUhob6W9RkNN0jDuuf1+lHa2+xq0Om4ZMZ1hh3Um7bcqy9T+QC1N5CpLW5vIGU0Qmwzjp8HsK2Hc6bKFWpw0RVHIqS3nu0P72F9Tis3pJNjoy6TwBE4LT8RX3zdL9gvPkJkR4Rnv/lNNRHQ6tQrnERUfURQC96dz7tefsWbWxQQZTCQHhmFzOMisLsHqtGN1OngxbQMPnXIeYf2tqNKeX9Xk45dv1dsvbk3kBsL4M9Sqphf8Tu3rIkQX02g0JAaaSQw0H3+wEN1EkhFxcm58CEZOVHuUFOWptxEOZkPxQbA0uIZd8un7xA4bz4T5d6JtrhzZaLfxWuZGdlUU0uSws7YggysHn+qtV9L9LBb45iO1idzuX6DkoHorC9QmcpFxMGoSzLwUzry4zzaRE0KII8ltGtFtcg8d4M3v3mNwViZnbd5IdM4+OHsuPPAihKnbBOttVu7d/BFWpwOTTs+zp1123DLXvUZBrrrQdNNXzU3kKlsf8/OHhBS1idz5V8GwsV4LUwghuovcphFed1DjpDAmnsKYeMKvuYfo9DR44mY4LxEuWggPv8wAHwMjQ6LZWp6PxWGn3FJHpF+Qt0PvPKcTNn8La95Tm8gVHFBL50NzE7kIOP08tT7LeVdCUIh34xX9Tktp97OjU5iXPL7dcVtK8/gkdyflljrCfQO4NHEso0JjXI8risJnubv4viiLRoeN5EAz8wefSoSv/KEoTpwkI6LbHD7lptNo1XLyp54Jc5Igp7WYku6wRZjOHj9P16ymCr78D2z4HNK3QXlR60JTH6PaRG7cVDj3t3DaTFloKrwqp7acDYeyiD2sAV9b9teU8q+MjcxNHMPo0Bg2l+TwUtr3PHDKbFfzvjUH0/mmMJNrUiZjNg3g05yd/HP3tzwy/oK+M6spPE6SEdFtIg5bjLq9/CBnx6RA8EAw+sLEswCwOuzsqSwE1HoGoaZj90CpsNRTZ3ffueOvN3Z/rZJ9u9VbLj+vg5xMaKhrfSwgGMZOUZvIXbAAYhO7NxYhOsHisPFa5o8sGDKJVfm7jzl2XUEmI0KjXA3xLk4YQ3pVEesL93LVkIkoisK6ggzmxI9k7EB1QfWilMnc9dP/2F6Wz6nhCd39ckQfJcmI6DbJgWGE+wZQ0lhLZnUxGw5lcUZEElSUQEMdDsXJyv2/0tDcoG1C2CBMOp92z1dhqeehXz/D3tLGvpleo+XxCRd2XUJitcL6z2Ddf2Hnz+rCXEfzLiGtDsJjYMosmHEJzLgMTKau+b5CdIP/ZP3KqJBohodEHjcZya4tY2bMMLdjqSFR7GgujFZmqafGZmH4YdvwffUGEgPMZNeWSTIiTpgkI6LbaDUaZsem8n/7fgbgnazNbN23ldsVhQPFOfzr188os6hbWXUa7VG/BA/XaLfxRf7uoxIRUAs1VVkbTjwZKSlUm8ht/BL27YKq8tbHTH6QPKL59tJ8GDXxxL6HEF7wS0kOeXUV3H/K7A6Nr7FaCPRxT64DfUxUW9VCaDU2tcdRoOGIMYbWMUKcCElGRLeaEpFEYUM1awsyAKjPU9eK7NI4XYmIVqNh0dDTiPNve1FnjbWRv+/6hsKG6jYfB1i5fwuLR8845swKoC403f4jrPoPbN0A+fvdm8iFmuG0c9QeLnPmw8Dwzr1gIXqIiqZ63sveyu2jzpK1HKLHk2REdCuNRsPliacQ5x/CV/nphFSqsw7VQcEADA+O5IL4kQwOavtNv6V/RksiogGGBIUz0DSAQ/U15NSp58utq+D/9v7MjcNPdz9BQx2sfg+++0wtMFZ2yL2JXHSC2kTu3N+oxcWkiZzoI/JqK6i1WXhi62rXMScK+6pLWF+4l+Wnz0OrcV9YHWgwUWNzn+GosVkIap4JCfTxVY9ZLQQZfFvHWC3E+Qd30ysR/YH85hXdTqPRcFp4IpPCEqjYuQuA00ZNY/aEC49bcTWjqpj9NWUABBt8uX3U2UQdtvU3u6aMf+7+lkaHjS1leRSn/0rE2o/VhabZaVBX03oy/0C1QNukmWpF08SULn+tQvQUw4IjeXjcHLdjb+39iUi/QGbFph6ViAAkBZjJqCpyu2WaXllEUoBandVsGkCgj4mMqiLXTGaj3caB2jKmRw3uxlcj+jpJRoTHaDQaBtaqycGQlPHQgdLvPxRluT6/PGmcWyKC00nSwVzuef8ddLt+ZmBFKfqWiqZaLZij1KJiZ14Es36rFhoTop8w6X2I0Qe7HTPq9AzQG13bdN/I/JFggx+XJI4FYEZMCs/uXMvXB9MZFRrNL6W55NZV8Lsh6lopjUbDjJhhrMrfTbhvAGaTP5/k7iTY6MtYc5wHX53oayQZEZ5V0dy1NyahQ8Nbbs/oNFrGDWz+Zffj13DfVWr32rpqogCbjw/F4VGUjxjP6N/dpW61ldoeQhxTRVMDGjSur5MDw7g+ZSqf5O7g45wdhPsG8IfUaa7kBWBW7HCsDjtv79tMg93K4KAw/jhC1qWIkyPJiPCsSvWWywnNUmhQC4u98jjUVcOCO+C0mdQkDOWefT8A6jbE0SNPP/Z5hOin7hw985hfA4wPi2d8WHy759BoNFyUMJqLEkZ3eXyi/5JkRJyUvdUlfHUwjby6Sqqtjfxh+LRjT9dWV2DzMfD01i851FBNiNGPOfEjmRKR5Dbs28K9fH0wnYomdceNQ3Gys7yAU77/Wi23/sLncMb5AGwpyHQ9L1JKUgshRK8j89jipFgddmIHhHBl8oQOjW9srKXUHEZKcAQPjjuPGTEp/Hvvz64qrAC/lObyYfZWzo8fyfzk1i6+X/6yGufTt8PF17gSkfy6Sj7P2+Uac3pkcpe8LiGEEJ4jMyPipIwMjWZkaHSHx5fgBIOJ3ySNAyDKL4is6lLWFmQyIkQ9z9qCDE6PTGZqZDJORWHDoX2EbvyKG994Aaei8M7cKxiYt4fcunJ2lhfgbO6CMzo0xu3ethBCiN5BkhHhUXa7DZPO/ccuNSSK97O3qo87HeTVVnBec28MbeYO/vzPJ/HZthGAvNhB/NBQDrnlbudI8A9lUcpkD7wCIYQQXU2SEeFR+iYLygD3Lb2BBhMWhw2rw06D3YoTheDaanj+Efj4DXya6yEowJ5TJrk/18fEGVGDOTc2FaNOfpyFEKI3kt/ewqN8G+upDzvGbZ0mC7PXfEL8muvAblN3zyhq7RANcM6ps0kaNYNGhw1/vYGEgIHoZUuhEEL0apKMCI/ya6inODDI7ViN1YJJ54Nh6w/43L+AucUFaJrXgRxJHzeYlOAIT4QqhBDCQ2Q3jfAo38YGDga7N8RLryoiKdAMa/+Lpvhgu4kIADGJ3RyhEEIIT5NkRJwUi8NGfl0l+XWVAJQ11ZNfV0lFc0fejw5s543MH9XBVRXonE5KAvz574FtFDVUs75wL1tK85gZkwL3LIO7n8Op98HRRvVURaeHsChPvTQhhBAeIrdpxEnJra3guV3rXF9/0LwrZnJ4ItekTKba2khFU4P6YGEOADP8zLxZWcQ3BZkYdHpCjH68nP4DBq2OpPHj+c07mwi48Vx01RVu30sTHgM6dX3IltI8PsndSbmljnDfAC5NHMuo0BjXWEVR+Cx3F98XZdHosJEcaGb+4FOJkKJoQgjR40gyIk5KSnAEL0+b3+7j1xy+3bYoH4DYsFgeHHceAP/Y/S2nhg0iwT8Uh6Lwcc4O3ty/ibuqK2BgBFRXgOIEhwPi1a6g+2tK+VfGRuYmjmF0aAybS3J4Ke17HjhltqvOyJqD6XxTmMk1KZMxmwbwac5O/rn7Wx4Zf4H00BBCiB5GbtMIzykpUP8b3jqD8aeRZzElIonoAcHE+YdwTfIELn5rOTajCT7YDh/ugKFj1MGxasn4dQWZjAiNYlZsKlF+QVycMIZ4/xDWF+4F1FmRdQUZzIkfydiBscQOCGFRymSqmhrZXpbvyVcshBCiAyQZEZ5Tekj9b1T7Tbh46BqGZmVQfdvjYI6EpOHwzs/w6GtqYzwgu7aMYcGRbk9LDYkiu1ZtwldmqafGZmH4YWN89QYSA8yuMUIIIXoOuU0juo/NBnn7wD8IAkOgvEg9Hp3Q5nDnprWYvvmELaedyfir72p9QK+HS651fVljtRDoY3J7bqCPiWqrRX3c1qgeMxwxxtA6RgghRM8hyYjoPq8+ASsebf1ao1H/O28cBA2EEDMkDoPFfwW7nbJHFqELDCbp0Te9Eq4QQgjvkNs0ovtMPMv9a6W5fkj+fti9Gb5fBZ+/DRoNW5cswFxUgO6GBwmJGnTM0wYaTNTY3Gc4amwWgppnQgJ9fNVjR8yC1FhbxwghhOg5JBkR3Wf8GZCQ0joj0gblzmf5/Ms3GLXmIxpTxxF81Z+Oe9qkADMZVUVux9Iri0gKMANgNg0g0MfkNqbRbuNAbZlrjBBCiJ5DkhHRfTQauOpPtFlQVaeDkRNZmZzEiBVPouj12P/xMdXWRqqtjVgddtfQNzJ/5KMD211fz4hJYU/lIb4+mE5RQzWf5e4kt66CM6OHNn9bDTNihrEqfzc7yg9SUF/FG3s3EWz0Zaw5rptftBBCiM6SNSOie124AOVvd6GxNLgdVhxONA++iM97zzEoN5tn73iI/ZkbXI8vHHoaUyLUrbwVTQ1oaJ1dSQ4M4/qUqXySu4OPc3YQ7hvAH1KnuWqMAMyKHY7VYeftfZtpsFsZHBTGH0ecJTVGhBCiB9IoinKMRiA9Q01NDUFBQVRXVxMYKBU0e5MKSz07776Mad9/jc7pBMCh0fLT5OmMuvwWAhdfDqnjYeWvXo5UCCFEV+vo+7fcphHdqs7exDdnzHQlIgA2gw+fzp6L//1Xg94HVnzlxQiFEEJ4myQjoltVWOopjowmY2gqCurykY8v/C0LVr6u3rq5fzkEh3o7TCGEEF4kyYjoFkpzn5mX0r8H4JszZ6EBLEYjFSGhjEjbQc3QUXD5Dd4NVAghhNdJMiK6xSe5O/kyf4/r6/SUEQBsHj+Z695agUOn5+EbbuPX0lxvhSiEEKKHOKFkZPny5SQkJGAymZg0aRKbN28+5vgPPviAYcOGYTKZGDVqFKtWrTqhYEXvUNxYw+rmREQDzIkbwdIRZwMwpbwKg7WJd65YhMVvAO9m/YrN6fBitEIIIbyt08nIe++9x+LFi1myZAlbt25lzJgxzJo1i5KSkjbH//jjj1x55ZVcd911bNu2jblz5zJ37lx279590sGLnmnDoSxXaZE58SO5OGEM/o1qvxifvTvhtHOov+AqAOrtTWwpzfNSpEIIIXqCTicjzz33HDfccAOLFi0iNTWVFStW4Ofnx+uvv97m+H/84x/Mnj2bu+++m+HDh/P4448zbtw4XnjhhZMOXvRMaZVqd14NGs6OTlEPVpSq/41NQvPCZ8yIGeYav6d5vBBCiP6pU8mI1Wply5YtzJw5s/UEWi0zZ85k06ZNbT5n06ZNbuMBZs2a1e54gKamJmpqatw+RO/R6LAB4O9jxN/HqB78cY363/ueB4ORSL/W/eZNzeOFEEL0T51KRsrKynA4HERERLgdj4iIoKioqM3nFBUVdWo8wNKlSwkKCnJ9xMVJCe/exF+vJiC1Ngtlljr14B+WwKvrYPI5AByoLXeNH9CSsAghhOiXeuRumvvuu4/q6mrXR35+vrdDEp1wymH9X1bl7UZRFDAYYdLZoNNhdzpcC1wBxkm/GCGE6Nc61ZvGbDaj0+koLi52O15cXExkZGSbz4mMjOzUeACj0YjRKH8t91anRyazKm83dsXJxuJsGuw2ZsakEO4bwIHacr7M3+OaGTGb/BkREuXliIUQQnhTp2ZGDAYD48ePZ926da5jTqeTdevWMXny5DafM3nyZLfxAF9//XW740XvF2TwZf7gU11fbyvP568713L3zx/xYtoGVyLio9VxbcpktJoeOUEnhBDCQzrdtXfx4sUsXLiQCRMmMHHiRJYtW0Z9fT2LFi0C4OqrryYmJoalS5cC8Kc//Ynp06fzt7/9jfPPP5+VK1fy66+/8sorr3TtKxE9ytTIZHy0Ov6z/1ca7NajHjebBnBtyhSSA8O8EJ0QQoiepNPJyLx58ygtLeXhhx+mqKiIsWPHsnr1atci1by8PLTa1r90p0yZwrvvvsuDDz7I/fffz5AhQ/j4448ZOXJk170K0SNNDE9g7MBYfinNJb2qCIvDhr/eyCnmOEaFRsuMiBBCCAA0iqIoxx/mXR1tQSyEEEKInqOj79/yp6kQQgghvEqSESGEEEJ4VafXjAjxXeE+vju0j/ImtaBZlF8QF8SPYmRodLvP2VKaxye5Oym31BHuG8CliWMZFRrjelxRFD7L3cX3RVk0OmwkB5qZP/hUInzltpwQQvR1MjMiOi3Y6MsliWO4/5TZ3D92NsOCI3kxbQOF9VVtjt9fU8q/MjYyNTKJB8edx9iBsbyU9j0Fh41fczCdbwozuWrIRO4dey5GrZ5/7v5WOvoKIUQ/IMmI6LQxA2MZFRpDhG8gEX6BzE0Yg1GnJ/uwEu+HW1eQyYjQKGbFphLlF8TFCWOI9w9hfeFeQJ0VWVeQwZz4kYwdGEvsgBAWpUymqqmR7WVSfVcIIfo6SUbESXEqTn4pycHqsJMUYG5zTHZtGcOC3SvupoZEkV1bBkCZpZ4am4Xhh43x1RtIDDC7xgghhOi7ZM2IOCEF9VU8vf0rbE4HRp2e36dOI3pAUJtja6wWAn1MbscCfUxUWy3q47ZG9ZjhiDGG1jFCCCH6LklGxAmJ8A3gwXHn0Wi3sbUsjzczf+LO0TPbTUiEEEKI9shtGnFC9Fod4b4BDAoI5ZLEscT6B/NNYWabYwMNJmps7jMcNTYLQc0zIYE+vuqxI2ZBaqytY4QQQvRdvWJmpKVIbE1NjZcjEe2x2e00NFna/H8Ubwpid9lBJga0bv3dXVZArG8gNTU1GBSFAL2R7UU5BIXrALA4bByoLWNicIz8fxdCiF6q5ff3cYu9K71Afn6+AshHD/k49cZ5SuSYYYp/pFkJSYpTTr1xnnLD+n8rMRNGKoBy5v2/V069cZ5rfMTIIcr137yljJo3RwmKj1LGL7pUuW7dW0pIYqxrzJj5FygLv3hFGTR1nBKSFKec+8QdyhUr/67oDD5ef73yIR/yIR/ycXIf+fn5x3yf7xW9aZxOJ4WFhQQEBKDRaLrsvDU1NcTFxZGfny89bzrh/fwdZNWWUWNvwqTTE2UK5KzwZIYGqB14X8r6kRCDH1fEjwXU63zGgsuYt/Requ1NmI0DOD9qGMMDI1znVBSFr4r38lN5HhaHjYQBoVwaO5Iwo783XmKvJT/TniHX2TPkOntGd15nRVGora0lOjrarYnukXpFMtJdpAGfZ8h19hy51p4h19kz5Dp7Rk+4zrKAVQghhBBeJcmIEEIIIbyqXycjRqORJUuWYDQavR1KnybX2XPkWnuGXGfPkOvsGT3hOvfrNSNCCCGE8L5+PTMihBBCCO+TZEQIIYQQXiXJiBBCCCG8SpIRIYQQQnhVn09Gli9fTkJCAiaTiUmTJrF58+Zjjv/ggw8YNmwYJpOJUaNGsWrVKg9F2rt15jq/+uqrTJs2jZCQEEJCQpg5c+Zx/7+IVp39mW6xcuVKNBoNc+fO7d4A+4jOXueqqipuueUWoqKiMBqNDB06VH5/dEBnr/OyZctISUnB19eXuLg47rjjDiwWyzGf099t2LCBCy+8kOjoaDQaDR9//PFxn7N+/XrGjRuH0Whk8ODBvPnmm90bZDe3lfGqlStXKgaDQXn99deVPXv2KDfccIMSHBysFBcXtzl+48aNik6nU5555hklLS1NefDBBxUfHx9l165dHo68d+nsdZ4/f76yfPlyZdu2bUp6erpyzTXXKEFBQcrBgwc9HHnv09lr3eLAgQNKTEyMMm3aNOXiiy/2TLC9WGevc1NTkzJhwgRlzpw5yg8//KAcOHBAWb9+vbJ9+3YPR967dPY6v/POO4rRaFTeeecd5cCBA8qaNWuUqKgo5Y477vBw5L3LqlWrlAceeED53//+pwDKRx99dMzx2dnZip+fn7J48WIlLS1Nef755xWdTqesXr2622Ls08nIxIkTlVtuucX1tcPhUKKjo5WlS5e2Of63v/2tcv7557sdmzRpknLTTTd1a5y9XWev85HsdrsSEBCgvPXWW90VYp9xItfabrcrU6ZMUf71r38pCxculGSkAzp7nV966SUlKSlJsVqtngqxT+jsdb7llluUs88+2+3Y4sWLlalTp3ZrnH1JR5KRe+65RxkxYoTbsXnz5imzZs3qtrj67G0aq9XKli1bmDlzpuuYVqtl5syZbNq0qc3nbNq0yW08wKxZs9odL07sOh+poaEBm81GaGhod4XZJ5zotX7ssccIDw/nuuuu80SYvd6JXOdPP/2UyZMnc8sttxAREcHIkSN58skncTgcngq71zmR6zxlyhS2bNniupWTnZ3NqlWrmDNnjkdi7i+88V6o77Yze1lZWRkOh4OIiAi34xEREWRkZLT5nKKiojbHFxUVdVucvd2JXOcj/fnPfyY6OvqoH37h7kSu9Q8//MBrr73G9u3bPRBh33Ai1zk7O5tvvvmGq666ilWrVpGVlcXNN9+MzWZjyZIlngi71zmR6zx//nzKyso4/fTTURQFu93O73//e+6//35PhNxvtPdeWFNTQ2NjI76+vl3+PfvszIjoHZ566ilWrlzJRx99hMlk8nY4fUptbS0LFizg1VdfxWw2ezucPs3pdBIeHs4rr7zC+PHjmTdvHg888AArVqzwdmh9yvr163nyySd58cUX2bp1K//73//44osvePzxx70dmjhJfXZmxGw2o9PpKC4udjteXFxMZGRkm8+JjIzs1HhxYte5xbPPPstTTz3F2rVrGT16dHeG2Sd09lrv37+fnJwcLrzwQtcxp9MJgF6vJzMzk+Tk5O4Nuhc6kZ/pqKgofHx80Ol0rmPDhw+nqKgIq9WKwWDo1ph7oxO5zg899BALFizg+uuvB2DUqFHU19dz44038sADD6DVyt/XXaG998LAwMBumRWBPjwzYjAYGD9+POvWrXMdczqdrFu3jsmTJ7f5nMmTJ7uNB/j666/bHS9O7DoDPPPMMzz++OOsXr2aCRMmeCLUXq+z13rYsGHs2rWL7du3uz4uuugizjrrLLZv305cXJwnw+81TuRneurUqWRlZbmSPYC9e/cSFRUliUg7TuQ6NzQ0HJVwtCSAirRZ6zJeeS/stqWxPcDKlSsVo9GovPnmm0paWppy4403KsHBwUpRUZGiKIqyYMEC5d5773WN37hxo6LX65Vnn31WSU9PV5YsWSJbezugs9f5qaeeUgwGg/Lhhx8qhw4dcn3U1tZ66yX0Gp291keS3TQd09nrnJeXpwQEBCi33nqrkpmZqXz++edKeHi48pe//MVbL6FX6Ox1XrJkiRIQEKD85z//UbKzs5WvvvpKSU5OVn7729966yX0CrW1tcq2bduUbdu2KYDy3HPPKdu2bVNyc3MVRVGUe++9V1mwYIFrfMvW3rvvvltJT09Xli9fLlt7T9bzzz+vxMfHKwaDQZk4caLy008/uR6bPn26snDhQrfx77//vjJ06FDFYDAoI0aMUL744gsPR9w7deY6Dxo0SAGO+liyZInnA++FOvszfThJRjqus9f5xx9/VCZNmqQYjUYlKSlJeeKJJxS73e7hqHufzlxnm82mPPLII0pycrJiMpmUuLg45eabb1YqKys9H3gv8u2337b5O7fl2i5cuFCZPn36Uc8ZO3asYjAYlKSkJOWNN97o1hg1iiJzW0IIIYTwnj67ZkQIIYQQvYMkI0IIIYTwKklGhBBCCOFVkowIIYQQwqskGRFCCCGEV0kyIoQQQgivkmRECCGEEF4lyYgQQgghvEqSESGEEEJ4lSQjQgghhPAqSUaEEEII4VWSjAghhBDCq/4fpXrkWtXdqScAAAAASUVORK5CYII=", + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAiMAAAGdCAYAAADAAnMpAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjcuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/bCgiHAAAACXBIWXMAAA9hAAAPYQGoP6dpAADL/0lEQVR4nOzdd3xUVdrA8d/cKZm0mfTeAwRCIIHQm6AoImLvrnXVV1fUFXtB7Ozq6lrXstZddcWyiG1VuvSSEEJJIyG99zr1zvvHhIFAAgSSTMr57icfJ/eeO/fMMpn7zLnnPI/CZrPZEARBEARBcBLJ2R0QBEEQBGFoE8GIIAiCIAhOJYIRQRAEQRCcSgQjgiAIgiA4lQhGBEEQBEFwKhGMCIIgCILgVCIYEQRBEATBqUQwIgiCIAiCU6mc3YFTIcsypaWleHp6olAonN0dQRAEQRBOgc1mo6mpiZCQECSp6/GPARGMlJaWEh4e7uxuCIIgCIJwGoqKiggLC+ty/4AIRjw9PQH7i9HpdE7ujSAIgiAIp6KxsZHw8HDHdbwrAyIYOXxrRqfTiWBEEARBEAaYk02xEBNYBUEQBEFwKhGMCIIgCILgVCIYEQRBEATBqUQwIgiCIAiCU4lgRBAEQRAEpxLBiCAIgiAITiWCEUEQBEEQnEoEI4IgCIIgOJUIRgRBEARBcKpuByO///47CxcuJCQkBIVCwXfffXfSY9avX8/48eNxcXFh2LBhfPLJJ6fRVUEQBEEQBqNuByMtLS0kJiby9ttvn1L7Q4cOsWDBAubMmUNaWhp//vOfue222/j111+73VlBEARBEAafbtemmT9/PvPnzz/l9u+++y7R0dG88sorAIwaNYpNmzbx97//nXnz5nX39IIgCIIgDDK9Pmdk69atzJ07t8O2efPmsXXr1i6PMRqNNDY2dvgRBEEQBGFw6vVgpLy8nMDAwA7bAgMDaWxspK2trdNjli1bhl6vd/yEh4f3djcFQRAEQXCSfrma5rHHHqOhocHxU1RU5OwuCYIgCILQS7o9Z6S7goKCqKio6LCtoqICnU6Hq6trp8e4uLjg4uLS210TBEEQBKEf6PWRkalTp7JmzZoO21atWsXUqVN7+9SCIAiCIAwA3Q5GmpubSUtLIy0tDbAv3U1LS6OwsBCw32K58cYbHe3vvPNO8vLyePjhh8nMzOQf//gHX331Fffff3/PvAJBEARBEAa0bgcju3btYty4cYwbNw6AxYsXM27cOJ566ikAysrKHIEJQHR0ND/99BOrVq0iMTGRV155hQ8++EAs6xUEQRAEAQCFzWazObsTJ9PY2Iher6ehoQGdTufs7giCIAiCcApO9frdL1fTCIIgCIIwdIhgRBAEQRAEpxLBiCAIgiAITiWCEUEQBEEQnEoEI4IgCIIgOJUIRgRBEARBcCoRjAiCIAiC4FQiGBEEQRAEwalEMCIIgiAIglOJYEQQBEEQBKcSwYggCIIgCE4lghFBEARBEJxKBCOCIAiCIDiVytkdGKxqDS00W4wdtnmoXPDRujupR4IgCILQP4lgpBfUGlpYsusHLDa5w3aVQuK5CQtFQCIIgiAIRxG3aXpBs8V4XCACYLHJx42WCIIgCMJQJ4IRQRAEQRCcSgQjgiAIgiA4lQhGBEEQBEFwKhGMCIIgCILgVCIYEQRBEATBqUQwIgiCIAiCU4lgRBAEQRAEpxLBSA9rNLWx4lBal/tLWur7rC+CIAiCMBCIDKw9qMHUxkt7VlFtaO6yzWc5O/BxcSfOK7APeyYIgiAI/ZcIRnrQx1lbHYGIq1LNOL9wwty8qDO1kVpdSI2xBYtN5t2MjTw4di7Wo7K0iro1giAIwlAlgpEeUtxSR0Z9OQBeGlceTZqHt4ubY/8lUWN5+8DvHKgro9Vi4vnd/0O22Rz7Rd0aQRAEYagSc0Z6yPbKfMfj88PjHYFIndEMgEpScmX0OEebowMREHVrBEEQhKFLBCM9pM7Y6ngc7xUMQHptE37fbODi9WmUtRkJcffCW+PW1VMIgiAIwpAkbtP0EJXiSFzXbDESCER4aBmhc+P7kmp+XrGRRG9PhrlY0Kud109BEARB6G/EyEgPifb0czzeXJ4LgJdGza75k0n08kAjSaTUNrG8TM/XZd5UGEQcKAiCIAgggpEeMykgChelPcDYXJHHb8UZWGQr7iolP85OxFUCFTJ+ajN1ZhUrK735qtSHMhGUCIIgCEOcwmY7ZiZlP9TY2Iher6ehoQGdTufs7nTp1+ID/PeohGeeahciPHyoNjSzrtLEpjo9AL4qMyigxmwPRPQqKzN9GrkgNIhb46Y5ghpBEARBGMhO9fotRkZ60Hmho5gXFu/4vclsZH9dGRVtTYz0MKLAHvfVWFTUmNVoFTJ6lZUGi5IfK715dG8ri7auxWS1OOslCIIgCEKfE8FID1IoFFwWncRDY+eS7BeB8qhJrWHuekJcTIANUABgsClptKhQosBTKdNoUfJBgYLwFb/zc0m1c16EIAiCIPQxcT+gFwzTBzBMH4BVlmmzmtBIKj7J3kaItppSo4aj74vZACvQKisB8FGbqTLCgvVpRLppeWPiCC4KC3DGyxAEQRCEPiGCkV6klCQ8JC0mq4XdNUUEu6iwtY+KdMZFghnezfhozJSaY1hT2czFG9IJc3PhtfFxXB4pghJBEARh8BG3afpAk9mIbLPh72JG2UksolRAiKsLn0yOIEhrRiPBgyP11F8xmxujgyhvM3HFpnRC//s7y/PL+/4FCIIgCEIvEsFIH1BL9lswSgWEux6/eCle707K/Mn4aqyObRpJhYdGxafTEmi46ixuiQmh0mDmms37CP72d/6dV9pn/RcEQRgsag0tFDbXOn5qDS3O7pKAWNrbLQaLmZUF6aTVFNFkNhLu7s3VsclEefp2eUxWfQVf56VS1FIHwK56d/Y0uWNt/3/dRVJwa5QGvbKG2qNSyi8ZP58wd+9jzm/hzyk5fJRbitlmw99FzV+ShnHrsNCef7GCIAiDTK2hhSW7fsByVMV0UaS0d4mlvb3gXznbyagv55a4aTw1/gLivYP4+961HerSHK3a0Mxb+9cT5xXIvLBRAAS5mByByAuJsdwW7YrJXIS7ysVxnIQCndr1uOfTqlS8O3kUzVfN4U/Dw2gwW/jj9gz8vtnAeznFPf+CBUEQBpFmi7FDIAKiSGl/IYKRU2SyWthdXcTl0UmM0AcQ4OrJwsixBLh6sKEsp9NjNpTl4Kf14MqY8VwQkUCwq44gFzPhWiNz/RpoM+zDZCri0yI/Pimw5xZRosBNpWFLRW6XfdGoJN6eNJKmK+fw57hwms0W7tyRic/X63krq7BXXr8gCIIg9BYRjJwi2WZDxoZKoeywXS2pyG2s6vSYvMZqRnoFAaBVqrlvzNn4aV2ZH9BAjJuRyrYmmiw2LEjktrqS0ezO/8XPJMEnhLzGk+cZ0agk/j4hjuar5/DgqAjaLDL37MrG+6v1vHqgAFmWT/ocgiAIguBsIhg5RVqVmhhPP34u2ke9sRXZJrOt8hB5jdU0mNo6PabRbECn0Tp+93Zx49rYCQBEevgAR/KLAGysdee7EiOeahcazIZT7ptKknh5/Aiarp7No/GRGGWZB3bn4P3NBl7af0gEJYIgCEK/JoKRbrg1bio2Gzyy4zvu3rScdSVZTPSPRHGC3CHHUkr2/8sfHDuXv0y8mGZLx3+Cp/ce4pP8Fk5nWrFKklg2bjjNV81mSUI0FtnGI2m56L/ewPN780RQIgiCIPRLIulZN/i7evJg4lyMVgsGqxm9xpX3Mzbhp/XotL1OraXR1HGEo9FkQKtUo1GqkBQKWq1KJODoMOGnMiO1RhWPyDaU0qkHOodJksSzibE8PSaaF/bn89KBApak5/GXA/k8OCqSpxKikSQRhwqCIAj9g7ginQYXpQq9xpUWs4kDdWUk+oZ12i5G50dmfcckZRn15cTo/ABQSUoUkhuKTuKNrbU2rt60F5P19EczJEliyZgYGq48i2VJsUgoeGbvITy+Ws/ju3PESIkgCILQL4iRkW7YX1eKzQZBbjoq25r49tBugtx0TA+MAeA/B3eyt7YUg9WMSbbirXGjztTKt4d2Mz0whsz6ClKqClmUcJbjOW1osdqM0Mmtnv8WVXLRhjQejnNndUkmDaY2wjy8uSY2mWhPv1PutyRJPDo6modHRfL3zCKe25fHsgMF/D2riHtGhPNiUiwqMVIiCMIglt9Uw1e5KZ3u21lVQJi7N1Jn3wyFPiGSnnXDrqoCVuTvod7YiptKw3i/cC6JSsRVpaHFbOKxHd/holTxp9Gz8FRr7atlTAZWlWRS1tqAl4sbCyISmNYevFQbmhn1wyaqTcfHhCqFAovNRqirmgV+Zdw4YiLRnn6sKc0ktbqQZ5IXdpgc212vZxbyzN486kwWtJLEXSPCeGncMBGUCIIw6OytLeHdAxuPyzFytMkBUdw8YqoISHrYqV6/RTDSQ/57KI3cxioeSjz3lI/59tBubtxeTavV/uZXYK/iq1TYuC4qmJtiQthWtpMYTx+uHTYRsC8xfmzHd8wJGcH54aPPuN/vZBexZE8uNSYLLpKC24eF8sq4EWhUIigRBGHgqzY080zKT5hke7kNvUbLaO8QXJVqchuryW+ucbS9NCqxRz5XhSNO9fotbtP0kPSaYuK9g3kvYyM5DZV4adw4K3g4M4OHdXlMTkPHQGRWgBebq+qIdjXyr2kJWGQr3+TUsiA83nGMpFAw0ivolPKQnIq7RoRz14hwPjhYwuNpB3kru5j3D5Zwa2wIfx8/HK1KvEUEQRi41pVmOwKR8b7h3DpymqNeGMDu6iLey9iIDVhdksk5oSM77Bf6hvj620OqDM1sKMshwNWTexPmMCt4OMvzUthakdflMc1mA+cHubIsaRgFl8xg/bkTmOjjSn6bhvLWVprNRmRseB5zO0an0XYrD8mpuG1YKJVXnMUnU+Px1qh5N6cE3VcbuG3rAVotlh49lyAIQl+QbbLjM1ilkLh++ERHoHH4psA4v3DG+0UA9grre2tLnNPZIU4EIz3EBkR4+HBpVBIRHj7MCh7GjKDYLlPFAygUcO8ILx4dHUW4uz3guD3WH7NN4oV9+X3T8WPcFBNC+eWz+HzaaPy0aj7MK0X/1QZu3rKfZpMISgRB6F9ONNOgxWyixWICYLg+AA+1lsyWTM7bfR7BG4Mxy2bAHpAcVtnW1LsdFjolxuB7iF6jJdhN32FbsKue3dVFXR7TWR6SEZ4qAjRmlhdW8fcJcUgoaOokV4leffqTV0/FddHBXBcdzFcF5SxOyeHTQ2V8ll/G1ZGBvDNxFDpN7751ag0tHYpXeahcRFVNQRCOc+OBG/mm8ht81b4EaYIIcQkhSBNEoCYQL6UvefIhJJuK0uZWvt21lE0NmwAY6z4Wq2xFLamxtN/GAbqVxFLoOSIY6SGxOn8q2ho7bKtoa8THpesLaIzOj321pR22ZdSXk6iXWFVl5kBDKxGePmTUV5DUHrnLNhuZ9eXMCRnR8y+iE1dFBnFVZBAriir5864svsivYHlBBZeHB/De5JF4aTQ9fk5R5lsQhFMVqAnEIBsoMZZQYiwhpSkFlUKFAgUWmwUb7SMnreCisFdH/2vsX3ko8iEU7StndlTmO54v1N2rj1+BAOI2TY+ZGzqSvKZqfi7cT2VbEzsq89lYfpDZIcMdbVYcSuPjrC2O388KHk61oZlvD+2mvLWB9aXZpFQV8lB8HABP7sllbuhINpUfZGtFHmWtDXxxcCcm2eJYHtxXLg0PoODSmfxwViLhblq+KqzE9+vfufz3PdQaTD16LlHmWxCEU3VbyG3HbbPYLJht5iOBCCChwmgz8kD4wzwc9TAKhQLZZuPX4gMcaE9O6eviTrx3UJ/1XThCjIz0kChPX+4aNYsV+Wn8VLgXP60HV8UkMzkg2tGmwdRGrbHV8buf1oNFo2fzdV4qa0uy8HJx44YRk5kWGEWYWxGrymv5fnYSzWYD3xek02gyEObhzb2j56DTuDrjZXJhmD8XhvnzS2k1i3Zm8d+iKr4rquLCUD8+nBKPn7bnR0oEQRC6MtJ9JFN1U9nWuK1D8HE0BRIyVs5S3oGhajzvWzfhrtJwoL6cakOzo92CiAQkhfiO7gynlWfk7bff5uWXX6a8vJzExETefPNNJk2a1GX71157jXfeeYfCwkL8/Py44oorWLZsGVrtqc17GAh5RnraU3tyeW7fIZbPSOCqyP4bqa8pq+GunVnkNLWiAOaH+PLh5FEEuZ3439ZmszmGSI9V2FzLC7t/OW77E+POJ6K92rEgCEJOaw4P5zzMj9U/YqHrCfZqhYZL1UvwousR5QURCVwUObY3ujmkner1u9sh4PLly1m8eDFLly4lNTWVxMRE5s2bR2VlZaftv/jiCx599FGWLl1KRkYGH374IcuXL+fxxx/v7qmHlEdHR6IAXtpf4OyunNA5wb5kXzSNDXOTidO58XNpDSErNnH+2t2Utna+/LiszUjUd5v57FBZH/dWEISBziJbeKXgFaI2RzFi6wi+q/6OAE0AGkXno7LeKm9ypmbzzqT7OTtkBFqlusP+UV5B3DN6tghEnKzbIyOTJ09m4sSJvPXWWwDIskx4eDj33HMPjz766HHtFy1aREZGBmvWrHFse+CBB9i+fTubNm06pXMOxZERgHE/byO9rpmWq2cPmORjmyvruGNHJgcaWlAAZwd689HU0US4HxkpuX9XFq9lFeEiKdg1fzIJXh2rHouREUEQjpXWlMajBx9lTd0aLDYLGoWG83zO4y/D/sJoj9H8KfNPvF/yPlaOrIyJdY0lbVIaHqojnzEmq4WKtiYsNis+Lu7onXTLe6jolZERk8lESkoKc+fOPfIEksTcuXPZunVrp8dMmzaNlJQUduzYAUBeXh4///wzF1xwQZfnMRqNNDY2dvgZih4eFYkM/PVAobO7csqmB3iz/8KpbJ83kTFeHqypqCPqu03MWZVCflMbFW1G3skpBsBis3HJhj00mUX+EkEQjmeSTTyd9zQhG0MYt2Mcv9b+SoRLBG+OeJO22W38kPQDoz3s6dvvCL2jQyBytvfZZE/J7hCIAGiUKsI9vIn29BOBSD/SrWCkuroaq9VKYGBgh+2BgYGUl5d3esx1113Hs88+y4wZM1Cr1cTGxjJ79uwT3qZZtmwZer3e8RMeHt5l28Hs6shAXCQFH+YOvIyAk/z07FkwhdT5k0j09mB9ZR3R329m/P+2Y5btg3FWG+S3tHHbtgMnTFwkCMLQsrluM7NSZuG2zo1nDj1DnaWOqwKuIn9aPrnTc1kUvgjpmKKeeqUeJfbsqneE3MGa8WuOayP0X73+L7V+/XpefPFF/vGPf5Camsp///tffvrpJ5577rkuj3nsscdoaGhw/BQVdZ04bDCTJIm5Qb4UtRopaG5zdndOyzgfHbsvmMKeCyaT6OVBaZuJoxftWm3wVWEl7+XYA66SlnpWHErr9Lmy6ip6v8OCIDhFs6WZB3MexO93P2akzmBj/UZGuI3g0/hPaTmrheVjlhPpGtnpsevr1jNy20hkZN4Y/gbvjXqvj3svnKluTUTw8/NDqVRSUdHxolBRUUFQUOcrPpYsWcINN9zAbbfZ14KPGTOGlpYW7rjjDp544olOI1cXFxdcXFy607VB69mxMfxUWs2S9Fz+NS3B2d05bWO9PTk/xJe99c10VsT7nl1Z+GlMbCjZ6Shqdaxv8nfTYjVxSVRi73ZWEIQ+87/q/7E0bym7mnZhw4aH0oObg29mWewyglxOvpLw/eJ/sijrXrTouUL9KOUVkfzEXi4IT+hyxR5AVn0FX+elUtbagLeLGxdEJByXv2ldaTarijNoMLUR5uHNNbHJRHv6nfFrFo7XrZERjUZDcnJyh8mosiyzZs0apk6d2ukxra2txwUcSmXHQkVC18b76vB1UbOyqMrZXTkj1QYTr2cVdRqIgH3+yE1bD9JksbdwU2oY7xfO1IBo/LRH7vn+r2j/CYsPCoLQ/9Waarkz40681ntxwZ4L2NW0i0SPRP475r80zW7i4/iPTykQeSD7Ae7MuhNvRRhfjPyO1yfdwWVRSfxanMG60uwuj6s2NPPW/vXEeQXy5Pj5nBMax7+zt7O/7khG7J1VBXyTl8qCiASeGDefMHcv3ti37rgSHkLP6PYSjcWLF3PTTTcxYcIEJk2axGuvvUZLSwu33HILADfeeCOhoaEsW7YMgIULF/Lqq68ybtw4Jk+ezMGDB1myZAkLFy50BCXCiV0dEcg/copZW17L2UEDczXJG1lFGKxdhSJ2rbLElyU+PBWv5cEx09Eo7W9Pm83GmtIsvs5LBeDnov1MDohGOsG3HkEQzsyx9aHgzGtEfV3xNc8deo69LXsB8FJ5sShsEc9FP4eXxuuUn0eWZRamL+Tnmp+JVo7jkaC/cWHoNMCeTHJnVQGHmmq6PH5DWQ5+Wg+ujBkPQLCbnoMNVawuyWK0dwgAq0symREUy/SgWACuHzaJfbWlbKnI5fzw0afz8oUT6HYwcvXVV1NVVcVTTz1FeXk5SUlJ/PLLL45JrYWFhR1GQp588kkUCgVPPvkkJSUl+Pv7s3DhQl544YWeexWD3DNjY/hHTjHP7s0bsMGIp1pJrIcrCgVIKFAoQNn+X4DS1kaaLAqMNolnMiyUmA46qhkrFArmho5kT00x2Q2VVLY1kdNQSZxX4IlPKgjCaemsPhScXo2oUkMpj+Q+worKFbTILUhITNFN4fmY5znH95xu981gMTB+53gyWjOYpp/Go/7/YGtFPhWtjQS66ShqruNgYxVXxozr8jnyGqsZ6dVx5CXeO5iv2r/wWGQrhU21zA+Ld+yXFApGegWR11jd7T4LJ3daySsWLVrEokWLOt23fv36jidQqVi6dClLly49nVMJgJ9Ww3BPNzZXNSDL8oCcIf5QfBQPxUd1uq/a0MwTO78HYIQ+BKMUySsZhbx3sJgRnm7sXTAFpSQxwT+S7AZ7cr2y1gYRjAhCL+msPhQcqRHlw4mDEVmW+bjsY14qfInsVvvtEn+1P/eE38OSqCW4qdxOq1/FhmKSdiRRY67h5uCb+Tj+Y2SbDbNsY2nKjygUCmw2GxdHJXYoxXGsRrMBnaZjlmidRovBasZktdBqMSFjw7OTNuVtQzPVRG8beFe1IeruEWFYbDbezRl4y3y7w1Ul8XhCNPmXTOfK8EAyGlt5OcOeZ0WU9haE3meyWthSntvlfrO18wnmALmtuVyefjlu6924LfM2cltzmeM1h20TtlE5q5Jlw5addiCyvWE7w7cOp8Zcw19j/8rH8R8DkFJVwI7KfP4YN40nx83n5hFTWVWcIeaWDTADI62nwN0jwnggNZs3sov4U9zgyrvipXFFq1RhsFrIqCuj1WLCU63hPzPHMHyPG4+lHcQiy7hzJDV+sJveiT0WhMGp1WLi9b1ryW+u7bLNl7m7WDx2Lq4qe1p1WZZ5o/gNXit6jQKD/W80VBPKXWF38VDkQ2ikMy+e+UX5F9yw/wYUKPhuzHdcHHCxY9+3h9KYFx7PxIAo+7ndvagxtvC/ogNM7aK6uU6tPW4iaqPJgFapRqNUISkUSCho6qSNXn1qNdWE7hEjIwOESpKY5udFVmMrtQaTs7vTo1SSkintQ6om2cq/srdjstqzsj4zNoY4T1eWpOfxfXE9AAFaD4brA5zVXUEYlGw2G//M3NwhEIn29GOyfxRRHr6ObYUtdXyctYV9TfuYv3s+2vVa7s+5n1JjKRf4XsDeSXspnlnME9FP9Egg8lTeU1y//3q0kpbUSakdAhEAk2xBOmbUVFIouqzgCxCj8yOzvmOizoz6cmJ09mW7KklJhKcPGfVH0ljINhuZR7URepYYGRlAliREc9663Tyz9xCvT4xzdnd61DmhI9lSkYdJtrK7pojHd1YxwT8CrVLNpUEN/K1ZxfpaHXp1HTcOHy1W0ghCD8tvruFAnb14pYfKhfvGzOlQC+pQUzWvpq9iq+lbPitfQ2t5PQDR2mjuD7+fu8Pu7vH5bFemX8k3Vd8QpAkifXI6/hr/49qM9Qnl56J9+GjdCHbTU9Rcx+riTKYFHRkVWXEojXpTK7fE2VfcnBU8nPWl2Xx7aDfTA2PIrK8gpaqQRQlnOY6ZGzqST7K2EuXpQ5SnL2tKsjDJluNykQg9o9uF8pxhqBbK64zn8nW4KiUqrzjr5I0HmH21pbybsRFzJ0nPakwS/y33RaVQUHDJDILdxFCpIPSkf+dsZ1P7XJEbhk9iRtAwx75CQyFP5D7BF+VfICOjRE2y60y+TPqAaLeuJ4qeLpNsYsrOKexu3s14j/Fsnbi1y1EWg8XMyoJ00mqKaDIb0WtcmegfyYURCagke/qIT7K2UmNs4YGxR+qqHZ30zMvFjQWdJj3L4rfiDBpNBnvSs5hkosXISLec6vVbBCMDzPWb9/JFfgV7LpjMWG9PZ3enxxU11/G/ov3srilCPuqtGe3pi0oVxkN7ygjQqim6eCYalbjLKAg95S9pvzpyc7wx7SpclCrW1Kzhuv3XUWWuwkVyIUobTaBxJsMVM4nzCuLBxLknedbuqzRVkrg9kXJTOVcFXMXyMct7/BxC3znV67e4TTPAPD82li/yK1iyJ5eVs5Oc3Z0eF+7hzR2jZtBoaqO4pR7ZZsNX6+6YsNoqu7J0bx5Tf9tJygWTndxbQRg8jv5WKikUpDSmcO3+a2m0NPJczHPcG34varTct/Xr9vY9/z02vSmdqbum0iq3sjR6KU/HPN3j5xD6JxGMDDDRnm6EurrwW3nXs90HA53GlfhOyns/NTaG9Pomvi2q4vrNe/l8+hgn9E4QBp8gV0/y20dG3sr7F0uK7yHePZ4fxv5AoIs9p8/mo5b8Brr27Cj1isoVXLn3SmzY+GL0F1wbdG2PPr/Qv4lx7gHo1phgDFaZrwrKT954EPpmViJj9O58kV/BS/sPObs7gjAoRHqpybSu5wvTfSwuuJWZ+tmsG7/OEYhUtDaysiDd0X5Ge5r0nvDX/L9y2d7LUEtqtk3YJgKRIUiMjAxAjyZE8fz+fF7aX8BVkScvJjUY7Th/IuHfbeaRtFzi9R5cGHb8LHtBELpWYaxgbd1a1tSu4bfa3ygyFjn2qdES1XwdX+bsIczdi+KWOlKrixxZWUfoA4j29O3qqbvllgO38EnZJ/ip/dgzaQ8h2pAeeV5hYBHByADkplKR6O3B7romDBYLWlX//2eUbTI/FOxle2U+jWYDeo0r0wKjT7vMt1alImX+ZEZ8v5krN6ZxW2QLsmwQZb4F4QTKjeW8mP8iv9b+6kjTrlKosNgsHdqdJf0fMrCjKp8dxxQMD3HTc/vIGSf8uz0VFtnCrJRZbG3cSrx7PCkTUtCqxCq5oUrcphmgHhwViQy8dKDQ2V05Jb8UZbCh7CDXDpvA08kLeqTMd4S7lncmhAA2Pi/24N6Ec0WZb0E4gc0Nm3mz+E1HIAIcF4gEqgP5Y8R1uLVnWD3MXaXhvLBRPJx47nF1Xbqr3lRPzJYYtjZu5ULfC9k7aa8IRIa4/v+VWujUtZGB/HHbAT7MLeGpsf0/CU9eUxVJvqGM8QkFeq7Md3lLIXdEu/JGron56zPIXjhVlPkWhC5c5n8Zfwz+Ix+VfdTpahgJiT+F/YlrYiZxWdR4churabWYcFNpiNX5oVGe+SUjqyWLiTsn0mRt4sGIB3l5+Mtn/JzCwCdGRgYoSZI4J8iHwlYjBc1tzu7OScV4+pNZX0FFq73i5eEy3wk+wV0e01WZ78MlvA+X+b5lWDSLRoRxqMXA+ev3iDLfgtAFhULBOyPf4RzvczotPKlAwW2htwGgUaoY5R1Esn8Eo7yDeiQQ+bXmVxK2J9BsbeaDkR+IQERwECMjA9hzY2P5ubSGp9Jz+XRagrO7c0Lnh8djsJp7rcz3mxPD2VffwpryWvxUahL14jaNIHRGLakZ6zGW1XWrO2xXoeIi/4sIcemdCaRvFb3Fvdn3olaoWTN+DbO8Z/XKeYSBSQQjA9h4Xx2+GjXfFVWdvLGTHV3mO8Tdi6LmOr7KS8FL49plZc3uWnPOOGK+38LXxW1oFXKPPKcgDDZXpF/Bt1XfEqQOQkamxlyDFSsWLNwddnevnPNPmX/inZJ38FJ5kToxtVdSyAsDmwhGBrirIwP5R04x68prmRPkc/IDnKQvynxLkkTaBZMY9t06/lOi5PbKOqYHePfq6xKEgWJNSQaLD95LumU1Y5XzudrzHuIC1NyYfTGtciuxrrHM8Z7T4ZiUqkJWFqRTY2gmwNWTy6KTHPO+wF7p94eCvWwsP0ib1Uyszo/rhk10JESTZZlz085lbd1aYl1jSZuUhofKo09ftzAwiDkjA9wz7ZNXn93bv5N/9VWZb51azVUhbUgoOGfNbopbxe0aQag11XJz7oWkW1Zzie+V/DbpS+K9Q1hzqJoPR3yGSqFiccTiDst1cxur+CBzM9ODYnhy/HySfMN458BGSlrqHW1+Lc5gbWkW1w+fxKNJ5+EiqXhj3zrMspVmSzMjto1gbd1azvY+m+wp2SIQEbokgpEBzk+rYbiHK5uq6pHl/ntr4nCZ7721JVQbmtldXcTq4kySfMMcbVYcSuPjrC2O388KHk61oZlvD+2mvLWB9aXZpFQVMjc0ztFmbuhINpUfZGtFHmWtDXxxcCcuSjOfTB2FUZYZ//N2DJaOSxcFYSjJaM4gckskxeY8Ho98nBVJXxHopuOSqERclCrClGMpn1nOXaF3dThuTUkWo32CmRcWT7CbnoujEonw8GZ9+3J8m83GmpJMLohIIMk3jDB3b26Jm0q9sY1fSncQvjmc3LZc/hT6J9aMX4MkicuN0DVxm2YQuDsunD+nZPNuTgl/igt3dnc6dU3sBFYWpPPFwZ2OMt8zg4dxYcSRibcNpjZqja2O3/20HiwaPZuv81JZW5KFl4sbN4yY7FjWCzDRP5Jms4HvC9IdZb7vHT2HaJ0fec1mHt+Ty5Rfd5G2YEqfvl5B6A9W1axiwZ4FWGwWPhr5EbeE3gLYkxCmVBVislqI8fTDV60/7ti8pmrmho7ssC3eO5g9NcUAVBtaaDQbGHXUijdXlQattolrsxfQamvgjRFvcE/4Pb34CoXBQgQjg8DdI8J4IDWbN7OL+m0wolWpuTo2matjk7tsc3Pc1OO2HU54diJzQuKYExJ33PbHEqJJr2/my4IKrtmUzpczxna/44IwQL1X/B53Zd2FWqFm/fj1zPKeRUlLPX9N+w2zbMVFqeLO+JmEuB8fiIB9fpZOfcxqNrWWhvY5Wo1me0qBo1e8fVjyIW81/Bk1Gv6X9D/m+c7rpVcnDDZi3GwQUEkSU/28yGxspdZgcnZ3+pX/zBhDopcHywsqeaGfz6sRhJ7yQPYD3Jl1JzqljgNTDjiW0Qa6evLk+Pk8mjSPs4KH80nWNkpbGnrknA/nPMxtmbfhKfnyeMAHIhARukUEI4PEkgT7Urln94kL7rF2zJuEv4uaJ9NzWVlU6ezuCEKvkWWZi/dczKtFrxLhEkHhjEJi3Y5U11VJSgJcPYn09OHS6CTCPLxYW5rV6XPpNFoazcesZjMb0LePhOjUrgDUG1pZmLaQlwtfJtwlnPu9/0GsW2QvvUJhsBLByCBxXogvHiolX+SXn7zxEKNRSaRdMBmtJHHFxr3sr292dpcEoceZZBNJO5L4vvp7puimkDstF51Kd8JjbDZ7JuPOxHh2spqtrpyY9iKUflp3PFRqLtgznx9rfmSabhr7J2VR2tzsaCMIp0oEI4PIwlA/qoxm0uuanN2VfifETcvaueORbTam/LqTepO4nSUMHpWmSiI3R7K3ZS/XBV7H1olbUUkdpwSuOJRGdkMl1YZmSlrq23+vYFJ77p+Ps7aw4lCao/05oXHsrytjVXEG5a0N/FCQTkFzLbNDRgBQZizjC+MjZJhSuML7Zr6K/4l/H9yJl4srSX79c+6a0H8pbDZb14ke+onGxkb0ej0NDQ3odCeO9IeyvKZWYr/fwkWhfqycneTs7vRLHx8s4dbtGUS6acm7eJpYbigMePua9jFl1xRa5Baejn6apTFLO233r+xtZNZX0GBqw1WlJtTdi3lh8cR72+tDvZK+Gl8X9w4Tye1Jz/ZQY2jpkPRsZ8NOZqXOwiAbuNP3aTwMY2i1mBim9+e62IkEuonPacHuVK/fIhgZZML+u5Eak5m2a852dlf6rcUp2fw9s5DZgd6sm9txdU9mQwsR7lrcVEoAag0tNFuMjv0eKhd8tO592l9B6MrP1T9zcfrFyDaZf8X/i+uDr+/1c35Z/iXX778eBQq+GfMNlwRc0uvnFAauU71+i6+Fg8wtMcEYrDJfFYi5I115NXkEc4N8WF9Rxz07MwF7AqfXMgsZ/eNWXmifBFxraGHJrh94Yfcvjp8lu36g1tDizO4LAgBvFr7JhXsuRImS38f/3ieByDN5z3Dt/mvRSlpSJqWIQEToMSIYGWQeS4hCAbx0oMDZXenXfp2TRIyHK29lF/NOVhF37cjk/pRsZODXshoAmi1GLLaOWW0tNrnDSIkgOMO9Wfdyb8696FV6sqZmMd17eq+f85q91/D0oacJ0gRxaPohEj0Te/2cwtAhkp4NMm4qFYneHuyubcJgsaBViX/izkiSxO75kwlb8Tt/2pXVoWpOWl0TzWaRQl7of2RZZsGeBfxS+wsx2hj2TN7T6/VeTLKJabumkdKUwjiPcWybuA2NpOnVcwpDjxgZGYQeHBWJDLx0oNDZXenXqo0mfFzsH6pHT5yy2mBrdc8kghKEnmKwGEjYnsAvtb8wUz+TnKk5vR6IVJuqidocRUpTClf4X0Hq5FQRiAi9QgQjg9C1kYG4SAo+zC1xdlf6rc2V9Uz4ZUenVX1VCgW/V9b3facEoQvlxnIitkSQ0ZrBzcE38/uE33t9JVh6UzpRm6MoM5WxJGoJX4/9ulfPJwxtIhgZhCRJ4pwgHwpbjRS2HH+xHeqKWw3MWZ1CncmCtZO1ZBabjXUVtX3fMUHoxO7G3cRsiaHKXMWLMS/ycfzHvX7OlZUrGb9jPG1yG5/Ff8azsc/2+jmFoU0EI4PUc2PtKaCX7Dno5J70P0FaDfeNDMdDpUQBHeaLHLajupEaQ1tfd00QOlhZuZKJOydilI0sT1jOY9GP9fo5Xy54mUv2XoJaUrNlwpY+WaUjCCIYGaTG++rw1aj4rrjK2V3pd1SSxMvjR1B22Uz+MXEkwzztNTaUiiNhidlm4+ndWzs9fm+tuP0l9L5XCl5xBAXbJmzjqsCrev2ctx64lYcPPoyf2o+cqTlM1k/u9XMKAohgZFC7KjKQRrOV9eXilkNnPNQq7hwRRtbCaaw+ZzzzQ3zbR0ns9272N7l0etz3BXtZXZLZZ/0Uhp47M+7kwYMP4qPyIWdqDhP1E3v1fLIsM2PXDD4u+5hRbqMonFZImDasV88pCEcTwcgg9mz7rZpnRCXfE1IoFJwT5MMPs5N4NdGTUe5tgI1DbVrG+sZw/bCJXBaVRPRRxb++yUulsFkEeULPkmWZc1LP4b3S9xjuOpyi6UW9HhTUm+qJ2RrD5obNXOB7Afsm78NV5dqr5xSEY4lgZBDz02oY7uHKpsp6ZFk++QFDXIvZxMGGfGb6NvOHkHp8NSr+XSgx0T+GeeHxPJp0HueHxQP2sZO1pdnO7bAwqLRaWhm5bSRr69Zyjvc5ZE7JxE3l1qvnzGrJInJLJAWGAhaHL+anpJ9EvSbBKcS7bpD704gwLDYb7x0U8xxOJq2mCHN7OfUFEdH87+xk0uubuWnrfuT2Ek4LIhJwU6kB2FVVgNUmgjzhzBUbionYHEFOWw7/F/J/rB6/uteDglU1qxizfQxN1ib+OfKfvDLilV49nyCciAhGBrlFceEoFfBGVpGzu9Lv1ZuOrJ4ZqQ8k2VfHZ9MS+LqwkvlrdwOgUaqIab9dY5attJpNTumrMHjsbNjJ8K3DqbHU8Ldhf+PdUe/2+jn/UfwP5qXNQ4GCtePXclvobb1+TkE4EZErfJBTSRJT/bzYVFVPrcGEj1ZkT+yKRlI6HjeY7flZ5rVPaj0nyOfIPtOR3C3qo44RhO76uuJrrtl3DQoUfDfmOy4OuLjXz3lP1j28VfwWepWe1ImpxLjF9Po5BeFkxMjIEPBkQhQAz4mJrCcUq/N3PN5YdhDZZiOjvhkbMDvQG4BDjdUUtdQBEObuhbb9lo0gdNeyQ8u4at9VuEgu7Jq0q9cDEVmWOTf1XN4qfosYbQzF04tFICL0GyIYGQLmhfjhoVLyeX65s7vSr0V7+hLubg86ilrq+DR7Kx/kFgMwwtOV7PoK3s/c5Gg/K3i4U/opDHy3HLiFx/Mex1/tT960PJI8k3r1fC2WFkZuG8nqutXM9prdJ3VtBKE7RDAyRCwM9aPKaGZvXZOzu9JvKRQKLo8eh9SebWRbZT4rCgtRYOOV9F94Ze8aao2tgH1UZGpAtDO7KwxAsiwza9csPin7xJHPI8glqFfPWdBWQPjmcHLacrgz5E7WJa8TK2aEfke8I4eI5xIPp4fPdXJP+rdR3kHcNnI6KoX9T6PRIuEi2ag0NDvahLt7c2/CHDRKMeVKOHXNlmaGbx3OxoaNnO9zPvsm70Or0vbqOTfVbSJuaxz1lnpeG/4a74x6p1fPJwinS3yaDhGxnm6Eurrwm8jGelLJ/hFEevqwoSyHDwqr8VFbUKAgytOHs4KHM8E/UkxcFbqloK2AcTvGUWep456we3gj7o0ee+4KYwWBLoHHbf+09FNuzbgVSSHxU+JPzPeb32PnFISeJkZGhpCbY4Jps8p8U1Dh7K70e35aD84KHo2MggvDwvnHjGt4NGkeUwNjRCAidMuW+i2O0Yk3hr/Ro4HIyqqVBG0K4qPSjzpsfyTnEW7OuBk3pRvpk9JFICL0eyIYGUIeT4hCAfzlQL6zuzIg/FpWA8CMAG8kRWe1fQXhxD4v+5yZKTOxYuXHxB+5J+KeHn3+VwtfBeCOjDtYXbsaWZa5eM/FvFT4EmEuYRRMK2CUx6gePacg9AZxm2YIcVOpGOvlwe7aJgwWC1qV+Oc/kY2V9QCcH+Lr3I4IA9Izec/w9KGncZfc2TZhGwmeCT36/AeaD/B7/e8AyMhcsucSgl2COdh2kCm6KWxM3ohKEn/jwsAg3qlDzIOjIrlh635ezihkyZihl2Pg8R0rqTG2HLf9rODhXDesY2XUPXXNKBVQ3lLJewfSqTE0E+DqyWXRSYzxCXW0s9ls/FCwl43lB2mzmonV+XHdsIkEuup6/fUI/dP1+67ni4ovCNIEsWfyHgI0Aaf1PLWGFpotxg7bPFQu+Gjdebv4bVQKFRabBRs2WuQWDrYd5Ar/K/h67Nc98TIEoc8obLb2ohv9WGNjI3q9noaGBnQ68QF/JmRZxm35OgK1Ggounens7vS5JpMBmSNv+dKWBl7bt5bFY84hzqvjJMCgb39Htlm4PLCCS6ITGesTyo7KfH4tzuCJcecT6u4FwC9FB/ilaD83x03FT+vO9/nplLTW83TyhWJ+yRBjkS3MTJnJtsZtjHEfw65Ju9BIp5f1uNbQwpJdP2A5pv6RSiHxcNJs4nfG0iq3dtgnITHWYyybJ2zGTdm7RfYE4VSc6vVbzBkZYiRJ4uxAHwpbjRS2GE5+wCDjqdGi17g6ftJrS/DXejBCf/w31xqjmRAXM6N9gpkXFk+wm56LoxKJ8PBmfXvFXpvNxpqSTC6ISCDJN4wwd29uiZtKvbGNtGpRD2goabQ0Ersllm2N27jI7yLSJqWddiAC0GwxHheIAFhsMv+u+Ddtcttx+2Rk0pvTuXbftVht1tM+tyD0NRGMDEHPJtpvzzw1xHOOWGQr2yvzmRYYi+KYCao1BhMWmw1fjZGRXh2TUsV7B5PXVA1AtaGFRrOBUUe1cVVpiPb0c7QRBr/c1lzCN4VTaCxkcfhiViauPKPEYq0WE78UHeh0n81m44Oyd7HR+aC2jMz31d/zfsn7p31+QehrIhgZgib46vHVqFhRXOnsrjhVWk0xbRYT0wKPz6T6W/tKGr3SiE7dMTGVTq11FMtrNNu/neo0x7TRaDsU1BMGrw11G4jfFk+TtYl3497llRGvnNHzNZkMvLRnFSnVhZ3uL7NlUmDM67BNpTgy/S9KG8VtIbdxrs+5Z9QPQehLYgLrEHVVZCDv5JSwoaKOs9qLwA01m8tzGe0TjJfL8ffWf6+qB8Bbc/wwuSAc9mnpp9yScQsqhYpfk37lXN8zDwA+ytpCWWsDYJ8fMto7hBA3HdWGFtJri1hler1D+3CXcOb6zOVs77OZ7T2bMG3YGfdBEPqaCEaGqKfHxvJOTgnP7M1jbWCys7vT52oMLWTUV3BnfOeTeA+vpPHXutBo7jjC0Wg2oG8fCdGpXe3bTAb0GtcjbUwGwj28eqfzQr/wxMEneLHgRTyUHuyYsKNH8nkUNtdyoN5e0FKn1vJQ4rkEuHoC0Gpt5Yd9L2M0NOGBHxOUl/PA8Bu5MHTaGZ9XEJzttG7TvP3220RFRaHVapk8eTI7duw4Yfv6+nruvvtugoODcXFxYcSIEfz888+n1WGhZwRoNQzzcGVjZT2yPPS+/W+pyMVT7cIYn5BO9x9qbsNLrSbG04/M+o7VjjPqyonx9APAT+uOTq3t0KbNYuZQU7WjjTD4XJl+JS8WvEioJrRHE4ttrThy++XCyDGOQKTMUMac1Dmsrl3F2zGfcp3mdUYoZ3GoztQj5xUEZ+t2MLJ8+XIWL17M0qVLSU1NJTExkXnz5lFZ2fn8A5PJxLnnnkt+fj7ffPMNWVlZ/POf/yQ0NLTT9kLfuXtEGBabjfcOlji7K31KttnYUpHH1MAYlIqOfwIfZ21hxaE0aoxmIt21nBMax/66MlYVZ1De2sAPBekUNNcyO2QEYK/0e07oSH4u2seemmJKWur5OHsrXi6uJPmFO+PlCb3IIluYsGMC31R9Q7JnMvnT8/HR+PTY81cdVZAxsT2XzYa6DURuiSS3NZffk3/nrqgbcGlPZlZlEFW4hcGh27dpXn31VW6//XZuueUWAN59911++uknPvroIx599NHj2n/00UfU1tayZcsW1Go1AFFRUWfWa6FHLIoL58HdObyRVcRdI4bOhTOzvpxaYyvTA49P+lZrbKXNasNss5Hg5U6szp/b4qazsmAP3+XvIcDVk7viZzpyjADMCxuFyWrhs5wdtFpMDNP7c+/oOSLHyCBTa6pl7I6xlBhLuNz/cr4Z+02Pn0PiyKous2wlry2PP+z/A1pJy89JP5OsS8YsW7G2L/k9ur0gDGTdCkZMJhMpKSk89thjjm2SJDF37ly2bt3a6THff/89U6dO5e6772blypX4+/tz3XXX8cgjj6BUdv5hbTQaMRqPZB1sbGzsTjeFU6SSJKb46tlc3UC9yYSX5vRzIgwk8d7BvDfzuk73PTB2Lsvzy4F9TPf3AuxVfJP9I7p8PoVCwUVRY7koamwv9FboD7JaspiwcwLN1mYei3yMF4e92CvnCXP3Zk+tfaTyg/yvea58EYHqQDKmZBCqtY+UpFQXOvKPhHsMzcnnwuDTrds01dXVWK1WAgM7ZqoMDAykvLy802Py8vL45ptvsFqt/PzzzyxZsoRXXnmF559/vsvzLFu2DL1e7/gJDx8639r72pIx9mWtz6QfcnJP+o/f22vSzAsWNWkEWFOzhjHbx9BibeGjkR/1WiACMD0oFgUKSuUMnii9HbNs5qeknxyByKGmar7JS3W0nxk0rNf6Igh9qddX08iyTEBAAO+//z5KpZLk5GRKSkp4+eWXWbp0aafHPPbYYyxevNjxe2NjowhIesm8ED88VEq+yC/n7xPinN2dfiGtrgkJiPRwPWlbYXB7v+R97sy8E7VCzdrxa5ntPbtXz+erdcfPq5H3K19EgYKFqqX8N7uAFM8mylsbOdhY5Wg70iuQ4Z1kDhaEgahbwYifnx9KpZKKiooO2ysqKggKCur0mODgYNRqdYdbMqNGjaK8vByTyYSmk1sDLi4uuLi4dKdrwhm4MNSPLwsq2FfXRIK3p7O743R5zW14a8Sq96HuoZyH+Fvh39ApdaROSiXWLbbXz7mxbiN/qbwbqT0Q8ZdiKGqpo6ilrkO7aE9f7hg587jMwYIwUHXrNo1GoyE5OZk1a9Y4tsmyzJo1a5g6dWqnx0yfPp2DBw92WD6anZ1NcHBwp4GI0PeeT7R/yD6ZnneSlkNDjdFMhLv25A2FQUmWZS7Zcwl/K/wbES4RFEwr6JNAZFPdJuakzkGhULA5eTMPj7yeCI+OK3UCXD25MmY8D4ydi7tafH4Kg0e3v/4tXryYm266iQkTJjBp0iRee+01WlpaHKtrbrzxRkJDQ1m2bBkAd911F2+99Rb33Xcf99xzDzk5Obz44ovce++9PftKhNMW6+lGqKuLIwX6UFZvMrWvpPFwdlcEJzDJJibunEh6czqTdZPZlLwJldT7o2Sb6jYxO3U2CoWCLclbmKifCMDUwBhqjS20mE1olWp8te5IYjREGIS6/Vd29dVXU1VVxVNPPUV5eTlJSUn88ssvjkmthYWFHQpEhYeH8+uvv3L//fczduxYQkNDue+++3jkkUd67lUIZ+ymmGBe3J/PNwUVXBEZePIDBqnfymoBHCtphKGj2lTNmO1jKDeVc13gdXye8HmfnLerQOQwHxd3fFzc+6QvguAsCpvN1nnpx36ksbERvV5PQ0MDOp3O2d0ZlJpNFnRfryfZR8fO+ZOc3R2nWbQzk7ezi8m/eLqYwDqE7G/ez+Sdk2mRW1gavZSnY57uk/NuqtvE7N2zUaBgU/ImJusn98l5BaGvnOr1W8zSEwDw0KgY6+VBam0jBosFrWpovjXSasVKmqHmf9X/46L0i5BtMp/Ff8b1wdf3yXk3121mzu45IhARBEQwIhzlwVGR3LB1P3/LKOTJMcdnJx0K8lra8BIraYaMt4re4t7se9EoNKwfv57p3tN79XwbSnPYUJZDblse/zU+gws6PhzxxQkDkZSqQlYWpFNjaCbA1ZPLopMY43OknIbNZuOHgr1sLD9Im9VMrM6P64ZNJNBVjCILA8dpFcoTBqfrogJxkRR8cLDU2V1xmmqDWEkzVNyXfR/3ZN+DXqUna2pWrwciAF4urgzzs/Ef4wMYFU08G/ouGwrqKG2p77R9bmMVH2RuZnpQDE+On0+SbxjvHNhIyVHtfy3OYG1pFtcPn8SjSefhIql4Y986zLK111+PIPQUEYwIDpIkcXagDwWtBopaDM7uTp9rMJnFSpohQJZlLth9AW8UvUG0Npqi6UVEukb2ybmbpQJuyr0Em0JmQ/I6Fo+8EhelirymzleyrSnJYrRPMPPC4gl203NxVCIRHt6sL80G7KMia0oyuSAigSTfMMLcvbklbir1xjbSqov65DUJQk8QwYjQwbOJ9tszS/bkOrknfW9V+0qaaX56J/dE6C0Gi4ExO8bwv9r/MUM/g4NTD+Kh6pvgc2vDVmbvng3A78m/M1k3mZ2V+ZisFmI8/To9Jq+pmpFeHRNKxnsHk9dUDUC1oYVGs4FRR7VxVWmI9vRztBGEgUDcHBc6mOCrx0ej4rviSmC0s7vTpzZU2rNcni9q0gxK5cZyErcnUmmu5Obgm/k4/uM+O/fWhq3MSpkFwIr4X/jPviL+JefjolRxZ/xMQtw7D4AbTQZ06o63DXVqLQ0m+8hlo7nNvk1zTBvNkTaCMBCIYEQ4zlWRgbybU8LvFXXMChw6VUHT6pqRgGhPN2d3RehCraGFZouxwzYPlQs+2hPn4UhrSmParmm0yW28EPMCj0c/3pvd7ODoQGT9uPVM1k9hkr6VNouZ1OpCPsnaxgNj53YZkAjCUCCCEeE4z4yN5d2cEp7em8fawGRnd6fP5DW3ipU0/VitoYUlu37AYpM7bFcpJJ6bsLDLgOT7yu+5bO9l2LCxPGE5VwVe1RfdBWBbw7YOgcjhSbIBrvYaUJGePuQ317C2NIs/DD8+v49Oo6XR3HGEo9FsQN8+EqJT25egN5oM6DVHlqM3mgyEe3j1+OsRhN4i5owIxwnQahjm4crGyvoONYUGu2qjmXA3sZKmv2q2GI8LRAAsNvm40ZLD/l7wdy7eezFqSc22Cdv6NBDZ3rCdmSkzgY6ByLFsNrB0sfIlxtOPzPryDtsy6sodc0z8tO7o1NoObdosZg41VXc5D0UQ+iMRjAidumt4GBabjX/mDo1lvo0mCybZRoKXSLs9WNyVcReLDy7GR+VD9tTs49Ks96btDduZkTIDgHXj1jkCkRWH0shuqKTa0ExJS3377xVMCogC4OOsLaw4lOZ4nnNC49hfV8aq4gzKWxv4oSCdguZaZoeMAEChUHBO6Eh+LtrHnppiSlrq+Th7K14uriT5hffZ6xWEMyXGpIVO3TsynIfTcng9s5D/Gx7m7O70uiMrabyc2xHhjMmyzHlp57Gmbg3DXYeTNikNN9XpzwM6dp7K4TkqNpuNWw7cwnSv6dweertj/+FAxGazsX78emZ4z3DsazIb+CRrKw2mNlxVakLdvbg3YQ7x3sH2cxlbUXCkEF6szp/b4qazsmAP3+XvIcDVk7viZxLq7uVoMy9sFCarhc9ydtBqMTFM78+9o+eglpSn/ZqFvtfV+2yoEMGI0CmVJDHFV8/m6gbqTSa8NIO7XPnvlfZgZF6IWEkzkLVaWhm3cxzZrdmc7X02q5JWdSjc2V2dzVM5PEel1HKIT8s/5dPyTzHKRhaFL2Jnw84uAxGAG0dMOeH5Hhg797htyf4RJPtHdHmMQqHgoqixXBQ1tpuvTugvTvQ+GyoBibhNI3TpiTHRADyTfsjJPel9u9tX0sSKlTT9VpvFfML9xYZiIrZEkN2aze0ht7Nm/JozCkSg83kqh+eofF35NUrsow/3ZN/DQzkPMS1lWpeBiCB05UTvs6FCBCNCl+aH+OGuUvJFfvnJGw9wuc1t6MVKmn5rbUkWb+xb1+X+VZW/M3zrcGrMNbw87GXeH/V+r/fpi/IvsHJk4unfCv+G1WYVgYggnAYRjAgntDDUj0qjmX11Tc7uSq+qNprESpp+6rfiDJbnpXS6kgYgz7qD2w9djkk2s2LMCh6MfLDX+5TdmsnBtoPHbbdhI7U5tdfPLwiDjQhGhBN6PjEWgCXpeU7uSe9pEitp+q2qtib+e9Tqkgl+Edw+cjoPjT2Xa2MnkCetYrX1dSRU3Or+Mhf5X9wn/fqpdqXjFs2x7su+jzeK3uiTfggDn1WWOVBX1um+k92aHExEMCKcUKynGyGuGn4t67yQ12CwusI+eXWqqEnT72woO4gNGwDnho7k9lEzmOAfyTC9P7vNP7Ha8AluCh3Xql5FMgcel5PjTLWYO79nv7Lm2w63aI51X/Z9bG3Y2qN9EQYWi2xhZdVKmi3NXbZpMLXxlz2/siJ/T6f73zmwkYMNVb3VxX5FBCPCSd0cE0KbVebbgkpnd6VXbKiw16SZJ2rS9Dt7aosBkBQK5oXFA/alu3dk3MHig4uZ7zufX0fvwE2yly1IqynukfMaLGb+lb2dN/etP25frVzMIcPxhSSVCvtISaQ2ksejHifRI7FH+iIMTJsbNnNJ+iWEbQrj+UPP02Bp6LDfYDXz2t61FDbXOba5qzR4H5VJt81q4o396yhpqe+rbjuNCEaEk3osPgoF8JcD+c7uSq/YXdeEBAzXids0/U2L2QSAj4sbnhotbdY2pqdM55+l/+SRiEf4KfEn4nQhjvatFtMZn9NgMfPq3jVsrsjF2j4qc7R91l8cjw/fqonQRvBQxEOkTkrl0LRDvBD7Am5KsTJrKLPYLAA0WBtYmreUsE1hLM1bSq3ZPhL7e9lBSlvtAYqPixv3JczhlSmX85fJl/J08gLi9IEAGK2WDrcqByuxfEA4KQ+NijFeHqTWNmKwWNCqBtfbJrepDZ16cL2mwcJVpabFYqTe2EZuSz7X7L+Sfc37eCrqKZ6JfQaAktYj3zhdleozPue3h3ZT0Gy/YLgoVUz0iyLcw4s2i4n1VWlk1q8HQIuOW0Nu4Y+hNzLOcxwKheIEzyoMNdJR3/VlZJqtzTx/6HleLniZe8PvxVgzGtqD2btHn0WY+5GipMFuehaNPoundv1InamV/XWlVBua8dN69PXL6DPiE1g4JQ+MiuCmrQd4JaPIkX9ksKgymojTiW+x/VGCdzC/lO4m3fIj/9p+J14aTzZP2Mx43XgAZJvM6uLMI+19Qrp6qlPSbDaytdKeV8dFUvFI4nmObKelxlLuK34WD4WOZOkaRkgzmaIa5uiLMDDIsowFCxbZgtlmxmwzY7HZH1tkCxYsmGQTVpu1w3YrVsyy2X6szeJoa5Htvx/eb8WK1WalwryRSV5Q0AaVRrBhD0ra5DZeKngJUOBLJGe5X8ymJglro4Um2094qgu53n8zGqWK6UEx/Fi4DxuQ01ApghFB+ENUEHdsz+CfB0sGVTDS3L6SZrR+8P6RDyQ2m43ctlw2N2xmU/0m1tSu5ZDZvpJLiZrXAr8mVjsKgKLmOlYW7CGn0T6XydfFnTFnGIyk1RRhbi9aNz0otkMgMid1Dm1yG9snbeO99HQMVgs7KvK5JmY8VpsVM/aLlhnzkYuWbOlwATt6+9EXsqN/Dl8EO/v98GOrzYoV6/Hb2rc7HneyTbbJWGwWZOTjHlux77farEe2HfX4VP5rs9kcv9vo+NiG7cjj9naHHzv2I4MNbEf/r30/HNl++P1y9HbH+6iT22t97T/jYWGo/bFJhlIDHGq1BydFbTYK2mwUtR1ileE1Gsrh0WEwUgNGGaxWC0qlCh+XI7eOjVaLk15J3xDBiHBKJEliTqAPv5TVUNxqIGyQ5ORYU3G4Jo1YSeMsxYZillcsZ1P9Jn6v/51ai/3fRKVQOe67A5wt3cOO8ip2lK9ALSkdQQOAhII/DJ+EpDizaXB1xlbH45Fe9nv2rdZWojZHYbFZcFG4MHr7qA7HvLX+jE7ZLxxdD+fwY8d/FUd+d/yvi21HP5aQjnssKSRUCpX9sXRk29H7D/9+9HalQml/rDjyWFJIKFE62ikVyg7bDrc7vF2lUDn2KxXtP0c/VijtbbC3VUr2/SqFyrFfrVDbj5Hat7fvP/zjaCMpsfIysu13JAVoJIhygwhXsNpApYDDd/UOtdonb6olaDOdTZLmc5RK+6X5YOORlTS6oya2DkYiGBFO2bOJMfxSVsOSPbl8PHW0s7vTI9YfXkkjatI4zZLcJXxS/gkSkv1bcbujA5FwdSzRJDt+PzoQcVOpuTVumqPY3Jk4urhcU/uyXjelG1cEXEGMawz+an/Sm9PZUX2QNosFBQqmBcaiVqgdF7xjL3RHbzt8ATt2u1qh7vDfDo9RopbUjvYahcZ+MURl3374v+0XRLVCjUpSoUKFRtI49itF4bw+tb2pFEnxe4dtksL+A2BrH7yJdgOrNYAEl1W4SUfqC5W01LOjMh+wz4Ua3QPv7/5MBCPCKZvoq8dHo2JFUeWgCUZ21zWhAEaIlTRO81TMU3xX/R2NlsYu2zw3fAkLvS/m9/KDZNaXY7Ra8FRrSfaPYLJ/FFrVmU9cBXuV3MM2lh9kWmAMkkLBFwlfOLbnNVbz15rfQA3h7t48OXp+j5xbGFyM5mhaJdB18tY8HIjINiU7Cq9mX/kCpga2MjWgAhelmvTaYlaXZDmyDk8PisVFObgv14P71Qk97qrIQN7NKeH3ijpmBXqf/IB+LrepDb1YSeNU0a7RrBy7knN2n4PcScp3X7Uv1wReg4vkwiVRiUDv5e8YpvMnxE1PaWsD+U01fJazg8uik/BQu9jnszRW8WHWFkf7WcHDe60vgnPUGlo6FKjzULmccuXcBlMVX1T/AZNiPaM8Tfiq7YHHsQutFArwYDapRc+xt7wQgC0VeWypOD7TdZSHDxdFDv6KzOJTWOiWZ8bG8m5OCc/szWNNYPLJD+jnqowmRohKvU43y3sWk3ST2NKwpcN2CYn7wu/DRXLpk34oFAoujx7HW/s3YMPG5opcdlTlE+nhQ7PZSHnbkdGbMHcvpgRE9Um/hL5Ra2hhya4fOtRBUikknpuwsMuApMZUwn+q/4Cs2Ey8zswkP/vqmexmdzylJBK8Nh9zhIJo6Qt8VNcwItaGXuPNr8X7MRwzQVWBgon+kVw/bOKgHxUBEYwI3RSg1RDr4crGynpkWT7jEu3O1GK2YJRtxHuJlTTOZLAYmJYyjd3Nu/FWelNvrXeshlApVNwZemef9ifBJ4Rb4qbwafZ2rDYZs2ztMJEQ7Ldn7kmYjWYIXCSGkmaL8biCjBabTLPFiA9HgpEKYz5fVl+PQrmD0Z4WpvpBhREymzyI1NzMfN3fme+potG6gRzrHHCs7nFhpOp33KVJgD34vSBiNGeHjGBHVQFFzbXI2PB18WBKYFSH1TSDnfhLErrtT8PDeGB3Dv/MLeX/hoc5uzunbY2oSeN0BW0FTNgxiRpLFTNVNzJaOo9fFS9RaNkPwI3BN+Kv8T/uuKz6Cr7OS6WstQFvFzcuiEhgWmBMhzbrSrNZVZxBg6mNMA9vrolNJtrT75T6NTkgmmhPP9aXZbOtIp+W9mH7KA8fZgUPZ1JAVIfJrsLgV9SWxdc1N6BWpZLgaWWGP1QYIKNJR6zmds73egnJ0/7lzCJXk2W6nGZ+B8fqJA/iVOtwlyYc99xalZpZwcP68uX0OyIYEbrt3pHhPJyWw+uZhQM6GNlQUQ/AvGAf53ZkiPqt5jcW7rkIbBK3eC3hyRH34KnWcmPTeK7NuoACYz73h99/3HHVhmbe2r+eWcHD+ePIaWTWl/Pv7O3oNVpGe9vzjOysKuCbvFSuGzaRaE8/1pRm8sa+dTyTvBCd5tSWpQe4enJVTDJXxSRjslpQShLKM1w6LAwsRgrx9HuXlc03MEYnc1YAlBigwaxFpzYw0vV6LtB95mgvyzIl8oNUym8AVtyZRrDyaYqti4lSfYK7NPBvbfcWEYwI3aaSJCb76tla3UC9yYSXRuPsLp2W1Fr7SpqRIuFZn/tr/l95LPcx3BR6/qhfxuvJR27F+GlH8bvnBnY27iTeI/64YzeU5eCn9eDKGHvm02A3PQcbqlhdkuUIRlaXZDIjKJbpQbEAXD9sEvtqS9lSkcv54d1fCSZuxwwdBnLRB7zPcH0JiTob7iooboMDjT4kaBdzjudCMq32oKLO9jnN8p/wkKZRZ/2WAuttWKlHRSDRqs/RSecAoFfudeZLGhDEX5hwWp4cE80F69J4dm8+ryaPcHZ3TsvB5lZRk6aPybLM1fuu5puqb/BV+3KL6xtM9I7jvYyN5DRU4qVx46zg4cwMHkaENqLT58hrrGakV1CHbfHewXyVlwqARbZS2FTL/LAjgYykUDDSK4i8xuree3HCgLW3eSM/1d2BpyaL2ybYcFNCYRtsq/GkvGYhfx72JhcH+WCzWciwTObIHBAl+ZbbACVG9qFAQ7D0PCGqJ/ihIJ0fC7/ocJ5AVx3PTriwy36kVBWysiCdGkMzAa6eXBadxBifUMd+m83GDwV72Vh+kDarmVidH9cNm0igq67n/0/pY+KTWDgt80P8cFcp+Ty/bMAGI1UGE8PFSpo+02xpZuLOiWS2ZjLeYzybkzfzwLbv2FCWw9ywkcwPH01+Uy3L81JQSRJTj5kDclij2XDcrRadRovBasZktdBqMSFjw7OTNuVtjdQZW/nvoTT215Vikq34az24acQUojy7TnzX23NUhL6X0rSKX+v+hJdLLmN1Ns4NhIJW2FKtp6L6Ulqazz3umAr5NdpsqUdtsWIkAwC9YiFRyi9QSUdGWkPc9Px5zNmO35UnKKaY21jFB5mbuSQ6kbE+oeyozOedAxt5Ytz5jrIEvxZnsLY0i5vjpuKndef7/HTe2LeOp5MvHPBzmMQNUOG0XRjqS6XBzP76Zmd3pdtaLe0rafRDZ7a6M2W1ZBG2KYzM1kxuDr6ZlMkpaFVabECEhw+XRiUR4eHDrOBhzAiKZUNZTq/0Q5ZlXt6zCqUkcU/CbJ5OXsCVMeNxV3V9q/HwHJU4r0CeHD+fc0Lj+Hf2dvbXlTraHJ6jsiAigSfGzSfM3Ys39q2j0WToldchnJ6tDd/zfGEM71ZIGFTnMS/oIAEuNvY3hFBR/yrZ+b+Sl/+P4wKRZrMRgy2HUusTnT6vhCdRqn91CETAPiKn17g6fjzUXc9XWlOSxWifYOaFxRPspufiqEQiPLxZX5oN2EdF1pRkckFEAkm+YYS5e3NL3FTqjW2kVRed4f8zzieCEeG0PTfWfj/+yT25Tu5J960tt6eBFytpet+KyhUkbE+g0drI23Fv83H8x459eo2WYLeO/wbBrvoONWKOpVNrj7vIN5oMaJVqNEoVHmoXJBQ0ddKmzWrG28WNm0dMIdrTDz+tB/Hewfi7enZ5vqPnqAS76ZkTEsd4v3BWl2Q52hw9RyXEXc/1wyahkVRsqRh4fxuDzfq6r3iuMJL3KhXgcjHzgw7hq7GxvzEcV/N/uFwvE2j4mZVZgRxq6vw23sdZm8g23oANa6f7ZVoosz593PbKtiYe3r6CJ3au5MPMzdQaWrrsZ15T57cf89r7VG1oodFsYNRRbVxVGqI9/RxtBjJxm0Y4bcN17oS4avi1rMbZXem2wzVpzgsWNWl605O5T/JC/gtoJS3rx61nuvf0Dvtjdf5UtHVMA1/R1njC/AoxOj/21ZZ22JZRX06Mzn5LRCUpifD0IaO+giS/cABkm43M+nKsssxYn9BO56h0RcxRGXhW1XzC1pYnCdKWMFYHF7hDbouCfQ2RzNG9ypXelzra/l52kP8V7Xf87qVxJdLDl1aLkdzGamRsRPqsxCxtP8EZZSrlN/GTb8dVsk+Qjvb04+YRUwl086TB1MaPBft4OX0VS8cv6LR8QaPJgO6YkROdWktDe1DdaG6zb+vk9mPDIBiBE8GIcEZuig5m2YECvi2o5PLIAGd355SlttekEQnPeocsyyzYs4Bfan8hWBNM6qRUglyCjms3N3Qkf93zGz8X7meCfwT5TTVsLD/IH4ZPcrRZcSiNelMrt8RNA+Cs4OGsL83m20O7mR4YQ2Z9BSlVhSxKOKvD836StZUoTx+iPH1ZU5KFSbZgtFj6fI6K0Dd+rH6XlNZnCHEtZ6wnzPeAvFYF+xtjONvzTZK9j68hZJVlfio8stLliuhxnBMa56j+XGNsZmXxU4wN+9xRT6braR82jOTgij0YSfAJcewJc/cm2tOPx3asZFd1ITPaV3kJR4hgRDgjj4+O5i8HCvjrgfwBFYwcbGpFpx7YE776q3pTPeN3jueQ4RAz9DNYN34dKqnzj5ooT1/uGjWLFflp/FS4Fz+tB1fFJDM5INrRpsHURu1Rt238tB4sGj2br/NSWVuShZeLGzeMmOxY1gsw0T+SZrOB7wvSaTQZCPPw5t7Rc3g5fbVjjgrY56uUttazoSyny2BE6J9kWWZF9Wvsbfsr4W6VJOhgvifktSg40DiCc/X/YKL32Sd8jr11pdSb7CMOY31COTdslGNfmy2DWunPJIb/hsHsTknjaIymkZwfNg0lXqgU3ijxRqnwRoUXSrxQKLq+pLqpNAS6elLV1tTpfp1GS6P5mFuLZgP69iBXp3a1bzMZ0Gtcj7QxGQj38Drh6xwIRDAyhBxbAAq6VwSqMx4aFWO8PEipbcRgsaBVDYy3VKXBxDCxkqbHpTWlMSNlBi3WFhaFLeLNuDdPesxY31DG+oZ2uf/muKnHbTs8mfRE5oTEMSckrsO2ruao7D7BBMCTzVGRFIou56joTzBhUeg+WZb5qvIvZBhfJdKthgQ9hOsht0Uis3EU5+vfY5LP9JM/Ubui5jrH4yntAbBFriPbMpc29uBCFLGqH3h7v5LC9rbXhF99WitXDFYzVYZmphwVSBwtxtOPzPpy5oaOdGzLqCsnpn1Flp/WHZ1aS2Z9OeEe9iKlbRYzh5qqOWsQZG8dGFcO4Yx1VgAKTl4E6lQ8MCqCm7Ye4JWMIp4YE33yA5ysTayk6RWflX3GTQduAuCTUZ9wU8hNTu7R8fp6jsqckIG57L0/scpWPqt4mjzT20S515HgDTHYA5CsxjFcoP+AST7Hp1g/FbbD916wJ3ME+8oYI9moCWKUai9KyRWNtMrRTj7qmBP5Ji+VsT6h+GjdaTC18UPBXqT24ncAH2dtwUvjxqXRSQCcExrH39JXs6o4gzE+IeysKqCgudZxy1KhUHBO6Eh+LtpHgKsnfloPVhak4+Xi6njfDWQiGBkiOisABZ0XgequP0QFcfv2DP6ZWzIggpF17Wngp/iKlTQ95f7s+3mt6DXcJXd+T/6d8brxzu5Sp/p6jsqxuUiEU2ORLXxS/hhF5n8S495Agi/EyZDXqiSncRwX6D9iks+YMz6Pv+uROWN7akpI9A1DklQMU/5MtnUWtfKnaCw3OVar6NRaNKc4KlJnbOWDrC20mI14qF0YpvPn0aTzHHOLao2tKDgyASVW589tcdNZWbCH7/L3EODqyV3xMx05RgDmhY3CZLXwWc4OWi0mhun9uXf0nAGfYwREMCL0AEmSODvQh1/KaihuNRDm1r+Hpte1r6SZFyJW0pwpi2zh7NSz2diwkUhtJKkTU/HR9N9aP309R0XXxZC8cDyj1chHZQ9Sbv2UYR5NjPOD0TIcalVysHESF3h9zBSfuJM/UTeM8wvny9xdGKwWtlbmMdE/klHeQXgqZ+Iqj6NQvpvUvEDHaMi0oBgUJ0hcdrTbR8044f4Hxs49bluyfwTJ/p1nHgb76MhFUWO5KGrsKfVhIFHYbKc45uREjY2N6PV6Ghoa0OkGftpbZyhsruWF3b90uu+JcecT4XFmF5CdNQ1M+mUnN8cE8/HU7tf+6EvnrE5hXUUdlmvPRpJEqp3TVWmqZNz2cZSaSjnP5zz+l/g/8f+n0C2tllY+KPsz1fIXxHm2MNIDTDLktajQMJUF+k9xU/XuaOuK/DR+KTrg+D3RJ5RR3kEY2Ia/782UN43gh4yluChVPJ284IS39ITjner1W4yMCD1ioq8eH42KFUWV/T4YObySRlw4T9/Whq2cnXo2BtnAY5GP8eKwF53dJWGAaLI08X7p3TTyLXEerUwPBKMMeS1qCptnMV/3CVN9+64a+EURYylraWBPbQkAe2pL2h+rWagZQZBnNiGeOVwecbsIRHqR+DQeAsyylbVHZYs8VlFTbY+c58qIQBrMVjZV1p28sRNVGsyE9vNbSf3Ze8XvMX3XdMw2M98kfCMCEeGk6kx1vFR4NUsLXfmpScfsoH9znn8rsk1DSct8xqtK+IOviUt9VqNV9V0gAqCUJP4vfiaXRiXidcxttdU59wEKLhr5foe8IULPEyMjg5zJauHN/evJbqjsss1nB3firtGSdIbfRp5NjOW9gyUsTc9jzdzkM3qu3mKwWDDIslhJc5puO3AbH5Z9iE6pY9uEbYzyGHXyg4QhqcpUxfuld2CS/sdoTyPnBEGbFfJbXahoOZ+5nu8z3bd/5CZSKiTODx/NuWGjyK6vpM7UikohEaPzo0XaTbXtAyqtbxOgvNvZXR20RDAyyH17KM0RiEgoGO0dTJSnLy0WE3tqiqkxtiBj44PMzTybfOEZLfEN0GqI9XBlY2U9siz3y9sg6yrrAbGSprtMsolpu6aR0pRCnFscuybuwkMlstcKHRW3FfNRxe1YpbWM0Zk4PwRarVDQqqWmdSFn695jhqu3s7vZJaVCYpR3x0zBPvI71Fq+oNj6MH6K/0PqIoGfcGb639VC6DEtZiOb2wt1qSUlDyedy6KE2VwYOYarY5N5buJCkv3sM7fNsrVHKqXeNTwMs83GB7mlJ2/sBEdq0vTfFR/9TaGhkLBNYaQ0pXCp/6UcmHxABCKCQ35rPksPzeXpQg07jOEsCPmFc/xMGKyuNLT9gakuDfzBt43zvL5CJfXfQKQrkqQiVPk3bLRSaL3T2d0ZtEQwMoilVBdilu1VJmcGxRLdnsnPaLRvUyokro5NRtleh2FLRd4Zn/O+keEoFfBaZuEZP1dvSKlpRAGMFrdpTsmamjUM3zKcKnMVL8S8wH/H/rdfjngJfSu7JZsn82bxdKGaNHM0F4WuYY6fmVarOy2GPzJN28QffFs5W/9vVNLAXwEZoLwLNRHU2D7GJJc5uzuDkhhvGsSqjypXPcbHnm67rs5MaOgGbrghmPfeG41e40qkhw95TdU0mg2YZesZJdBRSRKTffVsrW6g3mTCS6M549fRk3KaWvEUK2lOySsFr/DQwYdQKVT8nPgz8/1OnH5dGNz2Ne/j88rb0ap3Ml5v5dIwaLJAcZsHRuMNzHT/G5Jb/yux8PiOldQYW47bflbwcK4bNrHTY1KqCllZkE6NoZkAV08ui04i2us/ZFumk2e5gjj1Jn4o2MvG8oO0Wc3E6vy4bthEAl0HfuDlLCIYGcSURyXnabOYAfj552ra2mQ+/7ycxx+PITLSFYPV7GgnnWJCnxN5IiGaBevTeG5vPq8k96902JUGM9EeYiXNyVyz9xqWVy7HR+XDrom7iHbr/5l1hZ6X2rSL5VV34q5OI1lv5YowaDRDiUFHkPRHZrm9iNTPV6Y9ljQPmSPptEpbGnht31rHLepj5TZW8UHmZi6JTmSsTyg7KvN558BGnhh3Pu7qGbSwiV9Kv2ZtqYKb46bip3Xn+/x03ti3jqeTLxwU2VCdQXw9HMQiPY9kGN1amYfZbOWxx7I57zwf/PzU3HDDXnLrqyltbQAg3N3bccvmTFwQ6oe7SuLz/PIzfq6eJFbSnFyrpZWEbQksr1xOkkcSJdNLRCAyxGxr2MhDuYk8V6SknIlcFZbCDB8r9WYvJPOjnOVq5A++DUz0eBVJ6t+BCICnRote4+r4Sa8twV/rwQh95yt51pRkMdonmHlh8QS76bk4KpEID2/Wl2YTo/oabBJtqpe5ICKBJN8wwty9uSVuKvXGNtJOUHBRODERjAxiY3xCHOvm99aWctHNWygqMvLgg9H8+99j2Lixnkuv38HhHLyzerDy44WhflQYTOyvb+6x5zxTG9pX0kz2EytpOpPTmkPo5lD2t+znhqAb2D15N1pV/7/YCGduQ91qHjgYz/PFShqUs7gmPJ1pPjL1Jh80lqXMdjVxvW8d49yXIUn969Zrd1hkK9sr85kWGNtlWve8pmpGenVcURPvHUxeUzUaKQit9Y9Eeu8iVP+rY7+rSkO0p5+jho3QfSIYGcSUComLIu01DCxG+G15K24+MofCMtim24XfSDN7f1bx1Q1eWPP0jhLaPeG5sbEALNmT22PPeabWHq5JEyxq0hzr+8rvid8WT4OlgdeHv86/Rv/L2V0SetlvNT+y+GAcLxRLGNXncl1EBlO8ZGpNfrhZlzHH1cx1vjWMcXsaSVI7u7s9Iq2mmDaLiWmBXX/WNZoM6NQdg3CdWkuDyQCAxvwslc0xtGmWIMuWI200R9oI3SeCkUFuelAsF0cmsuUNd2Srgsl/aialupCDjVWMv9FeDKyhUMmHN6u59qp9ZGUdP9HrdAzXuRPsquGXspoeeb6ekFrbhAJIELdpOngm7xku3nsxSpSsH7+eeyPudXaXhF7yfdXX/PlgLC8WSyi1C7k+IpuJXjZqjQHorK9wtpuVa32qGOX66KDMp7G5PJfRPsF4uZz+RFtJoWRrwQ0oFM0UWu/owd4NbSIYGYSamixYrUcmbJ0dEMfB/7mi84O4845MVo0d5dL+yD5cuXJlFfHxm7n99v2UlJx5hH9zdDBtVpkVRV1nf+1LOY2teKrESprDZFnmwrQLefrQ0wRqAsmblscs71nO7pbQg2RZ5uuKz7j3YCTLihV4uF3FDRF5TPCyUW0Ixtv2NnPdrFzjW8Fw18WD+m+jxtBCRn0FM4JOfDtap9HSaO74+ddoNqDX2EdLdGpXKppHYLXEUmP7FJNsz6nUaDrSRui+03rnvf3220RFRaHVapk8eTI7duw4peO+/PJLFAoFl1xyyemcVjhFI0ZsYsSITXz+eRlWq41Fi7KwWODdN8bw92lX8PyEi/jrpEt4c+GFaDRH7ptarTZkGT7+uJSYmI08/HA2dXXmE5zpxB4fHY0CWLYv/8xfVA+oMJoIcXM5ecMhoNHSyIhtI/ip5iem6qZSPL2YEK2ovTEYyLLMF2X/5J6cMF4uU+LveQM3RRQyXg/VxjD8+Sdz3axc7VtKjMufBnUAcrQtFbl4ql0Yc5IaMzGefmTWd5x8n1FXTkx7niY/rTs6tZa6upcAmTzLFbRZzBxqqna0Ebqv2+/C5cuXs3jxYpYuXUpqaiqJiYnMmzePysoTf/vNz8/nwQcfZObMmafdWeHU1NSYyctr4w9/2MuIEZv4+OMSgoLUXHttMFqlGn9XD7xc3FAqJWJjjx+utFptmEw2Xn45n2HDNtHUZOnkLCfnoVGR4OVOSm0jJot8pi/rjJgsMgarWEkDkN6UTuimUHLbcrkz9E62TNyCahAOyQ8lsizzUcnr3JMTzN/KlITq7+DmyBLG6qDaEEkwn3Guu5WrfIqI0Nw2ZAKQw2SbjS0VeUwNjDluxeDHWVtYcSjN8fs5oXHsrytjVXEG5a0N/FCQTkFzLbND7GkKFAoF54SO5JdCK0bDOTTbtvFZ7md4ubiS5Bfely9rUOn2O/LVV1/l9ttv55ZbbiE+Pp53330XNzc3Pvrooy6PsVqtXH/99TzzzDPExMScUYeFztUaWihsrqWwudaxOgYgL68NWQZQ8OWXZR1u3wAkJHjQ2efS4Ynml18egIfH6a+bf2BUBDLwSmbBaT9HT9jQXkl4su/QTkr0n/L/MH7HeFqtrXw48kPeGfmOs7s0oBz9d1bYXEutoWfmWJ0Oi2zh3eKXWHQwkFfKlQzz/jM3R5aToFNQY4ghjOXM97RxhU8+IZrrh1wAcrTM+nJqja1MDzz++lNrbKXB1Ob4PVbnz21x09lYfpDnUv9HanURd8XPJNTdy9FmXtgo5gTH8X3mLbSa9YT4vs69o+eIHCNnoFtfh0wmEykpKTz22GOObZIkMXfuXLZu3drlcc8++ywBAQH88Y9/ZOPGjSc9j9FoxGg0On5vbGzsTjeHnFpDC0t2/YDFZh99sNp8OTwP5LDKShPXXruXpUtzeeutUZx7rn1FyciR7kiSAlk+EqQoFKDTqfj449FcemngGfXthqhg7tieyXsHS3gswXn5KtZW1AJw7hBeSfNg9oO8UvQKbpIb68evZ6K+8+yTQueO/TsDUCkknpuw8IwKTHaH0Wrk3ZK/kmN8g2j3Gib7wkQllBsU1BqHE695iWTPi/ukLwNJvHcw7828rtN9D4yde9y2ZP8Ikv07T4oG9tGRi6LGclHUWArMG6nWvAfKT4F7eqrLQ063gpHq6mqsViuBgR0vUIGBgWRmZnZ6zKZNm/jwww9JS0s75fMsW7aMZ555pjtdG7J+KEjnx8J9J20nt39+Zme38sxfM9noXUeNoZlyFx0WS8e3gc0Gf3xBy5bgzazZfGapjiVJYk6gD7+W1VDcaiDMSdkaU9pX0iR6Db0Cb7IsM3f3XNbVryPcJZzUSan4acS97e5qthg7BCIAFptMs8WID70XjLRaWnm75Hnyze8Q617PZH+YoYQyg4Jaw0hmeL5Csk6k6neWcOVb1Fo+o8T6CP6K/xvQeVicqVfH7Zqamrjhhhv45z//iZ/fqX/4PfbYYzQ0NDh+iopEVrsT8dcec4G1dd4O4MIrvIl7qJDpQTE8OX4+08basxBKEqhUCl58MRZ3Hxsf/62eiwPH82jSebhIKt7Yt85RdK+7nku0D40+tefMC/GdruymVjyG4EqaalM1kVsiWVe/jnO8zyF/Wr4IRAaAZkszLx66n7tz9Lxf5c70wGXcGlHPcHeJOuMYhklruFAnc5H3AXxUIhBxJklSEaZ8FRttFFr/z9ndGbC6NTLi5+eHUqmkoqKiw/aKigqCgoKOa5+bm0t+fj4LFy50bJPbv6KrVCqysrKIjY097jgXFxdcXMSqh1PVVSbBw5RKUCoVvP32KKzTDmG22VMdA/zfnCQeUa8hIFzJLysmM2aMBwdC0vn8VjfuuayM3bujuCVuKg9u+y9p1UVMDIjqdv8m+urx0aj4b1EFH02NP52XeMYqDSYi3YfWsrvtDduZkzqHNrmNhyMe5q/D/+rsLgknUG+q57Wix6mSPyPOs4k5waCRoNQg0WBMYpr7ayTrxAKA/shfeQfl1hepsf2LEPl5NFKos7s04HTra6JGoyE5OZk1a9Y4tsmyzJo1a5g6depx7UeOHMnevXtJS0tz/Fx00UXMmTOHtLQ0wsPFzOOecKJJdJIE0dGu7No1hdtuC+NQc02HVMceHire+s2f2z4zMXasJ9WGFtxi2lhwuRdpaU0sW5bXI6mOr4wIpMFsZVP7RNK+ZLLItFllRuqGzkqaD0o+YNquaZhkE1+O/lIEIv1UtamaJ/Nu4+4cDz6r9eb80He4NbKJKFcljcbJjJC2slBnZb4+Bb1KBCL9WbRqOYeX+grd1+31fIsXL+amm25iwoQJTJo0iddee42WlhZuueUWAG688UZCQ0NZtmwZWq2WhISEDsd7eXkBHLdd6L4Ws5Gs+orj7mPbf7UBCq69Noh3343Hw8P+T91ZquORIzw4WGhP8tNots8q/+STBOLW7uDJJw9y2WUBZ5zq+Okx0bx3sISn0/NYPTf5tJ/ndGysal9J4zc0VtLcmXEn75W+h6fSky3JW0jwFH9r/UmpoZTXih6mhf8yWtfGwhCQFFBmUNJsmspUj9dI1vft34hw5jykyXgwi2Z+p0negKd0lrO7NKB0Oxi5+uqrqaqq4qmnnqK8vJykpCR++eUXx6TWwsLCIXdf3hlazCb+lr7aUXH3MOvhHGUKOOuRJm5dFOEIRLpDpZJYvTqZ8eO3MXv2LpaukZDOoKJvkJuWWA9Xfq+sR5blPn2PrClvX0kTNLhX0phkEzNTZrKjcQfDXYeza9IudKqhEYD1tpKWen4o2NvpvjpDCxEePic8vqCtgNeLH8Ko+IExOgOXR9iHpUsNKtpMM5jk8ToTXcb2Qs+FvhSt+pq9lmAOWa5nrKbY2d0ZUE4r09GiRYtYtGhRp/vWr19/wmM/+eST0zmlcIzlebscgYibSsPUgChC3bxY/kkd0bPLGHaugeiZFr7K202cV5BjjfyppDoG+whKUpI3jzwSxV/+ks+371u47Z7OS26fqruGh/Hg7hw+yC3ljuFhZ/Rc3ZFS2wTAOO/Bu5Km2FBM8o5kKs2VXOR3ESvGrBBfCnpISlUhH2VtOW4E8rAPsrZwl3IW8d7BHbbntubyRvEDWKT/kagzcU37StEygxqTaQ4T3P/ORBfnzKESeodGCsBPcQfVtnepsL5OoPI+Z3dpwBCfVgNQg6mNnVX2JGKuSjWPJ83jqtgJTPCJ4YePWjjn8TbmXWj/pmbDxvrSbMexp5rq+HCbZctGMDLelfXvKandf2YTQO8bGY5SAa9n9e3qqOymwV2TZn3deoZtGUaluZJnop9hZeLKQfta+1peYzUfZG12BCIukopRXkGM1Aeiah8pNMlW3jnwO2WtDRxoPsDdWfNZdFDDupZh/CFyJTeGmwh00WAxL2CsOouL9SZmev6KqyQCkcEoXPkmEu6UWB9Dlk3O7s6AIT6xBqDU6kLk9jSrga6e1BlbqTY088q/9hH/pyrcXZXcOHwKLu0pvjdX5GFrb3+qqY5/LtrHnppiSlrq+eOHFly9ZR68rpzW1tNLDQ+gkiQm+erJaGih0XT6z9NdFQYTIa6Dc3XWa4WvcXbq2cjI/JD4A0/FPOXsLg0qPxXudfytTQmI5uUpl/HnMWdz/9hzeGnyZYz1CaVazidd+RzPlfiy3TCaW6N/4YYwM/4aF2TLpSSqc7lYb2Sax49opRFOfkVCb7Mv9X0NG20UiKq+p0wUpBiA6o9KXaxRqvggawvNZiONvuDa6soTyWfj7+pBpKcP2Q2VWG0yRtmCVql2pDpeWbCH7/L3EODq2WmqY5PVwmc5O2i1mBim92fZi8NZdEse556bwubNk0+7708mRLNgfRrP7M3jleTe/2B2rKQZhDVprt93PV9UfIG3ypudE3cS63b8Mnnh9NUYWthfVwaAj4sbNw6fjLJ9xGl7w3ZeKXwKT5e1XDTaQoIOzDKUG7VguYgk7Uu4aCOd2X3BifyVt1FufYFa278JlZ9HI/XdbemBSgQjA5DmqPoH0wJjmBoYw4oVFVx2+R6+/TYRf1dPbDZbh6Dl6JoJ3Ul17DAGVn5Rz6pVtbz5ZgH33HN6H7QXhPrhrpL4PL+8T4KRTdX1wOCqSWOwGJi0axJ7W/Yyxn0M2yZsw011fMFD4eTKrM9hs1nRKkbgoohDqxiBUuEJQHFLnSN/4ET/KDY3bOLvRUvZ27KR3FYrWgV8mQwW2YUdpRPILr+ae+KvJcZNJJUTIFr1JVmWKeRarmCUZpuzu9PviWBkABqmOzKRdENZDpMDonnppXySkz257DL7qqbM+goq2+wTN2M8/Y6rVHk6fvxxPP7+67j//iwuusifyMjTuwBeEOLH14WV7K9vZnQvp2c/vJJmbvCJVzsMFLmtuUzcOZE6Sx3XBl7LFwlfOLtLA5bNJlNu/SsyHfP0qPDDRTESi0sEEYFlFFsPsLi0ioI8GY0CpnrD9aFeXO3/AnHaG/k6L5O09nlZcheTXIWhx77U9yya2UCTvB5Pabazu9SviTkjA9AIfQDB7XViDjXV8Phnm9m2rYHp072x2Wzsqy3lo6wtjvZnBQ/vkfNqNBI//zweqxXOOmvXaT/PC4n22wlL0nN7pF8ncnglTbK3Z6+fq7f9XP0zo7aNot5Sz6vDXhWByBlSKCT0ios49juZhWpabJuQ1V8wL3Idt8VW8NhwmSWxI9g39Z+sTWrhmYg64l3/hAJ39taWOI71PbY0gzCkxaq+AZQcslzv7K70eyIYGYAUCgVXxIxH0V6Z9+O/NAA2PC7O5/GdK3lz/3rH8t0YTz8m+vfcvevp0725++5wCgoM/OlPB07rOYbr3Al21fBLaU2P9asr2Y0tg6ImzfOHnmfBngVISKwet5r7I+93dpcGBW/llUDnk6ml9ioLDQYf9h38B2drfmC4621ICvuIoM1m46fCvVS3Z0CO9wrC20XcLhOOUEl++CnuwEwpFZbXnN2dfm1gf0IPYQk+IdwaNxW5VaIyQ4VvrJVqdS21xlZHm1idH3ePPssx6a6nvPXWKKKitLzzTjGbNp1eevebooNps8qsKKrs0b4dq3yAr6SRZZlL9lzCkrwlBKgDODjtIGf7nO3sbg14sizzedmnPHrwz1i7LCwpgWU636S/gsmq5z+5u3glfTXrSrNYXZLJX/b81qFi9rlho/qk78LAEq58CwkPSmSx1PdERDAygE0KiILv48Gm4Kw77alXVQqJEfoAbh85nQfGzsVD3TsX4vXrJ6BUwoIFqZhM3b9P/sToaBTAX/bn93jfDrPIh2vSDMxvq42WRkZuG8nK6pVM8pxE0YwiwrRiVv7pkmWZD0ve4fasMJ4tUeLneTN3RBUi28B2XEAi4ak4h3GuqzgnNNGxNbuhki9zU/g6L5X8piMje5dFJx2X9EwQACRJIlz5GjYMFFhvd3Z3+i0xgXWA+/rzavR6Fd8+eDGyzYaCk1fx7QmRkW689tpI7rknkwULUlm1akK3jvfQqEjwcmdXTSMmi4xG1fNx8abKegAm+ep7/Ll72/7m/UzdNZUmaxO3h9zO+6Ped3aXBiSLbOGfpW+wu/VlItzKmeoNSf5Qb4ZmcyhBmkfRqrzJl/9w1FESOsU8YlUrkBQuXBaVRLCbnl+K9lPRPin8sDB3LxZEJDDer+vVaYLgp/wjZdbn25f6viCW+nZCBCMD2A8/VNLQYOGee+zVj6U+CEKOtmhRBP/5TxmrV9fy6acl3HRT98pmPzAqgpu3ZvBKZgGPJUT3eP8cNWkG2Eqaryq+4rp912HDxnsj3+OOUJE4qTtMsol3i1/mgOE1otyrmeIDkwKgxgQt5igSXJ5inOtNSO72ANhqa0Ihq7FhBiT0igXEqL5GUthHFRUKhX0JfUA0BxurqGhrRIGCEHc9UR6+fRL8CwNfjOorMi2TyLVczijNdmd3p99R2GzHD1D2N42Njej1ehoaGtDpBk++iDM1btwW9uxppr7+bHQ658SVra0W/P3XYzbbKCycSVDQqaeMl2UZ1+XrCHF14dAlM3q8b/PX7uaXshqs1549YCawPpLzCC8VvoSr5Mq68euYrD/9BHNDSaullbdLXiDP+A4xHnVM8QY3JVQaFVjkYUx1fx4f6You3wcHzQtpsP2IXnEJMarlSApNH78CYSjIMs+h2bae4ao16KShMffrVK/fYmSkn/qhIL3D5DiAQFcdz064EIDqahNpac1MmaJ3BCIpVYWsLEinxtBMgKsnl0UnMcbnyGiFzWbjh4K9bCw/SJvVTKzOj+uGTSTQ9fQDPDc3FStWJDFvXiqzZ+8iM/PUgwpJkpgT6MOvZTWUtBoIdTuz2jfHym4aOCtpZFnmvLTzWFO3hlBNKKmTUwnQnFlhwsGu2dLMG0VLKLF8xHCPRqYFwNlKKDcoaDSNIsH9ZZI9Lzil5wpWLsVVTiJE+RQKhbqXey4MVbHKr9ljCSLf8gfGakqd3Z1+RQQj/ViIm54/jzkSPSuPGg5++GF7kqVly+w5RHIbq/ggczOXRCcy1ieUHZX5vHNgI0+MO9+R6v3X4gzWlmZxc9xU/LTufJ+fzhv71vF08oUdMrR213nn+XHjjcH8619lPPJINn/966lnVn1mTAy/ltWwZE8eH03t2cJh5W2mHg9wekOtqZZxO8ZRaCzkLK+zWD1uNSpJ/Gl2pt5Uzxslj1Fl/Yw4j2bODga1BKUGiUZTIgnur5Ksm93t53WXJuAudW/ekyB0l0ryw1/xf1TZ/kGF5VUCVYud3aV+Q9ym6ad+KEgnraaYJeM7/2bn4bEaV1clVVVzAHg/YxMm2cKi0bMdbf6S9ivh7t5cP3wSNpuNh7ev4NywUZzXvgSxzWLiwW3/5eYRU5gYEHVG/ZVlmbCw3ykvN7Fr12TGjz/1SaM+X6/HZoO6q2aftO2pssgy6v+sZWGoH9/PTuqx5+1puxp2cVbqWbTKrSwOX8wrI15xdpf6nWpTNW8WP0C97RtGebYyTm9fBlhqUOLKRKa6v4an6vRvZ9UZW/nvoTT215Vikq34az24acQUojx9uzwmq76Cr/NSKWttwNvFjQsiEpgWGNOhzbrSbFYVZ9BgaiPMw5trYpOJ9hSp4oc6WZbZY9Fjw0KSqgFJGty3BE/1+t3/x6+HsMq2Jh7evoIndq7kw8zN1LYnV/r881JaWmRuv/3IjOy8pmpGegV1OD7eO5i8pmoAqg0tNJoNjDqqjatKQ7Snn6PNmZAkiXXrJqBQwLnnpmKxnPpy3ysiAqg3W9hceXo5SzqzpaoBgEn9uCbNxyUfM3nXZIyykc/jPxeByFFKDaU8kXsVD+S5srLBnwtD/8X1Ya0EalQ0Gc9itHovF+stnKffekaBSIvZxMt7VqGUJO5JmM3TyQu4MmY87qquLxDVhmbe2r+eOK9Anhw/n3NC4/h39nb21x0Zdt9ZVcA3eaksiEjgiXHzCXP34o1962g0GU67r8LgYF/q+3r7Ut/bnN2dfkMEI/1UtKcfN4+Yyr0Js7lu2ESqDS28nL4Kg8XM888fQqmEp546sgKl0WRAp+54S0Kn1tLQ/uHXaLYXzdNpjmmjOdLmTMXFefD888OprTVz5ZV7Tvm4Z8fYv1EuTc/rkX4ArD5ckyaof66kuTvzbm7NvBU3pRupk1K5Lvg6Z3fJ6QoNhTyaezEP5WlZ1RzKZeFfc1WIAS+1hmbjPMaqs7nUy8xc3XrcpIQeOeevxQfwdnHj5hFTiPb0w0/rQbx3MP6uXZcP2FCWg5/WgytjxhPspmdOSBzj/cJZXZLlaLO6JJMZQbFMD4olxF3P9cMmoZFUbKno/RIIQv/np7wVDdHU2j7DJBc6uzv9grgx3U8l+IQ4Hoe5exPt6cdjO1by6/5cMjNbmDPHG622//3zPfZYNF9/Xc5331XxzTflXHFF0EmPCXLTEuPhyu+V9ciy3CMTTnfVNAL9b2TEIluYlTKLrY1bidHGkDIxBS+Nl7O75TS5rbm8V3YXCuV6xurMXBkOJhmK21xoMc5nivvrTNb2Xg6P9Jpi4r2DeS9jIzkNlXhp3DgreDgzg4d1eUxeY+ejkF/lpQJgka0UNtUyP+zIHChJoWCkVxB5jWc+CikMDjGq5e1Lfa9glGaHs7vjdGJkZIBwU2kIdPXk3TftQ8EvvdRxkqhOo3XUozms0WxA3z4SolO72rcdMwrSaDrSpqesXZuMVivxhz/so77+1NIf3zk8FLPNxkd5ZT3Sh6ymVtxVUr9aSVNqKCV8czhbG7eywHcBOVNzhmQgsr95Pw8fPIvH89WkGodxdfgqLgo0o1a4YjReS7KmjCu9DczyXIFG6t1kYlWGZjaU5RDg6sm9CXOYFTyc5XkpbK3oepSu0WzodITRYDVjslpoNhuRseHZ2SikWdymEezcpYl4KObQyk4a5DXO7o7T9Z9PauGEDFYzlW3NbPrOTHCwCxMmdJwgGuPpR2Z9eYdtGXXlxLRPmPPTuqNTazu0abOYOdRU7WjTU7y8NHz+eQJGo8ycOSmndMz9IyNQKuDvmT0zZFneZiRE239q0myq20Ts1ljKTeUsiV7Cj0k/9qtAqbelNqXyYO5klhSqyLYmcHXE78wPtCDb3LGa/8hklxqu8m5lmucXaKSTj6b1FBsQ4eHDpVFJRHj4MCt4GDOCYtlQltNnfRCGrljlV4CSAssNzu6K0w2dT8MB5pu8VLLrK6g2NJPbWMW7BzZSnCbRXKPg3nsj+DhrCysOpTnanxMax/66MlYVZ1De2sAPBekUNNcyO8Q+gqJQKDgndCQ/F+1jT00xJS31fJy9FS8XV5L8wnu8/5ddFsSllwaQltbECy+cfC6ISpKY5Ksno6GFRlPnVVRPlUWWabXKxOndz+h5esqbhW8yK3UWFpuF78Z8x7Mxzzq7S31iW8NmHjiYxDOFSkpsyVwbvoO5flaMVh0K871MdWniap9mJrl/gEpyztwevUZLsFvHwD7YVU/dUQUnj6VTazsdYdQq1WiUKjzULkgoaOpsFFLd/5eaC33HvtT3LsyUUW4Z2hPY+9+kAwGwLzf8IGsLLWYjHmoXhun8SX3dB5XKzIMPRvL6gVwUHMk7Eqvz57a46aws2MN3+XsIcPXkrviZjhwjAPPCRmGyWvgsZwetFhPD9P7cO3rOGeUYOZGvvx5LYOAGnnrqIJddFsCoUR4nbP9EQjQXrk/juX15vDz+1HOVHGtbtX0lzUQf588XuWn/Tfyr/F94qbzYPmE7I9xP/3UNBBvqVvF9zX14a7NI1stcFwENZqgweKNW/R8ztUuR+lHul1idPxVtjR22VbQ14uPSdSAbo/NjX23HhFUZ9eXE6OwjjCpJSYSnDxn1FY5AX7bZyKwvZ07I4P73F7ovTPk6NZZPKJWfJEC+Z9Av9e2KCEb6qdtHdcxkmpXVzB3ZW7jgAj9UKokHxs497phk/wiS/bu+x65QKLgoaiwXRY3t8f52RqmUWL06mfHjt3H22bsoKZl1wlsTC0L9cFdJ/PtQ+RkFI46VNE6sSWOwGJiaMpW05jTi3ePZOWEnbqqBWT34ZH6r+YHf6hfj65LLBC8b10VAnQmqTH5Equ5jnOvDSO798wN2buhI/rrnN34u3M8E/wjym2rYWH6QPwyf5Giz4lAa9aZWbombBsBZwcNZX5rNt4d2Mz0whsz6ClKqClmUcFaH5/0kaytRnj5EefqypiQLk2w5LheJINiX+r5JgfUWCqy3Ei195uwuOYUIRgaIBx+0Z1x95ZWB9c0qKUnHo49Gs2zZIW68cT+ffTbmhO0vCPHj68JKDjQ0E68/8UhKV3a2r6SZ4qSVNPlt+UzYMYEaSw1XBVzFlwlfDrpiaj9Uf8mGxkcJcClkopeNa8Oh2gjVxkCilI8wzu0+JI/+fxc4ytOXu0bNYkV+Gj8V7sVP68FVMclMDjiybL7B1EbtUbdt/LQeLBo9m6/zUllbkoWXixs3jJjMaO8jK+Am+kfSbDbwfUE6jSYDYR7e3Dt6DjqNa5++PmFg8FPeTJn1OWptXxAqv9jrE7f7I5GBdQCwWGTc3NYQGurCoUOznN2d0zJq1GYyM1v45ZfxzJvX9YTZrIYWRv64lcvC/fl2VuJpnWvYys2UtxlpvqbvC1H9WvMrC/cs5P/bu+/4qKr8/+Ove6en90pCSOgdQpEmKigKFkRWd1VE113Xr7r6k13Xgopr72vXVXfVXV1R7AVRuqL00KQEEkgC6X0yk0y95/fHhIFAKIEkk4TzfDzy2M2dM5PPvYbMe849xSM8PNXzKe7qfle719AWNE3js/J/s9b+EAmWQkaEQ4geSh1Q607mrJB5dDfceEYNypWk1mTXNrDLM5IgRtDPuD7Q5bQauVFeF/L88/m43YK77koLdCmnbOXKEXTr9iMzZmymtPQcQkKa/9XrEx5MotnIoqLKU/5ZJQ1OEi3tP5PmibwnmJs7F4Ni4Puh33N+9PntXkNr0jSNj8peJav+cVKCSsgMh99GQpFDobghlXGhT5AZ9rtAlylJXUKwOoJQ5TzqxDJqtaWEq5MCXVK7kh9jOoEXXyzAZFK4+eZuJ27cQcXFmXj77f7U12tccMHxp/vOTk+k3qvx5f6yFv8cj6Zh92r0CWu/mTSapnHF1iu4L/c+og3R7B6zu9MGEU3TeLfoCe7eF8Pr5TrSIm7nt91KSLUoHKjvSTJfckmYxm+j80gxyiAiSa0pXbcA0JHnuTbQpbQ7GUY6uKysWoqKnFx6aVyn7wK/7rpkLrggitWra3n55fxjtps7oAcK8Pj2vBb/jLUHZ9K003gRm8fGgLUD+Kz8MzJDMykcX0h3S/d2+dmtxaN5eLPwAe7Ni+KtCh39ou5jZlIliSaV/fYBpLKU6eEaV0XvIcF4aaDLlaQuS69GEavcgocSSjzPBrqcdtW5393OAHfd5Ru4+uyznWvg6rF8/fVwwsP13HlnNvn5za/lEGLUMzA8mA2VVlwt2HAPYEmJb7O9SQmRp13rieyy76Lbqm7sqt/FDYk3sGHUBoydZFqeS3PxWuFfmJsXznuVBobGPMrlidVEG1QK7MPorVvHjAgvV0b/Sqyx/cfeSNKZqpvuBVRCKdIeQNNObgXrrkCGkQ7M4fCwcmU1ffoEkZraNUbhG40qCxcOw+uFiRM3HLPdnH6paMBz2cfuQWmOfyZNTPgJWp6eT8s+ZdDaQVi9Vl7t8yr/7v/vNv15raHeU89L+2/m/vxQPqwyMTr2eS5NsBKi07HfNpp+um3MjPTym+gswvUjA12uJJ2RDk71FTjI894Q6HLajQwjHdijj+7D64X77+9aaxOMHRvJbbelkJ/v4JZbdjTb5roeiRhVhTf3FLbotbOtdoJ0Kvo2vKU1N2cuM7fNRK/o+Wn4T9zS7ZY2+1mny+ax8VzBdTyYH8wX1mDGxf+TafE2jKqe/baJDNbncFWUhyui1xCqb52dcCVJOj0xutmYyKBafHjG7Oorp/Z2YHFxy7HbvdjtRy9w1hX06PEjeXkOfvppJOPHH31bZcrSLH4oqaLw8vEkneSqnSEfLSPBbCLnsnGtXS6apjF1y1S+r/qeRGMiWaOySDC13z4qJ6vKVcW/Sv6EnW/oH+ogIxgcXsirNxKmnsv5oW9j1nfewdCSdCawa1ns8mQSRCb9jMfuRe7oTvb9W/aMdFA//lhFebmbK6/seG92rWXlypHodDBtWhYu19FjQx4enAHAg1tOvLcN+MKC3aPRJ6z1VzqtdlWTsTqD76u+Z0L4BArGFXSoIFLmLOOpgot5ZL+JFfXRnJfwCZNiHTg1E6X2yxhpKOWaaCeXRC6SQUSSOoFgdTihyiTq2UittjjQ5bQ5GUY6qHvu8e0a+tRTvQJcSdtJTbXw4ot9sVq9TJuWddTjo2PDiTTq+fQkp/iubRwv0tozaTbXbSbl5xTyHHnc3u12fhzxI3o18Ev0HGgo4PH8STx+wMgaZzyTE77l7GgXdR4LFfW/ZYypllnRDqZGfoFRHxfociVJaqH0xl198zzXBbqUNifDSAdks3lYs6aWIUNCiItr/8W72tOtt6YyblwES5ZU8c47R48PmZkaR43bw89l1Sd8rcXFvj1pJsW33p40/y3+L5nrMmnQGniv/3u82OfFVnvtU5HXkMtj+eN5stDAVk93piQu46xIN1XOYGoabmSC2c7smHqmRHyIXj1zbmlKUlfkm+p7a+NU36cDXU6bkmGkA7r//hyEgIcf7hnoUtrFDz8MJzhY5U9/2kFJSdNt1x8e5Bu8+9C2fSd8nfVVvp6RMbGtM5Pmjt13cN2O67CoFtaPXM91iYH5dLLHvp1H80fyTKGe3d6eXJj4M5nhHkocodgb/sw5FifXx9qYFP42qto1N+OTpDNVN90/Gqf6PoimOU78hE5KhpEO6L33iggP13PppWdG13pQkJ7PPx+K2y2Omu6bEGQmPcTMytJqNO34a45k17bOTBqP5mHChgm8tP8l0sxpFIwrYHjY8NN6zZb61baOR/KH8Hyxjv0M5KLEDQwK87K/IQKn814mBbn5fayVs8NfOmO3HJekM4Fvqu8rCJzkeX8f6HLajAwjHczCheXU1HiYNSsx0KW0q/PPj+G66xLZvbueu+/e3eSxm3t1wy0E/95bfNzXKHK4SDjNPWlKnaV0/7k7q2pXMSVqCrljcokytt5tn+PJqlvBI/n9eLFEpVIdzdTErfQJ1thnj0a4HuWCYC83xlYzNvRx1A4wZkWSpPYRo7uucarvfJxay9Ze6ixkGOlg5s7NQVHgsce67sDVY3nnnQEkJpp45pk8srJq/cfv6J2KToEXdh17vr1vJo2XPqGnfpvi5+qfSfsljSJXEfd1v49Fwxa1+RL8q2sX8nBBT14tUbHrz2Vq4i56WAQ5tjj07pe4KMTLjXEVjAiZ2+m3A5Ak6dT10H8MCHI9VwS6lDYh/7p1IJWVLrZsqWPUqDDCws68T76qqrJy5QgUBc4/PwtP41LwRr3KyKhwdtTasbo8zT53fWUdACNOcSbN6wdeZ0LWBDzCwyeDPuGxno+d2kmchJXVH/NIQXfeKFPQjNOYlpBLolmQXZeE2f02l4YLbowrZUjwn2UAkSQJODjVdzINbKRW+z7Q5bQ6+ZeuA7n77t0IAU8+2TX2oTkVvXoF89hjvaiqcjNz5hb/8bkD0xDAI782v+bI4pJKACYltPyWyo07buSW7FsI1YWyddRWrohr/U8eP1T9i0cLknmrXMFkuYqpCQVEGxV21XUnzPsRMyIEf4grZEDwja3+syVJ6hrSdR/hm+p7faBLaXVyBdYOJCRkKWazSkXFuYEuJeAyM1eTlVXHggWDmTnTt7hYyPxlhBr0FF9xNh/uK2ZxSRX9w0MYEB7M8zvzWVJajft35530AFaX5mLshrFsrNtIn6A+bBi5gRB9SKudw7eVL7Gp/jGSzGUMCPMl/9x6BZsrg0lhL9LDMrXVfpYkSWeGAvedlIsXSFafIkH/t0CXc0In+/595t0L6KA+/LAYu93Ln/+cGuhSOoSlSzNJTPyRa6/9lfPOiyIqyshFyTF8UlDGzlobi0uqeGdvMSpw+BybkYvWMyTSF1CmJsUwIKL5cFHgKCBzXSYV7gpmxM5gwcAFp31LRNM0vqx8ih2O50gJqqRfCJwfAjl2le01fZgS8QYjI88+rZ8hSdKZrZvuOSo9/6ZIe5A47XZU9eS2yujoZM9IB9G//89kZ9ux28/DbJYZEeCLL0q5/PItDBkSwubNY8mutdP3m9VckRLLNT0SmfHj1mafp1PAK2BCbAQ/XjDiqMeXVC5h2pZpuISLxzMe5960e0+5Rk3T+KTiQXKdr9I9uIY+IeDSfAHE4xnE1Mi3iTceXYMkSdKpqvS+T553FpHKb0k3fBjoco5L7k3TiRw44GDnTjtnnx0pg8hhpk+PZ8aMOLZssfHoo7n0CQ8m0Wzku6JKLkiMxqgqzT7PK3y/2E8OO3rRuGfzn+WCzRcgEHw35LtTCiKapvF+6R08eSCcT2p1ZEQ8xsTYGlyajm01I+mj7mBWtJcb4jfLICJJUquL1l2LiZ5Ui4+6zFRfGUY6gLvu8q2r8cwzZ+7A1WNZsGAwMTEG5s3LZedOG7PSE6n3aiwprmRyQhS6Yzzv4SEZjI2N8H8vhOCqbVdxV85dROmjyD4rmwtjLjzpOlweF+8U/4GnC0P4wqqjX+RLjIu2YvPo2V4zgYHqPq6P8XB93DqijP1O76QlSZJOIN0/1XdGoEtpFfI2TYBpmkZw8DIiIw0UFU0MdDkd0pYtVoYNW0N8vJFd+8YS+emPjIoO4w89k7lp7U4O/wXWKQpjY8JZPjkTXWPPSb2nnpEbRrLDvoNBwYNYN2IdZv2J77M6PA4+KP891doX9A5pINkCNg/ssRkwcw4zot4nSG5AJ0lSgOx2T6FO/EBP/SLC1SmBLqdZcgBrJ/H224U4HBq33ZYS6FI6LEu4h2lXhPDNJzYuOH81iTfrWFdpZXqNjiOTtFHAtBqVf33qG09SbTjAY+HXUKf5FlG7KOai4wYRm8vK/yqvwyYW0SfEydBoqHXDHrsJu/MCLo/6DxPjItroTCVJkk5eum4+Wzyx5HlmM8RYEuhyTou8TRNgTz2Vh16v8Le/pQW6lA7rl81FnHuxkbhElXWrnGTk+ELIT64GUoSOwxPJb71BGBo0bPVu1niXcF/IZdR5D63m+mHJhxzZGWh1VfB60RReKDbxsyuczOgvGRTmZH+DhdzaKznbZOdPcQ5+F/cVZn1E+5y0JEnSCejVSOLU2/FQSrHnyUCXc1pkGAmgPXvs7N3bwAUXRKPXy/8Ux+JyewG49b4wdDpY/bgDnYC1Ohcj9GZoHMd6jmrmLEsQIUEGlkW9zTsxf0Ug/I8D7HfuZ7NtM5WuQl4tOoeXSoysd8cyKuYH+oa4yLUHU2C9nnPNTm6Or+fK2I/Q6+VOuJIkdUzJ6rOohFGsPdSpd/WV74AB9Je/ZAPw7LNy4OrJSIg38e67A/G4IGSjjko07jjHd+2CdSrfXTmGP1wxiK96zeXboH9ixIxQDq1CYlTg7ChYUpfJNk83zopZSXqQm511IRTZbmOyxc0t8TYuj3kHvV7uhCtJUsenqiqputcQONnnvT7Q5ZwyOWYkQLxejUWLKune3Uy/fq236mdXd+21Sbz/fjHf/7cSMhXeyCkC4MFB6Ti8dQxYn8lex16SjEkUuYowqzA2EibFwPgoCNbDvnrBttpwMkw3MzXicdQwmcklSeq8onXXUOz9OzXiYxzaE5jVHoEuqcVkGAmQ55/Px+0W/PWvaYEupdP56qthxMWtoHaXl0UG3540A6PLSPllEDavjcyQnsRYcvh/Mb4gYtZBtg3+cwCWVsB+B2watYxBIcMDfCaSJEmtI12/gJ2eoez1zKS/caP/eL22lTqXgtOT3KR9iN5ElDm4vcs8JhlGAuTFFwswmRRuuaVboEvpdIxGlcWLhzPmxvXU9HVjMOVyw+67GRtp47dJCn1DczCqsL0O3iyAZRW+550VCX/uAaMioEK7ECgL5GlIkiS1miB1CGHKFKzie2q177Aogyn03E2V+ID91iF8l910Hxu9ovLIiEs6TCCRYSQANm+2UljoZObMeLlF/CkaOTKCt+/tx+4R4xkek0+yGQwqVLoUPi60kFOXhBAlDI6y8cYgSDCDJnwTb1Qgr94GHePfoCRJUqvooZvPFk8Mez2/QeBF4AbArLce1dYjNGweJ1Ed5A+hDCMB8Ne/+lZclQNXT53XK8je2sCoiw7QzQKqAgiFRFMSs1LKEeQAoGk6VNU3G+fg6vEeTaHcGRugyiVJklqfEAKr+A4VMxr2Jo8Z9fUBqurkndLH8ldffZW0tDTMZjOjR49m3bp1x2z71ltvMWHCBCIjI4mMjGTy5MnHbd/VuVwaK1ZU0bt3EN27WwJdTqdUVeVm2rQsnn56H1v+uZlhugb66TfRXf8WZvojcPrbHgwih9OrgtnxnXtOviRJ0kH1Wha7PGexz3s1GkcHD4OuIQBVtUyLw8hHH33EnDlzmDdvHllZWQwZMoQpU6ZQVtb8/fcVK1bwu9/9juXLl7N69WpSUlK44IILKCwsPO3iO6NHH92L1wv3358e6FI6DU0TlBR6+HlZA1OmbCQ2djmrV9ewaFEmD909EL3eTJA6lBjdjfQ2fk9/ww5MZCBE8xvpAezzzmabK40c92WUel/EpR1oxzOSJElqPQXeW6gXBz/kH73Di0Ht+OuPtHhvmtGjRzNy5EheeeUVwLe3SkpKCn/+85+55557Tvh8r9dLZGQkr7zyCtddd91J/cyutDdNXNxy7HYvdvvkQJfSYRUXO1m7tpa1a2tZvbqG1aurcbmatlmyZDiTJsUc8zW8wsayvMuJSl7SzKN6TPTFTR4aNv9RBQN6kghSBhGqTCJSvQKjKpfplySpY3OKvezzzMYuVh2zzVtr/4s4ov9h7rALSQ2JatPa2mRvGpfLxcaNG7n33kPbrquqyuTJk1m9evVJvUZ9fT1ut5uoqGNfAKfTidN5qKvdaj168E1ntGpVNeXlbq67LjHQpXRINTVuRoxYQ26ur0tRr1fweI7OyldeGX/cIAKgU0LYt+EZqkr/Q8bQF1FUAN8CaMHKWfQ1/ASApjmoFQup1RZSL9bjZB+14htqxTcc0O5sDCiJWJRBhCnnEanOxKimtup5S5IknQ6Tkk4f/UrKtdc54P1r48DVpreo9ToHbm/HXU26RbdpKioq8Hq9xMfHNzkeHx9PScnJbdJz9913k5SUxOTJx+4ZeOKJJwgPD/d/paR0jU+nd9/tG7j6zDNy4GpzgoJ0GI0qysGBps0EEYB58zJO8hUVCrOvJvvnf6EnGtABOoKVUf4WqmomUjeDNMPb9DduYZjRyjC9g3Td58Qof8RMf7xUYxXfckD7C9s83clyGdnqSmWPexolnudwavmndd6SJEmnS1FU4nS3MsCwnWBlzFGPG5sZN9LCGyNtql1n0zz55JPMnz+fFStWYDYfe+fUe++9lzlz5vi/t1qtnT6Q2Gwe1qypZdCgEOLiTIEup0MyGlW++WYYw4atxmbzomlNH1dV6D/EyKrtuazafuLXszf4prXZq4bR37CVXM9vsItVBCsjjvs8VTURyXQiddP9xzTNhVUsolb7FrtYh5O9WMVCrGIhhdpfAT0GErEoAwlVziVCndkpV0GUJKlzO7yXZL/nLwicKIovjNiPaPttwa/8sd94DKouILUerkVhJCYmBp1OR2lpaZPjpaWlJCQkHPe5zz77LE8++SRLlixh8ODBx21rMpkwmbrWG/YDD+SgafDwwyf7qf7MlJ4exIIFQ5gyJeuoxzQNJl5kwlbvbtFrGg06DEoCffTLqRXfEK5Ma3FdqmokgkuJ0F16WD0urHxPrfdb7GJtY0D5Dqv4jkLtb/gCSsJhAeUKzKr87y9JUttSFJXS2unMz3Fzcb+HCTFVkxqxEc3TE7vHhUf4PultqSrkvd1ruLHPWBTl2AP+26XmUxnAOmrUKF5++WXAN4A1NTWV22677ZgDWJ9++mkee+wxvv/+e84666wWF9kVBrBGRi5D0wS1tZMCXUqH5nJpTJiwjnXrmo4TUlTo3kPPPY9HtegfjdGgY+zQJHqnte0grYN8AWUxtd5vGgNKLhqHn4seA/FYlIGEKOcQqc7ErPZsl9okSTozaELjgQ1fU+GwA16uHfogYUYjg43bcWuwpmwfH+/Nwq35xpXMGTSJPhHxx3/RU9QmA1gB5syZw+zZsxkxYgSjRo3ihRdewG63c8MNNwBw3XXXkZyczBNPPAHAU089xYMPPsj//vc/0tLS/GNLQkJCCAk5MzaIW7iwnJoaD7fc0rlvNbW13Nx6Ro9eS2Wlm0suicFoVPn88zI0DYQGLzw3kMsuiwt0mcfl60GZRoR6qPdF0zzUsZga7zfYxRqc5GIV32MV31Ok3cvBgGJWBhCqHAwovQJ2DpIkdW7bq4sbgwj0CktkWPCnZHtGUK69QZzuNs5O7IVOUfnPnrUArCje3WZh5GS1OIxcddVVlJeX8+CDD1JSUsLQoUNZtGiRf1BrQUFBkyXOX3/9dVwuFzNnzmzyOvPmzeOhhx46veo7iQceyEFR4Ikn5BsMwKJV+9iR69vgTlUUzCYd5YXwxAPlOBoETz/di7vu6oHN5mH79rXs2mUnI8PCJZe0/qqptTYn//p0G9de0p+4qLYZaa6qesK5iHD1Iv8xX0BZQq33G2xiDS5yqRM/UCd+oEi7D9D5A0qIMpEodSZmtU+b1CdJUteyq+bQUIpzk3oToqYSo97IAe89hClTMKu9GB2Xxif7NlHvcTVpHyinNID1tttu47bbbmv2sRUrVjT5Pi8v71R+RJdRVeVi06Y6Ro4MIyxMrr5/UFpyGFPG9UDTBPfck80/Xy8mLknH3x6M5/bfpwEQEqLnm2+Gcc4563n88V6oamDvabYmX0C5kHD1Qv8xX0BZTq33a+xiNU5yqBOLqROLKdbuxxdQ4jAr/QlRJhKpXoFF7R+4k5AkqUNyej3+/x9r8d2BiFb/QIX2NsXeh+mh/he9qiPKFES9x4XrsPaBIt8d29jdd+9BCHj8cdkrcjidqqJTFM49dyPr11vp3t3MV98NYMm6fWzPqWBQ71gcLg+5pWXc+3QYZZ4iFnxfyzkjU4ht7MH4ZXMhuQU1DOkTx5qtRTicXtK7hXP+2O6YjL5fbSEEa7YWs213OQ0OD1HhZsZndqNHcjgA//p0GwDvf70DgG7xIVx5Yd8AXJGDAeV8wtXz/cd8AWUltd6vDgsoS6kTSynWHgR06InF4g8oM7CoAwNSvyRJHUOo4dAEkFxrOakhUVRrH6Ijku76NwGwuZ2U1PvGs4UYAj9hRIaRNjZ/fgnR0QYmTYoOdCkdSmWFm+TkH6mq8nDppbF8/vkQVFVly54S9hRUM6h3LN+syEWvU5lxfm9MRh1bs8tZ8MNubrh8IBaT71e3ps5Jdl4V0yf1wuXy8sMveSxdU8DUs33L7WftKGXj9lImj+lOXFQQv+ZU8OWyHGZfNoDIMDNXT+vH/77dycwLehMdYelwvS++gDKJcPXQwGdN07Cxghrv19jFLzjZQ51YTp1YRrE2j4MBxaz0I1Q5mwj1CoLUQYE7CUmS2lVmbCoL9/vWP1h8YBdDY4yU8Sqxyq2oim9PtIX7f/XPqsmMDfxCjnL/+jb00UfF2GxebrwxOdCldCibN9q586YDVFd7ePbZXnz55TD/OKOocDNWm4vC0jpKKuq5+JwMEmKCiQwzM3FkCiajjj351f7X8ng1Lhzfg7ioILolhHLu6FSy86r8a4xs2F7KyIEJ9O0RRVS4mbMzuxEbaSFrh+8eqcXsCzVmk55gi8EfcjoyVVUJU88j1fAP+hnXMtRYxTC9h9765cSpdxLECAQubGIFxdrf2ekZzEaXji2uBLLd51LomUe9tiXQpyFJUhvpFhxJrzDfYP9Kp51VNVcjhAfFM5PsmlL+ueMnlhZmA6CiMDEx8D33Hf8vbyf28MN7UVV46CG5Kd5Bt9++k9deLyIqWse33wxn/PjIJo8LQAHKqxtwe7y8Pn9zk8c9Xo2aukNbBYQFGwkNNvq/T4oNRgioqnWg16nYG9wkxTWdtZUcF0J5dcffxbIlVFUllHMIVc/xH9M0DTurqNG+xK79goPd2MRKbGIFJdrDgNrYg9KXEOVsItTLCVaHBewcJElqPbN7j+apLYuxu20khK3D5ozhrS0FQEGTdr9JH068JfBLZsgw0krWrKlhz556rrginqAgHUVFDnbssHP22RFYLPIyOxweJkzYwIYNVgYMNTH34YSjggj4QkRYqAmX20uwxcBvphw9g8RsDPxqgZ2BL6CcTah6tv+YL6D80hhQfm4MKD9iEysp0R7BF1BiMNOXEHUCEerlBCnDA74gkiRJLRNrCeVvQ85nZdUfUVWNjYUzmjwerDcxM30YY+M7xodl+S7ZSp55Jo/PPivjllt2csMNSf7N3p59Vk7H3LPHzllnraWqysNll8Xyp7+E43JrR7UrKLZSUd3A8H7xhAYbsDe4UVWF8JBjD66y2l3Y6l2EBPl6R4rL7SiK73aPyagj2GKgqMxGSkKo/zmFZTYSYoIB0DWOEelIezS0JV9AGU+oOt5/zBdQVlOrfYlN+xkH2dj4CZv2IyXaY/gCSvRhAWU6FjKbTOGXJKnjibOE0iv2e7wimBTTTYTHOjCqOnqFxzEitnuHWAb+IBlGWklkpAGdDmw2L6+9dgCvV2AwKOTm1jN4cCgm05n5h/ujj4q59tpf8XoFzz7bm7/8JY1Fq/bh1TTsDW40TVDvcJNXaGXdtmLSu4XTPyMaRYGk2BC+WpbDhMxuRIabsde72Xughp6pkf4wodepLFq1j4kjUnC6vSxfV0Dv7lEEWwwAjByYwC+bi4gINREbFcT2nArKqxv8A1yDzAb0OpW8wlpCgozodYp/Js6ZwhdQxhGqjvMf0zSNetZSo31xWEBZhU37iRLtcQ4GFBN9CFXHE6FejoURMqBIUgdS5f0ELzXEqreTmZ4Z6HKOq8XLwQdCZ1gO/u67d/OPf+Tjdh+6nIoCQkBkpJ6bburGvHkZWCwdJ4m2tT//eSevvLIfi0Vl8eJMxo3z3ZY5ctEzk0lHbKSFvj2iGdAz2n9LwOX2siqrkD351TQ4PQRbDCTHhzBheDdCg43+qb2De8eyZmsxDpeH9G4RnD+mO2bTYVN7txSzbU859Q4P0UdM7QXYtrucNVuLsdW7SI4L3NTejs4XUNZTq31BnbYKJ9l4qMA30gdA8QeUEHU8Eep0ghglA4okBcivrt442cswvRVVbZtFHU/kZN+/ZRhpJc88s497792D13vsNitWjGDixPbZIyWQHA4P48dvYONGKz16WNiwYTRRUcYTP7GFDoaRWZcOaPXXlk6Opmk0sJEa7XNs2ioc7MJDJXDwNpyCjmjM9CZEHU+4ehnBnCUDiiS1sQZtJzs8/QlTLqSX4buA1dFme9NIzYuJMTYbRA6O+3vttX5nRBDJzrYxZsw6qqs9XH55HJ98Mli+8XRhqqoSzEiC1ZH+Y76AktUkoNhZg137hVLtaXwBJQozvQlWxxGhXkYwY+XviSS1wH3rvqTSaT/q+MTEXlzdcyT7vX8GIEX3sv+xjeUFfJm/lUqHjThLKDN6DGVQ1KGlJ4QQfJ2/jZ9KcmjwuskIi+HqniPbZbaNDCOnqcphx+ZxogU5j3pMpwODQWXBgiFcfHHr76vS0Xz0UTHXXLMNTYPnnuvNnDlpgS5JCgBfQBlBsDqiyXG7djCg/ISDndhZi11bTZn2LL6AEtkYUMY2BpTxMqBI0jHcO3QKGodubBTZa3nh12VkxqTi0WzUieWY6effFTzXWs7bu35meo8hDI5KZl1ZHq/v+Im5wy4kOTgCgO8P7GRZUTbX9xlDjDmYr/K28tKvy3ko8+I2H+wqw8hpqHLYeWDD13iERkmlHojwP6bXK4SF6Vm0aDgjR4Yf8zW6iltv3clrrx09PqQtjR2azNihckG5ziJYHU6wOrzJsXptM9XaZ9jETzjETuysw66toUx7noMBxUQvQtSxRKiXEszZMqBIEhBqNDf5ftH+HcSaQ+gdHkeB5xZAI1n/pP/xpYXZDIhKZEo3335Wl6UNYWdNCSuKdnNNr1EIIVhauIupqQMZGt0NgBv6jOGvaz5jc8V+Rsalten5yDByioQQ7Kwp8S+na444NFVVUSE11czixZmkpwdm0FB78Y0PWc/GjXWkp1tYv75txodIXVOQOpQgdWiTY/XaVmq0z6gTP+IQO6lnPfXaWsq0f+ALKBGY6EWwMpYI3SWEcI4MKNIZzaN5WVuWx+TkvgghqBL/QUc0Eeql/jZ76yqYnNx0cH7/yES2VB4AoMJhx+p20C8iwf+4RW+kR2gMe+sqZBjpiOxuF2/tWsXOmhL/MXP4oe6ypP4aixYNIj25aweRw8eHzJgRx4IFcnyIdPqC1MEEqYObHKvXfqVG+xSb+JEGsYN6NlIv1lHueYFDAaUnwcoYwnWXEsq58ndROmNsrjxAg8fF2PgeVIg30agnUf1bkzZWl4MwQ9PelDCDmVqXw/e427c2VtgRPS5hxkNt2pIMIy3k8np4afty8uoqmxzXnACC4FiNKf+o5p3CldwTO+Wo/7BdxYcfFjNrlm98yD/+0Zv/9//SAl2S1IUFqQMJOmI34gZtO9WNAcUhdlBPFvViPeWelwCOCCiXNAYU+SdP6np+LsllQFQiEaYgtroeQ8FAgjo30GW1iPyX2ULLi3f7g0iowcSMHsMYGdudp57Iw2jK5U8furEZfZsTfZ2/lWt6jQpwxa3v1lt38NprBwgKUlmyJJMxY9p+fIgkHcmiDsCiNp3W3aDtaByDshKH2E49m6gXGyj3+GYU+AJKRmNAuZhQJsmAInVqlQ47O2tKubn/BGzaatwcIEL5zVG/12FGM1Z30x4Oq9tBeOMH5jCDbzdfq8tBuNFyqI3LQUpIRNueBDKMtIgmBD8W7/F//+cB59I9NAqvV/DWm4Vcc3US949PZ96Gb3BqHtaW5TGjx1As+q4xhsLh8DBu3HqysuT4EKljsqj9saj9gfv9xxq0nUcElM3Ui42Ue14BQCUcEz0JUUY3BpTzZUCROjyvsJPtGU9FQx+SQsYzKCqJ3e4rAEjRvXRU+/TQGHbVlDQZN7KzuoT00BgAYszBhBnM7KopISXE9wGzweNmX10FExN7tvn5yH9xLVDaYKXC4ZvX3Tcinu6hvnVD3nxzPwUFDv7v/1KINAUxMq47q0pycWoecqzlTeZxd1Y7d9oYO3YdNTVyfIjUuVjUfljUucChbmuHlk219hl1YgUOsZ0GttAgNlLueQ04GFAyCFZGE6G7mFAukAFF6lA0rDSIzQQFbWbagI/IcX9GPeuwMByjmsA72b8QYQzi8h5DAZiU3Idnty5h8YGdDIpKYn15Pvm2Kq5t7L1XFIVJyX1ZuP9X4iyhxJhD+DJ/KxEmC0NjUtr8fOS/rhao97j8/z8x6NB03ccf3wfAAw/k8JvfxJNw9qFN2Ro87vYrsI188EExs2f7xoe88EIf7rije6BLkqTTYlb7kKjeSyL3+o85tD2NY1BW0CB+pYGtNIgsKjyvA6AS5g8o4bpphHEBqip7BqXAUPG9zxxcWNPGCgA8lFPufZMaVxIKh3bbzgiL5Q99xvFl/ha+yNtCnCWU/+s/wb/GCMCUbv1weT28v2cd9R4XPcNjuX3Aue2yoZ5cDr4FSuutPLjxG8D3H/ZvQ84HoKzMydtvF/L112WsWWNFUSC2n5uRN9l5ctZ4BkYlBazm0/V//7eDN97wjQ9ZunQEZ50VEeiSJKndOLRcarRPqRPLaRC/4qYE8Pgf9wWU9MaAMpUwLpQBRWoXQgiy3DrgyLdwBRCohJGse5w43a0BqO4QuTdNGxBC8NDGbylpsALwl0GT6B0R36TNex/n8Zf7dlCZqwMUIiP1zJ6dxMMP9yQ0tPN0RDkcHsaOXc+mTXVkZFhYt06OD5EkAIe2jxrtk8MCSjFNA0poY0AZRZg6jXDlIhlQpDaxyRWCxtFLwh8UqVxFumF+O1Z0NBlG2sjyot3Mz90AgFmnZ2rqQM6K64FOUdlUsZ+v8rdidTtw1ELhB8msX+jBavWiKJCZGcajj/ZkypSYgJ7DiRw+PmTmzHg++miQHB8iScfh1PKp1j6hTiyjQWzDQwmCQ7dofQGlR2NAmdoYULrmtH+pbR3cggSgwtAXoZQ32y5GvYlU3SsoiqE9yzuKDCNtxKtpvLR9ObtqSo/bLikonLuGnE+Q3shXX5Xx0EO5bN5chxAQHq7nmmsSeeyxDCIiOtYnpiPHh9x+uxwfIkmnwqnlU6N9itUfUIqPCCghGBsDSrh6EeHKNBlQpOM6fAsSgKuGzCHcfPh7kW+MSIruRWLV21AUpZlXaV8yjLQhl9fDf/esZV15frOP942I5w99xh21d0BNjYu5c3P54INiams9KAoMHRrK3/+ewSWXxLVH6cd1883b+ec/CwkKUlm2bASjR0cEuiRJ6lJcWkHjLJ6l1ItteCg6RkAZQZg6lQjlYhlQJL8CWxWPbVrk//7yAXOJDcnzfSN0qIqZdP0nhKsXBqbAZsgw0g5K6q2sKsnhgL0GgSDOHMq4hAzSQqNP+NzvvivnwQdz2bjRihAQFqbjt79N4Iknep1wbMaHHxYTHKzj0kuPHWAO78oDCNGbiDIHN9u2vt63fsjmzXX07OlbP6Sj9dhIUlfl0g5QLT6lTltGg9iCm2IEh2buqQQfFlAuagwoXXurCelodS4Hn+zLYk1Znv/Ypf0fIiF0D0KAjm70Nf6ARekXuCKbIcNIJ2G1enjwwRz+858iqqt9vSWDBoUwb14GM2bEH9W+rs5DfPwKnE6Nr74axrRpsUe1ObIrD0CvqDwy4pKjAsmOHTbGjfOND/nNb+KZP1+OD5GkQHNpRY0BZWljQClqJqCkEaSMIFy9iAjlEhlQurDyhjr+sW0Zlc6mg1WvGXYLwcZaym1p5Je+yB/7XoyqdKy/3yf7/t2xqj4DhYXpeeGFvlRVnceSJZmMGhXGtm02rrhiC6GhS/n973+lrOxQD8f8+SU4HBpCwMyZW1i3rvao17R5nE2CCIBHaE16SgDef7+IwYN/obbWw0sv9eHjj4fIICJJHYBRTSJe92d6Gr5gkHEfw41OBumLSNG9QrgyHT1xONlDlXiPfd7fsskTzCZXCNtdA9jnnk2V90M8mi3QpyG1Arfm5eXtK/xBRIdC34h4RsV2w6i6sLvC+XLH38mqsPFl3tYAV3vqOs9c0zPApEnRTJoUjc3m4e9/z+Wdd4r8XwMGBPPAA+m8/vp+AIQAl0vjwgs3snbtaHr1OtTjYXM7j/Uj/G66aTtvvVVIcLBv/RA5PkSSOjajmkgctzZZN8KllVIjPsWqLaFBbMFJLg6xgyrvfwBQCcJId4KUEYSpUwhXLkOvhgTqFKRTsL48n9KGOsC32ObtA84hyhxMtfYJez0NGGyfAjWAYGlRNlNS+hPUCbcgkbdpjvDd/u1sqthPSYMVo6ojPSyWGWlDSQg6/s/dWF7Al/lbqXTYiLOEMqPH0CbLwAsh+Dp/Gz+V5NDgdZMRFsPVPUcSbzn+6/74YxX33beH1atr0bSjH9fpFJKSTKxfP5rYOANf5G1lyYGdeI9aCAe6h0RxQ49xXHTONrZsscnxIZLUBbm0MmrFZ1i1JdSLzbg5gODQBxRfQEklSMkkTL2QcOVS9GrXuv3dlTy95QdyrRUA/G3I+WSE+W7N73KPR0FHH8NKPsxZz4rGfdN+mzGCc5N6B6zeI8nbNKdod20Z5yT15p4hF3DHwPPwahov/roMp9dzzOfkWst5e9fPjEtI5/7hFzE0uhuv7/iJQnuNv833B3ayrCiba3qN4p6hF2BS9bz063Lcmve49Zx9dhSrVo2mru48hg07+hON1ysoKnJywQUbeWvTOr4/sKPZIAKwaVsNPVJ+YcsWG1ddFU929jgZRCSpizGqccTqbibD8AmDjDkMNzoYrC8jVfdPIpSZGEjEyT6qxAfkeWexxRNOliuIX1392Ou+hgrve3g0a6BPo0WqHHYKbFX+ryrHsRcC62wOvo9EmYL8m9qVe/+JXfxMrHoHACNj0/ztiw573+lM5G2aI9wx8Nwm31/f+yz+uvYz8m1V9A5vfvbK0sJsBkQlMqVbfwAuSxvCzpoSVhTt5ppeoxBCsLRwF1NTBzI0uhsAN/QZw1/XfMbmiv2MjEs7YV1CQHZ2fbOPeb2CrVttPHSDi4tfAL1eYUx8D/pHJmLS6cmpLeetd/JZ9JgZIeDa+43895EhJ39RJEnq1AxqLLHcRKzuJv8xj1ZBtfgcq7aYBrEJF3k4xS6qvf8jn+tRsGAkhSBlOGHqFCKU6ejViMCdxDG0ZMB+Z3Two6VOUf3rhnhEDQBGEhofU45q39nIMHICDV7fGgDBx7kHt7euosm2zAD9IxPZUnkAgAqHHavbQb+IBP/jFr2RHqEx7K2rOKkw8vHHpdTXN3Of5jAlW428f0UkL76fyqzx/f2/uF+/4eS7RyzozYKLX6whrL/A5nYQYpDrF0jSmUqvxhDLH4nV/dF/zKNVNQaUHxoDSgFOsZtq73zyuQEFc+MtnmGEqRcQocwIeEA53oD9KDp/GIm3hFFgq6LcYWO/rZqUkEgSdH+lTHuBKu1jgtRMdtr/y6SeH2HRWzE7Pwl0yadEhpHj0ITg470byQiLbbKz4ZGsLgdhR7yxhxnM1LocvsfdDb5jRyyCFmY81OZE/ve/4maPK4pvRo7H5MRtV/DUK/xpWiGvDq7l979PZscOG2++Wcjo0eHc9IbK2rpKPAK2VRUxJj79pH62JElnBr0aRSw3Equ70X/Mo1VT0xhQ6psElI/I58bGgJKCRRlGuHoBEcrl6NWoAJ5F1zI+PoP/2aoAeD9nHbcPOIcgvQ4j3SkXL1Hueov46HriBHg0I/3CewS44lMjw8hxfJizniJ7LXc17s4bSPfe24OLL44lLs7Y5Cs62kCNp565678CYFhkCt339+Wttwq5885shIBXXunLLbeksKE8n7XZvkFOJzPjRpIkSa9GEsPvidH93n/Mo9VQI77Aqn1PvcjCxX6cYg813o/J5w+NAaUbFmUYYer5RCoz0KsnXgzyVHhOMO6usxsdl8bC/b9S42qgXqzhy9Ln6Rm9Gp3ON8MGxXf7XlFA8yYTbrEEsNpTJ8PIMXyYs55tVUX8dchkIk3HX0wozGjG6m7aw2F1Owhv7AkJM/h+OawuB+HGQ78oVpeDlJCIk6rnvPOiOe+85v8xm8WhjZDKXXXcfFEsF10Uy6ZNVlaurObWW1MBKHPUHXqOLrCbJ0mS1Hnp1QhiuJ4Y3fX+Yx6ttjGg/NAYUPJxihxqvAso4CYUTIcFlMlEKlegV09901AhfFNZvy34tdnHVxXn8tuekagdYH+W02HWG7htwDn8c9cCpg94CCF8weNIQijEGge3f4GtRIaRIwghmJ+7gc2VB5gzeBIx5hPPyU8PjWFXTUmTcSM7q0v8I59jzMGEGczsqikhJSQSgAaPm311FUxM7HnaNYcYTKSGRFJgq+aAvYZdNSX0jUhg2LAwhg3zTaVyeN38VJwL+LZS6nvY+BVJkqTTpVfDiWE2MbrZ/mMezUqt+Aqrtoh6sbHxFk8uNd5PKOBmFEwYSCZIGUqoOpkI5QqM6on36fL9nd7IiuLdx2yzsmQPTs3D9b3P6hAbxp2OlJBI7hj4OzbU/ERcxPvNtlEVPRb19N9PAkVO7T3Ch7kbWFuWx419xmLWGah1NVDrasB12NTed7J/4fN9m/3fT0ruw/bqYhYf2ElJfS1f528l31bFOY1zvRVFYVJyXxbu/5UtlQcotNfwzu7VRJgsDI1JaZW6JyYemlf+5s5VrC7di1vzIoQg11rOi9uWU+3ydecNiEwi1iIXPpIkqW3p1TCiddfSw/A+A4w7GWa0M0RfR5rufaKUWZhIx0MJNeIz9ntvYZsnniyXmW2uDHLcMyjzvoZLKznqdTdUFDQJIgMjEpmRNpQr0oYx4LAPWmvK9vFTSe5Rz3eJIoq9j7LVlcoBz91tc/KtLNYcyoWx/yGae5t9XODBqHTecYBy0bMj/Omn/zV7fHbvsxjbOODzua1LiDYFc32fMf7HfYuebaHSYT/homf1Hhc9w2O5OmMk8SdYTO1keTWNf2xbxh5rmf+YQdVhUHXUew7taWHRGbh76AUkBoW3ys+VJEk6XR7NhlV8Ta22iHqxARf5aBxaK0TBiIFkLMoQQtVJfLA9muxa31vXrF6jGZ+Q0eT1NpYX8OauVQAkWsKYlzkN0LCKxZR7X6dWfNPYUiNanU2a/t12OMvWU+x9hCLvg0cd76n/rkPt2Atyo7wzUoPHzdu7VvFrdfMzbyKMFm7pP5HuoXKkuyRJHZum1VMjvqZW+64xoOT5A4oQoAk9Tk8UyaYpxOr+QJAyDJ0S6n/+M1sWk2Mtx2Ko5k+Di3Dr38NNIb7RCb6ebgUDcer/o5v+6QCc4ekp8T5JofeIXpK65ZiV3oQYTIQazB1inRUZRs5QQghyrOX8WLyHPFsVXk0j2hzMmPh0RsSkYtTJYUKSJHVOmlbPDtsHbK17n9jgvUSYK1FVJ+BbZ0TBgkXph55YSutdKPq1mPT1KL4Hm6EjWfcECbq72u8kWlGJ5zkKtb8CvoD2r/XvojVOaFAVhYczLybWEnq8l2hzJ/v+Ld+ZuhhFUegVHkevY6wWK0mS1FmpahAWprNyr+8T/5i4HszuPYIGsZMK7S1cohCDEodHlKPqcjDq65udeXKIl0LvXEq8T6EjFB2R6JUYDCRgVLphVLpjVNIx0xsDKW2yq/nKoj2sLN5DpdO3y3JiUDgXpw5iYFTSMZ9zcFhAWUMi/eNnMy7tPQSKP4iAb52seRu/QVUUMsJiT2ovtECSYUSSJEnqNJKDIjCpepyah6zK/cz0DCfEMJhU9WV/G4fXzWvbvsKrlDC2+wdkRK/GN1/j6FWsDSQAGh6qcVOEEG5AHGNddRUFIypBR4SXeAxKMkalOyYlAxO9MdL9pMJLhMnC5T2GEGcJBQGry/bx2o4fuX/YhSQ1s9jmwb3QUkIiEcD20gsINlbQN3Y5Q6IiKG3QKGnw7S3kFYJeYXH+vdAeyrwYg6o7iavc/mQYkSRJkjoNs97A6Lg0fizJwen18PqOH7mhzxj/MgzVznr+s3sNNo8TiMRa+wy94p0UeG7CyV6OTBkZ+k8IVkc1OaZpTpzk4BA5uMRenKIAN4V4RBkeKvBSg4ca3BSfZHixoBKKngj0Six64jEqyRiUVNIi0zHRByPxqKqe6WlDWFm8h711lc2GkaWF2fQMj2V3rW+yglHVkV9xA3XOeGb1rSJKvYY5az7F5fXgERq7akv5y+BJvLht+UnvhRYIMox0EqfelbeVSofthDN8GrxuMsJiOnxXniRJ0pSU/mys2I/d4yTHWs79678iLTQaVVHZZ61Aa0wGZp2eaakDCVPD6W/YQan2HMXevyPwcnAQq145+pa2qpqwMAALA06qHk1z4SQXB3twaXtxsR+3KMRNKR7hCy8aVhyUIsQ2jhlehIrLG8J5PbthCmlguyvksJ6XbhiVVMpcHsL1cYAX8J2fS/OytmII1dp8NNd06j0uLuo2gO8ObAdgXVl+i/ZCCwQZRjqJU+3Km95jCIOjkllXlsfrO35i7rAL/fvsfH9gJ8uKsrm+zxhizMF8lbe1w3flSZIkxZhDuH3gObyyfSV1bgcC2FdX2aRNkN7A//Wf6F/GQFWMJOruJUr9Hfs9t1MrvgZAT+xp16OqRiz0w0K/k1q9S9M8uNiLkz04xF7KHHmsLKzCoK8j2FBLemQ+Bl0NTopwiO2A5g8vF/Xz/e8YAaCgYGR/1cXY3VOoFQtxODf7Hk/o4Q8jBbYqYswhJ70XWiDIMNJJDInu1uT7k+nKGxCVyJRu/QG4LG0IO2tKWFG0m2t6jfItpVy4i6mpAxna+No39BnDX9d81qG78iRJkgDSQqN5KHMqPxbnsqokh0qnb9pvhNHCuIQMJib2arL9xkEmJY2ehq+o0b6hQWxBp7T/9FdV1WOmN2Z6Ew5EW7zEp9TT4HGTVVHAp9ty+cvgySQF+4KUL7zk42Q3L2xdTfeIfMzGHCyGWnqGG0DEoqCgYMAlCgDf7RsVBQ2B1vEnzcow0hlpQmNjeQEur8e/5PyR9tZVNFmeHqB/ZCJbKg8AUOGwY3U76HfYaoUWvbHDd+VJkiQdFGIwMzV1ABel9MeleREITKr+pJZ/j1AvJoKL26HKE9OrOl+vN9A9NIo8WyXLirK5tpdvLIsvvGRgJoMGl5OS6nHss/l6gm7oMwbVXUeU8QDDDA4qzHbgK7Iq9vtvV8WYQ1q0F1ogyDDSiRTaa3hq8w+4NS8mnZ6b+0/wJ+cjWV0OwgzmJsfCDGZ/N53V3eA7ZjyijdHcobvyJEmSjqQoCqYutIaSEMfejTg9NIZqZ73/+6/ythJsMJEeGoOiKMSYgwk1mPiuYLu/zYiYVN7ZvbpV9kJrK3Jvmk4k3hLK/cMv4p6hU5iY2It3s9dQZK8NdFmSJEnSKfp832Z215ZR4bBRaK9p/L6UUY29083thZZnqySqcTf5SqedAlsVDV43P5fk8sm+TTi8Huo8TgBizSGsK89r1b3Q2kLXiZJngBN15R0uzGjG6m7aw2F1Owhv7AkJM/jupVpdjib3VTt6V54kSWeWRfu383neFs5L6sNVGZnHbNdZZw/WuR28m72aWlcDFr2B5OAIbh94Lv0jEwGoctajHLZ8bEZYLH/oM47P8jY3eZ315fmsL89vckzBN9U52hzM7QPO7dATE2QY6cRO1JW3q6akybiRndUl/jEmMeZgwgxmdtWUkBISCfj2ttlXV9Ghu/IkSTpz5NVV8mNxDt2aGaR/uM48e/C63mcd9/G/DJ581LHM2FQyY1Oxuhx8kbeZdeX5uA97L9ArKsNjUpnRYyiRjT0oHZ0MI53E5/s2MyAqiShTEE6vh3VleeyuLeX2gecCvq68CGMQl/cYCvi68p7duoTFB3YyKCqJ9eX55Nuq/L0oiqIwKbkvC/f/SpwllBhzCF/mb+3wXXmSJJ0ZHF43/8r+hVm9RrNw/6/HbXumzh4MM5q5rvdZzOgxjJ01JdR7XFh0BvpGJBw1HrCjk2GkkzjVrrwv87fwRd4W4iyh/F//Cf5PCQBTuvXD5fXw/p511Htc9AyP7fBdeZIknRk+zNnAoMgk+kUmnDCMnOmzB0MMJkbGdg90GadFhpFO4nS68o5FURQuTRvMpWmDT7s+SZKk1rK+LI8CWxX3DbvwpNrL2YOdn5xNI0mSJHUYVU47H+3N4sa+Y2Uv7RlE9oxIkiRJHUZBXRV1bgePZS3yH9MQ7KktY0XRbl4dfxWq0vRzdFecPbi7towfDuygwFZNrauB/+s34YTj+bJrSlmwN4vi+loiTUFMTR3I2Pj0Jm2WF+1m8YGd1Loa6BYSyW8zMulxjMUz29Mp9Yy8+uqrpKWlYTabGT16NOvWrTtu+wULFtC3b1/MZjODBg1i4cKFp1SsJEmS1LX1jUjgweFTuX/4Rf6v7iFRjIpL4/7hFx0VRODQ7MHDHWv24EEHZw8eaxXrQHN5PXQLjuR3GSNOqn2Fw8Yr21fQJyKe+4dfxKTkPvx391q2Vxf526wvz+eTvVlMSx3I3GEX0S04gpd+XY61A9yqanEY+eijj5gzZw7z5s0jKyuLIUOGMGXKFMrKyppt/8svv/C73/2OG2+8kU2bNjF9+nSmT5/Or78ef0CSJEmSdOYxNw7QP/zLpNMTrDf5B+A3txDY9upiFh/YSUl9LV/nbyXfVsU5Sb2BprMHt1QeoNBewzu7V3fo2YMDo5KYnjaEYSdZ38riPcSYQ/hN+nASg8I5N6kPw2NSWFKY7W+zpHAX4xMyGJeQQVJwONf0HIVR1fNLaW5bncZJa3EYef755/njH//IDTfcQP/+/XnjjTcICgri3//+d7PtX3zxRS688ELuuusu+vXrxyOPPMLw4cN55ZVXTrt4SZIk6cxT5ayn1tXg//7g7MGfSnJ4JOs7sir2Nzt78NzEPry/Zx2Pb1qE0+vuUrMH91or6HvYbCHwzSjaa60AfGtSFdRVNZlRpCoKfSMS/G0CqUVjRlwuFxs3buTee+/1H1NVlcmTJ7N69epmn7N69WrmzJnT5NiUKVP44osvjvlznE4nTqfT/73Vam1JmZIkSVIXcuRsQTl78GhWt6PZ2UIOrxuX10O9x4WGILSZNiUNgX+PbVHPSEVFBV6vl/j4+CbH4+PjKSkpafY5JSUlLWoP8MQTTxAeHu7/SknpmN1okiRJkiSdvg45tffee++ltrbW/7V///5AlyRJkiRJHVaYwXzUQFSry4FZZ8Co0xNiMKGiUNdMm3BD4FdrbVEYiYmJQafTUVpa2uR4aWkpCQkJzT4nISGhRe0BTCYTYWFhTb4kSZIkSWpeelgzM4pqSkgP880W0qs6UkOj2Flz6P1YE4Jdh7UJpBaFEaPRSGZmJkuXLvUf0zSNpUuXMmbMmGafM2bMmCbtARYvXnzM9pIkSZJ0pnN43ey3VbPfVg1AhdPOfls1VQ474Nuv7J3sX/ztJyb2osJh49N9myipr2VF0W42lhcwObmPv83k5L6sKslhdeleiutr+V/Oelya56i1SAKhxYuezZkzh9mzZzNixAhGjRrFCy+8gN1u54YbbgDguuuuIzk5mSeeeAKAO+64g4kTJ/Lcc88xbdo05s+fz4YNG3jzzTdb90wkSZIkqYvIr6vi+W2HPsgv2JsFwJi4HlzfZwy1rgaqnPX+x2PMIdw24BwW7M1iWWE2EaYgZvUezYDIJH+bkbHdsbkdfJW/FavLQbeQSG4fcC5hhy0EFyiKEEK09EmvvPIKzzzzDCUlJQwdOpSXXnqJ0aNHA3DOOeeQlpbGu+++62+/YMEC7r//fvLy8ujVqxdPP/00U6dOPemfZ7VaCQ8Pp7a2Vt6ykSRJkqRO4mTfv08pjLQ3GUYkSZIkqfM52ffvDjmbRpIkSZKkM4cMI5IkSZIkBZQMI5IkSZIkBZQMI5IkSZIkBZQMI5IkSZIkBZQMI5IkSZIkBZQMI5IkSZIkBZQMI5IkSZIkBZQMI5IkSZIkBVSL96YJhIOLxFqt1gBXIkmSJEnSyTr4vn2ixd47RRipq6sDICUlJcCVSJIkSZLUUnV1dYSHhx/z8U6xN42maRQVFREaGoqiKK32ularlZSUFPbv3y/3vGlD8jq3H3mt24e8zu1DXuf20ZbXWQhBXV0dSUlJqOqxR4Z0ip4RVVXp1q1bm71+WFiY/EVvB/I6tx95rduHvM7tQ17n9tFW1/l4PSIHyQGskiRJkiQFlAwjkiRJkiQF1BkdRkwmE/PmzcNkMgW6lC5NXuf2I691+5DXuX3I69w+OsJ17hQDWCVJkiRJ6rrO6J4RSZIkSZICT4YRSZIkSZICSoYRSZIkSZICSoYRSZIkSZICqsuHkVdffZW0tDTMZjOjR49m3bp1x22/YMEC+vbti9lsZtCgQSxcuLCdKu3cWnKd33rrLSZMmEBkZCSRkZFMnjz5hP9dpENa+jt90Pz581EUhenTp7dtgV1ES69zTU0Nt956K4mJiZhMJnr37i3/fpyEll7nF154gT59+mCxWEhJSeHOO+/E4XC0U7Wd048//sgll1xCUlISiqLwxRdfnPA5K1asYPjw4ZhMJnr27Mm7777btkWKLmz+/PnCaDSKf//732L79u3ij3/8o4iIiBClpaXNtv/555+FTqcTTz/9tNixY4e4//77hcFgENu2bWvnyjuXll7nq6++Wrz66qti06ZNYufOneL6668X4eHh4sCBA+1ceefT0mt90L59+0RycrKYMGGCuOyyy9qn2E6spdfZ6XSKESNGiKlTp4pVq1aJffv2iRUrVojNmze3c+WdS0uv8wcffCBMJpP44IMPxL59+8T3338vEhMTxZ133tnOlXcuCxcuFHPnzhWfffaZAMTnn39+3PZ79+4VQUFBYs6cOWLHjh3i5ZdfFjqdTixatKjNauzSYWTUqFHi1ltv9X/v9XpFUlKSeOKJJ5ptf+WVV4pp06Y1OTZ69Gjxpz/9qU3r7Oxaep2P5PF4RGhoqHjvvffaqsQu41SutcfjEWPHjhVvv/22mD17tgwjJ6Gl1/n1118X6enpwuVytVeJXUJLr/Ott94qzjvvvCbH5syZI8aNG9emdXYlJxNG/va3v4kBAwY0OXbVVVeJKVOmtFldXfY2jcvlYuPGjUyePNl/TFVVJk+ezOrVq5t9zurVq5u0B5gyZcox20undp2PVF9fj9vtJioqqq3K7BJO9Vo//PDDxMXFceONN7ZHmZ3eqVznr776ijFjxnDrrbcSHx/PwIEDefzxx/F6ve1VdqdzKtd57NixbNy40X8rZ+/evSxcuJCpU6e2S81nikC8F3aKjfJORUVFBV6vl/j4+CbH4+Pj2bVrV7PPKSkpabZ9SUlJm9XZ2Z3KdT7S3XffTVJS0lG//FJTp3KtV61axb/+9S82b97cDhV2Dadynffu3cuyZcu45pprWLhwITk5Odxyyy243W7mzZvXHmV3Oqdyna+++moqKioYP348Qgg8Hg8333wz9913X3uUfMY41nuh1WqloaEBi8XS6j+zy/aMSJ3Dk08+yfz58/n8888xm82BLqdLqaurY9asWbz11lvExMQEupwuTdM04uLiePPNN8nMzOSqq65i7ty5vPHGG4EurUtZsWIFjz/+OK+99hpZWVl89tlnfPvttzzyyCOBLk06TV22ZyQmJgadTkdpaWmT46WlpSQkJDT7nISEhBa1l07tOh/07LPP8uSTT7JkyRIGDx7clmV2CS291rm5ueTl5XHJJZf4j2maBoBeryc7O5uMjIy2LboTOpXf6cTERAwGAzqdzn+sX79+lJSU4HK5MBqNbVpzZ3Qq1/mBBx5g1qxZ/OEPfwBg0KBB2O12brrpJubOnYuqys/XreFY74VhYWFt0isCXbhnxGg0kpmZydKlS/3HNE1j6dKljBkzptnnjBkzpkl7gMWLFx+zvXRq1xng6aef5pFHHmHRokWMGDGiPUrt9Fp6rfv27cu2bdvYvHmz/+vSSy/l3HPPZfPmzaSkpLRn+Z3GqfxOjxs3jpycHH/YA9i9ezeJiYkyiBzDqVzn+vr6owLHwQAo5DZrrSYg74VtNjS2A5g/f74wmUzi3XffFTt27BA33XSTiIiIECUlJUIIIWbNmiXuuecef/uff/5Z6PV68eyzz4qdO3eKefPmyam9J6Gl1/nJJ58URqNRfPLJJ6K4uNj/VVdXF6hT6DRaeq2PJGfTnJyWXueCggIRGhoqbrvtNpGdnS2++eYbERcXJx599NFAnUKn0NLrPG/ePBEaGio+/PBDsXfvXvHDDz+IjIwMceWVVwbqFDqFuro6sWnTJrFp0yYBiOeff15s2rRJ5OfnCyGEuOeee8SsWbP87Q9O7b3rrrvEzp07xauvviqn9p6ul19+WaSmpgqj0ShGjRol1qxZ439s4sSJYvbs2U3af/zxx6J3797CaDSKAQMGiG+//badK+6cWnKdu3fvLoCjvubNm9f+hXdCLf2dPpwMIyevpdf5l19+EaNHjxYmk0mkp6eLxx57THg8nnauuvNpyXV2u93ioYceEhkZGcJsNouUlBRxyy23iOrq6vYvvBNZvnx5s39zD17b2bNni4kTJx71nKFDhwqj0SjS09PFO++806Y1KkLIvi1JkiRJkgKny44ZkSRJkiSpc5BhRJIkSZKkgJJhRJIkSZKkgJJhRJIkSZKkgJJhRJIkSZKkgJJhRJIkSZKkgJJhRJIkSZKkgJJhRJIkSZKkgJJhRJIkSZKkgJJhRJIkSZKkgJJhRJIkSZKkgJJhRJIkSZKkgPr/ck3XK9GoSpgAAAAASUVORK5CYII=", "text/plain": [ "
    " ] @@ -620,7 +611,7 @@ }, { "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAAiMAAAGdCAYAAADAAnMpAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjcuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/bCgiHAAAACXBIWXMAAA9hAAAPYQGoP6dpAADGyUlEQVR4nOzddXiT19vA8W+kSWqpu1ChFClQKDIchsvGmI9tyMbc5Td3f6fM2cYGG1MYA4a7O5SipULdvanF8/4RVigUaKFt2nI+u3qNPjnP89wpIbl75D4Si8ViQRAEQRAEwUaktg5AEARBEISrm0hGBEEQBEGwKZGMCIIgCIJgUyIZEQRBEATBpkQyIgiCIAiCTYlkRBAEQRAEmxLJiCAIgiAINiWSEUEQBEEQbEpu6wAawmw2k5OTg7OzMxKJxNbhCIIgCILQABaLhYqKCvz9/ZFKL9z/0SaSkZycHIKCgmwdhiAIgiAIlyEzM5PAwMALPt4mkhFnZ2fA+mTUarWNoxEEQRAEoSE0Gg1BQUG1n+MX0iaSkf+GZtRqtUhGBEEQBKGNudQUCzGBVRAEQRAEmxLJiCAIgiAINiWSEUEQBEEQbEokI4IgCIIg2JRIRgRBEARBsCmRjAiCIAiCYFNtYmmv0LJKtFVUGnW13zvJlbirHG0YkSAIgtCeiWREqKNEW8WrB5ZjtJhrj8klUt7uc51ISARBEIRmIYZphDoqjbo6iQiA0WKu01MiCIIgCE2p0cnItm3buO666/D390cikbB06dJLnrNlyxZ69+6NUqmkY8eOzJ8//zJCFQRBEAShPWp0MlJVVUXPnj35+uuvG9Q+NTWViRMnMmLECOLi4njyySeZNWsWa9eubXSwgiAIgiC0P42eMzJ+/HjGjx/f4PZz5swhNDSUTz75BIAuXbqwY8cOPvvsM8aOHdvY2wvNrKCmot7jJrO53uOCIAiCcKWafc7I7t27GTVqVJ1jY8eOZffu3Rc8R6fTodFo6nwJzctgNvFTwi5+OLmz3se/O7mD7Kqylg1KEARBuCo0ezKSl5eHj49PnWM+Pj5oNBpqamrqPef999/HxcWl9isoKKi5w7yqmS0Wfji5k70FaXWOn73HYqmumk+ObCC/RiSGgiAIQtNqlatpXnzxRcrLy2u/MjMzbR1SuxZblMHh4iwAFFIZt4T1ZvaAm/lm8B08ETWCIEc3AKqMehaeirVlqIIgCEI71Ox1Rnx9fcnPz69zLD8/H7Vajb29fb3nKJVKlEplc4cmnLYlJ6n2z/dEDqSX55meqK5ufoQ6e/LGwRWU6Ws4XppDYU0lXvZOtghVEARBaIeavWdkwIABbNy4sc6x9evXM2DAgOa+tdAAWpOBJE0BAN72zkR7BAKwrziHJVkJWCwW7OV2DPXrCIAFOF6aU3t+hUHHjqIsvkw6yD37VzFh+yIqDKImiSAIgtBwje4ZqaysJDk5ufb71NRU4uLicHd3Jzg4mBdffJHs7Gx++eUXAB588EG++uornnvuOe655x42bdrEwoULWblyZdM9C+GyaY2G2j/7ObggkVhnijx8aD0HS/NwlttxU0Ak3ZzdKDPoqTCbmJ8Rz9fpJzhQkkt6tQYLdeeXGCxi5Y0gCILQcI1ORg4cOMCIESNqv3/66acBmD59OvPnzyc3N5eMjIzax0NDQ1m5ciVPPfUUn3/+OYGBgcydO1cs620lHOQKJFh7PLIqSzFbLEglEjYMvZWn4jbxS/oxfk4/huXsk0qLas/5z39/7uPmi7ui/uE3QRAEQaiPxGKxWC7dzLY0Gg0uLi6Ul5ejVqttHU67M/voJuLL8gCYGTmAa7xDax87VVnKwE2/UqCrvuR1ZBIJr3UdxGtdBzVbrIIgCELb0dDP71a5mkZoWSP8O9X+eUHiXv5NO0KJtgqt0UBpjYb7fIOJdnCuMxRTH5PFwr/ZScxLPYJRFEkTBEEQGkj0jAhYLBZ+StjNvsK0i7aTS+3YU1VJbHlBvY+fPXQjAYId1Iz3DePRjr3p5uLVlCELgiAIbUBDP79FMiIAYLKYWZQSy5acJCyc/5IIcnTjgS6D8bJ3ZklWInfs/Red2VT7uFwi4ZbAzsztM475acf4LeMEh8ryqTEZAXCQyent6sPU4K7MDOmBSt7sq8oFQRAEGxPJiHBZirVV7MhLJrWiGJPFjLvSkQE+oUS6+NSutAEwm82M2PoH24qyao/91Gc8M0N71LnesfJCvkg6yLr8VDLOWnkTYO/MKJ8OPNYxht5uvi307ARBEISWJJIRoUV8d+oQD8auA8BeJufb3mOYHtK93rZ6s5EFacf5NeM4+0vyqDJZlxWrpDJ6unpze1AXZoX1xEmuaLH4BUEQhOYjkhGhxewtzuGr5IP8nZWI1mykm9qTFYNvJsTR5aLnJVWU8EXSQVblpZBaVVY7OOSrcuRarw483LEXgzwDm/8JCIIgCM1CJCNCi9Majdyx91+W5iQhAe4P68k3vcYglV560ZbRbOavzHh+TjvG3pIcNEY9YN0rJ0rtyS1BkTwY1gtXhaqZn4UgCILQVEQyItRann6EFRnH6hzzsVfzVp9JFzznYGEGy9KPUKytxNvemRtDo+nuHlD7uMViYXn6UbbnJVNjMhCu9mRqx7742Ks5WJrHlJ3/kFlTgaudkgX9JjHJv2OjYk6vKuer5IP8m5NMcmUZ5tP9Jl5KB4Z5BfFgWDQjfUIadU1BEAShZYlkRKi1PP0IsUWZPNn92tpjMokEJ7v6exlOaQr5+PAGbgjtSQ/3APYVpLE2K56Xe40jwNEVgDWZJ1iTeZwZkQPwVDnyb9oRsqvLeCNmEnZSGQDvxe/ijeM7MVjMDPDw59+BN+Gpcmh0/GazmaU5SfyYeoRdxdmUnd77xk4ipbPagxsDOvFoeO/LurYgCILQfEQyItRann6EuOIsXu09oUHtv4/fgd5s5NFuw2uPfRC3liBHN+6M6IfFYuG5vUsYHdiFMYFdAKgx6nl2zz/M6HQNfb1Das8r02uZsusfthRmIpNIeLHzNbwdNfSKnk9OdQVfn4plaU4yCRXFmE6/hN0VKgZ7BnJfaE8m+IY1aHhIEARBaD4N/fwWxR6uEgU1FTy3dwl2Uilhzp5MCYnGXeVYb9uUiiJGBXSuc6yrmx+Hi63LeIu0VWgMWrq4nlmSay9XEOrsSUpFUZ1kxFWhYvPwqWzIS+X2vf/yTvxu5qYe4Z+BUxjgEcDl8Hdw5t3uw3i3+zDMZjNr81P5PuUw24uy+DcnmX9zkpFJJHRycmeyf0ce6xiDv4PzZd1LEARBaH4iGbkKhDp7MqPTAHwcnCnX17Ai/RgfHVnP670nopLbnddeo9eiPmcIR22nolyvtT5uqLEeO2cyqVpxps25RvmGUnDdYzxzZDNfJB1k4KZfGe8bxt8DJuNwBUt5pVIp4/3CGe8XDkCRtppvTsXyT3YSJzRFfJCwlw8S9uJqp2SAhz/3hPTgxoBOotdEEAShFRHJyFUgyt2/9s+Bjm6EOnvy4r5lHCjKYLBveIvFIZVK+Sx6JM906sv1OxezOi8F92Vf8FGPETwWEdMk9/BUOfBat8G81m0wAJvy0/kuJY4thRmszktldV4qUiSEO7kyyS+cxyP6XHIJsiAIgtC8RDJyFXKQK/Cxd6awpqLex9UKFRpD3R4OjUGLy+meELWdvfWYXouLwv5MG72WICfXS94/0EFN7OiZ/JV5glkH1vB43AY+TzrA8sE300XtcZnPqn7X+nTgWp8OtfHNSYljYdZJjpUX8VnSAT5LOoCzXEE/dz+md4jijuCuyEWviSAIQosS77pXIa3JQKG2sk4icbYwZ09OluXVORZfmkeYsycAnipH1HaqOm1qjAZSK4pq2zTEbUFdKZ38JHd36EZKVRnd1s7lzj3Lm23HX7VCxXOdr+HAqBlob3qWXdfexV3BXXGWK9hYkM60/StRLP6IsJVzeOTgOk5qipslDkEQBKEusZrmKvB3Siw93ANwVzlSrq9hefpRMitLeSNmIs4KFfMSduGqcGBKaDRwemnvkQ3cGBJNd3d/9hemszrzxHlLe9dmHWdGpwF4qpxYln6E7KrSOkt7GyNeU8z1O/8mubIMR5kdP8SM444OXZvwp3Bx1UY9c1OP8EdGPIfLC2o3+HOU2RHj5sNdHboxPSQKhVR0Jgq2V6KtotKoq3PMSa684KR0QbAVsbRXqPVD/A6SNIVUGXQ42SnpqPbihpCeeNlbV5h8cmQDHkpHZkQOqD3HWvTsMMXaqksWPas26uno4sXU8L74OFzZ38/XSQd55shmdGYT0S7eLB98E4FXeM3LEVeaz1enYlmXl0pWTUXtBn+B9s6M8Q3l8Y696eHq0+JxCUKJtopXDyzHaKnbgyiXSHm7z3UiIRFaFZGMCG1WtVHPrXuWsTI3BSkSHu3Ym896XmuzFTA6k5Gf04/xa/pxYkvzazf4s5fJiXb15o6grtwb2v2KVgXZyrm/YYvfrlu/jMoS3j20pt7HXu41jmAn9xaOSBAuTCQjQpu3pziHG3ctIVdbibtCxZ/9r2e0b6itwyJeU8yXSQdYk5dKWnV57QZ//ionRnoH80jHGPp7+F/0Gq1Bfb9hi9+uWz+RjAhtiSh6JrR513j4k3PdI7x+bDvvndzNmO0LGeoZyLJBN9l0w7wuag++iRkLWDf4+z3jOL+kH2dfSS4LMk6wIOMESqmMKBdPbgvswgNhPc+rydIaVBp153X1Gy1mKo063BHJiCAILUckI0Kr92bUEB7rGMPkXf+wrSgLr3+/5I1ug3i5y0Bbh4ZcKmVaSHemhXQHILWyjC+TD7Ii9xSHSgs4WJrPc0e34KN0YLhXMA+G92K4d7BtgxbatBqjwdYhCEKTE8M0QpuyKjeZO/euoMygI8DeiaUDb6SPu5+tw6qX2WxmcXYiP6UdYU9xTp0N/rqqPbkxIIJHI3rjrrDNBn8X6u4XXf2t19GSbH6I34nObKz38V4egdzbedBlrWgThOYg5owI7ZbZbOaxQxuYk3IIMzDZvyN/9p+MSt66O/qyqjV8nRzLspxkEitLajf481DYM8QzkPvDejLWJ7TFJuqKZKRtSSjLZ/axTZjPest2lCvQGg2YOHOsj2cwszoPQiKR2CJMQahDJCNCu5deVc51O/7mqKYIlVTO571Gcn9YtK3DahCz2cyqvBR+SD3MjqIsSk7v6SOXSIh09rBu8BcRg6/KqdliEMlI22GxWHjj4EryajQA9HQP4MbQaHwdXNCZjOzKT2Fx6iEMZhMAT0ZdSxc334tdUhBahEhGhKvGgrRjPBi7lmqTkUgnd5YPvokI57b1YVqgreKbU4f4JzuReE1x7cRSNzsVAzz8mRXak8n+HZu010QkI21HQlk+nx7dCECIkzvPRY9BJqn7WtiVn8LPiXsAiPYI5KGuQ1s8TkE4V0M/v0U5eKHNuzskitIbnuC2wM4kVJYQueYH7tm/qtnKyjcHb5Ujb3QbzJEx92C4+X9sGHobNwdGIpdKWJWXwo27l2C3+GMiV3/P/w5vIr2q3NYhCy3oRFlu7Z9H+EfWJiIvv1xMQoIegP5eITjJlQDEn7OdQ3m5mZ07tcyZo+HRR4v455+qFopcEBpG9IwI7cqRsnwm71xCWnU5armCn/pO4KbASFuHdUXK9FrmpBxiUWYCxzRF6E93xavlCvq7+zM9JIrbgro0aoO/Ul01y9IOs7sg9bzHHus2vM5Oz4Lt/ZF8gC25iQC80HMMoWpPDhzQ0rdvDgAxMQomTXIgL+QwBaZyytLs6avvw5EjeuLi9OTlWV8zEglYLDBzphM//eRts+cjXD3EMI1wVfskYR8vHduK3mymj5svywff1KzzL1rSjsJMvj0Vx+bCdHK11t9wpUgIcXRhgm8Yj0fEXHSYKrEsn29ObKPGVP8SUZVMzqPdhhPhIj6sWosV6UdZnnEUgFvDejMyoDMTJ+Zy4oSBN95wY82aalavrqa8/MzbuVRqTTzqe4dftMibm29uH/8ehNZNJCPCVa/CoOPm3UtZl5+GTCLh6Yi+fNB9mM3KyjeHSqOeuSmH+TMznsNlBWhP95o4yuzo6+7LXcHduDukW+0Gf7nV5bwftxbd6Y0ApUgIcnIDrHNI/nszUMnseDF6LL422BdIOF9OVRlvxq4CwEPpiMu2wbzwv3L+/tubm26yJhWLkw7z1msajvzlj/Uvsv7VNHI5FBeHoFa3n38HQuslkhFBOG1bYQa37F5Gga4aL6U9C6+5od0WHjtYmsdXyQfZkJ9O9lkb/AU7qBnjE0qATEpOZREAXd38mNHpGlwU9gCU6ar5OXEPJ07PN7jGO5SZZ22eKNjWJ0c2kFhegFEPP0/oh0opJT3fmzJDDdtyk9hTkAZA/lEnNjwXRU0N1DdtysVFwmefeXD33U7I5SIhEZqXSEYE4Sxms5mXjm3j48R9mCwWRnl3YPGAG1plmfamojUamZd2hN8zThBblk/16d4QGeCtUPFG1FDuCe1ZZ65JjdHAS/uXUm00IJdI+bD/FBztlDZ6BsLZCmsq+L/D6/n3jQCS1nox7MVkIscXndducoee+Jd05Nprc9FozJhM9V9PKoXwcDtuvNGBJ590wde3ddfpEdomkYwIQj3ytVVcv3Mx+0pyUUilvBc1jGci+9k6rBaxPDOe5w9vJFOnpfL0cI6LnZLOzu4M9gzkox4jkEgk/Jq0j+15yQA83X0kka4+tgxbOMvhlFJ6dSzB0VfH1L/i6jymksm5ISSaEf6dAEhI0DN8eC5FRSaMZxVsPXEigI0btSxYUEFcnB69dTEOnp5SRoyw54kn1AwaZN9Cz0ho70QyIggXsSQrkRn7V6Ix6ungoObfQTfSo51/6B4tyear41sBGBXQBR9nD7YUZvJl0kGK9DWM9w3jy16jOFKYzpqsEwA8ETWCrm6ts9z+1WjQoGx27dKxaL09hpAsyvQ1KKRyIly86OcdgkpmV6d9erqB4cNzycw0YjJBRIQdiYlBddps2lTDV1+Vs2WLltJS67iOSiWhd28F06c7M2OGEwqFGM4RLo9IRgThEsxmM/fHruWn1CNYgFsCO/Nr/4m1kz3bm7MnQXZwcuelXuMAa3XPJdmJPHV4E/naKro6OuMnl+Mit+OdmAmEOXvaMmzhtN27tQwcmMOgQUp27Aho8Hl5eUZGjrSuvHn+eRc++MDjgm0zMozMnl3GsmXVpKYasVisy4HDwuRMmeLAE0+4EhjYPv99CM1DJCOC0EDJFaVct/NvTlaU4CCT803vMUw/vQtve2KxWHj30Boyq0oBmBbRn0G+4bWPVxn1PHRgFQsyE+qcp5TKcFeo8FQ64KtyxFvpgJfSganBXenbSjcpbI9CQzPIyDCSmRmMv3/jEoLSUhOvvlrKs8+6EBJid+kTAL3ezLx5lcyfX8GhQzp01n0ecXeXMny4iieecGHoUDGcI1ycSEYEoZHmpsTx2KGNaM1GotSerBh8Mx0cXWwdVpPaU5DKvITdtd/39Aikj2cwFiwcKMzgSEk2W8uKSdBWX/AaUiSYsfBi52t4r/uwlgj7qjdvnoZ77ili2jQnfv7ZNvVftm2r4csvy9m8WUtxsXU4R6mE6Ggl06Y5MWuWsxjOEc4jkhFBuAxao5E79v7L0pwkJMADYdF83Wt0u6lNYrFY+PPUAbbkJl2wjdliYW15KVnaKi705uAiV5A84QE8lQ7NE+hVZnn6EVZkHKtzzMdezVt9JmE2m3F1TcdggPLyDrUf+AcLM1iWfoRibSXe9s7cGBpNd/czwzcWi4Xl6UfZnpdMjclAuNqTqR374mN/5e+hOTlGZs8uZ8mSKk6dOjOcExIiZ/JkB556ypXgYDGcI4hkRBCuyMHSPKbs/IfMmgpc7ZQs6DeJSf4dbR1Wk7BYLGzOSWRt1gnK9DV1HnNV2DMuqCtOSmf6b1pwwWTk+5ix3NdGdkhuC5anHyG2KJMnu19be0wmkeBkp+KZZ4r49FMN//d/bjz3nLVA3SlNIR8f3sANoT3p4R7AvoI01mbF83KvcQQ4ugKwJvMEazKPMyNyAJ4qR/5NO0J2dRlvxEzCTiprstiNRjM//1zJvHkVHDyoR6u1vmrc3KQMHariscfUjBwpktarlUhGBKEJvBe/izeO78RgMTPAw59/B96Ep6p9vLGazGaOleaQW61BAvg6qIly96/dhO2puI18kXQQ8zkpiZ1EyvbhU+nv2fBJlMLFLU8/QlxxFq/2nlDnuEZjxsMjDXd3Kfn5IbXHv4/fgd5s5NFuw2uPfRC3liBHN+6M6IfFYuG5vUsYHdiFMYFdAKgx6nl2zz/M6HQNfb1DaC67d2v5/PNyNm2qobDQOpyjUECPHgqmTXPivvvUqFTto6dRuDSxa68gNIGXugyk4PrHGOYVxO7iHPxWfMVrx7bbOqwmIZNK6ekRyLigrowN6kpPj8A629K/HTUEX5Uj0nPKihstZq7Z/CuTti+i2qhv6bDbrYKaCp7bu4SX9y/jx5M7KdFWMXVqPkYj/PijV522KRVFdHb1rXOsq5sfKRXWImhF2io0Bi1dzmpjL1cQ6uxZ26a5DBig4s8/fSgoCCEvL5gXX7ROmo2N1fP44yU4OKQREpLBY48VkZoqXj+ClUhGBOESXBUqtgyfyvoht+Jip+Tt+F34L/+K3cXZtg6tWTnJFXzfZ1xtz4hMIuGh8F6kTniQni7erMxLwX3ZF3yedKDJ712irSKjsqT2q0Tbvre8D3X2ZEanATweNZypHftSpK3itU2bWLWqmu7d7Zg0ybFOe41ei9qubvVgtZ2Kcr3W+rjBOvx2boVhteJMm5bg4yPnvfc8SEgIQqcLYf58T4YMUVJQYOKrrzSEhWXh6prKddflsnp1+/47Fi5OJCOC0ECjfEMpuO4xnozoQ762moGbfmVCO+8dmOgXzs2BkQCo5UrejRpKB0cX4sbM5M9rrsNOKuXJuI2ErpzDkbL8JrlnibaKVw8s591Da2q/Xj2wvF0nJFHu/sR4BRPo6EY3N38eixrO5u+9kMgt/PVX+yjGJ5dLmT5dzdatAVRXh7Jvnz9TpzqiVEpYsaKGCRPyUShSiInJ4tNPy6iurmdjHaHdEtOdBaERpFIpn0WP5JlOfbl+52JWn+4d+LjHCB6NiLF1eJgtZpanH2VvQRoagxYXhT0DfUKZEBSFRFL/Lq4ACWX5LEqJJbe6HDelAxOCoxjoEwbAl71GEVeazx0BEXwUt5ZyfQ2BTm7cHh5D6eQnue/gan5OO0bP9fOZEhDB7/2uRyW//LeWSqMOo6XuB5HRYqbSqMMdxwuc1b5sWmMgfrkXw+6opEsXxXmPqxUqNIa6PRzWv29rT4jazlr/Q6PX1m6E+N/3QU6uzRd4I/Ttq+K336zxFhUZ+eILDYsWVREXpyc2toRnnikhKEjGxIkOPP20CxER5/8chPZD9IwIwmUIdFATO/p074BEymNxG+i46jviNcU2jWtNZjxbc5O5o2Mf3oiZyI0h0azNimdzTuIFzynSVvLV8S1EuvrwSu/xjAyIZEHiXo6X5gDgq3Litz5jKa4oYGJwFC/3Gk+goytfHNtMtVHPvL4TSRp/P12dPViSnYTbss/57tShlnrK7dK9swpw9NbzzGv1b1IY5uzJydO7K/8nvjSvtlqup8oRtZ2qTpsao4HUiqJWWVHX01POW2+5Ex8fhMEQwq+/ejFihIriYjNz5lTQqVMWLi6pTJiQy/LlVZjr245YaNNEMiIIV+C2oK6U3vAkdwV3JaWqjG5r53LX3uUYbfRmmVJRSLRHAN3dA/BUORHjFUxXVz9SKy6cJG3NTcJT5cQtYb3xc3BhhH8kvT2D2JB9phLrxpwEBvuGM8g3HH9HF+7s2A+FVM6u/FMAhDu5cXzcLOb3nYBUAg/GrqPT6u9tnpy1FX+nxJJYlk+RtpKX/i+dgnwLgx7MZlhICADzEnaxJDWutv3IgEiOl+ayPiuevOpylqcfIb2yhOGnN8mTSCSMDOjMqsxjHC7OIruqjHmJu3FV2hPtGVRPBK2HVCrlzjud2bTJn6qqUA4dCmDaNCccHKSsXl3D9dfno1Sm0atXFh9+WEplpUhM2gORjAjCFZJLpSzofx3Hx84i3MmV3zJO4LZ0Nn9mnGjxWMKcvThZlk9+tQaAzMpSkjWFRF2kbHuK5gIrMzTWVRdGs4mMipI6KzOkEgmdXX1r2/xnekh3Sm94gjuCupBcWUq3tXO5Y8+/6M1GhAsr1VUzN2EXr+5dwZxvK/EMq+HnZ/vifHrYpURXTflZNWHC1V7MihzE9rxk3o5dTWxRJg91HVJbYwRgbGAXRvhF8mvSPt47tAadycDj3UY0aY2RlhAdreTnn73Jze1AcXEwb7zhRmSkHUeP6nn++VKcndMIDEzn/vsLiY9vv/O32jtRZ0QQmtjXSQd55shmdGYT0a7eLB90E4EOLfO6NVssLE07zLqsE0gkEiwWC5NDejI+qNsFz3n1wHIG+oTVafPfDr9fDryVaqOe5/ct5bmeowlXn1liujj1EInlBbwYPbbe68Zripm8czFJlaWN2vMno7KEdw+tOe/4y73GEezkfsnz27Lp0wv45ZdKfvrJk5kzxXvdxZjNZv7+u5rvv9ewZ4+OqirrR5mzs4QBA5Q8+KALkyfbt5vqyW2VqDMiCDbySEQMJZMfZ6JfGHFlBXRYOYcn4za0yDj3wcJ09hWkcW/kQF7pNZ4ZnQawPiue3fkpzX7vc3VRe5A4/n7m9B6D2QIz9q+i65q5nKosbfFY2oKcHCO//lpJSIhcJCINIJVKufVWJzZs8KeyMpSjRwOYOdMZJycp69ZpufFG63BOjx6ZvPtuKRqNGM5pzUQyIgjNwEGuYMXgW9h97d34qBz4POkg3su/ZH1earPed3FqHGODutLXO4QAR1eu8QllZEBnVmdeeMhIbadCc07tCY1ei0pmh0Imx8lOiRQJFfW0cTmn1kV9HgjvRenkJ7gxoBPxFcVErP6emftW2mxeTWt16635mM3w+++22QivrYuKUvLTT17k5HSgvDyEd95xo0sXO06cMPDKK6W4uKQREJDOPfcUcuyYztbhCucQyYggNKNrPPzJue5RXusykHKDjjHbFzJ88++UNVPhKb3ZeF7FVKlEguWCu8xAmLqelRlleYSprasu5FIZwc7uxJ9VR8RssXDyrDaXopLLWTxwCnGjZxDi4ML89GO4LZvNX+ckSTlVZaw8Z8O4/5Tpauo93h7s2aNl504dAwcqGTDg0gmecHFqtZSXX3bjyJEg9PoQFi/2YcwYFRUVZubNq6B792ycnFIZNSqHhQsrxeqcVkAkI4LQAt6MGkLupEcZ6BHA1qJMvP79knfjdzX5fXq4B7Aq8xhHS7Ip0lZyqCiTDVknifYIrG2zJDWOeQln7j3ML4IibSWLUw+RV13OlpxEDhZmMCogsrbNqIDO7MhLZnd+CrnV5fyevB+92Vhbi6Sherr6kDLxQWZHj8RgNnP7nuX0XPcT6VXlHCzM4N1Da4grzqr33Lknd5JYXtDIn0jbcMcdBUilsGhR+yhw1ppIpVJuvNGRtWv90WhCOXEikPvuc8bVVcrGjVpuu60AhSKNqKhM3nqrlLIyMdnaFsQEVkFoYStzkrlr3wrKDDoC7Z1ZMnAKfS6y2qUxtEYDy9KPEFecSYVBh4vCnr5eHZgUHIX89CqK+Qm7KdZV8UyPUbXnnV30zFXpwMSzip79Z3NOAuuy4tHotdaiZ2ExhDawZ6Q+1UY9t+5ZxsrcFCRAZ3snBjm7IJVKUUrlhDp7YLSYSdUUYTrds6OS2fFKr3F42Ttf9n1bm/nzNcycWcTddzvxyy9iiKYlVVaa+eabcv74o4pjx/QYT+chvr4yxoyx56mnXIiOrr/Wi9AwYtdeQWjFzGYzjx5az3cpcZiBG/wj+KP/lVUubav2F+cwZtuflBkNKCQS7g/uwkcx41DJ7ACo0Gv5KWEXJ04PJQ317cidEf1sGXKTMZvNuLmlo9dDeXkHFArRWW0rZrOZlStr+PZbDTt3atForB+NDg4S+vVTMmuWM3fc4ShW5zSSWE0jCK2YVCrlm5ixpEx4kCi1J0tzrJVLv0+Js3VoLS7EQc2tnr70dXLBaLHwVfoJnji0kQqDdZKhs0LFrM6DUcqsidregjS0JoMtQ24yzz1XgkZj4fXXXUUiYmNSqZTrrnNk1So/ystDSUwM5MEHnfHwkLJli5a77irEzi6NLl0yee21EoqKxHBOUxI9I4LQCvycdpSHY9dRbTLS2dmdFYNvJtzJzdZhtYjYogy+i98BwHC/SNaV5PFnZjwmrYzo4kj2PT4BgB9P7mJfYRoAL0WPo4Nz2645otGY8fBIw81NSkFBiK3DES6iutrMnDkafvutkqNH9RhO58Le3lJGjbIO5/TpIyYe10f0jAhCG/Jf5dJbAztzsqKEiNXfc+/+VZiugln+prN+H3JX2jOv30SOjb4HU7WM/Z7H+GBeJgD2crvadmZL2/+53HlnPkYjzJ3rdenGgk05OEh5+mlXDh4MRK8PY9UqHyZNskens/D771X07ZuDg0Mqw4Zl8/PPGozGtv/6bGkiGRGEVkIhlfPXgMkcHj2DDg4u/JR2FPdln7Mk68Kb3LUHnqozO/EeKckGIFztTvJ1s6DEgRfjtvH3sjKOnn5MArir2vbuvQkJelasqCEqyo7rr2/bz+VqNH68I8uX+1FWFsqpU4E8+qgab28p27frmDGjCKUyjcjITF56qZiCAjGc0xCXlYx8/fXXhISEoFKp6N+/P/v27bto+9mzZxMZGYm9vT1BQUE89dRTaLXNU2dBENq6Hq4+pE58kI97jEBrNnLj7iX02/AzedpKW4fWLEKcPPCzt3bfJmsKa6vFhvo68FP36+C7vtzy2ClWfuqJ2Sihm5s/Lgp7W4Z8xW65xVqzZeFCsZS3rQsLU/Dll56kpXWgujqEzz93p3dvBWlpBt5/vxwfnwy8vdO4/fZ8du8Wn3sX0ug5I3/99RfTpk1jzpw59O/fn9mzZ7No0SISEhLw9j5/Wdrvv//OPffcw08//cTAgQNJTExkxowZ3H777Xz66acNuqeYMyJcrSoMOm7atZT1BWnIJBKe6dSP96OGtrsZ/TvzTvFL0t7a77u6+dHLIwij2cTtz6dReH0cnHJDOq8XNw/y5pGZ3gwerEIqlVz4oq3UqlVVTJyYz4QJ9qxc2TRLuoXWacOGar76SsO2bVpKS61DNyqVhJgYBTNnOjN9uhNyefv6t3yuZlva279/f/r27ctXX30FWJdDBQUF8dhjj/HCCy+c1/7RRx8lPj6ejRs31h575pln2Lt3Lzt27GjSJyMI7dW2wgxu2b2MAl013koHFg2YzFCvYFuH1WQsFgt/njrAltyk8x7TGkz8UpRj/UYC7PeHhd3w1Xlw991OTJ3qRM+eCiSStpGY+PikUVJiprAwGFfXq28p99UqPd3A7NnlLFtWTVqaEYsFJBIID5czZYojTz7pgr9/+3s9NMsEVr1ez8GDBxk16kyxJKlUyqhRo9i9e3e95wwcOJCDBw/WDuWkpKSwatUqJkyYcMH76HQ6NBpNnS9BuJoN9Qomd9IjPB/Zn2J9DcO2/MHorX+et6dMWyWRSLg9vA9Tw/vioaw7h0JlJ8MJBbVV7nvnwkfrybtzG5/+nU6vXtlERmbyzjul1NS07omDH35YSkGBmcceU4tE5CrToYMdn33mSUpKMFptCF9/7UG/fkoyM4189FE5AQEZeHqmccsteezY0X63PriQRvWM5OTkEBAQwK5duxgwYEDt8eeee46tW7eyd+/ees/74osvePbZZ7FYLBiNRh588EG+/fbbC97njTfe4M033zzvuOgZEQTI01Zy/Y7F7C/NQyGV8l7UMJ6JbB9FwMC6UiahrICCmgokEghwdOWl47tYmHGy7q9PJgnILLA3ABZ2g0wXli/3YdKk1jkhVK834+KSjp0dlJV1aHdDbcLl27Klhi+/LGfLFi0lJdaEWqmEXr2UTJ/uzD33ODVbHZoSbRWVxjMbBzrJlU06QbxZhmkuJxnZsmULt99+O++88w79+/cnOTmZJ554gvvuu49XX3213vvodDp0ujM/HI1GQ1BQkEhGBOEsS7ISmbF/JRqjnhAHF5YNmkIP1/onRJYbdNhJpDictTy2LXkvfjevHt2OWVLP29XppOS6UyNY9nzfVjtcM2NGAT//XMncuZ7ce694HxPql5VlZPbsMpYurSYl5cxwTmionMmTHXjqKVeCgpqmV61EW8WrB5ZjPGupvFwi5e0+1zVZQtIswzSenp7IZDLy8/PrHM/Pz8fX17fec1599VXuvvtuZs2aRffu3ZkyZQrvvfce77///gV3SlQqlajV6jpfgiDUNSWwEyWTn+CekO6kV5fTc/18bt29DL257lJCrclIr/XzGLL5N0xttD5HDxev+hOR09R6Rz56OLzVJiI5OUYWLKikQwe5SESEiwoMlPPxx54kJ1uHc777zpMBA5Tk5Jj47DMNwcEZuLunMWVKHps2XdlwTqVRVycRATBazHV6SlpKo5IRhUJBTExMncmoZrOZjRs31ukpOVt1dfV53ZEymXXDrjZQ/FUQWjWZVMqPfSeQMO4+Oju7syjrJG5LP+eXtKO1bT44uYe0qnJiy/KZcyruvGuUaKvIqCyp81WirWrBZ3FpPVwvsoHcAX+WRdxNpNqj5QJqpNtuy8dsht9/FxvhCQ2nUEi5/341O3cGUFMTyvbtftxyiyMyGSxdWs3IkbkolSn065fFV1+Vo9U2/JeNKoOOHbnJ9T6WV93y8zQva2nv9OnT+e677+jXrx+zZ89m4cKFnDx5Eh8fH6ZNm0ZAQADvv/8+YJ3/8emnn/L999/XDtM89NBDxMTE8NdffzXonmI1jSA0zA8pcTx+aCNas5EotSdf9hrF6G0La3/7cZDJSRp/P/6nd72tr5sWmr6r1mwxszz9KHsL0tAYtLgo7BnoE8qEoKiL9mb8t5twTlUZc/MzMfz3dmUGJCBJ9ED+wVDsXYzc+E08nTo4cXt4DKHOl7+bcFPbu1fLNdfkMHCgkp07A2wdjtBO5OUZmT27nH/+qebUKQNms3U4p0MHOddd58Azz7jQoUP9w7J51eXMPraZUl11vY9LgLsi+jPYN/yK42zWXXu/+uorPvroI/Ly8oiOjuaLL76gf//+AAwfPpyQkBDmz58PgNFo5N1332XBggVkZ2fj5eXFddddx7vvvourq2uTPhlBEEBrNHLH3n9ZmmNdJisB/vtHLpNIuME/gr8HTgEgo7KEdw+tqfc6L/caR7BT0+z/sirjOBuyTzIz8hr8HFxIryjh56Q93NChJ9cGRNZ7TpG2kjcPrmSoXwSDfcMZtW0hJypKrHNEiu1xyvChsk8qnY5GkPpxd2RSCe+uKibTLoM3Y65DrWgde4WEhWWQlmYkMzOYgACxgkZoekajmQULKvnppwoOHtRTU2P9F+/qKmXoUCUPP6xm7FjrLxZVBh1vH1pdJxEJdnJDKZWTUVmK7vQwrwR4pNswurtfWQLdrMlISxPJiCA03vvxu3np2LZ6H1sx+GYm+oWTXlHMe3Fr623TlMnIV8e3oLZTMa3TNbXH5pzYjp1Uxr2dB9Z7zuLUQxwryeH1mIkAPHZoPV8lx+KW7ssHPpO45w4X1J/Np8ZTw705E/npVTtUKrh3yTEmdg1nXFC3Jon9Svz8s4YZM4q46y4nFiwQQzRCy9i3T8vs2eVs2FBDYaG119PODnr0UNB7QiWmIXHIVWYCHV15oMsQvE/3lOpMRv5JjWNLrnULikBHV17pNf6K5mKJjfIE4SqmMej4LOkA9b2FSIEHDq7hRGke35/cecFrJJblX/Cxxgpz9uJkWT75p8eiMytLSdYUEuV+4QqkKZoiOruemRj/Qudr+L+uA7lrgD333+0BUgk3dncAvYwf7bbwzVwXtFr47f6OHM4obrLYL5fZbObxx4tRKiXMndt6ho2E9k2vt9C9u4Lff/ehoCCE/PxgXn7ZlfBwOw4d0vPD2wp+GtOX32/pReZP0chrHGrPVcrk3B4eU/tLSFZVGakVLfNvSSQjgtAOvXpsO8W6Gurr9jQD2TWV3L17CUUX2e9mUeohDhZmNEk844K60serA68fXMFDO/7g3UOrGRkQSX/v0AueozFo6wy1BNg7M94vDJ3ZiN5kpNKgw9ERZqh7Q1A5T57YwIIFXmjyFHxyrxv5+S23QVllpZmgoHTuvbeA3FzrfZ9/vgSNxsLrr7uiVIq3WqFljB2bi5NTGp07ZzJtWgG//17F6NH27NkTQEGFD8NfTsIvWoOu3I4fvtbi6ZlOZGQmkyblYrFYkEgkDPQJq71eemXLJCNiAFMQ2hmzxcI3p2IxY0GKBJlEggXOm6QaW6XBVS5niLs//X1C8Ld3oVhXxd6CNNJOvwH9nLiHSFcfnOyUVxTTwcJ09hWkcW/kQPwdXcmsLGVhykFcFfYMOOuN73K8MrEzG74oIKt/Mp8dPsjjX7jw5RNORHbOZNthZ1zdrYlAUxdzOrtYVNopE1lZJubNq+T336t49lkXPvtMg5eXlBdfdGuyewqtX3MXEbuU0FA5W7dCQoKBU6cM/PZbJf9V0QgMkiLr4I6dvZleo6upSHYlPt5IYqKhTvJ+dj0i4wVKcDQ1kYwIQjsjlUg4OGoGJzRFFOiqKdBVU6irJl9bTW5NJZnV5eTpqrEAm8tLGB0UxaiAzthJrUvuh/t3Yu7JnRwsykBnNrI7P4XRgV2uKKbFqXGMDepKX+8QwFpVtVhXxerMExdMRtR2qvPK3Wv0WlQyOxQyOVKJBCkSKvRaUl68AdVHP3Ew7BDRDj2Y+mElvzzhT/8exdz+xyEUTuYmXSF07iqkokQHoAcWC2i1Ft55pwyAu+5ywmy2tMkN/YTGa4kiYpcybpwD8+ZZezyN53QOZmWaIdMdkJApM3PH7QpeftmN0aMd8PKS1s4NOVaSU3uORwvFLZIRQWiHerh6X7A2x/zEPezOT6HGZMKkdOblY9v5NeMEt/a05zXfqUglEq7v0IODRdYhmoNFGVecjOjNRqTnzGCRSiRY6h1IsgpTe9Z5UwSIL8sjTG2dfyGXygh2die+LJ9ozyB23DaFget/Y37GKe6OcqH/Q0b2fhvMX3dFc8efcaAys6cglQnBUVf0XOD8YlGGGlm97T77TMPmzVq++MKDIUPsr/i+Qut2sSJi7rTMh/qoUfZIJHCxpSnu4VVc98VxxkV25LawmDoTVBPK8tl/enjWUa684tU0DSUGMgXhKlNxurfBXibj25hxHBw9nSrPo7zucycdioZgtpjxdVDjKFdY2xuufDO+Hu4BrMo8xtGSbIq0lRwqymRD1kmiPQJr2yxJjWNewq7a74f5RVCkrWRx6iHyqsvZkpPIwcIMRp21FHhUQGd25CWzOz+FIC8Zw+R+mILL+HW9iZ535BIzM4uaEjv+urMnRh0sSz/Cuqz4K34+5zJU15+MABw5omfo0Fx+/bWiye8rCGCdLL14cRUTJ+bSsWPmRRORm+5QcOMPx1E6m9mck8j7cWvZkpPIvoI0fjy5i8+Obqr9JWG4f0Rtj2lzEz0jgnCVUcrO/LMv0lYS7erD4N4lZJnsyfDcQVDWeLa5LaDaaLC2l175fja3h/dhWfoRfk/eT4VBh4vCniF+HZl0Vi9Fub6GkrNqH3iqnHi023AWpcSyKTsBV6UDd3fqTzc3/9o2fb06UGnQ8m/6Ecp0NURGWIjb4kv5wEzW/hPFd29684PKwOJvFSyaFs0tC+JYnHqIMGdPOrp4XfHz+o+h5sK/11ks0LmzHQMGtI66J0L7kJys58svNaxeXc2pU8baeSFeXlK6dLEjIcHAudM9nn/ehfffd2dnfh9+TdqHBUivLCG9suS863d392di0JX3IjaUSEYE4SrT2dW3dghmU04ChepT/Cb5ldny2aQXW/j0SDYdXZ5liIM/nau70/kCm+81hkpux23hMdwWHnPBNjMiz99SItLVh1d6j7/otUf4RzLEtyMv7FtGhUHLrUNl/LjHjXSvbHL29+Pvb7x4wq6IL74oZ/HMHtzy8xE25pxs2mSknp4RmQzMZusHwBtvuKNUinkjwuXT683Mn1/J779XcOCAnqoqa++FdXdfBbfe6sj99zvj6ipnzx4tAwbUHeL87DMPnnzSBYDBvh1R29mzNO0w2dVlddo5yhUM9+/ExKAoZC24s7RIRgThKtPPuwOLUw+hNRnYX5jOq2EvILGTcJ/kPnCRkRv0I39EfMN2VRW7DfYUSiZQwiiGMYzOdEZSb/US2zpRmlc7nNTHuwOPTo2i55iT3Fuax5gBaj7/3JPqGjNzf4DFs7oj/ekYNREG7C9zF2Oj2VTne0ONDCQWsFh/NlIphITI+e03b/r3Fz0iV4ucqvJ6j19ubdEDB7R8/bWGDRtqyM421e7gGxAg45Zb7Hn4YTV9+57/+urbV4mzs4SKCgtyOfz8szdTpzrVadPDI4Du7v6kVBSRXlGCyWLGXelId3d/FLKWTw1EMiIIVxmVzI5bw3rzS9JecpzjybPLpENxDG+nrKNcX4OzxYXwvCGcClmD0a6GpZZ/WMY/WLDghhsjGMGw0/91pzvSVjD1rER3ZmO/rm5+9PB15d03vHh5uonwmw5QvXMgP3zvzbG8AvYsd+Sf+7vxxsEq7J1cG3Ufi8XCuqx4VmUer3NcVyE7XXPfWqfhiSfUvPuuO/b2tv/ZCM2vyqBj7smdnCjLq/fxhSmxPNR16CWXyGs0ZubMKWfRoiqOHtWjO71C2NFRwpAhSu6805lp05xQqS7+upLJJFx3nQNLllSzdKkPY8Y41NtOIpEQrvYiXN10vYSXS/xLEYSr0CDfcO4I78P2Tj8CEoYlzaJYV1W7EmBo9i0ozKffOCWW2gltpZSyjGU8yZNEE81HfGSjZ1CX/KxJdlUG6zv4S7eFE35PFrrdfkQ8tAW92cTt7xYQOryIokQnbhjTuJ1JLRYLvyXv59eDx9nwUQAlKWdWx6TtsC6XVDobeX5BMR9/4iESkauEzmRk9rFNF0xEAJI1hcw+ugmtyVDnuNlsZu3aKm6+OQ9v7zRcXNJ4/vlSYmP1BAXJefxxNYmJgVRWhrJ1awD336++ZCLyn2++8SI5OeiCiUhrI3pGBOEqZedfSLkll5iaIYTYBVIl0aGU2dHV1Zfh/p1wlh7ma8vXmCR1hyRMmJAgwQEHJjLRRtHXFersUfvnXfkpjA7sjFQiJfmba/HfdYKUeQH07r6M/lE1jH5LwoYX7di304VRo3LYsMH/Ilc+Y19hGtvzksmJ9eDEUl/i//Vh0t1mbnvQyM+5cuw9dNz+22FKHMzsyHNjqF/H5nq6QiuyLiuejMpSAJztlEzu0JM+Xh0A67L4pWmHqTBoyawqZV1WPH3suvLVV+UsW1ZNYqKhthaIm5uUCRPsmTnTmRtvdEB6hfM1XFykuLi0nYRYJCOCcJW6n/uRSCSscvgb7z7n1yR5jMf4UvLlBc9fzGKiaLnZ9hcT4OhKuNqLU5pC8mo0zE/cw21hfXC0U3BkQyf8w1I4nqXhuFc+oSoVt33pye6X3di4WsukSbmsWHHhPXLA2iuyIfskAPoqOUjAYpaw6lcZa/+QYTbDX5vsWKWz9ixtyj7JEN/wK9pgTGj9TGYz2/OSAZAg4cnu1xLoeKbi7mDfcILt3bjn0/0krPFi/gl79JXWyeN2dtClix033ODIww+r8fVtmo/jrTlJbM1NolhnLXzm5+DCpODuRLlfOOk+WJjBsvQjFGsr8bZ35sbQ6Dr1RSwWC8vTj7I9L5kak4FwtSdTO/bFx77pNq4VyYggXIX2spcTnGAc4/Cm/uJoHenIGMawgQ2YqNs7cmvVfYxzHNcSoTbYDSE9+ezoRswWC3sL0ogtyqSj2gutycDIV4ys2esJvfNJ1Wn5IPkQ0plxOI/1YOUWX0bdF8K677sivUDykF9TUfvbr73BCbnMWt3SZLJ+ATx3t4yhTwYjjcogt0ZDZlVpk+16LLROGZUllOtrAOjh7l+biBw9qmPjxhpiY/X88UclRmMEYMHe3cCEKUqeedSLa69tniJ4rkp7poT2tO7Ea4HdBal8c2Ibr/Qah7+j63ntT2kKmXtyJzeE9qSHewD7CtL49sR2Xu41joDT7ddmxbMpJ4EZkQPwVDnyb9oRvji2mTdiJjVZHZK204cjCEKTmcUsJEj4kR8v2u4pnqqbiFgAgx1/yX5jRu57zRtkI3Vy8WZW5CDkEuvbmsFsIr4sj9SKYoIHlBOJC+jOvOWZsVDpXwS3H2fjmBU4/P45M/at5FBp3d2KS7RVJJy1g7Fca61wea7kZANzH/Zn9XORGLVSSs+qmSK0T1VGfe2f/0tEEhP19OuXw1NPlXD0qJ7Jkx249xUdM9bs5+6lsXwwV9ZsiQhAT49AursH4GOvxsdBzQ0hPVHK5KRcYPfdjdkJdHP3Y2xgV/wcXJgc0pNgJze25CQC1l6RjdknmRAcRbRHIIGObsyMHECZroa4oswmi1v0jAhCO3OpbtoDHOAYxxjNaPyxHrtQN+1oRhNGGCmWFKRICSrvTv8Ts1jc+SN+9n6dw5nxHApaYLPneq4Yr2CCnNzYnJPInoKU2sJtXionPv/cg1u/CEHTOxVk1gm5FgCp9c86hY6f04/hJFfwldtooP69RtIKqjBZHDj3dzmzGSQSC7lxamrK5C1WuVKwHYfTVYoBsqrL2L9fy4QJefj7y1i40IeYGOsk8DknkjhUbD7vnOZmtpg5WJiB3mQkzNmz3jYpFUWMCuhc51hXNz8OF2cBUKStQmPQ0sXVt/Zxe7mCUGdPUiqKavebulIiGRGEduZS3bT/9Yr8xE/Apbtpn+IpHpM8hku1L7+a/yCkpy/RKWG8W/MKcUG/4p6VToH/JuTS1vF24m3vzG3hMdwS1otqowGZRIJKZodEImHRQ86MPZBS/4kmCaS7YNnTDXpbD9W314i+SobFXP9wTlCfCgY/l4yrr1EM0VwFOji5o7ZTUabV8vPnJp5ZkEN0TyUrVvji4WFNRnOryzlcYv1gd7ZTtcjrIruqjP+LW4fBbEIpk/Ng1yH4O7rU21aj16K2q1urRG2novz0thEag3UYSq04p43iTJum0DrePQRBaDI9z9rvBaxzKbbmJpFSUUyBYxqHOcy1XEsg1nZnd9MCTA7pSXxZHltyErkzoh/TLdOZn7uOJySPM9jPumHek11GkbG7jEXGHyjusAX7/O6kum0jUGH7egX/kUqk59V1GB0SSMBBV7LNZZxdu00ChDirMS4YwTfHtagVxbz/vgf10VfUTUZkMlCpJEz8XwEuI04hkUCMV8gla0oIbVturpF162rY83c3dq2RYTZKcfLW8fZvFpxdLehNRg4WZfBPahzm00XPBvuGt0iPmY+9M6/0Hk+N0UBsUQbzE/bwTI9RF0xIWgORjAhCO3ZuN+0kbgGo7RWBS3fTarUSYk7dzvBeZ0q528sVhKu9+dr4Ee9lfsoR/0UEaaJZpVvMeOdrWuCZXR6JRMLTPXrxTNzmOsctQIijmlUHOhIRkckHH5SjVEmImZF93jWqS+zOOktCeP8q+j1zEgcv65CQvcyuRff0EFqGXm9h924ta9bUsGJFFceOWf++JRK72o3pxn10kkXZNSzK3nve+YGOrow7nfA3N7lUZu0ZBTo4u5NWWcymnATuiuh3Xlu1QoXmnM0wNQYtLqd7QtR21vktGr0WF8WZuS4avZagRhYNvBgxgVUQ2qHsqjIe37mQR3b8xW/J+3mw6xCKHNM5xCGGMYwOdKhte6XdtIeDfufuglfBoYwJ0vG8UTivmZ/dlbm7QxRy6emeDTOosKOnizebCzMZsmMBJ+ID8PGV8uYbpbz7f0XnnV+Wbn1DlinNDH8pmWHvH61NRBzlSh6LGo6PQ9MteRRs79VXS3BzS2P48Fw+/risNhEBahOR0N41uIfW1Ht+Jxdvnoy6FtVlbj9wpSyW87cw+E+YsycnzynYFl+aVzvHxFPliNpOVadNjdFAakXRBeehXA7RMyII7VB93bRb+nwEdjCPpk8WfvF7jf4l3XnU7n7edHmIfdlHWRXwaZPeY3XmcQ4VZZJXo0EhlRGm9uLGkGh8L/HBX9/k3Ov8O7IkOwlMUgxvD+bpX5T8YNnHjtI8YrbM4eUVvXhupCd7vw1GpjAz6q4aghzdSE0zYNJLUbrouWXeURw8rR9KHkpHBvmGM8S343lJm9D2VVWZqa62Zh3/FSk711tPBTOgpzc7806RU23do8bPwYXBvuGEOXu2WM2ZJalxdHP3x13pgM5kZF9BGonl+TweNQKAeQm7cFU4MCU0GoCRAZF8fGQD67Pi6e7uz/7CdNIrS2p7USQSCSMDOrMq8xje9s54qpxYln4EV6U90Z5BTRa3SEYEoR06t5s2tuYkcbKDDGYwoYTWadtU3bSPuE+hT3VnBlSMZ7Xf54RmJpEatLzJnlNieQHD/TsR4uSOyWJhadphPj+2iTdiJqG8wMZeF5qce3twd9bmpfK8w1jeTFDx1rOlLPxrLN+kHuWn9GP8X9Z+rl/gxdKpfdn1eSiPD/DmttucuOW1fHz9apj+50lKJdZEZFpEfwb5hjfZ8xRanw8/9ODUKSMrVlRjNp//uJOThJtucsTe3tnm+7xUGLTMT9hNub4Ge7kdAY6uPB41gq5u1sJ+JbrqOptdhqu9mBU5iGXph1madhhve2ce6jqktsYIwNjALuhNRn5N2ke1UU9HFy8e7zaiSee/iGREEK4CKz3n1VlBc7b/umnPnjdyoW7aICdrLYX/ummHnVPyvL9DF0oUx/DNH0xa0AoccmIo8N2Ok/TK98d44vRvdv+Z0ekant37D+mVJXRyqb9w24Um5xp0VZTd8CRyiZRdL25i7duhfPqUil9/nYjZbGBBViIrJTm8sjqPb24JZtasQjQaM3//XcWCBV7069mXT45sAGB3fqpIRto5uVzCX395M2RIDgcO6M95DO6+26nV7EU0rdPF52w902PUecdivIKJ8Qq+4DkSiYTrQ3pwfUiPK47vQlrHT08QhCazJDWOxPICirSVZFeVMSd9NUc9thKjG0AEEcxL2MWS1Lja9iMDIjlemsv6rHjyqstZnn6E9MoShvt3Aup20x4uziK7qox5ibsv2E3rKndC6xeHf+ZYavwOoS6O4oj2Astpr0CN6b95Gheu25BSUUTns+ojgHVybkpFEXZSGUXaKjqMzqdrL/jtt0r++quCER5+jHX1RGex8E7+Xn7fZ0eXLgoeeqiI7t3tmDrViQi1F66ne4myq0ub/LkJrc+JE3qOHrUmImdvG2M0wqxZYo7QlRI9I4LQzpzbTbs5bC4mqYFf7L8HWq6bNjtoDcOzH2Gr94/0rBnAjzXzuMdtQpM8R7PFwsKUg4SrverEea6GTs5dtcabLiGFTJtewMPLCwlQqZji7s3K0iLG7v2dr76+nudGK3joITXS05NfZacrvRrNZt6JXU1udTluSgcmBEcx0Ceszj035ySyPiuecn0NgU5u3B4eQ2gTTv4Tmtc/q0u4685CZM4Wrv8omS3vRFBVbIfZDN262dG79/nLuBPK8lmUEiteFw0kkhFBaGfO7qZNJplPWEM/+hFJJNCy3bRbAr7mfwXd+NjpRe5V3Mbe3Nf4zu9/jbpGff5I3k9OVTn/6zn6iq8F4Ooq4+9l7kyeXMDiF4MY+8lx3OwUPBPanY9Sj/Jg2lLmHhrPPaHW+TYZlSUU66oAa9n5SFcf7u08kJNleSxI3IuLQkU3N2t12/2F6fydEsvUjn0JdfZkY85Jvji2mTdjrhOTXduAH38u4ZHHC7FTWfj1bxcG9R3O/gHlTB2jp6zUwoMPnt8rUqSt5KvjWxjqFyFeFw0khmkEoR2byUyAeueKtJSPvB9mkeFf0DrxvdfL9M2ceUXX+yN5P0dLcni6x0jclBefi9KYybnajqlMeDafzIPOHP799GS/mjJWDpyCk1zBvQdW8378bqoMen5L2nfWPey5Jaw3fg4ujPCPpLdnEBuyE2of35B9ksG+4QzyDcff0YU7O/ZDIZWzK//UFf0chOb3wQel3H9fCc5eBmJ3hDF5iB+eKifG9wlgw3p/br7ZkTvvdDrvvK25SXiqnMTrohFEMiII7VQqqexgBzHE0I1uNo3lZpdhJDkcQFbSgQNB8/HMGo7RfIE1khdgsVj4I3k/ccVZPNXjWjxV538InKsxNRSOFGdx53R7uo4u5+C8IPJPOGIwm1iYvJdXwqJwkSt46dg2Bq7/kbTKEgDkEinR51S87ermR4rGWp/EaDaRUVFSZ18PqURCZ1ff2jZC6/T440W8+GIpft0r+WCRlk3GvTy7ZzHvxK5me24yMTFKFi3ywdX1/KHKFM0F5iqJ18UFiWREENqp/3pF5jPftoGc1lERQKXncdTZ11AcuBWHgp7kGUsafP4fpw6wtyCNeyMHopLZUa6voVxfg950Jqm5ksm5BdoKtuQmcd1rWbgGa1nzvy7oKmRYsC4RvsndC2epjCNVGtaXFuEkV6JWqM7rnVErVGhNBvQmI5UGHWYsONdXMM7QdPt6CE3r5pvz+PJLDWFhciZ9kkBsVTLe9s48HjWCoX4R/JVykN35F56UrTFo6y0SKF4XFyaSEUFoh9JJZytb6UUvomg9pclVUgXlAbvpknULBq8E/DQ9WV9xsEHnbs1NosZk4JOjG3lu75LarwNFGbVtSnTVlOvPVMH8b3Lu9rxk3o5dTWxRZr2Tc0f4RWKyWDBZzPi4ODD3Wx90FXI2vNQF6enJvnKplNs8ffG2U5Cqq2FHVSUy8RbarpjNZgYPzmbx4mr69FGQkBCIVG4h2MmdKSHRBDu5M9SvI4N9w9mam2TrcNsVMYFVENqhe7gHsO1ckYs5EbiQ23JeY6HHx4wxjObdoi94yfOui57z3ZCpl7zulUzO3V2QQhdXP6Z16g/d4dlnJXz8MRxf5M/ctzqjMWhRSOV8pvbk9r3/sjI3BY2uii5udbvjNXotKpkdCpkcqUSCFAkV5+xuqtFrcbG7+iYptmZarZno6GwSEgxMnGjPihXWeUMuChV+DnU3mPOzd+FQUeYFr6W2U6Gp5+9cvC4uTKT1gtDOZJHFZjbTgx5EE23rcC7oL/+3+LhyHiDhZfV93JD9gk3jCVd7kV+jqf3+o4886X5tJTu/DWDfCgf6eHWgh0cATnZKVgy+hftCe3CyuoKX4vdQdtaHSnxZHmFq65wUuVRGsLM78WX5tY+bLRZOntVGsL2SEiNhYZkkJBi47z7n2kQEzn9dAOTXaHBXOl7wemHqeuYqidfFRYlkRBDamXu4BwsWfuRHW4dySc943MZ2yRYklV4s8/uYiMwbbRbLqIDOpFQUsSrjOAU1FewrSGPwKydxcjMzc2YhGRlGlqTGMS9hFwDf9xnP8536kq3TErFqDrHF2WzJSeRgYQajAiLrXHdHXjK781PIrS7n9+T96M3G82pOCLaRnm4gNDST3FwTr7/uyvff1y3nXt/rYnteMsP9I2rbnP26ABjmF0GRtpLFqYfIqy4Xr4sGkFgs/+052HppNBpcXFwoLy9HrRaV7gThQnLIIZBAutGNoxy1dTgNVmQsI6BwCHq/Yzhm96HIbycq6YUrqzaXI8XZLEmLo6CmAk+VE6MCOmNKCGDEiFwCAmS8tSGHUn1VneGg945t442Te3CWybnDJ5ip4b3rKW6VwLqseDR6rbW4VVgMoVfpb8CtSWyslkGDctHpLMyZ48n999f/+VLf62LIWVshzE/YTbGu7uvi7KJnrkoHJtZb9Kz9vy4a+vktkhFBaEfGM541rGEPe+hPf1uH0yhGs5HA7HHkB25CWhTGEef1dFOFXvrEK7Qm8zhL0g5zrX8kt4XH1Nvm+eeL+fDDcoY+nEPUHVm1u/92dw8AYGl2IjftWopSKuF27yAcpBLC1Z5M7dgXH3vxntUarV1bxaRJ+Vgs8M8/Plx//YWHXYTL19DPbzFMIwjtRB55rGUtXejS5hIRALlUTl7QBgZl34fZLZMo3QB+L1vfrPdMqyhmW24ygRcpKQ9w/8tmom7KZfscP7qeGk60RyDfnthOdlUZADcEdOLzqEEoJFIW5GfQzTscpVTOF8c2YzCbmvU5CI33yy8VjB+fj1QKO3f6i0SkFRDJiCC0E7OYhQULP/CDrUO5IjsCv+Pxkg9BUc2dypt4LH92s9xHazLwY8Iu7o7oj8NFNtsD6+6/M18y4GAv5clZ1URLuhLs5MaWnETAWpAtvTyfz7sPRSmV83DcRiqkCsp0NcRdZNWF0PI++KCU6dMLcXSUcOxYIP37X52rV1obkYwIQjtQRBGrWEUkkQxikK3DuWKfez/B77oloHfgK4/nGZR1f5Pf44/kA3R38z9vaW59UiqK6OHjy6pVvphMMGBADl1crLv/AhRpq9AYtFzr15HkCffjoVDxwrFtZBuNtW0E2/uvqqqXl5RTp4KIiGj5eUlC/UQyIgjtwH+9It/zva1DaTJ3uI4kXrkPaWkQuwLm4pM5stEl5C9kf0EaGZUlTAmNblD7/3b/HTrUnuefdyE318S3r8vP2/1XrVDhq3IibeJDBDuoWVaYzU/pJ5okZuHKnF1VNS0tGG9vUWarNRHJiCC0cSWUsJzlRBDBUIbaOpwm1VkVTJXHCZxy+lAQtAnH/F4UGcuu6Joluir+Sonl3s4DsZOev6/Ipbz/vge9eytY96uSzMP29bZxkis4Nf4BopxcWFecy7Vb/sBsNl9R3MLlqa+qqoOD+OhrbcTfiCC0cfdxH2bMzGGOrUNpFiqpgoqAfURkTkHvE4+3pgfbKg9f9vUyKkqoMGh5N3YND23/g4e2/0FieQGbcxJ4aPsfmC3nJw3n7v67das/rv4GVr4SSmqqvs7uv/+RS6VM8wtjkKsXmwsziF4/H30T9ewIDaPVmunaNZudO3VMnGjP/v2ByOXiY681En8rgtCGlVHGUpYSRhjXcq2tw2lWiUH/cEPe/7A4FTGMa/mk+K/Luk5nV19e6z2BV3qPr/3q4OROP+8QXuk9Hqnk/LfFc3f/dXKSMuOrbHSVMgYOzMVdYV+7++9/aowG0ipL+KzntdzdoRtHNYV0XPX9eWXCheZxsaqqQusjkhFBaMPu537MmPmGb2wdSotY4v8+72t+ACw86zSTW3JeafQ1VHI7Ahxd63wpZXIc5craDfQasvuv1rOQx/9nT16eiZtuKqzd/fdwcRbZVWXMS9yNq9KeaM8gfuk3iecj+5NZU0Hoqu/Iqa5omh+IUK9LVVUVWh9R9EwQ2igNGtxxJ4ggUkm1dTgtalNlLKP0k7G45NI550bigxZe0fU+ObKBQEe32qJnnxzZgIfSkRmRA2rbHCzMYFn6YYq1VXWKnvXpk8XBg3rmzvXAa2Q62/OSqTbq6ejixdTwvvg4nHnP+jzpAE/GbcRBJmf/yOl0dWlf1TZbg0OHtAwceOmqqkLLEBVYBaGdm8pU/uAPVrKSCUywdTgtLs9YQnDREAy+J3DO7k+B3zablJCvrjbj45NOTY2FhIRAwsMvHsNfmfFM3bMcmUTCxmG3M8QrqIUibf/Wratm4sQ8UVW1FREVWAWhHaukkoUsJJjgqzIRAfCVu1PtfRjPrOFU+O/DqSiKJF1Wi8fh4CBl3To/zGYYNCj3kqtmbgvqwsZht2MBhm/5g8WZJ1sm0Hbul18qGDcuT1RVbaNEMiIIbdDDPIwJE1/ypa1DsSm5VE5h4Gb6Zc/E5J5Gp5q+/F2+tcXjGDBAxSuvuJKfb2Ly5PxLth/uHcyh0TNQymTcvGcZXycdbIEo26//+z9RVbWtE8mIILQx1VTzB38QSCDXc72tw2kV9gb+yINF74GqklvsrufZ/K9bPIa33nKnb18FK1bU8P33mku2j3LxInHcfbjaKXk0bgMvH235JKo9eOKJIl54QVRVbetEMiIIbcwjPIIRI7OZbetQWpVvfZ9lXs1CMCr5xP1phmc/0uIxbNnij7OzhIcfLiIpSX/J9oEOalInPIi/yon3Tu7hnv2rWiDK9uPmm/P44gsNoaGiqmpbJyawCkIbUk01Lrjggw9ZtPz8iLbgiDaFXhWjMHum4Z81mvSAlcilLfchtXevlgEDcvDykpKdHdygIlt6s5Fe6+ZzoqKYcb6hrBx0M1Kp+F3xQsxmM0OH5rJzp46YGAV79viLYmatlJjAKgjt0OM8jhEjn/KprUNptXqowij3OIZDbm9ygtbhlB9DmbGyxe7fv7+K1193o6DA3KD5IwAKqZyjY+5hqGcga/JS6bvxF4yifHy9zq6qOmGCPQcOiKqq7YH4GxSENkKLll/4BT/8uJVbbR1Oq+YkdaDK/wBhmdej8zmGe3kUu6tbbsO61193o39/JatW1TBnTnmDzpFKpWwdcSe3BnYmtiyfTqu/p9p46aGeq0lp6ZmqqrNmObNypaiq2l6IZEQQ2ogneRIDBj7iI1uH0macClrGhLynsDjnM9A0lC9LFrfYvbds8cPZWcKjjxaTkNDwpOKvAZN5MiKG1OpyOqycQ4G2qhmjbDvOrar6ww+iqmp7IpIRQWgD9Oj5iZ/wwYc7udPW4bQpK/0/5o3yb0Fq4nHHadyV+1aL3FelkrJxo7X+yJAhORiNDR92+Sx6FP/XfRhF+hrCV31HUkVJM0ba+h06pKVz5yw0GmtV1TfecLd1SEITE8mIILQBT/EUBgx8yIe2DqVNet1rBqvNa6Dajd+836Z75tQWuW/fvireesuNwkIz113XsPkj/3mu8zX83HcCVSYDUet+Ym9xTjNF2bqtW1dNv345GAwWli714YEHxCKG9kisphGEVk6PHmecccGFAgpsHU6blqUvJLR0KEafk7hkDaTIf2uLrLQZODCb3bt1fP21Bw8/7NKoc9fmpTBxx98ALB14I5P8OzZHiK3SggUVTJ9eiJ0dbN3qzzXXiGJmbU2zrqb5+uuvCQkJQaVS0b9/f/bt23fR9mVlZTzyyCP4+fmhVCrp1KkTq1aJ9fSC0BD/43/o0fM+79s6lDYvUOFFjddR3LOGUB64C1VhFGn6vGa/76ZNfqjVEh57rJj4+MZNSh3rG8a+kdOQS6Rcv3Mxc1PimifIVubDD0uZNq0QBwdrVVWRiLRvjU5G/vrrL55++mlef/11YmNj6dmzJ2PHjqWgoP7f2PR6PaNHjyYtLY2///6bhIQEfvjhBwICAq44eEFo74wY+Y7v8MCDe7nX1uG0C3KpnOLAbfTKvBuT5ylCq3qzTLOjWe/53/wRiwWGDm3c/BGA3m6+nBx3H85yBfcdXMtbx5s3Xlt74okinn/eWlU1JUVUVb0qWBqpX79+lkceeaT2e5PJZPH397e8//779bb/9ttvLWFhYRa9Xt/YW9UqLy+3AJby8vLLvoYgtEVPW562YMEyxzLH1qG0SzNy3rNQ42ihysXyYv53zX6/994rscApy5gx2Zd1frGuyuKz7AsLCz+wPHRgTRNH1zrcfHOuBU5ZQkPTLVVVJluHI1yhhn5+N2rOiF6vx8HBgb///psbbrih9vj06dMpKytj2bJl550zYcIE3N3dcXBwYNmyZXh5eTF16lSef/55ZDJZvffR6XTodLra7zUaDUFBQWLOiHBVMWLEGWcccKCYYluH0259V7qcB2X3gH0FowoeYH3A5816v8GDrQW7vvjCnccec230+VqjkR7rfyKpspTJ/h1ZOuimpg/SBkRV1fapWeaMFBUVYTKZ8PHxqXPcx8eHvLz6x11TUlL4+++/MZlMrFq1ildffZVPPvmEd95554L3ef/993Fxcan9CgoKakyYgtAuvMzLaNHyJm/aOpR27QG36zgo34mk3I8Nfl8RnDmxWe+3YYMfLi4SnnyyhOPHG1/UTCWXc3LsLPq7+7EsJ5lrNv6C+TKqtZZoq8ioLKn9KrFhPRNRVVVoVM9ITk4OAQEB7Nq1iwEDBtQef+6559i6dSt79+4975xOnTqh1WpJTU2t7Qn59NNP+eijj8jNza33PqJnRLjamTHjhBNKlJRSautwrgqV5mq88gah9Y9DlRNNgc9OnGUOzXKv2Fgtffrk4O4uJS+vYfvX1OeGnYtZlpNMhJMbR0bfg0resJVBJdoqXj2wHKPlTBIjl0h5u891uKscLyuWy1VaaqRbt2xyc03MmuUsipm1M83SM+Lp6YlMJiM/v+56+fz8fHx9fes9x8/Pj06dOtUZkunSpQt5eXno9fX/VqBUKlGr1XW+BOFq8iqvUkMNr/O6rUO5ajhJHajxP0Rw5gS0vkdwKe3GwerEZrlX794q3nvPjeJiM+PHX/5qnqWDbuLBsGiSKksJXT2HEn11g86rNOrqJCIARouZSqPuAmc0j7Orqr76qqiqejVrVDKiUCiIiYlh48aNtcfMZjMbN26s01NytkGDBpGcnFynGzExMRE/Pz8UCjFDWhDOZcbMbGbjggtP8qStw7nqpAetZFTuo1hcculjHMx3pcub5T4vvODGkCFKNmzQMnt22WVf59uYsbzZdRB52ipCV35HelXD9sJpTg0ZAoqL09WpqvrWW6Kq6tWs0X2DTz/9ND/88AM///wz8fHxPPTQQ1RVVTFz5kwApk2bxosvvljb/qGHHqKkpIQnnniCxMREVq5cyXvvvccjjzzSdM9CENqRt3iLaqp5mZdtHcpVa33A57xY+gXI9Dxofwczc5unxsuGDX64ukp55pkSjh27/F6J17oN5oeYsVQY9XRe8wOxpc1fO+VC/hsCevfQmtqvVw8sr5OQrF9fTd++2ej1FpYsEVVVhctIRm677TY+/vhjXnvtNaKjo4mLi2PNmjW1k1ozMjLqzAUJCgpi7dq17N+/nx49evD444/zxBNP8MILLzTdsxCEdsKMmY/5GGeceYZnbB3OVe097/tZaloBNWrme79G78xpTX4PhULK5s3WnWeHDctFr2/8RNT/zAqLZtmgGzFYzPTf+Atr81KaKsxGKdFVX3QIaMGCCsaOzUMqhR07/Jk8uWXnqAitkygHLwityDu8w6u8ynu8x4u8eOkThGaXps+jY+lwTD4JuGUNocB/U5OXkP/oozKee66Ea69VsXGj/xVda29xDkO3/IbBbOaXfpO4q0O389pkVJbw7qE15x1/udc4gp0ub7jEYrGwNiueVRnH0JmN5z3eyyOQkmVRvPxSGY6OEmJjA+jUSQzVt3fNWg5eEISmZ8bM//F/OOHE8zxv63CE00IUvmi9juGaNZDSwO3YF3YnS1/YpPf43/9cGTZMyaZNWj79tOyKrtXfw59jY+7FQWbH3ftW8OHJPU0T5EVYLBb+PHWQJWlx9SYiAF+/LuXll0rx9LRWVRWJiHA2kYwIQivxIR9SSSXP8zxS8U+zVZFL5ZQG7qR75h0YPZMJqurFmorzSxlciXXr/HBzk/K//5Vw9OiVrWqJcHYnZcIDeCrsef7oVp6K29BEUdbvcEk2W3KtK48kQC+PIKaG92Vax/5c4x3ChtciOPa3H85+Or7eqsHbu/k3JxTaFvGOJwitgBkz7/EejjjyEi/ZOhzhAo4E/c6dBa+CQynjpeN4s3B+k11boZCyZUvTzB8B8FY5kj7xQUIcXJiddJBbd5+pkK0z1t97cbk2ZSfU/nlqx3482HUIw/wjGOgbxoqXwkjZ4oFnpypu+y2OfZokDGZTk95faPtEMiIIrcBnfEYFFTzLs6JXpJX71e81vqz6Fcxy3nB5iInZzzbZtXv0UPLRR+6UlpoZO/bKV8Q4yBUkjb+fXq7eLMo6ydDNv7Ei7QifH99cb/t/UuOoMTauKqxGX0NCubX2lLe9M4N9wwGoqDBx//1F/PNPNXff7cS7SzVI5VBh0JFQln+xSwpXIfGuJwitwNu8jQMOvMZrtg5FaIBH3aewS7YVSYUPq/w+Iyzz+ia79tNPuzJihIotW7R8/HHZFV9PLpVyYOR0xvqEsr0oi7tj11NjNNTbNr4sj0+PbkJrqv/x+pTrtbV/jlB7I5VIABg4MIe5cyuYN8+LX37xJtLlzDYiZfqay3w2QnslkhFBsLHP+ZxyynmSJ0WvSBsywKErJS7HUOZHkRq0HIecPlSaG1YB9VLWrPHF3V3K88+XcOTIlVdFlUqlfBQ1iAiVA2UmI38W5dLV1Z+7O/bj3siBDPXtiPL0CqGMyhKWpR1p8LUV0jPVtUvPqgBrZydh6FAlM2Y4n/fY2ecIAohkRBBs7g3ewB573uZtW4ciNJKr3Ika3zj8M8dS4xeLS3EUR7RXXt9DoZCydat1iW9TzB8B2JSTyAhXD6Idnak2m/kw7Tg9PIPo5x3CnRH9eCF6DHKJ9SNhV/6pBveOeNk74aqwByC+NI/8Gg1ms4WkJAMTJ1priOhNRnbnW38uEiR0VIuy70JdIhkRBBv6iq8oo4zHeEz0irRREomE7KA1DMt5CLNrNj311zC/dPUVXzcqSsEnn7hTVmZm9Oj6NxVtqGqjnhOl1muM9wzgh5hxlBt0DN/yO/HlxQD4O7rS3zsUAK3JyPGSht1TKpEy2LcjABYsfH18KxsPFVBZaaFXLwX5NRq+PrG1dmimu7t/i2/GJ7R+4t1PEGzodV5HhYp3edfWoQhXaEvA1zxT+hnIdcxU3cpDeR9f8TWffNKVkSNVbNum44MPLn/35oqz5nWEq72YFdaTXdfeRWJFKb03zMN4eu+wCJczPRYaQ8PndYwMiMRb5QRAfk0FT7x7CoB1km28dmAFJ09PWFXK5NwQ0vOyn4fQfolkRBBs5Du+o4QSHuZh5Ii6C+3Bx94Ps8jwL+icmOP5Ev2yZl7xNdes8cXDQ8pLL5USG6u99An1UMjOvL6KddY9Ynq4evNW1BC0ZhPFp3stis7aP0bRiCqzDnIFT3S/Fj97NVWFdpxcdnp7kPwz80Qc5Qoe7zacAEfXy3oOQvsmkhFBsJGXeRklSv6P/7N1KEITutllGEkOB5CVhLA/4Ge8skZgvEBV0oaQy63zRyQSuPbaXLTaxs8fcVXY421vnUh6SlNIRmUJAHcGdwVgfX4aepORnfnWHg0J0Oms1S8N4aly4rnu44h7Lwbr1jQWsve54Wuv5sbQaN7qcx0dXbwbHbtwdRDJiCDYwI/8SDHFPMADolekHeqoCKDS8xjqnP4UBW7BoaAnecaSy75et24KZs92p7zcclnzRyQSCcP8Imq//+b4No6V5OCldCDa1ZslWQl8dXwrpTprT0Y3Nz+87J0afZ9XXyrjRCxY0xkJjic782afSYwN7IqTnbLR1xOuHmKjPEGwAW+8KaecCipQIPboaM+6Zt1KvN8/UO7HBsUyRjr1vuxrjR2bw7p1Wt57z40XX3Rr1Ll6k5H/O7yOrKqy2mNqOxVLCnM4pa3iLk9fHOR2KGVynu85ptHDKf/8U8VNN9UtZqZUQmlpCPb24vfeq5XYKE8QWqlf+IVCCpnFLJGIXAVOBC7k5vwXwLGYUYzig6LfLvtaK1f64ukp5eWXSzlwoHHzRxQyOU9EjSDkrF15NQYtVaeX8C4rLUQptePxbiManYgkJRmYNq2A0/XOaul0sH375c1zEa4uomdEEFqYL76UUEIllSIZuYp8UvwXzyofBkU1NxQ+wZKADy7rOvHxeqKisnBykpCf3wGVqnG/U5osZg4XZ7MtN4mMyhJ+z88i32AtrDbWJ4QVg29BLq17zdWZxzlUlElejQaFVEaY2osbQ6LxdVBTU2OmT59sEhIMmM7ZckYmh763FtP7oVN42ztzY2g03d0Dah+3WCwsTz/K9rxkakwGwtWeTO3YFx978T7fXoieEUFohf7gD/LJ5x7uEYnIVeYZj9vYyiYklV4s9fuYiMwbL+s6Xboo+PJLDzQaCyNHNn7+iEwipbdnEE92v5aPr7mJirM2rVuXn8YDB9dw7u+oieUFDPfvxAs9x/BE1LWYzGY+P7YJncnII48UER9/fiICYDJC5m43Xuk9nmiPQL49sZ3ss4aJ1mbFsyknobbomlIq54tjm8VGelchkYwIQgt6hmeww47ZzLZ1KIINDHXqSYH6CIr8LiQHLcEpux9ac+M2pgN4+GEXxo2zZ9cuHe+8c/n1R5IrS6k2nVnpYwF+SjvKa8e312n3RNQIBvqE4e/oSpCTGzM6XUOJrppUTTH//luNxQISCcjrmYudnSrFWOzI5JCeBDu5sSUn0Xovi4WN2SeZEBxFtEcggY5uzIwcQJmuhriizMt+TkLbJJIRQWghC1lILrlMYxoqVLYOR7ART7krVT6H8MkcSZX/ARyLu3JSm9Ho6yxf7oOXl5TXXitl//7Lm5dxsLT+nYHfid/Nt6cOXfC8mtPzTJwVStLTg9m5058vvvDg+usdAM6bO7Jxo7WOSVc3P1IqigBrTRONQUsXV9/advZyBaHOnrVthKuHWFMoCC3kaZ5Gjpwv+MLWoQg2JpfKyQvawKCs+9nl+zNdqvrxm3YBU11HN/wacinbt/vTrVsWo0blkp/fAeQmlqUfIa44kwqDjiBHN24LjyHE2aPea8SW5iOXSDDWM3Xwkdh1+CgduDEwks05iazPiqdcX0OAoytyqZRwtVftRNeBA1UMHKiistLMP/9Us3y5D/PzNxJZ3p2aLDXXXGNd1qu2U9Xu8vtfhVe1om5irlao6uwELFwdRM+IILSAJSwhm2zu5E4ccLB1OEIrsTPwex4t/j9QVHOn8iYeL/i8UedHRp6ZPzJiRC6/JO0lviyPmZEDea33BLq6+fLZ0U219UPOu39RVr2JCFiHbO7Yu5z12Yn8nRLLxOAoXu41Hp3JSIqmiNvDYs47Z+tWaxIxdqw9Xp2quf5OCZ984kHnzmJ+lHBxIhkRhBbwBE8gQ8ZXfGXrUIRW5kufJ/lNtxj0Dnzp/hxDsh5o1PkPPeTChAn27NmjY+lyDTeFRtPJxRtve2eu69ADb3sntuYmnXeexWLhUFl+PVe0lizr5+7HW90Gs68ghcG+4QzyDWdrbiI6kxEnOyUnys6fPHv8uB61WoJcLkWtUKEx1O3h0Bi0uJzuCVHbWXf61ZzTC6LRn2kjXD1EMiIIzexf/iWTTG7ndpxofFVLof2b6jqaY8rdSEuD2BHwA76ZoxpVQn7ZMh+8fSRsei+chKN1ezrspHJOaQrPOye1qhztWatWfJXWnXT7u3pzv18H9o6cxjOd+pJVWUpnFx/+SN5PXHEWT/W4lm5u/qRozp/XkZdnIjTUDoAwZ09OltWdkxJfmkeYsycAnipH1HaqOm1qjAZSK4pq2whXD5GMCEIze5zHkSFjDnNsHYrQinVThVLlcQLHnD7kB23EMb8XRcayBp0rl0vZsT0AqczCQ7PKyCmrxGwxs6cglRRNEeX683fg9VU5EuPsxkMhUSSOu4+c6x7BSWZHjrYai8WM3mSk0qDDjIU9hWnsLUjj3siBqGTWKq3Fumr0Z63E+WLvbgwG6NPHOj9kZEAkx0tzWZ8VT151OcvTj5BeWcJw/06AtUT9yIDOrMo8xuHiLLKrypiXuBtXpT3RnkFX/gMV2hQxgVUQmtEqVpFOuugVERpEJVVQGbCPiMwbSQ5YhndpD7YpVzDYqcclz42IUPDu+64881AV4x+OY+BDmQQ7udHXq0Ptxnhnc5DbMd7Tj4E+IUQ4W6uy9nLzYWdRFmaLa522ccVZAHxydGOd4weKMhjoEwZA7AHrCpsxY6zDL+FqL2ZFDmJZ+mGWph3G296Zh7oOqVPddWxgF/QmI78m7aPaqKejixePdxuBnVTWsB+Y0G6IZEQQmtGjPIoUKd/xna1DEdqQpKB/mJL9Aku9PmeIfgQfF3/DMx63XfK8p+73ZdPyXFb84c+EiI68+KYv38fvwFNVfyKstlPVmbMxNbgr24uyKDOZUMjkSCUSpEh4oMvgOr0V8xJ2U2PU1yYiAJWbOwHVTJp0ZoJ2jFcwMV7BF4xXIpFwfUgPrg+5dLIltG9imEYQmsk61pFKKjdyI2pEeWuhcZYEfMA7mu8BC886zeSWnFcadN6yZT74+Mj4v7er2byjghOlufT0CKy3bZi67ryO6R2ikCMhU28tDy+Xygh2dif+rImuZouFk2V5hKnrzus4fFiPg4MEBwfxsSI0nnjVCEIzeZiHkSLlB36wdShCG/Wy591sYANUu/O3zwd0zbr1ou2Pl+ZwoiyPFZvV2KnM3HpPOp5yNYNO92AsSY1jXsKu2vbD/CIo0layOPUQedXl7C1IJVCpIqG6srbNqIDO7MhLZnd+CrnV5fyevB+92VinVwQgK8tEUJDobBcuj3jlCEIz2MQmTnGKKUzBFVdbhyO0YSOdepNrPEJw4RDiAxehzr6GAr9tqKTn1+6oMRpYknaYMl01N3zqwqJHOrH0sS68stf6e2e5voaSs2qOeKqceLTbcBalxLIpOwFXpQM9XH34Nz+NjGoNwQ5q+np1oNKg5d/0I2j0WgKd3Hi82wjUCvva62g0ZrRaC716iXoiwuURu/YKQjPoRCdOcYpCCnHH/dInCMIlGM1G/HJGURS4FVlBR066bqGjIuCi59xwQx7LllXz8ssuvPNO/VVYz7WtMINhW/7ghcj+vN9jeIPO+fXXCu6+u5AffvBk1izxHi2cIXbtFQQb2cY2kkhiEpNEIiI0GblUTmHgFvpmzcDknk5EdR/+Lt960XP++ccbX18Z771Xzs6d5y/vrc9Qr2DsJFL+zU1ucGzr11uvfcMNorqwcHlEMiIITewBHkCChB/50dahCO3QvsB53Ff0DqgqucXuep4t+OaCbaVSKbt2+SGVwtixeVRWmht0j87OHiRWNHw34IMHdSgU4OkpRv6FyyOSEUFoQjvZyUlOMp7xeCKqSArN43vf55hXsxCMSj5xe4rh2Y9csG1oqIIffvCkqsrCsGE5Dbr+9QEdMVrMbMpPb1D79HQj/v4iEREun0hGBKEJ3c/9oldEaBEz3MZzWLEHSXkAW/2/JSBzHBeaAjhzppopUxyIjdXz0kvFl7z2Q2G9APg+Je6SbfV6M5WVFrp3t2tU/IJwNpGMCEIT2cteTnCCMYzBF19bhyNcBXqowtC4H8M+txc5QWuxz4umzFhZb9u///bGz0/GBx+Us337xeePBDg44yJXsrUo85IxrF1rvdbw4faXaCkIFyaSEUFoIvdxHxIk/MRPtg5FuIo4SR2o9j9ISOYkdD7HcC+LYnf1ifPaSaVSdu/2RyaD8eMvPX+kr7svedoqqo36i7Zbvdq6VHjKFDF5Vbh8IhkRhCZwgAMc5SgjGYk//rYOR7gKpQYtZ3zuE1jUeQw0DeOrkiXntenQwY65c72oqrIwZMjF54/c3aEbAD+lHr1ou337dMjl1rkpgnC5RDIiCE1gFrOQIGEe82wdinAVWxXwKa+VfwNSI4853M1duW+d12b6dGduusmBuDg9zz9/4fkjdwR3RQL8mRl/0XueOmXE21tsbCdcGZGMCMIViiOOwxxmOMMJpP49QAShpbzpdQ+rzWugxoXfvN+mZ+bU89osXOhNQICMDz8sZ8uW+ueP2EllBDmoiSsruOC9zGYz5eVmunQRk1eFKyOSEUG4QvdyL4DoFRFajXHO/cl0jENeFM6RoD9wyxqE0WysfdxafyQAuRwmTsxDo6l//sgo7w5UmQwkVtTfg7Jzpw6LBQYPVjXL8xCuHiIZEYQrcIxjxBLLUIbSgQ62DkcQagUqvKjxOoZb1mDKAnehKooiTX9mh97gYDnz5nlRXX3h+SMPhVuX+H6dfKjex5cvt05eveEGxyaOXrjaiGREEK7ATGYCMJ/5tg1EEOohl8opCdxOr6y7MHmcIrSqN8s0O2ofv+suZ265xZEjR/T8739F553fx90PpVTG6ryUeq+/e7cWqRSio5XN9hyEq4NIRgThMh3nOAc4wCAGEUqorcMRhAuKDVzA9II3wF7DDfJJvFw4t/axP//0IjBQxscfa9i06fz5I93UnpyqLMNsPn8oJyHBgLu7+BgRrpx4FQnCZRJzRYS2ZL7fy3xb/RuY7HjP9VHGZj8JWOeP7NxpnT8yadL580cmuHXCjIUVeafOu2ZxsZlOncTkVeHKiWREEC5DAgnsZS8DGEAEEbYORxAa5EH3yeyTbUdS7ss6vy/pkDkRsM4f+flnL2pqLAwenF3bftGiSj4Z5QVGyXn1Ro4c0WE2w4ABYohGuHJiZyNBuAz3cA8gekWEtqevQ2dKFMfwyx9MRtAq7HN6Uei7k6lTnVm+vJo//6xi8P9tIsU9g9wHhoBFhizFg50OWXWus3SpdfLqpEli8qpw5UTPiCA00ilOsYtd9KMfkUTaOhxBaDRXuRM1fnEEZY5H63sEdUk3YqsT+e03L1wnZLEzbD+5rvnQOxcA834/ivQ1lOm1tdfYscM6v2ToUNEzIlw5kYwIQiPNYAaA2INGaPMyglYxKvcRLC65xBgHc+PyPym7aw9YAJMEJiYCYIn1A+ru4nvihAEXFwlSqfgYEa6ceBUJQiOkksoOdhBDDN3oZutwBOGKrQ/4gucKPwepkWVjHgDPDJAAMgtEFUKABjLVSPQy/s5KqD0vP99EeLiYvCo0DTFnRBAa4b+6IqJXRGhPeu67BQpLYMocuPY72HsbZHe39o6MS0I2vzeKTHfiFAV8v+gwxYVgNDrj6F7J94sO17mWwk7GwGh/OoW42+jZCG2R6BkRhAbKIIOtbKUXvehBD1uHIwhNwmg285PrOqQuMth6H2R3g4G/QefNIDPDiDRMSj2Kw/4YMJNQXcKeHdaPjvCuOiqrDXW+Ssq17Iq7+I7AgnAukYwIQgP91ysyl7mXaCkIbcdLR7eysTAds8QCZjvYezscHwnd10LfRaDQw4h09Futm0Duc8ghPUkBWIjpB04OdrVfEon1mnqDyXZPSGiTxDCNIDRAFllsZjM96EFvets6HEFoMhKJBJVUhtZsQooEkGA+MRoqvKzJiGMJVEmoWRWBCjuyHCqQFNvj6Gji0Tt71rnW94sOU1ltsM0TEdo0kYwIQgPcwz1YsIheEaHd+b8ew3knagixpflsLcxkS2EGG/PS0WdGQ7UbDPwFbv4UtvjimuVDemAWdrkGOoYpbB260I6IZEQQLiGHHDawgSii6EtfW4cjCE3OTiqjv4c//T38ea5zf+YsiiOxppSs4s6cPBTE0a6z4buHyftrOhCG3k7HkCFqW4cttCNizoggXMK93IsFC9/zva1DEYQWIUVCoMWZUYRwZMCLHHXYiZ1ECXd/D0EHYEQas2aJZERoOiIZEYSLKKCAtaylC10YwABbhyMINhFl1xGNvJCOWZN4wuFvdt01hYjIaluHJbQjl5WMfP3114SEhKBSqejfvz/79u1r0Hl//vknEomEG2644XJuKwgt7r+5IqJXRLjaqaQKEgKX0TfFkwGlemRLgqFgr63DEtqJRicjf/31F08//TSvv/46sbGx9OzZk7Fjx1JQUHDR89LS0nj22WcZMmTIZQcrCC2piCJWsYpIIhnMYFuHIwg2J5VImTq5gL2duuOorcSy9BpY0g+0JbYOTWjjGp2MfPrpp9x3333MnDmTrl27MmfOHBwcHPjppwtXpDSZTNx55528+eabhIWFXVHAgtBSZjELCxbmMMfWoQhCqyGRSOg7LJY9oQEUKsFcuB9+9YN40XsoXL5GJSN6vZ6DBw8yatSoMxeQShk1ahS7d+++4HlvvfUW3t7e3HvvvQ26j06nQ6PR1PkShJZUQgnLWU4EEQxnuK3DEYRWRSqREz3iCCUq64dItUSPZfsDTC6/DZW5zNbhCW1Qo5KRoqIiTCYTPj4+dY77+PiQl5dX7zk7duzgxx9/5Icffmjwfd5//31cXFxqv4KCghoTpiBcsfu4DzNmvuVbW4ciCK2SvdydjDDrpG57k3VvPW9zAtPNYwg3fmXb4IQ2p1lX01RUVHD33Xfzww8/4Onp2eDzXnzxRcrLy2u/MjMzmzFKQairjDKWspQwwhjJSFuHIwitVkj4M4A1Efnv/w4mC9dWzCXndwXHMz7FYjHbLD6h7WhU0TNPT09kMhn5+fl1jufn5+Pr63te+1OnTpGWlsZ1111Xe8xstr4w5XI5CQkJhIeHn3eeUqlEqVQ2JjRBaDL3cz9mzHzDN7YORRBsqqrGcN6uvGczW0LwtgPXsyrA/5eY+FUa8F/zDBnOz2N/Qxxe9t2aN1ihTWtUz4hCoSAmJoaNGzfWHjObzWzcuJEBA86vwdC5c2eOHj1KXFxc7df111/PiBEjiIuLE8MvQqujQcM//EMIIYxlrK3DEQSbUNjJALBYOG9X3rO/qmssHHDzxCg5/xoSwAIEVxhxWjEFqusfyhcEuIxy8E8//TTTp0+nT58+9OvXj9mzZ1NVVcXMmdYdTadNm0ZAQADvv/8+KpWKqKioOue7uroCnHdcEFqDB3kQEya+5mtbhyIINjMw2p9dcTkN2n03UxWNxLLhvONGCaS6KvFWD8AlfQv8FgT9PoCezzRDxEJb1+hk5LbbbqOwsJDXXnuNvLw8oqOjWbNmTe2k1oyMDKRSUdhVaHsqqWQhCwkmmAlMsHU4gmAznULc6RTi3qC2SSUPI8uom4xYgOOeSsImpuCs8IfsTbD+Rtj7LCT+BBPWg6N/M0QutFUSi8VisXUQl6LRaHBxcaG8vBy1WuyHIDSPaUxjAQtYylImM9nW4QhCk1qzI5UTp4oBkEokqJQyPN3s6RzqQbeOHkgk9Yy1NIDZYkTzsx2u+jPH8lUgsUDW2K/o7fvI6YZG2HQXpPyFWaLgH/mnDJ08E293hyt9akIr1tDPb5GMCAJQTTUuuOCLL5mI1VtC+7NmRyrVWgNjB4ViNluo1hpIy9aw72guAT5O3HBtBFLp5SUke9YF0D8tBwuwfcAU/AJmoFwzGb0UVJN2EeR01pzCnG0Y192MXF9IjXNP7K9bDk5i/mB71dDP70YP0whCe/QIj2DEyGxm2zoUQWg2MqkUR3s7AJwdFfh4OOLn5cjf6xI5nlxE905eaPVGth3I4lRGGSazGR8PR4b3DcLrdA/GrrhsTmWU0TPSmz1HctDqTHgGDqGH/C+OXvsiw0Lew2KxsDDsfcacfJHj68axQb6O4TGdCQ1wAf+hfMFKusuXMKzicyp+78Mh1xcYeutTtvzRCDYmJncIV70aaviVX/HHn5u4ydbhCEKLCvZT4+VmT1JGKQArtpyiusbAlFER3DmpK97uDixal0iNzlh7TlmFjoS0Em4YGcGNoyKoKX6RjeFx9A95D4DYE/kUpoxlTZc76VeiwUs2kaUbEynVaAGYOqkrR2U3UjhwJQ4KGFr2NPzVCSrSW/4HILQKIhkRrnqP8zhGjHzKp7YORRBswt1FhaZST3Z+BXlF1UwaHo6vpyNuahXD+gahVMhISi+tbW80mRk3OBRvdwcCfZ259poQktMNVNVYC44cOJ5P3yhf7uj/K//26MSk7GI8vB4k9oS1RpW9ytopb+ffD9m0XIiYBuVJ8GcYHHijxZ+/YHtimEa4qmnR8jM/44svt3GbrcMRBJuwYK0LUlhag8Fo4ts/4+o8bjSZKavQ1X6vdlTg7Kio/d7fyxGLBUrKtchlUqpqDPh7OwFwc78EllW5MC0plu9lTzKSJXVvLpXCiJ+h68OwdhLEvgnJv1pX3KhDm+kZC62NSEaEq9pTPIUBAx/zsa1DEQSbKSnXonZWojeYcLS345axkee1USlkl33964YVs67Sk7szl7ImaRoD/OrZq8ynP9yVD9vvg4Sf4K+O0PMF6PfuZd9XaDvEMI1w1dKj5yd+whtv7uROW4cjCDaRkauhqLSGiGA3fDwcqKoxIJVKcFOr6nzZq+xqz9FU6amsPrOWN7ewConEOtyjVMhwtLcjp6Cy9nGpVE6udCUnXBT03r2AY0XfA3DeYk6pFIb9CFP2g9IT4t6D30OhLKl5fwiCzYlkRLhqPcMz6NHzIR/aOhRBaBEms5mqGgMVVXryi6vYeySXZZuSCQt0oWu4B8F+avy9nPh3UzJp2eWUV+rIKahkR2wWeUVVtdeRy6Ss2ZFKYUk1WfkVbN6XQacO7rUrdfpG+bL/WB4JqSWUlGvZfjCL0hIVsgFLqJaDz57HQZlLWnY5VTUGdHpj3UC9+sBdudD5fqhMh4WdYe/zLfmjElqYqDMiXJX06HHGGRdcKKDA1uEIQrM7t+iZUinDq56iZ3qDiR2x2SSll1KjM+Job0eAjxNDegfi7KioXdrbo5MXe47kotUbCQt0ZfSADqiU1pF/i8XCnsO5HE0qpFprxMNFxeCYQEIDXNiV9S5dNrxColrBIdNmamoUBHg7ceu4zvUHXhQHq8dDTR44BcOEdeB6/jCS0DqJomeCcBFP8RSzmc1c5nIv99o6HEFoM/5LRu6+/vJ34V158mZG71jMlgA7Ro2tRiq9xPRFsxl2PQYnvrV+3/0pGPDJZd9faDkN/fwWwzTCVceIkW/5Fg88RCIiCDYwsfPf/NuzK2MyDSzd4XvpE6RSGPw13BQHDn5w9FPrxnslx5s9VqFliGREuOq8yIvo0PEuYpa+INjKzX2PszTChRtPFrP4YO+GneTRA6ZmQtQTUJUNf3eHXU9Ye06ENk0M0whXFSNGnHHGAQeKKbZ1OIJwVTObjWxao2JwroktQ+9kXMSvDT+55DisHgdVWeDgD+PXgEf35gtWuCximEYQ6vEqr6JFy5u8aetQBOGqJ5XK6TcqjRNu0GfXb+zPnd3wk927wZ2Z0P1pqM6FxT1hxyOil6SNEj0jwlXDjBknnFCipJTSS58gCEKLSClbj2T1GMyA3cStBKuHNu4CZQmwagxUZoC9L4xfDZ7RzRGq0EiiZ0QQzvE6r1NDDa/zuq1DEQThLGGuoykY9gFuOsjfOJxKfV7jLuAaCVPToedzUFMA//SGbQ+KXpI2RPSMCFcFM2acccYOO8oos3U4giDUY1XCrYzcvohtAXJGjq259JLf+pQlweqxUJEKKm8Yv9JaRE2wCdEzIghneZu3qaaal3nZ1qEIgnABEyIXsjw6itGZRpZt97m8i7hGwB0pEP0S6IpgSV/Yeo/oJWnlRM+I0O6ZMaNGjRQpZZQhFTm4ILRqS7a4MSWxjMW9u3NTnyOXfyFNKqwaDZpToPKEsSusG/IJLUb0jAjCae/zPlVU8SIvikREENqAyUML2RAoZ1LcUVYl3HH5F1KHwu3J0Pt10JXAsmtg83TRS9IKiZ4RoV0zY8YFFwDKKRfJiCC0EZX6PBJW+BFSAcmjP6S///+u7IIV6dZekvIkULrD2OXgO7BpghUuSPSMCALwMR9TSSX/438iERGENsRJ4YvHyI2UK8Br63OklW+6sgs6d4DbEqHP26Avh38HwcY7RS9JKyF6RoR2y4wZN9wwYUKDRiQjgtAG7cv5hLD1z5LuDBGTMlErAq/8opUZsHIs/H97dx4XVbk/cPwzC8Ow7/sigoqiKIpLbrnhkmZp2Wpp3qxbWd2yX6XXzEorK2/ZYtm+3FuZmph7Ku6KK+LKIrLJDrKvw8yc3x/oKAIqODCAz5vXvIJznnPO9zzhzJfnPEtRLKgcYMxa8KxnbhNdFeQeBbdBcGlV48vyK8so1VbV2matNMdRbXXr8bUjN/v53YRxU4LQNixlKcUUM5/5IhERhDaqv+crbLrjKCP3rWDf9o6MHNfEIb9Xs/aFh2Lg+GI4+gZsGAb+D8LIX+Hqcx/8PzjzBYzbAL4TDJvzK8uYf3Q9Wql2q4pSJmdh34kiIWkC8Q4ttFvv8A4WWPAWb5k6FEEQbsH4wN/ZGNKTsDQtf+1xMd6Je8+BR1PBPggSV8IvzpB+6XFQ5p6aRARg/4ug0xgOK9VW1UlEALSSvk5riXBzRDIitEuf8ilFFPESL4lWEUFoB+4PPUF4oCOT4wtZfbSH8U5s5QkPnoEBS6C6DDaOgr8nwc7HQaaoKVOSBGeWGe+aQh3iXVpol97mbdSoWcQiU4ciCIKR3Ds0m20+SiZGn2FT7APGPXmvV2oW3nMMhpS/avqVSLpLOyU4+iZU5Br3moKBSEaEdudLvqSAAl7kRdEqIgjtiFyuZOCoC5x0knHHwdUczFhs3AtYusOQr+rfp6uAI28Y93qCgXinFtqd+cxHjZp3edfUoQiCYGTWKnfcRu0iXw1uu+aSWLjNeCfXVsDOaVcez1xN0kHst5RmHSE8KbrBU6SVFhovntuISEaEduUbviGffJ7jOZRisJggtEu+tndSMOwTrKuhcMcYijVpxjnx0TehJPGqxzO1SUBexHTOFmQ2eIr/nTt03f1C/UQyIrQr85iHOeZ8wAemDkUQhGbUz+Mljg2aSlABHNnmh16vvfWTFpy9ZoMM5GZc/qiUIeFXFsPE3FWoFWYMcvPnQf8+jPHuhrPaGgAdEt/E7KOsWoyqaQzxp6PQbvzIj+SRx4u8KFpFBOE2MK7z//iz+Cz3HzvO2t3OTBpReGsnvGsjaEqgNKXmVZJcM418aQqawjikgljMpSomXPyLkR36YNlpsmFekkkdevFVzB5O5WdQoavmQHYio7273fI93i7EDKxCu+GGG4UUUkIJKlSmDkcQhBayZo8z98VeZHVIIFP6xzbLNcKTo9ly4SwW2jJerj5Ah5RfwLkPDP0GnEJAJiOrvJgFxzYA4G1lz/w+45sllrZErE0j3FZ+4RdyyGEmM0UiIgi3mUlDsvjb14x7TsaxIea+ZrlGQVU5ABVKK1RDlsK9B6CqENb0qelrArhb2uJkblWrvHBzRDIitAuv8zpmmPEJn5g6FEEQWphcrmRoWAbRTjIGHwrnQNpCo19DedUIm9LqKnAdAPefBEsPyNoLgE6vp+LSTK1KeT0jcoQGiWREaPN+53eyyGIGM0SriCDcpiyVzriH7SFPDZ573iShcItRz+9v62T4fl/W+ZpvzCzgjiWQuRuyIonKS6VcWw1ARxun+k4jNEAkI0Kb9wqvYIYZn/KpqUMRBMGEfG2GUDTsMyy1UBJxF4WVyUY7d1+XDqgVZgAczEliy4UzVOt14P8AktyMqohH+f38UUP5YR6djXbt24FIRoQ2bTWrySSTaUxDjdrU4QiCYGJ9PV7g+MDpdC2E4xGd0OorjXJetcKMiR2CDT+HJ5/g9UNr+fTsPuKte6EqS8ahJB6AIHt3utq7G+W6twuRjAht2ku8hBIln/GZqUMxmvzKMlJL8w2v/MoyU4ckCG3K2M4/salPX0ak69i4281o5x3lGch4n+6Gn8u0VZwtyOQHl8cBeCT7J7rYufJ0t6HIZTKjXfd2ICZjENqscMJJJ53pTMcSS1OHYxT5lWXMP7q+1vLkSpmchX0n4qi2MmFkgtC23N/7CH+WunJ/TC6rrQKZ0j/uls8pk8m4168XPRw92ZkRz/G8C2glPYUqZ7ItAwgoT+ClgB4olGZGuIPbi0hGhDbrX/wLBQq+4AtTh2I0pdqqWokIgFbSU6qtwhGRjAhCY0wenMGWMkvuORnPept7mdjtL6OcN8DWhQBbF3SSnkptNSqFErNOvrB+KIoDL8LolUa5zu1EPKYR2qR1rOMCF3iYh7HG2tThCILQCsnlSu4My+C4s4yhh9axP+1to55fIZNjZWaOmVwBHkPAygeSw0GrMep1bgciGRHapBd5EQUKlrPc1KEIgtCKWSqd8QzbT44afHa/xbmCDc13sb5vg6SFY/Ob7xrtlEhGhDZnM5tJIYUHeKDdtYrkVpaaOgRBaHd8rAdSOuIr1Dooj5ho1CG/tQTOADNbOCv+SGossTaN0OYEEEAyyRRQgC3t4/ehXKvhp/iDnLhY/1LoIU7ezOw6uKY5WBCEJtmWMJPBu7/nkJuCoeNLUcqvTAewPuUkG1JP1yrvZmHLO33vbvB8x3JT+SvlJBcrS3G1sOG+jiEEJ3wB0Yth2PdIXWawPuUUe7MSqNBVE2DrzKOd+uFm0T7et26GWJtGaJe2sY1EErmP+9pNIlKpq+aTUzsaTEQAoi+m8XXMXnTXdG4VBOHmje70HVv69GdYho6Nu1zq7Pe0tOPDAZMNr9d6hTV4rvPFuXwXu5/B7v680ecuQpy8+ersXtIDXwa5GRxdwN9pMezIiGNq5/7MCRmDuVzJZ6d31kyWJtQikhGh1bh2fo365th4jueQI+dbvjVRlMa3KfUMqaX5AFgpVUzw7cFzQXfyTLehDHUPQCmr+Wd6Kj+D/VmJpgxVENq8+3ofIrybK/cmlLL6UO1ZUuUyGXYqC8PL2qzhiRQj0uPo7ujBWO8gPCztuNevF77WDuzKSQa/yUhlaUQl7mS8bw9CnLzxtnJgRuBACqsqiM670Mx32faIob1Cq1Df/BpQe46NHewggQQmMxl77E0TaBM8yZNISNzFXYQRhgMOhn0anZZ9WQlATc/8V3qG4WVlb9jf29mH3s4+fHZ6FwC7MuIZ6h6ATEyoJAhNNnlwOpvLrbj3ZALrbSYwMWgjADkVJbx2KBwzuRx/G2cm+4U0OL9PYkkeYV5da20LcvCoaeEc9DlS4mr6524gMPRRw34LpYqONs4kluTRz9Wv2e6vLRItI0KrcO38GoUWGewN+IEsy0RKtVUAPMuzyJHzHd+ZKswm2cxmfuRHHuRBnHCiP/15h3c4zGHiirMouzQMsI+zjyEROcMZUkgBoLuDp2HRrfTyQtHJVRBukVyuZMSobI66yhh6aBN7L8yno40zT3QZyIs9hvNop37kVZbx0cltVF5a+O5axZpKbK9pObE1U1OkqQRLV4pchzCkcBe2VTm1y6gulRFqEcmI0Cql258mxjOCNX3m8Q/1o3zP98QTz93cjSOOpg6vUfrRD/mlf2oSEkc4wju8wwAGMMguiM1BH7Gjy5fs91jJwzxMF7rQ49JXOOFISPhdtQJoaXWVqW5FENoNtdIe31GHyLaEDnsWoZQOEurii7eVA90dPHmhx3DKtdUczUtt0vmL+ixEIWlRHXrFyJG3TyIZEVopGVwa57VLsZ2ZzARgFrNMGFPT9KEPMmo/VtFR04GtVF7CBadoEtz28z+br0gjjbGMZRGLCCGE+7gPL7z4W3llbgS1QjxdFQRj8LLuR8WIrzHXgWbn/eRXJhj2WSpVuFnYkFtRUu+xtio1xdW1WziKqyuxU9W0lli59OGI7SDM0reCtvxKGc2VMsIVIhkRWqWrP7x1Mp1h29hLXwc5aKrQbooGDZvYxAu8wP/4nyH5qEMCJBlB6aN55uDPbNJs43M+Zx7z2Mte/st/yZPy+Mn3bVb2eRW93UXcLdvHKCJBaA1CXJ/m1JBnCCiGU9sDDav8Vuqqya0sxU5lUe9x/jbOxBZm1doWU5CFv40zAM5qKyJdJ6KUquHgqwBUaKtJKskzlBGuEMmI0DrVM/uNdGnjdrYzkIH8zd8tHFT9iinmV37lCZ4gmGBssMEccyYwgS/4gkTqHwGjQIGnzJM3L3zHkMQn0OgkPj61g5iCLCRJQifpCcq7k1lHf6bDxVAKLTP4LvhF7pPdRymi34ggGEuY/1f8GDSaoRl61u9043xxLsvP7kWOjH4uHQD4Me4A4UnRhmNGeQVypiCTbWkxZJUXsT7lJCml+Qz37ALULKrXvdN4Yq26Ux7/G+kl+fwYH4m9uQUhzj6muM1WTbT3Cq1Uw6NF9OgZwQgGMKAF46mRQQZrWcsOdnCSk1zgApVcaapVocIDD4Zd+prMZAIIwBFHCimsda5RjOI3fkPhZsH7mX9TqKkgs7yIpad3oFYo0UmSYT6CsTGzMXcoYXv3z/iLv3DEkX/zb97kTUN/FEEQms7c7k2Wdcnlhfho/mN2L7YuHzInZAw2lx6p5FeV12qxDbB1YWbgYP5KOcHa5BO4WtjwbNDQWqPhxnp346Dv/XSNeYdvDnyM5DmCF7uPEJMX1kPMwCq0Cqml+bx7fIvh5xj3Hezt/H2tMnLkSEgsYAFv8AYKmvcfdAwxrGUte9jDGc6QRRbVXOlZb4kl3njTm96MZCSTmIQrrvWeK4wwIogw3MNCFjKXuYZEIruimGVn9pBdUVzv8f42zjwbdCe2KjV/8idP8RQFFOCEEz/xE3fT8CyRQvuQW1HC2YIsSqorMZMr8LKyx9PSrsGhp0Lj6fVa/t5mzejUKjYOGsu93bfc+KAbnxR+tAQzO5iWfevna2Nu9vNbtIwIrZJMqt0yokSJLbasZCWjGGXUa+nRE0kkG9jAAQ4QRxx55NXq52GLLUEE0Ze+jGEME5iAFTf/IRBKKBFEYIcdq1hV5x7cLGxZ0Gc80RfT2Jd9npyKEuSAl5UDQz0C6GbvgfzS3CL3cz+Tmcw85rGEJUxkIj3pyRrWEECAUepEaD20eh1rk0+wLT22zj4Z8K8eI+nm4N7ygbVDNUN+sziy0ZHhh/9mr82/Ger73q2eFDpNhbgfIHUT+I43TrDtTJNaRpYtW8ZHH31EVlYWvXr14vPPP6d///71lv3222/55ZdfOH26Zs7/0NBQ3nvvvQbL10e0jLRvOknP5tQzrE89ZdgW67aLPV1qZlmVSTIGyQaxkpV44nlL19KgYStb2cxmDnOY85ynkEJDfxQZMhxxpDOduYM7GM94RjAC5S3m7Sc5ycd8zLu8ixdet3SuqxVTzMM8zGY2I0PGFKbwC7+gRvTWbw+q9Tq+PLuHswWZDZYxlyt4sccIOtnV3yonNF5mWRRFG0Kx0kLZuFV0dZpyayfUFMNPDmDfBR6MMU6QbUSzrU3zxx9/MHv2bBYsWEBUVBS9evVi7Nix5OTk1Ft+165dPPLII+zcuZPIyEh8fHwYM2YM6enpjb200A5Vaqv59NTOWokIQJnqouH7u/IfY4e0s9GJyOWOpdOZXqtj6UQm8iVfcpzjqFEzghHMZz5HOIIWLXnkEUkkn/AJoxl9y4kIQE968hM/GTURgZoWm01s4gQn6ExnVrEKe+xZzGKjXkcwjTVJx2slIl3sXBnt1Y2Brh2xUqoAqLqUsJRWi4m0jMXDqg+akT+i1EP1jgfIq4y7tROqbMFzJBTGQsHtlYzcrEa3jAwYMIB+/frxxRdfAKDX6/Hx8eGFF15gzpw5Nzxep9Ph4ODAF198wbRp027qmqJlpH2SJIllZ3dzKj/DsM3Z3AoHtRWf+czmgv0phsU9TWDuMCb49uCeDj0bPFcGGYQTzk52coITpJFWb8fSYIIZznAmMaldPtL4lV95jucophg33Pgv/2U0o00dltAEpdVVzDm8lmq9DqVMzr+CR9LlqtaPKp2WZWd2E1dU0w9hsl8I43yCTBVuuxSR+BwDdn1FlIucQRPKaq3y22iF52BlF/AYDhN3Gi3G1q5Z+oxoNBqOHTvG3LlzDdvkcjlhYWFERkbe1DnKy8uprq7G0bHhWTSrqqqoqroyy2Rxcf2d+oS2LaE415CIWCrNeKrrELrZu5Mjy+FNKYHppbNQ5w5GQuLvC2cZ6RmItZk5ZznLWtayl70NdiztQAd605tRjGISk3DGdOP6jbY0ueOVVhVJkupdmnyqxVQe4RFe4RU+53PGMIZQQlnDGnzxbbZ7FIzvSG6KYTTVnR6dDYmIhIQMGeYKJY917s/8o+sBOJB9XiQjRjbK/0vCS05xz+F9bNzhzD1htzCk3r4zOPSAzN1QWQBqhxsfcxtp1GOavLw8dDodbm5utba7ubmRlZXVwFG1vf7663h6ehIW1vDSzO+//z52dnaGl4+PGJPdHu3JPGf4/gH/UIIcPJDJZCxhCUqZkv/YvI27XzmH/H5nTfDb+Mi9UKCgO92Zxzy2sIUiiggiiCd5klWsouzSVyyx/M7vzGSmSRORy4yyNHlZoaHM9ZYmlyPnEz4hhxxGMYpjHMMPPx7jMTRoWuBuBWO4eubPECdvAEoowQEHZjCDCipwtbDB+9JQ0pyKUtrA4Mg2Z3KvvYQHeXJPYhmrI/1u7WQDPwEkiPyXMUJrV1p0goLFixezYsUKwsPDUasbbu6aO3cuRUVFhteFC2K55fYouaSmX4iZXGGYWOgAB1jKUpxwwhdf3vaZyQmfDWTZxlEtaelPf17iJbaxjWqqKaKIaKL5ju+YwhQssTTlLTXIKEuTZ8QDNa0iEemxN1ya3BFHtrOdIxyhIx35lV+xw46lLG3u2xWMQH7Vysxa6crILgmJX/gFP/x4kicpoyZpEQs5N58pg9PZ6Kdm0ukU/jp9C489vcPAwh3O/wF6rfECbAcalYw4OzujUCjIzq49Vjo7Oxt39+sPLVuyZAmLFy9m69at9OzZ8LN/AHNzc2xtbWu9hPbn8iq95nKlYRKgSCKRkOhOd17gBV6vnsfkqEXM3PcLH8WvM3QsDSPMKB1LW8rlpcnnHfmL72P3k19Z1mDZxJI8utrX/vcU5OBBYkkeAHmVZRRXV9LtqjJXL01+rb705Tzn+Y7vUKLkZV7GG2/2sMdIdyc0h6snzzqUkwyADTY8wiP44ksQQfwg/cCHIY+yp9N3uFtZIRMZSbMZPTKXQ64yRhzZzq6UV5t+ot5vgF4Dx981XnDtQKOSEZVKRWhoKBEREYZter2eiIgIBg4c2OBxH374IQsXLmTLli307du36dEK7Yqjec08HaXaKkMrySu8QgUVbGADi1nM+LzpuJR1RI7cUL6tMerS5EBxdUXNtmsW27rR0uRP8iQFFPAMz5BJJsMYxiAGkUFGg8cIphPq7Iul0gyoSUb2ZSUgSRKjGEUyyXxauZyHzs/DotqWWI+dvBsyhVd5FT16E0fePqmU1nQaHU26FXTeu4SzeSuadqKgZ0FpBac+NW6AbVyjH9PMnj2bb7/9lp9//pmYmBieffZZysrKmDFjBgDTpk2r1cH1gw8+YP78+fzwww/4+fmRlZVFVlYWpaVibY3b3UC3jobvVyVGodHVNFuaUfMGXFBVzqbUM/WWb0t6OHoadWnyW6FEyVd8RSaZDGUokUTigw8zmYkW0WzcmqgUSsZ6dzf8/N9zh3nr2EYunrcDYOrFf2GXGcRjh5cxMfFFbLBlCUuwwYZ3eVckJc3AzbIn2pE/IwP0Ox8hp/zMDY+pQy6Hrk+CpgAS/jB6jG1Vo5ORhx56iCVLlvDmm28SEhJCdHQ0W7ZsMXRqTU1NJTPzyrj4r776Co1Gw5QpU/Dw8DC8lixZYry7ENqkfi5+hhaAhOJc3jq2kS0XzhKVd4E/k47zTtQmCjQ1S293sXPF17rhEVhtya0uTW5rVrOKaPE1rSCNWZrcFVf2sId97MMLL77ne+yw4yu+auztCM1orHc3hnt0NvycVVHMscwskOC051YKLTJwMrfiO49FXJTl8QmfoEDBG7yBAw4sY5kJo2+fgp2nETf4RfxKIG57TzTaJvxh3f8DkCngyNwbl71NNKkD6/PPP09KSgpVVVUcOnSIAQOuLFi2a9cufvrpJ8PPycnJSJJU5/XWW2/dauxCG2euUPJc0J2YK2r6flysKiM8OZqvY/ayNS2Gcm3NyA9ntRVPBg4yZahGZYylyW3N1LXKNHVp8sEMJpVUw4fWczxHBzoQyc0N1Real0wm4+GAvvyz21A629YM7c23TLu0jqRERMgSZvYOwdXCBoCXeIlCCnmLt6immud5Hldc+ZVfTXcT7dCIjp+yve+dDMrW8/euJsx8q1SD791QkgQ5R4wfYBsklvsUTKqjrTOv9xpDV3u3OvsUMjn9XTrweq8x2Ju3zlEyN2N1YhTxhdnkVZYabWnyUV5d2XThNCcuppFeVnjLS5M/x3MUUcQMZpBGGoMYxHCGk0fdDrFCy5LJZPRx9uH/eoWxuP8kQoPMQQJkUKDM5X6zSZRxpUO0HDkLWEAxxbzMyxRRxGM8hg8+bGSj6W6knZnUczfh3b2YmFjB6sgmzOEzuGbiUPa/YNzA2iixaq/QamSVFxNTmEWVrhprM3N6Onph20DrQVvybcw+zhXnUlZdhbWZOZ1sXZjk1wuXS3/N/ufkdpzMrXgi8Eon8JpJz05wsbLshpOelWs1dLJz4dGAfrhZ3vq/j3TSmcIUDnIQBQr+yT/5nM8NKwwLpvUP/sF/+a+hj48CBWMZy1/8Ve8Is0oqmcUsfuZndOjoRCd+5EeGMKSlQ2+XNmyz4K7kStbfMYJJwTsad/CafpB3FB7LBMv2udjhzX5+i2REEIR67WQnj/EYGWRgjTVf8AXTmW7qsG57XelKHLXXSpEh45/8ky/5Ehn1D+8tppgneZI1rEGPnmCC+YVfCCGkBaJuvzTaUg5vsqVXnsTRkf9ihN/Smz84+yD8NRA63gej/2y2GE2p2RbKEwTh9jCCEaSTzn/4D1q0PMETBBBAFFGmDu22VUIJ8cTX2S4hsZzlfMRHDR5riy2rWEUmmYxjHKc5TW96cwd3kEBCc4bdrqmU1nQOiybVGgL3fcrpvN9u/mC3O8C6AySvA+3tPTuyaBkRBOGGNGiYwQx+53ckJEYzmpWsxB57U4fWpsUX5bA17SyppQUUaSp4ttvQ6/b72c1uhjP8uudcy1psM7qxLS2GIk0F3tYOPBwQSsdrOjenkMJjPMY+9gEwkpH8l/82enVsocbpvN9w3DKVQhU43X0CN8vrT+5pEP8/2PU4BM+Ggf9p3iBNQLSMCK1CpbaaP84fY+7htTy//w8+iN5qmOCsIXGF2SyK2sysfSt448g6DmQn1imzMyOefx/+i1n7VvB+9N8k1TPzqGA8KlT8yq8kkUQooWxjGy648AqviPksboFGp8XbyoFHAm5uMsid1XuRSdc8hpFALtW8lVtjTXRxIqsTo5jg24N5ve/C28qez07vrDMUvAMd2MteTnOaPvRhBzvwxpt7uZd88o1yf7eTHs6PEj9kNj6lcG57yM0P+e3yGKjsIOab5g2wlRPJiNCsfjl3iJjCLGYEDuLNPuMJcnDnk1M7KKgqr7d8XmUpX5zZRaC9G2/0uYtRXoH8N/4QZwquzBJ6JDflpt5sBePrQAeOcpTNbMYRRz7mYxxx5A/E5E1N0cPRk0l+veh9k6Ogtmh2ISHV6qhqplNzV/Y/OMQhCihAlRjEEPcABrsH4Gllx9RO/VHJlRzIPl/vObvTnWMc4xCHCCSQdazDBRemMpVy6v93KtRvuN9/iOg3goHZElt3NmLIb/cXQFsKZ79uvuBaOZGMCM1Go9NyPO8C93cMoYudK64WNkzs0BNXC2t2X7Vi79V2Z57DWW3NA/598LC0Y4RnIH2cfdiefqXD3vb02Ea92QrGN45xZJPNIhZRQQUP8zBd6cppTps6tHZNWW5Dx6quvMqrbGc74xiHVqGhQ9Jw+tMf9DJSS/JrrVskl8noau9OYvH1Ww/7058YYtjGNnzw4Td+ww47nuVZsdpzI0wK3kF4D1/uTqpg9X7vmzsodAHIVRD1TvMG14qJZERoNnpJQo+EUqaotd1MruR8cW69xyQWN7BI3KU3Uq1e1+Q3W8H45jGPAgq4n/uJJ55ggrmbuylFLPfQHEak/INluat5j/cYxSimMQ1JpifVKgaNTktpdRV6JGzqW7eo+uZaDsMII5lkVrMaZ5xZznJssWUuc8UjuZs0ZWAK6/0tmHw2nbUnh934ALkSOk6B8gxIb+Tw4HZCJCNCs1ErzfC3cWbThdMUVpWjl/QczEkisTiPIk1FvccUV1fWuwBcpa7aaG+2gnFZYslqVhNHHMEEs5GNOOLIPOaJD69m9gAPoNArSbdvwhopN3A/95NJJt/xHVZYsZjF2GLLYhYb7f9rfmUZqaX5tV7XW9G6LRk7PIcDbnLCju5hZ9K/bnzA4M8AGUS+3OyxtUYiGRGa1T8CByJJ8Prhtcza9wc70+Po59KhwbkQhLarM505ycma0RzY8h7v4YIL4YSbOrR2w9ZMXatvlBIlnpqOpNufQqVQYm1mjhwZJfWtW2R2c+sWXetJnuQiF1nCEmTImMtcnHDia26tf0N+ZRnzj67n3eNbar3mH13fLhISldKawLCTpNhA132fcTL35+sfoHYC9yGQfxKKk1omyFZEJCNCs3KxsOH/eoXx2aAHWTxgEnN7j0Mn6XFWW9db/to3W6h5I1UrzJrtzVYwrnu5lxxymM98SijhPu4jmOA6E3UJjedvW3fdom6FA8m1SSSNNJRyBb42jsQUZhv26yWJ2MIs/G0bt27RtV7hFYooYj7zqaSSZ3gGN9yu23k5l1zmM7/ex3al2iq0Ut0WFq2kp1RbdUuxthault2RjfgdvQzMdj5BdvnJ6x8w+Mua/+57tvmDa2VEMiK0CHOFEjuVBWXVGs4WZNLLqf6OXfW92cZc9UbanG+2gvHIkfMO75BPPhOZyGlO041u3Md9YoTGVSp11VwoLeBCaQEAeVVlXCgtMLQMhCdF82PcAUP5YR6dyass5c+k42SVF7ErIx7HC72QZBLfUDM0NMyrK/uyEojMTiSzvIjfEo6g0WsZ5OZ/y/Fe/v9aQgkv8iIFFPAwD+OLL5vZXKf8fOaziEW8yIu3fO22Ksj5Yc4N/T+8yiBh2w2G/Dr1ALsukL4NNLdXvyuRjAjN6kxBBqfzM8irLOVsQSYfn9qOu6Utgy+9Md7Mm+2x3FTCvAINZZrzzVYwLmusWcc6TnOaQAIJJxwHHFjIQlOH1iqklOSz6PhmFh2v+SBflRjFouObWZdS8xd0kaaC/KuGwTurrXm++3BiCrJYGLWZbemxzPK9BwUKNrABgH4uHZji35t1KSdZFLWZC2UFvNh9hFHXeVKi5FM+pZhipjOdDDIYz3i60IX97AfgPOf5ju8A+JEfWclKo12/rRne4SN29gtjQI7Eth0u1y98x0cg6eHg7JYJrpUQM7AKzepobgrhyScorCrHUqmij7MPk/x6YaFUAfBTXCQXq8p4pWeY4Zi4wmxWJUaRWV6EvbklE3x71Ek0dmbEsTUthmJNZc0Mk/6hdBQtI63eSlbyT/5JIYW44MLP/Mxd3GXqsNq8znQmjTQqqL9jeHMrpJB/8A/WshYJiV70wgsvtrIVLVpkyLDCilOcwg8/AFJL83n3+JZ6zzev9zh8rR1b8A5axupIP6acSmF1d0+mDE5vuOAvrlBdAjPKQN622wzEQnmCILRKevTMYQ6f8AlatPSmN3/yJx3paOrQ2qxneZblLOc0p+lOd5PFkUUW05jGNrbV2adAQV/6so99KFGSUnKR96L/rvc87TUZAVi/3YoJieX8NWAwk3vtq7/QiY/g0Gsw4APo9VrLBmhkYjp4QRBaJTlyPuRDcsllLGM5znECCOARHqESMTy7KZ7iKYBbHuFyq9xxZytbCSOszj4dOg5zmLd5m5yKEn6Mi2zwPIdykmkDfyc3yV0jL7LPQ86YY/uJSHyu/kLBr4BCDSeWtGxwJiSSEUEQTMIee7awxZCMrGAF9thfd+VZoX596IMKFVvZaupQOMIRtrO93n0SEu9K7/Ji4lIyK4obPMf29Fg2pLbP2XyVcjVBo8+SaAPd93/FiZzv6xaSy6Hz41CZCynrWj5IExDJiCAIJhVCCOc4x8/8jAoVr/EaHngQQYSpQ2tTAgnkPKZfEmEOc647j5CExOquCylT5eFkbslE32Ce7z6MJ7rcQU9HL0O5DamnSC1tnwv2OasDMRu5Cq0MzHfOJLMsqm6hOz4GmRwOvtryAZqASEYEQWgVpjGNQgp5gRfIJZcwwhjAANJIM3VobcIEJqBFyx72mCyGKqrYxz4krvOIRQY6RTV/9H2Nzn2KGd+hO8GOXgx082dW92FM9A02FN2VUf8aVu1BV6cpJA59HY9ySN7el0ptYe0CKmvwGg1F8XCxfbYSXU0kI4IgtBpy5HzGZ2SRxQhGcJjDdKADT/CEWKztBp7hGQC+p55m/xZijjkZZBBPPGc5ywlOcJSjHOQge9nL+9k/MP7UHPok30ewpg//UE6nN735gR/QoQMgzLsr5oqaVYmPX0w12b20hDs7LGZX/7H0y5HYGeGOXq+tXWDIVzX/3d9A35J2RIymEQSh1TrCER7kQZJJxgILPuRDnud5U4fValljjRNOpJBi6lDqtfL8MSIyambifbXnaHLtEpjLXHazG3PM6U9/FCiozrHHIas77kVdWT7kURSy9v1386qD/jxwMok/g9y5f0hm7Z2re0H+KZiWWzNlfBsjRtMIgtDm9aMfSSTxDd8gR84LvIAPPuyjgSGRt7lggrnAhVa7QKFaaWb4PqeyhIEMZDvb+YAP+D/+D1ts2SftY7/rWjb0fJfvhjyOG64MYQhzmctRjpow+ubzwB2JrAuwYvLZLMKjB9XeOehTQIL97XsWW5GMCILQ6j3FUxRSyFM8RQYZDL30lUXWjQ++jUxmMhJSq12cMMje3fD9jvQ4dJIeJUpe4zUWsYgNbGBvbjz3H1tMn+TJdC4LQSFTcIADLGYx/eiHAgXuuDOKUbzDO8QQY8I7Mp7xI/LY6ylnTFQk284/fWWH53Cw9IKkVXD1YxxtOVS3nynjRTIiCEKboETJN3xDOukMZjD72IcXXjzDM2jR3vgEt4GZzATgf/zPxJHUL8DWBS9LewAulBXw1dk9ZJQVAlCl07IrI55fzx3GqdyHvhemEF69kWyy0aLlIAd5jdcYwACqqWYnO1nAAoIIQokSb7y5i7v4D/8hlbbX10QpVxMcFsd5W+i5/1uic765srPPfNBXw7G3oTQNDr0Ov7jB3/eYLmAjE31GBEFok/axj0d4hDTSsMKKpSw1fBjfzhxwQIWKbLJvXNgEEopy+OTUjlor9tqYqanQampt6+Psw9NdhyCT1T9MWI+eXexiLWs5wAESSKCIIsN+M8zwwosQQhjDGO7nflxxbb4bM5LYi2uw3HI/FUqwnnAYL+t+NTu+t7zUMnKpjiQdVU6hZI+9MreMtdIcR7VVywd9HWI6eEEQbguf8zmv8zoVVOCHHytZST/6mToskxnDGLaxjQoqUKM2dTj1OlOQwbcx+6nQVde7v79LB6Z1uQMzuaJR59WgYQtbWM96DnGIRBIpo8ywX40aH3wIJZRxjGMyk7Gl9X2m7E2dR3DEe8Q5yAjp+Svmp5dDVt0h22etevCp71zDz0qZnIV9J7aqhEQkI4Ig3DY0aHiap/mFX5CQGMEIVrISZ26/xRO/53tmMpOv+ZqnefrGB5hIuVbDwewkDucmU1hVgZlCQSdbF4Z5dMbPxnijRsop5y/+YjObOcIRUkiptaCgJZb44Ud/+jOBCdzN3a0iidt0cix3HdyKDJCQI7umU7IERFv3ZbnPy7W2t7Z1fUQyIgjCbSeNNO7jPo5wBAUKnuM5lrIU+W3UPa6SSiywYBSjGpyW/XaXTz5rWMPf/E0UUaSTThVVhv022BBAAHdwB/dwD6MZjRJlywapryb/V2scK+qfX0eHnCO2A/nRq/YcJG01Gbl9/oUKgtDueePNYQ6zne244MLnfI499q22Q2dzUKPGHXeOcczUobRajjgyk5msYhXnOU8llaSTzmd8xt3cjQMOnOY0y1nOeMZjhhkOONCf/sxmNvvY1/zDp+VmOD5SRKp1/UmQhAyN3Lx5Y2hBIhkRBKHdGcUoMsnkQz5Eg4bHeZwudOEkJ00dWosYxCAKKSSPPFOH0mZ44skLvMB61pNCCtVUk0AC7/M+YxiDBRZEEcUnfMJQhqJEiQsuDGUo85hHFPWsL9ME29h2ZV0mpRrPh4pJsJUhQZ1J9ttTMiIe0wiC0K5VUskMZvAHfyAhMZaxhhWC26u/+ItJTOJ93mcOc1r02gVV5axJiuZMQQYavQ4XtTXTu9xx3X4gcYXZrEqMIrO8CAdzS8b79mCQm3+tMjsz4tmWFkORpgJvawceDgilo03L9wk6yUlWs5o97OEsZ8kjz7AWjxw5rrjSne4MZzgP8ACBBDbq/L74coELvMEbvMVbKFCQX5lAQXhnOpaADBkyJPTI2Ox0L+tcH6h1fFt9TCOSEUEQbgtJJHE/93Oc4yhR8jIvs5jF7bI/iR49ZpjRj34c5GCLXbesWsO7xzfTxd6NYR6dsDFTk1NRgovaGhcLm3qPyass5e1jG7nTozND3AOILcxi5fkonu8xjO4OngAcyU3hp7hIHu3Uj442zkRkxBKVl8rboROxVZm2s6kePYc4xBrWsI99xBNPPldWG1aixB13etKTUYziQR7EG+96z3WRi7U6XY9mNCtYgSOOnCvYgNXGiThXgNmlT+2/nKew2WVyrXP8s9tQ+jj7GP9Gm0j0GREEQbhKRzoSRRQb2YgDDnzERzjhxEpWNnhMAQXsZW8LRmkccuT44MMpTrXodf9OO4uDuSVPdLmDjjbOOKutCXLwaDARAdideQ5ntTUP+PfBw9KOEZ6B9HH2YXt6nKHM9vRYhrgHMNg9AE8rO6Z26o9KruRA9vmWuK3rkiNnIAP5iI+IJJKLXESLlq1s5Xmepyc9KaaYTWziFV7BBx/MMccff+7jPr7ma8PjtGv7+exgByGEEE00nR3uJnrga1QooVQJMqBzeWydeH6OP0j6pYnk2hKRjAiCcFsZz3hyyOFt3qacch7iIbrRrd5pxZ/gCYYxrE2uhTOCEZRTThJJLXbNkxfT6GDtyNcxe/m/g3+yKGozezMTrntMYnEeXa+aJh4gyMGDxOKaD2itXkdqST7driojl8noau9uKNPaKFAwmtF8zucc4xhFFFFFFWtZy5M8SSCB5JBDOOE8wzO44IIFFjzKo8i4MsmbDh0ZZDCAAfws/cz+/MF80ak3ah1csAQPqZRH/EMZ6RmInVlNC1GlrprlZ/egl1rn+kQNEcmIIAi3pTd5kwIKmMxk4ogjiCDu5V5KqVnvI4II1rEOgGlMo5zyOufIrywjtTTf8MqvLKtTxlQuz0a7nOUtds3cylJ2Z57D1cKGF3uM4E6PzvyReIzI7MQGjymurqzzqMVWpaZSV41Gp6W0ugo9Ejb1lCmqrmyW+2gOKlTcy718x3ec5CSllFJCCf/jf0xlKh3oQAEFhv4nl+nQoUHDE7InWOP1KUmyl/gh0BOfcki1SGa4IpeHAkJ5p+9EfKwcAMipLOVUfoYpbrPJWnjgtCAIQuthiSVrWEMccUxhCutYhyOOvMZr/MmfKFCgQ0cKKbzBG3zMx4Zj8yvLmH90fa0pzFvTDJiDGYwSJZvZzAd80CLXlIAO1o5M9gsBwNfakYzyQnZnnmPgNR1SBbDGmqmXvgDccCOHnAbLx3ruIN5tD5rqGZibr2PqiWwuRj6B0+QE1Eoz7vXryRdndgNwMCeJXk71901pjUTLiCAIt71AAjnFKdawBmuseZd3iSUWHTqgppPiUpZygAOGY0q1VbUSEQCtpKdUW0Vr0YlOxBF344JGYqdS42FpV2ubh4UdBVV1W5UuszVTU6yp3cJRrKlErTBDpVBibWaOHBkl9ZS5/GiiPcgks95E5OrJ1pRaNRbVduw3j2BG/2yiXMAx9zy7k2cDEGTvYShbWFVR51ytmUhGBEEQLpnMZM5xDnPqzt8gR840plFBBRVaDQcaePSQ14oe1YxjHBo0HOVoi1wvwNaF7IriWtuyK4pxNG+4pcjf1pnYwqxa22IKs/C3rRlVopQr8LVxJKbwysJ/ekki9qoy7cHl/0dy5IZ+I+648ziP8xu/Mf/MH/wj8numHvmM49WnyZPlUXDX75xwt6Or08MAlFz12Eopb1sf720rWkEQhGa2kIVo0dbZrkNHEkn8X/UcFkZtZmdGfL3Hfxuzj8M5yc0c5c25vDbNF9qvWqRvS5hXVxJL8tiUeoacihIO5ySzNyuB4Z6dDWXCk6L5Me5KC9Mwj87kVZbyZ9JxssqL2JURz7HcVMK8Amudd19WApHZiWSWF/FbwhE0em2duUjaMgUKnHHmbu7mcz4njjgyyOAHfuARHqGX5ZU63JuVgBNOjFM/TMg9hbjZ9AdgT9aVzsJtLVET84wIgiBcEkssPehheDxTLwkmnXgb15JOAHha2mEuV3KhrMDw2EaOjH8Fj6gzSsQULCQLVJV2PHz0Sn+X5uzbcvJiOuHJ0eRUlOCstibMqytDPToZ9v8UF8nFqjJe6Rlm2Hb1pGf25pZMqHfSszi2psVQrKmsmfTMP5SObewD91bkVpTwxtH1AChkcqZ26scdbh1RyOToJD2R2Un8lnAEnaRHBizqdw/OamvTBo2Y9EwQBKHRFrGI+cyvtU2BAjly9OjRSTqQgUwvZ9bZr/i3/0OGPhLlWg2rEqMMj2862jgxJ2Rsi9/DtYJ1IZyRn+LJfT/XmuCttc3UKdzY7wlH2ZV5pUXOTmWBh6UtGWVFFF/1iGakZyAPBYSaIsQ6bvbzW4ymEQRBuOQ1XmMUoyi69FVMseH7QqmQnXmnSbU+S6l5Hsu7z0Ili2M+87HHHkulisc7DyC55CIZ5UUklVzkQmkBPtYOzRKrFi0SEmaYXbdcmHYcp81PkG5/Gp/Cns0Si9AyHgzoQ5WumsicmrljijQVFGlqd1Qd5ObPFP/epgjvlohkRBAE4RIVKgYysN59BZpy5sSuZTDgb2+PNvg47/M+3/M9IxnJAzyAh8wDF69K0s5pkaMksSSv2ZKR+cxnOctZxjIe4ZFak2VdVqGtplvGCPD7gHi3PbWSkZyKEtEy0sYoZHKmd7mD/q5+7MyI53RBBnpJQi6TEezoxXCPznSzd0cmq/u70NqJZEQQBOEmaPVXhvHaK234J/OYwQwmMIF1rCOc8Jqd7oAbyCQ5v2KFGy544UVHOtKVroQQQj/61VqDpCmiiKKQQqYyld/5na/5Gk88DftzK0pYenoneZWlmPmoybSrPXX4d7H7qdJpGewecEtxCC1LJpMR5OBBkIMHeklPlU6HuUKBXNa2x6OIZEQQBOEm2KnUhs6C8YU5VOt1eMo9Oc5xqqiikkpOcIIPc38kRoqlRJ2LwqqSHHJIJrnOGjcyZFhggR12uOOOL750pjPBBBNKKN3odt1F/K6e5n0zm+lKVz7jM6YznUqtlk8vJSIATqV+ZNnF0sHGjsyyUjR6HRLw33OHsFWpCXb0apY6E5qXXCbHQtm2k5DLRDIiCIJwE1QKJX2cfTiSm0Kptor1KaeY7NcLmUyG+aUv98JAvGPH4MVorJXmLB4wCTMUAJRRxjGOcZzjnOUs5zlPOunkkssZznCc43WuaYYZNtjgjDNeeOGPP0EEEUIIaaQZyunQUUIJM5jBr/zK9Nw55F5KRDws7XhJ/RRzZK8wIETNYO0Y1iRHszvzHBKwNvkEPRw822TTvtB+iNE0giAINympOI8PTmw1rB7S2daVgW4dsVCacTI/g0M5SegvvaVO8O3BPR1uvsOoHj3nOMdRjnKKU8QTTyqpZJFFIYVUUIGeGy9+JpNkyCUFvVMmE5I2kXdC78HJ0gJ77Hmbt3mVV5EkicXRf5NcWrPU/Wu9RhNg69Lo+hCMq6CqnDVJ0ZwpyECj1+GitmZ6lzvws3Fq8Jirh0U7mFsyvt5h0fFsS4uhSFNRMyw6IJSONi0zLFoM7RUEQWgGEemxrEyMum6ZHg4ePBc0DIWRZ8HMJ59jHGMjG/mUT29YXqaX003elQ504BSnsMKKWGr6juzOPMdvCUcAeMC/D2FeXY0aq9A4ZdUa3j2+mS72bgzz6ISNmZqcihJc1Na4WNjUe0xeZSlvH9vInR6dGeIeQGxhFivPR/F8j2F0d6jpP3QkN4Wf4iJ5tFM/Oto4E5ERS1ReKm+HTqyzQGFzEEN7BUEQmsEor67YqSz4K+UkORUltfZZKMwY5tGZezr0NHoiAuCII6MZTQUV9SYjSpRo0aLUmWNX7kGvyv50d3EjlVT06EkjDQkJGTKslCrDcVd3zhVM4++0sziYW/JElzsM2240adnuzHM4q615wL8PUPNILqEol+3pcYZkZHt6LEPcAwwdlad26s/p/AwOZJ9nnE/3ZrqbxhPJiCAIQiP1delAH2df4ouySSnJRyfpcVZb08vJG3NF87+tppBi+P7yysJq1ExhCo/qp7L+YD46PagVZnzoOBlzhdKQhFx2uiDT8L2TuWWzxyxc38mLaQQ5ePB1zF7OFeVgr7JkmEfnWrPXXiuxOK/OLL9BDh6GljutXkdqST53eQcZ9stlMrrau5NYnNc8N9JEIhkRBEFogstv6qaY8j2DDKBmRM5IRjKd6UxiElZYgRxyXQ6yPzuRSl014cnRPOQfWquDakJRLocuTZxloTCjZxtaar69yq0sZXfmOcK8u3KXT3eSS/L5I/EYSrmcgQ2swVNcXVnnUYutSk2lrhqNTku5VoMeCZt6ymRds6ChqYlkRBAEoY2ZxjT88ONe7sWdusnQSK9ADmQnISGxMyOe5JKLDHILwEqp4nRBBodykg0dbe/06NwirTnC9UlAB2tHJvuFAOBr7UhGeSG7M881mIy0J+I3UBAEoY3pdumrId5WDkzt1I//JRwGIKnkIkklF+uex96dezoEN1ucws2zU6kN6xxd5mFhx/G8Cw0eY2umplhTWWtbsaYStcIMlUKJXCZDjoySesrYmTV/59XGEMmIIAjCJbszzrE78xwXq67M0XG3bzA9HD0bPOZYbip/pZzkYmUprhY23NcxpNYkYpIksT7lFHuzEqjQVRNg68yjnfrhZtG8IwOHenTCVqUmPPkEmeVFtfapFWbc6dGJezr0RClXNGscws0JsHUh+5pHJ9kVxTiaN7yysr+tM6fzM2ptiynMwv/SasZKuQJfG0diCrMJcfYBQC9JxBZmMcKzi5Hv4NaIZEQQBOESe3MLJnfshauFDUgQmZPEl2f38EbvcXha2dcpf744l+9i9zOpYy96OnpxOCeZr87uZV7vcXhdKv93Wgw7MuJ4InAgzmor1iWf5LPTO3kr9G7MmjkR6OXkTU9HL84X55JUchGtpMfJ3KrFOtoKNy/MqysfnNjKptQz9HXxJbnkInuzEnisc39DmfCkaAo15cwIHATAMI/O7MqI58+k4wx28ye2MJtjuak832NYrfP+FBeJn40jfjZORKTHodFr68xFYmpNGnu2bNky/Pz8UKvVDBgwgMOHD1+3/KpVq+jatStqtZrg4GA2bdrUpGAFQRCaUy8nb4IdvXCzsMXN0pZJfr0wVyhJrOcRB0BEehzdHT0Y6x2Eh6Ud9/r1wtfagV0ZNcu8S5JERHos4317EOLkjbeVAzMCB1JYVUH0dZrfjUkmk9HJzpXR3t24y6c7/V39RCLSCvnZOPFstzs5kpvM28c2sjH1NA/6hzLAtaOhTJGmgvyqcsPPzmprnu8+nJiCLBZGbWZbeiyPdxlgGNYL0M+lA1P8e7Mu5SSLojZzoayAF7uPwFZl0aL3dyON/o38448/mD17NsuXL2fAgAEsXbqUsWPHEhcXh6ura53yBw4c4JFHHuH999/n7rvv5rfffmPSpElERUXRo0cPo9yEIAiCseklPcdyU9HotPg3MFtlYklencnCghw8OHGxZqr2vMoyiqsr6XbViBsLpYqONs4kluTRz9Wv2eIX2p6eTl70dGp4naAnAuuuKB1o78Ybfe667nlHeAYywjPwluNrTo1uGfn444956qmnmDFjBkFBQSxfvhxLS0t++OGHest/+umnjBs3jldffZVu3bqxcOFC+vTpwxdffHHLwQuCIBhbelkhL+5fyax9f/BrwhGeCRqKp5VdvWWLNZXYXtMR0NZMTdGlDoPF1RU12+oZWll0TadCQbidNaplRKPRcOzYMebOnWvYJpfLCQsLIzIyst5jIiMjmT17dq1tY8eOZe3atQ1ep6qqiqqqKsPPxcWtazy0IAjtl5uFDW/0uYsKbTVRean8FHeQV3qGNZiQtAZbLpwhPPkEIz0DeSggtMFyrbWzrSA0qmUkLy8PnU6Hm5tbre1ubm5kZWXVe0xWVlajygO8//772NnZGV4+Pj6NCVMQBKHJlHIFrhY2dLBxZHLHELyt7dmREVdvWVuVmuLqa4ZNVldid6klxNas5rl8fcMv7Yy0LkhyyUX2ZCbgXU8H26td7mw72N2fN/rcRYiTN1+d3Ut6WaGhzOXOtlM792dOyBjM5Uo+O72Tar3OKLEKQkOMv3iCEcydO5eioiLD68KFlunoJQiCcC1JqplWuz7+Ns7EFtb+wyqmIMvQx8RZbYWtmbpWmQptNUkleQ32Q2mMSl0138cd4PHOA7C8aq2Z+rSFzrbC7atRyYizszMKhYLs7Oxa27Ozs3F3r39KZHd390aVBzA3N8fW1rbWSxAEobmFJ0UTX5RDXmUp6WWFl37Opv+ljqY/xh0gPCnaUH6UVyBnCjLZlhZDVnkR61NOklKaz/BLczjIZDJGeXVl04XTnLiYRnpZIT/GR2JvbmGY9+FW/J5wlGAHT7o53HhK+sSS+tcxSSypWaPkRp1tBaE5NarPiEqlIjQ0lIiICCZNmgSAXq8nIiKC559/vt5jBg4cSEREBC+99JJh27Zt2xg4sG6vYEEQBFMqqa7kp7hIijQVWCjN8LKy58UeIwhy8AAgv6q81mJzAbYuzAwczF8pJ1ibfAJXCxueDRpqmGMEYKx3NzQ6Lf87d5hyrYZOdi682H3ELc8xciQnmdTSfP7de9xNlRedbYXWrNFDe2fPns306dPp27cv/fv3Z+nSpZSVlTFjxgwApk2bhpeXF++//z4A//rXvxg2bBj/+c9/mDBhAitWrODo0aN88803xr0TQRCEWzTtquXb6/NKz7A620JdfAl18W3wGJlMxj1+PbnHr+ctx3dZflUZfyRG8VLwrSc1gtAaNDoZeeihh8jNzeXNN98kKyuLkJAQtmzZYuikmpqailx+5enPoEGD+O2333jjjTf497//TefOnVm7dq2YY0QQBKGJUkvyKamu5N2oLYZteiTOFeWwKyOeZUMeQi6r/RS+MZ1t7a6aEKtYU4mPtX0z3Ykg1JBJ0qWlG1ux4uJi7OzsKCoqEv1HBEG47VVqq7lYVVZr28/xB3G3tGWsd1Ctx0SXfROzD41ey/Pdhxu2fRC9FW8re6Z27o8kSbx2KJwx3t0Y7V2zCF+Ftpr/O/gnT3S5Q0zQJjTJzX5+izmBBUEQ2hi10gwvpX2tbeYKJVZKc0Mi8mPcAexVlkzuGALUdLZdcnI729JiCHb05EhuCiml+Ya1T67ubOtqYYOz2pq/Uk4arbOtIFyPSEYEQRDaodbU2VYQbkQ8phEEQRAEoVnc7Od3q5z0TBAEQRCE24dIRgRBEARBMCmRjAiCIAiCYFIiGREEQRAEwaREMiIIgiAIgkmJZEQQBEEQBJNqE/OMXB59XFxcbOJIBEEQBEG4WZc/t280i0ibSEZKSkoA8PERswAKgiAIQltTUlKCnZ1dg/vbxKRner2ejIwMbGxskMlkNz7gJhUXF+Pj48OFCxfEZGrNSNRzyxF13TJEPbcMUc8toznrWZIkSkpK8PT0rLWI7rXaRMuIXC7H29u72c5va2srftFbgKjnliPqumWIem4Zop5bRnPV8/VaRC4THVgFQRAEQTApkYwIgiAIgmBSt3UyYm5uzoIFCzA3Nzd1KO2aqOeWI+q6ZYh6bhminltGa6jnNtGBVRAEQRCE9uu2bhkRBEEQBMH0RDIiCIIgCIJJiWREEARBEASTEsmIIAiCIAgm1e6TkWXLluHn54darWbAgAEcPnz4uuVXrVpF165dUavVBAcHs2nTphaKtG1rTD1/++23DB06FAcHBxwcHAgLC7vh/xfhisb+Tl+2YsUKZDIZkyZNat4A24nG1nNhYSGzZs3Cw8MDc3NzunTpIt4/bkJj63np0qUEBgZiYWGBj48PL7/8MpWVlS0Ubdu0Z88eJk6ciKenJzKZjLVr197wmF27dtGnTx/Mzc3p1KkTP/30U/MGKbVjK1askFQqlfTDDz9IZ86ckZ566inJ3t5eys7Orrf8/v37JYVCIX344YfS2bNnpTfeeEMyMzOTTp061cKRty2NredHH31UWrZsmXT8+HEpJiZGeuKJJyQ7OzspLS2thSNvexpb15clJSVJXl5e0tChQ6V77723ZYJtwxpbz1VVVVLfvn2l8ePHS/v27ZOSkpKkXbt2SdHR0S0cedvS2Hr+9ddfJXNzc+nXX3+VkpKSpL///lvy8PCQXn755RaOvG3ZtGmTNG/ePGnNmjUSIIWHh1+3fGJiomRpaSnNnj1bOnv2rPT5559LCoVC2rJlS7PF2K6Tkf79+0uzZs0y/KzT6SRPT0/p/fffr7f8gw8+KE2YMKHWtgEDBkj//Oc/mzXOtq6x9XwtrVYr2djYSD///HNzhdhuNKWutVqtNGjQIOm7776Tpk+fLpKRm9DYev7qq68kf39/SaPRtFSI7UJj63nWrFnSyJEja22bPXu2NHjw4GaNsz25mWTktddek7p3715r20MPPSSNHTu22eJqt49pNBoNx44dIywszLBNLpcTFhZGZGRkvcdERkbWKg8wduzYBssLTavna5WXl1NdXY2jo2NzhdkuNLWu33nnHVxdXXnyySdbIsw2ryn1vG7dOgYOHMisWbNwc3OjR48evPfee+h0upYKu81pSj0PGjSIY8eOGR7lJCYmsmnTJsaPH98iMd8uTPFZ2CYWymuKvLw8dDodbm5utba7ubkRGxtb7zFZWVn1ls/Kymq2ONu6ptTztV5//XU8PT3r/PILtTWlrvft28f3339PdHR0C0TYPjSlnhMTE9mxYwdTp05l06ZNJCQk8Nxzz1FdXc2CBQtaIuw2pyn1/Oijj5KXl8eQIUOQJAmtVsszzzzDv//975YI+bbR0GdhcXExFRUVWFhYGP2a7bZlRGgbFi9ezIoVKwgPD0etVps6nHalpKSExx9/nG+//RZnZ2dTh9Ou6fV6XF1d+eabbwgNDeWhhx5i3rx5LF++3NShtSu7du3ivffe48svvyQqKoo1a9awceNGFi5caOrQhFvUbltGnJ2dUSgUZGdn19qenZ2Nu7t7vce4u7s3qrzQtHq+bMmSJSxevJjt27fTs2fP5gyzXWhsXZ8/f57k5GQmTpxo2KbX6wFQKpXExcUREBDQvEG3QU35nfbw8MDMzAyFQmHY1q1bN7KystBoNKhUqmaNuS1qSj3Pnz+fxx9/nJkzZwIQHBxMWVkZTz/9NPPmzUMuF39fG0NDn4W2trbN0ioC7bhlRKVSERoaSkREhGGbXq8nIiKCgQMH1nvMwIEDa5UH2LZtW4PlhabVM8CHH37IwoUL2bJlC3379m2JUNu8xtZ1165dOXXqFNHR0YbXPffcw4gRI4iOjsbHx6clw28zmvI7PXjwYBISEgzJHkB8fDweHh4iEWlAU+q5vLy8TsJxOQGUxDJrRmOSz8Jm6xrbCqxYsUIyNzeXfvrpJ+ns2bPS008/Ldnb20tZWVmSJEnS448/Ls2ZM8dQfv/+/ZJSqZSWLFkixcTESAsWLBBDe29CY+t58eLFkkqlklavXi1lZmYaXiUlJaa6hTajsXV9LTGa5uY0tp5TU1MlGxsb6fnnn5fi4uKkDRs2SK6urtKiRYtMdQttQmPrecGCBZKNjY30+++/S4mJidLWrVulgIAA6cEHHzTVLbQJJSUl0vHjx6Xjx49LgPTxxx9Lx48fl1JSUiRJkqQ5c+ZIjz/+uKH85aG9r776qhQTEyMtW7ZMDO29VZ9//rnk6+srqVQqqX///tLBgwcN+4YNGyZNnz69VvmVK1dKXbp0kVQqldS9e3dp48aNLRxx29SYeu7QoYME1HktWLCg5QNvgxr7O301kYzcvMbW84EDB6QBAwZI5ubmkr+/v/Tuu+9KWq22haNuexpTz9XV1dJbb70lBQQESGq1WvLx8ZGee+45qaCgoOUDb0N27txZ73vu5bqdPn26NGzYsDrHhISESCqVSvL395d+/PHHZo1RJkmibUsQBEEQBNNpt31GBEEQBEFoG0QyIgiCIAiCSYlkRBAEQRAEkxLJiCAIgiAIJiWSEUEQBEEQTEokI4IgCIIgmJRIRgRBEARBMCmRjAiCIAiCYFIiGREEQRAEwaREMiIIgiAIgkmJZEQQBEEQBJMSyYggCIIgCCb1/08mOEydZ8xNAAAAAElFTkSuQmCC", + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAiMAAAGdCAYAAADAAnMpAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjcuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/bCgiHAAAACXBIWXMAAA9hAAAPYQGoP6dpAADOxElEQVR4nOzdd3xTVf/A8U9mk46ke7e0hQKFAmWDIIKiuNfjo+JGce+9UB8nrsc9HxXcuH7uASpDtuxRKIXSvXfSpE0z7v39cUuh0CKjbdJy3q9XpU1O7v0GQ/PNud/zPSpZlmUEQRAEQRC8RO3tAARBEARBOLaJZEQQBEEQBK8SyYggCIIgCF4lkhFBEARBELxKJCOCIAiCIHiVSEYEQRAEQfAqkYwIgiAIguBVIhkRBEEQBMGrtN4O4FBIkkRpaSlBQUGoVCpvhyMIgiAIwiGQZZmGhgZiY2NRqzue/+gRyUhpaSkJCQneDkMQBEEQhCNQVFREfHx8h/f3iGQkKCgIUJ6MyWTycjSCIAiCIBwKq9VKQkJC6/t4R3pEMrLn0ozJZBLJiCAIgiD0MP9UYiEKWAVBEARB8CqRjAiCIAiC4FUiGREEQRAEwatEMiIIgiAIgleJZEQQBEEQBK8SyYggCIIgCF4lkhFBEARBELxKJCOCIAiCIHiVSEYEQRAEQfCqw05Gli5dyllnnUVsbCwqlYrvv//+Hx+zZMkSRowYgZ+fH/369ePDDz88glAFQRAEQeiNDjsZsdvtDBs2jDfffPOQxufl5XHGGWcwZcoUNm3axB133MHMmTNZsGDBYQcrCIIgCELvc9h705x22mmcdtpphzz+nXfeITk5mf/+978ApKWlsXz5cl5++WWmTZt2uKcXBEEQBKGX6fKakVWrVjF16tQ2t02bNo1Vq1Z1+Jjm5masVmubL0EQBEEQeqcuT0bKy8uJiopqc1tUVBRWq5WmpqZ2HzN79mzMZnPrV0JCQleHKQiCIAiCl/jkapoHH3wQi8XS+lVUVOTtkARBEARB6CKHXTNyuKKjo6moqGhzW0VFBSaTCaPR2O5j/Pz88PPz6+rQBEEQBEHwAV0+MzJ+/HgWLlzY5rY//viD8ePHd/WpBUEQBEHoAQ57ZsRms5GTk9P6c15eHps2bSI0NJTExEQefPBBSkpK+PjjjwG44YYbeOONN7jvvvu4+uqrWbRoEV999RW//PJL5z0LQRAEoVPVOuzY3M2tPwdq/Qg1BHgxIqE3O+xkZN26dUyZMqX157vuuguAK6+8kg8//JCysjIKCwtb709OTuaXX37hzjvv5NVXXyU+Pp73339fLOsVBEHwUbUOO4+s+wm3LLXeplWpeXLUWSIhEbrEYScjkydPRpblDu9vr7vq5MmT2bhx4+GeShAEQfACm7u5TSIC4JYlbO5mQhHJiND5fHI1jSAIguAdZY0Wfszf3O59uyyV3RyNcKzo8tU0giAIQs+QVVfO29uX0iy5273/q9wNODxuzkhM7+bIhN5OzIwIgiAIVDXZeDtrbyJi0OjICItndEQfQvz8W8f9WLCFNZX5XopS6K3EzIggCILAwtIdNHuURGRoaBzXDDwOg0YHgCTLLCjezvctl29+LcxkdEQfVCqV1+IVehcxMyIIgnCMc0keVlXkAaBTa7iq/7jWRARArVJxWsJg+poiAChrsrLbWuWVWIXeSSQjgiAIx7j65kYcHhcAg0NiCND5gaeBwq3vsX3990gt942OSGx9TGmjxSuxCr2TSEYEQRCOBZIDmovAVQUeK0hOaGnTsG+zBn+pDooehk2JeBxlNMnxZG5ejttpQ73PW0bHDR4E4fCJmhFBEIRjQc50qP9+vxtVoNITodLxit6DnmZUdgnZEYgq8jqSo2agL8rBUldGzpYvKFQFtT4y2mjq1vCF3k3MjAiCIBwLTJPauVEGuRmVZMOoakKjkqiSo/gk4Ctc8c+DXwJx/aYQEqynif4MkpM4SxdIf0MI/VrqRwShM6jkg7VT9RFWqxWz2YzFYsFkEtm4IAjCYfM0wMY4kBravVtGRb6UwvOuR5HQEqw3MjoiCYNGy+baEoY6SojVZ7SOV6vVmEwmzGYzJpMJvV7fTU9E6EkO9f1bXKYRBEE4FmiCIPJGKH+BAys+NKi04djjvka9KxtJlqh3NvFHSVbriEKMXKax4a8OAJUKSZKor6+nvr4eAD8/P8xmMyEhIQQGBnbb0xJ6B3GZRhAEobdzVsKuf0H5i7RbeqpSQ/8fSY8azr3DTmZYWDwq2vYQSQgIwRAeBR30FmlubqayspLdu3cfdP8yQWiPmBkRBEHorRqzIP8GsC0DZNAngSEVrIsAz95xSe9C4Bjl26Awbho0ibrmRortdXhkmXBDAHH+wUiSxBbLFiRJau9sAPTpI5qhCYdPJCOCIAi9jWUJFN4KTZnKz/4Z0OcNCJoAjhzY0r9loAoib4CIGQccIsTPv00beACNRkNoaCjV1dXtnrZPnz4EBwd32tMQjh3iMo0gCEJvUf0ZbEqE7CnQtA2CToQhOyF9o5KIABj6Qcj5yveB4yDxlcM6RURE+6to1LKNYJN/u/cJwj8RMyOCIAg9mSQpRallz4OnFtBC6EXKTIguvP3HxD8BshuS3gH14a2C8ff3x2g00tTU1HqbFgtuTGRuWc3AgWkYAmOO4gkJxyKRjAiCIPREkgMK74Oq90FuApURom6HhGdBbThg+F+lu/irbBc1zTYAYvxv5EybRHpox6dYX1XIDwVbqHHYiDQGcX5yBkNC44iIiKCwsBCAJp2KHxvrmUAh8dp0tu/YTd8+tZgjBnfJ0xZ6J3GZRhAEoSdxVUPOhbAuCCpfB7UR4p+DkTbo80q7iQhAsJ+R85KH8dDwU3ko41QGBkfz1vallNrr2x2/21rF+ztWMCE6hVkjTiMjLJ63ty+jxF5PaGgoarUal1bFd7ZcLkkdw8gh51BOFjJ+7C5ooLpwRdf9HQi9jkhGBEEQeoKmXZB1ImyMhNqvQR8LKZ/ByBqIvQ/UB/91PiwsniGhcUQZTUT5mzg3aRh+Gi25DTXtjl9Yks3g0BimxQ8ixt/MOUnDSAwMYUnpTjQaDWlpaXzfVMC0xMFkhMUTHxDCiRkXsdq5FRkVBZU6inf92hV/E0IvJC7TCEI7ah12bO7m1p8DtX6EGgK8GJFwzGpYAfk3Q9Nm5WfjEKUepN327odGkiXWVxXi9LhJCWq/riS3oZqpcQPb3DYoJIbNNcVKWLKbOlcTacHRrfcbtXqaAhIpUZUT74ykwhKJa9v/kTz4X0ccq3BsEMmIIOyn1mHnkXU/4Zb39lLQqtQ8OeoskZAI3afmKyi6H5z5gAoCJykFp/5pR3zIEns9z236HZfkwU+j5YZBxxMbYG53rNXpwKRre8nHpDNgcTqU+11KAatJv98YvYFyDJwYF8GuvFJqm/rg3vQlqRkXHXHcQu8nLtMIwn5s7uY2iQiAW5bazJQIQpeQJCh7CTZEwO6LwFkEIf+CjHIY9NdRJSIAUcYgZo04jQcypnFCTCofZq+m1G7ppODbCgzrR9rAQWipx+ruS9aGr9sdJ0tu5IM0UROODSIZEQRB8DbJCYV3wwYTFN0NHhtE3gQjrJD6DegjO+U0WrWGSGMQfYJCOS85g/jAYBaVZrc71qQ3YHU52txmdTkwt8yEmHRG5TbnfmOce8cYAsMZPHQiespplFPYuv4H3E5n61hnQz6ZG/+kfNeXnfL8hJ5LJCOCsI9ah53fi7Lava+rPkEKxzB3LeRcCusCofwlUOkg7ikYaYekN0HbtU3EZBnckqfd+1KCwtlRX97mtqy68tYak3BDACadoc2YJreLvIbqNnUoWr2BtKGnYCAfJ/Fs37IYt9OG21HNzp1bcRJBhS0ayd02qRGOLSIZEYQWu61VPLnxN9ZWF7R7/9ydq1hevruboxJ6JUce7DgZNoRD7eegj4LkD2FkHcQ9/I8rY47Ed3mb2GmppNpho8Re3/JzBWMikwCYm72S7/I2tY4/KW4A2+rK+KM4i/JGCz8VbKHAVsvkWKWVvEql4qS4gfxalMnmmmJK7PXM3bmKYD8jGeEJbc6t1esZPPJfBKpycBHGli1r2bntL5plZcbHgwlL2eJOf85CzyEKWAUBZUbkjW1LaHS7AKVgNcUUjk6lJrehhiaPcvunu/4m1M+fQSGiw6RwBBr+hoKboHGD8rNxECS+BuaTuv7ULgcfZq/C4mzCqNURFxDMbelTWl/Ltc2NbXbq7WuKYOaACfxQsJnv8zcTaQzixkHHExcQ3DpmWnwaTo+bT3etodHtpJ85gtsGT0Gn1rQbw4ARF5Gz+SssrhSa5KC9OwDLHqqqLYQktPsw4RigknvAXs9WqxWz2YzFYsFkMnk7HKEX+mr3eha2XDsfYI7i2oETCGq57u2SPPxf3kYWl+4ElOnr+zNO8VqsQg9U+x0U3QPNuSgrY45rWRmT7u3IupUsSRRu+4zq5rS9icjeO9ldUkO989ASfb1Ow3EZsfRPOkgLWcHrDvX9W8yMCMc8l+RhZUUuADq1pk0isue2C1NGkl1fQWmjhdyGaortdcQHhHgrZKEnkCSoehNKngJ3JaCB4HMg6S2lYdkxqGznF1Q7B4GqvXtlkoILWJ7fwX46B3CxclOpSEZ6CZGMCMe8Goe99TJMekjs3kSk8C5o3AqJr6P2H8i4yGS+zd8EQJFNJCNCByQ3FD8MlW+BZAOVH0RcCwmvdHlBqi9rKF9GmX1AxwNUGvQBKQT5q5D/4a3J3uRClsHpar/4Vuh5RDIiHPOkfXqK6DX7XOuu+RJcFZCZBtpoRmtSyFIdT5Y8FI/vX90UupvbCgW3Qu08kF2gMUPsYxD7aJcUpPY0BnMq4VV/YHFG4SIMZAmQQbX335xHFcq/x9cSHH/yQY/1v683Y2t0dXHEQncSyYhwzAvxC0CtUiHJMtvrynBJHnRNm8BVCn2/BrUWih4ixLGSO/Qrcco6nNUTwDirWwoPBR/XXAh514P1d0ACXQzEPQGRM70dmU/RGaPpM+RyZEmiuWEn1upMLA1OGtx9kFUGZZ2xSkVBOQTHeztaobuJdF045hm1OkaEKWX8Da5mvs3bhFz5DujjIfRcCDmXNdG/clfzuyxwn0mjykxA4xLIngpr/WHHaWBZ4s2nIHiDbR1sGwOb+4B1Phj6Q/9fYXipSEQOQqVWYzAPJLLvBaRmXMLGPD+KS7LBsR6V3IRbFcrmDcuRPOISzLFEJCOCAEyNH9i6rHFb6UKkqjnk6E5nSVkur25dxAfZK2kkkG8909kUvwLV8CqIvht0YcobUfYUWBcA2WdAw3IvPxuhS9X9DJv7w/bRYF8LAeNg8EYYmgXBp3k7uh7Hg47ddf1ZXzaOEaMmYtDacMtGMjctQRJbMBwzRDIiCEByUDiX9BtNOJU8pH8UDRJL6tTM272O7ft0mJwY3ZcTYlJBFw6JL0JGEWRUQNQdoAkBy6+QdbzSUTP7LGXHVaF3qHgXNsTArrOgeTeYz1D+/w9eBQEZ3o6u1xg87AQigupwyWY2bVrOhvxMb4ckdAORjAhCi0kmC48bn8BPpXwaa1btXfkQbgjg4r6juKzfGFT790fQR0Kfl2F4MWSUQeStoDGB5WfImgjrgmDnOUrDK6FnkdxQNAvWmaDgBvDUQvgMGFEPA35WLuUJnarOVcdH8jcYPK8gE8RPWZ9R1yQu2fR2ooBVEADq58Ou89DKe6eFT4kKZ1jgGCIMQaSaI1Hvn4S0Rx8NSa8pX85SKH0G6v4P6n9UvtRBYDoJYh+CwNFd+ISEo+K2QeHtUPMpyE7l/1vMQxD3uFLQLBy2suYy6t31NHmaaJKaaPQ00iQ1sVa/gwbsePxszFm7gpjGrXxoaMTmCeSSuo2ssqTw9kvF/H51NENj/Lz9NIQuIv5VCULVh5B3DSC3fAFoSPVXkRrd78iPq4+FpDeUL2cxlDwNdd9B/ffKl9oE5pOVxCRgxNE+C6EzOIsh7waw/AZIoI2GuEch6kZvR9ajrbOuY/TaDpLvwL3fjrXBPH/QqfxI/+NXRk/7Hrf2VSq31TLqDQ+Lro1hYpKxe4IWupW4TCMcu2QZSp6EvBlAS8+DPVRqcFd13rn08ZD8Nowoh6H5EHEdqA3KrMm2kbDeDLv+DfZNnXdO4dDZt8C28bApASy/gF9fSP0BRpSJRKQTDAoYRJQ+6qBjTtfAEn8waEyct2UFNuK5q/+/kVUezjj9f8jACf8r4+cse/cELXQrkYwIxyZZhvwboOTRDu6XwNWJyci+DH0g+V0YUQFD8yD8GqVLZ903sG04rA+GnIuhURTudbn6BbAlDbYNA/tq8B8Fg9bCsJ0Qcra3o+s1/DX+PNP3mQ7vn6GFH4yg1kXxeM1mftodgkGrZmLoOEwaE6td37D25jh0Gjj74wpW14pJ/d5GJCPCMWd+0TZuX/4BrqpP6GCTDMCDpbGAR9f9zM3Lv+Dx9b+wtbakzQhZlvkxfwv3rv6WW1Z8yctbF1LRZD28YAxJkPI+jKiEoTlKcaRKB7VfQuYQWB8COZdA47YjeapCRyrnwMY42HkqOHaCaZoyY5W+FgJHeTu6XunKmCtJ9Es84PYH9DDHCLtc0dxTtJH/LFE6IicEK51ZTws7jWpXNQZzHtvuiMdfr2JuvoFltaJ+pDcRyYhwTMlvqGFpWQ7hAbH8EvIjJDwP+uR2xzbY85kQncKsEaeRERbP29uXUWKvb71/QXEWi0qzuTR1DA9knIKfWstrmYtxSUdY+W/oCylzYEQVDNkJ4VcCGqW9eGY6rA+F3ZdB044jO/6xTpKg+HFl5in/GuUyXNjlMKIGBs5XZqyELrG7cTdj146lsLmw9TYV8KofzPaDLxsjuXjpQl5f3dh6f2l1E//7ejNpOy8CGa74604WLsrisf5WjGqZ7yv9+alU54VnI3QFkYwIxwyHx8UH2Su5PHUs/lo9zeoQiLkHhu0GXVzLKA2gRgZC1DamxQ8ixt/MOUnDSAwMYUnpTkCZFVlYsoPTE9PJCIsnPiCEGQPGU9/cxKbqoqMP1pgKKR/CyGoYskN500QFNZ/B1jRYHwa7r4SmXUd/rt7O3agUpa73h9L/gOyG6PtgpA36fgzaYG9H2GvVO+s5Y9MZpK5KZX3DeiabJzPWNBYjauYZ4GYdPNAUwP3Lf2drgx/7zlRaXCpsjS6CbAkESGa26pZja3Shcbt4KKWeII3Mz+V+3PpDtfeeoNBpRDIiHDPm5axjSEgsaSHRbe9oLgRXCZimKq28E2ZTTwQqTdsdVgeFxJDboPziq3bYsbocpAXvPZZRqyc5KLx1TKcxDlDeNEfWQHomhF0CyFDzMWztDxvCIXcGOHZ37nl7Omc57DwPNpig6l2l90viazDCConPgVrv7Qh7Lafk5Lqs6whfFs6vNb8yOGAwW8dsZfGoxbyV9DA/GyXO0cKFDhWfb/mSInsg8n6XTBs9KgKMOgL9dQx3nYhDbaMqaAeB/joiTTpeHOEgwaTmjdVWLv2iwkvPVOgsogpIOCasrcyn0FbLQ8NPPfDOonuUPxOeB10kxNzHrN3xXJk6hjH7DDPpDFicDgCsriblNr2hzaFM+r1juoT/YOj7mfJ9YyaUPgWWBVD9ofKljYDgsyB2Fhjav/zU6zVug/zrwbYSkMEvRfl/G/ovb0fW60mSxOyC2TyV/xQOyUGcPo4PBn3AtLBpygD7JkbkX4hNAyc3wZb8e7GXpyG1dyxUXHhWOiFGDac7XiNhxXdkpnzJ7IzLWsdc7ZYY9VYpn2+2U9NYxvyrY7rniQqdTsyMCL1ebbOdL3M3cM3A49CpNW3vlCSo/0nZaTVgeOvNMmpQ+Xiu7p8O/b6AkXUweBOE/ltp0FU9B7akwIZIyL0Omgu8HWn3sCyCrYOV+hrbCvAfDmkrlctwIhHpcp+VfUb4snBm5c4ipmkgt1Z+wD15P5D3ZxTf/J7Nzq0/I28bDbITR9IcJPuTWLNnIrWXibSoaFDqr+IN8cTqY1lUt6jN/Vqtmg23xHJCsh8LdjUx7q0SpH0OaLE189JH66isbUTwbT7+21YQjl5hQy0NLgdPb5jfepuEzC5LJQVlP3Ofvhkib27zGJPegNXVdobD6nJgbpkJMemUxktWpwOzfm8TJqvTQUJgcBc9k4MIGAb9vlK+t29QOr9a/oDq95QvbRSEnAuxD4NfQreGVuuwY9tnw7NArR+hhoDOO0H1J1D8kNKwDJVyuS3pXTCkdN45hA4trVvKFduvoMBRgF6l5yb5aU7U/YtTz01BkmQaHS6qcr8hoeF2GuRwAtP/j3DzcSyYKvF5hI23V1vZVOZs99jlNg8DI5XvL466mJeKXuL3mt85JeyU1jFqtZol18Vx3iflfL+9kSGvlrDx1jj0WvFZuycRyYjQ6w0MjubREae3ue2jnauJ9jdxUeOT4NJCzP1t7k8JCmdHfTlT4wa23pZVV05KUDig7FVj0hnYUV9OQmAIAE1uF3kN1ZwQcxRdWztDwAhI/Ub53rYWSmeD9U+lbqLqXaWraOj5SudXfdzBj3WUah12Hln3E25576dVrUrNk6POOrqERJKg/FkoexE8dYAWQqcr3W61oUcfuPCPdjXu4uLMi9nQsAE1ai6Lvoz3BrzHktVlNDs9BBiVlS5B9S8QJc+iWRPBp7s+4fiIVIaYQauSSHLXcl1kPZt1Kt4tDESrVuGWQK0CSYavlxQQ6gpj9ZZSYprPRxf9Js/mPt+ajMiyzOotZWzdWcVk3BgT/JlXJJP6YhFZdyXwwf9tBeDTn7YDEB8VyIWnDmz/CQleJZIRodczaHXE7bdiwk+jJRgLAa4dYDqFubvWEKz357zkDABOihvAi1v+5I/iLIaExrK2qoACWy2XpSpVJCqVipPiBvJrUSaRxiDCDYH8ULCFYD8jGeHdO/NwUIGjof+3yvcNf0PZbLAuhMq3lC9dDIT8qyUx6fzr7TZ3c5tEBMAtS9jczYRyBMmI5IDCe6DqA5AdoPaH6Dsh/llRkNpNap21XLb9Mn6r+Q2AE0NOZF76PCL1kQcOzrsRqt4BbSR+Q7YRVFHBrsI6hvSP4Oclu9Fq1Jw3NZWvvqlFq3Ly1AALEQNTmLPBxoqCZhodLrLzazn3pFScTg+frz+ejXVbkSQJtVrNhu0VrN9WwdTxfYgM9Wd4TjV6qYaPSgJJer6Qv67oz2+Ld3LBKf0JCzaiVh/C/lKCV4h5LOGYldT4sfJNwgvUNjdicTa13tfXFMHMARNYVp7Dkxt+Y0N1ETcOOp64gODWMdPi05gSM4BPd63hmY3zafa4uG3wlAPrUnxF0Fjo/z2MaoC0FWA+CzxWqHwDNsUqTcAK7gDnIa5MaM6D/JvBXd+FQbdwVirt8tcFQuWboAmAhBdhRAMkviQSkW7glJzM3D6TyGWR/FbzG0MChpA5NpOFIxa2n4hkn6kkIn6pkFEAunBCzQasNiclFQ2UVzdy5uS+hAYbWVboom+YnvBALaOCnSy/IY5fztWTHtDMqROTiQz1Jz46iFNjplCvqeCzYuWS5LptFYxOj2ZgciihZgOTRsZzcpKOe4ZClV1iwtxqHB4w+GkJMOow+onP375K/J8Rjkl3p58I689U+osEDOXuoQeOGRmRyMiIAztG7qFSqTg7aShnJ7XzYF8XdBwM+FH5vmE5lD4LDYuh4lXlSxcPYRdCzAOgi2j/GOWvKbMrtlUwcFHX9Otoyoa868G2FJBB3wcSnoOwizr/XEK7JEniqfynmF0wG4fkIN4vnjlpczg57OQOHuFhsPpuZY+fwAkwcCmolc+9Mkonkaq6JlxuD29/sYmtVg0eOYjTgmqx2lzUNyj1RcF+KoID9QQF7E007x14K68uf563C9/lwuh/Y29yERsZ2ObscZGB6HVNvHNuDDd9X8XbhSam1LiIFFfvfJpIRoRjU9U7IDdD1C3ejsT7gibCgJ+V7y1LoPx5sP4F5S8pX/oECL2oJTEJU8bJEtTMU75v3AI7TmpJSMydE5N1GRTcDE3KNX+MQyHpTSVWodt8WvYpt+28jTp3HSaNiTcGvsE1cdd0/AC3jaHy5cQY/4aQCyD16zZ311ocmIL8cLqUmpJ/TxvAsDfL8NfKPHJhKiq1GoO+45lFf62RYU0nsV79K27JfdDYrx9rIkDt4aYfajjpoxr+ut6P0QmGgz5G8B5xmUY4NpX9F9BC9D3ejsS3mCfDgF9htB0G/Kns2eKqhvIXYWM4bOoDhQ8ovU3cey7neKBxs5KQuC2th8qqK+eTXX+3e5pdlsr2z1/9BWxKgh2ToCkTgiYrHWiHbBaJSDdaWreUpBVJXL79cuweO7OSZlE3qe7giYizFDb3IVq/lnW2xw5IRArLrFTXNZGaGEJUmD/2Jhc7q5wUWWVOHeBPaLA/ISYDRsPeFu9WuxNb496VNmVVdoY3noJT5eDj6jkEGHWUVtranKek0kaoWUk6zh0cwM19rHhkmfFvl/LHLrHE11eJZEQ49jh2gzNXWQKqFpODHTKfpOzZMroRBvwOppPBVQnlz8HO0/cb7IHGTZB9MnisLC3L4dXMRRTa6to99Fe5G/i9OEv5QZKUVTHrwyF3OjhLlJ4pwyshbbHSgVboFrsadzHi7xGcsOEEihxFXB59OZZJFp7s+yRq9UHeLhq3wZZU8NSyzvEKRfJ07E0uGuxOKmrs/L2ljB8W5ZASb2ZQ3zASY0zERgTy5M8lqJB5dFIgpZU2lm8oprza3npYrUbN/OV5VNU2UlzRwOI1hUyLORENGt4ufpvR6dGszSwnO6+WWouDZeuLqaprYsSgKAD8DTpijDDnFD1aNZw6t5xvtto6ehaCF6lkWZa9HcQ/sVqtmM1mLBYLJpPJ2+EIPd3O86D+e6W1uv9gb0fT89T9Ajnngexq504NDr8hPGC9mSaUdvrhfgEMCI5CpVKxo76CaoetZaSLJyKXE97wOUiNoDJCxExIfB7UYjq9O9U6a7lk2yUsqF0AwNSQqXyW/ln7han7syyC7GmABH3nMT9rNNt31wCgVqnw89MQEWJkYHIYg/uFoVIpK1oczS6iniog2d/NVfF2Aow64qICOX5EPEEBelZuKmF3YT1D+0eweksZDqeblPhgTh7fh4mbx7GhYQP2SXY2batj664qGh1uwswGJo6MJzlu7+XCrTurWL2ljHKLizeLTFQ2a3jn3HCuGyveS7rDob5/i2REOLZIEqw3Km3fMzphQ7tjUcMyyJrU4d0yUC+H8LTzScbEjeOC5BGoW96AZFnmt/xlhJffz0j1GjQqCTShEHOvsnndwT59C53OKTm5YccNfFT2ERISQwOH8sXgL0gLTDu0A1R/BrmXK92KB/wJpo5fF/t7fWU9t/1Uy8tnhHLHxOAD7t+TjFx+9oEfGD4p+4Qrtl/BM32f4cGkBw/5nIX1boa8UoS1WWb2tBAemBxyyI8Vjsyhvn+Lf/nCsaXyTaVleuRt3o6k56r5ko5q3+WW/4So6njO7zYu4HXUlvkgOcFdi6r4MU6rmsJozWrq5RA+cN1IeVoexD4gEpFuJEkSj+c+jmmJibllc4nzi+PPjD/ZPHbzoScipc9D7mVKr5fBmw8rEQF4ebkVnRpuO+7wP2BeGnUpOpWOOaVzDutxicFadt+TQESAmgcX1HHfrzWHfW6ha4gL5sKxpfwlUOmURlnCkan7DthvJYM2DPxSsWqSWFzrxkATSQFBDLStguqPQGUAPCCrUQVNZrn6Yj6pVJqejWqyEu0vZjy7y8dlH3P7ztupd9dj1ph5K/Utro67+vAOkn8bVL4O2nBI3wr66H9+zD7yap3k1bk5tb/x4LUoHVCr1YwzjWOZZRkWlwWz7tBXcYUHasm9J5HBrxTxwjILtU0S7/+rg+XrQrc5oo8ib775JklJSRgMBsaOHcuaNWsOOv6VV15hwIABGI1GEhISuPPOO3E4unBnU0FoT9MucOYrhZiicPXIxT2idDzt9w2kb4KRDTCiGgavojLmVX7znMd3nkvYEHCXshImfTMEHQ+BE2F4EaQtpEo/uvVwKkRXzO6wpG4JfZb34crtV9LkaeLR5EepnVR7+InIzvOURMQvBYYWHHYiAnD/fKWw+blTO27+cVxGXLuXaPa4L+k+AGbnzz7s8wca1Oy6J4G0CB0frGvgvE/KD/sYQuc67GTkyy+/5K677uKxxx5jw4YNDBs2jGnTplFZ2f5Svc8//5wHHniAxx57jKysLD744AO+/PJLHnrooaMOXhAOS1HLMt6EF70bR08XeQPE3q/shOs/DDR7m05FGU2oW5KLjdVFuGQJ/IfCwN8hbRHoIpBkiXXVha2PifHvpN4kQruy7dlk/J3BlA1TKG4u5qqYq7CcYOHxlMcPb1ZCkmDbWKX4O2AMDNkFWv/DjkeSJH7KaiQmSMPQGL/DfvweZ4afiUFt4POKz4/o8Xqtmsw74hib4Mf32xuZ/L+2O/4K3euwk5GXXnqJa6+9lhkzZjBo0CDeeecd/P39mTOn/Wt3K1euZMKECVxyySUkJSVxyimnMH369H+cTRGETiVJYJkP+kTwP8Rr4sJhM+kNZITFA8oux5/lrMUleVrv90gSX+7e0LqiJi04mghjYLvHEo5OtbOaaRunMXD1QDbbNnNK6ClUHF/B3EFz8dMcZhLgboStqWBfA8HnwuC/j7jG59NNdhxumevHHP2lucnBkylqLqK8+chmNtRqNatvimNaqpG/8poZ8UYpbrdISLzhsF5NTqeT9evXM3Xq1L0HUKuZOnUqq1atavcxxx13HOvXr29NPnJzc/n11185/fT9+xTs1dzcjNVqbfMlCEel8jWlcDXqDm9H0utNSxiERqX8allVkctDa37gs11rmJezlofW/sCSsp2AcnnmtASxtLqzOSUnM7bPIGpZFL/X/k5GYAZZY7NYMHwB4frwIzhgJWxJguZciLwV+n93VPHNXlKPRgUPTj76GbFZSbMAeCLviaM6zvyrY5g+LIDNZU4GvlyMwykSku52WMlIdXU1Ho+HqKioNrdHRUVRXt5+ZnrJJZfwxBNPMHHiRHQ6HX379mXy5MkHvUwze/ZszGZz61dCgg/tgir0TOWvKIWrUbd7O5JeLykojKsHjG9NSKwuB0vLc1hStov6ls0IVai4LHUMA4KjDnYo4TBIksR/cv+DaYmJD8s+JN4vnkUjFrFx7EYGBg48soM2ZcOWFHBXQfxzkPTaUcVYbnWzo8rFhD5+6LVHv3pqQsgEgjRB/F/l/x31sT6/OIpbxpnYXesm5cUirA6RkHSnLl9Lt2TJEp555hneeustNmzYwLfffssvv/zCk08+2eFjHnzwQSwWS+tXUZHoByEchaZscBYorc3F8tFuMSqiD/cNO5mR4YmtPUZASUKGhcVz77CpTIzu68UIe5e5JXMJXRrK43mPY9QY+TDtQwomFjAlZMqRH7RhOWQOURrSpXwKsfcddZwP/l4LwDPTOm/Xummh06h0VbKrcddRH+v1c8J57KRgyho8JD9fSLn14PvfCJ3nsJqeOZ1O/P39+eabbzj33HNbb7/yyiupr6/nhx9+OOAxxx9/POPGjeOFF15ove3TTz/luuuuw2azHVIBlWh6JhyV7DOVHUSH7BCtxb2gwemgoqkBkIkwBmHWG70dUq+xqHYRV22/iqLmIvxUfjyY9CCPJD1yRMtl26j5CnZPB9QwYAGYT+yUeIMey8NPq6L6kaROOR5AZkMmQ9YM4dLoS/l08KedcsxXV9Rzx8+1BOpVbLotjr5h+n9+kNCuLml6ptfrGTlyJAsXLmy9TZIkFi5cyPjx49t9TGNj4wH/MDQaZVfGHtD8VejpJAmsvytbz4tExCuC9Ab6mSPoZ44UiUgnybJlMezvYZy08SRKmkuYETMD62Qrj6U8dvSJSNkrsPsiUPlB+sZOS0R+2G7H5pS5ckTnFiynB6UTqg3ll+pfOu2Yt08I5pMLI7A7ZQa/Uszm0uZOO7bQvsN+1d5111289957fPTRR2RlZXHjjTdit9uZMWMGAFdccQUPPri3Pe9ZZ53F22+/zRdffEFeXh5//PEHjzzyCGeddVZrUiIIXabiZWUPlei7vB2JIBy1amc1J284mUF/D2KLbYtyieL4SuYMmoNe3Qmf3gvvhqI7lRb9w3LAP/3oj9ni8T/rUAGPn9R5l2j2OCfiHOrd9ayzrOu0Y142PIjvL4/C5YFRb5awPL+p044tHOiwOz9ddNFFVFVV8eijj1JeXk5GRgbz589vLWotLCxsk5nPmjULlUrFrFmzKCkpISIigrPOOounn366856FIHSk4lVQ6SHyFm9HIghHzOF2cH329Xxa/ikSEhmBGXyR/gUDAjpxti/nQqj9WplFTM8EbefNYFgdEpvKnIyM0xNo6Py6rceSH2Nu2Vyeyn+K74d932nHPXtQAH9dF8OU98o44X9lfHdZFGcPCui04wt7iY3yhN6rcRtkpkPwOdD/e29H02v8VLCFnwsz29wWZTTxxKgzO3zM+qpCfijYQo3DRqQxiPOTMxgSGtd6vyzL/FSwlWXlOTR5XPQ1hXNJv9FEGY/tf++SJPFY3mO8UPACzXIzfQx9+HDQh0wOmdyZJ4Edk8C2AvxHwKC/O71D8W0/VvP6Kiu/XBnF6QO75s08ZlkMDe4GbFNsnX7sLWXNjH2rlGa3zIf/juCKEUGdfo7eSmyUJwhF9yp/Jv7Xu3H0QrH+Zp4fe17r133DpnY4dre1ivd3rGBCdAqzRpxGRlg8b29fRom9vnXMguIsFpVmc2nqGB7IOAU/tZbXMhe3aZh2rPmg5ANClobwVP5TGDVGPh70MfkT8js5EXHA1jQlETGfAenru2SrhE832TD5qbosEQG4MOpC7JKdhbUL/3nwYRoa40fmHXEE6FVc+XUVr66o7/RzHOtEMiL0TpIbLH+APhkMYglpZ1OrVJj1xtavQJ2hw7ELS7IZHBrDtPhBxPibOSdpGImBISwpVZqfybLMwpIdnJ6YTkZYPPEBIcwYMJ765iY2VR97y/oX1iwkYXkCM3fMpFlu5omUJ6g5vobLYy7v3BO5qmFTEjTvhIjrYcDPnXv8Fot2N1HXJHHR0K7ttPtI0iPAke1Vcyj6hunZdXcCoUY1d/xcy6N/1HbJeY5VYrcwoXcqfwlwQ8zd3o6kV6psauC+v79Dp1aTEhTOeUkZhBra/9Sb21DN1Li2TbcGhcSwuaYYgGqHHavLQVrw3g3XjFo9yUHh5DZUMzoyqcuehy/ZZtvG9MzpbLVvRYOGa2Ku4a2Bb3VOYer+mnJg23CQbBD3JMTN6vxztHhkT2+RU0K67BwA4fpw+hj6sLx+ObIso1J1/gaM0SYtefclkvZSEU8uqqe2UeKNc46gq61wADEzIvROFa8rhasRN3o7kl4nOSicq/qP57b0yVzSbzTVDjsvbPkDh9vV7nir04Fpv5kTk86Axans3G11KasUTPr9xuj3junNKp2VTN0wlfS/09lq38qpoadSeXwl7w96v2sSkYZVkDkYJDskz+nSRMThlFhd1Ex6lI7wwK7/7HtFzBU0y818W/ltl53DZFCz+54E+oZqeXO1lenzKrrsXMcSkYwIvU9jJriKlWvgouNqp0sPjWVkRCLxASEMDonl1vTJNLpdbXbiFf6Zw+3g8m2XE7MshoV1CxkRNIKd43fy2/DfCNV3/vJXAGq/g6yJIEvQ/zeImNE152nx5OI6JBkemhLcpefZ477E+1Ch4r+FXVsnZtCr2XFnPBkxer7YYufUOWVder5jgfhNLfQ+hfcof4rC1W7hr9UTZQyiqqmh3ftNegNWV9sZDqvLgbllJsSkUxqhWfebBbE6947pTSRJ4uGchzEvNfNp+ackGhJZOmIp68esJ9U/tetOXPEG5PxLmTEcvBaCp3XduVp8sM6Gv07F9GHds/okUBvIAP8BrG1YiyR17d4yWq2a9bfEMjnZwIJdTYx9s7jLz9mbiWRE6F0kN1gXgl8KGJK9Hc0xweFxUeWwddhdNSUonB31bTfSzKorJyVIudYebgjApDO0GdPkdpHXUN06prd4v+R9QpaG8EzBMwRoAvh00KfkTcjj+JDju/bERQ9Cwa2gMcPQbAjI6NrzAeuKHVTYPJwzyL/Lz7Wva2OvxS27mVM2p8vPpVarWXxdLOcN8mdNsZPBr5TgdIuE5EiIZEToXcpfANwQfa+3I+m1vsndwM76CqodNnZbq3hn+zLUqBgd0QeAudkr+S5vU+v4k+IGsK2ujD+KsyhvtPBTwRYKbLVMju0PgEql4qS4gfxalMnmmmJK7PXM3bmKYD8jGeG9Y8fuBTULiF8Wz7U7rsUpO3kq5Smqj6/m0phLu/7kuy+DsmdBHw/DCsAvsevPCTy4QClcff60sG453x63JNyCGjVvFL/Rbef89vJorhkVxI4qF/1eLMImdvw9bGI1jdC7VLyh7KkRcZ23I+m16pobeT97JXZXM4E6P/qZIngg4xSCWi6p1DY3omLvSoa+pghmDpjADwWb+T5/M5HGIG4cdDxxAcGtY6bFp+H0uPl01xoa3U76mSO4bfAUdOqevWVEZkMm07dNJ9OeiQYN18ZeyxsD3uiawtT9SRJknwQNS8A4FAavA7Wu688LuN0SS3Id9AvTEm/u3rcZvVrPsMBhbLZtxik5u+fvGnj/XxGEGtW8sMxCyguFbL8zvluKdnsL0YFV6D3sm2FbBoT8C1K/8XY0wjGsvLmcSzIvYXH9YgBODzudTwd9Soi+a5e3tpKckJkBjiwwnaIUq3ZjMffzf9Vx//w63j4njBvGmbvtvHvMLZnL1Tuu5vl+z3Nvn+6dJd3z3E1+KrbekUBi8LGdkIgOrMKxZ0/H1QRRuCp4h8Pt4NLMS4lbHsfi+sWMDBpJzvgcfsn4pfsSEXctbE5SEpHwGTBwQbevKntjlRW9Bq4b45226VfGXIlWpeX90ve7/dz3nRDCu+eG09AsM/ClIrIqnN0eQ08kkhGhd5DcYF0Mfv3A0Mfb0QjHGEmSeDDnQcxLzXxe8TmJhkSWjVjGujHr6OvfjR2AHXmwORlcZRDzCKR0fRHn/rKrnBRZPJyaamyzaWp3UqvVjDGNYVfjLqxua7ef/7qxJr66JJJmt0zG68X8Xdj7++UcLZGMCL1D2bMoHVfv83YkwjHmfyX/I3hpMM8WPEugJpDPBn9G3oQ8JoZM7N5AbGuVfWY8DdDnXUh4onvP3+L+31oKV0/v3sLV/d2beC8yMs/lP+eV818wJJDfZ0TjkWDCO6X8savRK3H0FCIZEXqHyrdAZYDwa7wdiXCMmF89n7hlcVy/43pcsotnUp6h5oQaLom+pPuDqfsZto8H2Q2pP0KUdwq4JUnit52NJJg1DIjonsLRjpwbeS5+Kj8+Lf/UazGclOrPqhtj0ahh2txyvtrS+TsK9xYiGRF6PvsGZVo65GzRcVXoclsbtjJ49WBO23waFc4Kro+9noYTGngw+UHvBFTxP9h1Nqi0MGg1hJzpnTiA99bacHrglvG+sdBgUsgkCpsLqXRWei2G0QkGNt0aj1Gr4qJ5lbz7d/dfNuoJxG9uoecrbLk0k/CCd+MQerXy5nKmrJ/C0DVDybJncWbYmVQfX807ae+gVXtpxUTRo1BwPWiCYEg2BI7yThwtXlxWj1YNd03o/hU07Xko6SEAnsx70qtxpEXpyb47AbNBxQ3fVzN7cZ1X4/FFIhkRejbJqfRR8EvttmZOwrGl0d3IJZmXELc8jiX1SxgVNIpd43fxU8ZPBOuDvRdY7gwoexJ0sTAs3+uF20UWNzk1bk5IMaDV+sZby+SQyQRoAvi68mtvh0K8WUvuvQlEBqh56Pc67vml2tsh+RTfeMUIwpEqnQ14INZLU+RCryVJEvfvup/gpcHMq5hHkiGJ5SOWs3bM2u5dIXNgYLDjZKj+EAyDYFgeaLtp2fBBPPBbDQDPTuuiTf6O0Ckhp1DhrCCvMc/boRDqryXvvkT6BGv473IrV3/jvctHvkYkI0LPVvmOUrgadqW3IxF6kXeK3yF4aTDPFz6PSWPii8FfsHvCbiaETPBuYJJTaexn/ROCpkD6VuimDqP/5PvtjUQGqBkV71ubGz6a8igAj+c/7uVIFP56NTvvTmBQpI65622c+3H5Pz/oGCCSEaHnsq0FdzmEnCsKV4VO8Wv1r8Qui+XG7Btxy25m951N9QnVXBR9kbdDA3c9bE6Bpq0QdimkLfKZ1/28zQ00umRmjvZOk7ODyQjKIEQbwo9VP3o7lFZ6rZqtt8cxLsGPH7IamfRuyTG/469vvJIF4UgU3a/8mSgKV4Wjs6VhC4NXD+aMzWdQ6azkhrgbsJ5g5YGkB7wdmqK5sKWZWQnEPAB9vbdctT3PLK5HrYJHpnj/clF7zgo/izp3HVsatng7lFZqtZpVN8Vxan8jy/KbGf56Ke5jeMdfkYwIPZPkhIalYBig7EYqCEeg1FHKCetPYNiaYWTZszgr/Cyqj6/m7YFve2+FzP7sG2HLAPBYoM+bkDDb2xG1UW1zk1nhYlyCHwa9b76l/Cf5PwA8nucbl2r29duMGC4ZFsCWcicDXi7G4Tw2ExLffOUIwj8peQrwQMxD3o5E6IEa3Y1cvPVi4lfEs7R+KWNMY9g9fjc/DvvRuytk9lc/H7aNBtkF/b6DqJu8HdEBHv5DWab65Cm+Vbi6r2T/ZKL0Ufxe+7u3Q2nXZxdHcet4E7m1blJeLKK+0e3tkLqdSEaEnqnqXVAZIeIKb0ci9CCSJHHvrnsJXhrMl5VfkmJMYeWolfw9+m+S/ZO9HV5bVXNh5+mg0kDaCgg9x9sRteuLzTZCjGpO7Gv0digH9e/If2Pz2Fhat9TbobTrtbPDeeykYMoaPKS8WEyZ9dhKSEQyIvQ8DX+DuxJCz/d2JEIP8lbxW5iXmnmx8EXMWjNfpX9FznE5jDeP93ZoByp5AvKuBnUgDNkOQWO9HVG7fsu2Y22WuSwj0Nuh/KNHkh8B4On8p70cScf+MzWU184Kpa5JIvW/ReyuOXZ2/PWRi6KCcBiK9nRcfd67cQg9wi/VvzAzayblznKMaiPP9X2O+5K6ZkPFWocdm7u59edArR+hhoDDO0jedVD1HmijYEgm6MI7OcrO8+gfdaiAJ6YGezuUfxSpjyTBL4Gl9b45M7LHrccFE2LUcMVXVQx+pZjVN8aREevn7bC6nEhGhJ5FcoBtORgGgj7W29EIPmxTwyamZ05nR+MOtCotN8XdxKv9X+2ywtRah51H1v2EW95bgKhVqXly1FmHlpBIEuw6Eyy/gaE/pG8GtW/17NiXzSGxvsRJRoyeYP+e8VZyWfRlzC6YzQ+VP3BOpG9e9gK4bHgQwQY153xSweg3S1h4TQyTUnz7MtjREpdphJ6l5ElAgthZ3o5E8FGljlImrZvE8DXDyW7M5pzwc6iZVMObA9/s0hUyJfb6NokIgFuW2syUdEhyw/ZRSiISOBHSs3w6EQF4bGEtMvDYVN9cztueB5IeQIWKFwp9vx3AmWkB/HVdDCpgyvtl/Ljd7u2QupRIRoSepeo9UPtD+KXejkTwMXa3nQu3Xkj8iniWWZYx1jSWvOPy+H7Y95i0XbuLbK3Dztvb25/+tzQ3Kd9IzSC3s2zTbYUtfaFxI4ReBIOW+Uwzs4P5aIONQL2KcwYd5mUoLzJpTfQz9uNv6989osnYxCQj626JQ69Rce4nFXy0rvfu+Ov7r3hB2KNhBbirIOQCb0ci+BBJkrh7592ELA3h68qv6Wvsy+pRq1k9ejV9jN2zeZzN3YwHud37Gj0tRYg7z4TMEeDZ5w3FWaI0M3MWQvQ90O+Lboj26C3Pb6KmUeKCIT0nEdljZuxM3LKbj8s/9nYoh2RojB/b74wjQK/iqv+r5pXl9d4OqUuIZEToOYpaumEmPOfdOASf8XrR65iXmnmp6CWCtcF8nf41u47bxVizj60+adqp7CfTtBl2nqM07WvMhM2p4KmFxFd6VCfhhxfUAjDbh3uLdOSOxDtQo+b1ote9HcohSw7Vs/veBEKNau78pZZHfq/1dkidTiQjQs/gaQLbSjAOAn20t6MRvOynqp+IXhbNbTtvQ5IlXuz3IpWTKrkgykdnzao/ADTK9w1LIXsaZGaA3Az9vobo270Z3WFxuiVWFDQzMEJHtKlnFK7uS6/Wkx6YzibbJpxSz1k6Gxmo7PgbG6ThqcX13PR9lbdD6lQiGRF6htInAAliHvV2JIIXbbBuYOCqgZy95WxqXDXcEn8LlhMs3N3nbm+H1iGV7ITK9wFPyy0SNCxR/hy4BEJ9NIHqwOwlFjwyPDDJ7O1QjtjN8TcjIfFW8VveDuWwmAxqdt+TQL8wLW//3cDFn1d4O6ROI5IRoWeoeh/UARDuA7unCt2u2FHMxHUTGbl2JDsbd3Ju+LnUTKrh9QGv+8QeMjWOjlc66C0LlEsxB5DBvqrrguoi766xYtCquHyE7zc668jMmJloVVreLXnX26EcNoNeTdYd8QyP0fPlVjvTPijtEcW4/0QkI4Lva1gO7moI/be3IxG6mc1t499b/k3iikRWWFYw3jSevAl5fDfsuy5fIXOottSU8P6OFR3er6/5AHnPJZr9Fd0P1T2jkBJgS1kzZQ0ezhxoRN0DVvx0RK1WMypoFNmN2djcNm+Hc9i0WjXrbollSoqB33McjHv7wITku212XlpW750Aj0DPfTUJx47C+5U/40Xh6rFCkiTu3HknIUtD+KbqG/oZ+7Fm1BpWjl5JH0P3rJA5FEW2Ot7NWnZAf5E9QqgmTb0FVeslmnbkXg3O4i6KsHPdP1+Z4Xn+tJ5XuLq/uxPvRkbmxcIXvR3KEVGr1Sy6NpbzBvmzttjJ4FdKcLqV1+H32+xc8FkF9/5WS0VDz9jjRiQjgm9zN4J9NRjTQR/p7WiEbvBq4auY/jLxStErhGhD+L8h/8fO43Yy2jza26Ed4If8zR0mIgATNYvbuXXPZSU1BIyHhGdA5/tF2ZIksTCnieQQLcmhem+Hc9TOjzgfP5UfH5V95O1Qjsq3l0czc1QQO6pc9HuxiJ+32/n35xVILSvNP9vUM2Z+vH+xVRAOpvQxQIK4x7wdidDFfqj8get2XEelqxJ/tT8vp77MHYl3eDusDtU129laV9rmtviAYMw6IyWN9TQ4LZym+REAWQaVCiRdLOrgM8F8KphOBG3PKQJ9baUVlwR3TPCNy2NHS61WMzF4IgvrFlLtrCZc77t7AP2T9/4VQai/mueXWjjrkwpULbdLMnywroG7jg/2ZniHRCQjgm+rmqvsXNrDVhwIh269ZT2XbL+EnY070aq03JZwG//t91+fKEw9mBXlua3f69Ua7h46lSR/HeRdj2TUYLHloW6WqJHD+cNzBtvloVyWegkDQnx/FqQ9r660olPDLeN7RzIC8GCfB1lYt5Cn85/m5f4vezuco3LZ8CBeXWGh2UOb9nvbK11sKm0mI9bvgI0c4Qg3c+wCvv2vXTi2WZaApwbCr/F2JEIXKHQUMj1zOistK1Gh4vyI8/lo0EcEanvGKo2ttSWt358RlEtS8UVg/xskG2qVkRCVlj+D3uTrmuDWcR11afV1u2uc5Ne5Oa1/zy5c3d9JYSfhr/bny4ove3QysrvGxYnvleJu54qhVg0fbWggMdR9wEaOcJibOXYhkYwIvqv4QeXPhGe9G4fQqWxuG1duv5Lvqr5DRuY483HMS59HoiHR26EdljpHNf/SfM5EzV/4OxqRHRpUhoHg2AaoIO0vUtzxUPNH62MiDD0j0dpfa+HqqT2/cHV/U0On8mP1jxQ0FXTb9gGdydYsMeW9UmoapXZTXbcEH2+wcfNE2q1v2rOZYyjeTUZ6T4or9C5um/Ip0zgUdD33Wq6wl0fycMfOOwhZGsK3Vd+S6p/K2lFrWTFqRc9KROybIetEnlVfwSna31Ahs9B9CtuCnwHHdmVMzAMQMJwNNUWtDwvS+RFhDPJS0EdOkiR+2dFEbJCG9Bg/b4fT6R5JegSAx/Me93IkR6bZLRMRoEEGVIBadeCY2iaJWUu3dniMggbvt5cXMyOCbyp9DJAh7j/ejkToBC8XvMys3Fk0So1E6iL538D/cU7kOd4O69BJElS9DWXPK5vaAbWqBL51nct6aRxD1BuYXPcgskpGRktRQxFfbf6DHOvelt0DzFHeiv6ofLTBhsMtc+PY3lMrsq9R5lGYNWZ+rPrR26EckbAADetvjafY4uaXHY38mGXnz5wmnB7QqMAjA8gs2h7KeRPK2j3GvJy1hBkCGBQS062x70vMjAi+qepDUAdB6HnejkQ4Ct9Vfkfk0kjuyrkLFSpeSX2FikkVPScRcVbA7stgfQAU3AKuMgg+F4bmkxn/J+ulcaSptnCj9hXUSMoqBtlDXf36NokIwLlJw7zxDI7ac0staFRw3wk9Z+XP4Toj/Axq3DVkNmR6O5QjFm/Wcv1YE79cFUPdo0n8fGU014wOxKh3AyqqLIE0NURyZuIQZg48jnP7DCXGX/l/6kHm/R0rafZ4ryeJSEYE32NZqLTPDrvY25EIR2itZS39V/bn/K3nU+eu446EO7CeYOX2xB6yIVz9AsgcDpuioeYz0ARD/DMwshH6fweGPoyLTCZDt5ubdf9FhYSqZXpcrZKJVxe1OdzwsIQeeYmmzOomu8rFxCQDem3vfbv4T8p/AHgi/wmvxtFZ/PVqzhjoz42TnFx20jpOH72dEH8X36zui765L6MjkjgtMZ1HRpzWOhtidzeztirfazH33leX0HMVPwSoROFqD1ToKOS4tccxZt0YcppyuCDiAuom1fFy/5d9fxWG5ISih2B9GOw8FRo3Q8A4SFsOI8og9kHYZ7mxoWkt12ueQYMHtapt6WAo1WhQPmXGBwRzeerYbn0qneXBBUotwexeWLi6r1T/VCJ0Ecyvme/tUDrVuqoCVCqIj7Cy4LpATkwxcuZH5Xy2sQEAjUrNOX2Gto5fW1XgrVBFMiL4GLcN7GvBfxhoe/cvwN6kwd3AeZvPI2lFEqusq5hgnkDhhEK+Hvq17y/VbcyCHdNgnT+UzQa5GSKuhxG1MHgVBE048DH2jZB9CmrZeUAiAi2zI5oqJsf0556hJxOg65kdS7/JtBPur2Z8osHboXS5f0X8iwZPA6ssPW/zwo5YnY7W74eERfHd5VGc1t+fy76qat23JikoDJ1ac8D47iaSEcG3lMxCKVztmZXtxxq35ObW7FsJXRrK99Xf09+/P+tHr2f5qOXEG+K9HV7HJAkqP4BNKZA5CKy/g18KpHwCo2yQ/A5ogzt+vGUBSHagnaULLe5JjWN6v1EYtbpOD787/F+mHbtTZsbInnd56Ug8kqysqnky70kvR9J59Jq9GzTWNtvRaVTcOVEpRD4l1QgoCYhLUvZO0qs72NCxG4hkRPAt1R+B2gQhZ3s7EuEf/Lfgv5j/MvNG8RuE6cL4YcgP7Bi/gxGmEd4OrWPuWmVjug1BkD8TnEVgPh2G7IRhOyH8skM7Tsz9kL4F4h5V9k0ClF+nqtbv9c5dXfAEus+Ti+pQqeDRE0O8HUq3iDXEEu8Xz5K6Jd4OpdP032cF15Iy5fVYWKdcPkwKUZLkv8p27h0f7L0VX2Jpr+A7LL+Dpx4ibvB2JMJB/F/l/3HjjhupclURoA7gtdTXuDXxVm+HdXCWJVB0LzSuB2TQRkD0vRD7EKg7voTy0JofqGm2H3D7CTGpXNJvNPgPURKS5nyo+x5qv0G2rUSFxOrCP1lQPoLzkzMYEhrX+lhZlvmpYCvLynNo8rjoawrnkn6jiTL6ztLZ+kY3W8qcjI7XE2g4dj6zXhJ1Cc8XPs+v1b9yevjp3g7nqB0XldK6meNfZbsI1PnxVWYYahXotBJ/FGfza+E2QEmjJ0X381qsKlmWfb4/sdVqxWw2Y7FYMJl85x+s0MkyRytvFiNqDz5FLnjFGssaLt12KTlNOehUOm6Nv5UX+r3gu4WpkhtKn4bKN8FdBajAfwQkPA/mEw/pEA1OB/v2tSy1W3glcxF3DTmJAe18itxtreKdzd9yRVQN0WETWdlgZkFxFg8PP5W4gGAA5hdtZ37RNq4aMJ5wQwA/5m+hpLGe/4w8s/Xavbfd8kM1b662Mn9GFNP6e3/fku5S76wnZFkIk4In8dfIv7wdTqdYULydb/M2tf78zbKhWOwGbjp9A83S3qW8J8elcUHK8E4//6G+f4uZEcE3uK1KIuI/XCQiPqagqYCLMy9mtXU1KlT8O/LffJj2If5af2+H1j7Hbii4XanrwA0qI4RfBQkvHFY3345mRQwaHf3Nke0+5pvcjTjUIbxTaSayoYHzk/uSGBjCktKdXJo6BkmS+LVQ6WXx/o4V9DWFc35SBs9v/oNN1UWMjkw6gifc+T7bZMNsUB1TiQhAsD6Yvsa+rLKsQpIk3020D8MpcWm4PB5+KlQ6sDY5teg0njaJyJTY/pyfnOGlCBUiGRF8Q/HDKIWrvad4rKezuq1cse0Kfqz+ERmZ483H83n6575bmFr9KZQ8Ac0ttRr6JIh9GMKvhiN4U3kwY1qbWZGihjpe376EkeGJqFQHFq7utlaR21DN0NBYzk8ezprKfN7evowJUSnkNlQD8F3+ZpolN/9OGcHA4Ch+zN/C/3YsJykojNyGap9IRhbuaqTeIXHD2GOjcHV/V8dczcO5D/N5xedcFnOINUQ+TKVScWafIYwIT2BJ2S7muDUEGpyYdAYGh8YyOSaVpKAwb4cpCliF7lfrsFNoq239qnXYoeYT0JghpOdfp+3p3JKbm3fcTNjSMH6o/oEB/gPYOGYjS0ct9b1ExG2FvBtgXSDkXg7NuWA6GdIzISMPImceUSICEKQ3YNYbW78WlWUDcFZiervjF5ZkowJGRyQR42/mnKRhJAaGUNpoweJ0IMsyy8t3AzA6og/xASHMGDCe+uYmPLKExYvLKvc16486VMDTpxwbhav7uyuhpVtw0SveDqVTxQYEc0m/0UiShuFRIbww7nyu6j/OJxIREDMjQjerddgP2MZ6iGozt+gtEHmTFyMTAF4seJFHcx+lSWoiWh/Ne2nvcWb4md4O60ANq6DwbrCvBmTQhELMrRD3GKg7vyeGW/Kwo76cKKOJkA62WldmP9rOmAwKiWFFSwJS7bDT6HG2ud+o1ZMcFI7F2Uion/cviTQ6JdYUN5MerSPU/9h8ezBoDQwOGMymhk24JTdade/5e7A5JCQZ+oT43nMSMyNCt7K5mw/Yxvos7VfIqCB+tpeiEr6u+JqIpRHcm3MvGpWGNwe8SdnxZb6ViEhuKH0WNsRA1nFgX6Xs6tz/VxhZAwmzuyQRAVhWnoNHlpkWn9bhGKvTgb9Wh9W1d4bDpDPQ6HZi1huwuprajG0dozfQ6HZh1nu/sdiTi+qQZJg15dicFdnjxvgb8eDh7eK3vR1Kp9pU3gxA/zDf631zRMnIm2++SVJSEgaDgbFjx7JmzZqDjq+vr+fmm28mJiYGPz8/+vfvz6+//npEAQu9iwE7iap8nIZhoBUrpbrbastq+q3ox4WZF2JxW7gn8R4skyzcFO9Ds1SOAth5Pqz3h+IHleXfYZdARhkM2QTBp3V5CH8W70CrUjMuKvmg4yKNQeyoL29zm1uWSAnaWzgbpPNrM8YjSdjdzW3GeMucdQ0E6FRcONTHu+Z2setir0ODhndK3/F2KAf1W9E2ntk4n9tWfsU9q/+Pt7YvpbzR2uH4LWXKzFxQYB2PrvuZm5d/wePrf2FrbUmbcbIs82P+Fu5d/S23rPiSl7cupKKp4+N2hsNORr788kvuuusuHnvsMTZs2MCwYcOYNm0alZWV7Y53Op2cfPLJ5Ofn880335Cdnc17771HXFxcu+OF3s3p8bT5+TzNV6hUUB/xsJciOjblN+Uzds1Yxq8bT64jl4siL6J+Uj0vpPrQUt3ab2BLGmxJgvrvQBcNfV6HkXbo+xnoo7sljKomG9XNdoaExqFRtf27mZu9ku9alk2a9AaSgsLYVlfGH8VZlDdaWFdVgCTLTI7tj0mndLwcHdGHX4sy2VxTTIm9nl3WSvw0OjLCE7rl+XRkbZGDSrvEuYO9f7nI27RqLSOCRpBlz6LR3ejtcDq001LJ5Nj+PDDsFG5PPxGPJPFq5qIOd9/NqnIBsLFhHROiU5g14jQywuJ5e/sySuz1reMWFGexqDSbS1PH8EDGKfiptbyWubi1U2tXOOzfOi+99BLXXnstM2bMYNCgQbzzzjv4+/szZ86cdsfPmTOH2tpavv/+eyZMmEBSUhInnHACw4b1zO20hSPjljx8l7eJVzMXt7l9jGYFdtmfta4BXors2GJxWTh709mkrExhTcMaJgVPonhCMV8M+cI3luq6bZB/G6wzQ86/wbETgibD4I2QUQhRtxxxQeqR+qlgMwBnJw054L7a5kYsTuXyS0pQONUOGzMHTGBZeQ5PbviNfFst6SExxAUEE24IwKQzEKL3Z0rMAD7dtYZnNs6n0e3krMR0r/cYeWC+sinec718U7xDdWfincjIvFT0krdD6dDt6VM4LiqF2IBgEgJDuKr/OGqbGymw1bY7PrfWhUbtYXhUJNPiB7UptF5SqnRilWWZhSU7OD0xnYyw+DaF1puqi9o9bmc4rH/VTqeT9evXM3Xq1L0HUKuZOnUqq1a1v7nQjz/+yPjx47n55puJiooiPT2dZ555Bo+n4wyrubkZq9Xa5kvwYc1F0JjZ4d0eSeKdrGXML96Oc5+17UNUG/BXNbHaczw/FWxlftH27oj2mOSW3Ny440bCloXxU81PpPmnsWnMJv4a+Rexhlhvhwe2dbD9BNhghsrXQaWC6DthRAOkLYaADK+EJckyu6xVTIsfRKx/cJv75mavJCUonKsGjAfgpLgBbKsro7bZzk2DJnFqwiAkWeb8ZKWRlEql4qS4gfxWvI0+QaHcMeREBofGEmYI4ITY/t391NpwuyX+ynOQGq4jzux7xY3ecFHkRehVeuaWzvV2KIesyaPMfARo2+8qXGL1EGhwMjC47azioJCY1uXn1Q47VpeDtH3G7Cm03jOmKxzWq666uhqPx0NUVNvOg1FRUezYsaPdx+Tm5rJo0SIuvfRSfv31V3JycrjppptwuVw89thj7T5m9uzZPP642Citxyi8B+q+gsDjIPouCDkHVHtfWvOLt7G1thQAtUrF8LAEkgPDGFP1JLJbxY+eCwD4Ln8T/Uzh9OugoZRwZJ7Lf47H8x6nSWoiRh/D+2nv+0ara0mCiteg/EVwtVyzNg5Wes2Enufd2FrsqC+ntrmRCVEpB9xX29yIap/VM31NEcwcMIEfCjbzff5mIo1B3Djo+NbOqwDT4tNwetx8umsNjW4n/cwR3DZ4itdnRV5YZsEjwz0TzV6Nw5eo1WqOMx/Hkvol1DprCdX79oyRJMt8lbuevqaINq+5fVXZPAT6N2PStX0uJp2hdWn5nkJr034F1Sa9oUuXn3d5CixJEpGRkfzvf/9Do9EwcuRISkpKeOGFFzpMRh588EHuuuuu1p+tVisJCd69nnq4Chpq2VBdiM3djE6lJiEwlIHmKMKMvbAwTK0FVGBbDTkXgC4Gom6HiJm4NMEsLlWaUKlQcUf6iUobbakJyvMh6ESmRo3h55aulAtLskUy0km+rPiSm7NvpsZVQ6AmkLcGvMWN8Td6OyxwlkLhXcpeLnIzqPQQcgH0eRn0vtXHZFBIDO8ef0m79909dOoBt42MSGRkRGKHx1OpVJydNJSzk4Z2Woyd4a2/rfhpYOboXvj76Sg8kPQASzYtYXbBbF5IfcHb4RzUvJy1lNot3Dvs5A7HWBwScWZnh/d702ElI+Hh4Wg0GioqKtrcXlFRQXR0+8VkMTEx6HQ6NPtsZZyWlkZ5eTlOpxO9/sDpJD8/P/z8/A4nNJ9hdzn5dNffbKhp/9ra1f2PY2xUUvcG1dU0ZpSXkjJFiKsMih+CkkexBp5PkHsYDSQyIjxh734etd+A7IDkdzhNn8zSshysLgebaoppcrt67LbrvmBl/Uou33Y5uY5cdCod9yXex+y+s71fmFr3s/K6aFLaUqOLVWbSou7s9joQYa+sCifFFg/nDvL3/mvEx0wLm4ZRbWRe+TyfTkbm5axla20p9wybSohfx7VfTW6ZIIPUZvk5gNXlaF1avqfQ2up0YNYb945xOkgIDO784Fsc1itPr9czcuRIFi5c2HqbJEksXLiQ8ePHt/uYCRMmkJOTgyTt7S2xc+dOYmJi2k1EejK7y8mLW/7oMBEBmLtzJRuqC7sxqi4iScp27PYt4KoGpP0HgOwktOELHtM/yOv6q/h3892wbTxsHQx5M5V23YZ+aNUaBrYkKRJya0GgcHjyGvMYvWY0E9ZPIN+Rz/So6dRPque51Oe89yYjOaDwXlgfArvOgqZMCJwAaX/D8BKIuVskIl523/waAJ4XhavtOjHkREqcJRQ7ir0dygFkWWZezlo21RRz59ATCTd0PLPV6FQanoUbdQcsP8+qK29dWr6n0HrfMU1uF3kN1V26/PywL9PcddddXHnllYwaNYoxY8bwyiuvYLfbmTFjBgBXXHEFcXFxzJ6tNLC68cYbeeONN7j99tu59dZb2bVrF8888wy33XZb5z4TH/B5zhpKGy0A+Km1DA+PJzEwlAZnMxtriihvsiIDc7JXkRQU5r2Oi5IDnCXKDIazFFwV4KoCT42SYLjrwGMFqQE8dpAalVkMyQmyC/AAh7bZ854r6hrcuNCBsT+oTaDvC0ETWsc1uJpbv9eKN6fDUu+s5/Ltl/NLzS/IyEwOnsy89HlE+3XP0td2NWZCwR3QsATwgDoIIm9WGttpj809T3yRJEn8vquJRLOG1Ije9eGws8xKnsUvNb/wRN4T/C/tf94Op415u9expjKfmwZNwqDRtX6QM2p06DXK2/vc7JUE6/2J0QwEYEhYJNvqVvJHcRZDQmNZW1VAga2Wy1LHAHsLrX8tyiTSGES4IZAfCrYQ7Gfs0uXnh52MXHTRRVRVVfHoo49SXl5ORkYG8+fPby1qLSwsbPMpLCEhgQULFnDnnXcydOhQ4uLiuP3227n//vs771n4gFqHnfUty578tXoeyDiFKOPeJl5nJw1hbvYq1lQV4JI8LC3L4dykw1zeLEnKVuiuEnCWgasc3JXgrgZ3jZJEuC0gWcFjU5IIqUm5Li+7QHZz4AxGe1SARilCVfuByg80IaAPUN5UNGZlZ11NKGjDwJENdd9wYIKiQVIb+dp5Hks8U4nQhPJY8ukH9GqoarKxo1659BesNxJ6kGlGYS+35OaW7Ft4v/R9PHgYHDCYzwd/ztAgL9UjSBJUvQtlz4GzQLnNMABiH4fwi7wTk3BQ7/zdgNMDtx4nClc7Ms48DpPGxHdV3/lcMvJXmVKP99+tC9vcfmX/cRzXUnS9p9C6ql6pFRkXF05SlO8VWqtkWT60j7heZLVaMZvNWCwWTCbf7NK5oGg73+ZvAuDMxCGc1aelJ4HkBJUGZA8W2y4+2DyPIHU90bomzoqJVpIITy246/ebjWhSZjDkPbMREoc2G6FWkgiVXkki1EbQ+LckEUGgCQZtiJJEaMNBF6k0k9LFKMWDmtDDnzav/lTZpKyVVok38gaIe5wXtm8kx1oFwJiIPlzUdxSBOqUmqKzRwvs7VlDc0nCnzd+d0KHZ+bN5Iu8JHJKDWH0s76e9z2nhXd+JtF3OSii6B2q/VmbQVDownw6JL4Ph4B1LBe/q90IhBfVumh5PQqsVM5IduXjrxXxZ+SXbx24nLbDjLQF82Z0/V/PKCit598aTFNp9s2CH+v4tFpR3ktrmvV36BoW0TI+7amFjJKjUILswA3ftW5dbtu8R9sxG6FpmIwxKsqBpmY3QmlsSiTDlSxcJuqiWRCIO9LGg9tI0q2bPpyo1IEHQJOjzGvgPBuC8pGH8d+tCJFlmTVUBG6qL6GuKoFlyk99Q03qYED9/pni534Kvm1c+j1uyb6HWXUuQJohXBrzC9fHXeycYyx9QdD80blR+1kZB1CyIub9lhZXgywrqXOyudXNyP4NIRP7BY8mP8WXllzyR9wTzhszzdjhHJLdGWWCQGOyb/zZ9M6oeSLfPbIJtT/2DLhT8+ip7acTPRnaV8Gvxbirc/tgJ4dbh01tmI8xKk6eeSttS1KTvoyQhwWe0eT79zJFcO3AiH+xYgVuWcMsS2Za2K7LC/AK4LX1y64yJ0NbyuuVcvv1y8h356FV6HujzAE+nPN39hamSE0oeh8p3lRojVBAwFhJfgKDjuzcW4ajs6bj6rChc/UdpgWmE6cL4tabn7qlWbPWg1+CzK6ZEMtJJUkzh0NK3aVl5DsPCWvol9P0Eto8FtR/bjNfwo3MJAAPMUeCf7p1gO1vgOBi4WGl61sHszIjwBBJGnsHisp2sqsij0a1cv4w0BDIpJpWJ0X0xdtA18Fi2u3E3F2VexPqG9ahRc0nUJXww8AMM2m7e4bUpWylItf6BUpAaAOHXQuLzSv2Q0OP8kNVIdKCGEXHe3y24Jzgv4jzeL32fvy1/M9Y81tvhHLZKu4cAvW8mIiCSkU4zLDQek86A1eVga20p3+Vv4vSEdPwCxyCbz8BV+CifuJ5rHX9CTKoXo+1kKhWYJv/jsAhjEBemjOSC5BE0uV1oVCoMop9Iu+qcdVy2/TJ+q/kNGZkpwVP4PP3z7l8hUzUXSp+C5lzlZ7++EPsIRFzZvXEIneqzjQ00uWTuOV6sbDpUjyU/xvul7/NU3lP8lPGTt8M5bPVNElGB3u30ezAiGekkGrWa85Mz+HDnagDmF21nSekukoPCCGiazLX8wq3ynczmSRKDYskI961Ok91JrVIRoBOzIO1xSk5uyb6FOaVz8OAhPSCdeYPnkR7UjbNo7loovA9q5ykrstCC+TSlINUoNjTsDZ5ZUo9aBQ+dEOztUHqMeEM8sfpYFtUt8nYoR6TJJRMd5LvJiO/O2fRA46NSuCB5eGtvDYfHRVZ9OZublZqKeHUx//F7jFv6xhywvFU4tkmSxNN5T2P+y8x7pe8RrY9mfsZ8to7b2n2JiHUpbBsDG8Kh+gNQ+0PMIzDKDgN+FYlIL1Fpc7O90sX4RD8MPjxt74sujrqYRqmR32t+93Yoh8XplvDIkOCjxasgkpFOd3J8Gg8NP5XjolLQt7MmO5wiArLHQvXnXohO8EWflX1G+LJwZuXOQq/S8+7Adyk+vphpYdO6/uSSG0qegg1RsOMEsK8D/+Ew4A8YUQUJT3hvlZbQJR5eUAfAM6eIwtXD9XDSwwA8m/+slyM5PFsrlBq9/mG+e1ncd9OkHiwxMJQr+4/j8tQxNLnd6FUu2KB0qFUhKz1Eci8F6yJl9Ymm9zT5ml+0je/yN3Ni7AAu6juyw3Hrqwr5oWALNQ4bkcYgzk/OYEhoXOv9sizzU8FWlpXn0ORx0dcUziX9RrdpJNfTLatbxhXbr2hdIfNQn4d4MuXJ7ql2d+RB4R1g+U3pY6MyQtgVkPhf0HVdy2fB+77caiPUqGZSivGfBwtthOpDSTGksMKyAkmSfHZlyv42lSrJyKAo301GesbfZA+lVqkJ0OnRddRzoXoubBsJTVndG1gXyW+oYWlZDvEdbF+9x25rFe/vWMGE6BRmjTiNjLB43t6+jJKWxmcAC4qzWFSazaWpY3gg4xT81Fpey1yMS/J07ZPoBrsadzHy75FM2jCJQkchl0dfjmWShaf7dcNS3ep5sGUAbEmB+h+Vzer6vAMjbdD3I5GI9HI/Z9lpaJa5YoTYnfdIXRlzJU7ZydeVX3s7lEO2o0pJRkbE+G7rBJGMeJUEjl2QOQJqv/N2MEfF4XHxQfZKLk8di/8/LNFdWJLN4NAYpsUPIsbfzDlJw0gMDGFJ6U5AmRVZWLKD0xPTyQiLJz4ghBkDxlPf3MSm6o43IfR1tc5aTt94Ov1X9WeDbQMnhZxE2fFlfDz4465dquu2Qt5NsC4Ici8Bx24wTYX0rZCRD1HXi83qjhH/+bMOFfD4VHGJ5kjdk3gPKlS8VPSSt0M5ZLtr3AD0DfPdiyHiN1C3OFhDM1lpoV3/c7dF0xXm5axjSEgsaSH/vPQ0t6GagcFtxw0KiSG3oRqAaocdq8tB2j5jjFo9yUHhrWN6EqfkZOb2mUQui+S32t8YEjCEzLGZ/DniTyL1kV134oa/YdsE2BAMVW8r3X2j74NRNhj4R+/pcyMcEqtDYkOpkxGxekwG8av/SPlr/UkLSGO9dT1uye3tcA5JkcWNTu27Dc9A1Iwclp2WSn4v3k6hrQ6Ls4kb047/x10Ms+sr+L/da3ioowHGNLb638S86lgspV8QHxjCxX1HktyFWzV3trWV+RTaanlo+KmHNN7qdGDStZ0JMOkMWJwO5X6XsvOkSb/fGP3eMT2BJEk8nf80zxQ8g0NyEO8Xz5y0OZwcdnJXnhTK/wsVLyu7MgMYh0L8MxByRtedV/B5j/1Ziww8NjXE26H0eNfHXs/tu27nvdL3uDH+Rm+H848qbb7d8AzEzMhhcXrcxAeEML3vqEMaX+2w8ca2JfQP3vvpV5L3mSUJmsLaqJ94pyyUMxKH8PDw04gPCOa1zMVYe8ibbm2znS9zN3DNwOO6dEfHnuaTsk8IWxbGo3mP4qfy4/2B71M0sajrEpHmQth1Aaw3QvF9Sq+Q0IshowSGbBaJiMDHG2wE+ak4Ky3A26H0eDfF34QaNW8Xv+3tUA5JvUMixOjbb/diZuQwpIfGkh4ae8jj/yrbRbghkAtSRkLLfnAWdQIrdTM4Q3oPGpaxqGkbE6P7MiG6LwCX9htDZm0pKyt2c2rC4K54Gp2qsKGWBpeDpzfMb71NQmaXpZIlpTt5c+JFqPfrqWLSK51q92V1OTC3zISYdEqVv9XpwKzfW/FvdTpICAzuomfSOf6q+4srtl9BoaMQvUrPrKRZPJ78eNdNj9Z+ByWzoGm78rM+HqLvgchbRR2I0GppbhO1TRLXjBIdVzuDVq1leNBwNjRswOF2dP/2DIfJ7pIZ5MPdV0EkI10q19pSG6HSQvxTYOjP9uYMfs/bxBkDX4OcC4hr+p60xMdaH6NWqRgYHE2utWfURgwMjubREae3ue2jnauJ9jcxLX7QAYkIQEpQODvqy5kaN7D1tqy6clJaLk2FGwIw6QzsqC8nIVCZUm5yu8hrqOaEmH5d+GyO3E77Ti7OvJiNto2oUXNF9BW8O+Ddrvkl5W6EkoeV1VgeC6CGwBOgz0sQMKLzzyf0eA//rmyK98w0cYmms9yWcBtXbr+Sl4te5sHkB70dTofcbgmP5Lu79e4hPjp1IavLsbfuIfZhCP03Jj9/HB4XTvM5OLWJnKr9kSCN1OZxJr0Bi6tnXKYxaHXEBQS3+fLTaAnQ+hHXssR3bvZKvsvb1PqYk+IGsK2ujD+KsyhvtPBTwRYKbLVMju0PgEql4qS4gfxalMnmmmJK7PXM3bmKYD/jP9bodLcaZw2nbjyVAasHsNG2kakhUyk7voyPBn/U+YmIfQNsnwwbgqDiFUCGqNthhBUGLRGJiNAuh1NiZWEzgyJ1RAb69htST3JZ1GXoVDrmlM3xdigHlVXlAqCfD6+kATEz4lWOuBcJzb8IqfwRCPnY2+F0mdrmRlT7rCjqa4pg5oAJ/FCwme/zNxNpDOLGQce3Ji8A0+LTcHrcfLprDY1uJ/3MEdw2eIrP1KU4JSc37LiBj8s+xoOHoYFD+WLwF6QFpnXuiSQJKt+E8ufBWazcZhgE8U9A6L8691xCr/TMX/VIMjw4OdjbofQqarWacaZxLLMso95ZT7A+2NshtWtjWUvDs0jf7qQskpEuZNIZDihEtTodGDQ69Bot6ojz2ZA7hqENX4P7LdAGto4x63z7GuTB3D106kF/BhgZkcjIiMQOj6FSqTg7aShnJw3t9PiOhiRJPJH/BM/mP0uz3EyCXwJz0+ZyUthJnXsiZzkU3gV134LcDCo9hJyvbFbn1/HfmyDs7721DRh1Ki4bLupFOtt9SfexbPMyni18lmf7+UaL+PUlzcxZ10BMkIZ4s5YFOxsB6B/uu91XQSQjXSrFFE5mbWmb27Lqy0kxKbURWrWGDfpLGen+Gwquh76fIckyO+rLmdJyyULwHR+VfcQdO++g3l2PWWPm7dS3mRE3o3NPUvcrFD8ITVuUn3UxEHWHUpQqClKFw7SptJnyBg8XDREraLrCmeFnYlAb+Kz8M59JRlYVOHhrtRWNCjzy3tvHvFVKoF5FrEnDyDg/Pv53JFrNwXpgdS/x2+0wODwuimx1FNmUjaaqm+0U2eqoddgB+C5vE3OzV7aOPyEmlWqHjf/L20h5o4UlpTtZX1XI1Li9u58OTzyb9dI4mmu+o8xazOc5a3FKbo6LSuneJyd0aHHtYvos78NV26+iydPEY8mPUTuptvMSEckBhffD+lDYdQY0bYWA4yBtJQwvhdj7RCIiHJH75yvL+J47TXRc7SqTgydT3FxMmaPM26EAcMGQANT7JSJ72JwyO6vdrChwoPadPAQQMyOHpaChlpe2Lmz9+evcDQCMj0zmqgHjsTibqG1ubL0/3BDILYMn83XuBhaVZBPs58/l/ccyOGTv8uDREX3423ojuuqrWJL5KEX+F3Hb4CmY9GITK2/bYd/BxZkXs9m2GTVqroq5incHvou+s3axbdymbFZnXQx4QB0IETdAwnOg7T0bAgre4XZLLNrtICVUS58Q356i78lmJc1ifu18nsh/grcHer/vSHSQllP6Gfkjp6ndhARgzr8iUftYNqKSZbmDcH2H1WrFbDZjsVgwmXrpL+lNSUqB4oha8UbkZdXOai7ddim/1/4OwCmhp/DZ4M8I13dCV1xJgqr3oewZcBYot/n1h7hHIfzSoz++ILT477J67vm1ltfPCuOW48zeDqdXMy0xYVQbqZhUAYDD42CNdQ1jTGMwaLq//u+rLTYumld5wO0aFVwxIpA5F3ThNhT7OdT3bzH36yv6vAV4IP9ab0dyzHJKTmZsn0HUsih+r/2djMAMdozbwYLhC44+EXFVQ+5VsD5QqQ9yloD5TBiaA8OyRSIidLrXV1rQa+CmcaJwtatNC51GpauSD0o+4IptVxC2NIwTNpzAgtoFXonn7DR/AvVtZz5UQIhRzX/PCPNKTP9EXKbxFSGngz4Jar8Bdz1og70c0LFDkiQez3+c5/Kfo1luJtEvkY8Gf8TkkMlHf3DLQii6Hxo3ADJoIyHqAYh5CNTin5/QNXZVOSmo93DGAKNPb47W00myxIr6FahbPtfP3DETrUqLW1Y20AvXeWePMYNOzfnpfny2yYGnpY2VDLxzXjghRt9oj7A/8dvQlyS9AztPhbxrIfVrb0dzTJhbMpc7d92JxWMhWBvMu6nvcmXslUd3UMkJJU8pO+W6qwEVBIyC+OfBPLkzwhaEg7p/vtJx9bnTfPNTcG/wVvFbPJX3FGXOMrSqvW+lexIRgBSjdxYi1DrsNPhtwCMNarlFJimqnin9orwSz6EQyYgvCZ4G+hSlt4SYHelSC2sXctX2qyhuLsZP5cd/kv/DI0mPHN2nyKZdUHg7WP4A3KD2h/BrIPF50IrVDEL3kCSJX3c2EmfSMDjKtxtd9WRL65dS5lRW0OybgOyhU+lxOvUUumoJ1PoRauie5dX5DTV8n7+Z8GArBp0Lh0uHRi0zcXAuxfbobovjcIlkxNckvw3Z0yBvJqR+4+1oep3ttu1M3zadLbYtqFEzI2YG7wx85+hWyFR9DKVPQnOO8rNfCsTOgohO7kEiHFStw05Nsx2PLGHQaDHpjD77i7crzVlno9kNN40ThfBdaW7aXGpdtSysXYiEdMD9RjmYZzYpNSNalZonR53V5a/H5eU5fLprLTIyKhWEBDVSVmtmWEoJ/gYXH2Sv4NbBU+hnjujSOI6ESEZ8jfkU5c2s7jtlG3jxibpTVDmruCTzEv6s+xNQCs4+H/w5ofoj/Pt110PRfVDzOUh2QAOmaUqHVP9ObgkvHJTT4+b34ix+Ktza5nYVKm5Ln8ygkBgvReYdLyyzoFHBfceLFTRdyagx8tOwn/jXln/xW81vByQkZtXe151blrC5mwml65KRzNpSPt21hj3LYwO0ekYluPmpVmZ0ahky4PC4eXP7EmYNP50wH0vURWWTL0r6HyBB7jXejqTHc7gdXLntSqKXRfNn3Z8MDxzOjnE7mD98/pElIg3LYds42BAKVe+ByqAUo45qhIHzRSLSzeqaG3lm04IDEhEAGZlXMxeztCzHC5F5R6nVzc5qF5OSDWi14td7V/NT+/Ht0G85J+KcNvtvqVATpOq+5bMAPxdubU1EToztz3Njz2NISF/6BOt4cfy5pAVHA9DodvFnyY5uje1QiFerLzKfBH79oP5HZXZEOGySJDFr9yzMS818XP4xCYYEFo9YzIaxGxgQMOCfD9DmYG4oeRo2REPW8WD/G/wzoP98GFkNCU9DZzVCEw6Z0+Pm1czFlDVaWm+LNgaRFBjWZkPFz3LWsLG6yBshdrsHflN+X8yeJmZUu4tereer9K/4d+S/WxMSGQmTqvsuhRTb68hrULrtxvkHc2HKSHRqDcUWN/FmDYE6AzMHHtf672JVRS4uydNt8R0KcZnGVyW9C9knQe7V0P97b0fTo3xQ8gF37boLq8dKiDaED/p/wGUxlx3+gRx5UHgnWH4F2aXMgoRdDgkvgr57P/UIB1pVkdeaiIQbArlu4ET6BClvwg63ix8KNrOodCcA3+VvIiMsHpXKt7pOdrZvt9mJCFAzNrHnbrTZE2nVWuYO/Igim4VVjUqdSCBtk5HlZbuZ3i+kS16De7YoARgbmdR6juUFDiIDlAQkUGcgPSSWjTVFNHlc1DhsRPv7zqU8MTPiq8wngl8q1P+kNMwS/tGfNX+SsDyBmTtm4pSdPJnyJNXHVx9+IlLzFWxJgy0pUP8D6GKVpnQj7dD3Y5GI+Iil5btav7924ITWRATAoNVxYcpI+pmUN4SKpgayLRXdHmN3+mqLDbtL5ppRoslZd3NJHt7cvozBrssIpQ8AHrm5zZi/yncxb/c6uqLpubTPMfWavbOCdY1t61j2vU/ysebrIhnxZXtqR/Ku9nYkPm2bbRtDVw/l5E0nU9ZcxszYmVhOsDAredahL9V12yD/Vlhngt0XgWMnBJ0IgzdDRj5E3Sg2q/MhTo+bYns9APEBwRj0LlbUr2DW7lmcs/kcAFQqFROi+7Y+Jtda441Qu83Ti+tRq+CRE0O8Hcox55fCTHKsVahVai7SP4UfRuJC4NJ+oxkaGtc67q+yXWyuLen080cYAlu/31yz9/gxJg1jE/wAJWHaVqssRdao1IT4+Xd6HEdDXKbxZebJYOgP9T+Ds1J8It9PpbOS6ZnTWVS3CIDTQk/j08GfHl5hqm0tFN4FtpWABJpgiL4H4p8EtZjq9iWN7kaW1C9hef1y1lk38LdzM03U43I6eHS5MkaFChmZvMY8kv2TCdT6tT7eLfvWNfLOVNvoZmu5k7EJfvjrRdLcnVySp7VIWq1Scd+w03AXX8aftQv4OPotJsWksrw8h092rQFgUUk2GWHxnRpDP3Mk4YZAqh02surLWV2Zx7jIZMobPBRb3EiyzP/lbcTmVmZrRoQnYNT6Vp2bSEZ8XfIHStFk3tUw4GdvR+MTHG4HM7NnMq98HhISI4NGMi99Hqn+qYd2AEmCipeh/CVwlSq3GYdA/FMQcnbXBS4ckmx7NgvrFrLGuobttu0UNhdS66rFJbvajNPihxET0epULok/k0tjphOrj6X/qv68Xvw6L/V/iW11e7d1D/XzraWMnWnW73XIwBMni1mR7rajvhx7y5v8yPBEkoLCmB41nfdK32NR3SJOCj2J46L6sqA4i8qWy4VWZ1On7syuVqk4JS6Nz3evBWBu9ipWVeRicSSxvdrGkxvWU9pSX6VCxdS4gZ127s4ikhFfFzQRDAOVIspjfHZEkiQeyX2EFwtfxCk7STIk8cmgT5gYMvHQDuAshoI7lVVKshNUfhB6ESS+BPrYrg1eaGPPLMey+mVsatjE7qbdlDvLsXlsyOy9lq1VaQnRhpAekM7AgIGMMY1hcshkhgYM5Yvc9fxVptSNDKEf6QHpqFQqboi/gdeLXufqyNtYUbEbAJ1aw/CwBG881W7x+WYbwQY1J6f61tT7scDidLR+n2qORJZlqlxVaNBw58472TJuC2qVilRTJJVNDa2P6cxkBGBSTD+K7XUsLVdmaXbUVyDJSdQ5bfskInBZ6miSgnxvmwCRjPQEye9D1kTImwEDfvF2NF7xfsn73L3r7tYVMnP6z+HSmEPc6bb2Byh5GJq2KT/r4pRLMVG3iTqQLiTLMtn2bBbVL/rHWY4AdQCR+kjGmsYyNHAoE4MnMiV4CsH64A6PPyW2P8vKc5BkmaXlORTZ65gY3ZcTAs5jtudZztl4IVO1dwBwXFQKATrfmpbuLAt22rE4ZLE7r5fo91lG/k3V51y2+32Km4sZETiCB5IeaL2vrtne+r2fpvPfelUqFZf0G018YAh/FGdR5bAhA2q1ktynBIVzZp90Bof45gcvkYz0BEETWmZHfgNnOeijvR1Rt1lQs4Brtl9DibMEg9rAUylP8WCfB/+5MNXdCKWPQNUH4LEAagg8HhL/C4GjuyX2Y4Xdbeev+r9aZzlymnIod5Zj99g7nOVIC0hjtGl06yzHkewJFONv5vLUsXy8czUykNdQ09prQY2WXGkt69zfcGHI9VyQPLyTnq3vefSPOlTA0ycHezuUY1I/cwQV0i4Wut/AVlWNQW3gx6E/clbEWa1jyhutZNWXAxCi9ye8i7qfqlQqTohJ5fjofuRYKnnvVxsJgWYeGXEa8QG+fQlPJCM9RfIcyDoOcmfAwN+8HU2Xy2zIZPq26WTaM9Gg4drYa3ljwBv/vIeMfZNSkNrwFyCB2gSRt0L8M6ANPPhjhQ7tO8vxt+Vvttu3U9RcdNBZjnGmcYc8y3GkjotKIVDrx7f5m9o0P/MnmAYq2SB9Rx+VChcT0ffCX3eNTom1JU6GxugJ9u99z8/XFTuKuXDrhaxyrwJUpKomMjPkIUYHTACUfze7rFV80pIwAxwf0w+1qmtnZNUqFf2Do5CxE2E0+nwiAiIZ6TmCxoNxEFgXgLO019Y4lDeXMz1zOkvql6BCxelhp/PZoM8O/kYmSVD1FpQ9D86WTpuGgRD3OIRd2C1x9xY2t42/6v9ief3yw57lmBIyhSEBQ45u5+MjMDQsjiGhseyyVpFnrcYte5hfEEiDsxKAH6q/Z/za8fyc8TOJhsRuja2rPb6wDlmGR6YEezuUY4rD7WDmjpl8XvE5MjKjg8YxxHklWtnE7oY6Hlv/M9FGE07JTW1zY+vjooxBnBjbv1tj1Wt6RqM/kYz0JElzIGtcy+zIAm9H06ma3E3M3DGTLyq+aF0h82X6l/T179vxg5zlUHQ31H4LsgNUOgg+T9msztCn+4LvYSRJIrsxm8X1i/fOcjiKqHW3P8sRpY8ixZTCsKBhTDBP6LJZjqOhUqnob46kv1kp8JYKna33SUhk2bMY/vdwfhr2E8cFH+etMDvd3HUNBOhV/GuImPXrLk/nPc2TeU/SLDeTbEhmXvo8xprHsttaxZvblraurClvsrZ5XKy/mVsHT+72JbU6tUhGhM4WNBaM6WD9A5wloI/758f4OEmSeDj3YV4qfAmn7CTZkMzHgz4++AqZ+vlQ9CA0bVJ+1kZD9O1KUapavKT36ImzHJ3F7rG3+dmNm3p3PSdsOIH3Br7HVbFXeSewTvR3oYOqRokrhotEpDt8V/kd1+64lhpXDSaNif8N+B9XxFzRen9fUwRPjjqTlRW5rKzIpcphQ42K+MAQJkX3Y2REYps9kw7Xb0Xb2FhdRHmTFb1aQ4opgvOTMoj2N7U7XpKU7qsutYVH162lxmEj0hjE+ckZDNmnEZssy/xUsJVl5Tk0eVz0NYVzSb/RRBnbP25XEb+5e5rkObB9DOReBQP/8HY0R+V/xf/jnpx7aPA0EKoN5Y0BbzA9enr7g6VmKPkPVP4PPLWACgLGQ+ILSoHvMWrPLMeiupYVK71glqMzNElNB9wmISHJEjOyZlDcXMys5FleiKzzPDC/ZVO8U8WmeF0psyGTCzMvJKsxC51Kx32J9zG77+x2E/UAnR8nx6dxcnzn796901LJ5Nj+JAWG4pFlvs/fzKuZi/jPyDPbXZ3T7Fb+rJELmBCdwtDQONZU5vP29mU8PPxU4gKCAVhQnMWi0myuGjCecEMAP+Zv4bXMxfxn5JlHlTwdLpGM9DSBo5UGXdaF0FwEfj2vd8Jv1b8xM2smpc5SDGoDz6Q8w4PJD7Y/uDELCu9Qni8eUAdCxPWQ8BxofWeTp65mc9tYUr+EFfUrjplZjp2WSn4v3k6hrQ6Ls4kb044nI/zgr/fs+gq+3L0Oh+Ro936tSotbdvND0d+UlXxBfGAIF/cdSXJQeFc8hS7jdEssy3cwIFxHrEn8Gu8Ktc5apm+bzu+1v6NCxTnh5/Dp4E8J9FIh/O3pU9r8fFX/cdzz97cU2GpbL0/uq8mtzIyYNEFMix8EwDlJw8iqL2dJ6U4uTR2DLMssLNnB6YnprV1hZwwYzz2rv2VTdRGjI5O69kntQ7yKe6LkObB9tFI7kvant6M5ZFsatjB923S227ejQcMNsTfw+oDX0e5/aUWSoHoOlD4DzjzlNr9UiHsUwo9g990eQpIkdjTuYHHd4tZZjkJHIXXuuo5nOcwpDAvsnbMcTo+b+IAQJkT15Z2sZf84vtph441tSxgTFQ/1B96vV+k5M+Tf+DWM4Ob+55AcFM7C0h28lrmYx0eehUnfc9r/P/+XBY8M9046dhLy7uKW3Ny+83beLXkXDx4yAjP4esjX9PPv5+3Q2mjyKL8TAjqoQWls+ZVh1rXtPzMoJIbNNcUAVDvsWF0O0oL3toswavUkB4WT21AtkhHhHwSOAuNQaFgEzYXg59srBMqay5ieOZ2/6v9ChYozw87kk0GfHPjG6a6Fwruh5kuQmwAtmM9QClKNh9jqvQfYM8uxp5ZjT/fR3jzLcSTSQ2NJDz30VWN/le0i3BDItMRUKNi7T41RFUST3MAJwScwSnU5SbGhrRvoXdpvDJm1pays2M2pCYO76ql0unfWWDFoVcwYKepFOtPbxW9z7657sUt2YvQxzB00l2lh09qMmV+0je/yN3Ni7AAu6juyw2Otryrkh4ItXVKrIckyX+Wup68povVyy/6anMrMiFGra3O7SWdo7RprdSmXM/dPxE16Q5vOst1BJCM9Vcpc2DZSqR1JW+TtaNrV6G7kmh3X8FXFV0hIjA4azRfpX5Din9J2oGUxFN0HjesBGbQREHk/xD5MrbNZ2dzJVts6PFDrR2gXNQ3qLHtmORbVLWKtde0hz3JkBGYwwTyBycGTe9UsR3fItVYzMDgarUqLVqWlv7E/54XMoK4mlgWqR1lUt4gk3eWc1jJlDUo/hoHB0eRaq70Y+eHJLG+mxOrh/MH+x0RS2h0W1y7m8u2XU9JcglFt5OXUl7kj8Y4DxuU31LC0LIf4DhKAPXZbq3h/xwrOTR7WJbUa83LWUmq3cO+wkzsc0+RWPthoe8hLRCQjPVXACPDPgIbF4CjwqaWskiTx4O4HebnoZVyyixRDCp8M/qTtkkrJDaVPQeVb4K4CVOA/UqkFMZ8IQK3DziPrfsItS22Or1WpeXLUWR0mJB7ZQ4O7gWBdcBc9w71sbhuL6xazwrK3lqPCWdHhLMeQgCGkBaQxyjSKE0NOJD0gXbyhdBKry4FJbyBUF0rV8VWYtWYy60p5o+ovnur3NNO3X8xuaQ1B+lPbPM6kNxywDNOX3d9SuPr8aaJw9WgVNBXwr63/Yn3DetSouS72Ot4c8OaBl44Bh8fFB9kruTx1LL8WZR70uAtLshkcGtMltRrzctaytbaUe4ZNJcSv472Imlwtv39UbT/8WF0OzC0zISadsj+O1enAvM9eOVang4TA4IM+x84mkpGeLHkubBsOeVdC2hJvRwMo05z359xPg6eBMF0Ybw14iwuj9mk85tgNBbeDZQHgBpURwmdAwguga7t5U43DfkAiAuCWJWzuZkI5MBnJa8pjeuZ0shuzqTy+Ep1ad8CYw7XvLMe+K1YOdZZjSsgUzDpxbb877Z+Inh/5L0J3hrPV8yuy9Ih3guoEkiTxR04TfYK19A3rnXvtdIdGdyNXbr+S/6v6P2RkTgw5kS/TvyRc33Eh87ycdQwJiSUtJPofk5HchuoDdsY92loNWZb5Yvc6NtUUc9fQkwg3HPwSXXPLzIhNsrS5PauunJSWgu1wQwAmnYEd9eUkBCpdWpvcLvIaqjkhpntrZEQy0pMFZID/cKX1uZdnR36t/pVrsq6h3FmOUW3k2b7Pcn/S/XsHVH8KJU9As7LLKvpkiH0Iwq9ud7O6lRW5zMtZ2+H58htqSAzc+8lQlmU+Kf+EG3fcSJPUhIxMniOP/v6H3u1wzyzH8vrlbLZtPuRZjtGm0ZwYciKDAwaLWQ4vMukMWPe7zm11OjBodOg1Wm6Nv4XH8//DJ+Wf8njwXW3GmHU9o3j1zdVWXB647bju7QHRW0iSxKN5j/JCwQs4ZSf9jf35YsgXDA86+N5FayvzKbTV8tDwUw86bg+r04Fpv9fU0dZqzNu9jjWV+dw0aBIGjQ6LUzmGseX1DTA3eyXBen/OS85oXU1T76nlj+IshoTGsraqgAJbLZeljgGUZoEnxQ3k16JMIo1BhBsC+aFgC8F+xn9cudbZRDLS0yV/CNuGQe4VMOivbj/95obNTM+cTlZjFho03Bh3I6/1f02Z5nRboOh+qPkUJDugAdMpkPgS+HdcLLisLIdPc9Yc9Lxf5Kwj2miif3AUda46rt9xPV9Xft1mTLY9+4BkRJIkshqz2qxY+adZjr7mvntXrIhZDp+VYgons7a0zW1Z9eWkmJRPgbOSH+bl/LeYW/4+jw9UkhFJltlRX86Ubm7RfaReWW5Fp4Y7Johk5HB9Uf4FN2bfSL27nhBtCJ8M/KTtrG0HapvtfJm7gTuGTOnWvhv7+6tM+SD3360L29x+Zf9xHBel1OHVNjeiQum46mjpMzIieCDLyrP4Pn8zkcYgbhx0fJui12nxaTg9bj7dtYZGt5N+5ghuG9z9z1UkIz1dwFCl1sK2FBx5YEjultOWOkqZvm06S+uXokLF2eFn8/Ggj5U36oaVUHgP2FcDMmhCIeb/27vv8KjK9OHj3+mTXkgvkAIkkACRKiAiyoplRXZXF8siuorr6uqu2BvYVll/6vq6Yl/F3VVR146IqxSVJjWQQBJKGpBeJ20y5Zz3j4EhIQkQTDIp9+e65pI585wzzzlO5tzzlPu5A6IXg9Z00uPW2ppYfnCb+/no4GjGhQwm2ORNUWMt60sOcqihGicqy/ZtZuZQP36353eUHV2H5BgdOj4p++T0Wzl8RzHCW1o5ehOr0055U737eUVzA4fqq/HRGwk2+/BpXjo1tkZuSHKNRZoeOYx1Rfv4OG8nU8MTyK4pZXt5IX9KnQ6AXqvngsCL+LTm37x68L9cHvkLVh/JwaY43F/mvVlelY3cagezhnnJZ7MTdlh2cFXmVexv2o9RY2Rx/GIWxS067WtYWFdFnd3KX3escm9TUNlfW8a6on0sPWdum4Xv/I1mLPYTWul+5liN16Zdc8q63jV6pvvfVrurZSTeJ4z54zvuctFoNMyOG83suNGnPH53kmCkP0hYBpmjjraOnDofw8/R6Gjk91m/58OyD1FRmeg/keUpy4k3x0LJ/0HJi+BwLZWNd5prtdzAi0/7+D8WH3CPE5kWMdTdnAgwPDCcaZFDeW73avbVFvNV/Rs8vfMr9xTOlpw4WVayzP1cWjn6noK6Kp5v8Svwo9wdAEwOi+f6pMnU2ppaLUIWYvblTynn8VHuDtYcySHQ5M284ZNICTo+PfjNUX/nyx+X89KhV8kodhDjG8QdKTPwb3FD6K3uW1UNyMDV01VmK2Nuxlz3opu/Dfstb494G299x4M+25McGMGisZe02vbOvs1EePszK2ZkuyvwJviFkF1T0mrcSE+P1TjWMmI2yNo0oqd4p4L3eKhf7xoganblUKiyNrimxR71c6bEKorCvQfu5cXDL2JX7SR6JfLvlH8z2RQFhXdC7QpQ7aAxw6BrIfY5MIZ3+n3Sjw7wArjkaN6HZmczX1d+jYpKTmMOm5w7+NL+MSquoOXEQOSYOHMcX4z+Qlo5+qikwPCT/hq8Pmlyu/s8PLbj4DfYGMzkwEn8WLOaLye+Qbx3z7Qk/lyKovBlViORfjpGR568dXGgcygObsm+hbeL33anFPho1EcM8TqzMXVmvYFofWCrbSadHh+9yd3d0XKsBsAF0Uk8u/s7j47VODaA1WzoG999Eoz0FwnLIDMVcufDyPXtTos91ZTYjiw9tJT7D95PvbOeEEMIryS9whUGoOD3YM12FTLGQuS9EHpruwNST9exFS/9DGYCTV58Vv4Z9+6/l/1Nrv7SAH0Aw7yG400ATdSh4ECLFoW2s25qHbWM8ht1xnUR/dPS4UsZvWU0t+27jZVpKz1dndPyn/QGrA6Vmyf6nbrwAPZ8wfM8nPswTUoTsaZY/pPyH84NOrfb37flWA1wLZp3U9JUPi/Y5bGxGs1O13eiyXPDXDpFgpH+wjsFfCZA/QZo2k+9c1CbabEdTolVFdcquN6jIeRa9+YVFStYkLXAPUPmuYTHWagph0M3gmIBtOA3wzUg1SetS07DS2fEoVTxVeObvLT2WppVK1MCprAgagHzIuYRbgpnX20Zz2esRlVVwoOs2L32s7x0OQXWAnTocOIEoNpRTZW9imCDNGuL40b5jWKY1zC+qfyGRkdjp5vtPWHJuhq0GnjwvEBPV6VX+rria36f9XtKbCX46Hx4NelV/hDzh257v5ZjM9p7DjAudDDjQjvOjt3dYzWOd9P0jZaRM6rl0qVLiYuLw2w2M2nSJLZsOfnMh2OWL1+ORqNhzpw5Z/K24lTi33H9N3d+5/Y7vAhKnnF1tyh2dtbtZMSmEVy26zIq7BU8Gn4F9eHjWFj+KJT9AzQaiFgIY+tc2V+7KBCpsFWw0vY8bzsWkK2uxaz15qPUj9gwfgP3xN1DhNk1J/9/h7MA1x/zL8PPZ8nQJeRNySNjUgaL4hcx0vt4hs0Ca0GX1E30L0uGLkFB4Z4D93i6KqdUYnGQVW5n6hATxr6STrOH7G/cT9pPaVyy6xLKbeXcHnM7lnMt3RqI9BXNR5Oeeen76ZiRDz74gIULF/Lqq68yadIkXnjhBWbNmkVOTg5hYW1XDjwmPz+fu+++m2nTpv2sCouT8B4BPpOgYRP6Y/k8TqX8bSj+q+vfjnIWbR/FE5YcNMDTASncratC3/hf1+teKRD9JATP6dJq5zXmsSB7AWuq16Ci4ksok3XXEK+bCA2J1DQ3EmjyprixlhUFGWRWu6Zv+hlMjA1x/fLQaDSk+qaS6pvKooRFHGg8wFbLVlJ9Uru0rqJ/+HXYrxmkH8TbxW/zj+H/6NVjih78n2vg6lOzpIXvGIvDwu8yf8eKyhWoqFwUfBHvp7wvSyi0YHMeDUb6yADWTv8FPv/88yxYsIAbbriBkSNH8uqrr+Lt7c1bb73V4T5Op5Nrr72Wxx57jISE3j+Frk9LcLWO+B/+46nLWtZA3gL3U4cKF9tzeM0nGJu/kfuVPegdlRB8JaQdglGZXRqIpNelM3HLRBI2JbC6ejUpPil8P/Z7lg9b7QpEgG+PZHHfls+4Y+OHPLr9K7ZVFAKgAa4ZOrHD/tWh3kO5OuLqLsnAKvqnOwffSZPSxNLDSz1dlZP6KKOeQd5azonr/TN+upuiKNyz/x4G/TCILyu/ZITPCDInZfL1WV9LIHKCZmffahnpVDBis9nYvn07M2ce7x/TarXMnDmTTZs2dbjf448/TlhYGDfeeONpvU9zczMWi6XVQ5yeen0cJdqR+Fh3Es6RNq//WHwAVVWhaS/qvstRjo6vANBrYLIebtZWodeHQOyzMK4Jhn4Ixpguq+OaqjWM3DSSs7acxda6rZztfzYZEzPIODuDc4PO5ZLYVGYPGd1qQFiz0+H+t0mr58bkqYzt4QyBon95YMgDmDQmnip4ytNV6dDnexuot6nMHyur8y4rWkbQD0E8W/gsQfogPh/1OXvO3kOKb99ZbbknHWsZ6StjRjrVTVNRUYHT6SQ8vPWUzfDwcLKzs9vdZ/369fzzn/8kPT39tN/n6aef5rHHHutM1QTQYLfx3O7vsDf9nieMd3OD4TWW2B9vVeaHkgN4q9XMtFyFl7OedoPmwF/D8I+7vH4fln7IPfvvobC5EA0aLgy+kDdGvMFgc+tBXhqNhksHpzI5LJ4fSg6QVV2M1enA12DirJBYJocl4GOQdTnEz6PVarkq4ireKX6Hbyu/5ReDOl4B1VMeW12NBnjsgoHbRbOpdhPXZF5DvjXfFTwmPsUDcQ94ulq93rGpvV59ZJpKt1azrq6OefPm8cYbbxAS0vECRCd64IEHWLiwxdoRFguxsfIr+FQ+zU+nqLEWiCSfJOK0OdyeGI5FG8/uqsPsrDxMibKZYZVL8dYq6Dpqvatd6Urlru+ahGBLDy3lsbzHKLeXo9fomRs2l5eTXibYePIv2GCzD3PixjAnbkyX1EOIE70w9AX+Vfwv7tp/F7sH7fZ0dVqxWBXSi2yMizbia+4bv267UpG1iCszr2Rj7Ua0aJkXMY83R7yJUSs/RE6H7Wijt7exb3x2OhWMhISEoNPpKC0tbbW9tLSUiIiINuUPHjxIfn4+l112mXuborimm+r1enJyckhMTGyzn8lkwmSSxD6d0WC3sbksD3B1Y/gnLUezbzypzR9B/KuE+jl4ueIq3jYWk3qqeeeqFSr+BRG3n3F9FEXh8fzHeb7weeqcdZg0Jm6JuoXnhj3XJ6ZSioEh0BjI9MDprKtZx8HGgyR6t/0+8pRHvq1CBR6bGeTpqvQoq8PKTTk38V7Je6ioTA2YyoepHxJljjr1zsLNfqybpo+0jHQqZDIajYwbN47Vq4+naFYUhdWrVzN5cttsiMnJyWRkZJCenu5+zJ49mxkzZpCeni6tHV0oo/oIdsUVCk8OT2BQYBpE3Y9SsYyvMs7nh51JWBzF6NBSo/hxWIlFMcaDLoh2Y9Kaz8+oHlaHldtzbsfnex8ey3sMFZWH4x6m/rx6XhnxigQiotd5KeklAG7Luc3DNWnt3zvr8TdpuCT5zLIm90VP5T1F4A+BvFvyLnHmODaP38z68eslEDkDx8aM9OaZYi11OmZauHAh8+fPZ/z48UycOJEXXniBhoYGbrjhBgCuu+46oqOjefrppzGbzaSmtp5aGRgYCNBmu/h56losO514dJXSooC5RBz5K5c0riXbZyh7Rv6Nd0tCeOVoyvW/ps0mxOwLqgpKIzirwVEFjmowdW7WU42thtv23caHZR/iUB0MMgxiSeISbo+5vdUfw9eH9rCz4hAlTRaMWh0J/qH8Oi6NCO+Tr0K6vbyQzwt2U2mtJ8zLj1/HpzEqONr9uqqqfFmQwY8lB2hy2kn0D+GaoRMI95LVTcXJpfimkOSdxLdV31LvqMdX7/nBoutym6huUlgwYWBkXP287HNuyr6JCnsF/jp/Xkt6jfmRncyXJFo5Foz0FZ0ORubOnUt5eTmLFi2ipKSEtLQ0Vq1a5R7UWlhY2Gcisf7EpDs+hbXC2kCDs4HLs37PlQ4Tlya+RErETQCUFxxfedKsO/q/X6MBnY/r0clZM4eth7k5+2a+qfwGBYUYUwxLEpdwbeS17ZbfV1vGeVHDifMNxqmqfJa/i/+XuYZHx/0Sk679j+NBSzlvZm9gTvwYRgdHs6Usn1f2/shDZ13kTq/8zeEs1hTlcH3SZELMPnyRv5sXM9fy6LhfenTZb9E3/C3xb8zJmMM9++/hlRGveLo6PPRNFQBPXdi/u2gy6zL5beZvyWrMQq/Rc8/ge1iSuETuIV2grwUjGlVVe32NLRYLAQEB1NbW4u8vv3TbU9pkYdG2FQAEGc1kmt7m+5p1/DDuB87yOwtw3dSf2fUtANHegSwad0mHxzuVrPosFmQvYGPtRlRUkryT+Mfwf3R6RkKdzcrdP33CXaNnMjyg/aR5r2etx6Y4+FPKee5tS9K/IdYniGuHTURVVe796VN+ETOCC2NGANDksHH35k+4fvjZTAiLO9PTFANI6A+hNDgbqJ9e79GbodWm4PNoPiPDDGT8pX92ZVfbqrl6z9V8U/UNGjTMDpnNf1L+0ytapfqLi98u5pt9TShPeza31+nevyX87CfCvfxJDginyJnFC/XX81XlCl4e+hZn+Z2FU1XYUVHIq3t/dJefHjnsjN5nQ/UGxmwew8ifRrKhdgNj/caydfxWsidnn9HUyCanHQAffccj5HPrKkgObD1AemRQJLl1FYCrJchitzKiRRkvvZF4vxB3GSFO5a7Bd9GkNPHi4Rc9Wo8n19agqPDgjECP1qM7KIrC7Tm3E/pjKN9UfUOabxo5k3P4bMxnEoh0MbtTRdM38p0BslBev1DnqOM/Jf/h5boXOODcB0AQ0azPs7PnyGc0K3YaHXZ3+Xi/QUyJ6Fy0/EXZF9y5/05yrblo0HBe4Hm8PuJ1hnmfWVADoKgqH+ZuJ9E/tNVqliey2Kz4G8yttvkbzNQeHSdjsTe5thlPKGM8XkaIU7l38L08mvsoSwqW8JfBf/FYPd7cVoe3QcPVY/rXeJFXD7/K3QfupsHZQIQxgmUjlzFr0CxPV6vfsjtV+lAsIsFIX5ZRn8HLh1/mneJ3sCpWVI73uE3UXwVAta2x1T7D/MP448hppz2O4u0jb/NQ7kMU24rRoWNOyBxeG/EaYcaO1yE6Xe8f2EpRQy33jOl9yabEwKPVarkm4hreLn6bbyq/8ciNctthK6X1Tq4e039m0KyrXse8PfM43HwYL60Xfx/2d48GewOFXUFaRkT3UVWVD0o/4MVDL7LJsgm9Ro9DdbQqo0HDbQlXk1FRTqW1AZ1WS5xvMOdGDmNkUCTaU3xCFUXhmcJneKbgGaod1Rg0Bm6IvIEXh7/YZU2p7x/YSkZVEXePmUmQ6eTTff2NZiz21i0cFruVgKMtIf4G15odFpuVAOPx9TssNiuxvoFdUl8xMLww/AXeKX6Hu/bf5ZFg5IGjA1eXXDSox9+7qxU0FXBFxhVsq9uGFi0LohbwctLL6LVy2+kJDkVaRkQ3yqjP4Oo9V7ufnxiIAJzldxaXxY7jsk6OfXMoDh44+AAvH36ZRqURb603dw++m78m/rXLsh6qqsryg9tIrzzMwtEXuKYWn0KCXwjZNSXMjE52b8uqLiHBzzWFOcTsg7/BTHZNCbG+rtkHTQ47eXUVTI8c2iX1FgODv96f84LOY031GvY37v9Z3ZCd5XAorMu1MnSQnsGBfferudHRyPy98/m4/GNUVGYEzuCDUR8Qagz1dNX6tU/3NPBxZgN6LRh0GvKqHCgq3L2y0rVNqyEl3MhVY3rn2Jy++4nvh6qsDdQ7mt3PffUmgs2tm2tH+Y7iyYQneTj34XaPodfouTD4wk69b72jnjv23cG7Je9iU20E6gN5JP4R7h18b5fPKnj/4Da2lOVz68hzMesM1Npc4z28dAaMR6f2vp2zkUCjN7+KTwPggugknt39Hd8ezmJUcBRbywsoqK/id8NcK/tqNBouiE5m5aFMwrz8CDH78nnBbgJNXqTJYnqik14a/hIjfxrJbTm38b+z/tdj7/v8hlocCiw8p2uWYehpiqLwaP6j/C3/b9hUG8O8hrE8dTlj/cd6umoDwvd5TbybXo9O4+qecbiSnfPihlrA1W0zdJBeghFxclXWBh7Z9iUOVXFv02u0PDH+slYBiUaj4aH4h4jzimP+nvk4W6y6C66WkvODzj+t9yyzlfGHrD/wZcWXOHESYYzgyYQnuTH69FZXPhPfF+8H4LmM1a22zx9+NlPCXYNqq5obW63Ym+gfyk1JU/m8YBef5e8izMuPP46c1mrQ66yYEdicDv6zfwuNDhtDA0K5I2WG5BgRnTbCdwTJ3smsrlqNxWHBX98z6QRe2mTBqIM/TOx7A1c/KPmAP+b8kWpHNUH6IP6V9C/mRsz1dLUGlDumBPCPjRacKrQYPoj9+C2Fe88N7OlqnTYJRnqJekdzq0AEwKEq1DuaCcYVjHxZsJsVhZmAq7sjTDOcYjULLVoUjq75o9EzNXCq+xjtZS71NltZkLWAdTXrUFEZakhjsm4e/kRjqQqhNNjSbZlLX5t2zSnL3DV6Zptt40IHMy50cDulXTQaDbPjRjM7bvTPqp8QAM8MfYbZu2dz9/67eX3E693+fjnlNg7VOpmd7NWnEn7tsOzgqsyr2N+0H6PGyKL4RSyOW9ynzqG/SAg2cNVoHz7MaHC3ihyjAYYE6rl+XO8NdOUT08dEeQfwzKRfsdP0EsVqFteH30iUKQqdxtUCcLb/2XjrXANCj2UunRqRwMNjLybIx8a1uxYwbNMw1tasZZTvKF6M+S+X6h9kYfJvuT/tQkxaPS9mrnWvcyPEQHRZ6GWEGkL5d8m/3Yt7dqf7vnYNXP3bxX1j4GqZrYzzt5/PuK3jONB0gCvDrqT63GoeS3hMAhEPenBGUJtABFwNJU/NCsbQ4VLtniefmj5Gq9FwS87v2Vb/E3NC5vB26ptsnbCVUT6jAPhF8PFpsquP5JASHInW6wgzdk3iz0d+TbaylvGmC8mclEn6xHQKqzVcMjiVtEExxPgEcUPSZGqam0ivOOSpUxSiV7h7yN1YFSt/P/T3bn0fRVFYta+R2AAdyWFdM1C8uzgUBwuyFhD5YyRra9YywW8CeVPy+HDUh7IIZi+QEm5k9ghv9C3u7FoNjAg1MHd0754uLsFIH7Opbg0flH1AlCaJkZpLqLI2EGGKYP349Tye8DgLohe4y/5YtYH/q/gjF6ZfyP7G/Vw86GLeiFvJZd53kOKbIplLhTiJu2Pvxqw180zBM936Pm9srafZCbee3buXuni+4Hn8v/fnzaI3iTJFsW7sOrZM3MIQryGerppo4aEZga1aRxQV/nZxMFpt720VAQlG+pQc+2ZWOf6Ovy6IIjWHN6ue5Jld/8PqsOOj8+GR+EcIN4Tz/wr/HyE/hPAf6/2UOgq5JvwaKqdVsjJtJUO8oiVzqRCnQavVcm34tZTZy1hZsbLb3ue5H2vQa+HuXjqL5pvKb4j8MZK7DtyFVqPl1aRXOXTOIaYHTfd01UQ7xkTpGROt4OqcURkepnD2kN7f7S7BSB+xoXoD9xX8EZPWSIPTAkCZs5C9tp/YVlGIQ3HwyMFHCPghgL/s/wsNzgYu0N3Gdyk7eTf1XQKNgZ49ASH6oOeHP48WLXfvv7vV9iprA4X1Va0eVdaGTh//cK2D/ZUOpseb0et719fx/sb9pP2UxkXpF1FuK+f2mNuxnGvhDzF/8HTVRDucisJn+bu4Z/MnxMZk4xq2qmF4fDYPb1/BN4f2erqKJyWzafqAgqYCLth5ARo0+On8qFJcg9106Njh/JS/F9bw1d5lNKvN+Ov8WRy/mEVxi3hw2xdYna1HM0nmUiFOn7/enxlBM1hdvZqchhySfJLanYYP7U/FP5X7vq4EYMlFwV1a75/D4rAwb888vqz4EhWVi4Iv4r2U9wgyBnm6aqIDTlXhtawf2VV1BIDIYAtajYJGoxI1yPXj9ZP8dByqwqWDUz1Z1Q71rlB8gGp2OthWXtDua0fqS0nbkoZNtTHSZyRVjip3bhEnTo449/FJ3Wv46/1ZmrSU2vNqeTThUbRarTtzaUsdZS495ljm0mNlhBjoliYtBeC2nNuA9qfhw/Gp+J3x2d5Gwny0jI8xn7pwN1MUhXv238OgHwbxRcUXjPAZQeakTL4+62sJRHq5/x3OcgciWo2G8aGDGREOU+LVVt/lXxTsJqem1FPVPCkJRjyswlrPX3eu4pvDWW1eUxSFWXumU+Oo4fzA88loyMCptu37S/UeTdm5ZXg1pPFpXrp7+wXRSeypLubbw1mUNNbyZcFuCuqrOC9qONA6c+muysMcaajh7X2bJHOpEC0k+SQx0mcka6vXYnFYuuy4y3fV0WhXuWmC53M/vFP0DkE/BPFs4bME6YP4bNRn7Dl7Dym+KZ6umjgFp6Kwtsi1WrsGuCNlBjePOIdAkxcJAYHcl3Yhc+LGuMt/dyTbQzU9OQlGPMjqsPNi5lpKm45/wYWZfRnsG4QODSscf6WOcmI1o1lds7rD42Q27ia9Lp2q5kZ3enU4nrn0x5IDPLHja3ZUHGo3c+mMyCT+s38LT+1cRbPTLplLhTjBs0OfRUFh4b6FXXbMp9bWoNXAIzM81+qwqXYT8RviuT7repqVZv6a8FfKzi3j8rDLPVYn0TnZtSXu7/0xg2IYEeSaHdnsUN15RS6MGUGQ0TX1OqPqCA32zrXg9QQZM+JBP5YcoLSpDoBwLz9uTJrKED9X3/GNexdQUpxNMIM5pGac9DhatDyV/xQfjv6wzWuSuVSIn+/ikIsJM4Txbum7PByz5Gcfr6LeQUapncmDTZiNPf+bsMhaxJWZV7KxdiNatMyLmMcbyW9g0pl6vC7i56lubnT/e2RQpPvf2eV29xRfnUZLcmA4m8ryUIEaWxM+ht71/1paRjxEVVX3Oi0AfxgxzR2IfFf1HcuK3yJIH0QVhbRaaKAdCgofl33cbheOEKJr3DvkXqyKlddL/vGzj/Xwt9UAPHlhzw5ctSk2rttzHbEbYtlYu5GpAVM5NPUQ/0r5lwQifZRec7wVu/5oi8fu4mbqbSqXJB1PRFfXojVE3wuz5ErLiIfU25spt9YDkOgf4u46ea/4PeZnzUdBwUfrw9Wht1BdFY5Wq+Pi2BGMD4vBptqwKTbsqh2bYsOm2hhkGOROCS+E6Hp3xt7Jw7kP81rxUq7QvvizjvX+rnqCvLScn+h16sJd5Om8p3ks7zGa1WbizHG8n/o+Zwec3WPvL7pHvN/xJQQ2luZyUcxIHl9TTZS/lkdnuroAK60N7K0pBsDPYCbE3PtW7pVgxEPsLVoxfA3HR9K/Xfw2OnT8I+kf3Bh1I+kVR3izdiMAoYYoknySeryuQghXErTrIq7j9aLXKdBvZ4h23Bkd5+ucBizNKrdP7pmBq5+Xfc5N2TdRYa/AX+fPa8NfY37U/B55b9H9wr39SQoIJ6e21DUhYstmPs6M4Dep3hh0Gooba/ln9kYU1dXCfk5EIjqNtIyIo/wMZvQaLQ5V4UBtGTanA6NOz4q0FTQ7m/E3uFJDZ7WYdhtk7LlfUUKItp4b9hxvFr3JZsf7DDGeWTCy+LtqNMDjMwO7tG4n2lO/h99m/pa9DXvRa/TcM/geliQukYXs+qE5cWN4bvd3OFSFNzaYAZXEIdk8vTOd/Poqd7kgozcXRPXOH7TyqfQQg1bH2BDXwNIGh42vCjNRVRWT1uQORPLqKthclg+AWWdg9KAYT1VXCAHYnBoSDWnUUky1cqTN64V1Ve3sdVy9VWHbYRtjIo0EenfPb8EaWw0X7byI1J9SyWrIYnbIbKrOreKZYc9IINJPJfiHcPOIc9AoOo5UBODvbaVGLWodiJi8+fOoGfgZPZ/Tpj3SMuJBF0QnsaU8H4BVh/eSV1fJ1IgEvPVGMqqK2FByEOfR5ErTIhIx6eR/lxCeUmGt5/92fctY9Vr2s4P1zmVcpn2oVZl3D2wl0ORNanBUu8d4bE0VKrDo/K6fzqsoCn/e/2deOfwKTpyk+abx4agPGeY9rMvfS/Q+YwbFoK09F5UmzhlxvEU9zMuPaRFDOSciEW99710VWu5uHhTnN4grE8byUe4OAHJqS8mpbZsdb3hAGJe3SFojhOh5b+VsosbWRIA2gkGaWErULC6PS8LhNLCtvIBSax0KKm9kb+CpCbPbnTr59vZ6fI0afpXatcu5v3b4Ne46cBcNzgYijBEsG7mMWYNmdel7iN7v3R1WAswaVvzmfKxOOxqNBpNWj0bTu1fsBemm8biZ0cnclDSFkHbWszBqdZwfNZw7UiUJmRCelF9XyUFLOQCDTD68lfIaKip5bGZ23GgWj7+U0cHRAFiddjaW5rY5xob8JiobFa4Y1XWByLrqdcSuj+WWnFtQVIW/D/s7xdOKJRAZgN7fVYelWWXBBH80Gg1eeiNmnaFPBCIgLSO9woSwOMaFDiGrppj8ukocisIgsy9jQ2J7dbOaEAPFse5UgItjU5gWPpTLSi5j6eGl3BJ9Czqtjt/En8Xuo+uDbCnP5xcxI1od48FvXP33T3dBbpGCpgKuyLiCbXXb0KLlpqibeCXpFfRa+UofqBZ9W41OA0/M7JvrCMknt5fQajSkBEWREtR+X7MQwnNqmo8vs5AcGA7AtRHXclXmVTxT8AwPxD9AhLc/gUYvamxNrcoD2BwKGwqaSQ41EOF/5l+7jY5Grs+6nv+W/RcVlRmBM1g+ajlhxrAzPqbo+/aW2jhQ6eDi4V4eyejbFSQYEUKIU2jZTVprsxLq5ceVoVdyp/FOVlev5oH4B7ArThodtjblAZasq8Wpwv3nBpzR+yuKwqP5j/K3/L9hU20M8xrG8tTljPUfe+YnJfqMfbVl/O/wXgrrq6m1NfHHEdNaLWb65xUVALx42fEEaDk1pXyUu4PixlqCTN5cMjiVKeEJrY67tmgf3x7OotbWRIxvEFcljiPeQyu2980QSgghelCif6j73z+WuJZx0Gq1PJn4JGuq13Cw8SA/leVhU5xtygO8usWCWa9h3tjOZ778oOQDQn4M4Ym8J/DR+bA8ZTn7puyTQGQAsTkdxPgEcXXi+DavNdoU1hy0khxqYGiIq1u/wlrPS3vWkRQYzsNjL+aC6CT+ve8n9lQXuffbWl7Af3N3cOngVB4662JifAJ5MXMtFpu1x86rJWkZ6UaKqvBlQQY/leVjsVsJMHoxJTyeS2JTTzqoqK9FtEL0dxPDhvBx3g6sTgeby/IJMftxYcwIrg6/mnsP3Mui/U8zqOFCd/nkgHAKj+Z4yK/UUlzn5IpU71Z5PirtlQwyDGrzXsfssOzgqsyr2N+0H6PGyCPxj/Bo3KOSK2QASg2O6nC6+APfVKGordc5+r54PyFmX65McAWskd4BHKgt57sjOe6hAN8dyeaciESmRiQCcO3QiWRWFbGx9CAXxaZ08xm1JcFIN1p1KIvviw9wQ9LZRHoHUFBXxTv7N+OlM3J+dPtZ8I5FtOdGDuPG5Clk15Tw730/EWA0uz9ExyLaa4ZOIN4vhNVF2byYuZbHxl2Gfy9NaCNEX2bWGbh8yBg+yN0OwIrCDL47kkWMTxD+ziG8V/FPZukCGaJzffn/68BP7n2/3poMBPLMxcdvFq8dfo1bc25l3dh1TAua1uq9ymxlXJVxFWtr1qJBw5VhV7JsxDK89d4IcaK3t9cRaNbymxbTxXMtFSQHRrQqNzIokg+PppFwKE4K66q4OGak+3WtRkNyYAS5loqeqfgJJMTuRrl15aQNimZUcDQhZl/GhQ5mZGAkeXWVHe7TMqKN9A5gRlQSY0Ni+e5IjrtMy4g2yieAa4dOxKjVs7H0YE+clhAD0oyo4cweMsr93Op0cMBSji+uAa3fOJ/ngHNjq30UBY5U+BMboCE+2NWEfrDxIH/Z/xcUFO7YdwfK0cSGDsXBzVk3E/ljJGtr1jLBbwJ5U/L4cNSHEoiIdr2zvY66ZpVbJrVe58hit7b5YepvNGN12rE5HdTbm1FQ22Rj9TeaqbV7pptGgpFulOAXSnZNKaWNFgAO1VdzwFJOanBkh/t0FNEei1aPRbQjWpTxdEQrxECg0Wi4dPAoHjrrIqaGJ2A+mhHZS3PsRqCyxrmUbY6PUY8uSpZZEIGiavn9RNeXvlN1ct3e63CoDgDS69N5r+Q9Xih8Af/v/Xmj6A2iTFGsHbuWLRO3MMRrSI+fp+g7Hl9djV4Lj/XR6bwtSTdNN7oodiRWp53F21eg0WhQVZXL48YwKSy+w31OFdE2OmwdRrQlTZZuOQ8hxHGDfYO5bvjZXDf8bOyKkwcP7mR7oQ4nrsGrO5RPqFWLma6/mcz8CLQahevHGwD4f4f+HxtrW7eezN87HwUFH50PryS9wi0xt/T4OYm+Z3dxM7nVDn6Z7IVR37pdwd9gbjMQ1WKzYtYZMOr0aDUatGioa6dMgMEzXf0SjHSj7eUFbCnL58akKUT5BHKovpoPc7cTaPRi8gkDUoUQfY9Bq8PisLgGpKvHtx9UN1PdXE69411iB+nQaoPJasji/gP3tzmGgsLZ/mezftx6dJJpWZymv6xwdfe3nM57TIJ/CJlVRa22ZdWUkODvmuSg1+oY7BdMVk2pe4qwoqpk15QwI2p4N9e8fdJN040+zktnVuxIJoTFEe0TyNnh8VwQnczXh/Z2uM+pIlpfg6nXRbRCDGQ1jhqcqvOErSpVmjyYdDnJIzawuewg12Ze6x4fcqL0+nTK7eXdX1nRJ1mddg7VV3OovhqAQ3X1/JDfxMhw11ikT/PSeTvneIvb9MhhVFjr+ThvJyWNtawr2sf28kJmtpg4MTM6mfUlB9hUmktxYy3vHdiKTXG0mbnZU6RlpBvZFAdaWk/h1Wo0qC1/Qp2gL0a0QvQHVoedzwt2k155iDp7M7E+QcxNHEecX8fTb3NqSvmpIrv9v2mNE0wlfK95gMr8i9ip7uzwOHbFziO5j/DGiDe64lREP1NQV8XzGavdz//+UyFOZRiXjS0D4qm1NVHV3Oh+PcTsy59SzuOj3B2sOZJDoMmbecMntcrwPSF0CPV2K18U7MZisxLjG8QdKTPwN3r15Km5adRjI616MYvFQkBAALW1tfj7+3u6OqdtWc4msmpK+N2wiUR6B3Covpr/7N/ClIgEfhN/FgCf5qVTY2vkhqQpgGtq72Pbv+K8qOFMDU8gu6aUDw5u50+p01tN7V2Ws4nfDZtInN8gVh/JYXtFAY+N+6XHPkhC9HWvZ62nqLGWa4ZOINDoxU9leXx3JIdHx11KkKntbJYKaz2Pbv+KD5ofoELNa/WaBi0qCiZlEPG6MWSra9rsr0OHRqNBgwaH6kCDhuJpxZLaXZyS7+I8TDoNlYviPF2VUzrd+7e0jHSjqxLH83nBbt47sJU6ezMBRi+mRQ7ll4NT3WX6Q0QrRF9nczrYWXGIW1POZXiAKxi4bMhodlcd4fvi/cyJG9Nmn++L92PU6rCpx/9+tWhdg1Gdsah5f+TKFG/W2pYBYMKHGFMszXYt0V5hJPpG4avzxVfvi5/OjyhTFEH6vj8rQnSvf2610GBTWTjjzJYW6K0kGOlGZr2BuYnjmJs4rsMy1ydNbrPtWArfk5kRlcSMqPYTpwkhOkdRVRRU9JrWA0gNWj0HLe2P5ci1VKABbLiCEaPGyMyA2ZjqR/Gp7QUMiY+jV17luvAbKa78C1qNjrOCYzHp9DQ5bNyaMr27T0v0Q0+sqUGvhUXnB3q6Kl1KBrAKIQY8s95Agl8IKw9lUtPciKIqbC7LI9dSQa2tqd19LHYrKpCqvYgp+ms4cs4RlsS/QKh2KDpDPZf4XodWo+O3kZejPRrk2BSHRxNLib5txxErBTUOfpnsjV7fv27f/etshBDiDP0+aTKqCvdt+Yzb1n/A2iM5TAgdgoaO15Ey6QyM1c8hVXspzXY99c2u2TKza79j2VnPAVBYX+MuL12p4uc4Np33/13W/9Yhk24aIYQAQr38uHvMTJqdDqxOOwFGL17PWk+Iuf2Vdv0NZrQaDVXNDQB8lr+L/UWB2HQ6Xr5wCr4GV2Kp9SUH3PtMCB3MlrICmYYvOs1iVVhf0MyocAODA/vfrVtaRoQQogWTTk+A0YsGu4291cWMGRTTbrkE/xDqbFa89a7sql9k1bN8p4pB9cWprWdzWT46jYbKo8FKuJc/SQERZLeYqi/E6bpnZSWqCn9rseBif9L/wishhDgDe6qLUFWI8PanrKmOj/N2EuHtz9SjSaBOnIY/PXIY64r2MTIwkuXpNn7IjAc0NDr38/iOla2ObdDo+FXcGJYf3ObRxFKib1IUhf+k1xPireXiJJ9T79AHSTAihBBAk8POp/m7qGluxFtvZGxILHPixqDTuhqQ25uGf038dG74bxk5xce7ckxGR6vjBhm9UVB4M3uDTMMXZ+SNrfU02lXumx7o6ap0GwlGhBACGB86hPGhHa+Se+I0/JXZjVz3kZWaptZjSn4ROxyb04GPwcjYQbHE+Q1yrV0jxBn669pqDFp4cHr/yi3SkgQjQgjRCY02hbtXVvLKT3VoNaC0yGFt0MJVJ8krJERnbT1k5VCtk9+k9r/pvC1JMCKEEKdpx5Fm5r5fSm6VqytGOWExDaNOWkBE1/rLV67pvC/8sn8PepZgRAghTtNNn5RzoNLR4etGvQQjoutUNzrYVNDMmEgjMQH9+3bdv89OCCF+hi8LdrOiMNP9fNhQMw1qIvuK/dBpwHlCy4hJp2F7eSGfF+ym0lpPmJcfv45PY1RwtLuMqqp8WZDBjyUHaHLaSfQP4ZqhEwj36juLgIqecdfKalTg2X46nbclCUaEEOIkorwD+Muo893PdTM17C6COf8uobxBQQMci0l0OoU3szczJ34Mo4Oj2VKWzyt7f+Shsy4i2icQgG8OZ7GmKIfrkyYTYvbhi/zdvJi5lkfH/RKDVtfm/cXApCgKy3fVE+ajZeawtqtG9zf9dzSMEEJ0Aa1GQ4DRy/3wNZhJDtVT2aAwyFvL8BCDu6xDtZESHMmsmJFEegdwedwYBvsGsa5oH+BqFVl9JJtLBqeSNiiGGJ8gbkiaTE1zE+kVhzx1iqIXenlzHU0Olb9M7b8zaFqSlhEhhDiJsqY67v3pUwxaLQl+IfwqLo3rPrSgAO9fFcb5iV78e2c9D35ThclcR3JgRKv9RwZFsqvyMAAV1gYsdisjWpTx0huJ9wsht66CCWFxPXhmojdb8n0NRh3c14+n87YkwYgQQnQg3i+E64dPJtzbj1pbEysKMnls6xpW5owkJczIL442n18/zo9r03z504bN+BsmtTqGv8FMrc21Sq/F7loB2N/Yem0af+PxMkJsKrRyxOJk7igftNqB0YFxRme5dOlS4uLiMJvNTJo0iS1btnRY9o033mDatGkEBQURFBTEzJkzT1peCCF6i9TgKMaFDibGJ4iUoChuTz2P77ODQQPvXRXWqqxBp0GnVTs4khCnb+GKY9N5B3m4Jj2n08HIBx98wMKFC1m8eDE7duxgzJgxzJo1i7KysnbLr1u3jquvvpq1a9eyadMmYmNjufDCCzly5MjPrrwQQvSkPSUKGfnhTIhvYHSkqc3r/kYzFnvrFg6L3UrA0ZYQf4MrDbzlhFYQi+14GTGwVdQ7+OlQM2OjjET4D5zOi04HI88//zwLFizghhtuYOTIkbz66qt4e3vz1ltvtVv+3Xff5dZbbyUtLY3k5GTefPNNFEVh9erVP7vyQgjRk373QSkGnZN7zjO2+3qCXwjZNSWttmVVl5Dg50pYFWL2wd9gblWmyWEnr67CXUYMbHetrEIFnrt04LSKQCeDEZvNxvbt25k5c+bxA2i1zJw5k02bNp3WMRobG7Hb7QQHdzxvurm5GYvF0uohhBA97b+5O9hXU0qFtZ630g+zr8LB+KElzBoSB8DbORv5NC/dXf6C6CT2VBfz7eEsShpr+bJgNwX1VZwXNRwAjUbDBdHJrDyUya7KwxxpqOHtfZsINHmRFhLrgTMUvYmiKHyY0UCEr47zEgbWYoqdagOqqKjA6XQSHh7eant4eDjZ2dmndYz77ruPqKioVgHNiZ5++mkee+yxzlRNCCG6XHVzI2/mbKTB3sxXW4fjZfThndlp+B3tUqlqbkTD8ayrif6h3JQ0lc8LdvFZ/i7CvPz448hp7hwjALNiRmBzOvjP/i00OmwMDQjljpQZkmNE8OJGC1aHysJpA2MGTUs92iG1ZMkSli9fzrp16zCbO+4ffeCBB1i4cKH7ucViITZWfjUIIXrWghHnAPDaTxZeLqvgj5P8SAw8fqO4a3TbH1XjQgczLnRwh8fUaDTMjhvN7LjRXV9h0ac980MtJh3cdc7Ay8bbqWAkJCQEnU5HaWlpq+2lpaVERER0sJfLs88+y5IlS/juu+8YPfrkf4QmkwmTqe3gMCGE6GmKonDv15WY9RpeHECzG0TP+jGvieI6J9eMGTjTeVvq1BkbjUbGjRvXavDpscGokydP7nC/Z555hieeeIJVq1Yxfvz4M6+tEEL0sEdX12BpVnn4/MB+vYS78KyFX1WiAf4+QAPeTnfTLFy4kPnz5zN+/HgmTpzICy+8QENDAzfccAMA1113HdHR0Tz99NMA/O1vf2PRokW89957xMXFUVLiGkXu6+uLr69vF56KEEJ0LZtD4Znvawg0a3lggGTCFD2vrN7B9iM2xkUbCfMdONN5W+r0Wc+dO5fy8nIWLVpESUkJaWlprFq1yj2otbCwsFUT0yuvvILNZuOKK65odZzFixfz6KOP/rzaCyFEN7r180qanfDanOAB2XQuesadKypRGbitIgAaVVV7fcpAi8VCQEAAtbW1+PsPvIE9QoieV9XoIOzJQiL9dRy6f4inqyP6KUVR8F6UT7C3jqIH+9/n7HTv3wOzPUgIIU7hug/Lcarw1m9CPV0V0cdVWRuodzQD8NpmK/4mDdem+RHj58uzP1podsK95w7sbkAJRoQQ4gT51XZW5jSREmZwL4YnxJmosjbwyLYvcagKAG+tm4DDqeOR/9Vxy0R/3k+3YtZruGPKwG71l05QIYQ4wdXvl6HSdjE8ITqr3tHsDkQADHonAHaHnqWbGqloVAj10bK+oJk+MGqi20gwIoQQLWw9bGXzoWbOGWJqdzE8IX4O49FgBEA5GnsUWZxMf72YUS8c5oPd9R6qmWdJMCKEEC3M+6AcDfD+1eGnLCtEZ7UMRo5xHg1K9pTZ+eNnFTiVgddCImNGhBDiqBVZDeRU2Jkz0puYAPl6FF3PZHC0u12nhTAfHV/fEIFOq2m3TH8mf21CCHHUzZ9WoNfCO1fKWBHRPUwGBxpU1BYLLGo1MDrCyFfzI4j0H5i35YF51kIIcYLXfrJQXOfkj5P88DcPjB7sllNOj/HVmwg2+3ioRv2foZ1uml+n+PCv34biZRgYn7v2SDAihBjwBuJieCdOOT1Gr9HyxPjLJCDpIqVNllbPjQYnrhEhKqDh4RmBPDYzCO0A7JppaeCGYUIIcZR7MbwZA2cxvBOnnB7jUJU2rSWi81RV5cuCDN7M3thqu7VZD0e7aG6aVs1jvwgc8IEISDAihBjgWi2Gd97AzoIpus7/jmSxojDD/Vyv0RJu9qO2wRtQuWh8Flq/HD7K3em5SvYi0k0jhBjQZDE80dXq7c18WXA8EPnl4FHMjE7G7tDxwlcFXD3WQUB4HYoKa4pyOC9yGOHekoFVCCEGpOpGB8u21xEToGP++IF9MxBdZ1NpLnbFNVD13IihXDZkFF56A+/sqKPRrvJ/F8bzy8Gj3OW/L9nvqar2GtIyIoQYsK77aGAuhqeoCjvKD3X4eqPDdtL9f8hrwqzXMDHW3NVV6/MabQobDldSXOmH1aYnkcF85Wigzqbw5JoaLk3yIjpAT4D3ML4o2A3A/toyD9fa8yQYEUIMSPnVdr7KHniL4TkVhTeyN7CzsuNgZNm+zdw9eiYhZt9W2/eV21j4VSVf5TQxPtrI1j/FdHd1e0SjTaG4zkFxnZPSeoWyegeVDQqVTU6qmxRqrAoWq0Jds0K9TaXRrmC1q1gdKnYn2BUVpwLH86ZGHX3AtzsbgUb3KzOHuj5rvgYTJq2eZsWBzdl2uu9AI8GIEGJAGqiL4X2ct7NVIBLlHUCsTxC1tib21ZahoFLd3MhLe77n4bMuQq/VUd3k5LHV1by00XJsIghVTW1n4vSkrg8gTk6rcWVJNWg1GHUazHoNg7y1eBs0+Jq0+Jk0BJi1BJp1HLYWU2Wrwstk5zeJSfwqKRJ/sw6bQyHERwdAQV0VzYorG2uA0aubrlLfIcGIEGLA2TZAF8Ors1n5vtg1PkGv0fKHEdMYPSja/XqFtZ4XM9dS2lRHcWMtW0sL2ZYXzCP/q6LeprrWUDl6965v7nwwcsoAoknB0ux6NPRwABHspSXYW0uoj45QHx2RfjrC/fRE+GoxdnK6d0aVjZf2ZAJgMTgI84vCpNNybJimU1H4rGCXu/yE0CGdOn5/JMGIEGLA+d0AXQxvc1meO7fIjKjhrQIRgBCzL9cOnchzu1dzqDyQ2T/YqKivbPdYVU0K139U1jaAsClYHT0TQAR5aRnURQFEV0oJiiTMy4+ypjoONVTz1M5VXBCdTJxfMEWNtaw+kkNhfRUAPnoTE8PiPFbX3kKCESHEgHJsMbxfDcDF8I401rr/Pdx3MOvzmthYaOXlzRZi/PVotRrqmhUySifgVHScLIRwKPDODtdy920CCEPPtED0VlqNlgXJU3lu92qsTjslTRbePbClTTn90XIm3cD6HLZHroAQot84ca2V9tZZObYY3rIBtBhevVXhk70NvLrVj+yyMdRbTby+0gJYMOs1GHUQ7Q9DAvX4mjTUOis4VOmDw6lDQ8chSeXDgwn2kdtIewb7BnPvmF/wr32byT/aCtJSpHcAvxs6gaEBA+dzeDLyKRJC9AvtrbVy4jorrw+AxfBsDoWvspv4MruRLYet5Fc5aLAfCyfM6LQKvl5W0qIMPH7eYCYPMWPQHU9HnmupQNm1F1UFnS2G0uLhfJbViBZcY0ZasMokkJOK9gnkgbMuIr+ukvTKwzTYmzHrDaQGRTE8IAyNRtLAHyPBiBCiX2hvrZVj66wE44OiKNzTzxbDUxSFtQetfLa3kY2FVg5U2rE0H48YjDqI8ddzVrSRi4Z5M2OYlmczv0RBxajVER0SjEF3fCZHnc3Kewe2AqDRwO9So5k6M4L8ajsvbbLw2k8WGmyqu6Wk7gwGsQ5EcX6DiPPrH5+57iLBiBBiQDi2GN4TM4P65GJ4iqKw9bCNT/Y08GO+lZxyO9VNijsw0Gshwk/HtDgjM4d6ccUo33bHxEwOT2BD6UFsipP/2/UtqcFRDPUPo8Jaz9byfKxO13TTQSYf9yyPuCADz14yiEcvCOJfO+p4bn0tuVUOdPLLXnQRCUaEEP1ey8XwHpzRNxbDyyq18WFGA9/nNbGn1EZFo4JyNPLQaiDMR8f5iWZmJHhxxSgfkkKNp3XcqxLHUWGtJ6e2FBXIqCoio6qoVRl/g5k/pZyH8YSBlb4mLbdODuCWSf4U1jqICzJ0xakKIcGIEKL/6+2L4RXWOPgoo57vDjSRUWKjpM7pHp+hAYK9tUwebOLceDNXpPowNvrM07AbdXpuTz2P745k833Rfqptx7ODGrQ6JobG8cshqQSbfDo8hlarGdCByINbPqeyuaHN9umRw7hm6IR299leXsjnBbuptNYT5uXHr+PTGBV8fGq1qqp8WZDBjyUHaHLaSfQP4ZqhEwj3GhhrJkkwIoTo12qblF61GF5FvYP/Zjbyv/2N7Cy2ccTiwN5iIGiAWcNZUUamDDHzqxQfzo0zdXkAZdDquDg2hQtjRpBnqcBit2LS6Yn3C8Fbf3otLAPZA2mzUFrMMSpqqOWFzDWMCxncbvmDlnLezN7AnPgxjA6OZktZPq/s/ZGHzrqIaJ9AAL45nMWaohyuT5pMiNmHL/J382LmWh4d90sMWl1PnJZHSTAihOjX7vyiEacK//x1SI+/d71V4bOsBr7OaWTbERuFNQ6sjuM3MR+jhuRQA2fHmrlshDezhnn1aK4NnUYrU0vPgJ+xdcvUqkN7CTX7MryDa7n6SA4pwZHMihkJwOVxY8iqKWFd0T6uHTYRVVVZfSSbSwankjbItd7PDUmTuXvzJ6RXHGLCAEiKJsGIEKLfqms0suaAg5FhBi4c3rbboaLByQ95Vn6V4v2zp1naHApf72viy6xGfjpkJa/VlFrw0msYEqhnfIyJS5O9mJ3sg4+p93UZic5xKE5+KstnZnRyh5+h3LoKZkYnt9o2MiiSXZWHAaiwNmCxWxkRGOF+3UtvJN4vhNy6CglGhBCir3AobZNerE4fhgq8O7ftL9Zth5u5/F8lFNU52fOXGEaGn373hKIorMtr5rM9DWwssLK/oym1UUYuHObNFaO8CfaWr9v+KL3yME0OG1PC4zssY7FZ8Te0bk3xN5iptVldr9ubXNtOaHHxNx4v09/JX4cQok9TVIVvDmfx7eGsVtvLa70pq/FlVKRKWlTrxfDe2mbhlk8r3LNTth1p7jAYURSF7UU2Ps5s4Mc8K9kdTKk95+iU2is7mFLbE74s2M2KwsxW28K9/Hl8/C873EcGVv48G0oOkhIcSaDJ29NV6dMkGBFC9FmKqvBG1gZ2VB5q89qa9KEAjErewaZSDZPDE2h2qNzxRQWvb61zlzNoYevhZq4b6wdATrmND3Y3sC63ib1ldsobnK2m1Ib66JiRcHxKbXJY7xrwGeUdwF9Gne9+frJcIDKw8ueptDaQVVPKLSOnnbScv9GMxd66hcNitxJwtCXE3+BKPGexWQkwHk9CZ7FZifUN7NpK91ISjAgh+qxVh/a6AxENkBIYyRC/QWzMg9oGL+LCq/D1svOv/T+hVwL548eN7CyytTqGXYF/7ajjsz0NlNQ7cRxNKnpsSu3Zg02cG2fmN6k+jIs29foU3lqNptUN7WRkYOXPs7H0IH4GE6OCo05aLsEvhOyaklbjRrKqS0jwcw2qDjH74G8wk11TQqxvEABNDjt5dRVMjxzafSfQi0gwIoTok+yKkzVFOYArcPhTynmkHr0pLPriEAatnQd/obKtCg5X+HHet1VY7Vp3K0dLrvEeTsZEGpk6xMzlI304L77rp9T2hLKmOu796VMMWi0JfiH8Ki6tzWKBx8jAyjOnqCobS3OZHJ6ATtP6c/J2zkYCjd78Kj4NgAuik3h293d8eziLUcFRbC0voKC+it8NmwiARqPhguhkVh7KJMzLjxCzL58X7CbQ5EVaSGxPn5pHSDAihOiT9lQVUWd3rdA7LmSwOxDZVGBlV7GdxRcE0mwJ4pP1ZiosHSfwOmbdzdGcdcLYkr4m3i+E64dPJtzbj1pbEysKMvm/3d+yeOylmPVtk5TJwMozl11TQlVzI1PDE9q8VtXciIbjLWiJ/qHclDSVzwt28Vn+LsK8/PjjyGnurjCAWTEjsDkd/Gf/FhodNoYGhHJHyowB0xUmwYgQok+qaJEBc9Qg14BLVVW5ZFkJGuCx1TXotOBjNKPVqCiq69erXou7K+YYDa5xI309GElt0V0Q4xNEvF8ID2z5nG0VhZwTkejBmvU/I4MieW3aNe2+dtfomW22jQsdzLjQ9pOigat1ZHbcaGbHje6yOvYlEowIIfokbYtfnlaHHQCnApNiTSQG67n2LD/SIo28mr2WnNpSGpsNTA+8gA35DlblNFFS70SDa3VaVXUFIzdP9NDJdBNvvZFwLz/Km+rafV0GVoreQoIRIUSfNMQv2P3vTWV5TI8chl6nYdXvI93bK6z17KstAyDKT8/vxwVx03gNqqqyr8LOdwea+N/+JlYfbKLBprR5j77O6rRTbq3n7A4GtMrAStFbSDAihOiTEvxCiPIOoKixlvy6Sj7K28Gv4tLcfeyV1gZez1qPejQjyDkRQ9EenQmj0WhICjWSFGrktskBOBUVbe+eJHNa/pu7g9HB0QSbfai1NfFlQQZaNEwIHQLIwErRe0kwIoTokzQaDZfHjeGVvT8Armmqm0vzSQ4Mp8lhI7um1L2YWYDRi/Mih3V4LF1/iESA6uZG3szZSIO9GV+DiaH+odyfdqF7LRUZWCl6K42qqu1MdOtdLBYLAQEB1NbW4u8vWf+EEMd9X7Sf9w9upaMvsgCjF39OndHqBiuE6Bmne/+WlhEhRJ82PWoYQ/yCWX0khx0VhThU19gPf4OZaRFDOS9qeJupqUKI3kVaRoQQ/Uaz00GtrQm9RkugyQutpu8lLROiP5GWESHEgGPS6Qnz8vN0NYQQnSQ/G4QQQgjhURKMCCGEEMKjpJtGCNFrWR12Pi/YTXrlIerszcT6BDE3cRxxfoM63CenppSPcndQ3FhLkMmbSwanMuWE9UPWFu3j28NZ1NqaiPEN4qrEccQfTfQlhOh50jIihOi1/rX/J7JqSrghaQqLxl7CyKAI/p6xhurmxnbLV1jreWnPOpICw3l47MVcEJ3Ev/f9xJ7qIneZreUF/Dd3B5cOTuWhsy4mxieQFzPXYhngC78J4UkSjAgheiWb08HOikP8Jj6N4QFhhHn5cdmQ0YR5+fJ98f529/m+eD8hZl+uTBhLpHcAM6KSGBsSy3dHctxlvjuSzTkRiUyNSCTKJ4Brh07EqNWzsfRgT52aEOIEEowIIXolRVVRUNFrWmf6NGj1HLSUt7tPrqWC5MCIVttGBkWSa6kAwKE4KayrYkSLMlqNhuTACHcZIUTPk2BECNErmfUGEvxCWHkok5rmRhRVYXNZHrmWCmptTe3uY7Fb2yQ48zeasTrt2JwO6u3NKKju9Ogty9TapZtGCE+RAaxCiF7r90mTeWffT9y35TO0aBjsG8SE0CEU1ld5umpCiC4kwYgQotcK9fLj7jEzaXY6sDrtBBi9eD1rPSFm33bL+xvMbQaiWmxWzDoDRp0erUaDFg117ZQJMEjKeCE8RbpphBC9nkmnJ8DoRYPdxt7qYsYMimm3XIJ/CNk1Ja22ZdWUkODvmrar1+oY7BdMVk2p+3VFVcluUUYI0fMkGBFC9Fp7qovIrCqiwlrP3upins/4jghvf6YezRvyaV46b+dsdJefHjmMCms9H+ftpKSxlnVF+9heXsjM6CR3mZnRyawvOcCm0lyKG2t578BWbIqjTS4SIUTPkW4aIUSv1eSw82n+LmqaG/HWGxkbEsucuDHotK7fUbW2Jqpa5BwJMfvyp5Tz+Ch3B2uO5BBo8mbe8EmkBEW5y0wIHUK93coXBbux2KzE+AZxR8oM/I1ePX5+QggXWbVXCCGEEN3idO/fZ9RNs3TpUuLi4jCbzUyaNIktW7actPxHH31EcnIyZrOZUaNGsXLlyjN5WyGEEEL0Q50ORj744AMWLlzI4sWL2bFjB2PGjGHWrFmUlZW1W37jxo1cffXV3HjjjezcuZM5c+YwZ84cMjMzf3blhRBCCNH3dbqbZtKkSUyYMIGXXnoJAEVRiI2N5fbbb+f+++9vU37u3Lk0NDSwYsUK97azzz6btLQ0Xn311dN6T+mmEUIIIfqebummsdlsbN++nZkzZx4/gFbLzJkz2bRpU7v7bNq0qVV5gFmzZnVYHqC5uRmLxdLqIYQQQoj+qVPBSEVFBU6nk/Dw8Fbbw8PDKSkpaXefkpKSTpUHePrppwkICHA/YmNjO1NNIYQQQvQhvTLPyAMPPEBtba37cejQIU9XSQghhBDdpFN5RkJCQtDpdJSWlrbaXlpaSkRERLv7REREdKo8gMlkwmQydaZqQgghhOijOtUyYjQaGTduHKtXr3ZvUxSF1atXM3ny5Hb3mTx5cqvyAN9++22H5YUQQggxsHQ6A+vChQuZP38+48ePZ+LEibzwwgs0NDRwww03AHDdddcRHR3N008/DcCf//xnpk+fznPPPcell17K8uXL2bZtG6+//nrXnokQQggh+qROByNz586lvLycRYsWUVJSQlpaGqtWrXIPUi0sLESrPd7gMmXKFN577z0efvhhHnzwQYYNG8Znn31Gampq152FEEIIIfosSQcvhBBCiG7RrenghRBCCCG6igQjQgghhPAoCUaEEEII4VESjAghhBDCoyQYEUIIIYRHSTAihBBCCI+SYEQIIYQQHiXBiBBCCCE8SoIRIYQQQnhUp9PBe8KxJLEWi8XDNRFCCCHE6Tp23z5Vsvc+EYzU1dUBEBsb6+GaCCGEEKKz6urqCAgI6PD1PrE2jaIoFBUV4efnh0aj6bLjWiwWYmNjOXTokKx5043kOvccudY9Q65zz5Dr3DO68zqrqkpdXR1RUVGtFtE9UZ9oGdFqtcTExHTb8f39/eWD3gPkOvccudY9Q65zz5Dr3DO66zqfrEXkGBnAKoQQQgiPkmBECCGEEB41oIMRk8nE4sWLMZlMnq5KvybXuefIte4Zcp17hlznntEbrnOfGMAqhBBCiP5rQLeMCCGEEMLzJBgRQgghhEdJMCKEEEIIj5JgRAghhBAe1e+DkaVLlxIXF4fZbGbSpEls2bLlpOU/+ugjkpOTMZvNjBo1ipUrV/ZQTfu2zlznN954g2nTphEUFERQUBAzZ8485f8XcVxnP9PHLF++HI1Gw5w5c7q3gv1EZ69zTU0Nt912G5GRkZhMJoYPHy7fH6ehs9f5hRdeICkpCS8vL2JjY7nzzjuxWq09VNu+6YcffuCyyy4jKioKjUbDZ599dsp91q1bx9ixYzGZTAwdOpRly5Z1byXVfmz58uWq0WhU33rrLXXPnj3qggUL1MDAQLW0tLTd8hs2bFB1Op36zDPPqHv37lUffvhh1WAwqBkZGT1c876ls9f5mmuuUZcuXaru3LlTzcrKUq+//no1ICBAPXz4cA/XvO/p7LU+Ji8vT42OjlanTZumXn755T1T2T6ss9e5ublZHT9+vHrJJZeo69evV/Py8tR169ap6enpPVzzvqWz1/ndd99VTSaT+u6776p5eXnqN998o0ZGRqp33nlnD9e8b1m5cqX60EMPqZ988okKqJ9++ulJy+fm5qre3t7qwoUL1b1796r/+Mc/VJ1Op65atarb6tivg5GJEyeqt912m/u50+lUo6Ki1Keffrrd8r/97W/VSy+9tNW2SZMmqX/4wx+6tZ59XWev84kcDofq5+envvPOO91VxX7jTK61w+FQp0yZor755pvq/PnzJRg5DZ29zq+88oqakJCg2my2nqpiv9DZ63zbbbep559/fqttCxcuVKdOndqt9exPTicYuffee9WUlJRW2+bOnavOmjWr2+rVb7tpbDYb27dvZ+bMme5tWq2WmTNnsmnTpnb32bRpU6vyALNmzeqwvDiz63yixsZG7HY7wcHB3VXNfuFMr/Xjjz9OWFgYN954Y09Us887k+v8xRdfMHnyZG677TbCw8NJTU3lqaeewul09lS1+5wzuc5Tpkxh+/bt7q6c3NxcVq5cySWXXNIjdR4oPHEv7BML5Z2JiooKnE4n4eHhrbaHh4eTnZ3d7j4lJSXtli8pKem2evZ1Z3KdT3TfffcRFRXV5sMvWjuTa71+/Xr++c9/kp6e3gM17B/O5Drn5uayZs0arr32WlauXMmBAwe49dZbsdvtLF68uCeq3eecyXW+5pprqKio4JxzzkFVVRwOB7fccgsPPvhgT1R5wOjoXmixWGhqasLLy6vL37PftoyIvmHJkiUsX76cTz/9FLPZ7Onq9Ct1dXXMmzePN954g5CQEE9Xp19TFIWwsDBef/11xo0bx9y5c3nooYd49dVXPV21fmXdunU89dRTvPzyy+zYsYNPPvmEr776iieeeMLTVRM/U79tGQkJCUGn01FaWtpqe2lpKREREe3uExER0any4syu8zHPPvssS5Ys4bvvvmP06NHdWc1+obPX+uDBg+Tn53PZZZe5tymKAoBerycnJ4fExMTurXQfdCaf6cjISAwGAzqdzr1txIgRlJSUYLPZMBqN3VrnvuhMrvMjjzzCvHnzuOmmmwAYNWoUDQ0N3HzzzTz00ENotfL7uit0dC/09/fvllYR6MctI0ajkXHjxrF69Wr3NkVRWL16NZMnT253n8mTJ7cqD/Dtt992WF6c2XUGeOaZZ3jiiSdYtWoV48eP74mq9nmdvdbJyclkZGSQnp7ufsyePZsZM2aQnp5ObGxsT1a/zziTz/TUqVM5cOCAO9gD2LdvH5GRkRKIdOBMrnNjY2ObgONYAKjKMmtdxiP3wm4bGtsLLF++XDWZTOqyZcvUvXv3qjfffLMaGBiolpSUqKqqqvPmzVPvv/9+d/kNGzaoer1effbZZ9WsrCx18eLFMrX3NHT2Oi9ZskQ1Go3qf//7X7W4uNj9qKur89Qp9BmdvdYnktk0p6ez17mwsFD18/NT//SnP6k5OTnqihUr1LCwMPXJJ5/01Cn0CZ29zosXL1b9/PzU999/X83NzVX/97//qYmJiepvf/tbT51Cn1BXV6fu3LlT3blzpwqozz//vLpz5061oKBAVVVVvf/++9V58+a5yx+b2nvPPfeoWVlZ6tKlS2Vq78/1j3/8Qx08eLBqNBrViRMnqps3b3a/Nn36dHX+/Pmtyn/44Yfq8OHDVaPRqKakpKhfffVVD9e4b+rMdR4yZIgKtHksXry45yveB3X2M92SBCOnr7PXeePGjeqkSZNUk8mkJiQkqH/9619Vh8PRw7Xuezpzne12u/roo4+qiYmJqtlsVmNjY9Vbb71Vra6u7vmK9yFr165t9zv32LWdP3++On369Db7pKWlqUajUU1ISFDffvvtbq2jRlWlbUsIIYQQntNvx4wIIYQQom+QYEQIIYQQHiXBiBBCCCE8SoIRIYQQQniUBCNCCCGE8CgJRoQQQgjhURKMCCGEEMKjJBgRQgghhEdJMCKEEEIIj5JgRAghhBAeJcGIEEIIITxKghEhhBBCeNT/BxSDA/zkf0wLAAAAAElFTkSuQmCC", "text/plain": [ "
    " ] @@ -630,7 +621,7 @@ }, { "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAAiMAAAGdCAYAAADAAnMpAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjcuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/bCgiHAAAACXBIWXMAAA9hAAAPYQGoP6dpAADjOklEQVR4nOydd1gUZ9eH75mtlF16B0VsqNhb7DUxmpiemJhm2pveTDWJ6YlppvcvxfRiEk0z9t4rKiqiUqXDAktbtsx8fwyCKFiBRZj7uvaSnXnmmTMD7pw9zzm/I8iyLKOioqKioqKi4iZEdxugoqKioqKi0rZRnREVFRUVFRUVt6I6IyoqKioqKipuRXVGVFRUVFRUVNyK6oyoqKioqKiouBXVGVFRUVFRUVFxK6ozoqKioqKiouJWVGdERUVFRUVFxa1o3W3AqSBJEllZWZhMJgRBcLc5KioqKioqKqeALMuUlpYSHh6OKDYc/zgnnJGsrCyioqLcbYaKioqKiorKGZCRkUFkZGSD+88JZ8RkMgHKxZjNZjdbo6KioqKionIqWK1WoqKiap7jDXFOOCNHlmbMZrPqjKicNRZbOWXOqpr33loD/kYvN1qkoqKi0ro5WYrFOeGMqKg0FhZbOTO3/o1Tlmq2aQWRlwZMVh0SFRUVFTehVtOotCnKnFV1HBEApyzViZSoqKioqDQvqjOioqKioqKi4lZUZ0RFRUVFRUXFrajOiIqKioqKiopbUZ0RFRUVFRUVFbeiOiMqKioqKioqbkV1RlTaFDan090mqKioqKgcg6ozotImcEkS89N2siIrqd79m/PSiPLyU3sfqaioqLiB046MrF69msmTJxMeHo4gCMyfP/+kx6xcuZJ+/fphMBjo1KkTc+bMOQNTVVTODJcs8em+NSw+vA+H5Kp3zJLMffyeEt+8hqmoqKioAGfgjJSXl9O7d28++uijUxqfkpLCRRddxJgxY4iPj+ehhx7i9ttvZ9GiRadtrIrKmbDkcCK7LJkAaASRQUHtmRLTn6ui+xLrE1I7LnMfuwoz3WWmioqKSpvltJdpJk6cyMSJE095/KeffkqHDh2YPXs2AN26dWPt2rW88847TJgw4XRPr6JyWrhkiRVZ+2ve399jNN38Qmvenx/VjRVZ+/n50DYAlmUl0isgotntVFFRUWnLNHkC64YNGxg/fnydbRMmTGDDhg0NHlNVVYXVaq3zUlE5Ew6U5FFsrwSgl39ErSNSVFAzZlRYF4KN3gAkFudSUj1eRUVFRaV5aHJnJCcnh5CQkDrbQkJCsFqtVFbW/6E/a9YsfHx8al5RUVFNbaZKK6WoqqLm526+tRERJneBceGw6FdEp5PYo/YVV6nOiIqKikpz0iKraWbMmMH06dNr3lutVtUhUTkjdKKm5ucSR7WTcXAPWIugQyw8NgWCI4jrdx6yr5kqgwc+KVlQZYfS4tqXtQiKC6HfcHjyfXdcioqKikqrpcmdkdDQUHJzc+tsy83NxWw24+HhUe8xBoMBg8HQ1KaptAFiTIEIgAxszE3h4nY90X3yPPgHw287ISUR2/fv0HP+HHpXHyMDaLQgCCDLILmUfwFCVadYRUVFpbFp8mWaIUOGsGzZsjrblixZwpAhQ5r61Coq+Bu96OmvJKQW2yv5YeWvyEt+g7iBoNOTGdGOty67hvfveQxJEJEBAcDlBKdD+feIIwIw9QF3XIaKiopKq+a0nZGysjLi4+OJj48HlNLd+Ph40tPTAWWJ5aabbqoZf9ddd5GcnMzjjz9OYmIiH3/8Mb/++isPP/xw41yBispJuKR9L/TVyzV9vnwLgC8vuIiXti/gxe0LyCgvYl+PPsx54GklGtIQ7bvA4LHNYbKKiopKm+K0nZGtW7fSt29f+vbtC8D06dPp27cvzz77LADZ2dk1jglAhw4d+Pfff1myZAm9e/dm9uzZfPHFF2pZr0qzEeXtx709RuEpC/TcE0+hfxCb/Xw4XF5cM8bf4MnE6x5BmPFhwxMV5cMvn4AkNb3RKioqKm0IQZaPjkG3TKxWKz4+PpSUlGA2m91tjso5iu29JzF++Tq/TruPZQOVZcJwTx9GhHZiSEgMHlqdMvD1B+GHD6jOHlHQaABBWbYxeMCFU+CR2eDr3+zXoaKionKucKrPb9UZUWk7jAgAexVsKsMhuRAR0Ij1BAddLrh/MqxfrCSvajRw3X0w/S34+nX44X2w5ClLOj0GwmNvQ99hzX89KioqLRaLrZwyZ1XNe2+tAX+jlxstcg+qM6KicjQr/4YHLoFr7oZnPj75+PJSuGEIHNoLyPDPAWjXqXb/5uUw+zHYt115HxgGNz0CNz0M9Tk4KioqbQaLrZyZW//GKdcu6WoFkZcGTG5zDsmpPr/VT02VtsF7M0AQYfobpzbeywSf/Ad+gTBiUl1HBGDQWPhlG6zIhUlTocQCbz8KAz3h8eugIKfxr0FFReWcoMxZVccRAXDKUp1IiUpdWqTomYrK6SDJEn+n7WZTXipWhw0fvQdDQzowKSoOQRAgKw0O7YH+o8DTu+a4/cW5zE3eTnZFCX4GTya1i2NoSEztxKFRrP7iP5blHKRg7c9Eevtxbcf+dDAF1o4JCIbXfoBXv4Mf3oM5b8HCn5VXbF+Y/iacN64Z74aKiorKuYcaGVE551mYsY9V2Qe5rtMAnu9/EVdE92HR4X2syEpSBrz+oPLvE+/WHFNgK+PDPSvp6hvCM/0mMi6iK98lbWJPUVbNmC35afySe4ALOg/g6b4TifTy5f2EFVjttuONEEW48WFYlgnfrYde58H+ePjfeBgVDJ++CE5n090EFRUVlXMY1RlROedJLs2nT0AEPf0jCDR60z+oHd19w0gpLQS7HVb/C+HtIbZPzTGrsg8QaPTm6ph+hHn6MCa8K/0Co1iaWdvhd2lmIsNDOzIstCPhXj5c32kQelHL+txDJzao9xD4fgOsKoDLb4WKMvj4ORjkCQ9dAdnpJz5eRUVFpY2hOiMq5zwxpiASi3PJrVC6O2eUFXHQmk+cfxj838tKOe7/ZtY5JtlaUKc5HkB3vzCSrUo3X6fkIr3UUqe5nigIxPqG1ow5Kb7+8MKXsKkMZn6qJLkunwcT2sPlcbDyr7O4ahUVFZXWg5ozonLOc2FUd2wuB89t+wdBEJBlmUujezM4uAP8/DF4eCkRiqOwOmyY9cY628x6IzaXA7vLSYXTjoSMqZ4xOZXW0zNQFOHqO5XXvh3wxkOwfS08cCmY/eCau+Cu50GvP4OrV1FRUTn3USMjKuc82/LT2JyXym1dh/JM34lM6zKEJYf3sWPRD1BSCBffeGKZ9+akW1/4ehVsKIFr7lH633wxCwZ7wj2TIO2Auy1UUVFRaXZUZ0TlnOf3lHgmRHVnYHA0EV6+nBfSgXERsdjnfak4IQ+/ftwxZp3xuERUq92GUaNDr9HirTMgIlBazxgfXd1oyRnh6Q3PfAQbS+HlbyAsGtb+B5O7wOSusOjXsz+HioqKW3C4XO424ZxDdUZUznnskhORupEPfVEhfbasg74jwPt4oZ0YcyCJxXW1QPYV5xBjVsp2taKGdiZ/9hXn1uyXZJnEo8Y0GpfcBAsOwrw9cN54yDgEj02BoT7wxsNQUdG451NRUWkSnJKL+ak7eX/Pinr3Jx31eaJSF9UZUTnn6eUfwYKMBHZbMimwlbGjIIPyeV+gczrg8XcAmJcSz9f719ccMyqsMwW2Mn5P2UFORQkrs5LYlp/O+IiuNWPGR8SyNucgG3KTya4o4ceDW7BLzrpaJI1Jx+7w+RLYWAY3TgcE+P5dGGqCO8bDwT1Nc14VFZWzxim5+GTvav7L2IPNVX8Z/9yUHazOPtjMlp0bqHLwKuc8NqeDP9N2EV+YQamjCl+tnicfnoanyQ9xUSoAc/ZvoLCqnEd6ja857mjRM1+DJxcdK3oGrMjaz+LD+7DabYroWUx/OjR2ZORELJ4LH86E1OqS44gOcOdMuOyW5rNBRUXlpMxP3cl/GcoXBlEQ6OMfSTuTP1VOBzstmWRVlAAgIPB03wuJ8vZzp7nNhtqbRqXt8snz8MkL8OxncNX/3G1N45BxSBFvW7dIKVX28FIScx9+vd5lKBUVlebD7nLyxOb5VDjtiAg83HMsXXxDavbLssyvydtYXi3EODQkhpu7nOcuc5sVtTeNStvlpw/B6AlX3O5uSxqPqI7w4T+wqRzueBr0Bpj7KQzzhZtHwJ6t7rZQRaXNstuSRYXTDsCg4PZ1HBFJciIIApdF98FDowMUdWeHpCa5Ho3qjKi0Ltb8B8WFcPENrbN7rl4P978MawoV56RTHOxYC9cNhAvaKboqknTyeVRUVE4LSbYhy/X/37JUlVMhlZDkWssa+ys8nzKEP4qCWF8p8FNROAAGjZYuPsEAOCQXZQ61ad7RqKJnKq2Ld59Qynmnv+luS5qekRcpr5wMpepm5V/w6r0w+1GYMAUena2owKqoqJwVTtnCLkcEMnaQTVS4DBTYIdtWhdVZiVa0M6o7tPcAfz0cLId2npBvF0ks9YYAZZ7y6ugJgEZohV+WzgL1bqi0HnIy4MBu6DusbeVRhEbB27/B5golauJlgr/mwKhAmDoYdqxzt4UqKucUTsnJ2qK1vJj8IpfuvJSeG4eQV1UFSCCU4KnNo51nHoP8Sjg/2M7oAOhjVhwRu0vkPK/76KXPYHH2A/ycpQEgp8LKIWs+AAEGL0w6gxuvsOWhRkZUWg9HuvM+/q5bzXAbWq2ST3LH07BpGbz9OCRshpuHK31xbpquvFrj8pWKyhlQ6ixluWU5q4tXE18Wz6HKQ+TZ86iUKgHQAF29YWSgiEsGWa4r5nzkZ0FQ9lltgczd9RrDQ3txRYcQ+pr68m7GuxywHuanA7s4Ui0yMqwTQktRhW4hqNU0Kq0Dp1PpihsYBovT3G1Ny6EgF96aDkt+B0cV6Aww7nJFfyUw9OTHq6i0Ag7bDrO4cDEbrBvYXbabNFsahY5CHLKjZoyAQIDWi7GBnozwl+hqKsdXV4lY7TOImJFoqC+VBlwdmbPjMewuTwCMGi0eHiW8bvkfI8Tb6aYdAyhRkaf7TsRL1zZ6UZ3q81uNjKi0Dr54VenzcsdT7rakZREYAq/9AK9+Bz+8B3PegoU/K6/YvvDwGzBk/MnnUVFp4UiSxK7yXSyzLGOzdTP7yvdxuOowJc4SJGoTTzVo8NX5EucVR19TB8YG2uliykSrOVTtbJQBoCUIT2EkZi5FopQC+RPs9TojGnSEEGtcwbUxlXx/YDMSMjaXk9SSwwBslH6gszyMEKMfD8aNaTOOyOmgRkZUWgcjg8BWofR6UZchTkz8enjrEdi9SYkt+wXBdffB7U8pSz0qKi0Yu2RnTdEaVhavZFvpNg5UHCDHnkOZq6zOOL2gJ1AXSAePDvTy7sUwn2GM9o8Bzd+USIupYh8SR1otCOgIx1MYhL94Nb7CldhJ4bDrUazyYmTsCOgw0otKth11FhERb2J1G/EQugGQWV7M8qz9bM5LZaPjN7a6fgNggvlK/uj7I57atuWIqKJnKm2HtQvhnomKrsjz/+dua84dii3wzmOw4CeoqgStDkZeDE+8C2Ht3G2dShvHYrewtGgpa4vXsrNsJ8mVyeTb86mS65bEeolehOhD6OTZiX6mfoz0Hcko31F4aj0pl7ZS6PqWUnk5VRxE5sixGvS0w1sYhr/mOkxciCiKSJKTPOk98qT3cJABgI72hIgPESQ+gCBI7HJE4SQHZWFHRxftCrzFocfZ75IkBm8ZzLayWg2gb7p/w01hNzXVLWuRqM6IStvhqt5KFc0aC5h93W3NuYckwW+fwxezICdd2daxBzz4Koy+xL22qbR6kiuSWWJZwgbrBhLKEki3pVPkLMIp1/Z3ERExa81EGCKI9YxlgHkA4/zG0d/UH7E6EipJEqWsoMj1A2XyGqpIBZQ5BPToicEkjMZfcwMmcVgdGyqkBDJdj2GVlwJOBPSYhYlEal7HKHatMzbL+RzZ0ouAQEftPHzFS+u9riJHEQGrA5CpfcQaBANbB20lzjvubG/bOYPqjKi0DXIPw/lR0GcYfLvW3dac++zbAW88BNvXgiyB2Q+uvhPufkERXFNROQMkSWJL6RaWFy1nq3UriRWJZNoysbqsdR7WWkGLv9afdsZ2xHnHMcRnCOf7nU8Hzw71zOmkRP4Ti/Qr5fIGHGRCdW6IgAdGumASzydAvBlP8fiHvyQ5yZXeJF/6qPpY0BNDiOYRAoW7apycY7HLGexz9Cdc8zJBmobbTfya+ytTEqbU2aZBQ7RHNDsG7cCkNZ30vrUGVGdEpW0w/SpY+jv8tAV6DHC3Na2H8lJ450n451uoKAONBoZcAE+8B+07u9s6lRZKhbOClcUrWVW0iviyeA5WHCTHnkOFVFFnnFE0EqQLIsYjht6m3ozwGcE4v3H46RtuHidJFVjkXyiSfqdC3oqTPKh2ZERMGOmOjziRAHEaBrF9g/OUS9vJdD1BqbwSJQpiwEe4mAjNmxjF452e+pBlCeEkomW37L2F73O+rxPhAcUhuTL4Sn6O+7lNlPeqzohK66emnDcUFqe725rWy1/fwqcvwuFDyvv2XeDeF+HCKSc+TqXVkmfPY3HhYtYVr2NX+S5SK1MpcBRgl+11xnlrvAnTh9HZszP9zf0Z7Tua4b7D0Ysnj7I5JQuF8neUSH9RIcfjwlKzT4MfHkJvfIXJBIg3oRVP3ElbkuzkSLPIlz6tzvcAA50J0TxOgHBrg1GQozm2O3iUlx9TOvYn2hRw3FhZlglZE0K+I7/B+T7s8iH3Rt3LiqwklhzeR4m9UukM3rE/HUzN2Bm8iVGdEZXWz2cvw0cz4emPYcrd7ram9XNoryIst3kFSC7wMsPlt8J9r4Cnp7utU2kC9pXtY6llKRutG9lbvpcMWwbFzmJc1DZ5ExHx1foSaYikm1c3BpkHMd5/PHFecaf0kD+CXTpMgTQHq7SAShKQKK3ZpyUYT6E/vuIV+AnXohW9T2nOMmkTma4nKZPXAC4EPPAVLiVS8zp68fSStD/ft5asihKmdhqIr96DTXkpLM3cz/P9L8LPUPfvf2fpTvps7lPvPFq0OHHSwdiBX7qsYM7+DUztNJAOpkCWZSWyvSCdF/pPxqw3npZ9LRXVGTlFLLZyypx1s7O9tQb8jV6Neh6VJmBUsLKEsKlMLedtTiorFSfwjy+grES59wPHKMq3ndtOYl5rwSk52ViykeVFy9lWuo39FfvJqsqizFVWJ59DJ+gI0AUQbYwmzjuOoeahnB9wPpHGyDM6b6W0j0JpDlZpCTYSkams3iOiIxwv4Tz8xKvxFS5DPIVIyhEkyUa29BIF0hfVSzlgIJZQzQz8hRtOy0E6gt3l5MH1c7mnx0h6+kfUbH9lx3/08Avnsujedca/kfYGTxx8AgER+SiNk1j9ACK0nbkj5lKG+wzn28QEor39ua7TQMV2WWbG5vmMCe/ChVE9TtvOlogqenYKWGzlzNz6N85jOjFqBZGXBkxWHZKWzIYlUJQPl9+mOiLNjYcHPPqW8lo8Fz6cqcjPX9kTIjrAnTPhslvcbaXKMVidVpZZlrG2eG290udH8BA9CNYHM8g8iL6mvgz3Gc4Y/zGYtWf3RbBM2kSh61vK5BVUcUhpOgeAtrrMdgT+musxMe6MHIZSaS2ZzhmUsx6QEPHEX7iRCM1r6MXws7JdkmUkZLSCps52nait6TdzNP1M/eilH0U3z+7c1P5iVhet5vX017k/7HH258GUkKtxSi7SS1czMbJ7zXGiIBDrG0qyteCs7D0XadPOSFJJ3nGOCIBTliiqqlCdkZbM7MeUhhCPvOVuS9o2F1ytvDIOKUs46xbBs7fCrPvh4hvh4dfbVtPCFsBh22EWFS5iQ8kGEsoTGpQ+N2lMtDe2p6tnVwaYBzDGdwyDfQajFc/+saCU2S7B4vqRMnktdtKpLbM1YKAjJmEM/pqb8BYHn8V5KsiSnqdA+goXhQAY6UGY5mn8Nded9XUcwajVEWMKZEFGAmGeZsx6I5vz00i2FhDscfyS0Xj/8VziUcnQ4BgmBvagvbE9r6e/zo6K9YiugdhdTiqcdiRkTMcsx5j1RnIqG5Kdb720WWdkyeF9/Jayo8H9c5I28kivcfga1LXwFkdeFiTthN5DVV2RlkJUR/jwH7Db4bMX4ddPYO6n8NtnStn14++o1U6NyNHS55usm0gsTzyp9Hl37+6cZz6P8/3Pp6tX1xPMfib2OCiW51Ek/Uq5vAkHWRwpsxXxxIOemMXzCRCn4SF2O+vzWaXlZDmfppzNKFEQbwKEWwjXvIZeDD7r+evj1q5D+CZpE09sno+IQDtvPwYGtSe9zHLSY3t490BEZHdFPL0Z2CT2neu0SWdkQ25yHUfEqNES6eVLmcNe45Hm2Ur5YM9KnuwzAZ2oaWgqFXfQ1rvztmT0erj/ZeW1+l94bwbsWAvXDYTQKLj1SbjmLnVp7RSpT/o8255Nuau8zjiDYCBQF0h3n+410ufnB5xPsL5pHswuqRyL/BPF0h9UyNtwkk9tma0ZL87DLE4kUJyGXjyznJJjcUplZLlmYpG/wUURippIT8I0z+KnubJRznEigjxMPNp7PFUuJzaXAx+9B5/vW0ugsf5kWrPOiNVuq3kfoAsgrSqZwTodeo0WURAQESg9agyA1W7DR9c6kldPhzbnjLhkiT9Td9W8nxjVg0lRPdBrlFuRVmrhs31rKKwq53B5MVvz0xgSEuMuc1WOxemEFX9CSCT0VL9htGhGXqS8cjLgjYdh5V/w6r0w+1GYMAUenQ2+/u62skVwutLnnX0609fUt470eVPilAoolL6lWP6bSnlntTOgoMEfkzAWH3EyAcKNaMXG/Z2WSIvIcj5DBdsAGREzgcKdRGhebfRznQoGjRaDRku5w87eomyu6NC33nEx5kASLFk177t4dmFrSTwxAUrZrlbU0M7kz77iXPoERgFKbkpicQ5jwrs0/YW0MNqcM5JgyaLIrgjwxPmFHZcF3d7kzy1dh/DWrqUArMo+oDojLYmvX1e68976pLstUTlVQqPg7d8UR/Lr1+GH9+GvOfD3N9BjIDz2NvQddtJpWgOHKg6xxLKEjdaNJ5U+7+TZiVjPWAaZBzHGb0wd6fOmpkpKo1D6mhJpITb2IHGkCZ2AlhB8hIvxFa/EX7gGUWx8R8gpFZPleppC+QckSlCiIH0J1z6Przi50c93KuwpykKWIdTTTF5lKb+n7CDU08yw6ufDvJR4iu0V3NJV6VMzKqwzK7OS+D1lB8NCYuikGcw61hHtW/s7HB8Ry5z9G4g2+RNtCmBZ5n7skpOhbfCZ0+ackZTSwpqfh4V2rPl53LitjBrlx+23R9ApLIhgDxN5laWkllqQZBmxDSjlnRP88B4YPFRdkXMRrRbueFp5bVoGbz8OCZvh5uGKcN2N0+HmR9y6hHNsqf+ZlPnXSJ9blrOldAv7K/afUPq8j3efk0qfNzUVUgKF0teUSsuwkXRMmW0EZuEi/MUp+AiTERshwbUhiqW/yHI+TyXxgIwGX4KE+wjXvIRW9G2y854KlU4H81J3UlxVgadWT7/AKC6L7o2m+u+1xF6JpapWaTbQ6M19PUYzN3k7yzP3o9cqDsZuxxouZRQAA4PaU+aw8VfaLqx2G5HefjzQYwxmvUfzX6CbaXM6I78l72BJ5j4ApvccR1ffEOx2CaNxKUfuhNEo4hXkIrCnjU4XVDHv3ivQqa3V3c+GpXDn+UrZ6ItfudsalcagIBfemq5I+turQGeAcZcrCa+Boc1qSn2l/icq8z9a+nxH2Q4OVhwk1557StLn4/3G46v3bepLapBSaR0W13eUyiuxk1KnzNZAdHWZ7Q14M7rJozFOyUKm60ks8s/VQmcCngwgXPsSPuKEJj13c+KSXGhXaLnA/wIW9V3kbnOaDVVnpAECjLUhxYSiLLr6hqDXi2g0Ai+/3ImoKCNvvJlMwr4yChcY2b/AA+P05URGGhkyxIcpU0KZPDkIrVZNwGt23qku552ulvO2GgJD4LUfQPpOiXrNeQsW/qy8YvvAw2/CkPHNYkqZs+q4Un+nLJFSkcGCoq010ucplSkUOgrrSJ8LCHhpvIgwRJyR9HlTopTZLqwus12HnQyoVlBVymy7YBLGEKC5CS+x+Sqeily/k+V6ARsJKFEQf4LFhwkTXzxlhdVzCY2owUfjw97yve42pUXS5pyR/oHt+S15B05ZYlXWAQYHRxPh6YvTKePvr+Pa60Ko7JfM5vxCSrNFXOsiSdukZc+ecn75JZdffslFECAkRM/AgWauvDKEKVNCMBrb3K1sXvKzITEeeg9Rkx5bI6IINz6svOLXw1uPwO5NSiTMLwiuuw9uf0pZ6mkCJEniQMV+ElwLyZUOUSxnUkYhdir4fEetg3JE+jzWK5Zunmcufd6USJKdInludUO5TTjIprbSxQtP+mAWJxAgTsMoNm/TQ7uUR5brCYrkuUiUV1t0HuHalzGLY5vVFnfQwaMDe8r3uNuMFkmbW6YB+DZpE+tylaZfOlHDeYEduDG2mEdn+2Mencfh8uKafS/0v5iA6hBtfr6db7/N5O+/C9i5s5Ti4tqks4AAHX36mLj00mBuvDEUX1+13Xqj8tgUWPQrfL8Rep25SJLKOUSxRYmGLfgJqipBq1Oqc554D8JOr6/IEZySk/Ul61lZtPKE0uciGgx4YyKIcUFDuSBwDOP9x5+x9HlT4pSsWOQfKJH+pELeXl1mqyDigwc98REnESBOQy+GucVGi+snsl0vY0OJCmgIJFC8lXDxuSZJgG2p3L7vdr7M+pLMYZmEG89OFfZcQe1NcwJsLgfv7F5OanUyqyVZ5Ldp/oT3t3PxO4rOiCgI3BE7jH6BDX/olZU5+fHHbObNy2PbNiv5+bUKh2azhp49vZk0KYhp08IJD297deONhtMJg72Ub8hLD7vbGpXmRpLgt8/hi1mQU92duWMPePBVGH1JvYcckT5fU7yG+NJ4km3JJ5Q+7+TRiRhDLOkFBsLogV6s/f/6dN8LaefdcqJxdikPizSHEukfKtmNi+KafRoC8BT64Stehr9wPVrRx412ZpHpepxieR4SFYCIN8MI176KSRzuNrvcydzcuVyTcA0fdf2IeyLvcbc5zYLqjJwEm8vBvJSdbMhN5p9njKSsNKIxSExbYKGDnz9XdehLV9+Q05rTbpf4449c5s7NZdOmErKyqmqSYj09Rbp18+KCCwK55ZZwOndWpeZPmS9mwftPwZPvw9T73W2NijvZtwPeeAi2rwVZwu7jw5bJw5hzYRC7qvaRZkvD4rDUK30ebgg/ofR5epmFV3YsPO6U7nZGbFIKhdJXWKWF2NhXvbwBIKAjFE9hEH7iVfgJVyGK7v3SI0kSFvk7clyzqGI/oHTcDRT/R5j4tNvtczcVzgq8VnlxZdCV/NbrN3eb0yyozsgpsmN3Ef17b6lxGmZ90J4n72scqWRJkli0qJAff8xh7doiMjJsuKo7bxsMIp06eTB2rD833xxO//7u+wbT4hkdAuVW2FSuKne2QeqTPs8rS2fS5hLu2ABD0iDVD74eDHNH+OIRHEM3726nLX3eUpyRCimeAtc3lMrLqOIAMkcUOkX0ROElDMVfcy1mJjVpme3pYJfSyXA9Ton8V3VZsAZvYSSRmtfxElVxwqPxXOFJpCGSpKFJ7jalWVCraU6Rl59PQxSpcRI+fSuXR+/q3CjVMqIoMnFiEBMnBtVsW7euiO++y2LlyiKSkirYs6ecDz7IQKsViI42MnKkH9dfH8bo0X4tJiHOrWxaBpY8uGSa6oi0cuySnVVFq1hdvPrk0ueGQA5c0JPvr+hFxQ6JEd8v5IWFqbywsBjal8G9k+HCKU1us0POo0RaQIB4E4Jw+n+fkiRRzhosru8plVdhJxUZJaojoENPB0zCKPw1N+DF8Bb1mSBJEoXyF+S63qSKgwDoCCNQfJJQ8UlEN1cRtVSijFFk2DLcbUaLo01HRnbssNKv38bjtv/wQ0+mTm2eRK+EhFK+/jqTZcss7N9fgc1W3VxKRC0nBrimH+yPh1UFahVNK8Fit7DEsoS1JWvZVbbr5NLnnp3pZ+rHKL9RjPAZ0bD0+aG9St+izStAcoGXGS6/Fe57BTxPniR5upGRSimBA84LcZBJrHYjXqfQfVaSnJTI/1Ik/UyZvAEHGRxpKCdgxEBnzOI4AsRpeIq9TzyZm7BJKWS6HqVE/heZKkCLSRhNpOYNPMX6pdFVarlm1zXMzZ9L6ahSvLWtr4T5WNRlmlPgwgu3sXSpBZer9hYIAnTp4snevcMQxeZXXU1Lq+Drr7P4778C9u4tp6zMVWNXmysnLsiBsWHQ6zz4foO7rVE5TQ5VHGKxZTEbSzayp3zPCaXPIwwRNdLnY/3G0s/U78yjADYbfPgM/PEFlJUonv3A0fD4e9A5rt5Dyhw2/kzdxeqcg8ftu6f7SHoH1K2iKZEWkOy8GokqQCZC8zqhmkePO1aSbFjkXymWfqdC3oKDHGrLbL0x0g2zeGF1mW3LlQCXJIl8+WPyXG9jJwUAHREEifcSIj7WYpaLzgU+OfwJ9+y/h5/jfmZKSNNH79xNm3VG/svYw46CDHIqrehFDTHmIK6I7kOoZ93j1q8vZtiwzQ3O8953UTxwQ22ra1mW+TttN2tyDlLpctDRHMjUTgMJ8WjcHJZjycur4rvvsvj773x27iw7rpy4b18Tl1zSSsuJH7sWFv0C361X9EVUWhx1pM+tW0isSCSrKqtB6fN2xnbNK32+eC58+CykJirvIzrAnTMVFd9q0sssfJCwEqvDVu8UWkHkf92G0zsgElmWyZPe57Dr4eq9MiBiFibSWfcPTqmYQvn76jLbHbiobT+hwRcPeuEjXoy/eHOTtbpvTGzSfg67HscqL0TGjoAOkzCeCM0beIr1O3YqJybblk34unBuC7uNL7p/4W5zmpw264y8l7CCgUHtifb2xyXLzE/dSVZFMc/3vxhDdWdeWZYZOXILGzYU1+SKHI0gQkAnJzu2DSHS2w+AhRl7WZixh2ldhxBo9OKv1F1kVs+rEzWNfs0NcSrlxBddFMTNN5/j5cSSBAM91HLeFsLpSp939OhIL1OvFiF9DkDGIXj9IVi3EFxO8PCCi2+g6J7neeXAekqPckQivXzRChoyyiy4qh0qrSDySO9RaDxeoED6rJ4TiAh4IVNas0VLEJ5Cf3zFy/ATpqIVTU18kY2DJEnkS++SK72HA6WUWkc7QsQHCBIfVKMgjYB+uZ7uXt2JHxzvblOanDbrjBxLqd3Go5v+4JFe4+nio3wTOZIrIoqg0Qi4JBnJBRoNiKKAyyUjSfDsT968cO1QZFnm8U3zOD+yGxdEKtGSSqedRzf+wbQu5zEwOLqxL/mUOVJO/OuvSjlxdnYrKSf+6nV490l44l24/kF3W9NmyKnKYbFlMRuKN5xU+jxMH0YXzy4MMA9gpO/IFiF9flLsdvjsRfj1EyixIAsCB2M68+uVN6KJG8jtscMINCrr+GWOKn48uIVtBenoNeVc1v0jfD13AfV/ZGoJwlsYjp94Nb7CledcAmeltIfDrscolZci40BAj1m4kEjNGxjFxqkwVFFot7YdJc4SSkaXuNuUJketpqmm0qVEDry0tR8MnTp58tZbXSgrc+F0yszbsZ89/+oYPdqf2FgvnE6Z9PJCyn2KASiwlWN12OjmW9u4y0Orp4MpkOTSArc6I3q9yLXXhnHttUrCrSRJLFyolBOvW1dEfHwp27aVMmtWyrlVTvzdO6A3wnWqrkhjI0kS+yr2sdSylE3WTewr30eGLYNiZzEuakOFR0ufd/fszmCfwYz3G093r+4tqqrjtNDr4f6X4f6Xcaz8i/zX7qfToSSeemMmUmgUmpfmwKAxIAh46wzc2KUdWsOXxIV/hyjUE0atQSBM8xzBmnub60oaBUlykiu9Rb70IQ4yAdDTgWDNwwQJ9567v+cWTnev7iyyLMIpOeto3bRlWvVdkGSZX5O30dEcRISXb812k0nLI49E17xP/HI7e/715aabwrjppggAVmYl8U+6IqtsdSiqjWZ93WUPs95Iib3+dWZ3IYoikyYFMWlSbTnx2rVFfP/9OVROvGUlFObC5JvUct6z4Ij0+YqiFWy1biWpMonsquzjpM/1gh5/nT8DzQPp6d2TYT7DON///FYvV50zcDjvvjCd8MoDXPX3EiK2psId43BEmijvayTjORN2kukdCbKsJJEr/2qAYx0TkVJp1TnjjFRI8Rx2PU6pvAJwImDAV7iCCM0bGMWO7jav1TPCdwSLLItYXbyasf6tvyfPqdCqnZGfDm4hq7yEx3qff8Jx0lFCZK2R4cP9GD7cr+b97t2lzJmTydKlFpKSKvjqqyy++iqrppx46FBfrrkmxH3lxLMfVT75H53d/Oc+BzlW+vxQ5SHyHHnYpLqOsofoQYg+hEHmQfQ19WWEzwjG+o9tNeWFTqkAGweokpOxy+nY5Qwc5OCU83FhwUUJEuVIVCpaHlqJqdWVqAVDocAFnR4An02leJWX4Stci7dmFNtzQvj1UCp+Hllc0dFBkPd+SuWV1WW5ADrAQam8AlmWEYTmr8I7FSTJTo70GgXSp9XN88BAJ0I0jxEg3N4yvoi0ES4NvJRnkp/h34J/VWekmlbrjPx0cAu7LVk82ns8foYTawzoXMoSjtFYm4hqddjwqY6EmHUeyja7DR+9R+0Yu40ob99Gtrzp6dnTxOzZsTXvjy0n/vnnHH7+OaemnHjQIB+uvDKYa65phnLighzYuw3iBoFfYNOe6xwj3ZbOksIlbCjZwO7y3SeUPo82RhPrGcsA8wBG+44+Tvq8pSNJFdg4SJV8CLuchp0MHHIWTvJwyoW4KMZFGRIVyNg5PlJxNBoE9Ih4osEHPe3RCgHIBLAuuwy7xUSn7cWM/mMbmiIH8rNvortkGlE65XMhwbICECmqjMRXGEcHndImwiFnUyavp0xaR5m8CpdcjqIZ0nwJ7adCubSFw64nKJNXAy4EjPgKU4jUvI5BbO9u89okcaY4REQ2Wo/XuWqrnDufTqeILMv8fGgr8YWHmd5rXE0y2okwu0yAC72+9hvNvqIcYkzKwzDQ6IVZZySxOIeo6uqaSqeDlNICRoV1apLraE7at/fk+ec78fzzyrXk5VXx7bdZ/POPUk7811/5/PVXPjffvKemnPjSS4O54YYmKCd+c7ry72NvN+685wiSJBFfFs+yomVsKVFKZQ9XHabEWYJEbSt7DRr8dH709OpJD+8enOdzHuP8xp2y9HlzIklO7KRRxUHscip2OR2HnFUdtSiodiys1Y5FVY0Caf2ICOgQ8UDECx0haPBHKwShIxS9EIVeaIdBiMFIZ7RCABzYDTkZkJcJuYeVV3Y6ZG2nY04GWoeSnJs7YAQhX/8MwbXLUzsLD7O3SIkiBBi86ORTu/ypE8LwE67ET7yySe7b2SBJNrKlVyiQPsdJHgAGuhKqeRJ/4SY1CtICCNAFcKDigLvNaDG0Omfkp0Nb2ZyXyj3dR2LU6CixK/keHhod+urS3q/3r8dX78nlHfoAEGYPAbLY70qnb4WeLflppJVZuKHzIAAEQWBcRCwLMhII9jARaPTmz7Rd+Bo86BMY5Y7LbFKCgw08+mgHHn1U0YAoK3Pyww/ZzJ+vlBMvXWph6VIL99+f2LjlxJIES/+AoHDoO6yRrqZlYnPaWFOyhpVFK9leup0DlQfIsefUL32uC6SHTw96efdiuO9wxvuPJ0gf1MDMTYskSTjJo4qDNcshDjmz2rHIq14OseKiHBlbddSioYI9AQEtAoZqxyIMDX5ohUB0hKATItAL7dELHTDSCR1Rp/8QnfcVPHdb7XutTkn8cCl6Pdpq6/IDg3l22p10y01ksGxDJ2qILzzM1vy0mkPHRnRFPAPJ9+akVFpHlnMGZawDJEQ88ReuJ0LzOnoxwt3mqRxFZ8/ObCxRIyNHaHXOyKpsxdOcvXtZne03dzmPoSGKwqGlqgKB2iiIh10peU2yZ/LS9gMEe5i4u/uIOkmvEyK7YXc5+f7AZiqcdjr5BPFAjzHNqjHiLry9tdx5ZxR33qk4Xna7xO+/13YnXr++hHXrSnjqqYN4eYnExnpzwQUBp19O/M1scFSxrMd0frt7L7Nnd8XTU0NSqoX18VnYHScKxdePXqdhaJ9wukS7R0r+aOnznaU7SbGlNCh9HqoPpZNPpxrp81E+ozBqm1YrximVUUVStWORhl0+jIPs6uWQguo8i7LqPIuTL4eIGBDwQItftWMRgJZgdEI4eiESAx0wCB0x0LF5OrgOuxA8vaGirPqCj4+6yBot794/AwSBfcU57CvOOW7MwKD2jA1veVEnUJa0sqQXKJS+xomSdG+kO6GapwjQXO9m61QaYojPENaXrCehNIE4kyog1+p1Rk6FF188yHPPJbNly2AGDGjB5a4tlGPLiY/tTty5sydjx/px883h9Ot3gvs7JgxKixnIcrZuK6V3b28WLOjH4s0HsZScedWSv4+RaZfF4ZScvJTyEttLt/NX778aNdHwYMVBlliWnJL0eaQhkljPWAaaB5699PlRKMshKVRxgCo5FYecgV3OwkkuTrkAJ0VIlCJRUS1j7jzBbGJ1noUREW80+KAloHo5JAydEIFBiMYgxGCgE1qxBfcN+u3/4MX/1b9PEOCu59hwxY38k76bAlvdyJS31sC4iK5cGNW9xUVFSqWVZDqfopxNKFEQL3yFq4nQzEIvhp70eBX3styynHE7xvFSzEs80+EZd5vTZDSpzshHH33Em2++SU5ODr179+aDDz5g0KBBDY5/9913+eSTT0hPTycwMJCrrrqKWbNmYTS2DIVQh0Pxx4zGlvVhc65QXznx0d2J9+8vJyGhjPffV8qJO3Q4Uk4czqhRvsqDeOsqKMyhasKN7HhHUbFMSCinX7+N3P6wN/6hynPDy0N3ynaVVzqQZbA7XKRUpnBtwhS8dVu4vR1k2OfTznD5aV2nJElsLt3Mcstytlq3nlT6vK9331rpc//zifaIPq1zOcmpdiyOXg7JxSnnVzsWJUcthzg48XKI7qjlkIjqqEUQekKrl0Oiah0LIlpXTsGVt8N3b0NKYt3tgqjkh9zyOEOMHgwOjiaxOJeMsiJkZIKMJnoFRKATNVhs5ZQ560azvLUG/I3NKyTolMrIlp6lUPoGFxYAjPQkTPMs/pqrmtUWlbNjpO9IANYWr3WzJS2D03ZGfvnlF6ZPn86nn37K4MGDeffdd5kwYQL79+8nOPj4Xgs//vgjTz75JF999RVDhw4lKSmJadOmIQgCb7/dMpIUq6qUxMDWWtrrDoYN82PYsNpy4l27Svnmm9py4i+/zOLLL2vLib8PmMkQNKwd8iyut5IBcLlkCgrsvD7Twg13eTNkhBf/u/rUO5l+PncnZRUONun/5e34l3kwppJB1SYdtv/XoDNS4axgefFy1hStYXvZdg5VHDqh9HlfU1/6mPow3Gc44/zG1St97pSKKZe2VjsWqbXLIXI+Tiy4KD5mOUQ6bo5atIjoEfFCSyAafKvzLJTlEJ0QpUQt6IiBGETRcMr3rNVhLYZ7Jx3viADIEsz4AIxKhZwoiHT3C6O7X92O3RZbOTO3/o1Trvs70QoiLw2Y3CwOSYm0hCzn01SwFZARMREo3EGE5lW0olp1di6iFbWYNWb2lu91tyktgtN2Rt5++23uuOMObrlFaTT16aef8u+///LVV1/x5JNPHjd+/fr1DBs2jKlTpwIQHR3Nddddx6ZNm87S9MbjSGREdUaajl69Gi4nTt+XR5z3dt62XMETVybXOc7lAlww54MySgrhjqtOXcehkjLmBrxA39glfHNU01WHBBZnco30+fri9ewu392g9Lm3xpsIQ0SN9Pkov6H0N4UiienVyyFHqkM+I0t+lQx7cfVySDkSdk5tOcQDEW90RKKtqQ4JRy9EoK+zHOJ7SteuAvzwAcx+RMkTGTwOBoyCj54DZNBolU6+Yy496TRlzqrjHBEApyxR5qzCn6ZxRpySlSzX01jk73FRDAh40Icw7fP4iZc0yTlVmpcYjxj2lO9xtxktgtNyRux2O9u2bWPGjBk120RRZPz48WzYUH+L96FDh/L999+zefNmBg0aRHJyMgsWLODGG29s8DxVVVVUVdWGRK1W6+mYedrY7Yoz4unZ+pNRWwp1yomfvB7533KCrr8Ony80lJTUnyQ578cybmA3X38dh15/YsdxQ8l6lnS8iGc7lxCoB/Eo/0UAtpUuY/I25RuwlwaC9AJdvT3o5OVLV08vOnh6EGnU4KW14aIUiRxkUpFZAMgckKgneHFkOcSIBi90RB3lWNRWh9Quh4S2ruWQlkJOBtx1ISTvBS8TvPMHjLoYnE5Y8hsk7VLGzfhQWftrYRRL/5DlfI5KdqBEQXwIEu4hXPOK6oy2Mvqb+hNfFk+WLavVKx6fjNNyRgoKCnC5XISEhNTZHhISQmJiPWFQYOrUqRQUFDB8+HBkWcbpdHLXXXfx1FNPNXieWbNm8cILL5yOaWeFw6E8VdScETcgSbDkd4SgMK5/9VLu/nDZCYf/+GMOf/yRyyOPRDNypB9DhvjiZZRAqyXNlsa+8nj+L+txJocd5IU4kOS6jgiAVoSxgTA+EAzikeeRDFRUv2pG4sCAiCdagtDgh04IREsI+jrLIZ3QE33ONUZrlXzwDHw5S/m7uuBqeO1HbMj8eWgb8YUZmK+ayhOvJVA65W58OjRcHbO/OJe5ydvJrijBpGs4t+3DPSspd9iJ9Pbj2o796WA6syUTp2Qh0/UUFvknJKyAgCf9Cde+iI848YzmVGn5nO9/Pl9mf8mfBX9yd+Td7jbHrTR5ae/KlSt59dVX+fjjjxk8eDAHDx7kwQcf5KWXXmLmzJn1HjNjxgymT59e895qtRIV1XR6HmoCqxv59h1wVMG0R9m2zUpVVd0kTFFU3ARZUvINfX20mM1aPvvsMK+8ksI7TzzE/Uv3sf0VqBoJIWZ4zAsM1UGuYx2RI9gliNSPVspOUcpO60QtxMav2lJpQg4kKLkhORngFwTv/wm9hwDw7b61ZFWUcEvXofj2HMeyzv34t9LCc1UV9aozF9jK+HDPSkaGdea22KGsz01m8eF99Z52RGgn+ge2Z1lWIu8nrOCF/pOP62F1Iopc88h2PU8luwEZDX4ECQ8SrnlR/RtsA1wUeBGgVNaozshpEBgYiEajITc3t8723NxcQkPrLyWbOXMmN954I7fffjsAPXv2pLy8nP/97388/fTT9YapDQYDBkPzJd0dcUbc0oelrfPtW6A3wA0PsXZ2Wp1dPj5aRozwRe9jIzxaILabB/1i2vPSS8msWlXEII993L0oCdkA/Z+A9JviqLrjJkIM5WS65iMIuxAE5Xd7rFNikyBc+AuT1tRcV6rSFEgSvHQX/PGF8n7KPUpSavXnit3lZEdBBvf0GEkXHyXB/vz+57N5x3+syj7AZdHHJ0Svyj5AoNGbq2P6AYrGSEPOSO+ASMK9fLi+0yASLFmszz3EhVE9TmiyXcojy/UkRfJcJMoAES8GE659GbM47gxvhMq5iLfWGw/Rg51lO91tits5raevXq+nf//+LFtWG0qXJIlly5YxZMiQeo+pqKg4zuHQaJSvrS1F4sTpPFHlgkqTsXW10ovm/KtAFBk+3I8774zkyy97kJg4jKKiMfz9dz96DTCwZomNR+/IZ+jQLfz3XyFdTfn8Gj2LTd1H0eOx2/j3YQj7K4HOE18icu8FDPaIZ/fClSTveJjKCsVRdh3152bWQmJF/UuLKucI29fC6GD4/f8grD3M2wNPf1Sn07Mky0jIaIW6+WA6Ucsha3690yZbC4j1PT2dDlEQiPUNJdla0OAYi+sX9tjj2O0MoVD+GgEDweKj9NFaidVvUB2RNkqkIZLDVYfdbYbbOe1lmunTp3PzzTczYMAABg0axLvvvkt5eXlNdc1NN91EREQEs2bNAmDy5Mm8/fbb9O3bt2aZZubMmUyePLnGKXE3RyIjKs3M7EcAAR5VSryHDPFlyBBfALKybNx9915+/z2PggJFNbOrXz7PXHCAKUWfoSvKwXX5rXTsch2eTg0zuy4g/JVses4sRXfzMIQp9+HqfDuZ+6dSknET111ZQr7rE4qk30Bw4amBKE3bThg7Z7Hb4fFrYfk8EDVw9/Nw93P1DjVqdcSYAlmQkUCYpxmz3sjm/DSSrQUEe9Tft8rqsNVZaqlynqgaqhaz3khOZd1ke7uURabrSYrlP5AoR4mCDCdCOwuTOPyU5lVp3fT27s2BygNUOCvw1J64qWtr5rSdkSlTppCfn8+zzz5LTk4Offr0YeHChTVJrenp6XUiIc888wyCIPDMM8+QmZlJUFAQkydP5pVXXmm8qzhLVGfEDRTmwZ5t0KM/BCjh8+JiO7NmpfLDD9lkZlahExxcEJjIlH5bmWDcQHBpGhyp/DX5Mv/WV3CtTSDQoKUg5yOmhV3J5z/LdH9OwOfnD7nW5w9+vuYz8IzCJI7CJI7CIedRKH2NTUoiSBvWsH0qLZPlf8KM66GyHDr3hE8W1mlsVx+3dh3CN0mbeGLzfEQE2nn7MTCoPelllpOeblNeCj8c2NLg/pTSQtp511WflSQJi/w9Oa5ZVKFE37QEEyw+SJg4s3lk8FXOGcb4j+G3/N/4p/Afrgm5xt3muA1VDh6YOHEbixYVIkkXNPrcKg0w4wb49weqPlvJO6va8dVXhzlwoBItTu4IWcqN7bYzSNqMxl6JJGoQpWPKfd/6las9uvBbej4Bei2FdifT4jaxw/4Mn/WE8LlGIt+0IQsa1k14nBFvvOqe61RpHMqscP9k2LYadHp48n24+s7TmqLK5cTmcuCj9+DzfWupcjm5P270cePe3LmEdt7+tDf58/X++iULjiAA/+s2gn6BUcxJ+hejx690CZmLTCWgwVsYQYTmNbzFwadlq0rbIcuWRcS6CG4Lu40vun/hbnManSaVg29tOJ0t3h9rVUhOJxUL/iTR3o3Bw6uQpAPodAIjRvjy1iVJDPr2HagSlO6qcLwj4m2G0Zew4Z/NeGtESqob6P2ZNIygiJ48tGc3H1xjo6CXH91vq2L4wlmQswo+XQKebTcMes7y2+cw6wGl6qrfCPjwH+Vv4DQxaLQYNFrKHXb2FmVzRYe+9Y6LMQeyqzCTdTmHarb5GTzx03vySK9xZJQV8f6eFVQ4HchIrLe8gta8nG5RaWhEBxpCCBIfJ1R8Si33Vjkp4cZwdIKObaXb3G2KW1HLR1CckRaofdTqmDcvl2HDNnFxwBt4y2U8k3UDffqYmDOnBzbbOFavHsSg6VMVfQjq/4VIgoaEbpP4dN5esiqr8HaBs9ppKbY7kdJmsblIw4v7tbhii9j8rz+ZHQZB/HoYEwzrFzfjFaucFQU5cFUfePFO0Gph9m8wZ/VpOyJ7irJIsGRRYCtjb1E2b+9eSqinmWHVXbznpcTz9f71NeNHhXUm31ZGlaTkirT39qekqpKL28ehFTV0MAcyJSaauJBF3NjvXoZEf0apI4fdOZOJZD299dmEa59XHRGVUyZEH0JKZYq7zXAramQE1RlpSlavtvDKK8msXl2MzSYhCLC+84+UCib+ynscvfGYP0FRhFnfQ3EhbF2plG4evVt2sSP2YrbaKpG1oJeUsl1JUPRIDkoG4oqe42+epbM2hKmdDpP6hRfh675CfPFOuGsCXHwjvDynTtWFSgvj/16Bj59T+gGMuRTe/BX0Z/Zwr3Q6mJe6k+KqCjy1evoFRnFZdG801b//EnsllqpasbtAozfhnj5klBcBYLXbuLHLYLr7hpHv+pwyeR06vx8Z4usivbgPe3LHU1jWnwfjxhFqUPvEqJw+3b26s9iyGKfkRCu2zcdy27zqY1CcEdUbaSzWbs3j1VdSWb3USnmZ4ky0a2fkxhvDePLCbLzv2QMTp8KxjsgRdHqY9hhsXl5ns4yAJbgjldFx7HZYQYYiUT5OlX2PfQhh9oG8nbWFXoY+xEXFkzTpS2KHp8Oto+Gf72DjUvhyBZxAhVPFDaQmwd0TITMZfPzhnXkwYORZTTkgqD0Dgto3uH9a1+NlCY50YdYIIq8NvgynXMQB53hK5eXoiCRcfB4Tl/N/SfEAdDL708GsOiIqZ8YI3xEstixmdfFqxvqPdbc5bkH9aogaGWkM0tMruf32BPwDljNi4A7+m1+ES+ek+2WVTJtvYcf+/rz8cme8P34MEOCxdxqebMnvcN9FSjOz4AioLgEXBAi47UH+d3Vvcj0EjBqBUo7P9xEFEGyvYhA9uCs9EQ8uoJx1HPC5Ff5KhFseh8IcuLw7/J+a2NoikCSYdT9cGguZKXD5bbAq/6wdkTPFU6tEYVyyRFrln+x19KRc3kqI+BRx2lTCtE9TWFmrReKh1bnFTpXWwaWBSsPG/wr/c7Ml7kONjKC0qlcj9qePxWLnlVeS+fnnXLKylMaGZh8Nnc6vot+0CkYXbqJv/BbWFo6hzHE+/pWVkLAFuvdj4b5y9h7aCiiCUUaDhkA/D/qlrqDDh/cgGIzw42YlP+D6wUr+gEYDk6YiSRIZFTbCPAzk2KrqiJmBIm6Wa4P+8gdslm/njp1lfNl7OFb5P5Id1xLz8M8wYQrceQF88DRVS+fz6QXvcN3lfQn2VxNcm53dm5VKGUsehETCR/9Cl17NboYsy7goxCYfpH/4VnxNa+kavIoCTRkmYSzR2jnohaiasYsO17Z+7+kX0ez2qrQeepp6IiKyoeTE1VutGdUZQV2mOR1sNiezZ6fz1VeZJCdXAuDpKTJ5chAzZ8YQ0s3FKzsWAhC7fg/nbVnHeVvWYZ8/F8x+gAyPvAVVEB1hZsKwDkiSTIXNQfFX79Pux+cpCOlKwJyFiBHVofUvlsONQ2H4heDjz8ocCxLgkuXjHJEjyDJszmnPgJiLWG/9l9X5nzI8qIwi+RfSHL607/4prMiBR65Gv2I+1+ffjBD0GlxyVdPfRBUFpxOeuhEW/qzk79w+Ax5ovkhVqbSSUmklNvkANvZSJR+slmcHkxl6m5RoXLa1K3ssL+ET5UOIB2SVl/BfRgLbCtIBMGp0DA6Obja7VVonAboAkiqS3G2G21CdEdRlmpPhdEr83/8d5uOPD7NnTxmyDHq9wOjRfjz5ZAcmTKhdKz9aSKrS0xOnRoPW5UKXlqR4CIIA6xZijLmYKu9QvDyU8LZp9gOE/PYZFaEd+XHKF4wt96QnYLM7WZ3jweHb52MXtQQs2s8/BiUKk2Oz19TcHPFJdDJ0NBgYGRVAvwAz17b/lch1ITy6dwYvF/1Dx16vIUf/H8VFgfQOfhnem8d3b/3MpAXP4PPcVFYsXU/+hbdzzaTuzXBn2zBr/oMnrlX0QzrEKuJl4Q3ndTQFqc6bsZMOaABXvWMqHSb+TXwKSU5lXW4qGkHEJdfNUpraaQBGdZlG5Szp7NmZjSUb3W2G21CdEY4s06jeyNFIksRvv+Xx9tupbN1qxeVSVkn69zfz8MPtufbakHqbHB5NpdETobrs9si/yDLMeYtR8hvk9BgHvb9XSjdX/Antu+A5dyf+iw9xIL2Inl2C+GflIbQakUmTB2DQa9i1P589+3PwEAVGhfojVjrRF9vpZvJiVmkB4/x9uNpmJNRuZFLnSADeMf/IPZarmRP8GItD/yOxZAyy+XUOWr3oZJ7BBdMm84NfFLcseYIxK9/BFf89RC+E7v2a9B63SSoq4KHLYOMS0OrgiXfh+gfdYkqk9i2SndfQkCMiCCDYXkQjGJBkZczRjohe1HB9p0EMDu7QHOaqtHLOM5/H+pL1JJQlEOcd525zmh01UwI1Z+Roli8vZPz4rXh6LmPKlF1s3myla1cv3n+/KzbbeLZsOY+pU8NO6ogAVHp4Ikr1NCGUXCDLhCYshdvGKI5Ir/Pgz31gNOLvY8RaZiczt5ScggouHt2R0EAv/MxGRg2M4hBO4owe/De2L09HhDPSZWDGuO54azUkOaoYM7gd+1MtlFcqPW1ch9oxWXcDO1zr+aL4Y4YEraa0sA9FumfJc32Eh1GLS2vA9vFieOBVNCWFcN0AePfJxr69bZu/voVRAYoj0nMwLM9xmyMC4Cdejb8wFSUyciwaPIS+DPV/gNcGXcoVHfrQxSeYKC8/uvqEcHVMP14bdDnnhaiOiErjMClgEgB/5v/pZkvcgxoZQY2MxMdbeeGFZJYsKaC8XHEeoqON3HxzOI89Fo2X15n9mVR6eNQvXSZqkASRwtBYgpN3w+hL4P3a/4AyiuRZflElDqeLT36Or9lXKLsoFmQGGj1qtpm99Ji89ER4GEivsBEe5IUsg6XEhlYjUl7pYHaXN1lx4A+ePvQ014Vch5D9DRW6q8nwu48g2Qx0Uya7fQaMu0Jxkr56HZbPh69WQuDpdXFVOYqiAqVcd+9WMHgoOjIXXe9uqwAIFO/G4vq5nj0uojRvIwgi3jojEyK7MyFSXbpTaTpG+Y0CYE3xGjdb4h7UeACKrlJbi4ykpFQwbdpu/P2X07fvRubPz8Nk0vLgg+3Izx9NSspInn++0xk7IqAs0xyHRgNmP4qDOhKYtQeuvKOOIwKKE2E2GbA7XHh56LhhcveaV1Z7xQm5c2DMcVN39/Gi0iVhryerVSNq+a/Pf0hIjN0+FkH2Jm/3HES8ydPfgqe5VvqbDl1h6WGYfBOk7ocL2sH8OWd8H9o0c2bD2DDFERl2IawubDGOyGHn4yS5RsJx5eFazMIkTOJoN1il0lbRilrMGjN7y/eefHArpI09gutHktpGZKSgwM5DDyUSFraSmJi1fPNNNgA33xxGcvJwsrNH8+67sQQGNo6MdaXHMc6IqIF2ncFpxzfvIJuveRWe+7zOkPRsKwVFlXRu50dIgCfllQ5EUcDPbMTPbGRVkRWDKNAryKfmGGu5nbIKO0Oqt/19IBtBAH8fIwa9Bi8PHVl5ZQz2Gcwd4XeQbEvm+7zv8fcOppt2F4JspNeY+yiX1x5lqwivfAOfLgKdDp69Bf53vtK+XuXkZKbC5K7w9qPg4QWfLYZP/gMPj5Me2tTYpXQS7J3Ild5ERyjdtXsIFh+m9uPQRaTmDXeaqNJG6eDRgRx7jrvNcAvqMg3KMo2mvmXjVkBFhZM330xlzpxsUlOVUlwvLw2XXRbMs892oG9fn5PMcOoU2MpYcjix9txHNaWTAaHfCNi9CapsbLn9E7K6j6G80lFT2puaaWXz7mxiIn3o3jEAQYDwIG/+Wn6QEf0j8fMxkl5WSZzOQE5BOaGBXgBoNSIL16YwpKvSyn3Z3myuaB9UU6kzMC6U9fFZ+JoMvBr6LssPb+Rn/Zvc1n4iRrEvsdqNbHdeRJ7xakwVCzFpB2LQV//XGHoBrMiHuy5QVFtHBSk6GP2GN9p9a3W8/Th8MxtkSYmCvDRH6S3TAsh1vcdh1yMgu8gpvoN1aZOwOnbhZxjKxd3nodWmEiDciofYo97j9xfnMjd5O9kVJfgZPJnULo6hIXWjdCuyklhyeB8l9koivf24tmN/OphUdVaVk9PP1I+dZTvJqcoh1NC2loZbxieEm1GckdYTGXE6JT75JINPPz3Mvn3lNaW448b5M2NGB8aNC2j0c+62ZPL5vrXYj+qwW2mo/Ra8fcBQ+u1YiyBL8NavFHv2J/VQIZ/9uhNREDAYNAT5eTBmUDt6dAqo0X25fHxn1m7PZNG6VHKq7NhEmb46jxpHA8DXZKBzOz82bMzESxbI0LgYd167mv19uwVTZXexamsGFTYn9/u8x6OeF3LFwUlkhmTipY3Dq+QbbNop7HNeR+7OOVw1bnTtxXl6wrdr4acP4Y2HYNoIuOZueObjRr+P5zSJ8XDvRZCfpeTYfPA39BjgbqsAcEpWDjjHU8EWRMxkF3zBsnSRW7oOJMzTh7RSC3/tv5uJnf8i3OvFeucosJXx4Z6VjAzrzG2xQ0kszuG7pE346I308AsHYEt+Gr8lb2dqp4F0MAWyLCuR9xNW8EL/yZj1xua8ZJVzkAn+E/g6+2vm58/nrsi73G1Os6I6IyhK1Hr9ue2MSJLEzz/n8s47aezYUVuKO2iQmUceiebKK4NPqQLmTEgrtfDp3jU4q8seNQhEefsTlZYGQFJMF/pu24AkipR/vADz0AlcCFw4/OSVCHqdhrGD2zF2cDse3LIfkkq4f1QXTF51l5J6xwbTOzaYGb+uZJ/WhdFQ+6ctCAJD+oQzpE94zbacg9N5Le01/pf4P77o/gX9Oo7GKv3IAecFxIyYiE3ai1E8xr7r7lOSbW8ZBb9+AmsWwFerIKJ59TFaHJIEM2+Bv79V6mFvfFgRtmshiVgW12+kum5ExoZZmERHzTzWFa+nT4CRnv6Kcmqg0Zst+UPYc3g458WG1zvPquwDBBq9uTpGKfkO8/ThYEk+SzP31zgjSzMTGR7akWGhHQG4vtMgEixZrM89xIVR9UdbVFSOcFHgRQAsL1re5pyRlvFp4WYk6dyNjCxaVMCYMVvw8FjG9dfvZts2K926efPxx7HYbOPZuPE8rr46tMkcEYC/03fVOCL9AqJ447zLmdF3Ajds34YzIJjOyUk4tTpeeuIVFoSceVRmWa4FnSDQy8/U4JgoLwN5tpPndczqNIuOHh35MvtL1hWtA8AsjiNG8zsyVexz9sIuZR9/YFg7WJgCU+6F7DS4uCP88MEZX9M5z6ZlMCJAcUSiOsE/B+Cxt1uEIyJJdg44LiLFdTUAHTRz6az7F1HUE2MKIrE4l9wKKwAZZUUctOYT5x/W4HzJ1gJifeuGzrv7hZFsLQDAKblIL7XQ7agxoiAQ6xtaM0ZF5UR4a73xED3YWbbT3aY0O2pkBOWL3bnkjGzZUsJLLyWzbFkhFRWKExAT48Gtt0YwfXo7PDya79daaCsnwZIFgJ/Bk9tih6IVNZCdDsv+QIuAZPbjxSdeIt/Xj6LcFK6I7oNec/o2HiytoKPpxAmQPX292V1cjtXuxKw/8TmW9VtGx3UduXjXxeSPyEcravHTXEZ75pDmupm9zu7EaVPQir7HH/z0hzDpOrh3Erz+APz3I3y+BDy9T/u6zklsNnj0Klj9r9LQ8MFZcFvL0WUpldZy0HkRElY8GUhn7VK0orlm/4VR3bG5HDy37R8EQUCWZS6N7n1CATOrw3bcUotZb8TmcmB3Oalw2pGQMdUzJqfS2rgXqNJqiTREkmHLcLcZzY77v760AJTIiLutODEHD5Zzww278fVdzqBBm/j773x8fXVMn96OwsLRHDo0gqefjmlWRwQgraywpjBycHC04ogAvHKvorY6chLisizad+oNgM3lOKMP5n0lZVRJMmNC/OpsH9onghsvqQ1/Dw/yBWBxduFJ52xvbM+sTrModhYzJWFKzfZAzU1Eaj7ARTF7nF2RpIr6J+g7DFbmw5ALYNdGGB2iyJy3dhb9CiMDFEekWz9YmtliHBFJkkh13E6ScwQS5URq3qObfnMdRwRgW34am/NSua3rUJ7pO5FpXYaw5PA+NuQmu8lyFRWFXt69qJQqqXA28LnTSlGdEVruMk1Ojo17791HSMgKOndexw8/ZKPVCtx2WzhpaSPIzBzF7Nmx+Ps3TinumeA8SmHVS2tQfpBl2LMFOvaAd+aBwYiXzlAzzlWfKutJ+PpQdRlyh/rX848wKVypWliRW3RK8z7W/jF6effij/w/WFCwoGZ7iOY+wsSXcZJHgjMWSWpg6Uevh88WwcvfgNOhREqevF4Jt7U2rMVw4zB4bIqiovviV/DLNggIdrdlAFRK+0hwRlIof4mBTvTUphKieaDesb+nxDMhqjsDg6OJ8PLlvJAOjIuI5b+MhjUezDojVrutzjar3YZRo0Ov0eKtMyAiUFrPGB+dmryqcmqM8RsDwILCBScZ2bpQnRFa1jJNWZmTZ545QPv2qwkLW83HH2dQUSFx1VUh7N49hIKCMXzxRRzt2rlfrwEgwOhV8/OeImW5BkGARWnw6w7QapFkmT1FtfkXfoZ6xNBOwuLsQrSCwOCgE5cit/f2QCPAjqLSU557Wd9l6AQd1+y+Bpuz9kESrn2aEPExHGSw19kTSaq/hwkAl9wESw5DTDdY8COMi4DkfadsQ4vnpw9hdDDsXA+DxsLqArjsFndbVUOm81n2OnvgIIcQ8XHi9AfQi5ENjrdLTsRj9IFFQUA+TgCtlhhzIInFdTUg9hXnEGNWHGCtqKGdyZ99xbk1+yVZJvGoMSoqJ+OyoMsAWGRZ5F5DmhnVGUH5Iu9OZ8Rul3j77VRiY9diNi/nlVdSyMuzc8EF/qxaNYDS0nHMndubuLiGEzfdRQdTIEFGJU8isTiX7QXVa516gyIWhlJhUGBTWrN38w3F9wyckf2lFUR7ndq3Sz+9juSyylOeO1AfyCddP6FcKueiXRfV2RepfYNA4X9UkUSicwDSiSIeAcEwf68iKW/Jhcvj4LOXT9mOFknuYbi8B8y6HwxGRS33i2UtJjfGLuWwx96NHOkltATRTRtPpPb1kx7Xyz+CBRkJ7LZkUmArY0dBBksPJ9InoNaBmZcSz9f719e8HxXWmQJbGb+n7CCnooSVWUlsy09nfETXmjHjI2JZm3OQDbnJZFeU8OPBLdgl53FaJCoqDRFhjEAn6Nhq3epuU5qVNp3AarGVU+asQpJkJNFFepkFb60B/6O+7TcVkiTx3XfZvP9+OvHxpUgSaLUCQ4b48Oij0Vx+eUiT29AYiILAuIhYfj6k/Mf5bN8a+ge2o29AJE5ZYnNeKnuP+jY5PiL2tM+RUlqBzSUxMtjv5IOBaC8P4k8jMgJwW8RtfJ39NcuLlvND9g9cH1YrWd5e9xlORwnF8i8ccI6hq37ViSd74FWYMAXuGAcfzYQlc+GLFeDrf1o2uZ2PnoX/e1VZkjn/Knj9pxYjXgaQ7/qMdNd9gBN/4Xraa7495aqxazsO4M+0Xfx4cAuljip89B6MCOvExe1qu6WW2CuxVNWu2wcavbmvx2jmJm9neeZ+fA2e3NhlcE1ZL8DAoPaUOWz8lbYLq91GpLcfD/QYg1nfMiKZKucGIfoQUipT3G1GsyLIstxwXLKFYLVa8fHxoaSkBLPZfPIDTgGLrZyZW//GKUt8MTaAgE5OLv+8BK0g8tKAyU3mkPzzTx5vvJHKxo0lOBxKt+C4OG/uv78dt94a3qQluE2FJMt8k7SBjXmpJxx3Ubs4Lmnf67Tnnxl/kJf3pLJiXD9Gh578gX7Hxr18cSiL7MuHE+p56mv1Zc4ygtcEI8kSOcNz8NX71tl/wDEJq/wfZuEiOuv+OfmETqeSX7HsD9AZ4NVvYcI1p2yP2zi4B+6ZBDnp4BekREN6D3G3VTU4pTIOOidQznpEvInRzsdHHOdus1RUGo0JOyaw2LIY1xjXOflMOJpTfX6f21d5FpQ5q2q0MWQZhOoiEKcsUeasatRzbdpUzEUXbcfTcymTJ8ezZk0x0dFGZs3qTHn5WHbuHMrtt0ees390oiBwc5chXB7dB1M9iXoBBi9u6jz4jBwRgIXZhWgEGBnse0rjR1VHUP7LOnlFzdF4a735vsf3VMlVnB9//nH7O+sW4MVQrPK/JDtOodmbVgvv/A7v/KHk0Tw2BR64VHFSWiKSBC/eBVf2hNwMRWV2RU6LckSKpb/Y5QymnPWYhPH01uarjohKq2OYzzAAVpesdrMlzUfLibm6E1np4XYyvv02iwUL8vnpp141cuUNkZhYxgsvJLNgQT5Wq5L4GBlpYOrUMGbMiMbX130VME2BKAhcGNWdcRFd2W3JIq+yFEGASC9fuvmGIgpn7mjtLSknytN4ys7aheGKsNrq/GJu6RRxWue6IvgKJgVMYkHhAj5I/4D7291fZ38X7RoSnf0okn8kzWGmve6Tk0867nLloX7HOFj5F4wJURrwtRCpdAB2rIMHL4XiQghvDx//pyTjthAkyUmy62pK5PkI6InWfE+ApmV0/1VRaWwuDbqU51Ke49+CfxntN9rd5jQLqjMCIIOgOfFq1XffZTFtWgKyDA8+WMKQIb7HjcnKsvHii4f444888vMdAAQG6rjzzlCeeaYjkZGtv7xPJ2roFxjVaPNlVdiocEkMq9YPORUCjXp0gsCuorIzOue8XvMIWh3E9IPTuTL4SsKNtTkBoigSq93KXmc3CuRP0Tp9idDOOvmkJh/4eSt89Tq8/xRMHQQ3PQKPvHlGNjYadjs8cS0sm6d45Hc9B/c8716bjqFM2sRB50RcFOFBH7pol6EVz7H8GxWV06C3qTciIhtLNrrblGbj3FwXaGRkThwZ+eWXHG6+WXFEtFqBH3+sLVO1Wp3MmJFEVNQqIiJW89lnmVRVSUyZEsLevUPJzx/Dp5/2aBOOSFPw1SGlXPj6DqfXwTLQoCO1/NQrao5GL+qZ12seTtnJuB3HLwGIopbu2gR0RJIjvUa287VTn/zWJ+DPRAgMg2/egsldoKCeluGyDEt+B+up6aWcEcv/VMTLls2Dzj1hcXqLckQkSSLNcS/7nefhwkqE+Drd9TtUR0SlTeCv8yepIsndZjQbbdIZcUkS63OOUlo8Zpmm6KgM+nnzcpk6dRdH0nydTpkff8xm1qxkunRZi4/Pcl57LZWCAgcTJwawbt1ASkrG8fPPvenWrWWUP57LLMgsRAQmnELi6tF0NHlSbD/z3Iyx/mOZGjKVxIpEXkh+4bj9omigu3YfWoLIkmaQ5zqNDr7tO8OSDLh0GqQdgAui4I8v64756xt45Cp4c/oZX0ODVJTBrWPgocvAYYenP4bfd0HwiQXlmhObdIgEZzQF8sfoaU8P7QFCtY+72ywVlWajs0dnChxtp6dRm6umcUguPt6zqk656ecjA2g/zM6EWUo5qKdGz/Re49i1yslll8XjcsnUd5eOlOI+/ng0F1/cMlQomwKb08GfabuIL8yg1FFFlJcfUzr2J9rUcNO7/cW5zE3eTnZFCX4GTya1iztOa2FFVhJLDu+jxF5JpLcf13bsTwdTXXEo8y8r8NFrybh8xGnZ/OCW/byflEHS5CF0Np9ZZZQkSYSsDcHisJA4JJHOnp2PG+OULCQ4Y3BRcmZ5DBuWKk5BZTkMGgMfLoD8TLiiJ1RVKomvfyRAx+5ndA3H8fsX8Op94KiCvsPhg7/B7Ns4czcSWc5XyJaeBWSChPtpp3vP3SapqDQ7Dyc9zLsZ75IwOIEe3udux2e1mqYB5iZvr+OIdDIHAgL+nh4Yq5u3VbjsPPLVGi6/vGFHZPhwX6qqxrF69aBW7YgAfHtgE/uKc7il61Ce7TeJ7n6hvLN7eZ0I0tEU2Mr4cM9KuvqG8Ey/iYyL6Mp3SZtqFVqBLflp/Ja8nYvaxfF034lEevnyfsKKOnLbBTY7pU4XQwJPrLpaH2NDlYqahadZUXM0oijyX+//kJEZt73+ig2t6E937V5EvEh13Uix9NfpnWTIeFiRB/1GwOYVMDoI7r1IkZYHJWT3biP0fSnIgav7wgt3KFU+b82Fb9a0KEfEKRWwx96LbOkZNPgSq92sOiIqbZaLAhQBxr/yT/Mz5RylTTkjVruNtTmHACXR8pFe43ms9wUIAoztFcWrAy+jgymAPfMMzH3IgMNRvyMCsGNHKXZ7iw8qnTV2l5MdBRlc2aEPXXyCCfYwMbl9L4I9vFmVfaDeY1ZlHyDQ6M3VMf0I8/RhTHhX+gVGsTRzf82YpZmJDA/tyLDQjoR7+XB9p0HoRS3rcw/VjJmTrOTmXBd9evkiAONClGWddQXFp33s0QzwGcC9kfeSUZXBg/sfrHeMXgynm3YnAgYOOS+nVFp5eifx9IQ5q5XlkspySN0PruolJpcTVv0N8bVKoBZbOellljovi6284fn/7xU4PxL2x8PoS2CNBS646vRsbGIKXN+wyxmOjd34ClfRS5uLl9iCqo1UVJqZI1U0q4vbRnlvm6qm2ZSXgqtaW2RMeBe6+AQjy4rDERZm4OvPcvjtO2+2bT5StisjikK9Pc/Ky13891/BOaOUeqZIsoyEjFaom+GrE7UcsubXe0yytYBY37oORHe/MH5N3g6AU3KRXmphYmTt0oMoCMT6hpJsrV0j/etwPgIwOeL0+3p467UYRIGE4hM8pE+R9zq/x/z8+Xxw+ANuDruZfuZ+x40xih2J1W4m0dmfJOf5xGo3nP7DNLZP/ds1Gpj9GHy7FktVRY1Y39HUK9aXdgDuuhAyk8Hsr2ieDBx9ejY1MZJUwQHXRZTJKxHxpKN2Pj7iJHebpaLidrSiFrPGzJ7yPe42pVloU5GRvMpaifB+AUr5aUGBEg5/7LEkHn54P6FBHoy+x87Ix60Mu8/G3XdHMWlSIJ07e2Iw1NUW+e+/1p9cZNTqiDEFsiAjgeKqCiRZYmNeCsnWAkrs9VerWB02zPq61UNmvRGby4Hd5aTMUYWEjKmeMSWO2mWaXcWlhBr1aM9QDC7EqCejwnbygSdBFEWW9l2KgMCF8Rc22J/GU+xJF+0qQGa/cxiV0ml8iJRZFVG0+vRYXC7YuR7Hqr/5K23XcY4IKGJ9mRXFyhtJgtcehEu6QmaK0tBudX6Lc0RKpEXsdAZTJq/Em5HVAmaqI6KicoRoYzQ59nqq7VohbSoycjSu6vUXX18N7dsbueqqEGbM6IC/v46ntqRjqbJj1Ei8N7RW+EmWZfLy7KSmVpKSUkn//o0jTd/SubXrEL5J2sQTm+cjItDO24+BQe1JL7M02TlL7A5KHC7GhJx5GWcXsxfLcixIknTW6rZdvboys8NMXkh5gWn7pvFtj2/rHectDqGT9j8OOi9kn3MgPbT7MIjtT36C92ZATkaDu2Wg5NV72fj0LGjgWubs38gMnR+Bj02FwlwIjoCPF0CXM1O+bSokSSLFNZVi+RcEdLTXfEGg5jZ3m6Wi0uLob+7PrvJd5FTlEGo4/eXqc4k2FRmJ8PKt+XlLfioAOp2G1NSRvPVWVwIC9CSXFtQ0xwr39K1zvCAIhIQYGDzYl2uvDaNz56ZvqNcSCPIw8Wjv8bw/9BpeG3wZM/peiEuWCDTWX7ps1hnrJKKCkq9j1OjQa7R46wyICJTWM8anWk7+2+p8kWvanXly8EB/EzIQf4biZ8fyfMzzdPXsync537GyaGWD43zE84nRzEXGxl5nHHbpFL7ZtO8MHbqB7ihlXkEErdL5WAACcw5zxfyfEIDuvqGcHxFLv8Ao9KIW0elkyv/NJuDWcchF+YqeydLDLc4RKZe2s8sZQrH8C0Z6EKc9rDoiKioNcL6/0pbiz/w/3WxJ09OmnJFBwdHoqgVFVmcfZHtBep39Fls53yVtqnk/IqxTs9rX0jFotPjoPSh32NlblE3vo9qtH02MOZDE4roP4H3FOcSYldwPraihncmffcW5NfslWSbxqDF/HlbyUa6MOvOcnPFhSunxouwzr6g5luV9l6MVtFy681Lskr3BcX6aK2iv+QqJMvY6u+OUik888Q0PwZ97YUsl/JcCnyyEx9+BK26nqu9wKo1K19fxyxYwKyWLB+PGcFVMP+7sNoLXXF688+TdDNq6gZyQMHZ+uwoeOg0htmYiwzmdROcAXFgIE1+ghz4Bvdi6K9FUVM6GiwMvBmB50XI3W9L0tKllGk+tnnHhXVl4eC8SMp/tW0s7b386+wRRZKtgpyWzJsE1xMPEgMB2bra4ZbCnKAtZhlBPM3mVpfyesoNQTzPDqnVD5qXEU2yv4JauQwEYFdaZlVlJ/J6yg2EhMSQW57ItP5374kbVzDk+IpY5+zcQbfIn2hTAssz92CVnjRbJjqJSgg069Noz95ePNNbbWFByxnMcS7gxnLc6vcVDBx7iil1X8E+fhrv3Bmqm4aKEw66H2OPsRk/tIUTR88QnEEWIiFZewyYAsCA1noUZezEVF/HAqhW0e+sx2LwSZn4Kf32L10czkQWRX6+YyrJxFxErVNGnsS64EaiS0khyjsFOCjoi6KJdjlHs4m6zVFRaPCatCaNoJL4s3t2mNDltyhkBuDS6F5aqcjbnpwHUlEYeTYDBi/t7jEavaXO3p14qnQ7mpe6kuKoCT62efoFRXBbdG0117kKJvbJmaQsg0OjNfT1GMzd5O8sz9+Nr8OTGLoPp4Ver8DkwqD1lDht/pe3CarcR6e3HAz3GYNZ7UOF0YrE7mRTesKjaqaAVRTw1IvtKzr6i5mgebPcg3+V8x7+F/zI/bz6XBV/W4NgQzYO4ZCvZ0rMkOLsTp01CFE+vSWJehZJ4Xerrh/Glr+Him2HmNLiwgyIbf+N0uOs5Nu5aCE57nURtd5PjnE2m9ATgIlC4kyjNx+dsd2oVFXcQaYjksO2wu81octrc01YURG7pOpRufmEsz9xPRnlt7w8vrYFhoTFcENHtuEqPtsyAoPYMCGo4CXNa1+NbzB8RPDsRY8K7Mia863Hbf0xVlm+ujDr7EH64h4GsyqqznudYlvZZSsjaEKbumUqefx7e2oal/8O1M3E5S8iTZrPX2Zvu2j2n9UA+ukO0U5Jg9GT4ZTtMGwnPfAwjL0KWpZqonsCJO0o3B06pmCTnOCrZjgZfOmkX4C0e/3eioqJyYnp59+Jg5UEqnBV4ak8SWT2HaXPOCCiaFkNDYhgS3IE8WylWuw29qCXcy6cmp0TFffyengfAtdFnr+HSzceLg2WVOCXpjEuE68NX78uX3b7kxr03Mil+EqsHnFiYKEr7Fi5HMYXylyQ6BxGr3XzKDkmkly/bqvObNuencplXbwhvD4vTasbsKszEVi2UFnlUorY7sLh+ItV1CzJV+AiXEqP5DVFskx81KipnzWjf0fyR/wf/Wf7jyuAr3W1Ok9Gm46WCIBDiYaazTzDtTf6qI9JC2GaxEqDX4qk9+wfYedVS8mvzis96rmO5IewGRvuOZk3JGr7O/Pqk46N1X+ArXEUl2zjgql9evj6GhsQgVkc7lhzex25LZp39WeXF/Jy8rea9uxKvJclOkmMCKa6pgECM5g866earjoiKyllwefDlACwqXORmS5qWNu2MqLQ87E6J/CoH/fwbR8NlQpiiU7Ikp2k0Uf7t/S+eoid37b8Li/3k5+iom4tJuIAyeSUHHZee0jl8DZ41DoZTlvhwzypm7VjITwe38n7CCl7cvqCmT1C0KYAefmFnfkFnSKm0kp3OQErlxXgxhF7afPw0lze7HSoqrY1IYyQ6QcdW61Z3m9KkqM6ISovi13QlX+SyyKBGma+vnwkB2FxobZT5jsVT68kvPX/BLtsZt+PUoh1ddIvwYggl8l+kOG48pWOuielHn6NKqVPLLKzMTmJPUTZHOiSFe/pwT/eRiPWpuDYRkiSR4riZJOcYJCqJ0nxErH49WrHhHBoVFZXTI1gfTHJlsrvNaFJaVfz077Rd/JOeUGdbiIeZFwdc3OAx2/LT+TNtF4W2MoI9TFzRoQ89/SNq9suyzN9pu1mTc5BKl4OO5kCmdhpIiEfbUF9tbuZWOyM3dGicb/eiKGLSaUiy1t9huDG4OPBiLg28lD8L/mR22mweaf9Izb7sqmxcsotIY11Nli7atexz9sEif4/G4Us73QcnPIdW1HBnt+Gsz01hRdZ+DpcX1+zz0yuRk3HhXTFWi6Q1BxVSAgec43GSi4EudNGuQC+Gn/xAFRWV06KbVzeWWpY2ipp0S6VVOSOgfDt8qOfYmvcaoeHKgkPWfL5IXMdlHXrTyz+CzXmpfLJ3DU/3vbBGrXXR4X0sz9rPtK5DCDR68VfqLt5PWMHz/S9Wc0yagM2FVnx1Wsz6xvvTjPQ0cqi06ZwRgN96/kbg6kCeOPgEV4dcTZQhii+yvuDBpAfpa+rLugHr6owXRZFu2u3sccaSL3+IxmkmQvvKCc8hCqLS6TgkhgJbGaWOKowaLSGeZjTNGA0ByHTOIEd6HYBQ8amT2q6ionLmjPAZwVLLUtaWrGWk30h3m9MktDoXSxQEfPQeNS9vXcMlussy99PDP4wJkd0J8/Th0ujetPP2Y2VWEqBERZZlJjKpXRx9AiKJ9PLjlq5DKK6qJL6g4T4iKmeGU5LItdnp7de4If44Hy+qJJlyh7NR5z0arajln97/4MLFqG2jmBQ/if8l/o9KqZK95XvrPUYUtfTQJqAjghzpVXKcb5zSuQRBIMjDRIw5kHAv32Z1ROxSJgn2LuRIr6ElhO7a3aojoqLSxFwSdAkA/xQ0LLJ4rtPqnJG8ylIe3zSPp7f8yZeJ67DYGha8Si6tv9V9cqnSjbfAVo7VYaPbUWM8tHo6mAJrxqg0HvMz8pGBSyIaJ1/kCMOCfAFY1kRJrEcY7jecUb6jSLWlsshSm/le7CzG6rRisZXXiOyll1mw2MoRRSPdtXvREEim9AT5rs+a1MazIc/1Ebud0VRxgABhGj21mXiIPdxtlopKq6e3d29ERDaUbHC3KU1Gq1qm6WAKZFqXIYR4miixV/JPWgJv7lrCc/0uqnct3Wq3YT4mcmLWGSmpbuBmdVQq2+prdW8/+9b0KnX5JV3pZzMtpnGrQS6s7lGzPLeISxpBSK0+LA4LdyfezariVQDINWmlCtuLE5ibmI6zWpgMQCuIvDRgMv5GM3Hafex2diLddRcazPhrrmsSO88Ep2TlgPMCKtiEiJlO2j8xiaPdbZaKSptBEAT8df4kVSS525Qmo1U5I3H+tclzkV5+dDAFMmPzn2wtSGd4aEc3WqZyKmzIt2LWavA3np5c+sno4uOFCGyzNI1MekJZAmO3j8XiaDjysq98P07ZUGebU5Yoc1axKSOVHQUZFFa9wwVdX8BuuI0gWU8nrxMLHDVH8nWRax4prqnI2DALF9JR8+dpy9mrqKicPZ09OrPJuunkA89RWt0yzdF4avWEeJjIb6BXh1lvxOo4po29w4ZPdSTErFM6pVrra3WvysU3KpIkkVVZRZxv05SE+uq1TZbEmm/Px+psuHRYg4a0qpQG9yeV5DE6vAuP9Lyczto/qHKZyJZvp9CxosFjjiRfDwuN4Zl+E+kTEMkne9eQeVSVzZHk6+s7D+LJPhdgELW8n7ACh+Q66TVJkpODjskku64AZDpofqaz7j/VEVFRcRODfQYjIbGvbJ+7TWkSWrUzYnM5yLeV4aP3qHd/jKmeVvdFOcSYlDb2gUYvzDpjnTGVTgcppQU1Y1QahwVZhcjAxRFNc1/bexkpqHI0ydxj/MdwaOghbgq7CQEBjXB8lVWaLbXB4x+MG8PQkBjCvXyJMfWju+EfHJKBQ65JlEv1Cx01ZfJ1qbSOXc5ASuR/8KA/vbQ5+GumnPoNUVFRaXQmBii9vubnz3evIU1Eq3JGfkveTlJxLgW2Mg5Z8/l07xpEBAZWN3n7ev965qXE14wfF9GVPUXZLDm8j5yKEv5O20VamYXR4Up7c0EQGBcRy4KMBHYWHiazvJivkzbga/CgT2CUOy6x1fJTmuLw3dLI+SJH6O1rwiHLFNjsTTJ/hDGCr7p/RfygeEb5jgJArP7v5cLF5uL4eo+rctZT4eOK5d99MxBwsd85jEqp7jehIuk3NMav6iRfW2zlRHj5klicS3qZhUMl+aedfC1JEmmO/5HkHI6LMiLF2XTXb0Ur+p7GnVBRUWkKxvopkhVrSta42ZKmoVXljBRVVfDF/vWUO6rw1hnoZA7iyT4X1HTgtVRV1Olo2tEcxO1dh/Fn2k7mp+4k2MPE3d1H1GiMAEyI7Ibd5eT7A5upcNrp5BPEAz3GqBojjcy6vBK8tBpCPZtm+WtEsC9zUrJZlFXI9U3k8AD0MvViWb9lLCpcxENJD5FYkQhAmiMR6lnh+DppA9N7jSPQqCxPSbLMr8nbCDF2p4v+bw46J7LP2Z84bSJ6sR15ro/JcN1Lr3ARueQhQHFEZm79uyY59pUdC9FU/52favK1TdpPknMsDrLQE0NX7Qr0YrvGui0qKipniVbUYtaY2VO2x92mNAmtyhm5o9vwE+5/pNf447b1D2pH/6CGP3QFQeCS6F5cEt3rrO1TqR9JksiosNG/kfrR1MfEcKWiZlV+UZM6I0eYEDCBbzou4LG9s1jj+hIXDirJo6e5B5VOB5kVxQAUVpXzfsIKnup7IUaNjp8ObiGrvITHep+Pj+hJB82vpLiuYY8zjmDxQXKklwEQBQlJtxroRZmzqk6VDoDrmGqeE5HlfJFs6QVAJlicTpR2diPdBRUVlcakvbE9+yv2u9uMJqFVOSMq5yYr8oqRgEkRAU12jjBPI1pBIN5S1mTnOBqpupIlVjOaSHqyQH6BA8Zf+KrnGrSilszyYj7bt4bcylJyK0vZkJtMToWV3ZYsHu09Hj+DJwD+mqtwyZ+TLt1R44go84s4NIuA+05oh5Js7VHnfZS3LwB2KY8DzjHY2IuWIDprF+Mp9mnsW6GiotJI9Df3Z3f5bnKrcgkxhLjbnEbljHJGPvroI6KjozEajQwePJjNmzefcHxxcTH33nsvYWFhGAwGunTpwoIFC87IYJXWx/cp2QDc0rFp+5oEGHSklFc26TmOsL84lzyb4vj08+/G333ms9m6mTfT3wQgwsuX22OH1Yz/K2038YWHebjX2JolGwBZlqhk13Hzi4KERrccWW5YVdZLa2gw+Trf9SUJzkhs7MVPuI6e2hzVEVFRaeGc738+AH8W/OlmSxqf03ZGfvnlF6ZPn85zzz3H9u3b6d27NxMmTCAvL6/e8Xa7nfPPP5/U1FR+++039u/fz//93/8RERFR73iVtsfqvGI8NCLtveqvemosYrw8KLI3TUXNsaSUFtb8PDQkhuF+w3ms/WM8c+gZ3kl7h0pXJe28/Yny8gOgwmnnps6DMWp0lNgrKbFXUuWsIs15G/lS/U30tJoKVub9SIGt/mjPoOD2xyVf++l1ePveRLrrdgT0dNIuJkb3Y6ttvqWi0pq4OFBp+rrcstzNljQ+p71M8/bbb3PHHXdwyy23APDpp5/y77//8tVXX/Hkk08eN/6rr77CYrGwfv16dDpFBTU6OvrsrFZpVaSVV9KrifRFjqavvzcbCktIK69scsfHdVQOh6dWyVydGT2T9zPeZ/rB6cxMnkmkMZIwuRcx8kS0goH396ysM8etPfei9ZzT4DlkWUOe8w/mHqi/U++Q4A54avQ1yddxgRYu7fUkFZRiEsbSSfMvoqjq5aionCuYtWaMopH4snh3m9LonNbXIbvdzrZt2xg/vjYRVBRFxo8fz4YN9Wvm//XXXwwZMoR7772XkJAQ4uLiePXVV3G5GhZeqqqqwmq11nmptE7W5RXhkmFCWNPlixxhdIg/AP9lFp5k5NnjX53zAbCnSFmG8tJ6UTSqiMTzEnkg6gHSbemsrJzLV45b+dHxAF4h23h58Pl8NmIqn42YSl+fOwkU70DEVD1T3QouQXDRKWAbkUdVfx1NcVUFl0T34vVBlzB98G8MirkXjVhFe803dNEtUx0RFZVzkAhDBBm21teo9bSckYKCAlwuFyEhdRNnQkJCyMnJqfeY5ORkfvvtN1wuFwsWLGDmzJnMnj2bl19+ud7xALNmzcLHx6fmFRWlanq0Vr5LOaIv0rT5IgAXhCnOyNr84iY/V7/AKPTV5d/rcg6RYlW0PQyiga5eXXm54yt8GrGCSdoniRDisFPGOxlvE7wmmKi1UTyc9DDFDgPttZ/TW5dHjHYuPsJEFIektjwd8TDFzvpL/b7cv4HEksXscoZQLP+OB73opc0kUHNTE1+9iopKU9HLuxcVUgUVzqZRlHYXTb5QLEkSwcHBfP755/Tv358pU6bw9NNP8+mnnzZ4zIwZMygpKal5ZWS0Pi9QRWFFbhEGUaCLj1eTn8tHr0MvCuwubvqKGg+tnuGhnQClB81bu5bybdImtuansTIriVnxC1mXe4hIsSeX6J8m7bw8lvZZygT/CRQ6Cnk3411C1oQQuSaSh5OeoMoxnE66v+mtyyFK8wGSs7Zb7uiYTwgweDEwsB09/cJrnKD+kV9SZpyASy4mXJxFd/1OtKKqHKyici4zxncMAP9Z/nOzJY3LaeWMBAYGotFoyM3NrbM9NzeX0NDQeo8JCwtDp9Oh0dSGmLt160ZOTg52ux29/nglKIPBgMFgOG67SusjpaySWLPnyQc2EsFGPenlzdNx+YoOfThcXkRSSR5OWWJd7iHW5R6qM0ZA4OYugwn1NBPqOY5xAeMAWFG0gjfT3mRV0SreP/w+7x9+nzB9GFcGX8kT7Z7kzz1R2NnPhC5vE2JK5uH++QRpLgWgyJ7EXscIjLo8SqsCsFq+pn/7yc1yzSoqKk3LZcGX8cCBB1hcuJgrg0/cTPNc4rQiI3q9nv79+7Ns2bKabZIksWzZMoYMGVLvMcOGDePgwYNIUm1CX1JSEmFhYfU6IiqtG1muFeOKt5TikGXGNUO+yBE6eXtS4nDWsaOp0IkaHogbw/kRsRg1xyeZRnn5cX/cKAYHdzhu3xi/MSzos4DyMeWs6reKiwIuwuq08uHhD4laH8k71pv5t3Qxqw69TZB4N+mu/2Fx/YJVWkIqgzDq8tmTcwE/xb/Pqiw70jGiaCoqKucmUcYotIKWrdb6+1adq5x2Nc306dO5+eabGTBgAIMGDeLdd9+lvLy8prrmpptuIiIiglmzZgFw99138+GHH/Lggw9y//33c+DAAV599VUeeOCBxr0SlRbPy7uTeWtfGiOC/RgT4sfmghKg6frR1MeAABMr84rYU1xGnJ/p5AecJTpRw1Ux/bi4fU92FWZSVFWBVhSJMQUSbQpAEISTzjHSbyQj/UYCsK5oHY/uf4at5RvYKy9lb9FS/m9DCNMiO3JhyLV4a8GbMbTXfs5aawaQTZmzCqvdhq+h+SJQKioqTUeIPoRkW7K7zWhUTtsZmTJlCvn5+Tz77LPk5OTQp08fFi5cWJPUmp6eXkezICoqikWLFvHwww/Tq1cvIiIiePDBB3niiSca7ypUzgkEQaDE4WJBZgELMgs48l398R0HGBPiz6gQP/r7m9A1oebFuFB/3tqXzsJsS7M4I0cwanQMCo4+63mG+Q3jpahPmJu8nVwpCYvHOnZUbOS15FzeSoEe3kYGmTrydLQOzVGOTtPHgVRUVJqLbp7dWFa0DEmSWo1GkCA3R7z6LLFarfj4+FBSUoLZ3HT9S1SalhU5FsYu237cdgEQBJBkuCoqmLkjm64PUJXThfGXFVweFcQfI3s32XmakgRLFh9Ua5L08o/g3h6j2FSyiddSZ7GsaDmlrlIAPDDTXujHefqr+WLoXWhayYeWikpb5/nk53kh5QVW91vNCL8R7jbnhJzq81v9dFJpNgYGmOv9g5NRHBGAa9o3bb8Fg1aDh0Zkb3F5k56nKenmF4qfXlly2WXJZGNuCoN9BjOv93yso61s6L+JvoZROHGQKK9kTtW9hK0N5da9t3Ko4tBJZldRUWnpXBqoJKv/U/CPmy1pPNTIiEqz0uvfjQ2W1r7cuyNPxx2fzNnYxMxfS36Vg9IpY85qnr/TdvFPekKdbSEeZl4ccHGDx2zLT+fPtF0U2soI9jBxRYc+9PSvbY0gVzfYW5NzkEqXg47mQKZ2GkiIR92/++WZ+/kleVvN+47mQOL8Iqh02dmcl0qxXenBU0waFd6bWFOykhKXkqMTqAvkosCLeDr6aTp7dj6re6CiotL8SJKEdoWW4T7DWT1gtbvNOSGn+vxWu/aqNBsWWzn9/DzYV1KG8ygXWASmRofyVI/oZrEj1uxFSnZho6y3hnv68FDPsTXvNSdISD1kzeeLxHVc1qE3vfwj2JyXyid71/B03wuJqFZRXXR4H8uz9jOt6xACjV78lbqL9xNW8Hz/i9GJteXxY8K7kF1Rwuqcg9VzF3CoWljtCFpB5OluN9ErYAYA8aXxvJr6KosLF/NN9jd8k/0NAdoALgq8iKein6KrV9ezuhcqKirNgyiK+Ov8SapIcrcpjYa6TKPSLFhs5czc+jcZ1oN1HBGNAOcF+vDFed1PqbKkMRgc6APAxoKzbzMgCgI+eo+al7euYYn1ZZn76eEfxoTI7oR5+nBpdG/aefuxMkv5QJFlmWWZiUxqF0efgEgivfy4pesQiqsqiS+oK/wnCAJTOw3kps6DCff0qbsPgd7+ETze+wJ6BdRGXfqY+vBrz18pHl3MzkE7uTb4Wly4+DbnW2I3xhKwKoAb9tzAvrJ9Z31fVFRUmpbOHp0pcBScfOA5ghoZUWkWypxVOGWJEMPRXXNlQo0G/hzVG4Om+fziC8L8eX53MotzChka7HtWc+VVlvL4pnnoqst1L4/ug7+xfjXZ5NICxkfE1tnW3S+MnYWHASiwlWN12OjmWysg6KHV08EUSHJpAQOPqcYRBIFhoR0ZGhJDelkRhVVlaASRKG8//A0nVrTtZerFTz1/AiChNIFX015lYeFCfsj5gR9yfsBP68fEgIk8Ff0UPbx7nHAuFRWV5mewz2A2WjeSWJZIrHfsyQ9o4aiREZUm52BJHj8e2AKAt0ZCKyhFvRoBXujhS6CxecXvBgco65abzjIy0sEUyLQuQ3ggbjRTOw2kwFbOm7uWYHM66h1vtdswHxM5MeuMlNgVRVirQ8nzMOuPGaOvHVMfgiDQ3uRPv8B29A6IPKkjcixxpjh+jPsRyygLewfv5frQ6xEQ+DH3R+I2xeG3yo/rdl9HQmnCySdTUVFpFiYGTARgfsF89xrSSKjOiEqTsikvhdm7lpFSpnTKFYQjvWdlJgQUszkvgX/SdjerTaIo4q3VsN96dhU1cf7h9A9qR6SXHz38wrk/bjQVTgdbC9IbydLmp5t3N77v8T2FowpJPC+Rm0JvQoOGn/N+pufmnvit8uOa3dewq3SXu01VUWnTjPNTWkesKV7jZksaB9UZUWky0kotzEnaiFQtueWr92BISAf89CIRBheRnkoE4e/03WzLb94HeKSngRybvVHn9NTqCfEwkV9ZWu9+s96I1VE3wmF12PCpjoSYdR7KtmOiIFZ77Zj/b+++w6MqsweOf6dkMumF9EZICElIaKF3kChi7+ja19Vdy+rKz13Fxtpd2+7ad3Et66qoqNgQlSolUhJCTQHSe6+TyWRm7u+PwEAggSQkmZTzeZ55JHfeO/fMNcmcvOW8fSnaJZoP4j6gYm4FmdMzuSXwFrQqLZ+Xfc64HePw3OjJ1XuvJrU+tc9jE2Ko06q1uGncONDY/q7dA43MGRG95ufCNKxHV47PCojkNyMnYzBbuW3XRt6aHM9wpzq+zE4F4If8AyT4hPbZJNbRHi6k1xkwms3otT3zY2C0tFBubGCazqnd5yPcfEivKWkzbyStuoQIt9addH30Lrg76EmvKcHVwZEvs1PZX1WIwdJChbGeqX4jCHfreB+fjJpSPs9KodhQi5ejMxeExTPDP6JNmw1FmfxckEatqYkQVy+ujZzICLcz7+Qb5RzFe6PfA+CI4QjP5DzDdxXfsbJ8JSvLV+KucSfRO5Glw5cyyWPSGV9PCHH2wvXhZBgy7B1Gj5CeEdErGltMpBxdAeLm4Mi1kZPQqNRsLa/BqsA8fy8Whowm3NUbgPzGavIbq/ssvhk+ngBsKKvp9muszEohs6aUCmMDR+rKefvgZtSomOw7HID3Mrbx1dFkC2BBcDQHqov5uSCNEkMt3+buJbehinlBo4DWuR8LgmP4Pm8/z6T8gNFiJtjFEy9HZ34zcjIu2o7n1lQYG3j9wEaiPf15NGERC4Kj+TBzOweqi2xtdpbnsjIrhQvD4nlkwiJCXDx5df+GU3piziTSOZJ3R79L2ZwysqZn8bug36FX6/my/Esm75qM+0Z3Lt9zOTtrd3bpdYUQXZPgnoBJMVFmKrN3KGdNkhHRKyqbG7Ac3Sl2jHewrUbGCwdycdKoiXJrrSCa4BNmO6fEcPZLbTvr/KDWHob1JVXdfo3qZgPvZGxj2a7v+HfaFly0Oh4afx5uR4dUqpoN1B4tPgYQ6e7L76JnsrnkME+l/EBKRT53jp5tqzECsDAklkBnDwwWEweri9Co1dwffw5jh4Xg69TxXjqbig/ho3fl6ogEAp09mB8UTYJPKGsLj//VtLYwnVkBkcwMiCTIxYPrR05Bp9ayrbT7VVlHOI9geexySueUkjMjh9uDbsdZ48yqilVM2TUFt41uXLbnMrbXbu/2NYQQ7TvX61wAvi7/2s6RnD0ZphG9znpCkV9fvQNGi5X0OgOxHi5YTniubwZoWsV5uqICdlW2P7+jM26PnXXa5/9vbOIpxyb6hjHRN6yd1q1UKhVNZhPzAkdRbTJwqLaM5elbmRsYxezAkR2el1VXQcwJS4KhddnwZ1mtewGZrRby6qtYFDLa9rxapSLGM4Csup6pVTDcaTj/jv03/+bf5BnzeC77OVZVrOLriq/5uuJrXDQuzPecz0PDH2Km18weuaYQQ9nFvhcDsL5qPbcH327naM6O9IyIXuGrd0Orav322ltVQLPFDMB/Z8QT5uzI/ckZKIrCzvIc2zlBJ/QQ9AUPBy2H6g19es3OKDc2sKn4EH5ObtwbP585gVF8mpVMUmnHW4bXtRjbXRJstLRgsphpaGnGimLrtTmxTW1L14ZpOiNMH8ZbsW9RPLuY/Jn53Bl8J+4ad76r/I5ZKbNw3eDKRakXsaV6S49fW4ihwl3rjl6tJ7Uh1d6hnDVJRkSvcNI62OZOGMwt/DfzV0wWM44aNbdGBvNjcRX3bP+VIkPrfikj3Ia1Ga7oC2Euesqbe3ZFTU9QgDBXby4PH0+YqzdzAkcyKyCSTcWH7B1at4ToQ3gz5k2KZhdROLOQe0LuwV3rzveV3zM7ZTYuG1y4IPUCNlZv7PRrflD8Af8r/l/vBS3EABHsGEyeceCWEzhGkhHRa84LibXNFdlVkcfSHV/zv0M7iHSqQKNSeCerHmvrtBIuDIvv8/jGeLpisirUmPpXQuKh0xN4Uon3QCcPqps77sVxd9C3uyRYr3FAp9Hi6uCIGhX17S0bPk0J+54WpA/itejXKJpdRPGsYu4NvRcvrRc/VP7A/JT5OG9w5vzd57O+an2Hr9FsbeaejHu48eCNvJb/WoftqoyN5DVUtXlUGQfubs1CtGeMyxgMVgNGc8/3cPYlSUZErwly8eT2mJm2hKTB3MzmksNsLjnMWNdGTIqaPfVOLI6Y2Gbn2r4y+2gp+J+Kuz+JtTdEuvtS2tR2Mm9pU91pK6tGuLcuGz5RWk0JEe6ty3a1ag1hbt6k1ZTanrcqCukntOlrAY4B/HPUPymYXUDxrGL+FPonhjkM48eqH1mwewHOG5xZuHshP1f+3Oa8dVXraLC07vx8b+a9vJr/6imvfWwvpGd2r2nzeGzXt5KQiEFlvlfr7uM/VP1g50jOjiQjoleNGxbCQ+PPY7LvcDSq499ukzwMOKphX707cwLts439oqDWD+GNpX23pLgzEoNjyKqvYHXeAcqa6tlRlsPmksPMCzp+n77KTuW9jG22r+cGRlFhbOCL7N2UGGrZWJRJcnkeicHRbV53S8lhkkqzKDbU8vHhnZis5lNqkdhDgGMAfx/1d/Jn5VM6u5QloUvwcfDhp6qfOC/1PJw2OHFuyrmsqVzDZ6WfoVUdn3t/X+Z9/DPvn7avW6wWVucfwHx0NdeJzIq1T5eQC9HbLvO7DIAfK3+0byBnSaUoJyxn6Kfq6urw8PCgtrYWd3d3e4cjuqmhpZkSQx0KCj56Vz7KqeCPuzL5U3Qof59kn+3rtR+vZbK3B0nnT7bL9Tuyt7KQr3JSKWuqx0fvSmJwTJvVNO9nJFHZ3Nhmxc6JRc88HZ25sN2iZxn8VJBGncnYWvQsYiIj7NQz0hkVpgpeyH2BT0s/Ja/59OPif4/6O3cF38Or+zdyqK7jugsuWh3/Nzaxz+coCdFbHNY7MNZ1LMlTku0dyik6+/ktyYiwK7+Vm6gxmam5Zi7OPVQJtavXV6mg9Mq5fX5t0TVVpip+n/57Vpav7LDNtZ734m6Yavs62sOfEBdPakxNHKguwnh0VZeXozNPTLwIR41UNxADX/DmYAxWA9Vz+1+vX2c/v2WYRtjV65OjaVEUfr8j3S7XD3dxoqrZbJdri67x1nnjqnVtM0RzshU1r7Kx5d84arQ8NP48loxdwDWRE7kjdhbPTr6U4Ucr/lY3G9osKxdiIIt1iaXWXIvVeurQ5EAhyYiwq2uGBzDcRc/H2SVU9vDGdZ0x3tsVs6JQZBjYM9GHghZrC1+WfYlZOX3ymKls4lPT/bxf/hr7GvbZfkG7ODjym5HHh+O2lHS/8qwQ/cksz1koKGyr3Xbmxv2U9FGKbttUdIhNxYeobG5d2RDo7MFFYWOI9w7q8Jzk8jy+zt1LpbEBPyc3rhgxnnenjWbBuhRuSjrAd/PG823uPjaXHKbJ0kKkuw+/GTkZf6feGZ6b6+fF8sNF/FBUyW0j+35Fj+i8LTVbqLO0XWWkRk2wYzAxzjFYTR7UN2lppJpoT0/+mf9Pnsx+Er1az2Phj/HwiIcJdxuGl86ZapOBsg52VxZioLnE5xKeyH6itaig1+krQ/dXkoyIbvN0dOLyEePwc3IDBZLKsnnz4C88OuH8dqupHqkr5530rVw2YhxjvYPZUZbDWwc388iE84n3cOGHoko+OrKXXWWZzAlO4D9Z1WSW1FJh3MBfJ15kWyLckxYFtu5Rs7msRpKRfi7GJYYHwh4g0DGQKKcoopyjiHCKQKdu3UDwg8xf2Xa0Su1DkecR5OLGN+XfsOTQEh7NehQFhYeGP2TbM0nVpxsQCNF7xruOR4WKpNoke4fSbTJMI7pt3LAQxngH4+/kjr+zO5eFj8NRoyWrvrLd9usKM4jzDmRhyGgCnT24NHwcYa5ebCzK5H8z41GA5w7kk2YI5qot2awuqqHQqKe6uYm1hem9UrjKW6/DQaVib438ldzfBToG8mLUiywJW8LFvhcT4xJjS0SANqtjdpbl4qh25Gr/q8mdmcvjIx7n0axHCdoSQlFz4SnthRjI1Go13lpvMgwZZ27cT0kyInqEVbGysywHk8VMhFv7S0Wz6tvfzC2rvoJgJ0cC9VoONjiyttTAsSVeRYZ6LIqVVTl7eq1wlY/egdxGmTMy0E3zG2HbD2lj8SF2V+QDoFap+WvEX1kS8iBlLSWsMC8hz5p62o0HhRhoRjqPpMLUM5te2oMM04izUthYw99Sf6LFasFRo+UPo2cT5OLRbts6kxH3k0qPO6h0rCmx8nzmFowWK6DixPngFuXUrnSzYqXB3Iw3HVck7YqRrs5sLa/pkdcS9uPq4Mj8oGh+LkzDolh5O20zYa5ejHT3pcLYiKFqHOdr/8xP5r+zxvwi42o0TPZ9zt5hC9EjprpPZXvddjINmYxyHmXvcLpMekbEWfF3cuPRhEU8NH4hcwOjeD/jV4oaazt9/r27S9lWrcdgsdLeorS+WKg20dsNK5BRK2XCB7rLR4xjkk+Y7eu8hmrWF2Wyt6oQKwph6vH80W05AbpA/pb3PHN2zcFslaXdYuBb5LMIgFVlq+wbSDdJMiLOilatwc/JjeFu3lw+Yjwhrp6sL2p/3NJdp6fupO3qLwjUo1EpaDqYS9hez0hPmx/gBcCXeUWyqdoAp1GpuS1mJreMmkaoi1eb59wd9FwQGsczE35D4cwCzvM+j821mwnaEkROU459AhaihyR6tVZj3lSzyc6RdI8M04gepShgtlrafS7CrXUzt8TgGNuxIF0tz8a78WEeHKht5ORywNY+qA+cGNBaCOs/hzPJqTneq6NVqXlq0sV463tmOEj0DbVKxXT/CKb5jaDC2EBdixFHjZZAJw806uN/f/044UeeyX6Gx7IeIyopis/iP+Nyv8vtGLkQ3adVa3HTuHGg8YC9Q+kW6RkR3fZVdiqZtWVUGBsobKw5+nUpU/zCAXgvYxtfZafa2i8IjuZAdTE/F6RRYqjl29y95DZUcX1kLLsWTWVJbGv3uuqElMTaB8svnbVaHNUqKk1tfxyOzU0RA5NKpcLXyY1Id19CXLzaJCLHPDLiEdYnrEer0nLFviu4P/N+O0QqRM8Yrh9OcXOxvcPoFukZEd1W32Lk/Ywkak1NOGkdCHbx5N74+Yz2CgSgqtnQppZDpLsvv4ueyde5e1iVswc/JzfuHD3btsTypYRRLAwcxtWbU6ltaZ3MaumgZ6Sj3pfu8nHUUmbs2dcUA8M8r3nkzsxlys4p/CP/H2yr2camhE3otfoznitEf5LglsD+xv1UmCrw0fXfDTDbI8mI6LabRk077fMn7ih7zETfMCb6hrXTutW5gcPYfO5YLtu4iyyDAwpgtcLJf9R+lpXCkjEL0PXQRmcRrnoKm0ztXksMfn46P7KmZ3HFviv4uuJrgrcGs23SNqJd7LObtBDdca73ufy35L98Xf41twXfZu9wukSSEdGvNFvMfHRoKwuGGVAp7hxp0uPgEMQ8fzfyG6vJrG3dGj67vpIVR3adMSHqrHGezmwur6eyRYuvo6yu6I9+yD/A7op8Sprq0Kk1RLj7ckX4eAKcT79VQHtbEIzxPl5tV1EU2xYEIZbruNF1PB81PE3cr3H8d/R/+U3gb3r7rQnRIy72uRiAddXrBlwyIn8Din5lR1kO1c0GVCq4NVzLHD8PNlc5cuWIBP5vbCIPjjsPR3VrDp1Umk11s6FHrjvbt/UDLd+oO0NLYS+ZtWXMCxrFQ+PO4774c7BYrfxz/3qaLR0nj8e2IJgZEMGjCYsYPyyEtw5uprCxxtbmx4I01hdlcH3UFB4afx7TXOdzh8vrOKr1XH/wev6Q9oc+eHdCnD0PBw/0aj2763fbO5Quk2RE9CtbS4/vpHpD1BRemDCK/bWNfJxTAkCEuw8Lglu7zq0o/FqW3SPXnTTMBVAoa5bOwv7qvvj5zPCPIMjFk1BXL24ZNY2qZgO5DVUdnnO6LQigtVdkXWE6F4TFM35YCCEuXtwaPR212ZPvYpIY6TSSfxX9i/Hbx2Mw90ziK0RvCtIFkW/Mt3cYXSbJiOhXSo/upOrl6MxwN2+m+ngww9eD27cfpLGl9S/gCT6hp7Q/W1q1Gq1KocYsychA0WRpAcBF23Fv1um2IACoMDZS12Ik9oQ2TlodI9x8KDM0kzEtg2v9rmVPwx6CtgSxv35/L7wTIXrOWNexNFobMZoH1hYXkoyIfuXY6huL1YqitC6luT86jGarwk/FrRvwHdt1FXruG7jZbMZZY8VgkR+JgcCqKHyWlUyku+9pN7xrbwsCdwc9tabWX9R1LU2tx3QntdG1tlGr1Xwy5hPejH6Teks943aM4z+F/+nZNyNED5rnNQ+AH6t+tGscXSW/eUW/Enx0X5u6FqNtsuqVYX6McHXi+6LWZGRHWa6tfdBZ7ryqKApr8g/w6oENeGnNmBUV1hNq0H+ZnYrBbDqra4ie98nhnRQ11nJ7zMw+ud6dIXeyc/JOnDXO/C79d9x04KY+ua4QXXWZ32UArKlcY99AukiSEdGvzA44vpPq/w7voLypAZVKRbyHC+8dKSKpJJeNxa3j/Q5qDdP8RnT7Woqi8HlWCl/l7MFkteDnaAZUFDc72Nqk1ZTwyt51NJlbun0d0bM+ObyTfVVFLBm7AC9H59O2bW8LgroWIx5He0LcHZxaj5lOamM63uaYBPcEimcVM9plNB+WfEhsUix15rqzfTtC9Kjh+uFoVVp21u+0dyhdIsmI6FcSfEIJcm7tHSlrqufx5G958+AvhOkNWIH7klOwHh2+mRc4ClcHx25f62BNMeuO7qOjAs47Whbe12UEcwNGoj9awyS/sZpVOandvo7oGYqi8MnhnaRWFnD/2HPw0bue8ZxjWxCcKK26hAi31oJQPnoX3B30bdo0mVvIrq+wtTmRq9aVA9MOcEvgLaQb0gneEsyu2l1n+c6E6Fl+Dn4caTpy5ob9iCQjol/RqjXcEzcPv6MfNFZFYU9lAc3NOahQyGxo/Ut2kk8Yl48Yd1bXWl+Yafv34shJPJkwCyeNGn9nD34TNYWHxi/EQa0BWpcRS++IfX1yZBfby3K4LXoGeo0DtaYmak1NmE5Y2tvZLQjmBbVusa5SqVgQHMPq/P3sqSygsLGG9zKT8HR0YvwJE6VP9t7o93gv9j2aLE1M3TWVN/Lf6LX3LURXxbjEUGuuxWrti33Pe4YsHRD9zjC9Cw+NX8jPhelsKTlCfYsRtRp8dS2UmRxYHDGFeUGRqFXd37emydzCgeoioHXlztzAkahVahK83ThU37qEM9DZg2l+I9hccphmq5n9VYVMPrrvjuh7m4oPAfDyvnVtjt88ahoz/COArm9BALAwJBaTxcz/Du3AYDYx0sOXe+Pm2xLRjtwSdAuT3Sczc9dM7sm8h43VG/k0/lPUUsJX2NlMz5msr15PUm0SM736Zl7V2ZJkRPRLLg6OXBY+jovC4ik21NFsMTPer4G7dh1hR42Gc4LPbgO9hpZm23Z8kW4+qFWtHyD1LWZ2VNSxtayGmX6ejPTwZXPJYYBT5h6IvvWv2WeuhNqdLQhUKhWXhI/lkvCxXY4pzjWOollFzEqexcrylUQlRbFz8k68dd5dfi0hesolwy7hqeyn+K7yuwGTjEgKL/o1rVpDqKsXIz18+X3UcLQqFe8fOftdKXWa43/1VjY32v79zLiRjHRzYs7aXTy1L4vypgbbc449tA+OGFyctc6kTE3hzuA7yTJmEbI1hK3VW+0dlhjCEtwSUKEiqTbJ3qF0miQjYsBQq9VM8nYns96AwXx2+8e4O+gJdGotAZ9dX0lOfeuy4YtCfNl74TQejR/BX/dlcX1SMck1zlSYtIS6DqxdMEXfejPmTVbEraBFaWF2ymxezn3Z3iGJIUqtVuOt9SbDkGHvUDpNkhExoNwbHYIC/DP97Modq1Qq5gRG2b5+6+Av7KsqxKooaNVq7hzpwx/Cod6iIrnOlS9LvIn4ehcjVm3hsk2pPJJ6mI+zS9hTXY/RYjm7NyUGjcUBizk47SDeWm8eOPwAF6VeNKAmEYrBI9I5knJTub3D6DSVcqzMZT9WV1eHh4cHtbW1uLuffodO0f9VNxv4MjuVA9VFmKwWfPWu3DxqGuFuwzo8J6OmlM+zUihqrOV/hV4EOjmQcek5bdpsKMrk54I0ak1NhLh6cW3kREa0szzzGJPFzAt7fia/sdp2zM1Bj16jpdzYOjyTVOXCvgaXNuepAK1KRcvRHx018OnsMVwV5t/FOyEGK5PVxNzkufxa9yuhjqHsmrILP52fvcMSQ8i9GffyWsFrZE7PJMo56swn9JLOfn5Lz4joU40tJl7c8zMatZo/xs/jrxMv5OqIhNPuL1JhbOD1AxuJ9vTnsYmLiHF3JNdgZld5ga3NzvJcVmalcGFYPI9MWESIiyev7t9wSjGrE+k0Wu6Nn8+IE5Kg+hajLREBmOvTgqdD21UVCtgSEQCNSkW0W9uERQxtOrWOpMlJLAldQn5zPsO3Dmd91Xp7hyWGkEXDFgGwqnyVfQPpJElGRJ/6seAgXo7O3DJqGiPcfPDRuzLaKxBfJ7cOz9lUfAgfvStXRyQQ6OzB/42Oodmq5pWDB2xt1hamMysgkpkBkQS5eHD9yCno1Fq2lZ6+8I+7Ts+fx53LH2JnM9ozABetI3qNAyEunlwdkcDzUy7hibGRnG7tzisTRzHG68wFuMTQ8/Kol1k1ZhUWxULi7kSezHrS3iGJIWKB9wIANlVvsnMknSPLA0Sf2ltZwGivQP6VtplDtWV46pyZGxjF7MCRHZ6TVdd259Wrw/y4JUkhubq1CJnZaiGvvopFIaNtbdQqFTGeAWTVVZwxJo1KzQSf0Da7AZ/o91EhPH8ghxKjiZPHNOf7e3H3qJAzXkMMXZf6Xcqh6YeYsnMKy7KXsblmMz+M/wGtWn79it6jU+tw1biyv3Fg7DQtPSOiT5UbG9hUfAg/JzfujZ/PnMAoPs1KJqk0q8Nz6lqMbXZVVavVjPPUk9uko6bZSENLM1YU3NrbebUHaoM4atQ8OS6yTSJyrKdkU2k1/z5ceNbXEIPbcKfhFM4qZK7nXNZWryVsaxgFxoIznyjEWQjXh1PcfPalEPqCJCOiTylAmKs3l4ePJ8zVmzmBI5kVEGmrrtlZ14YNo9mq5tWMvkkEbo4IZLiLvs1wzasTR+Gi1fCHHekkrkvBZJZVE6JjWrWWjRM38sjwRyg2FRO5LZLVFavtHZYYxBLcEjApJipMZ+4htjdJRkSf8tDpCTy6Ed4xgU4eVDcbOjzH3UF/ykTUSd463LVm/pdTiquDI2pU1Lez86qrVsenR5JZumMV92z9lL+l/mSrKdKRjJpSnk75gbu3rODRnd+wrTQLB7WaZ472jqiA64e7U1y3m+uDSpnkYWJdSSV+X/7CzsraLt0PMfQ8PfJpfhj/AwAX7rmQhw8/bOeIxGB1bN7I1+Vf2zmSM5NkRPSpSHdfSpvabrte2lSHt2PHq1Ei3E/deTW9tpQoFzhcb6DZohDm5k1aTanteauikF5TQnWzgbSaEm6NnsHjCRcw2iuAv+9b32Hyc+LKnUcTFrEgOJoPM7dzoLqIa4cHEO/hQpyHI65KFheGxfNYwiLujR7GZf71NJjNTF2zk0dSD5/FHRJDwfnDzid7RjZBuiCey32O2btmY7Ka7B2WGGQuGXYJAOur+/9KLklGRJ9KDI4hq76C1XkHKGuqZ0dZDptLDjMv6Pg6+K+yU3kvY5vt67mBUVQYG/giezclhlo2FmWSXJ7HTRFhKMAr6XkkBsewpeQwSaVZFBtq+fjwTpotLRQb6rhyxHhGefjh5+TGxcPH4ufk2uGw0Mkrd+YHRZPgE8rawgw0ahW/nj+FxcEG5gS2Xbkzyk3FO5N88NfrePZADmO/T6LGJB8uomNB+iDyZ+az0HshW2q3ELIlhGxDtr3DEoOIp84TvVrP7vrd9g7ljCQZEX0q3G0Yd8bOYWd5Dk8kf8/3efu5JmIiU/1G2NrUmpqoOqHnwkfvyj1x80irLuGplB/4uTCdG0dN5Z6YGBxUKj7MKmay73CuipjAN7l7eTrlB/Ibq/lD7BysKGhVbeuEOKi1HKlrvzLhySt3AEZ7BdpW5TiqobChitgT2hxbuWNoqaXw8llcHebHvppGAr/YwncFA6cCouh7arWaNRPW8EzEM1S0VDDq11F8UfaFvcMSg0iQLog8Y569wzijbq0te+ONN3jxxRcpKSlh3LhxvPbaa0yZMuWM561YsYLrrruOSy+9lFWrVnXn0mIQGDssmLHDgjt8/pbo6accOzZscrIpw9zZVlFLg8nM/KBo5gdFt3k+ws2H1fn7CXR2x12nZ0d5Lll1Ffg5tV8X5OSVO9C6KsdoacFkMWMwmzpcuVPSVIdareaz2WP5PLeUG7bt5+JNe7hpRADvTRstW8uLDj084mFmeM5gUeoirtp3FX8K/RN/H/V3e4clBoExrmPIqsjCaDai1+rPfIKddPm346effsqSJUtYtmwZKSkpjBs3joULF1JWVnba83JycnjggQeYPXt2t4MV4mR/ijk+VNOe30ZPR1HgwR2ruHvLp2wozGCy73BUpy1jdvauHu5P/uWziXZz5r/ZJQz/eiu5DU29ek0xsM3zmkfezDyG64fzj/x/MGXHFIzms1+aLoa2eV7zAPip6ie7xnEmXU5GXnnlFW6//XZuvfVWRo8ezdtvv42zszPvvvtuh+dYLBauv/56nnjiCSIiIs4qYCFOdEWoLzq1ig+z219L7+vkxgPjEnl1xjU8P/Uylk44H4tixUfffs9Ieyt36kxG9BoHdBrtaVfueDi0/avDT68j/ZIZ/CkmjAJDM5HfbOXfh6S2hOiYr86XrOlZXOpzKTvrdxK0NYiMxoGz86rofy73vRyANVVr7BzJ6XUpGTGZTCQnJ5OYmHj8BdRqEhMTSUpK6vC8J598Ej8/P2677bZOXae5uZm6uro2DyHao1armTLMgyMNTTSYzB22c9Ro8dA50dhi4mB1MeOGtV81tb2VO2k1JUS4t264p1VrOly5c6zNyf4+cRSbz52Is0bD73ekc67UJBGnoVarWTVuFa9EvUKNuYa4X+P4qPgje4clBqjhTsPRqrTsqNth71BOq0vJSEVFBRaLBX//truT+vv7U1JS0u45W7Zs4T//+Q/Lly/v9HWee+45PDw8bI/Q0PbLdAsB8Kfo1qGal9sZqjlQXcT+qiIqjA0crC7mlX1rCXB2Z6Z/aw9dZ1fuJAYfn4vS3sodk9XMDP+Oe/1m+XlRduVsZvl6srakCv8vf2GX1CQRp3F/2P1sm7QNR7UjNxy8gTvS7rB3SGKA8nXwJaup4yrX/UGvzqirr6/nxhtvZPny5fj4dLyV+8mWLl1KbW2t7ZGfn9+LUYqB7vJQnw6HaprMLXxyZBfLdn3HexlJjHT35b74+WiOTibt7MqdOK8gW5v2Vu7cGzcfd53TaePUa7VsPm8SL0+Ioq7FzJQ1O3lcapKI05jmMY3CmYVEOUWxvGg547aPw2DuuECgEO2JdYmlxlxDTl0FeQ1VtkeVsdHeodmoFEU5ee+vDplMJpydnVm5ciWXXXaZ7fjNN99MTU0NX3/dtspbamoqEyZMQKM5vrTSam3tnlar1WRkZBAZGXnG69bV1eHh4UFtbS3u7u6dDVcMIXN+2sXm8hrqr56Hq67/b0CWUdvI3LXJlBpNjPN0ZeO5CXjqdPYOS/RTVquV6w9cz4qyFbhr3Nk6cSvxbvH2DksMEH/OWMpLBc9zqXYZ/upRtuNalZqnJl2Mt77jopNnq7Of313qGdHpdEycOJF169bZjlmtVtatW8f06acux4yJiWHfvn2kpqbaHpdccgnz588nNTVVhl9Ej7k/NgyAl9Jz7RxJ50R7uFB0+SyuDPVlT00DgV9uYXVh/98/QtiHWq3mkzGf8Fb0WzRYGhi3YxzvFL5j77DEADHH/RwAcq1ti5+ZFSsN5mZ7hHSKLg/TLFmyhOXLl/PBBx+QlpbGnXfeSWNjI7feeisAN910E0uXLgVAr9cTHx/f5uHp6Ymbmxvx8fHo5C9B0UMuDW4dqvlfdvtzl/ojtVrNyjnj+HRWPFZF4cKNqdyadMDWeyjEyf4Q8gd2Td6Fi8aF29Nv56YDN9k7JDEAjHGZAKgoVTLtHUqHupyMLF68mJdeeonHH3+c8ePHk5qaypo1a2yTWvPy8iguHhhbFovBQ61WM82ndVVN3WlW1fRH1wwPsNUkeT+rmHCpSSJOY4L7BIpmFTHaZTQflnxIbFIsdWZZcSg6plarccSZGqX/fjZ3ac6IvcicEdEZq/LLuPyXvTweP4Inxp15LlJ/dP+uDP6RkY9WpeLNKTHcPrLjSrVC/Pbgb3mv+D1cNC5snLCRSR6T7B2S6IfyGqqYtH0KFWRzu+7DNs89MuF8wly9e+3avTJnRIj+7NKQ1gJo/8sZOEM1J/v7pGg2nzsRvUbNHdvTWCg1ScRpvDv6Xd6LfQ+jxcjUXVN5Pf91e4ck+iGz1YKvKgIFKzXW/tk7IsmIGDRUKhXTfTzIGoBDNSea5edF6ZWzmeHjwU8lVQR89QspldINL9p3S9At7Jm6BzeNG3/M/CNX7b1K5h0Jm72Vhbx2YBNhmvEA5FqT2zyfXl3azll9T5IRMajcH3N0VU3awFhV0xFnrZatCyfz0oQoak1mJq3ZwbI9R+wdluin4lzjKJ5VzATXCXxR/gVRSVFUmarsHZawsz2VBbx58BcMZhNBtC4FL1bS27T5Imc3yeX239VXkhExqFwa6oejWsVHOf2zK7Kr/m/0cA5eNB1fvQNP7s9mwve/DuheH9F7nLROpExN4a7gu8gyZhGyNYSt1VvtHZawE5PFzAeZ21FonRYa6xWEk8oZxaGKG0dOYeQJ21f899B2jOYWe4UKSDIiBqFpPh5kNRgHzYd2tIcLxZfP5spQX1JrGgj48hd+kJokogNvxLzBirgVtCgtzE6ZzYu5L9o7JGEHO8tzaTxaQ2SMdxBLxixgkc/5aNVqZgWO5IGx5zJhWGutL6Olhe1lOXaMVpIRMQgtOTpU8+LBHPsG0oOO1SRZMTMei6JwwcZUfis1SUQHFgcsJm1aGt5ab/5y+C9clHqRfK8MMamVx3cIvyA0HrVKxfnDzifXmEuTpQmVSsWFYcer+O6utO+2K5KMiEHnEttQzcBdVdORxeGtNUmi3Jx5L6uYEV9vJa/RaO+wRD800nkkRbOLmOY+je8rvyd8WzhlpjJ7hyX6SEPL8cqqw91al+4WNxdjxcr7xe8DEOLiiRoVgK0XxV4kGRGD0nQfT7IbjdSYTPYOpcf56XVkXjKDP44KIc/QTOTXW/nP4UJ7hyX6IZ1aR9LkJP4v7P/Ib84nbEsY6yrXnflEMeA5aR1s/y4x1LG+aj1PZT/Fed7ncYP/DQCUGeuxHp1T4qSxb0V0SUbEoHR/bOtY6IsH7T9LvLe8OjmGTYmtNUl+tz2N89enYJaueNGOl6JeYtWYVVixcm7quTyZ9aS9QxK9LM4r0Pbvd7O/44p9V3CO9zl8N+473BzcAPipIM3WZvQJ7e1BkhExKF0S0jpU8/EgHKo50Rz/4zVJfiyuwu+LX9hdJTVJxKku9buUQ9MP4evgy7LsZSSmJGK2Do5J3uJU0/0jsKga2Wr+L4+X3oiD4sTbUe/hoHag0tjIx4d3sqWktVyAVqVmVkCEXeOVcvBi0DpnbTIbSqupvnoOnkNgU8YXD+bw0O7DKMDjY0bw17EDsyS+6F1mq5nE3YlsqtlEoC6QHZN3EKIPsXdYoocoisLW2q28WfAmn5V+hgULAPM1dxGlmYle44DR0nYZ77WRk5gfNKpX4pFy8GLIO76qZvAO1Zzoz6PD2X/RNHwdHXhiXzYJq7cPmuXNoudo1Vo2TtzIY+GPUWwqJnJbJKsrVts7LHGW6sx1vJH/BqN/Hc3s5Nl8Xva5LRHR4ECkejpAm0REo1KzOGJiryUiXSE9I2JQ03+yjkAnR7Ivm2XvUPqM1Wrlqs37+KqgHCeNmi/njOX8IJ8znyiGnB8rf+SSPZdgUkw8NPwhnhv5nL1DEl2Ub8znqeyn+LDkQ5qtrStijhU6A1ChYpH3hdw97Hn2VhVgMJtw1uoY4x3ErICReOicejW+zn5+SzIiBrUFa5NZX1pN1VVz8HIc/EM1J/oku5ibkw7Soij8NiKI5VNjUKulM1S0VWQsYvLOyRSZipjpMZP1CevRqYfWz8pA9tiRx3g65+kOn1eh4tVRr3JP6D19GNVxMkwjBPB/scMBeOHgwN6rpjuuGxFI3mUziXJz5t2sIiK+3kZ+N2uSVBkbyWuosj2qjI09HK2wlyB9EPkz81novZCttVsJ2RJCtiHb3mGJTnok/BGu9L2yw+cVFBZ4L+jDiLpHekbEoOf0yXr8nXTkDKGhmpP9cWc6r2cWoFWp+NeUGH47MrjT51YZG3ls17eYlePLhrUqNU9NuhhvvUtvhCvs5NnsZ3k061E0Kg0r4ldwpV/HH3Ki/7AqVv5y+C+8nPfyKc/5OvhSOrsUlUplh8g6//mt7cOYhLCLGb4erUM1RhPe+qHZ/fza5BiuDPXjok17uG17Givzyvhm3ji0nRi2aTA3t0lEAMyKlQZzM95IMjKYPDziYWZ6zuT81PO5at9V3Bt6L/8c9U97hyU6UN1s4MvsVA5UF1HY4ocaLVbMqFChoKBVaTnX+9w2iUhGTSmfZ6VQbKjFy9GZC8LimeHfdlnvhqJMfi5Io9bURIirF9dGTmSEW+/OO5NhGjHoPXB0qObFtKE3VHOieQHelF05m2nDPPihuBL/L34htare3mGJfmau11zyZ+YTrg/n1fxXmbxjMkazbDnQ3zS2mHhxz89o1GrOCffhy5ZHcVI58/fIN9CpdKhRY1bMJHon2s6pMDbw+oGNRHv682jCIhYER/Nh5nYOVBfZ2uwsz2VlVgoXhsXzyIRFhLh48ur+DdSZevd7QJIRMegtCvZBr1bzSU6pvUOxO2etlqTzJ/O38ZHUmMwk/LCdJ/dm2Tss0c/46Hw4Mv0Il/pcyq76XQRtDSKjMcPeYYkT/FhwEC9HZ84LC+Pq9EUoWNk4cR1/Cr+LXyb+gofWA6DNfJFNxYfw0btydUQCgc4ezA+KJsEnlLWFx//fri1MZ1ZAJDMDIgly8eD6kVPQqbVsKz3Sq+9HkhExJMz09SDXYKTKOPj2qumOv8SNYP9F0/BxdGDZviwmSk0ScRK1Ws2qcat4JeoVasw1xP0ax0fFH9k7LHHU3soCAp1dmZQ0D4sVbnV9kSaDJwBTPKaQPCWZj+M+JkwfZjsnq66CGM+ANq8z2iuQrLoKAMxWC3n1VcSe0EatUhHjGWBr01skGRFDwgOjW4dq/jbEh2pOFOvhSskVs7ksxJeU6noCvvyFH4t69xeOGHjuD7ufpElJOKodueHgDdyRdoe9QxJAWVM9TxcspcR6mKWhj3Nj2MV8mpVMUmlrT+cIpxFcF3Bdm3PqWoy46/Rtjrnr9BgtLZgsZhpamrGi4NZOm9oWGaYR4qydH9Q6VLNikO9V01VqtZqv5o7jfzPiMFsVzt+Qyh2/HsR6dMO9/IZqvsnZ2+659b08hiz6j6keUymcWUiUUxTLi5Yz9texGMwGe4c1pO20fEmGdRO/C/odT4xaypzAkcwKiGRT8SF7h9YtkoyIIWOWnyd5hmYZqmnH9Udrkox0dWL5kSIiv9nGqtxMnt29hn0nTG470Tvp28ipr+zjSIW9eOo8SZ+WzrV+17KvcR+BWwLZW99+oip61x1pd7DLspLp+ov5d+y/bccDnTyobu44SXR30J8yEbXOZESvcUCn0eLq4Iga1Sl/aNSZjHg4tO0t6WmSjIgh44HY1rHT54dgAbTOCHDWc+jSmdwVFUJOo5ErtuSS1tC6FFqvcSDWM4CR7j6oaV0maLCYeHX/xtP+8hODi1qt5pMxn/BW9Fs0WBqYsGMC7xS+Y++whpQXc19kedFyRmmncJlL26qqpU11eDt2vNw+wt2H9Jq2vcNpNSVEuLcu29WqNYS5eZNWc3yyv1VRSD+hTW+RZEQMGQuDfNBr1HyaK0M1p/PGlBhuD7egUSlsqnJne20gz02+lD+NOYc/jzuP56Zcykh3XwAazc2sK5RVFkPNH0L+wK7Ju3DRuHB7+u3ccOAGe4c0JHxV9hV/OfwXhmmHsWrsF2Q3VLI67wBlTfXsKMthc8lh5gVFHW+fncp7GdtsX88NjKLC2MAX2bspMdSysSiT5PI8EoOjbW0Sg2PYUnKYpNIsig21fHx4Jyar+ZRaJD1NkhExpMz2bR2qqZShmg4VNFajslZyU3AFwXqFPbUWzlmXSklT6yZcno7O3BE7C62q9dfHttIjmK0We4Ys7GCC+wSKZhUR5xLHRyUfEZsUS525zt5hDVq7andx9b6r0av1pE5NJdYrhDtj57CzPIcnkr/n+7z9XBMxkal+I2zn1JqaqDqh59JH78o9cfNIqy7hqZQf+LkwnRtHTSXOK8jWZrLvcK6KmMA3uXt5OuUH8huruTduPu69vKGelIMXQ8rPRZWct2E3D8QO58WEqDOfMARtLTnCfw9tB+CK8PHUW4dxz850Gi1WlsSE8cS4SADePLCJPVWFADw58SL8neVnc6j67cHf8l7xe7hoXNgwYQOTPSbbO6RBpchYRGRSJC3WFn6d9CuTPCbZO6ROk43yhGjHuUHDcJKhmtOynvD3iV7jwFXD/VmfOBGD2cLW8hrbc44aB9u/Lf3/bxrRi94d/S7vx76P0WJk6q6pvJb3mr1DGjQMZgNjd4zFaDXy2ZjPBlQi0hWSjIghZ7avJ/mGZipkqKZdPnpX27/3Hu35WJlfhk6t4pNZ8QC0WC2k1RQDrUWRvByd+z5Q0a/cHHQze6buwV3jzr2H7uWqvVfZloiL7rFarUzYOYHKlkpeHPkiV/hdYe+Qeo0kI2LI+cuxAmgHc+wbSD8V7emH99HkYn91EUmlObyRWcCtkcH46h1RFIVVOXuob2mdQ5IwLBQnrcPpXlIMEXGucRTPKmaC6wS+KP+CqKQoqkxV9g5rwDo39VwyDZncEXQHDwx/wN7h9CpJRsSQsyDw2FCN7FXTHrVKTWJwjO3rG7bto8xoYraPwrrCdJ5NXcPawnQAVNCmrRBOWidSpqZwV/BdZBmzCNkawpbqLfYOa8C5Pe121lev5xyvc/hX7L/sHU6vk2REDElzZKjmtOYHRTPVN5yd1c5kGZxQobCxcDefZaWQ11Bta3fdyMmM6OX6A2JgeiPmDVbEraBFaWFOyhxeyHnB3iENGC/mvsg7Re8wynkUP4//2d7h9AlJRsSQ9Oe4cACeO5Bj1zj6K4PZwrelLuyub50/4qBqO0E11MWLu0fPZW6grEgSHVscsJj0ael4a7158MiDXJh6ocwjOYMvyr6w1RLZPXk3avXQ+JiWpb1iyHJesZ5hjg7kXz7b3qH0KzkNTVy4MZWMukYsR387eDioWTUrBLVKTZirF8NdvVGpVPYNVAwYJquJecnzSKpLItQxlJ2Td+Lv6G/vsPqdXbW7mLZrGg5qBw5PP0ywPtjeIZ01WdorxBnM8fOiwNBMmQzV2GwqrWbC6u1k1hlsiQiAyQrzgkYxJ3Ak4W7DJBERXaJT69g2eRsPhD1AfnM+w7cOZ13lOnuH1a8UGAuYndL6h9GWiVsGRSLSFZKMiCHr2Kqa52WoBoC3MwtYsC6ZuhYz5pM6TI0WKwOgE1X0cy9GvcjXY77GipVzU8/liawn7B1Sv2AwGxi/fbytlshE94n2DqnPSTIihqxzArxx1qj5XFbV8PS+LO7cmY5FgfZG9BWgWcb6RQ+4xO8SDs04hJ+DH3/N/isLUhZgtprtHZbdWK1Wxu8YT6V58NcSOR2tvQMQwp7m+HmxpriSMqMJP73O3uH0qepmA19mp3KguojkGi1alQtWRdVuMgLQaLaQW1/B51kpFBtq8XJ05oKw+FM20NpQlMnPBWnUmpoIcfXi2siJjHCTFTfiuOH64RTMKuDc3eeyvno9oVtb55GE6EPsHVqfOzf1XA41HRoStUROR3pGxJD24NGhmuf2Z9s5kr7V2GLixT0/o1Gr+WP8PL6Yn8gvibE8HBeKj2P7BczyG+t5/cBGoj39eTRhEQuCo/kwczsHqotsbXaW57IyK4ULw+J5ZMIiQlw8eXX/BupMxr56a2KA0Kq1bJi4gcfCH6PEVELktkhWV6y2d1h9aqjVEjkdSUbEkDbv2FBNXpm9Q+lTPxYcxMvRmVtGTWOEmw8+elem+4Xw1PhoZvt6ADDCRQ+0FjYD2FSchY/elasjEgh09mB+UDQJPqGsLcywve7awnRmBUQyMyCSIBcPrh85BZ1ay7bSI339FsUA8WTkk/w4/kdUqLhwz4UsPbzU3iH1iaFYS+R0JBkRQ95cPy8Km5opbWq2dyh9Zm9lAcNdvflX2mYe+PULnk75gc3FhzGZrXxbWMlwZz1HLp3J2gUJnBfojYNKRVlTDTGeAW1eZ7RXIFl1FQCYrRby6quIPaGNWqUixjPA1kaI9pw37DyyZ2QT7BjM87nPM2vXLEzWwbvKzVZLxGFo1RI5HbkDYsh7aAgWQCs3NrCp+BB+Tm7cGz+fOYFRfJqVzB927MSsKDw1LhKVSsWCAG/WnJOA8bpzUGPEXadv8zruOj1GSwsmi5mGlmasKLi106a2RYZpxOkF6gPJm5HH+d7ns7V2K8Fbgsk2DL7h0121u1i8bzFOaif2TtmLs1Y2mQRJRoRgjr8Xzho1K4fQUI0ChLl6c3n4eMJcvZkTOJJZAZF8W1iNh4OGGyMC27RXS10R0QfUajU/TPiBZyOepbKlklG/jmJl6Up7h9VjTq4lEqQPsnNE/YckI0IA8/xbh2pKDEPjL3gPnZ5AZ482x/bVQoVJy92jQts9x91Bf8pE1DqTEb3GAZ1Gi6uDI2pU1LfTxsOhbW+JEKezdMRSNiRsQKvScvX+q7kv8z57h3TWTqwl8vmYz0lwT7B3SP2KJCNCAA+ODgfguQO59g2kj0S6+1LaVNfm2P9yqnHTWHhibES750S4+5BeU9LmWFpNCRFHN8rTqjWEuXmTVnO8botVUUg/oY0QnTXXay75M/MJ14fzav6rTNoxCaN5YP6xcGItkZdGvsTlfpfbO6R+R5IRIWgdqnHRqFmZPzQKoCUGx5BVX8HqvAOUNdXzTuYB8ptgvr8b2qOT6b7KTuW9jG22c+YGRlFhbOCL7N2UGGrZWJRJcnkeicHRbV53S8lhkkqzKDbU8vHhnZis5lNqkQjRGT46H45MP8JlPpeRXJ9M0NYgMhozznxiP3Oslsjvg37P/w3/P3uH0y9J0TMhjprn78X3RZWUGIwEOA/uYYVwt2HcGTuHr3JS+T5vH79UuaFW6fjP9Em2NrWmJqqaDbavffSu3BM3j8+zUlhfmIGnozM3jppKnNfxce/JvsNpaDHyTe5e6kxGQly9uDduPu46pz59f2LwUKvVfDXuK/6R9w+WHFpC3K9xfDD6A64PvN7eoXXKsVoiC7wW8Hbs2/YOp9+SXXuFOGpLWTWzf07mnlEhvDY5xt7h9JnsegMR32xjtq8nv5w36cwnCGEn22u3c07KORisBm4Pup1/x/7b3iGd1gu5L/Dg4QcZ5TyKtKlpQ3IJr+zaK0QXzfLzwkWr5sv8obOqBuCuna3d3m9Ojj5DSyHsa6rHVApnFhLlFMXyouWM/XUsBrPhzCfawRelX/Dg4QfxcfCRWiKdIHdHiBPM8/OmqMlE0RBZVdNgMvNTcSWj3JyJ93KzdzhCnJGnzpP0aelc63ct+xr3EbglkL31e+0dVhs7a3eyeH9rLZE9U/ZILZFOkGREiBMsjTu6V80QKYD2wO5DWIEXJoy0dyhCdJpareaTMZ/wr5h/0WBpYMKOCbxT+I69wwJaa4nMSZkDSC2RrpBkRIgTzPTzwkWr4YshMFRjtVr5ILsYH0cHLg31s3c4QnTZHcF3kDwlGReNC7en384NB26wazwGs4Fx28dhtBpZOWal1BLpAklGhDjJfH8viofAUM0r6fkYLVb+HBtm71CE6LbxbuMpmlVEvEs8H5V8RExSDHXmujOf2MOO1RKpMlfx0siXuMzvsj6PYSCTZESIkzw0unWo5tlBPlTzwsEc9Go1D8QOt3coQpwVV60r+6bt47eBvyXDkEHQliB21u7s0xgSdydKLZGzIMmIECc5NlTz5SDeq+bbgnLKm1u4MSJAZvmLQeM/o//D+7HvY7QYmbprKq/lvdYn17097XY21Gwg0StRaol0k/wWEqIdC/y9KDaaKBikQzUPpBxCDbwyYZS9QxGiR90cdDN7p+7FQ+vBvYfu5cq9V2K1Wnvtei/kvMA7Re8Q7RzNj+N/7LXrDHbdSkbeeOMNwsPD0ev1TJ06lR07dnTYdvny5cyePRsvLy+8vLxITEw8bXsh+oOH4sIBeG5/jl3j6A37q+vJrDdwbuAwXHVShFkMPqNdR1M8s5gEtwS+LP+SqKQoKk2VPX6dlaUrefBIay2RlMkp0st4Frp85z799FOWLFnCsmXLSElJYdy4cSxcuJCysva7tDdu3Mh1113Hhg0bSEpKIjQ0lPPOO4/CwsKzDl6I3jLd1xNXrWZQFkA7VuTsLSlyJgYxvVZP8pRk7gq+iyxjFqFbQ9lSvaXHXl9qifSsLpeDnzp1KpMnT+b1118HWmcQh4aG8sc//pGHHnrojOdbLBa8vLx4/fXXuemmmzp1TSkHL+zh0o2pfFNYQf7lswgZJHvVVBlN+HzxC2M8Xdlz4TR7hyNEn/is9DOuP3A9FsXC85HP85fwv3TqvMqmBiqaGzArCk4aLZ46Z7z1LhQYC4hKiqLF2sKOyTtkCe9pdPbzu0t9tCaTieTkZJYuXWo7plarSUxMJCkpqVOvYTAYaGlpwdvbu8M2zc3NNDc3276uq+v7ZVpCLI0bwTeFFTy7P5s3p8TaO5we8cfkDBTg7xNlrogYOq7xv4aJbhOZunMqDx55kE01m/h27LcdDqs0mVv4qeAgq/MPtDmuQsVvYyez6MBUjFYjq8askkSkh3RpmKaiogKLxYK/v3+b4/7+/pSUlHTqNR588EGCgoJITEzssM1zzz2Hh4eH7REaGtqVMIXoEdN8PXDVavgqv9zeofQIs9XK57llBDnpOCeg4z8GhBiMIp0jKZpdxAyPGayuXE34tnBKmk/93KowNvDs7h9OSUQALFYL5+6ZbaslcqnfpX0R+pDQp7Ntnn/+eVasWMFXX32FXt9xt/fSpUupra21PfLz8/swSiGOW+DvRckgWVXz5L5sWhSFx8dE2DsUIexCp9axddJWHgh7gPzmfMK3hrOucp3teaOlhX/u30CZscF2LMjZg5HuPjiqtXxveY46SohVLeAcl2vs8RYGrS4lIz4+Pmg0GkpLS9scLy0tJSAg4LTnvvTSSzz//PP89NNPjB079rRtHR0dcXd3b/MQwh6Wxo0A4Jn92XaO5Oy9mpGPq1bD76NC7B2KEHb1YtSLfD3ma6xYSUxN5K9ZfwVga8kRyprqAfB3cufxhAtYNvFC/jzuPFq8N1KsHCRYFc9sh9/yVc4eujjlUpxGl5IRnU7HxIkTWbfueCZptVpZt24d06dP7/C8F154gaeeeoo1a9YwadKk7kcrRB+b6uuB2yAYqvkoq5jaFjN3jAy2dyhC9AuX+F3C4RmH8df580T2EyxIWcDGwnTb83fEziTYxROAtVVr+XfRv0hwS+Aer5cAKG2qI7N28K22s5cuD9MsWbKE5cuX88EHH5CWlsadd95JY2Mjt956KwA33XRTmwmuf/vb33jsscd49913CQ8Pp6SkhJKSEhoaGjq6hBD9yoIAb0qNJvIaB+5QzSN7jqBVqXhunOzOK8QxYfowCmYWMN9zPuur1/Ny/S00WCsZ7upNiIsXAB+XfMxFqReR6J3I9knbmR14/Gcou77na5cMVV1ORhYvXsxLL73E448/zvjx40lNTWXNmjW2Sa15eXkUFxfb2r/11luYTCauuuoqAgMDbY+XXnqp596FEL3o4fhwAJ4doEM1v5bXkmswckmIDzqtFGUS4kRatZb1E9fzUNjDNFHLCvP9ZFuSbc+vLFtJs9JMRmMGX5Z/ibPGwfacRbHYI+RBqct1RuxB6owIe3P/dAPOWg0lV86xdyhdNvmH7eyqqqfo8lkEDpJ6KUL0NKti5crNj/NNy9+wYmZJ6AO8POpFAFLrUnks+zG+q/iOAG0YbpYwQtVjOS94LBOHReKiccFF7dL63xMeapUk/71SZ0SIoSoxwJuvCsrJbWhiuKuTvcPptAKDkV1V9UwZ5i6JiBCnoVapuTroUlwLg/jS/Civ5L/Er7Xb2DBxA+Pdx/PtuG/5qGAVN2cspoQ8Dlm2sD4PyGv/9eJd4tk3bV+fvoeBTNI2ITph6bGhmgM5do2jq+7Z0Toh73Up/S7EGc0PGoWrxovfaF8lRDWObXXb8PslgG8KtvLfzO1szTGyWPMi6k78HR/vGt8HEQ8ekowI0QmTh7WuqllVMHBmzxvNZr4rqmCEi57JwzzsHY4Q/V6gswc3RU1Fo1ZzgcNfmKxeTK2lmssy5vBh0cdYFCuuGh9ucF962tdxUDnwfOTzfRT14CDJiBCdlBjoTZmxhdyGJnuH0ikPpR7BosBz42UFjRCdNd0/gnvi5hHi4skE7SVcpH0UNRrWWl5lu+VDzg2O5Z2Jy1jstxgNmlPOV6HivpD7GO403A7RD1wygVWITtpVWcvkNTu5fWQQ/5462t7hnJbVasX9843o1Gqqrp5n73CEGHAURSGrvoLs+koqTZXcn38txS0FTHSbyJaELRgUA7FJsVS0VGDF2uZcZ5Uzz498nj+G/dFO0fcfnf38lp4RITpp0jAP3LUavh4ABdDeOlRIo9nKfdFh9g5FiAFJpVIR6e5LYnAMi0fMpGBWLpf7XE5yfTJBW4MoM5XxQdwHpyQiV/peCSq499C9BG4O5MfKH9s8X2VsJK+hqs2jytjYl2+tX5KeESG64Mpf9vBlfjk5l87s16tqAr/4hSpTC42L56PtYGdSIUTX/SPvHyw5tAQ1at4f/T6bazbzTtE7KCiE68PJmJ6BChV/OvQn3i54GwsWxriM4dP4T/HXhvHYrm8xK20TGK1KzVOTLsZb72Knd9V7pGdEiF6wNC4cgKf7cQG0n4sqKTGaWDzcXxIRIXrYn8L+xK+TfkWv1nPjwRtptjYT4hiCgsIro17BQe2AVq3l9ejXKZ5VzAXDLmBf4z5Gbx/NFfsvocFSd8prmhUrDeZmO7yb/kPqjAjRBZOGeeDuoOHrgnKW2zuYDixJyUQFvDpplL1DEaJfyawt46eCg+Q1VFNrauLO2NmM9wk97TkZNaV8npVCsaEWL0dnLgiLZ4b/FApmFjA1eSoflHxApEM8s3XX8lN6E2mFP3Jt5EQ+KH+dNwveJH16OuWmchbvX8ym2vWo2EiMaj4zNTehVstH8DHyZ5MQXXRugDflzS1k1xvsHcopDtU1sr+2kbl+XnjqdPYOR4h+xWQxE+LixXWRnduwtcLYwOsHNhLt6c+jCYtYEBzNh5nbOVBdhKfOk7SpaVzqeQPZLWnsN2/gqpgRhLh4cm/q33gi+wnKW8p5s+BNol2iSZ2ayofRn+OEO2nKOt4z385e8w+9/I4HDklGhOiih+NGAPDM/hz7BtKOu3ZmAPDmFClyJsTJ4r2DuCx8HBPO0BtyzKbiQ/joXbk6IoFAZw/mB0WT4BPK2sLWnzO1Ws1UzQ3cM+w5aq3lnLt3JtnqH1ljeg1QAfBy3ssYLK1/uMzxPIcbdG8wU3MLKlT8av0fH5ruIs+6u1fe70AiyYgQXZQwzB13Bw3fFPavVTV1JjPrS6qIcXcm1sPV3uEIMeBl1VUQ4xnQ5thor0Cy6ioAMFst5NVXcWvItSRPScZZ7cyynGVYMAGta0NqzbW8V/Rem9eI05zLLdp3iFctxEg9a8wvce7emRxoONAn76s/kmREiG44L3BYvxuquT85EyvwcoLMFRGiJ9S1GHHXtd3TyV2nx2hpwWQx09DSjBUFN52esa5jmePVupGmwvFFqgoKz+c+j9lqbvM6arWaGQ43cbP2X4SpJpDZlE789njO230eFaaK3n9z/YwkI0J0wyNHh2qe7idDNVarlY9yivHTO3BBsI+9wxFiyHk251lWV65u97mC5gI+L/u83ed0amfOd3iAjWN3MMF1Aj9X/UzA5gDuSLvjlARmMJNkRIhuGO/thoeDhm/7yVDN8wdzabYqLB0dbu9QhBg03B301JmMbY7VmYzoNQ7oNFpcHRxRo2Jd5Toez3q8w9dRoeLJrKf45NDOjtuYPUmZmsLaCWsJdAxkedFy3De583Luyz32fk4uuNafiq1JMiJENx0bqjnSD4ZqXknLxUmj5t7ozk3ME0KcWYS7D+k1JW2OpdWUEOHe2vuoVWsIc/Mmo74QT62nrY36pD1rFBTSm9LYULOuw2t9cngX+6oKWeC9gPxZ+bwd/TYalYYHDj+A/y/+fFP2zVm9lypjI4/t+pZndq+xPR7b9W2/SUgkGRGimx6NP7aqxr4F0L7ILaXSZOaWiEDUUuRMiA4ZLS3kN1ST31ANQEVzI/kN1bYP5K+yU3kvY5ut/dzAKCqMDXyRvZsSQy0bizJJLs8jMfj4arXE4BiMdcF8F72T7RP2cM+wZ5igvYCpbtPQq9vON1lr/SdOWpgfOIobRk7horAxBDi1ViW1ovBO+lYaWlqLn/0+5PfUzqllSegSqsxVXLrvUkYnjWZ//f5uvfcGc/MplV/7U7E1qbgiRDeN9To2VGPfyWYPpR5Go4KXEqLsGocQ/V1ufRWv7DveO/F5VgoA0/1GcEv0dGpNTVQ1H+/p9NG7ck/cPD7PSmF9YQaejs7cOGoqcV5BtjaTfYfT0GLk27x91JmMhLhO5PMJdzDC3Qez1cy68l95Nu2/7LP8QDWFbFC9wJ+CVxHuFA7ABWFx/CttC3sqCzBazGwrzeK8kFigdZLry6NeZlnEMm46cBPfVHzDmB1jWOC1gBXxK/DRDZ75YbI3jRBn4ZrNe/k8r4zDl8wg0s25z6+fWlXPhB+2c0HQML6fP6HPry+EOL3Ps1JYW5gOwLQQd54uvo+alho+HP0hF/heAECpoY7Hk78DINTFi0cTFrX7WtmGbK7efzXJ9cmoUXNr4K28GfMmOvWZCxzmNVTxzO41pxx/ZML5hLl6d/ftnZHsTSNEHzg2VGOvvWru3tn6S+7NyTF2ub4Q4vRqTuhpuTBgLjsn72SC2wQu3HshMUkxPHDoAd4rexMcalvbm5o6fK0RziPYNWUXGxI2EOwYzH+K/4PHJg9m7ZrFz5U/9/p76U0yTCPEWWgdqtHaZaimzGgiqaKWCV6u/XoHYSGGMgfN8Y/ZOlMTI538WDlmJbcevBW1Ss0HxR9Q0dL6+0ONFi9zAIb0tdwQcAMzPGe0+5rzvOaRNyuPdwrf4U+Zf2Jr7VbOSz2P2wJvY3nsclQqVV+8tR4lPSNCnKXzg7ypbG7hUF3fzkq/Z2c6CvDqJCn9LkR/NdL9+LyOTcWHAfB08OSrcV/xxdgvKJtdxmvhnxCjOgc3fKmxlvJW4VvMTJ6Jdp2W8K3hXLfvOr4q++qUuiO/C/4dL4x8wfb1f4r/g9cmL3bWtl1CvL+qiPcyktqNL626pN3jfU2SESHOkj32qjGZrazKLyfU2ZFZfl59dl0hRNdM9g3HSeMAwI7yHL7J3YvR0gKAVbGSXJFHZqmaOQ63sVj3EumTCkiblsZDwx9ivNt4KloqWFG2giv2XYFugw7/X/xZtHsR/yr4F3XmOrbWbkVzwlLiWkstU3ZNYdauWZSZythQlMlrBzZSZKhtN74vc1L5Nndf79+IM5AJrEL0AK/PNqJRqai4em6fXO+h3Yf428Fc3p0ay60jg/vkmkKI7tlQlMmKI7tsXztqtIS4eFJpbGwzRyRhWCh3xM46ZZilzFTGh8Uf8n3F9+xp2EOVucr2nApVm/LzJ1KhIko1i1ma36FVa/HTuxHr6Y9apSa9poTipjpb29/HziahkxsIdkVnP78lGRGiB1y3ZR8rckvJvHg6Ue4uvX49j083oAB1i+f3+rWEEGdvdd4Bvs7d0+Hz47yD+V3MTHSaM0/lNJqNfFb+GR8Vf8RP1T+dsb0GB67xup2PJrzeJtH5seAgX2anAhDuNoyl4xee+Y10kaymEaIPPRIXDvTNqpp3DxdSZ7Zw56iQXr+WEKJnXBAWx6MTFjErINI2bKNVqYn3CuSu0XP4w+g5nUpEAPRaPTcF3sTNQTd3qr0VM59Uv8nEHRPZU388ITovOJZQl9Zh3pz6Sgoba7r2pnqQrKYRogfEe7nh6aDl+z5YVfPXfVloVSqeGhPZ69cSQvScUFcvboyayo1RU7FYrahVqrNa+bKlZgtalRazcnxiqwYNVqwoKKhQo0WHu9qLSmsxuxt2M37HeMa4jGHvtL2oVCrGDwshv7G1Im1ZUz3BLp5n+za7RZIRIXrIoqBhfJJbSkZtI9EevTNUs6WsmnxDM1eH+aHTSsemEAOVpge2bthQvaFNIuLj4MM8r3nM8ZzDcG0c3x4qRK3SMCsgkktHxLKlZguv5r+KRnV8wmuLYrH9255LgiUZEaKHPBI/gk9yS3nmQDb/nRHfK9e4d1cGKuB1KXImxJB3sc/FzGiZwRyvOczymEWEU4QtoWhsaWbNka+wKFZSKwpYHDGRC3wu4AKfC2znWxQru8pzbV8HO3v29VuwkWREiB4S5+mKl673hmpyG5rYXd3ADB8P/PRnLv8shOh9VsXKt7n72F6WQ12LEQ+dEzP8R3BBaPxpexoyakr5PCuFYkMtXo7OXBAWzwz/iDZtNhRl8nNBGrWmJkJcvbg2ciIj3I7XLXkh6oWTX9bGxcGRBJ9Qdpbn0mBu5v3MX7l51DQcj85LabFa+OxIMhVHNwmM9QzA18n1bG7FWZFkRIgedH5g61BNem0DMR49+4N919HS729Ir4gQ/caa/DQ2FR/m1uhpBDp7kFtfxQeHfsVJo+Oc4PYLElYYG3j9wEbmBEZxW8wM0mtK+DBzOx46vW0Tvp3luazMSuE3Iyczws2HdUXpvLp/A09MvBh3nb7d1z3Z+aGj2V2Rj/loPZO0mhLGegejUanYW1VEfYsRADUqLgjrnd7czpJBZyF60CNH96p55kBOj76uwWzmx+JKRro6Md7brUdfWwjRfVn15YwfFswY72B89K5M9A1jtGcg2fWVHZ6zqfgQPnpXro5IINDZg/lB0ST4hLK2MMPWZm1hOrMCIpkZEEmQiwfXj5yCTq1lW+mRTscW4uLFHbGzcFC3zhExmE38WpbN1tKsNonIzaOmMcrDr5t3oGdIMiJEDzo2VLO6h4dq/pxyCIsCz40f2aOvK4Q4OxFuvqTXlFJqaC0glt9QzeG6cuK9Azs8J6uughjPgDbHRnsFklXX+nvDbLWQV19F7Alt1CoVMZ4BtjadNW5YCEvHL2S63wi0quMf+WqVikk+YTw4/jym+Y/o0mv2BhmmEaKHLQoaxsc5paTVNhDbA0M1VquV97KK8dZpuWq4fw9EKIToKeeHjsZoaWFZ8neoVCoUReHS8HFM9ev4A76uxXjKUIu7To/R0oLJYsZgNmFFwa2dNiUnVE3trGAXT26Jns7iyEmUG+tRFPDRu+Di4Njl1+ot0jMiRA97NL5n96p5NSOfJouVJTHDe+T1hBA9J7k8lx1lOdwWPYNHJyzillHT+bkgjaTSLHuHdgonrQNhrt4Md/PuV4kISM+IED0u1uPoUE1RzwzVPHcwB0e1iqVxkowI0d98kZ3KwtDRTPYLB1p7ISqbG/kh/yDTT1odc4y7g546k7HNsTqTEb3GAZ1Gi1qlQo2K+nbaeDh0bvLqQCM9I0L0gguCfKg2mTlY03BWr7O6sIIyYwu/CQ9E3QNFkoQQPctkNaOm7RJetarjzesAItx9SK8paXMsraaECPfWZbtatYYwN2/Sakptz1sVhfQT2gw20jMiRC94JD6cj3JKeOZANh/NHNPt1/m/lEzUwD8mjuq54IQQPWasdzCr8/fjrXcm0NmD/IZq1hakMyPgeK/IV9mp1JgM3Bo9A4C5gVFsLMrki+zdzPSPIL2mlOTyPO6JP77rd2JwDO9nJBHu5k242zDWFWZgsppPqUVS3Wzgy+xUDlQXYbJa8NW7cvOoaYS7Desw5p6ocdLTJBkRohfEerjirdPyQ1HHy/vOJK22gfQ6A4kB3rjr5EdViP7o2shJfJ27l48P76S+pRkPnROzA0dy0Ql1O2pNTVQ1G2xf++hduSduHp9npbC+MANPR2duHDXVVmMEYLLvcBpajHyTu5c6k5EQVy/ujZuPu87J1qaxxcSLe35mlKc/f4yfh5uDnrKmely0HRdF7KsaJ12lUhSl476kfqKzWxAL0Z/ctG0/H2aXsP/CacR5dn1Vzfyfk9lYVk3mxdOJcu+dvW6EEAPXl9mpHKkr58/jzu30OV9k72Z/VRHLJl5oO7Y8bQsGSwv3xc8H4LnUHwl39ea6kZOB1iGipTtWMT9oFOeHxnUpxs5+fssgtBC95JG4Y6tqsrt8bnWziU1l1cR5uEgiIoRo197KAoa7evOvtM088OsXPJ3yA5uLD5/2nL6scdIV0vcrRC+J9nDp9lDNfcmZKMDfE2SuiBCifeXGBjYVHyIxJIZFoXHk1FfxaVYyWrW6w5U8fV3jpLOkZ0SIXnRhsA81LWb2d2FVjdlq5dPcUgL0Os4N6ngSmhBiaFOAMFdvLg8fT5irN3MCRzIrIJJNxYfsHVqXSTIiRC/qzlDNM/tzMFkVHokP76WohBCDgYdOT6CzR5tjgU4eVJ8wWfZkZ6px4urgaJcaJ5KMCNGLoj1cGKbTsqYLQzX/zMjDRaPmrqiQXoxMCDHQRbr7UnrS0ElpUx3ejh3PM+uvNU4kGRGilx0bqtlXXW87Vt9ipslsOaXtpzklVJvM3BYZLEXOhBCnlRgcQ1Z9BavzDlDWVM+Oshw2lxxmXlCUrc1X2am8l7HN9vXcwCgqjA18kb2bEkMtG4sySS7PIzE4us3rbik5TFJpFsWGWj4+vLPdGic9SZb2CtHLDtU1MurbJK4I9eWKUD9W5JbyY1Eli4KG8fW88W3aRqzaQp7BSMM189BrZX65EOL09lYW8lVOKmVN9fjoXUkMjmF24PHdvd/PSKKyuZH/G5toO3Zi0TNPR2cubLfoWQY/FaTZapxcGzGREd3oGens57ckI0L0ovoWM98WVHBL0gFajv6oaVRgVeD68AA+nHm8MNLOylqmrNnJpcE+rDopSRFCiIGos5/f8qeXEL3gSL2BJcmZ/FBUSYuitNm5wqKAVqVipJtzm3Pu2ZkBwOtTYvowUiGEsD9JRoToBXtrGvim8HiBoJO7H82Kwki342WdiwxGdlTWMdHbjRDnwbkrpxBCdERmyAnRCy4P9ePZcZGnbXNiz8g9u1p7RV6bFN1RcyGEGLQkGRGilyyNH8Fz40d2+HzU0WTEZLbybUEFw531TPf17KPohBCi/5BkRIhe9FBcOM+3k5C4aTV4OzoAsHTPYcyKwtNn6EkRQojBSuaMCNHLHowLB+Ch1OMbWPno4POsFLx0TvzrUDEeDhpuiAi0U4RCCGFfkowI0QcejAunxFDHPzLLAIUWq4G1hcUcrNfTaHHnygAnrIoVtUo6K4UQQ4/85hOiD/xSfAiDcT9j3RoBFQZL649eSq0LahS8VLksT9+KVbHaN1AhhLCDbiUjb7zxBuHh4ej1eqZOncqOHTtO2/7zzz8nJiYGvV7PmDFjWL16dbeCFWIgyqmv5OPDuwCY5tWIj4MFL50jYe6jMFg1jHA2olZDSkU+Pxak2TlaIYToe11ORj799FOWLFnCsmXLSElJYdy4cSxcuJCysrJ222/bto3rrruO2267jd27d3PZZZdx2WWXsX///rMOXoiBYF1hBsrRSiMLgqL5W0I8WY1WtlSq0ajgvenjbEXR1hdmYLFK74gQYmjpcjLyyiuvcPvtt3PrrbcyevRo3n77bZydnXn33Xfbbf/Pf/6T888/nz//+c/Exsby1FNPkZCQwOuvv37WwQvR35ksZlIq8gBw0eq4fMR4Lg/1Q6OC9aXVPBw3gtkBYYwfFgpAXYuRgzXF9gxZCCH6XJeSEZPJRHJyMomJxzfcUavVJCYmkpSU1O45SUlJbdoDLFy4sMP2AM3NzdTV1bV5CDEQ1ZiaMB+dBxLjGYCDWoOXowMRrs60WBXuHhUCwBjvINs5FcYGu8QqhBD20qVkpKKiAovFgr+/f5vj/v7+lJSUtHtOSUlJl9oDPPfcc3h4eNgeoaGhXQlTiH5Dc8LqmCazyfbvG0YEcGGwD356XetzlpZ2zxFCiKGgX/7WW7p0KbW1tbZHfn6+vUMSolu8HJ1wd2jdaya9ppQqYyMAj42J4Nt541GpVFgVhaTSLNs54W7D7BKrEELYS5eSER8fHzQaDaWlpW2Ol5aWEhAQ0O45AQEBXWoP4OjoiLu7e5uHEAORWqVmVkBrZVUrCv9K30Ll0YQEoNliZsWRXRQ01gAw3NWbMFdve4QqhBB206VkRKfTMXHiRNatW2c7ZrVaWbduHdOnT2/3nOnTp7dpD/Dzzz932F6IwWZ+UDQeutYdenPqK3l05zf8fd863jr4Cw9u/4pNxYcAUAGXDB9rx0iFEMI+ujxMs2TJEpYvX84HH3xAWload955J42Njdx6660A3HTTTSxdutTW/r777mPNmjW8/PLLpKen89e//pVdu3Zxzz339Ny7EKIfc9fpuTd+ni0hsaKQXlNKamWBba6IGhU3jZpG/AkTWYUQYqjocjn4xYsXU15ezuOPP05JSQnjx49nzZo1tkmqeXl5qNXHc5wZM2bw8ccf8+ijj/Lwww8TFRXFqlWriI+P77l3IUQ/F+LixWMTFrGx+BCbSw5Ta2oCwEGtYbLvcBYERxPi4mXnKIUQwj5UiqIo9g7iTOrq6vDw8KC2tlbmj4gBz6oo1JqasCoK7jo9DmqNvUMSQohe0dnPb9koT4g+plap8HJ0tncYQgjRb/TLpb1CCCGEGDokGRFCCCGEXckwjRBnKbO2jJ8KDpLXUE2tqYk7Y2cz3uf0VYMzakr5PCuFYkMtXo7OXBAWzwz/iDZtNhRl8nNBGrWmJkJcvbg2ciIj3Hx6860IIYRdSM+IEGfJZDET4uLFdZGTOtW+wtjA6wc2Eu3pz6MJi1gQHM2Hmds5UF1ka7OzPJeVWSlcGBbPIxMWEeLiyav7N1BnMvbW2xBCCLuRnhEhzlK8d1CX6oNsKj6Ej96VqyMSAAh09uBwbTlrCzOI82p9nbWF6cwKiGTm0eqt14+cwv6qIraVHuH80LiefxNCCGFH0jMiRB/LqqsgxrPtdgijvQLJqqsAwGy1kFdfRewJbdQqFTGeAbY2QggxmEgyIkQfq2sx4q7TtznmrtNjtLRgsphpaGnGioJbO21qW2SYRggx+EgyIoQQQgi7GhBzRo4Via2rq7NzJEKcmaGp6bTfqy5qByoa6tq0KaurQa/WYmw0YLVaUaOitLYaXxxtbSob63FWaeXnQAgxYBz7fXXGYu/KAJCfn68A8pBHv3/c8ctHyvBZE0/bZsofrlWuev/5NsfOeexuZdGLf7F9fdnbTygz7rvpeBuVSvnNyteUcddfbPf3KA95yEMeXX3k5+ef9nN+QOxNY7VaKSoqws3NDZVK1WOvW1dXR2hoKPn5+bLnTS8a7Pe52WKmwtQIwD8yN3Nx0GgiXYfhrNHhpXNidXEatS1GrgubAEBVs4GXMjcxY9hwpniHcbihgq8LD/DbEZOJdvcDILW6iE/zU7kyZAyhzp5sLs9mb20xf46eh5uDY4exDPZ73V/Ife4bcp/7Rm/eZ0VRqK+vJygoqM0muicbEMM0arWakJCQXnt9d3d3+UbvA4P1PmfUlPKPzM22r78tOgjAdL8R3BI9HWOxlQZri+29u+POHx3m8XlWClsrcvB0dObGUVOZfELRsznu7lgcVPxUkEadyUiIqxf3xc8n2L1zRc8G673ub+Q+9w25z32jt+6zh4fHGdsMiJ6R3iK7AfcNuc99R+5135D73DfkPveN/nCfZTWNEEIIIexqSCcjjo6OLFu2DEfHjsfgxdmT+9x35F73DbnPfUPuc9/oD/d5SA/TCCGEEML+hnTPiBBCCCHsT5IRIYQQQtiVJCNCCCGEsCtJRoQQQghhV4M+GXnjjTcIDw9Hr9czdepUduzYcdr2n3/+OTExMej1esaMGcPq1av7KNKBrSv3efny5cyePRsvLy+8vLxITEw84/8XcVxXv6ePWbFiBSqVissuu6x3Axwkunqfa2pquPvuuwkMDMTR0ZFRo0bJ749O6Op9/sc//kF0dDROTk6EhoZy//33YzTKbtan88svv3DxxRcTFBSESqVi1apVZzxn48aNJCQk4OjoyMiRI3n//fd7N8je3lfGnlasWKHodDrl3XffVQ4cOKDcfvvtiqenp1JaWtpu+61btyoajUZ54YUXlIMHDyqPPvqo4uDgoOzbt6+PIx9Yunqff/Ob3yhvvPGGsnv3biUtLU255ZZbFA8PD6WgoKCPIx94unqvj8nOzlaCg4OV2bNnK5deemnfBDuAdfU+Nzc3K5MmTVIuuOACZcuWLUp2drayceNGJTU1tY8jH1i6ep8/+ugjxdHRUfnoo4+U7Oxs5ccff1QCAwOV+++/v48jH1hWr16tPPLII8qXX36pAMpXX3112vZZWVmKs7OzsmTJEuXgwYPKa6+9pmg0GmXNmjW9FuOgTkamTJmi3H333bavLRaLEhQUpDz33HPttr/mmmuUCy+8sM2xqVOnKr///e97Nc6Brqv3+WRms1lxc3NTPvjgg94KcdDozr02m83KjBkzlHfeeUe5+eabJRnphK7e57feekuJiIhQTCZTX4U4KHT1Pt99993KOeec0+bYkiVLlJkzZ/ZqnINJZ5KRv/zlL0pcXFybY4sXL1YWLlzYa3EN2mEak8lEcnIyiYmJtmNqtZrExESSkpLaPScpKalNe4CFCxd22F507z6fzGAw0NLSgre3d2+FOSh0914/+eST+Pn5cdttt/VFmANed+7zN998w/Tp07n77rvx9/cnPj6eZ599FovF0ldhDzjduc8zZswgOTnZNpSTlZXF6tWrueCCC/ok5qHCHp+FA2KjvO6oqKjAYrHg7+/f5ri/vz/p6entnlNSUtJu+5KSkl6Lc6Drzn0+2YMPPkhQUNAp3/yire7c6y1btvCf//yH1NTUPohwcOjOfc7KymL9+vVcf/31rF69msOHD3PXXXfR0tLCsmXL+iLsAac79/k3v/kNFRUVzJo1C0VRMJvN/OEPf+Dhhx/ui5CHjI4+C+vq6mhqasLJyanHrzloe0bEwPD888+zYsUKvvrqK/R6vb3DGVTq6+u58cYbWb58OT4+ndvtV3SP1WrFz8+Pf//730ycOJHFixfzyCOP8Pbbb9s7tEFl48aNPPvss7z55pukpKTw5Zdf8v333/PUU0/ZOzRxlgZtz4iPjw8ajYbS0tI2x0tLSwkICGj3nICAgC61F927z8e89NJLPP/886xdu5axY8f2ZpiDQlfv9ZEjR8jJyeHiiy+2HbNarQBotVoyMjKIjIzs3aAHoO58TwcGBuLg4IBGo7Edi42NpaSkBJPJhE6n69WYB6Lu3OfHHnuMG2+8kd/97ncAjBkzhsbGRu644w4eeeQR1Gr5+7ondPRZ6O7u3iu9IjCIe0Z0Oh0TJ05k3bp1tmNWq5V169Yxffr0ds+ZPn16m/YAP//8c4ftRffuM8ALL7zAU089xZo1a5g0aVJfhDrgdfVex8TEsG/fPlJTU22PSy65hPnz55OamkpoaGhfhj9gdOd7eubMmRw+fNiW7AFkZmYSGBgoiUgHunOfDQbDKQnHsQRQkW3WeoxdPgt7bWpsP7BixQrF0dFRef/995WDBw8qd9xxh+Lp6amUlJQoiqIoN954o/LQQw/Z2m/dulXRarXKSy+9pKSlpSnLli2Tpb2d0NX7/Pzzzys6nU5ZuXKlUlxcbHvU19fb6y0MGF291yeT1TSd09X7nJeXp7i5uSn33HOPkpGRoXz33XeKn5+f8vTTT9vrLQwIXb3Py5YtU9zc3JRPPvlEycrKUn766SclMjJSueaaa+z1FgaE+vp6Zffu3cru3bsVQHnllVeU3bt3K7m5uYqiKMpDDz2k3Hjjjbb2x5b2/vnPf1bS0tKUN954Q5b2nq3XXntNCQsLU3Q6nTJlyhTl119/tT03d+5c5eabb27T/rPPPlNGjRql6HQ6JS4uTvn+++/7OOKBqSv3efjw4QpwymPZsmV9H/gA1NXv6RNJMtJ5Xb3P27ZtU6ZOnao4OjoqERERyjPPPKOYzeY+jnrg6cp9bmlpUf76178qkZGRil6vV0JDQ5W77rpLqa6u7vvAB5ANGza0+zv32L29+eablblz555yzvjx4xWdTqdEREQo7733Xq/GqFIU6dsSQgghhP0M2jkjQgghhBgYJBkRQgghhF1JMiKEEEIIu5JkRAghhBB2JcmIEEIIIexKkhEhhBBC2JUkI0IIIYSwK0lGhBBCCGFXkowIIYQQwq4kGRFCCCGEXUkyIoQQQgi7kmRECCGEEHb1/3w21mifrx52AAAAAElFTkSuQmCC", + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAiMAAAGdCAYAAADAAnMpAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjcuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/bCgiHAAAACXBIWXMAAA9hAAAPYQGoP6dpAADL0UlEQVR4nOzdd1gUV9vA4d/OVnrvRUARQVHsYokaTUyPKV96j+nmTWLKm94T03vvPTHJG9OjUaPG3hFUQKR3pLMsW2e+PxZRBBF0Ecu5c+0VmDkzcwaVffbMc56jUhRFQRAEQRAEoY9Ifd0BQRAEQRBObCIYEQRBEAShT4lgRBAEQRCEPiWCEUEQBEEQ+pQIRgRBEARB6FMiGBEEQRAEoU+JYEQQBEEQhD4lghFBEARBEPqUpq870B2yLFNWVoaXlxcqlaqvuyMIgiAIQjcoikJTUxPh4eFI0oHHP46JYKSsrIyoqKi+7oYgCIIgCIeguLiYyMjIA+4/JoIRLy8vwHkz3t7efdwbQRAEQRC6o7GxkaioqLb38QM5JoKRPY9mvL29RTAiCIIgCMeYg6VYiARWQRAEQRD6lAhGBEEQBEHoUyIYEQRBEAShT4lgRBAEQRCEPiWCEUEQBEEQ+pQIRgRBEARB6FMiGBEEQRAEoU+JYEQQBEEQhD4lghFBEARBEPpUj4ORf//9l7PPPpvw8HBUKhU///zzQY9ZtmwZI0aMQK/XM2DAAD777LND6KogCIIgCMejHgcjzc3NDBs2jLfffrtb7fPz8znzzDOZOnUqaWlp3HnnncyaNYuFCxf2uLOCIAiCIBx/erw2zemnn87pp5/e7fbvvfcesbGxvPzyywAkJiaycuVKXn31VWbMmNHTywuCIAiCcJzp9ZyRNWvWMH369HbbZsyYwZo1aw54jMViobGxsd1LEARBEITjU68HIxUVFYSEhLTbFhISQmNjIy0tLZ0eM3fuXHx8fNpeUVFRvd1NQRAEQRD6yFE5m+aBBx6goaGh7VVcXNzXXRIEQRAEoZf0OGekp0JDQ6msrGy3rbKyEm9vb9zc3Do9Rq/Xo9fre7trgiAIgiAcBXp9ZCQ1NZUlS5a027Zo0SJSU1N7+9KCIAiCIBwDehyMGI1G0tLSSEtLA5xTd9PS0igqKgKcj1iuuuqqtvY333wzeXl53HfffWRlZfHOO+/w/fffc9ddd7nmDgRBEARBOKb1+DHNxo0bmTp1atv3c+bMAeDqq6/ms88+o7y8vC0wAYiNjeWPP/7grrvu4vXXXycyMpKPPvrouJ7WW2tuxmi3tNvmqdHjb/Doox4JgiAIwtFLpSiK0tedOJjGxkZ8fHxoaGjA29u7r7vTpVpzM49s/A27IrfbrlFJPDXqbBGQCIIgCCeM7r5/H5WzaY5lRrulQyACYFfkDqMlgiAIgiCIYEQQBEEQhD4mghFBEARBEPqUCEYEQRAEQehTIhgRBEEQBKFPiWBEEARBEIQ+JYIRF7LJDlaW7zrg/gZr5wsDCoIgCMKJTAQjLmJ12Hlz2zKWVxw4GPksey1lzQ1HsFeCIAiCcPQTwYiLfJu7keyGvQsCxnsHMTVsIMMDItFJasBZg+TtHcuwOux91U1BEARBOOr0+qq9J4I6i4k1lfkA6CUNdyRPpb93UNv+JquZ17ctpbi5jmpzMxurixgfEtfuHGazmYaGBhoaGggNDT3qK80KgiAIgquIkREXWFOZj4Kzqv70yEHtAhEAL52BSweMavt+ZUUuiqLQ3NxMaWkJ2zI2sX37dkpKimlqasJS9ecR7b8gCIIg9CUxMuIClS2NbV8PD4gCQLab2Lp1A1qa0EtGDNompugc5NoDSLQ0k562BrusB8UBKnXr0SoADFrTkb4FQRAEQegzIhhxAdU+X+8ZIbGZStHQjFXxQ7HbaHT0Z6BGYqAGUBTscutRbYHIXgafwb3faUEQBEE4SohgxAXCPXzbvl5fVUi0pz9673iSR8YDILeUUJT/PbKxknrpHBT0Bz6ZIpOVW45emoe7hyeB4aMxeAb38h0IgiAIQt8RwYgLjAuO5eeCrTgUmaVl2ST4BpPsH9G2v1bly8emeKosoYyWfmKqLoh61SmgyKDaP21HxqpEYJUlmpqgMqsIyEeNCbXKiFZlwt1Nh39YCp6+sUf0PgVBEAShN4hgxAW8dQYmh8XzT1k2dkXmre3LifUKYIB3ELvNRjJqy3AoMgClhpOJHhiCb84rFCq3oigaULX+MSg2AlWL6CfPpUX2o4lxGFXDaFENxEYwViUEK2qaTbA7txaU3Ui0oMaIVjLhppfwDYzHN2RoH/40BEEQBKFnVIqiKH3diYNpbGzEx8eHhoaGo3bKq0OW+SBrJWk1JQdsE2Tw5K7kaQQYPMBWiTlrFnmWS2hhoHOERHEQGdBISOx0sFZAzdfQsABMW8FeDShY8KOBKTSpxmBWxWEjAAcegAZUrXkoioyEGTVGNKpmDDoFH79IfIJHotHpjsjPQxAEQRC6+/4tghEXkhWZVRV5/FOWTZlpb6VVT42eiaH9OTUyEQ/tPvkishU5fzZltToqVdeASsWA2EB8/Pt1cnK7MzCp+xGaVoO1EBRr604VVnUMdarTaGIoZiUEh+KFAw8UtPsEKQoqLG1Bil5jw8snmIDwsWh07r32cxEEQRBOTCIY6UOKolDR0kiT1YxerSXcwwet1HHWTGtjqHqbxsIv2a2+gpiUW1GrD9B2f+ZcqP4KGhdBy3Zw1O/dJ3mCYSB2t5OodozC2KLBYtdiVzxbgxT9fkGKDQkjGpURndqKp6c3/mFjMXj4H9bPQhAEQThxiWDkWGNcB4oNvCYe+jlkM9T+D+p+geb1YC0F9pSeV4MuEjxGg99M7J5nU1+VQUN9KWabhKM1SJEx7E2qVRTA3po824ROZcbdw42g8JEYvCIO0AlBEARBcBLBiODUvBlqvoXGpWDOBtm4d5/aFwxJ4HMKBF4BhgEA1FWmUb97F2argk12x4EnMm57a6IoCuBAogVN6wwfN4MG/5DBeAUkHPFbFARBEI5OIhgROmevh5rvoP53MG0GWyXgnOmDSge6fuCVCn4Xgs/pIO2dcGWs2UVtVQamFhs2xa11NMUdUO+XPOuc4aORmjHoVPgGxuLtnyySZwVBEE4wIhhxoQfX/0KNpbnD9slh8Vw2YHSnx2zaXcQvhenUmI0Eu3lxfmxKu9ojiqLwW2EGKyp20eKw0d87kMsGjCbE7QjfnyxD079QOw+MK8CcB0pL604VaALBbSj4ng4Bl4MutMMpzMZyqks3YjKZsMoG7IonMh4oHWb4WFrzUprRa+34+EbgFzpGBCmCIAjHKRGMuFCT1YzM3h9TWXMDr237hznJ00jwDenQPrdxNy9tXczM2GEM9Y9gfVUBC0syeWj4aUS0VmtdULyDBcXbuSYhlUCDB78WpFNqqufxkWcdONn1SLGWQXXrtOKW9NZpxa1UbmDoD56TIOAS8JwIUufrLdotjewuXo3R2IDVodsneVbXyQyfZtQqIwaNDU8vfwIjU9HoPI/AzQqCIAi9RQQjvWhe7iYyakt5atTZqFSqDvs/yFyJVbYze/CUtm3PpS0kysOPy+PHoCgK962bzymRiZwamQhAi93KPWt/4pqB4xgdHHOE7qSbZDvU/wF1/wPj2v2mFUugDQX3EeB7tjNA0XT9Z2S3mqkpX0tTfSUWuwaH4okdzwPM8DGhUTWhkyy4e3oSGDYWg2dg796vIAiC4BLdff8WFVh7yC47WFdVwPSIQZ0GIgB5TdVMjxjUbluSXxhbWwuiVZubabSZSfTd+8jDTaMj1iuQvKbqoy8YkTTgf67ztUdLtnP0pHExmHdAw+/OV+FNIHmBIQG8pzof7XgMa3c6jc5ASL8phOxXTsVutdKwewsNtUWYrbSNpFiUCCyyRFMjVDYUALlt5fF1qhbc3PQEhKXg4dtJfZZeUmtuxmi3tH3vqdHjb/A4YtcXBEE4nohgpIfSakposVsZH3LgdWEarWa8tYZ227y1BhqsZud+mzMnw1u3Xxvd3jZHPbcEiHoSeNL5vd0E9T9B3c/QvAFMW8C0ESpeBDTOacWeY8D3PPCfCZKhwyk1Oh0BEWMJiBjbYV9DZQZ1NTtpMTuwy+7Y8Wwrj280we7calAqnSMpGNFILbgZJPwCBuITkuzSW681N/PIxt+wt5b4B9CoJJ4adbYISARBEA6BCEZ6aFVFLoP9w/DVi4ql7WjcndODA6/Yu824AWq/hcZlYN4Jtd87X3mA2g/cBjunFQdcCYauF/3zCUnuNKhori+kpiKNFpMZG27YFU+sBGGV1ZhaVNSUWKF4Q8fy+P7R+AQNP6TkWaPd0i4QAbArMka7BX9EMCIIgtBTIhjpgRpzM5n1ldycNKnLdt46A4229iMcjTYzPq0jId5aN+c2qxkfndveNlYzUZ6+ru10X/Ic7XztYa/dO624eQsYV4FxJZQ+Bio96GPAczz4/R/4zDhgYuy+PHz7dfp4xmysorp8AyajEausx654YscXmxJEi1VFXQVQnr5PeXwjeo0dL98QAsLGodF1HLkRBEEQeocIRnpgdWUuXlo9yf7hXbaL8wokq76iXd5IZl0FcV7OxMtAgwfeWgNZ9RVEefoB0GK3kd9UzeSwAb13A31N4w8htzpf0DqteKlztKRpJVjynIXZqj/FOa04CNyHgc8ZEHAZ6IK7fSmDZzCR8Wd22G63GqkuWYuxqWaf8vie2JUAzHYVDdVQsnsbKuf6yM68FLUVL08fgqLGo9H3fQK1IAjC8UYEI90kKwqrK/NIDYlDrWr/if3T7NX46tw5LzYFgGkRCbyUvphFJZkk+4ezYXchhcZarogfA4BKpWJaxCD+LN5GsJsXgQZPfilMx1fvRkpg1JG+tb4jSeAzzfnaw1rcOq14IZgynOvuNC6C4rtA5e6sEut1EgRcCh7jujV6si+NzpPQuOkdttutZuoqNtJYX95aHt+jNUjxxeKQaGqAsvqdOMvjN3Obmzt2pZFKRwurbRqqcOt4MUEQBKFbxNTebtpRV87r25by5MizCHFv34eX0xcToPfgmoTUtm3OomdbqTE3H7TomcluZYBPEJf1H93h3Cc82ep8rFP3U+u04iLnGj6Ac1pxGHiMck4r9r8YNK6tTWK3Wmmq20bd7jwsVgWb7NFaHt/QSXl8U2t5/Bbc3LQEBCfjGXAcj3QJgiAchKgzIhy/TJlQ8xU0/uOcVuxo3LtP8ga3QeB9snNasfsQl1++yFjLM1sW0B8To7QyfmoP1CpvHHg51/BpVx7f0Zo824RWMjnL4wfF4eU3RFSeFQThuCeCEeHEYTdC3Y9Q96tzOrG1DHC07tSALho8x4L/+eB7DkiHHgRUmhr5uXArm6uLO+ybPXgyyf4RmJtKqS7bRHOzGauib1sRmQ7l8c17K89qFXx8w/ENHS2CFEEQjhsiGBFObE3rWqcVLwfLTpBNe/ep/cFtCPicCgFXgKF7xdK21pTwYdYqbLKj0/16ScPtQ6YQ79N5oq25uZa68vU07VMeX+6iPL5zho8NT68AAiPHo9GJ6eSCIBxbRDAiCPuyVUPNt86y9qY0sFfBnvWGVHrQxzrX2Qm4CLymdUiMLWiq4cWti9rqi2hVEjFeAciKQkFTDY7WcxnUWh4afhrBbl6d98Pe4ByZkfYmvNqtJmrK1tHYUIXVrsXemjzbWXn8thk+kgV3Ty8Cw8aI8viCIBy1RDAiCF2RZWhaDDXfO+udWPJB2VPeXQWaYHBPAd8zIeBS3tq5jYzaMgBGBUZzefwY3DXOxymN1hY+yV5DZn0FABND+3Nl/D5VZGWzMwiq/hzq/3LmsvT/7KBddJbH30xDbTFmq6otSHEmz7YGS4qCc4bPnuRZM27uegJCj2x5fEEQhM6IYEQQespc6EyMbfgbWraBoxZwjp9YFT2VSihFUjLjkp5A4zmi3aEmu5UH1v+M2WFHJ6l5ccxMDC1rofpLqJ0HshFQAzIE3QCx7x9WVxsq06mr3kmLRcEuu2Hfkzyr2mfFZ8WxT3l8E24GDX5BCfgEDT6sawuCIHSXCEYE4XDJVqj7hdqKr3A0rcFfVYta1ZovoosETQjo48DvbNBF80NpNTtqshkjreUU/Xo0jkqcpXzs+5xUA5GPQ/hDvdJlY30+teXptLRYsCoGHIoXDtxpP8NHRqKltfKsyVkePyAGn8BhInlWEASXEsGIILjIpt1FfJC1EoArItyZ5FUH5izY/ZlzWrHSvvS/oux93+9U3Jft1/A5AszGKqrLNmBqNmKVDdgVj9bkWe1+eSlmNK3JszqNAy/fYFEeXxCEQyaCEUFwkYKmGuamLQSgv3cQ9w07pX0DhwnZUsT32z5muvwpgVINCtBVPIJKD2pv0AaDNgoM/Z0LB7qPBI9hIOl763bacZbHX0NTUy0Wu7Z1JKWzGT7Wthk+Oo0VT09fgiJTRXl8QRC61N33b1EOXhAOop+nP+HuPpSZGsht3M2a1mUB2qjd+btGZqllOEsZztleOzlLfgvs9eytd7IPrylgrwFbFZhzoWUHNO7/mUANag/nNGRtuHNVY0OCc60ejzGgC3XJvTnL45/C/mezW83UVqynsb4cq02NrW0NHz/MdhWN9VBWtxMVdqQ9QYpkxt3dncCIURg8w1zSP0EQTgxiZEQQumFVRS5f5Kxr+36IXzgjAqNwKDLrqwrJaaxq23f74CkM8dJD0R1Q8zXOMZI9/8wkGGUGSdv+AtYSMG4EU7rzEZClAGzlzpWO5WY6BjUqUBlA7eMcXdFFgSHeWT/FY6Tz/5LrP2vYrVYaazKor8nHbFWwt5XHd9tvhs++5fFNuLvp8A8diqdff5f3SRCEo5d4TCMILqQoCt/mbmR5eU6X7c7pl8yZ0cl7N9T/AXnXg70acDiTXkdU9LwDshmat4BpM5h2gGWXM4Cx727NW7F0cpAG1J6gCWgdXYkDQ6JzdMVzjHMVZRdqrM6irmoHLWY7NsW9taibeyczfJzJs1rJhEGvwjdwAH4hKS7tiyAIRwcRjAiCiymKwrLyHBaW7KDOYmq3L8TNizOjhzA2OLbjgfYGKLobqj8Gj7EweK3rOyfLzkUEm9c7Vzs2Z4O1AGwVYK9rrUAr73eQyll8Te0L2hBn2XzDQHBLdo6uGAb1eFXkzpgai6kp34KpuWW/GT6dlcc3olE1o9fK+PhH4Bvce+XxFdmBuX4bbv7D2rbtLKhldVoZVlvnVXa7otOqGZ8SzsAY1wZ5gnAsE8GIIPQSWZHJrK+g0tSESgUR7r7E+wSj6nIKDdC0EiR38BjRdbveYjeCaZNzhMW8w5mvYit1VqeVm0CxdjxGpQXJC7SBoI1wTmV2S3IWhPMYDZoDVJrtBnNzLTXl62g2NraWx/c6wAwfy94gRWPD0zuAwIjDL49fV/wneVUh+Gkz6ZdwBmq9P5/9vI3aBvPBDwZsahsOdfugJcDDnZvO6aM/X0E4ColgRBCEnpFlsORA857clRywFoKtEhz1ILfQcXRFco6uaPxAEwr6fs5EW7eh4DkKdLE9Hl2xW01Ul67F2Lgbi12LvXWhwS7L46vNuHt4Exg2FoNnQLeuU5r1NRXGgYCCVlVLXLQf3ywzYDTZUKnAw017wGOtkpVtQbtQVO1/faoUFc+OOQd/g0eP7lkQjldiNo0gCD0jSeCW4Hxxeedt7LXQvGd0JRPMeWAra50dtNW5avL+VHpQe4EmyFksTt/fObriMQLcR4DarV1zjc6d0NiTO17aaqWhaiP1tSVYbFJbeXy74oPFIdHUCJUN+UAOakyoVU3oVGbcPdwICBuOu3dUu/O17BkAUamxKf5kF8Lw0PWszBuKh5uBG/9vWIc+7FFkrCVjS8f8IUWlYLRb8EcEI4LQEyIYEQSh+zT+4HOK89UZ2e6cqmza5Cyp37ITrMVgr3TOEDJnAYv2O0jtfHyl8QdtGOhjWqcxD3Um2uoinZfW6QiIHE9AZMfL1ldupa56F2aLA1vrDB+rEoYVNUYjVOVUgVLeNsNHozJhkUP3zgBqTbKV3IYzbdAuMiu6Hl0x2jpLGBYE4VCJxzSCADy4/hdqLM0dtk8Oi+eyAaM7PWbT7iJ+KUynxmwk2M2L82NTSPaPaNuvKAq/FWawomIXLQ4b/b0DuWzAaELcTvC/w9ZKaN4Apq2t05jzwVoOjhpwNNO+fH4rlWFvkThdFOgHOIvEeYxwzg6SOk9yNdblUluRjqnFhk1xw6F4diyPvz9FRoWF6IB6AmPPar9LUVhcmsX8/LS2lZrbN4CrB45lfKiYwiwIIHJGBKFHmqxm5H3eXMqaG3ht2z/MSZ5Ggm9Ih/a5jbt5aetiZsYOY6h/BOurClhYkslDw08jwsMXgAXFO1hQvJ1rElIJNHjwa0E6paZ6Hh95FlpJ3eGcQivZ6gxUmjdDy/bWaczFziJxnZTfd9K0FokLAF0Y6GOds4H2JNrqgtu1ri9bRW75wUvcS0oTKpUWD50RNDZ+q95MNgO6PgYVs4dMZrBfeA9uWhCOTyJnRBB6wGu/tVcWFO8gyODJQJ/gTtsvKc1msH8YMyKTADg3ZhiZ9RUsK9vJ5fFjUBSFJaVZnBE9hJTW5wrXJqRyz9qfSKsuZnRwTK/ezzFN0oHnaOfrQCxF+yTaZu9TJG63M+nWuGq/A1qLxGl8QBOCIo8Gbu54XsUOKk1rPRQjEjbsuNNoCQCrislupzM/fwNJob5MCYtnekQigQYPXvtlLcVuVTS7NyOj8OXO9Twz5hzUqsOfGi0IJwIRjAjCfuyyg3VVBUyPGHTA6bp5TdVMjxjUbluSXxhba0oAqDY302gzk+i7t9C6m0ZHrFcgeU3VIhg5XPpo58v//M73O1paC8TtKRKXu7dInDkLM6NAJTtzRloDEEkx4a2swN22HtlWQURkEhgGUa+L5b68h3hRcecPWzwrVbk0b/uS18Ym4qZzBhseNnciGsIpiyjFqDdRZzWxtaaUEYFRnfdPEIR2RDAiCPtJqymhxW5lfEgnBcxaNVrNeGvbj6Z4aw00WJ2PEBptLc5t+424eOv2thF6kdoNvCY4X52wbfsSLBIaavFTb8VXk4WXkk6zsQidqhGN3gLVzvL/vsAHOAv6n6vOZGmYzBrDFYx/9XnmnW9koE8dEsNQoSK0OZBd+iIAMmpFMCII3SWCEUHYz6qKXAb7h+GrP7yiWsLRK6z/dAJN5bj5TUMl7Z0Z9OUPG9lm30Su1zpyfBaCrYw5OrhNB7sJo8WuJkSq4pSANL4P+IOp31zMj2OeJkA3h0bTINzse4NPk72TInKCIHRKBCOCsI8aczOZ9ZXcnDSpy3beOgONtvYjHI02Mz6tIyHeWmftjEarGR/d3joajVYzUZ6+ru200GNatzC0bs6Vhcst5SyoWUBzxdtcE72JFgWagAYFjGpIVQOSBwXKCByqWtKLJ/CgVI459k3CjElM/Pd7RvjauTjYSIt2798Jd03vlLEXhOORyK4ShH2srszFS6sn2b/rmRBxXoFk1bdf8C6zroI4r0AAAg0eeGsN7dq02G3kN1W3tRH61pLaJQxbN4zwleFcl3kdixu34KmCIAniJBiuhkkaUKsA2cRo5Q9SdWu4IfZ7TNtexNwSQXHynSSEt7CxXsfcfB/ytLVt5x+2zzRvQRC6dkjByNtvv01MTAwGg4GxY8eyfv36Ltu/9tprJCQk4ObmRlRUFHfddRdms3huLhxdZEVhdWUeqSFxHWZBfJq9mvn5aW3fT4tIYHtdOYtKMqkwNfBbYTqFxlqmhA8EQKVSMS1iEH8Wb2NrTQmlzfV8unMNvno3UkQewVGhyFxEujG97fvfHDIFMsj7FTtwpjArqABFgXPWfIDZFoi85SOsDqiIP5NRAY3U2iQ+XJlIWbUXfnp3kgNEMCII3dXjYGTevHnMmTOHxx57jM2bNzNs2DBmzJhBVVVVp+2/+eYb7r//fh577DEyMzP5+OOPmTdvHg8++OBhd14QXCmrvoJai4kJIXEd9tVaTDRYW9q+7+8dxKyECayo2MVTm/9ic3UxtyRNaqsxAjAjMpGpYQl8lbOeZ7cswOKw8Z/BU0WNkaPENWHXMCdqTtv3MvDqQdI8vqi8gz8qW0vVm+Jhx1zqtMXsHnoX04fnICsqfl+fhLFyhJjWKwg90OOiZ2PHjmX06NG89dZbAMiyTFRUFLfffjv3339/h/azZ88mMzOTJUuWtG27++67WbduHStXruzWNUXRM0EQeoOiKFy9/Wq+rPySMRLco4MLNR2LsyqKikzjBbyU8xifFu6X2JzwKER8zxj7bAZrJvPL2mRqTTA5Vs/i68LQaERQIpy4uvv+3aN/JVarlU2bNjF9+vS9J5Akpk+fzpo1azo9Zvz48WzatKntUU5eXh5//vknZ5xxxgGvY7FYaGxsbPcSBEFwNYe9iYFNf7LGHdZ5OPNEVjqcj2P2UqPyPomkqd8wKDHSmUOyr50PQdMg1svfcWZsPJUPxHByfwPL8y2EP1dEbo2YVSMIB9Oj2TTV1dU4HA5CQtqXxw4JCSErK6vTYy677DKqq6uZOHEiiqJgt9u5+eabu3xMM3fuXJ544omedE0QBKFTC1bmsyO3BgBJpcKgVxPuZ2SkzysYmM/DashTtPxXDuHV5jLe1ctMbHuSpgZdNMT/BJKWskY7kgoc+wYrih4y3oaxZ3PhptsoCPiLJbPCeXpJHY8urmPQKyV8dVEQFw/zosFo4eP/ZXDF2UkE+4up44KwR6+PHy5btoxnn32Wd955h82bN/PTTz/xxx9/8NRTTx3wmAceeICGhoa2V3FxcW93UxCE41hMhDc3XTSMG6YXcdWAazjTZwqB/MzPNhWvGs4gbqyVB0dt40y3CK7WQjFa54GSOyT85VxRGChvcrQPRFqpzBGotr8Mgcu4LtdZFfbhaX4suyEMrVrFJd/t5qb5u4/U7QrCMadHIyOBgYGo1WoqKyvbba+srCQ0NLTTYx555BGuvPJKZs2aBUBycjLNzc3ceOONPPTQQ0hSx3hIr9ej1+t70jVBEI4DteZmjHZLu22eGj3+Bo/DOKuDcGk+HjteAEctMhKv2lS8YIFzd7/O7SMuAUBvd+M9WUMJen6rvp2bgj/AFP41vm4JAKxOK2VTvglZcQ6bSCjIqPDQqnh2hj+XpVzDzB2f8k/9Av7z07v0bx6Dv4+BNVeHceF8Ix+sb2Lbzt2cGwJf/bYDgMgQTy46bVDn3RaEE0iPghGdTsfIkSNZsmQJM2fOBJwJrEuWLGH27NmdHmMymToEHGq18x/zMbBgsCAIR0ituZlHNv6GXZHbbdeoJJ4adXbPAxJrGRT+h0nScjw8q0HxoNT3IpJKf6FJtvLBoA/QN6eSU1RH8sAgVi17hmn++XxoepgC7+G8XnsWhjwvZl1gx03v/FVZ1xoneelUXJhoYE1uIxVWiSz5L97O8uIe5X0qrFfxnvddLB63Asq8WbIqj/NHl7GmxINV22MoNWt4b2YAkwZ6I0mdr30kCCeaHj+mmTNnDh9++CGff/45mZmZ3HLLLTQ3N3PttdcCcNVVV/HAAw+0tT/77LN59913+e6778jPz2fRokU88sgjnH322W1BiSAIgtFu6RCIANgVucNoSZca/4VtIyEtAur+R6Mjjn+bPuKf2F+IKfkJo2xjfvJ8ZkXMwt/HQKPRSllpLmO93qFeiuOcsfdy35jpxCf50qyY2bCztO3U5wSb+OICf3Y/EsNDZ2hJHlBMvVVDqGUCKQGR7NzZxKP+r+BQ2Th753Qagqqx6CyMUAbwzcwR3Dihknq7xNnz6vlwc3NbkCMIJ7oe/0u4+OKL2b17N48++igVFRWkpKSwYMGCtqTWoqKidiMhDz/8MCqViocffpjS0lKCgoI4++yzeeaZZ1x3F4IgnNhkGarehPLnwVYOqMBjHES/xtatwWx0rOWxtFNRq9QsH7GciX4TAefidypAXXwrBnUTX+V+QlP2rrbTau1aSmv3zuabGKbiylG+ACwpzWZigpZ/tjv4erOK/540hFzHFhwaiTcGvsHsnbN5NP9h7gx+BsmiJtLDj8cnDCW0Ipt3yj256/da/tnVws9XhnT6uFoQTiSHFJbPnj37gI9lli1b1v4CGg2PPfYYjz322KFcShCEE4CsyGTWVRy84f7s9VB0D9R8DYoZVDoIuByiXwOts+z+Ssv7vKi6E72kZ8PoDQz2HNx2eG2DmXDPnQSpFrGp7jrOPd25aJ6iyGyrLed/BWmcnzy100vnNVUzNSSB0T4WFlZLlDfZASgzNfBQ1G38sftv/qr7lbWkcjL/B4BBo8VLo/DcGU28tyaU37Ja6PdCMetvjSDMW4ySCCcuEY4LgtCnWuxWXstYyk8FaQdsk15T2n5DczrsmAyb/aH6Y1B7QeRcGNkC/b9qC0Qez3uc55TZhMgx7Ezd2S4QKSpvpLrORKrnHBy4s2b3tew2N/FYxq88lP4LP5VvZtawccT6+7cd09hsxWhy1g1ptJrBqGaUjxUFePyfBrR6FbYmZx7I63EfEKMaxafyXKrd8wBQt+aImGUL626L5J5J3pQ0OIh5oYi/spsP90cpCMcsEYwIgtBnZEXhvcwVZDfsnaHnrTUQ6eGLZp9y6r8VZbCuKh+qv4K0/rB9GBj/BbchMPBPGFEF4ffDPo87bs68mSfynyDOkcxz0nf4KSE0NVuprGlmXXo5v/yzi4mRC/CUCtGE301IYABr11ZxXfhJ3B5/MmPdB/DTqiy2Fe/tm0YtsWBlPrtrTRhaDORlNjMu3pcAdzU/bW8mpJ8Oz1pvsvNraW52cH7jA3jIftxnu4R6az3uBi1ICo4GieYWG09P9+X3q5yPuM/4rJL//lVzBH7qgnD06XE5+L4gysELwvFpa00J7+z4FwAPjY5rBqYyxD8cSaWixW7l96JtLCtN5xz1D0xWL8WgagHU4HM69HsLDP06Pe/5W89nfvV84t3iecX+GzvzmwBn0TO9Xk2QnxuJ/SSSGhJRaQJgRCVWm4OVm0vJKayjxWLHw01Lk85IQJyGq4eMYXVaKblF9QwdGMTa9HKMZiu+QRouPzmZ+xbW8+aaRp45pxGpvh5/ox8msw2Txox+UB731F5NonsiO1J38NI//6Ktcke2QkSwc2pvWaOdMW+XUtroYFyUnqWzwjDoxGdF4djX3fdv8ZBSEIQ+8295TtvXV8SPZeg+K9260cyF8qtcoP8GCZkWxY0Kn5sIjX8NJEOn55NlmcmbJ7OyYSVjvMewZuQaZ3LoSZ003j4BcED/7wDQadWcPDaak8dGtzV5JX0JirZ9pdRhg4IZNiiYDzJX0iI3Y9BreHK6L2+taeTHDBt3T3Xn8vhhKIrCfevmc2rQaK7SXcUXFV9ww46b0emmcM3J4xgdHNN2znBvDUX/jeKcLyr5I7uF8OeKWHVTOIkhuh7/TAXhWCRCb0EQ+syuxmrA+WgmZU8gYlwLOyZBWiSq2m+waaL4yHYrd1o/4l/NDQcMRKyylSHrhrCyYSVnBJzButHrDjxLpWERNK8Gz0ng40xQnZ+fxs6GKqrNRkqb61u/r2RMa9CQVl3SbuXmaREJbK8rZ1FJJmaaSQw3kV3mxYTgAQCoVCqmRQziz+Jt3Bn8FP31g/i0/GOapTJSAqM6dEmSJH6/JoyXz/CnvkUm+fUSPtso1uUSTgwiGBEEoc/YZAcAXloDkkoCawXkXADG1RB8Gwwvozx+ExvkCe3a76/R3kj/1f3JNGVyTdg1/JHyx4EvKsuQexmghvj5bZubbGY+y17DYxt/59WMJRQYa/jPkKkk+YUB0OKw4djnqXZ/7yBmJUxgRcUuntr8F6MGVGCy6Phi495CZjMiE5kalsA3uRs5WbkfT1UA35kfYre1fRXrfc2Z5Mu6W8MxaFVc+79qrpxXJQpECsc9kTMiCEKfeXD9L9RYmpFUKp4fPhbv3DPB3gAJf4PHEAAWFO9gfutMm3P6JXNmdHK7c1RYKhi8djC19lru73c/cwfM7fqixQ9C+VwIux+iDtK2B2RZxv2xAoI81BTf33kuy8KahZyWdhpR+igKxhd0WV+k0SyT+m4pO6psDAzUsvaWMPzcxZN14djS3fdvMTIiCEKfcT4CUUhhDertY1AcTZC0vC0QqbU0s7h074rgo4Ni2h2fY8phwOoB1NpreXnAywcPROy1UP4iaAIhwrWFFyVJYsYAN0oaHOyqtnbaZkbADO6KuotiSzEXb7u4y/N5GyS23xXF9aO82FltI/K5YlYWtHR5jCAcq0QwIgjCkacoYFzHDOUzXtDdxk26N3FXaviAp1nboGFnfSW/FWbwzOYFNNnMAAz1jyDYzavtFBsaNjBk7RBMsomvkr5iTr85B7/uzvMAO8R93W4asKs8e1oAAA8srD1gm1cGvkKKZwo/7v6Rj0s/Pug5P7ogiG8uCcLqUDjp/XLmLq1zWX8F4WghHtMIgnBkKLIzF6T2R6j9vrVsuxpwoCiw0TGWjxz/6fTQIIMn9w07BW+dGwB/Vf/F2VvPBuCPlD+YETDj4NdvWAbZU8FjPAxe5Zp76kTYs4U0mGVMT8YesI3RbiRsZRgtjhYyUzOJd48/6Hlza6yMe6eMapPM9AEG/ro6FI1GfJ4Ujm7iMY0gCEcHRzMU3A5bQiFzElS+3RqIADgTUlUq2Kz9vw6HqlAxIiCK+4ad2haIfFX+FWduPRONSsOaUWu6F4gA5F7C/kmrveG6kZ602BS+TzcesI2nxpPFwxcjIzN+43jssv2g5+0foKP0gWgmxehZvMtM1PPFFNbZXNl1QegzYmREEITe1ZIJGUOAjivyttFFogwtJKuhipyGKqyyHR+dGyMDo/E3eLQ1e7nwZe7ZdQ8eag+2jNnSrREFAEoeh7InIHQORL98WLdzMCarjOfjBQwL1bHlP5Fdtn0m/xkeznuYaX7TWDxicbev8eiiWp76px6tBPMuDeG8IR4HP0gQ+oAYGREE4ejglgj9v8G5Pm5n1BBwOSpJItEvlHNihnJh3AhOiUxsF4jcl3Mf9+y6hwBNALtSd3U/ELHXQ9kzoPaHyBcP924Oyl0nMSJcx9ZyK0ZzFwEY8FDsQ0z2ncySuiW8UPBCt6/x5Cn+LL4uFLWk4vyvK7n91+rD7bYg9CkRjAiC0PsCLob+X9N5QOIA/65nlly9/WpeLHrROSV2QgGh+tDuXzvnQpxJq5/3StJqZx452Q8FePKfgyeb/j38b/w1/tyfez8bGzZ2+xrT4t0p/m8UMX4a3lrTyPA3SjBZuw5+BOFoJYIRQRCODLV/59t1MeCe0ukuRVE4Y8sZfFHxBYM9BrNr/C48NZ7dv2bTKmhaAh6jwe+sHnf5UJ2b5IGHVsXnm5sO2lYn6Vg5ciUqVEzbMg2T3dTt6wR6asi9J5ILh7iTVm4l7NlCtpZZDqfrgtAnRDAiCELvq/sTdp6BER++s13F3kQ1NQRe4cxg3cem3UU8suFXUpadxV+1fzHecxrpY9LRSc61WhRF4deCdO5d+xOzV83j1YwlVLZ0Ujp910WABPE/9+LNde7sJHeqmmXSuhEcJHom8k7COzQ6Gpm8eXKPriNJEj9cHso75wZgtCqMeKuUd9c2HGq3BaFPiGBEEITeVfcb5JyNFTfe4GVy3C5mg8ejrTs7PqLJbdzNB5n/Ms/8GOnyn5zicQnDbLMo3yfYWFiSyT9l2VweP4b7U05FL2l4Y9vS9uXiS58FWxkE3wq68CNwo+09N8M5EvRgFzVH9nVT5E3MDJzJxqaN/Dfnvz2+3i3jfNhyewSeOhW3/lLDhV9VIMvisY1wbBDBiCAIvaf2Z8g5F1ml4xXe4rz4M3DX6Mg3nANxX0DQjeA+pN0hfxRv4S/5OXKsadwScQt/j/uWaE8/lpXtBJyjIktKszgjeggpAZFEevhxbUIq9ZYW0qqLnSexN0HZ46D2gejXj+w9t+rnp6Wfr5oluS3dDgr+l/w/InQRvFD0Aktql/T4mkPD9JQ/2I8R4Tr+t91E/xdLqDIefNqwIPQ1EYwIgtA7av8Hu84HlZ7v3L8lLiCZRL99Ek8Dr4TY99sdUmQuYm7l7ZQ4Mnk89nHeGfQOAEl+YeQ1OWeMVJubabSZSfTdey43jY5Yr8C2Nuy6CBQbxH56xJJWO3PzWG+sDvhk44FrjuxLkiTWjl6LVqXlrK1nUWvt3qjKvtx1Eptuj+T2VG8K6u30e76YJTndz0MRhL4gghFBEFyv5nvY9X+gMrA5bBE5Zi3nxaZ0eci2pm0MWjOIWqWEh8Nf4rG4x9r2eWsNNFidZeEbbc71Wbx1hnbHe+ta2xg3QOMCcB8O/ue59r56aM5EH9QqeHll93M4Ig2RfDP4G8yymdRNqYd87TfOCeSny0NwyArTP6ngkb97HtgIwpEighFBEFyr+htntVPJjbqB6/mmpIrrB41HK6kPeMjKupWM2DACi2zhXO2jnBVwGEHErgvoq6TV/ek0Eqn99GTttlHdg8clF4ZcyPVh17PTtJPrd1x/yNc/b4gHu+6NJtRLzdNL65n0XilWu8gjEY4+IhgRBMF1qr+CvCtAcoch2ym0+dBkM/PM5gXcsuJbblnxLTsbqlhals0tK75FVmTmV81n8ubJKCgsGbGEOEMCja2L4+3RaDPj0zoS4q11loVvtO7Xxmom3vYPWIshaBboo4/MPR/Ek9OdiayPLO7ZAncfJX3EQPeBfFL+CT9U/nDI14/21VB8XxSnxhtYWWghYm7RAVcVFoS+IoIRQRBcY/fnkHelMxBJ3gGGGAb5hvLoiDN4eMTpba9+nv6MCY7h4RGn81HZR1yQcQE6Scem0ZuY4jeFOK9Asuor2p06s66COK9AAAINHnhrDe3atNhtFDZVMM78Ekje0O/dI3nnXZra3w0fg4p56c09PnbNyDUYJAOXb7+cYnPxIfdBo5FYeF04c2f4UWOSSXy1hK+3HLwGiiAcKSIYEQTh8FV9DPnXgOQFQ7PaRiUMGi0RHr7tXnq1Bg+Nnk+r3uKmrJsIkCJ5M+JXhnoNBWBaRALb68pZVJJJhamB3wrTKTTWMiV8IAAqlYppEYP4s3gbW2tKKG2u59Odazhd8wcGpQliP+jTpNXO/N8QT+paZFYWtPToOH+dP78P/R2bYiN1Q+phT9W9f4ofK24KQ6dWccX3u7n+x92HdT5BcJWj61+sIAjHnsr3oWCWc0RiaBboul4cDuDH2k95JO8RgrXB3OH3Jhplb1XV/t5BzEqYwIqKXTy1+S82VxdzS9IkIjx8nQ0UmRmeuUwLjeGrnPU8u2UBGmsRp0nzULknO0vPH2WemeEHwCN/9+xRDcC0gGncF30fpdZSLsi44LD7MiHGjdL7oxgYqOWTTU0kvVJM40HW0BGE3iZW7RUE4dBVvgOFtznreSRnge7ga8ZclHERP1T9QJwhjoyxGbhr3Ht2zcalkHUy6KKh39vOMu9psWAthKF5YIg5tHvpZQNfLiavxob5yRg0mp5/Dhy1fhSbmjbxfsL73Bh5o0v6dPX3VXyxxYiHVsWSWWGMjTYc/CBB6AGxaq8gCL2r4s3WQMQXknceNBCRZZmpm6byQ9UPjPAcQXZqds8DEQBbpfP/1hLIORvSB4O1AAKvPmoDEYC7JnjjUOD1NZ2Ure+Gf0f8i5fai1uzbyXTmOmSPn1+UTCfXRCI2a6Q+m4ZL6+od8l5BaGnRDAiCELPlb8GRf8BtR8MzQFdcJfN7bKdlPUpLKtfxqn+p7Jh9AY0kubQrm2vwbn6b+ujBfMO5/+1EeA4eot73TTGC60a3j7EYMRd484/w/9BRmbSpklYZdfMiLl6lDcZd0Ti6yZxz5+1nPlZuSgjLxxxIhgRBKFnyl6E4rucq/AOzQFtYJfNjXYjA9YMIKM5g8tDL2fh8IVIh5Ngaq8BOqlZUj4X0gdC3c+Hfu5eJEkSU+MM5NfZKao/tBLto3xG8fyA56mx13DqllNd1rfEEB0VD0aTGq3nz+wWop4rpqRBlJEXjhwRjAiC0H1lz0HJfaAJgGE5oA3osnmVtYrY1bEUmguZEzWHrwZ/dfh9sNd0WOXXSQZbKeScBy1Zh3+dXvDMqc6aIw93c/G8ztzb716m+U1jef1yns1/1lVdQ6eRWH1LBPed5ENZk4P+Lxbxe2bPpyMLwqEQwYggCN1T+gyUPACaIBi6CzT+XTbPNeXSf3V/qm3VPN//eV4e+LJr+mGvAaWzxwgaUBkg6mUwJLjmWi42KtJAoLvE/B2H9ya/IGUBQdogHs57mHUN61zUO6fnTw/gz2tCUAFnf1HJ3X9Uu/T8gtAZEYwIgnBwpU9C6cOgCW4NRHy7bL65cTOD1w6m2dHMJ4M+4b6Y+w750rXmZoqMtW2vFnMZ4OjY0HsyDN0BYXMOMHJydLhiuCdGq3JYow4aScOqUauQkJi+ZTpGe/cW4uuu0xM8KLgvmigfNa+sbGTM2yWYrSKPROg9YmqvIAhdK34Uyp8CTSgM3Qkary6bL6lZwmlbT0NRFH4e9jNnBZ51yJfOqC3l7e3/orD319TD2geIkopav1OD2hP6vQkBVxzVQcgejWYZ3ycKGB2pY91tB6/J0pWPSz9mVtYsUjxT2DJ2i4t6uJcsy5z/VRW/ZJrwNUisvDmcwSE6l19HOH6Jqb2CIBy+4gedgYg2zJmsepBA5NuKbzkl7RQkJFaMWnHIgYiiKMwvSOOt7cvbBSIAwaq9ZeAV//9zBkiBVx4TgQiAt0FiSKiWjaXWwx5tuD7iei4MupA0Yxp377zbRT3cS5Ikfr4qlNfO8qfBIjP09RI+Wn9os4EEoSsiGBEEoXNF/3XOUNFGQPIu0Hh22fzNoje5bPtluElupI1JI9Un9ZAv/VfxdhYU72j7XqtSE+rmRYBkQocVhyLxhu1efpTuBW3X04qPRv89yRdZgef+rT/sc80bMo8ofRSvFL/CguoFh9+5TtwxwZf1t4bjrlVxw/xqLv22Ukz/FVxKBCOCIHRUdDdUvAC6KGdBs4MUJ3to10P8J+c/+Gn8yEnNIdEz8ZAv3Wg180fRNsBZTeTcfsN4KfV8nhh1Nk+Frsaucucx20tsl1NYUprF7pZjb8G3S4d5YNCo+GjD4fddkiTWjlqLTqVjZvpMqq29k3A6KtJA+QP9SA7R8l16MwNfLqHWJKb/Cq4hghFBENorvAMqXgFdv9Ycka4DkRsyb+DZwmcJ14VTMKGAcEP4YV1+dWUu9tbZMlPDB3JG9GAMai0Y16Ou+RRtvxcYGzUNAAX4t2LXYV2vL0iSxGkD3ShtdJC9+/CLl4Ubwpk3ZB4WxcK4DeN6bdTC0yCRfmcUN43xIrfWTuTcYv7N69nif4LQGRGMCIKwV8HtUPkG6GKdgYjU9Vol56Sdw0dlHzHIfRD5E/Lx1hx+gnlOQ1Xb15PDnCv14jDDrgvBLRmCb2LKnu37tT+WPNtac+SBBYdec2RfM4NnclP4TeSac7k281qXnPNA3jsviHmXBmOTFaZ8WM6TS3q+AKAg7EsEI4IgOOXfAlVvgb6/c/Vd6cCzJmRZZvyG8fxW8xup3qlsH7sdXRfte8Iq75226693d65FkzkBrMUQdAOoNHhq9WhUzl9fVkcn03yPAYkhOsK91Py103UjC+8lvkeieyJfVHzBvIp5LjtvZy4a6snOuyMJ9JB4bHEdJ39Yht0u8kiEQyOCEUEQIO8G2P0e6OMheUeXgYhVtpK0Lok1jWs4K+AsVo9efXjl3ffjo3Nr+7qy6DXYGu9cFC/+Nwi93dndpuq2Rzk+umN3pdnrR3thtit8u9V1eS+rR67GTXLjih1XUNhS6LLzdibWX0fZ/dFMiTWwNM9MxHNF5Ne6Zs0c4cQighFBONHlXQvVHzmrlh4kEGmwNRC7KpZsUzazwmfxW8pvLu/O6KB+AFyrfofI3feioILBm8HPOU3YLjv4pSC9rf2Y4BiX9+FIeXCyL5IKnlvW4LJz+up8+SvlL+yKndSNqb0+60WjkVh6YziPT/Njd7PMwJdL+DGj8yJsRfV2Wmwd+7N/YbtasyhDf6I5xGUzBUE4LuReDTVfgFsSDN4KXaykW2YuY8i6IdTZ63iw34M8M+CZXulSsrcnT+vvI4hSSuUIPuUVTqptoZ9nLWWmepaUZlPc7MxR8NIaGBkY3Sv9OBIMOomRETo2llhpNMt4G1zz+XCy32Qe7PcgzxY+y7np5/ZK0Li/x6b7MTnOwBmfVvB/31Rx89gW3p0Z1LZ/W4WV0W+Xcv5gd76+JKRte625mUc2/tY20gWgUUk8Neps/A0evd5v4eggRkYE4USVe3lrIDIEBmd0GYhkNWcRvyaeOnsdr8W/1muBCE3rkLZGEkgpa+UpPGl7gWKLna93refZtAV8tnNtWyCildTcOGgCOvWx/Znq0ZP9UIDHl7gmkXWPZwY8w1jvsfxe8zvvlLzj0nMfyJQ4N4r+G0Wcv4b31jUx9PVijGaZBrPMOV9UYLYrfJfeTF6tre0Yo93SLhABsCsyRrvliPRZODqIYEQQTkS7Loaab8BtWOuIyIF/FaxpWMOwdcNokVv4ZvA33BF9R+/0qeI1yEwF2Ywq9nMik38ixrPzxfgi3H2ZkzyNgb4hne4/lpyV6IGnTsVXm127vgzAsuHL8FH7cHv27Wxr2uby83cm0FNDzt2RXDLUg4wKG2FzCzjn83KK6p01SVQqeGF5/RHpi3DsOLY/UgiC0HM5F0Ld/8B9OCRt7DIQ+b36d2ZunYlKpWJhykJOCTjF9f2RZdh1PtT/Amo/SFwF7olEAg8MP42CphrSakow2a24qbUM8Q9ngHcQqmOk/Ht3nJvkwddpRjaWmBkV6bqEXIPGwLKRyxi5fiQnbT6JikkVLpv11BVJkvj20hCmxjVy88/V/Fuwd5TDIcMnG5t4fLofoV7iLUhwEiMjgnAi2XleayAy6qCByGdln3HO1nPQqDSsG7WudwIRWzWkxzkDEfdRMLwM3NtXb43xCmBmzDAuGzCa82JTiPcJPq4CEYBnZzhHgB7+2/X1OlK8Ungp/iXq7HVM2zzN5efvSoxf58GGrMArK12XtCsc+0QwIggniuyzof5n8BgLSeu6DEReKHiBazOvxUPtwfZx2xnhPcL1/WlYBmlRYC2EkP/AkA0HLbJ2vIr21RDjp+Gf3JZemf1yV/RdzPCfwcqGlTyZ96TLz9+ZgjobF31T6azpvx+HAm+taaSuxUGd2dTp8Q5F1Cw5kYhgRBBOBNlnQMPv4DEeEld3GYjcvfNu/pv7XwK1geSOz6W/e3/X96f0acg+GXDAgP9Bv9ddf41jzK3jvLHJ8MF61+eOAPw+7HeCtcE8nv84q+pW9co19nXpt1U0WBQUpfP9ZpvCTX9k8k7mv53u/yBzJSXNorLriUKlKAf6q3L0aGxsxMfHh4aGBry9D7/ctCCcULJOhcZF4DkJBi3rMhC5YtsVfF35Nf0M/dg2dhueB1mpt8dkO+w8HaVhMYUM4hPlASptGm5JnERKYFSXh2bXV/JD3mbKTQ346d05I3oI40Pi2rVZWraTRSWZNFhbiPT045L+I4n1CnTtPfQSu13G8GgB/QO0ZN/d9c/iUOWacklYk4BBMlA2qaxb5ftrzc0dZrZ4avQHnXZ7/4IafsxoJq/WjgJIKucgiWOfdxxJkrl6+ka0ms5HQdw1Ov477BRC3X0O2k/h6NTd92+RPSQIx7PMadD0D3hNgcSlB2wmyzKnbz2dv2v/Jtkjmc1jNqPpYqrvIbGWwPbRYKtgt2E6ad7Pc55XEO9lrjjoodVmI29tX8ZJYfFcP2g8WfUVfLlzHT46A4P9nAvzbdhdyI95m7lswGhivQJZUpbFG9uW8sTIs/E+Bqq0ajQSE2P0LM+3UGW0E+zp+l/P/d3780nSJ1y942ombpxI+rj0Ltt3VgMEulcH5LnTAnjutAAazTJbyixsLLWwvtjC2iIzRQ3OEv6yLPH7uiQ+vFjFlIgBeGr1ZNZV8HPBVoqb6zDZrXybu5G7ko9srotw5InHNIJwPFIUyJzSGohM6zIQsct2Rm8Yzd+1fzPFdwppY9JcH4jU/Q5b+4OtAsIeJnjYImbGjmD4QUZD9lhenkOgwZP/ixtBmLsPU8MTGBEYxeLS7LY2i0uzmBjanwmh/Qn38OHyAWPQSRpWV+a69l560ZPTey+RdY+rwq7ikuBLyGjO4D/Z/+mybWc1QKBndUC8DRKT49y4e5Iv8y4LofD+frzwf6WcPmoHAV5Gdjd48NY/gdhsOtQqiSH+4dwzdDoBemegk1VfSYVJJLse70QwIgjHG1mGzJOgaTl4nwqJiw/Y1GQ3kbAmgc3GzVwUfBFLRy516TozABT9F3LOBlQwcCFEPdXjU+Q1VjPIN7TdtiS/MPIaqwFnifiiploS92kjqVQM8g1ta3MsOCnODV+DxA8ZvVsO/evBXxNjiOHNkjf5vfr3dvt2mnay3bgdgAaL6xbx20NWZPJMJUQFN3LdtFwWXhdKWrmFlDdK+DbNmS9j0GiZHB7fdkxGbZnL+yEcXUQwIgjHE1mGzIlgXAk+Z8CghQdsWmutJXZ1LHnmPG6PvJ15yS5e5VW2wvbxUPECaCNhWD74nnpIp2q0mTs8avHWGTA7bFgddow2CzIKXp20abCZD/kW+sLFQz2oN8ssy3N9ILCHJEmsGbUGnUrHhekXUmWtAuCTsk9IXpvMBRkXUGtu5t0dnSeXHg6Lw47cmqoY7u7DqfEebJodiQq4fF4VRotzJCbKw6/tmGa7WHzveCeCEUE4Xsiys4Jp8xrwPQcS/jhg08KWQmJXx1Jlq+KpuKd4I+EN1/alJQe2hDv74nMGDCsEXZhrr3GcevoU55vwo4tcWx5+f6H6UP439H9YFAuj14/mmu3XcH3m9VgVKzmmHHZb6nDg+vkNerUGqbVOTJmpAYciE+2r4bpRXgS4S3jqnW9LxfvMpPHQ9H6hNqFviWBEEI4Hsgw7xkDzevCdCQN/OWDT9KZ0Bq0dRJOjifcHvc/DsQ+7ti/V8yAjCRy1EPm8Myg6zEc/3loDjdb2IxyNVjMGtRadWoOnVo+EiqZO2vhoj/7k1X0FemoYFKRldaEFu713a22cFXgWV4RcQZGliM8rPm/bLiOT1bKjV64pqSSSW5OOG6wtrK3Md35tltFIziDFbLexvCyn7Zhk//Be6Ytw9BDBiCAc62QZdowE0ybwuxAGzj9g02V1yxi5YSRW2cr85PncGHGja/uSfyvkXQIqLST+C+H3ueS0cd6BZNVXtNuWWV9BnLdz2q5GUhPt5U9mfWXbfllRyNqnzbHkrgk+OBR4ZVXvJm7+VPUT83d3/PuiQsX25oxeu+6U8IFtX3+9awO/FWawqqiF2hYHGbWlvJS+mBqLM29mkG+ImNp7AjikYOTtt98mJiYGg8HA2LFjWb9+fZft6+vrue222wgLC0Ov1zNw4ED+/PPPQ+qwIAj7kGXYPhxMaeB/CcT/cMCmP1b+yLTN01ChYvmI5ZwbfK7r+mE3wbbhsPtd0PeH4SXgNfGAzc0OG8XGOoqNzqH4akszxcY6as3ON6D5+Wl8mr26rf3ksHiqzUb+l7+FClMDy8p2sml3EdMjEtraTI8YxMqKXaypzKPc1MA3uzZgle0dapEcC2aN9kSnhnfWNvXK+RVFYc7OOVyQcQHNcsdkWbVKzbbmrqf9Ho5E31BSW/9cHIrM70UZ5DfUY1dk3tq+vO0RjbtGx6X9R/daP4SjR4/n782bN485c+bw3nvvMXbsWF577TVmzJhBdnY2wcHBHdpbrVZOOeUUgoOD+fHHH4mIiKCwsBBfX19X9F8QTlyyHbanQMt2CLgc+n91wKbvlrzLbdm3YZAMrB+1niFeQ1zXD9M2Z9KsowH8L4K4bw/6WKawqZZXMpa0ff9D3mYAUoNjuSYhlQZrC7WWvWXCAw2ezB48hR/yNvNPaTa+eneuHDi2rcYIwOigfhhtZn4tTKfRaibS04//DJ6Kt87Ndfd6hEiSxMn93Viws4XCOhv9/LQuPX+FtYI3S95EhQqlk7wQu2InzbiZScxw6XX3UKlUXBk/BoNaw7KynSiArDh7s0eQwZObkyYR6i4KXZ4IelyBdezYsYwePZq33noLcBZLioqK4vbbb+f+++/v0P69997jxRdfJCsrC6320P5BiQqsgrAf2Q7bhoI5EwKvgrjPD9j0ibwneDz/cXzUPqSPSyfaEO26flR9BAU3Ob/u9yaE3Oq6c5/gtpRZGPFmKZcN8+DrS0Jcfv7s5myeKXiGryu+RoUKB452+yU0XKf9GEnV+WfW6REJ/F/cyMPuR7XZyIryXdz4rYHGFg1vXFrO2JBYkv3DUatEJsGxrrvv3z36k7ZarWzatInp06fvPYEkMX36dNasWdPpMb/++iupqancdttthISEMGTIEJ599lkcDken7QEsFguNjY3tXoIgtJLtsG1IayByXZeByK1Zt/J4/uOE6kIpGF/g2kAk9woouAEkDxi8QQQiLjY8XE+wh8QvOzpfSO5wJXgk8MXgL9iZupNrwq5B3frfHjJ26pUD1/dYXJrN8vKcA+7vrkCDJ+fFpuClccdNo+ampEmkBESKQOQE06M/7erqahwOByEh7aP0kJAQKioqOj0mLy+PH3/8EYfDwZ9//skjjzzCyy+/zNNPP33A68ydOxcfH5+2V1RU76zTIAjHHNnqnKlizoagGyDu4wM2vSD9At4tfZcBbgPIT83HV+frmj7Y6yF9ENR8DW6DIaUMPHphVV+Bq0Z40mxT+HVH7xVB6+/en4+SPiJvQh43RtzYLiApkDd1eeyvBenY5AN/sOwJu6ygVnWyxK9wQuj10FOWZYKDg/nggw8YOXIkF198MQ899BDvvffeAY954IEHaGhoaHsVFxf3djcF4egnWyEjESw5EHQLxH7QeTNZ5qSNJ/HT7p8Y5TWK7HHZGDQumt7atA7SIp3BUOB1kLwNXL2YntDmsZP9UQFP/dP7q9dGG6J5K+EtrtS/xQDVBAC2yQsZFRjJWdHJjA6MRrffMgFGu4XN1UUuub5NBrUYDDlh9SiBNTAwELVaTWVlZbvtlZWVhIaGdnpMWFgYWq0WtXpvtJ2YmEhFRQVWqxWdrmMxG71ej16v70nXBOH4JpshPRGsBRA8G2Le7LSZVbYyYv0Itjdv5/SA0/kzxYWz1spfg+I5gASxX0DQla47t9ApT4PE0DAdm8usmKwy7rrefbfOqC1Dp3hzsvZW4u0TWCC/SJ72L0Ldx/N19St8kTKPd7evaZt2C5DfVMPY4NgO56qzmPgpP43tdWVYZQdBBk+uHjiOGK+ATq/tcCjotDae3vzXcbsys3BgPfqbrdPpGDlyJEuW7M2Cl2WZJUuWkJqa2ukxEyZMYNeuXcjy3uI9O3fuJCwsrNNARBCE/chmSE9wBiIhdx4wEDHajQxYPYDtzdu5KvQq1wUisgw7Z0LxXaD2hSEZIhA5gh6Y7IuswLNL63v9WmtaC5ABDPVI5fkBz/Nc4XPckX0Hy+qX4atz45yYoe2OscsdC7M126y8uHURakni9iFTeHzkmfxf3IguK6k6kNG71ZPgG8LDI05nWkQCX+5cx/a6vXkre1ZmPjN6CA8NP51ID1/e2La0Q0E84djT4zB7zpw5fPjhh3z++edkZmZyyy230NzczLXXXgvAVVddxQMPPNDW/pZbbqG2tpY77riDnTt38scff/Dss89y2223ue4uBOF4ZTdB+kCwFkHoPdDv1U6bVVoqiVkVQ7GlmHuj7+XzwQdOau0RaxWkx0H9L+AxGoaXgXuia84tdMvFwzxx06r4ZFPv1BzZV7XZ2PZ1vaWFa4JuJtYQS77FGaSoJTXD/CPbHeOvd+9wnoUlO/DTu3PNwHHEegUSaPAkyS+MIDevA15bpbYgqaTjfmVmoXM9rjNy8cUXs3v3bh599FEqKipISUlhwYIFbUmtRUVF7Vb9jIqKYuHChdx1110MHTqUiIgI7rjjDv773/+67i4E4XhkN0HGQLCVQuh9EP18p81yTDkMXz+cZkczLw14ibv73e2a6zf8AzvPBMUMIXdAv9dcc16hx85IcON/20xsr7QyOKT3RpSlfRJIW5RGpm4+pS0QAbDIFmpMxnbHjAmO6XCe9JoSkvzCeD9zBTkNVfjq3JkcFs+ksAFtbWpNDqqbHeg0KnRqlXP03KHDYlfQSiBJKpL8wvi+tQbNnpWZT49MatffY21lZqFzPQ5GAGbPns3s2bM73bds2bIO21JTU1m7du2hXEoQTkx2Y2sgUg5hD0LUM50229CwgYmbJmJTbHye9DlXhV3lmuuXPgmlj4NKAwN+Av/zXHNe4ZDMPdWf/20z8dDCWn6+qvP8PFfo5+lPobGWCjmbRfbXMdN+NObT3MXkVu+dPRPi5kWgoWMC826zkeXlOUyPHMTpUYMpaKplXt4mNJLUVnl11Ful5NfZ9znKjbpmMDzSOgqjgitHqdEFOVdmNtmtB1yZuaJFlH841oncZUE42tgbIT3eGYiEP3rAQGRhzUJSN6biUBz8MewP1wQish0yp0PpY6AJguQcEYgcBeKDdER4q1mY09Iu/87VJoTGkeb4ld/sT2GmEYX211pZmYVd2bvtuoTxnZ5HAaI9/TkvJoVoT39OChvAxND+7eqSnBrvRlcTeR0KBHuJqb4nChGMCMLRZE8gYq+AiCcg8olOm31d/jWnp52OWqVm1ahVnB54+uFf21IEaVHQtAQ8J0NKKRj6Hf55BZe4YbQ3ZrvC12m9U3OkylrFDTmXst4xD6X1v/3ZsLR9PSao3wFnxvjoDITtt7hdmJsPdfuU+L/3JN8ueqMQ5iVxWqL9uFyZWehIBCOCcLSw10P6ALBXQcTTEPFop81eLXyVK3ZcgbvkzrZx2xjrM/bwr133e+u1KyDsEUhaBtIhPcUVesl/T/JBUsEL/9a7/NwZxgyGrB3C0rqlXbazYwVgmH8EVw0cd8B2/b2DqNzv0UllSyP+eo+9bQK0nJmoRaXqbKRHxb1TDOQaj9+VmYX2RDAiCEcDey1sHQD23RD5PEQ81Gmz+3PuZ86uOfhr/Nk1fhfx7vGHf+2i+yDnbECChL8h6snDP6fgcgadxJhIPdsrbdSb7Ac/oAd2mXZRa6s9aDt/g45rB6Zyc9IktJL6gO2mRwwir6maP4u2U9XSxPqqAlZU7GJK+N6/r/Pz0xgcU4SitH8bUqHg49FCZEjFcb0ys9CeCEYEoa/ZqmFrPDhqIOolCL+v02bX7biO54ueJ1IfSf6EfEL1h5nIKFth+3ioeBF0kTCsAHxOObxzCr3q8em+KMBjS+pdet7zgs9j5/idXBV2FRJSu5Lw+zotOoFxIbFIB1k3JsYrgFsST2LD7gKe2PQHfxRt46K4ke2KozVYW/DyaiQysB6Vau8jIQUVYwcVsbE6v9OVmS+MG86vhek8vfkvipvrjtmVmYX2erxqb18Qq/YKxy1rFWQMAkcdRL8GoXd02uzMtDP5s+ZPEt0TSRubhk46zOmdLTmwI9UZAPmcAfG/gSQ+mxwLvB/PR6dWUf1ITK+cP9eUy1P5T/FlxZeoVCocyt7ZM+8Pep8bI2502bWKjLXMXrKK39YObt2iEOTTzMzx23h4xGlEe/q77FpC3+ju+7d4KCwIfcVa4VxrxlEP/d6EkI7T5WVZJnVjKuub1jPRZyLLRyxvV8fnkFR/C3lXAQ7nI6EDjMQIR6fzkjz4YouR9UVmxkT3PHFTVmR+K8xgXVUBjTYzPjo3xofEckbUEFQqFf3d+/PZ4M94OPZhnsx/kq8qvmpLZl1WVMbW/O9cVqq9wtRIqF8TQT5Gdjd4ACrGJRaiUsEx8DlZcCHxUUgQ+oK1DDISWgORdzoNRMx2M4lrE1nftJ6ZgTNZMWrF4Qci+bdA3mWg0kLiChGIHIOemeEcLXho0cFzPDqzoDiT5eW7uHTAKB4feSbnx6SwsCSTpWU727Ub4D6ALwZ/QVZqFlcEXwOAh15xSal2RVH4rTCDj7NXo1JBSv9SQIW73kKYv7O2yV/FO3D04jRm4egiRkYE4UizlkB6EshN0O99COk47F1vrSdpXRLl1nJuCr+J9xIPvMp1t9hNkDkeWraCvj8MXg8aMQR+LIr00RDnr2F5nhlZlnsUoD64/pe2Re7e2r68bXugwYP8pppOj2lqNmBoTAU+o9rcQrXZyNTwBHY17GZxaTZJvmH8VpjBXyXbQYH1uwsY4BPE5QPGsK22jNWVuZwWNbjdOReXZvF7UUbb93FBzgAkKWpvJdUtNcV8k7uBK+NdMFtMOOqJkRFBOJIsRc7Vd+UmiPmo00CkxFxC7JpYyq3lPBr76OEHIs3psDXMGYj4XwzJO0Ugcoy7PdUbmwzvrO3ZejUPpMzgtMgk/HTu3Dt0OncOORkAk93KEP+wDu1zG3fzUdYq3DXOx0Feegfv7lhBaXM9SX5h5DVWs7AkkyWlWSiKwgVxw9FLGt7YthSHIndaqt1kt/JrYXrb92dFJ/PU6HMBuGvkMK6MH4OmNUF2ZUUuJc11PbpH4dgkghFBOFLMhZCRBHIzxH4Gwdd3aLLduJ2BawZSb6/n7YS3eSKu86Jn3Vb1EWwfDg6j83HQgO9EoupxYPY4bzQSvLG6oUfHeekMnBszjDHBMbyUvpjXt/0DwKkRie1muuyxpDSbwf5h6FTOhGk/TzvRnn4sK9uJt86A2WFjcUkmJ0cMQgFivQK4NiGVeksLadXFeOsMNNjaP6ZZW5mPVXYmxU4M7c/Z/ZKRWgfp3bRqJoYOYGbMsLb2/5bv6tE9Cscm8VtJEI4Ecz5sSwLZBHFfQNDVHZqsqlvF8PXDscgWfhjyA7dG3nro15NlyL0cCm4AyQMGb4SQWw7jBoSjiUYjMSnGQE6NnYrGntUc2bS7kPVVBVwzMBWDWsuIgCgWlWaxpjKvQ9u8pmoG+YaiQQuAWTY7R0Sa9o52NNktxPsEtX3vptER6xXYrs2+chqr2r6eHOasO2K2O3NDZNmZtDoxdABSa7H4nIYqhOOfCEYEobeZcyFjMMgtEPc1BF7RocmvVb9y0uaTUFBYNHwRF4ZceOjXs9fDtkSo+QbchkBKGXgMP/TzHUVqzc0UGWvbXrXm3imNfix46hQ/AB76u2ePMf6Xn8aMqCQ0koTFYefi/iOZFjGIv4p3dGjbaDXjrTXgp/MCnMGIt9ZAg9VMo9WMrrVKb4ibd7tS7d66vW32L9Vuk/dOFfZtrQ+StdsZUN2/sJayRjtuGi0GjTMAsu7TXjh+iWBEEHpTSw5kJINihv7fQeClHZp8XPoxMzNmopN0bBi9gZP9Tz706zWtg7RIMO+EwOshOQM0HVdVPRZl11fy0IZfeWbLgrbXwxt/o6bFePCDj0MTYtzwd5P4cVvP7t8q25FQsaoil8H+Yfjq3ZFUqk7Xotmjv08QKtRYZWvbtsz6CiI8nOvPaCSpQ6l25QCl2n32KVC2s3XUY9oAN7bcHkGLTSHp1WLeXV+Bye68lq8oaHZCEMGIIPQWUyZsG+oMRAb8AAEXdWjybP6zzMqahZfai6xxWaR4pRz69cpfg8xUkM0Q9yXEfXTo5zqK2GQHn2Wv4ZWMJcj7vWE6FJn3s1ZSv88CbCeSS4Z50mhRWJLT/fsf6h/B70UZ7KivYKh/JFuqi1lckkVKQGRbm/n5aXyavRpvnYFGm5nJYfGo0VDdrFBmakCtUrFpdxEnhTofszRaze1KtVe3GKloaey0VPvooL2LL/5etI0Wuw2AlHA962+LwCHDrfOb2bgzokN74fglghFB6A2m7c7EUcUCA+aD/wUdmty5804eynuIYG0wueNz6ed2iL90ZRl2zoTiu0DtC0MyOn0UdCxyKDLvZ65gTVX+AdsUGmt5OX0xRlvHehbHu6dO8QXgsSXdf1RzSf9RBBg8UAHf523ix/wtTAobwLn9hra1abC2UGsxEecVSFZ9BYEGT2TsmKwKy8tzMDtsXDlwLKkhsXhrDWTVV7SVav+lIJ3C5lpssqPTUu0JPiFEuDv7XW5q4Oktf/JPaTb5TdUUthQx+7SduOlsbN4VyT9bEjpNrBWOP6LOiCC4mmkbbB8Fig3ifwW/szo0uTTjUr6r+o5YQyzbxm7DXeN+aNeyVsGOMWAtBI/RkPgvSMfPcuprK/PJqHUW1tJJas6MHsK44Fh0ag1ba0r4pTCdOouJKrORnwvSuSJ+TB/3+Mjyd9eQGKRlbZEFq11Gpzn450udWkODtYVTI5M4Pzal3b5Ps1fjq3PnmoRUwDm196X0xSwqyUSFCkljQi1L3DfsVCI8fAGYFjGIP4u3EezmxUCfEDLrK1E3q3hs5JmdLqanUqm4IXECL25dRLPdSrW5mXl5m9q1ufTkGn5bPYRd5X6MfbuC9bdEYNCJz87HM/GnKwiu1JwO20c6A5GBv3cIRGRZZtrmaXxX9R0pninsTN156IFIwz+wtZ8zEAm501nI7DgKRBRFaVcV9KbESZwWNRhfvTvuGh2pIXHcN/QU9K1JlOuq8tvyDE4kd0/ywaHASyu6N803q76CWouJCZ2sdFtrMdFgbWn7vr93ELMSJrCiYhcGvDHbJG5JmtQWiADMiExkalgCX+Ws59ktC7A4bPxn8NQuV/UNc/fhvmGnEu8d3On+aE8fVt8ayiXDPMiosBH9QhFlPZw1JBxbxEJ5guAqzZudi88pdkhY0GEFXLtsZ9SGUWw1bmW633QWpiw89PLupU9C6eOg0kD/eeB/3uH3/yhTZzFx//qfAYjy8OPhEacDkGfKo8Bc0Jbo+3XOev6tcNaiuClxIiMCo/ukv31FlmXcHi0g1FNN4f29l1+h/UfLKK9RrBm9xqXnLWmuY0t1CUabBTeNliTfUOJ9glGpnFN7n11ax0N/12HQqFh2QxhjD2E9HqHviIXyBOFIMm50lltXZEj4G3ymtdttspsYvG4wBeYCLg25lG+GfHNo15HtkD0Dmv4BTTAkrQfD8Zng12y3tH2t1jXwcO7DZBgz+KP6DxQUfkz+kfOCz2u3suuJODIiSRKnDHDjj+wW8mutxPof5orOB7oOEjbF5vLzRnr4Eenhd8D9D071IzFIx/99U8n498r47MIgrhzh5fJ+CH1LPKYRhMPVtK51RESGhMUdApFqazUxq2MoMBdwZ9Sdhx6IWIogLcoZiHhNgZTS4zYQAdhsXMdC2yt8Zp3Fg5WX8kzBM1RZq3g09lGm+03n/IzzuTnrZvKNFW3HuKl75434aPds6+J5DyzovdLpkkpqN7X3SDpviAdbbo/ATaviqh9288CCztfREY5dYmREEA5H0yrInAIokLgMvCa2251vymfY+mE0OZqY238u98fcf2jXqfsVdl3ozEUJewSinjzcnh91ZFnm+6rvebf0XdY3rscsO2fHGPAmXjWSVxOf4sywKYAzn+SD0g+4c+edfKx8RrQqhXh1KoouCZschlbS9uGdHHlDw/SEeKr5Lav3pjirUffKyEh3JYfpKbwvipQ3SnlueQPbKq38cmXI4a9kLRwVRDAiCIeqaSVkTnV+nbgcvCa0272laQvjN47HIlv4aNBHXB/RcS2abim6FypeApW+9RHQKQc/5hhhtpt5r+w9Pi//nAxjBg6c1TZjDDGcH3Q+qfqZLCoqBmBxwW68yGFccCwaSWKc25lc7W7j/ebbyVPWkWdfx8KNr6FGTaxbLEM9hzLYYzBJHkkkeSSR7JnclodwPLp6hCcv/NvAT9uaOX+Ih8vPL6kk7Er3kkjrLCZ+yk9je10ZVtlBkMGTqweOI8Yr4IDHZNdX8kPeZspNDfjp3TkjekiHGiXpDXlcfnImC9MD+D0rnCFv5LPx1ljcxUybY55IYBWEQ9GwDLKnAypIXAle7Zc5X1K7hNPSTkNWZOYnz+ec4HN6fg3ZCpmToXkt6KKc+SG6UJd0vy9VW6t5uehlfqj6gbyWPBQUJCSSPJK4IvQKbou8Dc/WqrF22cFrGUvbrWcCIKFqK4CWZv+N9fJ3Ha4jIbV7A/0s6TOuDuu4JtDxwmiW8X6igOHhOjbdHnnwA3rIb7kfPhofCiYUdNmu2WblmS1/MdA3hMlhA/DSGqhqaSLI4EmQW+e5HtVmI09s+oOTwuKZGNqfrPoKvs/dzOwhkxnsFw7Aht2FfJa9hssGjCbWK5CbftvFH+k++LtJbJodRT+/E2s07FghElgFobc0/APZp4JKgsRV4Dm63e55lfO4bNtlqFVq/h3xLxP8JhzgRF1oyYEd48BRCz5nOuuVHMPD0dnN2bxY+CJ/1PxBhdWZ46FX6Un1SeXGiBu5IuQK1J1MBdVIamYPnswn2avZWlvatn3fSqynel1Mcctyyq3l7Y6VkZEVGRUqfDW+zPCf0Ut3d3TwNEikhOvYUmbFZJVdPlqgRt2tkZGFJTvw07tzzcBxbdsCDV0vSbC8PIdAgyf/FzcCcE793dWwm8Wl2W3ByOLSLCaG9mdCaH8Afrl4BP/ntohf1seR8HIxi64PY1KsKB1/rBLBiCD0RMMiyD4NVGpIWgseI9rtfrP4Tf6z8z+4S+5sHL2RRM/Enl+j+lvIuwpwQOQLEH6va/p+hK2sW8krRa+wtH4p9fZ6ALzUXpwRcAb/ifoPMwK6FxwYNFpuHTyZgqYaVlTsoshYh6zIBBm8mBAax2C/MPqX13Nt5rWdHq+g8NXgrwjVH/ujSgfz0FQ/Lvy6kqf+qWPuaQd+JHIo1Co1DuXgi9al15SQ5BfG+5kryGmowlfnzuSweCaFDTjgMXmNztWB95XkF8b3eZsB5whZUVMtp0cmte2XVCrOGuRFjG85b/wdweQPy/lgZiCzxojR82ORCEYEobvq/4KdZzlreyStA4+UdrsfzX2UpwqewlfjS8bYDCINhzBUnn8z7H4fJHdnfojXIYyq9BFZlvlx94+8W/Iu6xrX0SI7i2cFaYO4IvQK7o2+l6FeQw9ylgOL8Qo4YM7BFaFX8HTB022PffZ1fuD5nBF4xiFf91hywRAP3LUqPttkdHkwolFpsCoHn02z22xkeXkO0yMHcXrUYAqaapmXtwmNJJHaSaE1gEabGW9d+/oh3joDZocNq8OOyW5FRsGrkzaBPlVsuzOS0W+XcsP8arZXWXn1rPaL8wlHv2N33FcQjqS631sDES0M3tQhELkx80aeKniKMF0Y+an5PQ9E7CbIGOYMRPQDIKX4mAhEzHYzrxe9zoh1I9Av03PxtotZVr+MYF0wd0bdSfGEYqpOquLLwV8eViByMBpJw9z+c9sFIlLrr7efqn/ixswbkWW5165/NDlzkDsVRgcZ5ZaDN+4BjUrTrZERBYj29Oe8mBSiPf05KWwAE0P7s7w8x6X92VdCkI6i+6Lo56vhtVWNnPpx2Qnz5328EMGIIBxM3a+Qc+7eQMR9SLvdM7fO5MOyDxnoPpC81Dx8db49O39zOmwNg5Z08L8YkrNB43/w4/pIrbWWh3Y9RPzqeNyXu3Nnzp1sNW4lwT2BZ+OepWlyEwUTCnh14KuHNjp0iC4IvoBkj+S2IEQn6Vg+fDn93frzYdmHxK2Jo9hcfMT601fmznAWEHvw71qXnre7wYiPzkCYu0+7bWFuPtR1sbKyt9ZAo7X9QoeNVjMGtRadWoOnVo+EiqZO2vhonaMlvu4a8u6NZHKsnkW7zCS8UoLRLAKSY4V4TCMIXamdD7sucE6rHbwZ3PfmgMiyzKTNk1jdsJqx3mNZPXJ1z2seVH4Ahbc4v+73HoTc5MLOu06OKYcXC1/k9+rf2xJFdSod47zHMSt8FleFXYVG6vmvk50NVfxdsoMiYx0N1hZuSZxESmBUl8ccaAqopJJ4bsBznLn1TACmaq9n3o4yrvd8mxyvX/m06h3iVsfxbsK7zIqY1fMfwjGif4COKB81i3JakGXZZXU4tJK2W8FIf+8gKlsa222rbGnEX3/g6cZx3oFsa10QcY/M+grivJ2PWzSSmmgvfzLrK9v+fsiKQlZ9BVPDB7YdI0kSy26M4Nafd/PuuiYiny9k0+wI+gecmMXwjiViZEQQDqTm+9ZAxABD0toFIlbZypB1Q1jdsJozA85k7ei1PfulL8uQezkU3gSSh3PE5SgLRFbVreKC9AvwW+7HwDUD+bDsQ5ocTZzmfxp/DPsDy8kWVo9ezXUR1x1SIAJgddiJ9PDj0v6jutW+2mzkre3LSPAN4eERpzMtIoEvd65je53zjez0gNMZ53kSA6VJPNj/Th4afjqRHr74GKfwZ/Ii9JKeG7Ju4NQtp/ZZNdEj4aax3lgc8Plmo8vOqVVpkTn4SMP0iEHkNVXzZ9F2qlqaWF9VwIqKXUwJj29rMz8/jU+zV7d9Pzksnmqzkf/lb6HC1MCysp1s2l3E9IiEduddWbGLNZV5lJsa+GbXBqyyvUMtEoB3Zgbx5tkBNJoVEl8tYUlO7xWDE1xDjIwIQmeq50Hepc5AJDkDDP3bdjXaG0lam0SppZRrw67lk6RPenZuez1sHwuWneCWDImrQdP11McjQZZl5lfP552Sd1jTsKYtATVQG8hlIZdxb797SfFKcek1h/iHM8Q/vNvtDzYFVKVScbbuAWIDApjYOnvj8gFj2FZbhsoSRtXEKk5JO4VFtYsIWRHCopRFjPLpXiB0LLl3kg+PLarjpRUNXDvKNbNLtCotsnLwYCTGK4BbEk9ifkEafxRlEGjw5KK4kYwNjm1r02BtoXafxzaBBk9mD57CD3mb+ac0G1+9O1cOHNs2rRdgdFA/jDYzvxam02g1E+npx38GT8Vb1/l03tnjfUgM0nL65xWc8kkFb54TwG2pPp22FfqeCEYEYX/VX0PelSC5wZBtYNj7S7TcUs6QtUOotddyf7/7mTtgbs/O3bQOsqeB3AyBsyDuQxd3vmesspUPSj/gs/LP2Grc2lZHIlofzcygmdzT7x6iDF0/NjmSujMFtNhYxxlRg9v2SyoVg3xDyWus5rSowawatYpXCl/h3l33MmbjGP7b7789/3M8yuk0EmOj9KwuslBrsuPvfvi/6rVS90ZGAIYGRDA0IOKA+69JSO2wbc9oV1emhicwNTyhyzb7mhbvTuZdkYx6q4zZv9awrdLKuzODun28cOSIxzSCsK/dX7QGIu4wZEe7QCS7OZv41fHU2mt5Nf7Vnr+Blb8CmakgmyHuqz4LRGqttTyS+wgDVw/EsNTA7TtvZ0vTFuLd4nkq7ikaJjdQOLGQ1xNeP6oCETj4FFCjzXLAKaANtr3Jj3P6zSErNYsQXQjPFT7H4LWDqbW6NuGzrz0+3ZnI+uiiepecT6fSdWtk5GjTP0BH8X+jGRCg4b11TUx+v1TMtDkKiWBEEPao+hjyr3bmcCTvaLci7rqGdQxdNxSTbOLrpK+5M/rO7p9XlmHnuVB8N6h9IXk7BF7u8u53Jd+Uz82ZNxOxIoKAFQE8XfA0BeYCxniP4cNBH2KZamFH6g4ejn0Yb82JUTQq3j2e0gmlXBJ8CTuadxC+Mpz/Vf2vr7vlMqfEu+OtV/HtVtfkjegkXYcaLscKT4NE9pxITo038G+BhbgXS6g3dW+dHeHIEMGIIABUfQgFs0DygqGZoI9u2/Vn9Z9M2DgBh+JgQcoCLgu7rPvntVZBeizU/woeY2B4Gbh1f5j5cKxrWMf/pf8f/sv9iVsTx/tl79PgaGCG/wx+H/Y71pOtrB29llkRsw45AfVIc8UU0H1JksS3yd/yU/JPAFyYcSEXZVx03HxyvmCIB7UtMmuKzAdvfBA61bEbjIDzz3rhdeHcNdGbwno70S8Uk1l5/CYxH2tEMCIIle9DwY0gecPQLNDtrY3xefnnnLX1LDQqDWtHreXUgFO7f96Gf2BrP7AWQehdMHgdSB3fEF1FlmXmV81n+ubpeCz1YNzGcfy4+0ckJC4JvoQNozZgnGJkwfAFnBl4Zq/1ozfFeQeSVV/RbtuBpoDusWcK6J42nTkv+DzKJpaR7JHMD1U/EL4qnOzm7N65iSPomVOd9WoeXnj4j6D0kv6YDkb2eOXMQD48LxCjVWHoGyX8mdXc110SEMGIcKKrfAsKbwa1DwzNBt3e7P2XCl/imh3X4KH2YPu47T2bdVH6ZOuqvg4Y8DNEv+LyroMzAfWdkncYtX4U+mV6zs84nyV1SwjQBjA7cjYF4wuonlzNt8nfHpWzRswOG8XGOoqNdQBUW5opNtZRa3a+QfT2FNB9+ev8SR+XzoP9HqTKWkXS2iReKnypF+76yAnz1jAgQMO/BWbs9sMb7dFJx0+tjlljvPn3xjDUKjjr80peXlHf11064akURTnqQ93uLkEsCD1S8ToU3dmax5ENuuC2Xffm3MtLRS8RqA1k+7jtBO+zr0uyHbJnQNM/oAmGpPXtck9cod5az2slr/Fd5XfsNO1EQUFCYqD7QC4NuZQ7o+88ZvI+susreSVjSYftqcGxXJOQymfZa6ixNHP30OntjtlT9MxX786ZrUXP9rW0LJu/SzLbpoBeEjeS2C5GRva3sWEjp6adSp29jnHe41gyfAnuGvdDv9E+9Obqev7zWy2vneXPHRN8D/k8V22/ii8rvsQx1eGyQmp9rajezvA3Sqhtkbl2pBefXChm2rhad9+/RTAinJjKX2lNKPV3joho975R7fmlG62PZvu47Xh2twaIpchZP8ReAV5TIGERuCgXI9+Uz4tFL/Jr9a+UWkoBZ92HFM8UZoXP4trwa9FKWpdcS3CyylbO2XoOC2sX4iF58OuwXznZ/+S+7laPybKM/pEC+vlq2HVv9MEPOIAbMm/go7KPME024abpvLbHschklRn1VimZu22Mi9Kz4sYwNJrjI9g6GnT3/Vv8xIUTT9kLrYFIAAzLaQtEZFnm9C2n82XFlyR7JJM7Prf7gUjdr5A+wBmIhD8KiUsPOxDZ0LCBizIuImB5AHFr4ni39F3qbfVM95/OL8m/YJ5iZv2Y9dwYeaMIRHqBTtKxYPgCPhn0CRbFwrQt07gl85a+7laPSZLE5FgDubV2yhoPfQaJoTXfySi7rqrr0cBdJ7HtzgjOGuTG2mILMS8WUytm2hxxIhgRTixlc6Hkv6AJhGG72hakc8gOxmwcw4LaBUz2nUzamLTuzzApuse5kB6SczQk8olD6posy/xa9SunbjkVz6WejNk4hh+qfgDgouCLWD9qPcapRhYNX8Q5weccN0PlR7trI64lf3w+sYZY3it7j9hVsZSYS/q6Wz2yJ5H1wcNIZG0LRuzHVzACzoDtt6vDuH+yD6WNDqKfK2abi1c9FromfpsJJ47Sp6HkQWcux9BdoPEFwGw3k7A2gU1Nm7gw6EKWjVzWvTd62Qrbx0HFy6CLgmEF4DP9oIftyy7beb/kfcasH4NhmYFzM85lUe0ifLW+3BJxC3mpedRMrmFe8jxG+4zu8S0LrhFpiCRvQh43h99MgbmA2NWxfFz6cV93q9vGRhsIcJf4afuhzxzZE4w0y8fv7JO5pwXw5UVBtNgVUt4sZf624/dejzYiGBFODCWPQ+kjoAmBoTmgca5RUWutJXZNLLktudwacSs/DP2he+dryYEtYdC8DnzOhKEFoAs96GEADbYGnsx7ksQ1ieiX6rk5+2Y2Nm0kzi2Ox2Ifo25SHSUTS3hn0DvEusce/ITCEfNu4rssGb4EvUrPrKxZnLblNGyyra+71S2XDfOkyaKwcOehvcHuCUZMjuN70bkrhnux+uZwtGoV539dyTNL6/q6SycEEYwIx7/iR6DsCdCGtY6IOJOoisxFxK2Oo8JawROxT/D2oLe7d77qbyEjERx1EPUSJPwOBxlJKTIXcXv27UStjML3X18ey3+MXS27GOE1gncS3sE81UxWahaPxz2Or8738O5X6FUn+59M1aQqUr1TWVi7kOAVwWxq3NTX3TqoJ6f7ogKeWFx/SMe7Sc6k1eN5ZGSPsdEGcu+NIshD4uG/67jsu8qDHyQcFhGMCMe34geg/GnQhkPyrrbVcbc1bWPQmkE0Ohp5L+E9Ho17tHvny78Z8i4DSQ+JqyDs7gM23diwkUszLiVweSD9VvXjrZK3qLXVMs1vGvOT52OZYmHDmA3cEnnLcVXD4UTgrnFn9ejVvDjgRRrtjYzeMJqHdj3U193qkq+7hqRgLetKLFgPoeaIm9oZjBzvIyN7hHtrKLovmqGhOr7d2syoN0sO6ecmdI8IRoRjQq25mSJjbdtrT1GsLhXdC+XPOSuqJudAa52If+v+ZcSGEVhkCz8k/8BNkTcd/Fx2E2QMhd3vg34ApJSAV8eVR3+v/p0ZW2bgudST0RtH813Vd8jIXBh0IWtGraF5ajOLRyxmZvBMkYB6HLin3z3sGLeDYF0wzxY+y9C1Q4/qBffuPckHWYHnljf0+Fh3yfnv50QJRgAMOomtd0RywRB3NpVZ6fdCMVVGMdOmNxwbC1IIJ7RaczOPbPwN+z4rhmpUEk+NOht/g0fnBxXNgYpXQRftrCPS+rx7ftV8Lsy4EEklsXTEUk7yO+ngHWhOh8xJIDeC/yUQ93XbYxm7bOez8s/4qOwjtjRtwao417oI14VzReAV3NvvXvq79z+8H4BwVEvwSKBsQhmXbL/EWUp+ZTjfDfmOmcEz+7prHVw53JObfq7mww2NPDrNr0fHnmgjI/v68fJQHl9cyxNL6ol5oZiVN4UxIqL3lnY4EYmPZsJRz2i3tAtEAOyKjNF+gKl3BXe0BiL92gUi75e8zwUZF6CTdGwZvaV7gUjlB7B9OMhG6PceDPiWRtnI0/lPk7QmCf1SPTdk3cD6xvXEGGJ4JOYRaibVUDqplPcS3xOByAlCkiS+T/6eH5N/BOC8jPO4JOOSo27BPUmSmDHAjZIGB7k1PVskzl3tHBlpkVt6o2tHvcen+zPv0mCsdoXRb5cxb2tTX3fpuCKCEeH4kn8bVL0BujgYurMtEHky70luzr4Zb7U32anZDPEa0vV5ZBl2XQaFN4HkQfmAP/lP/XaiV0bjs9yHR/IeIaclh+Few3lz4JuYp5rJHp/Nk/2fxF/nfwRuVDgaXRB8AWUTyxjsMZh5VfOIWBVBjimnr7vVzrOnBQBw/4KePU7a85jmRA1GAC4a6snG2REYNCou+W43jy8+eh/JHWtEMCIcP/Jvht3vOHM6hmZCa1Lo7OzZPJb/GCG6EPLG5xFtOEhJbHs9ZAyC2m9Ziy8RJi3hW07jzZI3qbZVc7LfyfyY/COWKRY2jtnI7KjZIgFVaOOv82fbuG3c3+9+Kq2VDFoziFcKe2ehxEMxOERHqJeaP7J7FlR4qJ2PRFscJ24wApASrif/vijCvNQ8saSeC76qOPhBwkGJYEQ4PuTNciaXGgZCciYtigOA/0v/P94ueZv+bv0pSC046KjFiuJXKNkUgNmcw9UtkNpUj0mRuSDoAlaOWIlpqoklI5ZwQfAFIgFV6NLcAXNZN2od3hpv7t51NxM2TsBkPzryLa4d6UmLTeH79O5XU/WQnMGIWTb3VreOGcGeGorui2JUhI6ftpsY+noxZuvR9UjuWCN+mwrHvrxrofpjMAyCIdv5tuoHvJd5k7w2mR93/8hIr5FkjcvCoOmYcGaX7Xxa+impG1I5e7maQaV341BkLrb5Ygi+kZzUHOom1/Hj0B+Z4DehD25OOJaN9hlN5aRKTvU/ldUNqwleGcyyumV93S0enuqHSgVzl9V3+5g9OSMiGHHSaCQ2zI7k8hQPMipsRD9fREmDmGlzqEQwIhzbcq+A6s/AbTAMyeDTii+5bPtl2LGzrXkbM/xnsH7U+nbrzBjtRubmz2XI2iHol+q5Lus6Jres5ReDjF0y4Jm0hl8m1vF+4vsMcB/Qd/cmHBd0ko6Fwxfy4aAPscgWpm6eym1Zt/Vpn9x1EiPCdWwtt2I0d+8T/Z7HNCIYae+ri0N4doYfu00y8S8Vs7ZI/HwOhQhGhKNag7WFf8t3dbrPv2QW1HwNbskwOJ13yj7guszr2vZr0PDbsN+QJIlScyl37byLmFUxeC334sG8B8k2ZTPeM4lib1+eM4DkOZawUfUEeI87UrcnnEBmRcwid3wu/Qz9eKf0Hfqv6k+ZuazP+vPIyX4owJP/dK/cuafaWTBQBCMdPTDFj5+vDMHmUJjwXhlfbBYzbXpKBCPCUSutpoSHN/zKioqOwcgNmjfwbJyPw20YDE7jlZLXuC27/adNO3ZOTzud4H+DiVwVyWvFr1FlrWKK7xTmDZmHZfifrJByiFTqIXQODF7rrKwqCL0k2hBNXmoeN4TfQJ45j5jVMXxe9nmf9OXcJA88tCo+7+Yb555y8BZZrGbbmXOTPEi7PQI3rYqrf9jNAwtq+rpLx5RDCkbefvttYmJiMBgMjB07lvXr13fruO+++w6VSsXMmTMP5bLCCSS7vpL3M1dglR1t2wINnnhodNykeZVR6nUUyjG8Yn+epwqe5e6czsuyL6lbglWxMjNwJitGrMA01cTSkUu5yJaJlDMDkGHAzxD98pG5MeGEJ0kSHyR+wOKUxWhVWq7JvIYz0s7ALh/5fIOzE92papZJKzt4gLEnYVsEIwc2JExP0X+jiPRR89zyBs76rPyoqzVztOpxMDJv3jzmzJnDY489xubNmxk2bBgzZsygqqqqy+MKCgq45557mDRp0iF3VjgxKIrC93mbkBUFgJGB0cwdcy7PjD6HlwK+YIR6I0XKAJ6xPsnXdW/zaP4jBzxXgDaAupPqmD9sPhP9JoJsh8xpUPY4aIKdC+f5n3uE7kwQ9poWMI3KSZWM8R7DXzV/EbIihC2NW45oH+ae5pxd9uDC7tfLEMFI1/zdNeTfE8X4aD1/ZLcw+LVSTGKmzUH1OBh55ZVXuOGGG7j22mtJSkrivffew93dnU8++eSAxzgcDi6//HKeeOIJ4uLiDqvDwvEvr6makuZ6AKI9/Zg1aDz+eg/IPhOp/jdkj3EsCn6Kb213s1X5rctz1dhq2NTUuqKqpQjSoqDpH/Ca6lxfRn+QmiOC0Is8NZ6sG72O5/s/T729npEbRvJoXjcXbXSBGD8t/XzVLMlt6dYneBUqLIoIRg5Go5FYdUsE14/yImu3jajniiiss/V1t45qPQpGrFYrmzZtYvr06XtPIElMnz6dNWvWHPC4J598kuDgYK6//vpuXcdisdDY2NjuJZw4djbsHWU7KTQeSSUhZ82Ahj/ZofLHv3o7s/IuxUTHT3Pq1v/29fPun6H2F0gfAPYKCH8MEv8BSSzNJBwd7ou5j21jtxGkDeKp/KcYtm4Y9db6I3Ltm8d6Y3XAJxsPXnNEhQqr3LMy8ieyjy4I4tUz/alrkUl4uZh/807sgnFd6VEwUl1djcPhICQkpN32kJAQKio6r0K3cuVKPv74Yz788MNuX2fu3Ln4+Pi0vaKionrSTeEYZ3PszRPx07tD1ilIjX+zzA7TzVruiLqLu6PvRsaBBj0Xqp8nffQ2fhn6C0/3f5rLQy8nxTOlLeHOveZr2DUTkCBhMUQ+3if3JQhdSfRMpHxiORcEXUC6MZ2wVWH8WvVrr193zkQf1Cp4eeXBV/IVwUjP3TnRlz+uCcGhwJQPy/lgnfhw3ZlenU3T1NTElVdeyYcffkhgYGC3j3vggQdoaGhoexUXF/diL4WjjZdub3GykMJzoXExuzRRnGP1Iit1J3bZzstFL6PHk4s1LxOq7cdgryTOCTqH+2Pu5/PBn7Nl7BaaT6qlITiFBykAXRQMKwCfaX12X4JwMJIk8ePQH/lhyA/Iisy5Gedy+bbLezUJUqeRSI3Wk7XbRrWx6yRalUrVtjK10H2nJ3iw7c5IvPQqbvq5mjt+q+7Q5vfM5hN6rZseBSOBgYGo1WoqKyvbba+srCQ0NLRD+9zcXAoKCjj77LPRaDRoNBq++OILfv31VzQaDbm5uZ1eR6/X4+3t3e4lnDhGBEYhqRTu1j5FkG0jdW7jGVRXxuWhl3PXzrt4tvBZAtTBXKp5FQ/Jj1FB/ZBUqvYnaclGlRaBd0sa+JwFQwtA1/HvqCAcjS4MuZDSiaUkuifyTeU3RK2KItfU+e9LV3jiFGci6yOLu645IiFhk0Xuw6FICNJRfH8/Yvw0vLG6kVM+LmsLMtcUmjn/q0qeWFLPtooTM9jrUTCi0+kYOXIkS5YsadsmyzJLliwhNTW1Q/tBgwaRkZFBWlpa2+ucc85h6tSppKWliccvQqd8NHoeMzzPQCmLbY5hjKxuwYGDTQ1pfFL+CaGafpyrehFd6yqiU8MHtj9B9deQMRgcdRD1EiT8BmIdGeEYE6gLZEfqDu6NvpdyazkJaxJ4vej1XrnWyf3d8DGomJfe3GU7SSVhU0Qwcqi8DRK590QyJc7A4l1mBr5cQka5hTM/r8ChgEaCN9cc/HHZ8ajHv6HnzJnDhx9+yOeff05mZia33HILzc3NXHvttQBcddVVPPDAAwAYDAaGDBnS7uXr64uXlxdDhgxBpxMrnQr7kWXInEConEE2o3jZOpt8eQtqtGwwriWEgZzF023l3c+LSSHac5/F7/JvhLwrnMXLEldBWOf1RwThWPFC/AusGbUGT7Und+bcyaSNk2ixuz4R8v+GeFLXIrOy4MDnVqMWwchhkiSJpTeEc+tYb3Jr7aS8WUqjWUZWwC7DF5uN1Lc4Dn6i40yPg5GLL76Yl156iUcffZSUlBTS0tJYsGBBW1JrUVER5eXlLu+ocAKQZdgxFprXgu+5RAxfQab6BwAc2OinGsm5useQJAkvrZ4r48dyWlSS81i7ETKGwu4PQR8PKaXg1XG0ThCORWN9xlJ1UhXT/KaxsmElwSuDWVG3wqXXeGaGHwCP/H3gRzViZMR1Xjs7gPgADbICDmXvdotd4dNNJ145eZWiKMrBm/WtxsZGfHx8aGhoEPkjxytZhh2jwbQZ/M6H+P9RbakmaGUQADO8L+QK33vRSBJxXoEMD4xCK7VO4W3eCpkngdwI/pdC3FfisYxw3Pqg9ANuy74Nu2JnduRs3kx402XnHvhyMXk1NsxPxqDRdPw35LfcDx+NDwUTClx2zRORoijc8NNuPtlkpLN34H6+GvLujUKSVNSamzHa99Z28dTo8Td4HMHeHp7uvn+LQgtC35Nl/r+9+w6PqkofOP6dOzW99x4gCYQSujQBZUXBuq7rqovourp2V/ZnL9hW1LWw9i67a8GKFVGKKE16qClACimkkT7JZNr9/TEwEAhCQpIh4f08T56HmTn3zpnDJPPOOee+LzuHQ1MmBF8GfT+h2FJM39WuirnnBp/L90M/bfvY8jeh8CbXvxPegIgbuqfPQnjIDTE3cG7IuUzYMIGXi19m0f5FrBi+gkjjyW/Q/vtYf275ej//XlPPPyYEHvW4VqPFrnZ/2vre5vmVdbzzG3ldCmvtLMw14x+wjw93r+fweEXRaHho6DSifQK6vqPdSL4+Cs9yOmFHxoFA5Aro+wlZjVmkrkmlRW3BqDHy/dDv2z5u9xVQ+DdQfCF9swQi4rQRb4onf2w+10Vdx+7m3cSviuf9fe+f9HlvHO2HXoFX1rSdC0On0Ukw0gkWZjcBoGhcP225c1E+HxwRiAA4VZXnti4hv+Hoy4N7MglGhOc47bBjEDRvg5AZ0PdD1tStYci6ITQ7XZvoZsXPOvo4ey1sS4Xq+eA1yLU/xGdw9/ZdCA9TFIW3B7zNooxF6DV6ZuycwfmZ559UwT1FUZjcx0R+jZ29tUefR4cOh3r6ba7sbD9eF8Wm22J4dlow09O88TO6IpLDMxTsLvehovZA4kadHn/9ofxLjfYW/r3tJ8qaes+VN7JnRHjEA+u+4FzHy4xTlvM/+19Z7ZxEjVrM17bHcGha8Nf60+hoxDzJ7L5yZmPlXpbnL+IPzjlEa4op8/8Lcf3fcJ9TVVW+KdzGirLdNDts9PEP5cq+I4nwkveM6N0a7Y1M3jSZDQ0bCNGFsHTYUob4DenQuTYUWxj5SikzMnz57+XhrR5LXJVInb2Omom/nY9EtI/TqbKt3MryPAsf76hgbYEGp6rgZbDx/fU+TIiJQdFoKGqsYf6eDeyurwRgSEgsNw8408O9/20n+vktMyOi+zntzDY+wHjlJywh13HxyH+TFFnL17bH0WoUXuj7AtX2aq6IvMIdiOypr2RFzhvcpt5OjFLKKv8XmLN/MiUHCuoB/FCcxbLSHK7qN4p7M87BqOh4cftP2JzyTU70br46X9aPWs+TyU9SY69h6LqhPJr3aIfONSLWRKi3woKdR+cc0Wl0OFWpQNvZFEXDkCgjt431Z/LQLK47dx1nDtqNl1bPXz5yklvpuoIpzjeI2wZOIsDgmjHZur+E6pbfzg3TU0gwIrqX0wrb+mNoyUYT/je8+77Fa6X/5oG9d+CvCWfb6ExeLnkZBYUXU148cIyTytxbuF0/B4POB92g7UzqfyvxvkEsL80FXLMiS0uymRY/kIyQWGJ9grg2dQy1Lc1kVkk5AXF6uC/pPraO3kqoPpRH8h9h6Nqh1NvbXwvlz0N9abSqfJvV+oNOr9HLMk0Xqm4xU2VpRKOBCwcqbLwtDi+9hlGvlDBnuWs2yqTVMzYiGQAVlV2HFRbtySQYEd3HaYWt/aFlN4TfDEmvc2fundy35z6ilf68nPQ/Gp2N5DTlcE7wOfjr/MFaDlsTOcP5KXv1k2DoPvDqB8CAoCjyDmziqrKYqbdZ6B946IoCL52BJL9QdxshTgfpvumUjS/jktBLyGzMJGJFBN9Wfduuc8w+KxAN8Piy1ssxeo0eJzIz0lWsjkP7dEJMviQG6Vl1YwxB3gqzF9dgd7jGPvSwS3tbHL1jQ7EEI6J7OC2wNQWseRBxOyS+whXbr2Bu0VySDP05T3sX50RncGP2jQC8nvY61C2FLQlgLeJN2x1UxL4LyqGsvf56E3VWCwD1NteGV//DiuwdvH2wjRCnC0VR+GLIF8xPn49TdXLBlgu4esfVJ1xwL9Bbx8BIPRtKrFish47Ra/RHLdP0gG2HPYbvYZtU8+orUVWVAJPCi+eHYnNCQY1rVmp3XaW73eEbW3syCUZE13NaYGsqWAsh8k6ccS8wZdMU5pfPZ7DvYG4NeJHBIXE0qbWsqV/DcL/hJOx/D3KmAE7o9xWZ6hmefhVC9DiXR15O0fgi0rzT+F/Z/4hfFU9+U/4JHXvPmYE4oz4l9pdUklYlEbsylq3mrbSoLfj+5ItxmRHtUi0pa1KOfzJxQvwNJlICXJuGy5sb+LXC9X91Vl8vFA28tb6eEnMt6ysLAfDS6ukfFOWx/nYmCUZE17I3wdZ+YN0LkXdhj32G4euHs7RmKWcFncWSQSvJratkfGRfbsq5CQ2w0AsofRR0kTB4NwRdiL/BRL2t9QxHvc1CwIGZEH+9a0NX/RGzIPXWQ22EOB2FG8LJGpPFrLhZlFpL6bemHy8XvXzc464Y4oPOUM9+zW4KLAWUtJS4c4yYnWasqhUVlQRTQle/hNPK5OhU97//k7uWD3ato7KlGh8DvL2hhn9tWYz9wOzU+Mg+GLW9I3epBCOi69gbYVs/sBZD1H00RT9CypoUMhsz+VP4n1g6bCm/VubjpzeS7B/Aqqpv+NVbIbx5I/idBRlFYIwHINkvlOzaslanz6opI9kvFHCtofrrTa3aNNtt5DdUudsIcTp7LuU5Vo1YhY/Wh9tyb2PixolY7MdewlQUhfO8/wotIcdso6LyYNKDXdHd09bQkFjGR/YBXOP7S9lunt7yI74+dVQ3aWhocV1Zk+AbzPkJgzzZ1U4lwYjoGvZG14yIrRSiHqQqYhZJq5PIt+Rze9ztfDToI5yqyuryPMZEJPNq1qWs9lEZpjgh+hHeUx5nQeF29+nOjkllR80+FhdnUdZUxzeFWylsrGZStGuKWKPRcHZMGguLtrNlfzEl5lrey11DoNGLjNA4T42CEKeUMQFjqJhQweTAyfxS+wvhK8NZVbPqmO2fPicG8u7kqDSggILCcL/hTAyc2IU9Pv1oNBqu6juK6fEDMRysvwX0ja4CNOzeF8aI0HjuHHQ2Jq3ecx3tZL1jfkecWuz1rs2q9nKIfoTCkGsYvLoP9Y56nkh+ggeSHgAgu7aM6pYmJjvmcW7zYvYBurQlEHA21VuXoOFQOsI+/mH8NXUcXxVu4cuCLYR7+XHTgAnE+AS620yN7Y/VYef9XetoslvpGxDG7emTDxXUE0Jg1BpZNnwZrxW/xm05tzF+03j+Hvd3Xkh54ai2/SMMRDVcTpnldTRepa2upHHi5O8xd6HRHCOfuegwRaPhwoTBTIlJY21FPkWNNQwLVlmxXUVtTOP6/r3vC5ZkYBWdy157IBCphJjH2eJ/AWdsOIMWZwtvpr3JX2P+eqit0wJZE8G8jo9sUBfzT25MvN9jXRfidFPYXMiEjRMoaimin1c/Vo5YSbihddbVhxdX8/iO92HQHYfdqyGACK40PMcTIy/qUVVke7KoJwtptjmpnZ3k6a6cMMnAKrqfvda1NGOvhNg5/OQ1jhHrR2B1WlkwaEHrQKQ5BzbHgHkdc6w6rrd6c0P8vR7ruhCnowSvBArGFnBN1DXsat5F7MpYPtj3Qas2908MRFMxDW1Tv8PuVRmqvRgHtCpvL7rWhEQjdRaVsvrekVvkcBKMiM5hr4YtfcBeBbHP8Km2D1M2T0GDhp+H/cxF4Rcdalv1AWxLB0cNP/lfzv0tdm6OvQVFkbejEN1NURTeG/AeC4csRKfR8eedf+aiLRe5C+6ZDArpEVocOYe+LHgTSF9ljKe6fNr6y3A/AF5f1/6suqc62TMiTp6tyrU046iBuOd41WHilqw/4qV4sX7ketJ90w+1zb8BKt8CxRtSlzJjyx/Qa/Q80ecJz/VfCMF5oedRNqGMszadxddVXxO1Moqfhv5Eeb2OuNg8tm+YiM4WgV1fTrpyDorG9fGRVVNGvG+wh3vfc+TWVfBj8U72NtZQZ23mpv4TjrvJPqe2nE/zNlFqrsPbmMGX2RU8MqX1mP9Umsvi4izqrM3E+gbxpz7DSepBVxLKV1FxcqwVrqUZRw3Ez+WR5npuybmFAG0AuWNyDwUi9kbYNtgViBj7QUYJS61mSlpKuCz8MgyHZVYVQniGv86fDaM28Hjy4+y37WfwusHcm/sQceG16LRO1F2zAOirGe8+5ouCTNaU53mqyz2O1WEn1ieIK/qMOKH2VZZGXt6xnNTACB4afh6xgSp76+zsqCl1t1lfWchneZuYHj+QB4aeR6xPIC9u/+movEunMglGRMdZy2BbCjhqIeEVbqzJ4tH8R4kyRFEwtoBYU6yrnTkTMqOheRuEXAmDskEXyO27bkeDhpdSXvLkqxBCHOHBpAdZPWwtRnzZ4PyMz60PMDyxHkfppWDz4/6h0xgTfmgT5fw9G7DYbR7scc8xMDiaixOHMPQEUw78vG8XoSZfLkseRpR3AOckh1HT6M1H2bvcbZaUZDM+sg/jIvsQ7RPAVX1HYVB0rC7f01Uvo9NJMCI6xlrqSvHuqIOE1/l92RLeKH2Dfl79yBuTR6Ah0NWu/A3YMRycZkh4A/p8AIrC9obt7DTv5Oygswk2yBSvEKea6gYv/qx7mQTNcPZTwM4+U1CCNoG2iQCjgZkpZzAyzJV91eKws7aiwLMd7qXy6qtIO6wA6E2jXVekrClw7emxOx3sbahuVSRU0WhIC4wkr77nFAmVYES0n7UYtqaBsx5nwhtMKHqfBVULGOk3kuwzsjHpTOB0wu4/QeGNoPWF9M0QcYP7FDfl3AQcKIgnhDjlbK/Zh6LomKqfxZsp8/DX+8CwGaA4aLY3o9Fo+F1M/8Pal/7G2URH1dssrQqADogw4Gt0ULTfF6vDTqOtBScqfm0VCbXJMo3orVr2wtb+4GzAlvAGA/PmsrJuJdNCprFu1DrXFTH2GtiWCtUfg9dgGLIPfAa7T1HWUsaqulUM9R1KH+8+HnwxQohjObjsotMoXB83k5wxOcQ7XNlWX9r+KwBR3ofyRjTLMk23SQ2HkqqAE67C3BNIMCJOnKUQtg0Apxlzwusk73qcrKYsrom6hu8yvnO1aVgNmbHQshvC/gaDtoDOu9Vpbs65GRWVV9Je8cCLEEKcCB+9a1O5XXWyr6mOwio9pateYHztf3hu1J8AKGysPqq96Fz+etNRG1HHJztoajGwKNeGr96IgoaGtoqE6ntOkVAJRsSJseTD9gHgbKI67iXis++nuKWYexPu5b0B77na7HsWssaD0wrJH0LS0UswTfYmvq78miRTEmMCJE+BEKeqISGx7n9/lb+dqz6uoE+QHz9c8GcMigGnqvJ90Q53m4zD2ovOk+x/dJHQPtFVKBon8zY2oFO0xPsFk1Vb7n7cqapk15aR7N9zLu2VPCPi+Jp3wfYhoFoojn2OtOx7MDvNPNf3OWYlzHLtD9l1IdR9B9pgGPArePVr81R37b4LBw6e6ftMN78IIUR7jAlP5uuCrdRZVO7+PJDG5hYWXOuDojjIqa1kUdEOdh74kPTVGRlxYDOr+G0Wh43K5kb37aoWM0WNNfjoDASbfFiQn0mttYlrU8cCMDGqH8tLc/k8fzPjIpLJri1nZ10Rwd4RrN7rmg2ZEpPGvJw1JPoFk+gXwtKSHKxOO2Mjkj3yGjtCghHx25pzYHsGqC1kRT1JRva92FQb7w94n6uirnJd3rtzpGtTq88Z0P9nOEbOEKfTybv73iVUH8ofIv7Qva9DCNEuCjqctSN5f5UDp6rga7KwsHwtC8uPbKfhmtQzpCDlCSpsqOb5bUvdtz/N2wTAmPAkrkkdQ521meqWJvfjoSZfbk2fxKd5m1hWkkOg0ZsZKaMp2O3FotxmGi1ORoYl0Giz8HXhVuqtFmJ9g7g9fTL+Bq9uf30dJcGIOLamLNgxDNQWfg1/gPG5DwLwfcb3TA2ZCnVLIPd8UFsg8v8g/l+/ebqnC5/G4rTwRLJkWxWiu1RbzEfVj/HVGY9Z3M7uUJm3qYEHf6yholFFRQFU+ieUH9XWT29iZspoBgXHdEXXe6XUwAjemHDlMR+/JvXo5evUwAgeHHZeq/v+nNHAotxm3t1Yz+3jApkcncrk6NRO7293kaq9om1NO1z5QVQbi0LuYFrBXAwaAyuGr2BkwEgong2lj4FGD30/g6ALj3vK4J+DaXG20DCxQerQCNENqi1mHtrwDXa19VUXOo3C4yMuaBWQqKrKVzubuOv7/ezeb0cDHP7h8NQFKgGBpTQ7rPjojAwJiWFYaLzMiHiI3e7E8FABYxOMrLzx1A0GT/TzW2ZGxNHMW2HnKFBtfBj4F64qeAEfrQ+bR22mnykJsiZBw8+gi4T0tWCMP+4p39/3PjX2Gv4e93cJRIToJo32lqMCEXBdIdNobyEYVzCyrsjCbV/vZ11xC4rG1ebIb6mX9IsjJUwuxT9V6HQKsQFaMvdZPd2VTiGfCqI1c6ZrD4hq498+l3BV0duE6ELYPWY3/RQDZMa4AhG/syGj6IQCEYD799yPTqNjTvKcru2/EKLdbvmqinXFrqUcZxtz5VoNJAXru7lX4ngmJXthtqrkV/f8gESCEXFI44YDMyJ2Hjaezd/LPifOGEfBuAIizb/Ctn5gr4ToR6D/ElBObGJtec1yilqKuDTsUld2ViHEKeWTKyM4I86I5hiPxwfq0GuP9ajwlBtG+QHw+toGD/fk5MkyTS/U3g1rADSuh6xxoDq5WTuC16oWk+6TzqZRmzAU3QPlc0FjgtRFEHBWu/pze46rIN7LqS934NUIIbrCxsq9zMv5lf0trstMLzgjgFGJ/Xlxhb1VOw2uFOQHj/mqcCv7LY2Ee/nx+6SMVptXVVXlm8JtrCjbTbPDRh//UK7sO5IIL9nr1xXGJ3qhV+C77CaePi/E0905KRKM9DLt2bDm1rAGss5EReVPal8+qV3HmYFn8tOQ71F2joem9WCIhwHrwRDerv7kmHPYZt7G5MDJhBp6TgIeIXo7P4OJS5KGEO7lByqsqchn877NwEAMWg12p2vJRqdA/zA9e+oreTt7FRcnDWFwcAzrKgp4becKHhh6LjE+gQD8UJzFstIcrkkdQ6jJh68LtvLi9p94ZPj5stG1i6SE6smt6vmp+GWZppc53oa1ozSscgciU22RfNKYw+/Dfs/P/d9A2RLrCkQCL4LB+e0ORABuzL4RgDf6v9HuY4UQXSclIJxBwTFEePkT4e3PmeHpLNncF1+jg4K747lhpGsJwOZ0feAtLckhPTiKqbEDiPIO4KLEIcT7BrG8NBdwzYosLclmWvxAMkJiifUJ4trUMdS2NJNZVeTJl9qrTU/zxuaElQXNnu7KSZFg5HRW/wtkTcQJjLUEsNhSwk0xN/F59CWwfSA4aiHuOUj5EjpwBUyVtYqfa39msM9g+nm3nZFVCOF5TtXJ5Hf30NBs5KWLAojy1/HaJWF8OzOSETEGJid7kdfQupQ9wICgKPIaXGXqqyxm6m2WVqXsvXQGkvxC3W1E57v5DNcS2Jvreva+EVmmOR056iFnGjSuwYHCsGYjW+3VPJL0CLMpgrwZoPhA6lLwG93hpzlYEO+l1Jc6sfNCiM5SYq7l6cwf2VPuy9aSNKYNcHLN0Aj349PTvJme5ip0WZ9twf+Iwmv+ehN1Bwq01dtc38z92yplb+05pex7moQgPT4GDcvzZGZE9DSF/weNq1BxMqlZYZu9iTf6Pc9s82dQ9Q6YUiCj+KQCEYvdwoLKBcQb4zkz6MxO7LwQ4kS0OOz8vG+X+7aqwvaCCArKgwBotluJ8PLjqoQp/LgxlYgAC6l9tlBqrvNUl0UHDY0yUFznwG4/eom+p5Bg5HRT/S1UvQWAQ4VnDVYW9v0nN1TMhubtEHIVDMwCXeBJPc09efdgV+082efJTui0EKI9muxWnt+6hJVlewBosWlZtCGV1TuT2LjLVV33P7lrqWtp5vf/bcDh1LBwRjJxfoEsK81p85z+BhP1tiPK1NssBByYCfHXu+qgHFnuvt56qI3oGpcN8kEFPt5m9nRXOkyCkdOIqeFH2H2hO7OiTgOjtHBu+f3gNEPiW9Dn/Q7tDzmc0+nkrZK3CNYFu4rpCSG61Xs5ayhorAagqs6br1YNpaQqEICaBi+cTg37W8xM/d8uShsc3Dnen2ExJlQV7E5Hm+dM9ju6lH1WTRnJfq6r5EJNPvjrTa3aNNtt5DdUuduIrvGX4a59I+9nNh6n5alLgpHTxEDNJsKKrsSJyuHViNxpjKIfgfC/dspzPVf0HM3OZu5KuKtTzieEOHEl5lq2VpcAkF8SxTdrBtPQrMOpun7bnaqC0xpMVZ03mwr8iQ9yMmuSjgX5meTWlTMqPBGA93JWsyA/033es2NS2VGzj8XFWZQ11fFN4VYKG6uZFJ0CgEaj4eyYNBYWbWfL/mJKzLW8l7uGQKMXGaFx3ToGpxtfk0KYj8LaojaumOwhZAPraWCwsoGbdHNpUjX4aFTaTLO473EImgY+w0/6+Z4ueBovxYu74+8+6XMJIdpnZdke7A4NK3ckkVvc9uX4EZoUvsg04220cvaIrbywTUeMTyC3D5xMuCGcr3aa+e96E6U1JrzOa+LcVG/6+Ifx19RxfFW4hS8LthDu5cdNAya4c4wATI3tj9Vh5/1d62iyW+kbEMbt6ZMlx0g3GJdg4sudTVQ32Qn27nkf7T2vx+KYqiyNfFO4rdV9Gco6/qZ7kf2qhn2qk3TFVWfiKKoTci+EgZmgD+twHz4p/4T99v3cGnurFMQTwgMK6hv4cvVAqhu823xcq4F56xRqzV6MG5CPrzaIQfoxrMht5pVFFvZUFx5oF4hDhcLaQxlZh4fFMzzs2PWoNBoNFyYO5sLEwZ37osRxXT3Ujy93NvHGugbumxTk6e60mwQjvURhQzX/3r4Ms/1QwaThyq9cr3uJfaqGWyxOFrT9twnQAzawlbqK4AX/ocP9uGf3PWjR8q8+/+rwOYQQHddsVWiyGI75uEOFfQ2ufSGrs5JYtVMDVKJT4PCLMRwHlnMnJMrm057gogFeKBpYsMMswYjwDLPNyss7lrsDEaOi4wLf7UxpeYkip4YMs8oWHwVVdYIGNGhwFQjXgfdA8B0LPiNdP14DOtyPVTWrKLAUSEE8ITwoPcyXK8/aRHZROFkFidQ0HfqNP0RFr9ixOQ9V4m3rqtAAk0L/cKnW2xMoikJioI7tZT0zNbzMo/cCq8r3uC+56+MfyjN9m5jS8gT5Tg1DzCpXmkKI1Tixo2eDcwK2uLkwYC2MaISBmyHxFQi7BrzTQdPxypy35t6KBg2vpr3aOS9MCNFu4yP7oNOqDEws56rJm5kzzURC4JHfOzVcOHYnw/oWH7itHnkaAKx2J1d8VMEX2809OofF6eJ3/bxotqvsKLcev/EpRoKRXuBgLgGAG0L2YCy8lhwnDDOrPOQdwMvGFn72mcOt1nm8bbuRdZrp4DsKFGOn9WFX0y4yGzMZHzCe8A7UsBFCdI4o7wCGHbh6xapayWc5t567m1GJrb8xZ+0NZ0RKMWdl7ELRqGjaCEgcqit3xaUflGN4qIDIfxYyfd4+3lpXT6NFgpNTzQ2jXPWEXl9b7+GetJ8s0/RwTtVJebPrjTfday0BpS+y3QFnNqm8YVK43DscUr4kzBIINcsBKGvu/DfqTdk3AfBa2mudfm4hRPvMTDmDequF3fWVAKwprmNdQQImg5VRqQWs2NaXPftCeWxKMHcMDGRZ33ru/lqDxaagqoe+o674WzSJQTr+t7mRb7Oa2FJmZWFOMwtzmrlhQRWBJoXBkXqmp3kzc5gfEX7ykeJJw2JMGLXww66elxpe3jm9xHhlGec73iHTCWc3wcdecI5XBKQtB2M0anNplz13tbWaZTXLSPdJJ903vcueRwhxYkxaPX8fdBbLSnP4qXgX/12XCsD5o3cS7GdhaMwe/vtzCu+t8uLrqyMYMDyK6clWxryRR0WdHhUNRi0MjTai12r4x4RA/jEhEIAmq5OPtzbyxQ4zG0qsrCho4ZeCFu5ZVIOPXkNamJ7f9fPi2uF+pIQdeyOt6BoDwg1sLbPidDp71BWNEoz0cIpG4ULjCs5T32GDE1bbYacPREbdAfHPgcZ1ff+Gqr3uY6K8Azq1D7fm3oqKyr/7/btTzyuE6Di9omVq7ADe+yUYi7WJM9MqCfZz7S27d+QZTI3UM/0/ZcxauJ+554eSFGTgm2v9+cMH+9hbGURiaAv6NvIAeBsUrh3hz7UjXFk/7XYnC3Ob+XhrI6sLW8jcZ2VjqZWnfq7DoIU+wXomJpuYMdSXsQle3ToGp6MLB/iweZ+VH3c1c26qj6e7c8IkGOnpyl7iPPV11jmgToU7DGAP/hMkzHU32Vi5l1/L8wHw0uoZHnrsPAHtZXVa+bTiU2KNsZwdcnannVcIcfK+zzbz8bYm0sP1TEyvpLwZjFodkd4BnJcKv+tr4t+r6hkTb+TywX4MDAll6ojlbCuIZFj0iV0Rp9MpXDjAhwsHHPrgW1XQzPuZjSzPs7Cn2kZWpY3X1zag1UBcgI6xCUYuH+zL+WlePerbe09w4yg/Hl1aw7sbGyUYEd1k31wce+9knQN8D9SZ+dZxCYsrL2G4+iv+BhM5teXkN+x3HzIlJg2jtvP+2x/Y8wB21c4TyU902jmFECev0eLk0g8r0Gth+fVRvLVrB+Cq5lvb0sS89VZ+3GXhkgHeXDbQ9aFV3tyARgODk8oYGBLb4ecel+jFuMRDsyA5lVbmbWxg8a5msittfLjFzIdbzGiACD8tI2IM/D7dh8sH++JtkODkZET66wgwaVhRYDl+41OIBCM9VemzOIruYoMTEhUIVxQ+cN7OSsdIwM7q8ryjDjkjPIlp8QM7rQtOp5PXil8jUBfIzOiZnXZeIcTJm/rePpptKv+5LIxQXx39g6LcxfMufL+QFbuN3DTaj1cuCkWj0aCqKktKst3HDwiK6rS+pIYZmHNuCHPOdd0uq7fz380NfJfdxNYyG99mN/NtdjN/+byKIC+FIZEGzu/vzcyhvoT6ysdUe42IMbJ0jwWL1YmphwR38r/cE5U+haPoPjKdMFABo2JC238F03X9UYp2sLaigBbnoRTOsT6BnBWdytiIZDQnkUfkSC8Vv4TZaeaxhMc67ZxCiOOz2G18VbiVzP1FNNhaiPMJ4vI+w0n0CwHg5dV1rN7bwu/6mrh6mOtyz1jvQACyi8JYsdtIn3AzT54bgUajYb/FzMKi7ayvLHQ/x6qyPcT7BpHUBRV3I/113D0xiLsnujKFNlqcfLilkS93mtlY0sLP+RaW51v4v4XV+Bo09A/Xc05fb64d4UufENkUezxXDPFl6R4L/93cyA2j/T3dnROiUVW17Ww3p5D6+noCAgKoq6vD379nDGyXKfkn9uIHyXZCfwXQh6EduBUMke4mzXYbxeYabE4HAQYvor0DOjUIOSj8l3Dq7fU0TWqSdV8hutGbWSspbarjyr4jCTR4sbYinyUlOTwyfDoNzQaSn9mLt0FD1YMJGHQKVZZGHt34HdmF8SzZFk50SD3TRmahKOCnN9Jga13t9aKEwexvMbOpai+PDr8Af0P3ZlS22518ld3Mp1sbWbPXQnG9A+eBTyqjzrUp9qxkL64e5svIOMn2fCSL1YnX7AImJ5tYdn20R/tyop/fMjPiQdUWM432Q38EfHVGgk0HNhypKuROB1MKxL/gyoxa8hj24tkUqjBQCw6vwWjT14PS+puCl05Pv4CuTTz2ecXnVNoq+Vv03yQQEaIbWR12NlcVcXP6maQc+D2/IGEwW6tL+HnfLv7xaRAOFb69OhKDzvW7+fO+XeSXRrJkWwRR/k6mj8xGc+DX9vBARANc2XcUZ0b1xamqbK8uZXX5Hs6N695L9nU6hUsH+nDpgb0sTqeTlQUtvJ/ZyC/5Fnbvt7GzwsbLv9ajUyA+QMe4BBN/GuLDuSmyKdZkUIjy07KxpOX4jU8REox4SLXFzEMbvsGuHspiqNMoPD7iAldAYl4Ldd+7fgwxOO31OEufoEKFJA04Ay9Bm/KFx/p/96670aLl+X7Pe6wPQpyOnKqKExXdgcv2D9IrOt7b0EhetR/Xj/TjzORDG0g/2Gzmu02xJAbpyJkVS709ko92b2BHTSnBRh+8dXqKzbXM6DeacZF9AFA0GtICI8mrr+rW19cWRVE4M9mr1WvaXmblP5saWLK7mZwqG//LbOR/mY1ogCg/LSPjjFya7sNlA316zL6JznRmoomPt5kprbcT7X/qf9R36H/olVdeITExEZPJxOjRo1m3bt0x27711ltMmDCBoKAggoKCmDJlym+2P1002ltaBSIAdtV5aKak7CXcsWLR3ailT9AAhGpAiX4IxYOByNq6teRZ8jg/9Hy8dccsBSyE6AImnZ5kv1AWFm2ntqUJp+rk14p8tpbXs2hLGLEBWl6/OMTd/uHF1Xy1IZKEkBay/h6LQacQavJlUnQ/VOCR4dO5NX0SKhDp3Xoa3d9gos52al6VMTDSwL+mhbD59liaHkui6N54njgniLEJRsw2J1/tbOLqTyvxml1A6GMFnP1WKf9eVUt1k/34J+8F/jqyZ6WGb3e49PHHHzNr1ixef/11Ro8ezdy5c5k6dSo5OTmEhx+9NLB8+XKuuOIKxo4di8lk4umnn+acc85hx44dxMTEdMqL6HVs5VDzCeD6pVFVV9SoRcvr/JPcvYnE7f+x1Ya1tuTUlvNp3ib2NdURZPRmWvxAxkYkt2rzU2kui4uzqLM2E+sbxJ/6DD/uhrVbcm5xFcRLlYJ4QnjCX1LH8J/ctdyz7ksUNMT4BLFkUxpaRWX59VHuZYp//lTD48tqiQ9rYO7F+l49QxAboOOByUE8MNm1Kbbe4uSDzAa+2tnEptIWluVZWJZn4e/fVuNn1DAg3MC5Ka5MsQlBva8y8Vl9TGg18HVWE4/9LtjT3Tmudgcjzz//PNdffz3XXnstAK+//jrfffcd7777Lvfee+9R7T/44INWt99++20+//xzli5dytVXX93BbvdylW/DYbMmGo0rINFrTJyffDa+PqmsrcjnhW3LeGT4dIKMR89OVFkaeXnHcs6M6sd1aWPJri3jf7lrCTCYSA9ybWhaX1nIZ3mbuLLvSJL8Qllams2L23/6zQ1rBU0FbGzYyNiAsUSbPLsxSojTVZiXH/83ZAotDjsWh42Z8+sor2viz+P20SfElfr9uRW1PPhjDeE+Cn+bWEWL2voDqd5qwaTVY9DqUDQaFDQ0WC1HtQnQ98wNov4mhZvOCOCmM1wZp612J1/ubOLTbY38WtTC+uIW1ha18OjSWkw6Df1CdJzV14uZw/wYGt15RUQ9RVEU+oboyapoXcF3v9lBsLfSJRc1nIx2BSNWq5WNGzdy3333ue9TFIUpU6awZs2aEzpHU1MTNpuN4OBjR2otLS20tBzaeFNf3zOmmTqFaofyl4HWSzgaDZiwkFx6FQxY22rD2sWJQ446zc/7dhFq8uWy5GGAKwX87rpKlpTkuIORJSXZjI/s414jvqrvqONuWLsx50YAXkuVgnhCeJpRq+PbrBa+yjIzKLGciwZ48fKO5fy8p4Uv1yUT7qeS8/dklpbXsL26dX2qrNoykv1D3TOoTlTey/2Vyx02xkYk41RVsmvLmByd0qEZ1FONQafwx8G+/HGwL+DaFPvTHgsfbDGzssCVjG1buY1/r3Jtik0I1DEh0cQVQ3yY0rdnboo9N9WLf6+y8dTyGvKq7SzKbaKozsGXMyK4aMCplZ21XcFIVVUVDoeDiIiIVvdHRESQnZ19jKNau+eee4iOjmbKlCnHbDNnzhweffTR9nStRyk11/Ft4fY2H7NXfwm2sjYf0+AASy7s+TOkfote0bHnQFXOI+XVV5EWGNnqvgFBUXySt8n1PE4HexuqOS92gPvx421Yq7XWsrh6MWneaQz2G3y8lymE6CI7akpRVfDS+HD1p5UE+Fi5dHgj/QLiWZOvsGCtLxFBDXx4RTCB3jomRvVjeWkun+dvZlxEMtm15Wys3MvVKaPdM6ijwxP5oiCT/+b+isPpoLCxBqvTjpfOwCd7NrZrBrUnUBSFs/t5c3a/QzPLW/a18J9NDSzdbWFXlY15mxqZt6kRRePaFDs6zsgfBvlwabqP+0qlU02LXWV1oYXFu5v5MddVvfe+H2rQKWA/8B033Ef7G2fwjG7dYvvUU08xf/58li9fjsl07Dfxfffdx6xZs9y36+vriYuL644udrlNVUW8k73qqM2rB/nvuxNV45oJOUTBiYqCiqp4gyGGtRX55NVXEe7l2+Z56m2Wo/5Q+BtMWBw2rA47TXYrTlT82mhT1tz2TNQdu+7AiZO5KXNP9OUKIbpAs93GgoItfLMpBIstgtvPMnN3xiQ+ybTw/BIrof4Wpg7PIcA4DoBQky+3pk/i07xNLCvJIdDozYyU0ZQ21bWaQdUpCl/kZ/LB7vUk+IVwe/pk5udtbPcMak81JMrI89MPLdHsrbUzb2MDi3Kb2FFu5YsdTXyxowmoJNRbYWi0gQv7+/DnDB8CvT1/xYqqqgx4oYi8anur4AMO/VvRQEb0qZc4rl2jFxoailarpby8vNX95eXlREZGHuMol2effZannnqKJUuWMHjwb3+rNhqNGI09f83uSPkNVa0CEaOiI9k/FFVV2VNfxe81/yBUaUJVQcV1zT+KD/idSZPXeBbsD2RVoz+aYi3xvjmMDEtg74H0zl3N7rTzUflHRBuimRoytVueUwjRthFhCfyUFcC2gmouTPNizsS+fLSlgWs/r8LXoGHLLSk8uiWz1TGpgRE8OOy8Vvf9a8viVjOok6NTMSg6PsnbxH0ZUzs0g9qbxAfqePjsIB4+27UptrbJzv8yG/k6q4nMUiuLd1tYvNvCbd/sx9+oYWCEgXNTvLlmhB9xAd0fnGg0Gi4a4M0LK+tbBSKHSwvT46U/9WZ12jVaBoOB4cOHs3TpUi6++GLAte62dOlSbr311mMe98wzz/DPf/6TH374gREjRpxUh3uy7/Zudwcio8ISuarfSExa1y7uFZszGGctwanCXmckFT6XMir5GvDJAI0OX2BGPPzxwIa1AIMXb2atJNTU9syIv95EfRub0Tq6Ye2hvIewqTYeTe69y2dC9BR79lu5d1E1QV4Kn18VwWfbGrlqfiVeeg077ow74bwSXTGD2psFeuu4bWwgt40NBKDF5uSz7WY+325mXXELa4paWL23hYeX1OCl05ASqufsviauGebHoKju+YL97Hkh7K11sGCH2Z219iCdAoOjNextrG6dZPMU0O7QbdasWcycOZMRI0YwatQo5s6di9lsdl9dc/XVVxMTE8OcOXMAePrpp3n44Yf58MMPSUxMpKzMtR/C19cXX9+2P0h7o+oWs3sDWZDBm5kpo9EprnW73KzzcTZv4SsV1vEk1c4EdPUK6cbB+Gha/xcZtTqMWh1mm5WdNfv4fdLQNp8v2T/0mBvWAHSKlni/YLJqy8kIdS2BHb5h7XBOp5OXi1/GX+vPX2P+evKDIYToMKfTyaS39qGq8MO1kSzMbeaPH1Zg0mnY9vcY4gM9v1xwujDqFa4a6sdVQ105PZxOJ4t3N/PRFjMrCyzsqLCypczK8yvr0SuQGKznzEQTV2b4MinJ2CWbYhVFw/t/DGPKO3Z+3duC47CAxO5UKbZn88/NFa2TbJ4C2v2uvfzyy6msrOThhx+mrKyMjIwMFi1a5N7Uunfv3lYD/Nprr2G1WvnDH/7Q6jyzZ8/mkUceObne9yAl5loOvidGhCW4A5EVGxKZ4CwkSOdNQEYhjYV7WFm2B7vqZF9THX0DwoBDG9Yivf2paG7g8/zNRHr7M+5A3pAF+ZnUWpu4NnUswDE3rN06cKK7T1Ni0piXs4ZEv2AS/UJYWpKD1Wk/KhfJ66Wv0+ho5KGkh7p4lIQQbbHYnMzb1MiMob7847v9FNc5+Ps4f6qbHVzyfjlGnYbNt8eQHNy+vQCdPYN6ulMUhakpPkxNOfQBv7HEwn83NfLTnmZ27bfzzoYG3tnQgKKBGH/XptjLBvlyyQBv9J20KdakV/hmZiRnvFrKnmobDveSjYawADNwKMlmMD00GAG49dZbj7kss3z58la3CwoKOvIUvY7jsHqERq1r2FWHgzhHKVuccJ7NmztK3yGCM9ztnIdtcj24Ya22pQlvnYFhoXFcnDgE7YHAr87aTHVLk7v9sTasHbysF2BkWAKNNgtfF26l3moh1jeI29Mn4284lHIZ4LH8xzBqjDyc+HDnDooQ4oR8tMXMTV9W8fLqOnZU2EgO0nFBfx9+984+dApsuDWG1LD2b0rszBlU0bbhMSaGxxwK3PKrrczb2MgPu5rYUW7js+1NfLbd9bc7zEdheLSRiwb4cFWGL36mjgcnQV5allwXxYiXi6kwuz5LNBonwX5NxznSM2Q+r5uEHba3Y2t1CefHD0Sj1RI3oo6WpgLOL36Bh/Mexqba0WHAh2B+2RmAHRstzhZsqg2r04pVtWK32fmd+Xdcofvafc5rUscc9ZxtbVg70uToVCZHpx7z8a8rvqbcWs51UdehU+TtIoQnfL7d9W12R4UNgEemBHDOO/vQamDtzTGkR7gCEYvDRmVzo/u4qhYzRY01+OgMBJt8unQGVZyYpGADj/4umEcPZEXdb7bzv82NfJPVROY+K4t2NbNoVzM3fVVFgMm1KXZaqjfXDPdrd42Z2AAtcy6yccN8DQ6ngpfBhlY59MV46/4S4n1PjeysGlVV1eM386wTLUF8KlNVlSczf3Bf/fKnPiOO+mbx37xl3JL/JxppO3fI4f4S9RfeGfBOp/Zxr2UvF225iEvDL+Xm2JsJ1geTsjqFPc17qJtYh6/u9NnjI8SpoqHFSchjBdgOTJRqcF1tp9XAmpuiGRl36Ft3Tm05z29betQ5xoQncU3qGOblrGF/i5l/DJ7S6piDZSMCjd5Mb7NsRA4/Fme5Z1D/lDycJP+elfSsp7BYnXyy3cwXBzbFljU43Ev83noNqaF6pvT1YuZwP3cQ2hZVVfkkbyPLSnMprvRn4fr++JisXHXW5lbtzo8fyAUJXZc36kQ/vyUY6UYbKgt5K3uV+3ZKQDjDQuNwqirrKwvJb9iPU7XzpW02VRQc8zwaNGSPySbFu3OnSX+u+ZlJmyYBYFJMXBx6MfMr5jM9ZDrfZnzbqc8lhDgxn2xt5PKPKo66PzlIx9pbYgg9BRNYic7jdDr5PqeZ+VvNrCq0sLfO7t4DYtBCUpCeM5NMzBjqy7iEQ5tify3P573cQ5nRF68bjNNhZO5lTeyoLWVvY437sVsGTGRwSNfUijvRz2+Zd+9GI8IS2NtYww/FOwHIrasgt671HxlFo2Nu8jzuLLqM/bb9OI9IC6+gcHHoxZ0eiIArADnI4rQwv2I+AHpFz9aGrZJ1VQgP+CCzoc37C2vtTHijlJ9viCbcVwKS3kpRFKb392F6/0MbTdcVHdgUm9fMnv02cqpsvLW+Aa0GYgK0jIkzofEtwjcAFAVm9BvNKFMY1y+o4syIgVycNIQfi7P4PN81S7K4JKvLgpETJTMjHrCmPI/vi3ZQ3tz6j0y0dwDnxw9ieFg8a+rWcObGM7GrR5e79lK8uDPuTh5NfrRT93FsbdjKkHVH17nRaXTYVTtTgqYwN2Uu6b69K+uiEKeCaouZCksDTXYrRkWHr96IXmMk9p8V/NYf6dRQPTvvjEVRTq3CZ6L77Kq0Mm9TAz/uaiar0obZevAdo+JrdHBhWgB/GOTL798v57Orwrl0oC+qqjJ743eUH8gX8+TIiwjpgst8ZZnmFKeqKrvrK91vhGjvQJL8QlpVUnyt+DVuzrnZfVuLljhTHNW2auod9Rg1Rq6Oupq5/ebirTu6cm975Tblkrrm2JtZAe5JuIen+j510s8lhHBRVZVfynbx0e4NRwUdyzL7sLs07KhjFA04VVcSqz8M9OG/fwxHr5VgRLgs21vI/T/tYW9FEA1mf5qtGhyqa79ReoSebX93XRn1yZ6NLC3NAeAfg84mJTDiN87aMbJMc4rTaDT0CwinX0D4MdvcGHMj6+rX8d99/8WJEwcO3un/DmcFn8Wrxa/yaN6jvFX6Fu+WvstFYRfxWtprhBuOfb7jOXyZpi23xd7G48mPd/j8QojWnKqT/+auZU1F/lGPVTeY2F0aysHiEO5QQwMTk0z8eagvl6T7EOQlSzSitVAfHUOSyxiSXMbvYtK4KGEom0tb+NcvtYQdtsfI4rC5/631cFXiUy9BvXDTaDS8mvoqg3wHATDUbyiTgyYDcHPszZSfWc5ngz4j3hTPF5VfELkikrM2nsWepj3tep5qi5m9jdVUNTcf9ZgWLXqNnnkD5vFi6ovoFf3JvzAhBAALCra0CkSCjd4MDIoi0hTAt2sP1oNxhSEjYg38+4IQSu+LZ9n10fxlhL8EIqJNcb5B7vB1fWUhaJyMijPx6VWRvHqxa6at2W5jU1URAHpFS5R3gMf6CzIzcsrz0nrx1eCvuGDLBTzd5+lWyzgAl4ZfyqXhl7KyZiU359zMT7U/0XdNX4b5DuP1tNcZGTDyN89fbTHz0IZvsKtOrGrrYESLljBDGN8M+YYR/qdvTSEhukK91cLSEtcUuaLRcE3KGYwKS0Sj0XDDF5VYrA2ASlJkFWekFfHQqHH0D/LsB4boGYKM3gwOiWHL/mJqrc28m7OaP/cdjY/edSlwvdXCvNw1NB+YGRkZloC3zrOVfCUY6UTfFG7l273bW90X4eXPYyPOP+YxGyv38lXhVvZbGgn38uP3SRkMCj60q1lVVbaU1zGVR/gqu5rt/ku5su9IIrxar72NDxrP1jO2sqNxBzdm38iqulWM2jCKfl79mJsyl2mh04567uzaMr4q2Oou3qej9azH6IDRfDHoCyKMnb+OKMTpbk15Ho4Dv3tnR6cyOjwJgK37Wnh7vStd+Jt/VFjXsBuAX8p20T/ot6ujC3HQ+fED2VFdil11sqmqiO3VpfQPjMRxIIPuwb/7Jq2OqYdVZfYUWabpZNHeATwz+hL3z91Dphyz7Z76St7OXsW4yGQeHHYeGSGxvLZzBSXmWnebH4qzWFaaw1X9RnFvxjkYFR0vbv8Jm9PR5jnTfdNZMWIFxeOKOT/kfPY072H6lulEr4jmvZL33O2WleTwwrZl5DUcKgOu4dCU70DlHF5M/EACESG6SOGBBIgAYw4kGWuwOJjwhis9+8JrIrhmcALGA1fMHZ4XQojjifcN5sYBE9AfqINmdTrYUl3C9prSwwIRPTcPmEikt+cvDJFgpJMpGg0BBi/3j+9vFJNaWpJDenAUU2MHEOUdwEWJQ4j3DWJ5aS7gmhVZWpLNtPiBZITEEusTxLWpY6htaSbzwFrfsUSbovkm4xtqJtYwM2omVbYq/pL9F4J/DuaOnffz0e717raBBi9GhMYT4F8HQJJmFGN1M3kvZy2l5rpOGBUhxJGcbdSr2lpuw2JXeenCEKam+KBoNO6imofXqhLiRAwKjuHhYdOYFJWCSXtoIcRbZ+B3MWnMHjaN1C64gqYjZJmmk1U0N3D32gXoFYVkv1AuScw4ZonmvIYqpsSktbpvQFAUW/YXA1BlMVNvs9A/8NDUrJfOQJJfKHkNVYwMTzxuf/x1/swbMI83097kgT0P8Grxq7y4bw5aDAxQzuaBhEe4LGkEikbh91ufJ8UrlTsD/8Xm/cXYnA4Wl2QxM+WM4z6PEKJ9Qg+vV7W/hLNiUhmXYKJ+diJGvet7Yl5DFWZ7CwAhRinHINov3MuPK/qO4LLkoa4KzRoIMHih1ZxacxGnVm96uCS/UK5JGcPtAydxZd+RVFnM/GvrYix2W5vt660W/I+YOfHXm6g7UK673ubaUOpvOKKN4VCbE2VQDPyr37/IGrGXUcqf0KFnm/N7ri6YwBslb7CtYRtfVn7JXQn/xzWpY/DSuvaPrK8sPGb/hRAdNyYiyf3v74t2UHkgCeLBQKTZbuOTvE3uNmMjpTCd6DidoiXY5EOw0eeUC0RAZkY61cDgaPe/Y32CSPIL5b51X7Ghai/jI/t4sGeHlDU3kKG7gAwuwDcon2Xmz7gl5xa8FC/8tH78OfLPmLR6BofEsLaiAJvTQaWlkTjfIE93XYheJcYnkPSgKHbU7KPeZuGxTQs5IzyJZP9QypsbWFW2h3qb60tHkMGbEaHxHu6xEF3n1AuPehFvnYEILz/3N54j+RtM7j82B9XbLAQcmAnx13u57jtiFqTeeqhNe6mH5Xg8J/ASNo/ezM7RO0kwJTApaBImreu8ymGRs/qbyaiFEB31l9Qx7vwOVqeDX8p2My/3V74v2uH+2+CtM3Bz+pkYtPLdUfRe8u7uQhaHjUpLI2cYvNp8PNkvlOzaslb7RrJqykj2c5XmDjX54K83kV1b5p6ZaLbbyG+oYmJU3w716fBLgjdXFTE1dgBpvmnsHLPTfb/N6WDb/hIAtBql1dq2EKLz+OpN3DX4d3xZkMmvFflYD7tKToOGISEx/D4xg4hT4GoHcWr5uXQXP+/bxf6WRgCiDtQ2O3yG/kgnkkrim8JtrCjbTbPDRh//0DZTSXQFCUY60Wd5mxgcHEOwyYc6azPfFG5DQcPIsAQA3stZTaDBm0uSMgA4OyaVZ7cuYXFxFoOCo1lfWUhhYzV/7jcKcGVgPTsmjYVF2wn38iPU5MtXhVsJNHqRERrXoT4m+AYT6xNIsbmW/Ib9LC7OYkpMmjuZmkN1Mn/PBhoPbJobFhrn8WQ4QvRmPnoDV/Ubxe+TMthes49GWwsmrY7UwAiCjZ1fuEz0DoFGLy5JGkK4lx+osKYin1d3/sKDQ88l2ifwqPYHU0lcnDSEwcExrKso4LWdK3hg6LnEHGh/MJXENaljCDX58HXBVl7c/hOPDD/ffYlwV5FgpBPVtDTxds5qzLYWfPVG+vqHcW/GOfgdWFKpbmk6vMIEffzD+GvqOL4q3MKXBVsI9/LjpgET3G8MgKmx/bE67Ly/ax1Ndit9A8K4PX1yh98YGo2Gc+PSeTt7FQCf5W9mbUUBQ0JisTsdrK8sZH+LGXBdpnxObP8OjoYQoj28dAb3FxchjmdISGyr2xcnDuHnfbvIa9jfZjByeCoJgIsSh5BVW8by0lyu6jfqqFQSANemjuH/fv2CzKqiE7p682RIMNKJru8//jcf/8fgoxOgDQ+LZ3jYsTemaTQaLkwczIWJg0+6fweNDEtgX1Md3x3IFltkrqHI3DqhkoIrPXW8b3CnPa8QQojO51SdbKzci9Vhdy/zH6k7UkmcDAlGTlMXJgwm1ieQH4qzKGjY3+qxAUFRTI9Lp+9vVBQWQgjhWSXmWp7O/BGb04FRq+PGAROI9mm7flF3ppLoCAlGTmPDQuMZFhpPibmWyuYGNBoNMT6BsmFViE6SW1fBj8U72dtYQ521mZv6Tzjufq+c2nI+zdvEvqY6gozeTIsfyNiI1jlGfirNZXFxFnXWZmJ9g/hTn+EkHeMbsei9Irz8eHDYeQcq8O5lXs6v/GPwlGMGJKcyubRXEOMTSEZoHENCYiUQEaITWR12Yn2CuKLPiVW9rrI08vKO5aQGRvDgsPM4OyaV/+WuZUdNqbvN+spCPsvbxPT4gTww9DxifQJ5cftPR6UAEL2fTtES7uVHgl8wlyRlEOsbyLLSnDbbeiKVRHtIMCKEEF1kYHA0FycOYegJXv32875dhJp8uSx5GFHeAUyOTmVYaBxLSg59wCwpyWZ8ZB/GRfYh2ieAq/qOwqDoWF2+p6tehughVBXsxyiiejCVxOGOlUrioIOpJI61D6UzSTAihBCniLz6KtIO20AIrj1cefWu6tp2p4O9DdWtNhkqGg1pgZHuNuL0sCA/k9y6CqosjZSYaw/cLmfUgY2m7+WsZkF+prv92TGp7KjZx+LiLMqa6vimcCuFjdVMik4BWqeS2LK/mBJzLe/lrjmpVBLtIXtGeqHvi3awuaqIsuZ6DIqWZP8wfp+Ycdwy0adyQhwhTgf1NkubGwgtDhtWh50muxUnqjtdwOFtyprru7OrwsMabBbm5ayhztqMl05PjE8gtw+czICgKODUSCXRHhKM9EK5dRVMik4h0TcYh6ryZcEW/r19GY8MP99dqvxIp3pCHCGEEIdcfZxq6qdKKokTJcs0vdAdAyczNiKZaJ9A4nyDuCblDKpbmihsrD7mMYcnxInyDuCixCHE+waxvDQX4KiEOLE+QVybOobalmYyq4q666UJ0av5601tbiA0afUYtDp89UYUNDS0tclQ3/WbDIXoKhKMnAaaHTYAfH4jrXtewzHWqhtc69DHS4gjhDh5yf5tbDKsLSPZ37WBUKdoifcLJqu23P24U1XJPqyNED2RBCO9nFNV+SRvI338w1qtDR7pVE+II0RPZHHYKGqsoajRleG4qsVMUWMN1RZXyYUF+Zm8l7Pa3X5iVD+qLI18nr+ZsqY6lpfmsrFyL1NiUt1tpsSksbJsN2vK89jXVMeHu9djddqPykUiRE8ie0Z6uY92r6fUXMddQ37n6a4IcdopbKjm+W1L3bc/zdsEwJjwJK5JHUOdtZnqlib346EmX25Nn8SneZtYVpJDoNGbGSmjSQ86VIl1ZFgCjTYLXxdupd5qIdY3iNvTJ+N/jOrgQvQEEoz0Yh/tXs+26lL+b8gUgozev9m2PQlxAg77o1dvtRDnG9i5HReil0gNjOCNCVce8/FrUse0ecyDw877zfNOjk5lcnTqb7YRoieRZZpeSFVVPtq9nsz9xdw5+KwTyqp6qifEEUII0XtJMNILfbRnA2srCrgudSwmrZ46azN11masDru7TU9LiCOEEKL3kmWaXujnfbsAeO6wtWqAmSlnuDe59bSEOEIIIXovjaqqqqc7cTz19fUEBARQV1eHv79k+xRCCCF6ghP9/JZlGiGEEEJ4lAQjQgghhPAoCUaEEEII4VESjAghhBDCoyQYEUIIIYRHSTAihBBCCI+SYEQIIYQQHiXBiBBCCCE8SoIRIYQQQniUBCNCCCGE8CgJRoQQQgjhURKMCCGEEMKjJBgRQgghhEdJMCKEEEIIj5JgRAghhBAeJcGIEEIIITxKghEhhBBCeJQEI0IIIYTwKAlGhBBCCOFREowIIYQQwqM6FIy88sorJCYmYjKZGD16NOvWrfvN9p9++ilpaWmYTCYGDRrEwoULO9RZIYQQQvQ+7Q5GPv74Y2bNmsXs2bPZtGkTQ4YMYerUqVRUVLTZfvXq1VxxxRVcd911bN68mYsvvpiLL76Y7du3n3TnhRBCCNHzaVRVVdtzwOjRoxk5ciQvv/wyAE6nk7i4OG677Tbuvffeo9pffvnlmM1mvv32W/d9Z5xxBhkZGbz++usn9Jz19fUEBARQV1eHv79/e7orhBBCCA850c/vds2MWK1WNm7cyJQpUw6dQFGYMmUKa9asafOYNWvWtGoPMHXq1GO2B2hpaaG+vr7VjxBCCCF6p3YFI1VVVTgcDiIiIlrdHxERQVlZWZvHlJWVtas9wJw5cwgICHD/xMXFtaebQgghhOhBTsmrae677z7q6urcP0VFRZ7ukhBCCCG6iK49jUNDQ9FqtZSXl7e6v7y8nMjIyDaPiYyMbFd7AKPRiNFobE/XhBBCCNFDtWtmxGAwMHz4cJYuXeq+z+l0snTpUsaMGdPmMWPGjGnVHmDx4sXHbC+EEEKI00u7ZkYAZs2axcyZMxkxYgSjRo1i7ty5mM1mrr32WgCuvvpqYmJimDNnDgB33HEHEydO5LnnnmP69OnMnz+fDRs28Oabb3buKxFCCCFEj9TuYOTyyy+nsrKShx9+mLKyMjIyMli0aJF7k+revXtRlEMTLmPHjuXDDz/kwQcf5P7776dfv358+eWXDBw4sPNehRBCCCF6rHbnGfEEyTMihBBC9DxdkmdECCGEEKKzSTAihBBCCI+SYEQIIYQQHiXBiBBCCCE8SoIRIYQQQniUBCNCCCGE8CgJRoQQQgjhURKMCCGEEMKjJBgRQgghhEe1Ox28JxxMEltfX+/hngghhBDiRB383D5esvceEYw0NDQAEBcX5+GeCCGEEKK9GhoaCAgIOObjPaI2jdPppLS0FD8/PzQaTaedt76+nri4OIqKiqTmTReSce4+MtbdQ8a5e8g4d4+uHGdVVWloaCA6OrpVEd0j9YiZEUVRiI2N7bLz+/v7yxu9G8g4dx8Z6+4h49w9ZJy7R1eN82/NiBwkG1iFEEII4VESjAghhBDCo07rYMRoNDJ79myMRqOnu9KryTh3Hxnr7iHj3D1knLvHqTDOPWIDqxBCCCF6r9N6ZkQIIYQQnifBiBBCCCE8SoIRIYQQQniUBCNCCCGE8KheH4y88sorJCYmYjKZGD16NOvWrfvN9p9++ilpaWmYTCYGDRrEwoULu6mnPVt7xvmtt95iwoQJBAUFERQUxJQpU477/yIOae97+qD58+ej0Wi4+OKLu7aDvUR7x7m2tpZbbrmFqKgojEYjKSkp8vfjBLR3nOfOnUtqaipeXl7ExcVx5513YrFYuqm3PdMvv/zCBRdcQHR0NBqNhi+//PK4xyxfvpxhw4ZhNBrp27cv8+bN69pOqr3Y/PnzVYPBoL777rvqjh071Ouvv14NDAxUy8vL22y/atUqVavVqs8884y6c+dO9cEHH1T1er26bdu2bu55z9Lecb7yyivVV155Rd28ebOalZWlXnPNNWpAQIBaXFzczT3vedo71gfl5+erMTEx6oQJE9SLLrqoezrbg7V3nFtaWtQRI0ao06ZNU1euXKnm5+ery5cvVzMzM7u55z1Le8f5gw8+UI1Go/rBBx+o+fn56g8//KBGRUWpd955Zzf3vGdZuHCh+sADD6hffPGFCqgLFiz4zfZ5eXmqt7e3OmvWLHXnzp3qSy+9pGq1WnXRokVd1sdeHYyMGjVKveWWW9y3HQ6HGh0drc6ZM6fN9n/84x/V6dOnt7pv9OjR6t/+9rcu7WdP195xPpLdblf9/PzU//znP13VxV6jI2Ntt9vVsWPHqm+//bY6c+ZMCUZOQHvH+bXXXlOTk5NVq9XaXV3sFdo7zrfccot61llntbpv1qxZ6rhx47q0n73JiQQjd999t5qent7qvssvv1ydOnVql/Wr1y7TWK1WNm7cyJQpU9z3KYrClClTWLNmTZvHrFmzplV7gKlTpx6zvejYOB+pqakJm81GcHBwV3WzV+joWD/22GOEh4dz3XXXdUc3e7yOjPPXX3/NmDFjuOWWW4iIiGDgwIE8+eSTOByO7up2j9ORcR47diwbN250L+Xk5eWxcOFCpk2b1i19Pl144rOwRxTK64iqqiocDgcRERGt7o+IiCA7O7vNY8rKytpsX1ZW1mX97Ok6Ms5Huueee4iOjj7qzS9a68hYr1y5knfeeYfMzMxu6GHv0JFxzsvLY9myZVx11VUsXLiQ3bt3c/PNN2Oz2Zg9e3Z3dLvH6cg4X3nllVRVVTF+/HhUVcVut3PjjTdy//33d0eXTxvH+iysr6+nubkZLy+vTn/OXjszInqGp556ivnz57NgwQJMJpOnu9OrNDQ0MGPGDN566y1CQ0M93Z1ezel0Eh4ezptvvsnw4cO5/PLLeeCBB3j99dc93bVeZfny5Tz55JO8+uqrbNq0iS+++ILvvvuOxx9/3NNdEyep186MhIaGotVqKS8vb3V/eXk5kZGRbR4TGRnZrvaiY+N80LPPPstTTz3FkiVLGDx4cFd2s1do71jv2bOHgoICLrjgAvd9TqcTAJ1OR05ODn369OnaTvdAHXlPR0VFodfr0Wq17vv69+9PWVkZVqsVg8HQpX3uiToyzg899BAzZszgr3/9KwCDBg3CbDZzww038MADD6Ao8v26Mxzrs9Df379LZkWgF8+MGAwGhg8fztKlS933OZ1Oli5dypgxY9o8ZsyYMa3aAyxevPiY7UXHxhngmWee4fHHH2fRokWMGDGiO7ra47V3rNPS0ti2bRuZmZnunwsvvJDJkyeTmZlJXFxcd3a/x+jIe3rcuHHs3r3bHewB5ObmEhUVJYHIMXRknJuamo4KOA4GgKqUWes0Hvks7LKtsaeA+fPnq0ajUZ03b566c+dO9YYbblADAwPVsrIyVVVVdcaMGeq9997rbr9q1SpVp9Opzz77rJqVlaXOnj1bLu09Ae0d56eeeko1GAzqZ599pu7bt8/909DQ4KmX0GO0d6yPJFfTnJj2jvPevXtVPz8/9dZbb1VzcnLUb7/9Vg0PD1efeOIJT72EHqG94zx79mzVz89P/eijj9S8vDz1xx9/VPv06aP+8Y9/9NRL6BEaGhrUzZs3q5s3b1YB9fnnn1c3b96sFhYWqqqqqvfee686Y8YMd/uDl/beddddalZWlvrKK6/Ipb0n66WXXlLj4+NVg8Ggjho1Sv3111/dj02cOFGdOXNmq/affPKJmpKSohoMBjU9PV397rvvurnHPVN7xjkhIUEFjvqZPXt293e8B2rve/pwEoycuPaO8+rVq9XRo0erRqNRTU5OVv/5z3+qdru9m3vd87RnnG02m/rII4+offr0UU0mkxoXF6fefPPNak1NTfd3vAf56aef2vybe3BsZ86cqU6cOPGoYzIyMlSDwaAmJyer7733Xpf2UaOqMrclhBBCCM/ptXtGhBBCCNEzSDAihBBCCI+SYEQIIYQQHiXBiBBCCCE8SoIRIYQQQniUBCNCCCGE8CgJRoQQQgjhURKMCCGEEMKjJBgRQgghhEdJMCKEEEIIj5JgRAghhBAeJcGIEEIIITzq/wGnrs+Hv8mTNAAAAABJRU5ErkJggg==", "text/plain": [ "
    " ] @@ -640,8 +631,8 @@ } ], "source": [ - "# Greedy rollouts over trained model (same states as previous plot, with 20 nodes)\n", - "model = lit_module.model.to(device)\n", + "# Greedy rollouts over trained model (same states as previous plot)\n", + "model = model.to(device)\n", "out = model(td_init, phase=\"test\", decode_type=\"greedy\", return_actions=True)\n", "\n", "# Plotting\n", @@ -669,14 +660,13 @@ }, { "cell_type": "code", - "execution_count": 12, + "execution_count": 11, "metadata": {}, "outputs": [ { "name": "stderr", "output_type": "stream", "text": [ - "You are using a CUDA device ('NVIDIA GeForce RTX 3090') that has Tensor Cores. To properly utilize them, you should set `torch.set_float32_matmul_precision('medium' | 'high')` which will trade-off precision for performance. For more details, read https://pytorch.org/docs/stable/generated/torch.set_float32_matmul_precision.html#torch.set_float32_matmul_precision\n", "val_file not set. Generating dataset instead\n", "test_file not set. Generating dataset instead\n", "LOCAL_RANK: 0 - CUDA_VISIBLE_DEVICES: [0]\n", @@ -687,7 +677,7 @@ { "data": { "application/vnd.jupyter.widget-view+json": { - "model_id": "f3a1dc057c5e4b8e93c1e70dd1130e14", + "model_id": "5ab7e228c40f4965b03dc5c003602509", "version_major": 2, "version_minor": 0 }, @@ -704,7 +694,7 @@ "
    ┏━━━━━━━━━━━━━━━━━━━━━━━━━━━┳━━━━━━━━━━━━━━━━━━━━━━━━━━━┓\n",
            "┃        Test metric               DataLoader 0        ┃\n",
            "┡━━━━━━━━━━━━━━━━━━━━━━━━━━━╇━━━━━━━━━━━━━━━━━━━━━━━━━━━┩\n",
    -       "│        test/reward            -7.2381415367126465    │\n",
    +       "│        test/reward            -7.224186897277832     │\n",
            "└───────────────────────────┴───────────────────────────┘\n",
            "
    \n" ], @@ -712,7 +702,7 @@ "┏━━━━━━━━━━━━━━━━━━━━━━━━━━━┳━━━━━━━━━━━━━━━━━━━━━━━━━━━┓\n", "┃\u001b[1m \u001b[0m\u001b[1m Test metric \u001b[0m\u001b[1m \u001b[0m┃\u001b[1m \u001b[0m\u001b[1m DataLoader 0 \u001b[0m\u001b[1m \u001b[0m┃\n", "┡━━━━━━━━━━━━━━━━━━━━━━━━━━━╇━━━━━━━━━━━━━━━━━━━━━━━━━━━┩\n", - "│\u001b[36m \u001b[0m\u001b[36m test/reward \u001b[0m\u001b[36m \u001b[0m│\u001b[35m \u001b[0m\u001b[35m -7.2381415367126465 \u001b[0m\u001b[35m \u001b[0m│\n", + "│\u001b[36m \u001b[0m\u001b[36m test/reward \u001b[0m\u001b[36m \u001b[0m│\u001b[35m \u001b[0m\u001b[35m -7.224186897277832 \u001b[0m\u001b[35m \u001b[0m│\n", "└───────────────────────────┴───────────────────────────┘\n" ] }, @@ -722,16 +712,16 @@ { "data": { "text/plain": [ - "[{'test/reward': -7.2381415367126465}]" + "[{'test/reward': -7.224186897277832}]" ] }, - "execution_count": 12, + "execution_count": 11, "metadata": {}, "output_type": "execute_result" } ], "source": [ - "trainer.test(lit_module)" + "trainer.test(model)" ] }, { @@ -745,7 +735,7 @@ }, { "cell_type": "code", - "execution_count": 13, + "execution_count": 12, "metadata": {}, "outputs": [], "source": [ @@ -754,7 +744,7 @@ "\n", "# Generate data (100) and set as test dataset\n", "new_dataset = env.dataset(50)\n", - "dataloader = lit_module._dataloader(new_dataset, batch_size=100)" + "dataloader = model._dataloader(new_dataset, batch_size=100)" ] }, { @@ -766,19 +756,19 @@ }, { "cell_type": "code", - "execution_count": 14, + "execution_count": 13, "metadata": {}, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ - "Tour lengths: ['14.68', '14.75', '13.97']\n" + "Tour lengths: ['11.42', '15.26', '15.04']\n" ] }, { "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAAiMAAAGdCAYAAADAAnMpAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjcuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/bCgiHAAAACXBIWXMAAA9hAAAPYQGoP6dpAAEAAElEQVR4nOzdd3zU9f3A8df3Vi7J5S577zDDCnsLCIqouPf2p23dq7bVaq22VttaR1t3ravuCSooUxDZhA2ZZO99l9vj+/39ceEgJGEGwvg8H4+T5LvuczG5e38/4/2WFEVREARBEARB6COqvm6AIAiCIAhnNhGMCIIgCILQp0QwIgiCIAhCnxLBiCAIgiAIfUoEI4IgCIIg9CkRjAiCIAiC0KdEMCIIgiAIQp8SwYggCIIgCH1K09cNOByyLFNTU0NYWBiSJPV1cwRBEARBOAyKotDe3k5iYiIqVc/9H6dEMFJTU0NKSkpfN0MQBEEQhKNQWVlJcnJyj/tPiWAkLCwM8L8Yo9HYx60RBEEQBOFwWCwWUlJSAp/jPTklgpG9QzNGo1EEI4IgCIJwijnUFAsxgVUQBEEQhD4lghFBEARBEPqUCEYEQRAEQehTIhgRBEEQBKFPiWBEEARBEIQ+JYIRQRAEQRD6lAhGBEEQBEHoUyIYEQRBEAShT4lgRBAEQRCEPnXEwchPP/3E3LlzSUxMRJIk5s2bd8hzVqxYwahRowgKCqJfv368++67R9FUQRAEQRBOR0ccjNhsNkaMGMErr7xyWMeXlpZywQUXMGPGDLZu3coDDzzA7bffzqJFi464sYIgCIIgnH6OuDbNnDlzmDNnzmEf//rrr5ORkcHzzz8PwODBg/n555958cUXmT179pE+vSAIgiAIp5njPmdk7dq1zJo1q9O22bNns3bt2h7PcblcWCyWTg9BEARBEE5Pxz0YqaurIy4urtO2uLg4LBYLDoej23OeffZZTCZT4JGSknK8mykIgiAIQh85KVfTPProo5jN5sCjsrKyr5skCIIgnGZanDYqrC2dHi1OW18364x0xHNGjlR8fDz19fWdttXX12M0GgkODu72nKCgIIKCgo530wRBEIQzVIvTxh82fYtXkTtt10gq/jxmLpH60D5q2ZnpuPeMTJw4kWXLlnXatmTJEiZOnHi8n1oQBEEQupAVhZ9qi7sEIgBeRabc2tIHrTqzHXEwYrVa2bp1K1u3bgX8S3e3bt1KRUUF4B9iuemmmwLH33HHHZSUlPDb3/6W/Px8Xn31VT777DMefPDB3nkFgiAIgnCYZEXm3cK1fF+1q8dj3ilYS4ml6QS2SjjiYGTTpk2MHDmSkSNHAvDQQw8xcuRInnjiCQBqa2sDgQlARkYGCxYsYMmSJYwYMYLnn3+et956SyzrFQRBEE647yt3sb6hLPB9cmg4U+P7MSo6Bb3aP3PBJXt5ZddKrB5nH7XyzCMpiqL0dSMOxWKxYDKZMJvNGI3Gvm6OIAiCcApy+7z8bsPX2L0eJCR+OXgyo6JTA/sdXjev7v6JQnMDAJekj2BOypC+au5p4XA/v0/K1TSCIAiC0Ns2N1di93oAmBCb3ikQAQjW6Lip/wSkju9/ris+wS08c4lgRBAEQTgj1Nn3JdDcG4g0Wr0kPFPOX5a3AhATbCDNEAlAk9OGR/ad+IaegY770l5BEARBONkoKJQ0e8j5VxXtbgWtWgrs23+NjdT1VOE4EMGIIAiCcEZIDDEFvn5zUy2vrXSjKPD25THcOiYMgHq7hYqOpb2xegMalbpP2nqmEcGIIAiCcEbIiUpG9oSyaGsilY3+oZgProrh+pH+QMTqcfFe0brA8VPi+/VJO89EIhgRBEEQTluKorCt1s383Xa+2mVje92wwL5xA0spo5CvSuOxeJxsbqrA5fMCYNTqmRKf1VfNPuOIYEQQBEE4rXh8CitLHf4AZKeNmnYfagl8gUQWCqFBLnKy6qmwEhiW2StUE8S9Q6cTqhVlSU4UEYwIgiAIp5Xxr1azpcaNRgXejtmovk4ZtSRuG68nJjSCSltrYGuQSsP42HRmp2QTrTec0Daf6UQwIgiCIJzyrC6Z7wvtXDE0lMuHhrKlxh0IRA4kSfC7yakkhGVQ57DQ5nKgValICo0gWKM9sQ0XABGMCMJxJysKGxvKA3dgMXoDQyISiA4Wd16C0Fv+trKNp39s45FpJp6ZHYnZKfPcT+Yux6kkmJ6pJ9Ho//hLCDGRsN8qG6FviGBEEI4TRVFYXb+H7yp20OpydNl/WfoIzk3ORpJEJgNBOBYen8IbG/wJzf660kyKScPNIw08v8qMfEDBE1mBm0eF9UErhYMRwYggHCdflW1lcVXeQfZvw+p1c3nGyBPYKkE4/SzIt9No2zcmc/c3zUiAAqglfwCyNyYJUsOlQ0L7opnCQYhgRBCOg9zGik6BSH9jDP1NsQDktdZRam0GYHFVHumGKEbHpHZ7nb11LEXviSD07LX1li6rZRQgPNTF6jvi+eMiD1/tsgH+QCQsqHMllNzGCuaXb6fZaSU2OIzLMnIYFpkU2K8oCt+W72BVXTEOn4csYzTX9RtLXLAo3NpbRDAiCMfBkup9gcg1WWOYkTgg8P3F6SP4saaQT/ZsChy7fzDiU2R+bqrjy6pSPqvcQ054FD+cdcGJa7wgnIRanDasXlenbQZNEBaHjiVFDjqPxvj7RRwuHS9tW8/bV8zC7pZZWOjghpGdh2j2WBp5K381l2SMYHhkEhsaynht9yoeG3keSaHhACyqymN5TQG3DJxItD6Ub8q286+dP/Lk6AvRigytvUIEI4LQy+rsFkrb/T0fyaHhTE/oD4BXltGo/Hdk0xP683NdMVW2Nkrbm6mwtpBntfFFVQlfVpXS6nGhkSS8itJlzFsQzjQtTht/2PQtXqXz8hiNpCLYMgOVdODSXQAJr0/iw1Xp3DSomS9viGPZHifnDwzudNSy6gKGRCYwOzkb8N8s5LXVsaKmkOv7j0NRFJZV53N+6lByopIBuHXgRB5e9xVbmyoZG5t+nF71mUUEI4LQy5pd1sDXQyMTA0MswxZ/Tr3TzlnRCYyJjKVN1rKx3YnZK/PB4q+w+3yBAATAqyhoJRWDjeF98TIOqac71Ui9GI8Xeo/Z7eCdwrVdAhEAt0/mw01WfErPw5h2VxBLC2BKkooLBoV02V/S3sSspEGdtmVHJLCtuQrwV+61eJwMDo8P7A/W6MgIi6akvUkEI71EBCOC0MvU0r7xaIfXE/h6ekwC/ysvYn5tOQvqKgJBx/4O3OZVZAaGhR+3th6tg92p/nnMXBGQCL2izWXn79uW0Oyydbu/tC4Cs6P7QCQ7VktCVDPpsVYemza5x+ewuJ0YtfpO24xaPWa307/f418JZ9QdcIxu3zHCsRPBiCD0sqSQcNSSCp8ik9tYweUZIwlSa3ht9Fm8kDOJp3bl8reCrQDoJXAeZBhGAR7ctoa/5m8lI9TAUFMkE6PimBWXTLy+613eiWL1urq9U/UqMlavi0hEMCIcu/cK1wUCkVCNjlHRqaQYIjC7HKytq+S/2/cVstOq4LoRoZw7IJSZWXqW1m1mV2stvxlxDlq1mAB+shPBiCD0sjCdnlHRKWxsLMfqdfFW/mpuHjAeg1ZPsFrD44NzUHvaeLW8gjafjAoI1WixeT10lzAyWR9Kk9vFz011/NRUx6t7dgOgQsKo1ZKoD2VAmImR4dGcFZPApOhYdKrj96ftkX2sqS/pcb/D6z5uzy2cOWpsbexuqwMgXBfMozmzCQ/yB+CNVh9PfxeBT/b/riVGtvGfq4M4PzUTgI+LN7KjpYaHR8wiIujgQbtRp8fi6dzDYfE4MXX0hBi1/jkmFrcTk27ffBOL20mKIfzYX6gAiGBEEI6L81OGsK25CrfsY3tLNY9smM+g8DgA8tvq8cg+rooJpcrlY53NR4vbhVaSkBUlkB8BQK9SU3z+tYF5J+U2C8saaljf0sBOcwvldit7bBZ2t7cyr6Ys8PxBKhVROj1poQaGGCMZHxnLzNgkMgzHthTR5fPy8q4VFJobejzmvcL1/GbEOYf8EBCEg9nQWB74+tzkwYFAJL/RzYXv1FDWJgMS/RIbOTtnDxsaTcxJyeaTPZvY2lzFQ8NnHlZ9mcywaPLb6jrNG8lrrSMzLBqAaH0oRq2e/LY6UgwRgH/4tbS9iWkJ/bq9pnDkRDAiCMdBYmg4d2VP47W8n3D5vHhkHztaajodE6TW8NzoGWRHJPDX/C08tSsXj+IDQAXIQD+DsVOOkbRQI/+XYeT/MjpPuPPIPtY1N/BTYy25bY0UtpupcdjZ0NzI2uYG3irNB/wLHsM0WuL1IfQPMzEyPIop0QlMjY4n5DBqcnxQtL5TIJIRFk1SiIlml42CtnpkFJpdNl7ZtZLfj5yNSlId5GqC0LNWlz3w9eDweIqbPLzwcxuvrW9H1ZHI7I7xYUQn7aTB6T/+4z2b2NBQxl3ZZ6FXazG7/fM9gtVadGr/x907BWsI14VwaUYOADOTBvKP7UtZUpXHsMhENjaWU25t4Yb+4wB/jp+ZSYNYWLmT2OAwovUG5pdvJzwomJzolBP7QzmNSYrSzSy6k4zFYsFkMmE2mzEaRZIZ4dTR5LSyvKaAtfUl2Dsms4ZotEyMzeTspIGd7tzcspdfbVrF++WFgeGauQmpfDNlzjG1od5pZ1l9NWub69lhbqHU3k6jy4HD5+t0nE6lIlIXREqwgWxjBOMiY5gRm8RAgwmVSkWjo53HN30LgF6t4b6hM8gyxgTOb3RYeWnnMpqc/jH+u7LPYkTHUkhBOFIfFG1gWVUJmwqTqaxLxOyEcL2Eza3gkeE3U008e14ED6//ErvXQ5hWT7un+wmlNw+YwKQ4/xDO89uXEhUUyi0DJwb2+5OebaPZaTtk0jO7100/UwzXZY0lLkR8Hh3K4X5+i2BEEE4Anyxj7piVb9IGo1b13GNQ57Rz1dolrGqqQwKuTM7knbHTD6vn4kjIskxuWxMrG2vZ1NpIQXsbVXYbbR5Xp1U9EhCq1mDQqFErXqI0Ki5OzuL3Qyaj13TuXN3WXMWru38CYHhkEncPmdarbRbODEuK7Ny/oI68egWQ0Gtl7hwXzru5VlqdMn+eFcHjMyPY0FDGfwvWAJATlcyd2Wf1bcOFLkQwIginuE0tjVy7finFVgs6lYrfDczhyezRqA4SyPSWVreTHxtqWdNcx7a2ZkpsFqrsVtwHBCnpoWG0ezw8MiiHhwYMR0HhgTVf4JK9xOgNPD32ouPeVuH0YHHKPL64hf9tsdLmlJGAaJONUf0riDI4+Hr1SBweiZcujOTeSSZ2tFTzbuHaQI/jA0PPZnBE/MGfRDjhRDAiCKeJTyuLuTN3Fa0eNxFaHa+Omso1qSd+4txru39ic2MFbT6FcQlDCNHq2G5u4cuqEprdLsZFxvKnIWP4bs8a3LJPBCPCYVlUaOPxxa3kVrtRAJNe4roRBp45N4Lt5jJe2bqNr34ejldWMXNEGbMHy7S67J1yjwyNSOCeIdNFDaeTkAhGBOE0IssyT+Xl8tf8rbhlmaxQI59MmMWYyJhDn9xLvi7byg+V/mXFl6bncF5KdmDf8oZqHtuxgXUtDagBk0YiNTiUAaZYNCoVaklCI+37N0it4sH+w0kLFaXc+8qBGXRPZPZci1PmsUUtfLB1Xy/IyEQdfzonggsG7WvD9loXY16pwuODmTlFZCW2dLnW4PB47hg8FX0vD2MKvUMEI4JwHBWaG1hctZsKaytmt4M7B0895Mz6grZ6Pi/ZTK3dTERQCOenDg1Mqtvrx5pCllTlYXY7SDZEcE3WaDI6lhgC2L0e/m/jSj6r2oMCTI2O57OJ55yQBGgNjnb+sN8E1geGnk2GcV/bGh3t3LLmWxa2tAe2SYCq42517z2rrICMwsIpc5iT0H21YuH46i6D7onInvt9gY0/LGll8369INfnhPGXc8IJD+k8/2hthZNpb9TgU+DtK0ORQsvY1FSOy+dFQmKAKZZpCf0ZGZ0sVm2dxA7381ss7RWEo+D2eUkOjWByXBav56065PFNTisv71rBWQn9uW3QJPLb6vhf4XpMOj1DIhIB2NhYzhclm7mu31gywqJZVpPPv3b+yFOj5wZSUYdotHwycRZ/t4/n6rVLWdVUR9K3/+PGtAG8OWbqcU12FhscxtiYNDY2luP0efnbtsUMiUgkPSyKeoeFLU2VJOvgbGMQyy3+O24F8B1wv6MChhgjmB0vlkX2le4y6B6v7Lltdi+PLWnjw63tmJ3+PDqjknT8eVYEcwZ1/1zLiuzMfqcOSYJltycwPTMYiOPG/uPwyD40KnUgyBVODyIYEYSjMDQykaGRiYd9/MraIqL1Bq7MHAVAQoiJYnMjS6sLAsHI0up8psRnMTk+C4Dr+41jZ0sNa+r3cF7KkE7XSw0JY+3MS1ndVMf165fxXnkhn1bu4Y9DRvPIoJG99Cq7uqH/ONpcDoosDSjAztYadrZ2zp8yMTKSpPAQPqzY021GWRl4dtg48WFymluY7+8F2VLj7wUJ16u4Z0IYT58bgSlY3eN53+y2cekH9WhU8POvEhmbsq8mjCRJgXwhwulF9G0JwglQYmliUHjnmf7ZEQmUWJoA8Mo+KtpbOlUGVUkSg8LjA8d0Z3J0PGUXXM/bY6ahVal4dMcGYua/x/zq0uPyOvRqLfcPm8Gl6SO6ZFgN0eiYlTSIR3Jm8/roaWQZTKi7CTiCVCrCNbrj0j7h+NhS4+JXXzfi9HQXXu7TZvdy17xGwp8q5YL36tlS42Z0ko6Ft8TR+sd0/n1x9EEDkQ+3tHPJ/+rRqSVy707qFIgIpzcRYgrCCWDxOLut+un0eXD7vNi9bmQUwro5ps5hOeT1b80YxM1pA/jdjvW8VLSDS9YsZnBYOJ9NnMVQU1SvvhatSs15KUM4J3kwFe0tWL0u9GotaYbITnetX046h9FLvsJH52Ealyxz1spvGWqM4L1xMxgVceIm4QpHrqTFw6y3amlxyEzPCObanK4p1r/Ls/HHpZ17Qe6dGMbT50Zi1Hd/z/t95S62NFVS57CgU6mxmBN4a2UcIVoV2+5PIiuq+4DVn6BsO81O6yETlDl8HrKM0VzXbyxxwWK+4clM9IwIwmlCpVLx3IiJtF5yCxcnppPf3sawxV9w7srvaDkOpc7VkooMYzTDIpPob4rt0n0+zBTFSzmT9jteYkpUPHUX3sB58cnssrQyeulXjFn6JXmW1l5vn3DsGq0+Zr1Vi9klo5LgtfX7AuMWu5c75zVierKUue/7e0HGJOv44VZ/L8i/LoruMRAB/yTw6YkDeGTEuRgcE3j7p1hiTVZ2PJDQYyCyx9LIW/mrmRyfyeOj5pATlcxru1dRbWsLHLOoKo/lNQVc338cj+ScS5BKw792/ohH9nV7TeHkIIIRQTgBjFo9lgMCAovbib6jZoZBG4QKifZujjFpj6yr2qDRMW/ybIrmXMOo8CiWNFQT+8373JH7E1754N3sve3OrGwuSkhDwj+R9dnh44gLDuX7qRdQdsF1TItOILe1iexFnzFl+TzKbYfuBRKOXbPT1u12eb/Jxja3zHnv1FJh9uKT/augVpU5eXWtmZH/qiL6zxW8vr4dtUrivklG2v6Yzoa7k5k94PAmwN4/dAaT4jJ5c63MU4tdhAeruGB8Hh51z78Dy6oLGBKZwOzkbBJCTFycPoJUQwQragoBf6/Isup8zk8dSk5UMsmhEdw6cCJtLgdbmyqP4CcknGgiGBGEEyDT6K8Mur+8tjoyO5bGalRqUsMiyWurD+yXFYX8/Y45UlkGE7nnXMHSsy4gLiiYN0ryMM17h38WbT/6F3KEJEninXHTideHMDsumSnRCYF9qSFhrJhxEQXnXcW4yBhWN9eTsfBjzln5HXVO+0GuKhwtr+zj/cL1Pa4Ae6dgLY2Odrw+has+rGdrrRvfAfHr3d80s63WzdhkHYtujaPliXT+OffgvSA9eWhBE08tayMhTM36u6PQqGVCDzKfqKS9h7lX7f55VU1OGxaPs9Pcq2CNjoyw6MAxwslJBCOCcBScPg+V1lYqrf7hhSaXjUprKy0dd5xfl27lnY6aGQDTEvrT5LTyZekW6uxmVtQUkttYwaykgYFjZiUN4ue6YtbWl1BrN/NR8UbcsrdLLpIjNTMumeq5N/JyzmQk4IGta0n89n8sqjv4neIPlbv41aqP+HRP7kGPy22s4IlN33H3z5/wVO4CdrRUd9ofoQ3i+cFDGKx1cs/qT3lxxzLq95sHMyAsgvUzL2PrrMsZZopkaUM1id/+j4tX/3BchpfOVLKi8N/8Nayu39PjMXUOC89tW8r/fVXL94UO5G6yUOnUUP9YGuvvTubcw+wF6c4vv2rkxZ8tpIVrKPx1Mt/XbCHLGENSaHiP51jcTowH9BQatXrMHb8nlo76T93NzzKL36WTmpjAKghHoby9hRd2LAt8/3nJZgAmxmZwy8CJmN0OWvYrgR6tN3DPkOl8XrKZ5dUFhAeFcOOA8YFlvQBjY9Kwepx8U74di9tJsiGC+4bMwKgL7pU2391/KL/KyuaBrat5vSSP81YtZIQpis8nzqJ/WHinY8vam/mptpjkg3wwwL4x/EsyRjA8MokNDWW8tnsVj408L/Chsqgqj/UNe7hl4ESi9aF8U7adf+38kSdHX4hWtW9lxYiIaLadeyVrm+u4deMKvqkpJ2b++1yVksl/xpyF4RhX4PRlxtGTweamCjY3+wNQrUrNBR1J94LVWna21jCvbBv1jnYWb49iW2nPH9xuHyzb4+CaEV0nsh6uaz6q59MdNgZGa9l+fxKfl26ixmbmNyPOOeprCqc2EYwIwlEYGB7HG1Ov63H//uXJ9z/n8VFzDnrdGYkDmZE48KDHHAuNSsXLo6byp6FjuW7dMhbVVzHgh0+5MCGVD8fNxKjT4fR5+G/BGm7sP56FlTsPer39x/ABLk4fQV5bHStqCrm+/7guY/gAtw6cyMPrvmJrUyVjY9O7XHNiVDz5513Dsvoqbt/0E59U7uGLqhJuTh/AyzlTulQKPhx9lXH0ZLKipijw9a0DJjI6Zl/221HRqXgcEVz6cQm1rQdP0a+S4NV1lqMORi58t5YFBQ5yEnTk3pPIpyW57Gip4eERs7osFz+QUafH4jlgXpXHiamjJ8So9QfuFrcT035BvMXtJMUQflTtFU4MMUwjCGegSJ2eH866gJ3nXskQYwTf1VYQ9c27PLR1DR8VbWBYROJhVUA9nmP4M+OSKb3gOuZNOpe4oGD+W1qAcd473Lfl5yOeiHuwjKNnAofXTZGlAYC44DBGRafgU2QWlzdwy+KdTHqtmgmvNmK2hqLXuYk2WsmMUog3qNEekBZk70TWVseRrU6RZZlpb1SzoMDBlLQgNt2dwKcluWxtruLB4WcTrT90cJMZ1s3cq9Y6MjtKJkTrQzFq9Z2OcXg9lLY3BY4RTk6iZ0QQzmBDTJHsnH0V39WUc9umFbxYtIMYrZo/DZ1wWOefiDH8i5MyuDgpgw/LC3lw21r+XbyL/5Tk8+CA4Tw9ZAwqlbinOpAsy5TbrWxsbWSnuYUd5mZWN9tw+BS82Ph7+X/xyD5/hlxFYob2fD6/LpakmCbeLdoAwBUZIzknOQtFUbC6FRptPhqsPhptPiTAFHT4P3dZlhn3ag251W5m9w/mh/9L4KPijWxoKOOu7LPQq7WY3f7fleCOFWYA7xSsIVwXwqUZOQDMTBrIP7YvZUlVHsMiE9nYWE65tYUb+o8D/BOmZyYNYmHlTmKDw4jWG5hfvp3woOBD1o4S+pYIRgRB4MLENPJmX8Ftq+ezuNXOnVtW80z+Vq6MNZEcGtHXzQPg+rQBXJ82gNf37ObRHet5Nn8L/yrawWODR/K7gTlnVFDS5naS29rE1rZm8tpbKbW2U+2w0eR20u714O6m50gCtBKEqFSMioyj3GZjT3s7F4SM5rur/ENo88r2TW4N7pijI0kSYUESYUEqMiOPvDKu1ysz4t/V7G7wcMXQED6/3t9LtrLWP2z0/H5zrwBuHjAhMGm7xWVHYl8W3yxjDLcPnMz88m3MK9tGbHAYd2ZP7TTpdXbyYNw+Lx8UbcDuddPPFMN9Q2Z0mp8knHxEMCIIAgAV7S3EauGGmBAKHB42Wu28VG5jaFMji6oKeOusa7pUR+2LMfw7srK5Iyub5wu28eSuTfx+50b+mr+Vvwwdxz39h3Y53ifL5LXWdXOlznk1DlTvtPPwtnUMNobz+8GjjqqtR8Mry+wwN7O5tYldllaKrRYqHVYanA7aPG4cPi8HtloCgtUawrU6UowGUoIN9DMYGWKMYFRENENNkby4Yzl7LI34ZJlin5eSylCCWwbz8a+HAWDzuPi5rhgAFRJDIhI4Vk63zJCXqihp9XLr6DDevmJftt2Dzbna69fDZ3XZNjomtdN8lwNJksRF6cO5KH340TVa6BMiGBEEAYBB4fE8Mer8wPfNLie/2LCETe12dto8tK9dxnvjphOi2Xd3vHcMf1bSoMC2nsbwUwz+Hpa9Y/jTEvodU3t/PXAED/Yfxp/ycvl7wTbu3bqaJ3dv4vkRE7k53T8JuN5u4ZXdK6l3tHd7jY+KN3Lf0OkY9htqUhSFDyuKuGfzasxeN8NMkb0ajFTarWxsaWSHuZnCdjNl9nZqHXZaPC5sXg/ebgIknUpFmEZLSnAoScGhZBiMDA4LJyc8itER0YTrDp0YLys8kU+qK9lq86AoNiifxaQsPSE62NZcxbyybbR7/HNocqKSDzmZ9FCsTpmBL1ZSY/Fx3yQj/5wr5mwIPZMU5SC3BicJi8WCyWTCbDZjNIr6AoJwojy/fSmSKog3KqsptJoxqFRclpDAOxPOR6VSscfSyD+2L+Wy9JzAGP73lbs7Le39oXI3i6p2ccuAiYEx/Gpba5elvcfCK8s8smM9/y7eiVuWidcH8+yQseQ15tPWMRcBQKdSIytKp8msKaER/GbEOQSpNVTZrdy+aSWL6qsC+8O1OlovufWw2mH1ujuGT5rIs7Sxx2rxD5+4nFi8HlzdpCRXSxKhag0RuiDi9SGkhRgYGGZiqCmKMRHRpIeEHfUQVKPLwaeVe3i3rIDc1n0ThlWOUOS8iVw7fQthIe5O5xi1en6Xc+5hTSjtSYvdy6Dnq2i0yzw+I5w/nxt51NcSTm2H+/ktghFBEHr0/PalJIdGcHXWaD6r3MP9m1dQ5/YSrtXx8sjJXJ82oKNw2TaanbZDFi7bO4Z/XdZY4kJ6/2/ZLXu5b8sa/luaj1dRMKgkphj1TIiM4qrM0QwKj0NWFLY0V/JZyebApMlL00ZQ4ZV4aOtanLIP3wFvi/bLbiNIUrG7vY3NrU3sNDdT1DF8Uud00OZ24fD5kA8YQJEAvVqNSasjJiiYlOBQ+hlMZBsjGBkexYjwKILUvdtBbfN6+KamnPfLClhcX43S0aZOLSsZRhwhXDxpd6dz44ON3Jl9FvHH8P+mxuJlyItVtDll/nZeBL+ddnLMORL6hghGBEHodbIs8+e8zTyTvwW3LJMZGsbH42cxLiq2r5vWSaPDxpRln1Lk8KAA/Q1Gfph6AZmGfe8fldZWnt7yPRavzOp2N5UuT4/X0yDRdaYGaCX/8ElUUBCJ+lAyDGEMDAtnhCmKMRExxOh7J2Hd4Sq1WRi++HOsXi9qpC4VkwEkRULZNp3nL7Pi1TThlWWi9KFMjM1kaGRCl3lBR/T8LW6G/7Maq1vhlYuiuGui6RhejXA6EMGIIAjHjdPr5bZNK/m4shgFmBwVx2cTziEx5ORIILa1qZLX8lbhlGXyXFq2tVuQZYWLk9KZEZuI1eulwt7O15VF1Lp7DkL2GmAwMswURX+DiaGmCMZExNDfYDrpVvDYvB6m/DifHW0t3QYiKkA2RzHGOYGN9yT36nPvrncz+uVqXF6Fd6+M4aZRB0+eJpwZRDAiCMJxV2W3ctW6JaxtbkAFXJfaj7fGTOv1oYcjtba+hHcL1wFwTdZoxsVm8nLxLh7fuQGvohCu1ZEaYsDmdlDmcODDP6TS05vh22OmcWvGoB72nlzMHhdzVn3PhpaGLsNNKEDFYLZdP57hCUG99pybqpxMfr0GrwxfXBfHpUNPjqBU6HuH+/ktVtMIgnDUkkMMrDn7UtY213HduuV8UFHM51Wl/CF7JI8NHt1n7TJo933QlrU3MyNxIL8blMNFiWmokRhgDAfgmS0/UG5tweKVSY/K4rOqUkps7WgkKbCqRSNJVNitffEyjopJG8SSsy4ga+HH1LscnXdKMCgooVcDkVWlDs5+qxZFgR9ujeec/se2Ckc4M4lgRBCEYzYxKp7SC67jvbIC7tuymsd3buLFwh28OfosLks+tqrDBxa4g0MXuRtoiiNEo8Xu9bCpsYLzUoaQEGJisHHfZModLdWUW1sAGGKK4rFhE3hm2AQ2tjbyflkhH1YU0eZx41UUKh22Y3oNJ4rT62F++Xb+W5pPvcuBQa3C5uuYVqsA9jDevbhzJtKCtno+L9lMrd1MRFAI53cU0NvfjzWFLKnKw+x2kGyI4Jqs0WSERfN9gY2579UjSbDylwlMTj+xc2SE04cYphEEoVfJsszvd27khcLteBSZgWEmPptwDsPDo3o8p95pJ07f9Y66uwJ3cHhF7r4o2cyS6nzAH7ycnzqEkVEpeBQf6xvKWFyVh6djqe2N/cczJT6r0/ke2ccPdZV8VFHMnPhUbkofcNg/g77yZt7PfFtbyXfNFvqHhvHMwME8unsLe5weFAVizANo+MWMwPFNTitP5S7grIT+TInPIr+tjs/2bOaeodMCFaU3NpbzbsFarus3loywaJbV5LO5qYLR+rO56XMzOhWsuyuJnMTe620RTh9imEYQhD6hUqn46/DxPJ49kps2/Mi86jJGLPmCs2MT+XT8LKIPWGGytL6Kc39awOujp/LLzOxO+7orcAf7itxF0nMwcmHqMPLb6qm0tWL1uvisZDOflWzuctyIyCQmxWV02a5VqZmbmM7cxPTDfOV9y+3zMq+6hO9bHaSFGNh53lXoVBryzLW8VuCkVt3IPyYP7nTOytoiovUGrsz0J3VLCDFRbG5kaXVBIBhZWp3PlPgsJncEa9f3G8fCohZuWd2KXqNmy71JDIzRndgXK5x2Tq6p4IIgnDYMGh1fTZrNnjnXMjoimuUNNcR/9z9+uWlloOquT5G5b8tqFOD+LWsosVp67fn1Gi0PDpvJsMjEbvdLSEyN78cvB085puWsJ4sXi7azuNVBYpCe3bP9gQiAStHQmp9NauV0bsruXGG5xNJD1WWLP0GaV/ZR0d7SqeryK2stfL66P+GhLvIeTBaBiNArRM+IIAjHVYbByKZZl/NjQzU3bfiR/5Tm80FFEX8ZOhajNoi89jYAPIrMjRuWs2rGxagk6eAXPUyhWh33DJlOja2NNfUlNDjakSSJ5NBwJsdnERl0eqz6eGPPbh7ZsZFEnYZ7UhJw+zzo1Wo2NJazKF+F063ltQviu5xn8Ti7rajs9Hlw+7zYvW5kFMI6jnn2x1Z+v7iVWKObX82sIi1iyAl5fcLpTwQjgiCcEDNik6i88AZeK97Fb7av46Ft69g/5PApCmua6/ln0Q4eHNC7Rc4SQ8O5IvPEFbs7kT4sL+SOzaswaXQsn34h35Zt43cb5qFCIjEkgk2FGWTEmTl/UNahL3YQj/7QzF9XmokNVfGPS51UOQ99jiAcLhGMCIJwQt3Zbwi/yhzMxOXz2NDa2GX/77av57z4FAYbI6iz9zxscwrMvT/uvq4q5cYNPxKq1rB79lUkhoQycMQsXD4vTp+Hh7+14nC3c+Gw7lcDGbV6LO4Dqi67nejVWnRqDSpJQoXEn5aaeX+jimSjmrwHU/i8vBaT9tDF+QThcJ36A6WCIJxyal0Otpmbu90no3D9+mV8XbqN/xas6fEaP1Tuxid3ndx6plhcV8kVaxcTpFKz49wrO2W/DVJrCFYF8f6WdlJjW7kiO6Hba2Qa/VWX95fXVkem0V9hV6NSs6cylfc3SmRFaij6dQohQRL5+x0jCL1B9IwIgnDCPbZjQyCp2IF8isKWtmb+kmdhdJj/7lsrqYnWh9LqtuP0eQHY3FzJe4XrUIBdrTW4ZR8xegM3D5hAeljPy4iPJa/GyeLnpjrO//l7NCoVm2ZdRkZHzZ1drTUoCsSHGPndDw24fTBzsIXJcSMB+Lp0K21uO7cOnATAtIT+rKgp5MvSLUyOyyS/rZ7cxgruGToNgMs+qGPJrgSyU+t5/ZJYWr3tLCsvwC17u/zMBOFYHFUw8sorr/Dcc89RV1fHiBEj+Pe//824ceN6PP6ll17itddeo6KigujoaK644gqeffZZ9HrRzSf0naNJpiUcu3qnnffLCwF/oTnw94bIitIpHXuuzYNWknh8yBhmJg1Cr9bilX2sqS/l0z2b8Coy6xvLyIlM4t6h0wnT6mlwtBOq6Xl1R5PTysu7VnBWQn9uGzSJ/LY6/le4HpNO3ymvxhclmzvl1fjXzh95avTcLpM9+8Lm1kZmrPgGCVg94xKGmCID+xxeD1+XbaPVaeerXcOID4dXZk1G3VFDx+x20OKyB46P1hu4Z8h0Pi/ZzPLqAsKDQrhxwHiGRCRy7n9rWFLsZGyyjmfnRrKwcgeWPU6SDRHcN2QGRp1IcCb0niMORj799FMeeughXn/9dcaPH89LL73E7NmzKSgoIDa2a+XOjz76iEceeYS3336bSZMmUVhYyC233IIkSbzwwgu98iIE4UgdSzIt4cgcGPR5ZJmXRkzA7PVi9Xqwdfzb7nGzvrWR6v2yna6zunm3uo5BkalkGUxoVGrOSuiHw+fmq9KtAIQHhQR6LaL1hoO25WjzauxsqWFN/R7OS+nb1SN5llYmLp+HAqyYNpcxkTGd9o+JSWNMTBqP/tBMm9XMKxdFEbxfcHbLwIldrjkwPI7HR80JfC/LMpNeq2ZthYsZmXqW3haPSqViZvLA4/a6BOGIg5EXXniBX/ziF9x6660AvP766yxYsIC3336bRx55pMvxa9asYfLkyVx33XUApKenc+2117J+/fpjbLogHL1jSaYlHL6Ctnpe2rEc+YASdGpJxdP7BX0+Reb2TSsDgYgEJOjU/HrgaF4o3sWg7z9lakwCb42ZRqbByNT4foFgZH1DGblNFYTrQpiW0J+pCf16bE9PeTX2JkPbm1djTvK+5GsqSWJQeHwg90ZfKbVaGLXkS7yyzMKp5zMlpvt5ILIs8681Fkx6ibsmmo7oObxemTGv1LCtzs2Fg4L59ubun0MQetsRTWB1u93k5uYya9asfRdQqZg1axZr167t9pxJkyaRm5vLhg0bACgpKWHhwoWcf/75PT6Py+XCYrF0egiCcGpZVLmbF3Ys6xKIgD/4+LZ8B7Ki4JVlbli/nPfKCgP7FaDG7ePb2kqMGi1eFH5srOGr6hIAQva725eA+4bO4KyE/nxaksva+pIe23SovBpWj6tTXo39jzF7+m4ta43dxrDFn+OSfXwx8Vxmx6f0eOxffjRj9yg8NiOix2O64/bKDPlnNdvq3Fw3IlQEIsIJdUQ9I01NTfh8PuLi4jptj4uLIz8/v9tzrrvuOpqampgyZQqKouD1ernjjjv4/e9/3+PzPPvsszz11FNH0jRBEE4iy6sL+Kpsa+B7NRKmoBAsbkegR2pNQwk6tZbPG5qYV13WTcgCK5pqGWGK4PWRk5mdkEp6qH+iZkVHgTuApNAIUg2RpBoiqbG3sbK2iImn0eTKJqeD7EWfYfN5+d+4GVya3DV1/V6yLPPcqjYMOolfTzn8Ol52t8zgFyupaPPxq3FhvH5pzKFPEoRedNyX9q5YsYJnnnmGV199lc2bN/PVV1+xYMEC/vznP/d4zqOPPorZbA48Kisrj3czhTOIR/axrr60x/1Or+cEtub0Y/e6+Xq/QOTc5ME8N+Eynh13Mc9PvJzLMnJo8cgsabXz8M5cvu4hEAFI1akZH+xle91OjGo1AD5Z5uuybYFjxsWmBb5OCDbRut8EzQMdKq+GQRuECon2bo7pi7waFrebQYs+xex18/qoqdyQdvBifS+tttDuUvj1VBMq1eG9vbfZvWQ+5w9EHp5qFIGI0CeOqGckOjoatVpNfX19p+319fXEx3dNNQzwhz/8gRtvvJHbb78dgGHDhmGz2fjlL3/JY4891u0fTFBQEEFBogKk0PtcPi8v71pBobmhx2P+V7SBh0fMwtTDagFFUTB7zYRrw49TK09t6+pLcXdUw50cl8nlGSMD+/RqLWNjMrlu0zpaPL5DXqva7etYAixT0FYPEiyrLqDS1gqAColxsemB4+sdloOmeM80RrOzpabTtgPzaqSGRZLXVk9OtH8oRFYU8tvqmJF4Yqv22r0eBi36lGa3i+eGT+BXWdmHPOfpH9sI1ko8cXb4YT1Ho9XLoBeqaHHIPDUrgidmHtnQjiD0liPqGdHpdIwePZply5YFtsmyzLJly5g4sessbQC73d4l4FB33OGIDIrCifa/ovWdApF0QyQT4zIYYIoNpCZvcLbz2u6fkA/4/XT4HLxV/RbZ67KJXRVLi6cFoasC876blRmJ/hUYFreL/9u4grk/f0/sN+/R4um+90lzQE0aH1Dt8gct7xat493CdYFARN3xf2x5dSENjnY2NJSxqq6Y6Yn9A+d/XbqVd/ZLnDYtoT9NTitflm6hzm5mRU0huY0VzErat1JkVtIgfq4rZm19CbV2Mx8VbzzheTXcspfsRZ9R67Tzx+xRPDxwxCHPeWO9hVaHzD0TjIfVK1Jp9tLvH5W0OGRevCBSBCJCnzri1TQPPfQQN998M2PGjGHcuHG89NJL2Gy2wOqam266iaSkJJ599lkA5s6dywsvvMDIkSMZP348xcXF/OEPf2Du3LmBoEQQToR6h4WNjeUA6NUa7h0yg36mfV3SdXYLL+1cTqvLTml7M/ltdWRHJFDtrObV6ld5peoVzF5z4Hi5m9U4gr+U/V57eynWNDfwTlkBQSoV+/eHSED/4CA+mXwhee2trGuq5buqQlq8MhafP+9Is9dH2gFvVUkh4VzXb2xgSGhBxQ6i9QauyhzN+Nh9cyqOJK/GXmNj0rB6nHxTvh2L+8Tn1fDKMsMWfUG53cpDA4bz5JCxh3XeHxa3EKSGZ849dFBR3ORmxL+qsXsU/nNpNLePO/z5JYJwPBxxMHL11VfT2NjIE088QV1dHTk5Ofzwww+BSa0VFRWdovLHH38cSZJ4/PHHqa6uJiYmhrlz5/KXv/yl916FIByG1XX7VlnMSRnaKRABf9bKqUlxPFX0Ev1Vk3m//BvKq1bwecPnAPjoPKwQpgk7/o0+Be2/WqXY0sCIqGTOS0hhydQLuHD1952OVYBCh4t2r5vrUvszJTIKl60K8A+PWH0KBrW/B2R0dCqxwWEMiUignzEGqaMXZXhUUo9tOZy8Gt2ZkTgw0KtzIsmyzJilX1FoNfOrzME8P6L7HucDfbClnUa7zN0TjGg0B+8V2VHrYuyr1bi98PE1MVwzQvweC31PUk6BsRKLxYLJZMJsNmM0igheODov71rBjo75As+MvZgofShbLFuYs20OwwzDqHBUUOQoQkFBjQ4fbiQklG6mV2okDZ6zxUTX7mxvruaV3SsBSDNE8vDwWejUGn67bR3PF27jwP4kFTDUFMmWc64gv62Of+78sdvrPjbyPFINkd3uOx0oisLkH+extrmB61L68eGEmYd9buIz5TTZfFifSkd3kGBkfYWTqW/U4FNg/o1xXDhY5NMRjq/D/fwWtWmEM5Ik+d/8d9l20eBuYGnL0k77fbgBug1EALyKF2mZhBo1GkmDRqUhSApCr9ITog4hRB1CmDqMMHUY4ZpwwjXhRGojidJGEauLJUYXQ4IugfigeKI10Ye98uFUMDQygRi9gUanlXJrC3/duph4Yzz/KNzW7U9TBrabW3hi+2paLD2vnFtdt4eUrIhAj8jp5pyfFrC2uYGLE9OOKBD5cqeN2nYft44OO2ggsqzYwey3a0GCpbclMCNLpHMXTh6iZ0Q4Y3xRspkl1fnIikx8TBPfWd5jq3Vrt70fA6RpVJKLU7GjdLmXh2BVMGdHnI3Fa8Hqs2L1WXHIDhyyA7fsxi278SpeZOQeA5oD7Q1stCotOklHsCqYYHUwoepQDGoDRo0Rk9pEhDaCSE0k0bpoYrQxxOpiA4FNpCbypAhsytqbeWHHMlwd80e+arLR5D34HButBDfEGNCq/MFGiEaL/YBl1uenDOHi9ENP5jzVXLJ6EfNrypgZm8TSaRce0blpfy2n2uLD8mQ6Ibru/99/s9vGpR/Uo1bBql8mMj6172vsCGcG0TMiCAeYHJ/Fkup8CuWfeKvmP0gdqzG6CxbS1COZJN3AFt98tsvfdxy178M0IziD73K+O6znlWWZNm8bte5a6lx1NHgaaHA30OxtptndTJu3jTZvG+3edtp97dh8NuyyHafsxOw245E9RxTYSEioUAUCmyApCL1aT4gqpHNgozERoYkgUhtJtDaaGF0Mcdo44oLiSNQlEq4JP+rAJj0sioeHz+K9wnVU2doYHqqj2u3D4pWx+GTsctdX4lFgXrONvw8ZxiVpw4jWG7B6nCyvLmRh5U4UYGHlLhZV5RF5ilbb7c4N65cxv6aMCZGxLJ7ac2bq7nxfYKPC7OPaEaE9BiIfb23n+k8bCdJIbLwrkaEJIm2CcPIRwYhwxkgIMZETlYyzaQxF8s/UKnk9HqtGi04KYbzmWgYrM1nn/YgyZSNq1PjwYVQffg+dSqUiUhdJpC6SIYZjK7QmyzKt3lZqXbXUueuod9fT6Gmk2dNMi6eFFk8LZp85ENjYfXbsPjtOnxOz99gCG51Kh07V0WOjCsagNnQKbCK1kURoI4jRxBCtiyZOF8el/VNxuftR1GrG4fMSrNHi8LrZ1lzNeWk5uBQVC6uL2NBUwx6nl1afwisV1YyLG0C03oBBq+ei9OFYvS5W1hYBMC4mjbSwyFOu2m537sz9iQ8rihluimT1jIuPOPi795tmVBK8elFUt/v/s8HCL79uIlQrse3+JLKieq5oLAh9SQQjwhnllgETMbsd6CyPst73CTvkhd0ep0Eb+NooxXKu9gHOyTLxdOVjbLNuI0LTNzkZVCoVUbooonRRDGXoMV1LlmWavc2BwKbB3dFj0xHYBHpsfJ0DG7vPTqu3FY/swaf4uqwy6snewMYgRaORtHy4x4lepcfjlQgLTiU5OIjQEIVKSzI5K78nO9zFm8MeZlJkTqAXC6DS1sotAyeeUtV2u/ObbWt5vSSP/gYTubMuP+JA5KcSB3tavFySHUJ4SNe38hdWtfHrhS0YgyR2PZhCskm83QsnL/HbKZxRgjVaHho2k8VVeUTUGYhxpLPC9yYKcqdhGDVd7yDHGSeyedxmPm/4nDR9Wpf9pxqVSkWMLoYYXQzDGX5M15JlmUZPo38oqiOwaXQ30uRpotXTSqu3FYvXgsVnweJUcHnARhV2nw2H7MGpeLDRitfmAjVggF1e+EORkWXjX6XK1opWUuNRfDg65pGcKtV2u/PUrk38o3A7aSEGds6+As1RDIfdMa8JCfjPpV2HoZ5c2spTy1qJClGR/2Ay0QbxVi+c3MRvqHDG0ak1XJg2jDkpQyhtn8wmy1weKL2VRk8DckdAot6vZ2R/KknF1XFXn8jmnhJUKhVxQf75JociKwrzyraxuGo3kkpCVu0bLror+yyGRSbywO6X+Hfdr/nrgHsAaHXZ8Sj+HhiD1j/nYf9qu3avu8dqu3WOk6vq9/MF23hydy7x+mB2z74KnerI34Y3VjrJa/Rw3oDgLoHGwwuaeP5nC/FhagoeSsGo7/sJzYJwKCIYEc5YapWKfqZY+pnOY0r0ZqZvPI89nu0AqJSufxoV1pbTOs/F4fq+chdbmiqpc1jQqdRkGmO4LD2H+JCDz6PJbaxgfvl2Gh3tIME5yYOZEJvB6ro9LKspAOCj4o3IikKlPYrx8p9J1SejKAo2rytwnVEdNWNORW/s2c3D29cRpQuiYPY1hGi6D3oP5Rdfd/SKXNY5cd+vvm7kzQ3tpIWr2f1gSo+TWgXhZCN+U4UznqzIfFmcxwweJpZ+ANilOsIPSP/9YfFGCtvqu7vEGaXQ3MD0xAE8MuJc7h96Nj5Z5p87lweW8XZnj6WRt/JXMzk+E4M2iEGmOJZV+wOQKzJHBj6U29wO9GotiywllNqNPL99Ga/s/glnx7W1KjWT4vxzQk7marvd+bC8kDs2r8Kk0ZE/+2qMuqObTLqz1sW2WjfTMvSd5oFc+3E9b25oZ0C0lsJfi0BEOLWI31bhjLe1uYrdbXWoJDXXBj9NurYfkqmQv42/lKfHXMTIqH3VWz8tyT3jCzzeP3QGk+IySQwNJ8UQwS0DJtDislNu7blw4LLqAoZEJjA7ORufIpMTlUKqIYIVNYWoJBWjo1IDx1Y4anEYnqUl6G3Mbgc7WqoD+67vNzawMqanart77a22u/eYvvR1VSk3bviRULWG3bOvIlp/9AnHbvuqEYC3r9j3uua+V8sn223kJOjY/UDSQZOfCcLJSPzGCqeVVped/+av4aG1X3DP6k95KncBZe3NBz1nYcWuwNdalZa74v7AguYF7LLuIibYwC8GTw70klTZ2ngqdwGl7SffpMi+4vD5J5SGanq+0y9pb2JQeDwAwyOTWFi5kyi9gUJzPVuaKslt9mdeNWl1fO95ESQPak1N4PxgtQ6NpKLGbj6pq+12Z0ldFVesXUyQSs2Oc68kMeToU7AXNbrZUOVmYmoQGZE6ZFlm+ps1fJfvYFJqELn3JKJWi7d14dQj5owIpw2bx81z25YwIDyOe4dOJ0yrp8HRftAPyQaHJVCS3qQN5ryUbD4v2cxQ3VncX3g/i0YuYnNTFRbPvu5/nVpz0uevOFFkReGzklyyjDEkhYb3eJzF7cTYMVxyTdYY5pdvZ11DKXavmy9KtzAiMom1DaWExuTTaMsHwCU1EaJTiNVF8evhsyhtbz6pq+12Z3VTHXN+XohGpWLTrMvIMBxbBum9vSL/vSwGWZYZ/2oNm6rdnNtfz6L/SzzE2YJw8hLBiHDaWFS1m4igEG4ZMCGwLVpvOOg5K2uKAl/HhYRxdtJA9lgasbfO5f3W35CxOoOz1feRHpZMrcU/PDPQFIfZ7Thp81ecSB8Xb6TGZuY3I8457HP0Gi1XZ40mLjiM7yp28pexF7HH0sjXdT/wVtnT+x2pYNeWEKVPQ6fWnNTVdruzubWR6Su+QQJWz7iEIaZjm/xc0eZlVZmL0Yk6+kdpGPbPanY3eLhsSAhf3hDfO40WhD4ighHhtLG9uYrsiATeyFtFkbmBcF0I0xL6MzWhX4/nlFlbUEsSPkWhwtqKy+clOyKBna2pLB+5nP/VfsCi+nepse/GQCQj1BdyuTbnuOevaHHasO63ggTAoAkiUn/yVFn9uHgjO1pqeHjELCKCQg56rFGn79S7BGDxODF19Cy5sbLE+1Kn/RpJw2b7as42HTwAORnlWVqZuHweCrBi2lzGRMYc8pxDuf3LBgD+fVEUA1+soqTFyy2jDbxzRewxX1sQ+poIRoTTRqPTysraImYlD2JOyhDK2lv4tCQXjUrFxB7mDVg8TpJCw6mwtuL0eVhUtZuMsCicPi+TTVMZGTqeB5o/ZJ38P4p8a1jte4+Lij7h7NCrGK296Li8jhanjT9s+hav0rmwnEZS8ecxc/s8IFEUhU/2bGJrcxUPDZ95yN4ngMywaPLb6piVNCiwLa+1jsywaGRF5t7iX+DE2inxnFfxstO1hvRTbDl1qdXC6KVf4pVlFk49nykxCcd8zTqLl6XFTgbHaLnyowaqLT7unWjkXxf1/eRcQegNIhgRThsKkGaI5NL0HABSDZHU2NtYWVvUYzAC/g/KCqt/3siCip30M/rvYmvtFna2VBMkhTJNfQdTpdtpCl7Nete3fG/9gCV8yrx1T/GnzD9xaeylvfY6rF5Xl0AEwKvIWL0uIunbYOTjPZvY0FDGXdlnoVdrMbsdAAR3LLMFeKdgDeG6EC7NyOH3G+bT7LIB8KtVHwWuIwE39B/HM2XPsKx1WbfP5aSdt8u+JUR7BcMikwLbFUXh2/IdrKorxuHzkGWM5rp+Y4kL7tuq3jV2G8MWf47T5+PLiecyO753cqL84utGFKDG4sXsUnh0uolnZndfj0YQTkVi2rVw2jDp9CSEmDptSwg20eqy93iOUatHJam4ZL+y9MUW/yTBZ7b+wDcVOwLbY4JNvJvzEjVTa/hT7AeM1M1it203l+24DNMKE/cV3IfVaz1kO20+G1vatxzpyztprKwtwuHz8PyOZfx2/deBx6amisAxLS57IEh5NGc2fx9/KTf0G0e03oBa8teZuThtBOWe3TxR8kSPz6VChU1XxGu7V1FtawtsX1SVx/KaAq7vP45Hcs4lSOWfVOyRD69OzvHQ5HSQvfgzbD4v74+bwaXJGb1y3Ra7l4UFDlQSmF0Kz86OEIGIcNoRwYhw2sgyxlB/QOrveoeFyKCeexIyjf7hgzkpQ7guaywhPay8idCF8NsR52DSBSMrClZ7MH9K/zvmaWYeSHkASZL4d9W/Ma40MnnTZNaa1/b4nL8p+g2jN4xmfuP8o3uhfeyNqdd1+9h/Ce2vh8/iloETAQjT6THpgpma0I+/jL2IaQkDiNEbOC8lG5fsIjGo51UgMjJF3o2BnCTg7xVZVp3P+alDyYlKJjk0glsHTqTN5WBrU+XxffE9sLjdDFr0KWaPm9dGTeWGtAG9du0bPm1AVkBW4N9zo3hket8UaRSE40kEI8JpY1bSIEram1hYsYsGRzsbGspYVVfM9MT+gWO+Lt3KOwVrAt9PS+hPk9PKl6VbGBgeywUpQ5GAIREJTIhN57yUbC5Pz6Hd4ySvra5L/gqDxsCLA16kbVob84bNY2joUNaY1zBp0yQSViXwdOnTeOV9mUnbve28W/suCgpX77iaDeYNJ/JH1Oe8so/1DWVMistCkiRmRM6gakoVbdPa+GnUT2h9aSDryQwaiFbyZ2Xd2r6VQeFxlHTkdmly2rB4nAwO37eCJFijIyMsOnDMiWT3ehi06FOa3S7+Pmw8d2RlH/qkw5Rb5eT7Qv/E3/eujOGeSaZDnCEIpyYxZ0Q4baSHRXHn4LP4umwrCyp2EK03cFXmaMbH7usuN7sdtOw3bBOtN3DPkOmd8lfcNGBCl0RZWrX6kPkrLo69mItjL6bOVcfDxQ/zZcOX/KHkDzxV+hSzI2fz4oAXWdayDKfs/3DxKB7mbJ3DpnGbyAjunS79k93W5iocXjeT4jq/XpPGxNSIqXgViRAlm48HfMmo6GQK7AU4ZSft1hDMHaneLR7/8M+BOV6MOn3gmBPFLXvJXvQZtU47f8wexW8G5fTatXOrnIx71Z/47ZGzTNw0KqzXri0IJxsRjAinleFRSQyPSupx/96hg/31dv6K+KB4PhjyAe8Pfp//1PyHv5b/lQXNC1iwdgFaSYuCP1+JjIzFZ+HcLeeyYewGIrQRtLudLKnK7/Havm4mtp5KVtftYUhkAuHdLAX2er0oqgbC5RwANCoNQwz+PC4rrIUnspmHxSfLDFv0BeV2Kw8NGM6TQ8b22rV/LnMw/c1aZAWiQlQ8O0fMERFOb2KYRhCOE5VKxa+Sf0Xp5FJ2j9/N+LDxeBRPp2O8ipdSRykXbbuIKlszz25dxIbGsh6vOb90G94+nKR5LJqdNvLa6pkS333elw9rfgSVnTh12kFzkhi1/h4pS3dF8U5QRlxZlhm99CsKrWZ+lTmY50d0DXKP1g+FtkAgAvDKRSIQEU5/omdEOCO0uux8VbqVXa01uGUfMXoDNw+YQHpYz2/0BW31fF6ymVq7mYigEM5PHdpl+ObHmkKWVOVhdjtINkRwTdZoMsK65n4YbBhMRkgGudZcvErn6rY+fKw2r2ZO7uVM5BdIkoQaiQHhcYTrgqm0tVLVsZIkz1zPF6VbuCZrzLH/UE6wNfV7CNMGMSyy+wmrb1d/A8A447Aec5IAROtDMWr15LfVkWLwT+Z0eD2Utjcx7SAJ7nrTlBXz2WZu5rqUfrw++qxeu+6XO6xc9XEDaglUEkQEq7h6hBieEU5/IhgRTntHU7OmyWnl5V0rOCuhP7cNmkR+Wx3/K1yPSacP1EPZ2FjOFyWbua7fWDLCollWk99jzZoGdwNfNHzRJRDZS0Fhp2cljdRyu/FvPDTsnE7JzXa11vDqrp/wKjI/1RZzfsrQU6oujqworKkvYWJcJmqpc4fs3pwkO627gGAe7HcBL+3+kSVVeQyLTGRjYznl1hZu6D8OAEmSmJk0iIWVO4kNDiNab2B++XbCg4LJie6dvB4Hc87K71jb3MDFiWl8OGFmr133vVwLt37RhF4jcdXwUN7bbOWZ2adWwjdBOFoiGBFOe0dVs6a2iGi9gSszRwGQEGKi2NzI0uqCQDCytDqfKfFZTI7PAuD6fuPY2VLTbc2a92rfw6t4UaFCLalRUPApvsD8kb3qKeRN+x1oa+7kF0m/CCx7HRKRyNlJA1lclYdPkVnbUMLs5N5btXG85bfV0eKyM7mb5HMtLjsSEm1yLRDLwMh4bh84mfnl25hXto3Y4DDuzJ7aqRDf7OTBuH1ePijagN3rpp8phvuGzECrUh/X13Hp6kUsbajm7NhE5k0+r9eu+8paM/d804xBJ7HtvkSGvFRDZLCK28b2bRI3QThRRDAinPaOpmZNiWVfyfu9siMS+KxkM+BfolrR3sKc/QIClST1WLNmcOhgLoi6gChtFJHayMC/kRr/1+/nb8HnCwLJgS4in2fLn+Wp0qeI18WzZdwW4oLiGBuTxuKqPABqbebe+NGcMNkRCbwx9bpu9/16+CwAbi1vRK/4A7vRMamMjknt8XqSJHFR+nAuSh/e+43twQ3rlzGvpozxkbEsmXpBr133rytaeXRRK+F6FXkPJvPvtWacXoW/zxH5RIQzhwhGhNPe0das6W7pqNPnwe3zYve6kVEI6+aYugMSrwFcGH0hF0Zf2GW7LMv82Poj2zxLqPTtpp1GfPX+Sa4hqhA8igcJf8bSvf+ejnZYSkHVQrJmVl83pVt35v7EhxXFDDdFsmbGxahUvTP3/7FFzTyzwkxMqIr8h5IJ16v452oLJr3EvZPCe+U5BOFUIIIR4bR3tDVrjocWdwsf13/MguYFbGnfQr27PjBUo0JDGDGcG302T2b9nsGhg5GkfQFI7n7p1uNDTq/u++dKPgFJYXbU5L5uShe/2baW10vy6G8wkTvr8l4LRO79pomX11pIMqrJfzAFg17Fsz+2YvMoPHu26BURziwiGBFOez3VrNlykNThRq2+26Wj+o5icCpJQoVEe3fLS7X7eks2mTfxUf1HrGhdQaG9EJtsC+yL0EQw2TSZcyLPIVs7jSVl1QAk+8JJ1mV0CkSKzA0srfbnH1FJEhNiT68kaStb1oOi4rdZ1/R1Uzp5atcm/lG4nbQQAztnX4GmlwKRWz9v4N3NVjIjNey6Pxm9ToUsy/x1ZRuhWonfniUyrQpnFhGMCKe9o61Zs7OlptO2vLY6Mo3+5aUalZrUsEjy2uoDKzisHhtLm1bSrNnG336+iWpXNT78OUE0kobkoGQuNF7IpTGXcnH0xeg1+4IWj+xjS90CmpxWqmxtPL7xW0bHpBKtD6XY0sTu1trAsZPiMrtNGnYqq/NUgBRDakhMXzcl4IWCbTy5O5d4fTC7Z1+FTtU7b5dXfFDHl7vsZMdq2XZvEhqNP8D591oLFpfC4zPCe633RRBOFSIYEU57s5IG8bdti1lYsYsxMamUtTezqq44sFQU/DVr2tx2bh04CfDXrFlRU8iXpVuYHJdJfls9uY0V3DN0WuCcwVGhvFnyKS81/pYi1w7MvjZk/Et3DWoDOWE5nB1xNtfFX0dOWM5B26hVqbl3yDRe3LGcNrcDl+xlTX1Jl+MGh8efkjlGDsVNAxr5+AUiLU4bVq8r8L1BE9Rp6fSB3tizm19vX0eULoiC2dcQotH2Sjtmv13L4iIHY5J0rL8rsVPQ8adlbeg1Ek/NCu+V5xKEU4kIRoTTXm/UrDHpghgQ7+XvNY+yNm8t5c5y3IobAL03jHhpANm6s5mbMIVfpd5IuC78iNsZH2Li0ZzZLKjYyfqGMlz7FdiLCgplWmJ/ZiYORHOcl6+eaDavA9SNRErDjsv1W5w2/rDpW7z7pdLXSCr+PGZutwHJh+WF3LF5FSaNjvzZV2PU9ZyP5nDJsszUN2pZU+FieoaeZbfHdwpE3tpgocUh89AUo+gVEc5IIhgRzghHWrOmzlXHd+YPWcH3bJe309TehNLun2garApmQMgApoZP5Zq4a5himtJrHyDhQSFc338cl2WMpKy9GZfsxajVkx4WiUo6PT+kXir5CiQ3o8NGHJfrW72uToEIgFeRsXpdRNI5GPm6qpQbN/xIqFrD7tlXEa3vXAzxaPh8MmNeqWFrrZsLBgbz3S0JXY55bHELOjX8TSQ5E85QIhgRzniyLLPGvIaP6z9mVdsqih3FOGRHYH+0NpoZETM4L+o8ro+7nkR99+nMe1OwRsvgiPhDH3ga+LJ+GQB3pV7Wp+1YUlfFFWsXE6RSs+PcK0kM6XkY53C5vTLD/llNYZOHa4aH8vG1cV2O+XhbOw02mTvHhwXmjwjCmUYEI8IZx+K18Gn9p3zb9C25llzq3HXI+O+ctZKWNH0aE00TuTzmci6IvgBNL01cFLpX7CgAycSF8eMOffBxsrqpjjk/L0SjUrFp1mVkGI596bTdLZP9YiXlbT5+MTaMNy/rfk7Mbxa2oFHBC+eLgnjCmUu8ywqnvR3tO/ig7gOWty6nwF5Au689sM+kNjHeOJ5ZkbO4Pv56BoYO7MOWnpmsSj2S0neraDa3NjJ9xTdIwOoZlzDEdOxDJWaHj0EvVFFn9fHQFCPPX9C1eCLA/N02qi0+bh5lQK8TvSLCmUsEI8JpxS27mdc4j68bvma9ZT2VrspAcTo1ahKDEjkn8hwujrmYK2KuIERzYpbIyorMt+U7WN9QhsXjxKQLZlJcBuenDO2UT+RAvVk5+GSlqBoxKMcvrbvD6+7+eRWFPEsrE5fPQwFWTJvLmMhjD4qarF4GvVBFs0PmyZkR/HFWzwnM7v+2GbUEL889df5/CcLxIIIR4ZRW7ijng7oPWNyymJ3WnbR4WwL7QlWhDA0dyvSI6VwTdw3jTeP7rJ0/VOaxsraYWwdOICHERHl7C+8VrSNYrePspO57Y3q7cvDJ6Pv6DaCy0E83oNevrSgKCyt3sbBiZ7f7X9z5M2/UNOKVZRZOPZ8pMV0nlh6pKrOXIS9WYnEpPH9+JA9NDe/x2CVFdsrbvFw9LBSDXvSKCGc2EYwIQNc8DHDoXAwnmizLLGldwuf1n7PavJpSRykuxd9mCYlYXSyzI2dzQdQFXBt/LdG6k+dus6S9kZyoJIZF+lf0ROsNbGwsp7S9ucdzerty8Mno5fKvALgsbmavX/uL0i2BrLUHsnll3q6vw6vA+2POYnZ8yjE/355mN8P/WY3do/DGJdH8cvzB553c/U0zKglev0TMFREEEYwI3eZhgIPnYjgRmtxNfFznr+Oy1bqVBndDoI5LkBRERnAGU8KncEXsFZwTcc5JnZ8hMyyGn+uKqbdbiAsxUmltpdjSyJWZI3s8p7crB5+MNrVvAUXHQ5mX9up1C/dLny8B42LTGRqRSIhGx7aWWm7bmotXgekmPe2ORmDwMT3fzloXY1+tweVV+OiaGK4dEXbQ438uc1DU5OGiQcGEh4i3YUEQfwVCt3kYoOdcDMfLRvPGQB2XIntRpzoukZpIpoZP5dzIc7kh/gbSgtNOSJt6y3kp2Th9Hv6Y+x2SJKEoChenj+iUeO1AvV05+GTU4q0GYgnVHHs+j/2tqCkMfH1F5ihmJQ0CwOXzcdWGVbgUhVnhBjL1Etubq2h22og6yqB7Q4WTKW/W4JNh3o1xXJR96Ovc8XUTEvCfy0+e9PeC0JdEMCIclXxbPnfk38HTWU8zJXzKEZ9v99r5vOFz5jfNZ5NlEzWumk51XFKCUhhvHM+lsZdyScwl6FTHngWzL+U2lrOhoYzbBk4iMTScSmsrn5XkEq4LPuGVg08mXqkRndJzMrqj4VNktjVXAf6hxukJ/QFocNr5v00r2WO18Mn4mYQoDr6r2IECbGuu6nHuzsEs3+Pg3LdrQYEltyVwdtahg6rN1U52NXg4t7+eWIN4CxYEEMGIgL+7/0gsbFrIVTuuwibb+KT+k8MKRgpsBXxQ9wFLW5aSZ8vD7DMH9oWpwxgZNpKzI87m+vjrGR52/FZW9JUvS7cyOyWbsbHpACSFhtPssvF95e4eg5Heqhx8sqpyNICqiXjV5F69rtPrDfT0pRgiAunzr1m3jB8ba5g36VwuTsroVAjR6nF1e62D+TbPxiX/q0ctwao7Ehmfeng/89u/9PeK/Pfy2CN+TkE4XYlg5Ay3rr6UT0tye9y//4ehoig8V/EcjxQ/Eti2snVll3O8spcFTQv4svFL1pr9dVw8igcAFSoSdAlMi5jG3Oi5XBV3FUbNsSeYOtm5ZS8qOi/hVUlSYA5Md46mcrCsKOS31TEjsfdXp/S2v5V8ApLMlPDeTXYWpFYjAQrQ4GhHVhRUkkSL28lZ0fFcnOQfGmtw7Ms3E6Q5srfCT7a1c90njeg0sOGuJIYnBB3Webvq3WypdXNWehDJJvH2Kwh7ib+GM9iPNYV8smfTQY95v2gdj+ach14jcVvebXxc/3Gn/bttuymyFfF149csalnEdut2mjz7Jk8Gq4IZFDKIqeFTuTbuWiaZJp3UE02Pl+GRSSys3EmkPoSEEBOV1laWVuUzKX5fr8jRVA6elTSIdwvWkh4WSXpYFMuqC3DL3i65SE5GixpXgyLxu6yre/W6GpWaAaY4Csz1NLtsbG2uIio4nG3mFj6Z4F+145F9rKjdN68kO/zwl/X+Z4OFX37dRIhWYuu9SfSPOfwhxNu/bATg7SvEXBFB2J8IRs5QdXYLn+7Z1yMyyBTHiKhkwnRBlLe3sq6+lHavE7Pbycv5C5jn+itb27d2uY6MzIB1/rtwCYlobTQzI2YyJ2oO18dfT3zQmVFf5VCuyRrD/PLtfFS8kXaPC5MumKkJ/bgwdWjgmENVDg4PCuHGAeMDy3oBxsakYfU4+aZ8Oxa3k2RDBPcNmYFR17sTQo+HKlcJSFEMN/U8ifdoTU/sT4G5HoB3C9ei6KLRqVTMiU+lvL2FL0u3UN/RM5JljCbF0HNisv29uKqNhxa2YAyS2PFACqnhh/8WuqfZzbpKF+NTgsiKOrXnQAlCb5MURem5n/gkYbFYMJlMmM1mjMbTv0v/RPhkzyZ+7FhxMDNxIFdlje603+x28JctP7DTsYGlvpfw4upxSCHHkMOfMv/EnKg5Z3Qdl1MhV8vJRFqUhkoJxXfe7l6/tqwovLp7JTtaanDJCu83WAlWSfwqMRLbfhlZdSo1Dw8/h7SwQ6eA/9PSVv64rJXIYBV5DyUf8eTT6W9Ws7LUxc4HkhkSJ4IR4cxwuJ/fZ+4nxxkut7ECAK1KzQWpwwLbd7TvoMhRxBrzGua5F7LHl3fQ60hIxOnimBsz97i292R3suZqOVl5vV5QNWBi0nG5vkqS+OWgKbyWt5onCwtQ8M952j8QCdMGccfgqYcViPxmYRP/WGUh3qAm78GkI84NUmX28lOpi5EJOhGICEI3RDByBpIVBYvHPzE1KcSEXqNmXuM8flv0W4ocRQCk6lMZGjISm0fGq7ixS43YFSsSEipUgWW4CgprzGuQFRmVdObNBdnrZMnVcqp4u3oRqJwMDR566IOPkltR+KS+hTZfR4+eJBEVFEpEUAgTYjMYF5tOkPrQb4G/+rqRNze0k2pSk/dQCiFHUdDu9i8bUYA3Lzt5sgILwslEBCNnIJUkoVOpafE28Lb5nzz548W4FTejwkbxYMqD3JdyH+nB6WxsKOMt+xoAZicNZlBsECvbVrKidQXLW5cHJqq2+9optBcyKHRQX76sPmP3ulnWQ9pxAJfPewJbc2p4v3oBALcmX3Bcrm/3epizaiEbWxsD2xyywu9HnY9Boz3s61z/ST0fbbPRP1rLzvuT0GmOPBBpsHpZXOQgO1bLmOSTf8m1IPQFEYycgX5s+ZGvvY9T7S0GIEGbzHtD3+acyHMCx8iKworaosD3AyPiyDYkkm3I5s7kO1EUhSJHEStbV1JoLyQ5KPmEv46Tgdnt4MUdy6m1m3s85qPijTw8/BxCtaJ7fq9dtt1AKDcmnt3r13b6vFz48w+saapHPmCeU2F7G6MiDm8ly0Xv1fJtvoMRCTo23ZWI5igCEYBfftWEArxxqegVEYSeiGDkDCHLMv+q+hd/K/8bde46/1wP+jNJcxMpmoEYvf3wyTJqlYpWl515ZVsptvjvKmP0BgYfsPRRkiQGhAxgQMjJn8/ieFEUhTfyVgUCERUSA8PjiNEbqHe0U2iuRwFq7GbeLljNvUNn9G2DTyIWuRaJWDRHmN/jUFw+HxevXsTKxtougQhA/mEEI7IsM/OtOlaUOpmYGsTPv0o46uXobXYv3+bb6R+lYUr6yb/CSRD6ighGTnMWr4VfF/2aD+s+xCE7CJKCuDH+Rv7R73k+K97FjpYanD4Pbxes5ZM9uYRp9TQ42gMrZyQkrs4ajUqSDvFMZ55CcwN7OgrSRehCeHD42cQF75stXm1r48Udy2j3uNjZWkuFtYVUw6EnS54JZKmRYOXI068Hzldkvi3fwfqGMiweJyZdMONi0vhPZQ1L66voOnsHNJLE6oZqSpqKqbWbiQgK4fzUoZ1yssiyzNg3CthcEcTYAZXMHemk3BZERtjR9WrcOb8ZWYF/XyQq8wrCwZy5Mw5PczvbdzIjdwbhK8N5q+YtDGoDz2Y9i326nfeHvE9sUAy/GDSF4ZH76oLYvW7qHZZAIKJVqblt4MRA2Xuhs5/r9gS+vjwjp1MgAv6U73PThnd7vIJCIyWs5T3e5zb+zAiK+On4N7obLU4bFdaWwKPFaTv0ScdgU2sBqFtJCzr6xGw/VOaxsraYa/uN4cnRF3BZeg5flO9mYV1Fj+fIisLi2hIGhsfx+Kg5zEwayP8K17Or1Z/l1uuVGfZyEZsrgjgv2828q3JIDg3nXzt/7JKW/3BYnTKf77CRFq5m9gAxgVkQDkb0jJxmPq37lMdLHqfY4Z8PMjR0KH/v93fmRM/pcmyQWsNd2WeR11bHT7XFFJkb8Mg+TEH+u8wp8f2ICAo50S/hhDqW3CB1Dv/wjASM7EjHvoe1vMIFjOVaRnEFQ6NHQDGATLm8lRVsoIifKORH2mnsOF+Ngg87bV3ac7zzlHS3JPl4L0f+R+knAJwXfdZRX6OkvZGcqKRAoBytNzA5ppzB4V40QRF8VrWH3FZ/r9Xe1PAy0OZTuDJzFAAJISaKzY0srS4gKzSeof+sYk+LhguGt/Hdtf5jru83jp0tNayp38N5KUOOqI33fteET4GXLhRzRQThUEQwcpydiA8Xt+zmyZInea36Ndq8bahRc37U+bw84GUyQg6e3VKSJLIjEsiOOPx02KeL3swNsnd2gpVGfHhZyaus5FXQqGCSBlQeyiWFcqSOD0dlv3P9y6QjnSNOeGDQ3ZLk470ceXXbJlA0/C7z6NPAZ4bF8HNdMfV2C3EhRiqtrRRbGrkycyTjYzP47aAcUr/9gFqXnUlR8axqqkUB2rw+FEVB6hh2zI5I4OPiLfR/vpIqi5ezc/bw9MzBgedRSRKDwuMpsTT10JLuOd0yH26xkhim5pIholdEEA7lqIZpXnnlFdLT09Hr9YwfP54NGzYc9Pi2tjbuvvtuEhISCAoKYsCAASxcuPCoGnwq2fth95ctPwQef9j0ba91g1c5q7h026WErgjl2fJn8Sk+Hkx5EOs0KwtyFhwyEDnTHSo3yKEkhpgAfyCS2+QfHhjBRfyDRs7ltwCo0ICiIEl7gw+l20y2MfRD8Yb1GBicTho8FSDHEB8SftTXOC8lmzExafwx9zvu/Plj/rLle2YmDWR8rP933up1U+m0MSkqjpUzLqLhopu4MDqcm1PSAoEIgCTr+HZDBlUWLw+fFUK/xCbCdJ2X3xp1esyeIxum+fXCZjwy/H2OmCMkCIfjiHtGPv30Ux566CFef/11xo8fz0svvcTs2bMpKCggNrZrSWy3280555xDbGwsX3zxBUlJSZSXlxMeHt4b7T+pHeld57b2bWQFZ2HQGA563R9bfuShoofYat0KQJo+jT+m/5Fbk27ttbYLhzY5vh/rGsoA+LJkC6mhkSSGmtASxGX8DbUznu91vwG1D8UejxRS1+O12qjmM/11EJcKjRNAPn3zUbhpQiMfW6G43MZyNjSUcdvASSSGhlNpbeWzklzCdcFMjMvkX0U7Abi7nz+pWnRQMDlhIUyK27cEvc7i5aK3nbQ5jDx9Tjh3Tw7mdwe/rzosXq/MW5vaiQlVcf3IsGO/oCCcAY44GHnhhRf4xS9+wa23+j/4Xn/9dRYsWMDbb7/NI4880uX4t99+m5aWFtasWYNW6082lJ6efmytPg0taV7CeVvP4+aEm3k7++0u+7tbmjvJNIl/9v8nY0xjur1mq8vOV6Vb2dVag1v2EaM3cPOACaSH9Tyzv6Ctns9LNve42gD81X6XVOVhdjtINkRwTdboo15tcCrrb4yhvzGWIksDFo+TP29eyLDIxI4PxxZ2tcahaP4Nw59BCq1ChQaZ7hOgSUgUqxchDQCl/3/AFwK2ZGgdjpmhwOlxh23xWEHdQLSUc0zX+bJ0K7NTshkbmw74Jws3u2x8X7mbiXGZfFBehEaSuCJpX++gUasPTEQtb/Uw7KUqbB6JiycU8tjZ5+OVfaiQaD9gsqrF7cSkPfzg8NHFLbh98PQ5p8f/M0E4EY5omMbtdpObm8usWbP2XUClYtasWaxdu7bbc7755hsmTpzI3XffTVxcHEOHDuWZZ57B5/P1+DwulwuLxdLpcTrLt+Vz2Y7LkJH5oO4DGtwNgX0Wr4Vf5P0Cw0oDDxY9SKunlRvjb6RhagOrx6zuMRCxedw8t20JapWKe4dO58nRF3Bl5ihCNT0n3mpyWnl514oeVxsAbGws54uSzVyQOpTHRs45ptUGfc3sdhzT+ZIk8avBU0gODQdARmFbSzXfV+5iZ6t/jgJeExlFbzHRd3uPgQjAH9jBw7ZKlIJfQvNo8AWBsQgp/QteCR3BvQTzJ4bxCfdSwvpjavf+TvT/t+dLvgDJyxjjqGO6jlv2oqLzcnOVJKGg4Ja9FLS3kRMe1Sk/SKYxmvy2OvIb3Ax+oQqrW+GusxuZlunP/6FRqUkNiySvrT5wjqwo5LfVkWk8vGBblmVeWdtORLCKX44XRT0F4XAdUc9IU1MTPp+PuLi4Ttvj4uLIz+8+HXZJSQnLly/n+uuvZ+HChRQXF3PXXXfh8Xj44x//2O05zz77LE899dSRNO2U1eJpYc7WOTh8/g9Gn+Ljjeo3uDT6Uu4tvJeVbStRUIjRxvBExhP8NvW3h5WAaVHVbiKCQrhlwITAtmj9wYd/VtYWEa03dLvaYG/Z+qXV+UyJz2JyfBZwbKsN+pp9v6JpRytMp+c3w89hcXUeq2qLAzV/ACKCQjgrvj9Tk5J4Vv1LJFQo3WTA0BJMNBmU2MugYZr/AYCMYtrFsIHlNATlUk8hNexkBS+jQk04yWQwgVFcwQguQsPhZ3j1yD4+2bOJ1fstN97fd+U7uH3QZHSHUbvlSMyrXw7AfWmXH9N1hkcmsbByJ5H6EBJCTFRaW1lalc+k+Ez+U5KPDEwNN/JOwRpuHegvxjctoT/flZQy9rtS3D4Nf5nrpsJXxqykaYHrzkoaxLsFa0kPiyQ9LIpl1QW4ZW+X3sGePLmsDYdX4ZnZEcf0+gThTHPcV9PIskxsbCxvvvkmarWa0aNHU11dzXPPPddjMPLoo4/y0EMPBb63WCykpKQc76b2qianlaVV3Qdoe2uVeGQPl22/jEpnZaDwnIzMkyVP8kTJE8DBl+YezPbmKrIjEngjbxVF5gbCdSFMS+jP1IR+PZ5TYmliUHh8p23ZEQl8VrIZAK/so6K9hTnJ2YH9R7va4HSi12i5KG04F6QMpcLWgsPrIUSjI8UQgVpS8SF30EpVt4EIgFdx8fqeb9hae+DEZhWYh1G2ZQx3Zf+LTGM0NexiPR+QxxLqKSCXT8nlUwAMxJBCDsO4kHHcgKGHoR2fLPPa7p/Y1Vrb42va1lLNq7t/4p4h09Co1Ef1c+lOibMIiOCc2Jxjus41WWOYX76dj4o30u5xYdIFMzWhHxemDmX8sq9RITHEEEqLyx44J79OzccrhqNSebnyrB1YtSpuzBofCLQBxsakYfU4+aZ8Oxa3k2RDBPcNmYFRd+jsqbIs88LPZoxBEvdNEr0ignAkjigYiY6ORq1WU19f32l7fX098fHx3Z6TkJCAVqtFrd73hjZ48GDq6upwu93odF3v5oKCgggKCjqSpp1UtjRV8t+CNXjk7oei3ilYw4PDZvJE+W/5qe2nLqsrQvQyk5KSeCV2Of2OMt16o9PKytoiZiUPYk7KEMraW/i0JBeNSsXEHu7yLB4nxm5WEjh9Htw+L3avGxml29UGdY5TayhNURT2mBt73G/1HHwFSxNlOLGQzL6kZmqVqsvcmXqKWMUbHQt6e2gLMluNz0Dt/YA/L4ZGpQ78/rR7XLy0czm/GX4OKYYhXMqzXMqz/nbSxHo+ZAffUcVW8lhCHkv4jPsJwkA8gxjEOUzkJuLxFzL8sbYwEIhoVWqmxGXSz+SffJ7XVsf6+lI8ikxeWx3Lawo5N3kwvcWm1CMpxz6/SK/RcnXWaK7OGt1puyzLbDO3MNgYzm2DJgW2Ly60cf679UiSiqW3pTElveeijjMSBzIj8cizw/5jlRmbW+HpcyOOOn28IJypjigY0el0jB49mmXLlnHJJZcA/j/+ZcuWcc8993R7zuTJk/noo4+QZTnwB1pYWEhCQkK3gciprsjcwJv5PyMr/gBDjURCqAmPz0e9sx2AZpedGzY/zGLnm53ODdPDyHQYmAgqqRpFqQeOLhhRgDRDJJem5wCQaoikxt7GytqiHoORM4WsKHxYvKFTRtQDvVOwhl8Pn0V8x/LdvWy08j1Ps5x/YSKBZ+k54ydAFGlcy6vUsIsGiqingDaq980fUTpylMRsQG39gSv1jzExLpMglYbS9ma+LN1CsaURl8/Lp3tyeXjErE7XNxDNTO5nJv5AxoubbcxjM19Ryjoq2EI5m1jEs6jREaWkY9amgmksmLO5d8hMBobvG3YdE5PGhNgM/rF9KQAragqZlTQQldQ7H66KqpEw5djmixzMx5XF+BSFm9L2/d18tdPGlR/Vo1HB6jsSj1vl3GdWtBGilXh0munQBwuC0MkRD9M89NBD3HzzzYwZM4Zx48bx0ksvYbPZAqtrbrrpJpKSknj2Wf+d25133snLL7/M/fffz7333ktRURHPPPMM9913X+++kpPE12XbAoHI2Jg0rs4cHehJqLS28t/81Sxq/4R18oeBc0zB/iCkfwKggKrjJnp7+w76G6ceVTtMOj0JB3yQJgSb2NJU2eM5+6822MvidqJXa9GpNagkqVdWG/S1Hyp3HzQQAbB4XPxr5wqeGH0+erUWHx5W8hrf8AQu2lGQsdN6yOfSoGMad3baJuOjhUqa2MPH1d9Rp90IUZuQM/9HLQYknkNCS6YxmvuHzuDPmxfS4LRSZGmg2tZGUseE2Z6ebzRXMZqrAttKWMt6PqCQlTRSjCemECl2KSgSH0iZTONuUsghlVEEY6K/KZbsiAR2t9bS7LJRbm3pldVS8+t+BpWV/rqjr0lzKK/tyUMC7unnn7/0v83t3Px5I3qNxMZ7khgSd3xugP69xozZqfD76SbRKyIIR+GIg5Grr76axsZGnnjiCerq6sjJyeGHH34ITGqtqKjo9MeYkpLCokWLePDBBxk+fDhJSUncf//9/O53v+u9V3GSqLa1saej0m18sJFbB05E3XFHqSgKJZ7trFe9wTr5OwDCQ2FUOvSLA2VvELJfb/6XjV9yufGuo2pLljGG+gOGTuodFiKDes4GmWmMZmdLTadtefutJNh/tUFOR/rzvasNZiSeGtV7XT4v31fuPOgxWkmFR5FpdtlYW19CRGIen/MQzUppp/8/HrpfjZPbWMH88u00O63EBodxWUZOp/o+kqJiTbmFVXVmLJ5RoMomtO4KJg2vZYX0L7Yzn9k8ygzuQafWcFZCf74o3QLA7tbagwYj3clkIplMBGBXWw3/KvwcJW4VEfHF+PStzOf3eHASSjTPd6SozwyLZnfHUM6hhqwO16vlXwNwVcK5vXK97mxsbSAz1EiIRsura83c/U0zoTqJHfcnkRF5/Hpin1rWil4j8dRMMXFVEI7GUU1gveeee3ocllmxYkWXbRMnTmTdunVH81SnlD37TeKcHJ+FWlLhVbzcZc6m1tFAhdVMXGQcl0UNxRRThjbY6v9sk6C7orhxMW18zD2oUCOhQoW609dSx/f+h6rT9+GpCpuK2ni1bjsZ4Qaa7V7WtrcxJTWGTXyKCg0bqlqweWRmZ6SiQk1yoo/lzXt4q/ITRkTHUWG2samtnGsHDaWG3ajRMC45jC+LthNjlEk1RLG6pgKn4mB0XDweXLQ5Xdi9nk5zJI53fZUjsaQqD/cBc3mMWj1u2Ytz78TivYnqDCV8bXwaN3lIiooDp33I+FjAn3HSjoM2nLTT4rRTYlcTPrCJCH0brS54xaVD76tEUdvx4cXn0yAnSkhpNiTJ/1x2YInif4o2aviM+5jM/6EjpFMPl8PrOabXH6TSgjsGKi+jnzON2wdNxoubfzAF3X6J+Jo6hhT95/TOPPct7duBIO5Nv7BXrnegBTXluGWZq1Oy+NuKVh5Z1Eq4XsWuB5NJNB6/ufrvbLLQbJd5YLIRjUb0igjC0RC1aXqRd78PuTCtfwKuLMv4DEUkGCElLhidZMep5IPKi6LQ5QNufw7jZlay+egaEwKMgO34H+iBSFiJ/wFARzLKor3fBwFjYBP+B8FAPHy8/3Wj/Y8v9n7fz//4w97vO0ZrlP3m5ErgnxjR6bVKXf5LIISROn3n/6rr1/5/pU7/HmqbNcEN8f6z1ZKKZPUgYtUplCrrCPdE0WT34lXZIbgGSWvD3fE6FKn7lTDf8kTnDdogSNTRrnWhRoNaq0XlS0K2xxIe5kKrBFNbn0qsARK1GrbVt6C4Q8CSzZT4TM6KGo8GPVYa0eEvUljW3hy4fKj22O7uUw0RhGh02L1utjRV0uK0EakPRYWGaPwJwlpddnI7hvP0ai2pYb2TvKvFVw3EEaI5PkN6e7OuOqpSeeanVmJCVOT/OpnIkOP7NvfoolZ0avjbeSLJmSAcLRGM9KL9K9zmtdUxMS4TnVrH9a53+ExzKz9tNfB1/zW8sWM77fqdSGmfQ8ROVKiR6bry5kF+JImh+PAi40XG1/Gvt2Obr9N23wHfd/7X/1A6vvfhQ+m0/dDbFOQDriWj7Le93WNna3MlIIOkgCQDCookMygiFr1Gs995cuA8BRmV7MWromOb3FHBRT7gceA2pZvtSscSWuWA/Qqy7ENGDkRHOo0GWWWlnQYckpkoXSRZpFHQYgZfEIqxAEntAUXyv55u3MHXJDGMUGLQY+D3ud8wK2kQs5L2rdb4pm0725qr+MOo82l0Wnm85Bt+OXIOKVIErzevYkuz/4O/wRdLWlTnJHZWj5OVtf5wUQJGRCVzLHRqDZPiMllanY9XkXlp549cmzUGV7gVHaEUmOv5eM+mwEqeiXEZ6NXaY3rOvXxSE0FK2mEff6QVlX9uriPUa+TFn+wkhqnJeygFo/749lR8uq2dequPX44LQyd6RQThqIlgpBcNiUggVKPD5nWzsaGcaQn9yTLGMCPoZn6QHyctpZrh64dzlfoF9J5+jKp7jbMjJObzGEWs7BKUBGPCwKmRZt3h9fBV2RaoK+52/6U5s7tPQ+9thYpfQ9P/YHg+6LOOWxtX1BXy8Z5NAKjwMi02hkuTYsC8EILvgsjLQQd/rPquY6mygj6qECXpO1ymzd0GjXEMJIZ9bba4nRgPmMxr1Ooxd0z6tXj880z2LqGekTggEIwUmhv4bE8uU+L7EaYNYldbLQvKdwQSqQ2LTDpk4rrDcV5yNluaKml22ah3WHhp5zKkSfnUtkv8uGNZ4LjIoBDO76VEdqXWWlA1kaA667COP9KKymub67D7vFCZSkaEht0PJKPXHf/g4OHvW9Co4J8X9FxiQRCEQxPBSC/aO9nw+8pdyCi8sH0Zk+IyGR6VRJbuKixRLxId4eDzlke4VvMSZycOpB8x/JoVFLCCefyeUtYi4U9rrTq6osonXJvLzks7llN7kFwjCyp2ckf21MCEXhQFWr+Esjv8AQkyOPJ6JxiRnWDbDo7t4MwDZwm4KxnvrGG8rg0dLlTISGbA3HFO8HCIvByn17PfhE0JX2s2v0t7AA31LONFVslvg+QL9JS4sB5TUweGxzE9oT8rOno/ltUUsKymoMtxJl0w12R1n/r/SIXp9Dw0fCYv71pJrd0MEVtB7cEXVsDe8bS4YCP3Dpl2WMm+DsffSj8GSWFa5IRDH8yhKyofWGjyioXbQCfRTxtP3r3JJ2Tuxnd5NqrMPm7MMZyQwEcQTmciGOllF6QOpbS9ify2eryKzE91xfxUVwyMgolBzMz28t7PZpao/sx/wm4KnDeQ6fyW1eSzjHn8nnI2EUx4n72Ow+VTZF7ZvbJTIJIRFk1EUDBV1lYanP4P6+0t1Xxduo0rMkeCuwbK7oS2b/APPnRMKPFUHfoJvWawbQHHDnDmg6sM3NXgbQSfGWQHdJfpVNKiRU+rYsBCEq1KFPlyNhVKJucHb2Kw8yfmF29gXUMFNt++NPFu2cdfNv/Q8d10FM0opIRlkPQDaNu7JKwz6vSdUsKDP5mcqaMnxKj1f7hb3E5MHR/0V2eNYXtLNa0uO90NBqUaIvnloClE9eIk4Gi9gcdHnkducxkfGH+LRwFJ7SI5qYZzDVcyKjqlVzOvLm1eA4rEbzOv7rVr7nXe27XU0IaGMAruzzhhS2vv+7YZtQSvXHxq9F4KwslMBCO9TKtSc8+Q6XxdtpWfa/fgkvcWR1NB5UXoMz7n4qwhzN+zi3O2nsOyUfu6xSUkBjOLQcyknQaMxHX/JCeRbc3VVFj9+TaigkK5d+j0wOoPRVHY3FTJWwWrkRWFFTV5XBi8Bn317/y9F/6j/P9IGnDkQ+tCcOwEZyG4y8FTA54m8LWD4tx3/P6kIFAZQJsI2gQISgV9fwjOhpCRoMsAlQqnx8WT67/Gq8iokJA7rvW9QyZHN5+Kum+xKfuyjWaGRXFD//Gdnuq9wnXEux5gpvvfeLTFpDO20/7MMH8xtv3njOS11pHZkacjWh+KUasnv62OFIN/GajL58XidnJdv7HYvR5K2pvwyj4igkKYEJtBP2MMUnfLrY6RRqXGGbMYD9UdWySMmcsZx296/bmq3aVADNnG3ivrIMsyZ71Zy+pqCwxr47q0/icsEFm+x0Fpq5crhoYQdpznpQjCmUAEI8eBVqXmqszRzE0dxuamSpqcVlSSitSwqbytfE9aehlnt8xgeetybt19K+9kv9PpfAnplAhEAFbtN0fkun5jOy1DlSSJ0TGp7DE3UFY3jxs076CvrOnuMqB4oP6f/se+K4CkB3UYBGWALgF06aAfAMFDITQHdIndX68bBm0Q42MzWF2/BxmFIJUGtaSi3JdJixLOBNVKinz7gpGL0kZ0yekRpNYQqgkiLTQOiOOdgjWE60K4NCMHgJlJA/nH9qUsqcpjWGQiGxvLKbe2cEP/cYGfycykQSys3ElscBjRegPzy7cTHhTMxLhMtL3YG3EoDizM57H9tijs5gfqyA+kju8tTqUBtRLTa9eTZZnRL9ewtdZN4qBqaiR4ZPDIXrv+odw1rwmVBG9cKnpFBKE3iGDkOArW6ALVbfc6j98zn9/zQM406tbX827tu6Tp03gy88k+aeOhWGmimh1EkkYEyV0qw1bb2gAI1QSRHZGACxv5jbeQUj2PcN1EVJ46rnBVotIdRql6bSIkPNIRaIwETXivv57LM0ZSYmmk1mHp1GulKGomq1fxkzyLcqUfMxMHMjii+3pL+2tx2TvlVMkyxnD7wMnML9/GvLJtxAaHcWf21E5Bzezkwbh9Xj4o2oDd66afKYb7hsw4oYEIwA88gyMwacZPhZplvMj1vNFrz+P2ukHdSLhyeDVuFEXptJy56/Vksl+qpqDRw9XDQlkeWo1J0THYeGISjq2tcFLQ5OHCQcHHfdmwIJwpJEVRul+zeBKxWCyYTCbMZjNG46ldDVNG5kHCUZD5u9xExuoM6tx1vD3obW5NurWvm9fFZzzAcvb2VkiEEUs0GcSQRRTpLC9pxmkPQR/sICezjejaLzi/yoNXBW3GwcTpz8dMFJurlpOpKiZFVYEqMNRywK9eUCaMOHia9t5g9Th5r3A921uqA9ue1D5MgqoWj6JlQ8xHTMq4/LgMjZwIsiLzbfkO1jeUdcxXCWZSXAbnpwwNvKZmynmC/vjoJomarCFy2ztcmDiJSQfUMfqxppAlVXmY3Q6SDRFckzX6kKniXy77inv3XM70kIf4ceLzBz3W5fPy3/zVbNvv/83+vF6JhWvHUdcucfuYMP4wR0/ago+4LCmDLycdv8yu+xv+UiU76z3UPJpK/HFMpiYIp4PD/fwWf0knmAoVc3iMeTzCEtVf2Tl+JxlrMrgt/zZS9CnMipp16IucQAOYsV8wotBOPe3UU8ZG/5YMH5IEYQ64JleFXpZxJNzBV0l2Nqu+4Ske4eeKOr7xpYEPLk1O47zQHdD4X7BtAtSwd7msu8a/yuY4BwEGrZ67h0yjzm5hXUMpzU4bxnYvKKCRPExuvR3iB0LIsGN+rsMJDLpT0FbP5yWbqbWbiQgK4fzUoYcdGPxQmcfK2mJuHTiBhBAT5e0tvFe0jmC1jrOT/HVhvuaRjnwsXUmSTFJWLv/bpsak0zMkwj8UtrGxnC9KNnNdv7FkhEWzrCaff+38kadGz+1S7Xl/H1b7JwDfnnLxIX5WCm/mrWJnRxp6AJ1KTbBai9njxO1R8elPOThccMsYDf+5PIa7N68C4LcDRxz02r1la42LHfUeZvXTi0BEEHqR+Gs6Qr/fMJ9ml63L9mkJ/bmu39huzuhaq+SSjOvRR/6FJTzHBbon2DR2E6PWj+fSrddyhe7PDA/3XysuuO97gYYyBz1hOGnvtF3ZG0AoMKkRriv3r3Z1pbxCSMJdzKWO1XzAc77pmKv+CPjXzYxJGAH6yRB7BzgKoOl9aHobPHX+CaqyDdTHnkvjcMSHGLkkfYR/Mu2mpkAb8Vkhbxpk/+yfBHsMDicwOFCT08rLu1ZwVkJ/bhs0ify2Ov5XuP6wA4OS9kZyopIC9XCi9QY2NpZT2jH0UclWNvFJj21WJJlS4wfkxMxlaXVB4DmXVuczJT4rMPR4fb9x7GypYU39Hs47SD6SPHs+EMa1iVMO+rPa3lwVCET0ai3XZI1mbEwaGpWavGYzY//dgMOlYlS/KjIzbChKCvOrywhVaxgfdWLmWN3+lb92z38vjz0hzycIZwoRjByhR3NmB1ZhANTYzLy0czmjo1O7PX6PpZG38ldzScYIhkcmsaGhjDd2/8yM0b9nWfCjfMdT6Fqu5oqgJ9gU+Ruqwu9lUOMX/Gvnjzw5+sITPo/gQBp0DGQm25jPgcMqYR64vhRy2qBOjucFz+/xlsUywZ5LtN6A0TiBBsMaFNNqaBnHmJi0zkm7ggdCyl8g+U9gWeFfqtsLgYjT62F++Xa2NlfS7nGREhrB1Vmju0+6BuAsPuC1+VB8FqS8s2Dwan87ObohikMFBt1ZWVtEtN7AlZmjAEgIMVFsbjzswCAzLIaf64qpt1uICzFSaW2l2NLIlZn+CZ4SKtIYg51WXNiw04qXzplOrTSRFO1gSaEd8Jc6qGhvYU7yvuBMJUkMCo+nZL+aTN1pl2uRiD3kSpe9uVYAbh4wgVEdxRgtTpkr37dgc6mZPbyBtORqqmywqamKaqed2XHHlpX2cOXVu8mtdjMlLYjUcPHWKQi9SfxFHaGwA7qjf6jcTYzewABT93dKy6oLGBKZwOyON/GL00eQ11aHsyoDfX8ji5XnUHvqCR//NVM0/t6Gf5fexoW+l9jaVMnY2PTj+np60kw53/Ik25mPndYu+4e1wo2lEOwDS9T9PNcwFSsu8Lr3Je1S3QYT18OA/5C2azY39BvX/ZNJajDN9D96wftF66mxm7l14CTCdcGsbyjlxR3LeXL0BZ1S9u9lsWzlwD4oCR+Kt80fkGSvZmO79qiGKA4VGHSnxNLEoPDOk2ezIxL4rMRfp+hQgcEd2Wfh9Hn4Y+53SJKEoihcnD6C8bH+2jPJDOfRjmE2gC/5LUt4jhnVC7kwaQJu/D1/VSoJp28lbp8Xu9eNjNLl99+o03dkq+2ZrGokRD54D5OsKBSY6wF/WYWcjrT3myqdXPtpAw1WH8tvT0AXqvB+UQkAfy/YBsCDA4Yf9Nq9ZW+vyNuX996qIEEQ/EQwcgy8so/1DWXMShrU4/h/SXtTp5wT4P9g2dpcRjaz2Sx9jifjjU4rMlp9zSz3/Ztp5oEnNBix08b3PMMGPsSMfwluCBFM4GZ28T3tNBDkgysqYGojNAUbMA5cjTZ0OI8mWZlfto3cpkp8ezNnynq0VVfgTf2UfsOWov9/9s46PIqr7cP3rGU3unFXCMHdKdbS0tIWWqBeatRL3d3fyld3d4UChSptcfcAAWLEXTebZLM68/0xYZOQTYhBkNzXlat098zMWZvznEd+j/K8Yzp/URL5NWsPO8tyUAoKvk7dwvjgWC6IGsTeinzWFqbJYZkjSClax3BJgfKIZngCDrCXwcFJ/GN7CaVCxw/p24nw9OWyuBFtClGcG9m/VcPAFUabuZmB463RYnbY2mQY7CzNZltJFvMTxhPmoSe3ppKFGTvRa+Ty4SMx11fU6MRAPPDFA7kqJQ/XSaTtYVPFPlBUEaPp3eo4hyQi1ufS+7t5oKj/PT23ykB6uZ1tt4cxKlJLiqHBc7a+vBQ3hYLpIV2nXdISmRVWNuVYGBWhIT6wc80Ke+ihh+b0GCOdILE8jzq7lfHBrSwsR/QqcWCjzPt3CkPeoIBycOZrNoQJrgu5jg9yvuL1oie5Iv7v5iftQuxYWcN7rONjSkgFQI2OwczkfJ4imhEALOFhDlW/xrUZIj422B86lAHhO6He9R6g9WR+3wlcYjWTbizF4rDhpdaSoL+Mx1jFGuXbzOBxPDl2nU3/zj3IhiK5Guea+DGoFUpnfoZaoeKQsbTZMWXmGhx1B+Q82iNw1BsoNkcdFmsp40MmMym0DysLknl3/2r66UOPGqJor2HQFSzOTGR6ZH+nIRvuoafcUstfuQdcXrMOI5KkwGRt+rjRakarVKNRqlAIAgoEqq3mZmN81C17ht7IXATAjMDJrc5ZJSjQKlWYHXbyaiuxOOy4KVXcPtaL35JN+HvIH1B6/WdoF0WKrVbO8D96+XVXMH+x/Dl/PrvHK9JDD8eCHunATrCx6BAD/ELRu3D9t8RC7mGb7+NImvqcARcOlRfjX2SS9hJ2Wldw+b7Lu2i2DYiIbONH/sdI7kTHL9xPGRn05gxu5zfexcTtLHMaIthNTEv5l/sPitSoYEPfqxkQudtpiDTGW6NleEAk44LjGOgXhlqh5Hq+Q8TBp1zS5a+lMXJ+RgRxXgFsLD5EL+8A+ulD2F6aTYaxjCprXbNj1hamESbkoXRWlsiLngUtaxznYOuzileFbymWwhgVFEOYhw9X9R6NRqHCaK2jyta6fkpjwyDcQ8/Y4FjOCu/LX7kHWjzGW63F6GLRP2wYeKrdWjUMrKIdxRFfLIUgNJOuP4wZI4KoIsVQ3OTxg4Yi4rzlnBiVQkmUlx8HG40RJYnkRmNcsaVqJ0hqHu7V+mcvCIIz78rssLMiT35/+ge7AZBcYqPKWseaAtlgTjLJJcm39+qaRn6tUWC0sybDzJAQDYNC3Y759Xro4XSkxxjpIOXmWg4aijkjpHX385G9SsZzA272AI721l/gcSODNZP4ueRnHk57uCumTCrreIuzuRMdX3AluewilAFcxSe8h4UHWM9gLmh6UOUfkBiIV9VutgcHsL/fo5zp+U27rtufc4hmFCmsIoOtXfJaXBHnFUiyoZiZ0YOQJHh4268kludhtNYxKjC6SSjsMBnGMnyF+pwYTQyEPohBCKdADGOhYx42j/HkmZpWEh3OzzC4MG6OpL2GAUCctywp35j2GAaD/cL5MzeJfRX5lJlr2F2Wy395yc48DIClmYl8mbIJkJv9CQqRMnMNizN3U2SqYk1BKjtLc5jWqOJnWnhfNhSls7k4g0JTFT+kb8cq2puVHDemxJYDjkAC3I5eGTYlrI/z33/kJPFZ8kZMUhlaFfyWns9LiSucv6UcK6gEgcsij413qTE3Li5FAj6d3aO22kMPx4qeME0H2VR8CC+1G4P8WpcjP7JXSTQjCD74IdVxb1LpscnlMRnGUjJrKngx6h1uzjmfV3NeJVoXze0Rt7d7noUc5HeeJom/sdSX5/oTwziu5xweQEMLXh3RDoeugMpfQNAgxH7NmMBrXI9tA7eyhMeI5jMu5X9kd/g8rXE4P+PtpNUIgmx6TI/oz8WxQ/nk4IamlTz1GG1mvhUeJ84nmnP7XAqCQHWtgVjjRwQpDFhFByISAjTxRHhrtJjsNsIayd+74rBh4Kd1J9Tdh9yaSv7LS2Z8SMMiujQzEYPVxPUJ4wG5THxNQSqLM3czITiOZEMxO0tzWDCwIdQxLbwvX6VsJsbLjxgvf1bmpzgNA41CxbLsvfyQvp1qmwUfjY6Job25IGqg8/gqax0VFrlSxkItCkHBggFTWJSxi1X5Kejd3JnXZ4yzegdgVGA0NTYzy7P3YrSaifD05a4BU1vt7GsTylBLbQulRHn6MSt6CMuy5cTU7aXZbC/NxuIYzRdbRa4924QggI9aS4m1mmG+Ace8F01ZjZ2/0+roG6hmVGTL4ageeuihc/QYIx1AlCQ2FWcwLjgOpdD0ZtiWXiV5VXYe43eS+YrFPIgkSdAoefLjg+tB8uO3nP1MF5/hB+5mQcoCIjQRzAyaedT5GSnhD55lJ4uoQY6xexHIOK5hBk/hzVE0Emp2QMq54CgH3WDouxLU8q7w79z9LM3aw5lhCVzWa0SLpzhSW2V27FDG+V3HJr5gNe8xRbqD37L3sb4onTqHjV7eAZ3WVmkpP8PXzZ0DlYXMjnVdwVLrNoytNVbOrU+aNOrn46j6lKmazcB1AAS7e3PQUMzQ+nJTSZIwO6ythigALu81sl2GAcj5N501DC7rNaLVz+e6hHHOf1sxoURFgj6YJ4a3nmQ8NSyBqWGu9VGOpMJqAEUpAYJr/R1XzIgagLtKza9Ze6hz2DCZ1UiSgNWuJiUvkJkDBXDzR8wtZX5M1/bPccXNS8uQJPjooh6vSA89HEt6jJEOkGwoosJiYoIL93Rbe5VEePgSwb30YjwfMweDVCCrhgGNk1k1CnfmqP7HEsfDzN43my0jtzDSZ2Sz61oxsYL/YzNfUUEWAG54MYLLuICnCaVtfUHIvre+WZ0AEf+DsEedT2VVl7OuMJ2II5rHHYkrbZUPD6znkWGvsMPjZ5bwEHV5E1lVkMp1CeMI0HqwPGtvp7VVDudnuKs1VFpM9PYJZLBfOIsydhHp6ev8vBp7IrzVWoJ0XuwozXZ6IrYarCD1ZzT/oa3PzxjoG8aaglSnJ2JPuVxp0lqIAkCrUrfLMDhMVxsGrWGjDiXqTp/nSF7LWASCg7E+Lb92V0wJ68P44Di2l2bz6bbDITKJrQd78dk5kVyRuBwFcFNcG7/THcRoFll20EQvPxWT41r2/vTQQw+dp8cY6QD9fUP5eOKVLp+7f3BzOfcRgVGMCHQtihbLGO6xbeNl02zM+sP5FI4mY7wUgdynf49Xy25l4q6JpIxLIUobhYjIRj5jNe9RSBISEio09GUaM3iSPkxq+4syZ0PyFLBmgSYC+q4BbUOTP7PDxucpm5gXP4Y/c5NaPVVL2irrCzK4NP5tvuNG/rS9zcyoB515DNcnjOOBLUs6pa1yOD+jzm5jadYeDBYTSkGBWqHk7oFTUda79Bt7IuK8A0iqKGjiiVAKCgJVIxkgfQmWdKK8/LCLInPjhrE8ey9VljoQBM4I7t1qiOJkwYYFJV1frrq8ZA0A98S0P3FZo1QxIaQXT5UUIGBGAuwOuPTHIpJCy+nr5YvqGIdobvu1FFGCd2e2IJbXQw89dBk9CazdjCiJfHVgH3X77kQqGQuAX1Aeg/zC8XPzcI4rN7rzUMhrWEQLE5P68ZI4jgW48T23UMh+ohjBfH7iHeq4h3/bZ4gUvg57e8mGSOBtMDi7iSEC8GP6Dgb5hrWpk21GtWvRrozqMs5gPr72eGyRvxCib2jSplNpiPUKIKO69VLZ1jicn+GmVHHvoDO5se8E1AolE0N7o1PJi+3SzEQkJKfRODk0njJzDUmVBdzYdzyXxA3HJjqIj76h/r152Zm4qVWquWvgVMaH9MJNqeSC6IEtTeWkwo4FNV2fD5FpTgeHH5MCOiapX2FysDbD7PQTOiRIrKzALklcHd164nhnMVlFFu6rJcpHyXkJHkc/oIceeugUPZ6RbmZfRUG9NLiAb+bD+Pq9hSV2BbfzKoIksLU0i69TtiB6HKIyZCnzE1QoVSbSHVsIl/owSbiFKSxA1ZGdrd0AyWeBaRco9dDnT/BqHjLYXpJFTk0Fjw07t02nPVJbBeRy1ar6BNAL6j7jG910luquZzA7G8ZoGsZ0hK7Mz+gbHAf5PmD4g1FxX7Y7cfNkwoEVNV2/+6+TSlBIHe/h8nuyCceRRUf6YrCrGKY6tsbIXb+VYxfhjQt6ckV66OF40GOMdDPrCtOd/76i90g8VC/yGmewmyX0E6ZRGPQJSv/3ERXViICHGISpOIavD2xjiIcnz42+r2MXLvsZMq8FyQL6mdB7MSiafx0qLLX8nLGLewZN7bI+OSFSP8i9iMKYn9jDcoZw9KTcttDl+RleZ4JhKVhyuyw/40TEgQ01nTesKsy11NjlHjeiKCIpSvAUG5JX29vBeHFSLUqBpgaJvgSqApi/qJL993qg18nfyY70DWoJq13km13VhHopmTOwxyvSQw/Hgx5jpJvJrZU1LjxUGgb5haMgghjG8C3zsWPBjgWtoMdWPAmy5zBEP4rrE8ZhKL6URaWLmLVnFsuGLGv7BUUrpM4C498gaKH3EvC7uMXhOdUVVNvMvLirQQlWRCKtqoQ1Bam8f8ZlKI6oKDpSWwWoX3xkb4m3Wgf556KI/pVvhOv5P0pRoMBoNRPpqW/7aznWhD4kGyOFr0LMu909m2OGiAM3OrfoVphreXLHb9jrWwEcsqaDwoTOHkyFuRY/rUe7OhjXWkX+Tj3CM+JWC7paKOhNQbWD25eV8cPlwa12MG6tb1BLPPBnBTYRXjn32KkFnwo0Nj4BPFVu+Gl7jLceOkaPMdLNHO7HoVYonf04xnENv/AA5/Awk7gFU50Hz6b90WT8wsELGb99PMvLlnNnyp28m9CGxbJ6PaRcAKIRPMZAwj+gar2Utq8+hKeGz2jy2NepWwhx92Z6RP9mhgg011YBOFhZRFz9TjVA64G3youwirtJCXiFZTzBufZnyawuY3LosXW/twuvsaDwgMqlp7QxIuFA00ljpMZucRoiAAdt+0ENsaq+1Ngt+OHRrg7Gf6easDqOeFBfAg4FGOWQ0qFyO9B6B+PW+ga5wm4X+WSbkQB3BfOGe7Xr2NOJI41PkCX9nx95YY9BcgJyMhiOPcZINxOg9aDaZsZgrSOnpoIoTz8mczuTuM1ZIrylYr9zfGAj4a4NIzYQvzme9/LeI0Ybw/3R97u+iChC1k1Q9gWgguh3IXhBm+anVakJV+mbPOamVOGhciO8vsS3Ldoq2TUVXB0vd+0VBIGzwvvyd5odN+9w/lW9QV7aZPRuOqeOxwmD5xlgXAG2clCfmlUVEhJaunbhLZfyQdTRT9WQCN2eDsa7C+RGOYIgEeQpohI05OtL0AtevHKpgl1ViXw0efZROxi3l8f/rcTigLfP6fGKtMaRxieAXRKdhmcPJw4phmLe2rcKsZFkxIloOPZU03QzjXUqfkzfgdkuV5gcNkQKaqtYkXew/jEY16gpn0KhYN+Yffir/Hkg/QEWFi9sfgHTQdgTIRsibr1haGabDZG2UmExNen7clhbZX1ROs/v+otdZbnc1n+i03gBmB7RjzND+yIcuB8HdjJ9P+GuAV2Xl9JlhNwr/7fote6dxzHCjvx909JxsTlXWIVSEIPQqBr2O+dG9mdkYDRP7/yd2zb8yIu7/+Ks8ASXHYyfOtOXtPsjeeSiA3w5z8rc0SJ4GJngF8q4KC2SwozVYafGZmmxg/HR+gYdiSiKvLvZiF6r4JYxXft+nGoUmYwuH3eIosvHezj+1NqsfHhgHW/sW9nEEAHZcFyevRdROnE+rx7PSDczOiiG33OSqLLWkVFdxpM7fmN8SByBWk/SjWVsL8ly7kCG+UcSqGu6g3VXubN3zF7iN8dzRdIVhGvCmeA7QX4y7xkoeB6QIORBiHq1S+Z8pJZKe7VVQPaOzIwZzEwG8yLfkRuyhDoeBZoLunUr+ukguEH5Qoh8qbtn0+XUInsPdLQua99eJEU5CkdMk8fa08FYoxLoHaBGmSX//35SQRSIsjYtOe9KXlhVRZ1N4vmzfY/ZNU52rA4736RtZXup65YOnyRv4M4BUwg7ijBiD8eWOruNN/b9R16tocUxm0syQRC4Nn6MywTy402PZ6Sb0SrV3NF/Mu4qWQHTaDPzd+4Bvk3bxubiDKchEuXpyzV9xrg8R5g2jC0jt6AQFJy5+0wOVW2BvQOg4FlQ+cOAxC4zRI4Ft7IEAeGYd/XtMB5jwJoJ9prunkmXU00JAO7oO3Wexjtlg70SFBV41Jf1SvV5Tp3pYLy9ugBqfMkoVrarg3FbEUWR/1tvwEsjcO+EHq+IK0RJ5JPkDc0MkcbLWIXFxOt7V1Ja17S5ZA/Hl+XZe5yGiIdKw3mRA7il30Ru6DOOUQFRzs9sc3EGu8vzum2ejekxRk4Aor38eGTIdIb6RzTrLKtVqjkrPIH7B01zCne5YpDXIP4c8icjBSvqg+OQzAfA/0oYWgQeg4/1S+gU/kQzmnmUk8U6Pu7u6TQn+A5AguJ3unsmXU610zPSMW+AJEn8kbOPz1Mamj7use4BQSJUIXsxfsveh010dLiD8bayPKpsVlQ1ARyqsLWrg3FbeXOjkRqrxAOT9Me8+d7Jyo7SHPZVFABy3thlcSN4e9wlfHDGFdw9cCqRHvJ3qMZuYVHGru6c6mmN2W5jU3EGIBdGPDTkbC6KGcLwgEjGBMdyY78zuK5Pg8TB6oKU7ppqE3rCNCcIwe7e3NZ/EpUWE2lVJZgddrzVbvTzDcVN2YaPyW7i7OLnmeYO20W4zuLL37FfojlJbqzz+JRdLOIX7mM881GdSF9N37mACsq/g/DHuns2XUpNvTHi0UFjZGVBCsuz9zn/X61QUixlg6RgqGYQAPsqC/gubWuHOxi/myafP9QRTFldXbs6GLeVF1YZcFcLPDG1a8NVpxJrCtOc/56fMJ4h9a0cQFZYjvHy5+kdv2O0mdlbUUC5uRb/EyhB8nThgKEIs0OuNBsTFENIfWfxnOQqvAPc0AdoGRMUw5+5SRTXVZNaVUK11dws7+p4c3KsVKcRvm7ujA6KYVJob4YGRLbNEDH8BYmBULMewftM/g58nNXWSoZvG454kiSUqdAwl9exYuJ7buru6TRFoQD3YWBOlnVaTiFMyGW1nrRfIKzObmN51l7n/18QNZDXxs7GItSCI5R7BkxzJiRvKcliXHAcwwOi+CF9O8/s/INfMnczMbQ3s6IbPHeuFHKTzSLBaiUhvqXUWgWu6j26WQfjw32DXtj1F7m1le1SyP1wSxUGs8id4717vCItUGe3csgodwAP0XkzuL48O6vCxtc75ZCMu0rDpPrSfAmJ/ZWF3TPZ05zGIcs4rwAcDpE/P0vjpkG/cd+kFYCcsxfXSBSw2mZpdp7jzQm0/eyh3YgiZFwBFQtBUEPsVxB4LU8Bhyy5fFP0DdP3TOffYf9290zbxGRuYwWvsIWvuZBn8aPlBNjjTtBNkLUdSj/p8mqk7qSWetG9DhgjW0sysYjyDmx8cBwX1hsVFtMEdMrRjAuOw+yw8dOhnc7x1/QZ2y6F3FxTDcUWCxeHxxDvNpDtqVXoCW92XGcUcp/6txI3FbwwrSdxtSXq7A19pMLcfRAEgYxyG4PfycNsk5gzwANPrYIwd33DMY5Ty3A/WXBrVMG28uMs3nx/J4ZS2di4/NGG1hgl5oYcOG1bNr3HmJ5twMlK7S5IDJINEd1AGFoAgdc6n/56wNdM1U/lv4r/uPHAjd040fZxM4uQkPiI2d09laYEXA8ooPTz7p5Jl2LCAIAX7e8hk16/UwacO2Kz3YzoCCFY6w7A+OBeqOqF8RqPbyuvJicC8GDCECbGyG7klRl1rRzRPr7ZVU2ZSeTmUd6oVD23w5Zwb5SvllNbyZKkGga8lUutVeKLuQF4auX3LqemwjnOQ+V23OfZA/TxCcK8TyJrroN1zxRgNjkYdW4YQVEenHWlXEafVV3u9HQF6bzwdXPvzikDPZ6RY87agjTWFqZRbpGt0FB3Hy6IGsRAv7AWj9lZmsOy7L2Um2sI0nkxO3aoU7USQMq+D1vR+9Sh4zv7Q1h153ClXUOwuul5/hv2HwO2DuDzws+J0kbxVNxTx+Q1diUxjKIv00jmP5L4i4G46BnTHShUoBsApn2yR+oUceebqQLAi8B2H2sTGyRS9Rr5ZvZJzgqQ3OnlJbvu3ZQqdCo11TYLVvFISdWj82tBFu5KFeP8Q6jxkEOO23K7zqX88N8VqBXw2owekbPW0KrUJPgEk1JVzN97ffhfulyF9ep5flwzXK4+MlrNrC86BMiJyQN9Q7ttvqcrFcUmnpu7nvwNIgjgdT4Me8CbzTOKuOrRQQgKSCzL5YdDO5zHTA6N7yntPR3Qu+m4OHYIjw07l8eGnktffQgfHFhHQQv134eMpXyWvJEJIXE8Mfw8hvpH8OGB9eTXGsCSDYlxCMVvckAaTE7kX8wa+ghuChXvJK1usjiALIq2e9RugjXBPJ35NF8XfH3sX3AXcDOLUKDiK65ptdLiuBNwLeCQE1lPEeqQS3K1eB5lZHN8GuVkJBuKAFhdKpcJ3h8re7YKag3OeLS+nV2OK6xm8upqmeAfDICnVoFaCQdLbUc5sm38sq+GomoH1wz3QtPjFTkqU8P68PeOPuxKjwAkpsRbmT9aTZ3dxraSLP5vzz/U1kuOD/OPRH8C7LZPF+x2kbdu3cJlYYtJ2lBK/Fhf+i53I/ABBZuvr8BWJ7JtcAr3bV7MhwfXO0Uqozx9mRRyYrTg6PkFHmOG+EcwyC+cYJ03we7eXBQzBDeligwX/TgAVuanMMAvlOkR/Ql192FWzBCiPH05cOg92NMLyZrJj45bKQn7ikFh44jw8JUb51nqSCzLbXY+rUpL0pgkPJWeXH/welaWrzzWL7nTuKNnGvdRQxm/8Ux3T6eB4DsAAUo+6u6ZdBlmjEDHdkWjA6Od//4zdz+1Niu7DEUg1DI9qD8OSWRJVmKj8THtOv/rKXJy7D3xg5yP+euU5BnsHZrvkdz3RzkqBbxz4akp89+VbMup46wP7OSU+HH4+xIbk8ij25dxz+ZFfJ6yyZmDoNfouCRueDfO9vTiz8/TuEj/M79/nIZ/qI7X157Nh5sv4J4xU6l4RsCWJY+rc7NS52gw5Ht5B3DXgKloToB8EegxRo4roiSyvSQLq8PeJJO5MRnVZfTVhzQ8YK9iruMlptU9BUpPKuJWssY+kX6Nwjw6lYZYrwAyql334gjQBLBj1A5Ugopz95zL/pr9LsedSFzES7jjxwpeoo4TREBJoZUl9U075FDNKYCFGoQO3gZ6eQcS5SmHN0rqqnlh95/k11WhUFawpTSLlxNXOHUpdEo1Y4Oby763xs+5h9AoFMwIazB6ovRKKs2df+//Sqklt8rBZYM9cdf03AZdIYoSvx+sZez7eYz5sJDKusNeSgl/71rU6uafQ6SHLw8OOfuEyEE41UndUc7VcUt448YtiA6J298ayU95cxkyKYTqSgvvXryTqnUN3nJdtRu+GneG+IWzYMBkHhg8rdvLeRtzYphEpzj5tQZeSfwHm+jATani1v4TCfNwrWdgtJrxPqwcWbEIDs0jTrTyu3g5Fw77BkNNJVDUrDW6t0ZLlbXlXhwJHgmsHLaSKbumMHr7aA6NP0SIW0iL47sbBQqu5Us+ZBafcTl38kd3T0nG/0pZ2dbwO/jN7O7ZdBorJhR0rB+QIAjc2Hc8/7fnP6ptZnLMuTg830Nh78XXqQ2N65SCghv7TmiSBHk0THYbGbVGxteHaA7TP1jDtjwrFSY7fu4dv33dubwchQAfzGp/FdGpTp1N5JtdNfzfOgOHKpp7oZSCwFWDgpgaOYDs6nLskoi/1pNxQbH08Qk6IfIPTmWMFWaev2Q9u1cVIQgwbV4s9302Fo1G/j2U5tXy0LT/yE+vRmoU5b4lfBIDxrQ/Uf140WOMHAeCdV48Mfw86uw2dpXl8FXKFu4fPK1FgwTJBinnQ9WfIGjZ6f8Za8v0XKjo3Mc10Xci3w34jiv3X8ngrYPJGp+Fu+rE3cEMYSYRDGE/f5JLIpEM7e4pyY3zCp6F4rdPEWOkFmUnbgPBOm8eHnI2X6dt4sXSR0CQQNmghhrm7sMVvUfRx6d9N8H30vcjAbf16t/k8bGRWr7aWcOqQ2bmDmp/ngvAmow6DlXYuXiAO97aHq/Ikdz+axlf7Wq59YFDgmm9vLgw5sTdzJyKiKLIh/ftZNl7KYgOiT4j/Xl68SSCoxp+B1n7DTw07V8MpRZER9N8u8ri9jWOPN70/BKPAyqFkiCdF9FeflwcO5QITz2rWpDgjVZXEJ89RTZEPEbDsGIK1SPxqfeEeKvlJECjq14cbXC5XRFyBS/3eplSWylDtg054UXRbmEpIPAxc7t7KjIqH9BEQc3m7p5Jl2DFjBL10Qe2QqDOiyLdvxiQc5ZERTVjQgO4f/A0nho+o92GCMA32akoBYErIpsm150ZJ3/HN2Z3/MZ6269lCAJ8clGPV8QVC8b74KFu3bsxLurEce+fDvz3fQYX+S5k6dvJ+AS48fI/Z/HB9hlNDJF964u5c9xfLg0RAEPJiW2M9HhGugFJAvuRZY6iCFm3ci9fY5a0EP02hNwFwMHKImeOSYDWA2+1lmRDEZGeskhTnd1GZnUZk0PblhX9cMzDZJuz+TD/Qybvmsz6keu77sV1MYHEMoor2M4PbORzJjC/u6cEfnOh6A2oWgM+U7p7Np3CjhkVndOD+K30N17Peb3JY5J7Ln18zunYnESRg0YDQ/R+zRRR4wM1CMCewo4Jam3LMZNcamNGgo4Az57bnys+3mqk1iahFGQvyJHE+qoI8OhYaK+H9pGxt5Jn564lP60atZuC+S8N5YpHBvFX7n7+t3svRXVGNAolgWV6Vs0uxGFzXX2oVAkYSsxHl42QJH7L3sf6onTqHDZ6eQdwZe9RBOuOffPInl/jMWZpZiID/MLwc3PH4rCzrSSL1Kpi7ho4FYAvUzYRpKji/JobwVaAWd2Pp033M8M+nkGmKraXZpNdU8HV8aMBOU5/Vnhf/sxNIkjnRYDWk2XZe9G76RgaENnmeX3Q9wOyzdn8Wf4nVyZdyQ8Dfzgmr78ruJYvSWQJP3M3Y7i2+/vWhDwoGyNFr58CxogFtw6U9R4mqy6Lq/dfjUBDwzslSv4o+4P5YR0zHL/ISkZE4oaYvi6f93ITyKjoWHnvTUvLEIBPZ7dfV+VURxRFzvyskLWZFhIC1Nwx2cC9S7U4xAbDQ6WAybFNvSIn8gJ3slJrtPLC5evZ/lcBCDD5kmge/mY8Gq1870utKmFKWB9iPP1wSBIL9+zCa7wC4wYRSZKQjnB4C4JAVm4lG5P3c1HsEAb7hbOtJIsPD6zn8WHnEu6hB2BF3kFWFaRwXcI4ArQeLM/ayztJq3lmxAXO1g7Hip4wzTGm2mbmq5TNPL3jd97ct5KsmnLuGjiV/vWCQN7Vy5laMRdshRDyAN7DD3B1wtmsL0rn+V1/sassl9v6T3R+WQCmR/RjamgC36Vt43+7/8bisHHXgKnt/rL8Nvg3hngO4cfiH3k0/dGufNldigoNs3kVK7X8yG3dPR3QhIA6BKrXdPdMOo0DG2rap/9xGKtoZc6+OdSKtU30YBw4WFG+ApvYMYPh04yDCMDNvVwbI2HeKkpq2x9e3FtoYW+RlalxWsK8e/Zhjak2i8S/lsfaTAvnxGv55RoNL66UUCokZgw0ISAX9DpEGB/dYIy0qotUz+EF7qr40Twy9JwWdZF6kA3Czx7ZxWz/hWz/q4BeQ3z5Om0WTy6c5DREAO4eOJXxwXGEeeiJ9PTl5lET8H8eXjwwmRteHIaqPsymUMr/ddhF0nPKXMpGrClIBWSjcWV+MjOiBjLUP+KoshFdTc8v8hhzTZ+xrp+wlkDKVOaIB0AdCAkbwWMoACMCoxgR2HJfFkEQmBkzmJkxg1sc0xYUCgU7Ru0gdlMsL2e/TLQ2mlsjbu3UOY8VU7mTf/g/NvEFF/IselpWsD0u6GfKfWpqd4HHyaup4MCGpgVj5LFtyyi31DZ7fHJoPFf2HsWDaQ+yu3q3S2E6k2jipm2vcX+fa9q1SxZFkURDOQleejQtJGzH+6tILrVht4vtknC/cYksf/3F3B6vSGMyK6wMezefKrPEneO8efV8H0Z8vJtigz/XTsznvAQP7hgRx6U/FlNrlZoYI411kQBmxQzhoKGINQWpXBU/utkCB3B9wjge2LKExLJcRgXFdMdLPiFZtzibN27cQo3Bire/Gw9+OZ5xF0Yc/UBw6oeEhXuRcHMgnz+6m8i+3sQN9mXDkhwcdglDkbmpbARyt+U95bJQYZm5FqPNTL9GYxrLRhzrz6rHM9IdlHwOeyKg7gD4XQ5Di5yGyPFGpVCxb/Q+fJQ+3J5yO3+UnSAltC64iYVIiHzExd09FQh9RP5v4SvdO49OIuJAg+s2748Onc6rYy52/t0z8EwARgREsapiFe/kvdOiQq4KFVXqlHbvkn/Jz8QuSVwdHd/inIeHyzkuOwvanjeSWmple56V8VFuRPt2LmH3VGJtRh1938jDaJZ4f6Y/78wMYNZPezmQG8A1w7wYFCG/xzP6urNzQThvnu9P/6CG96+ZLhLyAndY8+hoC1wPkJNcxfwBy3lu7jrMtXbmPT2IX0rmttkQESWJhRk76eUdSLiHni8eTwTgzvdG8eTPk/i5YC63vjECr7lCg2xEPd7qBkkIo01WZW2vbERX0WOMHE/sJjgwBbJuBEEDff6G3j92e58TvUbPnjF70AgaZu2ZxS7jrm6dT0vEMZY+TCGLbRygmzsRa2NB6Q9VJ0dH5JaQcLSYM+Kl0eKj0Tn/9lbkE6j1pI9PEP5qf6bop+CjalqeLtSrc9qxc8C6ud1u4PfTZUG+u+MH0hKTYmVPzup2NMybv1j2inw+p8crcpjPtxuZ+lkhkgQrbgjh9nE+PLoyjX/36xkcouLrS5tWQSUEarjnDJ8mOiJNdJHqOZEWuBOZulobT120mhv6LSf7QBXjZkWwpOISrn1maLPE7db4MX07BbVV3NR3AgCrfsjCU69m+Fmy91gfqGXuvf3xmnJiL/cn9uxOJQx/y112a9aC1xQYWgL66d09KyfRumjWj5CraibsnECOOaebZ+Sam/kFBUq+5Orunor8+TkqoS61u2fSYSSkNiWw2kUHW0uyGB/cC0EQGOI1hNUjVlM5qZK8CXm4OeJBdOcMr3OI1cYiIJBZl0mCPrBdu+RtFSXEuHvh2YpA2hnRsmdkR37bGuZlV9rYkG1hRLiGvkFtF147lXnwz3JuXFKGp0Zg3z0RnB3vzp+pFby5VsLPHbbe1rZdeQ8d45tn93Cx70I2Lcsjqr8Pnx+YyfO/TsXds33fzx/Tt7OvooD7Bp+Fr5s7W//Mw2S0MW1eXLOx3hotRtsRkhA2c5fJRnSWHmOkqyh4FQx/Nn9cFCH9ckg9DyQrxHwO/VbDCSg2NspnFIsHLcYiWhi6dSjV9hNEhr0RnvgzlbuppoQ/eaF7J+MM1bzcvfPoIHZkF7yOo1c1JJbnUWe3Mv4ISXdBEAjXhmOVrOjEBF6L+YiMCRlUT6km74w8fDWebd4l/1uUh1l0cElE67LxGpUCNxWktLFhntMr0lNBgyiKzPy6kNfWVxHpoyTnoUgSAjUUGu1c+n05GrWdC8ft4t6tP3Pb+h9JrSphdUEKt63/EfHIEg1O/AXuRGPz73nMCVzIN8/sReuh4qlFk/hi/0yi+7UggNkCkiTxY/p2EsvzuHfwmQRo5Q3F10/tQRDg+heGNjsmzivA2dDyMC3JRhzmsGxES+1LupIeY6QrqNkCeQ9D+iVgyWx4vDYREoOh4me5/fyQPAi6odum2RZmBc3i7fi3qbRXMmjrIOxi1zQl60rm8H/o0PMHz2OmZaXIY477IFB6g+HEzbNpjWrkRVrL0W+EG4sOMcAv1GUnVlEUkRSl6GnoIeOh9CBI0z6xszfT5MZ4DyQMOerYAHcl+cajV2MUGe2sOmRmULCaIWGd01M52TFbRQa/k89vyXWMjXQj44FI9O4q7HaREe/lU2tV8O6Ffrww9myeGH4eTww/j2hPP0YHxfDE8PNQCM2XixN9gTtRKMgwcsvQ33nywtXUGKxc/vAAlpRfwqS50Uc/2AU/HtrB1pIs5ieMR6tUU2Wto7CsirRdFfQa5oeHt4YvUzaxNDPRecxZ4Qnsryzk37yDFJmq+C17L9k1FUwJ6wM0lY3YU55Hfq2BL1M3t1s2oqP0VNO0gQpzLTX2Bpewp8oNP2190p8kQc79gBJECxy6Gvqtg9xHZB0KBAh/FsKf6pa5d4Q7o+4k25LN6zmvM27HOLaP3t7dU2qCAgVX8ymfcglfcBW3s6z7JuN1Jhh+BWs+aMKPOvxEoqbeGHFH3+q4cnMtBw3F3Np/osvnfyxYBQoTQUJUm3fJPpqGCh6j1Uykp551pSmEat0J0h7daxjrq2JTztHDNDcuKUUCPjnNvSJFRjuD38mjtFZk3lBPvrmswVA86/NCCqsdPDHVl2uH+jU5zk2pwkPl5pQW+DJlE3qNOxfHDpWPDU/gtb3/8W/eQQb5hR0zXaSTFavZzivXbmLdomwkCUadG8bjP03E06dz4cK1hWkAvL6voQt7zUoRSYJrn5WN+QqLyZnDBXJjyxsTJrAsew+/Zu0hSOflUjbC6rDzXdo2THYrvX0COyQb0RF6jJGjUGGu5ckdv2Fv5KJUCQqeH3mhbJAYfoOaTQ0H1GyCXUHgqAB1GPRdBbqEbph553gt/jWy67L5pfQXLtpzEb8O+bW7p9SEEczlDwayl+Xkk0Q4LSc8HlNCH5CNkYJXIOad7plDB6l2GiO+rY7bVHwIL7Ubg/xcl1N/nrccgBFeA0k2FDEtvEEfpK3qwcGegdQ67MxrpYqmMQNDNGzItlBgtLeoGVJhsvNXah0JgWrGnsby5TvzzUz8qJA6u8QL5/jy+NSGz/v+P8pYlyVrizx/jl8rZ5E52Ra47uTHV5L45uk92Cwi4fFePP3LZOIGt/5baysfT7yy2WMXzfoZd2+JcRfI+T73D57WbMzxko3oCD3GyFGosVuaGCIAdkmkxm7BT3KDnAeQo12NxjgqwHc29FrU7ZUynWHR4EWM3T6WZWXLuDv1bt7u83Z3T6kJt7CEp0ngY+bwHK57/RxzvCaAwh0MS4GTyxipQU4a9aDlRUiUJDYVZzAuOA7lEW76w7vkvTVJIOl4IP5C3jmwukO75GXFshv/kb5D2zT3cVFaPtpazX/pdVwz3MvlmFuWliFK8OFp3Jl38b4aLvuxBIBFVwY1aS74055q3thgJMpHyV/XuW56d+SCdrItcN3Bzv8KeHneRiqLzLh7q7n/s3FMu7p5QmlXsntVETWVVmbc1LaWICciPcbIUSgzNxd9clL6JVjSXDyhgLr9gBU4uXdkG0dsJH5zPO/kvkO0WzT3Rd/X3VNyEkw8I5jLThaxhW8Zy7zumYjnGWD8B+wVoDr67vJEwUQlAB74tzgm2VBEhcXEhODmN9PDu2SDowAIop9fSId3yX3/WYy/xo1oj7ZJhE/rLYd5NueYXRojRrPI0v0mYn1VTO3VMYXZk53/ra7k8X8q0akFNtwSyvDwhnvR/mIrV/9cirtaYOeC8HaVkvbgmpLcGp6ds46U7eUolAIX39WX294ccVze2y8e3w3A/JeGHfNrHSt6jJEWqLFZ+Dp1C3sr8l0+v7FgH5E1jzVyWDZGBHMa5D4G0W8cy2kec5QKJXvH7CVmYwz3p99PtC6aOUFzuntaTq7lG/bwGz9yB6O5CkV35GSH3CMbI4WvQ+SLx//6HcREBQBetJxP0d831KVLGBp2yddnl+EmycZKR3bJKcZKDDYrV0W1fVcX5q1CIcC+ItfCZwuWleGQ4N2ZLRtapzLzfi7hu8QagjwU7LkrgpBGoawas8j4D/ORgNU3hfY0DOwkVqudN27cwsrvMpEkGHZmCE8umoi33/HZiJpNdpK3lRE7SI+P/8m7+e3Qnfv9998nJiYGrVbLmDFj2LZtW5uO++mnnxAEgYsuuqgjlz1umOxWXt/7X4uGCIBH2Ttgb01BUITiN6EuuesneJzxVHmyd8xedAodl+67lM1Vm7t7Sk40aLmIF7FQzU/c0T2T0J8HgptcNXUSUVvvGfGifVUvjUmpzgZFBeGa1stxW+OVlD0APJwwtF3H+WgVZFU2r/aqs4r8uLeGCB8l5/d1rS57qmK3i4z9IJ/vEmsYGKwm+6GoJoaIKIqM/CAfo0Xiw1kBjI48eRevE4El7xzkIv1C/vs2k+BoD97bdi7/t/Ls42aIgKxZIokw76mTOwzWbmPk559/5r777uPpp59m165dDBkyhOnTp1NSUtLqcVlZWTzwwANMnOg6I/9EYmlmIgWmKkCunJkROYBb+p3BdX3GMsw/glhSuVC5BCTqxbAb+UcENbjFg34WhD1+0lVYgJy0m1NT0eRPiw9bRm5BISiYsnMKh0yHunuaTqZxH3rCWc8nVFF09AOOBR6jwJIhq+yeJJgxAq17Ro7GKxk/giBxlt/4Dp/jj8JsvFVqBunb58WI8FZSZmpe3nv37+XYRXjj/NPLK2Iw2Yl7LZetuRZm9nNnz13haDVNb/GX/1hKSqmN60d4cfOYnq65HWXfhmIuj/iFD+7egUIhcO+nY/kuczZ9Rx3/qq0VXxxC66HqcJnwiUK7/XNvvPEGN910E9dffz0AH330EX/88QdffPEFjzzyiMtjHA4HV111Fc8++yzr16/HYDB0atLHEpPdyuYSWSvETaHi4aHnEKSrj0lLEuOUG7DXvIIkQZEURrF6HMPCzwJtvPyniQDh5M0Sd1U9BA0VRL8P+Z3zEs9j+LbhZI7PxE9zYuRIzOcnXmciHzOHh9h4/CcQdAfUbICSdyDM9e/gRMOMbHBr6LgA3+qKrSApeKjX5R06vsBUS4nFzKyw9t9IEwLV7Cu2YbWLaOob5lntIl/vqibEU8klg46uLHuqkFJqZdT7+VRbJB6a5MMr5zU3xF5bZ2BRUi3DQjU9zQI7SEWRiWfnrGP/plIEBVxwSzwL3hvdroaNXUnSxhKqyiycc+2xTZA9HrTrHbRarezcuZNp0xoyqhUKBdOmTWPz5pZd98899xxBQUHMnz+/TdexWCwYjcYmf8eLpIoCZ9OuccGxDYaI6SCkzYWMa1H6z+V54Xuetf0fH9fOps7/RvCZBm7RJ7UhAq6rh6Chgmi6/3Q+7fspRoeRQVsHYRXb3qzsWBLPGfRmIhlsIoXVx38CfpcCKij79vhfu4OYqYYWsp7aSqE1C8RAensGd+j4V1ISAXigz9GFzo5kZIQsYrY+q0Hb5OG/K7A64KXpXVNCeTLwb5qJQW/lUWOR+Hx2gEtDZPWhOh76qwI/nYJNt3Zzx+uTELtd5I2bN3NZ+GL2bypl4BmB/Jw/h3s+GttthgjA54/Kias3vnzyJq4epl3vYllZGQ6Hg+Dgpjee4OBgiopcu8c3bNjA559/zqefftrm67z00kv4+Pg4/yIjj584TmPRpl7e9bsH0Qb7h0DVH9B7IUKvbwnzkpP0JORk19OJ+eHzeTLmSQqsBYzYNgJRbG68dAc38wsCSj7HdcLlMUWhAPchYE6GE8RAOxoWahE6mfBroRSl1PFd9tL8THRKJWcEhrb72KlxcpXMYWPEbhf5aGs1/u4Krht5eoQgPthcxfQvihAEORn1hlHNX3d+lZ3zvixEpYAdC8KahW56aJ0/PknlIv1P/PlpOgFh7ry1/hzeWn8ufiHd29LDarazf2MpUf28u30uXcEx/VZWV1czb948Pv30UwIC2l7r/+ijj1JVVeX8y83NPYazbIpW2RC5KjXXS42L1SDZIPL/wO+Sps8hqxSebjzX6znmhcwjqTaJGXtmdPd0APAmiMncjpEi/qYb+sUE3gyIUPrZ8b92B7BQi4KOe/LMdjMoS/FVdCwvymA1k1tXywR/1xoXR2NEmKxiubO+Yd5TKysx2yWenXbqe0UqzLVctziPO5aX4+UmsOUOfybHNS9hPiz1bnHAkquDifXraRTYVpK3lXJVzBLevGUrkggL3hnJj7lzGHhGx7yAXc0P/0tCFCWueHRQd0+lS2iXMRIQEIBSqaS4uLjJ48XFxYSENL+hHDp0iKysLC688EJUKhUqlYpvvvmG5cuXo1KpOHTIdRKkm5sb3t7eTf6OFwk+DV+0DUXpWB12MK6VH9CfD8AhYynZNXJZZJi7D17q07PnxTcDvmGyfjIrKlZw88Gbu3s6AFzKW2jx5jeexspxTiYNvAFQQOnnx/e6HcSKCSXqDh//fvYyEKwM9Wp/iAXgjdR9ANwV3zH1XKVSgU4tkFZmRxRF3t5oxEcrcMe49jUdO9koM1Uz5P0Uvt5hxUtnZvbkrXx26C8qXGgiTf60kOIaB0+fpeeCfqdXZVFHMZSZuX/qPywY8zclObWcc20cSw2XctGd/bp7ak3445M03HRKpl3d8Uq2E4l2GSMajYYRI0awcmWDHr4oiqxcuZJx48Y1G9+3b1/27dtHYmKi82/mzJlMnTqVxMTE4xp+aSuBOi/6+8ou4wqLiXf3r8Gc/3+AEocmml1lOXx0YL1z/JTQPghC5+LuJzOrhq0iwT2BTws+5cXM7tfYUKDgSj7CgZUvuPo4X1wFuv5g2iN3az7BsVHXKWPkp8J/ALglalbHjs9NR6NQcEFox6sAgjyUFFbbeWlNFSabxGNT9R0+18mAySoy+v1y8sr0hPpVcdnkRDQq0ZnT1Zi7fytjU46F8/roeGbaiZFofiIjiiLv3bmNS0N+Yc+aYvqO9ueHnNk89NUENJoTy/uduqOcymIz42ZFnDLrT7vf4fvuu49rr72WkSNHMnr0aN566y1qa2ud1TXXXHMN4eHhvPTSS2i1WgYObLrr0ev1AM0eP5GYGzuMV42lmB12UqtKcGj2YsSLp7cuwWRvaFse6+XP+JATJ4u51YZ+bSS/1tDic3axeRmlQqEgcVQi0ZuieSLjCaK10VwdepyNgCMYzRX8yXMkspRCDhLKcdzR+F8DeQ9BxY8QcNXxu24HsGNBRcfd9ql1KYA3s0PGtvtYs91Oeo2Rsf5BnbqZ9vJTsSrDzivrDHhqBB4449T1iuQY7Ax7J4+KOpG+kcVMGpTZ4tjvd1fzziYjMb4qfr/2xAgrnMj8880h3l2wjbpqO34hOh79bgLDzmp/HtPx4tNHdgFw0yvDu3kmXUe7jZHLLruM0tJSnnrqKYqKihg6dCh///23M6k1JyfnpJcWDvfQc9fAqXx4YD11NiPu1JIkDmliiPT2DuS2/pNOmGZPR23o1wb+zNnPsuw9LT7/Y/oO7hl0Jh5HhKW0Ki37xu4jblMc1xy4hnC3cKb6Te3YC+kibmEJz9Kfj5nNMxw8fhcOugPyHobiD04KY0SL674ubaFGLEIgqEO/9/cP7UcCbo0b0OHrAwwO1bAqw0y1ReLps/Qn/b2nJTbnmJn6aQFWOzw5TUuxpmVDZF+hhWsXHZZ6Dztl35Ou4NCeCp6du46C9GrUbgpuenU4lz3Yue/kscZuF9mzppjweC+Co06d8vUO+Z4WLFjAggULXD63Zs2aVo/96quvOnLJ404v70BeGHkhGZnvIVRCqjAKvUZHtKcfk0Lj6e8biuIEco+12tCPoxsj6wrTmxgiWqWKUHc91dY6yixyLDqntpIPD6znvsFnojiiaVqQJogdI3cweNtgpidOZ8/oPfTz7L4Yayj9GMrFJLKUbfzIaK44PhdWuYNbLzDtOD7X6wR2rKg60TtJVJTiIXXMw/l1VipKQeDqdkjAu+KMaC1vbTSiVsBTZ+o7da4Tle92V3PtolIUAiy/JpjBkRZe3O16rNEsMuGjAiRg7c2h+LmfWOGFE4Uag5UXLl/HjhWFCAJMuTyah74cj0Z74r9fC1/dj+iQuPSB/t09lS7lxH/nuxGtSk1/YQsAc0a+yhzViZmlf6CykF8yXN+dEsvyiNS5I2RcKecz+F0CusHQyJCyiQ6WZTUYIhdEDWJ6RD80ShWSJJFaVcKnyRuptplJM5awt6KAof4Rza7V17Mv/w77lzN3ncmo7aPImJBBkKbjUuOd5Qa+4z78+IFbGcllx69vjd8VUPg8VP4Gvhcen2t2ABF7hwXP1pTtAoWRWHWfdh9rF0X2GysZrPfr9K49xyB7K/sEqk9JD8CT/1TwwmoDHmqBLbeFMTDUjazqOpdjRVFk5Ht5VFslPpsdwMiIHqn3IxFFkU8f3s2Stw7isEv0GurLM0smExrbcQ/h8WbZBymo3RScd+PJ26HXFafer7erqdkGCg84QQ2R9YXpvJO0mnyTweXzf+Qm8WvGJqhcCgUvQtJQ2BMHuY9D7W6QJHaX5TpzTYYHRHJh9CA09eXKgiCQoA9mXn0beIC1ha46FctM9p3MN/2/oVasZeCWgXL5ZzehwZ0LeBYzRhZyz/G7cGh9Z+Pit4/fNTuAiB23NnjNXPFW5iIAZgZOafexX2elICJxQ0xCh67dmJfWyiqyulNwW3XJ90W8sNpAqJeSrIciGRjqxpaSTD7Yv87l+NnflZBWbuemUV7Md6E3crqzZmEWF/svZNFrB/D01fDiH1P5ePcFJ5UhkplUSXl+HWPOP/U6LZ9ar+ZYYM0Dbft3f8eDTGMZ36dvr++PA0FaL6aGxjMtvC9Rng3G099FRdiFRj84axYUvgL7h8OeWDyLniFSyAQkJgaFgWkflC+G5HOg8k8ABvmF463WOq/bGleFXsX/4v5Hqa2UIduGdKso2rk8jDchrOUDjLTeP6nLUOlBEwnVm47P9TqIiIgbHYs5bzUmgqTmwV5z233sJ5kHEYBbenUujPf97mpKa0W0SsitOvGrl9qK1S4y/J08fkkyMSJMQ9ZDkQR4qliRe4AvUzZTZWtu4O9OD2N3rhuRfhY+uKincqYx2QcM3NBvGS9cth6LycG1zw5hccmljJnR3Lt7ovPJQ/WJq6+eOomrhzkF9xPt4+/c/SzN2sOZYQlc1mtE0ydrEwE7eE9lZ2kOy7L3Um6uIUjnxezYoQzyaxB7kiSJ37L3sb4onTqHjV7eAVzZexTBumO3Q/k3Pxmp3hQ5MyyBS+OGN6lM2FB0iG/TtgJQLAUTTnWjo+srY6zZ9ONrntCAKIGiifSLANVrIOxJFKEP4aF2w2gzu5SLP5JHYx8l25zNxwUfM3X3VNaOWNup19oZ5vMDb3ImnzCXB3C9q+xyfOdA8VtgXAfek47PNduN1GFjpNyeBwSh17TPsyKKIrsry+nj6YNG0bnbz0N/VaBWQN9ANftLbEc/4CSgtMbOkHfyKax2cMkgDxZeKRcGpFeVsiQr0Tmut3cgA3xD0SiU/JZsZHtqAFq1nbNH7+aPHCuzYjqm/XIqYaqx8tKVG9n8Wx4IMOHiSB797gy0J2kejSiK7PqvkJAYD8J7nXqer9PaM5JVXc66wnQiPPTyA5W/QsaNsmhV3QEo+14e53Y+nyVvZEJIHE8MP4+h/hF8eGB9kzLYFXkHWVWQwlXxo3lk6Dm4KVS8k7Ta2eemQxS/L4dTKpeDranQXK3Nyu5yWZnWW61lTuzQpiWSoo0zPMq4Vvc3t6rewFfKd3pQWsIg+bHX+znotwGGFcNwI4TcB/nPIO30ZqBZfj983dqWZ/BRv4841+9c1hnWcXVS95X7JjCVOMaTznrS2HB8Lhr6sPzfoteOz/XaiQ05LKejYzc1m1CKugPdfpcWZGGTRK6Miu/QdZ3nSaqloNrB1cM8GRDihk2EavPJ7R3ZV2gh5tVcCqsdPHmm3mmIAKwsSHb++/yogTw45GxmRA1kVEACX24IQq0QmD0hCZUC1hamd+6+c5IjiiJfPZXIbL9FbP4tj5gBPnx5cCbPLply0hoiAEveSsZhk5h974klvtZVnLbGiNlh4/OUTcyLH4O7ql5rwbgKyj6HzBth3wAofgOA0sIfmO5TwPTQSELdfZgVM4QoT1/WFKQCsldkZX4yM6IGMtQ/gggPX65PGIfBUkdiWSek7Es+hsL/Qdos2B0Cu8Mh7RIofJ2aypUoJdldO8A3FJU1Qx6/bxDs8IYdOjg4lvHitwxV7MSNlvrnKJGUvnxgu49Hbe/yVWV/SlVDQB0EKk+IfBlHn9+xSmrmqn/kRfXdnO3b9l3oH0P+YLDHYL4v/p7H0x/v+HvRSW5hMQIKPqdj3WXbjSYEVCFgXHN8rtdOaupDVlrar8tRZjaAoowgVVS7j30vPQmAe+I7J2F97x9lKAV4b2YAYyLl3++aTNeJnScDyw/UMuy9fMx2ie8uDeS5sxtCLWaHjcTyPEDeeMyIlEtPzTaRK3+SNynrbwljarSsgl1rt7C/ouA4v4ITg83Lc5kbtIjvnt+H1lPFU79M4rOkmUQmnPz6M0veSUalVnDRgs7nWp2InLxmYif5MX0Hg3zD6Ocbwp+58g0Sr4lQ/G6jUfJOa7j1S0Yhws6HIPgOiH6H/r6h7Km/QZSZazHazPTTN0ji61QaYr0CyKguY1RQTMcm6X0W1B0E7PL/2wrkRNTKJQQj8q4G7CgRq7SwtxZQgiZGbtgWcDWoQ9lYXsN3hXaGK7Zzk/q95tfQn4ci9nMUaSlQnkut3cILu/9iUmhv+vgEUWE2sa5IIs/yEfOUnzFBuY6J5XNAuhTivgVF66JZCoWC7aO3E7cpjv9l/49oXTQ3hx9/6XgfQpjILazjQ/7jDaZx37G/qP4CKPtMDvd5DD3212sH1ZQCoEPf7mNfyfgJBAfjfEYcffARbCkvIdrdE29Nx8XWVqTWkm1wcPlgD9w1CqbGuQMVbMgyc+FJKHn++noDD/xZgVYlsOamUMZENa2CMVrNiJLs1+zjE4SqXtto2ueFbMy28NFFAYyJ0uIoDmV7aTYgq0efTuQfMvLM7LVk7jWgVAlc8ehArn9hyEmZ5OlKvLI2205Jdu0pmbh6mNPSGNlekkVOTQWPDTu36RNermP7Sg67f0VQy3ki3motVVbZM2G0yTsyb03Tm4i3pmFMh/A+S847aEKD+1UQQCU5SHdEEBn/MlrfM0HZ4HYXJYl/M/5EpIoSqXHvIKVsRES/CwE3gCBwdbwPRaYqCuuMmB02/sk7yD95jcXCFPwg3kpA7Av0Lb0RKhaC4XeI+Vg2fFpBo9CQNDqJ6E3R3Jp8K5FukZwXcF6H35aOcjnvsZXv+JXHmMTtaDqhsdEmwh6RjZHCV6D3j8f2Wu3ksDHiSfuTHf8ok/N/7o9rn5dpZXEeZtHBJRGdUy1esLwchQAfzvIHoH+QCgFILDz+3bM7q3p80+JSPtshdxpOvCuCCJ/mt2RVo8WnulGH8NvGeHOoooK7fy+nxirSL9rc6JgTQ4zxWGM123l53kbWLc4BCUbPCOPxHyfi4X1yNgRsSbzS6xW50ezN/9f+DcDJwmlnjFRYavk5Yxf3DJraXD1VHSwLVlmaN/CTUCD4XgyhDx2fiVpyGhr0uUTAjob3bPdwUBrMwCIfbvDR4lH/kmyig8WZuyk0yaWPHp4D4HBne49R0Ot70DYsCp5qNx4ccjYLM3axvTQbxxFJqlGevlwSN4I+PkEQmgzFH0POPZAxDwr/D/r8Bm4tu+31Gj2JoxPpt6UfF+69kB2jdjDUa2j735dOoEDBFXzAV8zja67hJhYe2wtqe4HSD6r+ObbX6QC1yBVR7h0wRrLNhwB/xvq1r8rszfrGeA8mdDy5ckNWHenldmb1d0dfH/9XKBR4aATSy+0dPm9HaIvqsShKKBTNxRFFUWTKp4Wsz7KQEKhm14Jw3DWud7x6jTu+bu5UWkykVhVTXGckWOfNVcO8mD3Qg8dXVPLgXxV4aRXEhUYQFWTAW+GHJEmnTN8SV/zw0j6+fXYvNotIRB9vnl48idiBJ6YEQ1txJV5pddhJ/KeIwEh3ovud/OGmljjtjJGc6gqqbWZe3PW38zERibSqEtYUpPJBxFkIpdk4QyOAAwUmVS+84r52ioUZbWZ86j0h3mq5dbfRasZH09DG22g1E+mpb9vEbGVy6/nKZVC3D8TmHTgbUIHKH2PMEjKT88BhJ6mykEe3/cpAvzA0CiVJlYVU15cACsA50WOgYp4sfBb6IAjNd04eajeuTxjHnNihJJbnUWWtQ6NU0ccniBhP/6Y3tuBbIOAaOHQZGH6DPbEQvAAi34QW3Iix7rGsHbGW8TvGM37HeFLHpRKhPb7ldWO5mj95np38wkzSCKZziZRHxWe63KemLh10J45IUS2VAHh0wBipk0pQENDu49aWFRKi1RGk7ZjQGsAtS8sQgE8ubnr9EC8lhcbjm7R5NNVjSZIY/1EBsb4qvr8syGmUGM0iQ9/JI7PSzrnxOv64LrhV17tCEJgY0pvl2XuRgI8OrOfGvhMI99CjUyt4broHSs9MXlvhS2JGBIkZESzfYkCnriLWV0XfQDW9/eW/Xv5qxke5oVWfvK7+HSsKePmajRhKzLh7q3ngi/GcdeWp0bnWFcZlYLdKzDpFc0UOc9oZI331ITw1fEaTx75O3UKIuzdjA2Mpr6shgE+cz0kosOHBYvXzXKdscL8erCwizku+IQZoPfBWa0k2FBFZr+9RZ7eRWV3G5NAWFiB7DZR/AxW/gGkXOKrqn1CAJgK8ZsshlKoV9RUZh40jpax70ncFfpoIbu9fzAcH1mJ22LGIdnaW5TS5jIDA1fGj5U7Evt+06T3y1uiYFNqGRVqpgz7LoXorpM+G4neg7Dvo/RP4nO3ykDE+Y1g0aBFz9s1hyNYhZE/IxlN1fPsr3MoSnmMgH3ExT5N0bC8W+rBsjBS+DHGfHdtrtQMTFQB4trMiRhRFJEUp3tLoow9uxK7KUmrsNq6I7LhBtiPPzIESG9PjdQR5Nr119fZXk15uRxTFEyamviHLzNZcC1tzLYT7VPDaDH8OlVsZ8V4+VWaJu8Z78/aFbTPqpoT2YWPRIcottRSYqnhu159EefqiVarJMJZhV4qM6RvC1uQY5zF1NokDJTYOltpQCWCrt5uemKrn+XNOPi2SouwanpuzltSdFSiUAnPu7cctrw0/YT7vY0XVzxIKlcDc+04t+fcjOe2MEa1KTbhK3+QxN6UKpaDg/QNr8ZCsvNqoD5woQU7Yl2zNthKed5BBfmFsL80mu6aCq+tVSQVB4KzwvvyZm0SQzosArSfLsveid9MxNCCy/kRWOc+i/Aeo3Qb28vorCKAOAe9p4D8P9Bce4VmwQ9HLDWO9p0D8EmduSII+mCeGzeDf/INsKcnE4pCNFoUgMNw/kmkRfYn1av8utl14jYFh+ZD3jKzymnIOeE2G+F9lAbAjmB00m8/inuLGjOcYtHUQaePSUHVSc6I9hDGAwcxkL8vZySJGcMmxu5jHEFB4y/k1JxAmDAB40z65/h8KVoLCRF9t+26MrybL7QYe7tvxEM1NS2SvyGdzmhtQw8I0/J1ax74iG0PC3Jof3A28t9mISgF2EV5fX4VDlPhgixGbAz6Y5c9tY9vucvdQa7hn0Jm8nbSaMnMNADk1lU3GDO9VSmlpDJnlNCnjlySw1T+gVQlcM/zkURwFsFrtvHbDZlb/kIUkwbCzQnhy4US8/U59uXtroYi9AAac6Y9KdWobXaedMeIKSZIoMhmxSyJV+FIp+uKrkH/oP9ivZ7LvVG7U1rAsew+/Zu0hSOfFbf0nEn5YnwSYHtEPq8POd2nbMNmt9PYK4N4IK+pDl0HNJrAV4bxFqALAZwb4XQ7+l7VekeI1AQQVSHYIuB5iPgKFusmQQJ0nV/YexdzYYZSaa5CQ8HPzaChZPl5EPCOHalJnQfVa2B0E4c9C2KNNx9VsYX7p80QEjOHcsq1M2DGBraO3Op8+MikQ2p8YeDRu4Hvux5/vuIlhzDm2fWu8p4BhOVgLQBN27K7TDuowAuDZTmPki7zfALg69NyjjGzKP8V5+Gnc6OXZsZh3UqGFxEIrU2K1LpM8J8ZoeYkqVh2qOyGMkaJqO4uTanE0sgre2mhEKcA/N4QwLb79oaognRdPDjuPTcUZrCtMo7BO/gw9VG6MC45lSmgfLg5WcM4XRS2e4/UZfsQHqFt8/kTjl7cO8MWjiVjNDkLiPHnq50n0Genf3dM6JmQay/j50M4mj1V8JH+B+t7rgyhJJ1Rz1q7mtDdGTHYrIJBRXep8rA4dvlSyxTGeDeKZ+JcXMCN6ICMCW07QFCSJmb4VzHT8Ki/EljzIrfeLKn3Aawr4zQX/a2T9jrai0EHoI6DUywJkrXwZNUpVEwOpMWa7jWXZe0ksz6XaZiHSw5fLeo0gxqvlH3aKoZhFGbsoNFXh6+bOjKiBjA9uWgmxuiCVf/MOUmWtI8LTl8t7jSB2wEao/B0yroa8x6DkQ4hfBh7DZKMq80ZAYrplJwv8p/Fe+X/M3jubJYOXuEwKhOaJgZ1Fiyfn8yTLeZLFPMglvN4l53VJ6IOyMVL4KkS/deyu0w7MyGHB9lYU7alOAnTcHNX2aqi0agOVNkunQjQ3LpUTbj+f49rLNzlWztXann/8K2pc8em2apcig2qlQIBHxytdtCo1Z4YncGZ4AlaHHYckoVWqnPlcZ8fDtN5aVmeYcRyhARfnp+K2sSeHcueetUX878oNlBfUofNUcf9nYzlv/jHO7+pGEsvz+PTghib3PVEUMW0EpT8k+mTxZYrE9QnjT1mD5NT2+xwFURL58MA60owNPUt81FpMihCskpqv7bcAsCxnr7N+vwk1OyHzNtjTB3ZoIGUqlH8rh2A8RkPEyzCsFEYYoN8qCL69fYbIYSKeh9D7WzVEjsY3aVs5aCji+oTxPDV8Bv19Q3hz3yoqW9AjKDPX8N7+NXIYaPh5nBWewLepW9lf2SCmtL00m18ydnF+1EAeH3YeER563klajdFqBt8LYFgFBN4i9/fZPxzS5kLRW1C333mOdzVmRnmNZGnpUu5NvddlUiA0JAZ2JTN4Ai+CWM3b1FDuckyFuZacmgrnX4W5tcTiFvA6AwQdVC7p5Iy7DjPVyKnN7aNKLAAxCI2q7fuYV1ISAXgoYXC7rweQXmZla66FcZFuxPm79va5axRolHDwBJCFt4sS728xIrqwRmwOielfFJJX1fnKH41ShU6lblYx88b5AbhqB5VRYWfw23mU1BzfqqP2UFZg4s7xf3H/lH+pLDJz4W3x/Gq47KQ2RIpzatmwNAezyfX7XlJXzWfJG533Pb1GxxkhvYjaGopkBe+Z8ue7rTSbFXkHjtu8jzentTGSWJ5PapVsiHip3bhzwBReGXMxvd0lFP5XMCVsgHPs4szdOOpSIOdB2DcQtrvBgZFQ+hFYc8F9MIQ+AUOyYWQNDNgMYQ+D+hjna7QBq8PO7rJc5sQOpY9PEEE6Ly6MHkyQzrPFDrxrC9MI0HpySdxwQt19mBqWwPCASP7LT3GO+S8/mTNCejEhpBdhHj5c1Xs0GoWKTcX1pdEKBcR+BIMPgbYfVC6G3AcbXcUONRvYHHMbMdoY3sp9iy8KPz6G70Rzruc7RBx8QvOGb4e9NC/u/tv59+SO3zpokEyQvyd2Q+cn3QVYqe1QaMohlKFtZ2jn94IcvFRqhvq2Xz4eYP5i2WvpKlekMX7uSnK7YJFvC3m1lfyaucflcwv3VVFc47qyxyFBSa3Ixd+2HErpLINCNFw/whNlIxvl67kBXDLIg6RiGxEv5fDJVuMxu35HsNtFXr9xM1dELubg5jIGTQzi58I53P3BWJTKk3uZ+v2jVJ6ZvZY5AQt55dqN7PyvEEcjt9XqghSnfP/IgCj+N2oW8+LHYPxHRKVW8PALE53bhpX5Kaes1P9pHaZZ12ghnhc/hoF+YeCoAdNeVEG3cak+guiqdwixridMykO5r37XJajBrbdcthl4I7gPaOEKXUerDf0a4aqhX7x3ECISKkHZpKFftc1MWV0N44JjmzX0yzCW0Vcf0uSx/r6hLMyQu0baRQc51RWcF9GQyKgQBPrqQ8g4squvNhYGH4CkEXLl0BEoc+9n34hEorcO59mcxzhbeTexyvZVa3SU/pxNDKNJZQ0ZbCaOcc7njla62S6C7wHjf1D4OkQ+3wUz7xwWalG08+d/sDoLFBWEK89q8zFFZhPFljouDI1u5wxlcgx21mdZGB6moX9w6zlQ0XoVO/KOfZhmd1luk53skby1wQhH9Pw5nMgKEOGjZFpvXZPnRUnkt+x9bC3JqpcN0DE+OJYZkQNb1QppKZT6/Dl+/LCnFoddYmIvkYP21QRG1XFHSADfrI/hll/L+HpXNSuuD8VT272L/fIPU/j4gZ1YTA4CI915/MeJDJzQPoP3REYfJIdCLXUOVv2Qyb/fZKAP0nL2NXGceXUMW0yZAKgVSq7sPQqlQoGp2sbBLWVc8dgARoZFs6sql51lOVTbzOyrKGD44cKIU4jT2hhJN8o7Lr1G19CBt2Ih4IDi9xGybmEsEqIgUCYFUqObQFzsw3L1yHGkWUO/FjhkLOWz5I1cFDuEwX7hbCvJ4sMD63l82LnEeQXwZ24SKYYi1hSmMS44jlUFKTgkiXeSVvPMiAuaiMAZbWaXirJmhw2rw47JbkVEwsvFmKI6F7suw98uDREAHNV4FDzDe1GLmZcxnf8c7zBTeIZgRdMcg0qLiSjPri9JvJWlPEokn3IZLyGXRkuSRG51pcvxh6W524Xv+SBo5DLfE8AYsWJqtzHyfxk/gSBxlv+ENh/zanIiAPd3MERz05ISJODT2Uf3MA4M1rA110JZjZ0Az2Nza8upqWhiiOiUauJ9ghAQSDOWcCBfR7HBGzlZXTYiQryUnNNbx9ReOqbGaYn2bZ5A+nfuQdYWpnN9wlhC3X3Irq7g67Qt6JQazgx3rS9xOJQ6KTSe+X3Hk2wo4tvUrfhotAzwDeOZab68ubGC3nGJXBA9jFivAFYWJKM4azf7U8ayKt1C4IvZfHdZEHMGujauO6sw2xr7N5fy4uXrKcmpxc1dyZ3vj2bW7aeelkZwdMP75bDL9w5DiZnFbx1k0WsHUIWApg/ETfRi+fo0SnJqSdpQgrnW7gxPDfWPcMo2lNZVN7/IKcBpa4xIkoS93t3lrdE2JAVVbwAEWcsj4BoKiOLZdDOgYKpHH+K8Rh7XeTZu6OfsodMCK/NTGOAXyvR6b8WsmCEcNBSxpiCVGxLG8VXKFv7KO4AAZBhLGR0YQ1Z1ORWWWhLLcjveQ+doiHWQdQtyVNDVbtKBUPYV+dYIZqmeZqn9SX6zP8+lqv/DW9GwQ/oubSuRHr5dWlUDoCeM8dzARj5jJW8z1nYrnyZv5KDBtSv929QtLBg4tc3di514jJIrq+wmUHVc+KsrsGFGRfuqKlZXbAVJwcNxl7X5mMX5meiUSiYHtr+KqKTGzr9pZgYEqRkefvRE27GRbny+o5qVh8xcNuTYaNf8nXvAaYiMDoxhXvxoNEr5Nrojv47Jf+UBEsH6aqYm2Hj+jKH08lcdVQk1o7qUof7hzk1RgNaT7aXZZFa7zmWCpqFUgFB3H9KrSvkvP4UBvmE8PFmP3Wsrcd7RTAjpBcBVvUeTVFHAg+cYuXFkFNf/Usrc74s5r4+OX+cFo6kvHzXZrfyXn8wfOU3vOUpBwfMjLsBf1/H311Bq5rm5a9m7rgRBAdOv78W9n4w9JUtXi3NqyEtzHRIT6w0Te5H8l7TOQLbvfoKiPNBolfQZ6U9QpHyvaxyaOVVVdU9bY0QQBHw0OgzWOvJrqzBa6z0BMR9D9IeglMsDd+ckAXsBWZb5eOOyoV8LZFSXMS28b5PHDjf0C9R5cV3COJ7YsZy7B06ln28onxzcQJDOCx+NrllDP2+1Vk5EbYTRakarVKNRqlAIAgoEql2M8VEfsXAYV4H1sBibol79VZIra+qRJLhL/Qq50vvc4fcK71c8xO/iU3wU/id7y0swWM0YbRZ+OLSdBQOmtOWtaxdX8CHb+ZFfpUfYnBRLbk1Ni2PzTFW8sfc/Hh46HU91O8pIg26Dmo1Q8h6EHae2Ai1gw4yS9pXAFlqzQAgkzjP4qGMBDFYzOaYazuyAIQJy3xYJ+PjituVdndVb/t5tyjk2xki11czucrkLt5dayzV9xji9iX+lmLj0h2ISAnVMGLwHq6IKAfD17I8gHN3oi/MKZENROsUmI8Hu3uTWVJJuLOWSuGEtHtOWUGpebQXnR7kOpd4+ZADnxes458si/kqtI+CFbH6dF0KoXxWfJG+orzRsikMS+TptC7cPmIxW2T5jVhRF3r1zO398nIbokOg3NoCnf5lMQHj3GuYdxWyyk767gvTdFWQfMFBwqIayPBOGUjMmow2bxXUYrwn1doXHVAi8W+CVcy7A38Vma2tJlvPfkR4nt+R9S5y2xgjA6KAY/sk7iEMSWZqVyDXxYxAaaXiUmWtYWZ+wKQCjAjsW9+4oLTb0awGj1Yz3EYaAq4Z+YR56am1WDlQWMjt2GMmGomYN/eK8A0g6og35QUMRcd7ywqBSKIny8uOgodgp7CZKEsmGIqaGHdGzxGcG9FsH1kKwFYO9RP6vrRhshdSaMtFJ5aix8bL2cXSxXzMo6CNuSb6FhwsvZ8+oA7yyZyVV1jr2VRRQWldNoK5rhZtUqLiMt/lWuJHc8JchZQFeai1zYocyMjAaBQKJ5XksztxNuaWWEnMNv+fs4/Je7fCU+V0BGdfJyrvdbIw4sKClfZofFkpRSm1PQn0rTe5Fc1f8wHZdB8BgsvN7Sh3xAWomxOiOfgAQ66dBIcDewuaLaFdQVGd0huiGB0SiVigRRYmrfi7h5321nJ/gzo+XB7GioJR/8qqQgAKTweXiciTnRvbH7LDx9M7fEQQBSZKYFTOEMUEty5x3RShV765i2x0RvLepinv/KOeszwqJDytj8mCrU3vRU+WGRbQ7d+cpVSV8fHADdw6YjEJomzdjxdfpvLdgO3U1dvxDdTzy/RkMmxpy9AO7CVEUKc6uJWV7OZn7KslLqaY4u4aKIjPVlRYsJgei44hwrQAarRIPHzURfbwJjPQgvLcX0f29effO7ThszcfHDfJl7MuBbPWUk/4/T9nIrf0m4l3fVkSURFbkHSSlqhiQPWYJ+rZtBk42TmtjZHJoPKvyU7BLIpuKMyipq2ZSaG/0GndSqopZU5BKbf3uYKh/ZJtuKl1Fqw39OsD+ygIKamVtiVRDMX/nHSDE3ZsJwXEkG4rIrzXwZcomrk8YD8jvzZqCVBZn7q4fU8zO0hwWDJzsPOe08L58lbKZGC8/Yrz8WZmfglW0N9MiQRDAa6LLeUmSxKObF2Fx2IlRFvOw9++QOoOb9bMpD7uGxwq+4cw9E/lfyHcsz5EXt13luc5QVFcyTrqe7y1P4AjcjJB1KXf3v9Yp7w8wIjCKGC9/nt75OzbRwebiTC6KGdL2HaJCAe5DwLQbRDscR9XZI7FjQ90OjRGT3QzKUvykthsWP+QcQi0oOpS8esuv5YgSfDCzfQJXXm4CGRXHpry3ca6QUlCwp9DCbb+WsjnHypBQDb/OC0apEFA36vvU1vyinaXZbCvJYn7CeMI89OTWVLIwYycqQdFs8elqAUCABeN9mD3Qg6HvpZFWEEBuqQ8Lzirl3pGDCPPwwSY62FGazc+HdlLnsHGgspBdZbmMPMoGLXVXOc9fuo7CQzVotEpueW0El9zf/bLmphorabsqOLS7kuyDVRQeqqYsz0RVmQVTtWuvhlIloPVUoQ/U4h+mIyTWk8gEH+KG+JIw0g+/kJY9PD+9vJ+iLLkKT6EUUCgErn1uCJc+0J9a0cqBXflU28wcMpbx6LZlDPYLx12t4WBlEeWWhuq9C6MGnbI6I6e1MRKg9WRenzF8lbIZCTmh9XBSa2OCdd5cHT/quM7taA393j/jsma7Em+NFqPtiLBJfUO/OrvN6eX58dAORgVGc1HMEJQKhTMcU9FIcyRA68mCAVNYlLGLVfkp6N3cmddnDAN8G1zuowKjqbGZWZ69F6PVTISnL3cNmOq06tuCXRKdEvZqj0Eo+t4DRW9D3sM8KtlIC5zNl6VLeKXkbvpxIwA1tmNTMVFgqsKRfCcMfxy3Qe8SqbtHnuO+fTj278ft8svx13owMiCKzSWZmB02Moxlct+fthI4H7Jvh9JPIfi2Y/I62oKIHTVt/5zey/oVBCtDPdsm526220mvqWKMX1C7e4fUmEUWJ9USo1e1W6k01EtFduWxKe8NqvfGWe0KHv5VRXZZPhE+StbcFMKkWJ3To3E4lAMQ3EYP3uLMRKZH9neGSsM99OTVVvJL5u5mYw8LAHZpKBWwCUYunribnanh7EqP4PW/w+jvKXD9CLnSY1xwHO4qDR8cWAfIOSstGSPVlRaev3Qdu/4rQhDgzCtjeODLcWg0x37JEUWRgkM1pO4oJ3OfgbxUI8XZtVQW11FTacVssnNkIZRw2Kuh1xDV10f2asR7ETPAh/gRfsQM9O1UTktInKfTGIkf4cdDX01wduD1RstdA6fwTtJqqm1yBd+uRt+hw8yKHszY4FO3IeBpbYwAjA2KxV2pYVHmLkqOyFIWEBgeEMmVvUfi6eLHeyxpraHf9Ij+Lt2jcV4BJBuKmuSNHG7oNzIwmhEBUTy0dSnnRPTj7Ih+QENDv+v6jG2WwHpY8Kw1poYlMDWs4xnwSkGBUlDgkEQqzeWI6ZeiMPwG6iAImM8XEc9waOdk1hlWUyoITFLPR6s8Nl/bOrsNTDFQPgi/3H2kfD6Z4K0mHDt2gFaLZu5cBJWKsEZVTXX2du7CA2+C7AVQ+nm3GyNa2p5Xsaj4XwBui76oTeM/yjiABNwS16/dc1vwWxkOCd6+sP2y3wkBapJLbdjtYpcnRPq6uVNT2Zuft/rhEAX6BNnZfmsU3jr5+yhJEn/lHqDAJHsge3kHEOLetlCYVbSjOEKEriU9icPl5V0aSq0/FmBEn3zuGhvKe2vcueGXMr7ZWcO7M/0ZGOLGYL9wArSelJlrSKsqwS46UDXy3IqiyCcP7mLJ28mIDon44X48vWQyIdFdl8NTW20ldUcFhxIryDlYReGhGsryTVSVmTFV27FbXXg11AI6TzW+IToCDns1+nrTa4gffUb5ow84tvf3mAF69m8s5caXh3PRnQnNtFOiPP14fNh5/Jt/kM3FGZjq7ysCMMA3jGnhfenne+KGtbqC094YARjsH85AvzBSDMWkVZVgFR3o3XSMCIhqf8VEF9FSQz8PlZtT8v3LlE3oNe5cHDsUgLPCE3ht73/825mGfl3M0frMyAl1weiqFnMNnyJUWsF7OsT/Akr5BvbfkJWEro8hWVyFlz2Ah/SuOwJ3BtFoxOvNd7nrm68IzMlH6YDqkHUIZ8xBN2sWdU8+ieXLL9HedBM5NRXO49rd/0ehAl1fMO0BUTyiKeLxQ0RE0w6tlBRTCuDNrOC2lbV/mZWCUhCYF9180WsNs1Xk+8Qawr2VzOzf/lDE8HA3lh00sS3fwvjotnt+jkZpjZ3zvipiZ34ASoWDM4em0zusgjcPpDEyMAoBBbvKcsitbSgHb08ocbBfOH/mJuGndSfU3Yfcmkq2lWa1ekyXhlIBi6PBsB4e6snya4KY810xazLN3Lm8nNU3hyEIAoH1xogEWBsZI6t/zuStW7ZSW2VDH+TGQ19NYPR54W1+D0A2ZvLTqmWvRpLs1SjJrqWi2ExNpRVLXQteDZ0ST72GmCgPAqM8iIj3Imagnj4j/Ins69PtlTrzXxrGvKeH4OPfctK4r5s7l8aN4OKYoZTUVWMXRXzd3JvlBZ2q9Bgj9SgEgX6+ISeV9VlhMSE02k318g7kxoQJ7Wvo5xPIXQO6Ji+l2fza0mfGXsF8x/24q3ZjR80P9luI8nmAMWjRAAW1VSzO3M0sxQv8IN7NdnEhW2pn0sv7qk7Pz56SQt1rr2H76y+k/HzUQJBSQXFMJFvne7Lr/gOcpenFbJ7AcfAgpqefxnDxhewqk12oHioNvX06oCrqfw3kPQIVP0HAlZ1+HR1DQkvbk4BrxSIEAtsUcrGLIklVlQz08UXZTmPr3j/LsYvw2oyO6clMiZVv3GsyzF1mjPzfOgOPrajALsJ5fXTcdaaRpTmyQVpgqmJ59r5mx8yKHsIQ/4g2X+PyXiNZlr2XH9K3U22z4KPRMcw/ko3FGS0e09WhVK96768owvtbDPy43YpKAW9d4Mcto2URN5vocBrjKkGBVqkiM6mS5+auIzfFiEqj4PoXhnLV44NczrnGYCV1ZxmHEivJOWikMKOasvw6qsrM1NW49mqo1AI6LzX+YTr8w9wJjfMkqq8PvYb60mek30nRvVfnoUbXRttarVC22GPsVEaQpI4oOB1fjEYjPj4+VFVV4e19cjR66kEWiHpx998un3t82LlEVX8FeY8gSTbylCN5xXQbtvqkSrVCibtKQ5W1znmMVarmZ8d9WEQzq4avYrLvZJfnbglRFLH//Tfm997DtmEDVNeH5Tw8UI0bh/bWW1k3qi+/ZO8BRISxtyOoTDxty8MjqwpL/wEkTxrNt88uAOCciH7MiW259LJF7CbY5Qme46H/hvYf30msmLkLHeOZzzV81qZjhH998JAGUnPOxqOO/TIzmRt2rOXNIeO4p0/bxc7sdhGPZ7LQaxUUPxHT5uMaY7WLuD2ZxcUD3Flydec2FpkVVqZ/WUxamQ0frcCiK4M5uz6HZV9FPn/m7CejuqnacLSnH+dGDugShcwUQzFv7Fvp8rnHh53bIQFAQ52DAyU2iqodFFXbKapxUFTtoLDaQbbBSkqZGatdCQhcPUzHW+cH4d+osd+K3AMsyUoEYKh7JHlP29j6Rz4IcMZFkVzx2ACyDxjJSjKQl1ZNSY6cq1FrsGKpczT3aijATSfnavgG6wiq92rEDvIlfoQfUX29251z1MOJRVvX7x7PSA/HHX9KCE0fDdZDoPRG6LWMYK+zGZy6xakyaBMdTQwRd5Wau/vO5CH1JIZsG8LZu89m35h9JHi0nq8ims1YPvoIy3ff4di7F2z1sdiQENQXX4zuvvtQDWlIypwiOthTWUiasQQp5VakAf/H07VnQ/GjPKz3pt/qzVyGyJbnHmJGZAfbAKjcwS0Oard37PhOUoPcj0lH2wz7VWW7QGEkTt22kMvHGQcRgFvj2lc18fCKCqwOePGcjqvsalQKtCqB1NLWc3kkSeLGJWXE+al4fGpz3YaH/izn9Q1ViBJcNdSTr+YENHH1D/KTBcoKag0UmOQy3hCdd5Pqq44iSRL/5B9kedbeFseU1FV3yBiZ9W0x6zLlhFYBWaZeokGq/vCS0DuslPCYQpKqBtBPEUK1zcx/ySmsX5+FOVWidiUcysgCqT7SqIANS3PZsLRp4qVKo0DnqSIg3IOAcB2hcV5E9fOWvRojAvDUtzPM2cMpyyltjKwtSGNtYRrlFlnAKtTdhwuiBsk9aFrAVW8Xp1Q8NOntUuew0cs7gCt7j2rW26UHV4jMUf7ANOXfCFYJ/K+E2K9BoUID3NR3AmdVJ7CuMI10Yxl20YFeo2NMUCxjg2Pr8zNC+WfYP5y560xGbB9B5vhMAjVNQyWOnBzqXn8d27JliDk5sqKaQoGiTx/cLrkE7T33oPBzfSNXK5QsGDiZr1O3sKsMqIkFfRJ4ppM2ehAj/lrH4NVbGTLvflQ/R8DoDvbQ8bscCl+Eyt/lDsfHEWO9MeKOvk3j385cBMDMwClHHSuKIrsqy4j39EHbjs6+oijywZZq/HQKbhzdud9SgIeCfGPrzcR+O2jiix3VCMBZvXSMjZI9cokFFs7/qoiCagchnkp+uzaYkREthwHCPPRNEpq7gt9y9jVTPj2Sb9O2EuauJ8yjfVoxVw31dBojEmBrFhWR8LWY6PtzKnvfgd2VWxBrQbLUH3AEajcFPoFa/IK1BEV7ENHHm9iBevqM9Cc83qvHqwE8tm1Zk/Lcw0wOjefK3q6rNE/HdeiUNkb0bjoujh0il+RJsLkkkw8OrOOJYee6vIG01tvlcAxvRd5BVhWkcF3COAK0HizP2uuyt0sPTYkigwWa1/ARqjBIeupifyE0sGnDNUEQiFPoCN9wELdrrkFQu9bvmOI7hW/6f8O8A/MYuGUg2eOzUWzcivntt7GvWYNUWZ9EqNWiOuMM3ObPR3PVVSjauDhqlWpu6TeRgloD/5X6sMnzQlT9P8A3ZgYI6xEkCXJyMI4bh+7pp9E99hhCOxZeAELvl42R4rePuzFSg1y+7k7bdtbbjIkgqXmgV/POxkeyvCAbmyRyZVTvo45tzNP/GTDbJV45t/OehQgfBdtybU0SjRsnTZttInf+VoZCkL0D1y0qJfHOMG5bXs7XO2tAgHsmePP6DL/jvpjm1lQ2MURGB0YzyC8cb42W7OoK1helU2quweyw8136Vh4ack6bzmsoM5O6vRyPxAoirWry1GokV3oVEsT/kEZdMaAChTuogkDhCbZcEKtlAeW59/bjpleG9xgbbeDRodMRG1lyBbVVvJW0ihEBUS7Hn67r0CltjByZQHZRzBDWFqaRUV3u0hhprbfLVfGjkSSJlfnJzIgayND6c1+fMI4Htiw5tr1dTmIU2Lle9RGjFJuREFhhP58ljit4XNc810I0GDCecw6O7dsRvLxwu/TSFs97ZeDliEmLSdvyK6lz3QkvlX/sgr8/mnrvh3r8+E7NPcxDzzUe5yNxLZvdvsIzrAxBqQS7Xc7yA+qeeQbr77/j9cMPKHu3YwFW+YImUu5VcwRHq0DqLCbkRdqDti38ZfY8IAi95ujXfzddXkjvjW97rogoiry5oQpvN4G7JujbfJwrKsy11Ah5iFIwj25aiadODtc0Tpp+bX0VuQaHc3lILbPh+3wOZrtELz8Vf10XQnxg94QP1hSmOv89M3oQ50c1JIL21YcwOTSeF3f/RYm5hkPGMnJrKgnV+pCVVEnazgqy9leRn1ZNaW4tlSVmag1WrGYHjTMDQwPdyb1haLNrC0hcHCjwzoZphMZ5kmcysDErg7/vzSZ/pQkkGHV+GE/+NBF3z57wSls5UgH379wDBGo96ePjujPx6boOndLGSGNESWRnaQ5Wh504L9e9Llrr7QJQZq7FaDPTr1E/CJ1KQ6xXQLPeLj2Atvof3tDcik6oo1AM5V3bQ5Tj+gcolpRgPPNMHMnJoFBgXbasmTEilpRQ9+abWBcvRkxP53xJwqyBXydLVA6I4NH7N6OMaHsFQ1u5ik/ZyUL2aP/inCPzvSUJx+7dGAYNwuPdd3GbP7/tjax8L4bid+TmjF5nAG2sQOoktU5jpG09X+xCKWqpbcJumyuKiXL3xFvT9sXq1XVV1Nok/ndO570iNXYLgXojZAeTX+ZDQqScYHpYm6PG4MYLqyqbRBwkwGyXuGu8N29fGIDZbuPnQztJLM+l2mYh0sOXy3qNIMarZd2TFEMxizJ2UWiqwtfNnRlRA5uVz64uSOXfvINUWeuI8PTl8l4jiD3iXpRYJt9r3BQqzqq/F5UXmchLNmK1iKRsLyP3NwdFeQ5EI9xg/r1xiycnajcF7l5qgqM9CIhwJ7SXF9H9fEgL8OC5ZDsccYwABHoo+fKOKLy1srdj3Vt5fPd8CnarSGRfb57+ZRIxA07NvijHC7voYGtJFtPC+7Z4nzhd16FT3hjJrzXwSuI/2EQHbkoVt/af2GKcta29XVz1gziyt8tpjb0Ge+pMAmtW40DJp9bb2SE1bTv/3v61vDrmYgAceXkYp0xBzMoChxzrNy9fzmtblmEpzGPEmh2MWbYSj+z65DiNBuXIkey8dg4rhsax1raIbY5F7K94nB8jvu7yl6NCxSW8ySHtLUgSNLuF2O1gt1N7000owsLQzJjh6jTNCX1YNkYKX3MaI5UWUzNDBBoWU792aIO0RE29MeLF0cuSS8yVoCgjSDi6vsiakgLqHA7mhLdPJfKlNQY81AIPT25f/sORSJLEwcpiwv1l0bFig5fTGAF5Q3L/77Kg2pEoBdicbcYhSnyTtpUCUxXXJ4xHr9GxtSSTN/et4pkR57vUHSoz1/De/jVMCo1nft/xJBuK+DZ1Kz4arbPMdntpNr9k7OLK3qOI9QpgZUEy7ySt5tkRFza5n9TWe8SC3b2dbQY+uHsHaxdmA7KmBgrADZReoI/TMiAhmIgEuQIlYZQ/wdEezcInRUY7539dxK4kK24qeOcCf15db6DA6ECUZIPs3ZkBeGsVbPsrn1ev3Yih1IKHj5qHvxnP1MtOXeXP40lieR51divjW1FSPV3XoVPeGAnWefHE8POos9vYVZbDVylbuH/wtHYnfvXQRko+R8q+A6VkIUPszXu2BzG5UPqss1nJqi4nssRA1eTJSEVFTkMEQFFTw40zrsW9sgpREMgenEDIyIsIuuV2NGefzd+5B/g7dz/XJYxjgeZMZuwu4ufS7+iVHs0LvZ9r01T/zt3P0qw9nBmWwGW9RrQ4bmdpDv9mhxFp64UgHmo+QKlEFAS2X3Ie/7qVEbVvZduSyTRhoAoG42oADlQW8llyy6WzieV5RHr4drqFuBl5sfZsg2fklYyfQHAwQX/0hoCvp+4B4KG+Q9s8l3c3GTBaJB6fou9U/oFDFPkqdTPbSrNx18ohh8rqpobDS5uTWbLfdfK6Q4Lt+Vbe2lhJOrncPmCS041+YfRg9lbks7YwjYtimsvhry1MI0DrySVxwwE5UT69qpT/8lOcxsh/+cmcEdKLCSG9ALiq92iSKgrYVHyIcxtVZWmVauocNsrMNdhEB2qFkpKcWhJG+/PUwkn4h7mzvSKLr1K3AHBuZDwXxwxt9b15bEU5r66twiHJOim/XBWMu0ZB7wA1M74qQgDO7KVlopfErcP/IH13BUqVwCUP9OSFdDUbiw4xwC8UfTeJaZ7InPLGiEqhdPaUiPbyI6umnFUFKU5V0sa01tsFwFstCwUZrWZ8GokGGa1mIj31x+gVnCRYiyD1PDAlYseNL213sFMcj5tCSZibJzV2C0P9I9hdlke13YxVcrDw9++48e4XkSoqmhgiIO/U3O0ibrfdhvb++/m8Op1ID98WY6Ybx/7J0A1T+V/2i8TqopkfPr/V6WZVl7OuMJ2Io1RCNE4mi9ZfCTzfbEzZrBn8cNW5XDx5Jve3N5lMfwGUfU5G0UreSy/F4cIrcpg/cpJwU6iYHtm5RmN1GADwbCFk1pg/S+U+JPfFXnbUsWtLCwnR6gjRtv1G+8x/BrQqgefO1rf5GFcszNjFttJs5/+7qR3UWXRO6XJRFPh+YwDyN8u1MScAT/xTxVVngUpo+rmpFSoOuehbBZBhLKOvvqmmSX/fUBZm7AJk13xOdQXnNVJklZWHQ8gwljU7bmdZDia7lc3FGQxSRJCyrZx7Ph5DcLQnDlFkVUGKc3xjgbMj2Zpj5qLviimqdhDooeCxc6sxKVN5ZIcRjUJJnHcg5/eN4980K4PXZXHNzYeQJBhxTihP/jzJWXZ7OlZ2HAvKzbUcNBRza3/XTUMPc7quQ6edyStJ8s3BFYd7uzTmcG8XgACtB95qbZMxh3u7tJSHclqQ/xwkRoApkTrP6dxj+Yid4nh8NDqeGXEBwwMjMTts7KnIR6NU4qlyo9/abVx7zf2IpaXNDBGQFwaFvz+eH3yAqlcv+vuGOgWmXMVMfTSe3Oj3JH6KMG5KvokV5StanK7ZYePzlE3Mix9zVDn3xslksd7yrlis/9Uo+sl9VzYOiGbC6KkM9Y8gwsOX6xPGYbDUkVjWvNlVM0IfRgKMOc86DZF++hAeHHw2H55xBc+NuIDJofHO4Uuz9lBmrjn6eVuhDrl9vKYNXXtzLBng8GOMX+saI4mVpVTbbVzQjg69n283UlEnctvYzpWAVphrWVuYBsi5NfMTxjMo2B3RoeaFkRdyffwkft00gDqrhiMNES83gb6Bas7ro+Om0V7833l+9PL258/cJAwWE6IksqUkkwxjWRPdm8YYbWaXLnOzw4bVYafGZkFEapbI6K3RUnXEojOlUc+Ynw/t5JMvtoEAEy6KJKemgvcOrCWnRq4WC3P3Id67eajNbBWZ9U0hYz8soKTGwX1neFP0WBSCtowpYX14ZMg53D3wTByiSFDFZsZ8vpu93x4iNM6TD3bO4JUV05yGyGFjfEJIHE8MP4+h/hF8eGA9+bUG5/UOV3ZcFT+aR4aeg5tCxTtJq1vsrXO6sqn4EF5qNwa1Ii0Bp+86dEp7RpZmJjLALww/N3csDjvbSrJIrSrmroFTgZOjt8sJjekgpM4AaxYo/aD3Yn4r98KOvHObETkAP60HsV4BXNtrGIEl1ZRv3sCf7jYuf/4DVHaHK+kCJ2JWFo6UFJQJCW2KmQa6+fFgwLs8VXoZF+y5gJ2jdjLYq3lVx4/pOxjkG0Y/3xD+zG1dz6FxMpnCX05gLBqs4K8Xwnng/CRKIqM44/OFaO942HlMu5LJdPE4FD70dsi76N7egdw1cIqzEWKwuzdX9h6FRqHi3/yDSEisK0xndv13tiNYqKEl78CR1EnFKNqQW/JKihyieaQdIZrHVlSgUcIr0zsucgawoegQUv03aXpEf0YHxTBvmIH7/qjgj2QTdywXMdZ44O9VQ/+YIiaEB3J9/wGE+6jw0DQ3gkrrxvF16lYe3vYrCgSiPH0ZFRjdpFT4WBHvHcj44Dg2FWdgMTr498kcFO7wVOpyzI6GrFOVoOCq3qOahey+3mHktmXl1NklBoWo+f3aUKL08m3+7vr7HsDu1UWsu6aUyjwzPgFKFnw1junXNq8GO10rO7oaUZLYVJzBuOA4lEc0Oe1Zh2ROaWOk2mbmq5TNVFnr0KnUhHvouWvgVGfL9xO9t8sJiyhC9u1Q+on8/wE3QcxHoFBQnr/OOeywKzchdQ3GM64CB3i6u3PTBTP49oV7idyfRkC1iZGFRuxJSU55dlEQEBQKBIcD6/Ll6B58sM1T81UFsGbEGs7YcQZjd4wlfVw6YdqGncj2kixyaip4bNi5bTpf42Qy1eTJ+OzZw3fh35Hh/38s50kGvfUavpdeiXTnvbBwkfO49iST5SpHEeP4jwCKmR4xGYWgQJIkLF99heaSS1B4enJORF/+y09GQmJvRX6njRFFG5yidrsdSVGKt3R0Ybd/ivPwU7vRy7NtuVg/7qmmpFbk1jFeqDvZxCy7ptz57/EhcgVLhLcKuwgXflPMtN46VtwQyFvJS5EADw8HfQJblvEP1HnxwJBpWBx2zA4bPhodnxzcQIDWdedZb7UW4xGftdFqRqtUo1GqUAgCCgSqXYzxOSJRURAEro4fjVgDC69OAwcg0MQQ8VBpuKnvGfRuVBqaa7Bz/teF7CuyoVMJfDEngOtHNg+TlOWbeGbOGpK3lqNQCwQ9KfDKg+cS6eXaIDxdKzu6mmRDERUWExNcNCjsWYdkTmlj5Jo+Y1t9/v7B05o9NiIwihGBrsVoQL5ZzIwZzMyYtusonFJUb4DUi8BRDpoo6PMHuA90Pq1qZPXXOawgqiDvBXCA+52gvf1aHL1eJ33LUtLGDiFQ68lZo2YiSRJSYSH2pCSW/fUTQwqrCDqUgyJcNmjaEzMd5zOShYMWMnffXAZvHUzWhCw8VZ5UWGr5OWMX9wzq2I9WEARUgwczqGA+Bw1/8I/+VeLPTiX93EkMX7IER15eh0qLd6guJ8b6H9OVvxHhebP83r30EnWPP4591y48330Xb40OvUZHpdWEyW5t9zUaY6EWRRt++j8WrgKFiX7a1nNUDtVUUWG1cFlkrzbP4cE/K1Ap4M0ZLZfLtpXG1Uc6pRxeCPdRoVTAo5P1PHe2LxKgFBTYJbHVvJzGuClVuClV1NqsHKgsZHYLfYjivANIqiho8thBQxFx3rLLXKVQEuXlx0FDsXPnKkoSyYYipoY1D3/VVdnZemM5tvoon+CAIJ0Xeo2OUYHRjA6KcVbaiKLIg39V8NZGI6IEs/q589PlQWiP8PjY7SJv3LSFf785hCTC4MlBhL+swqETWzRE4PSt7Ohq+vuG8vFE100xe9YhmVPaGOmhCxGtkH4pGJYBSgh7GiKeaTYs2sufHfX9ZTYWZXCZ4hPEPFnISXPt0wjGZxETv8eT/1GNL9H1/TUEQUAIC0MTFkZlpDv/iHYWDJjiPG9LMdPDvUAOx0wnh8qu5jlBc3i99+vcn34/g7cOJn1cOjnVFVTbzLy4q6F5n4hEWlUJawpSef+My5zhkcO4SiarsVnwK7iZCv09/KW7g+Ib5jDir3XUXHklPutkz1B7ksnq3AZiNmkZotxFTq0B3XsfUff44wghIYiHDjnPdzhn4Wh5LkfDhqlNxsjn+b8DMC+s9VLlV5Lrq2gSmleauGL5gVryjQ6uGebZbNHsCP5unkAxAPsq8xkbFMvoSC11z8WiVso7zuTKIqfR4n8UrZb9lQVIEoS4e1NSV83izN2EuHs7d7VLMxMxWE1cnyCL6k0OjWdNQSqLM3czITiOZEMxO0tzWDCwoZHjtPC+fJWymRgvP2K8/FmZn4JVtDfTIqmpsvLgWf+SsbfSKb/uqIWH46fj6dP0c9+QVcfs74oprRUJ8VKy5OpgxkU1zwP69f0UPn1wJ5Y6B0HRHjz580R2+WWyv7KQB/ue3cZ3uYceji09xkgPR6fiF8i4DsRa0A2GhL/kslQXjAuKZVnWHhySnbiSBaDcwob8Kxig+YWKhHspylcRZ3iZJzRPsNR2KeNDnztmMdP7ou8j25LNO7nvMGHnBFYPW8dTw5surF+nbiHE3ZvpEf2bGSLQkEzW2FV9sLKIAR7jyGQo6aq/cI+5iIJzphC+YjX2vXux9e/XxDA6GoP9wkgt78dAx25qFlyP6cd/0T32GISEUHf33TiysvhXqnRKSh8tAe5o2DAjdwNqnX3VSYCOGyOntzrut8IsPFVqhvsePbcE4O7fy1EK8P7Mrkm2Gxccy8Zi2Wj7LXsv/fQh+Gh0TkPEZLeyOHN3w/ig5q7yxtTZbSzN2oPBYsJdpWF4QCQXxQxBWZ9kW2Wto8Jico4P0HqyYMAUFmXsYlV+Cno3d+b1GdOk0mVUYDQ1NjPLs/ditJqJ8PTlrgFT8W7k2as1Wnn47P84tKcS8QgxlPy0ahJGyl4kk1Vk7vfF/JVah1KARyb78NK5zT1MSZtKefHydZTmmnBzV3L3h6O58NYEfkzfzr7yAh4YMs2lbkpjTtfKjh6OPz3GSA8tYzdAyvlQuwkEN4j+GIJvbvUQL5XAfP8DxBvfwkuoxiDpsaUUU+flwcu7/wDiCOB5HtU8xXWaT6DMyO91NxyzmOnbfd4mpy6HX8t+Zd6BK1k0eFGT592UKjxUbs5zt8cwOpdfeVyIhb7v88Pdd3PfyvUUXzuPZd+/2+ZkMqm6moTVmzn4hQPDSuhj+5ekGy4n8uF7iaqowXTXXSTfdiP/PHYDAAICk0Lij3LW1pGNEbejjqsSC4AgNK303Skymygy13F+aMsu5casTDORVWnnkkEeeGq7ppjv/9s77/goyu0PPzPbk03vIY0kEDqhdxBBUVDBimJBr71dFSvXguVeu/689iv2glgAC2JBmiIgvYdASEgI6XWz2Wyd+f0xYSEkIQmkEJjn81mSnXnnnXdfNjNnznvO9yT7h5HgF8KBqlJK7NU8ueknRkcmEW8OJs9WyZ/5Gd4baqjR7A20bIzBYfEMDms8K+j6lBH1tqUERvDYwPOP2+/46BTGRzdcZdpW5eKhc35n3+ayeoYIQO5eCymDQ3jvbwv3LC7F7pYZGK3nx5mRRPvX/f8pL6rh6cv+YMefRQginH9jMve8OwyNRuDLjA1sLc1lVr8JjcbAHE1jxnhLvJQqKs1BNUZUGqbgv3DwQZBd4Dceun0H2uPoBniqoOg9yH+RAe4ib7LGYvfFDNm8BIPtSFpkCRHM1X/OPZpHEcvmc79hIyT9Xae71lwzXdR/EYPXD+bb4m95YO8DvNz95UbbtiyYLJChzGC97xckplaw8sbLOWvuV+h37eafU2Y0Gpfiyc3F9eOPOBctwrViBbjdeD+pGebNvAC2/QbA7CB/glathlpjZGpCP8JMTd9EjocbJyaaDjT1CCUY5eN7EV6qzaKZ1a3vcdsd5vYfShEFeHfayceKHEYQBG7tMZoXty+l3KHE1PyWm1avna/WwB29xno9HB1BQxVcJYeM9UE9pTscDRoiolZg7srN3F1RSNrBcPyMHt6/JJKrByj6SYd1Pv7I20f+T3ZK3pbwVEKvkaHM+XYcIVGK92NexgbWFx3gjl5jMWp03mU/U22gLaiZHSodh2qMqNTFng17zwP7HhD9IPlbCLqo8fauYkXSvOC/IFkBuU7SqOw3Bh/L19SYlXX6WN8gzoruzojwrojiVMi6BYrnwpYY6PGbVxa9tVk3eB3Ja5N55eArxJviuTv2bqB+8FhLg8mu40O2sJC9UU9wy/MHqHr/ay65798EX35bnXayLGP/v//D8ckneLZvV3S9BcFbcE+o/cc0A4yCDXut7PuOs4czcsFvJG1OI/XSGZxzTGbDieDBhQ7TcdvssmSBWEYX7YTjtluQm4lR1HB2RNOBu38dqGFfiYsLe5gI9mndS0+w0ZdH+p/LgqwtbCo5WCdIVUCgX0gXLu86gLBaAcSOoqEKwMimXwAAdvtJREFUri/+tIzSnQ4kSUYUvV8JQAkbyUsJYaVfIu6DWs7tbaVr/G7O6n4kG+zX3DR++HU3BY9L2Isl/AdriHvYyEuXnFvHID6sxfLKjmV1xjSz+3Bv7Iqa2aHSUQiyfGzlr1MPi8VCQEAAlZWV+Purqn5tRs7DUPAyIEHwdEj8HMRGbhqyB3IehKK3USp1NSBwJJpgUBWlBhNyn94Y/16HWdfA8kDJl5B5ndJHzLMQ/UgrfqgjWNwWEv5KoMJdwaK+i5gaPrVV+l3Bm3zF3YzkBi65RYtj7lx85s7FdNNN3jayw0F5RARyZeVx+wpcCId63sX37kuwuhz4Waq58qzLEMeNJXjlqlYZ750YiKYPj7Kp0TYztz3PpyWzuS3sdd7pd3eDbSxOJwHff8RZYdGsOOvCJs/b97WD7Cp0UfBoHOHmtnsOqnTWsLMsD5vbiUmro2dgVJNBqx3FV/s3saPsEPfHn8PaH3JZ+dUBNi8rABlqgo3sOSeRsq5BRORUsPiFXgyOMfL81l+9asTpG0p45JFfqVouoTdq+MdzqUy5K5kH1i3k+u7D1dRalQ6nuffvM06BVaUBqjfDli5Q8CJoQ6HnOkie37ghAuCpVHRGZAcNGiIAPoOQZAFcLvRx8Q0bIgChV0G/NNAGQ+5s2DOp7uNhK+Gv9Wf7sO0YRAOX7riUDZUbWqXf8dxFMHGs5RMcbz4CRiO2Bx5AOuozCAYDfr/8AkYjNLRMIAhohg1DE6MnzvErd/cZz+wB53HXuEvRJCYir1lbp7+TQcaDgeMHLv5R9jfIIg8nNy4D/9q+HQDcndyn0TaH2XzIzs5CFxOTjW1qiAAE6E2MikzinJiejI5MPmUNkcMVXEdGJBEUbmLyTd14cek5mMONZI6LY+2NA7AFm+j/zW6GLt7L4BglaLRXUBTphUU8OHEpdw77merNEiOv78J3lVdw2b296uh8qKh0FlRj5ExGcsP+62DXIHDlQ8S9kJoPfk1XaEUbDL03giEZaMgdqwXzcKSsLAA0SU1oUBiTITUPzKPB8htsiwFnbks/UZPEGGP4a5BSjG7MpjFk12Q3cUTzuImvkZF4Tz8d0+zZUFmJ/em6Bft0w4fj/9NPoGlgvmQZ4w03gM9gcGSA50iMjeGmm8DlwvnZZ60yVgkJQwPFC48mz5kNUhgJPo3Xr5mXsw+dIDItumkJ+JsXKjfG9y9tuh7OmUJDFVyf/6mIpRf2JGt4DEPijVw1eQe33xfGLS8qRfgkSWLD24Wsv7ScLcsK6DrSn7h5Ivf/bwR6/REjT9X5UOlsqMbImUrFr7AlFEo/UwyKfvsg/v8afmpvDFMP6LMZ/BuKK3CD7xA8m5SlALFXM4q7iXro9SdEzVaMo21JUP5D88fTTAb6D+SH/j/glJ30/7s/Fc6Kk+4zkWGkcDbZbCTrsSEIgYHUPP88krOuQJkQH9/wHGu16K+4AiJuB2QofNO7y3jffSCK2F977aTHqSBj5PixE06K0MiNp+o6JTd7rZUMCAppsq5MWqGTzXlOxiQYvNLkKnUruO4rdpLyykFmr7aidbj5v0EG/r4zBmOgzIDLI7jg1u4sm5fFtKCvWftiAfquAs//NoFHloxEYz65Ks4qKqcC6pXhTMNtg4yLFe8DWoh5AaIfalEXdreL77O3s7X0IFZXDXdr80gWhFrLVgBqlxPMQ/Ds+hiAnJSufLP5Z/JtlQQZfJgc16ee4NOKvL0szU2j0tmPfqa3uMHzEPp9UyFyFsS9cpIfvC6TQyfzTso73JZ+G33X9yVrZBba4y1LNYOb+YaHiOAjcSb/fu01qq+/nuo77mDz0w+zKn8f9ryDXHPPv/HXaXDcdCuBb7+nVG7UaNBNmYIYFATSDMi8nqLCr3kzr6e3Uuq1I4YQsHYDkt2OaDSecKVUJ4o+hpHG29ncdtAUE0zjyy/v7N+NDNzStWeT83LjQqXa7QeXNE+HpCl+ObiLRQe2cXZ0CtOTBjXa7lSuNnu4gustPUZxy8Ji3t9QhQz0WJ9L4t+HuPfTqwDFw5GZXsbbY7aSu7cKnUFkzAuRiBNdDB4YTXGNUjRR1flQ6eyonpEzieJPYEuIYoj4DoEB+S02RAA+3fc3aRUF3JAykueCPqG7sJP33bOoSvwBNLUXck0A6BPw7NuHDLwlFXq1GCZ0SeGzvX+zq/yIhPaG4my+zdzMlLg+PDrgfHz8B/G4+x1cungoeBV2DQWpdd3Ot8bcyiPxj5DryGXwhsEnHZNhJpgJ3IuVYpbOPIAYE4Pz448JtLu4pErDvVfcS2huATs/eINXrjwL1zu13g+PB8PMmcrvokiFYRB6ZwajwuO9lVLnzbwAJAn7K4pRdqKVUqtQDAPjcVJ73zywCAQnA/waV1T9KGsvIgIzExrWzTjM/lIna3McDI3R0y3s5JRjAQ5UlfJHfgYxR2VzNHjeU7za7JrC/dhr/Jnwtoe5G6qIC9SwakYIXZZnk3pWBKCIoBW96eaDc3aRu6+KsZfH833FdIznyqd9BVeVMw/VGDkTcBbBzsGQdT0gKFkyvdeDruUXK6fHzZaSg1zaNZXu1vcxW38F8xiKTRNYZo2FPluVuIfAKSAISNnZ2P3NhPj6c3niQKJ8AhgfncLA0Fh+P5Tu7ff3Q3sYHZnEqMgkon0DuDp5KGjMLAteDIEXQfUG2BKtVApuRZ5Lfo6rIq5im3UbF25vOiOkKS7mBXwI5Bf+g/bDN8HjIf6qG4iaOAWNy0XgL79y3hX/wKDRkjF1Er7vvot2+HD0k48ow/4hTyVQqGCSYS1RPgFMTeiPdvBgqkKDcHz4Yb1KqTG+QdyQMoIKRw1bSw4ed3xVFAHgS1Cjbb4u+B2A2+MvbnC/JEnstJTROyAIbRNLNDctUGJFWsMrYve4+CB9Ddd2G9akJP7R1WYPz2GcOYiVeUppgpOZw5Ol3Obm6d+tfLqyB1anzLPnBnHg4Xh2vK+MLepWHe/P3swlIV+T81kN/lMEbl3Xh1s+7s+vhbvJtpZxVm1Nm6N1PraV5nKouoKP9q5VdT5UOh2qMXK6k/ccbO0Ctk0QcD4MKIHQq0+4O0mWkZAx1WyFQ4+BNgx6LEMnatlvKQZDPPTZoBg8gFRQQGV4CD2OquoJSkZApkW5UbklDzlVZXUqf4qCQI/ASDKtpdD9e4j9P/BUwM6+ioenFZnXZx6jA0azpHQJd+y546T6EhG5hg/w4OKTc+YixMXhWb8eBAH/v/5CO/4sNhQdwOlxk+gXivHWWwlYuxbBcCTTaK0zBYdsOFIVGegVHM2u88YhZWZSnHsAm9VCn+VrqbrqKlyrVjU7g8KKst/nOMbI3pp0kPyZFtlwocnPczLwyDLXx9cv8nY0uZVuVmXZSY3S0yeqacXXpvgyYyN9g6LpGRTZZNvMqpKGv3O189NUtdm24tU/K4h+/gCb94czPE5D4aNxzB6v/F/8uSAbbRT89kAO85/fhW+Anme+P4t/vTuWHWIuz2z+mc0lBxvU+RgflcLn+9bz7JZfcHhcqs6HSqdDjRk5XanZp4iXOTJBE6iIlwUcX8CqORi1OrqbffDPvRmPoEPouYb1JblkWkoIP1oZVFCC6uSyMir6JjdY1dPuceH0uLG5nUjI+DXQpqDGoryJuhf8RsGe8YqHx7IMkj496c9zmFUDV9FjXQ/eOfQOCcYEHkpo+fLVYQZyCdH0pWzDT0i5ShRNTb8+POXOxrU6E4NGy229xhDt2/BSSaXTRaVPb8Jt25QUZ1HEX2fkrylnMfzz7/BMmsxjWZno7U6cgHbAAHTjxjUrg8JKKQA+NF6ptVoqQKBxT8a7mbsQgDuSeh/3XDcvLEYG3rv45JcLNhQdIMdaxr8GnNd0Y069arNphU4u+LSAzDI3/gYNX10TzkW9jqQc71hTSMmh2gyqErh2Tl+ufaKfNzj4TKvgqnLmoRojpxuSBDl3Q9E7yvvQ6yHhg5ZlyTTR/508hIZinnU+Td7GDcSZgxgSFk+Otaxec7m6Gmt4K0l/m4co6b+7hytZQNXrodc60AaedNeiKLJ16FYS1iTw8P6HiTXGclXkVSfc361zL8d9/w5KkwXCAwZj3LCB2VI4ztR+bC7J4eP0ddzfb2KjBkmZ71TCKzcjl36NJzeFyHff4NqvFwCgS9tTR+VWjG86tfYw1bXGiJnGDQRJLMZXbjh4VZIkNpaVkGz2x3icmjVFVje/7q2hZ5iOIbH1K8m2hDJHNV9lbubevp3vad/tlrhpUQmfblYCTWcONPP+xaFotcrfo93m5tmrV7PmO2VpqNeIEJ7/bSI+5pOPr1FR6UyoxsjpRNVa2DcV3MWgj4FuP4FvKz8tZV6F0bUPwm/nobgHsXtcBOhNvJe2ul7hLUmSwOXCFRJM9TFPmxanHWNtTQxREBARqGqgTcAxT7do/aHfbsj8B5R8pCxBpfwOfvWLl7UUH60P24dtJ2lNEtfsuoYuhi6MDRrb4n5sL76I9uEnsCbqeGujixnVM+gWvRHjP24mat8+4v2COWAtZXleurfGx9H4640c8rmIHpVPYnvsQezv5RKi0SB6lMDKYxM5i8MCkaxllDmq6ep3fMPPRjkAfo0YI8tKNoNoIVHX8BLM4oIcXLLElbHHL4J266ISZOB/reAVyakqo8pl5z+bf/Fuk5DZV1nEyry9vDV6er2Ky6dCtdkfdldz7ddFWBwyiUFafpgZSe+II0bGZ09v44v/7MTtlNBoBUQNvL5m8nF6VFE5fVFjRk4HJCfsuwzSRoK7VNHpSD3Y+oZI4btQ9jWY+kPXtzFotAToTVS7nOwuz6f/MdVQpX1KLQzf8Kg60f4AaRUFJPorNyqtqCHOL5i0isIjx8oye45qU4/EDyHxM5AckDYK8l5qlY8YaYhk/ZD1iILIxC0TSa9Ob/qgo7A9/jg1Dz+MEBpKzN9ZSH5Gvox8HO1llyJlZOBYoHg3ZFmJlWmIRL9Q0iwVYOiKfmAhGAwgN57p81plBv/Z8gtZVaWEG4+vH1KDIkdvbmQZ5r9ZSlXjqeHjG9z/+r6dAMzq3nhhvAqbmx/SbCSHaBnT9fg1cJpDj8BInhg4mccGnu99xZuDGRqewGMDz69niMCRarNH01i12cO0VhZKmc3N6HcPMfWzQmpcMi9PDmb/Q3FeQ2TdT7lcGvY1n8zZjtFHwwMfDsfjluk7JuKkzqui0pk5IWPkrbfeIiEhAaPRyLBhw1i/fn2jbefOncuYMWMICgoiKCiIiRMnHre9SgspWwSbg6F8AZh6Q/8DEPts65+neitk3wkaf3ZFLWRnWR4ldiu7y/N5dcfvRPr4M6pWN2RR1lY+Sl+DZ/NmAHol9qLEbmVB1hYKbJWszNvLpuIcJnY5khY6sUsPVhdksLYwk3xbJfMyNuCU3PW0SOoQeg303QWaIMh9CNKntIqMfG9zb35N/RW37GbwhsGUOJsX0Gi95x5q/v1vhOhoAvfvxxDahYt5DgdW5r3jj8dgoOzef7Ioayt7KwsZWls35KP0NSzK2urtZ0KXFHaV57NVexm6AS4yPpiFW69DbmCpzaPRYA0+stQT79d4LAhADRUA+NGwEuoGy1aQdTyYeFmD+9eUFhBrMhOob3zp5fbvS5FkePOi1lmeM2p1dPENrPMyaLT4ag3eQM7G5nBpbhoFtkp+zN7eLlkoz60oJ+I/OfyV7WBcVyNFj8Zx/xhljPlZVdw6YDGPXbACa4WTKx7qxcLSK8jdWwXAZbOaIQyoonKa0uJlmq+++opZs2bx7rvvMmzYMF577TUmTZpEeno64eH1L3ArV67kqquuYuTIkRiNRl544QXOPfdcdu3aRZcuXRo4g0qzcFtg7wVg/RMEPcS/BREnlwnS+LmskFa7XNHjT2psGhbt30iFw4aPVs/A0FimJfT3lmavdNZQ5rDh2bULgJABg7grIYpvMjez/FA6gQYfru0+jN5B0d5TDAmLx+qy80P2dixOOzHmIP7Zezz++iaerE0pil5K2llQuQS2xSlpy/ro4x/XBGcHn83HvT5m5u6Z9Pm7DwdGHMCobfwGXHXDDTg//hgxMZGAXbsQjUrbCdzLd1UfsM3vW6R/zeTKOe9h+/EH/nntzfQKigIar5T6Q5aWnrIea9JeKn9YQNilM8BmA88Rj4olNKiOkaJtIqaiBiUgWEvDMQkl7lwgHH99/do1fxTnUePxcGlM1/oH1mJzSnyzo5q4AA2TurdfTZiOrja7Pd/BRZ8WkF3hIdAoMu/KMM5PUT6/0+7mhevX8MfX2cgyDJ4UxWPzx2IOVP4PVs4/gM4gMvR89XqocgYjt5ChQ4fKd955p/e9x+ORo6Oj5eeee65Zx7vdbtnPz0/+5JNPmn3OyspKGZArKytbOtzTk4K3ZHm9Xpb/RpZ3jZFlV3nbnm97P+VcBf9r0WGW6dPlEpA9LlcbDewYsh9SxrleL8tlP7VKl0/vf1rmd+Qea3rIHo+nwTaVF18sl4Bc1qtXg591n7xavlVGft49VC7x8ZFLfH0b7asem2NkeYOPLMuy7Nq6VS4NCpJLNBq5BOQSkP8e0Eu+5Y8vvK/sqtLjdvdf+Vz5VllodD+/Rsi6X1Ib3Dd19c8yX78rH6q2Nnr8Dd8UyTyyX164o/E2pxMul0ee8WWBzCP7ZeGR/fLNC4rq/N/Of2GHfJ7hc3kCn8rXdVsk79tSUud4a4VDnsCn8qyzfm3voauotAvNvX+3aJnG6XSyadMmJk6c6N0miiITJ05k7dq1zerDZrPhcrkIDm7cnexwOLBYLHVeKiiF43b0UZZLBB0kL4Ref7RKNkmjZN0GNdsheDpE3NKiQz3Z2aDRIB4n66JViXtBCdoF2DcFch4+6S4fT3ycG6NuZI9tDxO3TKy3v/Lcc3EtWoRmyBACduxo8LMmM4pujCNLs57yF6+D6mpqHm7m2IIuBskGVX+h7d8f/7/+QggJQQZkoDyqbnxDpaOmwW4OY8eK2GBhQyiyl4NYQoSu4TTSFUV5RBhMRPs07PFwuiU+31JFlJ+Gi/ucmpVyW5MFO6sJeiabeduq6RaqI31WDO9dEoYoimxelscVUd8w9+Et6PQiD386kk/2TiM5te7S1TevKN7Dy+5rWlZfReV0pkXGSElJCR6Ph4iIuoFWERERFBQUNHJUXR5++GGio6PrGDTH8txzzxEQEOB9xcaeAUqC7krIfRLcFQ3vP/gobI2Hml0QdCkMLIPghhUyW42S+VD8PzAkQeK8Fh8uFxSAbzvflIImQ/8s0HWBghdh1wglwPckeL/X+0wMmsiKihVcv/t6QMkUqhgxAvfSpWjHj8d/3brjFoy7lW8R0PC/OxchhIZi/+9/kWy2pk9+WK4//2UALIlxfPzef3D4mBAAY1XdPt5N+/O4CqJOqhs1Rl7InA+Ch5EBg+vt215RisXtYnJU43oX9/1UhkuCF88/ftxKZ6fI6mbYW7lc9kUhTo/M6xcGs/f+WLqF6SnOrebOoUt4aOIyKoodTPtnCt9VTOecaxuuWr3siwNo9SIjLjoDrnEqKsehXbNpnn/+eebPn8+iRYswGhtff589ezaVlZXe18GDbSvP3NaU2avJsZZ5X2X26vqNch+DvKcg54G626u3w9ZYyH8WtCHQ8y/o9q1S4bYtse+HzGtBMCkxGCegUyKVlyvF39obfTT0z4GAyVC9DrZEQU3LsmKO5dfUX+nt25tP8j/hyb2PY0lNxbNuHbqLLiJg+fImK9eaCWU8d1NFITs/ngguF9U33dSMzxID2nCoWo7d7eK/O1aQHuzDW3OfQRLA1+km2ifAGy3hliXe2/MX+yqLGuzOSQ2aRkLFlhT/AcADiVfW2/fCnq0APJzScL0at1vigw0WwnxErhlw/IyezsxTv5cT/WwO63OdTEw2UvpYAnePDMTpdPPCzL+YEbeQ9A2lpI6P4OuCy7jrv0Mb/W7YrE7yM630GNpKOjwqKp2YFvnPQ0ND0Wg0FBYW1tleWFhIZOTxJZpffvllnn/+eX7//Xf69Tt+yqnBYMBgOHn56FOBMns1j2/8EfdRqZlaQeSZwRcSbKz1Gti2QdFbyu8lHyhy7eZxcOBGKKmVPg+/C+L+23riZcdDcirCYnigxwrQnuCTbnU1QsrxC6m1GaIIKT8pKb+5D8OO3pD4sZKBc0LdiWweupnEVXGE3/lv3DvAcPXV+H3+ebP7uIxXWMtHfDVlIU8nJeD86iukV19FbOJvh8ApUPIRm3N+oqBG8YRounXDddstJC78nif6T8Iiufh6/yY2luTgkSUWHdjKQ/3PrdeVixo0jQSv5tgzQQhmSFC3evt+LTxIkE5Pin/DxuW/fivH4YF/n3t6ekU2H7Jz0aeFHLJ4CPER+eqqcCYkK0G+372RxtyHt+Co8RCZ4MtjX4+hx5Cma/EseHUPAJfcqy7RqKi06M6m1+sZNGgQy5Yt826TJIlly5YxYkTjolMvvvgizzzzDL/88guDB9d3AZ/OWN2OOoYIKE+vVrdDeSPLcOB2jvxXiJBxFWwOgZKPwdAV+qZBwhvtY4gA7JkA7hKI+Q/4jT6hLiSPB9xuxI5eYot+UPEmiQbF05P5jxPuSmtzsnmmhsuWw90Pwtr/Xtei45W6Ne/hwcmSb2NAkqi6uhl1gqIeRgZ8Sl7zbrqt11jC/3EzcmEhruXLCdCb+EePkUT5KGm++y0lHLSW1+vKjQMtDRv6NRQiyvVvollWC6VOBxMjYho4SrkGvLnOQpBJ5JZh/k1/nk6E0y1x+RcFDHozj/wqD3cN96fo0TgmJPuwY3UhV8Yu4M1/bkQQBe6bO5zPsy5pliEC8PvnmWh1IqMvVpdoVFRafHebNWsWc+fO5ZNPPiEtLY3bb7+d6upqbrjhBgCuu+46Zs+e7W3/wgsv8Pjjj/Phhx+SkJBAQUEBBQUFWK3W1vsUnZnSL8C6FjicrimBuxCkSoh5FvrvV9JX24uDj4J1NfifC9Gzm27fCNIe5alP063+U3a74zcCUg+BMUVRbd3eS0mNbgFSWRkVSUloDuZRM+tmFp6nZ8q2Keys2tmifgZxBVH04q/U1biG98K9fDnu2hToRjGlIGsCSZY3AZDkH0oX30A0gwYhxMZS8+STuDdvRnS6vFovgFK48BjcOBs0RtxuN7JYjL8QhSzLOL74Ak9uLgAvpG8F4KGU1AaH9/TyCmpcMo+ND2x6AjoRX26rIujpbL7daaNnmI6MB2J4Y2ooFUV27hn9C/eN+Y3SPBuTb07mu4rpTLmp+d91u83NoYwqUoaENLnEp6JyJtDiNIfp06dTXFzME088QUFBAampqfzyyy/eoNacnJw6f1zvvPMOTqeTyy6rK6I0Z84cnnzyyZMb/SmOJMtkVNa/IUCt+qbHAjn3oQh8y8e0EJQqu+1Jxa9KbIouCrr/fFJdebZsAUDb6xQRctIGQr89sP86pa7N1mhlCco8pMlDpYICKnr2RK6owPSf/xDyr3+xvHwmYzePZejGoWSMyCDa2Hxdk9tYyBx68sm3NdwUA9YZMwjctu24x7jM4/GtWEQIRfjrlCdpQRDQJCbiXrWKykGDQBRJ1euJDQ0kv1s8/pPOR7rhdsSj9H88ONFTX7tlXv4KEG30NPZC2r8f6zXXIAQGYv76a36wF2DWaBkcXPeJ3y15+DNvP8+vEjFqITR8L1tKoog3Bx9ZguyEFFjcTPmkgM15TgxaeHdaKLcO88ftlvi/W9ex5P19yBL0HhXGnG/HEhxZX5OlKRb+Nw1kmHpXBy1jqqicYgiyLB97FzzlsFgsBAQEUFlZib9/53ADW5x23k37g/2WhtU7gww+PBbyO+bSd4CGVEM1YOoDfTaC0A6psc4C2JYAyIo3Rt+wS765VM+ejf355wnYsQNtn4aLrnUYxR9B1s2ABLGvKhWBG8GdnU1lnz5gteLzxhuY7rrLu++bwm+4YucVhOhCyBmZg4+2+Tel/3EZW1jA/Zf1JXjBDvyWLUN/9tmNtnda1qPfM4w/3Gfzg3gHzw+dhlbUINvtyG43nh07cH79NSXfLUCfX4jO4TwiAabXI0ZHo+nXjw9uW4w0oBf3R+6o0/9Za//JKtsbvJ20mH+sr8Y6fToIAjLw/OUXsOeOW1g87gJv+3VFWXyzfzN/pQfzd3o8g7vnMDA5D1BM60dSJ5HQRJ2cU5F//VrKi6sq8chwfncT314dgY9e5Ke5e3nnvk3Yq92Exvjw6Jej6Tv6xOXbb+j5PXkZVfzsmKF6RlROa5p7/1aNkTbA7nHx0ral5FZXeLfpRA0aQcDucQMQJeQyR/cwwrFVz44l7nWIvLvtBguKhPr2eEXHpNuPEHRB08c0geXyy3F9+y1BLlf76Yy0BNtupaaNpwICL4LkRfVictxpaYrHwW7H96OPMM6cWa+bV7Jf4YGMB0g0JrJvxL5m31ic2JlFIMYqHbMDbYgxMQRlZx//mPU+2GQDDzvf4sK4vlwQX7c+THZVGS9u+w23LOFndzOnEPh9Oe5Nm5AOHICjl0a1WoSICDS9eqEbO5ZBiUvYE7YV13gLjscfx/7yy+BWvqsyUDVuDPELFiGGhLAiL535+5Ulo49/G4wkCVx/7oY60xdk8OFfqZOaVtA9Rfg7x860zwspqPIQ5ivy7YwIxiaa2LOhmH9f8ScFB6rRmzTc/MIALr775AJOnXY3U3y+JGVoCG+uUwvjqZzeNPf+fQreJTo/K/P2eg2RQL2J6UmD6R/SBRGBfZZivs9Ywd3uJxAE5UIvIFLPOyKaQd8FtA2XmG9V9k1VDJHIB1rFEAGQcnJAqz01DREAn161MvJjoeIH2J4AvdaDXslscW3ciGXUKHC7MX/zDYZLL22wm/vj7yfbns0buW8wetNo1gxZ06zT6zFyEc+w0O8h9s5KofvL6dg//RTjdY0Hxbp8RxNgXYofFfyYs4OsqlJGRSZi0ujZUXaIPwoyvMHSw5P64HfOQLjmSH+Sw8FTe42M/D6WYYvCkDIzcS9dinvpUlYD+cEaLNouyE6n1xABxdPhv3oNFf364fzyM74SlGy6nQcicLq1XDnQzU09R3Cgqoy/i7Kodjspd9j4ImMDt/dqedXj9sTulLhyfhHfp9kQBZg12p+Xzg/GUubkgbN/Y+uKQgQBzrkukfvmDkOvP/nv86I30pFluOgOdYlGReUwqmeklZFkicc2/EipoxoBeGzg+cT41qZDyjKUfYOUfTeyq5gKOYid8iCGx47FYExQjA99DOiiQdNOa+75r8DBB8B3GPRe12rdlickIFVUEFJR0Wp9thk590PBqyAYoNv3OLebqJowAWQZv59+Qj9pUpNdTN02lR9KfuDy8Mv5uu/XzT71w0RjdRXwlL8O0eRLYElJ496VyuWQPoHf3OezwNN4inKyfxj39BmPXlP/xnkbAoO4gpv5CgDJ7cb9xx9cvnwqI3eYuGm1B8rKGu5YEJAFgcV3Xc3aSyfx5fJhuDwaqubEo9UqYy532PjPlp+pcjkQgH8PuYhQo7nZ89GefLLRwu0/lFLjkukboWPx9VHE+Iu8fd9GfnhrL5JHJmVICE8uHEdYTOv9Pd7Y+wcOplv4xaku0aic/jT3/q3+JbQyRTVWSh2KqFmPwMgjhkjFL5A2BvZPR/QbzeLgn/iX6w3mua9nt3Gmon/hPx6M3drPEKlaBwcfBE0w9FzZql13mODZiRD3CnT7HpBw/3IeVZPOAkHAf9WqZhkiAN/3/56B5oF8U/QND+17qNmnvpH5eHQyf7wajlxejv355xtvHHA2CEbGGrYT2MDyh1YQGRuZ3KghYkdZpjFy5IIgarWkD+7KD2dV8/59448fSCvLCJLEha9/xt3T7qfKIfKwZjvyjm14SpTYqCCDD+OjlSd+GdhUktOMWWhfDla46fffg1y/oARk+PDSULbfG8vexTlMC/qa715PJzDMwIu/T+Ct9ZNb1RBxOt3kpFWSnBqkGiIqKkdxivrQOy92j8v7e7jpKCXK7DvBeRCSF0DwJfjnpQOb6h3TbrgrIH0iIEKvNSA2roh7QthsCD07kZhT0EU4Mv5L9S13oImW8XuzN5oRTWfaHM3fQ/4maU0SL+W8RLwxnjtj72zymO6MJYlR/HbrX4x83AeeeQbjQw81vrxlHoGxagXPDhzPDouVA1WleGSJUIOZQWFxmHWNiwVWoWR2mQiss/2lzPkgyJwTMhrP5s0NH6zVgtuNJArUmH1Z2P1C4isOcsf/LsHylASCQFBxMWJICN0CjmTvVDqPXyunPZEkiQd/LuO1vyxIMkzt6cP8K8PJ21PJzO7fcWhfFTqDyM0vDGD6Q20TdL34nX3IMlxwe/c26V9FpbOiGiOtzNE3g6yqozJpDElg7A7BlwCQaSlt8Jh2Y/dwkKoh8bNW1zGR3G5wu9HENV7H5FSj5oMPsN18J5hMmOcOQGNeo6T/9vobjA3XFTkWrahlx/AdxP8Vz9177ybWEMtF4Rc1edytLORhMZqFn2mZPtmC7e67Mb/zTsONI+6BqhVoCl8jNeZJUkOan/VUhSIR73OMMfJn+XqQRR5Omo57Ye15NRokjwcREJOS0F9wAdpzz+UhfTG7SiNYtrU7Nw42E/xIJpZ+/dAMGIAYomTPlDuOlDswiKfGJWb1gRou+byQ4mqJSD8NC6+JoG+AyFNTl7Phl3wEAcZNj+fhj0eiN7bdmH/+IANRI3DeDc37TqmonCmofsJWJsTgS5xZWZ7IsZazrVQRjsJ5EETF3ZtXXeF1X/to9aQEnHiK4Amx/zqwp0PoDScsj348pN27gVNE8KwZ1Lz2GrabbgKzmcC0PWjP/ksRnHOXwfYeUPJls/vy1/qzbdg2DKKBS3ZcwobKDU0fQzjjuI3t51uoSvHDMXcuUmOVqgMvVCo2l7a8cGE1igHsQ93lszxnNkhhxPuEK5lVZjMHx4/jgVuu5uc/lhKUkYHva69hmDyZrhGxrNsTjyBI3DjSju2uu5BdLvzmzwcUbZ1V+Rnevru393f7GGxOickf5TPmf/mU2SQeGRfAoUdi2fnWbi4N/ZoNv+STlBrEp/un8fj8sW1qiLjdEgd2VZDYL1BdolFROQb1L6KVEQTBu2YO8F7aahZlbUW2Z+Cy57A0N42Xt/+OpzbrYVREUoPr+21G8UeK6JepFyR+2CancNcKnmlOFcGz42B76ils992HEBxMUEbGEW9O9Gzo+Ydy48+cAVm3NLvPOGMcqweuBmDMpjFk1xw/ZRfgCl7HiD+ffm1H9niwNpBGDCjpxz6DwJEBkr3ZYwKoRvHU+VJX/8NJEZpaGXifp54i2GLhHw/dzucTx3LlqLraJ4ItiWq7nqSoUtZ/PRfn4sVoJ0xAjIykwmHjk73rvMqv4SY/UgI7zhh5728LIc9k8/PeGgZG68l5JI7zrVYuCfmar17chTlIz39+Gs//tlxAVNe2L+7303uKWNrkmzuHka6i0p6cGj7U04zh4QnsKD3E5tKDuGWJX3J3M03vZo/VxbcVW7zt4sxBXBDXjoJgtl2K2Jdohp5r2+w0nsOekYED2+wcrUH1gw9if/llhMhIAtPSEAMD6zbwGw0DcmHXMCieq8j291wL2qazQwYFDOK7/t9x0baLSF2fSvaobPy1x4skF5nBO3zY92p2To0haflSnvrlQ/zDIpjZfXhdAbHw2yBrHRS+BVH3k15RyDeZm8m3VRJk8GFyXB9GHiULD7Aiby8/VGZAT1i8u4zQ2BK6+oVic9tBU0wwR76HsiyzvbKMXv6BaI95gv/vKgFBgNG9s7joijeRRZGX7roU3aafKLBZkGqVhAUEpicOQmxSSKf1ySpzMuXjQtKKXfjoBD6/IozRRonHhv9ETpoFrV5k5lP9uPaJhisQtxVL5u5DEFVjREWlIVTPSBsgCiI39RjFWVHdEQUBHXYEASzyEc2Q1JAY7us7AaNW1z6DkuyQNhqQaivxtl2KtCdDcdOLHVWxtxlYb7kF+8svI8bHE7h/f31D5DDaYOibDsFXQc1O2BoF1Y0EeR7DBaEX8GbKm1S4K+izrg9uyX3c9r1dlyEWj+Wn14swWm08+NxHXJ44EF/tMVV2Q64FNFDyCSV2K2/uWklKYASPDTyfCV1S+Gzv3+wqz/M231CczbeZm0mOVOofRRrDeH3nCixOO69nLQLByUC/IzfmeQcz8Mgy18XXDbJcvr+GrHI3U3v6cOWvf+JfWsHfUydQ7KMnz1bpNUS0gsiNKSPoE9x8ifzWQJIk7v6+hOSXc0krdnFZHx8OzYpiz5MbubHXD+TssTBqWizflU9vd0PE7ZbI2lFBQp9Abxq0iorKEVTPSBuhEUWuSh7M+bG92H7wFygDoymeSYG9GBmRSKRPO+ul7B6jqI3GvQbmtq2cLB08qAienaLr4lVXXYVz/nzElBQCtm9H1OuPf4AoQvI8KDobDtwKu4ZA/H8h4q7jHwfcEXMH2TXZvJjzIkM3DGXT0E0IjXgLfs3dTZfq2zjY5w92XWui7yer6bb/ELpjK12LIvj0Bdt2Vh3aQ6jRzOWJihcqyieAjMpifj+UTu8gxRj4/dAeRkcmIQYp3rDpXUfwQvF61hTu55vC3wG4Pf5ib/fv7N+NANyZ3LvuZ/muBEGA96cGwa0fIfn6cOCpR/CxluL0eAg0mBgalsCYqGSCDe1bm2b5/hqumFdIqU2ii7+GRVeHs+uDdK68YRlul0R87wCeXDCO2JS2FxEss1cfqcpdy7pPDiF5ZCbflNzm51dR6YyoxkgbE2jwYWwwUAaDokcxKCK1/QeRfS/YNkLgNIi8p81PJxcWIphPTaEry5QpuJYsQZOaiv+mTS0zmMJvAvNwxcOUfbciQpb8bT0Z+WN5odsLZNuz+aroKy7adhE/pv7YYLvtpbn0CuqOpeBKFr42n+SFRkruvJWUvzfVbxz6D8j5JzUVv9Mj8Jw6u3oFRfF1puK9cUsecqrKOD+mF1upBMBfCKNHYCSZlhL21aQD/kyNHO49fmN5MUlmf3yO8tqtzbGTXuJicooJ/f1346ypwfy//3FX38br6bQHVrvExV8U8HuGHY0AcyYEMqnGxnMDf8RS6sAcpGfW3OGMvTS+XcZTZq/m8Y0/epVwD5P7ugdBhCm3qks0KioNcWo+up5uOA4oP42Jx23WJpQtgsL/gj5e0ThpB6TycoTg4HY5V3ORJInKsWNxLVmCdvTolhsih/HpA6n5ShBpxSLYngjOoiYPm993PiMDRrK4dDF3pTfsUSm2W1mVv48h9nvx+Puw+kENwRu3sH7B5/Ubh98KCMS7VuGvr6sR4683Yve4cHrcWF0OJGT89EbsKBk6WvT4641UuuxYpUIE6Ug13sV52TgliStj66ae3rqoGAGYO1bG+eGHiLGxmG5pflBvW/DmmkpC/n2A3zPsDI3Rs+nKYPLu/4vHL1pBdaWTKx/pzcKSy9vNEAGwuh31DBFJknBkQFSKuVXk5FVUTkdUY6Q9cNWm9xra+anIkQ37p4NgVOqutNeyic2GGNGxKZ1HI0kSliFDcP/5J7rzzyfgzz9PbglJY1KqKUf8E5zZsC0eKpc1edifA/8kyZTEW7lv8VL2S/X2y0CcOZjLEoZxgfgYfz5UTXWIAfGF+m0R9WBMobewQUnHbQYOrAjUXSKSxWJ8hCP/V6/vU6r53t+9n3fb9nwHOwpcnJ1kxPcfM0CS8J3X8tTi1mJfsZOUVw5y94+l6DUC8y4LYcqqTO5P/ZHM7RUMPT+ahaVXcNNzA0+JpULrr4AEo685uUrYKiqtSZm9mhxrmfdVZq9u+qA2RDXTT4Afs7ezOGdnnW0RJn+eHtxIkTlnPrIMc3Zso9SxlnCTH5d0TaVvcBdvE1mW+TF7B38WZFDjcZHkH8qM5CFEmE4wtkRyK1kgsgtSfgZ9eNPHtAKS0wkeD2J8+z2NHg/J6aSyf3+kPXvQT5/u1cNoFeL/C35nKQZf+kSIngMxTzbaXBRFtg/dTvyaeB7KeIg4YxzTI6Z79wfojUT5KDEN5zObFYbX+fX5Ui67cTs177yD6fbb63YYcg3Bhx5DrP4TOFLB1+K0Y9To0Gu0iIKAiECV015rjGi8bSo85SBWkqQ7Eqi6trSABKOeZ7f8TKWzhtt7juGmBYoB80HXHNyrVqEZPhz96NHeY5qbzbM0N41KZw0x5iCuTBpEV7/Qlsw2kiRx23elvL+hChmY0d+X8zOL+HTUGlwOiZju/jzxzVgS+51aZQgsi2QQ4OxbTo2/CRWVhpYTtYLIM4MvJNjYvvFeh+n4x4ZOSrRPAC8Ou9j7eqj/xEbbltWUYiGAUVHJPDbwfFJDYnhn958cqq3sC/BrbhrL89K5uttQHkk9F4Oo5fWdK3BJnhMbYPokcBcqN8iACSfWxwkg7VSMtFNB8Eyy2ajs3l0xRG66qXUNkcMEXwx994E2AvKegrSzFEOwEXy0PuwYtgMf0YcZO2ewuny1d1+SfxiFNUfEzm7kC7bOdFOQYsb28MNIx3pAIu7BKeswVv1aZ3NaRQGJ/sqNXitqiPMLJq2iECc2RDRIssyeigI21ih1aKaFjwfgr5ICrB4PwwJDuCpJCZrNqfCw6ZCTUfEG/G+5GgQBv2++8Z6rJdk8U+L68OiA84nxDfRm8zSXX9KrCXkmh7kbqogL1DBvkA7nvX/w8aNb0Rk0zP58FB+nTz3lDBFJknDsA10sbSqopqLSEhpaTnTLUr3A6/ZENUZOEFEQCNCbvC+zrvHaLofsTtzomRTTiyifAKYm9CfOHMTKvL2A4hVZdmgPk+P6kBoSQ4xvEDekjKDCUcPWkoMtH9yhp6FqufLUfpwn9bbAdVjwrHfvJlq2LZLFQkVSElJ2Nsb77sNv7ty2O5kxHlJzwW8CVK1SZOTtWY02jzRE8vfgvxEFkQlbJrDPtg+AiV16kFlVwpKcXRTVVFFZlIicP4Wf/68aqqqwP/44i7K28lH6GqUjrRlJH083eRMLsrZQYKtkZd5eNhXnMLHLkbTqiV16sLogg8oaEDwm5mVswCm52e3YBrKO+xMvA+DldMU4eXnQ2QwIjQXguWVOAD6RfkfKzER/1VVoYo4sN6zK3+fN5onyCWB8dAoDQ2P5/VC6t83hbJ5RkUlE+wZwdfJQ9KKWNYX7m5zayhoPZ72Xx/kfF2J1SvxriA+Tv9nJB5evpLLEwSX39uC78iuYcHUHxGM1QFFNVZ331b8DHvA7T6ATFEhXUekwVGPkBCmqqeKhvxfx6Ibv+WDPX8ddb3N77IhCXT2RXkFRZNbWrimxV2Nx2ekZGOndb9Lq6eoX6m3TbCqXw6EnQRsOKUtbdmwrIKWlAR0reCYVFVHRtStyQQGmOXPwffXVtj+pqIWev0OXp8FdAtu7Q9m3jTbv49eHn/v/jEt2MXD9QMqcZST4hXB7z7FsKD7AU5t+4qecnVysfYz950HeIIGal1+mstpCmcPm7ccYeinR4iEKS9bwzOafWXpoD9d2H+ZN6wUYEhbPZYkDsNp0uCxdOFhdzj97j6fEfRA84fjrfQBYXnSIcIORGB8lE8rh0rA+W8PgaB2Bs/8JBgO+H3xQ53NkWkrocdT3Fmq/2xble3s4m+fo77YoCN5snuPx6p8VhP0nm1VZdkbG6pmdk8f6y5ayd1MZAyZE8m3RZdzxf0NOibgQUFKz5+75q862ytolmoDLYFHWVpyexr1mlaUOdv7VdDC0isrpiOo3PAG6+oVyffcRRPj4UemsYXH2Tl7avpQ5A6c0KGJmpBpZ9KmzzV9npLLWTW1xKZVNG8qKqGyBKxtXCeydAmiUAm8dUKTMs1952hWTOqYQmCcnh4q+fcFiweeVVzDNmtW+A+jyOJjHwN7JkHE5hN0OXd9usOnEkIl80OMD/rHnH/T+uzdZI7LoF9KFfiFd6rQr4RYW/e9/3DnYyaUvfYDfJ58c2Rn5AOS/wB1+P8KQXxod1vjoFJaQjYCG2UGTAHALxejlKAB2VpZicbu4JKar95hdByKRZZiX/iZYLJiefRbRWPc7anHZj5vNY3M7vdk8x7YpOGpJ6mjSCp1c8GkBmWVu/A0CD5jsbL1/HWvsHiITzTzx1Vi6Dw5p8NiO4o/8fSzM2up9rxVEQg2+7E+vQBcDolEkrbKQD9PXcmvP0XW0ZkrybHz7ym5+eHsvLoeH7yuvxMevncQQVc4oCmssHKqupPgYD96pgGqMnABHK0vG+AbR1S+U2eu/Z2NJDqMj69+EfanCLbbxxVOSFDEu2Q7J34AxoW3P19gwDh4Ena5Dnlbd+/ZRmZoKNTX4zJ2L6aab2n0MAAScBak5tTLy74B1DfRcA1qfek1v6HIDOY4cnsx6koEbBrJz2M56czedN7l/0BekXWSlxxef4/vKK4ihtcGfulDQdQHr6np9H4sbp7dIXoG9DMQSwsVhALy4R1mieSQlFYA8i5sdByIZEFpN8MuvIoSF4TN79glOSPNwuyVuWlTCp5utAEyLENC9vIn1h2owmrXc//5wzr+x42ORjsXpcbPowDbv+/Nie3FeTG/2/FHCX+7fOeuaePI0Bdg9braUHmSfpZjuAeHkZ1Xx1Qu7+PmDDGQZJI+yjKMu56i0NiV2Kz9l72BNUePLxx3NqeHf7OT4aPVEmPwatTb9BQtWoa7uhsVlJ6D2adFfZ1K2HeMFsTiPtGmS/VeA8wCE3wXBl7XsA7QiHSV45t6+ncq+faGmBvOXX3acIXIYXSj02wfBl0PNtloZ+a0NNp2TOIcbom4gzZbGuVvPrbdfi5YreZOf/g9kWcJ6zTGVloOmglQNVcevN+TBhQ7lu/bi/q9A8DAqcAgAPxccJFCnJ8VfMVZuXliMy63hzdXPgNuN7/vvN9inv87Y4Pf2cDaPWWfwZvMc2ybgqDirH3ZXE/LvbD7ZbCXeT+TaNfupum81Ffl2LrytG9+VTz8lDRGAjSU52NxKbM2g0DguTkjFpNWxZXkBJrOWWU+O4orEQd72P/65i+euXc11yd+x5P0MPG7Za4gAaHXqZVml9cioLOLfm39uliFSbLe2w4gaRvWMtAJ2j4tiu5XhelOD+81Usd0TxtEhdmnlBSTWpjaGGn3x1xnZU1FArFm5GdS4XWRVlTAuqhny0YVvQvkC8BkICW+c7Mc5KaSKinbXGHGtWYPlrLPA48Fv8WL0kye36/kbRRQh+WsofAey74JdgyD+bYi4tV7TD3t9SLY9m2Xly/jH7n/wYa+6FZVHMJOfE//Dhlv2MfR/v+Letw/t4Yyl6Eeg6G3Ifwn8FjY6HA9u9CjemSUlfwDwYNcrya62UOK0c2kXZYmmxOrm5701DA3cR9LiRYh9+mC46KIG+0z0D2VnWV6dbY1l86TWBsUezuYZH92dMpubCz8tZE22A50IFxeXUfViGock6DsmnCe+HUtQeMN/V6cKGZXF3t/HRSn/J06HmyVzM0joE8hvn2QiaKDiD5nKpRL783IRBJBlkKnvBflzYTZGHy16oxadQYPOIKI3adAbRHRGDQaTFr1RxGDSojOIp0zMjMqph5LttooajwsADQKiIOKSG87SnJu2Gmf34YyIaP+AcNUYOQG+zdxMv+AuBBt9qXTW8GP2DkQEhoQpOgIfpa8hUO/DxV1TwVWCVnCT4QjEkZtG3+BoNhRnk20t45puQwEQBIEJXXqw5OBOwk1+hBrNfJ+9nUCDyXsBb5TqzZB9D2gCoMefbfzJm0FNDWJkZNPtWgnn0qVUnX++knK6bBn6s85qt3M3m4jbwTwK0sZA9m1QtQwS59cToVuaupQ+f/fho/yPiDfGMydxTp39t/Atrz7Zn4Efg/XKKwncVCsTr48FbZiSQXUcJDwYUDQEcuyZIAQzKCiZOzYp35sHU/pj97j4x6JDyLLMQ6tfRxYELJ99iGyvJtjoy6KsrVQ4bdyQMhJQbr4r8/ayIGsLoyIS2VNRyKbiHO7qM8573oldevBx+loS/IJJ8Ath2aF0nJKbv/eGcuHyHNwSpAouIt7cgsXiIizWh0e/HEOfUe2jjXOyuI5K5Q6sfSApOFBNRZGdyhI7aevqB+oebyXm+WvWnPhgBBRZO0G5rgiHf4pHfoqigCAe+V3UCEd+1r40GgFRI6LR1r7XCmi0ovenViciagW0OhGNTkSrFdDqle1anaj8XvvS6UW0Og1ag4jOIKLT1xpWBg1avYjBqFGMLqOI3lhrfBm1XgPM4KNFZxTR6TSN1nVSgezdFfzwzl7Omp5An1FhCILA0tw9XkOke0A4ZQ4bJUd5P3y0Omxul/e9DHyydx1mnaGODlZ7oBojJ0C5w8b76Wuodjkw6wwk+4fxSOq53iC9MoftiNKlXUnbHBMWzmcFGXx3YBvhJj9u7zWGLr6B3j4nxfTE6XHz+b712NxOkgPC+Gfv8ehETeMDcVsVXQuAnqsbjEloTyS7vV0FzxyLFmG97DLQavH/66/6BeVOJXz7KTLyaaOg7BuwboLefyvLObWIosiWoVtIWJPAk1lPkmBMYGb0TO/+GPqRGDGFVbN/YsKTm3GuXn1EfCxwMpR8AradimR9A8hIGFCW0OwUIcqKDPz3eQfw1WgZFhLB5sJ8lmfWMFGzjdFLfuPXW65kddU+RmS7uT5lBJXOmjrZPKFGM3f1PotvMjez/FA6gQafBrN5rC47P2Rvx+K04yOEsGjNALLLqgkQZYb+lI60oxSNScNtbw5l2p2nbrXnhgg0HPm721NZSISPP3EpASyxz6i9qQsUWi08+ucPVP0AlvkCbotMA04RBAEe/HgkLrsHl1PC7ZRwOjy4nVLtew9up4zL6cHjknG7pCO/uyU8TgmPW9nucSu/e1wSHo+yFFTn99qfh19up7JPlpSXJKH8Ltf+rrhyFI/OUb93GLWGlyAItcYXipFV+1OsNcBEjeB9X9fwEhE11DG6tFrFyNJoBDS6usaXRiui1Qu1xtdRBpeu1uDSK8aWVqcYWXrj4e0a9MZaw8ukGFs6gwaDsdbIMmiU7UYNeqOI0efEioxuXVnI92+m8/2b6cT28OeCO7rxV4/9YASdqKFHYAQ/ZCsKyxEmf27uMYouvoE8vekn8o8KJpeBRVnb6KoJpTTPTkx3PzSatve+CXIniJayWCwEBARQWVmJv387V7s9WUq+gMxrIPEzCL2m6fYtYUdfpax9wlyliFsH49qwAcvQoZiefBKfOXOaPuAksH/6KdXXXw9GIwEbNqDtYF2TFpF1JxS/rcj0d/9ZCXg9ihJnCV3XdKXaU83S1KVMCDkiWmfHyuyqIGYluPEN7Erw/kxlhy0NdvaCkGsg6bMGT3sbAoOZzvXuz9GtCCCQoewbs4SwHz/lvMhYfh4zmWu+KuSLrdVkfTgOv7ICgkpLEVvpb87tlpj5bTHztlUjIDN4XzF+C/YhinDOdUnMmjscrbbzLTkctJbz7y0/AxBi8GV26qQ62UOSLDF3z19srtUMuiCyH/YfRD7/93ZsFhdHa09p9SK/OK5u1/G3Jm63hNPuxmmXcNZ4cNo9uBweHDVuXA6p9nflp9vhwelQDCynQ8LlUIwvl8NTa2Qp792u2p9OyWtwuV0yHrd0xOiqfe/xyF4jTPLISG4Zj0fyGl/y4Z+HjS2PjHS0wSXJXmNLlgC59j00aDy2F4JAHW8XgpIif7TxJXlknPb6yy+CEQx+ImIQaJJl3IUyYS5/bnluEKHRPizZmMZf27JwF4JYqMGa48ZdBHLtM8e97w7jglu71+u3uTT3/q16RtoaZ47y09D1+O1aSubNiiESMuOUMEQA3O0keFbz9tvY7rwTzGYCtm9H27WV57at6foWBIyHjKsg/WxFm6TLY97dofpQNg/dTJ91fThv23lsGbKFPn6Kt8OImYl+j7P0P3O46PYsHF9/jeGKK8CnJ2gCofLnBk9px1p7vD9f5K8A0UYvUy9e3rsdgHu79cXmlPhqezXXZf2MX1EuxlmzWs0QWbDDyvXfFmN1ynSx1pD08Q50Vhc9hoUy59uxhMV0jAR1axBrDqKbfzj7LEWUOqr595afGR+dQrJ/GCV2Kyvy93KgqhQAg6jlrPhk/O43MvnmZBa+tof5L+zEZZeQJBmNpnMvQ2i1IlqzHp9Ts2h3qyHLMi6XB1eNhNPuwWH31BpfitHltHtw2RWvlsvhUbbV/nQ5PbgPG15ODy6nXOvxOsrwch1+Kd4st1tCqvWEeQ57uI4yujxumZoqJ6X59Y0R2Q52uwRloCkF2Qk5VRYem7LiSCMB0AAedz2jq+fwlpVtOFFUz0hbc/gpOLWw9erDlMyDzKuVwnt997RfAbwmqL7vPuyvvUZAZmabGQi255+nZvZshMBAAnftQoyObvqgUxV7FuweBu5iRb015Zc62jCry1czbvM4jKKR/SP3E2k4EovzsCOMG3uVEGwNJrRQudGx73Io/xb6HVBUYY+imP08TjLn8CD/XVvDn7Y3eSdpMS/truRQjQ37pTdx84JiPlxfQfYbgzDpBILKy086OLLI6ubCTwpYn+tE75Ho/2M6/nvKCIky8cjnoxlwdvvFF7UlpfZqXtz2GxXOmkbbiAjc2msMqSF1C+ZVljr46oWdLHp9Dz7+OhYUXdHWw1XpxDidbvL3V1OQVUXBgWpKcm2U5tdwaJ+FXX8VN91BC4hJ8eejtItOKlZH9YycKrjylZ+6sOO3ay41+yDzOhB9lJiDU8QQAfBkKksGbRUzUj17Nvbnn0cICyNwzx7E4OCmDzqVMXaF1DxIP0cJat0ao/yfGpT5Gx00mnm953Hlrivp+3dfskdm41MbFzTTMI9fnz+XGVeUUfPKK5juvx+iHlKMkfznoes7dU5VhXKR8iGQXdaNgIkrI8dzx4bPGB0aidMt8cmWKh7cNBdTTRW+73x80obIk7+X8e/lFXgkmaTdRcT9tB+DXuAfLw/k8vs70bJaMwgx+vJw/3P5ImM9O8vz6+2PMvkzPWkwPYPqG18BIQZueXEQl97Xk8qSjqsNotL+VFc5ycuoIj/TStHBakprDYvKYgeWUgfWCic1Vhd2m+Jh8bgbjjVqLoa+EHWrlqcunEJomA9P3LycTV8UNthWEOHc6xLbLWhYNUbaGncxoKld9DtJJCfsHgFIkPIbaE+xomAHD4Je3yaphtY778Tx9tsIXboohkgHaJm0CaIWeq6A3Cch72nY3g2SvlIK8AHTI6eT48jhoYyH6Le+H3uH70UURXpxDt9fOpiDQzYS9cxjGO65B9E8BERfqPgeqGuMWFEyOnwIokLKB8J5J2sPMnBncm8eWFKGwVbFvStfQ+zaFePMmZwomw/ZuejTQg5ZPARU1NDzq92YK+ycdWUCD3444rQtGBds9OXuPuMprLGwueQgVU47Bo2WHoGRdA8Ib/KiHhLlQ0hUxwahq5wYsixTUWInL8NK4QErRTnVlByyUV5gp6LYTlWZg+pKFzVWF44aZbnmaG2ZYxEE0OiUgFijr5aQKBO+AXoCQg0EhhsJjjQRFutDRJwvkYlmohL9ALjA98tjOgJkMPSBsPtFDEnKhvkV6xErBMpvLsZcBNbfqWfkyBKcPaP9lsBPz6vCqYSnDAR96/SVNh48pRDzAviNap0+WxGpqKhNBM+qrrsO52efISYlEbBzZz1J8tOCmCfBb6wi559xCUT8E+L/C8CD8Q+Sbc/mrdy3GLt5LKsHK2qrt4mLmPtcLDdOtGN74AHMr70GfuOgcgk4i+osC1ajLOWYCUESijHKiXyWvQ+tIHBxRAIzN+TwwqoX0HlcmL/88tjRNQunW+Lqr4r4dqcNjVui12/7idxeRLeBwTy58Hwi408TA7IJIkz+nB97enl+ziQkSaI410b+fisFB6wUH7RRmmejrNCOpcROVZmTaosLe7UbZ40S6yFJxzEsREXITm/UYPTVEhhmxBykxz/ESHCkkeAoE2ExPkR0NROVaCYi3nzCgdw6g4jLoUREiyL4BRs4+8lYtvXNrGMM760sqh2bQPhsEYOkoXS564hBIkDPoaFEJrTf36xqjLQ17koQW0G0KecRqF4DAedD9EMn318bIFdUtHoMh+Xii3F99x1i374EbN6MqD2Nv7IBZ0P/bNg9FApfh6rVinaM1oc3U94kuyabxaWLuWrHVXzZ90uCiCFywo3sueADkj54A59//xsxcpZijBS8BHEvebuupgyAwioXiGXEaCeSXlzBgKBQ5iyvJKz0EDM2z0c7Zgy6YcNaPPR5W6u4eWEJNpdM5J4Suv+cQai/loeXnM3Q89tXr0BF5TBOp5uiA9Xk7bdSmG2lONdGaV5NrQaMsgxiqzUsDmfxHJ3ddCyiRvCm6JrMWkK7mPALMhAQZiAowkhIFx/CY32JSPAlOsmPkChTu4rSmQP1lBfaEUS4+J89uO6p/vj669lRFsfinJ3eQOqjEbQCAY96qKkG2994DZKJ17Wv8NlpfGU/RZCqFUGyk6HiZyh4QalB0m1x64yrLWhFwTNJkqg65xzcy5ejGTYM/zVrzgylSX049MuEjMugYhFsi1Y0ZHz68H2/7xm0YRDzi+YTty+OF7q9wAze5aUnPqf7EgdV/7iegK+/VXL5yr6pY4zYKAdgXs5GEGSitX3JAG6MT+GBzyx89NsTiKKA39dft2i4+RY3Uz4uYEueA2OVk0HfpRNaUs01j/flmsf6tebMdCrK7NVY3XXjP8xaA8HGzps11NHUVLvI328lL7OKomxlGaQ0XzEsqmrjK2xVbhy2WsOiifgKjVZAZ1CUbP2D9fgG6vEPVgyL4CgTIdGHl0EUw8I/+NT3yPYZHU5liZ273xxK1z5HlvH7Bnehb3AXDlrL+atwP5uKc7C4jpRoELQCcc/qqXpMx6E11YiiwFlXtI9e1GFUY6StkWpAH3fixzvzYN80Zamn9/pTKmD1aCSbDSQJMSHh5PuSJCwjRuBZvx7txIn4/frrmWGIHEYUoftCReY/+x7Y2R8S/ocYfhMbhmwgcU0iL+a8SIIpgdtjbmfskLfYMvMm+s1fgF9eHqJ5OFStpNy9mzSrlsxKKA0rAx9YtT+H/rkCpYmxiNRQcCCKXgdWMGH/SvQ33NAiY3L2L6W89Eclklsi6c8c4jbkMXZqDI98dgFGn9Pn0vKv9d9T6qiut31cVDdmJA+pt73MXs2jG35AOuZOqBVEnhl8IcFGX2RZ5sfsHfxZkEGNx0WSfygzkocQYepk2YInSGWpnbyMKgoOWCnKtlFyyEZZYQ2VRY7a+AonNqtiWLhrhdwaQxBAoxXR1QqGBUWaMAfq8Q/RK/EVUT6ExZgIj1OWQaISzZh8T8+qyHO+HXfc/bHmIK40D2Z64iD2VhaRVVWKR/YQbPAlNSQWYanAE9NWEhhmICC0fY2v0+eKcaoiu0B7ghV7JQl2DVUSw7v9BPpTN43Vs02pWqrpdnLFzCS3m8rUVKRdu9BNm4b/okWtMbzOScRdYB6pqOweuBksy9Emfs6OYTuIXxPPnel3EmuM5YLQG3np4Sfo92UeuTMvIO29sUyqWskXVX3Y4JzEp+unkZJg4awhMGLlLt75P5l1Kc/w2i3X88quEpb8+jiYTPi++26zhvV3jp1pnxVQYJUIyq6gx5IMeseZmJN2ETHdTr+b6ezUSXUMi7zqSl7buZxBofUfMopqqvgofU09QwTALUtYXDUEG335NTeN5XnpXJ8yglCjLz8c2M7rO1fw5KALjq+6fIohSRKleTXk7a86El9x6HB8Ra1hYXFRY62Nr3A1Ebh5THxFQIgv5qAjgZsh0SbCYn2JiPMlKsmP8Hgf9Hr1NtZSBEEgJTCClMBj6ohp4cXfJnZI5Wj1f7EtkSRAAt0J6ovsuwBchyDyIQg6RYq/NYJ761YANH0aliJvDpLdTmXv3kiZmeivuw6/Tz5ppdF1YnwHKum/aSOh7Euo3kBA77/ZNnQbKWtTmLZtGuuHrOfKbgvZectwer6/hcWaLaQaILVCJitcqSSt09pxufWEWYuRBBi8L5N59z/Guh4f07soA59XXkHUHz/Q2u6UmD6/kB9229DVuOnz636Siqt44KPhjL64fV267YnfMZWzfzm4mzCjme4Bdf+usywlvL5rRZ1aH8fyY/YObu81lmWH9jA5ro9Xc+SGlBE8sG4hW0sOMiQ8odU/Q3NwuyUKsqwUZCrxFUUHqynLt1NeqNTYOTq+wmlvZnyFTinyZzJrCYmuG18RGu1DWJwPEfFmopP8CO3SvvEVKo3TETWAVGOkLXEq8s/oolp+bN6Lipqm70iIe6F1x9UGeNLSANAOGtREy4aRrFYqevRAPnQIw113YX6jY6sPn1JozdB3O2TdCsXvwZYY4nv8xp+D/mTExhGM2jSSPRHdOftCyP8MznsetsyGUcWwLPawMeLA5TYQ4qjEIwroPMpdZMSeDDyCwMK1BfTdXUy/Xg3r4Xyy0cJti0qwe2RiNufTbU0u19yTwvXPnHdG3UDckoe/iw4wsUuPOhdsq8vBW7tXeQ0RnSDSLyQGs9bAAWsp2VYlgHhneT5fZW7C4rLTM/DIkphJq6erXyiZVSWtYozYbW7yM6vI22+lKMdKSW4Npfk2KorsWEqdin5FlQu7zY3Lrqh5Hu9hWKM9HLipxRyoxzdQVxtfoaSZhnQxER7nS1RXM1FJfgS2s4v/TGVvZRG/5e4mx1pOpbOG23uOabK4anpFId9kbibfVkmQwYfJcX0YeUyV3hV5e1mam0als4YYcxBXJg2iq1/bKrGqxkhb4shQfuqbqLx7LFV/Qe4joAlRNCg6AVKt4JkQE9NEywaOLStTDJHiYoyzZ+P77LOtPbzTg67/A7/xkHktpI1lSMyzzOs/l7KyfxBfsQPJH6pvgSGvwLe3wHluiLHmEudjRqd14vZoMdd4kBE5HNknABpZ5txvX6ZkyYf876KHufXLB72nPFjhZvKHeewscmEusjH41wzOHRDAv/Iuwde/lVLWOxFbS3OpcTsZGVFXf2F1wX6qXEcCVq9MHszoyGTv+3kZ61mVr1wP1hZmAeB/jMfFX2+k0mnnWCxldmUZJKuawuxqJc20QImvsNTGV9RUub31X44XX4GgGBZ6gwaDj5agcKMSuBliIDDMSHCUkdAuPkTE+xLZ1Ux0sh8+5jPv/7mz4PS4ifENYlREEu+m/YnT4+ar/ZvYWnqQKpeDWN8gpicNIsFPCRUosVt5c9dKxkZ148YeI9lTUcCne9exJGcn5Q4bQQYfegZGsqYwkxnJQ+jqF8qyvD28sv13zFojVS57mxknqjHSljiUi85hRc1m4S6H9HMBEXqtBbFzXAik3NwTEjyT8vKo6N0buaIC03PP4fPII200wtOE0CvBPAR2D4fc2cQF6bisQtklAklTIOcL6PUslP0LupdXMjU6gS1aOy63gNkGDTlgRWTCbKVcNv8hqmZPxbdPMg/+XMZ/V1YgyzLJf+Qwwmrl6d/OIqH3qSW21578VbCf3sFRdSr1AvxVuN/7u0YQ0NfK+suyjCAIRPsEohVE7MVu7EUSiAIL/kjDmueirKAGS4mDPH05rkqZn/d/heOwfkUzhLEOx1eEBvvW6lfUpplGmQiN8SEiwUx0opmIrr5qfMVpRp/gaPoEH4klXJm/D5vHxQ0pIwnUm/i7KIv/27GcJwdNIcjgw6r8fYQazVyeOBBQqvl+vX8zHlnmsYHns6eigPn7N9EvOJpRkUkApAREsLpgP139Qrgwvh/L8vbw+s4VPDXownoG9cmgfjPbEsfhInlJzWsvSbBrGEg2SPwcTCcXDNqeSEVFCH5+LTrGnZVFZd++UF2Nz1tvYbrjjjYa3WmGMQm5fy6bt3RjePnBuqGSBqi6B/o+COlXQ584D9UR0Wx3OHF5JHxtOgTZXa9Lt6DBgZ4PuZ6a/1XyQUAmpbJIWGY5ff/O5dGXUjn7qk5WkLCVKbVXk1ZRyG29xtTZLskSRTXKclisbxBWtwOLy877szfz03v7CI4yURFaReVqCbx1zGTmscvbhyiCNlpAaxDw8dETHGlSAjfDjF7DIjzOl4h4M1FJZsJjfc6o5TGV5pFZVcKdvcd545kujO/H9rJDrMrfx7SE/mRaSuhx1PLgqvx9+OuN2NxOonwCCDOamb9/E+WOIzWWluWlE2HywyNLRPsGcHXyUHaW5bGmcD/ntaK4n2qMtCWuPOWnIfn47Q6TdS049kHoTRB6apcRlwoKABDCwxFEEdliaZHgmXvXLioHDwaHA/Nnn2G45pq2GuppyTdFX5PoOohHhKMLvWqAXqNhXx/wfxkCXwa2vY++jx235MZcbUArHQmwlFA8Ktvow7vcxI6hvcg0BaKrdNF3xQHuOD+MW76Zqt74gDWF+/HTGegbfOz3XDisuo0kyyT6hbJ8Uwbrny8nLNaHvmPCyejvIjBJpryiBm2ogN9gDWPjk7gotS8BoQYckocH1i3g+u7DOyyAVaXzIwNaoW42lk7Ust+i1KayuOx1vBmZlhLizcFsKzuE0+PG5nYCUFhrXLslDzlVZfQL6eItAikKAj0CI8m0lLTq2FVjpC1xKTdstM2Q1C16H0rngakPJM5t23GdJLLHQ3lcHLhcoNUiRERAdTVyRQXVDz+MGBuLJjYW3TnnIPjUr7Xh2rABy+jR4HZjXrgQw7Rp7f8hOjmTq3/BR6MYEsciiFB5P3S7ASrXQ6/UBfgZPVg9DgKsR0S33IIGl6DjQ/lafow8nz3nJ2MN9SF2Yx79dhcyP+0izIGdY5mwLSmzV1PlsvNHfga9g6KodNTUES/7ZO9afLQGqt0OcivLcczXUjK5kvHvRXHDVUPYVJrN3oMuBo6JZHuZ8oAyKDSWrRXZpGqiCa0x8332dgINpiaDD1VUjkeEyY8lB3cS5eOPv97I+uJsMi0lhJsavgdZXHZCjfX3OSW31ziRkNEfk27urzdSUGNp1bGrxkhb4i6hWVNs2wkHbgXRDD3XtvmwThZBo0GTmopn40Zwu5EPHQJALi7G/n//B243yDI+zz2H6ZgYEOfKlVSdcw7IMn6//YZ+woSO+Aidm4qfMJfNa3S3BhjQC3aNhYi3IOKjfRj1wZTbXESVeNcJ2Bfen1crrufvswaRNyASv/wqhnyyDf/CauzA7nXFDD3vzJZyL7NX8/jGH3HX5rCuLcpiQ3F2HfGy3P0WXBs15C/3YPsDMink8iHJHBpQwn+2/ky4yY+zo7vz+6E9APhodczsNoxfc9P4fN96bG4nyQFh/LP3+E6lMaJy6jEhOoUNxTk8vP47RATizEEMCYsnpzaby19nxHJMkLTD48Ko0aHXaBGFI16+o6l2OwnQtW2GlGqMtCayXLc6r6ccRMPxj3HbIG208nvPVc3zopwCGP/xD6o3bqy/w1W7BODnh+H66+vscixejHXqVNBo8P/jD3QjRrT9QE9HDEkQdAlY13mXAmW0yLIHUVAuI3qg8l6IvwT4VaJbjwoOeiC00oFHECia9QK3LenN3isSkbQi3X/bT8yWAmoPRxDhzbs38OHuKLS6M3eJxup2eA0RAFmSsWV7+HHTXnLXWdm6ooDywroXd/Mk2NElhwHmWPoFx7CnooCltYYIwDldemLQ6rgooR8XJZy5kvkqrU+A3sQD/Sfi8Lixe1wE6E28l7ba6/1I9A9lZ613DhTjJM9WSaK/khmjFTUEG32pcNR4jRMRgayqUibF9PQeZ3HaW904UY2R1mTvBWBZDtog0IaC/YBinGTfq7zXhYLfWWDqceSYPWPAUwnxbygCV50E/fTpVN99t+IFaQDf11+vIy3umD8f64wZoNcTsH492n7qRfiEMfWAbguU311FUL0RoXoDB/f9Tph+ByZtJQIwOhpWj4X+70Df6938LGtYPGAwiVNv5+rtvSifGkh4Wgndl2VhsCprxaJGQBCV8uF5GVX89d1Bxl1++gqatYTyeRIVn8lI1fCZsBNRFOplu4hGCHtAxCV5WF98oF4foyKSWjXoT+XMxu5xUVxj9b4vcVRz0FqOr1ZPsNGXr2vTfK9MUsoWjIvqxsq8vSzI2sKoiER0oobCmiqmJx3RhwrUmyizV7O2MJMEvxB8dXpq3C6vFokky+ypKGB8dPdW/SyqMdKa6KJAtoMrX3mB4u8qelvxmuCGgCmQUlvs7sDdYNsMQZcq0t+diAqTnl2jBtBj9SY0niNPjh6NiGbMGAwzZ3q31bz3HrZbbwUfHwK2bkV7kpLxKkehC4fAyRA4mV/WTMNqcxLhV8bVw7chFPwfw64swP4UxH4HwzOSSQ8+m7sqRmAMdJD67W6SrTV4AgXESBOmAC29e4bi46/DN0CPX7Ce1PERTQ6hM7J1RQFhsT50SW5cvv5QdQULsrZ438tOpe6l8ob6hogocNFd3QntKrK2MAu750igcJw5mAldUhgWltAh6pYqpyfZVWW8umOZ9/03mZsBGBASw9iobqwtykInahhVa0j8mZ9Bkn8YaeUFLD+Ujp/OiFYQ2VNRSIjBlz0VhWRZShkblcwP2duxOO0EGXywuV3sKs8nwS+EZYfScUruekJpJ4sgd4QIfQuxWCwEBARQWVmJv/8pXPvCuhF21y+cVYeef4DfGChboFRm1SdAv/2nbAG8xsixlrHgzWe5bvYrdba79Dpcm9cT2zsVgJpXXsH2wAPg70/grl1oTkAUTaV5vPfNNqw2F2YfHbdc3h8kBxWZ16N9eD6OxeDQCPS5aT1mt5EPLwxi8JAQ/IP1vL9gR93jzgAmm+bhdklMvTOFa57oR0BI3eXUPRUFvL3rDxzSEc+fLMkU/EvCtg4lDekYBBG+OHAJ4bG+ODxu8qorcEoeAvUmInxO4euWymnDxuJsFh3YRoXDho9Wz8DQWKYl9MekVQLRP05fS6mjmvv7TfQec7Qia6DBhykNKrKm81tuGhZnrehZ4iC6+jdP9Ky592/VGGltdqRCzXbqhwBpIORKSPoc7NmwPRkELaQeVJZvOhk51jKe27CYRy+6HZPVBiifePE/r+Xs/7xGnDkY25NPUvPUUwghIQTu2YMY2vk+Z2einjFSy58/TKPX1O+pHilwRfrXmEtr6h8sHClSptWKipiWQURn0KA3aTCYFMVOo68Wk58OHz8dvv46fAN0mAP1mIOV8uv+IQYCQpX6I+bAlovgtQcet8Qk3ReAsixlMGm4dk4/pt3dA71BQ7nDxpObFmP3KIaIr9ZAr8BITFod+wqL+XtGGa6DdfvUaAVGTo1tsmqqisqZRnPv3+oyTWsTcZdSYfVYRCPEvgySG3YPBTzQfWmnNEQAatwuJK2WLZNGM2LBbwDk9khk3cXncjZQPWsW9v/7P4SoKMUQOdWNyNOYEVO+5ZvnhuIe8i8+9BnH3s2llB6qwVrpxFbpIi29BIfNg+ySCTAZcNZ4cNo9uBwerJVOPMUSbreM5JGRJfm4NUwaQhCVJQyNVvTWONHpNeiMIgajBr2PFqOPUkzNaK41dAKUpSJzoB6/ID1+wQb8Qw3e6q0+ftoTNnRqqo94OySPTI3VzXsPbWbhf/dw68uDKB9S7jVE+gRFc2vP0eg1yqUyo7qMtYU/1X4wvM8cHrfMJff2REVF5cRQjZHWJuRKyLn3qMXlWmKeA30kpI0HdxF0eQoCzuqIEZ4UsiyzPC+dhVlbAdh83lhGLvgNGVjwr1uRNSLuW27D/uU3iPHxBOzejdiA1ohK+6HVaLnqkc3e971G1C2G15hH5Xg4nW4qixxUltixlDqwlDqpKnNgLXdirXBRbVEqvNZUuamxKpVeHTUeHEcZOo5yNxUupZaK5JGRJLm+Q7EJBFHxbmg0IhrdEUNHbxTRm7QYD3t0zFpMZsWb06ANI0PpIRv/ufJPTD0Egu4WMPfTcF33YV5DZNeaIh67YDkajYbeD/qz/f/Kwa3EqHftG0ifUQ0XGVRRUWka1RhpbTRmCJ0JRe+iLCwLYOoFEbdD7hyoWgl+Z0OXJzp2nCfIr7m7WXRgm/d9XvcEJEGgICmOooQYrnzidQJW/o3UvRtBO3Y2WZZepXOi12sJi9ESFuPbdOMW4rS7KS+yU1niwFKiFIOrKnNiLXdSXemk2uLCVunCVqUYOYqhoxg7LrsHl0PCUu3G47Lj8TTf0Dns8anZI1Nzp4xolLgn7jeMvlpc42y4ezkJ/1rA18dAqElLhFmkcI5S7fayWb0aDEzdVJzD99nbKbVbCTf5cUnXVPoGdznqnDI/Zu/gz4IMajwukvxDmZE8hAiT6klUObNQjZFWptxhY4NzHOfydu0WmYLwF4m0rIK8p0EbASm/dugYT5QCm4XvjjJEBofFkWoOQ5Rl3Lffwq0PvUz8ui3kdk/ghy9e5TGdrgNHq9JZ0Ru1RMSZiYhrfc0du83N1hUFPHZBw9WwBUExSsQAiBxrYERKDPZqN+n9cuBPA/+67GxEncDHe9diHi/gKhAQlhs468qEen3ttxTz/p6/mNa1P/2Cu7C+6ADv7P6TRwecRxffQAB+zU1jeV4616eMINToyw8HtvP6zhU8OegCVQBN5YxCNUZaCafHzfz9m1hTuB8ZGKoPJFCoYLNnMF/szeYFw71oBB1C7/Ugds5pX5W/z/tweV5MLy7umoonM5MKIPHXVbjXbeHQwD68/erDUGMhw1JMt9qCTSoqpwJGHy2+AfW9dYIIGq3IuTMTOXB2Ho4uDgQ8XD6kR630+zC44Uh7/1rBp6CrRO54ZgR6Q33DYdmhdHoHRzEpphcAUxP6k1ZRwMq8vVzdbSiyLLPs0B4mx/UhNUTJMrshZQQPrFvI1pKDao0alTOKznlXPMVwSx7e3v0HaRUF3m2ZUhIDxE3Md1/LbN0TaGQnPxueZpI+hs76vLOtNBcArSBybu0F1pOdDYD7t98w3nMP1bP/CXvXAbC1NFc1RjqA6hoX732zremGR7U/k7AfDmCtDUD1C9ZzyT09ufD27gSGGfkxezuLc3YiI/Nh+lpu7zUGX52S+ivLMn/kZ7C79m/dT2uoU8L9aDKrSpjYpUedbb2Corx/RyX2aiwuOz2PqqJq0urp6hdKZlWJaoyonFGoxkgrsOxQutcQ0YsaRkckES6Px12RyZ2+Cwh1l/C7+zy+tyThk5/BWa2sXNdeWN0OAEKNZnx1ytOl8/PPAfD5v//DdO+9xFdXettXuxztP8gzGL1OA7iQZbDaWm5gKMef/oi1ZY5juvsz/aHeTJjRFb3xyGdXVCr3YXU72GcpYvaG7xkQEotZZ2B3eT55tiPf8Qvi+6IRGs7qsTjtXg/KYfx1Ripra4NYXEqK9dFVVA+/rzymfoiKyumOaoycJJIssSJ/L6A8aN3TZzzJAeGQPQ90fsQ7/8Bm6M83jmsBWJG3l3FR3TqlCqNJo8PhcVPmqMZeW1zJ9PTTaFJSMN17LwD5R12oTVo1ZqQ9GZkazZqteThdnqYbH4Nep2FkasNP+KcbqeMjeH/nhcT3Cmjw79Bfb+KuPuN4fedKbG4nDo+bdUVZ9dqNjkxiXJSqJqyi0hqoxshJklVVSrlDEf3qHRSlGCIAjmxFEt48Bp+ey0nevoIMSzEFNRbybJXeALbORO+gaP4q3I9T8rAqfx+TYnqh6dIF00MPAYphtixvT532Ku1H94RguicEd/QwTnk0GpGE3oHHbdPVL5RHB5zHLwd3s77oQB0lVo0gckXiwCY9nP56IxZXXQ+HxWUnoNYT4q8zKducdgL0piNtnHZizccfn4rK6cYJqQa99dZbJCQkYDQaGTZsGOvXrz9u+2+++YYePXpgNBrp27cvS5YsOaHBnopUHbUUkeR/lM5A1SpAC92+BUFL8lH7ji3h3Fk4K/rIU+B3Wdv4MXs7VbWf5aC1nLd3/8F+SwkAYUYzvYKiOmScpwu/rM7i1U828uonG3nt0028+9VWvv0tnZ37Smhv4eRKq4NXP9lIUZmtXc/bkYQazVzTbSgvDruYB/tNJDU4Bj+dkTmDJjdrqTXRL5Q9R8WRAaSVF5DoF1rbvy/+OmOdNjVuF1lVJd42KipnCi32jHz11VfMmjWLd999l2HDhvHaa68xadIk0tPTCQ+vH6y4Zs0arrrqKp577jkuuOAC5s2bx7Rp09i8eTN9+vRplQ/RkRiOyowpsR+pnkjcS0rpU50yJ8VH7TNqOqdDKs4czNnRKSzPS0dCZnHOThbn7EQvanBKR5YGREHgmm5DETvhUtSpRkIXfyaN6ookydjsLg4csrBifQ57s8uYdnY3RFGd47bGqNWxvjib9MpC7ug1FqNGR6VTifcwaXReUbSP0tcQqPfh4q6pAEzoksLL239naW4afYOj2VCcTba1jGu6DQVAEAQmdOnBkoM7CTf5EWo08332dgINJlJDYzvks6qodBQtrk0zbNgwhgwZwptvvgmAJEnExsZy991388gjj9RrP336dKqrq1m8eLF32/Dhw0lNTeXdd99t1jlP5do0NW4XD/+9CIfkxiBq+feQC/E/yuUKUGqv5omNP+KWJXy1el4YdnGn1RCQZJlFB7ayNDetQQ0pH62eG1NGNpphoNJ8flmdhcPpYerZyXW25+Rb+Pa3vZwzIp6+3cOwO938sTGX/TkVeCSJiBBfzhoSS1iwony7Zush9udU0D8lnHXb87A7PCTGBHDOyHgMeuVGKssy67bns2NvMTV2N8EBRkYPiqFrlwAAXv1kY50xxESYueK8upkipzO3/jmvwe0zuw/3FhV7ZfvvhBh8uT5lhHe/Inq2jVJ7dZOiZza3k+SAMGYkDVEL66mcNrRJbRqn08mmTZuYPXu2d5soikycOJG1a9c2eMzatWuZNWtWnW2TJk3iu+++a/Q8DocDh+PI8ofFYmnJMNsVk1bHsPAE/ijIwCG5eW3HCmYkD/Yu2aRXFjIvYyNuWSnzOTIiqdMaIqB4PS7tOoCxkcmsys9gb2UhTo8bP72RwWHxDAtLwKgGrrYpcVH+hAWZ2JdTTt/uYSxeuR+tRuTiid0w6DVsTy/mm9/2csPFfTAZlD/xiioH6QfKmDahG06nh9/WHGDZuhwmj1VupJt3F7JpVyETR8QTHuzDzowSvl+ewcypvQnyNzJjSk/m/ZTGZed2JyTQdMZ5ZP43ZkaTbY6uhHqYQWFxDAqLa/QYQRC4KKEfFyX0O6nxqah0dlpkjJSUlODxeIiIiKizPSIigj179jR4TEFBQYPtCwoKGmwP8Nxzz/HUU0+1ZGgdypS4PmwvO0SFs4ZDtgpe2v47/jojMlB1VABbqNGX82JPj2JaYSY/Lksc0NHDOGMJDjBSXF7DocIqCkps3Da9P1qNEgI2bkgsGQcr2JddTr/uilHs9kicN7orfr5KSvb4YXF8t2wf44bE4mvSsXFXIUP6RNKjqxIAO3ZQDAfzLWzeXciE4fGYjMqlwmjQ4mvq3MbmYR2Ro4kw+fP04AsaPUaVdVdRaVtOyeCF2bNn1/GmWCwWYmNP3TXUQIMP9/WdwJu7VnpjQ46Noo8y+XNXn7MwH6M7oKJyIsgoqeTF5TW43B7emb+1zn63R6Ki6oh30d9X7zVEAKLDfJFlKKu0o9WIVNe4iA6vK7/eJdxMcXlNG36KjiPaJ4B7+57tfa85TnyTKuuuotL2tMgYCQ0NRaPRUFhYWGd7YWEhkZGRDR4TGRnZovYABoMBg8HQkqF1OJE+/swZNIVNxTmsLthPQY2ytBTtE8CYyCQGhMaiVS9KKq1EWaUdfz8DTpcHX5OOyyel1Gtj1Kvft8YQBaFOOu3xUGXdVVTanhYZI3q9nkGDBrFs2TKmTZsGKAGsy5Yt46677mrwmBEjRrBs2TLurRXFAli6dCkjRoxosH1nRidqGB7RleERXTt6KCeE6r7uHOTkWygpr2Fgzwj8fHVU17gQRYEAc+MGvKXaidXmxOyjeEfyi6sRBGW5x6DX4GvSkVdkJTbSz3vMoSIrkaFKVV5NbYxIe6cUtxVFNVU89PcidKJIol8oFyek1tagqY8q666i0va0eJlm1qxZzJw5k8GDBzN06FBee+01qqurueEGpYrUddddR5cuXXjuuecAuOeeexg3bhyvvPIKU6ZMYf78+WzcuJH33nuvdT+JSquguq9PLTySRHWNq05q7/od+STGBNArKQRBgOgwMz8sz2DMoBiCAoxU21xk5laQHBfkNSa0GpFfVmcxbnAsDpeHFetz6B4f7I3/GNInkjVb8wj0MxAW7MOujBKKy2u8Aa4+Rh1ajciBQ5WYffRoNYI3E6ez0dUvlOu7jyDCx49KZw2Ls3fy0valzBk4pcHga1XWXUWl7Wnx1WT69OkUFxfzxBNPUFBQQGpqKr/88os3SDUnJwdRPKKlNnLkSObNm8djjz3Gv/71L7p168Z33313WmiMnI6o7utTiwOHLPzv622IgoDBoCEsyMT4oXH0Tg7xSplfPLEbqzcf4te/DlDjcONr0tElwlwn0DTQz0C3uCAW/r4Pu9NNYkwgE4YfyfIY0DMch9PDqo0HsdndhAQYmXp2MkH+yg1WFAXGD41l3fZ81mzNo0t4503tPTrtPMY3iK5+ocxe/z0bS3IYHZnUgSNTUTlzOaFHm7vuuqvRZZmVK1fW23b55Zdz+eWXn8ipTgn2VhbxW+5ucqzlVDpruL3nmCZFidIrCvkmczP5tkqCDD5Mjuvj1SM4zIq8vSzNTaPSWUOMOYgrkwbRtYOVF1X39anDeaO7ct7oppf89DoNZw+L4+xhjaeQAvTvEU7/Hg1XURYEgRGp0Yw4Tn2avt3D6Ns9rNH9nRUfrZ4Ikx/FNVUN7ldl3VVU2p4TkoM/03B63MT4BnFV0uBmtS+xW3lz10pSAiN4bOD5TOiSwmd7/2ZXeZ63zYbibL7N3MyUuD48OuB8YnwDeX3nig6Vij/svv5nn7OYkTyEEns1L21fit3dcAVY1X2tcjpg97gotlsb9Qiqsu4qKm1P51z0bWf6BEe3SFF0Vf4+Qo1mLk8cCECUTwAZlcX8fijdWzzu90N7GB2ZxKhat/DVyUPZWZbHmsL9nBfbu/U/RDNQ3dcqZwLfZm6mX3AXgo2+VDpr+DF7ByICQ8LiAVXWXUWlI1CNkTYg01JCj8C6qcu9gqL4OnMzAG7JQ05VGefXxlqAEqvRIzCSzNpCc6cCqvv69GBkahdGpnZpuuEZQrnDxvvpa6h2OTDrDCT7h/FI6rn41X5vyxw2BI4Ebif5h3FTyii+z97Gdwe2EW7y4/ZeY+pU3p4U0xOnx83n+9Z7Zd3/2Xu8GqStotJMVGOkDbC47A0uTdg9LpweNza3EwnZe/E7us1hfZJTgcPu6+FNuK+PjhtpzH0daw4Cjrivx0UlN9inikpbc3PP0cfdr8q6q6i0P2rMiIqXbzM3s7eikBK7lf2WYt7d/Wc99/WirK3e9hO6pLCrPJ+luWkU2Cr5MXs72dYyb3n1o93X20pzOVRdwUd716ruaxUVFRWVOqiekTbAX2esF4hqcdox1pYbFwUBEYGqBtoEdKBcvOq+VlFRUVHpCFRjpA1I9A9lZ1lenW1pFQUk+ivLF1pRQ5xfMGkVhV4PgSTL7KkoYHytV6EjUN3XKioqKiodgbpM0wzsHhcHreUctJYDUOKo5qC1nDJ7NQCLsrbyUfoab/txUd0osVtZkLWFAlslK/P2sqk4h4ldjtQPmdilB6sLMlhbmEm+rZJ5GRtwSu56WiQqKioqKiqnO6pnpBlkV5Xx6o5l3vff1GbFjAjvyvUpI6h01lDmsHn3hxrN3NX7LL7J3MzyQ+kEGny4tvswb1ovwJCweKwuOz9kb8fitBNjDuKfvcfj30z1UxUVFRUVldMFQe4Ela8qKysJDAzk4MGD+PurBdZUVFRUVFQ6AxaLhdjYWCoqKggICGi0XafwjFRVKToXsbFqBoaKioqKikpno6qq6rjGSKfwjEiSRF5eHn5+ft7iYK3BYYtN9bi0Leo8tx/qXLcP6jy3D+o8tw9tOc+yLFNVVUV0dHSdIrrH0ik8I6IoEhMT02b9+/v7q1/0dkCd5/ZDnev2QZ3n9kGd5/ahreb5eB6Rw6jZNCoqKioqKiodimqMqKioqKioqHQoZ7QxYjAYmDNnDgaDoaOHclqjznP7oc51+6DOc/ugznP7cCrMc6cIYFVRUVFRUVE5fTmjPSMqKioqKioqHY9qjKioqKioqKh0KKoxoqKioqKiotKhqMaIioqKioqKSody2hsjb731FgkJCRiNRoYNG8b69euP2/6bb76hR48eGI1G+vbty5IlS9pppJ2blszz3LlzGTNmDEFBQQQFBTFx4sQm/19UjtDS7/Rh5s+fjyAITJs2rW0HeJrQ0nmuqKjgzjvvJCoqCoPBQPfu3dXrRzNo6Ty/9tprpKSkYDKZiI2N5b777sNut7fTaDsnf/zxBxdeeCHR0dEIgsB3333X5DErV65k4MCBGAwGkpOT+fjjj9t2kPJpzPz582W9Xi9/+OGH8q5du+Sbb75ZDgwMlAsLCxts/9dff8kajUZ+8cUX5d27d8uPPfaYrNPp5B07drTzyDsXLZ3nGTNmyG+99Za8ZcsWOS0tTb7++uvlgIAAOTc3t51H3vlo6VwfJisrS+7SpYs8ZswYeerUqe0z2E5MS+fZ4XDIgwcPlidPniyvXr1azsrKkleuXClv3bq1nUfeuWjpPH/xxReywWCQv/jiCzkrK0v+9ddf5aioKPm+++5r55F3LpYsWSI/+uij8sKFC2VAXrRo0XHbZ2Zmyj4+PvKsWbPk3bt3y2+88Yas0WjkX375pc3GeFobI0OHDpXvvPNO73uPxyNHR0fLzz33XIPtr7jiCnnKlCl1tg0bNky+9dZb23ScnZ2WzvOxuN1u2c/PT/7kk0/aaoinDScy1263Wx45cqT8/vvvyzNnzlSNkWbQ0nl+55135MTERNnpdLbXEE8LWjrPd955p3z22WfX2TZr1ix51KhRbTrO04nmGCMPPfSQ3Lt37zrbpk+fLk+aNKnNxnXaLtM4nU42bdrExIkTvdtEUWTixImsXbu2wWPWrl1bpz3ApEmTGm2vcmLzfCw2mw2Xy0VwcHBbDfO04ETn+umnnyY8PJwbb7yxPYbZ6TmRef7hhx8YMWIEd955JxEREfTp04dnn30Wj8fTXsPudJzIPI8cOZJNmzZ5l3IyMzNZsmQJkydPbpcxnyl0xL2wUxTKOxFKSkrweDxERETU2R4REcGePXsaPKagoKDB9gUFBW02zs7OiczzsTz88MNER0fX+/Kr1OVE5nr16tV88MEHbN26tR1GeHpwIvOcmZnJ8uXLufrqq1myZAkZGRnccccduFwu5syZ0x7D7nScyDzPmDGDkpISRo8ejSzLuN1ubrvtNv71r3+1x5DPGBq7F1osFmpqajCZTK1+ztPWM6LSOXj++eeZP38+ixYtwmg0dvRwTiuqqqq49tprmTt3LqGhoR09nNMaSZIIDw/nvffeY9CgQUyfPp1HH32Ud999t6OHdlqxcuVKnn32Wd5++202b97MwoUL+emnn3jmmWc6emgqJ8lp6xkJDQ1Fo9FQWFhYZ3thYSGRkZENHhMZGdmi9ionNs+Hefnll3n++ef5/fff6devX1sO87SgpXO9f/9+Dhw4wIUXXujdJkkSAFqtlvT0dJKSktp20J2QE/lOR0VFodPp0Gg03m09e/akoKAAp9OJXq9v0zF3Rk5knh9//HGuvfZabrrpJgD69u1LdXU1t9xyC48++iiiqD5ftwaN3Qv9/f3bxCsCp7FnRK/XM2jQIJYtW+bdJkkSy5YtY8SIEQ0eM2LEiDrtAZYuXdpoe5UTm2eAF198kWeeeYZffvmFwYMHt8dQOz0tnesePXqwY8cOtm7d6n1ddNFFjB8/nq1btxIbG9uew+80nMh3etSoUWRkZHiNPYC9e/cSFRWlGiKNcCLzbLPZ6hkchw1AWS2z1mp0yL2wzUJjTwHmz58vGwwG+eOPP5Z3794t33LLLXJgYKBcUFAgy7IsX3vttfIjjzzibf/XX3/JWq1Wfvnll+W0tDR5zpw5ampvM2jpPD///POyXq+Xv/32Wzk/P9/7qqqq6qiP0Glo6Vwfi5pN0zxaOs85OTmyn5+ffNddd8np6eny4sWL5fDwcPnf//53R32ETkFL53nOnDmyn5+f/OWXX8qZmZnyb7/9JiclJclXXHFFR32ETkFVVZW8ZcsWecuWLTIgv/rqq/KWLVvk7OxsWZZl+ZFHHpGvvfZab/vDqb0PPvignJaWJr/11ltqau/J8sYbb8hxcXGyXq+Xhw4dKq9bt867b9y4cfLMmTPrtP/666/l7t27y3q9Xu7du7f8008/tfOIOyctmef4+HgZqPeaM2dO+w+8E9LS7/TRqMZI82npPK9Zs0YeNmyYbDAY5MTERPk///mP7Ha723nUnY+WzLPL5ZKffPJJOSkpSTYajXJsbKx8xx13yOXl5e0/8E7EihUrGrzmHp7bmTNnyuPGjat3TGpqqqzX6+XExET5o48+atMxCrKs+rZUVFRUVFRUOo7TNmZERUVFRUVFpXOgGiMqKioqKioqHYpqjKioqKioqKh0KKoxoqKioqKiotKhqMaIioqKioqKSoeiGiMqKioqKioqHYpqjKioqKioqKh0KKoxoqKioqKiotKhqMaIioqKioqKSoeiGiMqKioqKioqHYpqjKioqKioqKh0KKoxoqKioqKiotKh/D8F7GS/G8iWRwAAAABJRU5ErkJggg==", + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAiMAAAGdCAYAAADAAnMpAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjcuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/bCgiHAAAACXBIWXMAAA9hAAAPYQGoP6dpAAEAAElEQVR4nOydd3gU19WH35ktWrVd9d4QAgESvfdiisGAe+9OHNtxS5zEseOWOE4c9+7YX9y7ccGAKaaY3psAUSRAvXet2vb5/lixkpBElbQS3Pd59kE7c2fuGbHaOXPuOb8jKYqiIBAIBAKBQOAmZHcbIBAIBAKB4OJGOCMCgUAgEAjcinBGBAKBQCAQuBXhjAgEAoFAIHArwhkRCAQCgUDgVoQzIhAIBAKBwK0IZ0QgEAgEAoFbEc6IQCAQCAQCt6J2twFngsPhoKCgAF9fXyRJcrc5AoFAIBAIzgBFUaipqSEiIgJZbj/+0SOckYKCAqKjo91thkAgEAgEgnMgNzeXqKiodvf3CGfE19cXcF6MXq93szUCgUAgEAjOBKPRSHR0tOs+3h49whk5sTSj1+uFMyIQCAQCQQ/jdCkWIoFVIBAIBAKBWxHOiEAgEAgEArcinBGBQCAQCARuRTgjAoFAIBAI3IpwRgQCgUAgELgV4YwIBAKBQCBwK8IZEQgEAoFA4FaEMyIQCAQCgcCtCGdEIBAIBAKBWzlrZ2TDhg3MmzePiIgIJEnip59+Ou0x69atY9iwYXh4eJCQkMAnn3xyDqYKBAKBQCC4EDlrZ6Suro7BgwfzzjvvnNH4zMxMLrvsMqZOnUpKSgp/+MMf+O1vf8svv/xy1sYKBAKBQCC48Djr3jSzZ89m9uzZZzz+vffeo1evXrzyyisA9O/fn02bNvHaa68xa9ass51eIBAIBALBBUan54xs3bqV6dOnt9g2a9Ystm7d2u4xZrMZo9HY4iUQCAQCgeDCpNOdkaKiIkJDQ1tsCw0NxWg00tDQ0OYxzz//PAaDwfWKjo7ubDMFAoFAIBC4iW5ZTfP4449TXV3teuXm5rrbJIFAIBAIBJ3EWeeMnC1hYWEUFxe32FZcXIxer8fT07PNYzw8PPDw8Ohs0wQCgUAgEHQDOj0yMnbsWNasWdNi26pVqxg7dmxnTy0QCAQCgaAHcNbOSG1tLSkpKaSkpADO0t2UlBRycnIA5xLLbbfd5hp/7733kpGRwaOPPsqRI0d49913WbBgAX/84x875goEAoFAIBD0aM7aGdm1axdDhw5l6NChADzyyCMMHTqUp59+GoDCwkKXYwLQq1cvli5dyqpVqxg8eDCvvPIKH3zwgSjrFQgEAoFAAICkKIribiNOh9FoxGAwUF1djV6vd7c5AoFAIBAIzoAzvX93y2oagUAgEAgEFw/CGREIBAKBQOBWOr20VyAQCASCi5kKUx21NnOLbT5qDwJ03m6yqPshnBGBQCAQCDqJClMdT+1agk1xtNiulmT+OWKecEgaEcs0AoFAIBB0AoqisKM0q5UjAmBTHFSa691gVfdEOCMCgUAgEHQwDsXBJ+lbWZi1r90xXxzbQY3F1IVWdV+EMyIQCAQCQQezMGsf20qyXO+DPLwZFBBJlLefa1tBfTX/PbwBR/dX2Oh0RM6IQCAQCAQdSI3FxK/5aQDIksSdfccyMjgWSZIAyKmt4O2D66m2NHDcWMahykKSAyLcabLbEZERgUAguEipMNWRU1vR4lVhqnO3WT2erSWZrjyRqRF9GRUS53JEAGJ8Arih9wjX+w1Fx7rcxu6GiIwIBALBRYio8jh3CjjEQv5KALGE059wBhBGf/SEIiGRW1vhGjs2JB47Vg6zhu95hGt5jSRmMTgwEp1Kg8luJafZ+IsV4YwIBALBRUitzdxulUetzUwAwhlpDyOFHOBnJGQUFMCZ8+GBD2H0pzYsBHRa0NSwRLeYY/xCPVUAlJBOErOQkdDIKkx2Kz2gK0unI5wRgUAgEAjOgj5MwgNfzNS02G6mlmx2ggEkP+e2DEscA5jJLr5jHv9gKg8CkFVTTo3VWUkTpPPpSvO7JSJnRCAQCC5CihuM7jahx6JCw2DmI5/ieV5RQMmZi+3AX9mt/ICeUGbzNwAabBa+ydjtGjsuNL7Tbe7uiMiIQCAQXEQ4FIWFWSmszDvc7pgdJVlEe/u3SLoUOHHgYC8/kksKDmxtjJCQJImYvCfJzk6kYeQfkLATlfN3tmgzKWmoZUvxcWqsTnl4f60XI4Nju/QauiPCGREIBIKLiMXZ+1s4ImpJRq/1pNpcj70x92FV/hEMWk9mRPV3l5ndChsWNvI/tvIxeexrxwkBkJBRcTcL6Bt6GU9pr6ReV4pSMJ2D2b4cZEeL0d5qLfcnTUarErdi8RsQCASCi4RyUx0rcg8BICFxedwgpoT3xVOtoc5qZlX+EZbnHgRgUfZ+xobG46PxcKfJbqOeKtbwOrv4mhKOoqAgIRNGP0ZyE9N4mA+4gYOsQMGOhISMmnv5iYHM4ahmE/XBy9BZw1GyfocJq+vcMhJDgqK4Mm4IIZ6+brzK7oNwRgQCgeACoZZyMtlODMMwENZq/4aio43VHzAruj+zo5Nc+7w1HlwRN5g6q5kNRcewOuxsLc64qKIj5WSzkhfZx2KqyAOc+SGxjGQ8v2Usd6JudtscxtWksrQxHqLhfn6mP9OxYeEdLkOWVDyl2Yr36AgOVxZRYzWjU6npawjBz8PLXZfZLRHOiEAgEFwgbOMzvucRAPyJpg+T6c04ejOOCJJJqyp2jZ0WkYiCQhFHWMmL3Mz7qNEyNaKvS4Qrrbr4gndGctjDSl7iMKuooxwALV70ZwZTeZBkLkNup9ZjIHMb4yEePMQv9GEiAG9zGSaMXM+bBBILKhgaFN1l19QTEc6IQCAQXCBEMdj1cyW57OJrdvAloKDBEyk+AUw+SDZPvtcu5SjrqSIfAF9CuIoXWpSZmu3t5Ub0bFJZwVre4BibMFMLgBf+DONapvMn4hl9RufxJZg7+JRwkohhKACb+ZgjrKY3411lvILTI5wRgUAguECIZwwyaleCpQO7a5+VBvA9gKR3lp3m2YcxUnUTfZnMfn5mDa8xghswVoe6jvHV6Lr8GjoDO3Z28AUb+T+y2YUdCwAGIhjFzczkLwTT+5zOPZpbXD9XU8RX3IMWbx5mZYfYfrEgnBGBQCC4QJDREkgcpbTf60SxesHBP+GvnsoVSZNRSTL9uIR9/MSLyjjC8z5zjR3Rg0tOLdSzlrfZzucUcggFByARTG+Gcx3TeQQfAs/p3OsLjrK+8CjlZmdUJdzLwNyYgSwImIodK/ezFC0tc0J2l+awKHs/5aZaQjx9uarXEAYGRLr2K4rCkuwDbCw6RoPdSm99EDcljCTUU3/Ov4OehKT0AB1ao9GIwWCguroavf7i+I8RCASC02HBxB4WsJvvyGInNZRwQpr8ZCRk4pTRFO26m3qTs0Kml28gMyL7E+ltYKNlAWsMv0Opj4I9LxDg4cVzI+dzSFpBMWlM549deGXnhpESVvESe/mBMrIABRkVEQxkLLczkXvRcv7Rnn3leciS5KyEUZyN8VY0fAz932AMd3AHH7cYf9xYysv7VnNFr8EMCohkR0kWv+Qd5omhlxLp7QfAitxDrMg9yB2JYwnSebM4az/59VX8ffhcNLLqvG12F2d6/xbOiEAgEPQQLNSzg6/Yyw9ks5taSl37vPAjiiGEkshG3m917Chu5lY+5Gils329vY2+NCS+jRSyFSn3Ch42vMFe/Qus511A4k3q0OLZiVd3bhSTxi+8QCrLMOJM0FWjI46RTOJeRnBDuwmoHUUWO3neNgUvWwSv6NJazfd/hzdhcdh4IGmKa9t/Un4h2tufm/uMQlEUHt2+kBlR/ZnZmDDcYLPw520/ckffMYwMietU+zuTM71/i2UagUAg6KbUY2QHX5DCQnLZQx1N3V29CaQ/MxjClYziFjxx6lWYqGET/2tclnAyn38ymyeQkBjgH87DyVP5/Oh2Sk21LSdM+z2y/xEcUT/xmbSXSnIbdyiUkN4iQdadHGUTa3iFNNbSQDUAOvQMZC6X8Af6cUmX2WJRLLxqvQIULXfZv2vT8cmoKWN6ZL8W2wb4h7Ov3Fk+XGaqw2g10d+vqRzbU62ll28QGTVlPdoZOVOEMyIQCATdhFoq2MZn7GcReaS4Or0C+BBMErMZxtWM5MZWOQkn0OFLFEPIZQ8qNNzJ54zg+hZjEv1CeXbEPA5VFpJaWUCDzYq3WsugwEjS1PezXHqOCrJbHFPIYbxMCdTazE02qT0I0HV+d18HDlJYyDreJpPtzmRcnL+T0dzKTB4lkuROt6M5+XVVvJCyEkv4IogvYLzxXwzUD2lzrNFiQn9SMrBeo6Pa4myUZ7Q6r0evPWmMtmnMhY5wRgQCgcBNGClhCx9zgCXkcwATJ5rXSegJZRDzGca1jOA61GjP+LxDuYpKcvg9i4lnbJtjZEkiOSCC5IAIAGoo5RNu5yDLW49FTaZtH5/sAluz5R21JPPPEfM6xSFpT4I9gFiGcCUz+TN+RJ7mLJ1HqKcvlw+38J3HV+irJ7PvUCIFg6qJ8Da4zaaejHBGBAKBoIuoJI8tfEQqyykg1aVxARIGwunPDEZwPYO5soXS59lyKY9zKY8hc2aJj3VU8g+SqKWszf0KDgqUQ9iUgS222xQHtTYzAXSMM3I6CfapPORajupKLDSQxQ76MAkJZ/NAk1zJj7rfoEHH3w2Led9nJ78WpHFLn1GtjtdrdRitLSMcRqsJQ2MkRK9x5uIYLSYM2qa8HKPFRLSPXyddVfdCOCMCgUDQSZSTzWY+IJXlFHEYC/WAs7LFj0gGchkjuIlBzO3QJMuzPZcWL+IZy34WI6NqoU8CTmekRHWow+xrjlOC/SX2seiMJNjdwWY+4FseYjCXcysf4kMgrzIVOxbuYTFe6FEUsDnsbR4f7xvEkaqiFnkjhyuLiPcNAiBI541eo+NIVRHRPv4ANNisZNaUMTk8ofMvsBsgnBGBQCDoIIo5ymY+4BArKSbNldsgoSKAaHozgdHcTH9mdkqFx5Ls/fyck9piW6innmdHzG33mCb9ixsJDJqItvd3FGp2IKFCaeaUVJAJ2OEMoy2noj0J9n5MZyoPMrCDnbPzpYCDSMgc4Gf+wQC8K6ZRFJBKsvUGAi0TWViSQnp1MQ8lTwXg47Qt+Gm9uLLXEAAuiUzk5f2rWZV3mIEBEewszSa7tsIVRZEkiUsi+7EsN5UQT1+CdD4syt6Pn4cnQy4SGXnhjAgEAsE5kk8qW/iIw6ymhHRsOJM7ZdQEEEtfJjGa2+jDpC67uUZ4GfjDwGmu9ypJanfscWMpHxzZ3EL/YsX2SG4a4cEG3bPksc8pWyIBsh10pWBq2YBvcdY+7uo3Hi/1qXNa2pdgv4bp/LlNCfYKU12XJ8yePCdAjtd+FNmBAtRSRk3AN2AK5ODu2WSp1hDp7cdDyVMZ4B/uPIe53rWcA9BbH8xvE8ezKHsfP2XtI8TTl/sGTHRpjADMiuqPxW7ji6M7qLdZSDAE81DS1B6tMXI2CJ0RgUAgOEOy2c0WPiaNXynluEtWXIWGQHqRyFTGcnu7SaOdzZLs/aSU5/HUsDlnNP5U+hc39RnJHuUH/md6EDyLAFCO3wgFraMsUd5+/HnQdDybOSQOHGzn8zYl2Acx77QS7BWmOp7ataTLEmbbmxNAGnMPaFqWQUtIhNGfu1lABEkI2kbojAgEAsF5cpwtbONT0lhHOZnYsQKgQksICSQyjbHcQSzD3WxpEyUNNTy6fSEaWSbeN4gr44a0e/M+lf6FhIRn1XiU1BchYgXEf4U6cj1zNH9lW3EOsiRRaa7H7LCRV1fFt8d3c1Pi4EYJ9i8o5GAbEux/xIegM7qOWpu5lVPQ0QmzZzInqrpWjgiAgkIxafyLYdzJZ63KpwVnh3BGBAJBp1FLORlswY6VvLpS8hoqsClmtGoI0OnwUEOUpg/DuNrdpuLAwVHWs43POcoGKshyJXKq8SCUfvRnBuO4s8s1Lc6UXr5B3NF3LKFevlRbGvg5O5WX9q/imWGXoVNrWo0/nf7FhsKjgAoKLmOIx2T2R96HFPMz0XWTAbhvwCT+lboAS/hPbAvawTalDCSnBHskgxjD7UzqIAl2t+FV2O4uBXBgIZcU4YycJ8IZEQgEncYinmiSJvdufOHsGusMdCt4K8EMk7reGXHg4BC/sIMvOcYmKslzJWxq8CSCgSQxi3HcRSh9u9y+c+GEZghAlLc/vXyDeHzHInaV5TAh7Oy60iqKwqEq541YI8ncHnYHq6U8fuYZevENNhp4z+turCOPIEmgODQEW4Yz3+MRRnB9t0pAPS88C1ptkpBRcBDLMK7mZfowyQ2GXVgIZ0QgEHQa4cZ5oG/dJ8WZU6mgKBLq4plYgm1oVZ37deTAwX6WsJOvyWALVeS7JNO1eBPDUJKYzTjuIoi4TrWlq/BSawn19KW0oabN/afSv7A67JjtTucszMuAl1rLZTzNNj7jmGUf+OQQDsRZZ5B5ZARUJzM8agCjGitIehp1VgtrC9Jb7/AsRFFOfGadhNCHq3iRQcxrkagqOHeEMyIQCDqFaksDi1LrURKHgv8+JLmNxmwONVWZE/muZg83tyEWdT7YsLGPH9nJt2SyjWoKOdHR1gMf4hjFQC5jHHfhR8SpT9ZDMdmtlJpqGaNtu8HdqfQvVHJTZKPSXI+iKKgkNVfZ3uaDmkpuDL+GyQxmW2UmmdVbAVD30MqPClMdr6X+SklbTlvgbqcjojiTb6+Q/s1objljQTnBmSGcEYFA0ClsLDyGyW6FrOuQAva22q8oMhROB5svW4ozuDxuED6ac88tsGFhFwvYw3dksaOxg6vT+dChJ4HxDGQeY7kDPSHnPE935vuMPQwKiCRA5021pYEl2QeQkRgZHAucnf6FSpLp5RtIZk05tTYzy3MPMjgwih3ZegI97IwLSkZRFDYWHXPNn6AP7pDrsDrs7K/IP6dj8zmAAzvRDDmj8XaHg7cPrnc5IhLO6/DTepFjzqLYK9+5rJhxE0Pk+xnba9w52SU4NcIZEQgEncLWkgznD/UxhNZeSpH3ypbREUWCfGcJqk1xsLM0m6kRiWd8fgv17OBr9vID2eyillLXPi/86MtkBnE5Y7gNHwI65Jq6O5Xmej5I20Kd1YyPxoMEfTCPDZmJb6Ps+NnqX0wO70NmjVOUbHGjoFofvVP/wmK3syBrN8eMzt97iKcviX6h530NObUVvHtoA5Xm+jb3L8raxz39J7Za1qujkkU8wQbeI4IknubAGc23tzyX/PoqAIJ1PjyUPJUQT18UFN7nFSodvlj3Po1SH8EmKYe5kcNcv09BxyGcEYFA0OE4FIUyUx0AHrKaoiMzYcRK135FkaF4IlianIRW7exPooEadvA5e1lILntdyp0A3gTSj+kM4UpGcQteXJx6RHf3n3DK/X8aNL3VtuHBMQwPjmlz/MjgWNYVpJNVW4EC2BUHFeY6Pj26nZzaCqyN8ucScE2vocinEFg7Ewrrq3l1/xoa7FbXNo2kwqbYOSGIlVpZyPuHN3J/0mRkSUZBYRuf8R1/pAEjoGCk6IznbB7ZuTlhFCGezt43m/mQFBZyj/wjx/xjWV1/BJviYFtJJjOi+p/XdQpaI5wRgUDQ4UiNLwUwO2xgCoXCKRD+K0ggoaDkzWtxjEpqWX1RTxVb+YR9LCKPFOqpcu3zIZgkZjOUqxnFjWjx6uxLuihRyyoeSJrC2wfXkVVbAUCJqZaSZo6jLEnc2mc0gwOjznu+Bcd3uxyRXr6BXNNrKL31wVgcdraVZPJj5l5MdhuplYXsKs0hMqSGL7iHTLbS9IlzfnacTfbad44smCjlGFnalRCRj9azmu1+KzlKDGVksouvGctdDOVKAoIrWJ1/BID8uqrzvk5Ba4QzIhAIOhxJkgjR+VJscq7D61QaRvlNZqP0KwBDuYb48Nl8n9mUS2LwsvALL3KAJeSxHxPGE2fDlxAGMY9hXMtwrkODR1df0gVLW/LnzWXXfbU6/jJ4BrtKc1hfeJTMmjIUwFvtweiQWKaE9yXU6/wjUcUNRg5VOSMaAR5e/GHgNHQqpzaKh0rN5PA++Gk9effQBlDV8730CDUsauZwNImJO7DxKXdSTyU1lFBHBSaMmKnDhgk7tqbxiU43xgpsU8CHIHTo0eLD5fwTAHWzZF6Fbi9a3iMRzohAIOgUPNRNXy8alYMDug/R4oOFWqbxIOlyNUQvhIAU8Mrje9WJElMJA+H0YzojuZ7BXOX2rq0XKu3Jn58su66WVYwJ7cWY0F44FAd2RenwnimHKpuWViaF90Gn0mDHxjY+w4oJFWpqAkrQDlyIxbCXapRmsZDWbONTwNknSI0HWrzwJQQv/PAlGF/C8COCXbm1lFZ6QUMYjw64kd6+zuTm5pGVPWU5rvOGeF6cS4CdjfgLFwgEnYKxUcUT2UTNwL8hScX4lM/EEriS1+pvxx6ehSQ5tUYw+xNQP57r9M6OrSpRNtkltCl/zqll12VJRu4EaY0GmxWwQMg29oR+SArVFHPUFSGTkPGRAnF4W3C5ICea+LXBQ6xkADNOO2+w5jifVW8H4Jtju3k4eRo+Gg+XI5JZU8aqxiUaCYmxob3O5zIF7SCcEYFA0CnYFQf4ZCL1fx10ZSgK1NT4QoCEvT4ECiehNIRBVTIgEx8cyxD9eHebLehCLJjYzbfsZgFHI7dBdAWSBLkKBBHPLP5KKInEM85Zjq1I/G3PYiptFUjB24jss4N89iGjxoGtxbltmNqZtSUjg2NZmpNKubmOnNpKnty5mFEhcQTrfDhmLGVfeb5raWZMSBwBHp3bNfhiRTgjAoGgw3HgQBW9HCI+RsHhTGh16FByr4DcK5GQSA6IIMDTm/VVRwHEl3wPoZQMvrT8haq0yymt1uLv4cWcmGTGhca3GLe2IJ1VeYeptjQQ5ePPDb2HE+nrw06+Zg/ftS7HlgOQqgailI7Eq3Iqjw69Gv1JYm2bi49TaakHdCRZbuJB6f/IYQ8beI/tfI6VE7kvCjXNzn0qtCo19ydN5rUDv1JjNdFgt7K+8GircX30IdyUMPKsfleCM0c4IwKBoEOpooCPuIXqyLUtIug+si+Pj7wSq8OGr8YTi8PG8ym/uPaPDonrclsvdpxLI2fOcbbwlnIZJm0VCRHR3NP7HxypKuLz9O0YtDqS/J1KtjtLs/k+Yw/XJwymxrCBjXULeMF2DJRUkJxRBm8CGcDMxoqom/GQvPm/ok3sLsuhHnhh30rmxgwkyT+CepuFzcXHXRUtAFMi+gAQwzBu4f+4mpfZyVes4x0KSHV1WD4TIr39eHzILJZk72dXWY6rZBmcjQMnh/dhVvSADs+TETQhnBGBQNBh7GMxn3A7ZlrLatdb7aSU5xKs82VrcSYbio5Rb7MA0N8vzCW0JegajBYTXx/b2e5+h9IyNXQn3/AJt2HHDoqER2A64RgI9zJwrLqU1flp9PH3Yydf8511BdLQvXzlfdx5sA6oTiK4eh6z/OYyipvbLMe+Ln4YGTVlVJrrKTPV8Un6tjZtGx8aT7J/Swl/T/RM4l4mcg8lHCWAtrVT2iNQ580diWO5Nn4Yx41lmB029BodCfrgFtL4gs5BUhSl29cpGY1GDAYD1dXV6PUik1kg6I78wKOs4iVop8ZBMQXBzjdabQ/W+fCXwTMwtNM/RdDxFNcbeS3113ZVTgEGB0Rx74AJSJLEcv7NYp5ssV+LNy9SyC4WsKZmEYW2TPBPBUCxe6CzB9Nbm8QwrmEUN/Fl2j4abBZ+nzT5lLaVm+r435FNLuXX5siSxPTIflwZNxhZEg5CT+BM798iMiIQCM4bBYVMnE+x7ZZbKi1D3LIkMTwohuvih6MX8tpdhsVu462D61o4IoEe3oR76smtq6S6sYvvvoo8FmbvpibubbbxWevzUMcfTijd+sgolckMcFxKf9sV/LDDk4cGzaa3tqlXjV6ro6jB2Oo8JxOo8+avg2eSUVPG1uJMys11qBv75IwP6y2c1gsU4YwIBIJzIr26hJV5h8ipraTa0sC9/T9nctAWFvI4FWS3Gh+s9ad/WAIp5XnUWs34a70Y4B/eyhFpK/Gxl29QV13WBc+O0uwW0vsxPgE8MfRS1/s3U9dysLIQ1LWsCrgFlKPtls+G0o+Z/BnPyim8f3A79427jnrFwg/KT+dloyRJ9NYH07uDGu8Juj/CGREIBOdEeUMteo2O6ZH9+CFzL7VWKxO5kWFcw6OEN/aOaYqTaCQt20oymRTehwlhvU+Z+HhTwkh6+QaxpuAIb6au5R/D54noSQexqVkvFr1GR7S3v+u9HSuRARYO1VeijHzQlWzaFhIywcQznt+w2XIcnUqDVqVGliRkJGosLUtrjRYThvPoynw+VJrr+TEzhYOVBVgcdoJ1PtzedwxxvoHtHpNWVcx3GXsorK8+q4qhrnScyxtqKTfXYVcceKo16DWeLqG6noZwRgQCwVlTYarji2M7WghmfXVsJ0n+4WTrfqGOcoZxDXGMYhnPYcJIncVOkM6Ha+OHAbRIfDzhjKzOP8KEsN6MD+sNOBuXpVYUsKX4OJdGJ3X9hV6AnOitEqTzppdvkFOGveQ6wgt+4KivhLF6NtdQQUMe1GmgQQ1mGayyjEnlwKRyvjerHGRJa3HIFg5XFRGvd96E1bKKGN8ADlcVMyQoGnAmwx6pKmJqRN8uv946q4WX9q2ir18oDyZPwVejo6ShBm+1tt1jyky1vH1wHZPC+/CbfuO61nG25IE6COT2z9Fgs7Ay7zDLcg+22C4j8fDAqfTzCzv3+d2EcEYEAsFZ05ZypwOFWpuZr7kfGTW38TE6fJjI7/iVN9hWYmz1JTnAP5wFGXsAsDns5NRUMDtqgGu/LEn08wsjw1jW+Rd1kXAi1iHjTAZ9Yd9KjppV+BJMTfUQaIhiomY12gLnyKZGvK2VWqEBBQ9uUXSoJAfsVAAVD6AntyyU8qoGPFUqcm1BzHT4MdpoZu/eQDLMPhgdOnw1nkwIDibMOxTUgaAOBk0IqENB7ay2Od8IxS95h/D38OKOvmNc44N0Pqf8Ha0vPOoex1lRYH9/UBkg5mUIuL75fwDg7OHzZupaV1fs5jhQeOPAWu5IHMPokJ6lFCucEYFA0GGsNH2I0aeISdyLDucXvicGLuNptpUsocbHxNO7fqbcVEuIpy/DgqIx2a1Y7DbqbRYcKKRU5PHlsZ002K301gcR6OHjSqoUnD9hjYmqJaZa1LLMfWFVLCwawnIuRSs3cG38dBY1/JY1+WkAxHt74yNbuL93DNhKMdvyOGDazQHzEexyKQHlwxiqs9JLUwGOOnDU4etoIMhiptymRWWz4idlEK+qxFork4SNobIFZJyeUUn7tjqQCVb8eUhyoPOwU4cvuRkhVOXV4aeRQfYi3+ZPVX0wv/GVCfDzZn+9D7+kruXWmGi8dcHklpbR1xDJhweXc7imDj+tN5PD+zAxPKHdeTOMZe5xnB0N4Kh1vo7fCIUvQ+yb4DsOgHqbhTcOrKXc3OSIRHgZ8JDV5NVVYVXsOFD4OG0bvhodA/zDz92WLkY4IwKBoINwsFP9MWqHN9fJb7baa7Xb2VWazZW9hjAoIJIdJVmtwswAe0pzuavfOIJ03izO2s+eshyCPX274gIuCsaHxfPN8d0ALEpfyu/tjzIo6la+ictnHW+hNm5i/fFcwNkw7/6Bs/BpluvhAYxofAHQMkjhIqTxdQKL3caftnzH75MmMdAvFGzlYCvh3UOb6O8NUwMUsFWCvQpsVeCo5qDRSqXVxiSvfHDUo3U0YFQaqLHZ8FOKQLHh4/BkjsqER4MZGmAyMFkF5DvnfRig2vmzIoHdqqIux4eGXBuekh0kLchakDycSyOyF6MboghzyJCuAZUeVAYiLb7EOCSsxXU0SH4YKMNAOdgCXVGcM60YahdHbcv39SlweDz4XwXRL7G+tMHliER4Gbi73wQivA2Ac+nmu4y9bC4+joLCT1n7hDMiEAguQkJ/RfI7TL/Kx1D7a1rttjrsBHh4M6vxafLyuMHsKM2i0tyAVqV2FWwMC4pmSGAUAHcmjuWPW39whq8FHcKYkHhW5B7Cz7qf31n+iR1YaLkWVWEdhL3FJ9YHQfkzABPCElo4IueDQ1FwoKCWVCCrQRsK2lBqNUXssUpMDZ3e6pgV+1YRYwiA3sNd2/KKjrMgYw9vjL4Wm8POY5sXcE//Cc78FFst2IpZcGw7dns1N0Z48nr6UaK1Zq4ONiHZq1Hba8ipsVNntzJG53RycJhAMYHVCIqVZKkAb0sdNIvIxQF/0gLZoAH+4wFkNLdW4lLFm0l4w65ap5MjeYDsAbInyF4ge4PKt/GlB5UfqP1BFQCaQLBbTvoNNCrBVi5GqVyMD5fhyWWY8Obe/hMJ9WrS7fBUa7mlzyiya8vJq6siu7aCrJryUybpdieEMyIQCM6KSnM9vzaG8JtQIPpnFGMCV2ofbfM4m2JHdrRc/9bKatSN6pZVjdUXlmZS3B4qDbIkCRnuDsSTGp7y/wnvys+QJMh3RLK6uBCKAf9A8N8POEj2j+La+KEdNq9OrSHeN4hluamEe+nRa3XsKM0mw1hGiGfbORxGq6lVMqheq2u1tOd7YozaB9Q+qLyNHK8ugeBZFGf+RIAhHOJGu85RUXCUZbmpjBl4ZZvzfrhvFTE+AVzfezg4bGArY0fRfn7JO8xTfcOwWcv47/Ec5gZZ6aU1gsMIthqO1oLkMBOsLWhccjGBvRpspaDYQLHjzL05W+fahgRMUBYxQbuIIqkPoUWrQPZxRlPstdDnO2RJYnxob77NcEa+Mi90Z+Sdd97hpZdeoqioiMGDB/PWW28xatSodse//vrr/Pe//yUnJ4egoCCuueYann/+eXQ6UaonEPQk0quKeffQBhrsJ/X9CNyF5FkKOddSElBDlLc/CzNTqLLUc2eic73b6rBjddj5IXMv40PjOVJVTGF9NTqVM4pitDYAkFKWy9biDOJ8AxvzFhR8NB5deZkXJooDyj6BnD/hYzeC5LwlpipNUQfyZyP1/oKBA1O5V39Th8ug35U4lk/Tt/PXHT8hIxHj48/I4Fhyais6dJ7m9NYHU3zS0klxg/GUjRnj9UGkVhQ438hq0Iaxv/44ev0gCJqKGqgt/oVt6kB6xTsXrByKwtc7fmJqRF8Gn0kCa2MUB2uJ01mxlUPdHih5u83hCs5cVocioZWsYEoHSwFYsp0RF4cFZC3emqYqIbvSVtJx9+SsnZFvv/2WRx55hPfee4/Ro0fz+uuvM2vWLNLS0ggJCWk1/quvvuKxxx7jo48+Yty4caSnp3PHHXcgSRKvvvpqh1yEQCDofArrq3n70HrMdmer9iYFEQfELUCpHAgl4/m/kk38w3su1ZYGKlrIjUvMiurPgYoCfs1Pw8/Di1EhcRyqLGoxz9zYgSzO3o/RYiLKx58++hDUIjJyftTvg8x7oG57i80SElNipxCpm4LFYcNXewmvK9+S7/c1Kv7T4WYEe/ry58HTMdttmOxWDFpP/u/wpnarW/QaHcY29ErORtPkRMXQspyDjAiOIaumnI1Fx7ilT9MD9MmO8+TwPqwrSG/hOO8uzeGB5CYp++mR/fgkbStxvgEux9nisLWq9GmXxigOut5N27SRbTgjKsCO4jmYj2smstM+Ek+1Fy95LEFVuxX85kPvr5x5L+AUrGvEX9u6/0935aydkVdffZW7776bO++8E4D33nuPpUuX8tFHH/HYY4+1Gr9lyxbGjx/PTTfdBEBcXBw33ngj27dvbzVWIBB0X5blpLockQH+4dzRdwwGrSff8SfWUEB42W0U4HRQluce5I7EsS2O12t1eGs8eHLYbNe2xdn7MTSG2PUap8z3wIBI5sQku8a8vG+1a4zgLLEbIe8pKH4LZ/nKySh46KJJDmhqOpfEpexnCUUcIYx+nWKWh0qNh0pNndXCocpCrurV9nJQiwhFI2eraRLnG8h9/SexMCuFpTkHCNL5cF388Balryc7zkE6Hx5ImsJ3GXtcjvOtfUe7ynoBRgbHUms1tXCcH0qaiv585OrtzRNYVYAD/OZC+J+RfcZD+lYoOcaD0l9RlWeg+ExA6vMDSE5n/Wh1CTtLnOrHXmotAwMiWs/RTTkrZ8RisbB7924ef/xx1zZZlpk+fTpbt25t85hx48bxxRdfsGPHDkaNGkVGRgbLli3j1ltvbXces9mM2Wx2vTcazyM7WSAQnDe1VhO7y5wVFt5qD+7pPwGdSoMVM7tZQAITuT/iWR7J+R6HorCzNJtr44e3CBnH+wZxpKqI6ZFNN7jDlUXEN+pBBOm80Wt0HKkqItrHqQraYLOSWVPG5FOUYQpOQcELUHyissne9hhNy4qLq3mJ/Szhe/7MA/zcoeYcrCxAUSDMS09JQw0/ZO4lzEvP+MZoQmdFKAYFRjIoMLJdu052nAES/UJbOM5tMTUikakRiWf1OzglSuN9T/aEoN9C2MMtIifTQ0K4onIe/lIFe+wjWGN9mnHFWXiqNaRWFLC1JBNHY7xycngftKqekxZ6VpaWlZVht9sJDQ1tsT00NJQjR460ecxNN91EWVkZEyZMQFEUbDYb9957L3/729/anef555/nH//4x9mYJhAIOpHc2irX+vOI4Bh0Kg0LM1NYqXodR7CZGxyvs6LkoKvtvE1x8MGRTcT4BHBlryEAXBKZyMv7V7Mq7zADAyLYWZpNdm2FK1wuSRKXRPZjWW4qIZ6+BOl8WJS9Hz8PT9dTr+AsCfsDmDOg4huckZE2cgi0LZ+eQ0kkgFgOsxIHDuQ2IyrnRoPNysKsfVSZ6/FSaxkWFM0VcYNduSndJkLhLgxzIP5zZzRE7ddyX0MaMcdHosg1rLDN4yf7DWAs5ZixtNVpBviHM7dZdLEnICnKmdfMFRQUEBkZyZYtWxg7tsmTfPTRR1m/fn2bSy/r1q3jhhtu4LnnnmP06NEcO3aMhx9+mLvvvpunnnqqzXnaioxER0eftgWxQCDoHA5U5PP2wfUAXBadzPy4Qbx1cAP7a/chW/UgO+jjE4VB48mushwAIr38iPHxb/HUubs0h0XZ+yg31RHi6ctVvYYwMKDpiVVRFJZkH2Bj0THqbRYSDMHc1HtkixJGwan5245FLUSxAAZI+7nb4394KW0kio5oYHd5CYuy97vE6BL6HGKj/lGu4RWm80iL/5cTYnQ3JYwk1FP8v3QJ1ashfY6zIqfXh+zmEhZl76O4oabFMJ1Kw6TwBC6PHdRt8qyMRiMGg+G09++ziowEBQWhUqkoLi5usb24uJiwsLa18J966iluvfVWfvvb3wIwcOBA6urq+N3vfscTTzyB3Ea2toeHBx4eInteIOguNK88OFhZwKUxSXxSUEq1NYBrhu0iVVrOssNzucSrLx6Nyqu/6z+eMC9Di/MMD45heHBMu/NIksT8uEHMjxvUORdyEfD4kFmuUD1AQV01r6cqKJzQfpFxph/bQfbheG0NHxzZzBW9BrvE6FbsN6Ia58ka+XWm8wi/5B3m14I07kgc6xKjezN1LX8fPleUXXc2xe9D9n0gaSDxVzBMYThOPZ706hKyasuxOxwE6rwZEhiNRw9ammnOWcXftFotw4cPZ82aNa5tDoeDNWvWtIiUNKe+vr6Vw6FSOT+8ZxGUEQgEbiTCy+Dq7ppVW8Ht21ZyoLqCb8fO5D9hr3G141Xs2FEPvx/z8Afx7fcVaV5fcYxN1FPlXuMvMny1OgxaT9drf0U+0zWb8FaKIfIfkLQbvBqdPU0Ya/LTSAoIZ1bUAMK9DFweN5hYnwAM5fOoJJcC5RBr8o8wJyaZIYFRRHn7c2fiWKrMDaQ05hEJOomcRyD7XqdA2sBDYJji2iVJEol+ocyKGsCcmGRGh/TqsY4InEM1zSOPPMLtt9/OiBEjGDVqFK+//jp1dXWu6prbbruNyMhInn/+eQDmzZvHq6++ytChQ13LNE899RTz5s1zOSUCgaB7I0nOpmpvHd7ML5X1lNtqmBschN1ax/aSWhoqvJmq7oUkKei8KqjxXMrXyjJXC3pfQolmCJEMIoZhDOdaZMTff2djc9g5ULKPp+SPQRsNkU87dyTthNIPQPYmI6OsRVIxOHMOdhXMg+AFfG37K0brjfRv1qvFU62ll28QGTVljAyJ68IrukhwOODofKheCtpYSN4P6gt7SeysnZHrr7+e0tJSnn76aYqKihgyZAgrVqxwJbXm5OS0iIQ8+eSTSJLEk08+SX5+PsHBwcybN49//etfHXcVAoGgUylsqOPL/Hy+Ka1zpUAGU8+HaVtcY3wIQsm4AaX3l42NRpsinzUUc4iVHGYVCg4CiSWetqOpgo4jpTyPOXyKRrJCn2aVMZIKQu4BwHjkG/QnSb7rNTrqG7wIJI7j8hrghjaVUKtP0vcQdAAOExwcAQ0HwWc89FsPF8FS2DnFdB544AEeeOCBNvetW7eu5QRqNc888wzPPPPMuUwlEAjcSLnZxH+O7OWtY6nYFMXliPiqZDQnRTb9tJ7M8HqUX1hNjVIM0slnU5CQGcyV9GLMyTsFnUB2zsdcrdoAgbeC99nn4UznT3yrehAMh4CrOt5AQQuOlh1Cc/xqoknnS9tvGRTyNENO44ikVRXzXcYeCuur8ffwYk5McivhtbUF6azKO0y1pYEoH39u6D2cXo0l9d2FnrvAJBAIOo1qq5lX0/fzctp+zA479mb5XRIwPTSG+/olUVRfDUiEe+lJ9o9AJctoeIavuZ+T+29IioxeCuM2PkJq7akIOpjy2gImWN+nVhWMT6+P2h2n1+owWk9SMLWaMGh1TOb3fO94FFv4GoyWP2NoVi5rtJiI9vHrLPMvPupSiMqYippaMv2fZnNxH07nPpaZann74DomhffhN/3GcaSqiM/Tt2PQ6lzlzztLs/k+Yw83JYykl28QawqO8GbqWv4xfF6raJc76djGAwKBm6kw1ZFTW+F6VZjqTn+QoAUbSguI+flLnju0h3q7rYUjAqCSJAb6BTAkMIpLo5O4NHoAgwOjXFoR47gLA+GcHBpx4MCn4jq88OuiK7m4KU+/i0CpFM/eHzr7q7TDCTG65pwQo5ORSZZmQeAutht3uPafEKOL72ZP1z2WikVwcASeGNEkfElC3zNbSVhfeJQgnQ/Xxg8j3MvA1IhEhgVFs7pZI8vV+UeYENab8WG9ifA2cHPCKLSymi3Fxzvras4J4YwILhgqTHU8tWsJ/9q7wvV6atcS4ZCcJRpZxqYoSFLb0QubopCkD2j/eDyYy985OTLSYPYl2/AW1+XOw+awdaDFgpNxVCwm3rqao+rpqALmtdj3cdoWFmamuN5fEpnIwcpCVuUdpqi+miXZ+8murWBKo5z6NdLLSJLCr9aP2VeeR35dFR+nbxVidB1FwUtw7Apn6e6AbRB43RkfmmEso59fS1mNAf7hZBjLAGcCc05NRYvkY1mS6OcX5hrTXRDOiOCCocRUg61Zl0qbolBosZJVV+1Gq3oeYwPD2D/zGgYZAtpdTEnS+5/yHOO4A3+iAQkZFQOYyYvyMYqLhxAQ/TPXlCexu/ZAh9suABw2TMd/Q5kSQkDf/7XaXWGup9rS4HrfWx/MbxPHs7HoGP/cs5w9ZbncN2Aikd5+AATTm0BiUSKW8/nRbfx77wrMdisPJU0VGiPnS8bdkPcoqANh8FHwGXlWhxutpjYTi012Kxa7jVqrGQcKvm0lH1u7V/KxyBlxMxWmOmptTWqzPmoPAnTtt7YWtKbeZuG/R7azuiiLUquNcqudcpuDGrvzybx6/zbWTBXJd6fjZOXOYR4KpRoVedaWPU1UkkQfX6eYmVNRtUm584SiqgoN83iWz7gTtV1P9t4beM68lqn6/3DI+j3+4Z/ymm0SfQr/wjPh7beGEJwDmXfgpZThFfsa+LaOXPxp0PRW204nRjdD+jPfaO5n5phMZvKXDjX3osThgCPToHY96BJhwB5Q95wOu52BcEbcyIllheZP82pJ5p8j5gmH5Ax5YM9G3s84hK1xReDEk3zzBYJ6s5GtxRmMPdPW3hcpJyt3LshO49OS7UR66GhQFKqtFuyKQry3L1pZxXFjaSvlzv8e2sgTQy8l0tuP0dzChtplFGQO4tZeM1zKnSEllzLUdy7fSveSH/oUV+Wt5auIpehk7SmsE5wRdfug/Evw6APhf+iw007iXr7jj/zKm8IZOV9stXBwsLNnkH4W9F0GbSiRnwl6jQ7jSeXVRosJnUqDVqVGliRkJGraGGPQdJ/kVRDLNG6l1mZu4YiAs8FY80iJ4NRkGktdjgg4nZCTdX1jPdR8dnQ7xfWi+/OpaK7cqSDx5wM78ZJlds+4hkOzrmNKsDM7f7CfM2mxLeXOGB9/1hWkAyArKspTb2Cu/9WtlDtjbUn8zzeVksIxBEeu4abK/qwzbnLbtV8wHJ0HSNB3aYeeVkZmIJdRRR75pHbouS8qTNmwL8bpiIQ8AP1WnLMjAhCvbyP5uKqIeL3zb1Qtq4jxDeBwVVMLF4eicKTZmO6CcEbcSIPN4m4TejS1VhPRKjOBarnd3IZgrRaDWsahKKwrTO9S+3oyk9ctodbu4JHefQn19CZU58XKSZfx8cgpPN5vCAAZNe0kz9U4E+PKTHUYraZ2lTv91AZ+ityMd8Gf8fUu4SPtHP6S/3iXXeMFR94/wJILwfeCZ58OP/3VvATAjyIycm7UbIYDiWCvgpg3Ie6tVkNMdiu5tZXk1lYCUGauI7e20pWEvzAzhY+bCQ1ODu9DmamWHzL3UlRfzbqCdHaX5jA9MtE1ZnpkPzYVHWNrcQaF9dV8dWwnFoetlRaJuxHLNG7AYrfxQ2YKm4qOtbk/pSyPGJ/2qxUETnaX5aKgMMPPk4UVDVgcjhZRERUS04PDUTuqsCkOtpVkcV388HarRAROnjiwg/3VFYz39eDhfk0JdbIkcUdc05ec0WJqU7nzhCqn0epMkjydcuerkS+ypnou79pvxxjxAlfkb+Kz0OXo1T4dfm0XLJZiKPgnqAIh9u1OmSKY3gQRz2FWY8OGWtw+zpyyLyDjdkB2Rq38Zrc5LLumglcPNPV++y5jDwBjQ3pxR+JYqi0NVJjrXfuDdD48kDSF7zL28Gt+Gn4eXtzad7RLYwRgZHAstVYTi7P3Y7SYiPLx56GkqeibacZ0B8SnqYuxOuy8dXAd6dUl7Y5ZmpuKWlYxJyapCy3reVQ2/lHq1TLP9h/EXw+mtNhvR6GmvgRfD+fHvN5mweKw9+hmUp3NzooSnj+yl2gPDddHxuLn0TVJdZcYJjHOcYib8y8jJHIdd1UlcTv/Y57/zC6Zv8eTfhlgh4QF5xX2Px0z+DNf83tW8wqX8tdOm+eCIvdpKPwnyN4wYDt4tf+9nugXyvsTb2p3/x2JrVsoJPqF8uSwtp2bE0yNSGRqROIpx7gbsUzTxSzO3u9yRDSyinEhvbix9wiuihtCQrM1vEXZ+zh2CodF4Ez2PUF1XRH9PVs6GSogTKtq9xhBSywOGzM2LEUlSUwzeDAx4tSh/lMpdwLoNc4nr7YS7AxtKD96yp78GPUrYYV/x1NXzQ/eV3J/XtttJwTNKPsS6neD/lIwTOvUqSZyD2o8WEfrJQZBGxy7wemIaMJhcNYpHZGLHfHN3IWY7TY2FjqXZlSSzJ8GXcLtiWOZEtGXWdED+MvgmcyPHegav6Ygrb1TCaBFAlaZqY6xeh3+qqaPtEqSUDVTnpSRMAuxrXaZvWE51VYL98XGEezhycCAiFOOP5VyJ0CQzhu9RtdizJkodz4b8TQP2n6l2hiJPeodLi8YTam14jyu7ALGYYKs34Gkg4QfOn06GZlkLqOKfPLY3+nz9VgcNkgdCRXfgtdQpyOi6V4Jo90N4Yx0IakVBTTYrQCMCo51NSqqt1ldY2ZFDXCtw6eU5WGyW1uf6BRcTHLo/fzCCNA2LSPoZBULxk5H1ZjOKivwdYmReptTJ8OBwrbiTLfY2t1599hBfi0tYGJQGN5KPWND41GdFEU6W+VOSZK4JLIfy3JTz1q5c5TvML4LOER53hxCwnZzf/1Avir/vsOvu8dz7EZw1DvzRLpIp+JqXgbgRx7tkvl6HLYK2BcH9bvA/ypI3gOibP20CGekC6myNCUenahCUBSFoMWfEr/sK5YWZiNLMn0MIYDz5lljaSrzfTV9P8NWfU+lpe3S34tNDl2WJHobmp42bIqDxZk7Gap3Jj5GacFod/BlWT07asw0OBxsKc5wl7ndlsxaIw+lbEav1vBG8jAqzPWMbyPT/myVOwFmRfVnangiXxzdcdbKnWpZzXdRS0koeQmN2sRq/S3clXtnh1zzBUHNVqj6CTwHQshvumzaYHoRRG+OsAYbItLYgvrDkBIL1nwIfxz6dH606kJBZPJ1Ic2/gE+stSuAVlZhcdiZu2kFnio1CZ5aBukkvNUymsZktAa7jWcP7abaauHqLSv5ZdKcVl/op9ItCeDCFFHTnNQAzGy3EaexswsaW9zbUICUOgsH6iwMqrPxm4Y6wj0vzN/H2eJwOJiwdhEORWHFpDkMDQzj/eC2E+jORblTkiTmxw1iftzZt68/wV/D/sih+st4vPIKwqM/YX5RCm/5LSZWdxH3RXE44OgVgAyJy7p8+pn8ha+4l1W8xGxEOTYA1asgbQ5gh16fQPDt7raoRyEiI11Ib32w6+fNRcexKw4kwGS382jfIayZfBn+Gg0Hauv5sqyOxeUN7Kt21pt/mX2UaqtTl2RdaQF/SNnS1hQXHXKzMt1BAZF4qNT4qiQMKonDDTa0zfbbgZQ6M7FLv+L+PRvJra91g8Xdi1t3rKXAVM9f+g5mbGDY6Q9wEwO8+vJD0H6MuVcTEnSQv1pH8H7px+42y33k/QVsJRD2Z9BGdfn0E7gbNR6s550un7tbUvxfSJsFkgz91glH5BwQzkgXEunt53JIihqMfHhkC8UNtZgddgI9dMR7evKbcH8uD/AkRCNTZLUxZf3PhC/+jCdSd7SQOn/3+CHeOdZSCbGyWf35xUJsMz0WvVbH62Ov5e3x11E8/07eHz4Ri9JSj1UBrIqD9zMOE7/sK367az1V7Sx7XegszMvkq9xjDND788LgMe4257SoZTVfRX/P8Ir/IqGw0/8ebs697uLrAGzKhqLXQR0GMS+4xQSnIutckcgKkP1HyP49qPQw8AjoJ7nboh6JcEa6mKviBrsSA3eX5fCH7YsA+D5zD8+n/EJxQw2hWjW/iwojZ/ZN3ByTQLnFRInZ1Erm/KG9W1hZlIvNYefzo9t599CGNuf84ugOjM3W+i8kRgbHuXRDNhcdZ1PRcXQqDR5qDb+LH8Ds0Mg2j7MrCjZF4cPMI6wvLexKk7sFZaYGbty+Gg9ZZuPU+e4256y4L+Q3/Eezm9KyAfhGf8fVpYM5XN+2gOAFydE5gAP6LnKrGdfwCgA/XKyKrA6Hc1mm+HXQxsHgHND1crdVPRbhjHQxCYYQftd/givfY0eNM3dkr7HGNSbMU8/DyVOJ9vHli9GXMCM0qs3/KAWFq7eu5Nl9v7Kp6Hi7c2bXVvDy/jXUWS+8CICnWsOsqAGAM+rx5bEdPLVrMR+lbeGlfatwmNsuCVVJElpZ5sMRk7k8Mq7rDO4mTF63BLPDwbdjphPQhuZHdydWF82isBQsubcRFHCc55QxvFz0hrvN6nyK34eGQ+B/NfiMcqspgcQSTAJp/HrxJbI6THBwIFQvB58JMOg4qPXutqpHI5wRNzAkMIpnh89laHA8WWZn2WmhxU6Elx83J4zkiaGXEqRzVoQcr61meVEujjbOowC1NhsvHs/A5FDQyCouiUjk9wMm8XDyVGZHJeGr8QCguMHIouwLM5w6JzqJKeFNAl1lpjq2l2RxzFhKoKbtj7ifRsv2S67krl79usrMbsNf9m3lUE0lN8ckcHlkz36S+yj6U6YaP8dm05IW/GeuzZ174S7b2Goh52Gnkmfvr9xtDeBMZHVgYyXuWS5yC5YiSIlxOoVBd8CAjZ2qenuxICmKcnL0v9thNBoxGAxUV1ej11843uflm1awpDDbtfzyw9gZXBXVsqTy4b2befPY6btkysDzSUN5pN8I1M3+MMpMtfxj91KnDLqs5oXRV+Kp1nTgVXQu6wuOsr7wKOVmZ7JpuJeBuTEDST5JkEtRFA5UFLC2II1DzUS2ZCQ+K62j3m5vMV4CrgrSE6aV6a0P4qaEkYR6XjifrfbYXFbExLWLiNB5kXPZzcgXyJdoiaWMu8vnEB6+k6LSvjzh+S0jfYa426yO5cgMMK6G3t9C4HXutgYABw4ewhtvAniBfHeb0/nU7YFDE0BpgKh/Q4SoJDodZ3r/vjC+iXogK4tyWdzMEVEhtel0ZNQZkQEftYYwnSd9fAyM9A9mekgkl4fH0EenJkgto1ep+OvBvcQv+5rnDu1hZ4VTSj5I58PoEOfTr9lh4/BJipndHT8PT67sNZi/Db2Uvw25lH5+Ybx7aAMFdVUtxkmSxKDASObGDkRGYkZkP/44cBqXRg/Av7ECWkbi5UFjuDc2FgX4ocxIgeKLRlLxZuparA57q/kvJEw2G7M3LkOWJDZOvfyCcUQAQrRBLArfgZx3H/6GXN5UTeGZwn+526yOo3qV0xHxHtVtHBFwJrIOYh7VFJBLirvN6VwqfoSDo0CxQML3whHpYERkxA1YHHYGrFhAZp2x1fLLoVnX0V/v73p/4r+nrU6zeXWV/HPPcgDGh/ZmcEgCbxw9wKdZ6agkiZL5t+Gn9WBT0TE+P7oDgFsSRjExPKFzLqyL+OPW77m611AmhPVute//Dm/C4rDxQNIU17Y5axewraqWRRNmMyEojEe3L+SoWWZRSTEAcV4+zPCVubvfWEaGxHXRVXQ9k9YuYmNZEf8dNpF7ew9wtzmdxqKqZXyu3EuAIZ+ygql8FbEMXU9WwHQ4YG8Q2GtgaGG3kxUvJ5sniKMf0/kDq9xtTudQ8CLk/dUpu99/I/iMcLdFPYYzvX8L0bMOZkn2fn7OaRnhCPXU8+yIua73bx1NJaPO2Ko6RgJu37qUD0dOZWCAswpEkiQURWFx1n42Fh2jwW51LSt4qpq+YIsaqrnNL5CPRk7hvt4DmLpuCb/fs4kvR0+joL7aNa4nLdGcjENxsLs0B4vd1m5vk4yaMqZHtswDuadXImPK85gYHE5pQy1Gq4m3hs/m8MZfSK+tJqu+lm/NMhEFmResM/J6+n42lhVxSUjkBe2IAFzuN4eptkPcVngpoZG/clNFPx7SfMYU/QR3m3ZuZN8L9kqIfK7bOSLgTGQNoQ/prMWGFTU98DtGsUNDKngNbr0v4zdQ9hGogyB5H2hP3bNJcG5cOHHabkSEl4EXR1/pej06uEm5srChjqcP7mrliIAzIXV/bQNvpG4gv9kyxC95h/m1II2b+4zisSEz8ZDVvJm6Fl+NB2GNeQ7HjWUcN5YCMDIghP+NmMzXuce4Z/d6tjb2Y1FLMn0NoZ112Z1Gfl0VD21ewP2bvuXLYzu5d8BEIrwNbY41Wkyu3j4nMGg9MTZWEhmtzhJnvVbH1kuuQCerUOEs9X3uaDp/2re1U6/FHaQbq/jTvm34abQsm3ipu83pEvRqH36K3IRvwV/w9S7lY+1s/pzfA1veN6RB6QegjYXIJ9xtTbvM5FEc2HtuImvR65A6BEo/bNrmcMChSU5HRNcPhuQKR6QTEc5IJyBLEgatp+vl0+zm+GTqTurt7Wf7mx0Oyh1q1hWkA85lmjX5R5gTk8yQwCiivP25M3EsVeYG9pXnMaVZm/d3Dm5gS3EGVoed66N7E+vpzf8y00irc4qhDQuKQd8DyziNlgbifAPxUmtpsFv54PBmCuqqT3lMWlUxz+1Zzv2bvmFJ9gGsbVRY7CvL4eZQA7IEgWqZaA+Nq/9P8+aFPRmHw8GkdYtRUFg1aS5a+eIKhr4c+QK3W5ZSWxdMTcRLXJ4/EaOtBynvps9x/tt3qXvtOA3juAs1OtbxrrtNOXsUBxS/6fw583dQvdJZubS/D9RuBP2lkHwQ5J733dmTEM5IJ1DSUMOj2xfyxM5FfHhkc4tGdSEensR76/HXeKBqIw8EIMNkI6OmDHCWqRqtJvr7NUl1e6q19PINIqOmjAlhCfTWO0O3dTYzn6Zv46EtC3hoywImejv/g1dVNuCp9uDKXm2EIHsAdkUhXh/ELX2cugqBOm9+LUhrc6xeq6Owvpq3D64j0S+UJ4fNJtY3AJPdxsHKAvQaTwC2FmfyfcYe7kwYxn3x/cix2AnTSFwRHsPeqnLClnzOrorSLrvGzuL67aspNjfwZP+hjAgIPv0BFyDT9JP40v8IpflTCQ3fwl01A1hctcLdZp2egpfAnAFBt4FXkrutOSUyMoO5HCOF5LDH3eacHdUrwZLT+EaB9CsgJQIsGRDyIPRbLkp3uwDxG+5gevkGcUffsTyUPIWbEkZSZqrjpf2rMDU+aT8/aDTH59xIxRV3YL36boJUEvGenqTMuIZfJ8/lh7Ez+EPvRKotTjG05ssKzdFrdVRbTGhkFQ8mTWGAf7hrn0NRsDrseKllJhl02IB1NQ4CPHpmc7jkgAiuiBvM0Ma28wpga6fyJd43iB2l2QTpfLg2fhjhXgYabFaCdT6szk8jSOeNXqNjXWE6E8J6Mz6sN/8ZNI5BXhq211pI8NTy3rCJ1NlsjFrzI6+m7evCK+1YFuQe5/u8TAYbAnk22b0CWe5GJ2v5MWoN4cX/wFNn5Eevq/l93v3uNqt9bBWQ/wSoDBD3kbutOSOu5kUAfuRRN1tylpS8A5xoOqo4y3YdNRD5T4h7052WXVQIZ6SDSQ6IYHhwDFHe/iT5R/Bg8hTqbVZ2leW0GitJEhbAX+vBYL9ApoZEclVUPL28fc5qTk+1loeSpvCXQTMYExJHhJeBcE89AwMieHXYNC4Lj2FfdQX/OtzDnliAhZkppFeXUGaqdeXRFNRXM6ox0fTjtC0szExxjb8kMpEyUy1eai1F9dUsyd5Pdm0FY0N7kWEsQ5Ikpkb0pdJcj06lIb+uio/Tt3JpUACBGhVvZx1nYlA4+2deg59Gy5/2b+PSDUuxOdqSneu+lJjquXXHr+hkFeunzHO3Od2Gf4Q/yUP2dVRXR+KIepfLC0ZRYilzt1mtSZ8HihXiv+oxT+UBxDQmsq7DhsXd5pwZ5myoWoqzjWZzZKj4xlnBJOgSLq4FZDfgpdYS6ulLaUPbH2qTQ8FHpWqxzWg1YWiMhJxYVjBaTBi0nk1jLCaiffxc7yVJIsEQTIKhdSj+p3GRhC35jKdTd3J5RCzJhsDzvawuo8Zq4pO0rVRbGlyVQHNjkl2RoApzPRJNy1299cEYNDqK6qv5557lhHj6ct+AiQCY7FYsdhtjQ3qxKHs/GwqPsTr/CAmGYB4ZOI1wnwM8dvggE9cuonD+LRTNv5Vp637ml+I8opd+wbZpVxDr3TNKyyeuXYzF4WDZhEsxaD3cbU63YqTPEL7zOsRNeVcQErGCB2oGcXnNm9wceI27TXNSsRBqt4DvFPCf425rzopZPM7n3MUv/IfLeNrd5rjINJaxvyKfBpsVnUpDvD6IKG8/Akr/D+cz+cnOiAMajsDRqyFxGUjiVtnZiN9wJ2OyWyk11TKmmSNxApvDgUUBD6nlH8LhyiJX6eqJZYUjVUVE+zj1RxpsVjJryph8hnohallm3ZR5DFr5PVPX/UzhvFtbqLR2Z27r27Kb7D0bvyLau0mH5U+Dpp98CB5qDeNC45kd3bTOfqCiSR3yhGbLA8mTXV2UAaK9vLgyJIBvisuZsX4p66dezqZpV/B06k6eO7yHhOXf8MXoaVwf3b11Wh7eu4n02mrujEtkdnisu83plqhlNQuifual4jdI8XmWNV63sDr3Zz6O/qTT564w1VFra+oT5aP2IEDXuITqsEHG7SBpoY97G+GdC2O5nW/4Pev5b7dwRirMdXx5dAepla2bYaqx8abnu6haOSIncIBxFZR9BsF3da6hArFM09F8n7GH9Kpiyky1HDeW8t6hjchIjAx23hSaLyvkNziz+h12M6vyDrdYVpgS0Rdw3jgviezHstxU9pXnuZYV/Dw8GdKYQ3EmJBsCeTZpBGUWE9dsXdmxF93N0Gt0GBtzbk5gtJjQqTRoVWp8NB7ISNS0MWZioFPddkNZEc8d2g3As8kjWTdlHhpZ5oZta7hr57quupSzZkNpAW8eO0iMlw8fDBetzE/HX0If5glpK+WVvfGI/pT5RUPINuV22nwVpjqe2rWEf+1d4Xo9tWtJU5J7xq3OfIXol3tk4zVnIusVGCkii11utaW0oZYXUla26YgADJO3oXJUnbS1MUot6UA/A6JfcDYlFHQ6IjLSwVSa6/kgbQt1VjM+Gg8S9ME8NmQmvo3LLs2XFTLrnM7I0KAYNhYd46esfa5lhUhvP6CliNq7hzYAoJVVPDl0tqvz78nsLs1hUfZ+yk21hHj6clWvIQwMiOTJAcP5qSCLRQXZPLF3DRZzdQsRtQulN0u8PojUioIW2w5XFRHfWHWkllXE+AZwuKrY5dA5FIUjVUVMjejL8v4TiVjyOU8f3MUloZGMDQxjUnAEBXNvYcyan/g4K43NZUVsu+QK/LtRqXS9zcqcjctRSxIbp86/oOTeO5MBXn35QbeP23NvIiT8J/7aMILJxue5L6Tjn4ZrbWZsSsv8I5vioNZmJqAuzZmnoEuEsAc7fO6u4ipeZBffsJC/8kfWuMUGRVF4//BGqizOAgAvlZYhQVGEeeopNdVwoOw4t8ofNI2X1EjeY8EwA/TTwHsk9GTV3h6IcEY6mLv7n1rlsfmyQl5jZGRwQAQ3x/Zt95gILwN/GDjN9V4lSS20S5pz3FjKB0c2c0WvwQwKiGRHSRb/PbSRJ4ZeSqS3H79Omkf0z5/xduZxFo6dRl99IIuz9vNm6lr+Pnxuuw6OOzHZrZQ2NGlDlJnryK2txFutJUDnzcLMFKos9dyZOA6AyeF9WFeQzg+ZexkfGs+RqmJ2l+bwQPJk1zmmR/bjk7StxPkGEOcbyJr8NCwOG+NC41HLMlsuuZx+KxYwY/1Siubfio9ai59Wx5HZN/Cbnev4KCuNyJ+/YNmEOUwJ6R5CSJes/5k6u40PR0wmxsvX3eb0KNSymi+jF/Dfko9Y7/k4uwPu5ebcFXwa+RXqrtJmSZ8PSNB3edfM10kEEE0IfUlnPTYsqOn6m/qRqmJy6yoBCPH05dFBM1wPhFhLsFsehjo7Rx19+dl2NVP73smQkD6nOKOgsxGPTm4kr8EZmo09zY3jVCJqJ7MmP42kgHBmRQ0g3MvA5XGDifHxd4mo+Wo0XBWkp9aucG/KrhYiaillnReePh+yayp4bu9yntvr/JL+LmMPz+1dzuLs/QBUWxqoMNe7xgfpfHggaQqHK4v4557lrMo/wq19R5Pk3+Q0jAyO5Zr4oSzO3s9ze5aTW1fJQ0lT0Tfm9iT4+PHB8EnU2W1M+HVxC3s+HDmFb8ZcgtXhYNr6JTyduqOzfwWn5cUjKWyrKGF2WDR39ep3+gMEbXJfyF28oNlFSVkSvtHfcXXpYA7Vp3f6vPqSf4M1H0LuB12vTp+vs5nN31Cws5x/u2X+bSWZrp8vjx3U5Ig0pMOhsagsWWRG/czL1mc4oiSztaztpRxB1yEiI26k2OQMIcacppT3hIiaRpaJ9w3iyrghTQlvJ9FWb5YB/uHsK88DnCJqWsnGjVFxfJmXxcN7N/PG0PEuEbXu2Jsl0S+U9yfe1O7+OxLHtnnMk8Nmn/K8UyMSmRqR2P55e/VjeVEuC/Iy+GPKFl4bMs617/roBMYEhDDm15/45+G9rCkp4NfJc/FQdf2f1MHqCh4/sJ0AjQeLx18ccu+dSawumsVhe7kr9w4Cw77hX5axDC56mkfDHj7vc9c3S1w9gS9VGMped/Y+iXnjvOfoDozmVr7iPjbyPvP4e5fPX95MaDL5xENIxUI4dg1o42DANuK1sUjHv0FBaTFe4B5EZMSNnHBGotpxLOD0Imon01ZvFr1G10pE7a2hE4jx8uHNY6lsLC1wiagJWvL16EuI8fLh9aMHWF7YUism1ltP7mW3cGlYNFvKiwlf8jkHqyu61D6bw8GUdUtQgF8nz+0xVVI9gY+iP2Ga8XOsNg+OhvyJa3PnYmujrcCZYHc4WHB8N28eWNdq30OaFwE7tt4LeoymyOmQkRniSmTd2eXzN/87aLA3flf6jgcUCHsIPOIw260ojV3CVBfI770nI/4H3Ei5xYQEp0w0PBsRtbNBlmU2Tp2PWpKYs2kF1h4m6tVVyLLM9kuuRCvLXLnlF0pM9S32q2WZ5RPn8NrgsVRbLQxa+T3vHT/UZfZdvXUlZRYTzyaNYLB/9+vo2tO5JfBa3vHaT0nRMAKjl3Jt+QB21qac1TkcioP/O7KJNQVp2E9qkTlK3kS0lE2qfQjv58nYlQvn7/CqRkXWhXR9g8JY3wDXz5uLjjt/0ISALhnq9zq3F2e4xsT5BCBwL8IZcSMVFhNq6ez+C04noqbX6jBaTypZbUdELcbLl3eGTaDWZuWT3GzXGEFLwnRefDd2BmaHgzFrfsLRhuP2h76D2Dn9KnzUau7bs5Grtqxsc1xH8kV2OosLshnuH8STA4Z36lwXM8GaIBZF7ECV93sMhnzeVE3hmYLnzvj4DYXHSGlcJlVLMuND4rm9zxju6D2E2zUfYUXDe7aH2F+Rz/qCo511GV2OP1GEkkg6G7pckXViWIJLCnF57kF2lmThUBRQeaKULyClPI/FWftd4yeFi+RVdyOcETditFrRnmV48ISImqENETVw9mY5UlXUYlt7ImoAv4sfwCXB4eyqqSfFKNZN22N+RBy/7z2AzPoabt+5ts0xw/yDKZx3K8P9g1iYn0ncsq8oqO+c32lBfR137VyPl0rNOiH33iW8E/UOV9X/QINJT2HYM1yVdwkNjtY5IM1RFIVfC5oSYO8bMInbEscwLiyesY7vUWOmJOwlbDhVctcWpDlvmhcIJxJZl/GvLp03SOfjcjBsioMP0rbw1K4lHDYHIykNfHPoB8yNS26jguNcUgoC9yGcETdSY7PieZqEx7MRUQNnb5aDlYVnJaJ2eZCeMI2Kl46ncbSmqrMut8fzzrCJJOn9+SLnGF9mt11h4aXWsGv61TzSdxC5DXX0Wv4Vi/OzWo07ZKzk8QPbz7nnzcR1i7AqDhaNm4WPWughdBXz/S7lI99DlBSOIzhyLTdX9mdN9YZ2x+fVVVHcYASgryGE5IDGZMq6/VD0AoQ8SFTswyQaQgEoMdWSW1vZ6dfRVYzmVjR4spH3u3zu6+OHu74nAcpMtaysHwDAKHkLAIMCIrmt7+gut03QGuGMuJEGuw1v9amdkRMias/s+pn/O7wJb7W2lYhadaOwDzh7s/w2cTwbi47xzz3L2VOW20JEDWBWVH+mhifyxdEd/HvvCmyKnU9HXYJDUZi8bkmnLy/0ZLZMvQIvlZo7dq4js9bY7rhXBo9l+cQ5SMDlW37hwT2bXPuqLGbmbFzGf46k8F1eRrvnaI97d28go66Ge+L7Mz0s6lwuQ3Ae6NU+/BS5Ed/Cv+DrXcpnHpfxSH7bnWpPJIwDJDRrPUDaTGcjvNCHAOjTrKdU82N6OhISQ7iSGorJYHuXzq2SZX6TOI57+090OXtHlGQUBYZr0/ht4jjuGzCpW2orXYxIitL9Y4JGoxGDwUB1dTV6/YWhEgrg+cMH9PExsH/Wte42BYC/HdjB80f2ckN0b74e07rni8DJptJCJq1bTIiHJ/lzbzllJn6JqZ4xa34is76GgYYANk+dz83b17KsKAeHotDX18ChWdcjS03N/k7Vu2RVUR4zNy4l3tuX43PaL3cWdA3rjJt403obwQFZFBeM47PQFejVTaX6x6pLeGn/agDGhMS5hPko+xKyHwKVD/T9mU/y6tjamFD5yMBLSPQL7fJr6SyqKOAxIunDZP7EOrfZYbJZabBb8TsY68wnGVbqNlsuJs70/i0iI27EqjgwaLpPiP3fA0eRpPfnm9zjLMzLPP0BFykTgsN5asAwis0NzNu84pRjQ3ReHJt9AzdE9+ZAdQVBiz5jSWE2dsVZVJhWU82igizX+FP1Lqm1Wbhiyy9oJJmNUy7v3IsUnBFT9BP4yv8IpfnTCAnfyl01A/ipaqlrf7RPALrGpdjdZblNUcygm2HgPlD7o6SOxbvsv0g48FCpib3AKjv8iCCMfhxjExbcJx+gU2vw9/BC8hwItnJnU0JBt0E4I27ErigEeHSv9u4bps7HQ5a5cftqKoTuSLv8I2kk4wJDWV6UyxtH959yrCzLfD1mOo/2HYzlpNJNGYl/HNzNiQDlqXqXTFm3hHq7jY9GTibCq31tGkHXopO1/Bi1mojiZ/HUGVnkdS2/z7sfAA+VmjEh8QBYHXbeTF1LhrHM+f+tjSIr+ifK8Oda9We8o72dv+reQFf6JtTuAuXCuVleyhMo2FnRxYmsbWKYCSjOjryCboNwRtxErc1Z6hbs0b3KaQO0Or4ePR2zw8HktYtPf8BFzJpJc/HTaHkkZSv7q8pPObagoY4Pso60+oNzoLCvupxfik8txf/GsYPsrixjfkQst5yij5HAffw9/Akesq+jsjoaR9S7zC8YRYmljDkxSfg1Vr/l1VXxwr6V/G3nIv62YxHP79/C8+a/oSigkhxE2LZA7qNwaCTsNsCRS6HwRajdDo62hQ57AmO4BS1ebOT/3G0KBDYub1b84F47BC0QzoibyKpz6oSEeni52ZLWXBnVixuie5NqrORvB9zfd6W7olOrWT9lPgCT1y3GZGv7SdbqsHPN1lUYrRbaSg0+ER1JKcvls/TWSX5lFhuvHT1EsFbHD2NnduQlCDqYkT5D+D7wIBW5cwkN3cuDDYNYXPMzfxx4CUG6plySCnM95WZn2XcdBnZIM1Fc/bwbPyWOejCuhNzH4dAYONAPun+KX7s4E1lLyGBbh5wvvbqEtw+u49HtC7ln41dn1FsrraqY5w4epMARyc6So2wpbp1AvrYgnb/tWMT9m77h+ZRfyKwp6xB7BadGOCNuIqfO2YU2wrP7OSMAX46aRrjOi/8c2cvOihJ3m9NtGeQXyOtDxlFltTBtw5I2xywuyGZreTHt3UYcKGyrKOGpfWtdnUZd+xwOllY2oACfjRgv5N57AGpZzYLoJSSWvYJabWGt/lYeL3+QZ4bN4bY+o+nlG4hOpUGn0tDLN5Bb+4xm2IAXkNr8hCi4nBP9TGiW6NzT6GhFVovdRpS3Pzf2HnFG48tMtbx9cB2JfqH46Qz0lw/wefp2DlYWuMbsLM3m+4w9XBaTzBNDZxPl7cebqWsxiiXrTkd8s7mJ3MaOvVGe3XPtX5Zl1k+Zh4TEzA1LsYhkr3Z5sM9A5oRFs7W8hKdTW/fhmBcRyxejpvFQQjITAsPwaqYto2p2c1lT2YCiKAR7+DAyOJaB/hGsrDJjVmCUj5ZfclKoMte3Or+ge/Ln0Id4StpGeWVvPKI/45rSEUT6aXlsyCzeGHctb4y7lseGzGJCWG80PkPAdxLQVpmpCvSXQOybXXwFHYszkbV/hyWyJgdEcEXcYIYGRZ/R+PWFRwnS+XBt/DC89CPxoZLRAQZW56e5xqzOP8KEsN6MD+tNhLeBmxNGoZXVbCk+ft72Ck6NcEbcRGFjl8gYr1N37HUnfXz9eGXwGKqsFi7beOqqkYudJeMvJUznyXOH97ChtKDFPq2s4ubYPrw6ZBwbp11OzZV3kX7pDXwz5hIe6TOQaA8NAA0KHLd58vjQ2fy233h6BfQix2IjVufBEB8P6m0W1hVeOHLhFwP9vBL4IWgftbnXERJ0iMetw3m35KO2B4c+DNhbb1cZIOEHkDWdamtXMIcnUHCwjH92+dwZxjL6+YU53/hfBcAI9V4yjM5lGJvDTk5NBf1PjAFkSaKfX5hrjKDzEM6Imyhq7Ngb5+3rZktOzR/6DmJ8YCirS/L5X0bXNYDraciyzLZpV6CSJGZvXE61pX2ZcFmS6ONr4ProBG6PiWW2v467Q324ISyErVWVjF37E3sqSnlg7yZ6e+vZPO0qlw7J5qLjF5Rc+MWAWlbzRfS3jKx8D5DYE3AvN+Ve07oDsP980IQ32yA7X/YKOH4zXABihKO4GS1ebOJ/XT630WpCf6L/lmEOAEHmzZjsVix2G7VWMw4Ul6DkCfRaHdVWsUzT2QhnxE2Ump0fbv8e0Jxu5aTL8FFr+P2eTeTUt92gTwCx3no+GTmFeruNcWsXndEx+XXVgFOm/6G+g9lxyZWYbDZG//oTJWYTqyZfRqS3nj76EMD5hVprPXU/FEHX8rcdi7hn41etXl8da7lkd0/wXbzgsYeSsiT00T9wTeFY7t78If/YvZQDFfkgqRsVWeXGTBGZtx3/5Bf7fKheSv3+QWDr+ct0Q7maWkrJYKv7jJDVoArEy3LQfTYIWiCcETdRbjYh0zOS0bzUGpZPmI1NUZi4drGQiz8FN8f25daYPhwyVnLf7vZ7lpxAaZa0KEkSyYYANk+7glCdJ7/t1Y9e3k7FQlWLxEURGelOPD5kFi+OvtL1+kPyNACGB8W0GhujjeQ1r5UU7buXgJBU6of8lXLvA/z30Eby66og+LcgqZCAz+0PMKHPbSQN+oQ1qrvRmo/g2BcNpuyuvcAO5kQi648dlMh6pug1upaJqJ5JeNqL0KnUaFVqfDQeyEjUnJSsarSYMGi6/0NjT0c4I26iympB04MqIyYEh/NQQhI59bX8bs/pb7IXM5+MnEK8t573Mg6zKP/USrZhnk3yyHsbSxODdZ7kzLmJN4aOB6DGYiK92lnR5K3W4qPpXkJ5Fzu+Wh0Grafrtb8in2CdD30NIW2OX5OfxnT19cwwfoHVpqWh75PkB//ImvzDoAlCiX6F7xz3Eh79O4YERhHl7c+4wW/ztu0xHDYjHOgL1eu69iI7EANhhDOA42zuUkXWeP1JHc0NM9BIFoZ6VQGgllXE+AZwuKrYNcShKBypKiJeH9Rldl6s9Jy74QWG0WrBowc5IwBvDJ1AHx89H2am8UvR6Wv6L1ac+SOX4yGruG7bagrq69odm+wfgb7xqSulPI8dJVmuc4CzfPGLYztcqqxjQ+ORpZ71ubmYsDnsbC/JYlxob6R2ynAzapyJlDcGXs273qmUFA0nPPE7FurvYUfNHsoMd7LaOrFFIqWnWovNZwq/+P4PUCBtGhR3fSfcjmI2T6LgYCnPnvM5THYrubWVri7HZeY6cmsrqWgsDliYmcLHaVtc4yeH96HMVMsPmXspqq9mk30SANM99rjGTI/sx6aiY2wtzqCwvpqvju3E4rAxLjT+nO0UnBniW81N1NqteJ2mY293ZMPUy9FIMldu+QWjxeJuc7otwTovfho3E4vDwdi1P7W7tKWSZWZFD3C9/zBtCy/uW8mynFS+z9jDEzsXk1KeB4CHrGZqhFBf7c6klOfRYLMwLrRXu2OMFpPLAQ1SB7AoYjvmow9i8M/gLfU0/lP8MkBTsmUjeq2OfCkBklNB5QvZ90LWg513MZ3IKG5Eizeb+eCcz5FdU8Fze5fz3N7lAHyXsYfn9i5ncbazPUO1pYGKZqXwQTofHkiawuHKIv65ZznLi6uox5coW1NH7ZHBsVwTP5TF2ft5bs9ycusqeShpKvpGBV1B53FOd8N33nmHl156iaKiIgYPHsxbb73FqFGj2h1fVVXFE088wY8//khFRQWxsbG8/vrrzJkz55wN7+k02O2E6XreBzxM58XHIydzy461TNuwhF3Tr3a3Sd2WS8Nj+EOfgbx+9AA3bF/DgrEz2hx3SUQihfXVbCpyahkcN5Zx/KRSQo2s4p4BE1qoeAq6H5uLjpMUEI7fWSor3+79AJ+nJFLb9wVqYp+l0HIF9Y5ZGGjjO8KzLwzOhYNDoeRtaDgIiauhh0Vah3EN2/iUo2yiDxPO+vhEv1Den9h+5+o7Ese2ecyTw2Y3bdgXCqaWKqxTIxKZGpF41vYIzo+z/vR+++23PPLIIzzzzDPs2bOHwYMHM2vWLEpK2lbptFgszJgxg6ysLL7//nvS0tL43//+R2Rk5Hkb35OxOOzo1d2nY+/ZcHNsX+ZHxLK7sox/Hd7tbnO6Na8NGccQv0C+y8vg48wjbY6RJIlbEkZxW5/RRHgZWuyTkRgaGM1fB88kyT+iK0wWnCPlpjoOVxUzISzhlOP0Wh3Gk0pFjVYTcZpefOR7iJK8iUT0+YkH6kaxuropP8toMWE4ES1R62HgUacYWs1a2J8ANmOHX1NnciX/AWARj7vPCJ/RoDSARahMu5uzjoy8+uqr3H333dx5550AvPfeeyxdupSPPvqIxx57rNX4jz76iIqKCrZs2YJG4xTtiYuLOz+rLwCsDgf+2p6biPjD2JmEL/mcp1J3cXlEHMmGQHeb1G3ZOHU+4Ys/5+7dGxgdEEJRbSm7y7KptVrQqlTE+gQwMawP48N6My40npzaSsrNdaglmRgf/7N+yha4hy3Fx/HVeDAw4NROY7yvM5FyemQ/17bDlUXE+wahV/uwMGodN+x7DJ9+/+VzLmNZ/n38K/RfZNaUMTm8maMjy9BvNWQ/DMVvQko0JO0Az57xVO9MZE3iOFuw0IC2rShQZ+N/JZR/CRVfQ9jDXT+/wMVZRUYsFgu7d+9m+vTpTSeQZaZPn87WrW3XjC9evJixY8dy//33ExoaSnJyMv/+97+x29tQGmzEbDZjNBpbvC4kHA4HChDYg50RtSyzdspcJGDquiXYRLlvu/iotayePBeHojBi9fd8fWwnx4xlFDUYyamtZGPRcf6dsoIljWvdsb4BDAuKZlBgpHBEeggORWFLcQZjQ+NRnZRg/HHaFhZmprjeXxKZyMHKQlblHaaovpol2fvJrq1gSmM+kCRJ3Bl4O5qUF6mpDaMu4mWuz70Mb62KIW1Jn8e+AbHvg6MGDiRD5bLOvNQOZS5Pn3ci63nhN8/5b9Vy98wvcHFWzkhZWRl2u53Q0NAW20NDQykqKmrzmIyMDL7//nvsdjvLli3jqaee4pVXXuG5555rd57nn38eg8HgekVHn1nvgZ5CSWMde4hHz8sZaU6yIZBnk0dSZjFz9daV7janWxOolhnp40GDQ2FZVdvljD/npPJT1r4utkzQERypKqLCXM/4NqouKsz1VFsaXO9764P5beJ4NhYd4597lrOnLJf7Bkwk0tvPNWZWVH/mh40j7ui/KUy/irDYNWT2+RM/V7fTliH0d9BvHUgyHJ0Lha908BV2DsO57rwTWc8LWQsqf6gXf3fuRlKUM9eWLigoIDIyki1btjB2bFNy0KOPPsr69evZvr11+/O+fftiMpnIzMxEpXI2gXr11Vd56aWXKCwsbHMes9mM2dykMmk0GomOjqa6uhq9Xt/mMT2JbeXFjP31J55LGskTA4a525zzZsTqH9hdWcYXo6Zyc6yo9jgZRVH4++6lFDUYWVxeR5HVwV/7JPH84PFUmuv5tSCd1fmHXVJmTw2bTZS3v1ttFnQv/l74L44ZXkajNuNRcjvvRf237YHmbEgd5pSQD7oD4j/uUjvPhU+5k618wp/YeE6JrOfNoQlQuwVG2HpcEnBPwGg0YjAYTnv/PqvffFBQECqViuLi4hbbi4uLCQsLa/OY8PBw+vbt63JEAPr3709RURGWdkpDPTw80Ov1LV4XEjn1tQBEeF4YIfh1U+bhpVJx5871FJl6vlx1R/Nx2laKGpxLjXMDvIjXqVlRcJQCUz0BOm+uiR/KvNhBrvHrC46yuzSHp3f9zP2bvmmSC2+GoigsztrPX7b9yAObv+W1A2sobriwljMFTfw9/An+4FhLZXU0RL3H5YUjKbG00bzNI9ZZaaPrD2WfwMEx0A07bleY6siprSCntoKRtY+BAj/ROuewS9BPBxSo3eie+QXAWTojWq2W4cOHs2bNGtc2h8PBmjVrWkRKmjN+/HiOHTvWQmchPT2d8PBwtNqeWU1yrpz4A0ytcmZue0iKS6CnJ+Oj1rJw3CysioOJZ9iT5WKipKGpn8/NCSNZNeUqqhUNczYuo7jReZsWkYhGdjrse8ty+eDIZsaHxfPksNkMCYxqkgtv5Je8w/xakMbNfUbx2JCZeMhq3kxdi9XRfi6WoGczwmcI3wcepDJvLiEhKTzQMIjPyr5tPVDt5dQi8ZsPddthXxxYu0/X2QpTHU/tWsK/9q7gX3tX8Mbe3VAfRYayFQtueJgJvLHRsAVdP7fAxVnHpB555BH+97//8emnn3L48GHuu+8+6urqXNU1t912G48/3lSqdd9991FRUcHDDz9Meno6S5cu5d///jf3339/x11FD6D5H+CinMMALMrczVO7llwQDsnMsGh+0yuRY7VGHtq76fQHXERYlSYHoa8hhHhffz4aOZX91RU8dsC5tOmp1hDk4Q1Anc1CUkA4s6IGEO5l4PK4wcT4+LOuIB1wRkXW5B9hTkyySy78zsSxVJkbSCkTyrgXMmpZzbdRS+hX9ioatYV1htu5I/e21gNlGfougvDHwZrvdEjqukdeRK3N7FIUPoGScyWK5OBn/tH1BnkmgqSBGvG95U7O2hm5/vrrefnll3n66acZMmQIKSkprFixwpXUmpOT0yIXJDo6ml9++YWdO3cyaNAgHnroIR5++OE2y4AvZJr/ATY4nNkBPjLYFAe1tgujC+v/DZtEjJcPbx07yIbSAneb0204EfEAePXAGj48spmwxqjgFRFOpc4Gm4Uys9MpVYB+fi2XPQf4h5NR43y6LTPVYbSaWsmF9/INco0RXNj8KfRBnpK2UV6RgC76c+YXDeZ4Ww30ov8N8V+AowEODoeKH7re2DOhbAwaxZvNfOie+bXRYD7mnrkFwDnKwT/wwANkZ2djNpvZvn07o0ePdu1bt24dn3zySYvxY8eOZdu2bZhMJo4fP87f/va3FjkkFxumxpxh9QWWLCXLMhunzkctSVy2cTn1Nqu7TeoWDAmMcv2sU2koNdXy4ZGNaCQI9HCWd6/JT2u2xKK45MJPoNfoqG6swjJanZUZbcmFV1u6rvGYwL3080rgh+AUanOvIzjoCE9aR/JOSRtVKUE3w4BtIGnh2DWQ76YyWgBbNZK9ps1d/W2XU0c56bihEaf3KHDUg62i6+cWAKI3jVswOxTabqHV84nx8uW/wyZSa7cxc8NSd5vTLTix3AJQanImL9fbLMTrNCgOG98e382SnAOu8e01WBMITkYtq/ki+ltGV76PgsTewN9zY+412E5OWvUZCYMzQB0K+c/Aseu63lhFQTk8maBjk/Boo1vvNPPfAfjJHYqsflc4/y3/puvnFgDCGekyCuuqXT9bHC1/8bYLLOnwt/H9mRESyebyYl5L7x7r1O5EkiRu6zPatVyTWVPOwToTxxqsvHlgLb8WpLnGzo5OwqD1bFMu/IQUuF7j1KcxnhQFaSEXLrio+F3wHbzksZfS0iQM0T9wddkgDtQfbjlIGwZDcsBrKFR8BweGgKPrml3WlHyD1LAPD1suN6k/arV/S14poY4BZCrbOFab56q2OVVOXfOqnDMZ3y4Blzv/rRIPUO5COCNdwMq8w3yU3qRQa1UU1M0efr84uoOaCyy8/vPES/HTaPnzvu0cralytzluJ14fxB+Sp+Kn9cShKOyqtWAHsi1OR1QlyVweO4jLYwe55MKbc0IuHCBI541eo2sxpsFmJbOmzDVGcPERrY1gUdhebHl3EuifyX+UCfyn6NWWg2QtJO+BgBugYZ9TQt7S+fldlaZa6rMfxaFIyJLCGNVmxsgtl2O2l2ZRfHgmiuTgpcp7XdU27SX5n1yVc7rxp0TWgcoP6lPO/SIF54VwRjqZrcUZ/JC51/Vep1LjQELbLF8kv76atw+tx34BSaprZTWrJs1FQWHSusUtSrsvNr7P2EN6VTF+Hl78JnEchXY19Y1JzBlmB5FeBiaFJTAnJhlJks5ILvySyH4sy01lX3ke+XVVfJy+FT8Pz7blwgUXFR9EfcRM45dYbTqOhzzKtXlzWi/bJHwNkc+BrQT29Yaa1oKVHcmu9NcIJQ9Zcn7uFeB27Sc83DuMsSG9XMvWSsVIFJsOwta7jm0vyb+tqpxTjT8tun5gLYKL+LvKnQhnpBOxOxwsbCbvPTs6iZdGX4VWpSbB15+/DJqOn9YZcs+qKWdP+YVVljkiIJjH+g2lyNTATdt/dbc5bqPSXM8HaVt4ZtfPvH1oE79WNImTlVtt5FvsmOxNyb5nKhc+NTyRL47u4N97V2C2W3koaWqLyh3BxcsNgVfxrvcBSopGEBi1nGsr+rO9Zk/LQZFPQMKPoFjh8Dgo/axTbKky1TCo/l0cSlM4WAJkxcaAsvu5o88Qruo1pOmA0tFImlowHHJtMnVFMrx+GuCAum2dP5egFcIZ6UT2VeS5elIMDIjgirjBaFVq/DVaZoRGkWAI4fa+Y1zjNxQedZepnca/B44iWe/Pt3nH+TEvw93muIW7+0/gxdFX8s6EG3DoQrE068CgliQK7VruSGwpGjg8OIZnR8zjnQk38MzwyxgYENlivyRJzI8bxEtjruKdCTfwx4GXEOp1YSkVC86PIHUAiyK2oc5/EINvAW+rp/FkwUk6HgFXQnIKyJ6QeTvk/LXD7SjK/5BQucgVFWnCDqZ06o7dxy+5TY4HWTegKEBck6DbF0d3UmvtZAmEwJuc/1Y0zqs4oOEQWNpuWyLoWIQz0olk1pS7fp4Y5mz9bbYp5NTVszarhpVH62io88dX5QtAhrFtjYgGu40jxkpqe2ip7Pqp8/GQVdy0fQ0VF1huzNlwoLqcd48fxN7MGbEpCj8XZpNV13a5o0Bwvrwd+SbX1C+kwWSgJPwfXJk3jXpHM6VTr2RnYqs2CopehLTLOm6pQrETXfVai6hISxx4V33KEEezrrk2PT6WBCTf48gqZ4JtscnIJ+ltd4bvMLQRgAzl32I9NBXHLj0cSKLh6K0XhDBld0ftbgMuZJpXyXirnXoSxfUNOFDYac5g1uZSSBsNJIKHCbVnPQsObMLT24za04RNU4dRqae6cf3z5pgEvhh9iTsu5bwI0Or4dswlXLFlJZPWLiZ1lhvKCjuZ9OoSVuYdIqe2kmpLA/f1n9gif0NRFB7YswlZklo4Iye4adMiXh4yjnEndX1dW5DOqrzDVFsaiPLx54bew+klklQFZ8lc/5lMsh3ktoI5hEau49bKJO6RP2Gm32TnAHUADMqEI5OhehmkDoABe5zS8ueBbdPbKG/mYBkGqtEyKh8J2ZUh4kDBgQTcqvmI+Y7vOaIMoEIJZlh+PFnKMSIC/o692gMPpRbP2nocu2zIQbdD3NvnZZeL2u1Q8h7UbATzcQAUWzGqmmJkCRyKxMZqHYt2LeGfI+YRoPPumHkFrRDOSCfi79H0wT1UWUiCIZgYvRffJN7IDYuPcsnIarbJKdR5lIOsYAPKFECRQFHgpEDIjzs0JG7KJcZPRd9ALYPCtYyO9mBgqAaVqnsHuS6P7MWN0Ql8nXuMx/dv5/lBo09/UA/CYrcR5e3P+NDevHe4dcOtH/Iz2VBW1MaRzmS+/XUmPk7bhkGrI8k/AoCdpdl8n7GHmxJG0ss3iDUFR3gzdS3/GD6vleCZQHA69GofforcwKMFf6Mh4G2+ZC7L83/Ha5GvOAfIahiwGTJ+C2Ufwr4oSNoDurhzntO2pxrz92D+HhSVQsNgAwGX9kE3LRpVLz2HKgtQWXLopzqMQTYymm3O7tVlMsGATLYzwaTJfwGVcznSceYN59un7EtnQ8FmSMAJqR9ZUkhT+ruSYgMQzkhn0b3vYD2ckcGxrqeAXwvSKKp3Ji5eN8iHyaFh5B3szQvDQunj1Szp0JnZRStVNAUMDWHkVdtYc8zEu9uN3PtTGUPfykf9ZBYeT2YQ/M8skl7LZc7Hhfzx5zI+3WUkrdTSbSpZvhg1lXCdFy+kpbCzvMTd5nQIJ3QO9Fodw4KiCWznyenx/c5qhfaC1XV2Oza1L6vzmzRHVucfYUJYb8aH9SbC28DNCaPQymq2FB/v6MsQXES8GPFvfmP5hZq6EBoiX+Xy/PFU2Zp0kIj/AGJeB3sVHEiE6nXnPJdq2FTXz5JdQbe3iobnd1I1/QcqL1lL3staFm+9nMeOv8zP2+c4GwwrIOFo8+bkQILQ35NpLOP9Npz+E6RXFbe7rwXRz4FHAtB24rdDkTjmSDyzcwnOCxEZ6UT8PbwYERzDjtJsGuxW/p2ygglhvUk0hHLb2AZ+85XMM4v1XDHeiyidlbVVDe2ea2JwGBuu6+t6n19tY1uOiT0FZg6XWsmssFFUayejwsahEivL01uey0MNfjoVYT4q4vzV9A/RMCRCy9gYT2L8uuZjcEIuPnHFt8zYuJSS+beilXvuR/CEzkFb5YU1JyXb/bHvIPZWlVFpMVNmMbGhtBC1JOGhUlNns6IA9YrKlTdkc9jJqalgdtQA1zlkSaKfX1i7uUUCwQkqTHWtylt91B6uZYbJ+rGMdhzm5rzLCI34lbuNydzo+C9XBcx1Dg572FnqenQepE2D2Hcg9L6ztkOVnNzivdwsmuHIymJ4VhYjvlni2lY5UUfAi6Y2vXaHIpGpmQwmD147sOaUHaq/y9yLv4c3w4NjTmOgHvoudfbtcdThjFM2kafEYOL8lqoEZ0bPvRP0EG5MGElBfTV5dVWY7TbW5KexpvHpVyWPpLzGhwXrB/POVd5cG1/L7/e03TlyY1kREUs+58aYBJ7oP5RIg46rB/pw9UCfVmMdDgeZlTa25ZhJKTRzuMRKdpWN4lo7h0st7CuysKiZOKME6DQS/jqZcL2KXv5qkkK1DIvwYEyMByE+Hfcx6e1j4JXBY/hDylbmbFzB6slzO+zcXU17OgdAi1JdgN8nJAFNN4neK75jrJ+BhRPm4ufhRbXVQk5NKe8e2oDFbqPeZsGBgm8b/WeKGowIBO3RnpOsluQWeQ86WcsPUav4Z+F/qDe8wBL1dazMu533ov7rPMBvFiQfhEMjIfv30JAKce+ckQ0OiwXbmjVYV60CjQas7Sff29Uqtlw5g9w7b+J3M25AqvgUsu7GXgCqiKZxsqQQY9vOliP3YHdcAaiJ9DIwOqQXYV56yk11bC/JIqvWWTjw6dFt9PMLw1ujPbWxnn0h4TtIn9PSLkXFYUdyOwcJOhrhjHQyXmotfx40ne8y9rK9JLPFF0Sofw0F5QZqGnTc/qWdRyaG8Z/kMTyW2rLOXSPJzAiNZF1pIa+m7+fV9P309tbzm16J/LHPIHTqlv+NsizTO1BL70AtNw/1bWWTw+HgULGV7Xlm9hVaSCuzkFNlp6TWzv5CC7vzLXyf2pRtL0ngpZEI8JSJ1KuJD1CTHKpleKQHY2J06HVnt9r3cJ9BfJ+byZqSfP7v+CF+13vA6Q+6ADhxkzDZbdgUqLE435+4QeSJnjSC88Rst7Ey/3C7YmA1VlOrJMynwh9jT+1lPFt9DWFR7zG/cCfvBS4lQhsKnn1gcA4cHAYl7zpLXRPXQDPRRtuhQ1iXLsW6eTP2gwdxFBRAff3J07dCAXKHJ/PFk/dRG+iHXqOjsMFIXMhvsR/8lqorV+PzHHjMcKaK1Cm+eEp2JrOQCdpFZMojiB3wNRrPpqTvKRF9+eDIZnaX5WC229haksH0yH5tTK44Bc40ISCpwO9SiP4P5DaVNqskO2nKxfHd1B0QzkgX4KnWclvf0VzVazB7y/KosjSgVakoy/VlYbkzRK8Ar22qJibVn7vHD+V/BU7VVpUkcUVkHAvGzgBgZVEuzx9JYXNZEX9L3ckTqTsZaAjgwYRk7opLRD6DTsCyLJMc7kFyuEeb+602BymFFrbnmjlQbOFomZXcahtldQ525pnZlmsGmkrdZAl8tBKBXiqiDCoSAjUkh2oZFe3BiAgPdNrWNq2adBkhSz7j93s3MSssmljv1k7ThcaJSEpt433CS5ZaJMYZLSZ0Kg1alRpZclYdnNwmwGgxYdCI5FVBa4yWBt5IXUteXVW7Y1bkHebufuOQpZZ/k8N8BvK910FuzruK0PDl/LF2KHOML3N70E2g1sPAdBx7p+LYtQ7r+wbMm3rjyMxFqapqWQbs5YUcGYkqKQnNhAlo5szB/NlnmF55pSk6IsugKHg9+yyDHnuM8IPrOGoswWg18XzKLyTogwmL+Afzh6+m4XPQTnd+xxzyeYRD6pkoZZ8zV/UjvZUdSAcSIfg3EHAdGKYhSxLzYweyuywHgD1lOU5nRLFD/QGo3QQ1m8C4DmzFEP0ihP/FaVfYX6BuD0rFAiQUHIrEcUdfBF2DcEa6EB+NjonhCa73K/RlqGUr1sa/ZYcCOVU2/vdzEMlDE0iVjmFXFOaHN5WIzgyLZmZYNA6Hg69yj/H60QPsrSzn7t0buG/PRkYHhPBovyHMj4g7Zzs1apmR0TpGRrd906u3ONiVZ2ZnvpnUIgvHyq3kGe2U1dvJrrKxMavlWrVaBh+tTLC3TLRBTZ8gDYPCtLzSdzq/O7SciWsXkzXnxjNypC4Eau3O/3DfkyqgDlcVEa93lu2qZRUxvgEcrip2lQg7FIUjVUVMjRBfkIKW2BUH7xxc38IRifHxx1/rRd7/s3eW4VGdWxu+Z49PJhN3d0gCCe5OhQJtqSvVc+re01Ondr66+6m3p17aUqO0QHHXEOLuLpNx2fP9mBASkmAFEtq5e3EVtr5je6+93rWex9hGs9X98LCjqYIfyr05Ozaj1zFkgowvI3/ghbpXKWl5mMb8K1j87YPMXO1ArK8H2z5TPQOSoN2gDkSWNgnZmDHITz0V2YwZCIreUyLO4cP3ByJSKZKAALy/+gr5NHdb8fWpU3gl+w/KDS0AFOkbKdI3kj5tKNEv5OLYAbax4J0yBn2elRxxCpvFKbyQkY5X+1fQ+A40vg2yYPA5jVDvKSRIm5GKejJt5ZD3LBg2gGiis0MA6Kw3UcZ2jVNvt/K55SrOFlcRItRjwLtHvcjOpiqitf5H8/F4OAw8wcgA4qeWcmBzWqdlCdk7Y5BGWlGHVLOucidnhEb1SK8KgsBlMclcFpOMTXTwWuFe/luSy4bmes5avwyVIGVGcDgPpY5kQkDoMR23RiEwNV7N1Hh1n+vbTA42V1nZVm0jp95GcYuDGr2DGr2TomYHK0u6Pe37pVMZl436tTUkOBKI9pWREuQOVsZHqxgaJDspg5Q2m5lKQyteMgX+Ki8+KdxMdovbkMzY+SSpEdzTMjsaKynRN7G9sYKb06d1HWN2xBA+zN9IrLc/sd4BrKjOxyY6emmRePCwp7mass6buZ9Cw01p04jS+gFujZvNjWV8lL8JERfLq/M4JWIIXnIlzqoqbD/+iGPNGhx79iBWVHBFx34BPrNvKQXxaiL949Glj0I2fTrKcS0I5nuBNki6F/zO6GNE+5EOH971d/nMmWg//RQhKKhrmVau5O7hs1lTV8TqmgIaLAYA3jrzXp765grM/4PlZ0GB7DH8hOe69muUROAV9QSE3gk1T7hl7Q0bcTV/yj0ysfO1Az1KrFx0BSIA2ikAdNgsPJv1Ow3mDkq5nycVt2Fx9cwc/1KZjVom59TIoQd9vR6ODk8wMoD4qYWu4ONAJEiQ1ScwJ86MCyvtNnO/gjsKQcadKRncmZKB3mbjqfxd/K+8gKV1lSytq0QnkzM3LIZFqSNJ0fkdx1fkxlcj47RkGacl9z3e+g4HGyus7k6gBg0/GuuwhhRSVOhHXqM3ywoP6ASSgo9KIEQrJcZPxtAgRWcnkJI4/0MUpx0nLE47a2uL+l2/vDqP5dV5TAiOY1xwHBvqShA7Q0+T0/3/fcntpVV70cgUXJ48rktjBNyt4Qa7hR/Ks9DbLERq/bg1bQY6Rd9BoIe/L2vr9n8XL00a0xWIgNs6YKxvBB25dZh+X0ZkXikddTdhaW0DZ7cbs1KJEBqKdOJEZBMmIDv9NG4PexFF+PeYzM1MMk/l5uBr3dvqx0P+qVA4D6Ke5f7KxK7sS3emhSVxcXImsmnTUMyZg+pf/0LS+XCxvbGCJeVZNFsMBKu9OScuk0dHz6fFasTitOMlVVB/7isEvbidypxMyoKzSfFSQKew9YrqPK4ZMgnk/hCz3514ackGNHWLmCpdgaSXBH03FFGgcD+ofVG8jQazOwhzyCOpVszAhzYujBrFzuZKCtrdUgSLS3cy1De0x/vr4dggcbmOhXLM8UWv1+Pj40N7ezs63eDy32i1mvi2dBd7W2uwiU6CVFquSB5PrHdAv/vkt9XzdckOVhXIWLE74YC1LiQSGBZby8jEahRy98UiysuXezJORSE9/PixxmTksdztLK4qpamz9iBYqeL8yAQeSh1JiGpwtKw1WExE/fwpUomEunkLaTVK2FhhYWeNjbxGO2WtDuo6HLRbRayO3vurZBL81AJh3u625dRgBSPClUyMVhKqO/bxdofNwkvZK6kytlFnc1BgtpOklhMqlyLpLEJN0AVye/pM2m0WHt/5C1ane+AqqYwsE6xqbeWGcH+c4v4ug2tTJjImOPaYj9fDX59/bfoWvd2Cl0zJc+PPQZBIsC5Zgumee5DI5Tjz8roCD1GQYNfp0CQlIxs1CvmMGchPPx2hn2vru40fsVz1b7SaFow18/gk4itkggysFZA9ApwtmP2uxBbzRtc+NcZ2XspeyZ3DZpHiG9LrmMX6Rp7bvZyz4zIY7h/BloYyllXl8sCI07sMIX+tzGFFyTbuO/cKnCOUPPS7FWXRLbjqJ2HtbOudHpbEGdHp+CjUGO02VtXm82N5Ni5cREnKuE/zKlJHIz2yId0RvHEoh/BrRxTrnVOxyiJ4YMQcAtredRezjtKDoOD7st0srdwLwKSQBBYm/7VEG48nh3v/9gQjfwKj3cZ/di4l2TeEaWGJeMtVNJg7CFJpCVL3XZDZZDHw6PafmRqWhKUjioVf7EuJunDPZ7o4e3Q1IcFV+Cu9ejxtjAmK4dohk45qrHvbW3g0Zzu/1lXS0elxE6PRckVsMvekZOAlG5gMwz4+Ly/iki0rGOkbyPZTzu1abhOd7GprZqx/MODuBMpvdLC50sLuOnewUtHZtqy3itgPuOZIALVcgr9GINxbSnyAnLQgBaMiFUyIUuKrObJgxeVy8VzWcor0jQBsN1jZbnDPpfvLZCSrpSSrZagEgbFBsXjJFfxRUwC4zRKvHTKJRdnbeaZgN9ZzrmV5dR5Lyt3OzmEaHxaNPKMroPHg4XC5e9NiOuxWfBVqnh63AADT009jfvBBEEWk48ZhmTmdV4YG0BwdxrjgWK5OmXjYx6+01XBz8zzCwnZS2zCUJ7SLGaYZCg4T5IwGSy54jYOh60CQ8WXxdva0VPP46Pl9fp//m7sOm+jg5rTpXcue2rWMKC8/Lk0ai8vl4p7N33FK5FAm3j4F6w/NvJejpiQwjkmNH7CuWyZIggQ/pZp2mwVnty6i06NSWRAeCgVzwbSL/bnITjSjwVGHy1aDBBGXC0SJEqluGnhPg+oHEIduRPAej8Vp59+bv8PidKCUynh5wvme3+lhcrj3b880zZ9gWVUOfkoNV3Zz3g1U9db96M7q2kICVVrOjx/JhnIL4A5GtGorp6Q38MO2aPLr1JyfkcQliWMoaKvnlew/sLtEtjaWc05cJv7KI5ckTvPx7+rIWdNYw39yd7K6sYbHcnbweM4Ohnr7cX1CKjckpCIbgBqNi2MS+bKqiCU15TyRs50HU0dRZGjn/I2/s6utmT2nnk+6jz+CIDA0RMHQkL6DJ4dDJKvexpZKG1l1Vgqa7FS2O2k0OtlRY2NLlY0DO4G8FBL81e5OoAR/OemhCsZEKhkbqURzQCdQXlt9VyDiq1BzbkwyO/ZuxwW0OBxs7nCwpcNKrFJGtbWIWJV73lkuSLkqeQIqqRx/pQo/uRKFVMoZ0Wlkt1ZTrG+i1tROsb6JRJ8gPHg4EgJVWjrsVtpsZioMLURr/dH8+9+ob7wR86uvYnn2WYRt27hW50Vp5lBCIqIx+n4JUqn7j0yGpPPvEn9/VNdfj0S5v2YiShHOkrAdXFt5DQGhn/GUbTLpdfdzX+hdkJ4NRedA2xLYHYMjdSebG8qYHTGk3xt2SUdTr5bbVL8wdjdXAdBkMaK3WxjqG4rqiW+x/jyNSx9y8PjnORj0OVyUMJGvSrYjuly4cNFi7dlKfGrkUM6KyXDrEqSug5IroeWrnoNI/BxUiXxfsoPS6m8YJ93AaHUFUtMu0P8GwKa8eUwc04RKKida609BewNWpwOr6EAllf+5D81DDzzByJ8gq7mKVL8w3s5dS2F7A74KDdPCknp0zBxIib6JIb7uecrkQDmhPjaiQ+sYFlvLHRnTODPaixWt2zAYRrq38Q3h1KhUfq7IBmBDXQnzYob9qXFPDQpnapC7NmFxVQnP5e9ma2sjt+5azx27NzDKN5A7UzI4PyLuhBaPLp5wKmE/fsLDe7chSCQ8kbsDW2exZ1Z7M+k+h65kl8kERkaoGBnRdyeQxSayvWZfJ5CdwiabuxPI6KSq3cH6qg4o1oPJGxxKpBLQKiUEaqRE+chwyppxykMI8jGwcMxw6pyuHkXI+9q0S60OSqwOVBIzQXIpkwICebesgHqLiZ9rK7rqRwBGB8ZQ3KmqWmNq9wQjHo6YiSHxXS7hnxdt47b0GahkciTe3mjuv5/WKy6lesF8ErbuIWPFRpBswiKV7jdh2YfTCS4XygsvRBLau/D93aj3+LJlHoulN1MS/G/Oq1zOFxE/Ikv+HiofgNr/w7p7KHLH40wMmcPqmkJW1xbSbHUXpYZpfJgXPQy9zYLugBZ1nVxFu83C9sYKvi7ZAcA7ees4P34ksZNUSH62oGmTU+j1KREdI/GSKTA6bMgkAnJBipdcSapvGNPCkgj38tl/YEENCV+AKhVqHnEvkwWC0j1FrpQpyCedfGc6rrBxTA5N4MvKl6gvv4PfHc1cUPsJl4VeRmtnwCPB/XDh4djiCUb+BI0WA6trC5kdOYQ5UWmUdbTwZcl2ZILAhH46HvR2S5fJWaCXlCtm5nV9yRO8gwhPt7Fxq4MnVpg4LcZOjJ+c0YExXcFIram9z+MeLedGxnNuZDwOUeSdklzeKN7L1tZGLtq0nIWCwJTAMB4YMoIZIRHH9Lx9IRUEfpx8OuNXfs8D2Vu7lsskEnL0rcfkHCqFwKRYNZNi+y4CfThrO4/nuzVelC4FapsvLqOOar03JVXeuOxeQBwASzaKSHUt0EfsuS/UsLig0ubki9p6ljQ0E6JU48JFqHL/+aXdNB9cvfqrPHg4NGODY/mpIpt2m5mSjiYe2vYjE0PiCVRpKdI3sq2xHMfz93LJAy+StnYbEpcLHH0UYMlkKM47D6GPQGQfF/ovYJZjGtfUnUFY1K+c3zSUfyk/Y2LUf0Cdiqv4Bh5U3Ie3MRhf5XgWxGUQrPYGF2xsKOWNnDX9fs+dLpF389YzJSyR1bWFpPmF8WbOWh6860mU8+7gwue8+WDRRlYUZHNV8lQCVV78UJZFtamNh0ee0X+QIJFA5CJQD4WSy0E3uysQS/YJ7tpsdW0h44NiuLv8eYZp5xCqCOXa3GvBrqPR4s6oJuiCevxmPRwbPO/on8AFRGv9WRCbSbTWn6lhiUwOTWB1beGRHaQTt1uk+wciii4mvFnNjmorgqTPzY8pMkHghsQ09px2AYYFV/No6mgiVF6saKhm5pqf8P72Pc7b8BvZ7c3HaQSwpaWBCzYt72VL4XS52Nt+bIKRQzExeH9Wwiqx0a5swBBQjCV2J65ha1CPWoF6xEpUaRtQx5Tg1B7k/XABooC0PgafwvFMa5/DOZzK42Fn8uPoc7oMDHc0V3TtEqoePDVRHk4eVFI5N6VOQ9NZ+6W3W/i1Kof/FW1hUzfl581P3o8QH++emukLUUTz6KOHPF+gzJ8l4ZuQV9+Kj3cNb8pm80DtIpq1Z/OE7f/cN+ui88kwv8cw/whC1DpCNDrOjs1AKZWhksrR2w8Q9LNbcLlcpPmHcUqEu312YkgC0Vo//kiciGyUlMQPWxEkRiKTN5EZEEmklx9XpUygzWpmV1Plod+ogAtgeAHEvNa1KEEXRLjGnUmpMLSwYNs/qbJWcWHwhbyR8gZDVcNZWHgOWxxf43Q5mBaWdOjzeDhiPMHIn8BHoSJM49NjWZjapyvT0Rc6uQp9N1XNUM3+m09JRzNauRIBCR9d6Eukj5zJb9fw4sbq/cfXHP+blUYm5+G0UZTMvYSG+Zdza2I6WrmcxdWlDPvtGwKXfMg/tq2mymQ4Zud8tTCbiSu/p9ps7BVwuXBP05wIpgaGIeuWunbhDob2YXaJmCVOrEojCzJEvji794Vp395eZj+CKsagaIzFYNTwa4GZF9bpWfh1I8kvVCF9oAzlg8U88E0Ei9cOY9XOoXy4ScY3ewxUtffx1OrBw0GI8fbn3oxTGREQ1eUWvg+1VM4pEUO4dfw8dIsX956e6UQSHd3n9Ex/vBrxMheYlmC2+NIY+jhX1Z6HTRaMMmMvyELd0yKF5wMgukS2NpRhczqI0waQ11bX41i5rXU4XS6G+IYSqPJCJ1eR11ZHql8YJR1NCNdcCdUu5nzgR5XPF/tfm0xBnHcgJR2HaSCpjAH5/m5HiUTChQmjut6z3wxfIkNJcZUfD279hSG2SwCRXeL3fOa4mV8MH1FvPUxXYA+Hjaeb5k/wbt56Wq0m/pVxSteyr4q3U9rRzL8zT+1zn8WlO8luqWHRqLkAbGss55289QCEqHXcMWwmb+WuJVYbwNkxI7noyyp+2GtHpbCTGNbM7WOGcFqiD5E+J36GrdjQzqN7t/NDbTntdncHSYTai0ujE7lvSCa+iqOXKR+9fDHbW/u/mAhIqDrjIuyunjfp7k6kxwJRFBn++zfsPci0kL9Mwnx/L6I03twxbBbBP33aFbBIAJ1UYLJOSYRSxg2pU3gndz0Ol4goguDwReGIpqpFRm6jjYYOCWabAptdiuiS0N2udF8n0L625Th/OWnBCkZFKBgfpSTwGBoYevhr0Wo1UdhZbOmtUJHqG9pDFsD8yiuYbrut752lUhSXXorXm28iaA6v/d8oGrm05gxCItbS1JzAdbJ3OVU3AXImgmk7fzhO4UvnQlRSJdcMmYhGpuC5rOWcE5vJMP9wtjaWs7QyB5fLxaVJY6k2trGxvgSz0463TIlddJLiF8q5l5wGLieLdtu5hV9J4zQAnt+9nEpjK3bRiZ9SwxnR6b3EAf+oKeD3qlzabWYitX5clDCKOO/ArvU7myr5194nWeF4k2HCHCbILuta95ntNgy4r08CAoJE4JKQS7gt6jZG6kYe1nv0d8XT2nsCKOto5undvzE/ejijg6Ip62jmk8LNXJY0lnHB7rqC70p30WYzcVVnG92+1t7p4clMCoknp7WWLzuLtcBdGBWj9adE30SYRkeVsZ0vVmfQYVKzv/0XQrVSpsapmBSjYmKMiowwBXLpiWs129Jcz+O5O1jRUI25U78gSevDP+KGcFtyOgrhyG6UFqeDt4pzeCxnB+1264FNeABcGKjFR9bzNR7oRHo07Glr5o3iHH6rr6LM2NGjuLQ7EuCs8FiGKR3Um921O3JBysf1HXQ4nUglEkZ6KRjuJUcqkTDMP5yb06azq6mSd/LW9+vwC3BKxBAWxGSwt8HB5korWbU2CppslLc7aTQ46bCKXbYB+xC6Gxj6yEj0l5MaImdMhJJxUSq0R2hg6OHvg8vlomP+fOy//uouWpVKUf7zn8jnzsV0ww2IlZUgk6G89lo0L7/cp8z7geS01vJQySt4pb2BROLEv+k6Xox4HmfRJUiav6SCZPYEvMGqxhbuGj6bWlM7S8p302wxdomevZmzlmitHxang4sTRrOjqYJ1dcU4XCKJuiDO/e5JfB79g5+XQvXpo7mPrTRZDDy09UcCVVpuTJtKXlsdXxXv4Ob0aV0iglsby/kwfyOXJI4hzjuQFTV57Giq4NFR87tq+AAi10ZRZ6vjX9rP6XA4kQsC8d5BbHJ+whdNHyJ2uzLJJDIcLgcTdBO4I/oOFgQtcOuveOiBJxg5QWQ1V/Nd2S4azB0EqrTMjhjSo5vmw/yNNFuN3DV8dteyfaJntaZ2fJUapoYmdlac91YwBKht8ebHTWm9lkslnWUJLlDKJCy+NIS5Q068kNnPNeU8nb+Ljc31OFwuBCDDN4DbkoZxeXTSEXXkGBx2Xi7cw1N5OzE5nD0Cg1k+KhLUvdvp7hl+CglH0IHSYrPwdnEO31aXkt3eiqVTQEklSEn38WOcfwivF+/ttd9NCWm8PGIibVYzL+xZTlNnQduKNjM20cUknQqdzP1ao7V+3J4+q8u+vKyjmZ8rstnTUt0j1Iny8uPUyKGMCYo5pG6BzSGys8bGliore+q6GRianBisLpwH/JKlnW3LgZ0GhkmBCtJD5IyJVDImUolC5glW/s6Izc20paXhqq8HhQK/0lKEcPfN2/r11xhvvRVXXR0oFKhuugn1M88gyA59s12t38jL9ssIDiihtnoiH4X8gm/DG1B1P0hUvCN/E7VXKpclje217783f0e7zcxNadMY5u8umv+hPIvfqnKZHTGEif4RCMNCsceJPLoKXqCNpaXFrKopYHJoAhcmjAbgndx1mJx2bkufAcCTu5YRq/Xn4sQx7tfucnHflu+ZEZ7M6VHua+uq1lXM2DGDC4Mv5IthX/QY1+KGxZy357w+X6+AgIjIwtCFfJT20WG8838vPMHISYbeZmFp5d6u1OQ+ApReTA1N4t/febOnzt5vAatSCltuimB4P068JwJRFPm4vICXi7LJamtGBOQSgQkBwdw7ZARzwqIP+1itNivP5u/ihYIsrJ2FnkkqGTN8e3fBRHn5cufw2V3FewfiEEW+qSrh4/ICNjc30GJ3G/kJQJyXjlNCIrkxIZVhvu55ZNHlImDJh7TZbV3HeHrYOP6VktEVMHTYLPxUsYdNDaVYnPunjrQyJVPCEjk9KrVPHYJWq4lKQyuiSyRQrSVC43vMxJNMNpEtVVa2VVnJrncbGFa3O2k2OzHaXL2sB2QCeCsFgrykRPlISQ6UMyxUwbgoJcNDFMgGYbDSYjFicPQ0YjzWU3V/J+yrV6OfORPVbbfh9cILvdZbPvoI091342pqApUK9d13o3r00UM+YFhEG5fWzCcgfDmt+nAuFN/gPEQoOheDS80f6seYP/yOXvu9uXcNu1qquD19JkP93LUrT+/6jSaLgVCNjjuHzWLDvyYy5IVNfLAHItNupnzXfEo7mrimm4Lx+rpivirZwcsTz8chOrll/VdcN3Ryl+kkwAf5GzE7bNyY5vaDGr5pONnGbBqmNBCoCOwxrnprPaHr+q6lkSJFJVXxw/AfmOk/86Dvy98RTzBykmJ1OijvaMbidOAtVxLj7Y8gEfh8l4FLvmzod78vLg7mwuEHF1w7kdhEBy8VZPNuaS6FBrdTlVoqZVZwBA+njmKMf/AhjuDm6ayVvF9eSoHFgRRYlBBNmEZHo9lAmWF/UWu6Xxi3dD4FAWxraeStkr0sr6+mwmToCuICFSomBYZwZUwKZ4bH9HtRvXDj73xVVYJUIuHDMdO5LKZvp1yLw05JRxNmhx0vuYIEXdCg1SBoNTnYVGllR7WNvQ02ipvt1HQ4aTWJmOy9my3lUtAp3Z5A0b4yhgTJyQxVMDZKRcoAGBi2WIw8tO3HXtNdx2KqbrCztHIvO5sqqTPrUQhS4nVBnBOb2aMAvi/68n/Zl3EA93TN8pU/sFxpxShxkaAL5JLEMYQc0NVlfuMNTPffD+3t4OWF+sEHUd1zzyG/AzfmPY4++kXkMguS6oWc55jLkOY7iJWUIIT9iw/MZ+Gr0LAgLhNwy8Q/s/t3AlVarkgaR15bHb9U5gAugtXePDZ6Pr9nr2Dk1FNoO1XCK5/6I256HZkg4Zlx53T99va0VPPa3tW8OvECTA4b/97yPfdknEKCbn8GdXHpTgraG7gv8zQKTYUkb0xmmu80Vo1a1edrSdiQQIm5pMcyAYEIZQS/Zv5Kqjb1oO/F3xVPMPIXw+50EfN0BbUdvT0W7pqs47m5gX3sNThos1l4Mm8Xn1YUUW12T234yhXMD4thUdooErQ+fe5XaWjliZ1LAai2iixtNXLvkBH8Z5g7vVvW0cwr2aswOqyYHCL+PtGsaW4gV9/alU3RSGVk+PhzXmQ818YNRXcYc98A31WXcvXWVXw14RROCYn8s2/BSUGt3sGmLgNDG6WtDmo7nLSaRSyO3peJfQaGod4yYn2lDAlWMDLc7bYc43fs1SkrDC38Z+evfa57YMTpf2l795ez/2BMUAyxWn+cLhffl+2mxtTGI6PmoezHr+pw/V9+rdzLlSkTemh2PDJqXq+gWhRFrM8/j+mxx8BgAB8fNI8/jvqWW/od98cFm9jalkdV1KuEhO2gpmIq/5Y9xaSGC8FWyWrOp1R3O1cO2S9N/0d1PovLdmHvnD4NVnsTqw2gwtDCo6Pn4XK5KL80Bu9vK3mxDFprnmO6zwzOT9hfSNpXMDIqMJrSjiY67FaivPwIUmupN3dwX+ZpzNoxi5WtK8kZl8NQrbutuPt0up9SQ5bwKUvbv8XRrYhegsA1mpdQOIP6LIr14AlG/pI8t6aNe5a2dD3Bup1sQKuAjddHkD6AUzSHS4Wpg8dytvNddRktNne6PVSl5oLIBB4aOpJA1f5pmM+LtrKqU7PlooTRbGo38kD2FpZPm8e0oDDWNNZyz+4NZLW3YOt8U6QSCQleOuaERnFDQuqfcikWXS4Ej/9EF2WtdreBYbWNvEYbZW0O6juctFtErH14AqnkEnxVbk+gWH+3geGoCCUTopUEH0Un0N85GDmQDpuFuzd/y13DZ/cQ7erOkfi/nBrpvgGbHTbu3vQtVyaP79e0URRFLI89hvmZZ8BsRhIQgOaZZ1BdfXW/43WIDi6tPhfv8F/oMAZyhuUZrmj6LxjWgSoFUneArGe9m9XpwOK046NQ89/cdVidDm5Jd78Wx+5faB87l8qb4P17ZzOp4ykuTBjVte+B0zQ3rf8SP4WGq4dMxFehZnNDKb9U7iXFJ4SFKZkErg0k1SuV7PFuccnuHmKTQxPIa6vjiYKXWel8s+scE7TT2WHYhlbwZuOobWyqr+yzKPbvjseb5i/IP8bqWLS8FZPdhVSABH85N4/35vafW8h8tZqPLwjiksy+DfoGC9Eab94dPZ13R0NWWzOP5mxnWV0lrxRl80pRNnEab66MTeHulOFUG/erzY4NimVqmIwfasqYu3YpaqmU1s6aDrUgIU4hZVqAP+9NOOuYTR8cTiDyY3kWP3Wq4+4jRK3jsdHz+t3ncFLnP5bvYW1dEWanvd/U+Ykm1k9OrJ+cizN6rxNFkbxGB5sq3AaGBY12ytscNBidZNXZ2F5jYzH79XckdHYCaQTCdTIS/GWkhigYHaFgXOSRGxj+3dhXV3Ywg8sj8X/ZR3fNjv6CEUEQ0DzyCKoHH8R8//1YXnkF4zXXYLr/frxefhnlhRf22kcmyPgyagkvNrzOVs0jrPG/lpXW8/lINQSa3oXdkZC2HVRxXfsopTKUUhlGu42c1lrOiRux/3gZZyCfoCDqQxvCo6vJqSoH9gcjuW11xOvcGQqx83k7UuvbFbjNjR7G0sq9OF0itxTcggsXLye93LV/dw8xcMvYb2qewcoGdzDyVMJTOFszGOm/i9db7mNu9nRyxuWS3VLDhvrirqJYD4eP5xd/nDnWc73/HOvNS+v1eMkl3Dm7jSLzVi6bCT9tTuHSLxvYWmXlxXknR5pwuG8Aiye69VhW1lfxf3m7WNtUy6KcbTySs41ghZxEpYShajlSQYJUIvDmyClM/mMJF0YlcmlMIiN9A7lj49cAxHpp/nQgIrpEfizfw+aGMvR2Cz4KNRND4jgjKr3fQtNwjQ/zY4bxY/ke6s0dOEQnG+pL+tQ5+KUiG73d4jZYTJlAjbGNN3PW9kidL6vKZWVNfo/U+SvZf/SZOh8sCIJAaoiC1IMYGO6q298JVNDo7gRqNIpsr7ayudJKXwaGARopkTopiYFyQnRWakzeBPt0cBhNHX9ZRJeLr0q2k6AL6vrO9MXB/F8A9Haze9kBT/E6xf5tDoYgk+H1zDOon3gC0x13YH3nHQwXXYTp7rvRvPEGyvnze+1zR/BNFFrO4O7mMwmL+pSz6obxdtgjhNY+CnuGQPJS9opDcLncgpAN5g4Wl+4kVKNjUufvaZ9cwqV3PIx9wYOc9Z6dr+asYHFpHJNC4slrq2d7YwU3p0/rer8Aclrr2FhfQqx3ACuq83G5wOqw8XXb10QoIpgVMKtrnN09xPYxJXAEI5rnsSjtWuYGzOOWyq+4buil2FQlvFPzDmfvOYtzfR+gRH+Y4mseevA3/kmfGAraG5gentxjrvfl7JWHnOt9N299j7nefTesOyb7sqLYzMVjjeQa87puWMMD9/Dmai9eWi9ha5WVVdeGDcpuiP6YGRLJzJBIRFHk6+oSns/PYntrI/U22NBhY9Pvi3k0fRznRMbRseDqrsBga0NZ1zGCVX8+K/RrZS6ra4u4KmU8YRofyjta+KhwE2qpgpkRKX3uI7pEPsjfyNSwJP45dDJ5bXV8UrAZH4Wqh87BNyU7iPDyJUTjTYhax2dFW3h01Hxy2+pYVVPQlTpfUZ3HGdHpZAa4a1WuSpnA3Zu+ZVdTZb9Pq4MdmUxgdKSK0ZH9Gxhuq7GytdLKnno7Rc02qtqdNJucVLQ5WFe+r4MmDXAhkYBc6kSlsOOlslFZ2sgZiVLGRSkZETY4O4GOFZ8XbaXG2N5DbHEgERQKtK+/jub55zHecAO2Tz7BcOaZmOLi8HrnHRSzZvXYPkkVxxLVHi6vvITAsMXcYXmNM8XbuLjhdcifjdT/eT5pTaDNakIjUzAyMIqzYzOQdj5otNvMtFhNKM56AFnmwwx7WeT7678kN2ceK6vz8VVquDx5XNdvTyWTE+8dSIfdwvdluzHYrfgqNYi42GRejt1l59H4nhL43T3E9uGjVDNGejFz/OdisFsRceGtUPHfof8l25DNz80/E+CbxhCpp6PmaPAEI8eZ27p1eABcmTyeuzd/S7mhpd+53hXV+aT5h3FapLs6+6zYjB43rN23RnLP5u84I2r/DevG9PEUd3xLftEIVhZA1DOVbL85gnDdyfURC4LAhVGJXBiVSF5rPdds/oUck4PsjnbO3fgbSkHK9KAwHhw6kiHe3nxbtqtr38mhCX/6/CUdjWQGRHRNmwSqtGxtLO9yRO2LBrMBJLCruRK9zcyC2EyK2htZXp3fdUFcXp3H5NAEdrdUMzt4CDPDU7pSuscidX6yo1IITI5VM7kPA8NdTZW8krWe+jYtje1aWg1q9CYVRosCk1WB3qSitkXC0tz9n5G8s205WCsl2tfdtpwYYmJWdCipIfIT3gl0rPi8aCt7Wmq4O2M2fsqDawrpFKo+/V98Om+yOrn7vdbb3BnArm1sFqK0vkc8NkGlwvuDDxBffhnjP/+J7euv6Zg9GyElBe0HHyCfMKHH9p9EfcZ7jR/zu/IeVkS+zirXTN5q2siQljv5T/CNEPt6n+e5MmX/cZRXnI/j9i+ZtqSZpAtdDOOiPve5OmUCHxVsplDfgIAErUxBfFAs99U8iE6q45qIa4749XZnzag1xKyP4X9tL3C1NgQ6lWE9HD4n153qL8DxnOuN1wUybWoHkyPjeWxlG/HPVPDr1WFMj+/boXawk+IbzNlhkaTrG7GJInuMdspsLpbVV7Gsvgq5BKKUMkZqFYzyC+43uDsS4r2DWFdXRL1JT4hGR6WhlSJ9I+fHj+hz+zjvQILV3kRr/RgfEsdP5dk8m/U7p0Wm8l3ZbgAcopOKjhbmRKaytq4YnVyFIJEwxDeUEn0TqX5hxyx1/lfD5nTwceEW5HKRyCA984bomBudRJSXH/VmPb9V5bK+vgSzVUZTmzcZ3qMobnZR0mKnVu+kzNBMnvJ7fhM/B0MBvLsMTIko9nUCdbYtDw2WkxmmZHy0kji/E9+2fChcLhdfFG9jV3MVdw6fRaDq0G388d6B5LXV9biW5LbWEd/Z7dHd/yVK6y70NjvslHY0Ma2bcOORIuh0eH/xBeIbb2C46irsP/6IfuJEpMOGof34Y2SZmV3bXhO0kFNts7mpYT7hscs4X53CBzV+eDe8AeYcSFkBB/ksFDf9D8trXzLxeXj/wocYxhl9bhek9ubujNk9imKv3/4Uja5SHox6sNf2B3qIgTtIU0nlKKQyBIkEAQkdndvIBBk7x+0kZV0Gnxoe5ZaO2Qz3Hn4U797fF08wcgI5UXO9j57iz5hIJef8r56Z79Ty7Bn+3DWl//MNViQSCdcNncwLWSuoNesZ5a1kFGByKNhhtFFitVNicVBicfCHvpYy51oeHjqKcM3R602cHpWKxWln0fafkEgkuFwuzorN6JL3P5B0/3C+LNlOuJcvaX7hxHkHct+WJdSbO7A47dicDkwOW1dKtzs6hYo6s/6ox/p3YHtTBcZOkbNh/uFcP3RK1xRdqMaHhcnjESQCa+uKiAppZUpMA/+JSmVV6yrerXmXbxq+QeJydFnWXzvGm8ZGDWWtDuo6nBQ2O9hTb+fnfHOP86pkEnzVAmFaKbF+7mBlZISKCdHKAck2fl68jS0NZdyYOhWVVE67zT1edefNEeCD/A09NDtmRaTwXNZyfq/K7fJ/KTe0dCmfSiQSZkUM4ZfKbILV3gSqtCwpz8JXqe4hDna0CP7+6JYsQayrw3DFFdh//532ESOQjhqF9pNPkA11d/BEKcL5IWw7/6i6Fu/gT7neS8XtpWmM6VgFWQmQvhNkvn2fQyZDcdZInM/vIHj1DkzT2tDQ97bQsyj21/av0Uh0LIpb1Gu7eF0g2S01PZZ1L4qVCVKivf3Jbavveq8C5UFcoHqED813MHHbRComVeCv+Pt0eP1ZPMHICeREzvXOG+pF/l2RjH6thrt/aWFThYUvLw4edE98h0KnUHNP5qn8XJHNhvpiTA47GpnAZB8Vs6XexPiEsbHdyG/11bxdksvbJblEqb24PCaZe4dk4i0/PF2RfWxvLGdLQxnXpEwk3MuXSkMrX5Vsx1ehZsIBBal9oZEpCFF7096Pc/OJTp2f7GS17HesPi0yFYlEgtVp5cPaDzk14FTCleGcHpXK2roijK4WXq56jhsq/qDCWtHlHdKdZ2YNwU/es91bFEUKm92eQLtqreQ32ilvdVBvcLK3wcbOWhvf5QC4u7u6GxiG66TE+8tJDXZ3Ao2PVuJ/HDqBVne2uD+/Z0WP5Vckj+8qlG6xmpB0M1pM0AVxbcoklpTv5vuy3QSrvbkhdUqPB6HTIodiczr4X+EWTA4biT5B3Jo245gWSguhoeiWLcNZUYFh4UIcq1fTnpqKbNIkvD75BFmcO9B/J/JdvmqZxzfSm3gnLZetBSncoM9HsisaUjeDZmifx1c9sRrLp97Mfg6+n3Y/l/AGLouBpsW3UTMthYzIe3i3/AtC5RGM9x9Bg7mDVwu+pdy1k4WhC5EJsl4eYtPCklhVU8Di0p19FsUCzI4Ywof5G4n19u8qitVI/Hk9+U3+UXAlmVsyKZtYdtJdcwcKTzByghiIud44fwXV90Yz8e0avsk2kfZSNVtvjDjpDNQ0MgXnx4/krJjhFOkbMTpsaGRyEnRBPSTXNzTV8UTuDv5oqOH/8nbyZN5OkrU+XBefys1JaYd1gV1cuovTolK7ajMivHxpthpZWpnTbzDSPaVrcdpp7OyA6iul2z11rrdZ8JGrTkjq/GTF5NgvyR/p5X4/lrYs5fr867uW+8n80DuMOLHBfieFXoGIXCLHt48nbEEQSAlSkBKkYCG9i6AdDpHsBjtbKq3utuUmG5VtThqMTnbW2NhaZePATiCNXEKARiBCJyMhQE56iJzRkSrGRSrxUh757+/tKZcccpvu/lf7GBUUzaig/m0YJBIJZ8YO58zY4z+lII2OxmfVKhyFhRguvxzH+vW0x8cjmzUL748/RggP5wL/sznFMZ0r6+aQNWQT91eF83hNHbLs4ZC0BPx6T8MIKi2K2RF4f16Nec271Py6BuVbexFawXY/2P5zCzcWL8TushMrGcUE5TnsdP6AgIRXU14B9hfF7iNQpeXmtOl8XbKjz6JYgDFBMRjsFn4oz0JvsxCp9ePWtBnE6QLJs+zh+YrnmblzZr+Krh564glGjjMDPderUgjsuCWSq79p5IPtHUQ8Vc6GGyJI66cFczCjkMpI9Qvrd/3EwFB+meK+WH1fVcqzBbvZ0tLAnVkbuTtrEyP8ArgjaRgXRyX2+7RiEx0I9GzhFSQSeoulu/mmZAd+Cg17W2so1kfzY/keBCQ4RCfxusCu1Pm+lO6+1PlvlTnktNYSrvE5oanzkw2VVEqFuItgSSJVxlaSfIJZ2bISf5k/n6R9QoOtgWJjOa9XvEsrVQc9lt1lR7ZShlJQopVq8ZX5EqQIIkwRRrQqmnh1PCmaFNK80ghVhHZ9R2QygcxwJZnhfYsK2hwi22tsbK20sKfOTmFnJ1CTyUlVu5UNFT29dKQS0CrdbctRPlKSAhSkh8oZG6ViVLjiL29gKEtKwnfTJhxZWRiuuALHihW0RkYinzMH7Ucf4RcYyJLwjdxWfTu1Qe9yj7eGhwvs+BbOg8hnIPzuHscTXS701/0T5ZeLOHumHcS9XQbnolyCHBVSiRS7y04Vu/ncsh2ATG0mWqn7ety9KHYfKb4hPDhyzkFfy4zwFGaE9+6yey7pObIMWfze8ju35N/CqymvHuW79ffBo8B6nPmsaGvXXG9IN22Rg831FusbeS5rOefEZnbN9S6tzOkl47ysai9XJk/oumFVG1sPqkXx3816bljShAT49MIgLswY3AJpxwJRFHmvLJ/XirLZ0+5Wr5VLBCYFhnL/kBGcEtpT6v3D/I3kttVxWdJYwjQ+VBpa+V/hFiaGxnNup+hS95TuO7nryG+vp8NuRSnISNQFEa8L5OeKbG5On8avlTkEKL1I8w/nw/yNXJY0FqPdxk8VezA77YSovTk/fmS/omf7UueXJIzp8f35u/Bh2Q9cVXwWEqQMU07kocRbuSLnCq4Mv5LXh7i7LT4p3My6umLaXXXkyr4gy7wVCb0DSD+ZH8O1w2mwNdDqaKXD2YHFacFJb4sFcFvEqwU13lJv/OX+BCuCiVBGEKOKIVGdyBCvIaR5paGVHfwBw2AR2VJtZVuVhb31dreBod7dtmyyH9zA0N0JpCAjVMHYKCXDQ0/eTqD+sG/ZguGqqxBzckAQkC9YgPb99xF0On5pXcH7XE2EtoLrsrUMtRuQBCyEBLc77qplVxHz4ifofuv8DLu/lxIoeFrJhH9Z8F3lS7uzvde541Xx/Dv23ywMXYhKemxVU0VRJGljEiWWEt4Z8g7XRlx7TI9/suCRgx8kXLf2sz6Xd5/rfT5rOQFKrx7RuVv0bDfNFuMhVTqP5Ia1pcLCjHdrMdld3DFZxwuD2NPmWGNxOHihMIv3S/MpNroLR72kMk4JiWRR6kgy/YKwOOwsKc9iV3MlHXYrPgo1Y4JimBedjqwzyPswfyPNVmOPtHh3HwtfpYa50el9iJ7l81tVbldK96L4UcTp/j7v/9FQaCwmeZM72ydBwIXbc2iu/1xuifgXNS1yNjWWAW7DvP8bcxY/tizm1oJb0Tv0PQKNMwPPZEnGkl7nEEWRSmsle417KTAVUGIuodJSSa2tliZ7E22ONoxOIzbRhojYa38JEhQSBRqpBh+ZDwHyAEIVoUQqI4lTx5GkSSJVk0qiJhGZ0DsZ3WJyewJtq7aR22CjuMVOjd7tCWTuw8BQcaCBYbCcjFB3J1BSwODrBDpcbKtXY7z2WsSiIpBKUVx0EV7//S8WFVxaO4eQsDWcm6/llA4DeI2ldcskxKtfdNtv9/5YAMh/zY+JN7UQuiaUent9r/X7gtZR3qPYNnbbMX9NeoeeyHWRGJ1G1o1exwSf3hmYvzqeYMRDvzQbHYx8rZqKNidTYpWsvGZgBNKOpxPpoeTUW2wW/pO7k88riqi1uOeK/eRKzoqI4ZHUUcR4eb5nA02LxUiLrYOkrb2n5vYFJj6EMUJ6FsnSKVySOIZpYUnufe0t3FN4D+/VvocUdxB5bcS1vDXkrT81JovDQoG5gBxjDoWmQsosZVRbq6m31dNsb0bv0GMSTdhd9j73FxBQCSr3NJHclyD5/mmiBE0CKeoU0rRphCr3t+3X6B1srLCyo9pCXqOd0hYHtQYnbf0ZGMrcnkCh3lJi97UthyuYEK0m2nfwz8zbli7FeP31iBUVIJOhvOoqNK+9xv2Nj1Pj/xKnN9u4uMbGtrp4ou6uQF7koJ9ZVPI/iGbileXEro+l3FLea72A+7r3Wspr3BB5w3F5PTmGHDK2ZCCTyCieUEy4KvzQO/2F8AQjHg6KKIqc8WE9ywrNhHlL2TYAAmmDwYkUoMyg59Gc7SypKafV7p7fD1NpuDg6kQeGjsDfY3p1wmmxGHlo2484XCIf2a7DiqHfbUMkSXw99Bem9FHgu7Z1LdfmXUuBqYBFcYt4JP6R4zfoA2iyNZFjzCHPlEexqZgKSwU1thoabA20OdrocHRgEQ89TaST6npOE6ljSFInMUQzhCHqITR0KNlU4e4EyuvsBKozuA0Mbf0YGPqpBMJ0UuI7DQxHhrsNDIOOwsDweGFdvBjjLbfgqq0FhQLljTey6+HzecG5kNnSYq4slJKrD0XztIHg5b2nYACKvhzOuAt2M3TjUPJMeT3WySQyvAQvFg9fzCz/WX3uf6xY0rCEs/ecTYgihIpJFSiEk69m72jxBCMeDouHf2/h8ZVtKGXw61UDK5A2kE6k+9jR2shjOdv5vb4ak9PdjZHgpeOauBTuSBqO6u9sinIC6e7Q+439PlpcFb22kSAQq0xk5YiVxHpF9Fq/D5to47O6zzjF/xQiVP1vN1CIoki5pZy9pr0UGAsotZTunyayNdHuaMcoGrGK1j4LqfdNE3lJvdDJdATKA93TRKpIYpVxKK0JmFqTqGkMobDJSUWbkwaDkw6riP2A6Q1JZyeQv3pfJ5CMtGAFoyOVjItSoRuATjzLxx9juvtuXI2NoFJRettNXHNRCecmfs9N+QImq4a9nwQz5u1i9w7d3qJ174+kXvs+/9FdTIUst2u5xCUQ6ozlDsvrnJUxluTY468H8ljJYywqXXTcpoQGKx7XXg+HxWOn+DM6Qsm5n7oF0p47w587B0ggbSCdSPcx0i+I7yedDsBvdZU8mbeL9U113J+9lQeytzLMx59bEtO5OjblpJ2bP9nwJogWegYjAgLjdONYOmIpPjKfg+6vEBRcGX7lcRzhn0MQBOI0ccRp4uAQJURmh5k8cx65hlyKzEW9pola7C1UW6vZ5urjZucFUi8pyjh3N1G83I9AWSAqZxQuYyxWfSzGtmjaWqNo69CytcrKpj4MDLX7DAx9pCQGyEkPcRfXjg5XolIc+9+EauFCVAsXYn7rLUoXPUnc08/z/NcxvPGP83j4ut+4p0rP5CstfBE9hgVPbAULXTUkFsEHg8mO1EvR4243zDyDi1oXIXWp2bCr5oQEIw/HP8xuw26+bfyWK/ZewUdpHx33c55MeIIRD5yZ6kXenZGMfb2Gu35pYUullc8uCjqhN9vB4kTanVNDozg1NApRFPmssoiXCvews7WZf2xfww071jLOP5h7hmRyZnjsER3Xw5GhlQQgce0vXhUQmOU/i++Hf49GenDNnr8aapmaEd4jGOHdtz1BdxpsDeQYc8g35lNs7pwmstbQaG+k1dFKlaWKIrEIJ+vdO+g6/3TKksglcjSCGqXoj9weCpYInMYobB1R1HZEUlYXxtryYHDt1/qRCaBVCAR5CUT5yEgOkjOsM1jJDP1zBoaq667jjIBwovf8wb1f/cA7933N5o/jeHVRIJePKOaqWVt5LWwylz68HkmlOz3iVHmjFeSYpJ3TOC5YYL6N0yxXYsKBC7DZ+54mOx58nf41w7YM4+O6j8nUZnJHzB0n7NyDHU8w4gGAhAC3QNqEt2r4co+R3XW2EyqQNticSLsjCAKXxSRzWUwyNtHBa4V7+W9JLhua6zlr/TJUgpQZweE8lDqSCQGhhz6gh0OyT+4cwEvi3xWISJCwIGgBn6V/9readz8aghXBBCuCme43/aDbiaJIqaWUvYa9FJoLKTGXUGWtotZaS7O9mTZHGy3UYpNtxqV1QUjP/SUuGVJRi2D3R2ILwWgOp8MUQaEpkpUFYZAdBNYgcOiQCwI6lUCwl7sTKCVITkaYgnFRKoYGHbwTyCaKVImNlA8bwtq0FGbtzOH+r5Zw30WlbB8TguG+em5LXcfid9KZfms2FEBQYDmXzMrgzlWN4ISfMn5ibtBcAP779W4Mpr4LjY8XgiCwdfRWotZHcVfRXaRr0zklYPBd8wYCTzDioQuVQmDnrZFc9U0DH243EPFUOZtuiGDocRZIG8xOpAeiEGTcmZLBnSkZ6G02nsrfxf/KC1haV8nSukp0Mjlzw2JYlDqSFJ3foQ/ogVariW9Ld7G3tQab6EQuCJgc+28SGpdv198nqOfwadpnlOpbu1qp/ZQazuizlbqA36tyabeZ3a3UCaOI8/a0Uh+IIAgkaBJI0Bza9drkMJFrzCXX1G2ayOKeJmpxtNDh2IvZZxvOvrqJXAJ2hzcttgCaraHkmsNZVhcKFUGwJghs/sidAfhIwgjT6IjxkzE0SNHZCaQkzl9BaNl0qm16UBtYERnDigcmMWfvWu775juGnAPZM6XMuyKb0k+80T3QwZA38skel43RaeTphKe7ApGBRCPTsH3MdlI2pTB391zyx+e7p+j+5ngKWD30yVub9Nz0g1sg7bOLgrlg+KGVY4+UA9Vpu7fe9kdfBaxP7/qNSC/fHgWsp0YO5ZSuAlY7d29afFgFrEdLjcnIY7nbWVxVSlPndFCwUsX5kQk8lDqSENXfazrhcDHabfxn51KSfUOYFBLP4tJdlHY09dhmh+N7tolfE04qc+X3M9Q3lJKOJqaGJTE5NIG8tjq+Kt7BzenTuuS6tzaW82H+Ri5JHEOcdyAravLY0VTBo6Pm95rC83B8qLPWuaeJTPmUmEsot5RTa611TxPZWzE4DVhEG6LLwQGix+DQgC0IrMGd/w8Emx/YQrstCwK7P7hkSKRmrij4kn8vf4Wg1nakM8BwE6gvgpf+mMqHlFAysQS5sH9KaV9mRKuR88/zM07smwOsaF7BKbtOwVfmS9WkKjSyv+Y1wlPA6uFPcf14HSPCFcx4t5YLP29gc6WF54+xQNrJ6ETaH+EaL94aNZW3Rk1lb3sLj+Zs59e6Sl4v3svrxXuJ0Wi5IjaZe1IyDlqg+3djWVUOfkoNVyaPZ2nl3q5ARCnImBwaT7wuiEcqvsO3PYD50vtxSSTktdfjo1BzfvxIAMI0PhS1N7K8Or8rGFlencfk0AQmhbqf9i9NHEt2Sw0b6os5PSptYF7s34xQZSihylBm+s886HYO0UGppZQcQw4F5gJKzfu7ierMLbTaqrCKFpwSC0h7uivjkoDNH5ctiA+HB/LJGdP5x6oC7liRCy+CGrjk5TX4Pvdcj0BkMDArYBYvJL3AHYV3MHrraLLHZf+ti+I9wYiHfhkXraLinihGvVbNC+v0bKuysuIYCqSdzE6kByPNx5+vJrjngdc01vCf3J2sbqzhsZwdPJ6zg6HeflyfkMoNCanI/sYXH4Cs5ipS/cJ4K2ctu5oru5bfNmwGCbogjE4jq/f+yr9i/8W5fjN4JXsVAHbRicvlQiJxfzdS/cL4qmQHAA7RSUVHC3MiU7uOJ0gkDPENpUTfM+viYeCRCTKSNEkkaZL6XO8QRSpNBr4rbOaunxtA1QDqelA2uP/Im0HRBKpWnNoc3rqklbcuCeDGP9p5bIeD4G9g6OVREHOCX9hhcHv07ew27ObD2g85b895fJvx7UAPacDwBCMeDkqgVkbpPVHM+aCO34osRD9TyY6bIwg9BgJpfwUn0kMxNSicqUHup/XFVSU8l7+bra2N3LprPXfs3sAo30DuTMng/Ii4v+VTUaPFwOraQkYFRnfJQ0iABnMHCbogvqr/CoPTwOVhlxOnDidBF0SxvhGTw0aNqb0rCNUpVFicdmxOByaHDREX3n10VNWZ9Sf09XnoiU10UGrooMTYQZmxgyqzkRqLkQaLmSabhTabDb3DhsnhwCI6sYtiT2WV7p50zmBwRIBVhswGXnInMQFqvBxS6rMcvCX3I++R77ms9WeWXCGSuKKJ5JGDr2bog9QPyDZk813TdzxW8hgPxz880EMaEDzBiIdDIggCy64J58FlLfxnVRtxz1ay7KpQpg6gQNrJyLmR8ZwbGY9DFHmnJJc3iveytbWRizYtZ6EgMCUwjAeGjGBGyOAT5jpeuIAYrT+ZgVFs7vSYifMOZHVtIRNC4rmr8C78Zf7EqmIBSNAFUqxvBMBgt/Z9UA8nBJPDTolRT4mxg/LOwKLWbKLB6g4s2u02Oux2jE4HVqcTh0vsT7UdAJlEglKQopHKCFSq8JErCFCoCFaqCVVr2J2rYEWBDBxyFHYZGUYbKQ16LDtrsekdOEwSbAYLzRE6Si7OQCOT8N9rXiRE+iK/fvwDN41ZyrMrTiFz+uDreFs/ej0x62NYVLqIYdphLAheMNBDOuF4ghEPh80Tp/kzJkrJeZ/WM/2dWl6Y68/tk30HelgnHTJB4IbENG5ITMPksPNcfhYfluWzoqGaFQ3VaKUyTguN4pG0UaT7BAz0cI8rPgoVYRofVN3k/yUSaOn0C3og9gHuLrqbxQ2LOS/kPJrM+2Xhu1sG6G0WVJ21RoJEgoCEjgN0ZfQ2Cz5yT/FqX+htNoqM7ZQa9ZQbDVRbTNSaTTRazTR3CyxMTgdW0YnjIH0PEtymhUqpFC+pjFCVGt9ugUWYWkOkWkuMl5Z4Lx0JXjrUh6Fs/NSaQvZubiK0qIWg8jZwuKh19hxHbVoQuWck4qsW2HFrBHH+7vqsp5bN4vqRP/PvU5bz6uY5JI8cXL8rhaBg59idxG2I4/w957N73G7StH+v2iZPMOLhiDgr1YvcOyIZ+0YNd/zcwuZKK59fHHLoHT30iUYm5+G0UTycNooGi4n/5O7kq6piFleXsri6lACFkgURcSxKHUWk5th3NA00Cbog6s164rwDUAhSbKKTso5mIr3cbdF3xdzFipYVXJFzBUnKNHa3VAMgIOlRJ5TbVkd8pwOyTJAS7e1Pblt9V9Gy6HKR11bHjPDkE/sCB4Bmq4UiQzulxg4qTAaqzQZqLWaarBZabBba7DYMDjtmpxOr6MR5iMBCLgioBCkamYwIhRd+CiUBCiUhKjVhKi+i1F7EeHmT4KUjVqtF0Ycz8bHg9mvi2PnUblpqzYgHDNkFlE6OonRyNPFq2H1PTA+NpLh0P57/41TunPYbt038lXf2zD8uY/wzhCpDWTlyJZO3TWbCtglUTKzAV+E70MM6YRxVa+/rr7/Os88+S11dHRkZGbz66quMHTv2kPt98cUXXHzxxZx11ll8//33h30+T2vv4MNsE5nwZg2762ykBsvZfMOJE0j7O1BsaOfRvdv5obacdrsNgAi1F5dGJ3LfkEx8/yLtqWUdzTy9+zfmRw+n2tjKtia37LufQsM1QyaSqAvijfyfuK36XPyFcBbI/g8AaWfX1KSQePLa6vmyeHufrb2XJY0l1juAFdX5bG8q59FR89ApTo7pRVEUqbdaKDa0U2pyBxY1ZiP1FjONVjMtNivtdjtGhx2z6MAmigcNLARALkhRdWYsdHIF/golgUoVIUo14WoNUWotMV7eJHrpiNRoB12B9eqvy3n8gjU9lolSCblzEqlLD2aMycSmF1P7rb/a/EsVD877A6VGxuznExFVkgFr7e2P96rf49q8a4lVxVI8ofikryU7bkZ5X375JQsXLuStt95i3LhxvPTSS3z99dfk5+cTHNy3uRlAWVkZkydPJj4+Hn9/f08w8hfhiq8b+HiHAR+VhI3XH3+BtL8jm5vreTx3BysbqjE73dLVSVof/hE3hNuS04/bk+iJIqu5mu/KdtFg7kB0ueheWaCTqzA5bGyyf80O8VumSv/BZK95nB83kp8q9lBrasdXqWFun6Jn+fxWlYveZnGLnsWPIk43MAWMoihSaTZQbNBTZjJQaTJQazFRZzHRZLXQarPR7rBhdNixOJ3YRJGDVVgISFAIAmqpFC+ZHB+5Aj+5kiCVihClhgi1hiiNltjOjEW4SnPS39QA9C0WLo//HmO7W1TNrpKRde4Q9GHepG8s44abAxGkB4qW9KR8TQubX6tCphGY/mwC/kHqQRWMANxWcBuvVL7CbL/Z/D7y94Eezp/iuAUj48aNY8yYMbz22muA+0cWFRXFLbfcwr333tvnPk6nk6lTp3L11Vezdu1a2traPMHIX4g3NrVz8w/NCMAXFwdz3rC/3nTCYOGnmnKeyd/FxuZ6HC4XApDhG8BtScO4PDrpqG44LRYjBsf+YlCtTIm/yusYjvrwqTPpeW3vKhothh7LHaKdjx3/BFyUjKsmShs0IONzj0WkzKSn2NBBuamjK7Co75wKabVZ0TvsGB0OrKIDuygiHuR4Usm+wEKGtjOw8JcrCVKpCVWqidB4Ea12BxaJWh2BCtVfIrA4EkRR5N17d7L4xVycDvcty+SnYtf5qThUMoZ/m8u86wLRRR1exrDs9xZyPq1H6SNlwX/TufaCge+8O5AZ22ewqm0Vd0bdyfPJzw/0cI6a4xKM2Gw2NBoN33zzDWeffXbX8iuuuIK2tjaWLFnS536LFi0iKyuL7777jiuvvPKQwYjVasVq3X9x1Ov1REVFeYKRQczGCguz3q3FbHfxryk+PHPG4CoQ+6shiiIflRfwSlE2WW3NiIBcIjAhIJh7h4xgTlj/rc/7cLpE1tUV83nR1h7P4IJEwsMjzyBM078bbr3FxJaWBuYfB5NAu+hke1MF6+uKqTO5W3EjvHzpUOzh4arbmRswl58yfzom57I4HJSY9JR0BhZVJiO1ls6OEKuFNruVjq7Aoo9W0wOQSSQoOjtCtDI5vgoF/nIVwSoVoSoNEWovojVa4joDC7+/yHTb8WTN4nJe+McmDK02fIKU3PvxJF78qpqvdT4ojHYyv8lh3Ol+DDmn/8x8X+z9uo69XzcQEKXm05Jzjpl+0rFCFEXiNsRRYa3go9SPWBi2cKCHdFQcl2CkpqaGiIgINmzYwIQJE7qW33PPPaxevZrNmzf32mfdunVcdNFF7Nq1i8DAwMMKRh555BEeffTRXss9wcjgpsngYORr1VS2O5kWp2T51cdOIM1D/9hEBy8VZPNuaS6FBvfNWy2VMis4gkWpoxnt3zuL0GY18XrOaioMrX0e00eu4pb0GURpe/rrOESR14v38sCeLRidDqrnXUa4+sRlUUZsHsEuwy7WjlzLZL/JPdYZHTaKDO7AosK8P7BotFhotrs1LDo6NSysonjQVtOujhBBQCOT4S1T4KtQECBXEaRSEabSEKnxIkbtTZzWmwStDq1HWfeYUl2k55FzVlO6pw2ZXOCSB9JZuCiDG75v5K1Nenyr9Az/JpfEBC1v7ZyLXHHkooav3bqF71/NJ364L2/tnDvoMk4tthaiN0RjdprZNHoTY3zGDPSQjphBEYx0dHQwfPhw3njjDebMmQPgyYz8xRFFkdM+qGN5kYVwbynbj5FAmofDo81m4f9yd/JZRRHVne2xvnIF88NiWJQ2igStD2aHnad3/0atqb1rP7VUjlQi9Jiu8ZIpuS/zNILU7mm3tY21XLd9DbkdbV3b7DrlPDJ8j30WrM1modCg79YRYqTOYqLSVM965z8RxFD8LA9idorYDqPVVC4IKAUpXjIZ3jI5vnJ34WawUr0/sNB4E6/1Jl6jQ3UYraYejg82i4MHr1nNniX1uEQXiWcGMnReEMFBXrxZKOePakgKkPG4wsQHd2/nlY2nkzzq6L+D/3fpWlZ+VsbwqcG8sPq0XuvbDVbeW7yHy+anEux/4v1jsjqyGLllJApBQdmkMoIVR5YBGmiOizdNYGAgUqmU+vr6Hsvr6+sJDe0tJFNcXExZWRnz5+9voxJF9+ypTCYjPz+fhITeTpFKpRKlUnkkQ/MwSBAEgd+vCef+Zc08uaqduGcr+f2aUCbHnhwdDCc7vgoVz2RM4JmMCVSYOngsZzvfVZfxSUUhn1QUEqpSM8bHFz+XHpUgEKD04pLEMaT6hSFIJJR1NPN50VbKDC0YHVaWlO9mbkwmd2dt4rOKIqSSnsWBzQdoeRyIKIo02SwUGfSUGvVUmIzUmI3UWc00Wsy02K20d7WaHl5HiKC8GNHrPSyy1UQpTsdvX0eISk24yqsrsEjQehOj8T5hNgAe/jxfP5/D+w/sxG4ViRznwz2vjydqiC8N7Tbmf1xHbjucHmbnxxtjkMmkzLsyHi/dn8tI3f/pFPTNVrYtq+XhBat47Lvpx+bFHCOGew/ni/QvOD/7fDI3Z1IxqQLZSV603hdHVcA6duxYXn31VcB9sYmOjubmm2/uVcBqsVgoKirqsezBBx+ko6ODl19+meTkZBSKQ3+RPAWsJyffZRu54PN6nCK8OM+f2yb5DvSQ/rZktTXzaM52ltVVYnQ6APAWJNySNIxH0sf2uGGbHDYe3PojHXYLOWYHu4x2rP0ECbODI/CWy2m0WGjtDCyMnRoWB+sIEQCVIEElSJBKBBQyJT4yBX4KBYFKd31FmEqDVLRRpa/F4bQRqfHm3PgRDPOPIGxtGA22BkomlrC7vp21dUWYnXYSdIFckjjmsBygPQwestbW85+L1tJcY0btLeP0RclEjvDhrJmJFDbaGP16NXqrixtHKkkw1XLKhBiGJQdhsTlYs62K4oo2nKJISIAX08dEEdSZwdiwq5riijYyUoLZlFWDxeokPtKHUybGoFS4b+gul4tNWbV88O9dlCxrZuTV4dzw2GjiItw1Uy98tK3HWCNDtFxw+pAT+wYBDxU/xBNlTzBeN56NYzae8PMfLce1tfeKK67g7bffZuzYsbz00kt89dVX5OXlERISwsKFC4mIiODJJ5/sc//DmaY52hfjYfBR2Ghj7Bs1tFlELs7w4rOLPAJpA0mdqZ1rNyxhp9FGvc2JEwiQK5kZEkGK1hc/pZJmq4U/6krZ1NZ20GLN7nR1hAiyzlZTOf4KJUFKtTtjofYiRKEkSuNFnJeOIIWSOnMHL2Wv5M5hs0jx7f29KNY38tzu5Zwdl8Fw/wi2NJSxrCqXB0acTpUjn/HbxpOuHM8s4U6uTJlAoMqLH8qyqDa18cioeZ6MyElAa4OZR89dTfa6RgRBwrzrk7j51TH8tqEcq82JKjKM+R/V4xDhrbMD+ec4HZ/8sBcvjZxzZifzzW/5yKQC4zPCUSqkZOU3sre4masWpKNWytiwq5rte+sJDfRi2pgobDYnv20oIzTQizOmulvBt++tY+PuWmaNi+LZs9dTsVfPyJsiuO8/E/HTqahrMvLZz7mcd2oyAb5qBEGCWjkwmYn5u+bzU/NPXBN2De+mvjsgYzhSjss0DcCFF15IY2MjDz/8MHV1dWRmZvLrr78SEuK+mFRUVAy6IiAPA0dSkILq+6KZ8GYNn+82klVbyZabItAoPN+RgcDidBChlBGhlDE5OJ7EwFi+qy7jjaK9fO0sQSuTE6hQ4XI5DnksqUTCv5IzeHL4uKMay2/VeQSptCT79D0HvqI6nzT/ME7rdN89KzaD3LY6VtUUcGnSOM4KPJslTUs4M7SWzIBIAK5KmcDdm75lV1MlY4Jjj2pcA8VgarE+3oiiyGu3bOWntwoRRRdpk4JY9M1U/EP312RsqBV59vd65FJY+Y8wpnd6Yfn7qGhsNVNd30Fdk4nrL8xAJnVfT6aNiaKoso3C8laGJ7sLtx1OkdMnx+Ht5c7CzxgXzfcrCpk2JgovtZxte+sZkx7K0IRA3to+lysSl7DzzWre993FXY+PR61y3yZVShleavmJfJt6sWT4ElI3p/Je7Xtkemdyc9TNAzqeY8lRhXc333wzN9/c95uwatWqg+774YcfHs0pPZzEaBQCu2+LZOGXDXyyy0DEkxVsujGclKCeU3R/p4vxQKHr5s1SZmzhsuRxTAgI5YEhI2iz24jx8gbg3bz1bGkoo97uxCH357eGmk5Bsv0ISDCLhw5a+sIhOtncUMbsiCFIJH2LVJV0NDE7omc6PNUvjN3NVQC8lvgO65t38VL9AzyU8k9UMhVqmYI470BKOppOqmCkxWLkoW0/4nDtf4dlEoHHR8//y/0Glv+vhJdv3Iy5w0FAuJr7P5tMxrSeNYdf5Dv4pEiKj0pgxy3hXR4z4JZ+lwCNrWbsDidvfrGrx74Op0hbx/7riM5L0RWIAIQHeeFyQUu7BZlUwGi2Ex7sLtJWKGS8lzOfKzN+YNnTRQyJDmDyxYdukz9RCILAtjHbiFofxa0Ft5LmlcYM/xkDPaxjwl+vCsbDoOXjC4MZF63klh+aSX+pis8vcgukuVwutjaW837+hl56F4tGnkHoQfQuPBwZ/iovYr0DKOtopsrYxo6mSkYFReOjUOKjcBeNVxpa2d5UgUQiIVHjxVPj5tBmt/FhWT6vFe2lwmRAKpHgcIk0W4/OOXdXcxVmh42JIXH9bqO3WXoET+AOpto7i2atThdTpNfyneNBzs8+nx8zf3Rvo9i/zcmCwWHtEYgAOFwiBocVf/4awUjZ3lYeOWcNVQV65EqBfz47kgvu7mkGJ4oiM9+tZXWplExfB2tvi+tlM9HSbkHnrcRmd+KllnP+aSm9zqU6ijbffWi0Cq56ZyTvXrOdF6/bhMxrcGVxtTIt28ZsY+imoZy+63QKJxYSreodMB34cOfed/A+4HmCEQ8nlJsm+DAiXMHsd+s4/7MG7phsIjo6m9y2ul7bii4Xz2ct56a06cR6e0TUjhUzw5N5P99dAPdu/nqK9I2MC45FLkjZ1VzFb1W5iJ2lZJPDEpALUoKUav6VksldyRksr6/i9eK9/FhTjtN1MG3R/llfV0yafxi+yj/XKhkkxJHpNZKfmn9ifet6JvlN+lPH83DsMRlsPHnJejb+WAUSmHZ+DP/+eCIKVc/bj94ikvFKFWWtDk4Pd3JdqqRXIFJRq6ep1czIoSF4e8kxmu0IggQfbf/dl3qjDYPJhlbjzo7UNhqRSNzTPUqFFC+1nJoGA1Gh3l37tJgsLHw9k/+et5XnF25kyv/FcxQ2bseNBE0CS4YvYe7uuYzcMpKqiVWoZPsD974ybTC4s22DK+Tz8LdgYoyasn9HEaGT8uI6A8/86kdnxzdSJCi7ta3p7VZe2rOyhyaGhz/HmKBYxgbFAO6Ab2VNPk/uWsZjO37hh/IsLE6370ecdwBzo9J77CtIJJwaGsWSSadTM/9yXh855YjP32wxkttWz+TQxINup1Oo0Nt7Zjj0dgs+naqlOrm7huDd5E8REDhnzzmIooje5t7GJtooMhX1Oq6HE8cnj2VxTsDXbPyxith0Hz7MP4uHvpraKxApaLQR9VQ5Za0Obp2o47YRMkSXC6PZTofRRn2zkc1ZtSxZWUR8pA+pCQFEh+kID9Lyw8oiyqrbaTdYqWkwsG5HFXVNxq5jy6QCv64rpbHFRFV9B39sqSA5xr+r/mNMeihbs+vIL22hpd3C2u1VNLaamTo5ite3zkEQJGx+ppxNa6oxmu1YbUc3NXmsmRM4h6cTn6bZ3szYbT2NavvKtMH+bNtgxBOMeBgQgrUy/rfQTnhAO7UtPny+aiRWqxwnLqyddQj7KgnMTjuLS3cO3GD/YggSCVemTODUyKHIJL0vARJgTFAMtw+biULaf/I0VKXBT3HkekAb6ovxlisZ5h9+0O3ivQPJOyBjlttaR7y32+wuUOWFTq6ixeTinph7aLA3cHfhPZR2NNEulJC+KZ2hm4bSZm874jGeaEwO20AP4ZiybVkN5wV/xUeLdqPSSHn4m6m8u+dMIpN6d1MsKzCS/lIVHVYXb58dyMvz3Z9vWbWet7/azXuL9/Dt8kIq6/TMGBvNWTMTEQQJEomEBbOTiAjxZtn6Mj74Lpuf15SgN9p6FJr6eitJivbj2+WFLP69gEA/DbPG75/WGDE0mFGpIazeVsnHP+ylrLqds2Ym4qdTEZvmx4trT8VpEnn/hp289t52lqwcPAHuv2L+xSUhl7DHuIcL91w40MP5Uxxxa+9A4Gnt/evhcrl4YudSqoxtbM6LYndJOCq5gwWT9+Ct3n9h1sqUGBxWJMATY84kUOUx4TuWGOwWNjWUUWVoRcRFkMqbCSFxx+19Fl0uHti6hDFBsZwTl9lj3Qf5G/BVaFjQubxY38hzWcs5JzaTYf7hbG0sZ2llDg+MOJ0IL18Afq3MYVnVXq5MnsCcvRNosbeSJBtNtmM1EiS4cLEuczNRyp5ZmMEydy66XPxYnsWyyhycfTRSx2kDuDFtGrqTxMOmscrIogWrKdjWjCCVcO4dQ/jH0yP77bB8dUMbt/3YglwKy67e3zFzrNinM3L5mWmH3vggbFtWw31zVqBQS/kw/yyCIgf+u9OdkZtHstOwk/+L/z/ui7uPCkML/9n5a5/bPjDidKK1/idsbMettdeDh2OBwW6lytgGwPmjDdw9Tsv13zWzeO1wRiVVMSzO/UQ8IjCKtXVFuIC8tnomh3qCkWOJVq7q1bFyPMlrq6PFamJSSHyvdS1WExL2d9Yk6IK4NmUSS8p3833ZboLV3tyQOqUrEAE4LXIoNqeDTwo2Ey/OpJaPyXasBsDVeXN/eu8SwiQ9b0aDYe7c5XLxedFW1tT1/6RdamjmuazfuSfjVLTywatK7XCIvPjPTfz2UTEuEUbMCuWhr6ag8+8/iLr+u0be3tKBn1pg+809O2YGG6NPC+f+zyfzn4vWcW36j3xScvZBX9uJZtOYTUSui+T+kvtJ16aToT75aqc8wYiHAWFfXQKARqqgjj2cO7mFxeuGsTkvmrSYegTBhbTbzan7Ph5OTlL9wnh7yiV9rrtr+Oxey0YFRTMqqP/WSolEwtBgNS82v8Z606o+tzGIrXBAc8WJ6FSxiTYsogWdrO+nwezWmq5ARIKE8cGxDPULRSXIKepoZENdCQaHlXpzB9+W7mRh8vjjNtY/w0//LeDNO7ZhNTkJifHioa+nMGRMb3PGfezvmLGSFChnx00RvQpVByMzLoyjo8XGKzdu4ZrUH/mkZAEqzeC4hSoEBTvG7iBxQyLnZJ3DddrXAO8+t22xGE9oZuRwGfzfAA9/Sbo/5eW111PY3oBK4SA6qBWdlwVBcD/Vrq4r7HMfDx4AdnbsJG1TGmva1vS5XooUE20ndlCd3JR/E36r/ZixfQavVb5GpaWyx/o/agq6/n5Z0hiuTJnAuOA4MgIjOTduBPePOB1VZ83O5oYyDPbBVXhYsK2Zy+K+5aXrNoMLbnl9LJ+WnXPQQERvEUl4rorVpVZOTVKRd8fxDUQmZkb86Sma7px5QwpXPp5Ba72Fa9J+wOE4um6y40GkKpIPU77GgZP/Gu7AJpr73O6jgs3UDcKGgMER1nn426GWKYj28qPCuN/CXidXopLo8JLLUEvlmJ32rll0mURgmN/BCx49uFlauZedTZXUmfUoBCnxuiDOic0kVHPweqvtjRUsKc+i2WIgWO3NOXGZDPOP6Frvcrn4sXzPoPKBiVRGMtJ7JJv1m/tcL0gETK62EzuoTnQyHS5crGlbw+q21dxScAsZ2gzOCz6POf5z2dtSAxIJAUovJnZOWzVZm2hxtJDslUyAyouJIQmsrMnH4RLZ01LNhD6mt040hjYbj1+whu2/1yKRwCkL47njnXEoFAe/neQ32hjb6TFz20QdL3UWqp5sXPbgcPTNVr59KY/rR/zEf3fPOyGq4w7RQbG5mCRNEkIfhec2p4PtlXYmS69infN9ljgf4p3InwjSeFNn0rO1sRy93YLJaePt3HU8NPIMhH4EBwcCTzDiYcA4UKNiVGAMX7R7YbLB3Oh0vi/b3dWe5qvU4OXJjBwWBe0NTA9PJlbrj9Pl4vuy3bycvZJHRs1D2U93TLG+kXfz1vfwgXkzZ22PYtFlVbmsrMnv4QPzSvYfA+oDE6QIYsPoDXxY+yF3Ft6JwWHA7bjjxuFyYpYMzFNgqlcqrs7/9rHbsJtsQzYPlTyECm+8CGCodBgXZX9KjjGHXGMuIiL+Mn+0Ui1mpxWXQ423JAhDzShqJLMZrxtPhCriIGc+PoiiyPv37+Lr53NwOlwkjfLnkW+nERJ96DquZQXGLo+Ztzs9Zk5mbnxxDPpmG8s/KeGOqb/x8rrTj/s5lzYv5cysMwmRh3BhyIWcF3wek3wndQUm25oq0NstpEpn4ZQ1stH6Iyvs7/JG2BsAzIsZxjO7f6fW1E6NqZ38tnqG+oUe7JQnFE8w4mFAqDfrqT4gVfhHbQG1HWMA+OaAVt5WqxGj3eoJSA6D29J7ykNfmTyeuzd/S7mh5Sh9YMbicrlYUZ3HGdHpg84HRpAIXB1+NWcFncW/C//Ne7XvIUWKEycuRAxi84CMa6hmaJ/L9wVLFjqw0MEmczWTlZOY5juNc4LOQUREI9WwvHk52/Q7MNJEk6uM0patfNbyFuCuMVEJKvxkfoQqQolVxzJEM4QR3iMY7zOeSFXkMX0t67+v4NmrN2JoteETqOSejycxbs7hBUTdO2a6e8ycaI613cS9H0+io8XK5p+reXD+Sp74ceaxGGa/+Mn9AKi31/NG9Ru8UvUKQfIgLgi5gAuCL2Bb/f7X9r/h7/N09QO8Wf0ms/1nsyBoARqZgvnRw/hv3joANjeWeYIRDx5qjPsDkQRdIOUdLVS3aHCKUsCF3qREp7Hiq1DTZjPjdLmoM+tJkPc/H+2hb8ydhb9esv67FQ7lA9NkMaK3Wxjqu//iNdh8YALkAbyb+i7XRFzDP3L/wV7jXgBaqOxz+3V1xVyc4NevN86RUGoq5beW39jQvoG9xr2UW8ppsbf0u/2+rqEM4UzGSM/j7oRTSD7AufiuqHtYtP0nWq0mRNHBhalxlNhy2WPYQ4GpgApLBY22RvYY97DDsKPX8VWCCl+ZL2GKMGLUMQzRDCHTO5PxPuP7lA/vi+piPY8sWE3pnjakcgmXLxrGwkUZh/2ede+Y2XFzOLED1DFzvLx//vPTTG6b9Cubfqrm6SvW8++Pjl8XS5I6qevvjk4jy0Z7I29Xv83rVa+jwgsfIgkR4ni7fjeNtkZ0Uh3n7jmX5SOWM8t/FkO6/X7brKbjNtajwROMeBgQuisqpPqGcf2QKYx/s7prTWtDKs+eE8qa2iJW1xb2eQwPh0Z0ufiqZDsJuqAeLbEHcigfGL3dXQx3oN7FYPSBmeAzgZejvuLBgv9jk/gpNkzYXSYCFf502K2Ind+x1bWFaGVKzowdfljHFUWRHGMOv7X8xhb9FnKMOVRZq2h3tCN2sxCUS+T4y/0ZoxvDro5dWF09C08FBOLUcdwf9jybq9xKoW/lruOihFGMDIxCJkgp62jm65IdtHbeMIYFRDE7aArQt+KtQ3SQbcxmi34Lewx7KDQVUmGpoMHeQLYx+6DBSqgilFhVLCleKWRq3cFKmBDBM1duYPWX5bhcMG5uBA98MRmN9vCCCVEUmfFOLWvKBkfHzPH0/nlx7an8M+Mnfv+4BF2gkhueH/2njtcfQfIgVIIKi9jz97YvMLFgxEI+9WI+rfU5JGuSuCD4AmpsNaR6uTOe+37HALITUOdyJHiCEQ8DQoh6f9vZzuZKnMY4cuv3/zj+yFeicGm7nswlSAjyCJ4dMZ8XbaXG2M6/Mk4Z6KGcMEwOG9+X7WG47AwCnbH86nwGRdAOnhn6Bka7jT9q8vmpYg8u4JfKvUwKTSCg29OxKIps6djCipYVbNVvJd+UT7W1GoPT0KP+QylREqgIJN0rnUzvTKb4TmG232z8FH5d20zfPp3VbW7dk30ibFeFXcXLKS+jlKho1q+kSN+I0WHlvfwN/K9QhkIqpaNb54xKKue8uBEHfc0yQUamdyaZ3pl9rneIDnKMOWzRbyHLkLU/s2JvZK9xLzsNO6Fp//ZSkwr19GDkk1WEp2jICYrl8brfu4KVGHVMv2Pp7jFzapKKpVeGnpACz4FCEATe2jmPKxK/Z/ELuXj7K7jsgcMLcPuiwlLBqtZVbG7fTI4xhzJLGY22Rkyiqcf3ry+CSGCm9Caujj2dUyN7TxOurd2vaZOo63vKdqDwBCMeBoQIL98u99iKjjbe/K0OQSIgdv7W7E64+dd8/ELckfzwgAh0ioGZaz5Z+bxoK3taarg7YzZ+hzCkO1wfGLfvy/7PQW+zEKX1PbYD/5Nsqi/FJrrrMs4Ln8dMVQB3Fd7FNRFXMUY3hnkxw7CLTn6qyKKOPK7buwKjUE2BqYA6Wx0msWf6Wi2oCVYEM043jhHeI5juN53pvtPRyA5t8jdMO4x1betAAhpBw/tD3+e8kPO61t+cNo23c9d1GUVaRUeXHQK4s1M3pk4l/CBZrcNBJsgY7j2c4d593yRFUWTJmnW8+MRvtDpbMSVV4Tq9hI7AOgodZext2tUjWAG6MishihB3ZkWTQrBrOI98NQSD0ZfbJ/nw4rzj2zFze/7tyAQZj8U/hkba9+fhcrmoMrQd13HIZALv5ZzJZXHf8eGDu/EJUDL/+t5uwvuos9axunU1m/Wb2WPYQ6mllAZbQ6+AV4IErVRLmDKMOHUc5eZyCs2FPbaRIUMhKPhP3HPkVOiQSCQsKduNt1zJ2OBYpBIBu+hkdW0hK2vyAZBKhK4OrsGCJxjxMGDMiUzlzdy15FcFU9ve88nJBfyQpeDSmRLkUjg1ou9iQA+9cblcfFG8jV3NVdw5fNZhSbvv84HpXjfSlw9MXlsdUVr3k7/ZYae0o4lpYQc3vDvRdPezmRmeQphmNB/WfsgFey7gitAr2NKxhT9a/9if7m5z/89L6kWEMoIkTRJjdGOY4TeDiT4TkQvy3ic5TNK80nDiZKJuIp+nf96rVkMtU3Bb+gzy2+tZU1tEuaEZhygSoNIyMSSOMUGx/XZAHStaG8w8dt4a9qxtQCmkcM0/k7jltbFIpft/k6IokmvKZUv7FrKMWeSb8qmwVFBvqyfXmMtuw+79B5wAuKS8JZXz+VofQhWhxKhiSNGkkKHNYLzPeOJUccckW/Je7XsYnAa+bfiWj9M+ZrLv5B7r221m3sldT6G+oc/9fyjfw3VDJx+TbjCVRsb7ufO5PP57Xr5hCy4/M84ZpWxq38Qe4x5KzCXUWevocHb0mNaTIEEjaAhWBDPaezRp2jTG6MYw3W96r+/Lw8UP81T5U9hd+wUgx/qM5dO0T4lVx/KxbTPr64txuEQ+LNjEt6W7CFHrqDa19fA/mhOVOugsBjzBiIfjxqH0LjIDozgtPIOPf5fhDj96FsVZ7VIKqoO4aZwviT77C1cHo97FYOLz4m1saSjjxtSpqKRy2m3u7JJaKu8yvjvQB2ZWRArPZS3n96rcLh+YckMLlyW53UAlEgmzIobwS2U2wWpvAlValpRn4atUkxkYNSCvsz8szv2ZhSCVFpkg49G4R1mwZwEvVr7IEK8hJGuSMZhUBBJPhmYcb4259bhMJSwMW0iQIoizg85GKun7hieRSBjiG9qjuPBEIIoib9y+jR/eKEB0ukibGMSixVPxD+2dYRAEgTRtGmnavgXEXl7Xyu2/FSDVlrNg2mZMyryuYCXPmNczWOlEJajwkfl0ZVaSNclkaDMY5zOOBFXCIT+PNnsbBqcBgHJLOVO3T+XWqFv5v4T/QyPVYLBbeT5rOfXmjn6Psaelmrdz13Jj6tQ+tTsOhcFhYE3bGja2byTLkEWRuYiaxXWYmkVW+LXDnv0ZDLWgJlAeyDDtMNK80hitG800v2kkaZIOcoaeJGmSsLvsSJEikUj4v4T/487oO7u+W5ckjsYuOtjSWA64s5sHZjxnRaQwL3rYEb/W440nGPFw3DgcvYuc8nCs9tZ+jiBhR0Esq6K3MSUscVDrXQwm9hX8Pr9nRY/lVySP70rN/hkfmP8VbsHksJHoE8StaTMG3Xve/YmvuKORNL9wzgw6k+1jtjNSNxKAKmMrj+9YCkCyOvi41TRopBrODT73uBz7z7Dis1JevmEzJr0d/zA19382mczpRxcM7e+YCWHnP0YS43dBr21EUSTflM8W/RZ2G3Z31azU2+rJN+aTZcjqtY9SouwKVmJUMQzxGtIjWCmzlO0/fmem4dXKV1nSuIRP0j6hoknZFYj4KtTMDE8h1tsfu+gWkFtfV4zdJbKnpYaN9aVMCk3o8/VZHBY26Dewvn09uzp2UWgqpMZWQ7ujvat4dB8qQUWAIoCEoCiMryajqQjn4ZfOYP7EScfkOzbUy50hTtIk8UX6F2R4Z/RYLxOkXJ0ykfEhcayqKSSntRaHS0QuSMkMiGR6WHKPB7vBhMe118MJo8Nm4e7N33LX8Nkk+wRjtosEPl6Oye5CAv2WZo2MbefOmfYuvYt7Nn/HKZFDuwq0zA4bd2/6liuTxw+KFlMPA8uOpgreznVrKSToArlz2Cxk3QIm0eXirdy1XcXRFyeMZnp48oCM9URTntPGI+espjJfj1wpcMVjGVx0T/pRHetYdsyIokihuZDN+s3s7tjdYxqo3dHeqyMJ3LUSDhy9lgsIuHAxXHo6o4Tz0Ug1LBo1t9d0ZXZLDa/uXQVAmNqb2Ql+bGjfwM6OnV1Fy62O1h5TIgAKiQJ/uT+RykhSvFIYqR3JFN8pjPAegUzY/3yft7WRWycsQ5BKeGvnXGJTfY/qvemOy+ViZetKJvlMQiU99DSLy+XCLjqRC9Jj0sJ+NHhcez0MOg7Uu5AJEm6b5ENVuwOz3YXJLpLV1EhVsxfdp2x2lPnwxa46Lk06OfQuPAwsGf6R+Cs1tFhNFOubeGb375wWmUq01p8aUxvLq/MoaHfXEKilcsYFxx2Xcdy/ZQnNVmOv5dPCkrgkcUyf+xwvSX6LycF/LlnLxiVVIIEp50Zz3/8moVAd3S2g3ewk45VqytscnJak5pcrQ/7Uk78gCKR4pZDilQJhvdeLokixpZjN7ZvZbdhNnjGP7R3bqbXV9t62M0uy27mULOevjJOfwgf1FcSqYtFKtdhddupt9XxW9xnb7LsxuToQbQ4e7db9LJfI8ZX5kuaVRoomhUzvTCb7TGasz1gUwuG1Nw8ZE8RTy2by71NXcNPoX3g/78zDUqs9GBKJhFn+s45oe8Vxrjk6VngyIx5OCKLLxRs5qzE57NxzkDbTi5Z+z5dr+q74/+C8IKYkWXhm9+88M25Bj66O/3Y+Cf9z6OQ+9/Xw96JY38iLe1ZiF539biMg4frUKWQEHFu10n102CxdmibgFvp7KXsldw6bRcoBAmf7xvzc7uU9JPmXVeX2kOT/tTKHXyv39piirDa1HXSK8n//2cP/HsvCYROJSfPhkcXTiErxOerX1d1j5vZJuuPeMdMftxfczhtVb/TKXHRHQEq4PIo2samrvsS9XEAlqBCQIxd1+EhCOCd8NmcEzWaiz0TUsmPXubfmm3Ieu2ANXt5yPi45G5+AwVU4erzxZEY8DCoOV++i1dD/ReDqbxp58ay/1w/Zw9GRoAvizmGz+LBgY58FjH5KDZcljiXd//iZL3of0K3wa2UOQSrtCZPk3/Z7DU9fvp7WegtePnLu/WQS0y+I5c+wrMDIvI/qcYrwzoJArh07cA+HpebSHjUbMokMh8tBojqR2bqzaGuJQCcJYWZ4MhfEj6LV0covTb/gL/dnlv8slIKSp3f9RkmHu2f5vtgzD6vz7EiZel4Md7w1jhev28zVQ3/gk5KzD1s8rjuDKdN2PPAEIx6OGz+WZ/FTRXaPZS/uWcljo+f1u0+H0QuJxIXL1Xt+0wXc+YOFsydqeGz7L1hFR9ePZzDqXXgYWOJ1gTwyah55bXXsaq7CaLeililI8wtjeEAE0qPonjhaHKKTzQ1lzI4Y0u/c/bGS5G+sMvLouavJ29KMIJVw7p1Due7ZkX+6gPKV9W3c/pPbY2bFP8KYOkAeM/soMhd16W0Ey4O5POxyLg29lExtJkaHlX9v/h6HS2RjfSlzotLxV/hzWdhl+/dvb+wKRMLUOgKUf06J9WDM/Wcy+hYr7923i2vTfuLDwjMP6XJ8IPdlntZnpm1UYN/S/ieb+aUnGPFw3HC5QCNTIJMIXJc6mSCVN9KDFFEV6xtp0Ct6VbK6dSslKKUwIsqJWmlnuH8ksyKH8ENZFi/v+YM2q2nQ6V14GHgEiYRUvzBS/fooRDiB7GquwuywMTGk//qUPyvJ73CIvHz9Zn79oAiXCJkzQnj4m6no/P98NrG7x8zOWyKI8Tt67ZVjxfyA+UzQTeCysMuY4julR+u0Vq5iTFAMGxtKMTvtPJe1nPPiRpDuH4ZDFNnSWMa3pbu6tp8WnnTcCzwvvncY+mYbXz+Xw/WZP/Nu9vwjChAHOtN2vPEEIx6OG9mtNZgdNu4cNosglVv+3elyYXM6+tS7WFGdT4cxABcSpBIXTpe7x8bHy8yDs7TMTdHy3/zVhGp82NFc5dYpiUrl2d2/o5UrB53ehQcP+1hfV0yafxi+h1DCPVoq1nRw9pgvsBidBEd78dBXUxg67s+3cA42j5nuPJX01EHX77v5ttnM1Jv1vJ6zGqlEQHS5eiiYJuqCmBx6Yh5krnt2FPpmK8s+KOa2Sct4deOcozrOicy0nSg8wYiH40a5we1aerh6FyUdTWhkoQRrIS60mbDARvKrAyhv8CXPtoECtwkrxXorEuDjgs1YnHZUUjlpfmGDTu/CgweAZouR3LZ6rk/t2+RuH0cjyV+wo5llt1fQvtaJQi3l5lfHcPbNPW9AR0ubyUHmqzXHrGPmROOn1HD38Nm8nrOGWpPbJdx5gFleul8Y1w6ZdEKvHf96fyL6Fisbl1Rx3xkrePKXw++O2ceJyLSdaDzBiIfjxi1p07E6HYRovGm3mfmpPJs2m4mRAfszGHcNn931d73NwucLpYwLjkUicQcr1/+ym7crFRTXBpAU0dy1rQu4bdgMorX+/Dd3HXax50XGw1+Xk62Qb0N9Md5yJcMOUSx7JJL8fg4vnrhoDduW1SL4wKhrg3n89VlHXIfQH/mNNsa8Xk2H1cUdk3W8MHdgOmb+LEFqbx4eOYfsllrW1xfTZDEgQUKU1o+poYnEegcMiP7G49/P4I6py9i6tIYnL1vHff87si7A451pGwg8wYiH40b3ToVILz/ivAO5b8sStjVVMLkftUNBIulxcZiS6OCDjQ5yK0J6BCMe/r6cTIV8osvFhvoSJoTE9yqYPRpJ/pnhyXz64S6ee2o7TqOLoDkKIu9Q8sSs2cfs6X4wdcwcCwSJwPCACIYHRBx64xPI86tO4foRP7Pi01J0AQpuennsYe13PDNt+/49EM0AJ0/OzcNJj0amIETtTWM/XhEH/ngK2urZ2FBEeEA7je29W+42N5Thcrk6f0yelt+/C94KFT4KddefrJbqwy7kC9P4cFZsBtFaP1bVFAD0KuSL9PLjqpQJtFnN7Gqq/FNjzWuro8VqYlIfDqktVlOXbxDsl+RfW1fE4zuWsqOpsock/8YfKvnviL1UPeRAOQRiPpYx9ulA7p4085gFIi+vb2POB/UIElj1j7CTPhAZzAiCwBvb5xIar+W7V/L5+NHe/j19caSZtu70l2nbxz7zy33bnEg8mREPJwyL006jxcB4Rd8tgd3T1MX6Rl7O/gOHSyQisJ2y+gCqm7REBO4XLlpenYeA5IQ6x7ZYjBgcPaWptTIl/qrj1xbooX8GeyFfql8Yb0+5pM913aco9zEqKJpRQT0zPLWlHTyyYDXFu1uRyiVc9lA6Cx/JOOb1G//8tpF3tg6ujpm/OjKZwHvZ87ks/js+fiQLXYDyoDU/xzrTNpjMLz3BiIfjxjclOxjuH4G/yot2m5kfy/cgIGFMUAzQ/4/nt8ocVtUW4ugsNpuaKLJ+LyiMYzkts5YV1fld636rzsVXcWJ+PC0WIw9t+7Hr3PuQSQQeHz3fE5AMAH/FQr592GwOnr1yI6u+KMPlgrFzwnngiyl46Y5cMOtgiKLI9HdqWVtmJTlQzs5bItAoBn/SvC8doxC17qA6RoNRBEyplvFB7llcFvcdr92yFW8/BbMu7Z1Jg0Nn2k5m80tPMOLhuNFqNfFu/gaMditauZJEXRD3Zp7a1S/f34/n65IdtNpMAASrtDwyajbLt9dQ2eZgQWwmMomU5dV5WEW3+mKST3CPH0+b2cnvRWZ+yTOxrNDM46f4cc2YP38xMTisvQIRAIdLxOCw4o8nGDnR/BUL+QC+fTmXd+/dic3iJDzRm4e/nkJiZsAxP8/J3jETrvHh9mEzu/59KB2jwSoCpvVV8O7e+VyZvISnLl+P1l/JuDm9a1yORaatOxKJhDNjh3NmbN8WHCcSTzDi4bjxj0P4xPT34ynSN7KyJh+AM2MzkAoC14/T8Y9vmyhucXBm7HBOiRzC3Zu+xeESKWpvJKvWyi/5Zn7MNbKp0oroApkADhFM9kFvv+ThKPgrFvJlr2/giYvW0lRlQuUl4+73J3D6VcdnCvKv0DEjSCQ9PrODMdhFwALDNby1cy7/GPYjD83/gxfXnEraxL7roP6KeIIRD4MOk8PW9ffIzieWaXFqRBckPVdJnJ+MjDAF+W3J1OvlGK1KnrZXI0jcqq/7Qg9HZxIjI+zYprU9DA6OR8tslNYP2F/Id6JqkdqaLDx27mqy1jQgEWDuPxO55fVxyGTHJ0uxNN/ImR/X43Sd3B0zDeYO7tn8HXJBIN47kAWxmf1Ol54MImCRSTpe3nA6t4xbyp3Tf+OtHXOJS/c77ucdDJw8+TgPfxs0sv2Fc1XGNgBi/WR8cn4Q758byDnpXrRbnOTW6GgxeGG1u2Nq0dVLSR6A4aF/PhhxiiKb6kv7Xa8fwNqCvyOHKuT7rpvU96yIFPa21vJ7VS51pnZ+LM+i3NDC9PBkoGch3+7mKqqNbXxQsPGEFPKJosjrt23lgtBvyFrTwNDxgXxeeS53vD3huAUiL61rY+6HnR0z1568HTNx3oFcmTyBW9Onc0niGJosRp7N+h2Lo28X35Oldih5ZABPLZuN6HRx05il1JUbDr3TXwBPZsTDoGO4fyQrO9sul1flMjIgCqkgcNlI765tfirfQ0xxNn9kJVJef/C59MxXqkkNljM5VsWZQzSkhymPaDx20clbOWvIbq3td5sP8jdy1/DZhHsdvTW7h8Pnr1DIt/LzUl66fjMmvR3/UBX3/m8SI2cdPxdh+Gt1zByNjtHJwoiZoSz6ZiqPnLuGfw77kY9LFuAb+NeWL/AEIx4GHSm+IYSoddSb9ZQZWng5+w/mxQwjURdEi9XIypp8VlTno5DDaaMKSZNH8++fTdhFF84D6ku9FRJazE6WFjhYWmDmgd9aESTgpxZI8JcxJlLFqUlqTk1Uo+qng+Drkh09ApE4bQBRWj/abRZy2mqxi04MDiuv7V3FI6PmdvnueDh+nMyFfOW57Tx6zioq8vTIFALXPJnJxfcOO67nPFk7Zo6EI9UxgsFbOwQweUEMd70znuev3cQ1Q3/gk9Kz0Wj/ulPOnqumh0GHIJGwMGkcL+5ZgcMlkt9eT35WfZ/bzolK4+zYEE6Jt7Hgk3oKm+2InXM1MgHumOzDo6f443CIrC618GuhiU2VVgqbHGyvtrGlysbrm/QAaOQSIn1kDAuVMz1OzZmpXvhq7KyrKwZALki5JW06Kb4hXefX2yy8kv0HlcZWmq1GtjSWn/RPZR6ODxaTgycvXcf6791CapMXRHHv/yaj0hzfy7C7Y6aa8jYnpyer+fmKk6tj5nA5Eh2jfQy22qEDmXNNEvoWG+/cs4Orh/7Ix8Vn9ZD8L97dgtXkJHXCnzdFHGg8wYiHQUmiTxC3pc/gnbz1vZ5mwB2wzIsexhlRaQAMDVaw/ZYIblrSxEc73HOsDhEyw91TMjKZwKwkDbOSeraAFjfb+DHXxJpSC3vqbVS2OyhosrM428QtPzYjlbhQKjLRaSxMiFHgTPTF5XJ1CWzpFCouTRrDU7t+A2BdXZEnGPHQi8+e3MPHj2ThsIlED9WxaPF0YoYe/ym9vAYbY99wd8zcOVnH8ydhx0x/HK2O0ckiAraPC/+VRkeLlS+e2ss/h/3M+7nzEQSBLUurWbRgFV4+Cr6uOw+JRHJSizJKXC7XoO971Ov1+Pj40N7ejk53chZbeTg67KKT7U0VbGssp8NuRSnISPENZnJoYr8tfR9s6+CG7xuxOqH4X1HE+/c/L+4UXeyotuKrlhLpI0UtFzDZRJYWmFleZGJZcQs17XQWyboDEI1cgkomYdEsP26d5L6h3Lfle1qsJtRSOS9NPP+Yvw8eTk52rKjhycvW01pnwctHzu1vj2PGhf0LtB1LunfM/Pfsk7djpj/eyV1Hob6xh47R2bEZBKndtWXPZy0nQOnFlSkTuvZxi57tptliPKTo2b7aoUsSxhCiGfj37oV/buSXd4pIHh3A+XcN5cnL1iM63bfvN3fMJWCoclCKMh7u/duTGfEwqJELUsYHxzE+2H0B3xf5t9vMXb4eB0b+V432ZkykkpXFZuL8Dv4VX1NqYea7++tBfFUCkT5S4vzkRPnKGB1jpdFei8GswF8Sx9oSEZPdhUomYZ++ksvlYl9IPwAGoB4GIU01Jh45ZzV5m5sQpBLOuX0I1z8/6oRNj7y0ro07f25BLoUV14QxNf7wtDhOJo5Wx2iw1A4dKXf+dwL6Zivrvq3kPxev61ouSCVs/qmKqUmRJ7UooycY8XDScCRy7OmhCtIPo6V3dKQSpRSsTve/2ywibRaR7Ho7Ugk4XV5AEgA6lZ27pgRw+QgtyUH7j13S0dSlGBum8f1zL9LDSY3DIfLKjZtZ+l4RLhEypofw0NdTT2gnxF+pY8ZDT4aOD2Ldtz3NG0Wni/XfVzL1jsgBGtWxwROMeDhpOB5y7N5KgXPTvfhqj7FLJG0f7gyoBHAR4tvBggl5XJA+hWR//65tWq0m/le4pevfUzz1In9blr5XyOu3bcNidBAUpeHBL6eSdgILC0VRZNo7taz7C3fM/F1xuVy8/8AuPn8yu8/1hTtbaG+w9rnuZMETjHgYcH6t3Mt3ZbuZGZ7ChQmj+t0ut7Wu33Vw9CZXFw7X8tluY5/rJMCkRBtDk3IQJfDa3tUk6IJI0gXRbDWys6myK0AKVmkZFdh/CtjDX5OiXc08dt4aaooNKFRSbnplNAtuGXpCx/B36Zj5u/L18zn9BiIAuGDPbw2QduLGdKzxBCMeBpSyjmbW1BZ1yb73R7G+ke/Kdh90myMxuRJFkf/tMvLCunZ219r6PJ4ggXlDNHx1cQwfFDaxs7myayzF+sYe2/orNdycPt2jMfI3wqi38cSFa9n6aw0SCcy8JJa7P5jQo/XyRJBbb2Pcm3/NjhkPbuKH+xGZoqMqX49UJsHp6Nl3IpHA1p9q+g1GToI+FY8cvIeBw+K0817+Bi5PGodGdvD6jhXV+STo/r+98w6Pqkr/+Gf6pPdeSCOhBAgtSAdBUeyunbWwlp+ruLu67ooVyyrquruufe29i2BBUHoLPQFCCgnpZdInkzKTKff+/pgwIZAgIKmcz/PkycyZc++ce3Jz7/e+5y3dX2SPLXIV6eHHwqTJGNvMZNR2rLHuKLFwwbuVuD1WxM1f1XDAYGVChJZLh7ujOuq/QaWAmbF6vrwhBJ1GxR3Dp7IgYSJh7p3DMd3VGuaEJ/FgyrweLTMu6D9IksS7j6RzZeCX7FpVQXyKHx8evpyHPpne60Lkp9wWRr9URrNV5u0rAoUQGaRMOD+c97Iv5bXd87nkzkQ8fJx+QEqV02NeluHA6lrkboqCLivMoM1h77Xxng7iMU7QZ3yWv5tRfuEM9wtlZekJTJBAXmM1yhOEqtSam7stcrWvppa3tnjwdWYLDWbnksoQXzW3p3rx16k+6LVKMg1Wvst2OqGqFDA+Qsf3N4eiUzu/U6lQMiNsKNNDE6hobcRktaBVqYjy8BPWkLOItB/K+OctWzHVWfHy1/L396Yw+dK+yUFxNkTMCDpQKBQkjg8gcXwA//ev8excWc6q9w6z/YcyZAmwg/FLiYAFagL1HjTZ2jA7nHV6chqreDtnK3eNmOHKkdTfEFdRQZ+wq7qIkuZ6Hhp7wa/2PdhQ0WXis6NZUbIf6ChyZbVL/HtLI29nBFFY44EkNeGrV7JwvBdPnudHpE/nUz85VEtyiIbMKhvDgjSs/kMoHl04/ykUCiI8fIno31FygjOMobiZJZdv4HBGAyq1ghseSuaWp8b0mV+GiJg5u9FoVUy9PJpzLovk76uXU/x5C8aPoPkzJc/cdz4JiQE4ZIk9NSV8kr8Ti8PO/vpysoyVjPTr2fpHp4sQI4Jep76thS8K9vKXUb9eiKzRauZ/2R0x9QE6d0b7R+Kp0bG3toTy1kYAqtrrUfyU08p/Ntexu9yKJIOnXsc58Y08f+4Ipsac+MnxoVl+vJzWyPIbQ/F167kCaYKBg9Vq519/2M66TwuRZZh4QTiPfDEdD+++qREiSRIz36xkS7GImBHAgbpymj0sBNyqYuJNQRy8o5kn52/mxS3z8A91IzU4BoB3crcBsLEyX4gRgeAIJU31NNksPL13latNQiavsZoNFYd4ddq1KNvLwm+qzHetdYa7+/Dw2AtQtwsYCRlbtURBrcz2vBBMLW68aWpEASSHaPjLVB/qNDuI9vL7VSECcH2KJ9eneJ75AxYMSJa/ksObf9+L1ewgLM6TR7+aQeK4E1eI7kmMrXbGvFxOidHBhYlu/CAiZs56DjVWu17PGzOcm37x4c9TVnHXxJU8/eNs4kf7Mz4omi8O76HZ3kZeY9c1vvoDQowIep1hvqE8Nm5+p7YPDm0n1N2beZEjXEIEYHt1geu1t1aPWqlClmXa7DJbystZlRHJgVKn42h0sJHLEmr5+JIJeOqVmO027t9ex6zwoSccT0NbK8sKMzjYUIFVchCk9+TmxHOI8er+xpNrrOKrgr1Utjbip3NnfnQyU44pZ7++4hC/lGXTaDUT6enHdfHjifUSDob9nYNpNfzj2k3UlLai91Bz71vncNFtJz6HTobfUjdERMwIusImObM1SpLEgU9qWL7pMK1Ndiwtdr75dzZ/f38qKoUSH60bzfY2rA5HH4+4e4QYEfQ6erWGCLVvpzadSo2HWkdEe4jve7nb8NG6UWdx5v8I1ntxqLGaX8qyWZHhzo7qIsbEG7Fa45k/XINn0C58PdtQK5QcbgnH3+7BRzkHMTUFsL/Ejx/311PXKrFkjh+BHh1LMC02K//c9wuJviHckzwLL42eanMTHieI7qm1NPPKwQ3MCBvKrcOmkGM08NGhHfho9S4T6K6a/Mc5/AAAUy9JREFUYr4u2MsNCROJ9QpkbUUOL2Wu54nxl7j8WgT9i8Y6C09etYl9G6pQKGH+bQn86fVJqNW/3fpwMtmD1x028/xGI59eF4y/e8c5enSNmbevDOTWiSJqS+DEfEii4kkH5r1QaM9E76Hm6r+OYNJF4QxLdSbcM1nNVJqdy9n9+dojxIigX1Lf1gooUCqUOGQJGZlbk6bwXfF+7D4tJGn0rM9IpKBKjVphp7oyHi+3NlSyO5+sb6LJbEGSncLgY+pQKJzhb3ekencSI6vLsvDTuXNL4jmutkD9iZdqNlbmEaj35Oq4cQCEufuQ31jDmvJclxhZU57DtNB4prZnZF2QkEpmfQXbqg5zQdQAzkw0CJEkiTf+upflL+cgOWSGTQrk8WUzCQx3//WNT5KTyR788Op6tpe2cdmHBtbeFo5WrXBFzGhVsP72MKadxHKjYHDTYrLy4eP7WfNxAY01TkubOhRCrtLwn+cuwd+9w9ImyzIrivcjtecZmRgU0xdDPimEGBH0C44tanXkfbW5iYKmWmoszfhq3XhywiWuPk2zJL7PbuWhX0qpMXpTY5Q5Uln3WGQZ4vzVJId0jjrYX1fGCL8w/pe9mbzGany17swMG8r0sIRux1pgqmXYUSHEACP8wviyYC8AdslBSVM9F0aOcH2uVCgY5htKgan21ydD0Gts+LKI/9yxnZZGG34heh78ZCrj5vS+g19GRRvbS503lm0lbdy2rAatEt7Z0ywiZgQArPuskM+WZlKYaQQZ9B5qzr0hBm40U+xRC0g8d+Bn5kYMI9EnhIa2FjZU5pFtdGauVimUzDjBda2vEWJE0K+ZHpZAQZPzBv7eoe3cNWKGaynHXQMBgSXMOyeDvXlh7M4b0u1+VAq4cazncTH2NZZmNlbmMTdyGBdGjaSoqZ4vCvagViqZfIwPyBFMNstx5k5vrR6Lw4bVYafVbkVCxquLPgaz6VSnQNADlOY28viVGynOakStVbLwHykseHhUn43nlbRG1EqwSyDJ8FF6MwBJgRr2ioiZs5bS3EbefjCdXT9VYLU4UCghaUIAv39klCu/TX1bC89n/EKDtRWj1czXheld7mtBwsRftfr2JUKMCPo1E4OGsKYsh/JWI7WWZp7cu5IE7yB8tG7km2potJoBGDe0kinhkby0seuQXIcM5SY7jWYHPkeF7crAEE9/rohJASDa05+KViMbK/O6FSOCgYul1c6zN25hy7elIMOUy6N46JNp6N377lJoNEt8nN58XKFGgEfP9RFC5CzDarHz6TOZ/PROPnUVzutbQLgbF96awA0PJaPVdz5X/XUe/D3lPD46tIMs4/H1u/y07lwTP45x/bxu1mn9B7766qv885//xGAwMGbMGF5++WVSU1O77PvWW2/x4YcfkpnpzLA5fvx4nnnmmW77CwRHo1GquCd5Fv89sI7KdqtC/jF1YQDmR43k0iEJxHg2ct+P9cd9rgDe3tXM27uaifdXs3CCM/uqj1Z/XIr3MDcf0mtLj9vHEbw1ekzWzknYTFYLepUGrUqNUqFAiYKmLvr4aPqvA9lg57PnMvlwyT5sbRLRw7xZsmwWQ4b7/PqGPcyX+6zYuhAiALd8XUuMn5apMeK8Geyk/VDGx0/u59CeOmQJtHoVU6+I4g9Pj/3V89Rf58GfR51LZWsju2uKMVktaFQqEn1CGOUfjkrR/wXtKYuRL774gvvuu4833niDSZMm8eKLLzJv3jxyc3MJDg4+rv+GDRu4/vrrmTJlCnq9nueee47zzz+fgwcPEhERcUYOQjC48dO5szhlHpsM+WyqzKPG4jRhK1AwJiCCc8OTSPINAeDeab7YHPDAqg5BolTAM/P8GRGs4YVNRtJK2njk5wYe/bmB4RExlMc2ckOc5IqaqDKb8Nd1H24Z5x1IZn1Fp7Zso4G49to5aqWKaC9/so1VpAQ6TamSLJNjNDA7PPHMTYzgpEhfZ2Dpgs3UGyy4e2v423tTOPf62F77fkmWuq04Lcnw3q42pG7qmDkkuPgDAwf+Enlc1mDBwKeqpJl3H8pg64pSLM12UEDsKF+uf2Aks6+PPeXU7WHuPlwyZHQPjbZnUcinWM5v0qRJTJw4kVdeeQVweqJHRUVxzz33sHjx4l/d3uFw4OfnxyuvvMJNN910Ut9pMpnw8fGhsbERb28R1nY2I8syjVYzNsmBl0aPXt21U9/T6xt45OcG1/vCv0cR0+4AKEkSn+1r4cWtjWQYLNgdSnRqB8mhaq5MsVMh7+XGxFQmBTtvWN8WZmC0trIwaQrgDO19Ys+PzApPZGpIHDnGKr44vIdFyTM7hfa+n5vG74emEuMVwNryXPbUFvPE+Ivx1oqIiN6g3tDK41duJCutFqVKwWV3J/HH/4zv1URhFoeN/2Vt7tJ8DlBS7cuq3cOOa1cpnEJFBgLclay7LYzRYboeHq2gN7DbJb75Tzbfv5aLociZusAnSMfc38dx0+Oj+yy7b09xsvfvU5LaVquVPXv28OCDD7ralEolc+fOJS0t7aT20drais1mw9/fv9s+bW1ttLV1JAcymYTTn8CJQqHAV/frIZcPz/ajzS7z1DojEyN1LiECznN2wVgvFoz1wm6X+MeWIr7KMnKwyps9P2hw04xjX6aWv81o4dIRHjRaze2hxk4C9Z4sGjmLrwr2sq48F1+dOzcmTuqUZnli0BCabRa+K96PyWoh0tOPP42cLYRIL2C3S7y8aCcr38pDlmD0jGAe+2YmvoG9u9QhyzJv52ztJER8tXp8te4YzCYsDjubDsTilBxOS58M+LkpmRPvxuw4PbPi3BgerOm3xc0EJ8++TQY+eHQfmVtrkBwyao2SCfPC+MM/xpI4oe8y+/YXTkmM1NbW4nA4CAkJ6dQeEhJCTk7OSe3jgQceIDw8nLlz53bbZ+nSpTzxxBOnMjSB4DiemOtHtK+aEcHdP2mo1UoenxXH47PisFgl/rOtkfd2N7GluI0tH1WhVyuYGRvDg7N8O22X5BvCI+MuPOH3zw5PYnZ40pk4FMFJsvqDfF5ZtAtzs53ASHce+Xw6yVOPXz7uDQ41VnOgfTnPTaVhYdJkRvtHoFAoaLPbuPnbAlrbNCiQiQ1t4E8T4zgv3lOIj0FEQ42Z9x/JYMOXxbQYnRV0I5O8uereYcy/feivWukkWeL74gPsqC7CZLPgo3VjSkgs86OST3iODMQM0b26CPnss8/y+eefs2HDBvT67p9SHnzwQe677z7Xe5PJRFRU35TpFgxcFAoFt51Ctkq9VsmDs/x4cJYfJovEsxsb+CS9mdV5ZlbnmfHUKjgvwY1H5/gxNlyYzPsTBfsbePx3G6nIb0KrV3Hnf8Zz1V9G/PqGPcjGyjzX6+viJzAmIBIAi01i4df1fLFfwxUpTQSEHkSphHGxvowI6d5iLBgYSJLEyrfy+Po/OZTlOq36nr4aLrojgVueSsEv+OSto6tKs9lYmc/CpHMIc/ehuKmeD/K246bScm5E1w86AzVD9CmJkcDAQFQqFVVVnYvtVFVVERoa2s1WTl544QWeffZZ1qxZw+jRJ3aw0el06HTiYn828NDOFdS1tRzXPjNsKDckTOxymz01Jawo3k+dpZlgNy+ujE1hlH+HM7Qsy3xffIDNhnzMDhvx3oHckDCRELeTFybeeiXPzAvgmXkBVDXZ+cd6I18faOHbrFa+zWrFV6/k4mHuPHauL0ODBtca70CixWTl6eu3sHNlOQoFzL4+hr+9O/m48Me+4EiCO71KzYSgaCw2iZW5rfzlhzqqmx18vSCYMVFe/HP/QQAON9WeMNmeoH9zaG8d7z6UTsb6KuxWCaVKwegZwdz85BjGzDzx/bE7CppqSAmIcF3fAvWe7KopprCprtttBmqG6FP6j9VqtYwfP561a9dy+eWXA04VuHbtWhYtWtTtds8//zxPP/00q1evZsKECb9pwIKBT4utjbXluWQ1VKJWKonx9CfeO4gJQdG0ORy8mLmO8d3ExB821fB2zlYujx3DaP8IdlYX8XrWZh4ee4ErGdrqsmzWVeRyS9JkAvUefFe0n5cy1/P4+IvRKLvOQ3IiQrzUvHxpIC9fGkhhvZUn1xn5LquVjzOa+TijmSAPJb9L9uDRc/0I9+77m+DZgCRJfPj4fj57NhOHTSZutC9Lls0kIr7/OLhbHQ7yygMoNoTwxfoyGswOrA5ndNf3N4Uwf5gHVa0dMb12qf8WMRN0TYvJyodP7GfNRx2p2UNjPLjkriR+d+/w31zXKM4riC2GfKpaTYS4e1Pa3EC+qYar48Z2u81AzRB9ylfO++67j5tvvpkJEyaQmprKiy++SEtLCwsXLgTgpptuIiIigqVLlwLw3HPP8dhjj/Hpp58SExODweB05vL09MTTs/9mgxP0DBsr8/iqYK+r2uQRiprr2VSZx3C/MIL0niT6dL3Ov7Y8l5H+Ycxr/0e6LGYM2UYDGyoOsWBoKrIss7Y8h/nRyaS0m8UXJk3m/u3LyKgtZWJwzG8af6y/lveuco7tQGUbT65rYHWemTd2NPHGjiYivFVcP8aDh2b54teHibQGMztWlvHczdsw1bbh5a/l/nenMPWy/rGMu6HAzNu7mthYaKasMQVnhhuZAHeJxbN8uSrZkxhfFV56pyg+2rnV7yQcswX9g3WfFfLZs5kUHjCCDG6eauYsiOUPz6QQEn3m7msXRI3A4rCxZM8PKBQKZFnmspgxrki/rhioGaJP+Wp57bXXUlNTw2OPPYbBYCAlJYVVq1a5nFpLSko6OeW8/vrrWK1Wrrrqqk77WbJkCY8//vhvG71gQLG+4hCfH97d7ec2WWJ/fTnnBMd065xV0FTL3IjOoZAj/MLYV1cGQK2lBZPNwvCjngzc1FpivQIpaKr9zWLkaEaF6fhqgfN7thVbeHp9A+sLLLyw2cQLm03E+au5eZwX908XWTTPBIbiZh6/ciP5e+tRqRVct3gkf3g6pVdDdY8lp9rKGztMrDpk5nC9zZVF1UunYFSYjJdfEYmRNYwPDuWPw2egOmqsxrZWVpdmud5POoPnpuDM01Vq9mETA1jw6GgmXxzZI9+5p6aYndVF3Jo0hXAPX0qbG/iyYA++WrdBlyH6tB7dFi1a1O2yzIYNGzq9LyoqOp2vEAwyjG2tfNVuJgSYEhLHeRHDCXX3oqipnpWlma7Ig8z6SuySA3UXSyomqwXvY7KYemv0NLZnOzXZnOmTu3oyaDwmI+qZZMoQPT/eEgY4S74/v7GRbSUWlqxp4PE1DQwL0vB/k7y4e5L3GSlJfzZhtdr5923bWftxIbIM488P49EvZuDp2/u+OrXNdv63q4kVWS1kGmyY7c6wXJ0KRoZouWSYO/83yZtIHzUttjYe3pWO2SFxoL6Cf6T/xKywRILcPMk31bCxIo9mu9O0n+QTQqSHX68fj+DEdJua/bYEbnjw+NTsZ5pvCjOYFzXC9RAV4eFLXVsLP5VmdStGBmqGaGFHFpwRZFnG0mrHzaPrJGRbDIdxtJdQP9Y5Nc47kLtGzOT+7d/QYrfSbG9jb20pqQP0SfHCJA8uTPJAkiS+OtDCf7Y2srvMyl9+qOe+H+tJCdNyz2Rvbhrn2adP9QOBFa/l8ub9e2gzOwiN8+SxL2b0ak4Gi1Xik33NfL6/md1lVowW5zmsVECMn5rzEty4I9WLcRHHX8Q9NDruGD6NVw9uxC5LVLQ28unhXcf1C9B5sDBpco8fi+Dk6S41+21LxxKV1HslBKySHeUxlciVCgUy3ecqHagZooUYEZwRvv53Nv+7fw/hCV6MmhbMiClBDD8nkCEjfFCplOyvL3f1vaDd38NU38aOlWVMvSwKs8ZGq93q6rO/vrxLMeKt1WOyHaPobRZ82i0h3hpn2JzJ6ozJd/WxWojy9D1Th3tSKJVKrh3jxbVjvHA4JN7Z3cyr201kVFpZ+E0tt39bS2qkjvun+3JFcvfp589GsnfU8NQ1m6kuaUHvoeLe/03iojt6/kIpSRKr88y8t6eZLUUWKps6fJtCPVX8LtmdW8Z5MT/J7aSE5Ai/MO4bPYcvDu+huLlzzSQFCsYGRHJdwoRO56qgb6gqaeadB9PZtqIMS4szNXvcKF+uW5zcq+UDjma0fwQrSzPx17sT5u5DaXMDa8pymBLaYRU5NkP0zLChbKg4xDeF6a4M0XtqSliUPNO1zdyIYbyfm0aMl78rQ7RVsh+Xi6Q3EWLkLKTe0uIyDx/BU63DX3/6N0T/UKcYqMhvoqqomdUfHAYZdG4qklIDqI014YhzoHfXsHprIfs2VLFvgwFbm/NJM+AKFS15Duz1oA4FR2IVkefnM2p6MOHxXi4fkjivQHKMhk5+I9kNBuLak/UE6j3w1ujJMRqI8nSavc12G4VNtczsw7BJlUrJHZO8uWOSN202iZfSTLy9q4m0kjau/KQKnRqmx+h5cJYf58afvTcmU72Fp67eTPo6AwolzFsYz71vntOjS1v7K9t4Y4eJX/LNFNbbcbQ/dProFZwbp+fa0Z7cNNYT/Wn6/cR7B/HQ2Asoaqojx2jA4rDjrdGTEhh5whpIgp6nu9TsF//fUG5c0vep2a+Ln8CK4v18mr+LJlsbPlo3poclcHF0sqvPYMkQfcq1afoCUZvmzFFvaeHR3d9jlzuXCVUrlDw14ZLTFiS15a1cF/nNSfXVeagYPT2EkVOCCIhwQ6lSsMy+h9rXJUxZdmQLHG2FVOhAq1LhHaDDN1FL4wQTYyMjmJ4aS1WQkdXl2Z1Ce1eVZrG67CC3JE4mUO/JiuL9lLc0nHZob0/SbJF4bpORj9KbKTbaAfDQKJiT4Maj5/oyIfLsqNYqSRJv/m0vy/6bg+SQSZoYwOPLZhIUeeZv1hUmO//bYeK77Faya6y0OacdvVrByGANl47w4I6JXoSKMO1BS1ep2cfOCWHhP8aSOF6kZj+TnOz9W4iRs4yS5nqeTl/V5WcPj72AaM/TzwC5IHYZVUXHJzBzoQTfG+CKh4axYHiHz0hWQyX/zVxPgncQ+aYaAK7wGosmS883OelYDstIu9U0VJkxN9uRHB2nrEILajclXu46AiPciRjqRVyKH6ZkE3nelZixkeATxA3xEwlx79/nTnWznWfWG/nyQItrecBHr2B+kjtL5viRNEiTq236uph/3Z5Gi9GGb7CexR9OZcK88F/f8CRptUq8v6eJLw+0kF7RhqnNef6oFBAfoOH8oW78X6oXyaEi0eJAQ5blk06d31Bt5r1HMtj41emlZhecHkKMCI7DbLfx/qE0MtrDYI/l+vgJzDoFBya7XWLbilLWfVpIVlot9ZXmLvspVQp8gnR4PWtD074kOT00gfMihxGs96K0pYEfSjJd4bleGj1LUy/r1ophqreQuaWGnB21FGYaqTzcRL3BTEujDYe98+ms1ijx8NUQEOZGWLwXcaN9GT4pkJFTg/vcBHsiio02nlprZHlWC3XtibEC3ZVcMdKDx+b4DYpy8mV5Jh6/YgNFBxtRa5X8/tFR/P6R317+XJIkvss288HeJrYVW6hucc6fAgj3VjEjVs+t472YHa8XN6B+xKksH1ta7Tx88Toih3pz7//O6XafkiTxw//yWPZiDmWHOlKzz7w2hlueHHNKqdkFp4cQI4JOmO1W/rV/LaUtDSfsd1vSlG5zcUiSxI4fylnzcSGZ26qprzBz5Ozx8NEQEO5OSXZjp22UKgUxI3155qdzyZBLOoX3wpGUUEe/V/DHEdNddTxOFUurney0GrK211Kwv4HyvCbqKlppbrBis3ZemlKqFLh7a/AL0RMW50nMSF+SJgYyakYQ/iH9JwHVwSorT61r4KfcVtdTfbiXiuvGePDwbF/8B1hyNavFzrM3bmXTNyUgw+TLInn40+nof8Nx7Cy18ObOJtYeNlNitCO1n1R+bkpSI3XckOLJdaM90J5h3xOL3caK4v1k1JXSZGsjysOPa+PHE+PVval/IBYx62lOZfnYbpN45OJ17P65EpVawVdVV+Pt39mqdWhPHe8+nE7GuirsNmdq9uSpQdz81BjGzDi91OyC00OIEUEn3s9NI626EACtUsWYgEhiPQNosrWRXlfqyrynVih5YsLFBOo9kSSJ3asr+eWjAjK3VFNb3sqRa4W7t4a40b5MvTyKeQvj8fbXU28wc03Y167vVCggdX4Ej3wx3RXyu74il68L0o+76AC4qzXcNPQcxgb2TDZNu10if28dmdtqOJzeQNkhEzWlLZjqrVjNnTPCKpTg5qHGJ1hP6BBPokf4MHS8P6OmB/dpyvEdJRb+sb6BdYcttNqc/7oxfs7kan+b7oOHrn8/6X/xz4O8/2gGtjaJyCRvHv9mBjEjTz2/RnGDjTd2mPgxp5XcWhvW9j+fu0bBqFANV4704LaJXj0u1N7M3kJFayM3JEzEV+vGjupC1pTn8vj4i7rMqFpraeaJPT8yI2wo00LjyTEa+PLwXhYlz+xUxOz93LRORcz21pb0aRGznuZkl48lSWbpgi1s+KIIWXZeYxa9nMpldyfRYrLywZL9rP24gMbajtTsl96dxJV/+e2p2QWnhxAjAheNVjOLdy5HkmX0Kg2LU84nzL0jVl6SZT44tJ1thsNY9oLXZm8a99qpLm1xiQ83TzWxo3yZfGkkF/whoVvz5k1Dl1OR3wTA5fck8cf/TECl6nwRaLJa2FpVQFZDJWaHDU+1lrGBUaQGx6BXdZ2npKeRJInSHBOZW6rJ21tPSU4j1cUtGGvbaGuxI3c236BzU+ETqCMoyoPoYT7Ej/UneWogcaP9es30/0teK89uMLKl2ILV4bQyJQVpuH2iF4sme59xK8BvYd8mA89ct4W6SjPuXmr+/Pok5iw4+TBCk0Xi3d0mvs5sIaPSSovV+QdRK2FogIYLk9y4M9W7V4sWWh12/rztK+4aOaNTocan039ipF84l8eMOW6bbwrTyayvYMn4i1xtb2VvodVh48/JswFYmrGaGE9/rm/PxSPJMg/uXM7s8MQ+K2LWk0iyxPfFB1hZerDLz/86ag6JviHIsswr9+xixau5rs8UCgiKdMfDV0thptGVmn3KZVFnPDW74PQ42fv3wLLvCk6L3TXFSO1301nhQ11CxNJqx1htYefKctb+24ChUAYJKmlE76EiaUIA51wSyYW3JhAQdnLLFqkXhrPilVzuenECV/xpeJd9vLR6LogawQVRfVvi/WiUSiVDRvgyZIRvl59XlTSTubma3N31FGcZMRQ2Y6y2UFtWy8GtNZ36avRKvPx0BEU6HWrjx/gxYkoQSakBaLVn7l/uvKHunDfUHUmSWHawlX9vaWRXWRt/XVnP336qZ3SolkWTvVk4vm+Sq5UY7ZRXtPL57ds4uK0GpUrBZYuSuPu/E351PHa7xDcHW/govZntpW0uvxkFEOmj4ncj3bh1ghcz4vpuzV+SZSRk1IrOvk0apZrDppoutxmoRcx6Crvk4K2crd36sQF8eGgH94+Zy3fP5nUSIgCyDNWlrVDW2uOp2QU9ixAjZwENR8Wgj/B1pixvqDZzXcQ3LodPd28NXsPUqFIdeF8Eb/3uOlSKU7+B3fJkCvNvH0rcqMGV2jok2pOQBZ5dPs031nU41BYdNFLR7lCbn15P7q461n1a5OrrcqgNdyc83pPYUX5Oh9ppQXh4nd5TvVKp5KpRnlw1yrm09t7uZl7ZbmK/wcpty2q5c3ktEyN03DfdhytHup+2MDnWwfBEuWk2FrQy780KFCYrU7fVMGp6MI99PeOEDoNbisy8tbOJ9QVmyhodLl+iAHclFyW5ceNYT3430qPfmNv1ag1xXoGsLM0kzN0bb62enTXFFJhqCXbr+ol8oBYx6ym+KtjbSYiEufsQ6e5Lg7WF/HbxVdPWzINLVpH3XNeRegoFXHp3Ive8PKlXxizoGYQYOQs4usZLs60NWZb57x93olQruOfVVGZePQRPXy2P7v6eGkszShTHpSA+WTx9tX1SM6Qv8QnQM/WyqC4rx1pa7WSlVZOVVkvhfiPl+SbqKsyUZDdSsK+BLctKXX2PONT6h+oJjfUiJtmHYRMDGTUj+KS9/pVKJbemenNrqjdWu8QraSbe2tXE9tI2rv60Gq0Kpg3R8+AsX+YOdeeVP+2k+GAjf31nMqEx3Zu0sxsMvJS5Hukod+PuctM88sphnimRkZUK8NHz19VzufD8sOP2mVdj5Y2dJn7KNZNX11FkzkOrYMoQHVcle/CHCd546/uH+OiKPyRN5oNDO3hg53KUKIj29GNi0BBKjsm2KjieRquZTYZ8wHku3TlieqflLkOriZcy15P7oonGz7pPGSDLsPbjIu781wQ02v6VR0hw8ggxchYQe5Rn/xZDPkWftLBlWQlPfDuTqZdHA04P/xpLs7O/d8BJx+4fzaHGan4uy6KkuYFGq5k/Dp/uqn3QHYM9skDvrmbcnHDGzTk+b4bdLpG3p46DW2s4vK+B0lwTtWUtGIpaKMk2sXNlRwp9hRLcPDX4BukJifFgyHAfhk5wOtSGx3W9DqtVK7lvui/3Tfel2SLxwhYjH+5tZl2BhXUFBtw1CoZkWfDfVc+tI79j0cupXLAwvtPfvtVu5f3cNPYdlc7fNX5Z4ouCPdw2bCoapYrCzAau+ftBdo8OcxZvUShQAKW+TrFS32rn7V1NLDvYygGD1eWAq1XB8CANFw1z585J3gzx6xu/odMhyM2L+8fMpc1hx+Kw4aN1483sLQTquxZ2A7WIWU+QVlXgWj6eGzGskxBpbrSy+3MDhjdlGo8KwFOqFCgUHBfC32y0suPHcqZdEd0rYxeceYQYOQtI9g/HT+dOQ1srW18tp/6tci7/c5JLiBw21fBebpqr/4ywoaf1PVaHnUgPP6aGxPNG9uZf7V9raeaVgxuYETaUW4dNIcdo4KNDO/DR6jtFFnxdsLdTZMFLmesHRWSBWq1k+KQghk8KOu4zSZIoyW50OtSmN1Ca3UhVSQv1BjOVBU2krzV0dFaA3k2Fd6Ce4Gh3opJ8SBjnT/LUIGJH+aJUKvHUK3l8rj+Pz/WnttnO0o1GPt/XTO7YcKSJkfiUNnL4lUK+X1bKP94+B/9QNywOG/85sJaS5u7DwTPqynh1z0aqnpD5xKKjdGJn0aVQwGO/1LN4VT0N5o4ic9G+aubEu3H7RC8mRQ/svyOATqVGp1LTYrOS1VDJlbFju+w3UIuY9QRlLUbX64nBQwDIz6jnscs20GAw47DLTLggjLY7W5GDHegtOmboEqmrMFNb0Up1SQv1FWaaGpw1rXJ31QkxMoARYuQsQKVQMtYQy4cP7qctC1BB7hVFvHigmUarmYrWjtwg0Z7+TAg8vX/oZP9wkv1PPnPmxso8AvWeXB03DnCuF+c31rCmPNclRtaU5zAtNJ6pofEALEhIJbO+gm1VhwdlZMERlEolMSP9ug17NRQ7HWoP7amj+GAjhiKnQ23WtlYyt9TAOx19tXoVXv5aZ4baRC/ix/izcHIgf/6dLzeNWUnNUH+qhgdx6Lw4DgFf3JvNjBGeXHBZq0uIeKh1zAofSoxnAA5Z4mBDJWlVBVS9Y2fFZxUcvDCRmuTjc2tIMlQ1SwS5K7h8hDs3jfXishEnV2RuIHCwoQJZhlB3b6rNTXxTmE6ouzdT2617g6WIWU9wdCCnUobvXs/l7cXptJntXLAwgRuXjCYgzI37ty+j2d6Gr1bDLZNSjtuPzeqgocpCQLhIYDaQEWJkkJOxwcAHj+3jwOZqV5v7ZLAq7WQbDZ36Rnn4cc/ImZ18THoSEVlw+oQO8SR0iCdzf3/8DcpYayFzcxW5u+opPGCksuAYh9pPilx91UBYZg1hmTVY3dRUJwVSNSKQ5S0qVnzsiZtuLPGRDXx65TCSgzpKBXgUu/HV5QXUtWnY84dkLN56pxmkG1b9IZxxEYMv3brZbuPbon0Y21pxV2sZFxjF5TFjULWLrcFSxKwnCHFzLi+a0yVuv+Qn2hodzFsYz53/Go+Xn/NcyWusdjlNB7t5dbkfjVZFcJQoODjQEWJkECLLMhnrDbz/2D4ObnWGVB7NqDnBmJRGrJIzU1S0px8zw4YyKTi2VwvJiciCnsE3UM+0K4Yw7Yohx33W2mwlK62WnB21bFlWQn56xxKM1mwnMsNAZIYBi6eW6uGBGEYEcsAeyuh/NzDHv5ELYrTkbqtmw/YG/DVa0q8bjtVLR+c8up1RKmBNvnlQipEJQUOYEHT8PB/hlqTJx7Ul+YbwyLgLT7jf2eFJzA5P+s3j689M9IvhnRv30bIFUDq46slh3PloR82qJquFzw/vdr0/Yh0VDE6EGBlkHNxWzf/u30NWWq1LhBxdWA5gwbxxDDsnALPdhkapQqsSp8HZgrunlgnnhTPhvHBaGm0UZTZitx2fDVffbCV6VwXRGRXYx/hTGOJPWogna+o9QO+D32wvJo8ZyRivKnIaSjFbtfgSx/4Kmapmp8hVK8EhOZdqVue18veZvr18tIL+StoPZTxz/WbMzaCNh7AXFOwLyOd/WRbivAOpsTSzo7oIi8NZ0C5Q78n401w+FgwMxF1okPHaX3aTu6sOOF6EAKDA6dSoUOKh6dsnVRFZ0LeU55mw2zuEiEIJsgRDx/sz/DI/9g0vRB2iYGZYMNfHT8BYbeGpj0oJC9Nz/w1RKBQK/nvgIHg5l8yWjBtLuIcPhiY7u8ra2FXWxo6SNnaUtWE0Hy94BGcfllY7j122nr1rDKg1Su58aTwFM8o4bKpFQmZvXSl760o7beOt0bNo5MxetdoKeh8hRgYZj309kyev2sih3XV0leg/ZIgHbp79I3RSRBb0LWWHmlyrK3Fj/JizIJaZVw8hNMaTFpuVB3aWYpMc7Kgu5OLoZPxC3Pj3/R3zXt5idPkd+encCXV3rumHeqm5ZLiaS4Y71/FlWe7yXBScXaz7rJAXbk3DanYw/JxAnll5Ll5+OqyORFaVZbGpMp8mW8eDh0apIjVoCJcMGd1lnR/B4EKIkUFGSLQHL26Zx9sP7OWbF3M6faZUKkgc33010d+KxWGjxtzsel/b1kJpcwMeai3+eg8RWdDPuOJPw2hqaGPWNTGEx3d2DvTQaEkNimFr1WEsDjv/PrCOa+LGMcw3FBmZjNoyvizY4/IUmRE6FGU3GXsVCsWJfFsFg5xmo5WH5q8lK60WrV7F4o+mdnK81qrUXDpkNPOjRpJvqqHJanFlt+1r662g9xBiZBCwsSKPjZV51LU5hUCYuw9eQ5z1Z5RKBSjal2wUkDDWGRGxp6aEFcX7qbM0E+zmxZWxKZ2SDsmyzPfFB9hsyMfssBHvHcgNCRNdHvBdUdxUz78PrHW9/6o9KmZycCy3JE0WkQX9jEvuPLF16dIhozjYUIHRaqaytZH/Zq5Hr1LjkGVsUkeV40gPX86NEJYqwfF893our/1lN3arxNg5oTy5YpargvexqJWq46LrBGcPomrvIGBfXRlKhcIZ+ibDj7uy+OLKPPRqNS9tvJBnrttCwf4GZBn+8f1sgmboeGHfGi6PHcNo/wh2Vhexuiybh8deQISHLwCrSrNYVXqQW5ImE6j34Lui/ZS3Gnl8/MVi7fYs4EgdmjpLC18W7KW+ret03PHegdw5fMaAT0AnOLPUG1pZPG8tBfuN6D3UPPzpNCZfeuJszILBiajaexYxJqCjSqXVaue7y4tBATd9M5Ihw3x5eceFvHHfbn7+sICkiQF8Vb6Hkf5hzGvP33FZzBiyjQY2VBxiwdBUZFlmbXkO86OTSWnf98Kkydy/fRkZtaVMDI7pi8MU9BL1lhYe3f09drnD6VSlUBDnHYSxrRWFQkGkuy/TwxIY5huKUqzBCI7is2cP8P6j+3DYZSZfFsmjX04/o9WqBYMTcYYMMh44by3NRisR/1Eyeawz/4FWp+JPr07i7pcmolIpKSiuZW7EsE7bjfALY1979cxaSwsmm4XhR5lM3dRaYr0CKWiqFWJkkNNsb+skRAAcssw1ceOI9vTvZivB2Y6huJkHzltDeV4Tnr4alnwzi7HndlxDVpUe5NuifZwbnsS18eO73U9PLCEL+j+DIyezgPIWI7f861MObK4mYKGS+2+aRbiHT6c+KpXzz22yWvA+JjTWW6OnsT2E1mQzO9u6SDbWeEyYrUAgELzzUDo3xn1LeV4TcxbEsqzumk5CpKipjk2V+US2LwN3x2FTDW/nbGVqaByPjLuQlIBIXs/aTPlRdWxWl2WzriKXBUNTWZxyPjqlmpcy13fyYxIMPIQYGSQ0Ztsof8CBV5iGax4azvu526loafz1DQUCgeA0KTrYwPXR3/DZ0kx8AnW8svMCHvx4WqfaQxaHjXdyt3Hj0Em4q7Un3N/a8lzXEnKYuw+XxYwh2tOPDRWHAI5bQo708GNh0mSMbWYyaktPuG9B/0Ys0wwCrBY7i+esRSEreHHNhQxJ8KHE3MC6ilx+PzT1uP7eWj0m2zGJxGwWfNotId4aZ6SKyWrB56ioFZPVQpSnb88diKBX+an0IOm1pRjMJrRKFXHeQVw+ZDS5xqou+x/xdRdmdIEkSbxyzy6+f90pEi69K5FFL0/ssgDiZ/m7GeUXznC/UFaWZp5wvwVNYgn5bEVYRgYBf539C60mG4tensiQ4c6lGVl2FprrijivQHKOKZKX3WAgzsuZbCxQ74G3Rt+pj9luo7Cp1tVHMPA51FjNrPBEFo85nz8nn4vZbuUf6T/xdWF6l/0/P7yHzPoKYUY/y8nZVcM1Yd/w3WuHCIx0560DF/OnVyd1KUR2VRdR0lzPFbEpJ7VvsYR89iLEyADng8f3kb29llFXBDLlDxGUtxj5tjCDQ41VpLY/JbyXu41vCzNc28yJSOJgQyW/lGVjaG3k++L9FDfXM6s9q6lCoWBOxDBWlmayr66M8hYj7x1Kw1fn5sqEKhj4/Dl5NlNC4gj38MVbq6fK3ITjqEh/FQqOjpMpaKrlndxtDPcLFWb0sxBJklj6+y0sSl1FY62F6xaP5LOS3xEz0q/L/vVtLXxRsJdbh00R6QAEv4pYphnAHEyr4aMn9+OZrEL39zaW7P4BN7WGCA9f/pQ8mxF+YQDUt7V2uq3EewdxW9JUVhTvY3nRPoLdvPjjiOmuHCMA8yKHY3XY+ThvJ612Kwk+Qfxp5GxxURmkrCjaT6PV+dQZoPPg+oQJjPQLxyFL7Kkt4euCdJpsFlrtVlTHZFoVZvTBT/o6A0/8bgPNRhsRQ714dvUcwmK9TrhNSVM9TTYLT+9d5WqTkMlrrGZDxSFenXbtcVl7xRLy2YsQIwOU1mYri89fg1Kp4NVvLyYiofv1+L+Onntc2/igaMYHdV8FU6FQcGnMaC6NGX1Gxivov7TYrOyoLgRAATyQcr7rQq9UqDgnOJYwNx+eyXDeVAqbapFk2ZVfxEuto/pwKyvSctn4YyG1Pg68PxBm9MGA1WrnqWs2k7aiDKVKwa1LU7h+8aiT2naYbyiPjZvfqe2DQ9sJdfdmXuSILssHHFlCPtpvpLsl5ChPp0XmyBLyzLCE0z1MQT9AiJEByl9n/oK52c5f3z7nhEJEIPg18kzVrrwik4Jj8NG6IUkyG74owt1LTer8SIZ4+ZPkE0JuYxVNtjYKyusoT2thz88VbP6hmCaDjRzFTmQZ9GP6+IAEZ4S070p5ZsEWzM124kb78uzqOfiHnnzBOr1aQ4Tat1ObTqXGQ61zWWHfy92Gr9bd5VMyJyKJF/av4ZeybEb5h7Orppji5nqXI/7RS8jBbl4E6j1ZUbxfLCEPAoQYGYC8/eBe8vbWM/XyKC68dWhfD0cwwFlfnotkk2jZBDvT6thR8wNVxS001VsBcPfSkDDOH3NAK5XVDqzFcGfZTyCDSq3AYXf6mcjt7/UjhBl9IGNptfPopetJX2tArVXyp9dSufSPST3yXWIJWXAEUZtmgLFvo4G/zvqFgHA3Piu9sksPdoHg12gxWVnzcQHfb86i6lAr5nSZIyV4AyPcuPC2ocSP8UOlVlB0sJFDu+vY9lMJjtYT7xcg5ikd194yivMihwNOM/r927/hlsRzhM9IP2ftJwX867btWC0Ohk8OZOnKOXj6njg3iEBwIkRtmkFIi8nKQ/PXoVIr+O+2C4QQEZw0xhoLP39wmO3fl3F4fwMtRhsACjfwDNDgOdmOfir4nKvg0elziPRwrse/l7sN32R3rv6/RMoPlFH/joTxI1zCpSssqxR8ZE+naZKdidMi+L40U5jR+zlNDW08NH8d2dtr0epVPPjxVOYsiOvrYQnOIoRlZABx++jvKTxgZPHHU5krLhSCE1BV0syqdw+za1U5xQcbMTfbnR8owD/UjaTUAEovrkAbDwp150J3epWaK2PHMjYgkteyNmGXJKrMJqzteUKGloWz5q4y7E0yHJs6RAEKBRwpbaP0BH20knA/H8akhjL50khGzwgWQrofseK1XF7/y27sNolxc0N5csVs9O7iOVVwZjjZ+7cQIwOE1+7dzbIXs5l17RAe+XxGXw9H0M8ozm5k9Xv57PmlkrJcE21mp0pQKCEo0p0Rk4OYfX0sky6KQK0+XgiY7Vae3/cLFa0nLiGQ7BfGXSNnYjRYeOKqTWSn1XD0FWTMrBD+tf58irKMbPmmhH0bqyjOasRYbUFytHdUgJeflshEb0ZOCWLK5VEkTw0SAqWXqTe08sD5ayk8YMTNU81Dn0xj8qXCeiU4swgxMojY/UsFi89fS1CUO58UXSEu2gJyd9Xy8weHSV9fRWV+Ezar0xShUisIGeJB8vQQ5v4+hpTZoSd9vjTbLLyTs42sY7LzgjPk95zgWBYMTXU5CtptEm89sJdv/pMNClCpFFz11xHc/uy4LvdflNnApmWlHNhYRVGWkcbqNiTpKIHiryUq0ZuRU4OYenk0IyYHinO9h/hs6QHee3QfkkNmyuVRPPLFNLRaYQ0RnHmEGBkkmOotXBexDMkh83HhFQRGnHxonWBwIEkS+zZUs+bjAg5srqaqqNkVwaLWKgmP92TM7FDOvymO4ZOCfvP3lTTXs9VQQLWlCSUKIj18mRYaT5Bb10muNnxZxPM3b8NqcfDolzOYefWQk/6ugv0NbF5WzIFN1U4LSo3FtcSjUICXv46oJG9GTnMKlOGTAoRA+Q1UFjaxeN5ayvOa8PTT8viymaTMCv31DQWC00SIkUHCwuErKM0xnfJFXjBwkSSJ7T+Us/6zIg5uq6GmrMV1g9a6qYhK9GbceaHMuyW+21TcvU1xdiPLXszm9ufH4enz26Iv8jPq2LKslP2bqinJbqSxtrNA8Q7QEZnkzajpwUy7IorECYNToNRbWmi2t3Vq81Tr8Nd7nNb+3n5wL188fxBZgrk3xvL396cMynkT9C+EGBkE/PeP2/n+jTzOvzmOv78/ta+HM6A50xf2M4nVamfzVyVs/LqE3B211BvMLj8MvaeamBE+TLggnAv+kEDoEM++HWwfcWhvHVuWlZC5uZri7EZMdW2dBUqg04IyanoI066IYuh4/wF9o623tPDo7u9dyeiOoFYoeWrCJad03hYdbODBC9dRU9qKb7Cef/wwi2ETf7sFTSA4GURo7wBn+49lfP9GHqFxntz/7uS+Hs6A5kxe2M8Erc1W1n1SyJZvS8nbW09jTYdI8vDRkDwtmEkXR3D+zXH4h4hlOYDEcQEkjgtwvZckibw99Wz5tpTMLdWU5DRycGsNmVtq+GxpJgol+AToiB7uQ/L0YKZdGd1p+/5Os73tuPMVwC5LNNvb8KfjnH31z7sozTXxzMpzUSo7IqMkSeLlRTv54Y08AC67O5G7X5o4oEWaYPAixEgfU29podFmRoECpUKBp1qHsknFE7/biEan5OU0kU/kt3IqF/aewFhrYc2HBaR9X8bhfQ00N1hdn3kH6Bg3N5Qpl0dz3o2xeHj3TIKph3auoK6t5bj2mWFDuSFhYpfb7KkpYUXxfuoszQS7eXFlbAqj/CNcn8uyzPfFB9hsyMfssBHvHcgNCRMJcet566VSqSRpYiBJEwNdbZIkkburjq3LSzmwuZqyXBMHNlezf1M1nz7dLlAC9UQP92b0jBCmXRlFQsrAEShdkb2jhm9fygHgu9dyuXyRs6ZLzs4aHrlkPcbqNoKj3Xlm5bn9ZklPIOgKIUb6iEarmdWlWaytyO3UrlQoaLxZi61N4qkVs/ALdut6B4IeJWO9gdf+souHP5/BkOE+p7RtTVkLq949zM6fyik6aMTc1JHjwy9EzzkXRzLjqmhmXTsErb53/gUfTJmHdFSmsoqWRl7MXMf4wK6LJR421fB2zlYujx3DaP8IdlYX8XrWZh4ee4ErNffqsmzWVeRyS9JkAvUefFe0n5cy1/P4+Iv7JDW3Uqlk+KSgTk68kiSRvaOObcudFpTSXBMHNlWzf2M1Hz91AIUSfIP0RA/3YfTMYKb/bghxowbGTVuSZP77x50oVQokh8ybf9vLhAvC+fDxfaz7pAiFEq5/KJlbnx7b10MVCH4VIUb6gOwGA29kb8bisB33mWGpnaYCO3NuHdJtzL+1zcH+jVWkzA5FrRFWk1/jVN2iVr6dx4t37kByyGxdXsKQ4SeuUlqa28jq9w+ze3UFpbkm2lo7cnwERriTekEEM68dwpTLorrM8dEbeGk7V9FdVZpFkN6TRJ/gLvuvLc9lpH8Y8yJHAHBZzBiyjQY2VBxiwdBUZFlmbXkO86OTSQmIBGBh0mTu376MjNrSfpP2XalUMnJyECMndxYoWWm1bF1ewsGtNZTmmti3sYp9G6r46IkDKJUKfIJ1xIzwZfRM5xJPbHL/Eyg/f3CY/PR613u7TeIPw79DsstEJnrz7M9zzlofI8HAQ4iRXqakuZ5XszZikzpSV4a6eWOXJYpWm2haCZooaP6/BlpsbXhodK5+5hYbP/4vj8+fO4ix2sLTP57LpPkRXX2NoJ3sBgOf5u/s9nOro+Pv4HBIvP3AXr76VzbgdIzct6GKGx7sLEYO7a3j5/cPk77OQEV+E7Y25xKQUqUgeIgHo6YFM+f3sYybc/I5PnoTu+RgR3URcyOGoVAouuxT0FTbqYw7wAi/MPbVlQFQa2nBZLMw3LcjLNRNrSXWK5CCptp+I0a6QqlUkjw1mOSpHUJMkiQObKkmbUUZB7fVUHbIRPp6A+nrDHywZD9KlQLfID1DRvowemYIM34XzZARvn12DM2NVv53/55ObUeSys24KprHvprZF8MSCE4bIUZ6meVF+1xCZJR/ODckTMRf50GLycqVU79EoYXw1xXUWlpYV3GIS4aMotloZfkrOXz1QhatJpsr0kJyHO8HIehgV00x7+Zs67Q8cSyfHd7F38ach2yGp6/fzPYfy12fyTJkbq5m77oK1n9azP5NVRiKmnHYOnJ8hMV5MmZWCHN/H9fp5tafyagrw2y3MiUktts+JqsFb01na4q3Rk+j1eL83GZ2th1jcfHWdvQZSCiVSsbMCGXMjA5xJUkS+zdVk/ZdGQe3VlOW10T6OgPpaw188Ng+lCoFfsFOgTJmVigzroomKunUlvS6I6+xutvPWu1WfnxyPy1Ga5ef71pdQV1lKwFhwvlZMHAQYqQXqTE3c7ChEoAAnQf/N3w6GqUKWZb5zx3bQYbF30zha++dSMisyzqE4XUry1/OxWpxcKwPpkos0XRLjbmZ93PTXEIk3N2H0f4ReKp1FDbXsa+uDLssUdZi5P1tO9hzVwPF2Y3HFYBrMzv4+5y1AGj1KqKH+zB+bhjzFsb3S9P9ybDVcJiR/mH46sTN6kQolUpSZoV2Sgp2JAHdthWlZKXVUJ7fxN41BvauMfDeIxlOgRKiJybZl5RZIcy4eggRCSfv0CvLMsuKMvi5LLvbPq+v3kr2S61I3TyLtLU6ePHOHTy5fFa3li+BoL8hxEgvcripxvV6ckisy8nv37dvZ8MXxVx4awLWagnNFg/yvm7EVtTKATmr2wqp+9ZX0WqyodGp0OlVqHVKtHoVWr0SjU6Nzu3IezVaNyVqjbJfLhv0BBsrD7kiaM4JjuXmxHNQHnVhLm8x8lzGzxj3tbHsb4VIZrqd53FzQ/nzG5OIiB/4OW7qLC1kG6u4c8T0E/bz1uox2TpbOEw2Cz7tlhBvjdOx2mS14KPtcLI2WS1Eefqe2UH3I5RKJWPPDWXsuR0CxW6X2L/RwLYVZWSl1VKeb2LPz5Xs+bmSdx7KQKV2CpTYUb6MnhXKzKujCY/r+lxaX3GokxDx1eqJ9gygxdZGQVMtkixzaHEr0rEFCttRqRVIkkzad2XkZzQwdKz/GT1+gaCnEGKkF7EfdQU5cgGXJJkNXxShVMLq9w7z0zv5J72/L54/+NsGpHDWHHFWWlWgUIBC2fm3UqlAoVSgVCpQqpztStWR9wpUqvb3aqXztVqBSq1E1f5b3f5bqVGgVjsFkVqjRKVRoNZ2vFdrlWi0KtRahfO3rqNNq1Oi0anQ6JRodSrna71TaGl0SnRuajR6Zz+duxqNXsk2QwHgzCVyddxYlxCx2yQO7anjwKZq6r9RYejenQQApRJ0bupBIUQAtlUdxkujY5R/+An7xXkFkmM0dPIbyW4wEOflDKUN1HvgrdGTYzQQ5em0EJntNgqbapkZltBzB9APUauVjJsTzrg5HXNqt0tkrDWQ9kMZWWk1VOQ3sWtVJbtWVfLO4nSnQAl1I3aULymznUs8gUPcWVma6drHtXHjmRWe6Dp3y+sbuffKldiKOptENDolAWFuhMZ6EhLjSXCUB+EJXsQm+/bK8QsEZwIhRnoRX22HWTzHWMWMsKEolQq+qbkGcC4D2B0OHt7+HaXrm2l4D2wFzqiMLtJkcOOS0YTGemCzOLBZJexWCatFwm5zYLfK2Noc2G0SdpuErU3CYXe+tlslHHYZu03CYTvqtV1Gsks4HDIOu4Rkl52vHTKSw/mZJDkd5Ww2CUmSkSW5/TfO13L7a1kG2el3cfTr3sfBFYqv8PDVINllzM12ZBn0Hmqix3lSF9OKbAe5RoGjTXYJsSPOgJIE+zZWIUlyp4RSAxFJltlWVcDkkDhUis4Wsvdyt+GrdeeK2BQA5kQk8cL+NfxSls0o/3B21RRT3FzP74emAk7xOidiGCtLMwl28yJQ78mK4v346txICRSVX9VqJRPmhTNhXmeBsveXStJ+KCN7ey2Vh5vY9VMFu36q4K2/70WpVqD0l9HEQeJ0P1L+Gu0SIge2VPOvW9MwFtjRjQSfayAqwZeH5p2Pt79WLMcIBjxCjPQiSb4heGn0NNks7K0tJb+xhgSfILT6jpwMGw15GCUzXjNVpF4WysSCoby9eC+lOSYUis439NQLw89IYbS+wm6XsFrsWC0Sba12bG0StjYHbeajXzt/dwguB1aL5BJfLsFlbW+zOftsLStAdoBO1jA6OJy4MX5Ul7RQXdzCTY+PIWGsP+nGUt7O2QrAhWEjSW6Oas/iWc3+TVXUVTidNFtNNsrzTGfMObGvyDEaqG9rZWpI3HGf1be1oqDjhhbvHcRtSVNZUbyP5UX7CHbz4o8jprtyjADMixyO1WHn47ydtNqtJPgE8aeRs/skx8hAQK1WknphBKkXdkTA2WwOp0D5voztm0qpK7Jg3w77tjdwzT+/JjzBC4UCyvOaGDE5iCeWX8p7rVuobG2kkSa8hBARDBJEbZpe5vvi/fxQ4jTFqhVKpoUmkBIQiVWys72qkL11pa6+94ycRbJ/OA6HxIYvinn34XSqijqyaL62ez6J4wd2BsmeYmn6KoqanTkY/jb6PBJ8Oos2WZb5b+Z6so0GABaNnNkpuyhAbXkrmVurqSxo5nd/Gd5JNAoEZ5qvC9L5pTwbySpxXvVo3E16CjON/PzBYaZfGc1f35mMSqXkmfRVFLef269Nu+44K5dA0J8QtWn6KRdGjeSwqZZsowG7LLGh8hAbKg8d1+/8yOEkt6/rq1RK5twQy8yrh7D6/cO8/1gGDQYLbp7iz9cdM8KGUpS3A4B3c7dxx/BpxHg5hZvVYef7kgMuIRKg82CkX9hx+wiMcGfWNTG9NmbB2U2QmzNBmVKrREq1cnH8aADu/u9E1xJhvaWFkuYGwHneCiEiGCwIy0gfYJMcLCvMYLMhv1PyMwAvjY6LopOZFZbYrfnVanGQt7eOkVMGRl6LvsAmOXg2YzVlLUZXW5SHHz5aPYdNtZiPyn57a9IUUvtxki7B2UGLzcoDO7/FJjlQK5TcO+pcEo7KkGuTHLyRtZnMhgoALokexcVDTpwdWCDoa072/n1aYuTVV1/ln//8JwaDgTFjxvDyyy+Tmprabf+vvvqKRx99lKKiIoYOHcpzzz3H/PnzT/r7BpsYOUKLzcru2mJqLc0oURDl6ceYgEix5n6GMLa18lLmBspbjV1+rgCujhvHnGMyjQoEfcUXh/ewrr1elQIFYwMjGeYTSqPNzLaqAhraWgHQqzQ8OeHiTmHVAkF/pMfEyBdffMFNN93EG2+8waRJk3jxxRf56quvyM3NJTj4+Cf1bdu2MWPGDJYuXcrFF1/Mp59+ynPPPcfevXtJTk4+owcjEByL1WEnraqQjZV5LlGiUaqYGDSE2eGJRHuKPAyC/oNNcvDawY1ktS8hdoVGqeLuETMZ7hfabR+BoL/QY2Jk0qRJTJw4kVdeeQVwZiSMiorinnvuYfHixcf1v/baa2lpaeGHH35wtZ1zzjmkpKTwxhtvnNGDEQhOhNluwyY58FBrUZ0lyd8EAw+75GBVaRYbK/M6JZ5TACP9wrksZrQQ0YIBQ484sFqtVvbs2cODDz7oalMqlcydO5e0tLQut0lLS+O+++7r1DZv3jyWL1/e7fe0tbXR1tbmem8ymU5lmAJBl7ipNbih6ethCAQnRK1UcfGQUVwQNYIcYxVGqxmtUkWcdyCBelGFVzA4OSUxUltbi8PhICQkpFN7SEgIOTk5XW5jMBi67G8wdG+GXLp0KU888cSpDK3f8FPpQdJrSzGYTe0XkCCujEkh1P3EFp09NSWsKN5PnaWZYDcvroxN6RRqKssy3xcfYLMhH7PDRrx3IDckTCTETViKBILBiFqpckXUCQSDnX5pq37wwQdpbGx0/ZSWlv76Rv2EQ43VzApPZPGY8/lz8rk4JIn/Zq6jzWHvdpvDphreztnK1NA4Hhl3ISkBkbyetZnyoyJBVpdls64ilwVDU1mccj46pZqXMtcfF40jEAgEAsFA45QsI4GBgahUKqqqqjq1V1VVERratTNVaGjoKfUH0Ol06HS6Uxlav+HPybM7vb8l8Rzu37GM4uZ6En26DsVdW57LSP8w5kWOAOCymDFkGw1sqDjEgqGpyLLM2vIc5kcnkxIQCcDCpMncv30ZGbWlTDxLw1Ib2lpZVpjBwYYKrJKDIL0nNyee48on0hW5xiq+KthLZWsjfjp35kcnM+WYjKTrKw7xS1k2jVYzkZ5+XBc/ntj2miwCgUAgOPOckhjRarWMHz+etWvXcvnllwNOB9a1a9eyaNGiLreZPHkya9eu5S9/+Yur7ZdffmHy5MmnPeiBxJF8Fh5qbbd9CppqOxUkAxjhF8a+ujIAai0tmGwWhvt2CDg3tZZYr0AKmmrPSjHSYrPyz32/kOgbwj3Js/DS6Kk2N51wnmstzbxycAMzwoZy67Ap5BgNfHRoBz5aPSP9nObwXTXFfF2wlxsSJhLrFcjaihxeylzPE+Mvwbu9Yq1AcDpIssT3xQfYUV3UXgHZjSkhscyPSj5hSnchoAVnA6ecwvO+++7j5ptvZsKECaSmpvLiiy/S0tLCwoULAbjpppuIiIhg6dKlAPz5z39m5syZ/Otf/+Kiiy7i888/Z/fu3bz55ptn9kj6IZIs82XBHuK9gzrV9DgWk9WCt6bzjc5bo6fR6vSkN9mcNVKOvRl6azv6nG2sLsvCT+fOLYnnuNp+zblvY2UegXpPro4bB0CYuw/5jTWsKc91iZE15TlMC41namg8AAsSUsmsr2Bb1WEuiBrZQ0cjOBtYVZrNxsp8FiadQ5i7D8VN9XyQtx03lZZzI5K63EYIaMHZwimLkWuvvZaamhoee+wxDAYDKSkprFq1yuWkWlJSgvKosMkpU6bw6aef8sgjj/DQQw8xdOhQli9fftI5RgYyn+XvoqKlkb+NOa+vhzLo2F9Xxgi/MP6XvZm8xmp8te7MDBvK9BOUry8w1TLMt/Py4Ai/ML4s2As4QypLmuq5sH25DECpUDDMN5QCU23PHIjgrKGgqYaUgAiXY3qg3pNdNcUUNtV1u40Q0IKzhdMqbrJo0aJul2U2bNhwXNvVV1/N1VdffTpfNWD5LH8XB+oruH/MXPx07ifs663Vd8onALSbcZ1PNd4aZ5ZFk9XSKeOiyWohytP3zA58gFBjaWZjZR5zI4dxYdRIiprq+aJgD2qlksldVKUF55x2ZV2yOGxYHXZa7VYkZLy66GMwi/BywW8jziuILYZ8qlpNhLh7U9rcQL6phqvjxna7jRDQgrMFUWntDCPLMp8f3k1GXRn3jZ5zUnkB4rwCyTEaOvmNZDcYiGtf8w3Ue+Ct0ZNjNBDl6Qc4E3gVNtUy8wSWgMGMDAzx9OeKmBQAoj39qWg1srEyr1sxIhD0JRdEjcDisLFkzw8oFApkWeaymDFMCo7tdhshoAVnC0KMnGE+O7ybndVF3DViBnqVhkar09/DTaVBq3JO93u52/DVunNFbAoAcyKSeGH/Gn4py2aUfzi7aoopbq7n90Od9X4UCgVzIoaxsjSTYDcvAvWerCjej6/OjZTAqD45zr7GR6snzN2nU1uYmw/ptd2HgXtr9JiO8bExWS3o2/82SoUCJQqauujjoxFr74Lfxp6aYnZWF3Fr0hTCPXwpbW7gy4I9+GrdhIAWnPUIMXKG2ViZB8C/Dqzt1H5z4jkuD/j6tlYUdHjPx3sHcVvSVFYU72N50T6C3bz444jpnZxe50UOx+qw83HeTlrtVhJ8gvjTyNlnbVG9eO8gqo558qsym/DXeXS7TZx3IJn1FZ3aso0G4rydFii1UkW0lz/ZxiqXyJNkmRyjgdnhiWf4CARnG98UZjAvaoQr+i3Cw5e6thZ+Ks3qVowIAS04WxBi5Azzv+k3/Gqfv46ee1zb+KBoxgdFd7uNQqHg0pjRXBoz+jeNb7AwN2IYz+37mZUlB5kQFE1RUx2bDfkuaxLAt4UZGK2tLEyaAsDMsKFsqDjEN4XpTA2JI8dYxZ6aEhYlz+y03/dz04jx8ifGK4C15blYJftxoZQCwalilewo6RzCq1QokOm+PJgQ0IKzBSFGBAOSGK8A/jh8Bt8WZfBjyQEC9Z5cEze+0/p7o9VMfXvJdXBGLywaOYuvCvayrjwXX507NyZOckUlAEwMGkKzzcJ3xfsxWS1Eevrxp5Gz8Ral2gW/kdH+EawszcRf706Yuw+lzQ2sKcthSmiH0BUCWnC2cspVe/sCUbVXIBAMdCx2GyuK95NRV0qTrQ0frRsTg4ZwcXQy6vbl1vdz06hra+lkPT066Zmvzp2Lukx6lsvPZdkuAX1d3HhivUXSM0Hfc7L3byFGBAKBQCAQ9Agne//ul4XyBAKBQCAQnD0IMSIQCAQCgaBPGRAOrEdWkkwmkcRHIBAIBIKBwpH79q95hAwIMdLU1ARAVNTZmeBLIBAIBIKBTFNTEz4+Pt1+PiAcWCVJoqKiAi8vrxOW2j5VTCYTUVFRlJaWCsfYHkTMc+8h5rp3EPPcO4h57h16cp5lWaapqYnw8PBORXSPZUBYRpRKJZGRkT22f29vb3Gi9wJinnsPMde9g5jn3kHMc+/QU/N8IovIEYQDq0AgEAgEgj5FiBGBQCAQCAR9ylktRnQ6HUuWLEGn0/X1UAY1Yp57DzHXvYOY595BzHPv0B/meUA4sAoEAoFAIBi8nNWWEYFAIBAIBH2PECMCgUAgEAj6FCFGBAKBQCAQ9ClCjAgEAoFAIOhTBr0YefXVV4mJiUGv1zNp0iR27tx5wv5fffUVw4YNQ6/XM2rUKFauXNlLIx3YnMo8v/XWW0yfPh0/Pz/8/PyYO3fur/5dBB2c6jl9hM8//xyFQsHll1/eswMcJJzqPBuNRu6++27CwsLQ6XQkJiaK68dJcKrz/OKLL5KUlISbmxtRUVHce++9WCyWXhrtwGTTpk1ccsklhIeHo1AoWL58+a9us2HDBsaNG4dOpyMhIYH333+/ZwcpD2I+//xzWavVyu+++6588OBB+fbbb5d9fX3lqqqqLvtv3bpVVqlU8vPPPy9nZWXJjzzyiKzRaOQDBw708sgHFqc6zzfccIP86quvyunp6XJ2drZ8yy23yD4+PnJZWVkvj3zgcapzfYTCwkI5IiJCnj59unzZZZf1zmAHMKc6z21tbfKECRPk+fPny1u2bJELCwvlDRs2yBkZGb088oHFqc7zJ598Iut0OvmTTz6RCwsL5dWrV8thYWHyvffe28sjH1isXLlSfvjhh+Vly5bJgPztt9+esH9BQYHs7u4u33fffXJWVpb88ssvyyqVSl61alWPjXFQi5HU1FT57rvvdr13OBxyeHi4vHTp0i77X3PNNfJFF13UqW3SpEny//3f//XoOAc6pzrPx2K322UvLy/5gw8+6KkhDhpOZ67tdrs8ZcoU+e2335ZvvvlmIUZOglOd59dff12Oi4uTrVZrbw1xUHCq83z33XfL5557bqe2++67T546dWqPjnMwcTJi5O9//7s8cuTITm3XXnutPG/evB4b16BdprFarezZs4e5c+e62pRKJXPnziUtLa3LbdLS0jr1B5g3b163/QWnN8/H0trais1mw9/fv6eGOSg43bl+8sknCQ4O5tZbb+2NYQ54Tmeev/vuOyZPnszdd99NSEgIycnJPPPMMzgcjt4a9oDjdOZ5ypQp7Nmzx7WUU1BQwMqVK5k/f36vjPlsoS/uhQOiUN7pUFtbi8PhICQkpFN7SEgIOTk5XW5jMBi67G8wGHpsnAOd05nnY3nggQcIDw8/7uQXdOZ05nrLli288847ZGRk9MIIBwenM88FBQWsW7eOBQsWsHLlSvLz87nrrruw2WwsWbKkN4Y94Dideb7hhhuora1l2rRpyLKM3W7nzjvv5KGHHuqNIZ81dHcvNJlMmM1m3Nzczvh3DlrLiGBg8Oyzz/L555/z7bffotfr+3o4g4qmpiZuvPFG3nrrLQIDA/t6OIMaSZIIDg7mzTffZPz48Vx77bU8/PDDvPHGG309tEHFhg0beOaZZ3jttdfYu3cvy5Yt48cff+Spp57q66EJfiOD1jISGBiISqWiqqqqU3tVVRWhoaFdbhMaGnpK/QWnN89HeOGFF3j22WdZs2YNo0eP7slhDgpOda4PHz5MUVERl1xyiatNkiQA1Go1ubm5xMfH9+ygByCnc06HhYWh0WhQqVSutuHDh2MwGLBarWi12h4d80DkdOb50Ucf5cYbb+S2224DYNSoUbS0tHDHHXfw8MMPo1SK5+szQXf3Qm9v7x6xisAgtoxotVrGjx/P2rVrXW2SJLF27VomT57c5TaTJ0/u1B/gl19+6ba/4PTmGeD555/nqaeeYtWqVUyYMKE3hjrgOdW5HjZsGAcOHCAjI8P1c+mllzJ79mwyMjKIiorqzeEPGE7nnJ46dSr5+fkusQdw6NAhwsLChBDphtOZ59bW1uMExxEBKIsya2eMPrkX9phrbD/g888/l3U6nfz+++/LWVlZ8h133CH7+vrKBoNBlmVZvvHGG+XFixe7+m/dulVWq9XyCy+8IGdnZ8tLliwRob0nwanO87PPPitrtVr566+/lisrK10/TU1NfXUIA4ZTnetjEdE0J8epznNJSYns5eUlL1q0SM7NzZV/+OEHOTg4WP7HP/7RV4cwIDjVeV6yZIns5eUlf/bZZ3JBQYH8888/y/Hx8fI111zTV4cwIGhqapLT09Pl9PR0GZD//e9/y+np6XJxcbEsy7K8ePFi+cYbb3T1PxLa+7e//U3Ozs6WX331VRHa+1t5+eWX5ejoaFmr1cqpqany9u3bXZ/NnDlTvvnmmzv1//LLL+XExERZq9XKI0eOlH/88cdeHvHA5FTmeciQITJw3M+SJUt6f+ADkFM9p49GiJGT51Tnedu2bfKkSZNknU4nx8XFyU8//bRst9t7edQDj1OZZ5vNJj/++ONyfHy8rNfr5aioKPmuu+6SGxoaen/gA4j169d3ec09Mrc333yzPHPmzOO2SUlJkbVarRwXFye/9957PTpGhSwL25ZAIBAIBIK+Y9D6jAgEAoFAIBgYCDEiEAgEAoGgTxFiRCAQCAQCQZ8ixIhAIBAIBII+RYgRgUAgEAgEfYoQIwKBQCAQCPoUIUYEAoFAIBD0KUKMCAQCgUAg6FOEGBEIBAKBQNCnCDEiEAgEAoGgTxFiRCAQCAQCQZ8ixIhAIBAIBII+5f8B2ff3WcMq0lcAAAAASUVORK5CYII=", "text/plain": [ "
    " ] @@ -788,7 +778,7 @@ }, { "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAAiMAAAGdCAYAAADAAnMpAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjcuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/bCgiHAAAACXBIWXMAAA9hAAAPYQGoP6dpAAEAAElEQVR4nOyddXgUZ9eH753V2MbdBQIEd/fiXn0pFeou1F2+trx96+4t1KHF3d2CBY27u26yPt8fGxbSJFgJCTD3de2V7MzzzDyzuzNz5jzn/I5MFEURCQkJCQkJCYlWQmjtAUhISEhISEhc20jGiISEhISEhESrIhkjEhISEhISEq2KZIxISEhISEhItCqSMSIhISEhISHRqkjGiISEhISEhESrIhkjEhISEhISEq2KZIxISEhISEhItCqK1h7A+WC1WsnLy8PFxQWZTNbaw5GQkJCQkJA4D0RRpLq6moCAAAShef/HFWGM5OXlERwc3NrDkJCQkJCQkLgIsrOzCQoKanb9FWGMuLi4ALaD0Wq1rTwaCQkJCQkJifOhqqqK4OBg+328Oa4IY+TU1IxWq5WMEQkJCQkJiSuMc4VYSAGsEhISEhISEq2KZIxISEhISEhItCqSMSIhISEhISHRqkjGiISEhISEhESrIhkjEhISEhISEq2KZIxISEhISEhItCqSMSIhISEhISHRqkjGiISEhISEhESrIhkjEhISEhISEq3KBRsj27dvZ/LkyQQEBCCTyVi6dOk5+2zdupWePXuiVquJiopi3rx5FzFUCQkJCQkJiauRCzZGdDod3bp144svvjiv9unp6UycOJERI0YQFxfHE088wT333MO6desueLASEhISEhISVx8XXJtm/PjxjB8//rzbf/3114SHh/PBBx8A0LFjR3bu3MlHH33E2LFjL3T3EhISElc1ZXodNWZDg2XOCjUeGqdWGpGERMvT4oXy9uzZw+jRoxssGzt2LE888USzfQwGAwbD6ZOxqqqqpYYnISEh0WYo0+t45cAKzKK1wXKFTOD/ek+WDBKJq5YWD2AtKCjA19e3wTJfX1+qqqqoq6trss/cuXNxdXW1v4KDg1t6mBISEhKtTrmhtpEhAmAWrY28JRISVxNtMpvmhRdeoLKy0v7Kzs5u7SFJSEhItCjb8pP59MSWZteXG2ov42gkJC4vLT5N4+fnR2FhYYNlhYWFaLVaHBwcmuyjVqtRq9UtPTQJCQmJNsHa7JMsyYg7a5tfk/cR7OQuTdVIXJW0uGdkwIABbNq0qcGyDRs2MGDAgJbetYSEhESbJ1dXwdIzDJGuHoHMiurLAx2HMD4oBlelBoAqk4HfUmJbaZQSEi3LBXtGampqSElJsb9PT08nLi4ODw8PQkJCeOGFF8jNzeXnn38G4IEHHuDzzz/n2Wef5a677mLz5s0sXLiQVatWXbqjkJCQkLhC2ZqXhFj///jgGKaFdbOv6+EVzKjAaN46vIYKYx3Hy/MprKvC10HbOoOVkGghLtgzcuDAAXr06EGPHj0AmDNnDj169ODVV18FID8/n6ysLHv78PBwVq1axYYNG+jWrRsffPAB33//vZTWKyEhIQEcLLFdL9WCgnFBnQDQVRlJO1oOgItKw8iAaHv7QyVSDJ3E1ccFe0aGDx+OKIrNrm9KXXX48OEcPnz4QnclISEhcVVjEa3ozEYAApxc0SiUAPzvzt3sWpJN73EBzHyhMxFdvex9qo16+/+iKFJbbaK8QE95YR1Gg5Xuw32RK9pkboKERLO0eACrhITE1cU/RbkkQa6LR0CGUpBjsloo1euwilYEmcC9/+1J6uEyDqzN48DaPNyCVejkFlRhsEGRzZbyAsry66gsMWA2NkwF/vboJCK6uJ9z35K4mkRbQjJGJCQkzpumRLkkQa6LRyaTEe3qy/HyPKpMeg4WZ9HHJ4yg9lp+ODmFZ0Zt4OSeEnS1JkylYMqAdKqb3Z5noANhMW7n3K8kribR1pB8eRISEudNjdnQ6AYmCXL9O4YHtLP//0tKLLsKUjFZLagdFDy9oj+OQQpMpSKKkLNvRxBkTLqvPYIgO+c+m/oeQfouJVoPyTMiISFxXsSXF7Aw7WCT67bnp/CfqN7IZdLzzYXS2T2Abh6BHCnLxWAx83PyPhakHcRJoaLMUIvvz1Zy7wNjCrgFqqnIbdpYsFpFhtxwDotFQqKNIl05JCQkzklsUQafHN9CXm1lk+t3FKTw9ckdWKyNn7Ylzo5MJuOeDoPo6Xm67IXBYqasXnFVUAhE/KQkaogbFbkGnNyUzW7r3s4reKDXKnYtaz7jxmS1sD0/pdn1ktKrRGsgE8+WGtNGqKqqwtXVlcrKSrRaKb9eQuJyUlBbyZuH1mCpd+v7aFzo4hGAg0JFalUx8RUF9rYTgmOYeoZOhsT5I4oiKVXFbMtPJqWqGJPFgpvagb7eYQz0jcBFpeH/btnOtgWZqDQCJqOVM2dabnmhM4fW55F8qAxRBAdnBUNuCOWeud3x8HMEwGgx89mJrSRVFjU7DieFiqe6jibQya2Fj1jiWuB879+SMSIhIXFWfkuOZXuB7Ul6kG8Es9r1Q5CdjkuILy/g0+NbsCLiqFDxbt9pqOTSDHBL8dmjsSz7PBG5XIZVFBGt4OKhYmH+DShVcmprjPz82lHWz0+jqtQ2pRPcQcvNz8aQP6CIvcUZ9m21d/Uh2MmdCmMdJ8rz0FvMALirHXmj1yTU0vco8S853/u39EuTkJBoFotoZV/9zUstKLgxoheCTIbVanuGEQQZHd396OsTyt6iDGrNRo6W5dLbO7QVR3118+hnfXH31TDvlSOcsgnH3x2FUiUHwNFZxQMf9OaBD3pzfFcRP754mOO7inn/rj3IVODQHwIeVvLcuNGEa0/rl+hMBj45voXMmjLKDbXsL85gsF9UaxyixDWIFDMiISHRLDqTAUP903KEiyd5J6pZ9mUiD/ZcxXSPBWTG22JIungE2vuU6HWtMtZriVkvd+WJr/siiiAToNd1fk226zzIhw+3jWVl7S0MfMoPQQu12yHlZhP/G7GXuC0FWCy2uR4npZqZUX3sfXcWpF6WY5GQAMkzIiEhcRZy4qsp/thCXSyk5uex0pKHIIfQTm7IFQL3dV3BzJe6EDr7dAVuuezcqaXXEtvyktmWn0ypoQYAf0dXJoV0obNHQLN9DhZnsSzzKKX6GnwcXJgR3r2BwSeKItaxBtr9pCHtKT0vzdrMi38OZuiI8Ca3p1IpiLjXmcKpcgzpVjz/9Cb3aDVPj9yASiNwy3Mx3P56d8JcPHFXO1JuqKWornk9EwmJS41kjEhItDBXkmJpRYmeld8ksXtJNhknKjHqLbYVSlBFwNSZHbjtqe44uigx6i389vYxfn/7GMKnoOws4jxMhr4vZOsq8QxwxNGl+cyPawU3tQPTw7vh4+ACIuwpSufLk9t5ucc4ApoIEk2tKub7hF1MC+9GV49AYosy+OrkDl7qMc4eVLouJ57NeYncP3kAJUF63r9lD2/fsBPZTzKGTAlrchyyeiNRHS7wyIJehDl7Ers2l0/u38fPbxyjMKuWhz7ubc+IkiEZlRfClXSet0UkY0RCogVp64qlRqOZzb9lsPn3DBIPlKCrMAE2179fmDO9xvjjPlXObqdkAIqdSqhVGnBEiUojZ9YbXTANqmPh5BRMO6B2h8gnHLBvX+0gx91Xg3ewEz4hTgy5PoTB068tLYxunkEN3k8L68a2/GTSqkubNEY25SYS4+HP2PqieVPDuhFfUcDWvCRubdcXURTZlJvAhJDOdPcMgtHgv86FZ25cz5s37GDOVybG392u0XbPzI7ZX5RJuIsX/cYH8VtmIOvmpfLFY/uJ3ZADEwxoxwsEhLte0s/haqatn+dXApIxIiHRgpxNsdSDy3+RslqtHNpUwNofUzi2rYjSgjpO1a9399XQ83o/xtwZRb8JAQiCLaRMZzISfziXckMt2bpyXt6/gg5uvjgqVCRWFFLjZCDgS8i7r/H+DHUWCjJ0FGTY4khkAtecMXImVtHKweIsjBYzES5eTbZJqy5hdGCHBss6uftzpDQHsMXkVJn0dHQ7HScS08uXgT94s3d2KR/cs5eKYj3/eb5Lg2309wljSXocZtHK1vxkolx96OkVjEwmY9zsKAL7OfPMkA2Yv4Xyb63kORSS2G4FIZ1cCW7vSlB7FwLbaQlqr8XZTdXsMV5rNW9qTHpWZR1v8jw/UZ7PEH8pCPh8kIwRCYmrnIwT5az8JpkD6/LIS63BarFZH45aJd2G+TLillBG3xaJxrHpy4GTUsXjnUfwybEtlBtrEREbaIsAOHaQ02u2J4fmF9GEyjhg85Lc9XaPS3psVwq5ugrejVtvk3mXK3ig0xACnJr2PFQZ9WiVmgbLtEoNlfXVeqtMdbZlqoZtfPycGfeXA1smFvLDC3FUFht44IPe9vXOSg0jAqLZkBuPRbTyTfwOQpzdidJ6U6rXcawsj4DvIesGwAqmOitpRyvIOF6BTJBhMZ9WgfCPdOan+KkolA1zIK61mjcFtZV8XH9eNMWvKbHozAbGBcdc5pFdeUjGiIREG8NssmK1iqjU8ovqX1GiZ9U3yexamk3G8Qp73IdSLRDRxY0BU4OYeF97vAIcz3ub/o6uvNxzPFvzkthRkEKF0XZDlMsEenoFMyogGu8Ptdy+fClVZQa7t+VM7vlvD3yCr66b0fni6+DCyz3HU2c2cagki3mJe3mq6+hmDZKLReUs57eMGdzdaTl/fxhPRbGe538ebF8/Pbwb5QYdB0qyAMiqKSerpty+XuklJ+QhJVlf6O3fodUKWM/4QmXg4eeAXNE4puRcNW9awxvYUtSajXxy/LQhIgPCXbxwkCvJrCmze4eWZBzBTeVIf9+mg4slbEjGiIREGyIzvpLnrttA12G+vPjbkPPqcyruY8sfGSTuL6HmzLiPcGd6XefPpPvbEdXd81+NzVmpZlJoFyaEdKbCWIvFakWrcmggjPXgR7159/ZdjfrKBHD3dWi0/FpBIchtAaxAqIsHGTWlbM5LZFa7vo3aalUaqkz6BsuqTHpc6z0hWqXtc6wy6nFVnf5Mq4x6gp3d0DgqmJ8yjQd7rmLjL+lUFOl5Z/VIBEFALhO4u8MgOhcFsDkvsYEholVqGOwXyZC32/HA36soK9Q3aVSqHeS88Otge0DstcrOglS7ZH+QkxsPdhqKl8YZAIvVyprsE6zIOgbA8syj9PUJRZBqNzWLZIxISLQgJovlvNse21nESxM3U1tlYs/yHCwWK3J544tXg7iP7UWU5jeM+xg8w4+xsxvGfVxKBJkMD3XTT7ijZ4Wz4qtEEmNLsdRPB8lkIJfLeOuWHSz+JJ63Vo5A66Fpsv+1giiC2dr0byPCxYuEioIGcSPx5QX2GBMvjRNapYaEigKCnd0BqDObSK8uYVh9fIJCIfBN3ESeHrmBA+vyeaTfWj7fNw5BEBBkMgb4RtDfJ5wSfQ1VJj1quQJ/B1fk9b+Xu+f25L3Zu5sc3+Nf9cMvzPmSfRZXIqIosiM/2f7+3g6D7IYIgFwQmBTahZT6cgmlBh0nywvOms59rSOZaRISLYDZamFpxhE+PbGlyfUplcUN3m9flMkzIzegr7F5NepqzCQdKLWvz4yv5PPHYrkzehnjVL/z/JhNbP0zk7oaM92G+fL4V31ZqfsPfxXcyOuLhjNgUlCLGCLnQiaT8cQ3/bHWV5mQCXDzszEsLruJHqP8OLmnhBt9/2bBeycu+9haiyXpcSRVFlGiryFXV1H/vpC+PmEA/JS4myXpcfb2owKjOVGez4aceApqK1mReZTMmjKGB7QHbJ/xqMAOrM4+zpHSHHJ1FfyUtAc3tQPdvU4X2xMEgQ+3jmXwjGCSDpQyu8NyjHqzfb1MJsPbwYVIrTdBTu52QwRg9G3hhHR0pamf0PzX4ijIrLm0H9IVhsFipkhfg7nUivNhZw7+VsiaH5L53+xdPD54LUaDzdA8c2rmTC+URGOk2jQSEpcYs9XCFye3c7I8/6zt7mzfnwG+ESz+JJ4vn6xPh60/GwVBRveRvtRUmMg4UYGx7nTcR0hHVwZOCWLi/RcW93E5+erJ/Sz6OAHfUCd+jJ+C2sHmhI1dk8vb/9mBrtJEQKQL76wZSVC7q/uc/jlpLwkVhVQa63BQKAl0cmNsUCc6ufsD8MHRjXiqnbgzeoC9j0307Ailel2zomcrMo+xoyCFWrORKFdvZkb2wdex6c/yk4f2suKrZDz8Hfjx5JSzZsOcYt/qXF6auBmwGZVaTzV9xwey4ec0BLmM+9/vxfVPdGzQJ6umjLcPr21yey/1GEeIs0ez+zPUme2/k7ZATYWRpIMlpB2pICuhkoL0Gkpya6ksMVBbZcJkaBwbo1AJKFUCy6tuQSaTcbgkm6/jdwAwOaQLk0K7NOpztSMVypO4IrkahIOWpMexNuckAAIyunkGEuLsQZ3FxNHSHArqlS1lIkT9Fcraz9Oa3dYpvY+e1/kz8b52tO/57+I+mqIlFEJrKg08MX0NyptNyDtbidR6MTOqD74OWsxmKx/cvYcNv6QhAyY90I5HP+/bKp6ca4n5r8fxyxvHcHZT8t2xyXgHnf28EkWRp4av5+iOIhBh7tpR9BkbwPFdtulEXaWJ9r09eG/TdThpVZisFpZnHmV9TnyT23ux+1hCXRr/fqvLDXz91EE2/JzG98cnE9Kh5fVN9LVmUg6XkXqknKz4SvJTqynOqaWyWI+u0oRRb+Gfd0aZDJQaOU5aJa5eakqcqxH8rKjDBJ65cQQyo8AzIzfw+uJh9vT1+Ul72V1oO79nRw+gv8+1F8QqGSMSVxxXg3CQwWLmuX1LqLOYEGQy5nQZRTtXH/t6qyjyR8p+tmQkUvAM6I80vy1BkLGk4iacXM79FPtvOFKagyCTNVAIXZ8Tf1aF0PePbGygELouJ76BQuja7JOszT7BndED8NI4sTzjKLm1FbzeaxJKwZYllHa0nJcmbaY4uxatp5rXFg+l29Cma6xInJsVmUdZmXW8wTJfBy1v9p5kf7/08wQ+f3Q/akc5Xx6YSIlX5VmNyoT9JTzSdw1eMxR4zRHsRqW73JE3Zmxn36pclBqBOfP6cTA6lfTqUpqjm0cQ93cajPyMIM5dS7P48N69VJUZEK3w6t9DGXr9vyuyaDZbSTtaTurhMjJPVpKbWk1xdi0VhXXUVJgw1JmbTD9XqgUcXZRovdR4BTjiF+5MULSWyK7uRPXywM2rYZzTwrSDbMpNBKCPdyjJj9dRmlfHt0cmIQgyEisK+fj4ZqyiiINcybv9pl+TVZClqr0SVxxtTSDsYjhSmkOdxRb30c8n3G6I6PRGTNVWDm8uIHe9iYyfAfNZNgRYrSIndhXTd1zg2Rv+S1pcIRTbU+HTexcTV5JNn/pYiYiu7vyRdT3zX4/jt7eO89SwDfSbGMhrfw9FpZEuTRdDgKMrT3QZaX//zzpB0x7pgKu3mndm7uT+PisImidwY//uzcrOZ/gV0e53FfeMHICvswvLM47y6fEtvN5rEm+vHMm2vzL57207efeWPTgOBN+3ZAgKgUBHNzzUjuTVVlJqsAneHSnLYXF6HDdG9KS8sI5PH45lx6IsZDLsBf+Ks5vW6ziF1WolO7GalEOlZJyoJDe5iqIsHWWFemrKjeh1ZruOzpkolAIaZwUe/g54+jvgG+ZEUHst4V3cad/L45xeoqYY4R/N9vwUTFYLa99No2I9TPoinF2FqZysyOdwSbY9GWlYQLtr0hC5EKRPR0LiElJSV02J0UyByUJuQTFbKjZTpjewOjsL13iBHu+oCe/kht9QDeXFerCCLEOOXmeLCZErZVhMp7NQDm8saHFj5ExaSiHUQaEi3MWLtOoSuzFyijte787kB9rz4oTN7FuVy3SPhTz5bX9Gz4q4tAd3DSDIZA3SfZtixM3huHqpeeHGTWTfa8HtNy3+E1ybNSqnD+lKL1/btMM/jcphN4bi3FvGK+O2UbsbsqaIPL2kD9cNscnRi6LIgeJMfkrai0W0sjk3EdU2R358Mo66GnN9G9u45HIZGScq2L4ok4zjFeQkVVGYqaMsv47qMgN1OrP93DgTuUKGxkmB1kNFaCdXfEKdCGrnQlhnN9r19CQg0rlFpgC9HZyZ3W4A/3t5BxXzbMtORGcQn5LVoF0XjwCmhHS95Pu/2pCMEYkrHlEUEbFdiC8XKdWVbC3OY39ZMSerysmsrabEqKfuzFTe6jxcFSr6enjjW64mv4uBvC8ULJw9hu8TtpNWbfOgvN/3eiqzDCTuLyXpQCkn9xSTEleGSW8lJa7sshzP5VAI1apOt/knHn6OfH1oEuvmp/DJA7H897ZdLPo4nndWj8Td59rVJ7lQiuqqeXbfEpSCQISLF9PDujc5xdlzVAAd5zmSOLuOlydt4Zl5Axlze+RFGZUH9JkEfy+n/E8r5d+IvD9+H8I8OSNnhiOTyejjE0aWrpzlW45T/C58lrS/ybGbTSJrvk9hzfcp9mWCXIbaQY6zu4qASBe8Q5wIjHIhNMaVdj08CenkikLROrFGlaUG/rotidL1p725MuH0NUir1DA8oD3jgjs1mJqSaBrJGJFoMxTrLzxdcHNRLrft28ytoe34X9f+l3Q8ebU6thTnEltWzPGqMjJ01RTp69BZzA20oARkuCiVhDo646vWUFlbhq9KTj93H17vNc4mDjUMXvtuN4t+S2TEgj/wf1pGqFaJt4MLzioVLu3UBLXTMmqmLcDNYraSGV+Ji3vLxouc4nIphJ6LsXdEMezGMN64YRv71+Rxc8Aibn+9K7Nelp4sz0W4ixd3th+Ar6MLlcY6VmYe572jG3it50Q0isbVk40eJh7f2Isvhsbxvzt2U1msx/s/F25UZtenrPrOVPLZ8xP5Zs5B5s7axfzXjuIf6Ux5gZ7C7Bp055HZ6uaj4c43uxLZ3YPIbu5tdroufl8xr8/YRnlhQ+P61oi+yFTgrnako5sfCuHiVJSvRdrmNy1xTaE3m5iftJdDpdlNrv877TAPdhqKwxkXVL3FzAvHYvk42aZwuKP47Gm0zVFu1LOtOJ89pYUcqywjtaaKQn0d1WYjZ0avyAAnhRJfjSPhTi50dvWgv6cPw7wD8NOcTq8VRZE3Dq4iv66Kgrpy/ko7xLSwbqjkCt64dyDmIwbmGVM5VmdBqDPQ002J6uRB+nr40MfDGy+1zQsgVwhEdHG/qGO6GC6nQui50DgqmLt6FIc3F/DmjduY98oR1nyfwturRhAWc/k+kyuNM7OfgpzcCXfx4oXYZRwoyWKwX2STfTwCHfg5dRp3d1rON08fYnCFP0y8sP2e0pRRCHJ8gpx49a9h/PzmEf545zj+EU7EDPKmr78/K/edxJAA5gwQLdhjRc5EJoNJ90df2AAuI6IosuyLRFsqvkij+JT+PuFtKj35SkL61CRaFaPFzKcntpBaVdJsm8TKQj47sYUnOo9EJVdwpKKUm/duILm60t4m6Yz//0mt2cSukkJ2leZzpKKM5JpK8utqqTQbsfzjaugoV+Cl1tDVzYMYrTt9PHwY7h1AhPP5ZXHJZDKmhXXjq3ptgU15iewpSqOdqy86k4HSm4vp+LeCPNGCVQYHKso5XHnIPo5gBycGevnR18OHsb5BxLg2r8vQkrS0Quj50GOkH4uKb+STh2JZ/W0y93RZydg7I3nq+/5SGvB54KhQ4evgQnF9Kvk/OWVUugc68GvGdO7utIKdb+cTUqeG/udvVHppnCk16Kg1G0mtKiHK1ZvbX+3GrS91sSsIb85NxHe4zUsw1LkdrvtdWfdjKvH7ShDkMvtNvaJYj8VsRd5KUy9no7baxPt37Wb731nNtmkqeFbi/JCMEYlWZVNeot0QcVQoGREQbb+pxVcUsLMgBb3FTGpVCetyEoivM/PS8VhEaOC5KDMZWFeQTVxFKYfLS0iqqSCnTkeF0YjpHxk6akGOp0pNexdvOri40cvdm+E+/nRycb8kN7nuXsHcGtWH31MOICJSazbZ5+EBIm9QkXbSQrqbGQQaGETZdTr+zkljQXYq72kcyJ98+78ez7lYkh5HjEcAHmpHDBYzsUUZJFUW8ljnEYBNIdRN5cj08O6ATSH0/aMb2ZATTxePAPYXZ5JZU2b3opypEOrj4IKXxpllmUcbKYSeD4Ig8OTX/ZnxeEdemrSZdT+lsmtJFi8vHErv6yRp7bOht5go1tfQv5mA1jONSkdnFfNTpnLr5L/I+sDASwmbeWvFiPMyKgf4hpNYWQjY0l2f7DISB4XKbogU11WzOvu04u7w9u0I7OHGpPvak5dazcZf01j7YwpFWbWIVigv0rdJMb9PHtx3VkMEbBlwEheHpDMi0WpYRCsv7V9OuaEWGfB897GE/UMUKbO6jLlxa6kyW9leZSDXeI582HqUMgF3lYogByfau7jR082LId7+9Hb3RnGZnqqzasrYnJvIgZIsTPVeBk+1E0P92+Hm6MGAzcvO2v/nviO4LbR9i4+zLSiEni9/zD3GvFePYDGL9LrOnzeWDkfjKD1TAfyddoiuHoF4aJyoNNaxIvMY2TXlvN5rIi4qTSOjMrWqmPePbmRGWHe7Ubk66wSy11xI2lJOh35eTFwYzPrceO5sP8BuVObqyhvoxZisFl49sMJeNM5FqWGQbwQ+Di5kVJeytygdY/3vP8bd327knokoipzYXUzK4TKmPhzdJorwrck+weGSbArqqlAJcjxyXcn/1ET89hLkChkWc+Nb59Lym0k0FZxVu+XMc6POYmogCHg1IomeSbR5MqpLmRu3DoDO7gE82nk4AIfLiyk3GsnV60iqruT3jJOk1TWdhXEmNwSG80BkJwZ5+qFRtJ0blMlqodqkRyETcFFq7BfasdtXsakwF8s/SqPKgIejYvisx+AmtiZRUaLn5YmbSYgtRakWePSLvky4u11rD6vV+S5+J8lVxehMBpyVaqK03kwL64Z3fSzQhRiVr0zbwp5lOQRFuzBlZRh7StLOalTm6Mr58OhmdGeoJ/8Tf0dXnu46CmfllVEk8ZPjW+jjHUqYswcWUWRpxhHyaiu42difb588SNKBMtvJesbp+0H6SL7O3v6vBQGvJiRjRKLNc7wsj89ObAVgYkhnpoTaMia8l82npD5a31etwVEQyK6rtWuE/eP8B0Ahk/FKp1682qnXZRn7pWBbcR7Dt65otNxRriBv0ixcVepWGNWVw5YF6bx/1x4MtRbCu7oxd82oNunev1L58N49rP4+Bc9AWz0bJ+3ZM7uK66pZnB5HXGkO1jPOULWgoL9vOFNDu+GkvDzZYS1BtVHP0/sW81TX0bzdZze5KdX0HuPPgXX59ovSlJ0hCG4ij8QMt/f7b9w6gp3c7dotz+5bwnVBHRkTZKvrU2c28vTexdzZvn8jDZ6rgfO9f7e9KCGJa4Yzs2MKaqvs///SbwS3h7bDRa6g0KCnymxiiKuG23yceKtTD0b6BCJg8y6c+gFbRUiqrriMo//3DPWyTRudOhYsIK+DWpOZkFW/cbSieWltCZt415Lymxg4LZj0oxXMDFnMjy8dbu1hXTXM+W4AM1/sTGluHbPCl1BWcHZ1VG8HF+7vNIR3+k5ldvQAZkb24b4Og3m33zRmRvW5og0RwK6snHuwmtzkavpPDOK/a0fz7ZFJDJkRgmeAA9mWMjq4NSxp0Mndn7RqW1zcubRbrmUkY0Si1Qhx9sBZYXv6jyvNoag+6n+cXwjz+44kd/JtTPYLpsxkYkulnoXFtdRaYe2QCRRNuZ0feg9jtG8QCpkMKyLJNVVn212bQyaT8VLHHvanSLlCxtAvtfR6VYWu1kSPDYv4Pq3pomMSNlQqBW8uGc7HO8fi4qHi93eOc3PQ36TESYbcpeCut3vw0Me9qS4zcnvUMnKSz32Ouasd6e8TzrCAdvTyDsFBcWUbIWBLX16YdpBIrTe/PHoCmQye+sGmaxTR1Z3X/h7Ggtwb0AmGSy4IeK0gGSMSrYZSkNv1DyyilY+ObeJQSRYW0YpFtJJcWUhntYnZPk50cVQik8l4J+EwTkt+4LHDu5jiH8q6oRMpmnIH8/oM5/XLMEVjFa0syzjCi7HLeGTXAl7av5xVWcc412xnYkUhbx1aw8M7/+Tl/cvtlTynBIQRVZ82/HhEe/p8oCE4TMmARx1wKpdx78HtzNq3qcWP60qn8yAf/iq4gemPdaAsr44HeqzmnVt3YDY3URFN4oKY8XhHXvh1EIZaM/d0XkHC/uLWHtJl54+U/eTpKhlR24Gsk5X0HOMvKQNfYiRjRKJVGRvcCb/6KPIyQy3fxO/ksV0LeWzXQr6J30GpQYdCEJjm60PJlDv4ptcQvFUafs9OwWfFzwzZvIzs2hruCItmvH9Ii493bXY82/JT+E9Ub17vNZEZYd1ZlxPPlrykZvuU6Gv4/MRWot18ebnneEYFRvNL0j5OlOchyGTM6zOCp6I6oK8tYEpkVz79ayIhfTT0fkhNUJKK37JS6LD2T6qMxhY/visZQRB4+JM+zEueSlB7LZt/z2CG50L2rMw5d2eJszLq1gjmrhmF1SLy2IB1HFiX19pDumz8kbKfY2V5zOk6iu8eiAMZPP3DgCbbXoggYIM2xtNtrlUkY0SiVXFUqJjTdVSDlF6zaG1QvTfM2YM5XUbipFRxX0QncibfxpZhk+nm5snO0gK6bfib9mv+YHFOeouPN626mO6egXTxCMRL40wv7xA6ufmftXT6tvxkvDTO3BjRE39HV0YERNPTK5iN9eXHB3n54SnTM9gvkkF+kQRr3Zm/+np8b1cQ/bKCbuucSKyuJGDlL+wvLWrxY7zSCYzUMi9xKg981AtjnYVXJm9hzvB16KokY+5i0ZtNpEbl0+lvB+SBIi/euIkFvxw9a5/mvIFnsiUviRdjl/Hwzj+ZG7eO9DYUNyGKIn+k7CeuNIcnu46kKslE2tEKug/3xTuw6Sq/p7RbzqQ5QcBTnNJuaa4w5bWCZIxItDquKgee6zaGxzuPoKdXMP6Orvg7utLTM5jHOg/nue5jcVM3zJIY7hPA4etuIGPCf5jgF0xaTTXX71mP17J5vBN/CKu1ZdzzES7eJFQUUlgfcJtdU05KVTGdPfyb7ZNWVdJ0UFu92JvZaiGruqxBUJtCLmfMc+FEPOyE1w8iw77SordY6Ld5CZ/VS+BLnJ0bnujE30U30nmwN0e3FXG9918s/TyhtYd1RfJz8j7iKwp4aMQQ/rtqFEpnge/vP8Jvnxxpsv3ZvIGn2F+cyd9ph5gY0pmXeownyMmNT49vaeQ1aC3+SD3AvqIM7o4eiEau5H/37QIZPPFDP3ubnxJ3syQ9zv5+VGA0J8rz2ZATT0FtJSsyj5JZU8bwAJte0JmCgEdKc8jVVfBT0p6LEgS82mg7YgwS1zSCTEYnd3+70Nb5EuqkZdWQCdSaTTxzdC8/ZSTy0vH9vHnyIP8JieKTboPQqi5dAN244E7oLSZeO7gSmUyGKIpMDetGP5/wZvtUmfRNBqzpLSaMFjO1ZiNWRFyaaBN+jxPdlcEs/jiBMdku7P6vnsfidrO1OJ+/+o+WZNHPgbObio93jGPnkkzevX03nz+6n+VfJPLO2lH4hTq39vCuCIwWM4dLsnkoZijtXX3AFeYfmM7ssYv56amjGIqs3PV2jwZ9zvQGgk1jJKWymI25icS425RzN+Ym2L2BALdG9eV4WR67C1MZFxxzeQ+yCbblJwPwwbFNWCpEMo9YcZslI8uxlCBsBSTLDLXIOC3QFqn15p7oQSzLPMLSjCP4OLjwYKchdo0RgLFBHTFazPyaHGvXbnksZsRVqTFyIUjGiMRVgaNCyRc9h/BZ90F8mnKc/ybEMS8jiZ8zkhjuHcCXPQcTrf33RdYOFmcSW/+0FODkRnZNOQvTDuKmcmCAb8QlOJLGPPRRH1y9Nfz0UhyD7lGTM9+JxbnptFv7J7GjpuOplgLpzsXg6aH0Lw9m7qydbFuQyW0RS7j+iY7c915PyaA7B1ZRxIqIQnb6ZukV4MjA772JfayE3985TkWxnjnfno6jaM4buDDtEHDaGzg+qJN9vSCT0cHNz+4xbG2+GTLT/v9jA9cg6kv46KXJBPuermT9VNfRjfr18g6hl3fz8WsymYwpYV2ZEiZVoj4T6SyUuKoQBIEn2nelYMrtrBk8ng5adzYX59Fh3UI6rV3Amvyz15Y4F4vS4xgb3Ik+PmEEOrnR3zecUYEdWJN9stk+WqWmyYA1jVyJSq7AWalGQEZ1U0Ft9WmCt77YhSe/64+h0kLgzWZuc4okTVdN8Krf2HmRFYuvNRQKgVf+HMqX+yfg7uvA3x/Gc3PAIuL3XXvZIReCRqEkwsWL1dnHqTDUYhWt7C1KJ9NYRswnLgRFa1n9XQqvTNti73Mub2CNydCsN7DS1DamaU6Rm1rFyT0lRPfxJDja9dwdJC4KyRiRaHHKDbX8kLCbOXv+5pFdC3jj4CoyzhLwCZcm+G2cfwgnxt5EwtibGOUTSGJ1BRN2rsF3+Xw+TDxyUXElRqv5tEhZPYJMhthIE/Y0EdomgtoqCojQ2gLWFIKcEBcP4isK7eutokjCGW0AJt7TjjeXDsdstFA4tYD3HHtjsloZunU5/0uIu+BjuVZp39uThXk3cPOzMVQU63m0/1reuGEbxvOse3Qtclf0AEQRnotdysM7F7AlN5E+3qHIFQI/npxMh35e7FmWw+OD17ZYvFZr8cFdewB4+semM2gkLg2SMSLRouhMRt47sgG5IPBo5+G83msiN0b0xOksQkiXOvgtWuvOxmGTKJ86m7vCoqk0mXjq6F6cl/7Igwe3U2M+/yyLrh6BrM4+zrGyXEr0NRwuyWZjTgLdPYPsbZakx/FT4m77+2H+7SjR17Ao/TAFtZVszUviYHEWowOj7W1GB3ZgZ0EKewrTyK+t5PeU/RitZgb+Y+pn4JRgPtw2FmSwbspJfrEOxkOl5rlj+5iwY/VVdyNoSe59tye/pk8nNMaVHYuymOHxF9sXZbb2sNok3g4uPN1tNJ8OvIn/9pvGCz3GYRGteGmcEQSBz/eOp++EQE7sKubeLitxEdT/2hvYFijMquHo9iKiursT3vnfT/NKNI9kjEi0KOtyTuKuduTO9v0Jd/HCS+NMJ3d/e/GupjhXKiw0DH4LcHLl1qi+qAQFuwtTm92uVqXihz7DqZ1+F3O79MVJruTrtHhcl8xj/I7VpJ+Hgustkb3p6RXC7yn7ef3gKv5OP8wQ/yimhp6e/6001tkrmAJ4aZx5JGY48eUF/N+hNWzITeC29v3sgXwAfbxDuSGiB8szj/LWoTVk68p5LGYE2ibKv3ce7MM3hyaiVMv5/paDfJvXjwGePqwpyCZ09e8U6M8u2y1xGt8QZ344PoXHvuyLxWzlzRu289jANVSVta2pgraCWq7AVeWAzmTkZHk+3c4wwt9ZNZIxd0aSebKS2HvKOFHUcPrwYryBrc0Hd9u8InOa0RWRuHRIhfIkWpTXD6ykk7s/5cZakiuLcFM5Msy/HUP8o5rt896RDYQ4e3Bz5GlF1V0FqSxMO8QnA2/EbLXw6K6F3N9xcIN0uJ8S91BnNvJQzLDzHt/SnHSeO7aPpJpKALq6evBRtwGM9A06R8/Wpyhbx71dVqCrNHHHG105NrWW95KOohYEVg4az2i/tn8MbYnaGiOvTd3G4c0FyJUy7n6nBzc93fpZHW2BE+V5iCL4OWopqqtmUfphlIKcZ7peh1wQWJIeR4WxltnRA/nuuUMs+N8JHHrBzd91YHR0exIqClmQepBHOg+zG+H7izOZl7iHWe36EubiyabcRA6WZPJGr0lNGuGXm7KCWm4OWERojCvfH5vS2sO5YpEK5Um0CYr1NWzLT8bHwYXHOo9gqH87FqQdZE8TMSCnuJzBb9OCwkkcfwvHxtzAEC8/jlWWMWr7KgJX/MJXKSfa9LSHT7ATv6ZPx91Pw/zXjhL8ncCyQWOxinDdjlW8fmJ/aw/xisLRWcV7m67jndUj0Tgq+PaZQ9zRbul51WO52qkzm/gj9QCvHVjJT4l7iNJ683jnEcjrM5HO9Abe+25P7n+/J3WH4Y+bE3lt6+p/7Q1sDd6/ey+iCE9+K3lFLgdSaq9EiyICoc4eTA/rDtiK4+XVVrAtP7nFUmEvhs6unmwfMZUyo57HDu/ir5w0Hjq8k2eO7uXeiI7M7dwXjaLtnS4u7mp+S5/OPZ1XsOyLJIYWGUiZdwt9Ny7hjZOH2F5cwPqhE1FI6avnTd/xgSwquYkP7t7Dhl/SmB29jMkPtueRz/pcs2nAvb1D6e0d2uz6O6Mb3rBvfCoGrZea92fvIWuGlad2D6K9r2ejfiMCohkREN1oeWtTUaJn/5pcgqK1xAzwbu3hXBNcm2eWxGXDVaXB37FhOpy/gyvlhubjGi5FKuzF4qHS8Gu/Ueim381rnXqiFAQ+Tj6G89IfmbZrLTm1Nf9q+y2BSqPgx4SptOvlwfa/Mvl4wm6yJsxkhHcAW4rzCF71K1m11a09zCsKhULgufmD+DZuEl5Bjiz/MokbfP/m6I6Cc3eWAGDsHVG8tXIEFrPIo/3WcGjTlVPP5qN7bV6RJ77ud+7GEpcEyRiRaFEitd4U1jV0cxfWVeGhbrq2A1y6VNh/g0IQeD2mD+XTZvNHv1GEODqzLC+T4FW/0XvjIvaUtq2bkkIh8EXseHqN9efotiIe7rmG9YMn8lqnnhTo64ha/Scr8qRMkQsloqs7f2Rdz6xXu1BTbmTO0A28PHkzRr2UBnw+9JsQxEc7xiITZDw3ZhNbF2a09pDOSU2Fkd3Ls/GPdKb7cL9zd5C4JEjGiESLMjqwA2nVJazOOkFRXTWxRRnsKEhheEA7e5uWTIW9FNwSEkXahJnsHzWD/h4+HCovYeDmZYSu+o35GYnn3sBlQhAE3l07mlGzwkk/VsEdUUt5Lqw764dMRJDBlF1refbIntYe5hXJnW9058+cGUT1cGfvylymeyxk42/Nxz1JnCZmgDffxE1CpZHz1s072nx9oI8e2Itohcc+79vaQ7mmkLJpJFqco6W5LMmIo6iuGi+NM6MDOzTIppmXuIdSg66BtHJiRSF/pR0iv7YSN7UjE0M6NzI0tuQlsj4nniqjniBnd26J6EX4ZUgLLNDX8ujhXSzNTccsimgVSh6MjOHNzr1QCZcurqRMr6PGbLC/d1ao8dA071E6k6+fOsDfH8bj6qXmh5NT0LtY6bNxMTl1OgZ4+rB1+ORLOtZriXXzU/jkgViMegvtennwzuqRuPu0jaDLtkxxji37q6bCxG2vdeGO17vb18VtLeC/s3bxxtLhRPduHFtyuaitMTLNbSFeQY78njGj1cZxNXG+92/JGJGQuEiMVjOvHD/A16knqTKbUMoEpgWG8VmPQfhqHM/aVxRFjFYrannTxbHK9DpeObACs3g6m0chE/i/3pPP2yD5893jfP/8YRxcFHx7ZBK+oU5M3rWW1QXZeKrU7Bs1nUhnSd76YtDXmnnj+m3sX5uHIJdx+xtdmfWSVGvkXNRUGLmr03LK8uuY/GA7Hv+yP0kHS3ly6DoMtRbG3hnJMz8NbLXxvXvHLjb8nMYbS4czaOq1XUX3UiEZIxISl5Gf0hN47cQBsut0yIB+Hj580XMwPd2bjsR/J/4QHyYdbdYgyKop4+3Daxstf6nHOEKcPc57XGt/SuGDu/egUAl8umcc7Xp48t+Ew7x4LBa5TMZv/UZxU3DkeW9PoiGHNxfw5o3bqC4z4hvqxNurRhAWIyl1ng2j3sy9XVeSm1xNrzH+JO4vpbbKhNUiotLIWVR8Iw7OylYZ12SXP3Hz1bAg54bLvv+rFUlnRELiMjI7vANZk2axY/gUerp7sbesiF4bFxO5+ncWZKc0aFtrNvG/xCOUGg1M2LGGKtP5y9FfKONmR/HmcltGwyN913B4Uz7Pd+jBtuGTUQoCN+/dyMOHdrTY/q92eoz0Y1HxjUy8rx1FWTru6bKS9+/e3ab1aVoblUbBTwlTCO/iysH1+dSUG7FabM/ERr2FHYv+XTHLi+Xzx/ZjMYs88EGvczeWuORIxoiExCVksLc/B0ZfT9bEW5kSEEpmbQ237N2Ex9KfeP3EAcxWKz9nJtsNkFRdFTP3bsLagg7KAZOC+Gj7GGQyGc+O2cjWhRkM8Q4ga8KthDu68GXqSXpt+Bu9WcoQuRgEQeDJb/rz/Ykp+IU7s/bHVGZ4/sXBjVdOKuvlprrMiKHOwj9qTiIIsPr7ZPv7Mr2OrJoy+6tMr2uR8RiNZtbPS8PdV8OIm8NbZB8SZ0eappGQaEH0ZjPPH9vH9+kJ6CxmlDIZakFOjaXhjf+FDt15p8tpTYNDJdl8E9/YY3Gh0zRnkhlfyUO9V2GotfDI532Z9nA0VquVm/ZuZFFuOm5KFTtHTCXG9eK2L2Hj97nHmP/qESxmkV5j/HljyXA0jlKw8Clqq03MGbaetKPldo/IP/k5dRqaAOFfx02dL58/GsvSzxN5Zt5Axt4hTVteSqRpGgmJNoBGoeDjHoOomjabL3oMxkWhbGSIAMxNiOOPrBSMFjM/JOxu0hAB+CPlQJOVic+H0I6uzEucirObks8fiWX+63EIgsDfA8fwSfeBVJqMdNvwd5tKV74SmflCFxbk30CHvp4cXJ/PdI8FrP4h+dwdrxG+evIAKYfLmjVEBEHG2nkp7C5Ma2CIAJhFa4MilJcCs9nKqu+ScfVSS4ZIKyIZIxISlwFBEHgoKoZOWo9mT7o792/hxUPriS3OaHY7adUlfHh0I7qLjDPxDnLi1/QZePg78Msbx/j4wb0APNauC/tGTkcjyLlz/1bu2r/1orYvYcPNS8Pn+ybw4u+DEeQyPrxnL/d2W0FxbstMM1xJjJwZRr+JgSg1tjNBrmg4V2O1ivz1xQmWZxxtsv+3CTvI1VVcsvH88MIhTAYrs9/qdsm2KXHhXJQx8sUXXxAWFoZGo6Ffv37Exsaetf3HH39MdHQ0Dg4OBAcH8+STT6LXSyW6Ja4tDpYXs7O0gOZCG41WK59kZlNjMqOWK5gR3p3/9ZvOh/2v57Z2/XCtLyCWX1fFyqxjFz0OZzcVv6ZNI7CdCyu/Tub1GVsB6OPpQ96k24h2duWnjEQ6r1tIjbnlgmuvBUb+J5wlpTcxcFow6UcruDV0CT++fLi1h9Wq9Bjpz9srR7Ks/Bbmrh3FlIei8Qmpn3apt0tMZSJVK21nirNCjfaMMg+VRj0fHdt8SeJHrFYry75IwtldxaT7216NnGuJCzZGFixYwJw5c3jttdc4dOgQ3bp1Y+zYsRQVFTXZ/vfff+f555/ntddeIz4+nh9++IEFCxbw4osv/uvBS0hcSXyY1PhJTwbIZTL7iWgW4c/SOvzdwhjuH42rygEnpZrBfpE803U0Cpmt5e7CNAxNTPecL6cyGqL7eLJzSTZPDl2H1WpFq1KRMP4Wbg2J4kRVOQErfiWuvPii9yNh+6zfXDKcj3eOxcVDxe9vH+eWoL9JiStt7aG1KiqNnD5jA3j4kz78njmDeYlTGfiSH6p6bcOyL+BO7UDe7z+D9/rP4IXuY+3xUtUm/b8yyE8x/7UjGOsszHq1y7/elsS/44IDWPv160efPn34/PPPAZtlGRwczKOPPsrzzz/fqP0jjzxCfHw8mzZtsi976qmn2LdvHzt37jyvfUoBrBJXAw8c3M7agmw0ghwnhQJnhQI3pRp3lQYBkT2F6VRbrJhlAoVGM75qB2aHRXNzcCTd3W3KsvOS9rKn0CZD/kjMMLp4BP7rcb04YROxa/IIi3Hlq8MTUSptQmzfpZ3kgYO2c/TLnoO5P7LTv97XtY7VauXLJw+w7LNERNE2ZfHs/EEoFNKMuclq4bl9S9GZDViyRfSvOmDUWfnv+lFEdLFpt9SY9Ly0fwV6iwmlIOfdvtNxUqouan9Wq5Up2j8R5AJLy2+6ZisytzQtEsBqNBo5ePAgo0eflu0WBIHRo0ezZ0/TNS8GDhzIwYMH7VM5aWlprF69mgkTJjS7H4PBQFVVVYOXhMSVzjsxvZjoKmeYs5XeGiMdFLUEUcmHXfvyn+AwEvRmHOUC73XqQvzYm5joH8K7iXEM2LyUU88Moc6nBbUuNm6k0bhWj+K62yPIOFHJHVFLqa2xbffeiE4cvu56nBUKHji0g1v2bpT0M/4lgiDwyCd9mZc8laD2Wjb/nsEMz4XsWZnT2kNrdXJ1Fejqyx/06RHCZ7vG4+6n4fFBa1n2ha2ejbNSQ1/vUMBmvKRXl1z0/v6YewK9zsJ/no+RDJE2wAV9AyUlJVgsFnx9fRss9/X1paCg6SqmM2fO5M0332Tw4MEolUoiIyMZPnz4Wadp5s6di6urq/0VHCzJ8kpc+dSYDU1mB9SYDewqtU2FJOvNvJWUgJ/GkUJ9LQ5yBd/0GopMZptMz9NV2vs6KC6dSuVz8wdx07MxFGXVMitsKeVFdQB0dfMkd/Isurh6sCA7lQ7rFlBxkdk8EqcJjNQyL3EqD3zUC2OdhVcmb2HO8PXoqq7dGB3jGdOOnmpn3H0d+GDrGFRqOV8+cYDsJNtv3/OMtF6j9eKmKq1WK3++exyNk4Kbn4v5dwOXuCS0uDm4detW3nnnHb788ksOHTrE4sWLWbVqFf/3f//XbJ8XXniByspK+ys7O7ulhykh0aqcMkYAkmvr8F3xM6sKslk8cAy3h7UHoMJQy776TBuVIKedq88lHcN97/bk/vd7UlVq4PbIpeSm2jySzgoVR8fcyL3hHUiuqSJw5W/sLS28pPu+VrnhiU78XXQjnQd7c3RbIdd7/9Xmq9q2FFrV6SDVlCpbDKKzq4pvj07CL8yZlydtprJMT0rV6XNFq7y4AoWLPoqnrtrMjU93lLwibYQL+ha8vLyQy+UUFja8EBUWFuLn59dkn1deeYXbbruNe+65hy5dujB9+nTeeecd5s6d26zLV61Wo9VqG7wkJK5W9BYL20vy7e9FbJk1DoKcYAcnLKKVuNIcPji60R602tcnDEfFxc2Vn40bn4rhmXkD0evM3BOzgqSDp4Msv+09jF/7jsBgtTBw81I+Smw69VLiwnB2U/HxjnG8vngoSpXA54/u566OyyjIrGntoV1WfB20BDm5AZBeXUpcqW3qytPfkbdXjSQ/Tccd0Us5UmBb7qF2JEJ7cRV+f33rGGoHObe9KhU3bCtckDGiUqno1atXg2BUq9XKpk2bGDBgQJN9amtrG1me8vpKpVeA+KuERItzoLwEYxOGud5qoeeGv7hpy+98dXI7RXrbzclT7cTU0Ja7iI69I5K3Vtrq2Tzaf00DWfNbQ9tzfMyNuClVzDm6h2m71kpxJJeIwdNDWVJ+M8NuCiUroYrbIpbw9VMHrpnPVyaTMSLgdHrtt/E7WZB6kLSqEsz+Jno/6UNNiYm8R2z3jWH+7RFkF+7VWPZlIroKE9Me7SB5RdoQF/xNzJkzh++++4758+cTHx/Pgw8+iE6nY/bs2QDcfvvtvPDCC/b2kydP5quvvuLPP/8kPT2dDRs28MorrzB58mS7USIhcS2zo6QQhUzWaLkIGERYVqqjxGQBIMjJjTldR6FVXZx7+nzpNyGIj3eORSbIeH7MJjb/kW5f10HrTt6k2+jt7sWyvEwi1vxBib6uRcdzraBQCLyyYCifx47D3UfD3x/Gc3PAIuL3XRvp1QN9I+jlFQKARbSyOS+Rd4+sZ27cOkqnlOA4GAwJYPpEzejApnVB/lnP5p81bea/GodSLTD77e6X45AkzpMLLphw8803U1xczKuvvkpBQQHdu3dn7dq19qDWrKysBtbmyy+/jEwm4+WXXyY3Nxdvb28mT57M22+/femOQkLiCsBstTS5fHNxPuYmvIQCYAWc5HI6uvpxS3gMndz9EZowXFqCTv29+fbIJB7stYp3Zu6kskTP9Ec7AjaZ+/2jr+fxw7v4NOU4wat+Y82QCQz3CbgsY7va6dDHm4X5N/Ldc4dY+P4JHu2/liHXh/DC74NQqa7eOjeCTMbdHQbike7IlrykRgHfAW/LKbxdIGtRLet+TGPiPe0arC/T6xrVs4HTNW1i/8inqtTI9Mc7SOnUbQypUJ6ExGVgR34Ki9IPU2cxNVheZ7HyS3FDJUkB20V5akAY90d2YpRP4GUzQJqiJK+WezqvoKbcyMyXOnPXWz0arF+Uk8YtezdiEUX+r3MfXurYs5VGenVSmFXDixM2k3miEo2TgmfnD2To9aGtPawWp8ZkYF9ROnm1lYgi+Dq60N8nHIVezi1Bi9DrzHy2dxwd+njb+2TVlPH24bVNbu+lHuOYE7mJmgojy6tvvqqNurbE+d6/JWNEQqKFWZt9giUZR5pcd7haz37daQMl3NGFB6M6cUdoND6alp2KuRB0lUbu6rSc0rw6JtwbxZxvG8aIpddU0W/TEoqNesb4BrFm8HhpPv4Ss/yrRL564gAmo5VOA7x4a+UItB6ac3e8Ckk/Xs793VehVAv8njUDV0/b57A7NpO5j27H63EBVXBDA35Uche+vTuOSfe344mv+7fGsK9JJGNEQqINkFldxjtxp5/UYtz86eIZgKNcxfGKQh48dgSTCIFKgZnBobzb8zq7pkhbw2g0c1/XVeQkVjFwahBvLh3RcL3VzKitq9hZWkCAxpH9o2YQ4HhpS71f6+iqjbw+bRuHNxcgV8q4+50e3PT0tamTsfmPdN6ZuROfECd+TZ/G3pW5vHXLdox1VjzukeF+e0NjuPQmBdUlRlZU34JKI3lFLheSMSIh0QaYl7iHPUW24E8HubLRNI3FaqVOBGe5gFwmMLfvVHtBPICDxVksyzxKqb4GHwcXZoR3byABL4oiKzKPsaMghTqLiUitFzOj+uDr0DLnidVq5fFB64jfW0LMQG8+2jGmkQfkhWP7+G9CHCpBYOnAsYz3D2mRsVzLxK7J4e1bdqKrMhEQ6cw7a0YR1O7auzZ+NecAiz6KJyDKhbzUavtyh94Q8MHpBImarVYKXxUZc2ckz/40sDWGes0iGSMSEq2MVbTy2O6/MFktOMiVvNJzPApBjlUUue/Adg6U5jHGXUMfr1D2l2QCMDOyD8MCbEF5qVXFvH9kI9PCu9HVI5DYogzW5cTzUo9xBNbrMazNPsna7BPcGT0AL40TyzOOkltbweu9JqEUWi5b7eXJm9m7MpeQjlq+jpvYaP59dV4m0/esx2i18mKHHrzdpW+LjeVaxWy28sHde9jwSxoyYPKD7Xnksz5tenpsW14y2/KTKTXY0tT9HV2ZFNKFzh7NBz6fzSA31JmZGbqYymJDgz4yBwhfIyATbF7GzBssWEtlLK+6BY2j5BW5nLRIbRoJCYnzR28xY6rPoLEKjryfdIIn4/YStXYhf+dlck9IGN4aZ/r5hNn7VBpPp8huyk0kxsOfsUGd8Hd0ZWpYN0Kc3dmalwTYvCKbchOYENKZ7p5BBDm5Mzt6ABWGOuJKWla1+K0VIxk7O5Ks+Cpuj1yGrrqhjPmEgFBSx/8Hf40j7yQcZtiWZZivEb2My4VCIfDc/EF8GzcJryBHln+ZxA0+f3Nke9OlOdoCbmoHpod348Ue43ix+zg6uPnx5cnt5OkqmmyfWlXM9wm7GOQXwcs9x9PdM4ivTu4gV1dBSW4tjw1cS1WpoVE/sQ5MNvse3R4r5iLoM8NfMkTaMJIxIiFxibFarWwqzOGBgzv5o6iG7wqq+Sw7h/8mxrG3rIipAWE8FhlDaV0ZA30jKTfW2vuq5KcvlmnVJXRwa6hs3Mndn7T64mAleh1VJj0dz2jjoFAR7uJlb9OSPPPjQG55PoaSnFpmhS+hrKC2wfogR2eyJt7KaJ9AtpcUELjyFzJ1UtHLS01EV3f+yLqeWa90oabCyFPDNvDy5M0Y9RdXt6Ul6eYZRBePQHwdtPg6apkW1g21XEFadWmT7ZszyJftPM79PVaSfqwCsRkbV3/M5vQv+UQEAW79SKo63ZaRjBEJiX+J1WplZV4mM/duInTVbygXfc/o7av4JSsZvQgeCoHuTkrWDBzFyXE382Of4dwWHEyd2UR/nzC25Sfbt9X+jHozVUY9WmXDbAmtUkNlfaG6KpPNi3JmTY9T7ysvUzG7e+b25IEPe1FdauT2qGXkJDc0NhSCwIZhk3ijU2+KDXrarVnAkpz0ZrYm8W+4883u/JE9g8ju7uxdmct0j4Vs/C2ttYfVLFbRyv6iDIwWMxEuXk22ac4gT04uQVdhal7FWw51x0VqD1ox54HjEFhedJS0quIGAmgSbQfJZyUhcYGYrVaW5qbzZ3Yqe0sLydPXcuqS6CRX0NvDiwl+IcwOjyavuoSfkvYAsDH7CH4aDV09AtlVkEp7Vx/+Sj9ETr2LOtjJnXCXi6u10Zrc8GQn3Hw0vHvbLu7tvIKPd44luk/Dm8urMb0Y7OXLxJ1rmbFnPU+268KH3aVAwkuNp78j3xyexNp5KXz6YCz/nbWLRR/F887qkbj7NJ0qXqbXUWM+PdXhrFDjoWm5LKhcXQXvxq3HZLWglit4oNMQApxcm2zbnEEu723lj5wZzP84jtWfp2CtBmRgPxEtYIiTYTguggy8n5GRXlPKu0c2IJcJvNV7coseo8SFIxkjEhLnwGg1szA7jb9y0ogtK6JQX2e/5mkVSgZ6+jLRP4TZ4R3w0zg26BuocWJ7QQqpVcVUmwx8dXI7zgp1g4s/2ETOboro2SCtV6vSUGVq6OGoMulxrfeEnKpYWmXUN8jAqTLqCXZ2u0RHf36MvjUCV081L03awqMD1vLOqpH0HtswKHGkbxCZE2fSZ9MSPko+xq7SArYNm4JGIV2GLjXj7oxi+E1hvHH9NvavzePmgEXc/kZXZr10uqaRxWplR0EKf6Ye4Ez/giCT8UrPCQQ4Nm0g/Ft8HVx4ued46swmDpVkMS9xL091Hd2sQdIc7j4OTH4+ihMj06jZIFLxh4gpG7tRYiqwHZXjQFBoT08CWEQra7NP8p+o3m02jf5aRJqmkZD4B7VmE9+nxTN+x2p8ls1HvegHbovdwvK8TPQWC8O8/fmga39Kp95B5fS72DlyGi907NnIEAGQCwIPdxrWYPrln4aIWlDwQMchtHfzbbA8wsWLhIqGwYjx5QV2l7aXxgmtUtOgTZ3ZRHp1SbNu75akz7hAPt0zFkEu44Xxm9jUxBSBj8aR9PH/YZJ/CLFlxQSu/JXk6orLPtZrAY2jgrlrRvHextE4uSqZ9/IRbg1bTMaJcsoNtbwTt5Y//mGIAFhFkY+ObiS7przZbR/bUcg7t+4gL6262TbNoRDk+Di4EOriwfTw7gQ5u7E5L7HJtudjkAtqGdpJAsG/Ctz1Z2f8+59xHiog5A0lzgp1g21sK0hmTfbJCx67RMshPZJIXPNUGY38nJnE0rwMDleUUGY8bSx4qtRc5xPItMAwZoW0R6tSXfD2nZQqnuwykmNleWzNSyK+ogAZMrwcnOnvE8ZgvyhcVQ78lLgbN5Uj08O7AzAqMJr3j25kQ048XTwC2F+cSWZNGbPa2dJkZTIZowI7sDr7OD4OLnhpnFmWeRQ3tQPdvYIvyWdzoXTo4833xyfzQI9VzJ21i/JiPTc80TBwUBAEVgwezweJR3jm6F46rlvIL31G8p/QqFYZ89VOj1H+LCq+kY8f2Mea71O4p8tKvCercJ5jsqcBOylUCDKBatOpeCQDHx3bzAvdx+Lt4GzfVtLBUn544TAHN+QDNgM0IMLlX41PFJuv23TKIB8d2MG+7J8GuYAMKyJquYLhE8PZFhBPYALkPwvUwjOh41AHCrx2cGWDba/KOsYQv0hcVNemim1bQzJGJK45SvR1zM9MYnleJkcrS6kwnU5L9VFrmOAXzIzAcP4TEoWjQnlJ9inIBLp5BqEU5JysKOCNXhPxdWyYc19mqEXGabdxpNabe6IHsSzzCEszjuDj4MKDnYbYNUYAxgZ1xGgx82tyLLVmI1Gu3jwWM6JFNUbORVA7LT+nTOXumBV8/eRBKgr13DO3cb2ap6K70d/TlzHbVzEzdhPbSvL4utfQVhjx1Y8gCMz5dgDXP9mJJ8eupXi5kdLN0H6umodvHUQHN19kMhlZNWX8nrKf9OpSdGYDyzKPcE+HQWTGV/LTy3HsXJyFoDj9GzWbLixde0l6HDEeAXioHTFYzMQWZZBUWchjnW1qvhdjkGsUSmrNRkRgTY7N26EKFhBrrXh4OfDmtO28seX078pT40SpXodZtLK7MI2xwVKWTVtAEj2TuOop0NfyQ3oCq/OzOFZZRrXZpoIqA/w0jvT18OHGoHBuDI5AJUj2+aVCV2Xk7pgVlOTUMu6uSJ7+oemA1TKjnr4bl5Cqq6Kbqye7R069ZEagREMsopUXY5eR/oOOsh9FsMDkB9rx8Kd9UShtXpJas5GX9y9HZzZiLZQRuiyQbb9lIshlWMwNbxdPfN2PSfe3P+/9/5y0l4SKQiqNdTgolAQ6uTE2qBOd3P0B+ODoRtyVjtwc2BtDrRlDnYXDxTlsKUikwlCHKw70UUTgb3HFqLdg0FtYnxZPsbwKwQlAhqVKxJglovtboFN/LxL2leIapsLpPT1yV4EBPuF2VeQuHgE8EjP8Uny0Es0gKbBKXLNk6qr4MSORNfnZnKwqR2ex6S3IgEAHJ/p7+nJLcCRTA8JQtGG1yqsBo9HMA91XkRVfRf9Jgby1YmST7axWK7fs28RfOWm4KlTsHDmFzq5XXmZRWydPV8kbh1YB0A5vCt+AuC0F+IU7c91tEfiGOmM2WdmTkcaBn4sw55x9e24+GhxdFFjMIhaLiNUiYrVY6/+C1SoiWsX6v/XvRdv/oiiCWJ8AcxnuQr5zZTgPEniu6xjePboegGhXX+Z0HdXyO7+GOd/7t/QYKHHFk1xdwQ/pCawvzCGhuoI6i23+WUBGsKMTUz39uDUkinF+wS0ila03m1iWeZS40myqTQaCndy5ObIXYWdJ002sKOSvtEPk11birnZkQkhnBvpGNGizJS+JDTnxVBrrCHJ255bIXoS3QmDqv0GlUvD98ck8OWQ9e1fm8uiANXyya2yj70EQBBYOuI4vU47z6OFddFu/iG97DeHuiI6tNPKrE6P1tBBagL8bT2/sQ/LhMp67biM/v370dEM50HQYRwNqKowY68zI5DIEQYYgt71USgFBLiAoZMjlMuQKGXKFgFwpoFDIbH/rX3KFDLlKQKkUUKgEFCo5SrWAUiXU/5WjUMtRqmQoNXJUajkqzamXgFwt8EfWfiqpBSUIGpCpwW+/F7HvFROxVIZVkCF3ldHFI8CuzwM2RViJtoFkjEhccRyvLOXH9EQ2FuaSVFOJoT74TS6TEerowlBvP24Lacdw74DLUqfj5+R95NVWMjt6IG4qB/YVpfPRsc283msi7urGGTYl+ho+P7GVof7tuLvDQBIqCvglaR+uKg0x7rZ02P3FmfyddoiZUX0Id/FiU14Cnx7fwhu9JjcSOWvrCILAJ7vG8crULexZnsPdnVbwzdHG9WwAHorqTF8PX0ZsXc49B7ezvSSf+X2b9qZIXDguZ2h2pFYVI4oi7Xp48FvGdCqK9fgEOyHIZXyXsIt9JzOpWGBFt1zAarJ5N85EkMuY/VZ3bn6m9asGh9e68uGxTQ3KKaQai0GE7CdFgn+SEezkzszIvnxxcqu9TV/vsMs/WIkmkYwRiQb8UwAJWl4E6VzsLytiXkYim4vySNNVYayvcaKUCYQ7uTDCJ4DbQ9sz0MvvHFu69BgtZg6XZPNQzFB7+u7k0K4cLctlW34y08K6NeqzLT8ZL40zN0bYgjr9HV1JqSxmY26i3RjZmJvAYL9IBvlFAnBrVF+Ol+WxuzCVccGtf/G/GP5v2Qg+vG8Pq79L4bbwpfwYPwUnbePspN4e3uROuo3+m5fwc2YysWXF7Bs5/aIymSQa4qlxIszFk4zqUnJ0FRwsyaK3dygOzkocnG1xOpnVZRwuyUbhIyN8jiPPfz6OlZ8ns+jjePQ6s11+XSYDywUGsLYUfo5aXug+lsXph4ktthWlsdZnBJvSQPO7ln4vh/HR8U0U1dnSkX0dtPZYFYnWRzJGJOyU6XW8cmAF5n8Ue1DIBP7vMikWiqLIzpICfs5MYltxHum6asz1YU0qQSDKyZVRvgHcGRZNT3fvFh/PubCKIlZEFLKG2StKQUFqVXGTfdKqmpa4Xph2CLClOWZVlzE+6HSUvyCT0cHNj7Sqlq8505LM+XYAbt4afn/nOLeGLeH745PxCmjsPdKqVJwcdzN3xm5hfmYSgSt/YcvwKfT2aP3v/EpnREB7fkq0qQL/kLiblKpi+nmHoRDkxJVmsyE3AWt9EMdQv3Z4+Thx55vdufHpTqz8OpkF/ztBVZkBi1m84GyalsRd7cjdHQbRyyuUbxN2Yow/Pc908psKil0Oop1i85Q6yJXc13EQgiR61maQjBEJOzVmQyNDBMAsWqkxG/CgsTEiiiLzM5Po4eZFN7cLDzi0Wq1sKsrj16wkdhQXkFVXg6Xe+NAIcjpp3RnjG8SdYdHEuHpc+EG1MBqFkggXL1ZnH8ffUYtWpSG2OJO0qhJ8ztBnOJMqk77JejJ6iwmjxUyt2YgVsZH+gValoaDuyi80d9fbPXDz0fDlEwe4s91Svjo0keDoptU35/UdwTBvf+45sJ1+mxbzSfdBPNKu82Ue8dVFX+8wTpbns68oA6sosiUviS31laDPJFLrzbgz0l6dtCpufjaGaY9Gs/anVJZ+lkBwdNtLKOjuFcTTXUfzyIm1nBkZW/yBiNxbpOtYb2ZF9btgxVeJlkUyRiQuGoPFwl0HtvJ7VgrTA8JYPGjsOftYrVZWFmTxR1YKu0oKya3T2Z/CHOUKurt5MtY3mLvCo4l0vjIuFndFD2B+0j6ei12KgIwQZ3f6eIeSVVPW2kNrs8x4vCNuPhrm3rqTe7uu5KPtY+jYr2mvx+zwDvTx8Gbw5uU8GreLbSX5LOg36rLEA12NCDIZd7bvj5vKkc15iZj+ITgmQ0Y/nzBmRvVpUEX6FGoHBVMfimbqQ9GXa8gXjHudE8aSxik6pa/BtFG9JEOkDSIZIxKAzcORXFHU7HrrPzwmJYY6puxax77SQgC2FOchimKjWg9mq5XFueksqC8ql39GUTlnuYI+Ht71ReXaE+z475QcWwtvBxee7jYag8WM3mLCVeXAt/E78dI07RnRKjVU/aOqbpVRj0auRCVXIMhkCMiobqKNq/LKCl49GyP/E47WS82L4zfz+KB1vLViOH3HBzXZtrOrJ3mTZzFoyzL+zkmjXXkJ+0dPx+MKC+ZtKwgygRnh3Rkb1JG9Renk6iqwiiI+Di709w3HQ31lF5FL3F/aeKEIFpPI82M38eWBCfiFNX1+SrQOkjEigVW08nNyLHsKmy83/nd6HI/FDEclV5BQVc7YHavrvRo2KkxGTlaVE+mkZWFOGn/XF5UrMjQsKjfI049JAaHMDmuPTxO1XK5k1HIFarkCncnIyfJ8ZoT3aLJdhNaL42V5DZbFVxQQobWl7SoEOSEuHsRXFNpl3a2iSEJFASMCzl9g6kqg93UBfL53PI8PXstLE7fw7PyBXHdbZJNtHRVKDl93Aw8e3M7XafEErfyVDUMnMagVApevFpyUakadIbXeVrnQ9PmE2BIEhQzrP0TarBaRmgojz163kS8PTGC/LuOKT5+/WpBEzyT4K+0QG3MT7O9dlRp8HbWU6nWUGnT25T29gonyCGfa7nXUWSz22I5TOMkVdoExAHelim5unkwNCOP2sPZX7VPsifI8RNEW0V9UV82i9MMoBTnPdL0OuSCwJD2OCmMts6NtCqQl+hreOLiK4QHtGeQbQUJFIQtSD/JI52ENUnvnJe5hVru+hLl4sik3kYMlmbzRaxJa1dWnjZCbWsX93VehrzFz//u9uPGps0t0L8hOYda+zVhEkXe79OOZDt0vz0AlWoVv43eSV1vJzKg+9vT5jbmJzabPPzl6Lcc2NQ4gP2WgKJQyHlrfg3WKYw3S5w+VZF2R6fNtGUmBVeK8qDDU8kLsMqyICDIZt7frRz+fcASZDFEUOV6ex/cJu9BbzMTXGtlVZUCkacFElUxguI8/0wMjmBUahbPi2kjFPFCcyZKMI1QYanFUqOjpFcy0sG441B//vMQ9lBp0PNV1tL3PmaJnbmpHJjYpepbI+px4qox621NbRC/CtVfvU1t5YR13x6ygqtTATc924r53e521fXJ1Bf03L6XMaGCifwjLBzYWU5O48jFazDy++y8eihlKF49AkiqLWJ9zkpPl+VhEkQc7DmlQGFIURSZof8dUY0WuOC1hL/cA51Ey/AY4cMOULuytTifM2YP/RPUBYHNuIgvTDiEDQlw8JC/JJUJSYJU4L3YVptoDSMcEdWTAGTdEmUxGpNaHMLdQ3og/QqX17HarVqli7ZCJjeJGrnZ6e4fS2zu02fV3Rg9otCzazZeXe44/63ZHBEQzIqDtBgleatx9Hfg1Yxp3d1rBwv+dpKJIz7M/DWq2fTsXN/Inz2LolhWsys8ibPUfHBg9/aqb/rtQ1mSf4HBJNgV1VagEORFab2aEdcfP8ewPcgeLs1iWeZRSfQ0+Di7MCO9OF49A+3pRFFmReYwdBSnUWUxEar2YGdUHX4eWfUD8Z/q80WImyMmdoroaCpvILjMZrVitIk5+CoZODKPdUHe+/r/9aLzkBDyuYEZ4ZxamHkREtKfP7y/OZFH6YcJdPFEKAt4OLlesyOCVivQYcY2TXn060OvUk/nxylL6b1pC342LcVs6jzkn4hoYIgLQlLlRYtSTXFPZwiOWuJpxdFYxP2UqoZ1cWT8vjRcnbjpre5WgYO+o6cxp35XsuhpCVv3OpsJzFFS5ykmqLGJ4QHue7zaGxzuPxGK18snxzRjOmEL9J6lVxXyfsItBfhG83HM83T2D+OrkDnJ1FfY263Li2ZyXyK3t+vJ89zGoBQWfHt/SKBvnUnNm+nyFoZZO7n72KdGmUKnl9Nmk5YHYrjz1/QBMQ+rQ9lRQfciCwWJikG8knT0CEMGePn9KZDDK1RuD1cKtUX1RCQp2F6a26LFJnEYyRq5xzoz7cJTbphVkyNhXVoRZtPJR9wEcve4GHvJ3ZbaPM7f7efF/nfsw1jcYlzMqq8rrvSHbivMv7wFIXHWoVAq+OzaJLkN8iF2dxyP9VmO1nl1c64NuA1g6cAxWUeS67at488TByzTatsfjnUcw0DeCACc3gp3dubN9f8oMtWSeJdV8U24iMR7+jA3qhL+jK1PDuhHi7M7Wev0RURTZlJvAhJDOdPcMIsjJndnRA6gw1BFXkt3ix3RX9ABEEZ6LXcrDOxewJTeRPmfxRsoUpx+X0qpKiO7rgWgEY32M/im1ZDgtMtjxDCHCq0Vk8EpCMkaucTzOCP46UW4zJGJcPZjoF4JGruDhqM6oMWMWrSgFGT3dPXixY0/WDJ1AxbTZnBx7E9/3Hsbtoe3p6OKGu0rdWocicRUhCAIfbR/LoOnBJMSWclfH5Rj1zT/ZA0wNDCd5/M14qzW8dvIAo7etxHwOI+ZaoM5iAsDpLDFcadVNqwKnVdtuxiV6HVUmfYMbtoNCRbiLl71NS3Iqff7TgTfx337TeKHHOCxNCDSe4sz0+SqTnh7j/UAAQyyo5Aq869Puy/U6akwGu8jgmenzWpWGSpO+2X1IXFokY+QaZ4BPuP3/FVlHqaovNDU9MIw9pYVsKshmUfrhJtsLMhkdte7cHd6BH/sM5+S4m7khqGEQpoTEv+GNxcOZdH87cpKquS1iKTUVxrO2D3XSkjvpNoZ5+bOpKJfgVb+SU1tzmUbb9rCKIgvTDhKp9SbQya3ZdlVGPdp/aNholRoq7Td023WhKeXgSuPlu2Gr5QpcVQ729PnmiNB6kVBRcLqfiwLHKIHa3bb38vpA54TK09pKoggJZ6TYS1xeJGPkGidS623P1S/R63j94CqWpMcRprE9Rd0Vu4GMeveuh9qRHmdErUtIXA6e+Lo/s17pQml+HbPCF1Ocoztre4UgsHXEFF7u2IMCfR2Ra/5gVV7mZRpt2+KPlP3k6Sq5t0PzgcBXAifK8zhelkeJvoaT5fl8eGxjg4DcJelx/JS42/5+mH87SvQ1LEo/jINcycnyfDTDRHTHrehrzVQZ9SgFOXsK0zhenocMGSuzjmG0mu2xc1ebyGBbRzJGrnFkMhn3dRhsz9XXmY2szTnJwtR9aAUZOQYTVqsVR4WKBzsNRSnIz7FFCYlLz51vdueRz/pQU2HizuhlZMafO1D6/zr3Ze2QCQBM2rWW54/ua+lhtin+SNnPsbI85nQd1aQWx5loVRqq/jElUWXS41rvCdEqbdo2TSkHu16GbJM6s4k/Ug/w2oGV/JS4hyitN493HmFfX2mso8xQa3/vpXHmkZjhxJcXkFVTRmpVCcP7RYIFNvycSnxFAe1cfbghogerso4jIpKjq+CxmBFoVQ52kUHJS3L5kFJ7JfDUOPF8tzH8nX6YgyVZWOuDWjs4KomtMVIrd+L/uo06Z2qghERLMu2RDrh6q3ln5k7u77aSD7aNIWbA2av4jvULJn38TPpuWsy7iXHsKMlny/BJqISr99IniiJ/ph4grjSHOV1HNVuW4EwiXGzTGqPPUGONLy8gol5nw0vjhFapIaGigGBnd8BmIKRXlzDMP6plDuQMzkyf11tMFNfVUKK3echKDDpGBXawx8ScKTL4cs/xdpFBzyEqEGDlmgSEmFq7yOCIgGi7yGBBXRUahZJNuYkNvCQSLc/Ve0ZKXBBuakfu6TCIG409OVaWS43JyA2CnHG7t3K81iwZIhJtghE3h+PqpeGFcZt4csg63lg6nAGTmq5nc4oARyeyJt7KhJ1rWFeYQ+CK34gdNZ1w56vzN/1H6gFiizJ4qNNQNHIllfVxYA71tY8AfkrcjZvKkenh3QEYFRjN+0c3siEnni4eAewvziSzpoxZ7foCNg/qqMAOrM4+jo+DC14aZ5ZlHsVN7dBAcOxykFldxofHTqd8/5V2CLDFs90ZPaBZL8lfaYdwHAC5qdW82H6gXe0YoI93KDUmPcszj9pFBk95SSQuD5ICq8RZ6b1xEYfKS6iZfheOZ6TySki0JkmHSnl84FrMRitP/TiAcXee39P53PhDvHR8P3KZjD/6jeKG4Kbr4FzJ3L/j9yaX39G+v/1J/4OjG/FUOzUQ5LOJnh2hVK87p+hZrdlIlKs3MyP74HsFPai8ceM2dvydxV+FN+DuIxkalwNJDl7ikrAgO4Vb9m7itU69eD2md2sPR0LCTl5aNfd3X0ldtZl73+3Bzc92Pq9+24rzGLd9NXqrhUejYvi0x+AWHqlEW2HPyhxembyFO9/qxqyXurb2cK4Jzvf+LQWwSpyVGwMjUAsCP2UktvZQJCQaEBDhws8p03D1UvPdc4f5+ukD59VvmHcA2RNvJczRmc9STtB74yL05rNrmEhcHfSbEIBMgD3Lrm2V3raIFDNylbMi8ygrs443WObroOXN3pOa7fPPGhWDPLzYXFJEbq2OQEenVqtRISHxT9x9HPglfRr3dF7J3x/EU1Gk5/mfz+3p8NI4kDr+P1y/ZwNL8zIIWPkLu0ZOo6PW/TKMWqK1EAQB31BnMo5XtPZQJP6B5Bm5BghwdOV//abbX892G91s26ZqVPgLtmCw10/anjxbq0aFhERTODqr+DllGuFd3Nj4SzrPj9t4Tvl4sN2Ylgway0fdBlBhMtJl/V/8mpl0Xvss0+vIqimzv8r0Z9c+kWg79Bjph6HOQk5y4yJ7Eq2HZIxcAwgyGa4qB/vL+SxCPk3VqOjs6oW3UsHinPRWr1EBjW8EWTVlpFUWs7f0GJG72vFl5o/SzeEaQ6EQ+CZuIl2H+XBgXT6P9F2DxXJ+UvBPtO/KnpHTUAtybovdwj0Htp21fZlexysHVvD24bX21ysHVki/uSuEiffZgp1Xfn1+hqfE5UGaprkGKKqr5tl9S1AKAhEuXkwP646HxqnJtmnVJQ20BsBWo6JrSQmbymvYWph11hoVfXzCWvJQ7DcCcxN1KU5aNpJmSeHhlLv5NX0jK/p9i6fDuTUWJK4OBEHgw61jeeOGbexYlMXs6OV8f3wSKs25L3P9PH3JnXQrfTct5Yf0BGJLi9g9airOTdRzqTEbGv3+zKKVGrMBD5o+ryTaDh36eqNQCuxfm8cDH7T2aCROIXlGrnLCXby4s/0AHus8nJlRfSjR63jv6Ab0ZlOT7ZurURHtYLso/y/xiG1ZK9WoaOpGcIpc6wlk9T/pPZY/mHjwZiqN0tPqtcZrfw9j8oPtyEut5tbwJVSXG86rn5tKQ8LYm/hPcBTHqsoIXPErRytKW3i0Eq1BYHsXaZqmjSEZI1c5nT0C6OUdQpCTOzHuATzaeTi1ZhMHSrIuaDsOcjmBDk7sKLUVltKZTfyelcwdsZtJ17X+SS2KVnLF44icNlT2GVbTZ89wSgzlrTgyidbg8S/7c/vrXSkv0DMrfAlF2edXLE8QBH7vP4pveg2hxmymx4ZFfJt2skGbUmk65oqn7/hALCaRE3uKW3soEvVIxsg1hqNCha+DC8V11U2uP1uNilkh7dBZLKwtqyVizQJu3beZnzOTOVZZdtlqVDRHmZiDkdpGy1PMB+kd2498Q/MVPiWuTm5/rRuPfdkXXZWJ2dHLyThx/kbpfRGdODh6Ok4KBfcf3MGtezdRoa/lixPb+Dp+R5N9DhVfmIEv0XpMeqAdAKu/S27lkUicQjJGrjH0FhPF+hpcm5E5PlWj4hSiKLIxP5M9VXq+T48HIMtowXBGtoKvWkN6dYm9jkVrkCueQGji5ywikmVMpVdsbzLqMgCwiBb2VO7hpdSX6LSnE71ie13m0UpcLqY8GM2rC4diNFi4v8cqju8sPO++3d29yZs8i85ad37PTiFyze/EniVIe03OSVZnnbgUw5ZoYQIjtagd5RzZUnDuxhKXBckYucr5O+0QSRWFlOhrSK0q5uuTOxCQ0ae+6NRPibtZkh5nbz8qMJoT5flsyImnoLaS4ZsX8Vl2HutLSig1Nj33viMvvlVqVJxJrtVWebNpRAqNhXyb+y23nbgNr+1eDDwwkP9l/o/42nhqzA1d+FLa5tXF0BtCeW/jdSDCnGEb2L38/LO+nBUqjo29iUHubpSZLfxerKPaKjAuuBN3Rw9kZmSfBsHcyzKPkFEtxZlcCYR3dqMwS3deaeASLY+UTXOVU26o5fvE3ehMBpyVaqK03jzffQwu9VMqZYZaZMjs7SO13twTPYhlmUdYmnEEF8G2ztJM1QAFIIgWHosZgVKQt+ixVBrrWJ99stFyq2ghXzzZpDEiIEeFIwZqmJs5F4VMgVm0qW2aRTNy5PR06Wlv31S2jkIm8H+9JzebgSTR9uk+wo8v9o/nsQFreXXaVp76rj/j7253Xn0rDLV00VhRuqrZVmngz6JKbojU0rc+c2xYQLsG4oJb85Ia1HyRaJsMnBZMQmwpe1fmMnBK6z1ISdiQjJGrnHs7nl2N8qmujQXQenmH0Ms7xP7+27STPHBwR5N+hwhnV+Y0sY1LTWFtFR8d20y5sXFcSLE1FTNGAGTIEBHxVHhSbdZhRI+e0/ExpwyRM+ni0sX+v5S2efUS1d2TH+OncF/XlXxwz14qivT854Uu5+x3uDQHqyjS3kHFjOBoPkhL48Y9G3g9pjcvdeiBIAiMDerEptxE6iy24PDb2/dHkMnOuW2J1mPCve348cU41s9PlYyRNoA0TSNxTu6L6MTPfUcgNPCh2Ii8DGXYjRYzn53YajdE5MhQyE7/dNdZPqhfrmKi9laSBiSRNiCbBxzmM0i4EzmKJkZuw4KFt9Lfouvertx6/FZ+K5xPjbWsxY9JonXwC3Ph57TpuHqr+eHFOL588tz1bKqMdfb/R/iGkjL+Pzwc1ZlXTxxg4JZliKKISq4g1MUDAJPVgsHSdOq8RNvBzUuDk6uSE7uljJq2gOQZkTgvZoW2x1Gu4Oa9G7GItgkRAfBQKsmsLkUmk+GsULfIVMb+4kyK9ba4jgBHVx7vPIK9RRksyYgj3rIZPTW4E8h05Vuo9WoqdSp+y9qM3mImRnEd0z2n8EfN2xyqPtTkVI6bwo3E2kSO6Y4BtvLrMgQ0uKDFB29ZBBvKRG7VXI9G0XoZQxKXBjcvDb9lzOCemOUs/jieiqI6XvxtSLPt1fLTl8kygw6FIPBpj0EYrBa+TYtnzpE9fNC1P2WG0167lp6ylLg0tO/tyeFNBRj15vMSx5NoOSTPiMR5MyMoguWDxqEUbD8bK5BcnsM7cet4+/BaXjqwnFxdxSXf767CVPv/s9r1xU3tyIiA9tSpUthp+YkYYQw3KN9FIVNhQeS7hF3k11YC4KZy4O7IsezpvYenQp4CaOAlcRKcyB2ci2GkgfIh5XwU8Q0dZCPxJAwrFopI4bi4jnuSZ+GwzQHHLY5E7opkYtxE3k5/m0NVh6QAuCsQjaOCecnTiOjqxubfM3j2ug3Nfo/tXH3s/2/PT8FSP433Ta+hfNFjMB8nH+OeA5sprLXp7URqvVFIxsgVwfCbbIH8G39Lb+WRSMhEsZnIxDZEVVUVrq6uVFZWotVKlWFbk/zaSp4+sI4/CssRgf7Oaro6n5bMdlaoebzLCEKcPS7ZPp/Y/Rd1FhPuakde7D6S2JpYFhYu5Me8H2mv7MMgHkaQNbar/Ry0PBwzDB8HF/uy1SWrmXliJjqLDrNopq+2L/v67EMURdbWp2YarQ3jSiqs+Vgd0rFo8onXnSTHkEON5XQGjgwZWrmWUE0o3Vy6MdRtKJO8JuGn9uNqo0yvo8bcMKuqpTxilwOr1cqzozcRt6WAqB4efB47HoWi4W9JFEXePryWbJ1Np6SHZzA3RPTAS+OMVbTy3JGdvJ8cj1IG/Z1VvNxlEGMC27fG4UhcIEa9mQkOf9BztD//29DysW/XIud7/5aMEYnzptJYxzuH11JhrCO51siWKgN9XRwZ7elKif70zdlBrmJ2dH/c1Y72ZRd7w0rUJTLrwHNkmI9QST4mbDdCV7krakHNwb4Hqa5TsDbnBAkVNg0Jd7UjN0X0optHIHKhsZGSo8/h5uM3s7tyN/cH3s9X0V/xe8p+theknHUs0a6+PNp5OEpBjtlqZmflTtaVriO2Kpak2iSKjEUYRaO9vUKmwEvpRZRDFL21vbnO4zpGuo28Yqd6mqsLdDVkG/3fLdvZtiAT/whnvjs2GY1jQ5d9UkUhHx/fYveKyAAfBy21ZgPVJgO/FFZTV38lVchkjPENYmZIO6YEhOKibFzfRqLtcKPfX5gMFpaW39LaQ7kqkYwRiUvOgtSDbM5LBCDYyZ2NlUbMIuwcOZU8XSW/JO8jrbqkyb7ne8PaU7mHX/J/YWv5VlLrUu03dxkCTnhynedw3oh8hRjnmAbekL/TDrMh1ybKdkN4D64L6njW/ZitZr7P+57h7sOprXPim3pVTRm2J98Obn4oZAKJlYUcLMmy34AnhXRhcmjzGRhlxjLWlK5ha8VWDlcfJr0unQpzBdYzZOodBAcC1AF0dOzIQNeBTPCaQBenLghNGE5tiayaMt4+vLbJdS/1GHdJvWGtwWePxrLs80TcfTX8cHIyWo+GRuOR0hx+SNiNwdo4IyupzsTWytPKxXKZDIsoohIEJvmHMjMkign+ITjIpbiEtsZr07eya2k2i0tvbPSdS/x7JGNE4pJitJh5dt8S6iwmlIKct/tMYWV+DrNiN5M6/j9EOGupNul5ft/SBk/OVtFCDSVoZb6NblhWq5WVJStZULSA3ZW7ydZnY8ECgEqmItIhkmHuw+iqHEFcnu0GEOzkzmOdRzQo1BdfXsDnJ7ZiFq0oZAJz+05rVMjvbHxwdCNJlbaaO7e168dgv8gG61OrinnvyEZERLRKDXP7Tr3gmIAEXQKrSlaxq2IXJ2pPkKvPRWc9LaYmQ4arwtU21ePcjeFuw5noPREflc9Ztnp5udqNEYBf3zrKvFeO4KhV8t2xSfiGNKz6XGWsY2dBGvuK0ik31KIQBCK0XvTwCmPYjvVN6vGcMkxcFEoOX3c9kc6ul+twrnnOZ1px55JMXp+xnXve7cEtz3a+3EO86jnf+7dkpkucF7m6Curq0xW7ewbhqnJgnF8QakHg1RMH+L7XEL5P2NXAEMm2HmG3+WeqKGKW8nN2FyaypSqJxcWL2V+1nwJjgT27xVFwpLtLd67zuI47/O+gg1MH+3aMFjOvl66i1KAjW1fOy/uX08s7BA+1E6lVxcSfIV8/2C/qggyRSmOd3RDxc9AyyDcCgCpTFTqrDn+1P5Fab3p4BXGoJJsqk57EykJi3AMu6PPr4NSBDk4deCr0Kfsys9XMtvJtrC9bT2xVLMm1yZzUneRIzRF+LvgZEkApU+Kl9KKdYzv6aPsw2mM0I91HohIk139LMOvlrrj5aPj4gX3Mjl7O57Hjiejibl+vVTkwISSGCSExjfqO8A5gc1Ee1n9kbFlEEQEZwY7O+KibLsMgcek532nFgVODkQmwa0m2ZIy0IpIxInFeGK02j0Wx0czPufl8mLGAzNoaDFYr6wqy+TZhpz1mo8yaxR7Lr+SKp+t0/Gl6il8yTus1uCncGOw6mIleE7nD/45GwZ5rsk9wuCSbgroqVIKcAEc3DFYzNSYDBquZ3YVpjcbYxSOASK0Xrx5YSam+Bh8HF2aEd6eLR6C9jSiKrMg8xo6CFOosJgId3ezrTmVNLC9ezt3xd2OwGqgYWoEgCLR39eVQfV2SSmPDQoIXi0JQMMpzFKM8RzVYXmosZXXparaUb+FI9REy9BnsqNjB9ortfJBl01RxFBwJUAcQ4xRjm+rxnEBnl5a9kFrbvhP1kjDpvva4eql588btPNhrFe9tuo6uQ3zP2e+m4Eg2FuU2Wi6XyeikdWfLsMlS/MhlpCkBQ2gsYigIAt7BTqQdlap7tyYXZYx88cUXvPfeexQUFNCtWzc+++wz+vbt22z7iooKXnrpJRYvXkxZWRmhoaF8/PHHTJgw4aIHLnF5MFrNzM9I4pu0Y8SVV9dPotThoVLzcscejPAOwElm5vOT2ymypLLT8iMlZDTajgyBYFk32iv681f/d3FXnd1VnVRZxPCA9oQ5e2ARRZZmHEEhExjkE8GBkqwG8/beGmeGB7QnxNmDj45uYlp4N7p6BBJblMFXJ3fwcJf+1MqKkSNnb1EGuwvSmRHeEy+1M2uzE6gWy7BarawrP857sfdytOYoAI8GPYqsXkWz/AwNCVULp216qjy5zf82bvO/rcHyEzUnWF26ml0VuzipO0muIZeUuhSWlSzjudTnkCHDTeFGmCaM7i7dGe4+nAmeE/BS/fsChhnVpfa4mqY4Wpp7VUzTnGLIjFDe33Idz47ayFPD1/Pa30MZPD30rH2mBoRx/8HtjZRstAol24ZPwV2lbrkBS/wruo/wZf28NPLTq/EPdzl3B4lLzgXHjCxYsIDbb7+dr7/+mn79+vHxxx/z119/kZiYiI9P4/lto9HIoEGD8PHx4cUXXyQwMJDMzEzc3Nzo1q3bee1Tihm5vGTqqvgw6Rgr8zNJ11UjataBw3Lklig8xS50V3Xn7c6zQF3MzwU/81f+cgot2Yg0r7fxhOdH1Fbbfh+z2w+gv2/4BY2p2qjn6X2LearraIKd3MmsKcVosaBVaQhx9kCQyfg2fidGq5lHYobb+/03bh1/6t7giH7Pee1nkMsQTtQdI1wTzv6++5HL5BgsZl7ev5wqkx4ZMub2ndogU6g1MVqNbCnfwsayjeyv2k9ybTLFpmJM4mkFUKVMibfSm/aO7emj7cMYjzEMcx+GUlCe1z4yqkv58OimJgM3z2RWVF+G+Ef9q+NpLcoNtSxOj+NEeR5GqwVvjTN3tO+PNUPgkb5rMBosPPl1PybedzplN7GikL/SDpFfW4m72pEJIZ157sQxdpUWIGLziKhkMuqsVoZqNYzz9eOWyF6Et2J162uJC4lxOr6zkCeGrOfmZ2O4992eTfaRuDhaLGbkww8/5N5772X27NkAfP3116xatYoff/yR559/vlH7H3/8kbKyMnbv3o1Sabv4hYWFXehuJVoQq9XKqoJsvk49wa7SQipNtgwWjSCnv6cPQW7R/FVuwaJIoohE1ot/s/7Yy2dsQQbNVsy1EenqxrH6EjGpVcUXbIycildxUqhwUCjp4NZYwyOtuoTRgR0aLOvk7k9IXS+OcG5jpINsBPm1FVRYKngj/A3kMjkFtVX8nrKfKpNtaqabZ2CbMUQAVIKKsZ5jGes5tsHyImMRa0rWsKXCNtWTqc9kW8U2tlZs5b2s9wCb4NupqZ7BboOZ4DmBjs4Ns5Csosi8xD12QyTA0ZX+PhEEObtRrtexvziThErb9NyfqQfo7BHQpj6f80FnMvLekQ20d7OlbrsoNRTVVeOkUOHdxYUfE2z1bD66fx/lxQZmvdSFEn0Nn5/YylD/dtzdYSAJFQX8krSPwZ7B7CotQC6T0dFFSz+NlX21sL2qGq26hqLjW3ij1+QLimuSaHk6D/ZFrpARuyZXMkZaiQsyRoxGIwcPHuSFF16wLxMEgdGjR7NnT9MX++XLlzNgwAAefvhhli1bhre3NzNnzuS5555DLm/a3W0wGDAYTkdAV1VVXcgwJc6DCqOez1NOsDAnjfiqcsz1DjIftYZbgiN5ILI9OeYdLCr6hS0Vp9zz/zQ4Thkhp8Thm/eMiIIRsM2Xm5qYxz0bVlFkYdpBIrXeBDq5NduuyqhHq2x4kdcqNUQwGB/lQopMRU32kyGjozCcCGEQK81v4UU4ezOtHMxeZVdyBdDIlUwNPT9vXmvjo/LhjoA7uCPgDvsyq9XKcd1xVpeuZk/lHk7oTpBjyCG5LpmlJUt5OuVpBATcFG6EO4TT3bk77dU9SNcp0QjOBDu581z3MQ2kzgf5RfJbyn52FKRgFq3sKEhhSmjX1jjki2Zdzknc1Y7c2b6/fZmX5nQWjV+oM7+kTePuTiuY93IcFUV1+D+hxEvjzI0RthuXv6MrKZXF5OlrkQEDPHwZ5aYiWuvF1xG96Lr+L1YWlzDa3YndhamMC24cACvRugRGuZCdKN1rWosLMkZKSkqwWCz4+jYM5vL19SUhIaHJPmlpaWzevJlbb72V1atXk5KSwkMPPYTJZOK1115rss/cuXN54403LmRobZq2olq5v6yIT5KPsbEwl0KDLZjU9gTnxqQAH9yc49hUsYiN1Yf58+hpvRAXobk51DONEysKNMhlYBKNDXQ1AOIrswHbU7cM22dyvsf/R8p+8nSVPNPtuvM80oYoZEoeDX6UV9JeabwOBb6KEO5yf45XS25ChsA4xdOU6HUN2jkr1DwUM5QApys3LVMQBLq6dKWrS0NjwWAxsLl8MxvKNnCg6gApdSkcqTnCweqDp/six8vqTV7SdMZ4jsFZ7sxI95EIMoGJIZ3ZWZCCCBwuyb7ijJGjpTl0cvfnm/gdJFcW4aZyZJh/uwZTTq6eGn5Nn849XVaw9NNEQi0axjwZ0WA7ndz9OZ52iKNjbiTE0Yln9y5mWkhnFILA0TE3ErNuIRvLK3FKPSkZIy2MKIokVzb98HFq/T/pPS6AxR8nkHSglPa9PVtyeBJN0OLZNFarFR8fH7799lvkcjm9evUiNzeX9957r1lj5IUXXmDOnDn291VVVQQHX5klnltTtdJoNTMvI4mfM5I4WF6Cvj4jRqtQMtzbCT+3Y2SYdnBSd4L/FlVB/bnrqfCkp3NPnOXOVFuqSdenn8XpIUOGjAHCbcTIr6OjpzuHxT/5pfAXZMgQEZEh41BZGt3kNmNkd2Ea+4oyeKv++K2ilRWZx9hXlEGVSY+ryoGBvuFMCO7Mn6kHOFaWx9PdRjdy//9zzl4jV9inU06xu/gk2/V/ciRtdZMj18g13ObyOvsNa6kVq7jN6wE6iZHk6CoQRRFvBxcG+UYw0DcCJ+XVGYColqsZ7zWe8V7jGywvMBTw7LGP2Vu1i1IxC4NYxS/5v/BV7lcA9Nf2Z1m3ZfiofXBTO1JuqKXGZGhqF22aYn0N2/KTGR3UgfHBMWRUl7Eg7SAKQWCA72mDQ+OoYF7iVB7pu5qUL8rZmJfNjX/3sIvVaVUa9BYT7Zy11JqNWBFxqZ+OUQgCx8feSMfVv7K8uIynjuzhg24DWuV4r3bMVgvzkvayvziz2TYbchO4K3pAA+HESfe3Z/HHCaz8Nok5vaXv5nJzQcaIl5cXcrmcwsLCBssLCwvx82u6Doe/vz9KpbLBlEzHjh0pKCjAaDSiUjVOdVOr1ajVV8eF/3zTy85EFEWy62oIcbzwqO5Twacr8jLJqK1GxOaJ8Hesw0d7HL38AJmGJLZa6qDU1sdD4UGYJgxRFCk3l1NqLqW0xrZSjhxflS8apYZCU2GDqrdy5PiofPi1458sTSzAYDWTUFZBtPNM5gYP4r95L1BpKUdERGctgzNm5SyilXlJe3iw01C25CWzLT+F2dH98Xd0JbO6jHlJezhZXkCJvoY5XUc1cJsDTc7Z/5l6kP3FmYwO7EBqbSq3HX2Ag7rdmDHQ0aEzAUJHNugWcMqjIyLyY4f5rE+uYLHxK/xUfvzc7asL/syvVvzUfozWTsOhzubpeLzzCDq6+ZFnyOOznM/4NvdbOu3txPuRH1JlsMWDaRTnFxTblhCBUGcPpod1ByDE2YO82gq25Sc3MEYAFAqBLw9MYNZdC0ifX82DPVfzxYEJjerZNIVSkPN2x868dPIoHyYdRSUTmNu1Xwsc0bXN7ykHGhgiLgoNnhonivXV6My2eLj9xZm4qx25PryHvV1IB1dUGjmHNxU02qZEy3NB+tMqlYpevXqxadMm+zKr1cqmTZsYMKBpS3LQoEGkpKQ0qIiZlJSEv79/k4bItY5VFHns8A5CN93JZxmLz93eamV5XgYTd6zGbclPhK3+g09TjpFrTMXLdTPe3h+h8HyUPM2TxBl/IKnuGAqZAjeFGw6CTYCpzFxGhj6DXGMuWoWWcR7jmBs5l6QBSZhHmckdksuzYc82qHYLMMx9GEf7HWWk11Du6jAQoT4NNqumjPRCF6YKcwmQdQIgQzzIP0msLOLj41tIqSqiu2cgXTwC8dI408s7BK1SQ3p1CXdHD0QjV1JprKPSWIfRYguk3JafjFwmoJAJ+Du6MiIgmg6uvsRXpdF710ja7WlHrG4b0cJQ1nTewvGBcfzV6xtU2J5UZch4yP9xisu82Gv5HRMGFnc99+d9rdHR3d/+/6Zc21RsoCaQ/0b9l4QBCYx2H83shDv41ngn600fkSRbw6/5v7KtfBvpdekYrcbmNt1mcFVp8HdsOP3m7+DaIJ37TARBoMeTXnS4X0vqkXLubLcUfa2ZKqMejVyJSq7AWalGQEb1PzRpas1GHg0PJ8jBif8mxvHq8f0tdlzXIvm1lfYq30pBzl3RA/hf/2m80GMs7/Wbwa1Rfe3XqY05CY2+47AYVwozdFIl7lbggqdp5syZwx133EHv3r3p27cvH3/8MTqdzp5dc/vttxMYGMjcuXMBePDBB/n88895/PHHefTRR0lOTuadd97hscceu7RHchVgtlq5bf8q/ix7HhxP8kFWDo+GzWjUzh58mp1GfHU5ZtEC8lzUmuM4upxAL8vAiJliQLAIKGVKFDIFZtGMFSvVlmpUMhX+an+6OHVhhPsIrve5nlCH5nUUerr0xIrVPvXyStgrvBbxGnKZzd3R3TOIJzqPZEHqQXJrKwDQyFyYpHyJ1cZ3yeME93TuQifn9hwozmJZ5hF0ZiMZ1aV0dPMjoaKQwtoqfB21ZNeUU2KwxWx8cGxTg3Hc0b4/A30jSKsqQS1XUGm0xb4cqDzA/OpXOW46gMwko5swkS7yCVwfMpAxvragU1ellgkut7K0+nsChGispX04otnPccsmJnlOYoCr5Jr9Jz08g9AqNVSZ9Bwvz+fHxD1MCe2Ct4ML/8/eWYdHcXVx+F3JZuPu7kICIcHdrWhLSx1KlRbqX6lQhXpLjTrUaaFFiru7JIQQiLu7J+v7/bGwISRBE5LQfZ9nW7Jz7507s7szZ84953fMBFY8YPUa50qrOaPZQqb2JFmV0fxd2ehdEiDA3sgeT6kn3c27syRoCaaizpVt42fpQFFD08DFooZqbI1bX0L1tbSn/tF8Qk2CWfN5Ivd7r2H4Jmd8LXVpu2KhCE8LWxIqi4iw1y0xa7RaEisLGe4aSNK4gQRsWcHChBgkQiELQqPa7wBvIYpqVOzLkBHpaoyfnVivA3SB/QWNxS4neYbT17Exa08kFDLExZ8yWS1bc8+hQcvBwrQmtab6T/YgObqcE9sK6DveDQM3j2s2RmbMmEFJSQlvvPEGhYWFREREsHXrVn1Qa3Z2dpOCXx4eHmzbto3nnnuO7t274+bmxjPPPMP8+fPb7ig6KUqNmsOFaa1ul6sadRtkahUTDy9nV8PLYKQL3shWnEatVSMSiDhRVsznKWfYVZxHkbwGxFkgTkBkeRaEWSDQIIdm3osLgaSexp70MO/BCNsR3O5wO67S5nLmyVXFbM89R3ZtBVWKBuaEDNZfSCMsIhAgwEJkwV9hfzHBXidYd2ncxniPbtgbm7Hk3H4UGhUCYJHHN+wsOsWP8bH4WORzt18Uz4aP4L1TW9Gie5rp4+jNm9EbEQgEaLVapnr3YPxlgvyqlTKGuQZiYV5Bt6PdOFd3DiEiIoRTWN77fZyN3Jl//F/CbF159fg6ys4bN9bavvQQFhIuGs8AZ1+eyH0MqVDK32F/Nxk/uiSbdVlxV63k6mdpz73+vXEyubV0cMRCEff49+aHhANogeMlmRwvycTCSEqdUo4GLf3F91OhyCOXuCbLeKBbCitRllCiLCG5PpkvA7/smAO5DKPcgvnw9HY2Z5+ll4MnmTVlHChM5f6ARiHHtRmxVCrqeShoAABDXQLYm59M2NOu3OUYzN+vJ7Jldhbz/xrYZNxfko7gbWGLt4Udu/KSUGhUDHDyxVRsRNL4GfhvXsHrZ09iJBQyP7hns7kZaMqfp2t5flM5ANZSIQO8jBngJaWfh5Q+HsakV5fo2w5y9kem1LAtpYHFByrZMNMZS6mIwS7+bM09B9CkPcBtj/nz65un2f5zmsEYuckYCuW1Ew0qJV+d3UNadctVbEFXC+XF7qNAIGTwgc84rX4HBDIQNLoIgzUfkVFtjFyYBkapYHQGRLkgaPljkwqleBh7EGERwSjbUdzucPtVK3DGl+eTWl2Cl7kt3yUcaGKMAGwp3UKoWajeg1Iqq+Xt6E0McQlgkLMfiZWF/J0Ww+0+EazKOAWAt7kduXUVeNjL+DBvAS84fEpZnZC3oybxa/JR4ivyAbAwkjLDNxJXM2tyaiv4Oz2aO30jm63ZX+Cxo0vYq/yJFMUpBAgYbTua+S4fsDIlga8G3EW9SsH84//yUo/ROEot9PVCNmXHk1hZSFFDDfmm/7Kx8h9+DP6RR9we0Y+dVl3CJ6d3NlFy3ZabwGs9x+lTi7fmnGNrzllmBfXHXmrG+sw48uoreStqYpPU11uF48WZ/JZyDOX5IOhLiXC04tm82/VVllvi55CfmeU6q51meGPEleWxNjOW4oYa7KXmjHILbpJN80vSEcrkdbzQfZT+vYsNceLFJD/dgJFIxFdHx+HXQyeotSc/ie25CVQrZLib23C3bxQ+lo2/x2qFAv+tf1Eil/Fp9348H9Q1Usc7iv0ZDQz9oUD/t0CgizVQa3WxcbbmcsRiOUZiNf4WLhzJkSNX6X77zw2yYvFtdshUSp458g8AgVaOTT5TgMlWKzAxE7Myf/rNOqxbGkOhvA7ml+QjTQwRXwt7nEwtKJXVkVpVjBYobKhmcfw+fi7bSJbgG52BcbGRoYVE7TtgVdso6XGR48NEaIKX1ItIi0jG2I5hiv0UrCXW1z3nMFtXwmxbLwB3abbFvoKUFrUWjhVn6ttUKuoZ5OyHjU0ZtflFfFE5j9nG33O4KA0Pcxu9MRJl70FvR28A3MysKZPXsSXnXDNjZF3xOp5JeYYsWTYSTJhiP4UfQn7AUeLIocI0/Zq9UCDQr9n7WTro+8vVKtQaDWKjOjZW/kOoWWgTQwRgV14S3WxdGOuui3eZ4t2DhMpC9uYnc19AH7RaLbvyEpngGUaEnTsADwX158Wja4gtzdEfx61EH0dvQqydOVSUTkxpNjVKXXxEsLUTQ10CcDa1osjoFRZmLGyW1i1EyAibEcx0mdnK6B1Pdzs3utu1/iQ8K6j5El6QtRMLIs//JgbBIZcc3rp9L0/22syHO0YRMcyZ4a5BDHcNanVcS4mE5HEz8N+yghfijmIkFDIvILzV9v91+npIkYhAcd4m1mrhgnmsBcpqjQFjQEugtZIPxtoyzFfKrzE1fHu0iqf6WVClbUzAaEmgz7+nDXH7i1EoVEgkhlvkzcJwptuBvLpKYstyATAVS3gmbDjeFo156/l1VXwev5uc2ip+qv4clXRrM0MDzv8tqgVAKpDia+pLb6vejLUdyyT7SZiLzelI0qtLmymhhtq4EFfeWCysXF7DT+XvsTPrX/pb9ueHkB84kVdDenVpE4e+sajpV1EoEDRx+f9V+BcvprxIviIfESLGmt9LL9HtLOrRGFOTUFl4xTX7hIoCGtRKNqoWI0DAph6bmh9XK0qup89/pqWyOqqVMkIuOnYTsQQfC3vSa0pvSWMEwEIiZZxHKOM8Qlvc/pLXS/yQ90OTasygWypUaBTI1XKk4ltXeXTgFA8W7xvDiyN28L+RO3h95RCGTL98PRsAa4mU5PF347/5L56OPYxEKOJxv5bP8X8dtUaLl7WYlLLWSxOYSeVM7HeWCCcL5oSPxFgkxt/OiB+P19D/23zmjG0s4Nm3hd/q0Lu8idtXzN4VWYx50K89DsNACxiMkXbg4EVxIpM8w5sYIg0qJcsLtrO8bjH56nMgPR84d6khcgGNCcWDC3GQdtzy1L78FPYVpFAm1xlGLqZWTPQMp1opayZrbSmRotCokQhEFKtz2av+lpKaDB6yf5al3T9FKBCSJDlFdm05+Repm+7KS8Jeak6ojQs5tRXszE1kgLMvy/KW8WraqxQrizHFmpkuM1kSuASZCt6O3sTqjFMMdPIlsbKI6JJs5oYN1Y/Z0pp9g1pJmiqabFUiT7o9ibeJd7PjbU3J9UK13mplg/5YLz32tqro2xUxFZnyeeDnzIif0eR9L2Mv9lftx+6AHb+E/sKdTnd20Azbn/BBTnwXcxtz+2zhnbv28/TXfZg8p3XPyAVsJVISx80gcMtKnog5gFgg4GHfkCv2u9WpV2j4M7aWVfF1nMyTU1bfepaLABgdICU0KJ56jYKMmjLeidnEMJdA3MysmdRdwYpoI9ZEWzOgWxUuplaEWLs0G2f0gz589dRxdv+VaTBGbiIGY6QduFhCvJeD7sloWfZ6Hk16EK2gunEpRiho9Iho0f3j0lgQYQP/FJzkSZ8RN2PqLWJtbMI0nx44mliAFo4UZ/DNuf1YXaa+xjnVAfapf8AUGyaK52NcHU5ObQWuZtbk11U2OUcDHH1Jririr9STiIRCrCQmKE2TeSz7McpV5UgEEqaYz6G/8WTmh44DwFwMc7sN45/0GHbnJWFtbMoDgX3pZtO4zNTbwYtapYz1WXH6NXtbEwk/VfyIrdiWrwK/ar+T9h/lTsc7+crqK45UHUEgENDXsi/7o/bze8HvPJ74OHfF38XgnMFsjNiIpbhrxH9dKz5hNvp6Nl8+eZzKYhkPvnnlWBBHqSmJ42cQuGUFj0Tvx0go4kHvwCv2u5WQKTT8FVfLP2fqOJErp/Qi48PeVMj4QBMiXCS8v6+qWd8n+lrw5SR78uoHsfjMLmRqJaWyOn38mqUTmBr3JD7Lmb4BZTwRNUif5nsxpuYSrByMSTreeryfgbbHYIy0Axe7qC981e3EjoASVD4g74+1oBuOAjt6mpngaqEk1FXA5pI9HK7aT5HqvGCPVggCDXsr9neoMdLjfFzEBaZ692BfQQpigYjqSzwB2fUF7FV9T7JmP1YCR6aKFmEsNEODlvditzUb28PMhhn+UWi1Wl44shqJVRJLSj+luroaqVDK8x7P84H/By1WmG2yZt8KF6/Zl8nqGHXkHhqo4t+wbU2yvi7GUiJtpuSqU4bVGV+WRjp9lmqFTi1W30Yhw8Pc+rLz6WxcnGl0MUNdArjXv3eLfS6XaSQQCFgStISex3si0IrwbpjOF/F7uNd/GiVDbmfi6Ynsr9yP435Hvg36lofcHmrX4+sonDzP17PptoHf3oqjsljG019fWeDMWWpKwtgZBG9dwawTezASCLnHq2tWQr4aFCoNK+Lq+DuuluO5ckrqGo0PO1MhYwNMmB5mxr0R5phKdL9XuUrL4oNVyNWN19dPb7Pl2YFWCAQCvCxsmd9jNH+lnST5Ekn4sb2SWHsonAOxPXAe2Xpph9B+DhzZkEttpQJza4Me1s3AYIy0A84mliRW6oKkYkpzGOoawFTXfmhc6yiS1fNVSjxfpJwhWa0iWVaPRaWIGYIAPgu5Ay8zS0oVpRyuOsyhqkMcrDjMo14Dr7DHm4dGqyG6JBuFWoW/nTuJlY1qhSsLV/JI8pPItHXcYfUIS8M+543oTa2Wnvc0t+GZsOFIBCLezHyTv5W/UlaUg5nQjAXeC3jb5+1WDYbr4eu0Pzmt2cRQ62GMtmu9zo2vhT2JlYVN4kYSKgrxPV/63V5qhqWRlMTKQjzMbQDd8ltGTSlDXbrWjeOViLH6TCNojGeKsvdssX1adQlLEw81yTT69tyBJplGBZVGDBM/zHj3XtzjfBfrM+P4Mn4Pb0VNZF/UPlYVrWLmuZnMTpzNN3nfsCViy1VnfHUlLG2lLM+YxiNhG1j/TTIVxTLe/GfoFfu5mZpxdtxdhGz9m/uO70IiEnCH+62xXKBQaVgVX8fK07UczZFTfJHxYWsiZLS/lOlh5tzfs9H4uBRjsYABXlL2pMuQiGDFPU5M7dZUE8bVzJoXuo8iv66S+IoCGlQKzIyM6W7rhqiqjlXx9Xx/rJrH+7bsnRt5nzdHNuSy9adUpj9viN+5GRhSe9uBnNoKFp3aAugKrD3ffWSTarMlDTV8emYXKTXVnKpTUqKC2vPKok7GJkxz8+a1kEjcTW9ugKpMraSkQRcXsujUFu70jSTIygkzsYQGtZJ3Y7agRouJyIiHgwfgYmqlS+119ueP6g/YUL4aW4Eno8RzeT54On0cvTlRnMnPyUexkZhQJq/DTGxMvVqBRqvl3V4TeT/nbb7J+waZRoa90JMJ5g/yc1TbGiEACrUSj30h1FFG/pCsJksEPycdxlpiyjSfCOB8am/cTm73jiDc1pUTJVlsyTnXLLV3W+5ZZgX2x15qzrqsOPLqKrp8au/KtGjOlOexsNekZoJSAD8kHEShUTG32zD9ex/EbsPDzEafafTSsbWMdg9hjLsu5qFBpeDFo2uYFdhPH9wrU8mYdmYaW8u3YiQw4lP/T5nnOe9mHOJNR6XSMK/fFlKiy+k+1JFPdo++qu93Rm013bb/jUyt5t+BY5ns6t3+k21jVCoNq8/WsSKujqPZcopq1XrT18ZESKSrhNu7mfFgTwvMpVf/m//+WDXv7K5g3QPO9HK/ttIhCpUG23eyUGm0lL3ujZlx8/2qVBrGS5YTOsCBLw6Ou6bxDTTFkNrbgXiY2xBm40p8RT61KjmLYrbQ3c4NL3Nb8uurOFWag0qrwV4i5jE7J+b3GMPJihLeTzzFzqI8vktP4Lv0BJylptzh5s2rwZG4mrZ/hd+smnIWX6R4+k96DAD9HX24P6AP3e3cKJPVEWrjwi9JR3mh+ygm+nnxSMIscjXxhIlG8VnAYtZkNEar93b0plYlZ33WGbSAvYk5fRzceTflG9yPPIxcK8NWbMsHfh9gUqdToWxrQwTggbjHKNamsdDro2axCuXy+iZicX6WDjwSNJB1Waf5N/M0jiYWzAkd3MSgHOsegkKt4o+U49SrFPhbOfB0t+Fd2hBRadQcK85klFtwi4YItF2mkVQsZUvPLWwp3cKM+Bk8nfI0P+T/wLaIbS0K8nVlxGIhXx8fzysTdhO9rYDHIzbxbcxtV6xn42NuyenR0+m+fRXTDm1jw8BxTHC9cnbO1aDVakmqKmJ3XhJ55+O37I3NGODkS29H7xZjKa4GlUrDuoR6/jxdy5FsOYU1jcaHtVTIMF8p07qZMjPSEstrMD4u5bE+FjzWx6LV7+nlkIiFLLvDnrtXlHD78kK2zW7+fROLhdi7m5J2uuK652jg2jB4RtqJOqWCz+N3kV3b+pfZycSSF7qPbBJ3AHC0rIj3E0+xqyiPuvMeE1epKdPdfXktpCeO0o6X0/7szC4SlYdZWvEWWrQs8FnAO77vAPDy8X8Z5Rbc5Ka1PiuOEyXp5Jqu48/Cv1Bo5TiJXXnH/00ec3sMgE9O78TD3JoZfr3adK4JtQl0O9YNH6kPaQNbV8T9r3OyJItliYd5v88UrFvQXwB48uAKZgX2o89FKZF785PZmB3PJ/1uJ626hI9O7+CjvtOafK9/SDgIwGMhg5qNqdKouDv+blaXrEaEiLd93+Y1n9fa9uA6Ce/ff5BdyzNw9DJjafxETM2vHI+QUF1Bzx2rUGq0bB08gdHO7lfsczlqFDK+SzhA6iXqoxfwNLdhTuiQy8rhX0Cj0bA+oYHlsTUczpZTUN1ofFhJBUS4SJgaasasSHOsTTvXs2/vJbmczFOw6xEXRviZNNt+4bNanjUNJ8+OlVHoyhg8Ix2MmZGEF7qPYntOAgcKU5sERJqJJQxw8mO8RzfMjJpfjPrZObFuoM41eLCkgA8SY9lTks+XqfF8mRqPu4kZd3n48UpQBPbS5j+i9qZB1cDyisVEKzdjI7ZhZ8+dRFpG6rdfGnNRqajk85xPOSJfi6yqBleJK8OE85jlNYXRbhdc+e0XczHx9EQA1vdY3+Zj30ocKkyjm61Lq4ZIeyEWilnVfRX7K/YzNW4qC9IX8EvBL2yP2I6Pqc+VB+hCvPLHIGycpKxanMADPv+y7NxkrB0ur70SYmnDyVG3E7VzDeMPbGbHkNsY7nR9UuUylZLPzuzW148CEJ73C14wI7JrK1gct4uXI8ZgfkmKu0ajYVNSA8tP1XIoS0beRcaHpbGAQd7GTAk146Eoc2zbwfjQaDVsyDrDseLM80HlJgxw8mGCR9hlvSSXlq2Y4BnGplmeuL6XzZ3LiyhZ4Mm+wlR25CZQpWjA3dyGng96s2t5Bpu+T2H2uwap/vbGYIy0I1KREZO9uzPBsxsZNWXUqxSYiIzwtrBDIrq6Uz/IwYWNDrpc+H0l+XyQGMu+knwWJ+vKkHuYmHOPhx/zQyKwvUyq7Y2wNiOWbrau2BqbcrD8MA8nzaJCU0Rfo+n0Et3Bsrhk1hrn8VS3oTibWjLSLYhP4nayOvMoP5d/yI6KbSiR4WXsx3POX1NaaUNJQw2rM07RoFIS5eDJuqw4rI1N6GHnzvrMuDar+bI4azHpsnQedH6Qbuat17r5r1MmqyOhsognQgdftl17ZhoNsRlC6eBSZifO5teCX/E/4s9LXi/xvv/713FEnZcnPu2FtZOUpfNP8YDfWn44PREXH4vL9gmzsuPYiKn02fUvow9sYu/QSQxyaK6RcSV25CXoDRFriQnTfSOJtPMAAZwpy+OfjBhKZXWUyGrZlH2WO316si25gd9jazmYqTM+NOetDwtjAQO8jJkcasrsSAvszdv/drI1J4F9Bak8FNQPF1MrsmrK+TXlKCYiCSPcWtZzKZXVsuTsXoa4BPBw8AASKwv5PfkYc8OkvD7Chrd2VTDz31QsHWO41783Phb27MpPZKv5aYRGAo5tyjMYIzcBwzJNF2VXUS4fJZ5mf2kBsvP1QrxMzbnXM4CXgrpj3YaGyW/JR0msLOJEw272qX7ECGPuMHuRJ3zuwdvcll+Sj1ClkCEUCHgraiIlykIejHuCwzV7USAjQNSX/3k/x3DbofqaL+E2rixPPUFqdQkiBARYO3KvX29OleW2Wc2XalU1DvsdMBYaUz6kHLHQYHu3xoasOPYXpPJB36mIBK2v5bcUwPph7HbczaybBLCOcQ9htHuj1+vFo6ubBLBeiZNVJ5kYN5EiRREexh5sjdhKqPmtldWw9edUPnn4CEYSIV8eGUdAT7sr9jlZXkL/3WsB2D98Mv3tnK/QoxG1RsMrJ9ZRpWhAgIA3IifgatY0vbWkvoaHtx0gIdeOogpL6mTGeuPDXCIg3FnCpGBTHu5tgeNNMD4uZcnZvVgaSXkwsJ/+ve/OHcBIKOLh4AEt9lmdcYr48nzejLpN/96PCQepVyt5Jmw4nh9kUVwv5+M7qpjXQ5fOrtFqeeX4v2Q/o6QyVskW2X3te2C3MFd7/277SEEDN4WRTu5sG3obDXc8wuZB4xnp6EaRrIH3E09hs+5XfDf9yRvxJ6hWtF647GqZ4O3PGvV8dqq+xNnYnnMDYvmt32sMcPLF1cyaV3uOZ0HP8eTLihl1chyehzzZU7MJPzMv9kfuJWnYIR7xnt6k5ourmTX/6zEaHws7Bjr78Vz4SBxNLJrUfHE3s+GhoP5UyhuILc255nlPi5uGQqvg19BfDYbIZdBotRwuSqe/k28zQ+TnpMOszYjV/z3SLYizFQXsyE2gsL6KDVlxZNWWM8xVJ84lEAgY6RbM5px4TpflkldXyc/JR7A2NmlSdPFK9LLqRf7AfOa6zyVXnkvYsTCeSnwKjaZ1Bc6uxriH/Fm4fjhqpZa5fbZwalfBFfv0snVg//DJAAzZs56T5S3HfbREXn0lVQqdenC4raveEDmSJeP17eXct6IY9/dK2HA8mNR8exoUYsKcBSwabUPBK57UvO3D4TluvDLcpkMMEQBfCwcSK4soqtcpV+fUVpBaXUKYbeteotbKVqSfrx225n4HtFr4ek+jYSYUCAi2dsZ2uASlXEPa6fJ2OBoDF2MwRm4Bxrt4snPoRBrueIT1A8cyzMGVPFkdCxNisFr3M/6b/+LtsyepVV27YbKqaBVuB91Iqk9ipstMMgdk6qv2XuBc7TlGnxrFX8pnOFi7mx7mPTje6zhn+51lkE1jwGJ6TSsXhRrdReFKmRjXwo6yHeyu2E1fy75Mc5x2rYf9nyKxspByeT0DW6iQXC6v19/AoDHT6EBhKgtjthBTmtNiptFwlyD+SDnOe6e2IlcrryvTSCgU8lXQV5zpewZ3Y3e+yfsG14OunKw6ed3H2tnoP9GdxfvHIBAIeGnMTvb+nXnlPnbO7Bk6CS0wYPe/xFZcnUHSoFLq/+1saklcgZyZfxcz8Lt8Fu2pJLlUyeQQU+7vreTe4THMHnuCn+8V89oIG5wtO4cxP84jlF4OXrwZvZE5B//i3VNbGOkWRF/H1mOLWitbIVMrdXpJDtAnKJukIjFLDlc1aWM3VCe2uPH75PY5IAN6Osc3rAtSIa9nTUYsZyvyUWjUOEjNmRnYr0kdmktpKYhqwCU3gD35yU2CqO72i8LH4uoFoSa5ejPpvB7BurwMFifHcbS8mLfORfP2uWj8za2Y6R3IcwHhmIqbq5peQKPRcPfZu/mn+B+kQikbum9gov3EJm1OVZ/ikYRHiKmNQYSEcKPh/N7zE8Iswloc82bVfNFoNNwdfzcigYgNPTZcdb//KqE2Lnw/+N4Wt11aXh0gysGTKIeWRdFA5x2Z7N2dyd7d22R+3cy7kT0om1dSX+GjrI/ofbI3Dzo/yM8hP7dLGvjNJmygI9+fnsiTvTaxaMYBKkvkTH3q8vVsBjm4sGPIbYzev4m+u/8letTthFnZ8diaEg5lyTCXCDGXCDA3FmJqJMBMIkQjUBFd6kFZtRnrD0oprM7Dw0rEq8OteLyPFR7WutvB9+dSiCnTGS7m4s6lPhpdksXx4kweDhqAq5k1ObUV/J0ejbXEpFmF72shxLOYuDRvXthcxoORFvq0YxNnMUbGQmJ2Fl5hBAM3isEYuQ7qlAo+Pr2DQGsn5oUNw8JISnFDDWaX+eG2FkRlJZHq66mcKMliVXrTIKov4/fwdtSkZjfoq2GKmw9T3HzQaDSszc/gs+QzHC8vYUH8CV6PP0GguRWzfIJ41j8cqbjxq5BSn8KQ6CEUKgoJNwtnf+R+rCXW+u2HKw/zeOLjxNfFA9BHOp6+ohm83fPOFkty32yeSXmGclU5b/q8iYPEoaOnY6CNeN//fR5zfYwxsWP4rfA3NpZuZG33tQyxGdLRU7thLHzEvBszlDf67mfJ3OMU5lfzxLsty/FfYLijG1sGTWDcgc302rmGU6OnU1Cj4lyxskk7oUD3UmtBq3UFBAgFahZPljK3jwtGosYslIsrjlsYSfGx7FzKuKszYhnrEaqPPXIzs6ZMXseWnHOtGiOWRtJmZSuqFTKkIiMkIjFCgQCRQMA744U8uxZu/6OQnY+46oKwjaR4hliRcaYSjUZzSxi/nRXDmb0OtuWew8bYlFmB/fCxsNdXm3UwaT0ifl9BCvZSc+70jcTF1IrhrkFE2nuwMy9J32ZnXiKDnP0Y6OyHq5kV9/n3QSIUc7joxrQxhEIhd7j7cXDEVGS3P8yHPV3xsj1Jal0Vr5w5junaZYRuXcmnSadZnPU5IUdCKFIU8arXq8T1i9MbIrvKdhF0JIiB0QM5W3eW0baj+cZtK8PFj/FGxB1XNESuJROjSRuF7LJF+S4mqyGLb3K/wU3ixlu+b11VHwNdBx9TH1IGpLDIdxFVqiqGxgxletx0VK2UHOgKlMvqeP3kBr4t3ofDn2pEdrDqvUQ+ePTgFfuOdnZn46CxKDUaInesZkav5kthGi2oNHAhVUEiVnHv8FNkag+xuyCBivNLcbvzkvg0bpe+PMBgZ79OJ+Kn0KgQXlLiXCgQNKkHdim+lvZNylYAJFQW4nve0BILRXha2OJoW04/D2N2pcnYmlRL4vk2/Se5o1Frid1j8I60JwZj5DqIK8vFy9yW7xMO8OLR1SyK2cKBgtTL9rlSEJVKoya7prxJvMSFIKoLbdoEAfxe+iqZLGXpAGN+7zOc3rYOJNWW82LKa7yQ8jxatRPPOq7gTd+3AdhQsgGfQz6Mih1Fan0qE+0mkjcwj4cs3iWzqp7nuo/AXnplUaAL+iMX01rNlwtc0B/xbWGpKqU+hXJl08CyCacnoEHDv93/vdYzY6AL8ZrPa2QPzCbMLIzVJaux3W/LltItHT2t66JWJUel1QXmii2EeK4QYOQOO5dm8Nbte6/Yf7yLF2sHjEWuUfNY4npCXLS0prhhLBYwd1QhplIVMrWSNRmxvHz8X146tpaV6dHUqeQAeJrbMtaj82Uvdbd1Y3NOPGfK8yiV1XKqNIeduYlEXFTMc21GLD8nHdb/PdQlgFJZLaszTlFYX8Xe/GSiS7IZdVEq8Ci3YA4WpvLmBBlGIi0z12YhV6kY4ORLxD2+nJkSxEurmhbdM9C2GIyR66BEVsu+ghQcTSx4Omw4Q1wCWJkezZGi9Fb7XCmIqlYpR4MWi5biJZRXHy9RLqsju7a8yatc1liVdU3xGv3yypykOfRxgC96uWJu/zJIN2GhHgbVr/NZYgXG/76B0fZAJp+eTI4sh+kO0ykZXMKGiA3syc3l2Pm1W6nIiCpFA1WKBhTqxifU9s7EGHxyML6Hffk5/2e0Wi3L8pZxru4c0xym0cuqbVVcDXQ+XKWunOl3hi8DvkSmkTHh9ATGnxqPTHX1v5fOiNBYiPsfAnyirDi4Nofnhmy7YhbRZDdv/uk3mga1hgTrI2hFyhbbLZ/hyHuDBtCrlUKIoMu0eS58BFJR6zFlHcXdfr2ItPfkz9QTvBW9iVUZpxjs4s8Ur8b4pCpFA+Xyev3f9lJz5nYbRkJFIQtjtrAjL5EHAvvql8cBejt4Md23J/uKzzAmMoniKhNK83vx8wkFA/4qozjEnmiNIaqhPTGc3etAC3iZ2zLNOwLQPUXk11eyryDlhoKobpQL7t4LT1kXEAuELOw1CStjKa+mvYoQIRo0KLVKBp0cRImyBBEivgn+hjnuc1iWt4znkt6gRpuPSm0L9fejkfcjVePEP2aFPOxjzb6CFAA+vaiWDcDMwH76oNz2rPmi0CgoUuoqI89OmM2PeT8SXRONidCEFWEr2uycGuj8zPOcxz3O9zA+djxby7did8COX0N/ZbrT9I6e2nUjFAp5be8gvrvrFMe35PNo9418GzMBiaT5JVul0vDmrgqWHBGAsC8EnAT/GEiJgotuoK+PsOaOMJ0H89GQQUyqr+ZgYRoF9ZVo0ZWnGOTs1+T32NmQio2Y4RfFDL+oVtvMCurf7L0gaycWRI6/7NjDXYMY7hoEfcAlIZPlMRqWx5Tpt9cbi1GpNFesKWTg+jAYI9eBlUSKi2lTsSAXEytOXUYL42qCqIQIqGkpXsLo6uIlLnb3XoxKq6FWJWdTxRpSGlL076u1akqUJZgJzTjT9wybyjZhv8+eMlUZEoGEx10f5xP/xfyelcH36QnEVZbzRMwBnjp1kB5Wtszx68Zs76BWg7raMxOjWNHUZXq0+ihatEyynYRaq75sXwO3HvYSe070OcHPeT8zJ2kOd8bfyZDcIWzqsQlzcdetK/Le5pF8OPMQO35LZ6b/Opadm6SvZ1Ner2Le+jL+ia9DqdYpor7U252gICkPn9ivM0hSIxFpxdwWbMpbI22ajO1sasl0X4Oy6MXUyjW8vqOcotrm11GFiRF7/85k1L0d98B5K2Mw8a4DP0sHihqqm7xX1FB92cJSVxtElVBZpN+u0Wr1QVQ3ilKjZEHagiaeigvUaeoIOxbGvOR51GnqeNbjWWqG1fBdyHeYG5kyx78bsWOmI7/jEb6KGEiopQ2xlWU8Gr0fyZql9N65ml8zk26qIFWRoqjJ3xcC2DaVbSL4SDDbyrbdtLkY6Dw85PYQxUOKGWI9hP2V+7Hfb8+v+b929LRaJa26hL9SW9ZNSajQXS/m/zqQu/4XSklOPfd7/8uRc9UM+yEP+4XZ/Hm6DkczET9Ms6f6LR8+HG/HbN8glvQcCCa14HcKb3v4Y4YjQuH1VeL9r3AwU0bgpzl8ebi65XBYoYCNK7Nv9rT+MxiMketglFsw6TWlbM4+S3FDDceLMzlQmMow1wB9mxsJojpSlE5BfRV/pp5AoVE10yJpiTJZXZP4jEtZXvQ72fLsVqPO6zX1zHOfR83QGj4L/AyJsHmaslgoZG5AGHFj7qThjof5rEd/gi2sia4oZdaJvRivWUq/XWtZnpXc5obJpbEwcVUpLbbToCFHnsO42HH8VvBbm87BQNfAUmzJvqh9rAxbiVAgZFbCLPoc70O5onOpaB4vzuST0ztbFfRbkxnL+sw4AB77KIp+b/fkWB93Bv5SzL50GeHOEvY86kLuK1482qepzPZTgaFMMO4NpjWUeB9ArpW3+/F0dTYk1FFQ01h7pyXOJNTcvAn9xzDUprlO4sryWJsZS3FDDfZSc0a5BTP4ooqzvyQdoUxe12Sp4mLRM2tjU25rUfQsie25CVQrZDrRM9+oK+b659dVsfjMLmpaCXRVaRWsUD1Dvba6xe0XeMD5AX7rdu03cJlKxZK0syzLSCSpRrf+LBYI6G3rwDMB4dzp5ntD+fktxcIkqveyX/1jq326m3dndfhq/E3bvgqwga6DTCVj6pmpbCvfhpHAiMUBi5nrMbejp0V2bTnvx25Dc/7yay0xIcTaGbFQRHJlEUUy3U1PowFLWT+WnxRRVKtGqNHgdSgX7/givts5isBeTUUWk6uK2Z57juzaCirlDdiZe/JB2llsJcakjb+7xZpVN0OMsSug1Wr541Qtz2wso1qmQd3CnTFixVkOnRmrXyozcGWu9v5tMEa6OEqNmreiN1EqqwXARGREd1s3bI3NKGioIr48n62Kz0nXHmuxv4nAhG7m3ehh0YN7ne5lhO2IG5pPg0rFF6ln+DkjiZTaKrSAkUBIX1tHng0MZ5qr9zUbJtm15bx7amuT906p13FSvQotjQaKCBHGQmM+8P+AJ92fRCToXBoJBjqOzaWbuTv+bmrUNYSbhbM1YiuuUtcrd2wnliUe5nhJJgADnfy4L6C3vi6QVqtlc1YiL28tJzHXEZVahLEI7o2w4POJdiTszuf1yXsBeG/LCHqNbjyO+PJ8UqtL8DK35buEA8wJGcye8nKeP30UB4mU1PH3YClpvJGWymp5O3oTQ1wCGOTsR2JlIX+nxTA3bGgTMcZfko40EWOMKc2+bjHGzk5Fg5rXtpXz3bEavVjcBUI3JjN5KgTeb4mlxIRe9p54XUZ128DV378NAaxdnFOlOXpDxN3MmufDR2JmZAzoAlRfTHqF9LxGQ8RYYMxE+4k84vYI3cy64W7sjkDQdmvJJmIxLwf35OXgntSrlCxOjuO3rGQOlRVy8EghEqGQfraOvBDUg8nnZeuvRJW8odl7DdoqvSFyITtomuM0vgj8AlfjjrvJGOicTLCfQOmQUu6Jv4c1JWvwPOTJQt+FvOLzyk2fS4NKQUypLvbATGzM3X5RiARCtFotNXINS0/U8PJWY5QaF4yNVET4ZbPy9m74WunUhPtOcOeLQ2N5bsh2Xhm7i1eWD2LEPbraLGG2roTZNv3+PxfYA6VGy/wzxwjcuoLUCXfrZd4vFmMEcDG1IrWqhJ15SXpj5GIxRoD7/PsQX57P4aI0xnl0a/8TdpOxMRHxzVQHHoqy4LG1pcQWXKjppUVmLuHMhjzKx+iW/LbnJhBp78mDAX0xuUx5DQNXxhAz0sU5fJG2yV2+UXpDJK0+jZAjIXye9zEAJlgxTDSH37wPsar7KsbZjcND6tGmhsilmIqNWBAaRfL4e6ie9hBvhUbhYWLO/tJCphzahnT1j4zYu4HN+VmtjnGoMI1vzu1v9n6xpvG43Yzd2RqxlX/C/zEYIgZaRSKUsLr7avZE7sFSbMmr6a8SeDiQjPqMmzqPUlmdfskx3NYViUj3THj7H0U4LMpi/tZyersb8+poJTNHnyTSP5/i8w8cFwjp68CPcRORmIh4796DrP0q4bL7fCk4gkVhvSiSNxC4ZSX154vmdRoxxk5Ibw8pJ+e68dwwDUKBBhBQHmCD/JJwtZjSbBaf2dmkEKGBa8dgjHRxLnhFpCIjAq0cAViSs4SAIwGkNKTQz7Ifv4f8xQOSbwgUDaK0ofZyw7Ub5mIJb3brReqEe6ia8hALQnriKjVjT0k+tx3aisnqpYzat5FthY3p0SdKsvgt5ZhenloA2BqbIRYIKEFnjPQQTOJV+18YYzumIw7LQBdkmM0wSgeX8qDzg6Q0pOB/xJ9XU1+9afu/2P7XXLRKbm0iRKWBXm7GrHvQmcEB6hb7XMAjyIpfU6ZibiPh66dP8tOCU5fd72shUbwREkmBrJ6grSuRqVQ3TYyxq1LYUEW96QnuHXEKYyMlGqEATT1MNOtBP0dvjM/rH2XXVrAqI6aDZ9u1MRgjXRzh+auUWqvRX9gGWw/Gz8SPI72OcKT3EUZZN4r9tKcn5GqxlEhYGNaH9NvupWLKTF4OisBJasKu4jzGHdiM6ZqljNm3kU/OHtH3Gezsz4d9p/F+nymEelWgRc1Q8SP0NbqbUyUFrWYkGDDQEkKhkF+7/crxXsexN7Ln/az38TzoSULt5T0MbYG91Fwv4hdXnofs/BP1z9Md2feYK2nlSvp+k8em1Hx9H1dT65bHcjVleeY07FxN+PPdeBY/dqTFdhd4O6w3LwdHkNtQR/C2lWgulzpigD35yWjRYmqsZMmMOkwsJAiA8vVKHgoawMsR4zA+79k6WpRBrdKQtXS9GIyRLo67mU7ISKlR69ehe1j0IGVACv2s+gFwtDhT397T3KbZGB2JtUTK+937knnbfZRNmcn/ArtjLzFhR3Eef5dU8VNhDQdq1HhYuWElMaFQXshr6a8y22U27wS+pB/ngiKsAQPXQm+r3hQMKuBJtyfJlefS7Vg35iXNa1fNHKnIiD4OXgDI1Ep+TTmqL6MwyFvK0SddqFPKWbLdhz/3RJCaGUBigTE18pbnZGYp4feMqbgHWbL5x1Ren7rnsvt/P7wvLwR2J6u+lr+Ly6i4SDodmooxmhsZ37AYY1dFo9Xqg4yNRWLuDwrn3QfdkFlI2LRBZyi6mlkx6HwsjUqrIeYywpcGLo/BGOniDLkonfjv9BgyLvIQaLVaTpXmsCNX97QnRMAAJ7+bPserxVYi5aMe/cmeeB/fhIURbmqERCggoa6eYfs2Yr5mGcPjHsdEbMlHAR/R38lX/1SSVFnU4pj1VJJFNA1U3cxDMdCFEAqFfB38NWf6nsHd2J0luUtwO+RGTHX7ud1Hu4fovSMxpTm8fHwdv6ccY2XaSZambmVEVCwAtQ3G7D5nx5ifCrF+O5Pwz3OYt76UlXG15FY11oGSSMT8dG4SIf3sObIul2cGbuVyiZKf9OjP0/5hpDYoeDsxHtVFxtfNFGPszMjUSuTnjUQfCzukYiNm97KkztOSrJwGamS6ZbSL42kqFfUtjmXgyhiyabo4QVZOBFo5klxVTLVSxgex2/G3dMDJxJLMmjLy6iv1bYe4+GNjbNpxk70GpEIB/S2l9LeEp7qNYFlWKqtKd5GSPRq1ZgL+exZiaRZHOP1xM3KnwSSDo9RSQirFpFJIIqWk6Y2QoTzJPXzdwUdloDPTzbwb2YOymZ8yn0+yPyHqRBSzXGaxLHjZDenktISLqRWPhwzi+4SDKDVq6lRyDham6bdbmEI3r0LOZjXe6DRaiC9SklSiZMkRnWZQgJ2YE3PdsZIKEQqFfHxwFAvu3E3s2mIsPxFQ+GUNOdIKzMQSbKVmrM2IpVJRz0NBA/ii50DqlHKWZaUQvnU5O4dMIqW6mOiSbOaGDdXvd5RbML8kHcHbwhZvCzt25SVdtRhjV+bielgXSnkIBAJEQTZYnC2lJLUKizDbJmU+Lq2hZeDqMRgjXRyBQMATIYP58uxeMmt0RZ1Sq0tIrS5p0i7K3pO7fFsvLtXZsDAy0f+7WlHL9J4JyHkLv9r72ZpiS2xFAdkNBxg2ZA8CCSiAXwARRmjQoKVpfRpfBtzU+RvounwY8CFPuD3BmNgx/FLwC+tL1rOu+zoG2Qxq0/2E27rxSsRYtuacI6Y0u4moXzcbF+4c58OYH2Rc6uBQnm8mACQiAaZGjXFgWTXl1DxXhkOQgJKPtHxbE43TAiED3H2ZFdS/WUXbpX1GUK9W8FduFmP2rWGKg12LFW1rlTLWZ8XpxRif7jYcS0njb/RWxEgowtPchuzaCvLrq0itKsHR2JZz7tYMADb/kMqTX/TmQGGqvo+fpUPHTbiLYxA9u0VQatTsK0hhX0EKxQ2NksU+FnYMdw2kt4O3Pti1K5BZU8b7sbr6Mhbuh6j1/gZPQS9e5hhCdJoMr535lWj7V/BxLbzsWCKM+JQypFjcjKkbuIV4N+Nd3kx/EzVqpjtM56+wvxAL2/4Zrk4pp6C+Gi1a7KXmeg/mtN8L2ZBYj/qScBGhAKylQk497Y6ndcvzWfpKDCs+OIuFrYRlZydh69y6V3Tm8d38lpVChLUd0SNvb3NPUFflYGEqv6ccB8BGYkpZQSRLj6kY8dUx3N2kjNzgyqEinUfLxdSKNyMndIokgc6EQYH1P4pWq6VMXodMrcRcbIx1F1mWaYkPYreRIdoDYR8iUJswveQAoZZ+lMnr2J2fzLmKAgCE7pvQ+vzZ4hhaLdjJo3hP2nIxMgMGrkSuLJdxseM4W3cWS5Elf4f/zVi7sTdl3wczZQz+Pr/Z+0IBHHjclQFelw8iXbX4HN+9EI3UTMx3p27DPaD16+c9R3eyIieNXjb2HBsxzWCQoHvI++j0drJrKwBYsbcHdTJjJv5znNp0NX57dMsyAgTM7Ta0meCcgau/fxu+bbcYAoEAe6k57mY2XdoQAZgQZI2g28egFaM99S7/pCbxdsxmlpzdpzdEAB40Xcg0PmxxDIEASo2jmVwmZXBqECuLV9+s6Ru4RXCXuhPfL57PAz6nQdPAuNhxTIidgEzV/jobA72MiXCRcGnBXY0W3tpZfsWsn+nPh/LyHwOR16t4JGwDiSdKWm37V79R3OHmw8mKUgbtXXdTq3B3VoyEIuZ1G4anuS0qDVTXS7GzrEPcRwNqaIjVIBIIeSion8EQuUEMxoiBTkk1xSw1GYFAAK5pH4DMqVkba4kJj4cMor+TL2N5iam836yNQCsmKd0fBBDil8wu++lMLDNhSGoIa0s23IxDMXCL8IznM+QPyifKIootZVuwO2DH6nY2bgUCAS8OttJXkhUAzw+0ZKiPlB2pMnw/zqG8XnXZMUbd58t7m0egUWt5uv82Tm5r7mm5wKoBY5js6sWRsmKG7zP8PgAsJSa81GM0jsp+gIBAtxIsJuu2me225O2o2+jr6NOhc7wVMCzTGOh0KJDxGl7UUMxs/qQP95BVU87J0ixqFDKMRWKCrJ3oYeuO6BJX8hbeYx2vASBERHcm8wRrAPij+E9+qHkTa5scXGzkaLRQUG5CTYUPL9l9ym224276sRromizLW8ZTSU8h18oZaj2UjT02Yi42129/9fg6yuR1zfoNdQngXv/eLY4ZXZLNuqw4ymS1OJpYcLtPBOG2bihUWjw+yKK4TkOUh4qhPeORa5TkFniwLtoJMyMhB59wJcLV+LJzTjxRwrODtqNWapj/+0BG3dd6NsyEA5vZUpjDSEc3dg6deJVn5dZm0Hd5HM6SU/+OFyIRTLP8GwtbCX9l39HRU+vUGGJGbhE2ZMWxMTu+yXtOJpa806v1C0RrF7ULaLVaNmSd4UBhKg1qJX6W9tzr3xsnk44/txo0vEM3CklkMouYcN6wuBY28y7rWQDAI6ykF3c1a/NT0S/8UrsQG9tcnK0VaLSQX25CbYUfr9p9wdgbrF5s4NanWlXNxNiJHKg6gFQo5bug75jpOhOAGoVMX8YAIL+uis/jd/N8+EiCrJt7+dKqS/jk9E6m+vSgu60bx4sz2ZabwGs9x+FmZs2yE9V8fqSIQT3ieDysL/ZSM9ZnxnEkW8ZfBwLQAr/e6cD9PS8fpJ2bUs0TPTchq1PxxGdRTH82tNW2o/Zt1KkiO3uwZfCE6ztJtxAmr2fgaiEi7SVPAJ4euIWEI6VsUdyHWGxYZGgNQ8zILYSrqRUf9Z2mf73UY1SrbdOqS1iaeIiBzr4siBxPhJ073547QF5dpb7NttwEducncV9AH16OGIOxUMyX8XtQatStjnuz+IpxFJJIfx66LkMEYAKvMZmF2ONDOLe12Ga20yz2+6WxzkZOROG3JGb6YCRWExIQzyrrkUwoMWNYSnf2VBy4kcMxcAtjKbZkf6/9rAxbiQABsxJm0fdEX8oV5VhIpFhJTPSvuPI8HKTm+vpRl7IrL4luti6MdQ/FxdSKKd498DS3YW9+MgCze1kwrs8ZpvmFEmHnjruZDQ8F9cfSooLf7wcTsYAH/i7huY2XL4vgHmDJb6lTsLCV8N1z0Sx9pXVht51DJzLE3pmthTlMObT1+k/ULcCRbBkylZbJoY1xeIOmeaLVwuF/DaqrbYHBGOkCCAWCJhc288vIMF/poqbVatmVl8gEz7AmF7VKeQOxHSxlvJzHSWAHgQxjJj/d0FgTWMBC0jDG7Ipt57g8wQHfdP61lhNasITETG+MjZQEB5xhueUQxhebMTwlgkNVR29oTgZuTe5yuovyweWMtR3L8erjOB905uucRoE9lUbNseJMBjj5tZr2mV7TSvXc84rKpbI6qpWyJmqfJmIJPhb2CI3LyX7ZA28bMZ8fqmbo93moVK0Hn9o6m/JHxjTs3U1Z8cFZPp59uNW2e4ZOYoCdE+vzs7jj8ParOh9dieSqYpac3ctLx9by+IE/W70GfnlIJ5743CBrkiqLWBSzhT094xAYweo1Z5q135OfzKvH1/HUwRW8H7utiTK2gZYxGCNdgOKGGl46tpbXTqxjWeIhymXN16IvcCMXtY4sNvdF8Tvs1yzDpLoXz7Kr1XbRJdm8cXIjTx1cwdvRmzhTntdku1arZX1mHP87uoZ5h/7mszO7KGqovup5PO3yFAd8M1hrrcA/fzFJWZ6YGCsJCjjNz+b9GVdszojkKI5XR1/3sRq49ZCKpWztuZVNPTYhFUqZmzyX7ke7UygvJLYslwaVggFOrQc5VitkWF7ykGFpJKXqvLpntbJB915L1XMVMmxNxaS96M6YACn7M+V4f5xDcW3rga1mlhJ+S5uCZ4gl235OY8Gk3S22EwqFHBg2md42DqzJy+Duozuv6nx0FRRqFe5mNtzj1+uy7XalNmBjIsRUKmPJ2b0EWTvxRv8JmLqKyMio4GxFY1DwiZIsVqXHcJtnGK/1HI+7mTVfxu9potRqoDkGY6ST42Nhz6zA/jwdNox7/XtTKqvj47gd+kqfl3KjF7WOYEvd7yTYvYewJpDeJV8ibOVrebOXoF50fY4DvlmssVLglfs+SdkemBnLCQyM4XuzXowrsmBkSm9OVZ++3kM3cIsxwX4CpUNKmeYwjTN1Z3A/6M7n6UvpZuvS7qn2QqGQbbNdeXmoFXnVarw/yuFYduu/aYlEzNL4SXQb4MDRjXnM67+lxXReoVDI0RFTibC2Y2VOGg8ca9lw6YqE2boy1bsHPe09Wm1TXKuipF7DEG8p+wpSsJeac6dvJC6mVgQHOdIQA9vSG6s978xLZJCzHwOd/XA1s+I+/z5IhGIOF6W1ug8DBmOk0xNm60qUgyfuZjZ0s3FlXtgw6lVKTp6v0NvVSVQfZp3RPMRaKd457yFC0mrbjlyCesX9ZQ74ZLPaSolLztskZ7tjbiIjIOAkS0wjGFtkwaiUvpytTbyh/Rjo+kiEEtZ0X8OeyD1YiWxYXruIryqeJqshq9U+lhIp1cpLKuMqZVidf2iwPF8e4dKn62pFY5sLvD/Ojr/vcUSh0jLgu3yWHm/dMygUCvni0Dj6T3Yn4Wgps0M3oFA096gIhUKiR95OuKUtf2Sn8PCJvZc9B7cSX5xfopnX35L06qae5+H3eKNVwNljxYBuSS67pryJ51koEBBs7Ux6tWGp5nIYjJEuhqlYgpOJBSUXSb5fTFte1NqbMrL4QjUFBBpeFu9HrDG/bPvOsgT1pscbHPDJYZWlErvs10jOccPSVIZ/wHE+lYYwptCSMSkDSK5PvfJgBm5ZhtkM4yevnQwzmk2y/Ay+h315LbXloGxfC3sSK5uWNUioKMTXQlcZ115qhqWRtEmbBpWSjJpSfZuLubO7OaefccdMIuDRtaU8sbZ1sTOAheuGM+FRf3KTqnnA51/qqhXN2giFQmJH30GIhTU/ZSbxRPT+K52CW4LV8fVIRDAywJRqpayJV3nEvd4IxFAdrUahVlGrlKNBi0VLnmelYZnmchiMkS6GTK2kRFaLVStFqtr6otZe1FPN24p+aEV1PC76E3e6X7FPZ1yCetdzEQd8cvnHQoll1v9IzXXF2rwe34AjvC8JYHSBJeOSB5NRf2t4sgxcPRqtlqMlGczzmMfxXsexN7Lnvaz38DroxUfxa1mbEatvO9ItiLMVBezITaCwvooNWXFk1ZYzzDUQ0ImfjXQLZnNOPKfLcsmrq+Tn5CNYG5sQ0coSQzcnCbkve+FvJ+b74zX0++byga3P/9Cfe18Noyy/gfu811KaX9+sjVAoJG7MnQSaW/F9egLzYg7e2Enq5KhUGlLKlIQ7t+yxlUjEWHlJaIju9AoZnR6DMdLJWZUeQ3JlEaWyWtKqS/ju3AGECOjt4AXAz0mH2/2i1taoUPG2OgK5uJSxyvfpKbw1RJU+8vqI/d55/G2uwiTrGdLynLG1rMc78CDvGHkxqsCK8SnDyJHldvRUDdwEEisLKZfXM9DJl95WvSkYVMActznkyHN4veh+/ihepo/R8LN04JGggRwoTGVhzBZiSnOYEzoYNzNr/Xhj3UMY7hLEHynHee/UVuRqJU93G37ZsvWWUiFJz7szKdiEYzlyPD7MIb+69cDW2e/25MnPe1FboWBWwL/kJFU1ayMWCjk79i78zCxZknaWF04fuf6T1MlZcaYOjRYe6Knz2loaSZt5lT0HWiA7C3VlSsyNjBEioKYlz/NlsiANQNuXnzTQplTI61madJg6pRxzI2P8LR14OWKM3g1YLq9HQGO64IWL2rqs0/ybeRpHE4sWL2oKtYo/Uo5Tr1Lgb+VwxYtaW/IJg6gSZkDi02wvdWQ7fwGgQUtKVTF785P5etAMhIKmtvK1LEFd7DmqVsjwMLduxyNqzmdenwOfo9KoeC7zec4J/sHVvhhrl328rvQgN98K47oolnr8iYu0uQiWga5PqI0L3w++V/+3UCjkm+BveNLtScafHs+a2iW4HVrFph6biLSMJMrBkygHz1bHEwgETPbuzmTvK3sRL0YoFLJ+pgtv76zgrV0V+H2cw46HnRnk3bJ39fZnQrB2lPL+fQd5tPtGPts/hpC+Dk3aiIVCzo27k6AtK1mcHIdEIOT97n2vaV5dgaUnqhEAj/bWiXX5WtoTX95UTt92ghH8Bpt+SOH+Bd3xtLAlobJI/3Cn0WpJrCxk+PkHQgMtY1BgNXBT+YG7iOEfwtTTmCZrqiXya/JRnE0tGese2sR40vdNOIhCo2Jut2H69z6M3Y67mTX3BfRBq9Xy0rG1jHEPYbR7CKBbgnrx6GpmBfajt6N3Ox7ZlVGoFDyb8wxnhWtwdSjFylRDgwJyS6wwa+jDUo8/cTS+eUtlBjqWl1Je4tPsT9GgYZbLLJYFL2v3Srnrz9Vxx/Ii1Br4cpIdcwdYtdr25I58Xh2vy5xZuH4YfSe4N2sjU6kI3LqCnIY6Xg+J5J2wlqXuOysytZKShloAFp3awp2+kQRZOWEmlmArNcN6YSK25grSn9MZgKWyWt6O3sQw10AGOvmSWFnEitSTpI9R4x9uxzcnJnCiJItfko5wf0AfvC3s2JWXRHRpFm9HTcSyleX1WxmDHLyBTscaXmY7H+JJJK/SXKfj07iduJvZMMMvCtAtQVlLTJnmEwGcl8yO28nt3hGE27pyoiSLLTnn9JLZAFtzzrEt9yyzAvtjLzVnXVYceXUVvBU18aZ5fq4GhUrBU9lzSBZvxM2+FEu9YWKNRX0/fvb+Cxsj646epoF2Jq0+jbGxY0lrSMNWbMu67usYZDOoXfeZXKKgzzd5VMm0zIo05+c7W1aFBUg+WcYzg7aiUmj43y8DGPOgX7M29SolAVtWkC+rZ2G3XiwIjWrP6bcpSZVFLD7TXNeov6MP3c17ErUkn9t6FrLxrgFN+vyTHkNBfRXWxqbc5hnGN/1PU1HYwKZ6nSdsT34S23MTqFbIcDe34W7fKHws/5sPGgZjxECn4gA/sJzHscadRWQgbmGF8FJj5NO4ndgZmzErqL++ja7uzmnKZHVXrLtzYQnqXr/eOJl23u+NQqXgiaxHSDfagptDGRYmWurlAnJLrLFuGMhPPr9jLbbu6GkaaEfeSX+HdzLeQY2aOx3v5M9ufyIWtt8qep1cQ++v80goURLpKuHIHFckrdRXyUur5omITTTUqnj8k0jufKFbsza1KgX+m1dQJG/g/fA+vBzcs93mfrN4cGUxv8fWkvqiO352rUsOACx+9Aibl6byS9Jk3ANb9zb9FzEYIwY6DWfZxleMR4oF75GFKdYdPaVOi0Kl4OHsWeQY7cDdvgxzEy11cgG5JTY4yIbyk/cfmIvbVzyrs1Auq6NWJW/ynrnYGFvplSX+uyK5slzGxo7lXN05LEWW/B3+N2Ptxrbb/jQaDTP+KmZVfD32pkKi57njad2yAVRR3MDDoRuoLpNz1/9Ceeyj5t6PaoUC/61/USKX8Wn3fjwf1KPd5n4zcHk3i3qlhqq3WlfOvUDiiRLm9tnKHc+HMOfTy6u5/tcwGCMGOgX5nGUREQgQ8hbncKC5m9dAy9Sr6nkkayYFkj24OZRjLtVSJxOQW2qLk2wYS71/u2UNk3JZHa+f3IBK2zQVVSwQsrDXpFvWIAH4PPtz/pf6P1RaFRPsJrA6bDVScftlYnywt4JXtlUgEcHmmc6MDGj5O1Vfq+Dh0A2U5NQzZqYvL/0ysFmbSoUM/y0rKFPI+TJiAPMCwttt3u1Jeb0Ku4XZTAgyYdMsl6vqM06yHFd/c346N6WdZ9e1MFTtNdDhVFPMB/RFi4Zn2WUwRK4RU7Epf/r9wx6PUr4T11KROo3cUhvcHcqx9l/NE0pzhuU4cF/q3ShUzUWqujK1KnkzQwRApdU085bcajzr+SwFgwqIsohic9lm7A7Ysbp4dbvt7+VhNmyZ5YQWGP1TIZ8eqGyxnam5hF9Tp+AVasX2X9N5dULzWAtriZTk8XdjYyTh6djDfJd6tt3m3ZZc+kz+1WGdqOScvlf/8OseaEFeastilAaujMEYMdAuKJCxkHAU1PEQfxBA+wbl3eqYi01Z6b+GPe5lfC2qpDR1Evll1ng6lmHhv5KHlFKGZjsyK+3BW84w+S9iL7HnZJ+TLA1eikqrYvqZ6QyPHk6tqrZd9jcuyIyk592xNRXy4uZy7llR1GI7iUTMj2cmEj7YkeNb8nmqz+Zm9WxsJVKSxt2NlVjCnFMHWXZR3ZbOStSSPPw/zuZ/m8vYn9HA33E1iIUwIejqs196j3dDrdRy9sjl1W4NtIzBGDHQ5mjQ8B6R1FDMZBbRh3s6ekq3FJZiS1b5r2e3ezlfisopSh1PYbkV3s4lSP1+Z5bChKHZjjyc/nCXNEzy66r4K/Vkq9vrlLe2Z+RiHnZ7mJIhJQyyGsTeyr04HHDgt4Lf2mVfPrYScud70sNFworTdXT/PId6RcuF8z7bP5aB0zxIOlHG7JD1KGRNhdQcpCYkjp+BpdiIR6L381tmcrvMuS0ol9VRLVeRVq7is0NVDP2hgHMlKswlAlbG1VPRcHVFNic+EQDA5h9T2nO6tyzXZYx8/fXXeHt7I5VK6du3L8ePH7+qfitWrEAgEDB16tTr2a2BLsJXjKeQBPrzEBNouRaHgbbBWmzNWv/N7HKr4GNtCfmpYyiqtMTbuQQj35+YqTBhaJYzT6Q/0SUMk8yaMj48vf2ytYR+TzlGlaLhJs6qY7EUW3Kg1wFWdFuBAAEzz82k74m+lCvK23xfUomQ2KfduS/CnDNFStw/yCatrOXvzdtrhjHx8QByk2u43/dfaiubtnOWmpIwdgbmYjGzTuzhr6zOV6vpQmwSkmIEaFFfZHtVy7Xcu7IY+4VZDP4uj7SyliulX8DNzxJjUxGxewov285Ay1yzMbJy5Uqef/553nzzTWJiYujRowdjx46luLj4sv0yMzN58cUXGTx48HVP1kDnZzmPk8B2AhnGTH66cof/GOWyOrJry/Wvclldm43taGzPev9t7HKt4ENNAXkpIyiptMDHtQh8v+dBuc4weSpjbqc0TBRqFd+e249MrbvoW0mkDHX253bvCPo4eCM5n+paJq9nWeLhjpxqhzDDeQalg0sZYzuG49XHcT7ozDe537TLvv6Y4chnt9lS2aAhZHEumxNb/p4++10/HngjnPKCBu73WUNJbtN2rqZmnB17F6YiMfcd38Xq3LR2me/1ciE2yc6yeR0ejbbx/0dz5NTIW6/rcwGfMGuKs+uaLV0ZuDLXnE3Tt29fevfuzZIlSwBdepiHhwfz5s3j5ZdfbrGPWq1myJAhzJ49mwMHDlBZWcm///571fs0ZNN0DbbxEWuZjyOBvEUCQsMqYBNayhC5GdkhubI8Hsu5D4X5KTzsqzE2gopaEQWlDkRxD595L263fV8LhwrT+C3lGAB+lvY8EzYCY1Fjqmm5vI4PY7dTed4rsqDneDzMbTpkrh3NxtKN3BN/D7XqWrqbdWdbz204GztfueM1sietgfE/FyBXw6LRNrw2ouXz/e+SRJbMO4GxqYhvTt6GV0hTrY3MumpCt/2NTK1m7YAxTHG7crrszSC7tpx3T20lu9iarSeDW2wjAP6+15Hp4ZevKg7w1/tnWPZqLG//O4yBU25Ora/OTrtk0ygUCqKjoxk1alTjAEIho0aN4siR1oslvfPOOzg6OvLwww9f1X7kcjnV1dVNXgY6N9H8zVrmY449CzhlMERaoKUMkZuRHeIudWNzwF52ulTxpjqDzJRBlNeY4edeSIP3Z9xVK2ZIpisvZbb8MHGzOFKUof/3nb6ROkNEqwWNzlNia2zGBI+wi9qn3/Q5dhYm2k+kbEgZU+2nElcXh8chDz7K/KjN9zPcz4TU/3niYCZkwY4Kbv+9sMWn/qlzg1mwYjAKmZrHe2xsFsTpbWZJ3Og7MRaKuP3wdjbnZ7X5XG8EW4vmnpELLL3D/qoMEYDxj+riRnb81rk8QF2Ba7pjlJaWolarcXJqWtjLycmJwsKW18kOHjzIsmXL+PHHH696P++//z5WVlb6l4eHwcLszKRzjKXcgxEmvM4ZJNya2hc3Qq1SzuHClm+eCvXVBci1Bd5Sb7YGHGCHSxWvyJPJSOlPZa0p/u4FVHt/yJ01RgzOcOO17Ddu2pwuUCbXZYqYiSX4WJyXzi75CU6aQvaLoCggzNb1ovaXWeLq/PJJN4xEKGFtj7XsjtyNucic+WnzCToSRFZD297o3a3E5L7sSS83CWvP1RP6WR61suYGybAZ3ny4fRRarZbnBm/jyMam1an9Law4NfoOjIRCJh3axo7CzlO92kyqQCxq/jv87DY7Zve6em+8tb0UM2sjzh42ZNRcK+36+FpTU8MDDzzAjz/+iL391evyv/LKK1RVVelfOTk57ThLAzdCGVksZigChMznKFa0vau4q5NWXcKbJzeyp6DljIKlSYcorL/53r9AswC2BRxmu3M1L8jOkpbSl+o6KYEe+ZR5LmR6tRGDMzx4K3vhTZmP+HyVZoVGjVJz/sZQsQaEJlD0NZz2xCR9BpOFK+kjPEh35RrIfQMy50DKdDg3EE77Q7QNnDSB6n03Zd4dzXCb4ZQNLuM+5/tIrk/G97AvC1IXtOk+JGIhJ+a683AvC5JKlbh/mEVSSfO4o8iRLnx1bDwisYA3Ju9h689Ng1aDLW04Oep2xEIB4w5sZndR5zBIBILm3pE3Rljz7KBrl3YPjLKjolDWLMPIwOW5JmPE3t4ekUhEUVHTHPSioiKcnZvfhNLS0sjMzGTSpEmIxWLEYjG//fYb69evRywWk5bWsivL2NgYS0vLJi8DnY96qllEBCoUzGEd7lxbafP/AoX1VXwZv7fJUoyj1Bw748YYkQp5PZ/H76ZaIeuIKQLQzTyUHQFH2eZcwzxZHKkpvahpkBLomUuh5xvcUW3E4HRP3s19v93m4GVhB4BSoya6JBvkGVC1FdwXQc8C8PwMdV0Mtxmt52Gjbxkg/wLy34fipTqjpfYwyNNAXQlaOUiaV5m9VREKhfzR7Q+O9TqGnZEd72a9i/chb5Lqktp0P0vvcOCbKXZUy7SEfZ7L2vjm3qnASDt+SpiM1FzMJ7OPsOKj+Cbbw6zsODZiKiKBgDEHNnOwpKBN53i1ZNeW8096jP5vG/N6QAtomRqu4q1R1xePNOwuLwB2/JFxhZYGLuaajBGJREJUVBS7djUq72k0Gnbt2kX//v2btQ8ODubMmTPExsbqX5MnT2b48OHExsYall+6MCpULCKcBiq5myWEM6Gjp9QpWZ91Rp8dEmjlyMJek1jYezLv9ZmiqzZsag3oDJIdeZ1DHCrCPJydASfY5lTDk3XRpKRGUiczJsgrhxz3V7m9SsLgdC8+ymvbwNchzv76f/+dHk190nS0aMHhITQiSw5qx/OS7GMS1SFotbrAQlCdf128LCMCixEg/e8p/vax6kPhoEKecH2CbFk2IUdDeCb5mTbN7pjTz4oDj7sgFgq4fXkRb+xonmLs4mPBb6lTsbI3Zun8U3z3QlPdmAgbBw6PmIoAGL5vA0fKbm467OmyXD6M3U5yVWMWqFwpBgS42Fbj4H6SDVlnrmvs0Q/6ArBvZWYbzPS/wzUv0zz//PP8+OOP/PrrryQkJDBnzhzq6up46KGHAHjwwQd55ZVXAJBKpYSFhTV5WVtbY2FhQVhYGBLJ5SshGui8fMIgyslmFC8wjCc7ejqdkipFA6fKdEuMFkbGPNVtKI4mFvrtnua2zA0biuj88sShwvTG5YlOQpRlJLv8o9nqWMvsumMkpUTQIDciyCubdLcXmFYpYXC6D5/nL7nhfQVYOdLNRlcHRKAqwaQhhgL8+D4pltdOrOf3lGNoEPC56lUKjIfR+uVLDU7/3e+kUCjk25BviesTh6uxK1/mfInbITdia2LbbB8DvU3I+J8HLhYiFu6u5LZfCpoZPDaOJvyROQ0nLzNWLU7g/QcONtney9aBA8MnAzBkz3pOlt+cOIuC+ip+TDykDyY3FxvT294LNwsTxCI143slIBDAppx4jhVfu3dDIhVj4yQl+WRZW0/9luaajZEZM2bwySef8MYbbxAREUFsbCxbt27VB7VmZ2dTUNAxbjcDN4cfuYtMjtGDqUznk46eTqclo7oUzflAyr6OPkhFRgBs4C0OnddgsTU2I/x8UGadSt4hsSNXywDLPuwJOMUWxzrur9lPUko4cqURwd6ZJLrOY2qlMYPTfPmm4IfrGl8gEPBo8CACrRyZIf4dgD/k9xJTlkO5vHE9f6BzAM7hm8CsNyBqebCsZ6HgU9D8d9ftwyzCyB2Uy4ueL1KsKCbyeCSzz81uMy+Js6WY7Jc8GOhlzOakBgI+zaXqErVSEzMjfk2dik+4Nbv+yODlcTub7L+fnTN7hk5CCwzY/S+xFe1vkOzMS9Qb/b0dvPig71QeDh5Afpklj/ay5u6Anvq2W7LPNqtbczWEDnCgtlJJVVnHLb12Na4rgHXu3LlkZWUhl8s5duwYffv21W/bu3cvv/zyS6t9f/nll2vSGDHQuVjLK0TzDx5EMoe1HT2dTo3iIi+HtURX46KSfLawiJXMo4aSJtuATucZaY1h1oPZExDHZoc67qraTWJKN5RKEcE+GZx2fpypFcYMTvNjaeEv1zSuidiIZ0OH0Et0khqBHWkEAbolmW42LsztNpT7/fsgFJlC4CYw9gYuLnsvBONAUBVDzosQbQpJt0F951gC6wg+DviY5P7J+Eh9+LngZxwPOHKo4lCbjC0WCzn4hBtP9rMkvVyF+wfZnCmQN2vzfextdB/qxMltBcztswX1RVKngxxc2DHkNjRo6bv7X+Kr2s+joFCrOFacCYBUJOZ+/z4YCUUkFCvJqFAxOcSM0e4h+Fs6AFDQUH1ZNeDWGP2ATkdly9LOpzrbWTGIQRi4ag7yI9v4AGvcmc+xjp5Op+diIyOpShf0/TfPYIIVRpiylBmoteom69ZWkqsvzNVZGG0znL0B8WxyqOf2ii0kpoWgUgsJ9knnhNNDTC6XMjgtgF+Kll/VeKLC9xGixNJrEYv7Tef93lP4fMCdPB02nHBbNwQCXbQIRnYQvAPEVjR6SLQQvBWiGsDzSzByg6rNEB8KsV5Q8Dn8B9Ux/Uz9SBuYxts+b1OpqmRQzCDuOnMXqjbyHH09xZ6f7rCnXqml51d5rDjdtHqtUChk8d4xDJ7uSXJ0OQ8FNa1nM9zRjS2DJqDSaOm1cw0J1RVtMq9LKZfX6Q3+bjauSMU6b+Vr28sRC2GYrxSAKHtPfZ+C6/BWDpjigUAIB9caMkGvFoMxYuCqOMd2/uBxpFjyBmcQN3kaNdASflYO2Eh0mivx5flsrv2NGFZxN0uYze8ksYdFimHk11fp2lvaY9eOSqw3g/F249jnf46N9g1MLF9PQlowWq2AEJ9UDjvez+QyKYPTAllR/E/rgxR9CUIzcHgMMyMJtlIz/RJXM4x9IGg7CM/Hn1mO1L0nFILzPIjIgPAksJ4MygLIeQ6ipZA0CRraNtOkK/CG7xtkDswk1DSUf4r/wW6/HTvKdrTJ2A/1suToHFeMxQLuWVHCS5ubezje/Gcok58MJD+thvt81lJT0ehFGe3szsZB41BqNETuWE1KTeUNzafl0guCFtsW1apxMBMhNdLdErXcmE6NUCjE0cOMjDPtY1TdihiMEQNXJJ+zLOE2RBjxGjGYYt3RU+oSiARChrkGAqC1iWa96Sws63tgUTkcbXl3zOvDKZAcBNetAIxwDerI6bY5U+wnsd8/gQ12DYwqW0ViWiBaBIT4prDb/i4mlZkwJDWYNSXrGjuVrwF1OdjP0hkUV4NZJPiv1emROD/ffLtJIASugygZeHwGRi5QtRHOBEOsNxR+9Z/ylrhL3Tnb/yyLAxZTr6lnTOwYJsZORK6+cSXg3h5Ssl7ywMNKxMcHqhi1NL9ZjMrTX/flwbe6U1Eo436ftRRl1+q3jXfxZO3Ascg1anrsWEVG7fXFUF0ovfDuqa361+snNwBajM/XOIqvyKdBdV7d10REb3djff+TJdn6f7uYXp+0RI/hTsjr1RRk1Fy5sQGDMWLg8lRTzAf0RYuGZ9mFA/+9dMkboZ+bHTZhvyMIWwxCLVV5PfnszG6+OruXmugX0KpNwfcPojwETVzDtxp3OdzBfv8kNtg1MKRkOYkZ/ggEWoL9kthiN5WJpaYMTQ2lOPNZQAju1yhtbj0WIivBenzrbYRCcHkWIrIg7BxY3QbKfMh+GqJNIHkqyP47Mt7PeT5H/qB8Ii0i2VS2Cbv9dqwtvvE4MHtzMZkveTDcV8quNBk+H+VQXt90OejBN3vw9Dd9qKtWMjt4PZlnGz0Ik129WdV/NDK1mrDt/5BVd+0GSWulFxQaNX0cvQGQq1X8lnIUhVrFyTw55fVqtFotW3PO6eNEXE2t8LW4esHOi5nwiE4afuN3KdfV/7/GNRfK6wgMhfI6BgUyXsOLGoqZzZ/04Z6OnlKXQYOa/XzPWl5Goa1DK9BdGLUnP4EGF307qWUe8u7zMcWGjwQFiLl10903ZMWxMbupAJZCmkuq7Q/Y2uYQYKbg/dPwp7WYnwjkFbsvcVAHsC4rjjJZLY4mFtzuE0G4rZu+v1arZUPWGQ4UptKgVuJnac+9/r1xMrnK64RGA0WfQdEXoDi/vi/xAZcXweGJq/fOdHF+zPuRuUlzUWgVDLcezvoe6zEXX109lsvxwqZSFh+sxtRIwP7HXYhykzbZvn9VFgtn7EcoEvDp7tGEDWosNbIyJ5V7ju7CVCQmcdwM3E2vfj4XCuBdyms9xyERill0aos+dsTCyJjP10fgY6/m3iHJFDY0Gj+PBA2g93nj5XoYa/QHHsGWLD0z+brH6Oq0S6E8A/8dNGh4jyhqKGYyiwyGyDWQzlHeJZIVPIWcGr0hAnCn20hGugYxyi2YWYH9+DjsOW4XfEi9oJyvuMxT/S2Cq6kVH/Wdpn99FfE0B/xSWWcjZ3ZiKBot7LAREBJwjtXWo3hDG8Y+84WM9Lclws6db88dIK+uUj/ettwEducncV9AH16OGIOxUMyX8XuuPitJKASXFyAiG8LiwWq8zijJekqXiZN8O8hufSXNR90epWRICQOtBrKncg8OBxz4o+CPGx7309vs+eMuB+QqLX2+zufXk029HEOme/HxztGgheeH7uDQusaAzxke/vzWZzh1ahWh2/6mUNZ6MbtrwdnUksdDBmEk1AU91yjlqLUgp6aJITLZK/yGDBEAN38LcpMNyzRXg8EYMdAiSxhPIefoz0NM4LWOnk6XoIYSfmU2H9GfAs422y7BjFEuEdzlF8WdvpH0d/JFIhIzhv8RwFCS2M1O2lbVtLMhFAiwkpjoX+ZG55+UVdWEyhIxlobyh72CbgVfk5wahkSiICT4OJsdxvKd6QDOWX/Hr5m6J16tVsuuvEQmeIYRYeeOu5kNDwX1p1LeQGzpdWQxmHaDoM3QqwHcPwSxA1SuhThfOO0HRd/f0rEllmJLDvY6yJ/d/kSAgAfOPUC/E/2oVFTe0Lj39bTg5Fw3TIwEzFpdyjMbmqbKRgx35puTExBLBLw5bS+blzUua9zvFciyXkOpUSkJ3rKS4jYySMJt3ZjfYwy97D1Rq0WAAFOJLn4kwNKRp0KHcptn+A3vp9c4N1QKjUEA7SowGCMGmrGcJzjHdgIZxszz4lwGLo8GNYuI4Ag/6/++lMsVEXyG7Zhiw2r+Ry5x7TbPjqa4oYaXjq3ltRPrWJZ46HyGAzpNEDTg8TEA81yepH/lQp6qiyUgbzFJWV6YGCsJDttHevA9jCs2Y2RKHwoVhYRYN55Xk/MVf69HG0KPUAyuL0HPHOgWB5ZjQZ4NWU/ovCUp00HWtpVxOxP3ON9D6eBSRtuO5lj1MZwOOvFt7rc3NGaEqzG58z3wthHz5eFqBn+fh0rVaNj59bDlp4TJmFqIWfzIUf58v1GKfbZPMN9HDqZKpSB460pKZQ03NJcLeJjb8GjIIB721Xkkh3m6sqjXJF7sMYrudm5X6H11THz8fNzIDy0XyTTQiMEYMdCEbXzEAb7HkQCeZdeVOxgAQIiI0byICCOEraiC2tB6gKoYCS+gqzK7mKGoaF4RtavjY2HPrMD+PB02jHv9e1Mqq+PjuB3IFHIo/UPnibBprHFUrZBhaSTlBbfnOOCbyRorBdKERaSkhWFmrCQw8CSSgU/xaJ0nI1N6E1N9GgBLiZSqtio6aBau0y3p1QDu74HYDipWQ5w3nA7QFem7Bb0lpmJTtvfczvru65EIJTyZ9CQRxyIolF9/DRlrUzFpL7ozNsCEg5lyvD7Kobi2MbDV2duC39KmYeVgzE+vxvLNcyf02x7zC+WriIFUKBUEbVtJ5RU+35pr+PwLq3W/10gnaxwuKtfQFngGWyExEXFq182tvdMVMRgjBvRE8w9rmY859iwgFqHh63FNqHLGoDrxARYNzasXCxFhi64wZHRJNm+c3MhTB1fwdvQmzpTnAeBGOHfwMfXaSl6vnML/jq5h7qGVfHZmF0UN15fi2JkIs3UlysETdzMbutm4Mi9sGPUqJSkZn4G2AZyfu+IYU63upHf526y2UmCd9japaWGYm8gICDjJ12YRjC2yYIX6TUpVRVcc65oQisH1FeiZB91OgeVokGdC5qMQbQapd+m8J7cYkxwmUTakjKn2UzldexqPQx58lHmNmU4XIRQK2TrbhVeGWZFfo8brwxyOZDcaDtb2UpZn3o6ztxlrPk/k3XsP6LfNDQhjcY9+lCvkBG5ZSbWiucEuV6v4JfkoX53d2+L+Dxak6ks0XCCrUrc842vbPtpJ3qFWFGXWtmmxwlsRw93GAADpHGMpd2OECa9zBgmmHT2lLkVmTRn7C1JxFwUTULQAAAFCvZdEgBArXEmrLmFp4iEGOvuyIHJ8s6DMUTyPffUEyq22ERqacH1BmV0EU7EEJxML7Kp+BoExOM9vst1SIqVa2fQJt1opw0qiizN5wfV5gote4TNhMfbZC0jOdsPSVEZg2G5SQ6YzptCSMSn9SahrY3EzswgI3q7zlrgtArENlP8Dp73gdCCU/HxLeUskQglre6xlV89dmIvMmZ82n+AjwWTLrt/4em+sHf/c64hSrWXQd/n8cKzR2JaaivklZSq+PazZ81cmL43eob+RPxfYgw/D+1KikBG4dQW1qkaDRKFW8UX8Ho4UpbcqWbavMJUVaSeb1JvJqdJ5ZwLsWxHWu0H6T/ZAo4ETW/PbZfxbBYMxYoAysljMUAQImc/Ry8Y2GGiOTK1kWdJhHgjoi6lYQpz96wgQ8BKH6cntAKhRYo0bu/KS6Gbrwlj3UFxMrZji3QNPcxv25uvWlLVaLbKEWUjkHhy3fB2tWdaNBWV2YmRqJdqGJFy0yWB7V7M0Wl8LexIrm7q3EyoK9boP9lIzLI2kJFYWsshzIQd8cvnNpJ6Coy+Smu2FlVk9vgFH+cg4mNEFloxNHkhafWbbHYBQDG6vQc986BYNFiNBng4ZsyHaHFLvAUVu2+2vgxlhO4KSwSXc53wfSfVJ+Bzy4Y20N657vOnh5px5xh1ziYDH/y3l8TWNRfLEYiHfxdxGzxHOxOws5MleW/QxJi8FR7AorDdF8gYCt6yk/rxw2aaceNKqdWOIBAKkIjEigQBzsTHOF6V67ytI4fR5byRAfrXOyK/XlrIoZgtPHVzBghPrOVyU3mzOe/KTefX4Op46uIL3Y7eRcRWxSbc95g/A9l+aj2egEYMx8h+nnmoWEYEKBXNYhzvNlxgMXJ6/Uk8SbuNKiI0zpZZbUZifYyhz8aEvj/I3T7ERb/oQwGDSa0oJtm5q7IXauOgDLktlddQolcxS/wMIWMwwRGLNjQdldgJWpceQXFlEqayWtOoSvjt3gCGCjWgFQvD6nJ+TDrM2I1bffqRbEGcrCtiRm0BhfRUbsuLIqi3Xq9oKBAJGugWzOSee02W55NVV8nPyEcJEg9jlncY/FipMs54lLdcFW4t6fAIPs8jIh9EFVoxPGUrWDTzZN8MsEkJ2Qq96cHsbRFZQvgJiPSAuGEp+a7t9dSBioZg/uv3B0V5HsTOyY2HmQrwPeZN0nd6nECcJuS97EWAn5ocTNfT7JhfFeaNDKBTy8a7RDJvhReqpcmYFrUN2XjzttZBI3gyNpEBWT9DWlVTLZRwo0BWlEwASoZhHggfyTq9J3OvfmwpFPb0cvPT73Z3XON/iWjUigZZvEvYTZO3EgsjxjHQL4vfkY5ytaPRmnCjJYlV6DLd5hvFaz/G4m1nzZfweqq8Qn2LrbIqppRHxB4sv2+6/jsEY+Q+jQsUiutNAJXezhHAmXLnTRVxa+6Gx/sN/hxPFmWTXljPNJ4IKcqlw/RGjOn/u4nN9m3Bu42WO4U4PfVDmxVgaNQZcVit1mQL+RuHcyWc0UMUXjGrboMwOokJez9Kkw7x5ciM/JBzEWljHQNEuhOYDQGxLubyeKkVjpoSfpQOPBA3kQGEqC2O2EFOaw5zQwbiZWevbjHUPYbhLEH+kHOe9U1uRq5U83W24XkNisddn7PfO5y8zBZLMp0nLd8bOshavgP28KfJiVL41t6WMJF9W0DYHKZSA2xsQWQChJ8BiOMhSIWMmnDCFtPtA0fXd9X2t+lI4qJDHXR8nW5ZNyNEQnkt+7rriIiykQhKfd2dKiCnHchR4fphNXlVjYOuCFUOYMjeIwvRaHvBdS3W57nfwVrfevBLck9yGOoK3/63/fVhKTIi09yDc1g2NSoq7iSuh1i4IAcfzAapJVUV6I6KsQYOJsQp7qTl3+kbiYmrFcNcgIu092HmR0bIzL5FBzn4MdPbD1cyK+/z7IBGKOVx0ZdXegEhbygobUCjapjDhrYih2tl/mE8ZRDlZjOIFhvHkNfW9UPvhUsllsUDIwl6TsO3iBd+uhnJ5HSvTY3g2XHfz+4oJIGogvOAdhGY3bueP4GnOsJEEduBithWXunFtMOuO49GQQU3fSJoMaMHrKwBe6D6qWZ8oB0+iHFrPQhIIBEz27s5k78t79IQCIV96fwF8gUKl4NmMZ0gXrsXNoQQr1928qnAlJ98K0/reLPP4C0fj65MAb4J5LwjZDRoF5L8Lxd9D2Z+6lzQYXBeA/X03vp8OQigU8l3Idzzl/hTjT4/n85zPWVm0ks0Rm4mwiLjmsf590Jl3dlXw5s4K/D7OZttsF4b66qpYz/uqDzZOUn55/TT3+/zLD3ETcfYy573wPig1aj5JjuMfhYA77U3xNrcjsbKI/NpK/D+qIMi5gZGRxdzpG4mRUERxg06ErFrZgKVESmWDBlNjRYsey7/TYwBQadRk15Qz3j20cc4CAcHWzqRXX9ljOeROL07vLWLPX1mMnWkoqdESBs/If5QfuYsMjtGDqUznk2vu31LtB9DVf6hV3XjBra5Adk05NUoZ78Zs5YnYt8nTxqPNnEFMtpY5B/5C08L5uVJQpqWR7uJ74antKTZjjj0Frp+ByS2UHqiRQdVmkPjqAkJvIhKxhG98vmW/VyG/ShrQpD9MRqEjTtY1uPnv5H8CB0bm2TA1ZRxlijaouiqUgPvbEFkIIUfBfCjIkiH9fjhpBmkPgqLrfrbhFuHkDsrlBc8XKFIUEXk8kkfOPXJdXpI3Rtqw4UEn1FoY/mMBXx6q1G+7f0F3nv2+L/U1uno26ecr4n7coz8z3Dyp0WhZVVaPg9ScXg5evHNqM/ePOkrvsFjqqz3o6+hDubxRNO1CwbxahQZTYyWWkks8lhIpMrUShVpFrVKOBi0WLbSpUl7ZYzn6QR8A9vx166v5Xi8GY+Q/yFpeIZp/8CCSOVx7YawqRQNbcporjF5A3cJN+FYk2NqZNyIn8FLkEETdP0KiscSzegZ9HL1ZEDkeoaD5z+tagjIBxIiZp9qLVm3MGde5KOjaSzV6chcAanB/p0OnIRFL+MF3Kfs8i/hF0oAifSZZhQ442VbjHLCN57R2jMi15faUiVSqKm98hxZ9IXQv9KoDl1dBaA5lv0OsC5zpBqUrb3wfHcQnAZ+Q1D8JH6kPywqW4XjQkcOVh695nIkhZpx71h0rqZBnNpYz8+/GWIuJjwXy5qohKBVq5kRt4vR+3e/km8ghhJgYUa3W8mx8DEeL0nk4aADzQsaw/4wfG+NFTFx+Vv+7sjE2xe6897ZeqUUqad9MNVNzCVYOxiSdMCixtobBGPmPcYAf2MYHWOPOfI5dc//C+mreO7WVmMtkdqzJiL3l0lBbQio2ws3Mmn/NHkQtrGeW6AekIilmYmN9XENbBGVuSi7DLP1ZlEZFfMbwDjjSdqD4B12QZydappCIJfzk+wt7PYv5xaiB+vR7yC62w9WuEseATcxT2zIi1447U6dSq7pBWXKhFDzehcgiCDkM5oOhIRHS74aT5pA+CxRdL+DR39SftIFpvOXzFpXKSgZGD+SeM/eg0lxbrESAg4S8VzwJdTTit1O19PwyF5lC95Az+HYvPtkzGoAXh+/g4NosbKVmzPXxI0hqRL5Czd/FlbiaWhHuYMdwN1/kCjGb46UcT9Ipqw5xDtA/LChUWswkNAtErVbIkIqMkIjEmBsZI0TQTEytWiHD6pIYsNYI7edATbmC2spbT9CwLTAYI/8hzrKN5TyBFEve4AziawwZUqhVLDm7l8rzQYZGAiHhNq4MdvbD29xW3y65qph/zq+13urEs4UkduNDP6K4q9n2tgrKnO/1LN0E48ngKBt4+2YcWvtR8itoanRVcTspErGE33z/ZK9HCT8Y1VKVeie5xba42ldg57+OOSpzhufaMyN1+o0bJhb9IXT/eW/JyyA0hdJfIdYJzoRD+aq2OaibyJu+b5I5MJMQ0xBWFK/Afr89O8p2XNMYphIhZ5/zYEa4GbEFCtw/zCarQpfG22OIM9/F3IaRRMRbd+xn4w/JTPWOYKydBYMsjcmSK+mxYxULjq9DbX6C4ipzjMQqTqW5s2pfBG9tsGLKb4U8sroEtRaqas34K7aBjQl1HMuWodZoSagsxNdS57EUC0V4WtiSUNkopqfRakm8qM2VGHm/bqlm60+p13Qe/isItFpta/ownYarLUFsoHXyOcsiIhAg5C3O4cC1B1EdLkrn1+SjALiZWvNM+HCsJCb67QkVhXx9bh9KjRqRQMgHfaZgedH2Ww0VKl7EDiUNfEgh5theudMN7u9lXKmllJc4gi9923V/7UasNyjydDdfoaSjZ3NN1KrqeTjrfoqN9+HuUIGZsZZamYDcElvc5KP42fs3JOI2OKaag5DzMtQeATS65RzbO8HjIzBqg+Dam8jirMXMT5uPSqtiot1EVndfjeQaP/eP9lXw8tYKjESwcaYzowN0ooxFWbU81n0jddVKZi3sQf+nXVgct4tTtTKO1MhxNhIyztKMX3b0A0CAFi2C86NqEQsFqDS6dOCLb4TPDFUjNzvJ3LChdLNxBXSpvb8kHeH+gD54W9ixKy+J6NIs3o6aeFXXOZVKw3jJckL7O/DFoa4djH4tXO392+AZ+Q9QTTEf0BctGp5l13UZIgAHCxtT2O4L6N3EEAEIsXFm+PnlBrVWw9HizOuec1fgdx5CRjVTeb/dDRHQxY/8j0MIEPIFo1HQNhVM25XKzVCxHrTnl+1qT4IiC6wndTlDBMBcbMpKvzXscS/jG1E1pamTyC+1xtOxHAv/lTyklDIs24GZaQ+gUN2AO95iEIQehMgacH4JhMZQ+jOccoAz3aH82mO9OornvZ4nb1AekeaRbCzbiO0+W9YVr7umMV4aasPWh5wAGPtTIR/tqwTAycuc3zOm6jNttryWwTu9JnG7ixv9LIwpVGo4VqvggqlxsSECOkMEmhoiIqEajWkKDwT21RsiAL0dvJju25P1WXEsitlCTl0FT3cbftUPXGKxEHt3U9JOt0FQ9C2IwTNyi6NAxmt4UUMxs1lOH+697rGeP7KKOpUCa4kJH/SZikAg4AA/sp4FvMIJbPEkq6ac92J1Jd4HOPkyM7BfWx1KpyKHWN6lJ44E8A43tyLnAX5gOY/jRW9e4fhN3fc1czoA5Kkg8QLn56F0OdQfh4gckLh39OzajEpVJbMz76PS5AgeDhWYSKC6XkheqR3+qol86/ndjXtMqvfrvCV1x9B5SyzAdgZ4fgji9jeG24If8n5gXtI8FFoFI2xGsKH7BkzFV196IqtCSdSSPMrqNdwVbsbKe3UGiqxexaPhGyhIr2XoDC9eXzEEgKmHtrIuPwsKfKBAp4R6qRfkYgTAxxNseWGw9fUf5GV4/4GD7Pojg+VZ03DyNG+XfXQ2DJ4RA2jQ8B6R1FDMZBbdkCHSGgf5kRqKMcUOAO1FP3NBa51uAb5mIgIEzGPLTd/3YB4jnIlkcYL1XL8c901BeP5Go8iC7Gd1hojYAbS3lviTtdiaNf6b2O1WzsfaEgpSxlBUYYm3cwlGvj8zU2HC0GwnHk9/7Po9JpZDoNthiKwG5xdAYASlSyHGHs5E6DxQnZzH3B6jaFARA6wGsLtiN3YH7FhesPyq+3vZGJE735MIFwl/n6kj7LMc6hUapKZifk6agn9PG/atzOLFEdvRaDT8O3AcQ6w9wSUDnHVy7K0ZIkKBrj7N0wOs2uBIW2b8wzqDaNP3Ke22j66KwRi5hVnCeApJoD8PMYHXbng8F1Pdj7RS0UBadSmFJJGFrsy3BJ2r8mRJdrP2txr/8hqV5DGUude95HWjzGEdljixmUWkcqhD5nBViC5+Ejp/G1CVwWlfSLkDao92yLTaE0dje9YFbGOXWwUfaQvJSxlJSaUFPi7FCHx/5EG5CUOynHkqY+71GSZiM/D8BKLKIGgXmPWBhjhImQInrSDjCVCVt/2BtRHWEmsO9TrEn93+RICA+8/dT/8T/alUVF5Vf6lEyKmn3XkgwpyzxUrcP8gmrUyBWCzkm5MTiBzlQuyeIp6I3IxKpeGLbiMg3w9c08CpdZ0PjRa+n2aPkaj9HqMihjkjEgs4tinvyo3/YxiWaW5RlvMEB/ieQIbxPHvaZMwjRen8cj6A1dXUCteIlZwRrUZBA9+h4VxFAV+f3YdKqzkfwDq1mZBQV6eCXF7FCzPs+IhChB1oz5eQxpsEYYSUDylESudw+5bL6vTCdw7Z92BSu731xgIjiKwA0a2v2JsvK+DRnHuRm8Xg4VCNsRFU1IooKHUgkhl87v359Q+uqoW813VZOOoKQACmEeD2DthMbKMjaPrZXsBcbHzdisv1qnqmxE1hZ8VOJAIJXwR+wRPuLWdZyVRK1mXFEVuWQ41SjoeZDYrKUN7cpkAshDX3OzExRDeP9+47wO4/M7EPkWLxqR1L93uDSxq4pENuABR7XzK6Fj+XMmYOKuX+gD74WLRfkPCsoHUUZdWyRdZ50trbk6u9fxuMkVuQbXzEWubjSABvkdhmN0ylRs070ZsoltWC024EAcswlnshN84i4MwOkqsadRGGuQRyj3+vNtlvZ+Idwsknnpc4jC/9O3o6HGIZv/MInkTxKic7ejrNygQ8LF5ClPAoIsGllxmh7uXzHTg8fNPn2dFkybJ5POc+1OZxuDtUYyyG8loRBaWO9OMBPvb+8PoHr9oBua9B3UlAq/NO2d4HHu+B2Pq6h23PEhDri9dz37n7qFXX0sO8B9t7bsdR4tikzQ8JB8mvr+Je/95YS0w4VpzBzrwkxtqP4vbfKpCr4Z1RNrw+0gaAxS8cZvOXaTT0s+HwoFBAq/OOOGdATiCUeHEhkBW0RPjm8dhASK4q4u2oSe32IPXVvOOsW5LEd6cm4B9h1y776EwYYkb+o0TzN2uZjzn2LCC2TZ/cjYQinuo2FFOPPRCwDAQgk4vRQhNDpLutG3f69myz/XYW9vMD+cQTwbROYYgADORhejCVbKJZy6sdPZ1mZQLkSNE2+w6KdTfI4F3/SUMEwEvqydaAA+xwqeI1RRoZKQOoqDUlwL2AGu+PuLNGzJBMN17NuY7lVavR0O04RFaC09OAEEq+hRhbiO8FFZuvecg6pYI/U4+3WgIitiz32ud5EZMdJ1M2pIzJ9pM5XXsat4NufJz1sX67Qq3iVGkOd/hEEGjliKOJBZO8uuNoYo5Ckk3q/zxxNBPyxs4Kpv5WiEajwWuuCQEfmFCnr4EoQFDgC0Ve4JGMdWCsfnwjkZrYdDfyC12vuvjd9TLx8QAANv1giBu5GIMxcguRzjGWcg9GmPA6Z5Bw9VHqV4OcOjaZzqHBeymCC8uqAv1/cDSxYIZvFE+EDkZ8vmrqrUIDNfzN00gw4xFWdPR0mvA4q7HChW18QDL7O3o6TZBppQiaJk6C1A/CYnQBmQbwN/VlW8AhdjhX8z95Imkp/aiuMyHAPZ9yj/eYXmPE4Ax33si+RrE7sSV4fQFRFRC4FUwjoT4GUm6DaGvInAeq6isOU6dU8EncDs5UtF7ZeGV6NMdvMJVfIpSwrsc6dkbsxFxkzkupLxF8JJhsWTYarRYNWsSCptcVI6GYtOoS3K3E5LzsSR93CesS6gn5LI+k8lKGTfVhwrwgfXsP8xpGOmqgyINK8xKMnTMRCjTMGBqLWKRh0Q4BarnNVRW/u158wmwwkgqJ2dl16xG1BwZj5BahjCwWMxQBAuZzFCucr9zpGigmlffpzUma1s5wMjVBiIDXeo7j7aiJjHALQtRCTZauzndMQYWcmfyCmM6ljyFEyEscQYiIJUxARm2HzaVW2TSeQIYJQnRP01oAq7G6p3Zjn5s/uS5AiFkQOwKOsM25hudkZ0lN6U1NvZRAzzyKPd/ijmojBqd7sjDn/Wsb2HoshJ2EyHJwfEr3XvESiLGG+N5Qua3Vrn+lnSC/vgrQFZfr7+jD3X5R3OYRhutFQeq/Jh+lVHbj372RdiMpGVzCvU73klSfhM8hH97LXoivhT2bc+KplNej0Wo4WpxBenWpXuFYIhZy7Cl3Hu1tQXKpki92OlFbL+HZh32Z6Sak70+nCHw3Hk9tBbbV7lDihtw1FdewODytpUztfwaBQMu3u53Jrmq4wixvDK8QKwrSa6+rmOCtyq131/gPUk81i4hAhYI5rMOdy5dTv1bi2MC79KSYZLQ0/fGIxFoEAiGe5rYIBbdmMu8ZNpPEHnzpTxTTO3o6LWKHFw+wFAV1fMLgDpnDocI0lsTvbfKeEQq9Fy3ZZCbagHWXZNgYaI0w81B2Bhxnm1MNT9XFkJISSV2DMYFeOeR5vMrtVRIGp3vxUe41VN0WW4P3EoiqhIBNYNoT6qMheRxE20DWM7pg2PNUyOuJPp8hZyo2YkHkeGYF9We4axCTvbvzeuQE+jvqDEuVVsP+graROhcLxSwPW87RXkexM7JjYcZCvqt9igpVKfOP/8tTB1eyJy+J3g5eCC4REfjhdge+m2pPdZ0xc/8x5kCmjMWPOBD0hgwEkPekhuetRZAbRIDEmFyjEkoEVozwsWdsVBIKlYif97tSLWs/Q6HfRHc0ai2ndhu8IxcwGCNdHBUqFhFOA5XczRLCua3NxtagZh0L+IbJyKlDQ/Pid2oUzS4GtxIqVCzjHkQY8SQbO3o6l6U/M+nJHeQSy2peuqn7PlqUwW8px1BftCQjFYnxFqSh1cJq5QwWV45he97NFYi7VYi07MmugGi2OtXycN0xklMiaJAbEeSVTbr7/5hWKWFwujef5X919YPaTICwaJ23xOEJQANFX0KMJZztC1W7OFmSheb8ZzrcNQhHEwsANKW6ZQyhQMDtPhF6b+ix4tZTZ6+HvlZ9KRxUyGOuj5ElT+O9insxcTzBe70n80rPcai1GuylzbPIHu9ryVOj85CINUxfXsRTG3KRdhfg/qMAkS3seSqG0Q31DLEywkVsyo8ZiUTXqfFyrGZkRAql1ab0+DK33TwXtz2mixvZ+lP7xaZ0NQzGSBfnEwZRTjYjeZ5hPNmmYx9iGVt49/xfLSddaVAhuIW/Rr8xCxnVTOODmyL5fqM8yt9Y48YOPiaJvTdlnzK1kr/SGjN5Bjr58m7vyXzRbyqBknIyjSewXTMZgH+zTlMh7wIy9p2YAZZ92B1wii2OdcysOUhSSnfkSiOCvbNIcn2aaZXGDE7zZUnB91c3oNgafL6FqCoIWAemPaDuBCSNYkhBP6aL/kCCjFBr3dKvurCQCmdnKqOiUB45goWRFPfzhR4rFQ38n73zDovietvwvX2XskvvIFUQCyiW2GNJNLaYnpj+JfmlN9N77733nhiNMbbE2HuJHUVFFBGQ3lna9vn+WFxEAelF576uvYSZMzNnxmXmnXPe93lsDSS5tgWpVMpXfb4icWgi/kp/Psr6kL47o9heuotDpbnEeTas5Ds8yJ17Lk7D31XG3D1ylu2IRh4gZdg3njjrFFg/2k/+OhVTNSFEOGv5Lv0I+6qt9PItY0jvE6SXWhjzdeN5Mm3BO8gZjaucpI35Z298nnDuPkXOA77matLZThwzuYr32ry/DTlHeXn3Mh7c+gcPbv2DjUnu9DPcjAwFEhpOSK0xSrBU+XDv5rm8tPsfkkrqi/kIgsCS9P089t9f3LdlHh8krSG/5uxJc92BEySyg9/wIYqJzO7q7jQLe/7IVqTI+YypVNPx13pHQToGq91NdbBXCDdGDbO/rZbMQ2rNJyz6HSYE2JMIbYLApjzRtbS9GO02knVR+1jmXcXV5Ws5fLQfJrOMmLDjJPndxcxSFaOPRfBN3vfN26H7DOi3FwYVgfedSAUrF8n/5SPl7filT4by9Uh0OuQXXoh1zx70I0ZQ4ubGsFc+RFlZjVwi7bCRUpnFixV9d3JfwGwKTEWM3jOGw8JqhnuHArDweCI/pGx1tB/rH0WltYIPrymmj7+BrCJ31u+PoE9gML8evwx3XzXVr9ZQtTmL7wcOIdTJmf/0VRyrMTMksoAp0Rq2ZBi5aV5BIz1qG5HxHhTn1GCxiHkjIAYjPZaFPMke5hPMIO6mfUyz3FQaLguL4+mBk3k6fjJ9XXtzaNdkHqxOYgIPNrhNZY0amdzEs4MuId4ziC8ObSK7qsyxfkVWMmtzUrg+aihPxl+MSirn4wPrMNvOnPLpbnSl5Htb8CCEW/gRE9W8y6gOP97BU6osJgbFIJFIwGaB7BdBexFoYrkoqI+jzaEmqjJEWs9F7uNYH5XEP97VXFG2gsPHYrFYZcSEpbHL9zYuLVUx+lgkP+b/fPadyT0g7EsOsKlIlwAAfLNJREFURhzmc/NDZAvBOBv3Qso4pIeC0H4Xj/JOe1m2zWolfuEKnp/6P+5++E2sSUkdcn41FvsInK14CHc6fUWIPJoVhq8J2OrPtvJtlJtqKDll1M1L7cJ9fS/kSHk+YwftZ2z/VI7lenHTzxqOG2DO8csIDHOh4DUbX7+2i4u1UoKVMtaUG0gxSlh6ky/9fBX8kljJy2va39xu9BUhCAJsnJ/R7vvuiYjBSDdGaGRqZBNfs4K3cCOIJ9jebseL8wyiv0cgvhotvk5aZobGoZLJKdDLMVIFwGCuRYObYxu5ogaFqgZ/Jx2XhsYR4uLO+hx7XoAgCKzJPsyUkH7EewYR5OzOrdHDKTPWkFh0ot363REs5GnKyOZC7u8yyfe2MJTrSeAackhi/imjOgYq+I272cJ37XasGovZ8bO/pra6omwxGNPAeQgA7ionVDK5vQ+ntBfpGCZ7XMyGyIP87VXNtJIlHD4Wg9UmpU/YMbb63MyMEjVjUnszp2Bek/vp7xFApnwsr5rfYLbxC9JUMxEEE5L893D5vx/QvO+BxFhFXq8ASvx98Nu1j/K4OEojIjD83IygpwUM9u7Fa0Nm8Nmoa/ls+K2kjt3LC2EvUGouZcSuEawwfcyD/S6st020my/PDrqEj0dcTUJYBWP6HcNkkTDwkyzmJVfzQ8qlRCV4kPeZmfwHBSZolThJJawqKeW1w3vZeU8gvi4yXlhdyu/7Ktr1fCbdar+vrPmtffNseipiMNKNWccnPEcUuSQ7lh1kJb9xF2q0PE8ScuQdcmybYGNnQTomq4VQVze28gOu+HA7v/MmWVzNR0irQpHLBKSnTOHEuvuTVmFPbisyVKE3G+jjVldmrJErCXP1crTpjpSSxUrewhUfruKDru5Oq7mNObgTzBo+IJk1ZLGPV4hjE1+ykS/b7TguCpXj5/TKYvsPHlfYA5EKu+5JXnU5RqvdHM/5lPYiHc+lXtPZEJnM3541XFy8gMPHeiMIEmIijrLe61qmF2sYkxrDgsJFZ2wrk0i5PCwegGq0vKW/igdN37FY/jz5BKMZUYJEAX4ZOXjl5CONjEDapw+2jAyqbr6ZYq2WygcfxFbdMXlCL4a/SNrINGKcYphbMBevjV6sKV5zRjuFVMaM0AFEBxcxc2QSUomNm/4o5OLf9uH3pYBmKFTutZF3u4RHggPxVWl4/uAuPji2j/0PBuKkkHDDvEK2ZRrare/OWiVaTyXJ/3Xfe2FnIgYj3Zjt/EIhqbzFBRxlEzkc5DOmIkPBM+zB6ZQRivYiu6qMB7b8wb2b5/Fb6k7uih3NTud3sGJiBq8AoMKZ8TwAe99AhgzpKQGRVqGm3GT/g9Wb7bX6p8sqa5V1bbojn3AJAjbuZlGXes+0lVPzRz7lEt5gCKXYyzRzONBgdVRrGHhKAuGyzIN1CYz+T0DlZoTSv/k780Bde6/gdjmuSMu50vtyNkamsNSzhrGFv3M4LRKJRCAmIoUVnpcxrVjD2NQ+LC2qm5oc6hPKtREJjkwQo9XCsqpoXjC+zqOmzymZFuBoK6Qew3Y4GaxWpKGhYLVi/PhjSl1dKb/4YizJybQ3IeoQkocn827ku1TZqpiYOJHpidMx2eqbEI71j2JGr/5466qZNX4vzmoTa5N1fL0uEL+3ZbhcDOY0OHqVgcTRl+OtUvP0gR38kn2Q7XcHIJXAuK9zyChtv5G9mGFe6IuNVFe20sn5HKLn3mnPcWooJ5M9ABip5EMm8DoJCNh4iDUdNnXgq3Hl2UGX8GT8JMb6R/FDyjbWWr9Ag47R/O+M9jaJtd7ISE9nI1/VSr5f3m0k39uCBjdCGYYVM1bMjgDEjIFCjlFiqCKzsqTep8RQ1aJjDPQKRqe0uzanlOfzYdI6DpXmUuUyGQEZ5al3s7PQPi9uF80Kb9+TFGkV1/tcy8bIoyzxMDCi4CeSj0cgk9qIiTjMEo8pTC1yYmxqX5aXrGRcQDTPDZrCaL9I1LK6lw9v13CqrjtN56R2dtmWmQ7V1aBQgKsrllWrKI+NpbR3b4x//NHu5/NIr0fIHpVNvEs8fxf/jcdGDxYXLK7XZmpIfx6Pu4jRgYHcOG4fAZ7l5JTo+GNDAv/3+XAunx1DYWY19/ZexvaES/FUqnh0/3+sqzzCwht8MVkh/uNsKttJg2TCLLtGy4ofxBJfMRjpBpz+QCgxVJHCeofAmIANK2YsGBnCLKI6MClRLpXho3Gll6sHl4XF4+S7D7NMz8U8cUZbrVKNTbDVC0b0ZgO62pEQrcL+gNKfNgqiN9W16U5Uo+cPHkSFM7fze1d3p81kk8RrxHOc/xpcf9i0ned2LeW1vcvrfZ7btbRFAYlcKuPW3sMdoncp5fl8dGAds7cv5qA1Fp0tC2/sSas3RA3FWdG9FGxF4Bbfm9gUkcpidyOD8r/l8PFwFDIrMRGHWOA2iSmFzlyfM5oALwMfDr+Kj4Zfxecjr+XJ+EnETb8KXF3P3OnJ57XZjERZg3bHrygmTcKWlkblNddQ7OZG1RNPYDMaz9y2lfgofdg7bC9fxXyF2WZmZtJMJu6ZSLWlbpooQuvN7TEj+WTUVRx6IIaHRrqgr1Fw3U8yhj7cn9vfGkh5kZEH+vzLxpipuCtUPJC4lSxFOh9N96DMYGs3DZKx14SCBDb9mdnmffV0xGCkiznphHn6wyDR8m+96Y+T7OBX/uAhbHROOViJ91ykBj8mNRCMhLt6YbHK6/UzuTSP8Fr7bS+1M1qFmsNldSqDNRYzxyuKHG26E18xs1by/aduJ/neUrLYzxsMoYg0hAamY6TIySCxUeOz023iz0Yfdz8e6DsOt9oRkpPMs9wMwPWKX7kjZiRDfUJbtF+RzudOv9vYFHGMRe5G+uV+Tkp6KCqFhZioA8zRjmVqkQuXHB/CVv02ACRyOcrp00HeQP6aTIrUX4HuaxMK4Qa0r+/FPeUx1A/dD4KA4e23KXV2Rj91Kpbj7ZfI+b/A/5E/Kp8RuhGsKV2D5yZPfsv9rV4buVSGTqnhg2k+zLnWG6NFYNjnORjGh/Do98MxVFp4JG4ly/wvQqdQcvfezTj55XL/cC1ppRYu/KbtVWFyuRTPAA2pe0vavK+ejhiMdDGnu5yC/WFwWLoSG5YGt1nLR3zHde3el4XHEzlSXkCRoZLsqjI+yXkfm2sqcZZZSJHyQ8pWFh5PdLSfEBiN1SLDWOVOXnU5SzP2k1FZwoUBvQGQSCRMCIxh2YkD7CvOIruqjB+ObMNNpSG+m+UN7OfvWsn3EQziiq7uTptxxYdgBiIgNDiNZsNKvrR9SzD7uPvx+pBL+V/MKIZ69yLW3Z9gr2EYFL2IkSYx2NO3XY8n0vHcH3A3G8OPs9DNSO+cD0nJ6IVKYSY6ah8/uY5icoEL448OJOOivmA5834lDQ5BtzsD2ZQc8LwRbJVIi9/E+brP8dw2EJcfX0IaGop52TLKw8MpjY3FuGRJu/TdTenGlsFb+K2vPQi54dANjNg5gjJT2Rltr4tzZc/99kTVWxcU8Y+HGy8vGYfVIvDCqHX8oRmLVq7g9t0bGTyghMm9NWxKN3LL/LZrkPQf7UN1hYWinPNbDFAiCELD9aPdCL1ej06no7y8HK323PK1yKgo5vXE00yqlMVIhj3QYHspMmxY8SGKFziIDEW79eXnI/9xuCyfclMNGrmCmj4vIrgc52NZGXLkvLd/NZ4qZ26JrsuluM/siVDWD1LuxkfjyuVh8fT3CHSsFwSBpRlJbMpLpdpiIlLnzayIIfg6dZ//RwsWHsUTMzW8TT7OuHd1l9oFAYEU1rKE50ljq+O7cxInmzdVWz5scNtnBk4mxKWdFGeL5kDa9eD3OIS81T77FGkX/j1xkL1FJ8ir0aOUygjXenN5aDx+Z/n7fPzIa2xnLl6+R/DWmZCVwAs+IDv59ZJKsSFQHOjLd1++QkBwGLMih+Cr0ULRr5DzGhgO29vKfbFUXk7Vi8lYNmwEmw2Jhwfqe+9F/fzzSBsacWkh1ZZqZuyfwZrSNSglSj7u/TF3Bt15RruyagsJn+WQVmJhZC8Vn/WT8cT4NVitNu6aM4RblFuoslj4Zcg4Xl+o4VCBmVcvdueZca2/Z+xamcOTk9Zw4wv9ufnF+DacZfekuc9vMRjpIgRBYFvBcf7OSKLYeNr8vM9GJNH1pZztCqg2+nIJY7mHvkzu0MTRvSzkKy5nBLdxE9822u5+NHgTxfPs77C+dDTfcT07mcOVvNdjlFZbgoDAEdazhOc4xhYQJCCx/9kL274Cy5neHvf1HVsvqGwzu7Qgkdnt7EW6DR8dWMcQ716EunhgFQQWpe8jp7qMFxOmOXRhTueYvpB3961mZlgcAzwCefn4ByQrFvDa7QeI3mz/eh0dJOO7Bwfz2m27wcmZxf/8QqbCxosJ01BIa+9bphw48RiULAShBpBhU4yg+ltfjD/9C1VVIJejmDYN548/Rhbc+GjqhpyjbMg9SrHRbvLn76RjWkh/+nkE1Gu3pGAJsw7OospWRZzmAiYpHqbSaKv3ImWz2Zj2Uz7/Hqkm2MPI1OjDZD5WhekETH+7N08HHKDaauGXIROY/aucgiobc6/15pq4BvJmmoHNZmOycg7hce58ubv9vMW6C819fovTNF2AIAjMT9vDT0f+OzMQAfBdjyDgyEp3wZtLeJrXSOc+/qE/Uzu8guVPHkGKjGv4qMl2ArZ2HZ3pbDLZw07m9CjJ95YiQUI043iMzTwsrMW15hRXZ+9NDW7z3eGt5JyipNtmvG8FaxmULGi/fYq0mQf7jWOEbzgBzm4Eu7hzS+8LKDFWk1HZeA7DmuwU+nr4MykoFn8nHV/0fZHJ1e8ijJ2NRID9I1R8slSC4obtfLrZgtlaTvztV1NUnlVf7FAZABG/QUIlhP0I6gik5k243Pwnnhtdcf7sUqSBAZgXLaIsJISyuDhMK1Y02KfT1aNj3Pz4/NDGM77DM3xmUDK2hEvcZnKgZg8f62/D1y+znnq0VCpl2a3+3DaihtxyBb/s6c+sH8aiCZGydPYRnt8fi1om48ada3jzagtOCgmz5hWyvZUaJFKpFL8wFzIPlbdq+3MFMRjpArbmp7EmJ8Xxey8XDyYERDPWLwp312rQ1a4rj+Gy6h95i2xm8DIehHRK/46wgWKOE8dMVDg32VZAQN6Dg5HPmN4jJd9bi1DeB/3uxxEOPgQ2GZqQdbw6bBJfjLqWB/uNo1ft1EyN1cxvqTsBWJqxnzs3zan3eX5X0w7GuwszeX7X33WeRU4PAFLIetbejx7sWXQuU1PrMeQsbzyBO62iiJhThAzBLna4afJInL/+mgFLs9Ee/Qn1sSfZ6B3AZ39JCckwcOP79/F89UAmHRlJanVa3cZSKXjfDANSIP4EeFwL1jLUgxfj/kc2un+GIB87EGtSEhWTJ1Pi40P1a69hOyVHpTH16LSK4jP6r5Qqmen0CA97fIpKJuOFjCd4MvdaPDWyeurR7t5HeHGKEaNZxo1/Wxj72USchsHKl1OZvTYKlVTG7fvW8ObVViTA2G9yyCxrOM/vbAya6IfJYCX94Pk7cigGI52MIAiszKoT/rkhcihPD5zM1REJzIyKQhP3IQqLOyQ9iZD0HBkZEZ0+8vA79yBBwvXNUOnsySMjC3mKcnJ6rOR7a1ifc9T+Q8kQphQvxqos4V/l40glUmLd/XlkwES8ay3ZU/WFDp+hACcdbw+7zPF5PG5io8c4pi/k28NbGOkXXudZlLITvdMEe56AIa1Hexadq9gEgT/SdhOh9Saw1oW3IfQmA1rFaUKGCjXFMlDfcQd6qT0h/6Xg59kYms2bE60sff5CIlfDw7PLiQjfymuKCC7K1TH56BgyDKeUtSqDIPJ3SKiCsO9AFY7caye6t/fivtkH9f8GI1RWUvPss5Q6O1Nx7bXY8vLq9eVU9ejGqvbSKoqY5DOaojFFXOd7HYerD/N22S0sKPwTqFOPvmlAIPsfCMJVKeHR1VUY7wrHc4SS/z7L5I4/Q1BIZTyUvIbnL7VhskD8x1mt0iCZckcUAH9/dbTF254riMFIJ5NWUURe7RtglNaH0f6RAJgx8iWXUS7J4UnZJlyr7Z4ee4tPUGXuPHW+EySSyyFiuAgXzl5+KyAg64FlsCVkspK3e7zke0sQBMHhquyqUDHV8xKu43O28j1/8yIAKpmccbXVUAD7a9tLJRJ0So3j46JoXCfm9GH8k55Fq2R32/uR8WCP9Sw6l/k9dSc5VeXcETOy3ff9vyfWsePZRxm4GG4c7knaCV88tZWERm3iRVkvJubomJo6jhxDbbmsVAre/wdxRyAuAzyuQqoox/m2XbivM+LyQTRSfzdM8+ZR6u9P2eDBnFj97xnq0QHOugb7czKgkkvlzOk3h62Dt+Iu82ZhzTuEbQkjqcL+wqhVqunjqyT7yV709lKw4oA/R26IInKoJ4fm5nPtN77IJVJeylzL3RNslNbYiPuk5RokvQd5olBK2bXy/DWRFIORTqawptLxc5ynPUFQQOAlYkllE/ewhCBpX0filU0QKGkor6SD+LVWZfUGvm5We/s0Tc8LRj5hyjkh+d4SzDaro4zcT6NDJpUyglsIYRB/8xIV2D0ygpzrKgOqLfZAuKCmgse3L+SZnYv57vCWJkXRGhvGP1SjAmU4tvKVVJire5xn0bnM76k7SSrJYfaACbirnJpsq1Wq0ZtPEzI8RexQsNmT3VLK8usJOR65dBIHZt9F713FLL7cjx8VVciO30Naji9eukqCI9fztDSACTluTE+dSIGx9rugCoHIP+yjJaFfI1WHoRqRgvsfBej+8kJ+YTDWPXvQXDSFp697hCd3ZDLGL4IfU/4jp6p5eRjDdcOZE7WCCYr/kWHI4OKkEaTZ6kxIXdRSkh8OZFyfEhIzdCycHkvs1CCyVpQx7X0PZBIJX5WtZeZgC2klFsZ/2/KgIjhGS+6x9jXj60mcH3fhbsRJlUrA8WCopJhiMhjGjUTWqqtaThmuPnWbjqSQ42SwkzCG40mvZm4lIKNnGZ9t4AtyOXjOSL43F4VUhlxi/5PPqynHWvv2dhUf2pdxCICsqrp5a6faIOGW3sN5oN+FzIocQpGhinf2r2rUfbexYfxykwECn0eGif7SvT3Os+hcRBAEfk/dSWJxFg8PGI+X+szKqtMJd/WqJ2QIdWKHJYYq3k+yG9V9l7LVIeT47M4lHK8owuWxx1Fefz3Wffswjp/IZ2GfsaFXHj+rahDSbud4ng++bhUERq7hMYk3E7LdufToZIpMJfbREp87IC4VBhwH9yuQB1Wge+sE7uukaO7wR1FUgMujTzI2dgRj5/7D+pTdDZ5DQwFVpcXIWJdLSRyaiK/Sn9WWj+n7Xx/2V9grBaVSKVPiyvi/keUUVNn4Or4XUTdHUb6tmotf0SIR4G9hPUMjTWw4buT//ixs0f/FsKlBWC0C+zbknb3xOYgYjHQyQafMxe4oSMcmCGznV0DgMuwaDNUWk2N4XCWVN+sG0R78yu0A3NjMUZGTKHrQyIhd8v2hc0byvSVIJBIG1JbrVpiNbMm3+2FEMAI1WrbxE0arhXW1SXwAAzwC6ecRQIJ3CEHO7vR1D+D+fhdSbTGzq6gVEtbeN2OQuDNOtrJdzkmkbfx+bBfbC9K5LXoEapmCclMN5aYaTNa6RMyGxA4PluayKiv5DLHDSosRK2eqRVgRcFGoiPcKxvXXX1FMm4Zlyxb0l1wCgFKu5Kvwb9gQks+PyhrMaTeTnueNr4ce/6gVzBa8GJ/tweWpUymzlIE6FKL+hIRq6PUFUrdeON+ei/s6Ey7vapEGKBnxyQ9cOGoqZRdcgPm/+pYITQVUA1wHcGJkOpOVD5BvziN+Rzz/S/4fVSYjxyuKuGuoB3/f7ItNgK/8ffB9YACG/SYufNYFBNij20ion5EfdlfwxrrmJ6ROvdOeN/Lvd+enT40YjHQyAc5uRGjtuRg51eXMT9vNUuF5PAlFiw/VFhPfp2x12K0P8wlttN6/PdFTQArrCKA/AfRr1jZC7U2nJ+WMfMmlWDGdE5LvreHCU/JBfj+2iyXp+yk3GnESPNghzOXd/aspNNinEqO0Pg0mMjrJlfhqXCmsaXhI+WzD+Cb364iVHqC6uH5FTnf1LDqX2ZB7lBqrmfeS1vD49oWOz6mBZomxmnJTjeP3CK03t0ePZFNeKq/s+Zc9RSe4O3Z0k0mvANdGDHZojGiXLkU+Zgzm5cupuPbaeu2UciXfhf/IhpACflTUUHPsejLzPfH3KMMnchn3Wz0Yl+XBlakzqbQZwPcuFmoXkBq2k2rd5UhHW3CfW4Ftvieysa5Yd2ynbMQIDsXHUvPpp9hstiYDKrCPgjwYeie3qj8lTBnNNznf0HvLAGzyMuK9gpka40zy7CDcNFLmOLliezIB4YiVEU86IdggO3Az7loDT68s5Y/9lWdci4bw6+WC2lnOvvXn58hIxz/lRM5gWkh/Pj6wDgFYW/MHEkkFHiVT+bZgC/uLszHa7IGISibnoqA+ndKn37gTEJjFF83exoI9n0BOz3iA7OdvjrD+nJF8bw29dT6M8otgc94xbILAPycO8M+JAxAVDL7pZJoPAz5oZApmRQ5ucB8Gq5lCQyUXnOZDc5KTb50TA2Mcy071LHLt9SYVxb9iyXkP/K8C6jyLxtYmdIt0Dl+NnnXWNo8MOLNyKsE7hATvlkkNeKrrywS4rluHfvBgTPPmUenmhsuXZ1bvKeVKfor4FQCTxcStqTeRrVpNkHcJLurF3G1wISvPA5eKi+mTfxlVlqvQyK9jiOIwk0J/w+2lw9geh8wl/rj+nkX1/fdT/fjj+Myaxe1PP8zivFQWpe/DR+N6RkA1KagPJqsFXd5rHLRtZZ3la76qugf9oU38FPsTEZ5Ksp4MYehn2awrgKinhhH81naGP65m21sGKqO2oDo0kuvmFhDmLmdI8Nnvk+FxbiRvK8JisSGXn19jBefX2XYTYt39uSFqKBIkELwIQYCc5PHsLMxwBCJqmZx7Ysfgo2mdql9LMFDJfpbgRQSRND+T3og9iVHRA3JGLFj4nuuRoeA+/unq7nQZEomE6yOHMDEwhnqZSHnjkUgA/1V4qZ15ZMBEAmpvzH+m7eFIWT5FhkqO6Qv58tAmpEgY4m3PK2rJMD6AROFKvmI4PpZEkvJ2d2vPoo6kIbfunozZZmVvC6qhpFIp2l27kPbujfGrr6h64kwzzlNRypX8FjmX9cFFfCmvpPTY5WQVeRDkVULggN/Jib+Gg73uI8drPpfFPY5bQjL0P4I08FJCZxURtKgC13elyIKsmL77jtDI/jzy8Nt85NSbFxKmnqE4LJFImBE6gHcuuJxlY98lZeQBop2imZM/B6+NXqwpXoOTUsqBh4O5pr8zRwU5ex8fjqxQwbDHVFgtNmx9toLcyJivc5ulQTL68hAEAbYuOv+qykQ5+C7kmD6Pd1wDodofYc/bgD1HZJhPKBcF9emUQATgR27hP37iHpYygGnN3q6ETJ6mFxOYzVW814E9bDt1ku8fMJGHuro73YIiQyWb845xTF+I2WYlY8A0dLZQXpOlIJPUvad8k7yZo/pCqsxGXBQqIrXezAyNw7v2+9mQZ9HuwkwWZ+yj2FDVsGdR5V6EgwkstV3HSuv0bulZ1JGcdOs+1SRTLpHyyuDpeKibFhrsjuhNBj45uJ7MJpRbpwT35dLQuDOW20wmyiMjsZ04gebVV3F65pkWHbvSUs2t6bMoVm8k0LsMZ5VARY2E7CJPQkyT+LbX9yilcij4FPLeB1MGlgyo+UaBaY0ZbCDt1Qv1c8+hue22sx7v3Yx3eerYU1gECzO8ZjC//3yUUiXvbizj8X9LUCAw+Md92OQV7HjHgEwmx7xvBB5KDSeeDMFJ2fgYQGWZiZnu8xh+aRCvLBrXouvQXRG9aXoAq3iPBTzKlZbPiDZch0QC3mrXTskROYkFEw/iggvevEV2i7bNJZmXiGUST3EZr3dQD9tOBrt5g8H40JuXSTn7BucpLzOAPJL5nIarZNqdxFAw59iTEKVt+86XGKqotBgdv7vIVd36oZ5ZWcJre5efsbxdDQo7CavNxtv7V5F+itqpt9oFF4Wa3OoyDKckw97S+wKG+4afsQ9bdTVlYWEIBQU4ffYZmnvuaVVfyixl/F/6DZRpthLkVYaTSkBfIyWn0JNwy1S+DPkKpfk4ZD4K+hXYKswYFkgw/AqCXgBnZ1Q334zTW28hdWm8cKDAVMCkvZNIrEzERebCb7G/McNnBquPVjP1pzzMFoGBS4+gqChg51sGpFIFlqQRRLo5kTI7CKm08YBkpsc8ZHIJCwqubtU16G6I3jQ9gA18gQwF4+V3EeziTpCze6cGIgB/8QRWzMxsRTBhwm55rezmOSOfMwMJUu7nzJu/SB0DmI4NCyms7ZwD+j8Ngtnu4NoGTo4ynCwjfW3vcp7btbTHT3v0FHYXZToCETelhscGXMSrQ2bwZPzFvDPsci4J7utouyh9n6Ok/FSkTk64JScjcXOj+t57Mf76a6v64iZ346/Iv1kbWML7kkLyjk4iv0RLL79ClOE/crNJw9iCMfxP4YcpTo+0z/s43RGM23IBl3dAFlyD8fPPKdXpKB8/HsuBAw0ex0fpw95he/ky+ktMNhOXJl3KxD0TGREGRx4JxsNZxp7pvSkNDyXhSTU2qxl5v/9ILath4ndNJ6hGD/GkvNCIobp10vI9lVYFI5999hmhoaGo1WqGDRvGjh07Gm37zTffMHr0aNzd3XF3d2fixIlNtj9f0FNAEceIZHSXiW7ZsLGJL3HGg+Hc3OLtTdgz7BU0nMjYHfiLJyknh3E8gDdhXd2dbs1Y7Aqpm/imcw7ofTtInezD563kRGUpPx/dXm+6A+waPvtKstraQ5FmsCG3TsL8lt7DidR5O35XyuTMDI2jf62IY5mphn0lDY/ASj08cDt4EJydqbzpJoyLF7epX15KTxZFLWdNYCnvCIVkp06goMyVMP8CpOHfcpPZmTGmt7hHNwVLv32opk/B7WcZut9BOdmGZeM6yvv3pzQyEuNvvzV4jDuD7iR/VD7DtcNZU7oGr01ebDX+SdYTIQwMVHFkeDAnhsYy8Fk1NpsRWex21qVXcseCxjVIxl0XCsDKn86vEt8WPwXnzZvH7NmzeeGFF9izZw9xcXFMmjSJgoKCBtuvX7+e6667jnXr1rFt2zaCg4O5+OKLyc5u2ZTAucZSngdgGi91WR/+5VXMGLiEZ1u1vcmRwNo9g5ESMlnFO7jiw5XdPKelvWiLqd2zmzcjqQjnkGl7vfUdZmonlYLn9WApgrKWGxXuK87izcQVJJc1/KY599huVmQdamsvO4RSY3VXd6FdEATBMSriqXImxs3XvqLkL0iZAjZ7ifco3zrvp+NNqOxKAwLQJSWBSkXl5ZdjWts+o3Q+Ki+WRq5mTUAZr9tyOHH0QorKXYkIyMcW9iU3SgYxRrWHh7zuRD7mHVxfC8LtX9DcB0LJMSpvuIFinZaq2bOxGeqXrbsp3dg6ZCu/xv6KgMCsg7OYsH80a+904aZBLuRFenBkQgJxrzgjUIM0Zgff7inh7Q0Na5CMnxUKwMb5Ge1y7j2FFueMDBs2jCFDhvDpp/a3GZvNRnBwMPfffz9PPvnkWbe3Wq24u7vz6aefctNNNzXrmD0tZ2Rpxn7+zqw/vOer0fLy4Lrk0Nl4ImDlA8qAkwl/+yk2VDac8CcILM1IYlNeKjVWMxFaL2ZFDsFX0/rr8RA6BGx8QHmrRmf2spCvuJwb+IZRtYJp3YmX6EcuB3mc/whnWFd3p1NYmrGfPUUneKj/eMcymUTSqJfMMX0h7+5bzcywOAZ4BPKJcRbFrut52phGL2f7g2X5iUMsP3GQW6KH46V2Zkn6frKry3gxYZpDN6LVWMphjzto+kP/fc3eLKeqnNcTlzuM9ZzlSqLdfJFLZBwtz6f0FF2Mu/uM7pwqHaseTjwFnjeAa8PKvkarhd9Sd7C9IL3B9QM9g7gtZmTbr2snYRME7tn8OwIQ4uLOMwPtImYcmQFlSyFmPWjHklpewDv7VwMwPiCaayISmtyv5cABygcNAkFAu3UriiFDOqT/GYZM7jpxAxaXfQR56VEpoLRSRm6RDxMtk3jemo+tZCXmTVYMv4DlACCXophwEU4ff4y8d+96+6uyVDFj/wzWlq5FKVHySfQnGDOu5sGlJShqzPTetIdDs/XYrK6QMpg/rwvkin51uU3rjtVwuNDMustXYqy2sLjsWno6HZIzYjKZ2L17NxMn1tWdS6VSJk6cyLZt25q1j+rqasxmMx4ejSdpGY1G9Hp9vU9PoymX03R2Uk0J8VwGNOJyemiTwzEVaHeX03V8igE943mw1dNE5tppGmU3HBk5Kfk+kCvOm0DkJG0xtbvE/VIk8mrml/wM2IPgDjW1k+vAZQTU7AdTTrM3W52d7PjuD/YK4c2hM7mzz2huixnB60NnMi2kTrjvnxMH6JQ8/cqdUPA5JI+AI5dBzZF6q802Kx8fWNdoIAKwtziLr5I3YRVa7vzaFUglEtyUdi+brKqyOnE0QzrIPCDzcRAEDpbWebV4nMX7BkDerx/aTZtAENCPGoXl4MGO6D691CH8G7WRVf7lPGM+xvGjIyipcCIyKJecyB+5KmAl4/x8WDBtArqfA9H+AqrJNsyrV1AeE01pdDTGBQsc+3OWO7Nm0BoW9V+EQqLgzsN38oNsPAtvlSNxVXBo/BDCv/VCIquAyD1c9XsOu7IMVJabmHD5ViZ8m8N9S4qIHO1DVbmZ0oKaJnp/btGip1BRURFWqxVfX996y319fcnLa55q3BNPPEFAQEC9gOZ03njjDXQ6neMTHNzztAeaeiAs4TkAZvAK0LjL6fpaWe6OeCD8w8vIUTG11q21NZgdOSNnv7l0JqdKvt/GnK7uTqfTFlO7YdwENgWZsq1AnZV6h5rahdS6Jmc82KzmBquZHYX2IWyNTMGNvYehPCXxWyqRMC2kPyEudsO/zMpSTlQ1X5a71dhOeXCU/Q1JfSD9HjDnA7Ay6xCpenuugFom56LAGO7sM4r/xYxkhG+4wzcoqSSHzbk9J19gmG8oYB8lmZ+2B5sxEwxJ4HsPVO+g8viDDouBU/VpzoZi2DBcV6wAi4XywYOxpKd30BnYiXQKZ0XUFlb563nMeJi0oxdQXuVERHAuG2PXcFVkPtcM9yXpld64/S3F6S4Qio5QeeWVlHjqqHrqKWwmuxDkpT6XUjK2hOle09lbuZcrsyJ4/PqFeLspSB0WT8CCQCSqcoSIvYz88gSj79nP2mg/BCTYBHCfGgrAP18fbaLH5xadWrrx5ptvMnfuXNavX49a3fjb2lNPPcXs2bMdv+v1+h4XkJx8ICikUsJdvbgsNB4PtTM2bKSwDg964U4QYH8gnKpWCXZhtH3F9gS8sz0QhviEtqhvO5lHJYWM4R7kbfgKmBwjI90rGDkp+X4bc847yfeTpna+Tq6Um2r4O+MA7+xfxQuDpqKWK85of7qpnRI1amMvDC72aUa92f5/3KGmdi5DQBkEZYvBZjlrmW+xocoxKtLfIxC1rPa8UmdB9R5wHobEnMd9wgkKFRbMghKX49+DxsueMCt1AZkryFxApgWp1j5CI3Ozf+RuIPMEmRO0xKRSOPUttrYSouBrKPoRm98T/Jdr9x6RIOGh/uMJq1WkBUjw7sUQ7158dGAdAOtyUhjjH4mkk0wy28JYvyjWZKdgtlnZWZhBhP4rLgQOKq8mUvIZmsLPEawDACcGe/fCrRkjIydRTpiAy59/UnnFFZT374/70aNI/fzOvmEb6eMczcoo+2j/gcpDPJR7CzJtMkGh+fwky+f9chnhoR7ce6MVnzXlGOfpMbz5JoYP30Yx8RKcPv4EZVgYS+KWsLp4NVcmXckr2Y8SPe5b/PfPJVESi8caFdIh+ygKlZJoi+ekpY8MyHLXIJHC1sVZ3PDsgA4/3+5Ai55EXl5eyGQy8vPz6y3Pz8/H7yxfkHfffZc333yT1atXM2BA0xdXpVKhUnV/Vc/GaOqBkCj/HSsmRnGHo32TLqe0/wPhLx5DirzNSZ3mblhNc1LyPYKR56Xke7/aqgWAIGd3wly9eGrHYnYVZTLKL6KJLevwMQ4jQ/c7pWRBZ6nr+j8JGfdB7lsQ2LTolXCKEVu9Z7U5D4yZIPcCYxquliJcJFYkEgFJzUFo9Yi3BJCCRAbI7P9KFLUfJUiVIFGBraERKCvYapDkvMizKNkjH0KW0w2EyfLBoAdrJSh8QOlHrLs/EVpvjukLya3Rk1td7lDB7c54qJ35v+jhfJO8BR1FjBV+xYaUT1KSGCC5lXsU73OL/Cv+Ub3cqMVAU6guuwzhhx+ouuUWymJjcUtLQ+rm1v4n0gj9XGJZHWWvAN2r38ej+beh0B6mKKqE12Vg7i1n9KUarthRBQtsmP79h/Kof5D26Y3TG+8xcdo0isYUcePBG5lbMBdZVAIJfi/ju7CEn+9+j7vuu40/4ySQFgeCFCuw8qiBhFAXMg6Wddp5djUtCkaUSiUJCQmsWbOGmTNnAvYE1jVr1nDfffc1ut3bb7/Na6+9xooVKxg8uOVfxp5GUw+EdX7vIUHKxTzWJX07yApKOcEQZrVZH8SMPRDqLiMjdsn3WchQcC9NV5CcL7TG1M6v6hIy3X5jA18wUvEUcNLEri7o1JsMBLu4tV9Hve+GzMcg/+OzBiOeKhfkEikWwUZSSQ4mq8U+TeN5HVRsgJi1IFXyduIKjtdWejwVP4lQV097dYelBCylYC2zJ9Bay+zJp1Y9WCvAVmkPEmxVYKs+5WMAwQA2IwhGsJnty616wAI2U6N9lgAqiYnhsi1g3AKn5rfL3GHAYVD4EO7qxbHaqZwKs7HBfXVHBnmFMDu2Aq9jE5EIAhIEpFjYLySQLwQQL9tNTHQkGnnrRirVN9+MoNdT/cADlMXE2AMSp86/7wzUxrFGuwuA//Q7eTr/f6h0R9gcW8H2fhAwWcbkgzJi55sw/nWEyunTqfJ3Rn3HbH577hfuD76fS/dfym7XZ1i+wz4Y8vHnP5L+oie7wqSQ1h+QcrjQTEKkGmNaJe99tB3XgMbv1UqFjBHxAfQO7VlieafT4jH62bNnc/PNNzN48GCGDh3Khx9+SFVVFbfeeisAN910E4GBgbzxxhsAvPXWWzz//PPMmTOH0NBQR26Ji4sLLk0o3J1LnHwg5NYUkk0SvRhcb/rgbC6nWoX9IdAeD4R5PIAEKdfxWSvPpo6TwYiK7qF0+RM3YaCCq/gQJ9y6ujvdgtaY2hUUeoGPliTFUi5Vv4pWoeZwWR7BtTkYHWJqJ5WC5zVQ9COUrwXd+EabauQKBnuH8F9BOtUWE7+l7uTGqKHI1VGADcFwjJUlgiMQCXJ2o9dJVVOpGpQB9k97k/ehXdmT05PKZYCVTFsIO63DUXlMZVpQpD2QqT4Aua/AwQsgagGFhrqg0TH91BOwVhCVeyMCBY7Rqmv9nZG5xKHVLESSMgxN+g3Qd3vT+2kCzf33I5SXU/Pcc5THxqI7cgSpsuumYS/QDmGtdi8Am8q28FzhPaTrUsmYUI3nhRA/W8LE+aCYV0XNy69g+PBV+l00mdz3dzNyzpUMPrwTABlW5rz5BRPe1HEiTALH+wFSqod4w8oikv8tIvY638Y7gpmtiTk9PhhpcRnFNddcw7vvvsvzzz9PfHw8iYmJLF++3JHUmpmZSW5uXeb0F198gclk4sorr8Tf39/xeffdd9vvLLo5Jx8I2dqFgMBknqq3/uQD4VROdTn1Ujs7HggnOflACD9l3vlspLOTAo7Ql0va5WHdnYKRdHaxk9/xoTcTaF4i5LlIe5jaZVaW4kUIeRxGIpEwITCGZScOsK84q2NN7ULeAyRw4uyjhhcF9XEkfP5XcJxndy7l73z7SMKiA9/w1ynnODm4b+fkXthqoJ79oMz+u/vlGGL+413rO6y0zWBlqYpyVTzoJoD/g9B3F1jLEQ4m4FRmF9dyVagIcNZ1fJ/bA5vRXspbvR8JdVVAY92qGeUXiZNuKLiMhaodULGlTYdyevZZ1I8+ii0jg/K4OGwNqLl2BaPdRrI+ah//+lRxnX4d2zP684uXhmeeEfh1M2T9BvJhAuZF/1IW1YsvP92LpfbpK7OB1lDBvFc/w0WZAaEHwGalUOeCRAbFB6pwcVI0+Dn5tTaZW1dV2Z1oVfbifffd1+i0zPr16+v9nt7BGdDdkT/T9jDAIxAPtTPlphqWZiQhRUK2+xwUaEhM8SVdmchlYfGA/YHw7v7VrMpKpr9HADsLM8ioLOGGqKEA9R4IPhpXvNQuLM7Y3+IHwm/cCUi4ga/b5Twtjmmarg9GvhAl3wG7mNa3KVvrmdo9GX8xrrWjbCXGartbdC0RWm9ujx7J4ox99azUDysuZg0HSGMbk4IuwGS18OvRHVRbTETqvHmg77j218KQe4DzUKjaDqY8UDaehxbk7M7/RY/g25Qt2ASBUlM16/NymKqECXzHchIAe1VNc6s32oytGnviqtSeS+J9B/g/DKow1MBQHwmb8lIxWi18mLSWayMG01vng6DsRWrgYkIyL+Im2dd4UIjV74WeoTUiWOHYdVCxEU4JRJAooHofcKP998i5kBgIx26A+ONtOqTzO+9gKyvD9O236IcORbtjR5NeL53NBPcLmeC+H4DlJSt5o/hh/r34OH0vr2F8Egz+AEJ+ry/1LrdBeFEO3733Idc98zi2MClJ2X25MkbHiSN6/nfVmQaDAF/P30dldSd5SXUwnWuEcp7Q0APh9vgoPpJmEc9lzX4gBJ6SvDYpqE+bHgj5pHCCvUQxBjfaZ4jagv1NtKuDkb94gnJyGc9D573k+x19RjW5/pEBZ5bUJ3iHkOAdUm+ZH/ewhvfZyFeES4YzI3QAM0I7Ias/5D1IHgWZD0Pk7002TfAOwUPlxLITB0kqyWag1D6Xr5XoucxpB369Hu0csbOTKINB4Q++94LP3fbg6hSmhfQjqSSbMlMNOdXlvJ+0Bhe5ChsC1RYTTnzEi8rHmSZfiMXsDPzSeX1vDYIA6XdB6SLgNB0XwQxVe+t+V/rZc3qKf4Oi38Dr+jYd2vWbb9CXl2OeP5+KCRPQrVvXpv11FJM9Lmayh10jZXHxMt5wf4Qbgo8wU2pDetqgjtwG4w6k8/KvL/LsLQ9RjgTtxYFYD5ZzcGsBfUf4dMEZdB6ia28n8Q3Xspt5PM8BAuh79g3amXcZQyqbeIkj+BLVLvv8gZvYzi98jrXL/HVKyOQZwmpdh3O6rB/nIg/ggjMevEFm5x54byBYimvdfJv3/1lqrEZxZCLONdvsYb5EDf32gab32TbtVPJr9Hx6cAMFjSQUh2iceELxNHJjMrheCNFrmn0NOpJSYzV/HU/kYGkOJpsVb7ULD7qtx6248el2q1THG5I55NbocVc5MSUoihFZ8fby6oHFIJWyLucIq7KSKTfVEOTizrURCfVKns+GfvJkzCtWoJgxA20bvWw6A8FkItXHCY/ypqdV3rlFxlszr0FaOIUL77Ax8/5o7v946BntTo6MuDgpGh096WpE195uRhJ/44pPlwQipWSRymaCGdRugQjUTdN0ZQDwCZcgYONuFouBSDsTTDylZGHBcvbG7YnfY/Zqlbzml567S6twqfmvbrxRsNinD4Tu5Xzqq9HywqAp3BY9gmidL25KDe5KJ/q6+3NXn9E8mTADef8DoL0IKtbDgViHv0tXUWU28c6+VcikUu7vdyEvJkzlqvBBaEz7a1tIqZ8rY0dmKydOJ+PZQZcwITCaX1ITydA9Yq9eynmFnYUZ/Jm2h6kh/Xhm4CUEObvx8YF16FsgV6Bdvhz58OGYlyyhopn2Il3JsV+/qBeIWKRglts/Nlnd+NJjP1qZ6zkHL78v2PVMNUX554aXUVOI0zSdwAH+xUQVo7mzS47/K3cCAtfzZbvu10zjpYydwXo+J5dD56Xke2cwiKs4xhZ28TsXnJz77wx8H4CsJyHvfQhoZgn8GVMFFqjeCzmvQeALHdDJ1iOXyhjqE8rQxsQKJUDMSki7A4q+hcRe0C8JlF0zTL8i6xDuKidu6X2BY5mX2gXcloPhCJQvsxvjVW6uXSvnpOjbdC8BnHT4O+lILS9kkcGHB2WfQ+4brJENZpRfBCNr9W+ujxzKgZIctuYfY3Jw81/aXDdvpjw+HtMvv1Cp0+HyySftdertzp+2eVzSByqcoMQZSjRQrIJyDVQ4Q42LgmBPgdEqK+NcBb7fu4vB87ZQ2kdKas42IgPOHB05VxCDkU5gGa8CEqbWysB3JtWUcYjl+BJNKO1rNmXFRENvRJ1BNXrm8/B5K/neGYzkNubzEDv4tXODEakUPK605xfoN4F29Nm3KZmH/Q391Il4AbJfBt0l4NIDb+Lh34AqFLKfhf3hELsTnPp0ejf2F2cR6+7PV8mbOFpegJvSibH+UYz2jwRNtP1jrbAHI/7PgKWAysI/caHULkRXS6y7P3+k7YGoj+H4zQTVLKRPSF2gKJVIiHHzI03fMpsBqVSKbs8eymNiMH76KVKtFqfXXmu3829PUqY4k3472Gx2wT6JBBBAqPZCXRiLf2V/JvUbgw0rc2rmE3JwEfJi8F5q46/xzxP50LmboC8GIx2MBQvH2Y4fMV2ifTGHuxGwcQ3t/7ZgxVQvEbcz+YIZ563ke2ehxgVXfEhnR6cfe6XsHkYLC9h68A3+lRQQrvXm8tB4/JwamHM2F4N+HfUDETsCEiSp10L/JJA5d4j7dYcS+AyoekHazXAwDnovb1KDpSMoNFSyIfcoE4NiuCS4L+kVJcxL241cKmW4b7i9UcmfgBwCXwaplLeKpjHBS8mFnhMc+9Eq1RisZkwesyDrRaYJCyiR1h/50irV5NW03BhVKpejO3CAsshIal5/HYmbG5rHukZYsileDfiAV+hfPw1IAhLnIoxOG8llI9/WakD51/gy6k05VJvZ/foU7njon67pdCchBiMdzDo+QsDKeB7q9GObMLCHP3EnmFguavf9W7ooGNnHEo6y4byVfO9MIhhJIguppAgXmp9Y2FaSK430VQ5mnHkF0b0/YWHWCT46sJYXE6ahkp122ypbTEOBCIAEK5iOQ/YrEPKmw/36lujheKmdWZK+n48PrOPFhGltLqV9esdiio1nSsKP9Y9iVmTDo5K7CzNZnLGfYkMlPhpXLg+Lp79HoGO9IAgsrRzAAdvH3MaruByegSHoIzwDb2tTX1uCAPRy8eCy0HgAQlw8yKkuY0PuUXswYrNBTTJoYuqSbSUSauTBIG1YuM0Q8g3OqZOxZd8PHivbpZ9StRq3Q4coi4ig+vHHQadD87//tcu+24sA+qLDn3Jyz1xZO0oiQcplhbczJOF7bCcsuP7xGhdf9XSn97WzETP+OpgNfIEMBaO4vdOP/ScPY8PCFbzTIfu3j4x07lfILvl+gyj53kmM4P8A2NjO+UZn48F+4wiMeA0pNoKKX+KW3hdQYqwmo7LkzMbF8wCwIcNG/VfOCjzIkw8GlyEd4n59Kk/FT+LtYZc5Pg/1s49gJHiFNNj+mL6Qbw9vYaRfOM8OuoR4zyC+OLSJ7KoyR5uTwdOUqEuxRv1NBR64ZN2D5cTLbe5vc9Ep1fg71Rdg89foKDXWJlXqVwAWcK97MdAq1GckoupNBtQyBUqZHCf3C9lgvQhd9RqoTqrXRneaT1dLkGq1uCUng1ZL9Z13Ypw3r9X7am8KOc4fPISBygbXO5kkjMxX8m5iPy6Y+TW2AgtOL92G8jwIREAMRjoUPQUUcYxIRnd6pYcFC1v5ARe8Gcw1HXIMK2Y6O2fkR27ESAWX844o+d4J9GMKEqTsZWHnH1w7BuR+UDKfmlqfFueGvE3UkeAyil2M45j2YZD7gMQJBlezzncd3/ASeFxxVvfrtuKqVKNTahyf/SXZeKtd6K1rOPF0TXYKfT38mRQUi7+TjktD4whxcWd9zhGAM4KnAM8EdAO2k2LriyznBUjrnNGRCK03+adNneTX6PFQ1eoLFdQGqr51Qpjh2gZUpcvyCNfaR9fkUhlJ6puwoIDUawGwCQKHT2nTWqReXrgdPAhOTlRedx2mZcvatL/WYsPGHhbwCZfwEDqeI5x1fOyoQgRwssDwQrj/MLyTKHD9URPWe/dj3g0ub3igef7bLul7VyAGIx3IUp4HYBovdcmxLRiZ3oHHtmLu1CArnV3sYi6+RJ/Xku+diRQpXoSTy8Gu6YDfwyAY2JzyERFa73pCgA5CP4PYTfxouo1Sj/tA0xeEGpCqO9T9uiksNivbC9IZ4RvRqBR9WkURMW71VWZj3f0dgVGDwZPGn1Wa1zkmGwZF30PyBPs0SQcyMTCGtIoilmUepKCmgh0F6WzKS+XCgFqZgIrN5BHOD2lHHNuM9Y+iyFDJguN7yasuZ33OEXYXZjIxMNrRZlTwcP6xXoFQc4jCvAXMSd2JyWZhxMk8lDYgCwpCl5gISiUV06dj2rz5rNu0B3oKWMJzvERf7kXJ11zJQZajxImhXM+T7OADyhhSLOO+FHhnD9x0HGL0IDVB5VNg3gWub4Pqhrc7pc/dBTFnpAPZzXw06IiiaVXM9saGjXV8jBotY7m7w45jxYyEzpOs/rxW8v0+/u20Y4pAXyaznk85QSLBxHfuwf0epfzEW/Q2LWLcwEebt42mH1SsA0N6h3atKRKLs6ixmBjh27gisN5kQHvalERzgidXlQtrle8QKXkJKtbAgX7Qb4/dBLADCHX15O4+Y1iYnsg/mUl4qV24OjyBYT5hYMoFawnpssmUGOu0MLzULtzX90Lmp+1hbXYKbionbuw9jL7uderPQ7x7UWV8lNLsFeQef40Tmjd4oO84tI2YOrYUeVQUuv/+o3zIECrGjUO3fTvyQYPaZd+nksJ61vMpR9lAJfZAUoaCQPqTwNWM5V6cOCVB2lLOrcesSKgbV5aaoOIpMO8E13dAPkzKTxsjMdr2NXnsqppzQwoexGCkw0hnJ9WUMJxbOv3Ya/gAE1XM4JUOPY4VS6fljCzgcfTkMoGHz3vJ985mDHexnk/ZwOft5mvUXH5P241amM5MyU9ITPtANbzRtg73a5dhUPAJVKxHbx7UIe7XZ2NL3jH6evjjpuogm3uJBPqshrT/g6IfIDEU+h8ARcckGQ/wDGSAZ+CZK/I/BuCCyP/jAt2Eequi3Xx5dtAlTe73wqCBYLkOj4JPGeB3BLST7CsEAaoT7aNc0tZXy8nj49GuW4f+wgspHzEC3b59yKOjz75hExioZBNfsZPfySapVuIAnPAgjpmM4S76MqmJTulIjriFPsd+tP9ugoqnwbyjLhDJqk6guNIZaF6woVT0AB+jsyBO03QQS2qnaDo6IGiIf3kdBRom07GJT/Zpmo7/Iygmg9W8hyu+XMH54/bcXQigLwo0JLO6044pCAK/p+4ksTiLkbHP2fUYMmc3uY3D/Vp7oX1B5Y4Ocb8+G8WGKpLL8hnlF9lkO0fwdAp6s6HB4KleG1NdG8K/h8CXwJIP+8Kg5nA7nUUzKV1kN8U7LRBpESEf2CXis54CmwUqd0LyaDg4CErmt7mLilGjcP37bzCZKB80CGtmy+0NTpDIT9zKEwTyEK4s4FFOsBcvwpjEk7xJNu9TzN0sbDoQqSXC82MORtyIYJbYR0S226dmlBeABBvphsmNOvWe/vHQqRkR3z5+Y12JODLSAdiwcYS1eNALd4I69dhb+IFqSpjAwx2ez2HD2inByCdMESXfu5hA+pPBLmzYOuX/4Pdju9hRkM49sWNQqbUY1QkoqnZgMRaiVHkD8EPKVtyUTme6Xxf4Mh45qaXHyahuf/frs7E1/xiuChX9PZp+QJwMniYGxjiWNRY8Bbu4A3XB01j/UwKdwOdBGQrHb4EDAyB6FWjHttv5NIrNBoaj4NRGA0WpHIJeh8yHICkWjEcBGSCxexS1A8rJk3GZO5fKa6+lrH9/3FNTkXp7N9regon/+IX/+IkMdmHGPmWmwoUYJjKS20jg6lb/Lahxpa/sbSoe/hVLIri8DcraQT+JRMqYiQ8wpoNGuborYjDSAezgVyyYGMUdnX7sxTyDDAWX8WaHH8uGpcODkXV8Rh6HGMSVouR7FzKQK0hnBzv4DTVakllFCmuZzkskcFW7H29D7lEA3ktaA4A3s3hZuYfMo08R2c9eYdCU+3WYLQKTqajd3a/Phk0Q2JqfxnDfcGSS+g+qRoOnrGT6ewSwszCDjMpWBk/eN4EyCI5MhsPjIfznNjvjnpWyhYAVPNpYrWcpAWOG/Wfj0dqFVkAOtvbzZFFdfTU2vZ7qO+6grE8f3NLSkJ5i3FbIcdbyIUn8TRHHsSusSPAghH5MYQIP4kvzp3iWbz7OoWP2YEoqkaBWyfBy1xAT5kkfLzOVE4KwHBBweqEvqhHJ2LVypOA6tt2n28orjXy3IIkbpsfi49FBU4dtRAxGOoBVvIcEKRfTuQqA+1iCnlyGc0unqJLasCKjYVGj9qAaPX8yGxUu/B+/ddhxRBrHioUMdlJNGQA/YjcjkyLDhpUKCjvkuF+NnnXmwj1vElkzB2xfg1TKIwMmntEkwTuEBO8Q2PcomA+BR/08B4lEwozQAcwIbePbfCMcLsujxFjNyAYqQpoKnhal78NH49q24Ek3Hvrug0NDIO0GMKbbFVw7ioLaslOfVibJCzbI+xCyX2w46JBI2jUYAdDcfjuUl1P96KOUxcSQnvYem9U/k8ZWDNjLlxWoCecChnEjw7kVJa1PDA4N1DJpZBg2m0C1wUx6tp5NWw/j8+VUZAdsaJ4ai+aZ9XYF29RrABt4Xts+J9vDEIORdsZAJdkk0YvBnS5TPp+HkSDrEOn3hrBhQdGGP9Sz8QXTsWLiduaKku9dwCKeYR0fY6TyjBEwG3bn0V4M7rwO+T4A2c9B4Zfge0/TbVXhYDxin0qQdt7UXqy7f8OBFDQdPDVCi4Mnpz4wIA0O9Ld72hgzILyDko6rttp1YOStlNI3HIYTjzTdpp2DET0FrH+kjEp3LybemUvJ/2aR/AO4yvwYwHTG82C7enjJpFKcNfYXNldnJd7KGqJun4iQaKTysel4vrQEg8nCxsODEYrfYqDuO7YlDmDE4Gq8a0cwtiZmcyyzjLhoH/7bn4PBaCU8SMdFI3qhUtof4YIg8N/+XJKOFFJjsOChUzMqIYiwQLtY3XcL7MJyvy49BECQrwtXT445vbtdijgB3878y+uAwGSe6tTjHmUzRaQRxwzUuHTKMQVsHTYyYpd830gkoxjIZR1yDJGmqaYEY61a5Mng41SkyAiiY0YYGsT/SXuyZG4zpiBP5jEYDnVsn7ojSh+IzwB1NBR9A4cvbn8tEsNxsOrblriqiYXI+SBzg4amewXaJRhJYT1fcSWP4MXj+LKMV9nyf+VsfseL+F/g1YExvGnL5v/4td3NRE/FVlFExThfhL1G0h65gd3j7Mn4f68/RnWNmbjhd6OI34ubeyDzVx6hxmhxbFtWYSQlvYSZE6K4fGIUBSXVrPmvLhF3z6F8dh/MZ8zgYG6c0ZdegToWr02lVG9Pfp411W6weOXFvbnz6jimj2s6uborEIORduY/fkKBptMfoL9zNyBhVifKdtsTWNt/cK1O8l3JPSxt9/2LNI+r+YjejGs0L8iXmA4dGTsDqRzcZoDpBFTuarqtS63dfcXGju9Xd0Sqhn6HwPVC0K+Cg/3BZmq//deW9OJzX9PtzobHldD/EOga8s6ygvVMr5+zYaCSVbzH6wzmXlR8wDj2sgABgThmcj/L+QwTlz9UiOrmmyHpMPrhw7F1oHjcyUDEss+G5olRFEx+EX2liez8CvKKqpl2YQR+Xs64a9WMHRKMSinjaEapY3uL1cbkUWH4eDgR5OfKuGEhpKSXOHRGdh3MZ0g/P2LCPPDQqRmTEIS3u4Y9h/IB0Kjt92m1So6zRoFG1f0mRbpfj3owBaRSTg7xzOzQ45QYqqi0GB2/V8iPkqM+QAwT0NKw9HRHYM8Zaf+v0EnJ92v4WJR870LkKLmbRbzDSPI4jI26NzUpcsJpXPOjw+j1IZQugMyHIXZT4+1OVpNUnSVoOZeRSqHPOki7BYp+gn29oN8BUHi2fd9lS0GiAtcL2r4vpT/0XgaF30LGAyCYASsCNjLKT/DT7n+wCQJuKg3DfcIY6hOK9LTk4BMkspaPOMRKyskB7IZzPkQRz2WM437cOLO6yfXHH9GXl2NetIiKyZPRrWybaZ9l505kcXFIlHXTyvUCkcdH4fTqJoQNx5AAhaU1mC1WvpibWH8/VhtlFXX3eK2zElfnun0GeDsjCFBSbkAuk1JVYybAp/6IeKCPC4WlNW06n85EDEbakcU8C8AMXu2wY5QYqnhu11IsQl0UL4l7AVRwveSbDjtuQ3TENE2d5HsM47i/Xfct0nI0aHmQlbzBUPTkOqZrbIIVV2MfMi0luMhVeKidO6dDyiDQ9IfKLWDRN56vIPcAZHY32fOd8B/tpb85L9m1SPruBk1U6/dns4AxDZyHtlcP7cmqPneAdjy2Y9cjqdqOBJCZUskxlwOQV6PncFk+K7KSuT12GMc1i/iPnxspvb2dBK5qVumtduFCysePx7JqFforr0T755+tOgXLzp2UDx2KYsoUXP/6CwCpqYKK8dG1gcgInF6zB9Al5Qa0ripMZivOGgVXTTqzSket7PlCZi1BnKZpR5L4G1d8CKBvh+zfYDWzIfdovUAEZSGCayp+1kGdrkwqILR7MHJS8v0BlrfrfkVajw5/HmI1Klzs8/gAEoF/k2t4be9yntu1lBJDy4fTW03wW4AAJx5vup1MB6aWC1ydkwS9CGE/gK3SLh9f0cCoks0IxjPdi0sMVWRWljg+lXk/AAJ4Npyo2xZsqjA+t73KYsuVCAL4SXJwfOlUBRD+Ezmxt/KK2odfuYNUNuOKD2O4m5c4zEdU8BCrGMI1LdIAcV29GtngwZgXLKDi//6vVX03zp8PUinm5cupuOwypJWlDH11PJa9NjSPDsfptS0AZObqKSqtISrEHV9PJ6pqzEilEty16nofjbru3qqvMlFZXTfNlltYhUQCHjo1KqUMZ42CnIL6bsDZBZV46OzTqDKpvYpLEAS6K+LISDtxgH8xUcVo7uyQ/edUlfHpwQ0UG0+76fe2l9fpD15PdmRZw0ZiHYR9ZKT9qlzqJN9n40mvdtuvSNvxI5qbjX/xlfJiBKwIggSq7IJ+FsFGcmkeI/0jOqczbpeAzBOKf4HQL+xv1Q2h9AfDsc7pU0/A+xZQBkPKZEi+EMJ/Ba/r7OtsRjh8EVTvgYE5ILOPODU0Ejtb/iG9ZSDxur3du7i9IJ2ksgKSuAwBOaM1cxnc/z0Oao7ZS28lIFgVCPpIQqqn85j/a20qvT2JVCpFu3075f36YfrhB6rc3HB+//1mby8IAqbff3ckCptXrGDQtlVI9Bbkj43E+uxa8ourSM/WsyMpl/AgHbERnkgkEODtwpK1qYxOCMJdp6aq2kxaVhmRIe74edlHHOUyKcs3H2fs4GCMZivrdmTSu5eHo1JnSD8/tibm4OaqwtvDiYOpRRSW1jBljL3E3EmtQC6Tkp5djouTErlM4qjE6S50r970YJbxKiBhKs+1+75LjdV8kLS2nnS0u8oJQa6nzO0gVAdRpffjg6S1PD1wUp21dwfTntM0JyXftfhxBe+0yz5F2o80fRE/HSzBpn0AYj8AmwyEuv/7n1O3Y7RZGB/YNt+PZuN7L+S8DIXfg89tDbdRRULNQfu0glS81QH26pd+iXBoKKTNAlMG+D8Ox260T30hQPEc8LkLgEqLsf5ILNBLegyrPAC5vP3Fs1YX7ISQ+eC1g5VOeayQgMK6Fw2+DJBM5wLznXy7q4Aqi5EsiYQaTwFlO70PSaVSdPv2Ud67N4YPPkCi0+H0wgvN2ta6eze2rKy6BTYbkjIblWEBLIx4CxYkoVLJ8HbXMG5oCH0jPR1uzpdNjGLznmxWbEmnxmjBWaMg0NfFEWgAuLmqiApx56/VRzGYLIQHuTHhgrqS8IF9fDCarGzYdYJqgwVPnZpLx0firlXXnpuEcUOD+W9/LlsTcwj06X6lveJfaDtgwcJxtuNHTIckXP574qAjEAlxcefGqGGEuHjwAzeyXRDwyX6QfKDCbGBZ5kGHgmPHI7Sb/scnXIKAjXtYIkq+dzNKjdV8enA91RYTlAxGoo9C4pxDX48AjuuLHcnU89J246Fyaldp9UYJeBZyXoecVxoPRpzioWwxVO0GV1G914FTXxhwzC4dn/UUFM0BQ1LtSgnkfwbedzY44uRLNiqMVLmMazcBgZOutynCeqr6FdsPa5MRyACGG0YyJukzFP732AXcFDJG+u1lZVYyNkHgUGkuwxsQmGstUoUC3cGDlEVEUPPii0h0OjQPPXTW7Yx//glyOVgs9Za7ZOTxf3++jOvixUjUDY/gKBUyxg8LYfywxvVmAOJifIiLabhAQSKRMDw+gOFNeNT07+1N/96NS+B3NeJdvx1Yx0cIWBnPQ+2+b4PVzH8FxwFQSmXc3/dCQlw8sGDiMGuIloznsdD7UMnsceWOgnRqLJ1jKy1Au0zTrONT8khmEFd1aJ2/SOtYm5NClcU+X91b58P/Ob2NIK/iyr5+vD3sMiYHxTraLs1M6px5aakC3Kba3+yr9jfcxmWE/d/KJqpuzleUfhCXATKvUwIRAAFqDtgDuAaYIFuBRAJ6j/+1+tCNl97aoDgBIekJBh/ZwLOSvUxQf4pC1RtyXoDdrpAYxpTSK7ld/gljpKuwGLLOfsDmcOIZyHwUbEakTk64JScj8fCg+uGHMfzwg6NZiaGKjIpi0vSFZFQUk1lZQnFNpX2K5rRABACbDfOqVVRceilCB5YOnwuIIyPtwAa+QIaCUbT/HOqJylKMVvuXfJBXCFqlBgGBpbxAObk8yCpclWoGe4WwJT8No81CZmUJ0W6+7d6XMxGQo2rTHuyS74+Iku/dFKvNxpa8NADkEim3x4xErbBPzx1iJeOlMcwMjeNwWR7plSVkVZWRXlFMmLYTTL5CPrKPfGQ+aC9hPR2XUfZ/q/Z0fF96ImVLwFrUwAo5FH4FLmeq6/aTJmIUlFjU/Vp0qOaU3sotnjySvACALKcyBEGwT2VELoDqJDDnQskfKKv2MliaxhDZf5D/I+TLQeEL6hhwGQ5u08B5SPOVdwUBCj61i7jp10DUX0jdwnBLTqY0MpKq225DotVy+MJhfHFoEwL1g+2gIxnc05gTcO1oiSUxEaGyEom2lWq15wFiMNJG9BRQxDGiGd/q6QUDFRioQI0rSpzr7cdkq4u2dSoF2/mVNXxIJrvR4uuo3HFXOTW4TUfT1mmak5LvdzAPeQf63Ii0jlJTNVW10zB93P3QKe229r5Es55PGcXtKCVODPMJI72yBIATVaWdE4yoe9lVPCs2gqUS5KdNHMid7IqthpSO70tPQ7/e7l/TIBYo+hVC6idwSrHgISnmqBB91pRRu+vtz02U3jbgequwOxmnVRSRW13OvpJs4j2DwKmf/QPoPe/mhd3/YLOU0V+6n5t8K1EaEsF4HCrWQsUayLXn7yHTgSoMnBJANxF0U8/8jgCYs+2BCED1AUiKg4hfkPpcii4pifI+fai46ipWvvMEwtD+Z2zeb83m+gtOTte4uKC84gpU11yDYsKEetojLWFEfCAj4gPP3rCHIwYjLWQXf+CCF725EClSlvI8ANN4qdX7fJ0ECjjpVilBiQYlzqhxRaZ1hrgqUBeySmZGwEAsk7iXvwmjTnDoSHmB4+eTD4yOxIZ9yLEtIyOJLHZIvne0UJxI6zh1ykUhqdM98CaC/SzlRfowlReQSUc51tk6s3ww8A1IvRSynoTQT89cL3MDUzsN5Z9LpN0EQhMvLYKBjPRP+b607uE7UroBiQT+s4wivKKEEBePepsUcpw1fMAB/mm16+2FAVGkpdhHa749vIVpIf0Z4RuGWqZgf0k2i9P32XOXcELieQ3KyJF1G9tsULUdypZB5VZ7EFqdBNV7oajW1E+iBmWAXavGdTS4XWr3yHFgsZc/H50Jvg8jD36LpH/m0efiy7nl8bf58tPnKBwQi7fGhTJjDTUGPWP+Wla3uYsLyssuswcgF13U6gDkfEQMRlqAgMCP3IQFI1r8GcGt7GQuGnREMersO2iECEZRQCr2P14BE9WYqKaSQpCBpHZkz1bjybXGfxjnNr7e9kkl2Y5gxFfjSrCze6v70lxM2D0jWisHbsHCD9woSr53c3RKDQqpDLPNSnJZHkarBZVMzt0sIp+j/MED/MJtSL1doOQOKBmMt6ZzvJEA8JgBMne7wmhDwYgy0F5RI1Kf8F+gZB6U/VOrxSLBnkJoF7UTAE3hh+SZP3BscoFsM4IA22xj2Jq6A6lUgto3kc18Qxrb2sX1doh3L3YXnWBfcRZmm5WF6YksTE88o5270okrwgbWXyiVgutw++dUTFlQuhQq1kP1frudgDHNPsV34tHacz+V2mA6/0OsFRtZq7yVDZ+/wN13v8BdD7yGy949aPr1x2o2YPzeHYMGaoKdmHf73Vx+22xCvRpPIhVpHDGBtQVIkOCCPRtZTy4reBMD5UiRs57PqaS4VfudwENAE2+TAgjlvWHXB/xxIJ85qTs5UpbP0fICfk/dxReH6hL0xgX0dpSMdSQnDdRaOzLyAzdgpIIreVeUfO/GKGVyhnjbNV9qrGb+SNuNrbbU05co7udfBlXNxiqtgdgPkA16Bm83Y1O7bH987rS/zRb+fOY6dbRdXtxmOHPd+Yx2LIR+bjfUi0uD0C/BfSZIXQH749lHWsAY6UoCnHSM8YskVJpBscQLW8hChEGP8bNPb77mSg6xAiVODOV6nmQHn1DD42xlLHe3WANEKpFyR8zIJitkgp3deTRuIm6qZpYWK4PA926InAcDkmFwJQyugail4HN/rVFfQwhIq3fzvPxBhsTuYPcP7yGVSDBcdjnWgjyqZ/VB6W7A/MloXv7+G1JGDGJjiSiy11okQneWZKtFr9ej0+koLy9H28UJQG8zgjS2nbbU/vCXImMgl3MzP6KkZVMlbzGc42zn9KBEigwvIRz/Ix+TWFDS5D7iPYO4s8+oM3wbOoJCjvEckVzEY1zB2y3aNp2dvMlQfInhJUS57u5OVlUpr+1d7ph+8dVoucAn1DF0nlyWB9Jq6PMpEvd9IJEwjBu5kW/arfS7SWwm2OUEql4Qd5rIWc5b9imc6NVtc5g9TxBsFr7b+ylhxuWMla0GiZyMmNdY77SWKYeW8UcIJLuBYJNBdRCB1ZN51OdtnGj/+3J+tZ5NecfIqCzGKgh4qZ0Z7hNOjJtv+75wJYaBKb3BVfaJppM/S7Bm90J/Ww4IVoRyKy5fPwC3vsfsbX9iEWz4alx5efD09uvbOUBzn9/iNE0L8SSM4+xAqGepbr9J27BwhHX2ErVmcoSN/MlsMjmzlE6CFBUu3C/5F4/eYSxW7mddTgomW307d4VUxoX+vbksNK5TAhEAI3Yl2JZO09iwiZLvPYwgZ3du7T2cH1K2YUMgv0bP4ozTymltTows+oqx7nK+4Sq28zN7+ZOr+IDRtL4MtFlIlaCbBOXLoPqgXUfjJK6106eVW8RgpBlkVunZadCy08+TpX690MiPU6p6FKkAFb1A4zKFe2z38dP2aiotRnIlEgR3NR2Re+7rpOXK8IFnb9gWrJX28vB6yAELSBSckMaxyxhBkc2b68NjcfY5hPOL/1L50DHUdw1HdftHAKhlCiotRsyn3ZtFmo8YjDSTk065MqUnEoUUQVL/SydFho4AZrMeFU0roNqwsYHPWM4blJMLSAhlGCVkoCfvlJYS7mYx3kSABC4Pi2dycCw7CzLIqS4HBPycdAz1DsVZ0bmJUqba7HhFC0eA/uIJ9OSJku89jKE+oeiUGpZmJHFUX1BvnZfahYsCYxjrH4VEIuFV0tjAF/zJI/zGnazgLe5kAcHEd1wHe30M+5dB5kMQs6puuXOt2FlVYscd+xzgZOntPqd/YUQ+EgkYBCk6orghT8ngrAOo5b0g/h8A+nv+x7b8NGyCQLGxEmeFx1mO0E2pTqLeaLQyyJ7U6jYFXC9k8/GDbMi1Fxf0l13A8NC7UT0A8mlJyMLs+jpZVaUO4T83Zfur0p4viMFIM6jnz+CvhwhLvZQnKTK8iGA26xq0qT5JNXr+4lG28ytmapChZCjXczUf4oIXa/mYP07JH7meL+nN2Hr7cJIrGRvQBsfNdsLsGBlpfjBSTAZreF+UfO+hRLv5Eu3mS251OZmVJdgEAU+1C5Fab6SnDZuP5W5Gchu/cBvb+Y3XGEg/pnI7c1G3m3bnKagj7Pkh+rVgqbaX9YJdBl6iAmNq+x+zB1NXevsTGex2lN7KJc5Q1g8hbywzXO5kanB/8BWgZIxdXr8W26mu4WckgPYgVL3AY5ZdU0U3BdS96ynPDvUOdQQjyzIPMMAjEGeFClm4vcrIarOx4Hiio/0wn9DO7P05hRiMNIN6/gwmDySSukhagoxA+vMgq3ChYW2FHA4yj/s5wgYEbLjgzRSeYxJP1KuzH8GtLOJpTFQxgYc6REStvTA6qmman8D6CZNFyfdzAH8nHf5OurO2k6PkVn5hGi/zJTM5wD88ggdTeZ4pPNv+HQt6DVKvhOxnoFddFQhyDzBlt//xehgnS2+T+Jti0mmo9NZS48vLB+ylqrurTzAlqJ89PyO2LkneYDWzv9h+PRVSGd7q5geXR8oLWJl1iMzKUspNNdzdZ/RZ7QNSyvKZn7aH3Opy3FVOTAnpx4jTElzX5RxhVVYy5aYaglzcuTYigTDXZmjdKAMgsnGxxQitF6EuHqRXllBgqOTlPcsYHxBNmKsn+TUVrM89QlZVGQDOciXDfDrXOf1cQgxGmkGpobruF6Nn3c+ChHDJcO7jHzQNJHDtZB5LeJZC7G9l/vTlct6mP1MaPI4aV2bwMlns4wrebddzaG/MtcGIkuYNS67jE/I4TIIo+X7e4U0Yz7GPPSzgF25nCc+xjk+5jd+IoR3zODyusAtdFX5fPxhRBp+XKqw2bCSysJHS2+EM44YzS2+dIczVk+MVxWRXl/FXeiIzQ+OQ1eaiGa0Wfj6ynRqr3XJiiHcv1PLmJ4yYrBaCnN0Z6RvBl8lnl+kvMlTy6cH1jPGP4raYERwuy+OXI9vRKdX0dbePQu8szODPtD3MihxCmKsXa3IO8/GBdbyUMB2tsm2OvhKJhNtjRvL2vlXozQbKTDX81UCpsVwi5Y6YUWhacC1E6iMGI01gFWzMT9vDupwjdQuNdXOjivKBXKX4A41zXSBiwcRSXmQjX1BDGRJk9OUSruUTe+5HA2zIOcqG3KMUGyuBIPyd+nIoJJ9+Ho1P+ewuzGRxxn6KDZX4aFy5PCye/h51Kn2CILA0I4lNeanUWM1EaL2YFTkEX037ZL2bsZdKNqdqqJoy/uRRVLhwK3Pa5fgiPY9BXEE8l7GAR1nLx3zIRMIZwV38hZZ2si/wvgPy3oWieeB1jX2ZJgaqdoClDORu7XOcboqeAtbzCXtYQD5HHIn2WvwYwAzG88BZXwamhvTj04MbAFiZlcyuwgwGeARhEazsLTrh8ClSSGVcFNinRf3r5xHQ5H3tdDbkHsVL7cJV4YMA+6hcankhq7NTHMHI6uzDjPKLYKSf/f56feRQDpTksDX/GJOD+za67+birXHlifiLmZO6k4OluWesD3Z257rIwURou68JXU9ADEYaQRAEfj6y3WFSV7fCbmWA0QPTgQf5WLaFJ+IuRumkZy73k8Tf2LCgwpXxPMRMXj/rA9tNpeGysDh8NK4gwLaC43x+aCPPDpxMgLPbGe2P6Qv59vAWZobFMcAjkB0F6XxxaBPPDJxMYG37FVnJrM1J4Zbo4XipnVmSvp+PD6zjxYRpKKSyM/bZUuoSWM8+MvI5M2ol3/9ALn7luh31g2H7DX9aSP8OC4av4n0u4Wm+4gqOspEnCGAs93A1H7V9+i7oFcj7ALKfqwtGnAYDP9tl491ntG3/3ZAU1rKezznCeqpqtY5kKAikPwlczVjubVHpbX+PQK6NSGDuMXuFX4mxmvW5R+q1UUhl3NlnFAHOZ5+uawtp+iJi3PzqLYt19+ePNPtIl8VmJbOihEtOMWuUSiTEuPmRpm/Id6d1eKldeKDfOPKr9ewtzqLSbEQjl9PHzZ8wV89O0XY61xGfDI1wsDTXEYjIJFKmBPdltH8ke+TfMw8Jfkc+IVeAKudEXpc8hbF2KsaDXkzlBUZya7OPFecZVO/3maFxbMg9SlpFcYPByJrsFPp6+DOp9g/w0tA4ksvyWJ9zhOujhiIIAmuyDzMlpJ/d2wG4NXo4j/73F4lFJxjSDklWza2mSWQxqWwiktHEc2mbjyvS/nRFMOyCF4+wgSNs5DuuZT2f8h8/cyPfkMDVrT8ZqRq0E0C/EmqOgKY3uI6xr6vcdk4EIwYq2cgX7GIe2SRhxT5S4YQHccxkLPcQy0VtOsa4gGgCndxYmZ3MgZIcR72JXCIlwTuESUGxjv/rjkRvNpwx1aJVqjFYzZisFqotJmwIuDbQJq9G3+798XXSMtkp9uwNRVqMGIw0wqlvAjdEDXUkTG3nZ/oxhZi+pSywPotNUYYBCLEO43rZp4RyptNlS7AJNnYXZmKyWghvJAErraKIiYEx9ZbFuvuzr9juwVFkqEJvNtDnlDcKjVxJWK0JVXsEI3XGV42PjNgl32+olXxf0uZjinQMXRkM92YMb5HDct5kKS/wDdfwDy9zJwvxpZVVY70+hqQYyHgQYv61+5CAXQq8h3KCRNbwEclNuN42VcnXGnq7+dLbzZdyUw2FNZVIJOCn0XW6jIDI+YEYjDSA1WbjYIl9btBNqeGC2pvnCfaRzg486MUB2T9IpUrIHwXHb2RYyBhCTwsQWkJ2VRlvJa7EbLOiksm5K3Z0o0OgepMBreK0NwGFmnKTPY9Db7YHCg29UZxs01Ys2OvqlU1oqvzA9Rip5Bo+ESXfewhdFQxP5knG8wDfMov9LOYFohnMNdzCTy1XcdVE28tQ9avsMvDGDECGUL6cotw51LhOBsBFrsJD3bQmUFfRWOmtCtda19vbSeCqTqlK0yk1nWK+2RBahRr9afcsvcmAWqZAKZMjlUiQIqGigTY6RduSV0U6FzEYaQCD1YKtdmAywEnnUDWdx30A+BPLDXyDpbQPnx3dCEC12dSmY/pqXHl20CXUWMzsKcrkx5T/eGTAxA6fk20uZgykshkpMmQoKSINgHJyUOKEDAUadI6gI52d7OYP/IhhXO11E+m+dIdgWIkT97CIbA7wFZezi7nsYxGX8zbjuL9lJxTwAhy/EfZHgynTIeu9LG0DW2ur9OUSKa8Mnt5tApKzl94+hC+9u7iXnUu41osDJTn1liWX5RGutQfKcqmMEFcPksvyHSXCNkHgcFke4wLOfq3+PXGQvUUnyKvRo5TKCNd6c3loPH5OTefYdHUBwbmIGIw0gFomR4oEGwI51eXYBBtSiZRb+IkM9pDAlQCsqDrk2MapjUOXcqnMPmcP9HL1IL2ymLU5KdwQNfSMtlqlGr35tDcBswFd7c1fq7C/xehNhnpvNHqTgWAXt1b1bxs/MYe7zlj+CZc4fpYi53Uy0OLnkHy/X5R87xF0p2A4kH68zBG28APzuJ95PMAq3uN/zD97WbilDIp+gDy7TLfdkbbOX6TmlGlFi2Cj0mLE4yyKyR1Fq0pvezgGq5nCmkrH70XGKk5UluIsV+Khdmbh8UTKTNXcGj0CgLH+UazPOcKC43sZ6RvO4bJ8dhdmcl+/OjHIiYEx/JiyjVBXD0JdPVmTnYLJZjlDi6QhjpQXcGFAb0JdPLAKAovS9/HRgbW8mDANlazhx2N3KCA4FxGDkQaQSaXEuvtzoDSHMlMN2wvSGe4bjhf2D4DBYq6XV9LPvX3nawXBnineEOGuXhwuy6s3VJ5cmucYVvdSO6NVqDlclkewizsANRYzxyuKGOsf2eA+z8YApjOX+7BhaaSFBB8i0eLLXzyOnjwm8qgo+d5D6I7B8EhuZRg3Moe72Mb3vMlQ+nARd/BHg9N+R0ruJ+LYl8gEK426YAvN943qCPQUsI6P2ctfZ5TexnEp47i/w3V4bIKNpRlJbC9Ir/1/0zDCN4wpwf2arAppD/GxjIoS3k9a4/h9fm1VzHCfMG6JHk65qYYSY52uk5fahfv6Xsj8tD2szU7BTeXEjb2HOcp6wa51Umk2sCRjP3qTgSAXdx7oOw5tM6aWHuw3rt7vt/S+gEe3/0VGZQm9dT4NbtMdCgjORcRgpBEuDIjiQKl9ePDXozsoMVYz2i8SZ4WS5NI8FqXvc/zR9HHzO+uwXlMsPJ5IX48APFROGK0WdhSkc6Q8nwdq/1B+SNmKm9KJy8LiAZgQGM27+1ezKiuZ/h4B7CzMIKOyxPHgkEgkTAiMYdmJA/hoXPFSu7A4Yz9uKs1Z1Q4bw40ARnArW4XvsUkaCpIELuMtSsliDR+gxY/LeatVxxLperpLMCxHzk18yzSe50suJ5lVPIo3k3mSabzkyJkoJoOV0i+5GwtCEwLlPpK8RuOUjqKp0tvBXMMY7ukQ19vGWH4imQ25qdwafQH+TjoyKkr46eh/aGRKxgdGN7hNe4mPRbv58tXoWY327Zbo4Wcsi3bz5dlBlzTQuo5xAdGMC2i47y3hpJibs7zxke7uUEBwLiIGI43Qzz2AYT6hbC9IxyLYWJKxnyWnO5Vi94q5NqJtFTQVZgM/pmyj3FSDRq4g0NmNB/qNI9bdH7DX+Z96e43QenN79EgWZ+xjUfo+fDSu3B07ul6p3aSgPpisFn49uoNqi4lInTcP9B3XpiHCSTzBZr49Y7lgkxIgxDNANp2XiK2VfF8qSr73EHpCMOxBCE+zi/38zU/czDJeZSNfcgs/049L+JNHOOQGH8RIuPcIqK0yJJwZTPlI8s7ceTvTGaW3bSGtopB4z0BHjoOX2oWdhRkcryhudJvuID7W0dgEgT/SdhOh9W6ybLk7FBCci4jBSCNIJBJujroAtUzhMEo6HW+1C3fFjm7TqAjATb0vaHL9IwMmnrEswTuEBO+QRreRSCTMCB3AjNABberbqXgTQR/LpRySLUEiPcUoS2pjfPWLrHf6tFby/Zo2lziLdB49JRgGGMA03qGQxTzDKt7lU6bgSzT5pACQ6gqv95XweIoLrsZKOC0g8ZHkt+n4jWEvvf2QZFY1WHo7ngfQ4d8hx24p4a7ebM5LJb9aj6+TlhOVpaTqC7kqfGCj23QX8bGO5PfUneRUlfNYXNcFiuczYjDSBDKplFmRQ5gYGMOmvFTS9EVYBBvuSicu8A2jv0eAw7PhfGGE+WGSFYscvws2KZTH4qvoy0dciQpXbuXXruugSIvpKcHwSaRIuYw3uIjH+IYrSWFdvfWFaoEX+pbz2tGBaCoSOXVexl1S0i596E6lty1lcnAsBquZF3b/jUQiQRAELg2Na9LkrbuJj7U3v6fuJKkkh0fjJuKualpVuisKCM4HxGCkGfhoXLkirPG3hvMJX1s/hJIB4L4ficQ+KiIcv5Y/4q7Hion/MV+UfBfpFFzwIJ7LzghGAAxyGW9FV/Jc+i3Iin4A7HkwrpKKeu1OVJYS4uJxxvYNUUgaa/iwidLbh1sv1NaJ7C7MYEdBOrdFjyDA2Y0TlaX8kbYbN6WG4c2oQDmXEASBucd2kVicxewBE/BqhgNxVxQQnA+ITw2RZlNuqrGbBtZcisRjv92jp2goqIrJkv5HFGOIo+fLbYv0DCooZBHPNLjOhpU8SSpv68YQmTeLK2V2g0YV9d9ofzm6HbVM0eAoz9lKby/gJkZwa8tF2bqYBccTmRQc60ikDHR2o9hYxb8nDjUajJyr4mO/H9vFjoJ07okdg1qmoNxkH+HS1J4XdI+cqfMBMRgRaRbH9UV8cnADVRYjEINgUYPMABmXQ/yLIMgZXfw5NCzaKSLS7izheYxUNN5AIpDu8R3pqpcJMo1kuGwLABd7KdleLqXcbEAAvk/Zir+TlgBnN/QUsJaPSGRhI6W3D/T4fCiTzYL0tHojqUSC0ESZUUeLj3UVJ/MB3zul3Bjg5t4XOMqWu1PO1LmMGIzUsvzEQRam72N8QDTXRCQ02u58VN4rNlTxycH1DutwCeCkH4LBNRFbr0UgNyCk3sxPeUl4D/AlTCtGJCIdjwZX3AmihnIMVNJQza5EAsLAF8kp/Q7SD4K1jCsCPZkZPZafj9pduS3aJD61fYWRpG5RetvRDPAIZNmJA3ionfB30nGispTVWYcZ4Vc3KtLZ4mNdRVNlxifpbjlT5ypiMAKkVxSzMTeVoLO4UJ6vynsrsw45ApHeOh/+L3oEq1Q7OEA+BV7/oTb2oib3YizYWJqZ5CgJFRHpSC7nbS7nbcA+pVJDOdWUUk0pKZXHWHBiM7gdQOmewirPWwmvimZgXhnWmkOkaM3k9X4eSdRukFooEcBJ8CBeMpMxXVx629FcGzGYxRn7mZO6kwqzEZ1Sw2j/SKaF9HO06WzxMRGR8z4YMVjNfJeylRujhrHsxIEm256Pynsmq4X/Co4DoJTKuLPPKFwUaswY0ZOHRqLjGcVG3lftpdhYxcHSXIoMlc1KBBMRaS+kSHHGHWfsCYPpFVooskDRBVwRORiN/07+8ZtNfB6klN7Px74CMokSlSkAQ0EcZE3mifgbevQIZnNRyxVcE5HQ5AhwV4uPiZx/dL+6s07m99Rd9HcPoI+731nbplU0XGufVmGvoz+b8l5PJL+mAoPVLgEf5xmES20yWgFHMKDnJr7HSxrCsFMCrYyK9imfFBFpLafO8dtsAsO4nkeVqWQ7uyCownmGvXyKgehjv0D6tWBxOyOPQkREpPNoVTDy2WefERoailqtZtiwYezYsaPJ9vPnzycmJga1Wk3//v1ZtmxZqzrb3uwsSCezssSRJX02zkflPYtQJxqlkSkcPxuoQEcAA7ncvu4U+WRrF/t/iIicOuW6ozAdQRBQ40pQ3wr6hqUSTDxVZiOHSnMB+3f7bPoSIiIiHUeLg5F58+Yxe/ZsXnjhBfbs2UNcXByTJk2ioKCgwfZbt27luuuu47bbbmPv3r3MnDmTmTNncuBA01MiHU2JsYp5aXu4LWZEj83l6Aw8VHWOpgdLc7HVBhpPsYPXSXesOzXT3rObWLKLnL+EuXoS6OQGwPGKYpZmJjm+uwDVFhPfp2zDXOu/M8I3HLl4HxAR6TJaHIy8//773HHHHdx6663Exsby5Zdf4uTkxPfff99g+48++ojJkyfz2GOP0adPH1555RUGDRrEp59+2ubOt4XMihIqzAZe27Ocuzf9zt2bfudIeQHrclK4e9Pv9W5cJ2mJ8l69Nqa6Nj0NnVLjkAUvNlax/ESyY50M+0jJrsIMUsrtMts+Gtd6Lp0iIl2BRCJhWq+6hMx/Mg/w7M6lzEndyQ8pW3lqxyIO1o6KqGWKRg3iREREOocWJbCaTCZ2797NU0895VgmlUqZOHEi27Zta3Cbbdu2MXv27HrLJk2axKJFixo9jtFoxGg0On7X69tfTjjGzY/nB02pt+ynI//h56RlUlAs0gZk3s9X5b2LAmMcw9mLM/aRXJbLUO9Q5FIpicVZJNa6VQJMDIhB2oQNuYhIZzHIK4Qrwgay4PhewB5Mn+4zpZbJuTd2jJhwLSLSxbQoGCkqKsJqteLr61tvua+vL4cPH25wm7y8vAbb5+U17p75xhtv8NJLL7Wkay1GLVcQKHert0wlk+MsVznKdEXlPTux7v5c2msAi2tdi4+UF3Ck/MxpuRG+4YzpwUGXyLnHxUF9CHFxZ1XWYQ6W5jiUSJRSGUN9Qrk4qM95UUEjItLd6ZalvU899VS90RS9Xk9wcOc/zEXlvTqmhPTDU+3M35kHKKipr3qpU2q4KDCGCYExSMRREZFuRoybHzFufpSbaig2VCGVSPDTaFHLFWffWEREpFNoUTDi5eWFTCYjP7++DXd+fj5+fg2Xxvr5+bWoPYBKpUKlUrWka+3C6Up7ovJefYb5hDHEO5Sj5QWcqCpFEAR8NVr6uvsjk573VeIi3RydUlPPRVVERKT70KIniFKpJCEhgTVr6nT8bTYba9asYfjwM0VyAIYPH16vPcCqVasabS/SvZFKJES7+TIxMIaLgvowwDNQDERERERERNpEi6dpZs+ezc0338zgwYMZOnQoH374IVVVVdx6660A3HTTTQQGBvLGG28A8OCDDzJ27Fjee+89pk6dyty5c9m1axdff/11+56JiIiIiIiISI+kxcHINddcQ2FhIc8//zx5eXnEx8ezfPlyR5JqZmYm0lPelEeMGMGcOXN49tlnefrpp4mKimLRokX069evsUOIiIiInBWDxczijP0kFp+gwmwk2NmdayISCHX1bHSblLJ85qftIbe6HHeVE1NC+p1h5LYu5wirspIpN9UQ5OLOtREJYrm6iEgHIxEEoXHf6G6CXq9Hp9NRXl6OVitmvrc3T+9YTLGx6ozlY/2jmBU5pMFtzkf3YpHuxdfJm8mpLmdW5BDclBq2FxxndXYKLyZMbVBNtchQyUu7/2GMfxSj/CI4XJbHH8f2cF+/sQ7Dt52FGfyYso1ZkUMIc/ViTc5h9hRl8lLC9DOUlUVERM5Oc5/f3bKaRqRzeSp+ErZT7Ndzqsr58MBaErwaTtQ9X92LRboPJquFvUUnuKfvGHrrfACY3msA+0uy2ZB7lJmhcWdssyH3KF5qF64KHwSAv5OO1PJCVmenOIKR1dmHGeUXwUi/CACujxzKgZIctuYfY3Jw3046OxGR8w8x81AEV6XaUWmgU2rYX5KNt9rFcZM/nVPdi/2ddFwaGkeIizvrc44AnOFeHOTszq3Rwykz1pBYdKIzT03kHMUmCNgQkEvqB7YKqZxj+sIGt0nTN2J0qbebWFpsVjIrSuoZXUolEmLc/BxtREREOgYxGBGph8VmZXtBOiN8IxrVDDkf3YtFuhdquYJwVy+WnThAmbEam2Djv4LjpOmLKDfVNLiN3mxo0MTSYDVjslqoNBuxIeDakNGluWcaXYqI9BTEaRqReiQWZ1FjMTHCN6zRNueje7FI9+P/oofz05HtPLFjEVIkhLi4M8S7F5mVJV3dNRERkRYiBiMi9diSd4y+Hv64iXbqIt0cb40rj8ZNxGi1YLCa0Sk1fJ28uVGfGa1C3aCJpVqmQCmTI5VIkCKhoiGjS4WYvCoi0pGI0zQiDooNVSSX5TPKr2l/mfPRvVik+6KSydEpNVSZTRwqzSXOM6jBduFau9HlqSSX5RGutZftyqUyQlw9SC6rU4y2CQKHT2kjIiLSMYjBiIiDrfnHcFWo6O8R0GS7k+7Fp9KYe/FJTroXh4t6DSLtxMHSHA6U5FBkqORQaS7vJ63Gz0nLyFrdkIXHE/khZauj/Vj/KIoMlSw4vpe86nLW5xxhd2EmEwOjHW0mBsawOS+Vbflp5FaXMyd1Jyab5QwtEhERkfZFnKYRAexvgFvz0xjuG45MUj9GFd2LRbojNRYzC9P3UWasxkmuZJBXMDND4xz2BOWmGkqM1Y72XmoX7ut7IfPT9rA2OwU3lRM39h7mKOsFGOLdi0qzgSUZ+9GbDAS5uPNA33FoRU8bEZEORRQ9EwHgUGkuHx1Yx8sJ0/B1qn+N39u/Gk+VM7dE1/kJ2UXP9lFsqDqr6NlJ9+JZEUPO2LeIiIiIyLlLc5/fPSIYKS8vx83NjRMnTojBiIiIiIiISA9Br9cTHBxMWVkZOp2u0XY9YpqmoqICgOBgcYhfRERERESkp1FRUdFkMNIjRkZsNhs5OTm4uro2KsTVGk5GbOKIS8ciXufOQ7zWnYN4nTsH8Tp3Dh15nQVBoKKigoCAgHomuqfTI0ZGpFIpQUENl+u1B1qtVvyidwLide48xGvdOYjXuXMQr3Pn0FHXuakRkZOIpb0iIiIiIiIiXYoYjIiIiIiIiIh0Ked1MKJSqXjhhRdQqVRd3ZVzGvE6dx7ite4cxOvcOYjXuXPoDte5RySwioiIiIiIiJy7nNcjIyIiIiIiIiJdjxiMiIiIiIiIiHQpYjAiIiIiIiIi0qWIwYiIiIiIiIhIl3LOByOfffYZoaGhqNVqhg0bxo4dO5psP3/+fGJiYlCr1fTv359ly5Z1Uk97Ni25zt988w2jR4/G3d0dd3d3Jk6ceNb/F5E6WvqdPsncuXORSCTMnDmzYzt4jtDS61xWVsa9996Lv78/KpWK3r17i/ePZtDS6/zhhx8SHR2NRqMhODiYhx9+GIPB0Em97Zls3LiR6dOnExAQgEQiYdGiRWfdZv369QwaNAiVSkVkZCQ//vhjx3ZSOIeZO3euoFQqhe+//144ePCgcMcddwhubm5Cfn5+g+23bNkiyGQy4e233xYOHTokPPvss4JCoRCSkpI6uec9i5Ze51mzZgmfffaZsHfvXiE5OVm45ZZbBJ1OJ2RlZXVyz3seLb3WJzl+/LgQGBgojB49Wrj00ks7p7M9mJZeZ6PRKAwePFiYMmWKsHnzZuH48ePC+vXrhcTExE7uec+ipdf5t99+E1QqlfDbb78Jx48fF1asWCH4+/sLDz/8cCf3vGexbNky4ZlnnhH++usvARAWLlzYZPu0tDTByclJmD17tnDo0CHhk08+EWQymbB8+fIO6+M5HYwMHTpUuPfeex2/W61WISAgQHjjjTcabH/11VcLU6dOrbds2LBhwp133tmh/ezptPQ6n47FYhFcXV2Fn376qaO6eM7QmmttsViEESNGCN9++61w8803i8FIM2jpdf7iiy+E8PBwwWQydVYXzwlaep3vvfdeYfz48fWWzZ49Wxg5cmSH9vNcojnByOOPPy707du33rJrrrlGmDRpUof165ydpjGZTOzevZuJEyc6lkmlUiZOnMi2bdsa3Gbbtm312gNMmjSp0fYirbvOp1NdXY3ZbMbDw6OjunlO0Npr/fLLL+Pj48Ntt93WGd3s8bTmOi9ZsoThw4dz77334uvrS79+/Xj99dexWq2d1e0eR2uu84gRI9i9e7djKictLY1ly5YxZcqUTunz+UJXPAt7hFFeaygqKsJqteLr61tvua+vL4cPH25wm7y8vAbb5+XldVg/ezqtuc6n88QTTxAQEHDGl1+kPq251ps3b+a7774jMTGxE3p4btCa65yWlsbatWu5/vrrWbZsGampqdxzzz2YzWZeeOGFzuh2j6M113nWrFkUFRUxatQoBEHAYrFw11138fTTT3dGl88bGnsW6vV6ampq0Gg07X7Mc3ZkRKRn8OabbzJ37lwWLlyIWq3u6u6cU1RUVHDjjTfyzTff4OXl1dXdOaex2Wz4+Pjw9ddfk5CQwDXXXMMzzzzDl19+2dVdO6dYv349r7/+Op9//jl79uzhr7/+4p9//uGVV17p6q6JtJFzdmTEy8sLmUxGfn5+veX5+fn4+fk1uI2fn1+L2ou07jqf5N133+XNN99k9erVDBgwoCO7eU7Q0mt97Ngx0tPTmT59umOZzWYDQC6Xk5KSQkRERMd2ugfSmu+0v78/CoUCmUzmWNanTx/y8vIwmUwolcoO7XNPpDXX+bnnnuPGG2/k9ttvB6B///5UVVXxv//9j2eeeQapVHy/bg8aexZqtdoOGRWBc3hkRKlUkpCQwJo1axzLbDYba9asYfjw4Q1uM3z48HrtAVatWtVoe5HWXWeAt99+m1deeYXly5czePDgzuhqj6el1zomJoakpCQSExMdnxkzZjBu3DgSExMJDg7uzO73GFrznR45ciSpqamOYA/g/9u7Y9fEwTiM4zkor10EJ8HBFhJwcXFqx/wXbpKtg3QVsqWDQgfpIp11U6RjXVw6Wbpla7BDoV3arUOgi4XnpsrdeQfN3dX3cnw/kMlX+L0Pog+Sl9zd3TmVSoUi8gu/k/Pr6+tG4XgvgOIxa3+Nld/CT7s19h8wmUxUKBQ0Go10e3uro6MjlUolPT8/S5JarZbCMFyvXywW2tnZUb/fV5IkiqKIo70fkDXn09NTGWN0cXGhp6en9ZWmqa0t5EbWrH/EaZqPyZrz4+OjisWijo+PtVwudXl5qXK5rG63a2sLuZA15yiKVCwWNR6PdX9/r/l8Ls/z1Gw2bW0hF9I0VRzHiuNYjuPo7OxMcRzr4eFBkhSGoVqt1nr9+9HeTqejJEl0fn7O0d4/NRgMtLe3J2OMDg4OdHNzs37N930FQfDd+ul0qlqtJmOM6vW6ZrPZlifOpyw57+/vy3GcjSuKou0PnkNZP9Pfoox8XNacr6+vdXh4qEKhINd11ev19Pb2tuWp8ydLzqvVSicnJ/I8T7u7u6pWq2q323p5edn+4DlydXX10+/c92yDIJDv+xvvaTQaMsbIdV0Nh8NPnfGLxH9bAADAnv/2nhEAAJAPlBEAAGAVZQQAAFhFGQEAAFZRRgAAgFWUEQAAYBVlBAAAWEUZAQAAVlFGAACAVZQRAABgFWUEAABYRRkBAABWfQV9GgEUbeyipwAAAABJRU5ErkJggg==", + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAiMAAAGdCAYAAADAAnMpAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjcuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/bCgiHAAAACXBIWXMAAA9hAAAPYQGoP6dpAAEAAElEQVR4nOyddXgU59qH75n1ze7GXYgSJEBwL9DSAm2p99T1tD319tS+usup99Tt1N1bpLS4FHePEHfPJlnfme+PhU1CEjQQoHNfFxfJzjuz72x2Zn7vo4IsyzIKCgoKCgoKCj2E2NMTUFBQUFBQUPh7o4gRBQUFBQUFhR5FESMKCgoKCgoKPYoiRhQUFBQUFBR6FEWMKCgoKCgoKPQoihhRUFBQUFBQ6FEUMaKgoKCgoKDQoyhiREFBQUFBQaFHUff0BA4ESZIoKyvDbDYjCEJPT0dBQUFBQUHhAJBlmaamJmJiYhDFru0fx4UYKSsrIz4+vqenoaCgoKCgoHAIFBcXExcX1+X240KMmM1mwHcyFoulh2ejoKCgoKCgcCBYrVbi4+P9z/GuOC7EyB7XjMViUcSIgoKCgoLCccb+QiyUAFYFBQUFBQWFHkURIwoKCgoKCgo9iiJGFBQUFBQUFHoURYwoKCgoKCgo9CiKGFFQUFBQUFDoURQxoqCgoKCgoNCjKGJEQUFBQUFBoUdRxIiCgoKCgoJCj6KIEQUFBQUFBYUe5aDFyJIlS5g+fToxMTEIgsAvv/yy330WLVrEkCFD0Ol0pKam8sknnxzCVBUUFBQUFBRORA5ajLS0tDBo0CDeeuutAxqfn5/PGWecwaRJk9i4cSN33nkn1113HX/88cdBT1ZBQUFBQUHhxOOge9NMmzaNadOmHfD4d999l6SkJF5++WUA+vbty7Jly3j11VeZMmXKwb69goKCgoKCwgnGEY8ZWbFiBZMnT2732pQpU1ixYkWX+zidTqxWa7t/CgoKCgoKCicmR1yMVFRUEBkZ2e61yMhIrFYrdru9032ee+45AgMD/f/i4+OP9DQVFBQUFBQUeohjMpvmgQceoLGx0f+vuLi4p6ekoKCgoKCgcIQ46JiRgyUqKorKysp2r1VWVmKxWDAYDJ3uo9Pp0Ol0R3pqCgoKCgoKCscAR9wyMnr0aObPn9/utblz5zJ69Ogj/dYKCgoKCgoKxwEHLUaam5vZuHEjGzduBHypuxs3bqSoqAjwuViuvPJK//gbb7yRvLw87rvvPnbu3Mnbb7/Nd999x7///e/uOQMFBQUFBQWF45qDFiNr165l8ODBDB48GIC77rqLwYMH8+ijjwJQXl7uFyYASUlJzJo1i7lz5zJo0CBefvllPvzwQyWtV0FBQUFBQQEAQZZluacnsT+sViuBgYE0NjZisVh6ejoKCgoKCgoKB8CBPr+PyWwaBQUFBQUFhb8PihhRUFBQUFBQ6FGOeGqvgoKCjzpHC80ep/93k1pHiD6gB2ekoKCgcGygiBEFhaNAnrWaFzfNQ6I1REstiDw1bLoiSBQUFP72KG4aBYUjiMvr4ZPslTy/aW47IQLgkSW+y1uHW/L20OwUFBQUjg0UMaKgcIRwS17e3LaYFZV5XY7ZUFvCezuW4pWlozgzBQUFhWMLxU2joHCEmF+6k6xGXysEnahmXFQKKZYwZGBbfTmrqwrwyBJb6spYUp7DpJj0np2wgoKCQg+hiBEFhSOAV5ZYVJ4DgADcMWASKZZw//Zh4b0YEZ7Ia1sXALCwLIeJ0b0RBKEnpqugoKDQoyhuGgWFI0BBUy31ThsAGSExfiHicDhwOn0ZNX2Do0izRABQabdSamvokbkqKCgo9DSKGFFQOAI0uRz+n5PMYYCvr9P27dvZuXOnf1uKJazNPq1pvwoKCgp/JxQ3jYLCEUCn0vh/rrE3U1ZWRnl5OQDx8fH+bdWOZv/PepVyOSooKPw9Ue5+CgrdjNfrJUplpLcmkGgMJFlFypt9QiQqKoqQkBAAahzNbKotASBArSPOFNxjc1ZQUFDoSRQxoqBwiEiSRGNjoz8OxOFw4HA48Hp9dUMmaqIAkGUZCRlREImOjkaWZXY2VPLVrjV4dqf0jo1KRiOqeuxcFBR6GqVC8d8bRYwoKBwidXV1FBYW7nOMLMs4ZS86VMxwFPL16nwkGVra3HTD9CamxPU70tNVUDhmqXO08MjaGX5xDkqF4r8bSgCrgsIhEhwcjFar3ecYQSWiF9VkeRopl+w0uZ3thEiMMZC7BpyCSaM70tNVUDhmafY42wkR8FUobmspUTixUSwjCgqHiEqlIikpiaysrK4HSTIajYa02CQqq6DCbgV8ImR8VCqZoXGoRGVNoPD3Rpbl/Q9SOKFRxIiCwmFgMpkwmUw0Nzd3OaZ3797o9XpGRCUfxZkpKBwfrKzM59fCTZ1u21xbSoIp5CjPSKEnUMSIgsIh4vF4yM7Oxm63dzkmLi4OvV5/FGeloHD88GvBJmYXb+ty+4yiLXhkiXMSBx3FWSn0BIoYUVA4BGpqaigqKkKWZYKCgoiKiiIrK6ududloNBIZGdmDs1RQOHbZWFPcTogkmUPpHeirSLyjoYKi5noAfi/eRi9TCIPD4js9jsKJgSJGFBQOAkmSyM3NpampCTte1lBPfuUutNUqRhujSXT7AlEFQSAtLa3TY6yrLuLXws3UOpqJMJg5LymTASGx/u2yLDOjcAtLK3Kxe92kWMK4NHU4kQbLUTlHBYXu4IVP6qmqkzhzvJGxmXo0mvZ9l/4s3eH/+cLkIUyO7dNu+7zSnXyftx6AuaU7FDFygqNEzikoHCCNjY1s2rSJpqYmAgICWK9pZmRcGvcPOo07Mk6mTHDRLLmRkUlOTkat7qj1d1mr+XDnX4yNSubhIdPIDI3jne1LKW1p8I/5o2QHC8qyuCxtBPdnnoZOVPP61oW4Je9RPFsFhcPj85nNvPxZI5OuLyfkpAIuuq+SL2Y1UVPvpdJmZZe1BoBYYxCn7O5Y7fXKfuviKTHpxBqDANhlraHSZu2R81A4OiiWEQWF/SBJEgUFBdTX1yMIAgkJCYSHh9OH9iu50wMTaXDVIgXoCAoK6vRY80uz6B8S7a8rcnbiIHY0VLCoLJvL0kYgyzLzS3dyekIGmaFxAFyTPpp7Vv7ExppihkckHslTVVDoNob00bEj343XC812mR/nt/Ddny0IAgzoI6BLjSE6pZGkqHg++LGJLbkufpzXQqBJZMsPcajVAgNCY/wNJGuczUQaFevgiYoiRhQU9oHNZiMnJwePx4NeryctLa3T2iI2m4366hqKvC0Mj03q8nh5TTUdzNH9gqP9ZeFrHC1Y3Q76BkX5txvUWpLMYeQ11ShiROG4YUCaFnl26++7CxMjy7B5hww74oEEfgNEsYbevTTER6lZt93JuXdV8u3zETg8Hv/+omLIP6FRxIiCQhcUFxdTVVUFQHR0NDExMZ2OkySJ7OxsXLJEgcbJeeauUxGtLgcWTfvsGotGT+PuLr9Wty8zx6Lda4y2dYyCwrGKJElszXUze5mNXxa2IEn7Gi1gCnEw7aoiPrjgZAIDfCJ/zl82zr6zgpjTCjn/ngrUISAKArEBQUfjFBR6CEWMKCjshcvlIisrC5fLhUaj8dcJ6Yr8/Hy8Xi+rvbVcM2DCUZypgkLPUVPvYdYSG4vWOdiY5aKw3ENDk8T+6pepVCAKcOGVDQRk7kQQ4OvCVVzZeyRGtZapY428/XAw1z1exydP9mH6nds4fVhoB4Gu4ONE6emjiBEFhTZUVlZSUuJzmYSFhREfH4+4jwqp9fX11NXXk+O1cvmg8QTrjPs8vkWrx+pub+Gwuh0E7r7RWjQG32suB4FaQ+sYl4N4U9ChnJKCwmHhckksXudg7ko7q7c6ySlyU13vxd3qQUGjhvBgFQPT9AzP0HLaKCMnDdEReUoxjc2t5hGVCL2i1fz4UiRh8cH8Z2MObsnLhtpitq8qp29wFAIC28PKmXZTAHPe7cNvr2Rw5jMm6NsDJ3+McyL19FHEiIIC7QuYqVQqUlJSMJvN+9zH7XazZVc2blliUr/BhOlN+32fZHMYOxsq2sWN7KivINkcBkCYPgCLRs/OhgriTcEA2D1u8ptqmBCdehhnqKCwf3bkuZi9zMayDQ627XJTVu2hxd5q6hAECDKL9E/RkpmuZeJQPdPGG4kI6fxRMqi3liXrW8X3P6YE8N7D4ZgDREDHv/qO4/0dy3BJXpySh427Y6cA4vs2cuG92/jl1QxueLAFd3MjN/0j8Iid+/GGV5JYU13YaU+fOqdNESMKCscbdXV1FBQUIMsygYGBJCcn79Masoe5W9YQhobAqHCMOj2NLl+8h0GlQavyXVofZy0nSGvk3KRMAE6JTeelzfOYW7KDASExrKkupLC5jsvTRgC++iSnxPZhdvFWIgxmwvQmfi3cTJDOQKZSZ0Ghm2iwepi1zM6iNQ42ZDnJL/XQYJWQ2rhYDDqBmHAV/VI0jBmk5/RxRjJSNQd0bewhM90nRnQaeOehcK4+24QgtNYbGRASy8NDpjG/NIuVVfk4vT5zi06lZlREEqcMTeeFkwwMuqiEm5+tpaTKwzO3hnbb53C8Uu+08da2xRS31He6/f0dS7ktY5J/QXM8IMjHQYciq9VKYGAgjY2NWCxKapdC99C2gJkgCCQlJREcfGAXb0VFBaWlpaxwVbHF0/6GcFXvUYyJ9PWheXnzPEJ1AVydPtq/3Vf0bBO1jpb9Fj2zeVykBoZzacpwJa1R4aDxeCT+2ujkj+U2Vm9zklXgpqrOi8vdOkatgrAgFakJaob103HqKAMnDzeg1x9+9sritXaefL+e1+8Lo3/qvjtcuyUvDU4bMhCsM6IRVf5tDVYP/c8vpazay1XTTXzyVMRhz+1YxdnixtnswRJp6HS73ePiPxv/9DfdBDCqNahQ0eRptUIFqHU8kDmFcMP+LbZHkgN9fitiROFvidVqZdeuXUiSREBAAKmpqZ0WKesMh8PBtm3bUKlUDBw48KBWigoKR4pdxS5mLrGxbKODrTluSqo8NNvau1gsAQIJ0WoGpek4aaieM8YbiYnoOQP5wQRfulwSgy8uZXuem8kj9fzxTtQJee399O+VLPrvNnpPimb09ekMPKcXGn3r32hm4RZmFG0BfG7dy1JH0DcoCkEQKGyq46vc1RQ01wEwPLwX1/UZ2yPnsYcDfX4rbhqFvxWSJFFYWEhdne9ijY+PJyLiwFdZe9J4AdLS0k7Im6HCsU1Ti8Scv2wsWGNn/Q4neSUe6qxSuzRavU4gOkzF+MEaRg/SM22sgSF9tcfU9/Vggy+1WpEtP8Qy+V8VzFvlIPOiUtZ+GYtW2/6cdua7SI7ToG1Tfn5v0QPHbtaJSisiADmLK8heUI7OrGHYZSmM/mdvYoaEsLQiFwABgdv6TyTK2BpH08scwh0DTubhNTNo8ThZX1PsKydwHGQiKWJE4W9D2wJmOp2O3r17d1rAbF8UFhbidruJjIwkIODYu5EpnDhIksTKzU7mLLezaouDnQVuKmu8ONu4WFQqCA0UGZmhY2g/HZNHGjh1lAGj4dgRHV3R7HF2GnzZ7HESQufXliiKLPgghsseqOSr31tImV7Mth/jsZh85/vzghYuuLuS/7smiGdv99X76Uz0wLGbdRIYYwQBZK/PquVscrPiwyz+encnob3NNJ3mgNNU9O0VRUCzlpLsWrIXlCF7ZU65dyBGtZZREYnML8vCK0vkWqsZchzEmyliROFvQWlpKRUVFQBERUURGxu7nz060tjYSF1dHTqdjri4uO6eosLfmKJyDzOXtrB0nYPNuS6KKzw0tbT3oFsCBFITNAxI1TJ+qJ4zxhnpFaPpoRnvnxmFm5lZtLXda5EGC08OO3Of+727fSmNLvs+46lizs5lSkwAcz9JIWl6Ppu+6UVeiZuL7qtEkuGDn6w8eXMwarXQqeiB/QufnsIUYWDv6Uoe33ehNrsJVTao3nSzS8jnITnfP0ZnUnPKvQMB2mX2ubwejgcUMaJw1OiJ4jwul4vs7GycTidqtZrevXtjMHQeGLYvJEkiLy8PQRDo3bv3EZipwt8Bm13iz5V25q+0s26Hk10lbmobJX+pdACdFiJDVYweqGHUQD1TxxgZOeDYcrEcKDHGQO4ccLL/d5Ug7GO0j0GhcZwUncrqqgLe2b6UhwZP9Vdf3dNE8ur00YQNCOAxy3Y+fyec1OlFqEQB7+6HeE2DxOxlNs6aeOwIDUmSqM6xUralnqqsRmp2WakvbqGpwk5LrQOH1Y3b4fVbRLpCAGQDGC4xctn00QTGBPDltUtIHNXqbs61Vvt/Nmt1R+qUuhVFjCgcFXqiOE/bAmahoaEkJCQc8g09OzsbSZLo1avXQbt2FP5+SJLE+h0ufv/LzopNPhdLebUXh6v1QSOKEBIoMrSvliF9dZw83MCUMUa/y+FEQBSEdsX79lBha2Rm4ZZO94kLCCLaGHhATSTfvGw4lY55zHonvd0xVCp4/8emoyJGJEmiZlcT5VvqqdzZQE1eE/VFzVgr7NhqnTisLtx2L1JnIkMAtU6FzqQmMMaIOUKPPkjL9lklHYaKKgG1XoX+dhPVUxy4RBl3H5G4kFCqshsZ/A9fT6yi5jo21BQDYNbo6B0YeUTPv7tQxIjCUeFQ/MOHisfjIScnB5vNhiiKpKam7reA2b6orKykpaUFs9lMWFhYN85U4USgosbDzCU2Fq11sDnHSVG5B2uzTNtHj8kokBijJiNNw/jBviyWlPgTX9RW2Zu4b9XPaESRZHMY5yZmUmG38s72Jbgkb6f7fJazCq8scVJ02n6bSLY0qVjxQwqiSLsAXq8XZi+zUVrp4VBvL5IkUZvfTNmWOqp27rZkFLVg3WPJaDwAkRGgxhJlxBShJzA2gNAkE+G9A4nqF0TMgGD0po7fAZfdwz3GT9sdCxkyzkrgwjdHs1NdxUdZKwD4MOsvMstikNwyVreDGYVbmFe6A2n3t29cVGq7FOljGUWMKJxQtC1gZrFYSElJOSzztsvloqSkxC9qFP6+OBwSC9bYmbvCztodTnKLPNQ0ePG0eaZqNRARomJYfw0jM3ScNtrI2EwdavWJY+04UJLMYVzdezSRRjONLjszC7fyn01/Yne7cMm+D00nqukdGI5KVLWrvvpV7hrC9KZ9NpFssUtMubmchlo1ktTR/SMI8OmMJi6/eK8NkgQVIORJrF6UzfJiD/XFzVjL7TTX7HaX2D3+OI32BwW1VkRn0mCONGCKMBAUayQk0UR4WiDR/YOIHhCCwXLoQlNrUKMzqXE2exBEAVO4noveG8vAs3sBMFxOZGtdOaurC5BkmY3zCtAACyJ2QVGr8EixhHF6fP9DnsfRRhEjCkeFakfzET2+JEns2rULq9XqL2AWEtJ199wDJSsrC4DU1NTj0mevcPDs6Tw7a6mN5Zsc7MhzU1btxe5s42IRINgiMihdy+B0HZOG+9JngwOVW+oeMkJau1zHBQSTZA7jnpU/4d1tIR0UGsc1vUdjUPuCcG9e9g19giLZVl+ODMws2sqI8F5dHv/jX5tYv8NFV2EokgQvvV1F3cur0dS6EVpkcAJen7EBYAnbfD/sFhnaAA2mcD3m3ZYMn8iwEN0/mOiMYIxBRyf+IjA2gKrsRsbf3JcznhnaTtyIgsA16aMI0hlYWJaNvNPps4P0E3afisCIiF5cmjrcXwn6eOD4manCcYnV5eDT7JVsrS9r97oBFVEqA2tK84jvHdyuRPTB0tTURG5uLpIkYTQaSUtLO+ACZvuisLAQl8tFWFjYYbl5FI5dDqTzbIBBID5KTf8UDWMzfWXR+yaf+C6W7kYUBKTdQkSvUrcTIuCzePQLiqLOaaPc1sguazWxxkDMah11Rc1UbqpH2OXlh29X4M5301Bm58xmEzsMZoqEYNyiGkHe7R7bfT+plzTsKjcSJzUgBwkQBHKYgBwlIsdBbP8QbjvrZALDjp1AV4ArPpuAqBaIH9K5W1gURM5PGsyUuH48W/EjLToHo+JSiDCYGB2RfMylKx8IihhROGI0ux28tHkulfYmdIjEqIzEiEZiVQEEib6b+c6GBn7M38gFyYMP+viSJFFUVERtbS0AcXFxREZ2T7BWU1MTNTU1aLVaevXqenWmcHzQvvOsg5wiT5edZwf11jO8v47TRhuYMFSPRqNYxLqD0uYGfxzNwJA49Co19SXN3P5QKVUFLYwcKTG3ejPqNRKaagdCi8zKgK1QL/O4+1sAtMAmfOmsKq1IP3MTCUklhHoDcOmiyNMFsanZQE6N4H+vPwb055/PbSIjJBqLxkBxSz15TTUAFNPErIbtXBo2/Oh+GPuh14jwAxpn0ujwVHkIjDByTZuWE8cjihhROGL8lrORZI+ek/ShBIsdzZuyLFMnOdla6msalx504ELCbreTk5OD2+0+5AJmXbGnZw2gpPEehxx059lhek4fbyQ8WLkddheN5S18u2INgUU6nHluasqsFDsbUDe5ETdIbLbt4BZhJyq3TDAQDDQsATkABK2AIMhIKSL0FUn3RBAbG0R4WiBFvRpZE1DMtYPG+JtIlrbU88jQM9sFas7KzuXV33NZ9UsCzfV66n4/iX8+HoVmd1XWrIZK3ti2CLfkZVnFLs5MGHBcVCntDGeTm9hBx3/zQOXqUzgiWF0OVE12Bmi6jtsQBIFKyRectrAs+4DFSNsCZpGRkd1egGyPyycuLg6d7vjI0f870q7z7E4n+WWddJ7V+zrP9k/2lUU/Y7yRjFTtYbkF/840Vdoo3VxHxfYGanKt1BU101hqo6XGib3RhavFg9fdscCYbADBJCB6ZDwGkb+iUtlujGZ0YiEXJIfx5SYtHrOed94R+XzXSty7M20uTB7M5Ni+rceRZSyFAXyRs9rfRPL2/pM6ZIxsse0iZUgdKUPq6Fs1iXufs9PQWMG3L0RgMqpID4pkUkxv/izZgVeWWFmVz2lxfTneqMm3IksQO+j46c7bFYoYUTgibK7zdbSNEg0EiBq6uvU7RAkk2FRbglvytrupyLKMy+XCbrej1WpRq9XtCpilpaVhNBq7dd41NTU0NTUREBDQbS4fhcPD45FYttHJn8ttrNrqJLuw686zYzJ1DO/vK4veXZ1n/w40Vdko29JAxfZ6n8go9ImM5hoH9gYXLpsHr6ujyABQaUQ0RhWGIC1hKWYs0buzS1ItRPYJInpAMEExvhiGf36wjk/ft+B1iyQlefjpfxMID1YzbruTEZeX8r9vXAhDfUIkxhjIKTF92r2XIAiclTiQsxIH7vN8Kmy+jrahugDuPD+aftE2zr6zgtjTitj2YxxxkRqGhiXwZ8kOACrbdMDtaRaX5bC4PIdapy/oP9oYyJkJA9oFBO8ha64vFk8eqebRtTOpdTTvtxO43esmxRLGpanDiTQcO41nFTGicERocjuw4+V3ZwkXGpOhk+bQjZILm8f3RNEhUtNQh+iWsNvt2Gw2HA4He5pKa7VaXC4XACEhIfTq1avbs1tcLhdFRUWIoqi4Z3qIA+082ydRy6DeWk4a6gso7cnOs8cyzTUOSjfXUbm9gepdVuoKmtqLjJYDEBmBWkKTzQRGGwnutUdkBBIzKMQvMvZHTb2HabdUsHZ7MCqNl4lX7KL3iBre2JXD8PBeaM0qMoa5+OATM+lZSYz7RwFT4vsdsgVrz26SLCPLMqeNMfK/x8O58uFq7nm5jq+fj0A6RhvWB+kMnJs0iAiDGWRYUZXP29uX8PDgqcTsrkS7h4KVVQAsiMjlnKhMBobE7r9yrT6A3wo28/rWhTy+l3urJ1GuYIUjgk70fbXqZRfWQC2WhvYdM5FlAp1erjGkIiAgCAJl+UVdHs/lciGKIikpKftsQ304ZGdnI8vyYdcmUdg/1mZf59mFa/ffefakIRpGD9Qz9RjsPNtTtNQ5KNtcR+WORqpy9oiMFpprnNjrnTj3uEs6ed6KagGtUY0+UEtoognLHpGRYiGybyAxA0MIjDF22+f8/Ef1PPxWPR4vTB1j4J77bHxfXIOMzyIxs8hXiTV+pJnNq/uTtSKS+rww/vFYJBx4Q+12RBuD2GWtpt5lI6+phhRLOJeebkatErjo/6owB1Qz+fJi//iYNp1ve5pBoe3dzuckDmJxeQ55TbUdxEjFtnoIFugfE8OUuH4AB1S59pr00dyz8ic21hQzPCLxaJzWflHEiMIRoU+b+I8F9fnc2mskJUWtFz+CQOBTT9Ew9TQYPwFZlve5CjIajaSnpx+xB1FJSQlOp5OQkBACA4+dG9PxjiRJrNjk5I8VuzvP5ruprO288+yoDB1D++s4ZcTx03m2u7E1OCnbXEfFjgaqs3eLjDIbTVUO7A1OXC0ePK79iAyLluBePpERkmAiNMVMVN8gYgaGEBTXfSJjf+QUuph2awW7ij0EmUW+eyGCU0f73KoxgQHMKtpKjrXKPz4k2u7/uapSxZSbKzh7opHX7g0lMfbgGgKOj0ph1+7+LJ/nrOb2jImE6AL4xxQT7/9o5cOfm9kqNzHwFF9bipERSd1wxt2PJEusqy7C5fWQbO6Y5ltX2IKcJNKnTVVaYL+Vaw1qLUnmMPKaahQxonB8cKjN7WICgkizRJBjraLK3sQ3FVuZEtKLlroG/xj11i1E//kntmnTsD7xhO/FLgTJkSw61tLSQmVlJRqNRknjPQyKyj3MXNLC0vUH0Hk2TctJQ/ScMT6AhOgT/zZkt7p8ImN7A9U5jdTmN9NYZqO5yo6t3oWrxb1PkaExqNFbNATHm7BEGwhOMBGWYvbFZAwMJiTBdMxYjCRJ4s4X63jzGyuyDFdNN/HRE2Ht5tc3OIq+wVFU2KyUtNQjyTLhehPfqK3t0q1nLbXx+182HroumHuvCsRwgDFAw8J7Mbt4G1X2JsptjTyyZgaZoXGE6AOYdEM1y7b1YuUv8YT3auKKCbGYNMdWoHppSwPPb/wTt+RFp1JzY7/xxAR0XCTZ6pxI4wUsmvaZQPuqXOsfo20dcyxw4t8FFA6Zw21ud0HyYF7aPA+35GV7QwXbGyo4WRtNqtqCJMt88MTN3HT9Ixh//x3BZqPx+ed93cPa3lRlGQSBzZs3o9FosFgsREREdFvgqiRJ5OTkAL403mPlhn4sY7NL/LHCzoJV++48GxWqYsxALaMG6phyHHee3ReOZhdlW+qp2NZAdXYjtfl7LBl27PUunC0ePE7vPkSGCr1FS1BcwG6REUBYsoXIvr7eJSGJx47IOBBWbHJwzr8rqKqTiI1QMfP1KDL7dP2gjzJaiDK2ul2jQlsormz9Inm8gBcef7eeD36y8vaDYUyfsP97j0ZUcVv/iby6ZT51ThseWWJtTasb+Jy7rXz3dCZz3u7LB2cn+F9vsHp59n8N/OsCCynxB2eN6U4iDWYeHjINu8fN+poiPslayd0DJ7cTJHary+eK69Vz8+xOFDGi0CWH29wu0RzK7f0n8s72Jdi8Prv8IlcFiSoTMjI16clkjR1C+l/r0S9ejPvzz7FdfbVfgAA+d86XXyLfdBPNzc3U1tZSW1uLKIoEBAQQFhZGUFDQId+w8/Ly8Hq9xMbGotcfn3UGjhR7Os/OXmZn5WYHO/LdVNS07zyr2qvz7CkjfJ1nzQHHzwO0M1w2D2Vb6ijfWk9VdiN1Bc00lLbQXOXAVufct8hQtYqMwBgj5mgjwfEBhKWYiUgPJGZgKGHJx5fI2B8ul8RlD1Xxw1wbogj3XxPIc3ccfO2LhGh1OzGyB1mGkkov/7ivirrFvQ7IQhJhMPNA5lT+KNnO8so8bB6Xf1vfXgaeuB8efVZk5GUV5M2KY2e+hzNvryC/1INWI/D0rYffTuJQUYsqXwAr0MscQkFzLQvKsrg8bYR/TO6icgB0CTqs7vYWDqvbQeBuS4hF4+uabHU52nVQtrocxJuCjuRpHBSKGFE4ovQOiuSMXgP4Pm89ABIyaz21jNCEcXZCBt7bbkLeeg+NDzyAc/JktMuX4xo0CPR6XzCBy0X0xIkEpKUBvmJnVVVVNDY20tTURFNTEwB6vZ7g4GAiIiIOuBR8XV0djY2NGAwGoqKi9r/DCUx5ta/z7OJ1++k8G6tmQKqW8YN1nHGSkeS446ssusvmoWxbPRVtRUZJC02Vdmz1TlzNPpHRWaKFsEdkmDWER1uwRBkIig8gLMWXXRKdEUxYqgWV6sQRGQfCrwtbuPyhKpptMv2SNfz+VvQhu956RWtYudmJd68EH1GA+Cg1Hz8ZfsCuGvC5Ii5MHsLZvQZS2tKAU/Jg0RiINloQhgrUFtTw36+sjLqijK25bly7m+Mt3+R7uO/tpoYDd1V3J7IMnr26HO9aWglAYkYYOxsqmBzbmga9o77CH2MSpg/AotGzs6GCeJOvHond4ya/qYYJ0cdO809FjCh0SaPTvv9B+0GWZf6q2OX//c6Mk0nUB7J9+3bGBSfiOiWGoh8SQRAI+r//Qz9/Pu7UVOrefRc5KAhjYyMBZ53l399gMPjjOjweD9XV1dTX12O32ykvL6e8vBy1Wk1gYKDfnSNJkr9S6x48Hg8FBQUIgvC3SuN1OCTmr7Yzb+W+O89G7uk8O0DHlNFGxgw6tjvPuhweKrbWU76tnqqsRmrbiAx7vQtnsxuPYx8iQ69Cb9EQmmLGEmXcLTLMRKYHEZ0RRFha4DF9/j2BtVli+u3lLFnvRKuGN+4P5daLA6l32vjfztVsqy/DJXkJ15u4qvcoEs1dW0qyGir5Pm89290WZCESaP9Z331VIJPOqmVuzZ/8sMxOnCmYi1OGktRJUGdnaFVqkiwdx75yTyjf/dnMmm2udq+v3uqkxtbMY+tndrAOH4yr+lD4OX8j/UNiCNEZcXo9rK4qILuxktszJgHwcdZygrRGSjfWggDThmTwytYFzC3xVbJeU11IYXOd34oiCAKnxPZhdvFWIgxmf+XaIJ2BzLD4I3IOh4IiRhQ60Ox28lXuGtbVdJ5qu62ujATTgZkwaxzNlNkaAUgyh9I3OApZllGpVJSUlGC329E1NWG54QZUNb5+EZrcXEKvuYaG558nbHTX/RbUajXR0dFER0cjSRKNjY3U1NR0cOdoNBqcTicRERHExsYiiqI/jTc5OblbmuodKkdq5eXvPLvExvLN++88O6RPa+fZIMuxc1twOTxUbm/wu0tq8/eIDBu2ehfOJrfPktFJqQy/yDBrCE0y+y0ZoclmItMDic4IITxdERmHwrvfN3LHC7W43DBusI4Z/40kyKKmxe3ixU1z6R0UyW0ZEzFr9FTZmwhQd21Bq3E08+a2RZwUncZ5GTFsmt/i3xZkFmlokpAsdcwsW8+lqcNJMocxv2wnr29dyBNDpx9yGfcGq5dL7q+ivKbjl6fFLrMpz95BiMDBuaoPhSa3g0+yVtDosmNQa4gNCOL2jEn0C44GoM5pQ0CgZpcVXYCatKBIrksfy6+Fm/ilYBMRBjM39RvvrzECMCWuLy6vZ7+Va3uSY+euo3BM0OJ28tLmeZTvFhCd8UvhZgxqLRNj9m9RaHa3Pmh7mXwrI0EQEEURu91OfHw8YRkZFLe56GWVCnVZGWGXXopLELD/+SeGyZPbHdf25ZdILS2YbrgBAFEUCQ4OJjh4txmyjTvH6fTNoaqqiurqagwGA3a7naCgIP/4nqCzAGE4+JXXns6zC9c62JTtoqDMQ2PzvjvPnjHeSJ+knnOxeFweKrY3Ura13hf4mddEfUkLzZV2Wuqc+xYZok9k6MwaQpLMmCMNBMcHEJpk9rtLItIDUWuOnRvtiUJJpYdpt5SzNddNgEHgq+ciOH9y6/f0j5LtBOuMXN17lP+1ML1pn8dcXJ5DmN7EhclD+Cm/BVm2oVLJTDu/gR/uziRqcjHvfubi1ddSGBuVAsBlqSPYWlfG8spdTI3vf9DnUVjmZtL15RSVe7ocs3G7B6IP+tCHzZVtPrvOuHug7154T2U2gbG+QP6h4QkMDU/ocp8DrVzbkyhiRKEd3+xa6xciAWotoyKSiDUG0exxsaGmiPzm2t3j1lHW0sDiitx2+0caLDw57Ez/721bhFfYG1lXXcSvhZupdTQTpjVygTqKCJ2OoisvIvG1d0EQcAda+OyTF+jzwyzGffYLtaeeiumBBwh69lkAHH/+Sf0VV4BajeHss1F1Ura9rTtn27ZtOBw+H7Asy9hsNgCsVisFBQXdmp1zMHQWIAxdr7z2dJ79c6WNNVudXXaejQhRkZmuZ0SGjtNGGZgwTH/UVv8el4fKnY2Ub6mnKme3yChuoanSF/jpaNrtLpE6+ksEUUCtV6E3qwlJNGOO1PtFRkS6T2RE9glErVVuWz3Bw2/W8txHjUgSnHeKka+fi0Crbf+92lxbQr/gaN7bsZScxiqCtEYmRKcxfh+xCXnWGn+djJOH6/n35YEMn9jASlceOt1Qvn0xnNNvK+ed1wK5/pM9e8kEqHXMKtrKzKKtBGoNjIlM4vT4jH3WK9rjDlqxSqCgLK3LsaJK4qMlBYy76GA+oaOHJEm4bB7C046dcu6Hi3JVK/hpcNr86W9GtYYHMqcSbmhd1ZwW14fv89YzvywLGZmC5jpijIHcOeBk/xjVXhd3hMFCmD6AGkcLOxsqyWqo4tykQe3KFt+RMYkZpw7lljdVIMO3L9zHOWOmEnby+SxPS2PU4y/T/NxzuBYvJuiTT6i78ELfwb1eWt58E8tTT3V5TrIs+y0jeyNJUrdn53QXuQUevl/fsN/OsxmpvrLok4YbOH2cgbAj1HnW45Go2rnbXZLVSM1ukeG3ZFjduLsUGaDW7bZkJARgijQQHOdzl4T3DiQmI5ioforIOFbZkuPk9FsrKKn0Eh4s8vMrkYwdbOh0bLWjmcXlOUyO68O0+P4UNNXxbd461KLI6MjkTvexuh1+V0uQRcUr94Sypc7Bom1uXF4PIwYLDD29mNW/JvDpr1auOtvCnOIdVDmaCNYZuSNjEoVNdXyasxKDSsvJsemdvk9bd9A/r0ph/vAKnvukjpyVkXgl2lX/lbwijpIIIP+wPrsjRfE636IwbsiBxcwcDyhXv4Kf9TXF/n4NE6J7twoRRyXowhEEkem9BrC0IheX5KW0pYEoo6VdutjeiILASdFp/JS/0f97oNZAmN7E9F4DWFdTxDvbl2A3GfjloZtwBVkYOuVsf9ni6fc/zdMp0dxw9f/hXr6c6j59fE9iWQZZpvmNNzDdfz9iQOcuDbfb7e9v0xkqlQqTyYTNZjvs7JxDwWETKd4WTFlOILUlRppqdTjtat6Xm/1jDHqB2HAV/XZ3nj1zvJGMtO4p0uTxSFRnNVK+tc4vMhqKW7BW2rHV+iwZbocX2bsPkWHSEBQfgDnSQFCc0WfJ6L3bktEvCK1euc0cj0iSxHWP1/DJb80gwC0XWXj9/0L2KdRloJcphHMTMwFIMIVQZmtgcXlOl2LkQBg4qZzt8+O58Zlazj/VRF5TNRF6ExqVmjC9iTC9iTXVheQ31XZ5jLbuIIDLhwViD1hG5SXFODcO4PWvGrHa9hSeE8grAI9LRK3taL2ssFkPOG7uSJCz0NcgL/WkE6eZp3KXUPDT4GrNnkkP3P0ldzfB7BjQBEHIKAySk3869KyVe7FZN5gqu8B9q35GI4okm8M4NzGzQ6zDpOjerKsuorC5Dq8s8XHWCj7NXomI0M5NUTJ1IlaXg4v3Klsc3G8Aq5fNYsyoqe2XL4DUaGXebU9RMO2STs/JrJfo3bHZpR+v14teryc1NRWPx0NNTQ11dXUdsnMsFguRkZGH7M7prPNsZa0Xt2c47O5pLIgSepOHqOQmzhwaxnknBXPycAM63cFbaTweiZqcRsq3NVC5s4GaXT6R0VRpp6XWgcO6D5EhtFoyAmONPpERG0BosomI3oFE9QsmOiMYrUG5fZyozF9l48J7q6i3SiTHqpn9VhTpifuPMQrU6oneq89LtCGQDTXFXezhqxZq3asSqNXlQK/SoFWpEQUBtUrgiftE7n5U5px/V3DXQ+FkNVSRbPYJguLmenKt1VyYPLjL92nrDtpDv+Bottav57+3hHD3VWbOeHUp2+bH09igAgRyVofSd1x1h2N9mr2SIJ2R3oGH2DznMCla4wv2Tx5/4pQkOKS7yVtvvcWLL75IRUUFgwYN4o033mDEiBFdjn/ttdd45513KCoqIiwsjAsuuIDnnntOKTJ1jNE2srrB5YurQB0AkdOgcjY4KpCtm8mUPWQCcjM4BSOyNoRmfTIrm/vxRfUybhh2NXpDq2LXqtTckTGJu1b+6H9NkmWkNlUsYna3yX5/57IO0fGhKi9D3rmjgxDxIZP0y8dsG3cOsqrj19mi31NDrdV9tKcPjk6nIy4uzt+LRq1WExUVRVRUVIfsnLq6Ourq6g7InePvPLvBwdbcrjvPpiaKuIMriU61ktC/noDA1uCPhwZPJcHU0dojSRI1uVbKttRTubORml1WvyWjpcbhi8mwe5G6EBkqnQqdSe0rxhVhILCNJSOqfxDR/YPRBZwYFR0VDh6HQ+K8uyv5/S87ahU8e2swD1x34EHeKZZwKu3Wdq9V2q2E6LoOxk62hLG1rqzdazsaKkjenYqrFlUkmEOIjq5j1MBo5q9ycGd+AoJ6Gzsbq7hp2dfIsszZiYP22WOmrTtoDxatHofX5w5C4yZjYgX9xleyZXEEq35JJGtRL64+x0ylo4Hzk4cws3ALWY2VeGSJz7JX8uSw6YiH2Fn4cKjMakStE08oq+NBn8m3337LXXfdxbvvvsvIkSN57bXXmDJlCllZWUREdFSJX331Fffffz8fffQRY8aMITs7m6uvvhpBEHjllVe65SQUuoe0wHD/z0vKcxkZkYQoiDD6F1g2GZqyyBm9jg93LKa/ezNDKGKAuhZsBRisfzFdXgKA/Pv9IGhAGwoBSRCYSUDYBHS4OSV+MDWOJkpaGpBlGVEUfVklQ6Z1aWLt/efX6D/O6nSbABjrq0jdsoTyMVM6bA8M8NK2TKYsy7g8UF4vct7U/l0HsO2VneNwOKisrGxXbE0GGlt0rMvS8+syLdmFUqedZ2PadJ49fbyBzHRfWfTCplqe3bjcN1CSoATEPAkKZeZ8uB5PhQdruY2WWicOqwt3FyKDPZYMk5rAaCOmcD1BcQGEJJpaRUZGMHrT8VWgTOHo8uXsJq5/oga7U2ZoPy2z34wiIuTgHhGTY/vw/KY/mV20jWHhCRQ01bK0Irdd5dCf8zfS4LJxTfoYACZEp7GoLJsf8zcwNjKZnQ2VrKsu4taMCe2O+0nWCp54LJjpl8K1LxZy7r0eLus9nBRLOMXN9XyXt44greGw3EEAokpm0MmVXHRSOA8/YGbpKi+9Bwn0DozgjgGTeHHTXPKbaql2NLO9vpyMkH2YXo8QDSUtBISdWIv5gxYjr7zyCtdffz3XXHMNAO+++y6zZs3io48+4v777+8wfvny5YwdO5ZLL70UgMTERC655BJWrVp1mFNX6G7SAyOJNFiotFvJa6rh85xVnJuYiUWrRx7+NZ65A4hecRLqoMdYbphEn/TR0HYlYivhk/WfM1DKYYh7E9gLoX411K2A/Hd4DQF7rYkATQAEJENQJouEASzXRiIKYpdliyM+/9P3gwroWCkagBHzvyDilXs7iIutW7f6A1hFUaSwGvIrvAQYxH1G3bdFkiTW7ZD5Y4WZVVs07Cp2ER/uYFgfN+MGuTlliJOxGbCjQE1BpQ6NxsiIAUYmDA9Br4O6gmafJWNHFVmvWllZ1EJtaTM1lVa0LTI4fefVdjZbKfSJDK2IzqTBHGXwWTJijYQm+gI/o/r5+pfozYrIUDh0auo9nH5rBWu2udBrBT55MpyrzjIf0rESzaHc1Pckfi7YyKyiLYTpTfwjeWg7i0Wjy06d0+b/PUxv4tb+E/k+bz0LSrMI0hm5ovdI+ge3PuSHh/ei2e3gz5ItTP2Xht9e70vh/H6cNMFXmTk2IIhaZwu/F2/vUowciDtoD6IgcP24dGKfcPPOlhyMxSKeATJqtchpcf14b8dSADbXlfaIGHE0uonqF3TU3/dIclBixOVysW7dOh544AH/a6IoMnnyZFasWNHpPmPGjOGLL75g9erVjBgxgry8PGbPns0VV1zR5fs4nc52GRBWq7XLsQrdhyAIXJg8mLe2LUFGZnllHquqCogLCMLqdjBGcxJneX7mmfq72GA5k0HGMe32d+gi2aRKIyHpPGgb0W4rgoo5LC1aSaCzkEz3JqhbCXXLmQichADFasK0YVyoGkbD5uXEJ0yAiNOwi0Ya7ksgdn0l7mwJ505w5wGeVnuHAHi2bKHlo48w/fOf/rf1eDz+71FkZCTR0dGs+WkrstyFomGvzrM5LoorO+88q9cFUFAMRqsTT3AjpiAHvaNEMlPdCKKvaNOa+dlseK+CvJn1e33QgBpkA8hBAgSDHCYgR4nIcSAliZAscN6AIUyJ63fgf0AFhYPkhU8aeOiNOjxemDLawE+vRGI0HF4m2cDQWAaGxna5/er0joUM04MieXjItH0ed1JMOpNi0mEE9F29irmzQll1oYORA3wWAlEQkDtrFrSbA3EHiQhIyITojJg0Oi44TcufNPHXvAi293ExsLeO+IBWt1XbfjdHi/qSZmRJJmZAzwXQHgkOSozU1NTg9XqJ3KuuQ2RkJDt37ux0n0svvZSamhrGjRuHLMt4PB5uvPFGHnzwwS7f57nnnuOJPS3lFY4qA0JiuSZ9FJ9lr8IjS3hlicLmOgAWGqdylv1nBGCwdRbyn7/TGH0R3vT7qVdHMaNwCyICw8N99T32lC0+NykTkm8gLuxcXto8j/MSMxkQEsOGkrVsLVnGdcY8glu2INgKGeeah95mh4q3kAG7Kpj++haMoyXYfQ+TPeAqEHBny1TuSES/sggkicbrr0edkYF+5EhkWaaoqAhBEEhLS8Nsbr/Sc7ng5wUtXXeelWUMgkSY6KKvYCPG1UR0UyPGxiY8Ng/S7h4W9cDiPQcVwBSpZeJLSYSk6wmI0jL+8V6MfSQBt1UmQGMmqX8875T8RV6TLwAtQm9mTGQSCaYQrC4H62oK2VLva4D1c/5GBoXEErVXQKCCwuGyq9jF1JsryC32EGgS+O6FSE4bc/Rr7RwqN14r8cA2D+fcV8ymHyMptTUyr2QnY6JarSKH4g4yabRY3U5qHTbyrNUsr8xHq5fIXhlO///4LJAlLa2LC4Pq6MdXZc/3CaqksSdOJg0chWyaRYsW8eyzz/L2228zcuRIcnNzueOOO3jqqad45JFHOt3ngQce4K677vL/brVaiY8/dmron+iMjEgixRLO4vIcVlcV0OCyoxZE4oNTcDVFoHVVISAj4MVU/g1C+ddk6cZSZzybZnUM96z6iUiDhUCtHqGN8yHFEu4vW/xT/kbfSkbbm9c1wzhv8LMMCIlFJ8vMzpnPrtK/CHYXI6jmcUlje8uCoAZdqowuFQKmFSBrw6l+NhDPylxqR43C8sYbuC65hPr6ehITE9lZpGH20lr+WmNj41YtTQ49DtQg+BpN6T0uQpw2MuxNhLc0Ee5oJthpQ9UmJVilFdEFqDGE6jH11RMYYyQk0Ux4qoXo/kFEDwgmIMS3QsvLy6O+vnXOokpAFyzgoYWcwp2MkSzEa9SUqBzcNvjUdoXhRkcl81P+Rv4o2Y4MLCrP4eKUYUfiz6zwN0SSJP79Uh1vfG1FluHKM0189ETYcdfc719DhrH2oi188WEQl723khHjHIyPTuXMhAz/mENxBw0LT2TB7jpKL26aR4I5hMC8YYgeGZVKwCtLzC3d4R8/IKRrC9CRIn95FQB9Jh9999CRRJD3VYRhL1wuF0ajkR9++IFzzjnH//pVV11FQ0MDv/76a4d9xo8fz6hRo3jxxRf9r33xxRfccMMNNDc3H1BxKavVSmBgII2NjVgsJ07FueMFSZYR2J2RsuIcKP+NvXunexERkXFHn4djwGuIujBMms4DrHZZq3lp0zzOaVP87I+SHTw0eKq/n8Kc4u3MKd5GbMwK7l3/apdzk2mNtaj/BGwzQDKZqPnyS4qI4NOvNIT11iNJIEgSeqcbg9uJwenC6HFhxo1BK6PWq9AGqNGZNegDNQSE6ggI12OO1PuzSwRB8P/b8zvg/w7v+b22tha7vesmg20/T7VaTUhICBaLBZPJhEqlosXt4r5VP+GRJYK0Bp4feW6Xx1JQOFBWbXFw1h0VVNVJxEaomPl6FJl9uqdeTU8RP6WQ0iovWb/Ekdbr8GOnKmxWHl830393OyUmndeejmDNZjc7F5qZWbiF7Q0VgK8b7lPDpvuC/I8ir4yZQeHqav7rufaovu+hcqDP74OyjGi1WoYOHcr8+fP9YkSSJObPn8+tt97a6T42m62D4FCpfCmkB6GDFHqQdqlrQUOgYibsFXehwpdCoi3/EW3SdWCa2uXx5pdm0T8k2h8PcXbiIHY0VLCoLJvL0kYgyzLzS3dyekIGcVJuh/3dgAZoEmFmEMyzwDqTgWuesjNtJBieFwi99lpUD9zPhSelEtsnGrVaRKX2FeoSRI3vn7DvnhkyDqw2B9j2Oeygaft5ejweqqqqqKqqIiQkhKSkJAI0WqKMFkpaGtr19lFQOBQ8HolLH6jm+7ktiCLcf00gz93RdQfd44nZb0Yx6MJSpt5cwa5ZXfdmOVCijBbOSBjAzKItAMwvyyKrSossGHhh01z/OJUgcmXaqKMuRADqCpowBJ546fcH7aa56667uOqqqxg2bBgjRozgtddeo6WlxZ9dc+WVVxIbG8tzzz0HwPTp03nllVcYPHiw303zyCOPMH36dL8oUTiOCBrcQYiAzzLiFTT8EHIH9gYz5wa1dNnoLa+phsmxfdq91i84mk21JQDUOFqwuh30DYrCUDQLaLWAuHRQEw2VEVARDAYBzhfgH9gJU4G1zzBqUrX0uno5wffeS1qkheBaB99lnMGStFupIBa3W0YQRKLCzXg8su+fBJYAkW+fj8Bi8okFaXeO7p7/ZVnu8l/bceXl5bS0tNAVjZKLXI+VIXHJ9A6MRJIk7Ha7f9XglrzUOnz763vAJ61w4vDbwhYuf6iKJptMv2QNv78VTUL0iVObYkCajqvPNvPxr00880E9D11/+I0vz0zIQC2K/Fa4GUmWcTtUiKrWfH2TWsc/+4whPahnYjZaap1E9jnx4sgO+lt50UUXUV1dzaOPPkpFRQWZmZnMmTPHH9RaVFTUzhLy8MMPIwgCDz/8MKWlpYSHhzN9+nSeeeaZ7jsLhQOm3mnjp/yNbKsvwyV5CdebuKr3KBLNXa+U9jSXKrc10ktl4769tstAiyaSd0MeokAOQV1bys6GCp4adhZ6dceHqdXlwLKXC8ei0VPlruWdpnf407qEnaGV9K2/kXvkJu4JAmsENESB3YzfL9O2qo2AnnTVXwSohrA88Sai/7ecud9Bxq9WclPCmZ41l4s3z+D7/mfwtv4WCp0pbN3V3pVi1AuIouD//h5qf5rq6o4VGwHMZjNOs5Zvc321RRrqBIbEpSAKIkFBQf5xyyvzsHvdAPQNPnEqLCocPazNEmfdUcHidQ40anjj/lBuvfjEe4ABfPhYKL8ubOGxd+v557lmosIOT2wJgsC0+P6MiUxmWUUuX3vUaLWQERzN0PBeDAtLQNtJgcWjgcvmweuSiOwb1CPvfyQ5qJiRnkKJGekeWtwuntnwO72DIpkQnYpZo6fK3kS43kS4ofO6AjWOZp5YN4uTotMYF5XCzvpyRq4eilFu9V14UFMthlMw9Dd6haTxR8l2Vlblc0HSEE6N69PhmDct+5rRKRZyDCtZ7lpOljuLWk8jDnF3PxYZQl29CNJrGaDrxw2m2YSJbsROyoLIMqiFUPprtqIRfA/uTcsuYVDVN4y03cjThe/S9xHIiUrhl+jTuCbnG4JbGvml32m8GXAruY6+AKhEuPfqIJ67/fDT5XJyctqlo1ssFmJiYggICECSZR5bO4Mqh+9cM0PjODdxEFHGQBweN0srcvmlYJO/TP69AyeT2kMlpxWOT9773srtL9TgcsO4wTpm/DeSIMuJYw3pjEVr7Uy6rpzMdC0bvo3r1mMHjcsnyKyi4PfDdwMdLjvmlPDOtD8456URnHz3gJ6ezgFxRGJGFI5v/ijZTrDOyNW9R/lfC9PvO25i7+ZS0cZASg19MdrWgaiFzHf4qKKFa8ruInrbhXDaLq7qPYo11QVsri1hdEwcs+2zmeucy3rXevI8edjiXLzrsUETCAgECUGkewcT2dSP65JOYbgwnufWLeDhwdOINwXzSfN0wsWZHebm65WnIU3zh1+IAPxcl8sgoE6O4W7hKl794VPSrt7FxTtn8o/ELxlnWsRN2R9zXuN0ZvWdxBuWW9jlyeTfl3fPynGPRSUwMJCYmJh2/WxEQeDS1BG8vm0hkiyzsbaEjbUlmDU6bB433ja9ekZHJitCROGAKan0cPot5WzJdRNgEPjquQjOn9x1GfYTiYnDDJw1wcBvi+18+JOV687rvkWryw0m49Ev+d4ZuUt8af9pk6J7eCbdz/GVz6VwWGyuLaGXKYT3dizlnpU/8vT631la3jFAtC2dNZdyRp5OmToeJq7Gk3AVG9xhlMbeALYCVqwZzrnV5zIv9G2eMV+FudTMRXUX8WHLh2xxbyFACGCoazIXNd/HyoiVeGI91MXVcYn1Ya7UXcuFARfSyxCJRaNnR30eBe5rSFHPobNiqYIABeufIEAc6n/NLblZ3FAEgME7iy3xl3GvfTCFiyE8tJSfsi5hR20m43ot4v4RDzOwcgd/rjyf962X8frD7x7+hwzEx8fTv39/UlNTO22s1zc4ihv7jkffxtTb5Ha2EyLjolK4IrXrfk8KCm159K06EqcVsSXXzbknG6lb3OtvI0T28N0LkRj1Arc+V0OzrbM+VoeG2yNjCTg2HpUlG3wtM2IzT6yCZ6BYRv5WVDuaWVyew+S4PkyL709BUx3f5q1DLYpdllDurLmUNf46HnIEEyN9zsrKNZRENPORfgevuuCfZespN2+iQduLSHcKp1nGE1IzmBHaEVydPAnYndq7eR5Ws4WqkCbWVBdS2Fzn71/hlHM5Le1j9Lql1MqNCFI0MxzlnG4A1W5RIstQvOMKSnJP5f3STf65rXD9SY3Xl4FikHeAnM9mx7Pc57mU11bWo5vm4evNV/JQ3BN8FXo138Zdxjmp33Nb/vuc8s6tfDf3f6wbdylPv38HGs2hBY9qtftPMRwUGsezw89mRVU+a6oLsbrsaEU1vQMjOCk6jXjT4QfiKZz4bM1xcvptFRRXeAkLEvn51UjGDTbsf8cTEJ1O5NOnwrnw3iqm317Bwg871uF4cPWv1Do7BpdPiE7j0tThnR5XFiSIL+CWZUuJMJg5LymzXX0RWZaZUbiFpRW52L1uUixhXJo6nEhD94cUVOdY0QaoDzme7VhGESPHAHWOFpo9rSmcJrWuy0yUw0EGeplCODcxE4AEUwhltgYWl+d0KUZcsp1lnvl8Xfs8G9wbKPQU0iy1IMdJ0AIqWUUM/enbfDIzjPFMU//GvOwWfk97nTy3mgfCpvBy2TwQWgVN2+JnvxRsIsJg5qZ+4zEb1rPNdScOthBigrqWESzIuYSqligiwmpQJd2FL7FXRXP1KPI33wIyNNt8wZ6SLDHT8zmBu4NLDIIAnm+QNA+wad3bPBF5OU8tbyH71GReWPEQ6Y5snol7kJDT/8Xwu+7iucseZ8KaH7j9k3uZtehT/hp1Ec98et8BiYtDIUCjY3Jsnw6ZRQoK+0OSJK57opZPfm0CAW7+h4U37g85IR9SB8MFp5oYm9nIorUOflvYwlmT2t9HH8ic0q5beFlLI69tXcDQsM7jQXIaKpG8AiGqIB4eksHqqgLe2b60XU2kP0p2sKAsi6vTRxOmD+C3gs28vnUhjw89s10n9O7AWmnHHHliik1FjPQwdY4WHlk7wx+wCKAWRJ4aNr3bBUmgVk/0XqXFow2BbKgpBmCzazMz7DNY5lrGdvd2KrwVuCLdIMhgAx06olRRDPeejLG6L88NuIw+6r7c9td3/KvvODLD4qHXZbDkJEbn30Nt4tsA3D1wcoe5DA1PYGi47wZQ7X2Pcu/15HjKAQGTMJEE9dsYQvpyahtrZIF7E7Xyh+hIxOT9ghBLMy53a5rxOvdiajxlaHffawyCBNJmZLJxGHuz7PfHeff8R7hxUR4/n3Y6Vy3+gjRHLoMnfITRFM5Tv76Ay/U0z17+NCNWfMed3zzC/L8+Z96wC3ns04exmE+sLpkKxycLVtu54J5K6q0SybFqZr8VRXqi0ixxDzNfjyTy5CIue6iK2kW90GpbBZp5LyvvnOLthOtN9O4iNmtGTg6yHEOSMZJoY+A+ayJlhvoCZ69JH809K39iY00xwyMSu+28JEnC1ewhfMyJmcTx95bRxwBltsZ2QgTAI0vtLCXdRYolnEq7FYfk4Df7b9xWdxt32W7k89AHUBWrGFQ5iIetDzPHMYcGqYF0TTpnuq7mytr/UBtTiyPeQUFMAZfY72Wy7jQytBmoRRUJ5hB2NPhKqxM2Din9YRJcOzml+vUu5yJJLoo9d7PBZabIeyMeagkRLmOQuoZ0zUIMYt8O+0Sr78csTCZVM4v0XolcfU4GN1w4iBsuHMT1Fwxkhe4HREQcu3N/DciACO6vkEVoNo7k+znnM8sOQ2f/zjMT72WIbSPmUzOw//EH4HOxPP7dk0wt3M5HVz6DU9Ry18/PsDq9H3edeR9Vtc3d/ndRUDgQHA6JM24t55QbyrG2SDxzazC7ZiUoQmQvgixqXr03lGabzKUPVnU5ziN5WVVVwJjIlC47eGdXNwIQHtxq4egXHO3vLdW2JtIeDGotSeYw/5juonyrr8XEiRgvAoplpMdweNx8tWsNq6sKOt2+sjKf+IDgA25z3xWlnlJ+tf/KIuciNgfsoFbdwv+VFPr8oECAKpRAwcI47ThGakcSWpdJqDuB6/qMA1pTexcWFTI2UtVpc6nJsX34JGsFieYQEs2hzNeeSZRxA6fU/wK5r0Pq7f6xLqmCYu+tNMi/Ah5UBBElPkK0+Ch/Li/m5115QB6iIKDXqQgLNtAnKZT+qaHohBR6a+bSGb+XzGNL/XYA7PIeNw2ABHIWSFuQVQNplG/g5dVbiBqVzRUzXiB01Qs4T3+QumnTMD/zDJbdHambbG4CTj6NMa/eyccPvUvi3C+5e9aL7Oz3Nc8PPo9b33+MpITObwoOj5tfCzezsbaYJreT+IBgLkoZesC1XIJ1Rk5PyGDMXq6zhWXZzC3ZQaPLTpwpmItThpJkDuvymAonDl/ObuL6J2qwO2WG9NUy+80oIkOV23dX3HxRIG9/Z+XHeTb+2mBnbCdxNBtrS7B7XIyJTOryOPXNPhdwZEirGLFo9DS6HABY3b5aRXvH1Vm0rWO6i+z5vkya1AknZu0h5dvcAzi9Hl7duoCCptoux8wvy0IURC5IHnxAx5QkiVXuVcyyz2KFawU73Tupkqrw4PGPMWAgVpNM36ZLCLIlkib25ZyYkYyPTvWP+aRqBbWu1gCvA2kuNTy8F81uB78VbsbqchBnCmbsyHcRlvaHzf+G8Im0mL0Ue26hhZWAjIZexKqeJlR1ebvzSIy1MGVsEpIkY3O4KSi1snB1EdmFdZxzchpiJ8VGZFnmifUvohJEvLLEnluAQdjjGxbA/RXIGaASaC55gfvLz+fDGC/i6PvJzF6Edfi5ND34IO61awn+/vt2x/+/d+4C7uK/97xL6G+fcNcfr1M05DveyTyXK996jIz09pUYP8tZRZmtkWvSxxCkNbCqKp9Xtyzg8aFnEKzrmF1T42jmzW2LOCk6jX/2GcPOhgo+z15FoFbv/5zXVBfyQ956Lk0dTpI5jPllO3l960KeGDq9w41Q4cShpt7D6bdWsGabC71W4JMnwrjq7BPTTN/dzHk7msRpRZzz70oqFyR0iKf5q2IX/UOiCerkmtyD0+4TIdFhPV8tvHC1r5hi2sQTq0HeHhQx0gP8WrDJL0T0KjVjIpJJMIfg8nrZXFfC1t0t5OeW7qBfcBT9gtvnlDdLzcyyz/LX7sj35NMoNyLvDszaU7tjkGYQQ7VDOVV3KlMNUzGJ+64pAnB1+ugOr6UHRfLwkGn73G9STDqTYtLbvzhhCfKCTOyrB7NznAQqMDCUBPUbmMSO7wOgEkUCDL4sFnOAlsjQAKLDA/jhz2y25dYwoHc4DpeHJWtL2FXUgFeSaDYXsbp6PaIgohbUeGQJhwwGBECFzzpSQEZNDpf3mcjOK9cgjnmMO996lE/CPPwl3kLl+7MZ88Ld8NNPVPXvzzf3fARqDV/M8Flb4iJN3PHSjfDSjbz/+Keov/2Q2xa8S+Wo77l/0NmMfeYOBg2KRSeq2VBTzM39T/L7oaf3GsjmulIWl+dwTuKgDufcWS2X3MZq5pVm+cXIvNKdjItKYWxUCgCXpY5ga10Zyyt3MTW+/z7/NgrHJy9+0sCDb9Th8cJpo/T8/GoURoPiWT9Q4iLVPHhdEE+938Atz9XyzkPh/m21jhZ2NFRyY7/x+zyGbPdZVGIiWsWI1e0gcPcCwKLxbbe6HARqW60vVpeDeFNQd50KAJU7GlBpRbTGE/OxfWKe1TGMw+vmr8pdgC9Q9b5Bp/mjsgEmxKSxoDSLb/PWAfBN+TwCVVUscS5hq3srZd4yHLSa/zRoiBAjGKYdxhjdGM7Un8lQzdAejaqXJIlK6XkqDS9jGCXTe4VM6sZgDCM3ohUPvophQrSF8GADOUX1DOgdzsxFu1CrRM6dnIZOq2LRVpFJdeeRnhxErVvi+8I87PIvhIuJjDKexkqXg4FNBh4ZMp4LJvXno1Mq2fi9l8EX/Jt7przK2+Gb0I+8nRk3vc6Ffd7H+/EHnHv/Ocx47EvOOn8EoUGGdhaZGx6/Ch6/io9e+Br3Zx9w09KPaZj2I+8MOpOCK07G0leHWmi/ktKIanZZOy8T31ktl37B0XyXtx7w+baLmuqYtruxIPiKp/UJiiLP2r1+aYWeZ1exi2m3VJBT5CHQJPDN8xFMHfv3qhnSXTx5cwif/tbEez80cfslgfRN9sXXLK/chVmjY0DIvq0MYrPPChUX2fqo3FFfQfJu92iYPgCLRs/Ohgp/Or7d4ya/qYYJbSzO3UFDSQsBIcd3l+V9oYiRo8y2unIcXp/rZGREkl+IeCQP2d5strq28oHmA5bHr8EuNvliO3wxVAQIASSqE8nUZjJRN5Hp+unEqI8dk51HaqbU+29q5S+QcSBgwBB2M3JENoHl82DnR9Dv8UM6dkignup6O6WVTVTU2LjxokGoVT7Bde6YTOoqbmN4ZBQDe4fz7PyfsNf/wnlBAo+e8TLGbxbgNGsoLnbRYndz5RcnsX1lOan3DGbtyHieFot5InQFaUPeYWfao4wcPpiG227j1CeuQhXyOgGXnt/pnCbfPIVnRsusnjeVzJ/nc8OKb7Bt+JVvRp3L+9dreeyc07Fo9ayuLiTPWkOEoXPLVGe1XCxaPQ6vG5fXg83jQkLukAlg0eqpsFtRODGQJIm7X6rjv19bkWW44gwTHz0RhlqtWEMOh9lvRTPgghKm3VJBwe8JSLLM8so8Rkcmo9qr6+7HWcsJ0ho5NykTAKE+HEGU2GTLBltsh5pIgiBwSmwfZhdvJcJgJkxv4tfCzQTpDL7swm7E3uAiYfiJGyOmiJGjTKOrtTlbWmCr2TCgNAAXLgC0aNEKBsKdyUQ4U3gg7nousExHKx5e1Pze9Uyge2qaOKR8irw30iTPAyTURBAlPkO4eKfPQjPGA7/Hws4nIWIyhI076PfY07W3ut6O2+PlnW82ttvu8Uo0NPnOLUitwy4LaPD1z+lrCWBzQxOSrKeu0UFEiJHQq+MofyqXR594n1seP5s4XFyf9hFlWxMw3fQYjt4ZNFzzT+TL/0HjtvsJ3EdjR/XkOLZOvopNy06j/3cLuHrJN7j/+oH/jjmHnMtPoX9mDMPDe1HUXHfQ561wYuD1yuQUuemT1Pk1vHqLg7PurKSy1ktMuIqZr0cyuK8SC9Qd9E/Rct25Zj74qYnH36njHxc7qXPaGNtJbaU6pw2BViuorV6PKLbwV9Uufiva7K+J1NaaPSWuLy6vhy9yVmPzuEgNDOf2/pO6tcaItdKG5JWJzjhxiyEqYuQo07bbY72ztdlcqjqVCFUE34Z+S4Qqghc2zfWb9U9Pm9YtQmTveiZweDVNmqRFFHvuwM5mAHSkE6d+iSDxzPYDRTVMWA5z+8BfU2BaOWgPLgivrtGBxazD5fYSYNBw4ZT0DmP0Wt/Fr0aFXRbQST5xcnpMKOvrm6ij9dx1KQGEDQxi2zelzHzgD6Y1TyJBEJnc92mqvbFoR17Bgoc+5Oxnr6L52Wdxr19PyKxZ+3R/qcZFs3PcZaTU3E3OM69z8V8/o1r2Iz8Omsqmay8ibVzn/SQsGj3WvSLvrS4HepUGrUqNKAiICDR1MiZQozywjgcef7eepz9oYN570ZwysjW2wOORuOzBar77swVRhPuuDuT5O7vOulI4NN59OJSf5rfw9AcN3HB+Au+Nv7TTcXvXRGpslhBkkSeHTe/y2IIgcFbiQM5KHNitc25L9vwyABJHnbi9qhT731GmrTVkWcUu3JKvaNcQ7RA8socIVQTFzfV+IRKhN7ULjDpUmj3ODkIEDq2mSbX3Qza74sj2TMLOFkycRF/1FjK0OzsKkT2YUmDI/8BrgyUHZxkpKrdSU28nLSGYyFAjLXY3oigQbNG3+2fQ+wJfNaIGOyB5fQG916XGggy5goeQQD06rYoAg4YxLwwCAVadW8Vj5sd5wiax3SZT6LkBh7ASj96IdvUmtOPH45wzh6qUFKSGBv+8yloaO51v5qmZ3L32F5zzV/FT5nTO3DafO2+7Cte1L/GfFzs2/Eu2hLGzoaLdazsaKki2+EyyHWq5AJIss7PNGIWeo87RQlFznf9fnaN9ufHcIjf/+agBgH8+Xo3N7rsOf1vUQshJhXz3Zwt9kzTkzYhXhMgRQhRFfnk1Eq8EU28uP+D9rM0SGnXPN8nL+8tXLyV9cux+Rh6/KGLkKBNpsPgL5NQ6W3h7+xKq7E3Eq+Ip9hazo76Cd7Yv8Y8/KTrtsGuNdAeS5KLE839scFko8l6PhyqChUsYpK4iXbsYo5ix/4P0uhLiLgbrFth4W6dDvJJEi91NU4uLytoWVm0u59cFuSTHBdIvJZSEaAsx4SZ+W5BLQWkjjc1OyqqaWba+hIoa30NALWiwywLNrhCq62yoWjxEo2K7xuvP1BmeEcXO2ib6XZVEbV4TSe9NZdSuS/m33Uu1E0rUU9DpmymqbMb4x3y0t96Ot6CAirg46tas5JXN8/k4e0Wn5/BVzlo21ZYQMzSJM+e8zjc//o/PJl/OqTuWccn9Z/PG0Cnc8OxH/vETotOocTTzY/4GKmyNLCrLZl11EZNjW60/k2P7sKwilxWVeZTbGvkqdw0uydOhFonC0WWPxfGZDXP8/x5ZO6OdILn9+dYg4+IKDw++Ucek68o4+85KHC6Z1+8LYfvP8fSKPbReSAoHxrghBs492ciWXDfvfndgsVYtdhmtpufvv2Vb6hBECOm1/4zI4xVBlmV5/8N6FqvVSmBgII2NjVgsx3+OfVFzHS9smuu3igBsDvuBlQE/c3Xhh2jxWUJijUH8X+Zp6FSH700raq7jmQ1zOt320OCpJJg6L+Dlkqp2Fyn7GfAgYiFCvJVo8QlE8RDmJUnwZzLYCmH0DIhutaTMWZbP9l2+lGdRENDpVIS3KXq2R5S53F6WrS8lp7Aeu9NDgEFDbKSJ8UPiMAdo+Wb5CoKLJ5CgjmKJdwYOl4cfNA5WeOy4LjkZURSRZZmVm8rZnFVF7kM7kJo9XL90GkNJJlzXxJfhoHImsmXe9zTbIDbCxBlVq2m45hok4NcH/8WW07q28GhFFZIsY1RrGRIWzzmJg2gsrOKjax5m6qaZhDXVMydjPDmnXs2LL1/druhZkM7IGZ0WPcviz5Id/louFycPJUmxjPQoXV1Xe66pGYtbOOuOyk72hLGZOma+HkmQRfGWHy1cLomQCYW4PTJVC3oRaN53XEfEpAJUokD5/F5HaYad80j817iaPTxff0WPzuNQONDntyJGeoishkre3bEEm8dX4e+nqIeo0ReQ3jSRCbXXk2AK5tb+E7vFRZNvreGrXWsoaq7vdPt9A08lpY37CMAmbabIczMtLMdXpCyeGNVThKmuOuz54KiAOb0AAaYWgb57/aA/rlyLqmAMQ7U64s9rAuDxzbt4Yks+f04azKkx7U3h677dxacXL6LfGfFM+yWdxMJkhgrwTqyEQehDP/U2f6zIb79+zoCLr0fjcLLh4jPRPP8fEswheCSJLXWlLK/M87vDrkwb6a8L0hZreQ2vX/YAp26cQVx9JX/2G8PGk67g5TeuQ61WHkzHE9kNlby8ZX6H1x8aPJVwdRDpZxdTWuVF2usuGx+lYteMBDTHwKr778bPC1o4765Kxg/RseSjfbs9LGPziQhWkTvz4EsSdCd36T8mLNXCg1s7z+w7ljnQ57fipukh0oMieWrYWZyXmEmEwUCD1heglG1azITeIdw/aEq3CJGtdWW8tHlel0IE4Nu8dbh2pxvXe39lq6s3OzyDaOEvDGTSW72Ugdqi7hEiAPooGPkjSE5YNNJnLelGNPjcNCKtlqfrUn03nc/yO/qLh16UQmxmCNtnFSNvMPJp+CesU0k8VaTGyU52eX3Ba3aPm3nhOl774XUao8IY8s1MRjz0H/oGRjIwNJbL0ka0K6K0qDybtlpfliRcq1fDe29yQ8M6ks8/i0+n3ExaVSH3vXsT32WM5pZrXsPl9nSYo8KxhVeS+DF/A69vXdTp9uUVu3jhkwZKOhEiACUVXl79ovOYI4Ujy7knB3DSEB1L1zv5cV77+J6PfrHyn48aeOc7K1/NbsbulBEE2JrroqTSQ1OLxNFev3tcHjxOicj0wP0PPo5RxEgPYtLomBLfj6H9BDyiL60XAV6Q7/f3jjkcGpw23t+xzL9SD9UFMCm6N9MTBjAgJBZxdwpbYXMN82ruZKMrnDzvOTjZhUU4nQx1Af206zGLB5+Ku1+iz4Tkm8FWAGu71/SoEdXYEVC1yZ6JM+oJUIksrWrodJ/rfz0VQYT/nTuPKy1XcJ7mfGboPXxZrKFRmk2J5z6yGipwej04LCbWL/oNw6WXYv/iC2pPPx1PhS8ANSM4hvgAX/pdUXM9deXF2L7+mrrLL6c8LIzqkSNpevpp3Bs2INZU8+CctxhRmM3n0/9NVEMND37yb37rO4ybLn0Oa4urWz8Xhe7BK0u8t2Mpf5bswC17Ox3z65Yinvqgnq6eWzLwyNt15Ba5j9xEFbpkxuvRaDVw1SNVuFyt94n7XqvjgdfruOXZGi57sAqPB3KLPQy4oIT4KUVYxhbw1PsNR3Wuu5b5glfjh4XvZ+TxjWITPgb41PYpKlR48SIjs8m9mUdrn+Ee0z2HVQNkSUUuTsm3ys4MjeOGPuNQtUlNzW8qYnnjtaSGLkGtciOhJ0y4kVjVi6gPoHT8YZP5FlQvhpKvIGoaJFy+/30OgNEDY/kyF9R7ZQ/1DzKxttaKJEkdUnRDEkyMu6kvS9/awR/PbOTHh34gelcsr6nK6F2rZXjYizjFMMDXJryXJYyQL7/EfuGF1J1/PpXR0ahSUtBkZnKKWYtn0yZM9Y3YC8twyDKo1eDZbfHwekGtRjPY13dIazRy/2+vIHle4OVLH2HgXz/w8NcPsnjF58wedhFPfPh/RAQqKbzHCgtKs9hUVwqAShAZFp5Aijkcryyxrb6MLXXlzHi9L15vqwtGEECtAkn2/fkBXG6Yu9JOaoISuHq0sZhE3rg/jH89VcM/7qvil9d8SQX/PMfMy5814t3HWjAz/eh2Sd612GfN7X1y56UBThQUy0gPU+etY6Z9Jl7arrBknrc9zW0b3++QJngwrKzMB0BE4OKUYX4h4pZqqfC+QL2uN30i5uOW9KwovITGmvX00rxzdITIHiYsB5UR1l0DzfndckiD2oBdbm8ZAZgeG4YE/FHeefGx818fhSFIy5wnNmBrcLItcQuiV82dzW6qbBp0AfcTEZANQLnNF41vOOccQr79FstLL6GfPh2pro6YL74necN2IgpKEfYsjT17uV48HjSD2vepEdVq7v3uOU4tzuL7K59A8MDDPzzOhowMbjr7QfIrmg//w1E4LCRZYmFZtv/3W/tP4Nr0MUyISePk2HRODxzH2g9H0VKvB2SMAV4G99Fy9kQjN15o4ZlbQ/j8mXAWfBBN1q9x3HihuedO5m/ODedbGJim4ddFNpas8xWjvPkflk7dagAqFZw8Qs/0CV031jsSFK/3BfXHDT2xg9WVANYjwOKyHBaX51Dr9D08oo2BnJkwgIxO+iC80/wOt9Tf4m9ytwdBFolwprAyajmJ5jBkWWZG4RaWVuRi97pJsYRxaepwIg2dfx6SLHHTsm8ASDCF8NDgqQAUum+iRn4fATUWYQoO+3m8scmn9CfH9vE3azuq1CyDJSeBLgKmlfiKpB0GkiTxzNcm7tA7sZzfKvLKbQ5ifl7GJb0i+WrcgE733TqziPenzyVtUjS3LTidRY5FTKqYRHC9mll9JERBxTcbXwY5iieHTu9Qon2XtZoX1s9h2mufMuzX+ewrPFGMjUWTmYl23Dj006ej7d++4Z0kSbx3yytEzPmCUQWbyI5K4MchF3Djmw+RkdR59pPCkSW3sYoXN88DoH9wNLdnTAKgrsHLhz9befy9BiKCVYw+Pw9TWhmiCM8MP4sw/Ymbknk8U1blIWFqEYFmkeqFvs6+Z99ZweylNjx7eeBEETZ/F0f/1KNrGXkq/Xsailt42Xb1UX3f7kIJYO1BgnQGzk0axIODp/Jg5lT6BEXx9vYllLU0dBj7ccvHnR5DFiQq9Tl86foEgD9KdrCgLIvL0kZwf+Zp6EQ1r29d2C49uC0Cgj8mxOlt9UubxYmARLT4KKma3/C6WysOij1VzyRsHPR5GJyVsOKswz6cKIo4ZFDvJfCijXpMahXLqhu63DfjzAQSR4WTs7Cc7IVlTNRP5G7z3dSHebhikxZRcHP+gIdweFp4ect8ttaVIckybsnL8so83tq2BFQqfr/7Woq//wwxPNy3pNobQUBqaMA5axZNDzxAdUYGpSoVZeHhVI0aRcNtt+GcNYt/vXor5+dv5M973qDSGMEDs1+hceQAbp9yOyu2VHQ8rsIRpb5NO4c9zQ0lSSL1rGL+77/1XHOWma0/xnHOJBN7PIFtW0AoHFvERKh59F/B1DVK/OspnwXizssCOwgRleizmhxtIQJgLbdjjjz8ZIZjHUWMHAEGhcYxICSWSIOFSKOFcxIHoVOpyWuqbTcux53DGteaDlYRPzI8bXsUl+RifulOTk/IIDM0jriAYK5JH02D087GmuJOdxUEgYTdXSQr7U3+iq4hqosIFf9JpfQqHrmB5ZV5/n0STT1Y/bHfkxA8Cip/h9zXD/twDlnoIEYABgSZKLU5kfaRwXP9r5MRVQKfXLQQSZJ4KfQlMuSB7Ip2cP8GM3p1E+cNeIRyWz1vbFvEbX99y+1/fcen2Stp2V3NNtkcxrDzLiVi61a0J53U4T20Y8YQ29xMtNtN6J9/YrrrLrSjRyOIIu61a2l5803qzjqLcoOBsoAApv32BqcOSWTb9GsoNMfwf3++gWriQO465Ub+WN497i2F/aNt02+kweVr5yCKIrdcZMFkFJi70sbOfBcNbQRId/YoUeh+Hv1XMIkxav73cxNbc5xMHKYnrVf7v5nRIPDETUe/L4wsyzib3YSlnPjuPEWMHGEkWWJNVQEur8ffdnoPM+wzOu4gg9kdQaw9gz7NExla+w+WledhdTv8lVsBDGotSeYw8pq6biF/UnSa/+dPslb4LTMxqieRsbOi4d9srC0BfP1RBoX2cKnh8QtBHQib/w2Nmw/rUA46j87eEzcyq6y2k60+zBFGJt0zgOZqBzMfWgfAmrhVGLxGFoQ181VOOCHGEk5Lew3wldSX2giffkFR3JYxEY2oQhURQdjcuZifeMIXxSiKvuDVIT53mKhWoz/1VAJffpnwZcuIrqwk1uMhMjcXy8svoz/nHMSYGLzFxTh++IH+Mz5mQt5aXGotGqeHfy94n7hTB/LMyAv5bs72w/rMFPZPkjnUb0FcXVWAY7fV8albQlj3dSwNTRLDLyvjf5/7vg9GtZZo44mdknkiMOftKBDg9NsqqHfaiBmdC/5rWibz9HzQOfZ1iCNCZVYjyBA76MRvE6CIkSNEaUsDt//1Hbcs+5Yvc9dwY7/xxAS0vymFNQzipJrrmFp5LxeUPseptstAgNulJ7mg5lFOqr2e/k2n8UPeBoBO28w3urq+QEZEJPpvhFWOZp5YP5sXN83l0515FNQPwmD8hDG9PgEkzuw1AHVPr+DUepiwuxT+kgngOfSL3yELiALgsbV7/doUX9zOlwX77k8x/dmhmML1LHhxC01VNvSintVxq0AFr3rr2VkTTWLwOs5Im020MZBYYxCjIhK5d+Cp3J4xCaO61ZwrqFRYHn2UsHnzEIODfcGrmZn7fH91Sgrmu+4i9OeficrJIdZmI7qlhZAffsD4r38RMGgAkToBWRAJsjVz9eofGD2tP2st4axJy6Tuqqto+fRTpDqlU3B3YtEaGBzqaw3f5Hby9rYlVNt9hfV699Iy839mAiwe1syO5fd30hkdnqxYRo4D0hO13HShheIKL5c+l03ysGpElU+MmEKcpI+tIKuh80q6R5I9DfKSx0Ue9fc+2igBrEcIj+SlzmnD7nGzvqaIZRW7uHvgZL8gcUte7l/1i79J3amxfYmLdTK6ajSzQ2eja0jmx7wN7ZrbvTDy3HaF0N7fsQyAG/p2XQekztHCa1sXUmlv34shOWQ5k9PeAsDpHMJQ04/ohMRuOffDJue/sOVOCBkDE/86pENc8ZmZz03NMLUYjHHttlm+XYhFo6bkvPFd7O0je2EZb578O4mjI7hrua/w2RvWN7i94XaEAh0LB5sw6WpJVH1OqOrA0pK9FRU0v/Ya5vvuQww5/CBUSZLwbNzIjpfepmbeQtJqfC4bQZZbVxpaLaqoKNT9+qEdOxb99OloBg48JnoeHY9U2Bp5buOffquIAMQFBOOVJcpsjUgemPFGPyrzLMRHiaz/Oo6wYKWKwrHOpppiRp1jw9mi5pLHNzDn/XTqSgM49fqdJA1sAOCKtJGM66SqcndRuLqavL8qiewTSGSfIGY9upa1X+Txn4bLMQbqjtj7HkmUANYeRi2qiDCY6WUO4dykTOJMQSwoy/Jv31JX6hciWlFFkM7AAI0vw6NOrqPZ7STCYG63qqp3tl/lW10OArX7rj8Rog/ggcwpnJeUSVibmiU2V6vZT6fbyHZ3f2q8/zvq1QU7Je0OiJgKdcth++OHdAjHnjwWd0OHbQODTJTZnXj3U/m196QYUidGUbCiim2zigC4zXIbp2lOQ05yMm2pC0kyUuC9imZp1QHNSxUVReB//tMtQgR88QraIUMY9NWHnFK1C+sfy/l14Ok4NDocai3LkzLZFdvXFyw7Zw5NjzxCdWYmZSoVZaGhVA0fTv1NN2H/+Wckm23/b6hAlDGQ2zMmEqD2PRxkoLilnjKbr6KqqIZr7y/kun/oKK6QSJhWzKotR9/Er3DglLU08kHWcqZcvxNZhjnv9GHMGCeCIJMxpPW6+CJnNTvqj1zg+PL3d/LzXat49/Q/eSL5O9Z+6Yvp+/Zff/H7E+tZ/20eDaWHXu7hWEYRI0cJWfZZS/ZQbW+tGREbEMTOhgoCxAA0aPje9j076itItYSTHtjat2XL7kJL4CtNnt9U0yEOpTMMag1T4vrx9LCzeH7EOTw9bDp3ZpzRZoSEhI1C73Xkes7ALR94i+0jxpgZvlTfnU/6Un8PEofctRg5Kz4cGfittOt4mz1c9/NkRI3AZ5cv9ge9/h75O6HeMOx9m7h0QSDIAtmeibiksoOeZ3eTceoobts4E/WS1cwcdDoZ5dnElmzni/QJvP7UL4QuXIjpvvvQjh+PoNXi3rgR27vvUnfeeZQHBFBqNFLRuze1551H82uv4cnv+eDYOkcLRc11/n+HU3unu0ixhPPksDM4NzGTiN1puwK+5pbTEwZwTe/RPHK7gTeeMOByyYy+soy3v1XKvx+r/FmyHbfkJTK5hSEj7NRVGAmwxhEerOaFkecyMbo3ADIys4u3HrF5xJ28V5XV3WvDjd/n88fTG/nk4oW8f9bcI/b+PYnipjkC/Jy/kf4hMYTojDi9HlZXFfBHyXZuz5hEv+BoPs5aTr3TTlajzwc5Na4ff5bu4LzETG52X0ym/TTC64by0OCpfLNrLdmNvnLABpWGa9JHE6Y38WvhZkpb6nl86JmH5JN2yNlsc6d3skWFiIleqvcJUf3jcD6Gw6d5F8ztA6IOppWB9sD/9pM/CWaepaFDZ2CAGoeL8B+XcEFCON+PH9Rh33qnjZ/yN7KtvgyX5MW4XMBxXxPjb+3LhW+MAaDIU0RScTKSDS6pz+TfwzdQ1dSH33c+SJDOzOmddt3NZm7JDhpddl/X3ZShJB2AmDwcKrfm8uU/H+LUbXMwO1r4JfNU8qdey3+fvtA/xlNYiOO333AuXox7yxakkhLktlYSlQoxLAx1WhraUaPQTZ2KdsIExKPQ1K/W3swj62bibeOuVAsiTw2bfljVibsbSZYAgQanjUfWzmjnXm2qMDLrv4OwNstccYaJz57p3saQCoeH3ePinpU/4ZEljGoNTw05ixEXV1Je4yU0SEXujAQkWebxdTOp3B0f9OTQM4k0dv+zKLeiiv/Gz0DYR3uqq7+ZxJCLkrsecIyhuGl6kCa3g0+yVvDY2pm8umU+Bc21fiECUOe0oWrjr89rquG69LEsrchlUum9GJsSuKnfeHQqNTmNvpTcII2BSTG9+SJnNc9umIPT6+b2/pMOOThOpKsiTF4kGsn3XkSp57FDOna3YUqBIf8DbwssObj+OI49n6+742o0TK/FolaxvLrjtha3ixc3zUUlityWMZHHh57B1deNx5RoYNnbO6gr9lm0EtQJfBfxLZi8fK3ayuebLiTSvINrhrzMKbHpfJ69im31rZaSNdWF/JC3njMSMnho8DTiAoJ4fetCrPsIQO4OIjNSuWvVt/Taso0fR17ExOxV3P3sxbw9+BT+ddfneDwe1L16YbrtNkJ/+IGorCxiWlqIttsJ+fVXAm6+Gc3QocgeD67ly2l+6SVqJ0+mXKOhzGKhMiODussuo+V//8NTVdVt85ZlmaXlubyyZX47IQK+7KWC5o6BuXtbUI6mFUUURERBoNnjbCdEAMxRNlb9YiYjVcPns5oZcH4xNnv3NodUOHQq7U3+v9mg0HhMOh0/vhyFtUWmxeZbq4uCwPDwXv59SjqpGdUdaE1qpBEicidPZkElMPyKlONKiBwMSlTVEeDK3qP2uf3ugZORZJnH1s6gytFMdmMVvQMjeWzoGTzf9B9esL7Aa8ZreW/nMn8NkpNiUjkjYQBnJ3ZcyR8KKva1qlQhYsAoZnTLex0Wva6EyjlQ8jVsvA0y3zig3Rx7rmaPtdPtg4LNLKtuwCNJqNv0qfmjZDvBOiNXt/kbhulN3PDNZF4ZNYMPzprL/204F4DzA87nn45/8r+4//H2tjmc23IKFtM8EsIfYkjjncwrzaJ/sC97Z17pTsZFpTB2d/DbZakj2FpXxvLKXUyNb1959UhgSYrj7r++xFZRxbsX/x/jN85i+qar+GTeBywfdwVvv3YNem3r7UDU6zGcdRaGs9oXoXNt3YpjxgxcS5fi2b4dT24unm3bsH/1lW+ARuMLlu3TB+2YMejPOAP10KEdegHtC0mW+Sx7JSuqunYRfZK1AotGR+puN2ado6WDRQKOHSuKUS+y5Yd4rniwii9mNxNzaiErPoulb/LRL6Kl0J62zgG14Pue9k3WMnGYnooaL7IsIwhCu2zDLmtDdQPSBBXi8vbfY0EFQbFGLnhzzBF7355GsYz0EKIgML3XQP/vM4u28ODqXymq8tIoN3LzhvfJ310kzaLRM6FNzZC21Dtt/G/ncu5a8QO3/vUtT6ybRUFT1zU0ALIaKvnPhqVdzYxw8RYaa+fx4lottyz7huc2/kH+PuqZHHGGfQHGXpD3JpTPPKBd/AGsnqZOt58T54sb+aW4ut3rm2tL6GUK4b0dS7ln5Y88vf53lpbnkjgygn6nx1G6sY713+7yj/8w9EPSWkbh7dvIaQs3oPIOokH+kbTw38mz+j4zj+SlqKmuXZ0YURDoExTlH3O0MEZFcNeijxlUkM2Pk6+nX2kuT71zA98NHsfV175Bs30f9mFAm5GB5YEHCJs9m6iCAmIdDqLr6wn6/HMMV1+Nul8/JKsV59y5ND3xBNUjRlCuVlMWEkLl0KHU33ADtu++Q2ruus/OnOLt7YRIL1MI46NSGRqWgF7layrnlDy8tX2Jv7ppB4uEJBGzfRcqa5M/UPxQmFO8jX8t/Ypvd63b57h11UU8unYm/9n4Z6fbZVnmt4LNRJ21jHPu3I5DcjPwomK+ndP591Ph6BGmNyHsvl9sqSv1B7bPey+abT/F+7PONrQpMBlhOHJFyKSxqo5PZhmu/vZkDJYTV7wqYqQHGRGRyHmJmf7fG1x2Vtt9N70FYW8DPiFye8YkTJqOWTOduRQuTB5CgLrrL2yNo5k3ty2id1AMyL6VsNTGJqijL5X1d/H9rvyj7lLoElGEiStB1MKqC8Cxf3eAnd2rGHfnN/urk30us68K2kfGVzuaWVyeQ4TBzO0ZkzgpOo1v89axojKPa78/BbVO5Ovrl+HxtD74zmu6mwBvMJ6MeqbPdKAmigDzfwjQ5eDyemh2O5GQO/SxsWj1NLp75jPVBgVx55/vMao0j5/OvI3E6jKe+fh2ZmWO4KrLXqSq8cDnJQYFEXD55YR8/DGRGzcS09BAtNdL2LJlmB58EO3EiQgGA57Nm7F98AH1F11EudlMqcFARUoKNWefTdNLL+HOzsbl9TCvdAfgCwi9oc84Hhw8lcvTRnBD33E8P+Icv6izeVwsKc9tN5eIXUWc8s7X/Pv827juxkcZ/vOhB/sVNNWypDyXuICgfY7bZa3mw51/MTYqmev6dL5yXVGV72/n8MaFY7n3yUos4XYuvr+Kf7/Qg0JfAbO2teBjg8vOj/kbkHZbQ/Ywr3Qnhbtdg/EBwcQHHMFqrBYBeaDYpuQajHmwL0mjTuxYI0WM9DBT4vtx94BTGBQah4BAg7ocZKjS5xIcX8XDQ6YRb+r8i9/WpZBkDiNMb6JfcDTh+1Dti8tzCNObuDB5CKLg6z7pcKWyufg1zMLJONnGsso5fpdCTEAgl6WOQCuqWV65q8vjHnH0UTDyR5CcsGgk7Cct1ynvFiOezlfgIXotgRoVK2rax43I+BoLnpuYSYIphJOiUxkXlcLi8hy0RjVn/Wc4ziYP31zfmuGjEXQ8rXoX9BIlyXk8tXQMXm8gU9JfokVaf1infaQR9Xpum/E648rymHHhPYQ2NvLsV/exfMgwrv7HM+RXHVq6ryiK6MaOJfCZZwhfsIDo0lJi3W4ii4sJfPtt9BddhCoxEamyEudvv2G9916q0tOp0uq48fR/cvXNj3PFh7+SkV+B7G3NQtOrNVyZNtK/kv2rYhfuwkKcL77EzZffw43XPMCo72Zjrm0AwG45tAZ1Dq+b/2Ut54q0ke0K2HXG/NIs+odEMyWuX5cN8VZXFbZr5/DgxJGcf892kpI9vPaVlbFXlbYTuApHl9Pi+vqbWs4vy+KJdbOYWbiFOcXbeW7DHL7Pa72Op8T3OyI1eryy5E8b9k703b9kQO4nMPCOpG5/v2MNRYwcA/QOiuTmfifx3MgzqTRtZc9V8Z76CVpU9V3u15VLYV/kWWv8Db7iVC+QpPoasWUmGytjSFZ9C7KKuNCPjgmXQgeiz4Tkm8FWAGuv3OdQu7BbjHhbQJbA0wKuOl+O9W4yg81UOlx42gibQK2+Q/nuaEOgv8bLxDszCE0ysfrTHKpyfELGotET7UnhsaDHIMLNj/zO7B3XIwD58kS0qgZEBJr2sixZXQ4CO7F49QSiWs2N373IyWU5/H7lI+gdbp75/mF2Dh/Mtec9wtbizmNvDhZ1XBymm24i9JtviNqxg5jmZqKdTkJmzybg9ttpyRwAyMRtzyXxs++oGTmScovFVxNl3DisDz+M7vOvGL96B6e9/hnnXnMPVYmJ6J/6D6FFvpR0lbf179kYeWjZSl/nrmVAcAx9g6P2OzavyXdN2T0uVlcVdjqmxePs0M6hd2gIzzzfxOnjDCzf5CT2tCKKK/btJlM4MqRYwrk0dYRfkFTYrcwo2sLPBRvbBUufHt+/XSBrd2F12Xlh45/8VLARAGm8yjcXAdyPaXkv+y9yG7svQPxYRBEjxxCrvH9ho3Ul2iQ3cXnt5bvTBjuyL5dCV1jdDn9Z+XDVvwhRXYxFa8ThdSPJQRjlq0kOXY2o/bXdfj3pUmhH5ltg7g8lX0LRF62vSy5Yeir8kQqz48g2lfp0R8GH8LMKfjPBzFDY9V//LufGRyADPxS1lnlOsYR3qFZbabcSomsNgLz+18kgwwe78/2TLWHsbKjg8cDHGa0ZDWl2niv6iOX5tyFjJ0caQoLJwo425aQlWWZnQwXJliOb2nuwiKLIdZ8+yWnFO1h487O4ZC1P/fw0laMGcd30/2P5zu4XpKJWi2HaNIL++1+yf/qMl397l6cXfUH18gWE/P475qeeQgwKQq6txfbppzTceCMT73mKUT/8QdwOn7VOlGU6W6t6VAd/i1tTVUBRcx3nJmX6XpBl8Hq7HG91OXB63DyydiZzd7uYOkPaq4qCRaunyeNg1pvRPHFTMFV1EqnTi5i7Qik+1xOcFJ3K7RmTSLWEd9gWHxDMdeljui2BoC0ur4f/bl3YTvQYI33WOGm0CNEidq+L17ctovQIZfEcCyhi5BjiZ/vPqNskOHnxstC5kFeaXul0/L5cCodKJC9T09ILu+bRfXa27VEmLAeVEdZdA817Ah1FaNoOLbvAUUqoKOGzpO4V9R401P/jVcm+leo3Ba0iYXJsH/KaaphdtI0qexOrqwpYWpHLxJjWAOJVpmICrw+kcmcjKz/KZkJ0GjWOZn7M38A3pt8I8UTjGVjP09s+Jlh+AA+VjEt5hmUVuayozKPc1shXuWtwSZ4OtUiOFURR5PK3HuDsoi2svO816rVBPDHzBbwTM7nx9LuYs/bIFHiLMQb5f14dpMEwdSrmu+4iatcuInfsIKq4GE19DR+89yQlfXyf3b7yGq6853lEcyilBgPlUVFUDhxIzZln0njXXbR8/DGurVvbfc/rnC18m7eef/YZ40+b7//eF4waMonGBx7AW95ZQUCZ34u309RGrBtUmg7i6MOdy7B73J3O89F/BTPn7UiQYcpNFTzzYdcWUYUjR7/gaO4ddCqPDz2D6/uM5br0MTw0eCoPDZ7K8IjEI/KeSypy/anCwTojt/WfyEOxUwG45J7RpAf6+tI4vR5+yt9wROZwLKCIkWMESZb4yf4THjqaaR9ofID1ro6xB/tzKXSGRaPvEIhqdTnQqzRoVWosWhOriy5FraqnVLqn3ZhjxaWA1gJj/wDZC4tHg+T11eDu/9w+dhJ9QiS0tV5JkFZLkEbNytpWS0iiOZSb+p7EmuoCnlg3i1lFW/lH8lBGRrT6bBtddiw3WtAYVHx/63KCRD239p/IjvoKnt84j0vrnkGtUtHSr5zTZ84jSLgQo34F5/WdwW+Fm3l6/e8Ut9Rze/9JWNr0GjpWOf/5O7ggfwObn/6QElMMj/z+KkFTh3DrlFv5dlHXVrhDYWBoLGaNr8z6upoi/qrY1S71ssXt5NP8tZT3TeGj959izfsv0xwSiCR2tIu4tRpWnX8auSMHYU+IBUnCk52Nc9Ysml99lYZrr6V6wADKVSpKtVqfK2jMWDI//Jrfnn2QZ998lP/74XVsFeWobDasL7xARUIC9ddei3tHqwVEFETcss9ykmoJ59Ehp3NybDoxxiDuzDiZ4N1/4ypHMwvLsv377d3OYcqYAHJmJBAeIvLwm/WceVv5sbsgOMGJNgYyLLwXwyMSSTCFHLE+TrIst1s83tzvJDJCYqjO8rmA+w6O5db+EwjW+eL7ttWXt6vefSKh1Bk5Sswp3sbPBZs4OSadi1KGdti+yrWKGqlzE7iMzIU1F7I5ajNGwciMwi0srcilye1kfU0RU+L7EmnwVbbb26WwN8mWMLbWtV/V7mjjLlCLKtTyBBpsP4DxDaKlxxEFMzsbKpgU0/tQT7/7CRsHfR6GnU/BirNg7CxIuAyyX4CmHcDeN3EJ0h+AvW4qQ0LMLKisx+WR0Kp92nxgaCwDd0fXd8bV6aMBWPFGFl9ft4zPLl/Ctd+dzMNDpvnHZDS7uFG8kayILTz513D+b0wmmL/itiHpxKgf7Y5P4Kgz7aF/wkP/ZNHrX1P85hvcN/cdqld/zb+Hnk+f2+7kX2f3O+z30IgqpsT144fdK8DPclaxsCybvsFR/u+70+sT7Ca1lqUZvZj/5Uuc+vZXDJ2xEEkUECWfeKmLjeSPO64CQETg6eFnEaoPQJIkpPx8nKtX49m8GU9WFp7CQqSKCkxZuUzYtBWxjVtGFgAZRFkCScL28cfYPv4YVXo64rVXIw8KB6MBi0bPbRkT0as0fJGzmhRLGH2Do7it/ySe3DAbgKUVOUyN74vT6yW/qYYJ0antzj8hWk3xnAQmXlfOrKV2Us4sYd1XMYQEKbfqE5EGl52q3VVdUyzhJJh8PatyFpej0ogEJ5gQRYGxkSnMLNqCDGQ3VhJuOLTA7GMZxTLy/+yddXgUVxeH35n1jbuHJCQEgiW4FCtQoE6NusJXN6q0VKhQdzdK3WiRFisuxSVYnLi7Z3Xm+2NDICQBAjFg3+fZluzcuXN3M5l77rnn/E4HcCopggvrFqKgeTVVCYlUayofVH/Ayuz4hhTBOyOHU2c183rsv+TUlDe7pbAwLZZvE7c0/HzslkJ+bQXrc5PYXZTJhICj0vATAnqyNmUGsmzhoOHWrrulEPUSuA+HgmWQ8qFNGajfOzQ1RATQh4D/lU26mBpk2x/+PbP15cGH3xWJT08XYv9II/dgY0XQux3v5kr9lRBi4Puq79me9ihKfMiTXqDUuqDV1+pKjH3oBm5J2kLBtwvZ79uHR9Z9w7BbRvLEuDt4+5czdyNPCOjZSFcnq6aMf7Pj2VqQ2mCIOCjVjPOPpNpixOSgZ+kT0/nh3VlUu7siiQIyUBbgw1CvEAAkZDbm21agoiii7N4dhxtuwOW11/D46y98du/GLyeHwOpqgiwWfAoKcF+8GKc5c8gZ1J/mAlKsiYmYn5rFM5On89Tku7jziv+RPWAAv73xLBnlhQzdfgiAAEdXvOqzbEqNtRwszePbpK24anREewY16VetFtnyfQAP3eBMeq6FoMlZ7DzYBeK17LQ5JutRT7jHMYvI+OXZSJKMuV7359gipybp3AxyttemaWcMVjOv7l3Bjd0HsyzrIIEObs16RsJyw0izpCEiIglHJ1MPqz8hRDDJdSR3ONzBF7v3MzGwFxcF9gJgZ2EGXyf+h4iAt86JCQE9GXXMamt+4lZKjDU81m9Cw3uJ5QX8kbqHvNoKXDV6Lmm2jkoiBfI9BLvt4L+Ub7gmZAKhXSzYEgCLAZb52sTNxu8F576w6UIsRetRNkwggi3wNezeJqdXmiy4/LGeS/09+XtcdKsvX5hcwSuRC/AIdeKFw41r+UiSRHBuMDnmHITtbuybtBizwyRkTPRS7kIvtv56XZG4RWvY8uxrXJi0kTq1hp8HXYHi5gd4acaJlYhPhCzL7CzKYE1uYiMRP7WoYKh3KJODolicvo8dRY2zV3Sl5Uyb/T7BB5OJHzmQ0OjBxKXHozKYcLbI9FA7IRsMyHV1yEYjstEIRiOy2Qxms+3/FguyxWILWpUkzAoRpcncbIDssWT0iyRu3FDSY6KY8Pkv9Ko043PIZpB8l7iNLYW2LS2FIBLh4sWN3QeftL7JT8uquG12EbIMH8/y4N7rXE7Y3k7zbMhNZkNeMiVG2xaHn96FS4P70sfdv8VzdhdlsjhjPyWGarx1TlwVGk1f96MeU1mWG7zUdVYz3Z09uTF8cIOX+lSotZh4dKttceKhceCVwZchCiIl6VW81P0Prv5gGKMfiOL7pO38Vy+t8L+eFzDQK/h0voZO4VTnb7sx0s58m7gVB6Wa67oP5J39q1s0Rh4se5C1hQcY6hDDZe6jubP0TtSo+cq6in0l2Tw34GKK6qqZvWsJs2Maa4+8vW81QY6uTOs+qE3HXisdJN7SFx0xRKm7sF5GxX5YEwMqZ7g4HyoPwbpjvmOVK1ycC4rm4zM8/liPUhAouGbMaV3+xzs2sGN+Cle9P5SxDzeW0M+15NItJwRLrYTz7kDSrvuJNEYjoqW3Mg21eO4IGaWu+Y9Vj77M+IT1WBUivwy8lKqr7uadmePPqN+C2krKTLUoBQWBDq5olTYV1o8OrudgWeMtx+C98dz+8CtN+jjykBMEwSaiJ4qgUCAoFKBSgVKJoFIhqNWgViNotQhqNYJOh7WoCGtiYovjq3ZzZtfl4xFvuJ7reo8AnQ7UtmwIhZMTsizzwjFF1t4cOhWXVsQKHTpsYsRtOVRWy9x6qSPfvXLu3DMdxb6SbETBtmBDtonQ/Zsdz+yYyfg347E+XFnE2/tWc2Vof/q5B9QXO43n2ZjJBNS3X5EVx4qsQ9weORxPrQNL0veTU1ve6uKlHxxcR1yZLTD6xvDBDV7BTy5aTvrWQh7MvIw3Dv2LRZbQKpS8MXRqgxLx2YC9UF4XoEmK4An4yO0jxhTdwz3qh5mqn0qoMpQyuQxnlZaK+oDTSrNN+tq5OSXPdlBH1Yt9cBImUsdeKqQ1bd5/m+HSD/q+C+Zy5E0XkiQGssDshCzbJqGNDpewKi+9kUv0WAa4O1NoNGOwnJ778/qvRqFxVLLkqZ2Yahv34a/0Z4HXH+BgpTI8j4nLniNU8TMStSRYopGk5rMrzkbCxo/k7v0rcNq8nbU9J3D9rqXc9/TFzB0xlXteOjUZ/+bw0TvT09WXcBevBkMEbNodxzNg8Rok4NP5r/P2ks/48J+veGXVt7y88Se+27OcAEkiwGIhwGQioK4O/+pq/MvK8C8qwi83F9/0dHyTkvDZvx/vXbvw2rQJp5kzmw5KEBC9vXH84nO+XPwlG++6ho0OVnJc9Sg8PFA4OaFwsokPbi1MazBEerh4t8oQAejdXU3Ov92IClPx/T/V9LvGXmivtfT3CKSvewA+Omd89M5cGdIfjUJJagulM44VsvPTu3BFSH+CHd1YXx+ALMsya3ISGgnZ3RE5nHJjHbHHyMafChceE4v3S8pOvkvaRlJFIaFX+WKstvD2g0sbSh2M8Ol+VhkircFujLQTzaUItoYoVRRmzNTKnas5EKb4BVCQYbmtU8dxUiIexuo1CaF0C4lb7mGO0aNhNbxIMYoFaXt5btffZFQ1rfZ6TbBtpfnbacSNACiVItd/fQEWo8S869Y2OX6F/grudbwXAkzs0e5gzvZ9+IrPYSaPRMu5V/jKZ0h/7t27BL89sazofwlXxK7hqZem8vbQS7h91p9YTtPoO5ZiQ3Wj7RudQsVtdXr6rtuKgE1crdbVmXJnPZLG5qWI9gg8rWsJumOMB4UCQa/H+ZVX8ElLw+V/d3NBoC3eSpJl3t6/miXp+8moKiWlopAfkrfzfdL2htPH+Uce3/0p4agXOfRXEDdMduBAipmAizJJTDedVl/nO5IssbPQtjgJc2p+6/mIkN2xRLn5kVpfo6vYUEOl2dBEyC7UybOhzanSx82/ITlABrYUpPLO/tUs7h2PrAd5oe33HOzozhUh/U7Q09mN3RhpJzKrSqkyG3h1zwru3fQL9276haSKQtblJnLvpl+aFTJzVmuprNcqGKa27bfvNO5sSP9zVtkeis2l5rqo2yftVil64ClMx0wOhdZP2+UabYFVknjf6REqBWcurVuIFplFJjUVgis1om2FWm6q470Da8irbSwBf1M32wPlt/TTVzgcOK07AdHuxC3NIn1nUZPjn7p/SpQyCnrV8GH2p+zIGoqLMJVadpFmvvm0r9uVcYmK4P6dfxEWf5DlQ65iYtwW5rx5HZ8Ou5gbH/kJg+n0jZJNeSmN9EUUBYV433gXyLZY01tLBTTi0QwUhSBwQX3F5NYiaOv/tpRKHO6/H5+MDJyeeQZRb0u3vCS4T8OkZrRaWJp1kLmxK3hr/2o25x9uqPB6gW93Yk7TIDrCz6/78NHTHlRUS/S5OpvfV56baZ7tQU5NOQ/99zv3b/6Nn1J2ck/UKPwdmo/BqTQZcD5OyqC9vNSCIDAtbCBXdOuPVtE4a8p6pRKhFsI2ODOz74XnrFcE7MZIu9HT1ZfnB1zM7AFTGl7dHN0Z4h3C7AFTEIWmX32Yk03JE2CCxhZwuqf2YMODzlPrgLNK29AGoM5iJq2quEULvy0IUnyMgI4c65NdVvdga2EaSVWlvOH6IhIiv+iyedbgiIt7P57qf1HD91NnNbMgtXHGh6NaiYdaya7SM5M8n7F4IoII30xd3fwYfbaiF/UQU8m1m+5AYXgPLX0plX8iz3IijZSzG123YO7b8hu9kuNZMPk2RqTs5Y0Pb2H+sIlc+eSXHC5t6q06niNVce/f/Ctzdi9lS73KsABoTGZueOptNGXlCIBVIbLz798xHpN1EOni0+rtkSNoJkzAafZsfBITcf3gAxSejf/W1AolD/cdxzDvUMRmwlw1opJLg/tyU/iQNtGreOB6F/6b749KKTDtqUIee8deaO9U8NE5MXvAFJ6OnsQYvwjmJ24jt6bi5Cd2AIIgcHFwb94YMpWbwocwyjeckT5hTJkTg6gUqPmyGt1JaiSd7diNkXZCq1QR4ODa6KVRKHFQahoCoL5N3MLCtNiGc8YHRHKoLI9V2fG4WvxQShpy5BzG1rvwBEFgfEBPlmUdZF9JNjk15SdMEWwrRFFJgPgqEjVkWx9tt+ucCRvybHu5xUofCnp9gISMIxKCVEeYsycP9x2Hm/qIcFBuE+Ggge7OFBnN1J7BFoJ7sCMX3NuLipxaVr4a2+S4s+jMv17/ggasfcsZuvgiIsQtKPEiV3qGMuvC07722YDa1xflG7dg3L2WJZPuJCYtnk/eupuNYy/jurs+pbiq+W2HY6vizh4whWiPwAYPorfGkZkfLsAnJQOx3lAWrRLdYhvLsp+uIQIgurnh/PLLKMNaTm3XKlTcETmcuUOuYGpIfy7w7c5o33BuDB/MG0Onclm3vohtKJw1vL+WzBVBBPsqePeHSkbdYS+0dzKUogJvnRPdnNyZGhpNoKMra3ObD0w+1kt9hEqzod291FqlitF+4dwcMYRbewzjsvB+9JsaQnlWDYc355+8g7MYuzHSiZQaa6kw1TX83N3Zi+mRI9mUn8LLe5bjbg6g2PlAg/ECMCmwF+P8IvkxeQdz967AaDXzUO9xpxWX0hp8lDadjCL5EyxSebteq7VUm41kVtvkswMdXPHv9QAPSZEYkcFgi1LXKlSM8rO56WVo5F0CuLabTXL5l/TTixs5wtUfDkPnqmbFnL3UljcNsBypHcnLLi+Bh5ki/ywmr7yZXspYBLSkWq+lVjp4Rtfv6jzcZxwju/fl/uVfMzgnlWWX30t4fhbvzbuff4eO4Lqb3yW9uPED/kgw4ZiDmQjRg7lEckJRP7H3+fx7VEv+QTwmKVAAAhJSUZiPCpdpFB0jGuam0TM5qDe3RAzlpoghjPGLQKdsH9e6p5uStGVBTB6hY/NeI0GTssguODc1KNoDWQaL1HzNoWO91EeIL8vvFC/1tR8PAwH+fHhbm/bb1bAbIx3IY/0mNErrfazfhAY1zyMM9ArmpUGX8ckF1+PuoKZAzGx0XBAELg/px1vDruKTC67n0b7jT6pV0FaEKOcBVtKsXSvGwWA9mpFyJMe/UOVDrSyCIR/qM1a8tU7NngNwY4jNGPkj88wqY4qiyC0/jMFqlvjmquYzkGa7zGa0ZjSE17HOuJa5e3+gh3I9IJNoGYalBSXecw1Rr+eKX9/gp9/nsvz6R/ErLuG9nx5jz/AhXH/Da+zLtGWgpFYV09PFh4rHH8eanEzJlVfiL2rpvXoLI7/9s9m+FWYLQSlH/3YijwtGPFcQRZHln/rxwt2u5JdYCb80kzXb7IX2jmdhWixJFYUUG6rJqSmv/7mAIfX1Zk7kpc6vreDvjP1kVJd2ipfayVtPyDBvsveUUJp57sYI2TWGuzCRykgSLAmYJBNqsfP3C13Ei9HSh0p5KQYpEa14epkBbY2jUtPw7/SqEiRZRikqyUEFF+4G0bYyTas+mn3hqNI06kOvVOKpUbGr5Mz3kPtcGkzIMC+S1+WRtC6XHuOaCiut8lqFX64fpdFlzPnvdUb5DiPa9zvSrbcQZ4mmjzIdUTy3/zwlWeb31N2Eufkw/Zd3kSxvsmD687iu/IN3fn2Gvdu+580B0+CuKLyTtmCpFxCzHDrE5S9+iOu6Tcg0K46KJAj47osjvVcozioN/U8g738u8OK97gzpo+HKRwuYeE8+rz7gxqzpbic/8TyhymxgfuJWKkx16Oq30B/qM44oNz/A5qUWjrmTjnipF2fsY1H6Prx1TtwbNaqJl9pktfBj8g5qLSbCXbxa9FIbLGYWZ+wntiSLKrORoHq9qRAnjxbHfKw4pdPTauQr4Y/7t3D33xc1tFmXm8Sq7HgqTHUEOrpxffeBhLZj/GB7Yhc968K8UvEKz1U+x3qv9YzRnp4gV1tTJ8UTZ4lCR3+i1LGdPZwGPjiwlrh6l+mtEUN5YscD7Czai/ku23ulxhrm7F6GwWpGKYi8MfRKHI+Llr947V6W55VQM20seuWZGQJVhbU85/8rencNr+TfgCg2dUImmhKJyu+NVAnqXd5kXbcPs/o98qXX0DOMXuqtZzSGrs5PyTs4VJbHE/0nNhQCA5ty7d8PvYpy0S9E58QTFxCKc20dARWFCMcEUBsc9WirbV4Aq0KB4ph6MpIokDRiAL/Pnck1ITFMDOp12uM804nETaPn4mZVjtt+IsnIMTP45hyKyiQuH6Nj4Xs+zd57djqWL+M3k1tbwY3hg3FV69hemMbqnEReHHhJo3v/CMWGaubsXspovwgu8O1OQnk+C+7cinKDxFslt6LWK9lZlMH8xK3cGD6YUCdP1uQmsKc4kzkDL2uS5dOZ2EXPzgHGacYBsM64rpNHchSd2AtnYTJ17KNCWtnZw2lg7DHCQT8m76DMWIeMRKmhhg15ybwR+2/D1sxgr25NDBGAa+v1Rn5IO/NAMSdvPeMe70t1kYF/nt3dbJtIdSRfun8BzlZM4aUMWTIRP/EVXITLqWUb6ebbz3gcXZVfUnZyoDSXmf3GN3kYi6LIFR8/x5Ssgyx5fi4yKgLL8hsZIjKgMprY/dW7/DX7PmIvHk1pgE/DcUGS6bYvAWSZ3Nqm3q51uUk8s2Mx92/+lddiV5J2Am2I75O3E1+ezx2RI3h+wMVEufny3oG1LVbHLjZU8/Gh9US6+jB7wBTGB0TyQ9J2Dh2jFruzKIMFqXu4JLgPz8ZMIdDBlQ8PrmsSENlaugWoyF4ZzNC+GpZsqCPismzKKuxxJJ2JyWphb3EWV4dG08PFG2+dE5d164e3zrFRxd5j2ZCXjKfWkWvDBuCnd2GcfyQhN/ogG2QWP7UDgNU5CVzg252Rvt3xd3DhpvAhqEUlW+pl48827MZIF2aoeigAu03NT2adRajiZ2xCaHd09lAa6OcewEgfW4CqhEyFyYAky8zauZifU3ZSXh8o7K115OrQmGb7uKE+buTPM4wbOcJlcwfi6KVlzVsHqCpsfuK6y/EurtFfA92MZDgc5uo1txOmWIiWKErk78i3vNUmY+kqyLLMLyk7iS3J5tF+F+Kpbbn66IqseJIn98DLW4V0XCaKAAhWiSGvfIDnFVNZ+sR0ljw1w3YNwKxRc2jsEBAEthSm8mfa0XTu1hgCbTWRDPAMYnXO0cyN9pxI1GqRbT8E8MA0Z1JzbIX2dh2yF9rrLCRZRkJGKTTevlGJSg5XNtUkAkitbCq6NuKiHkgxItvmJWOymMmsKm0kuiYKAj1dfUmtPDtjzuzGSBdGKSrRoSPJktTZQ2mEUnTDU7gbM3kUWD/q7OEAtoCymyMGMykwCqUgIgoKjt9/jHTx4fH+E3FqwYWpVSrx0qjYfYZ6I0cQRZHbfxuHbJX56sqW5fR/c/+NYEUw9K1mUfESPor7il7K3SjwIEd6knLp7zYZT1fgl8O72F6Yzl2RI9AqVFSY6qgw1TWS6j8STJhaVcTYtCK89x5qlC1zBFGSMGdk4nD70yDL9Ny4C0m07fwrzRYcyyptKRPAv9nxDYqtrTEE2moiiXLza5gkLJK1QyaSj2Z58sMrXhiMMkNvzuXLP9vmvrbTOrRKFWFOnizLOki5sRZJlthWmEZqZXGjbMpjqTQbmhVUs9yoxFxrYe1nB5GQmzzLnNVaKsxnp+FpN0a6OD4KH/KseZ09jCYEKT5ARE+u9WmkLlLSWhRErgqN5rUhV+KvdwVk+nsEcqF/JM/GTGZmv/En1ZsY4uFCqclC1Rmogx5Lj3H+hI/1JX1rIYeWZjbbRhRFtntvR61Qw4AqHtn5LLtL4ohSxiKg4bDlKuqkQ20yns5mQ14ydVYz7xxYw5PbFza8dhUf/W6OpLyHOXnh9cEXJ+xPRGbgod30eORHeq7agSjZjA9Rkui5eTfXbo5raLsqO77VhkBbTiQGqxmT1UK12dhhE8nNlzoR+1sAjnqBu18u5s4Xmjeg7LQvd0YOR5bhqR2LuH/zb6zLSWSwV7dGQbOngjxERKER2fBG3Mkbn2WcljHyySefEBISglarZejQoezYseOE7cvLy7n//vvx8/NDo9HQo0cPli1bdloDPt8IV4ZTLVd3OeVTUVTir3gdiVqyrQ939nAa4azW4qd3BeC+qNFM6z6QYEf3Uzr3+nq9kR/S2s4AnL5wAqJS4PubN7T4e/RV+vKn55+gk6BPFWOXXoHB4kyEcg0gkWAZhkUqa7MxdRZfjLqx2dexwZ1HUt4nB0XhrNVT7eZClYcrFV7umAL9UYSFoezRAzkykmJfbyo0jngZS3GtaKrk2uvld/HLtU3Au4szKayrarUh0FYTSWfRJ0JDzqpu9AxV8e3iKqKvy7YX2utgvHROPN5/Ah+OuI7Xh17JrJjJWGWpxW1KZ5W2WUE1rVLNwOvDqMkxIGbJVDUnutZMPNzZQKuNkd9++42ZM2fywgsvsGfPHvr378+kSZMoLGx+n91kMjFx4kTS09NZsGABiYmJfPXVVwQEnNupdm1FjCoGGZk4S9ezhH0UD6LCjyL5iy43USqF0xOaui64Pm4kq23iRgD0rhomvxBDXbnphMJFl+ou5UGnB8HXRK1fKUOXTMJJHEk3xTdIVBNn6d9lvFAdwbaCVL6Y+zBfLP2ajxZ9xs9Lv+X9394nbcsqfBITydu0kk9/f48PVn1Bz/5hWJspsSCbzVwz5xNEiwUZKDHWAPB53KZTCl6FNpxIFCrUCiWOKg0iQodOJI56kbi/Arl+kgP7kkwETsokOcNeaK+j0SiUuKh11JhNxJXl0b+FWkVhzs2IrpXnE+bsyVXvD0MQQPO9RHz5UZFGSZZJqG9zNtJqY+Tdd99lxowZ3HHHHURFRfH555+j1+uZN29es+3nzZtHaWkpixYtYuTIkYSEhDBmzBj69+9/xoM/H7hAewEAv1csJrO6tOFVaqjp5JHZ6Kb8FpsQ2o2dPZRGqE5To0OtFPHRqtlbVtWm45k8OwaXAD2bP42nNKtl4aIP3T6kn6of9KolQY7jtvX346m4HW/xccxkkWQZ26bj6sr8fHgXGoWSe6JG88LASxjqHYJFsrI006ZS2+CXkGU8N29C0UzxScFqxTU+mVHz/gJsBSwBBngGNQpeLTHUnNQQaIuJBGyy5MFO7h0+kQiCwC9v+PD+E+6UV0lEXZXNn6u7xnPkXOdQWS4HS3MpNlQTV5bHuwdW46t3ZmS9R3BhWizfJm5paD/GL4JiQzV/pu0lv7aC9blJ7C7KZEJAJHpXDeFj/ZBWmdicmMzWglTyaiv4OWUnJsnSJIX8bKFVT2yTycTu3buZNWtWw3uiKDJhwgS2bm1eE2HJkiUMHz6c+++/n8WLF+Pl5cWNN97IU089hULRvIS50WjEaDwqpV1Zef4GXkXLQ0GGn4uXUlAc2vC+UhB5edBluGsdOnF04CJOQkc/KuUV1Enx6MTT13M4EUkVhfybHUdmdRkVpjru7TXqhEqHynr571f2LG+11sNQD2eW5BRTabLgrG474bG7/hzPu8P+5qvLV/HU3qkttvvP+z/8cv2oHlDF95t/YWziSO6IfAuD+RCV8nLSzdMJUX3dZuPqipisFsySlRE+YfRwsaVcX9atH5vyU6ix2Fb0/npbxVWv9Bw0WTlN+pAEEasgoJKsDPltBTN7PoLfRdk4qTSA0BC8eqAkh0NleUwJimp2LIfKcpFl8NU7U1hXxZ9pe5tMJOWmWu6IHAHYJpL1uUn8mbaXkT5hJJQXsLsokwf6HNUKmhDQk/mJWwlxcifEyYM1OYkdNpE8fJMrg6I0TLgnn2seL+DxW515a+bZuZo+W6izmFmYvo9yYy16pZoBnkFcGdIfRb0GTIWpjtJjUsU9tY480Hssf6TuYW1OIq4aPbf0GEpvN5uA4rWfDGdu1F/4fK1midd+Kk0GAh3deKj3OJzPoA5TZ9KqJ21xcTFWqxUfH59G7/v4+JCQkNDsOampqaxdu5abbrqJZcuWkZKSwn333YfZbOaFF15o9pzXXnuNOXPmtGZo5y6SChEFZarGD1uLLFFtMeJO5xojAGHK3zlk6UmqZRq91fvb5Romq4VABzdG+nTn8/hNJz9Btm3ThDt7clfPESSU5/ND0nZc1NqGP+gjKZ7HigZ9eHAdUwOHsCSnmO9Sc3mwZ3CbfYaQod5EXRxI3LJs9vx2mAHTmi9p7yg6stprNcMLhiPHVDN988MM8R5AL5d/iLNEUSJ/g87SBx/lI202tq6GVJ8Fs7sok77u/vjpXciqLqPKbMSlvkiZv4MrLmotYTsPNDrXqlRgCg5C27cfe900bFEE85dXNAUhFl7erqOX5ERV/5QGQ0CjUFFtMbZoCLT1RAI2rZtqs4ElGZ0zkYyM0ZGxPIhBN+Tw9veV7DhoZM2XfiiV9pyG9mCQVzcGeXVr8fjxZUGABp2a5vDt5YZPL1cKl5Tz+ne3oHPufIXuM6Xd9aYlScLb25svv/wShULBwIEDycnJ4a233mrRGJk1axYzZ85s+LmyspKgoParStvV0VqdqFGWnLxhJ6EVI3EWLqZSXkaFtBwXsfk/oDOhj7s/fdybyqq3RK3F5nW7NLgXjmpH/PQupFQUsTonsWFSODbFE+Cm8CEcLM3FU1WFAPyVVdSmxgjAnX+M52n3H/hlxmb6XR3a4sN/qGYoc13nMotZSN1ruODvS8i78RBRyj3stwSRLc1EK0W2y3fdFdAqVYQ4ulNuquPH5B3UWExoFUokWUZ1jKKon96FhFGDkBQKygK8qQnrhm+P3iRXl1BtOepdnYRARrI3a81lHPI2cOiQD+v3pzGqz07cdCq8dU4tGgJtPZEcYZx/JOP8O6+kgre7kvTlQUy5P59/txoInpzFrp8D8Pc+t8sQnCtMfWcIn1/8L389so2b5o3u7OGcMa0ygz09PVEoFBQUNK5sWlBQgK9v84Wo/Pz86NGjR6MtmV69epGfn4/J1HwAlUajwdnZudHrfMbR4oVJbD6NsKsQqvgJUJBuubOzhwKASbLdbwbp6IR0qloPmdUl9XEjbb89qNYrufz1wRirLPw6Y/MJ2z7t/DTjtOMgrI5yp0JG/XMpoqinl3IPAmpSLJdjkJovgX4uML3nSLy0TpSb6rBKEh4aB4Z4hSAeE6j6aN/xTB45mZ1XX0TKsGjyvN3YW57byBABuCNyOD/dFM6tg3K4ReGHWKUiyV3mm0RvFmzxxmxsn8q6XR1RFFn5mT/P/c+VvGIrYZdksnZH137W2LERNSUIR28tu38+3OWyLU+HVhkjarWagQMHsmbNUQEnSZJYs2YNw4c3XR0AjBw5kpSUlEZfVlJSEn5+fqjVZ79rqb2ptZhwNwUhCxI1YtfKWDkWpeiKl3AfFvIpsLzf2cNBkmy3tuGYSak1Wg/DPV2oMFspb8FgPhPGPtIH91BHdnyXTGHyiQvz/ev5L54KT4ipYVf1bh7d+iwasRsRyn8BK/GWwVik8jYfY1fgVLNYLgyI5NG+F6JXNn6eiIJAN0d3NKKSwd4hDVksMyc4Y33qAp50jkRRpibdy8Dcgyp8XtvF/uzzM6Dzpfvc+ftDHyQZJvwvjze/7brPGjtHmTirPxajxOo32md7vCNp9QbhzJkz+eqrr/juu++Ij4/n3nvvpaamhjvusEmD33rrrY0CXO+9915KS0t5+OGHSUpKYunSpcydO5f777+/7T7FOYgsy6zMjuOjg+vxNdrqrmTrGu+N5zVTc6MzCVS8j4gDOdIznZ6CqqivnGm0Gk/Ssnmur5eGn5fSPoJzMxZNABm+unzVCdspRSVbvLegUIgIg6p5P+5zFqYtxUkcTbDiSySqiLdEnxMro5Y4lSyWnq6+XODbHR+dEzP7juexfhN4c8hUvHVOdHfxAppmsbxxWRCmp0dwpd6IrkxFYUA5/Vdsx33uDjYfPv+C5i8d7UDi4kDcXUWe+qCMqY/mn9P31bnAmIeiUOkUrHvnYGcP5YxptTEybdo03n77bZ5//nmio6OJjY1lxYoVDUGtmZmZ5OUdfYAHBQWxcuVKdu7cSb9+/XjooYd4+OGHefrpp9vuU5yD/JN5gL/SYrHIEoF1fQEo0DSWhf8peQfZNV1nBSOKIgGKN5GpI8v6QKeORVOf2nvsNk1rtB6uCvJGABbntI9iZUA/D6KvCaEgoYJt804s9x+hiuAbt2+Q9RaE3rVMWzedjKosvBTT8RYfxUQGyZZx7TLOzuR00iHLjLUcLMvFWaVhd3FmQzrkESYE9GRzfkqjdMgQ/1ryHx3EZ6F90RToKAuoZNSGnTi9up1/9nedv6+OIDRATe6/wQzurWbRulp6XJ5NeeX5o21ztiGKIkPviKCmxEjsn2mdPZwz4rRCpx944AEyMjIwGo1s376doUOHNhxbv3498+fPb9R++PDhbNu2DYPBwOHDh3nmmWdaTOu1A9k1ZfyTedTSHevRHxEFetdqrg2NwVfnBIBRsvJ90nbkZup2dBbeivtQ4U+x/DUWqakiZkfhXL8FaDxmm6Y1Wg9KUcRXpya2jfVGjuXWn8ag0in444EtWE4iP3+b421c73A9coABs081Q5dchEWyEKR8FyfhIqrZSIb5nnYba2dQZzHzy+FdvLDrH75N3Eq4sxcP9xl30iyW+LJ8Xt6znFU5Cc1msVwTFsOSjP28smc5WTVlDVks94zywfDscH7pE40+z4Fq/2ou27MH/avb+HnH2Vl87HRQq0V2/BTIPdc6cTjbQuCkLPbEn531Ts4HrnxrKIJC4O+nd3X2UM4Ie9h0F2RD7tFqoJcG9+Wybn35vCAGV8GFCd69GO0Xwat7V5BfV0lGdSnp1SWEOnUdnYBuyu9JsUwg1XoDPcSVbdKnwWqmqO6oWFixsYas6jIclGrctQ5NtB6CHGwpz2tzU/B3CDktrYcRni78mVVEscGEp7bt45uUaiXXfDScX6Zv5vubN3Dn7+NP2P4nt5/YZtxGet90Cv7LY9KKa1lz8ULCFcuJs/SkWP4CrbU3PooH23ysnUFnZbFcP9CT6wd6siq+gmv+SqTSr4qb4mO5Y7UD744M4/4xPi2eey7x2bNeDO+n5Y4Xihh8Uy5fzPZk+lXndzJBV0StV9JrUgBxy7LJ3ldCYH+Pzh7SaWFPKu+CxJZkA6ASFUwI6AnAcPVwUiwpAKgVyob3j23fVXARx6Mjmir5X+qkttnLzKgq5ZW9y3ll73IA/kjdwyt7l7Mkwxa4dfwq+UihsvSq0tNaJQPcGOIHwLepuW3yGZpj+F2R+PR0IfaPdHIPntiTdKSgnkbQIAyuZm3BBubseRNRFOmp3IMCV7KtD1MhnTgO5WxiQ24yL+1exsNbfufhLb/zeuxKDpae+PexuyiT53f9w/2bf2XO7qUcKG2s0SPLMkvS9/PEtr944L/feO/AGgrqmsaITOzlQsWzQ9gydiju2S6YvOt4IPMAqte28Mq/TUXWzkVuvcyJvb8G4KAVmPFSMdNftBfa64pc+6ltEfbH/VtO0rLrIshdycffApWVlbi4uFBRUXFepPnet/lXrLJEoIMrzw24GIDri6/nt7rfWOa5jCm6KWRWl/Lq3hUAjPIN5+aIIZ055CYYpBQOWXqgpRe91R1fcfajg1/y0LZnWD7pNyYHndjj0BIWSUL9y1pGeLqwedLgNh7hUQqTK3glcgEeoU68cPi6k7ZfXreci4svRizRIO1yYPWUvxgfMAaDlEacpScgE6U8hFaMaLcxdxT7SrIRBQFvnRPIsLUwjX+z45kdMxl/B9cm7Q9XFvH2vtVcGdqffu4B7ChMZ2V2PM/GTCagvv2KrDhWZB3i9sjheGodWJK+n5zacl4ceCkqseXt40N5tUyYH0e+exU4WFFk63i4ZxDvXNm2WjRdkcpqicE35ZCUYSY6Us3W7/zRau1r2a7EGzELydlXyqsFN+Lk1XVUWE91/rbfTV0QncKmeVBsqMZktcUSvO76OsPUw7iq+Co2GDaQe0wmjU7Z9TQStGI4LsKlGIijXPq7w6+vVtTHjEinl00DoBRF/HUa9pe3XEumLfCOcGHIreGUpFax/oOTe5Km6KYw03EmkocRIdTIpf/eSGFtEVoxlAjlCmQs9Sm/Z39GSH+PQPq6B+Cjc8ZH78yVIf3RKJSkVjUvArgmJ5He7n5MCozCT+/CFSH9CXZ0Y32uLUhYlmXW5CRwcXAfoj0CCXRw447I4ZQb64gtzjrhWHr76cmbNYj0q4fTLccDq4uJd2uSULy5mTt/SW3zz96VcHYUiV8YwLUTHYhNNOF/kb3QXlfj6g+GgQx/PnS0GGddpYkDf2ciWbt+VpTdGOmC9HG3bQ8YrBY25x8GIEQZwjrvdYzSjOKS4kv4pmBBQ/vebn6dMs6TEaL4EVCSYZne4dfW1BsjBsvpGyMAI7xcqLJYKTS074P3+q9HoXFUsuSpnZhqT5698I7bO7aKzhE1GByrGbJkIpIk4SSOI1jxKRIVxFtizqnUTEmW2FmYjslqIayFGKnUqmJ6ujYWYIxy8yO1vjJvsaGGSrOhkdidTqkm1Mmzoc3J6OapJf2pGIpuHklknheSg4VvpVTEtzdxzfzkk3dwliKKIr+/5cN7jx8ttLdw7fmpy9IVCR/th2ugA/v+TKcotZKFj23nOf9f+OryVaRv6/rba3ZjpAsyxq9Hw7//SNvD0swDVJsNaAUtH2rn4WB252uXJ1ngN4tS130EOTl14mhbRik64y0+gIVC8i1vd+i11aLNGDHL5jPq5+ZQ26Q173D7xggolSLXf30BFqPEvOvWntI5m7034yQ6IQyuJsOYydVrbgfAS3EPXsIDmEglxTqxHUfdMeTUlPPQf79z/+bf+CllJ/dEjcLfwaXZtpUmA87HVd91VmmpqE/hrjTb1EWdmxO7M7UuY8TTSU3C4/2puvMCYop8kNUSf6oyEN7dyITPE7BYzs2U2EdudmXjN34oFQJXzSzgqfe7bqmK840ht4djNUu8HP4HGz44hKnGdg+KSuEkZ3Y+dmOkCxLm7MkYP9t+vyTLLMk4wGPb/uLB/37jvX0bGVnwPxCgVJ3JAtc38cz15MbiG/m77m9MctdynQaI7yDiSK70PJJ0ZoZBa9AoNAAYrWd2zUv9PRGAJdntn9o5cFp3AqLdiVuaRfqOwpO214t61nqtBYWMYkgNizKW8sHBLwAIVn2Ek3AhVfJaMs1nd3aNj86J2QOm8HT0JMb4RTA/cRu5NV1H8M9Rp2TPI30x3zeSC8r8QIQ1TtmoPvmP4R8dwnCStO2zkQsG6MhYEUSAt4I351dw4YxcLJZzxwt3NiFJMgeWZPDeBX/z7yv7bG/KIFmPhoOqHbp+4qzdGOmiXN99IOMDGqcfmiQrAF7mMNzNgVBv7Bow8EfdH1xefDmeOZ5ML53OGsMarLK1o4fdBFEUCVS8Uy+Edl+HXVcj2owRk/XMjDNRFAnUazjQznEjR5ixeCKCCN9ctebkjYFBmkG84fIGVgcTil5GHt02m51FewAIV6xCTRhF8scUWj9rz2G3K0pRgbfOiW5O7kwNjSbQ0ZW1uc3X5HFWa6k0HydkZzbgUu8Jca6v+FvZnNjdcd6SVo9TqWTTA70xPzCCKbWBYBHZ5p6H7ovN9Ht3P9V155ZR4u2uJHNFEOOHalm300C3KVnkF59bn/FsYNFj2/nqitWkb215AaNx6HpxhcdjN0a6KKIgcl3YQF4adCkTAnrSzdEdP50zkS4+3Bw+hIfd70Y85tdnwfYQqJKr+K7mOyYUTeDGkhs7a/iN8FL8DxWBFMvzsEgdIx6lqQ8CNkln7im6wMuVaouV/Nr2F35yD3Zk5D29qMipZeWrsad0zhPOTzBBOwFrcA14mxi3dCqVpkpEUaSXci8iLmRZ76dSOrXtn66OLNsKHTZHmJMnCeX5jd6LL8tviDHx1DrgrNI2alNnMZNWVdxiHEprUSqVLJvRE/mxUVxnCUEwKDjgU4jTt5uJeCuW/Iqu5b08E0RRZPUX/sy604XcIishF2eyfpe90F5HEjMtDJ2bGkFoeStGpbd7RuycIT46Z64NG8AzMZN5cdClzOw3nlF+4VzncA0SzbtFrVgREblOf/I00Y4iVPk9IJFqvb5Drndkm8Z0hts0ADeH2gKEvz7cfnojx3LNR8PQuapZMWcvteWnFoC73HM53qI3cv8qapSVDFsyGbDF7fRS7kRASYplCgbp7JKMXpgWS1JFIcWGanJqyut/LmCIdwgA3yZuYWFabEP78QGRHCrLY1V2PPm1FfydsZ+M6lLG+tvisARBYHxAT5ZlHWRfSTY5NeV8m7QVV42OaM+gNh//b7eFIz0xintU4YhVSlL8i/H75T+C39hDanHtyTs4S5j7kAeL3vPBKsGFM/J4a355Zw/pvCF0mDdP7b0S754uCGLzBkmhXEVmdSmZ1aWUGrpm0LFdZ+QsJiI3ghRrSpP3lSj53eN3puqndsKoWibONIg6dtNLuQ+92K9dr7W9YDfD/p7EKwOf4dmYmWfUlyRJqH5Zy2APZ7ZN7hg9l4P/ZPLlZauIGOfHg2svPqVz0ixp9MjrgWwUsG5w4rbwG5g/5mMAKqRVpFgmocCFPsoslKLjSXrrGnyftI2E8gIqTHXolCoCHFyZFBhFVH0G2Tv7V+OhcWikxrq7KJPFGfsoMdTgrXPiqtBo+roHNByXZZm/Mw6wKT+FWouJcBcvbuw+GB99+z9bnvo7i3cOZmINrIM6Ea9iZ1bf2ot+gQ7tfu2O4HCWiSE351JaIXHVeD1/vOWNKNrXvB2BscbMD7dsYP/CjKbH1muh3lBRCiIvD7oMd23H3HOnOn/bjZGzmGfLn+WNqjew0thl/bLzy8x2md1Jo2oZg5TKIUs4WiLprY5v12vFlhwgZuE4Xoh5ghcHPnXG/XVbuIkSk5nqaRe2wehOjXeHLyF9WxEPrJ1Cj3H+Jz8B+LHmR24pvQV1sQOm3Vrmj/6I23rcAECB9WOyrQ+iIZwoZaJ9kuhE3lqTx7Pb0zAH1oJJxK3AkSXX9+SC7mf/881gkLjgzlx2x5mICFay6+dAnB3t91pHIEkyK1+JZfkLexrek5VgWttYBO3ZmMkEO7p3yJjsomddmGd2LObuTT83ef2csrPFc5qTuL5Kf1WDISIgoJAV6C2uvF76Pk8enNesxHVnohXDcBGuwEACZdZF7XqthgDWNogZARjl7UaNRSK7A+JGjjBj8QREhcD8aetOWS/kZoebuUl/EybPGpTBFu7a9AjxZTbBLx/FA3gK92AkhRTr5PYcup2T8MR4P0zPjOCL7v3QFugoCzx3KgVrtSK7fg7k7qudSM60EHBRBrEJZ6b3Y+fUEEWBKc/HcPPvo0EFMtT/pzGL0mIbBDW7CnZjpBOYFT2JN4dObXg90se22h7o2bys9OHKIr5O+I+RvmHMHjCFaI9APovbhI8pDH/RtmJWouLyolnM0/+GWVHDJ46P8eKhXzG3EOjXWYQofgCUZFr/1+j9UkNNw55mW+xtautjRsxS2/zB3VKvN/JNSsfEjQA4eesZ93hfqosM/PPs7lM+73u37wlThGHpWYHV0cTIv6dgsNiMqG6qz3BkNFXyKjLNj7TTyO2cKv8b6U3ds8P5tZlKwT+d5ZWCP3/Oi/lzPKk1yAy8MYdvF3WtxdG5isFiZmX3ZExfamwzvBWwNLZIDpXn80nchhYDwTsDuzHSCTiptbiodQ2v/aU5eGkd6eHi3Wz7liSuN+Qlc4vDLegEHVcVzeYenxuZ5nMR633WYlLU8LP78ywoPLUU0Y5CKTriLT6ChSLyLK8DNkPkuV1/8+reFY1ez+36+7QNkiMKrG0RwAow0dcdEfgnp2MniMvmDsTRS8uatw5QVXhqAY9HCuppBS2KoVWUWcsY/c9lDccjlOtQE0KR/AFF1q/aa+h2WsG0gZ7UPDuMf4cNwjnHiTrfWm6Oj0UzdyufbCjo7OGdNrdd4czunwPQawXufLGY/73U9ZVAz3aWZh0ku6YcubuI4n09AnBJak8e7D2WcX49UNfXX0ooL2BjXtOYw87Cbox0MhbJyvbCdEb4dG8xNetEEtcvu7zMHrc4XGq6N0hcD9cMZ43XasxiHTMM13PAdKDdP0drCBDfQMSJPGkOkmSi2mLEIjfdhrDIEtWnKefe4Bk5QwXWI4iiSLCDlriKjtEbOfa6t/06Dtkq89WVp25Yeio9WeK5BKvCinaYiZ3Fe3h067MNffZSxiLiTKb1bqqkje01fDut5Eil4K3jhuBxXKXgl1ecnZWCo3tqyPm3GxHBKr76q4pBN2RjMJzdAmnHe3K7SoaKyWrhv/oSIgpB5Km7LqbHhX4kfZFNbzc/rg8fxIN9xjW0X5+XRFcJG7UbI51MbEk2dRYTI3xCW2xzIolrlaBCZbVFRR8rcT1aO5pHat/DgonBBYOJN7VvwGhrEEWRIMV7yBjItN7TLtfQKm3fhbmNPCMAo71dqbVKZNZ0XNwIQOSF/oSP9SV9ayGHlmae8nkTdRN5wvEJDI41aHvKvH/oCxamLQVAKbrQS7kDUJBsmYhRahqBb6fzGBbmSPGzgzl4yTB8s92wuBt5vjge5ev/MXPhqd8DXQVnR5GERQFcPUHP7ngTAZMyOZx1duqtNOfJPRUvblFKJeU57Wu0HK4spsZi+14HeAbhp3dh7Mw+ZO4sZt/CdAB6uHgT7uwFQEFdFfldJLbQbox0Mv/lH6a3ux+uGn2b9x0i9ODhuncwY2ZAwQBSzF3HJeepuAsVwZTI3yHR9q7bo7Vp2i5I67YwW3zO1ykdv0KdvnAColLg+5s3tKr43ZtubzJQNRBDcBkKT4lp66aTUWWrTqsVIwlX/o2Mub6o3rmje3GuYKsUPJCsa0fSLddWKfi9Wlul4DvOskrBoiiy4G1f3p7pTlmlRM+p2Sxe1zU8CqdKVnUZP6fsaOLJtcgSGdWlzZ5jNUssn7OHV3ou4I8HtrTLuEozqtn962E2PHcQ5dNGVLcbSLgghVlePzL/unUA/PXI9ob23ZyOZtLUmLtGcHHXl2U7hykx1BBfXsA9UaNO2K41Etcu6qMpXJUmAwMcB/KXx19MLZlKv/x+xPnFEaIMadsPcpqEKn8gyTKGSsV04N427Vsp2m5tcxvWwxnr7YpCgGU5xbzUv3ub9Xsq6F01TH4hhmXP7eHPh7dx7UcjTvncjd4b8cv1oyqmAusGF4YuuYjsGw6gFJW4iJMJVLxLtvVR4iwDiFLG2VN+uyCB7mrSn4yhuMrEBV/Ek+hQxnwple/ezmGqhw9/3BZ+1vzeHrvVlYFRGqbcl8+VjxYw604X5j7k0dnDOik7C9P5Nmkb1ma2lAHmJWzh3t6jGzRwAHIPlPL9TevJPVgGMuTHlZ/WtWvLjaRtKSBrVzF5ceWUHK6iIq+W2lIjZoO1UcaMCKACyVnGv587fS4NRrJKhI7waWiTV3vUG6JTqk9rTG2N3RjpRLYUHMZJpaGv+4k1JI5IXE8I6NnwXksS10GObsBRiesxfuEM1g/iN/k3ppVOo09+H+J94wlStr3aZGtxEkejZzA14mbcdVMorQtp82u0VTYN2FZ23Ry0xFV2zmpu8uwY/vs8gc2fxjP+yX64B52acJle1LPOex2DCwajGWmkYF0hk1Zcy5qLFwLgo3gEgxRHsfwVh62XEiEua8+PYecMOFIpuLrOwugv4tmrLuUvdSaKD/IZr/NmxfRwlMqu/1gfO0hH2rIgBt6Qw2vzKth+0Mi/n/miUHRNgyqlooh5SVuR6uMrdAoVYU6eSMikVBZhlqyYZCufxW3kmZjJeKudWPPmfpa9sMdmKNQbC2WZNciy3CQ+0GSwkLWrmIwdReQeKKM4pZLy7BpqSoyYaizIUuO4DlEpoHVW4d7NEbdgR7wjnQno74H/YDfeqVyLUZZAVHDzoLG4Hed1z6ouI74sDwA3jR7fDhD7OxW6/l17jiLJMlsKUhnuE4ZCaPwH+G3iFlzVeqaGRgM2ieu3969mVXY8fd392VmUQUZ1KTdH2NRAj5W49tY54al1ZHHG/kYS19c6XIsJE7eU3kLv/N4k+ibip/SjM5FkiQPZswkLuILxER/zx/63m7TZkJvMTRFDEE9Qd+FEWNrQGAEY4+3Gt6l5pFXVEurU9ltrJ+OuP8fz7rC/+eryVTy199QVdgeoB/COyzs8WvEozgP1rN29iTl73uSFAU8C0E31JXWmOCrl5WRZniBI+VZ7fQQ7bcCRSsEWi4ULv0xik1BcXym4gKGiJ+vvjkSr7tqPd19PJRnLg5h0Xz5rd9gK7e36OQBfz6437qWZBxoMkZE+YVzffRBqhW2cdRYT85O2EVuSjUmysmjdXipnl5Gzr7SJxofFYOXn6Zsoz6yhLLOaqiIDxioz0nGpt4IooHZU4uipxTXaAa8IJ/z6utNtiBfBgzxQnuB3OyylOxvykjFJVt7Zv5prwwbQ190fSZbZXZzJgtS9DcMa7RvRZP7pLLreb/08IaE8n1JjLSN9wpocKzXWInB08u3u7MX0yJEsztjHovR9eOucuDdqFAEOrg1tJgX2wmS18GPyjgaJ64d6j0NVn8YFcJPDTVhkC7eX3U6v/F4k+SbhrWw+nRhsgVrHZ7M4KjVtJiP8Z1osa3KqEXSDCXXfSYTHbqprx1FirMVUb0RsLjiMi0bH5d2al4+XZRkrpSiF5t28bblNA3B7mD/fpubxVUoOc2Mi2rTvUyFkqDdRFwcStyybPb8dZsC0U98uesT5EVYaV7LCcwX6IC/m7HmTUb7DudDftk3YQ7meg5YwCqW30Vmj8FTc0V4fw04boVQq2XhfFBaLhcu/TWGFpZDtvnnoviiij9md/+7uhXMXrtiqVIqs+dKfWR+U8Pq3FYRenMXKz3wZPVB38pM7iGJDNXH1hRU9tQ7cFDGk0QSuU6q5I3I4T/77J9b36ohbfdj29G4hSWX7vGQQQK1TonNX4xXhjGeYM359XAke6EW34V7oXTSnPd5Lg/tysDSXEmMNRYZqPo3biFIQkZAbDCqAIAe3JpXhOxO7HPx5yBfVX3BP2T24CW6k+KXgrmgqC3wkYvz4QK22qmtQVFfNc7uWIANqhZHbBv4PleBJf3UeJquF9XnJ/JVms+BFQeD1IVc2iocxyVmUSD9QYp2HkcP0UaWhEUIaXUP82otJgReyfPJvZzTW41H+vJp+ro7suXhYm/Z7qphqLTzt/gMKtchrpbegVJ76ykaSJALyAsi35qP4zwOVQUPGtFi89bboeotUzgFLEBK19FBuxEkc2V4fw047cf13h/m9MBfZ3wgVSrrXuLL5f1H4unSN2ICWWLi2huueKMAqwdsz3Zl5i2tnDwmA2OIsPovfBMCUoN5cGdIfgK+uXEVZdg3IUJpWRW3ZqWUHXf3xcMbcH9Vu4wXb8/uTuA1k15Q3e7yHizd397oAx+OyNNsDuxy8nRa52/FuPnT5kDK5jB75PSiXypu0aQ/tj2PZlJ/SsHC4KGAgQcq3sJBPhbQStULJRYG9GF8fIyPJMpvzD2OVayix/kCieRwHzN3ItT6HEVtOvUDzq7+23qYBCHHQEV/ZeZknar2Sy18fjLHKwq8zNrfqXFEU2eazDaWgRDG8GoNsYMiSixoydJSiKz2V2wGRZMt4TNLZl0Z6vvPrbd0bVQo+XF8pOOj1PaQUdd2MqakXOpCwKBA3J5HH3inl2ifyW5U51l5Ix7g41Md4mnNiSylLryZ4oCcXPtGP7m8GYrlMgdRbQBABof51DKJCwFjZtt7a5nDXOvBszGQe6D2GaI9A/PUuBOhdGeLVjcf6jmdm3/EdYoi0Brsxcp7yoPODvO3yNiVSCZF5kVRLHSvmlVJZ2PDvMX498BYfxkEYRoblTsqsC6mV9jDKzxWw4ud8CEE3k31mT9Ktt1Itb8TmAz3yoBJR4dvkGoIgYGnD1N4jjPNxw2CVOFzVeQ/2sY/0wT3UkR3fJVOYXNGqc7spu/G9+/eYFEbcRohkVGdxzZqjWzI6MYruyoXIGImzDGiU8ivJteRYZlMnx7XZZ7HTPnx2XQjWpy7gSedIFGVqsgNKiVi4De+5u9if3TVTarsHqcn5N5iYnmoWrKql19QcKqs71yDx0jo1/HtfSXbDv2OmhaJxUnH9lxcw4em+FIwxYH1CjeUzLU9mXMW1Hw8nZKjN4yjUV8yVZZnStKoOGbcoiPR1D+DeqNG8MPASnh94MXf1HEkPV58WBTY7E7sxch7zmPNjzHWZS6FUSI+8HtR2oM6EyWqriSAi4KTSIAgCHuJ0zOSSar2KeMtAchTdmTHkVi7rNRdv51XIHElvPm7rCE8EQcHxCAjtUnvh9jBb4O+XnaA3ciwzFk0AGb66fFWrz73B4QZu099GmUMxnr10LMxYygcHv2g47ipeSoD4FlZKiLcMQpIkzHI+iZZR5EuvUmT9uKFtV1WjtGPjjcuCsMwayZv+vVEVaykKLKf/iu24vbqDzYe7huDVsWi1Int+DeSuK51IyjATcFEG+5M6Twsj0MGVIAdblmJ6dSnrcm2FJ3VuGkrTq6kpN7Ak4wAlRtt939vNj4BAN0bdF8XMrZfzYvp1XPbaIPz6uCFLUFPSNXQ9uhr2mBE7vFjxInMq5xCoCCTZNxmtqCWzupRX965otn1blJ/+6OB6DpbZis493m8CEfV1ecxSMQhmTHI2KVX7SDN+QIDLIQRkTmzMKxDRo8AVJd6ohUAe2bQOL00wHw3/Gj39EcW2c0uqfl5DbxcHYi/pnLiRI8y7dg2xC9K58ZtRDLuzR6vP75HXg2RzMvrdvtSVWNhxxSoGeUU3HE8330GJPB9HRmPkMGbyASsaIuijTmo2tqit4orstA9f/lfIw+sPYwisBSs45jnyy2U9uLSfW2cPrQnfLKzkfy/b6kHNe8GT267onOf/zsJ0vk48KlgW7uyF61IlB55NxfktN4qGHtWBmtl3PJGuPs11Q0FiOVonFS7+58/fxqnO33ZjxA4Az5Q/w2tVr9FN0Y0k3yRya6p4LXZls23bwhjZVpjGt4lbAdsf9iN9L2yU+WOyWnhr/2oyq0vRq0q5ue8iUK3Btgnb+JZVEYiaYMzkY6UMiWpkmtuXFRHRocAFJV6ohAA0hKERI9EL/dARjVI8tfurx5L/yKoxUnfDhaf3BbQRFpOFp1x/BOCN8ptPmPLXHKXWUgJyA7DIFqzrXHCQHci58QDO6qPfw0FTL4wkcPx3309VQF6NslmjtS3uETvty4I9xdy+PIUa/xoQQJfjwJcTw7l5iGdnD60Re+INjL4zj5o6mXuudeKzZ706ZRx/pcWyMvuY7clMCc3NRizTlFjvt8WsXRs2oJEeVHuwITeZDXnJlBhtW+t+ehcuDe5LnxPoVe0uymRxxn5KDNV465y4KjSavu4BDcdlWebvjANsyk+hzmqmu7MnN4YPxkd35vOtPYDVTquY6zqXxxwfI8OaQY/cSD6LX9di29ji7BaPnSoDPYMbsmNSKouYu3cFm/NTSKssZkNeMq/sXUFmvbyyXhFMf91KQhW/ocANOHZLRoWbeA091f/RV32YaHUpA9QmYpRWpvzhzaub++AnzsFduAVHLkCFPxJGDCRQKS+jSP6YbOuDJFnGsM/iwm6TyB6Tnn0mPw6Z+pJknkSG+R4KLO9SIa3CItlWaRf6uGOQJOI7uHDe8SjVSq7+aDjmOivf37yh1ee7K9xZ6rUUi2DBZZRMtaWaYUsmNxwvsn6BkaT6nxobgdVy669np+twzQBPqo+rFHxLfCyauVv4eH3XqRQ8oJeW7JVBdA9U8vkfVQy+MRuTqePjSK4Kjeb2HsPwOzJBB4vIAggpEsGObtwbNbrdDREAV42OqaH9eSZmMs9ET6anqy+fxm0kt4XMmcOVRXyd8B8jfcOYPWAK0R6BfBa3iZxj2q/MjmdtbiI3RQzh6eiL0IhKPjy4DnM7bHO3hN0zYqcRtxVO53vDN7iY/bg293XEFqRobuw+mDH+Z6azcbiyiPcPrMV0ghteq1DyWL8JDatsi1xCluVRSuUfOGJLByrexEfxWJNzdd8GEOEcxv6rN7XYv0nKppZY6qSDGOUkTGRglnOxUIKVKmSMNBUMELBY9Wwr7E2Q3kwfVzfUdEMj9EAn9kHPANTiiVV125pXey2gIKGCp/ZPJaBv6z0SRzxjgSWhZO+q5LaIabw8Ukeh9E4LZyjxEu8Gw0t2z8g5ws70aqb8HE+JVxVoJZTZOp6LDuH5KQEnP7kDkCSJax4vZOHaWjxcRHb+7E9oQMenK8uyTGpVMQV1VSzovhEHLw0vpV7fqUGhj25dwNWhMVzg21R36Mv4zZgkCw/0Htvw3uuxKwlycOOmiCHIssyT2xcyMbAXFwX2AmxCbo9v+4vbewxjsHfIGY3tVOdvu+iZnQZkWSYsayo9takkOK1jScDzzFctJdjRnXJjLTuLMoivF//5NXUXfd39zyguoLuzF4/1m8CPyTvIqilrcjzUyYObI4YQ6HB0L1speBCq+h536SYyLHdhJgcVgc32LyJikU9s2avFQNQE4ipe2mIbi1RMDXsxSAcwyEkYScOsyEUhSKiUeVTJsYDcOMEHENAg4ogSd1T4oRa6oRHC0Qm90QkDUNOtzeqJzFgykVciF/D1Fat5IfW6Vp8/13Uua4xr2OGxA+/gMFbn/cyDUjnNbYvZsFAprcKZl85w5Ha6CoNDHCl+ZjAJebVcOD+ePPdKXiiJ56XX03koMoh3pwZ36vhEUeSvd31589synv6gjMgrsvnrXR8uHd2x8ReCINDd2Yvuzl6s9ttFZV5dpxkikiyxuygTk9XSUB7keFKript4bKLc/Boyg4oNNVSaDfRyPZqRqFOqCXXyJLWq+IyNkVPFbozYaSCpopDc2gpG105HqxaJ1a7ha+3zLHBdgCAIjPTtzs8pO9mQl4wky2zMT2kQADpdQpw8eDZmMmlVJRwozaHOakavVNPfPbBRZcnjcREn0VuVQJn0G67i5c22EQQRaxu4GZWiJy5MxEWc2Oj9q2O3kF5Th+GG8VikSuqIpVbej1FKxEgqZjkHC0WYybXpocgbm8zrAipEHFHgjgof1EIwGiECnRCFTohGQ49TMli8I1wYcms4O75LYf2HBxn7UJ9Wf84NXhvwzfWluGc6mv98uGu5wPyJw7Eqj8QONf4ujSSxq3hPs31JXd/haqcFevrpyZ01kOxSExd8dYgMl3Leq03i/TczuTXIn/k3NFWN7kievMONQb21XHx/Hpc9VMDsGa68fH/neOE8w50pTqlCkqQOLVSYU1POG7H/YpasaBRK7okahb+DS7NtK00GnI/TFHFWaakw2YJuK811tvfUx7VRH23TEdiNETsN7CnOavj3Fy5fs0wznzmVc5heNp2v3b5GEAQuCe7DxrwUZGT2FmedsTECtpVGmLMnYc6tC5xTCI54Ku5q8bgoCFhP4hk5E8b7uvFpci2Hyqvp7eqME6NxYnTjkJZjkKRaajlAnbwPg5yAUU7FJGdjoRALhZhIp0be0owjQomIA0rcUOKDWghCK4SjEXqhF6LREoUoKrn+61Hs+zOdJU/uZMT0nqj1rfvz1opaNnpvJKYgBsWIKvat1nDhggQybkimSvyBIuvHWCjiWG9JUs0SoGlG0W+Hd/NA77E4qLq26qedlgl0V5P+VAwl9ZWCE/RlfCel8v3bOVzh7sMft4Z1WlG+C4foSF0azKAbc3jlq3K2HzCw4lPfDq9cHNjfnYQVOeQdLCOgX8dVHvbROTF7wBTqLGb2FGcyP3Ebj/Wb0KJBcjZgN0bsNFBtPmoFhzp58qLuRQDmVM4h2ZzMcq/luKgdcNfoKTHWUG3u2vnyImKL5b7bgru6B/Bpcg5fp+Tw3qCT13gQRT2ODMWRoS22kSQTBuKolfdhkOMwyocxyVlYKMBCGSayqZW3N2Ow2FKbr07wIOnHCJYv+pMB10WiFXqhF/qjo+8ppTb3U/fjfZf3eajiIYJHeZG5sYLxS//HjitX4Ss+Tbm0kCzz21jEXQAMDvydtNJhOKu0mCQLBqtNZC61qphP4tYzs+94lGIL1pmdswIPJzXx9ZWCx3yRwB51CYs0mag+yudCnRcrp0d0ilHi760kc0UQE+7OY9U2W6G93b8E4O3e+rEszzrE3uIs8usqUYsKwpy9uCok+qQVbaUhtnv71fUr8DG7dliWilJU4K2zibF1c3InvbqEtbmJDcVTj8VZraXS3NjDUWk24FLvCXFW2RIJKk2GRiU3Kk0Gghxdz2icrcFujNhpQKs8KqleUFeJl86RF11epFKq5PPqzxlSMIQfXH+mwlTXpH1XRBTEdvWMDPBwRiUIrMovbbM+RVGNnmj0RLfYRpIkjCRSJ8dSJ8dhlFMwyZmYyUfwKiPsxh2onGoplJYe33t9arNro9RmrdgTXUNqsyMPOj/ISuNKlrKUiN592XloLzO3zebdYa/grpjGt4c8KDHvYFKPt3DRFvDUQJEw/VVYZYnY4mx+ObyTKrORw5XFbCtMbzaozs7Zh6NOye5H+jSqFLzWKQfVJ4UMET3YcHfPDq8UrFSKrP8mgCffK+Gt7yroNiWLVZ/5csGA1hXaS6ooZKx/D0Ic3bHKMovS9/HBwbW8OPBSNIrmP9PhyiJWuiaiFKDfHm/8Lvfms7hNPBszuaGI6ZEsldsjh+OpdWBJ+n4+PLiOFwde2kjK4EyRZVoUeAxz8iShPL9R3Eh8WX5DjImn1gFnlZaE8nyCHG3xeXUWM2lVxYzxC2+zMZ4MuzFip4EoVz8259tqvazOSaC3mx+CIPCu27vMcJzBtcXXMrR4MF7eEQysmMpA17Et9iXJEn9nHGB7YXq9Fa5jhE8oFwf1OWGwV2J5AX+k7iGvtgI3jZ6Lg/sw4rjKxutyk1iVHU+FqY5ARzeu7z6Q0GaCt0RBRGpHzwhAdycdyR0sCy+KIjp6oaNXs8dL5WrmePyKZ5SFB2K9qJMP1RssGZjJw0IpBuKpk2NtJzR6homIaHnVxZkxGiWJ+gOM0LiyKfcj/s7WE+N2A0kVhUAIqxLmcVv0d1QI06mVItGLMQz0CsZJpeGdA2sA2JCXZDdGzjGOrRR8xfzDLLcUsMM3H90XxfQxu7Ppfz1xdWx5e84sSZSbLHhp224L781HPRjaV8v1TxUw+q483nvcnYdvcj3l8x/uM67Rz7f3GMbj2/8io7qUHi7NVzZfk5NIbx9/DivTqDpYwz0h/Ykvz2d9blJDlsqanAQuDu5DtIctyP6OyOE8vu0vYouzTjswdGFaLL3d/XHX6DFaLewoTCepooCH6j/Dt4lbcFXrmRoaDcD4gEje3r+aVdnx9HX3Z2dRBhnVpQ1eFEEQGB/Qk2VZB/HWOeGpdWRxxn5cNTqiPYNOa4yng90YsdNAtEcgrmod5aY64svz+SZxC5d164uPzplgwphjnsftlovJ08Xxjy6Of3iVF3P8GKAeQIw6hv6q/kSroglThrEiK54NeSncETkMP70LGVWlfJe8DZ1CzYUtlK0uNlTz8aH1jPaL4K6eI0goz+eHpO24qLX0drOlyu4symBB6h5uDB9MqJMna3IT+PDgOuYMvKxJAJainT0jABN93fkoKZv9ZVX0c3M6+QkdgHuwIyPviWLzp/HseD2MSc9e3WLbE6U2j9UoGKS24NynHPoAPEsBzzJjCFglFSJOSESjwIUky4WEKRfgLI6nh6sPgQ6uZNeUk1ldRp3FhE5pjx0511AqlSydHglEcsP3h/nNkMtB/0Lcvi89YaXgu7fHsyCzkL0XD6W7k77NxnP1BAfi/gpk6C25PPJWKVv3Gfn5da/TiiOps9pEEx1OcN8eyVLJdcuhLMsmBd8RWSpVZgPzE7dSYapDp1QR4ODKQ33GEeVmK1NRaqxFOKZCX3dnL6ZHjmRxxj4Wpe/DW+fEvVGjGrw3AJMCe2GyWvgxeQe1FhPhLl481Htcm3pvTobdGLHTgEIUuTF8MJ/FbUTGNvHvLMrAUamh1mJCQuZK8WV+CrofWbAFLeRJeSwzLGOlYSUWbPECOkFHP/MY7vN4oWH/1FPryM6iDNKqSlq8/oa8ZDy1jlwbNgCwKQumVBSxOiexwRhZnZPABb7dGVm/2r4pfAgHS3PZUnCYyUG9G/XXEZ6RO7sH8FFSNl+n5PDh4PYXPDpVrvloGLt/PszyOXsZdX8UeldNs+1Oltr8e83vTCmaxgDBE2usiV4eCi4PC8BJU4671oBJTkHGhJVyci3P46weD9h+30fKlxusFrsxco7zy63d+YXu3Pt7Ol9WZXM40FYpOLDcmXV39SLcy2Z0pFfX8V1qHhJwxYZ97Jw8BJ2y6YRXaqhpVB3cUak5JRmBiG5qcv8NZvhtufz2bw37kkzs/DkAR/2pGySSLPN76m66O3s1mrCP50iWiluQAzn7bVu1HZGlcmuPE5egeKzfhCbvDfQKZqBXy6nZgiBweUg/Lg/pd9rjOlPsCqx2GtHfI5DpPUc2KpVdbTE2lNHWSy5cLN2IeMytIyM3GCIAdXIdOpWChPICCmpthbiyqstIqSyij7tfi9dOrSym5zGrCLCtNFIrbaqnFslKZlVpo5WGKAj0dPVtaHMsCkHRrgGsANHuTqhFgdVtGDfSFoiiyC0/jEEyy3xz1ZrT7uc6h+u42eEutsrFGEN78N0hkQfXOLHgwBsczl1BX3UG/dVF9FamEK5cBoBVkhp+HyLCCVeXds4tjlQKntVQKbisoVJwbHY1rx9Kb9imja+o4b4dCU36OFLv6NW9Kxpez+36+5QLMGq1Int/C+SOK5xISDfjPzGDg8mnHmz/S8pOcmsqmNFz5Cm19+nlimSWqas0nfI17DTFbozYacIgr268NuQKrgqNJsTRHQ+NA/56Fy7078GcgZfwddDbKFtwqilQEKoIZWHATwzy6sYLu//h3s2/8Ore5YwPiGSod2iL1600G5pdRRisZkxWC9Vmm1Hk1NxKw9x0pdERnhGAcCc9KVV17X6d1tLn0mBChnmRvC6PpHW5p93P1+5f01PZk33Ou4gMDSG3NondxSv4L/8wxQabHL5W7I5StKUVbshLboje7+cRgLqFAEA75y5zm6kUHLNiO18k52Ct16CRgPlpeXxzXPXr3NqKRoUXASyy1MhTcirMm+PFV897UlMrEz0thx//qTrpOb+k7ORAaS4z+43HTXPiLaQjWSrdhthq5aSsz2sxS+VYbFkrbVe081zBbozYaRZHlZZJgVHMipnM3CFX8MLAS5jWfRC+ehd8Fb7c63gvimYENQQE/vL8i+SSMnYUpnNX5Ahmx0zh9h7DWZUdz9aC1A77DApB0SHGyEW+7phlmT0lXa8c+4zFExAVAvOnrUOSTv+72OqzFR06DvfYh6Pegd0lyzhceYjXY/9lVXY8ebUVHK4s4vukbfyWurvhvHH+ra8kbOfc4YnxfpieGcFX4f1QmJqPP7h3RwJ7SiupMRv5Kn4zHx9a32y7g6WtN6inX+XM9h/90WoEbpldxP1zm3pQwZaC+0vKTmJLsnm034V4ah1P2veRLJWIcTZvb+p/BS1mqRzhSJZKS2qp5zN2Y8TOafGU81PNGiMWLPxY8yN/psUyKSiKwd4hBDi4MswnlPEBPVmeFddMbzacVdpmVxFahQq1QomjSoOIQFVzKw1V05WGQhCRaH9jZHq4LS7mm8On731oL5y89Yx7rA/VRQb+eXb3yU9oAVfRlRVeK7BiRTuqDgGBFTlfUFBXxIK0vby4eylv7lvFf8cYmxMCejbZdrNzfnLFAFdUbhI0k0hnlWUuXx/Ly3tXs6s4s9niAwCLM/azLjex1dce1NtWaC8sQMmnv1cy9OamhfZ+ObyL7fWLJ61CRYWpjgpTHSbr0e3nbxO3sDAttuHn8QGRHCrL44BzHoiwNz2TjOpSxtYb4MdmqewrySanppxvk7Z2eJbK2YLdGLFzWvgp/Ljb8e4Gg0RE5ArtFQSIAbxT/Q7/OH1Mndw45VUUBOQWHzUQ5uzZaBUBEF+e36DMqhQVBDu5E19+tKKoJMskHNPmWGyekfaXJe/t6ohGFFjTxeJGjnDZa4Nw9NKy5q0DVBWefhryaO1oZjvPppgi+o0LxipbWJTxThOPi0ahZGpINNeExpzp0O2cI7yfkImpBS+lBOTUmvgiQYksg16p5kL/HtwaPoSrQmIape3/dnhPo2qzp4qrs5LkvwO5YqyeHQdNBFyUSUaOueH4hrxkKqolJj2cyS0/rebJ7Qt5cvtCdhVnNrQpNdY2aCzB0SyV/wpTkXoIlBXXNJulMs4vkh+TdzB37wqMVnOHZ6mcLdir9p5HtLX2R641l5DcEMyY8SeYG/LfoNYok+C+nPWOP+NuDuRdx4+42GUcWdVl/Ji8gxG+YVxdP0ktTIul3FTLHZEjAFtq75zdSxnr34ORPmEklBfYZMX7jGmU2js/cSs3RwwhxMmDNTmJ7C7OYM7AS3FWNxY6ilowgozqLGpuz6K96ffPVhIqazHdOL7dr3U6JK7N5ZPxywkZ7s3MLZedUV8jCkaw1bSVUYUT2LR3L0O9RjIj8imUokiIkwdDvUK6vCCenY7DYLXiuWAjNRYrCoFGaacAFql+ChJASNbx1tAQHpvSWMV0QdpeVufYgl1H+4ZzUzNKowAl5VYcdAJaTcvr7NfnlfHMh2UolbDoPR8uHuWAJMlc/nA+SzfVMaSPhu0/tq5S8Zzuv1NdWMdbVbe16rzzAXvVXjtNaA/tj3sd7+Xz6i8YlfsAU7sd0f4Iw7Mgkn+83mSGYRrjsu9hoDSWUX7hXBp8tIBbhamOUuPRlbqn1pEHeo/lj9Q9rM1JxFWj55YeQxsMEYDBXt2oNhtYkrGfSpOBQEc3Huo9rokhAqDsIM8IwEX+HhyoqGFnSQWDPbpefYjIC/0JH+tLyvp8Di3NpPclp1+Bda3XWvxy/fjPey09fQexPf8/buh+gIf73N2GI7ZzrqAQBG4P86PMZEEhgFIQUAgCStH2/7zaCg4WFZKW64Q53pHH/6vkg9RcXhrUjesHeaBVKLg0uC+b8lNsIl9F6dwYPhhBEMgusLBpj4GNe+pYs91AcqaZmy524Me5Pi2O5+k73RgcpeGSB/O55MECnr/bFasVlm6yeT12HDSydZ+B4f2Pbv2eLNXYM8yJkrSOL5h3LmH3jJxHfHxoPc4qbaM89c/jNqESFdzVc0Sz5/yZtpeDpbm8MPCShve+it9MrdXMw33GYZWtPLf/d/o6hHND+GDAtnUya8ci+vq58aTiRvKkPAaqBrLReyN6se1Ejk5GzF9jiS9PwnBn+8dyJFTU0OufrdwdHsDnQ5tXRu1sasuNPOP1ExpHFa+V3HRGD82DpoP0L+iPI46w3p0qYzU7rljFIK/othuwnfOCRen7WJ51CIBbgkcxd00NK4RcZLWEOl3PHXIEI6O1xGl2k1pRSn6qE8GVfVm/00h2gU3UUKkAi9UWkvLUna689tDJq/jmFloYeEMO+SWNhRGVCrhsjJ6/3rXFOx1JNT42w0cpiLw86LIGg2Th49tZ985Bnom7Ct9ebm3xtZwznOr8bTfhziPCnLzaXPtDlqGskma1PyqrBLL9srlSeyW7zbvxyfVhq3FrO3yy5lGIihPGqLQlPV0c0IgCawvKOuR6p4PeVcPkF2KoKzfx58PbzqivPuo+fOz6MZVUEjTWEVEQGLf0CipNXS+jyE7XRiUqkCSIrdRx5Y4UlmuycdAL+Nc6MsjixcY9Bm6dXcTrTwTz+yvRbPw5jJ/+qW0wRMBmiICtfuTI6OYF/o7H31vJ3x96c/wOtcUKi9bVcjjLFlNSbTGeNNU4bKTNE5O0Lq+Vn97OEezbNOcRk4OiMFjNvLD7HwRBQJZlrgjpf0baH0eUWZvT/sivq0QURRZ6LWRe9Tz+V/Y/RhaO5Hnn53nR5cX2+IiNUArKDtumAYh0diCu4tSEmTqLybNj+O/zBDZ/Gs/4J/vhHtQ4hbE1cUX3Ot3LSsNKFhsWM2HYlazduoVhi2/mqpDpZ1RTyM75Q3pVHe8n1bK2wAsJAaVgYUZ4AO8M6IGT6uj0tDUjj3s/SWb/6gBkqZmi1ccwov+paXgUlVq58tFCRAGsx3UoivDuj+V8MsvrlPo6kt6buaMI7julU+wch90zch6xuyij07Q/7nS8k0TfRLxFb+ZUzmFYwTAM0ulLIp8KSlHZYZ4RgMn+Hlhkmf8Ku653BOCuP8cjS/DV5auaHDsSV3RD+CBeHHgJV4VEszI7nnW5Sc329ZfHXwTSjQ2OKxnWfTTxFVuIK1/FD0nbOVR2dHvsSE2hS4L78GzMFAIdXPnw4Lomqdx2zg9+Tsuj55IthC75j9UFlTgpZUa4VnF7QBEjXCuQZZtXQpZlDpXl8lfeVoZels0NL+wlLETgRDuMARMz6X1VFve9WsTmPXXN6utYLDJXPZZPXrEVazNJPlYrzFtYzZ6sQv5M29vsdUqOUYTVu2oQlQL5ceWt+h7sHMVujJxHdLb2R3dVd3L8crhEewnbTdvxyfVhl3FX233A41AKHbdNAzC9uy3Qdn5q13bVhgz1JuriQHJiS9nz2+FGx1Krioj2CKCvewCeWkcGegUT5erXYk0hURR50TwPreTInvB/CHfrxsKMX1CKxazOOaoJcWxNIX8HF24KH4JaVLKl4HCz/do59yg3mbhnezxOv63jpi2HSKmuZbyPG/suHsrmiX3o62xAFGFrYRpP71jMq3tX8OzOJXx4cH2Dom/fbk7s/SmYK8Y2jT1TiNCjm5JgPyUpWWY++6OKUXfmoRqUTtCkDK5+LJ8f/6nCYJAoLLWy65AJSQKFgiZbNQAGk8Q9X8STcIyUwLHMS9xCfNlRKQKdq5qyzK7tGe3K2I2R8wiTZEE8Lq2uw7U/RAX/eP3Dp66fUi1XM6RwCHMr557Jx2oRpag8sT+3jYlwdkCrEFnXheNGjnDH7xei1Ij8MmMzFsvRpeHpxBWVVll50PoyBgxYh5WhV+r4MvENDpbaPG6trSlk59xiY0EZw1bswP2PjXyRkoNaFHg6qhvV141l9YSB9HNzoo+7P3dGDkcp2KYkqyyRWV1KifHo5B7m5MkDvcfg7KBkwds+PPc/10bXsUrwzF1uJC4OwrgzjIRFgTwz3YVBUWoqqiX+WlPLLbOL0A1Lp8812QzopeaOKxx55EYXJg7T4aQ/3iIR2LU0EEONiKNSQ3/3AHq7+jbU7TJJVj6L30hBne1vxTXQgdrS1knW2zmKPWbkPKKfewDLsg7irtXjp3chq7qM1dkJjPA9urd/vPbHGL8I1ucm8Wfa3gbtj91FmTzQZ0zDORMCejI/cSshTu4N2h8mydIkZuBY7nW6l3GacYwqGsWzFc+yvG45a7zWoBbbrqhaR2/TAPR01nOgvLpDr3k6aBxUXP76YP56dDu/ztjMzd+OBk4/rugCzQXc43APn9d8zuTxF7Pq390sz/6GSuM0JMQTxhXZOfcwWSRei0vnk6QsioxmBCDGzYm50d2Z5N98nNAQ7xDCnD3ZmJfC9sI0yk11KAWRMGdPRvtFMMAjCEX9/owoCrx0nzt9uqu5dXYhJostmH5k9NF7LDJEzasPePDqA7afyyst/LKihr831LI3wcTW/Ua27LMZD1qNQPdAJf17qOnmp2T14Sxit+sxGxSs/yyGrd+E4u9pezbVWUzMS9zK/tIcjFYLq7ITuDliCD49XcmJLcVUa0Gtt0+trcX+jZ1HXN99EIsz9vNzyk6qzEZc1LoO1/44lp7qnuT55XFJ8SX8a/wXn1wf1nmvI1od3Saft6O3aQCm+HkQW1bNpoIyRvl07RS/sY/0Yf2Hh9jxXTIXPRuNd7hzo7gifwdXsqrL+D11N65qHcNPYFwCfOb+GRuNG1lhWcZVMXewcM8/TFx+NSunLOygT2Sns0msqOHR3Umsyi/FIsvoFCK3h/rx1oAIPLUnX2h4ah25KjSaq0KjkWQZAU4oyHjdJEe6B6m45MF8kKF7UMtTmquzknuvc+He62w6QJIksXJLHb+trGHLPgNJGWYOHbbFqgiCE3pXE/7djJTnOjL0plwWv+/HgF4adEo1d0YO56kdizBaLWwvTOPasAEED/Zkz6+ppGzII2qKXe69tdiNkfMIrVLFtO4DmdZ9YIttbo8c3uS9SFcfZg+YcsK+x/lHMs6/eeG0E6EUlaz0XsmHlR/yaMWjDCwYyJsub/KY82Ot7ut4VGLHq4DOCA/gtbgMvk3N6/LGCMCMRRN4o/8ivrp8Fc/GXd0orgggwMGVEmMNy7PiWjRGjo0r2uqzFb9cP5Z6/MYg36nsyF/BnD1zEel9yjWF7JxdSJLEt6l5zD2URmq17Xcc5qjjmd4h3BHmd9p6NuIJjJBjGRil4dCfgZRVSic0XJr0L4pMucCBKRccFS+LO2zijd+zWba1hooCHRmJakCmqkZm8E05zLjKic9ne6FTqunnHsDOogxMkpXCuioixtYXzNtcYDdGTgO7MWKnS/CQ80NcqL2QMYVjeLzicZYalrLCc8UZbdsohY6/vUOd9OgUIhsKu2admuMJ6OdB9DUhxC5IZ9u8JEy9Ti+u6EhFVWfRmZWeK7mwYAK5PfcQWOXP+4c+Z0bk87xY9QJl1sOs916PDCSU59ur+p7FFBtMPL4nmd8zC6izSigFgYv9PXh3QA8iXRxO3kEb4uGqwMP1zOu9RHVXc+9dAtoLDgIw2SsGp/JubNtv5PMFlaRlH61noz6mvoyMTGC0TWgtO7b5YG87J8ZujNjpMvRR9yHPP49JxZNYZ1yHX64fG7030lvd+7T6U4mdc3tHOTsQW372SEPf+tMYDi3N4o8HttBnZ8QZxxVZyr2ZUPQQy33eYuzYsRSuKeRrlyeQlSYwwfbq/aTkG08aV2Sna7Iyt5hZsSnEllUjA94aFU9HhTCrdwgqRfP3+4bcZDbkJVNitMVT+elduDS4L33c/ZttD7C7KJPFGfspMVTjrXPiqtBo+ro3rlnzd8YBNuWnUGc1093ZkxvDB+OjOzOVbh+tU8O/U4zZPDGsFxOG6Xl2hmvD+xbJyoF6A1xEwEPjgCiKqPRKilLscVCnw2k9KT/55BNCQkLQarUMHTqUHTt2nNJ5v/76K4IgcOWVV57OZe2cB6hFNeu81/Gmy5uUyWX0K+jHh5Ufnl5fCptXxSJZTtKybZni74FVhvWF5R163dNFqVZy9UfDMddZsb5UxwDPYH5O2cmLu5eyIG0vo/zCuaJbv4b2LcUVxZfl8/Ke5azKSWB20D1coL6A9Zb1iKMrkF1MDe1fTJ5PVk3ZKcUV2ekaGCwWZu1NxuOP9UxeF0tsWTVDPJzZMGEgBdeM4fl+YS0aIgCuGh1TQ/vzTMxknomeTE9XXz6N20huCxV4D1cW8XXCf4z0DWP2gClEewTyWdymRhV7V2bHszY3kZsihvB09EVoRCUfHlyHWbI22+epEuLkgZ/eFleSUlnExrxkwBa7IggCkizzZ9rehnTjaM9AHFQ21Vcnby1V+XXNd2znhLR66fjbb78xc+ZMPv/8c4YOHcr777/PpEmTSExMxNvbu8Xz0tPTefzxxxk1atQZDdjO+cETzk8wUTuRsYVjebjiYZYalrLUc6ktXfcUUdVv05gkU6vOO1OmRwTwyqF0vkvN5ULfk9fI6AqMuCuSdW8f4MDvGTw1ewDThpxZXJEsy1xedTmbTZsxCAaO7PwIssCAMB2zXCe1+Wew0/bsL6ti5u4k1heWYZXBUangnogAXovujqv61LdQ+3sENvr5ypD+bMhLJrWqBH8H1ybt1+Qk0tvdj0mBUQBcEdKf+PJ81ucmcVPEEGRZZk1OAhcH9yG6vu87Iofz+La/iC3Oaoh5Oh0EQWBSYC/mJ9lKJvyUspNthenEeARikqzsLEwnrz4LTEDgooCjtag8Qp0ozej62XRdkVZ7Rt59911mzJjBHXfcQVRUFJ9//jl6vZ558+a1eI7VauWmm25izpw5hIXZ3bJ2To1odTT5/vmMVI/kX+O/+OX5kWhKPPmJ9agUtgBWg6VjVT67OejQK0Q2niWekSPMWDIRBPj6itVn1E+lVMk1JdfwZMWTTY7JyPxWsoBSQw2Z1aWNXqUGu2BUV0CSJD5KyCR44Sb6L9vOmoIywh31/DSiN1XTxvHZkF6tMkSa9C9L7CxMx2S1ENZCOYDUqhZqYlXZdGmKDTVUmg2NtGt0SjWhTp4Nbc6EYd6hTAzo2fDz4coiFqTtZUnG/mMMEbg5YjChx+gp+fd3BxmKDtu3alpLq5aLJpOJ3bt3M2vWrIb3RFFkwoQJbN3acgG0l156CW9vb+666y42bdp00usYjUaMxqPiMZWV9l/s+YpW1LLZZzNzK+cyu2I2vQt685HrR9zrdO9Jz1UJ9caIteOFiKJcHNlTWnnWxI0AeEe4MOTWcHZ8l8L6Dw8y9qE+Jz/pOGRZZmzhWPaam5fQRoBUIYXbN7yFn75x8OrxlVDtdCy5tQZm7kliUVYRRklGJQhMDfTivYE96OZ45ttpOTXlvBH7L2bJikah5J6oUfg7uDTbttJkwPm4TCtnlZaK+oysSrNtK6S5ulkVbVBiQBAErg6NIcDBlZXZ8eTVVjQ6Hu7sxSXBfYhyaywGGDbcmw3vHyJpTS5e3e0V5ltDq4yR4uJirFYrPj4+jd738fEhISGh2XM2b97MN998Q2xs7Clf57XXXmPOnDmtGZqdc5xnnJ9homYiE4omcF/5fSw1LGWJx5ITTvTqes+I0WpqsU17cUmAJ7tKK1mTX8ZEf48Ov/7pcv3Xo9j3ZzpLntzJiOk9Wy3eJAgCN+hvILEyEYNsQKKZwh8qmaVFn3BzwKtolUcL9R2phOqO3RjpSBZmFfL8vsMcrC/y6K9T80jPYB7rGdymhrSPzonZA6ZQZzGzpziT+YnbeKzfhBYNks5GEASG+4QxzDuU9KoSCgxViAgEOri1OOaIC20BuRk7ihj5v57NtrHTPO26ZKuqquKWW27hq6++wtPz1Ktzzpo1i4qKioZXVlZWO47SztnCYM1g8v3zGaoeylLDUvzz/Dlsbrm2yZFsms7wjEwPtz2Uvkvr2nVqjkepFLn+6wuwGCXmXbf2tPp4wvkJsv2zedH5RZwFZwSaaj9ITkb+yni7SREzuQOrLJ/PVJssPLIrEdff13HVxv3EVdQwysuVHZMHk3PVaJ6ICmlzj55SVOCtc6KbkztTQ6MJdHRlbW7z267Oam1DgOgRbFWkbZ4QZ5XNU9Nc3SwXddtq1wiCQKizJ8O8QxniHXJC48nRU4uoEMg/1PVLQnQ1WnW3eXp6olAoKChoXDiooKAAX1/fJu0PHz5Meno6l112GUqlEqVSyffff8+SJUtQKpUcPtz8RKLRaHB2dm70smMHQCfq2Oazjeedn6dQKiQyP5Jvqr9ptu0RjRKjZDNGjo9TaM8YhUC9FgelyOazLG4EYOC07gT0dyduaRbpOwpPqw830Y3nXJ4j2z+bN1zewF10P2qUyODh60O1pZQ1ed82Ou+vtFiM1o7NfuoMOvJePJadJRWM/ncXLn+s54NE2yLvkcggKq4dy8aLBjHYo+O8FLJsS5FtjjCnZmpileU3xJh4ah1wVmkbtamzmEmrKm4xDqWj0Lqq7UGsp0GrjBG1Ws3AgQNZs2ZNw3uSJLFmzRqGD28aYd+zZ08OHDhAbGxsw+vyyy9n3LhxxMbGEhRkV6mzc3rMcZnDf97/oRN0TC+bztSiqU1W2UcUWI0WE6WGGp7b9Tev7l3R8Hpu19/tOgn0dnEkq9bQbAnzrs6MJRMRRPjmqjUnb3wCnEQnm6fEL5un1HNQW/UgQIVvFh6aQNKq95FQfjSOLKGigK8SNp/THpKOvhclSeLNQ2n4/7WRISt2sqmonCgXBxaN7kf5deN4b1Akjur2zTZbmBZLUkUhxYZqcmrK638uYEh91su3iVtYmBbb0H58QCSHyvJYlR1Pfm0Ff2fsJ6O6lLH1InmCIDA+oCfLsg6yrySbnJpyvk3aiqtGR7Rn584rrgF6akrsBfNaS6vvwJkzZ3LbbbcxaNAghgwZwvvvv09NTQ133HEHALfeeisBAQG89tpraLVa+vRpHATn6uoK0OR9O3Zay3DNcPL88xhTOIZFhkUE5QWxxWcL3ZTdgMaekWqLEYvc2Cho7xiFywI82VFSycq8UqYEdO5qrbW4Bzsy8p5ebP40npWvxjLp2egz6k8jaBEz+3OL4VNWeX9Apn4vj0+5hTeWfcLmggXc3uNSYktqMVjNHCjN5WBZbiOBq3OJjroXM6rreGR3EktzijHLMhpR4PpuPrwzIAJ/fcfK8FeZDcxP3EqFqQ6dUkWAgysP9RnXEABaaqxttJ3X3dmL6ZEjWZyxj0Xp+/DWOXFv1CgCjkkDnhTYC5PVwo/JO6i1mAh38eKh3uNQiSdXYv07Yz//ZB5s9J6PzpmXBl3a4jmnKsKWO6YWOU7inT2rubnXkDMWYTtfaLUxMm3aNIqKinj++efJz88nOjqaFStWNAS1ZmZmnjXZA3bOfhxFR3b77mZW+Sxer3qd8Lxw5rnP4xaHW44JYO2cVcpd3f15bn8qP6TlnXXGCMA1Hw1j98+HWTFnL6Pu74XeVXPafcWV5VFsqEaBigcNb5LmtZAXap7hh8k/ccPf9/HQ1vtYMnEZv6buA2BDXvI5a4y0N7+k5THnQBqJVTZhumC9hieiunFfRGCnPZtv7THshMcf6zehyXsDvYIZ6BXc4jmCIHB5SD8uD+nXYpsT4a934ZG+Fzb8rDhBXZsjImxXhvann3sAOwrT+SxuE8/GTG4wkI6IsA0K6sYuSxLWNAsfWtfx4sBLT8lAOt85rTvzgQceICMjA6PRyPbt2xk6dGjDsfXr1zN//vwWz50/fz6LFi06ncvasdMir7m+xgavDagFNbeW3sp1xdc11KapNtexrySn2fNa2rNuC/z0WhyVCjYXlbfbNdoTURS55YcxWM3SGW/XJFUcjT0Z5RvG486P013ZnftN9zJrxANUW2p4YOv/GtI5k8pPL1blXEOWZR7Zlcjz+1oO1AYoN5m4Z3s8Tr+t48Yth0iprmWCrzv7Lh5KxtRRPBDZtpkx5wKiIOCi1jW8HE9QtPFYETY/vQtXhPQn2NGN9blJAI1E2EaPthUMjTzgTrmxjthiewLGqWCvTWPnnGG0djR5/nmMKhzFH3V/sFq3FhQSP6Zsx1Nb3uw53yRs5ZG+4/DSOTV7/Ezp6+LI9pKKs0pv5Fj6XBpMt6FeJK/LI2ldLj3GtVxL5AgGycAu0y52m3ZzyHKIw5bDxIkplAWVYBYNfGmywjFJRilecdwSfi0/pPyBRvEjgz2vwSRZkGW5VVVYz0Ve2J/KB4lZKAWBhyKD8NQ2FhvbWFDGk3uT2VFSiQy4q5U8HdWNF/qGolXaH+8norCuiie3L0QlioQ5eTI1JLpFjZvUqmImBDRO1Y1y82NfSTbQWITNz9cWBFywt5zQqTYRtjNRhD1fsN+tds4pnEVn9vnu47Gyx3i36l0YLpJYsAtPbKsVR6Vtq6HaYtu6KTZW8+6BNcyKntxEQKktuCzQk60lFfyTW8zlgS2XS+jK/G/JBGb7/8r8aet4Jf8Gqqlmu3E7e817OWQ+RKollVxrLsVSMTVyDVYae5sEBNSCFoWkxcnkTU9NBHe53cAA9QA0goZIVSSMhW2Fe9hbshEXVTCDPEef94bI/MO5vHwwDQBJlpl3OJcne4dgski8FpfOp0lZFBrNCECMmxNzo7szyf/s2w7sDEKdPLm9x3B89E5UmOr4J+Mgb+1fxQsDLkGrVDVp3xoRNqVSRKVTUJRUiZfat01E2M4H7MaInXOSd9ze4XByDYsdvuZQ6DIUxjr+9PqV7i5egK0A1k/JO8irq6TUWMuK7ENcF9ZyPZbT5a7wAJ7Zd5if0/PPGmMk35LPdtN2Ys2xJFgSSJVTyd1YjKUQ3jp8JxZtYxE5EREHwQF30Z3eit6EKkOJUkYRo45hiGoInkpPCmoreX73PwC4qnVc5TO5UZE8WZZ5qt+b3PPfDWzI/4nLgsd06GfuKGRZJqOq9KTt1uSXMn17XMPPEvBeQibr8ktZXVCGRZbRKURuD/PjrZiIJh4TOyfm2GrBgQ5uhDp5MmvHYnYVZ3KBb/cz7t/RS0tFXi1eZ9zT+YPdGDmGUkNNw4r5CI5KjV2e+izEYDFjLvWAgy7oh8F+p3XcZbyWpfJSHEVHIly8eajvOJ7b+TcWWWJrQSpXduuPWtG2fxLeWjVOSgWbCytO3rgDkCSJDCmDbcZt7DfvJ9GSSIYlgzxrHuVSOQYMyDROq1WixDHYEfekEPrPG0/UfT70d+nDAPUABqsH4yg6tnC1o/jonenj5sfBsjzKTXXM3buSiYE9iXT1odxYx4a8ZPaX5nBJ0AMsznyPl2Mf576oKWiVHZv10Z6UGWv5In4TaVUlzR5fkr6f//W6gKQqA1ds2Mfx2c35BhMr8ksJc9TxbO8Qbg/zOyu3/roieqUaH50TRXVVzR5vjQibi1qHe4gTqZvzqTQZCHJ0bdexnyvYjZF6juT+H59yZ6+XcXaSXl2CJAsgCVxVcDeRATper3yd3vm9ed/1fabqp+KucSDGM4idRRnUWsxk1ZTR3bnt1zL9XB3ZUlyBVZJQtPPkIUkScZY4dpp2st+8nyRLElnWLAqsBVRIFRhpmlmkQoWz6Ew3ZTcCFYFEKCPoo+rDQPVAYlQxDSnSicG5fHLHckI2eDNzy2WtHtvNEUN5Y9+/lBlrKTPV8nvqniZtfHQh3NvzAT5L+IgxSy9n+xX/tv5L6IJUmw28u381hYaWxbAOlOXy2r4NfJmuwmC1NiekzygvFzZeNLj9BnqeYrCaKTJUM0zdfA2eIyJsx8aNtCTCFuTohn8/Nw5vzCctr4gxA8I75DOc7diNkXqay/0He72Ms5ViQzUKwZZOJ8lWblXcx2jXCUwoH819ZfcxVT8VAI9jjMz2Uv68PNCL/4orWJJTzNSgM9uqMUkm9pr3stu0m4PmgyRbksm2ZlMkFVElVWGiaR0eDRpcRBd6qHoQpAiih7IH/VT9GKweTJQy6pRX15EX+hM+1peU9fkcWppJ70taTrtsDjeNnif7T+S7pG0klBc0Oe6s0nJ1WAzDvG8kuyaJv7NWMnPbbN4d9kqrrtMVWZy+v8EQcdfouTKkP9EeQZglK9sK0/g7Yz9VZivvJJmpsrYs+La5qIK06jpC26Bw3fnMgtQ99HMPwF3rQIWpjr8zDiAiMNjLplH0beIWXNV6poZGAzYRtrf3r2ZVdjx93f3ZWZRBRnUpN0cMARqLsHnrnHAZ6ggfgz5DSfRFdnHPU8FujNg55yg11PBzyi4U9VV7kysLeHXvCg64/IPVzcpfnn81tE2pKGr4t7Nayz7TPnooe6AT2+5hf2d3f56KTeHntPyTGiPVUvXRTJT64NBsazYlUgnVcjUWGhtMAgJatLiKrvRW9SZEGUKkMpJ+qn4M0wyjm9itTV350xdO4Bmvn/j+5g28VnJTq/t21zjwaN/x5NaUs6MogwpTHWpRQbiLNzEegSjr9RgWTfyBkN9ieO/g54z1u4DLu01us8/Q0dRZTGwrtAWiakQlT/Sb2OBp1SiUjPXrQWKVyKO70zEjAjI0U8/nCF8kZ/N6TEQHjPzcpcxYy9eJW6gxG3FUaQh39uLp6Itwqt92OWMRNm8jCqDXPk+7xsgpYjdG7JxTSLLMfwWpWGUJRb3OiCRbqRMr2eWyiOtVtzJcYytdcKgsl5RKmzHirIcn6+7nl9JfeNf1XR51erTNxuSpVeOsUrCluJxiSzE7zDvYa9pLnCWONEsaudZcSqVSauSaJlVuRUT0gh430Y0eih6EKkLpqepJjCqGoeqh+Cqb1oRqT/SuGia/EMOy5/bw58PbuPajEafVj7+DK1ce8yA/HlEU2XXFaoJ/jeaaNXeQct1Ogh0DT3PUnUtieQGmej2bod4hDYbIhoJS/s0r4fu0fLJrjbgoBQTMuKisBDp6U2GyUmoyU26yUGu13Rcy8G9eKa/HdNanOTeY0euCEx5vCxG2h8V5VOy316g5VezGiJ1zBkmW+DZxKzuKMgAQ640Rq2ziH59XkbDgkjmKPcpMUitLWFdfMTRdv4tt3t9SU1eFiEiyOfm0x5BpyWSHcQf7zPtIsCSQZkkj35pPdYyVSkUtXnmVjdorUOAgOOAletFf0Z8wZRi9VL0YqBrIYM1gXEXX0x5LezF5dgz/fZ7A5k/jGf9kP9yDTh7Aejp46734+6IfuWjFtQxdfBFZN+xHKZ59j6way9Gts0AHt4Z/T14bi1mWuLN7APdGBBBXksDG/BQAno0ZQbCje0NbsyRRajRTarLgpWmaemqn66F1UVGabjdGTpWz7y/bjp0WWJyxv8EQAfDVuYLeSlzvpZg01TibfLAatXwRvxkAg1jFfx7zOey4DQGhIYsk3ZrebP+SJJFsSWaHeQf7Tbbg0AxrBgXWAsqlcowYm2SiqFDhKDjiLgRQnDOACYEqLvXoy0D1QAaoB6AX9e3yXbQ3d/05nneH/c1Xl6/iqb1T2+06EwPH8VzMY7y89x2mrJjGqov/bLdrtRd65dG025zacgDy6owYJIkvh/ZkRrjN4/NvZnmz5wCoRBEfnQYf3elL8tvpWFz89RSnNJ+dY6cpdmMEqDDVsSIrrsXj1mYCW+10LWotJtbk2DwdIgJ3Rg5njfJXCCzHVL8NH1J7NAshVb+DTR7fYBZt9TuONSJ2m3bzYOmDJFuSybJmUSQVUSFVNBscqkaNi+hCmDKMIEUQEaoI+qr6Mkg9iH7Kfg0r+TKjCfftG3GSvHg4tH87fhMdQ8hQb6IuDiRuWTZ7fjvMgGmNtRlWZB1iYfo+LvSPZFr3lvVbTqX42CCPSxjocZDVuf9yw5o5vD/i0bOq+FgPFx9UoqIhWPXioN78lGaTu7+yXnsmuaKQ1KpiAPz0Lnho7AHzZzs+kS7kHyrHYrKgbOeqyOcC5/03lF9byXsH1lBuqmuxzcK0WB7qM64huM5O12NHYTrm+n35nn4OPMHtbKjZAPW/MhGRXg7dyK9LZLP7fEo1mS32VSgV8nHNxwgIaNDgKrrSS9WLboputkwUdT+GqIYQoYw45QBON40aF5WCrcVdQ2+kLbjj9wuZ5fEjv8zYTL+rQ1Eqbd9FelUJG/NSCDxBTAi0rvjYFxe8yiUrY/kz40uc1D58MnLGWRMY6KBSM9Q7hM35hzFaLby1fzXzMp1xVCpwUgqsz01icca+hvZj/CLOe/XZc4HAAZ7s+yuD9G1FhI/26+zhdHnOa8Uck9XCx4fWNxgiSkGkr5s/F/h2p9sx+7WJFYX8kbq3s4Zp5xTIqSlHRibBcT2zNNfzn/G/RsclJH5XfcoSv5dOaIgcYUbhQ0hBEnVBdeQF5BHrG8tir8W85fYWtzjcQqQ6stWZJNFuThQYTFikc8PTpnFQcfnrgzFWWfh1Rv3Wl9XMN4lbuCViaJOthuNpTfGxgV4hbL18GSDxZ9onbMg71N4fr025olu/Bm9Hfm01+QYzDmIdD2/9g18O76LWYgagh4s3o9pAAdRO5xM+xhZcnrIxv5NHcnZwXhsju4ozKarP/ffXuzB3yBU80Gcst0QM5ZmYyTzS50KUgu0r2pyfQmULNQbyawtYlb0ei9Q+OhV2Tk4VFazwfouNnl9RR12TFFgA5yJPvPdHoc/2QVlTH6vRgl0gtEOM4NQgb2RgQca5U5F27CN9cA91ZMf/2Tvr+Lau8/+/r8iSLDAzQ5w45DBzmobK7VKGrd3arqOu323l7bd1HXS8dlDuypSmaZjbMMdxYmZmSSZZcO/vD9lyHNtBx3aS+37VjXXvuVfnSpbu55zzPJ/n7Vxq8mx8kHeQ0f4RjPA/e5ZPQVMdw/26t0v1D/cuV5xafAwg3hTL+3P/g9VZy/d2PoZ4GYk6k0bHE2MWEmPwJ7/VBxBI0nc3oEsLjOL7I+fIM7BXCLFTPUtwZYd7d9yV6c5VLUZ2VnWV5b47eTLm09z3RviHMS/CU2DNJYns6/AKaHe3s7Xia36+/1eM+nQG4e+PZNH6Wzne0HfcicylJU93gFL9MejbL4qRzrHUVFbTesKFa6cOdvpBoQ7aOj4Gp9zbkkNj+72P9yV4bqofFl9ZI6WHvlgIEvz9zrWUNDd4jaLOxvkUH+vk1oTruS76bgqaTnLblm/3zwUMEAFaX55MW0y74KmLck2YjnhjILPDknh63GIeSZ2NVilnylwpqFQKVFolNdlXztLspeSqjhmpbPX8kfhpdF5b35dPvM4LR/9MpG844bpQ2txOqlpFVAo1uda1vHDUxt6aQ7SL7agEJS6pq0JpgiluMC7jqmV1cTpflWQAIBHDfN/vs9f/fVqVFhB6qpIUwzxi429kdelfaXY1QosS8vSQpwOzCyLaIdwBaomNVbkU5X1EoimIO5Mm9UvApJ9Gg59axd5629kbX0ZEjgkkdUU0Jz4uZcnRFNQTLu3Ifkn0jRQ05fB58Vf8I+O/id2HcgAAhyJJREFU/GDUdy/p8/UnCkHghNVOhE7D8xN6elnIXFn4BvlgrWgd7G5cFlzVYqQ3HKLDY7ldn87Bs2TRnCpENAoN92x7hEjfMGIM0SSZ4kkxJzLMnHRFFfsaakTozfx49HwAVhYmElc+kQzTeg6bVyIKLkSh6z2sb3EQpvHnzsSn2FPzNicaT3aYjAlgVXt+siRU/koa1cUkxLagEkL4e8Y2fjlheb8ETI4PMLK1uhGHS0SjunImJif+JYWMw2Ws/f0RVidmglJARCLXWsP2ihxenrkChdD9es+3+Ji3jcPOE6N/wQ/23M2P9z7DtNDJTAxOA+DTwi95fO+zrF70HmMDR13CK74wipvbaHK5uT4qaLC7IjMABMYaKdxz5SzLXkquajESrjeTb6vF4mijoKmORFMwPxn9CD8Z/QiSJFHUXMI/jn/OK5l/o106s3mNQ3SwunRDr/sEBDQKNTqVDpPaSICPHyG6IML1YcT4RpJgjCPZnECq3zD8tf69nkOmdxSC4L1R3ZU8GavTjqrxelKa5nDQ7zOyjFs9KzeChFrUohQUPJl2I36aW1m+8U6+qdrb3RtEEghqi+RQwwEOVu9HgYIk00Rq7Qf5fxMeI0wfelH9vTk6hK3VjXxcUs3dCVdOhP2o4AiW/mwc6x46zKj/BnDjq1N5O2cvYXoT10al9hAicP7FxwDaXE4Km+qYEz6Vncu/YuwXc5m35gaKbz/Ci8f+zkvH/wnA+rKtQ1KM/DOnDICHky9PN1mZ8yN8tD8Fu6qxVLTgFyGna5+Jq1qMzAxLJL/DDvy93AP8aPQ8741NEATsLh/axXDuTX6BbOtudtd8hiiJPSy7T8WkMhCqCyHCN4wQbTAapYrqtjpq7XU0tFuwOW1UtdVwrOFED4OsTtQKFVqlFoPKF38fM0HaQMJ1oUQZIogzxJBsTmC4eRjRvhFXfQnxmrYmfrZvJWqFggRjEHcmTuRwXSnbKnOY1fBtRjVdy17/9yjXncAsBXBt1AjvjW3D4k+YufoWDtXvpzPYRCmo+Hr5OmJ9A3gt53+8lfMhWdY8Xs3ez6vZ/yLIJ5CFkbP58ciHmRLat39GX9wTH85jB7P56AoTI1qVmqUPjuPIn/LJ/qAc4SkRH6UKX5WPN033YouPBWkNrCpOx89HR1pQNGqFkv/O/AsPfvMjoj8YS5vbM8uiQMH+2p4VgS8ldpeTVcXpHK0vpcnZTrSvPysSJxBnDOzW7qvyWjQKgZkh/mRbqvmk4DCVrVb8ffQsjRnF9NCEbu23VeSwqSwTq6ONKIM/tydOIN4oz6pcLsRNDWbXv7PI2VrJ5Lvl6r1nQpAk6Qwhf0MDm82G2WzGarViMvWf2ZHD7eL/HV7rzahRK5RMCIom0MdArq2GHGvX9Nrc8GEkmRXcuOleqttqcZ+yRANwf/IdVLRWcaIxi+q2WlxSVzaHUWUgzhjDxOCxXBs5n+Uxi/BV+9LqaiXbkkeONZ88WyElLWWUt1RS01ZHfXsjVoeNVlcr7aIDsY8lI6WgxEepwVelx09jJsDHnzBdCJG+YcQaokk0xZNiTmKYKRHNWVItLzcyGipod7sI1RuxOtr4qjgDi6OV58cvQ61UUmCrw+awo1EqCTcYeG7/Ou4fNpXJIXHec2wuO8n3dz9Oru0gIBDtO5L0W9Z1Wxb4b+ZOipryOGnZwo6q3VgcnlgjnVLLxOA0vjPsLu5Kuu2crcoDP9mOShCovnVOf74cgKdIYLOre5aGQeXjrYdyqanJtfKblE8JjDdiWBlAVMdNGeBP6ZsJ9PHl/pRp3vYe07Nj1Ntb+jQ9W118nG+q8mh1OUgyB3Nn4iRC9Z7vgYO1R5j91XVeIdJJuC6UirsGLv33v5k7qWi1cmfSJPw0OvbVFLK5PJtfTliGv48nc0sURTQfbmW0n4FN80fxq0NrmB2ezMywRLIsVXycf5jHRs1hpL8nwPVAbTFvZe/hzqRJxBuD2FKRxeG6En414bpuQb0yQ5fGsmaej/6ImY+O4FsvX1gdp8udc71/X9UzIxqlisdGzvWannkcEot6tBsdEMFtCeNQKZSk3/w1d277HhvLt3Vr88cpvyRI2zUKKrQVs7J4DdsqdnK8MZNsax7HG0/yZs4HAOhVOmJ8oxgfOJprouby6IgHzrhE4xJdFDWVkGXJI89WQHFzKaUtFVS11VBvr8fisFHZWk1hU0k3IXQqnuUiDXqVDpOmc7komAjvclEsyeZERvqnYNIMfYfLUQER3t+jfP2JNwbx5P5VHKwrYWZYIsnmM1fIBVApVCyLfpAm1whey/4fccbRvbaLMybx28n3A1DcVMqfjr/MlyUb2Fm1l2+q9vLtr39EsjmBW+Ou48ejH+72t3A64wNMbK5qwO5yoVX130ewwd7CswdX4zpNuKoEBb+eeN2ACJKQZDOT701i/9t5zNmeytwfdi2V9EfxsVN5I/s9Ht71BOJpAwOAyrZqqltrCNWf/W/gYnG4XRypK+XRkbMZ1vE3d13sGNIbytlRmcuNcR7H3bUV9bglz1LdjspcgrQGbksYD3iWjPOstWwuz/aKkc3lWcwMS2RGh+/IXUmTyWioYHd1PoujR17y65K5ePyjDAgKqDzeMNhdGfJc1WIEIExv4qlxi1lbcoK9NYXY3U7vvhCdkXnhw5gTkYyyY807UBvAusUf8cLRP/P8od8jIRGuC+1x84k3xfL46Ed5fPSj3m1VrdV8UbSWLRVfc7Qhg6LmUrKsubxf4Clpr1X6EKmPIC1wJPMjZnNT3FLC9Z50UJVCRZI5gSRz92ncvqhurSHTkkOurYDCpmJKWsqpbK2mtq2eRocFS7uVytYqjtZnnGG5SI1OqcWoNuCnMROsCyRMF0K0byTxxliSTfEM9xtGhD7sopeLTh/RX8hoXq/SEKozUtvWez2IvgIm/X30/Gnqn1katYS1pTW9BkxGG/y8j2ON0fx9+u/4+/Tf0eZq4z9Zb/Nu7iekN57khWN/4YVjfyFEG8Q1kXN5fNQjjA/ubv9+a0wIm6sa+KikmvsSIukvml3tPYQIeNLSm13tBDAwsyO3vzaLY58V8eXPDjD9weFo9P3/NfPyydd5bPfPz9jmQN0Rlsdc2+/PfTqiJCEioRK6BzirFSrvMjDA6/kVADySHMWb2fm9eqx8XOBZXnKJbkqaGlgSlerdrxAEhvuFUWCru1SXInMJ8DFqqJcL5p2Vq16MAJg1Ou5ImshN8WMpbW6k3e3CpNES5euPohdbZoWg4NlxTzA1eCLf2vpt5oSf2/RbmD6Uh1Mf4OHUB7zbLHYLq0rWs6l8O4fr0yluLiO/qJDPir7i+7t/hkahJlwfxmj/EcwNn8EtcdcRZ+p7JNlJqD6EUH0IcyPOXCoboNnRTJY1jxxrHgW2YoqbS6loraLaXuuJc3HYyG9qJNOS02e8jFJQolX64KvSY9aYCdIGEKoLJso3nDhDjHe5KNmc0GM5o7cR/YWM5u1uJ7X2Zqae5hfTyZkCJgVB4Ma4a9hdvbKPgMne13t1Kh0/HvUwPx71MADrSjfz8snX2Vm1l/fyP+W9/E/Rq3RMDh7Pgyl3c0fCLdwVG8bD+7P4qKimX8XIUEGlUnD7azN5+/btvPGtrTz81aJ+f47xgWNINiWQaytAISh6LGMqBSUHao8wPWQmje2tuCURjVKFSa3t9xkirUpNgjGItaUZhOtNmDRa9tcWU2CrI0TXVdH4m1oLARoVQVoNNqe9x1KLSaPF7nbicLtodTkQkTD20qaq7cpKDb/SMUfoaSiUC+adDVmMnIJWqT6nqf1OromaS8ntxy6qjoSf1o/7ht3OfcNu925rdbWypmQT68u2crDuCIVNJXxVupGvSjfyxP7nUQkqQnXBjPRPYXbYdG6MW8pI/+FneJYzY9AYmBic5k2PPBMu0UW+rZBsax55tkKKmkooa6mkuq2WOns9VoeNitZKCpqKesTVdKJAgUapRq/SY1IbMaiNWNpFfFVmDOoATOpAzJpgqtoavDeOdaUnOFJXSlWbDY1CSYIpGF+lmmmhCQRofbE62lhdfBwFApOCPYZlb2bvxu5yUdlmo97ejJ+Pnnp7c7eAyaKmeiJ9/fi/vZ/T5nbip9HxVcnxXgMmz4Ul0QtZEu1ZjsizFvDnjH/xVclGtlfuYnvlLu7d8X1SzEnoWMq+uklnOdvly4QViWx+MZ2Ta0opOlBL3KTgfj3/tNBJZN22l9Ul6/n1kT9xqO4YSkHp/ZtzS25Wl+ygqrW7cFcg8JPR8xnmd3FZUafz7ZRpvJ2zj5/v/wIFAjEGfyYFx1LS7Jmeb7A7qG93cl2kHHx6tREyzER1pgWXS/TWb5LpyVUdwHo54XA52FS+nbVlm9hXc5j8piJvICWAUlAQpA1kuDmZmaFTuCFuKRMCxw5qto0oilS1VZNpySXPVkBhUwmlLWVUttZQa6+nsd1Ck7OZNrcdp+js9RwCnuUisyYMrVKNWaMnwCcAH0UoSsGMUWVCrTQQrA0i1S+am+LTCNYZAfjN4XWUtjRyc3yatxDb+tKT+PvosDrshOiMxBoCOFpfxv0p0wjS+rKqKJ1caw0qQUGb29kjYPJCaXY086/Mt3g//1MyGrM64no0hOr8WBw1n8dHPcyYi0xFLWlu4IUj63vd9/S4xcScUm9pIGgoaeZX8R9hCtfz67I7LtnzSJLEjspdvHD0L2yu2IGAgISEQlDxneQ/9RgsKBF4IGUak04JZO4v2t0u7G4nZo2O/2bupN3t4gej5vLbjEKePpbPF7PHcEN0CH88tokYQ0C3isa7qvL5uOAwf5t+Gy7RzQ92fcz3RszsJoTfzN5Dm8vBoyP7P/hZ5tKw7leHWffLI/x493ISpvWvCL4ckANYrzA0Kg3LYhexLLZrytstuvm6ajdflWxkT80BcqwFfF21hx1Vu3nh2F8QEAj08WeYOZFpIZNYHrOI2WHTB0ygKBQKInzDifANZ0Hk7D7bdd5EHe42LI5qLI4ampz1JJp8sTkbqWmrpaG9EZujgVp7OQ63Zwq7N76/R4mP0geD2hc/TRQGlR919o1E+UYQZ4xGECBUZ+L/TVyOUlDys30rWRozirRAj+/Dt1Om8cTez7lr2KR+vVkZNAb+b+xj/N9YT02VH+7/lJezvsHqWM/buR/ydu6H+Kr0TA2ZyMPD7+fmuOXe96nN1UZxcxnD/ZLP+BziEBtXBMQYmPHwCHa+ksmGF45y7dNpl+R5BEFgbsRM5kbMZE/1Ib799dNkWQ8iSi7KWk4yMWgqWpWa8hYLLknEjcQb2XswqLXnVEPnfPBRqvBRqmhxOjjZWMnN8eMA+KykBqWAd2YkwRRERkNFt2MzLVUkmDz7VQolMcYAMi3VXjEiShJZlirmRQzr1z7LXFoSZnn+xvJ3VF2VYuRcuaJnRkRJZHXxcfbVFHU4O+qYHhrP0uhRZ1xauZzz/0VR5GDdUVYVr2Vn9T6yLXnUttd719QFwKwxk2iKY0rwBJZFX8PCiDmDmvbb14j+TKP58uYGnjzwCfMigqhvr6KoqYTy1kqq22qoszdgddgQJS1NznraxbZez6EUlPhpwlAIToxqHQE+/oTogpDEMMJ9g1gYMYIUcxLD/ZPRq/T9es2tLhe+H23n2vBA/jrewJ+Pv8La0s2Ut1Z6+5bqN4wVCTd5jNoO/oY7Em/hL1N+3WuGSJ61htez99DQ3tLr892fPJVpYecW/NyfiKLIk4Hv4Whx8ULNnej9fC7p820oPcnnRUepbitifdm/CNeFcPSWbZg1Jlqc7XxScJg9HTWm4gwBPDlucb8874nGCiTJExBf09bEZ4VHUCuU/N+Ya1AqFBg/3EiEDrJv8Awm6uzN/OrQGuZGDGNGaAJZlmo+yj/Ua2rv3cmTiTMGsqU8m0N1xfxqwnJMfcRFyQw9XA4Xj/u8TdqtcXz7kwWD3Z0B51zv31e0GFlbcoLN5Vk8kDKVcL2Z4qYG3s7dy42xY5kfmdLrMZ1fElda/v/x+hN8UbyOr6v2cNKSTU1bbTc7e6PaQLwxlklBaSyOWsDSmIX9fgPui/MVI6Ik8crJHbS6nPxs7DV9nvfRnR9y/7CpTAyKoby1kixLDlsqjpNeX47Zp4Gyljoa2iUsjgKanU20udtw9lF5WUDwZBeptJjUBvw1fgTrgojQh3qzi4aZExnhN4xg3bmJ0uBPdyBJEnW3zfVuszlsvHzyDT7I/5yTluxucTcCAjqllpem/IrvDr8PZYc9fbalmr9nbOs1k6YTlaDgJ6Pnk3QeMVH9RcZXJfz3uk0kzwvnB1uXXrLnkSSJZw6upq7DN+je5FSWbriJeREz+Xzh2x2BrhIvHFlHWYsFgKfSFhNrvPjlq4O1xawsOoalvRW9SsP4oGhujBuLTqVhX62VqRsPcEOYky8WLPEec+qgx89Hz7JeBz3ZbCzLxOawewY9CROINw3+oEfm/Hhc+ybBw8w8mX7zYHdlwJGXaYCCplrSAiO9JkpBWgMHaospbOq7pPOVmv8/OnAkowO79y3fWsjK4rVsr9zJ8YZMMi05pDec4PWc9wDwVemJMUQxPmgMiyLmcn3MYvy0fv3aL1GS+kxV7Esnf5B3gIoWK/93BiFyKgqFgmhDJNGGSNSKSFxiBi9NvZl8Wy1/OLaJP0y5qVsq798zNlFvryPBJFDQVERJczmVrVVUt9XR6LBgczRR01bP8cbMPtOiVYIKrXe5yOOiG6YL8S4XJZkSGGmU2FEr0Opyoe/wGzFpTDyZ9mOeTPsxoiiysngN39/9c6rbapCQaHW38ejun/HzA/+PX477GY+OeJBXs3Z5hUiU3szEkDhCtEaq22zsrS6k2t6ESxJ5NWsXL0y6fsBL1I9aHkPslGByt1WSs62CYfMizn7QBdDktHuFSJIpmBlhabw7919cv+lubtp0L6sWvYtCEJgemuBNoS1oqu0XMTIxOJaJwb1Xen4ltxSAv0zuHueR4hfKM+OX9HaIl3kRKd7K4TKXL76BWqzlcsG8M3FFi5EEYzA7q/KobrURqjdR2txInq2W2xLG9XlMga3uqsn/TzTH88SY7/PEmO97t5W3VPJF8Rq2lH9DesMJCpqKybTk8F7epwBolVqifSMYGzCKhZGzuSl2GSH6C8uUaGhv4V8nv/FmHJzOJ4VHeDR1NvpTlpA+yDvA8YYKnhi70Ots2RcXWojN4RZI9U9mReLEs15Du6udXGt+R3ZREcUtpZS3eJaLOl10S1rKyLUV9JFdpMTwlgKtUomvyhezxkigNoAQbRCRvuHEGqIJ9PGnuq17sa0mZzM/3f8cT+x/Hj9NGMmmSdwQcws/T1uC8pSYoEVRI/jL8a3kddRgOlpf1udN81Ly3S8X8kzEh7y1Yhu/qbrjksQtucSumSGD2rMcFGuIRqfUsbl8B82OZgwaA0a1ttdjLhVbqhoxqJTEGwdmplFm6OEfa6Bkf+3ZG17FXNFiZHF0Kna3k+cPfYUgCEiSxA1xY5kSEt/nMVd7/n+kbzjfT32Q76c+6N1Wb29gVfE6NpVv50j9cUqby8m1FfBp0Zc8vOsJNAoNEfowxgSMYF74TG6Ov44Yw5kLgTU57PwpfYt3JNsbudYa/p6xjcdHL0CtUPJh/kGO1pfx+JgFBGkNfR7XycUVYju3OhI+Kh9GBaYyKjD1rG1FUaS0pdxrRpdnLeHvOa2YVSVEaMtpbLdSY6+jpKWsz+Wi05GQaHRUsr/uS/bXfcknRaO5N/lb3BZ/A1GGCFQKJctjRvPXjK0AHKwtGRQxYgzRM/+no9jyh+N89fQhrn+x/9OajRotKkGBSxLJtdaysmgt9+/4PsP9kli96D0MGs/fzMnGSu8xZxO0F4vd5aK8rZ25oXIBzKuZ8JF+FO2poammFWOILEp744oWI4dqi9lfU8R3UqYT4etHaXMjHxccwk+jY1rowAfzXa4EagP4dspdfDvlLu+2ZkczX5VsZEP5Vg7VHaOwqYQvSzbwZckGfrLvWVSCijB9CCP9hzMnbDo3xy0j5ZRskNUlx71CJEjryy3x4xgbEIVbEjlQW8znhUdpdrVT2FTP9spc6uzN7K8p4tHU2WiVaqwOT1CqTqlGo/T8Gfd3Ibb+RqFQEGuMJtYYzWI8gWwfVOzALUmcuHVuj/b19gYyLTlcu/42Wl29B+GeztGG4xzdd5zH9z3Lu3P+xV3Jt3ktygFsznM7z6Xguhcnsu/NXLb+8TjzfjKy37+U1Qol44Oi2V9bTEbjfv564g2Mal82L/mcgI5SCwW2OvbVFgGev50xAZfWdO7twioA7o7r36wdmcuL2Ckh7Hkth5xtlUxYkTjY3RmSXNFi5LPCo1wbnepN0Yz09aO+vYV1pSf7FCMmtRab47SpfYcdbcdNTyEIKBBo6qWNWT00g1cvBQaNgduTbub2pK6ArHZXOxvKt7GudBP7a4+QbytiQ9lWNpRt5amDv0EpKAnWBpFiTqLVZSbadxThuhh+OmYhAT4eczMlCmaEJRLp68eLRzcAnjieTuHyp+NbuvXjvmFTvUF/De2tCHRlSSWagnkwZQario/xRdExQnRGHkmd5a0iC3Bt1Agcbhfv5u73FmL74ch5qAcormJyoJk1FXU0OVwYNd0/joHaAKaFTKLNZe9xnKKjPEGKKY0Yw0Qi9cN4Yswc2sVmMhtz2VKxg2uj5wNQ1941+6Q5x2J+lwKFQsF9H87j5QXrePXGLTy++7p+f475kSl8VPAlmypeRymo+f6IF8ixWdC1tHTEdRV4U6BnhSd5heyl4r3CKgTgnrgrp0KzzPkzbIHn/S/aXSOLkT64osWIQ3ShoHsKr0IQ+gw6BDn//2LwUflwfexiro/tSpd0iS52VO7q8EI5SK6tgK+rdiMhcaBuLQIC68pf4o7EmwnTBTMpaDxTQj2l11PMoWRbq6mzN/PLCcsI15vP+Pz9XYhtIFgRG8qaijr+V1jJoyk9Z2Pq7PXev1eVoMQluYn2jeThEfdzf/LtHKytZU1pBgAnLRZuiR9HWuBo7jhFJG6ryPH+ntLPzqPnS8r8CJLmhpG3vYoTa0oYuezspQ3Oh6N1+9hc8QZKQc0tcT+nvl3gzew9PfthDuX62Ev/nh9utBGl90EjO29e1QTFmxAEKE+XC+b1xRUtRsYERLK2NIMArZ5wvZnS5kY2l2Ux/RS/hZWFR7E4WnkgxVNfZk54Mtsrcvis8Ig3//9QbQmPjeqKhF8YOZy3svcQZwzw5v87RFePtDwZT4G/BZFzWBDZ9frtrSrgd+nvU9yUgYtaBBy8kfMela3V+GnMFN9+FJPGSKSvmWxrNeCJ5bgSWRETyr17TvBZaU2vYsTm9NS0UAlKbo5bzkPD72V+xCzvzMgslZl1pScQkdhUlolOqWZeRAo6lZpWl4Mt5VleMaIUFMwIHfxR2YMrF/JU8Hu8c/cOXqy/q9+CWb8oWsstW+7HR+nDu3Pe43C9tUdMko9CxczwRG6KS7vks185thZaXCLfium7grPM1YOPUU1DoVwwry+uaDFye+JEVhWn837eAZqc7Zg1OmaFJ7E8pst22+poo6G9K+UqSGvgsZFz+aTgMFvLs/Hz0XPPsCnetF6AScGxNDvtfFmc7s3//+HIebIR0Tli0GgJ1SUQqktgWkg896dMA2BHxS6u23QXK7Y+yOpF71HS3Og9Rj+IpmyXEo1KQahWw5HG3gtpJZkSWHvth0wKHtejMjR4AjCXxIxkTUkGErCqOJ21pScI8vGl1t7czXtkeczoIeGDo/fzYfHz41j77GE++9FebvvHuRWaPBNfFK3l5s334aP04dhN2xnml8RN8Z4Zy6KmelySSKCPL+ODYtCp1P1wFWfnn9melN7vDztzMLfM1YEpTEdjWe+mhDJXuOmZzNCk3e3iZ/tWYnc7UQkKnp+wjJCOejJbyr9m8fpvcVv8LRhU0xEEgVCdiV9NWHZRBQmHMjdsP8qX5XVYb5uLSXP+4wNJklhZdIwNZSf7bLMsZhTXxYweUq/hs1EfYKts5fmiFQREnz07qi++LF7HjZvuxUep4ehN27sFSg8myat2UdbaTtsd8we7KzJDgP8s38iJNaX81f3AoNYMG2jO9f599bwiMkMGH6WKGR1LWi5J5KX0zeyqyqfV5WBS8GR+NPIJPij4iHfzn6GsJZs5YUlD6iba39we64njeKug4iwte0cQBG6OT+PZ8UuYHZaEv0aPj1KFv4+eueHJPD9+KdfHjhlyr+F3PluAJMKr12+64HMMVSEiiiIFzW2M9rtwkSVzZRE5zjOzWXa4b9PNq5kreplGZuiyPHY0Jy1VVLZasTraeCd3H+/k7uvYG4FK8KHN3cTaspfJtq7lR6O+y33Jt2PSGAe135eCW2NCuWv3CVaW1vLD4Rce0Bnl689dHWnLlwNxU0IYsSSKzHVlHP4on/HnmWXwZfH6ISlEAD4vrUUEbosdePt9maFJ4kzPoCNvRxUxEy/MKPJKRl6mkRk0bI42Xs3aRY61pse+fTWrONbYlcYrIKBV+nBf8h08NvI7jPQf3uOYy5nwz76mzS1i+dbcwe7KgGJvdvBU0HsoNQpebLgH1VmyTtaVnuBIXSkZjVmsLP4rPgota6/9iOlhY8943KHaElYVp1NvbyZEZ+Tm+DRvmQjwLHWtLj7ON1V5tLmdJJqCuDNpEqG6C/u+Wbr1COsq6y946U3mysPR6uIJ37cZvyKe+z+8epbu5GUamSGPSaPj8dEL+MXYRcwMS2SYOYQUcygLIlL4xdh7urWVkGhz23k1+x1GfTaT2auXs750Sx9nvvyYGmTG6nRhcTgGuysDitag4brfTaK9ycWHD+08a/scaw16lYWPC19EQOQno37D6pJC2t19O9bm22p5LWsXM8ISeGb8EtICo/jXyW8o7yiWB7ChLJOtFdnclTyZX6Qtwkeh4u8Z23CKvVn4n5299VaCfdSyEJHxotGrUGoUVGdbB7srQxL5kyIzqAiCQLwpqEcl0hZnC0pB2aOeS+fjb6r3cu+O71N9V+aQi4W4EO6IC+WLslreyKvk8dQuu3ZRElldfJx9NUUddXV0TA+NZ2n0qDNe96kVYf199CzttSJsDpvKMrE62jwVYRMnEG8c+Iqw8348ih1/P8H+t3NZ9HQaIUl9j54SjU5u2PRD1Ao1h27cTJRvDE/s+5zi5oZuTrOnsqU8m5EB4VzbUU/qhrixZFqq2F6Rw13Jk5EkiS3lWSyNGUVaoCfz5YGUaTyx93OO1pV6TRPPlapWO40OF7dEy1PxMt3RB/hgkTNqekWeGZEZkviqfZkQ1PvUu0pQEqQNZN3iD68IIQJwc3QIArCqvHsxrfWlmeyozOOOpIn8csIybo5LY0NZZjcjs9OpszfzzxPbvVVhF0Sm8L+cfZxo7AqQPVBbzKcFh1kWM4qnxy0hytePv2ds6+E+PFA89MVCkM4czLqmeCM3bLobtULNkZu2McJ/GG1uj/+M7xlSvwuaei9+WdDkKWxZZ2/B5rQz4pQ2OpWGeGOQt8358EpuOQDfTZJTemW6ExDjS5vl6pr9PFdkMSIzZLkmci4qoacxVbIpgUM3bmFCUNrAd+oSoVIoCNdpOHqa30hBUy1pgZGMDogkSGtgQnAMqX7hFDb1HZG/ozKXIK2B2xLGE643My8ihfFB0Wwuz/a22VyexcywRGaEJRLha+aupMloFCp2V+dfsms8E5FjAhl7axzVmRb2vtFTaK0t2cT1HULk0E1bGOE/DFGS+LjgEImm4G4W/6djc9gxnVaqwaTWYu0QXp31enorkGm9AHH2RVkNKkFgYZhcHE+mO6Gp/oguiZaGwRH9QxlZjMhcEuwuJx/lH+LJ/V/w2K6P+P3RjRSd4QYKnqWF3xxex/d3fsgzB74kWJuAS+q5Zu+rSuD3R3fy4tENFF7AyHWoMi3IjM3pps7eNXJKMAaTZammutVTEbq0uZE8Wy2jAvqudVJg62MmwOZ5rVyim5Kmhm4zAQpBYLhfmLfNYHDvu3NQ65R88thuXI6uGJC1JZu4buNdqBUqDt20xRu8/EHeASparDw0fMZgdblXsqytDDPpryovCZlzI26yZ+kud1vlWVpefcifFplLwju5+8i0VPFAynSeG7+UVP8w/nJ8K42nuN2eSm9LC8fr21GeMjNyU+zNjAu4hoP1G0DIGPSlhf7mzo5iam+e4jeyODqVicGxPH/oKx7Z+QEvHFnHgsgUpoTE93kem9Pe6yjf7nbicLtodrYjImHsbSbAOXivpdpHxS1/n4azzc07d38NwLrSzacIka3dhMjxhgoeH7MAf58zV/81abTYTrsuT/yN5/pNao9zcm8FMs3n6Vi7vaoBpyRxQ+TAx97IDH2S53s+44W7e2YQXu3IYkSm33G4XRypK+WW+DSGmUMI0Rm5LnYMIToDOypzez2mt6WFKSGJRPsmIiDw0uRfMTHoZn46+ifEGqJ5JfPf2N3Zg7q00N9cHxXkiRsp64obOVRbzP6aIr6TMp1nxi3h/mHT2FSWyZ7qgsHr6CVk+oMphA43c/STQt7/+kuWb7izmxCRJIkP8g5wtL6Mn4yZT5D27KZiCcYgsixV3bZlNlaR0BGsG6T1xaTWdmvT5nJS2FTnbXOu/CfPEy/SW50hmSuXBnsLJc0N3X4a7D0DVUNT/ECA8mOy8dnpyNk0Mv2OKEmISD3iPdQKFfm22l6P6WtpYXrIbbw9ZwrTQ6fwg10fszR6JEdv3EbsR+P43s6f8lzaXwd1aaE/USkUROh8SG/sKqb1WeFRro1O9WZ0RPr6Ud/ewrrSk0zrozCjSa3tdZSvVarRKFUoBAEFAk29zQSoB792zUNfXsPjc1/m20d+idqo4uCNpyzN5B9kf00Rj6bORqtUY3V44j10HdcG8Gb2bvw0em6KTwNgQWQKL6VvZlNZJqMDIjhQW0xxcwN3dxjECYLAgsjhrC3NIERnJEhrYFVxOn4+Om9l7nNle3UjZrWSKP3gv44yA0ODvYVnD67uVgcKQCUo+PXE6wjQ+nbb7mNQUV/Qey2qqxlZjMj0O1qVmgRjEGtLMwjXmzBptOyvLabAVkeIrveRbF9LCwZ1KFNDJndbWvDT+rH/ho2M/nwWL2U8x49SXxyIyxoQpgeb+aSkhhq7gxCtBofoQkH3jCGFICDRt1dhgimIjIbu1vKZlioSOtKnVQolMcYAMi3V3putKHmKys2LGNbPV3T+HNYe5OOn/omx3o8/S39kVMAI777OmbU/He/uMXPfsKne1OWG9laEU16zRFMwD6bMYFXxMb4oOkaIzsgjqbO6Bb1eGzUCh9vFu7n7aXU5SDIH88OR886rsm+zw0WV3cGisIALuWyZy5RmV3sPIQKeUhfNrnYC6C5GjKE6bJVtA9W9ywZZjMhcEr6dMo23c/bx8/1foEAgxuDPpOBYSpob+uX8KX7JrFn0AUs33MUbuX/kybSlGDSXfx2Qu+PD+KSkhtfzynlyVDxjAiJZW5pBgFZPuN5MaXMjm8uymB7WNSuysvAoFkcrD6R4qt/OCU9me0UOnxUeYUZoAlmWag7VlvDYqDneYxZGDuet7D3EGQOIMwaypTwbh+jq4UUy0Gwo28qyjXeg0qm49T/f41h9DY7vutDoPV9V/5l151nP8dMxC3tsmxAcw4Tgvq32BUHg+rgxXB835oL7/lq+Z4nmvoS+g4tlZIKTTNTlNSGKohzkfAqyGJG5JATrjDwxdiHtbhd2txOzRsd/M3f2ucZ/IUsL10TN4zvDHue/2X9g/Bfzybp172X/4V4e4YkbWV1ex5Oj4rk9cSKritN5P+8ATc52zBods8KTWB4zynuM1dFGwymBwUFaA4+NnMsnBYfZWp6Nn4+ee4ZNYaR/hLfNpOBYmp12vixOx+awE2Xw54cj52HS6AbycruxsWwrSzfcjkpQceiGzbT7+vD27dt581tb+d5XiwatX+fKR8U1CMC3Ogofysj0RmRaIJnry6nMaCRyTOBgd2fIIIsRmUuKj1KFj1JFi9PBycZKbo4f12u7C11aMGsSuS3+Hj4ufJvFG77FxiWfXtoLusQoFAqi9D4ct3jiRrQqNSsSJ7AicUKfx9yfMq3Hts6spDMxLyKFeREpF9fhfmJT2TaWbLgdlaDkwA0bGRWYCitg84vpnFhTStGBWuImDW1H02OWJuJ8taguc0Esc+5IkkRmY3Wf+91iz+WbhBkesZq7rVIWI6cgf2pkLgknGivIaKigzt7MycZK/nx8M2F6EzM6lgFWFh7lzezd3vZzwpOpszfzWeERqlqtbK/I4VBtCQsju26WCyOHs7Mqjz3VBVS2Wnk/7wAO0cWrs37DvPCZbCrfzg93/2LAr7W/mRHsR7PLTVXrlZGyfDY2lW1j8YYVHUJkE2MCu2Z9HvryGgQFvH7T5kHs4dnJaGyizS2yOEK+uVwtuCWRN7J383nRkT7bfFxwGHuHS3AnSXM9gfolB66MwPv+QhYjMpeENpeTD/IP8vzBr3gzew9JpmB+NGoeyo5RY19LC5mNVfz68Do2lWf1urRwa8I4vixO5zeH11Ha0uhdWti85HMSjLH84+Rr/OvkmwN+vf3JPfGemIPX8698Y6TN5du9QmT/aUIEICDGwIyHR2Atb2XDb48OTifPgX/mlAHw/WFySu/VwqcFR9hfW+x97KfRMcIvjJBTlqILmup4I3sPktQVcK41aFCqFVRlWgayu0MeQTr1VRqinGsJYpmrG5vDRswHadicTWxa8ikLIuec/aAhiCiKqD/YyqRAE3sXTx7s7lwytpTvYNH621AJSvbdsJG0wNG9thNFkScD38PR4uKFmjvR+/kMcE/PTtwXO6m1O2i5/eopDX8109jeylP7VyEioRQU3D9sKhODYz2ZbpJEpqWK/2bu9NZO+kXaom5FKJ8KfQ8k+G3NXYN1CQPGud6/5ZmRy5zTzXZ6M9q5WjBpTBy6cQsqhYolG24n31o42F26IDrjRjKszWdvfJlyrkIEPK/HPf+bg9sp8vrNW/psN1i4RJGSFjtp/sbB7orMALGzKh+xI71+UdQIJofEoego2ikIAqn+4d3i476uzOt2vH+0L62N7QPX4cuACxIjL7/8MnFxcWi1WqZMmcL+/fv7bPvqq68ya9Ys/P398ff3Z+HChWdsL3PudJrtvHBkvffn2YOrr2pBkmiOZ/3ij3GJLiZ8MR+bwzbYXbogZoX40+ISKbsC40a2lH/NtetvQ3kOQqSTUctjiJ0STO62SnK3V5y1/UDyQVE1EnC7nEVz1VDc3OWg2pkOX3mykd+N+ZyaXCsAU08RKMVN3S0NwlL9EF0SbTa5gm8n5y1GPvroIx5//HGef/55Dh8+zNixY7n22mupqenda3/79u3ccccdbNu2jT179hAdHc2iRYsoLy+/6M5f7fRmttNptHM1Mz9iFi9P/wNWZxPjVs5D7CWifahzb7wnyO31vKF1471YtlZ8w7Xrb0UhKNl/jkKkk+9+uRBBKfDmt7YNqff0nUJPbM93kiLO0lLmSsF9SnRD0cZq/nP9Rl4c+TkVxxvJ3uS5t6kVSlSCoqN997/XmI7MsLztV35c2Lly3mLkz3/+Mw899BAPPPAAqamp/Pvf/0av1/PGG2/02v69997j0UcfJS0tjeHDh/Paa68hiiJbtgy96VaZK4dHUh/gsdQHKWgqZuG6m3vsH+rLWwvDAlAAa8qvnIj7rRXfsGjdLSgEJXuvW39eQgTAGKJn/k9H0Vxr56unD12iXp4/++uthGs16FWyU8LVQpCPL4o1LjQ3tfHujTs4uaYUlUbBo5sWM+vRVACyrdU4RE/V8cDTLOGT53mC1At29Z0WfLVxXp8eh8PBoUOHePLJJ73bFAoFCxcuZM+ePed0jtbWVpxOJwEBfVsmt7e3097eNbq32S7PqXaZweUf039HliWXzRU7eGTnT/nXzD8BvdeS6KuOxGChUCiI8dVy4gqJG9lW8Q2L1t3qFSLjg8de0Hmue3Ei+97MZesfjzPvJyMxhpy5Yu+lpqTFjs3pZrlcpfeqQBRFtv/lBEd/k4Xa4kRSAGpQqAV+sGUZ8VNDAGhzOfissCvl9/Q6UmGpfgCUH+sfR+orgfOaGamrq8PtdhMa2n1tNDQ0lKqqqj6O6s7Pf/5zIiIiWLiwp2VzJy+++CJms9n7Ex0tp8vJXBgbFn9CkjGef2e9zT8y/gtcPstbs0P8aHV7giMvZ7ZX7OSadbeiEBQXJUTAI9Lu+3Aeolvi1RsHf3b15ZxSAB5OihrknshcSlwukdVPHeBnpv/xxRP7cTS5QA2CCJIT3L/WciCklAM1RXxZlM5zB7+ipLkR8FSFHhfY/e9DoVCg8VVRlycPtDsZ0Gya3/3ud3z44YesXLkSrbbvqpZPPvkkVqvV+1NaWjqAvZS5klAoFBy5aRt+GjM/2vs0a0o2c7SurNe2zc6hJUbuS/DEILyWd/nGV22v2MnCdbegEBTsvm7dRQmRTlLmR5A0N4yiPTWcWFvSD728cFaX1aJWCMwK9R/UfshcGhx2F+8/9A1P6N5i04vpOFpcnh2SBB1eZlKsQPsk2FKezWvZu1lTmoHN6RlA+Kp8eCR1NqpeCi4aQ3U0VcsF8zo5LzESFBSEUqmkurr7Old1dTVhYWF9HOXhpZde4ne/+x0bN25kzJgzF6Py8fHBZDJ1+5Hpjt3lZF9NUa/7GodY/MNA4BJdrCxaQ5OjZ2lug8bA4Ru3olKouH7TXbyX1/uI+t8nvyGz8dxm+AaCuSF+KAVYe5nGjeyo2NUhRAR2X7eOicFp/XbuB1cuRKESeOfuHYMWzCqKIjlNraSahsbSnkz/0Wpp583bt/KE/m32vpaD6JK63S1PnViN/U6YN1C1EwGBsYFR/CJtEVG+vQvVoEQj7S2uIRWMPZiclxjRaDRMmDChW/BpZzDqtGk962N08oc//IFf//rXrF+/nokTJ154b2UAqGlr4jdH1rG5PKvX/f/J3Mmh2sEdMQ4031Tt4ebN9xH1wRh+feQlLO3WbvvD9BHcHv84oiSysuQl7K5W/DS6bm6J7aKLl0/u6LfKwheLQqEg1lfLSdvlJy6/rtzNgnU3dwiR9f0qRAD0fj4sfn4cbY0OPvvR3n4997myoaoBtwQ3RYcMyvPL9D+Wihb+vWwDTwa+y5GPClEoha6dvWgGQSnw6PcX8LvJN3L/sKncljCee5On8NtJ1/No6mxCdH17z0SODQAJarKtfba5mjjvZZrHH3+cV199lbfffpvMzEweeeQRWlpaeOCBBwC49957uwW4/v73v+fZZ5/ljTfeIC4ujqqqKqqqqmhuvjIC8waaVpeDv2Vspdbe9fqF6UzEGgK60siQeC17F9mWqydSuzN1zuZs4peH/kDUB6N5+sAL1LZ5ZhV2VOagU0UyK3QFTrGdrZX/5MVJN/DrSdfzwqTrGdVhO+8U3XxeeHSwLqMHc0L8aXOLFDa1nr3xEOGbqj3MX3sTCkFg13Vr+12IdLL4mXGYI/TsfCWThtKB/z55NdezfPbIMDle5HKnJtfK3+as4bmoDzm5tozgJBOPbriW/1d6O4EJRhQqoccxCqXA8EWR+Ab4YNRomRaawMLI4cwISzynQPj46Z7Yy5xtcnovXIAYWbFiBS+99BLPPfccaWlpHD16lPXr13uDWktKSqis7Hpx//Wvf+FwOLj11lsJDw/3/rz00kv9dxVXETsqc6nrWIaJ0Jt5bvxSfjVxOU+NW8wfptzE1JA4wFPR9ouiY4PY04FFeco0qYhIi6uV36X/jZgPx/KTPc+wtuQgAKl+0/ne8Acpay3jl0d+D3jq4jycOotAH88XSKalipq2nss9g8H9nXEj+ZeH38jOqr3MW3MjAh4hMil4/CV9vu98vgBJhFev33RJn6c3dtZaCNCoCNFqBvy5ZfqHkoO1/GHCF/xm2Kfkf11FVFoAj++/nmeyb2P4oihMYXp+9PUyfIN6xjiKbomJdyVe8HN3pvcW76u94HNcSVxQYvxjjz3GY4891uu+7du3d3tcVFR0IU8h0wuiJPF1ZS4AAvDwiFmE6rviaXzVPtw3bCrFzY1UtlopaKqjtLmRaEP3NUuX6OJ4w0lq7HVcGzXwtTQkScIlunCIDhxuBw7RSbvowOl24hCdOEUHDtGFU3R6fzzbPdtcogun5MTp7mqTZc3t8TyiJGJ3t/O3E/9BAvw1ocwOW8QNcROptS/n10f+RL29gZdn/BG1QsmMsAS+LD4OQJ6t9oxTrAPFrI64kXUVdbyQljTY3TkjO6v2MnfNDQgI7L7+0gsRgLgpIYxYEkXmujIOf5TP+BUXfnM4HywOB7XtTjml9zIle0sFn3x/FzXZNhAgYVYod7w6k9AUvx5ta3OtNNd4Ak0FpYDk9hieqXwUjLkh9oL7oPfzQaESqJYL5gEXKEZkBgfbKZVuk80hXiHyp/SX2VG5m1hjNFZHE4fqTlBrb0KSJLZVvoxKIdHsbKHV1UqLqxW7uytrJEofAYLnxt35IyF1/C4h0fmv5H0sdTz2/ouEJOH9nY7foevfwaSzD42OKlaVvMOqkne8+97M+YC/TXsRlUKFn6bLs8Lhdg14P3tDEATifHVk2ob2Ms2pQmTn8jUDIkQ6eeDjeTwV9B4fPLSTMbfEo1Jd+iTBf3cs0Xw7UXZdvZw48mkhX/x0H40lLQgKSF0axYr/zMA/ytCjbWN7K299tZOC75UihQuYnjcjPtuGvc5j4T7q+hh8DOpux2Rbqvmk4DCVrVb8ffQsjRnltYvvZFtFDpvKMrE62lCOVFBXMzRmYQcbWYxcRpzqjWFQd1Uu/apkI9urdgGeKO5TBUDdGbJVBQSaXS0oEBAEBQpBQCEoUKJEoVCgEDw/SkGBgo7Hio79HduVQsfvCiVKQendphSUKBVKVJ2/C0pUChVKQYFaoUIpqFAJSlQKz3aVoDrl365taoUatcKzT61QoRbUXb8r1GiUatSCmjxbAT/a+3SPa1SgQEQkQBPO+MDFpAVM5reTb0SlUOGSXLS57KgUno9BtrUrxsZPo7vg96m/mRfqz2v5FeQ3tZJoHFyTr97wLM10CZEpoRMG9Pm1Bg3X/W4SK3+yj4++u5O73ph9yZ/z05IaFMAN8szIZcHO/2Sy9rnDNNfYUagExt+ewG2vTMfXv/cK0C1OB7/9dC3tj1hRigq+s24ByiQ1ymkSb8/fRnOtnYl3dp+Fq7M3888T25kdnsx3hk8ny1LF/3L2YdZoGdkRk3agtphPCw5zZ9Ik4o1B/C10DS11dmwOOyZN33YXVwOyGLmMMKm1KAUFbkkk11qDU3SjVijZtnwVzc5mdlXvZ2vFN7yZ/Qm17WdOUVUJKu5NXsHrs/82QL2/tByoPdztcacoG+E/jBcnPkOhzYcTlkpsLidfV+WzIHI4akGNWuMZ2RQ3NXCgthgAvUpDqn/4gF9DX9yfEM5r+RX8N6+c349LHuzudGNX1T7mrbkBBkmIdDLvx6PY8fcT7Hsrl2ueSiMk6dLaAWRYmkk06lEo5MLnQxVRFNn0Yjpb/piO3epE5aNg+vdSuPnPU9Hoz3zre/fTXdgfsaJ2KHji4A1EjOpwDPeHH32zjH1v5pK6tLsZ547KXIK0Bm5L8MwKhuvN5Flr2Vye7RUjm8uzmBmWyIwwj5AZERjGoapCvi7OYXnymS0vrnTkT9JlhEap8jr5NTnbWVOS4d1nUBu4Nmo+D6U8yi1xTzMt+GYEekaAd+KSXCSZ4i51lwcMpeAxFeq85kRTHB/Pf530m7/mutjFLIwa7m37ccFhXs3cyfGGcnKtNXxWeISX0jchdhS/mh2WhEY5dHT6jBB/VILAhor6szceQHZV7WPumusBga+Xrx40IdLJQ18sBOnSB7MeqLfSLkosiwi8pM8j0xNJkvjyyQMc/7K4zzYul8gX/7eP/zO8w5pnDiG6JK75xRj+0Hwft/975lmFyKGP8sn4bgEKXwWx62L5c/M2fnN4Hd9U5gEQmuLH9b+bhErT3ciswFbHcL/uflup/uEU2DwZfS7RTUlTAyNOaRMzMRjBDSeOXL7Ghv3F0PnGlTknFkQO52Cdx0NkXekJCmx1TA9LQKdUk95Qzp7qQkQkRgfMZVnMLP6Q/hwtrlbckrvHuZ46+AK/PPxHUsyJXBs1n+8Ov5dk88AEAPY3JrUn2DTaN5LfTHyKOxNvQXmK62GqfzjXRqWyoewkAAfrSryv46kkmYJZHnt+BdwGgniDluwhFDeyp/oAcztmRL5evpppoZMGu0tEjglk7C1xHPusiL1v5DD128MuyfO8nO1x8H0sRS5TMdBs/VMGm3+XjjFMx4jFUd0EgaPVxac/3MOB/+Xhdojo/DUs+eV45j8x6pxnsPa/k8u793+NNEzA9WctMfEB3BSURlFTAx8VHEKlUPSoM9OJzdlzqcWk0WJ3O3G4XbS6HIhIGE9pkzzXMwPbmCNbXchi5DIjwRTErfHj+LSjCFO2tbpbrEMnI/zCeGzkHG6Nn8qidbdR3lrZTZBE6SO4MW4pm8u3k2XJ5XhjJi8dfxmtUssIv2SWRV/DQ8PvJcZweXgoJJkTOHLTNkb6D0etUPfa5qa4sZg1WtaUnKDltDo0KkHB1NB4ViRMQN2LdfNgMz80gP/klZNlbWa4uWew3UCyp/oAs7+6DmDICJFO7nl3DifXlvLJY7uZeHcCKk3/f8VtqW7AoFIOyfidy5UGe0u32lAGlU8Pr46cbRV8+bP9ADRVtXHg3XymfXsYzfV2Pn54F+krixHdEsYwHct+M4Hp30k5rz7sfi2bDx/aicagovWvamLDArkpLg2AGEMAFa0WdlTm9ilGLoTItAAkNTgLnf12zssVWYxchlwTNQKzRseq4nTq7N0VtVapYlZYMjfEjUGlUJLil8zBGzezbMMdHKo/hiiJqAQVy2MW8Y/pv/Met7f6IG/kvMfWip2kN5zkSP1xfnP0z/iq9Iz0H871MdfyYMo9hOqHrtvk2UrSC4LAgsjhzA5P5nBdCSXNjYiSSJDWwKTguCEdQPZAQgT/ySvn9fwK/jj+0oz4z4UuISKxfdmXQ0qIAGi0Km75+zQ+fGgn79z9Nd/+uH9T1+0uF+Wt7cwO8evX817NnEsV7cayFt64ZYvH00ACBFj3y8Mc/jCfnM0VSBIExBm46c9TGHtT3Hn34etXTvLp9/egNal58sTN/KFiM+F6c7c24TozR+r6rpNmUmuxOboXtbQ57GiVajRKlSdBAIGmU9ooFAoUoQqk/J4z11cbshi5TJkcEsfE4FgyLZUUNzXilsSO6pDRaFXdZwaCdUHsWP4ld29/hM+LvsIluZgfMatbm6mhE5ka6rHqF0WRHVW7eSvnA3ZU7eZg7VH21x7mmUMvYlQbGBswihtjl/DAsDsI0AYM2DX3F2qFkikh8UwJiR/srpwzU4LN3riRPw5c1mw39lUf6iZEZoRNGZyOnIXpD6aw7U/HOfpJIRUZDV3Bh/3AO4VVSMDd8UMnwPlypsXZzrrSE71W0c5srGRGeBLOdjev37wZu83ZVRNGAktpC5bSFsJS/bjt5Wkkz72wNOttf81g5U/2ofPT8HTmLZjC9CQ2B1Pd1r2ibnWbjQCfvp1VE0xBZDR0NyfMtFSRYPJkXKkUSmKMAWRaqkkL8izxiZKEmCygyJXFiCxGLmMUgsBI/whvpPaZ0Kl0fLLgDX6+///xeva7zIuY2fd5FQrmRcz0thFFkfVlW3gn9yN2Vu9jV/U+dlbv5Yn9z+OnMTEucAy3xl/HvUkrMGgGdwnhSibRoCNnkGzh91UfYuZXyxjqQqSTh768ht+kfMqrN2zm+fxv9dt53y+qQgDujZPFyMVS3Wbjb8e3Ud/ee+2ld/L20+RyYHuxkdJDdUi91IYJSjLyZMbNCELfwfpnYvMfjvHlzw+iD/DhmexbMXQ4rS6MHM7vj21kbckJJgbHUNRUzzdVedydPNl77MrCo1gcrTyQMh2AOeHJbK/I4bPCI8wITSDLUs2h2hIeGzXHe8zCyOG8lb2HOGMAccZAtpRnI8UqcO+Ql2kESZIG35XqLNhsNsxmM1arVa7g2w+4RXe34M7zxSW6+KJoLe/nf8aemgNUtdV49wX6+DMxeBzfir+BOxNvQasauksflxvf35/JK7nlZCybyki/gRN9nUJEQmL7slXMDJs6YM99Mbx73w72v5PHzX+bwtwfjuqXcxo+2oa/RkXpTbPO3limT9pcTn5zZK23tAVAnCEQvUpNcXMDLS6PsZhivQv1b898o3547SJSl5x/MPH6Xx9h7XOHMQRreSbnVvR+3T1H0uvLWVl0lJq2JoK0BhZGDmdWeJcL8lvZe6hvb+GnYxZ6t51qeubno2dZr6Zn2Wwsy8TmsBNl8Cf0XQ1H/1TAs3m3EZx45d3fzvX+LYsRmYvG4XLwUeFKPixYyYHaI9Tau1JQQ7RBTA2ZwO0JN3Nbwg1eg7FLzfrSE6wsOsb8iBRWJPadcnqotoRVxenU25sJ0Rm5OT6N0QGR3v2SJLG6+DjfVOXR5naSaArizqRJhOoG/u/wUL2ViesP8OOUaP4y8fyC8y6UA7WHmf7l0stOiIAnxfNJ///hdor8ruGes6Z0no1cWwvDVu/h/oRw3pw2sp96eXWyuTyLTwo83kARejOPnFLh1iW6WVd6krV/PYzqr64zGBSAIEDs1BAe333deT3/V88cZOMLxzCG6Xgm+1Z0psGrL3Tk4wLeXLGNFf+ZwYzvDj/7AZcZ53r/lpdphhiiJLK6+Dj7aoqwOe2YNTqmh8azNHrUGaciz9eGOMrgz+2JE4g3XryDpEal4Z7kFdyTvAKAVlcr7+Z+yieFqzhUd4wvSzbwZckG7tr+MGG6EGaETubu5Nu4LnrxJTGNKmqq5+vKPKJ8/c7YLt9Wy2tZu7gxfixjAiLZX1PEv05+w9PjFhPZceyGsky2VmRzf8o0grS+fFmUzt8ztvHLCcsHPOtmQqAZtSCwqaphQJ7vchYiACqVgttfm8nbt2/nzW9t5XtfLbqo8/2zI6X3UblK70XT6dkB8ODwGV4hIkkSRTtrKP1tOeoNrrMWk5AkKDlQS3uzs4c1e1988X/72PpSBuZIPc9k34qP77kdd6lInu9ZZi/eV3tFipFzRRYjQ4z1pZnsqMzjgZSphOvNFDc18HbuXnRKDfMjex8NX4gN8ZaKLP6esY1fTbiu37NI9Co93x1xL98dcS8ANoeNt3I+5POirzhaf5xPi1bzadFqBASifCOYFTaV+5JXsDBi7kWLE7vbyevZu7kneQprSzPO2HZLeTYjAzz+IwA3xI0l01LF9ooc7kqejCRJbCnPYmnMKNI6zOYeSJnGE3s/52hdKZM6KiQPJIlGHbkDEDdyuQuRTiasSGTzi+mcWFNK0YFa4iYFX/C51lXU4aMQmBRoPntjmT5xuF1UdQSHxhgCCFEaKNpXw8H380n/vBhLWQsRo/2Z8a9UtqYUgBKWR47m2vBU3E6xx4+PQX3OQuSzH+1hx99P4h/jy9PZt6LRDv4t0BCkRaEUqDrZONhdGVQG/52Q6UZBUy1pgZHepYIgrYEDtcUUNvXtvnkhNsR3JU0mo6GC3dX5LI6+tFPOJo2JH476Lj8c9V0A6uz1vJH9HquK15HecJL38z/j/fzPUAgKYg1RzA2fybeH3XlBN8AP8g4y2j+CEf5hZxUjBU11LIzsPhJJ9Q/nWH1ZRz9bsDnt3RwTdSoN8cYgCprqBkWMLAwL4J85ZaQ3NjHG/9JUFT5Ye5QZqz1CZNuyLy5bIdLJQ19ew6/iP+L1mzbz67I7LugcoiiS39zGuIDBr+R8OeNyuDj6RRHKtxwoTorUVFfwU/vbAChUAmqdiodWLWTUdTGkN5Sz9WSh50AVF73M9tEju9j17ywCE4w8dfJm1D5D5/an9dPQUHx1G58NnXdDBoAEYzA7q/KobrURqjdR2txInq2W2xLG9XlMXzbEH3esyXbaEC/pmAEATybOcL8wr1XxQBKkDeRnY3/Iz8b+EICKlkpezf4fX5Vs5ERjNm/mvM+bOe+jEpTEG+NYEDGLB1PuYULw2DOe90BNESXNDTw1bvE59cPmsGNSn+aYqNZi7fABsDk9ZcN7c1W0nuYnMFB8JzGSf+aU8VpeOX+f1P9TugdrjzJ99WJESWLr0pXMCpvW788x0ATEGJjx8Ah2vpLJht8e5dqn0s77HCtL6xCB22KGrs/OUEMURXK3V3H8iyIKd9dQm2vDbvMEo6oASQ1iiMC4ufEs+NEowkcFoNYqvcvR6Q1dFulB2osL2H73ga/Z/1YuwcNMPHn8pktihncx+EX6Up1lGexuDCpD6x2RYXF0Kna3k+cPfYUgCEiSxA1xY8/oiXEhNsSdbapOy6UfDCJ8w3l+/M94fvzPACi0FfPfrHdYV7aFbGsu/856i39nvYVaoSbZFM+iyHk8OPweRvp33Ywb2lv4qOAwPx49b0g6qPYXaQFGNAqBzZcgbuRUIbJ5yWfMDp/e788xWNz6j6kcej+f9b88wqxHR/TInDgbbxZ4/CO+lxx5lpZXL+Xp9Rz5pIi87ZVUZ1poaWinM+hDoRIwhetJnBVGyjURlE1u5htXAQBisA9RKUEoha4l2hxrDXuqPbMiWqWKcYEXbr3/9l3bOfR+PmGpfvzs2E2oVEOvJFtIipmK9AYcdteQWDoaDK7Oqx7CHKotZn9NEd9JmU6Erx+lzY18XHAIP42uX22IhzLxplhenPwsL05+FoDMxhxezX6HDWXbyLMVcNKSw19P/AcfhQ8pfkksiVrA7LDFNDntvHB4vfc8IhK51hq2V+Tw8swVKITuX0ImjRab8zTHRKcdc4doM6l1nm0OTyCxt43DTrTB71Jc+jmRZNST2891ajxCZIlXiMw9gw/N5YhCoeDud+bw6vWbeP2WLfxgy9LzOn53nYVgHzV+msHLuhhKNJQ0c/ijAnK2VFB5vBFbdRuS26M8BAF8g7UkzQ1n2Nww0m6LJ2yEf7fja9ua2Xu4GKfo5kBtMSXNjcwITcCg9uFkYyWH6kqROpTM7PDkHkaO58rrt27h2GdFRKYF8H+HbhiyVZZjJgZy9JNCCnfVkLLgwszbLndkMTLE+KzwKNdGp3rjESJ9/ahvb2Fd6ck+xciF2BB3tjGrh74PyAj/Yfx56m+8jw/XHuO1nHfZUv41JxuzSW84we/T/46vykCKeRgLIuZye8ItrC8rJExv4tqo1B5CBCDBGESWpapb3EhmYxUJHRlGQVpfTGotWZYqog2eL9M2l5PCpjrmnOI3MNAsCgvgpLWFw/U2xgdefIrx4dpjHUJEvCKFSCejr4shdkowuVsryd1ecc6OnTV2B40OFzdHX3jw6+VMq6Wdo58WkbmulNIj9VjLW3E7uhzIdH4aYiYEkjAzjLG3xhE3JfisN/1gnYHvpEznv1k7ESWJ6jYbnxcd7dFupH84N8SOuaB+//eGjWR8WUrMxCAe33fdkBUiAEkdBfPyv66UxYjM0MAhulCcllmvEATvKKE3LtSGOMtSxbyIwatzcqGMDx7LK6fEj+yq2scbOe+zvXInxxqOcrj+MH88/mcCfSKIMyRS0zaXB4ffzeribPw0em6KTwNgQWQKL6VvZlNZJqMDIjhQW0xxc4PXZbGzls3a0gxCdEaCtAZWFafj56Pzvo6DwXcSI/hrdimv51dctBg5XHuMqasXI0oiG5d8esUKkU6+++VCnon4kDe/tY3fVN3R6w0qy9qCzeliQoAJpULglRxPQPODSVf+Eo3D7uLEV6Wc+KqE4n21NBQ342zrsirX+KoITTETNzWEUdfHMHxx1AUve4wLiubx0Qv4ougYebbabvsMKh/mRCSzLHoUyo736FyK6XXyyuL1ZG0oJ356CD/6ZtmQFiIA0RM839VlR/pOVLjSkcXIEGNMQCRrSzMI0OoJ15spbW5kc1kW08O6ZkX6y4bYIbp6eJFcjswIm+K1JxdFkS0VO3g77yN2V2WR3niAQ/Xf8OTBXxOsjSbekExx83weGHYHiaZgHkyZwariY3xRdIwQnZFHUmd5PUYAro0agcPt4t3c/bS6HCSZg/nhyMGNSxnlb8RHIbCl+uLiRrqEiJuNSz7rUa/oSsQYomf+T0ex5Q/H+erpQ1z/Ys9Cf9/dn8k3NRZMaiVLwoPYVWtBCVwbdvnVYToTnQGm6Ss9AaZ1eV0BpgAqHwX+MQaiJwSRuiyaMTfGoDX07zJVsjmE/xt7DRUtFgqa6nCKIgE+elL9w7t9xs6lmF7nNf1z4XrytlWSNDeMx7YsGfJCBECpVKDWKanNHfwYvsFCdmAdYthdTlYVp3O0vpQmZztmjY5JwbEsjxmFquPD2V82xLcnTCDedPGmZ0MZURT5qnQj/8v9mN01+6lsrfbOMvlrzEwISuPW+Ou4J/lb6FWXT0n40V/tIdvWStXNU7uNFuHMI8ZOjtYfZ/KqRVeVEOlEFEWeCfuA1oZ2fl1xO8aQ7u/7g3tP8mZ+BSKgFATcHV+RI0y+LI8M4tqIQOaE+KG6DG5yp1J2tJ6jnxSSu6OSmixrrwGmkWMDGL4oknG3xWMKGzqfh5LmBl44sr7H9qfHLSbG4BGJoijyt9lrKNxVw/BFETy6YclAd/OieD72Q9qsDv5guXewu9KvyHbwMjK94BJdfFa4mg/yP2dPzQFq7F2pzUE+gUwKTuP2hJu4PeFmNKqhG6z400M5/DmrhFvCGgnUdK/d0TliNGo0/PPEa9yVdCshuq54h1OFyIbFn7Agcs7pp7/iyd5awcsL1hE3raeV+MvZpfzgYHavC6MqQcAlSbw0PpmfjogdmM5eAPXFTRz5qICcLZVUHG+gqdqOJHYEmCrAN0hL2Eh/hs0PZ9xt8YSm+A1uh8/C2cSIKIr8eepqSg7UMXJ5NN9bfXFuu4PB3+auoeCbKv7m/s5gd6Vfke3gZWR6QaVQsSLxJlYk3gSA3WXnw/yVfFT4BQdqj7CubAvryrZw39ePEaoLZlrIJO5IvJmb45YPWF2dc+GhpEj+nFXCyWYfZgV0FyMuSaTZ1c6Oqu08vu9Z/pP1Nl8vX02ILpij9ceZsmoRbsnNxqtUiACkzI8gaW4YedurOLG2hJFLYwDPckCEru8ILQmJMK2Gb8WEDlxnz0JLg90TYLq+jLLOAFPnKQGm/hpiJgWROCuUsbfEETv57AGmQ412t6vPfaIo8scJqyg/2sDYW+L4zqcLBrBn/UfEaH/yd1TRUNxEQOzVZ64nz4zIyJxCs6OZ/+V9wqdFX3K4Lh2LwwqAgECEPowZoVO4J+lbLI1eOOhf6D4fbEGncLIiomfsyNPjFvPz/T/nk8JVgECiKY5/Tf8jSzaswHWVC5FOWi3tPBX8Hj5GNS/W3YXF0cazB1fT5hZ5sywYTg8kBwxqJXuunUSqeeCqJp+Kw+7ixJclZKwppWR/7wGmQYlG4qaFMPr6GFIWXXiA6cWwoyKXHZW51Ld7XEXD9WaWx4xmVEDfmSK9Fa0c6R/ButITrC89gUN09zhmuCGE1rutVJ+0MP6OBO5/f94lu6ZLzcH38njn7h3c8fpMpn17YAphDgTyzIiMzAVg0Bh4JPUBHkl9AACL3cIbue/zRfFajtZn8HHhF3xc+AUKFEQbIpgdNo37ku9gXvjMARcniQYtWTax1312l51VxetwdwT85duKWLDuZgQENiz++KoXIgB6Px8WPzeOtc8d5rMf7WXKi8NxSSJqBZhUbmyurq9HAVArBNbNGzdgQkQURXK3VXHs8yKK9lRTm9dEe9MpAaZaJf7RvkRPDGLksmhG39D/AaYXip+Pjpvix3oK4Emwp6aQV05+zTPjFhPRSwHLvopWpgVEcqi+tPcncYvk/aIMxUk3k+5L4t63Lu+/6WELugrmXUli5FyRxYiMzBnw0/rx+OhHeXz0owBUtVbzevZ7rC7ZQEZjJv/L+4T/5X2CUlASZ4hmXvhMvp1yF9NCe2Zp9DezQ4xk2tqotqsI1Xafxt5R9Q1t7i5fGbfkGVVG6MMYE3BpaxFdTix+dhy7/p3FzlcyGfH9GO/2EI0Lm0tJ5+yIAHwyawzTg/26HS9JEt+8nInOT8Okuy/Oe6b0cB1HPy0kb0cV1VlWWhu7B5iaI/Qkzwtj+DVRpN0Whyl06ASYns7YwO6VjW+MG8uOylwKmup7FSO9Fa08WFvSTYioBAWjAyIYHRBJVm0lR5blIJRLuO9V4v+ryz/TyRSmBwWUHqoje0sFNdkWarKtxEwOZtJdg+drNFDIYkRG5jwI04fy9LjHeXrc4wCUNJfxWvb/WFOyiUxLDq/lvMtrOe+iElQkmuJYEDGbh4bfQ1rg6H7vyx2xQfwnr4bsFh2h2qZu+74qWYdKUOKSuk9tV7XVMOur5Xy9fDVh+qET9zCYfOfzBfx56mpWrtgL//RsC9I4yWvtsoz/fVos10V1Nz1rszl4994dHF9VQmCC8bzESF2hjSMfFZKztYLKjMYeAaaGYB3J88IZNj+Ccd+KJyT58q0ULEoih2pLcLhdXkPB0+mtaKXzlGWZm+LGsrLoGMtiRhOhNbNzSTqKUgnnT9WIN6j4ujKXJdGp3oxDgJaGdrI2lHFiTSmiW+L+D4beEk7Z0XqOryqmOttK5fFGEKH0UD0vL1znUcASpCyPkMWIjIzMmYkxRPH/JjzJ/5vwJAC51nxezfof68u2kmPN45XMN3gl8w00CjXDzIksipzPd4ffQ4pf8kU/d7xBixKJivbuVtku0cmm8s09hAh4ZkhybQXM+ep6Tt66G+UVXMfnXImbEkLsNSEUb6pBsVWNOF9FkMZF56zIJHMz0wK7L8FVZVr473UbqS/yxETUFzTRamnvteZNS4OdI58Ukrm+jPIjDVgregaYxk4OInGWx8E0ZmLQoMcj9QflLRZ+f3QjTtGNj1LFw6mziPDtXVSdXrSysb2VRoen5EG4zkSSySME1e0K3n5gGxXHG7juxYlsnleAxdGGzWkn21KNX5mWE2tKyVhdQvHeGjojIk1huh7PORRY+/xhMr4sQVAIXjHqRfJMjGWOrqPB3nLWdP3LHVmMyMj0I8nmRP4w5Zf8YcovAcioP8mr2e+ysWIb2dZ8Mhqz+HPGK2iVPgw3J7M0+hq+O/xeYo3n5+jqFN3sri7AT+2iwdn9Y1zWktltiaYTBQpERJSCklT/FFySCyWyGMlsrKLgiSYU20H1ByeO2Qp0Co+QC1A5STO18n7eAUJ0RpLNIRxbWcQ7d23H7RC99VjAM6KNnxbC8dXFnFxTSsmBOhqKmnHau0Shj0FFWKqfN8B02DWRQ7JwW38QqjPyzPgltLmcHK4r4a3svfx0zMI+BcmpnFreItkc4q3k+59lG6nfZyMs1Yy1vBXKRRRbnCjyRN4+sgV7rcNzY5ck7xIXAkSNH5p+Ste9OJHM9WXd7PW7oQDndAXNrnYCkMWIjIzMBTIqMJW/Tf+t9/GB2sO8nv0eW8q/5nhjJkcbMvjtsb+gV+kY6Tec5TGLeDDlbiJ8w/s8p93t5B8Z28mz1RKt1VPvVFNpVxHeETeSadntbavAU0pAISiZFz6TOxJv5sbYpQRo/fs6/VWFw+3i9exduHSg+J4K9T9dJP7bhOPpBD6pquKBWDdNTk+69KsndjJjdRRbfnfcO4V+Kv9euqHbTUWlVeIf40vMxGBGLotizI1xaPRXz1euSqH0BLACscYAiprr2VqR7S23cCqnF63UKE9xX21v9RatnPyTYdSvs+Cyu8neXE5TYzPq99xIgB0HQI8ZBoVSIGrc0IwpCU/156Y/TeHTH+zpsU8SQBqrALPQy5FXHlfPJ0NGZggwKXg8k4LHA55sia+rdvNW7ofsqNzNofpjHKg7wvOHf49B5cuYgJHcGLuU76TcSYC268v0nZx93loew412jjb50ugOZrbZzdHaHEpbTwKedOR5EbO8AiRQOzS/kAeTg3UlNDk9DrYp342meXMD1asbqHg4jnH+Rn43eR5/Ob6VvNIaWv/PwpasRs+BvRgiKJQCqTfEkLIoknG3xvVwdr3akSRw9ZKeCz2LVobojCgFBW5J5GRjJaIkYlJrUc3QcPcKT9aMpb2Vn+9dCY0SyrV9zCwAokti/zt5NBQ3kzw3nFHXRQ+p92bW90eQsbqEnC0ViKfMtCGBe97VM3Mp+4zIyAwRRFHk9ZyNfHffVtTSEZyuE9Ax2jOrTYwLGs2CiAXkW3zRqHTolGp+OGoe49YfJ9Xky6o58cxcfR35tkJS/WcyPuBanhx3PcP9wgb3woYw/8jYRkZjJQA/G3sNwa2+/Hr4p/z7LxGsMAVwW5aCk7vLKFhbzdnGp8ZQHS9U3XnpO30ZsLLwKCMDIgjw0dPudrG/pogNZSf54ah5pPqH82b27m5FK/NttbyUvpmb49K8RSvXlJzwlm4I1ZlIMYdwsLaY+1OmARJv5+yjxeX5fKSUBtHwRB3NNfbuN/QOFGoB0dm1XalWYAjREtJR9C91SRTx00MGLVbHVtXKCyM+o83q8ApdCXCs1EKg0M32/nJDtoOXkbkMybW1Mmx1xzKLJIJURoDyKC7XXmyOQjq/qXwUekb6j+S3k37GuqpQPinOx1/6PfXtDfxj2itsKvdUcZ4UHMuDw2cM0tUMfZ7Yt4699W3UtGswa4PRqRSkl1uxqmHhv2oZn+EiemIQmdWVCA0SijrAAYJS6BYv0smvK+7AHD50Rt2DxTs5e8myVGN1tKFTqYn09ePaqFRS/T3Lj39K30ygj2+HsPDgMT07Rr29hRCdkaXRo1hVfIxae7O3jU6ppt3tQjxlakqrVPNk2iKMdi3/u2c7J9eWdeuLykfBSy330WZ1cGJtGblbKyg7Uk9DUXO3mz+A1qTGP8ZA5NgAkuaFM3oAZ1GOry7h1es3AZ4uSSMFnP/yBPXKYmSIIIsRmasFh1tE9+FWTp107hyRS5JIqCYbh2MbLY5jOESPO6xS0OKWwKTWse+GtSSZEvjB7o8RJYlIvR/PTVg64Ncx1ChsamVdRT2766ycsDRT0mrH4nCd8jpLqAUFM4LNjNbrObG7ir8sHMmosSHU2pt47tBXAIwwhHJD+2hyNpeTuaGcor01iC7Jmw3x0KqFjL5+6Nasudyoszfzj4ztVLX1Xs3WoPLh0ZGzSezItpEkiW1/zmDVzw94slFEichxAfz88E29Hi+KIqWH6jm5rpTC3TVUZ1poqm7D1d71l+GdRRlmJm5qMKlLoomf0f+zKLVtzbx833rqP/F8rt2PqXF/yxNJ8ZPR8xju13cc2VBGdmCVkbkM0SgVhOt8KG/rqsTrHS0ICqqdI0AYAT6A6ESgCF/hCDb7Bh4d+SLD/ZJxSyJCR4Rl31VWrkzym1pZX1HP7joLJywtlLTasXYTHR4n1SAfNdOCzZhVDtodlUTqHFwXPYJbE8Z5Gs1I9bbfWpHt/X14UBjx0SHETw3h2mfG0d7ipGBnNdmbKyjcXT2kKt1eCQRpDTwzfgkHa4v5ujKPspZGREkiRGdkemgC00MT8VV3uc4KgsD8n44mfnoIr9+yBVtlGzET+s6kUSgUxE4KJnZSdw+ZVks7J9eUkrO1krIjddQXNpO7vZLcbZVsejEdOG0WZW7HLMoFGtEdqy/j1axdOB90oVkFggPcs7vEzquZu/nx6PlEG67cwHN5ZkRGZhAQRZF0Swu7ay0ctTSRbWulpMVOXbuTZlfvQX6dKJBINbTy85GJrEhIRa1QIEmSN/3xcF0p/8n8BoDxQdF8b8SsS349A02urYX1lfXsqbVywtpCaS+iQ9MhOhINetL8DcwJ8eea8EBMmq4xWGN7K0/tX4WIhAAsjxnNgsgUdCoNLU4Hm8szWVt6AvA4gL44+UZMGi0yQ5+WhnbWPHOQCXcmkjjz4uOmRFGk7EgDJ9eUULinhqpMC01VvcyiBGsJTjETNyWY1CVRJMwMPeMsSqGtjpfSN+PqKN2g/o8LxXtOAr8OpYKuGSGjWssz4xbj53N5CV55mUZGZpCxOVzsrrOwv87GcWsz+U2tVLY5aHQ4aT89/RDwVSkJ1mpoc7mpsju6zWl0ZpLeEOmPmRy0SglflQ+Pj5lPlG/XaKnO3syf07dQ394CwA9HzWWkf9/FyYY6WdZmNlQ2sKfOyklLM6Wt7Vidrm6vjUYhEOyjIdGoI83PyNwwfxaEBnQTHWdidfFxvio57n2sEhQEan2pt7d4bxAAN8elcW10am+nkLmKabW0c3JtxyzK4Xrqi5pos3SPRfExqvGP8SVybCBJc8IYfX2Mdxbtr8e3kmmpAmBCUAyzLfG8Mn09Txy4Ht1IHa9n76KwqR6AayKHc2vC+AG/xotBFiMyMgNAYVMrO2utHG6wcdLaQlGLnRq7gyaXi9PjG9WCgFmjIlyrIcGgI9Xsy6QgMzOC/QjRdk01//5EEU8fy/MerxTAqFLx6tQR3BoTyj9PbOd4gydAVYHAmMBIYg2BVLZaOVxX4r2BxhgCeDLtWhTC0PcpOGlpZmNlvUd0WFsobW3Hdpro8DlFdIzzNzI31CM6DOcoOvpCkiRWFaezrmMG5HQ6Z0yWxYzyzj7JyJwJURQpP9rAiTWlFO6upjrTiq2qtdssikIloA/2wRrqQBqpwDhTz//79k2IdpGfm//HPe/OYdJdSVgdbTy1fxUuScRXpeH3U25CfRk5J8tiREamH3C4RA412thTa+WYpZncplbKWu3Utztpc4s9Zi90SgUBPmqidFqGmXSM8TMyNcjEpAAzmnN02vy0pJrbvukaqS+PDOK1KSMI1XmsxltdDv56fCvFzQ19niNEZ+Tx0QvwH0JTuqIoctLWysaKevbWe0RHWasdm9PdQ3SEaDUkGvSMDzAyJ9SPBaEB+KovbYhbRYuF7ZW5ZDRU0OpyoFdpGBsYyZzwZML0l29tmKHK6uJ0virJ6LYtVGfi/01c3ucxnoybdOrtzYTojNwcn8bogEjvfkmSWF18nG+q8mhzO0k0BXFn0iRCdUPjvtFqaefkulJytlRSdqSemnwr7TYXwikFEWMnB1N2tIFR10XzwIfzAfjXya85Wu/JEnp+/NJeiw0OVeQAVhmZc6Te7mBnrYX99TZOWJspaG6jqs2BxenCedpySucsRZReS6yvlhEmXyYEGpkR7EeisX9u/IkGj9ukr0rJy5NSuDc+vNuIXK/S8NMxC9lQdpJvKvO6OVfqVWqmhyayNHokvuqedVIGAlEUybC2sLGynr11VjKtLZS1tdPUQ3QoCNGqGR9gYkKAkTkh/swP80evGpyvpQhfP+5MuvTVlmW6iNCb+fHo+d7HyjPMPOXbanktaxc3xo9lTEAk+2uK+NfJb3h63GIiO27OG8oy2VqRzf0p0wjS+vJlUTp/z9jGLycsHxKzCXo/HybekcTEOzyF7/ZUF/BW1m7Ig7HZoQTbfWmtd1CR3kB9flfxS19V12f51KXDKwlZjMhc8YiiSFZTK7tqLBxpbCKrI1i01u6g2eXm9I+2j0LAT6NmlNmXRKOOUWYjk4NMzAjyO+c4hIthrL+RlyelsDwymBjf3oMlfZQqro8dw9LokRQ21dPibEen0hBvDESjHJiPdWcQ7saqevZ1iI7y1naaXN1Fh7ZDdEwMMDEhwMS8UH/mhfqhHSTRITN0UAgCZs25FbHbUp7NyIBwro3yxO3cEDeWTEsV2ytyuCt5MpIksaU8i6Uxo0gLjALggZRpPLH3c47WlTIpJO5SXcYFE+DjCwoFDAP3FBW3jZru3de5aCFKIpkWjzGfAPhrhs5sZ38ifxvIXBG0ulzsrbOxr95KemMzeU1tVLTZaWh3YRe7yw3vcopGxXCTlgSDljR/I9eEhzDW34BykCumKgSBR4edW+E8lUJJsjnkkvZHFEWONjazqaqefXU2Mm0e0dF8uuhQKgj10TApyMyEACPzQv2ZGyKLDpm+qWlr4mf7VqJWKEgwBnFTXFqf1WkLmuq8dvGdpPqHc6xj+aLO3oLNaWfEKY7DHoEeREFT3ZAUI8nmYAJ89DS0t5LRWEl6fTljAj3LTp2zoRvKMmlo91QwHukfgfEKzeaSvyVkLhvKW+3srLFwsCNYtLC5jWq7A5vTjeu00CeVIGBSK0kw6ojz1TLSbGBioJERRg3/Prmxx1RniUVBXNJ1gy5EBhNRFDnU2MTmygb21dvIsrZQ0eaZ6TgVnVJBiFbD1A7RMT80gFkh5iErOhrbW/m88CgnGitwiG6CtQbuGzaVOGNgn8dkW6r5pOAwla1W/H30LI0ZxfTQhG5ttlXksKksE6ujjSiDP7cnTiDeODSrww5F4o1B3D9sGqF6I1ZHG18VZ/DH9E08P34ZWpW6R3ubw45J3f1GbFJrsXZU+LU52zzbTrtZmzRdbYYaCkHBgsjhfFJwGIBXTu5gYnAsaYFROEU3+2qKvJk2QA8xdiUxNL89ZK5K3KLI0cYmdtdaOdbYTHZTK6UtduocTlpPG4WDZyQeoFGRaNCTbNQx2t/A1EAzU4JM6Pq4MZY0N/S65uqSxKuiTDd4RMfBhiY2VTawv95Klq2Virb2Hv4mOqWCUK2GaR2iY0FYALOC/c85EHco0OJ08MdjmxjmF8oPRs3FqNZS09aEr0rT5zF19mb+eWI7s8OT+c7w6WRZqvhfzj7MGq03TfpAbTGfFhzmzqRJxBuD2FKRxd8ztvGrCdfJPiTnyKiArpTzKF9/4o1BPLl/FQfrSpgZljiIPRtY5kekUGir42BdCRKev60DtcU92l0fO4YR/ldunSlZjMgMKDaHi121FvbV28iwNJHf3EZlmwNLH94bBrWSMK2GWF8tw02+jAswMiPYTIpRP2hFrS41dpeTVcXpHK0vpcnZTrSvPysSJ5z3SH5qcBz76m1sqfLMdORY62lwOLE6FTilrtdOp1QQptUwI9jMxAAT88MCmBnkd1mJjr7YUHYSfx899w+b6t0WpDWc8ZgdlbkEaQ3c1uHnEK43k2etZXN5tleMbC7PYmZYIjM6bpp3JU0mo6GC3dX5LI4eeYmu5spGr9IQqjNS29bU636TRtstWBvA5rRj7hB/JrUn9sTmsHeLQ7E57EQb/C5Np/sBhSDwneHTiSz1Y0t5Ns2u9m77g7S+LI8ZzbTTZuauNGQxItOvSJJEQXMbO2sbOVzfzElbC8Ud3hvNvXhvaBQCZrWKYSY9iQY9o8y+TAo0MT3YjyBt36PXK5l3cvdR0WrlgZTp+Gl07Ksp5C/Ht/LLCct6TdWtabXxwrGvUalCqWwPJL++if8WZVPnyO/wFQUBiUC1C7PGh3EBvoRqWlGIDfxlyhICtFdmQBxAen0Zqf7h/CfzG3KtNfhp9MwJT2ZWeFKfxxTY6npUOk71D+fjjql0l+impKmBJVFdBmgKQWC4XxgFtrpLcyFXAXa3k1p7M1P7CGhNMAaRZanqtlSR2VhFQsfSWJDWF5NaS5alymub3uZyUthUx5wzvN9DAYWgYGnMKK6JGkF6fTm19iYEBKIN/gz3C7ssvIIuFlmMyJw3DpfI/gYr++psHLM0kWtrpayt3eu9cSqdwaKBPmpGmn0ZZtQz1t/AtCA/xgcYUSsv/9F3f+JwuzhSV8qjI2czrCMw9brYMaQ3lLO1IodQ31i2VDWyv95Kjq2VyrZ27G43bvwBB+BAr1QQqVUwzOBmYWQy80MD+KZ8PwmmIO7oSF0VJYkn93/B/trCK3okX2tvZkdlLgujhrMkeiRFTQ18VHAIlULR50jT5rT3GndgdztxuF20uhyISD0CCU0abZ8F3WR68mnBYcYERBKg9cXqaGN18XEUCEwK9hQafDN7N34aPTfFpwGwIDKFl9I3s6ksk9EBERyoLaa4uYG7kycDnoDPBZHDWVuaQYjOSJDWwKridPx8dKQFnVtA+GCjViiZEBwz2N0YFGQxItMrNXYHO2ssHOgwpypobqPK7sDqcOGUenpv+KqUROo0JBp9GWH2ZYK/kZnBfsQZzy1tT8aDKEm4JYnjljY+Kc3nYL2N7KZWLO0KrK5a3FLXyNu3o6heqMZGslHPd4aNYWqQGZVCwa6qfD4uOMwvxyTiEt18kNPAspirbyQvAbGGAG6KSwM8rrQVrRZ2VOZe8dPeQ53G9lZey95Ni7Mdg9qHJFMwv0hb5BV5De2tHQUfPSSagnkwZQario/xRdExQnRGHkmd5fUYAbg2agQOt4t3c/fT6nKQZA7mhyPnDQmPEZkzI4uRi6TB3tJjjc+g8ukzPW2oIIoiJ60t7KqzcqSho1Bbaxu1dictfXhv+GvUjPYzkGjUkWzQkF6XQZDGgaZjckMlKPj1xOuG/LVfCF+W1fKXzBI+mTW635aPXKLIzhoLW6oaONjQRE5TC1VtDtrdwbxaWuRtZ1ZBqI+D4UaBayNTWRgewORAE6qOmJlnD65memgQM0O6atTII3kPZo2W8NPcU8N1Zo7UlfZ5jEmtxXZa9oXNYUerVKNRqlAIAgoEmnppY1bLwavnykMjZp5x/0/HLOyxbUJwzBlnDgRB4Pq4MVwfN+ai+yczsMhi5CJosLfw7MHVPbIzhspNucXpYm+dlb11No5bmzzeG63tNDp6em8oAL1KSbCPmnEBRoab9KT5G5ke7Mdos2+PYNHipnp+2+zotm2oZ6SIksTh2r5vQk3O9h7b7G43TxzO5eUcj5fBrloLN0Sfn6+HwyWys84jOg41NJFja6HK7uixpGVQKYnUa0k2qjEI9agkC0alRKzRnxBdICXNDTw3Rh7Nnw+JpmCqTxNc1W02j9lUHySYgsjoqP3TSaaligSTJzZBpVASYwwg01Ltnf4XJYksSxXzIob18xXIXO70V0D6lZ5aLouRC6SxvZVXs3b1mSa6t6aQpTGj+jxekiScooTmImMmSlrs7Kxp5FBDU0ehNo/3RlMv3htqQcCkUZFo1BFv0DHS7MvEABMzg82E6c9tRCdJEvtqi1hbnNHr/uo2GzGGgDMe3+oW8VUN7LSpWxJ5PWs3h+pK+mzzVvZuHh+z0DuSPmlt5tav08m2eQyHlAKctLZwQx/Lzw6XyNe1jWztFB1NrVT3ITqi9VpGmPRMCjSzKCKACf7GHoKv3e3C7nZi1uj4b+bOPrNA5JF83yyMHM7vj21kbckJJgbHUNRUzzdVed44A4CVhUexOFp5IMXjfjknPJntFTl8VniEGaEJZFmqOVRbwmOj5nQ771vZe4gzBhBnDGRLeTYO0dXjhiEjc74B6VdrarksRi4AS3srfzy2yVumvTdWFafjq/JhTkRyt+2SJLG1upHnjuVzpLGJ6ltmYzxDATCXKHLE673RRI6tldJWO/UOJ60usYf3hsdZVE2yUU9yR7Do1CAzkwKMF21KJUkSHxUcYltFTp9t3srei16l6bVs/a4aCz87ksuhhiaqbpmFn6ansdGlYlVRejchEuXrR7TBnyaHnSxLNS5JxOZs5x8Z23lu/FLeKazmhwezcUl0W7I6YW3B4RLZVtPA9upGDjY0kdshOuyniQ6jSklMR/2ayYEmrgkPYHwvoqMvfJQqfJQqWpwOTjZWcnP8uF7bySP5vokzBvLIiNmsLDrKmpLjBGkNfCthAlNC4r1trI42r8MleFJ/Hxs5l08KDrO1PBs/Hz33DJvS7W96UnAszU47XxanY3PYiTL488OR8zCdo7W5zNXBmQLSd1TmcmPc2B7HXK2p5bIYuQDezdvvFSJGtQ+Tg+OINQbQ7GjnUF0J+U2eoMAP8w+S4hdKmN6EJElsqmrg2WP57K+3IeAJrmtxuXGJIrtqreyvt5FhbaagqY3KtnYsTheOXgq1GVRKIrQ+nhud2Zfx/p5CbUlG3SX13themdtNiET5+hFvDMLucnLSUkmLy4FLEvnPyZ08O34pwTrPSP5oQxO/OJrLhsoG73VbHK4BEyMtTgdbK7IBT+DmwyNmMbajdgV4bkZ/z9hGWYuFirZWFm05wDd1rT3O45bg/aIq3ivqckQU8LwfcR2iY0qQiWvCAknzN1zwe3GisQJJgjC9iZq2Jj4rPEKY3sSMjlG3PJI/P8YERnottnvj/pRpPbal+IXyzPglZzzvvIgU5kWkXHT/ZK5cRElCREIldJ8JVitU5Ntqez3mak0tl8XIeVLb1sTxjlGoSa3lmfFLuhnszI9M4eOCQ2ytyEFEYntFDkZtDL84mk+GtcUbG94pMSI//6ZHsKhGIeCnVjHC5EuCUcdos4FJgSZmhpjx0wyO94YoiWwoO+l9fG/yFK8qB88I4PXs3RytL6NddLGtIptxwSN45lgeH5fUeKtxdl736dVwLyX7a4twih530dlhSd2ECIBe5cP0sLH85OBBTjTpEWkB+s7rvykqiKnBfiwKC2SMX894moulzeVkZdExLO2t6FUaxgdFc2PcWK9VvTySl5G5PNCq1CQYg1hbmkG43oRJo2V/bTEFtjpCdL0vu16tqeWyGDlPDp4y1b8gMsUrROwuF2WtDvKaW1lT7cOGKn+sTiX/LWkELN5jTr8FTwwwMdLPQJq/gWnBZsb5G71ZEkOJk41VNHbcAEcHRHQTIgAapYp7kqdworGSRofEr09UcbKp0WvW4z4tfsXudtHscNEqirS53LS63bS6RNrcbtpcIm2imza3iN3txu6WaHOJtIue39vdbtpFiXZRpN0t4hBFHKLU8buEUxRxShIOUcQpStS0NWNz+iNKAhvr23i7+DBGtYo9dVbUCoHytvYOcdQZ1Ni3UJKAP4wfRpLx0hmFTQyOZWKH10JvyCN5GZnLh2+nTOPtnH38fP8XKBCIMfgzKTiWkuaGwe7akEIWI+eJzdHm/b2zWqpLFNF9tP20lp1LEGeeAdjfYGN/Q5ea7W083us24dT9Qq9tO9t024ZAx3/d9gmn/E/oZbtbFHGKnhgEnwqRVwr2EKX34YS1GbNaTbBWjUOUyLQEYnV1XbMo9X79Y9bu73V7f9DZf0HovBoJSVIhCBIOuwtfZTuhOo+YSfM388SIWFLNvnxZsJOiVjtldi0tUhCZttYeM1ngCWK9lGJERkbmyiFYZ+SJsQvlgPSzcEFi5OWXX+aPf/wjVVVVjB07ln/84x9Mnjy5z/affPIJzz77LEVFRSQnJ/P73/+epUuXXnCnBxONousla2hvJRFQKRQ8mBiBUa0kyEeDn1rFm7npnGhS0SYqvXESvbEkPAClQoEkgYTU8a/nJi51HCdJEiJ0ten4vXsbzz6x43gJzy/iKe07t3f97jl39/2eB51LR53t21xOml0uAPRKAT+NCj+NCp1SiUmtJEavRaNUYLFbaWoG8QzLHABLIwKJ0PmgUSjQKhX4KAR8lEp8lAI6pRKtUoFWKaBVKNGpFOg6/tUqFeiUSgwqJTqVEr1CgV6lOONSydbybD4qOATAgogUvpU4oUebkuYGWt3NhPjAxEA1T4+bTkFTK1+W1/F5SQ27ai3e1+SEpZnro4LPeH0yMjIypyIHpJ+Z8xYjH330EY8//jj//ve/mTJlCn/961+59tpryc7OJiSkp//C7t27ueOOO3jxxRdZvnw577//PjfeeCOHDx9m1Ki+U1+HKsP8QljfETuxvSKHiUExCILAq1O7gokO15VwrMbKeDP4asJIbzazpaoRpUCP2izvzRiNv8/AZZVcKJmNVfw1YysAI/zC+PHoST3a2BxtPLk/nVn+IrVOXyqd4eyrt6EUhB7LNE+Pimd6sN9AdJ3JIXF8XnQUp+hmR2UuowIiSPUP9+5vdtp5N7drpmZmqKeORYJRz4+Hx/Dj4TE0tDtZU17H+sp6pgaZezyHjIyMTG/IAennhiBJfcyj98GUKVOYNGkS//znPwGPk2d0dDQ/+MEP+MUvftGj/YoVK2hpaeGrr77ybps6dSppaWn8+9//PqfntNlsmM1mrFYrJpPpfLrb74iSxHMHV1NrbwZgWkg8N8WnYdbocEsih+tKeT9vP60uJwCPps5mbGAUu2osPJOez/bq7qKk8bY5A5rieqGIksSzB7+kzu7JIvpWwnjmR6QgdKwFtbmcvJq1kxONlQAsihrBLfHj+KamkV8fL2RTVQMqQfB6n2xbOJ65oX37kfQ3HxccYkt5tvdxijmUYeYQGh2tHKwtxu72zPr4a/T8csIytKqh/57IyMgMfQ7WFvcakK5TeZIR3sreQ317SzfH2VNNz/x89Czr1fQsm41lmd6A9NsTJhBvGnqmZ+d6/z4vMeJwONDr9Xz66afceOON3u333XcfFouFVatW9TgmJiaGxx9/nB//+Mfebc8//zxffPEFx44d6/V52tvbaW/vcsO02WxER0cPCTECkF5fzisnd3iXXhQIhOlN2Bz2btbwI/3DeWzk3G4VF7+ubuSZY/l8U2sBwPqtuZjO4DMylNhZlc//cvd5H4frzYzyD6fN7eRwXYlXgGmVap6fsLSby+XhBhu/zSji89IaJGDT/HEsDO/bgbC/cYsi/8n8hmMN5X22Maq1/GT0/G61LmRkZGRkLpxzFSPndResq6vD7XYTGhrabXtoaChZWVm9HlNVVdVr+6qqql7bA7z44ov86le/Op+uDShjAiP5dsp03s7Zi0sSEZGoaLV2azPKP4KHRszoUfp5dqg/Xy+ayPbqBo40NGEcYCfSi2FGaAJ19mbWlZ4AoLLVSuVp161Vqvh+6uwedtvjA0x8OnsM2bYWPiupYdoALdF0olQo+F7qLHZU5LKtIpuajpktAI1CyeSQOJZFjxp0C38ZGRmZq5EhOSR/8sknefzxx72PO2dGhhKTQ+JIMgfzdWUeB2qLsLS3oVGqSDYFMzs8mVT/8B5C5FTmhgYM6DJFfyAIAjfGjSXOGMimskzyTjHtUSuUTAyOZUlUKqH6vtVvismXp0bF97n/UqIUFMyPTGFuxDBKmhuwOtrQKFTEGQO8U6YyMjIyMgPPeYmRoKAglEol1dXV3bZXV1cTFhbW6zFhYWHn1R7Ax8cHHx+f8+naoBDg48uNcWN7tfS9kkkLjCItMIratmYa2ltQCgIRvn7oL5MbukIQzlikSkZGRkZmYDkvdy2NRsOECRPYsmWLd5soimzZsoVp03oaMQFMmzatW3uATZs29dle5vIhWGcgxS+UJHPIZSNEZGRkZGSGHue9TPP4449z3333MXHiRCZPnsxf//pXWlpaeOCBBwC49957iYyM5MUXXwTgRz/6EXPmzOFPf/oTy5Yt48MPP+TgwYP897//7d8rkZGRkZGRkbksOW8xsmLFCmpra3nuueeoqqoiLS2N9evXe4NUS0pKuhlQTZ8+nffff59nnnmGp556iuTkZL744osh6zGyrvQER+pKqWqzoVEoSTAFc3NcGmFniIMAOFRbwqridOrtzYTojNwcn8bogK7iXJIksbr4ON9U5dHmdpJoCuLOpEmE6gY/O+hKwO5ysqo4naP1pTQ524n29WdF4oQzLsecmj7n76Nnaa/pczlsKsvE6mjzpM8lTiDeOPTS52RkZGQuZ87bZ2QwGEifkb9lbGNScCxxhgDcksQXRceoaLXwywnL8VH2rt3ybbW8dGwzN8aPZUxAJPtrithQlsnT4xZ700TXl55kfekJ7k+ZRpDWly+L0invOK9aMfQyataXnmBl0THmR6SwohfH0k6Gigj7b+ZOKlqt3Jk0CT+Njn01hWwuz+aXE5bh79PTur3O3syvDq1hdngyM8MSybJU8XH+YR4bNcdbYO5AbTFvZe/hzqRJxBuD2FKRxeG6En414boehaxkZGRkZHpyrvfvoVeRbZD50ah5TA9NIMLXj2iDP/cPm0pDeyvFZyhqtKU8m5EB4VwblUq43swNcWOJMfizvSIH8NyQt5RnsTRmFGmBUUT5+vNAyjQs7W0crSsdqEs7Z4qa6vm6Mo+os/ht5NtqeS1rFzPCEnhm/BLSAqP418lvKG+xeNtsKMtka0U2dyVP5hdpi/BRqPh7xjZvFd3+wOF2caSulFvi0xhmDiFEZ+S62DGE6AzsqMzt9ZgdlbkEaQ3cljCecL2ZeREpjA+KZvMpxmiby7OYGZbIjLBEInzN3JU0GY1Cxe7q/H7ru4yMjIyMLEbOSpvbY+Tle4YAzYKmOob7dc8OSvUPp6CpDoA6ews2p50Rp7TRqTTEG4O8bYYKdreT17N3c0/ylLMGpQ4VESZKEiISKqH7DJNaoSL/lPTjUymw9fGe2Tzvh0t0U9LU0O09UwgCw/3CvG1kZGRkZPoHWYycAVGS+LjgEImm4DO6ctocdkynVUs0qbVYO6oq2pyeSr+nT+2bNF1thgof5B1ktH8EI/z7Tr3uZKiIMK1KTYIxiLWlGVjaWxElkb01hRTY6rCeUmX5VGxOe6/vh93txOF20exsR0TC2Nt75hxa75mMjIzM5Y4sRs7AB3kHqGix8tDwGYPdlQHhQE0RJc0N3BSfdk7th5II+3bKNCQJfr7/C76/8yO2lWczKTgW4SzVg2VkZGRkBp8h6cA6FPgg7wDHGyp4YuzCXgMgT8Wk0WI7bbRsc9oxd9yETWqdZ5vDjlmj62rjsBNt8Ovfjl8gDe0tfFRwmB+PnjckA2rPRrDOyBNjF9LudmF3OzFrdPw3cydBWkOv7U1qLbbTBJHNYUerVKNRqlAIAgoEmnppY1bLwasyMjIy/Yk8M3IakiTxQd4BjtaX8ZMx8/u8mZ1KgjGILEv3WjuZjVUkdKSABml9Mam13dq0uZwUNtV52ww2JU0NNDntvHB4PY988wGPfPMBOdYatlVk88g3HyBKYo9jzkeEdWvj6GrT3/goVZg1OlqcDk42VjI2MKrXdgmmXt4zSxUJHVUvVQolMcYAMi1d7sGiJJF1ShsZGRkZmf5Bnhk5jQ/yD7K/pohHU2ejVaq9MQe6jhEzwJvZu/HT6L3LGQsiU3gpfTObyjIZHRDBgdpiipsbuDt5MuCp6bIgcjhrSzMI0RkJ0hpYVZyOn4+OtKChUXNnuF8Yz41f2m3b2zl7CdObuDYqFYXQU7d2irCFkcO92/oSYdEGf6BLhM0JT+rX/p9orECSIExvoqatic8KjxCmNzGjwzdkZeFRLI5WHkiZDsCc8GS2V+TwWeERZoQmkGWp5lBtCY+NmuM958LI4byVvYc4YwBxxkC2lGfjEF09vEhkZGRkZC4OWYycRmcq6J+Od7ewv2/YVO9NqKG9tVssQqIpmAdTZrCq+BhfFB0jRGfkkdRZ3YJer40agcPt4t3c/bS6HCSZg/nhyKGzJKJVqYlU+XXb5qNU4avy8V7HUBZhbS4nK4uOYWlvRa/SMD4omhvjxqLsMOCzOtpoaG/1tg/SGnhs5Fw+KTjM1vJs/Hz03DNsitdjBGBScCzNTjtfFqdjc9iJMvjzw5HzMJ2y1CYjIyMjc/HIpmcyffKn9M1EdTiZdj4O9PHl/pSuukIe07Nj1Ntbzmp61inC7kycdMbKvjIyMjIyVwbnev++LMSI1WrFz8+P0tJSWYzIyMjIyMhcJthsNqKjo7FYLJjN5j7bXRbLNE1NTQBERw+N+AoZGRkZGRmZc6epqemMYuSymBkRRZGKigqMRiOC0H++EZ2KTZ5xubTIr/PAIb/WA4P8Og8M8us8MFzK11mSJJqamoiIiOhWRPd0LouZEYVCQVRU7yma/YHp/7d3tyFN9WEYwG+dnjMDTUOmM6zQMMOMSFHURApBMKw+KRhjQWXh+qJQSRaLLBORCMSK7MU+SKNCI3LYiyWhGYFtIGmGzYqgCUKRZKXT+/nknsfS8qx2znNO1w/2wb//g9cuD+72bNOwMJzoMkDP8kHX8kDP8kDP8vBXzz+7IjIDf2cEAAAAFIVhBAAAABT1Vw8joiiS1WolURSVjqJp6Fk+6Foe6Fke6Fke/4eeVfECVgAAANCuv/rKCAAAACgPwwgAAAAoCsMIAAAAKArDCAAAAChK88NIQ0MDrVixgvR6PaWnp9PTp09/uv/69euUmJhIer2ekpOTyW63y5RU3aT03NjYSNnZ2RQREUERERGUm5v7y+8L/EvqOT3DZrNRQEAAbdu2zb8BNUJqzx8/fiSLxUJGo5FEUaSEhAT8/FgAqT2fPn2aVq1aRSEhIRQbG0tlZWX09etXmdKq06NHj6igoIBiYmIoICCAbt68+ctjOjs7af369SSKIq1cuZKampr8G5I1zGazsSAIfOnSJX7+/Dnv3r2bw8PDeWRkZM793d3drNPpuLa2lvv7+/nw4cMcHBzMfX19MidXF6k9FxcXc0NDAzscDh4YGOAdO3bw4sWL+d27dzInVx+pXc8YHh7mpUuXcnZ2Nm/dulWesComtedv375xamoq5+fnc1dXFw8PD3NnZyc7nU6Zk6uL1J6bm5tZFEVubm7m4eFhvnPnDhuNRi4rK5M5ubrY7XaurKzklpYWJiJubW396X6Xy8WLFi3i8vJy7u/v5/r6etbpdNze3u63jJoeRtLS0thisXg/npqa4piYGD558uSc+wsLC3nz5s2z1tLT03nPnj1+zal2Unv+nsfj4dDQUL5y5Yq/ImqGL117PB7OzMzkCxcusNlsxjCyAFJ7Pnv2LMfFxfHExIRcETVBas8Wi4U3bdo0a628vJyzsrL8mlNLFjKMHDhwgJOSkmatFRUVcV5ent9yafZpmomJCert7aXc3FzvWmBgIOXm5lJPT8+cx/T09MzaT0SUl5c3737wrefvjY+P0+TkJC1ZssRfMTXB166PHTtGBoOBdu7cKUdM1fOl51u3blFGRgZZLBaKioqiNWvWUHV1NU1NTckVW3V86TkzM5N6e3u9T+W4XC6y2+2Un58vS+a/hRKPhar4R3m+GB0dpampKYqKipq1HhUVRS9evJjzGLfbPed+t9vtt5xq50vP3zt48CDFxMT8cPLDbL503dXVRRcvXiSn0ylDQm3wpWeXy0UPHjyg7du3k91up6GhISotLaXJyUmyWq1yxFYdX3ouLi6m0dFR2rBhAzEzeTwe2rt3Lx06dEiOyH+N+R4LP336RF++fKGQkJA//jU1e2UE1KGmpoZsNhu1traSXq9XOo6mjI2NkclkosbGRoqMjFQ6jqZNT0+TwWCg8+fPU0pKChUVFVFlZSWdO3dO6Wia0tnZSdXV1XTmzBl69uwZtbS0UFtbG1VVVSkdDX6TZq+MREZGkk6no5GRkVnrIyMjFB0dPecx0dHRkvaDbz3PqKuro5qaGrp//z6tXbvWnzE1QWrXr169otevX1NBQYF3bXp6moiIgoKCaHBwkOLj4/0bWoV8OaeNRiMFBweTTqfzrq1evZrcbjdNTEyQIAh+zaxGvvR85MgRMplMtGvXLiIiSk5Ops+fP1NJSQlVVlZSYCB+v/4T5nssDAsL88tVESINXxkRBIFSUlKoo6PDuzY9PU0dHR2UkZEx5zEZGRmz9hMR3bt3b9794FvPRES1tbVUVVVF7e3tlJqaKkdU1ZPadWJiIvX19ZHT6fTetmzZQhs3biSn00mxsbFyxlcNX87prKwsGhoa8g57REQvX74ko9GIQWQevvQ8Pj7+w8AxMwAy/s3aH6PIY6HfXhr7P2Cz2VgURW5qauL+/n4uKSnh8PBwdrvdzMxsMpm4oqLCu7+7u5uDgoK4rq6OBwYG2Gq14q29CyC155qaGhYEgW/cuMHv37/33sbGxpS6C6ohtevv4d00CyO157dv33JoaCjv27ePBwcH+fbt22wwGPj48eNK3QVVkNqz1Wrl0NBQvnr1KrtcLr579y7Hx8dzYWGhUndBFcbGxtjhcLDD4WAi4lOnTrHD4eA3b94wM3NFRQWbTCbv/pm39u7fv58HBga4oaEBb+39XfX19bxs2TIWBIHT0tL4yZMn3s/l5OSw2Wyetf/atWuckJDAgiBwUlISt7W1yZxYnaT0vHz5ciaiH25Wq1X+4Cok9Zz+LwwjCye158ePH3N6ejqLoshxcXF84sQJ9ng8MqdWHyk9T05O8tGjRzk+Pp71ej3HxsZyaWkpf/jwQf7gKvLw4cM5f+bOdGs2mzknJ+eHY9atW8eCIHBcXBxfvnzZrxkDmHFtCwAAAJSj2deMAAAAgDpgGAEAAABFYRgBAAAARWEYAQAAAEVhGAEAAABFYRgBAAAARWEYAQAAAEVhGAEAAABFYRgBAAAARWEYAQAAAEVhGAEAAABFYRgBAAAARf0D5/VuV9IHY8oAAAAASUVORK5CYII=", "text/plain": [ "
    " ] @@ -798,7 +788,7 @@ }, { "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAAiMAAAGdCAYAAADAAnMpAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjcuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/bCgiHAAAACXBIWXMAAA9hAAAPYQGoP6dpAAEAAElEQVR4nOydd3wUdfrH3zPbN8luyqYnJCFA6FVEigqCIioqYu/9bGe7s5ztPL3T33lnOdvZ+9kRBUURUDqCdAiQBALpvWzJ9p35/bHJkkACCUlIgHm/XlGy+52Z7252Zz7zfJ/n8wiyLMsoKCgoKCgoKPQQYk9PQEFBQUFBQeHERhEjCgoKCgoKCj2KIkYUFBQUFBQUehRFjCgoKCgoKCj0KIoYUVBQUFBQUOhRFDGioKCgoKCg0KMoYkRBQUFBQUGhR1HEiIKCgoKCgkKPou7pCbQHSZIoLS0lIiICQRB6ejoKCgoKCgoK7UCWZex2O0lJSYhi2/GPY0KMlJaWkpqa2tPTUFBQUFBQUDgCioqKSElJafP5Y0KMREREAMEXYzKZeng2CgoKCgoKCu3BZrORmpoauo63xTEhRpqWZkwmkyJGFBQUFBQUjjEOl2KhJLAqKCgoKCgo9CiKGFFQUFBQUFDoURQxoqCgoKCgoNCjKGJEQUFBQUFBoUdRxIiCgoKCgoJCj6KIEQUFBQUFBYUeRREjCgoKCgoKCj2KIkYUFBQUFBQUehRFjCgoKCgoKCj0KB0WI8uXL2fmzJkkJSUhCALffvvtYbdZunQpo0ePRqfT0a9fPz744IMjmKqCgoKCgoLC8UiHxUhDQwMjRozgtddea9f4vXv3cu655zJlyhQ2b97Mvffey80338zChQs7PFkFBQUFBQWF448O96aZMWMGM2bMaPf4N954g4yMDJ5//nkABg0axMqVK3nxxReZPn16Rw+voKCgoKCgcJzR7Tkja9asYdq0aS0emz59OmvWrGlzG4/Hg81ma/GjoKCgoKCgcHzS7WKkvLyc+Pj4Fo/Fx8djs9lwuVytbvPss89iNptDP6mpqd09TQUFBQUFBYUeoldW0/zlL3/BarWGfoqKinp6SgoKCgoKCgrdRIdzRjpKQkICFRUVLR6rqKjAZDJhMBha3Uan06HT6bp7agoKCgoKCgq9gG6PjIwfP54lS5a0eGzRokWMHz++uw+toKCgoKCgcAzQYTHicDjYvHkzmzdvBoKlu5s3b6awsBAILrFce+21ofG33XYb+fn5PPjgg+zatYvXX3+dL7/8kvvuu69rXoGCgoKCgoLCMU2Hxcj69esZNWoUo0aNAuD+++9n1KhRPPHEEwCUlZWFhAlARkYGP/zwA4sWLWLEiBE8//zzvPPOO0pZr4KCgoKCggIAgizLck9P4nDYbDbMZjNWqxWTydTT01FQUFBQUFBoB+29fvfKahoFBQUFBQWFEwdFjCgoKCgoKCj0KIoYUVBQUFBQUOhRFDGioKCgoKCg0KMoYkRBQUFBQUGhR1HEiIKCgoKCgkKPoogRBQUFBQUFhR5FESMKCgoKCgoKPUq3N8pTUFBQONbI3VfL6s2leH2BDm+r1aiYMDKJAenR3TAzhe5ge20p6yr3Yfe5UYsqUsKiODkujUSjuaendsKgiBEFBQWFA1i9uZRaq/sIt/axenOpIkaOAWo9Dby1cyV77TUtHt9aW8KCou3M7DOM89KG9dDsTiwUMaKgoKBwAE0REUGAMIOm3ds1uHzIMkcUUVE4utR5nDy3ZRF1HmebY+YXbkMUBM7pM/QozuzERBEjCgoKCm0QZtBw6yUj2j3+ra+24HD6unFGCl3Fp7t/DwkRs1bP+Li+pEfE0ODzsLG6iOz6MgC+K9jK0Ogk+oQrka7uRBEjCgoKCgonFFUuB9tqSwAwafQ8NmoGJq0h9PykxH7ML9jK94XbAVhamsu1A07pkbmeKCjVNAoKCgpHAdmnREx6C5tqimhqVz8lKSskRFwuF36/H4CzUgajVwXv1zdUF3IMNLg/plHEiIKCgkI3IDc0IP34I/777sPbvz8+gwE5L6+np6UA2LzB5GQRSJX1FBYWsmvXLnbs2EF+fj4AOpWalLAoANwBP35Z6qnpnhAoyzQKCgrHLbXuBmy+xguPIBCu1hGtDws9X1FRQU1NDUajEYPBEPrx+yXqq7xUO718+0UBVeVurA4fUqKeBO/7jDIlkWxIJWrKaQiRkQDIkkT0vl30X7+KvttX47tyC/j9oFYH/w9gVkpFexJJkrBarSQ0yFxtyMSACm91PdWCgNlsxmw2Y7Vaqa+vx2Q2U+NuAIKfHZWg3Lt3J4oYUVBQOK6QZZnSKjtzNmTzy/a9uGvAUwueOvDZBNKFONx2GYfdx5nnG5g+KwK73YkogigKAAxKCKAJiOTVwtdlVaz36MlVaXk1spohaRfhBVRXXIEvLw8yMqCuDhoaON/nQxIEBBloWghoEiLx8QhxcT3xlpzQ2O12ampqsNls+BqXygyAG4HiQAN16gBXjzgNjUqNLMvs2bOHffv2EYiPpM4bTHAdaI5HFIQefBXHP4oY6YXUuhtw+D0tHjvwjk5B4XjF75coK3FSVuyivMRJRbmbmgoPNdVu6mq81Nd5cVh9OOx+nA1+XK4AXk8An1fC75dpubR/4N2sTDFVqFQCKqOKX7ermT4L1OqWFxqTScWoCBWjCJb3Nvg9PFjzEgUZv3DuinCqh79F3XujELep0G0/Dd54B6RgGF9sLbdAEBDGjevKt6lXceA5qyfPV263m6qqKmw2Gx6PJ5TrIYoiYWFhREZGEhMTw/9tW0Sxqx684MpZzeyMkcQbTKT0SWX79u34S6pIEPSUy25OT+zfI6/lREKQj4GsHJvNFgqfmUymnp5Ot1LrbuDx9fMPWp9UCyJPnzRTESQKvR5rvZeyYielRU4qy91UlruoqfJQW+2lvtaDtd6Hw+ajwREUEx63hNcbwO+TCQQOfzoSRFCrBDRaEZ1ehd6gwhimJjxCgy5CoJQaVCYJrRl0URAZH0atKZwSjZ46wYjDa8AdUCPJIipklpxST3gbt2WyHDzenx1/5/F+39JPhjn3TmJW6ljyrp3MyLgLMQhmtPwF7lwJc+cfYuICJCYiDB6McPrpiLNnIw4adITvcu+htXPW0Txf+f1+qqqqqK+vx+VyhcSHIAjodDrMZjMWiwW9Xt9iu1xrJS9t+4VAs3lH64w0+L30I5yJuvjg6xP8nDJgCBHh4d3+Wo5H2nv9ViIjvQyH39NqopRflnD4PUSjiBGF7sPvl6godVFS5KSizE1FmZOaSg/VVW7qa7zU1/mwW3047L5gVMJ5qKhE66hUAmqNgFarQm8QiYrREhauJsKkwRSpJTJaS7RFiyVOT2y8nvgkPYnJRhJTjJgjtW3ut97t58HVm9hdZqTGFYbLZ8TlV+OTAH/wR0BGq/ITpXdxerzIlYkawlQCoSWVZsiyjN3v5Wbvn3m5/xoGBURmffEm/6z5CK2qlKhAEuNFA5ukerw8BK8IOLMSMT9XDjIIB74ZmZlQXY28eDHy4sVIjz8OKhXExgYFymmnBQXK0GPLYKu1c9bhzldutxtZljEYDK0+fygkSaKmpoa6ujqcTieBwH6DOa1WS0REBBaLhfDDiIcB5jhuH3wq7+xahTsQXEqrbfQdycHKBDkOQRCIltXk5uQQHh5OUlIS4eHhCMqSTZejiBEFheMIm81LaaGLspIGKkrdVFW4qa4MLm/U1XixWb3YrT4aGvy4Gvy43RJeTweiEkJwSUOjFdHqVBgMKmJidYSHq4mI1GKO1BBl0RJj0WOJ1xGfYCA+yUByqpH4JANqdeeTAK3uAIsKXSwrcbOp2kO+1U+1KxAUHcQE54lMlE7FkGg1wyxaJiTqmJ5mQOWqYVvhbiyiHrUgAq1bvssy2Pxurvb/kVcGbOYkv4pZyz5inX8s2xJeY/TylQgPPEC6dzzLNEs4XQZBkDHcVYb3ZAHtLTJyPQjNjFg1K1cixMcj+f2wbBmB+fOR16yBvDzkX39F/uUXpCefBFGEuDiEgQMRTj0V8aKLEEeO7PT71luor68nPz8frVbL0HYIL0mSsNls1NTU4HA4QqW3AGq1OrTsYjKZEMWOfb6GRSfzj7EXsLoin7WVe6n3uNCIKjJNFkSvGtm//w/ocDjIzc3FaDSSlJSEyWRSREkXoogRBYVegt8vUVXupqQoKCQqylxUV7oblziCyxu2eh8NjuASh9sVwOMO4PPJ+P0S7ak8bB6V0OlFoqK1GJuiEmYNUTE6omK0WOJ0WOIMJCTpSUwxkpR66KhEd2DzSPxc4GRZiZvN1R72tBAdQUQBInUiQ6K1JEX4sPr3kBpRz+zMTC7uOwqA4uJiHI5a6vY4kWWZeJUBryThk/0YxNZPgYIAb6je57n0zUz2i1y8/F3WVJ9CuNfODm0DupISavw2zms4j9djljDZv387xsn4FoP6D8DvIMggxwCxQVt5Ua2GqVMRp04NHU+SJFi+HGn+fKTVqyE3F3nZMuSlS5GefjooUCwWGDgQcdIkxFmzYPToDl98uxpZlimw17Z7fFVVFYWFhQB4PB68Xi9a7cGfq4aGBqqrq7HZbHi93tDjoigSERFBVFQUMTExXfL6wzU6zkoZxFkpLZfM8vPzqaurO2i80+lk9+7d6PV6MjMzD1r+UTgyFDGioNBFOBw+SgqclJe6KC91UlURTLysrfE0RiV82K1eHI7g8obbFcDnCYqJgCS3tlLQgqaohFqzP1ciOkZHeISacLOGyKjgEoclVk9MnI74RD3xSQaSUo3EJ+rRanvn172jomOoRcvExkhHhnn/hWxd5T7ezakEgvbeTVRXV7cI5QsI6ETVYed1u34sKXUWPig5lVRtX2bFe/BFZpPgH4FjhIFV9p2coR7Fk1FhVMoNxDW/SY4D/1egehZUbwAnJYEQ1eaxRFGEyZMRJ08OPSZJEqxejfTdd0GBkpMDK1YgLV+O9MwzQYESExMUKBMnIl54IYwde9QESp3HyZs7VxzUZK6JH4t2cGPWeDSiClmWKSkpoaKiosUYu91OTEwMHo+H6upq6uvrWySdCoKA0WgM5X20Jly6i7CwsFbFSBNutxufz6eIkS5CSWDtZRQ6avnHpp9afe7RUWcr/RG6CUmSqCh1U1ripLzYRWWFm6pyF7XV3saohBdbfVMFhw+XM4DHLeHzSQT8UlMhxSERVQIatYBGJ6LXqzAY1YSFqwlvjEpERmuJidURbdERl2AgLlFPUoqhMVdC0+N3wZ2lSXQsL3WzqSooOmpcAbwHig6tSJ8INUMbl1fOPkB0tEVufQXPb1sCwLDoJO4aMhkI/m0FQUCSJPx+P69t+5XUgJ40VTiqQ4TZtao8il1JBKQIwtUyYSoZsY3hMgFUQgOi6EAlOBBFB6LgQBQaoEKDbJyEGBOHSqVCrVaHfjQaDRqNBq1Wi1qtPuzfWJIkWLs2KFBWroTcXKiuJpSsIwhBgZKVFRQo558P48d3+WfH5nXzzy0LqW704WiLYdFJ3DZwEoUFha1e2FWqoFCRmn2B9Ho9JpOJ2NjYHr3Q2+12cnNzW31OrVaTmZl52LwUBSWB9Zil2FHf5nPSYeLwO7bWozeo6Ns/ootn1ftxOHyUFjmpKHVRVuLaX8FR5aG+zou1zofd5qPB7gtFJbzeoJiQAodPvBQEUKkFNBoRnU6F3qgiKlpLuElDhEmDOUpLVLSW6FgdljgdcYkGEpMNJCQbSUzuvVGJ7qAjomNwtJYhMVomJrVfdLRFpjmWKJ2ROo+TbbWl7KovZ2BkQuhCrFKpWFO1jxxXLTnA4Ig4LojsR01NDQFZOsjU6v3SWl7MOzn0u6BZiDHiG279zcZjP9cw7ZlJvJR+M2vD1rDb8BuP+MKRpHAkOfgTkMJxSnHURWdiCujBZmv3axEEAUEQEEURQRBQqVSIoohKpUIVF4f69ttR//GPQVGjUqHZvRvNTz8h/vorwq5dsGYN0qpVSM89F/zwRkfDgAGIEyYEBcqkSZ0SKN/u2xwSIjG6MC5IH87w6BS8kp81FXv5oXAbXilATm05m3ZkI3r9re4nEAiE8j4sFgsREV137sq1VvJz8Q4KHXVYvS5uH3QqIy2ph9wmp76Cr/I3Uua0EqsLY6aYdNAYnwjfewqp3LyTlPAoLs8cQ0aEpcvmfaJy4pwhezmyLDO/YBs/FG1vc8wXezZyz9Ap6NUtW5pXlLn4x8Nb+OqjfZw2LZ4vFk3p7ul2KZIkUVnupqzERXlxsBy0qqIxV6LGQ31tMOnSbgsmXTqdfrweCa/3CKISWhG9QYUpUkN4hIawCDXmSC3mKC0xFh3RsTriEvTEJuhJSjGSmGIgKlp7zEclugObR2pMJHWxqWp/Iml3i462UAkiUxIH8M2+zQC8vH0pkxIyGRWTil8OsK6ygHVV+0LjJyUPoAI7d254jTsTZjBc3xcZCaHRm+SLwjOb7d2LbPyeBsmD01GDbm8+m1xJrHBvIUOfzIOmb7jIC+Pk4EnVBziAFADVUIyxGxBFbSg64/P5Wvz4/X4CgUDo/4FAAEmSkCQp9Pghg9gaDcycGfxpRPD7UTkcqOvqUFdWBn/q6lB9+CHCm28iqNUIJhNiWhrq0aPRjBmDVqdDqz30593h87CuqgAAvUrNAyPOJEpnBMCAhrNTB5NkNDFv13qm6pIQvD6g7QhUVlZWt0RAvAE/KWFRTIzP5I2dKw47vtrt4NXspZyW2J+bBk5gV305tpJaTOL+z6ofGX8gwBkJ/cmMSWRJ6S5e3v4rfxszE5NWWa7pDIoY6SX8UprTQojoVWoSDGasXid1XhcA+fZq3tq1kj8OmYwgCLjdAd5+KYcXnsrG13gFqK5svTqgO3E6/ZQWOSkrDpaDVpa5qG4RlfCGohLOhgBudwCvp4NRCVVTBYeI3qAmMlpLeERwecMUqSE6RkeURUdsvI7Y+GBUIj45+H+9XvmYd4aOiI5B0VqGdrPoOBTTUgaSZ6tkW20pAVliWVkey8qC/WASKuPJcgwIDhRk3i1czvuBjwiYrdzU/0NebZjGhPr7CEixADia97XTLQPBDkJjQmrjwyvsOzjbeCNx/jjeV1Uy0Q8BwIGIM2YBsc5P8Ls+wVWZiSEuG1E0odVqcXll3vtuJ1fPHExSrLFDr7FJpHi93oMETXMxEwgEkMLCCMTG4uvXL7gU4vdDIICsUgXLipuze/f+f/v9QfmgViM0RmdEUUQURdxSgDPViXgJEG2MwG9rwK4PiiePx4PT6QSbjRn6YBRCluVDaRFsNlu3iJGh0UkMjT44stEWy8rysOjDuaTvaAASjWYWVa6FQDCnJyMjg7fz1zJRjsJQ4yIuKYyr+p3M9tpSVlfs4ezUIV3+Gk4klLN0L8Ad8DGvYFvo9wvTRzAteWAo8Wt7XSnv5azB6feSXVfGzrpyCpYHePyejZQWOVtczK11HesMKkkS1ZWeoK9EqYuKUhfVlR6qK93U13qpC0Ul9vtKeNxNvhLtjEqIoNaIaBtNqkxmDWHhasIiNI1RCQ3RFl3QVyJOR1ySgYQkA8l9jEpU4ijSXHRsrtqfSNobRUdbqASR2wadyrf7trCsLA+vFGjxvNvoZMgIM//Z/QG/Vm0gJgHsI7bxZ08k1+p+hiQftsAn/L61ArsH0ACSB/TzWuxHbry4rq7Nwx/vZ5JrEt+Hf4sDCQG4TBPGSs2ZiFHT8YjJ+Br+ibMiHWPsVkR1SqdeY5MoUKs7d/r2+/14vV68OTn4V64ksHs3Uk0NstcLGg2B8HD8ZjP++Pjgj8WC32QCnZZkVVBACV4hVB3ThMFgICoqinXWUnZYy4gUtZwRk4nk8baojGnCZrMR1wts8vNt1QyMTGjxWLjZRGl1DWcNHYtKoya/oZbTUtKQahvIzc1l8ODBDIxMIN9W3UOzPn5QxEgv4PfKAtyBoIg4JS6dGc0UtiAIDItO5orMk3g3ZzW2fLjpT2vY97sXUeSgqEJ1lYenHtxMXbWHulovtvpgFUfI7dIVwOOR8PskAh2ISgQrOIKJl+YoPWHhakxmLaZIDVExWqJjdMTG64lLNBCfqCcx1ahEJXopTaJjeWOkoy3RYW4mOpp8OjKPcnnvkaAWVVzcdzTn9BnK+qoCKl12BEHA6VHjDri4adNj1HisJA/1UpK2lvu8Jp5Q1VLnnExy38Xg9nPTR4UwOoKpVTUsNW8mINpBFhEREOWgGFELKpySjy2arUxyTmKHaSfWyPtZHtjGGu/LXLH7TqZuuQ2X+xL6JWVwatZdOCsHYLCs5d05Qev0T+bvACAlPpxLzx54dN+nxiRa46hRMGpUi+eknTuRvvkmWF6cnQ2VlaEeOzLgCjNQnRyPf/wpZMy+EmnyZBo8HvR6fSip86PqbIolJ8WSk2vSUonUGfH7/TidThoaGkI/UnvuaI4CNp/7oKWWcLOJD4o3MV19Cg6fBwkZS0wMSBrq6+spLCzEpNVT7mp/PpBC6yhXil7AXvt+VX1qQj8Aykqc3HvDWjKzIgj4wVrn4eclIu5qGQjeXbT2Hfa4A/z3X7tCvzdFJTTaoJCIMGuID2tZwREVo8MSq8MSryc+Ud8YlQgj2qJEJY5ljnfRcTiMai2nNesp8rdd3/LvqrdooIHBk3zsMK/l/oCJJ7GRXzGD3TUvktpP5MY/r6NmdAKDfD6+enAYX/7u5bFNE6nTazg/K4IE/6cATNFPIjXORL6vigu8Z5C6bSpZpw8nC3h93wa+NX/ARSfN5uLoSWzfHc/cdWZmjbsWV/Vorpi+gM8WRnHxWQOIiTSEGvT1FsRBgxAffRQefTT0mJSXhzRnDr5fluDdvJHkPYWocvfBh5+jgmClRN+++MaNo/TUUyhOEEGrJiUsErM26LSqVqsxmUwtqiqOgYLOg8jIyCA7O5uqqipEY+8QU8c6ihjpBfiahZLLcry8+8HvfP1JAQ67n51b64lPCpZ2avTgbt25ugVLtkwnvV8ERqPy5z0RsHskFhU15nRUnnii43BIksQVK/7G11XLiBUsZEyvYJtqIw9JiTzqL0NUpVNoexGbw8fGLZUs8BsQvRJL7+1PlFHNH6ZORG01MXZoAsMHxPL5WwuREfjf9AeINZmwWq3s3r2bhhovDS4fYQYN1234J49OPIfbzJdQFVHFaWNSKCobzpaS+YxKmUlYYAYxER+i1w0mzKA5/IvoBYj9+yM+/DDqhx/m012rWVe1j+jSSk5dtZVxO/YRkZsXjKJs3kzim2/yEuAx6gmkp+GfMBdxxgyEc85BPCA/pLe4mJo0emzeljl3Nq8bvUqDVqVGFAREBOxeN6IokpWVxfbt27E0SETqdD006+MH5WrVC4jWhVGzBba+IDBv70pUaoHb/zSQW+4dQFxC8I6i3Gnlrxt+IOAB9yojZXN17NhSj0otEPC3VCfRFr0iRI5D2iU6ALMuKDqGxGiYmKg/YURHa5Q7azjlx9spaChnrG4k3hHb2KLayN/kQdzv2wliIobYnbCrBAEfNz65k4bJqcySbXwxd2toP/6ARL09uLQiICMLEG4MvqdN5ajREVBrdaNWiUgOHX+RnuRx+X6ucFzBV6avSI4Lp7wuHeOoLdgrTmHmSX/A76kA7j/q70tnuShjJLnWCmqT4vjukml8R9BMTkYmqqyKkcvX0X/jTtL2lmDKy0fekUPgnXeCG4eHQ0YGwkknIZ5zTlCgGDuWxNsd9DVZ2F5b2uKxnfXl9DUFy3bVooo+EdHsrK9gpCUVrVZLRt++5OzOY6DPgCRJSiS5EyhXrB5m4bxi/nFPASX7BBAgYazARx9PZVjW/rr1gCTx9d5NAKh0cN1NA5j2xEA2/FbDOy/n8v1XRcgySFJQlNisXhKSOt6ASqF34PAGl1eWNoqOfKufKkV0AB3zjvi+aBUXL3sCr+RneuLp5KctZk/U7zzpnsb9wmIQLBjjdiGKegqrreQV1JPdL5You5snbogjLaKlwaBe21h9coBZriiK6HR6YiJcyM3WTq8Tb+ZL8X2+9n3NEu8SVASXjETNIOSIbVQUXEZKzJ/xWIvQmV/s0vepu4nSGfnT8Gn8d8dySp1WAOTGd6UuMZZfLzuXujv+wJCs8WhVGqTiYuQ5c5B++QV5yxbIyUHeto3A++8HdxgWBunpQYEyYwbCzJmdFijugI8qlyP0e7WngSJHHWFqLdH6MObu3Uy918kNWRMAOD2xP0tLc5mzdxMT4/uyq76CDVWF3DX09NA+piUP5IOcNaRHRJMeEcOSqlwqfFVM1iaQn59Pv379OjXnExlFjHQxDQ4fKnUwP+NQfP5+Ps8+upXKMjeiSqD/VB0Zd7vRRwV4v3Ypp+3rTz9TLNVuB8vK8kJfeINKw4T4vgiCwEnjLZw03kL58y4+fnM377+WR12N96BIiULvpEl0LCtxsfEwomNgtJahMRomJOo5+wQQHW3RXu+Ie9b9h5d3zUEnarkw7TyWZb2ETazmb3tv4w+J7+MU4rAkBkttF+3Mw2UP8MUyEf8ZYVyhr+eTPWt54pQZrXpHCHIwMuJw+jCYgs/LqjB0GjdqwYNOaybMoKG00sHPQ38mtS6Vi+wX8WrlKpIswSiKWpPAws0vcM2UGxEaXkIKlGCI/rJ73rRuIs4QweOjZ5BdV8bq8nyq3A5UgkCf8GhOTezXwi1aTEmBe+5Bdc89ocek0lLkb75BWrIkKFB270bOzibw4YfBAUYjpKUFBcr06QgXXIDYAcfTAnstLzQ68gJ8lb8RgPFxGVyfNR6r1xXq0gtg0Ydz15DJfJW/kV9KcojUGblmwDiGRO0vDx4bm4bD52ZewVZsXnfQ9GzIONwlVVitViorKw+qDKp1N+Dwe1o8Fq7WEa1XOrA3R7GDbwft/TDVVHs4c+RPDBkZycffn86BSJLEmy/m8vI/dlBf50WjEbjoqnT+/spoAlo/z21ZRLXbcdB2TagFkTuHnM7gqMRWn/d4AuzcWs+Ik6J7zTqsQkvR0bS80pboSI1Qh0TH9D4G+kWdmKKjPfxhxacHRUYcXicTF97J1ro9pIXFc+PwmTwf/iB2bSWvFjzC5ZaXsErRLKh9lYvTprKvxMbKLcVs3mDjU0sKUSK8OkqmwFpL5sBwzuyXRYPTR35xPf36RJFgCePLi6Yw9ccV/Dx3M9NO7ovHF2Dx6r0MTvERaY5gwIABbNxRwerNpZw5Po3vTf/jz9zNBTvu5f0RzxJl0iNJMq9+uomTh8UyKG42Kvl3RM0k9DHLTuhQv1RZGYygLF6MvHkzlJSAp9m512iEPn0QRo8OCpQLL0TsBS1CJEliy5YtSJLEoEGDMDZGdWrdDTy+fj7+A9yz1YLI0yfNPCEEiWIH30W098MUCEjcdtkqykqCduTbN9cxdGSwMZbfL/HcE9t49+VcnA0B9AYVt943gEf/b3gzm3AND404ky/2bGBjdRHSAVmq6eHRXJo5hkxTbJtz1elUjBwb03UvvhdxLNxdOLwSi5strxxKdAyM1jI0WsP4xkiHIjo6z9qqbKYtuh+H38UlaVO44uSRXGW7HlmQWaZ7hsExz2BzJfHD+jfw+CP4Ji8PS6SBkrAKvi2OQkpVseDKFEZaNLz9y3oKd7h5f9t2wgwakuPDWySaykDf1Ei+WZyH2+unb0okWq2DhoagRfqoQXF4vAGWrS9C5Z7AhBEXMm/Qy6zTn810piOKAlNOTuW3rWWs2fIakwa9xaDkd3BVDcYQuxlRPDHdPMW4OLj9dlS33x56TKquDkZQFi0KCpR9+5B37SLwabCqCYMBUlODAuWssxBmzUKMjDy6825MaN25cye5ubkMHz4cURRx+D0HXTsA/LKEw+8hmt5z/uppFDFyGNr7YfrXE9tZ+WuwY6hKLfDyMzt4+aNx/PW+zXz+fj5ej0SEScODTw/mnkcGtXr3Y9IauGXQJOo8TjbXFGH3etCp1GRFxpMecXyKjPbQ2+4umkRH0/JKe0XH9DQD/RXR0S08u+0THt30NqIg8M74h/CmFDLbOZvIQCIv+R5ilP9+0KiITJrL6bGRvJq9jFcmXIrT7+W5O7NxjI9ndJiKkxODIiBhgJZcayV/GTn9oGMJjT4jw7IsjBuy38CsoKCA6upqnE4nRqOR8SOTGD8yGOK/WnqbpLofuNh+MTVRNWhFLcMGxDJsQNPNxVjc9TJ+57s4K/tijNuOKCpNMQFEiwVuvRXVrbeGHpNqa5Hnzg0KlI0bobAQOTeXwOefw403gl4fFCgjRwYFykUXIUZ37/tpNBpJSUmhuLiYnJwcBg0a1K3HO95QxMhhCBymOR3Awnkl/OeZHfu38cvM/6qIH74pQgpATKyOPz05lBvu6H+IvewnSmdkSlLWEc/5eKOn7i46KjqGRDcuryii46jhlwOcsfAefq3YhEVnZtXZr/Gh5k2ecT6DGTN/rHiIsy2PAQJ6yypUmiFASWj7Vb9Usl3og8ovsfDa9HYeVQ45sDYnLi6O6upqKisrSU9vuS+LaOE/xv9wh/MOLnJcxPem7w/aXh/5TtCt1fEUzoqMRrfWtPa+FV3K/IKtfF/Ysk9WvMHEUyed1+Y2G6oK+a5gKzVuB3GGCC7KGMmw6OTQ8039t1aU78YV8JFpsnBlv7HEGzq+zCJGR8NNN6G66abQY1J9PfJ33yEtXLhfoOTlEfjqK7jllqBASU5GGDUKcdo0hNmzg0KnC4mPj8dms2Gz2SgpKQGzUkjQXhQxcgh+ryrg893r23ze7vOQn2fnjitXIwgHu6Hq9Sqef/dkLrysZ04oxwuyLFNsM2MxNqBXt979szN0RHRkRWkafToU0dHTuAMuzv3lPio9NUyOH8XP0/7NLc5b+ND1IUlCEtvD52KLPh8BCX3MEtTak4D93hFqQeTWp/JwX57J5Rk+LM3K4W1eN2ZN60slQhtZdgaDAVEUsbXRnfd2w+2863mXH3w/MM8zj/N15x80Rmf6G4IqGa/1NpyVWegtq1FrR3fwnekakoxm7h12Ruh31SHy0PbYqnhn1youzBjB8Ohk1lXu4787VvDoqLNJDosEYGHxTn4pzeH6rPFY9GHM27eVl7f/ypNjzkMjHjrhvz2IkZFw3XWorrsu9JhksyHPm4f000/IGzYEBcqePQS+/hpuuw10uqBAGTEiKFAuuggxIaHtg7SDzMxMtm/fTnl5OQTMbY6Ten+65lFFESNtsLwsj//t/v2QY97dsoa1t2nxuKVWbdU9HomTJ7ad43GiIcsyu+or+LU0h3Jn8IRt0YcHO6taUltNuq33BLjzVycL9g5iZHwJJycXHfHxHV6JJUUulhY3Ex3uAN5m7UtEwNRMdDTldCiio3fx/u4fmFMyB7fk4h+jbuHhIVcx3T6dxf7FDBYHsyFsHv7qYYSrZP5X9Rx3p54W2rbJO+KZx7dReWoiZl8DMwftN7uSZJld9eVMSRrQ6rHD3LXIbXR+CwsLw2634/f7W+0d87PpZxLrErnScSXVmmr0reSGaMNuRRQTcNddhLv6ZPTR81HrZ3T0Leo0oiCEnFMPx5KSHIZEJzI9ZTAAF6SPYGd9OUtLc7mq/8nIssySkl2c02coI2OCS1s3ZI3nz799w+bqIsbGpXfPazCZ4OqrUV19degxyeFAnj8/KFDWr4eCAuS5cwnMnQt33glaLSQlBQXK1KnBCEpS+xvuiaLIwIED2bptG4HKOrSIeDk4sjtn7ybuGjIZnUq5DIMiRlqlwmXjs2YRkf7mOEZGJxOh0bPPUcvayr04fF4WP+ihKufgxk8hZHjj37t48sWRzC/YxtrKfdh8bsxaAxPiMzgndeghq15y6iv4Kn8jZU4rUToj5/QZyoT4vi3G/Fqay6LinVi9rmCZWeYYMiK6NvTYFVi9Lv67Yzl77TUtHi9z2cmuL6OfKZbbBp1KRLNSyjVlbi5dUEFpQwCQqXW1z3egQ6Ijskl06Dg7zaiIjl6O0+fhqpV/59uiZcTp4vj38Hs5M3kEI+pGs50tTHCeyy0Nd+E3jwLcBML/R16BeJB3xHWpE5m+eg/+C9P40/gAqyqyyTDFBL0jSnLwSv6DvmtNCG0s0wDExsZit9upqqoiMfHgqrdoMZrXja9zs/NmLnBcwELTwlb3ozacj161Cnf1abhrz0VnfhdN2A1H+rYdEZUuOw+unYtGFOkbYWFW+sg287Py7dVMS27ZW2dwVCJbaooBqHY3YPO5GdSsEZ1BrSUjwkK+vbrbxEhriOHhcMUVqK64IvSY5HQif/890o8/BgXK3r3I331H4Lvv4O67gwIlMRFh+HDEM84ICpTU1v1tANbXFbPMXcKZuiRm6dOY4ykgzhCBzesOJeLnWit5e9dK7hx8ulL9iCJGWmVZaV6ommVy4gAuzxwT+rCMi88gy53KlbN+oS4PQAZBQKVq/DDJwQiAJEEgIPPRm7sZfrOa1fbd3JB1ColGMwX2Wj7M+w2DSssZya3nhlS7HbyavZTTEvtz08AJ7Kov5+PctZi1+lDd++9VBXydv5Er+40lI8LCktJdvLz9V/42Zmar/gg9RYPPywtbl7TaTGp+7mBkWeDMvrm8tP0XHhh+JhpRzT/X1/P4b3UIQNDLTaDmADHiC4gsKvCyvbo61Hul0tW26BgSskE3MkARHccc5c4axv94F/saShhiGsop0eNZX1PGc/rH2Ruxlat0V3Fm9Q2crLsdZDs683uEh13BXUMqDvKOePqaPdinJZGExOMn9+fXUqmFd8TdQ6ZgaisqIAWraVpzRTCbg2H52traVsUIwE2Gm3jH8w4/+35mjmcOs3WzWx2n1o7DGLcDZ9UoPNYbkQKl6EyPtjq2q8mIsHD9gPHEGyOwel18X7Cdf21dxF9Hn4tefbB9vc3rxnTAspZJo8faaK9u87mCjx1wXjJp94/pSUSjES69FNWll4Yek9xu5B9+CAqUdeuCAmX+fALz58N994FGExQow4YhTJmCePHFiGlp+KQA3+zdhF3ysNNvZbAmkvuSTqZf375IssTmmmI+yl2LK+BjW20pu+orGBTVuaWh4wFFjLTC71UFQLBa4/y0YQiCgCzLrPy1gv+9lc/8r4rQR4iEpQYIT4UBfaJIN0fj90n4fDJ+n4TXK+HzSYSFqyl0VTMyJjmUzGXRh/N7VcFBUYLmLCvLw6IP55K+wfXiRKOZ3dYqFpfkhMTI4pJdTErIZGJCJgBX9TuZ7bWlrK7Yw9nNOv/2ND8VZ4eESJTOyCUZoxkZk4LDF+DtjUXIyHy9czhn9c3lc+Mu3t8ew/KSg09QDT4t3+0ajMOnw+XXIMkC7xM0LRJozOloJjrOSjOSpYiO44Lvi1Yxe9kTeCUff8yazcvj7qEwUMgI6wjq5Xoe1j/MPwyP4jRnglSJ1vRyKJKQFRnPY6P3L3OsXVnJUqMOWa9i3uXBJYMpSVntThpvMj1rDVEU0ev1uN3uQ9qDLzQtJK4ujmsc1zBDMwOj2HrUT1RnYozLx1k1BJ/jMWSpBH3k6+2aZ2cYGr1/WSIlLIqMCAt/Wfcd66sLmdR4vjneEfV6mD0b1ez9YlFyu5F/+glpwYKgQMnPR/7hh6Bo+fOfQa3GGxfLValx5I0ajOeC8zGmJWGtq6OhoYGwsDBGW/rgkwK8l7MGCJ7rFTGiiJGDkGQZmy94IUwJiyRME2yAdNsVq5n3RRHxSQaeeW0MYy8K508v/sLm/xNJifXx3Gdj29zngsJsVpbvpsJpI95ooshRx25bFZf0HdXmNvm2agZGtvyADo5K5MtGF0G/FKDQXsuMxjVaCK7xDoxMIN9WTW/BG/CzqnwPEBR3fxo2lVhD0IVye423Mf4k4A2omZ83mB92y0hyW3dKAhXOCLSqAGadi2iDi3HxGh4bO5hB0UqjquOVJjdVrahh/pRnOS91Ilv8WzjFegoePLxifIU7dLfiqgwKEU3439GG/7HN/V19x0ac1/Xj1AQdY+I7HkEUoE0xAhAVFUVZWRlWq5WoqKhWx5hEE2+FvcV1Ddcx0z6TJeYlrY4DEFUWjHF7cVUNx+/8L65AKYaYbzs8785gVGuJN0RQ5bK3+rxJqw+dN5sILkkH31+TJhhlsnndLfJQbF43qeGR3TPpbkDU6+HCC1FdeGHoMcnrhYULCSxYgLx2LeTlMnhtGUPWboE3PkOKjSX/vffIczoZIEkYTz+dkyxpfL5nA06/l922qp57Qb0IRYwcgCgIaEQVPilAndeFJEuIgshdDw1i4281NDj8jB4Xzfdf57P5/4JnpG0/N+By+TEYWn87z04djDvg468bvg9FWS5IH8G4uIw252HzuVsNaboDPrwBP06/Fwm5RY5F05jWlkN6in32Ghr8wbyaUZbUkBCZt8fBBzsdNDUhbkoIlA51lgcuyaog2VyK078/VyfHJjIoekS3zF+h5zjQTfW3GW+QYIxhkXcR59jPQUJiTvgcLtDMxFU1CFkqRhP28CGXMl5+Npuik2MRJZlvZ7e+jHJ45DYTWCFY4ltWVkZ1dXWbYgTgWv21vO15m1/8v/CF5wsu013W5lhRNGKIzcVdM5GA5zucVePQx6w5am6t7oCPKreDU9pYuuobYWFXfXmLvJGddeX0bcxfs+jDMGn07KovJzU8+J64/D722qs5PfHY7uciarUwcybizJkAfJr7G2tLcslav53r99Rh9Mvoc3JwTZ5MZW4u6YBKFInQ6HD6vfikrq8QPBY5cX2HD8EAc7C3gNXrYnNN0JNg2Khoft44nagYHWeN/pkX79wdGu91ySxZUNbm/jZUFbCuch83ZU3gsVEzuH7AeBYV72RNRX73vpBegDPgC/07ybi/zO2GRdXM3ePk0MVtLZ/ViNA3PIt/j7uIyzNPQmi8IPxcvBOb19WFs1boadZWZZPw9Sy21u3hkrQp5M/6ggRjDB+5P2K6fToiIstNy7lAcwHu6tHIgd2ojXeiMz/b5j4dDh9PfVaEZ1gUd50USbT+yO7FmkzP2kKtVqNWq3E42m7t0MSPET+iR8/1jutxSIceL4oixtg1qHQXIPnW4aoagCQ5D7nNkfJ1/kZy6yuodjvYY6vijR0rEBEYGxu0KXg/ZzVz924OjZ+anEV2XRmLindS7rQyv2ArBY5aJjdWJAmCwNTkgSwo2s6WmmJKGup5P3cNkTpDm40Oj1UitQYktZqdp4xk42N/oupvf6Nu8mTiv/ySPo1LPrXuBiobo0xmbc93LO4NKGKkFU5P3G9O9nHeb6yvKkCSJaKidVx3b1M0Q4bGi6FKJTD304I29zdn72ampw5mbFw6yWGRnBKfwdTkgfxYtKPNbUwaPbYDErua/BG0KjXhGh0iAvZWxrTlj9AThKv352wUOupC/144K4FYw6E+fnKLf4sC+CTYXuNDJYpMSRrAGcnBE11Allh1Agi7E4Vnt33M+B/vwB3w8M74h/jy9L8hiiLPOp/luobrCCOMbeZtjFeNx10zHsm/DbXhWvSRrx5yv7dcsZr6c1Iw+iVePL0TjsaNOSOHautlMpmQJAm3+9DJmeFiOO+Fv4cbN+faz23X4Q0x36I23oEc2IOzMh3J3/Vh/jqPk3dyVvPX9d/z1s6VhKm1PDzyrFAkttbjxNrsBiDTFMvNWRNZUb6bpzf+yMbqIm4ffGrIYwRgesogpiRm8UneOp7Z9BOegI+7h0zpEo+R3kSTYFMj4Cirory8nIQXXyRxzBhErRZJlvlm3+bQGe7kWMWHCpRlmlYZFp3M4KhEdtSV4fT7eHvXKiI0empWq1j4QNOdyP5bo0BAZtH3pdhtPiJMmoP6qLgDPsQDwrqiIIRabrdGX5OF7bWlLR5r8kcAUIsq+kREs7O+InRncTh/hJ4gPSKGCI0eu88duiNKDoukf6SWKtfh3G2F0P81IngDsKLERV6dl/5RWk5N6MeSkhyAXpUno3Bk+CU/Zy36U8hNdfXZr9PfHPxs3+m4k9c9rxMrxLI9cjtxYhyu6qlIvnWodLPQR314yH1v3VDLD9YAgUQjb5wV26nljaalxUMRHx9PbW0tFRUVpKUd+mJzhe4K3nK/xVL/Uv7n+R9X6a467Bz0ka/hUSXjsz+Ks6ovxtiNiOr2OTy3h1sGTTrk838aPu2gx8bE9mFMbJ82txEEgfPTh3N++vBOz6+3IkkSYT6YFZaBRdIgCAJR775N2LKl7H35X1RX7mVZaR759uD5SiOqOPUYX6bqKhQx0gqiIPCHgZN4a9dKsuuCyy/5a9z89qBA0JX84Bitzyvx03fFTL0k7qA+KgLwfeE2ovVGEo1mihx1LC7exYSE/T4Gc/dupt7r5IasCUAwOrO0NPcgf4S7hu7vBjwteSAf5KwhPSK6Xf4IPYFaVHFaQj9+KNqOhMwLW5cwM20YDnd8i3ECEjIiIDMqVodRV4pZV0mkzs+FadNYX+nhi1wHBfYAdl/wvY3Q7E9a9UsBFI5dcqyFTPzpTmo8VqbEj+LnM59HLQZPTxfYLmCebx6ZYiZbzVsxikZcNRcQ8P6CSnsmhphvDrv/a65eg+Oa/qQbBK4ZFNG5ybbDONNoNCKKIlartV27/CHiByx1Fm5y3MRMzUxM4uEt0nURjyCKSXisN+KsHIresgy19pR2HU+h65AkCbvdTm1tLfX19UiSRCza4Inf7yfpvQ/IG9yXV7N/bbGdgMANA8a321jueEcRI22gV2u4a8hksutKWVaWx3c7KpAD8n4dcsAJSRDgs4/2UDGq4KA+KjKQFh7Np7t/x+7zYNYaODWxH+f1GRoaY/W6qPXsX/+16MO5a8jkg/wRmsp6IRgOdPjc7fdH6CGmpw5mW10phY5aHH4Pn+1Zz/bKeCC45BWu8ZBiquekBIl/TxhLvFHLS9ty2VkfTMQdneDizLRo3tpu548jTIyOC4aKd9SVh44RpVO6Xx6rvL/7B25Z8y8kWeaZUbfwl2HXAMFIyQTbBH4P/M4pqlNYZVqFKIq4664m4JmHqBmPwfLzYff/zis57B4YhawXmTur/U6abREs7T28SZXRaMThcByyxDc0VjTyUfhHXOK4hBn2Gawyr2rXXDRh1yOoEnDXnoe7ehL6qG9QGw62mVfoepxOJ5WVldTV1SFJrUR5JQnTr78ieDzsPLllgn28IYLLMse0OJ+f6AjyoRY+ewk2mw2z2YzVasVk6nhTpa6iIN/Bj3OLmfdlIZvW1SIIQRES+hwKcPY8CW0r7Qg0gsjtQ047YT98DT4v7+WsYntjpMnp01BsM5MQbsek8zAyJoXrB4zH0GiotKYinw9yfwOC69GL9gzml2IPJTf1ISFMjcPn4bktP1PRmAT2p2FTGRAZ3/rBFXolkiRx+Yq/8VXBr4SpDSw58wXGxQb9cZySk2HWYeRL+VyouZC5prkAuOtvx+98A1E9Ar1l42Ev8m63n4yBCyi/ewhnphn4eXbnv3+/TB5Ixpa9xFbUEX6I5MOamhr27dtHSkoK8fHt+2yeaT2Txf7FfBD2Adfprzv8Bo34vRtxV08EPGjN/0Ub9od2b6twZOzatYuGhoZDjunz0EOYfvmF3Y/8iewbLkerUpNljmdgZPwJ47ra3uu3IkaOkPJSFwu/K2b+V0WsXlZJUzAk8XSJU59R0zfCggzstlbhk4NLCFpRxV9Gnk1SWNvNk453ihx1rCzfQ7nLioBAotHMpITMFoluEPQneWz9fKxeF/VuPV/uGEFWlMycmUYK7LUsLcsLJdClhkXx6KizT5gv9/FAubOGU368jYKGCoZHZbJq+muhC3uFVMHQ+qFUy9X8UfdHXg5/GQCP9QF8Df9GUA3AEJuNKB4+sHvLJSv5KMpIIMtE9Z3pRB5hBU1zfpk8kPSte4ktryVC23ZETpIkNm3ahMFgYPDgwW2Oa45bchNTF4MfPxVRFUSKke2el+QvwFk1HGQbmvDH0Zmeave2Ch2nwlpHyd59yIHWc98Er5dBU6ei8npRPfssqgceOMoz7B209/qtLNMcIQlJBq67vT/X3d6f51YtYcncCrJfEyhfITKt4hRmTggmcjn9Xj7M/Y3NNcV4pQALi3dwQ9b4Hp59z5EaHsUV/U467DitSs1tg07lpe2/8Ou+oOPjiMStvLy9ZXWCSaPn1kGTFCFyDNGam2oTOf4cxljH0EAD/zT8kweNDwLgsT3VKET6YIjd1i4hkrvDypwddry3JvGnUaYuESJw+NLeJkRRRKfTHbaipjl6Uc+n4Z9yoeNCptumszZybbu3FdVpGOP34awcgs/xNHKgBH3Uu+3eXqH91LobeGrbQgyoOF/XB6OgankO8vuJWLUKlcsFanWz8LlCWyilvcBPRdn8YcWnfLFnwyHHbagq5In133Pnys/524Yf2FZbQo27gXypgvQL4MrFOs77ZzhfCyu5ffnnvLhtCXafmxuyxmNsLHFdX1VAg+8QzfUUQvQ1WTgvZQpVznDiw+xE6vef1AVgWHQSD408izhDJxMSFY4a96z7DzN//QsA86c820KIrPSuZJh1GE6cfBz+8X4h4ngJn+OvICZgiN2JKLbP4v+62SuxXdCHCAGemxTddS9CPrTpWXOioqKQZbndiawAF+gu4GzN2awLrOMt11sdmpooRmGM24ugHojf9R6u6hmt5zModAqH34NflrDLPpyVJUEh0vx9VqsxL168//fevwDR45zwkZF99hqWl+0m5YBlggPZY6vinV2ruDBjBMOjk1lXuY//7ljBxRmjQrms8eEmvBPqUP0Qxy9fVCE+5eBl9688OeY8RsWksqpiD35ZotxlJVMT2+2v7XjgoRUeQOCbc1NwBHS4/F7CNDpGxqRg0Yf39PQU2klbbqpNfO35mssclyEisihiEVO1UwHwNbyDz3YfCDEY43YhttHD5UA+fz+f7FgjgTg9b3aylPdADmcH35z4+HjKy8upqqoKNdFrD3PD52Kps3CX8y5m62YTI7bfF0UUdRgs2bhrJhPw/oS7egx6y+/tiiYptI8mD6jB6khiE+KR1q1Bm9YXf0xMMBLi9xOxcuX+DSTpuOrC3h2c0JERd8DHuzmruab/uFDkoi2WlOQwJDqR6SmDSTSauSB9BH3Co9hWWxIaU9BQyzl9hvLqU2cQKYWz6tEA9R4Xm6uL0Kn2G/tIx5lKzrVW8mr2Uh5cO5c/rPiUzdVFh90mp76Cv2/8kTtXfs5jv89jdSumZe/s2MnWGjdjEotZVrGB/uZYLkgfwbTkgYoQOYZo7qZ6aTM31Sb+4/oPlzguQYeODeYN+4WI8zM81ltAMGGM24kotu9i7vdLPPjQFhznJDMgUsMVA7s4cnaIRnkH0hE31uboRT1fRnyJDx9n2c7q8BSDbq3LUekvRfJvxlXVD+kwDq8K7aPB5+WjvN8YqY5mkjaeioCLd4ZGs8C2B9kerAAMX7sWVbPk1gafh1ezl4aaNk5NzuLj3LVk1+33kmrqwn5un6E8OmoGKWGRvLz914PML49XTmgx8tnu9QyLSmpXx8R8e+uN66o9+z9wnoCfQZEJqFQif3lmOBX7vCRpo9hjq2ZLzX7RcrxdSL0BPylhUVyRefhcEIBqt6NdX8wXN9UjAG9PHnrCfTGPFw50U/2i0U21iQcbHuRe571ECVHkRuYyXB00xPK7vsdTfxUIRoyx2Yiq9kcS779pHTWnxiPrVMw5t+srrITGe4lDmRY2JyIigkAggMfjOfzgZpyjPYfzNOexMbCRV12HdpdtC0P0F2jC7kcOFOCsSEfylx5+I4VDsrB4BwNFM2M1FmoDbr7zFAKwLzmG37evwLhpE5ZffwVRDEZJAgH22apDXdgTjWamJGUx2pLK4kbTRmjZhT0pzMxV/U5GK6pZXbGnp17qUeWIxMhrr71Geno6er2ecePGsW7dukOOf+mll8jKysJgMJCamsp9993XoaSu7uD3yn0UOmqZlTGyXeNtXjemA2zWTRo9Lr+XPuH7m2E1RUqmnpOEIMC2OR52WcupaRQtg6MSidIdX70IhkYncWH6CEa1s8fEsrK8w34x/5ebx87qOM7sE8aouOgT7ot5rOOX/ExZeDePbHqbGJ2Jned/zE39W9qdX2m/kn+5/0WqmMq+yH2kqFKC27p/wV13AaDDGLsVUZ3S7uPuy7fz2eIKnJPimZFhZGhs13dzFtopQpqIiwv2uqqoqOjwseaEzyGCCO5z3kelVNnh7QF05ufRmP4Ncg3Oqv5IvrbbUCgcnqqqKoYLZvYGHHztadkG5ILn3qDvbX8g6sMP0eTmIlx7LYgiZTqx1ZvZJufopi7sg5qN6Y1d2LuTDi8ifvHFF9x///288cYbjBs3jpdeeonp06eTk5MT+tI159NPP+Xhhx/mvffeY8KECeTm5nL99dcjCAIvvPBCl7yIjlLraeCL/I3cO6wr+iIInJUymHd2BU2KvivYSnZdGWMsfQiPUrF5rhPzefsTm85KHtTJ4x375NuCUSa338d3BVvZXFOE1etCkoM5PClhkfyYH45KkPnwrOAdcdMXc2tNCeurCpV1117ModxUIVjyeob9DJb5lzFcNZwNpg2h5/3etbhrzwJUGCy/I6ozO3TsGy9cie38PqgF+HxGN/nOyLTL9KyJ8PBwBEHoUBJrE1pRy9cRXzPdPp0zbWeyJXJLh/cBoAv/U9Cttf5qnFUj0ccsQa079Yj2dSJTUFDAGDGK3ICNZd7yFs+lb80hpqwK96wL0ZlMYDKhefdd5BdfZNWOXxh/HHRh7046HBl54YUXuOWWW7jhhhsYPHgwb7zxBkajkffee6/V8atXr2bixIlceeWVpKenc9ZZZ3HFFVccNprSnRTaa7H73Pxj40/cvuIzbl/xGbnWSn4tzeH2FZ8hyQdnn5u0emy+A5rS+dyYtXrGxqZxasL+/gK7bVV8kb8B02gf1j0yrsY+VrMzRrVrSeh4x+ZzY9Lq+ShvLTvry7khawJXZI5FRubFbb/w9e5K8mpjOStNJM64/yKmFkXy7dXKumsv5v3dPzBk3rXUemw8M+oWfpn+nxZCxCt5GWIdwjL/Ms7SnMUm06bQ8wHvVtzVwQuk3rISlXZoq8doi3lfFrDJD96BZu4/KRKTrrtWodu7QLMfo9GI1+s9osqWs7RnMUszi62BrbzkeqnD2zehMV6BPnoRIOOumYzP9dUR7+tEpLCwkOrqavICNpYfIEQApn65AFkU+OLPN+EN+EOPCyYTsvr4agbYHXTo2+r1etmwYQPTpu1vkiSKItOmTWPNmjWtbjNhwgQ2bNgQEh/5+fksWLCAc845p83jeDwebDZbi5+uZGBkAk+MPofHRs8I/aSFR3NyXDqPjZ6BKBz8tvSNsLCrvuUHcGddOX0b77iv6jcWg0pDhHp/WLjfFYAkUDZPw22DTuWsFCUq0kRAkthUXcTsjJEMMMcRqQta2Mfqw3lsTQ0GjY+nJ7Q0lCp21KMWVcq6ay9EkiQuXfZXblz9T/QqHWtmvB6ydW+iTqojvT6dXdIubtDewELTwlD+iOTPw1V9MhBAH/0zau3JHT7+/X/4HfvsNCI1As9OiDr8RkdIe31GmhMTE0zYra4+spD7l+FfYsbMA84HKJcOvhC2F7X+DAyWTYAOT92leB3/OeJ9nUgUFRVRVVWFoFaxzFveQoyGq3Wk78xn2MqNbJ00hg0BG+/krG7R1fl46cLenXRIjFRXVxMIBA6yNm4qX2uNK6+8kqeeeopJkyah0WjIzMxk8uTJPPLII20e59lnn8VsNod+UlPbl4vQXvRqDclhkS1+dCo1YWpdyAn0/ZzVzN27ObTN1OQssuvKWFS8k3KnlfkFWylw1DK5sUOuIAicnTqEgCwxK20EM/sMY+jIKCIHQNViTbvzKU4ETBo9Vq8bCRm1ELxjaPpiljfo2FNvYFRCCaLQ0o+lxuM46IuprLv2POXOGvrOvYyvCn5leFQm5RfPDdm6N1HgLyC9Lp0yuYzHDY/zXsT+SKrkL8ZZNRLwoo/6DrX+jA7P4ZE/bqRyeAyBGB1vTevaUt6DaBQjHYmONImRmpqaIzqkWlTzbcS3+PEzzXpwx9yOoNIOxRiXC0IUXtu9eKwPdWp/xzvFxcVUVlai1Wr5wV8a+rsPi07ib2PO5fnxs7ng8wW4w418/ZfbAdhSU8y2Zl3X+5pauZltowt7E01d2JvGHO90ezXN0qVLeeaZZ3j99dfZuHEj33zzDT/88ANPP/10m9v85S9/wWq1hn6Kig5fKtrV1HqcIbtxCPZHuTlrIivKd/P0xh/ZWF3E7YNPbWFjPj1lEFOSslhSmsOPRdmEabQMG2ChosRNXW3HMumPZ/qaLOy2VdI3wsKCou3Ue5zsqCsjWmfkx/wIjBofZ6UFDvpiNvi8BxmcNV93dfg8ba67Wn3KMk138H3RKtK+uZSChgr+mDWbLTPfP6hfy3rferKsWdix86bxTZ4y7rcpl/yVOKuGgOxCF/UZasN5HZ5DWYmTDz4pwHFuCoOitVwyoHur1YQOmJ410eTG6nK5Dj+4DSZrJ3OZ9jKypWyecz53xPsBENUpGOP3IYgp+Bqew117daf2d7xSUlJCRUUFGo0GXUosxc760HMZETGIgsja7HUsPmsCxXfczCVjpoae/9/u/akIpyf2p9rtYM7eTZQ7rSwtzWVDVSHTkrNCY6YlD2Rl+W7WVORT5rTy6e7fe10X9u6kQwmsFosFlUp1UFZ4RUUFCQmt50I8/vjjXHPNNdx8880ADBs2jIaGBm699VYeffTRVu9gdDodOl3XZ8Efij8Nn3bI3wHGxPZhTGyfNvchCALnpw/n/PThoceG3V7Kiu+X89aLOTz09PA2tz2WcQd8VLn2exhUexooctQRptYSrQ9j7t7N1Hud3JA1AQh+MZeW5nJyXDpFjjoeWvctAF6vhfz6GM5IK2FGnyw+yFlDekQ06RExLCnJQUYmLbwLnTQVOsXda//DKzlz0Ioa5k95lvNSJx40ZoF3Aefbg11kvw3/lvN1+zvKSlI9zqpBINvQmd9GY7jsiOZx46yV2KYnIWtFvuqGUt4D6YjpWXPMZjOVlZXY7XYiIo7M++STsE/42fczj7ge4UrdlaEKpCNBFE0Y4vJxV4/B7/4frupSdNGLuzeqdAxRUlJCeXk5Go2GoUOH8kPR9tBzZyQOYH1VIQsKs4mpqmXK1lyGvvM5skHP11oD9V4X9V4XsiwjCMJx1YW9u+iQGNFqtYwZM4YlS5Zw4YUXAsG12iVLlnDXXXe1uo3T6Tzow61qNAA7Bnr0dZpp5ySh0YrM+6LwuBUjBfZaXti2JPT7V/kbARgfl8H1WeOxel3Uepyh55t/McucVmJ0YZyRnMU1CwwYNS7Oywi0+sVMDovEIwVaHLv5uqsoCCf8uuvRwOF1MuGnO9hWn09aWAK/zfhvCxOzJt51vcstzlvQomWFaQVjNWNDz0mSE2flIJBr0ZheRBN28xHNZdEPJfxe5MJ1ZSbn9TUyJKZ9VvGdQeiA6Vlz4uPjqayspLKy8ojFiFpUMy98HqfaT+VM25nsjNp5RPtpQhQ16C2b8dSeRcC7BHf1CPSWDe223D9eKS0tbSFERFHE0ywpdZQllcv6nURgxQoCF12BcO65CEYjAhCjD6e+MaoekKXQUnRT4v2hmJKUxZSkrEOOOV7pcGnv/fffz3XXXcdJJ53EySefzEsvvURDQwM33HADANdeey3Jyck8++yzAMycOZMXXniBUaNGMW7cOHbv3s3jjz/OzJkzQ6Kkt7OsNI9lZXnUeIJ3/4lGM+f1GcbQ6LbbkW+oKuS7gq3UuB1knC+yZ54Dr9ePVht8y2VZZn7BNlaU78YV8JFpsnBlv7HEG3pHV+KOkBUZz5unXtnm89e30hjwwC/mxzvtlDurOCO9mDFx6cDBX8w5ezexvbalaVNb664jG3N0mtZdpzTm9ih0jrVV2UxddD8NfheXpZ3Bp6c+0eqd9FPOp/ir669EEMEW8xYy1Bmh5yTJi6tqEEjlaMKfQhd+7xHNRZIk/njtWmxX9UUtCnx2dvdHRZo4ktsorVaLSqXCbrd36tiTtJO4SnsV//P+j384/8Gjxkc7tT9RFDFYFuOuuxa/62OclX0xxmW32/H2eKO0tJSysjLUajWDBw8Ofb7Dm93Q5Ntr6G+IRLr9dhg6FNUnnwBB48uShjoA9CoN6k5bR5w4dFiMXHbZZVRVVfHEE09QXl7OyJEj+emnn0JJrYWFhS1OTo899hiCIPDYY49RUlJCbGwsM2fO5B//+EfXvYpuJlJnYFbGiGC+ggxrKvfy+o7lPDbqbJJa6WlzYB+bV6duIvfrct54ewd33xmMjiws3skvpTlcnzUeiz6Mefu28vL2YB+bznufHBtk15Uiy5BgNPHAynJMWh9npAaY2LhG2tbyzpy9m5gY35dd9RVsqCrkrqGnh/Y5LXngQcs7J9K6a3fy7LaPeXTTO4iCwHsTHuKGfue2Ou4W+y28432HBCGB7MhsosX9S2uS5MdVNRQ5UIgm7EF0psePeD5/f2grFYlGfJkmHjnJTLj2KC0vNEZGOl7gG3Rjra+vx+v1otUeefTho7CP+NH3I0+4nuBq7dWkqdOOeF9N6KM+wiMm42v4P5wV6Y2GcydW4n15eXlIiAwZMgS1ev8lcpQlhbn7NgPwa2kOp73yPurcXNQbNiBGRgKwqHgn7sYIyhilaKFDCPIxsFZis9kwm81YrVZMpt4RObhvzdfMzhjFpISDTZne2rkSr+TnriGTgWCvjMyYL8mYoGXpjxchyzIPrp3LmSmDQuW+Lr+XP//2DdcPOIWxjZGB4xFZlnljm51pqQas/lLm7tvCjmqRb3MHc8mAej48cyiGxj5BH+SsocbT0CJ/p3mzqUidkXNbNT3L4efinaHlncv7jiHjBMlI7w78kp8zF93P0orNWHRmVp/9Ov3NB59oJUniPMd5/Oj7kSwxi83mzehFfYvn3dWjkPxbURtvQx/53yOeU021m+HJ8yh/ZDiR8Xqqbu1z1HIdVp+cQVhJBWl7K4jUdmy5xWazkZeXR3x8PCkpR57vAbDWt5ZTbKfQX+xPblRup/bVHK/jFby2uwEDBstvqLTH5/LygZSXl1NSUtKqEGnile2/kl1TwsUvvM+p836h+OH7Mf/1b1i9LpaX5fFb5b7Q2EdHnU0fJcet3ddvpY1jB5FkiQ1VhXgD/pDHyIHk26uZljww9LtaLZI8TEvhxqDpUY3Hic3nblGCalBryYiwkG+vPq7FSE6djzt+rUYU4LpB4TwxbgajN5SgV8l8On0k6mYXlPYs77TGibzu2tUczk21Cb/k52TbyWwKbGKSehLLIpYdJA7cNZOCQsRwVaeECMBNF63CNiEOyazh7andXMp7AIJMh6tpmjCZTAiCQH19fafFyDjNOK7XXs8H3g940vkkTxqf7NT+mtCG/xFBlYSn7lJc1WPQR/+EWj/18Bsew1RUVFBSUoJKpWpTiABcU+7DdtujJOwpRAb+feYIpN/nHTRuZp9hihDpIEradDspaajn7lVfcufKL/jf7t+5bfCpJIW1vqbaWh+bCTOicVXCz/NLsfmCyU2m1kpQj3OnUH+jAaUkw8c7HWS+X0SdR+LGweEthIhCz/PeYdxUm3BIDvpZ+7EpsIlLtZeywrziIHHgqj4TybcGle4C9FGfdGpeq36tYM3GOhznpjDEouWi/mGH36gLOdIE1iYMBgMej+eI3FgP5N2wd4kVYnna9TR7/Xs7vb8mNIbZ6GOWAQLu2jPxOf/XZfvubVRUVFBcXIxKpWLo0KGtChE5Px/f7NkYz5xO/J5gYzyrJQpJ03KsXqXm0r6jObdPx9yDFRQx0m7iDRE8NnoGD4+czumJ/fkg5zdKG9rfa+KMS+NQ6WXeezWvG2fZ+wk0WxX0y9B0On472849y6opb/C3vqHCUaPJTfWm1f/E0IabahOlUilp9WkUSAXcr7+fLyK+OGiMq2YWAe9iVNozMMR82+n53X7FGuwXpIJG6JauvO2hM2IkOjp4x1xbW9vpeYiiyIKIBUhITLV3bfRCrZuEMXYrCEY89VfjsXfO26Q3UllZeUghIlut+B94AF9WFvK8YASk6U+vP2ksU5OyGGPpwylx6VzVbyz/HDeLqckDETrQu0ghiCJG2olaVBFniCAtIppZGSNJCY/kl9KcVse21sfGr/UTN1pk/epqTJpg3Xhr9sBm7fFdgiq1kaHkk+C1LTbS3y/kqzxH64MUup3mbqojojIpa8VNtYlsfzb96/pTK9fyvPF5ng97/qAx7rprCXi+RdSMQxe9qNPz+/eT2ykVBVxjLVzQN4ysqKNfgho0PTtya4LY2GDzxyN1Yz2QkzQncYvuFvZKe/lLw1+6ZJ9NiJqBGGN3gxCDz/4Qbut9Xbr/nqSqqoqioiJEUWTw4MEthIgcCBB44w18GRlIL7wAfn/wpwmNBuOAgVyaOYZbB03ihqwJnJbYH71K0wOv5PhAESNHiCwH7cdbo60+NkMmhuNyBijaFlzGaT7G5fex117dZh7K8ULgMOfvgAw6lXJX0RM0d1O9e+BsNrfiptrEr95fGWUdhRs3n4d/zv2G+w8a466/E7/rY0T1MPQxqzud12G1ennpmWzsV2SgUQn8b/rBXcKPCh3s2nsgoiii1WppaGjosim9YXyDeCGe59zPkevvumRWAFGdEHRrVaXjb3gJV+0lXbr/nqC6ujpU+TlkyJCDKpukr74icPvtUFcHrS2nBQIIfZUKva5EESPtYO7ezeRaK6l2OyhpqG/8vYKTGxNN29vH5p6bRgHw5gs5TE0eyIKi7WypKaakoZ73c9cQqTOE/DGOVwJt3E2qBEiLULPusmTO73t0cwAUgm6qM38N3lXPn/Is/zn5njbHfub5jGn2YIXTrxG/cpnuYOdUj/Vh/M7XEVT90Fs2dkmC6R8uXYVjoBlvn3AeGRtJ2NEq5T0Agc7ljEDQjVWW5S4TJKIostC0EBmZM+1ndsk+W+4/HENsHqJ6NAH31zirJnVJzktPUFNTQ0FBQZtCBEA8/3zEP/yh8ZdWPmeShJCRcfDjCkeMUk3TDuw+Nx/krMHqdWFobLJ399ApDI5KBIJ9bIRm2fVNfWy+K9jCt/u2EGeI4PbBpzIsOonIaC3LF1XwRsoEvAE/n+Stw+n30s8cy91DphyXHiO17gYc/mBvntI2ckKuyArnv1MsR88rQgFov5tqE8+7nufPzj9jxMh683oGqQ/uRO2x/QNfwz8RxFQMsdmIrSS9dpT1v1WzdEkl9r+NJEYv8sTJkZ3e55ESrKbpHHFxcVRVVVFRUUHfLrrDHqEewR26O3jN8xp/avhTq8tmnUEU1Rhi1+OuPY+AZwGuqkEYYrcgisfO0nJtbS379u1rU4i4/T6+K9jK5poi7NdMYeLINC7864uoKqsO3lmjGGluNxClM3JOq3YDuSwq3onV6wraDWSOIeM4j4J3FMVn5Chz66WrmP9VEev2nUdqWvc29OoNbK8t5dXsZSGDqHJHBPNygzkIIqBVCbw51cK1g47MHlvhyGmvm2oT9znu4yXPS8QIMWyP3E6CeHA/Kq/jP3ht94IYjzFuD6LYNVGuManfkTcoEvs5KXw3M4HzM3suevb7yD5I9bUMyCklSnfk56NNmzYhiiIjRozosrlJkkRqfSplchnbzNsYom4936ezuOtvwe98B8SERrfW3l/GWltby969e0M5Iq31P3tr50pKnVau7DeWSK2BtZV7ibztj5z80/Lg7aYohpZtNHY7NWr424YfOC2xP5MSMtlVX86XezZy19DTQ31nfq8q4IOcNVzZbywZERaWlO5iY3Uhfxsz86CKyuOR9l6/ldvQo8wf/hT0v/jvv3b18Ey6F0mW+Tp/E69kL23hVOlvFtlNjvCz+cpkRYj0AM9u+5jxP96BO+DhvQkP8fnpTx5SiFxsu5iXPC+RLqazL3Jfq0LE1/B+UIgIURjjdnWZEPnv87soqvdhPzuZYRZtjwqRIMHPc2dv4yIiIvD7/fj9XVdB1rRcAzDdNr3bllL0kW+jCf8rSOU4KzKQurCsuDuoq6tj7969CILAoEGDWhUi3oCfTdVFzM4YyQBzHHGGCGZ8/iPjflpO9s1XoV6wACyN0YyoKITwcJaV5WHRh3NJ39EkGs1MScpitCWVxSX7ixsWl+xiUkImExMySQozc1W/k9GKalZX7DlaL/+YQBEjR5kx4ywYjCoWzivp6al0K/MKtrKoZH8TL7UgEqMLo8QWCUBSeD1nZW6gwKl8IY8mfsnPlIV388imt4nRmdh5/sdt2rpD8E57onUic3xzGKMaQ545j3Dx4Iiez/UlHutNIERgjN2FKEZ2yXydTj//9+hWHJekI6jEHivlbU5nTM+a01RVc2AX9M4yVD2Ue/T3UCKXcJ+z+6pfdKYn0ZnfAtmOs3IQfu/6bjtWZ6irqyM/Px9BEBg8eDB6fevRCEmWkZBDje2k4mKkRx+lcHA/frnjGsQZM9Ds2oVw/fWIlwXzpPJt1QyMbCnMB0clkm+rBoJFDoX22hYGl6IgMDAyITRGIYgiRnqAMeMtlBa5sNm8PT2VbqHG3cBPRTsAEBCYlT6C50+ZzVMnnY/Tm8bwGD/nDdiFSpT5bt8WHL7j2+itt5BjLSThq1ksrdjMlPhRlF0yt1Vb9ybckpuB1oGs9q/mXM25rI9c37r7qmsBnrrLQTBgjN2OqO66Kpc7rlyDw6LHNTyKizKN9O+BUt4D6YoEVghGRprcWLuaF8NeJEVM4RXPK2z1b+3y/TehCbsFfdQ8wI+7+hT8rgXddqwjwWq1tkuIAOjVGvpGWFhQtJ16jxP/1KkEgPf+ehe2QPBcLURFoXn/fdT/DToI23zuVs0r3QEf3oAfh8+DhExEawaXynmvBYoY6QFuvLMfAO+81LUleL2F5eV5oaWZ6amDODt1CHq1hk92Ocir9/P+WWmcntgfAL8ssaoivyene0Lwbl773FSbqJaqSa9PJ0/K4w+6P/C96ftWx/k9S3HXzQS0GC2bENV9umzOO7bW8dN3JTiuy0SrEvjorB4q5T0QuXOmZ02Iooher8ftdnfLcsriiMVA9y7XAKgN56G3rALUuOvOw9fwXrcdqyNYrVZ2794dWpo5lBBp4sas8cgyfPjyk5Cby+K7riVz+NgWBQoK3YMiRnqA6Rcko1YLfPt5YU9PpVvIra8M/fuMxh4xNa4AD6yo4dx0A6PjdExJGtBsfNeGqRX20+SmevOaw7upNrHHv4eMugwq5AqeNjzNG+FvtDrO7/0dd82ZgAqDZR2iZkCr446UGy9aiWdUNN44A4+fHIWxt1RadUE1TRNNbqzdER3JUmfxgP4ByuVy7nLe1eX7b45aOw5jXDYI4XisN+Gx/b1bj3c4mguRgQMHYjAY2rVdrCGC+02Z3PaXF/DHx3HuC+8QkCUs+taLDUwafavmlXqVBq1KTbhGh4iAvTWDS83xn7zaEXrJt/vEQhRFBo+IZE+ODb//2KzVPxReKZiQpxZEzNrgSeCdbBvVbonbhgWzqWN0+5MQPYHWzeMUOkdH3FSbWOtby2DrYBpo4N2wd3nM+Fir4wK+7birJwEy+phlXd7Z9cM38thX4MR2WQaxBpHHxkV16f47Q3CZpmvulC2NCZHV1d2TP/DPsH+SJqbxhucNNvo3dssxmhDVmRjj8kGMw+d4HHf97d16vLaw2WwthIjR2LpxX1v4p01DCATQz/8eV8DPjroyRsS03tSwr6kVg8v6cvo2dglXiyr6RESzs9kNlyTL7Go2RiGIIkZ6iMuuz0CS4IsPencW+pEQ0aj4/bLEPnvQ8rreIxNrEDk3I3hi2G3bX7d/IpS3HW064qbaxHee75hom0iAAAsiFnCj/sZWx0n+PbiqxgJ+9NELUesO7q7cGbxeP0/evxnnjBQkvcgHZ8Z26f47i9C4TCN3QXxErVaj0Wi61I31QBZFLEJAYIZtRrcblYkqC8a4AgRVf/zON3DVXNCtxzsQu91OXl7eEQuRvU/8BfLzabjlJnb1S+GFbYtJMJqY2OgbMnfvZt7PWR0af3pif6rdDubs3US508rS0lw2VBUyLXl/1/BpyQNZWb6bNRX5lDmtfLr7d7yS/yAvkhMdRYz0EFff2hdBgE/fPf7yJU6KTQv9+7t9WwjIEl/lOhgZq0UQBHxSgPkF21odr9B5mrupfj/l/w7pptrEG643mOWYhQYN68zrOFt7dqvjJH8xzqoRgAdd1NxuaS1/z3XraNCI2KckMNKi45yMni7lPQC5K2TIfsxmM5Ik4XQ6u3Cv++mv7s/DhoeplCv5Q8MfuuUYzRFFPYbYXYia8QQ883BWnYzURuuMrsRut5ObG8zDy8rK6rAQkfLyiHvuBXLGDuOxa6byfs4a+pliuWfoFFSNZe9Wr4taz/6/k0Ufzl1DJrOzrpynN/7IopJdXDNgXMhjBGBsbBoX9x3FvIKt/H3jjxQ11HH3kCmYtO1bOjpRUEzPepAJA76nuMBJoefSnp5Kl+IN+PnLuu9CrqvxulieXpPJeRkaHj3Fz6LinRQ31AMQrTPy97HnoxIUXdxZOuqm2sSjzkd5xvUMZsxsMW8hTd26OJQC1Tgr+4FsRRf5CRrjVV39EsjPszEpawG2O7Jw9jez+7oU+kb2fAVNczYNScLmdTB0WxExenOn9+d2u8nOziYmJob09PTOT7ANMusyyZfyWWdax1jN2G47TnNcNbMIeL5FUPXFELsNUeyYQGgvDoeDnJygt0dWVhbh4R03lPSmp0NhIer16xFHj+7iGZ64KKZnxwDnX9IHn1diyY+lPT2VLkWrUnPzwIkhgbGoMPh/l5zN+zlrQkJEK6q4ZeAkRYh0AWurskn4ehbb6vO5LO0M8md93i4hcr39ep5xPUOSkMS+qH1tCxHJhrNyIMhWtOY3u0WIAFx/wUq8qUYa+pm4pH9YrxMiEOza25Xo9XpEUcRms3Xpfg9kccRiRETOsZ9z1PrKGGLmojbehRzIx1mZjuSvPPxGHaShoaHTQsT/wANQUIBw222KEOkhlKtAD9LkxvreK3k9PJOuZ1BUAvcOnUKcIYJCazQgkxZZG3o+yWjmT8OnKUlcXUBH3VQhWGVzpvVMPvR+yGBxMHsj9xLZhlGZJDlxVmaBXIPG9G+0Ybd2w6uArz/ZR+5OG46bBqBTC3x4Vu/KFWlOV5ieNSc8PByfz9elbqwHkqHO4AnDE1TL1dzQcEO3HedA9JGvoIl4BqQqnFWZSP6uO981FyIDBgw4IiEi7diB9PzzkJiI6tVXu2xuCh1DWabpYUYmfYvD7me3/eKenkq3IMky0W/sRUbiP1OrMao1jIxOob85DqGLKhJOVPySnzMX3c/Sis1YdGZWn/36IU3MmvBKXk6yncS2wDbOUJ/BoohFbYoXSfLiqhqAHChAE/5XdKYnu/hVBPH7JQZGfUPtsEjqLuvLsxOieHhs76mgac6WQYnUBpwM21qARR/ZJftscglNTEwkKSnp8Bt0ggF1A8iT8lhlWsUEzYRuPVZzfA0f4rHeAGjQxyztdOKz0+lk165dyLLMgAEDiIjoeFsJSZLw9+kDpaWot25FHDq0U3NSOBhlmeYYYdp5STQ4/GzfXNfTU+kWPH4ZqxcmJoZx/YBTuLTvGAZExitCpJO0cFNNGH1YN9UmbJKNzPpMtgW2cZX2KpaYlxxCiEi4qoYHhUjY/d0mRAAeuu13HJ4A1tnpxBvEXitEAAS6xvSsOWZzMPekrq77zwOLTYtRoWKmfeZRW64B0IRdhz76R0DCXTMJn+u7I95XcyHSr1+/IxIiAIF774WSEoR77lGESA+jiJEe5o4HBgLw338fn43zvsh1AHBhjzc3O344yE31rJcO6abaRGGgkLT6NIrlYh7WP8wnEZ+0OVaSJNzVY5ADOaiNt6Azd207+uYUFzTw2Xt78V6SjqQW+Wh6L3FabYsurqaB7ndjbU4fVR+eNjxNrVzLNQ2HNsDratT66egtawEtnrpZeB3/7fA+XC5XCyHSJOQ6irR1K/Krr0JqKpoXXzyifSh0HYoY6WH69jdhitSw7OdyJElm07oannlkC9ddsByXq/vWj48Wc/YE/ROuzOr4Wq5CS4Juqk90yE21ia3+rQysH4hVtvKK8RWeDXv2kOPdNach+Tej1l+OPvKtrph+m9xw4Qr8Jg11Yy2MidVyVlr3VFx0JV0dGQGIigpGg6xWa9fv/AD+YvwLg8RBfOr9lOXe5d1+vOaotaMxxu0CwYTXdgce2+Pt3tbtdrNz587OCxFJwj99enA+ixYd0T4UupbD304pdCteb4D+g0xsWFPD0Li51NXsb57X4PBjMPS+P9GPRdlsqi6i3GVDK6roa4rlovSRJBgPXg9cX+ElUicSrhXZUFXIdwVbqXE7iDNEcFHGSIZFJ4fGyrLM/IJtrCjfjSvgI9Nk4cp+Y4k3HF95QkdCubOGcT/eRmFDBSOiMlk5/bXDmpg1sci7KFhBgcSc8DnM0s065HhX9XQk3ypUuvPQR3/WFdNvkwXfFLF9cz2eB4ciCAJzzuv5rryHQ5BlZLHr1UhcXBxlZWVUV1eHhEl3sti8mD51fbjAcQFVkVXtiq51FaI6DWP8PpyVQ/A5/o4cKEEfdeieNm63mx07diDLMpmZmUcsRAACd9wB5eWIDz6ImJV1+A26gFp3Q8juoIlwtY5ovRI1BkWM9Bg/fVfM3E8LWPxDKc6GoCFQcyFiitRgie2dzqS51komJw0gPTyagCzz7b4t/Gf7Lzw55jx0qv0fKb8kUeEMcFqyjj22Kt7ZtYoLM0YwPDqZdZX7+O+OFTw66mySwyIBWFi8k19Kc7g+azwWfRjz9m3l5e2/8uSY89CIqh56tT3P90WrmL3sCbySj7sHzm6XiVkTH7k/4vqG69GgYalpKRM1Ew853lV7MQHvz6i0kzHEzO/s1A+JJEncd+M6Av0jsCUZuTIrjDSTpluP2SU09qbp6sWaJjdWh8PRpfttiyQxif8z/h8POB/gCscVfGX66qgctwlRjMQYtxdX9Qj8rvdxBUrQRf/Yag5TcyHSt29fIiMjj/i40vr1yG+9BenpqP/5z068gvZT627g8fXz8cstl+DUgsjTJ81UBAnKMk2PYK33ctNFK5n3ZVFIiBxI+sAwCh21FDpqqXV3n1X0kXDP0ClMiO9LUlgkqeFRXD/gFGo9TgoctS3Gzc93IQPnZYSxpCSHIdGJTE8ZTKLRzAXpI+gTHsXS0qBjoizLLCnZxTl9hjIyJoWUsChuyBpPvcfF5uqiHniVvYMmN1UB+OGMf3ZIiDzrfJbrGq7DiJGt5q2HFSLuuhsIuOcgak5CF72kkzM/PH+9bzNWqw/7Tf3RqwTendZ7S3mb0x0JrE1EREQE83XcR6e9/J8Nf2aoOJSvfV+zxNv9f/MDEUUtBks2ouY0At6fcVePQZJaLk97PJ7Q0kxGRkanokaSJOE/5xwQBNSLF3d2+u3G4fccJEQg2DLjwGjJiYoiRnoAc6SWf799cpvPCyoZa3wd/9j0E//Y9BOPr5/f6wRJc1wBHwBh6pYGVV/mBe/wrhsUTr69moGRCS2eHxyVSL492CCs2t2AzedmULMxBrWWjAhLaMyJhMPrZPi863klZw5pYQnsu+hLzklpfynknY47ecT1CLFCLPlR+WSpDx2Kdtf/Eb/rAwT1YPQxaw/rU9JZKstdvPdqLkxPxK1X8/T4KPTqY+N01NWmZ82Jjw8uU1VUHL1O1ovMi1Cj5iL7Rfilo5+nJooixthlqPWXI/k346rqhyQFzx1er5cdO3YgSRIZGRmhLsdHSuCmm6CqCvHRRxEzM7ti+u3C043+MccLx8a3/zjkihv78syrY1p9TpYgIn3/Ca83q2dJlvkyfwOZptjQcksTq8vchGsEYo1qbF43pgNaZps0eqyNrbVtPlfwsQOa5pm0+8ecKPxWeWRuqk1caLuQ1z2vkylmsi9yH3HioatTPNZH8DtfDVp2W7Z0uxABuGHWSgIqkarpKSQYVfx5TGS3H7NL6abIiNFoRBTFo5LE2kSCmMDzxuexYeMSxyVH7bgHoo/+DE3Y/ciBApwVabidBWRnZyNJEunp6Z0WItKaNcgffAD9+qF+6qmumXQ7WF9VwCvZS9t8fre1qs3nTiQUMdKD3HBnf57418iDn5AFIo6R3nGf7f6d0gYrtwxsuQQgSRLFjgCDoo+BHIBexLPbPmbCTx1zU21CkiTG1Y/jO993nKI6hVxzLsbD9ALx2J/F1/AsiMkYYrMRj0IS468LS9n4Ww3c3A9JFPhk+rGxPNOEIHe9A2tzjEYjPp/vqHqA3G24m5GqkXzr+5aF3oVH7bgHojM/j8b0PAG/h915K5EkP2lpacTEtF+Mt4YkSfjPOw9UqqO6PLO+qoC3d63Cc4iI0xf5G1hbefx1b+8oSgJrD3P7nwfibPDz7ye3t3g8Ir1n5tMRPtv9O9tqS/nziGlE6Vpe9JaXepBkOLuxTNOk1WPztYxw2HxuzI2REJMm2MHS5nVjbtbN0uZ1kxoe2Y2vondwpG6qTTglJ8Osw8iX8rlQcyFzTXMPu43X8So++yMgxmKM24Uodn/CtCRJ3HX1b8gWLRUDzIyN1zK1T+8v5W2JjCxAd63WWCwWHA4HVVVVoWWbo8Ei0yKS6pK42H4xNVE1aMWe6QskaO9ib81YJEkmNfp2IiNeAE7r1D4D11wDtbWIf/87YtrRudNz+318nLcu9PvomFTOTh1CSngkJQ31/FS0gw3VhQD8b/fvDI9OxqDufb2YjhZKZKQXcP8TQ7j9gf1r+qJGRte5G4FuRZZlPtv9O5trirlv+BlY9Ad7iPxvV3DN94bBwef6RljYVV/eYszOunL6RgR701j0YZg0+hZjXH4fe+3VoTHHK83dVM/ogJtqE5VSJen16eRL+dylu6tdQsTX8CFe2x9BiGwUIkfHB+afj2+jttqL/+7BwVLecxIOv1Fvo7GaprtoStCsqanpxqMcjEW08B/jf3Dg4CLHRUf12E34/X527NhBIGAkOVHCqNuCu2YKPteXR7xPafly5E8/hYEDUT/6KLXuhlBxQHcWCKyt2oe7MZ9utCWVWwdNIi0iGpUg0ic8mlsGTmRsbFAYeQJ+1lSc2NERRYz0Ahw+D+rLy0m7IHiKE9RwoFv69tre09n3sz3rWVu5j5uyJqBXabB6XVi9LryB/aHI5WWlRGh9ZJiDSn9qchbZdWUsKt5JudPK/IKtFDhqmZw0AABBEJiaPJAFRdvZUlNMSUM97+euIVJnYKSl/RfmY42Wbqq3sqSdbqpN5Phz6FvXlyq5imcNz/JK+CuH3cbnmhPsESKEY4zdiSh2bi2+vdTVenjtuV2oR0dTY9Jy9cBwUk3HZnC2u6ppIJjQqdPpjlpFTXNuN9zOGNUYfvD9wPee74/qsf1+P9u3bycQCJCamkp84mQMlk2ADk/dZXgd/+nwPiW/H/8FFwSXZ5YsCZXYNhUHdGeBwNaa4tC/Z6QOQRAEZFnG1/AOkiQhCAIzUofsH19b0uVzOJY4Ns8ExxF+KcCr2UspaKhj+H1QthLwCvQJj6SswYZPDpb+flewlXiDiTGxfXp2wsCysmDXzee3tSwFvG7AKUyI7wtAqUNLmmn/yTTTFMvNWRP5rmAL3+7bQpwhgtsHn9oi6XV6yiC8AT+f5K3D6ffSzxzL3UOmHJceI5IkcfmKJ/mqYCnhagOLz3yBcbFDDr9hM1b5VnGG7Qx8+Pg4/GOu1l192G387p/w1F0C6DHGbkdUH73IxM2zV+EPyNiu7oteJfDO1GMz4iXIMnI391aKioqivLwcq9XaKXOvI+Fn088k1iVyueNyqjXV6I/C8l1zIZKSkkJcXDDpWqUdijEuD2fVMLy2e5EDJejMz7V7v4HLL4f6esR//xsxKQmHo/agEtumAoFoutbro8G/3zcqpfE852t4Ba/tHkTnm+gi3yfJOCRYKg44m40/EVHESA+zvrqQfY3+HFF6A4+/2J/Hr93OVaZJxA/TM69gK7+UBltkz9m7iVGWFEShZwNab5565SGf31rlweHVMS2lZWLimNg+hxRTgiBwfvpwzk8f3iXz7K10xk21iTmeOVzquBQRkUURi5iqnXrYbfyeFbhrzwO0GGM3IaqPXpb02pWVrF5aifHKdCpEkRcnRqE9Rkp5D0To5mUaCJb4lpeXU1VVddTFSLQYzWvG17jFeQsXOi7kJ9NP3Xq8A4XIgXkyojoZY/w+XJVD8TX8CzlQjD7608M6mkpLliDPmQPDhqH+05+69TW0hrFZ/kdJg5XU8Cj87m8QVH2RAnW4qkbg1V6HSTUKayAag/rETvZXxEgPs7wxygBwQ9Z4+gy18I9bd/LTdyXcdv9ALu07mpKGenKsFdR4GsiuK2thod4b+WCnHYDrBh1ZJ83jmc64qTbxsutl7nHegwEDv5l/Y7j68OLN792Au+YMQMBgWYOoOToW2E384dLVYFBRcHIcSWEq7h0VeVSP39UEE1i7T5Ko1WrUavVRc2M9kJsNN/OO5x0W+hYy1zP3sC0EjhS/3092djaBQIDk5OQ2E3ZF0YQhLh939Rj87s+wVhbzeO5t+A/4EzQ5mkaKGvyzZoFajfrnnw87jzJnsJS6K+3Zh0UnkV1XBsDC4h1cm7obybsMfdS3qPQz8DW8jt/6EI+nvQ+AhB5HuQlBCEcQIkA0IwiRCGIEghiPNuIJBPHoCtOjybF5a3KcIMky+bZgklqsPpwsczzGMDWjT4nmg9d34/EEEASBUxP7hbbJt/V+A7AlRW40IoyK0/X0VHoVnXFTbeLBhge5x3kPZsz8qllLpDulxXq3r+ENAr7sFttIvp24qycAMvqYpai0ozr3QjrIS//IpqLMjf7+wUjA/87u5V15D0N3mp41JyIigkAggMfTMx5DP5l+QoeOqx1X45ScXb7/JiHi9/tJSkoiIeHQS4aiqEZv2YRKexYq/wruTX4IkZYls01LLoFLLgG7HdULLyA27jfPWsmnu9e3uu/3ctZ0ef7IKXEZofYYv1cVYK/7IzIGVPrzKXe5+F/JOF4o+htS42VYJbhBqkQO5CP5tyB5lxPwzMPv+hRfw0vIUn2XzKu3ooiRHkSSpVB/iwiNHqFxHdrnlSne14DXG1zbbG4W5juK3gNHSm6dj/RjNDGxO+ism2oTV9qv5F/ufxHmi2bWrn/z3pZtLU6gkj8Pj/V2XNUTCHiDJYWSfy/OqtGAH330j6h1h7aE72ocDh8v/G07uvQw9sUaOCVBx+QUw+E37OV0ZwJrE015E0fTjbU5kWIkb4a9iRMnM+0zu3TfkiSxY8cO/H4/iYmJJCYmtms7URQxWBbiUV9OgraYR9PuRS+2FA/ahT8jz5sHo0ah+uMfAVhTkc/zW5fA6lUMW9G6IIGuNZg0qLVcmTkWgFNMi9GJdpbWTeGOlZ/z5IYf+K1yLxW+PnxYfs9BBQstEVEbbuzQsurRqhjqSpQrRg+iFlVEaPTYfW4KHbU4fB4cVRKbf6/lkWeHExERXEPcUV8W2iZK17tP5AU2H+6AzKlJvXueR4vfKrOZtvh+GvwuLks7g09PfaLDDqeSJDHVPpWl/qUMEoYwMe9BxGZf3aYTaLh/HiCC7MBVMwWd+WM81usAD7qoOaj1Z3bti2sHt122Gp9PRv7jIERgzrm9vyvv4RBkuVtNz5oIDw9HEISj6sZ6INfpr+Ntz9v84v+FLzxfcJnusk7vU5Iktm/fjs/nIyEhgaSkpA7vo8H4Gsv3OZkWNY9H+9zLv4uexRqwoPZ4ibzuLtBoQssze+3VfJTzG6d+s5DZL3+MT69jzobFOCU/W7q5guWU+AxkZPp6b8MnqVlQexlSs4wjjahiTPKdqHWV+F2fA631KtOiNf293cdsrSnfsdCQT4mM9DDj4tKB4AXlm72buef63wCZq28N9k0od9pYWhrMKxEFgZNie7c16/s7gvkiV2UdHd+K3swzW/e7qf5r9F08N+Zuip31HbpL8UpehlqHstS/lLM0Z7FAvbSFEGmO3zWHYGqlBLIbT/1skB3oIj9CY+ieNf9DsWV9DUsWlBF1diIVKpHrBoWTFH583P8cjcgIBN1YvV7vUXVjPZAfI35Ej57rHdfjkDqXw3KgEElO7nj+W0CWWFOxl5/qLuOb6uswiE4e7vNnErX7uPmxlxAaGlC9+iqiJVittXjPFi7/51tc8p+PEGUZncvNdXIU56UN69RraS8nhS8lTGWnWric/uZkUsOiyDLHc3HGKP558oVMTMhEZ34FQYyhtT4DghgLcusNVVujtaZ8vbmlSBPHx5nhGGZyYn9+Lc0lIEss2bGH5YtE+g43UiRVs2tvBcvL8nA3+necHJvWwp20N/LTPheiAJNTTtx8keZuqjFaE9PjziOvzs8/6oJVCe29S6mX6hlcP5gyuYwbtDfwXsR7FB7QGbkJQapB8gWFbJCmk5GIIPSMMLz54lUgwr4ZqRhUAm9NOzZLeVtDhtASa3disVhoaGiguro6tGxztIkQI3g3/F2uclzFufZzWWZedkT7aS5E4uPjj0iI+KUAb+xcwbZG36XVtrOwBSK5Lv5l/lT/GNq1MkWDMtFeeTF9AEfRPiZf+QdSd+W32E/pkoV8OLH1JO7Fxbu4Pms8YheVb3vsfwG0ZCa+y/3JrTusCmIUusgPcNee0/xRQIMsFeKsTEVtuBqt+W3EHnLG7W6UyEgPE2uI4Nr+4xCAbS8ByCTd5uDl7Uv5uXhnSIikhEVyeeZJPTjT9pFd6yU5XHVUmq31Rg50U113znuEa0wtxrTnLqXAX0BaXRplchmPGx7nvYj3Djle4/+Z1gtOZdx1s/E5P+vgK+kcb7+cQ3GBk/h7BuKS4bmJ0aiPk8+EIB+9yEhTc7ij7cZ6IFfqruR09eks9y/nf57/dXh7SZLIzs7G5/MRFxdHSkrKEc1jzt7NISECQWfnWNNVLKl6Hs29MvSFZW+cxqvZy3D9tgbVSSeTkrsXsVnSsSyKGB5/gsuvvKvVY6yt2sf7OauRuiBR2ef8FKRK1MYbDysi1PoZqA03sv+yLKOL+hB9zGoEVSp+10c4y814HP/q9Lx6I8fH2eEYZMfWehb/UEogIHFKfAa39D+V8pUihniIHrp/nFoQGR/flz8Pn9br+xZUO/04fDLjE7rfJKk30txN9dkjcFNtYqN/IwOtA7Fj503jmzxlPHyHUa1/AdCaOVxw2cZTfxUBz8oOz+VIcLv9/OOhLehjtGxLM5ESruKukcdTSWL3m5410eTG6nK5jsrxDsUPET9gwMBNjpuwSbZ2b9eUrOr1eomNjSU19cgclR0+T8gKQS2I3DfsDB4aeRaX9xvLzH+uQ9gFnn+quTTzfc5f8hzCaachVlWjCrRcshAkCYPdSVrOXh6482nOiM0g84CWE+uqClhUvPOI5tkcj+3PgAat6cV2jdeZX0QQg9U/omYsav1lqHXjCYvfh878NghqfLYHcZQn4Hf/eND2sixTaG89etqdpehdgbJM00M8/7ftLPimmNT0MO58cCB5u2zIAbjvb4Ppm6bCJwWI0hoZZUnFpD02Lu4fNfajubT/iZUvcig31Y66Kv7o/TFUufBt+Lecrzs/9FyFy8aPRdkHbaMWvKj9Szg4+U0kKEZUqHTnIqj7dmguR8pdV/+Gxy0R+Y9hSMBnx3gp74EcDdOz5pjNZiorK7Hb7URE9Jx3T5gYxofhH3Kp41Jm2GewyrzqsNs0CRGPx0NsbCx9+hy5g/S6yn2hXIjTE/szMDJ40Za2bEH6+mvEiy/GVzMKw7WPcfIvvyHTWgZGEJUUTCPts20XfU6/kIXXzaLwzHH49PuXlxeX7GJa8kBU7Yzo/VSUzdx9WzgjKYvLMsfgc30FUhlqw00tmlBuqCrku4Kt1LgdxBkiuChjZMg7ShBN6CI/wl4zmw+LLmJ37pdkmixc2W8s8WE3ozLciNd+H/6G13DXnoOoHoE++itEdX8cPjdv7lxJrrWy1fl9snsdfxwyGVMvXepXIiM9hFYrIghQXNDAw3du4N2X89DqRC6/MItz+wzlwvQRnJ7U/5gRIgDz850IwAWZvfPD3h2UO2vImHsZXxUsZURUJmUXz2Vc7BB8UoDP96znle1LW91uVfmeg+5U3nW9y7n2c1GjZo1pTQshsq22hKc3/sjG6qKD9tXfsB2R5ss+wa+1qBmPzvwmYQmVGGK+RVR1vGqho+RkW/lhTjEJ42LYpVIxIVHHpOTj7PNwFJdpgJARWGVlJbIs43A4KCkpoby8/DBbdj2X6C5hqnoqq/2r+dD94SHHNhciFoulU0IEoMJlD/17VGO/KqmuDv+pp4IsI3/9NRG3P4bvdwOyjpDNuqRqvZ2EfOP1wf9XVnLWv97k7xfdxZWfL2ScKhjFs/ncbK9rX0+wffYalpftDtm+A3it9wNqtOaXQ4/tsVXxzq5VTEzoy2OjZzAyJoX/7lhBSUN9aMziqkSeKniTyWlX8/DIs9CJal7e/is+KYAoiujN/8GYUI1KezaSfwvOyiwaqi/glW3ftylEAAoddbywdUmvtZ1XxEgPYQxTI6qEYBvyxmuSzysxOuU77rtxLTnZPVfOd6RsqfYSZ1QdN7kBh+P7olWkfXMphQ0V3D1wNptnvk+41ohfCvB69jJ+Lc09KKu9iaVleXy6+/eQIHnK+RQ3O28mnHCyzdmM1YwNjS101PLGjhX4pGDkQyuoGGCOo785DrUgMtvyfmhsQOyLNuLvGOP2YYxdiSbsFgQxqhvfhZbcOGsFggAV1/ZDFI6PUt6DkRv/e3TiIypVMAervr6eLVu2kJOTQ3l5eY/lkcyPmI8RI7c23Ep9G0ZckiSxc+dOPB4PMTExpKV1vgqw+cpYKJ9DECAqCvHmm1H//DOaujr+teQz7l30IQXLUwm8CIHZUdTF7m8GGVAFz0+F9rrgLhp/jA4np7zxCVdOnc2sVz4msqKGKvfhq4fcAR/v5qzmmv7jQhbwPte3yFIxasOViOL+Vg9LSnIYEp3I9JTBJBrNXJA+gj7hUSwtzQWCSylLSnYxo89wRsakkBIWxQ1Z46n3uNjc7EZEFCMxWH7EYNmGoB6I5JnH7fGXMyPqc8xaHTcMGM+rEy/jtYmXcXPWBKIa202UtRFd7Q0oyzQ9hMGoOsjoRpbB75f54oO9fPHBXlblnktGv2PDUt3plajzSJybfpzdBbfB3Wv/wys5c9CJGn44458tTMx+Lt7JjvrgXataEBkXm06GycJK4RfEmnjya4OlvcvLdzMwMoE3DX/nbc/bJAgJZEdmE31AF90FhdkhUTPaktripOew/gMaaqn0JvBJxV0kmydzU8LRNTZr4rP38snPc9D/5kxW+GRuHhJBQtjxd4o5GgmskiRRVVVFfX19C0v4QGD/UpysUVHoqO1SC/PD0dQP5iX1G9zqv5bJ9VP5xbi8xfGbhIjb7SY6Opr09PQuOXaSMTL07/VVBWRFxiNGRqItKAg9vs/eJCDUfBX+Fvdd8yrSpT+gJoO/r3qEtM276bd5JwM2ZrMlSk+qSoWq2XsqSBKC28Ppc35m8pyfqbx8NvJHnyG0EV0B+Gz3eoZFJTEoKoEFRdsB8NruAVRoza+1GJtvr2Za8sAWjw2OSmRLY4ffancDNp+bQZH73WgNai0ZERby7dWMbbSCaEKlHYresp0Ptj3EedH/ZVr0fM6IXo4x6gfUYgYAY+PS6RMRzd82LCAgS6wqz+f8tOG9rgHp8Xem6IXUeZx8s3cz2XWleKUAsfpwvOqYNtczZRnOvjKBj2tXULHSRpTOyDl9hoY64jbxa2kui4p3YvW6SAmP4vLMMWRE9Ez55Gd5wRPmrH6911SnK3B4nUz46Q621eeTFpbAbzP+S4IxJvR8QJJY2phkJwD3DjuD/uY4Nvs384j1D4xMHslzMR/ydd52JCSu9lzCLnEdWWIWm82bD+qQavW6Qicqk0bPjVkTQicRb8Nr/D97Zx0fxfX14WdmXZJs3IMTJLhTKFCgSFsK1Evdvf3VnVLjrbu7u2AFCrQ4FHcnECNu6zrz/rHJkhAhQBTy9LMluzsz906yO3Puke/B9iSC4XHeTeuDzesmtyCDyzwujKrGLa32eHw8cfdGNHoFG3qFoxcEPjgn/Pg7tkCERvCJlJSUkJmZWeP7kiyzvPAwW3M3NZqgVWUxLQUJiT3ZatzE1AP38XvHNwnTGpAkiT179gQMkXbt2tXb+AMi2/Br6iZckpeVOQfpYoqp1Hiz2GXn633/BZ4Pj+mILnwuzpJbwf4xD5z1Ms/Gv8C68cMD2/RZ+h9J+w5XGas8pyRiyTJwuUBffSPL9XmHSbcW8Xif8YHX9PIWZF86Su0ViGLl/Dmz21lJURv83+tSt7/DudnjT1Q+NjwfrD66zbGk24pYZ+7DOvOHXB33D731v+AsGIZCexEq/Z0otaOI1gXTOzyBjQXp2LwuDlkK6RzSvHK5zgx/ehNi87h5ZesiFKLItZ0Gc0uXsxgR2wnUEtIxVzRR9D8efbU7httz6BoRw5N9JzA6Pplv9v3Hzgrxy/X5afyauonzklJ4os8EEgwm3t7xL+YaPrANze8H/Kv9K5px8uqxEsknKpO8Nm8nMb9OYXtJKpe1OYfUKT9WMkQA9pXmUer2X1B6hSfQqewL/7bjbRQo2O7bzku6+4nQqfij3VPs0a1jsDiEXSG7qm3VnmkrDig2DohsEzBEnMXX4y69C6X+LvTBz9Mvwn9R9soSRyrEnxuL+29cj8Puo80zPXH44LXhp08pbxVkGryaJjQ0tNZuvaIgUCT584QaS9DqWDGtczP+h1LWsCL6CzLd2UiSxN69e3E4HISGhtarIQKgU6oCXgUJmY/3rOSFzQv4NXUTH+9eyZPrZ5NlLwEgQmtkYJkXQWv6CJVxBgryeKrNfYQq/XkVcfoQwkeOAVXVbrmSIJDVowvazVsQajBEilw2fkrdxI1dhlbyMnRUvguIqE0f1t/J14LD6yn7SaRAcS+GmCLUIe/ic87BWXxRYLv4CvksjmaYN9LqGWlgFmbuIlSjZ1JSj0oSvQcs4JPKo5WgUAjoDAo+/30Yee2zKSkK4pL2fQGI1YdwoDSfxVl76R7qT0JcnLWHYTEdOCvGr9Q6reNAdhQdYXXuQcYndm/089yY5yZUI6JXN88bUHUSyVBZgEySJUb//T8GRHTh5X63V9ruxW3f8OSWTxEFgS+GPsp1HSdyLEVOGwct+YHn5V9+q8/KF+6jeR3/eP9hRZtVuAUn7UsH8X3k7Bp1WXwVLFat4uhF0+deDYDX/h2yL51o5UWUf519jVzCd+ighd++PUxcl2BWqlUkBSm4refpVMpblYb+DQuCQPv27Tlw4AAWi6XabYrkxlXUPDbxUYmaMRn3sCDpFaa5L+bnvT9gt9sxmUy0b98wlVvnt0mh0GVlbd5hgMCioiKhaj13dx8ZaFIHoAl+GlERj1x6M48mPszbWU+TZW/Pn5Eqpnk8ge3KK3BWTB5DxLsfINbSMyfdUoTF4+SFTQuOjq3MJj58K3/mX82VsVUXZsFqLWZP5QWj2eMkpMwTEqzyh7nNbmclgUuz20mi0VTtPPQVJB8yrMUIggq14U587v+QPJsrvVeOoRnKRLQaIw3MtsJMuoXG8sXeNZVuhAotAZFMUYS2HY18O+9s2nYI4pWt2wNla+V0C43l59RNgF+FMN1SxISEboH3RUGgiymmSbr6eiWJPLuPkQnNt/KnOolkOLqqDMPA3MzVLM3dzNLczfQO7ciV7cfi8XkYu/gBluVuIUITwurx79MppKpOQnXGzvz0nQyL7sD93sriSjIybsFJuLMNo7PuRh1d89cwQnv0gratKIsL2vRAEAT0UbuRvKl4bG/htb/HIPVskpPCWFIyiQj1+SfzKzppbpi8ElkG3/1dkewyP44/HZNWj1KeM9LQBokoinTo0IH9+/djs1X24HlkCZvsrWHP+md93mG+2re2yutJtt4kmftwtm8IdrudkJAQOnTo0GDzEAWR6zoPoYsphiVZe8mwHb3B6pVqhka3Z1xC12rLV1WGGxHEGBzFF3JfwnQ+y36AQ12OGk2y4P/bAnQMi6FtaO3VZ11MMTzdt/KiJDN7Ii5Jx8j2MxCFqguM9kER7CnJqZQ3srs4h/Zl4fUIrYFglZY9JTkkGv2J5w6vh0OWAkZU6N5ekURjKKFqPcVuOzuLj5BuLSLJGIaoiEdyrwAgy1ZSKdzbNqj5hVCb5zL2NCLfaWVp9r5KK2agzCHiLz7rPsrI/HVjadvBn6xq9jirjRk6fR7cPi9WjwsJmaDq4oqexg/TzDpoRwbOb1e9O7MlIMsyz2z9ArHsK3Hj6peYm7Ga2F+nsKxMTTX7kj+qNUSgemNHQmaHcx/fuL5BODZDSIBCXRp7IxcSras5STnOEEJboz+hNcNWzLLyfBRBRKHqiNb0DuulpWy1DiJIWcrFkV+iM8fiLLkF6QSEqU6WP39KY8+OUvpclsRWu8zwOA1D4pqvUVpfNFZpr0KhoGPHjmi1lX+nhVL9eUWcTmetvW82FWTw2d7VeCp8vrUVvA7vFLzBDeYb+CDkA4LbB1d3iHpFEASGRLfniT7jebbf+TzQYzSP9R7HSwMnc0n7vrXqaCh156GLWIMgqLgp9lU6pRzEVaYt4tTrAwZm/Off4undG2nz5hqPpVWqiDeYAo9o5Ta66taS6jmPhKC2AHyxdzV/HNoS2Gd0fDI7i7NZlLmbHHspc9K2kWYtYmRc58C5jY7vwl8ZO9hamEmWrYQv9q3BpNHRO6L6a49CEDk7thPgN5Df3P4P/x7Zh0cOQZYKWZ69nze2LwmEe4fHdETZzJJXodUz0uBIslypS2M5nrL7RNxoaPuUmVWlBxgf3K3Kds2RBYftpFu8nB2vJTlUxU/7/au2a7o033yR47Eoez2bi/YHnrslDxf8+ygAM/vcwqM9rqp1/+qko714uchxAZK65gv98shv+N4zhms019S4zdiErnyyxy8w9cPBDWwuzKBfRBKy7M8d2m/OA+5BzPPyWKfthMlf4rV/gtf+GaJqOJqQt1Goe9Y6/5NBkiQeunk9ao3IlnPiEJ0Sv56WpbyV8SewNp7QiFKppHPnzuzavRuPxw0yFEqVFx2+GkrIj0e5TLsoioSFhREZGYm+Qo6ER/L5S9DLng+IbMMFST2I1gdjdjvZvnsXWq/MNuEQn5k+Y03Jf+wM236yp3pCCIJAtD6YaH0wxS473+xfV6lI4NrOg6v1ACjVAzBE7aYoZwDnR3zGodGdURSoUJw3kfZPv+jfSJbh4EE8Awaw5NYr+evS8cSHhNdaJOAqvRWnpCdduoNBZa8VueyVFiIdgiO5KfksZqVt5c/DW4nSBXF7t+GV8jnGJXTF7fPy7f512L1uOoZEck/3UbVWv4yJT2ZbUSaHLIXYvG5+PLgBT8TfDA2xMOfQfCySf86JhlDOTex6Yr/oRqLVGGlAvJKvUt59r/AEzk9KIdVcwJfnbcSzVUv36XYAZh3eyoDINoSXuemOTUQ1u51oFSrUCiWiICAiYKlmmxBVw69Kn19XzKps/8osVCPi8EqoRUiz+DBpFSjFRlSEqidmbP0ShSAGLurlBuTomL48kjKt1n1X56Yy6/CWSq/l6PaxMPE1XErr0UD0scgiCBJvON6o1RjpH9mGNGsRf5fJU+8pyWVPSW6V7SYk9SYp5hrgFbyOv3BbHkHyLMNR0AtB0Q618RlUhprHOVEeu3MjVouX4S/24heHxG09gojSnwGXlEYWPQPYby3gJ+sBJqkTUQkiHiobH9/vX889KaOqeEuPh1CWiCtJEgUFBRQUFKDT6YiMjCQsLIzNhRlYyrytPcLiuDF5aGAfS34hWq+MUymw1uymraU/u4I38KbjTe7T3XfqJ11HyosEOpuiuTtlJEEqLXkOS615EUXeSF5If4M7456n3Uc7Oei7ldWfmamU6eLzIQCj3/+GIet3MfeFh3jT/g8P9BhDUlDl8nuvazWydw9B+olckjgy8PoDPcdUGbtfZFKlKqBjEQSBSW17Mqlt3RcQaoWSe1NG8fneNWwrygKgo85/vbgw8lu+yb2PbqGx3JQ8tFLuWXOiNUzTgGwuyAiYIt1MMdzWdThJxjA27snBdkTmlVeGVsoOX57jX5m3D/bHFSuyuySH9sF+61YpKkgKCmN3hRuSJMvsqbBNQzIoRoui7GJc7JJw+sAtQf8fswj54DDn/nGEFVlN30ujIrX1ZVibv4PV+TuqXV0uydnEu3t+r3HfOWnb+GrfWkrKDEO7ooR/495ndrsZuBRl+hDlNy4ZhAp3sSQhie+N37MkeMlx5z+1bW+u6TSISG1V71O0LpjrOw9hUpujFy+lbiL6qO3oow6j0ExC9mXgKr0Wa3YwztL/IUn2445ZG9mZdr79+CAxiTrmBGkxqATeGdn84tD1gefCC3Hr9bgNBtxGIzF5Fi5al09YTDvcwcG4Q0Lw3nNPg41/yFzAezuXUehzMt+ZiSzLaBWqSjfbdFsx7+xcGhDGqyuCIKA4RkPD4XCQnp7O1q1bKc3OI1r0hz1GxyXj8/lwOBwcPnyYnJwcYmJi6NWtGyICYzLvRiPpecj+EDlS46nDlhcJXNd5MO2CIojQGukWGktkLeHPZdn7MWnCaJ+0FVHZmY7KjxgUvanabQVAu3EzkyddQ9zmnXy042ssOW1wmR9H9vlz9FyltwACmpDPGuAM64ZOqebO7iN4ss8ExscFE6ny/w16GdbzVI8Y7k0ZhaGRS/5PhDNgGdN0bK9QimtS6ylwWjlsKWSPlIlvs5HBt0Vi9gSxOGsPADuKjjClbW9GxHZi6ZF9/HZoM2dFt2dPSS4b89O5K2VE4Hhj4rvw5d41tA0Ko21QOEuy9uKWvFW0SBqCXpHgq+HebvfKLEp3MrGtm+HNRAZ8V3E23+xfV+P7r+76HhERiepd3fdveJeBEV0ZFFk5jLaj6Ahz0/0iRxJecuJWsSjkazyUZedXWD0LskisPZme7qFcZpzMS5qH2CPtQYGiishZdQiCwFkxHRgS3Z79pXnk2P1xvlhDCJ2CIwOr1WMRlW3Qhc9Cktx4LNPx2D/Ea3sTr+0dFOrRaEzvIio7HXf8Y7l+ygokCeKf7c2WUh+fjow4fUt5w8KgQqM6ERBlwFJBnbOG8s/64JdDmwP5SJGhoWhFPYNUJq7oMLLss/0fJW4HadYi1uSmBvIH6oIkSSiVykpiauXIskyoV+RCbRKSLGNPPcJWjl7TQkNDiY/391QxqjSYPTJTjjzKjwlPM6Z0DDtCd5zwuVanyVRTuKWc9XmH8cg+blvxvX9ear8u0/AKCZ/HajJ5JR9dTDGIohZd5G6chcPpELK6xjGEsv8rPR5ClPkIUjoe6//hsb6BQnsxsncnCvW5iMqYGo/RWCQaQ4mS1uOxioCEIIiEeR5GltchVJNU21xoNUYakIqlcKmWAmZsnIfWo2HbWwLjOyUiCAIhah1KQcQrS4F68Qitkbu6j+SX1E38k7UXk0bP1Z0HBcp6wR+7tXqczE7bhtntJMEYyj3dRzV4E6Qip41/c/4F+lb7vkKAiW313NO74RPZ6sKWggw+2r2y2rwdgFxnLusLd1V5XURAEAR8soRX9rEqf3sVY6TciMwy7GBz4vdki+lV5bBkGJ1xD/18w3ix70WBpluTpWHEFsdylfUqhqmGESfWrW+MKAgkm6JJNp1YboYoqtGEzEQTMhOP4xfc5ifxuf/GntcZQZGMOvgFVLqLjn8g4O85WWzdUMyACTHMLfXRNljJjSnN4+/dECifeALP119DTUmeOh2KBx9skLGzbCUcNPuT36N1wdze9WwK8vPJysoCWSYlLI5bug7j5a2LAP+Kf1h0B9xuNw6HA5fLhdvtxu124/F48Pl8eL1eJEmqcxdXWZYpllxEREbSzhSJSqXC5/NhNPq9dEVlqqEA3Xz9uFR9KT+7f+Zlx8s8rHu4zud6MuGWAqeVIre/J9ZZMR3QK9UsytzNtwfW8UvqJiRkjEo1Zo+TaR0H0i4ogiVH9rAq5yA9wvzfOVEUyVD9TrbnaoayqPK5A5JCZPnUc1l49WRspiA6sKvCu058zm/9TxVJSL5sREXN5cCNgSx78No/IFCuiYTk2YjX/gUqw41NObVaOSlj5L333uOVV14hJyeHXr168c477zBw4MAaty8pKeGJJ57g999/p6ioiDZt2vDmm28ycWJVrYbTCYPyqEvs0g596R4ax9XnL0faUcLjv/YA/CuB8lVPxXrxZFM0T/adUOvxR8UlMyouuQFmXjNWrwu10o1R7cTqrhyfVgqQHKbi+/FRiI3UYr02zG4nn+9dEzBEEg0mekckEqrWk2ErZm1uKvNz5lXZL14fwcDwrvQLT6ZPWCf6hHUiVl85/FXisrOr5Aj/xL3PQdMaRMRqdTkjvPF0sA6iBA+HrYV0CI4EwCSamB00m3Mt5zKkdAiHQg7VqDVS36h0l6DSXYLk2Yur9G587iW4ii/GVWJCpb8dVdAziGL1NwBJkrj3uv9QqgSOXNkBudDDzxOal5JjfSN07IgwbRryDz+At3I5rSyKKO67DyGiYcKjeyuEYofHdEAhioSEhJCZmUl6ejoKhQKn2cx1+k6IMoiSwOZaKkBEUUShUKBSqVAqlahUKhwOB05n9VV4okbNjyX7KJXdtCu18mCbDpUqMWRZZl7GUQ9In/BEHjN8x9+ev3nc/jhXqq8kQZFQp3OtGG4pJ6KasGRFyqvL2gVFcHWnQdg87kCfl3Ctnju7j+TtHf/SP6RNJU2m1TmppFn8+iQFTivv7lzKCO1UKDNGZAUIPr9HZOG0Scy/6ZKj51xD8rLP8QV2x1co9begCXoGQdE0atg+5xxkKb/K6y7zAyh1UxDq4IltCk7YGPnpp5+4//77+fDDDxk0aBBvvvkm48aNY+/evURFVb0oud1uxo4dS1RUFL/++ivx8fGkpaVhMpnqY/7Nml7h8azNOwTAgoxdHFjkYfG8I7z33WA0GmXg9XJ6hsc3yTxPhjijmf1FauTyDrECmDQi8y+MxdhMhM9W5R7EJflvHv0ikripy9BA7X+6NZfX9nyMW3ZjVBjpFtSd+1LOY1x8X8I0x1/lF7nsSIKPAt0hkEESql81J4pHG4QVOW0BYwRgrHos92ju4W3X21xtu5rvgr47ldM9YURVMrqIv5EkO27LY3jtn+OxzcRjewWF5jw0IW8jKisn2j338FZKitxc+HR3Pir0MDJBy4CY07+UV/nUU7i//bbKbcijVmK78zYa6vLurpADEl4m915e5ltUVIRSqQyU5ZolD058dAqNwajTodFo0Gg0aLVa1OqavQuZmZm4XK5KnhKFQkFiYiKmUBO/bTwMTjeHLIW8vn0JExK70y4ogjyHhcVZe9hYkA74BQSHxXRAKSqZY5zDcMtwxprHsjt0d53OtVyT6aPdK9hfmodJrWdEbKdK4ZZjSTUXoFEoidX7RfYWZu7CVKa5Yfd6MKl15DusTG3b++hOy5bx9FX/Y+v5Y5Bf6MUyczoRWiPto44aPr4hAkceisN0o5nRP89n/g0X+QWhIHDNq4oP8OG1v4eoiEcd9FidzrsuPL5uFoWuqmrRI2I7cWXHAZVec9veAxRl8zmKLFtwmR9HW6YMK8syc9K2syLnAA6fhw7BEVzZcQDRuqbxcp6wMfL6669z8803c/311wPw4YcfMm/ePD7//HMeffTRKtt//vnnFBUVsXr1alRlsrv11TipudMrLAGTWkeJ28G+0jzev70QlVrg/EsSyLKVsDhrD6tzUwG/+314TM1fuuZGjNHCvqLyG6uMQhD468IYEoOaT+RvXZlKI8CUtr0Dhsivh5dy23+vYVBq+WDAE2wu8Hc/VQshdTJEwB+CU8gqLkqdycbI39gWPg9REPFVuAAoURLmO2qg5zosPL9pPtn20kC/obei32KxZwk/uH5EPNgLozUxoKaVZAzj8o41lxLuLcnll9RNlY53Mv2LRFGPNuQtCHkLj+0r3NZn8LlmYc+bhajsgTr4ZZTa8RTmO/nkzX1ERmuYnRiMwu7jl9PcK1KO0KkTzksuQv3b7yh8ZRVXosA/l06kd4ixwYyRkArVMftL8+hbJvvfo0ePgIHhlXw8um4WFo8TURB4u8PQE2qCplKpKhki4eHhJCQkoFT6v8vXdx7Cmzv+wSP5OGgu4N2dy6o9zuUd+mPS+HNnhqmHMU09je/c3/GC/QWe0D9x3HnkO60sy97PmIQuTEjszmFLET+lbkQpigypIRfO7HESoTWS6/DnUG0rzCRWH0ye00Kp28ELmxZU0WSSDx0iPCuXkR9/j+fLX0m68Fw0t9zAlsgQ5MsvRJp0Aas67+LyqE+Q3pLQTHPRfc0Wdp7lD03LxymlUupvQWX833HP90R4rPe4SqHmI7ZS3tzxT6ANRDmS9wCS+59qjyEg4bF/jEp/Mwp1PxZm7uafI3u5LnkIEVoDsw9v4+0d//JMv/ObpIneCS1h3W43GzduZMyYo+VKoigyZswY1qxZU+0+s2fPZsiQIdx5551ER0eTkpLCiy++WG3CVDkulwuz2Vzp0RJRiCLXdh6MKAikzwN7kUz8+T7uXvszz276K2CIAFzSri+hmuYtGibJEvtL/X0dog0WjmZoCrxxtq7ZrZDLe8REaA1E6vyrnvvXv8sly5+ma3ASm877lMltjnbbLXHVrQLI5nHz3YF1KAQBpaxmWP40vpHn0FlIPkbcTMBpPRqqW5C5KxB+q9hvaIblM0JdCfwe+wIe0c7wmI4oRNF/Y6mh31C5a7m645VzMv2LVIZrMUQfQhexGVF1NpJ3B86iCVhzovj4lceRJB9nv9aXbJuP23sEE3EmlPKWYX3kQYQK8vxutYp/LmvYUHPPsITAjWFVTiq5ZYnLFT0dS7L2Bspv+4QnnvCNpHyRqNVqSU5Opm3btgFDBKBjSCT3pYwiXFN9Iz6dQsV1nQdX8WB8bfiaMCGMpx1Pk+ZNq3bfisj4DfApbXuTZAzj7NiODIvpEAjF1ETH4EhSLQX8lb6TfKeV7WWlreclpjAo2t8f59fUzXyxtyxBtSzZWJRlcLlI+W0eY8dOoeedDxFyzfXM7hDBbns/3sl6BsdZeoruMFGQEBPIGao+TKMAtGhM36A1fYQg1O+1MEitJUStCzy2FWURqTVWaXbnsX1cwxEEfLICARm3ZTqyLLMkaw8Tk1LoHZ5AgiGU65OHUOJysKUgo17nXldOyBgpKCjA5/MRHV05eS46OpqcnOpLuVJTU/n111/x+Xz89ddfPPXUU7z22ms8//zzNY4zc+ZMQkJCAo/ExOqV51oC3UJjuav7CHZ/JCKoZFLuqPy+SlRwZYcBnBPfuLkfJ0qR08aLmxcGJOlNWidCmaXeLzYDi7wNaxOov9ZG+UXZ6nEFSh7v7XoRsbpw0u15uCRPwGABUNfSJrwiCzN3EaYxBDxZHlki+4iGf/WrmKmfiRo1ChR4ZQ+i028ERWiNRGqNXNK+L7H6EEbFJdM3IpHFWXvJsTi4y/4sbtHFkjZvcnmHfqSExhGuMaAWlazOPVhlDsuy9xNRw/HKqdi/KM4QwrSOA2s83rEo1L3RRy5DH1OMUn8TToeDu+97g9Vb7kQd/gExOitvjWieseeGwCdJ7IgMYtM5g/1JjcDCS8fiCDLUORH0ZDCo1AyO8t9QXZKX/9v6N/PSt5NmKWJ3cQ6f7lnF7xU0bkaVKXmeCCaTiQ4dOtCtW7dAUuqxdAyJ4rkBF3B7t7MZFNWW7qGx9ItI4qqOA3lp0JRqPReiKDIvaB4SEmMtY487jxC1NhBuKSdWF0Kxq+Yy9GCVFoUgcnvXs1mffxivLCEIAipRwQVtezImPhkBOGIroajsOIKhslGl8EkIMvRYs4WkiZO58bI7GfX9XAqdkezLept3L3qS3DZxhJb4PajHGiMyIoKiPfrIjaj0tYsj1gdeycd/eYcZGt2hShWdz7MRAEkW8Mgh+I0kJQrtFHKkyfxnvRSV8X4KypKOu1ZoO6JTqmkXFEGqpfFbikAjVNNIkkRUVBQff/wxCoWCfv36kZWVxSuvvML06dOr3eexxx7j/vvvDzw3m80t2iDZ+rsDVwlMvDGGPrEKrB4XOoWSrqGxDIlqj0HV/JoWVcTsdvLa9sUUVOhwqxQERCRUCh99Y7I4ZIE3t//LQ73GVmpQ1ZR0ColifX4aTp+XdXmHOSumA22Msayb+BF95t5Ilz+v4vHuR/vGdKyQz1Eb5bHtXMfRBmb7zXk8s34+nUL685DqUz43vki2fg/B7miUgohOoQp08C2nvN/QuIRuZGWXMNJ2K4sT3+bi4mm0N1/CJe37oBDFavsNpZoLGqV/kSiGoDV9woDkCXTqvJnHPprF9B6v8HTKqzgLeqMOeQOlZvjxD9SCybGbeX/XMnIdFqKvnUK/JWvwiQILLx6DAvjx4Ebu6j6iwTQcLmrXm0OWAjJtJdi9bmanbWd2WlWV0wmJ3at8xuqCKIp1yuFTCCK9wxPoHV63hFSAwarBXKe+ji/dX/KM/Rme0T9T47YdgiMD4ZZych1mwjQGf15McTEUFEBRERQVIZeU0L84gwyHmW4FPrqazczSudDYnZisDtwPvw12O9fEBCN4PPTbdRi3243scFTr2xDKvPVxh7OY+uEPhOcUMOLPRZylVPDA319w0Vvf8Nkz91YxRoo5j8TI7xHExlGg3lKYicPrZmh01a7IuvC/QHZw1+q/uLbzULozAdmXji7sN7Kd+5hftIPRnc/BXFahVV3bkdIm6vx+QneNiIgIFAoFubmV1R9zc3OJiam+vjo2NhaVSlVJWKdr167k5OTgdrurTawqT7w6XXjh0W2o1SIfvD8ctbp53KhPhHnp2wOGSPnqPl4fzQebMni8vwIH/k6UGbZilmTtZWJS43cNro6zYzuxPt/vHv4pdSNqUUG/yCQSDFF8NOghLlr+JM9sf4srEqcRqjZWib/WRMXYdv/IJH44sAGX5EVCZm9pLqDg/IInKNSmEePuwG3dhvNz6qYa+w2dE9eZEredouxBdC8ayyzTrzwRP5xBUe3ItJWQ46gapjxe/yK7111j/6Lqjlcbr0zfTkGem7HXTGXQousZEXOYeec8huRZj7PwbBBjURkfRqW/p9EqghqLIpeN17cvCXjQctvGcyjawLyewTiMeoz4y/bf2vEvD/Ycg7oBDHGdUs39Pcbw3YF1bCrIqFK1ZVCqOT+px0l5ReoDSZLAbIbCQr+hUFCAXFICJSXIJSV8XBqFKUxLnjyDgg1rCDGDbLP5tVscDnC5wOnkEkEmKzyY/LwiDGYrPmCMSoHOasfrqz5B/KzyOZT9e4Eg4NaqUXglv6S7QkFScQSloUGU6FRoNWqKYiKI27m32uPJgoAkCGwb1o+lV1/IoUsvIF12Y5DM7H6+OyahCIPo//5IssBv+TfQLuohkhrJEAFYlXOQ7mGxgfycigiCBgRNIMlWEMKQ5drDXM2FE/rmqNVq+vXrx5IlS5g8eTLg/yAuWbKEu+66q9p9zjrrLL7//nskSQpcqPbt20dsbGytGd6nC99+cpCiAhc33dO5RRoiTq+HNWUVQSpRwQM9xxCq0TMn1W+cXN81EaUilBc2z0cGlufsZ1xiVxTNQFynU3AkfcIT2VyYgcvn5dO9q/k5dRPhWgNZthKGhA1lTdFqfs38hdkjX6vzjUQG2pTFtsHvkXh/5zIybMX4ylz2BqWGMWHjGRWXTKTOGPBYVMfmgvRAnPbt4NeZLI/gTeUz9MvpCzStUV5a4ubtF3dhClOzrE8Ecr6HV0cORR/5H5I3D7flfryOX/GY/4fH/BhK3eWoQ15DbKblgyfKrMNbA4ZInD6ES9v3Y/mIjjx4XjCzO/Rn2ZHDWDxO0qxFLMvez9iEhun7YVCpuaXrMAqcVtblHabQZUMpiLQNCqdfRFKNn11JksBu9xsK+flQXIxcXOz/t7QUSkuRzWawWMBqBZvNbyjY7eB0HjUW3G7/w+v1P3w+/6OOIaqXyv51qf9G9gj+yhSFApRK/0OtRqdWEyEJpPbqQmmQAaVCSZJHpo2sBqMRjEaWRuooNmq5yBAPJhNCaCgH9UpmufPIEH1oDUZKPU4mtelF/8gkDlsK+Wb/f/SNSGRfaR5mt5P2h7O5++r7K83PpxARJRn3VVfy3mXncCjYb8SX+xDVgossVRv6G/IxCPmYvSF8l3sHB5wpHPTsZXhMp4CGUENS6LSxuySX27rV7o0MVvsXiII2kvKqGrPHGUiIDlb59ajMbichFbSpzG4niUZTg8z9eJzw3fH+++/n2muvpX///gwcOJA333wTm80WqK655ppriI+PZ+bMmQDcfvvtvPvuu9x7773cfffd7N+/nxdffJF7GlA+uTnx4mNbUWtEnn61V1NP5aQ4YM7H5fOXxw6MbBNIsp2daiNKL9I2WIkghNI1NJZdxdkUu+zk2M2VGj81FYIgcEPyED7dKwfaZ5s9zoBAU4+Qnlg9FrZbtvPY1jdZG/9hnY57bGw7RK1jaHQH5mXs4Mk+E5CRMao0lQyy2voNzUrbzrmJ3fgtdTNhihBmB//GmNJzuc9+J0+5366231Bj9S+65ZJVeL0y177bj8fyPIxO1NIv2r+/qIxCG/otUsjXeGyv4rG9htfxJV7HV4iqIahD3kKp7l/nsZobVo+TDfn+slW9UsUDPUdjVGlZUXb/7ROeQI/QNszcshCA5dn7GR3f5YQ0diS7/WjoobDQbyiUeRQqGQoWC9hsBNvtjLHZ/IZC+aNM1AyP56ihIEk1i7TVglujxhoShMrnI8juApXK/1CrwWAAjQZ0OnIiQ9kdF0qpUYdGoaKnrCVRGwTBwQgmE3JICEu1XtYqnFjUChLCY9nUaRZfCp/xmPZRXjS8WO34UWWPmqgu86QTUFFyblthFn8c3sK89O1EaI1c2r5fpeTaXx2/HN1YFEGScJ09nB9vvZTt8WHolCrwHO2KrBRErk8eTaRjMFmuWL7OuYelJX0p8fqr0vKdVrYUZtbab6a+WJ17kCCVJiDYVhPtg/wtRYbF+/M7JamE3cU5tC+rpIso64G2pySHRGMoAA6vh0OWAkbUUkrdkJywMXLZZZeRn5/P008/TU5ODr1792bBggWBpNb09PRKrtrExEQWLlzI//73P3r27El8fDz33nsvjzzySP2dRROx7Mh+lmXvp9Dll4WO1YdwflIPUso+KN9+fIDiQjc339cZlcofptqYn86stG0UOq1E6YKY2q43PcKO6os0t9pvh88T+Ln8BizLMj/us6ESBTwSqBX+VeOu4mz/PhWUZ5satULJ7V2Hs6P4CMuy97OnJBeP5MOg1NA/MonpfSdyx7qXmZWxkkuWPc0vI5497jFrim2HawxVQifltA+OYEfRkUqvlfcbSrMUohKO9hu6ImIkVzrv4hvjG3xp/5jHg6uqWNZ2PKjcv6i89Xh5/6K6uvM3rMln+eJcevUP402rX13354lVbxWiKKIJehhN0MN4nUtwmx9E8qzGWTAAQZGEyvgkKv1NNUrWN1f2luQFBAkHR7XHWGbEiS7/jUqYNYeEbfu5a/NaPOZS1E4XTuWzKF3uSoYCxxoK5cbCiSII/kdFj0K5oRASEjAU0OkQ9Hq/N8FgAKMRISQEgoL8/5Z5FAgLg9BQiIyEsDDSHaV8vHslOqWKziHRXNahX7XTOGjO59Wti5ncrhfDw+JZl3eYVzJ380Sf8YFFyIKMXSzI2Ml1yWMDZaOxqecT3WEuLzlf4nrN9XQ6iTYEdaFneHytmk0XpQwjcFXr1g3lG29gGjOG28pekmWZGZvmkV1WueSVJT7as5JHEmW66zfxQrsbeSH9LSK0Rgqc/mv/ytyDDW6MSLLM6txUhkS3r+J5/mLvakxqPVPa9QZgdHwyr25bzFZjBN1V8HfaUtKsTq7q5BcnFQSB0fFd+CtjB1G6ICK0RmalbcOk0QWuF43NScUN7rrrrhrDMkuXLq3y2pAhQ1i7du3JDNWsMWl0TGnXiyhdEMiwJu8Q7+9azpN9xhNnMPHi49v8XpFXegP+L/Gne1YxuV0vepZ9iT/YtaLSl7i51X4bK6jIpln9ioWCIDDngmjG/pHDc+uKeW5IGIcthYHtmlszJkEQ6BEWHzD6JFkKaI4A/DnqRfrPvYlf05by8Ib3ebn/HTUdCvD3BXpp69/8lb4z4ApekXMg8EUH+OPQFkrcdq5PHgpQa7+h9Xlp/JWxg0FRbVmStRcBCM8bQkrMVlZFfE+6biR/HPLU+XgV53kq/YtuuXQ1ogh9X+zFwl027usdTJi29kuGUjsapXYzkjcTV+m9+FxzcJfegtv8P5S6a1AHv4zYiPH1U8FZwRCPqbAY0BaWApGob7oVyeGj3LSTRQFBoQDFMYZCUJDfUNBqQa/3GwrlxkJQEEKQ36OAyXTUWAgP9xsLYWEQHo7YwDl0Tp+Hz/au5upOg/irgqJqdSzJ2kv3sFjGlSVHX9i2F7tLclh6ZB/TOg2sUjYKcH3yEB5c+ztveL9hmnIcYy1jORx6uEHPqUaiohBuuglx+HDEq65COCa8IggCkdqggDFSjs1nJEoNsizS3RTDJZ3G8cT62Th9HvIqJLM3FHtKcihy2Tmrmu9vkcteSVagQ3AkNyWfxX9Zh+keBQdLD3J7t8sreazHJXTF7fPy7f512L1uOoZEck/3UU1yn4HW3jSnRK9jssont+3Fsuz9pFoKWfxtAcWFbm75X2eUSv+H/VS+xFsKMhgQ1bZRzw/8GgMGpRqb182mggyy7aXE6kMYmajnkf4mnl9XglbpIN15tH9GTBN5ceqKWE0+y9qJH9L+98t5ZdePtDXGckeXKTXu3zYonNu7nl3FFTwo6mh2e6nbESglhNr7DXUIimRW2jbW56chIbMsez8ycHHpvbwWtIk7XbfwiucPfC5tnY5Xzqn0L3r/ld1kZzqYdlsHXt9rI1gt8NrwuueBiMoEdOG/IUlePNZn8djew2v/AK/9IxTqkahD3kahah6JzjVhVFU0xAvxBwRg9wM3gGU5zoN7CQ9P5MUdS8iwFQMwc8CFhGmr1+OoDkmWmJO2nf/yDpfF9HUMjW7HxMSUWj1J9SV4V84PBzbQIzSOrqExxzVGUi0FgW7j5XQLjQ2EQmsrGxWtJm6Pvp33Xe/zkO0hXjG8UutYDYGgUKD65JNat6noeTg3vivFbjsxGn8GiUr0cVnEdNTiaKQyz1ljZMh1C43lo+FXVvveAz3HVHmtX2QSvYKH4CyEmzpKaIyVvUWCIDCpbU8mte1ZZd+moNUYqSckWWJjfjpun5f2QRHc/PgSNBqRp17uHdjmVL7EqZaCJjFGVKKCYTEdWZi5C58s8dq2xZyf1IO+EYnc1UvNa5tknl7j4KoeSrRKLyNjO7U4dzyAUlSyY9KXtPntUu5a9wZJhihkKSjQlbecaF0wz/Y/v0ZX8LFhuO1FWQGPTLIpmif6jA+E4b4/sJ7/8g5xZccBXNahX7Vu8VHuWYy0jOTliFvINGVWeq+h+hfZ7V5eenI7xmAl6ecn4jpg59PRESdVKSOKSjTBz6IJfhavYzYuy6P43P/gyE9BUHRAHfQcKv0VJ3zcxiDZFI1WofSXhuenMS6xG9G6YBwJMbAbCApipzU/YIgkGcNOWLhwQcZulmUf4PrkwcTqQ0izFPHV/rXoFOoatYfKBe/Oju3EjV2Gsqckh2/2/UeIWhswRssF767sOCDQHO7tHf8yo98FVUKJ6/MOk24t4vE+4+s0Z7PbSfAxeUfBqqMloWaPP+G3prLRd/Tv8If7D15zvsYNmhvoqmyYpN9TId5gYnOhP6lcpVBwQ6dO2HNLAL+SqeTdQ2HeefikWwEl8YbQpptsLYgKf/6H7Ms8zpZNT9OXPLRwsmwl3LPqZ+5c+RPfHVjPbd2G8/dXeZQUubn+zk4Brwic+pe4qZiQ2J2EMveexePih4MbeOi/P5i+aTYj2+5BkgXm7utKckg0Zzdi8pMkS8w6vJXH183irlU/8cT62cxL335cEaq9Jbk8v2k+d678kSfXzw4o4QarjWy54DPUooqLl03nj8MbAEgwhHJX9xG8PGgKD/equgIppzwMd1ZMe57sO4He4Ql8sGsFWbaSwDblYbhpnQbyaO9z0YhK3t7xb0CU7VjOVp/NI9pHyJazucR6SbXb1De3X7Eat1vi4ff68esBO51MSq7qGnTKx1XqJmGI2oU+6gAKzURk32FcJVdizQ7BVfoQktS8RPO0ClXA2+CRfLyydTH/HtkXCN8sytrFR7tXBrY/GUM81ZJP73B/CDFCa6RfZBLdTLEcqhD2PJb6FLwrctn4KXUTN3Y5MQn5U0EURf4O/huAc83nNqho3MlyVkz7QNjj78zdHCpacMwWPnTSGi6N+hiQG/W6d0KUdwP3VS9K2pxoNUZOkWhdEE/2ncCjvccxIrYTX+5dy0vPbkWjFXnipZZZQXMsOqWK+3uMpnto1dbYSSGltDMVUuQ04HD0rtTRs6EpX1Ve0bE/z/Q7j6lte7Mwczf/lnXtrI7jyai3McbyyaCnUQoqfj/yB8EqFW2Dwvh872oEhEASY3VUDMPF6kO4sG0vkoyhgS6iJyvBPNMwkz6KPvzu+Z0vnF+c5G+rbuzYUszfs4/QtUcI7wsqZOCXidHH3e9EEJUd0IXPQx9jRWXw10F4bK9izzHiKJiI5D2+QmxjMalNT+LKErctHic/HtzAyhz//JYc2RswInuFJzCkGhGq49E+KJI9JbkBmfcMazEHzPmkhNXchr4mwbtyMbtywbuKHtaaBO/SLUVYPE5e2LSA21f8wO0rfmBfaR7/HtnL7St+CIQhKlJeNlqRmspGK23jPrpNijKFezX3kiln8j9b/fZxqQ/CNAaGlXX59Ug+tuTOQpIrX9tEQaZ/0CquiJlb5e/RXPB7M8Vqu/g2N1qNkVNEKSqI0gXRJiiMKe16Y92koSTXy/V3VfaKQP18iZsKg0rDPSmjeLLPBEbGdqabKYbuobGcm9CVFRd1Jkwj8vR/pRwqbbxKmoZaVWbanNyTfA1Wr5Xv039nc0E6Tq+Xt3b8Q5GzaufMo/Op4SZRJq98KhLMy4OXY8DALbZbOOQ9VOu2p8JNF61EEODqDwewpcDNuCQdvSIbJnlSFLVoQl7BGFuKxvQ9gqIdPvd87HkdseV1w+uY3SDjngg6pZoHelZviAMICJwd05FbupxVbS7S8Rif2I3+kW2YvnEut6/8gRc2z2d0fHKl/KNjOZ7gndXjqlHwrvSY608XUwxP953Ik30nBB5tjGEMjGrLk30nVHtO5WWjFampbLSc8rLR9hVyVt4wvkGCmMDbrrfZ7q2qKNsYLMjYya0rvuengxurvHdZh370LAuxJmkOclRarTL9DT/itX3I7MPbeGjt79y16ife2L6kSsVd06FClmq+JjYXWo2RembV+zYMsfDEzKpekfr6EjclicZQrujYn3t7nMM9KaO4qF0f4o0m/rowBkmG0b83njuwIVeVl7YdxqPdryPbeYQ/j/xOp+BIilx2Xtm2CKfXU92hGzQMZxSNLAhagA8fQ81DA23j65Mv399PWqqNi69uyyM7rCgF+HFC3STyTxWV/goM0fvRRe5AoT4H2bsXZ/GFWLPDcZmfRpK8jTKP6jCqtNyTMoqn+k5gdFwyEVp/NdA5ccm8OGAS0zoNPGmP4Mb8NNblHebG5KE82WcC13UewqLM3ayp0ESzIdEqVcQbTJUeGoUSg1ITqLz4Yu9q/ji0JbDP6PhkdhZnsyhzNzn2UuakbSPNWsTIspLximWjWwszybKV8MW+NdWWjS4KWgTAOPO4BvlM18ZhSyHLsw8EQtDHohIV3NZtOOMSupCkPYAo1BxOcpT+j6VHdtU5/NqoCDpkubSpZ3FcWo2RU+CPQ1vYV5pHgdNKlq2Eh9/5h8JdMhdem4BSKTbol7i5MShWy209gjhk9vLA8sZptNTQq8rn+17L3V2mcsiWxffpfxKuNWD3ethQkN7Qp1Ytw9TDeEz3GDlyDhdZL6rXY7vdXmY8sAW9QUH4bZ3Id0jc2zsY03FKeesbhao7uogl6GNKUervAFx4rM9hz9HjKJyK5G26RLwEQyiXduhHnwh/pdvY+K4nVDlTHb8d2sK4xG4MiGpLvMHE4Oh2jI7vwvyMXTXuczzBO6NKUy+Cd+UUueyVGkqWl42uyDnAc5vms6kgg9u7Da9SNjoqNplv96/jxc0LcPk81ZaNdlF24UHtg2TL2dxtv/uE53ayVCxl1itrVgJXCCJ21yEMiqMeUbms7kOWRUTVAFTGJ/ks5znGJ/VqNh1wKyEYkKWGLz0+VVqraU4Bi8fJl3vXUOp2oFOqmP++F51J5KXn/FoQNdV+z0rbyp+HtxKlC6r2S9ycar9PhPdGhjMn1c4bm81c2zWIng3k3i+n4qoyzmAiw1rMz6kbMal11XYRPRneGngvh605zM5cRZAyhLExw8mvQVPgRMJwJyvB/IL+BRa6F/Kn508+c3zGjbobT+KsqnLPNetwOn3M/GQAt24oJUQt8PKwppN0F0UjWtN7YHoPj+1T3Nbn8Ln+wJ73B6KyF+rg11BqRzfZ/OoLt+RFPKbxmigIVfrPVKShBe+OLROtqWy0NpGvEykbfdnwMj+7f+YD1wfcqL2Rvsq+x93nVDmRUmab6+j7gqI9Ku1ENpZ2ZEVhHI/0uYR8h5W99tlc0oyqICsiiCHI3qImnUNdaDVGToFrOg8O/PzJW3v5bs9m7nwkOZAr0tBf4vri8XWzKHRVzYUYEduJKzsOqHafmpRkF02JJeXbTMb+kc1HY0tZlXuwwZRkK64qwV+OV+iyMT9jV43GyMnIqM86Zya9Zt3G0vwV6EQ9g6MurvbY5WG4iuXbDSHBvDx4OdHF0dxqv5WRqpF0UHao877VcWCvmdk/p9OhcxBzYw24D9j56pyTK+VtCFSGm1AZbsLr3oC79F4kzxqcRWNAjEJluB+V4aEmmWttBkNd6RkWz18ZOwjT6onVh5BhLWZx5h6Gxhz9/J6IgF45pyp419gsClpEl9IuTDBPINuU3aB/zxMtZd5pbUd69Md0iRyPqPAbd27bPvLLjJTmWgVZjiCEIlN9Y8DmRKsxUk+8+swOtDoFj7/YPARkToTHeo9DqnBhPWIr5c0d/9TYxbY2Jdmu4SYeH2Di+fUlvLW1kDeGD2wwJdmGXlUeMOfTMyyeUI2e0ZGjsXgc/J23mPGlXTgnPrlGCeZFmbvpERbH+vw00qxF9S7BrBf1LAxeyDDzMIaZh5Flyjqli/f1k1ciA9O/G8y4VaUkm1Rcnnzqpbz1jVLdH2XkKiSpCHfpA3gdP+KxPIrHMh2l9iLUIW8hKk4st2pO2rYatWRqotTlzxl6buNCEo0Rp9TS4fIO/ZmVto3vD6zH4nERotYxPLYj5yelHB3vBAT0yjkVwbumoJOyE4/qHuVFx4vcaruVT4JqFyU7WcpLme/rUXdvs1dWYxXPDhgiLQ1BPNosrznTaozUAx+/uQdziYe7H+3abFaTJ8KxWfcLMnYRqTXSOaT6llXHU5J9dkgov6QeYHl6EmZHOL3DdQ2iJNvQq8oEYyhr8g5hK2uadVfnaTy38y3u2/AWHYPjmjQMN1Q1lCd1T/Kc4zkutF7InOA5J/Mr5OevD3Fgj5nzL07gwb0OZODXavrPNCdEMQxt6BdIIZ/hsb+Nx/oyXuf3eJ0/IKoGoA5+E6VmSJ2PF6cP4b4e5wSeK2rRCjlozifd4u9Hclv3s8iy2k6ppYNWqapR8K6c65KrnktDCd41JS/oX+BH14986v6UWzy3MEBVvVf2VCgvZX5u0/xKr+8rzeOfI3s5O6Yj0yq0dYCj4deK3mCtQoWmrFNyefi11OVg2ZH9ASNUKYj0qqVHTmMhKPzhI8lXcMLGemPSaozUA689sxOtTsGjL/Ro6qmcMl7Jx395hxkT36VGAae6KMkOSThEanEYF8zJIf/mNg0SQ23oVeXfmbtxej20CQrn8vb9aBccwZR2KXSddTWT/n2MDRM/pnd45Rh8Y4bhntU/ywL3AuZ65vKx42Nu0d1yQvt7vRKP3bERjVZk/HM9+XRhARPb6khp4Fyf+kIURTTG+9AY78PrWo679H4kzzqchUNBjEdtfBSl/o7jLhBEQaiUw1MbS7L2YlSpAIjUGukf0bHZt3RoSSwOWkzH0o5MtEwk15Rb74u78lJmm8cV8J/+nLoRo1LDntJc+ke2qbJP+6AINhWkc8hcGPAGv7n9H4pcNrJsJcTpQwhWaZmVto2D5nyuSx5CkErNK1sXs7M4G4/ka9KcP0Es68nlO9hqjJzOfPTGHsylHu59vFuL9Iocy5bCTBxeN0NrEXCqSwmrWuHj+SHBPLLKykV/5TJnUmy9x1CbYlXZLiiOZePeZuiCOxm64E72Tf6OBEPTeRKWBi8lpjiGO+x3MEo16oQ6oT50y3rsNi/PvtWHW5cVoRThh/H1K3DWWCg1Z6OM2oDkzcFtvg+v8w/c5rtxmx9GqbsSdchriGJItfvmOSw8/N8fqESR9kERTGnbu8YqmVRLQcAYKae5t3RoSbRTtuMp3VPMcMzgBtsNfBn0Zb0eX6tUEa80VXpNr1Rj9boD3uDqwq8vb11EjC6YXmHxrM9Pw+JxEacPCRiho+OT+ePwVoZEtSeyLPwapjFQ4rI3uRFaHl6SvYdAPajJ5nE8Wv7dswmRJInXZvi9Ig8/l3L8HVoAq3IO0j0sFtMJ9tiojlt7BtEvSs3cQw7+OFCzWFhLY1Bkd34++xkcPhe95tyA1W0//k4NhF7Usyh4ERISw8zD8NZRjyMjzcpPXx4ioY2erIGRFDolHugTQrCmZV8SRGUM2rAf0cfYUBmfB9GI1/EZ9pxQ7Pln43NvqbR9u6AIrus8hHtSRnJlxwEUOG3H1ZJRiuUeQ//auiW0dGhJPKN/hk5iJ75yf8Uaz5oGH0+WZXLsZoZGd0AQhGpLmQ1KNVavq1Ipc++IxIBYYd9wvzd0W1FmoJT53pRRtA+OPK6gYUMjKP0LS8nXNJIEdaVlX3mamI/e2Iel1MNtDySfFl6RQqeN3SW5DIupvbLjREpYF0+JQaOAaQvzKHQ6mlxJtr64qM1IXut/J0VuM73m3tDogk0VGaQaxHTddPLkPC60Xlinfa6fvBJZhnd/PosX15dg0oi8OLR5Nvs6GfwN+p7AGJOHNuwvRGUKkmcFjoI+2HLb4bF9CUBKWBz9IpNIMITSPTSOu1NGHldLpuW1gWx5LApehAIF51vOb/Dv1si4zkiyFPAGP9BzTBWPqtPn5bL2/Xhv2OVM73cePcLiKxmhFq//3+n9zuO9YZfzvx6jidYHNwsjNNAsT2rezfJa/h20iZAkiTee3YlOr+ChGaeHV2R17kGCVBp6hMXVut2JKMmatEo+GxOJwyvxyz5tJSXZQoeP9Tktd7V4f7fLuDv5IlKtRxi+8K4mnct0/XQGKQbxl+cvPnJ8VOu2c3/LYOeWEkZPjOX/cj14JPikGZXy1jdK7QT0UdvQR6Wh0FyI7MvEVXo91uwgnKX3IElHPVt6pZpoXVCtWjJeqXK1Vktp6dCSaKNow7O6ZymSi7jadnWDjlWf3uBmiegPGcq+7CaeSO2cnlefRuDD1/ZiMZ8+XhFJllmdm8qQ6PYojulHcapKsiMTfQyJK2ZLThybcvxx+7mpNpK/zmDoL0dwepvOq3CqvD3oXs5PGMrq/B1cvvyZJp3LP8H/EEQQd9rvZK+3el0BSZK4/8Z1qNQiD3zYn1mpdrqGqri4s7GRZ9v4iMokdOF/+kM4hscAJV7bO9hzgnAUnIvk2Y3T5yHfaa0xobV9UAQWT+UQTktr6dBSeFz/OF3ELnzv/p7l7uUNMkZDeIMrbdMMjNBAszxf826W1/Lvok2AJEm88bzfK/LgM6eHV2RPSQ5FLjtnVSOKVB9y0FM6lWJUwV1Li5k2P5cL5uRS5JTwSnDY3HR9R+qDWSNfpHdoR346/A+PbazdK9GQ6EU9S4KXICEx3Dy82vyRp+7bjKXUw4PPdOeaZUX+Ut7zWmbS6skiimo0IS9ijC1mheNDLHJ3vK5FWPO6s+Pw2cSqUhlQVlVRnSFuLTNG8p3W06qlQ3NkScgSFCi40HphnfOhToSG8AaX07yMUDXIzVuFtbWa5iR4/9U9WM1eHpje/bTwioC/IuCj4VdW+159KcnK3mIeWVXM9/v8yazlzu4DJR66hNXcH6K5I4oi68/7mHa/X8b/7fyOtsYYbk2uW+5GfTNANYAZuhk87XiaC6wXMD/4qJ5CXo6DL9/bT3ScjsRL2rJjXi4XtNPRLbzl/u5PlUx3d/4tmIHsy2O4aTGDghZwR9xaKJyJS38bRc4RVbRkkoKMkAcf7FxFkjHytGrp0NyIE+OYqZ/Jw/aHudJ2JT8H/Vxvxz6eN7gpBA0bDEHb7JvlCbIsn7qmcQNjNpsJCQmhtLSU4OD6kxM/GSRJItn0O5Iks9980WljjDQkTq/EE6uLeGOzuYo2qijAa8PDua9P9WWXLYkSt4U2v12KxWNn3jkvMSFh8PF3aiCGlg5ljXcN7+nf4w7dHQCcN3gRm/4r5Pflozh/pwOLR6Lo1rYY1a2f4XIkyY7b8gRe+2cgWwAlCs14NCHvIir93pKHNrzHq7t+4tDUH2lrrH1F3Ur90KO4BzukHSwJWsI56nOOv0Md2FWczVs7/uXZfucTra98X3lt22LCNYZKiax+0bOtFDptlVpglFNRebfcCL2yw4Aqx24KbDmJyLIdY2xho49d1/t3qzFygrzzf7t48bFtPPhMCg9MPz1CNA1JqUti0E9Z7C/2UF1miEqEW1KCeXaIDqvXFXjdqNScckfUpuCQ5QhdZ12NT5bYeP4n9Ayte8+Z+sQpOYkujsaKlR0hO8heFMK0ics5a1QUXZ/vzfPrS3hiQAjPDw1vkvm1BDy2r3Fbn0H2HQJAVKagDnqJx3YeajVGGpkcKYfE4kT06CkMLUQptjr1TwRbXgqyNxVjXOPLELQaIw2AJEl0DvkdWW71itSVAoePgT9mcdjsrbFjzKgENV2jV+KVj5orSkHkuf4XtEiDZG3eTs5acCcahYoDU34gTt80MeMNng0MNA8kTAgjMvlDLCU+1mZeSPufjxCkFsm/Oan1M1wHfO4tuErvQ/IsB2SyXCHcvSuBj4fPp21wM3DBnyG85XiL++z3MVk1mT+C/2jq6bQo7PlnI3lWY4xr/Py8ut6/W69EJ8C7L+3GZvVy58MtswdNUxChU7DnmkTeHBFOiFpErEakYV+xp5IhAuCVpUqekpbE4Kju/DTCL4rWc/Z12L1NU77cX9WfF3QvUCgVkjntV+56uCu3/1eMR4JPR0e2fobriELdG33kUvQxJSj1N6MTXfzeZyehlg44ii5F8uYc/yCtnDL36u6ll6IXf3r+ZKF7YVNPp0XhIRQZH+nWItKtRRQ5m58IZevVqI5IksTbL+5Gb1By35Pdmno6LQq1QuCe3iEcviGRB/uGoBJBWcEoOWKTkOSqVkpNWg8tgYvbjOTVfndQ6DbTY/Z1TSaKdpvzfgwfnIf1iZ8puedf5h5y0D1cxZSOLc/j1NSIYjBa08e8k/8K567viVeIxOf8BXteLPa8fnhdS5t6iqc9i4IXoULFJZZLcEvupp5Oi6DIaeO/AgcC8MbWn3lh8wKe2jCn2RkkrcZIHXl7pt8rcvdjrV6Rk8WkUfDSsHD2X5vIpZ3Lb4YyMgJmZ9WKjs/2rGZTLUqYzZ0Hul/OnclTSLUe4ewmEkW7cepKjDMux+gM5SXf06DJ57czrJS3/hFZUxqCOWg92vDViKpBSN7NOAtHYc2JxWV9vUkVeU9nIsVI3tS/iQULU61Tm3o6LQKr10WJ1wRAhMrvxWuOnufWu2o1rFiSw0tPbSM/1+9elySJd2buxmBUcs9jXZt4di2fNsEqXhmu5dKuOzGo/KubXQVxdDFF09UUg7osOc2HzKd7VnPI3LS9HU6Fdwf9j/Pih7AqfwdXLn+2UcdeuzyPNcvy6T8wmqecc0FWohp/FR1CWr/29YVSMwR95Fr00XkodVeDVIzH/AD2HAPO4muRpOat7dASuUN3B/0U/Zjnmcdc19ymnk6zJstWwuy07RR7/Hlr4cqjwmfFrqbrqVUdrVelavj9uzTefH4X/dvM5pkHNvPCY9uw27zc83irV6S+WJi5E5POwpUpm0mJcHCoOJrJSWdzX49zeGXwFAaVdbn0yRLzMnY07WRPkdmjZtIrtAM/HF7M45saTxTt1stXIyoEPv/9LGYuiUVc+xIe4wHGW8Y32hzOFERFBNrQr9HH2FEFvwxiCF7H19hzIrDnD8XrXt/UUzyt+Dv4b1SouNx6OU6p5baUaEjW5x3mhc0L2F6URZE3EoBQ1dHS3s/2rGZfSW5TTa8KrXfWapBlUCgE3C6JT97ax/sv70GpErj8+nZNPbXTApvHzYZ8f/jFoFKzZGpHIvVKrv07H58ko1WouKbTIELV/l4RO4qOUORqXvHNE0EURdZN+Ih4XQQzd3zHx/tmN/iYbzy/k7xsJzfe3Yk3DjoocUk8FT+V4arhLPEu4U3Hmw0+hzMRURTRGB/CGJODNmwxorI3kmcNzoKB2HKScNs+ag3h1ANhYhjv69/Hho3J1slNPZ1mx4HSPD7ftwZfWWGA2efXQ0nSOVCWCby5JC/v7VpGXjPJzWs1Ro6D5PMXpPq8MgPbzWXGg5spyGu1xE+FHEdpoHqmb0QiUToNX46NZMURJxf/5bfUlaKCAVF+kSkZyLSWNNFs6we1Us2OC78iWGXgtrWvsfDIugYby2x288azOwgxqbj/xZ68uqmUCK3I9EGhLA5ajEkw8YD9AXZ4W7bHqamoa9depXY0+qhN6KOyUGgvQpZycJfehj03CGfJ7UiStUHnebpzk+4mBikGsdCzkD9craW+FZmTvh2pTLVjaHR7nu5/HSDQJzyWlwZNpntoLODvRvx35u6mm2gFWo2RaqhOekWWweWU+Oj1vQxqP4eC/FaD5GTxVfj9lueHjEjQ0dmkZH3u0aQqTQVhI0lu+atJkzqITed9ikpUcv6SR9hWfKBBxrntsjV4PDJvfDGIKxfm45XgszGRCIKAWlSzLHgZACPMI1orEk6Buio0ico4dGG/+kM4xumADq/9Q+w5ITgKRuFztxqFJ8uC4AWoUXOV9SrsUvPKgWgq8hwW9pSFXyK1Rq7qNBCdSo0gxiEoojGqtNzU5Sw0Cv/19b+8Qzh9ntoO2Si0GiMniCzD+AsTCAvXNPVUWiwRFYTMthdlBSz4rmFqekf4f6+yLLO1KDOwXaQuqHEn2UB0CI5n6blvIckSg/+6nSP2+k3O3bK+kH8XZJPSx0TiWZHMT3PQM1zFpA5Hf+c9lT35P/3/USQXteaPNCKiqEQT/AzG2AK0obMQlF3wuZfiKOiBLbcDHvu3TT3FFodJNPGx4WPs2JlkmdTU02kWZFiLAz8PjGpbqe+O5PF7ZPVKNb3CEgBwS75mEappNUaqoboVj0IhoNaIvP7ZQN79djBidepdrdSJMI2BrqYYwN/5dH5ZgmpqqZcsq18hcGn2PtLLvlRJxjDi9C2/d005Q6JS+OHs6X5RtDnX16so2s0Xr0IQ4Ms/h3PxX3kIwG/nVy3lfUj3ECOVI/nX+y+vOV6rt/FbqRtK3SQMUTvRR6Wi0JyH7EvDVXI11uxgXKX3I7UmZdaZa7XXMlQ5lCXeJfzsqr9Gei2Vil7kcu+Hx/41spSFLJkD72kVRz3PvmbgeW41RsoodFjZW5LLnpJsrB4XknTUIhFFSGpnYOGGc7nihvYIQqshcqqcm3C0RHp22nZmbllIusVFhtXFq1sX8+PBjZW2Pd1+55e2PYeX+95OoauUnnOur5ekxk/e3ENmup0rb2zPcrvE3hIPUzvq6WiqvivvwqCFhAqhPGx/mG3ebac8fisnjqhshy58LvoYKyrDQ4CIx/YG9hwjjoIJSN79TT3FFsH8oPlo0HCd9TqsZ3guToTOGPh5W2EWXuccXCU3oNTfhC5iJeA3PrYXHwH8OVDhmqYXQTzjjRGbx83vhzbz+IbZvL59CW9s/5dthUcq5Y1MvbINizaPo0uKqekmeprRLTSWKW17B54fthTi9Hlx+tzsN+cFXh+X0I0BkW2aYIYNz0MpV3B75ws5aMlixMK7T+lYTqeXFx7dhsGo5MX3+nL7vwWoRfh6bFSN+6hFNcuDlwMw0jyyNX/kBJFr7LZ04oiiFk3IyxhjS9CYfkBQtMPnXoA9rzO23K54HK0JmrURLAbzmfEzHDg433J+U0+nSWlrDCdWF4yARHvxA+xFF6HQXogm5EMEQQh0Fy7XGUkJiyNYrWviWZ/hxsgRWwnPbfqLhcdkE5sPAAgIosx9b3fknW+GYDCqmmSOpzPjE7txS5dhxOtNAMgICIL/Ah+tC+a6zoOZ2q53002wEXh/8ANMiBvEyvztTFtx8qJod05bi8sl8dKH/XlibQmlbpmnB4WiV9f+FU9RpvCK/hWK5WLOtZx70uOfSTS0l06lvxxD9H50kTtQqEcj+/bhKp6KNTsMl/kppFajsVqmaaZxtvJslnmX8Z3ru6aeTpMh+9K5Kn4xM9rezrjwP3D7RD7Jupnl2aksztrD/21ZyPyMnYHtx8Y3DyHPM9YYMbudvLXjX4rdRzOwEwwm2hjCcOQIIMqc/ZnM4T772V+aV8uRWjkV+kUm8VTfCTza61xUgoJglYaHeo5hRr/zGBLdvqmn1yjMPeclepo68P2hxTy5+ZNK7y3N2czd/72JT/LVuP+eHSX89XsmnbsFM/qiBN7cYiZSJ/LEwNA6jX+/7n7OUZ7DMu8yXna8fErn0kr9oVB1RxexGH1MKUr9HYAbj/V57DkGHIVTkLyZxz3Gmca8oHno0HGT9SbMFfIjTndkyY7H/i32glHY89oRI7+DQeEPV80vuoSdJUV8f3A9v6Ru4rD1qCrwJe37kmxqHu0hzlhj5J8jeylxOwBIMobybP/zearvRPpl9sBrh+s/iyKkA0iyzOy01nh6QyIIAu2CIxAEEYNKTceQqNMuR6Q2RFFk/cSPiNNF8ML2b/h03xwAfji0mLGL7ufdvb+zucifO1DktAU6b5Y/rp28AkGAL/4cxmXz8/DK8NW5kSc0h/lB8wkTwnjU/ihbvFvq+xRbOQVE0YjW9B7GWCuakE8RFPH4XH9iz0vEntcLr3NRU0+x2WAUjXxp/BInTiZaJjb1dBoUWZbxudfgLL4ZW24UrpKrkdzL8SszHc1By/COrbJvgsHEbV2HMya+S+NN+Dgoj7/J6YdPlliVcxAAURC4vevZhGkNyLLMq8/sYMiISJ67dhQzNs4j12FhX2ke2fZSYk+jio7miCSD4syxQSqhVqrZfsGXtP39Um5e+wr/Fe7m0/3+vhsKQWRR9gbaGxN5asOcgGAcwOE5kH5Q5LzL4jCbNPydXkDvCDUT2p5YQlp5/kjP0p6MMo8i25SNVtTW6zm2cuqoDDeiMtyI170Bd+l9SJ7VOIvOBTESleF/qAyPnPEtKy7VXMrHzo9Z4l3CV86vuFZ7bVNPqUHwuf/BWTgGv0+h/JpQORFeVPbm0b5Xs780j1yHBVGAeIOJtsbwZrfgOyM/tUVOG2aPv3SumymGsDLdi3f+bxc7Nhfz4DMpKASxUpjgkKWw2mO1Un/IgOKM/ET6CdMGs+G8TxARAoYI+L1zC7L+w+p1VTJEJDfsfFtA1Mg8+n43Lv0rFwH4/fyak1Zro7uyO6/rX6dELmnNH6mVpr+IK9X90UeuRB9ThFJ3PUgWPJbHsefocBZdieQ9s0PLs4Nmo0fPrbZbKZFKmno6DYJCNRhRPaq2LVBoJyEKAsmmaM6O7ciwmI60C4podoYInKHGiKdCGaVBdVS8bPG8bAQBgstKIQ3Ko+95W/tJnDQLMnZy64rv+alCuW51iIIXQczmzpU/MmPjPLYXZVV6X5ZlZh/exkNrf+euVT/xxvYl5DpOn7iw0+fisc0fIR1TpSEjszp/B45jWn5vfhl8LoGUu2TmpXvYX+Ll0k4G2oVUX8pbF+7V3csY5RhWeFcw0z7zpI9zJlCf1TQniyia0IZ+jj7Ghjr4TRDD8Tp/wJ4Xgz1/AF7XqqaeYpOgF/V8a/wWFy7Gm09PYT9BNKALn49CO5nqDWQfSm3LCVWdkcaISaNDLPvj7SnJxVdmaPz6zyi6pIRw55WrcTq97CyrwwYI0+ibZK4tncOWQpZnHyDBYKp1u4PmfFQKFwqMPNl3Ar3DE/hg1wqybCWBbRZm7uafI3uZ1mkgj/Y+F42o5O0d/+KpJbmzpVDssjD67//xZ/qKat/3yj7WFe4KPLdmQtYiAX2cTNIF8ORqBxoFfHmCuSLVMT9oPuFCOE84nmCTd9MpH6+VhkcURdTGezHGHEEbvgJR1Q/JsxFn4TCsOfG4re8cV8vG6/wLr3Nurdscm7NU5Gy+DSynaKYwTjWO/3z/8Ynjk+Pv0AIRBA3qkG+Bau5PgglR1b/R53SynJHGiF6ppme4v4thqdvBX2UKoGq1gne+Gcy+3RbOH/E3Wwv92erBKm1AMbSVuuP0efhs72qu7jQIvbL21fqSrL14fUo0YjCx+hAubNuLJGMoS4/sA/xekSVZe5iYlELv8AQSDKFcnzyEEpeDLQUZjXE6DcrnB+axOn9HjattpaBgRd6WwPP1Twggw4DnZdZmJWH1wIzBoWiVp/6VVopKVgSvQEDgnNJzWlu0tzCUmmHoI9ejj8pGqb0cpALc5nuw5xhxFt+AVE3YQpYdOIuvxFl0IV7X4mqPW+S08dSGObyweUHg8dSGOc3aIPnT+CcGDNxpv5Miqej4O7QwJEniQOYIJNlGtmdghXeUKLTnIQiKwCsb89N5esPcZut5PiONEYDRFbKI56bv4PVtS1idm4ozzkLHoRp2rivlcNki4Zz4ZBRneFLYyfDDgQ30CI2ja+jxDblUSwFeSURZQWa/W2gsqRZ/75aCsjyfikahTqmmXVBEYJuWzB3JU/h48EP0DO0I+I2PinhlH3+XdfrNXAyWQxAzTEbTVmRnfiwRWoFH+tetlLcudFV25S39W5RSymjL6Ho7biuNh6iMRhv2A/oYGyrjCyAa8Tq+wJ4Thj1/OF73Ua+X1/49yKWAjLNoKpJ3b5XjHZuzBOCVJazHhA+bE1pRy0/Gn/Dg4Vzz6ZcHlZszmnjVehaX3sgm7/uog8tbO3hRas4LbHfQnM+ne1ZxVkz7Zut5PmPvsJ1DophaQQF0b2kuX+1by8d7VtJ5hgOFFra9LtBZjK0kXd5K3Vifd5h0axFT6ihaZnY7kWShUjVNsEpLqdu/Kjd7/GXYwerKFR7B6qPbtGR0Sg03d76ALRd8zobzPuH6jhPRKTSVIsFptmysHjtbXxUQVdD3aVicmowMnN8pHYe3fsWw7tLdxTjVOFZ7V/OC/YV6PfbpQHXdvZsj/gZ9j2OMyUMbtgBR2QPJsxJnQT9suW1xWz/FbXsNf96BDLIdR+F4ZKly0n5LOd9jOU9zHuerzmejbyPvO95v6unUG5aCKQSxlEImcch7OQBq4/1oTF8iKnuh1B7NlVmStZfuYbGMS+jWbD3PZ6wxAjAusRs3Jg8lUmus9LpSA2c9p0D2Csy/y1Wp62Erx6fIZeOn1E3c2GUoKlFx/B3KkBEqeUbOVPqFJ/PxkIfIvXQWHw5+kHaG+MB7fy/eiM8uMOweA7IygiPWYCJ0NtSqLD7avTLQAbm+mGucS4QQwVOOp1jvWV+vx26ptORPqFI7Dn3UVvRRaSg0FyL7snCbb0b27oZAiNCH7MvAUTQFWfYbuJsK0vl875pqj5lqbv6eyd+MvxFEEPfZ7yNPavmVRs6S2xDcf3LAdQ5t4mZVek+lvxZ91BYE8ainNNVSQJdjUg2am+f5jNQZqcjAqLb0j2zD3pJc0q1F+GSZSJ2RXkPjuWXlGhbOyuKjN/Zw6/+ajzhMcyfdUoTF4+SFTQsCr0nI7C/NY+mRfbw37DLEYwy8YLUWGRlVhZfNHichZZ6QYJW/d4LZ7SSkQh8Fs9tJotHUcCfThASp9FzdfgI78p2k2TJZmL0A96I4otrL/PTqJFK+yUDAw4WdDgGwuySHvSW5dQqL1RWlqGRl8Eq6lXZjjHkMuaG5rfojpwGiMgld+J9IkhtHfgqy79iGfD4k90pcJXewxHIPs9N21HisHw5uQBAERsR2athJnwJqUc0vQb8w3jKec83nssW0pamndNK4zE/hsX3EdvtZ9Gu34Pg74L9OBquO8So3M89z65Ifv/BZ19AYxiV2Y2JSdwZEtkGtUPLpr2cRHKLiuYe2knPEfvwDtQJAF1MMT/edyJN9JwQebYxhDIxqy5N9J1QxRADaB0UgQCXPyO7iHNoHRQAQoTUQrNKypyQn8L7D6+GQpSCwzenIurzDuCQvMboYur16C7qt7cj535/8evAgO4s8PDbAxK3dewW2X5Zd/11ek5XJvKt/FzNmRplr0zVopcUhZSH7DtTwpozX8RklJUdbBMTpQxgR04nhMR2JqNDp9YcD65t924xx6nFMVk1mq28rbzneaurpnBRu6zu4Lc+z296XxJhf0ShPn55pZ7xnpDaUSpGvZg9nyoh/uGT0v6zYfd7xd2oFrVJFvNJU6TWNQolBqSG+rMT3i72rMan1gZyS0fHJQAluuYgcu571+WmkWYu4qpM/Q1wQBEbHd+GvjB1E6YKI0BqZlbYNk0ZH74jExju5RuZQmYs0eyVk7/AydFwk2+IUXLryTtqHTufZwe0AE9oD63H6PIHt65vbdbczxzOH+Z75PGt/lqf1TzfIOC0BoUUHairjtr2Df01ac5LipPDviFJl4TO+zfjEHoHXJVnmt0ObWZy1Bxn4O3M3nUJOTnCvsfjF+AvhxeE8aH+QyzSXESO2nCpJj+Mn3OZ7sMmxfJV7N1LOv4H36uJ5Lhf6LKe5eZ5bPSPHYfDZUUyd1oYDeyy8/mzNrspWTowil53Sst5AAB2CI/FKIi6pmOc2zWdTQQa3dxseMF4AxiV0ZVRsMt/uX8eLmxfg8nm4p/uoE8pLaWl4ZQlJgi0zBZQqgS9/HsWzPR5BxkGh4kMEQUYhiugU/hWST244cb7ZxtlECpE843iG/zz/Ndg4rTQeXse31GaIlKcgDQlZynD1BbitryJLxYDfozy1XW9C1X6Ni+1FWZW+080Rpajk96Df8eJlbGnVni3NFa9zEa7iK0DQExyxlsf7TD5hz3NFrzI0P8/zaesZ2Veax9+Zu0i3FlPqdnB71+HHXUHvLcnll9RNZNtLCdXomZiUwtDo9rzz9SCWLszhtRk7SJggsUU+RKnbQYIxlMs79KPdaRwmqC8e6Dmm1ufgT2CN03bivWHDqj2GIAhMatuTSW17NsgcmyPhGgO73gePReCiB6IJDlZzZXAv5qY9wQ9Zz3P7mvd5utdVge7TYZoT60lzIihFJauCV9G1tCtjzWPJCc1BL565YoDNQYH1VNGavkSWchGEYBCCEcRg/89iCFuLzHy4ZyMgcEWSgsG6ebjNj+M2P4ao7InG9DEKdT96hcezNHs/MpDvsFZaWTdHRqtHc4nqEn7x/MIrjld4SPdQU0+pVrzuTTiLJgIq9BEbEFVJVSTO6uJ5fnXbYhZl7qZHWFyz9Dyftp4Rt89LgiGUKzrUTYGuwGnl3Z1LSTZF82TfCYyOT+abff+xs/gIoijy/fyzQQEvP76T85JSeKLPBBIMJt7e8S/m06C0tLnQWk1TmU7EkvqrgCZMRndxEYVlAlMfnT0GlW8wHx/4mbv/O1quODiqXcPOR9mJ9/TvYcHSmj9yGqDUTkSlvx6l7iKU2rEo1IMQVV0RFXEIopHy2qESuQva0K/RR6ejUI9E8qXiKOiPNTuc3qrHCVH4w4PNsOVJtXxv/B6TYOIx+2Nk+jKbejo1InkP4iwYCshoI5YjquomM1Gd5/mm5LNYkXOg2XqeT1vPSEpYHClhcXXefln2fiK0Ri5p3xeAWH0IB0rzWZy1l+6hcfTqH87g+9WsfsnN4lfNTH+1A9M6DmRH0RFW5x5kfGL3hjqVM4Ly3j+q09Y8Pjkev3o7SAL9pkuYPU6e2/QXw2I60jE4gisSruXrzGz+yFjCJQlTSdBHMyS6YY0RgFt1tzLHM4d5nnlMt09nhn5Gg4/ZSuMTX6FL+Yb8NCa16YGoiEEXsQhZ9uJ1zsFVehcJysU81WYxBd4YInkaSbq12XcOVopKZhtnc7blbMaax7I7dHdTT6kKkjcPe35vwI02dC5K9aAat62L57lfZBL9IpNqPEZTe56b9yemEUk111CHXVZD75V8RE50Ed1JxUev72XPjlJEQaCLKaZF1Nk3d9xe/78qRQtZWjUCK5bksH5VAf2HhdNtaBAADp+HRVm7+WD3CpzsAet9IGv5I3MpN3YejO44svv1xSzjLKKFaJ5zPMcaT/X6E620bCJ1QXQxRQOQ77Ty48GNeMvUOAVBiaS+gB9LfuaNzOfY7+hOuDIPrHdgz9HjKLoYyXuoKad/XIarh3Ol+kr2SHuaXVNISbJiz+8GshVNyBcodS2n4d3J0mqMlGH2OKutsXb6PLh9XqweF7Ig8/oPfs/JZef+iyRJ/jpsT2uY5lRxlntGWoqftxG448o1KBQCX/4xnEd6jWVwVNtKAnwapQ/kULDdipc8zvnrW0pcjSPdrBAVrApehYjIueZzsUutpe+nIxMTUwLVQ8uy9/PYull8s/8/vtq3lkfX/cn6/DSy3O35LOdJzMFHUBmfBzEcn/M37HntseV2wG1997hN+pqKbwzfECaE8ZTjKdJ96U09HQC/9kted5ALUQW/jMpwbVNPqVFoNUZOkDadjNz2YBfysp08esfGpp7OaYOzzDOiPn0LY06Il5/eRkGei1sfSCY8QotRpeX65KH838DJXN1pIBe26cWUtmX6It4UcJ5HnrSAdl8v5L+cxjGOOyg78KH+Q6xYGWEe0ShjNidafvrq8Uk2RXNN50GBLudmj5OVOQdZnZuKvaz9gFIQuaXrMBKCotEEP4ExJgtdxDYU6vHIvnTc5rux5+hwFF6I5Kna86YpEUWRuUFz8eFjjLlqaKOxkSQJZ0E/ZCkdleEhNMbmnVxbn7QaI2UEq7RVElHNbidahQq1QolRpUFEwOJ28vTLvUlsa+Cbjw6yf28pIapWRcpTxeXzr5xaE1ihtMTNOzN3YwpT88TMyvHbYLWWYTEdmZjUnRFxHY++4ZwC3o6UqD5i6C97eWVjSb1Lw1fHTbqbmKSaxAbfBp6yP9Xg47XS+AyNbs/DvcbSNyIxYJSA3wgZHNWWx/uMp1d4QqV9FOoe6CLmo49xoAp+FUGMweeajT2/C7bcNrisryFJ3sY+lWoZohrCtepr2S/tZ4a9afOfnIUjkbw7UOquRRPy8vF3OI04KWPkvffeo23btmi1WgYNGsS6devqtN+PP/6IIAhMnjz5ZIZtUNoHV1OHXZJD+2B/2a5SVJAUFMbuklwAfvlnFKII3z+RQ1tjeKPP93Sj1TNylJsvXoXXK/PON4NrTQSsbLcpwHYb4EXSf8LDKwuY8GcO+faGD9v8YfyDGCGGFxwvsMqzqsHHa6XxaRccwa1dh/PK4Ck82vtcHus9jlcGT+X65KGVKjKORRSVaIwPYIhJQx+5G4XmAmRfDh7zg/7ckoIJ+NxNr9/0ueFzIoQInnU8y6EmynVxFE5F8qxAoZ6ANvTLJplDU3LCxshPP/3E/fffz/Tp09m0aRO9evVi3Lhx5OXVLgV8+PBhHnzwQYYPH37Skz0RnD4PGdZiMqx+gZ4Cl40MazFFZaWRfxzawhd7Vwe2HxHbiQKnld8ObSbHXsrSI/vYmJ/OmPjkwDZj4ruwMucAa3JTUUf7mPRCKPmbYNaTJY1yTqczLsm/iled4Z6R9avzWbEkl94DwhgzsfZqMPFYJVA5DGw3g2obaBbwd7qDu5c1fHK1KIqsDl6NiMg48ziskrXBx2xKzuS0JqNKS7ugCNoGhaM/wWRpUdUFXfhs9DEO1MFvIygS8LkX4CjogTUnAZf5hSbzloiiyF9BfyEhMcbS+OEaZ8nt+Fx/IKoGoIv4q9HHbw6ccGnv66+/zs0338z1118PwIcffsi8efP4/PPPefTRR6vdx+fzMW3aNGbMmMGKFSsoKSk5pUnXhTRLEa9vXxJ4/kvqJgCGRLXjuuQhlLodFLmOJt1FaI3c1X0kv6Ru4p+svZg0eq7uPIjuoUdvCAMi22D1OJmdtg2z20nS+FA6/KRn9reZXHtjLkNHRjf4eZ2uuLx+Y0R9hhkjj6+bRaHLFni+/mkBTThMeT+oxn025qczK20bOTY7cIyOjrcnOCeA7lfidTEo1Ure2B7ElR0HEK0LbqCzgHbKdnxi+IQbbDcw0jySDaYNDTZWKy0bURRRG+9GbbwbyXsQV+nD+Fzz8FifxGN9BoV6BKrgl1Gq+zbqvAaoBnCT+iY+dX/KE/YneEH/QqOM6zI/g9f+IYKiM9rwtY0yZnNEkOW6B5bdbjd6vZ5ff/21Uqjl2muvpaSkhFmzZlW73/Tp09m2bRt//PEH1113HSUlJfz55581juNyuXC5XIHnZrOZxMRESktLCQ5uuAvqyZBzxE7/NnPQ65XsKpyCUtmahnMyLM90MOK3bF4ZFsaD/UxNPZ1Gw+J2IpWlQn725j5eeWQ3fZ+SeP3+0SSbqhq3B835vLp1MZPb9aJjcBwdvygKvCfgT6rsFOqkUDUDi7eAf8a+w7bCfLLsJTzT7/wGFzCaYp7Cn54/eUz7GC8aXmzQsZqKxzd9xMwd37Hnwm9JDqlZt6GVuiNJEj7HZ7itrxztICzGoNLfisr4OKLYOCXrkiQRWxJLgVzAnpA9dFI2bCdit/Vd3Oa7QYxFH5WKeBp2xDabzYSEhBz3/n1Cd86CggJ8Ph/R0ZUvktHR0eTk5FS7z8qVK/nss8/45JNP6jzOzJkzCQkJCTwSE5tvI7SYOD3TX+2Nxezhpotb4+Uni8tX5hk5w3JGgtRaQtQ6FG4lbz61F1Nbgd7nG+hcQ8OxJVl76R4Wy7iEbsTry7/Y/t/dmEQtCgHckpPnet+IV/Zy0fLHuLbTIEpcDrYUZDT4+fxm/I1YIZb/c/4fK9wrGny8puQE1nHNljlp27h1xfeVHk9vmFvrPhvz03l6w1zuXPkjMzbOY3tRVqX3ZVlm9uFtPLT2d+5a9RNvbF9CrsNc6zFFUURluBlD9D70UWkotZeDVIrHOgN7jh57/ki8robXsxFFkQXBC5CRGWtp2N41/sZ3d4NgQh+167Q0RE6EBl3GWywWrr76aj755BMiIurev+Wxxx6jtLQ08MjIaPiL6Klw873JpPQxsXBWFn/PzTr+Dq1U4UzPGbnjijV43BIDpwucFdMRoYbEhFTLUXE+lSgQa1DQM9LHzb0O8/fUOK7qoiat1ITsTuGpnteS5yzm8pXP0C4ogtQG6uhbkfL8EQUKJlgmnPb5I6cDcfoQXh40JfB4uFfNORMHzfl8umcVZ8W058m+E+gdnsAHu1aQZSsJbLMwczf/HNnLtE4DebT3uWhEJW/v+BePVLdkalGZhDbsB/QxVjQhXyEoOyF5luEsHIo1JwpX6WNIDahr00fZh9s1t5MmpfGQrWFKa73OJbiKrwRBjz5yO6JoapBxWhInZIxERESgUCjIzc2t9Hpubi4xMVVbMR88eJDDhw9zwQUXoFQqUSqVfP3118yePRulUsnBgwerHUej0RAcHFzp0dz5efEoVGqR2y5bjdPZPErWWhKuQDXNmWeM7NhSzKK5R+g8VIe+g4+htUi6m91OgstKyRWiwJGb2vDWSAjWlgDwcH8VIRoHz61zMqP3DQwI78LczNUctKZS2kg9lNoq2/Kp4VNs2BhubpyE9VZOHlEQCFHrAg9jLVIFFT1zsfoQLmzbiyRjKEuP7AP8XpElWXuYmJRC7/AEEgyhXJ885KQ8c35vyTUYonajjzqCUncNyHY8tv/DnhOEPf8svK7lp3TuNfGO/h1ihVhec77Gbm/9SsX7G9+NB5T+xnfKhOPucyZwQsaIWq2mX79+LFlyNDFUkiSWLFnCkCFDqmzfpUsXtm/fzpYtWwKPSZMmMWrUKLZs2dKswy8nSmiYhpc+6I/D7uOa809v93RD4ClTaNScgZ6RG6euRBDg3Bf1dA+LxaQ5+U64GqVIv9hMcu3w2U4zS8e9jVGp46vDv1HsLq3HWdfOtdpruUh1EVt8W3jE9kijjdvKiZPnsPDwf3/wxPpZfLZnVaDisDoqeubK6RYaG/C6FThtmD1OulbYRqdUn7JnTlTGog39CmOsFU3oj4jKbkie1TgLR2DNDsdV+gBSPXrhRFHk7+C/ATjXcm69HVfyHjra+C58aZ0b350JnHCY5v777+eTTz7hq6++Yvfu3dx+++3YbLZAdc0111zDY489BoBWqyUlJaXSw2QyERQUREpKCmp14yQlNRZX3NCeAUMjWLEklz9/Smvq6bQoylXMzzTPyOfv7SP9kI3J1yWQIRYwLKZjrdsHq7WYj2k/YPY4CSlrZRCs0tE+tBCtUuKRlUXolVoWjnkNr+Tl3X1fN6os98/Gn4kX4nnZ+TJL3UsbbdzGouVnjEC7oAiu6zyEe1JGcmXHARQ4bbyybRFOr6fa7St65soJVmkDXjezx98ptrrWGvXlmVPpLkMftR19dB5K/Y2AB4/tdew5wdjzB+F1/l0v46QoU7hHcw+ZUib/s/7vlI/nb3zXC3/juz9Raqou4M9kTtgYueyyy3j11Vd5+umn6d27N1u2bGHBggWBpNb09HSys7PrfaIthe8WnI1GK3Lfdf9hNrubejotBndZAqvmDDJGXC4vzz64Bb1BwblPBhGk0tDjOJ2m2wdVI85XnEP7IH9OVoTWgEmt5eLOTgqdEh9sK6VPWDKjo0aT6cjmomVPNtj5HIsoiqwOWY0SJedZzsMs1Z7E2FIQjtV3acGkhMXRLzKJBEMo3UPjuDtlJHavhw0FzaNPS22Iiki0pk8xxprRhP6JqOyF5FmPs2gc1uxQnCV3IUklpzTGG4Y3SBATeMv1Fju8Jy/O5m981x1kS1nju/NPaV6nIyeVwHrXXXeRlpaGy+Xiv//+Y9Cgo62Nly5dypdfflnjvl9++WWtZb0tnaAgNW9/NQiXU2LahGVNPZ0Wg0c686pp7rnmP1xOiRff7ct/BYcYEt2+UiM8gC/2ruaPQ1sCz0fHJ7OzOJtFmbvJsZcyJ20badYiRsZ1BvxtwEfHdyFMvxuDyseTa/L5Yt8a+oZ1p29oZ/7MWMkXB+Y12jkmKZL4wvgFduynT/7Iaax6pleqidYFke+wVPt+XTxzQLWtNULUDVctotJdiD5qM/qYIpT62wEZr/097Dlh2PP64nXMOanjCoLA30Fl4RrzuSflWZQkL4787iAXnFGN706UVlGMBmDSpW04e0w0G1YX8t2n1SfptlIZd5kxoqlF/vx0Yt/uUmb/kkGH5CB6XKinyGXnrOj2VbYrctkpdTsCzzsER3JT8lmsyDnAc5vms6kgg9u7Da8kyT0uoSuj45MZkZRGkVNk7RGBe7qP4o+RM9ErNNy85hVW5e6uNTegPrlKcxWXqC9hm29bg1UntFI/OH0e8p1WQtS6at+vi2cuWKWttI3D6+GQpSCwTUMiiia0pvcxxpagDfsLUdUPybsFZ/EkrNkhOEtuQfIVHvc4sizjdc5Hll10VXblAe0DZMvZ3G2/u9J2RU4b6daiwOPY75S/8V1fZN+Z1/juRDkh0bOmoq6iKc0Jp9NL94g/8LglNh+5kPCIM7uG/Hi8vKGYR1YVs/KSWM6Kq/5CeDoxvOs8Duy1sGznBDp3DWmQMSRJwvhBGioRDl4bwfRN88iwZzInZzZ6hZ5rEq/hhYEXEqY1NMj4x86lTWkbMqVMlgQt4Rz1OQ0+ZkPxxOZPeHH7N+ya9A1dTW2aejqnxK+pm+gZFk+Y1kCp28GctO1kWIt5pt95BKm1fLF3NSa1nintegNlonvbFjO1bW96hMWxPj+N+Rm7eKLP+IBBvCBjFwszd3Jd5yFEaI3MSttGlq24UUT3qkOSzLgt0/HavwbZLxIoKnugCnoale7iavfxOmfjLLoQhfZitKE/IQgibYrbkCFlsClkE72VvSly2nhqwxy88lFviVIQea7/BYHvlD1/BJJnOUrdNWhDv2r4k22GNIjoWSt1R6tV8tHPZ+HxyFw2dmlTT6fZ4y5LYD0TckZ++iqVA3ssXHBxYoMZIuDP2Xiobwhmt8zrmy14ZYlYXRy9Q3pj99lZmLcQq9d1/APV01xWBa9CiZLzLeefNvkjLZ1il51P965m+oa5fLx7JQalmkd7n0tQWUjlZD1zo2KT+Xb/Ol7cvACXz8M93Uc1iSECIIrBaEPewBhbiDZsCaJqCJJ3J67iS7BmG3EWX4fkrezt8dg+AgR8zt9wlf4PWZZZHLQYAYHx5vFIkoTV66pkiAB4ZSnwnXIUXoTkWY5CPf6MNUROhBPuTdNK3RkzMY7xk+NZ8GcWH72xh1v/16Wpp9RsKQ/TaE/z0l6vV+LxOzei0Yq8/fWg4+9wikwfZOK1zaW8udnBtB4gijAwbDAZjgwO2Q/xy+ElPJBySYPPA/z5I18Zv2KadRrDSoexLXRbo4zbUMinQT3NzV2H1fr+Az2rCqD1i0yiX2TNMviCIDCpbU8mte15yvOrb5Tac1BqVyNJdjyWGXjsn+N1fIXX8RWCsitq4+MoNCPxueZTXi/ltb+NqEygk/EhHtE+wkznTG6z38aD3udrHMdZcgc+1++IqgFow5tX47sip63KIsSo1DSKh7Q2Wj0jDcwnv5xFUIiK5x7aSs6RhlMNbOmUJ7BqlKe3MfLgzeux23w8/WpvtNqGXwsUux0MisvF4RPYnBMfeP2C2AtRCkoe3vQuWwsar2X6lZoruVx9Odul7dxvu7/Rxm2llYqIoh5NyEsYY/PRhq9EVA1H9u7FVXI19tyqooNu88N47N/wouFF2gpt+cT5CU8c+KzaY5uLn8Br/wBB0Qlt+Noa1ZSbgvLQ0gubF1R6PLVhTqPlkNVEqzHSwCiVIl/PHo7PJ3PJ6H+bejrNFnegN03z+eLWN2mHrPz81SES2xq44c7ODT6e1ePk9e1LaB+aikr0sjUvDhVKNKIStahmfPREJGSG/30nZlfjGcrfGb4jUUzkDecbLHEvOf4OrbTSgCg1Z6GPXI4+xobS8DggUZ2KjKvkepz2+VyWNQMBgbmJM5GoHKYZGryINuKHuOVIdJHbEGtIyC+WipHkxtP8Kae60BJUDi81Fa3GSCMw+Owopk5rw4E9Fl5/9uRr1U9nPGXfD+1p7Bm5YfIKZBk+/e2sRhlvfsYuCpxWRBHOTizAKymIUo/hzaGXcG/KKHqHJdMzuBcWr5Xxix9tlDnB0f41KlRcYLmAklPUgjjTybGXsqkgg80FGaSa85t8hdtSEUUtSs0woCYjwYereDJ6ewZ98ifjVFpYHnu0AWwPw1qmRnyJQ9Lz3OEXyHdW1pnyyl7+cP3BqNJRhBWHMddTe0PCM41WY6SReOfrQYSGq3ltxg4OHay+hv9MxnOa54zM+TWDXdtKGXNeHD37hjX4eG6fl9W5qYA/w//HcT3pGKLkx73+G1W30FjuSzmHYRFnEaYOY03hFr46sKDB51VOgiKBb4zf4MDBsNLa8xaaK01diHjEVsInu1cyfeM8Ptq9gg93r+ClrYt4Yv1s9pfkNencWioe24dAzYm2Im7uS3iKO11RJEht2G9agVVZQLgyh2ui38Ujq3kl/f+wSwaWZvv79eRKuTxvf57E4kSmWqey3Ovvp+OVG7eHWb7Dyp+Httb4vreOjQwbilZjpJEQRZEfFoxAkuGyMUubejrNjtPZMyJJEg/cuA6VWuSDHxtHAjrdWoTd61+Z9Y1IJEJn5LOxkewu9vDGZn+PmnCtgT4RiUyKnYxSUHLTmpfItDXeTewyzWVcqb6SndJO7rXe22jjnirN4RO6MT+dFzYvqFYpVULm7Z3/srs4p5o9W6kJ2ZePzzUXv2dERXVGiSCAgMylUR+xxObiNo+WzLh3uDXu/zB7TbyW8QJmKRwZmV/Nf3G5+XISihOY7phOjuz/e5SHdkLF0HqZt0/2cYXlCl51vIpVrr4/T7q1iJlbFrCzpGZ19F9SN+P2NV2T11ZjpBHp1T+ca27tQMZhGzMe3NzU02lWeMpyRlSn4SfyyXs2YTF7eGhGCkajqlHGdPiO9haJ0gUB/puoUoCZ60sqvacW1YyLHo9X9jF0/h2N2r/mG8M3tBHb8LbrbRa5FzXauKdCU8vBHzTn8+neVYHYv0ZU0tUUQ3JINMoyBV+35OODXcvJsTdec8QWj6BGob0Cpe4aVIb7UAf/HxrT12jDFqCL3MRK9988fPArHkr9ho+OPE6euw0vSk7mqA6gUBUwSTTxbez3zGozg8+7XM+vSdP52fMzXrxVcksAwoT68ZCaZTM/un/kIftDJBQn8KL9RUqlo393p9fDezuXYStbnOgUKgZEJDE6LpnOIVGB7VItBfyUurFe5nQytJb2NjIz3+vHwtlZfPT6Xi67rj1dUhpOZ6IlUR6mqSnhq6WSc8TOVx8cICZOx92Pdmu0cYMqNDNLtRTyy34rVy3MY0C0hj/Ojw68d8js76Qar0vgho4X8PmBOVy18nm+P/vpRplnef+atsVtmWSZRFZoFmFiw4exWjLz0ncglYWIBke144qO/dEq/EauzePii31r2F50BJfkZUHmbq7rPLgpp9tiEMQQdGHf1vi+T9yBj3wA9jm6s8/RnYERBjqE3sAWdTdSVO1JdWax2XcYn+ABGWSh5lBe79LeKFCgRo1W0KJHT5AQRIgQQqgYSqQQSbQYTYwYQ4KYQIKYQDtFO2KIqXSdFCv4FErlUp5yPMX/Of6P+3X3c6/2Xrbm5VNSphXTLiice1JGoVcebVJ70JzPm9v/wS35WJ2byqQ2PWtU4G1IWo2RRkYURX76exSjesznsnP/ZXPmpNPuBnwyeKWWr9lQHTdMWYkkwUc/D23UcZOMoYRrDBw2e3j5vxCOWPO4MtnI52MiA+XTB0rz2VUm2x2uMfD8gAdYV7CDHw4v5sLEs7is3ehGmWucGMf3xu+5xHoJw0qHsSt0V6OM2xIpcFrZWex3tYdrDFzTaRCKCtcPg0rDTcln8ei6P3H4PGzIT+Oy9n3RKU+vDulNQbug8ErPkwyhXNdlHAqhkJFlrx2mkJlbFlKkyWBlzJfkGPYgIFSrSTNeOR4zZkqlUixYsMk2iqVi3Ljx+Xy16tgICKhQBQyZikhIWLAwwzGDmY6ZdPIOop1uBBGOdkzrOLCSIQJ+Ibtz4pJZkLkLSZZZm3eIcQmNt3Aqp9UYaQKSu4dw24Nd+OCVPTx6x0Ze/nBAU0+pyfE0fpVbg7P4ryNsXlfEsHOiGHhWZKOMWez08W+mk7/T7fxxoDt5Dv+NKtpg4fKuNordWnDDxoI0FmbsDuw3Mq4zoiCyYvy7xP0ylatXvsCw6J7E6xtn3hdrLuZq99V84/6Gu613847xnUYZt6WRaSsJ/Dwgsk3AELnYfDEePNymvY0RqhH0jkhkTW4qHslHjt1Mu+CG7wtzutPFFINeqQ7kYhlVWnyShEIh8ojtESI88aw6ksahyH24FTaC3VEIQIkhDQeOSscSEBARCRFCMCqMSLKEDx8SFf6VfDhw4JSduMr+88gePHjw4sWHDxcu7HLNZflu3Ow0rGBnuxUAfOm6EbVLjQoVSkFJuimdYDGYPhGJLMj0LwLyamiS2NC0GiNNxNMv92buLxl889FBrrixPX0GhB9/p9MYb/NvkXRCSJLE3VevRakU+PS3hqsWcXllVmc7WZzhYP5hO1vy3cj4c0O8sv9GJSAzoeMe5qb7mJu+vcoxkkOiOaes669JHcSsUS9y7uIHGDr/Dg5N+anRPHdfGr5khXcF77reZaJ6IhPUExpl3JOlKT6xFbUpNIqjl+/tvu3sk/Yx2zMbAFWYmiB9NJGOjnT32hng7k4RRRTKhRRIBYF/Oys684DugUY/j5aIKAh0DI5kW1EWALtKsnn4vz9IMBl4Oeplf1JWdO3HKEdG5i/vX5Xyj8p/Fsr+q/hzdc+VKAOvW6k+cbVsMADUPj3RqnCMGPEJPty40eL3qngr5Ik1VU5UqzHShPzyzyiGdpzLtAnL2JE3+YwO13il5lGlUF+8+Ng2Sorc3PdkN0JMDeciP/vXI6zLdZUZH0dfL/9ZAIYnONAofFVungIwKKod0zoOQFmhb8jYuAHc0+Ui3t7zG9eseoFvhz/VYPOviCiKrAlZQ5viNky1TG3NH6mGCK0x8PO2oiwmJqUAsDd0L2neNP7P+X987foau2CnSJtBkS6De+V/ocJiV0BAgQIvXnoperUaIydAx5Cjxgj4E8X3F5ZwqflVNkX+xgHTGqKd7eiXO4UIezLBYjBvD7kMQRBI9aVyn+0+5njm0EHswIHQA/UyJ4/sQV1U9RqjQIEKFYMtk0jKPgetL4gHe46hU4Wk1XLW5R8O/BxvaJo8xjP37tcMaNPOyIMzelBc6Oauq/9r6uk0KV5JPm2MkaJCFx++tpfwSA0PzUhp0LGuTPbfnLw1LNNl4PVhnXh+wCTOS0qhb0QifSMSOS8phecHTOL65CGoFVXXJG8NvJeuIW347tAifjnceMrBMWIM3xu/x4mToaWNm2fTEkg0hJJQ1pTukKWQ5dn7A++1UbbhfcP7fGddQXLx2TUeQ0bGi7+Es1gq5mHbw2z11qw/0cpR+oYnBa5TKlERqF4yeWK5ovhx3nR9h0Il8Veb1/m666180PlqYopj6Frcleus16FGzXmq8xigHMCbjjcplopPeU6KY0qQy5Ni79bczeHQw8zU/x9an7+i7pv96yhwHvWiyLLMhvw0VmQfCJzToKiqcviNgSA3tXJPHahrC+KWyvCuf3Fgj5nf/h3F0JF19POdZoz69QjLjzjx3dO+qadyykwZsYS1y/P58e+RjBgb0+Dj/W9ZAW9uqdoFVwB6RqjZMi3hpI5b5DQT/9tUfLLE4ak/E6dvvLyD6y3X86X7S27T3MYHxg8abdy68NTmT3l++9dsv+ArUkIb/8L9X94hPt+7JvA8OSSaPhGJSLLEuvw0DlsKAdgRtoDVMd/UeiwFCnz4xa6UKIkX4xmoHMhk9WSmqqaiFbW17n8m8u7OpWwvOgJAmEbPiNhOdAmJwS15WZFzgDX5B/m28524FNYq7t7y8Ep5bshvxt+Yqpl6SvORZRmxyG8UKVFyi+YWntA/QZwYB4BH8vH8pvnkOPzXCFEQ6BEWT7hGz/7SfDJsRw2i8YndmNK29ynN51jqev9uNUaaATlH7PRvMwe9XsmuwikolWee1ugItQAAcGlJREFUw2r4L1msyXbhbeHGyOqluVw06l/6D41gzqqqHU8bAkmW6fltJjuLPFXe+3h0BDennPx3ZkHWf0xY8hBtDTEcnPJjo4USJUmiU2knUqVU5gXNY6J6YqOMWxeOGiNfkhLa+J9XWZb57dBmFmXtqXW7qe16s8D0CW+53qq2MiNaiOa3oN9Qo+YH9w8s9Sxln28fNo7KyZsEE90U3RirGss09TQ6KTvV+/m0NIpddl7a+jfFtfRzKlZn8luHx5GE6lVNFSjorOjMtpBtKIVTz5YYUzqGdop2PKV7iiRF1Y7KBU4rb2z/p5JX5FgGRbXlus6DEYX6/Y7X9f595t31miExcXqmv9obi9nDTRevaurpNAleya9u2NK5/Yo1iAqBL/5oPInzW5cUsLPIg1KAin0G9UqBKzoba96xDoyPH8SdyVM4bMvhhtX/d4ozrTvl+SNq1Ey1TKVAKmi0sY9HU3dhFQSBi9r14ZpOgwKCdhVJMJi4teswxiV04zXDa0xWTa6kRVFOrpzLMPMwzrecT7AQzNrgtVjDrRSFFvGe/j0mqiaiQ8da71pmOGbQubQzmkINnYs7c43lGma5ZuGVmk6xs6kI1eh5uNfYSoJhFdEpVNyeOJnp+qdrTAb14eNDw4f1YogALA5ZzCfGT6o1RMCfa/R473FMSOxOkEpT6b02xjCu7zyE6zsPqXdD5ERo9Yw0I8b2XcCOzSV8NWc4554ff/wdTiMG/JDJtgI3rrtbrmfk9Wd38Mr0HdxyX2dmvNG3wceTJIlz/8xhSYaT5DAnA+K3szi1L/l2fwz55pQgPjincmnuxvx0ZqVto9BpJUoXxNR2vekRdvSzJssyc9K2syLnAA6fhw7BEVzZcQAjFt7BXnM6v454lovajGzwcyvn/9s77+goqrcBP9t3Uza9F0qA0Am9SUcRkKYoiAqiqJ9i7x17bz+7YsGCgCJNRBQQkN47KYQEEtL7ZpNsn++PJZvEJEAgFe9zTs4hM3fuvHeYzLzz1uXm5VxrvJb28vYk+CQ02nnPxfMHv+blw981mWWkMg5JItGQQ1apAZlMRpibF609/aooTGVSGSOKRrDXvhc7duTI6anoyWr9ap4oeYJfLL9QRhkKFIxUjuQd93foruxecQ6Hg39s/7DEsoSt1q2cdJyskqrqL/Onm6IbV6uuZoZmBuGKi3MLtkRSjPnszj5NoaUUlVxBlD6AvgGt0CiUWCQL3Qu7k+hIdLnCygmThZHgnYCb3K3RZbY57GSUGrA4bOhVOgJ0l/bBcj6EZaQF8vP6EajUcu6evh2T6b/1xWGXWrZlxGCw8MErx/DyVjHv3ZgGP5/J5qDLj2lsSDUxNAymdDhBB29PnulvxEcjxy7B/3Wr+od/0pDDV3HbGBzclmd7jSXGL5zPjm8hrVLtij/PxPJ3ejw3te/HkzFXoZEr+fDoRjZf9RFauZoZW14iszSvwddXzhTNFG5X384JxwnuNN7ZaOdtKchlMjp4BTIkpB1XBEfRRu9fzXKjk+n4Xf87kfJIFChw4OBe7b0Ey4P5zvM7jD5GFrgvoK28Lets6+hR1IPIgkjeK3sPh8OBXC5nuHo4n3l8xhGfI5T6lZLuk847bu8wSjkKGTI22TbxRNkTRBRGoMvT0aWgC3ca72SDZUOjtheoT9amHuOuLT+x5GTtJdIjPXxp4+lHirGA3dmn2JAWR0JRFgBqmZpvPb6tVgpeJslJc6ThW+DLB2UfNOQSakQpVxDh4UOUPqDBFZG6IJSRZoSPr4Y3Pu1DaYmdmddsaWpxGhVnNk3L1UbuumE7VqvEB9/1b/C4iuxSG62+SSGuwMqtndwY2voYMzv0x02pJsDNweapoXw6wp8eAVXNsRvS4uniG8KY8M6EuHkxqXUPIj182JTutDhIksSGtDjGRXYlxi+ccHcfZkcPpNBcRoqxiF+Hv4zFYWPw2rmN2rH2K8+viJJHMd88n1XmVY123ssJP7kf6/Tr0Mv0eOLJNM001z65XM4s7SwSfBJI8kriWtW1ZDmyeKT0EXQFOqYYppBkS6oyX4g8hEd0j7Deaz3ZvtlYfCys9lzNrepbiZRHkuhIZL55PqOLR6MsUBKSH8JYw1g+KvuIPEfjKbMXy6niPP7JSHRlLtXG+RT8gaqBTLDeiEyqeLZNLr6Lm8+8iRo1D5U+RKuCVuyx7mnA1bQMhDLSzJhxe1v6DvJny4YsViw5XWXfrq05pKWW1HJky8YugbyF6iIH9uSx6c9MuvXy4eqJDWuiPpZnoe23qWSXOXhloA9DWyXTzSeUTj4VWTud/dTc3b26OTSpOJeO3lWzezr7hJBU7IzHyDWVYLCa6FRpjE6ppo2nP0nFuYwLH8hd7SeSZExnzva3GmiFNbPdazsaNNxgvIFsR+N1Fr6ciFJEsctrF3/p/0Inq7n3SBtlG37V/0qZTxkfuH1AsDyYFdYVRBVF0a6gHV+XfV2jpUMpVzJePZ5vPb8l3ices5+Zk14neVH3IoOVgzFjZq11LfeX3o9/gT8eeR7EFMbwgPEBdlmbV1kDk93K1/HbuaV9/2ql0//NhSj4rU+PwwdnJlp7eXsWhL+N3hjJn/YDzFHPIdWRSj9DP8YZxmF0nKN42WWOKHrWDFm4dijdAlfw4K27GDk2BMkBz963j6U/nmbG7W1596t+TS1ivWNvwQGsd1y3DZmcBg9aXXe6lHGrMnE44McxAXTwzWNNaj5P97z6go43WEzoVVVTNfUqLUUWk3O/1RkHoFf/a4y6YsznAx/l78z9fHPydyZGDGJS5JBLXdYFESgP5GePn5lknMTgosGc8Dlx/oNaKAlF2fx15jgpxgKKLGXc3WkIMf4R5zwmvjCLX5L2k1FahI/GjXGRXRkUVDWeZWN6AuvOxFJkKWOjRxHTo3rTxrPmdG25XM4Dugd4QPcAR21HebT0UTZYNzCndA73ld7Hteprecf9HYLltaeut1W25Xnl8zyPs+mi2WFmhXUFKywr2GXbxTH7MQ7ZD/Gh+UPkyAmVh9Jb0ZsJqglM00zDQ940LoRFiXtdCv6PJ3aRUORUfqdF9a42Nqk4l9FhHavEYumUKgxn/15yTSWYLDLeU33MndaZ9Ey5iaeNq1HJFcQVZDE/cD7P2Z9jUvEk/rD+gW+BLy/qXuQpt6cuWN7fTh9mdcrRKtuCdHpe6nNNrcdcbOxYkK7hYjaFZaQZ4ump5sPv+mM2Obhm4DqGdFzDskUpACTGG8g3lZBizK/yk29q2RYTuyS1yJvxi/fjSEstZcbtbQmLdG+w83x91MCYFZnIgc1TQxjbRs6SpP3c3nEQKrnivMfXJ9vHfopGrmLaPy+QXXbpRZsulImaidyhuYNERyJziuc02nlr41yNzC4Fi91GuLsPN0b1uaDxuSYjHx/bRLR3EM/2GsuosGh+SNjFsYJ015g9OadZmrSf8ZFdeabnWMLdvfnw6EbXS/NcdFV2Za1+LSU+JbyoexEvmRcLLQsJKQiha0FXfjX/ekFyauQapmmmschzEUk+SVj9rBzxOsKT2ifpo+iDwWFgpXUlc0rn4FngiVeeF/0K+/FkyZMcsVVvY9AQ7Mk+RYoxnyltYjhVnEehpQwPpabW8QaLiTKbpYqrJtLDlzxzCWklhS4F36sgmjtOfM1T4bfzZMxVqBVK9uemYnXYiVREcsD7AEs9luKGG0+XPU1YfhjbrBeeWRnq5sVb/ae4fh7vUXtZgUuJHbM6ak5Vrg9a4vP/P8GocaEEh+k4cbyY3GwTDrvzwXcywcBze3/j1QNrq/w8t/e3Fq2QtEQ3TWmpjdeeOoyHp5I3Pr2wF8fF8Mz2POZsyMVDJePYzeFcEaYjpTifYquJV/ev5e4ti7h7yyISirLZmB7P3VsWVelhUo5ercVgrfryMVhNeJ21hOhVTtP9v19QBkvFGAB/rTe/DHsJs8PK4LX31Pdyz8mXHl/SXt6ery1fs9K8slHP3Vh09Q1lcuse9DyPNaSczRkn8Nd6cH3bXoS4eTEiNJpe/hGsT4t3jVmfFscVwVEMDo4i1N2Lm9r1Qy1Xsj3r5AXLpZared7teTJ8M9iu384Q5RBiHbFMNU5Fn6fnbuPdFDoK67ZWZVded3+dXd67KPIrotinmG/cv2GyajJ6uZ799v28aXqT7kXdUeWpaFPQhunF01liXoLJcX5Fqi7km0tcCr5dcvB1/HaC3PQozxMDdqwgo4qrprtvGHKZzOWqAdiamcjEiF6uWKw2Hn5YHXYO5qa6xlynuY58n3zu1dxLppTJFYYrGF00+oKuqVwmw0utc/14qGovVncpsWOV5a1vhDLSDNm5JZthXf4gO8OpVVeOFczPsWA2VX/R2CQHRpu5sUSsd+yShLyF+Wnm3rQDi9nBW1/0bbBCdTf+kcVre4oIdVdw6rYI2vk4fdgdvYN5vtc4nu011vXTysOXfoGtebbX2BrrBbT19CeuMLPKttiCTNqeNdX7a93Rq7RVxpTZrCQX57rGlDMhYjBz2o8nsTiNO3e8Xd/LPieV40eyHFmNeu7mSJKhllgggzMWyOawk1KcXyUWSC6T0dE72DWmrgxUDeQfr38o9inmUe2jqGQqPjd/jm+BL30K+7DOsu6i5vWQezBbO5vl+uWk+qRi87OxU7+TBzQP0FXRlRxHDkssS5hunI6uQIdvvi9DiobwUulL1YJs60plBf+B7b+QXVZMWkkhhZYy/k6Pr1XBzyw1VLn+BqsJd6WapOJcl4JfbDVXuf4lNgteap0rXqscuVzORx4fkeqTSl9FXzbYNhBQEMALpS+cU/bssmIe37WcZ/as5Ou4bef8ML3U2LGGQigjzYwfv0zk2mF/k3GmlJoy4iQJSjOrb2/pOFqYZSTuaCFrV6TRobOeKTe2qvf57Q4Hg5aksTihhB7+apJvjcBXWxHipVWqCHP3rvKjUShxV2oIO5sB8G38dpYnH3QdMyosmmMFGaw7E0tmaRG/nT7MaWM+w8927JXJZIwK68ia1KMcyjtDWkkh3ybswFujqzFmYf7AJ4jyDGP+id9Yndp4xfr85f4s81yGBQuDiga12NTR+sJgNdUY52OyW7HYbRitZhxIeNYUC2S9NOuCm9yNt93fJs83j7Wea+ml6MV++36uKr4Kv3w/Hit5jFJH7ZVKL4T+qv584PEBB7wPYPQzkuuTy0duHzFWNRYNGrbZtjGvbB5RRVGuomy3Ft/Kb+bf6lSUrVzBn9y6B4Fni4S18vDFU6Whf0DrWhV8k91aJRYrtiCTIJ2eIosJf607bgrnB0T5/1G5gu+jcXPFYv2bUHkou71385vHb3jKPHmx7EWC84PZaKneJ6qNpz+3dhjI/V2HM6NdX3JNJbx9eB0mW/WKzFA/sWMNgVBGmhnefho0WsU5qzyWpte6q8XS0tw0s6dsRSaDBSvrP2jVaHHQ7rsz7Mg0M6GNjv03hqK+CMtLvrmUIktFcaoofQBzogezJTORl/f/wf7cVO7uPMSlvACMCe/EiJBofjyxm9cOrMVst3J/lxG1xqVsv/pT1HIVUzc/T66psM4yXizj1OP4P83/keRI4vaS2xvtvFDRYr2hYkZaKmPUY9jrvZd8n3zu0tyFVbLyjukdPAs8GVo0tN6yZvzkftyru5c1+jVk+GZg87Gx3nM9d2nuop28HamOVL6zfMdE40TUBWoC8wMZVTSKt8veJt1R+8NTq1ShU6pYlxbHXZ2H0MrTD41CiUImx/1s1dKaFHwJOJKfVkXBL++MK5PJ6BPg/Fg5lp9eRcH3Vp+/4Nk1mmvI9c7lYe3D5Eq5jCweydCioVUqEnf1DaV3QCTh7j508Qnlvq7DKbVZ2ZubchFXt+kQ2TTNjGuui6D/FQG89fwRFs4/iVwhw16pJatMBiWXoTLikEDRQtw0P36ZyKlEI9fe1Io27eo3ujzFYCPmpzMUmB3c30PP/4ZfeHO6R7qPPufvAL0DIukdUHPJaHA+PCe27s7E1t1rHVOZQJ0PPw99gcmbnmHw2rnET154wfJeKp95fMZG60YWWBZwjfkartNc1yjnbW53qV6lrTHOR6tQoVYokctkyJFRXFMs0DliCy4Wb7k3n3t8zucen/OL+RdeLH2RLbYtDDAMIFgWzN3au3la+zRKef28fuRyOaPUoxilHuXaluZIY6F5IWstazliP8Lftr/52/Y3j5c+jhYtUfIorlBdwQ3qGxiuHO6qDVTZVQPgOKtwbkyPZ1N6AlF6/yr1kKL0AbgrNRwvzGR/biqBOk/u7jyE5OI8V5zVleEd+SfzBEuTD2C222jnFcD9XUbww4ndRHh4X9D63nV/lyd0TzCleApbbFsILgjmMe1jvKp7tVpdIzelmiCdJzllxTXOV5fYMS91RQq4wWK6IHkvFmEZaYYEBGl5+4u+bDwylitGOrv4llsIJQlK02t+HFrtDRfp3NA4HFKLsIxYLDaee/AAOjcF73/Tt17n3ptlIvr7VArNDj4Y6lsnRaQpmRQ5hNlRY0kwpHL3zncb9dzbvbajRcsM4wwyHZeh//ICaKuvIRaoMJO2euf9o5QriPT0JbawIr7GIUnEVRrTUFyvuZ6jPkdJ80ljhnoGhVIh88rmoSvQcbXhao7ZjjXIecPkYTyue5y/vf4mxzcHq4+VlR4rmameSYQ8ghOOE3xh/oJRxaNcRdnGGcbxj24lD8QMcsVhPd9rXJVYrEd7XMmt0QOrnKujdxBtPP345IrpzOs9nm6+YVVisQK0HuhVWsZGdOGTK6bzULdR6NW6GmOxzkWgPJBtXtv4y/MvfGW+vGF6g8DCQP60/FllnMluJcdkrKJIVKY+Y8fqE6GMNGOiu3ix+M/hLP5rOFHRFQ2xsnbWPP6nxN2UWC2NJF39Yqdqk7fmyoOz92Aqs/PSBz1Rq+vPsLjiZAkDlqRjdUgsvyaIB3p619vcjcFXA5+grUconyes5I8ztdygDYCv3NcVPzKwaOBlET9isltJNRaQanSmTeeaS0g1FriCEpcnH+Tb+O2u8cNC2pNrMvJr8gEyS4vYlJ7AvpwURodFu8aMDuvI1sxEdmQlkVFaxE+Je7A4bNVqkTQUofJQFnoupMSnhPlu82klb8Wf1j/pWtSVVgWt+F/Z/xr0/04pVzJRM5HvPL8jwScBs5+ZRK9EXtC9wCDlIEyY+MP6Bw+Y7qOLpQ3RpnAmWEfyjvQiRaqsRo3FOh9Xqq8k0zuTp7VPUyQVMdYwjv7ZQ4krTeakIYfPj29Bjoy+Z91DTS3vhSIa5bUQvo3dweJvkjn8rvONPWudB21Cvck1GUkxVtR66OgdxINdRzZ5Z9G64vP5KbzUck7dVrsLoalJOmHgiug1tIryYMeJ2gsK1ZUPDhTy0D/5aBUytlwfQp+g+jedNwaZpXm0WnY9cuSkTV2Gr7bx/lbvNd7LJ+ZPmKmeyXee3zXouV44+A0vHl7AoQnf0N2nXb3PH1+YxXtHNlTbPjCwDbdGD2RB/A7yzCVV3HCVi555a9wYX2PRs3j+OhOLwWIi3MOH6W1706aBLSPn4qTtJI+UPsIa6xqsWFGj5hrVNbzn9h6tlPUfFH4+TA4Ty63LWWFZwW7bbs44zmDDGQCrsbsTqPKlj6IPvmf601fRn7uih7uOdRYRO0SeqeS8RcRKbRbaeQUwI6ovQW6X9jeS78hnbMpM9rr/ic6uZ0juTUxRXM+U1jEEnO3o/O7h9fhp3KtYdBpT3gt9fwtlpAWQU2bkub2rkABTqpyt/yfn6okRfPKj8+Y6VZzHx8c2U3zWD/hI99G1trdurnh9loy/TsHJW5uvMjKsyxoSjhvYeORqOnb1rpc5H9iUy4eHDPho5By+KZxwz5YdxvXr6U1M3fw8HfWRxE7+sVHP3amgE3GOOH7x+IWpmqkNdp6GVkb+azgcDj4wf8D7pvc54zgDOMumP6N7hlnaWQ167nxTSbWSCB5KDb5aZwHDw7bDLDQvZKN1I3H2OIqpiMPQo6ejoiOjVKO4SXMTXZRdGlTWc7HZspnpxulkSpn4yHxY4L6AiZqJTSZPZUTX3suIbVknXXH7067oypuf9mPZwtOs/tVZgKa1px9T2/R0jd+SkdgEUl4azT2A9deFp0g4bmDslLB6UUQcDgcTVmXw4SEDbfRKUm6LbPGKCMB1rYYzs+0Y4gwp3Lfrg0Y99zavba74kXNlTdQXLeA7rkUgl8t5WPcwqT6pHPI6xGjlaJIcSdxacivuee7MKp7VIP2I8k0l5y0g2V3ZnTfd32S3924MfgaKfIr4yu0rJqkm4SnzZK99L6+bXqdrUVdUeSqiCqKYUTyDn80/Y3E0nst8mHoYGb4ZvKB7AaNkZJJxEn0K+3DGfqbWtacY8zmSl8au7GSO5Kc1eSVvoYy0AM6UVLhh+gW25rqbWjFqXAhzb9pB7JFCwJklUV40rPL4loIkNd+YEZvNwRP/txe1Rs4nCwee/4DzYLE56L0ondXJZQwM1pA4KxwP9eXzp/jtoKdo7R7Mx/HL+DN9t2u7JEmsSNnC4YILr/pZF3zlvqzwXIEVq6g/0kLpruzOOq91lPqU8rzueTxkHnxv+Z6ggiC6F3av16q7RpsZWw2FzM5VQFIv13O77nZW6FdwxvcMVh8r2/XbuV9zP10UXch0ZLLIsohpxmloCjT45vsytGgor5S+winbqXqTvTbmuc0j1yeXK5VXss++j1aFrbjbeHeVv4XKStjHxzfzTfwOPj62uckreV8+T8DLGEelLzCV3FmD5Jk3euCwSzwwaxc2mwOFTI7ibMpNS/xicwANVMT0knnynr2UGG08/Xp3dLpLs17km2y0WZDKwVwL0zu4s31aWLXUvJaOXC5n29hPUcmVTN74NIWWYozWUm7a8jJTNj3DswfmA1TrsVQfD8Ex6jHcp7mP047TzCyZecnzCZoGtVzNi24vkuWbxVb9VgYpB3HMfozJxsl45Xkx1zgXg8PQ1GIil8sZqBrI/zz+x0Hvg5T4lZDjk8OHbh8yRjUGNWq22rbyXNlztClqgzZPS3RBNLOLZ7PGsqZORdkuFL1cz19ef7Fdv50QWQifmz/Hp8CHX8y/AM403pqUMHAqYl/GbbugnkX1zeX1FLxMCdBWZNIczHOa3Tp18+aXDSM4dqiAuTft4HhBhquJUXngUktCaqZumrSUEn76OomwSDfueqjjJc11osBC629SSS+x83RfLxaNDaonKZsfoW7+/HjFs5jsFnqvvoMev93Gz6f/BmB/fkKNJvL6+ir70ONDOss7s9CykCXmJZc8X3Wa3316OTNYNZhtXtso8iniQe2DyGVyPjV/ineBN/0L+/O35e+mFrEK/nJ/7tPdx1r9WjJ9M7H52PjL8y/u0NxBW3lbUhwpLLAsYHzxeFdRtiuLruTdsncvKT092Z7M/xn/z9UiYaBqIGd8z/CG7g1MmLjBeAM9CnvwU3r14Ogq8xTn8s7hdRitjdteRCgjLYDBwRVR8atPHyGrzPlFMGBoINNva8uqn1N55IEdFeMbKV2vPnFIUrN008yeshXJAfOXDr6kef45U0bXH89gtErMH+XPq4P86knC5sv1rUbQz68TScZ0ko0Z2M9+jaWV5pJell/t66w++ytt89qGDh23GG+p1W9+qbREC2RLxkPuwfvu71PgW8Dvnr8To4hhj30Po4pH4Z/vz1MlT9V787z6QC6Xc6X6Sr70+JLjPscp8ysj1TuV13WvM1w5HAcO1tvW82jpo4QUhOCW50a3gm7cY7yHzZbNF+xu/MH8A1+YvyCmMIb9tv2u7U+4PUGeTx7jVeM5bD/MM37T2RzyJQ6qWmX6B7R2dSjOKitmWfKB+rsIF4BQRloAkR6+rqZFBquJl/atYUHCTjamJ9DrMQldABz+0ULWTghx86KbX9h5Zmx+SICimd2Na1ee4cj+AoaPCaZn34tXHhbGFTPi1wwcwJ+Tg5nT9fLPCDNYSpj+zwvszosFqpdOjzc0bKlqb7k3v3n+5owfMdRv/Egz1Jn/c4xTj2O/935yfXKZo56DWTLzhukN3AvcGVE0gr3Wveedw96EMUXhinCedHuSv73+Jtc3F6uPlRUeK7hFfQth8jASHAl8Zv6M4cXDURWoCM0P5RrDNXxW9lmtXXy32bYhQ0aOlMOgokFVrIIecg+We6xkduo7eFj9iPfZzILoO0lxP+Qa01bvz1M9x6BVOF3Ru7JPNap1pJk9/gW1cXv0IELdvADnF+SOrCQWn9zLP1knGfKFA5kS9jwj5wa/fq7YkZaEJIGyGblpHA4HD966C5VKxhc/D7roeV7eVcDNf+agU8o4OCOcK1udvx9FSye1JIuY1bfxa8rmGvfLkBFXdKrB5RilHsWD2gdJdaRyU8lNDX4+QePjK/dlvud8iv2K+cnjJ6Ll0WyybaKvoS+h+aG8Xvp6jXEZsQWZfHys5vuzfH9jopQrmaSZxPee33PC5wRmPzNxXnE8p3uOAcoBlFHG79bfuaf0HnwKfPDM86R3YW8eKXmEvda9OCQH263bkZCwY8eMmenG6TxV8hQOyYHVYed/R/5GVRzCjMT/MTDjFgDWRr7F5pD5FKjOsOjkXpIMuQwKigKc75kj+WmNdg1a3lvrP4qnWstjPa5kVGg0WoWq6r5ABTM/DsRhhVnDd7TILAKJ5hXA+uIjBykqtPLQ813R69XV9v87+LKmAMzb/srm+Z0FBOrkJM2OoItf9XkuR1JLskkrrb3VuFImJ67odKPI8r77+3SVd2WxZTGLzIsa5ZyCpuFGzY0c9zlOqncq09XTKZAKeLrsaXQFOsYZxhFrc1rpYgsy+ejYpnO6BJedOsie7FONJHnNRCujecntJbZ5baPAt4AynzJ+9PiRqaqp+Mn9OGw/zHum9+hr6IsqX4URY7U53jS9yYTiCSxM3soJQ45r+5CSKSw372K2+VESvP/hl3ZPYsXEgoSd+J2tsQJQ3IiWkZZf2OA/hJtSzQ1RvZnYujsJhdmU2MzoFCraewXiPliDOm4/8z9I4M4btvPV0vrvJtuQOJWR5mEZyckq46uPThAYrOWhZ6sXMso3lfDs3t9cMRDlKGVyXu4zAW+1jlHLM9l0xkRHHxUHZoShbU6aVgMzKLAbp6/7mTeP/sSn8cuxS44q18oq2TlckMgAn9aNIs9Wr62EFIQw0ziTK5RXEKFouJLWgqYnXBHOIs9FOBwO5pvn86bpTf6w/sEfRX/QSt6K9plX0Voaihw5bTz96B/YmhA3PTllJezMTibx7Ev7hxO76ewTiruqeXxEaOVabtLcxE2aCivfQdtBfjL/xM/mnzktVVfwJST+sP7BFrfdjFM9hZfV6e73UGnoFxbCU0VrkRwOBpvGokKLXXKwL6fChVrusmkM/jtPyMsIrUJFd78wBga1JcY/wtXe+qX3e9G1pze//3qG779oWYXPnG6appbCyW3XbsVhl/h8cfWaImklhXxyfHM1RQTKzZpZdPohjU1nTIyO0HLs5v+WIlJOsM6P9/vex6lrf+be6OtQy5VV3IfHipJrDADdkBbnygqrL7zkXqz2XI0NW73HjwiaF/H2eCYYJvBy6cvsc+xjjnYOST5JxHnFcY3qGtLsaawPnM83HWezs/UXzOjamRGh0XT0DmFISDse7T7a1dPF7LCxIzupiVd0bmKUMbzl/hYjVSNR1mJbkJAoVueypN0jrI94n0O+v/Oj/k3CCyI46jiKGjV/+C9DJVcAzmyacqK9Gy/j77/3lLzMWbl1NB56JU/ds5e4o4VNLU6daA6Wkc3rMtm7PY8BQwMYOKzqH2KKMZ+3Dq3jTElhjceWWpRcvdxKQqGVOV08WXdt6GVXQ6SuhLj580E/p1IyN/paFDLnA88u2cm35FUbvzP7FJ8c24ytnhWSkeqRPKp9lDOOM9xYcmO9zClyaZofKfYUVltXM69sHv2K+uFX4Mf04unssO3gC48v+F/OOvplTUdr9+Sw2z9EFbVljnEOq82rMUkmZDIZ10R2dc13IDe1CVdz4fxj+8fVR6ecysqJyq5FY/Mgxz2RXUE/keDzD1YsIMF41Xg8NVpXTGL5fd3ZO5ggXeMF2/+3n5SXIW5uSpZvHoUETBqyAZOp/ovqNAQSoGriu9HhcDD3ph0oFDK+XlY1ldcuOfgidismuxUAP407Y8I7MbN9f8aGd8Zh82Xx8Z6YbEqGRKTz2UjfplhCsyXEzZ+HO93MjeEzCNOGAxBbfJjxEV25tnVPYvzCkZ/NU4ktzOS3lCP1LsPb7m/TXdGdny0/86O5cfvmCBqHnkpnW4zy7K0iqYillqXMLplNWEEYL/rMJEebRNuiAdyinEm4LJxvzN8wwTiBT0yfABDs5oXmrHuipJFrbVwM+Y58TjpOIquU59VO3o45mjks8ljEZ6Ur6ZI/BpvCQonM8K90MBkZ6Roe27mM08Z811aNXMHUtr0abxGImJFmwdO7V5Jnrl7saVhIe2a061vjMc6ui4fJMxmrdV3sGuPDix/05PkH9nPVrKV0v19GlN6fGe36NqqmW1ea2jLy9ryj5OWYmftER3z9qnbOPZKfTq7JGSAW6eHLo91Hux5YsXlmbjiqx+6QGNn6BO188zmQG07fwNaNvYRmzd/pcbgp3Rkfcg1Wsvk2eRk2WQETI4YBnUgsyuHdI+txSBL/ZCQyPqIr6nr2WW/RbyGkIITZxtkMVQ4lUtF8GzMK6o6/3J8QWQgZUoZrm50KK1u2KhW8nNaOfFs4/VR9mKWYhUPmYJba2ZSvwFyK2e78iNMqqyYLNEe0Mi1Xq64mSh7FMNUwhqqGEiR3WnV/MP/AQ27TMetMSLIabHkyCa+yMAzWivoscmQ80G0kYe7ejbQCJ0IZaQY8FTMGRyWjb3pJER8c/Zve/jU/KE8acvgqbhuT2/Sgu28Yu7NP8dnxLTzT82rXDRQx2U6XYzKOfQGD27ZCc7OZD49u5IXe17h8g80NVRMqI0WFFj56IxYfPzVPv9a92v7dlSLrJ7Xq7lJE/jxVyoy1Wfhq5bw/VMWmbOfXxa6cU0IZqYTVYWfv2cA4N6WaN/rOpciey23b3yTGpx1t9WG08wqgX0BrdmYnU2qzcCQ/nd4B9ass6OV6fvf8nRHFIxhUNIgU75Q6u9KaUQa64CwGh4HfrL/xl+UvjFL1rBIXEmjs7oxIu4drdROZ03Ewsn/9h65Li3X9u7NPSEOJXG+4ydz4Q/9HjftO209jouycx7eyt0eOzPUOmtImhih9QL3LeT6Em6YZ4KnW4qXWuX4O56cRoPWgg1dgjeM3pMXTxTeEMeGdCXHzYlLrHkR6+LApPQFwVobckBbHo093IzhMx4I3ThGV0oZCcxkHm7EPtCktI7dftxW7TeLjHwbU+HIqtFT8QZcHdX1zzMDVKzOJ8FRx/JYIpncIdZlKiyznfgD81yiu1A+jvVcgGqWKrwc9gVwmo/vq2VjP1oLoUunhn1+DtbA+GK4ezuPax0mT0phmnHbR84iYkaYh15HLV2VfMb14OtEF0bjlueFV4MXNxpv53vI9pZTWeuwk1WRuTf6EyJIY9uam8MOJ3S6LZ5GljKVJ+9mQFg84LQRDgts1ypoaimfdnuUHjx/QoEEmVX+uqR1apDIPlyISqPNkaEjTrFkoI80Mm8POruxTDAqKqqaxl5NUnEvHsxVZy+nsE0LS2SjoXFMJBquJLr6hrNl5JSq1nLum7CRU7usa05ywnc1uaKqYkd1bs9n2dzY9+/kycmxojWPUlaxJRZYyThusPLk1n9aeSv6ZGoKvVkGx1eTyVavkwuhYGWWlTJpyP7y32pO72k+kzGZ2FaaqXPGxIYv3ven+JjGKGJZal/Kd6bs6Hi1MI43FGfsZPir7iCmGKUQVRKHN0xJQEMAdpXewxLKEVEcqEfIIblDfwJduX5Ltk81Kz6qdfeXIUaDgfbf3Wa5fxqw2Q1z7tmWd5Jk9q3h4x1Ie37WcdWlxrn2TWvfAR9PyixTerLmZQz6HiJTaglT13vU2hbk+oAJ1njzQdUS1OlaNhXhiNjMO5p2hzGZhUFCbWscYLCb0qqoxDXqVlqKznRYNVudXuV6txStcx5c/D2L25K2seKSIOV/rGk74i8RyNsZW1UTNae6atgO5HL5ZXnttlih9ALGFzqqMa1NP8M7uANzVcnZPC0OvcSoqmzNOuMa3awIzZ3PGU6XFT+NOnrmEk4YcMkuLCHbzYkqrIbxxbCFHCpLo49+J7VkVqZRt9f4NKtMW/RaCC4KZUzKH4crhtFK2atDzCc7NCdsJlluWs8m2iaP2o2Q6MrFide13x5128nb0VvbmKvVVTFBNQC+vHgPXS1kReKlAgZ/Mj2WeyxiscgalDwxqi11ysChxr8taV2KzuI6RI2Ni6+6MCe/UUEttdKIV0cT6H2ZO4T385FgAEsiQ429qQ4DWg2Eh7RkS3K5JY2SEMtLM2JZ5ki6+IXjXo0Z+9aRwbruvPd98dII/Pszjrs/rbep6wVRuGWkCZ/xHbxwnM72M2fe2Jzi09mt+RXAUa1KOklOq4Y4/3XBIZnZODyXATYHVYWdb5knWpB4DnN/NLd28W9/IZDKGhrRn+amDSMAXsVu5o+Ngunk7S09/mrCCUYXFpJYUABDp4UMrj4bNSPKQe/CH5x8MKx7GQMNAznif+c+nYjcWh22HWW5ZzhbrFo7bj5MtZVcJNNWjp4uiC32VfRmrGstY1Vi0cu05ZqwgRB6Cn8yPPCmPK5RX8LPnzwTKq7q8rwhuR3ffMLZmJnEoLxWjzYJOoaKrbyhDg9vhW6kKaUvij9RjHMhNJbPMgFquoK0+gGtbxxDspkcn07HQ51smmccy2zibUkq5I3QCD7SbwP7cVF47+GeNCRHgdP3/dvoIWzITKbNbGyQhQigjzYg8UwmxhVn8X+ch5xynV2urRD+Ds4Gel9r5x6pXOa0fBosJL7Xz369+2JvNJ5PYPb+MhX1OctOcqAZYwcVhcllGGve8RqOVt+cdxdNLxSv/61nrOEmS2J0JO1J7cyjH+ScT5ZPD94n7+SvNi6wyQ5Uvq5Gh0QToPBpc/pbGsJB2bMlMJNdkJL20iBf3r6GNpx9KmYJVKbvQOFoDzt41U1rH1OqmrE+GqIfwhPYJ3jC9wVTjVJbplzX4Of9LOBwOdtl3scqyim22bcTb48mVcnHg/ACRIcNb5k0vRS8GKAcwXj2eUcpRKC/Rzfmk9knKKONp3dOu2jb/Rq/WMS6yC+Miq1dZbqkkFGUzPLQDrT18sUsSK04d4n9H/+aF3te4gu5v0NxAb2VvXi19lRt0U0kqzj1vQsSfZ2L5Oz2eW6MH4q91Z9Wpw/WeECGUkWbE9qyTeKo0dPOtOW6hnLae/sQVZjI6rKNrW2xBJm09nWZtf607epWWuMJMIjx8ACizWen2qJ2cfQoev2sPfQb6E93Fq+EWUwfM9nLLSOOe9+7pO7BaHHyycGCNX8RlNgc/xBp5d38RCYVWZJX+XPqGnqHUZq0WgzM0uB1T29au2PyX0SnVPNB1BP87utEVNJhcnIdO4U6xrRgAuUzGrA4DGjWL4XX31/nL+hfLrcv51vQts7WzG+3clxM2h43Nts2stqxmh20HJxwnKJAKXHFUMmT4y/wZqBzIIOUgJqomMkg5qEGsUY+6PVrvc7YEHug6osrvt3YYwKO7nDVEKidERCmi+MbzGwC+TNvqSogAZ6xMbGEmm9ITuKl9P1dCxLjIrsT4OWsEzY4eyKM7l3EwN7XesgaFMtJMcEgS27OSGBjUtlrg3rfx2/FWuzGlTQwAo8KieefwetadiaWbbyh7ck5z2pjPze37AU6T+KiwjqxJPUqgzhN/rQcrTx/G10PHwt8GMbH/BiYNWc/B9ElotU1/C5iaIGbk8P581v+eTuce3kyYWrVXSbrRxieHDXxyyECRxeEKVyzPnvDVwujwEA7nn8Fkt6FRKOnqE8qI0A60ryUDSuAkUOfJsz3HsjUzkX8yE8kuK8ZP7cupUgP9A1oxNrIrIW6NryRv1m8muCCYO0ruYLhyOG2UVWO2JElqFEtNS8HisLDWupY/rH+w27abk/aTFFHk2q9AQYAsgOHK4VyhuoLJ6snEyGOEG6yRKTtbpNFdWXt/naTi3CoftuBMiDiUdwaoSIjoVClpQqdU08bTn6TiXKGMXG7EFWaSby5lcFDbavvyzaVVqutF6QOYEz2YlacPseLUIQJ1ntzdeUiVIjVjwjthsdv48cRuSm0W2nkFcH+XEQS56XnhvRjmPXSQ60Zs5PcdVzbG8s6JxeF8zasbURmZc902ZDJYsLJq0OqGlDLGrHAWTLKf1T4qp3AqZDAq3J3bOw46O8bRoFkflyM6pYorwzsxOqwjJruVj2NlPH7gM7x01iZRRMAZP/Kn/k+GGIYwyDCINO805HI56Y50ZhTPQIaMjV4byTeVuNK2M0qLSNHk46HUtNgYgwvB6DDyu/V31lrWss+2j2RHcpUOsUqUBMuDGaAYwDDlMCarJ9NJ2TTBnw7JwW+nj7Ar+9RZ17WOQUFtGBfR9ZzKZHxhFr8k7SejtAgfjRvjIrsy6F/P4o3pCaw7E0uRpYxwDx+mR/WmjWfDBllfKAXmUpYlH+RYQToWh50ArQcz2/fn99SjROkDaixgVr7mAnMpa1OP46ZUu9ZcnhCxMT2BNSlHAfguYSc3te/rWrNeXZE0UR9clDLyySef8Pbbb5OZmUmPHj346KOP6NevX41j58+fz/fff8/Ro84F9e7dm9dee63W8f9VOvuE8MWQGTXue6T76GrbegdEnrMglEzmjAif2Lp6Aa87H+zIP+uy2LAmg9eePsTTr/W4eMHrAbOtPB22cZSRrz6KJ/VUCdNubUNEq6qxHe29VYR5KEgz1twbxSHBFWEVgXRCEbl4ZDIZOqWaG9uO4vEDn/Fn+m6uazW8yeQZrBrMM7pneKXsFa41Xstc7VymGadRIBWgRElmWQEv7/uTXfnOJpRfx20nQHvC1a35clBI8h35rLSsZJ11HQdsB0hxpFSp26FGTag8lJGKkYxQjWCKakqzykJamxrL5oxEZkcPIMTNi9PF+Xx3Yic6hZqRYdE1HpNrMvLxsU0MDWnP7R0HEVeYyQ8Ju/BSa+ni43SZ78k5zdKk/cxo53wZb0iP48OjG3mx9wT06gsLrG0oSqwW3j60jg7eQdzXdTieKi3ZZcVsSIsnvaSIx3pU/+CsvOa0kkK6+oRUW7PVYWdp0n6uDO/IH6nHCXHzatA11/lJumTJEh5++GHmzZvH/v376dGjB2PGjCE7O7vG8Zs2beLGG29k48aN7Nixg4iICK666irS0tIuWXjBxfP9b0MICtXy0euxbF6X2aSymMstI42gjJhMNl55/BBu7gremV+91H6kXsm+G8MZGKKpsZqEBFwR2rQPn8uNcPdAVDIFe3Ljzj+4gXnZ7WV6yXux0rqSq4qvokhyuh5s2DhoPeJKBa2MTXJgtDX/Hib/Jt2Rzqdln3Kd4TraFbRDl6fDr8CP20puY5FlEaccpwiVhzJVNZXP3T4nwycDs5+ZZJ9kVupX8qDuwWaliAAkFecQ4xdGN98w/LUe9A6IpLN3CMnF1ZsylrM54wT+Wg+ub9uLEDcvRoRG08s/gvVni58BrE+L44rgKAYHRxHq7sVN7fqhlivZnnWyMZZ1Tv48cxwfjRu3dhhAG09//LUeHMo7Q6Ihh4e7j6qxVkrlNXtpdIR7+FRZs8Fqwi45nGsOcmYGXhnWscqanQkS9fcsrLNl5L333uOOO+5g9mxnkNfnn3/O77//zjfffMOTTz5ZbfzChQur/P7VV1/x66+/smHDBmbOnHmRYgsuFblczpqdVzEg6jdmTfyHvacn4h/YNC9Zs73cTdPw57rvlp2YTQ4+WNAPpbJCF/93Stz1nQI4URBO1r8KqeqUMrr7V/hfz9UjCBonJe5yIFjnR5Ix4/wDG5gMR4YzhfSszlGe9QEQJx0DKruRWk4N1mRbMsusy9ho3chR+1EyHBlYqMgAc8edNvI29FL24irVVUxUT8Rb7t10Al8kbT0D2JqZSFapgSA3PanGAhINOVx/jqDyJEPNRSR/TtoPOAtRphTnM/ZsgCc4A607egeTZGj6IpKH8844LeuxWzhRlI0kOd3HT/Ucg7+25qy+ymsuT4jo6RfhWvPx/AysDjudvINdCRHxRVmuNZfZrCQX5zKsHqu11kkZsVgs7Nu3j6eeesq1TS6XM3r0aHbs2HFBc5SWlmK1WvH1rb2GgNlsxmyu+NIwGAx1EVNwgYRGuPHFkkHcdu02xg9Yx47E8U0SYGaxN07MSMLxIlb/eoZ2HT2ZNquqP/jfKXH3bY4jqww6eCs4UWhHhvPVMzBY4ypbfyE9ghojJa65cCn++nBdGzLL9vPM7pWMb9WtSfz1G6wbmFY8jUKpsNo+FSqOS8eQMajZ1189ZjvGcsty/rH+w3H7cbKkrCrt5T3xpKOiI30VfblafTXjVONwk7f8SqMAV0d0xmS3Mm/famQyGZIkMal1D/oHnqOIpNVUze2gV2sx2a1Y7DZKbRYcSHjWMCazrOnfTTkmI5szTjA63BmEeiQvHQmJo/npaAOcRcx0CpWr6eS38dtJLy2i69mszfKECL3KueYVyQddHXw91doqCREdvILIMRn5NmEH3hodMf4RNUh0cdRJGcnNzcVutxMUFFRle1BQEHFxF2ZifeKJJwgNDWX06OpxEOW8/vrrvPjii3URTXCRjJ0Swa33tGPBp4ncM2Mnny8e1OgymM+GZzS0MnLblK3IgG+WV6/jUjkl7vvYYlYmBtLOJ4dVE1px2qDnut+zMFolhoZVVLCt3CMImi4lrrlwKf76Ll6t2ZG3iwB3RZP467McWVxluKqKJaQyVqwccxymK43/91EbDoeDffZ9rLCuYJt1G3H2OHKknCpr8JZ500PRg/7K/oxXj2e0cjRqee2ZFS2dfTmn2Z19itujBxHq7k2qsYCfk/bhrdYxsIbkgMsBCWjl4cuU1jHcteUn1/afk/a7LB2zOgxwKfj55lIcldyN5QkRPyftA5xVwGd26M+ChJ2uMeUJEevSYrE47OjVWu7vMqJeP6gaNZvmjTfeYPHixWzatAmttvaHyFNPPcXDDz/s+t1gMBARUX8amKAqr3/Sh11bcli5JIWhVwYx4/bGLYhmOVuBVdOAMSOLv03iZEIxE2+IoH3H2l0k+7JMzF6Xg4cKhrZKwkMdzVWt3NgzPYxHt+QxPboiSLG5pMQ1Fyr76wH8tR7syTl9Qf76G6IG8FXSEpJLTtLLvzfr0+Jdykhlfz3ATe36cTQ/ne1ZJ7k6on4KVgXKAvnQ/UNeLH2RXCnXVRujMsekI3RpIteMw+HgH9s//Gb9jR22HSTYE8iX8qvU8PCV+dJf2Z+ByoFMUE1gqHLofy6V9tfkg4yJ6Oz62wpz9ybPXMIfqcdrVUb0Ki2Gf2WFGCwmtGetCXKZDDkyimsY46Vq+vgxL7XWlYVWngSxOf0Ea1KP8mb/KdXGP9J9NG8fWldlzb0DIjHZrfyctJ8X+lyDzWHn+4RdrjWXJ0TkmUsos1m4p8uwel9Hne5Uf39/FAoFWVlZVbZnZWURHBxcy1FO3nnnHd544w3++usvunevnuFRGY1Gg16vr/IjaFhWbR+Nu4eSx+7aS0Js0fkPqEca2jJiszl45r59aLVyPvy+f63j8k02hi7NQAY81CeNaG9/l7ulo6+a1ZNCiPap+KqsS4+gKmPqOSWuudDWM4C4wiyySp2m63J/fVff2guYlfuuO3m3QiGTsys31tn08awvvtxfX1mhawh/vUwmY652Lik+KfzP7X8EyAKqpNMDFFFImbKw3s5ZGxaHhTWWNcw1zqVPYR988n1QFCgYUTyC90zvscu2CyVKhiqH8rTuaXbrd2PzsZHrm8t2r+286/4uw9XD/3OKCIDFYUP+r/83uUxWo3JZTlu9M2aiMrGFma7eSEq5gkhPX2ILK957DkkirtKYpiRKH0DWv9xFWWUGfDW1Z3c1xzXX6W5Vq9X07t2bDRs2uLY5HA42bNjAwIEDaz3urbfe4uWXX2bt2rX06dPn4qUVNBgeHip++XsEkkNi0uANWCy28x9UT5THjGgaSBl5ZM5uSkvszHu3JxpNzcZAh8NBz5/SKLVJPNg7DxsF3NFxcIPIc7lydURn+gS0Yt6+1dy9dRGvHviDUWHR5/XXq2RyUoz5+Kr1xBelYLbbXP56o9Vcq7++yFr/Cp1WpuU+3X2k+KTwoduHBMrOFrE7+y7L0STXeNzWjJNIUt2tJqWOUpaalzKneA49Cnugz9OjKdAwvng8n5o/5ZD9EO64c6XySl7WvcwRryPY/exk+mayyWsTr7q9Sl9V3/+k4lET3X3DWJN6lCP5aeSajBzITWX9mTiXmxRgefJBvo3f7vp9WEh7ck1Gfk0+QGZpEZvSE9iXk8LoSq7F0WEd2ZqZyI6sJDJKi/gpcQ8Wh61abFNTMDqsI0nFuaxJOUZ2WTG7s0+xJTOR4aHtXWNawprr7KZ5+OGHmTVrFn369KFfv3588MEHlJSUuLJrZs6cSVhYGK+//joAb775Js8//zw//fQTrVu3JjPTqY15eHjg4SH6dzQnevb147m3Y3jp0YNcN2ITv22rPa6nPrE0YDbN6WQjv3x/isg27tx6T/tax125IpOUYjvTOhagVKbxcPfR520ffjE9gsp/j/DwvsgVNV8uxl9vdzhYlxbHn2mxKGVu5FjTWZS4B7lcToG51NVPo7HRyrTcq7uXOdo5zEl5hiW6T7ApzOwN+JXo9OsBUCsqbtjNmSfw1bqd021U6ChklWUVf1n/Yr9tPymOFEooce1XoyZEHsJQxVBXDY+2yqZ/2bUkpkf1YeXpw/yUuIdiqxkvtY4hIe24JrKra0yRpYx8c0XtFH+tB/d2Gc4vSfv5Oy0eb40bt3To73ITAvQNaIXRamLV6cMYLCbCPXy4v8sI9Oqm74Le2tOPuzsNZfmpg/yecsTp9mzbu8pHQEtYc53/0qdNm0ZOTg7PP/88mZmZxMTEsHbtWldQa0pKShUt/bPPPsNisTB16tQq88ybN48XXnjh0qQX1Dt3P9KRLeuz2Lg2gzeeOcyTr57bpVYflFdg1TTA193sSVuQJPh62RW1jnlsSx5/p5oYGGqglXcKD3UfVWtKXGUutkdQfafENRcuxl/vplSTZ3a+kIO1wWSY0imwFuCn8cPssOGndW9Sf32WsRT3lN7MlH3O6lavkqM7SZ923mzfDU/1GEtmqYVlpw4CsDrlKEOC2+OuUpPlyGK5eTkbrBs4ZD9EqiMVExVr0KIlTB5GD0UPRqlGMVkzmVD5uXtSCc6PVqliWlRvpkX1rnXMrdHVrfjR3kE822vsOeceERrNiNCaA7Gbmu5+YXT3C6t1f0tY80V9dtx7773ce++9Ne7btGlTld9PnTp1MacQNCE//j6EnmGr+N9rxxk8MpAho84dD3SpNJRlZNXPp4k9UsSV14TSNcanxjGL4op5Z38Rrb1K6Rt6gtujh6JVqFwlv/+dElcfPYLqOyWuuXAx/vpwd29SSwoAaKVrxYHC/eRYsvHT+AFVfdfl16zcdz0itEMDraSCfzJPOOWQ1CxUrOBF1f+x0P8DUEbhr/Oih18AsZYTLDH9QobbcZYWPkKBPKdKDQ833Ggtb01PZU+uVF3JJPUkfOW1lzYQCP6LiN40gmrI5XLW7LqSAe1Wc8s1/7AvdSJ+/g33FWo5G8CqUdZfzIjD4eDRO/agVsv5fEnN6ZiHc8zc8lcObkoZI9scxeRw8O6RDVXG/Dslrr56BF1uNUagwl/vq3UjxM2LVGMB68/EMSi4wiqyPPkghZZSZkc7/0+i9P7syHbGYfirA1DKlBitxVXmHR3WkQXxO2jt6UtrTz82pMU3mr/+ZFEO4Cz7f0VQBxaxiI75nWHwIe4038Ze026yvc9Wn5ZAI+mIlkfTW9mbq9VXM141Hg+5cEcLBOdDKCOCGgmLdOezRYO4Y+o2xvdfx/YTDVcQrcJNU3/KyNP37afYYOOZN7vj5lb9Ni802Rj8SzoSsHlqCH2Cpp93zvruEXS5UVd//eaMEyxK3OPaJ5fLCdAEklyaTB/ffvyZepzbogc1qb/eKjk1ZY1CiVahIpxwRpRMZLXHQuItJ5jkPgnJISM10YOwkh709I3k3i7DG1wugeByQygjglq55roIZv5fFN9/fpK5N+/ks58apuCTtVwZqSfLSGZ6KT98nkhwmI57H+9cbb/D4aDnonSMVokFo/3pE9T0tQIuB+rir9+ZlcxPlRQRGeCjccch2Sm0FgKwNzcFrVLFLe37N5m/3lvtRq6phFKbhVRjAREePiyPXEC3P2x0co/iy+GvsjM7mW9LnBWofdSXRyVTgaCxEflggnPy5md96djVixWLUlj8bVKDnMN6NmZEW0+pvbMnb8XhgC9/rll5Gr8qi1MGG/f10DOri6hh09hYHXZXZUiA4SHteav/tbzebxLT2gxBQqLI6owj2Zp5ktPF+U0lKv0qFab7NfkANocdpVzJ/e2msyp1OwlFZ1wt1v89XiAQXDhCGRGcl1XbR+HuoeTRO/aQGF//vRisZysT10edkfVr0jm4J58ho4LoOyig2v5ntuex9nQZQ0I1fDi86QsW/RfZl5NCydkutzF+4UyP6uMqDDcxwlnbxV1d0Ztqc8aJxhfyLP0DWuOu1ADOolCvHljLPxkn6OcXgwI516x/jqwyZ4xLpIcP7fTV7zmBQHB+hDIiOC+enmp+3jACh0NiwqD19V4QrTxmRHuJMZ0Oh4P7btmJUilj/tLqBcuWJhh5bU8RYe4K/r6u9qqggoYlvqiiquPI0GhkMhmlNhN37XiHCDengphSesYV5Ft5fGOjVaq4q9MVLlnSS4tYmLiHL2O3I5PJOVFykiNFh9CrtNzR8YpzNgQUCAS1I5QRwQXRq58fz77Zg8J8C9eP3FSvc5dbRrTKS7sdX3nyMIX5Fu57qhNe3lWbgR3LszB9bTY6pYz9M8JQioqVTYbZXqHM+mmdJasTilL58sQqhv/1AB5KHXGG03ioNNXGNwXR3kE80m0UkR5V08PdFE7Zd+TvoJQU/LW1l98WCATnRjyRBRfMPY91YthVwezelstbzx+ut3nLY0bUl3A35uWa+PK9ePwDNTz+UtXMFYPZwcAlaUgSbLw2hMAasmsEjUflXj2JZ1NnY/za09WrDWV2C0ZbGWmlOeSVGZ3jm0EzsjZ6f56OuZonY65iYqtuXBXeCe9K2TyfJizj+s3PU2Yzn2MWgUBQG0IZEdSJH38fSkCwlvdfPs62jfVjPred7elxKanDt1+7Dbtd4tOfqlYadDgc9F50hmKrxBej/Okf0vQvtv86ffwrUqHXph7DZLMCcE3EINQyFYEabyTgx9TvKbIU0eccqdONiUwmo42nP+Mju3Fdm56YHVUVjxUpWxjx1/3kmgqbRkCBoAUjlBFBnVAq5fy+czRKpYybx/1Dft6lfwmWW0Yulm0bs9i1JYe+g/yrVYudtDqLxCIb/9fNkzldReZMcyBKH0CEu9PlkVFm4LWDa9mamUiMTyeyzQUM8O0LgMlh4ue0xRwzHD3XdE1GoaVqcTYHEnvz4un7+50kGs40kVQCQctEKCOCOhPRyoNPFw3CZLIzvv86HA7HJc1nuzRdhLtv3IFcIeOb5VX7z7ywM5/VyWUMCNbw2UiR5dBckMlk3BY9CDelM64nq6yYH07sZu1pZ+r439nOmh1BmiDclFoe3/8pI/98AIvNUuucjY3VYaPUXl0Rt0sOUkuz6fv7nezMOdYEkgkELROhjAguiglTI7j5rracOmnkvpm7quw7mWBg2U+nLniu8qJnF8O7Lx4lJ8vEHQ90wD+wwgWz8mQJL+4qJNhNwZbrReZMcyPU3YvHe1xJa4+KHi3FNmfauNFuRIYMpdxB7g2rGBrYg41ZBwj8ZRJ7cmLrXRaTzcqSk/t4avcK7t22hDcP/sWp4rxzHrM7+2St+xySRKHVyPMHvufp3SuZu3Uxrx/8k+Ti3PoWXSC4bBDKiOCiefvzfnTorGfZwtMs+c75Vbv611Su7Pknc2/aSW626TwzOLE54GISIg0GCx+8egwvHzXPv93DtT2+wMLU37PQKmTsv1FkzjRXQty8eDJmDE/GXMWVYZ3w1FRY2CQkskz5aJUaNl/9ER/0uY9iWxn9//g/njvwVb3K8f2JXcQWZjI7ehDP9xpHZ59g3j/yNwWVWq5XJtdk5NPYv2udr7dfB+Z1v4s22m6Mj+zKMz3HEu7uzYdHN2KwXNjfhEDwX0M8pQWXxG87RuPmruDh23bz0O27uGPqNspKnf08Du8vuKA5bA7popSRO6/fjs0q8b8F/VzBr0aLg/6L07BLsP7aYEI8ROZMc6Y8KHRq256olFbksopHkk2yszjZ2bjwgc7XEzvxewK13rxy5HtifpuNwWK85PNb7DYO5KZyXZsYOngFEqjzZEKr7gTqPGottrY54wQaRYWcMmTIzz5K53W/lT3j56PBn+Gh0QwOjiLU3Yub2vVDLVeyPat2i4pA8F9GKCOCS0KvV/PFkoE4HLD4m2TXdoVCxqG9zjLe+aYSUoz5rp98U0mVOWwO6mwa2bcrl81/ZdK9tw9jJoYDzsyZPovTKLJIfDLCj8GhDd9ITVB/bM85ikOqGn80c+ur7MuLB6CDVyTpU5dzXeQwDhWcJPiXKfxxZuclndMhSTiQUMqqVtxTyZWcNOTUeEySIddVc6SdZxj/63s/K4e9j4fCgx+T/8LmsJNSnE8n74pgarlMRkfvYJIMwlUjENSE+GwUXBK7tubw4Ow9yORQ+T0iSRKH9joVj+f2/oat0k6lTM7LfSbge7ZIlE2qu2Xkzuu3IZfDghVDXNumrskmvsDK7V08ubu716UsS9DIlNpMxBaerrbdJtkYs/5R9oz7gjaeocjlcpYOf5klyRuYue1Vxv39OHPaj+eL/o9dVGq4Vqmirac/a1KPEuKmR6/WsjvnNEmGXAJ1HjUeY7CaGBDYiYTJC2nnGY5MJuNIfhqd9V3YXbCLw/nJOJDwVFdNI9ertWSW1X87BYHgckAoI4KL5vsvEnlq7j6QJP71QYvDAQd25WG0masoIgA2yYHRZsaXs8qIA+pSRfuzd+NITy3j5rvaEhLu7JL66u4Clp8spU+gmq9Gi8yZpuS304dZnVI1HTdIp+elPtfUeszipK04qJ6VJQFFFiNXrnuYF7s9wMG8DMrsVqL0/uwb9y1TNj/JVyd+Z336PraN/ZRQt7r3G7oteiDfJeziid0rkCMj0sOHvgGtSDHW3qBPLpPTXh9RZVu0Z0d2F+ziuYPzCdf0qOVIgUBQE0IZEVw0P32VhOMcNUKyM00U5Jw/HbMuMSOlpTbeeOYwHp5K3vy0DwBrkkt4dkcBgTo5264PvcCZBA1JqJsXD3Yb6fpdcQ5t86Qhh68T1iNDhkT1+0lC4qQxnc8TVvHRgLn4a91Zdeowi04e5PikH3lw9//4NGEFrX69nq8HPsHMdlfXSdYAnSeP9hiN2W7DZLfipdbxZexW/LU1W0b0Km21QFSDxYSPWk9r92DWZezhtlY9KK5hjFczqCYrEDRHRMyI4KJZsWUUb3zam+AwZ2xGTe+b/XvP7yO3SyC/QG3knhk7sJgdvP1lX+RyOScLLUxenYVGAftuDEd9if1tBPWDXCbDS61z/Xic4yW8IS0es1RRQEwhq/p/eFPrK7kmeCyPd51OjF844e4+zI4eSKG5jIO5qXwy4GE2XPkBarmKWdtfY9LfT2Fz1L2fjUahxEuto8Rq4XhBBj38wmsc11bvT1xhZpVtsYWZtNX783jXGVglGwX2TGILKyoUOySJuLNjBAJBdcSTW3DRaLUKZt3dnt3JE/jfd/1pFeX8kqyslHz/V809bA7npbn+bXdIyC7ANnL8cAF/rkwjuoueydNbUWpx0HdxOjYHrJ0cQrinMPQ1F7LLinl813Ke2bOSr+O2VQtarkxScS5FtiIkJLxU7lwbOZRAjR9uCqcLbmhQT0J1rYjxqygLr1OqaePpT9LZ2h0jQ3qRdf0KevtGs+rMNkJ/mcKxguQaz/dvjhWkczQ/nVyTkeMFGbx3ZD3BbnoGB7UFYHnyQb6N3+4aPyykPbkmI78mHyCztIhN6Qnsy0lhdFg0d7WfiFauZlvuDrZmJrIjK4mM0iJ+StyDxWFj0Nk5BQJBVYQyIrhkVCo5N8xsw9a4ccxfOpgOXSrKrp9aVbOS8VvKEdadcRawskkXFjNy+7Vbkcng25XOoNV+S9IoMDt4f6gvw8NF5kxzoY2nP7d2GMj9XYczo11fck0lvH14nasHzb8xWEy80uNu9o//ivzpv/PzsJcYEdSPUruzzsf6jP1A1QZ75b8XVXKFeKjd2HvNfF7scRu5ZgPdf7uVt48uOq+8ZTYri07uZd7e1Xwbv4N2+gAe6DoCxdmA2CJLGfmVao74az24t8twYgsyeXn/H6xLi+OWDv3p4uMMsJ0SOZS0six6+Pux6vRhXtn/B6klBdzfZQR6tbhPBYKaEJ+SgnpDoZBzzXUR5HVNY/mqQvY+J8OULaNdbgSDBgRTardyMC+VxLPpjUuTDxDtHeR005xn7u+/SOTUyRKuu7kVbaI8mbYmi2P5VmZ29OCBnt4NvjbBhdPVtyJuJ9zdhzae/jy1eyV7c1O4IjiqxmPaeITR06+16/cxIQNYkvIHMmQcK0xioO+FWxSe73ErE8MHMXLdQzy+/zNWpG5h3ZXv4aas2VXUJ6AVfQJa1TrfrdEDq22L9g7i2V5jaxz/Tp97WHRqPT+eWsk/V398wXILBP9lhGVEUK8YrSZ255wiaABMWiunS28vfn4on07qCK4M78RjPa7i6ojOrvF/pydgd0jnjBmxWGzMe+gAOjcF733dl7f2FvDziRJ6Bqj5bkxgI6xKcCm4KdUE6TzJKSuucb9ercVgrRrs6af1w0vphUIm53RpBkCNQaNe6poVjBi/DmTfsJKrQvqyPecoQT9PYmvWoXpYzfkJdfOnq3cbtmUfodQmKq4KBBeCUEYE9cqB3DOuVN7hke1ZsGwoJUYb/zd9OyUlTjP9+Iiu6BQqAPbmnMYunVsZeeDW3ZjK7LzyYS82ZVh4clsBflo5228QmTMtAZPdSo7JiFctLoq2njUEhBZkEukeil2yY7CW4KFUVxlTZrOSXJxLW8/aA0KVciV/XvkuXwx4lDK7mSF/3scjez+pn0Wdh5d63I4DiWfruXS9QHC5IpQRQb1SaClz/TvaK4jwSHf+t6A/W9ZnccfUbQBsOm1m84Zwln8cys4TAeSZ7JjtEm/szeCjg7l8H1vMwRxnR9SkEwZWLk6hTXsPBl0fwTWrMlHJYf+N4WhF5kyzZGnSfhIKs8g1GTlpyOHz41uQI6PvWVfIt/HbWZ580DV+VFg0xwoyWHcmlszSIn47fZjTxnxGh/RwJfoGuitYk3qUQ3lnSCsp5NuEHXhrdMT4R1QX4F/c2WEiJ6csItwtgPeOL6HzylvINzVs8bEprYaiV7nzbeKaBj2PQHC5IGJGBPWKWl5RVrvQ4gz6u/KaMK4YGcje7bn88EUi9x4zYogKgv4SOYWAzPnKeWpbGeBUZvoGqdk9PZxbJ21FkuDTnwfRZ5Ezc+bPycFE6sWt21wpMJfyVfx2SqxmPFQa2ukDeDLmKldF0nxzaZXsqSh9AHOiB7Py9CFWnDpEoM6TuzsPwUut5P24xQCcKjlJF303ntr3HellmQzw78aLPaejkitqlOHftPII4fS1vzBz26ssTF5H6NIpLBn6ApMih5z/4ItkZtsxfBy/jNWp27gmYnCDnUcguByQSZJ08f3bGwmDwYCXlxdFRUXo9frzHyBoMpIMubx56C8AItx9eLrnGGTI+HXhKe6fuQtJAnNnLwrujD7nPN+MDsDzYB733byTcVPC2Xddaw7lWnjnCl8e6e3dCCsRNBUWu5WjhUnszz/BPTvfxSrZqxVEmxs9hY/7P3RR869M2cK0f17A7LAyo81ofhj87EWVkj8fBosR78Xj6ebTlkMTvq33+QWClsCFvr/F56WgXmnj6UeEuw+pJQWklhTwwqJN7PnQysFdFR181ceLUKaXYgvW1VDtTCLSU8GN7d3oOuBPNBo5pbe341BiKTd2cBeKyH+ACX8/yV8Ze6ps+3dl1tEhfS56/kmRQ0ifupwhf97LT8nr2Zx1iG1Xf0wrj5CLnrMm9GoPBvh3ZkfuMbLLCgjU+dTr/ALB5YRwugvqFZlMxtS2PZEjI+MfmH9TNgd3V+3xIQM81qbVUnZVxmO9tTw7dx8lRhv9X+zO4sRSuvmp+GlsUKOsQdC0XNtq6Dn3K2RyRgb3uqRz+Gr1HJv0PY92nkZ6aQ5Ry2/ky4RVlzRnTbzd5x4AHm2kwFmBoKUilBFBvdPRO5g7Og0msJsc704SNbQbQXOkAEV2GVTyEsqQ8NGW0kdl46evk/CK8eYXrRpfjZzd08MacQWCpuTO9hOZ0WY08hoeTzKgp08HCi3mc1Z1vVDe7jOXLVd/gptCy1073+GqdQ9jsZ2/n9KFMjiwG4FaH5ambMbhqN4IUCAQOBHKiKBB6OUfyVtjJvDKqk7E3KFyBqlWuttkEnj8lV6l9KqEjL6hqTwx4xB2jYKkWe1RymHvjaEic+Y/hEwm48sBj9FeH4ZC9u8AVRkySc+rB9by3N7f6kUhGRzYjewbVjI4oCvrMvYSvHQKB/MSLnnecuZGT6HMbuabxN/rbU6B4HJDPOEFDYavxp3r2sXwx5dTWbVtNGHhbsgVFcqH7kAeGpsZp+lEwl9nRHW4gPjDxRQ/2gWbTMbKCUG08VI32RoETYO7SsfKEa+jllcNa5OQiNA503ltkgOjzVwv59MqNWwd+ynv9L6HIouRXr/fwUuHFtTL3E93uxmlTMHrRxfWy3wCweWIUEYEjULfgQFsOjqWqTdXKrtth9a5aTiN7zL6hqZw6A0ZxVNbU+an4bVBPoxt7d5UIguamGivSBYMfqrKNrVcg5+64TrfPtJlOkcnfo+/xot5h76hz+o5GC2l5z/wHCjlSq4M6UOSMZ0TRan1JKlAcHkhlBFBo+HhqeKDb/tz0wcByJTOWBHl5hxAQimzU7DAgKFLAKWDAxkVKefJviL74L/O1FYjmBg6zPV7pC4C2YV0VbwEOnm3Iv36ZUwKv4J9+QkE/TKZDel7L2nOd/vcC8BDe0WvGoGgJkRqr6DOFJhLWZZ8kGMF6VgcdgK0HszqMIDWnn61HhNfmMUvSftJKynE0Uti5E+w8SYwJ8sJcbMTriwjMVZP8e2t6eiXRVv/ZPblyOl9jgZmgssbk93KF7FbCVB3ADYD4K2qqqAeyUsj0sO33s+tlCtZMfI1fkz6i9u2vc7o9Q/zfx0m8dmARy5qvk7erWjjEcKf6buxOWwo5eLRKxBURlhGBHWixGrh7UPrUMjl3Nd1OC/0Hs/1bXvhrqw9riPXZOTjY5vo4BWIu8o5zj0YHl4WiTFTQmNR4tiVQ/70dngoLAyKOIVMBt/E76jWHE3w38AhScyP3crxggwUMgUhGmcfIj+1J0pZxWNrVcoRdmefajA5bm57Faeu+4U2HiF8nrCSdsunk1mad1FzPdFlBjbJzptHF9WzlAJBy0coI4I68eeZ4/ho3Li1wwDaePrjr/Wgs08IATrPWo/ZnHECf60HnXyCKbY6Aw691TqUrS2MuDqEjCwTYeOKifbPZ9vNrXA7mzljkxxszUxslHUJmhfHCzI4WuDs1uumVDGv+yznDoWRt/pPYWRoB9fYpckHsDdg2myomz9J1y7hjvYTOFmcTuSy61mUtL7O89zRfgJahZqP435tACkFgpaNUEYEdeJw3hlaefjyRewWHt35K6/s/4MtGedWGJIMuXT0DiarUgv5zj4hJBlyeeyVrlg9FQR6l/HK6CC6+bnT0TvYNS6hKLvB1iJovmzOOOH6903t+nFnx6tRy1WcKE7FXaXhhra96erjtJYUWco4lH+mwWX6cuBjrB39DkqZghlbX+Lajc/UqXaIXC7n2sihZJry2ZF9tAElFQhaHkIZEdSJHJORzRknCNR5cn/XEQwNac+SpH3syEqq9RiD1YRerUVeqTmaWq7EZLfSrosH/mYTchn0CHL2LbA57K5xRmv9pG4KWhaJBqcS6qnS0NPfGbTaQR9OakkO4KxFMiykvWv8iaKcRpFrTGg/Mq9fToxPO5anbiF06RTii1Iu+Ph3e88F4LF9nzaUiAJBi0QoI4I6IQGRHr5MaR1DpIcvQ0PacUVwVJUv2doIc/d2/TuhKAsAjUpB/GMVL5VCcynxZ60hKpkCRQNnTgiaJxa7UyH1VGlRnI0RGR4Ug1WykV7qVDy8NbqK8Q5bo8mmV3twYMI3PNd9FtmmQjqvnMkHx3++oGOD3fzo5t2WHTnHLjllWCC4nBDKiKBOeKm1hLh5VdkWovOiwFz7g1Wv0mKwmGjvFUjQ2diS9NIilDI5SrkcD5UGOTJyyor5Jn4Hdslp+g7QeeCl1tU6r+DypVzRyCw1UGQpA+CNXv+H+ab1hLoFABBXmFUxvgnuk5dibmf3+C/wVOl4aO/HDF17L6YLKML2csztOJB45uD8RpBSIGgZCGVEUCei9AFklRmqbMsqM+Crqb04WVu9P3GFmchlMq6J7ObabpMcPLvnN5ac3IdOqeK7hF3En7WYuClUGK1m2uobrsCVoPnSN6A1AA4klicfRJIk3FU61ApnNlahuZT1aXHVxjc2ffw6kn39SkYG92JL9mGCfpnErpxjNY61OmwUWYxMihyCl8qd706ubWRpBYLmi1BGBHVidFhHkopzWZNyjOyyYnZnn2JLZiLDQytcLcuTD/Jt/HbX78NC2pNrMvJr8gEiPXzo7lvR9C7PXMI/mYmU2Cw4znbU0yqUtPcKxCbZGRTUtvEWJ2g2DA1p50rh3ZGdzDuH17Mn+xQnDTn8kXqMVw+sdVlMuviEEOymbzJZ1Uo1G676gE/6PUSJzcTAP+7mqX1fVBljd9gZ/ddD9PhtNha7lVlRV1NkLWFlypYmklogaF7IJEmqoadq88JgMODl5UVRURF6fdM9dARODuelsfzUQbLLivHXejA6rCNDQtq59i+I30GeuYRHuo92bSsvepZRWoS3xo2efuGklxZx7Gz6JoBSJkchl2NzOIjw8GF62960EZaR/yy7s0/xTfz2mpo+u/DTuPN4jyvx1rg1mlzn4qQhjSF/3ktGWR5dvduw5eqP8VZ78vLh73j+4NcAfNr/YW5pcxVei8fSxbsNhycuaFqhBYIG5ELf30IZETQpRZYy8k0lKORygnR6NApRmVJQweG8NH5O2keOyVhluwzo5hvGze37Nbu4IofDwU1bX2bxqQ1oFWpe6H4rTx2Yj3RWrQrU+nDq2p+5ct1DbMs5SsbU5ajl2ipN/zyUGny1oi+ToOUjlBGBQHBZ4JAkYgszSCjKxmK34aXW0ds/8pyF9poDS09vYsY/L2GVqmb6yJDxbp+5DPDvzKC193B95AgClJ2wSRU1S5QyOS/3mSAUEkGL50Lf3+IzVCAQNGvkMhldfELpcrbIWUvhushhjAzpxZ/pu6tsl5B4+fB3pFz3C8FaX347s42bI9ojl1eE8NkkB0abGV+EMiL4byACWAUCgaAB+Cx+RTVFpJxCi5GP4pZxR/uJmBwW4o1x1cY0ZIl7gaC5ISwjgnrFZLOy8vRhDualUmw1E+Huw7So3hfU0TejtAgfjRvjIrtWy6LZmJ7AujOxFFnKCPfwYXpUb9p4iuBWQfPkWGEyD+79qNb9EhKvHvmBmeG3IEPGwaIDdNJ3rjLm+xO7eLDbyGYXEyMQNARCGRHUK9+f2EV6aRGzowfhrdaxKzuZ94/8zQu9x+NTQ8ZDeUffoSHtub3jIOIKM/khYRdeaq3LLL8n5zRLk/Yzo11f2nj6syE9jg+PbuTF3hPQq7WNvURBPfDb6cOsTqnanyVIp+elPtfUesy+nBRWnj5MnslIoM6Ta9vE0K1SmrgkSfx2+ghbMhMps1uJ0vszo11fgnSNH2eWUpJVpf2BUqbAIUk4qLB2lNjK2JS3lXBdBKllKdilMvQqL0psFsBZGPCDI3/zRMxVaBWqRl+DQNCYCGVEUG9Y7DYO5KZyT5ehdPAKBGBCq+4czk9jc8YJJrfuUe2Y8o6+17ftBUCImxeJRTmsT4t3KSPr0+K4IjiKwcFRgLNx2tH8dLZnneTqiC6NtDpBfRPq5sWD3Ua6fj9X6f+Thhy+itvG5DY96O4bxu7sU3x2fAvP9Lza1WbgzzOx/J0ez63RA/HXurPq1GE+PLqRF3pfg0quaOjlVGFs2ABKZvzFSWM6xwqTOVaYzNGCZA4WnOBkcTo2yVnuPrb4ONeFjSc1LYUCRzLzB7xMbGEmP5zYRb65lPTSIjZnnGBMeOfznFEgaNmImBFBveH88pNQyqo++FVyJScNNTcyK+/oW5nyjr7gbJqXUpxPp0pj5DIZHb2DXWMELRO5TIaXWuf68VDVbuXakBZPF98QxoR3JsTNi0mtexDp4cOm9ATAaRXZkBbHuMiuxPiFE+7uw+zogRSayziYm9pYS6qCQq6ggz6CKZFDebb7LBYPe4G4yQtJuW45N4TdQH/fAegVnvya9jut3YPZkxuHhERnnxDmdhnmmuefjEQczT/pUSC4JIQyIqg3tEoVbT39WZN6lEJzKQ7Jwc7sZJIMua5qmf+mvKNvZfRqLSa7FYvdhtFqxoGEZw1jiqymBluLoOHJLivm8V3LeWbPSr6O20a+qaTWsUnFtSitxU6FNNdUgsFqqqK06pRq2nj6u8Y0F04V5+Ot9qWHVwzfDX6Vt3rdTWpJNqml2SxI/AOAcHcf2uud1sVck/GcvZ8EgssBoYwI6pXbogciSfDE7hXM3bqEjWnx9A1ohQzRfVdQQRtPf27tMJD7uw5nRru+5JpKePvwOkw2a43jDRYT+n9ZTvQqLUUWp0JqsDqV3ZoU2/IxzQWLw+76d4DWk8e63si2sZ+glit5P7ai+6+f1q3SMY3XlVggaApEzIigXgnQefJoj9GY7TZMditeah1fxm7FX+tR4/jyjr6VMVhMaBUq1AolcpkMOTKKaxjjdQ6zvqB509W3omZIuLsPbTz9eWr3SvbmpnDF2digy5XKSlWiIYfBwVH0D+jC8Yk/EKT1AZwuz8RKbkhPca8LLnOEZUTQIGgUSrzUOkqsFo4XZNDDL7zGceUdfSsTW5jp6tarlCuI9PQltlK7eIckEVdpjKDl46ZUE6TzJKesuMb9erUWw7/ccgarCa+zlhC9ypn+WpNi69XMMq46+4SgO5sdszv7FGklhQBE6cPwUDutIduzTpJ7tgR+J+9gPFSaJpFVIGgsLkoZ+eSTT2jdujVarZb+/fuze3fNhX3K+eWXX+jYsSNarZZu3bqxZs2aixJW0Pw5VpDO0fx0ck1Gjhdk8N6R9QS76Rl8tm7IuTr6ZpYWsSk9gX05KYwOi3aNGR3Wka2ZiezISiKjtIifEvdgcdhER9/LCJPdSo7JWGtNjbaeNSitBZm0PVtrxl/rjl6lrTKmzGYluTjXNaa5oFEoXdYfm+TgrUPr+O30EVKM+ZwoyuaHE7v48UTFM3VEaIemElUgaDTq7KZZsmQJDz/8MJ9//jn9+/fngw8+YMyYMcTHxxMYGFht/Pbt27nxxht5/fXXueaaa/jpp5+YPHky+/fvp2vXrvWyCEHzocxmZfmpQxSaS3FTqunlH8Hk1j1QnC11XWQpI79SMJ6/1oN7uwznl6T9/J0Wj7fGjVs69K9S+rtvQCuMVhOrTh/GYDER7uHD/V1GoBfFoFosS5P20903DF+tO0WWMn47fQQ5MvoGtALg2/jteKvdmNImBoBRYdG8c3g9687E0s03lD05pzltzOfm9v0AkMlkjArryJrUowTqPPHXerDy9GG8NTpi/COaapm1MqFVd04UZXPKmI/JbmV1yhFWpxypNm5YSHu6V6qlIhBcrtS5UV7//v3p27cvH3/8MeDsUBkREcF9993Hk08+WW38tGnTKCkpYfXq1a5tAwYMICYmhs8///yCzika5QkElxfzY7dywpBDidWMh0pDO30Ak1v3cDW/e/fwevw07twaPdB1jLPo2SHyTCXnLXpWarPQziuAGVF9CXJrns8Mk83KwsTd7MlJcXX0LUejUDImvDPjIrogO0f9FYGgudMgXXstFgtubm4sXbqUyZMnu7bPmjWLwsJCVq5cWe2YyMhIHn74YR588EHXtnnz5rFixQoOHTpU43nMZjNmc0U7bYPBQEREhFBGBALBZUe+qYSd2cnkmozIZXIiPXzoF9AarVJUXRW0fBqka29ubi52u52goKAq24OCgoiLq97oCSAzM7PG8ZmZmTWOB3j99dd58cUX6yKaQCAQtEh8te6MixQua8F/m2aZTfPUU09RVFTk+klNbZoKigKBQCAQCBqeOllG/P39USgUZGVlVdmelZVFcHBwjccEBwfXaTyARqNBoxGpbAKBQCAQ/Beok2VErVbTu3dvNmzY4NrmcDjYsGEDAwcOrPGYgQMHVhkPsG7dulrHCwQCweXE2tRj3LXlJ5ac3HfOcftyUnh+72rmbl3Mi/t+50h+WpX9kiSx6tRhHtu5jHu3LeH9IxvIKjM0pOgCQaNRZzfNww8/zPz58/nuu++IjY3l7rvvpqSkhNmzZwMwc+ZMnnrqKdf4Bx54gLVr1/Luu+8SFxfHCy+8wN69e7n33nvrbxUCgUDQDDlVnMc/GYmEn+0sXBvlXYkHB7fl2V5jifEL57PjW1wF0aCiK/FN7fvxZMxVaORKPjy6EWul8vICQUulzsrItGnTeOedd3j++eeJiYnh4MGDrF271hWkmpKSQkZGhmv8oEGD+Omnn/jyyy/p0aMHS5cuZcWKFaLGiEAguKwx2a18Hb+dW9r3x02pPufYltiVWCCoTy6qN829995bq2Vj06ZN1bZdf/31XH/99RdzKoFAIGiRLErcSzefUDr5BLMm9eg5xyYV5zI6rGOVbZ19QjiUdwY4f1fivoGt611+gaAxaZbZNAKBQNCS2ZN9ihRjvquC7Pm4nLoSCwQXg1BGBAKBoB7JN5ewJGk/t3cchEquaGpxBIIWwUW5aQQCgUBQMynF+RRbTby6f61rmwOJE0XZbEpP4JMrpiGXVf0OrEtX4srNBA0WExEe3g20EoGg8RDKiEAgENQjHb2Deb7XuCrbvkvYSbCbnjHhnaspIlDRlbhy3EhtXYkjPHyAiq7Ew0LaNeBqBILGQSgjAoFAUI9olSrClN5VtmkUStyVGsLOpvhe7l2JBYK6IpQRgUAgaGTyzaXIqOjGG6UPYE70YFaePsSKU4cI1Hlyd+chLuUFYEx4Jyx2Gz+e2O3qSnx/lxEiLkVwWVCnrr1NxYV2/RMIBAKBQNB8uND3t8imEQgEAoFA0KQIZUQgEAgEAkGT0iJiRso9SQaDaAolEAgEAkFLofy9fb6IkBahjBQXFwMQESGixgUCgUAgaGkUFxfj5eVV6/4WEcDqcDhIT0/H09MTmUx2/gMuEIPBQEREBKmpqSIwtgER17nxENe6cRDXuXEQ17lxaMjrLEkSxcXFhIaGIpfXHhnSIiwjcrmc8PDwBptfr9eLG70RENe58RDXunEQ17lxENe5cWio63wui0g5IoBVIBAIBAJBkyKUEYFAIBAIBE3Kf1oZ0Wg0zJs3D41G09SiXNaI69x4iGvdOIjr3DiI69w4NIfr3CICWAUCgUAgEFy+/KctIwKBQCAQCJoeoYwIBAKBQCBoUoQyIhAIBAKBoEkRyohAIBAIBIIm5bJXRj755BNat26NVqulf//+7N69+5zjf/nlFzp27IhWq6Vbt26sWbOmkSRt2dTlOs+fP58hQ4bg4+ODj48Po0ePPu//i6CCut7T5SxevBiZTMbkyZMbVsDLhLpe58LCQubOnUtISAgajYYOHTqI58cFUNfr/MEHHxAdHY1OpyMiIoKHHnoIk8nUSNK2TP755x8mTJhAaGgoMpmMFStWnPeYTZs20atXLzQaDe3atWPBggUNK6R0GbN48WJJrVZL33zzjXTs2DHpjjvukLy9vaWsrKwax2/btk1SKBTSW2+9JR0/flx69tlnJZVKJR05cqSRJW9Z1PU6z5gxQ/rkk0+kAwcOSLGxsdKtt94qeXl5SWfOnGlkyVsedb3W5SQnJ0thYWHSkCFDpEmTJjWOsC2Yul5ns9ks9enTRxo3bpy0detWKTk5Wdq0aZN08ODBRpa8ZVHX67xw4UJJo9FICxculJKTk6U///xTCgkJkR566KFGlrxlsWbNGumZZ56Rli1bJgHS8uXLzzk+KSlJcnNzkx5++GHp+PHj0kcffSQpFApp7dq1DSbjZa2M9OvXT5o7d67rd7vdLoWGhkqvv/56jeNvuOEGafz48VW29e/fX7rrrrsaVM6WTl2v87+x2WySp6en9N133zWUiJcNF3OtbTabNGjQIOmrr76SZs2aJZSRC6Cu1/mzzz6T2rZtK1kslsYS8bKgrtd57ty50siRI6tse/jhh6XBgwc3qJyXExeijDz++ONSly5dqmybNm2aNGbMmAaT67J101gsFvbt28fo0aNd2+RyOaNHj2bHjh01HrNjx44q4wHGjBlT63jBxV3nf1NaWorVasXX17ehxLwsuNhr/dJLLxEYGMjtt9/eGGK2eC7mOq9atYqBAwcyd+5cgoKC6Nq1K6+99hp2u72xxG5xXMx1HjRoEPv27XO5cpKSklizZg3jxo1rFJn/KzTFu7BFNMq7GHJzc7Hb7QQFBVXZHhQURFxcXI3HZGZm1jg+MzOzweRs6VzMdf43TzzxBKGhodVufkFVLuZab926la+//pqDBw82goSXBxdznZOSkvj777+56aabWLNmDYmJidxzzz1YrVbmzZvXGGK3OC7mOs+YMYPc3FyuuOIKJEnCZrPxf//3fzz99NONIfJ/htrehQaDgbKyMnQ6Xb2f87K1jAhaBm+88QaLFy9m+fLlaLXaphbnsqK4uJhbbrmF+fPn4+/v39TiXNY4HA4CAwP58ssv6d27N9OmTeOZZ57h888/b2rRLis2bdrEa6+9xqeffsr+/ftZtmwZv//+Oy+//HJTiya4RC5by4i/vz8KhYKsrKwq27OysggODq7xmODg4DqNF1zcdS7nnXfe4Y033mD9+vV07969IcW8LKjrtT558iSnTp1iwoQJrm0OhwMApVJJfHw8UVFRDSt0C+Ri7umQkBBUKhUKhcK1rVOnTmRmZmKxWFCr1Q0qc0vkYq7zc889xy233MKcOXMA6NatGyUlJdx5550888wzyOXi+7o+qO1dqNfrG8QqApexZUStVtO7d282bNjg2uZwONiwYQMDBw6s8ZiBAwdWGQ+wbt26WscLLu46A7z11lu8/PLLrF27lj59+jSGqC2eul7rjh07cuTIEQ4ePOj6mThxIiNGjODgwYNEREQ0pvgthou5pwcPHkxiYqJL2QNISEggJCREKCK1cDHXubS0tJrCUa4ASqLNWr3RJO/CBguNbQYsXrxY0mg00oIFC6Tjx49Ld955p+Tt7S1lZmZKkiRJt9xyi/Tkk0+6xm/btk1SKpXSO++8I8XGxkrz5s0Tqb0XQF2v8xtvvCGp1Wpp6dKlUkZGhuunuLi4qZbQYqjrtf43IpvmwqjrdU5JSZE8PT2le++9V4qPj5dWr14tBQYGSq+88kpTLaFFUNfrPG/ePMnT01NatGiRlJSUJP31119SVFSUdMMNNzTVEloExcXF0oEDB6QDBw5IgPTee+9JBw4ckE6fPi1JkiQ9+eST0i233OIaX57a+9hjj0mxsbHSJ598IlJ7L5WPPvpIioyMlNRqtdSvXz9p586drn3Dhg2TZs2aVWX8zz//LHXo0EFSq9VSly5dpN9//72RJW6Z1OU6t2rVSgKq/cybN6/xBW+B1PWeroxQRi6cul7n7du3S/3795c0Go3Utm1b6dVXX5VsNlsjS93yqMt1tlqt0gsvvCBFRUVJWq1WioiIkO655x6poKCg8QVvQWzcuLHGZ275tZ01a5Y0bNiwasfExMRIarVaatu2rfTtt982qIwySRK2LYFAIBAIBE3HZRszIhAIBAKBoGUglBGBQCAQCARNilBGBAKBQCAQNClCGREIBAKBQNCkCGVEIBAIBAJBkyKUEYFAIBAIBE2KUEYEAoFAIBA0KUIZEQgEAoFA0KQIZUQgEAgEAkGTIpQRgUAgEAgETYpQRgQCgUAgEDQpQhkRCAQCgUDQpPw/t5DkBrUzNBgAAAAASUVORK5CYII=", + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAiMAAAGdCAYAAADAAnMpAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjcuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/bCgiHAAAACXBIWXMAAA9hAAAPYQGoP6dpAAEAAElEQVR4nOydd3wT9f/Hn7mMpmm696QtlL333oKiuAfu7VdxgaKCioqKuMXxU9x89asyBEGUvafsMlta6N67aZukGXe/P1JCS1ugQJfck0cfNHefu/tcmty97j0VkiRJyMjIyMjIyMg0E0JzT0BGRkZGRkbmykYWIzIyMjIyMjLNiixGZGRkZGRkZJoVWYzIyMjIyMjINCuyGJGRkZGRkZFpVmQxIiMjIyMjI9OsyGJERkZGRkZGplmRxYiMjIyMjIxMs6Jq7glcCKIokpWVhbu7OwqFormnIyMjIyMjI3MBSJJEWVkZISEhCEL99o9WIUaysrIIDw9v7mnIyMjIyMjIXATp6emEhYXVu75ViBF3d3fAcTIeHh7NPBsZGRkZGRmZC8FgMBAeHu68j9dHqxAjp10zHh4eshiRkZGRkZFpZZwvxEIOYJWRkZGRkZFpVmQxIiMjIyMjI9OsyGJERkZGRkZGplmRxYiMjIyMjIxMsyKLERkZGRkZGZlmpVVk08jIyMi0JorMFZTbKp2v9SoXfLRuzTgjGZmWjSxGZGRkZC4jReYKZu5bgU0SnctUCoG3+k6UBYmMTD3IbhoZGRmZy0i5rbKGEAGwSWINS4mMjExNZDEiIyMjIyMj06w0WIxs3bqViRMnEhISgkKhYNmyZefdZvPmzfTu3RsXFxfatWvH/PnzL2KqMjIyMjIyMv9GGixGKioq6NGjB//3f/93QeOTk5O59tprGTVqFLGxsUyZMoVHHnmENWvWNHiyMjIyMjIyMv8+GhzAes0113DNNddc8Ph58+YRFRXFRx99BECnTp3Yvn07n3zyCePHj2/o4WVkZGRkZGT+ZTR6zMiuXbsYO3ZsjWXjx49n165d9W5TWVmJwWCo8SMjIyPT0skzlbE6/Vid64rMFU08GxmZ1kOji5GcnBwCAwNrLAsMDMRgMGAymercZs6cOXh6ejp/wsPDG3uaMjIyMpfE0aIs3jqwkv0F6XWu/y5+B0eLspp4VjIyrYMWmU0zY8YMSktLnT/p6XV/uWVkZGRaApkVJcyL24ZFtAOgVgi09wygvWcAKoXjMmuVRObFbSOjorjW9kXmCtLKi2r8yJYUmSuJRi96FhQURG5ubo1lubm5eHh44OrqWuc2Li4uuLi4NPbUZGRkZC4LK9OOYq0SIj19w7i//UB0Kg0ARpuFnxJ2c7AwnUxbAn+lBvF45xHObesqkgZyoTSZK4tGt4wMGjSIDRs21Fi2bt06Bg0a1NiHlpGRkWl0yixmDhQ6rLfuahce7jDYKUQAdCoND3UYRBq7WGZ7jR/zvsJgMTvX11UkDeRCaTJXFg0WI+Xl5cTGxhIbGws4UndjY2NJS0sDHC6W++67zzn+8ccfJykpiRdffJH4+Hi+/PJLFi1axNSpUy/PGcjIyMg0I5nGEkRJAqCPXwQapYpyWzn3H7ufR+IeASClMokN1m8BOGj/k3hDWrPNV0amJdJgN82+ffsYNWqU8/Vzzz0HwP3338/8+fPJzs52ChOAqKgo/v77b6ZOncqnn35KWFgY3333nZzWKyMj02pYXbiaDHMGXiovvNReeKm88FR54qXywmw/Y70oFrOZmjCVH7N/pNRWCoDZbia2PBa7ZAPAipn5uV/T3++jZjkXGZmWiEKSqiR9C8ZgMODp6UlpaSkeHh7NPR0ZGZkrjMgdkaSaU+tdr0BAQgIkfFQ+PBr6KE+EPsGWki08dPwh7NhrjHcVdKQPTcNX7UtaeRGzD66uc7+v9LqaCL3P5TwVGZkm5ULv3y0ym0ZGRkamJXFv0L0I57hcSoiARISiNz9Fb+Dddu/SxrUNPmqfWkIEoFI080HqB404YxmZ1oUsRmRkZGTOw39C/3PeMT0V13O1+nn+TDnOR4fX83vqNu48chegqDVWROTT9E/JMmdzqDCzEWYsI9O6kMWIjIyMzHkI0ATQXte+znUCArcF3MbMqDecyxJK85hyajLlYhlQtye8Uqzkjv1P8lfakXqPuyUrkVbgSZeRuWQavc6IzIVRUmlkfWY8CaV5WEU7erULXbyD6effBl+tvrmnJyNzRZJsTObphKdZU7QGW1UAanWUKOnt3pv/dv4vrkpXgnWerEw/Rp6pDB1eaHDDgqN4mQIFSoXSuR8Jie3mPwhVDsVTGYSfVo+XxpVsYykVNgsA23NP4eeq55rwLk130jIyzYAcwNrMSJLEirQjrEo/5kwPrI5WqeKZrqNo6+HfDLOTkbkyWZK3hFdPvUq8MR6AaG00r0a+ykfpH3G84jgSEkqUBLsEs6/fPgJdzrS8ECWJk6V5ZJsMIIFGXYlRmUdcxXGOVhzlUNkhDpcfwSg6RIoWPX933cyogN4oFArsosiW7EQWJe1HAlwEFe8NuAlXlbo53goZmUviQu/fshhpZn5POsi6zLhzjtEISqZ1v4o27nJUvYxMY2G2mZmZPJNvM7+l1F6KgMAo71HMbT+XrvquAHyf9T2PxD2CAgU6Qcfufrvpom+41WLesa1sLzzCMfs60hW7EBVWfuj8Azf63+gc83PibrbnnALgzrZ9GRlSt5tIRqYlI2fTtAJSy4qcQkQBXBXaidn9rufLoZOY0nU00e5+AFhEOz8n7pZ9xzIyjUBceRzjDo5Dv0XPh2kfIiExJXwKZSPKWN97vVOIANwVeBceSg8UKFjafelFCRGAlPIi3BTeDHe5m7hBxxjpPZKbDt9E3z19OVFxAoAhgW2d45PLCi/pHGVkWjpyzEgzsiU7wfn7TZE9GR/e2fm6k3cQ7Tz9eefgarKMpaRXFJNUViC7a2RkLhP/y/4fbyS/wSmTw/rQXteeWVGzmBQ0qd5tXJWu/NzlZxQoGOc77qKPfbr8u6tSjb+LH0u6LeHJE08yL3Menf7pxGDPwfTTD8YmdkYlaLDXUS5eRubfhCxGmpHDRY6UPhelymmCLc+pIG1zNp3uaItaUDI2tCM/Je52jC/MlMWIjMwlUG4rZ8apGczPnk+5vRwlSq7xvYZP239KjC7mnNuabVaWpx4mtlCkzFrJ8cy13NG2D5HuvvVuc6Ikl8VJB8g2luLtomNCRFcGB0bj66KjzGqm2GJkWUose/JSUViGM8v7Wtw9c3k/61V2lO5AgYJAOhApzQCGXOZ3Q0am5SC7aZqR0xHzAVp3XJQqLBVWFlz1N3/euYGSlDIAwvXezvHGqvEyMjIN41DZIUbuH4nnFk++yPgCtULN9DbTMY4ysrLnyvMKEYCfEncTV5LDgx0G81rvCXT2DuKTIxsprjTWOb7AXM4XxzbTwSuQV3tfw5jQDvycsJtjxVkMCIhyjludfpyrwzvzSq9riHT3IzXPnV09jzJB8yyeBJNDPC9n3U/g1kBeO/UalXa5eZ7Mvw9ZjDQjOqWjs2eeuYzs44X8NOAPCuNK8O/mg3eUI9Ano6LkzPhqnUBlZGTOjSiKfJP5DZE7Ium5pydbSrbQ0a0jy7oto2hEEXPazUEjXNh3ymK3cbAgnVuietLeM4AAV3cmtulOgKueLdmJdW6zJTsRP62e26J7E6zzZFRIB3r7hbM+8wSDAqNwU7kAjiok6zLiOFqcRRevYOyixPuH1hJGf27XfMAs30XcE3QP5fZy3kp5C7fNbozcP5K9pXsv11slI9PsyGKkCcnYmUPO/nzn626+oQAodpn5b48lFCWUIqgEutzjeEqzinY2ZMafGe8T0rQTlpFphZRYSng07lHct7jzn/j/kFmZyQ1+N5AyOIVjA49xQ8ANDd6nKEmISKgUyhrL1YKKU4b8OrdJMhTQ0SuoxrLO3sEkGQpwVWl4tOMZt0ueuZwlyQf5On47laLNGVMS4OrOlM7X8XOXn6kYVcHPnX8mRhfDlpIt9N/Xn6BtQbyR9AYWUbaayrRuZDHSRNgtdpZcv5r/DV3uFCQjg2PQL7cQ9IIJSSHh80II9ko7UVeHc6Ikl7lHNjotI2FuXnK8iIzMOdhTuoche4fgs82H77K+Q6fU8UbUG5hGmljWYxltXNtc9L61KjXR7n6sTD9KSaURURL5Jy+ZJEMBpRZTndsYrGY8NNoayzw0Wsx2Kxa7jWCdw/oZpvOua3MGBkTyYver8NC4OpfdE3wPcYPiyBiSwV2Bd2GwGZiVPAvdJh2j949mX+m+iz5HGZnmRA5gvYwUmSsot53x5+pVLvho3QBIXJ6CqbAShQALx//N/XtvJnleIv4fVWJ3g6xvddgnZ6BUwGslq6H0TD8LtaDknpj+KBS1e1zIyFzJiKLI5xmf80HqB2RaHAHhPfQ9eK/de4z3HX9Zj/VQh0H8N2E3L+1ZhoCCCL03/fzbkFZedEn7vSumL65KNfEluVSKNhJKcymzVPJgh8H1bhOqDeWXrr8gSRI/Zf/EnNQ5bCrZRL99/QjSBPFE6BNMj5x+wW4oGZnmRhYjl4kicwUz961wmlcBVAqBt/pOxEfrxoEvj6FQKpDsEuZSC993W4y1woZ7uBsBKzpS8cZhVCVVXSzsOP8yXhpXHu04lKiqmiMyMjJQYCngucTnWJy3GLNoRqPQcHvA7XwS8wkh2sZxZ/q7ujOtx1gq7TbMdiueGle+iduOXz3tGjzUWgwWc41lBosZrVKNRqlCUCgQUFBmMdPWz58QNy8AcowG1Ge5g+pDoVBwf8j93B9yPxnmDF5IfIFlBct4Pfl13kx+k5HeI3m/3fv09uh9KacuI9PoyG6ay0S5rbKGEAFHLYFyWyVFCSWkbc5GsjuKlkk2CWuFDbWbikeP307QH+CxzAo4ip+1KXCnu08oD3cYzNv9rqedp+yekZEB2Fq8lX57+hGwLYCfc37GS+XFe23fwzTSxMJuCxtNiFTHRanCU+NKhdXC8eJseviG1Tku2sOP+JKcGsviSnKI9nA8WKgEJRHuPsSV5DrXi5JEfLUxDSFMG8Zv3X6jYkQFP3T8gba6tmwo3kCfvX0I2RbC28lvYxWtDd6vjExTIIuRJiD2mzgUytouFpvJxv+G/cmOWftrLL++siNPdhlB/4BI1MKFPSHJyPxbEUWRd1PeJXhbMCMOjGB/2X76uPdhS+8tZA/L5sXIFxGExr+UHSvO4mhRFgXmco4XZ/PxkfUE6TwYEhgNwB/Jsfx4Yqdz/IjgGAqqAlNzjKVszkpgf34aY0M7OMeMDe3I9pyT7MpNIttYyq8n92IRbQyu2ufFIAgCD4Y+yIlBJ0gdksodAXdQbCtmZtJMXDe7ctWBq4gti73o/cvINAaym+YyYRPtdS63m+0c+i7eaRWpjiRCXmzNMs+CWiD3YCFd72mUacrItBqyzFlMSZzC8vzlWCQLWkHLvUH38nHMx/hpmt5tabJZ+SPlECWVRnQqDb39wrkxsgfKKiFUajFRVFVzRJREduScQqtUsy4jjrUZcehUGu6J6U8X7zPWm37+bSi3mvkz9TAGixlfrR53tZYZe5bXKJJWnU1ZCazLiKPUYiJM782ktn3qdeNGaCNY0G0BoijyY/aPvJf6HuuL19NrTy9CNCFMDpvMS21eQiXItwKZ5kVulHcZ2JqdyNLkWEz22ibQmB06bDNy69iqfsJHBHP35usv1/RkZFoVawrX8NLJlzhUfgiAUJdQXop4iSfDnmwSC8jlYGXaMdZnxvNgh4EE6zxJLSviv4n/cGObHoyuZhmpToG5nFn7/2Z4cAxDg9oSX5LDolMHeKrrCKeA2ZufyvwTu7irXT+i3P3YkBXPgYI0ZvWZWCtzpz5STam8kPgCfxb+SaVYiUqhYrT3aD5o9wHd3btftvdARgYu/P4ty+FLZGXaUZanHq53vfHrPNQ4YkFQgEJQ1GklqU7avhye3PYb3lq3S34ykpFpDdhEG7NTZvNFxhcUWAtQoGCw52A+jvmYAZ4Dmnt6DSapLJ+evqF083HUEvLT6tmbn3rOhnfVi6QBBOs8OVmaz/rME04xsj4znqFBbRkS5Giid3e7/hwtymJn7imuDr+wpn1tXNuwqPsiRFHku+zveD/1fdYWrWXtnrWEakJ5KvwppkVMk60lMk1K63jMaKEkGwpqCJGu3sHcEd2HB9sPYkRQO9zXWtGkSCgASQneg3wY9mZfAntXCYd6MnUVFRJTAkbUKB99mr35qfyedIBrI7rySq9rCHPz4rOjm2pF7cvItAZSTanceOhGXDe78kbyGxjtRh4JeYSiYUXs6LujVQoRgGh3f+JLcsk1GgBILy/mpCGfrj7B9W5zriJp4HAFp5UV0anaGEGhoKNXkHNMQxAEgcdCH+Pk4JMkDUriFv9bKLAWMOPUDFw3u3L1was5Wna0wfuVkbkYZOl7CWzMOuH8/fo23bg2opvztetflaTNNmP3U1DwtAumQSpGdu/DoMBoutwTQ/yiJE7+lUrGjhwkWx2WkhMWRl3foVGejGRkmpvlect5OelljlccB6CNtg2vRL7Cw8EPtxpXzLm4OrwzZruV1/f/hUKhQJIkbojsUaMnzdmcr0ia0WZBRMK9jjE5JsMlzTdKF8Xv3X9HFEW+zfqW91PfZ03RGtbsWUOYSxhPhz/Nc+HPydYSmUaj9X/rmwm7KHKgIB0AN5WGcWGdAbCarGx9bQ+rHtlCr8c7E7OjD8ZRaiStgmSDw0TrGeHOgGk9uHvz9dy+6hoA/Lv5gP+ZzJmCY8VA4z4Zycg0JRbRwoyTM/DZ4sONR24kviKeEV4jONj/IClDUng09NF/hRAB2J+fyp68FB7uMJhXe13DA+0HsS4jjl25Sc09tXMiCAL/CfsPp4ac4uSgk9zkdxN5ljxeOvkSus06JsRO4Fj5seaepsy/EFnmXiQmu8VZVyTK3deZgvv7xNWkbshixJz+DHypJ4eLMtmQ67CgGOvotnnkxwQAblkxno/yNtPbEExEvCvR48OBpnsykpFpLBKNiTxz4hnWFa3Djh29Us9TYU8xp+0c9Kq6C4a1dpYkxzI+vDP9AiIBCHXzorCyglXpxxlUT9puQ4qknT3GU31hwasNoa2uLUt7LEUUReZlzePD1A9ZVbiKVYWrCHcJ59nwZ3k2/FnZWiJzWfh3PIY0A+pqX8Ciai3Etd4ueLXzYND0XigUihrrzm6yBZC6MRONhxqvNh6gUKBtr6PPk13xbufZuCcgI9PILMxZSPud7Wm/qz2ri1YT6RrJz51/pmxkGZ93+PxfK0QALKIN4aygMEGhQKL+4PWmLpJ2oQiCwOSwySQNSeLkoJPc6HcjuZZcpp2chm6zjmtjryWuPK7Rji9zZSCLkYvERakiQu8DQJaxlITSPABKk8sI7u+omGqXRLZWay8eoqspMCzlFipyTIQMCADO/2SkV7s06ZORjExDMdqMTE2YiudmTyYdm0SSKYlxPuM4PuA4Jwef5J7gK6OATnefUFamH+VIUSYF5nIOFqSzPiOentWqtbaUImkNoa2uLX/0+APTSBOfxXxGqEsoKwtX0nl3Z9psb8PHqR8jiuL5dyQjcxayGLkERgTHOH//Nm47R4oyyTlQgLXMRpG5gm/jdpBlLHWOCXB1r7H9wa8dTxPdHuwItNwnIxmZ83Gs/BhjD4zFfYs7c9PnokDBtIhplI8oZ02vNXTSd2ruKTYpk9r2pbdfBL+e3Msb+//m9+SDDAtuxw1tztTxqF4kDRzpv091GUlccQ5vHVjFusx47m0/oFaRtFuje/Fn6mHePrCK9IpinukyqkZn36ZAEASejnia5CHJJAxK4Hq/68mx5PD8yefRbtYyMXYiJypOnH9HMjJVyEXPLgGbaOfDw+udtQNUaXbC7zFiu0tPxuOC0yQroEBE4rbo3nTwDMRNpcFH68YH1/yCdXsF00sfQRAEZ9GjkSHtGRIYTXxJLgtP7a+z6NE9Mf2JdPdlQ+YJ9hekMqvPdU1+QZKR+THzR95KeYtkczIAHXUdeSv6LW4NvLWZZybT1JzuoPxJ+iekmlMBR5bU1PCpPB329L8mOFmmYVzo/VsWI5dIubWSL49v5ZQhH/dlFvw+riT3TS3Gkep6txkUEMUDHQYxO/hb7B3UvLb5Aee6EyW5LE46QLaxFC8XHdfWWfTsBGsz4jBYzI6iZ9F9iJItIzJNhMFm4KXEl/g552cqxApUChXjfcbzaftPaatr29zTk2kBnKg4wbTEaawpWoNVsqJRaLja92o+jPmQGF3M+Xcg869BFiNNiF0SOVSYyfpHtyEuKyPjL3e8A/QMDIxiaFA7POuwWGTuzuXngcvoO6UbYz8Z3AyzlpFpGAcMB5iSMIXtpduRkPBR+TA5bDIzo2aiETTNPT2ZFogoinyW8RmfpH1CWmUaAJHaSJ4Lf65VlfeXuXhkMdIM/DTwD7L35fOS7bHzjl1x30aO/ZzIf05OwrutnDkj0zI5ndb5bsq7pFc66up0c+vGu+3eZYLfhGaenUxrIq48jmknp7GuaJ3TWjLBdwIfxnwoW9T+xVzo/VuWpZeR0rRyXDwv7AkxdX0mGne1LERkWiRFliIePP4g+i16njzxJDmWHG72v5n0IekcHnhYFiIyDaaTvhN/9/wb40gjH7b7kEBNIMsKltFuVzuid0TzZcaXcibOFYwsRi4j5iIz7qFu5x1nKbdQnm0kuH9AE8xKRubC2VG8g4F7B+K3zY/52fNxV7rzdvTbGEcaWdJ9CWHasPPvREbmHKgEFc+3eZ60oWkcHXCUa3yvIb0ynSdPPIlus46bD91MsjG5uacp08TIpfPOQ3GlkaXJsRwrzsIi2vHX6rm//UAi3X1rjLNZbNgrRbzbe9YIQvV20dXqvBv7XTwAR+6sYPv2BXLnXZlmRRRFPkn/hI/SPiLbkg1Ab31v3m/3PmN8xzTz7GT+zXTRd2Flz5XYRBsfp33M5xmf80fBH/xR8AfR2mimtZnGf0L+I8eWXAHIf+FzUGG18MGhdSgFgae7juSNPtdyW3Rv3FS1XTGZOxy1P9z7ePDFsc108Ark1d7X1Nl5d/eKOOxeCiZc3UfuvCvTbORZ8rj76N3oNuuYdnIaRdYi7gy8k+yh2ewfsF8WIjJNhkpQ8WLki6QPTedI/yOM9xlPWmUak09MRrdZx62HbyXVlNrc05RpRGQxcg7WZBzH20XHA+0HEuXuh59WT2fvYPzPKl4GkL7NUawsu4cVP62e26J7E6zzZFRIB3r7hbM+80wBoJJEA0IHF4aGtiPEzZO72/VHI6jYmXuqyc5N5splY9FG+uzuQ+C2QH7N/RUftQ8ftvsQ40gjv3b9lSCXoPPvREamkejq3pXVvVZjGmliTts5+Kn9WJK/hMidkbTb2Y5vMr+RY0v+hchi5BwcLsygjd6Hr+O2Me2fJbx9YBXbsk/WOTb3oKNrbk6wiY5eNS/m1TvvZuzNRZ0uEj5E7rwr03TYRBuzk2cTuDWQMQfHcLD8IAM8BrC993ayhmXxfJvnZVO4TItCJaiYHjmdjGEZHOp/iHE+40g1p/Kf+P/gtsWN2w7fJltL/kXIV59zkG8uZ0t2IgGu7jzTdRTDg2NYmLS/zjbgxQmlKLVKyuyVeNTRVfd0593dXx1GEqDr/e1rjSm1XpybpshcQVp5kfOnyFxxUfuR+feRYc7g1sO3otus49WkVymzl/FA8AMUDCvgn37/MMR7SHNPUUbmvHR3786aXmswjTTxTvQ7+Kh8+D3/dyJ3RtJ+Z3u+z/xetpa0cuQA1nMgAW30PtwU2ROACL0PWcYStmQn1moDXp5dgauvC4bz7DNzQzaVnQTcIy9Px9IicwUz963AJp35IqoUAm/1nYiP9vyZPTL/TlYWrGT6yekcqTgCQLhLONMjp/N4yOOyBUSm1aISVMyImsGMqBnElsXyQuILbCrexCPxj/BUwlPc4HcD78e8T4Q2ormnKtNA5KvSOfDUaAk+q9NusKsnxdWaW52mstSKZxv3c3bepVLCmG7C1F912TrvltsqawgRAJskUm6rbPC+ZFo3FtHCzFMz8d3iy7WHruVoxVGGeQ5jb9+9pA1NY3LYZFmIyPxr6Onek3W912EcZeSt6LfwVnmzMG8hbXa0of3O9vyY+aNsLWlFyFemc9DWw59cU01bR67JgI9LTYtDeY4RSZTw6+JDtIcfx4qzarhN9hekEe7mzeHv40EC/SBPufOuzGUj2ZjMxNiJuG124+2Ut6kUK3k85HFKRpSwte9W+nr2be4pysg0GhpBw6tRr5I1LIv9/fYzxnsMSaYkHop/CP0WPXceuZMMc0ZzT1PmPMhumnMwNrQj7x1ay8q0Y/T1jyClrJBtOSe5J6a/c8wfybFkbHHUZggZ4I+bjy9rM+KYfXB1jX0JKPD5XykoYPx1vfjvqd1Euvs4O+9aRFuthngyMudiSd4SXj31KvFGR92aKG0UMyNn8mDog808MxmZ5qG3R2/W916PRbQwJ2UO8zLnsSBvAQvyFtBB14EZbWZwb9C9soWwBSKLkXMQ6e7LE52G80dKLH+nHcFPq+f26D4MCIhyjim1mChNLEMFtBkdikFpq3NfIhKFh4vwjHSnf3AUFZKFP1MPOzvvPtNlFB51NNQ7F3ZJJL44t851FVbZTfNvxGwzMzN5Jt9mfkupvRQBgdHeo/k05lO6undt7unJyLQINIKG16Nf5/Xo19lXuo8XT77I1pKtPBD3AE+ceIKb/G/ig3YfEKINae6pylQhN8q7DPw6agVpW7KYLv6HtPKiWlYRAHWCjbBHTPSa3Jnx/zfsko9ZbjXz5fGtnKonHdhFUPF452F09g6+5GPJND8nKk7wTMIzbCjagB07HkoPHgp5iNnRs9GpdM09PRmZFo9FtPBOyjvMy5xHrsXxENdR15FXIl/hnuB7mnl2/17kRnlNSEmyAY27+pxjPJZaAej7zKU/vVpFO58f3VxDiLipNDViWSpFG18e30qyXLukVfNL9i+029mOjv90ZG3RWqJdo/m1y6+Ujizlk/afyEJERuYC0Qga3oh+g5xhOfzT9x9Geo0k0ZjIvcfvxW2TG/ccu4csc9Z59yPTOMhumsuAMf/8DfJc99pRuSnx7eB9ycfblZtMSnkRAB5qLffGDKCrTwiCQkG+qYyFSfs5UpSFVbSzOPkgL/a46pKPKdN0lNvKmXFqBv/N/i9l9jKUKLna52o+6/AZMbqY5p7eFU+RuaJWtppe5SKn0rcgiswVlFnN2EQRpSAgKBQ1/kYDPAewqc8mzDYzs1Nn803mN/yS8wu/5PxCJ10nZkbN5M6gO5v5LK4sZDFyiYiiiM1ow7udw/xUbK6d9kuliCpfwnvopQsRgC3ZCc7f/9NpGO08/Z2v/V3debzTMN48sIpck4FThnwyK0oIdfO6LMeWaTwOlx3m2YRn2VqyFRERL5UXL0W8xKzoWbgoXZp7ejLUXdcH5No+LYnYgnTmxW3j7PgDpULBW30m4ut6psaTVqXlrbZv8Vbbt9hVuovpJ6ezvWQ7dx27i0fiHuHWgFt5r917couEJkB201wi+YcLAQjo4cvfaUf5Mm5rrTHuK60oAPVEz1rrGorJZiGjogSAcDdvpxBZl2Hktb0Oa4lKUDIsqK1zmxMldQe5yjQ/oijybea3RO6IpMeeHmwu2UxHt44s67aM4hHFvBvzrixEWhB11fUBubZPS0CSJP5IjuWrOoQIgF2S+N/JPVhFe53bD/IcxJY+W6gYUcHLbV7GTenGTzk/Ebw9mC7/dGFhzsLGPYErHFmMXCKpmx1pvdkxlfyZerjGutPdffXrbEgK2NEnp97eNhdKpf1Mts7ppzCLTeSWtbnMOVhCucVxofSt9oRmEevO8JFpPkosJTwW9xjuW9x5LP4xMiszucHvBlIGp3Bs4DFuCLihuacoI9OqWJMRx+qM487XWqWKCL03etUZMX+8JIefEv455360Ki2z280mb3ge23tvZ5jnMOIr4pl0bBL6TXoePP4geZa8RjuPKxXZTXOJ5OzLB2BraDqgAGB8WGfGhnbEQ6OluNLI1yf/hzVQARqBxUkH6OsfgWuVUGkobmoXBIUCUZJIMhRgE+3csT6PMqvEZ4N90Gsc+jKx9MyXpaEpwzKNx97SvUxJnMKu0l1ISPiqfXmhzQu8GvkqKkH+OsrIXAwVVgt/pR1xvr45siejQtqjUaoQJZH9+Wn8lLgbi2hnT34qY0I7Eunue979DvEewta+WzHbzMxKmcX3Wd8zP3s+87Pn09WtK69Hvc6tgbc25qldMciWkUukML4EVApEnUOIjAntwM1RPZ3N8iwnTGCWcB/pBTiyXP7JS77o46kFJT19wwAos5qZvjuBZakmYjxUPN3NcYxck4EdOUnO8T18Qi/6eDKXjiiKfJb2GWHbw+i/rz87S3fSXd+dlT1WUjC8gDei35CFSCvBZLM29xRk6uCfvCSn+2V4UDvGh3dGo3R8pwSFQL+ASG6J6uUcv/UsC3W5rZzVhat5MfFFBu4dyJ/5f9ZYr1VpmdNuDnnD89jWextDPIdwvOI4tx29DffN7jx0/CEKLHLm4qUgi5FLpCy9HNwVztdXhXYCIC/PxiuvFLL1/aMAjH7uTNXW48U5l3TM0SEdACgwavnosAaQ+GKokrTyIlamHeW92LVUVrlmBgRE4qaWYw6agwJLAfcduw+3LW48m/gs+ZZ8bgu4jcwhmcQOiOUav2uae4oyDeCfvGS+OLq53vVxxdlNNxmZGlQvczAsuB0AJruJcQfHsTxvOaW2UgYFRqNSOG55J0oz2VS0iZmnZjJg7wC8tnhxTew1fJz2MbsNu8mszKz3WEO9h7K973bKRpTxYsSLuAgu/Jj9I/7b/On+T3eW5C1p3JP9lyI/jl0i5mILYrQScFghvF0cdR/mzSvjnXdKecs/G1edig69w2Bn1Tb2S3u68tf6kl3RmxWpakCBj6acJSm7IaXmuFCdV42nAZmmYWvxVp5PfJ79ZfuRkAjUBPJ6+Ou8GPGiXIa6lbInL4UfT+yqsUwBNQIll6Ycwk2tZWi14HGZpqF6UKpHVcPRfYZ9rCtax7qidYCjwFm+pYIKqYRKSwXvHBRRKVTYpDMxdXYc+xngMeC8x9SpdLwX8x7vxbzH1uKtzDg1g39K/+HWI7eiV+q5I+AO3m33Ln4auefYhSBfGS8BS7kF0SqijHbEf1hFO5lVmS4rVlSgUoioCkoJ7ONHctkZ5a6/SEuFTZSYd9xA1K/prEjVcDpGpX9gzSZQCqC3bzjPdx+L7iJjU2QahiiKvJfyHsHbghlxYAT7y/bTx70Pm3pvImdYDtMjp8tCpJVitln55eQe5+t+/m14vfcE5g27i1l9rmVQtfYQC07tk1sxNAOnHwIB4kocludh3sP4odMPADwU/BD99IMplrIxU4aEI9C/uhA5jUahoZu+W4OOP9x7ODv67qBsRBnTIqahUWj4Pvt7ArYF0GN3D5bnLb/YU7tgiswVNRq0FpkrGv2YlxPZMnIJpG91mGXD+gaRhCNgdEXqER7rNJRDhyx08qqAYuh0Tzv+Tjvq3K63b3iDj7Ux08RT2wuIK6ltVbk7piOCohCbKOKr1TEgIAo/rb6OvchcbrLN2UxJnMKy/GVYJAtaQcu9QffycczH8hNRKyGVVH7kR/rRj2EMw4OaJat356Vgrspi6+MXwcMdBqNQOB4EgnSePNBhEAC78pKxinZ25iZxVVinpj2JK5z+/pFsyU4EYGXaUbr5hKJXu/BA8AN8k/kNP2b/yFNec3lQ/T3bbN+RIG2rd18iIhNiJ3CVz1VMCppEhDbiguehU+n4IOYDPoj5gM3Fm5lxcga7Dbu58ciNuCvdmRQ4iXfbvouPxueSz7k6ddW/aW21b+RHtUsgY4ejfseQiV3QVgVLHSxM54XFO7Bawd9uAAWs75VBQlV2i5fGlV5+Fy5GTpVauWF1DmP+yiahtG73zo2RkdzVrh/3tR/AtRHdZCHSBKwtXEuv3b0I2RHCorxF+Kv9mRszl4oRFfzU5SdZiLQitrOdWcziOq7DG2/60IfpTGcNa6iggiPFZ+IHrg7vjEKhwISJL/gCE6aq5V2cY44UySXFm5q2Hn5E6h03+DxzOW8dWMnq9GOcKM3l2YA5gIJ5JS8hSSLXuj7Ll+3noVKoEM66BSpQoELF+uL1vHTqJdrsaIPLRhdidsZw19G7+C3nN0w20wXNaaT3SHb124VhhIGp4VNRK9R8m/Utftv86Lm7J3/m/XnefZzGLtVdG+U0ddW/aW21b2TLyCWQF+twvUT0CeT+ooF8E7cDCYlvnnF8KdqWZ2ANUJBhdhRGUykEHuwwCJWgvOBjXL0ym5MGx1OZvY5KPp4aAb1a1pRNgU20MTtlNl9kfEGBtQAFCgZ5DOKT9p8wwPP8PmaZlklf+jp/FxE5wAEOc5j3eA8lSkIi2+Hi54fW4sH7bjvZwx4OcAA7dr7jO+Yzn566ns6Ue6PN0oxnc2WiUCh4pOMQ3j+0DoPVTInFxB8ph5zrByvvY4d9PmvED9nQaQMdvALp5dGD6w9dT5GtyHmzl5D4b5f/crP/zawtWssf+X+wq3QXSaYkTuae5Lfc3wDwUHoQo4thmNcwbvW/lUGeg+p1w+pVej5u/zEft/+YDYUbeDnpZfYa9nLDkRvwUHpwV+BdzG47u15riUW00GlXJyb4TeCz9p85rXL/Ni7qLvZ///d/REZGotVqGTBgAHv27Dnn+Llz59KhQwdcXV0JDw9n6tSpmM3mi5pwS6LopAGVqxJBEOjtF8ETnYeRtTmI8lxHAJVVVGPq79B7Pi46nuk6io5eDSsr/NUwP4J1SpT1fP7a6GU92dikmlO58dCN6DbreCP5DYx2Iw8HP0zRsCJ29tspC5FWTgwxuONeY5mNqgcA7KTrTnAycAdHw1fxt7SKjnTkUz7lcz6nkkp60YsO9o4Uah2xW3KcVvPg7+rOSz3H0bWOTuVdlFcRqexGpniMzeXLABjoOZBDAw7R171vDQvJAI8BqAQVE/wm8G2nbzk68CjGUUYKhxXyZYcvud7vejxVnsSWxTI3fS5DDwxFvUlN8LZgxh0cxwepH5Bhzqg1B4AxvmPY3W83hhEGpoRPQalQMi9rHn7b/Oi9uzd/FfxVa5tl+ctIMifxRcYXzEmdc3nerBaIQpKkuirn1svChQu57777mDdvHgMGDGDu3LksXryYEydOEBAQUGv8r7/+ykMPPcQPP/zA4MGDSUhI4IEHHmDSpEl8/PHHF3TMC21B3NR87PkDWm8XJqfcDcC2bSZGj87GZgOQGEMSd6xQ0W9QDN18QlAqLlz7FVcaWZocy7HiLMqtEvvzozlQULO3jQK4MVLH0vEOgXOiJJfFSQfINpbi7aJjQkRXBgdG19hmU1YC6zLiKLWYCNN7M6ltH6LcZZdCXfyZ9yczkmZwvMJR1bGNtg0vR77MI8GPyMGo/xIsWFjBCp7mabKpJzVXArXdlTFxT3G98joe7zTM+XRqxcrj0uP8gCNQsk1hbz6v/IaJoX2a6hRk6iDXZCC2MINyayWuSjWdvIMIdtUTsD0Ak2ji1OBTzlgQi2jh6RNP803WN/iqfckfln/B1oejZUdZmLeQTcWbiKuIo8hW5FznonAhQhtBP49+TPSbyI1+N6JVaWvtY13hOl459Qr7yvYhIeGp9OSuoLt4J/odvDRejNo/im0l25yZPvM7z+f+4Ptr7COtvIjZB1fX2vcrva4mQn9541MayoXevxssRgYMGEC/fv344osvAEcWQXh4OE8//TTTp0+vNf6pp54iLi6ODRs2OJc9//zz7N69m+3bt1/Wk2lq3hW+Jnx4MHdvvp4TJywMGJCJwSDheEcl2gtFnLD3a/B+K6wWZh9cRXuvQEYEt8NdreX/jubxxn4JUCAoQJRALcDTXT35aJAvBeZyZu3/m+HBMQwNakt8SQ6LTh3gqa4j6OIdAsDe/FTmn9jFXe36EeXux4aseA4UpDGrz0RnkbYrHYto4fWk1/k682uKbcUICAzzGsbc9nPp6d6zuacnc4kc5Si/8Rub2UwccRRTfM7xChSMkEbScd+9iGZHFlxP3zCuCe9CuN6bzIoS1qQfZ335btZ1nkuxLgM1al5RvMLrvN4UpyTTALYWb2XEgRG00bYhZUhKjXW/5PyCTbLVutE3BJtoY3XRapblLWOXYRfJpmRM4pkYk9PuneFew7kt8DYGuA9wPtgYbAZmJs3kp+yfKLGVoEBBZ7fOHKs4VuMYSpSs7LmScb7jAMeD6/LUQ+zKrV1M89muo+hch6WoKWkUMWKxWNDpdPz+++/ceOONzuX3338/JSUlLF9eO33p119/ZfLkyaxdu5b+/fuTlJTEtddey7333svLL79c53EqKyuprDwTeGMwGAgPD29RYqQk1cC8yN/o/VQXes4cRL9+GWRm2rFXizNyVdqpsLZrsI9vaXIspwz5vNDjKgBsNhua79OQgI3XBbHwVAVfx5UB8OlgX57p5smS5IMcLcri9T7XOvfzbdx2jHYrz3YdBcCc2DVE6n24s51DIImSxIw9yxgV0r5GAN6VSKIxkWcTnmVt4Vrs2NEr9dwXdB/vtXsPvUoOCG6NGDCwmMWsZCX72U8mmU73i4BAIIH0oAfjGU8AAdzN3bX2MY1pzGEOh/Kz+DZ+e50N2KoT2a2E971eoYQS/PFnPvOZwIRGODuZi+XJ+Cf5MvNLHg95nK86fdXoxyuwFLAobxGrClYRWx5LdmW208ohIBCgCaC7vjvjfMZxR+AdhGnDWFO4hldPvcq+sn219qdAgVbQsr3PdtzEUL48vrXe2lWuSg3PdB1JtEfzWb8vVIw0KOCgoKAAu91OYGBgjeWBgYHEx8fXuc1dd91FQUEBQ4cORZIkbDYbjz/+eL1CBGDOnDnMmjWrIVNrctI2OiLmfXoFcO212bWECIDJruTUKRvt2qkbtO/DhRl09g7m67htJJbmsSw5EglvxodpGRWqY1Sojtui9by2r4hRIY6+M0mGglrxKJ29g1mUdAAAm2gnrayIa8I6O9cLCgUdvYJIMly5ZYwX5izkteTXSDAmANDWtS2vRb3GfcH3NfPMZBqCiMhOdrKIRWxnO4kkUk65c70ePd3oxjCGcTu3M4hBNeIEijhjXldW/fuRH7mLuwDo4x8BDOV/J3djrKMkvFap4s52/RjoFcVLPM7LvMxHfMS1XEsvevEHf9CGNo33BshcMP/X8f9YXbiaeVnzuC3wNkb7jG7U4/lp/JgcNpnJYZOdyw6XHWZh7kI2l2wmriKOtUVrWVu0lmknpzndO73de3Os4lgNywo4gmwrxUquOjiOicIbuOBwwyiACL0PoiSRUVGMBJjsFj4/tomXe16Nv2vNuKiWRqNHP27evJl33nmHL7/8kgEDBnDy5EmeffZZ3nrrLWbOnFnnNjNmzOC5555zvj5tGWkuRElkReoRduelYLCa8dS4EnLYUTbnjUVuHDhQiVi7qzgAMxbsJmBkRoNiOPLN5WzJTmRsWEdKzFGcMlTiqTHx+pmgf8aEuTIm7EzPGYPVXMvV4qHRYrZbsdhtGG0WRCTc6xiTYzJc0vvT2jDajLyS9Ao/ZP2AwW5AiZKrfK7i05hP6aSX60O0BnLIYQELWM1qDnGIPPIQqwpZqVARSijjGMd1XMct3FKrdsjZ+OBDNNEkkUQggaxgBb3pXWNMH/8IuvgEsycvlcNFGRhtFlyVGrr6hDAwIApXleOhQ0DgXd5lOtOZxCTWsIYooriTO/mRH9EgB7g2lFXpxzhYkE6OyYBGUBLt4c/NkT0J0p3777o/P43lqYcpNJcT4OrOzVE96eYTypY+W4jaGcX1h67nxzYb2ZOXgclupa2HH3e160ega+Na4Lu7d6e7e3fna5toY2XBSpYVLOOf0n9IMaeQaEqsd3sRkSJbIb/yIrco5zDYrzv3tR+IZ1VT1KLKCn48sYuE0jyMNiurM45zb0zLDrRvkBjx8/NDqVSSm5tbY3lubi5BQXVnicycOZN7772XRx55BIBu3bpRUVHBY489xiuvvFJnIKCLiwsuLi2nn8rq9Di2ZJ/kwQ4DCdZ5klpWxO/5G8jQBPD3mkrq88IISpHyRF8+e64b8SU5/JywG0+NtkYMx+9JB2rEcHx2dBMSEm30vkwM64pmTRqg4OVeJrZkZzDoLDEjc+EcKz/GswnPsql4EyIinkpPngt/jtnRs+sMLJNpGdiwsZKVLGMZu9hFCimYOZON5403AxnIaEYziUl04eJcjvdzP7vYxU/8hD/+dY7RKtUMD27H8Kr+J+fCCy9Ws5oDHOB2budXfmUpS5nDHKYw5aLmeKWSUJrHyJD2ROp9sEsSy1IO8enRjbzR5zpclHXfxk4Z8vkufgc3RvWgu08oe/JS+Or4Nl7pdTVhbmHM6zCPR+If5d202Xzf7f/w07rxZ8phPju6iTf6XIe6ASUYLhWVoOL6gOu5PuB657JBewfxj+Gfc25nxcQC+1Q8hMfIs4XhqYkBwMfFjcc7Deflvcsw223syUvh1qjeTsHcEmlQSoBGo6FPnz41glFFUWTDhg0MGjSozm2MRmMtwaFUOv7IDYydbTaSyvLp6RtKN59Q/LR6+vhH4HYC2kUU8/XXftx2mxve3qfPUYKqJzTRLpB31J1gnSejQjrQ2y+c9ZknnPtdnxnP0KC2DAlqS4ibJ3e3649GUKERVATrPOmwKAsJGBuqZUCAJ8WVxnrn6KHWYrDUTJc2WMxolWo0ShV6tQsCCsrqGOOp/nffiOdnzSd6RzRdd3dlQ/EG2uvas7jrYkpGlvBR+49kIdLCSCSRWcxiOMPxxRc1am7gBn7kR5JJJoII7uM+lrKUSiopoogd7OAt3rpoIQLwGq+xilX1CpGLpTe9OclJfuAHVKiYylTCCGM7FxbAL+MIxBwcGE2Imxfhem8eaD+QokojqeVF9W6zIfMEXXyCGR/WmWCdJzdE9iBC783mLIdL9qGQh+inupkD9j/ZVvEHYW7ePNhhECWVJmIL0pvq1OolqzILJUr81H501HVkpNdIxvuMp497H4LUwSidFjaJb7K/pv2u9oRsC+Glky8B4KbW0MvvdMbQmVYlLZUGu2mee+457r//fvr27Uv//v2ZO3cuFRUVPPjggwDcd999hIaGMmeOIx964sSJfPzxx/Tq1cvpppk5cyYTJ050ipKWTrS7P9tzTpJrNBCo8yC9vBixwIZHoI7HHvPgscc8kCQJtToZ0Q4dKCBJ64fFLBAfb0WSJBQKxQXHcMSX5LAp00RSmQ21AtZdF8KiU/vxcam/rG+0hx9Hz6r8GFeS4wxcUglKItx9iCvJpWdVBVhRkogvyWFUSPvL/ZY1O2W2Ml48+SI/Z/9MhViBSqHiWt9r+bT9p7TVyY3MWgpGjCxlKX/yJ/vYRwYZWHHEZChQEEAAYxnLOMZxJ3cSRli9+yoyV9SoOKlXubSoUtgP8iD3ci9P8zTf8A3DGMYQhvA7vxNEw+oPXemYqgI23c5R0yWprICxoR1rLOvsHcyhQkcNkAJzBT0UN5Ko3MzUxKlc53cdUboootz9SCoroF9AZGNN/4I4NfgUSoWyzgSI2MIMvjq+FZtoI9ivGKW2iG0l29hj2MPy/OW81+49wPEdOI1dqieWoIXQYDFyxx13kJ+fz2uvvUZOTg49e/Zk9erVzqDWtLS0GpaQV199FYVCwauvvkpmZib+/v5MnDiR2bNnX76zaGSuDu+M2W7l9f1/oVAokOwibdJFwnv4OsfY7Y4AVj+MPOx6lOJNgQTkt6W7W5Tzw3ShMRwuCjW/nQoGJJZf7cWevBS25Zzknpj+znF/JMdSYjHyYIfBAIwIjmFzVgJLkg8yJDCa+JJc9uen8VTXEc5txoZ2ZP6JXUS6+xDp7suGzBNYRFutOJbWzAHDAaYkTmFHyQ5ERHxUPjwb/iyvR7+ORpB99c3NXvaygAVsYQsJJFBGmXOdG250ohNDGcpt3MZwhtcq110fl9qbo3pdH4tox1+r5/72A4l09613m4ut6/OV+1e8zuvcyq3sYAehhPIYj/E5n6OSi2KfF1GSWJS0n7Ye/oS6edU7zmAxOzv4nsZDraW0yjpssJoQFAKLuyxl3OGRDDswjLTBaXhozoxpTlRC/Z8Fn6rGgCpBhYetEy+2HedcZ7E7KgBLksTx4uxa27RULuqT/9RTT/HUU0/VuW7z5s01D6BS8frrr/P66603535/fip78lJ4uMNgQty8OLwriUP2vVT2PfP2vfOOIwi0OzkE9vKjVAnte0iMCndt8PEWJAVTaVfTzz+Xv9L24qfVc3t0HwZU6w5aajFRVM1t46fV81SXkSxOOsDGzBN4uei4t/0AZ3wKOLqNllvN/Jl6GIPFTJjem2e6jMJD0/A5tiREUeTrrK+ZkzKH9EqHebWrW1fmtJvDdX7XNfPsrlwKKGABC1jFKmKJJYccZ5CpEiUhhDCa0UxgArdzO154XfSxztWbw4dzi5EKq4UPDq2jvVcgT3cdibtaS56p7JxP3QXmcr44tpnhwTE83HFwg2LCZvWZSJAmiO1sZytbuYu7mMc8/sf/+IzPeJAHL/p9uBL47eResipKnaUPLpV+nv2YGj6Vj9M/5uH4hxmkePiy7LcxCXfzJkTnSZaxlFOGAvbkpdC/ypKjUTo+t1tzTpJpLAEg2t1Pzqb5N7AkOZbx4Z2dZru0fQ5LR3yHUueY778vAyQGkk7nO/uTo84+ZwyHoFDUGcOxObOSxFJ/1ArYc/MgoO5YnNOdQqvTwSuQV3tfc85zGRXSgVEhHc5zxq2DIksR005OY0HuAkyiCbVCzc3+N/NJ+08a1GlT5tIREVnHOpawhJ3sJIkkZxM5AE886Uc/RjGKO7iDnvS8bMcut5rZnn2yznWllSY4T5mYNRnH8XbR8UD7gc5l52s2uSU7ET+tntuiHRk3wTpPTpbmsz7zhFOMVI8JA7i7XX+OFmWxM/eUs67PcIaTQQZzmcsMZvAQDzGb2SxiUa1sHhmHEDlSlMW0HmPxPs+TvodGi8F61jXYasazyhrtoXY8hBksZj5q/xErClYwP3s+Hp79Gezd8GKVTYlCoWBsaEd+StwNwPcndnKwIJ3e/hFIksTe/FQOF51p8Hi2u6olIouRC8Ai2hA447fLOVCAJABhZyKTMzLsKBFxx0qPRzqSkm1tcAyHxWrl2zhHyfeN1zVv1byWzK7SXTyX8By7DbuRkPBX+/Ny5MtMbzP9nKZNmctHMsn8yq+sZz1HOUohhUhVJcE0aIgggv705wZu4HquR0vjBAmnlRfx+dHNtW46p/kmbjv/6TyMrj4hda6H2nV9vDQ6RgTHMOwcGTOXu67PFKYwmck8xEP8yq/0oQ/jGMdCFl6SxejfgiRJLDi1j9jCDJ7rPuaCOpNHu/sRX5JT40YcV5xDdFX7Cz+tGx5qLfElOYTrvdnaZysRO9rwq+F9bgld2WjncrkYHBhNUlkB23NOAXCgMJ0DhbUDb8eEOpInWjpyg40LoLtPKCvTj3KkKJMCcznpGQXYQgV6Bjn+wGazDVGUCNGUoQ91Q6VVMSI4hgJzOUuSD5JjLGVzVgL789MYG3rGKjE2tCPbc06yKzeJbGMp3X6Po1JUMyxIzdCQ1u06udyIosjHqR8Tsi2EwfsG84/hH3rqe7K+53ryhufxatSrshBpJMyYWchC7uIu2tEOF1yIJppXeZUtbEGBgpGM5B3eIZlkKqkkkUR+4Rdu5/ZGEyLFlUY+O7qphhAJc/MiQu/tfHiwSHbmxW0j7RxZF6fr+gS4uvNM11EMD45hYdJ+duUm1bvN+er6lFsr640JK61HOGnQ8D/+RzLJ9KY3a1mLP/68xEtO99aVym+n9rG7ylWuVaoptZgotZiw2G3OMT+e2MkfybHO12NCO3CsOJt1GXHkGEtZkXqY1PIiRlYF7CsUCsaEdmRl+lEOFWZgt2l5xOMdCqU0Xsx4qKlPscEoFAruadefW6N61YqNAfDSuDKpbV9ui+rdKjr9ylfvC2BS274sTz3Mryf3UmatxN9kxMVDxQ1tHEVrXnqpGFDQ3ZJD5FWOQmQNjeFIKBFIMHRBI4hsvUF2MZwmz5LH1ISpLMlbQqVUiYvChUkBk/ik/ScEucgZCI1BLLHO/i0nOEEpZ9yRrrjSnvYMYQi3cAtjGHPBQaYNxWbdiihmolJfgyB41Vq/NiOOMqsjeybK3ZeHOwzB39XxxGywmPnl5B5iCzOwinZWpB7hyS4jau0DHMn4bfQ+3BTZE3BUscwylrAlO7FZ6vq0oQ372c9KVnI/9/M+7/Nt1b9buKXJ59MS2JLtKAD20ZENNZbf336gM2i4qNKIopoFu62HP490GMLy1EMsSzlEgKs7T3QeViPodXxYJyx2G/9L3IPRZiHGsydXeV3D2pK/+SD1A15o80Ljn9wloFAouCqsE6NC2nO4KIvcqgKWITpPujawOWtzI4uRC0CrUnNH2z7c0dbRifO9I98Q1McbVVVRnIULKwCJvmTS56kbndtdaAzHsIC2aL5PA2DdtbJ7BmBT8SamJU7jQJnD7B2sCeb5iOeZGj5V7ph7GSmhhIUsZCUrOcABsqnZNyOYYIYy1Blk6kfT9bgwmV7DbtsCKFGqhqLR3IxKfT1KZSQWu81puVALSiZ3Hl4jENtDo+WRjkOYuXcFxRYjR4oyKTJX1JlZ46nREqzzrLEs2NWTg+eoNXG+uj71xYQ1pK7PBCaQTz6zmMVsZnMrt9KFLixhCR34d8R9XShfD7vrvGOe7z621rI+/hFVpfzrRqFQcH1kd66PPFMN9WlxBAHbAph+cjo3+t9IjC7m4ibdhKgEZatwxZwL+areQIxFZiS7hG9nb+eyvDwRDXb0WgXBfRpeMKnr79lIwNBAF4aHtOz0q8bEJtp4J/kdArcGMvrAaA6WHaS/R3+29d5G1rAsnm/zvCxELgERkY1sZDKT6UEP9OjxxpvHeZw/+RMDBnrRi2lMYw97sGMngwz+4i8mM7lJhQiAUtkeUAJ27LatmIxTKCuNwlDSheKyGfioEwCJ7j6h6FVmbNbtGCueoqLiP0iSiFpQMqAq6FwCUsoL6zxOWw9/5xPlaXJNhvPW9YkvyamxrL6YsNOcruvT0KZlr/M6RRRxPddzjGN0ohO3cAtG6i+CKHPxqAQVa3uuRUJixP4RiPX1+pC5rMiWkQaStskRlBrSPwCAggIbkiQRRikBPeuvSVAfPycYOFFqRaWAbTeGnn+DfyEZ5gymJEzhz4I/sUpWtIKW+4Pv5+N2H+Oj8Wnu6bVa0khjAQtYy1qOcIR88p1BpmrUhBNOP/oxkYncxE3oaFlCWKnsAs4+uWeqNYvicTTE8UxbCVFSYJN0GEoqqtYqAIky2040LlPQq89kyNjquamMDe3Ie4fWsjLtGH39I0gpK2xxdX306FnOco5xjFu5laUs5S/+4nVe52Xqbzoqc3H09ezLS21e4t3Ud7n3+L380vWX5p7Svx5ZjDSQzF2OJ52IkY7Yj+eeKwQU9CSbTpMaVtnTZrNx/yZHZP2aCVde/MOqglW8dPIljlQcASDMJYwZkTN4PORx2QLSQCxYWMEKlrOc3ewmlVQqOVON1BdfhjGMMYzhTu4khpZtehbtadjtKVBP4KYCidPdJE6V96J38JOolF0RlO2x2w9gqpiB2fgIPbUuFPlNZGPBDfUWfYp09+WJTsP5IyWWv9OOtOi6Pl3oQhxx/MZvPMETvMIrfMZn/MzPXMXlqbsh42BOuzksz1/Or7m/cmfQnU1es+jlPcsprKyotXxEcAx3tas79bi+xoCnkSSJFalH2JZzskkbA14ICqkVNIgxGAx4enpSWlqKh0fzvmkLxv1FyvpMXrQ9iiAI+PqmUFRkZxYbmV7xABrdhTci6rwwnbgSK4MDNey4sf4y1/8mLKKFt5Pf5suMLym0FaJAwRDPIXwS8wl9PfuefwcyABzlqDPINI44iil2rtOiJYooBjOYm7iJ8YxvsZU9RTEDq2UVNtt2RPtRRDEVSSqmPhFSnSxzL75PeZRyuye3RfeuVUvhVOEs3MR30SrNVNpd8XB7B1fdlMY5kWZAROQFXuBTPsWOnb70ZQlLiEAOgL9cFFgKCN0eiqAQyB2Wi4eq6e4/ZRYzYjWLYFZFKXOPbuS5bmPo4BVYa/wpQz4fHlpfozHgmow4Xul1tTNod3X6cVanH+OBDoOcjQEzjSWN2hjwQu/fLfMK1YIpOVWG2k3lfHIvLhZxxYpPiLZBQmRBQhlxJVaUCq4IIZJsTObZxGdZVbgKm2TDTXDjPyH/4f2Y95v0C94aMWBgMYtZyUr2s59MMrHhSGkUEAgkkKur/t3BHS2yz4koZlWJjh2I9sPVRIe92ig1CoUvSuVAlKqeKJXDMBkfBcqrjXFcMLWuc7AziXL7NgAWJx0grjiHAQGRKBUCsYXp7M2PQeJbxvgtY2zA31Sap2KpfAut6/u4aFt+lc3zISDwER/xCq9wO7ezgQ1EEsl93Mc3fIMGuf3BpeKn8eOnzj8x6dgkRu0fxf4B+5vs2Genha9OP46/Vk97z4A6x1dvDAhwQ2QP4kpy2JyVwN0x/ZEkiQ2Z8UyI6EpPX8c958EOg5j2z1JiC9KbvRePLEYaSEWeEbcAh7k3JcWCJElEUkLk2AuP97DZbNy1KR+AVdfUVrj/JpbmLeWVU68Qb4wHIFIbyauRr/JwaOu/GTQGIiI72cliFrONbSSSSHm1m7EePd3pznCGcxu3MZCBjZZaezGIYg5W62ps1m1VoiOlDtGhqhId/VGqeqBUDUetHo8g1I4PslR+it1+uo26EoUQhpt+MSpVP7q5wjXhXViVfgyAo8VZHC3OOmsPAgbFVDy8FmKpfBmL+VNMxkcwm15Bq/sUF5c7GuNtaFJ88GE969nLXm7ndv7Lf1nEIj7kQyYzubmn1+q5I+gOfsv9jeUFy5mdPJtXol5p8jnYRDu781IYG9qx3pohF9IY0GA106lasT5XlabFNAaUxUgDEEURa4UNr7aOGv9Tp56JF+n91JAL3k/PpY7smYH+Gq4KbzldRS8XZpuZmckz+S7rO0psJQgIjPYezScxn9Ddvfv5d3AFkUMOv/Eba1jDIQ6RR56zwJUKFaGEMp7xXMd13MItuNMy+kuIYh5W62rs1m3Y7YeqREcRtUWHD0plX5TKnijVw6pEx4VnkyhVPZxiRK25HZ3bPBSKM5a0G9p0x9fFjb/TjlJsqZld4qbSMCa0I9eEd0ZQCKh076HVvoXZNBVL5beYKiZhNk3DVfc1Gs2ES3k7WgT96EcyyXzN1zzHczzJk7zLuyxkIYPqaSshc2H83u13grYH8VrSa9zofyNd9F2a9PixhRmYbBYGB0bVO+ZCGgMCdRbraxGNAZt7Aq2JohOlIIF/VbfejRvNgERXdSEh/eo2nZ3N76fKOFbscM/suvnf5Z45UXGCZxOeZX3ReuzYcVe680z4M8yJnoNO1bIyNZoDGzZWspJlLGMXu0ghBTNnLgLeeDOIQYxmNJOYRGc6n2NvTYMoFmC1rsFu3VolOpKrRIet2igVCoU3SmUflMoe1UTHhX0nzoVKNQxL5c/o3L5Erbmv1lOhQqFgWHA7BgdFc6wom4yKEiQkAlzd6ekbVssPLggadG7/h9b1A0zGyVgt/8NYfi0mIRqd2/eo1SMvec7NzX/4Dw/zME/wBD/wA4MZzAhG8Du/N3l69r8FlaBiY6+N9NzTk1EHRpEzNKdJg+x35Jyii08wXi288+6lIIuRBnA6rTd0oMO1YjBIuFNJaK8LSz+12Wzcsd7hnvlr/L/HPfNL9i+8kfwGJ02OZmUxrjHMip7FnUF3NvPMmpdEEvmVX9nABo5xjCLOlCR3wYVIIhnIQG7kRiYwoVl9/KJY5LB02LZht8VWiY5CaooOZZWloyeCsgcqp+hovBgVteYuPDV3oFCc+1KlVAh09w2lu++FuUsFQYebfj6i+BmmioexWpdSUTYKQeiETv9fVKqW3SjtfKhQ8S3fMotZ3MItbGELQQQxmcnMZW6Lcu21Frq7d+e1qNeYlTyLO47eweLui5vkuIXmCuJKcnm887BzjmtIY0DPahldBouZcL3X5Z30RSCLkQaQtTcPgIhRIRw+7LCKRFFMp0n1N9SqTu8/shGBfv4arm7Tut0zRpuR6aemMz97PmX2MpQoudrnaua2n0sHtyurOiSAESNLWcqf/Mk+9pFBBlasAChQEEAAV3EV4xjHJCYRRvNYxUSxxGHpsG2tEh1JVaLDWm2UssrS0QNB2R2VaihqzdUIQv3N5hoLhyWk8S5TguCBm/tiRLEAY/n92GyrKDf0R6nshavbT6hUXRvt2E1BCCHsYhcb2cg93MPnfM585vMlX3IP9zT39Fodb0S/wR/5f/B7/u8syVvCLQGNX55/Z+4p3NUudDtHs0doeGNAAJPNSnJZASPO0RSyqZDFSAMoPF6MQqVA56PluduzcMSL5NDz0fM/RS1NKuNIkcM9s6cVu2cOlx1mSsIUtpRsQUTES+XFixEvMitqFlpV4zREa4nsZS8LWMAWtpBAAmWUOde54UZnOjOUodzKrQxneJM/iYpiKTbrWmy2LdhtB6ssHQXUFh1eKJXdEJTdqomO1vv5vFgEwQ+9x9+IYgbG8vuw2TZRbuiGUjkIndv/UKqavkfN5WQ0o8kii/d5n9d4jXu5lzd5k9/5ne7IcVwNYXOvzQRvD+buo3czauioRi3MKEoSO3OTGBQYXavPzI8nduKl0XFTVE/A0Rjww8PrWZcRRzefEPbmp5JaXuQs3le9MWCAqzt+Wj3LUw/j5eLq7BzfnMhipAEY0srRejpM6f/8Y0aBRO8AIxr9uc3rNpuN29Y53DPLxl26H72pkSSJH7J+4O2Ut0kxpwDQSdeJ2W1nc1PATc07uSaggAIWsIBVrCKWWHLIcQaZKlESQgijGc21XMtt3NakLd9F0YDNuq6a6DhVh+gQqkRH1yrRMQS1ajyCqk2TzfNSWZ1+jD9SDjE6pIOzR1RdXGrRJ0EIQ++xEbvtFMaKe7Dbd1FmaItKNRqd/icEoXVXSX6RF3mGZ3iAB1jEInrQgwlM4Dd+wwM5xf5C8NZ481vX37j5yM2MPDCSwwMPN9qx4ktyKKo0MqSOqr2XozFgO09/nukyqtFqjDQEuehZA/jA5Vt8Onrx8KHbUChO4Y2J/96dy8T/jTnndj1/T+dQoZXefhr239J6njoNNgPTEqfxS84vGEUjKoWKCb4TmBszlyhd/VHdrRkRkXWsYwlL2MlOkkjChMm53gsvOtKRkYxkEpPoQY+mmZdYjs26HpttM3bbgWqiw1JtlEN0KIQIlMquqJRDUKmvRqmKbJI5NhYpZYV8E7cdV5Wa9p6B9YqRxij6ZLMdxVRxH3b7QUCBSjUBnX5+gzKCWiqnOMXN3MxhDqNGzUu8xCxmyfEkF8jtR25ncd5iZkbN5M3oN5t7Oi0WuejZZcZmtmG3iPh28GLzZkcKYTTF9H7q3D7l5cnlHCp0uGdaixDZW7qXqYlT2Vm6EwkJX7Uv09pM49XIV1ELF17YrTWQTDK/8ivrWc9RjlJIobN/iwYNbWhDf/pzfdU/LY3rihJFIzZbleiwHkAUTyJJ+dQWHZ4Iyo4oha6oVENQqcejVDWsHUFrwGy38v2JndwbM4CV6UfPObYxij6pVF1x9zyAzbobY8WD2Gx/YygJRK2+BVe37xCE1mtNaEtbDnGI5SznIR7ibd7mK77iB37geq5v7um1eBZ0WcCW4i28nfw2N/vfTE/3ns09pVaNLEYukIwdjg6dgb39mDq9CFDQW5lD6MBzRzjfvM4R9LrkqpbtnhFFkf/L+D/eT3ufjEpHkZzu+u682/ZdrvG7pplnd3kwY2Z51b897CGddCxVN3kFCvzwYyQjuYqruIu7aEPjuTEcomMjNttmRNt+7OJJJDEfqvWTAYVDdAgdUCq7oFINRqm+GpWqZfeVuZz8dnIf3bxD6OQddF4x0phFn1TqAXh4Hcdq2YjR+ChW62KsJUtRa+7FVfcVgtB646Vu4AbyyWcmM3mf97mBG+hOd5aylLb8+wTu5UIQBDb13kS33d0Ye2AsOcNyUAmOW+pew17+KviL16JeQ6lofhdIa0AWIxdIxnaHGAkfEcyhN4wIiAzudW5zZp8lGYgS9PJVc0OUvimm2WAKLAU8n/g8i/IWYRbNaBQabvW/lbnt5xKqbd3+8Vhinf1bTnCCUkqd63ToaE97hjCEW7iFMYxpFPO0KJqx2TZhs22sJjryOFt0gAeCEFMlOgZViY4rLyupOnvzUkgrL+LlXldf0PimKPqk1ozGU3MKi+UvTMYnsFrmY7X8gsblUbSunyIIrfOSKiAwm9m8xEvcyZ2sZCUxxHA7tzOf+Y1uEWytdNZ35q3ot3gl6RVuOXILS7sv5YPUD3j11KvYsTMpcBKBygjKbZU1ttOrXPDRtu6MystN6/zmNAM5Bx3ddUP6BWCuTMYPIx3vqD8d6q+Ucg4UWBCAPTcGN9EsL5ztxdt5LvE59pXtcxSJUgfwWuRrvNDmBae6b02UUMJCFrKSlRzgANlkY6+qBqpESRBBDGUoE5jA7dx+2Ys/iaIFu20TVqfoSKwSHdVvcqdFRzuUys4oVYNQqcejUjV/cbOWRlFlBQuTDjClW8sIrjsbjeY6NJrrqKxciNn4DJbKL7FUfo9G+yxa7ZxW23XaAw/+5m8Oc5hbuZWFLGQZy3iLt3iBF5p7ei2Sl6NeZmn+Uv4s+JOu/3R1tr4A2FNykD3Jh7BJNRs/qhQCb/WdKAuSarS+u04zUZxoQKlVsnRZBaCgLUX0fGxwveNvXOtwzyy+yh+VqmW8zaIo8lH6R3yc9jE5lhwUKOjt3psPYz5kpPfI5p7eBSMispnN/M7vbGc7SSRRwZlW2x540JvejGAEt3M7/bh8BawcomMrNtsG7LZ9VaIjl9qiwx1BiK4SHQNRqccjCJ1b7U2qqUkrK6LMamb2gdXOZSISiaV5bM5K4P+G3oFQLdWxyFyBm0pDWnkRQTpHHIde5dLoRZ9cXO7AxeUOKs3fYTa9hMX8PhbzF7hoZ+CifbnV/r27050EEviJn3iKp3iRF/mET/iVXxnJyOaeXotjasRU7jl2Tw0holKoOFp+DJtUu3S8TRIpt1XigyxGTtMy7pItkCJzRQ3TWllWOTo/LW++WQLAQM9CtB51p/T2XZKBXYLuPmpujm7+XiI5lTlMSZjCH/l/YJEsuChcuDvobj6O+ZgATcuOZQFII40FLGAtaznCEfLJdwaZqlETTjj96MdEJnITN6Hj0ksmi6IVu21bNdGRUCU6TNVGKQA9ghBZTXSMQxC6tdqbUEuho1cQr/Wu2S/mvwn/EKTzYHxY51pC5NV9K7BLIusy41mX6bghqBQCITrPJin65KJ9BBftI5hNczGbXqPSPJNK8we4ur6Ji+uzl7Tv5uQ+7uMe7uFZnuUrvmIUoxjIQJawhBCavgheS6PCXsHUhKl8m/VtrXWSJHHSlEAATdvHprUii5E6KDJXMHPfihqmtUiDFe/OXpzYY0GJyOgJXnVuuzq1gv1V7pn9NzWve2Zd4TpePPkiseWxAIRoQnihzQs8E/ZMi71ZWrCwghUsZzm72U0qqVRWxVcoUOCDD8MYxhjGcCd3EsOlBXOKog27fTs262nRcQJJzKGm6ACHpSMCpbJTNdHRo8W+j60drUpNqMqrxjIXpQo3lYszTffHEzvRCCqSywqxn2UGB8fTZ0ZFCQ90cDSJa4qiT1rXKWhcnqHS/DaV5ncxmaZgNr+J1vV9XLSts1O1gMDnfM5MZnI7t7OFLYQTzkM8xFd8heoKvY3YJTsD9w7kaEXdgdV27MQbjxPAv78W0+XgyvwUnYdyW2UNISIUiChEcO/gjmUnBGGk1+S6/fzXrckFYOHY5nHP2EQb76S8wxcZX5BvzUeBgkEeg/io/UcM8mx5nTuPctQZZBpHHMUUO9e54ko00QxmMDdzM+MYd9EXPofo2FUlOvZUEx3Gs0bqEYRwBGUnlKoBqNVXIQi9ZdHRAskxGsioKKnlj6+OiESuyeAUME1R9EkQBFx1r+GifRWzeToW82eYjI9gNr2CVvcpLi53XLZjNSUBBLCZzexkJ5OYxHd8x2/8xsd8zGM81tzTa3IEBIZ7DedYxTEEBGeMWnWSzacYphJRKOTrx/mQi57VQVp5EbMPnvFVu621EvC2mYI7BvDRQg8GK1LZIY6qtV3/pRnszbfQ1VvNkdubtrxumjmNKSem8FfhX1glK66CK3cF3sWH7T7ES+PVpHOpDwMGFrOYlaxkP/vJJBNbVSM2AYFAAulBD67mau7gDoJoeAM2URQR7buwWtdjt+1BFE8gitnUFh1uCEIIgtDRITo0VyEIfWXR0UqQJIl3D60lpawQAC+NK/0DIglz86Kk0sSe/BQyKkoA0AhKZve7oVYWTVMhihbMpilYKr8FbCiEcFx189BoJpx325bMF3zBi7yICRORRLKIReeMz7JjR0ndou9stzi0noyTuIo4Xjn1Cn/k/4ESZS1Rcqd6Lu4K/1rbvdLraiL0jVdKvqUgFz27jLgcd3y4luzUAxJXtSuvNWZdegV78x3umYM3N517ZkX+CmacmsGximMARLhE8HLkyzwa8miz3lhFRHayk0UsYjvbSSSRcs68b+64053uDGc4t3M7AxjQoNRah+jYg9W6rkp0xFeJjoqzRlYXHf0clg7lAFl0tHJSygqdQiRAq2d6z6txU5+J4boqrBPfx+9gX0EaFtHOztxTXB3ePL57QdCgc/sSreuHVenAv2AsvxaT0Bad23eo1SObZV6XylM8xWM8xqM8ys/8TH/6M4YxLGIRPtS8yZ7kJAMZyFzm1mrQV5dbHFpPxkknt04s7b6UfYZ9vHTyJTYWb0SBwhnXViJl1SlGDBeYTn6lIIuRC0CTJCIpIDMT1Ihc/XDtSqrXrHK4Z34Z1fjuGYto4Y2kN5iXOY9iW7HTXDi3/Vx6ufdq1GPXRw45/MZvrGENhzhEHnnO/i0qVIQSynjGM5GJ3MIt6LmwuiuiKCKK+7Fa1laJjrgq0XG2INShEIJRCh2qRMdYBOXAVlv3Qebc7M1Pdf5+dXiXM0KkIgtc/REENTdG9mRfQZpzfHOJkdMIgg43/X8Rxc8xVTyM1bqUirJRCEJndPr5qFSXL+urqdCg4b/8l7d4i1u4hQ1sIIAAnuVZPuAD5wPGczxHIYVMZjKjGV0j+PVst/hpWlvGSV+PvmzovYFNRZt4+sQUjhkdPWsS7NsIF2q3jfgp4R+m9xzf4sVWUyFfqc+i1GJia/bJGstU2SI2F7CaFYRSRs8nal7UBi11ZM909lIzqX3jZc+cMp7imYRnWFu0FptkQ6/UMzl0Mu+1ew+9qumKqtmwsZKVLGMZu9hFCimYq6W2euPNIAYxmtHcyZ10otN59+kQHQeqLB27Ee1xiGIWdYuOIJTCMJSqfqjUY1EqB8mi4wqj1HImwLi9Z1VGWN4+WNYPom+D0b/h76rHx0VHUaWxxvjmRhA8cHNfjCgWYCy/H5ttFeWG/iiVvXF1+wmVqvVlX0QQwV72soY13Md9fMzHfM/3fM3X+ODDClYAYMTIYzzGClbUaPL2b6K/+xDGSq8QKGxnk/h/ZEiHGRkSRYjOj8zyYvYVpFFhs1BqNfP9iZ280OOq5p5yi0C+glcjtjCD7+N3YBFr+vyUJRIHXILArCBabaiR0rsxw8g/+RYUwKFbGsc9szh3Ma8mvUqCMQGAaG00r0e/zn3B9zXK8c4mkUR+5Vc2sIFjHKOIIuc6F1yIJJKBDOQmbuIarkFD/V2MHaLjEDbrOuy2f7Db4xDFTKDsrJGuVaJjSJXoGINSOVQWHTIAaJRnPgdFlUb8Xd3BrxcIakj6HcyFWEb+RJnVEYegaYGfG0HwQ+/xN6KYgbH8Pmy2TZQbuqJUDkLn9gtKVetrRjme8eSSy9u8zVu8xSQmoUGDgICIiB07f/M3v/Ird3N3c0+3UdiVl4TJbqOdaiBDPPrxcfETrK/8ju/bfg/AdW268W7sWgorKzhpyCe1rIg27v/+2JHz0fK+oc1EQkkuX8dtQ6wWz+un1WO2VKKohD1iGCDRr28ONtGOqir6ftxKR5n4/43yu6zuGaPNyKtJr/J91vcY7AYEBMZ6j2Vu+7l00Tfek5MRI0tZyp/8yT72kUEG1qp29AoUBBDAVVzFeMZzB3cQRt3N/xyi4yg265o6REf1mGltlegYhFLVF5VqNErVMAShfkEjI9PeM4CduUkAbMlOpINXIAhK8IgBfRsoPIC0uBvX6wey0fcaYvwjm3fC50AQwtB7bMRuO4Wx4h7s9l2UGaJRqUaj0/+MILS+eh6v8irP8RyDGcwhDtVYp0DBkzzJGMYQRBA2sXYWSmtmd16K8/fJMdcTVWLjobiHGO87ntsDb8dD48rV4Z355eRex/j8ZFmMIIsRwBGZvyjpAEkmI+Z8K/5rYXNeFEqFinb+rmj7GsnyLEfwMlE2wsSe/FQGB0YzZJnDPdPBU81d7S9Pls+x8mNMSZjCxuKNiIh4Kj2ZGj6Vt6PfRqe69GJeZ7OXvSxgAVvYQgIJlFWzULjhRmc6M4xh3MZtDGVorSBTSZKw249VEx3HEcUM6hYdgSiF/giqvqhVo1GqRsiiQ+ai6OMXweKkA1TYLOwvSGNx0gEmhHfBzWZEKtjH3uHL6bp+LOOKVzGueBX2VA842Qf8+josKH69wTMGWlDKpVLVFnfPXdhsRzFV3IfNthFDSRgq1QR0+vkIwuVtYdDYmDCRTHKt5RIS5ZTzBE/wRuHnzE/4p959nCjJbXUZJyWVjsw9L40rQTpPHnB9gB+yfuCOo3cQ4xpDL49edPIKrja+5bgQmxNZjOCIzE+vKGZLaRGVahGuBYgFIA+qXjssIPPzIyl9JJGi2T7szHW4Z47eeunumZ+yf2JW0iySzI6nvQ66DrwZ/Sa3B95+yfs+TQEFLGABq1hFLLHkkOMMMlWiJIQQxjCGa7mWW7kVL7xqbG+zxWGxrsFu21lNdBioLToCUAp9q0THKJSqka26q6lMy0OjVHFzVC9+TtwNwPrMeDZnJfCyqCHInM736cmEtJnJa8kzUABKqwGyNkHOdhAdlj6UWvDpDjH3Qtenmu9kzkKl6oq75wFs1t0YKx7EZvsbQ0kgavUtuLp9hyA0fnmDy8HrvF6jTUN17NhZxjLK8yKItg2odx+/Jx/EV6un92UqStcUnK5ZY7RZsIp21IKSiX4T2VW6i05ujvi5000bHeNbjiBuTmQxAiSUOvrIdNK5cbiijPpLKIFVFcWi8X4sWlsIegXzR1+8e6bcVs6LJ1/kp5yfqLBXoFKomOA7gc/af0Zb3aW17hYRWcc6lrCEnewkiSRM1aqKeuFFf/ozilFMYhLd6e5cZ7OdwG79iQrbTuz2Y0hSBpJUSk3R4VIlOnojqPqgUo1GpRoliw6ZJmNoUFsq7VYWJx1EQsImiaSr/AkhAY1oJksbQZL/GKLzN6I4/dk9LUQA7GbI3wOu/i1KjJxGpR6Ah9dxrJaNGI2PYrUuxlqyFLXmXlx1X7Xo71o22XzFV0hIzniRWkiwoeMXeO4PYqCmHwP82xDg6kGeqYxduUmcKnM0J/0p4R86ewehVaqb+CwujmgPPwrzK7CIdvbkpTAkqC0ZlRlEaiPRKh1/s23VkiTaetRO+70SkcUIOANWu+ncOWasQKyroqOkAGsgSH6gBtQKXIDBga61x56Hg4aDTEmcwvaS7YiI+Kh8eKbNM7wR/Qaai3RbJJPMr/zKetZzlKMUUujMc9egoQ1t6E9/buRGruM6tGix2U5it67GZnsXg/0okpRej+jwR6XsiaDqjUo1EpVqDIJw+V1GMjINZUxoR7p6h7AlO5H9BWlkaCMZaNjBeHUJMZ3vJtreHcWSbnVvrBBA4w3Da/cVaUmoNaPx1JzCYlmByTgZq2U+VssvaFweQ+s6t0UGdXvhxRu8QQYZlFJKMcUUUkgJJRgwUCKVYlVYkBD5s9csxgqfMlgxCiVKOngFMjSoLfPithFbmIHJbmVPXgrDgy+t9UNTMSI4xpl6vihpP64qNcvyl2GX7FjsNtZnxrMrz+G+0ipV9G/B8UxNiVyBFdianegMJkqzw7r8DOyc9bZIgGEc2D2di5QKUCngvYG+PN3VA0FRf6qaKIp8m/Ut76S8Q1qlo/ZBV7euzGk3h+v8rmvQfM2YWV71bw97SCcdCxbAERzmhx/d6MZVXMWd3EmYTcRmXYXNtgO7eAxJTKsSHdVFlwaFwh9BaItS1RuVelSV6JBz4GVaEbm7YPlg6DML+rzmWLb2ZkhdAZLtrMEKuG4jhIxs6lleEpWVCzAbn0WS8gAXNNopaLXvtKpCfl8c28yh4jRKtXnYe+xlqXoRPejBszzLgzwIQGpZEe/EOiphd/YO5tmutatet0QkSXIKqdP8YHkAX2UIkzQfYLKfsc7dFt2bsaEdm2OaTYZcgbUB9PQNZ8Gp/dglkaC6vs92BdjCaggRALvk+Jmys5C0cisfDaodYFZiKeH5k8/zW+5vmEQTaoWam/xuYm6HuURoIy5ofrHEOvu3nOAEpZQ61+nQ0YEODGEIt9uGMNBqQLT/g91+BEn8AEl6hbJaosMPpbIrSlUvh6VDfRWC0HR1SmRkGg3/qsJhRYfPLOv9GqT8UXusQgBb6wsedHGZhIvLJCrN32A2Tcdifg+L+XNctDNw0b5crygRxRxEMb1FFFcrt1YiSCq8TSF8pVrAXp7joap/P/AD3/ItHfQdUOB4DqywVp5vly0GhULBwx0G8038do4UZSGKIjasaESvGkLk2oiujAnp0IwzbVlc8WIkIaWInbFZeOrcKXItRaOAti46TpoqEE9/pxWAqWu9+4hyV3FLVM2b+a7SXTyf8Dz/GP5BQsJf7c/0NtN5OfJlVOcwq5ZQwkIWspKVHOAA2WQ7ex0oURJEENfY+3K7NYChNhGtPQFRTEWSvgHmceYrq64SHYPOEh2tI/hNRuaiEFQgaMBQrXChX08IvxYyVoNkB4USfHtC4WFYPQG6PgODP22uGV80LtrHcNE+htn0MWbTG1SaZ1Jp/gBX1zdxcX22xlhJkqgovxW7bQ96jz2oVD2bZ9JVuFaL/8gxGhjgNoBDHGIGM/id3+lMZ9qLHemiuwc/YySuqtYRL3IajVLF5M4jOFyYweL0TVAEXooQNIKSPn4RjAxpT6S7b3NPs0Vxxbtp5i87SlGpGbtgJy0kHYvGQrHNyuL8HJyy/Eg0hPaGam4YBRJq4Ca9lZ8mdUCjVCCKIp9lfMYHqR+QZckCoKe+J++3e5+rfGtX2RMR2cxmfud3trOdU5zCWK2hW5io51qbH+OtbvSx2fAUC5CkEqjRiEmNQuGLIERXiY7hVe3tvS7r+yQj05SsSj/GwYJ0ckwGNIKSaA9/bo7sSZDu3N///flpuK29DhsCSzrO5uaonnTzCYW8vbCsPxIKzC4BzGn7HuWixGOZn9Gx7KAjq+b67aBpvArKjYkoilSa36bS/C5gQqHwQev6Pi7ahwGwWtdRUTYOUCAI0bh7HkKhaD4X7PrMeBYnHQBgcGA097cf6FxXSSWP8zjzpfkABJV25CPjV9zVytxpp/kp+yfuP34/P3acz/0h96E4hzv/34jsprlALFbHjV0lKelUHEWqZza4GNALAuWnA1kTO0Co49fTUfkDlJVcrTIRrFFRYs/nufjnWJK3BLNoRqPQMClgEp+0/4QglzOdZ9NIYwELWMtajnCEfPKRkHCToJdNyXM2HUNs3nS02fCUjCgo50w5dBUo/FAq+6NU9UCpGoFaPQ5BaF05+DIyF0JCaZ7j6VHvg12SWJZyiE+PbuSNPtfhoqz7snXKkM938Tt4SetJWPE+evqG8dXxbbzS62pCA/pB6FikrM18GTaFmzuNwU/rxp8+kSQkz2di9n9R/C8Yrl0LgYOb+GwvHUEQcNW9hov2Vczm6VjMn2EyPoLZ9AournOxVH4AKAE7opiMseJp3PQ/NNt8BwVEsyzlEFbRzs7cJFQKgfHhnfHT6ik327gqYzLmoh5s6PgFOZ7x3OM5mhXcwfd8j47WFTx/sOwgAMO9h11xQqQhXPGWkW8WH6LcaEWvU/PYbY5mRoeLc+i5/r9nQlhT+4N7GwCGB2v5bIgvuzfGE2vbxUrvz0lTxyEhEagO5MGQB5kdPRubYGMFK1jOcnazm1RSUYmVtBehqw0G2ZT0sgtE2G3oagTLqqosHVEolT1QqoejVo9HEGSTnsyVS5nFzLTdS3m++9gzvWjO4pu47VhEG09lz4OkhfCQiXePbiHczZu7Y/ojmfKZ+89/6RJzLePCHPUeTDYL0/5ZypO6IjrvfwYkEfrOgt4zm/L0LjuiaMFsmoKl8lvg7MBdBzq339C4THK+TizJ5XBxFmabFVeVmnYeAYS5eTVaI7et2Sf55eSeGstcleoacRUA3Toqmev/Cqc4hRo1U5nKHOY0qMt3c3LNwWtYXbQacbR4RYoR2TJyCXx+6iACCkdGjQiExoEhgsVj/Lkpyo33095njteHlCkcPVp66XvRzrsdK60reVf1Lj9JXxJoNdBehE42uM0OnezgV0P2KVAovBGUkVWiYxhq9dUIgpxzLiNzNqdvUG6q+lPfk8oKHJkJlh4OMZL3D529gzlUldVQgCvxqhBu9TpjrXRVaYhy9+OIvh2db4uHPwfDvtcgfS1cuwHOcbyWjCBo0Ll9iYv2fcpKw6Ba0LsDBcaKh1Gq+lNQ6cfPJ/eQWFVv6TRriEMBTOs+lnb1CMBLYXhwO0RJZHHSAWfX3upCRKkQuDWqF6P9O/AUd7CIRUxmMu/zPl/xFe/zPo/z+GWf1/kQJZEVqUfYnZeCwWrGU+PK4MAoJoR3rVNspJhTcBVcSSjNY3HSAbKNpXi76JgQ0ZXBgdE1xm7KSmBdRhylFhNhem8mte1DlHvrqrx7schi5CwSy4r4IfkI4mlrhQAIZTzVO52FxuncveVPLFgQfJQE+vgQ6VFGpOYgHZUHudkOHW0QUWpwanYRJUqFD4IQiVLZvZroCGyuU5SRaVWIksSipP209fAn1M2r3nEGixkPtfaMmyV3Fx6Bt1BqcXSUPl310kNTs1iYh0brGOPVDu7JglXXQuZa+CUIJm4Dn9bXRfc0dttKagsRcATDVVJiuJkP4qdTZqu71KMEfHV8Gy/2vIpA18sf/D4ypD29/MLZkXOKQ0WZGG0WdCoN3bxDGBbcDk/NmTpOt1f9e5d3eZM3eYIneJM3+Z7vuYZrLvvc6mN1ehxbsk/yYIeBBOs8SS0r4r+J/+Cq1DA6tHZ2TJ4lDx+VH18c28zw4Bge7jiY+JIcfk7YjadGSxdvR++hvfmp/J50gLva9SPK3Y8NWfF8dnQTs/pMrPWZ/Tcii5GzePXoNkecanUrhuYYm/Qv09lT5JUIiBGgg2gnUixyiA4rZJgg3gwrKmBK+ANo1MOrREfjdPKVkblS+O3kXrIqSi+81XpAVXnxwkMQeEvDDiao4No1cPhj+OcFWNIdBn8OXSY3bD8tAEmyYTa9jOOJqi6xYUcQD3GV/zyWZj+Gp1pLT99wAlz15JjKOFDV6r7cVsm849uY2XvCOWspXSyeGlcmRHRlQkT9GYvVmc50pjGNZ3iGb/iGCUygM51ZwAK6UU+Bu8tIUlk+PX1DHYHROBqq7s1PJbmssM7xZfYyIpTd8NPquS26NwDBOk9OluazPvOEU4ysz4xnaFBbhgQ5qm/f3a4/R4uy2Jl7iqvDW68gvlCuCDFyLrNadWJLclmUEV9r+3GhJ/jDKCJVQr4LJChhiwhzTRBnhhNmKKv6rqsVaqbFfImLquGVWWVkZGry28m9HCnKYlqPsXi7nDtw0UOjxWA1g0oLghpKE6u+746nSg+14ztpsJhrPHEbLGbC9V41d9b9OQgZBX+NhB1PQvoqGLccWlFhMZttC6J4quqVotqPA0kSAYkBPlvw0oh0C/4dnfqMO+amyB58cGgd2SYDWcZS4kty6OzdMh6uVKj4ki95h3e4l3v5m7/pTndGMpLf+I0ggs6/k4sk2t2f7TknyTUaCNR5kF5ezElDPrdF96o11iJasEpWfGhDR6+ac+rsHcyiqowim2gnrayIa8I6O9cLCgUdvYJIMhQ02rm0JK4IMXIus1p1ph/eglKhwH5WTG/HTT1JTwnDv2QNoV0qiPSDqwC7QkOBxoU8jQuFGheKXLQUq1W8tUJPgSRSqIQCpUChSkmhWo1FpcVFcMFVcMVV6Yqb0g29Uo+70h0PlQdeKi+81d54q7zxVfvip/YjQBNAgCaAQE3gRZeKl5FpbUiSxIJT+4gtzOC57mPw056/KF+0ux/xJTmOuBGNFxgziSvOIbrK5+6ndcNDrSW+JIdwvTcAJpuV5LICRgS3q71Dv15wTy6sGAlpf8GvYXDDLmcwe0tHpRqMzu1/SJIRRxCrHQmbo9YKNv7JO0lZZTod3A8Ro9+Dpbw9gvZ5NC6PIwj+uKlduD6yO1/HbQdgV25yixEjp/HCixWsIIkkJjGJzWwmlFAmMYnv+R4tl9+9cXV4Z8x2K6/v/wuFQoEkSdwQ2YMBAVG1xu4v2w+AhyK4Tveg2W7FYrdhtFkQkXCvY0yOyXDZz6ElckWIkXOb1RyR4hmUsSY3GQEFKoWAKIlIkqPddX5YNwwj+lEuzABRRBLtoFKhqNZ+3KPqJxK4Kn0OEflLqp5BxKofK2aMFCuhQAl5SshRQrYSslSO/49WLc9TQqESxDosogoUKBVKVAoVaoUajUKDVtCiVWrRCTqHwFE5BI6nytMhcFTe+Kh98FX74q/2x1/jT6AmEH+1P8qqDpMyMi2J307tY09eCpM7D0erVFNqccR7uCrVaKpSe388sRMvjY6bonoCMCa0Ax8eXs+6jDgG6yIQDadILS/inpj+gKMy5pjQjqxMP0qAqzt+Wj3LUw/j5eJKz/q6wqq0cNM/sOcViH0HFrSDUT9Du0l1j29BKBSuaFzurnf99sJVpFcU83eugi8Gj8Rifg+z6U3MptfRuS1G43ILXatcCABFlXV34K2Ll/csp7CO8SOCY7irXd0VYPfnp7E89TCF5nICXN3P1IipQpIkVqQeYVvOSUx2K209/LirXT8CXT2IJpo97GEHO7iP+/iVX/md33mO55jN7MuaebM/P5U9eSk83GEwIW5epJcXsyhpP14aVwadFZC6u9TRVdpXCKlrVzLVuCLEyLnMaodwqE4vXHi+fT/KbBasokhsQRqqrDR8cksoGmglz2MBvhXvoVZqUSjrv4GLiCxv/wDPXPc/KD0JpSfAcArKU9Easwg25hBcWQiVpWCucHQOley19iMBVoUCkyBQrlRRqlJRqFSRr1aSoxLIVClIU0GaUiJVZSTPbsAqWbFJNuyS3dkk70IQEGoIHBfBxWnB0SkdAsdd6e4QOOozAsdX7esQOBp//NX+BGmC8FZ5t6oeGTItky3ZiQB8dGRDjeX3tx/ozEAoqjSiqOZ2aOvhzyMdhrA89RDF6i7cbIvliQ4DawS9jg/rhMVu43+JezDaLLTz9OeZLqOcbd/rpf9sCLsKVk2AjXc63DYjfmxVbpuzUVXNXUKiUvTFzW0uLi5PUF42BLPpNdSaayi3nbmOnPc9qsaMnuPPJAEAWRWlzD26kT5+dbfAOF0j5saoHnT3CWVPXsqZGjFVf781GXFszDrBAx0GOWrEpBzms6ObeKPPdc65DWEIpzjFb/zGUzzFu7zLl3zJh3zIozza0LeoTpYkxzI+vDP9AiIBCHXzorCyglXpx2uJkcPljrYEUa5RGKoCqU9jsJjRVolrQaFAQEFZHWM81f/+4FW4QsTIucxqhzgEgB4NH/YY7dxm5p4/uP7AV/i8dYywkm2YjIOx2m4hLWMBkqSvcRE8jWS3kZWyGU2xiNhxAoJvV/C9gKAsUQRzHpTEQWkilKWgKM9AY8xCY87Hs7KYUGsZmE0gWqA+oaFQgdIF1HrQeGF38abCxZNSrSeFWg9yXHRkal1J0wgU2csotZVisBkw2AxU2CuoECsw2U2YRBNGu5ESWwlW0YoNm8NSdBECR61QOwWOVtDiqnRFJ+jQK/XoVXo8lB5OC46P2gcftQ9+aj/81f4EuAQQpAlCL+hlgXOF8fWwu8475vnuY2st6+MfQR//CFAchFw73cRsHPZKBwqFgusju3N9ZPeGTypkJNyd5Uj/TfwJcnfAjf+AtnWmXka5+zqDLnfknmJcWCeUqg7o3bdQZuhDuWE020u+cY5vSPnys90Nq9OP46/V11sjZkPmCbr4BDO+KmbihsgexJXksDkrwVEjRpLYkBnPhIiu9PQNA+DBDoOY9s9SYgvSncLgNHdW/ZvDHN7kTR7jMWYxix/4gXGMu+DzqAuLaEM46/ovKBR1Xh8TjYkICHT0DONoUVaNdXElOUR7OD47KkFJhLsPcSW5TiudKEnEl+QwKqT9Jc23tXBFiJFzmdXqI6Z0P1FbD1NaCaVTf0I7pwMq5QlCAp8jK2cejmqGNVEoVYR9toCuO2JJfnImmq5dcX/4YTz+8x8EzTniPQQBdEGOn5AL6ExpMztES+kJMCRBeSpUZIIpF05bXSoyUBpO4iHZ8QBqG6EVjh4eKh1oPMDFG7QhoAsGfQS4R4JHDPh0rnGxrbBVkG/NJ8eSQ74ln0JrIYXWQoqsRZTYSiixlWCwGSizl1FuL8doN2ISTZhFMwa7gUJrIVbJil2yI3LhAkeBoqbAEdQO95SgdVpwqsffeKo88VZ54632xlfli5/Gz+GeUgcSqAlEp2pdVRxlGkjgIMf/OTvP/H450HrB7cdh6+MQ/zX8EuYIbA0ff/mO0UQMC4phY1YCAH+mHsbHRUdvvwiUqi6oNQ9jtXyJi/U54CEUKBgWVEdczQVgE+3szkthbGjHeot+OWvEVKNGjRhzBQarmU511IhJKiuoJUZOM4MZTGMaT/EU3/M94xlPV7ryG7/RlQvL3jmb7j6hrEw/io9WR7DOk/TyYtZnxDM46IxV5I/kWEosRjIqM9Ar9YwIjmFzVgJLkg8yJDCa+JJc9uen8VTXEc5txoZ2ZP6JXUS6+xDp7suGzBNYRFutWiT/Vq4IMXIus1pYHbdpgNH5f2DJdPxe9vXXuNw6GXom4Op6ED/fDygonF5jvISEAgX2T79mn/kwAZ98ScQfhyh85hkKn30WdceOuN97L57PPougu8QboUoLvt0cP+dDFB0ipSTO0TysLAXK08GYDeZ8qCwGSykYc0A8xPmsLm5qd9w0nkRqfcE1ENzCQN8GPPqCT3uHgGlAoShJkiizl5FTmUOeJY8CawH51nyKrEUUW4udAqfMXkaZrUrgiEZMdofAKbYVkyfm1RA4F8ppgaNSqFALjvib0xYcnVLnsOBUWW+cAkftjY/Kxxlg7K/2J9AlUA4wbmkEVAmQwoONs//h8yD8athwB6y6GrpNhUEfN86xGokQN08GB0azMzcJq2jn2/gd+GljCdZ5klExhkcjfqe/9waOGXoT4nk7vhdZiTW2MAOTzcLgwNoBnqdx1oiphodae+E1Ys6BGjVf8zXv8R73cA9/8zfd6MZoRvMbvxFAwwq6TWrbl+Wph/n15F7KrJV4alwZFtyO6yK68mnap5hEE6klVjSiN/mWfALUAfhp9TzVZSSLkw6wMfMEXi467m0/wJnWC9DPvw3lVjN/ph7GYDETpvfmmS6j8DjHQ/O/iSuiHPxzu37nhjY9GBES41y2Kv0YO3OTCE+OoNxoRaEAN1dHZ8gA22FuKLmP5CkgWRzjLZ6eBO4uRfAHSYL8gpmUlU+EaoFROo9fSS+7Fh/JMcdklyRyklcx4e2DcOAY2GygUKCKjkZ/5514Pv88Ki+vi31bGgebGUoTHD/1WV1s9ce6OKiyuqh1oD5tdfEHXQjow+u1ulwuRFGk2FZMriWXPGteDQvOaYFjsBucFhyj3UiFvQKTaKJSrKRSrKwRf9NQgXPeAOMqC87p+BsvlRc+Kh/8NH5nMqjUAfhr/M/Z4VnmPHyrdmTE3LTn/GMvloosWDYQKtIdnYAn/j97Zx1eR5318c/MdY27S5vUvaUUilux4tJdfHF4sUUWW2QpLLLYLu4LS/FSnBarAXVN0zbunlzXmfePSW6TRpq2sZZ88twnuXN/M3Pm5t6ZM+d3zvcsBe2eK3+GCn4pyOvbVrC2oazTa0axhbtzbkQQBKzh5WhU+6bC+symH1CJItePObLbMdcue59LRh7C9HYRjp8qt/NF6WaeOORMCmx1/HPD9/xzxhkdyrJfbq30uXLUYb22Zyc7OZ/zWcMaRETmMY+XeXm/K29kWSbilwhaAh1F5kREcow5jDCOINOQyZVJVzLKNGq/9nUgMSwH346ewmr2chXgpza8joA6QEJdAsf5XsBdKCD7dvlparudxku1RC30IaggJvpRfL5svL4cQETUlJAnTmGpt4GbMnIoqtlBhjeTzMTryX+lhp+jfuaMFQaSn1mMd9Uqmh9+mOaHH0admorp7LMJv/121HFDQJVVrYeo8cpjT0gSuKuheVtr1KWoNepSvQ9RF31rrksY6KNap62SWqMumRCeC5asXkVdRFEkShtFlDaK0Yze4/jeEJACNPgbFAenNYJT769XIjgBxcFpCbRgD9hxBp2hCI4n6MEje7D5+jfB2KzalX8Tpg4L5d+0JRjHapTy8Eh15B8n/0YbBs7y/t2HKREuKIYfzofCD+G/CXDy9xB3yB5XHQpoRBV/GXUY6xvK+alyO9tbapBR1EgywnJpEl4gRvgLbvtsNOGdNZj2RIPHSV5zDVePPrzHcSGNmHbss0bMHsgmm9WsZhnL+DN/5h3eYQEL+Ct/5UEe3OfKG0EQODPmTN6peodAu35AEhJ5rjzyXHkAJOuS/1DOSG/5Q0RGPAE/C0s2sr6hLBRWmxaTximpYyksbWHF+kq2G0vxqnwcWuvlLPv5NHwGzd/SQbhQBvQ3g/ke5XkgEE1ZxXtIUiRfmBai9czi/MwpZLQmJTmdTtYXrkfr0yIi4hAd/Bj5IzFJMVz0dQr2p5/Bs3IlslsJQaoSEjCedhrhd92FNu3A0DLYKzpEXQrAXgKuSiXq4mlQHJd9irrEtua6tEZdwnIgInfIJxb6JJ/i3HhrqfPXhRycpkDTrghOW/5NwNEhwdgrefHJvn5LMDapTFjUltAUVVv+TVuCcVvkJl4bj0VlGZoOzofjFCf5cvfA7G/b67D0ytZmew/B5LsHZr99iC8YwBMMYFBrQhUqTsel+H1votVdg9H0n73a3qKSjfxStZNHZ8xFJXT/GQk1OWwXPXls/Xckm8JDCay3//YpxyeP4rhQk0M/t/36MZeMPKTbnJHe8C7vcgM30EQTVqw8xVNczuXdjnfhUrqt03na6pPqLzhry6ldrqdCRYYhg40zNmJQ/TGmXqD31+8/hDOyV3x3BpR8QdmDAXzd3FRZ/gfa4wEEPN5cyh0XkJNxExa1pcvxXq+XLQVb8Lv9qFHjF/wsty6nNLGUh4wPof5hNc1PPonn55+RnUptvhgdjXHOHCLuvBPtqD+gF90+6tKyExxdRF38dgi4QPKz71GXbAgf2euoy1DHFXBR66+l1ldLja+mU4JxS6BFieAElQhO2/SUR/IoDk6rYmRfJBiHHBxxl8CfWWUORW/aRP6i1dFKBEenJBjHa+P7JsH427lQshCuCA5cCW7zDvh8lvIZjZ8Nc74/4D9XkiRht2UjS0WYzF+h0fauD4wky9y9aiHTYtI5s1ULpo3dNWIKbHU8sXExZ6ZPZFxkIqvqSvi6bGuH0t5vyrbybfkWLhk5M6QRU+Fs6lDau8/HiMQjPMI/+AcePCSTzJu8yTEc02GcjMyhHEoDDaxnPUY6fk6L7HWM+j0TL45O+xAQWDl1JTPCZuyXrQca/eqM/Pvf/+bxxx+nurqaCRMm8NxzzzF9+vRuxzc3N3P33XfzySef0NjYSFpaGk8//TRz5szp04MB+GZZEVsLlHI1URDQ61RERxjIzYhiTHZUzy2cG7fAR2MJ2KDkr92MEUAwQ9gvIpr0bETVJAL+BahUkzFZVnW4Q2xxeHnt40386dTRxEYakSSJgsIC6m31aGUtEhIbTRv5MfFHbrfeznjG4/n9d5r/+U9cixcjtyhzj2J4OIbjjiP8jjvQT5nSq/fsD0co6pIPLQXgKO0i6uKAoLfnqItKB2pD11EXa6aS63IARF36ClmWcQQdVPuqqfHWUO+vp8HfEJqiagm0dEgwDpWIS248QQ9e2atEb+QAATmwzwnGalGNTtB1TjBWmbGoLSEHp03gL1ITyaQdXzFu2wIqTv6S6Phj0Kl0/fhOtUMKwFcnQeVi0EXCacsg4sC+oZCkamzNaYCINbwCUYzc4zpbm6p4ZvOPPDjlFOKMHc/bT25cTJTOxCU5uyqdFNGzDTR4nHsUPWvTiLkwa1qnbe8PPnxcy7W8yZsECTKe8bzP+4xC+f99zMeczdkICFzHdTzHcx3WL3U0MmfVBWyVFiO3+6wLCNyRdgfzs+f3ma0HCv3mjCxYsICLLrqIF198kRkzZvD000/z4Ycfkp+fT2xs5wQnn8/HrFmziI2N5W9/+xtJSUmUlJQQHh7OhAkT+vRgQHFGXB4/J8zKQJJkXB4/xRU2ft9URVKcmblHj0AUu3FIllwAhR9h/zVA7evd7KC155TuvHAS39uBKEbjtJ+L3/8hKtXhWMJ+CQ3d3RlpQ5IkKisrKa8tRyMrSbPFumI+i/uM46KO4yLxIgC8mzfT/OijuL75BqlBcbAEiwXDEUcQfvvtGA7veR52mG4IRV3yWqMuxbtVGDWD3wYB915GXaLBGNc56mLNBpVmAA9waNM+wbjOX0edr65D/k2Tv6lTgnH7EvHeJhjn+iCvDGYnwtLWqHhXCcY6UReanjKqjCGBP6tGmZ5qSzCO1EQSq40N5eDEamN7TjDe8AT8djsIAhz6PIy5ph/ezYHD5/0Yl/NsRDEXa3jeYJvTrzTSyDzm8Q3fAHAsx/I2bzOLWRRTHIoYfsd3HMeuBo6ljkZuXPMcCwN/Dy0TEMnUZ7Fl5iZ04gA5xEOIfnNGZsyYwbRp03j++ecB5cSSkpLCDTfcwJ133tlp/Isvvsjjjz/Otm3b0Gj27YS8t86I1xfk9KM71sSXVtn46LvtHDczjXEjY/D4AvyyupyC0maCkkRShMzcsukISNS8Do7fUBwPmdC1SB0FmkkjUR8eTtgFL6LNnsivG6vYtL2OzMRXmTrqeRzuM0lO+hiAp95a3cGG5Dgz557YsZa+oaGBwrJChKCAgECjupFPoj/BGGfkYfXDGFDOor6iIprnz8e1aBHB6moABIMB/axZhN1yC6aTBq6F9h+OgFuJujS36bqUgqsCXDXgbQRfc2uuS09RFxFU2nZRl8jWCqNWXRdrxh8u6tKXtCUYt01P1fvraXGWceWS2/kqcTQfZ84IifztnmDslTtXUPVVgnG2X+bZwiIy/EEWRSfwxcgTCdO26t+0Khi35eDE6+L7PMF4e0st35VvpdTRRIvPzTWjDu9e+r6V/OYaPixcS5WrhQidkTmpY0NaF07Hxfh9b1PouY6Pyo+jxecm2RzB+VlTyLAcfJ/b7WznfM5nHesQ6ChsJiISTTR55BGJEikqdTTy8Nqvedd/Ay6aAMUZWTR2MSfH9UJD6iCkX5wRn8+H0Wjko48+Yu7cuaHlF198Mc3NzSxcuLDTOnPmzCEyMhKj0cjChQuJiYnhwgsv5I477kDVjay61+vF6/V2OJiUlJT9ckYA3vl8CyajhjOPHclH3+WjVokcMiERnVbFxm01ePIXcNQEMy2PfUjLL1uwJNfhzMxF3OIiuL2S4tceIxh/DMcfpUR01mypZuWGKo6dmUZspJGa2nkkRH2CXzqfmOj/UV3v5L0v8zj7+JFEhRsQRQGDrus7KbvdTmFRIT6/DxERj+Dhy8gvyU/I51Hdo4xgV1lyoLKS5scew/HJJwTLWxNbdDr006djvf56TGefPTQTCv8ISBK4q6CpXYWRs7yjrovfvpdRl/DWXJc4MCYrjdosWcNRl97wihpipsPcFXu9qk/yKc6Nt6bLBOP2+TeOoEPJv+kiwViQ/MxvkLipBT4xwaUxYNtDikN7B6ctetMWwTGJplCLBqvaGmqy2b6Cqi1y0+iEaqebdEsUL+Yt3aMzUu9x8MCaL5mdMILD4rPY1lzNBwVruX7sEYyJSESSJErrx2AQiikJvEGy9SSWVG5jbX0pD0w5tZMOyMHCV3zFqZzaKQqnQsVZnMUCFuAO+FlUspEllfn8FnifDdIiACaLZ/L6uKeZsAcn8GClX0p76+vrCQaDxO1WghoXF8e2bV2XfRUWFvLDDz8wb948vvrqK3bu3Mm1116L3+/n/vvv73Kd+fPn88ADD+yNab0iMkxPXZObiho71fUurj5vAmqVctE+Ynoar5WfxDZ9POPfvZYd6yvI+D2NsLTJOL6OoWXDM6SnHMXnhX5muf2YDBpWb6lh2th4cjMUrzjc8iHrNp9LVvL7OB16DPoXAdDr1CENk+6wWCxMGD8Bn89HQUEBkkvirIazCDYE+cL6BV8lfMV15uuYy1zUiYlEP/MM0c88Q6CxkZbHH8fxwQd4li7Fs3QpqNXoJk/GetVVmC+5ZNgxGUhEEUxJymO35LcuCbigeTddF1dla9SlNdfFWQq2HXsfdTElgimlXdRllOLU/JHQWBUNkH1AK2pJ1ieTrE/uG1t+v4sz1j/K6W4122fcT0HCROp99V0mGDuCjl0OTuv0lCPooNHfuM8JxkYieGejD1GQu0wwNqlMiL5oBMlKwPcT6yqVCI5oFHil4FPOGzGZWE0sH1bcz5+SrmGk7lKshirmZU9nc2MlK2oKODFlTN+8V0OMX/m1y+VBgnzABxzlO4GyDVHUe5QChCzxEDZIi9CgZ7LqdF7KW8blubOUVgXDdEm/64xIkkRsbCwvv/wyKpWKKVOmUFFRweOPP96tM3LXXXdxyy23hJ63RUb2l7b6+bomN/5AkBfeX9/h9UBQotnubTdeRC96CZ58Mi3PPIPl52+Qk4+jscWDWiXidPtJjN0lcCSKIjbPk5TWOEmNe5OgHAb8aa9s1Gq1jBo1CkmSKCoqorG5kdm22RxuO5w8Qx4nJJzA9LDp3C/ejxo16shIoubPJ2r+fCSHg+ann8bx3//iXbWKut9/p+7KK3svSz/MwKM2QvRE5bEnuoq6OMqU/Bd3HfialCkjV9U+RF3iFQfK3BZ1yYGwbDjQRdeMcUoJ+VBg+nyEpONQfXMKo1bey6iRl8CRb+zXJtsnGLcvEW/0N3ZwcGxBG9VNOiRdNW6hMZRg3BJooU6qCyUYi2gI4OPHis6fnWfazTq/64bFI+GFgghuLdNhIpq3dxoQip2hEnGTaAolGLdFb9ryb6K0uxSMY7WxxGni0KuHZlSlkkoe5/Huk69luEF1DedKT2BGcfYz9KnggEniaYiCmiAyr+Yvx6LVd9uf54/OXp1poqOjUalU1NTUdFheU1NDfHx8l+skJCSg0Wg6TMmMGjWK6upqfD4f2i4ujjqdDp2u7xN9Gls8WC06fP4gJoOGc07I6TRGr91lp4wIsoThaGWuz7t8GZx3XKd12iMgkF/6JGkJ2xGDz5AalwL7ILwliiJZWVlkSBlUVVVRXVPNaPdoHil8hCpNFefHnw/R8LT4NMkod26i2UzkPfcQec89SB4PthdfxPb66/g2bVJk6W+6CU1OTt/J0g8zsOxX1KVdhdE+RV2MoLEoURdDa4VRW9QlbASEjwb9nissBhxLplIeLklDo8Nu0tEwrwIWHgrb34Tq5coUUg95Qo0eJ47Arpsks1pHZKs0uyAIWNQWLGoLI4wjutsEAFctfY9rRvY8TXPv6kXMjEnnkIQkpf+Uv44NjcUsKS9iWoqGOl8TG6sdhOmb+bTlF+ZFVVEdsPBBXQJ+ScIhtyj9p3x9p2DcXuCvfQ+q9grGUeooIjWRSnJxq4LxHhOMe8nzPI8HD+rWy6Xc+hM6LgECKh8fTrmDmza/yk0j5lAR3MGTq+CpCTezrVbi97piJFnms+IN3D6h52vIH5W9+k9ptVqmTJnCkiVLQjkjkiSxZMkSrr/++i7XmTVrFu+99x6SJIWmC7Zv305CQkKXjkh/UVplo77JzeRRcVhMGpxuP6IoEGbu3umRUeENgE6tRrBacWwvQBCU6R6dVoXJoKGy1kFK/C59kYpaB/HRJizWLTQ1juKoKXfh9/uAu/bJblEUSUpKIikpifr6esrKyoj3x3NX2V04Khw8EvMIG+I28KDmwQ418aJeT/hNNxF+001IgQD211/H9sor+Navp/Fvf6Px7ruHtiz9MPvP3kZdXJWtSbo7WqMu5Uokxl3fMerSsJ59jrpYs5WoizVrYKIukWOh7CulcipyiEwh6CPgvDz45UrY9gq8mwInfA7JnS9SjR4n965eREDedUFXCyIPTT015JD0NYIoEqmNJFKrOJeRcjZbKn/m9rRzcQV83FH3GbdnH0eGOQq7LYNb40o5RP8kG1viuGti1w0D2ycY1/qUCE6bBk5b/6lQ/k1AmaJyS27cQTde2Yvdb+/g4OxLgrFKUKEVtGhFbWh6yqAyYBaVDuIWlaWD/k1b/k2GPoO/6P+CSq0CEdyCGzduXLhwyA62Oktp1FfgV7l5YcLVRAp/I7lGuUEcY8llZoSVUkcj1W4bBbY6KpzNIe2UYXax12eDW265hYsvvpipU6cyffp0nn76aZxOJ5deeikAF110EUlJScyfr9RTX3PNNTz//PP83//9HzfccAM7duzgkUce4cYbb+zbI2lHUJJwuv2dSnszk8MYnRWFIEBijJnPf9jJ4VOSiQjT43T5KSxvJjs1gvho5UsuI5LfGEVCowt/zhgCRSWMTIsM5X9MGxvPivWVhFt0xEQa2bKznromN3NmZyKKesLCN5K380SSou+lpcWM3nANOu2+n4Cjo6OJjo7G4XBQVFSEyWfisprLCNYE+SbyG/4a91fON57PbdzWQdJYVKsJu/JKwq68EkmScC5YQMu//z20ZemHGVhEEczJymNvoi7N+WAv7KeoS6YyVbQ/UZfYVv2j6mVDxxlpY/bLSrffJRfAV8fDuNtg5uMdhjgC3g6OCEBAlnAEvER2oQC6v1g1emy7NZ6z+TzoVRq0KjWiICAiYPd5EEURi3U5tuZMRhtvp9T1VrfbVYtqpaGkru/OLW0Jxm2PNg2cxkBjlwnG7UvEXUEXzYFm/JKfIMH9qqAKSqBGh0llRhsjcvfou1FFqlCNVmHVWBEROTQ+k0+K1gNQaKsfdka6YK+vjOeddx51dXXcd999VFdXM3HiRL755ptQUmtpaWmHhMmUlBS+/fZbbr75ZsaPH09SUhL/93//xx133NF3R7EbxRU2XvpgA6IgoNOpiIkwcNT01A6iZ2ccO4Jlayv4dnkxbm8Ak0FDUpy5U6JpjL6FTxbvIGri8Uxa9QBHpO6axpk0KhavL8jPq8tweQJEhek5/ehsIqzK3KdabUEW36Gu+SwirXeycoOFE2dfst/HZzabGTduHF6vl6KiIhxOB6c0nsLJjSez2rKamXEzGRE2gqd5mmg6hn9FUcRywQVYLrgAAOfnn9P8zDN4V66k5amnaHnqqYNfln6Y/Wefoi7boGVHq67LPkZd1HpQm0EXDrr2UZd0Jdqye9QlrlWLp37N/h1vX1P0qfIeZpwF5xcq0zabnoDKJXDaUtCYkGSJ7c01Xa7uD3bn4O0fmdZoNjdWdliW11xNZmuLC7WoItUSSV5zDROjUxDFZPTGt7E4/swREfcDXUdG+oM+TzBGUTCu89eFmmw2+HYJ/HWVYGwLOKh0NxDEh1/yoW7Qkrk+k4KRBcjxMlvZyljGYmnXkTjQrXP+x2ZYDr4bVqyvYPLvo9EnzYCTv8Px8cfUnH02Uc8+S/gNN+zVthT1wpGAA6PpfbS6c/vU1kAgQElJCc3NzaFlxbpiXkp4CXuEnafFp5nBniWIXT/80L0s/V13oc3N3cMWhhmmDwi4lIhL8/Z2UZf2ui4te6HrYlTWUZsg/rBdui6WtlyXUYOT6/JOvKIOnD4XDn1WEcpbci4UfQwaC47jv+T5OhdF9oYuVw/T6Llh7FGkmCN63I0n6KfOrUiTP7zua87JnExOWBwmtZZIvYlPi9bT7HNxac6hwK7S3iMTRzIrLpNtzTUsKFgTKu0FWFVXwpv5K/nTiOmkW6JYUpEP/hc5Jf4NtLqbMJr+1Xfv0xDHE/Rz88qPkGQZq0bP/OmnoxZVePEynvFEEMEKVvD6tpWsqlMSqa8ZPZuJUX3nQA11hnvT7Ccr1lcw6fcxGBKnwClLkDweigwGjGecQcInn+z19qRgKbaWUYAbo/lztNpT+txmSZKoqqqipqaGtn9rk6qJN+PfZFXUKm7S3MRVXNWrrpQ9ytLfeSf6yZP73P5hhtlrJElxVEI9jIqVqIurCjytUZdQ516B3kddWtV0TclKrktYltKAsS9yXWQZXtWB7Ff2K6ph2sMw9kbIfwt52dUgS3wacw7fRp8OgF6lRi2oOiSymtRa7px4ArGGrntigSJg9tSmJZ2Wz4zN4JKcmbyZv5IGr5Nbxx/bYZ020bNwnZGT24metfFjZT7fledh83lINkdwXsYkouSpyFIZJvNiNNpeTPUdJLyUt5S19Ur5+MkpYzktXel4vpSlzGY2J/vmkvzbucjImNU6Hp0xd7976RxIDDsj+8mK9RVM/H0cxvjxcNpPABSazaji4kgrKNinbQYC23HYxgN+TJYlaDRH9pm9u1NfX095eTmBoNLK2if4+DT6Uz6O/Zjj9cfzT/6Jld69l93K0h95JOF//euwLP0wQ5sFOYpDcpkT/M5WNd3WqIu9RHFm3LWtuS62vYu6tPUwMsSCMbG1c3Rbrks3URdvM7y1e0RDgPBcmP0KS5uambjifMxBB4WmsTiOX8i46HREQaTY3sD/ClZT3BoxmRydwlWjhsb3T5LKsTVnAmqs4dWI4sCcqwebAlsd/9zwfeh5bngcM+My0as0nGw+nEptMXPXP0CsI5uTU8dyWtr4QbR24Bl2RvqCV9QQN1OZwwVKR48mUFhIpsezhxW7JxDYiMM2FZAxW5ah1vRvB0ebzUZJSQlen3JHJSPzS9gvvJHwBjGmGJ7jOcYyttfb8xUWKo7J558TbC3xHpalH2ZI89WJUP7t3nfvlSRwlStTRh16GLV2jvY1915NV21Qpop04aAyQUMXOSyCCuQgqyOP4f2IM7i86j/kurYihOUo5yBDDADugI97Vy/C7vciCgKPTp9LmHZotKT3ev+H23khojgOa/jGwTZnwPiuPI+Pi9Z1Wm7X1vH+9JvR+6w8suNjbhh9FKqhUGI+gAw7I33BKxolG//05QDU/OlPON59l7SGBtSR+z7PHPD/hsM+CxAxW9eiVvfeGdhXPB4PxcXFOJ1OZGQEBLYZtvFS4ktUWit5QHyAeczbq20Oy9IPc0Cw8lbY9BScux3Ce9bi2C/8zlbHZUc7XZcuoi4BD/SgvdF2Qq4wjyE5LB6qVyjl0lMfgLFKvtrHRev4rlxpVndF7iymxQydRHOn/Xz8/gVo9bdgND452OYMGL/VFvF5ycaQCmsbqzL/x7qkL7hFuoUnxT/O+9HGsDPSF7yigegpcIYiBWx76y3qLrmEmNdfx9payryv+H0/4HQcB2gwWzehVvfjSbIdXSW71qnreCXhFZZFLeNPqj/xD/6Bnr1TQ2wvSx8oLFQWajToJk0alqUfZnDZuQB+OB9mvwq5lw+2NVD4MSw+u8uX2lSig4jYDKlEaHWKwq6vBVQGuMwBgsgvVTt4d+cqAP48YgaHxWcNnP17QJIk7LY0ZKkck3kJGu3Rg23SgCHJMnnNVZTYm5BkiWi9mfHRiWSp0qmllkIKSWPoOI4DQW+v38NXh54QhA7zxsbTlWQy1+LF+71pjfZojObPAB8O20SkYOl+b7M3qNVqsrKymDRpErGxsQiCQEwghrvK7uKTDZ/gKfeQ7ktnDnMooPe5MW2y9GkFBWTY7UQ89BCazExFlv7yyynSaimbNInm555D8vn68QiHGWY3ElpzKuqGSHmvpxbF5WhDUB6iBn/6OTyZejfX5r7NM6OfRz43Dy5phksdcMbvICin7AJbfWhti2ZotaUXRRGLZTmgxuk4FUmyDbZJA4YoCIyJSGRO6hhOSRvHIXEZGFU6PudzJCROYngauzuGnZEeEWgfTlWHhyPo9fjWru2TrWu1p2Iw/Q9wY2sZiyTV9sl2e4MoiqSkpDB58mRSUlJQq9ToZT2X1lzK55s+Z1bhLE50nchoRvM5n+/dtltl6VO3bSPD5SLqqafQjB6Nb+NGGm68kSKDgdLRo2maPx/J5eqnIxxmmFZMiYCoqLAOBdyt33OhtSonbATMfAr+VIX2+A8IJswGQaDK1cLq1nJQNCZFTRaodDaHlhvVGkaFd92KYzARVakYTG8ALhz2oZFgO5hMYxrncA555PE8zw+2OUOS4WmannhVr3Q6PWtXYlJJdjbBqioync4eVtw7vJ7XcLuuQBAisYQVIIrhfbbtvaGlpYXS0lJ8Pl8or2SDcQMvJ73MDvMObhBv4B7uCfVo2FtCsvQvv4xvwwYIBEAQhmXph+l/3rAq/V8uKBxsS2DdfFj7AGSeB6OuUpLkhV2RklW1xbyavwJQ7rSPTBjJzLgMtKKK9Q3lfFu+FVfAD8BxSbmcnTl0y+yd9nPw+z9Cq/8rRuM/B9ucQSVAgAgi8OGjjroO1YxNNBFOOEKHiNnBwXDOSF/wmkG5azl7V1Z41Vln4frkEzKczj5tNOd1P4PbfROCENvqkJj3vFI/4XK5KCkpweVyhZySKk0VLye+zA8RP3Ci6kSe5VkSSdznfewuS0/r1M2wLP0w/cL72Ypo2mX2wbZE0RmR/Ep5cJcvy7y5fSW/1hb3uJlUcyS3jj8GvUrT47jBRJIk7C2pyHIFJsuP/Spn0F/87feFNHg733wekTCCC7OndbnOmrpSFpZspMHjINZg4cyMiYyLTOIzPuMMzuBweTa3lTzH4roN/JD8FlsSlvCB9zPO0Z3e34cz4Aw7I33Ba0alP8Y5m0OLmp9/noYbbiD2ww+xnN11Etq+4nY9jNdzL4KYjMVagCgOXCPBrvD5fJSWltLSKnoG4BJdvBX7Fh/HfkyGJoOneIojOXK/9xWSpV+xArm1dFqVkIDp9NMJu/POYVn6YfaPL46Fyh/gyt53kB1MJFnis+KNLKnY1qk3jQBMik7hohEzMKgH9xzRGxTBxyxA16o/Mng3WvuC3edBale2Xels4enNP3DLuGPICe98w1Rgq+OJDYuZmzGB8ZFJ/F5bzLfledw96USSTOEczuEsl5dzWNGf2ZL+Fc1CIxISx5VewZcpLx50gmjDzkhf8LpJUV88d2toUaCykpKkJCxXXEHsK6/0+S5drrvweR5FELOwWLchDkRn0z0gSRLl5eXU19cjy7vaZ38R+QVvx7+N1+DlNm7jZm7ulbrrnhiWpR+mz1l+I2x5Di4oBsuB49g6/B5W1hRR7mxCkmVi9BZmxmUQ04Pq6lDE630bt/NiRNVErGGd9TgOJBYUrGFTYwUPTT011OusPS/nLcMnBbh+zJGhZY+u/5YUUwTzRkxni7yFidIUAiovAgIyMhpZw9jyk3hS/CdZYTGh9cxqXb91Zx4oenv9Hvwr3ZBGgN3uStSJiaDRKFML/YDROB9kBz7v8zhsEzFbNw56SawoiqSmppKcnExdXR1VVVUEg0FOazyN0xtPZ7V5Na8kvsLdprs5TzyPf/EvItl3HRbj0UdjPFopB/T89htN//wn7iVLcLz9No633x6WpR9m74mZqvyuWnpAOSNmjZ7jkkcNthn7jU53EQHfQvz+T3C57lLOcwcgASnIb7XFHJuU26UjAlBor+fYpI43TKMjEljXUMoLvMBt3EZQVKal2zoFS4IEJicLtqzpIJ2nFkQemnrqAe+Q9Ibhapoe6eyMAKjj4/EXFfXbXo2m59BoL0aStuC0z0CS+je03OhxUupoDD0aPV0n54qiSFxcHBMnTiQzMxOdVikpnOKYwkvbX+KDLR9Q21BLnBTHoRzKKvbfYdPPmEHCxx+T2dxM8qZNmOfNA5UK54cfUjFlCoVWK1WnnYZ72bL93tcwBzHxbd17++cmYpg9YzB9iCAk4PM8ht9/YH5f1zeU4w74ODQuo9sxNp8Hq6ajTpNJo+HVrDu4lmtxCS5koeOERJAgNm1dJw3fgCx16Ed0MDPsjPTEbjojbWjGjkW22ZACgX7btcn8JhrNmQSDq3E5+q/pVKPHyb2rF/GPdd+EHveuXtStQ9JGREQE48aNIzc3F6NBSeRN8iXxcPHDLN6wmJyqHI7xH0MqqbzMy0g9KE622bEnh0g3dixx//0vGfX1pOzcieWKKxCNRlyLFlF5+OEUmkxUHn88zq+/3vc3ZJiDE2sGIEDj1j0OHaZ/EEURs2UloMJpPxFJcgy2SXvN8uoCxkQmEK7bu+IFAQGVrCQaC3LXEZVmTd1+23cgM+yM9IQg0pVss+GIIwBwL+ncDbMvMVk+Rq0+nkDgJxy2vu/yC+AIeDslyO2NN24ymRg9ejTjxo0jLCwMALNk5rrK6/h+4/dcVHQRD3ofxIqVa7kWB51PQPviEGmzsoh95RXSq6tJq6gg7MYbESMjcX//PdVz5lCg11Mxezb2Dz/s98jSMAcIaqPSX2YI8U3ZFq5a+h4LCnoWZFtTV8p9q7/gumXv88CaL9nUWNHhdVmW+bx4I3/99ROuX76Af21aQo176ImNqdRpGEwvA06c9iMG25y9osHjJK+5hsPis3scZ9Xqsfk79i9z+H1cVvgP3ud9ooju0iGxqRv71N4DjWFnpEcEpQxvN0xnnAGA66uv+t0Cs/VbVKpZBAJf4rSf3+/721e0Wi3Z2dlMmDCB6OhoREFEjZq5jXP5bPNnPJH/BMsdywkjjGM4hi1sAZSQ5ldlW7p0iKp7eTJVJyYS/cwzpJeVkdbQQPidd6JOTMSzdCm1555LkV5P+YwZ2F5/fdgx+SOjj9klODYEKLY38EvVTpJN4T2OK7DV8eq25cyKz+SeyScxMSqZF7YupcLZHBrzbXkeP1TmM2/EdO6ceDw6Uc2zm3/EL3XXeXjw0OkuRaM5g2BwLW7X3wbbnF6zoqYAi0bHuMieJQ0yLdFsa67usCyvqZosSwzncR4F7GRK1amIsoiKXZUzfpUXn8rdaXsHQI1JnzDsjPSEIHaZM6IdORJUKry//jogZpgsv6BSTcTvX4DL8ZcB2ee+olarSUtLY+LEiSQkJKASVQgITHNM4/X81/l408eoGlVMkCaQHszk/KK7WFq9s8ttvZy3jALb3oUuQ7L0hYXDsvTDdMScBv6hMTXgCfp5LX8Ffx4xA+MeynOXVOQzJjKBE5JHk2AM4/T0CaSaI/ipcjugXKyWVGxjTupYJkYlk2yK4NKcmTR73ayvLxuIw9lrDKaPEIQEvJ5HCfiXD7Y5e0SSZVbUFDIzLhOV0PGy+Ub+Cj4tWh96fkxSDluaqvi+PI9qVwuLSjZS4mjkyMSRAFgFKw8F5zNvwxNM8LcmVrf6Gy5tU6d9Lyhcg9N/8J+rhp2RHuk6gRVAFRODf2fXF9G+RhRFTJY1iGIuPt+ruJw3D8h+9wdRFElMTGTSpEmkp6ej0SjzpSm+FOYXzWfJhiUcWTubn7Nf5s2ZV/Br+v+INxk73CW6g36e2/zTPoebO8nSP/nksCz9H5mIUYAEruo9Du1v/rdzNeMiEhkVsWcp90J7Pbm7Sb6Pjkig0K70p6n3OLH5PR1k4Q1qLRmW6NCYoYaSP7IcEHHYTxjy+SPbmqtp9LqYFZfZ6bVGr4sW366IRpY1hityZrG0eicPrf2atfVlXDP6cJLandtOSB7F2eHHcMSa2zh62/WoJaUYoCD6V9SCiNhOibXAVs9zW4ZmlKsvGXZGeqKbnBEAzahRSE1NAxb2F0URs3UDgpiOz/s0bte9A7LfviAqKorx48czcuRIDAYDACbJxPUV17Nk/RJuL7+VmrhV/GPy2fw2+T9cPW08OWGKmJA76Ofr0i37bYOo1xN+yy2kbtxIhtdL9EsvoZ00Cf+OHTT+7W8Umc2UZGfTcN99BNuJvA1zEBE9Rfld9cugmrGqtphSRyNnZEzs1fiuqjOsGj0tPiUvweZXLoRW7W5jtLvGDEVU6gwMxpdQ8keOHGxzemR0RAIvHX4hccbOOhm3jj+WS3Jmdlg2JSaVB6eeyr8PO5/7p5zMuMikDq8LgsBp6eMZH5lMdt1MLvjtGUy+MOpS1vLErLk8O+tcLh05M9QEscjewM9VO/rvAIcAw85Ij3SdMwKgP+wwkGW8v/02YNaIohaLNQ9BSMTreRiPe/97PXiD/VcRtDsWi4XRo0eTmZNDZVA5gaplNXMb5vLFpi/4z/b/UOQoYrJ+HK+Ou5GaqE0ArKorwenvu/I2Ua0m7MorSVm9mgyvl9h330U3cyaBsjKaH3qI4vBwStLSqL/1VgI1NX2232EGmYTZyu/awSvvbfQ6WVC4lstzDz3olDb3BZ3+ctSa0wkG1xxQN1h9gcPvZVWr5H8kkXwvLKZSVcZjwqNoRBWHxGVw3ZhdSb4/V25HOojzR4adkZ7oJmcEwHTaaQC4Pt+7jrb7iyjqsYRtQxCi8bjvwOv+zz5tR5Zlvi/P49nNP3VYbmhNqHp/52ps/XRXVRtw8qW3jLfcO2nRyIiiiIDAFPsU3s5/m882f0ZiUwKLRv2Tt2ZcxW/JH1Hk7J+yN1EUsVx4IcnLl5Pl9RK/cCH6o48mWFtLy1NPURIfT3FiInXXXIOvpKRfbBhmgLC2VkE0bRo0E0rtjdj9Hv6x9huuWfo/rln6P7a31PJjZT7XLP0fUhfnm66qM2x+D2GtkRCrRok27v59tfl2jRnKGE2fIAjxeD3/IOBfOdjmDBjbW2pDifuHxGUwUzOVO7iDf/APFrEIgAxLNCOssQDUehw0eIb2dNb+MOyM9IQg0N00jXbyZBAEPCtWDKxNgChasITlIwjhuN3X4fW+vdfbWFiykY+K1uGTdkVGMlRm/mzMJltlpcBezxMbv8fh73uHJNCq3eJDwm7VkJKSEsopEUWRVH8qjxU9xpINP3B+w9lsSfmSSWGZnMu5VNO/8/2m004jackSMt1uEpYswTBnDpLNhu3FFylLT6coNpaaiy/Gt21bv9oxTD8gikp5r73/BAv3RG54PPdNnsM9k08KPdLMkUyPTeeeySchCp1Pyd1VZ2RaogGI1puwavQdxrgDfors9aExQxklf2QZSv7I8UjSHyN/yx3YlZSaYFBkEdq6ot/MrrzAhHZTQ+6gf+AMHGCG5eB7ROx2mkYURcTIyEG7KIliJJawLdiac3A7L0HAhFZ3Vq/W3dlSy9dlu/IwJkWlMM4Si77OgSzDdG00BW4bNW47Hxau5dKcQ/favuLiYux2uxL1EAQEQQj9LUtBjtcmEiXq0Tf6KGksISwsjPj4eIxGI6IoUldXR35pEddXXMfVlVfzbdQ3PJf4HAnaBKYwhad4itnM3mu79oZeydIffzzhd9wxLEt/oKCPBvfgTb3p1RqS1OEdlulUakxqXSjB8Y38FYRrjaGckmOScnhi42K+L89jXGQiq+pKKHE08qcR0wEl/+CYpFy+KttMrMFCtN7MwpKNhOsMTIxOGcCj23dU6iwMxhdxu/6C034klrDfB9ukfsfcmg8CUOJoAEagR8/hHB6SiQcoduzSHzGpdRysDEdGeqKHBFYAzciRSPWDl60uiolYrJsBPS7nOfh93/RqvR9aSwIBzkyfyJW5swi3BUBWOoKaBQ25mnAAVtWV7tN0TSAQwOfz4fF4cLvduFwuHA4Hdrsdr9NFmtqMRdTglyT8cVays7Mxm82hPjyFsoN3XDv53FuKC5lTGk7hm03f8Nr213A6nRzBESSSyNM8vUd1176gW1n6Dz4YlqU/kDClgt8+2Fb0yL5WZxyVkMN/d/zOI+u+wRv0c+OYow6ovBSd/grU6lMIBlfhdv19sM3pd3LC49CrlHjA73Ul1LqVz2USSexASVbd3FhJaaszkmKKIHIvlV8PJIa79vbEe+nga4FLOtd+A9TfeistTz1F8qZN6MaOHTi7diMQ2IbDNhEIYLL8iEZzePdjpSA3rviQoCxh0eh4dPpcykvLaGho6DDOL8KbjnxkYF72dGYndFQdlGWZQCBAIBBAr9d3ahrlcDjIz8/v1g4ZsEs+PvQUE0RmSnQqU2NSAYE1dSWsri8Njb145CFMjUimtLSUltZKlypdFc8kPcPi8MXoBT3ncz7/4l+EE96Ld6zv8BUU0Pzoo7gWLSLYmuwqGI3oDzuMsJtuwnTSSQNqT1cU2erZ1FiJJ+hHr9KQFRZDgsH6h2i+1Ylf/gLbXoWL6pQoyTBDCkmSsLckIMt1mC0rUWtmDLZJ/cqCgtWhm0OrRs+paeP4R+yNfC9+y6KyDXxdtjVU0nvRiBnMis8aTHP3ieGuvX1BDwmsAMaTT6blqadwfvbZoDojanUuZuuvOGzTcNqPxmxdiVo9tcux7oCfYOsxpZmjaGlq7uSIAGgkyFBZKAzacXrclNfX4HC5CPr8BLw+gj4/cmtZ89ixY9HpOoYPzWYzZrMZh6PrhCuVKFJnVhH0KL7wmvpS1rRzQNo4LD6LmbEZCIJAdnY2kiRRXl6O2CDyaOGjuFQu/hv/X96MfZO3xLc4lEN5lmeZzMBMm7TJ0gMEKitpfuwxHJ98gvu773B/9x3odOinT8d6ww2YzjprQDswN3qcvLdzFZuaKju+UKZEwG6fcByZ1pgu1z1oiWr9XFQthYwzBteWYTqhaCotw2EbhcN+HNbwakTx4I0GnJo2nrzmGqpcLdj8Ht7duYoy2Y+cKLOgYhkGScklGReZyMwemvMdDAxP0/SEIEKnPoq70B95JACepUsHxp4eUKsnYrb8BMg4bLMIBLrW5tCqdvmfXq+Hkm4qRGTgGG0CVxhGEtvoo6akHEdtA85mGwGPN+SIqFQqtNrOCpINDQ243Z2ljdvIysrinJHTOCtjUqiWvj1mtY4z0yfyp+zpHaIuoiiSmprKhAkTSE5OxipYubLiSpauW8o/iv/BVt9WpjCFdNJ5jde63X9/0GtZ+jfe6Hd9mhq3jUc3fNfZEWlFBl7Y+gt17qE9ZdHntHXvrTv4cxIOVNTqERiM/wbsOO1HD7Y5/YpRreXWccd0EKwLcyt/15tLEIBZcZlcNerwLpObDyaGp2l6YsFIcFbBZd2fsIvCwxHMZtLLywfOrh7w+xbjdJwAaLFYN6NSdw7rzV//LSX2Bs7RpxMu9pwQJctypymYNiRZxhhmYcyIHOW5JFFbW0t1dTXBoBJaVKlUob/bSExMJCEhYZfNUpCNDRVUuVqQgURjGOOjkno9393S0kJ5eTkejwcZmTxLHv9I/gf5xnxMmLiUS3mMxzAyOHdYksNB89NP4/jvf/Fv364kRatUaMeNw3LZZVivugqxC4dun/cnyzy09isqXcqUllGlZUJUEnEGCzVuO+sayvG0ZuUnGcNbqzi6/h8fdEgSvKqC1JPhxC8G25phesBhO5lA4Ct0+r9jMN4/2Ob0O6WORpZXF7JU9QMvZNzBJY238rjx70TrzYNt2n7R2+v3sDPSEwtywVkOl3Vf2102ZQq+jRvJ8g+dkiufdyEu5xmAEWv4NkQxucPrK2sKeWf7b5ysSyZWNHR7IZJlJadbgG4dkl/8NVw47jD8TTbq6uqQJAlBEIiOjiY5OZnm5maKinaVUoaFhZGVldXt9vYHj8dDaWkpdrviPNbr6nk66Wm+Cf8GURA5mqN5lmcZxag+33dvkTwebP/5D7Y338S/ZYtycRRFNLm5WP70J8L+7/8QjfvnNG1urOS5LT8BEG+w8tcJx2Jup+Bp93l4fOPikMz+/409itERCV1t6uDkNSNY0uHcrcpzXwsggtYymFYNsxuSFMDekogs12O2/oZaPW2wTRoQ6qgjlliu5mpe4IXBNme/GXZG+oIPxiiaBJd3X/ded8012F58kZTiYrRpaQNn2x7wet/F7fwTYMUaXoAo7krWC0oST21awk5bHQIQLmhJ1JiJEfWYZRXRog6tsCsqEZCDqAQVXbkPsqyU4AgopbtxcXHEx8eHciNkWWbz5s34fD50Oh2jRo1Cpdq1bZvPzeKKfMocjchAhM7IIbEZ5ITH7fOxBwIBKioqaGhoQJZlvKKX9xPe54WYFwioAoxgBI/wCGdz9j7voy+QAgHsr7+O7eWX8W3YAIEACALqzEzMF15I+K23ogoL2+vtvpK3LJQAfM2ow0Plne2jXGvrS3kpT6n8mRaTxhW5s/roqIYonkaw7YSWHbDsGuSAB1/EGDT2IkR/C0HrCFTnb9/zdoYZUAKB7ThsowET1vAaRHHoi7j1BSIiJ3ACX/P1YJuy3ww7I33Bh+OUE9jl3ec+OBcupHruXKL+9S/Cb7pp4GzrBV7Py7hdVyEIUVjCChHFXe+dK+Djxa1LyW/pWnPBLGiIFrVMU8cQodIp+iC7fVTaLm7tL3IajYawsDDi4uLQ65UTR0NDA2VlZeTk5IR60wRliY8L1/Fj5XakLvJyxkYkcEXuLAxddDRtmw5qbGxkxIgRIcG07sbV1NQQCASQkFgWtYyHkx6mUdNIOOFczdU8wANo6btpkn1BkiSc//sfLf/5D97Vq6G1o7A6NRXT2WcTfscdiNHRoQomv9+P3+8nEAgQDAZDy4PBIGX2RqRgELUgEqkzodVokCQJj8dDZmYmERER+KUg1y9fACiiWndMPH4wD79/WXUvrHs49LTt09bmXEsIrLPOIGPu4j9mhdEQx+t+Abf7WlSqmVjCBl5kcjDQo2ckI9nIxsE2Zb8ZrqbpC3qRMGQ44QQA3D/9NOScEZ3+SmTZjsd9G/aWHCxhBaHMdKNay03jjmZrUxW/VO+kyFZPQJaI1BmZGJXCF6WbcAT9BPVars+cSVFRUSdnRBIFvneXUyo5uSRlMlE+EafTSX19PXV1ddTJXoqCdsqCTsKMZtTuWMYaDEiyzGvbVnRZPdPG5qYqHln3DXdPPgm9SnE2JEli8Y6N6O1eTILy0a1qaSQ1uusoiiiKxMfHEx8fT1NTExUVFcxumM23Dd9SaCnkwZQHedTwKE/wBHOYw7M8Sxp9H92SJAmfz9fBgWjvPIQekyYhvfQSkiQh2WzIzc3g99Og1VKydSuYTIqK6B6wokYSVQSRkWVFbt/tdqNWq0MOoiewa1px95boBx2xHctDd4/wicisshxCTMBLJMPOyFBDZ7gGv/9zAoFvcLsexmC8Z7BN6jV/+30hDV5np+VHJIzgwuyup53W1JUSrc3C7tfyQMmXnJkxsUOjPVmWWVSyiaXVO3EH/WRZo7kwexpxhgG8Ue8Hhp2RnhC6V2BtQ9TrEcxmfBuHpgerN9yKLDvwev6O3TYKi3UHoqhEAURBYGxkImMjEzusU+O28UWp0r8j3mglPDyc0aNHk5eX1yEZVU4Ip3SnoiXi0sDM9JEAOJ1ONpYWEO6G6YKOGZoYXMEAy/M3ocuQaJC9IUdELYjMjMskXKvni9LNZFqiKXM245MC1HocvF+wmktGzsTlcrFhZz5RfgmEXR/bhUXruTry2D0mu0ZERBAREYHL5aKsrIwsexZvbX0Lm87GM8nPsNC6kM/FzxnHOB7ncY6TjgtFINr/bh+JaHMiJEnq8Ghz2vY26NimVCsIAqLVihgerqjW1tUhr12LvHEjYlUVOJ2IRiO6SZOwzJuHacQI1Go1arXyvnxQsIYlrdoF58RMILbFi06nIycnJzRmeU1haL9plsi9svOAI+0UGHkZ7HgL5M5t2H2Chs3mCcwZBNOG6R1G8yLsLYl4Pfeh0Z7YrXTBUOOuiSd0iPxWOlt4evMPTIlO7XJ8ga2OV7ctxzRZR5V5JxMdybywdSl3TzoxJHL3bXkeP1Tmc0nOTKL1Jj4v3sizm3/k71NOOaBE7nZn2BnpCUFFT6W9bajT0vDv3Nn/9uwjBuP9yDjweZ7AYRuL2boVUez+X29uJzlc6mhEluVQvofH46GyshK1Ws1aV3NonKldea7JZGLmqPEAeL1eampqaG5uZgIitooaVMjM1aWSH7BxePYYpsSm8XLeMsZGJnL9mCOpcDbzj3XfEJQlNteWU6gppKmxCbUst/YL2oUv4Gd9fRnTYtMBOk1j+P3+Ds5DIKD04tHr9fh8PqxeK/cW3Mvd3I1T5cQtutFJOtYE1yD2svK9vdy9Wq1WWgWIIiqVCpVKhVqtDv1Wq9VoNJoOv3ulPXKE0r3T89tv1M5/BP+PPxH87juaH3uMlvBwjMcfT/idd6KfNInDE7L5qXI7o1XhWOtc+FViyBGRZZkNDeUhZxPg8Pjs7vZ68HDov6DiO3BVdtAOCiKy3jIVvzi403TD9IwoqjFZfsFhG4PDdswBkz9i2a1R4TdlW4nRmxkZFtvl+CUV+YyJTGCLycxO7JyePoG85mp+qtzOvBHTkWWZJRXbmJM6lolRSmHCpTkzue3XTzqcBw9Ehp2RntiDzkgbuilT8G/ZQnHxDsToqNBys1o3ZOagjcbHQXbg876IwzYZs3V9txdBk0bHCGssO2y11LjtrK4vZVpMGjqdDp1Oh9VqpcnrYsXa9YAS3RgbkdjltnQ6HckpydToJd7d/huXJkygpaGRGFFPrM4AZfUUOSV2ttRydPxIPB4P4Wg4IiwN0eUhTWWhqVFRwO2q6meGOgZfaS1ryjoLt/VEmwOhUqmUCIYElqAFc9BMpb6Sd2PfpVRfiiRITJOmcYVwBTGamJAD0RZhGGhcE8by2G0XELj1PKIKyzjkv5+T+ftG5A8+wPHBB0gzZhC89FIunTwJsfUu6QtXKZ9vqiLZFE6ZszlURQMwMy6TeOOBHd7tFVorHP0uLDqyw2IVEquthwyOTcPsFWp1LgbDc7jd1+G0H4MlbPlgm7RXBKQgv9UWc2xSbrfVhIX2eo5NyiWVVJayFA8eRkcksKFBkY6o9zix+T0ddEkMai0ZlmgK7fXDzshBi6Da4zQNgHTEbHj7bb74z2NsOnWXSI9aEHlo6qmD4pB4An4WlmxkfUMZdr+XFFME52U9TIzGjt//Lk77oZgsKzo4JPnNNXxYuJYqVwvGdomjb+avpNLZzKFxmayuK+X7ijyc7TpOTotN79D0qY0KZzOPrf8OvxREp1Jz5ejDsGoMvFS5FoBTI7LJ0UXgdDqx+z201NSxpcELQDZaZJVmjyXAPlHGhp/Rltj9jkI0NjZSUVFBkieJq6uuptpczd9T/858w3we5VGmMIWneZpZDF7liSPgDbUdb8hM4cv7rsMkqLnClIWv2UbQaoVAIOSISI0NaDf8SvGMCVS3c0IAJkQlM6+beeuDkoTZMP4W5I1PIbTeZPgELVtM4wfZsGF6i85wLX7/QgKB73C7HsFg/Ntgm9Rr1jeU4w74OLQHJVWbz4NVoycbJVq5mc1YNVZaWvuD2fxKMYV1t4iLVasPjTlQGXZGeqKXkRHviccgA2lrt3ZwRgKyhGOQkuLe3vEbla4WLs05lHCtgd9qi/jXph/4+5SX0eAg4F+Iy3E8ZutiAOo9Dp7f8hOzE0Zwee6h5DVVs6BwTeg4virbwldlnVVdBeD4pNwubYgzWLhn8km4A37W1pfyZv6vXDxy113oTtnBKa2hR2H5JiIiIshJzEYURb4pz2NDbSk5mjBydutyGtq3IOBUQa0W5o4cuX9vGBAZGUlkZCROp5OysjLiHfG8uPVFPDoPLyS/wHvh73EYh5FIIndyJ9dxXa+ncvqDRNHIJE0kiaIRtwS0Zaq3RW2CQfSLvuDc554joFFTNTqLNWeegHTqHI5MymFKTNofR+ysjakP4y38DJ2jAIB1lqkEhqdoDiiM5i+xt8Tj9dzTmj9yYHTMXl5dwJjIBMJ70eyuTQtpE5vIGMSbn4HkIE+j30+E3iUDiVYrAZ2GuO3F/WtPL/EFA6yrL+OsjImMDIsl1mDh1LTxxBrM/Fy1A7PlM9TqYwgEluCwzwXg56odROvNnJM5mQRjGEcn5TAlOpUInRGhS4URyLJEY9Ho2dhY0eXralFFrMFCmiWSMzImkmwOZ0NjOVE6xTnb1lxNhbMZQRCwag2IJj1msxlZo2JpQxHVsoeffTVkjsohLCYatxzosH1ZlgkGg4Rp+3bu2GQykZuby7hx4wgPD0fv1XNzwc38vu53Hq5+mEapkRu5ETNmruAKmmnu0/33lgmaSJJUpu6jRyoVKXfcQfidd6JNSiZlQz5z73+WM2ecSsJp5+N4881+l6UfSrgDfl7duYYnYi4DFEd6jXVXpc0vVTuQhr7SwR8eJX9kKSDgsB2NJA39iECDx0lecw2H7SE/y6rVY/N7mMAEAPLIw+b3hM5xVo0ijbB7J3Wbz9Pn58GBZtgZ6YleJrAC2GOisNbuXd5CfyHJMhIy6t2cKY2opsBWB4DR/B0q1SEE/Atx2v9Eoa2e3HbzkABjIhJwB/w8Mv005qSMBiDZFMHs+GzunHA8f51wHKMjEii01ffKLllWBNcOb+0ALAPPbf6J9Q3lZFqi2NZUzc6WOv616QdcrdNAMXozEUYzWSmpLApU4LBqMbZTKHX7vWRa+qf7qlarJSsri0mTJhEfH48KFSdWnMiydct4r+Q9YgIxvMZrRBLJbGaznvX9YkcbASnIlqaq0PMfvVU0SJ5uL6CiKBKWmEjU/PlkFBWRYbcT8dBDaDIz8f7+O3WXXUaRVkvZpEk0P/ccks/X5XYOBrzBAE9v/oFVdSWU6dMp0I9ABvKMo0NjllYX8N7OVXtdBTXMwKNWj8JgeBpowWk/brDN2SMragqwaHSMi+w6t66NTEs025qrGYkS6S2kkLym6tA5LlpvwqrRs625OrSOO+CnyF7fb+fBgWLYGekJQbVHXyQgBVlXX0Ztdipqrw+1q6PHOhgnNr1aQ6Ylmq/KNtPsdSHJEr/WFlFoq6fFp8w5Kt0xlyOqxuP3v0uS9pMu5yE9QT9mtY4jEpQvx4XZU5k3YjoZ1ujWiIaeFn/nO5NPi9azvaWWeo+DCmdz6/Mapsemc1TiSAyt2iFNPhcvbP2FTY2VbGqq5PGN31PmbApt54IspYRPEASOSsrls/pt+GItRKYlUSf6aRYDIYXR/kIURZKSkpg0aRJpaWloNBpG1o/kkw2f8GP+jxzpPpKlLGUSk8ggg7d4q89tKHc2cf+aL/iseENomYcgn3vKqJXcyF18UMPCwjo2GTSbibznHlK3bSPD5SLqySfRjB6Nb+NGGm68kSKDgdIxY2h69FEkV/eqwwcii0o2UWxXbhb0Kg3lo25GAC5JzmBS1K52CUurd7K+YWj0mRqmZ3SGG1CrjyUYXIbH/dhgm9MtkiyzoqaQmXGZnTR93shfwadF60PPj0nKYUtTFUvK89FIOopbmihxNHJkonL+FQSBY5Jy+apsMxsayqlwNvPG9pWE6wz9fh7sb4adkZ7YQ2TEFfDxr00/8FXZFkqmjEEAsleu7TBmccW2QQn9XpYzE1mGO37/jOuWLeDHinymxaR1mHIRRRGzZQ2iOIITY18ivA+73Nr9Ht7MX8n9q7/gX5uWUOxo4MbWHih6lYYEY1iHEmKf1FH/QSUIXJA1lTHt7iROSB7FUQk5/HfH7zyx7Sfy1E7OHHPIgNbWR0dHM378eEaOHInRaMTisPD41sdZtXkV17ZcSznlXMIlWLDwf/wfLvb/ol7jsvHUxiXUe3aJJ6lbT2p+JLxyEAGhk0MS1oOUvKjXE37LLaRu3EiG10v0Sy+hnTQJ//btNN51F0VmMyXZ2TTcdx/Blpb9PobBxBsMsKxaKb1XCyJ/nXAsR+YqqiJTdH6uHj2bi0bsmq75sXJYFv5AwWj+GkGIxOO+i0BgPQCyHMDtupuWpigkqarnDQwA25qrafS6mBWX2em1Rq8rdIMIkGWN4YqcWSyt3kmUPZ2WgJNrRh8e0hiBjufBR9Z9gzfo58YxRx3QGiMwLAffM1/PgbJv4MrO8+qyLPPM5h/Jaw2XGRuaue6M6yg9/Xi+vvMqbO2iBSenjuW0tMHJ2PcGA3iCfsK0Bl7OW4Y3GOCGsUd2GCNJPtaUH0qWaR0Gw32hDpnLqwv4oHAtzxx6DgEpyA3LP+CqUYd18MDfyF+JO+Dj2jFH7LVtkiyxpamKX6p2UuZsQpZlYg0WDo3LZGpM2gHx5fL5fJSWltLSesEWVSIrElZwb8y9NIlNqFBxDMfwPM8zghH7tI/nt/zEpsZKAFLNEZydMRkB+KZ8K6LDw0xNLMUBOwFkstTWkLs5YcKEDiXI7aulInRG5qSO5dDdTpA/lm9jzbefkfjjSnKXrCSsWpnWU6emYjrnHMJvvx11bNcaCf1Bo8eJI+DtsGxvS+bXN5TzwtZfAJgZm8ElOTNBCsJrBjjkSRh3A5Isc/+aL6h1K00WH59xZqdI4TBDk0BgCw7beATBismyDrfrTwQDKwAZo/lTHNJx+/0ZGgzSSMOGjSaa9jx4CDMsB98X9FBNs625JuSImNU6rjryLET9rYysd3LkjLksry7k3Z2rkJH5rjyPYxJzOgiDDRQ6lRqdSo3T72NrUxVnZkwC4OuyLayrL6PabUMrqjCq/sapcQ8yQvg7gmBGb7iVvOZqMq3KPKRaVJFqieSXqp18UryBBo+DGL0Zm9/D8cm7uuDujVSxKIiMi0zqIHV8oKHVasnOzkaSJMrLy2loaOCQ8kNYXLGYmsga/pryV75TfcdIRpJDDvOZzxmc0evt13scbG51RMK1Bm4ZdywGtYbNjZXEqo2kqU1s8Tex3F8LgE6tJQU9RqOxgyOye7XUtuZq3tn+G2FaPWNaNWJW1ZXwUfF6Ljz5HDLOv4Ylldso/HUZF739NcFly2l58klannwSVUICptNPJ/yuu9Ckdq0k2Rc0epzcu3pRqJS5jb0tmW+f7JcdFqP8IaqUx7aXYdwNiIJAljUm5IzY/Z5hZ+QAQa0eg97wJB73zThsI1DO2TKgxuFdzb0bPPv9GRoMYoihisGP7AwUw9M0PSF076v9Ur0j9Pd5WVMYGR6H8bTTQJIQBZHDE7I5ojVR0y8FWVlb1O/mtmdLUyWbGyup9zjY2lTFU5sWE2+0hkKFS6t3ohJE7pxwPP839mjCtFbeKL2ZWm8mLtdf+a3iKdbUlXJsUk5om+MiEtnSrIhnXTXqMNSiCmfAR0a7xKk2qeJ5I6Zz58Tj0Ylqnt38I36pswz3wYQoiqSmpjJhwgRSUlJQq9XENsTy1vq3+H3775zpOZMd7OBMziSSSO7mbnzsOWF0a1NVyB0+PD4bg1rJtYnxqxjp0hAbEcVyfy3hWiXL/mtXCfFJiSQnJ3fYzu7VUkcl5jA5OoXFFfmhMYsrtnFYfBaz4rNINIUxL3s6rpGZ5L/+DJluNwmLF2M46SQkmw3biy9SmpZGUWwsNZdcgi8/n71F9np7fL29pkp72krme4uuXZfo0FSXFFCk4VNOCL3W4HG0W2f4Pu1AQZYDyHJt67MA0HaukQgGNvTJZ2gwSCYZP34k/hgVb8POSE/0ME1QYm8ElJNWW58BdUoK3tWrkTzKndis+Kx24we20sYd8PO/gtXcv/oL3shfSbY1hv8bexSqVtGvkdZY1KJIoimcFHMEV446jKCs4b2K+ZS4RpKuvZvLsltCd80Ala4WEoxhFNnreSlvGSpRJMFoZXVdCUAnqeJkUwSX5syk2etmfX3ZgB7/YCGKIrGxsYwfP54RI0ag1+sR7SJ/2/I31m5ey/22+/Hh4xEewYSJMziDcrpPmHS3a2iXYFRyQFpaWigvL0ej0ZCZqTiXEe20CwwRViwWS4ftdFUt1b4SKiAFKbU3dlB2FAWB3PD40BjjMceQ+NVXZDocJP36K8Yzz0T2+XC89RZlubkURURQfd55eNat2+P7JHu9lKSlUTNvHnIgsMfx+8OIsNhQrtSKmkK8wQA0bQXJD2mnAYpA3/YW5YIWrTcRqRu6d8zD7EKSKnDYj8DrebSrV1HJ6wfapD4jA0UcrYSSQbZkYBh2/3uke2ck2Opt60R16AKvio0Fvx/fxo3op08PVYwo4wc2NWdqTBpTY7rvQHtJzswOz91B5aL3l1HHk2A4DFvzSEaorsXnjUOrU6YV2qSKj20ncvZ5ycZOUsVGtZbnt/xEqaOJFp+bBKN1j1LFvcpnqNzO9+V5tPjcJJsjOD9rSoeozFDDarUyZswYPB4PZWVl2Gw2Tt1xKnNVc9meuJ3bo2/nM/EzPuMzxjOeJ3iC4+hYpth+aq/U0cgIXTgFBQWYTCays7ND1TL17l139e3Vc9uwdTHt0FYt5QsGcAV8SMidemlYtfpOyq0A+hkzSPj4YwC8mzfTNH8+7m+/xfnBBzg/+ADBYsFw1FGE//WvGA47rNP6rsWLCdbU4HjvPWSfj7j33kPQaDqN6wsidSbGRyWxoaGcFp+bZzf/yDWNCzADUvgY8poqeXfHqtD42fEj/nhicAcoTvvZBIO/dvu6QAVa0YNPOvCm3HJRzrPrWR9yTA5mhiMjPdFDZCSqda7R5vdQ6lCiJKbTlLssubUssi3psP34oYgky3xQuIYsawxJpnBEMRGLdROgw+U8G7/ve2CXVHF7rBp9J6lijSCSbIoIleUaVdoepYrb8hlywuO4Z/JJHJOUwzvbf2NL0673b1VdCR8VruXk1LHcPekkkk3hPLv5x07iP0MRvV7PiBEjmDBhAtHR0UiSRFZZFp+s/4TlJcs5IngEm9jE8RxPHHE8yqOh0OzYiITQhbGspoodO3ZgsVgYOXJkh5wQe2vIeVR4PHpV/1zUu0M3dizx775LRn09KTt3YrniCkSjEdfnn1N5+OEUmkxUnnACzm++Ca3j+OijkFKs8+OPqTnvPGS/v8N27f6+C6OfkT4h9L7stNXRULaEICpu3/Azz27+KdTmPdEYxhGJ+5ZoPMzAYzA+jko1pfVZ5/O1gEyc7sAs1R7LWAC2snWQLRkYhp2RnuhBgfWQ2F137QsK1uALBlCnKZEIf0kJ9R4HX7eTTz8kduh6tv/buYpKZwt/yd0lO6xSZ2C2rgbUOB0nEfD3vilVbkQ8c9MnMKmXde/7ms+gFdWsqCnotV2DjVqtJi0tjYkTJ5KcnIxKpUJXr+PJ9U+ycftGrvFegw0bd3EXRozMYx5uuYU51gz+pM9iliYWhxygwarCHfRT53Z00B0BQnoEu2PV6LtUbdSrNGhVaswaHSIC9q6UHTW9v6vUZmUR+8orpFdXk1ZRgfWGGxAjI3F/9x3VJ51EgV5P+eGH41ywANqmZ2QZ58KFVJ99NnKr8NrPlTv49+afut3PxoauVX+7I8EYxk1jj8LSeizRvlpsaiv2dlVvqeYIbhp39IA7c8PsO2rNYZitqzCZv0almti6dNd5W5YhQV/a5bpDXW23TYV1J0O3I3xfMuyM9ERbAmsXktnTY9NCUYKdtjruX/MF39QVIIWHs2Hljzy09qtQee/oiIQOdeJDif/tXMWmxkpuGX9Mh7wDULLUzdblgIDDfiSJenuHkmWgV1LFrqCvR6nivshnOJAQRZG4uDgmTJhAdnY2er0er93L5ZsvZ9WWVbxZ/ybXVl7LGZvPoHJLJfF+FYbWKN33nnLe2P4rt/z6Mfes/ryDwzsjNp0JXVQmNXqcxOjNbGqsoNTRSGNrEmdX1VJ5zTWh9SRZZlu7MXuLOjGRmGefJb2sjLSGBsLvvBN1YiLeZcuQ3e6OgyUJ1xdfUHXGGfxSvIX3ClYRbFfJphM7zigvKt3ET3upB5JhjeahqadyfsYkjJKLWl0SJrWOUeHxXJl7GHdOOIGw1kTgYQ4cBEFAoz0x5JSIKuUi3uZrZBk799QC+LBwbYecrKGGGTMi4h8mZ2TYGemJtmkaqXPVg16l4drRs9G3Zt03el0sLN4ALS3EvPk/PH5lnTiDhUtHzuy0/mAjyzL/27mK9Q3l3Dz+aKL15i7HqdVTMVl+BGT+nHIXRS0bO7y+J6ligFq3vUep4j3lMzj83m7zGbpSfz2QCAsLY8yYMYwYMQKtVovX42VsyVjmVc0j3ZsOEGrGV6It5af4Lzpk12sQiRX1ZFtjODoxhyavMkX4adF63shfESqPXVlbRJ3HwT/WfcM9qz7ny9LNnaqljk3KZVn1TlbWFFLlauG9navwSYFOuTv7gjoykqj580krLMRy+eXQVfdkScL99df4z7kAlVf5/syOz+Yf007j2Vnn8si00zkiYdcUykdF63Ds5VSOQa3hKHUjApCTcxZPzTyLm8YdzZSY1FDu1zAHJm1OicW6msrgG9R6ExEEGGtdhRqZeIO1g9DiTlsdL+UtHdIREh26P0x57/C3ryfapmmkrr3nDGs0t084ntGtd+xx24sRZRmN18fUTxdzaFwmt084fkjqFfyvYDW/1RZzec6h6FUaWnxuWnxufMFdlQ1tUsUazWGYzF9gVrcwK+yvLCn7mWpXC4tKNu5RqhjAqNYd8FLF/U19fT2+3XrDtFfLlZH5Ouorlme/yduzrmBz9scEBT+ztLGcrkvF53Axf/23fF6iOIstPjeNXleX5bFBZH6p2sGfR87oUC01LSaNszMn8XnJRh5e+zVlziZuHHMU1j6MFsjBIM7PPusy2qgMkElfvYnrT7+Gk3bUcmH6pJCjHKU3cWH2NGbFKVVqfinI8n2Zpiv9QvndWkkzzMGFhMzbReE8VfBPfqk/EZUQZP6k7Tww9RQeP+RMrhl1OKbWJO+85mo2ddPocyhgxUojjYNtxoAwXE3TE6Fpmu71IJJM4fzfuKOpddupeudGZJRuoEe/+D6pN9yLZhCEznrDz1WKTsqTm5Z0WH7xyENCd8KNXlfogqjRnojF/D6yfD54L+Gx9fcRrovtUqrYFwzw3x2/h5rdnZIypkc11T3lM4iC0Cf5DEOZpKQkHA4Hfn/Xjq+IyK22W8mMyuRJ3ZOsSPiEnVHLuHLTIgQE5hhTyc3NxWBQHIe2aqm25OrduW7MEaSaIzstPyoxh6MSc7pYo2/wrFiB1NCuzF0QlETWdsctCQIaj5dxl99M8V8fwnjqqahTU4n4298Q9XqOTx4VckK2NlVxQvLo3XfTM9UrAAGiJu7/AQ0z5NjUWNkaIRQo8v6V4wzT8Xoexu8/Co3mSCZGpyABL+UtBZRuzROiknvc5mARRRSFFA62GQPCsDPSE23z1N1ERtoTozXi/PSLXQH0YJDaSy8l8aefEIZg+Pelwy/c45hbxx/b4blWdxYWXkMtXszfR92CJawAUex4QRMEgdPSx3NauiJ/f9XS9wjfLRdldzKt0SGV0Ta6y2doi7C05TMc1U3C5oGGTqcjJyeH/Pz8Lh0SQRBwOp0cv/l4TjecTnFqMb+1/BZ63S/5Wb9zPdNGTetQZTPU8K1fr/whiqhTU9GOHo1m1Ci0OTlocnJ40V/JNo0iWvW0KRfnRx9hf/FFpOZm1ImJhF19NXEGCwKKxmbbnL8n4GdhyUbWN5Rh93tJMUVwXtYU0i1RnY1oyQddJPm2uoOunHwY2NlSG/p7dsII9IYjCAaW4rSfjsmyCI1mNhOjkpSbIL+HHa2dzIciiSSSR95gmzEgDL2r5FBC6D5nZHfcP/yAVN8umTIQwLN0KbYXX+wn4wYHne4iDIZ/I8vN2FtykKTOGhSeoJ8yRxNlDqWnQr3XSZmjKZQ42ZbP0MYRCSOo9zj4uGgd1a4WfqrcPqD5DEMFnU5HeHh4l68lJCQwatQoTCYTbrebuPw4Tqs+DVVr5YAKFaJP5I2CN7hVvhUPHrzBAGvquq4k2Ntci77Ceu21pBYUkOnxkFZURMKXXxL9xBNY//IXDLNno4mPV6IlgkBlfATelSuRbDYiHnwQ65VXAlDqaAqltrbpsLy94zfymqu5NOdQ7ps8h9ER8fxr0w+hHJoOeOpxWXMO6nLyPzLtm26G6wwIggqD6TXAhs/7BqC0omhLVvYFh646dBppyMjY6HyePdgYurdQQ4G2aZrgnhUi7e+8o4Sbd1OTbLj1Voxz5qBJT+8HAwcHneFaZBx43HdgbxnVGiHZNV1SYm/kqXbTPx8WKp2M25qUteUztBGtN3P9mCP5sHAtP1TkE64zdpnP4PB7+LxkIzafh2RzRJ/nMwwWTV4XnxStp6m5kdnqOOplL/EaE3JwV15FREQEer2e3NxcAoEA6/K2IHj9IdEzADVqJjomsq1sG+YUMzn1s5lSfS4GOvcFeilvKdeNOZKRYQPX9A5AUKnQZHbvQE6MSmZTYyXm2gb8J08Au4O4BQswn3suoCRef1m2OTR+UlQyvmCAdfVlXDtmduh4Tk0bz8bGCn6u2sHc9Am7dtC8A+QgmyxTQuXkoJT+7mypY3FFfuhz176cHGBe9nQ2N1ayoqaAE1PG9On7MkzfEd7unJDfXNsayVIiaFrdRYAyxVvpauk0fqjR1lxzPeuZzexBtqZ/GXZGesCBiBm4d8OPNKlWEaM3c/HIQzqFfiWXC+dHH3VyRAAkv1+Zrvnhh9CF42AI/eoNtyPLDryeh7DbRmGx5iOKSlJYTnhcj9NAu6u/tq1zz+STetxnf+czDAZOv4/HN3zPBF0UE9TxCGoVKckJRGkM1BWXEwgEMBgM6PW7nL0mvxunx41Z7KyHISJyYd2F1Al23k16g7yYn4lypnJE0WVEt2SFIgqeYIDnt/zEHROOH1Jl59Ni0vlh8eece8VdqL0+Nt11A4HjjyAl4KPc0cS35VvZ3KRUFxhUGqbHpiPJMhIy6t10gTSimoLdQ/AlnwKwyZDbZTn5B62Oc1s5+Unt8lEO5HLyPxJTY9JY2JrIvaRiGzNi0zGxHgBRTEeWZRaWbAipaE+L7V6perAZjfL528jGg94Z2adpmn//+9+kp6ej1+uZMWMGv//+e6/We//99xEEgblz5+7LbgcUp9/HJy1K+O6KjFH8fcrJnJM5OZSF3R7XokWddRNaEYJBPD/9hP3VV4GDK/RrMD6IVn8zslSMwzYBqbsKiWG65dvyrWSozGQHDGi1WiaMHce46GQSw6LIyclBq9USExPTYZ1VpTuwiBp6Eiy/seZK7l39JumOsTSaS/l4/H0sGv8wnpHrGRmuOL7eYCB00h4qSEuXceGld6Dy+Vn44I18fdIhPLVpCTev/IgnNy0JOSICSrK1XqVBr9aQaYnmq7LNNHtdSLLEr7VFFNrqafHt9r2s+gWAUk3SH7ac/GAn1mBhfKvejs3v4R/rvqG4+R1kYF2jl6c2LWFZtZIArRLEDuXiQ41JKF3Wt7N3mjoHInvtjCxYsIBbbrmF+++/n7Vr1zJhwgROOOEEamtre1yvuLiY2267jcMPP3yfjR1Ivi3firE1ETBNrydab2Z0RAIxBkunsfZ33gn9Lak6V43IgoC/uBg4OJRE22M0PoVWewWStA2HfcqwQ7KXVNXVMlEOo0728o5rB49u/J6lVYriol6vZ+zYsZ2cEY1DyfdoP0Wzu1KCIAicJI7ky9oPqXZVcw3X4NY283bc49w19hR+HP0cTk0TGxsqaGyVQh9s7AsWUHnMMQiCgGfhB1Qdd0SX48xqHVePnt1B4feynJnIMtzx+2dct2wBP1bkMy0mrUN5NACNm0FjQR6CSeXD9B1/GjE9VBJu93tw+rYjyyKvbFsbaogoAH9uN24okoxS5VPEwHZ9Hwz2eprmqaee4i9/+QuXXnopAC+++CJffvklr7/+OnfeeWeX6wSDQebNm8cDDzzA0qVLaW5u3i+jB4KNDeUcrVHenofyfkcoq+GIhBEcnpDdebBGgzotjcrYCIT0NGK/WgyiSMKiRWwwwgJ3Jf+afcFBG/o1ml9Bttvx+xfgtM/GErZssE06IKioqGCaGElJ0IEqJowbYo+i2N7IgsI1qEWRmXGZHRyONopkJ3qjgQxrNCqVClEUqXLb+L5yG6dnTOT9wjXIyKTrw5js1lO6rZTrDdczLXAeP+mW82POi+yI/JUdM34lypnGRJfA1brzB+Ed2EXz00/TcPPNCEYjSb//jm7MGOZLQdbWl7KxoQJXwIdBrWV8ZBJTYlI7lYrHGCzcNuFYvMEAnqCfMK2Bl/OWdb7QuKogbORwOflBTpjWwO0TjuPdHb+zsbGCME0TPmmXzEK03sQ5mVOYOERLetujRUsFQ1cLpa/YK2fE5/OxZs0a7rrrrtAyURQ59thjWblyZbfrPfjgg8TGxnL55ZezdOnSPe7H6/Xi9e7K9rfZBj6TuM7jYIM7yGzgspRMCvSZHS4S7Un4VJmHfnX1Ig6NyyRxWyH+7dsxHHEEpsYKXFsq9qkz6oGEyfI+DpuDQOBLHLYTMFu/HWyThjQVFRVUV1dTEnRQpPVxe6YSjk01R1Lpaubnqh2dPmdtlOEmxaIhOXnXibS2McDOMjuiUU+FpCQHJ2ujMJvN2Gw23G43br+bXGkKb1HKf2o/5AH93dRad3ANF/B3buLW1h9xgIvs6m+/nZbHH0eMjCRl0ybUiUoCqUZUMSM2gxl70ddJp1KjU6lx+n1sbarizIxJu1701CuVcdGTh8vJ/wCEaQ1cO+YI6twOBNeV+KRwTkwezYiwWEa3a0A51DFhoo6hW37cV+zVWae+vp5gMEhcXFyH5XFxcVRXV3e5zrJly3jttdd45ZVXer2f+fPnExYWFnqkpAy8eqcMRGuU/JAknZbZCdkcFp8VEgvrCU1qKni9f7gpC7P1C9TqIwkEvsNpP3OwzRmylJeXU11djUajYZ3QTLwprMPrCYawrktSW+nprj5KZ2SiKoLjtIlM8BppbGzEbDYzcuRI9OGW0F290BDH3I1/56JfX+J03zk008zt3I4RIxdxEQ00dLHnvqfmootoefxx1CkppBUVhRyRvWVLUyWbGyup9zjY2lTFU5sWE2+0MqvVofu0aD2L1ihlnSQdN1xO/gcixmBGLXiwaDM5I2MiYyMTDxhHBCCCCFpoGWwz+p1+vQWy2+38+c9/5pVXXiE6uvfVInfddRctLS2hR1lZWT9a2TVhWj2RmtZqhVbRs95eJDQjlTunQEFBv3RGHcoYzUtQqabh93+K03HxYJsz5CgvL6empgaNRsPYsWPJtMZQs1tUrMZtI1Jn6nYbmdboTv1/ttdXcZg2lsIt25iuiyVC1LHe34gz1kxWVhYms5n8lloyrdFsb6llQ4PSVj1OjOFjzfu4cPEETxBBBO/wDjHEMJOZrGJV378JgCRJVB57LI533kEzbhwphYWI1s4lyL3FHfDzv4LV3L/6C97IX0m2NYb/G3tUqN9Mi8+Nvqm1YVrqKaFy8rymah5a+zXfV2wbFHn8YfofSXIBQUTVgelExhOPi+6vOwcLezVNEx2tzFHX1NR0WF5TU0N8fHyn8QUFBRQXF3PqqaeGlrVFC9RqNfn5+WRlZXVaT6fTodMNrox6ljWGBmdrWqCklOz25iKxubGS2aOUu6vKX35gzYyRJBrDaPQ4idSbDvrQryiKmCy/4rBNwO97G5fTjNH078E2a0iwuyMiiiLHJuXy2Ibv+Kp0C1NjUim2N7C0eid/GjE9tN6nRetp9rm4NOdQQBGJ+6lyOx8VrGGUaKWhqYlxkh4Z5bvjM+v4oExxIlYV17OhpQoZGXfAT43LzqKSTaGE1yMTRoQu2G3TND/wA7dxG7/yK9OZTgop3M3d/IW/9MkUToPTxoYzTiFtyVKWX3YWRddcwsXulq7VUlvJb67pUS11akwadr83VDJf7Gik2m0LlcxfkjMTNlwOKj3ow4E/bjn5H41gcDUAomrUIFuybySTzApWECCA+iBW49irI9NqtUyZMoUlS5aEynMlSWLJkiVcf/31ncbn5uayadOmDsvuuece7HY7zzzzzKBMv/SWY5Ny+bDkewAaPE4Kaot7dZH4sXI7T4V5uRr4bt0vbBmpVN/cu3oRD009lWOTcnkzfyXplkjSLVEsqcg/6EK/oihitq7DYRuFz/sfEMwYjY8NtlmDSllZGbW1tR0cEYB0SxTXjJrNp8Xr+bJ0E9F6M+dmTumQJ7G7SJzGG2SeNYdgkw+PYMMj+ZFNRmZmj0Gr1SLLMkcHW/ihUikH3NxOVXRF7a4+F2MiErrs63I0R7OWtVRSyY3cyOd8ztVczS3cwkVcxOM8jpl9q0CwN9azZu4cMpetxnfJn5nz7/9Q67Z3WTLfRr3HwfNbfmJ2wgguzz2Ubc3VvLP9N8K0+lAko61k/sLsaWRYollSuY1nN//IA1NO3VXC6ygF475NAw0ztPjb7wtp6KIK7IiEEVyYPa3DsmBAcUbybVl8suULGjwOYg0WzsyYyLjWEmBQBPUWlWxiafVO3EE/WdZoLsyeRpxh3yN2fUEWyg37NrYxlrGDakt/stdu1i233MLFF1/M1KlTmT59Ok8//TROpzNUXXPRRReRlJTE/PnzQ6WJ7WmTu959+VAj3RLF3NgYKIEXSwvw2fR7vEhE682clzmZ/wZ+w6/TovbvkhkOyBKOgPegVhJtjyiqMVu3YLdl4/P8EwELBuM9g23WoNCdI9LG+KgkxkcldbO2clcfCAQoKSmhsbERSZLQAFajmfj4eKZEdu4PdG7mFCJ1Jr4u24Iz0LGdgUZUMTs+mzMyJoaiIl2RSCIf8REBAjzMwzzHc7zIi7zMyxzBETzHc4yh90qkgcpKth9xKOnF5YTfdhvR//wnwB5LK3+u2rH/aqkBDwScEDmu1/YOM3S5a+IJSO0K2iudLTy9+QemRKd2GhsMbgXgtR1uTkkfy/jIJH6vLeaFrUu5e9KJIdG/b8vz+KEyn0tyZhKtN/F58Uae3fwjf59ySo+NPvubUSgRnQ1sGHZG2nPeeedRV1fHfffdR3V1NRMnTuSbb74JJbWWlpZ2OtkeqIwwKifJu9PTIfuUTq93pSRq0ehBFBGDQXJ//JXf/tS5TfkfJfQrilos1jzsLVl4PfciChZ0hv8bbLMGlDZHRKvVMmbMmL3+bjQ1NVFVVYW7VVRPpVIRHR1NUlJSjw3xBEHguORRHJEwgvUN5ZQ5m5BlmRiDhanRaZg03UcidkeNmr+3/nzO59zJnfzIj4xlLFlk8RAPcQEX9LgNX14e5VOnYpQl8h//O5UnHMGOXz8mXGvsvmS+lUJb/f6rpZZ/p/xOPLLXxz3M0GX3isRvyrYSozd32d5AlgpwB43kRKSFIoGnp08gr7manyq3M2/EdGRZZknFNuakjg2V+16aM5Pbfv2E9fVlTItN7/dj6o7xKE1Ht7J10GwYCPZpAur666/vcloG4Keffupx3TfffHNfdjk4tHXtlffcmwaUu7O2PixeowFjY8cM6B8rtvPnkdMRhYPDWesNomjCErYNe0sWbvdNIJjQ6a8YbLMGhNLSUurq6vbaEfH5fFRUVNDc3BzKsTIajSQmJhIWFraHtTuiVamZHpvOdNL31vwuOa31p4ACbuAGvuM7LuRCruZqruRKHuIh9HS8ULiXLaPy6KMhGGTBKw9TNzKDYw0WTkoZ00lXpStsfk+Paqm9Kpkv+0b5nX5Gn7wPwwwdAlKQ32qLOTYpt0tdHkkqp9EX16VD25bIXe9xYvN7GNVujEGtJcMSTaG9flCdkTZJ+EIK9zDywOaPc1XcF8SO1TQ98XPVjpAjAuAOt6B3uFC3czxW1BbycdH6vrZyyCOK4VjC8gArbteVeL0LBtukfabR46TU0Rh6tHUi3p02R0Sj0fTKEZEkifr6ejZv3symTZtobGxEFEXi4uKYNGkSo0aN2mtHpD/JIouv+AoHDm7hFgCe4AnMmDmZk0OKkfaPPqLyiCNAlklcsoTakRmkmiM5I30iqebIvSqZ3y/qflcaX1qGbh+SYfaN9Q3luAM+Do3rWo9Glutp8MVi3a1i0arR09Ja2WjzK5HHrpzelkFu1aFBgwoVZQx8VelAcvCm5vYFIWek58iIO+Dn46J1oefHJeWSMGocvvLFPDnzLH6p2smnReuRkFlcsY3Z8dnEGQc3KWqgEcVYrOGbsTXn4nZegCAY0WpP3fOKQ4hGj5N7Vy8iIO/Sj1ELIg9NPZVI/a4qqzZHRBRF/H4/DocDazdlqx6Ph4qKClpaWpBlZQ7cbDaTlJSE2Tx0Zarb0KPnydafd3mX+7iPr/iKTDL502fx3Ht+NWqdQVFVHTuWsN8/I8HYWVdlXX33J9o+UUu1F4Kho6z+MAcHy6sLGBOZQLjO2OXrsuygyR9NwgDb1ZcYMFBDzZ4HHsAMOyM90TZNs4fIyG+1RXiDisNySGwGZ2dOxnbuedR9+x1at5fjk0fhlwJ8XqJUFv1cvYNzM6f0q+lDEVFMwWzdgMM2FpdjLoL5ezTaowfbrF7jCHg7OCKwKzE5EsUZaXNEVCoVwaCSwFxXV9fBGZEkibq6Ompra/H5lORSjUZDdHQ08fHxvZrOafK6+KRoPVuaKvFJwW47SrdnT+WxsH8dpee1/mxmM+/952Tm3VrK77Phno/0XBr5MXeTS9Y+6qrsl1qqJIG3GRKP6tVxDHPg0OBxktdcw9Wju+55Jkk+IIBHisa2W4NDm99DWGskxKpRCghsPg9h7YoJbD4PKebwfrF9bwgjjEYaB9uMfmV4mqYnhN7ljOQ37/JY2/RCNCOUTpD+nUrTsyMSRoZadrUf/0dDrc7GbF0NqHA6jifg776NwIFGSUkJdXV1qNXqkCMC0NzcjN/vx+VysWPHDtavX095eTl+vx+r1cqoUaMYP348iYmJvXJEnH4fj2/4HpUocsPYI3vsKN1GW3lsm7bGMUk5vLP9N7a0K/vtq47SMZc+yeXXlaKPTmDlZxdTF+nl7/wdI0a+SH+Wba4yvirdQq3bzu+tJfNHJu7qnPpp0XreyF8Rer7faql1vwEyxM3aq+MYZuizoqYAi0bHuMiuS7YlaQMABnVCJ6HAvKZqMlsd7Wi9CatG32GMO+CnyF4fGjOYxBCDA8dgm9GvDEdGekJsPbnvYZrG2+716NZwvdzaW6fu6qtJ+vlnzDodepUGd2vS3R8ZtXosZutyHLZDcdiPwGxdjVo9frDN6pEiWz3vF6zp8rUV1QVIahsNDQ2o1WoCgc7/382bN4eSUbVaLbGxscTExOxT5dm35VuJ0Bm5ZOQhoWUDUh67ByRJovqkk3B/9x2a0aNJXreOf2u1PMfrvMRLPMIjLNR/gDjjY1bVHcX4zSeTJWT3qmT++jFH8mHhWn6oyCdcZ+xSLbXbkvmSL5RBaQfWtOAwPSPJMitqCpkZl4lqt6KAN/JXEK41MideEf8bEzmBr7dW8X15HuMiE1lVV0KJozGkGyUIAsck5fJV2WZiDRai9WYWlmwkXGcIRdsGkySSWM/6wTajXxl2RnqiLWdkD5GR9olRO231TIxKxnD00cR9/DG18+ZRNXcu8juv4w4q0z27Z/3/EVGrp2GyfI/TfgwO23TM1o2o1UNThXZjQwUv5S3tNEXThr/eRr1GQKvR4vd3PaUnSRJhYWEkJyej1+/f/39jQzmjIxJ4KW8pO1pqB648tgekQICKadPwrV+P/sgjSViyJORoiYhc0/rzK79yk3gTv8ctYVPcYuKJJ4y/MoubQuquXZXM75Va6vrHoPq/EJgC0ZOgYokyIPqPNzV6MLOtuZpGryvUf6g9jV4XAgJBaTMAGeFHckWOj4UlG/iseAOxBgvXjD48pDECcELyKHzBAP/d8TuugI/ssBhuHHPUoGqMtJHeWg1XSSWJHJzCfcPOSE+EckZ6dkamxKSyslapHviydDOjw+OVXjRnnon4xRdUn3oqLbMOI/Luq2jMSGZq9HBGP4BGcyRG8yJcjlNw2CZhDctDVHUWLRpMGjxOXtm2LOSIROiMjItIxKDWUGRvINYlMEodhl3yY/IL9HTaio+P329HBJSO0j9X7eDY5NyBLY/tBsnhoGzsWAIlJZjOP5/4//2v27GHcAi/8iv11HMzN/MhH3Irt3I3d3Me5/EUTxFJZLfr94q6NVD6JZR92/FG4osjIWYqRE2ClBPA0FmTYpgDh9ERCbx0+IVdvnbr+GMBcNjuAwREMZ4pMcq5ujsEQeC09PGclj70orQ5KFOS61l/0DojwzkjPdHLapoxEQnEtobJSx2NPLbhO36tKaLa1cL2CSP5+dkHsWwv5IqL7+CSy+9m7Luf4i88uGvGe4tWOwej6X3Aja1lLJLUdffnweLHyu34JCX/Y3J0Cv+YehrzRkznzIxJnBeZy2hNOA45gElQI8pyj9uqq+ubNuAyDE55bBcEqqspSU8nUFJC2M039+iItCeaaN7hHVy4eIzHsGLlLd4immhmMYvVrN53o1JbIyi7RzSrl8Lm5+Cni2D5Dfu+/WEOGCSpHDjwI9FtSsdb2DLIlvQfw85IT/RymkYURK7IPQydSomklDubeWP7Su5f8yUv5C3l15xEarNSkIGYHcXY77qb0qwsSseOpfHBB/Fu3hwq6/wjotWdi8H0GmDH3jIaSRoaWeOyLLOyRnEa1YLIhVnTQvLpdXV11NTUIIoiFlGDiNCl4FL7ZU1NTR0SW/eVMK2+y/LY3nSUbs/+dpT25edTmp2N1NBA5BNPEP3UU3t9LCIit3M7NdSwmMWMZzwrWME0ppFGGq/y6l5vk5QTu39NDijf64l37v12hzngkOU6BCF8sM3YbyYxCYAdDPwNx0Ax7Iz0RC8jIwBplkhuG38sScbwLl/ffPn5CKBU1LQmMvq3bKHpwQcpHzeO0sxMGu+9F7mbnIODHZ3uUgyGZ5HlJuwto5Ckwc8c9wQDOAJKInKmNTo0hVFcXExpaSkABoMBIdrKW+6dvOcuoC5MTVZWFmlpaSQmJhIdHU14eDgmkwmj0dgnTue+lsd2qibopjy2jbby2LYx7XEvX07Z+PHILhex//0vEbfeuj+HBMAxHMN61lNGGWdwBpVU8hf+ghkz13Fd76sJjAkQ0bkBYIhZ/1ZySYY56JFlG6J4ICuMKEQQgYBAMcWDbUq/MeyM9EQvIyNtpJojuXfySdw6/liOScxhRmw6RyaM4NrRs7nsxvsQDF00w2u9Uw4UF9P0z38SbGjoK+sPOHSGG9AZHkGWa7G35CJJg6t8KLaLarRN1YDigBiNRkaPHk1ubi4BgwYfEg45QFCrIjw8nOjoaBISEkhNTSUrK4vc3Fxyc3N77CfTW45NyqXQXj+w5bHtcC5cSOXs2SBJJHz/PZZ58/b7mNqTTDKf8AlOnNzDPWjR8h/+QxhhHMux5JG3542knbarNL8NQYTseZD7x2hH8EdHqV7zI4oHR46eDh1VVA22Gf3GcAJrT4QiI70PrQuCwMiw2C4bNpnOOAPHBx/A7qWfggAqFQkLF6KOj++03h8Jg+EukO14PfOx28ZgseYjioPzMdWKKmL1Zmo9DortDVS7Wog3hhEXFxdqDAmK6F0bqeaIfrcr3RLFNaNm82nxer4s3US03tz/5bFt233pJeqvuQZBpyNx5Ur0Eyf223Fq0fJQ68+nfMrf+BtLWMJoRjOCETzMw5zLuV2vnHwirH9013NBBdZsOPwl5fs2zIDS6HFi93sIyhKiICIKAma1roNycV8jSUpjOUF1cDQltWChnj1Xth2oCPIBkKxgs9kICwujpaWlW1ntfsFRDu+lwNj/g0Of3u/NOb/8kupTOnf/RRSJ/+wzTKcO6yC04XLeiM/7HKI4GrN106B1gv62fCuftPYTSjFFcO3o2aETqCRLfFeex6fFirBSpM7IP6addtA2Qmz4+99pfuABhLAwUjZuRJM68JVPO9jBjdzI93xPkCBhhHEVV/EQD6FF0QVq9DipdjaQ81kuqqBbaTSv0iOcuRYiRg24zX90NjdW8vyWn5HpeKlRCQIPTjmFaIOlX/br9byG23UFBtP76HTn9cs+BpJccimjDCdd98MaqvT2+n1wnjX7il6KnvUW43HHIXT1zxBFVElJfbKPgwWj6Vk02kuRpK047dNDgmEDzeHx2US09rwoczZx9+rPeX7LT7y5/Vf+turzkCMCcErquIPWEan9y19ofuABVAkJpBYXD4ojAjCCEXzN19ixcxM3ISHxT/6JCROnyqfyfvWP/G3VQp7Zuowt+pHIKHlar8dfQbXu4CyJHMp8W7aV57b81MkRAQjKMm9s/xVPoH/y5IJBRWNErZreL9sfaBJIwMPgTl33JwfnmbOvCOWMdJym+aZsC1ctfY8F3ShytrGmrpT7Vn/Bdcve54E1X7LZUYf5vPOgLW9AEKi47TrsYRY2nzaH/3zxVqfExD8yJvPraDRnEwyuwWkfnL4iRrWWG8ccRXjrVIUky2xqrGRlTWGH6pVTUseFlEsPNipPPhn7q6+iyc0ltbgYdXj4YJuEAQP/4l/YsPEWb5EsJ/MFX3BB3NF8MPkOSsPXY1OHIwB5xtH8bp3JS3nLOlULDdN/LK3aySfF60PPNaKKZFP4biKRdbyybRlSPwTopeB2AISDJGcklVQkJFx0XzV3IDPsjPREFwmsxfYGfqnaSXI75b6uKLDV8eq25cyKz+SeyScxMSqZF7YuxXPGaUrOiCBQ/a/5fHLGEcjvvYm1vonDLrmJ1756F/9e5Kgc7JgsH6JWn0gw+AsO25xBsSHRFMbdk07ipJQxWNqdSAVgXGQiN409mlPTxg2KbX2BHAwSrO88Fy0FApRNnYr7q6/QH3YYyVu2IGq7738zWFzERTxZ/Clnrv0H8S25NBkr+Gbc49x01K9UGuDFxGsBqHS18ELeL0jdKOkO03f4ggE+beeInJQyhicOOZN7J8/hsRlncO3o2RjVyvl1c1NVp0qvvkCSSgH9oE3x9jXZKArLm9g0yJb0DwfHf6m/CE3TKM6BJ+jntfwV/HnEDIw9NCUDWFKRz5jIBE5IHk2CMYzT0yeQao5gaUYUxrlziXnzTT6bMYI5qWOZdPxppPz4E0abk5OuvZd13y7s7yM7oDBbv0alOpxA4Guc9m4SFvsZq1bP3PQJPDZ9Lg9OOYX7Js/hiUPO4voxRzIq4sBOOm68/35KUlLw/PpraJnkclGWk4NvzRpMZ51F0tKlQ/ak7vB7WFKxjWhXOnM338f3deu4XL6cBmOApD/DC0fdzM+j/oNL3UyBrZ4tTQdvRcJQYW19Gc6A0pF6cnQKc9MnoFcpzocoCEyISuaCrGmh8f0h2CfLtQjCAOYY9jOjUcrVN7IRgCBBaqjpcgrsQGRonl2GCmLHrr3/27macRGJvbr4FNq77gVS6Goi4dNP8Z5zJja/h1GtYwwzZ5K8YgUIAqbzLsL57bd9eywHOCbLT6hUk/H7P8TpuGzQ7FCJInFGK0mmcMwa3aDZ0VfIfj+2F15A9nioPPFEfHl5BGprFVXVwkKsN9xA/EcfDbaZPbKypigk139UwkiOjZ3Aq8KrFCyeymdrphErxJIftZz/HnIdn0y8hzeaPxlkiw9+Cmy71IZnxysl58FgBQ77XAIBRV13Skxq6Kau/fi+QpZbEIS4PQ8cwqxjHf/lvzzGYyxEuUm9h3uIIw4tWuKJ52VeHmQr+4ZhZ6Qn2u4EpSCraospdTRyRsbEXq1q83k6zI2CooLZ0jpnbfO7lWXteoHop05l3Tv/xm80UD1nDs7PP9//YzhIEEURk2UVojgav+8NXM7/G2yTDgpcX36J1Kgo3soOBxWzZ1OSkYFUV0fk/PnEPPvsIFu4Z0odTaG/D4lrLW/2uxHrVnN68DjKKWcpS4lzZFFvLuJfGTeSSCLP8AwSw1M2/YG/1TnUCB6ihMexNY/F3pJMwL8Qn/dtAFSCGHLo+3pqWkl49yKKQ6vX1d5gx84UpvBn/szd3M37vA9AbetP22d3IhMH0cq+Y9gZ6QXOYJAFhWu5PPfQfu/gGEhOZO17LyBotVTPnYvj44/7dX8HEqIoYrZuQBAz8Xmfxe26e7BNOiBo9DgpdTR2eDR6lPJA2yuvgKr1Mx0MItXXg8tF1L//TcSdB4ZkevswtVZUgyzBj/OU30Yl8niYcBh/3vJP/vTrf8htOJwGGriJmzBh4jIuo5nmQbL+4EGWg8hSC1KwjLGmBdyWfSsPjbocrfQUkrQFURyFybIco0lxcOs9DurcdgAitMa+tUVStH9E9YGrMWLBwqVcigoVQYL42a3qSIZ0KYPpHBzVQsOiZ72gSQK738M/1n4TWiYhs6Ollp8qt/Pvw87rVNJp1eqx+Xfr8+H3ENYaCbFqlOoMm89DWDtRKZvPQ0paOskbN1I+YQI155yD/O67WC64oL8O74BCFNVYrFuwt2Tj9TwCglkRSttHFpVs5IvSzR2WxRmsPDi1Cz2YVtbUlbKwZCMNHgexBgtnZkxkXOSu0mxZlllUsoml1TtxB/1kWaO5MHsacYaBn79u9Di5d/Wi0DRGG2pB5IHEqbi+/hp2r2QQRRxvvon14osRTf0nStVXRLUTztrYWEH8ljuh5HM49gPIPAeAIns9Nr8HI2FcWnEvt0Ufw2M8xr/4F2/wBm/yJrOYxTM8w2QmD9ahHDDIsoTTcSpScBuybEeWHYA79Hp2O7Fpv6RGY/gAq+mM0DJJlvikaH3IjZwem96n9gWCSv6TSjX0OvDuDU/wBAtZSCONnXJDBATiS2fQFO/qV/G4gWLYGekFcYKP+yZ3rOR4a/uvxButnJA8ukttiUyL0gvk2KTc0LK8pmoyLUqfj2i9CatGz7bmalJaVTvdAT9F9nqOSMhGG5tO8pYtlI8bR+28ecg+H9aLL+7HozxwEEU9lrBt2Fsy8br/hogFneH6fd5eojGMm8YdHXqu6kGhs61Kam7GBMZHJvF7bTEvbF3K3ZNOJKm1wurb8jx+qMznkpyZROtNfF68kWc3/8jfp5zS75G13XEEvJ0cEYCALGF/+y1FjXR3Z0SS8K5dS/WZZ5LwxRcIGs0AWbtvzIzN5JsyRW0zYdnFYFsFo64KOSLugL9DGf6hcZmIiNzV+vMt3/JX/soyljGFKaSRxv3cz6VcOijHc2AgIAXzkKSibkfIMgRlFf/c/gSyKHFkwiayw2Jo8Dj5uWoHJQ5lelArqjisj8vig0ElyVOlmtqn2x1oIojgRV7kHM7p9JqMTGbNoTiivURy4Dsjw9M0vUBDkCRTeIeHTqXGpNaFLkBv5K/g01alToBjknLY0lTF9+V5VLtaWFSykRJHI0cmjgQU2fhjknL5qmwzGxrKqWjt9BuuMzAxOgUAbUYGKVu3IphM1F1yCS0vHxyJSn2BKJqxhG1DECJwu2/A631j37clCIRpDaGHuZsutdB9ldRPlYqmgSzLLKnYxpzUsUyMSibZFMGlOTNp9rpZX1+2zzbuC7Iss7mxsrsXCb7xVqhpYyeCQdzffYf9rbf6z8A+It5oZUJUMudUv8NY2yqK9Fm8HXcpy6oL+LRoPfetXkSRXen5FK41MC2mo+7ECZzARjZSQgmnczoVVHAZl2HBwo3ceNDqOuwrkiTh8723x6aPggBf1NyKLRiD3e9lUekm/rXpB97e8VvIEREFgctzDu3QcqBPbAzmK9sXD3zF3bM4i1M5FZW860ZGkAWSmsdg9kUNomV9y3BkpDf0QoG10etCYNcddZY1hityZrGwZAOfFW8g1mDhmtGHh5wXgBOSR+ELBvjvjt9xBXxkh8Vw45ijOtw9a1JTSc3Pp3TUKOqvugrZ5yP8+n2PAhxMiGIklrCt2JpH4nZejoAFre7svd5OrdvO7b99ikYUybRE/z975x1eRZ318c/M7TWF9AKBAKH3IkUBQVHsrr27lnXturr2ir2tay+svWBFRXlRQFCa9A4JJSE9If32OvP+cZNLAkkgkArzyXMfkpnfzJwZ7r1z5vzO+R7OSxvWZNgz217eINoFoSqpTRUFAJR7nA2qpAAMai09LTFk28sZ3crh6KaQZIlPdq5i5b7Gn1xTN2Ui5B3gHKnVIQ0ctRr9xImYzjgD80UdU0rdUq7zrUFbNZ8KTSwv9HgUqXQPy0v3NBhjVGu5ZeAkdKrGv/a6050f+AEfPp7gCd7iLV7ndd7kTaYyldd5nQy6bg7C0RIIbMHjeohA4DfAS+hZ1gI44KDyUhUazXmc1+dx3LvXsKmi4KARScYILk4feVDVYWsgSbmAttOWo7cEAYG3eZu+9A07xrIgk1E6uWMNa2UUZ+SQCKFEuAP415Bpzf4NodK1kbFNZ3MLgsDZaUM4O635eU11UhLdd+0iv18/Km67DXw+Iu+++zDtP7YRxQSs1i3YbP1xOS8C4We02sMXR+tpieGavuOIN1qo8bn5OXcrL25ewGMjzkCvPnh64kiqpOr+rmlH9c+fcrc0cERi9GZSTZHYfB722MuZ8fTbAGG5dFVKCqazz8Z42mkYpkxBNJvbzdajJmcOutX3IGujWDLuO7QVJXiC+5P9REK6Fuf1HHpYeTtatDxd+/Mt3/IQD7GABfSjH33pyzM8w9/4W1ueUadBkmx4PE/i936KLO8DQBBT0GqvR6U+DbfzImTZfsBWAoJgxWB6C1E08M8BJ1HucbChPB+b34NOVNM3Mp4+1liENmpaKEulCELb9LzpCJJJ5i7nIzxtDuXHqYJa0iq69hTUgSjOyOEgt05vmqNBHRdH6u7d5PftS8W//oXs9RL1wJEnbh5LiOoemK0bcNiG4nKchWD5HY1m0mFtOyh6f7+SFFMUPS0xPLD6R9aW57X6PHZ74fT7WFiYCYRuxNdmjGN0bA8EQUCWZfL/dRf+0grcZiPLrz2fUZf9nRFjJ7fZjaFNKV0FCy8INcK7YDMXmFM4M+hne1UJDr8HnUpN34j4cH+hlnJB7U8WWdzO7SxkIRdwAZFE8k/+yeM8Hm7Qd6wgSRJ+/2d43S8hSVsJuawmNJpL0BueQhC74XJcjNfzOCHHIx1Z3gvUlefKGEzvI4qx4X3G6M2cktJ+UyayXI0oprXb8doSXzDAl3vWsq80BcuoOOyGfcTb+qCWQu+7OTkb+ceAE8Oicl2Vrh/DanMaj4x0BOroaFJ370aMi6PywQepePzxjjap06BWZ2C2/gWocNqnEQisOaL9GNVa4g2WcMnhgbSkSqrBGN/+MW3N6rKcsG7DSYm9GROXFnJEAgHKrrsO/3/+S+DpJ3h93vusv/B0/jBKXdMRse2FuZMAAc5eDuYUAPQqDSNiUjkpsQ9j43oesSNSnwwy+JVfsWPnNm4jQIBneRYTJs7lXPLIO+pjdDSBwEYctjOxVRtxO69GkrahUo3BaP6JyGgHBtPneH1vYquOIRD4qDQbSAAAe7VJREFUDZVqBBbrHiwRK4G697YKjeZCtNqOjhx5EMXUDrbh6AlKEm9v/5MVpdkIiIzffSUACTX7pwu3V5fw2tYlXb6NiOKMHAqBsBx8Z0AdGUmPPXtQJSZS/cQTVDz4YEeb1GlQq4dhtvwByDhsEwgEth5ymwPxBP2UeRwNyq3rU1clVZ+mqqTqqKuSqhvT1hQ4q8O/j4lLQ/b5cPzwA3np6dg/+YS4zz6j7wOPhKebCpxVTeypE+Ophu+HgeSD6T9BbPuU4xox8hqvYcfOB3xAMsn8yI/0oAdDGMICFrSLHa2FJFXjct5FTVUcDttwAoFfEMR4dPqZWCOdWCL+Qqs9C6/3U2zVUfg8/0EQYjCZ52OJWIdK3RNRjEVveAIAQYjAYHqrg8+pAJARVb071I7WYEnxTrbXfpdoRRVXGS9ElEXO6DaGKYl90NWqhO+xlfFbwY6ONPWoUaZpDonA/vBj50A0m+m+ezd5GRlUP/ssstdLzMsvd7RZnQK1Zhwm8684HafisI3GbN2CWt30l9K32esZEp1MtN5Ejc/N3NwtiAjhiosPs1YQqTWGlXenJmfw0uaFLCjYweDoJNaU5ZLrqOSKPiHhofpVUnEGCzF6Mz/mbm5QJdXWSLKMuayS0V/+DKvuJ6esDNnjAZ2OqMcew3L55QDhROku19tCCsB3g8FXAxPfhu4d00Dx2tqf9aznDu5gOcs5lVOJJZa7uIv7uA+xEz7vhaZhPsbrfhlJ2k5oGsaMRnMZesPTqNRp4bGBwHqcjouQpT2ADr3hWfSGkBjezpp9/FawnTxHFQ5/LA/1n0Gc+XZEsWmnO6u6lG+y11PsqiFKZ2RG90GMj+/VYMziop0sKNhBjc9NijmKS9JH0rMFjnzAvwro+hojkiyzpF7PnlsHTiYjMp57iEe0uLnEMpoT4nvx3MbfkJH5s3gXp6UMQNVFk3YVZ+SQdJ5pmvqIRmMoqbV/f2peeQXZ4yH2zTc72qxOgUY7FaN5Di7HuThsQ7FGZiGKKY2OrfK6mJW1Aqffi1mjo7c1lvuHnYqldkqlraqk2gLv1q1Uv/ACJ/zyMxMqq0JBPb0O698uIPK++9AMGIBYq7aa76iiwhtSYY3Vd/5Ev/CNz17J9Pz3ONlZgDDsfhhwU5PbtMeND2AEI1jKUqqp5m7u5ku+5EEe5HEe52/8jVd5lTjijui8W5NAYB0e1yMEAosAHyCiUp2A3vAIGu3pDcZKUiUux8UEAgsBAY3mUgymDxDF/VONvmCAFFMUE+LTeWfHUsrkd0jWNu1wl3scvLFtCScl9uG6fuPJrC7h052riNDqGRgVyt1aU5bLt9nruaz3aHpaYlhUlMlrWxfzxMizDkoKb4pgcBMAKvXIFl2fzkaRq5p9tdPFGRHxZESG+uwkksguQk5KmqUbQ6KT2FRZSLXPTY69nN4RHf9eOxIUZ+Rw6ETTNPUR9XpSs7LIHzAA21tvIft8xL3/fkeb1SnQas9GNn2O23k5tuqBWCN3IYoHf0hv6D+x2f20ZZVUa+BavJia//wH9x9/INtsAKgjItg5cRRrLj6d8hGD+Nfgaegs0eFt3AEfX+zen1MzIb7zJ+rW3fjO2/tfkqt+JT/tclLHPNvk+Pa68dUnkkg+4ANmMYs3eIPneI4v+ZLZzGYUo3iVVxnP+CO+BkeCJFXjcT+G3/cFslwOgCD2QKv7BzrdvxBF7QHjJTzuu/B53wSCqFQjMZq+Q6XucdC+B0UnNUgAPxR/FO8iRm/mwl6hKbVEYwS7a8pYWJgV/j9ZWJjJxIR0JtQmj1/eewxbK4tYUbqH01IHHt45B0PTFaI47LBt64zYfd7w7z0t+/VEiigin/1l+WmWGDZVFgLg8O/fpqvRNeM57YkggNw5nREAUaslNTMTTUYG9lmzKFVUWsPodJdiML4H2LDX9EeSqjvapKNGkiTss2dTeNJJZBsMFJ98Mq65cxENBizXXkvq9u2kV1dTMus1Cof2wxsM8NzGX3lvxzJ+L8zi2+z1PLxmLtn20I0pQmtgbDtpnxwNg6KTOLfgPZILf2Bet3OoGNG0IwINb3yJxgimJGUwIiaVhYVZ4TH1b3xJpggu7z0GrahmxQH6JC1FROR2bqeIIpaylJGMZA1rmMAEUkjhDd5o0wZ9kiTh9czCVj0wlOfhfQ1Z9qLRXok1IpeIyL0YDA8c5Ih4vR9jq47E530NQYjFZP4NS8TaRh2RIyHb1kQnc1vovRiQguTZKxto9IiCQL/IhPCYw0GS9gJqRLFrP2sb6kkLlNZLqJ/BjAZTq/vctvDvui5cUaM4I4dEgE7e2VNUq0nZuhXNoEE4PvmEkksu6WiTOg06/fXoDf9Bliux1/RDkrqemqbk9VL92mvkDx9OjlbLvksvxbN0KaqEBCLuuYcexcWklZQQ98EHaPuHyicv6z2adGuotFJCZl15Hl9lr2NBYSaOQOjpyajWcuvASY3qqXQ6Nr0I298Cazo/xh4sjX0g7XXjOxQTmcga1lBMMRdzMWWUcRu3YcbMDdyADduhd3KYBAJrcNhOw1atx+26AUnKQqUaj8k8n8hoGybzJ4iqgyN6gcBaaqrTcTuvAfzoDS8QEVWMRntKq9kGoaqzxvR3PEE/vmAAh9+LhByeIq0/psZ/+Bo9klxyTGiMJJsisdR2Nd5UWRCesjmN0yinnH3so8rrYm15qJJLr1LT09p1FVkVZ+SQdM6ckQMR1WpSNm1CO3w4zq++ovi88w690XGC3nAnOv1MZLkUu60fkuTraJMOSaCqiopHHyW3b19yDAYq7rgD3+bNaPr1I/rZZ+lpt9MjJ4eYF19EnXCwgqVOpebOQVOYkTow/IVWhygIjIzpzgPDptPdHH3Qtp2OPV/Dqn+DrhtcsDkUrTwE7XXjO1wSSGA2s3HiZCYzMWFiFrOIJJJJTGIzm49ov5JUict5GzVVMThsYwgEfkUQk9Ebnsca6cISsRyNdnoT25bjsE3FYRuNLOWg0V6ONbIGveHeoznVDkeWqhCE9qlca0s0oio8XSXJMq9u+Z1NFQUkyaEpreddr/GfLb+HS3pPiOvVpbVGunYcqz3o5NM09RFFkeS1aykaPx7XDz9QdMYZJP3yS0eb1SkwGB9Gxo7P8wIO20DM1h2dLozry82l5vnncf70E8HC0BwwGg26MWOw3nAD5quvRlQfvs1alZpz0oYyo/sgdtaUYvOFRMDSrbFNli53OkqWw++XgtoIF24N/duFUaPm4dqfeczjPu7jT/5kKEPpSU8e53Gu4qpm9yFJEn7f+3g9ryJJmbVLrWi0V2MwPtVksnb97T3uO/B53yaUFzIGk/mbRqMmrYlVo29Uf0ev0qBVqREFAREBe2MaPc30izoY1yGvQVdhesoANpQXUOq2UeF18tb2P9GogHHwrXsep7kHANBNZ+KM7oM61tijRImMHJKuERmpQxRFklasQD9xIu558yg6pXVDrV0Zo/F5tLqbkaTdOGzDkZpqEteOeNavp+TSS8mJiSE/LQ3b228jVVdjOPVUEubOJd3nI+Wvv7Bed12LHJH6aEQVA6OSGBffixEx3buOI1KzB34+GRDhnFVgPPweJoe68Zk1ula68R05p8tT2Rj4nL3s5UzOJJ98ruZqrFi5i7vw0NC2gH8VDtuptdMwNyFJu1CpJmIyLyQyugaT+aND3oS9nv9hq47A530DQYjHZF6IJWJVmzsiAL2sjWj0VJfQyxqKYqhFFd0t0eyoLg2vl2SZzHpjDoUkVQIyotj5k7IPB6Nay12DT6Z7bWd3AH8Q1EEdVcZQP6xEYwR3D5l6REnXnQnFGTkUQtdyRqA2QrJ0KfqTT8a9cCGFkyZ1ihtvZ8BoehON9iokaStO+7gOuS7O+fMpOv10ss1mCkeOxDl7NsgypgsvJHn1ano5HCT9+iumM89sd9s6DZ5K+H44SH44fR50a9lTX3vc+I4GWfbjdJyH3TaUlKCbuczFiZN/829ERF7lVcyYOVc6mXznZdRUdcNhP4FAYAGCmIre8BLWSA+WiKVotFMPebyAfzU11T1xu64HAugNLxMRVXhY2zaFJ+gn31FFviMkmlfudZLvqKLSEyoZn5OzkQ+zVoTHT0rsQ7nHwXc5Gyhx1bCkaCfryvKYlrxfTXRacj+WlexmZWk2xa4avti9Bp8UOKgku8nzDPwFgErVtaME9YnSGXlg2HRuHnASQ6KTidGbiPDH4tZV84/+J/LI8NOJ0XehXlJN0Lni1J2SrjNNcyDJixZRdPrpuOfPp2jCBJKWLz8mulgeLSbzxzjtdvz+Obgc0zBbf2/T40mShOPTT7G99x7etWvBF8pZUSUlYbziCiL//W+0vQ7vy/a4IOCDbweB3w4nzYKUU0LKuG5HeEjdjc+k1hKtNzEnZyPVPhfXZoRKZycl9mFJ0U6+y9nAhPheZFaXsq4sj1sH7e9ZNC25Hx9lrSTNEk2apRuLCrNadOM7UmRZwuW8ioB/PiDi836MwfgsWrQ8z/M8Kz3LEu8NVAc+ZbR/MRYgUxRRa09muOFTRPHwy2klqQyn40KCgT8AAY32KgzG9w+qpDkScu2VvLJlUfjvb7LXAzAurifXZIyjxuem0rs/YTxGb+bWgZP5Jns9vxdmEakzcmXfseGyXoDRsT1w+D38lLsZm89DijmK2wdOwXqY0bxgYAMAYhfXGDkQURAZ2i2Fod1Cka9sZjOb2fSOiUB1jMQUBFmWO738os1mIyIigpqaGqzWQ3fdbFU+tIAhES7Z2b7HbUWKzz0X148/oh05kuTVqxWHpBaH7VQCgQWo1Wdits5t1X1LLhc1b76J/dNP8W/fDsEgCALq9HTMF15IxN13o45pnSfw+fnbmLN3EycnZXBxetNfwuvK8vgxdzMVHgdxBgvn9xzG4Ojk8HpZlpmbu4WlJbtxB/2kW2O4rPfow+p022pIEnw3FKq2wvBHYPSTQEjArP6Nr466G99HWSup8Dob6MLUFz2L1Bk5o1HRsyx+K9gRvvFd0mskPY8wMuLwe1lStJMiVw0CEKs3MyYujaR6gniyLON23YrPu18yXRDisEYWEQysxuN+hEDgT8APqHCohvGIUeYTzUYkJKKI4lZu5VEeRd3Ms6QkBfC4b8PnfZ9QXsgJmCzfHDO5FE3hdFyB3/c51kh3A4G2Y433eI9/8A++4Asu5dKONqdZDvf+rTgjh+JDK+hj4dKj0x7oaEouugjnN9+gGTyYlA0bwkqcXZ1KjzNcqlqHWa0jWm86rO3tNRMIBleg0VyCyfLlUdkSKCuj+qWXcH77LYGcHJBlUKnQDhqE5eqrsf7zn4j61v2C3Guv4L0dyzCoNfSNiG/SGdljK+OlTQs5t+dQhkQns3rfXn4t2MFDw08Lq8fOz9/O/PxtXJMxjhi9iZ/2bqbQVc3jI89sc/XYML9Mh8LfoM+VMOWT9jnmURKQgnyfs5E/incRaGRKd3JiHy5OH4koiLhdD+P1PN3IXsxAKPIjiOnodLei1d0aTrJ24OA+7uNjPsaJEzVqzuIsXuM1UmjoYHg9s3C77gScCEIyRvNnaDSTW/WcOyv2mvEEg6uJjO74TuttSQklJJLIdVzHLGZ1tDnNcrj3b2Wa5lAIIp1dZ+RwSPj6a0qvvBLHZ59RMGgQKVu2HHFCZGeh0uPkkbVzD7oBqAWRmaPOOiyHxGRZisM+Er9/Ni6HBaP5vRbZ4Nu1i+rnn8f1yy8ES0I5CoJOh37CBKw33YTp0kvbLBLlCfr5X9YKruwzlnn5zTcFXFSYxcDoRKanhLLvz0kbyo7qEpYU7eTyPmOQZZlFhZnM6D6IYbWh4GszxnHPX9+zsTyf0e0hjPbnDSFHJHFSl3FEgrLEOzuWsqWyqMkxS4p34Qr4uazHyiYcEQAvWu116I0zEcXEg9aaMfNm7c8sZjGTmcyp/RnKUF7mZSb5zTidFyNLuYABg+FVdIY7WudEuwiSXAQc3oNIZ+DB1T+G2zLUZ1JiHy7rPbrRbeoinNaB8ay25bJFU9j5IpxHQNe+G7ULXS+BtSniP/0UQafD/r//kd+/P6nbtiFqj37uuKNwBLyNPokGZAlHwEv0YXwpiaKI2bIOh20APt/74DJjNL7S7DbulSupefll3IsWIVVXAyBYLBhmzCDizjsxtVMF05e71zI4Kon+UQmHdEay7eVMS+7XYNmAqEQ2VYQy8ss9Tmx+TwMRMINaS09LDNn28rZ3RtY/DZmzICIDzmjbHJ7W5PfCrLAjohZExsSmkW6NQUJme1UxGysKkAHJ/zFed3OOroDe+BKiGHnIY15f+7OWtdzBHWyWVrDQM41BntB+TNqrMRrfa5W8kK6GLFUiiLEdbcZh88Cw6Uj11FSLnDW8uvV3RsY0Xt20x1bGrMzlnNtzKB9qDJRYs3h73dIGEc5fC3bwe1FWgwjna1sXt2+E8whQkgcOhSCGwu3HCHGzZmH95z8J7N5NfkYGkqf1BZ46M3IggPOXX5CD+5OSRVHEbN2MIPbA5/kPbtdjDbaRJAnnjz9SNG0a2SYTRePH4/zuO1CrMV9+OSmbNtHLZiPpl1/azRFZs28veY7KcDfhQ2HzebAeULJq1eipqS1ttfndoWWNiYD52vg9svMzWPsw6OPgbxuhi+Q0SbLE4qL9uWS3DpzM1RknMDGxNycl9uGmASdxY7/hXJz0BhckHSri5sfv+7pFxx8hDWOBYzB51SL3eOBjnUDvKJkY82yuEv9OOa2nJNt1cCIKh5/g29FYtHoitIbwa3NlIbF6M32baHZXP8KZoU6n3FBAqjmSJbXvwwMjnCmmKK7NGEe1183G8vxG99lZ6Bqf+g7l2ImM1BH71ltE3Hkngb17ye/bF8nV9STSjwTZ56P0oosoOfNMHN9802CdKGqxWDMRhES8nidxOZ6l5r33KBgzhhy9npJzz8W9aBFit25Yb7uN7rm59CwrI/6zz9ANad9W5ZVeJ19lr+e6fuM79ZPOYVG0BJZcBWoTXLAF1F0n6TDHXhEOsQ+ISqR/VCiqJEkBfL6fcTmupZdqNCOiVjaxBxWgIdRyQsbnPfy5f6/n3VAfGd+7iGISVsuf3GMK8KTwClFE8TmfE0ccJ3ACq1h1VOfZVZAkByAhqrpmZVpACrJq317Gx6cjNKEynG3f3+ZgHOOQkTHGOMm2l+PFyzLvWqoCjiYjnJ0ZZZrmUBwjOSMHEvOf/4BWS80LL5DXuzfdd+5ENHf9WvWmkDweSv72N9zz54Mo4pwzB8uBPXxcAQJvXYdrzbP4Vz6IvA8QBDR9+2K+9FKsd9yBOjKyI8xvQJ69Ervfw9Pr54eXScjsqtnHkqKdvDnxYkSh4XOGVavHdoDMuc3vIaI2EmLVhEonbT5PA1E0m89DqjmybU6kOgvmnQqiGs5bA8au1fq8fsSob0QcklSEz/sRHvdTgBtR7IXecB8LS0cwN78GjeDlzoH96WH2IEuFSPVesrQXUTx0Q7qAfzlO56XIUj5gxGB4HZ3h1vD6u2p//uAP7uZuVrGKEziBFFJ4kAf5B/9APEafQYOB1QCoVIfX3bezsbGiAHfAx/j4nk2OqYtw7mMfsYSmo96IfYyKblU8QSlBfZDxiVdh1Tbs39QuEc6jRHFGDsmxFxmpI+b55xF0OqpnziQ3PZ0eu3Yh1st2PrBSpSVVKm2NLMtsbSZpsH4rbcnlouTss3EvXhwqHQVcP/+M7PUSrKig+sUXcc6ZQyA3N7SBRoXuIhHtxRKWybMwWP7epufSUvpFJvDoiBkNln288y8SjFampww4yBEB6GUJiYDVzxvZUVVCL0uojDVGb8Kq0ZNZXUJqrdqjO+Anx17OpMTerX8S7jL4fiRIAThjIUT1b/1jtDFaUYUaH5Njf2S44XZs1RWAHrV6Ahrt39DqbkIQBIrdy4Aa/LIOlbo3Gk3LS4clqQSn/QKCweWAiEZ7HQbjO022NJjEJNaxjiKKuIM7+JEfuZmbuYd7uJIreZEXsdD1m8nVJxgMaYyoVMM72JIjY3nJHgZGJxKpa7zlgYzMwr5v8GXMLVRTGV6+W7sdhP2pBNHOtlfTbQsUZ+RQCOIx64wAdHvySUSdjsqHHyY3PZ3UrCzU0dFUuB08su5ngvXOvSVVKm2JJMt8vns1y0qaLrf+MGsF/xoyjThJRfGMGXiWLw87IgCyy0VOXByyLdQ1VTAY0E+ZgvXmmzGdfz5Qgq06A6//elTeSLS689v6tA4bvVpDsjqywTKdSo1JrQsnsX2YtYJIrTGcUzI1OYOXNi9kQcEOBkcnsaYsl1xHJVf0GQOAIAhMTe7HvPytxBksxOjN/Ji7mUidgWExqa17AgEPfDMYAk6Y/DEkn9y6+28H/P5lpIj3MXPASkRBxi9pEdRXYDG/3iAJtcrrYmNtkrBRrSHZGNn4DptAkgK4XTfh930ISKhUEzBZvkUUD08aP4kkvuEbAgR4mqd5ndd5l3d5n/c5iZN4ndcZxLGhVhoMbgNApR7TwZa0nAqPkx3Vpdw04MQmxwgIVJsLqBYqD1ix3xExykYSbH3aN8LZShyb8brWRBA4Fqdp6hP10ENEv/ACUnk5+b17s2XnZl7Z+nsDRwRCVSrf52zEF+zYGv7/y9/WwBGJ05sZHdOD/pEJqAjNtdr8Xt7+6xcKTj4Zz4oVDRyROmS3G+O555L0xx/0crlI/v13LBdcgCiKiGISFusWQI/LeSF+36/tdXqtQqXXRY3PHf473RrL9RkTWFqym5nr/4/15fn8c8CJYecFYHpKf6YkZvDZrtU8s2E+3qCf2wdOad28FEmC74aDpxRGzYS+zTeF60xIkgOX625qqrrhtJ8I0gocwR58mX8zD+/4kLezr6B4/yVnr72CN7YtCVd8jYvvhVZ1+M9/Xvcb2Koj8Pv+hyAmY7YswxKx7LAdkfqoUfMYj1FOOT/xE/3oxxKWMJjBpJPO53ze4n12NqTgHkBEFCM62pQWs6J0DxaNjsHRzSff3lb8DBpZh8DBOSUqVJzGaUSqzQ1aIdRFOOuioJ0VRfTsUHyWAkE3XF3RvsdtI5oTCat+7TXK77gDr8nIrE9fwBUT1eg++ljjuH3Q5BZ9sbYW3mCAf6+agyfoRwCuyRjH2Ni0cMJXldfFG9uWUF6Yx1U3PkJESXkjH9sQYnQ0afv2ITQjABcI7MBhGwYEMVmWoNFMbO1TOr6YezIUL4aM62BS5xZrqsPnm4fX/SjB4HpABixotBdgMD5Hpc/IMxt+xVnvMxVvsCLJEmWe/fL1UVojDw6ffliy5n7/UlzOy5ClAkJ5IS+hM/yz1c8rm2xu53bmM58gQaxYuZ7reZqn0dN1EonrqKnujSyVEhlt72hTWoQkyzy05kdGx6Zx/gHVcQdGOPfYyripaCYL+71+8I5keNH7GunFJ/JnyS6u6TsuHOEsdFZ1WGnv4d6/lcjIoTiGSnvrRMKe3jC/weuRtXOp9DhxX381C/71d3ROFzdccQ99HAFOTxnI+WnDGd4tJRx12GXbx5y9mzrkHNaV5+EJ+gE4Ib4XJ8T1DDsicjCIftVarvjgZ24992YiS5rPHpcqK/H89VezY9Tq/pitKwEBp30KgcDaVjmP45LF14QckeRpnd4RkaRyXI4bqa6MwOU4g2BwPSrVMIymH4iMtmEyf4AoxhGjN3Pn4CkNQuKlblsDRyRGb+LOwScf0hGRpCLsNRNw2k9ClorQam/AGlnTJo4IQC968TM/48DBPdwDwCu8ghkzM5jBHrqW6rQslyOI0R1tRovJrC6h0utiQiM9kRqLcD7X7R5G7jsN5AMeswTYtFFkQcEOTojr2bYRzjZAiYw0Q6XHifXb/gh+G4UXZneqBM4jIc9RydMb5je67qHhp7G0eDd/luxm4C9/MOP591BFRtI9JwdVbQXJXnsFL25aQECW0Ilqnh97LgZ1+wkrSR4Pvyz8np3r/iKqsJQJfh0xSanITifOn38mWFaGbLOhSkykMD4KfyCApFHTq6SKYHHx/h1pNBAIgCwTcc89xLz44iGPHfAvx2GfBKgwWzegVg9ouxM9Fln7OKx/AiIHhEp4O6mWiNf7FV7300jSFgAEIQqN9gr0hpnNhv/dAR8rS3NYXrqHEpcNQRBIMkYwMaE3Y+PS0DUTRQzlhdyI3/cxobyQEzFZvj6i6Zij5Qu+4FEeDTsi/enPczzH2Zzd7ra0lOpKDSrVSCwRzT9gHAt48DCGMWyXtxMUQppJ0Y5ULtjwHBD6Pu9u7hyOmSIHf5TURREe93swB308vWF+p0ngPBJkWSbH1vRUkyRLrC7bC8Dus6YSNXQyNTfeSNHUqST+8gvqhATSLN0YH9+LP0t245UCbKgoOOoOp5LNhm/HDnxZWfizswnk5hIsKiJYVoZUWYlks4V0UHw+kGUGAPXdgGqtFnVqKlJ5OYapU4m67z50o0fzyYb5FLqqERB4e+IlyE4n/qys0LF27MC3fTu+LVsQTYf3f6nWTMBk/j+cjtNw2EZisW5Dpe6aegbtTtaHIUfEmAjnb+h0jogkFeB23Y/fNwdwASIq1Tj0hplotFMPax8GtZaTkzM4OTmjRcf2ul/H7b4PcCOIPTCZvkStGdfic2gtLqv92cpWbud2/uAPzuEcutGNW7mVh3m42QZ9HYUkeYAAoth0WeyxhB49c5jDYIbglkM6UT0qu3an4s73ruok1EmNy7WCRNAymfHOhDcYYFbmcjZXFjY5Jqu6FE9tYmovawzRl0xB43ZTdvPN5PXsSY/yclQmEwOjk/izZDcQctgaI7BvH/7t2/Ht3EkgJ4dAfj6B4uL9Dobdjux2g9/fuDGCABoNgsGAaLGgSUlBHReHKimJoigTyw1BKlMS6D/mJC4cM+2gzUtdNgpd1QDEGSwIgoBgNqMbORLdyCP/wGq0p2A0fYvL+TfstiFYI3e2qJ37cUnBIvjjOtBY4IKt0I6RtOaQJAm/7wO8nheQpF1AqHuuVncHOv3DiGLj5ZWthd+/BJfjCmS5EDBhML6LTn9jmx6zJQxiEL/zOw4c3Mu9fMInPMETPMMznM3ZvMZrJNF53vtSbVmvqOp6JeJHQlCSWL+3hhM9N/LbgFcB6F45LLz+//K38feMriWKqDgjh0BCROjEM1mBggLK77gD03nnYb7wQgSdrsF6SZZ5P3MZWyqLmPj+1wxcsBxPhAVfVCQ2ixGP1YTbamav9VcGWMzIskTPokryV9+Of9s21GlpaAYPJlhcjGf3bqR1K5m8ZQ2WfZX0cAbIszmRqquRHA5kjyc0/dEYgoCg1SKYTKiiohB790YVF4c6ORl19+5o0tPR9O2Ltn//ZsXXLAEf/1s1B78UpMRXzqCqkrDyJYQyxz/dtTr898SE9KO7wAeg1Z2HzCe4nVdiqx6ANXI3oti5s9Q7jIqt8H+ngaiB89aBvuPDxsHAHjzue/H75wFeQIVafTJ643Oo1Y03JmtNJKmgVi9kFSCi1d2E3vB6k3ohHY0ZM2/zNm/yJu/zPk/zNN/V/gxnOK/wCpOZ3NFmEgysA0ClHtaxhrQDkiwxK3M56yvySWM0VlcCNkMJMfb9UaH15fl4g39yy4BJqDpZJLIpOucnoBNQ4grpT8hCwyKqA8tdDySQn4/7zz8xX3ZZk5K+rYlv+3ac33+P8/vvKb/zTiJuuQXrTTehTgx1/txaWRRu5KX3BYgoKSeiLrFTFJEEQJYRJDl8njLg12oRdLpQVGPvXvLnzgUgAhhTOwZRJKDThRyM+HhU3bqhSkhAnZQUcmJ690aTkYGmb99Wa8hnVGuZlNiHhYWZBGWJV7f+zsCoRDIi4qn2uVm1b2+4ssGi0TWaFHa06HRXgOzE7boJe00/LBHZiGLn7ojZ7rhK4MexIY2eMxdDZJ8OM0WSJHzeV/F6X6vtaAuCkIxW9090+nubbSi3s2YfvxVsJ89RRY3PzT/7n3hI3ZWs6lK+yV5PsauGKJ2RGd0HcUJsCm7XDfh9nwIyhd5T+argGiq8AinmRVySPpKenbj0UkTkH7U/q1nNndzJX/zFFKaQQAL3cA93cVeHqbsGpVCjSLX6hA45fnuyrGQP6ytCfWZUgsiNFffzUuqdTO+fgqNCz9qyPAKyxLaqYn4vyuKUlK4RLVISWA/AFwzwya5VrCkLfWk9tudeuvnLub3fhwDE6EzcOmgyicaGyWxyIEDNa69R+dBDyB4P3XNy0KSltamtAJ5Vqyg8od4HsNYL1gwciKZXL3Iqi5HKytHb7EQ4vIi1Il+NUfdGCKhV+K0WjN1i0MXGoUpMREhOZLtFyxqzQEVaMoZe6Tw++qx2cbgOJCAFeXfHsmannQwqDXcMmkJPa9t9wXvcL+Nx34MgJGCJ2NPmof0uQ8AFX/QATzmcPBt6X9wxZgQ243HdRyCwCPADGtTqU9AbX0CtPjzJ8K2VRey2ldHDHM07O5Ye0hkp9zh4Yt0vnJTYh4kJ6WRWl7Cm+FOu6vEGerEGQUxjj/dN/rfLxmW9R9PTEsOiokzWl+fxxMizDmpU2Jkpp5y7uZuv+RovXvTouYiL+A//IZq2jYJ5Pe/i8nyGn+5IQnfUwe9RsRNZv40oQx8EQdOmx+8oZFnmifXzKHbVAHDrwEnER2uIJ55v+IYLuICs6lJe2bIICFVyzRx1VqOqzO1Fmyawvvnmm7z44ouUlJQwdOhQXn/9dcaMaVz17v333+eTTz5h69aQ5zpy5EieeeaZJsd3JJIs8e6OZWyt2i8zLgsiQr0Wz+VeJy9vXsT9w04lRh+aTvD89Rf7rr8e//bt4TLgYElJqzgjks2Gd9s2/Dt3hhI88/JCCZ779iFVVhKsqjpgg1Dkxr9lC/4tW4gjFN0JaNWoLRFIej000alXABY8cisbTtmfQNfDHI1Zo2OPrSycUwJwWa/hHeKIAKhFFTcNOJFFhVksKdoZblYGoSeFETGpnNV9MPHGtnVc9YZ/Ict2vJ4nsNsGYLHuPC7btjdAkuDboSFHZMzz7e6ISJIPr+dZfN53keVQBZUg9kSvuwuN7hbEFoasB0UnMegQQlT1+aN4FzF6Mxf2GoHf9zsjDFcwvGcx+7ypREW9hE5/Pb9u/JWJCelMqJ1CvLz3GLZWFrGidA+npXadvioxxPAJn/ARH/EKr/ASL/EJn/ApnzKOcbzKq4ymbaa+XL5tCNIyVLKICgFVbUWJ4BlItUdAFOLRaM/DaHqrTY7fURS7asKOSLo1hsHRyQDEE88a1nABF5ARGc+AqES2VxVT7nGy115JrzZ8KGstWuyMfPXVV9x999288847jB07lldffZXp06eTlZVFXNzBja6WLFnCpZdeyvjx49Hr9Tz//POceuqpbNu2jeTk5FY5idZidVlu2BHRqdSc22MoiaUxCIFybhs4me9zNlLoqsbu9/Bt9gZuSBhIxf33Y581KxSRqBdkCpaWNnmcQGlpKMFz1y4COTn48/II1iV4VlUdOsETQkmeolirENvMMECQZbReP5K3ed2NZdf+Df3llxFvr6DUHYqg5DoaSg8LCFzWe3TrS4S3EJUgcmpKf6YlZ5BtK6fa50YjquhpiWnXp0uD8XFk7Pg8r+CwDcZs3dZp5//bhbmTwLYb+t8Ew/7dbocN+Ffidj1AMLgMCAJ6NJoL0BteQKVuvwqLbFs5gyI12GvGEAyuAVTkeW/mfzmT+G/iRQSkIHn2Sk5P2V8TJgoC/SITyLZ17q6qTSEick/tzyIWcQ/3sIIVjGEMqaTyCI9wPdc3qhp6pDg5FzOvoxIOnjYXkJHlEmRpX6sdr7NQv9ldb2vofuvDR4AAH/ABz/EcAgK9rbFsrwo54wc2yOystPhb85VXXuGGG27g2muvBeCdd97hl19+4YMPPuD+++8/aPznnzeUGZ41axbfffcdixYt4qqrOpcU9JKineHfb+g3IeR1xo4Gv41B0Un0tMTw2Lqfsfvc+L74kty3Zod6m8gyBIMN9lXx+ONUPvlkyMGw2fY7F601KybLoVdzT3qCALJMefck1lxxDleeczWGiEgKTzoJad/+D6osCGw7dQIrrjmPcwxWLuk9ihUl2fxZvIviWqdEJ6oZHdeDKUl9STE1rszaEYiCSO+Iju32ajS+DJITn+9dHPZRmC3rW/wEfkyw6DIoXQapM+DEt9v8cJLkwuN5HL/3Q2Q5dCMXxX7oDPej0VzZ7v8HkuSjh+5LToz4gmDQi1o9BaP5a4RqL57gH/iCAVwBHxIylgMcZqtWT4m76SnUrsJUprKBDRRQwB3cwVzmciM3chd3cRVX8QIvYObou4NLwlAqvHFEa/cd9DwmIyBgwWBqRKW0i1Nfr6bS60RG5gZuwIaNl3gp7PBV1osWa7tIRU2LnBGfz8e6det44IEHwstEUWTatGmsXLnysPbhcrnw+/1ERzc9p+j1evF698sr25rJc2gtnH4fOfaQDkeiMYJBUaHQrCerCveflQTX/gt/VhbXbt2MNq8AUZaRoElf379xY/MHrI1sCFotgl6PYDQimkwIZjOi1YoYFYUqOhoxJgZVbCzqhIRQcmhyMurU1LA+hizLZGu1jVaxaAcPZuMDt/FzciiX4bcYDRf2yiDyjjuofOSRUEhdpaJ4SD/m//sGEARGxXZHr9KENRPcAR8BScKo0aLqwHnHzo7R/A6y3Y7f/wVO+0QsESs62qT2ZfWDsOdLiB4K0+eGF7ek87Pb9RSyXI7R9Gqzh/L7FuBxP1wbeZABExrt1RiMz3WIUBjU5Q89zKlxHkq8Q+kdOwu1elTt2qZzm45VUkjhO74jQICZzOQN3uBt3uZd3mUyk3mN1xjIUUxJCQLrak5iWuz3CAf0DhOQMZreRBQTj/IsOh8ppkiMag2ugJ8N5flMDp7Mn6olfMEXXMqlANh9nnDOo1ZU0dPSrQMtPnxa5IyUl5cTDAaJj49vsDw+Pp7MzMzD2sd9991HUlIS06YdrA9Rx7PPPssTTzzREtOOGnfQF/49yRgRzocof3Ee3t0u4BUAdI1tfCCCgDojA9NZZ6GKiwtVmiQmok5KQpOaimhpvdbdgiAgms1I1dWhBaKIGBVFtxdewHLNNWg8dn5ZNy/UfrowkzKPg5POPwPDo48iAzXJ8Xzz1B1IGjWDopKIMzS0rT0VVrs6JsvnOOwOAv6fcNhOwWxd0NEmtQ873oONz4IxGc5dHY7W1QkHBg6j87PH/QpezyOAgF5/F6KqR4P1klSNx/0gPu8XQA0gIKqGoNc/glb3tzY+wabx+xbgcl6FLJcAFuaUPI5RN41+6v16NjafB71Kg1alRhQERATsvoahc5vPQ4Sm6ySvHi5q1DxR+/MjP/IAD/A7vzOIQfSmN0/xFBdzZHlFG6rHc2rctw2WBWURSZyKRnt5a5jf6dCq1IyL78WiwiwW9H6LXaqlTPZP4xL1JSCEVLI/27Uab21+35i4tC7zHd6uk9vPPfccs2fPZsmSJej1TX/wHnjgAe6+++7w3zabjdTUts1RMNb7DytwViHLMoIgEPPuLKSfr0Yz8XrE01/mh5JMfsvfTvKWnZz/xxYMP/6yP7ej3hSMbtAgYl54oU1trkO0WELOiFpNxF13Ef3ww4i1WcsJxggu6jWCr7JDdfibKgrYRAEzpp5Ar1WbmP3iv/FaTETpjOF28h3Ng6t/bJCUWsekxD5c1rvxhLh1ZXn8mLuZCo+DOIOF83sOCyd3QSiCNDd3C0tLduMO+km3xnBZ79HEG1o3ydVs+RGHbSqBwEIc9vMwW+a06v47HXn/B0tvAo31IFGzOuHA+jQmHOjzfoHH/a/av0S83g8wGJ+oXfcdHs+TSMEtgIwgRKLR/hO94SnEDuxDEgzk4nL+jWBwHaBCq7sNveFVrDWb2FpZ1GDsjuqScAKhWlTR3RLNjurScN6VJMtkVpcwJalve59Gu3JO7c9udnM7t/Mbv3EJl/AP/sGN3MhTPIWWw79xVvrjyXf1IsWQXTcjjV/S4tf+p8OS69uD01IG8obmFXbFLyXKmULv9VfzgPZHREFo8L1p1eg5o/ugDrS0ZbQo7h4TE4NKpaL0gOTM0tJSEhKaD4++9NJLPPfcc/z2228MGTKk2bE6nQ6r1drg1dYY1Vr61CYElbrtrC8P1XHrT74U4yX3oqn6CJenkOUle0AQKBnan9TPPiettJSYN95AM7A25KhWgywTKGy/0KzhtNMwnnsu3XfsIOaFF8KOSB0nJ2dwTd8TsNR78pp/342899Wr2BJj6RcZz31DTyVK1zlKUx8YNp0Xxp4Xft056GQARsZ0b3T8HlsZszKXMyGhFw+POJ1h3VJ4e/tSCp3V4TG/Fuzg96IsLu8zhvuHnYpOVPPa1sX4pWCj+zwajOYFqFRjCfh/wOm4stX332ko3wi/ng2iFv62EfSR4VVOv5e/SnMa3Uyq56D4/QtwOa+utzaIz/sODvuVVFeacTkvQApuQaUajcn8GxFRVRhNb7WbI+IJ+sl3VJHvCFWtlXkqKai8nJqadILBdex2nckP++ZjNL2GKIpMSuxDucfBdzkbKHHVsKRoJ+vK8phWTyZ+WnI/lpXsZmVpNsWuGr7YvQafFDjq1gpdhd70Zh7zcODgLu5CQuJFXsSIkTM5k73sPex9ras5Mfy7IMCPxdcgC8fe9Ex95ml/YGnKF5gCEZy3fiYiIlU+VwNHpJvOxF2DTyZa13XUwlvkjGi1WkaOHMmiRYvCyyRJYtGiRYwb13Q/hRdeeIGZM2cyf/58Ro0a1eS4jqb+k8kHWSv4JW8LVV4XnkF34Rc0VP88A6c/NP89IiaVCK0BVWQkETffTOrmzaSsXYvl739HMLbvTT3uvfdInDMHTe/eTY4ZF9+LyUl9iNGbUAkColZLZLc4bh5wEncNntqsI7KuLI9H1/7MLctm88S6X9hygL6HLMv8tHcz9/71Pbcu/4r/bFkUrsY5EixaPRFaQ/i1ubKQWL2Zvk0kqi4qzGJgdCLTUwaQaIzgnLShdDdHhROSZVlmUWEmM7oPYli3FFJMUVybMY5qr5uNtU5nayKKIibLCkRxMH7fZ7icbdN1tUNxFMCP4wEJzvoDrPsrVnZWl/Lw2rksKspqdNPPd6/F4fcQCKzHaT8ntI96yPI+Av7PEAQDWv29WCMdWCJWodGe0oYn1Di59kqe2vB/PLXh/+ht2kqKeCZmviDPPQyzdR1bnQ9SsX+Glxi9mVsHTmZHVQkz1/8fCwozubLvWAZG7S8PHh3bgwt6Deen3M08tf7/yHdWcfvAKYfs6nusoUfPK7yCDRuf8ik96MEv/EJPejKIQcxjXqPb+YIB/iwOSfhvrglpLMkyZNqHsr5mIq56OUrHGitZyeVcjlEwkqXawfV9TyLdGoNRrcGg0tDT0o0r+4zhsZFnkGSK7GhzW0SLRc+++uorrr76at59913GjBnDq6++ytdff01mZibx8fFcddVVJCcn8+yzzwLw/PPP8+ijj/LFF18wYcKE8H7MZjPmZmS/69NeomeSLDMrcznryvMOWndvzuP09uwiV9eDz9If5ZbRlxDZxA1ccjpBklo1N6Q1+O/WxYyO7UGaOZqgLPPD3k0Uuap5fOSZTXYV3WMr46VNCzm351CGRCezet9efi3YwUPDTyO59s0+P3878/O3cU3GOGL0Jn7au5nC2v0ebW+EgBTk36t+YFpyP2Z0bzzh7f7VofXTkvuFl/2Uu5lNFQU8MmIGZW4HD6/9iYeHn06qeX8l0EubFpJqjuTi9LZxkCUpgMM2AEnahVZ/L0Zj+0zbtTk+B3zZA7yVcMq30HN/zkaeo5IXNi1oEHGK1BrwSQFcgf2l6kMiPVyeci/I1RzojACoVCdiifizLc/isPH7fsXlvBpZLgUsGExvoNN1nkrAA5OEoflE4c7MZjZzO7fzJ38iI9ONbtzO7TzIg6hR4w74eHXrYvba9zf9fKLfdehED8/sfB1bIJponZF7h5zSJc+/OXLJJYMMggRZz3oGM7ijTTos2kz07OKLL6asrIxHH32UkpIShg0bxvz588NJrXl5eQ1K6t5++218Ph8XXHBBg/089thjPP744y09fJsiCgJ/zxiHSa1laclu6ntpayNOoLdnF929uTyw627EpAjo1Xji3OF2gm1v7hg0pcHf1/Q9gXtWfU+uo/Kwog4A56QNZUd1CUuKdnJ5nzEHRR0Ars0Yxz1/fc/G8nxGx6Udlc0bKwpwB3yMj29aK8Lm82A9IPnPqtGHa/JtfndoWSPllDW+tqvBF0U1ZutW7LY++DwvImDGYHy0zY7XLkhB+HZwyBE54eUGjgjAt9kbwo7IgMgELk4fRYLRiiTLbKks5PPdawgEizgv/j5kydmkTE4wuAJJKmlxdUxr3piDgRxczgsIBtcTygu5E73h5U5Vtt1YkjA0nSjc2RnCEJawBBs27uEePuMzHuMxnuZpzuEcRuy+lL320OdZAPpExOEMZmAL+HAFYwCJSq+Lt7b/yYPDp3eo8mhrYsfOMIbhw8fP/NxlHJGWcEQJrLfeeiu33npro+uWLFnS4O+9e/ceySE6DLWo4vI+Yzg1ZQDLSnaT66gkKEskS2lQWisi5q+BhRdA78th4pugjTjUbjsl7mDoSdXUTLZ1tr28QcQBYEBUIpsqCgAo9zix+T30j9x/0zCotfS0xJBtLz9qZ2R5yR4GRic2GYXq7IiiFot1B/aadLyexxAEC3rDXR1t1pHz00Rw7IVBt8OQuxusKnHVkFUTyieL0Zu5eeCkcGRMFAQGR2m5I2MjusBTqEXpEJI7QXzej9Eb7jts01rrxixJHtzOa/D7vwZk1OpTMJpnd2jCbFM0liQMXbfDeB1WrLzHe7xT+/Msz/KN/A3fZHxDTHIak3Ov4ZW020k1R2Gr8aNWT+PJUWfxypZFlHsc5Dur2FZV3CCJvasiITGEIVRTzeu8zgxmdLRJbcKx4Ta2AbEGM+f1HMadg0/mX0OmcWJqI0m3e2bD1/2h8Pf2N7AJ5udv4x9Lv+CrPeuaHbd2Xy4z1/8fALMylzeZB1LldfF9zoYGeSDtFXWo8DjZUV3KxISmc2HqjnWgyqDN7yGi1iarJjQXb2usnLId1FpF0YglIhNB6IbHfTdez3ttfsw2YcGFsO8v6HEOjP/vQauzavYL6Z2Y0BuNqEKWZdyup3HYpmOrTsYkPU+5vzdZ9sGsrpoCqjNRqUYjCClAw/8Lv///WmTeoW7Mh4Pb/Sy26kj8/q8Qxd6YrRswW3/rlI6IzedhYUHTkgrNzcBLUgFu1yNIUklbmNZqiIjczM3kk89ThR8Qa0+n3LyXbwc+zgzzSfwhL0EK7kUU0+imN3FRrxHhbZeV7OlAy1uH+fnbGJV3PnvZy+3czq00HgRo77y+tkBxRg4XdSPJZXIQ3KXwy1RYcScE3O1uVn322iv4s3g3KYdIXNpjK+P9rOWoRYG7Bp/cbPWJiMDZPYa0afVJU6wo3YNFo2PwIXqD9LLEkFnd8Et1R1UJvWq7oMboTVg1+gZj3AE/Ofby8Ji2RhQjsERkAlbcrn/g9X7RLsdtNVbeCznfQsxImP5Do0N89XoXddObkGUnbtfNeD0PEwiux2B8GWtkEUuqZvFB3v18X3w9Qd1sLBGriYjKJzLaTUSUA0vEHsyWFZjMn7XTyYHPN4+aqni87gcBHQbTZ1gjd6LupC3pS102ntk4n1Vle5scMz9/O9IBDokse/C4n8FW3Qev5yn8vp/b2NIjQ5J8BAM5+P1L8Ho/w+N+gcnB/+PL8gT+yB/IXHsMlzlzyHdMAVxsZCMAg6OTwtG4us7rXZW99gpeCLzChu4/Mrn8b/yXgx8AoPNVEx4px3ETjRaibmKaoO5JbOt/wZjUrv046uMJ+vlf1gqu7DOWeflbmx37YdZKNKLIQ8NPJ0Zvpl9kQpN5IL8XZaEWVQ3yQJqKOkTUqwaw+TykmiOP+HwkWWZFaTbj4nsdpPz6YdYKIrVGzus5DICpyRm8tHkhCwp2MDg6iTVlueQ6KsO6KYIgMDW5H/PytxJnsBCjN/Nj7mYidYZ27bEjijFYI7dhq+6H23kFgmBGqz273Y5/xGx9A7a8BObucO5fTQ6rL3Hucb9PTdV/gQB6w3NodfciiiJBWSLHHpJuFxAwaxrKCAqCCZWqF6jap8w1GNiD03kBUnAjoEar/xd6/QudKi/kQHzBAK9vW0KV1wWACoE+kXFY1HryHJWUeuwArK/I5+e8LZzdYwiyLBPwz8Xlug1ZyiekXKtClquaPtBRIkkuJCkHWcpDkoqQpGJkuRRZKkOWK5HlKmTZhiw7ABey7CXUXflgNWmAgZZ6Uk4BNSdKaVSJaoqFLN5QzSWJPJLllHBEqCsrjXiCfu4qfpHFfT5gYPkk/lFzHzTx3NTReX2txXHljMzN3czPeQ1v1PEGK0+OOrPJberEtCyVG7m3kfWyoAZZYmX0KfxQ043ELYvaREzrUHy5ey2Do5LoH5XQpDMiyzKz96yl3ONkemr/cNdhaDoPZK+9gszqEqYl9wvngey1VzYadairVKmLOkxKbH56pTkyq0uo9LqY0Ij2QqXX1aDpVro1luszJvBj7iZ+2LuJOIOFfw44MVztAzA9pT++YIDPdq3GFfDROyKW2wdOOepqn5YiiilYrJuw2wbhcpyHYP4VjbZpNeIOJ/cnWHE7aCPhgi3QTBPAwVHJGEQ/V3d/hjTjTmRMWKyrUav3J9v9UbSLal8ogjgkOqnJKq4jwR1oprHkAUiSC7fzavz+7wjlhZyG0fwlohjZava0Fav27aXM4wAg2RjJbYMmh0vzZVlmbVku/8taGVZdnpYAkvduAoFFhILhdXd0EVmubvI4kiQBlUhSHlIwH1kqRJKLa52JkEMhydXIsh1kJ7LsAuocioOnyxoiELr9aBEEPQgWRCEJQYhAEKIQxG4IYiyikIAgJiGKyfxW4ODngkok1JyfNozpqQOIAIooYgUTOYVTeKPyy/BUXaKpa+byATyQ/yY/9X6ZeCGeq4ruRzA17Rx3dF5fa3FcOSMQknq/c/DJ4b9VzSj11YW/zu05lBGJ0bD3kYPGlEWPYVb0RcwY8jdury1rfW3r4lYpaz1c1uzbS56jkgeHn9bsuC/3rGX1vr0IQJTWSE3tTcGg0oTzQD7MWhH+qrJq9Q2iDlpRxY6qEvZ5HG0edRgQlci7J17W6Lp/DTn45j0ytjsjYxsXRauz8+y0IZyd1rzgXnugUqdjtq7FYRuB03EaZssfqDUTDr1he1O2Fn47H1Q6uGATaJt3sDXyfB7u9w9UeNntHMhXhQ8yNUVkUFQV7qCfFaXZrCzNDo+fkpTRzN5axqaKAv6XubzJ9b8V7ODavuNQiSJu11N4PTMBH6LYF6P5G9Tqjn9fHC5LS3aHf7+q79gGGkGCIDA6Lo3MmlLW7tvCtJhv8ToW1FMkre8kBPB5P8Dvm4uMDWQXsuwGfISiE4dyKERAQ8ihMIQcCCwhh0KMRhBiEMW4eg5Faq3Mf9wRRZ5Gxdv4qSA0rTQvfyu9I2JJt8aSRBILWMAJ8jjOijiJSdE30qNyJCceItess/JR+VzeSX4Ug6BjC1v4hE3Nju+s1YQt5bhzRkRBaDCd0BwNwl+2UDKUTG34L2ogctU2dshWRvU5tcPCX5VeJ19lr+fOwYd+yv+jVigIQo7Jl3vWAnB13xPq7c/VoMtj/ajDPrcdnUrTaaMOXQm1eiBm63IctnE47FMwW1d3rvwERx78VKtuefbS0BRNE0hSAJfzQgL+H1ALWn7d9y9+LwslEv6wNxStOpBTkvvRP6p1mtrtqCrhnR1LG+RHGNUa3AF/2LFeU5ZLiu4vxkU+jyyXAREYTB+h013aKja0J0WuGgDi9GbSapugeTxv4fU8hyj0BWo4vVsZZ0bnNlk6HUIOTZvI1YAOQTAiiokIgrU2QhGNIMYiCHGh5WIyoti99hXZtifZCPFGK6Nje7CmLBdPMMALmxaQERFPT0s3il01jAn+nXlDnue3gf8hyhtPT+0dRHAVyXSdipqN3u3cafwHQZWPtcI6YontaJPajePOGdnntvPvVXPQiCK9LDGclzasyZK/BuEvbSQIKty6eOYlXc0FU5/G9fOpjC9ZSJkvF+gPtH/4K89eid3v4en188PLJGR21exjSdFO3px4cbjWvi7S0JRIWIRWz7+GTAuLhNXlgdRFHepEwg4sl+tMUYeuhFo9CpNlEU77yThsJ2C2bkSt7nfoDdsanw2+HQpBbyhZNbZpUbiAfyVOxwxkuRpRNQyzZRFnWsxUSavYWJHPgfUcepWaGamDODWlf6uYKskyX+xeHXZEhnVL4by0oSQYI3AH/Cwr2c2fhfO5NOVVEvV5SLIKnf5e9PrnOnVeSHPU5UTUfa79/sV4XPcAWgSNBVFMxydpqXD9Qry+AK3oJ/QIdXB1jVp9Cmbrr+1n/FFyZZ+x1Pjc7Kyt3MqqKQ2Xk6cwBIM3AreuhiptKQ8LD/MQDzGNaVzHdZzDOehp++q5I8WGjaniyXhEJ+evf4o33JuBzU1+n9fRkmrC1szra22OK2ekpyWGa/qOI95oocbn5ufcrby4eQGPjTgDvVpz0PgG4S99N7hwO2scPv4q2MkFgkDp2DeI/vkEYv66BXrtLyNrz/BXv8gEHh3RsO78451/kWC0Mj1lQKOiP3XVJ/WdkaaqT1ozD0ThYDSakzCZ5+J0nIHDNgKLdQcqdY9Db9hWSIGQqJmvGsa/Dj0aT7CVJAmP6yZ8vvcBFXrDi+gN9wBgEuGmASdS5nbw174cKrxO1IJImiWaUbE90KsO/qwdKTuqi9lXmz+Rbo3lH/0nht/zehVMiHqTUYa3AJksx1Cy3M9zdb/prXb8jiDOYKHIVUOJ20ZZ9f1opJdQq0/GZJmDIIQerOaWrOP3onEISNzQ20aG6VsCgcWACthfQSHL5R1zEkeITqXm9kFTWFK0kyXFuyiv/b+H0NTEDPffmKP9CEmQkGqnmX7ndxawAAsWLuMybuVWBtG5GsgFCDCEIVSqS3ne8xqX99/f0+p4+T4/rpyRQfVKRFNMUfS0xPDA6h9ZW57HxIT0Q+8gsi+ya2f4T1kfzU8xF3BVySzY+Qn0bX+JaL1aQ7I6ssEynUqNSa0LT6V01eqT4wWN9nSMpm9wOS/EbhuENXJXi5VHW40fTghN0Qy5BwY1rmkQCGThtJ+MLBchiD0xmxc36kDFGsyc1aNtlSK3V+0v156alIEoiEiSH6/3efzej5CkPYiqwbyx+2ry3IlYNI5m9tY1mJCQzjfZ6zkn4UPUwYUgpmKyzEUQQpVJWdWl4d4talFDRsx1mDU3Ewxm4vW8ic/7AeAGZCS5suNO5AjRiCpOSenP1OR+FDqrcfi9GNQaUkyR/CXG8R0fNBgfrHW+7Nh5l3dZxSo2sKEjTG+SkziJXHK5W7ibfxtua7DuePk+P66ckQMxqrXEGyyUue2Nrj+c8NfKyJO4tOwLNCvugN5XgCh2uvBXV64+OV7Q6v6GzIe4nddgr+mPJWJP+wtt/XoOlK+DnhfACS82OsTterw2+VNGq78bo/Hl9rXxADzB/RU0cYZQLyhZLsPrfgRRzMBi3YhKPZSgMA+oblHFTWdlfHwv9P4bGGhZRoUvjrf3Pseo2C1E64zsrClla1VxeOyJCenh8mmVqh9G0+sYjM/g836K1/NfBKFz9c9qCaIgNOg1BXACJ2DBgp2Dv9NVqLBi5YMDnJWO5nIuZyUrOZuzeZlDf56O1e/z49oZ8QT9lHkcnNBEQuvhhL/MWhNb+9zJ8MxnYP2TuIc91OHhrwOrTbp69cnxgk53NUhO3O5bsNf0q3VI2ulmsfz2UBlv3AlwyjcHrZakEhy2KUhSJoIQi8nyW6dIuK2vU5JjryDVHIVKlQTEotZcjEo9FKffF1abPFDXpCsiuc5hkHUZJZ4e/HfPk0jAkuKdB40bFJXE33oOP2i5IFjQ6W9Gqzv2ukmrUTODGXzHdwTq6ZUICMQTz2IW05e+zeyhfXmcx/mCLxjCEOYwp9Exx8v3+XHljHybvZ4h0clE603U+NzMzd2CiMDo2FCI+UjDX5/kBeijS0C36UU+0p/Y6cJfCl0HneFmZBx43PfVc0jaOOlu8yuw7XWw9ISzlx202ut+G7f7diCARns5BuMniKLI/PxtzNm7iZOTMrg4fWSTu6/T6qnwOIgzWDi/57AGSdCyLDM3dwtLS3bjDvpJt8YctlbP8G6pzM/fDsCCwh2Mie2BXq1BpUoDQpLY8wu2hbUnRnThz6UkSTjtEwgG/0KlOoluET8xKnYb68vzGsjgR+uMTE7qy7SkfqiaSdIVmi+16bKcyZl8xVcNlsnITGVqp3JEPuVTnuAJEklkDWsQj3NB9OPKGanyupiVtQKn34tZo6O3NZb7h50aVo48mvDX/zy3cceeh+id+wXnT/lPpwp/KXQt9IZ/I8t2vJ6nsNsGYLHuRGxGbOyoyPkO/voX6KLhb5uh3vtWkhw47acQDP4FWDCZ56DRTgVa1nqgTqtnSHQyq/ft5e3tS3lo+Gnhz1GdVPU1GeOIaaFWT5qlGz0t3cixV7DPbef5Tb9xeupA+uoScfuy+apgBX/t2wuEno4nJfY50ivVoUhSAIdtKJK0HbX6bMzWH7EA1/Ubz8X+EeTYK/AFg0Ro9fSyxnTZbrWegJ8fczezsSIfu99LqimKi9NHhkuYGyOrupRvstdT7KohSmdkfI9+CHECMjIqVAxmMDaXn88Mn1O+PY4T/adwSfpIerZTK4jGWMYyruEaTJjYzGa0NN2s9HhBkJvrptRJsNlsREREUFNTg9XavsqmLeKLNHDmw+XFYIzraGsUujgu5134vK8iiv0wW7cdXSlqzS6w9qaB8ETpylAXXlEHl+wG0/4Eb5/3O1zOKwAPavWpGM0/IYqhKQ5P0M/TG+ZzWfpo5uVvJaX2htEY7+1Yhk8KcOvAyeFlz238lVRTVFiq+t+r5nBKSv9wua874OOev77nmr4nHFZ5fLGrhhc2LcAV8IWX3Z1+DzG6Uh7Z8SFBOeTInd9zWFgyuyshSS7stgHIUi4a7dWYzB91tEltxns7llHkquGy3qOJ1BpYtS+HhYVZPD7yjAbibnWUexw8se4XTkrsw8SEdDKrS/h6z3qWjXuBreqNTGISj5e/yVeZG5k76jEKddncVPAU+oI+PDHyrIOEwNqDbLLpT38kJDazmf60Tpl7Z+Vw799d033urEz+JNSr5veuJ6Sk0Pkwmv6DVnsdkpSJ0z6qVp67aSo9TvIcleFXpccZWlG2Fr7qC0uugmDtDduWA3OnAGKo30ytIyJJPhy2M3E5LwBkDKYvMVt/DTsi0LD1wKHItpfTL7LhuAFRiWTX9qc5lFT14ZBojODeIdNIMobkvwUkorVlqASJyTFz0avUXJo+qos6ItXYa3ohS7lodXce046ILxhgQ3k+f+s5jL4RccQZLJzVYwhxBnMDwcb6/FG8ixi9mQt7jSDRGMGUpAxGxKQypvB8buEW5jOflQUFnJTQl636tUQJkbyT8hD7zNmsKG3/rr42bIxgBH78zGPeMe+ItITjapqmzUk6KdTVtOh3qNgK3TpXLbtC18NonoVsd+D3f4XTPglLxNJGx1V6nDyydm6D3AG1IDJz1FlE580DRNj1BbJjF97x49H99D8EyQen/QLdQkltfv+fOO1nAzWoVKMwWRYcpLR5uK0H6mgvqeokUySPjpjBzpp9ZFd9j0YMJS+eEjuHM3s+glHXeXIFDhdJKsJeMxBZrkanfxKD8eB2FMcSkiwjIaMWGk7NaUQ1e2xljW6TbWvc2d2a3Y//9niEgBQkz17J6SkDiCSSrWylr9CXb/s/QVJONKcxsM3O50ACBBjMYGqo4V3e5RROabdjdwWUyEhrM/UrQIDfL+loSxSOEUyW2ajVMwgGl+GwNe4EOALeBo4IQECWcAS8kD+fUJ8RCUpWof3xP+C3wYnvQPfTQ4mRjmtx2icBDgyGV7FErDnIEalrPXBdv/GdMidKEAQyIuM5KXYVdV9tgiAT9NyILDcfVepsBAN7sFX3RZar2eJ8jjvXpfPVnnXNbrOuLI9H1/7MLctm88S6X9hSWdhgvSzL/LR3M/f+9T23Lv+K/2xZFK4y6gzo1Rp6WWKYl7+Vaq8LSZb4a18O2bbycB+tA7H5PY06sp6gH18wgMPvRUIO5wUmkcQ61qGR9LzV49+sYU2bn1cdE5lIHnncwz3cyI3tdtyuguKMtDYR6dB9BlRtg7z/62hrFI4RzNZfUKkmEQj8itN+wWFvJ/jtULZ6/98yCAGQtRCMSyYQ2Ia9Jhm/7yNEsTfWyL3oDHc0uq/6rQf+ufRL/rn0S3bW7GNxURb/XPolUiM3/JZIVTcY49s/piXIshO/72v2N3mTCAZX4fO+1eJ9dRSBwEbstoGAi2rhf/xfcb/DThSekNCLh0eczrBuKby9fSmFzurwmLpE4cv7jOH+YaeiE9W8tnUxfinY9I7bmb9njEOW4b7VP3DLsq9YXJjF6NgeDQoLjpYMMniy5D0g5CBkkdVq+26KS7iEVaziXM7lRRrX8DneUZyRtmDyZyCo4M/rOtoShWMIk+V3VKpR+P3f4XRce1jb6EuXg9zwZiMAgh+En87CnTMIWS5Fp7+/Vvk1pcl91bUeeHjE6eFXD3M0Y+LSeHjE6c1KVdenKanqOuqkqnsdQbWD3zeHkLpoQ9yufyMFc1u8v/bG7/8Th2004Edt/IH/7Ynlyj5jMaqbr7ao39Qz0RjBOWlD6W6OYklRSH9ElmUWFWYyo/sghnVLIcUUxbUZ46j2utlYnt8OZ3Z4xBos3DN0Gq+Nv4jnxp7LA8NPIyhLxOjNjY63avSNOrJ6lQatSo1Zo0NEwH7AmCh3MjfnvoAfPyMYQRFFbXZOj/AIX/EVwxjWpJaIguKMtA36SOh3I7iKYVvXeSJT6NyIoojJsgpRHIjf9xEu522H3EZfshiEg1PDBBkEv4z5DzD7v8FgfPbQ+1JrSDZFNng1JlU9J2djeJupyRlsqypmQcEOSlw1zM3dTK6jkslJoRyO+lLVmyoKKHRW8+HOlQ20eqq8Lv6XuYK7V37Lrcu/4ol1v7DXXtGojSGp84O/1mTZh8t5A/WLBxcX7eTB1T9yy7LZPLvxV3IOM2G2rfD5fsJpnwIImCx/8E1ubKdKFG5PdCo1EVoDTr+P7VXFDO3WuJPcy9qIs1tdQi9ryJFViyq6W6LZUV0aXi/JMpnVJUzVj+dzPseFi0EMoprqI7ZXRqaSg6X1P+ZjnuIpkkhiFauOeP/HA4oz0lZMeA1UBlh1HxxQBdFk1YOCwiEQRRGzdSOCmI7P+wZu1wMA+IKNh9r1RQtBDhy0XBZCERLJBKgPXn+kVHpdDeb367R6lpbsZub6/2N9eX6jWj1TEjP4bNdqntkwH2/QH5aqdvp9vLhpASpR5LZBk3l85Blc2GsEpkYiBVIwn0BgCfunaPYjCEECgQX4fZ8DsKYsl2+z13NG90E8NPx0UkyRvLZ18UFP2e2F1/spLse5gAazdQ0bq1LIc1SGBRgPRXslCrc126qK2FpZRLnHwfaqYl7ZspAEo5UJ8b0AmJOzkQ+zVoTHT0rsQ7nHwXc5Gyhx1bCkaCfryvKYlpwRHjMtuR/LSnazsjSbYlcNX+xeg08KMD6+F5dyKa/xGlVUMYABeDiya/EN3xBLLO/ybnjZH/zBtVyLGTNb2KJoiRwCpZqmrRDVMGomrLoHVv0bxr0EHKLqQW/qKGsVuhCiqMZi3Yrd1gev5zn22Ny8u2f8QeOi/BVoHHvDf4djAiL4uoOvFwSjRETVA1jkM8MdX1tCW0tV/1qwnSidkWv6nhBe1lTI3uf7jHpnWQ8NshxAEGS8nv+i1V3BwsJMJiakM6G2QeblvcewtbKIFaV7OC21/SosALzu12sVbk1YrJuoCSbwVfav3Dm4c/UOaQ/cAT9z9m6i2uvCqNYyIiaVc9OGhpVka3xuKr2u8PgYvZlbB07mm+z1/F6YRaTOyJV9xzIwar9mzujYHjj8Hn7K3YzN5yHFHMXtA6dgrW0Dchu3UUYZM5nJYAaTSSYqWnbdf+InJCRu4iZyyOHv/J1TORU1alazmmjauc9UF0RxRtqSof+CTc/Dttdg5OOgNTdb9RCN4owoHB6iqMdi3UF5ZQ+SNf9lVGQlKyobVtpMqlwAhG7PAiBZwZseckTQ1I2SkKQcPO4XMBifaMczODw2VxQwICqRd3csZVfNPiK1RiYl9uHERno/BQOhTqySrMIrxWBQ2QEPOv1d7HXoWVLi4h+D7mhQ7lmHKAj0i0wg29a+UxZu1xN4PY8jCFFYIrYjignkVeeHE4XrkJDZVbOPJUU7eXPixQfl57QkUTiiXi+uztbUc1RsD0bFHtwBuo5rMsYdtCwjMp6HR5ze7H6nJGUwJSmjyfVP8iTllPM2bzOWsaxm9WHLs8vI/MZv4b+f53le5mUCBFjIQkVL5DBRnJG25sR3YcH58Me1jTYgU1A4UnIcbl7Leo77+tzF2QmfkmBMxKi/AaNaS0HFbk7O/A0Z8KeCpw9IUSII9R1hM6KqNyrVANSaKR11Gs1S5nHwR/EupqX04/TUgey1V/JV9jrUosi42tB9HUbzp8jymzy2fiXj49M5MeJuAoEFGIzPE/AUsrHmDwJyAq5Aw3LPOqxaPSXtWOrqct6Bz/sagpCAJWJHuJS6LlG4Ph/v/IsEo5XpKQOaTRRurqlnXaJwXafbukThjmzq2Zl4i7coo4xv+ZbTOK2Bg1FHpccZKpevxazWUarPo4yGOigBAvSmNyMY0eZ2Hysozkhb0/M8iOgT6gHiyAMaDzErKLSUxUU78UgmXtz1Ig/1u5exES9hsV6GimRGLD8XWROg5jTwqnRkOoYxVDsVo7Y/oqoPotgbUWy630dnQQZ6mKM5L20YAN3N0RS5qvmjeNdBzogg6BCEWKgtAxXFnoCMJDWe7NqROB1X4fd9iiCmYbFuQxT3S53r1RqS1ZENxjeWKHwkTT3n5W8lzmAhRm/mx9zNSlPPA/iGb5jCFBawgMu4jC/4IryuqSn27mMLETShXjj1ySGHEziB3/iNHjQd7VEIoTgj7cHJX8Cc0bDoUpg6t6OtUTgGCMoSG2pLMgUxDktEJl7HaThqpmJeEYlYsQfX5CTW+Z7m69zaxDn96C7XKC5CqyexVua9jkRDRPjcG6Ou3FNUhSp2goEN2Hw9w+WeoiA0Wu5p83mI0LRc26SlOGxnEQj8jCgOwmzdcERNEI+mqednu1bjCvjoHREbThRW2M8iFjGCEXzJl8QSy3/5L9C0sOAiYRECBzsjQYLsYhejGMU2thGH0q+sORRnpD2IHQXxE6B0OZqK5lUUFRQOB3fAH/pilCRODOxBt+pPtO4MyNsOgQq8J03F1OsH4qpqgD+Ag4XFugLp1tiDVEJL3TaidU3nV/WyxrC1sojzUwcDEAxuYUe1odFyz7qoQF2555SktpONlyQJp/0kgsHlqFTjMVmWHnbzw7ZOFFbYj4jIWtbSl768xmvEEsvDPNyoqJ+ExArVUqRGKrjUqAkQoDtN/58o7EdxRtqLqbORv+iO8Y+/Q8/nD1rt8Hsb2UhB4QAkCQp+w7DrE57J/Y2oQCVi7TOZ0G0YUu8LCaoK0Wf8BoJIuWe/JLhe1fU+7tOS+/H8pt+Yl7eNUbHd2WuvYGnJ7vD0A4TKPat9Lq7NCFUUTUrsw5KincwtSOTkSNhelcW6sgRuHTSpwX4/ylpJmiWaNEs3FhVmhcs92wJJCuCwjUCStqBWn47ZOq9NjqPQOqhRs5Wt9KIXj/AINTYJYfvBvcbKzTk4BUeDZQICWrRczuXczM2MpPGO1goN6XrfTl2UbX4Rr2Usw+1/Mdy2mg3WMQ3Wv7djOXcMnkzPI1CdVDiGkSQomA+7PoPS5eAoACRUgEXUs1ffiy3mYfQf+yB9k0cgsl88KChJ/FG8O7yrjMj4DjiBoyPN0o1/9j+JOXs38kveFmL0Zi7qNZKxcT3DY5or9zzBbCLfWdHics/WRJI82G0DkaVsNJrLMVk+a/VjKLQ+RoxsZzupUg9esjzGNOvt9KoY22DMjoTFoV9qS9b60pdbuZUruZJIItvd5q6MINeXJOyk2Gw2IiIiqKmpwWq1drQ5LSbfUcXzm35DDjj5b9aNuFVG3hjxDRIS+Y6q8EyjSa3lweGnNa6jIMuw7y8wpYBZSTg7ZpEkyP8Fdn8BJcvBWUhYxEtthuhB0P1MyLiWv5xePsxaCYBJrePS3qMYEZOKShApddn4Jmc9WypDMtc9Ld24f9j0DjqpjqO60lDbc2dLhxxfkmqw1/RHlovR6m7FaHq9Q+xQODJ21uzjiczZfDXqXoKinxuzn+MczQy0oooNzt3c1+c8ZCFIauUw/um/nfsTrmnVPjrHAod7/1YiI+3Az3lbQs2oRD1bki9keOFsHtDnQf8bqPQ4+SBrJbts+3AGfPxWsIPLeo/ev7EjH3Z+DJmzwJELGdfBpFkddzIKrYskQd7PsPtzKF1R63zUuqcaC8SNDTkf/f4OxoZy36ONEstL9rCzZh/OgJdZmcsxqrUY1RrK66n6qgWRi3odn6FiQbAgyx0jdy5JJdhrBiLLlej0j3ZKHReF5llUmInZF8N5G2byw8iH+Cj9ER7jCqKI4jGuJ0KyctLG20lw9KVCoyMQJykJwUeI4oy0MVVeF5sqQvP2EVoDg6Z/At9vgG1vQL/riNabuGnAiTy4+ke8UoC/9uVwfmoG+vxfQg5I0WIQBJAlEETQRXbsCSkcHVIAcueGIh+lK8FVRAPnI34cdD8LMv4Oxuaz71WCyM0DTuLdHcvYUdufwxXw4Qr4wmMMKg039p8YTt483hCEbkhS+zfICwZysNuGAA70hv+gN9zZ7jYoHB3ugJ/Ntd/dPYN9WC6v4EzhDE7lVNJJZwMbWCwuZpPezzpHHna/t9k+OgrNozgjbUyeozJc8jUmNg2NWgMnfQA/TYDfr4AeZ2E2JnGSQSJv31ZG2lajzfw7BJyhzr/IoSkaAAQwJjV5LIUQjQkTdZjUvhSA3B9h95e1zkcx+50PK8SPhx5nQ99rDul8NIZBreX2QVPIrC7hj+JdZNvKCcgS0TojJ8T1ZFx8L8waXaueUldCFJOQpLZvEV+fQGAzDttYwIvB9BE63dXtenyF1qHG50aq/axmRMQxRhzNn/zJCEawjW18x3eMZSz+qD2sK88DQg+fCkeG4oy0MYF6TfLMmlq9h4TxYEyGnG9hz5cAXFA7pk66O/THAc3P5CB4q8FTCXql10FjdHjvHykAOd9D9le1zkcJDZyPhIkh5yPjGtC3TrRCFAQGRCUyICqxVfZ3LCGIaYSEz2yIYtvnmwX8y3HYpwBBjKY5aHXntPkxFdoGdb2ya3tttWM/+vEu77KYxZzP+QA46snwq5UpmiNGcUbamGj9fmXFrZXF+5twXZoNKi347MjOIj5f+yknF35Ikq+ooUNyIBtmhl4IIGpBYwJtFBhiwZQM5p4Q2QeiBkL0YNB2vYTfo+GIev+UroT8/4ORT4SmxFqCFIDs7yB7NpT+Be5Sws6HNgISToS0c0KRD8WBbHdUqgz8QDC4EVE8qU2P5fPNw+U4GxAwWRah0Uxu0+MptC3ROiORWgPVPjeZ1aWUue3EGixcWfsDIfHBFaXZ4W16KdWQR4zijLQxaeZuxBuslLpt7LLtY21ZbqgRlKo2SqK18HuZzFL9AJamv8jJQjEX578F9hwa7UA69F7w2kLJrO5icJeDZ1/o731/NWKBACodaMy1TktcqCLH2hMi+kLUIIgeCGpjI9seB+z+EhZfBXIA0i+FqEM0tQr4QhGt7K9h36oDnI9ISDgJ0s6FvlcpzkcnQFSFtCGkwGbQtJ0z4vV+idt5OaDFbF2BWq30JOnqiILIxITe/Jy3BRmZt7cv5bp+48Oqtg6/h9l71lHqtgPQxxpHkimimT0qNIfijLQxgiAwLbkfn+9eDcD7mctZV57HiG6pBJFZs28vW6uKw+P79b8YTrgFNj4DG54llDNSb7pmxKMhx6IxJAns2VC5BaozwbYn1A/HVQLe8lCypD374OkfAMRap8UCuigwxIdKiC29Qk5L9CCIHABqbetdnFam1G1jXt7WRtftc9vpbq7nHMgyrJ8J6x6rXSBA8ZKDnZGAL+R4ZH8NZatrnY9atJGQODkU+ehzNegjW+9kAEmWmJu7hVX79tZ2YDUwPr4nM1IHITQTwcmqLuWb7PUUu2qI0hmZ0X3QQWJei4t2sqBgBzU+NynmKC5JH3lMatyo1cMACLZh3ojX/RZu9y2AEbN1I2p115LcV2iaKUl9WVmaTYXXSaGrmifXz6O7ORq9Sh3Oz4JQMvm5aUM72NqujeKMtAMnJqSTYy8Ph/PWl+ezvpHeGqelDtifiT3qSUi/BP64bn/EQ21q2hEBEEWI6B16NYcUgOosqNwKNVlgywZnfq3TUhn63bYLSg6WOEYQQaUP5T/oosEYD6ZUsKZDZAZEDYbIvnAE/TaOhu1Vxby9/U98UmOOFnyQuQIBISSXHfSGruvuz/cPEEQoXAx9r93vfOxbE4o61aGNgqSTIe28UOSjjafA5ufv4I/i3VybcQKJxghy7ZV8vOsvDCotJyc33g693OPgjW1LOCmxD9f1G09mdQmf7lxFhFYfFv1aU5bLt9nruaz3aHpaYlhUlMlrWxfzxMizsGrbvjdLeyKKoXOWgtmHGHlkuF1P4/U8DERgjdyGKCa3yXEUOgazRscdg6bw2rbF4XL5PEdlgzEaUcX1GePpHRHbESYeMyjOSDsgCAJX9hlLgtHKgoJM7P6GPUKidUZmpA5iYkJ6ww2jBsA5y2HHe/DXPWBppc6Pojo0NRM9sPlxAR9Ub9/vtNhzQgqg7tKQ02LPCUVgGunLgKAKOS1aK+hiQhoZ5u5g7QWR/SBqSOj3w+zN0RxFzpoGjohWUJEeEYsA7LGV45UCBJGZlbWcbnhIW/H3UJ5IfeRgaPol55v9y3TRkDQVep4Pfa5o9/ybbHsZw7olMzg6dIOL0ZtZU5ZLjr3pLrR/FO8iRm/mwl6haYJEYwS7a8pYWJgVdkYWFmYyMSGdCbXvt8t7j2FrZRErSvfsz2k6ptAhyYWHHtZCXK5/4fO8giDEYYnYgSgq03LHIvFGKw8Pn8Hy0j0sLd5NSW2vJLNax7j4XkxO6tO4UKVCi1CckXZCFASmpwxgalIGWyqLKHXbEBBINkUyICoBUWjipiyIMOCm0A0x4G5fo9VaiBkWejVHwAWV26BqK9TsBFsOOAvAvQ98VaEoS9VWGs2BEdSgNoQiLYYYMCSCuQdEpENk/1ASrim1Wafl14JtYUdkaLcUrul7Asba6SRvMMCXu9ewcl8OMd5ioudNAu8+GnWgkCFuPPS9EnpfAdqO/YLpZYllWcluSl024o1W8h1V7LaVcWGv4U1uk20rp19kQ3G0AVGJfJ29HoCAFCTPXsnpKQPC60VBoF9kAtm2jhEHa2sEwYwslbXqPp2Oa/H7PkIQu2Ox7kAUj9Ocq+MEg1rDtOR+TEvuhy8YICjL6FXqZqdLFVqG4oy0M2pRxfCYI5BzN3Ti9tNqI8SNDr2aw2cL5bNUbYPqXeDICSmOesrAWwVVmVCxmcadFg1oDKE8DV0MmEJOi9fUE0dJBRZ9KkF9HH/PGIdepQlvphNkroyQGbj5A0ZVLTrEiQghR2TATS29Am3CaakD8AT9PLbuZwRBQJZlzkkb2qAvy4HY/J6DplqsWj2eoB9fMIAr4ENCxtLImJIDuuMeK4SEz1ovMuKwn0fA/wOiOACzdQOi2HnzqBRaH20XbDjZFVCuqkL7obVCwoTQqzk8lVC5Gaq2Q80ucOwNOS3uMvBVh3JbKkJP+jrgttrNZEDItEDsqFAUyVcNjnxUASfDBC0SIqq6iIigrk3kref4CGJI8baTOCPrynJZvW8v12WMJ8kUSb6jiq+z1xGpNTCujbrLHosIQiKw+5DjDoUkSTgdJxMM/IFKNRaTZQViK0wzKigoKM6IQmdEHw1Jk0Ov5nAVU5C3lOWZc4n1lZKh8pBsNIf0PUqWh8aMeBSSJrHApeHH/EyMQSe3xOjp7dkNJctCycEBF1AruV/4e6jSphOEX7/L2cj01AGMjksDINkUSYXXyf/lb2/SGbFq9Nh8DXOSbD4PepUGrUqNKAiICNgbGROhObaSV+sQVT0IBv9AklxHPJ0iSQGc9jEEgxtQq6djts5vZSsVOgPz87cxZ+8mTk7K4OL0pvs5rSvL48fczVR4HMQZLJzfc1g4twtAlmXm5m5haclu3EE/6dYYLus9mnjD8aX71BIUZ6QVUEowOwhjIqaeZ/J7WQAIJXjOHHUWYiPXfMOG0M3DpTKh73k6mKJCK6RgKEm3dCWUrACCncIRAfBJAcQD5O9EQQi3F2iMXtYYttZ26q1jR3VJuDeNWlTR3RLNjupShtVOF0qyTGZ1CVOS+rbyGXQORDFUaisFtyCKYw8x+mAkyYPDNgRJ2oVGczEmy+zWNlGhE7DXXsGfxbtJqdURaYo9tjJmZS7n3J5DGRKdzOp9e3l7+1IeGn5aWIPk14Id/F6UxTUZ44jRm/hp72Ze27qYx0eeqTTSawIlxtgK1JVgXtp7FI+PPIPz04bxa8EOFhftbHKbuhLMjMh4Hh5xOlOTM/h05yq2Ve2/kdSVYJ7RfRAPDT+dFFMkr21dfNCT7/FMlM7IgNqEzXKPg1/ytiDLDW/Wi4uywuV43c3RJBsj968UVaEk2f43wpSPYMqn7WT5oRkSncy8/K1sqSyk3ONgQ3k+CwsyGVavEdecnI18mLUi/PekxD6Uexx8l7OBElcNS4p2sq4sj2n1SoGnJfdjWcluVpZmU+yq4Yvda/BJgYMc4WMFlSpUIRQMbmrxtpJkw17TG0nahVZ3k+KIHKN4gn7+l7WCK/uMDSe/N8WiwiwGRicyPWUAicYIzkkbSndzFEtqv+9lWWZRYSYzug9iWLcUUkxRXJsxjmqvm42NSDoohFAiI62AUoLZsZyaMoDttV1rf87bytbKIkbF9kAliKwvz2eXbV+9sf27TAb8Jemj+DF3M1/sXoPd7yVCa+DExN6c2X1QeEyNz01lveZcMXoztw6czDfZ6/m9MItInZEr+44Nv6cARsf2wOH38FPuZmw+DynmKG4fOAWr1tCu59deqFShz1hQymx0vSy78fvnodGch1Cvqk2S9mGvGYAsV6DTP4jB+HS72KvQ/ny5ey2Do5LoH5XAvPzGhRPryLaXMy25X4NlA6IS2VRRAEC5x4nN76F/vao2g1pLT0sM2fby8LSrQkMUZ6QVUEowO5b+UQmc33MY3+dsBGCvo5K9BwgTAUxPGcDo2FbSamkH9GoNF6ePbHbu+pqMcQctq4u2NceUpAymJDUunHasIYi101FNCJ95PW/icd+LVvdPDMY3EQSBYCAXu20wYEdveAm94V/taLFCe7Jm317yHJU8OPy0wxpv83mwHpBfZdXoqamNWNv8IQmGxqraapSodpMozkgroJRgdjzTUwYQqzfzS95WCpzVDdbFG6ycnjpAqUA5ThFFERkNHv9eKmudVLNaR7TehCzL+Lz/A8DnfRtBiESjvRyHbTTgwWCchU5/XQdar9CWVHqdfJW9njsHT1FyOToYxRlpBZQSzM7BiJjuDO+WSq6jksJahyTeYCHdGttlpmYUWp9KjxNPQItPyufZbaFEZrUgMnPUWVjVO5HqTd94Pc/i9TwPgNH0LVrd+R1is0L7kGevxO738PT6/dVREjK7avaxpGgnb068+CBBSqtWj+0AFe1Q4ULowdGqCU132nyhYobwGJ+HVHNkG51J10dxRloBpQSz8yAIAmmWbqRZunW0KQqdBEfAiy9owqzeH1EMyBKOgBd98CNCX4OBeltIaHV3Ko7IcUC/yAQeHTGjwbKPd/5FgtHK9JQBjSpj97LEkFld0iBvZEdVCb1qqxxj9CasGj2Z1SWkmkNVe+6Anxx7OZMSD9E37DhGqaZpBY60BDOzNumyjqZKMOuoK8GsG6OgoHB42AORaEVfw4WyH7/vUxo6IiF83v/i837ZPsYpdBh6tYZkU2SDl06lxqTWhct0P8xawZzafDSAqckZbKsqZkHBDkpcNczN3Uyuo5LJtaXxgiAwNbkf8/K3sqmigEJnNR/uXEmkzhAup1c4GCUy0grUlWBG640kGiPId1SxsCCT8Qn7oyJzcjZS7XNxbcZ4IFSCuaRoJ9/lbGBCfC8yq0tZV5bHrYMmhbeZltyPj7JWkmaJJs3SjUWFWcd0CaaCQltR7e9GGjsRCSDVfu2p5UXIclUTW8i4nFciCBFotDOaGKNwPFDpdSHUe9hMt8ZyfcYEfszdxA97NxFnsPDPASeGnReA6Sn98QUDfLZrNa6Aj94Rsdw+UMlLaQ5BPlCUoRNis9mIiIigpqYGq7XzKdh5An5+zN3Mxor8cAnm6NgenNl9EOraN99HWSup8Dr515Bp4e3qi55F6oyc0ajoWRa/FewIl2Be0mskPY+zyMjc3M38nNew3C7eYOXJUWc2uY2ikKgAsLmikDl7NzLANItT4n7g1d1PUewNJZbfn/ERUepFNN40UQUE0Wivw2Se1Z4mKygcUxzu/VtxRhQ6PXNzN7O+PJ87B58cXqYSBMxN5M7ssZXx0qaFDRQSfy3Y0UAhcX7+dubnb2ugkFjoqlYUEo8hFhZm8k1tqfwQ6wouT32TrwtvZF31JAwqB49m3IQo1H39iYT6FMmIqkFoNOei0Z6JSjW6gfaIgoJCyzjc+7fyKVPoEoiCQITWEH415YiAopCoANuqisKOCIBXCgnFjYx2EaM3c0nyW2FHREaNWn0qBuNbWCPysEZswWCciVo9VnFEFBTaCSVnRKFLsM9t59+r5qARRXpZYjgvbRjRelOjYxWFRIVf83eEf5+ROpAzUwdhr7mFAVEJDIzOxePehN1v5fuivyOop3L74Kan/BQUFNqeI3L733zzTdLS0tDr9YwdO5bVq1c3O/6bb76hX79+6PV6Bg8ezLx5847IWIXjk56WGK7pO47bB03mst6jKfc4eXHzAjwBf6PjFYXE45tyj4OsmlAVWpzBwlk9hqBSqRDFXgQCf+Fx345Wdzfv5X/KdsdotlXbKPc4OthqBYXjmxY7I1999RV33303jz32GOvXr2fo0KFMnz6dffv2NTp+xYoVXHrppVx33XVs2LCBc889l3PPPZetW5vX/1dQqGNQdBIjY7uTYopiYFQStw2ajCvgZ215XkebptAJKa2nUDysW0q4i7OMl2BgGXrDUxiMLzGs2/4yy31ue7vbqaCgsJ8WOyOvvPIKN9xwA9deey0DBgzgnXfewWg08sEHHzQ6/r///S+nnXYa9957L/3792fmzJmMGDGCN95446iNVzg+Maq1xBsslDVxA2mJQmKDMb79YxS6LvXLMIPS/koZtWokGs156A0PhfrP1FsnoCj0Kih0JC1yRnw+H+vWrWPatP3lqaIoMm3aNFauXNnoNitXrmwwHmD69OlNjgfwer3YbLYGLwWFOjxBP2UeRwOp5frUKSTWpymFxDrqFBLrxih0XZKMEWHnYn15ftjpMFnmYLJ8D4QaUa6rjawJCCQalSo9BYWOpEXOSHl5OcFgkPj4+AbL4+PjKSkpaXSbkpKSFo0HePbZZ4mIiAi/UlMV1brjmW+z17OzupRyj4M9tjLe2b4UESHcgVdRSFSoT6TOyODoJACqfC4+370avxQMr/dLQb7YvYZqXyh3aEh0EpE6Y4fYqqCgEKJTVtM88MAD3H333eG/bTab4pAcx1R5XczKWoHT78Ws0dHbGsv9w04NdzRWFBIVDmRG6kC2VhUhyTLLS7PZXFnI0G4pAGyqKMDu9wKhkvHTUwd2pKkKCgq00BmJiYlBpVJRWlraYHlpaSkJCQmNbpOQkNCi8QA6nQ6dTtcS0xSOYW7oP7HZ9fVVbesYGdudkbHdm9xGEATOThvC2WlDjto+hc5HT2sMf+87jg92rkSSZex+L8tK9jQYoxJEru17wnGnaKyg0Blp0TSNVqtl5MiRLFq0KLxMkiQWLVrEuHHjGt1m3LhxDcYDLFiwoMnxCgoKCq3B6Lg07h86nVEx3cMVNRCKhoyK6c59Q09VNGUUFDoJLZ6mufvuu7n66qsZNWoUY8aM4dVXX8XpdHLttdcCcNVVV5GcnMyzzz4LwB133MGkSZN4+eWXOeOMM5g9ezZr167lvffea90zUVBQUDiAHpZobug/Eaffyz5PqPoqTm/BpFEirwoKnYkWOyMXX3wxZWVlPProo5SUlDBs2DDmz58fTlLNy8tDFPcHXMaPH88XX3zBww8/zIMPPkifPn344YcfGDRoUOudhYKCgkIzmDQ6eioOiIJCp0VplKegoKCgoKDQJiiN8hQUFBQUFBS6BJ2ytFdBQUHhUFR5XXyfs5FtVUX4pCCxejNX9z2BNEu3JrfJqi7lm+z1FLtqiNIZmdF9EOPjezUYs7hoJwsKdlDjc5NijuKS9JH0VMTwFBTaFMUZUVBQ6HI4/T5e3LSAvpHx3DZoMhaNnn1uOya1tsltyj0O3ti2hJMS+3Bdv/FkVpfw6c5VRGj1DIwKiaStKcvl2+z1XNZ7ND0tMSwqyuS1rYt5YuRZBzVWVFBQaD0UZ0RBQaHL8WvBdqJ0Rq7pe0J4WYze3Ow2fxTvIkZv5sJeIwBINEawu6aMhYVZYWdkYWEmExPSmZCQDsDlvcewtbKIFaV7OE0RR1NQaDMUZ0RBQaHLsbmigAFRiby7Yym7avYRqTUyKbEPJyb2bnKbbFs5/SIbii0OiErk6+z1QKhfTZ69ktNTBoTXi4JAv8gEsm3lbXMiCgoKgOKMKCgodEHKPA7+KN7FtJR+nJ46kL32Sr7KXodaFBl3QA5IHTa/56CpFqtWjyfoxxcM4Ar4kJDDbQbqjylxK806FRTaEsUZUVBQ6HLIQA9zNOelDQOguzmaIlc1fxTvatIZUVBQ6Lwopb0KCgpdjgitnkRjRINliYYIqryuJrexavTYfJ4Gy2w+D3qVBq1KjVmjQ0TA3siYCI2SvKqg0JYozoiCgkKXI90aS+kBUyelbhvROlOT2/SyxpBZXdJg2Y7qEnrVNspTiyq6W6LZUb2/sacky2TWG6OgoNA2dIlpmjqRWJtNmbdVUFCAcZGpvLFrOXN2rWNoZBL5rmr+LNnNBSmDw98T84p3UOP3cGn34QCMNCeyuGgnX2T+xZjo7ux2lLOuLI+/9xwd3mZCVA++yt9IvNpAqjGSpWU5eIMBBhvjlO8fBYUjoO5zcyix9y4hB19QUEBqampHm6GgoNCJ6D5uOGP+cTHW5HjsJWVs+er/yPx5cXj9pAf+gSUhhp/veDq8LHFYf8bdegVRack4yypZ//EP7Jz/Z4P9Djz/FIZccibG6Agqduey/L+fULZjT7udl4LCsUh+fj4pKSlNru8SzogkSRQVFWGxWBDqtQI/Wmw2G6mpqeTn5ys9b9oQ5Tq3H8q1bh+U69w+KNe5fWjL6yzLMna7naSkpAZNdA+kS0zTiKLYrEd1tFitVuWN3g4o17n9UK51+6Bc5/ZBuc7tQ1td54iIiEOOURJYFRQUFBQUFDoUxRlRUFBQUFBQ6FCOa2dEp9Px2GOPodPpOtqUYxrlOrcfyrVuH5Tr3D4o17l96AzXuUsksCooKCgoKCgcuxzXkREFBQUFBQWFjkdxRhQUFBQUFBQ6FMUZUVBQUFBQUOhQFGdEQUFBQUFBoUM55p2RN998k7S0NPR6PWPHjmX16tXNjv/mm2/o168fer2ewYMHM2/evHaytGvTkuv8/vvvc+KJJxIVFUVUVBTTpk075P+Lwn5a+p6uY/bs2QiCwLnnntu2Bh4jtPQ6V1dXc8stt5CYmIhOp6Nv377K98dh0NLr/Oqrr5KRkYHBYCA1NZW77roLj8fT7DbHO3/++SdnnXUWSUlJCILADz/8cMhtlixZwogRI9DpdPTu3ZuPPvqobY2Uj2Fmz54ta7Va+YMPPpC3bdsm33DDDXJkZKRcWlra6Pjly5fLKpVKfuGFF+Tt27fLDz/8sKzRaOQtW7a0s+Vdi5Ze58suu0x+88035Q0bNsg7duyQr7nmGjkiIkIuKChoZ8u7Hi291nXk5OTIycnJ8oknniifc8457WNsF6al19nr9cqjRo2SZ8yYIS9btkzOycmRlyxZIm/cuLGdLe9atPQ6f/7557JOp5M///xzOScnR/7111/lxMRE+a677mpny7sW8+bNkx966CH5+++/lwF5zpw5zY7Pzs6WjUajfPfdd8vbt2+XX3/9dVmlUsnz589vMxuPaWdkzJgx8i233BL+OxgMyklJSfKzzz7b6PiLLrpIPuOMMxosGzt2rPyPf/yjTe3s6rT0Oh9IIBCQLRaL/PHHH7eViccMR3KtA4GAPH78eHnWrFny1VdfrTgjh0FLr/Pbb78t9+rVS/b5fO1l4jFBS6/zLbfcIp988skNlt19993yhAkT2tTOY4nDcUb+/e9/ywMHDmyw7OKLL5anT5/eZnYds9M0Pp+PdevWMW3atPAyURSZNm0aK1eubHSblStXNhgPMH369CbHKxzZdT4Ql8uF3+8nOjq6rcw8JjjSa/3kk08SFxfHdddd1x5mdnmO5Dr/9NNPjBs3jltuuYX4+HgGDRrEM888QzAYbC+zuxxHcp3Hjx/PunXrwlM52dnZzJs3jxkzZrSLzccLHXEv7BKN8o6E8vJygsEg8fHxDZbHx8eTmZnZ6DYlJSWNji8pKWkzO7s6R3KdD+S+++4jKSnpoDe/QkOO5FovW7aM//3vf2zcuLEdLDw2OJLrnJ2dze+//87ll1/OvHnz2L17NzfffDN+v5/HHnusPczuchzJdb7ssssoLy9n4sSJyLJMIBDgpptu4sEHH2wPk48bmroX2mw23G43BoOh1Y95zEZGFLoGzz33HLNnz2bOnDno9fqONueYwm63c+WVV/L+++8TExPT0eYc00iSRFxcHO+99x4jR47k4osv5qGHHuKdd97paNOOKZYsWcIzzzzDW2+9xfr16/n+++/55ZdfmDlzZkebpnCUHLORkZiYGFQqFaWlpQ2Wl5aWkpCQ0Og2CQkJLRqvcGTXuY6XXnqJ5557joULFzJkyJC2NPOYoKXXes+ePezdu5ezzjorvEySJADUajVZWVmkp6e3rdFdkCN5TycmJqLRaFCpVOFl/fv3p6SkBJ/Ph1arbVObuyJHcp0feeQRrrzySq6//noABg8ejNPp5MYbb+Shhx5CFJXn69agqXuh1Wptk6gIHMOREa1Wy8iRI1m0aFF4mSRJLFq0iHHjxjW6zbhx4xqMB1iwYEGT4xWO7DoDvPDCC8ycOZP58+czatSo9jC1y9PSa92vXz+2bNnCxo0bw6+zzz6bKVOmsHHjRlJTU9vT/C7DkbynJ0yYwO7du8POHsDOnTtJTExUHJEmOJLr7HK5DnI46hxAWWmz1mp0yL2wzVJjOwGzZ8+WdTqd/NFHH8nbt2+Xb7zxRjkyMlIuKSmRZVmWr7zySvn+++8Pj1++fLmsVqvll156Sd6xY4f82GOPKaW9h0FLr/Nzzz0na7Va+dtvv5WLi4vDL7vd3lGn0GVo6bU+EKWa5vBo6XXOy8uTLRaLfOutt8pZWVnyzz//LMfFxclPPfVUR51Cl6Cl1/mxxx6TLRaL/OWXX8rZ2dnyb7/9Jqenp8sXXfT/7duhi8JgHMbxXXn1n5jCBMvK0oz7L67Jun1g07JqGct2u3lNbG80+xcYjArPJeUOL9w4bj92fD+wtHfw7McYD2Pvu9Ut9ML1epX3Xt57BUGgzWYj773O57Mkablcaj6fP9c/tvYWRaHT6aS6rtna+1tVVWk0Gsk5pzRNdTwen+eyLFOe51/W73Y7TadTOecUx7H2+33HifupzZzH47GCIHg5VqtV98F7qO0z/Rll5OfazvlwOGg2m2kwGCiKIpVlqfv93nHq/mkz59vtpvV6rclkouFwqDAMtVgsdLlcug/eI03TfPvOfcw2z3NlWfZyTZIkcs4piiJtt9s/zfgm8W0LAADY+bf/jAAAgH6gjAAAAFOUEQAAYIoyAgAATFFGAACAKcoIAAAwRRkBAACmKCMAAMAUZQQAAJiijAAAAFOUEQAAYIoyAgAATH0AsHwTcUzg5bMAAAAASUVORK5CYII=", "text/plain": [ "
    " ] @@ -809,7 +799,7 @@ ], "source": [ "# Greedy rollouts over trained model (same states as previous plot, with 20 nodes)\n", - "model = lit_module.model.to(device)\n", + "model = model.to(device)\n", "init_states = next(iter(dataloader))[:3]\n", "td_init_generalization = env.reset(init_states).to(device)\n", "\n", @@ -839,25 +829,205 @@ }, { "cell_type": "code", - "execution_count": 15, + "execution_count": 4, "metadata": {}, "outputs": [ + { + "name": "stderr", + "output_type": "stream", + "text": [ + "Using 16bit Automatic Mixed Precision (AMP)\n", + "GPU available: True (cuda), used: True\n", + "TPU available: False, using: 0 TPU cores\n", + "IPU available: False, using: 0 IPUs\n", + "HPU available: False, using: 0 HPUs\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "val_file not set. Generating dataset instead\n", + "test_file not set. Generating dataset instead\n", + "LOCAL_RANK: 0 - CUDA_VISIBLE_DEVICES: [0]\n", + "\n", + " | Name | Type | Params\n", + "--------------------------------------------------\n", + "0 | env | TSPEnv | 0 \n", + "1 | policy | AttentionModelPolicy | 710 K \n", + "2 | baseline | WarmupBaseline | 710 K \n", + "--------------------------------------------------\n", + "1.4 M Trainable params\n", + "0 Non-trainable params\n", + "1.4 M Total params\n", + "5.681 Total estimated model params size (MB)\n" + ] + }, + { + "data": { + "application/vnd.jupyter.widget-view+json": { + "model_id": "f6e57a262e0c4959acd3a38641a33c0d", + "version_major": 2, + "version_minor": 0 + }, + "text/plain": [ + "Sanity Checking: 0it [00:00, ?it/s]" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "data": { + "application/vnd.jupyter.widget-view+json": { + "model_id": "67b8bcc2ef9449eda8a4f20d4186ff0a", + "version_major": 2, + "version_minor": 0 + }, + "text/plain": [ + "Training: 0it [00:00, ?it/s]" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "data": { + "application/vnd.jupyter.widget-view+json": { + "model_id": "cccfeeb08428404580d763f893b2a5a0", + "version_major": 2, + "version_minor": 0 + }, + "text/plain": [ + "Validation: 0it [00:00, ?it/s]" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "data": { + "application/vnd.jupyter.widget-view+json": { + "model_id": "c49d70e39bba4768af6293099b5ddeb1", + "version_major": 2, + "version_minor": 0 + }, + "text/plain": [ + "Validation: 0it [00:00, ?it/s]" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "data": { + "application/vnd.jupyter.widget-view+json": { + "model_id": "d4e9277c7eea4e5c9b8c6002ac69ca00", + "version_major": 2, + "version_minor": 0 + }, + "text/plain": [ + "Validation: 0it [00:00, ?it/s]" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "`Trainer.fit` stopped: `max_epochs=3` reached.\n", + "val_file not set. Generating dataset instead\n", + "test_file not set. Generating dataset instead\n", + "LOCAL_RANK: 0 - CUDA_VISIBLE_DEVICES: [0]\n" + ] + }, + { + "data": { + "application/vnd.jupyter.widget-view+json": { + "model_id": "d3d8fd8232224b4e9a5fac7fefeed7f6", + "version_major": 2, + "version_minor": 0 + }, + "text/plain": [ + "Testing: 0it [00:00, ?it/s]" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, { "name": "stdout", "output_type": "stream", "text": [ - "The autoreload extension is already loaded. To reload it, use:\n", - " %reload_ext autoreload\n" + "┏━━━━━━━━━━━━━━━━━━━━━━━━━━━┳━━━━━━━━━━━━━━━━━━━━━━━━━━━┓\n", + "┃\u001b[1m \u001b[0m\u001b[1m Test metric \u001b[0m\u001b[1m \u001b[0m┃\u001b[1m \u001b[0m\u001b[1m DataLoader 0 \u001b[0m\u001b[1m \u001b[0m┃\n", + "┡━━━━━━━━━━━━━━━━━━━━━━━━━━━╇━━━━━━━━━━━━━━━━━━━━━━━━━━━┩\n", + "│\u001b[36m \u001b[0m\u001b[36m test/reward \u001b[0m\u001b[36m \u001b[0m│\u001b[35m \u001b[0m\u001b[35m -4.025482177734375 \u001b[0m\u001b[35m \u001b[0m│\n", + "└───────────────────────────┴───────────────────────────┘\n" ] }, + { + "data": { + "text/plain": [ + "[{'test/reward': -4.025482177734375}]" + ] + }, + "execution_count": 4, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "from rl4co.envs import TSPEnv\n", + "from rl4co.models import AttentionModel\n", + "from rl4co.utils import RL4COTrainer\n", + "\n", + "# Environment, Model, and Lightning Module\n", + "env = TSPEnv(num_loc=20)\n", + "model = AttentionModel(env,\n", + " baseline=\"rollout\",\n", + " train_data_size=100_000,\n", + " test_data_size=10_000,\n", + " optimizer_kwargs={'lr': 1e-4}\n", + " )\n", + "\n", + "# Trainer\n", + "trainer = RL4COTrainer(max_epochs=3)\n", + "\n", + "# Fit the model\n", + "trainer.fit(model)\n", + "\n", + "# Test the model\n", + "trainer.test(model)" + ] + }, + { + "cell_type": "code", + "execution_count": 14, + "metadata": {}, + "outputs": [ { "name": "stderr", "output_type": "stream", "text": [ "/home/botu/miniconda3/envs/rl4co/lib/python3.10/site-packages/lightning/pytorch/utilities/parsing.py:196: UserWarning: Attribute 'env' is an instance of `nn.Module` and is already saved during checkpointing. It is recommended to ignore them using `self.save_hyperparameters(ignore=['env'])`.\n", " rank_zero_warn(\n", - "/home/botu/miniconda3/envs/rl4co/lib/python3.10/site-packages/lightning/pytorch/utilities/parsing.py:196: UserWarning: Attribute 'model' is an instance of `nn.Module` and is already saved during checkpointing. It is recommended to ignore them using `self.save_hyperparameters(ignore=['model'])`.\n", - " rank_zero_warn(\n" + "/home/botu/miniconda3/envs/rl4co/lib/python3.10/site-packages/lightning/pytorch/utilities/parsing.py:196: UserWarning: Attribute 'policy' is an instance of `nn.Module` and is already saved during checkpointing. It is recommended to ignore them using `self.save_hyperparameters(ignore=['policy'])`.\n", + " rank_zero_warn(\n", + "/home/botu/miniconda3/envs/rl4co/lib/python3.10/site-packages/lightning/pytorch/core/saving.py:164: UserWarning: Found keys that are not in the model state dict but in the checkpoint: ['baseline.baseline.model.encoder.init_embedding.init_embed.weight', 'baseline.baseline.model.encoder.init_embedding.init_embed.bias', 'baseline.baseline.model.encoder.init_embedding.init_embed_depot.weight', 'baseline.baseline.model.encoder.init_embedding.init_embed_depot.bias', 'baseline.baseline.model.encoder.net.layers.0.0.module.Wqkv.weight', 'baseline.baseline.model.encoder.net.layers.0.0.module.Wqkv.bias', 'baseline.baseline.model.encoder.net.layers.0.0.module.out_proj.weight', 'baseline.baseline.model.encoder.net.layers.0.0.module.out_proj.bias', 'baseline.baseline.model.encoder.net.layers.0.1.normalizer.weight', 'baseline.baseline.model.encoder.net.layers.0.1.normalizer.bias', 'baseline.baseline.model.encoder.net.layers.0.1.normalizer.running_mean', 'baseline.baseline.model.encoder.net.layers.0.1.normalizer.running_var', 'baseline.baseline.model.encoder.net.layers.0.1.normalizer.num_batches_tracked', 'baseline.baseline.model.encoder.net.layers.0.2.module.0.weight', 'baseline.baseline.model.encoder.net.layers.0.2.module.0.bias', 'baseline.baseline.model.encoder.net.layers.0.2.module.2.weight', 'baseline.baseline.model.encoder.net.layers.0.2.module.2.bias', 'baseline.baseline.model.encoder.net.layers.0.3.normalizer.weight', 'baseline.baseline.model.encoder.net.layers.0.3.normalizer.bias', 'baseline.baseline.model.encoder.net.layers.0.3.normalizer.running_mean', 'baseline.baseline.model.encoder.net.layers.0.3.normalizer.running_var', 'baseline.baseline.model.encoder.net.layers.0.3.normalizer.num_batches_tracked', 'baseline.baseline.model.encoder.net.layers.1.0.module.Wqkv.weight', 'baseline.baseline.model.encoder.net.layers.1.0.module.Wqkv.bias', 'baseline.baseline.model.encoder.net.layers.1.0.module.out_proj.weight', 'baseline.baseline.model.encoder.net.layers.1.0.module.out_proj.bias', 'baseline.baseline.model.encoder.net.layers.1.1.normalizer.weight', 'baseline.baseline.model.encoder.net.layers.1.1.normalizer.bias', 'baseline.baseline.model.encoder.net.layers.1.1.normalizer.running_mean', 'baseline.baseline.model.encoder.net.layers.1.1.normalizer.running_var', 'baseline.baseline.model.encoder.net.layers.1.1.normalizer.num_batches_tracked', 'baseline.baseline.model.encoder.net.layers.1.2.module.0.weight', 'baseline.baseline.model.encoder.net.layers.1.2.module.0.bias', 'baseline.baseline.model.encoder.net.layers.1.2.module.2.weight', 'baseline.baseline.model.encoder.net.layers.1.2.module.2.bias', 'baseline.baseline.model.encoder.net.layers.1.3.normalizer.weight', 'baseline.baseline.model.encoder.net.layers.1.3.normalizer.bias', 'baseline.baseline.model.encoder.net.layers.1.3.normalizer.running_mean', 'baseline.baseline.model.encoder.net.layers.1.3.normalizer.running_var', 'baseline.baseline.model.encoder.net.layers.1.3.normalizer.num_batches_tracked', 'baseline.baseline.model.encoder.net.layers.2.0.module.Wqkv.weight', 'baseline.baseline.model.encoder.net.layers.2.0.module.Wqkv.bias', 'baseline.baseline.model.encoder.net.layers.2.0.module.out_proj.weight', 'baseline.baseline.model.encoder.net.layers.2.0.module.out_proj.bias', 'baseline.baseline.model.encoder.net.layers.2.1.normalizer.weight', 'baseline.baseline.model.encoder.net.layers.2.1.normalizer.bias', 'baseline.baseline.model.encoder.net.layers.2.1.normalizer.running_mean', 'baseline.baseline.model.encoder.net.layers.2.1.normalizer.running_var', 'baseline.baseline.model.encoder.net.layers.2.1.normalizer.num_batches_tracked', 'baseline.baseline.model.encoder.net.layers.2.2.module.0.weight', 'baseline.baseline.model.encoder.net.layers.2.2.module.0.bias', 'baseline.baseline.model.encoder.net.layers.2.2.module.2.weight', 'baseline.baseline.model.encoder.net.layers.2.2.module.2.bias', 'baseline.baseline.model.encoder.net.layers.2.3.normalizer.weight', 'baseline.baseline.model.encoder.net.layers.2.3.normalizer.bias', 'baseline.baseline.model.encoder.net.layers.2.3.normalizer.running_mean', 'baseline.baseline.model.encoder.net.layers.2.3.normalizer.running_var', 'baseline.baseline.model.encoder.net.layers.2.3.normalizer.num_batches_tracked', 'baseline.baseline.model.decoder.context_embedding.project_context.weight', 'baseline.baseline.model.decoder.dynamic_embedding.projection.weight', 'baseline.baseline.model.decoder.project_node_embeddings.weight', 'baseline.baseline.model.decoder.project_fixed_context.weight', 'baseline.baseline.model.decoder.logit_attention.project_out.weight']\n", + " rank_zero_warn(\n", + "val_file not set. Generating dataset instead\n", + "test_file not set. Generating dataset instead\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "The autoreload extension is already loaded. To reload it, use:\n", + " %reload_ext autoreload\n" ] } ], @@ -865,12 +1035,11 @@ "%load_ext autoreload\n", "%autoreload 2\n", "\n", - "from rl4co.tasks.rl4co import RL4COLitModule\n", - "# device = \"cuda:0\"\n", + "from rl4co.models.zoo.am import AttentionModel\n", "\n", "# Note that by default, Lightning will call checkpoints from newer runs with \"-v{version}\" suffix\n", "# unless you specify the checkpoint path explicitly\n", - "new_model_checkpoint = RL4COLitModule.load_from_checkpoint(\"checkpoints/last.ckpt\")" + "new_model_checkpoint = AttentionModel.load_from_checkpoint(\"checkpoints/last.ckpt\", strict=False)" ] }, { @@ -882,19 +1051,19 @@ }, { "cell_type": "code", - "execution_count": 16, + "execution_count": 15, "metadata": {}, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ - "Tour lengths: ['6.99', '6.68', '7.79']\n" + "Tour lengths: ['8.22', '9.06', '8.23']\n" ] }, { "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAAiMAAAGdCAYAAADAAnMpAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjcuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/bCgiHAAAACXBIWXMAAA9hAAAPYQGoP6dpAADGfUlEQVR4nOzdd3wb9fnA8c+dTsPykPe2YzvDiTOcSRYjIWEECLNsKNAWWn4UWmhL2VBoaUsLpZRVyipl770SQgKB7OkkHnHseO8ly7Ysne5+f5yjxIkdMmzLdr7v10uv2NJJes52pEff8TySrus6giAIgiAIASIHOgBBEARBEI5tIhkRBEEQBCGgRDIiCIIgCEJAiWREEARBEISAEsmIIAiCIAgBJZIRQRAEQRACSiQjgiAIgiAElEhGBEEQBEEIKCXQARwKTdOorKwkNDQUSZICHY4gCIIgCIdA13VaW1tJTExElnsf/xgSyUhlZSUpKSmBDkMQBEEQhCNQVlZGcnJyr7cPiWQkNDQUME4mLCwswNEIgiAIgnAonE4nKSkp/vfx3gyJZGTP1ExYWJhIRgRBEARhiPmhJRZiAasgCIIgCAElkhFBEARBEAJKJCOCIAiCIASUSEYEQRAEQQioIbGAVRCEw9fobsOldvq/D1GsRNqCAxiRIAhCz0QyIgjDUKO7jbvXf4Sqa/7rFEnmgemLRUIiCMKgI6ZpBGEYcqmd3RIRAFXXuo2UCIIgDBYiGREEQRAEIaBEMiIIgiAIQkAddjLyzTffsHjxYhITE5Ekiffff/8H77N8+XKmTp2K1Wpl1KhRvPjii0cQqiAIgiAIw9FhJyNtbW1kZ2fzxBNPHNLxxcXFnHnmmcyfP5/Nmzfz61//mp/97Gd88cUXhx2sIAiCIAjDz2Hvplm0aBGLFi065OOffvpp0tPTefjhhwEYN24cK1eu5B//+AennXba4T69IAiCIAjDTL+vGVm1ahULFy7sdt1pp53GqlWrer1PZ2cnTqez20UQBEEQhOGp35OR6upq4uLiul0XFxeH0+mko6Ojx/v8+c9/xuFw+C8pKSn9HaYgDCtNne2BDkEQBOGQDcrdNLfffjstLS3+S1lZWaBDEoQhweV189SOb3hyxzc93r61oWKAIxIEQfhh/V6BNT4+npqamm7X1dTUEBYWRlBQUI/3sVqtWK3W/g5NEIYVl7eTv21ZSnVH79OaH5XmYFPMLEwaO4CRCYIgHFy/JyOzZ8/m008/7XbdkiVLmD17dn8/tSAcU97Ytd6fiAQrVubEpZMUHE6718PGhjIKnXUAvF20kUxHHCkhEYEMVxAEwe+wkxGXy0VhYaH/++LiYjZv3kxkZCSpqancfvvtVFRU8NJLLwHwi1/8gscff5xbb72Vn/zkJyxbtow333yTTz75pO/OQhCOcc2d7ayvLwXArpi5Y8ppRNtC/LcvSB7Lu8Wb+aJ8BzqwvKqAK0fPDFC0giAI3R32mpH169czZcoUpkyZAsAtt9zClClTuOeeewCoqqqitLTUf3x6ejqffPIJS5YsITs7m4cffphnn31WbOsVhD60qaEMTdcBOClhjD8R8WiV+LQ2AM5IHY/NZHz+WFdXgt51vCAMV43uNkpdjf5Lo7st0CEJvTjskZF58+Yd9EWsp+qq8+bNY9OmTYf7VIIgHKIWj9v/9ShHG3Xqszj1z2nW3yVYmsUY6WtsJisjQqLIb6mh06fS6VOxKeYARi0I/Ud0rh5a+n3NiCAI/UvTNEJs33L6mGeJDy3AbeqgVAO7NA2HtJgW/TMK1Pmkm96iqdP4ZCgBZtkU2MAFoR8drHN1JCIZGWxEMiIIQ5CqOanTnqRJe50OthMRqRKuQ4fXQV3rHBZEP0qwaQIAbdoadqnns80zmTjHqTR0nkJaaBImeVDu7BcE4RgkkhFBGCI6tO3U+B7BqX+Ol8qua03YGEu4fBEv5oym1GVModY2tXBBejsRVjtB0nForo9wW09idtqrzBrxKviyKFVPJliaRbA8EysjkSQpcCcnCMIxTSQjgjBIaZpGs/4W9dp/aNNXo2FMsciEECqdQrR8HeHS+chdIxznp1Xz2Lav0dBZV1fChrpSEuwOXGonLZ4OIoLu4EcT70CSAGUHddpO6ngcfGDCQbA0mxB5Dg7pbOxydgDPXBCEY41IRgRhEFG1Rmq1x2jS3sJNPuADwEwSkdKlxJp+TZA8vsf7jouI52dj5/JCwSq8mg8NnYr2Zv/tTR0jqGs9ntiw7wAd8Ppv89GCU/8Cp+9zGnmD8ZZt/XeSgiAI+xHJiCAEWJu2nlrfozj1pajsqVasEMREIuVLiZb/D0UOOehj7DEtJpWMsGi+rSpkdW0xzZ4OFFkmIzSakxJGMypiJAW+Wb3cWwdkUpR/9sVpCYIgHDKRjAjCANM0lUb9FRp8z9PGOnSMhpEyDsKkM4g13UAop/unXw5XhNXO2WmTODttUg+3phCinYBL/549oy77SjY9TJi84IieVxAE4UiJZEQQBoBHq6ZO+ydN2rt0UghogISZVMKls4g13YxNHjkgscSbbqNQPfOA62XCiebaAYlBEARhXyIZEYR+0qqtpNb3GK361/ioB0DCgp1pRJquJEa6Flm2DXhcYdIibIztWpOiAwoywWg0k+NLJlP6niB53IDHJQh9Rdd1ilsbAh2GcBhEMiIIfUTTPDToL9Dg+y/tbESnEwATkTik84gx3YDjKKZA3KqXD0q2srmhjFZvJynBEVw8chppoVG93ie/uYa3ijZS1d5ChNXOGakTmBOXQbzpNnb7rgYkNC2YT3P/ji6XsGD0P8jRJjPK/CKRpkuPOFZBCJR6t4und3xLWVtTj7cvKc/l6jGzRZ2dQUYkI4JwFDxaKTXaP2jWPsRDMcZIg4SVDBzyOcTJv8Yip/TJc720cw2V7S1ckzmHcEsQa2qL+UfOMu6bdiYRVvsBx9e7XTy+fTknJozmp2PnkNdczf8K1uCw2BgXfinlvt/j1ev4PP8mTk6YT3poNMurxhMVeRtF0mW4tJWkmp/ok9gFYSA0dbbzty1LaPZ09HrM2roSfLrOz8bORRa1dQYNkYwIwmFq0ZZS53scl/4NPoxPXxI2gplNlOkqoqSrkWVLnz6nx6eyqb6M/xt/ImMcsQAsHjGJrY0VrKjayblpB9YFWVG1k2hbCBdmTAUgwe6gsKWOpRX5jI9IJEN5k9eLVjAq+HTmxhvrVS7JuJg71+mcMuYvSPYnafOsIVNZGZDpJEE4XG8XbfQnIrG2EM5Oy2ZiZCIdqpfva3bxael2VF1jQ30p0xtSmRqdGuCIhT1EMjLAGt1tuNTObteFKFbRuOkI7P+z/KGfo09vQcONWYo7rOfRtHbqtGdo1F6mgxx0PAAoxBAuXUys6SZC5TlHdhKHGoOuo6GjSN37yZhlhV3Ouh7vU+SsZ2x4fLfrsiISeLNoIwBBzGVjVQU/H7f3GFmSGONII7fin5w25jFa9PfYqiYxVlmNTR7dx2clCH2nxdPBxoYyAIIVK7/LPpUwi5FE20xmzkydSFxQGP/J+w6ArysLRDIyiIhkZAD11EUSRCfJI3G4HTnd+k4KvPMx4WC8ZfsPPr5bK6TG9wgt+id4KWNPDQ4ro4mQLyBGvgmLfHhJzdGwKWYyQqP5tGwbCfYwwiw21taVUOSsJzao5xokTq/b/2K8R5jFhtvnxeNTaVc9aOiE9nBMdYeTUeZ3qVYfpkL7HdvVLNJNrxFp+lG/naMgHI1tjZVoXR3lT4gf6f/bX7KknhEjghgzJphp0al8YNtCrdtFQUstHaqXING5elAQycgA6qmLJIhOkkficDpytmtbKVBPxkcjXiro1IuxSundjtE0DScfU+d7Gpf+HRpOAGTshEgnEi3/lAjpUmQ5cP9lfpI5m/8WrOH3a99HRiI1JIIZMSModTX223PGK78hWJvJTvVUin0X4tJ+Tar5H/32fIJwpNpUj//rlJAIALxejTPO2MTIkUHk5s5FkiRSQiKpdbsAaFc9IhkZJEQyIgw51e0tfLh7a4+3FbbUkRoS6f/epa1mp3oqGu3sGd1o0T4m1nTjAZ1vQQVAIZ5w6RxiTb8mWJ7a/yd0iGKCQvlt9kI6fSpunxeHJYhnclcSbet5ZCTMbMPpcXe7zulxYzOZsZgUZElCRqK1h2Mc5r2jJaHy8UxSStmhTqdOf5R2z2rGKCv6fF2MIBwN+z5JRWVbC8SA2SwTFCSTn9/Oyy9XccUVCVS0NfuPE4nI4CGSEWFIyW2q5qkd39CpqT3e/kbRBjp8Xs5MnYBTW0qhurhrjceeURSdKt9fqPb95YDOtxHyRcTKv0SRI3t87MHCalKwmhTavB52NFVxfvqUHo/LCItmW2Nlt+tym6vJCIsGQJFNpIZGkttcw+RoY8ePpuvkNVczP3FMt/spcjQTlCJ2+c7BqX/ctY5kLTa5+wiTIARKVngCEhI6Ot9WF7IgaSzBZgudnRqTJ4dwzTXb8Ea0Uu0wRj0zQqOxKyKhHizERmthyKjrcPFU7t5ExGYykx2ZzIzoEd22tn5YspW1Tc+wU13UVetj3+kcHZVKVFoIlU4h3fQWUxQP4y3bSFTuGdSJyPamSrY1VlLvdrGjqYpHcpYSbw9jblwGAO8Vb+aF/O/9x5+UMJp6t4t3ijdR3d7C8soCNtSVsjAp03/MwqSxrKwuZFVNEVXtLbxauA6PpjKn6zH3Jcsyo80fkSg/iI8GtqtjaPJ90P8nLgiHINIWTHZUEmCsl3p461LWV5bh8ehccZWxvusXF+9mz2zO/gm3EFhiZEQYMr6qzKPTZyQiEyMT+VnmXGxdw6yarvNl+Q7e272FcTFLkO0vHvSx0pWXiJDP7++Q+1SH6uW93Vto7mzHrliYGp3CuWnZ/uJNLZ4OGjvb/cdH20L45fh5vFW0kWUV+YRb7Vw5ZibjIxL9x8yIGYHL6+bDkq04PW6SQyK4afx8wixBvcaRoNxOiDaLneoZFPnOJU6/lWTlr/134oJwiC7MmMouZz2tXjcV7c38+bPvgEhe37aVmTdqfP9oCF/cHsZtL4QwPUbspBlMRDIiDAmq5mNVTTEAZtnENWNm+xMRAJVKpiV+hzXsr4QFFf3Aoym0+D4acsnI9JgRTI8Z0evtV2fOPuC6zPA47pq66KCPOz8xk/mJmQc9Zn+h8nwmKMXkqdOp0R6izbOK0cqygC7wFYRoWwi/mbSAp3Z8Q01HK+ueMxaz7/7OwvnPtLBrqY2KdRaC149EHi8mBgYT8cohDHqa1k515yYSHN8SZq1lRJibOmkJzWoMLv073Ho+KrWAjF3JorkjHq/PSrTdhSTv6U8hASaMRaoqzfqH6LqGJIkXpCNlkeOZoJRS6DuDVv0LctQkxinrsMjiE6cQOAl2B/dOO5N3VxbxzCrjg0lDgcIUy0huWTqSqRmb+fm1eZx1RhwxMWLNyGAhkhFhwGmaiodi3OTTqe/Co5fg0ctR9VpU6vHRjI9WdNzoeAEdTHDKPjW3GjQJC8YogUwI6aZ/ECafzncNDbxZuA6Ay0bNYG58FB36Njr0HDr0HNr1Tbj1bWi0otGKCUcAfgLDhyzLjJE/p1K9nyrtXrapoxmpvIdDPiPQoQnHMBmJJ+9pQpZB0wBdon5JDJl3RfPWW9mceeYm5s9fx7ZtcwMdqtBFJCMDxKdpbKgr7fV2VfP1elu7tolK373EmW4mVJ7fH+EdFU3TUKnBTR6deiEefTcevRwvVah6HSpNXW/+7fvtbNmfjIQVGTsKkZiIxCzFYiYBE4m8u6uBho4YOrwp3D/16h635W2s3+T/Oj4oDEWKJFQ6kVBO9F+v6zo6bmSp93URwuFJVO4hWJvNLvUsCtUziZfvIkl5INBhCceoDz+sY/nyvY3ydB0ee6yE3/8+jTPOiOHii+N4440a7ruvkPvuGxXASIU9JF3vKlk3iDmdThwOBy0tLYSFhQU6nMPm8ak8ueMbcpurez0mLSSKmyee3G0dhE93UuG7mzrtX4BOvHwbScqfByBiUDUnneTj1gvo1Ivx6mV4qcSr1+KjER8taLSh0Qn0lkhJSJiRCUImFBMRKFI0ZuKxSElYpDSs0khsjMVMKvIPdNF8eedavq0uBIyFl1eNmYVZ3lse/ZuqnbzSNSoSYwvh/umLRSOsAebRKslTp+OlilDpZEaZvhDrSIQB1dmpkZm5krIytzEqso/XXpvIJZckoGka8fEraGjwkpMzh6ysnmv1CEfvUN+/xavEAHhp55puiUii3UFcUCh1bhflXQV4drsaeL5gFf+XdSK6rtOkvUmZ70ZUGjCKdSl4qT3iGDTNQyeFuPUCPPouOvVSvFTg1Wvw0dA1NeLaZ2qkNwoyNmRCMJOCQhSKFIeFJCxSKlYpA6uUiY1Rfd5cbWFSJqtri/FqPtbVlbCzpZYZMWnYTApbGyso2acS6ekpWSIRCQCLnMgEpZSdvlNp1ZexTU1lrLIei5z4w3cWhB/gVr18ULKVzQ1ltHo7SQmO4OKR00gLjfIf89hjJZSWutn/Y7Yk69xy/xZS53cwJy6Dr76aTnb2KhYsWM8r6+JZWplPi6eD5JAILhk5jfTQ6AE+u2ObGBnpZ5VtLfxh4ycA2EwK12ed2K15WWFLLU/sWEG7aiQAv58yGtV6G636MoxFl3t/PWHSmYw2fwzsmRopp8O/7sKYGlGpQtXr95ka6eiaGunt12xCxoqEHRNhKESiSLFYSMQspWCR0rBJo7GROShqcGxuKOc/uSt7LKu/x8KksfwofQqSSEYCqkK9k2rtQSSsjFQ+wiGfEuiQhCHumdyVVLa3cNmoGYRbglhTW8zSinzum3YmEVY7NTWdZGR8S3t7768P5z3dwgMXzWV8RCJ33rmTBx8s5sTfunjwN9mkh0bzVWUeG+tL+cO0xQf0dhIOnxgZGST2TCuA0fJ9/y6qoxyxnDtiMm8Ufce0pLdpNH+G5M8buicQTv1zNnrsXcnFwaZGLMjYkQnDwoiuqZEELFIyFikNizSKIDJRSPzBqZHBZnJUMr/LPoVPSreR01jR7SeUEhzBqcnjmBEzQiQig0CS8idCtLnsUs+lUD2VBPkPJCr3BDosYYjy+FQ21Zfxf+NPZIwjFjBeU7c2VrCiaifnpmXzl78UHzQRkSSo/DiSpXPzGR+RyJ/+NJp31xWw8tFg2k91kHiKg8tHHce2xkq+r9nF6SnjB+r0jnkiGeln5W17F1HNik0DoEPLYZd6ATLBgERktJOfRO3ih98/dayk+6dGzCRjlUZ0TY2MwUrGMdEvJC00ihvGn0RTZzvlbU34dJ0oazDJweEiCRlkHPIZTFAKyVVnUKXdS5v3e0aaPh1ySbAQeJquo6GjSKZu15tlhV3OOgDmzYukqspDc7OXxkYvm7e1oHZCkM1Ee7uGrkNVrkyRsx4wNg7M/Y2T3auiOO+8zdTWzsNuVxgbHu8/RhgYIhnpZ9o+s2BK12JLD1V4qEBnT7VMGa/PiiTpmE0ejCr9B2b3EhbGW7b3f9BDRITV3q0MvDA4WeRUJioVFKjzcepfsE0d0bWOJC7QoQlDiE0xkxEazadl20iwhxFmsbG2roQiZz2xQcYC1HPOieWcc2L998k4/hPaqszU7FqIpum0tqoUuKp5tqgKj0+lXfVgsus88I8UfndtGYsWbWTFiuMIs9io7nAG6lSPSeLjST+LDQr1f725oRwAh3wqUy1tZJsbGWF6EdSxyJLWlYjssedXs/eTvo4bn97W/0ELQh+TZYWxlm+Jk3+Hl3K2qWm0assDHZYwxPwkcza6Dr9f+z43rHyDryvyjWlZeh4R7WyDPZ9XZFnC4TBjCzrwbe+8i6KZPz+Cb75p5plnyvrzFIReiJGRfjYnLoPva4wqgO/v3sKYsFgibUaJYkWKwKReyHvbI6hzuwizVnFF1i4Uy0o6Kehq8tZ93YhL+xaH6fSBPg1B6BPJykME+2ZT5LuIAvVkEuUHSVBuC3RYwhARExTKb7MX0ulTcfu8OCxBPJO7kmhbz1tzO1tlImO7X+f0uLGZzFhMCrIkISPR6nHz6adTiIlZwQ035PHwyiAcIWLx6kASyUg/GxUWQ0ZoNEWt9TR1tnPvho+ZGZtOSnAE5W1NrKnb7W/+5lCymBh8i39Laoe2nXrtOVq0j+mkCPBR6FuE5LNgZQxh8qlEyz8jSB4XwDPsOysqd7KiaicNnS7AKOt8VupEJkT2vi10Q10pH5RspcHtIjYolPPTJzMxMsl/u67rfFSSw7fVhXT4vIwMi+ayUTOICxpau7KGkwjTeYyXCshTj6NSux2XdyUjTR+KdSTCIbOaFKwmhTavhx1NVZyfPqXH49wtMrbxnm7X5TZXkxFmbNtVZBOpoZHkNtcwOTqFDz6YzIIFG3jinmb++Wx6v5+HsJf439/PJEni5+OOJ7Yrc/doPr6tLuTVXev4prrQn4hEWYO5PuvEbrUxguTxpCiPMMFSwDSLyjhlCzHSjVjJoJN8arVH2KFmsdFjY4cnm3L197i1XQE5z74Qbg3ivPRs7phyOndMPp2x4fE8ueMbKrtqsexvl7OOZ/O+Y258BndNXcTkqGSe2vEtFfsc/0V5Lssq87l89HHcNvlUrLLCY9u+xnuQirdC/7PJ6UxSKghmFk79E7arGaiaWDAoHNz2pkq2NVZS73axo6mKR3KWEm8PY25cBgDvFW/mhfzv/ce7WyQsET7eKd5EdXsLyysL2FBXysKkvY0hFyaNZWV1Iatqihg3S+HMG2UKvrTw5eMDfnrHNDEyMgDCrXZ+P/lUPti9lTW1u+nUVP9tZtnEzNg0zhkx6aBt2wHs8iRS5cf837dp66n3PU+r/hUd7KBD20qN9hASNmyMwyEvIlq+Dqvce6fXwSQ7Krnb9+emZbOiaidFrQ0kBocfcPxXFfmMj0zgtOQsAM5Jyya3uZrllQVcPvo4dF3nq4o8zkidwOSux74mcza/Xf0um+vLmNG1u0kIDFm2MNayilLvzdTpj7JVTWW0soRQWfQLEXrWoXp5b/cWmjvbsSsWpkancG5aNqauUbUWTweNne3+431eiGmPIbepmmUV+YRb7Vw5ZibjI/aOts6IGYHL6+bDkq04PW7mXB3Bpo8VHv1bBT++NIXJk8Uo6kAQycgACTHbuHz0cZyfPpn85hrafV6CTGbGOOIINh/ZdtxgeTrB8nT/9y5tFQ2+F2jVv6aDrXRom7qKTgURRBYO+Syi5Z9hkZMP8qiDg6YbvXw8PpWMXiohFrXWszBpbLfrsiIS2NK1ULje3YbT62bcPrVdghQL6V3TZiIZGRxSzf8gxDebYt/lFKgnkCz/nTjllkCHJQxC02NGMD2m9w9XV2fO9n/t8Rg7EuPsodw1dc5BH3d+YibzE/eOllzwmYusrO9ZuHADtbUniSnEASCSkQEWpFiYHJ3SL48dIs8mRN77n7FV+6YrOfmGdjbTrm2gSvsDMsHYGI9DXtyVnMQf5FEHVkVbM3/d/CVezYfVpPCLrBNIDO65s67T4ybM3H2RWZjZRovHbdzu7TCu26+KYphl7zHC4BBpugi7NIU8dSbl2m9o9a4kw/S2eBMQjlhlpfF/PCrqwIaaPyQzM4T77x/FXXcVcvHFObz1VnZfhyfsR/xPH8ZC5RNJM7/ARMsupigeRilLiZSuRCGadtZTpd1NjprAJk8oeZ45VKl/Cfi8fVxQKHdNXcRtk0/jpITRvJi/msq2loDGJAwMmzyaSUoldqbRor/HdnU0qtb4w3cUhB5UVHQCEB19ZCPPd96ZwcSJIbz9dg0ffXTkfcGEQyOSkWOELMs45AWkm19iomU3UxQvo5RPiZAuxUQEbaymUrudLWoMmzwO8jwnUK0+POBvBopsIjYolBGhkZyXPpnkkHCWVeb3eGyYxYbT232Ew+l14+gaCQkzG2twnPuNgjg9e48RBhdZtjHOsp5o6Xo8FJGjpuDS1gQ6LGEIqqoykpHY2COvSr1s2XQsFomLL96Ky6X+8B2EIyamafrAoXSS3F9+cw1vFW2kqr2FCKudM1InMKdrRfgeX1cWsKQ8t186ScqyjINFOORFgNF4z8nHNPhepk3/nja+o01bSYX2W2Qc2KXJhMvnESVdgyIP3IIuXTdKNvckIzSavObqbutGcpuq/WtMom3BhJlt5DVXkxISARgL4Ipb6zkpYVT/By8csRHmJwnxzWW37yry1dkkmx4jzvTLQIclDCE1NcaW3vj4I09GoqMtPP/8BK64IodTTtnAqlUz+yo8YT9iZKQPvLRzDbnN1VyTOYd7pp5BVkQ8/8hZRtM+q7r3Ve928fj25WSGx3HX1EUsSMrkfwVr2N5U6T9mXV0Jbxdt5MzUCdw5ZRHJweE8tu3rAz7l9xVZlgmXz2ak+U0mWcqZonjIML1NuHQ+Juy49G8o9/2aLaqDzZ5ICrwLqfU9iaq5+iyG94o3U9BSS73bRUVbc9f3NRzXtdD0hfzvea94s//4BUmZbG+qYkl5LtXtLXxUspUSVyPzEscAxrbqBUlj+bRsG1sayqloa+aFglWEW4P6bd2O0HeiTJeTpeRgwkG570Z2eS9B03pvgiYI+6qrM5KRhATrUT3O5ZcncPrpUaxe3cJjj5X0RWhCD8TIyFE6lE6S+1tRtZNoWwgXZkwFjOJehS11LK3I9285W1qRx/HxI5kbPxJgwDtJyrJCBBcQYboAAE1TadbfoVF7jTZ9Na36V7T6vqKMGzARiV2aToR8AVHSFcjykfWLafW6eTF/FS2eDoIUM0nB4dw0YT5ZEQkANHa2dyv7PDIshp9lzuWDki28v3sLsUGhXJ91Akn7bAM+LXkcHp/KyzvX0q56GOWI4abx8zHLpv2fXhiEguRxTFIqyFPn0Ky/wQ51E2OVdQM6OicMTXV1XgCSk49+SvaDD6YQG7ucW27J55xzYhgxQvTE6msiGTlKh9JJcn9FznrGhnffwZIVkcCbRRsBY1qitLWRRV31MwBkSQpoJ0lZVojkYiJNFwOgaR6a9Ddp1F6nXV9Lq/4lrb4vKeXnmIgmWJpBhHwxkdLFyPKhvRj8eMysg97+m0kLD7huWkwq02JSe72PJEmcnTaJs9MmHVIMwuAjy3ayLJvZ7f0ZDfpz5KhJjFFWECxPDXRowiDW2GgkI9HRh7+bZn8Wi8wnn0zh+OPXMW/eeoqLTzzqxxS6E9M0R2nfTpLNne1ousbq2mKKnPW0eDp6vI/T6+5xu6nb58XjU3F5O9HQCe1pS6p3cGxJlWULUaYrGG3+mGxLLVOUDkaYnidMOh3QceqfUeK7mk1qEFs8cRR6F9PgewVN8/zgYwtCT9LMzzLC9AIa7eSpM6jzPRPokIRBrLnZiyTRZ9vD586N4Prrk9m9282NN+b2yWMKe4lkpA8cbifJ4UiWbUSbrmG0+TMmW+qZorSRavo3odIp6Ki06B+z23cFm1QbWzwJFHrPo9H3JpomVqgLhy7adDXjlM3IhFDq+znF3h8HOiRhkGppUTGZ+vY1+PHHx5KaauPxx8tYvbq5Tx/7WCemafrA4XaSDDPbetxu2lMnyf2PcZiHxpZUWbYTw3XEmK4DQNWcNOov06y9Q7u+kRb9fVp87wMSZuIJluYQKV+OQzobWaznEA7CLk9kolJBvjqLRv1/tHs2kKmsQZF7/v8mHJtaW30oSt8mI7Iss3z5dEaPXsmiRRupq5uHoojP9H1B/BT7kNWk4LAE+TtJ7t9rZY+MMGNL6r566yS5h6br5O1zzFCjyGHEmv6PMeavmGxpIltpItn0KCGciI92mvV3KPKdzybVzFZPMru8l9CsfSx2Twg9UuQQxlu2ESldiZsd5KiJtGtbAx2WMIi0tfmwWPp+dDo93c5f/zqG5maV887b3OePf6wSyUgfONxOkicljKbe7TrkTpJV7S28WrgOj6YeUItkqFLkcOJMvyLTspwplmaylQaS5L8RzFx8OGnW32CXurgrOUmlyHs5LdoXIjkRukk3v0Sq6d9otJGrTqHe90KgQxIGifZ2HzZb/7zF/eY3aUybFsbHH9fz5pvVP3wH4QdJuq7rgQ7ihzidThwOBy0tLYSFDb4tfevrSnrsJBmkGMV2XsxfRUNnW7fdIPsWPQu32jmzx6Jn+XxZnovT4zaKnmVMI32IjowcLo9WS4P2HC3aR3SQg8aeeiYyFlIIkU4iynQVIcwT/UsE2rSNFKgnoeEiSvoJaebnAh2SEGDh4cuIiFD6beeL06kSF7ccXdeprj6J8PAjL642nB3q+7dIRoQhwaNVUq89S4v2CW62o9HWdYsJCyMIlU4iyvQTQuXjAxqnEDiq5iRPnUEnBQQxibHKqiOueSMMfXb7UjIygti2bW6/Pcc771Tzox9tZcqUUDZunP3DdzgGHer7t/hIKQwJFjmRROUexlnWMMXiYqJSQrx8N0FMxksVDfoLFKgnsMFjZptnDCXe60RPk2OMIoeRpeQSIV1CB1vZoibSoe0IdFhCgHi9OqGh/btH44IL4jn33Bg2bWrlr38t7tfnGu7EyIgwLLi1Yhq0/9CifYabPHT27ERSsDKSMGkBUaafikJZx4ga3+OU+24CZNJM/yXKdHmgQxIGmCx/yamnRvH559P69XlUVSMubjnNzSr5+cczapQYjduXGBkRjik2OZ0k5UGyLJuYaulgvFJAnPw7bIzDw27q9CfJU6ex0WNhuyeLUu+vaNdyAh220E/iTL9krLIaGSu7fVdQ4r0+0CEJA0jTNHQdwsP7v3qFosh88cU0dB3mzVsnFtkfIZGMCMOSTR5NsvIQ4y1bmWpxk6VsI1a+GStj6GQXdfpj5KqT2Oixst0zkTL1N3RooqricBIsH8dEpQIrI6nXn2aHZzqaNjgqGAv9q7HRKKYYGXn0peAPxfTpDm6+OZWKik5+8QvxOnIkRDIiHBOC5PGkKI8w3rKNqZZOxilbiJFuxEoGneRTqz3CDjWLjR4bOzzZlKu/x63tDHTYfa7R3Uapq9F/aXS3/fCdhjBFDidLKSBcuoAONrBVTcStFQQ6LKGfVVZ2AhAdPXA7XB5+eCwjRwbxn/9UsGJF44A973AhKrAKxyS7PIlU+TH/923aeup9z9Oqf0UHO+jQtlKjPYSEDRvjcMiLiJKvxSanBS7oo9TobuPu9R+h6nuHkRVJ5oHpi4m0BQcwsv4lyzIj5bepUR+lXLuF7ep40k2vEGm6KNChCf2kosIYAYuJGZiRkT2WL59Bevq3LF68ibq6eVitopr0oRIjI4IABMvTGWF+kgmWfKZZvGQq3xMtXYuFZDrYSrX2INvVdDZ67OR6plOp3otHKwt02IfFpXZ2S0QAVF3DpXYGKKKBFaf8mjHKt0iYKfZdTKn3V4EOSegn1dVGQ864OOuAPm9yso1//jOT1lYfZ521aUCfe6gTyYgg9CBEns0I8zNMsOxkmkVljLKCKOkazCTQzmaqtPvJUVPZ5Akh1zOTSvWPeLSqQIct/IBQeS6TlFIspBnrhjyzRCfpYaiuzvidJiYObDIC8H//l8qcOQ6WLm3kpZcqBvz5h6ojSkaeeOIJ0tLSsNlszJw5k7Vr1x70+EcffZTMzEyCgoJISUnh5ptvxu0WC8mEoSNUPpE08/NMtOxiiuJhlLKUSOlKFKJpZz1V2t3kqIls8oSS55lDlfoXvFpdoMMWeqDI0YxXduGQFtPOmq51JEWBDkvoQ3uSkYSEgU9GAL74Yhp2u8zPfraD2tpjY+TxaB12MvLGG29wyy23cO+997Jx40ays7M57bTTqK2t7fH4V199ldtuu417772X3NxcnnvuOd544w3uuOOOow5eEAJBlmUc8gLSzS8x0bKbKYqXUcqnREiXYiKCNlZTqd3OVjWWTR4HeZ4TqFYfRtXEorbBQpZlRpk/JEn+Kz4a2a5m0uR7L9BhCX2kvt4LQFJSYEq0h4QovPVWNl6vzsknrw9IDEPNYScjjzzyCNdeey3XXHMNWVlZPP3009jtdp5//vkej//++++ZO3cul112GWlpaZx66qlceumlPziaIghDhZGcLCLD/CqTLKVMUVRGKh8QLl2IiVDa+I4K7bdsUaPY5Akn3zOPGt8/UbWWQId+zItXbmWMsgwJhSLf+ZSpvwt0SEIfaG42khGbLXB7NM44I4ZLLoln+/Y27ruvMGBxDBWHlYx4PB42bNjAwoV7G77JsszChQtZtWpVj/eZM2cOGzZs8CcfRUVFfPrpp5xxxhm9Pk9nZydOp7PbRRCGClmWCZfPZqT5TSZZypmieMgwvU24dD4m7Lj4hnLfr9mihrPZE0GBdwG1vidRNdcPP3gvWrRP8eni/8mRCJXnMUEpwUwKtdrfyfMcj6apgQ5LOArNzSqDoX/mK69MICbGzP33F7F9e2ugwxnUDuvXVV9fj8/nIy4urtv1cXFxVFf33Eb5sssu4/777+f444/HbDYzcuRI5s2bd9Bpmj//+c84HA7/JSUl5XDCFIRBRZYVIkwXMNL8DpMslUxRPKSbXschnYOElVZ9GWW+G9iihrLZE0WB9zTqfM+gae2H9Pjt2lYK1TPJ887Eo5f289kMTxY5lgnKbsKk02njO3LUJDq1kkCHJRwhp1NFUaRAh4EsyyxbNh2ABQs2iOqsB9HvuePy5ct58MEHefLJJ9m4cSPvvvsun3zyCQ888ECv97n99ttpaWnxX8rKhtYWSkE4GFlWiDRdzCjz+2RbqpmidJJm+h9h0plImGjVv6TU93M2qcFs9sSw03sG9b4Xe60e2qovA2Tc7CTXO402bcMBx3h8Kpvry3u8/xBoTzUgZFlmtPkzEuQHUKljuzqaZu3jQIclHAGXy4fZPAiGRoAJE0K5/fZ0amo8XHXV9kCHM2gdVqM8j8eD3W7n7bff5txzz/Vff9VVV9Hc3MwHH3xwwH1OOOEEZs2axd/+9jf/dS+//DLXXXcdLpcL+RDG0kSjPOFYomluGvVXadLeok1fh48G/20KMQRLM4mQLyFCuhBZtlDoXUyL/imgASYkzGQobxAunw1AqauRJ7avoNnT0ePzjQ6L4YbxJxGkBGax32DUon3FLvVMdDqJl+8gSflToEMSDkNy8go6OjQaGuYHOhS/ceO+Iy+vjS++mMqpp0YHOpwB0y+N8iwWC9OmTeOrr77yX6dpGl999RWzZ8/u8T7t7e0HJBwmk1GVTnwiE4QDybKNaNNPGG3+jMmWeqYobaSa/k2odAo6Plr0j9ntu4JNqpXNnjha9M8wEhEAHzqd7FLPpdb3GNXtTv6R81W3RMRmUlCkvf8ndzrreHz7ClTNN7AnOog55AVMUIowk0C19iD53vliHckQ0tGhERQ0OEZG9lixYjpms8T552+mvV38Le3vsH9bt9xyC//5z3/473//S25uLtdffz1tbW1cc801APz4xz/m9ttv9x+/ePFinnrqKV5//XWKi4tZsmQJd999N4sXL/YnJYIg9E6W7cSYrmOM+UsmWxrIVlpIMT1OqDQfnXZg/yRCB3TKfL9ivetqOroqrKaHRvH77FN5dPaF/HPOhfwkczbBilGHodBZx6qa4gE9r8HOIicyQSklVFqAS19OjpqCR+t5qksYXDo7NYKDB9f7S2yslX//O4u2No3TT98Y6HAGncPe93TxxRdTV1fHPffcQ3V1NZMnT+bzzz/3L2otLS3tNhJy1113IUkSd911FxUVFcTExLB48WL+9Ccx7CkIR0KRw4jlBmJNN1Dje5hy363sHRnpLt7xHpdN/prviu7gV+N/5J+KUSQTM2PTibDYeTjHGOlcUbWTExJGDdRpDAmyrDBGXkqFejfV2h/Zpo5kpPIhDvm0QIcmHITXqxESMriSEYBrrkni5ZcrWbasiWeeKeO668TmjD0Oa81IoIg1I4LQs53eM3DqX9BTMqLrIEl7/1WII0Q6CauURqi8AId8KgB/2vQZpa4mAP4+83xCLbaBPIUho0X7jF3queh4SJDvI1G5N9AhCb0wmb7kxBMj+PrrGYEO5QBut0pMzArcbo2SkhNITBze/9/6Zc2IIAiDh66ruPQVGImIAhhbGSVshEgn4u64ji/yb+G1zY/gc/2XaPknePQSarSHKFd/63+cWFuo/2u3T8xl98YhL2KCshOFOKq0+yjwniq2ag5Smgbh4YOzKb3NpvDBB5NRVZ1580R11j1EMiIIQ5SGGwkLVkYSJV1BqulpxilbmGJ2kWlegeK5jZLmabg8cRQ3jSdJeZBxltXEyjfjpQJdV9F0nd2uvbt1QsxiR83BWORUJirlhHAirfoStqmpeLSeaywJgeF2Gwl1eLg5wJH07uSTo7j66kR27mzn1lvzAx3OoCCSEUEYokxSCNnmRiZYCkkzv0CM6Trs8iQkyZgrnxCRiFk2vv6+ZhcN7jYAIuVL8dFIo/Y6a2qLqe+6flx4vNjeewhkWSHTsoI4+fd4qWCbmoZTWxbosIQuFRVGk7zo6MGbjAA891wWCQlW/v73EjZuFK0hRDIiCEOYJPVeZTLEbOW4mBGAMf3y1y1f8nVlAR2ecaCbyO+4j5cK1viPn5c4pt/jHU6Slb8w0vQBoLFTXUiV+udAhyQAVVXG7rGYmMGdWMuyzNdfT0OS4NRTN6Kqx/aUn0hGBGEYOz99CnFBxpqQFk8Hr+9az53rPqSuLQWLuQgNo6HYnLgMsiOTAhnqkBRuOpvxSgEK0VRqd7DTe6ZYRxJglZVDIxkByMwM4f77R9HQ4OWSS7YGOpyAEsmIIAxjIWYrv520kHHh8d2uz6udhyTpTIhdzqnJ47hy9HEHHWURemeV05iolBPMbJz6p2xT0/FqdYEO65hVU2MkI/Hxgz8ZAbjzzgwmTQrhnXdq+fDD2kCHEzAiGRGEYS7MEsSvJ57MXVMWsSApk8lRydj1q9B1mfnpG7kgfQqyJF4KjoYsWxhr+b5rcXApOeoIWrWVgQ7rmFRXZ4z2JSUNnS2zX389HYtF4pJLttLaemzuaBOvQIJwjEgJieCijGlcn3Ui142bR5CURSfbxLRCH0pRHiHd9BY6XgrUE6lWHw50SMec+npjAWtiojXAkRy6yEgLL744gY4OjVNOOTa3+4pkRBCOUVHy1YCPRv2lQIcyrESafsR4JRcTEVRov6XQe55I+AZQY6MxMhIZOTjrjPTm0ksTWLQoijVrnDz66O5AhzPgRDIiCMeoWPkGQKLO93SgQxl2bPIoJikV2JlOi/4+29XRqFpjoMM6JjQ3q0gSh9QRfrB5//0pOBwKv/1tASUl7YEOZ0ANrdRREAQ/Tdf4qCSHNbW7cXrdOCxBzIlL54yUCQddjJrfXMNbRRupam9h3sjjSXFsRFO0bi/eX1cWsKQ8lxZPB8khEVwychrpocdO2/O+IMs2xlnWUer9JXX6E+SoKYxWviJEnhXo0Ia1lhYVk2loLsa2WGQ++2wKc+asY9689RQXnxjokAbM0EsdBUEA4POyXFZUFXLpqOncN+1Mzk+bzBfluXxdWdDrferdLh7fvpzM8DjumrqICNM8zEobm1r2TtWsqyvh7aKNnJk6gTunLCI5OJzHtn2N0+MeiNMadlLNj5NuehWNTvLVOdT4/hXokIa11lYVs3loJiMAs2dH8H//l8Lu3W5uvDH3oMc2utsodTX6L41dBQyHIpGMCMIQVdRax+SoJCZGJhFtC2FaTCpZ4QkUtzb0ep8VVTuJtoVwYcZUEuwO5kXfitdnpbjjbf8xSyvyOD5+JHPjR5IY7ODyUcdhkRW+r9k1EKc1LEWaLiVL2YYJB+W+m9jlvUisI+knbW0+LJah/db2xBPjGDHCxuOPl7FqVdMBt2uaTqO7jbvXf8SfNn3uv9y9/qMhm5AM7d+YIBzDMkJjyGuuoabdCUCZq4lCZx0TIhN6vU+Rs56x+9QcUeQQPN5RhAdvAkDVfJS2NnarSyJLEmPD4yly1vfTmRwbguSxTFIqCWIyzfpb7FDHomrNgQ5r2Glv92GzDf23tq+/no7JBGecsclfnXXr1lbGj/+O88/fjEvtRNW7J7SqruFSOwMR7lETa0YEYYg6PSULt8/LvRs+RpIkdF3nnLRsZsam93ofp9dNmKV7/QWrdibB9oeo836EWVuAhk7ofseEWWxUdzj75TyOJbIcRJZlEyXe66jX/0OOmswYZTnB8vRAhzZsuN0akZGDuy/NoUhPt/PQQ2P4zW8KOOecTSxYEMXvf78TVdWpqfEAIwIdYp8a+umjIByjNtSVsLZ2Nz/NnMNdUxZx9ZjZLCnPZVVN0WE9js13NV6flXr9sX6KVNjfCPMzjDD9Fw03eepMan1PBTqkYcPj0QkJGR6fs2+5JY1Jk0L49NMGfvObAlRVB6ChwUur0xfg6PqWSEYEYYh6p3gzp6VkMSM2jaTgcGbFpbMgaSyfle3o9T5hZtsBC1FdXgvlLdl08B0hZisyEq37HeP0uHGYh05Fy6Eg2vRjximbkQmhzPd/FHmvCHRIw4Kq6oSGmgIdRp94881qioo6erytuHB4LSgXyYggDFEeTUWm+64BWZLQ0Xu9T0ZYNHnN1d2uy22upr1jFjoddPAtqaGR5DbX+G/XdJ285moywsTW3r5mlycwUanAxkSa9FfY7slC1VyBDmtI8/l0HI6hPTLS1qZyxRVbufjirbS19TwCUiSSEUEQBoNJkUl8WraNnMYK6t0uNtWXsbQ8j8lRyf5j3ivezAv53/u/PylhNPVuF+8Ub6K6vYXllQVsqCtlsuNnAFT7/s7CpLGsrC5kVU0RVe0tvFq4Do+mMicuY8DP8VigyCGMt2wlUroKN7nkqIm0a5sDHdaQpGkaug4REUN7zcjXXzfxyivGhwa9h88WiiJRtHN4JSNDO30UhGPYJSOn80HJVl4tXEertxOHJYgTEkZxVuoE/zEtng4aO/dWcoy2hfDL8fN4q2gjyyryCbfauXLMTCZFZrDVk4BLX86MmBG4vG4+LNmK0+MmOSSCm8bPJ8wSFIjTPGakm18kxHc8pb6fk6tOY4TpGaJNPw10WENKfb1RCn6oJyNnnhnNu+9m87vfFbBr14HTNJqmU7TTTe/75oYeSdd7yrsGF6fTicPhoKWlhbCwsECHIwjDUon3eur1pxmrrCVYnhHocI5Z7dpm8tUT0HARJV1Dmvn5QIc0ZGzc2MK0aWu4994M7rtvVKDDOWqqqvHCC5XceedO6uu93UZJUseYOP3ZmgPuc1v2qaQPoinVQ33/FtM0giAAEG+6DYBq318CHMmxzS5P7lpHMpYG/QW2eyahacdWn5IjVVVl1NiIjbUEOJK+oSgy116bzO7dJ/LHP44iONjEnk4PZYVqj1M4LxasprFz6BU+E8mIIAgAWOURKMTg1JcGOpRjniKHMd6SS4R0GW5y2KIm0qFtD3RYg151tQcYPsnIHna7iTvuyGBT3jSmXOQBdHRNomabiRDFSpBp77RUdYeTR3OW0a56AhfwERDJiCAIfg7pTDSctGs5gQ5FADLMr5BiegKNVnao2TT4Xg50SINaba3xBpyQYA1wJP3ju7Zcpt/g5Jynm7HYdcr+m8hfpp/LP2b/iF9NmE+0LQSAmo5WlpbnBTjawyOSEUEQ/OJNtwNiqmYwiTX9H2OV1cjY2O27khLvLwId0qBVX28kI8nJwy8ZcXk7WVdXAkDaRJmPP53ClvUdPPRQCZIkkRWRwE0T5vm3+39bXYhvCPU/EsmIIAh+NnkMJiJw6p8HOhRhH8HyDCYq5VgZRb3+b3Z4pqJpw2trZ19oaDB20yQkDL8CfUXOen8vmpmxaZxyUix33JHBvfcW8tprVQDEBYUxITIRMFo/VHW0BCzewyWSEUEQugmTTsNHI25tZ6BDEfahyOFkKfmESxfSwSa2qom4tfxAhzWoNDWpAEO+a29POn1e/9d7pmOysoLRNPj973cecJtxH3XgAjxKw+83JgjCUdk7VfPnAEci7E+WZUaa3yTZ9Cg+mtmujqfR90agwxo0mpu9yMP0XW3f5pU7m2u55JItXHZZDuecE8u2bbP9txU66/beZwi1cBimvzZBEI6UXZ6ETBgt+ieBDkXoRZzpV2Qq3yFhodh3CaXemwId0qDQ2upDUaQfPnAIGhUWQ5jZhqcdbj+9jTfeqOGii+J4991swsKM3TSbG8opdTUCkBIcQcw+oySDnUhGBEE4QKh0Miq1eLSyQIci9CJEns0kpRwL6dTp/yLXcxyaNrS2c/Y1l0sdllM0AIpsYrQnnVcviMRZYWLCuW6ueEimsr2FUlcjbxdt5Jnclf7j5yeOQZKGTmImysELgnCAeNOttKjvU+X7CyPkJwIdjtALRY5kvFJIke98WvQP2KomMlZZg00eGejQAqKtTcNqHZ7JyJIl9fzyzHq8qsycX7Uy4YJOPi7N4ePSA7fhT41OYfYQ6yU1PH9rgiAclRB5NjLBtOjvBzoU4QfIsswo8/skyX/FRyPb1bE0+d4JdFgB4Xb7CAoafm9r//pXCaedthGATz+fzM+uT0DiwFEPRZJZkJTJz8bORR5CoyIgRkYEQehFiHQiTv0zPFotFjk20OEIPyBeuZVgbRY71dMo8v2IWP0WUpSHAx3WgOrs1IiJGV7VV6+7bjv/+U8F4eEKGzfOIj3dDsRyzohsVtUWUdvRCkgkBYczOza920LXoUQkI4Ig9CjO9Fuc6mfUaA+RIv890OEIhyBUPpEJSgl56nRqtUdo86xmjPI1sjy83qB74/HohIQMj7c1VdWYP389K1c2M3q0nY0bZ3U7t0hbMGemTgxghH1r+I1nCYLQJ8Lkk5Gw0aS9FehQhMNgkWOZoOwmTFpEG9+ToybTqZUEOqwB4fPphIWZAh3GUWtu9pCRsZKVK5s5/fQo8vLmDJskqzciGREEoVch0hy8lKJqzYEORTgMsiwz2vwpCfIfUalnuzqaZu2jQIfV7zQNwsPNP3zgILZ9eyspKd9SVubmlltS+eyzacjDtXjKPoZ3qiUIwlGJNf2KVnUZNdrDJMkPBDqcY0Kjuw2X2un/PkSxEmkLPqLHSlTuJFibxS71THapZxMv30aSMjyL2bW3G9VGIyOH7tvaBx/WcMmVm0HROf/pVmxTC/ik1MsZKRMOuk03v7mGt4o2UtXeQoTVzhmpE5iz326arysLWFKeS4ung+SQCC4ZOY300Oh+PqNDN3R/a4Ig9Ltw+WwkLDRqr5GESEb6W6O7jbvXf+TvQQLGDokHpi8+4oTEIS9gglJMnjqdau0vuDyrGK0sRZaH18t/RYWRwEVGDs2Rkb/8pZi77ikgLMnH48+O4tS5iZS0NvLfnasJMlk4OSmzx/vVu108vn05JyaM5qdj55DXXM3/CtbgsNgYH2H0qVlXV8LbRRu5bNQM0kOj+aoyj8e2fc0fpi0mbJAseB3+Yz+CIBwVO8fhoQif1hboUIY9l9rZLREBUHWt20jJkbDICUxQygiVFuJiBTlqCh6t/Kgec7DZk4wMxd00V1yRw+237yQuU+MPr4dz2YIxRNtCmBaTSlZ4AsWtDb3ed0XVTqJtIVyYMZUEu4P5iZlMjU5hacXevkVLK/I4Pn4kc+NHkhjs4PJRx2GRFb6v2TUQp3dIRDIiCMJBxZp+CejUav8MdCjCUZBlmTHmJSTI96JSzTZ1JC3a8OnOXF1tJCNxcUMnGfF4NKZPX80rr1QxcWIIT76XRJVUR027E4AyVxOFzjomRCb0+hhFznrGhsd3uy4rIoEiZz0AquajtLWRcfscI0sSY8Pj/ccMBsNrnE4QhD4XLl0IXEGj9j8SuCPQ4QhHKVG5j2BtJrvUcylUF5Eg30uicl+gwzpqNTVGKfy4OGuAIzk0tbWdZGevorrawwUXxPL225PRdB2fSePeDR8jSRK6rnNOWjYzY9N7fRyn133AVEuYxYbb58XjU2lXPWjoB9QfCbPYqO5w9su5HQkxMiIIwkHJsoydKbjJP+Z7nwwXDnkRE5RdKMRTpf2BAu9CNM0X6LCOSm2t8beZlDT4k5H161tIS/uW6moP99yTwdtvTwZgQ10Ja2t389PMOdw1ZRFXj5nNkvJcVtUUBTbgASCSEUEQflCM6eeATp32ZKBDEfqIRU5molJGiHQSrfpXbFNT8WhVgQ7riDU0eAFITh7cycgbb1Qxc+YaPB6NN96YxB/+MMp/2zvFmzktJYsZsWkkBYczKy6dBUlj+axsR6+PF2a24fS4u13n9LixmcxYTAohZisyEq09HOMwD47FqyCSEUEQDkGkdBVgol57PtChCH1IlhUyzcuJl2/DSyXb1HSc2rJAh3VEGhuNZCQsbPCuPrj77p1cckkONpvMunWzuOii7ms9PJqKvF/PGVmS0NF7fcyMsGjymqu7XZfbXE1GmLFtV5FNpIZGkttc479d03Xy9jlmMBDJiCAIP0iWFYKYgJvtaJoa6HCEPpak/JmRygeAxk51IZXqnwId0mFrbvYiSQzKAmGapnHeeZv44x+LSUiwUFx8AlOmhB1w3KTIJD4t20ZOYwX1bheb6stYWp7H5Khk/zHvFW/mhfzv/d+flDCaereLd4o3Ud3ewvLKAjbUlbJwn63AC5PGsrK6kFU1RVS1t/Bq4To8mnpALZJAGrwppCAIg0qU6WeU+26kQX+eGK4LdDjDzi5nHW/s2tDjbd9V7yJpZDgmqf/eaMPlsxmv7CRPnUGVdhdt3u8Yafp4UL6596SlRcVkGnydat1ulRkz1rJtm4sZM8L4/vvjUJSef6aXjJzOByVbebVwHa3eThyWIE5IGMVZqRP8x7R4OmjsbPd/H20L4Zfj5/FW0UaWVeQTbrVz5ZiZ/hojADNiRuDyuvmwZCtOj5vkkAhuGj+fMEtQ/534YZJ0Xe99/GeQcDqdOBwOWlpaCAs7MJsUBKH/aZqHTWoQQUwhy7I+0OEMK5sbynkmdyW+/WqM7Cs7MomfjzsBUz8nB5rmoUA9mTa+w0wKY5X1Q6Jr8/jx31Fc3EF7+8JAh+JXXu5m8uRVNDR4ufLKBF56afg0tjtUh/r+PTRSXkEQAk6WLdgYSweb0bTe3zSFw1PX4eLZvO/8iUiU1c5J8aNYlJzFGMfeJGBLYwUfleb0ezyybGGsZSWx8i14KWObOoJW7Zt+f96j1dbmw2odPG9p333XxKhRK2lo8PLXv44+JhORwzF4fnOCIAx6UfJVgI8m/dVAhzJsLK8qwNu1rXZ6dCoPzDiby0Yfx7npk/nNpIX8esLJ/kWNyysL6PQNzJqdFOVhMkzvoKNSoM6jWv3bgDzvkWpv92GzDY63tOeeK+eEE9bh8+l89NFkbr219zohgmFw/OYEQRgSYuVfAhJ1PrHFty9ous6qmmLA6EFz6agZmCS528jTuIh4ZsYZb2YdPi+bG8oGLL4I0/mMV/IwEUmFdiuF3nMH7ahYZ6eG3W4KdBjcckseP/vZDkJCTGzZMpuzzhr8U1yDgUhGBEE4ZLJsx8oo2lk/aN+UhhK3z0tbV9+ZkWExhJiNGhk/XZNL+Jtfc8PaPJo9HrIjk/z3qXe7BjRGmzySSUoldo6jRf+A7epIVK1xQGM4FB6PTnBw4JIRTdM47bT1/OMfpaSm2igtPYGsrJCAxTPUiN00giAclkj5Mqq0P9Cif0AE5wU6nCFt35oSnn22TGeG2ZGQeHJnOU/uLCdckUiwBJNs9/J5VQcbW4qodXuoc3uocnuo6uikvtOos7HjrNnEB/Vt4S9ZtjDOsoZS703U6f9iq5rMGOUrQuTZffo8R8Pr1QgLC0wy4nKpTJmyisLCDk48MZyvv54+ZHYhDRYiGREE4bDEyrdQpf2BWu0xIkwiGTkaVpNCrC2EWreL4tYGqttbiLc7uG18OreNT+eLynquW5NHabubZjWY3HZYUu/EhBNZkvDpOvuOTznMCuGW/ntZTzU/RohvLsW+y8lX55Js+gdxpl/12/MdDk0Dh2Pg39J27Wpn2rTVtLSo/OIXyTz1VNaAxzAciNRNEITDoshhWEijTV8V6FCGPEmSOD5hbznwZ/O+p8Hd5v9+YUIkT00L55KEWkxo0FWJ0wd490tETJLET0YmYjP17+hApOlixivbMRFOue/X7PJeGPApO03T0HUIDzcP6PMuXVrPuHHf4XSq/OtfY0UichTEyIggCIctQr6IGu0hWrQvccinBjqcIe2E+FF8XVlAU2c7ZW1N3LX+Q7LCEwgxW8lrrqbZ00GYGa5IbmBZYyLl7d4ei4P7dJ3rRiX1cEvfs8mZTFIqyVPn0qy/zQ41k7HKOhQ5fECef3/V1UaTvKiogUtGHn+8lJtuykNRJJYsmcaCBVED9tzDkRgZEQThsMXLvwOgxvdIgCMZ+uyKhV9NmE+ExQ4YO2y2NVWyuraYZk+H/7iL0ifx3akzibVZ6K3Q6JRPV/PbDQUDETaybCPLsoFo6ed0UkiOmkybtm5Annt/lZXGIuDo6IFJRn7xi+3ceGMeDodCXt5ckYj0gSNKRp544gnS0tKw2WzMnDmTtWvXHvT45uZmbrjhBhISErBarYwZM4ZPP/30iAIWBCHwFDkaM0m06d8GOpRhIcHu4M4pp3NGynjC9umkKiGRHZXMLRMXcEbqeFKCbSw5eSo2k+mAF2+bLOHWdB7OK0V6ZSmjP/iO7c39v/NmhPlp0kwvoeEmT51FbQC2fe9JRmJiLP36PJqmceKJa/n3vysYPdpOWdmJZGTY+/U5jxWHPU3zxhtvcMstt/D0008zc+ZMHn30UU477TTy8/OJjT1wP7XH4+GUU04hNjaWt99+m6SkJEpKSggPD++L+AVBCJBw6Xzq9H/Rqq0kVD4+0OEMeaEWG+ekZXPWiIk0uNtQNR8Oi51gc/c32IkRIXx0UjanLtuE1tXNI0wxUX3BibSpXs5cvpV1DU4KXR1M+GQ1Vlni56OS+OeMsf0We5TpSuzSVPLUuZT5bsClrSTDPHCF8aqrjWQkPr5vdxHtq7nZQ3b2akpL3Zx+ehSffDJF7JjpQ4f9k3zkkUe49tprueaaa8jKyuLpp5/Gbrfz/PM9txZ//vnnaWxs5P3332fu3LmkpaVx0kknkZ2dfdTBC4IQOPGm2wCo8Q3uypxDjUmSiQ0KJTE4/IBEZI/58ZG8PGe8//urRyYSpJiIttlYc/pxaJcv5PHpYwhTTHRqOo8VlCO9spSRH6xka6OzX+IOkseTrVRiYyJN+mts84xD1frnufZXV2dsa05I6J9kZPv2VlJSvqW01M0tt6Ty2WfTRCLSxw7rp+nxeNiwYQMLF+5tRCTLMgsXLmTVqp5X1n/44YfMnj2bG264gbi4OCZMmMCDDz6Iz+fr9Xk6OztxOp3dLoIgDC4WORGFeFr1rwMdyjHp4rR4/jFtDDaTzC9GJx9w+w2ZqbRcPJ+mC05gdnQYElDkcpP92Vqsr33F9Wty+zwmWbYz3rKVKOkaOskjR02iXdvc58+zv/p6YwFrYmLfJyOvvFNK9uRVtLX7+NuTI7jzTyl9/hzCYSYj9fX1+Hw+4uLiul0fFxdHdXV1j/cpKiri7bffxufz8emnn3L33Xfz8MMP88c//rHX5/nzn/+Mw+HwX1JSxC9fEAajcGkxGq20aRsCHcox6ddjU2n80UmMcwT3eky4zcr3pxmjJU/PyCRMMeHRdJ4urEB6ZSnp769kY31zn8aVZn6eEaZn0WgnV51Gne/ZPn38/TU0GCMjfZ2M3PunfK74US5IOov/1czOCRu4e/1HNO6z/VroG/2+tVfTNGJjY3nmmWcwmUxMmzaNiooK/va3v3Hvvff2eJ/bb7+dW265xf+90+kUCYkgDEJxptupV/9Dte+vjJTfDHQ4g5Kma3xUksOa2t04vW4cliDmxKVzRsoEJKmXbTFAfnMNbxVtpKq9hQirnTNSJzAnLqPbMV9XFrCkPJcWTwfJIRFcMnIa6aHRvT7mz8ek8PMxKTS7O1m8Iofv6pvZ3eZm2hfrMUsSP86I5+npmSjK0b81RJt+il2aQb56PKW+a3FpK0k3v3jUj9uTpiYjGVGUvps6ufLKHF5+uQqbQ+f855oJiTVqqai6hkvtJJLeE0Dh8B3WX1x0dDQmk4mamppu19fU1BAfH9/jfRISEjCbzZj2KcQzbtw4qqur8Xg8WCwHzolarVas1v5biHS0Gt1tuLr6SewRoliJtIk/TuHYYpPTMRFFq74EAF334dK/xaWvIlb+JSYpNMARBt7nZbmsqCrkmsxZJNgdlLQ28t+dqwkyWTg5KbPH+9S7XTy+fTknJozmp2PnkNdczf8K1uCw2BgfkQjAuroS3i7ayGWjZpAeGs1XlXk8tu1r/jBtMWEWW4+Pu0e4zcq3p00H4MVdFdy8YSfNXpXndlXx3K4qUuxW3jh+IrNjwo/q3O3yJCYqleSrM2nU/0u7ZwOZyioUuW97trS0qPRVrTePR2Pu3LWsX+8kM8vG3H+Wowzet6Nh47CSEYvFwrRp0/jqq68499xzAWPk46uvvuKXv/xlj/eZO3cur776Kpqm+Rf8FBQUkJCQ0GMiMtg1utu4e/1HqHr3ioOKJPPA9MUiIRGOOWGcThOvsMt7Ea36V/gwmqiFSicSIs0NcHSBV9Rax+SoJCZ2NbuLtoWwrq6E4taGXu+zomon0bYQLsyYChhbfwtb6lhake9PRpZW5HF8/Ejmxo8E4PJRx7GtsZLva3Zxesr4Xh97f1ePTOLqkUm4OlXO+mYL39Y2UdbeyZwvjdGSy9LiePa4sUc8WqLIIYy3bKfYewWN+ivkqElkKt9hlycc0eP1xOlUUZTeR5kOVW1tJ9nZq6iu9rD43CjO+0snq2sPPG53awOpIZFH/XzCXoc9pnXLLbfwn//8h//+97/k5uZy/fXX09bWxjXXXAPAj3/8Y26//Xb/8ddffz2NjY386le/oqCggE8++YQHH3yQG264oe/OYgC51M4DEhHYO3QnCMcCTXfTrH1EsfcqWngfgGb9bX8iAmCVRgYousElIzSGvOYaatqNhfhlriYKnXVMiEzo9T5FznrGhncfbc6KSKDIWQ+AqvkobW1k3D7HyJLE2PB4/zGHK8SqsPyUafguX8jLs7OItCh4dZ3/FldjfmM5ye9+w8rapiN6bIB088ukmp5Cw0WuOpl630tH/Fj7a2vzYbEc3RTNxo0tpKV9S3W1h5t+n0Dm70tYXbu7x2NfKVzH52Xbj+r5hO4OO9W9+OKLqaur45577qG6uprJkyfz+eef+xe1lpaWdtvylJKSwhdffMHNN9/MpEmTSEpK4le/+hW///3v++4sBEEYUDu82XRSgPESsqfb7N4i5TLBKMT1dNdjzukpWbh9Xu7d8DGSJKHrOuekZTMzNr3X+zi97gOmWsIsNtw+Lx6fSrvqQUMntIdjqjuOfvfh5RmJXJ6RiKtT5bxvt7CspomKDg8nLNmAIklcmBrLS7PGHfZoSYzpF9ilGRSoJ1Hiu4o2bSUjzM8cdbxtbRpW65EnI2+8UcVll+UgSfDfV8aybeQGWjxuAExIZIRFY1Ms7HY20Koa17+3ewsRVvtBf4/CoTuicbdf/vKXvU7LLF++/IDrZs+ezerVq4/kqQRBGIQi5Iuo1v7I3kSkO6s06qCLM48lG+pKWFu7m59mziExOJwyVxNvFm0g3BLE7P0WpA42IVaFJQunAfB6cTU3rM+j0aPyWkkNr5XUkBhk4eXZE5ifcOhTFsHyNCYqFeSpM6jX/0ObZx1jle+Q5SOvZOp2+wgJObJppHvuKeSBB4qw22W+/XYGVdGltJQYZfjTQqO4ftwJhFuN2Hy6xmel2/moNAeAj0pymBGThiz+1o+aqNpymDpUb6BDEISASzTdT1xXf5oD6CY0dTSlrkZKXY3H/DbId4o3c1pKFjNi00gKDmdWXDoLksbyWdmOXu8TZrbh7PpkvofT48ZmMmMxKYSYrchItPZwjMN88MWrR+qS9HgaLpxHx8XzOD0hEhmo7PBw8rKNmF9dykXfbEVVe05O96fIDrKUPMKli+hgM1vVJDq0I6970tmpERx8eCtYNU3j/PM388ADRSQkWCguPoEpU8L4tmoXYJTiv3bsXH8iAkZBurNGTCTTYYz61bld5DfX9Pj4wuERychh2FRfxuPbl/d6+zdVhf7yzIIwnEmSRJLpr8TKNx9wm6brrKyEP236nD9t+vyYr8vg0VRkun9yliUJvcfeu4aMsGjymrvXbsptriYjzNi2q8gmUkMjyd3njVDTdfL2Oaa/2BSFz06eiu/yhbxz/ESiLWZUHd4qq8X8xnIS3vmGJZU/vG5FlmVGmt8g2fQYPlrYoU6k0ffaEcXk9eqEhByYjFRXd5Kff+Dfntutkp29mvfeq2XGjDBKS08kNtZKm+qhydMOwKiwGKJtIbhVNzfm38jsdbP9958Zm+b/uqztyNfRCHuJZOQQ5TRW8O/clXi0vZVjbabuw4LfVhfybvGmgQ5NEAJCkiSSTQ8TI9/U7XpZ1mhx711Yeawv7p4UmcSnZdvIaayg3u1iU30ZS8vzmBy1t2rqe8WbeSH/e//3JyWMpt7t4p3iTVS3t7C8soANdaUs3Gcr8MKksaysLmRVTRFV7S28WrgOj6YeUIukP50/Io66C0+i4+J5nJUYjUmCareHU7/ejPLqUs5fseUHR0viTDeSqaxCxkqx7zJKvTcedhyqquNwHDhNc9FFW5gyZRWbNu1dR1NW1kFyxlK2bXdy5ZUJrF07y1+fZN8Pk63UM2fdHEJWhPB4+eMUdhTSrhqJimWf137xAbRv9HvRs+HAp2u8snOd/5PM1KgUzk6bRILdgcvr5uvKAj4t3Y6GzpKKPGbHZZAUHN79QRpq4Mu34JtP4cY/QtbUgT8RQehjkiSRYnoUUKnT9nZrbXH3vlPkWHPJyOl8ULKVVwvX0ertxGEJ4oSEUZyVundra4ung8bOdv/30bYQfjl+Hm8VbWRZRT7hVjtXjpnp39YLMCNmBC6vmw9LtuL0uEkOieCm8fMJswQN6PmBMVry0fzJAHxcXstPVudS1+nlvfI6zG8sJ9Zq5vnZ4zgz6cBmqgAh8kwmKmXkqjOo0x+nzbOaTOVbZPnQppx0HcLDu7+d5eS08u23zUgSLFq0kbXrZ1C6u5OT3r0K7X8fA/C6ZOadr81YZSsW2YJVstLgcdFOE3q98Xofb47nkTGPcGn8pf7H3tJQ7v86xta3NVOOVSIZOQRbGyr8Q3eZjjiuHXe8f8FSiNnG4hGTUGQT7+/eAsDyygIuH30cuJzw1Xvw8f9g3degdW0JXnylSEaEYUOSJCobf8OuznzGxn0F0G1kBGBzQ/kxW5fBppi5eOQ0Lh45rddjrs6cfcB1meFx3DV10UEfe35iJvMTey6cFihnJcdS+6NYVFXlwpXb+KiyntpOL2ct34pJgkUJ0bx1wgRs++3EUeRIxis7KfL9iBb9Pb5pG4Wl8zPmRE886PO5XMbIS0SEudv1//pXKYoioao69Z2NjFwxFvX76cg1e6t5e3UvXt1Lu9bOgSSujbiXp6bcjUnaO4mQ01jB+roSwCh2OSkq6XB+PEIvxDTNIdjRVOX/emHSWCMR0XV46n4o2Aod7cxLGI0iySheDyx7D26+AE6Kgbuv7p6IACSJrWDC8LG2djcv5K/mm91X43RHo+tgkrrP339Suo2vKvIOvLOuw7efwVUnwCkpxvfCsKAoCu/Nm4x62UI+m5dNvM2CT4ePK+sJemM5MW+t4IOy7hXFZFlmlPldovk7PpzUm05lZcPrB32esjJjEW909N5kpKnJy0svVaGqOsg+fL9/EDW+HM7+iA/uvA6H4jjoY9oJ52rzM0hto7l3/cd8UprD15UFPL59OY9vX+Ff7XNy0hjMch+Vfj3GiZGRQ9Dh27uDJsEeZnyRvwWeute4AEGRsfzV00Gwq9VYqrYnYYHuiQhAUlq/xywIA6HTp/LarnVd38lU1P2LcSmX8odZYWieU/myfAfLq3YCxq6S6TEjcFiCQFXhizfhP3+Coh2AZPyfEVskh6XTk2KouiAGVVW59PvtvFdeR73Hy7nfbEUGTk2I5L0TJ/lHS1aUX8ptW+L4+5z7iAy9mmVV31G65ud4vAd2e8/LMdYjFVbU88xbxpbcJR+34fF0ve5e9RJM72rkKOncv+5Jbpx/I38s7blZq12287/R77F0dzU+XaPO7eLDkpwDjpsWncqiw6h0KxycSEYOQfA+jQmKWxuICQqFMZPgr6/BfT+DoBDcJ5+Da8UHBLta0QHpYJ/wfn0+pI6CURMgaxpMmgl2Me8oDD1ra3fT3rXdfWpUCpdnHE+u+iDN2juk287j0lEz0DHKm/t0je9357Bow1p4/q9QUw7+4W8dlKHXHmKo2L+fVqB6aSmKwlsnZgOwrKqBK77fTpXbw+dVjQS9sZxIi8K/jxvL0zsrqGmP5ydfP8o90x/mtNTHiZu2ktzlT4DW/e+kpsb4+zMH6bjavWiaztKP243PgsevhMv3GVkxaaxLfZ51RXqv736vTXiNs2PmMSm0jg9LtpLf0n3rboTVzsmJmSxMykSWxORCXxHJyCGYEp3M8qoCAL4sz2VKdIoxNLfoEhiZBZdMx/Luc7x13a9pDQvnxpefJbSqtOchZ0mCbWth66ru18smCAqG8CiIS4aUkUayMn4GZE0H+5EXBBKE/rKtqdL/9anJ45AkCUfH6ehvP0pb9hzkoCjmmxtobVhH9tfbmbI6B73DGFaXAPZtrWDuPucv9I2e+mkNhl5aJydEUXnBiaiqypWrcnm7rJZGj8pzpf+ktGMcGol0+mzcueYOcptGc9OkZ5l59mJ2fvs/PB1712l4OjwAxMWZCbGbydnYSXOjBqklcNtDRmHgfQfczD7oNBNvSaBWq0Jj78/lnrR7ODvmbABGOWK4ZdICatqdFLsa8GkakdZgxoTHdltDIvQNkYwcgkxHHAl2B1XtLZS1NfH3LUtYlDqBUWEx1CUksuX+Jznznuv55dMP88ZFV9H55gZCX/i78elPkmGf7cDMPgWe/gLaXbB9HWzfAIXboKwQaiuguR6qSmDjt92DMJkgKAQioo1kJXU0jO5KVsZNg0Hc5VgYvvYtApgQbMzDO9aZCXnUC9yAKxsqn4NrfgGWuoM/lt7hwnOahK6w30UCk/GvrkjoJhkUGV3Z868JFAXdrIBiBosFzBYw25AsQWANAkswkiUEyRqKZHMg28PBFoVsj0a2x6LY45DtScjDcGdET/209my3jiTwjT0VReG1EybyGvBt5Q7sFOOb/BzvlM3m2R1X0NgZwcsFF7GzOYOH5tzPxFPOJUN5iwjTOQDs3rQTcHHtJVlkZYUw7S+rILgN/nQPmL3Qw8xfmNnB1zOWMn6NMc1iwsTpUadzb8a9BxwbZw8jbs/0vNBvRDJyCCRJ4uoxs3h461I8mo/drkae2vHN3gMcdtbc83fu+vMdXPzmf5EsEXDrP+Dk8+D2K6Bsl/EJ0KRAUlcNAHsIzJhvXHrickLOGtixHgp3QPkuI1lpqIHyYli/ovvxJsV4zMgYiEuBEaNh9CQjWRk7WXzqFPpFsHnvkHmpq4kxjliCjr8NdcyrSEEO5N/9mtgdm/j+wm/J/rCAiPI2dAmkHgYNdYtEx0Q7qBqSzweqjqRqSKpuXNw6sqohqT4klW4X2QtS10U+iiLJugk0M+h7LvsmRXu+N0n+JMlIlLr+VUz7JEgKKAqYFXTznuTIimSxgsWOZLEbCZItBKwOJFsYUlAkpqAoJHs0JnsccnACclA88hF2ywXoUD2srS3p8TZVO3D9RaClK1BT9jtMVTfzI8eXnHPy/bxUms3L+ReypnY6ly15mmfm3QpB5xKn30qy8lcaGoyRkeRkGy+8UM7GTS3wyF0QX91jIgLglOv53vk9F8VexOu1rzPCNoJXJrwipl0CSNL1wb983el04nA4aGlpISwscBlqcWs9z+V9T53bdcBtNpPChXFjOP6G86ByN8w7Gx59D7weePJeePFvxrTNr/8KP7n16INpbuxKVjZA0XYjQamrhJZGcLcfOEWkmCE4FCJiID7VSFbGZMPE44zpoKN4wROOXatri3kh35hyzAqP58YJ843dZu+/APf8BP3l1bxg9bGmq/vpz9o1Zrz0uPG3K8vdF3cnjoDPdx91TJqqorlr0dqq0Npq0Nrr8Lkb0Dua0DtaoLMFvdMFnS50Tzt4O6DTje7tNP6/ql4krxe8Kqi+ruRH6/paB5++N0FSQfLpexMjL92/7kqOpKN43983OdL2T5D2HT3akyCZJHRFRjdJeE06mknGZ5KNfxUTPpMJVVHAbCEiJAKT1d41ghSMZN1n9CgoHKyRyPYoZHsssj0OxZ5kjCr1k093fkecc09tERVQ0O2b6Ah/m6fLRvLWrjNRJB9/mf1H5iasxSGdzat//jv337+bF18cz49feRj9ypcgrp5uBW57SEpGBo3kw0kf8tPcn/J81vOMCx7Xb+d1LDvU92+RjBwmTdfY3lTF+rpSWr1urCaFseHxzIxJw6aYjV0C15wIW1ZB5mR4ZY0xbLx1DTx+N9zykDFS0d8aamHrasjbCLt2GMlKfRU4m6Czo+dkJSQMImMhYQSMGGMs0p0401gXI4tPDMKBvJqP29d+QKvXWAeSFZHAopTxjMCM5YQoakeN5Z6b7wLALJv4y3HnEqJYYPlH8I9bYXf+3p1nI8bAR/mBPJ1+o7ldaB1VqG01aB216O216B1NaB1N6O4WdE+rkRx1tqF7OsDTAZ5O8HaC6gFvV4Kk+vwJEqrWNXKkgY99EiT9gJGjA5Ijb8+jU4dCl/dJjMz7jRrtkxztGUViz/TaPlNsxiiSAmaT8dpjNqObLayNO4GYcfs1YdV9IJmASjzmt3mj0sTrpQs4eex3XDP+FWqqxnPPQ9kUn/U6RDUDECQHcXLEydRW+ujQ3GgmD9GxCh2+Dtyamw6tgzhLHN9O+5Yvynfw3u4tnJyYedBaMBvqSvmgZCsNbhexQaGcnz6ZiZF7167ous5HJTl8W11Ih8/LyLBoLhs1g7igY3uKRyQjgXbrpfD56xCTCO/kQPggK/hUU24kSHmboCjXGM2prwJnM3S6Yf++GWYLhDggKg4SUiFtLGRmG8nKiNEiWTmGbWus5IntK9D2+5u58893kFxeys1/fwZ3kJ2rx8zq3qXW5zMKAj52B9RVGcnv21sGOPrh6akd37C5q0ro6LBYLhs1ncTgcHRdJ7+lhv/lf09rew1hnmZOiYhkRkgoWkcDuBu7EiQnemcruqcNPG1GcuQfPeo0kiO1++gRXSNIRnK0NzFiv9Ejo9GzFUx2NNmObrKjmezoZjtt6VlUnX99zye1561K10h6459YC7ey63dPIllsSD4vx7ecyFkJ5/PE2CeIscQA8MxbW3C1ewmxm7nuwuwDHnJ3awPP5K4kSDEzxhHXazKyy1nH37cs5dz0bCZFJrG2djdflOdy55TT/dW2Py/bwedl27k6czbRtmA+3L2VivZm7pt21jFdi0QkI4PBY3fCsw8a0yOvbzDetIeKihLIWQ15m6E4Fyp2G+tVWpthv06hAFisRrISHQ+JaZCWaYwMZc826qqI+hHDWk5jBf8tWE2rd+/20fHbNnPTU3/jm3mnYb3rKWbG9lLsr9MN7/wHwqPhjEt7PkY4ZE2d7dy+9gN0dMLMNh6YsRibqfuasar2Fv6w4RN0jK2qD844u9f1EqqqoqoqXq/X/7XP5/P/u+eiaZr/X03T0HUdrWsaTtd1+uStRtcB3fhXkpBUD0GlO2nvyGPSFQ9g3u88D5aMuH1e/rTpcy4bOYNPy7aRHBzRazLyTO5KPJrKL8fP81/3l81fkBIcweWjj0PXdW5d8x6nJI/j1GRjuqdD9fDb1e9y9ZhZzNinsd6x5lDfv8VCgf50058gOQP+cC2cNx7+/SXMmBfoqA5N0gjjcvrFB96maVBRDFtWQ/5m2J0HlSVGslKcb1Sl3Z/VBqHhEBVvJCcZ4/YmK/EpBx4vDCkTI5P483HnsqG+lC315bjUTpSTzsL70r85Yf0qpN4SETD+Ni47/OZoQs8KW2r9fbTmxGf4E5HKyko0TcNsNtPW2sol9pF4fT4USWLL1q1I+t6k4UgTB0mSul0URUGWZf/FZDIhyzKKomAymTCZTCiK4r+0+lZTWRhxwOPq6EhI6BKYZIXQ0FCirQqOK2ciZU2DJz457A88rxWuZ2JEIuMi4vm0bNtBjy1qrWdh0thu12VFJPh71NS723B63YwL39sGIUixkB4aTVFr/TGdjBwqkYwAH5Vs5ePS7n+McUFh3D/9rF7vc8jzh4kRBN/7ML969I+EXbcQ0x+eh7N/3G/nMiBk2aiDkjISzrr8wNs1zVgLkLO2K1nJh6pSI1kp2mFct+z9fe4gGW9IYREQk2CUy88YB2OnGMlKdPyBzyEMOmbZxKzYdGbtm3icew288k9Y9gGcfE7ggjuGdO6zSybSunfrbk1NDZqmIcsyuq4TjAmfLKNhJB8m2XRYiYPZbO6WbBwtTdOore2pu7OO6oOKep2mDhM/u2AKNDXAxVONEZIHXjzsRGRd7W5KXY3cMeX0Qzre6XETZu7etC/MbKOla5TY6TUqv4ZZ9jvGsvcY4eBEMtIl0e7g1xNP9n9vOsgf9y5nHc/mfddt/vCpHd92mz/8ojyXZZX5xvzhxPm8F53Mwr/+npS7rkIqL4L/u6+fzyiAZNlIJjLGAVcdeLumGbVVctYaoyi786G6FJrqjO93bOh+vCQZtSIckV3JSgZkZBnNBifNMmqvCIPTjX+EV/8FT94jkpEB4tjnDbGwpY6TEozp4eDgYKP3y6hR6LrOvRs+pqajFYCHZp5nlOkfYK2trdTV1dHa2oqqqsCeDx5GpTJ7sJ20EWn87+MCXO1eHOZOeP4h+Ned4FPh6t9BVM+dgHvT2NnGG0Ub+fXE+cf0Wo7BRiQjXWRJOuT/jF9V5DM+MoHTkrMAOCctm9zman+3Xl3X+aoijzNSJzA5KhmAS+ecw+2/aefev/+BiKf/YBQ5+/PL/XY+g5osG4sVx0zq+XZVNZKSnDWwMwdKdxojK011xoLbbeu6Hy/JYOtKVmKTjKmxkVlGMbhJsyAsvN9PSeiFPcT4HWz53tjhteeNw9lkJKXhUYGNbxjKdMQRrFhoUz2sry/hFNdYUkMiMZvNeDxGTY5VtcX+RGSMI3bAEhGPx0NdXR3Nzc243XtHDGRZJjQ0lIiICMoryrCYbaSkpPjXGMg+L9mb32LOqmegvQX/AvvLbjrsGEpbG2n1uvnTxs/912no7GypZXllAU8cf/EB62fCLDac3u4jHE6v25/4hZmNn5/T4+72s3R63KSEhB92jMcikYx0qe1o5dY172GWZTJCozkvbXKvpZKPdP4wOSqJJf94lYtuvxY+ecXYwfLCN2Inyv4UxRj1yJra8+0ej5GUbF9nJC2lhcbuoKY62L7e2NK8L1kGW7CxoykmaW+pfdEX6AetqNzJiqqdNHQatXUS7A7OSp3IhMjEXu+z/xTmxb+4g7HXnwWP/A4u/Dn6G0+if/4GxRmjeeTme0gOjuCC9MmMCY8bqNMa1iwmhRMSRvF52Q40XefvW5eyIDGTUVoQnZ1u/rdzDd9VF/mPn584pt9i0TSNpqYmGhoaaGtr8y9oBbDZbISHhxMTE4PFsrd4XmRkJLIsI0mSsePqk1e45F+3EtzavUcMtiCIS+JwjQ2P556pZ3S77r8Fq4m3h3FaclaPC3kzQqPJa67u9rqf21RNRqgxKhttCybMbCOvuZqUEGPNS4fqpbi1npMSRh12jMcikYwA6aHRXD1mNnH2UFo8HXxcso2/bV3CvVPPNGqH7Odo5g+bNdXYvvjLxbDyUzhrtPG9eEM8dBaLkURMmtnz7W63Ubl2+3oozIGSQqgtN0rtV5cbn9L31VNfoNETjZ5Ax3hfoHBrEOelZxMbFAq68Yn6yR3fcNeU00nsmpLcV09TmM/s3MBfQxyYP/4ffPQSumxC1nx4McqS73Y18HDOV9w/7SxRdruPnJkygZ0ttexy1tPpU/m0bDvnW0cQJVtZ3VLkX+B6QvwopkT17QLy9vZ26urqcDqd/pEYMMq+h4WFERMTc9BdFSaTyVgL8tV78OhtUFJAMNIBdcvqwkfw3ts9LJbfR1vHgeV4bYqZJCW823VWk0KwYvVPs7+Q/z3hFjvnpU8GYEFSJn/fupQl5blMjExkXV0JJa5Grhh9HGAs3F2QNJZPy7YRGxRKtC2ED0q2Em4NYnK0WKB/KEQyAt0+5SUHR5AeGs3taz9gfX0px8eP7PsnlGV48hN48EZ4/XE4bQS8tVnsKukrNhtMPd649KTdZTQr3L4Bdm03RlYOuS9QitFxefQEmHCcMRW0z6e64Sa7a5pxj3PTsllRtZOi1oYek5FuU5h5mznnjSc548P/onj3vinJmg9NkmgNc3S778aGMhbZRUv2vmAxKdw0YT6vF65nTe1udHTCZQuSJDHFHMVWrZlTk8ZxRuoEYwTiKKiqSn19PU1NTXR0dPh34siyTHBwMBEREURFRaEcTpXnvM1w8/n+b6X9atj4JBO1USNxtR9a7X+L+fDWhjR2tndLf0aGxfCzzLl8ULKF93dvITYolOuzTvAnLwCnJY/D41N5eeda2lUPoxwx3DRerEs5VCIZ6YFdsRAXFEpd15zq/vps/vCOfxmfwv92M5w1Bv77LYyf3rcnIxzIHgLHnWxcerKnL9D29UayUl4ENfv2BVre/XiT0lVqvytZGTHGGFkZPwPGTRk2pfY1XWNDXSken+ofnt6ffwpzdwFcNAUkCXMP20Q1SaYtuPtoYEVbc3+EfcyymcxcnTmbc9Ky2VS2C6XFSAgnm6P40dg5hAcf2Wispmn+hadtbW1dC08NFosFh8NBTEwMQUFHsQ4lMxuuvw+e/oOxgH3ftgEYyYkrfhQh9h/uuWUxm5gzufdpRYDfTFp40O8BpsWkMi0mtdfHkCSJs9MmcXZaL2vhhIMaHq+Sfczt81LndjGrl0VdfTp/eOWvja2st1wAl8+Ch9+CBef1y3kJhygkzOiuPPuUnm9vbjQKwu3YuDdZqa+C2kpjlGXtsu7H+/sCxRqjXyNGGy+2E44zFvEO8jVDFW3N/HXzl3g1H1aTwi+yTiAx2NHjsf4pzPgUOOca+OCFnh9UAldwaLerXN6etnUKRyvCaidZs9KKkYxIQG1FJY7Row95VMTtdlNXV0dLSwudnXt/TyaTibCwMKKioggPDz/kLb6fryxmx64GwNg8YLOaiI4IYmx6FONHRSHJMlx/L8xcAL+7yKjQuw9Z15h57kJmnnRgVdXD1eLq5Ll3crhicRaxkcfulGygiWQEeLtoI5Mik4i0BdPi6eCjkhxkJGbEjAAGYP7w5HPgldVw9QnG0OTvHoErbx6o0xcOV3gknHCGcelJfU1XX6BNRl2V8iKorza2L5fkw+ol3Y9XLBASCpFdpfZHjDH6F004ztgeHeBkJS4olLumLqJD9bKxvpQX81fzm0kLe01IAGNq6/7njOZ3T913wM2ypuEKCT3wfkKfc7vdtLZ2H+VtbW2lpaWF8PDwHu+jaRoNDQ00NjbS3t7uX3gqSRJBQUH+hafmo+gGnpYUxmlz09E0nXa3l90VTr5eW0pBSSPnnjwaWZaMqdbkkQckI0BX6QBhuBDJCEb55Gfzv6fN20mI2cqosBhum3wqoV3TLgMyfzh+Ony8E36UDX+7Bcp2wR2P9+dpC/0lOs5IMHurq1FTblSvzdsExXlGNdv6auPfoh3w3efdjzdbjdGaqDjjzX1EpjGykj3bmObr52RFkU3GAlZgRGgku10NLKvM9yff++o2hSlJcP29bLKayH7sXmQd0I03NVnXce03TRBitvbreRyr6uvre7y+tLSUsLAw/2iGy+Xy1/zweveuxTCbzYSHhxMdHU1oaN8lkCZZJjjISGZCgy3ERQWTEBPM218WsL2wnoljYuh87Sksm75j/cyrcUamMm/JX5BVD5LZAolpfL+5gl2lzWRnxrJ6ayXuTh8ZyQ5OmTMCq8V4e9N1ndVbq8gpqKPDrRLpsHH8tGTSk4xk+rl3cgB4+aMdACTHhXDR6WN7iFjoTyIZAa4d18tCxy4DNn8YlwxflBgJyetPGJ+oH/844J+MhT4Wlwyn/si49GRPX6DcjUZBuIrd0FBtTAEVbgM+6X68xdpVaj/O6AuUPrZ7X6A+puug7lPlc189TWF+OfU4Gu96lAUP3Ybe2YHUtYZk/5GRpB4WxAo9O9Qt15qmUVdX1+NjeL1edu7cic/nw+12+8vA1+udlPva0CwKizOnkXCwEbA+lpoQRkxEEDtLm5gY3I762N24YkaR8oeHsYbY2XD8fDL+eR0RiXHGrhugubWT/N2NnLtgNB6Pjy+/381Xq0s540SjKePGHTVs2F7DwtkjiI20s62wng+WFXLVOeOJCLNx2ZnjePWTXH506hiiwoOMERlhwIlkZLCxhxgjJD85CVZ+1pWYbBjWOzaE/fxQX6CyXcYC27zNRl+gqlIjWdnTF2j5h93vs6cvUHSCkaz4S+3PMhKjg3iveDPjIxOJtNrp9Kmsrd1NQUsNN02YDxzGFOaiK9EnnIDn2gVYWhqROHDNSF2HE03Xem3YJux1qFuum5qautX22J/LZSQzVquVcsnNspYSLsucyYSurrOP71g+4F1nIx026hrbab/2bBSvG8dDz6MkGl3Pj1s8j+c8bzMjK4Y9H/NUn8bpx6cTGmy8Rs6fmcr7X+3kpBkpBAeZWb+9hhkT4hmbbjzGidOSKatysnFHDQtmjSDIZrwN2qyKf6RGGHgiGRmMZBle/Bbu+LHRYv30EfBOjih7Lhh/GyNGG5ezrjjwdk0zpn5y1hiJSXG+sV25sdZYbJu3CZa9t/d4qasvUOj+fYGmQvYsWr1uXsxfRYungyDFTFJwODdNmE9WRAJw6FOYiXYHryletv7uPu574HfYOjtps3cvKvhdTTEeTeMnmXOQRZfngzrULdfV1dW9Poau60iSRGxsLMnJyfx3zXuckprlrxp9TeZsfrv6XTbXlw1oozcdGL3qVezl+Xxy1p8oyrND3kb/7apPo7l978hcWLDFn4gAJMYEo+vQ2OJGMcm0dXhJjO0+JZgUG0JdU0e/n4tw6EQyMpg9+JKxJuCp++D0NHht3WEt2mp0t+FS9658D1GsvVaVFYYJWTZK4Y/M6vl2VTXWpWxdDQU5UFLQVWq/tse+QD+WJKPSZdg+fYFGZhnVayfOOuQpzHV1Jayo2gkRUfzp1ge470+3cc3uckpnnEZecw05TZX+40aFxTCvH6uCDjf7brlOC46gpqbGX/Njz6iIT9fQJQkFCZPJRExMDPnOWkram7g8buKg6jrrzdvKzCWPUDd6FhVTzuSK0zIPOMZmEbU7hhuRjAx2199rfFq9+2pjyubJz2DWgu7HdLqhrtLoydKl0d3G3es/QtX3DtEqkswD0xeLhORYpig/3Bcof7NRFK6gqy9QdZlRaj+3t75A9q6+QIlG8pzRlaxMmgWhxnqDryry/Hc57YTzMZ2xlTFL3mPMrx5iYfI4NjeU89SOb4xjK/M5MWG0GB35AXu2XAfpMiOUEK4IHkVNQbH/dovF4q94+tuNH3L1mFnIFU0oikJSUhI7pTa2txRjsVhwOluAwHedLS2qZvbbd+KzBNHxwCu0rW9EliUcIb0vbna2eXC1ewixG6MjVXVtSJIx3WO1mAgOMlNZ6yIlfu+0YEWti/ho43XQ1LVGRO+hHo4wcEQyMhSc/WNjy+fPT4WfnwL3/gfO/6lxm9cDN5wBm76DL8v8jchcame3RASM0tsutZNIRDIi9EJRjJ1dvRXf6+w0hsy3rd/bxLCmHJrrYHtFj32BNJudn9lsNIdH0hafzKRT2uGkxfDxy7BqCcw9jclRyYxxxFLQUkttRyslrgbSeymsdqzb02yuqbmJK20ZyEhouk6d101CaDipsQlERET0WPNDlmV8vp4XHw80n6bR1uHttrVXefR3TKktgD++QMq4dBJLPHy4rJATpiUT4bDR1u6lqLyZUakR/mRCMcl8vrKYk6an0On18fXaUsaMiPSv/5gxIZ7vN1cSHmolJtLO9sJ66po6/Atc7TYziklmd0ULIXYLikny78QRBo74iQ8VM+bBe9vhkmlw38+MnTY3/hHu/SmsW2Ec88GL8JNbAxmlMNxZrcYunezZPd/e3g65G4wmhoXboLQQtbqE4MY6IpoakYsKkL7fpyjc3VfDMqOGRFZEAgUttQA0dXaQLsqQAMaOmMbGRhobGw9oNme37a358UT+tzQq7UyJOrAT8p4t13Gy7K+YGuius7srnPz7zS3IkoTVamL87hXMXP8K+olnIi2+EoDzFo5m5cYKvvhuNx2dKsFBZpLiQrotNA0PtTI6NYJ3l+7E7VHJSA5nway904RTxsXS6fGxYn0Z7W6VKIeNc04eRUSYce6yLDH/uBRWb63i+82VJMWKrb2BIJKRoWTEaPhsN1wwEZ59EJa9b8z/7/HGk3D1b8VWYCFw7HaYdoJx6VLhrOcvW74EYE5oLFeFJhpFrL5+H/aZFnB69i4oNB/jf8NtbW3+ZnP71vxQFAWHw0F0dPQBzeYOZct1oinW/3iB7Dp7+vHpnH58+t4rinLhwVvAEYX06Pv+qy1mEyfPTOXkmb2XUQDIHhtL9tjYHm+TJInZkxOZfZCS8BPHxDBxTMxhnYPQt0QyMtSER8JnxXDmyO6JCBi7JtZ81XsZc0EIgMTgcGwmBbdPZX1bA+dnHU/oyKxua5/cPi9ra0sAMEkyI0IO/HQ/nKmqSl1dHc3Nzb02m4uJifFPvbxXvJnx+uFvuR4basehy3xUsnXwdJ3VNPjJPECHZ78aNr2chMMjfutD0eolxoLV/ZlM8OZTIhkRBhWrSWFWbDrLq3bi0Xw8sWMF12TOJi7I+GTf4G7jfzvX+Hd+TY1OOWAh5XCjaRpOp5P6+npcLle3dRxWq9W/8LS3ZnNHuuV6U3EB2XI4G+vLBk/X2d9eZGw9/8W9RmVh4Zgk6UNgCbHT6cThcNDS0nLA0OQxZ/t6uOoE8HYa47L7k2X4soySICsPbv7igJvvnHI6qSGRAxCoIOzV2NnGg5s+p3WfZnipIZGYJIndrY3oXS3ibSaF2yefRrx94Kp+DpSDNZsLDg4mOjoah8NxyM3mjkRpaSl1dXVMnDgRy2AopPjl2/DbC2FMNry9OdDRCP3gUN+/xcjIUHPvT+FgW+10qHzlEZ47/qQeb97RVCWSEWHARVqDuWnCfP61bbm/d02pq7HbMXbFwg1ZJw6bRORQms3FxsaiDOC0xJ7Gdp2dnYFPRprq4fYrjHVDzy8PbCxCwIlkZKi5+9/w2WtGqfjSncZ1JgV8xgp5dA3HG09TO3VyjwtZ39u9BZ+ucWbqxIGLWRAwRkLum3YmK6t38W11IXVuoxR5hNXO8XEjOTFhFGGWnqclhorW1lbq6+t7bTYXExNDSEjIQR6hf+1JQDweT8Bi8LvmJGOE97EPICw80NEIASaSkaEme5Zx4Z9QW2ksWF291Oj02mhsiwxub+NH77zMqqtuJLOromJuczWV7UZhow9LckgKjvCXfRaEgRJstnJaShanpWTh7dr5MZB9T/qax+Ohvr6e5uZmf7M5MBaehoSEEBkZSVRUVL9OvRyOQZOMPHq7sQD/jMtg3tmBjUUYFMSakeFC13nhixcI/+ZzzvjiA8yqivzHF6Frvz7AF2U7eHf3ZsBY0HZrtljoKgiHQ9M0mpubaWhooK2t7YCFpw6Hg9jYWKzW3iuGBpLH4yEnJ4eYmBhSUw++Xbbf5KyDK2ZCVDwsLRelCIY5sWbkGFPf2cbqYBssOpctZ1/GvZ9+CHf+2Og7cu0dIEmcmjyO1bXFVLa3sMtZR027kzi7SO4E4WA6Ojqora3F6XR2G1FQFIXw8HCio6MJDQ0dNKMfB7Nnfcq+U0gDyuOBX5xqNGh8YYVIRAQ/kYwME3UdLv/XE2JHIP3hOUgYAY/fBZ+/Ae9uRZIkJkUl+adr6twukYwIfeKOtR/Q0Nl2wPUnJYzmslEzerzPhrpSPijZSoPbRWxQKOenT2ZiZJL/dl3X+agkh2+rC+nweRkZFs1lo2b4twT3F1VVaWhooKmpifb2dv/UiyRJ2O12IiIiiI6OHtCFp31lT8IUsJLwNy6G1mb47SNGEUdB6DL0/jcJPdq3qZhX8xmfPE5aDE//AUbsraDo3edFSDQiE/rK7ZNPQ2PvjG9lWwuPblvGtOiepwJ2Oet4Nu87zk3PZlJkEmtrd/PUjm+5c8rp/toXX5Tnsqwyn6szZxNtC+bD3Vt5bNvX3DftrD5dZ6Jpmn/hqcvl8pdLh+7N5ux2e589ZyBJktTtHAfMu8/Bqi8hew78+OaBf35hUBPJyDCRYHcgS0bDrI31pfwoeTzmWy+GkePhoTcAI0nZUF8KgIRE4jDZQikEXuh+Rco+L9tBjC2EMY6eS3R/VZHP+MgETkvOAuCctGxym6tZXlnA5aOPQ9d1vqrI44zUCf6F1tdkzua3q99lc33ZUbe093g81NbW0tLSgtu9d6u8LMuEhoYSFRXVa7O5oU6SpIEfGakphwd+AUHB8O8lA/vcwpAgkpFhIsxiY3JUMhvry3B63ZTduIj00kKkf34AZjOdPpVXCtfS3NX/IzsqiXDr8PikJwwuquZjTe1uFiaNRepl9K2otZ6FSd2bkWVFJLCloRyAencbTq+bcV27wQCCFAvpodEUtdYfdjLSW7M5SZKw2Wz+bbcBr70xAGRZ7tZsb0BcfaJRfuDxJUb/IkHYj0hGhpFFKePZ2lBB4u5C0tesoDohmU8SopDyviensYIOn7FoTZFkFqWMD3C0wnC1snoX7aqHEaER/sJmIYqVSFuw/xinx02YuftoSpjZRktXQT+n10ia9y8LH2bZe8wP6a3ZnNlsxuFwEBMTQ2josdca2GQyDewC1geuh4piuOh6o/u4IPRAJCPDSGpIJNeNO57UO/4PXZJ47Prf0lhX0u0YRZL56di5pIUeW43IhIHR6G7j9V3r0YHHti33X69IMg9MX9wtIelre5rNNTU1HVDzo6dmc8cqk8k0cHVG1i6Dt56GpAy468mBeU5hSBLJyDCT/foz0NxE7qILaY2Jh30KS02PGcEpSWO7NccShL5U0d5MT4WLVF3DpXYSiZGMhFls/rLwmqZRXV1Nm7sDR9dISJjZqMTq9Lhx7FOV1elxkxIS7r/fDzWbi42NxWYb3k33DpfJZGJAyku1t8ONZxsVol9c0f/PJwxpIhkZThpq4dkHITyKcX9+nb/rPhrcxnbLKGswNsUc4ACF4W7Pmo8fkhEaTV5zNfPiRlFYWEhbWxudUgcZodEARNuCCTPbyGuuJiUkAoAO1UtFayMzrbFs27btgGZzDoeDqKiofm82N9Tt6U+jaVr//px+fgp0tMH9z0OcqPYsHJxIRoaT/2/vvsOjKrMHjn+nZGYS0pn0QgoQCFVAEBBRQUFsWHZRXESsu5ZdxbJ2LKuo67rsKoq6tt+qi2XXjqCgiCKK0iEFQkghIb2XybT7++MmEwYSSCCZSTmf58ljcuedmzPXkDl57/uec9sF4HDAs++DVosJrcyCCI9xKgrbywvaffzbwkwWDp0MwIyYFF7atZ6tu3eic6h/pQc7dEyKHgqoC0tnxAzjy7zdBNo06BtsVDfWMd+UhLbehtWLzeZ6u5ZrZbVau2/W6P+egx0/wpRZMHdR93wP0afIv+C+Ys37sPsXOO0cmHi2t6MR/dBnuTuptbW/uDS7pgxFUdBoNET7+HOlXzJOu1OtiQMEaQ2E+fhRW1tLaWkpUbU25hkS0FfU06Q4aFQchAWHkhgV49Vmc71dy46hpqam7klGcvfBc3dDQDD889OuP7/okyQZ6Qvsdnj4WvAxwrL/eTsa0Q/tKD/Il/lpbscMWj1WZ2txraLGWj7O3cE55sHs27cPnMpRhfd27drl+lyr1RISGERoaCihoaFy66WLtNym6ZYdNU4nLDoDFAVe+Rr6wVZp0TUkGelF2iu5fd3a1UxsrIf7l4Of+1+MPbXktug7HE4n72T9gtK8dHWcOY6LBo0myi+IGquFbwozWZ2/BwVIL8wjvrz9gltarZawsDDCwsJ6bLO53q7lunbLjpr7fgdlRXD9fTBiQtefX/RZkoz0Im2V3H594/8Y/8m7MGgoXHGz2/ieVHJb9F3byw9S3VxMb3hwJDcMO9014xFoMDE3YQw+ClhKqhikG4CCgob2WxHExMS0WyxNnLyWZKTLZ0a++QS+/I9a9fmPT3btuUWfJ/OevUiAwUSQwdf1sbOigAXvvYlWccKLq44af3jJ7Si/IC5OGEO8fwjrC/cCHFVyO3ZACItSJlPV1Mj2snxPvzzRS+2pLHR9fk7sMLQaDYqiUFRURH5+PmlpaURW2EnQ+6PRaI6ZiDidThoaGjwRdr/VsoC1S/vT1FTBPVeot4rf2NB15xX9xgklI8uXLychIQGTycSkSZPYvHlzh563cuVKNBoNc+fOPZFvKw5jdzqoWvsBo3f8guayGyEu+agx2bVlDDusnDaoJbeza8uA45fcFqIjGu2tf2FH+ar9jurr6ykoKKC0tBSTyURCQgKfOgr4T2M2P9hLiYyMJCAgAJ3u6Nm36upqj8Xen3VpMnLtdLBa4Kl3IDi0684r+o1O36Z57733WLx4MStWrGDSpEksW7aMWbNmkZmZSXh4202xAHJycrjrrruYNm3aSQUsVDsP7OGyla9jCx6ITzuVDT1RclsIf5/WtR05dRWEmgbg7+9PXFwcBQUFNDY24m8OpbipDgWo0juIiVHXLSmKgs1mo6GhwfXh6+vbzncSXaVLO/cufxj27oRzLodzLuuac4p+p9MzI8899xw33HADixYtIjU1lRUrVuDn58frr7/e7nMcDgdXXXUVjz76KElJSScVsFA5/vFnQior8Fn6DsguA+FFYwa2FrRak78He3PV3/DwcIYOHYrFYiF3XxZmrZq0jD1svEajwWAwEBwcTHR0NIMHDyYkJMSzL6Af6rLOvRnb4ZW/QGg4/PW9kz+f6Lc69S5mtVrZsmULM2fObD2BVsvMmTPZtGlTu8977LHHCA8P57rrruvQ92lqaqKmpsbtQ7Sq+vpDxm34mpLJZ8PUWe2OO7zkdosam6XNkttuY6ytY4Q4ntSQKMJ91YZzOXUV/G3nOnZVFFBvs1LqtLDfaAUFLjYOIkkXwLSowV6OWOh0upPv3Gu3ww0z1Doxr6+XP4rESenUbZqysjIcDgcRERFuxyMiIsjIyGjzOT/88AOvvfYa27dv7/D3Wbp0KY8++mhnQus/7Hacz/yJ8lAz4c+8f8yhLSW3D2/Vnl5ZdNyS2wdqy5gubxiig7QaDYuGTua5XeuwOR1k15bxwh73XiShGgNzTYOYYYzGVlUHEd3XME8cn1arPfmZkT/NheoKuP1pSBreJXGJ/qtbU9na2loWLFjAq6++itls7vDz7rvvPqqrq10f+fmys6OFc8l1hBYXkrHgVnQBwW6PvZH5Ix8d2O76ekZMCnsqD/H1wXSKGqr5LHcnuXUVnHlEye1V+bvZUX6Qgvoq3ti7iWCjL2PNcR58VaK3Swo0c/vIsxlobDvJqNc6sUUGodfpOHjwIAcPdqyHjegeJz0z8tm/4fsvYOREuPaergtM9Fudmhkxm83odDqKi4vdjhcXFxMZGXnU+P3795OTk8OFF17oOtbyD0Cv15OZmUly8tG7QIxGoxQ8akvWHpRV7/DjpGmkzPvjUQ9XNDW4bZtMDgzj+pSpfJK7g49zdhDuG8AfUqe59auZFTscq8PO2/s202C3MjgojD+OOEtqjIhOGxwUxuOnXsiu8gK2lOVTZ7Ng1PkwPCSSSWEJmPQ+2CPtpKWlUVxcjNVqlTVkXnJSvXzKimDJdWDyg3+t67qgRL+mUTrZS3rSpElMnDiR559/HlCTi/j4eG699Vbuvfdet7EWi4WsrCy3Yw8++CC1tbX84x//YOjQoa4+CcdSU1NDUFAQ1dXVBAb248qg5yVBYQ58nA6JKd6ORogT4nQ6ycjIUHfZ+PszZMgQKfXuYQcOHKCiooJTTjml89f+gqGQtw9e/gomn9M9AYo+o6Pv351OjxcvXszChQuZMGECEydOZNmyZdTX17NokdqZ8eqrryYmJoalS5diMpkYOXKk2/ODg4MBjjoujuONv0LBAbUDpiQiohfTarUMGzaM/fv3U1NTQ1paGqmpqZKQeFBLf5qmpqbObaV+6k9qInLJdZKIiC7V6WRk3rx5lJaW8vDDD1NUVMTYsWNZvXq1a1FrXl6e/FLpajVV8PwD4B8Ej/zL29EIcdK0Wi1DhgwhJyeH8vJydu3axYgRI07u9oHosJZkxGq1djwZ2foDvPtPiIyHJa90Y3SiP+r0bRpv6Pe3aa6ZDls3wPOfwfQLvB2N6OdW5+/ho5wdnB2dwrzk8e2O62iTxn1FB5mqD6NOsTNsyBBigzu+2F2cmMrKSrKzs4mPjycsLOz4T7BY4KxwsDTCqv0QFd/9QYo+oaPv3zKF0dN9v0pNRE45XRIR4XU5teVsOJRF7GGLoNvS0qRxamQSD447j7EDY3kp7XsK6qtcY1qaNM4YMpqgyDAGaHTs3bePKqkr1O063bn397Ogvhbuf0ESEdEtJBnpyZxO+PN80OvhH594OxrRz1kcNl7L/JEFQybhpz/2wvPONmkcHptAUlIyWjRk7s2ksrLSEy+p32rZONChkvD/eUH9g2ji2fCbm7o5MtFfSTLSkz12E9RVwy2PS/Mp4XX/yfqVUSHRDA85ehv/kU6kSWNE6EB26Gtpwkl2dvZRJQRE12lZm2Oz2Y498OABePp28A+EF7/s/sBEvyXJSE91IBM+eg2iB8F19x5/vBDd6JeSHPLqKrgkcWyHxp9ok0Zfky97fa3opDiaRxxzZsTphGumqf99aTV0oAyDECdKkpGe6rYLQQGe/9zbkYh+rqKpnveyt3LdsCkeKYbn1GoYOXIkPj4+FBcXk52d3e3fsz86brO8h6+FkgJYcAeMmey5wES/JPvoeqJ3/qHu5T//Khgi9ViEd+XVVlBrs/DE1tWuY04U9lWXsL5wL8tPn4dW4/53TWeaNAYZWreW1lgtxPkHo9frGTlyJBkZGVRWVpKRkcHQoUOlbEAXOmZ/mu9XwadvQUIK3P03zwYm+iVJRnqauhp47h4YEACPv+ntaIRgWHAkD4+b43bsrb0/EekXyKzY1KMSEeiaJo1SHK17abXatvvT1NXA4svBxwBvbPB8YKJfkn/VPc0dl4LNCo+9oe6iEcLLTHofYgYEu30YdXoG6I2uPkfd1aSxpTia2WymqamJXbt2dWwHiDiudpvlXX82NDWqfwwNDPd4XKJ/kne7nmTTWvh5HYyaBOdc5u1ohOiw7m7SOGjQIHx8fDh06BC7du1i+PDhmEymo8aJjtPpdBxV8/Llv0DaFjjrYphzpXcCE/2SVGDtKZxOmB6mTpF+cwhCpAqlEEcqKysjNzcXjUbDkCFDCAgI8HZIvVZWVhbV1dWMH99cRXffbrh8NAQNVH8Hycys6AJSgbW3efI2qK6Amx6SRESIdpjNZgYPHoyiKOzdu1eKo52Ellojdrsd7Ha47iz1gde+lUREeJwkIz3BwQPwwUsQEQu/f9jb0QjRowUFBTF8+HA0Go0URzsJhzfL487fQFUZ3PyY7OATXiHJSE9wyxxQFCn5LkQH+fn5MXLkSFdxtPz8fG+H1Ou4kpENX8K3H8PwcXDTg94NSvRbkox42/sr4EAGnPsbSB3n7WiE6DUMBoOrOFpJSYkUR+uklmZ5mn//DYy+6u0ZIbxEkhFvamiAZ24H3wHw5NvejkaIXqelOJqvr6+rOFqb21XFUVqa5TkNJnjuQ7X/jBBeIsmIN915GVib4JF/Sd8HIU5QS3G0wMBA6uvrSUtLk4SkA4wvLQGgftqFMG3OcUYL0b0kGfGWXzfAxtWQOh7Ou8Lb0QjRq0lxtE7a+TPaN59F09RI47QLvB2NEJKMeIXTqc6KaHXwgjTCE6KrDBo0iKioKOx2O7t27cJisRz/Sf2N1Qq/nwVaLRiMx26WJ4SHSDLiDc/eCZVlcO2fwRzp7WiE6FOio6MZNGgQTqeTtLQ0amtrvR1Sz3LLHKirhj8vQ6PTywyS6BEkGfG0Q3nwzj/BHAV/fMLb0QjRJx1ZHK2iosLbIfUMH76itpwYNw2uvBWNRiPra0SPIMmIp916AShOWPaRtyMRok87vDjagQMHpDjaoTx44hbwC4AVXwHH6NwrhIdJMuJJH78B+3bBWXNh9CRvRyNEnyfF0Zo5nXDNNHDY4cVV0NxksN3OvUJ4mCQjnmKxqH+VGH3h6f94Oxoh+o0ji6Pt37/f2yF53mM3qTMjV94G4053Hdbr9Ud37hXCCyQZ8ZR75kFTIzy0wvVXiRDCMw4vjlZVVdW/iqNtWgv/+xfEDYb7/un2kE6n81JQQriTZMQTdmyC9Z/C0NFw0dXejkaIfkmr1TJ8+HCCgoL6T3G0hjr408Wg94E3Nxz1cEt/GtlRI7xNkpGu9t3nsOOn1q+dTrj9EnVP//IvvBeXEAKNRsPgwYPdiqPZbDZvh9V9rp8Blga1ynNY1FEPtyQjTU1Nno5MCDeSjHS1+34HCybDozdCTSX84z4oL4YFiyEi1tvRCSFQi6NFR0djt9vZvXt33yyO9vozsHuzWuq9nRlZSUZET6FResHqpZqaGoKCgqiuriYwsAc3c7I2wYTm9SBaHQwIUIsLBZvh2yJ1dkQI0WOUlZWRm5uLRqNhyJAhBAQEeDukrpGdDpeOhIBg+LYY9Po2h1VXV5OVlUVsbCwRERGejVH0Cx19/5Z3x65UUdL6udMBtVWgKBAZBwelvbkQPU2fLI7mdMJ1Z6m/e15d124iAmA0GgGwWq2eik6INkky0pXKito+vncHzE2FV/4CNvlHL0RP0ueKo91zhXpr+IYHYdjYYw41NHcLlwWswtskGelK7SUjDgfYbfDCQ/DeS56NSQhxXH2mONrX/4WvPoAho+DWx447XNt861iSEeFtkox0pfaSEW3zXv6Lr5GtvUL0UC3F0QwGQ+8sjlZVAfdeBQYjvHH0Nt72aDQaSUaE17V/M1EcV4WlnhJLDfU2Gz5aHfGF2QTpdGjcWnJrIH4wLHkVxk/zWqxCiOPT6/WMGDGCjIwMV3G0oUOHumYQerRrp4OtCZZ9DIHBHX6aRqPB4fY7SwjPk2TkBCiKwg9FWbyT9QuHb0W6cu+vTG/5R63VqYWGbnkMfnc7NG+hE0L0bFqtltTUVLKysqiuriYtLY3U1NSenZD8837I2g2zr4CzL+7UU6VZnugJevC/rp7JqSi8nbWZt49IRABSMvegaf7cdvps+CwTFt0tiYgQvdCRxdF67I6TPb/Ca0+BORKeeqfTT9dqtTIzIrxOkpFO+jxvFz8Utd5LDjH4MiokmiS9L+ElxTg1GpbfeAfPXn8bjkgpciZEb3Z4cbQ9e/b0vOJoVivceA5oNPDa+hOqZaTT6aRZnvA6uU3TCQ12K18dTAdAg4arh07itPBEtBoN/O1unDo9f3voWbLMA6G2nF3lBYw1x3k5aiHEyYiKisJgMJCTk0NaWlrPKo72x4vUekZ3/Q0SU07oFJKMiJ5AZkY64eeSA9ic6nTmGVGDmRKRpCYimTvg7b+j/cMSZk+/1DV+Q1GWt0IVQnShgQMHMmTIkJ5VHO3jN+DHNTBmMly9+IRPo28uiibrRoQ3STLSCfl1la7PTwtPVD+x2eCmcyFqEFxzFyNCovHXq1UN8w4bL4To3QIDA3tOcbSSQnjsRvAdAC+vPalTSede0RNIMtIJjsOmMo265jtc+3ap/WcO5cGrT6K12zDo1LoiTkX+0hCiLzmyOFpeXp53ArlmGtjt8Pyn4Od3UqdqmRmRZnnCmyQZ6QSzyd/1+Y7yAvWT1HHwQyVcfx+8/BjOyUEM+W4NAGGHjRdC9A2HF0crLS31fHG0v9yi9rr6zU0w8eyTPl1LSXibzXbS5xLiREky0gmTIxJdW3e/LkijsL5K/cLkC7c8hvXZ93CgsOjfK/jzX5dwhu9Ab4UqhOhGLcXR/Pz8XMXRPLLm4pf18P6LEJ0AD63oklNKszzRE0gy0glmkz/jzPEANNhtPLFtNW/u/Ykfivbzcc4OHgzUc/vTL5I2fBSJOVlMmT9VetEI0UdptVqGDx9OUFAQ9fX1pKWldW9C0tAAt14AOj289X2XnVaSEdETaJResKerpqaGoKAgqqurCQwM9GosjXYrz+36hry69lfT++p8uLfGRuQjN0FDHQwdAy+vgYERHoxUCOEpeXl5lJaWotfrGT58uOvWx/FUWOqps7uv1fDXGwk1DTh68NWnw/aNsORfcNl1XRE2oO6i2bZtGyEhISQlJXXZeYWAjr9/S52RTvLVG7hz9Aw+zd3JxqJsLI7W+6waNIweGMMlCWOI9AuCsy+Hu+fBtx/DzFj445NqRVYhRJ8SHx+Pj48PhYWF7Nmzh2HDhuHr6+s2xmazoSiKK1GpsNTz0K+fYT9iobteo+XxCRe6JyT/XqYmIqed06WJCEjnXtEzyMzISbA4bKRXFlFjs2DU6RkaGN72XzSbv4E7LlOLEyWkwMtfQVS8x+MVQnSv8vJycnJy0Gg0bsXRmpqayMjIQK/Xk5qaikajIa+ugie2rW7zPA+cMpt4/1D1i/z9cOFQGBAI3xZDB2ddOmPr1q2YTCZSU1O7/Nyif+vo+7esGTkJJp0Pp5jjmB41hNPCE9tOREBd8f5dKcyZDzmZcF4ivPiIR2MVQnS/toqj2Ww29u7di91ux2Kx0NDQ0PETOp3qNl5FgRVfdUsiAmrnXil6JrxJkhFP0evVJlZvb4KgUFjxKJyXBLn7vB2ZEKILBQYGurr8HjhwgPT0dLfFoaWlpR0/2f0LoPQQLLoHRp3aDdGqpFme8DZJRjxt9GnqVOulN0BBDlyUAn+909tRCSG6kK+vr+uWx5H1OyoqKjr2xr/+U1j1LiSlwu1PdUeYLjqdTmZGhFfJAtYj7K0u4auDaeTVVVJtbeQPw6cdt9ldZlUxH2Rv5VBDNSFGP+bEj2RKhPuq9G8L9/L1wXSqrY3E+odwxZ1PknjlLXDzefDv52DNe/DiKhg6ujtfnhDCAxRFobCwsN3HKisrwXSMvwVrq+CueeBjhDe+654gD6PVaqVZnvAqmRk5gtVhJ3ZACFcmT+jQ+DJLHS/sWU9KcAQPjjuPGTEp/Hvvz+ypbP1F9EtpLh9mb+X8+JE8cMp5xA4I5p+7v6UmMQW+PggL7oDSQvjNWHj89+p9YiFEr1VQUHDMZnrHu1UTcevFYLXA0rchxNzV4R1Fr9dLMiK8SpKRI4wMjWZuwhhOOc5sSIvvDu3DbPLnN0njiPIL4qzoFMaZ41hbkOkas7Ygg9Mjk5kamUz0gCCuGjwRg1bPj8X7QauFu5+Dj9PVHTYfvAxnRcKuzd31EoUQ3aipqem4TfQaGhr4+WDbXb0v+OK/GPfthpmXwbmXd0eIR5HOvcLbJBk5Sdk1ZQwLjnQ7lhoSRXZNGQB2p4O82gqGHzZGq9EwLDjSNQaAxBRYnQM3PAjV5XDVJLjvdzJLIkQvYzQaGTx4MGFhYe0WP1NQaKqqPep4TH4O53/5EbUBgRx89OXuDtWlJRmRWiPCWyQZOUk1NguBBpPbsUCDCYvDhtVhp87WhBOFgDbGVNssR5/wtsfhi2wYNBS+eAfOMKv9KIQQvUZQUBDx8fGMGjWKkSNHEh8fT1BQkKvAmAYNw/RB+KEjJSiCmTHDmBAczeLnlwLw1z89yAvp39Pk8Exy0JI0Sede4S2SjPREMYPgs0z401Kor4HrzoLbLwXpHSFEr2M0GgkLC2Pw4MEMGj6UTy15ZNtrUYDfBQzllpTT+U3SOG748G386+v47rKFFEfFUNnUwC+lOR6JUZIR4W2SjJykQB8TNVb3GY4aqwWTzgeDTo+/jxEtGmrbGBPk4z5bcpTr7lUXuA4ZBd98BNPN8P2qrn4JQoiusncXnB6q9pF54SH4aS001Lse/qkkhyJnI2uthZSE+mDU+5CRkUH9ri3w6Vsw5yoS73jWNf6Hov0eCbslGZFmecJbTigZWb58OQkJCZhMJiZNmsTmze0vtnz11VeZNm0aISEhhISEMHPmzGOO722SAs1kVBW5HUuvKiIpUF0Br9fqiA8IJb2qdUGbU1HIOGzMMZkj4b874b7nockCt5wPfzgPLG3c4hFCeJfBCDWVah+Z156CG8+BKUFw5amw7F58Nq7G1KhWYB1jCiSlMh+fihIyGh0ULLgH5bHXSAgYSIjBD4CSxqPXlXRL2M3JiKwZEd7S6Toj7733HosXL2bFihVMmjSJZcuWMWvWLDIzMwkPDz9q/Pr167nyyiuZMmUKJpOJp59+mnPPPZc9e/YQExPTJS+iK1kcNkob61xflzXVk19XyQC9gVDTAD46sJ0qawOLUqYAMD1qCOsL9/LfA9uYGpFERlUxW0rzuHXkdNc5ZsYM483MTSQEhJIQMJB1BZlYnfajapEc05W3wnnz4ebZsHE1nDEQ/vKWx1bbCyE6YNAQ8A+CumpoWe/hdMCeXyF9G+c4HcwEnBoNuuattMnxKWTevoyi6ZdSdyCH6OhoV/M8DRqPhN2ygPXIAm1CeEqnG+VNmjSJU089lRdeeAFQt4LFxcVx2223ce+99x73+Q6Hg5CQEF544QWuvvrqDn1PTzbKy6wq5rld6446Pjk8kWtSJvNm5ibKm+q5c/RMt+e0FD0LNvpxfptFzzL56mA6NVaLWvQsaTyJHZkZacsnb8FjN4GtCcafAcu/AD//EzuXEKJr3XoBfP8lKO3vhGs0mth5/V1MOm8hxCWDRkN1dTXZ2dk4nU7y7XV8ZS1gcFAEi0fP8EjYW7Zswd/fn5SUFI98P9E/dPT9u1PJiNVqxc/Pjw8//JC5c+e6ji9cuJCqqio++eST456jtraW8PBwPvjgAy644II2xzQ1NbktpKqpqSEuLq7Hde31qroauPVC2LpBnRp+6GW4eKG3oxKif8rYru5+++Vbdd2Ivf21F9+cNZsPLpkPej03DDudUwbGotGoMyCFtZXsycwgBB8cKGhDAzg1aZhHXoJ07hXdoaPJSKdu05SVleFwOIiIiHA7HhERQUZGRofO8ec//5no6GhmzpzZ7pilS5fy6KOPdia0/sc/EN78Dta8Dw9do368txxeXA3Bod6OToi+y2qFbz+Gtf+DXT9D8cHWWzI6HQSbofyIomdaLWi08NAKKsaOw1mQDorCy+nfE+8fQnJgGOWWenZXFOJEIUkbwJmmSLSV9ezZs4fBgwdjNBq79WVpNBpplie8xqO9aZ566ilWrlzJ+vXrMZna30ly3333sXjxYtfXLTMjog2zfgvTL4Lb58KPa+DsSLhnGVxxs7cjE6JvKD4In/0bNq6BrF1QfViZd98B6m63U8+EOfNhxASwNMLkQPcExT8I/vkpnDKVSxQnVdYGfinNBSCvrpK8ukq3b1lnhOThw6g+VEJVVRW7d+8mLCyM2NhYV62SribN8oQ3dSoZMZvN6HS6o0odFxcXExkZ2c6zVM8++yxPPfUUa9euZfToYzeDMxqN3f5XQJ9iMsGK1eq237vnwZO3wIcvw4o16m4cIUTHOJ2wZQOsfk+9BZqfrfaIAdBoICQMJp8LZ1wAc65su2+MyRdSxkDaFnVGJHG4uq4rKh4AnUbLtSlTGBESxTeFe8mra01uAn1MTIsczIyYYQzwMWBODqC+vp79+/dTWlpKRUUFycnJBAQEdPlL12q1soBVeE2nkhGDwcD48eNZt26da82I0+lk3bp13Hrrre0+75lnnuGJJ55gzZo1TJjQsQZ04gRMmwMbyuGeK9S6JOfEwW1PwLX3eDsyIXqmuhq1Y/b6z9TkoayodeGpjwGiB8HYqXDub2DqbDW56IjxZ6jnO2suPPF/4DfA7WGtRsPkiCROC0+kzFJPja0Rk86HSN9AdEd8jwEDBjB69GgKCgooKipi7969BAYGkpyc3KWzJDqdTuqMCK/p9G6a9957j4ULF/Lyyy8zceJEli1bxvvvv09GRgYRERFcffXVxMTEsHSpWtb46aef5uGHH+bdd99l6tSprvP4+/vj79+xHSCe3E3TZ/yyHm6/RG1FnpACL3/l+stMiH5rfxp88Tb8tA4OZKgVjlv4B0FyKpw2Ey5YoG7TPVGlh2Dzt+rsiabrtudarVaysrJobGxEo9EQFxdHWFhYl5x737591NTUMH78+C45nxDQTQtYAebNm0dpaSkPP/wwRUVFjB07ltWrV7sWtebl5bll6y+99BJWq5XLL3evh7FkyRIeeeSRzn570VGnngnfl8MDV6ur/M9LhBsegFse83ZkQniG3Q4bvoC1H8KOTXAoD+zNtyG0WgiLhkkz4KyL4ZzfgJ9f133vsCg4f37Xna+ZwWAgNTWV8vJy8vLyyMvLo6SkhCFDhrTblK+jDu/c213rUoRoT6dnRrxBZkZO0s6f4bYLobIUohPgpdVql2Ah+pLyYvj8bfjhS9i7EyrLgOZfb0ZfiB8M46ersxWjT+v4LZceyul0cuDAAaqqqgAIDw8nJibmhBOJ/Px8SkpKGDFixDE3GAjRGd02MyJ6odGT4Nsi+MvN8OErMHc4/O52uPPZXv8LWfRjO36CVe/Clu8gLwssDa2PBZth4llw+hy44CqPLeS+f/MnlDfVH3V8etQQ5g8+tc3nbCnN45PcnZRb6gj3DeDSxLGMCm2tTq0oCp/l7uL7oiwaHTaSA83MH3wqEb7qupG6ujqys7MpKSmhoqKCpKSkdhe4NjQ0YDKZ2kxYDm+WJ8mI8DSZGelv9u5Ue9uUFqpTyS+thqHH3t0khNc1NKi3W779WC2tXlKollkH0PtAZDyMOQ1mXgbTLwS9d/7OqrVacNL6K7Wwvpplu79h8agZpARHHDV+f00pz+5Yy9zEMYwOjWFzSQ5rDqbzwCmziRkQDMDq/DRW5+/hmpTJmE0D+DRnJwUNVTwy/gJ8tDrXuVoWuAJtLnCtr68nIyOD0NBQEhMTj4olv/gQJQcL8Y8YiG+w+nvWX28k1DTgqLFCdJTMjIi2DR0N6wrgr3fC23+Hy8fCZdfDQytklkT0HPn71doem76G7D1QW9362IAASB2nrvc4/3cweIT34jxCgMF9RmF1fhphJn+GBh3dtwtgXUEmI0KjmBWrVj29OGEM6VVFrC/cy1VDJqIoCusKMpgTP5KxA2MBWJQymbt++h/by/I5NTzBda6YmBjCwsLIysqipqaG7du3Ex8fj9lsRlEUcnPVuiYVFRWYzWa32ZMKSz2v7tvExb6DWJ+fydYD5QDoNVoen3ChJCSi20ky0l/d/Tf47e/h97Pgv6+qW4Gf/0y9ly6EJzmdakGxrz+AbRuhMAdszVtMNVowR8C4aeqMx+wr1OrDvYDd6eDnkhxmxgxzlXs/UnZtGTNj3Mu9p4ZEsaP8IEDztl8Lw4NbbzP56g0kBpjJri1zS0agdYFrWVkZeXl55ObmUlxcTEhICI2Nja5xubm5pKamumZO6uxNVCrqNffTtL4t2BUndfYmQpFkRHQvSUb6s0FD4MtsWP4wvPoE/G6yWkXyL295bZpb9ANVFbDqHXWnS+Z2qCiBlrvFBhPEDVaTj9nzYML0Xjtjt738II12K1Mijr4l0qLGaiHQx302JdDHRHVzobUam5pABB4x4xJoaB3TFrPZTGhoKNnZ2VRXV3Po0CG3x5uamigpKXErVmnFiaIo+Gp65/UWvZu84wh1u+8l16mzJKveVSu5/v2/MPFsb0cm+oL0beoul1/XQ04mNB62wDMoVE08ps6G86/qU7VwNhbtZ0RoFMHGLtwy3AlarZbk5GQyMzOprz96UW1hYSGhoaEYDAYszVueFcCokbcF4XnyUydU0YPg0wx4/Rl4/gG4foZaPfKv78FJ1i8Q/UhTk7rIdF1LE7mCw3q06CEiVi2lPuMSOPuSPvuzVW6pJ72qmN+nTjvmuECDiRqb+wxHjc1CUPNMSKCPr3rMaiHI4Ns6xmohzj/4uHFUVVW1mYiAuksnLy+PAyYbn+TsBMCJggn3mZHKpgbi/aX5puhekowId9feAxddDb+frb6pnDEQnv4PTL/A25GJnuhQnjrrsXENZO2GmiOayA0dDaeepd7+Sx3nvTg97Mfi/QT4GBkVGn3McUkBZjKqitzWjaRXFpEUoPa8MZsGEOhjIqOqiDj/EAAa7TYO1JYxPWrwMc/tcDjIy8s75pjq6mp+Lj6ITVF3JjlQ8NHo3Mb8e9/PxA4IYaAsYhXdSJIRcTRzJHy4HVa+CM/crhZMm3wu/P2jrq1SKXoXp1O91bL6fdj6PRw8oolcaLh6u+WM8+G8+RDcP/+adioKPxZnMzkiCd0R6y/eyPyRYIMflySOBWBGTArP7lzL1wfTGRUazS+lueTWVfC7IRMB0Gg0zIgZxqr83YT7BmA2+fNJ7k6Cjb6MNR+7k3lDQwN2u93tmEaj4fBqDoqicK4xhncb9zPCHIPBoscInB83ko3F+6myNlJra+LdrF+4beSZJ31thGiPJCOifVfcrO5euPk82PQVTDfD42+oCwtF31dXA1+uhO8+g/QtUFbs3kQuJhFOmaqWUp9ybq9daNrVMqqKqGhqYGpE0lGPVTQ1oKF1Z01yYBjXp0zlk9wdfJyzg3DfAP6QOs1VYwRgVuxwrA47b+/bTIPdyuCgMP444iy3GiNtCQgIYNSoUVitVmw221EfxbVVGBTQomG+32CGRCZRUVFBY2MjFyWM5OyYoTy+9UuqrI3sriykpLGWcN+u7xYsBEjRM9FRn7wFj98E1iZ1weELn7e/xdLplDem3ihrj3rLZXNLE7na1scCgtUmcpPPhQsXQOzRb7Si91AUhT/9+AFNTjtmnS8Lw0ZQW1OL0WjE6XQyerRaCHF1/h4+ytkBwKWJY131UIToKCl6JrrWxQvhnMvg1gvg1+9gejg8+CJccq37uIztcMNMePL/YNocr4QqOsBuV2c81v5XLatedHgTOR2ER8Np56hN5GZeLrfn+hib00GTU72FEzIggCGDh1BVVUVOTg5OpxOHw4FOpyOxee0KQJ2tyVvhin5AkhHRcX7+8Pp6+OpDeHAhLLkO3n8JXlqjrg+w2eD+BVBdrvbB+SwTDEZvRy0Ayorcm8hVlbU+ZvKDpOEw4Ux1oenoSV4LU3iGXqtDq9HgVBRKLbUoKISEhGA0GqmqqkKnU28BlTS2zo6ZdPJ2IbqP/HSJzjv3cnV75h2XwsYv4exIuPs5dY3B/j3qmKI8+Pff4bp7vRtrf+R0wo5N6nqPliZyTS3VNzUQYobTZqhN5M6/CgYe3TNF9G1ajYbhwZHsqTxElbWRLWX5nBo2CD8/P/yaZ8EcTifrD+11PWd4cJS3whX9gKwZESfn+y/hnnnu6wtaGE3wxX51yl90n4YG+Op9WP+J2kSutFBNSEBtIhc1CMZMhnMuV2+dSXVdAewoP8iLaRsAMGr1XJ50CqeFJ2LQ6Smor+J/B7axu1Kt3BrvH8L9Y2e3W9ZeiPZ09P1bkhFx8hobYWY01Fa5H9fp1N04S992HcqpLaewvhqtRkOocQBm0wBpwtVZufvg83/DT2thfxrUHd5ELlC95TJpBlzwO/VzIdqgKAor0r9ne3MfHFAb4/nqDdQeVohNr9GyePQMkgPDvBGm6OVkAavwnA9eOjoRAXA44It34IpbyRyUyOd5u9hbXeI2RIOGO0ad3WZ7dUFzE7nV8NUHsH0jFOYe0UQuUu3fMv0imP1btaOtEB2g0Wi4fthU3szcxK9lanE0u+J0S0T89AZuHHa6JCKi28nMiDg5eVlwyUhob6W9RkNN0jDuuf1+lHa2+xq0Om4ZMZ1hh3Um7bcqy9T+QC1N5CpLW5vIGU0Qmwzjp8HsK2Hc6bKFWpw0RVHIqS3nu0P72F9Tis3pJNjoy6TwBE4LT8RX3zdL9gvPkJkR4Rnv/lNNRHQ6tQrnERUfURQC96dz7tefsWbWxQQZTCQHhmFzOMisLsHqtGN1OngxbQMPnXIeYf2tqNKeX9Xk45dv1dsvbk3kBsL4M9Sqphf8Tu3rIkQX02g0JAaaSQw0H3+wEN1EkhFxcm58CEZOVHuUFOWptxEOZkPxQbA0uIZd8un7xA4bz4T5d6JtrhzZaLfxWuZGdlUU0uSws7YggysHn+qtV9L9LBb45iO1idzuX6DkoHorC9QmcpFxMGoSzLwUzry4zzaRE0KII8ltGtFtcg8d4M3v3mNwViZnbd5IdM4+OHsuPPAihKnbBOttVu7d/BFWpwOTTs+zp1123DLXvUZBrrrQdNNXzU3kKlsf8/OHhBS1idz5V8GwsV4LUwghuovcphFed1DjpDAmnsKYeMKvuYfo9DR44mY4LxEuWggPv8wAHwMjQ6LZWp6PxWGn3FJHpF+Qt0PvPKcTNn8La95Tm8gVHFBL50NzE7kIOP08tT7LeVdCUIh34xX9Tktp97OjU5iXPL7dcVtK8/gkdyflljrCfQO4NHEso0JjXI8risJnubv4viiLRoeN5EAz8wefSoSv/KEoTpwkI6LbHD7lptNo1XLyp54Jc5Igp7WYku6wRZjOHj9P16ymCr78D2z4HNK3QXlR60JTH6PaRG7cVDj3t3DaTFloKrwqp7acDYeyiD2sAV9b9teU8q+MjcxNHMPo0Bg2l+TwUtr3PHDKbFfzvjUH0/mmMJNrUiZjNg3g05yd/HP3tzwy/oK+M6spPE6SEdFtIg5bjLq9/CBnx6RA8EAw+sLEswCwOuzsqSwE1HoGoaZj90CpsNRTZ3ffueOvN3Z/rZJ9u9VbLj+vg5xMaKhrfSwgGMZOUZvIXbAAYhO7NxYhOsHisPFa5o8sGDKJVfm7jzl2XUEmI0KjXA3xLk4YQ3pVEesL93LVkIkoisK6ggzmxI9k7EB1QfWilMnc9dP/2F6Wz6nhCd39ckQfJcmI6DbJgWGE+wZQ0lhLZnUxGw5lcUZEElSUQEMdDsXJyv2/0tDcoG1C2CBMOp92z1dhqeehXz/D3tLGvpleo+XxCRd2XUJitcL6z2Ddf2Hnz+rCXEfzLiGtDsJjYMosmHEJzLgMTKau+b5CdIP/ZP3KqJBohodEHjcZya4tY2bMMLdjqSFR7GgujFZmqafGZmH4YdvwffUGEgPMZNeWSTIiTpgkI6LbaDUaZsem8n/7fgbgnazNbN23ldsVhQPFOfzr188os6hbWXUa7VG/BA/XaLfxRf7uoxIRUAs1VVkbTjwZKSlUm8ht/BL27YKq8tbHTH6QPKL59tJ8GDXxxL6HEF7wS0kOeXUV3H/K7A6Nr7FaCPRxT64DfUxUW9VCaDU2tcdRoOGIMYbWMUKcCElGRLeaEpFEYUM1awsyAKjPU9eK7NI4XYmIVqNh0dDTiPNve1FnjbWRv+/6hsKG6jYfB1i5fwuLR8845swKoC403f4jrPoPbN0A+fvdm8iFmuG0c9QeLnPmw8Dwzr1gIXqIiqZ63sveyu2jzpK1HKLHk2REdCuNRsPliacQ5x/CV/nphFSqsw7VQcEADA+O5IL4kQwOavtNv6V/RksiogGGBIUz0DSAQ/U15NSp58utq+D/9v7MjcNPdz9BQx2sfg+++0wtMFZ2yL2JXHSC2kTu3N+oxcWkiZzoI/JqK6i1WXhi62rXMScK+6pLWF+4l+Wnz0OrcV9YHWgwUWNzn+GosVkIap4JCfTxVY9ZLQQZfFvHWC3E+Qd30ysR/YH85hXdTqPRcFp4IpPCEqjYuQuA00ZNY/aEC49bcTWjqpj9NWUABBt8uX3U2UQdtvU3u6aMf+7+lkaHjS1leRSn/0rE2o/VhabZaVBX03oy/0C1QNukmWpF08SULn+tQvQUw4IjeXjcHLdjb+39iUi/QGbFph6ViAAkBZjJqCpyu2WaXllEUoBandVsGkCgj4mMqiLXTGaj3caB2jKmRw3uxlcj+jpJRoTHaDQaBtaqycGQlPHQgdLvPxRluT6/PGmcWyKC00nSwVzuef8ddLt+ZmBFKfqWiqZaLZij1KJiZ14Es36rFhoTop8w6X2I0Qe7HTPq9AzQG13bdN/I/JFggx+XJI4FYEZMCs/uXMvXB9MZFRrNL6W55NZV8Lsh6lopjUbDjJhhrMrfTbhvAGaTP5/k7iTY6MtYc5wHX53oayQZEZ5V0dy1NyahQ8Nbbs/oNFrGDWz+Zffj13DfVWr32rpqogCbjw/F4VGUjxjP6N/dpW61ldoeQhxTRVMDGjSur5MDw7g+ZSqf5O7g45wdhPsG8IfUaa7kBWBW7HCsDjtv79tMg93K4KAw/jhC1qWIkyPJiPCsSvWWywnNUmhQC4u98jjUVcOCO+C0mdQkDOWefT8A6jbE0SNPP/Z5hOin7hw985hfA4wPi2d8WHy759BoNFyUMJqLEkZ3eXyi/5JkRJyUvdUlfHUwjby6Sqqtjfxh+LRjT9dWV2DzMfD01i851FBNiNGPOfEjmRKR5Dbs28K9fH0wnYomdceNQ3Gys7yAU77/Wi23/sLncMb5AGwpyHQ9L1JKUgshRK8j89jipFgddmIHhHBl8oQOjW9srKXUHEZKcAQPjjuPGTEp/Hvvz64qrAC/lObyYfZWzo8fyfzk1i6+X/6yGufTt8PF17gSkfy6Sj7P2+Uac3pkcpe8LiGEEJ4jMyPipIwMjWZkaHSHx5fgBIOJ3ySNAyDKL4is6lLWFmQyIkQ9z9qCDE6PTGZqZDJORWHDoX2EbvyKG994Aaei8M7cKxiYt4fcunJ2lhfgbO6CMzo0xu3ethBCiN5BkhHhUXa7DZPO/ccuNSSK97O3qo87HeTVVnBec28MbeYO/vzPJ/HZthGAvNhB/NBQDrnlbudI8A9lUcpkD7wCIYQQXU2SEeFR+iYLygD3Lb2BBhMWhw2rw06D3YoTheDaanj+Efj4DXya6yEowJ5TJrk/18fEGVGDOTc2FaNOfpyFEKI3kt/ewqN8G+upDzvGbZ0mC7PXfEL8muvAblN3zyhq7RANcM6ps0kaNYNGhw1/vYGEgIHoZUuhEEL0apKMCI/ya6inODDI7ViN1YJJ54Nh6w/43L+AucUFaJrXgRxJHzeYlOAIT4QqhBDCQ2Q3jfAo38YGDga7N8RLryoiKdAMa/+Lpvhgu4kIADGJ3RyhEEIIT5NkRJwUi8NGfl0l+XWVAJQ11ZNfV0lFc0fejw5s543MH9XBVRXonE5KAvz574FtFDVUs75wL1tK85gZkwL3LIO7n8Op98HRRvVURaeHsChPvTQhhBAeIrdpxEnJra3guV3rXF9/0LwrZnJ4ItekTKba2khFU4P6YGEOADP8zLxZWcQ3BZkYdHpCjH68nP4DBq2OpPHj+c07mwi48Vx01RVu30sTHgM6dX3IltI8PsndSbmljnDfAC5NHMuo0BjXWEVR+Cx3F98XZdHosJEcaGb+4FOJkKJoQgjR40gyIk5KSnAEL0+b3+7j1xy+3bYoH4DYsFgeHHceAP/Y/S2nhg0iwT8Uh6Lwcc4O3ty/ibuqK2BgBFRXgOIEhwPi1a6g+2tK+VfGRuYmjmF0aAybS3J4Ke17HjhltqvOyJqD6XxTmMk1KZMxmwbwac5O/rn7Wx4Zf4H00BBCiB5GbtMIzykpUP8b3jqD8aeRZzElIonoAcHE+YdwTfIELn5rOTajCT7YDh/ugKFj1MGxasn4dQWZjAiNYlZsKlF+QVycMIZ4/xDWF+4F1FmRdQUZzIkfydiBscQOCGFRymSqmhrZXpbvyVcshBCiAyQZEZ5Tekj9b1T7Tbh46BqGZmVQfdvjYI6EpOHwzs/w6GtqYzwgu7aMYcGRbk9LDYkiu1ZtwldmqafGZmH4YWN89QYSA8yuMUIIIXoOuU0juo/NBnn7wD8IAkOgvEg9Hp3Q5nDnprWYvvmELaedyfir72p9QK+HS651fVljtRDoY3J7bqCPiWqrRX3c1qgeMxwxxtA6RgghRM8hyYjoPq8+ASsebf1ao1H/O28cBA2EEDMkDoPFfwW7nbJHFqELDCbp0Te9Eq4QQgjvkNs0ovtMPMv9a6W5fkj+fti9Gb5fBZ+/DRoNW5cswFxUgO6GBwmJGnTM0wYaTNTY3Gc4amwWgppnQgJ9fNVjR8yC1FhbxwghhOg5JBkR3Wf8GZCQ0joj0gblzmf5/Ms3GLXmIxpTxxF81Z+Oe9qkADMZVUVux9Iri0gKMANgNg0g0MfkNqbRbuNAbZlrjBBCiJ5DkhHRfTQauOpPtFlQVaeDkRNZmZzEiBVPouj12P/xMdXWRqqtjVgddtfQNzJ/5KMD211fz4hJYU/lIb4+mE5RQzWf5e4kt66CM6OHNn9bDTNihrEqfzc7yg9SUF/FG3s3EWz0Zaw5rptftBBCiM6SNSOie124AOVvd6GxNLgdVhxONA++iM97zzEoN5tn73iI/ZkbXI8vHHoaUyLUrbwVTQ1oaJ1dSQ4M4/qUqXySu4OPc3YQ7hvAH1KnuWqMAMyKHY7VYeftfZtpsFsZHBTGH0ecJTVGhBCiB9IoinKMRiA9Q01NDUFBQVRXVxMYKBU0e5MKSz07776Mad9/jc7pBMCh0fLT5OmMuvwWAhdfDqnjYeWvXo5UCCFEV+vo+7fcphHdqs7exDdnzHQlIgA2gw+fzp6L//1Xg94HVnzlxQiFEEJ4myQjoltVWOopjowmY2gqCurykY8v/C0LVr6u3rq5fzkEh3o7TCGEEF4kyYjoFkpzn5mX0r8H4JszZ6EBLEYjFSGhjEjbQc3QUXD5Dd4NVAghhNdJMiK6xSe5O/kyf4/r6/SUEQBsHj+Z695agUOn5+EbbuPX0lxvhSiEEKKHOKFkZPny5SQkJGAymZg0aRKbN28+5vgPPviAYcOGYTKZGDVqFKtWrTqhYEXvUNxYw+rmREQDzIkbwdIRZwMwpbwKg7WJd65YhMVvAO9m/YrN6fBitEIIIbyt08nIe++9x+LFi1myZAlbt25lzJgxzJo1i5KSkjbH//jjj1x55ZVcd911bNu2jblz5zJ37lx279590sGLnmnDoSxXaZE58SO5OGEM/o1qvxifvTvhtHOov+AqAOrtTWwpzfNSpEIIIXqCTicjzz33HDfccAOLFi0iNTWVFStW4Ofnx+uvv97m+H/84x/Mnj2bu+++m+HDh/P4448zbtw4XnjhhZMOXvRMaZVqd14NGs6OTlEPVpSq/41NQvPCZ8yIGeYav6d5vBBCiP6pU8mI1Wply5YtzJw5s/UEWi0zZ85k06ZNbT5n06ZNbuMBZs2a1e54gKamJmpqatw+RO/R6LAB4O9jxN/HqB78cY363/ueB4ORSL/W/eZNzeOFEEL0T51KRsrKynA4HERERLgdj4iIoKioqM3nFBUVdWo8wNKlSwkKCnJ9xMVJCe/exF+vJiC1Ngtlljr14B+WwKvrYPI5AByoLXeNH9CSsAghhOiXeuRumvvuu4/q6mrXR35+vrdDEp1wymH9X1bl7UZRFDAYYdLZoNNhdzpcC1wBxkm/GCGE6Nc61ZvGbDaj0+koLi52O15cXExkZGSbz4mMjOzUeACj0YjRKH8t91anRyazKm83dsXJxuJsGuw2ZsakEO4bwIHacr7M3+OaGTGb/BkREuXliIUQQnhTp2ZGDAYD48ePZ926da5jTqeTdevWMXny5DafM3nyZLfxAF9//XW740XvF2TwZf7gU11fbyvP568713L3zx/xYtoGVyLio9VxbcpktJoeOUEnhBDCQzrdtXfx4sUsXLiQCRMmMHHiRJYtW0Z9fT2LFi0C4OqrryYmJoalS5cC8Kc//Ynp06fzt7/9jfPPP5+VK1fy66+/8sorr3TtKxE9ytTIZHy0Ov6z/1ca7NajHjebBnBtyhSSA8O8EJ0QQoiepNPJyLx58ygtLeXhhx+mqKiIsWPHsnr1atci1by8PLTa1r90p0yZwrvvvsuDDz7I/fffz5AhQ/j4448ZOXJk170K0SNNDE9g7MBYfinNJb2qCIvDhr/eyCnmOEaFRsuMiBBCCAA0iqIoxx/mXR1tQSyEEEKInqOj79/yp6kQQgghvEqSESGEEEJ4VafXjAjxXeE+vju0j/ImtaBZlF8QF8SPYmRodLvP2VKaxye5Oym31BHuG8CliWMZFRrjelxRFD7L3cX3RVk0OmwkB5qZP/hUInzltpwQQvR1MjMiOi3Y6MsliWO4/5TZ3D92NsOCI3kxbQOF9VVtjt9fU8q/MjYyNTKJB8edx9iBsbyU9j0Fh41fczCdbwozuWrIRO4dey5GrZ5/7v5WOvoKIUQ/IMmI6LQxA2MZFRpDhG8gEX6BzE0Yg1GnJ/uwEu+HW1eQyYjQKGbFphLlF8TFCWOI9w9hfeFeQJ0VWVeQwZz4kYwdGEvsgBAWpUymqqmR7WVSfVcIIfo6SUbESXEqTn4pycHqsJMUYG5zTHZtGcOC3SvupoZEkV1bBkCZpZ4am4Xhh43x1RtIDDC7xgghhOi7ZM2IOCEF9VU8vf0rbE4HRp2e36dOI3pAUJtja6wWAn1MbscCfUxUWy3q47ZG9ZjhiDGG1jFCCCH6LklGxAmJ8A3gwXHn0Wi3sbUsjzczf+LO0TPbTUiEEEKI9shtGnFC9Fod4b4BDAoI5ZLEscT6B/NNYWabYwMNJmps7jMcNTYLQc0zIYE+vuqxI2ZBaqytY4QQQvRdvWJmpKVIbE1NjZcjEe2x2e00NFna/H8Ubwpid9lBJga0bv3dXVZArG8gNTU1GBSFAL2R7UU5BIXrALA4bByoLWNicIz8fxdCiF6q5ff3cYu9K71Afn6+AshHD/k49cZ5SuSYYYp/pFkJSYpTTr1xnnLD+n8rMRNGKoBy5v2/V069cZ5rfMTIIcr137yljJo3RwmKj1LGL7pUuW7dW0pIYqxrzJj5FygLv3hFGTR1nBKSFKec+8QdyhUr/67oDD5ef73yIR/yIR/ycXIf+fn5x3yf7xW9aZxOJ4WFhQQEBKDRaLrsvDU1NcTFxZGfny89bzrh/fwdZNWWUWNvwqTTE2UK5KzwZIYGqB14X8r6kRCDH1fEjwXU63zGgsuYt/Requ1NmI0DOD9qGMMDI1znVBSFr4r38lN5HhaHjYQBoVwaO5Iwo783XmKvJT/TniHX2TPkOntGd15nRVGora0lOjrarYnukXpFMtJdpAGfZ8h19hy51p4h19kz5Dp7Rk+4zrKAVQghhBBeJcmIEEIIIbyqXycjRqORJUuWYDQavR1KnybX2XPkWnuGXGfPkOvsGT3hOvfrNSNCCCGE8L5+PTMihBBCCO+TZEQIIYQQXiXJiBBCCCG8SpIRIYQQQnhVn09Gli9fTkJCAiaTiUmTJrF58+Zjjv/ggw8YNmwYJpOJUaNGsWrVKg9F2rt15jq/+uqrTJs2jZCQEEJCQpg5c+Zx/7+IVp39mW6xcuVKNBoNc+fO7d4A+4jOXueqqipuueUWoqKiMBqNDB06VH5/dEBnr/OyZctISUnB19eXuLg47rjjDiwWyzGf099t2LCBCy+8kOjoaDQaDR9//PFxn7N+/XrGjRuH0Whk8ODBvPnmm90bZDe3lfGqlStXKgaDQXn99deVPXv2KDfccIMSHBysFBcXtzl+48aNik6nU5555hklLS1NefDBBxUfHx9l165dHo68d+nsdZ4/f76yfPlyZdu2bUp6erpyzTXXKEFBQcrBgwc9HHnv09lr3eLAgQNKTEyMMm3aNOXiiy/2TLC9WGevc1NTkzJhwgRlzpw5yg8//KAcOHBAWb9+vbJ9+3YPR967dPY6v/POO4rRaFTeeecd5cCBA8qaNWuUqKgo5Y477vBw5L3LqlWrlAceeED53//+pwDKRx99dMzx2dnZip+fn7J48WIlLS1Nef755xWdTqesXr2622Ls08nIxIkTlVtuucX1tcPhUKKjo5WlS5e2Of63v/2tcv7557sdmzRpknLTTTd1a5y9XWev85HsdrsSEBCgvPXWW90VYp9xItfabrcrU6ZMUf71r38pCxculGSkAzp7nV966SUlKSlJsVqtngqxT+jsdb7llluUs88+2+3Y4sWLlalTp3ZrnH1JR5KRe+65RxkxYoTbsXnz5imzZs3qtrj67G0aq9XKli1bmDlzpuuYVqtl5syZbNq0qc3nbNq0yW08wKxZs9odL07sOh+poaEBm81GaGhod4XZJ5zotX7ssccIDw/nuuuu80SYvd6JXOdPP/2UyZMnc8sttxAREcHIkSN58skncTgcngq71zmR6zxlyhS2bNniupWTnZ3NqlWrmDNnjkdi7i+88V6o77Yze1lZWRkOh4OIiAi34xEREWRkZLT5nKKiojbHFxUVdVucvd2JXOcj/fnPfyY6OvqoH37h7kSu9Q8//MBrr73G9u3bPRBh33Ai1zk7O5tvvvmGq666ilWrVpGVlcXNN9+MzWZjyZIlngi71zmR6zx//nzKyso4/fTTURQFu93O73//e+6//35PhNxvtPdeWFNTQ2NjI76+vl3+PfvszIjoHZ566ilWrlzJRx99hMlk8nY4fUptbS0LFizg1VdfxWw2ezucPs3pdBIeHs4rr7zC+PHjmTdvHg888AArVqzwdmh9yvr163nyySd58cUX2bp1K//73//44osvePzxx70dmjhJfXZmxGw2o9PpKC4udjteXFxMZGRkm8+JjIzs1HhxYte5xbPPPstTTz3F2rVrGT16dHeG2Sd09lrv37+fnJwcLrzwQtcxp9MJgF6vJzMzk+Tk5O4Nuhc6kZ/pqKgofHx80Ol0rmPDhw+nqKgIq9WKwWDo1ph7oxO5zg899BALFizg+uuvB2DUqFHU19dz44038sADD6DVyt/XXaG998LAwMBumRWBPjwzYjAYGD9+POvWrXMdczqdrFu3jsmTJ7f5nMmTJ7uNB/j666/bHS9O7DoDPPPMMzz++OOsXr2aCRMmeCLUXq+z13rYsGHs2rWL7du3uz4uuugizjrrLLZv305cXJwnw+81TuRneurUqWRlZbmSPYC9e/cSFRUliUg7TuQ6NzQ0HJVwtCSAirRZ6zJeeS/stqWxPcDKlSsVo9GovPnmm0paWppy4403KsHBwUpRUZGiKIqyYMEC5d5773WN37hxo6LX65Vnn31WSU9PV5YsWSJbezugs9f5qaeeUgwGg/Lhhx8qhw4dcn3U1tZ66yX0Gp291keS3TQd09nrnJeXpwQEBCi33nqrkpmZqXz++edKeHi48pe//MVbL6FX6Ox1XrJkiRIQEKD85z//UbKzs5WvvvpKSU5OVn7729966yX0CrW1tcq2bduUbdu2KYDy3HPPKdu2bVNyc3MVRVGUe++9V1mwYIFrfMvW3rvvvltJT09Xli9fLlt7T9bzzz+vxMfHKwaDQZk4caLy008/uR6bPn26snDhQrfx77//vjJ06FDFYDAoI0aMUL744gsPR9w7deY6Dxo0SAGO+liyZInnA++FOvszfThJRjqus9f5xx9/VCZNmqQYjUYlKSlJeeKJJxS73e7hqHufzlxnm82mPPLII0pycrJiMpmUuLg45eabb1YqKys9H3gv8u2337b5O7fl2i5cuFCZPn36Uc8ZO3asYjAYlKSkJOWNN97o1hg1iiJzW0IIIYTwnj67ZkQIIYQQvYMkI0IIIYTwKklGhBBCCOFVkowIIYQQwqskGRFCCCGEV0kyIoQQQgivkmRECCGEEF4lyYgQQgghvEqSESGEEEJ4lSQjQgghhPAqSUaEEEII4VWSjAghhBDCq/4fpXrkWtXdqScAAAAASUVORK5CYII=", + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAiMAAAGdCAYAAADAAnMpAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjcuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/bCgiHAAAACXBIWXMAAA9hAAAPYQGoP6dpAADZKUlEQVR4nOzdd3hUZdrA4d+ZlkmZSe89lEAooSsdhBVh7a6iYu/u2j5WXex9ce1lVey9rg070rv00BNIIb0nk8kkM5lyzvfH4EAgAQJJJuW9ryuX5Mx7znkmTmaevO2RFEVREARBEARB8BKVtwMQBEEQBKF3E8mIIAiCIAheJZIRQRAEQRC8SiQjgiAIgiB4lUhGBEEQBEHwKpGMCIIgCILgVSIZEQRBEATBq0QyIgiCIAiCV2m8HcCJkGWZkpISDAYDkiR5OxxBEARBEE6AoijU19cTExODStV6/0e3SEZKSkqIj4/3dhiCIAiCIJyEwsJC4uLiWn28WyQjBoMBcD8Zo9Ho5WgEQRAEQTgRZrOZ+Ph4z+d4a7pFMvLn0IzRaBTJiCAIgiB0M8ebYiEmsAqCIAiC4FUiGREEQRAEwatEMiIIgiAIgleJZEQQBEEQBK8SyYggCIIgCF4lkhFBEARBELxKJCOCIAiCIHiVSEYEQRAEQfAqkYwIgiAIguBVbU5GVq1axTnnnENMTAySJPH9998f95wVK1YwYsQIfHx86Nu3Lx988MFJhCoIgiAIQk/U5mSkoaGB9PR0XnvttRNqn5eXx1//+lemTp1KRkYGd911FzfccAOLFi1qc7CCIAiCIPQ8ba5NM3PmTGbOnHnC7RcsWEBycjLPP/88AAMHDmTNmjW8+OKLzJgxo623FwRBEAShh+nwOSPr169n+vTpzY7NmDGD9evXt3pOU1MTZrO52ZcgCIIgCD1ThycjZWVlREZGNjsWGRmJ2WzGarW2eM78+fMJDAz0fMXHx3d0mIIgCIIgeEmXXE1z3333UVdX5/kqLCz0dkiCIAiCIHSQNs8ZaauoqCjKy8ubHSsvL8doNOLr69viOT4+Pvj4+HR0aIIgCIIgdAEd3jMyduxYli5d2uzY4sWLGTt2bEffWhAEQRCEbqDNyYjFYiEjI4OMjAzAvXQ3IyODgoICwD3EctVVV3na33LLLeTm5nLvvfeSmZnJ66+/zldffcX//d//tc8zEARBEAShW2tzMrJ582aGDx/O8OHDAZg7dy7Dhw/n4YcfBqC0tNSTmAAkJyfz888/s3jxYtLT03n++ed55513xLJeQRAEQRAAkBRFUbwdxPGYzWYCAwOpq6vDaDR6OxxBEARBEE7AiX5+d8nVNIIgCIIg9B4iGREEQRAEwatEMiIIgiAIgleJZEQQBEEQBK8SyYggCIIgCF4lkhFBEARBELxKJCOCIAiCIHiVSEYEQRAEQfAqkYwIgiAIguBVIhkRBEEQBMGrRDIiCIIgCIJXiWREEARBEASvEsmIIAiCIAhepfF2AD1Vja0Bi7Op2bEAjQ8hen8vRSQIgiAIXZNIRjpAja2Bhzb/iFORmx3XSCqeGHWOSEgEQRAE4TBimKYDWJxNRyUiAE5FPqq3RBAEQRB6O5GMCIIgCILgVSIZEQRBEATBq0QyIgiCIAiCV4lkRBAEQRAErxLJiCAIgiAIXiWSEUEQBEEQvEokI4IgCIIgeJVIRtqZ2W7lu7yMVh8vbjB1WiyCIAiC0B2IHVjbUZ3dyjPbF1Nls7Ta5pP9Gwnx8Sc1KLITIxMEQRCErkskI+3o/az1nkTEV61leFg8cX5B1NqtbK0qoLqpAacis2Dvau4eOh3XYbu0iro1giAIQm8lkpF2UtRQy15TGQBBOl/mDZtBsI+f5/Hzk4by2p5V7KktpdFp58ltvyIriudxUbdGEARB6K3EnJF2sqHigOffZ8WneRIRl92MIrvQqNRcnDzc0+bwRARE3RpBEASh9xLJSDupbWr0/DstKBoAS/VOMnZkUrr7ZbCXEuMfRLDOr7VLCIIgCEKvJJKRdqKRDv0o/+zh8DPEoZKaKG0aT+P2M5EP3I7OVXawlYKEjISMCidqnCDbQLa6vwRBEAShlxBzRtpJsiGM9RV5AKwty6GPMRyVLpgoQylVdRr2qf5LasWVPKb+L1JrP/XMw/6d8jGEXdHhcQuCIAiCt4mekXYyJiIJH7U7y1hbnsvvRXtxyi5CY8fjkCLxkbPJkL6iilEndkHfQR0YrSAIgiB0HSIZaSe+Gi1/TRjs+f6bvG3M2/g9C/L24cdeHFIUOpWWAs0Cdqs+oIYzUFAfdR0FDQSdDf7Dj3pMEARBEHoikYy0ozNjBzIjLs3zfb2jid21pVQ6S3FIUSiKCwArg8hTP8NO1U+USVfjxOg5R8KJI+qBTo9dEARBELxFUpQj1ph2QWazmcDAQOrq6jAajcc/wcuy6ypYVrKPjOoiXIqMDjs3+MYgo8JFEJIkHWqsyEg4CVF+JkL+Al9yaFDHENDnbQie5b0nIQiCIAin6EQ/v0Uy0oFcsozVZUen0pC37WUaGIsLHarDk5E/KU6QNGidnzOYF5EkGUmXAImvQvC5nR+8IAiCIJyiE/38FsM0HUitUhGg1QOwzq6gSD4tJyIHSTTxtXM8/2d/kxq/c8FeDPvPg4x4qPmms8IWBEEQhE4lkpFOUO9o4g9XDL5KJhxWj8ZDcaKlCl1wFeWyFRt+bA16GkaYIPQqsJdB9t9gWyxUfdnp8QuCIAhCRxLJSCfQqtyrZhpcuSCpgOYjY746GwNDV1Kq6+c5plNpQBMAfT6EEXUQdi04KiD3UtgaDVUfd+ZTEARB6BFqbA0UWGo8XzW2Bm+HJCDmjLSJzelgYf4OMqoLqXc0Ee8fzOw+I0kyhLZ6TpapnP/lbqWwoRZfmrjKdwCKpOHPPFCSJPJ1DjY2llJz2JbyD42YSZx/cPOLyTbIvwuq3gPFAZpwiHsaIq7rgGcrCILQs9TYGnho8484D+uhFkVKO5aYM9IBPtq/gb2mMq5NHcfDI2aRFhzFizuXNatLc7gqm4X/7l5BalAkM+IGYsUHh5zDnz/2mJgYKnwVfq/NxaDx8ZynQsKo9T36gio9JC+AkRaI+Du46uDA9bA1DMrf7IinLAiC0GNYnE3NEhEQRUq7CpGMnCC7y8m2qkIuSh5G/8AIInwNnJM4lAjfAFaW7m/xnJWl+wnTB3BxyghmJQwm2tfIHkcVADbnVl4v3syimhyu9u1LH7t7oqsaCT+NjnXlOa0Ho9JB0mswsh4i7wKXBfJvgS0hUP7f9n7qgiAIgtChRDJygmRFQUZBIzXfNVWr0pBjrmzxnFxzFQOCogDQq7XcOeQMMtXxaJQDhKihwlqPSgGtpKKv1ki6NoSb0yYyOCSGXHPV8YNS6SDxRXdPSdTd7gJ7+bfDlmAofQHkFibLCoIgCEIXI5KRE6TXaEkxhPFL4S5MTY3IiswfFXnkmquos7dcZdfssGHU6T3fB/v4cVnfMZS4DtDIUPpSjb+k9Tx+mjac8CYVRq0PdQ7biQen0kDCs+6ekuh5IDdB4T9hWzCUPCOSEkEQBKFLE8lIG1yXOhZFgX9t/J5/rPmS5cVZjA5PRKL1vUOOpFapWGkPRELmwgAHAUeU8C0tLSW4UTlywc2JUWkgfr67pyT6IfdGakX/gq2BUPykSEoEQRCELqm1YvZCC8J9DdydPp0mlxOby0Ggzpe39q4hTB/QYnujVo/Z3ryHw2y3YVUHEsAOGl0pRyUjAIFNMEwViKIozbeOP1EqFcQ/DrGPQulTUPoMFD8EpU+7h3NiHna3EQRBEIQuQHwinQQftYZAnS8NDjt7aktJD41rsV2KMYxMU1mzY3tNZaQYwwgyarFL8aRqXMgtdIOEy1pyc3ORT6U3Q6WC2Ifc+5TE/RtQQcljsCUACu8XPSWCIAhClyB6Rtpgd20JigJRfkYqrPV8k7eNKD8j4yNTAPg8exM7a0qwuRzYZRfBOj9q7Y18k7eN8ZEpZJrK2VJZwG2DJxNmGE9ZxmKCJR9kBY4c6ZEAk8lETk4ORX4yi4szqbNbiQsI5tI+I0k2hJ144CoVxNwHUf+C8heh5AkonQ9lL0Lk7e5ERSVeCoIg9FwH6qv5KmdLi49tqswnzj/4mOU6hI4lNj1rg82V+Xx3YDumpkb8NDpGhMVzflI6vhodDQ479238Hh+1hr8PmoRBq6fCWk+93cbi4kxKG+sI8vHjrwmDGXcwedm/9UXM8oSDu7K2TFGr+Miyj9l9R5FsCGNpSSZbqwp4bOQ5zSbHtlnZy1D8GLhqQdJD5K0Q94xISgRB6HF21hSzYM/qo/YYOdxpEUlc03+sSEjamaja28m+zcsgx1zJPel/OeFzftn9DZHWRDjixS+jEBYSSmhoKK/lrCfJEMJlfUe7H1MU7tv4PVNj+nNW/KBTD7z8dSh6GFzVIPlA+I2Q8Lx72bAgCEI3V2Wz8NiWn7HLLgACdXoGBcfgq9aSY67igKXa0/aCpPT2eV8VPE7081v8GdxOdlQXkRYczZt7V7O/roIgnR+To/sxMbpvq+fscRiJPOz7gIAATPVm8lz1jE4ehVN2UWCpYWZ8mqeNSpIYEBR1YvuQnIjIv7u/Kt6Gogeg4r9Q+RaEXefew0R1Cr0vgiAIXra8ZJ8nERkRGs91A8Z56oUBbKsq5M29q1GAJcWZTIsd0OxxoXOICaztpNJmYWXpfiJ8DdwxeCqTovvxZe4W1pfntnpOndOGLLknuCaGVZKamorsoyFRHUBjkw2LowkZBcMRwzFGnb5t+5CciIgbYUQFJH8A6mCoXABbjJB7Azhb3u5eEAShK5MV2fMerJFUzOk32pNo/Lk4YHhYPCPCEgB3hfWdNcXeCbaXE8lIO1GAhIAQLkgaRkJACJOi+zIhqk+rW8X/qTokArVSh7kqCwBdsBGdpKa8rOyY53WY8KthRBmkfAqaMKh6171PSe414LR4JyZBEIST0OCw0+C0A9AvMIIArZ69lr3E/jIdzaJIGhzuDSuHh8V7zqmw1nsl1t5OJCPtJFCnJ9ovsNmxaN/AVovogXsfkjpZjUHahVkZjNNWh00D5S4rZlMdAVofVEjUt7BXSaC2g4dPwi6H4SXQ50vQRkLVh7A1CHLmgNPcsfdGlPkWBOHU/TkZ1Sab+bzuecJWRpD2RxoluqUo9kD2VbqHb5wHh3GANm1iKbQfMWeknfQxhlNubf4hXW41E+LTelnqFGMYu2pKmBGRjKkiiMqcT9irHoaf2kWk04nd1kSCIYS9pnKGHczcZUUh01TG1Jj+Hfp8PEIvcX/VfAcFd0H1Z1D9JYRcBElvgiao3W8pynwLgtAefqz+jm+d91ElF4ATqB0FldcSlfoNDTu+41tfO8NjYGPFAc85sf5B3gq3VxM9I+1keuwAcuur+KVgNxXWejZWHGB1WTZTYvp52nyXl8H7Wes830+O7keVzcJSZxx6JZtqqx9bKgsYFJcMQElJCdNjB7CmLJv15bmUNtbxWfYm7LLTszy404RcAMPyod+PoIuHmq9gayjsvwicNe16K1HmWxCEk1VkK2LOrjn4L/fnst2XUS0Xoq+dBmuXQPFs1Alf8evor5k9KIqPt1n4tXAPew5uThnq409acJSXn0HvJHpG2kmSIZRbB07iuwMZ/FywkzB9AJekjOS0iGRPmzq7lZrDhm3C9AHcNmgK/8vdio+ziGjNRK6OqSI9MoEd5SbMZjOj+47A4rDxQ/4OzHYbcQHB3DFoKkadrzeeJgSf7f4y/Qb5t0Htt1D7PQSdDcnvgrYNm7EJgiC0A1mWeaf0HZ7Lf479Vvc8vQhtBNdH3Ml3P11DkXo10qg5KD7lpKjGs7HIQmRYIfmbgnjw90pGHexo/mvCYFTH2PdJ6DgnlYy89tprPPvss5SVlZGens6rr77KmDFjWm3/0ksv8cYbb1BQUEBYWBh/+9vfmD9/Pnp9z1o2OjQ0lqGhsa0+fk3q2KOOpQZF8uCImdgtA9idWUyUOQuYRWhoKGVlZdTU1DA1JpWpMakdGPlJCDoLgrKhbikcuBVMP8C2CAic6U5KdOKvC0EQOtb+xv3cu/9efq3+lSalCTVqzgg+g6f7PE1hwUBm//YNzv4XgXGXp+jGcOkCtlQVYLVrgFFszY4jMtjCLSPjGR/Vx5tPp1drcwr45ZdfMnfuXB555BG2bt1Keno6M2bMoKKiosX2n332GfPmzeORRx5h7969vPvuu3z55Zfcf//9pxx8T6ILSCZA2onZ1R/ZaSc6OhqAMm+tqjlRgdMgfR8MWAn6VKj7BTJiIPMssJd4OzpBEHoYp+zk+fznSVqbRP/1/fm+6nvCdGH8O+Xf2KbaWDpiKY+sKOSifRNxDrsGlXGP51wtOiK17lpiDU2HNnb8ffNAHPWdPPQtNNPmZOSFF17gxhtv5NprryUtLY0FCxbg5+fHe++912L7devWMX78eC6//HKSkpI488wzueyyy9i4ceMpB9/TBAcG4JCiqM77FJVKha+vL1ar9dSK5XUW4yQYuhcGrgHfgWBeBBlxkDkdmgq8HZ0gCN1cRn0GZ207C98VvtydfTelTaX8NfSv7DptF0UTirgv+T5+KVuN78Ix/BpwEQTuBEDm0PvnEMNgnjv9Ih4cPpOZ0acdPCrhUuDiTyv4cItY1ustbUpG7HY7W7ZsYfr06YcuoFIxffp01q9f3+I548aNY8uWLZ7kIzc3l19++YVZs2a1ep+mpibMZnOzr94gJOkydEoxtXXuiZpRUe6hji7fO3I4w3gYshvSNoDvEDAvhe1JsHcq2A54OzpBELoRu2zn0dxHiVkdw/CNw1lUs4gEnwRe7f8q1ilWfhr2E4MC3Nu3P799GeftPQOb/2b3yZKr2bU0koZhAcPQqTXEBwTjsPs3W8SrANd8Xcmr6+o658kJzbRpzkhVVRUul4vIyMhmxyMjI8nMzGzxnMsvv5yqqiomTJiAoig4nU5uueWWYw7TzJ8/n8cee6wtofUIKo0GozqHatdp2Mz7CQrqgyRJVFVVERMT4+3w2iZgDAzZDg3bIO86qF8BO5IhYAIkvw++rW+TLwhC77a2di33597PWtNaXLjQq/RcHHExz/R5hiS/pKPa/2NhFa9vjEZKOxcl6ocWrykrMkMChni+L6xzolGB44iO5zt+rKbOJvPA1CAkUTSv03T4tOEVK1bw73//m9dff52tW7fy7bff8vPPP/PEE0+0es59991HXV2d56uwsLCjw+wywuMno6CmMu8nVCoVBoMBh8NBU1M3XdbqPxwGb4NB28FvFFjWwM5+sHscWLOOal7cYOK7vIwWL5VVW97BwQqC4C0Wp4V79t9D2KowJmydwCrTKvr59eODgR/QMLmBr4Z8dVQiYmp0kvZCIa//YSYp0J/is7/m/YHv46PyOer6MkckIyYncitlYh9aXMu9v7bvlgXCsbWpZyQsLAy1Wk15efMPhfLycs+QwpEeeughrrzySm644QYAhgwZQkNDAzfddBMPPPAAKtXR+ZCPjw8+Pke/mHoDv7ARBBx4F7PDPckqJiYGs9lMSUkJycnJxzm7C/MfCoM3QeNuyLseGtbDzgHgPwaS3wO/QeypLeWNPas8Ra2O9PWBbTS47JyflN7JwQuC0FF+q/qNh3MfZnP9ZhQUAtQBXBN9DfP7zCfKp/VVeUv3N3LOR+VYnQpnD7UwOCWPp3atJ1AXQpruNLbZViEhoXAo4xjsP9jz7z2VjbhaSUYk4L/rzUxJq2ZtxV7q7FbiAoK5tM9Ikg1i+4KO0KaeEZ1Ox8iRI1m6dKnnmCzLLF26lLFjj162CtDY2HhUwqFWuwsVKUorr4ReLtDfgU1KoSb/G/z9/VGr1ZhMJm+H1T78BsGgP2BIJgSMg4aNsGswjh3DWbjnE08i4qfWMSIsnrERyYTpAzyn/1q4+5jFBwVB8I56Z/0Jv6fX2Gu4de+tBK0IYub2mWyu30x6QDrfDvmW+in1vJ/2/jETkX/+XMX098pwygoPz2qgX9J+Lu83ikdH/hVVwH4ybKsZ4zuNm2Jv8pwTrAkm0sc9xaDKZmFftbXFa/cJ0fDkmcF8dY3EL0Vb+WvCYB4YPpM4/yBe2bUcs72di5QKwEnsMzJ37lyuvvpqRo0axZgxY3jppZdoaGjg2muvBeCqq64iNjaW+fPnA3DOOefwwgsvMHz4cE477TSys7N56KGHOOecczxJidBcRL+rKM9YQ01VCSGJEBISQmVlJWazGaPR6O3w2odvKqStBVsO5F6HxrKKeZoMCpUE/vB7kPMHXYJO7X55KorC0pIs/pe7FYBfCndzWkSyp+6EIAjtr8bWcNSuxwEanxZLMmwyb2Lqlqk8mvIodyfe3eo1vy7/msfzHmdXwy4UFII0QdwWdxtPJD9BkC7ouDGZbTIT3yxhR5mduEA162+N5fuiNfTRxjIkJJZ9jfuYX/IvwlSJXBf8IDcPmMK04Glcu+daRhlHea6zomQ/jU1GJNwTV40+EvV2F30jLWTdkY4kSczP2MiEqD6evUfm9B3DrpoS1pXncFb8oBP5EQpt0OZkZPbs2VRWVvLwww9TVlbGsGHD+O233zyTWgsKCpr1hDz44INIksSDDz5IcXEx4eHhnHPOOTz11FPt9yx6GJXGD4NqL2Y5HaetgpiYGCorKyktLe05ycif9H1wDljGk3+8yWzpNQao9hBvuwkpbxnEPwM+8UiSxPTYAWyvLmJfXQUV1nr211WQGhR5/OsLgtBmLdWHgpZrRO1v3M+MbTNokBt4ufBl5ibMbbaLaYmthHk58/i24lsa5AZUqDjNeBpPpjzJtNBpJxzTqlwrsz4oo8GhcPEQf764NByVSkVKXThryrIpbTAxcctEFOB83TyGhSYCcHHkxUwOntysAF5OXRUJIf6kRxi5ZqSBWal+jFqQRXalniaHgkYjU1Bfw8y4NM85KkliQFAUueaqtv44hRNwUjuw3nbbbdx2220tPrZixYrmN9BoeOSRR3jkkUdO5la9VljUQGpLDVRkf0nM4Nvx8fHBYrEgy3KL82y6M5PdSqkriJd4gLFBOq7RfwWmRVDzP9D3h8E7QaVmVHgi++rcm+uVNtaJZEQQOkhL9aHgUI2oENzJSFlTGdO2TsN8sJJ3UVMRS2uWMi14Gu+Xvs8zBc+wr3EfAOHacG6Pv52Hkh7CT+PXpnjuX1TN0yvqUKvgw4vDuWqEwfPYWfFp2FwOLtx0GxWuCs7S3M0FCROaleKI0EU0f34uG6/PdjAz/tBQ0BUjfPjXjwrPrK7ljgm+yCgYdM13CTfq9JRZe8dWE52tZ32q9SDGmDPxUzKpswUCEB4eDriXV/dkjeoI6PcVDM+HkIvBthfKngVEaW9B6Ax2l5N1ZTmtPu5wued1mZ1mztx2JiX2Ely4j6lRc82ea/Bb4ccNmTeQ05jD1KCp/DHqDyomVTC/7/w2JSKNdplR/y1i/oo6Ig1q9v0zrlkiArClMp+vS37hD9dnjPA/jUcG/J3FRXvbPLdsRn8tQQGNvLfZ0qbzhPYhCuV1YUafasrs46kvXU545GSKioqoqKggIiLi+Cd3I0E6X/RqDTaXk721pTQ67fhpDND3cyjqB0X3gb4fW6qCPOdE+wV6L2BB6KEanXZe3rmMA5bWl7V+kbOZfwyeyAU7z2NPwx5PIgLgwkWJvYQobRS3xd/GPYn3oFPpWr3WsWwosDH93VIsdoXzBvrx7RURLfYKf5K7mu9s/8Zf5cfKUUsI0ARQ3dTAr4V7GNtKdXOjVn/URFSLs4n+MTVs3OeHqVGNCon6I9qY7TYCtT2rplpXIXpGurDIvpegUixUlW5HpVIREBBAU1MTTqfT26G1K41KzekHu1TtsouP9m3A7jr4HGMfQwmZjSv7MqLNHwIQoQ+gX2DPSsgEwdsUReHtzLXNEpFkQxinhSeRFBDqOZZvqWbaxnNZaVrZLBH5k4TE3Yl380DyAyediDy+tJaxb5RgdSi8eX4Y318V1WIiIssyP1pfxU4TPw37iQCNe+WdSmq+pPdIKcYwMk3Nd7beayrjjP7KwfubSTCEsNd0aBsLWVHINJWRYhRLezuC6BnpwjS+URikb6iXByA7bURFRZGdnU1JSQkJCQneDq9dTYsdwLryXOyyi23Vhdy/qZJR4Qno1Vr21s3mbuVrLtV+zGR5KeaQu1EpDpBO7o1OEISjHbBUs6e2FHCvmrlzyFQSAkI8j+fVV/HSzqV8aX2Ucva3eh0FhTeK32Buwtw272Bqs8uc8W4p6wuaCPdXsfbmGPqFt/57fvXeq8mTN3GW7g5ClX5U2SwUWmpZUpTJuKhDvSLf5WVgsjdybeo4ACZH92NFyT6+ydvG+MgUMk3lbKks4LbBk3lzqZ3vdjfw++QBfJC1niRDCEmGUJYWZ2GXnYxrpbdFODUiGeniQkLCqasJpzL7YyIH3IhKpaK2trbHJSMRvgZuHjiRBXtX45Bd1DtsLC/Z53l8tfoMztAsJkpVQnT1XKj7N0TeBuE3g671/QgEQTgxaw6bJ3JBcnqzRKTAVsCHle/xSdPr1FDpOS4hoZE0KCg4lUM9tjnWHNbWrWVC0IQTvv/WYhtnvFNKnU3hrP6+/HhlJBpN653331R8wydlnzDQbxDXRFzFZ9mbqHc0EajzZWJ0X85OOLTBWZ3dSk1To+f7MH0Atw2awv9yt7KsOIsgHz+u7H8ag4Jj+NvgSt7eVI+9IZq/pQznh/wdmO024gKCuWPQVIw63xN+TsKJk5RusPOY2WwmMDCQurq6nre09Thkp5M9GT+gpZrUUTeSm5tLbW0tAwcOxM+vbTPSu4NCSy2/Fu5mW3Uh8mEvzUn+Jcxx3nNEa5X7K3Q2RN7hrocjCMJJeTpjEXn11QC8Mu4SfNQa1pvWc96O86h0VBKgDuDiiEvIL/fHVzIS7CdxenQU5fZyyu3llNnLKGkqocxehslp4uNBH3N++PkndO9nVtYy77daJAleOjuE28cFHbN9hb2C+DXxqCQVxeOLCdGFHLN9W5SZnUTPL2B6Xz2Lr+9mNcG6oBP9/BY9I12cSqPBoMmn2jkWa+1OYmL6UVtbS0lJCX379rxic/EBwdw0cAJmu5WiBhOyohCq9yda7wNb7gfFcVhr2f1V/SVUfwr+p8OAxaAOaO3ygiC04vC/Sv/cUPD14tepcdTwfN/nuTH2RrToubP6fwD09QnnH/F/OaV72p0yZ75Xysq8JkJ8Vay6OYZBkccffp2weQJ2xc7PQ39u10QEIMqoISVYw8o8W4/cSqGrEj/lbiAy6SxAoTJ/CXq9Hq1Wi9ncs9e6G3W+pAVHMzgkxr1yRqV317FpkROQwFkNksivBeFkRPkeWjK7raqQVbWr+KTsE17s/yJzE+di0BjYUlXgaRPpe2q91LtKm4j6dwEr85o4I0VP6f0JJ5SI/D3z7+y37uf66OuZFTbrlGJozc2nGXC44IMtYplvZxHJSDegDxpIADsxO5OQnU5CQ0NRFIWaml5WVdI4lZY78yQwTIVBG91JiyAIbTY+so/n31/nbGZWxiyCNEHcGnsrAOWNZhbm7/C0mRDV56hrnKiX15pIf7WYOpvMszNDWHpjDLpjzA/50+LqxbxR/AbJ+mTeGvDWSd//eO4aH4hKghfX1nXYPYTmxJ+R3USQUUVhfQK1Bf8jOmk2ZWVllJWVERLSvl2UXZphMvDk0ceNM6D/D6DSdnpIgtBT9AuMoI8xjBxzFQutr9KgNHCZ4f9YWryPooZatlYVenZl7R8YQbIh9DhXPJrTKTPrwzIWZ9sI0qtYfmM0w2JOrEJ7naOO83ach1bSsnbk2g4dPtFpVIyK1bGpyE69TcagF3+3dzSRjHQTYSlXUZaxhJraGkJTVPj6+mK1WrvNmKasyPyYv5MNFQcwO2wE6nwZF5nMrPjBx1z+l2Uq53+5WyltrCNCp+JhVEjI4NmNVYXVvIrnN31KqUMvynwLwkmSJImbB07koYxP2WdfTQDhGKyj+PZARrN2MX6B3DhgQpuX7WZV2pmwoISqRpkJiT4svi4ave7E37smbZmEVbbyxaAviNZHt+neJ2Pe5GAu/LScp1bU8vRZbU+8hLbp+p9iAgAqjQ6Dah8WZSj2hiJPYcKysrLjnNk1/Fa4l5Wl2VzW113m+8KkYSwq2tts+e6RqmwW/rt7BalBkTw4YiaT4tLJlxPdE+1Ueuj/I9ujvsWhaLhdmscDQyeIMt+CcAoCdb4sk18GFM7TN1+95q/RcWbcQO5N/wtGXduGQ9/4o45BLxZR3Sjz5F+CWX1LbJsSkXnZ89jRsIOLIy5mdtTsNt37ZF0w2B9frcRHW8W8kc4geka6kfDY0dQU6qjI+YaYwbeTn59PVVUVMTFdf/lZbn0lw0LdZb7Bvc5/U2W+ZylhS1aW7idMH8DFKSMA9xbwGyrPIsT+Lca038FvKL8cWMRI/wc5s/FeAnMnMWfIflHmWxBO0pdlX7K7YRfnhp3Le4P/jxxz1cHyDDr6GMPQqdv2kSHLMud+VM7PWVYMPhJLr49mdHzbEpm1tWt5Jv8ZYnQxfDHoizade6rO6ufLd3sa2V9pP+bma8KpEz0j3UhA5Hj82IPZ7q7RYDAYcDgcNDU1eTu040oxhJNpKqe80b0KqNBSS7a5ksEhrXe35pqrGBDUfEMzZ8RcHnK8An5DccouCupriIi6FCJuA3seqv1niTLfgnASZFnmxswb8ZF8+HzQ5+jUGgYGRzEyPIGBwVFtTkTyauzEzi/k5ywrY+J0lN2f2OZEpNHZyFnbz0KFqsPnibTkiTPdc/IeWlzbqfftjUTPSDcTqK+ntGksdUW/EhMzCbPZTElJCcnJycc/2Yv+LPP9yJafkCQJRVE4Lym9WZnvI5kdtqO6g40+vthcTuwuJ41O+6Ey30mvgnUXmJcw0CeN5UrHLPkThJ7q1qxbqXfV81zf59pUWbcl7282c+O3VcgKPDQ1iMfPPLmJ9tO2TcPisvD2gLdJ8ks6pZhOxqBIHRH+Kn7Kajx+Y+GUiJ6Rbiai7xzUSh3V5fvw9/dHrVZjMpm8HdZxbanMZ2PFAa5PHceDw2dyTf+xJ1Xm+5hSl4IukdG214hxbm2/6wpCD1dgK+CdkneI94nnn4n/POnryLLMRZ+Ucd03Veg1Eqtvjj7pROSpvKf4w/wHM0NnckPsDScd06maMzyABrvCb/savBZDbyB6RroZjT4Yg7SbemUQssNCSEgIlZWVmM3mLr1V/jd5GcyIT2N0RBIAsf5BJ1Xm22y3oVdr0ak1qCSpeZlvlQoGZ1C1dQgXu56C+klgGN+RT0sQuo2VJftZWbqf6ib3hMxov0DOThjC4JAYzt9+PjIy3wz5ptk5WyoLWJi/g2qbhQhfAxcmD/PM+wJ3pd8f83eyuiybWqvMkm39yK80MDxax6qbYgg4ySWxGfUZPJT7EKHaUH4Y+sPJP+l28PDUIF5cY+bJZSbO6u/v1Vh6MtEz0g2FhifglIKp2P+xZ/JqaWmpl6M6NrvsREXzpYAnW+b7zxLeGpX66DLf6kDeVB4DJMicDvai9nsSgtCNBfn4ckFyOvcPP4v7h7nnVr2+ZxXvF37BNss2zgo5i9GBoz3tc8yVvJO5lvFRKTw4YibDQuN4Y89qihtMnjaLivayrCSLSHkYHy8dTnGNH7NGHmDDbdEnnYjYZTtnbD0DCYmVI1aiUXn3b+YgPw0DwrX8UdCE0yl7NZaeTCQj3VBQwnnolRxMjT5oNBp8fHywWCzIctf9RRkaEssvhbvYWVNMlc3CtqpClhRlMiw0ztPmu7wM3s9a5/l+crS7JPg3edsoa6xjRck+tlQWMD021dNmeuwA1pRls748l9LGOj7L3kStbEBO+RAUG+waAbJY5isI6aFxDAmJJdLXSKSfkfOT0tGp1NyTPRetpOV/Q/7XrP3S4iwGhUQzIy6NaL9AzktKJyEgmBUHl+MrisKSokyyD6Rxz4+gVqn48apIkqIqyKgqPOk4Z2bMpNZZy7N9n2VQQNdYEXfHOCMuBf67oWeX4fAmMUzTTRm1xVQ4xtNQtYnw8ASKioqoqqoiIiLC26G16NI+o1iYv6Pdynz/aXR4IhaH7agy3wHGMHD8G4ruh92nw5CMzny6gtClyYrMlsoCdjlWUS2X8u+UfxOgaV5gMre+iumxA5odSwuOZnu1u7dxd2Ud32+KI6fUl0GRWtbcFE2Qn4Zd1jBy66s8Q7Jt8WrBqyyrXcakoEnMTZx70s+vvd08xsAdP1bz+nozd40P8nY4PZJIRrqpyJTzqMwqpbJwIwnpd1JUVERFRUWXTUb0Gi2z+4xkdp+Rrba5JnXsUcf+3PDsWKbGpDI1JvXoB2Lug8YdUPMFZF8KfTt3jwJB6GqKG0z8J+N3HLILVHZWOd8iRhfDfcn3HdXWbLdh1B6xmk2rp85u45tdDcz5sgpZCeaW031547xDS/SNOnebtspqyOKu/XcRqA5kUfqitj+5DqRSqRif6MPKvCaqLE7CAsRHZ3sTwzTdlM6QQgA7qHf1BdmJv78/TU1NOJ1Ob4fWtfT9HPyGQc2XUPyUt6MRBK+K9DXw4IiZzBs2g43Kh8goLOj34QmfryiwNTeYv31ajloFF4zfydMzg045LlmWmbRlEgoKS4YvQa/pegUvH57mXhX06FKTdwPpoUQy0o2FBPlhl2KozvuM6Gj3XyYlJSVejqoLStsAmnAofhBqFno7GkHwGo1KTYSvgV1N69natJzRulnU1be8Cs+o02N2HOrhqLA4uel/DpbvTKR/mJaMO8MJCrC1uOItsI3bxV+480IqHBU8nPwwowJHtf2JdYIz+vhi8JH4cofYHr4jiGSkGwtJmoNOKcZUZyMwMBCVSkVtrdgp8CgqHQzOAEkP2X+Dxt3ejkgQvEaWZa7afRUaScO5hhtxyq4W26UYDq1m+2lvAwlPF5BX6cO5w01k/TOevsFGjFp9sxVvVqeDvPoqUtpQqPLDkg9ZWLWQkYaRPJry6Kk8tQ537kB/qhplMkq6/q7X3Y1IRroxlUaDUZ1DPUNpqs8mMDAQp9NJY6PYLfAouhgYsAyQYc/p4DR5OyJB6FTf5WWwr66CO7PuocZZw5VB95BfX8eYgxNN389ax3d5GZ7202JT2V1byuyvd3PuR2VoNA4uGr+L1//q3hdIkiSmxQ7gl8JdbK8uorjBxPv71hPk48uwsPgTiqnAVsANmTfgr/JnxYgV7fyM298TfwkC4KHFNd4NpAcSs3C6ufD4SVQdcFKR+xMxqbdQW1tLSUkJffv29XZoXY9hLCS/A3nXwa5hMDTXvVGaIPQC9Q4bCzKX8r7lA+JV6QzRTmPG4DTSgt1DvDVNjUiH7QUUrAlmxeaRZJZr6BtTyd9GV3N5/9HE+gd52syIG4jd5eST/RtpdNrpGxjOHYOmolWpjxuPLMtM2DwBp+JkyfAlR63m6YqSQ3TEBapZki22C2hvIhnp5vzCRhJw4D3Mjhji9Xq0Wi1ms1gL36rwa8G6E8pehKzpMHDZMZvX2BqwOA91yQZofAjRi10Yhe7nqv6n8+bmf9JADT8N+4YpwVOaPf7PodM9/160r4HzP67A5tRw1fAA3v9bUotF6iRJ4tykoZybNLTt8ey9isKmQubGz2Vy8OQ2n+8t14408MQyE1/tsHDJ0K6fQHUXIhnpAYx+TZRY06kt+I7Q0DGUlZVRU1NDSMjJ1YTo8RJegMadYF4CB+6ApFdabFZja+ChzT/iVA5tJqeRVDwx6hyRkAjdzuLqxayrW8ekoElHJSKH+7+fqnhprRmtCv53eQR/G9L+H7jfVHzDp2WfkuafxvP9n2/363ekeZODeHKZiWdWmUQy0o5EH3UPENnvSjRKDTWVRZ5VNeXl5cc5q5frvwh0KVDxKpS/1WITi7OpWSIC4FTkZj0lgtAdyLLM5bsvR42ab4d822Ibs01m6EuFvLTWTEKgmrx7EzokEamwV3D5rsvRq/SsHrG63a/f0fx0KtKjdWwrsWOzd91dr7sbkYz0ACptAAbVHuqVwcj2Gnx9fWlsbOzS28N7nUoFg7eB2gj5t0D9Gm9HJAgd5sHcB6lyVHFP4j2E6kKPenxFrpXof+ezs9zB7KH+5N0bT2xgx3ScT9g8Abti55sh3xCi6569t3dPDERW4NnVdd4OpccQyUgPERY5AJdkpCL7cyIjIwEoKys7zlm9nMYIaRsBtbuoXlOBtyMShHZXY6/h2YJnCdOG8VTK0Rv/zfu1mqlvl2J3KXx8SThfXBbZ4vyQ9nBr5q3st+7n+pjrmRU2q0Pu0RkuS/fHRw3vbBbz89qLSEZ6CGPsDHyVLOpsRoKDg5EkiaqqKm+H1fX5pkK/haA0wW5RVE/oeS7ceSFOxcmngz5tlmRYbDIjXy3iP6vqiDaoyb47niuGGzosjt+rf2dB8QKS9cm8PeDtDrtPZ1CpVJzRx5cCk4vCOrHrdXsQyUgPEuhTSaM0mIaKNRgMBhwOB3a73dthdX3BsyDuP+Csht1jvB2NILSbFbUrWGlayVjjWM4MPdNzfH2Bjaj5+WwtsXNBmh9F8+JJDNZ2WBwmu4nzd5yPVtKyduRaJEk6/kld3GPTgwF4+Hex50h7EMlIDxKecjEqpYGqkq3ExLgr2xYXF3s5qm4i5l4IneNe9rv/YgAsDjFRVejeLtt1GWrUfJ/+vefYo0tqGP9GCTaHwjsXhvHtlVEdNizzp0lbJ2GVrXyc9jHR+ujjn9ANjI7XE+Kr4rs9Dd4OpUcQyUgPovOPwSDtpF5OxddHjVqtxmQyeTus7qPPJ+A3EqX2a7Ztv4lXd61osdnOGpHgCV3fY7mPUWYv4474O4jQRWCzy5z+ejGPLTUR7q8i659xXD+65bo07elf+//FzoadXBJxCbOjZnf4/TrTxUP8qbMprDlg9XYo3Z5IRnqY4OBQHFIElTkfExwcjCzL1NfXezusbsOWupIGghlme5shqo0ttvkhfydLijM7OTJBOHEmu4knDzxJsCaY5/o+x+YiG5H/zmdDYROzUn0pnpdAn1Bdh8expnYNzxY8S4wuhs8Hfd7h9+tsj05zD9U8ukTUBDtVIhnpYYIT/oaPUkBdvUJsbCwgKvm2xbf5e3i06UkcaLlZ8wpnh8GcvqO5MGkYyYcV//o6dysFFjFWLHRNF++6GKfi5KNBH/GflXWMea0Ei13htXND+fmaaDSajn/rb3Q2MnP7TFSoWDtybYcPBXlDlFFDSoiGVXk2sZXCKep5r45eTqXRYNQcwMJQnJYsfHx8sFgs4hflBDQ47Kwrz6WeIF52PoJKgnOsc5kUGceM+DTmDTuTs+LSAFCAZSX7vBuwILRgbe1altQuYWTAKJ75Zjj3/15LiJ+KXXfG8fexgZ0WxxnbzsDisrBgwAKS/JI67b6d7ZbTjDhkeG+zxduhdGsiGemBIpLcs+YrDvxOeHg4gFjmewIyqgtxHCynHh81Ayn1V3DVYd9/CRw8/teEwfhp3KsONlfm41JEkid0LbN3zUalaNi/+G1WH2hiel89ZfclMDCy44dl/vRU3lNsMG9gVugsboi9odPu6w13jjOiluCltWIDtFMhkpEeSB80CH92YnYmEhrsHtOsqKjwclRdn8l+aBLagMBICDwTV8Ir6Op+YvVGI8trlqNVqUk5OFzjkF00OsTSaaHrePrA0xTbi5H3PIWl0cjzs0JYfH1MpwzL/CmjPoOHch8iTBvGwqELO+2+3qLTqBgd58OeCgdmm/jj5GSJQnk9VJABiiyJ1BV9i7//MBoaGnA6nWg04n95a3SHlT2vc9jAXgZlz1Ejw6tOP/637QxGGEYQ7TwNjSsSRZJZXbcCFw4a5UasLitW2UqjqxGrbOWM4DMYFzTOi89I6E1MNjP3730OGkYTWPs3Vt0ey9Bon06NwS7bmbp1KhISK0esRKPqHe83900J4ryPy3lqeS3/mXn0dvvC8fWOV0ovFN7nSsozllNbW01032iys7MpKSkhISHB26F1WX2M4Z5/bynZzKTKJ3E6axjZAF+M+onrnSaeyJ3Pz9Y3PO1+2NH8GhISKlS4cJEbnSuSEaFT7C23k/7LvShxJgbW30vGA0noOrE35E8zM2Zicpp4vu/zpAWkdfr9veXcNH/8tBIfbbOIZOQkiWGaHkql0WNQZVGvDMFX04BKpaK2Viw/O5ZkQyjpfg1cov6Qu5xzsNsOcJ/uLxwAUn1TSVYPY6JyF2nSX1q9hoKCC/f8kptib+qcwIVe7fX1dQx6cwOO2I+Idp3Onmv/5pVE5NWCV1lWu4xJQZOYmzi30+/vbTP7+1JW7yKrUgzdngzRM9KDhcUMp6bYn8rc/xEYeA61tbU0Njbi5+fn7dC6lqYDUP0lUvWn/N210/Nb8aPjXD61bEJCxfPbV1Fhc8+Wn6C9BiO+bLD/iIJy1OXUqBltHM3pgad34pMQehunU+bcj8v5dZ8VadjDSCo7f0z6zCuxZDVkcdf+uwhUB/L7sN+9EoO3Pf6XEL7Z3chDv9fy1ZxIb4fT7YiekR7MEDUZP2UXdU3hnu3hxZ4jB9mLoexF2DUKtidD0f3ureAPalJ0LJVnYlYq8MHfk4gAxPsH89OYT5gUNAk16qMu7cLFYP/BYjm10O6qHdWcs/0cXsv+HzFP5/PrPisJqb+ihK3ghtjrSNB3/jCsLMtM2jIJBYUlw5fgo+7ceSpdRVqkjsgANb9kNXo7lG5JJCM9XKDejFVKxV69Eq1Wi9ksSl5T9ChkxEPB3dC49eDBwxMHNUrIJUyPG4KdBgIIQ0Ii2RDKNf1P51/DziTUx8DXQ74m2ie6xYTkndJ3MK408n/7/o8ml6hxI7SPreat/FT1E7flX0Jl/yu46YxiyhP+iUFt4PXU170S0wU7L6DCUcHDyQ8zKnCUV2LoKuYM86fBofBLpqhX01YiGenhIvpehloxU1WeSWhoKIqiUFPTy3cO9R1w8B8ytDDMAi704ZcxOTYeGRdnR03m9QmXMm/YDMZGpqA9uOomTBfGT+k/oVVpkThUhfSN1Dd4LPkxtCotLxW+RMDKAC7ecTEVdrG8Wjh5sixz/7Jcz/fq0A28rZpMk9LEq/1f9crKlQ9LPuSHqh8YaRjJoymPdvr9u5qHpgYhAU8tN3k7lG5HJCM9nEYfhkHaRb2cRmSYAYDy8nIvR+VloZdCygdAK2XMVf5gnMai6kUATAiagKqVkufphnQ+TPvQM3ckRBPCNdHX8HDKw9ROruXjtI+J0cXwdeXXRK2OYuLmieyq39UBT0royfJrHcQ9XcjminJQ3K9FFy7P625ezjy+Kv8KRWkpue4YBbYCbsi8AX+VPytGrOi0+3ZlQX4aBoRr2VDYhNMphmnbQiQjvUBIeBxOKYTKnE/x9fWlsbFRzGcIuwoSXmnhAQ0EnQcqH1abVgNwVuhZx7zUJZGXMC9xHgB3JdyFXq33PHZF9BXkT8hn9YjVpAeks6ZuDUM2DmHg+oH8WvVruz0doef6ZFs9fZ8rpLTexcR+VjSqo4cFy+3lzN41mzO2noHZ2fFDsbIsM37zeJyKk5+H/UyAJqDD79ld3Dk+EJcCr6wXQ+JtIZKRXiA44QL0Sg7mRh8iI92zvMvKyrwclXfcv3EhN6/+jDtWv8f+A//FrmiRFemwwRonhF4MwHbLdtSoKat38fDmn/jHmi94bMvP7KwpbnZNRVEYo76Es33mUlScyIs7l1Jubf5GNCF4AttO20b22GzODDmTfY37mLV9FtGro3m96HWRHApHkWWZCz4p5sqvKtGq4Ms5/vSLrW02JPgnBQUVKjaaN1Ju7/iezyv3XElRUxFz4+cyOXhyh9+vO7lxdAAaFbyxQSQjbSGSkV7CqC3BwiB8XHlIktRra9XcN2wGz4yYwAu+d9NXtY/iiBd523k7nl8FSQ+BMwDIs+URoonkncy1jI9K4cERMxkWGscbe1ZT3GDyXHNR0V5WlmbzxMD/46Hh5+Cj0vDKruWeOjeH6+PXh0XDF1E7uZZroq+hxlHDP7L+QeCqQO7Zfw92WexRIEBRnZOE/xTw/e4mQgwNzJ66kaW1S1lVsQun0vx19WdycmbImewdu5d+fv06NLZvKr7hs/LPSPNP4/n+z3fovbojlUrFxCQ92dVOKixOb4fTbYhkpJeISDkbCRfVxasxGAw4HA7s9t73wWeQLARmpqORa5ES32CjfDqFumnQ50tADUHngMoXcC+jjFGlMigkmhlxaUT7BXJeUjoJAcGsOFixV1EUlhZnMithMMNC44jzD+ba1LGYmqxkVBW2GodRY+T9tPdpmNLAw8kPo0bNcwXP4b/Cn0t3XkqVvXcmiwJ8tcNCyjMFFJtlhiSV8LeJO9Fp3T1nNqUe5bCVX2rUBGmC+HzQ5/wy7JcOX9pbYa/g8l2Xo1fpWT1idYfeqzt7eJq7JtijS8RGkydKJCO9hI+hLwZ2YHb1ISoiAoDi4uLjnNXDOGtgRyq4TJD4Gs7wG9hQcYBxkX2QQv8Gg7dB0msAVNurcSpOQunDgKCoZpdJC44mt96dLFTZGjA7bAw8rI2vRkeyIczT5lg0Kg2PpTyGaYqJ9we+T7Qumi8rviRidQSTt0xmr2Vv+z1/oUuTZZmrv6pg9ucVqFVw5/QqxqYVNGtjUZq/puZEzWH/uP1cGnUpUiuTrNvT+M3jsSt2vhnyDSG6kA6/X3c1JcUXo4/EVzvFEt8TJZKRXiQoUI9diqWp8nvUajUmk8nbIXUepwm29wdXDSS8DJF/J6O6CKvTzrjIZHcbvyGgdden+b3GvYtkoBKHUatvdimjVk+d3QaA2eGu9GvUHdFGd6jNibom5hoKJhSwfMRyhgQMYZVpFWkb0hj0xyAWVy9u6zMWupEKi5N+zxXx0TYL/cM03D4rC6su+6h2dbjnevkRxBcDv+PDQR8Squ2cWii37r2VbGs218dcz6ywWZ1yz+7s/DR/qhtlthS17X2gtxLJSC8SmnwFOqWEWlMjwcHByLJMfX29t8PqeE4z7OgPrmqIfx6i7gBgbVkOg0KiCfI5env8VaZVAARLcZ0aKsCU4ClsP207+8buY1rwNPY27OXMjDOJWR3DW0VvdXo8Qsf6YU8D8U8XkFvr5JbTDPz9zGzqnO7ufY2kIj0kjplxaYQY3UM0wcQxW/s8u0rUuDpp4vOi6kUsKFlAij6Ftwe83Sn37O4eP9M9VPOIGKo5ISIZ6UVUGg0GdTb1DCXM4J5Y1eO3h3eaYUc/cFZC3H8g2l3Aq9rWwF5TOROi+rZ42vZ690qacJ9QzI7mf9mYHTYCD/aEGLXu+SXmI3pBzPZDbU5WP79+LBmxhJqJNVwZdSXVjmpuzroZ4woj8/bPwyE7Tun6gvfd9G0l531cjgT8eFUk901Xs8fk7v0wavU8MvKv/H3QJM5JGsLvTW8xLGA4twe+hlbSU2GtJ6O6qMNjNNlNXLDjArSSlrWj1nbKcFBPkBikJT5QzZIcq1gtdwJOKhl57bXXSEpKQq/Xc9ppp7Fx48ZjtjeZTPzjH/8gOjoaHx8f+vfvzy+//HJSAQunJjx+Agpaagp/xMfHB4vF0nN/UZwW9xwRZwXE/Rti7vU8tK48B4PWhyEhMS2emmfLI0gTRIohjExT82XQe2vLSDGEARCm98eo1TdrY3U6yKuv8rQ5VUG6ID4a9BENUxq4P/F+JCT+U/Af/Ff4M2fXHGrsvXxH3W6optFJ6vOFvL2pnj6hGgrmJXD2QH/Wlx/aYfXsxCFE+Lo3Knyr6C221m/l9QGvcWmfMZ426w5r31EmbZ2EVbbycdrHRPlEHf8EweO6UQaanIi5IyegzcnIl19+ydy5c3nkkUfYunUr6enpzJgxg4qKlre6ttvt/OUvf+HAgQN8/fXXZGVl8fbbbxMbG3vKwQtt5x82Gn92YXZEEx7unh/RI5f5OhthZ39wlkHsYxBzn+chWVFYV57L2MgU1FLzX4H3s9bxXV4G1Y5qEvWJTItNZXdtKYuL9lLWWMeP+TvIt9QwJaY/AJIkMS12AL8U7mJ7dRHFDSbe37eeIB9fhoXFt+tT0qg0PNX3Keqm1PH2gLeJ0EbwWflnhK0O44wtZ5DVkNWu9xM6xq9ZDcTOL2RflYNrRxrIvjuBiAD3Vu6VhxVkTA9xv0duMW/h9n23c3bo2YwNHMuAoEh8VH+279hh1n/t/xc7G3ZyScQlzI6a3aH36onunRSEJMGzq+q8HUqX1+ZiBi+88AI33ngj1157LQALFizg559/5r333mPevHlHtX/vvfeoqalh3bp1aLVaAJKSkk4tauGUBPk1UWxNR2v9A4ijsrKSiIMrbHoE2eZORBylEP0QxD7c7OFMUxk1TY2Mj0w56tSapkasshWH4mBwwGD6GMO5IXU8C/O38/2B7UT4Grg1bSKx/kGec2bEDcTucvLJ/o00Ou30DQznjkFTPTVsOsINsTdwQ+wNLK1eyl3772K5aTkD/hjAYP/BvNz/Zc4IOaPD7i2cvDt+qOLV9WZ0avh6TiQXDfZv9rjqsA3NHLKLXGsu5+04D3+1P0/2eRIApyLjUuSj2re3NbVreLbgWWJ0MXw+6PMOu09P5qdTMSxKx7ZSOza7jF4nZka0RlLaUMzAbrfj5+fH119/zfnnn+85fvXVV2MymVi4cOFR58yaNYuQkBD8/PxYuHAh4eHhXH755fzrX/9CrW75zbqpqYmmpkOVTs1mM/Hx8dTV1WE0Gtvw9ISWyA4LO7f/QYC0B4f/mTQ0NJCeno5G0/mFttqdbHNPVrUXQvR9EP/vNl/iy7IvuXT3pbw54E1uir2pA4Jsf1kNWdyaeSsrTCtQUIjVxfJYymNcH3u9t0MTAFOjkwlvlrK7wkFikIZ1t8YQYzz69+2HAzv4udBduygpzMYTZbcRqY1kzag1xOrdPSV/VOTxftZ6AMaEJ3L9gPHtHm+js5HINZFYXVZyxuWQ6JvY7vfoLT7fXs/lX1Ty6LRgHpke7O1wOp3ZbCYwMPC4n99tStOqqqpwuVyeLcX/FBkZ2er24rm5uXz99de4XC5++eUXHnroIZ5//nmefPLJVu8zf/58AgMDPV/x8e3b3d3bqbQBGKTd1CuDiQh1/2VWWlrq5ajagWyHHQPciUjUvSeViMChlTQzQme0Z3QdKtU/lWUjl1E1sYrLIi+jwlHBDZk3ELgikAeyH8Api50gvWVZjpWYpwvZXeHg8nR/cu+JazERARgf1QcJiRJ5Lw+U3IhDdvDzsJ89iUhefRVf5271tJ/YygTsU3XGtjOwuCwsGLBAJCKnaPYQf3w08O5msT38sXR4n5Esy0RERPDWW28xcuRIZs+ezQMPPMCCBQtaPee+++6jrq7O81VY2PpOlsLJCYvqj0sKxFa+EJVKRU1NN58EKdthx0Cw50PUXEj4z0lfKsOSgQoVifru9yYcogvhs8GfYZli4d6Ee5GR+Xf+v/Ff4c9Vu6/CZDd5O8Re5d5fqpn2TikOl8Jnl4bz6aWRqFStv+2G6v0JCzLzs/PfSEico3mEb/fl8/H+DTy7fTFPZ/xOvcPdazwgKJJ+ge0/vPpU3lNsMG9gVugsboi9od2v39uoVCqm9fGlsM5Ffq1YAdeaNiUjYWFhqNXqo0rQl5eXExXV8izr6Oho+vfv32xIZuDAgZSVlbW6HbmPjw9Go7HZl9C+jLEz8VX2YbYZCAwMxOl00tjY6O2wTo7shJ2DwJ4LkXdAwqnVy8i15hKs6d7dqTqVjv/0+w/1U+pZkLqAUG0oH5d9TOjqUKZvnU5OY463Q+zRLDaZ4a8U8ezqOmKNanLuSeCydMNxz1tdu5qnK/6BColzNY8QrkqhsKGWNWU5ZJsrPe2SDaHcNGBiuy+z3WreykO5DxGmDWPh0KOH3YWT88Rf3O8nDy8We460pk3JiE6nY+TIkSxdutRzTJZlli5dytixY1s8Z/z48WRnZzdbPrpv3z6io6PR6XQnGbbQHoy6ChpII1jn3qugW+45Ijth1yBoyoaIv0Piy6d8yWpHdYfX+OhMN8fdTMnEEn4b9hupfqksrV1K3/V9Sd+QzqraVd4Or8dZc8BK1L/zySi1c9FgPwr+FU9C0PHnY62pXcPUrVORJIm1I9dy74A5JAQ033I9wtfAxSkj+OfQ6fhr2/f90y7bmbZtGhISK0esRKPqAXPIuogRsXpC/VR8v0cs8W2V0kZffPGF4uPjo3zwwQfKnj17lJtuukkJCgpSysrKFEVRlCuvvFKZN2+ep31BQYFiMBiU2267TcnKylJ++uknJSIiQnnyySdP+J51dXUKoNTV1bU1XOEYmiyFytZNq5TcrS8o27dvV7Zs2eLtkNrG5VCU7QMUZQOKkntzu1yytqlWYQnKlbuubJfrdUW76ncpkzZPUqQlksISlPjV8cqHJR96O6we4cFF1Yo0L0dR35ejvLfpxN+vVtesVtRL1IpmqUbZaNrY7LFqm0UpqK9RKhrrFZcst3fIHmdsOUNhCcoL+S902D16s1u/q1CYl6Msz2n0diid6kQ/v9s8Z2T27Nk899xzPPzwwwwbNoyMjAx+++03z6TWgoKCZpMh4+PjWbRoEZs2bWLo0KHccccd3HnnnS0uAxY6l84/jgBpJ/WuVIKDAlEUpfvMHZFl2D0MbJkQdj0ktz4HqS1+r3XXpBkf2P4rFLqKQQGDWDlyJRUTK5gdMZtSeylX77maoBVBPJr7qJjsehIa7TJjXiviyeUmIgLU7L87jmtHndjw8praNUzZOgVJklg3ch2jA0c3ezzEx5/4gGDCfQNQddDup68UvMKy2mVMCprE/yX8X4fco7d79OBKmseXiqGalrRpaa+3nOjSIKHtqnM/50Btf2L9MyhuGIafnx8DBw70dljHJsuwezhYd0DY1ZDyQbtd+rbM23it+DUOjDvQa1YR2GU79+fcz4KiBTTIDfhIPlwWdRkv938Zo0b8vh3PpkIb094tpb5J4ewBviy88tiTVA+3pnYNU7ZNQUJizcg1nBZ4WgdHe7SshizS/kjDoDZQPrEcH7VPp8fQW/R7roADtU6ankg64ddId9chS3uFnic44WJ8lALMFie+vr40NjZ27e3hZRn2jHInIqFz2jURgcNW0vSSRATck12f6/cc5slm/tv/vwRrg/mg9AOCVwYzY9sM8hrzvB1il/Xk0lpOe72ERrvCgvPD+PHq6BP+kFlbu5ap26Z6NRGRZZlJWyahoLBk+BKRiHSwW04z4pTh7U2W4zfuZUTPiEBBxotUOU8nJtKX4goX0dHRxMS0XLPFq2QZ9oyBxi0QMhv6ftHut4hZHUOT3ET15Op2v3Z38kvVL8zdP5esRvcW88MChvHf/v9lfHDPHb5qC5tdZvp7pazNbyLMT8WaW2JIDT/+hNKVJftZWbqfHGsu3zY9hoLMu/0/Y3Z863vabKksYGH+DqptFiJ8DVyYPIwhIYfKaSiKwo/5O1ldlo3V5aCPMYzL+44m0vf475XnbT+PH6p+4NHkR3kk5ZETe/LCSXM6ZfQPH6B/mJY9c3vH/lmiZ0Q4YeGJ0wGJpqrlSJLUNWvVyDLsHedORIL/1iGJCECVo6pHraQ5WbPCZpE5NpMdY3YwPnA82y3bmbB1AolrEvm09FNvh+dVGSVNRM3PZ21+E2f201N6X8IJJSIAQT6+9A1T+LzpnzRJ9Tweu4CV+bWUNJhabJ9jruSdzLWMj0rhwREzGRYaxxt7VlN8WPtFRXtZVpLFnH5jmDfsTHxUGl7ZtRyH7DpmLO8Xv88PVT8wyjBKJCKdRKNRMSbeh8xKB2ZbF+6B9gKRjAj4Bg/Bn53UuxLx9/PD4XC0ugeMV8gyZE6Ehg0QdD70+1+H3KbOUeepSSO4DTEMYc2oNZROKOWi8IsosZdwxZ4rCFkZwuO5j3ftIb0O8PxqEyP/W0x9k8JLZ4ew6LoYNJoTfxu1qPK5Oud8FElm5cjlzB1wMT5qDbn1LffELS3OYlBINDPi0oj2C+S8pHQSAoJZUbIPcPeKLC3OZFbCYIaFxhHnH8y1qWMxNVnJqGp9s8gCWwE3Zd2Ev8qf5SOWt+2HIJyS+6cEoQBPLOsmiwU6iUhGBACCAqBJSsQo7QaguLjYyxEdJnMqWNZB4NnQ/7sOu83imsUAjAsc12H36K4ifSL5eujX1E+q5674u2iSm3gk7xH8Vvhxw54bsDh79hi43Slzxtsl3P1LDUF6Fdtvj+XO8UFtusb6uvVM2TYFgFUjV3Ga8TQ2VRzA7nKSYghr8Zzc+ioGBDXfUDItOJrcenfvZZWtAbPDxsDD2vhqdCQbwjxtjiTLMuM3j8epOPll2C8EaALa9DyEU3P2QH/8tRKfbBN7jhxOJCMCAOF9r0SrVNJgKUOtVmMymbwdktveM8CyCoxnQeqPHXqrlaaVAJwVclaH3qc702v0vNj/Reon1/NivxcJ1ATybum7BK4MZFbGLPKt+d4Osd3tLrcT/e8ClufamJKsp/T+BAZHt22i5/q69UzaMgmA79J+4/NdhfxjzZd8mr2JW9ImEuMf2OJ5ZrsNo1bf7JhRq6fObnM/7rC6j+mOaKM71OZIV+65kqKmIubGz2VS8KQ2PQ+hfcxM9aXM4mJveRfqgfYykYwIAKg0egyqTOqVwQQGaJFlmfr6eu8GlXkm1C8H419gwK8dfruMevdKmmS/5A6/V3enUqm4K+EuyieVs3DIQvr49uHX6l9JWpfEqI2j2FC3oUPuW2NroMBS0+yrxtZxf2G+us7E0JeLqLXJ/OesYJbfFIOuDcMy0DwRWTF8BWdFTOHBETOZN2wGk6P78UHWH5Q01HVE+Ef5uvxrPiv/jDT/NJ7vf2plE4ST9+SZ7p11H1oihmr+JPb7FTzCotOpKQlA07gcGEtJSQmpqaneCSZrFpgXg2EqDPi9U26Za80lSBPUKffqSc6NOJdzI84loz6Dv2f+nT/Mf3D65tNJ0ifxdJ+nmR01u13uU2Nr4KHNP+JUms9T0Ugqnhh1DiF6/3a5D7hXPZz9UTmL9lsJ1EssuyGaEbH64594hD/q/miWiPy5GinC112nJtEQwgFLNctKsrii35ijzjfq9JgdzXs4zA4bgQd7QoxaX/cxu41Ane+hNnYb8QFBzc6rsFcwZ/cc9Co9a0asafNzEdpPariOKIOaX7Os3g6lyxA9I4KHIXoqfspuLPZgfHx8sFgs3pmgmHUO1P0KAZNg4LJOu22Vo4p4fe9YbtcRhhmGsW70OorGF3FB2AUU2gq5dPelhK4MZX7e/FN+LVmcTUclIgBORcbibDqlax9uf6WdmKcLWLTfyrgEH8ruSzypRGRD3QYmbpkINE9EjqQo4Gxl5UuKIYxMU1mzY3tryzxzTML0/hi1+mZtrE4HefVVR81DGb95PHbFzjdDviFY170LQfYEVw4LoNGh8IOoVwOIZEQ4QqC+jkZpAEaduzJzdXUn77ex7wKo+wn8x8GAzpvlb3aasSt2BvuLlTSnKkYfw7fp32KZbOG2uNuwylbuz70f/5X+3LL3FhqdXbc69FsbzAx8sYiqBpnHpgez9tZY9Lq2v01uqNvAhC0TAFg+fLknEfkuL4N9dRVU2SwUN5gOfl/OmIgkAN7PWsd3eRme60yLTWV3bSmLi/ZS1ljHj/k7yLfUMCWmPwCSJDEtdgC/FO5ie3URxQ0m3t+3niAfX4aFHUqsb917K9nWbG6IuYFZYbNO8qcjtKcHzwhGAuavMHk7lC5BDNMIzUT0nU3Frj046ncBE6ioqCA8PLxzbr7/YjB9D/6nwcDV0InbJXtW0gSJlTTtRa/R82rqq7zc72VeLHyR/+T/hzdL3uSdknc4K/QsFgxYQJw+ztthAu4VJhd8XM4PmVYMPhKLr4vmtAR3b0iNraFZz0uAxocQvT+KonDtnmsZHzSeG2Nv9Dz+ZyKiKAorRqxgQvAEz2P1DhsfZK2nzm7FV6Ml1j+IOwZPJS042n2vpkYkDtWf6WMM54bU8SzM3873B7YT4Wvg1rSJxPoHedrMiBuI3eXkk/0baXTa6RsYzh2DpqJVqQFYVL2IBSULSNGn8PbAtzvk5ye0nVGvIi1Cy6aiJuxOGYvT2uLrrLcQO7AKR8ne8ioNSio6vxgarU2kp6ej0XRw3pp9GdR8AX4jIW1jpyYiAHdm3ckrRa+QPTabPn59OvXevcl3Fd9xT/Y95FhzABhtGM1rqa8dVRyuJQWWGp7a9luLjz0w/CwSAkJOKqa8GjvjFpRSVu9iVKyOlTfF4HewN6SleSp/zlEpceYxZMMQAF7t/yq3xd/GprpNjNsyrsVExBtMdhPRa6NxKS4KxhcQ5RN1/JOETvP2RjM3fVfFo9P9qfBZ3uLrrLsnJGIHVuGkhYTF4JRC8XNtAWhWhblD5FxxMBEZ5pVEBGBb/TZUqEQi0sEuiLiA7HHZbBq1yb3PRv0mxmweQ5+1ffi6/Otjnmt1Oto9ng+31NP/+SLK613cPyWQTbfFeRIRaHmeyp9zVP5X8T/UuHsfbt93O/fsv6dLJSIAk7ZOwibb+DjtY5GIdEHXjwpAq4L3Nje2+jrrLUQyIhwlJPEi9EoutiYnKpWKmpoOXH6Wew1Ufwq+QyFti1cSEYAcaw6Bmpb3ehDa36jAUfwx+g8Kxxdybti55NvyuXjXxYStCuPZ/GePmuy6rDiLV3a1PoeosL5tZdllWebiT8u45utKfNQSq26O5qkZoW26xmdln+Hi0MTT5wqew6W4ukwicu/+e9nZsJPZEbPbbUWT0L5UKhUTk/QUmBQabb171oRIRoQWGbVFWBiMwacJp9NJY2MHTDrMvQGqPgTfQTBom9cSERArabwlTh/HwvSFmCebuTX2VhpcDdybfS8BKwP4R+Y/aHQ28nvRXr7M3dLiSpo/fZaziRxz5Qnds9DkJPGZQr7e1Uh6lI7S+xOZkOR7/BMPs68xk2xr9lHHFRS2Wra26VodYU3tGp4reI5YXSyfDfrM2+EIx/DodPfKpi37e/f7j0hGhBaFJ5+NhAt10yYASkpK2vcGebdA1bugHwCDMryaiNQ768VKGi/z0/jx+oDXaZjcwNN9nsZP5cfrxa9jXGnkpn1X0iC7ez5GhSVw44Dx3DP0L1zWZxRxBydyOhWZD/f9gdzKFLg8ax7fVnzLFxlm+jxbQFGdi7kTjGTcGYdB3/bX3s81Cz1DNEe6c9+dvFL4Spuv2V4anY3M3D4TFSrWjlqLyou/W8LxjUv0wU+nkFt29Jynjhia7KrEq1Rokd7YjwB2YHElolarMZvN7XfxA/+AyjdB3x8G7wSVd7snl9QsAWBs4FivxiG4u63/lfQvqiZX8dXgrwjVRJGvbOFT520sk+YzMSGMUeGJ9A0MZ0pMf+4bNoPEgxNXy631zfbb2Ne4j/kH5pO+IZ2UdSlctPMiLvthCxqVxJLronj+ry3Xgzlcg6PlMfuF1d80G6I50p377mR93fo2Pvv2MXXbVCwuC28OeJNE30SvxCCcmDq7lae3LyI2vJImh4ZKk1+zx9/Ys5rsuhPr8evuRDIitCo40Ae7FItBfQBFUaitbdu4fIvy74SK18GnLwze7fVEBA7VpJkROsPLkQiHuzjyYm7yf4PzNI8RLiWT3bSLwX8MZs6uOfxa9StO2YlGpebMuIGec34qXcXjuY8zaP0gUten8mDOg+yw7HA/qEgMMMZRcl880/r5tXJXN5vTwUf7NvDqrhVHPVYjF5FnyznquFpy95Qk6hO5P+l+0gPST/7Jn6Qn855ko3kjs0JncX3s9Z1+f+HE2VwOXtq5jAJLLaP7FQGwLTuR4MN20rW67LyyeznFDSYvRdl5vP9JIHRZoclzKM1YjMteBsRTVlZGcPAp7NxY8E8ofwV0KTCkayQicGglTT+/ft4ORThCg8NOpKovN/q9yD3DJvNOyTvMPzCfz8o/Q42avn59SfJJ4Q97Bo3U4ii1oUKFjHt+yZ//BfBXItl71/H/H9ucDl7YuZR8S8sTt3e5Di0vVqPGhYsEfQKXR17OJZGXMCxgGJIktXhuR9pq3srDuQ8Trg1n4dCFnX5/oW1WlWZT0uiuSZQQrCHaoKKiNoj5Y86nzGrm8+zNZNWV0+Ry8m1eBrcPnuLdgDtY1/g0ELoklUaHUb2PWtdofHTQ2NiILMsnNwZd8C8oewF0iTB0L6h07R/wScqx5mDUiP1ruiJfjZYGZxOmJis6yY+7E+/myqgr+ajsIwxqA/sa97HJtJ06Di0/PzwBOVx8QBC5jbmk+KUc857f5G3zJCI+ag2jw5KIDwjC6rSzojKDTNMKAPQYuS7mWq6PvYrhhuFeSUD+ZJftTNs2DQmJlSNWoukiib7QMkVRWFW63/P9PwZNJt1Hy2VfVLCtxM6I2EBuGzSZhzf/RK29kd21JVTZLITpA7wYdccSr1jhmMLjx1F9QMLXtZ0m0ikrKyMmJqZtFym8H8qeAV08DM3sUokIQKW9klQ/LxUEFI5pcHA0K0r341RklhVncXbiECJ9Irkn8R4AZEXmhR3L6Gu7jNXO98lR1rV6rczGTPqs74OERIA6gAhdBH18+zAkYAinG09nSvAU9JKB9RV5APioNPwr/UzPbqclTSXcWfQ4AZKRkapL6a+ayOmavowwjujoH8NxnbXtLExOEy/2e5GBAQOPf4LgVbVNjVTaLAD0M0YQ5x/M3wYr3O6n4pEltfx4dRQ6tYbxUSn8VLALBdhfVyGSEaH38g87Df8D72Nz+SGpJKqqqtqWjBQ+DKXzQRsLQ/eBqu0FxzqSxWnBrtgZ5D/I26EILZgc3Y8VB/+C/KlgJ3bZxbTYVAJ1vhRaalmYv5395gp0kh+XBNyLoqnn6cq/g6oRVIcmmEpIXBV1FUHaIHZZdpFnzaPMXkauNZffaw5VhVahQosvfgTTx7cvv9c1MFGaiE6l4y/b/oJVtrJhzB+8uWMHNpeTTRX5zOk7GpXkvel3Lxe8zHLTciYHTeauhLu8Fodw4ppkp+ffoXo/LE0yTy03UWOVWZxtxeWSUatVhPgc2n21yeVs6VI9hkhGhOMK9LVSYhuKn9pEoyMQu92OTncCvRvFj0PpE6CNhiFdLxEBWFqzFIBxgaImTVcU4x/EWfFp/Fa4BwVYVLSHRUV70KrUOA6rdKtCIu/AML7Y5kLru4iBUx9gh/3QJmkKCpdGXcpZoWc1u74sy+y37mdF7Qo2mTexpnYzhbYCzJSz2VrEdXtXeNoGqgPZMmYLffz6kGwoYa+pjCbZidXpwF/r09E/ihZlNWQxd/9cAtWB/D789+OfIHQJBo0Pdocaa5OGj/NlHvy2kJpGmXsmBXLf5CDUandym33Y3jlGXdv2wuluRDIiHFd4nzmU79qExpkDjKKkpISkpKRjn1T8FBQ/ApoodyKiOfbqBW9ZcXD8f0aYWEnTVZ2fmI4aFb8U7kbBvY9Is0RE9mHRxuHk1bhICtaw/pbRRBqW8lrRa/xz/z9xKA4UFPr79T/q2iqVilT/VFL9U7mZm/mtcDffHdgOwGV9RpIcrGe/dT/vFr/L3yL+5ikXYLbbPNf4syBdZ3PKTiZtmYSCwpLhS9B1seHP3m5bSRNvbjBTa5WpbnRR1SBTY3VRZ5Ox2BVk5VA9pkl9nHx0UQKJwVrPseIGExsrDgDgq9Yy6GAxxZ5KJCPCcWn0gRil3ZiVwahUUFtbe+xkpOQZKH4QNBEwNAs0XXecc1v9NiSkFj+ohK5BkiTOTRrKhKg+rCrLJtNURpPLiUGrR7Em8OBPamxOuHJYAB9cHOaZYH1b/G1MC5nG7F2zKbAWkOCTcNx79TEeqlC9vuIAk6LPJNE3kekh0z3Hc81VFDeaAIj3D0an9s7b6AU7LqDCUcGjyY8yKnCUV2IQWrcqz8abG+uRgGNVo40MMjMwdQ8rKisZKyXjo9ayo6aIJcVZnl2Hx0f1wcdLr7PO0rOfndBuQiP7UVseRIAqF4srhfr6egwGw9ENS5+Hon+BJhyG7ocuvkpF1KTpPkL0/pyflA649+/4589VvLDGjFYFX1wazuz0o1+PA/0HsmX0FkxO0wmtMOlrDCfGL5CSxjoO1Ffzyf6NXJg8jACtD4qikGOu5N2sQ5NkJ0V7Zzn4+8Xv81P1T4wyjOKRlEe8EkNPVWNraFagLkDjc1KVc28cbeCZlSZK61vfHC/IV2bmmEwUYF15LuvKc49qkxQQwrmJQ9t8/+5GJCPCCQmMm4Vv2efITgdI7kq+RyUjZS9D4d2gDnVPVu3iiQi4V9KIXpHuxWyTmfBmMTvLHMQFqll/ayxxga2/lWlVWsJ14a0+fjhJkrgoeTj/3b0SBYW15TlsrDxAYkAIFkcTZdZDOxHH+QdxekTSqT6dNiuwFXBT1k34q/xZPqL14oFC29XYGnho84/N6iBpJBVPjDqnzQmJn07Fy+eEcvFnFa22+eLSaFz6ISwq2o3tiAmqEhKjwxOZ03d0j+8VAZGMCG1g1JVTbh+PTm3DYpGa7zlS/hoU3AXqYEjfB5ogb4Z6QhqcDTQpTaT5p3k7FOEErcq1MvODMhodCpcM8efzS8PbvfbK4JAYrk09nQ/3bcClyDhkV7OJhOAenrl98JROH6KRZZlxm8fhVJwsHb6UgC48BNodWZxNRxVkdCoyFmcTIbS9dyQyQIVODfYjOkfUElwxPIAZ/f2BQZwR05+NlfkUWmqQUQj1CeD0yKRmq2l6OpGMCCcsIuVCKjPz0blysDOE6upqwsPDofxNyL8N1EEHe0SOLvjUFf25kkbUpPGu2qZGvs3LYHdtCXbZRbg+gKv7n06SIbRZu/sXVfP0ijrUKnjuXA1Wn63cvq6OYB8/ZiUMZlxk883MlpfsY3HRXursVuICgrm0z0iSDcevRwNwWkQyyYYwVpTu44/yAzQc7LZPCghhUnQ/xkQkeWXi6hV7rqC4qZi58XOZFDyp0+8vnJgqi5OLPi1n1YEmjtwKTwKCfVW8ePah17deo2VSdN9OjbGrEcmIcMJ0AQkESD9hVRJBgoqKCsKVHyD/FlAHwpAs0J7Ym31X4KlJEyJW0nhLg8POs9sX0z8oktsHT8Gg1VNhrcdfc2hlSKNdZtKbJWwpsRNtUPPLdUbezfmdSUH9uH7AODJNZXy8bwOBOj2Dgt174GyqzOfr3K1c3nc0yYYwlpZk8squ5Tw28hyMuhNbYh7ha+CSlJFckjISu8uJWqVC7cX9RL4u/5rPyz9nkP8gnu//vNfiEFonyzJ3/1rDK2vNuBQYl+DDN3MieXK5iQUb3McU4K0Lwwn29c4qrK5KJCNCmwQHBWI2RaFXVWCzheI68A/UKiMMyQRdhLfDa5Ot9VuRkBgQMMDbofRai4r2EOzjxzX9T/ccO3yXyQ0FNqa/W4rFrnDeQD++vSKC7/K3E6YP4OIU986n0X6BZNdVsqQ4y5OMLCnOZEJUH8ZHuZfizuk7hl01Jawrz+Gs+LZvcOetFTN/qrBXMGf3HPQqPWtGrPFqLELLvtlp4fpvK6mzKUQFqPn00gjO6OPeG+TxvwTzSYaFOpvMhYP8uGBQ7xl+OVEiGRHaJCRxNmW1P6F21YAUQa3qbMKGvgK6KG+H1mbZ1myM6q4/ybYn21FdRFpwNG/uXc3+ugqCdH5Mju7HxOi+PL60lkeX1KKS4O0LwrhhjPv/Va65igFBzV9vacHRfJW7FQCn7KKgvoaZcYfmAqkkiQFBUeSaqzrvybWj8ZvHY1fs/Dz0Z4J0Qd4ORzhMTrWdCz4uZ2e5A50anvxLMA+cEcyP+Tu4efUuT7vh/cPIyEng9fNaX2K+pbKAhfk7qLZZiPA1cGHyMIaExHoeVxSFH/N3srosG6vLQR9jGJf3HU2kb/d/HxPJiNAmKo0Go2oHVfJ09Eo2xZp5hOnaWKumi6i0V4pKvV5WabOwsnQ/0+MGMDN+EAfqa/g8ewv/XOhkU76OcH8Va2+OoV/4oWEbs8N21FCLUafH5nJgdzlpdNqRUTC00KbMaj7hOSqHyzKV87/crZQ2dswclWO5Ze8tZFuzuTHmRmaFzTrl6wntw+6UuebrSr7Y3oACnDPAl89mRxKgPzSUF+MXyF1DznB/cxqoAIOu5Y/dHHMl72Su5fzkdIaGxLKx4gBv7FnNA8PP8tRHWlS0l2UlWVyTOpYwvT8/HNjBK7uW8+jIs722+V57EcmI0DbVXxHlfJlK1QxUkoLTJWG1WvH17V5bFTc6G8VKmi5AARIDQrggaRgAVXV+/G+1nep6LTP7+/LDlZFoNO03T0OW5ePOUTlSlc3Cf3evYFJ0x85RacmvVb/yZsmbpOhTeGvgWyd9HeH4dteW8GP+rhYfsziamn3/6joT9/5ai82p0C9Uw9dzIhkafXRJAJUkEXiC27gvLc5iUEg0Mw726J2XlM5eUxkrSvYxp98YFEVhaXEmsxIGMyw0DoBrU8dy9x/fklFVyGgvLDNvTyIZEU5czbeQcyk6SU8AO3AoYYBCcXExfft2r5ngy0zLALGSxtsCdXqi/dybzv1nZS33/VaLRq3lorHZ/O/clicWG7X6Ztuxg3t7dr1ai06tQSVJqJCob6GN1eU45hyVlqws3d/pc1QATHYTF+68EJ2kY+2otSd1DeH4FEVhYf4Ofi3c3Wqb97PW8X9DplNY7cMln5VTUOfCXyfx7kVhXDeq9SGSCms99274Dq1KRYohjAuShrW6X0lufRXTY5vPX0sLjmZ7dREAVbYGzA4bAw8bovTV6Eg2hJFbXyWSEaGXqP0Bsv8Gkh6G7CTowFKKGhLQYMFs9t4Kg5O1onYFAGeGnOndQHq5PsZwShrMTHmrmJV5TYT6qXj47Fqs0pELIg9JMYaxq6ak2bG9pjJSjO4hEY1KTYIhhL2mcoaFxQMgKwqZpjJcsszQkNgW56i0xltzVCZtnYRNtvHl4C+J8ul+c7K6i9VlOc0SkSCdL4kBoTQ6m8gxVyGjUNHgYPybBzhQaUAlwfWjDCw4L/SYvXbJhjCu6T+WSD8DdXYrP+Xv4tkdi3lkxF/Ra7RHtTfbbRi1RwwtavXUHUyqzQ6r+1gLw491RyTe3ZFIRoTjq/0Z9l8Akg8M3g76PoT3jaYsYzVaqRqnkkptbS3BwcHejvSEbTW7V9KkBYhhGm9K1PXhkZ9KKam2MSVFw5Nnu/giN5sr+o3xtPkuLwOTvZFrU92VlSdH92NFyT6+ydvG+MgUMk3lbKks4LbBkz3nTI8dwAdZ60kyhJBkCGVpcRZ22UmT03nUHJUvc7egUakYe8QckD+d6hyVk3HP/nvY2bCT2RGzuSTykpO6hnB8Llnm54Kdnu//ljycabGpqA4u4a6y1nPhl5ms2ReMokj0j5BZcm0S8UHH/+gcHHJoLl2cfzDJhjDu27iQzVUFTDjYgyYcIpIR4dhMv8L+c0HSwqCt4Oue8KnS+GFU7cUkDwdJoaysrFslI2Iljfe9tMbEP39pRCUZuGRsPmEhFfxeHMAlKSM5LSLZ067ObqWmqdHzfZg+gNsGTeF/uVtZVpxFkI8fV/Y/zTNkAjA6PBGLw8YP+Tsw223EBQRzx6CpPLtjCQmHzVFJCAihpNHEytL9rSYjnW1N7RqeK3iOWF0snw36zNvh9Gg7a0sw2d09DkNDYvlL3EDPY3sr7FzymYld5aHotQ6mpGczOlEhPujkhqT9NDoifQ1UWutbfNyo02N2HDG06LAReDDJNWrdc0/MdluzeShmu434gKCTiqkrEclIL3JkASg4ThGousWw7+yDicgW8BvY7OHQ6HRqSgLwoYzGxqjm28N3cRX2Cvr6da95Lj2F0ykz68MyFmfbCNKrWHlTLEOPMUxyTerR83pSgyJ5cMTMY95nakwqU2NSmx07fI7Kn6J9A9lWVdjqdU5ljkqgtm2TVxudjczcPhONpGHtqLXd5vepuyq01Hr+ffrBBNjmkBm/oITtpXbiA9U8c1YwtoANFDXWUW4Fh+w6qZUrNpeDSpuF01uZ0JpiCCPTVNZs3sje2jJSDq7ICtP7Y9TqyTSVER/g/sPP6nSQV1/F5B6we6tIRnqJlgpAwTGKQNUtg6yzQNJA2ibwO3oSnjF6Kn7FH+PCFyQoKysjJqbrL/O1Oq1iJY2XZFXambCghKpGmQmJPiy5Phofbed94PYxhlN+xNBJudV8zBogpzJHZWpM24owTt02FYvLwjsD3iHRN7FN5wptpyiK59+ag4mfCthWYufcgX58eXkkPhqJZ7cfSj7kw845lq9ztzI0JJYQvT91dis/5u9EdbD4HbgnxQbp/LggeRgA02JTeW7HEhYX7WVISAybKvPJt9R4hiwlSWJa7AB+KdxFhK+BMH0AC/N3EOTj63nddWciGeklWioABa0UgTKvgqwzQVJD2gbwH9LqdY36Wsqa0gAH1dXV3SIZWW5yVzo93Xj6cVoK7emNP+q4/YdqZAWePDOYB6Z2/rDe9NgB/Gf77/xSsJtR4QkcqK9mdVnHzVE5ci+SY3ki9wk2mjcyK3QW18de335PWmhVuO+hlVTbq4tJD42jqN6FAtx6uhEfjUSd3UpuvXsislGrR3eCvSK1TY28k7WOBkcTAVof+hrDmTfsTM/copqmRqTDKtf0MYZzQ+p4FuZv5/sD24nwNXBr2kTPHiMAM+IGYnc5+WT/RhqddvoGhnPHoKndfo8REMmIcKT6tZB5BkgqGLgO/Icds3lk30up2LUHnVSDzZ6I3W5Hp2t9z4auYHmtOxmZESpq0nQGWZY596Nyfs6yYvSRWHJ9NKPjT37vjVORZAjl1oGT+O5ABj8X7CRM37FzVIwnuMfEVvNWHsl7hHBtOAuHLmy/Jywc0/CweL7I2YzN5WR9RS6jwxMpqnbPJesbqsUhu/gse5OnN2RcVArSMVZ6He7GgROO+fg/h04/6tjI8ARGhre+Q6skSZybNJRzk4aeUAzdiUhGhEPq18PeKYAEA9dCwKjjnqLRR2CQvqJBSQUUSkpKSEpK6uBAT82fNWkGHjEHRmh/OdV2xi8opdziYkycjuU3xuCn8+48iKGhsQwNjW318faco3Ii7LKdadumISGxcsRKNCrxttxZ9GotU2L681vhHmRF4aVdyygr6Y9EMDvMe3knJ9eTmPqoNUyOFjs2dxQxO0pws2yCvQdLkg9cBQGjT/jUkLAonFIIaslCbW3t8U/wsuxG90oaMTmwY72/2Uzq80VUWFw8dEYQG/4R5/VEpCs6a9tZmJwmnu/3PAMDRILc2c5NGEr6wfovigK/7DSiAL8U7PYkIlqVmpsGTDjm3CLh1Ih3hl7AIbtYVpzV6uM11ath73hAgYHLwdC2XUmD4y9Er+ShUWqQZZn6+paXrnUVFY4KYvWt/2UsnBpZlrnokzKu+6YKvVZi9c3RPP6XEG+H1SW9XPAyy03LmRw0mbsS7vJ2OL2SWqXi5rSJXJCUTk5hPE6XBpAorjYiAYOCo7l76PRm+4YI7U/0B/ZwdpeTV3evYF9dRYuPx3KAwWUPo0ggpS4Bw7HHOVsiqVQYtIVUOsYBCqWlpRgMhlOMvGPYnDZsso00P7GSpiMUmJyMe6OYYrOL4dE6Vt0U06xwmHDIXste5u6fS5AmiN+H/+7tcHo1taQiQdeP1XuKPMdUDQN5clbEccsFCO1DJCM93Dd5GZ5ERIXEoOBokgyhNDjtlFWv5R/KI6iQedVxP1f4jOZk/36NSDqbqv2VaKjFYlF12T1HPCtpAsVKmvb26bZ6rvm6EqcM90wM5JlZrVfB7e2cspPJWyejoLB0+FJ0qq496bunc7gULv+yAvmwVbsrsyWMGjEs01lEMtKDNTiaWFueA7jHPP85dNqhkuaOCpSaeSi4eNn+LzKVNFaW7veseW8rfWA/AliGVUlEQaG6uprw8PB2eibtR9SkaX+yLHPFV5V8vr0BX63E79dFMbVP96ri3Nku2HEBlY5KHkt+jBHGEd4Op9d7anktO0rtHL6DiMWusDjbyl8H+Hktrt6k6/3pKrSbLVUFOGQXABOj+hxKROzlkDkdSaWlMWUh+0kHYF157indL8ioxSmFAw4qKloeFvK2LfVbkJAY5H9ylVSF5krMTpKfLeTz7Q0MjtRSMi9eJCLH8X7x+/xU/ROjDKN4OOVhb4fT620qtPHEMhNHbmWmUcEX2y1eiak3Ej0jPViVrcHz7yEHZ4vjNMH25INbvK8nwDeNxIDfya2vwuywnfRWxwBhKVdQlrEYCRmbTYvT6USj6Vovsf2N+zGoDV1yCKm7+WZXA5d9UY7DBXeMM/LyOWHeDqnLy7fmc1PWTfir/Vk+Yrm3w+kV7t+4kOqmhqOOT47uxwWJI7nsiwpa2jnEKcMXO+tITN7M7L7ph95Dce/c+mP+TlaXZWN1OehjDOPyvqOJ9BX1rk5W1/qkENqV+rDNeaxOh/sftT+BYoXk98DXPYnT5nJ42qlOcEOflqg0OozqfdS43LtZlpaWEh/ftbYprnBUkKxPPn5DoVWyLHP9t1V8sMWCXiPx47URzOgvxtaPR5Zlxm8Zj1Nxsix9GQEaMTGyM9w3bAbyYf0eJQ11vLRrGSPDEnh0SS05Nc5Wz3W61CiNCbyxZzUPDD/LsxvqoqK9LCvJ4prUsYTp/fnhwA5e2bWcR0ee3SN2Q/UG8edhD5ZoODSBcH1FLihOKH0Cgs6GsEsBOFBfTUljHQDx/sGopVN7SYTFnoaCDhUWampqTula7c2zkkbUpDlpFRYn/Z8v4oMtFlLDtBTfFy8SkRN0xZ4rKG4q5u6Eu5kYPNHb4fQaBp2eQJ2v52tHTTHh+gD6B0YQ4a8mOViDptnbnoJaUjy9JXll4SQEBLOiZJ/7UUVhaXEmsxIGMyw0jjj/YK5NHYupyUrGMQouCscmkpEebEhIDEEHt6PeWVNCxr5nwLYPYh8F3H8hvJe1ztN+UjtUfgyIGIc/u1ErjTidTqxW6ylfs72srFsJwGmBp3k5ku7pp70NJDxdQE6Nk5vHGMj8ZzwhfqJz9UR8Xf41n5d/ziD/QTzb71lvh9NrOWUXGyoOMC6yD5Ik8c9JQeTem4DtiWTy7o1Hp4bIoAYuHCZzXpofA8K1BOpVpAVHe+rTVNkaMDtsDAyK8lzXV6Mj2RDmaSO0nXgn6cHUkopzE4fy0f4NpEhZDDU9TiVRfFdgpc6+mGxzpadtpK/RU0L7VAX6NlBiiwBFobi4mL59u0Z562U1ywCYESJq0rTVrd9XsmBDPTo1LLwyknPTRG/IiSprKmPO7jnoVXrWjFjj7XB6tYzqIqxOO+Mim7/XqVUSCYFq7C5IjKjh7ilJjIk4lGysKKmlzm4DwOxw/4Fl1DWvr2TU6T1thLYTyUgPNz4yhaDadxho/g8qCQpc8WypKmjWJsLXwB2Dp6BTt8/LIbzPFZTv2oyEjNncdTrf/qxJM9h/sLdD6TZqGp2Me6OUrCoHKcEa1v89hogA8bbRFhO2TMCu2Pll6C8E6YK8HU6vtrYsh0Eh0QT5HL1cd3+1e+5IoL9IKLxBvKv0ZM5ayL2WQfULQQIFKFUOVYQM9fFncnQ/JkX3w1ejbbfbavSBGKTdmJVhKIpCbW0twcGdXy7+SPutYiVNWyza18D5H1dgcypcPSKA9y4KEz+7Nrpl7y3kWHO4MeZGZoYdu9Ce0LGqbQ3sNZVzS1rL83VW57mTkEijgtnRPCExO2wEHuwJMWrdQ99mu43Aw6oym+024gOCOiDy3uGk3llee+01kpKS0Ov1nHbaaWzcuPGEzvviiy+QJInzzz//ZG4rtIVlI+waCqafPIck1MyIH8STo87lP2PO56nR5zIjPq1dE5E/hUakIEv+oDgoKytr9+ufjHJ7OTE+or7Eifi/n6o46/1yXLLC/y6P4IOLI0Qi0ka/Vv3KmyVvkqJP4a2Bb3k7nF5vXXkOBq0PQ1qpMbO1pAmA4VEGMk3N37P21paRcnCfpjC9P0atvlkbq9NBXn2Vp43Qdm1+d/nyyy+ZO3cujzzyCFu3biU9PZ0ZM2Ycd5OrAwcOcPfddzNxophF3qEUBUpfgD3jwF4KuA57UEKrUhPuG0CQjx/SKSzjPZ6g+LPxVfajwUxjYyOyLHfYvU6EXbaLlTQnwGyTGfJSIS+tNZMQqObAvxL42xCxBLWtTHYTF+68EJ2kY+2otd4Op9eTFYV15bmMjUw5asXg+1nr+C4vg70VDlQSnJeSyu7aUhYX7aWssY4f83eQb6lhSkx/ACRJYlrsAH4p3MX26iKKG0y8v289QT6+DAvrWlsZdCdtHqZ54YUXuPHGG7n22msBWLBgAT///DPvvfce8+bNa/Ecl8vFnDlzeOyxx1i9ejUmk+mUghaOVmNroMFeS2jR9fhZWim6JUnQ4vY+HcOgK6PC3geA8vJyoqOjO+3eR1pZe3AljVGspGnNilwrf/2gjEaHwqVD/fl0drjoDTlCja0Bi7PJ832AxocQ/dGTeSdunYhNtvHV4K+I8ok66nGhc2WayqhpamR8ZMpRj9U0NSIhkW9y4q+T6GMM54bU8SzM3873B7YT4Wvg1rSJnj1GAGbEDcTucvLJ/o00Ou30DQznjkFTxR4jp6BNyYjdbmfLli3cd999nmMqlYrp06ezfv36Vs97/PHHiYiI4Prrr2f16tXHvU9TUxNNTYd+4c1mc1vC7HVqbA08tPlHosnlAe3vyEiopCM3NwaO2vC4Y0WmnEdVZjEoUFVV5dVkZFmteyXNX0L+4rUYurJ//VrNM6vq0Kjgk0vCmTO8a1Zd9qY/f8+cyqFePo2k4olR5zRLSO7Zfw+7GnZxacSlXBx5sTdCFY6QFhzNmxMvb/Gxfw6dDsDtDXlEBLiTiZHhCYwMT2ixPbh7R85NGsq5SUPbP9heqk3JSFVVFS6Xi8jIyGbHIyMjyczMbPGcNWvW8O6775KRkXHC95k/fz6PPfZYW0LrtX7M38FPBbsAKCSJxxz/4Wz1t4xUbQBJQjoqAZHYUlnAwvwdVNssRPgauDB5WIdsdawLSCZA+pUGJQ17UxN2ux2dzjvVSf+sSZMekO6V+3dVFpvMpLdK2FZqJ8agZt3fY0gMav85RD2BxdnULBEBcCoyFmcTIbiTkdW1q3mu4DlidbF8OuhTb4QpnKQGu0JikFjT4S0d2gdbX1/PlVdeydtvv01Y2IlP7Lnvvvuoq6vzfBUWil3tjiVcf2hMv1SJ423nHTzleJxDPSEHf8EUqG5q4J3MtYyPSuHBETMZFhrHG3tWU9xg8lzjz62O5/Qbw7xhZ+Kj0vDKruWeonttERxkwCW5/8ouKSk5yWd46vY17iNAHSCGHQ6zvsBG1Px8tpXauSDNj8J58SIROQWNzkZmbp+JRtKwdtRa8VrrRorqnCjAwAjv/LEktDEZCQsLQ61WU15e3ux4eXk5UVFHj4vm5ORw4MABzjnnHDQaDRqNho8++ogffvgBjUZDTk5Oi/fx8fHBaDQ2+xJa19JE1DNUv7tnh8S/AMHnHjzqJNdczaCQaGbEpRHtF8h5SekdutVxSOJl6JQi1NRTW1t78k/yFFXYK4j1iT1+w17i0SU1jH+jBJtD4d2Lwvj2yijx4XmKpmydQoOrgTdT3yTRN9Hb4QhtsPqAeyOzkTEiGfGWNr376HQ6Ro4cydKlSz3HZFlm6dKljB079qj2AwYMYOfOnWRkZHi+zj33XKZOnUpGRkaXK6LWXdXYmlek1GLjNPU6nJoYiP4/6PcNDN4O4Teywd6PAUHNE8eO3OpYpdFg1OTiwg9Zlqmvrz+JZ3hq7LIdq2xlgN+ATr93V2O1y5z+ehGPLTUR7q8i659xXDdKJPun6vHcx9lUv4m/hv6V62Kv83Y4QhttKnLPUZyYpD9OS6GjtHmAbO7cuVx99dWMGjWKMWPG8NJLL9HQ0OBZXXPVVVcRGxvL/Pnz0ev1DB7cfLfLoKAggKOOC23X4Ggiy1R+1Dj2eNVKVMhs8b+HUX8e9BsKyW+xp/gLxmiP2MZYq+/QrY7D46dQlecAxUVpaSkGQ+dOjlxd65403dtr0mwusjHtnVLMTQqzUn1ZeEUkGo3oDTlVuxq282jeo4Rrw/l+6PfeDkc4CXvK3ZXL+4SKOSPe0uaf/OzZs6msrOThhx+mrKyMYcOG8dtvv3kmtRYUFIju3k7Q4LDz3I4lnoq7f9Ji40zNz+QrSbxdEUG9IYupMaleitLNL3Q4AXnv0kgfLBYNsix36mtkaa27J683r6SZv7yWB36vRZLg9fNCufX0QG+H1K0UN5j4MX/nUcedspNL95yPhMTKESvRqMSHWXeUV+vETyuJzy4vOqnfnNtuu43bbrutxcdWrFhxzHM/+OCDk7mlcIQvczd7EhE/jY6xEUnE+gWRXPl/hFhreMf5D3e7nK30D4z0rJE36vRe2eo40N+JpdEAikJ1dTXh4eEnfa222lK/BYDhAcM77Z5dhd0pM+3dUtYcaCLUT8Xqm2IYGCnGxdtiS2UB72WtO6oHEuBX19PUK2b+FfsYAwMGeiE6oT2UW1yE+olExJvET78bqrNb2VSZD4CvWsv9w2ZwSZ9RjI+MJ9y+npXyX9AY3TvdKiieyakAKYYwr2x1HNHvSjRKNZLSdNzdetvbvsZ9vbImzY7SJiKfKmDNgSam99VTdl+CSETaKNdcxTtZaz2JiI9Kw8CgKAYERrLbtYhSZS/R0kAaqlMpPaKXUug+LE0y8YGiV8ubete7cw+xtaoAWXEv2430NVDb1EiVzUJO/tu8ZruRH7mOq/qdjs/BLuO15bkoB9tPi/XOVscqjR9G1R4AbDYrTqfzVH4EbdIba9K8sNrE8FeLMTfJvPjXEBZfHyPmh5yEnwt2en7XTo9I5tnTL+SuIWcwJ3UI612f4CsFMFM9D7vsYlHhHi9HK5yMmkYnLgVSw0Wi7k0iFeyGTHar5986tYZ3stbR4GgiQIG+Wi3z0mcR7htAoiGEfXUVuBSZJtmJXq316lbHoVGDqSn1AaC0tLRTVlP1tpU0TqfMjA/KWJZjI0ivYtVN0QyJ9vF2WN1Sta2B3bWlAIT4+HFVv9NQq1TIiszVe67GV+XLsmHL+Twzj0ang81VBVzSZyR+GvGh1p2sOeBeSTNCLOv1KpGMdEO6w5KCcZEpjI1MgZrvIPt26PsN+BpQFKVZ0nJ4IuGtrY6NMdPxK/kEG0nU1NR0SjKyxrQG6B01afaW25n4VgnVjTKTknxYfH00OtEbckxP5D2BS3HR368/qX6p9Pfrj0HjXu1V1FDr2TZwdHgSapWK/Y37uXPfnfxW8xu/pP/CmOBRZIY6WVuei0N2UdZoJsUoKrf+f3v3Hd9WdT5+/HO1JVvyiPce8cjemwxIaEKgFCijhbLK+EKhtNCyCoVOAgVaStnQlv6AFgplEwIZJGTvndiO4z3kbcu2tu79/SHHibOdxJZkn/fr5Vfiq6Oro2tbenTOeZ4TSjZW+tfQzRBpvQElgpEQNNQS1/3/VbUHmBKXiarhdQibDNFXAFDQWke9w1/TI8scc8xOlYFi0Tdjdw9D9nhwOBwYjcZT3+ksLG/2Z9LMi57Xp48TaC+tb+OnnzWhKLBofhQPzYkKdJeCnqzIPFX+FJ2+nnV6YrQx5JvyiVOnUe0FDy5am7/ht/Wb2NWxCzVqJlsmc1HMRYB/dPLIcwqhZU9XWu+YBFF9OJBEMBKCciPiSDRaqHXYKG1v4sOCj/h++xKkzL+jKAp7W2r5V9GG7vazE3MC2Nue4odeTf3eImSMVFdXM3To0D59vEOZNBPME/r0cQLF65W59K06vixyYNFLrLgtkQnJ4hPe6VBJKi6NuZT369/Hqxxew9ToaWRN25oebXe0qvlB/DU8nvk486PnY1D7r7GsKOxuru5uN+SIrRmE0FDS7EGvYdAtcA82IhgJQZIkcWXWeF7Yuwo1bua13YUiKTxdGUVL6Sc0u+zdbbPMMUyKDZ7S1BpjAmbpA2zKeNra+j77YCDvSXOgwc15r9ZQ3ykzLU3PilsSMegG3vPsS1fFXcV/6v5z0jbhxHC5+nf8OHouc+Jyu48risIXFbtp7KqAPDwygSi9qU/7K5x7te0+oo1ntx5OOHsiGAlRI6OTuG3oCCLLryRS1YpPUXGw096jTbYlhp8Mn406yN6Io4fE0dbkX1TZ0tJCVFTfTSlY3VZSDQNv24E3Ntm44+NGZAV+MzeKx+eJaZnecstuSh2l+Pe2Pnp3a1ChYkLYNEa5b0Uj6fjPwS1sbaxgfEwqPkVhc0M5Ze1N3e0vTBF1RkJRm1NmbKJYvBpoIhgJVa4KJjRcjaIq7jrg3yxPI6nIssQwOzGHcTGpQbNW5EiRKVegb/wUF8lYrdY+C0a8snfAZdLIsswVb9fzyX474TqJr29JZFqamJY5XU6vk+ernudf1n9R0FmAzPHXeKhQMTd6Lp+M+oTFlQV8XbUfgKK2eorajq2Tc0XmWIZHJfZp34Vzz+6W8cqQGyPWiwSaCEZCUecOKPwOeJuRuj7RqSUfL0/7HpLadNxdfIOJf/O8chq8qdjtHX1WHv7QvP9ky+Rzfu5AKG/xMO3lGmrbfUxI1rHqtiTC9MEXbAabDm8Hz1Y8yzvWdyh2FKOgoEbNOPM4bk++nTBVGD/a96Pu9ipUzI+ez0djPkKv0nNFxlgSTREsqdxLnaPnRo8pYZFcnDaS8TEnzk4Tgtf6Cn9a7xgxMhJwIhgJNa1fQfHlILsBX4+bVL5m0IQFpl+9FJexgMbiNhS01NXVkZh47j9VHsqkGQh70ry9vZ2bP2jAK8NDsyNYtGBIoLsU1JrdzTxd8TTv1b1HqbMUAK2kZaplKj9J+QnXxl/bHQC3e9vRSlo8igcVKi6OuZj3R72PXuWfSpQkyZ9CH5dJsa2BOocNCYmksAgywocEffAvnNiGrrTe6elidDHQRDASShr+AaW3AUrX11G8jaAPjfURhshhhPMq7coYGurr+yQY2WLbAsBE88RTtAxesizzw3cb+O/uTkxaiWW3JDA7q2/ToUOV1WXlqfKn+F/9/6h0VQKgl/TMjpzNT1N/yuUxlx93BM6sMTN/yHw+b/ycS2Mv5b2R76FTHftJWZIkciLiyImIO+Y2ITTtrHUDMDlFFAYMNBGMBKnPynfxecWe7u8nqtZzm/aFk96nqGkfb++vpsnZQZzRzBWZYxkVndx9u6IofFa+m9XWYhw+D9mWGK4dOol4o6XPnsfJRFrUtLdr8XjcuN1udLpzO1Qa6pk0VW1epr9cTWWbj9EJWlb/XzIWQ2g+l75S4axgUekiPm78GKvbv5+SUWXkwugLuTf13u5aIKfyeObjjA0fy2OZj6FVifUDg0VxkwetGlEcMAiIYCSIJZki+PmoCwBQObLxVaxH7diK/8d27N4uqys3MCP9TkZHJ7OpvoyX963mkXELuku9f1W1nxU1hdyUN40YQxiflu3i+T3f8JsJl5x1qfczEZN1A7U7VuAlhpqaGjIyMs7p+a1uK8n65FM3DEL/3dXBj96rxyPDvedZ+PPFoqrnIQfsB3ii7Am+aPyCBk8DAOHqcC4ecjEPpD/ArKhZvT7nRMtEJlpCdwRNODM1Nh+RIsAPCiIYCWIqSSJC1zUkr5sCo7b4F6/WvwINr3a1kvDvzSuREyYxK2U4AN/LGMP+Visra4q4LmcyiqKwvLqAhWkjGTskBYCb86bxyw0fsqOxkklxGf399FBpdFjU+2n2zaClufGcBiNe2YtdtpMfFlqZNLIsc9MHjby1vQODRuKLm+K5MEfUrtjVvotFZYv4qvkrWrwtAESoI/h+7Pd5MP1BJkVMOuNzt7jsfFi6g70tNbhlH7GGcG7MnUqG+cTrcgpb63i/ZBu19jai9CYWpo1kenxWjzbf1BSxtGo/bW4HKeFR/CB7AplnsfO1cO61OHzkiw3ygoIIRoJYvaOdBzZ+hFalIsscw+UZY4kOGwvmmf5gxDIf3JXg3IeEQoq+54LW4VGJ7GyqAqDR2YnN42RYZEL37UaNjkxzDCXtjQEJRgBikyfTXCEhKxLt7e2YzeZzct51beuA0MqkqWv3Mu3lGkpbvOTHall7RyLRpsH7J7qxbSNPlT3F8pbl2Hw2AKI10Vwbfy0Ppz/MSPPIs36MTo+bp3cuJTcynp+OnINZa6De0U7YSTa7a3R28MLelcxKzOGW/OkUtFp5q2gjEToDI6L8u0Nvbijng5JtXDt0EpnmGJbXFPD8nm/47YTvYtGJxZLBwOuVcftg6JDB+zcWTMRPIUhlmmO4KXca8SYzbW4Hn5fv4eldS3l8/MUYav4AqCH3Y5D00LmRVbsfIzbs/B7nsGgNtLn9q8VtHv+meUe/EFp0h9sEQnjcDEwVb2FX8qmtrT1nwciylmVA6OxJ88m+Tq7+dx1uH9w5xcxLl8UGuksBsbJlJU+XP82q1lXde8bEaeP4ftz3eTjjYXJM53Zrg6+q9hGlN3FT7tTuYzGnKOm+qvYAMYZwrsoaD0CiKYLitgaWVRd2ByPLqgs4LyGbGQnZAFw3dDJ7mmtYV3eQBakjzulzEM7M1hr/4tVRCWLxajAQwUiQGhmd1P3/lLAoMs0xPLzpE7ZbtzDNWQDm80HVFViET+U934+5yRCac94RRht2p4r29uZzVnPkUCbNZHPwj4zc/mEDr29uR6+Gz2+I5+JhoZGefa4sblzMXyr+wtq2tThkf9CcqEvkhoQbeCjjIdIMfVfDY1dTFcOjEnl1/2oOtNUTqTMxOzGHmYkn3jOpxNZI/hEjjOAfhfxvyTYAvLKPivZmLuqaMgX/lGt+ZAIltsa+eSJCr60r938Im5IqpmmCgQhGQoRJoyPeaMbY8KL/QOqfetxu0RmweXqOcNg8TiK6RkIsWv/aE5vbeXgdStf3qeGRfdfx0xCXfS11e3YjS2E0NTURG3v2owKFnYWEqcKCOpOmqdPL9FdqKWr0MHSIhnV3JBEbPvD/JGVZ5sOGD/lb1d/Y2LYRl+IvPJWqT+XKuCt5IP0BEvQJpzjLudHg7GBV7QHmpeRzUeoIytqbea9kKxqVimlHrQE5xOZxHneE0enz4PZ5sXvdyCiYj9PG6rD12XMRemdHV1rvjHSRKh8MBv4r3wDh9HlocLYzVP0FaJMgvOcoSJY5hoJWK/OSDy/Y3N9iJatrwVyMIQyL1kBBq5XUcH/5dYfXQ2l7I7NP8imwP2gMUViknbQqU7Faq89JMBLsmTRfFnZyxdv1OL0KN08w848rB/a0jCzLvF33Ni9VvcS29m14FP+27VmGLK6Jv4Zfpv2SaF10v/dLAdLDo7k8YywAaeHR1NhbWVV74ITBiDAwFDZ6UEuIdPkgIYKRIPVByTZGRycTbQijze3gs/LdZCn7CKcV4h/kn4XriNSZuDxzLABzk/N4ZtcyllbtZ1R0EpsbyinvaOZHOf5pCkmSmJucz+LKPcQZzcQYwvmkfBeReiNjYwJfKG1IbDqtDSrcLhderxeN5sx/NQ9l0uSZ8s5hD8+dn37ayAvrbejU8L/r4rli5MCclvHKXv5e83deq36NnR078eFDQiLHlMP1Cdfz89SfE645+fqMvhahM5BoiuhxLNEYwfbGyhPex6I1YDtqnZXN7cSg1qJTa1BJEiok2o/TJkIrFq8Gi6o2rwhEgogIRoJUi8vOG4Xr6PS4CNfqGWqJ5Xrj2+DRQMIvaW5cicThMtTZllhuzZvBJ+U7+bhsJ3FGM3cOn9ldYwRgfsow3D4vbx/YhN3rZmhELPeMOD8gNUaOFpl2Kfr6D3FJ6dTW1pKaeuYB0oa2DQBMspx5umdfaLV7mfFqLfvqPaRHalh/ZxKJloH1J+j0Onmp+iXerH2TvZ17kZFRoWJ42HBuSryJu5LvwqAJnjfkbEssdUdNndQ5bETrTxwgZlli2NNc0+PY/lYrWRb/KKRGpSbNHM3+1rruQF9WFAparZyflHuOn4FwpprtMhlRA+vvL5SJn0SQum3YeT0POAphdzFELASVhl+MPjZLZEJsGhNiT7zYT5IkLs0YzaUZo891d8+JCF0F9e40mhuqzioYCcZMmhUHHVzyLysOj8K1Y8J46+rYoF7P0ht2r52/VP6Ft61vU2gv7N6Ibkz4GG5NvpVbk249bnn1YDAvOZ+ndn7N4oq9TIxNo6y9idXW4u4RRYCPSnfQ6rZzc950AGYn5rCypoj/lW5nRnwWBa11bG2o4O6Rs3uc983C9WSYo8kwD2F5dSFu2XtMLRIhMGRZxuFVyIwWb4HBQvwkQkXFL/3/pj0b2H70ofis79FQUIdX1uBwODAaz2xh2WbbZgCmWqaeomX/uH9xE8+sbkOrgn//IJYfjjk36cuB1Opu5dnKZ/lP3X8ocZSgoKCRNEyyTOKOpDu4MfHGkAi2MsxDuHPYLD4q28EXFbuJMYRzddYEpsRldrdpcztodtm7v48xhHP3iDm8X7KNFdWFROpNXJ87pTutF2BSbDodHieflu/C5naSEh7FPSPOx6ITiyWDwb56/5qlkfHBGSQPRiIYCQWyF2xfgS4DjKFVUbQ3dOGZhLOMdsZRVVlBTu6ZrfkotAdHJk2HU2bmazXsqHWTbFGz7s5k0iJD90+u3l3P0+VP8379+5Q7ywHQSTpmRMzg7pS7uSruqoBf8zMxekgyo4eceLHzTXnTjjmWFxnPo+NPvu/N+Ul5nJ8UnOuWBru15f4Mrklig7ygEbqvjIOJ9VlQPJB4f6B70ueiIw20t0l0tDcAZ/ZCbnVZSdSf+12Ae2NNmYMF/7DS6VH4/kgT//1hXEi+UVc5q3iq/Ck+rP+QGrd/nYRBZeCCqAv4WcrPuDTu0gD3UBB6b1uNPxiZlRk865cGOxGMhIK65/2VVmPvCHRP+lx0xg+p3rECrzSElpYWoqKienV/r+ylU+4MaCbNo1838cQ3bahU8M/vx3DTxMDsinymDtoPsqhsEZ81fka9px6AMFUYC6IX8Mu0XzJ3yNwA91AQzk5BvRuVBHGDoK5PqBA/iWDXuQ08NRB9FYTgJ+veUmk0RKj30eQ7j9qqEqKiJvTq/hvbNgKByaSxu2XmvF7D5io3CeFq1t2ZSGZ0aMxJ7+3Yy6LyRSxpXEKTtwkAs9rMZTGX8UDGA0yLOHaqQhBCVUWrj3CddOqGQr8RwUiwq+iamkl9JrD96EdxqbNoKvPhdHl6XR7+UCbN3Kj+/fS+udLJ3L/X0u5SuCTfyCfXxwf9tMw22zYWlS1iWcsyWr2tAERqIrkm7hoeyniIseaxAe2fIPSVBruPRHPgSxoIh4lgJJjJTmhfBYY80Pfd/hzBxhQzHmPZuzikHOrq6khMPP31H92ZNBH9l0nzh+UtPLasBZUEr14Ww+1TgndaZm3LWv5U8Se+afmGdl87ADHaGP8+MOkPMSx8WIB7KAh9z+5WSA/hxeQDkfhpBLPqPwA+SHo00D3pd1GmVhwOaKgt6lUwUmgvxKQyoVH1/a+20y0z7x+1rC13EWtSsfqOJPJig29aZmnTUp6teJbVrauxy/4U1QRdAj+I/wEPpz9MpinzFGcQhIGjvMWDAgyPC76/1cFMBCPBrOE1UJkg5keB7km/i8+9AeuOrXgUI263G53u9F44al21/ZJJs6PGxZzXa2hzKnwnx8AXNySg0QTHtIwsy3zW+Bl/rfwr623rccr+suTJ+mRuib2Fh9IfIsmQdIqzCMLAtLrM//cwUaT1BhURjAQr27fgbYCYmwLdk4BQaUyES3uxKROpqigma+jwU95HluV+yaR55ttWHljSjAT89ZJo7pkR2aePdzpkWea9+vd4oeoFtti24Fb8O5KmG9K5Ou5qHkh/gBhdTIB7KQiBt6Xan9Y7M0MEI8FEBCPBqvIh/78pTwW2HwEUn5CFzSpha6sDTh2MbGzv20wat1dmwT+tfFPiJNqoYtXtSYxMCNxQr1f28mbtm7xa/So7OnbgVbxISGQbs7ku4TruS7sPiyZ4168IQiDsrXMjQchkug0WIhgJRt4O6NwAxjGgiwt0bwLGkvwddLWf45YSaW9vx2w+eRn1pU1Lgb7JpNlb52bWqzU0O2TmZBr46scJ6AIwLeOW3bxa9Sp/r/07ezr2dO+Em2/K54bEG7gn5R5MGlO/90sQQkV5ixeTVqT1BhsRjASj6kcBBZJ/F+ieBFyErpwGTyJVZTsYNmrmSdseyqQ51zUx/raulZ9/3owCPLUgmgdmR57T85+K0+vk+arn+Zf1XxR0FnTvhDsyfCQ/Tvwxd6bcGbQb0QlCsKnr8BETFhzru4TDRDASjBr/BeoIiBalthOyL6dhfyUOl3TKmiPnOpPG65W55P/V8dUBBxEGiW9uTWRccv+Uj7Z5bfyl4i+8Y32HYkdx90Z048zjuD35dn6c+ON+yRgShIGmw60wJlH87QQb8RMJNi2LwdcKcXcHuidBQReWhElagZ1hNNTXEp9w4g3Natw1JOgSzsnjHmhwM+PVGho6Zaan6Vl+SyIGXd9+mmp2N/N0xdO8W/cuZc4yALSSlqmWqfwk5SdcG39t0BdSE4Rg1tDhRVYgL0aMJAYbEYwEm+pHAAlS/hjongSN2EgN5a3QULPnhMGILMt0+jrJizz7TJrXNtr4ySeNyAr8bl4Uv57bu/1xesPqsvJU+VN8UP8BVa4qAPSSntmRs/lZ6s/4Xsz3RAAiCOfI6jJ/Js34ZBGMBBsRjAQTTxPYd0LYZBBZEN2i06+kquVbXEokXq8XjebYX9vN7f71IhMtE8/4cWRZ5vK36vi0wIFZL7H0x4lMSTv30zLljnIWlS3ik8ZPsLqtABhVRi6MvpB7U+/lopiTb00vCMKZ2VzlrzFyXrrYrTfYiGAkmFQ+CCiQ8mSgexJUVBoNZvVBWuXxVJXuICPn2IBjafPZZdKUNruZ/kot1nYfE5N1rLo9CdM5nJYp7CxkUfkiFjcupsHTAEC4OpxLhlzC/en3Mytq1jl7LEEQjm9Pnb/+zoh4bYB7IhxNBCPBpPld0MRAxJxA9yToJGfOoLW4kzZbGwBLS17A1NJOmBRBbVomq1pWATAjYkavz/2vre3c+mEDPhkeOT+CP3xnyDnp8672XSwqW8RXzV/R4m0BIEIdwfdjv8+D6Q8yKaL/dxYWhMGspNmLQSOJqc8gJIKRYNH4H5A7If6nge5JUDJEDkfLJ3iUZPZs/YRopoGiICtOFu48nPI7afMkxpjHMCJsBAuHLGRE+IgTnlOWZa75Tz0f7LETppVYclsC52UYz6qfG9s28lTZUyxvWY7NZwMgWhPNtfHX8nD6w4w0jzyr8wuCcOas7T6iTSIQCUYiGAkWNb8HVJD8eKB7ElQUWaajfi2N9eV4yAFJwqUkgwRIEpLS0qP9jo4d7O7YjQ8fnzV8xk/1i7ko10S4vucLUEWrlxkvV1Nl8zEmUcea25MIN5zZi9TKlpU8Xf40q1pW0Sl3AhCnjeP7cd/n4YyHyTHlnNF5BUE4t2wumaFDxOLVYCSCkWDgrgLnfjDPAZVYWHWIz91Owe5vcJIMSg5IXb+u0uHqiR6l/tj74UOFinnSY1z973q+PzKM96+NQ+q633s727n+vw14ZPjFTAvPLOz9ni2LGxfzl4q/sLZtLQ7ZAUCiLpEbYm/goYyHSDOkncEzFgShr3Q4ZbyySOsNViIYCQYV9/v/TX06sP0IMiqNCY3KCT7lcCByJMWH4zjBCMBvM3/L2x/lIeHhf3s6eWmDjTunmLnh/Qbe2dGJUSPx5c3xzB16eqXTZVnmw4YPeb7yeTbZNuFS/CmCqfpUroq7igczHiRuEJfuF4Rgt67C/6FhTJIIRoKRCEYCTZah5WPQJkL4maelDkSSSk3OqEso2fMRbd5ckHpOo0jI2JSmHsfUqJkeMZ2cjp9S2Hj4tp991sQfVrRi7fAxPE7L2v9LJNJ08l9/WZZ5y/oWL1e/zLb2bXgUDwBZhix+EP8D7k+7n0hd5Ll5soIg9KkNFf5MmukirTcoiWAk0BreAMUpKq6egEpjwme5EE3dp3h143rcpiDRJB8RjCgSOsXIwrJH+fneeiRUKPinZnwKWDt83DrRzOvfjz3h43llL6/XvM4b1W+ws2Nn90Z0uaZcfpTwI36e+nPCNeF98lwFQeg7u+r8o5mTxMhIUBLBSKDVPgVoIPGBQPckaK3fVU9z2xjOy9iC+sjRI0lDh9cLCl0LWhV+0PQbChrisTrVx5xHJfk3yVIUpXv9CPg3onup+iX+WftP9nXu696IbnjYcG5KvIm7ku/CoBGfpgQhlB1s8qJTgyYAu20LpyaCkUByHAB3CUQsBLHp2Qm5PT5AYm35BKalbUcbPtZ/gySh9nSt01BgjusaJkvz+F2TCQmle1TkEFmBzwrsPLe2jdunanmu8jnesr5Fkb0IBQU1asaEj+HW5Fu5Pel2sRGdIAwg1TYvkWeYMSf0PfFqG0gVv/D/m/pMYPsRIsKMWqbOuZXmii8orY8HYHbmDCj5M2GqML5c8CZLCnzUbq87/glULohew31lX3Kf8xOQZDSShkmWSdyRdAc3Jt4oiiEJwgDV5pQZHiemaIKVCEYCRfaBbQno0sE0LNC9CSnRaRfT2f4W9Y5h+NrCAHgs8zH0Kj23/K/8iJYKksqOErMa4r6EmBWgsaNyxzPFfB4/z7iLK2OvFAGIIAxwbq+M2wdDh4i3vGAlfjKBYv0zKB5I/GWgexKSUkdcT/3WTbh9EQBcEn053/t/VpodMqjbMSQtxRv3P7wRW0DlRY+ZGZHTuDf951wSc0mAey8IQn/aXOVfvDomQR/gngRGs7OTDq+rx7FwjZ5oQ1iAenQsEYwESt1fQdJD7E8C3ZOQFWlsodURw1zNGK5+q5P9YX/AOGsNDm0JTgl0ipF852QWeG7gL5f/X6C7KwhCgKyv8L8RT0kbfMFIs7OTX2/5DK8i9ziukVT8fuJ3gyYgEcFIIHTuAE81RF0JYorgjKVmTKR1Xym/NtzGnNyJIPnQaizMj7qMBzIeYPfXJjrsHsJNYodOQRjMdtT6a4xMSx18WXEdXtcxgQiAV5Hp8LqIRgQjg1dl19RMmli4esYUH7qmZ9AzBUkVD0WPQfU1tCtaVhlVlEVqMLg6SddJTNQoge6tIAgBVNToRqPijPefEvreGf1kXnzxRTIyMjAYDEyZMoVNmzadsO3rr7/OzJkziYqKIioqinnz5p20/YAnu8G2Egy5oE8PdG9Ck7MEdqRD7VPkxBYwetzlFF3zMH+8MI5ZmXqMGom9dW42NGt4zxrO/XvC0T5SQtIT5cx6tZr7vmhkcUEnTvexnxYEQRh4qtt8WPQiEAlmvR4Zee+997jvvvt45ZVXmDJlCs899xzz58+nsLCQuLhj9+ZYuXIlP/zhD5k+fToGg4GnnnqK73znO+zdu5fk5ORz8iRCSvUfAB8kPhronoSm5v9B8Q8AH6S/hD7+DgByYtT86vwofnV+VHfTZ/+9ky0NEuUeHU5dOOWtXtaWu1hd5uIva2wAGLUSiWY1w2K1TE83sDDPxOgErciwEYQBpNkhkx0tJgKCmaQoSq/GsKdMmcKkSZN44YUXAP/+Hampqfz0pz/loYceOuX9fT4fUVFRvPDCC9xwww2n9Zg2m42IiAja2tqwWCy96W7w2RYHcidM7Ax0T0LGa+/vpMPuYV7Sc4yOeAckA+R9BZZZp3W/cJOW268a0318X52bxYV21pY72VfvobrNS6fn8J+BBEQYVKRFahiToGNWpoFL8k0kWMSLmSCEGlmWUT9SxnfzjXx6Y2Kgu9PvKjqa+eP2Jce97ZFxC0gLj+7Txz/d9+9evbq63W62bt3Kww8/3H1MpVIxb9481q9ff1rnsNvteDweoqNPfAFcLhcu1+E0JJvN1ptuBq/2NeBtgCGnF4QJfirc/CD9ZpJMe0GXBsM3w1nskDs8XsfweB1HJlV7vTKrSp18Xexgc5WLokYPBQ1udlndvLWjAwCNCmJMarKHaJiQrGdutpHvDDVi0IlRFEEIVrut/g0uRyaIgmfBrFfBSGNjIz6fj/j4+B7H4+PjKSgoOK1zPPjggyQlJTFv3rwTtlm0aBG//e1ve9O10FDxoP/f1KcD249Q4jzIdSkXYlC1UWafRcbEb/okA0mjUTE3x8TcHFOP4812L18WOvimxMmOWhdlLV7WV7hYW+7i+XX+INmg8U/15MdqmZZmYEGukQnJOjHVIwhBYG25E4ApgzCTBqDD4zrhbb2cGOlT/Tru/OSTT/Luu++ycuVKDIYT/2I8/PDD3Hfffd3f22w2UlNT+6OLfcfbAZ0bwDj6rD7VDyrNH0DxDzGofKyuv5utLTcS9r/dp333TofnrLsQbdJw3Tgz140z9zhe1ODmi0I7a8uc7KnzUG3zUtri5csiB48ta0ECLAaJtAgNoxJ0zMo0cnG+iZQIMdUjCP1pW40/rXdmxuCrMbK1oYJ/FK474e1fVOzhtmHnoVUdu7Fof+vVK2NMTAxqtZq6up57f9TV1ZGQkHDS+z7zzDM8+eSTLFu2jNGjR5+0rV6vR68fYL841b8GZEgegCM+faH8Xqh7DiQDXza8TkHzSAA67L0PMHTac/+HlhurIzdWx73nHT7m9cqsqXDx9QE7myr9Uz2FjR5213n4907/GiG1BENMKrKHaJmQpOeCbCPzc42YxFSPIPSJggY3Ksn/wWIw2d1czesFa1E4PPoRoTXQ6XV31x3Z2VzNv4o2cEve9B47mQdCr346Op2OCRMmsHz5ci677DLAvzho+fLl3H333Se835/+9Cf++Mc/8tVXXzFx4sQTthvQGt8ElQWiLwt0T4Kb7Ib9M6Fzk3/fnhFbGFqton5HTdfuvb2j06qZPjapDzp6LI1GxZwsI3OyjD2Ot9q9fHXAP9WzrcZFabOXjZUu1le4eGHD4ame+HA1w+K0TEnVc1GuiUkpYqpHEM5WZasXsz6wb7T9TVZk3j24pTsQmRSbzmUZY4gxhOP2edlQX8p/S7bhkX1sbihnZsJQ8iLjT3HWvtXrUPG+++7jxhtvZOLEiUyePJnnnnuOzs5Obr75ZgBuuOEGkpOTWbRoEQBPPfUUjz32GP/+97/JyMjAarUCEB4eTnh4+Dl8KkGsZTH4WiFOlH4/KedB2DsFfE0QeSkM/QhUKnIzIDejb1d896VIk4Zrxpi5ZkzPqZ6DTW6+KLCzptzJHquHyjYvS4q8LCly8NvlrQBY9BKpXVM9MzMMXJxvIj1KVJQVhNPVaJdJHmTTo3tbaml0+kdjcyxx/DhvOqqukQ+dWsOsxBzUkor/d2AjACtri0IvGLnmmmtoaGjgsccew2q1MnbsWJYsWdK9qLWioqLHp7mXX34Zt9vNlVde2eM8jz/+OL/5zW/OrvehovrXgAQpiwLdk6CwZE0p+w42AaCSJAx6NdlRBcy23IZW1YmU8idIur9f+tLW4eLv/9vNj747nLho06nvcA5lD9Fxzwwd98w4fEyWZdZVuPiqyMHGSieFDR6Kmzzsrffw7q5O7vq0CbUE0SYVWdFaxifpuCDbyIIck6guKQjH4fAoZEYFfk1EfypoPbyU4vyk3O5A5N7PG7lxvJmxSXqmxGXwQel27F53j/aBckbh4t13333CaZmVK1f2+L6srOxMHmLg8DaDfTuETQJNiNdIOYcyki3Mn5GJLCv4Kh7GbHueZlcmW93P8Z2Ei86sNPAAoFKpOC/DyHkZPad62p0yXx2ws+Kgg201LkqavWypcrGx0sXLG9sB0KshPlxNXqyWqWkG5ucYmZamF1M9wqB1sMmNAgyPG1xpvS6ft/v/sUb/DMSuWhfPrbXR5pT5x5VxaFRqovUm7F437iPaB8rgGrsKhIoHAQVSngh0T4KKWqUiTO+D/bOgczPo03EmLWXfigaSixsZlRuL0+3l2y1VHKxoxSfLxA8JY86kVGK7RjDW7ajmYEUrY/Li2LCrBqfLR1ZKBBdOT0ev8/9qK4rChl217C5qwOH0Eh1h4LwJKWQmRwDw967snLc/2wdASnw4Vy/ID8AVOTmzQcWVo8K5clTPqc2yZjdfFDpYXeZkt9VNZZuXpcVOlhY7+f2KVv999RIpFg0jE3TMzNBzSb6JzOjB9eIsDE6rS/1pvROTB1hCxCmYtYef70FbA2nh0fzxm1YAbpvs/1Dc4XFhtfvXrIVrA399RDDS15rfBfUQiJgb6J4EFa1SD9ungK+5e31IqkpFbFQHBypaGJUby+crD6JRq7h8Xg56nZpdhQ28/3URN18+EqPe/6vb2u6isKyZy+bm4Hb7+HpdGcs3VLBwVhYA2/bVsXVvHfOmpRMXbWJPcSOfrCjmxu+NIMpi4NqLh/HvL/Zz5XdyGRJpRKUKrYVuGdE67pqm465pEd3HZFlmY5Wbr4rsbKhwUdDgobTFy/4GD+/v7uSez5r92QVGFZnRGsYn6Tk/y8BFeWFYxFSPMIBsre5K6800nqLlwDIhNo3FlXsBWFpVQLIulQ/2+NeQjEv0fxBZXLmnO6tmQmxaYDp6BBGM9KXG90DugIS7At2ToGL2bWCs8afga4HUZyDxF923RUcYaGhxUF3XjrXRzh3XjEGj9r9Bzp6USnFlKwfKWxidGwuA1yez4LxMzGH+P7Dzp6Tx8fIDzJ6USphRy5a9dUwamUB+pn8B7KwJKVTW2ti2r465U9MxGvx/Aga9hjDjwFgYqlKpmJZmYFpaz1o+HU6ZpcUOVhx0sLXGxcEmD9uq3WyucvPqpnagAV3XVE9ujD+rZ36OielpejQaEaQIoWdfvRsJSIscXG91KWFR5FjiOGCrp8nVyXf/XYisWEixSJR3NrCypohtTZUAqJCYnZgT4B6LYKRv1fwOUEHy44HuSfAou4ephldo9ybAsI/BfF6PmxX8e8M0tDjweH28/O6OHrd7fTKt7YcrClrCdN2BCEBSbBiKAs1tTjRqFZ0OD0lxPac2kuPCaWhxnOMnFvzCDSouHxnG5SPDehyvbPXyRUEnq8uc7LK6qWj1suKgk+UHnTyxss1/X51ESoSGEfFazks3cHGeiZxYMdUjBLfyVi9hutAa7TxXbsydwlM7l9LicnLA6s/ka3C4+fPuDT3aXZU1nnhj4NczimCkr7hrwLkPwmeBenANER6X7IR9M8G+hTr3NLa5X+IS89hjmjW3ObGY9bg9PsKMWq6an3dMG4NucK2M72upkRrumBrBHVN7TvVsrXbzZZGDDRVOCho8lLV4KWjw8L89du79wj/VE2VUkRGlYVyinjlZBi7OMxI5yIpLCcGrvtNHTNjgfL2INZp5YMyFXPN+IYriH9l0ezUoCkgShGn0XJk1junxWQHuqZ941egrFV3bsKU9E9h+BAPHAdg3tWt9yPfYVf9nfJJ8TLOKWhuNLQ7GD4vHHKal0+FBpZKICD/x4ipbp5sOu5twk/9Tem1DJ5Lkn+7R69SEGbXU1HeQmnC4xkd1fQcJMf7RAXXXGpFg2qMhGKhUKialGph01H4edrfMsmIHyw862Frt4mCTl521brZWu3ljiz+rR6eG2DD/VM/kVD3fyTExK11M9Qj9r9OtMD5pcAYjAHFGM5uLh0BX8TNFUZGkzmX+0GgmxqYHRRn4Q0Qw0hdkGVo+Am0ChE8KdG8Cq+k9OPgjwHd4fUh9KT5ZptPhQZYV7E4PZdU2Nu2uJSslguHZQ5AkSIoN59MVxcyckEJUhIFOu4eSqlaGpkV1BxMatYola0qZPTEVl8fHN5sqyE2P7l7/MWlkAut21BBp1hMbbWJvcSMNLY7uBa4mgxaNWkVZdRvhJh0atdSdiSMcy6RTcenwMC4d3nOqp8bmZXGBnVWlTnZaXVS0ellZ4uSbEidPrfJP9YRpJZIjNIyI0zIjw8DCXBPD4sVUj9A3rDYvsgLDBlla75FeWNdKp+fwBy2VBDiymBYffEUkxatuX2j8OyhOiDtxifxBoeynUP8CSEbIXwnmw9W9yqptvPrfnagkCb1eTWyUkfMnpzFi6JDuPRIun5fDmm3VfLW2DIfLS5hRS3J8eI+FppFmPTlpUXy47ABOt5eslEjmTj28MnzcsDhcbh+rtlRid3oZEmHgexcMJcri/8SvUkmcPzmVDbtqWbejhuS44EztDXZJFg23TrZw6+TDc8+yLLOj1j/Vs77cyf4Gf5XZokYPH+2z88vF/qmeSIN/qmdM11TPwlwjMeHipUk4O6u7dusdnxT4tNVAcHkVfrG4uccxWYGP99r5zbzgC0YkJQTGp202GxEREbS1tWGxBH6hzSntzAZXBUx0gGoQvqjKTth3Hti3gi4TRm4Bzbn/5T9UZ+T6S0ec83MLfcfplllR4mDZQQdbqlwUN3lp6PThPWLmTquC2HA1uUO0TErRc2GOkdmZBnRiqkc4TfcvbuSZ1Tb2/TxlUI7A/ejdOt7p2qDzaDUPp5Fo6Z/3ptN9/x6E75R9zHkQXCVgWTA4AxFHUdf6kBaIvAyG/g9EBVDhCAadioX5YSzM7znVY7V5+aLQzrelTnZa3ZS3eFlV6mRlqZOnV/unekxaiWSLmuFxOqan61mYa2Jk4uD85Cuc3N46/w7febED83X4V5s+ocl1bLAxOzEHk2v4CQMRULj285XMyXNxReZYRkUnH75FUfisfDerrcU4fB6yLTFcO3RSv2TbDMyfUj9qdnbS4T2cahpf+TP0AGnPBqxPAdP4HpRcB8iQ+iwk3hfoHgkhJMGi4ZZJFm6Z1HOqZ0+dh8WFdtaXO9nX4KHa5uNAk51P9tt5cEkLEhBpVJEeqWFMoo7Zmf4NBePEVM+gVtrixaiVBux2CA+PnY/M4YmNms42ntuzgjRDCgv+34n3mlFJoHflMXZIMy/vW80j4xaQHBYJwFdV+1lRU8hNedOIMYTxadkunt/zDb+ZcEmfL3YVf61nodnZya+3fNZdxQ5kXtQtwadLRW0aHtC+9buyu6D+pa71IUt7rA/pK9PHJjN9bPKpGwohS6VSMTpRz+ijRj/cXplvShwsK3awucrFgUYve+vc7Kh1869tHQBoVP6snpwhGiam6Jk31MjcbKOY6hkk6jp8DDEN3J+1Wdcz021J5T5iDeEkm4agU1f3WLjq56/iJCsSq0q8fHL9aPa3WllZU8R1OZNRFIXl1QUsTBvJ2CEpANycN41fbviQHY2VTIrL6NPnI4KRM6QoCvtbrUcEIjBP9SUayUdT1J0MCWDf+lU/rQ8RhCPpNCrm54YxP7fnVE9Dh5fFhf6snh21bspavKwud/FtmYs/r/Hvw2HUSiSZ1QyL0zI9zcBFeSZGJ2gH7CfowcrmlMmPHRxTeF7Zx8b6MuYl55MeqcHl82/3sPzWRH7xRRMrSpykDunE1hlGm1PC6VU40OhheFQiO5uqAGh0dmLzOBkWmdB9XqNGR6Y5hpL2RhGMBKNOj5vXC9awv9Xa4/hc9RI8ioa/1Y/kpwmdDDGEneAMA4SjEPZN868PiboCst8X60OEgIoN13DjBAs3Tug5x723zs3iQjvryp3srfdQ0+blYLOXzwsc/Opr/1RPhEFFWqSGMQk6ZmUauCTfREI/LfITzi2bU8anQG7MwNji4VR2NFXh8LqZHp/Ja5vasXsUHpgVydgkPe1uGbUEl0zdx025U8kKS6W23ceIeC2NtQba3P6sI5vHX5XactSIi0V3uE1fEn9pveT2eXl+7zeUtTf1OJ5MOVFSM9vkSdR623l21zIeGjv/mB/sgNH4Hyi5Hv/6kL9A4s8D3SNBOKER8TpGHJVR4fXKrCp18nXXVE9Ro4eCBje7rG7e2nF4qifGpCZ7iIZJKXrmZhuZl23EoBNBdzBbU+Z/Yx2XNDiyaNZaDzIiOpFIvYk/rixHq4ZH5vgrKpc2e3tUoY0JUwdlVVoRjPTSN7VF3YGIWavnisxxTIpNR33gu9AGK9S3gReaXJ18Vr6L63ImB7jHfaDH+pDlYJ4W6B4JQq9pNCrm5piYm2PqcbzZ7uXLQgfflDjZUeuirNnL+goXa8tdPLe2a6pHI5FoVpMfp2VaqoEFeUbGJ+nEVE+Q2FjpTyqYnjZAPwweocnZyf7WOu4YPpP1FU6q2nxcNSqsu+Jxs0Nmaqoei86AzdNzhMPmcRLR9YHZovVvW2JzO4nQHd7CxOZ2khoe2efPQwQjvSArCt/WHuj+/qcjzifdHA2KDzq3g/kCbs26jse3fI5L9rKxvowrMsdi1AyQ6Fx2wr4ZYN8G+iwYsVmsDxEGnGiThuvGmblunLnH8cIGN18U2Flb7mRvnYcqm5eSQi+LCx38epl/qsdikEiL0DAqQcesTCMX55tIiRAvs/1tl9UNwLjEAfLaexydbpnzXqkhKbqDhAQLo6KTmP5uDQDPX+JftXigwY2swMQUPVnmGAparcxLPlzUcX+LlSxzDAAxhjAsWgMFrVZSw6MAcHg9lLY3MjtxaJ8/H/FX0gt1DhuNTn/udn5kvD8QAah/DbxWSP2UKL2JSXHprLEexCV7KbY19MjjDln2/bB/OvhaxfoQYVDKi9WRF6vjvpmHj3m9MmsqXHx9wM6mSv9UT2Gjh911Hv7dVedBLfmHxrOjNUxI1jN3qJELhxoxiamePnOw2YNezYDeD8nm9Fc43lGrhb3DKC21sqnKzfgkLQkWDf8sXMfWMhNg4cKhRoYl5/HMrmUsrdrPqOgkNjeUU97RzI+6Ru8lSWJucj6LK/cQZzQTYwjnk/JdROqNjI1J7fPnI4KRXrB73d3/TzQd3uGUmif8/1Y9CnG3k2zM7b7J4fUX3kF2g7cBPPX+L289qM0QdVk/9PwsNb4DJTcCMqQ9Bwk/C3SPBCEoaDQq5mQZmZPVc2fuVruXJQf8Uz3ba1yUNnvZUOliXYWLv633T/UYNBIJZjX5sVqmphpYkGtkUoqY6jkXam0+oozBty7iXDLrD/2e+LfPWFnin4Jp6JR5bZONJo2Dgnr/FIx/nVMYt+bN4JPynXxctpM4o5k7h8/srjECMD9lGG6fl7cPbMLudTM0IpZ7RpzfLxvqiXLwvVBnt/HY1s8ByLbE8sCYC/03uOuh4Q1o+xw61uPChEeRsCkRxOjU6OQWkDuOPaFkhImd/v2cg1XpndDwCqhMkLcczFMD3SNBCFkHm9x8XmBnTZmTPXUeqtq8dLgPvwRLgFkvkdo11TMzw8Alw8JIixSfG3tD90gJoxN0bPlpSqC70mcURUH9q1KOfgOX8FcUseglDBqJdreC/XeZAeihnygH3wfijGYSjBasDhsHbQ0UtdaRGxkPujhI/hUk/4qmlvXYC39IqqqccKkTvCc6mxqirwzeQER2wr7pYN8O+mwYsUmsDxGEs5Q9RMfPZuj42RE1AWVZZl2Fi6+KHGysdFLY4KG4ycPeeg/v7urkrk+bUEsQbVKRHa1lfLKeC7KNzB9qJNwgRlGO5nTLeGQYOsDTeiVJwqSVjiludug7m0uh062QERUab/Oh0csgIUkSc5JyeffgFgBe3LeKhWkjmRqXiVpSsb2xkk/La7F5/si16n8wS7OCE4caPoj7v/7q+vG5SkF/nIi5x/qQKyH7PbE+RBD6iEql4rwMI+dl9JzqsTllvjpgZ8VBB9uq/VM9m6tcbKh08dIG/1SPXgMJ4WryYrVMSTUwP8fItDT9oJ7q2Vjlz6QZkzAwF68euQWJUQednuO3u3ViOG9s6WBYXGgEZSIY6aVZCUPZ0VRJQWsdTp+XD0t38GHpjqNaSazU/ZwZlig0rR8B8rEnUkeAIYAl45v+CwevgYxXegZFPdaH/BUS7glYFwVhMLMYVFw1KpyrRoX3OF7a7OaLAgdrypzsrnNT2ebl6wNOvj7g5PcrWgH/VE+KRcPIBB0zM/Rckm8iM3pgvjkfbX2Ff+3EtPSBl9Z79BYkbmUMcDiIPfTh96/fHUJ+jIY3tnQwPUSugwhGekmtUnHX8Nm8dWAjmxrKj9smPzKeW/NmoNF8BwouhI51gK9nI18bbB8CprGQ/FuI+m6f972bokDNH/z/L7sbjKPAPB1K74CGV7vWh6wA85T+65MgCKclM1rH3dN13D398CJ6WZbZWOXmqyI7GypcFDS4KWnxsL/Bw/u7O7nns2ZUkr9EeFa0hvHJes7PMrIg14RlgE317Kz1JxpMTRl4peA7vK4eW5DoNIffV9QSGLQSH1wbz4I8Ew8s9tfD+m6e6ZjzBCMRjJwBnVrDLfkzuDhtFGusxVR1tqKgEGcwMyMhmwzzETvT5H7mL5nuPED3AhJJC1lvQ+3T/j1dDlwKKgsM+QGkLjonazOO3k04XKMn+lB5etsycOzuukWGoktBmwDOvaAf2lU/JPKs+yAIQv9QqVRMSzMw7agiXx1Oma+LHSzvmuopafawtdrNpio3r2xsB0CvhriuqZ7JKXrm55iYnqYP2bTYA00etCoGXJXcdreT5dUFPY6pVIcCE4V4s4pltyQzLM4/ArapyokEjEwMjaBMZNP0B3c17J0MnjpAguirYeg7/tu8Nqh+DBr/n3+PFyT/SEXyYxD9/TN6uGN3EwaNpOL3E7/rD0j2XwDt33LMaI2oHyIIg0JFq5cvCjpZXeZkt9VNRauXdpfSIzMjXCeREqFhRLyW89INXJxnIic2+Kd6Ep8ox+tTaPh1RqC7cs40ONr5y+4VNLk6exx/a9l4HG4dQ8wd3L+gjfvHzUAl+V+/k58ox+FVaH4sIwA9Pkxk0wQTXTLkL4O9U0G29VyjobFA+nP+r7blUPUIdG6C4itBFQ7RV0HKk/6MndN09FAegFeR6fC6iO4shPZvjnMvCTRDRCAiCINAWqSGO6dGcOfUnlM9W6vdfFnkYEOFk/0NHspavBQ0ePjfHjv3fuGf6okyqsiM0jAuSc/52QYuyjESaQqet5IWh4/cIaGxaPN0eGQff9u7sjsQUSORExlHmNrIm7IKo87NZTP2UtKp8EnZLi7PHAtAQ6ePkfHBHzweEjy/QQOdcRjkfw0tn4B55vHbRMz1f3k7oOa30PBPaOz6Mo6AxF9DzDWnfKgOj+vEN9Y+hf/HfnTOsQINr0PYRIi7/XSflSAIA4RKpWJSqoFJqT2neuxumaXFDpYXO9ha7eJgs5cdtW62VLt5fbN/qkfXNdWTO0TL5FQ9F+aYmJXe/1M9Pp+MywvZAygY2dxQTp3Df50TTRHcM2IO0YYwPtjdgdtbzzs/0rC6BWQFltcUMj91OB1OFR4ZxiaFxhQNiGDkGF9W7mV7YyVWhw2dSk2WJZYrMsaSYDr59NDWhgo+Kd9Fk7ODOKOZKzLH9igDrygKnzUaWW2diKPiv2RbYrh26CTijcc5ryYc0p72f9m+hapfQcd6KPkBlN3in05JfQp0iT3uJisyH5ftYlnV/uP28fOiT7jT+z7SMWVyjlB2F5jnwBFVZAVBGLxMOhXfGx7G94aH9The1eZlcYGdb8uc7LK6qGj18k2JkxUlTp5c1QZAmFYiOULDiDgtMzIMLMw1MawPP63v6Fq8OiqERgROZY21uPv/1+dM7l7799zaNmZlGrh2RBJScR0raw/gkX1srC+jrCYBgAuyQyOTBkQwcoyitnrmJOWSER6NT1H4uGwnf92zgt9MuAS9+viX66CtgTcK1nJZ5hhGRyezqb6Ml/et5pFxC7pL7X5VtZ8VNYXclDeNGEMYn5bt4vk93/CbCZecvNSuZRYMXwM+B9T8Dhr+Dk1v+b8M+ZD0CMT8CEVRePvAZtbWHTzhqSa6Xgf1UYGIpAGla5REE+sftVGH4LocQRD6VUqEhtunWLh9yuHXC1n275fyZZGD9eX+qZ7KVi9FjR4+2mfnl4v9Uz2RBhUZURrGJvqnehbmGYk+i6meQwv2PyvyjwoPiw/6pZCnrbqzFQC9Es7eKiPrnO0sP+hgbbmL/13nn76fFJvByq5NXGs6W1lZEgnAwjzj8U4ZlEQwcpSfjTy/x/c35U7llxs/pLyjmdyI46/bWF5dyIjoROan+OuGfC9jDPtbraysKeK6nMkoisLy6gIWpo1k7BB/eeKb86bxyw0fsqOxkklxGafumNroz7RJXQTt66DyYehYCyXXQ+nttJq+w57mucAQVEhMi89keFQierWG4rYGrHUfM0laf7gIm2TwT8mYp0PYZAifArqBWzpZEIS+p1KpGJ9sYHxyz0/kTrfMsoP+rJ4tVS6Km73ssrrZVuPmH1v9UxBaNcSFqckZomVSip4Lc4zMzjSgO8VUz5EL9lfuywJiWda0nPnOiw9nEIaQqjYvXxXZWVvuYrfVxd6GMTg9ahRFxd+oByA2TEW0UcXcbH+woT6ikreCf4RIp+asArz+Fjo9DRCHz1/eLkxz4mG/kvbGHtsyAwyPSmRnUxUAjc5ObB4nwyITum83anRkmmMoaW88vWDkSObpMHyVv2R79RPQ8BqRnZ/wlO4T6pQEbDE/Jzf7B92l5kfJy1EansChmFjpmct2ZvCzSXcRrgs/xQMJgiCcPYNOxSXDwrhkWM/gwGrz8kWhnW9Lney0uilv8bKq1MnKUidPr/ZP9Zi0EskWNcPjdExP17Mw19QjXfXIBfttnUYkQKP1+hfsE7zBSGmzmyVFDtaXu9hT56aizUurQ8Z3xKCORgV6rUSMxU602c6d4zL48YS4IzbJ89vWVNn9/3ijmYpWL3HhobVRoAhGTkJWFP5bspVsS2yPnQ2PZnM7sWh7fhKwaA20uf2VAG0eh/+Y7qg2usNtzojKAKm/w5n4a55d/yRXaN4jV72fhOaHoPOfEH8nOPZBw2tIMTezWLmVpTVlAOxuqWdavAhGBEEInASLhlsmWbhlUs+pnj11Hr4osLO+wsm+eg9VNh8Hmux8st/Og0takIBIo4r0SA1DYxUalBjS41vpcOrQanwnfsAjHKpqIfXx/mD769x8XewvRre33k1Vm482p4x8RNChVcGQMDWTU/WMSdRxXrqBC3OMxIVrWFVzgH8f3AOA3dSGSjUHOByMFbXV801NEeAv4TApJp02p5XxSaGzXgREMHJS/yneTE1nG/cf2p03SHV4XVSQzXPeXzHJksCtMQegbQlU3AsokPY3iL+L9IZyoMx/n5Nl3AiCIASISqVidKKe0UcV63J7ZZYfdLCs2D/Vc6DJy946NztqAYbC7q7gAoVP1w9HbrJzxTA9c7ONx0z1fF1k54b3G7jvvAgemB151n2WZZnddR6WHvBvdriv3kO1zYvN2bN2i04NsWFqRsbrGZuoZ1amgXnZhpOmRk+Jy2Bx5R5a3Q7K2pt4dMunTIrNIFofxoG2eva21HQ/xoyEbIobVSjAlLTQyaQBEYyc0H+KN7O7uYZfjplHlP7k5XQtOgM2T88RDpvHSUTXSIhF65/Xs7mdROgOLyiyuZ2khkeedV8N6sNpbLUuJ8T/n/+rczu0r4KEuwGod7Yf9z6CIAjBTqdRcVFeGBfl+adeFEVheU0h7xcVUFhrorrJQnFNLEhgbTHzxkY3b2ysA8ColUgyq8mL1WBzKqwp938YW1ni6FUwcqgWy7JiBxsrXRQ0eKhp99JxVME4g0YiNkzF+CQt45J0zM40ckHWme2ybNBouXvEHJ7bvYIOrwu718OqrsWqRxoemcBVWeN56hv/JooLckKjDPwhIhg5iqIovHtwCzuaqrhv9FxiDKeeysgyx1DQau2xbmR/i5UscwwAMYYwLFoDBa1WUsOjAHB4PZS2NzI7cehZ9zlcqyctPIqKjhaqOlspaLWSH5kAYeP8X4DT52F1rT/TRgL/7YIgCCHI/zq9lZW1RaCBvFQ78VEdFNfEMTKjlmnDKmiyGZEcWbjt8eyv928oeLC5Z32lJUUOxvy1irGJOmZl+qvMJlg0eL0yG6pcLC92srnKSVGjh5p2H53unlk6Rq1EfLiaKakaJibrmZNlYHaG8ZyXok8Nj+LhcfP5rHw3WxrKexS1jNKbmJOYy4XJ+ahVKtZ1bRQ4XYyMhLb/HNzCpvoyfjJ8Fga1lja3f72HUa1F15Xa+8/CdUTqTN2V7uYm5/HMrmUsrdrPqOgkNjeUU97RzI9yJgP+Ocm5yfksrtxDnNFMjCGcT8p3Eak3MjYm9Zz0e3ZiLm8d2AjAa/vXcFXWeCbGpqORVJS0N/JByXZa3HYARkQlEWsU60UEQQhNWxor/IFIl5GRiZTY/XWXxif5X6eHWBxg2cu12WGU1sZz58eNqFUKviOKUyvAHqubXVY3/297xwkfz6SVSDSryY3RMjFFzwXZRqan6U+Z6XMuxRjCuTlvGldnjaekvRG3z0eEzkCmJQa1dLgf+xs8hOukkNtbSAQjRzk0/PXs7uU9jt+YO5Xp8VkANLvsSIeTZMm2xHJr3gw+Kd/Jx2U7iTOauXP4zB6LXuenDMPt8/L2gU3YvW6GRsRyz4jzT15jpBemxWWyoa6UA7Z6Or1u3izawDvFm9Gq1Ni97u52RrWWK7PGnZPHFARBCIQjN4y7PmcK5yVk83JnG9DEs+dPosyexGsFa3B71Pzko3b2VZ34jfnIjTM0Kv/ut7ICniNusHsUamw+FMWfpKhTSYTrJMYn6VD18xYaYVp9j4KaR7O2+8iMCr239tDrcR97dea1p2zzi9Hzjjk2ITaNCbFpJ7yPJElcmjGaSzNGn1X/TkStUnHXiNm8UbCGPS21gH9PA498eGV5pM7IT4bPJtEUcaLTCIIgBLV6Rzul7U0ApIRFMqPrQ2J9h0x8uJradh8H66PZvj+fLaURJ6s3DcA1o008MCuSsYnHBhb769wsLrKztszJ3noP1W1eSlq8LC508Otl/qwei0EiLULD6EQ9szIMXDLMRJLl3Ly13vDfejKjNPz6gig06hNn/TQ7O6l12Gi1u3B6FbKGKDQ7O0OqzooIRgYQY9dCp2JbA9/WHqCsoxmfLDPEEMa0+CwmxqR1TzUJgiCEohaXvfv/wyITulNz39reTl2Hj1F/9dd3CtMeCkRO/CauVUFWtO6YIm3d54/XMSxexy+O2E7M65X5ttzF0gN2NlW6KGryUNjoYXedh3d2dMDH/hGWISY12dEaJiTrmTvUyIVDjZh6sZak3SXzVtfU0fKDDt77YTzJET1fv2VFZnl1IR+Ubgeg1BoF5NGiOsAjW9byuwmXEGs0n/ZjBpJ4ZxpgJEkiJyKOnBNUixUEQQhlmiNGL44sUXDVqDAaO2VuGB/OsDgdy6zbWVFdREuHkQRlAmsOqthR60bCP9UiK+CVYW+d+ziPcpLH16i4INvIBdk9S6232r18ecDBNwedbK9xUdriZUOli3UVLv623p/hYtBIJJjV5MdqmZpqYEGuEbu6gtXWYppc/sAj0RTBJWmjaG+P7j73hkoXI5+r4p1r4liYb+raC20n9Y72HiM/1Y3+Ue+0uGZkReHxrZ+jkiSyLbEn3gstSIhgRBAEQQgZyaZI9CoNLtnLtqZKrvSMJ1yrZ9GCId1tnD4Pm+vLkSSItbj44+Q4LBcbqGrz8um+Tj7c28nKEic+BfbX9y4YOZFIk4YfjjHzwzE9RyIONLj5otDOmnIne+s8VLV5WdLiZUmRg98sb0ElqYgw5pBo1jA8Xo06ppm/tKwlTzMTCf8iW58MbU6Zi/9l5ZbJWlTR68iwRPYIRKJ1Rjo7I5EkBYvJXzncpyjkWOLQqzSntxdaAEnKoTJ0QcxmsxEREUFbWxsWS/BGdoIgCELfe+fAJr7t2s12qCWWm/OmdZdhaHHZ+X9FG9jXagVgUmw6t+bPOOYcbU6ZLwvtGLXSMTsS9zWvV2ZdhYuvDtjZVOWisMFDfYcP1xHFY1WSjKwcb1pHISXazczR+zCbXOhUaqL0JnIj4nnsowTcPoWr5mzG7fN2pwD/YvRc/rr7G27Kndr77UfO0um+f4tgJESsqjnAqtoDxwzljYxOOuF9/EN5u2hydhBnNHNF5tgeq7AVReGz8t2sthbj8HnItsQE/VCeIAhCo7ODJ7Z/RafXP00jARnmIagkFaW2RuSuMQODWsNDY+eHzKL9VoeXN3aWsbislM37s+k44aCNggTkptTz8PkRRJm87Gyu4rWvR/CDsSpsYau5KGUEX1btBWBmwlCsdhup4ZFckz2xv54OcPrv36GViDyIReqNXJ45hl+NW8Cvxi4gPzKBl/Z9S03X9tJHO2hr4I2CtcxIyOLR8RcxdkgKL+9b3b0dNcBXVftZUVPIdTmTeWjsd7qH8o7MwBEEQQg2MYZw7hk5B3PXnmAKUNrexEFbQ3cgYtJouWvEnJAIRKo7W7ln7X95eMv7VMnbee7CYahOsWeOgkRhVTw3vWXgt0s7KW3tpKrNR2SYv7DbtITM7rYVHc1nvxdaHxNrRkLEmCEpPb6/LGMMq2oPUNLeRNJxNvFbXl3IiOhE5qcMB+B7GWPY32plZU0R1+VM9pdSri5gYdpIxnad++a8afxyw4fsaKzs96E8QRCE3sgwD+E3Exbybe1B1liLaXJ1Av4SBjMSspmdmNNj+41gFm808+j4i3B4PWxrrODFXVuxuUb1aKNW+deO6LVe8hM7iImuJyLczrUZ89jSaKNBBr0Gki0aKmygU6lRISGjIAf/BIgIRkKRrMhsbajA7fN2l5w/Wkl7Y4/y9ADDoxLZ2eRPe2t0dmLzOBl2RFl4o0ZHpjmGkvZGEYwIghD0wrUGFqaN4KLU4bhlHwoKepWmz3fiPdc0KjVxXSm46eZolhTZe9w+Ik7LZSPCuCTfxIe1S4jWGSntaAYgObYJbbiKnU1hOH+fRYOjg/VbYFtjZfcoUYwh/JzthdZXRDASQqo7W3lqx9d4ZB96tYY7hs8kKez4Q5A2txOLtmfuvEV7eJjO5vGXubfojmoT5EN5giAIR5MkCf0AqqEUa/YwLcvB9aNSuTjfRFrk4ee2qzOmR62VT8t2EabV99gLzazV82XF3u42E2PS+GfR+nOyF1pfGTg/vUHg6KG8Nws38IvR804YkAiCIAjB7aPSHYyITiJab8Ll87KpvoxGXzVvXJnL8CiLfy+0lmP3QovWm2h22WlyddLk6iTeaGat9SA19jacPm/32r9YQzibGsrO6V5ofUEEIyHk6KG8so4mVtQUdm/IdySLzoDN03OEw+ZxEtE1EmLR+udSbW5nj3nVYB/KEwRhcFlSuZePynZyQVIe12RPOGG7UM0ebPc4ebNwPW1uB0aNluSwSO4ZeT7Do/wb/51oL7QPy3b0OM/mhnI2N5T3OCbhT3UeYgg7p3uh9QURjIQwRQHvCTJfsswxFLRae6wb2d9i7TGUZ9EaKGi1khoeBYDD66G0vTGoh/IEQRg8ytqb+La2mJTjLNI/0qHswcsyxzA6OplN9WW8vG81j4xb0L1h6aHswZvyphFjCOPTsl1BUQjshtypJ739ZHuh2dxOPi7bwaaG8h5ZkBpJxfiYNK7IHEuU3nTO+9wXRDASIo43lFfUVsc9I88H8A/l6Y4dyltatZ9R0UlsbiinvKO5exRFkiTmJuezuHIPcUYzMYZwPinfFfRDeYIgDA5On4e/F67j+pwpLK7cc9K2gzV70KIzcEPuVK7IHMf+Vit2rxujWkt+ZMIx6wGDnQhGQsSZDuV9Ur6Tj8t2Emc0c+fwmd2fEgDmpwzD7fPy9oFN2L1uhkbEBv1QniAIg8N/ircwKiqJYVEJpwxGBnv2YLhWz6TY9EB346yIYCREnM1Q3olIksSlGaO5NGP0WfdPEAThXNlcX0ZFRzO/GrfgtNqL7MHQJyqwCoIgCEGj2dXJeyXbuCV/uhilHUTEyIggCIIQNCram2n3OPnjtiXdx2QUDrTVs7KmiBfPuwaV1PNz9EDMHixqq+frqn1UdLTQ5nZw57CZp1zPV9hax/sl26i1txGlN7EwbSTT47N6tPmmpoilVftpcztICY/iB9kTyDxB8cz+dEYjIy+++CIZGRkYDAamTJnCpk2bTtr+/fffJz8/H4PBwKhRo1i8ePEZdVYQBEEY2PIjE3hs/EIeHX9R91d6eDST4zJ4dPxFxwQicDh78Egnyh485FD24ImqWAea2+clJSyKH57mxnaNzg5e2LuSvMh4Hh1/EXOT83iraCN7W2q622xuKOeDkm1cnDaSR8ZdREpYJM/v+QZbEExV9ToYee+997jvvvt4/PHH2bZtG2PGjGH+/PnU19cft/26dev44Q9/yC233ML27du57LLLuOyyy9iz5+QLkgRBEITBx9C1QP/IL71aQ5hG370A/5+F6/iodEf3feYm57G3pZalVfux2tv4rHwX5R3NzEnKBXpmD+5sqqK6s5V/Fq0P6uzBkdFJXJYxhnGn2b9VtQeIMYRzVdZ4Ek0RnJ+Ux/iYVJZVF3a3WVZdwHkJ2cxIyCYpLILrhk5Gp9Kwru5gXz2N09brYOTPf/4zt912GzfffDPDhw/nlVdewWQy8Y9//OO47f/617+yYMEC7r//foYNG8bvf/97xo8fzwsvvHDWnRcEQRAGn2aXnTa3o/v7Q9mDq63F/H7bl2xrrDxu9uD5iXm8fWATT2xfgsvnGVDZgyW2RvKPyBYCf0ZRia0R8Nekqmhv7pFRpJIk8iMTutsEUq/WjLjdbrZu3crDDz/cfUylUjFv3jzWr19/3PusX7+e++67r8ex+fPn8/HHH5/wcVwuFy6Xq/t7m83Wm24KgiAIA8jR2YIie/BYNo/zuNlCTp8Ht8+L3etGRsF8nDZWR+DfY3s1MtLY2IjP5yM+Pr7H8fj4eKxW63HvY7Vae9UeYNGiRURERHR/paYG5zCaIAiCIAhnLyhTex9++GHa2tq6vyorKwPdJUEQBEEIWhat4ZiFqDa3E4Nai06tIVyrR4VE+3HaRGgDX621V8FITEwMarWaurq6Hsfr6upISEg47n0SEhJ61R5Ar9djsVh6fAmCIAiCcHxZluNkFLVaybL4s4U0KjVp5mj2tx5+P5YVhYIj2gRSr4IRnU7HhAkTWL58efcxWZZZvnw506ZNO+59pk2b1qM9wNKlS0/YXhAEQRAGO6fPQ2VHC5UdLQA0ujqp7Gih2dkJ+Pcr+2fhuu72sxNzaHR28L/S7VjtbaysKWJrQwXzkvO628xLzmeNtZj1dSXU2tv4d/Fm3LL3mFokgdDromf33XcfN954IxMnTmTy5Mk899xzdHZ2cvPNNwNwww03kJyczKJFiwD42c9+xuzZs3n22We5+OKLeffdd9myZQuvvfbauX0mgiAIgjBAlLc38+fdhz/Iv1+yDYBpcZnclDeNNreDZpe9+/YYQzh3j5jD+yXbWFFdSKTexPW5UxgRldTdZlJsOh0eJ5+W78LmdpISHsU9I87HckQhuECRFEVRenunF154gaeffhqr1crYsWN5/vnnmTJlCgBz5swhIyODN998s7v9+++/z6OPPkpZWRk5OTn86U9/YuHChaf9eDabjYiICNra2sSUjSAIgiCEiNN9/z6jYKS/iWBEEARBEELP6b5/B2U2jSAIgiAIg4cIRgRBEARBCCgRjAiCIAiCEFAiGBEEQRAEIaBEMCIIgiAIQkCJYEQQBEEQhIASwYggCIIgCAElghFBEARBEAJKBCOCIAiCIARUr/emCYRDRWJtNluAeyIIgiAIwuk69L59qmLvIRGMtLe3A5CamhrgngiCIAiC0Fvt7e1ERESc8PaQ2JtGlmVqamowm81IknTOzmuz2UhNTaWyslLsedOHxHXuP+Ja9w9xnfuHuM79oy+vs6IotLe3k5SUhEp14pUhITEyolKpSElJ6bPzWywW8YveD8R17j/iWvcPcZ37h7jO/aOvrvPJRkQOEQtYBUEQBEEIKBGMCIIgCIIQUIM6GNHr9Tz++OPo9fpAd2VAE9e5/4hr3T/Ede4f4jr3j2C4ziGxgFUQBEEQhIFrUI+MCIIgCIIQeCIYEQRBEAQhoEQwIgiCIAhCQIlgRBAEQRCEgBrwwciLL75IRkYGBoOBKVOmsGnTppO2f//998nPz8dgMDBq1CgWL17cTz0Nbb25zq+//jozZ84kKiqKqKgo5s2bd8qfi3BYb3+nD3n33XeRJInLLrusbzs4QPT2Ore2tnLXXXeRmJiIXq8nNzdXvH6cht5e5+eee468vDyMRiOpqance++9OJ3OfuptaPr222/57ne/S1JSEpIk8fHHH5/yPitXrmT8+PHo9XqGDh3Km2++2bedVAawd999V9HpdMo//vEPZe/evcptt92mREZGKnV1dcdtv3btWkWtVit/+tOflH379imPPvqootVqld27d/dzz0NLb6/ztddeq7z44ovK9u3blf379ys33XSTEhERoVRVVfVzz0NPb6/1IaWlpUpycrIyc+ZM5Xvf+17/dDaE9fY6u1wuZeLEicrChQuVNWvWKKWlpcrKlSuVHTt29HPPQ0tvr/M777yj6PV65Z133lFKS0uVr776SklMTFTuvffefu55aFm8eLHyyCOPKB9++KECKB999NFJ25eUlCgmk0m57777lH379il/+9vfFLVarSxZsqTP+jigg5HJkycrd911V/f3Pp9PSUpKUhYtWnTc9ldffbVy8cUX9zg2ZcoU5f/+7//6tJ+hrrfX+Wher1cxm83Kv/71r77q4oBxJtfa6/Uq06dPV9544w3lxhtvFMHIaejtdX755ZeVrKwsxe1291cXB4TeXue77rpLueCCC3ocu++++5QZM2b0aT8HktMJRh544AFlxIgRPY5dc801yvz58/usXwN2msbtdrN161bmzZvXfUylUjFv3jzWr19/3PusX7++R3uA+fPnn7C9cGbX+Wh2ux2Px0N0dHRfdXNAONNr/bvf/Y64uDhuueWW/uhmyDuT6/zpp58ybdo07rrrLuLj4xk5ciRPPPEEPp+vv7odcs7kOk+fPp2tW7d2T+WUlJSwePFiFi5c2C99HiwC8V4YEhvlnYnGxkZ8Ph/x8fE9jsfHx1NQUHDc+1it1uO2t1qtfdbPUHcm1/loDz74IElJScf88gs9ncm1XrNmDX//+9/ZsWNHP/RwYDiT61xSUsKKFSu47rrrWLx4McXFxfzkJz/B4/Hw+OOP90e3Q86ZXOdrr72WxsZGzjvvPBRFwev1cscdd/CrX/2qP7o8aJzovdBms+FwODAajef8MQfsyIgQGp588kneffddPvroIwwGQ6C7M6C0t7dz/fXX8/rrrxMTExPo7gxosiwTFxfHa6+9xoQJE7jmmmt45JFHeOWVVwLdtQFl5cqVPPHEE7z00kts27aNDz/8kC+++ILf//73ge6acJYG7MhITEwMarWaurq6Hsfr6upISEg47n0SEhJ61V44s+t8yDPPPMOTTz7JsmXLGD16dF92c0Do7bU+ePAgZWVlfPe73+0+JssyABqNhsLCQrKzs/u20yHoTH6nExMT0Wq1qNXq7mPDhg3DarXidrvR6XR92udQdCbX+de//jXXX389t956KwCjRo2is7OT22+/nUceeQSVSny+PhdO9F5osVj6ZFQEBvDIiE6nY8KECSxfvrz7mCzLLF++nGnTph33PtOmTevRHmDp0qUnbC+c2XUG+NOf/sTvf/97lixZwsSJE/ujqyGvt9c6Pz+f3bt3s2PHju6vSy+9lPPPP58dO3aQmpran90PGWfyOz1jxgyKi4u7gz2AoqIiEhMTRSByAmdyne12+zEBx6EAUBHbrJ0zAXkv7LOlsUHg3XffVfR6vfLmm28q+/btU26//XYlMjJSsVqtiqIoyvXXX6889NBD3e3Xrl2raDQa5ZlnnlH279+vPP744yK19zT09jo/+eSTik6nUz744AOltra2+6u9vT1QTyFk9PZaH01k05ye3l7niooKxWw2K3fffbdSWFiofP7550pcXJzyhz/8IVBPIST09jo//vjjitlsVv7zn/8oJSUlytdff61kZ2crV199daCeQkhob29Xtm/frmzfvl0BlD//+c/K9u3blfLyckVRFOWhhx5Srr/++u72h1J777//fmX//v3Kiy++KFJ7z9bf/vY3JS0tTdHpdMrkyZOVDRs2dN82e/Zs5cYbb+zR/r///a+Sm5ur6HQ6ZcSIEcoXX3zRzz0OTb25zunp6QpwzNfjjz/e/x0PQb39nT6SCEZOX2+v87p165QpU6Yoer1eycrKUv74xz8qXq+3n3sdenpznT0ej/Kb3/xGyc7OVgwGg5Kamqr85Cc/UVpaWvq/4yHkm2++Oe5r7qFre+ONNyqzZ88+5j5jx45VdDqdkpWVpfzzn//s0z5KiiLGtgRBEARBCJwBu2ZEEARBEITQIIIRQRAEQRACSgQjgiAIgiAElAhGBEEQBEEIKBGMCIIgCIIQUCIYEQRBEAQhoEQwIgiCIAhCQIlgRBAEQRCEgBLBiCAIgiAIASWCEUEQBEEQAkoEI4IgCIIgBJQIRgRBEARBCKj/D7D1gE5U+35FAAAAAElFTkSuQmCC", "text/plain": [ "
    " ] @@ -904,7 +1073,7 @@ }, { "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAAiMAAAGdCAYAAADAAnMpAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjcuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/bCgiHAAAACXBIWXMAAA9hAAAPYQGoP6dpAADGyUlEQVR4nOzddXiT19vA8W+kSWqpu1ChFClQKDIchsvGmI9tyMbc5Td3f6fM2cYGG1MYA4a7O5SipULdvanF8/4RVigUaKFt2nI+u3qNPjnP89wpIbl75D4Si8ViQRAEQRAEwUaktg5AEARBEISrm0hGBEEQBEGwKZGMCIIgCIJgUyIZEQRBEATBpkQyIgiCIAiCTYlkRBAEQRAEmxLJiCAIgiAINiWSEUEQBEEQbEpu6wAawmw2k5OTg7OzMxKJxNbhCIIgCILQABaLhYqKCvz9/ZFKL9z/0SaSkZycHIKCgmwdhiAIgiAIlyEzM5PAwMALPt4mkhFnZ2fA+mTUarWNoxEEQRAEoSE0Gg1BQUG1n+MX0iaSkf+GZtRqtUhGBEEQBKGNudQUCzGBVRAEQRAEmxLJiCAIgiAINiWSEUEQBEEQbEokI4IgCIIg2JRIRgRBEARBsCmRjAiCIAiCYFNtYmmv0LJKtFVUGnW13zvJlbirHG0YkSAIgtCeiWREqKNEW8WrB5ZjtJhrj8klUt7uc51ISARBEIRmIYZphDoqjbo6iQiA0WKu01MiCIIgCE2p0cnItm3buO666/D390cikbB06dJLnrNlyxZ69+6NUqmkY8eOzJ8//zJCFQRBEAShPWp0MlJVVUXPnj35+uuvG9Q+NTWViRMnMmLECOLi4njyySeZNWsWa9eubXSwgiAIgiC0P42eMzJ+/HjGjx/f4PZz5swhNDSUTz75BIAuXbqwY8cOPvvsM8aOHdvY2wvNrKCmot7jJrO53uOCIAiCcKWafc7I7t27GTVqVJ1jY8eOZffu3Rc8R6fTodFo6nwJzctgNvFTwi5+OLmz3se/O7mD7Kqylg1KEARBuCo0ezKSl5eHj49PnWM+Pj5oNBpqamrqPef999/HxcWl9isoKKi5w7yqmS0Wfji5k70FaXWOn73HYqmumk+ObCC/RiSGgiAIQtNqlatpXnzxRcrLy2u/MjMzbR1SuxZblMHh4iwAFFIZt4T1ZvaAm/lm8B08ETWCIEc3AKqMehaeirVlqIIgCEI71Ox1Rnx9fcnPz69zLD8/H7Vajb29fb3nKJVKlEplc4cmnLYlJ6n2z/dEDqSX55meqK5ufoQ6e/LGwRWU6Ws4XppDYU0lXvZOtghVEARBaIeavWdkwIABbNy4sc6x9evXM2DAgOa+tdAAWpOBJE0BAN72zkR7BAKwrziHJVkJWCwW7OV2DPXrCIAFOF6aU3t+hUHHjqIsvkw6yD37VzFh+yIqDKImiSAIgtBwje4ZqaysJDk5ufb71NRU4uLicHd3Jzg4mBdffJHs7Gx++eUXAB588EG++uornnvuOe655x42bdrEwoULWblyZdM9C+GyaY2G2j/7ObggkVhnijx8aD0HS/NwlttxU0Ak3ZzdKDPoqTCbmJ8Rz9fpJzhQkkt6tQYLdeeXGCxi5Y0gCILQcI1ORg4cOMCIESNqv3/66acBmD59OvPnzyc3N5eMjIzax0NDQ1m5ciVPPfUUn3/+OYGBgcydO1cs620lHOQKJFh7PLIqSzFbLEglEjYMvZWn4jbxS/oxfk4/huXsk0qLas/5z39/7uPmi7ui/uE3QRAEQaiPxGKxWC7dzLY0Gg0uLi6Ul5ejVqttHU67M/voJuLL8gCYGTmAa7xDax87VVnKwE2/UqCrvuR1ZBIJr3UdxGtdBzVbrIIgCELb0dDP71a5mkZoWSP8O9X+eUHiXv5NO0KJtgqt0UBpjYb7fIOJdnCuMxRTH5PFwr/ZScxLPYJRFEkTBEEQGkj0jAhYLBZ+StjNvsK0i7aTS+3YU1VJbHlBvY+fPXQjAYId1Iz3DePRjr3p5uLVlCELgiAIbUBDP79FMiIAYLKYWZQSy5acJCyc/5IIcnTjgS6D8bJ3ZklWInfs/Red2VT7uFwi4ZbAzsztM475acf4LeMEh8ryqTEZAXCQyent6sPU4K7MDOmBSt7sq8oFQRAEGxPJiHBZirVV7MhLJrWiGJPFjLvSkQE+oUS6+NSutAEwm82M2PoH24qyao/91Gc8M0N71LnesfJCvkg6yLr8VDLOWnkTYO/MKJ8OPNYxht5uvi307ARBEISWJJIRoUV8d+oQD8auA8BeJufb3mOYHtK93rZ6s5EFacf5NeM4+0vyqDJZlxWrpDJ6unpze1AXZoX1xEmuaLH4BUEQhOYjkhGhxewtzuGr5IP8nZWI1mykm9qTFYNvJsTR5aLnJVWU8EXSQVblpZBaVVY7OOSrcuRarw483LEXgzwDm/8JCIIgCM1CJCNCi9Majdyx91+W5iQhAe4P68k3vcYglV560ZbRbOavzHh+TjvG3pIcNEY9YN0rJ0rtyS1BkTwY1gtXhaqZn4UgCILQVEQyItRann6EFRnH6hzzsVfzVp9JFzznYGEGy9KPUKytxNvemRtDo+nuHlD7uMViYXn6UbbnJVNjMhCu9mRqx7742Ks5WJrHlJ3/kFlTgaudkgX9JjHJv2OjYk6vKuer5IP8m5NMcmUZ5tP9Jl5KB4Z5BfFgWDQjfUIadU1BEAShZYlkRKi1PP0IsUWZPNn92tpjMokEJ7v6exlOaQr5+PAGbgjtSQ/3APYVpLE2K56Xe40jwNEVgDWZJ1iTeZwZkQPwVDnyb9oRsqvLeCNmEnZSGQDvxe/ijeM7MVjMDPDw59+BN+Gpcmh0/GazmaU5SfyYeoRdxdmUnd77xk4ipbPagxsDOvFoeO/LurYgCILQfEQyItRann6EuOIsXu09oUHtv4/fgd5s5NFuw2uPfRC3liBHN+6M6IfFYuG5vUsYHdiFMYFdAKgx6nl2zz/M6HQNfb1Das8r02uZsusfthRmIpNIeLHzNbwdNfSKnk9OdQVfn4plaU4yCRXFmE6/hN0VKgZ7BnJfaE8m+IY1aHhIEARBaD4N/fwWxR6uEgU1FTy3dwl2Uilhzp5MCYnGXeVYb9uUiiJGBXSuc6yrmx+Hi63LeIu0VWgMWrq4nlmSay9XEOrsSUpFUZ1kxFWhYvPwqWzIS+X2vf/yTvxu5qYe4Z+BUxjgEcDl8Hdw5t3uw3i3+zDMZjNr81P5PuUw24uy+DcnmX9zkpFJJHRycmeyf0ce6xiDv4PzZd1LEARBaH4iGbkKhDp7MqPTAHwcnCnX17Ai/RgfHVnP670nopLbnddeo9eiPmcIR22nolyvtT5uqLEeO2cyqVpxps25RvmGUnDdYzxzZDNfJB1k4KZfGe8bxt8DJuNwBUt5pVIp4/3CGe8XDkCRtppvTsXyT3YSJzRFfJCwlw8S9uJqp2SAhz/3hPTgxoBOotdEEAShFRHJyFUgyt2/9s+Bjm6EOnvy4r5lHCjKYLBveIvFIZVK+Sx6JM906sv1OxezOi8F92Vf8FGPETwWEdMk9/BUOfBat8G81m0wAJvy0/kuJY4thRmszktldV4qUiSEO7kyyS+cxyP6XHIJsiAIgtC8RDJyFXKQK/Cxd6awpqLex9UKFRpD3R4OjUGLy+meELWdvfWYXouLwv5MG72WICfXS94/0EFN7OiZ/JV5glkH1vB43AY+TzrA8sE300XtcZnPqn7X+nTgWp8OtfHNSYljYdZJjpUX8VnSAT5LOoCzXEE/dz+md4jijuCuyEWviSAIQosS77pXIa3JQKG2sk4icbYwZ09OluXVORZfmkeYsycAnipH1HaqOm1qjAZSK4pq2zTEbUFdKZ38JHd36EZKVRnd1s7lzj3Lm23HX7VCxXOdr+HAqBlob3qWXdfexV3BXXGWK9hYkM60/StRLP6IsJVzeOTgOk5qipslDkEQBKEusZrmKvB3Siw93ANwVzlSrq9hefpRMitLeSNmIs4KFfMSduGqcGBKaDRwemnvkQ3cGBJNd3d/9hemszrzxHlLe9dmHWdGpwF4qpxYln6E7KrSOkt7GyNeU8z1O/8mubIMR5kdP8SM444OXZvwp3Bx1UY9c1OP8EdGPIfLC2o3+HOU2RHj5sNdHboxPSQKhVR0Jgq2V6KtotKoq3PMSa684KR0QbAVsbRXqPVD/A6SNIVUGXQ42SnpqPbihpCeeNlbV5h8cmQDHkpHZkQOqD3HWvTsMMXaqksWPas26uno4sXU8L74OFzZ38/XSQd55shmdGYT0S7eLB98E4FXeM3LEVeaz1enYlmXl0pWTUXtBn+B9s6M8Q3l8Y696eHq0+JxCUKJtopXDyzHaKnbgyiXSHm7z3UiIRFaFZGMCG1WtVHPrXuWsTI3BSkSHu3Ym896XmuzFTA6k5Gf04/xa/pxYkvzazf4s5fJiXb15o6grtwb2v2KVgXZyrm/YYvfrlu/jMoS3j20pt7HXu41jmAn9xaOSBAuTCQjQpu3pziHG3ctIVdbibtCxZ/9r2e0b6itwyJeU8yXSQdYk5dKWnV57QZ//ionRnoH80jHGPp7+F/0Gq1Bfb9hi9+uWz+RjAhtiSh6JrR513j4k3PdI7x+bDvvndzNmO0LGeoZyLJBN9l0w7wuag++iRkLWDf4+z3jOL+kH2dfSS4LMk6wIOMESqmMKBdPbgvswgNhPc+rydIaVBp153X1Gy1mKo063BHJiCAILUckI0Kr92bUEB7rGMPkXf+wrSgLr3+/5I1ug3i5y0Bbh4ZcKmVaSHemhXQHILWyjC+TD7Ii9xSHSgs4WJrPc0e34KN0YLhXMA+G92K4d7BtgxbatBqjwdYhCEKTE8M0QpuyKjeZO/euoMygI8DeiaUDb6SPu5+tw6qX2WxmcXYiP6UdYU9xTp0N/rqqPbkxIIJHI3rjrrDNBn8X6u4XXf2t19GSbH6I34nObKz38V4egdzbedBlrWgThOYg5owI7ZbZbOaxQxuYk3IIMzDZvyN/9p+MSt66O/qyqjV8nRzLspxkEitLajf481DYM8QzkPvDejLWJ7TFJuqKZKRtSSjLZ/axTZjPest2lCvQGg2YOHOsj2cwszoPQiKR2CJMQahDJCNCu5deVc51O/7mqKYIlVTO571Gcn9YtK3DahCz2cyqvBR+SD3MjqIsSk7v6SOXSIh09rBu8BcRg6/KqdliEMlI22GxWHjj4EryajQA9HQP4MbQaHwdXNCZjOzKT2Fx6iEMZhMAT0ZdSxc334tdUhBahEhGhKvGgrRjPBi7lmqTkUgnd5YPvokI57b1YVqgreKbU4f4JzuReE1x7cRSNzsVAzz8mRXak8n+HZu010QkI21HQlk+nx7dCECIkzvPRY9BJqn7WtiVn8LPiXsAiPYI5KGuQ1s8TkE4V0M/v0U5eKHNuzskitIbnuC2wM4kVJYQueYH7tm/qtnKyjcHb5Ujb3QbzJEx92C4+X9sGHobNwdGIpdKWJWXwo27l2C3+GMiV3/P/w5vIr2q3NYhCy3oRFlu7Z9H+EfWJiIvv1xMQoIegP5eITjJlQDEn7OdQ3m5mZ07tcyZo+HRR4v455+qFopcEBpG9IwI7cqRsnwm71xCWnU5armCn/pO4KbASFuHdUXK9FrmpBxiUWYCxzRF6E93xavlCvq7+zM9JIrbgro0aoO/Ul01y9IOs7sg9bzHHus2vM5Oz4Lt/ZF8gC25iQC80HMMoWpPDhzQ0rdvDgAxMQomTXIgL+QwBaZyytLs6avvw5EjeuLi9OTlWV8zEglYLDBzphM//eRts+cjXD3EMI1wVfskYR8vHduK3mymj5svywff1KzzL1rSjsJMvj0Vx+bCdHK11t9wpUgIcXRhgm8Yj0fEXHSYKrEsn29ObKPGVP8SUZVMzqPdhhPhIj6sWosV6UdZnnEUgFvDejMyoDMTJ+Zy4oSBN95wY82aalavrqa8/MzbuVRqTTzqe4dftMibm29uH/8ehNZNJCPCVa/CoOPm3UtZl5+GTCLh6Yi+fNB9mM3KyjeHSqOeuSmH+TMznsNlBWhP95o4yuzo6+7LXcHduDukW+0Gf7nV5bwftxbd6Y0ApUgIcnIDrHNI/nszUMnseDF6LL422BdIOF9OVRlvxq4CwEPpiMu2wbzwv3L+/tubm26yJhWLkw7z1msajvzlj/Uvsv7VNHI5FBeHoFa3n38HQuslkhFBOG1bYQa37F5Gga4aL6U9C6+5od0WHjtYmsdXyQfZkJ9O9lkb/AU7qBnjE0qATEpOZREAXd38mNHpGlwU9gCU6ar5OXEPJ07PN7jGO5SZZ22eKNjWJ0c2kFhegFEPP0/oh0opJT3fmzJDDdtyk9hTkAZA/lEnNjwXRU0N1DdtysVFwmefeXD33U7I5SIhEZqXSEYE4Sxms5mXjm3j48R9mCwWRnl3YPGAG1plmfamojUamZd2hN8zThBblk/16d4QGeCtUPFG1FDuCe1ZZ65JjdHAS/uXUm00IJdI+bD/FBztlDZ6BsLZCmsq+L/D6/n3jQCS1nox7MVkIscXndducoee+Jd05Nprc9FozJhM9V9PKoXwcDtuvNGBJ590wde3ddfpEdomkYwIQj3ytVVcv3Mx+0pyUUilvBc1jGci+9k6rBaxPDOe5w9vJFOnpfL0cI6LnZLOzu4M9gzkox4jkEgk/Jq0j+15yQA83X0kka4+tgxbOMvhlFJ6dSzB0VfH1L/i6jymksm5ISSaEf6dAEhI0DN8eC5FRSaMZxVsPXEigI0btSxYUEFcnB69dTEOnp5SRoyw54kn1AwaZN9Cz0ho70QyIggXsSQrkRn7V6Ix6ungoObfQTfSo51/6B4tyear41sBGBXQBR9nD7YUZvJl0kGK9DWM9w3jy16jOFKYzpqsEwA8ETWCrm6ts9z+1WjQoGx27dKxaL09hpAsyvQ1KKRyIly86OcdgkpmV6d9erqB4cNzycw0YjJBRIQdiYlBddps2lTDV1+Vs2WLltJS67iOSiWhd28F06c7M2OGEwqFGM4RLo9IRgThEsxmM/fHruWn1CNYgFsCO/Nr/4m1kz3bm7MnQXZwcuelXuMAa3XPJdmJPHV4E/naKro6OuMnl+Mit+OdmAmEOXvaMmzhtN27tQwcmMOgQUp27Aho8Hl5eUZGjrSuvHn+eRc++MDjgm0zMozMnl3GsmXVpKYasVisy4HDwuRMmeLAE0+4EhjYPv99CM1DJCOC0EDJFaVct/NvTlaU4CCT803vMUw/vQtve2KxWHj30Boyq0oBmBbRn0G+4bWPVxn1PHRgFQsyE+qcp5TKcFeo8FQ64KtyxFvpgJfSganBXenbSjcpbI9CQzPIyDCSmRmMv3/jEoLSUhOvvlrKs8+6EBJid+kTAL3ezLx5lcyfX8GhQzp01n0ecXeXMny4iieecGHoUDGcI1ycSEYEoZHmpsTx2KGNaM1GotSerBh8Mx0cXWwdVpPaU5DKvITdtd/39Aikj2cwFiwcKMzgSEk2W8uKSdBWX/AaUiSYsfBi52t4r/uwlgj7qjdvnoZ77ili2jQnfv7ZNvVftm2r4csvy9m8WUtxsXU4R6mE6Ggl06Y5MWuWsxjOEc4jkhFBuAxao5E79v7L0pwkJMADYdF83Wt0u6lNYrFY+PPUAbbkJl2wjdliYW15KVnaKi705uAiV5A84QE8lQ7NE+hVZnn6EVZkHKtzzMdezVt9JmE2m3F1TcdggPLyDrUf+AcLM1iWfoRibSXe9s7cGBpNd/czwzcWi4Xl6UfZnpdMjclAuNqTqR374mN/5e+hOTlGZs8uZ8mSKk6dOjOcExIiZ/JkB556ypXgYDGcI4hkRBCuyMHSPKbs/IfMmgpc7ZQs6DeJSf4dbR1Wk7BYLGzOSWRt1gnK9DV1HnNV2DMuqCtOSmf6b1pwwWTk+5ix3NdGdkhuC5anHyG2KJMnu19be0wmkeBkp+KZZ4r49FMN//d/bjz3nLVA3SlNIR8f3sANoT3p4R7AvoI01mbF83KvcQQ4ugKwJvMEazKPMyNyAJ4qR/5NO0J2dRlvxEzCTiprstiNRjM//1zJvHkVHDyoR6u1vmrc3KQMHariscfUjBwpktarlUhGBKEJvBe/izeO78RgMTPAw59/B96Ep6p9vLGazGaOleaQW61BAvg6qIly96/dhO2puI18kXQQ8zkpiZ1EyvbhU+nv2fBJlMLFLU8/QlxxFq/2nlDnuEZjxsMjDXd3Kfn5IbXHv4/fgd5s5NFuw2uPfRC3liBHN+6M6IfFYuG5vUsYHdiFMYFdAKgx6nl2zz/M6HQNfb1DaC67d2v5/PNyNm2qobDQOpyjUECPHgqmTXPivvvUqFTto6dRuDSxa68gNIGXugyk4PrHGOYVxO7iHPxWfMVrx7bbOqwmIZNK6ekRyLigrowN6kpPj8A629K/HTUEX5Uj0nPKihstZq7Z/CuTti+i2qhv6bDbrYKaCp7bu4SX9y/jx5M7KdFWMXVqPkYj/PijV522KRVFdHb1rXOsq5sfKRXWImhF2io0Bi1dzmpjL1cQ6uxZ26a5DBig4s8/fSgoCCEvL5gXX7ROmo2N1fP44yU4OKQREpLBY48VkZoqXj+ClUhGBOESXBUqtgyfyvoht+Jip+Tt+F34L/+K3cXZtg6tWTnJFXzfZ1xtz4hMIuGh8F6kTniQni7erMxLwX3ZF3yedKDJ712irSKjsqT2q0Tbvre8D3X2ZEanATweNZypHftSpK3itU2bWLWqmu7d7Zg0ybFOe41ei9qubvVgtZ2Kcr3W+rjBOvx2boVhteJMm5bg4yPnvfc8SEgIQqcLYf58T4YMUVJQYOKrrzSEhWXh6prKddflsnp1+/47Fi5OJCOC0ECjfEMpuO4xnozoQ762moGbfmVCO+8dmOgXzs2BkQCo5UrejRpKB0cX4sbM5M9rrsNOKuXJuI2ErpzDkbL8JrlnibaKVw8s591Da2q/Xj2wvF0nJFHu/sR4BRPo6EY3N38eixrO5u+9kMgt/PVX+yjGJ5dLmT5dzdatAVRXh7Jvnz9TpzqiVEpYsaKGCRPyUShSiInJ4tNPy6iurmdjHaHdEtOdBaERpFIpn0WP5JlOfbl+52JWn+4d+LjHCB6NiLF1eJgtZpanH2VvQRoagxYXhT0DfUKZEBSFRFL/Lq4ACWX5LEqJJbe6HDelAxOCoxjoEwbAl71GEVeazx0BEXwUt5ZyfQ2BTm7cHh5D6eQnue/gan5OO0bP9fOZEhDB7/2uRyW//LeWSqMOo6XuB5HRYqbSqMMdxwuc1b5sWmMgfrkXw+6opEsXxXmPqxUqNIa6PRzWv29rT4jazlr/Q6PX1m6E+N/3QU6uzRd4I/Ttq+K336zxFhUZ+eILDYsWVREXpyc2toRnnikhKEjGxIkOPP20CxER5/8chPZD9IwIwmUIdFATO/p074BEymNxG+i46jviNcU2jWtNZjxbc5O5o2Mf3oiZyI0h0azNimdzTuIFzynSVvLV8S1EuvrwSu/xjAyIZEHiXo6X5gDgq3Litz5jKa4oYGJwFC/3Gk+goytfHNtMtVHPvL4TSRp/P12dPViSnYTbss/57tShlnrK7dK9swpw9NbzzGv1b1IY5uzJydO7K/8nvjSvtlqup8oRtZ2qTpsao4HUiqJWWVHX01POW2+5Ex8fhMEQwq+/ejFihIriYjNz5lTQqVMWLi6pTJiQy/LlVZjr245YaNNEMiIIV+C2oK6U3vAkdwV3JaWqjG5r53LX3uUYbfRmmVJRSLRHAN3dA/BUORHjFUxXVz9SKy6cJG3NTcJT5cQtYb3xc3BhhH8kvT2D2JB9phLrxpwEBvuGM8g3HH9HF+7s2A+FVM6u/FMAhDu5cXzcLOb3nYBUAg/GrqPT6u9tnpy1FX+nxJJYlk+RtpKX/i+dgnwLgx7MZlhICADzEnaxJDWutv3IgEiOl+ayPiuevOpylqcfIb2yhOGnN8mTSCSMDOjMqsxjHC7OIruqjHmJu3FV2hPtGVRPBK2HVCrlzjud2bTJn6qqUA4dCmDaNCccHKSsXl3D9dfno1Sm0atXFh9+WEplpUhM2gORjAjCFZJLpSzofx3Hx84i3MmV3zJO4LZ0Nn9mnGjxWMKcvThZlk9+tQaAzMpSkjWFRF2kbHuK5gIrMzTWVRdGs4mMipI6KzOkEgmdXX1r2/xnekh3Sm94gjuCupBcWUq3tXO5Y8+/6M1GhAsr1VUzN2EXr+5dwZxvK/EMq+HnZ/vifHrYpURXTflZNWHC1V7MihzE9rxk3o5dTWxRJg91HVJbYwRgbGAXRvhF8mvSPt47tAadycDj3UY0aY2RlhAdreTnn73Jze1AcXEwb7zhRmSkHUeP6nn++VKcndMIDEzn/vsLiY9vv/O32jtRZ0QQmtjXSQd55shmdGYT0a7eLB90E4EOLfO6NVssLE07zLqsE0gkEiwWC5NDejI+qNsFz3n1wHIG+oTVafPfDr9fDryVaqOe5/ct5bmeowlXn1liujj1EInlBbwYPbbe68Zripm8czFJlaWN2vMno7KEdw+tOe/4y73GEezkfsnz27Lp0wv45ZdKfvrJk5kzxXvdxZjNZv7+u5rvv9ewZ4+OqirrR5mzs4QBA5Q8+KALkyfbt5vqyW2VqDMiCDbySEQMJZMfZ6JfGHFlBXRYOYcn4za0yDj3wcJ09hWkcW/kQF7pNZ4ZnQawPiue3fkpzX7vc3VRe5A4/n7m9B6D2QIz9q+i65q5nKosbfFY2oKcHCO//lpJSIhcJCINIJVKufVWJzZs8KeyMpSjRwOYOdMZJycp69ZpufFG63BOjx6ZvPtuKRqNGM5pzUQyIgjNwEGuYMXgW9h97d34qBz4POkg3su/ZH1earPed3FqHGODutLXO4QAR1eu8QllZEBnVmdeeMhIbadCc07tCY1ei0pmh0Imx8lOiRQJFfW0cTmn1kV9HgjvRenkJ7gxoBPxFcVErP6emftW2mxeTWt16635mM3w+++22QivrYuKUvLTT17k5HSgvDyEd95xo0sXO06cMPDKK6W4uKQREJDOPfcUcuyYztbhCucQyYggNKNrPPzJue5RXusykHKDjjHbFzJ88++UNVPhKb3ZeF7FVKlEguWCu8xAmLqelRlleYSprasu5FIZwc7uxJ9VR8RssXDyrDaXopLLWTxwCnGjZxDi4ML89GO4LZvNX+ckSTlVZaw8Z8O4/5Tpauo93h7s2aNl504dAwcqGTDg0gmecHFqtZSXX3bjyJEg9PoQFi/2YcwYFRUVZubNq6B792ycnFIZNSqHhQsrxeqcVkAkI4LQAt6MGkLupEcZ6BHA1qJMvP79knfjdzX5fXq4B7Aq8xhHS7Ip0lZyqCiTDVknifYIrG2zJDWOeQln7j3ML4IibSWLUw+RV13OlpxEDhZmMCogsrbNqIDO7MhLZnd+CrnV5fyevB+92Vhbi6Sherr6kDLxQWZHj8RgNnP7nuX0XPcT6VXlHCzM4N1Da4grzqr33Lknd5JYXtDIn0jbcMcdBUilsGhR+yhw1ppIpVJuvNGRtWv90WhCOXEikPvuc8bVVcrGjVpuu60AhSKNqKhM3nqrlLIyMdnaFsQEVkFoYStzkrlr3wrKDDoC7Z1ZMnAKfS6y2qUxtEYDy9KPEFecSYVBh4vCnr5eHZgUHIX89CqK+Qm7KdZV8UyPUbXnnV30zFXpwMSzip79Z3NOAuuy4tHotdaiZ2ExhDawZ6Q+1UY9t+5ZxsrcFCRAZ3snBjm7IJVKUUrlhDp7YLSYSdUUYTrds6OS2fFKr3F42Ttf9n1bm/nzNcycWcTddzvxyy9iiKYlVVaa+eabcv74o4pjx/QYT+chvr4yxoyx56mnXIiOrr/Wi9AwYtdeQWjFzGYzjx5az3cpcZiBG/wj+KP/lVUubav2F+cwZtuflBkNKCQS7g/uwkcx41DJ7ACo0Gv5KWEXJ04PJQ317cidEf1sGXKTMZvNuLmlo9dDeXkHFArRWW0rZrOZlStr+PZbDTt3atForB+NDg4S+vVTMmuWM3fc4ShW5zSSWE0jCK2YVCrlm5ixpEx4kCi1J0tzrJVLv0+Js3VoLS7EQc2tnr70dXLBaLHwVfoJnji0kQqDdZKhs0LFrM6DUcqsidregjS0JoMtQ24yzz1XgkZj4fXXXUUiYmNSqZTrrnNk1So/ystDSUwM5MEHnfHwkLJli5a77irEzi6NLl0yee21EoqKxHBOUxI9I4LQCvycdpSHY9dRbTLS2dmdFYNvJtzJzdZhtYjYogy+i98BwHC/SNaV5PFnZjwmrYzo4kj2PT4BgB9P7mJfYRoAL0WPo4Nz2645otGY8fBIw81NSkFBiK3DES6iutrMnDkafvutkqNH9RhO58Le3lJGjbIO5/TpIyYe10f0jAhCG/Jf5dJbAztzsqKEiNXfc+/+VZiugln+prN+H3JX2jOv30SOjb4HU7WM/Z7H+GBeJgD2crvadmZL2/+53HlnPkYjzJ3rdenGgk05OEh5+mlXDh4MRK8PY9UqHyZNskens/D771X07ZuDg0Mqw4Zl8/PPGozGtv/6bGkiGRGEVkIhlfPXgMkcHj2DDg4u/JR2FPdln7Mk68Kb3LUHnqozO/EeKckGIFztTvJ1s6DEgRfjtvH3sjKOnn5MArir2vbuvQkJelasqCEqyo7rr2/bz+VqNH68I8uX+1FWFsqpU4E8+qgab28p27frmDGjCKUyjcjITF56qZiCAjGc0xCXlYx8/fXXhISEoFKp6N+/P/v27bto+9mzZxMZGYm9vT1BQUE89dRTaLXNU2dBENq6Hq4+pE58kI97jEBrNnLj7iX02/AzedpKW4fWLEKcPPCzt3bfJmsKa6vFhvo68FP36+C7vtzy2ClWfuqJ2Sihm5s/Lgp7W4Z8xW65xVqzZeFCsZS3rQsLU/Dll56kpXWgujqEzz93p3dvBWlpBt5/vxwfnwy8vdO4/fZ8du8Wn3sX0ug5I3/99RfTpk1jzpw59O/fn9mzZ7No0SISEhLw9j5/Wdrvv//OPffcw08//cTAgQNJTExkxowZ3H777Xz66acNuqeYMyJcrSoMOm7atZT1BWnIJBKe6dSP96OGtrsZ/TvzTvFL0t7a77u6+dHLIwij2cTtz6dReH0cnHJDOq8XNw/y5pGZ3gwerEIqlVz4oq3UqlVVTJyYz4QJ9qxc2TRLuoXWacOGar76SsO2bVpKS61DNyqVhJgYBTNnOjN9uhNyefv6t3yuZlva279/f/r27ctXX30FWJdDBQUF8dhjj/HCCy+c1/7RRx8lPj6ejRs31h575pln2Lt3Lzt27GjSJyMI7dW2wgxu2b2MAl013koHFg2YzFCvYFuH1WQsFgt/njrAltyk8x7TGkz8UpRj/UYC7PeHhd3w1Xlw991OTJ3qRM+eCiSStpGY+PikUVJiprAwGFfXq28p99UqPd3A7NnlLFtWTVqaEYsFJBIID5czZYojTz7pgr9/+3s9NMsEVr1ez8GDBxk16kyxJKlUyqhRo9i9e3e95wwcOJCDBw/WDuWkpKSwatUqJkyYcMH76HQ6NBpNnS9BuJoN9Qomd9IjPB/Zn2J9DcO2/MHorX+et6dMWyWRSLg9vA9Tw/vioaw7h0JlJ8MJBbVV7nvnwkfrybtzG5/+nU6vXtlERmbyzjul1NS07omDH35YSkGBmcceU4tE5CrToYMdn33mSUpKMFptCF9/7UG/fkoyM4189FE5AQEZeHqmccsteezY0X63PriQRvWM5OTkEBAQwK5duxgwYEDt8eeee46tW7eyd+/ees/74osvePbZZ7FYLBiNRh588EG+/fbbC97njTfe4M033zzvuOgZEQTI01Zy/Y7F7C/NQyGV8l7UMJ6JbB9FwMC6UiahrICCmgokEghwdOWl47tYmHGy7q9PJgnILLA3ABZ2g0wXli/3YdKk1jkhVK834+KSjp0dlJV1aHdDbcLl27Klhi+/LGfLFi0lJdaEWqmEXr2UTJ/uzD33ODVbHZoSbRWVxjMbBzrJlU06QbxZhmkuJxnZsmULt99+O++88w79+/cnOTmZJ554gvvuu49XX3213vvodDp0ujM/HI1GQ1BQkEhGBOEsS7ISmbF/JRqjnhAHF5YNmkIP1/onRJYbdNhJpDictTy2LXkvfjevHt2OWVLP29XppOS6UyNY9nzfVjtcM2NGAT//XMncuZ7ce694HxPql5VlZPbsMpYurSYl5cxwTmionMmTHXjqKVeCgpqmV61EW8WrB5ZjPGupvFwi5e0+1zVZQtIswzSenp7IZDLy8/PrHM/Pz8fX17fec1599VXuvvtuZs2aRffu3ZkyZQrvvfce77///gV3SlQqlajV6jpfgiDUNSWwEyWTn+CekO6kV5fTc/18bt29DL257lJCrclIr/XzGLL5N0xttD5HDxev+hOR09R6Rz56OLzVJiI5OUYWLKikQwe5SESEiwoMlPPxx54kJ1uHc777zpMBA5Tk5Jj47DMNwcEZuLunMWVKHps2XdlwTqVRVycRATBazHV6SlpKo5IRhUJBTExMncmoZrOZjRs31ukpOVt1dfV53ZEymXXDrjZQ/FUQWjWZVMqPfSeQMO4+Oju7syjrJG5LP+eXtKO1bT44uYe0qnJiy/KZcyruvGuUaKvIqCyp81WirWrBZ3FpPVwvsoHcAX+WRdxNpNqj5QJqpNtuy8dsht9/FxvhCQ2nUEi5/341O3cGUFMTyvbtftxyiyMyGSxdWs3IkbkolSn065fFV1+Vo9U2/JeNKoOOHbnJ9T6WV93y8zQva2nv9OnT+e677+jXrx+zZ89m4cKFnDx5Eh8fH6ZNm0ZAQADvv/8+YJ3/8emnn/L999/XDtM89NBDxMTE8NdffzXonmI1jSA0zA8pcTx+aCNas5EotSdf9hrF6G0La3/7cZDJSRp/P/6nd72tr5sWmr6r1mwxszz9KHsL0tAYtLgo7BnoE8qEoKiL9mb8t5twTlUZc/MzMfz3dmUGJCBJ9ED+wVDsXYzc+E08nTo4cXt4DKHOl7+bcFPbu1fLNdfkMHCgkp07A2wdjtBO5OUZmT27nH/+qebUKQNms3U4p0MHOddd58Azz7jQoUP9w7J51eXMPraZUl11vY9LgLsi+jPYN/yK42zWXXu/+uorPvroI/Ly8oiOjuaLL76gf//+AAwfPpyQkBDmz58PgNFo5N1332XBggVkZ2fj5eXFddddx7vvvourq2uTPhlBEEBrNHLH3n9ZmmNdJisB/vtHLpNIuME/gr8HTgEgo7KEdw+tqfc6L/caR7BT0+z/sirjOBuyTzIz8hr8HFxIryjh56Q93NChJ9cGRNZ7TpG2kjcPrmSoXwSDfcMZtW0hJypKrHNEiu1xyvChsk8qnY5GkPpxd2RSCe+uKibTLoM3Y65DrWgde4WEhWWQlmYkMzOYgACxgkZoekajmQULKvnppwoOHtRTU2P9F+/qKmXoUCUPP6xm7FjrLxZVBh1vH1pdJxEJdnJDKZWTUVmK7vQwrwR4pNswurtfWQLdrMlISxPJiCA03vvxu3np2LZ6H1sx+GYm+oWTXlHMe3Fr623TlMnIV8e3oLZTMa3TNbXH5pzYjp1Uxr2dB9Z7zuLUQxwryeH1mIkAPHZoPV8lx+KW7ssHPpO45w4X1J/Np8ZTw705E/npVTtUKrh3yTEmdg1nXFC3Jon9Svz8s4YZM4q46y4nFiwQQzRCy9i3T8vs2eVs2FBDYaG119PODnr0UNB7QiWmIXHIVWYCHV15oMsQvE/3lOpMRv5JjWNLrnULikBHV17pNf6K5mKJjfIE4SqmMej4LOkA9b2FSIEHDq7hRGke35/cecFrJJblX/Cxxgpz9uJkWT75p8eiMytLSdYUEuV+4QqkKZoiOruemRj/Qudr+L+uA7lrgD333+0BUgk3dncAvYwf7bbwzVwXtFr47f6OHM4obrLYL5fZbObxx4tRKiXMndt6ho2E9k2vt9C9u4Lff/ehoCCE/PxgXn7ZlfBwOw4d0vPD2wp+GtOX32/pReZP0chrHGrPVcrk3B4eU/tLSFZVGakVLfNvSSQjgtAOvXpsO8W6Gurr9jQD2TWV3L17CUUX2e9mUeohDhZmNEk844K60serA68fXMFDO/7g3UOrGRkQSX/v0AueozFo6wy1BNg7M94vDJ3ZiN5kpNKgw9ERZqh7Q1A5T57YwIIFXmjyFHxyrxv5+S23QVllpZmgoHTuvbeA3FzrfZ9/vgSNxsLrr7uiVIq3WqFljB2bi5NTGp07ZzJtWgG//17F6NH27NkTQEGFD8NfTsIvWoOu3I4fvtbi6ZlOZGQmkyblYrFYkEgkDPQJq71eemXLJCNiAFMQ2hmzxcI3p2IxY0GKBJlEggXOm6QaW6XBVS5niLs//X1C8Ld3oVhXxd6CNNJOvwH9nLiHSFcfnOyUVxTTwcJ09hWkcW/kQPwdXcmsLGVhykFcFfYMOOuN73K8MrEzG74oIKt/Mp8dPsjjX7jw5RNORHbOZNthZ1zdrYlAUxdzOrtYVNopE1lZJubNq+T336t49lkXPvtMg5eXlBdfdGuyewqtX3MXEbuU0FA5W7dCQoKBU6cM/PZbJf9V0QgMkiLr4I6dvZleo6upSHYlPt5IYqKhTvJ+dj0i4wVKcDQ1kYwIQjsjlUg4OGoGJzRFFOiqKdBVU6irJl9bTW5NJZnV5eTpqrEAm8tLGB0UxaiAzthJrUvuh/t3Yu7JnRwsykBnNrI7P4XRgV2uKKbFqXGMDepKX+8QwFpVtVhXxerMExdMRtR2qvPK3Wv0WlQyOxQyOVKJBCkSKvRaUl68AdVHP3Ew7BDRDj2Y+mElvzzhT/8exdz+xyEUTuYmXSF07iqkokQHoAcWC2i1Ft55pwyAu+5ywmy2tMkN/YTGa4kiYpcybpwD8+ZZezyN53QOZmWaIdMdkJApM3PH7QpeftmN0aMd8PKS1s4NOVaSU3uORwvFLZIRQWiHerh6X7A2x/zEPezOT6HGZMKkdOblY9v5NeMEt/a05zXfqUglEq7v0IODRdYhmoNFGVecjOjNRqTnzGCRSiRY6h1IsgpTe9Z5UwSIL8sjTG2dfyGXygh2die+LJ9ozyB23DaFget/Y37GKe6OcqH/Q0b2fhvMX3dFc8efcaAys6cglQnBUVf0XOD8YlGGGlm97T77TMPmzVq++MKDIUPsr/i+Qut2sSJi7rTMh/qoUfZIJHCxpSnu4VVc98VxxkV25LawmDoTVBPK8tl/enjWUa684tU0DSUGMgXhKlNxurfBXibj25hxHBw9nSrPo7zucycdioZgtpjxdVDjKFdY2xuufDO+Hu4BrMo8xtGSbIq0lRwqymRD1kmiPQJr2yxJjWNewq7a74f5RVCkrWRx6iHyqsvZkpPIwcIMRp21FHhUQGd25CWzOz+FIC8Zw+R+mILL+HW9iZ535BIzM4uaEjv+urMnRh0sSz/Cuqz4K34+5zJU15+MABw5omfo0Fx+/bWiye8rCGCdLL14cRUTJ+bSsWPmRRORm+5QcOMPx1E6m9mck8j7cWvZkpPIvoI0fjy5i8+Obqr9JWG4f0Rtj2lzEz0jgnCVUcrO/LMv0lYS7erD4N4lZJnsyfDcQVDWeLa5LaDaaLC2l175fja3h/dhWfoRfk/eT4VBh4vCniF+HZl0Vi9Fub6GkrNqH3iqnHi023AWpcSyKTsBV6UDd3fqTzc3/9o2fb06UGnQ8m/6Ecp0NURGWIjb4kv5wEzW/hPFd29684PKwOJvFSyaFs0tC+JYnHqIMGdPOrp4XfHz+o+h5sK/11ks0LmzHQMGtI66J0L7kJys58svNaxeXc2pU8baeSFeXlK6dLEjIcHAudM9nn/ehfffd2dnfh9+TdqHBUivLCG9suS863d392di0JX3IjaUSEYE4SrT2dW3dghmU04ChepT/Cb5ldny2aQXW/j0SDYdXZ5liIM/nau70/kCm+81hkpux23hMdwWHnPBNjMiz99SItLVh1d6j7/otUf4RzLEtyMv7FtGhUHLrUNl/LjHjXSvbHL29+Pvb7x4wq6IL74oZ/HMHtzy8xE25pxs2mSknp4RmQzMZusHwBtvuKNUinkjwuXT683Mn1/J779XcOCAnqoqa++FdXdfBbfe6sj99zvj6ipnzx4tAwbUHeL87DMPnnzSBYDBvh1R29mzNO0w2dVlddo5yhUM9+/ExKAoZC24s7RIRgThKtPPuwOLUw+hNRnYX5jOq2EvILGTcJ/kPnCRkRv0I39EfMN2VRW7DfYUSiZQwiiGMYzOdEZSb/US2zpRmlc7nNTHuwOPTo2i55iT3Fuax5gBaj7/3JPqGjNzf4DFs7oj/ekYNREG7C9zF2Oj2VTne0ONDCQWsFh/NlIphITI+e03b/r3Fz0iV4ucqvJ6j19ubdEDB7R8/bWGDRtqyM421e7gGxAg45Zb7Hn4YTV9+57/+urbV4mzs4SKCgtyOfz8szdTpzrVadPDI4Du7v6kVBSRXlGCyWLGXelId3d/FLKWTw1EMiIIVxmVzI5bw3rzS9JecpzjybPLpENxDG+nrKNcX4OzxYXwvCGcClmD0a6GpZZ/WMY/WLDghhsjGMGw0/91pzvSVjD1rER3ZmO/rm5+9PB15d03vHh5uonwmw5QvXMgP3zvzbG8AvYsd+Sf+7vxxsEq7J1cG3Ufi8XCuqx4VmUer3NcVyE7XXPfWqfhiSfUvPuuO/b2tv/ZCM2vyqBj7smdnCjLq/fxhSmxPNR16CWXyGs0ZubMKWfRoiqOHtWjO71C2NFRwpAhSu6805lp05xQqS7+upLJJFx3nQNLllSzdKkPY8Y41NtOIpEQrvYiXN10vYSXS/xLEYSr0CDfcO4I78P2Tj8CEoYlzaJYV1W7EmBo9i0ozKffOCWW2gltpZSyjGU8yZNEE81HfGSjZ1CX/KxJdlUG6zv4S7eFE35PFrrdfkQ8tAW92cTt7xYQOryIokQnbhjTuJ1JLRYLvyXv59eDx9nwUQAlKWdWx6TtsC6XVDobeX5BMR9/4iESkauEzmRk9rFNF0xEAJI1hcw+ugmtyVDnuNlsZu3aKm6+OQ9v7zRcXNJ4/vlSYmP1BAXJefxxNYmJgVRWhrJ1awD336++ZCLyn2++8SI5OeiCiUhrI3pGBOEqZedfSLkll5iaIYTYBVIl0aGU2dHV1Zfh/p1wlh7ma8vXmCR1hyRMmJAgwQEHJjLRRtHXFersUfvnXfkpjA7sjFQiJfmba/HfdYKUeQH07r6M/lE1jH5LwoYX7di304VRo3LYsMH/Ilc+Y19hGtvzksmJ9eDEUl/i//Vh0t1mbnvQyM+5cuw9dNz+22FKHMzsyHNjqF/H5nq6QiuyLiuejMpSAJztlEzu0JM+Xh0A67L4pWmHqTBoyawqZV1WPH3suvLVV+UsW1ZNYqKhthaIm5uUCRPsmTnTmRtvdEB6hfM1XFykuLi0nYRYJCOCcJW6n/uRSCSscvgb7z7n1yR5jMf4UvLlBc9fzGKiaLnZ9hcT4OhKuNqLU5pC8mo0zE/cw21hfXC0U3BkQyf8w1I4nqXhuFc+oSoVt33pye6X3di4WsukSbmsWHHhPXLA2iuyIfskAPoqOUjAYpaw6lcZa/+QYTbDX5vsWKWz9ixtyj7JEN/wK9pgTGj9TGYz2/OSAZAg4cnu1xLoeKbi7mDfcILt3bjn0/0krPFi/gl79JXWyeN2dtClix033ODIww+r8fVtmo/jrTlJbM1NolhnLXzm5+DCpODuRLlfOOk+WJjBsvQjFGsr8bZ35sbQ6Dr1RSwWC8vTj7I9L5kak4FwtSdTO/bFx77pNq4VyYggXIX2spcTnGAc4/Cm/uJoHenIGMawgQ2YqNs7cmvVfYxzHNcSoTbYDSE9+ezoRswWC3sL0ogtyqSj2gutycDIV4ys2esJvfNJ1Wn5IPkQ0plxOI/1YOUWX0bdF8K677sivUDykF9TUfvbr73BCbnMWt3SZLJ+ATx3t4yhTwYjjcogt0ZDZlVpk+16LLROGZUllOtrAOjh7l+biBw9qmPjxhpiY/X88UclRmMEYMHe3cCEKUqeedSLa69tniJ4rkp7poT2tO7Ea4HdBal8c2Ibr/Qah7+j63ntT2kKmXtyJzeE9qSHewD7CtL49sR2Xu41joDT7ddmxbMpJ4EZkQPwVDnyb9oRvji2mTdiJjVZHZK204cjCEKTmcUsJEj4kR8v2u4pnqqbiFgAgx1/yX5jRu57zRtkI3Vy8WZW5CDkEuvbmsFsIr4sj9SKYoIHlBOJC+jOvOWZsVDpXwS3H2fjmBU4/P45M/at5FBp3d2KS7RVJJy1g7Fca61wea7kZANzH/Zn9XORGLVSSs+qmSK0T1VGfe2f/0tEEhP19OuXw1NPlXD0qJ7Jkx249xUdM9bs5+6lsXwwV9ZsiQhAT49AursH4GOvxsdBzQ0hPVHK5KRcYPfdjdkJdHP3Y2xgV/wcXJgc0pNgJze25CQC1l6RjdknmRAcRbRHIIGObsyMHECZroa4oswmi1v0jAhCO3OpbtoDHOAYxxjNaPyxHrtQN+1oRhNGGCmWFKRICSrvTv8Ts1jc+SN+9n6dw5nxHApaYLPneq4Yr2CCnNzYnJPInoKU2sJtXionPv/cg1u/CEHTOxVk1gm5FgCp9c86hY6f04/hJFfwldtooP69RtIKqjBZHDj3dzmzGSQSC7lxamrK5C1WuVKwHYfTVYoBsqrL2L9fy4QJefj7y1i40IeYGOsk8DknkjhUbD7vnOZmtpg5WJiB3mQkzNmz3jYpFUWMCuhc51hXNz8OF2cBUKStQmPQ0sXVt/Zxe7mCUGdPUiqKavebulIiGRGEduZS3bT/9Yr8xE/Apbtpn+IpHpM8hku1L7+a/yCkpy/RKWG8W/MKcUG/4p6VToH/JuTS1vF24m3vzG3hMdwS1otqowGZRIJKZodEImHRQ86MPZBS/4kmCaS7YNnTDXpbD9W314i+SobFXP9wTlCfCgY/l4yrr1EM0VwFOji5o7ZTUabV8vPnJp5ZkEN0TyUrVvji4WFNRnOryzlcYv1gd7ZTtcjrIruqjP+LW4fBbEIpk/Ng1yH4O7rU21aj16K2q1urRG2novz0thEag3UYSq04p43iTJum0DrePQRBaDI9z9rvBaxzKbbmJpFSUUyBYxqHOcy1XEsg1nZnd9MCTA7pSXxZHltyErkzoh/TLdOZn7uOJySPM9jPumHek11GkbG7jEXGHyjusAX7/O6kum0jUGH7egX/kUqk59V1GB0SSMBBV7LNZZxdu00ChDirMS4YwTfHtagVxbz/vgf10VfUTUZkMlCpJEz8XwEuI04hkUCMV8gla0oIbVturpF162rY83c3dq2RYTZKcfLW8fZvFpxdLehNRg4WZfBPahzm00XPBvuGt0iPmY+9M6/0Hk+N0UBsUQbzE/bwTI9RF0xIWgORjAhCO3ZuN+0kbgGo7RWBS3fTarUSYk7dzvBeZ0q528sVhKu9+dr4Ee9lfsoR/0UEaaJZpVvMeOdrWuCZXR6JRMLTPXrxTNzmOsctQIijmlUHOhIRkckHH5SjVEmImZF93jWqS+zOOktCeP8q+j1zEgcv65CQvcyuRff0EFqGXm9h924ta9bUsGJFFceOWf++JRK72o3pxn10kkXZNSzK3nve+YGOrow7nfA3N7lUZu0ZBTo4u5NWWcymnATuiuh3Xlu1QoXmnM0wNQYtLqd7QtR21vktGr0WF8WZuS4avZagRhYNvBgxgVUQ2qHsqjIe37mQR3b8xW/J+3mw6xCKHNM5xCGGMYwOdKhte6XdtIeDfufuglfBoYwJ0vG8UTivmZ/dlbm7QxRy6emeDTOosKOnizebCzMZsmMBJ+ID8PGV8uYbpbz7f0XnnV+Wbn1DlinNDH8pmWHvH61NRBzlSh6LGo6PQ9MteRRs79VXS3BzS2P48Fw+/risNhEBahOR0N41uIfW1Ht+Jxdvnoy6FtVlbj9wpSyW87cw+E+YsycnzynYFl+aVzvHxFPliNpOVadNjdFAakXRBeehXA7RMyII7VB93bRb+nwEdjCPpk8WfvF7jf4l3XnU7n7edHmIfdlHWRXwaZPeY3XmcQ4VZZJXo0EhlRGm9uLGkGh8L/HBX9/k3Ov8O7IkOwlMUgxvD+bpX5T8YNnHjtI8YrbM4eUVvXhupCd7vw1GpjAz6q4aghzdSE0zYNJLUbrouWXeURw8rR9KHkpHBvmGM8S343lJm9D2VVWZqa62Zh3/FSk711tPBTOgpzc7806RU23do8bPwYXBvuGEOXu2WM2ZJalxdHP3x13pgM5kZF9BGonl+TweNQKAeQm7cFU4MCU0GoCRAZF8fGQD67Pi6e7uz/7CdNIrS2p7USQSCSMDOrMq8xje9s54qpxYln4EV6U90Z5BTRa3SEYEoR06t5s2tuYkcbKDDGYwoYTWadtU3bSPuE+hT3VnBlSMZ7Xf54RmJpEatLzJnlNieQHD/TsR4uSOyWJhadphPj+2iTdiJqG8wMZeF5qce3twd9bmpfK8w1jeTFDx1rOlLPxrLN+kHuWn9GP8X9Z+rl/gxdKpfdn1eSiPD/DmttucuOW1fHz9apj+50lKJdZEZFpEfwb5hjfZ8xRanw8/9ODUKSMrVlRjNp//uJOThJtucsTe3tnm+7xUGLTMT9hNub4Ge7kdAY6uPB41gq5u1sJ+JbrqOptdhqu9mBU5iGXph1madhhve2ce6jqktsYIwNjALuhNRn5N2ke1UU9HFy8e7zaiSee/iGREEK4CKz3n1VlBc7b/umnPnjdyoW7aICdrLYX/ummHnVPyvL9DF0oUx/DNH0xa0AoccmIo8N2Ok/TK98d44vRvdv+Z0ekant37D+mVJXRyqb9w24Um5xp0VZTd8CRyiZRdL25i7duhfPqUil9/nYjZbGBBViIrJTm8sjqPb24JZtasQjQaM3//XcWCBV7069mXT45sAGB3fqpIRto5uVzCX395M2RIDgcO6M95DO6+26nV7EU0rdPF52w902PUecdivIKJ8Qq+4DkSiYTrQ3pwfUiPK47vQlrHT08QhCazJDWOxPICirSVZFeVMSd9NUc9thKjG0AEEcxL2MWS1Lja9iMDIjlemsv6rHjyqstZnn6E9MoShvt3Aup20x4uziK7qox5ibsv2E3rKndC6xeHf+ZYavwOoS6O4oj2Astpr0CN6b95Gheu25BSUUTns+ojgHVybkpFEXZSGUXaKjqMzqdrL/jtt0r++quCER5+jHX1RGex8E7+Xn7fZ0eXLgoeeqiI7t3tmDrViQi1F66ne4myq0ub/LkJrc+JE3qOHrUmImdvG2M0wqxZYo7QlRI9I4LQzpzbTbs5bC4mqYFf7L8HWq6bNjtoDcOzH2Gr94/0rBnAjzXzuMdtQpM8R7PFwsKUg4SrverEea6GTs5dtcabLiGFTJtewMPLCwlQqZji7s3K0iLG7v2dr76+nudGK3joITXS05NfZacrvRrNZt6JXU1udTluSgcmBEcx0Ceszj035ySyPiuecn0NgU5u3B4eQ2gTTv4Tmtc/q0u4685CZM4Wrv8omS3vRFBVbIfZDN262dG79/nLuBPK8lmUEiteFw0kkhFBaGfO7qZNJplPWEM/+hFJJNCy3bRbAr7mfwXd+NjpRe5V3Mbe3Nf4zu9/jbpGff5I3k9OVTn/6zn6iq8F4Ooq4+9l7kyeXMDiF4MY+8lx3OwUPBPanY9Sj/Jg2lLmHhrPPaHW+TYZlSUU66oAa9n5SFcf7u08kJNleSxI3IuLQkU3N2t12/2F6fydEsvUjn0JdfZkY85Jvji2mTdjrhOTXduAH38u4ZHHC7FTWfj1bxcG9R3O/gHlTB2jp6zUwoMPnt8rUqSt5KvjWxjqFyFeFw0khmkEoR2byUyAeueKtJSPvB9mkeFf0DrxvdfL9M2ceUXX+yN5P0dLcni6x0jclBefi9KYybnajqlMeDafzIPOHP799GS/mjJWDpyCk1zBvQdW8378bqoMen5L2nfWPey5Jaw3fg4ujPCPpLdnEBuyE2of35B9ksG+4QzyDcff0YU7O/ZDIZWzK//UFf0chOb3wQel3H9fCc5eBmJ3hDF5iB+eKifG9wlgw3p/br7ZkTvvdDrvvK25SXiqnMTrohFEMiII7VQqqexgBzHE0I1uNo3lZpdhJDkcQFbSgQNB8/HMGo7RfIE1khdgsVj4I3k/ccVZPNXjWjxV538InKsxNRSOFGdx53R7uo4u5+C8IPJPOGIwm1iYvJdXwqJwkSt46dg2Bq7/kbTKEgDkEinR51S87ermR4rGWp/EaDaRUVFSZ18PqURCZ1ff2jZC6/T440W8+GIpft0r+WCRlk3GvTy7ZzHvxK5me24yMTFKFi3ywdX1/KHKFM0F5iqJ18UFiWREENqp/3pF5jPftoGc1lERQKXncdTZ11AcuBWHgp7kGUsafP4fpw6wtyCNeyMHopLZUa6voVxfg950Jqm5ksm5BdoKtuQmcd1rWbgGa1nzvy7oKmRYsC4RvsndC2epjCNVGtaXFuEkV6JWqM7rnVErVGhNBvQmI5UGHWYsONdXMM7QdPt6CE3r5pvz+PJLDWFhciZ9kkBsVTLe9s48HjWCoX4R/JVykN35F56UrTFo6y0SKF4XFyaSEUFoh9JJZytb6UUvomg9pclVUgXlAbvpknULBq8E/DQ9WV9xsEHnbs1NosZk4JOjG3lu75LarwNFGbVtSnTVlOvPVMH8b3Lu9rxk3o5dTWxRZr2Tc0f4RWKyWDBZzPi4ODD3Wx90FXI2vNQF6enJvnKplNs8ffG2U5Cqq2FHVSUy8RbarpjNZgYPzmbx4mr69FGQkBCIVG4h2MmdKSHRBDu5M9SvI4N9w9mam2TrcNsVMYFVENqhe7gHsO1ckYs5EbiQ23JeY6HHx4wxjObdoi94yfOui57z3ZCpl7zulUzO3V2QQhdXP6Z16g/d4dlnJXz8MRxf5M/ctzqjMWhRSOV8pvbk9r3/sjI3BY2uii5udbvjNXotKpkdCpkcqUSCFAkV5+xuqtFrcbG7+iYptmZarZno6GwSEgxMnGjPihXWeUMuChV+DnU3mPOzd+FQUeYFr6W2U6Gp5+9cvC4uTKT1gtDOZJHFZjbTgx5EE23rcC7oL/+3+LhyHiDhZfV93JD9gk3jCVd7kV+jqf3+o4886X5tJTu/DWDfCgf6eHWgh0cATnZKVgy+hftCe3CyuoKX4vdQdtaHSnxZHmFq65wUuVRGsLM78WX5tY+bLRZOntVGsL2SEiNhYZkkJBi47z7n2kQEzn9dAOTXaHBXOl7wemHqeuYqidfFRYlkRBDamXu4BwsWfuRHW4dySc943MZ2yRYklV4s8/uYiMwbbRbLqIDOpFQUsSrjOAU1FewrSGPwKydxcjMzc2YhGRlGlqTGMS9hFwDf9xnP8536kq3TErFqDrHF2WzJSeRgYQajAiLrXHdHXjK781PIrS7n9+T96M3G82pOCLaRnm4gNDST3FwTr7/uyvff1y3nXt/rYnteMsP9I2rbnP26ABjmF0GRtpLFqYfIqy4Xr4sGkFgs/+052HppNBpcXFwoLy9HrRaV7gThQnLIIZBAutGNoxy1dTgNVmQsI6BwCHq/Yzhm96HIbycq6YUrqzaXI8XZLEmLo6CmAk+VE6MCOmNKCGDEiFwCAmS8tSGHUn1VneGg945t442Te3CWybnDJ5ip4b3rKW6VwLqseDR6rbW4VVgMoVfpb8CtSWyslkGDctHpLMyZ48n999f/+VLf62LIWVshzE/YTbGu7uvi7KJnrkoHJtZb9Kz9vy4a+vktkhFBaEfGM541rGEPe+hPf1uH0yhGs5HA7HHkB25CWhTGEef1dFOFXvrEK7Qm8zhL0g5zrX8kt4XH1Nvm+eeL+fDDcoY+nEPUHVm1u/92dw8AYGl2IjftWopSKuF27yAcpBLC1Z5M7dgXH3vxntUarV1bxaRJ+Vgs8M8/Plx//YWHXYTL19DPbzFMIwjtRB55rGUtXejS5hIRALlUTl7QBgZl34fZLZMo3QB+L1vfrPdMqyhmW24ygRcpKQ9w/8tmom7KZfscP7qeGk60RyDfnthOdlUZADcEdOLzqEEoJFIW5GfQzTscpVTOF8c2YzCbmvU5CI33yy8VjB+fj1QKO3f6i0SkFRDJiCC0E7OYhQULP/CDrUO5IjsCv+Pxkg9BUc2dypt4LH92s9xHazLwY8Iu7o7oj8NFNtsD6+6/M18y4GAv5clZ1URLuhLs5MaWnETAWpAtvTyfz7sPRSmV83DcRiqkCsp0NcRdZNWF0PI++KCU6dMLcXSUcOxYIP37X52rV1obkYwIQjtQRBGrWEUkkQxikK3DuWKfez/B77oloHfgK4/nGZR1f5Pf44/kA3R38z9vaW59UiqK6OHjy6pVvphMMGBADl1crLv/AhRpq9AYtFzr15HkCffjoVDxwrFtZBuNtW0E2/uvqqqXl5RTp4KIiGj5eUlC/UQyIgjtwH+9It/zva1DaTJ3uI4kXrkPaWkQuwLm4pM5stEl5C9kf0EaGZUlTAmNblD7/3b/HTrUnuefdyE318S3r8vP2/1XrVDhq3IibeJDBDuoWVaYzU/pJ5okZuHKnF1VNS0tGG9vUWarNRHJiCC0cSWUsJzlRBDBUIbaOpwm1VkVTJXHCZxy+lAQtAnH/F4UGcuu6Joluir+Sonl3s4DsZOev6/Ipbz/vge9eytY96uSzMP29bZxkis4Nf4BopxcWFecy7Vb/sBsNl9R3MLlqa+qqoOD+OhrbcTfiCC0cfdxH2bMzGGOrUNpFiqpgoqAfURkTkHvE4+3pgfbKg9f9vUyKkqoMGh5N3YND23/g4e2/0FieQGbcxJ4aPsfmC3nJw3n7v67das/rv4GVr4SSmqqvs7uv/+RS6VM8wtjkKsXmwsziF4/H30T9ewIDaPVmunaNZudO3VMnGjP/v2ByOXiY681En8rgtCGlVHGUpYSRhjXcq2tw2lWiUH/cEPe/7A4FTGMa/mk+K/Luk5nV19e6z2BV3qPr/3q4OROP+8QXuk9Hqnk/LfFc3f/dXKSMuOrbHSVMgYOzMVdYV+7++9/aowG0ipL+KzntdzdoRtHNYV0XPX9eWXCheZxsaqqQusjkhFBaMPu537MmPmGb2wdSotY4v8+72t+ACw86zSTW3JeafQ1VHI7Ahxd63wpZXIc5craDfQasvuv1rOQx/9nT16eiZtuKqzd/fdwcRbZVWXMS9yNq9KeaM8gfuk3iecj+5NZU0Hoqu/Iqa5omh+IUK9LVVUVWh9R9EwQ2igNGtxxJ4ggUkm1dTgtalNlLKP0k7G45NI550bigxZe0fU+ObKBQEe32qJnnxzZgIfSkRmRA2rbHCzMYFn6YYq1VXWKnvXpk8XBg3rmzvXAa2Q62/OSqTbq6ejixdTwvvg4nHnP+jzpAE/GbcRBJmf/yOl0dWlf1TZbg0OHtAwceOmqqkLLEBVYBaGdm8pU/uAPVrKSCUywdTgtLs9YQnDREAy+J3DO7k+B3zablJCvrjbj45NOTY2FhIRAwsMvHsNfmfFM3bMcmUTCxmG3M8QrqIUibf/Wratm4sQ8UVW1FREVWAWhHaukkoUsJJjgqzIRAfCVu1PtfRjPrOFU+O/DqSiKJF1Wi8fh4CBl3To/zGYYNCj3kqtmbgvqwsZht2MBhm/5g8WZJ1sm0Hbul18qGDcuT1RVbaNEMiIIbdDDPIwJE1/ypa1DsSm5VE5h4Gb6Zc/E5J5Gp5q+/F2+tcXjGDBAxSuvuJKfb2Ly5PxLth/uHcyh0TNQymTcvGcZXycdbIEo26//+z9RVbWtE8mIILQx1VTzB38QSCDXc72tw2kV9gb+yINF74GqklvsrufZ/K9bPIa33nKnb18FK1bU8P33mku2j3LxInHcfbjaKXk0bgMvH235JKo9eOKJIl54QVRVbetEMiIIbcwjPIIRI7OZbetQWpVvfZ9lXs1CMCr5xP1phmc/0uIxbNnij7OzhIcfLiIpSX/J9oEOalInPIi/yon3Tu7hnv2rWiDK9uPmm/P44gsNoaGiqmpbJyawCkIbUk01Lrjggw9ZtPz8iLbgiDaFXhWjMHum4Z81mvSAlcilLfchtXevlgEDcvDykpKdHdygIlt6s5Fe6+ZzoqKYcb6hrBx0M1Kp+F3xQsxmM0OH5rJzp46YGAV79viLYmatlJjAKgjt0OM8jhEjn/KprUNptXqowij3OIZDbm9ygtbhlB9DmbGyxe7fv7+K1193o6DA3KD5IwAKqZyjY+5hqGcga/JS6bvxF4yifHy9zq6qOmGCPQcOiKqq7YH4GxSENkKLll/4BT/8uJVbbR1Oq+YkdaDK/wBhmdej8zmGe3kUu6tbbsO61193o39/JatW1TBnTnmDzpFKpWwdcSe3BnYmtiyfTqu/p9p46aGeq0lp6ZmqqrNmObNypaiq2l6IZEQQ2ogneRIDBj7iI1uH0macClrGhLynsDjnM9A0lC9LFrfYvbds8cPZWcKjjxaTkNDwpOKvAZN5MiKG1OpyOqycQ4G2qhmjbDvOrar6ww+iqmp7IpIRQWgD9Oj5iZ/wwYc7udPW4bQpK/0/5o3yb0Fq4nHHadyV+1aL3FelkrJxo7X+yJAhORiNDR92+Sx6FP/XfRhF+hrCV31HUkVJM0ba+h06pKVz5yw0GmtV1TfecLd1SEITE8mIILQBT/EUBgx8yIe2DqVNet1rBqvNa6Dajd+836Z75tQWuW/fvireesuNwkIz113XsPkj/3mu8zX83HcCVSYDUet+Ym9xTjNF2bqtW1dNv345GAwWli714YEHxCKG9kisphGEVk6PHmecccGFAgpsHU6blqUvJLR0KEafk7hkDaTIf2uLrLQZODCb3bt1fP21Bw8/7NKoc9fmpTBxx98ALB14I5P8OzZHiK3SggUVTJ9eiJ0dbN3qzzXXiGJmbU2zrqb5+uuvCQkJQaVS0b9/f/bt23fR9mVlZTzyyCP4+fmhVCrp1KkTq1aJ9fSC0BD/43/o0fM+79s6lDYvUOFFjddR3LOGUB64C1VhFGn6vGa/76ZNfqjVEh57rJj4+MZNSh3rG8a+kdOQS6Rcv3Mxc1PimifIVubDD0uZNq0QBwdrVVWRiLRvjU5G/vrrL55++mlef/11YmNj6dmzJ2PHjqWgoP7f2PR6PaNHjyYtLY2///6bhIQEfvjhBwICAq44eEFo74wY+Y7v8MCDe7nX1uG0C3KpnOLAbfTKvBuT5ylCq3qzTLOjWe/53/wRiwWGDm3c/BGA3m6+nBx3H85yBfcdXMtbx5s3Xlt74okinn/eWlU1JUVUVb0qWBqpX79+lkceeaT2e5PJZPH397e8//779bb/9ttvLWFhYRa9Xt/YW9UqLy+3AJby8vLLvoYgtEVPW562YMEyxzLH1qG0SzNy3rNQ42ihysXyYv53zX6/994rscApy5gx2Zd1frGuyuKz7AsLCz+wPHRgTRNH1zrcfHOuBU5ZQkPTLVVVJluHI1yhhn5+N2rOiF6vx8HBgb///psbbrih9vj06dMpKytj2bJl550zYcIE3N3dcXBwYNmyZXh5eTF16lSef/55ZDJZvffR6XTodLra7zUaDUFBQWLOiHBVMWLEGWcccKCYYluH0259V7qcB2X3gH0FowoeYH3A5816v8GDrQW7vvjCnccec230+VqjkR7rfyKpspTJ/h1ZOuimpg/SBkRV1fapWeaMFBUVYTKZ8PHxqXPcx8eHvLz6x11TUlL4+++/MZlMrFq1ildffZVPPvmEd95554L3ef/993Fxcan9CgoKakyYgtAuvMzLaNHyJm/aOpR27QG36zgo34mk3I8Nfl8RnDmxWe+3YYMfLi4SnnyyhOPHG1/UTCWXc3LsLPq7+7EsJ5lrNv6C+TKqtZZoq8ioLKn9KrFhPRNRVVVoVM9ITk4OAQEB7Nq1iwEDBtQef+6559i6dSt79+4975xOnTqh1WpJTU2t7Qn59NNP+eijj8jNza33PqJnRLjamTHjhBNKlJRSautwrgqV5mq88gah9Y9DlRNNgc9OnGUOzXKv2Fgtffrk4O4uJS+vYfvX1OeGnYtZlpNMhJMbR0bfg0resJVBJdoqXj2wHKPlTBIjl0h5u891uKscLyuWy1VaaqRbt2xyc03MmuUsipm1M83SM+Lp6YlMJiM/v+56+fz8fHx9fes9x8/Pj06dOtUZkunSpQt5eXno9fX/VqBUKlGr1XW+BOFq8iqvUkMNr/O6rUO5ajhJHajxP0Rw5gS0vkdwKe3GwerEZrlX794q3nvPjeJiM+PHX/5qnqWDbuLBsGiSKksJXT2HEn11g86rNOrqJCIARouZSqPuAmc0j7Orqr76qqiqejVrVDKiUCiIiYlh48aNtcfMZjMbN26s01NytkGDBpGcnFynGzExMRE/Pz8UCjFDWhDOZcbMbGbjggtP8qStw7nqpAetZFTuo1hcculjHMx3pcub5T4vvODGkCFKNmzQMnt22WVf59uYsbzZdRB52ipCV35HelXD9sJpTg0ZAoqL09WpqvrWW6Kq6tWs0X2DTz/9ND/88AM///wz8fHxPPTQQ1RVVTFz5kwApk2bxosvvljb/qGHHqKkpIQnnniCxMREVq5cyXvvvccjjzzSdM9CENqRt3iLaqp5mZdtHcpVa33A57xY+gXI9Dxofwczc5unxsuGDX64ukp55pkSjh27/F6J17oN5oeYsVQY9XRe8wOxpc1fO+VC/hsCevfQmtqvVw8sr5OQrF9fTd++2ej1FpYsEVVVhctIRm677TY+/vhjXnvtNaKjo4mLi2PNmjW1k1ozMjLqzAUJCgpi7dq17N+/nx49evD444/zxBNP8MILLzTdsxCEdsKMmY/5GGeceYZnbB3OVe097/tZaloBNWrme79G78xpTX4PhULK5s3WnWeHDctFr2/8RNT/zAqLZtmgGzFYzPTf+Atr81KaKsxGKdFVX3QIaMGCCsaOzUMqhR07/Jk8uWXnqAitkygHLwityDu8w6u8ynu8x4u8eOkThGaXps+jY+lwTD4JuGUNocB/U5OXkP/oozKee66Ea69VsXGj/xVda29xDkO3/IbBbOaXfpO4q0O389pkVJbw7qE15x1/udc4gp0ub7jEYrGwNiueVRnH0JmN5z3eyyOQkmVRvPxSGY6OEmJjA+jUSQzVt3fNWg5eEISmZ8bM//F/OOHE8zxv63CE00IUvmi9juGaNZDSwO3YF3YnS1/YpPf43/9cGTZMyaZNWj79tOyKrtXfw59jY+7FQWbH3ftW8OHJPU0T5EVYLBb+PHWQJWlx9SYiAF+/LuXll0rx9LRWVRWJiHA2kYwIQivxIR9SSSXP8zxS8U+zVZFL5ZQG7qR75h0YPZMJqurFmorzSxlciXXr/HBzk/K//5Vw9OiVrWqJcHYnZcIDeCrsef7oVp6K29BEUdbvcEk2W3KtK48kQC+PIKaG92Vax/5c4x3ChtciOPa3H85+Or7eqsHbu/k3JxTaFvGOJwitgBkz7/EejjjyEi/ZOhzhAo4E/c6dBa+CQynjpeN4s3B+k11boZCyZUvTzB8B8FY5kj7xQUIcXJiddJBbd5+pkK0z1t97cbk2ZSfU/nlqx3482HUIw/wjGOgbxoqXwkjZ4oFnpypu+y2OfZokDGZTk95faPtEMiIIrcBnfEYFFTzLs6JXpJX71e81vqz6Fcxy3nB5iInZzzbZtXv0UPLRR+6UlpoZO/bKV8Q4yBUkjb+fXq7eLMo6ydDNv7Ei7QifH99cb/t/UuOoMTauKqxGX0NCubX2lLe9M4N9wwGoqDBx//1F/PNPNXff7cS7SzVI5VBh0JFQln+xSwpXIfGuJwitwNu8jQMOvMZrtg5FaIBH3aewS7YVSYUPq/w+Iyzz+ia79tNPuzJihIotW7R8/HHZFV9PLpVyYOR0xvqEsr0oi7tj11NjNNTbNr4sj0+PbkJrqv/x+pTrtbV/jlB7I5VIABg4MIe5cyuYN8+LX37xJtLlzDYiZfqay3w2QnslkhFBsLHP+ZxyynmSJ0WvSBsywKErJS7HUOZHkRq0HIecPlSaG1YB9VLWrPHF3V3K88+XcOTIlVdFlUqlfBQ1iAiVA2UmI38W5dLV1Z+7O/bj3siBDPXtiPL0CqGMyhKWpR1p8LUV0jPVtUvPqgBrZydh6FAlM2Y4n/fY2ecIAohkRBBs7g3ewB573uZtW4ciNJKr3Ika3zj8M8dS4xeLS3EUR7RXXt9DoZCydat1iW9TzB8B2JSTyAhXD6Idnak2m/kw7Tg9PIPo5x3CnRH9eCF6DHKJ9SNhV/6pBveOeNk74aqwByC+NI/8Gg1ms4WkJAMTJ1priOhNRnbnW38uEiR0VIuy70JdIhkRBBv6iq8oo4zHeEz0irRREomE7KA1DMt5CLNrNj311zC/dPUVXzcqSsEnn7hTVmZm9Oj6NxVtqGqjnhOl1muM9wzgh5hxlBt0DN/yO/HlxQD4O7rS3zsUAK3JyPGSht1TKpEy2LcjABYsfH18KxsPFVBZaaFXLwX5NRq+PrG1dmimu7t/i2/GJ7R+4t1PEGzodV5HhYp3edfWoQhXaEvA1zxT+hnIdcxU3cpDeR9f8TWffNKVkSNVbNum44MPLn/35oqz5nWEq72YFdaTXdfeRWJFKb03zMN4eu+wCJczPRYaQ8PndYwMiMRb5QRAfk0FT7x7CoB1km28dmAFJ09PWFXK5NwQ0vOyn4fQfolkRBBs5Du+o4QSHuZh5Ii6C+3Bx94Ps8jwL+icmOP5Ev2yZl7xNdes8cXDQ8pLL5USG6u99An1UMjOvL6KddY9Ynq4evNW1BC0ZhPFp3stis7aP0bRiCqzDnIFT3S/Fj97NVWFdpxcdnp7kPwz80Qc5Qoe7zacAEfXy3oOQvsmkhFBsJGXeRklSv6P/7N1KEITutllGEkOB5CVhLA/4Ge8skZgvEBV0oaQy63zRyQSuPbaXLTaxs8fcVXY421vnUh6SlNIRmUJAHcGdwVgfX4aepORnfnWHg0J0Oms1S8N4aly4rnu44h7Lwbr1jQWsve54Wuv5sbQaN7qcx0dXbwbHbtwdRDJiCDYwI/8SDHFPMADolekHeqoCKDS8xjqnP4UBW7BoaAnecaSy75et24KZs92p7zcclnzRyQSCcP8Imq//+b4No6V5OCldCDa1ZslWQl8dXwrpTprT0Y3Nz+87J0afZ9XXyrjRCxY0xkJjic782afSYwN7IqTnbLR1xOuHmKjPEGwAW+8KaecCipQIPboaM+6Zt1KvN8/UO7HBsUyRjr1vuxrjR2bw7p1Wt57z40XX3Rr1Ll6k5H/O7yOrKqy2mNqOxVLCnM4pa3iLk9fHOR2KGVynu85ptHDKf/8U8VNN9UtZqZUQmlpCPb24vfeq5XYKE8QWqlf+IVCCpnFLJGIXAVOBC7k5vwXwLGYUYzig6LfLvtaK1f64ukp5eWXSzlwoHHzRxQyOU9EjSDkrF15NQYtVaeX8C4rLUQptePxbiManYgkJRmYNq2A0/XOaul0sH375c1zEa4uomdEEFqYL76UUEIllSIZuYp8UvwXzyofBkU1NxQ+wZKADy7rOvHxeqKisnBykpCf3wGVqnG/U5osZg4XZ7MtN4mMyhJ+z88i32AtrDbWJ4QVg29BLq17zdWZxzlUlElejQaFVEaY2osbQ6LxdVBTU2OmT59sEhIMmM7ZckYmh763FtP7oVN42ztzY2g03d0Dah+3WCwsTz/K9rxkakwGwtWeTO3YFx978T7fXoieEUFohf7gD/LJ5x7uEYnIVeYZj9vYyiYklV4s9fuYiMwbL+s6Xboo+PJLDzQaCyNHNn7+iEwipbdnEE92v5aPr7mJirM2rVuXn8YDB9dw7u+oieUFDPfvxAs9x/BE1LWYzGY+P7YJncnII48UER9/fiICYDJC5m43Xuk9nmiPQL49sZ3ss4aJ1mbFsyknobbomlIq54tjm8VGelchkYwIQgt6hmeww47ZzLZ1KIINDHXqSYH6CIr8LiQHLcEpux9ac+M2pgN4+GEXxo2zZ9cuHe+8c/n1R5IrS6k2nVnpYwF+SjvKa8e312n3RNQIBvqE4e/oSpCTGzM6XUOJrppUTTH//luNxQISCcjrmYudnSrFWOzI5JCeBDu5sSUn0Xovi4WN2SeZEBxFtEcggY5uzIwcQJmuhriizMt+TkLbJJIRQWghC1lILrlMYxoqVLYOR7ART7krVT6H8MkcSZX/ARyLu3JSm9Ho6yxf7oOXl5TXXitl//7Lm5dxsLT+nYHfid/Nt6cOXfC8mtPzTJwVStLTg9m5058vvvDg+usdAM6bO7Jxo7WOSVc3P1IqigBrTRONQUsXV9/advZyBaHOnrVthKuHWFMoCC3kaZ5Gjpwv+MLWoQg2JpfKyQvawKCs+9nl+zNdqvrxm3YBU11HN/wacinbt/vTrVsWo0blkp/fAeQmlqUfIa44kwqDjiBHN24LjyHE2aPea8SW5iOXSDDWM3Xwkdh1+CgduDEwks05iazPiqdcX0OAoytyqZRwtVftRNeBA1UMHKiistLMP/9Us3y5D/PzNxJZ3p2aLDXXXGNd1qu2U9Xu8vtfhVe1om5irlao6uwELFwdRM+IILSAJSwhm2zu5E4ccLB1OEIrsTPwex4t/j9QVHOn8iYeL/i8UedHRp6ZPzJiRC6/JO0lviyPmZEDea33BLq6+fLZ0U219UPOu39RVr2JCFiHbO7Yu5z12Yn8nRLLxOAoXu41Hp3JSIqmiNvDYs47Z+tWaxIxdqw9Xp2quf5OCZ984kHnzmJ+lHBxIhkRhBbwBE8gQ8ZXfGXrUIRW5kufJ/lNtxj0Dnzp/hxDsh5o1PkPPeTChAn27NmjY+lyDTeFRtPJxRtve2eu69ADb3sntuYmnXeexWLhUFl+PVe0lizr5+7HW90Gs68ghcG+4QzyDWdrbiI6kxEnOyUnys6fPHv8uB61WoJcLkWtUKEx1O3h0Bi0uJzuCVHbWXf61ZzTC6LRn2kjXD1EMiIIzexf/iWTTG7ndpxofFVLof2b6jqaY8rdSEuD2BHwA76ZoxpVQn7ZMh+8fSRsei+chKN1ezrspHJOaQrPOye1qhztWatWfJXWnXT7u3pzv18H9o6cxjOd+pJVWUpnFx/+SN5PXHEWT/W4lm5u/qRozp/XkZdnIjTUDoAwZ09OltWdkxJfmkeYsycAnipH1HaqOm1qjAZSK4pq2whXD5GMCEIze5zHkSFjDnNsHYrQinVThVLlcQLHnD7kB23EMb8XRcayBp0rl0vZsT0AqczCQ7PKyCmrxGwxs6cglRRNEeX683fg9VU5EuPsxkMhUSSOu4+c6x7BSWZHjrYai8WM3mSk0qDDjIU9hWnsLUjj3siBqGTWKq3Fumr0Z63E+WLvbgwG6NPHOj9kZEAkx0tzWZ8VT151OcvTj5BeWcJw/06AtUT9yIDOrMo8xuHiLLKrypiXuBtXpT3RnkFX/gMV2hQxgVUQmtEqVpFOuugVERpEJVVQGbCPiMwbSQ5YhndpD7YpVzDYqcclz42IUPDu+64881AV4x+OY+BDmQQ7udHXq0Ptxnhnc5DbMd7Tj4E+IUQ4W6uy9nLzYWdRFmaLa522ccVZAHxydGOd4weKMhjoEwZA7AHrCpsxY6zDL+FqL2ZFDmJZ+mGWph3G296Zh7oOqVPddWxgF/QmI78m7aPaqKejixePdxuBnVTWsB+Y0G6IZEQQmtGjPIoUKd/xna1DEdqQpKB/mJL9Aku9PmeIfgQfF3/DMx63XfK8p+73ZdPyXFb84c+EiI68+KYv38fvwFNVfyKstlPVmbMxNbgr24uyKDOZUMjkSCUSpEh4oMvgOr0V8xJ2U2PU1yYiAJWbOwHVTJp0ZoJ2jFcwMV7BF4xXIpFwfUgPrg+5dLIltG9imEYQmsk61pFKKjdyI2pEeWuhcZYEfMA7mu8BC886zeSWnFcadN6yZT74+Mj4v7er2byjghOlufT0CKy3bZi67ryO6R2ikCMhU28tDy+Xygh2dif+rImuZouFk2V5hKnrzus4fFiPg4MEBwfxsSI0nnjVCEIzeZiHkSLlB36wdShCG/Wy591sYANUu/O3zwd0zbr1ou2Pl+ZwoiyPFZvV2KnM3HpPOp5yNYNO92AsSY1jXsKu2vbD/CIo0layOPUQedXl7C1IJVCpIqG6srbNqIDO7MhLZnd+CrnV5fyevB+92VinVwQgK8tEUJDobBcuj3jlCEIz2MQmTnGKKUzBFVdbhyO0YSOdepNrPEJw4RDiAxehzr6GAr9tqKTn1+6oMRpYknaYMl01N3zqwqJHOrH0sS68stf6e2e5voaSs2qOeKqceLTbcBalxLIpOwFXpQM9XH34Nz+NjGoNwQ5q+np1oNKg5d/0I2j0WgKd3Hi82wjUCvva62g0ZrRaC716iXoiwuURu/YKQjPoRCdOcYpCCnHH/dInCMIlGM1G/HJGURS4FVlBR066bqGjIuCi59xwQx7LllXz8ssuvPNO/VVYz7WtMINhW/7ghcj+vN9jeIPO+fXXCu6+u5AffvBk1izxHi2cIXbtFQQb2cY2kkhiEpNEIiI0GblUTmHgFvpmzcDknk5EdR/+Lt960XP++ccbX18Z771Xzs6d5y/vrc9Qr2DsJFL+zU1ucGzr11uvfcMNorqwcHlEMiIITewBHkCChB/50dahCO3QvsB53Ff0DqgqucXuep4t+OaCbaVSKbt2+SGVwtixeVRWmht0j87OHiRWNHw34IMHdSgU4OkpRv6FyyOSEUFoQjvZyUlOMp7xeCKqSArN43vf55hXsxCMSj5xe4rh2Y9csG1oqIIffvCkqsrCsGE5Dbr+9QEdMVrMbMpPb1D79HQj/v4iEREun0hGBKEJ3c/9oldEaBEz3MZzWLEHSXkAW/2/JSBzHBeaAjhzppopUxyIjdXz0kvFl7z2Q2G9APg+Je6SbfV6M5WVFrp3t2tU/IJwNpGMCEIT2cteTnCCMYzBF19bhyNcBXqowtC4H8M+txc5QWuxz4umzFhZb9u///bGz0/GBx+Us337xeePBDg44yJXsrUo85IxrF1rvdbw4faXaCkIFyaSEUFoIvdxHxIk/MRPtg5FuIo4SR2o9j9ISOYkdD7HcC+LYnf1ifPaSaVSdu/2RyaD8eMvPX+kr7svedoqqo36i7Zbvdq6VHjKFDF5Vbh8IhkRhCZwgAMc5SgjGYk//rYOR7gKpQYtZ3zuE1jUeQw0DeOrkiXntenQwY65c72oqrIwZMjF54/c3aEbAD+lHr1ou337dMjl1rkpgnC5RDIiCE1gFrOQIGEe82wdinAVWxXwKa+VfwNSI4853M1duW+d12b6dGduusmBuDg9zz9/4fkjdwR3RQL8mRl/0XueOmXE21tsbCdcGZGMCMIViiOOwxxmOMMJpP49QAShpbzpdQ+rzWugxoXfvN+mZ+bU89osXOhNQICMDz8sZ8uW+ueP2EllBDmoiSsruOC9zGYz5eVmunQRk1eFKyOSEUG4QvdyL4DoFRFajXHO/cl0jENeFM6RoD9wyxqE0WysfdxafyQAuRwmTsxDo6l//sgo7w5UmQwkVtTfg7Jzpw6LBQYPVjXL8xCuHiIZEYQrcIxjxBLLUIbSgQ62DkcQagUqvKjxOoZb1mDKAnehKooiTX9mh97gYDnz5nlRXX3h+SMPhVuX+H6dfKjex5cvt05eveEGxyaOXrjaiGREEK7ATGYCMJ/5tg1EEOohl8opCdxOr6y7MHmcIrSqN8s0O2ofv+suZ265xZEjR/T8739F553fx90PpVTG6ryUeq+/e7cWqRSio5XN9hyEq4NIRgThMh3nOAc4wCAGEUqorcMRhAuKDVzA9II3wF7DDfJJvFw4t/axP//0IjBQxscfa9i06fz5I93UnpyqLMNsPn8oJyHBgLu7+BgRrpx4FQnCZRJzRYS2ZL7fy3xb/RuY7HjP9VHGZj8JWOeP7NxpnT8yadL580cmuHXCjIUVeafOu2ZxsZlOncTkVeHKiWREEC5DAgnsZS8DGEAEEbYORxAa5EH3yeyTbUdS7ss6vy/pkDkRsM4f+flnL2pqLAwenF3bftGiSj4Z5QVGyXn1Ro4c0WE2w4ABYohGuHJiZyNBuAz3cA8gekWEtqevQ2dKFMfwyx9MRtAq7HN6Uei7k6lTnVm+vJo//6xi8P9tIsU9g9wHhoBFhizFg50OWXWus3SpdfLqpEli8qpw5UTPiCA00ilOsYtd9KMfkUTaOhxBaDRXuRM1fnEEZY5H63sEdUk3YqsT+e03L1wnZLEzbD+5rvnQOxcA834/ivQ1lOm1tdfYscM6v2ToUNEzIlw5kYwIQiPNYAaA2INGaPMyglYxKvcRLC65xBgHc+PyPym7aw9YAJMEJiYCYIn1A+ru4nvihAEXFwlSqfgYEa6ceBUJQiOkksoOdhBDDN3oZutwBOGKrQ/4gucKPwepkWVjHgDPDJAAMgtEFUKABjLVSPQy/s5KqD0vP99EeLiYvCo0DTFnRBAa4b+6IqJXRGhPeu67BQpLYMocuPY72HsbZHe39o6MS0I2vzeKTHfiFAV8v+gwxYVgNDrj6F7J94sO17mWwk7GwGh/OoW42+jZCG2R6BkRhAbKIIOtbKUXvehBD1uHIwhNwmg285PrOqQuMth6H2R3g4G/QefNIDPDiDRMSj2Kw/4YMJNQXcKeHdaPjvCuOiqrDXW+Ssq17Iq7+I7AgnAukYwIQgP91ysyl7mXaCkIbcdLR7eysTAds8QCZjvYezscHwnd10LfRaDQw4h09Futm0Duc8ghPUkBWIjpB04OdrVfEon1mnqDyXZPSGiTxDCNIDRAFllsZjM96EFvets6HEFoMhKJBJVUhtZsQooEkGA+MRoqvKzJiGMJVEmoWRWBCjuyHCqQFNvj6Gji0Tt71rnW94sOU1ltsM0TEdo0kYwIQgPcwz1YsIheEaHd+b8ew3knagixpflsLcxkS2EGG/PS0WdGQ7UbDPwFbv4UtvjimuVDemAWdrkGOoYpbB260I6IZEQQLiGHHDawgSii6EtfW4cjCE3OTiqjv4c//T38ea5zf+YsiiOxppSs4s6cPBTE0a6z4buHyftrOhCG3k7HkCFqW4cttCNizoggXMK93IsFC9/zva1DEYQWIUVCoMWZUYRwZMCLHHXYiZ1ECXd/D0EHYEQas2aJZERoOiIZEYSLKKCAtaylC10YwABbhyMINhFl1xGNvJCOWZN4wuFvdt01hYjIaluHJbQjl5WMfP3114SEhKBSqejfvz/79u1r0Hl//vknEomEG2644XJuKwgt7r+5IqJXRLjaqaQKEgKX0TfFkwGlemRLgqFgr63DEtqJRicjf/31F08//TSvv/46sbGx9OzZk7Fjx1JQUHDR89LS0nj22WcZMmTIZQcrCC2piCJWsYpIIhnMYFuHIwg2J5VImTq5gL2duuOorcSy9BpY0g+0JbYOTWjjGp2MfPrpp9x3333MnDmTrl27MmfOHBwcHPjppwtXpDSZTNx55528+eabhIWFXVHAgtBSZjELCxbmMMfWoQhCqyGRSOg7LJY9oQEUKsFcuB9+9YN40XsoXL5GJSN6vZ6DBw8yatSoMxeQShk1ahS7d+++4HlvvfUW3t7e3HvvvQ26j06nQ6PR1PkShJZUQgnLWU4EEQxnuK3DEYRWRSqREz3iCCUq64dItUSPZfsDTC6/DZW5zNbhCW1Qo5KRoqIiTCYTPj4+dY77+PiQl5dX7zk7duzgxx9/5Icffmjwfd5//31cXFxqv4KCghoTpiBcsfu4DzNmvuVbW4ciCK2SvdydjDDrpG57k3VvPW9zAtPNYwg3fmXb4IQ2p1lX01RUVHD33Xfzww8/4Onp2eDzXnzxRcrLy2u/MjMzmzFKQairjDKWspQwwhjJSFuHIwitVkj4M4A1Efnv/w4mC9dWzCXndwXHMz7FYjHbLD6h7WhU0TNPT09kMhn5+fl1jufn5+Pr63te+1OnTpGWlsZ1111Xe8xstr4w5XI5CQkJhIeHn3eeUqlEqVQ2JjRBaDL3cz9mzHzDN7YORRBsqqrGcN6uvGczW0LwtgPXsyrA/5eY+FUa8F/zDBnOz2N/Qxxe9t2aN1ihTWtUz4hCoSAmJoaNGzfWHjObzWzcuJEBA86vwdC5c2eOHj1KXFxc7df111/PiBEjiIuLE8MvQqujQcM//EMIIYxlrK3DEQSbUNjJALBYOG9X3rO/qmssHHDzxCg5/xoSwAIEVxhxWjEFqusfyhcEuIxy8E8//TTTp0+nT58+9OvXj9mzZ1NVVcXMmdYdTadNm0ZAQADvv/8+KpWKqKioOue7uroCnHdcEFqDB3kQEya+5mtbhyIINjMw2p9dcTkN2n03UxWNxLLhvONGCaS6KvFWD8AlfQv8FgT9PoCezzRDxEJb1+hk5LbbbqOwsJDXXnuNvLw8oqOjWbNmTe2k1oyMDKRSUdhVaHsqqWQhCwkmmAlMsHU4gmAznULc6RTi3qC2SSUPI8uom4xYgOOeSsImpuCs8IfsTbD+Rtj7LCT+BBPWg6N/M0QutFUSi8VisXUQl6LRaHBxcaG8vBy1WuyHIDSPaUxjAQtYylImM9nW4QhCk1qzI5UTp4oBkEokqJQyPN3s6RzqQbeOHkgk9Yy1NIDZYkTzsx2u+jPH8lUgsUDW2K/o7fvI6YZG2HQXpPyFWaLgH/mnDJ08E293hyt9akIr1tDPb5GMCAJQTTUuuOCLL5mI1VtC+7NmRyrVWgNjB4ViNluo1hpIy9aw72guAT5O3HBtBFLp5SUke9YF0D8tBwuwfcAU/AJmoFwzGb0UVJN2EeR01pzCnG0Y192MXF9IjXNP7K9bDk5i/mB71dDP70YP0whCe/QIj2DEyGxm2zoUQWg2MqkUR3s7AJwdFfh4OOLn5cjf6xI5nlxE905eaPVGth3I4lRGGSazGR8PR4b3DcLrdA/GrrhsTmWU0TPSmz1HctDqTHgGDqGH/C+OXvsiw0Lew2KxsDDsfcacfJHj68axQb6O4TGdCQ1wAf+hfMFKusuXMKzicyp+78Mh1xcYeutTtvzRCDYmJncIV70aaviVX/HHn5u4ydbhCEKLCvZT4+VmT1JGKQArtpyiusbAlFER3DmpK97uDixal0iNzlh7TlmFjoS0Em4YGcGNoyKoKX6RjeFx9A95D4DYE/kUpoxlTZc76VeiwUs2kaUbEynVaAGYOqkrR2U3UjhwJQ4KGFr2NPzVCSrSW/4HILQKIhkRrnqP8zhGjHzKp7YORRBswt1FhaZST3Z+BXlF1UwaHo6vpyNuahXD+gahVMhISi+tbW80mRk3OBRvdwcCfZ259poQktMNVNVYC44cOJ5P3yhf7uj/K//26MSk7GI8vB4k9oS1RpW9ytopb+ffD9m0XIiYBuVJ8GcYHHijxZ+/YHtimEa4qmnR8jM/44svt3GbrcMRBJuwYK0LUlhag8Fo4ts/4+o8bjSZKavQ1X6vdlTg7Kio/d7fyxGLBUrKtchlUqpqDPh7OwFwc78EllW5MC0plu9lTzKSJXVvLpXCiJ+h68OwdhLEvgnJv1pX3KhDm+kZC62NSEaEq9pTPIUBAx/zsa1DEQSbKSnXonZWojeYcLS345axkee1USlkl33964YVs67Sk7szl7ImaRoD/OrZq8ynP9yVD9vvg4Sf4K+O0PMF6PfuZd9XaDvEMI1w1dKj5yd+whtv7uROW4cjCDaRkauhqLSGiGA3fDwcqKoxIJVKcFOr6nzZq+xqz9FU6amsPrOWN7ewConEOtyjVMhwtLcjp6Cy9nGpVE6udCUnXBT03r2AY0XfA3DeYk6pFIb9CFP2g9IT4t6D30OhLKl5fwiCzYlkRLhqPcMz6NHzIR/aOhRBaBEms5mqGgMVVXryi6vYeySXZZuSCQt0oWu4B8F+avy9nPh3UzJp2eWUV+rIKahkR2wWeUVVtdeRy6Ss2ZFKYUk1WfkVbN6XQacO7rUrdfpG+bL/WB4JqSWUlGvZfjCL0hIVsgFLqJaDz57HQZlLWnY5VTUGdHpj3UC9+sBdudD5fqhMh4WdYe/zLfmjElqYqDMiXJX06HHGGRdcKKDA1uEIQrM7t+iZUinDq56iZ3qDiR2x2SSll1KjM+Job0eAjxNDegfi7KioXdrbo5MXe47kotUbCQt0ZfSADqiU1pF/i8XCnsO5HE0qpFprxMNFxeCYQEIDXNiV9S5dNrxColrBIdNmamoUBHg7ceu4zvUHXhQHq8dDTR44BcOEdeB6/jCS0DqJomeCcBFP8RSzmc1c5nIv99o6HEFoM/5LRu6+/vJ34V158mZG71jMlgA7Ro2tRiq9xPRFsxl2PQYnvrV+3/0pGPDJZd9faDkN/fwWwzTCVceIkW/5Fg88RCIiCDYwsfPf/NuzK2MyDSzd4XvpE6RSGPw13BQHDn5w9FPrxnslx5s9VqFliGREuOq8yIvo0PEuYpa+INjKzX2PszTChRtPFrP4YO+GneTRA6ZmQtQTUJUNf3eHXU9Ye06ENk0M0whXFSNGnHHGAQeKKbZ1OIJwVTObjWxao2JwroktQ+9kXMSvDT+55DisHgdVWeDgD+PXgEf35gtWuCximEYQ6vEqr6JFy5u8aetQBOGqJ5XK6TcqjRNu0GfXb+zPnd3wk927wZ2Z0P1pqM6FxT1hxyOil6SNEj0jwlXDjBknnFCipJTSS58gCEKLSClbj2T1GMyA3cStBKuHNu4CZQmwagxUZoC9L4xfDZ7RzRGq0EiiZ0QQzvE6r1NDDa/zuq1DEQThLGGuoykY9gFuOsjfOJxKfV7jLuAaCVPToedzUFMA//SGbQ+KXpI2RPSMCFcFM2acccYOO8oos3U4giDUY1XCrYzcvohtAXJGjq259JLf+pQlweqxUJEKKm8Yv9JaRE2wCdEzIghneZu3qaaal3nZ1qEIgnABEyIXsjw6itGZRpZt97m8i7hGwB0pEP0S6IpgSV/Yeo/oJWnlRM+I0O6ZMaNGjRQpZZQhFTm4ILRqS7a4MSWxjMW9u3NTnyOXfyFNKqwaDZpToPKEsSusG/IJLUb0jAjCae/zPlVU8SIvikREENqAyUML2RAoZ1LcUVYl3HH5F1KHwu3J0Pt10JXAsmtg83TRS9IKiZ4RoV0zY8YFFwDKKRfJiCC0EZX6PBJW+BFSAcmjP6S///+u7IIV6dZekvIkULrD2OXgO7BpghUuSPSMCALwMR9TSSX/438iERGENsRJ4YvHyI2UK8Br63OklW+6sgs6d4DbEqHP26Avh38HwcY7RS9JKyF6RoR2y4wZN9wwYUKDRiQjgtAG7cv5hLD1z5LuDBGTMlErAq/8opUZsHIs/H97dx4XVbk/cPwzC8Ow7/sigoqiKIpLbrnhkmZp2Wpp3qxbWd2yX6XXzEorK2/ZYtm+3FuZmph7Ku6KK+LKIrLJDrKvw8yc3x/oKAIqODCAz5vXvIJznnPO9zzhzJfnPEtRLKgcYMxa8KxnbhNdFeQeBbdBcGlV48vyK8so1VbV2matNMdRbXXr8bUjN/v53YRxU4LQNixlKcUUM5/5IhERhDaqv+crbLrjKCP3rWDf9o6MHNfEIb9Xs/aFh2Lg+GI4+gZsGAb+D8LIX+Hqcx/8PzjzBYzbAL4TDJvzK8uYf3Q9Wql2q4pSJmdh34kiIWkC8Q4ttFvv8A4WWPAWb5k6FEEQbsH4wN/ZGNKTsDQtf+1xMd6Je8+BR1PBPggSV8IvzpB+6XFQ5p6aRARg/4ug0xgOK9VW1UlEALSSvk5riXBzRDIitEuf8ilFFPESL4lWEUFoB+4PPUF4oCOT4wtZfbSH8U5s5QkPnoEBS6C6DDaOgr8nwc7HQaaoKVOSBGeWGe+aQh3iXVpol97mbdSoWcQiU4ciCIKR3Ds0m20+SiZGn2FT7APGPXmvV2oW3nMMhpS/avqVSLpLOyU4+iZU5Br3moKBSEaEdudLvqSAAl7kRdEqIgjtiFyuZOCoC5x0knHHwdUczFhs3AtYusOQr+rfp6uAI28Y93qCgXinFtqd+cxHjZp3edfUoQiCYGTWKnfcRu0iXw1uu+aSWLjNeCfXVsDOaVcez1xN0kHst5RmHSE8KbrBU6SVFhovntuISEaEduUbviGffJ7jOZRisJggtEu+tndSMOwTrKuhcMcYijVpxjnx0TehJPGqxzO1SUBexHTOFmQ2eIr/nTt03f1C/UQyIrQr85iHOeZ8wAemDkUQhGbUz+Mljg2aSlABHNnmh16vvfWTFpy9ZoMM5GZc/qiUIeFXFsPE3FWoFWYMcvPnQf8+jPHuhrPaGgAdEt/E7KOsWoyqaQzxp6PQbvzIj+SRx4u8KFpFBOE2MK7z//iz+Cz3HzvO2t3OTBpReGsnvGsjaEqgNKXmVZJcM418aQqawjikgljMpSomXPyLkR36YNlpsmFekkkdevFVzB5O5WdQoavmQHYio7273fI93i7EDKxCu+GGG4UUUkIJKlSmDkcQhBayZo8z98VeZHVIIFP6xzbLNcKTo9ly4SwW2jJerj5Ah5RfwLkPDP0GnEJAJiOrvJgFxzYA4G1lz/w+45sllrZErE0j3FZ+4RdyyGEmM0UiIgi3mUlDsvjb14x7TsaxIea+ZrlGQVU5ABVKK1RDlsK9B6CqENb0qelrArhb2uJkblWrvHBzRDIitAuv8zpmmPEJn5g6FEEQWphcrmRoWAbRTjIGHwrnQNpCo19DedUIm9LqKnAdAPefBEsPyNoLgE6vp+LSTK1KeT0jcoQGiWREaPN+53eyyGIGM0SriCDcpiyVzriH7SFPDZ573iShcItRz+9v62T4fl/W+ZpvzCzgjiWQuRuyIonKS6VcWw1ARxun+k4jNEAkI0Kb9wqvYIYZn/KpqUMRBMGEfG2GUDTsMyy1UBJxF4WVyUY7d1+XDqgVZgAczEliy4UzVOt14P8AktyMqohH+f38UUP5YR6djXbt24FIRoQ2bTWrySSTaUxDjdrU4QiCYGJ9PV7g+MDpdC2E4xGd0OorjXJetcKMiR2CDT+HJ5/g9UNr+fTsPuKte6EqS8ahJB6AIHt3utq7G+W6twuRjAht2ku8hBIln/GZqUMxmvzKMlJL8w2v/MoyU4ckCG3K2M4/salPX0ak69i4281o5x3lGch4n+6Gn8u0VZwtyOQHl8cBeCT7J7rYufJ0t6HIZTKjXfd2ICZjENqscMJJJ53pTMcSS1OHYxT5lWXMP7q+1vLkSpmchX0n4qi2MmFkgtC23N/7CH+WunJ/TC6rrQKZ0j/uls8pk8m4168XPRw92ZkRz/G8C2glPYUqZ7ItAwgoT+ClgB4olGZGuIPbi0hGhDbrX/wLBQq+4AtTh2I0pdqqWokIgFbSU6qtwhGRjAhCY0wenMGWMkvuORnPept7mdjtL6OcN8DWhQBbF3SSnkptNSqFErNOvrB+KIoDL8LolUa5zu1EPKYR2qR1rOMCF3iYh7HG2tThCILQCsnlSu4My+C4s4yhh9axP+1to55fIZNjZWaOmVwBHkPAygeSw0GrMep1bgciGRHapBd5EQUKlrPc1KEIgtCKWSqd8QzbT44afHa/xbmCDc13sb5vg6SFY/Ob7xrtlEhGhDZnM5tJIYUHeKDdtYrkVpaaOgRBaHd8rAdSOuIr1Dooj5ho1CG/tQTOADNbOCv+SGossTaN0OYEEEAyyRRQgC3t4/ehXKvhp/iDnLhY/1LoIU7ezOw6uKY5WBCEJtmWMJPBu7/nkJuCoeNLUcqvTAewPuUkG1JP1yrvZmHLO33vbvB8x3JT+SvlJBcrS3G1sOG+jiEEJ3wB0Yth2PdIXWawPuUUe7MSqNBVE2DrzKOd+uFm0T7et26GWJtGaJe2sY1EErmP+9pNIlKpq+aTUzsaTEQAoi+m8XXMXnTXdG4VBOHmje70HVv69GdYho6Nu1zq7Pe0tOPDAZMNr9d6hTV4rvPFuXwXu5/B7v680ecuQpy8+ersXtIDXwa5GRxdwN9pMezIiGNq5/7MCRmDuVzJZ6d31kyWJtQikhGh1bh2fo365th4jueQI+dbvjVRlMa3KfUMqaX5AFgpVUzw7cFzQXfyTLehDHUPQCmr+Wd6Kj+D/VmJpgxVENq8+3ofIrybK/cmlLL6UO1ZUuUyGXYqC8PL2qzhiRQj0uPo7ujBWO8gPCztuNevF77WDuzKSQa/yUhlaUQl7mS8bw9CnLzxtnJgRuBACqsqiM670Mx32faIob1Cq1Df/BpQe46NHewggQQmMxl77E0TaBM8yZNISNzFXYQRhgMOhn0anZZ9WQlATc/8V3qG4WVlb9jf29mH3s4+fHZ6FwC7MuIZ6h6ATEyoJAhNNnlwOpvLrbj3ZALrbSYwMWgjADkVJbx2KBwzuRx/G2cm+4U0OL9PYkkeYV5da20LcvCoaeEc9DlS4mr6524gMPRRw34LpYqONs4kluTRz9Wv2e6vLRItI0KrcO38GoUWGewN+IEsy0RKtVUAPMuzyJHzHd+ZKswm2cxmfuRHHuRBnHCiP/15h3c4zGHiirMouzQMsI+zjyEROcMZUkgBoLuDp2HRrfTyQtHJVRBukVyuZMSobI66yhh6aBN7L8yno40zT3QZyIs9hvNop37kVZbx0cltVF5a+O5axZpKbK9pObE1U1OkqQRLV4pchzCkcBe2VTm1y6gulRFqEcmI0Cql258mxjOCNX3m8Q/1o3zP98QTz93cjSOOpg6vUfrRD/mlf2oSEkc4wju8wwAGMMguiM1BH7Gjy5fs91jJwzxMF7rQ49JXOOFISPhdtQJoaXWVqW5FENoNtdIe31GHyLaEDnsWoZQOEurii7eVA90dPHmhx3DKtdUczUtt0vmL+ixEIWlRHXrFyJG3TyIZEVopGVwa57VLsZ2ZzARgFrNMGFPT9KEPMmo/VtFR04GtVF7CBadoEtz28z+br0gjjbGMZRGLCCGE+7gPL7z4W3llbgS1QjxdFQRj8LLuR8WIrzHXgWbn/eRXJhj2WSpVuFnYkFtRUu+xtio1xdW1WziKqyuxU9W0lli59OGI7SDM0reCtvxKGc2VMsIVIhkRWqWrP7x1Mp1h29hLXwc5aKrQbooGDZvYxAu8wP/4nyH5qEMCJBlB6aN55uDPbNJs43M+Zx7z2Mte/st/yZPy+Mn3bVb2eRW93UXcLdvHKCJBaA1CXJ/m1JBnCCiGU9sDDav8Vuqqya0sxU5lUe9x/jbOxBZm1doWU5CFv40zAM5qKyJdJ6KUquHgqwBUaKtJKskzlBGuEMmI0DrVM/uNdGnjdrYzkIH8zd8tHFT9iinmV37lCZ4gmGBssMEccyYwgS/4gkTqHwGjQIGnzJM3L3zHkMQn0OgkPj61g5iCLCRJQifpCcq7k1lHf6bDxVAKLTP4LvhF7pPdRymi34ggGEuY/1f8GDSaoRl61u9043xxLsvP7kWOjH4uHQD4Me4A4UnRhmNGeQVypiCTbWkxZJUXsT7lJCml+Qz37ALULKrXvdN4Yq26Ux7/G+kl+fwYH4m9uQUhzj6muM1WTbT3Cq1Uw6NF9OgZwQgGMKAF46mRQQZrWcsOdnCSk1zgApVcaapVocIDD4Zd+prMZAIIwBFHCimsda5RjOI3fkPhZsH7mX9TqKkgs7yIpad3oFYo0UmSYT6CsTGzMXcoYXv3z/iLv3DEkX/zb97kTUN/FEEQms7c7k2Wdcnlhfho/mN2L7YuHzInZAw2lx6p5FeV12qxDbB1YWbgYP5KOcHa5BO4WtjwbNDQWqPhxnp346Dv/XSNeYdvDnyM5DmCF7uPEJMX1kPMwCq0Cqml+bx7fIvh5xj3Hezt/H2tMnLkSEgsYAFv8AYKmvcfdAwxrGUte9jDGc6QRRbVXOlZb4kl3njTm96MZCSTmIQrrvWeK4wwIogw3MNCFjKXuYZEIruimGVn9pBdUVzv8f42zjwbdCe2KjV/8idP8RQFFOCEEz/xE3fT8CyRQvuQW1HC2YIsSqorMZMr8LKyx9PSrsGhp0Lj6fVa/t5mzejUKjYOGsu93bfc+KAbnxR+tAQzO5iWfevna2Nu9vNbtIwIrZJMqt0yokSJLbasZCWjGGXUa+nRE0kkG9jAAQ4QRxx55NXq52GLLUEE0Ze+jGEME5iAFTf/IRBKKBFEYIcdq1hV5x7cLGxZ0Gc80RfT2Jd9npyKEuSAl5UDQz0C6GbvgfzS3CL3cz+Tmcw85rGEJUxkIj3pyRrWEECAUepEaD20eh1rk0+wLT22zj4Z8K8eI+nm4N7ygbVDNUN+sziy0ZHhh/9mr82/Ger73q2eFDpNhbgfIHUT+I43TrDtTJNaRpYtW8ZHH31EVlYWvXr14vPPP6d///71lv3222/55ZdfOH26Zs7/0NBQ3nvvvQbL10e0jLRvOknP5tQzrE89ZdgW67aLPV1qZlmVSTIGyQaxkpV44nlL19KgYStb2cxmDnOY85ynkEJDfxQZMhxxpDOduYM7GM94RjAC5S3m7Sc5ycd8zLu8ixdet3SuqxVTzMM8zGY2I0PGFKbwC7+gRvTWbw+q9Tq+PLuHswWZDZYxlyt4sccIOtnV3yonNF5mWRRFG0Kx0kLZuFV0dZpyayfUFMNPDmDfBR6MMU6QbUSzrU3zxx9/MHv2bBYsWEBUVBS9evVi7Nix5OTk1Ft+165dPPLII+zcuZPIyEh8fHwYM2YM6enpjb200A5Vaqv59NTOWokIQJnqouH7u/IfY4e0s9GJyOWOpdOZXqtj6UQm8iVfcpzjqFEzghHMZz5HOIIWLXnkEUkkn/AJoxl9y4kIQE968hM/GTURgZoWm01s4gQn6ExnVrEKe+xZzGKjXkcwjTVJx2slIl3sXBnt1Y2Brh2xUqoAqLqUsJRWi4m0jMXDqg+akT+i1EP1jgfIq4y7tROqbMFzJBTGQsHtlYzcrEa3jAwYMIB+/frxxRdfAKDX6/Hx8eGFF15gzpw5Nzxep9Ph4ODAF198wbRp027qmqJlpH2SJIllZ3dzKj/DsM3Z3AoHtRWf+czmgv0phsU9TWDuMCb49uCeDj0bPFcGGYQTzk52coITpJFWb8fSYIIZznAmMaldPtL4lV95jucophg33Pgv/2U0o00dltAEpdVVzDm8lmq9DqVMzr+CR9LlqtaPKp2WZWd2E1dU0w9hsl8I43yCTBVuuxSR+BwDdn1FlIucQRPKaq3y22iF52BlF/AYDhN3Gi3G1q5Z+oxoNBqOHTvG3LlzDdvkcjlhYWFERkbe1DnKy8uprq7G0bHhWTSrqqqoqroyy2Rxcf2d+oS2LaE415CIWCrNeKrrELrZu5Mjy+FNKYHppbNQ5w5GQuLvC2cZ6RmItZk5ZznLWtayl70NdiztQAd605tRjGISk3DGdOP6jbY0ueOVVhVJkupdmnyqxVQe4RFe4RU+53PGMIZQQlnDGnzxbbZ7FIzvSG6KYTTVnR6dDYmIhIQMGeYKJY917s/8o+sBOJB9XiQjRjbK/0vCS05xz+F9bNzhzD1htzCk3r4zOPSAzN1QWQBqhxsfcxtp1GOavLw8dDodbm5utba7ubmRlZXVwFG1vf7663h6ehIW1vDSzO+//z52dnaGl4+PGJPdHu3JPGf4/gH/UIIcPJDJZCxhCUqZkv/YvI27XzmH/H5nTfDb+Mi9UKCgO92Zxzy2sIUiiggiiCd5klWsouzSVyyx/M7vzGSmSRORy4yyNHlZoaHM9ZYmlyPnEz4hhxxGMYpjHMMPPx7jMTRoWuBuBWO4eubPECdvAEoowQEHZjCDCipwtbDB+9JQ0pyKUtrA4Mg2Z3KvvYQHeXJPYhmrI/1u7WQDPwEkiPyXMUJrV1p0goLFixezYsUKwsPDUasbbu6aO3cuRUVFhteFC2K55fYouaSmX4iZXGGYWOgAB1jKUpxwwhdf3vaZyQmfDWTZxlEtaelPf17iJbaxjWqqKaKIaKL5ju+YwhQssTTlLTXIKEuTZ8QDNa0iEemxN1ya3BFHtrOdIxyhIx35lV+xw46lLG3u2xWMQH7Vysxa6crILgmJX/gFP/x4kicpoyZpEQs5N58pg9PZ6Kdm0ukU/jp9C489vcPAwh3O/wF6rfECbAcalYw4OzujUCjIzq49Vjo7Oxt39+sPLVuyZAmLFy9m69at9OzZ8LN/AHNzc2xtbWu9hPbn8iq95nKlYRKgSCKRkOhOd17gBV6vnsfkqEXM3PcLH8WvM3QsDSPMKB1LW8rlpcnnHfmL72P3k19Z1mDZxJI8utrX/vcU5OBBYkkeAHmVZRRXV9LtqjJXL01+rb705Tzn+Y7vUKLkZV7GG2/2sMdIdyc0h6snzzqUkwyADTY8wiP44ksQQfwg/cCHIY+yp9N3uFtZIRMZSbMZPTKXQ64yRhzZzq6UV5t+ot5vgF4Dx981XnDtQKOSEZVKRWhoKBEREYZter2eiIgIBg4c2OBxH374IQsXLmTLli307du36dEK7Yqjec08HaXaKkMrySu8QgUVbGADi1nM+LzpuJR1RI7cUL6tMerS5EBxdUXNtmsW27rR0uRP8iQFFPAMz5BJJsMYxiAGkUFGg8cIphPq7Iul0gyoSUb2ZSUgSRKjGEUyyXxauZyHzs/DotqWWI+dvBsyhVd5FT16E0fePqmU1nQaHU26FXTeu4SzeSuadqKgZ0FpBac+NW6AbVyjH9PMnj2bb7/9lp9//pmYmBieffZZysrKmDFjBgDTpk2r1cH1gw8+YP78+fzwww/4+fmRlZVFVlYWpaVibY3b3UC3jobvVyVGodHVNFuaUfMGXFBVzqbUM/WWb0t6OHoadWnyW6FEyVd8RSaZDGUokUTigw8zmYkW0WzcmqgUSsZ6dzf8/N9zh3nr2EYunrcDYOrFf2GXGcRjh5cxMfFFbLBlCUuwwYZ3eVckJc3AzbIn2pE/IwP0Ox8hp/zMDY+pQy6Hrk+CpgAS/jB6jG1Vo5ORhx56iCVLlvDmm28SEhJCdHQ0W7ZsMXRqTU1NJTPzyrj4r776Co1Gw5QpU/Dw8DC8lixZYry7ENqkfi5+hhaAhOJc3jq2kS0XzhKVd4E/k47zTtQmCjQ1S293sXPF17rhEVhtya0uTW5rVrOKaPE1rSCNWZrcFVf2sId97MMLL77ne+yw4yu+auztCM1orHc3hnt0NvycVVHMscwskOC051YKLTJwMrfiO49FXJTl8QmfoEDBG7yBAw4sY5kJo2+fgp2nETf4RfxKIG57TzTaJvxh3f8DkCngyNwbl71NNKkD6/PPP09KSgpVVVUcOnSIAQOuLFi2a9cufvrpJ8PPycnJSJJU5/XWW2/dauxCG2euUPJc0J2YK2r6flysKiM8OZqvY/ayNS2Gcm3NyA9ntRVPBg4yZahGZYylyW3N1LXKNHVp8sEMJpVUw4fWczxHBzoQyc0N1Real0wm4+GAvvyz21A629YM7c23TLu0jqRERMgSZvYOwdXCBoCXeIlCCnmLt6immud5Hldc+ZVfTXcT7dCIjp+yve+dDMrW8/euJsx8q1SD791QkgQ5R4wfYBsklvsUTKqjrTOv9xpDV3u3OvsUMjn9XTrweq8x2Ju3zlEyN2N1YhTxhdnkVZYabWnyUV5d2XThNCcuppFeVnjLS5M/x3MUUcQMZpBGGoMYxHCGk0fdDrFCy5LJZPRx9uH/eoWxuP8kQoPMQQJkUKDM5X6zSZRxpUO0HDkLWEAxxbzMyxRRxGM8hg8+bGSj6W6knZnUczfh3b2YmFjB6sgmzOEzuGbiUPa/YNzA2iixaq/QamSVFxNTmEWVrhprM3N6Onph20DrQVvybcw+zhXnUlZdhbWZOZ1sXZjk1wuXS3/N/ufkdpzMrXgi8Eon8JpJz05wsbLshpOelWs1dLJz4dGAfrhZ3vq/j3TSmcIUDnIQBQr+yT/5nM8NKwwLpvUP/sF/+a+hj48CBWMZy1/8Ve8Is0oqmcUsfuZndOjoRCd+5EeGMKSlQ2+XNmyz4K7kStbfMYJJwTsad/CafpB3FB7LBMv2udjhzX5+i2REEIR67WQnj/EYGWRgjTVf8AXTmW7qsG57XelKHLXXSpEh45/8ky/5Ehn1D+8tppgneZI1rEGPnmCC+YVfCCGkBaJuvzTaUg5vsqVXnsTRkf9ihN/Smz84+yD8NRA63gej/2y2GE2p2RbKEwTh9jCCEaSTzn/4D1q0PMETBBBAFFGmDu22VUIJ8cTX2S4hsZzlfMRHDR5riy2rWEUmmYxjHKc5TW96cwd3kEBCc4bdrqmU1nQOiybVGgL3fcrpvN9u/mC3O8C6AySvA+3tPTuyaBkRBOGGNGiYwQx+53ckJEYzmpWsxB57U4fWpsUX5bA17SyppQUUaSp4ttvQ6/b72c1uhjP8uudcy1psM7qxLS2GIk0F3tYOPBwQSsdrOjenkMJjPMY+9gEwkpH8l/82enVsocbpvN9w3DKVQhU43X0CN8vrT+5pEP8/2PU4BM+Ggf9p3iBNQLSMCK1CpbaaP84fY+7htTy//w8+iN5qmOCsIXGF2SyK2sysfSt448g6DmQn1imzMyOefx/+i1n7VvB+9N8k1TPzqGA8KlT8yq8kkUQooWxjGy648AqviPksboFGp8XbyoFHAm5uMsid1XuRSdc8hpFALtW8lVtjTXRxIqsTo5jg24N5ve/C28qez07vrDMUvAMd2MteTnOaPvRhBzvwxpt7uZd88o1yf7eTHs6PEj9kNj6lcG57yM0P+e3yGKjsIOab5g2wlRPJiNCsfjl3iJjCLGYEDuLNPuMJcnDnk1M7KKgqr7d8XmUpX5zZRaC9G2/0uYtRXoH8N/4QZwquzBJ6JDflpt5sBePrQAeOcpTNbMYRRz7mYxxx5A/E5E1N0cPRk0l+veh9k6Ogtmh2ISHV6qhqplNzV/Y/OMQhCihAlRjEEPcABrsH4Gllx9RO/VHJlRzIPl/vObvTnWMc4xCHCCSQdazDBRemMpVy6v93KtRvuN9/iOg3goHZElt3NmLIb/cXQFsKZ79uvuBaOZGMCM1Go9NyPO8C93cMoYudK64WNkzs0BNXC2t2X7Vi79V2Z57DWW3NA/598LC0Y4RnIH2cfdiefqXD3vb02Ea92QrGN45xZJPNIhZRQQUP8zBd6cppTps6tHZNWW5Dx6quvMqrbGc74xiHVqGhQ9Jw+tMf9DJSS/JrrVskl8noau9OYvH1Ww/7058YYtjGNnzw4Td+ww47nuVZsdpzI0wK3kF4D1/uTqpg9X7vmzsodAHIVRD1TvMG14qJZERoNnpJQo+EUqaotd1MruR8cW69xyQWN7BI3KU3Uq1e1+Q3W8H45jGPAgq4n/uJJ55ggrmbuylFLPfQHEak/INluat5j/cYxSimMQ1JpifVKgaNTktpdRV6JGzqW7eo+uZaDsMII5lkVrMaZ5xZznJssWUuc8UjuZs0ZWAK6/0tmHw2nbUnh934ALkSOk6B8gxIb+Tw4HZCJCNCs1ErzfC3cWbThdMUVpWjl/QczEkisTiPIk1FvccUV1fWuwBcpa7aaG+2gnFZYslqVhNHHMEEs5GNOOLIPOaJD69m9gAPoNArSbdvwhopN3A/95NJJt/xHVZYsZjF2GLLYhYb7f9rfmUZqaX5tV7XW9G6LRk7PIcDbnLCju5hZ9K/bnzA4M8AGUS+3OyxtUYiGRGa1T8CByJJ8Prhtcza9wc70+Po59KhwbkQhLarM505ycma0RzY8h7v4YIL4YSbOrR2w9ZMXatvlBIlnpqOpNufQqVQYm1mjhwZJfWtW2R2c+sWXetJnuQiF1nCEmTImMtcnHDia26tf0N+ZRnzj67n3eNbar3mH13fLhISldKawLCTpNhA132fcTL35+sfoHYC9yGQfxKKk1omyFZEJCNCs3KxsOH/eoXx2aAHWTxgEnN7j0Mn6XFWW9db/to3W6h5I1UrzJrtzVYwrnu5lxxymM98SijhPu4jmOA6E3UJjedvW3fdom6FA8m1SSSNNJRyBb42jsQUZhv26yWJ2MIs/G0bt27RtV7hFYooYj7zqaSSZ3gGN9yu23k5l1zmM7/ex3al2iq0Ut0WFq2kp1RbdUuxthault2RjfgdvQzMdj5BdvnJ6x8w+Mua/+57tvmDa2VEMiK0CHOFEjuVBWXVGs4WZNLLqf6OXfW92cZc9UbanG+2gvHIkfMO75BPPhOZyGlO041u3Md9YoTGVSp11VwoLeBCaQEAeVVlXCgtMLQMhCdF82PcAUP5YR6dyass5c+k42SVF7ErIx7HC72QZBLfUDM0NMyrK/uyEojMTiSzvIjfEo6g0WsZ5OZ/y/Fe/v9aQgkv8iIFFPAwD+OLL5vZXKf8fOaziEW8yIu3fO22Ksj5Yc4N/T+8yiBh2w2G/Dr1ALsukL4NNLdXvyuRjAjN6kxBBqfzM8irLOVsQSYfn9qOu6Utgy+9Md7Mm+2x3FTCvAINZZrzzVYwLmusWcc6TnOaQAIJJxwHHFjIQlOH1iqklOSz6PhmFh2v+SBflRjFouObWZdS8xd0kaaC/KuGwTurrXm++3BiCrJYGLWZbemxzPK9BwUKNrABgH4uHZji35t1KSdZFLWZC2UFvNh9hFHXeVKi5FM+pZhipjOdDDIYz3i60IX97AfgPOf5ju8A+JEfWclKo12/rRne4SN29gtjQI7Eth0u1y98x0cg6eHg7JYJrpUQM7AKzepobgrhyScorCrHUqmij7MPk/x6YaFUAfBTXCQXq8p4pWeY4Zi4wmxWJUaRWV6EvbklE3x71Ek0dmbEsTUthmJNZc0Mk/6hdBQtI63eSlbyT/5JIYW44MLP/Mxd3GXqsNq8znQmjTQqqL9jeHMrpJB/8A/WshYJiV70wgsvtrIVLVpkyLDCilOcwg8/AFJL83n3+JZ6zzev9zh8rR1b8A5axupIP6acSmF1d0+mDE5vuOAvrlBdAjPKQN622wzEQnmCILRKevTMYQ6f8AlatPSmN3/yJx3paOrQ2qxneZblLOc0p+lOd5PFkUUW05jGNrbV2adAQV/6so99KFGSUnKR96L/rvc87TUZAVi/3YoJieX8NWAwk3vtq7/QiY/g0Gsw4APo9VrLBmhkYjp4QRBaJTlyPuRDcsllLGM5znECCOARHqESMTy7KZ7iKYBbHuFyq9xxZytbCSOszj4dOg5zmLd5m5yKEn6Mi2zwPIdykmkDfyc3yV0jL7LPQ86YY/uJSHyu/kLBr4BCDSeWtGxwJiSSEUEQTMIee7awxZCMrGAF9thfd+VZoX596IMKFVvZaupQOMIRtrO93n0SEu9K7/Ji4lIyK4obPMf29Fg2pLbP2XyVcjVBo8+SaAPd93/FiZzv6xaSy6Hz41CZCynrWj5IExDJiCAIJhVCCOc4x8/8jAoVr/EaHngQQYSpQ2tTAgnkPKZfEmEOc647j5CExOquCylT5eFkbslE32Ce7z6MJ7rcQU9HL0O5DamnSC1tnwv2OasDMRu5Cq0MzHfOJLMsqm6hOz4GmRwOvtryAZqASEYEQWgVpjGNQgp5gRfIJZcwwhjAANJIM3VobcIEJqBFyx72mCyGKqrYxz4krvOIRQY6RTV/9H2Nzn2KGd+hO8GOXgx082dW92FM9A02FN2VUf8aVu1BV6cpJA59HY9ySN7el0ptYe0CKmvwGg1F8XCxfbYSXU0kI4IgtBpy5HzGZ2SRxQhGcJjDdKADT/CEWKztBp7hGQC+p55m/xZijjkZZBBPPGc5ywlOcJSjHOQge9nL+9k/MP7UHPok30ewpg//UE6nN735gR/QoQMgzLsr5oqaVYmPX0w12b20hDs7LGZX/7H0y5HYGeGOXq+tXWDIVzX/3d9A35J2RIymEQSh1TrCER7kQZJJxgILPuRDnud5U4fValljjRNOpJBi6lDqtfL8MSIyambifbXnaHLtEpjLXHazG3PM6U9/FCiozrHHIas77kVdWT7kURSy9v1386qD/jxwMok/g9y5f0hm7Z2re0H+KZiWWzNlfBsjRtMIgtDm9aMfSSTxDd8gR84LvIAPPuyjgSGRt7lggrnAhVa7QKFaaWb4PqeyhIEMZDvb+YAP+D/+D1ts2SftY7/rWjb0fJfvhjyOG64MYQhzmctRjpow+ubzwB2JrAuwYvLZLMKjB9XeOehTQIL97XsWW5GMCILQ6j3FUxRSyFM8RQYZDL30lUXWjQ++jUxmMhJSq12cMMje3fD9jvQ4dJIeJUpe4zUWsYgNbGBvbjz3H1tMn+TJdC4LQSFTcIADLGYx/eiHAgXuuDOKUbzDO8QQY8I7Mp7xI/LY6ylnTFQk284/fWWH53Cw9IKkVXD1YxxtOVS3nynjRTIiCEKboETJN3xDOukMZjD72IcXXjzDM2jR3vgEt4GZzATgf/zPxJHUL8DWBS9LewAulBXw1dk9ZJQVAlCl07IrI55fzx3GqdyHvhemEF69kWyy0aLlIAd5jdcYwACqqWYnO1nAAoIIQokSb7y5i7v4D/8hlbbX10QpVxMcFsd5W+i5/1uic765srPPfNBXw7G3oTQNDr0Ov7jB3/eYLmAjE31GBEFok/axj0d4hDTSsMKKpSw1fBjfzhxwQIWKbLJvXNgEEopy+OTUjlor9tqYqanQampt6+Psw9NdhyCT1T9MWI+eXexiLWs5wAESSKCIIsN+M8zwwosQQhjDGO7nflxxbb4bM5LYi2uw3HI/FUqwnnAYL+t+NTu+t7zUMnKpjiQdVU6hZI+9MreMtdIcR7VVywd9HWI6eEEQbguf8zmv8zoVVOCHHytZST/6mToskxnDGLaxjQoqUKM2dTj1OlOQwbcx+6nQVde7v79LB6Z1uQMzuaJR59WgYQtbWM96DnGIRBIpo8ywX40aH3wIJZRxjGMyk7Gl9X2m7E2dR3DEe8Q5yAjp+Svmp5dDVt0h22etevCp71zDz0qZnIV9J7aqhEQkI4Ig3DY0aHiap/mFX5CQGMEIVrISZ26/xRO/53tmMpOv+ZqnefrGB5hIuVbDwewkDucmU1hVgZlCQSdbF4Z5dMbPxnijRsop5y/+YjObOcIRUkiptaCgJZb44Ud/+jOBCdzN3a0iidt0cix3HdyKDJCQI7umU7IERFv3ZbnPy7W2t7Z1fUQyIgjCbSeNNO7jPo5wBAUKnuM5lrIU+W3UPa6SSiywYBSjGpyW/XaXTz5rWMPf/E0UUaSTThVVhv022BBAAHdwB/dwD6MZjRJlywapryb/V2scK+qfX0eHnCO2A/nRq/YcJG01Gbl9/oUKgtDueePNYQ6zne244MLnfI499q22Q2dzUKPGHXeOcczUobRajjgyk5msYhXnOU8llaSTzmd8xt3cjQMOnOY0y1nOeMZjhhkOONCf/sxmNvvY1/zDp+VmOD5SRKp1/UmQhAyN3Lx5Y2hBIhkRBKHdGcUoMsnkQz5Eg4bHeZwudOEkJ00dWosYxCAKKSSPPFOH0mZ44skLvMB61pNCCtVUk0AC7/M+YxiDBRZEEcUnfMJQhqJEiQsuDGUo85hHFPWsL9ME29h2ZV0mpRrPh4pJsJUhQZ1J9ttTMiIe0wiC0K5VUskMZvAHfyAhMZaxhhWC26u/+ItJTOJ93mcOc1r02gVV5axJiuZMQQYavQ4XtTXTu9xx3X4gcYXZrEqMIrO8CAdzS8b79mCQm3+tMjsz4tmWFkORpgJvawceDgilo03L9wk6yUlWs5o97OEsZ8kjz7AWjxw5rrjSne4MZzgP8ACBBDbq/L74coELvMEbvMVbKFCQX5lAQXhnOpaADBkyJPTI2Ox0L+tcH6h1fFt9TCOSEUEQbgtJJHE/93Oc4yhR8jIvs5jF7bI/iR49ZpjRj34c5GCLXbesWsO7xzfTxd6NYR6dsDFTk1NRgovaGhcLm3qPyass5e1jG7nTozND3AOILcxi5fkonu8xjO4OngAcyU3hp7hIHu3Uj442zkRkxBKVl8rboROxVZm2s6kePYc4xBrWsI99xBNPPldWG1aixB13etKTUYziQR7EG+96z3WRi7U6XY9mNCtYgSOOnCvYgNXGiThXgNmlT+2/nKew2WVyrXP8s9tQ+jj7GP9Gm0j0GREEQbhKRzoSRRQb2YgDDnzERzjhxEpWNnhMAQXsZW8LRmkccuT44MMpTrXodf9OO4uDuSVPdLmDjjbOOKutCXLwaDARAdideQ5ntTUP+PfBw9KOEZ6B9HH2YXt6nKHM9vRYhrgHMNg9AE8rO6Z26o9KruRA9vmWuK3rkiNnIAP5iI+IJJKLXESLlq1s5Xmepyc9KaaYTWziFV7BBx/MMccff+7jPr7ma8PjtGv7+exgByGEEE00nR3uJnrga1QooVQJMqBzeWydeH6OP0j6pYnk2hKRjAiCcFsZz3hyyOFt3qacch7iIbrRrd5pxZ/gCYYxrE2uhTOCEZRTThJJLXbNkxfT6GDtyNcxe/m/g3+yKGozezMTrntMYnEeXa+aJh4gyMGDxOKaD2itXkdqST7driojl8noau9uKNPaKFAwmtF8zucc4xhFFFFFFWtZy5M8SSCB5JBDOOE8wzO44IIFFjzKo8i4MsmbDh0ZZDCAAfws/cz+/MF80ak3ah1csAQPqZRH/EMZ6RmInVlNC1GlrprlZ/egl1rn+kQNEcmIIAi3pTd5kwIKmMxk4ogjiCDu5V5KqVnvI4II1rEOgGlMo5zyOufIrywjtTTf8MqvLKtTxlQuz0a7nOUtds3cylJ2Z57D1cKGF3uM4E6PzvyReIzI7MQGjymurqzzqMVWpaZSV41Gp6W0ugo9Ejb1lCmqrmyW+2gOKlTcy718x3ec5CSllFJCCf/jf0xlKh3oQAEFhv4nl+nQoUHDE7InWOP1KUmyl/gh0BOfcki1SGa4IpeHAkJ5p+9EfKwcAMipLOVUfoYpbrPJWnjgtCAIQuthiSVrWEMccUxhCutYhyOOvMZr/MmfKFCgQ0cKKbzBG3zMx4Zj8yvLmH90fa0pzFvTDJiDGYwSJZvZzAd80CLXlIAO1o5M9gsBwNfakYzyQnZnnmPgNR1SBbDGmqmXvgDccCOHnAbLx3ruIN5tD5rqGZibr2PqiWwuRj6B0+QE1Eoz7vXryRdndgNwMCeJXk71901pjUTLiCAIt71AAjnFKdawBmuseZd3iSUWHTqgppPiUpZygAOGY0q1VbUSEQCtpKdUW0Vr0YlOxBF344JGYqdS42FpV2ubh4UdBVV1W5UuszVTU6yp3cJRrKlErTBDpVBibWaOHBkl9ZS5/GiiPcgks95E5OrJ1pRaNRbVduw3j2BG/2yiXMAx9zy7k2cDEGTvYShbWFVR51ytmUhGBEEQLpnMZM5xDnPqzt8gR840plFBBRVaDQcaePSQ14oe1YxjHBo0HOVoi1wvwNaF7IriWtuyK4pxNG+4pcjf1pnYwqxa22IKs/C3rRlVopQr8LVxJKbwysJ/ekki9qoy7cHl/0dy5IZ+I+648ziP8xu/Mf/MH/wj8numHvmM49WnyZPlUXDX75xwt6Or08MAlFz12Eopb1sf720rWkEQhGa2kIVo0dbZrkNHEkn8X/UcFkZtZmdGfL3Hfxuzj8M5yc0c5c25vDbNF9qvWqRvS5hXVxJL8tiUeoacihIO5ySzNyuB4Z6dDWXCk6L5Me5KC9Mwj87kVZbyZ9JxssqL2JURz7HcVMK8Amudd19WApHZiWSWF/FbwhE0em2duUjaMgUKnHHmbu7mcz4njjgyyOAHfuARHqGX5ZU63JuVgBNOjFM/TMg9hbjZ9AdgT9aVzsJtLVET84wIgiBcEkssPehheDxTLwkmnXgb15JOAHha2mEuV3KhrMDw2EaOjH8Fj6gzSsQULCQLVJV2PHz0Sn+X5uzbcvJiOuHJ0eRUlOCstibMqytDPToZ9v8UF8nFqjJe6Rlm2Hb1pGf25pZMqHfSszi2psVQrKmsmfTMP5SObewD91bkVpTwxtH1AChkcqZ26scdbh1RyOToJD2R2Un8lnAEnaRHBizqdw/OamvTBo2Y9EwQBKHRFrGI+cyvtU2BAjly9OjRSTqQgUwvZ9bZr/i3/0OGPhLlWg2rEqMMj2862jgxJ2Rsi9/DtYJ1IZyRn+LJfT/XmuCttc3UKdzY7wlH2ZV5pUXOTmWBh6UtGWVFFF/1iGakZyAPBYSaIsQ6bvbzW4ymEQRBuOQ1XmMUoyi69FVMseH7QqmQnXmnSbU+S6l5Hsu7z0Ili2M+87HHHkulisc7DyC55CIZ5UUklVzkQmkBPtYOzRKrFi0SEmaYXbdcmHYcp81PkG5/Gp/Cns0Si9AyHgzoQ5WumsicmrljijQVFGlqd1Qd5ObPFP/epgjvlohkRBAE4RIVKgYysN59BZpy5sSuZTDgb2+PNvg47/M+3/M9IxnJAzyAh8wDF69K0s5pkaMksSSv2ZKR+cxnOctZxjIe4ZFak2VdVqGtplvGCPD7gHi3PbWSkZyKEtEy0sYoZHKmd7mD/q5+7MyI53RBBnpJQi6TEezoxXCPznSzd0cmq/u70NqJZEQQBOEmaPVXhvHaK234J/OYwQwmMIF1rCOc8Jqd7oAbyCQ5v2KFGy544UVHOtKVroQQQj/61VqDpCmiiKKQQqYyld/5na/5Gk88DftzK0pYenoneZWlmPmoybSrPXX4d7H7qdJpGewecEtxCC1LJpMR5OBBkIMHeklPlU6HuUKBXNa2x6OIZEQQBOEm2KnUhs6C8YU5VOt1eMo9Oc5xqqiikkpOcIIPc38kRoqlRJ2LwqqSHHJIJrnOGjcyZFhggR12uOOOL750pjPBBBNKKN3odt1F/K6e5n0zm+lKVz7jM6YznUqtlk8vJSIATqV+ZNnF0sHGjsyyUjR6HRLw33OHsFWpCXb0apY6E5qXXCbHQtm2k5DLRDIiCIJwE1QKJX2cfTiSm0Kptor1KaeY7NcLmUyG+aUv98JAvGPH4MVorJXmLB4wCTMUAJRRxjGOcZzjnOUs5zlPOunkkssZznCc43WuaYYZNtjgjDNeeOGPP0EEEUIIaaQZyunQUUIJM5jBr/zK9Nw55F5KRDws7XhJ/RRzZK8wIETNYO0Y1iRHszvzHBKwNvkEPRw822TTvtB+iNE0giAINympOI8PTmw1rB7S2daVgW4dsVCacTI/g0M5SegvvaVO8O3BPR1uvsOoHj3nOMdRjnKKU8QTTyqpZJFFIYVUUIGeGy9+JpNkyCUFvVMmE5I2kXdC78HJ0gJ77Hmbt3mVV5EkicXRf5NcWrPU/Wu9RhNg69Lo+hCMq6CqnDVJ0ZwpyECj1+GitmZ6lzvws3Fq8Jirh0U7mFsyvt5h0fFsS4uhSFNRMyw6IJSONi0zLFoM7RUEQWgGEemxrEyMum6ZHg4ePBc0DIWRZ8HMJ59jHGMjG/mUT29YXqaX003elQ504BSnsMKKWGr6juzOPMdvCUcAeMC/D2FeXY0aq9A4ZdUa3j2+mS72bgzz6ISNmZqcihJc1Na4WNjUe0xeZSlvH9vInR6dGeIeQGxhFivPR/F8j2F0d6jpP3QkN4Wf4iJ5tFM/Oto4E5ERS1ReKm+HTqyzQGFzEEN7BUEQmsEor67YqSz4K+UkORUltfZZKMwY5tGZezr0NHoiAuCII6MZTQUV9SYjSpRo0aLUmWNX7kGvyv50d3EjlVT06EkjDQkJGTKslCrDcVd3zhVM4++0sziYW/JElzsM2240adnuzHM4q615wL8PUPNILqEol+3pcYZkZHt6LEPcAwwdlad26s/p/AwOZJ9nnE/3ZrqbxhPJiCAIQiP1delAH2df4ouySSnJRyfpcVZb08vJG3NF87+tppBi+P7yysJq1ExhCo/qp7L+YD46PagVZnzoOBlzhdKQhFx2uiDT8L2TuWWzxyxc38mLaQQ5ePB1zF7OFeVgr7JkmEfnWrPXXiuxOK/OLL9BDh6GljutXkdqST53eQcZ9stlMrrau5NYnNc8N9JEIhkRBEFogstv6qaY8j2DDKBmRM5IRjKd6UxiElZYgRxyXQ6yPzuRSl014cnRPOQfWquDakJRLocuTZxloTCjZxtaar69yq0sZXfmOcK8u3KXT3eSS/L5I/EYSrmcgQ2swVNcXVnnUYutSk2lrhqNTku5VoMeCZt6ymRds6ChqYlkRBAEoY2ZxjT88ONe7sWdusnQSK9ADmQnISGxMyOe5JKLDHILwEqp4nRBBodykg0dbe/06NwirTnC9UlAB2tHJvuFAOBr7UhGeSG7M881mIy0J+I3UBAEoY3pdumrId5WDkzt1I//JRwGIKnkIkklF+uex96dezoEN1ucws2zU6kN6xxd5mFhx/G8Cw0eY2umplhTWWtbsaYStcIMlUKJXCZDjoySesrYmTV/59XGEMmIIAjCJbszzrE78xwXq67M0XG3bzA9HD0bPOZYbip/pZzkYmUprhY23NcxpNYkYpIksT7lFHuzEqjQVRNg68yjnfrhZtG8IwOHenTCVqUmPPkEmeVFtfapFWbc6dGJezr0RClXNGscws0JsHUh+5pHJ9kVxTiaN7yysr+tM6fzM2ptiynMwv/SasZKuQJfG0diCrMJcfYBQC9JxBZmMcKzi5Hv4NaIZEQQBOESe3MLJnfshauFDUgQmZPEl2f38EbvcXha2dcpf744l+9i9zOpYy96OnpxOCeZr87uZV7vcXhdKv93Wgw7MuJ4InAgzmor1iWf5LPTO3kr9G7MmjkR6OXkTU9HL84X55JUchGtpMfJ3KrFOtoKNy/MqysfnNjKptQz9HXxJbnkInuzEnisc39DmfCkaAo15cwIHATAMI/O7MqI58+k4wx28ye2MJtjuak832NYrfP+FBeJn40jfjZORKTHodFr68xFYmpNGnu2bNky/Pz8UKvVDBgwgMOHD1+3/KpVq+jatStqtZrg4GA2bdrUpGAFQRCaUy8nb4IdvXCzsMXN0pZJfr0wVyhJrOcRB0BEehzdHT0Y6x2Eh6Ud9/r1wtfagV0ZNcu8S5JERHos4317EOLkjbeVAzMCB1JYVUH0dZrfjUkmk9HJzpXR3t24y6c7/V39RCLSCvnZOPFstzs5kpvM28c2sjH1NA/6hzLAtaOhTJGmgvyqcsPPzmprnu8+nJiCLBZGbWZbeiyPdxlgGNYL0M+lA1P8e7Mu5SSLojZzoayAF7uPwFZl0aL3dyON/o38448/mD17NsuXL2fAgAEsXbqUsWPHEhcXh6ura53yBw4c4JFHHuH999/n7rvv5rfffmPSpElERUXRo0cPo9yEIAiCseklPcdyU9HotPg3MFtlYklencnCghw8OHGxZqr2vMoyiqsr6XbViBsLpYqONs4kluTRz9Wv2eIX2p6eTl70dGp4naAnAuuuKB1o78Ybfe667nlHeAYywjPwluNrTo1uGfn444956qmnmDFjBkFBQSxfvhxLS0t++OGHest/+umnjBs3jldffZVu3bqxcOFC+vTpwxdffHHLwQuCIBhbelkhL+5fyax9f/BrwhGeCRqKp5VdvWWLNZXYXtMR0NZMTdGlDoPF1RU12+oZWll0TadCQbidNaplRKPRcOzYMebOnWvYJpfLCQsLIzIyst5jIiMjmT17dq1tY8eOZe3atQ1ep6qqiqqqKsPPxcWtazy0IAjtl5uFDW/0uYsKbTVRean8FHeQV3qGNZiQtAZbLpwhPPkEIz0DeSggtMFyrbWzrSA0qmUkLy8PnU6Hm5tbre1ubm5kZWXVe0xWVlajygO8//772NnZGV4+Pj6NCVMQBKHJlHIFrhY2dLBxZHLHELyt7dmREVdvWVuVmuLqa4ZNVldid6klxNas5rl8fcMv7Yy0LkhyyUX2ZCbgXU8H26td7mw72N2fN/rcRYiTN1+d3Ut6WaGhzOXOtlM792dOyBjM5Uo+O72Tar3OKLEKQkOMv3iCEcydO5eioiLD68KFlunoJQiCcC1JqplWuz7+Ns7EFtb+wyqmIMvQx8RZbYWtmbpWmQptNUkleQ32Q2mMSl0138cd4PHOA7C8aq2Z+rSFzrbC7atRyYizszMKhYLs7Oxa27Ozs3F3r39KZHd390aVBzA3N8fW1rbWSxAEobmFJ0UTX5RDXmUp6WWFl37Opv+ljqY/xh0gPCnaUH6UVyBnCjLZlhZDVnkR61NOklKaz/BLczjIZDJGeXVl04XTnLiYRnpZIT/GR2JvbmGY9+FW/J5wlGAHT7o53HhK+sSS+tcxSSypWaPkRp1tBaE5NarPiEqlIjQ0lIiICCZNmgSAXq8nIiKC559/vt5jBg4cSEREBC+99JJh27Zt2xg4sG6vYEEQBFMqqa7kp7hIijQVWCjN8LKy58UeIwhy8AAgv6q81mJzAbYuzAwczF8pJ1ibfAJXCxueDRpqmGMEYKx3NzQ6Lf87d5hyrYZOdi682H3ELc8xciQnmdTSfP7de9xNlRedbYXWrNFDe2fPns306dPp27cv/fv3Z+nSpZSVlTFjxgwApk2bhpeXF++//z4A//rXvxg2bBj/+c9/mDBhAitWrODo0aN88803xr0TQRCEWzTtquXb6/NKz7A620JdfAl18W3wGJlMxj1+PbnHr+ctx3dZflUZfyRG8VLwrSc1gtAaNDoZeeihh8jNzeXNN98kKyuLkJAQtmzZYuikmpqailx+5enPoEGD+O2333jjjTf497//TefOnVm7dq2YY0QQBKGJUkvyKamu5N2oLYZteiTOFeWwKyOeZUMeQi6r/RS+MZ1t7a6aEKtYU4mPtX0z3Ykg1JBJ0qWlG1ux4uJi7OzsKCoqEv1HBEG47VVqq7lYVVZr28/xB3G3tGWsd1Ctx0SXfROzD41ey/Pdhxu2fRC9FW8re6Z27o8kSbx2KJwx3t0Y7V2zCF+Ftpr/O/gnT3S5Q0zQJjTJzX5+izmBBUEQ2hi10gwvpX2tbeYKJVZKc0Mi8mPcAexVlkzuGALUdLZdcnI729JiCHb05EhuCiml+Ya1T67ubOtqYYOz2pq/Uk4arbOtIFyPSEYEQRDaodbU2VYQbkQ8phEEQRAEoVnc7Od3q5z0TBAEQRCE24dIRgRBEARBMCmRjAiCIAiCYFIiGREEQRAEwaREMiIIgiAIgkmJZEQQBEEQBJNqE/OMXB59XFxcbOJIBEEQBEG4WZc/t280i0ibSEZKSkoA8PERswAKgiAIQltTUlKCnZ1dg/vbxKRner2ejIwMbGxskMlkNz7gJhUXF+Pj48OFCxfEZGrNSNRzyxF13TJEPbcMUc8toznrWZIkSkpK8PT0rLWI7rXaRMuIXC7H29u72c5va2srftFbgKjnliPqumWIem4Zop5bRnPV8/VaRC4THVgFQRAEQTApkYwIgiAIgmBSt3UyYm5uzoIFCzA3Nzd1KO2aqOeWI+q6ZYh6bhminltGa6jnNtGBVRAEQRCE9uu2bhkRBEEQBMH0RDIiCIIgCIJJiWREEARBEASTEsmIIAiCIAgm1e6TkWXLluHn54darWbAgAEcPnz4uuVXrVpF165dUavVBAcHs2nTphaKtG1rTD1/++23DB06FAcHBxwcHAgLC7vh/xfhisb+Tl+2YsUKZDIZkyZNat4A24nG1nNhYSGzZs3Cw8MDc3NzunTpIt4/bkJj63np0qUEBgZiYWGBj48PL7/8MpWVlS0Ubdu0Z88eJk6ciKenJzKZjLVr197wmF27dtGnTx/Mzc3p1KkTP/30U/MGKbVjK1askFQqlfTDDz9IZ86ckZ566inJ3t5eys7Orrf8/v37JYVCIX344YfS2bNnpTfeeEMyMzOTTp061cKRty2NredHH31UWrZsmXT8+HEpJiZGeuKJJyQ7OzspLS2thSNvexpb15clJSVJXl5e0tChQ6V77723ZYJtwxpbz1VVVVLfvn2l8ePHS/v27ZOSkpKkXbt2SdHR0S0cedvS2Hr+9ddfJXNzc+nXX3+VkpKSpL///lvy8PCQXn755RaOvG3ZtGmTNG/ePGnNmjUSIIWHh1+3fGJiomRpaSnNnj1bOnv2rPT5559LCoVC2rJlS7PF2K6Tkf79+0uzZs0y/KzT6SRPT0/p/fffr7f8gw8+KE2YMKHWtgEDBkj//Oc/mzXOtq6x9XwtrVYr2djYSD///HNzhdhuNKWutVqtNGjQIOm7776Tpk+fLpKRm9DYev7qq68kf39/SaPRtFSI7UJj63nWrFnSyJEja22bPXu2NHjw4GaNsz25mWTktddek7p3715r20MPPSSNHTu22eJqt49pNBoNx44dIywszLBNLpcTFhZGZGRkvcdERkbWKg8wduzYBssLTavna5WXl1NdXY2jo2NzhdkuNLWu33nnHVxdXXnyySdbIsw2ryn1vG7dOgYOHMisWbNwc3OjR48evPfee+h0upYKu81pSj0PGjSIY8eOGR7lJCYmsmnTJsaPH98iMd8uTPFZ2CYWymuKvLw8dDodbm5utba7ubkRGxtb7zFZWVn1ls/Kymq2ONu6ptTztV5//XU8PT3r/PILtTWlrvft28f3339PdHR0C0TYPjSlnhMTE9mxYwdTp05l06ZNJCQk8Nxzz1FdXc2CBQtaIuw2pyn1/Oijj5KXl8eQIUOQJAmtVsszzzzDv//975YI+bbR0GdhcXExFRUVWFhYGP2a7bZlRGgbFi9ezIoVKwgPD0etVps6nHalpKSExx9/nG+//RZnZ2dTh9Ou6fV6XF1d+eabbwgNDeWhhx5i3rx5LF++3NShtSu7du3ivffe48svvyQqKoo1a9awceNGFi5caOrQhFvUbltGnJ2dUSgUZGdn19qenZ2Nu7t7vce4u7s3qrzQtHq+bMmSJSxevJjt27fTs2fP5gyzXWhsXZ8/f57k5GQmTpxo2KbX6wFQKpXExcUREBDQvEG3QU35nfbw8MDMzAyFQmHY1q1bN7KystBoNKhUqmaNuS1qSj3Pnz+fxx9/nJkzZwIQHBxMWVkZTz/9NPPmzUMuF39fG0NDn4W2trbN0ioC7bhlRKVSERoaSkREhGGbXq8nIiKCgQMH1nvMwIEDa5UH2LZtW4PlhabVM8CHH37IwoUL2bJlC3379m2JUNu8xtZ1165dOXXqFNHR0YbXPffcw4gRI4iOjsbHx6clw28zmvI7PXjwYBISEgzJHkB8fDweHh4iEWlAU+q5vLy8TsJxOQGUxDJrRmOSz8Jm6xrbCqxYsUIyNzeXfvrpJ+ns2bPS008/Ldnb20tZWVmSJEnS448/Ls2ZM8dQfv/+/ZJSqZSWLFkixcTESAsWLBBDe29CY+t58eLFkkqlklavXi1lZmYaXiUlJaa6hTajsXV9LTGa5uY0tp5TU1MlGxsb6fnnn5fi4uKkDRs2SK6urtKiRYtMdQttQmPrecGCBZKNjY30+++/S4mJidLWrVulgIAA6cEHHzTVLbQJJSUl0vHjx6Xjx49LgPTxxx9Lx48fl1JSUiRJkqQ5c+ZIjz/+uKH85aG9r776qhQTEyMtW7ZMDO29VZ9//rnk6+srqVQqqX///tLBgwcN+4YNGyZNnz69VvmVK1dKXbp0kVQqldS9e3dp48aNLRxx29SYeu7QoYME1HktWLCg5QNvgxr7O301kYzcvMbW84EDB6QBAwZI5ubmkr+/v/Tuu+9KWq22haNuexpTz9XV1dJbb70lBQQESGq1WvLx8ZGee+45qaCgoOUDb0N27txZ73vu5bqdPn26NGzYsDrHhISESCqVSvL395d+/PHHZo1RJkmibUsQBEEQBNNpt31GBEEQBEFoG0QyIgiCIAiCSYlkRBAEQRAEkxLJiCAIgiAIJiWSEUEQBEEQTEokI4IgCIIgmJRIRgRBEARBMCmRjAiCIAiCYFIiGREEQRAEwaREMiIIgiAIgkmJZEQQBEEQBJMSyYggCIIgCCb1/08mOEydZ8xNAAAAAElFTkSuQmCC", + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAiMAAAGdCAYAAADAAnMpAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjcuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/bCgiHAAAACXBIWXMAAA9hAAAPYQGoP6dpAADE40lEQVR4nOzdeXhU1fnA8e+dfbLMZN8TskEgG2EX3EBR3PetWqvWpbXa2trWutvWX7Wt1lqr1lr3WhU3RAVRBFEEZIckkASyh+z7ZJLMeu/vjwmBSFgCSW6W83meeUJmzp37jiaZd859z3skRVEUBEEQBEEQVKJROwBBEARBEMY3kYwIgiAIgqAqkYwIgiAIgqAqkYwIgiAIgqAqkYwIgiAIgqAqkYwIgiAIgqAqkYwIgiAIgqAqkYwIgiAIgqAqndoBHAtZlqmpqSEwMBBJktQORxAEQRCEY6AoCh0dHcTExKDRHH7+Y1QkIzU1NcTHx6sdhiAIgiAIx6Gqqoq4uLjDPj4qkpHAwEDA92IsFovK0QiCIAiCcCxsNhvx8fG97+OHMyqSkf2XZiwWi0hGBEEQBGGUOVqJhShgFQRBEARBVSIZEQRBEARBVSIZEQRBEARBVSIZEQRBEARBVSIZEQRBEARBVSIZEQRBEARBVSIZEQRBEARBVSIZEQRBEARBVSIZEQRBEARBVQNORr755hsuvPBCYmJikCSJjz766KjHrFmzhunTp2M0GklNTeW11147jlAFQRAEQRiLBpyMdHZ2MnXqVJ577rljGl9WVsb555/PggUL2LFjB7/85S+55ZZb+PzzzwccrCAIgiAIY8+A96Y599xzOffcc495/AsvvEBSUhJ/+9vfAJgyZQrffvstf//731m0aNFATy8IgiAIwhgz5DUjGzZsYOHChX3uW7RoERs2bDjsMU6nE5vN1ucmCIIgCMLYNOTJSF1dHZGRkX3ui4yMxGaz0d3d3e8xjz/+OFartfcWHx8/1GEKgiAIgqCSEbma5r777qO9vb33VlVVpXZIgiAIgiAMkQHXjAxUVFQU9fX1fe6rr6/HYrFgNpv7PcZoNGI0Goc6NEEQBEEQRoAhnxmZO3cuq1at6nPfypUrmTt37lCfWhAEQRCEUWDAMyN2u53i4uLe78vKytixYwchISEkJCRw3333UV1dzRtvvAHAT3/6U5599lnuuecefvzjH7N69Wreffddli1bNnivQhAEQRhULY5O7B5n7/cBOiMhJn8VIxLGsgEnI1u2bGHBggW93999990A3HDDDbz22mvU1tZSWVnZ+3hSUhLLli3jV7/6Ff/4xz+Ii4vjpZdeEst6BUEQRqgWRycPbfkEjyL33qeTNDw680KRkAhDYsDJyPz581EU5bCP99dddf78+Wzfvn2gpxIEQRBUYPc4+yQiAB5Fxu5xEoJIRoTBNyJX0wiCIAjqqO1q5+Pynf0+tre9YZijEcaLIV9NIwiCIIwOBa11/Gv3NzhlT7+Pv1u6DYfXw/kJmcMcmTDWiZkRQRAEgcZuO/8qOJCImLR6ckLjmBU+gWCjX++4jyty2dRQrlKUwlglZkYEQRAEVtUU4vT6EpHskFhunjwPk1YPgKwofL5vNx/1XL5ZXpnPrPAJSJKkWrzC2CJmRgRBEMY5t+xlQ30ZAHqNlhsnndSbiABoJIlz4zNIsYQDUNtto8TWqEqswtgkkhFBEIRxrs3ZhcPrBiAjOBp/va8D9u2FtzNt4zQ8PZduZoUn9B5T09U+/IEKY5a4TCMIgjDOHdysQcJ36aXL08VLNS8RoY9Ap/G9VWgO+vx6+AYPgjBwYmZEEARhnAs2+mHQaAHY3VZLt8fNLQW34FE8PDPpmd5xW5sONLSMMluGPU5h7BLJiCAIwjin12iZE5EEgNPr4d9FX/J2w9tYtVYuj7wcgK9r9lLU7tv0NMIUwERrhGrxCmOPuEwjCIIgsDA2je8aynB53dxXdzUAl1pv49OKPHa2VFNpb+kduyg+A41YSSMMIpGMCIIgCET5WbkiNZ3r8q/BQQcABnsOn9jz+ow7K3YKJ0cmqxGiMIaJZEQQBEFgfdt6frDncuqoA0CHsc/j8f7BnB03hdkRiSpEJ4x1IhkRBEEYx2RF5omKJ7i/5H6Ug9bIhOqDuTPjdLyKQpjJn1i/INHkTBgyIhkRBEEYpxpdjfxw1w/5ouWLQx7TSBJZIbEqRCWMRyIZEQRBGIe+bfuWK/KuoMnV1O/j+/uNCMJwEMmIIAjCOHRrwa3Uu+rVDkMQAJGMCIIgjAtf1+zl69q9NDvtAJxn/DVJxk9Z0foxEhIyct8DJNjaWMnSilyaHXYizIFclpTT59KNoih8UpHH2rpiur1uUixhXJs6i0jREE0YINH0TBAEYRwIMpq5NGkq9087h/tzzuHU0Fkkdl3DV1M3YJAMQN9LM15Z4aXCdZwclcyD088lJzSOf+1eS3VnW++Yz/cVsLqmiOsmzubenLMxanQ8k/8Vbtk73C9PGOVEMiIIgjAOTA2NIysklkizhUg/C5ckTsWo1dHQ6cKhONCi5cqIK3sTEqfXQ0ZINIvi0on2s3Jx4lQSAoJZU7MH8M2KrKou5LyETHJC44jzD+amtLm0ObvZ0VSl5ksVRiGRjAhCP1ocnVTaW3pvLY5OtUMShEEjKzKbG8pxeT3cVXEdAI+lPsbirMXkzcnjqoiriNNkMjkoqs9x6cHRlHb4Cl6bHJ3Y3A6mHDTGrDOQFBjWO0YQjpWoGRGE72lxdPLQlk/wKAeuoeskDY/OvJAQk7+KkQnCianubOMvO77ALXsxanWcl5TA84VV6CQd90y4B4CMgAwWZy3mZ9++g0Vv6nO8RW+i3eUAwObu9t1n+N4Yw4ExgnCsRDIiCN9j9zj7JCIAHkXG7nESgkhGhNEr0hzIg9PPpdvjZltTJT/bcyMAf0n5i7qBCeOeSEYEQRDGCZ1GS4Q5EIBO6qgs3Yk/wdw94e5DxloMJmzuvjMcNrcDa89MiEVv9t3ncmA1mA+McTmIDwgaolcgjFWiZkQQDtLi6OSLqoJ+H6vpbB/maARh6CzYvgCA64J+3e/jyYFhFLbV9bmvoLWO5MAwAMJM/lj0pj5juj1uyjqaescIwrESMyOC0KPE1sizu76my+Pq9/FX92zAo8icEpUyzJEJwolbUraDjJAYQox+5Nl20eBuwEo0dyX/GIBXi9YTZPDj0qQcAM6MTePJ3C9Zua+ArJAYNjdWUGFv4YcTZwMgSRJnxk5meVU+EeZAwkwBLK3IJchoJicsXq2XKYxSIhkRBHwzIs/uWkOXxw34ClaTLWHoJQ2lHc10e333v7l3IyFGP9KDo9UMVxAGrMPt4LWiDbS7uvnY/RgAv4r7be/Pcouzq0+fkRRLOLeknczSip18VL6TCHMgt6efSqx/UO+YRXFTcHk9vLl3E10eF6nWcH6RsQC9Rjusr00Y/SRFUZSjD1OXzWbDarXS3t6OxSI6+wmD792SrayqKQIgzRrJrZNPJrDn2rhb9vJB2Xa+6umvkBwYxu9yzlYtVkE4ETtsO5i2eRoGyYDzDKfa4bCnvIX1O2pwuQfWKM2g1zIvJ4ZJiSFDFJkwGI71/VvMjAjjnlv2sr6+FAC9RtsnEdl/31XJMyhqq6emq53Sjib2dbYS5x+sVsiCcNwWbl8IwD8n/VPlSHzW76ihpf14lgK7Wb+jRiQjY4RIRoRxr9nR2XsZJjM45kAiUnk3dOVBwj/R+E3mpIgkPizfAUCV/aBkRFHAXQ/OYnAUg+KE8NtAErueCiPLlvYtNHuaMUgGbou7Te1wAHpnRCQJ/M36Yzqms9uNojDg2RRh5BLJiDDuyQf1FDFoD7rW3fwuuOsgfwqYs5moPZ3TNe14MBDX+jXYmqC7EJyloBz8yU4DodeD1m/4XoQgHINFOxYB8Hza8ypHcih/s57brpx6TGNffG8n9i73EEckDCeRjAjjXrDRH40kISsKu1trccte9N07wF0Nqe+BpIPmd5nQ8jzJei+KAtj2z3p8v+RKA4Gni0REGHE2tm6kxdOCUTJyc+zNaocjCH2IPiPCuGfW6Zke6luK2OF28mHZDpSyW0DjD8GXQPAlbLI8xm+d/6RZDgUJJBQOTUQAZAi9ZjjDF4Rjcm7uuQD8O+3fKkciCIcSyYggAAvjJvcua9xasx66dtCiS2dNbSn/yFvNy0Xr6cTKI+4naDPM5oi/Onqx7FcYWda3rqfV04pJMnFD7A1qhyMIhxDJiCAASYFhXJs6Cwm4XPc2KPBCxwW8XbKF3Qd1mJwTlU5Q5moIPJXD/vrsvQi2BEDRhdCxbljiF4QjOW/neQC8OPlFlSM5duuLvmTr5rf4qnyj2qEIw0DUjAhCj9OiUwnRm0grvQmbYqWC1N7Hwkz+LIydwvzoiUiSBJOWw55zoeNbYH8BrATxT4CzAlrfh/ZPfTdNAFjOgOj7IXCOKq9NGL++af2Gdm87JsnE9THXqx3OUcleF3t2LcPoigfJSkfDd5Aofm/GOpGMCMJBMpVVgAvCf8mP/OagoBBuCmSiNQLNwUt1tX6+hKToXLCvB7yABGE3gj4UEp8BVw3UPAatH0Dbx76bJhAsZ0LM/RAwS50XKYwrF+28CIBXpryiciSH48VfZyPM1EVZXgEtzhjMSjcG9nJPzUssCPqAi9QOURhyIhkRhIPVPgZosSY+yskaw5HHav0h7bOehGStb/ZDH3rgcUMMJD7ru7mqoPoxaF0CbR/5bhoLWM/yJSb+04fwRQnj1VfNX9HubcesMfOD6B+oFociu2ksW4rT4cDjBbdXh1v2w0MAM5ICQLICVlpcoKWZIPkJJth3EFy6khqNnXtOD1ItdmF4iJoRQdjPWQmOPRB4GhwtEdlvf0ISdhPEPHD4cYZ4SPoXTK+D7HJfUzSNyTdrsmsGbLVC8VXQuXNQXoogAFycdzEAr6W/pmocXmcrVa3xNHSn0eKaRIc8EQexeLCC1NPbR1GQFCetrivJqHXj9VhIMExiV33/G1cKY4tIRgRhv6p7fF/j/zqw47T+kPwKWOYf23jTBEj6N0yvh+wyCLsZJCO0vAe7cmBrEBRfA135A4tDEA7yRfMXdHg78NP4cVXkVarGojNHEG727e3Um3x8nyTR4bmfm6p+RFvAboLrf8LpiX54FcitVX8PHWFoics0wrizomoXS8p3ckZMGlenzPDdKcvQuhR0URAwE4CtjZUsrcil2WEnwhzIZUk5ZIXE9j6Poih8UpHH2rpiur1uUiy+FTmR5gFs5mhKhOSXfP92lEDNn6DtE2hZ7Ltpg8B6rm/WxS9jcP4DCOPCFXlXAPBG+hsqR+KzNUgisbsZWQkF6XufgxUPWmUdZ3RsRO5MBKuFCwN+wmUZ/jz1rY338jrJjjaqErcwPEQyIowr5R3NfFNbTNxB26AD0PSqr6V75O0AlNgaealwHZckTSU7JJZNDeX8a/daHph2Tu8W6p/vK2B1TRE3ps0lzOTPx+W5PJP/Fb+fccHxbaFuSvHNsAB074Xa/4PWZdDytu+mDYag8yDmQTBPPv7/CMKY91njZ72zIpdHXq52OAAsCr2EjdWvYNGefMhjEh5usj2BXHMhxHwE1Veyp8VDnnsPEgG8s6mJ+Paq3vGd3aIV/FgjLtMI44bD6+blovVcP3EOfrrv1YTU/gXQQvS9AKyqLiIjJJpFcelE+1m5OHEqCQHBrKnxTTUrisKq6kLOS8gkJzSOOP9gbkqbS5uzmx1NVZww80RIfh1mNEFWoW+vGyRo/h/kTYGtoVBygy9pEYTvuSrfd1nmrYy3VI7Ep75iDUX5m32JiOIC5aAN7hSFTa7n2EEdOCNBZ4Pqa+lwKXQ53PhrFWocGuxd7t6b0tP82KA/jqRfGJFEMiKMG28XbyErOIYpwVF9H3BUgHMvWBb0Fq6WdjQxOajvuPTgaEo7mgBocnRiczuYctAYs85AUmBY75hBY06DlDdgRjNk5kPotYACzW9A3iTYFgalN/ku8wjj3icNn2CX7fhr/Lk44mJVY3HYm8jfuoR9jQHI+GPRFdNhWopETzKieEHZy11d74ItAyK+hKYzoHsCDkVDgJ+eWLNMl1fCz6QnwO/ALcRqYl5OjKqvTxg84jKNMC5sbiin0t7C/dPOOfTBqt/4vh5UuGpzObDoTX2GWfQm2l2+3Xlt7m7ffYbvjTEcGDMk/DIg5X++f3fl+2pM2j+Dptd8N104BF3ou5RjShq6OIQR6we7fEt438l4R9U4SvPeo9UZD8RjkGpJTp3K+voXyWl5GZumiTbt7YDEY12P4sILzSdD0ouw9z4AjP5mbrtyEnWrWnnky1YmzZzEGSlmVV+TMHTEzIgw5rU4O1lcuo2bJ887tJZDln0Fo/po8J+mToDHyy8TUt+GGW2QsQNCrvRNgTe9ArnJsC0CSm/zzfwI48JH9R/RKXcSoAnggogLVIlh1dffsG3Tl7S6kpFwU9NQS1HzJJbsupN5rS9To4CcdBGSt5QS92t86C4Arxn8yqAzBVp8NSVtDl9n46uz/X2vbVfngGNptzt56vUtNLR0Dd4LFIaEmBkRxrzKjhY63A7+tG1F730yCnvbG6io/ZR7DE6IuKPPMRaDCZu77wyHze3A2jMTYtH7PqHZXA6shgOf1mwuB/EBQUP0So7Afyqkvuv7d+c2X+fX9pXQ9B/fTRfp24E45gEwxg9raC2OTuyeA0szA3RGQkz+wxrDeHHd7usAeDfr3WE/t8fVxZ685QT5J6Jgxo8SolPPIzZJ4otd87lWu4Wv3RYyczYSETAZT7CXt3M7oQtoOAeiPoY9D0HPhpU2py8ZSQs3oNPAuoohnHEUVCeSEWHMmxwUxcPTz+tz3+t7viPKz8LVXY+CWwfRv+vzeHJgGIVtdSyMPbBqpaC1juTAMMC3V41Fb6KwrY74gGAAuj1uyjqaOD06FVX5T4eJ7/v+bd8MNY+D7Uto/LfvpouCkMt8nV8NsUd+rhPU4ujkoS2f4FHk3vt0koZHZ14oEpJB9m7du3TJXQRoAzg37NxhPXdlwUc0dUagSElo5EZqOwI578yrkD0ePtkSyvUmG5+6LRSVfEZ4RCgRk8AjK5zlmI/U+gb/lVZTJ5swNFyKG1AAu1Ph9aW7mDY5gin+Llpa3Xy6poSz5k3AaPC9dSmKwne5teTtaaTb4SHEauKUGXEkxVoBePmDPADe/GQ3AHGRAVx1jliJNhKJyzTCmGfS6Yn1D+pzM2p1BNGOv7sQLGfw6t5NLCnb0XvMmbFp7GqtZeW+Auq62vmkIpcKewvzYyYBIEkSZ8ZOZnlVPjub91Hd2carezYQZDSTEza8Mw9HFDALJn0IM20w5TsIuhhkOzQ8DzviYHsMlP8cXLVDcnq7x9knEQHwKHKfmRJhcNxYcCMAH2Z+OGzntDUVkLvlMxo74wAI86uk3pWGW4qky9nEqs1mLtbY+JAwzpvTTESwlb2VrQB8uqaErm4318xaQF3oUkJaF/HYJJknzw0mOUSHSQetHU6KyluYEBlARbeOmuYuVn1X2Xv+bbvr2bqrntNmxnP9RRlMiLWydHUxrTbfLMq1508B4IqzJ/GTq6Zy4QKVPygIhyWSEWHcSuzqaQYV/wQtzi7aXd29j6VYwrkl7WTW1hXz6LbP2NZUxe3pp/b2GAFYFDeFBdFpvLl3E49tX4HT6+YXGQuOr8fIcAicA5M+gpkdMGUdWC8Erw0anoUdMbA9FiruAle92pEKA/RW7Vt0y91YtBbOCjtryM/ncbko2vYue8vtuAnHLJWTnZ3NhCmXAtAtV5K7LYLTNR7e12Vw2exGNDodIVYTNruL6voO6pq6uGB+CtdufxIMrdw9+ccEmbUsjPKw99fxLL3IgCLLnHNKEoumBKIgIYVHUFTe0ttnZMuuemZlRjE5KYQQq4nTZsQRHmxm227fz7DZ5JtBMRl1+Jv1mI3iYsBIJf7PCOPSrzPPgK0XgD4W/LP5dfahY2aEJzAjPOGwzyFJEhclZnNRYj8Hj3SB8yDtY9+/O76Fmj9Dxxqof8Z308dC6FUQdS8YItSMVDgGtxTeAsAHWR8M+blqildQ3+aPLKWgo5W4aAuhsVf0Pt7q2UC2343EaRS+CDifKzI+7X1MwVcR0tjajdvj5bm3t1MasAq/tpOx1EVj8zpp63Ci0Uj46yUs/gYC/Q1cla3h5580s7ZWIUeBlnYHOq2Gzm43MREBfeKLjQigsbUbYXQRyYgwPjW+AIoTIu9UOxL1BZ4CaT1vGO1roO6v0PE11P3ddzPEQ8jVvroafZiqoQqHeqP2DbrlbqxaKwtDFw7ZebpsVZTs3Y5LiQG8BOlLScm+ss+Ybyse5mTT/6EDtoffzQXJf+vzeEu7A0ugEZfbi79Zz9qQzbjJ5+TuP/HDs9IBMBkOnVmMCNBh0klsqXaRE3rIw8IYIC7TCONT7d8AHUT9Ru1IRhbrfEhbDjM7IW0VWBaBuwnqnoTt4bBjAlT+DjwtR32qgtY6/rt3Y7+P7W1vGOTAx6+fFPwEgCVZS4bk+RVFYe/OxRTsqcWlxGCUqsiYnHxIIrK88Goy6h6lW9GwsuNl5n8vEamstdHU2s3EhGAiQ/3o7HazuOW/0B3DZ2f/hmCLiWCLCbNJ33uMrdOFvcu3a298kI59bW4kCUKsJowGLf5mPTUN9j7nqW6wE2L1rXrTaqTe1yCMbGJmRBh/HCXgKgXLOaARvwKHZT3DdwPfMuHaJ6BjrW/mpO6vYJjg6wYbfQ/ogvoc+k1tMW8Vb+JwbwHvlm7DqyicHTdlSF/CWPdK9Ss4FAdB2iAWhC4Y9OdvqFhDTaOCV0pFQwfRYQpRiZceMu6DHbM437mFfFmi3PkpgVIynd1uZNnX0r282samvFqS46ykp4QiSWALsOEO3EB86w04XQotbXZK97WRmhBMVJhvpZVOq2HFt2WcPjOeGeGwuAniYoPxN/sSllmZUazfUUNQoJHwED92FTfR2NrNeaclA+Bn0qPTaiivbifAz4BOK/WuxBFGFvF/RRh/KntmQxKeVDeO0cR6lu8G0PaZb2bJvg5qH/fdDEkQeh1E/5a9nY4+iUiY0Z+0oEgkSaKwrZ4mh++T7Adl24n2s/TZCVkYmJ8V/QyApVlLB/V5HZ0tFBeuwakkADKB2mKS0y9FZzAcMvb9TTFcptTytaxlxrRymra42V3RzL/f3YlGkjAatYQHm1kwO4GM1FAkyTdb8bTn36DouNVzPa8uycffrCc2MqA30QAICjQyMSGYD7/cS4xDQcFCoym49/FpUyJwurx8vaWKLoeHUKuJi89IJdjimxnRaCQWzI7nu9xa1u+oITZCLO0dqSRlFMxf2Ww2rFYr7e3tWCwD2J5dEL5PlmGrGfSRkFN59PHCkbV+CnVPgX29rwYHaJei+cZ9El94L+DU2KlckTQdjXRguvyTyjyWVeYDkGoJ57dTh371x1j0733/5qdFPyVIF0Tr6a2D9ryl+e/T6ogDdL427ilZ+AclHjLO43Hw2eYQLtR287Hsz3kzm9DpTIeM60+d3Ub0NykYOnNwXrmy3zHrd1RTUtnG9RdlANDlkvF/pJxL0/348Pqofo8RRp5jff8WMyPC+NLwnK9lesTP1Y5kbAi+wHcDaFmKp/ZJ/OzfcaFuCRfoloB9ClLbE2BZCFojkiRxYUIW25qqqO1qp9jWSF2XjSg/8SFjoH6x5xcALMteNijP11K7larqFjxSEhLdRFibiZt4Yb9j2x2VbNuezPkaL+9LsVxx0r4Bnevs1f8H/k38Kvynx3yMn0FDgEFiW41rQOcSRgeRjAjjS91TIOkh6ldqRzL2hFxMqXYuf8v9gqmarVxh/poIVzHsvQAkE/hlQfoGJEnLtNA4arvaAajvFsnIQD1X9RwuxUWwLph5wfNO6Lk8ri725C+jW04CgvCXSkjNugidof9Zjsq2b2gsOJ2TNPCRcTZX5PRfpHwkefKnSLZs/nzm5QM6LiVUz+56kYyMRce1mua5554jMTERk8nEnDlz2LRp0xHHP/3006SlpWE2m4mPj+dXv/oVDofYZ0AYZt17wVUOlrNE4eoQ8V2M0bBTnsWXln/DjHbI3AmBp0HnFth7OXg7kQ+6Oiz1HCUcu7v33g3A8qnLT+h5KguXkpu7nW4lGR1NpMabmDz9qsMmIjtqX8RZeDpJGlhj/QGXHUci8rP1b0JgAbMMFx1x3Lyc2N5LNPvNTTDilqGsRSQkY82Ak5HFixdz991388gjj7Bt2zamTp3KokWLaGjof6neW2+9xb333ssjjzxCQUEBL7/8MosXL+b+++8/4eAFYUCqegpX40Xh6lCJNFvQ9CQX25uqcCsy+GXD5M9h0idgW4VScCp7Grf3HhPtZ1Ur3FHp6YqncSkuQnQhnBR00nE9R0dzEblbltNojwU0hJkrmTrzHKyRWYc95quSXxJV8ROMQGHUHzh38lvHde7/VL8Mjkg+P+O+AR97SbofAItzB76DrzCyDTgZeeqpp7j11lu56aabSE9P54UXXsDPz49XXnml3/Hr16/n5JNP5tprryUxMZGzzz6bH/zgB0edTRGEQSXL0L4CDAngJ5aTDhWLwUROqG+fEpvbwf+KN+OWvb4Hg87HO/kbnF3F3KP8mN/pH+bqgI2EKxUw8uvoR4x7Su4BYFnOwGtFfG3cF7OnzIabCExSOdnZWUxIP3S57sE+3nUeM5r+QbMCXcnvMW/Cw8cV+/KKfDzW9YR1n0mQ2W/Ax5+Z7Nshe1WJ6LA61gxortrlcrF161buu+9ARqvRaFi4cCEbNmzo95h58+bx5ptvsmnTJmbPnk1paSnLly/n+uuvP+x5nE4nTueBjbRsNttAwhSEQ9U/4ytcjRS1IkNtUXw6O1uq8SoyG+pL2dVSQ05oHBpJYkfzPiJcd3C34c8kSSUkuZ+B/GdAGwSWBRA4HyyngzkLJNGT8fueKn8Kt+ImVBfKSdaBzYrUFq+grs0PWUpFSxvxUX6Exl1x1OPe35rOxZ4CtsgSSRnbiLLkHGf08KPNj4MF3pz9wHEdr9NpCDFryK93H3cMwsg0oGSkqakJr9dLZGRkn/sjIyMpLCzs95hrr72WpqYmTjnlFBRFwePx8NOf/vSIl2kef/xx/vCHPwwkNEE4svq/+wpXI3+hdiRjXmJgKD9Om8srRRvwKjI2t4Nv6op7H28ji91yJuna/APVIt42aF0KrR8BCmgCIfgySH4VJFFTst+9pfcCsCJnxTEf4+ioZu+erQe1cS8hJfuqox4nezx8tDWSK6QWvpD1nDK9Bj/j8W8H0NbdRbN5Ffr2eSxKSD/u50kL17OxyomiKL09S4TRb8g/eqxZs4bHHnuM559/nm3btvHhhx+ybNkyHn300cMec99999He3t57q6qqGuowhbGsqxBclb7W5hrxaXs4zAyfwD1Tz2JGWEJvjxHwFatODY0jOPHhfspWZdjfKk3ugO5ckYgc5M9lf8atuAnXhzPTOvOYjineuZhdRdU9bdz3kTE56ZgSEafbxueb/blMauEjxcrCWV0nlIgAnL3qMTDVc1vcLSf0PKcnmZAV2LLPefTBwqgxoJmRsLAwtFot9fV9txivr68nKqr/JjQPPfQQ119/Pbfc4vsBzMrKorOzk9tuu40HHngATT9vDkajEaPROJDQBOHwqkTHVTUkBoZy25RT6HA5qO/uABTCzYFYDWZfjUhDKjiL+zlSC7pQmPTxcIc8oj1U9hAAn0397KhjGyq/oabB09PG3U50qIeopEuO6TyNXYUU7czgLI3M+9oUrpjR3/+jgdvi/gQ8U3j2zOtO6Hkuz/Tnz1+3835+J7Pij63JmjDyDehjosFgYMaMGaxatar3PlmWWbVqFXPnzu33mK6urkMSDq3WtyvjKGj+Kox2sgy2L3z7qJjT1I5mXAo0mEi1hpNqjfAlIuCb8Yj6JfS3rFfSQtpnYIgbzjBHtP8r/T88iocIfQQzrDMOO87R2cKurR9S1eCHlwACtcVkZc8lKunMYzrP3uZPqd05hRyNzKd+CwYtEfntpvdRLLlM1V5wws81M86ERoK15aI9xFgy4GYLd999NzfccAMzZ85k9uzZPP3003R2dnLTTTcB8KMf/YjY2Fgef/xxAC688EKeeuoppk2bxpw5cyguLuahhx7iwgsv7E1KBGHI1P8dFDdE/VrtSITvC/sRVN0Dclff+xUX2LeA/3R14hqB/lDmq6H7fOrnhx1T1tPGXSEBA3UkpWQQEDz7mM+xsepJIqp/S5QE34XcxiUT/33Cce/3TMW/wT+ML888vlU43xcRoKWwURSxjiUDTkauvvpqGhsbefjhh6mrqyMnJ4cVK1b0FrVWVlb2mQl58MEHkSSJBx98kOrqasLDw7nwwgv505/+NHivQhAOp/4fIBkg4g61IxG+TxsIYT+Ghn8BPct/o37n+77iJ9CdD4nPqBriSPD7kt/jwUOkIZIca84hj7fWb6Oyqqm3jXukpYm4SQObgfii6MdMa30VO1AR/zQLY+8anOCBb2r34rKuI6j9QsL8AgblObMi9awsduDxyOh0og5sLBAb5QljV9cuyM+EoIth0kdqRzNmfFKRy6c9G93tF2m28MeZh38D3NpYydKKXJoddiLMgVyWlOPbrbd7D+T5Lp+Vmy7nua4f4PZ28RPdM0yRtkDgGZC2clwXHutW6fDiZeesnWRbsnvv97i62Ju/jC45CVDw15SRmnn4Nu6HsyT3NM7uXkuxDP6TPiM19JxBjT/q/Ruot77NBynfcVny4Mx2/XlNK/d93sryGyM5N81/UJ5TGBpiozxBqPqt72vC39SNYwyK8bPyy6wzer/XHmHVS4mtkZcK13FJ0lSyQ2LZ1FDOv3av5YFp5xDrPwlCrqShs4Fn7Jfzo7Q5hJn8+bgsnmr7MyzsWAK5qZC5A3Tj74PIA8UP4MVLlCGqTyJSVfQxjR2hKJKvjfuE+GiCIo++Sub73tuSxGXectbLGjKmFhHilzqY4WN3Oag3fYm2/aRBS0QArs72577PW1m6u0skI2OESEaEsUn2QPtKMCSBKUXtaMYcjSQdKEY9ilXVRWSERLMoztdb4uLEqRS01bGmZg/XTZyNkvwOT2z6iHMSpvR2b71p8jx+810dSaGxpHQ8CzviIWPTuCpClmWZv1T8BYAvpn4BgL25mNKyPbiJQcJNqLmCxPTLBv7cHg8fbwnlSo2N5bKRhbOaMOgG5xLKwc5b9QSYa/ihdXD7RiWFGNBrYEOlWN47VohkRBib6p4CPBD9G7UjGZMauju4Z+MS9BoNyYFhXJqYQ4ip/0+opR1NLIyd3Oe+9OBodjb7tp1vcnZhczuYEnSgPYBZZyApMIwthhtImZAFFT+FvEyYuBSCzxu6FzaC3FdyH168xBhimGJKY8/2xXR4k4EIzFIFkzLPRmfsfxXjkXQ6G1m/LYZLtB4+IIxLZ9Wi0Q3NW8G33UvANZFXL7p50J871qqjtEUUsY4V4/dCrDC21T8DkhHCf6p2JGNOUmAYN06ayy8y53Nt6iyaHJ08kbsSh6f/Nwaby4FF37eOwaI30e7yLc20uX37jFi+V+tgMfSMibwNJq/xLfndewHUjv3LbrIs87dK3+v8LPxJ8nK/o0NORYuNxCgn6TMuR2cMHPDz1ti2kr8tktM1Ht7XZXL57MYhS0Qe3fYJinU7U5Tzh6RT6rQYA3aXgt0hD/pzC8NPJCPC2NOVB+5qCDpvXBc+DpXMkBhmhCcQ5x9MRnAMP8+cT5fHzZamyqE7qeU0yN4D2mBfE7vSG4fuXCPAb4p/Qwh+fG15Hbd9IjJGrPoScmaeSWjcycf1nLsa3qZ910wmaxQ+D7iIK6bnDXLUfT1W8jy4gvli4SND8vznTPRttLe0QOzgOxaIv9TC2FPZU7gaP/Y/QY8EfjoDkeZAGrs7+n3cYjBhc/dtUGVzO7D2zIRY9L7aE5vre2NcB8YAYEyAqVVgmgJNr8Ouk3y1QWOMLMskNHXzmXUl/lI6RqmajMkJpB5DG/fDWVv+MNbSa7FKsD38N1yYsXQQIz7U1oZKHJa1BNrnExcQNCTnuCLLl4wsK+o6ykhhNBDJiDC2yB6wrQJjMpiS1I5mXHB43TQ67IctaE0ODKOwra7PfQWtdSQH+vY6CTP5Y9Gb+ozp9rgp62jqHdNL5weZ+RB0EXRuhJ0TwN00uC9IRU2V69i+bTWnGm8BuogNaSNzxsWYAqKP+zmXF1xJZv2jdAJNia8yP/mJQYv3cC5e+yhoHDwzdehqtkL8dJj1ktijZowQyYgwttQ9AXgg6h61Ixmz3i/dxp62epocdkpsjbywey0aJGaFTwDg1aL1LCnb0Tv+zNg0drXWsnJfAXVd7XxSkUuFvYX5MZMAkCSJM2Mns7wqn53N+6jubOPVPRsIMprJCYs/NACNBiYthej7wV3jS0g6dxw6bhTxOG3s2vohFQ1GwMIW11sYkkKISl54Qs/7wY4ZnGF7n2JZwjx5LdlRNw5KvEfidLmpNnyBxjaLGyfNG9JzJQbpqGwfe7Nj45FYTSOMLfXP9hSu3qp2JGNWq7OLl4rW0+l2EqA3kmoJ596cswnsuaTS4uxCOmjPmRRLOLeknczSip18VL6TCHMgt6efSqx/UO+YRXFTcHk9vLl3E10eF6nWcH6RsQC95ghbRsT/CczpUPoj2DUTUt6C0OO/lKGW8l0f0NIdg0ICilLFlbafIBvNVISe2GXG9zdFc5lSxxpZy8xp5VhMw7PXz0Vr/g5+lVzm/9shP9fseCMFjW7qbB6iLOLtbDQTHViFsaNzB+yaBsFXwMT31I5GGC72LVBwGijdEPMIxP1e7YiOSWv9DiqrGvBIoUiKg7CAZhKrL0FBoXBOIWkBx9dTxeNxsGJzCBdou/lY9ue8mU3odMO3u63mg1ko+hbc5xWhG6KVOvt9kGfnircaeObCEH4+L2hIzyUcn2N9/xaXaYSxY3/H1fgn1Y1DGF4BM2FqKeiioOYPsPcKtSM6Io/LQcG29yit8uAhBD+plOzsGfxJWYaCQqIp8bgTkbbuctZuDuA8TTfvS3FcdJJ9WBORp/O/RLFuJdl7zpAnIgDnp/mKWL/Y2z3k5xKGlkhGhLFB9oDtKzCmgmmC2tEIw80QBTkV4DcDWj+AvGyQR94W8/uKPiY3dytdSjI6mkmO1zFl+pVIOj3/qfkPAF9M++K4nrui9WtKdiRxksbLR8bZXDGrajBDPyYP7P4HeAJZPn9wduc9GpNBg8UosbPWNSznE4aOSEaEsaH2z4AXon+ndiSCWjQGyNwCoddBd56vhbxrn9pRAWBvLSF3yzLqO2IADaGmMqbOXERwZA4AtxXehoJCkimJiX4TB/z822tewF00nyQNfG29lstyNg7uCzgGu1vq6LJ8jV/H6aQFRw7beSeG6qnt8A7b+YShIZIRYWxoeB4kk29LemF8S3kT4h4HTxPsTIWOdaqF4nG52LN9MUUlLbiJxCRVkJ2VQWLGgUtJHtnDq7WvArBy2soBn+OrkruIrrwdA1AY9UfOmfy/wQp/QM7/+o+gs/PXjF8O63lPTjThkaGgXsyOjGYiGRFGv85t4K6F4ItFx1XBJ+Ze3z42itdX3Nrw8rCHUFe6krzcDT1t3DuYEOEkY8bl6Ix9i/huLrgZBYUUUwopfgPb1HFp/jnMaHqGZgW6kj9g3oSHBvMlHDOPx0O5dgWa9pnckX7G0Q8YRJdm+PZEejdPdGIdzcRfbmH06+24+ld14xBGluCLIHMHaPyg/Bao/PWwnNZhryV/61KqW4KRMWHVlZAz8wzCEg5t4+6W3fy37r/AwGdF3t+aznmdn7NLlgjL3MnkiIHv3jtYrvz6efAv4xzL1cN+7tMSjUjAmlJRxDqaiYXZwugmu6DjazBO8rULF4SD+WVAThXkT/Xt5NyVD5M+G7IZtOLcd2l3TQBiMUjVTJw0C1PgnMOOv2HXDSgoTDRPJMnv2DoGyx4PH22N5Aqphc9lPadOr8HPGHb0A4fQx61vg3ECS8+9a9jPrdFoCPXTsKtBXKYZzcTMiDC61TwOeH3T8oLQH10QZJdBwGlg+wLy0sBjH9RTNO9bx44tq2h3p6DBSWxwC1kzLsYUGHPYY1yyi3ca3gHg85zPj+k8Dlcbn2/25zKphY/kIM6a1aV6IvJy0bfI1s3Eu84eluW8/ZkSoaepU0aWxQ6+o5VIRoTRreEFkMwQeoPakQgjmUYD6V9D+E/BWQw748BRcsJP63Ha2L31A8rrjHixEKgpJiv7JKJSzj7qsdfnX4+CwiTzpGOaFWno3MWWrSGcpXHxvjaVS05qRaPSm//Bfpn7FMgmPhmm5bz9mZ9sRgHWV4p9akYrkYwIo5d9M3jqIPgSUbgqHJukf8GE58Brg7wp0D7w1Sv7le/+kNy8XXQrE9BTT1pSMJOmXY3OYDjqsQ6Pg/cafV2Cj6WvSFHTUupzM8nRKHzqfwZXzNh73HEPpnJbM/aArzDZTmNq6PC0m+/PVZm+ItYPd4ki1tFK/AUXRq+qns3wEkThqjAAkT+DtC8BCYoWQd0/BnR4W30uO7d8TnP3BEAmIrCG7JnnExCaeszPcd3u61BQmOw3mQnmIzfp21j5BMbiS4iU4LvQn3JJ5qoBxTuUFq1+FAxtPDzx56rGkRltRCvB2rKR1+hOODbqz/EJwvGQndCxFkxpYFDvE5kwSlnPgKxC2DUdKn/pK2xN/s8RD/G4HOzN/5guOQkIxU8qZWLW+egMfgM6tcPj4MPGDwFYkbPiiGM/L7qRGa2v0w5Uxj/Dwlh13/QP5vF42CMtR2qfzn1nnqt2OEQFatnb7FY7DOE4iZkRYXSq/hO+jqv3qx2JMFqZkmDqPjBNgqaXYPcpvm0F+rFvz6fk5m6hS0lBRyvJcRqmTL9ywIkIwDW7rgEg3S/9iLMiS3JP5dS219mngJT2BTNHUCICcOO3r0DAXk7zU29J8cGyowy0OxRcHlHEOhqJZEQYnRr/7StcDf+R2pEIo5nOHzILwHoe2NdBbhJ4WnoftreVkbdlGfW2KEBHiLGMqTPPJjhq+nGdrsvTxdKmpQB8Nu2zw457f3MiF3V/yxZZQ8LUvSQHn3Vc5xtK7zT9F7pjWXHGb9UOBYCzJ5oB+GyP6DcyGolkRBh9OjaCpwFCRsYnMmGU02ggbRlE/da3l82OBDxt29izYzFFxY24iMQkVZKRnkZS5ontCHx1vq8pWKZ/JgmmQ/viyB4PS7+zcIVSwQrZxEmz2gnxO/ZalOGyuHgLXutGohwLMR1Dwe5wuCo7AIClu7tUjkQ4HqJmRBh99heuio6rwmBK+CuYM2kve4Gy4la8Uipa2omJ0BGRcGyJb4ujE7vHt7z0w8bF7HUU8EDyvcQYY7B77Hza/CkAy3KWHXKs3VHHd9vjuVjr4QPCuXRWzYhYutufn2z/C1h1vH+qest5vy/GosOohU1Vooh1NBqZP+mCcDiyA+zfgmkKGA7fUEoQBsphb6C40oJT8wzgJdL7EnGxcRD7wDEd3+Lo5KEtn+BRfDULy93/Yp+Sx39q/83P4m4ntyMXDZDhn3XIrEi1bTP7ds3hNI3CB7osLp+eO8ivbvDU2W20+3+Fof0UTo5MVjucPuKsOspa+6/7EUY2kYwIo0v1o4AMMQ+qHYkwhpTkvkubawIQh0GqYWJSHKbyD6G6AbrzIfXtoz5HdWdbbyICoPR8dSsunq16FhNeKvxBFzarz3H5DW+hLbmONA18HnARl2csHcRXNvjOXv0o+Dfzm/Db1Q7lEDNjjSzO66Sty0OQn3h7G01EzYgwujT+x7fxWdi1akcijAHN+zawY8sq2nrauMcEN5M14yJMIdN9e9r45UDLO5A/zbcP0mG0ODr51+5vvnev0vsvL16u0UOcBqJaXuGjvIU0uZpYW/4AQaXXYZVgZ/g9XDjCExGAPHkZki2bP826VO1QDnHuJF8R6we7RN3IaCOSEWH06FgHnkYIPrEiQkHwuOzs2voB5XV6vFgIkHxt3KNTFh0YpDFA5nYIuRK6dsCOeHDV9vt8do8T70HJB4Dyve/v0IO3566Lulbx3MYosuofoxNoSnyV05P/MoivcGjcvv4NCCxgtuEitUPp16WZviLWFXtEMjLaiGREGD2qejbDix/5f7SFkati94fk5ubhUCagp4FJSRbSph+hjXvquxD7qG8F185k6Nh0jGc6kIxM18A0LWilA48+bPBSK4Nf+nqyo2487tcznF6qfhUckaw8a2T297GYNPjrJbZVix18RxuRjAijg7cb7OvBnA6GKLWjEUah9vo8dm5ZQVNPG/fwgGqyZ55HYGja0Q+OfRBSPwDFDQVzoenNox5y8MzIT/TgPmiiRNOTlEzWBxKvDxngK1HHpxX5eKzrCeteSKDBrHY4h5UcomOfTRSxjjYiGRFGh5o/4CtcHTlLCYXRweNyULjtXYqrHHgIw08qJTt7GgmTLx7YE4VcBhnbQGOG0uuh8t4jDt+fjAQC1+tBL/V9XJJAkrugaCG46gYWiwpu2PwnQOKtOce2ukgtc+JNuLxQ2SYSktFEJCPC6ND4Mmj8IfRqtSMRRpF9e5eRm7uFTiUFHW0kxUrH3cYdAP9syKn07YdU9xcougBkmWbHobvFyorvzfBaPRgP+4ReX6O1kuuOL55h0tbdRYv5K/Tt8zgrfora4RzRxem+/7fv5tpVjkQYCJGMCCNfx7fgafIVEgrCMbC3lZG39VPq2yNR0BFsLGPqzLMIiZ5x4k+uC4HsMvCfB+3LcOycxGuFh+6k28o+AH6hB+mQR/cvO9WA/0wI/cGJxzWEzlr1GJjq+Wn8zWqHclTn9LSF/7JYtIUfTcRCbGHkq/yd72ucKFwVjszjclG6ewkdniQgCqNUSerk+Zj8TxrcE2l0kLEO+57r8W99k8f0d/J/rj/RQjgAbsWBGwfnaCFdC4riK2eVAIzJvr1wrAsh8HTQBQ1ubENgi/tj8KTzzJkjewYHQKfTEGTSkFcnilhHE5GMCCObpws6vwNzFhgi1I5GGMHqylZT26xBllLRYiM6XCJywtDuX/Sa62bCPBJX6/7Lo4Zf85TrfkqYzEaPr0naDA24FMiXE+jw/yGnp/0UjPFDGtNg+82md8GSR07X79QO5ZhNCtOxVayoGVVEMiKMbDWPADLEPqJ2JMII5bA3Ulz0LU4lHpCx6opJnTr0tUWtzk7yWmuAc6hzx3CH/m/cZXyCD/SPsrz1S/yAz7wS1Y77MWjS0do0TJfCCRzyyAbXPyteBP9wVp45eroen5ZkYtM+FztqnOTEHL5iRxg5RM2IMLI1vgqaAAi5XO1IhBGoJPc9dhWW4lTiMUi1TJkUPSyJCMC6utIDcUjTqJ20G2PgbK50/ZYGBa7T65ijfQ6DJh0AryJT09U+LLENljU1e3BZ1xPcuYAwvwC1wzlml/U0P3svTxSxHqzF0UmlvaXPraWf4ms1iJkRYeRqXwPeZggb+UVzwvBqrt7IvtoOPFIyGrqIDLITk3rhsMaQ11Ld+++skBgSgieCdSUVm8y8aZI5c2Y1n1WW801dce8470F714wGV2/4E1g8vDTzyMuYR5o5cQY0EnxdJnbw3e/7Gznup5M0PDrzQkJM/ipF5iNmRoSRa999vq/xf1Y3DmHE8Ljs7N76PuW1WjxYCZBKyMqeQ0zqucMeS6PjwKfuuq4OFEXh2/ZNTO6U2R3+ICHGCOZGJPU5Jtw0emYX7C4HDcYv0badxGVJ09QOZ0A0Gg1hfhoKG91qhzJidLgdhyQiAB5Fxu5xqhBRXyIZEUYmjx06N4I5G/RhakcjjAAVBUvIzc2lW0lETyMTEwNIm37V4du4DzHpoAW71V1trK4p4pGyRwAtP51wJwDbmqt6xwTqjYSbR0/FyLmr/grmGn4UdYPaoRyXzEgDLV0ysjy6ZqOGQqW9hZcL1x/28YqOlmGMpn/iMo0wMtU8AigQ+3u1IxFU1t64i4qKKtzEI+Ei3H8fCVMuUTsswkz+2O0HPlE+X/whX3m+4q7Ih9jd3MYbjbkU2xp7H0+zRqoR5nFb170EXJN45eLReZl0QbKZ1aUOvipxcObE42xyNwaUdzTzVN4qnN7Dd6R9u3gzoSZ/0oOjhzGyvsTMiDAyNb4GmkAIGXnblAvDw+Ny+dq4V3ThJgyzVEZ2ds6ISEQA5kYm9/l+k/cdLERhb0nhnZKtfRIRgEsSpw5neCfkj1s/RrHuYArnqx3Kcbs621cDsWT3+N3B16vI/KdwXW8iEmEK5IKELG6ZPI9LJmQT7Wf1jUPhpcL1R0xYhpqYGRFGnvZV4G2B8FvVjkRQyb69y2lsD0SWUtDRQlxMMKExI6sD70kRSSyrzKfd1c0az7/Zp+Rxlu6XaKRD/6xOC40fVZdoHi99HgJC+OLM0bsX1MRwAzoNrK8Yv0WseS01NPXUNiUGhPDr7IUYtAd+Ps+OT+fZXV+zu7WWTo+TzY3lnBKVqkqsYmZEGHn23Q9IonB1HOpsqyBv6yfUt0cgoyfYUMrUmWcRGjNT7dAOYdLp+cGkTFZ7n2GvshaAROnQOOP8g7h+4pzhDu+4bW6owGFZi8U+n7iAILXDOSExgVqKW8ZvEeuWxoref18wIQuDVocsK5S3+v6baCUNF0/I7h2z+aDxw00kI8LI4rFD52bwm+rbA0QYFzwuF3t3LqawuB6XEo1JqiJjcirJWSNrNuRgXzR/wTn5p1AqbwZAix5JOlDUatTqmB89id9kn4W/Xp0i2+Nx6dpHQePkn1N/o3YoJywnxkiHU6HbNT6LWG2uA7NCEy2+DtYfF3SR9Ncq/ra2DYDEwFD0Gu0h44ebuEwjjCzVD+IrXP2j2pEIw6S+Yg01jQqylIoGGzHhEpETRm6tUJe3i3uK7+G5fc+hQYOCAoBVZ+GGSSfh9Hqw6E1kBEdj0ulVjnZgHC4X1YYv0LbP5keT5qodzglbNNHMxwVdfFzYydXZo+cy2WAxaLW9/25xdhKsWLjr0yYAzu7ZUNDmcuCWvb7xGu2hTzJMRDIijCxNr4PGAsHD28BKGH4OexPFRWt727hbdMUkTblUtaW6x2KrbSvX5F9Dabev+6rMgU/cfloz875X1DraXPjV38GvissCRs8+NEdyRZY/d3zczLKC7nGZjEyyRpLXUgPAmtq9vPRVLNXtvsQjKdiXKH9du+fA+CD1VnyJZERQj7sRtIGgMfm+b/8CvG0Q/lNVwxKGXmnee7Q64wFfG/fk1Kn4W2erHdYh7t+0lGanr112rncZG73vAKBw6LS/WeP7pLm1sZKlFbk0O+xEmAO5LCmHrJDY3nGKovBJRR5r64rp9rpJsYRxbeosIs2WYXhFR7bK/j7ok3nrvJ+oHcqgiAjQYdJJbNqnflMvNcyLTGZp+U48iswz6zrYWOogPUJHjU1Gr5NZua+I5ZW7AN+O0qepVLwKIhkR1JSXBYoDwm+G8Nug6gF8hauPqx2ZMESaazZTVdOGt6eNe7i1hbiJI3cW7L6cRcgoKIpCzpYHULyHrz3w0/pRYmvkpcJ1XJI0leyQWDY1lPOv3Wt5YNo5xPoHAfD5vgJW1xRxY9pcwkz+fFyeyzP5X/H7GRf0XrtXw1N5K1GsW0mx/wydbuy8NSQE6ahoU2/JqpoC9EYuSszm9V272VQ4AYPOQ0O3nW6Pid9+9yFO+cB/l4WxU1Rd8TV2fuKEUUgGbzvU/QPqnvLdZUiEnk+YwtjhcXWxJ2853UoiEIS/VEJq1iUj+pLMwbMiAAuUB9ih+ZQ8eRkKcp9LNAB+Gj/eL92OTqPl4/Jcvqsv47KkHBICgllTs4frJs5GlmWWV+YD8FLhOlIsYVyWmMNfd65kR1MVsyISh/Ml9vFgwTNgsbBiwdjaIXtWnJE9TW6a7B7CAsbfW97ZsVO48b8GFOCUrBJWb58EQIdLxtDzn2NBzCQuS8pRLUYQyYigJl04eBoB74H7XOWwPQrCb4GIn4BJvWlDYXBUFnxEU2cEipSEngYmTEjAGn6V2mEd1f5Zkf2qOlr5524/bgi9mUcafojNa0OLFm/Pz6+EntKOJrJDYrgsaVrvrMjJkcmUdviKBpeU78Qpe7gyeTqTgyL5uDyXFwu/JTEwlNKOJtWSkV0ttXRbvsa/Yz6p1nBVYhgqF0w2878ddt7L7+T2k6xqhzPsfvdZC3U2DT+YamB77YGaprrGSK7OMTM/eiKJgaEqRugjlvYKw27/NtYOzWF+AbxtUPek7zKOd2Rsby0MnK2pgNwtn9HYGQdAmF8l2TPPxRqeoXJkxybQYMJqMPfeVtcWARBm7cLmtXF28NmcE3pO73i704sEzApPJNrPysWJU0kICKamq512l8O3kV5dCQCzwicQ5x/MTWlzaXN241Vk2lVcVnnB138EXSd/zbhbtRiGykVTfJ1YP9/TrXIkwy+31smTa9uJDtRyRnIghXV6fNUhEl2tadw46aQRkYiAmBkRhtnB21jfrPMwUyOhkZT+B8c+CFp1t7UWBs7jclGS/xF2OQkIxyyVMynrHHSG0bNj7fd5ZC+FbXVEmi3cXfJjdJKOD7I/IEAXwNrWtdxfcj/a7iQ4aPM8gPTgaNb1JCBNjk66vK4+j5t1BpICw2h3dRFiVOdn3ePxUK5dgaZ9Jj9bOF+VGIaSn0FDoEFiR+34KmKVZZmzXq4FCd65OpwL3qjv8/g35Q4qWt1MCB4Zy8/FzIgwrOweZ+821h2KBfmQH0EJ0ELSqxDzwLDHJ5yY6uLPyMvdiF1JQUc7idEy6TOuGNWJCMDaumK8ikK3KY9GdyM/j/s5ATrfazo1+FTWzlxLunQefjo9NveBGQ6L3kSXx4XVYMLmPvDJ/ODmUhaDiS6PG6vBNHwv6CCXf/0s+JdzrvVqVc4/HFJC9dTYvEcfOIbc9H4TDZ0yD8wP4un1Nro8fT/0aSR4c4ddpegOdVzJyHPPPUdiYiImk4k5c+awadOmI45va2vjjjvuIDo6GqPRyKRJk1i+fPlxBSyMHXYCkTj4F0TrW+Y7aRmE36hWWMJx6LJVkbf1Y+rawpExEKQvZerMhYTGjrzlusfjy32FaJH4V+Of8Nf482Tqk/2OizAHUthW1+c+jyKTHBjW+32g3thnjFeW6fQ4+4wZTp+2vQNdE/ho/i9UOf9wmJdgxC1DSbPr6INHkc+qdvHY9hX8Yv27/Oa7D3h+9zfUddlYU9rNG9vtTArTMy3GyJLdXXx/IZiswF/W1vL7LcvIa6nu85iiKHxcnstvv/uQO9ct5u95q6jvtg3paxlwMrJ48WLuvvtuHnnkEbZt28bUqVNZtGgRDQ0N/Y53uVycddZZlJeX8/7771NUVMR//vMfYmNj+x0vjG0u74FPJx2KBU3PigQFDeiCYcq3ELRIrfCEAVIUhb07F1OwpxaXEoNRqiJjcjIp2SO3jftANXbbaXJ2UqffQKfcyZ9S/oRG4/vT+WrRepaU7QB8MxyJgaHsaq1l5b4C6rra2dJYgawozI+ZhEXvWyU2K3wCy6vy2dm8j+rONvbaGjBq9eSExQ/7a3ux8Ftk62YS3GePqeW833dJhu8S2OLcsVWDtqe9gfkxk7h36tnclXkGXlnm73mrufiNOnQa+OC6CH6ypPF7Fw8P6Og24edN4F+711Ld2dZ7//7l59dNnM29OWdj1Oh4Jv+r3k6tQ2HAP31PPfUUt956KzfddBMAL7zwAsuWLeOVV17h3nvvPWT8K6+8QktLC+vXr0ev912bSkxMPLGohVHHI3v5pCKP1TUHuv3ZsSBJoCjQpYvFP+MbMCaqF6QwIA09bdy9UioaOogOU4hKHLlt3I/XJxU78SoePu18kQh9BHcl3NX7WIuzC6nnT31yYBhNDju3pJ3M0oqdfFS+E0mSyAyOJtY/CEVRsOhNBBv8WBCdxpt7N9HlceFVZK5ImqZKj5Ff5/4NrH58cvrYWs77fWemmJCA1SXd3L8gWO1wBs1dmQv6fH/jpJNY+NYGbE6ZZy4M453cTpq65MMmI1oJSmuiSEyq6V1+rigKq6oLOS8hk5xQX/H5TWlz+c13Hw7p8vMBzYy4XC62bt3KwoULDzyBRsPChQvZsGFDv8d8/PHHzJ07lzvuuIPIyEgyMzN57LHH8HoPn2E5nU5sNlufmzB6eWWZFwrWsmLfblwHNdkJpBUAGxYe6nqAFQ1daoUoDICjs4X8rR9S1RiAF38CtcVkZc8jKnHB0Q8eZWRFYa+tkUrDCtw4eWHyC72PvVq0nuTAMG5M8+3hcmZsGrtaa2lxdvKz9NM4Jz4dWVG4LGkaAJIkcWbsZD7bt4sJgSH8MusMMkJiCDX5c3rMpGF/baW2JuyBazDbTiU7dGzPVGs0GoLNGvLrx/YOvu/n29iyN54ZcRI/n2flsgx/fnmyhcsz/ZgZa0CnAQ66NO5VYOnuLtKDo3uXnzc5OrG5HUwJiuodt7/Qev+YoTCgmZGmpia8Xi+RkX3710dGRlJYWNjvMaWlpaxevZrrrruO5cuXU1xczM9+9jPcbjePPNJ/Nv7444/zhz/8YSChCSPYin27evdH0EgS00LjSQoIJaX1U9wOA793/ZUuAllSvoNUSxip1giVIxYOpzT/fVodcUCCr417Shb+QWOjLqQ/hW111DmaWOV+l4nmiVwacWDm5+BZEYAUS3ifWZEIcyC3p5/a23kVYFHcFFxeT++sSKo1nF9kLFBlVuSc1X+EwDYemTR2a0UONjlcz3dVTmRZ7r3MNpa0dXv51bJmAk0KX97kS26nxxqZHmvsHRP7eAXom3nh0mDC9dHsa/dgNWnQ6529S8v3F1pbvldQbTGYhnT5+ZBfJJRlmYiICF588UW0Wi0zZsygurqaJ5544rDJyH333cfddx9Y726z2YiPH/7rqSeioqOFbU2V2D1O9JKG+IAQJlsjCTWP7lUFA+WWvXxVsxcACYlfZp5BWlAkyN3QsAKi7uIMZS6f9nSlXFVdJJKREailditV1S14pCQkuomwNo/oNu6DJT04mr1+ryG3e/lfxv/6PPbr7IWHjJ8RnsCM8ITDPp8kSVyUmM1FidmDHutAeDwe9kqfIbVP53dnnnP0A8aA05NNrK90snmfizkJ6qxcGkpnvpFPR7c/L19hJciv/7f2dodMrMVFZKDE7IgD/w3W1AxXlIc3oGQkLCwMrVZLfX3f9cr19fVERUX1e0x0dDR6vR7tQVsZT5kyhbq6OlwuF4Z+2kEbjUaMRuMh948GnW4Xb+7dyLbmqn4f//GkecyJTOz/YE8b1DwGWouvx8YYUNBaR0fPUsfpYfG+RASg5X3wtkLEbZxrSOKb2mJsbgc7mvfR7XFjHmVbr49VHlcXe/KX0S0ncaCN+0XoVFqGOty22baxrn0dcy1zmWWdpXY4g+aGb1+GgGLmu/+kdijD5sqsAB5f084H+Z1jLhm584utbCsPYuFEHTdOP3wH3W63QqBJ7rP8HMDmdvQuLd9faG1zObAaDmzNYXM5iA8IGvzgewwoGTEYDMyYMYNVq1ZxySWXAL6Zj1WrVnHnnXf2e8zJJ5/MW2+91WdqbM+ePURHR/ebiIxmnW4XT+aupKar/bBjXt2zHr1Ww/Swgz49KV5o/A9U3e97gzYkjvxkRJZBbgNnNbirwV3vu3mawNMMnlbwtpHoaOT3+maMOAnsVGCHFbR+4Cj2vU5TKjpgclAkmxorkFFod3WLZGQEqCxcSpM9DEVKRkcjifGxWCNHfhv3wXTdruuQkHgn6x21QxlUi5veBFMsy8/+jdqhDJtpMUY0kq/Z11ihKAr/3rWF178LwGKCZT86/BWELpeMrECYWU9hWx0LYyf3PlbQWte7tDzM5I9Fb6KwrY74AF+xb7fHTVlHE6dHD932HAO+THP33Xdzww03MHPmTGbPns3TTz9NZ2dn7+qaH/3oR8TGxvL4476dV2+//XaeffZZ7rrrLn7+85+zd+9eHnvsMX7xi7F3nfKt4k29iYhRo2NaWBwJASF0uJxsb66irtuGArxStIHEwFBfx0Xbaii/ExwFB57IO8QFu7IDXDXgrgF3LbjqepKIJvC0+GZovO0gd/jasctdvt11ZRcobnx7yRyma2ofGgLQYpQ0uNHhxQ+9IQH8p4ExBQJO7h3Z4T7QHVE3Bq/njiYdzUWUlZXgJhYJN2HmSiakj71VMkfzadOnFHYVcknYJSSYDn/pZbR5q3gzXut3RNt+iGmMfSA8msgALXuaxk4R69slW/jH1zKdDgMf3xBKt+yk2wVmrR6D1vf2/mrReoIMfsRofclHVmgEu1rXs3JfAVkhMWxurKDC3sIPJ/pqv/YXWi+vyifCHEiYKYClFbkEGc1Duvx8wMnI1VdfTWNjIw8//DB1dXXk5OSwYsWK3qLWysrKPsVB8fHxfP755/zqV78iOzub2NhY7rrrLn73u98N3qsYAVocnWxt8l2a8dMZuDfnbCLNlt7HL0rM4tWiDWxqrMAte9latZqz5Jeg7WPge8Vr8mHWwsuyb2M5dzW4asFdB56GvrMRnnaQbeC1+5IIuRsUpy+JUDzA4bdAP6CnC6qkA40BJBNog8HgD5pA0FpBF+S7TxcG+nDQRYIhCgyxoIsBnR8AdZ1t/GGbr8FdpNnCI1POQyv1TTYau+0Utvku/QUZzIQY/Y4hRmGw+dq4L8EuJwMRmKRy0rLOQWeYq3Zoqri14FZ0ko7XM15XO5RBdfv2v4JFzwenjO3lvP3JitLzxV4HHo+MTjf6P/T8d2cjhfsmc2pmKZ80bOSTnnZfN0w6iXmRvk3x9hdaN7b5Gr7NjQ1jQuTIK7SWFEU5lo+4qrLZbFitVtrb27FYLEc/QAWfV+3mw/IdAFyQkMWFE7IOPKgooLhp767j+W1vcJ7uA7K0O3vWVR/mP782vCeJ2D8bIR9+bB8aXxIhGUAygsbsuyyiCfDVomitoAvpuYWDPgJ0UWCIBn0s6EJhkGcmnti5kmJbIwCzwydwdcpMAvS+mqDarnZeKlzHvp6GO4f8txOGRW3xCura/JAlf7RKG/FRfoTGjc8kBOD5fc9zR9Ed3Bl3J/9M+6fa4QyaOruN6G+SMXZOx3HlF2qHM+ye+KaNez5rYdkNkZw3eXTve1XU6CL97/sI9dNQd3/CUVcI/erTJp5eZ6P8nvhh3Y/mWN+/x27LvWHW4jzQIyM9uKeY1+uArf74Zj7cWIH7jrkuV/LNOmh7ZiN0VtAG+ZIFXagvidBHgj7Kl0QYYnyzGCPQpYlT+VveKmRFYVNjBduaqkixhOOUPZR3NPeOCzb6sUCFfgvjmaOjmr17tuJSYgAvQfoSUrLHV13I98myzO+Kf4efxo+/T/y72uEMqrNW/RECmvltxM/UDkUVV2X5c89nLXy0u2tUJyOyLHPmS7UoCnzx4+hjWqpc2uLr8RRvHf5l5MdCJCODRH/QD4N9f/2D1uSbkQg4CUKvRdEG8r+965kif0O6Jh+z1I2v71w/l04yNoApeVhiH2qp1ghunXwKLxeuw6PIeBSZova+K7JCjf78InN+74yJMPSKdy6m3Z0ExGCU9pGaNg9TwBy1w1LdvSX3Yvfa+WvqX9FpxtafyHxlOVL7VB498xK1Q1HFhGA9Bi18VzW6i1jv+LiZapuXu0+xkBNzbH8z97V7MGgZsT1WxtZvmoqSLWHQs9fQ2rpipva00cUvB7QBEH4Du1pqWOtysJbpTLGE8MvYFqj7G3Rtw/e/4kB30iEvYh1m08PiiZ9xPl/V7mFDfRldHt/1ywhTAKdFT+SUqBTMupE5szPWNFR+Q02Dp6eNu53oUA9RSZeoHdaI0OXp4umqpwnVh/LbCb9VO5xB9ZN1r0NgAXOcD6sdiqpiLTpKmz1HHzhCbax08MLGDhKDdfzt/GPfXLGh04u/YWQmIiCSkUEzNSQOi96Eze0gr6WGJeU7OC8+E6NsR2nfxt62et7Yu7F3/Kkx6RCWAGHXgn0j1D0NLe/RWxviPfzy4NEq3BzIVckzuCJpOt0eN1pJwiSW8A4bR2cLJYVrcCgJgEygtpjk9EvRjbMVFUdyc8HNuBU3z6c9r3Yog+6VmlfBL4qVZ92ndiiqmh5r4IP8LuwOmQDTyH1z7o/HI3Pua3VoJVhza/SAjm3rlokMGJmXaOA4du0V+qfVaLgsKaf3+xVVu7ln4xLKHDqQ7fwtbyXtLl+b3eTAMHLC4g4cHDAHUt+GnEqIeRDMmWCIY6zSSBL+eoNIRIZRWf777C7Yg0NJwCDVkZYSzqScq0UicpA6Zx3vNrxLsimZq8ZYP5VPKvLwWDcQ1r2QgHHSsO5wzpnoW6334e7Rt4Pv1e800Not89ii4AEXoXa7FaICRTIyLsyNTOaKpGm9u1U4vG6KXBFIQHTPNZykwFDuyDjtkOWtgK8INe6PkJUHppRhi1sYu1rrt7Fzyxe0OJMAD5GWOrJmXEBAcJLaoY04P8j/ATIyb2a+qXYog+7GzY8BEm+f9IDaoajuikxfMrK8aHRtzLm8sJMPd3WRHWXgntMHtvOwyyPjVSAhaOReDBm5kY1SZ8VNIS0okq9q9rClsYJSxdex7iRzJZb4K5kdPgGdCptiCeOLx9XF3vxldMlJQPC4a+M+ULkduaxpW8OswFnMtY6tJc1t3V20+K1G334yC+MmH/2AMS7IT4dZL7G12nn0wSNEl0vmyrcaMGhh1c39b71yJPn1vhq9SWEjdzZaJCNDICEghBsmncT1E2fT7Tgd8p7mnJBuiBwbq2OOZEXVLpaU7+SMmDSuTplx2HFbGytZWpFLs8NOhDmQy5JyyAo5sI25oih8UpHH2rpiur1uUixhXJs6q08jOaF/VUUf09gR2tPGvYkJ8dEEjbHLDoPt2l3XIiGxOHOx2qEMuoWr/gTmBn4WeovaoYwYScE6SppHTyfW816rpcut8NrlYYQFDPxte0eNLxlJjxi5l2XFZZohpJE0+JujAC10F6odzpAr72jmm9pi4g7q5NefElsjLxWu4+SoZB6cfi45oXH8a/daqnsanwF8vq+A1TVFXDdxNvfmnI1Ro+OZ/K9wy96hfRGjmL25mNwty2noiAE0hJormDpzEUGR6u4QO9KtaFrBrs5dnBd6Hkl+Y+/y1Vb3x9CRztNzfqB2KCPG7HgjTi/U2Eb+qprXt9j4uszJ6UlGbph5fB/GChp9yci0aJGMjG9aC7gq1Y5iSDm8bl4uWs/1E+fgd5Qluquqi8gIiWZRXDrRflYuTpxKQkAwa2r2AL5ZkVXVhZyXkElOaBxx/sHclDaXNmc3O5r63w15PPO4XOzZtpiislbcRGCWKsjOyiQx/TK1QxsVbi64GS1a3kwfe7Uiv964GCz5TNNepHYoI8pFPQ3P3s21qxzJkTXZPdz2URN+eonlNw5s9czBSnoanqWEjtyLISIZGQ76KN/eMWPY28VbyAqOYUrw0a9nlnY0MTmo77j04GhKO5oAaHJ0YnM7mHLQGLPOQFJgWO8Ywaeu5Avycr+jQ0lFi43EKCfpMy5HZwxUO7RR4cXqF6lx1XBLzC0EGYLUDmfQ/bPyP+AM54szReHqwc6fbAZgZXG3ypEc2cKX63B54b1rI/A7gR4hVW0e9JqR2/AMRM3IgOxpb+CLfbuptLfS7urm9imnHnUXw6K2eiod2ZymlPLopqWcNyGrdwOj/b6q2cPKfQW0u7qJCwjmmpQZJAUeezMbtW1uKKfS3sL90845pvE2lwOLvm8hpUVvot3l64poc/v+QFi+V2xpMRwYM945OmrYu2czLiUW8GLVl5A6ztu4D5Qsy/x2728xaUw8m/as2uEMutX7inBb1xFsu5gwvwC1wxlRDDoNVpNEbq1L7VAO669ft7KzzsVlGX4n3Lq+wT6yG56BmBkZEJfXQ5x/MD9ImXlM45scdp7dtQY/UzxGycm54Tr+u2cju1presdsbqzg/dJtnJ+QyQPTziXOP4hn8r/CNkredFucnSwu3cbNk+cN6Y6OwgHFO99lV1EVLiUWo1RNxuQEkYgch4dKH8LmtfFg4oNjru07wDXf/QkkL6/OvF/tUEak1FA9tR0jswatotXN/Z+3EmzWsPiaiBN+vjaHTLB5ZL/dj73fwCGUGRJDZkjMMY//unYvYaYATo4/FfY+ycnmYnaHzeDL6iIygn3P82V1IadEpXBylK+vyHWps8lvqWF9fQnnxGcMyesYTJUdLXS4Hfxp24re+2QU9rY3sKZmD8+dcjWa7/VUsRh8nWoPZnM7sPbMhFj0vilUm8uB1WA+MMblID4gaIheycjXVLmOfQ1OvFKKr417iJuo5IvVDmtUcngcPFn5JMG6YO6bMPY6ktpdDhpNX6JrP4mLE0UBc39OTTSxtdrFrnoXGZEjq7Bz/n9q8Srw2Y1R6HQnnkR0uRUyRnD3VRDJyJAqtfXURgT2NDDr3EZ68AW8W7oNAI/spbKjhXPj0nuP0UgSk4OiKLWNjtqIyUFRPDz9vD73vb7nO6L8LCyKSz8kEQFfB9rCtjoWxh7oeVDQWkdyz6WpMJM/Fr2JwrY64gN8zX26PW7KOpo4PTp1CF/NyORx2ijK/7KnjbuBQE0xyRmijfuJuK3oNlyKi1cmvTKir6Mfr3O+/AuYa7kh6P/UDmXEujTdn6fX2Xgvz05GZIja4fT69bImyls9/HROIHMSTrwvkMcj45FHdsMzEMnIkLK5Hb66B10QoAVHEZZgEw6vG5fXQ5fHhYxCYD+1EXXdo2OjPJNOT6wuqM99Rq0Of52R2J4lvq8WrSfI4MelPe3yz4xN48ncL1m5r4CskBg2N1ZQYW/hhxNnAyBJEmfGTmZ5VT4R5kDCTAEsrcglyGg+ao3OWFO+6wNaumNQSEBPPckpkwkInqV2WKNag6uB/9X9jwmmCVwXfZ3a4QyJ9Y6PwJ3GS2f+WO1QRqxTEo1IwFel3fxe7WB67Khx8vdvbcRatDx3UeigPGdho6+fykheSQMiGRk+Wiu4xuey1BZnF1Jvk3xIsYRzS9rJLK3YyUflO4kwB3J7+qm9yQvAorgpuLwe3ty7iS6Pi1RrOL/IWDBu6lJa63dQWdWAR0pEwkFkYC1xaReqHdaYcF3+dcjIvJH+htqhDIlHtn6MYt1Buv1Xaocyomk0GsL8NBTUj4zmZ7Isc/YrtUgSrLoletBm7LbXjvyGZyCSkSFl0ZsOFKIaosFRgs3lwKTVY9Dq0EgSGiQ6vlesanM5sOpHb9vuX2cvPOL3ADPCE5gRnnDY55AkiYsSs7lonF3v9rgc7M3/mC45GQjBTyplYtaFoo37ICmwF/Bl65dMC5jGacGnqR3OkPhL6fMQEMLKMx9RO5QRLz1SzzdlTmRZVv1y3Y/ea6KxU+aRM4NICx+8xGF3gy8ZyYkxDtpzDoWxd7F0BEm2+GojADCmguKgoLWaZIuvNkKn0ZIQGEJBW33vMbKiUNhW1ztGGD/2FX1Mbu5WupQUdDSTHK9jyvQrRSIyiK7ZdQ0Ai7PGXtt3gM0NFTgta7HYFxATYFU7nBFvfrIZBfi2XN19alaXdPO/HXYmh+v5/cLBrV8p7ml7nzbCL9OIZGQAHF43VfZWquytADQ5O6myt9Li8G1FvaRsB68Wre8df3r0RJocdj4o206rPhOAkqadLIxN6x2zMHYy39YVs6G+lNqudt4q3oxL9hzSi0QYu+ytJeRuWUb9/jbupjKmzlxEcGSO2qGNKataVpFrz2VRyCIm+k1UO5whcck3fwSNi+en/VbtUEaFK7N8/Vc+3NWpWgwuj8wl/61Dp4Gvbjn+LquHU9XuRadhUFblDKWRnSqNMBUdLTyVt6r3+/d6VsXMjUjixrS5tLu6aXEe2JY6zBTAnRnzea90G/ldwTxigOsi7b3LegFmhU/A7nbwcUUuNpeDuIBgfpGxAMtBS1qFscnjclG6awkd3mQgEpNUQVrmWeiMY2vX2JHipt03oUHDWxlvqR3KkHC4XNSYVqJtn811qXPUDmdUyIg0oNXAtxXq9XW66I16OpwKz10cSpRl8N+S6+1e/PTS0QeqTCQjA5AWFMm/T732sI/fmHbom0haUCQPTj8XPKfCtt+Qqd11yJgFMWksiEk75H5h7KorXUltiwFZSkVLO3ERRsISLlc7rDHr9ZrXqXJWcVP0TYQYRs4yzsF0wVd/A3MVV/jfq3Yoo0p0oJa9TeoUsS7O7eDzvd3MiTfys5OG5rJaa7eXYPPIL/wf2fM2Y4kuANBBd5HakQgqcthryd+6lOqWYGRMWHUl5Mw8g7CEk9UObcySZZlf7v0lRsnIC5NfUDucIbPa/gF0pvDmqbepHcqoMjXKgM2p4HTLQ3YOr6xww7sNvLGtA0VRALA5ZG54rwmTTuKLHw/+5Zn9Ol0KkQEj/61+5Ec4lmit4NqndhSCSopz32VXYSVOJRaDVE1GWjypU0Ub96H2aPmjtHnauDfxXgyakb288Xg9mfs5inUbqfK56HRiwnsgzprouyS+rGjoNs2rbPPwxnY7N7zXyGVv1tNo97Lw5RqcHoX/XhWOxTT4b8Utjk7KbU14ZAgNUHprG0cqkYwMJ0MMeFvVjkIYZs371rFjyyra3SlocBIb3ELWjIsxBR771gLC8XHJLh4vfxyr1srDiQ+rHc6Qebjon+Cx8NmCsfsah8pVPUWsnxQO3Zv1/hUtAJ8UdJH010o273Nx7iQzV2QN/iaGLY5OHtryCfd8+w0ANa5yHtryyYhOSEQKPZyMqdCdB7IHxuDGXEJfHqeNPfkr6VYmINq4q+OnhT/FqTj518R/qd5HYqjkN9fQHfgN/h0LSLWGqx3OqBNt0WHUwqaqwVve2+LoxO458Hw767xIgAJ4Feh0+y7VRAZo6XDKBBoH72ezvKOZj8p34lFkmm1+AAT5d+NRZPZ1thFiOrEdgIeKeEccTn5ToW0JdG6CwHlqRyMMofLdH9LSFY3CBF8b96Q0AkKvVjusMa3F0UmzsxOvImPS6vDQzRu1bxBvjOem2JvUDm/IXPD1H8HSyZMZd6sdyqgVH6SjrNUzKM+1f1bCoxyoQdlYMAGdJprvl6W8sd3OqpJu3romklMST7yf0Ld1xby5dzMKvmSn1e5LRkItvhmRl4vW8fOMkZm0imRkOO1PQDrWiWRkjGqrz6WiqhaPNAEJBxGBNcSnXaR2WGOay+vhi30FfFKZ1+f+z9x/xYuXV6e8qlJkQ8/j8VCh/xxN+0x+uvB0tcMZtWbGGilu7qSty0OQ34m9Ldo9zj6JCECr3Yinn/pYWfH1AZn/Yg01908g4gR21s1vqeHNvZt60hDw1xmQPEGAQpjFN0vj8Hp4bvcaHpx2HqEjbIZkbM5bjlT+PSsmurarG4cw6DwuBwXb3qWkyomHUPykUrKzp4lEZIi1Ort4bMfnhyQibXItVcpOQohH75qgUnRD77I1/wS/cs63XqN2KKPaeWm+GYT387uOMvL4tHWae5OEg2kksBol/n5BKOH+J/Z2/GllXu85zoiZxF/mXEqcOQKjVuJvcy9hSlAUAF0eN19WF57QuYaCSEaGk84PJD049qgdiTCI9u35lNzcLT1t3FtJjtP0tHH3Uzu0Mc3l9fCP/K+o7WrvvS/KHEhiQCirvc8CcIbuTv5XvIntTWNzk8pl7YuhawIfzv+52qGMapem+2YJVuw58WSkw9239kRWoKO7774wWg3oNXD3KVbKf5fAz+dZkaTjb0y2r7OVso5mAGL9grgqeQZ6jZYgs4aZcUYC9CZumTyvd6PRDfWluGXvcZ9vKIjLNMNNGySW944R9rYyyop34yIKCQ8hxjKSMq9QO6xxY0N9WW8iEmYK4LbJpzAhMIQCewH3bywn0zSLEDkOgCXlO8gJjTuhP/gjzQu7v0G2bibBdotYznuCAkwa/A0S22pcx/0cLq+Hd0q2sr6+pM/9XQ4DiuL73L+/iPXqLH8eWxTChGD9CUR9wP4tSgDmRCT2/px/W+Egwt+XgAToTWQGx7C9uYpur5tmh50ov5Gzf5GYGRluerG8d7TzuFwUbV9MUXEjLiIxSZVkpKeJRGSYfVO3t/fft04+mQmBvs6qj5Y9SrAumDWzPiPV4ivUq+/uoKi9vt/nGa1+s+sp8PjxyeliOe9gSA7Rsc92fEWsbtnLP/K/Yl19ySGXYyrqg3r/nRblZssdMfzvmshBS0TAt8HqfgbtgbqTlq6+hSoHP3bwMSOBSKeHm2kidO8E2QVjtAHTWFZX9iW1zfreNu4xEToiEi5TO6xxx+X1sK+zDYA4/yASA0MB+G/tf3m74W1enPwioYZQTo5KodjWCECprZnJPdfNR7vi9kY6A9dg7jiN7NBYtcMZE+YmmMirc1PR6h5worCsMr/358yo0XFSZBKJAaG4ZC8/XO8BFE7PKmFSXBNasz8QN6ixh5sO9CrZ2Vzdu71IjEXLnHjfJSK37GVXSy0AWklDsHFkXUYWMyPDzS/H99X+naphCAPjsDeQv/UjqpuDkDFj1RWTM/MMIhJOUzu0ceng1Qr+ugPX4z9p+gSABcELAAg46DGPMrKukZ+Ic1f/EfTt/DHtF2qHMmZcPMX35rw4d2CNwdyyl29qiwHQSBJ3Z5/JtamzmBeVzI7SCKrbjDx9mUJafBOSBKurB39LkFRrBGE9CUlBWx3fNZT5YvOCXishKwoflG3v7X0yPSwes25kfRgWychwC+hZUWNfp24cwjEryX2XXYVlOJU4DFINGWmxpE4VPUPUZNLqMWt9n17LOpro9viu9b+a/irB2mCe3/c8ALtaa3uPCTGOrKWMx8vj8VCsWYHUPoPfZC9SO5wx4+xUX1v4VSUDK2ItbKujs+dNfkZYQu8s3brybn63opm75ln4+cwUIsyBABS112NzDW7reY0kcXbslN7vXy3awN/zVtHS7aLE1syj25bzVY1v4YSExMLYyYN6/sEgkpHhFniS76tY3jviNe/bwI4tq2jraeMeE9xM1oyLMAWKaXG1aSSJ2RGJALhkLx+W7UBRFPy1/twefzsv1bxEfls563qKCfUaLdNC41WMePBc/+1LEFDMGf5il+fBpNNpCDZryKsb2A6+7S5H778nWiMA6HbJnP1KHX56DY+fE4JGkphoiej3mMFyWnQqp0Wl9n6/o6GJ5i74vNBLTU+htwT8cOKs3oRpJBHJyHDTmHqW9+49+lhBFR6XnV1bP6C8To8XCwFSMVnZJxGdIj6FjiQLYiah6Vk18E1dMX/Z+QXf1hVzuv+l2L2dXLz9qt7li/Mik/HXj6xp6eP1XtOb0B3Hpwt+rXYoY05amJ56+8Au5xk0B4pCW52+WZUHV7bi9io8d3EoZr2m57EDl3+M2sEv15QkiWtTZ3Ft6izCTQHsLI0BJLqcBuzdBpIDw/h55nxOOShhGUlEAasatMHgqlY7CqEfFbs/pLm3jXsDSUkpBIo27iNStJ+V6yfO4Y0936EAZR3Nvb0WNOgolTezxfM+VwX/hCuSpqkb7CB5q3gTXutGYmzXYxJ7HA26UxNNfFflZFu1g+mxx9aePdUajoSEgsL6+lIKyuN46tt2/n5+KNfm+C7N1HXZKGirAyDY4EfYEHU/lSSJ06MnkuqXyBNL9/fWkTDaT+J3Zw9u0exgEzMjajDEgrdN7SiEg7TX57FzywqauicAMuEB1WTPPI/A0DS1QxOOYF5kMj9LP53o7/VL8CMIgG3yEjZKL+Jm8DZBU9Pt2/8Ksp4PTxHLeYfCFZm+JOH9/GMvYg0x+pMd4tuBu7QJHvi8jXB/ibtOtqAoCnvaG3hu15reJb+nRqeikYb2rfexNW14D1rV+9Y2Fw0DnPEZbmJmRA2mSb6aEdnhu2wjqMbjclCc/zGdchIQhp9UysSs80X31FEkOzSWrJAY9toaKbM14VG8rKgIoMPVAMDSpo+Yu3kun+Z8SoIpQeVoj1+NvR1bwFcYbacyJzJR7XDGpJlxBjQSfF02sJqOSxJzKGit59ON6SjA6dO38/utu3DJHlqcBwpiI82BnBEzaZCj7qusxc2LmzrwHtRGxC3DP9a186dFIUN67hMhZkbUsH95b8d6VcMY7/btXUZu7hY6lRR0tJEUK4k27qOUJElMskawKD6d8xOykKUDnTRlZAo6C5i2cRrr20bv79zZq/4IhhbuSf6Z2qGMWRqNhnB/LYUNAytijfG3kl84B6dbx+y0SkICHdR12/okIjF+Vn6ZecaQL6l95MvWQxqvyQr8Y3077Y5+dusbIcTMiBoCT/F9ta8H6xnqxjIO2dvKKCvZhUuJAjwEG8tIFt1Tx5ROb99pdg8e2jxtnL7tdP4z+T/cGHOjOoGdgF3KcqT2bP545sVqhzKmZUbqWV3iQJZlNJpj+7z++hYba0q8zIw18H8Lo1hf30Wjw44GibiAYE6LSmVGeELv3jDH47OqXWxvqqKu24ZBoyXZEs5liTlE+Vl6x+yqd/Hmdnu/m/J1umQu/2ATfz83nqyQAysCFUXhk4o81tYV0+11k2IJ49rUWUSaLf08y9ARyYga/Gf7vnbtUDWM8cbjclG6ewkdniQgCqNUSerk+Zj8T1I7NGGQdcuH9nGQkZEVmZsKbmKfcx8PJj2oQmTH59ZvX4PAQuY6H1E7lDHvjBQzq0ocrCpxcNbEo8+SVrd7uGVJE/56iTW3xuJv1HBW3JSjHjdQe9obmB8zicSAELyKwkflO/lH/mp+P+OC3tU5D37RglYDnn4nQCQ27g3nmbh1/H7m2cT6BwHw+b4CVtcUcWPaXMJM/nxcnssz+V/x+xkXnFDyNFDiMo0aNAaQDGJ57yDyeDy43YefWq0rW01e7no6vKlo6SQu3E7mjMsw+Y/ca6jj3Z72Bp7dtYZ7Ni7hJ2vfYscx7Lxb1FbPH7cuwyH3f81fJ/n+aC+t2sgd377D4zs+p6yjaVDjHgqv1b4Kjmg+X3iv2qGMeVdn+4pYl+w6tiLWU/9dg0eGj2+Iwt84dG+pd2UuYF5kMjH+QcQHBHPjpJNocXZRYW8BoL7Dw0e7u/DIvn4imp49ISUU9BrQSmB3SrS1xLGmpwGaoiisqi7kvIRMckLjiPMP5qa0ubQ5u4/p920wiZkRtWhDwF2jdhRjgizLFBYWIssyGRkZaA/aDMphb6S46FucSjwgY9UVi+6po4TL6yHOP5iTI1N4oWDtUcc3Oew8u2sNsyPjoO3Qxw2SgQuCr8TYMZ07Jl1MUmAYq2oKeSb/K/4w40IshpFZTL60PBdP0AbC268mYITGOJakhBrQa2BD5dFXYP10SSNlrR5+NsfCGSnmYYjugG6v78OXf08NSri/lg+ui6Sx04vbq9DU5eUPq9qYGufhkrQI3LKCrMCE6E5KO3yJRpOjE5vbwZSD9mwy6wwkBYZR2tHErJ7GgsNBJCNqMcRC1061oxgT6uvrcTp9fzhqa2uJi/Otpy/JfY82VwIQj0GqJWViDn6W2SpGKgxEZkgMmT1LJo/F17V7CTMFsChhIlTQ2/vBLAXSrXRwetDpzJSuJzEmhJOjUgC4LnU2+S01rK8v4Zz4jKF6KSfkps2PgVXLOyeNnstKo12MRUtxc/8zrSuqdrGkfCdxujT+vSmYlBAdz10Sdsi4rY2VLK3IpdlhJ8IcyGVJOYNWqyErCu+WbiXFEt57uUWjkbgs80D/kr2NLv6wqo2Z8RKPLAzuvX9NTRN7K30zhza373Lm9xNxi8E0JF1ij0RcplGLOQ3wgGdg+yCMNy2OTirtLX1uLY4D06dOp5Pa2gP7j9TX11NbvpGdW76kzZ2MBhfRQY1kzbgQP8vYaAcu9K/U1sTkoCh0kg6dpGOK3xQeiH2Cm4wvkGJOYXXraspsDX0+BWokiclBUZTaRualmqYuO63+q9G3z+OMONHzZrhMizFidyl0ufoWX5R3NPNNbTERpiCe+tIfvQa++cmhCXOJrZGXCtdxclQyD04/l5zQOP61ey3VPTtNw4FajesmzubenLMxanQ8k/9Vb9fgI3m7eDM1ne3cOvnkw47p9vjKWPXDV/ZxQkQyohZzT0dI+9Gnn8erFkcnD235hD9tX9Hn9tCWT2hxdKIoChUVFSjKwbXjMjVNWjxYCZBKyMqeQ0zquaq9BmH42NwOLAYTIfoQGk9tJP+kfK6O+AEeGf4v6U948VIibyKwv0+B7uH9FHisFq16DIyN3Jlwm9qhjCtnT/RdcllacOCDj8Pr5uWi9Vw/cQ6fbougvVvPK1eEE2M59ALDquoiMkKiWRSXTrSflYsTp5IQEDwotRpvF28mr6WGu7PPJNh4+AJbh7vn76LUd4bH5nZg7fkdsOh9r9P2vVkQm+vAmOEikhG1BO7fvXeDunGMYM2Ozj5bxe/nUWTsHietra10dHR871ENSBKRYUbSpl+FTrTMHpeC9EFIPfvWAFwWcTkhujDy5OUocn8LH0embZ5PwJbBU3NEndNwurLncseywgOrst4u3kJWcAwf7TCyozyE+Wkd/HBaYL/Hl3b4ZukOlh4cTWlPsfTRajX6oygKbxdvZkfzPn6VfQZhpoAjvgZHz8yIXW7vc39Bax3Jgb7LSmEmfyx6E4U9reoBuj1uyjqaescMF5GMqMV/lu+rqBvp1/r6Up7Z9dVhHy9vb6KysvKwjze1yXg8nqEITRihLHpTv5/wTFo9Bq2On8fdSaNSyn/r3jxkjFU/8gpD7964GCz5TNddpHYo405YgA6TTmLzPl8t2uaGcirtLUw0T+HBla3EhNi5Zd7h/77YXA4s3/uZsugP1GEcT63G2yVb2NhQzs1p8zBp9bS7uml3dePyHojj1aL1LCnbAUB3z/reNm8LK/cVUNfVzicVuVTYW5jf0wVWkiTOjJ3M8qp8djbvo7qzjVf3bCDIaCYnbHgva4sCVrVodCAZwVmidiQjztraYt4s3nTEMZVVlUzRB+FbxHYor9dLdXU1EyZMGPwAhREp2RJGfkvfFWoFbXUkW3yf8B5MeoC/lz/Pq3Uv8YfJdwO+QsDCtjoWDHGL7uPxbOWL4B/OyjMfUDuUcSkxWEd5q4cWZyeLS7dxZ/rpzPqHb4uBG05uQquxHuUZBtfXtb5WEH/LW9Xn/hsmncS8yGQAWpxdSD1/Ex09Ocr0oMmsrSvgo/KdRJgDuT391N6iV4BFcVNweT28uXcTXR4XqdZwfpGxYFh7jIBIRtSlCwGXWN57sHZXN++UbOn9PjsklhlhCYQY/ajpaufbuhJmuhoI1wcfdJQCSEiS1Kd+pLm5mYSEhD7T9cLo4fC6aey2937f5Oykyt6Kv85AiMmfJWU7aHN1cVPaPABOj57Impo9fFC2nZMjkylsq2drYyV3Zp4OgE6j48ygc1jS9l9eKHmfi6PPYlV1ES7Z0/vHfKRYva8It3U9Ie2XEOI3NDu8Ckc2K9ZIYaObnQ1NdLgd/GBJLk1dEzhvViHN3ja+qqljTc0enjvl6kM2vrMYTNi+V4d0uFoNq+HAkmCby0F8QFC/8fz71GuPGvOvsxf2/nt/zUiSfwQ3zEw97DGSJHFRYjYXJWYf9fmHkkhG1GSIg87takcxvOyboOFFCDwVrGeBoW8l+tra4t46kVOjUvnhxANLcRONRuJqv6BdNwcUBRk3GqMfFpMfer0enU7X56vRaBSJyChW0dHCUwd9CnyvdBsAcyOSuDFtLu2u7j57f4SZArgzYz7vlW5jdXURQUY/rp80h4zgAz9jL2X9nU/WvsOzVS+QV+shLiCYX2QswGIY3h4RR3PNd/8HVi+vzLpP7VDGrQum+PHfHXZyKwPINi7gxcIuZsTDi4vm8fqe74jys7AoLr3fHXiTA8MobKtjYezk3vsOV6sRH+D7YLW/VuP06MMnDgPh7Nkpz6QfHX8DRTKiJtNk6NwMHjvojlyMdDxaHJ3YPQca9wTojISYVP6UZd8ATS/7buDbwdh6ri8xCTydHc37eoee19P3QfY4qSlZQb09mgBZj0XzHf/uCqADI3Mtydw4caoar0QYYmlBkUf8NHhj2tx+j3lw+uFXT4UYQpgbNIe1bav4ZPZ/SPJLGpRYB5Pd5aDRvApd+1wuVvnT6nh20WTfSpVlhU7WlDrw02tY8+MJBJg0GLU6/HXG3ssdrxatJ8jgx6VJOQCcGZvGk7lfsnJfAVkhMWxurKDC3tL74ergWo0IcyBhpgCWVuQOaq3G/pkRk350lIaKZERNftOh+b/Q8Q0EnzeoT71/WezBq1F0koZHZ16obkLiP6Pv94494CiF+n8AOq4nhRptOB2aSELqN0HnFmo6Z1Gv+SE6OohJWYASEE/HxiUAdLqP3iVREA723KTnyN6UzR177mB5znK1wznEoi//DKZabrQ+pnYo45rJoCHQKLG6xIFXgeU3RhJg6v+N/eBaDYAUSzi3pJ3M0oqdqtVqOL2+v/2mUfIuP0rCHKN6d+/dMOjJiN3jPGRZ7P4lsSGomIz4TcO3iOvg2Dy9XxMoYoKuCABvawragFnEWGLRdBYTlXwhGr0fRW31vUeadfrhilwYI7ICs5honsjnzZ/T5enCT3f0zdCG0wbHR+BK4z9n3qh2KOOeQQsdCvxkdiALD9o07+DajP6+B5gRnsCM8ITDPvdQ12o4e/6sGnWjY2bkuKJ87rnnSExMxGQyMWfOHDZtOvLKh/3eeecdJEnikksuOZ7Tjj1+031fu3PVjWM4yDJ0fAvVj/g2CTyCVjmIx52/52Pr+5D6Npq43xCTdjUavR+KovDFvoLesRnB0UMduTAG/Tn1z8jI/Lb4t2qH0sdDW5aiWHeSoblA7VDGvdUl3TR3+S513H3K8K6cGQzOnj4jZt3oqBkZcDKyePFi7r77bh555BG2bdvG1KlTWbRoEQ0NDUc8rry8nN/85jeceuqpxx3smKPRgGQCZ7HakQwuRQH7Fqi6H3afCtvCYYsOCk6Fur+Bcvhul47gH/GQ+2nKmciKfbt5v3Q7bT1FirVd7bxUuI78Vt8KpEC9kelhh//kIQiHc1nEZYTqQnm19lVkud/91lXxRNnz4ArhyzMeVjuUcc3ukLno9Tq0Pe/j7+Ye2w6+I8n+AlbzKClgHXAy8tRTT3Hrrbdy0003kZ6ezgsvvICfnx+vvPLKYY/xer1cd911/OEPfyA5eWQtoVOdLgRctUcfN0BNjmH85enKh32/h4IFsC0KNutg9yyofRzs6wANBJwGMY9Axk6Y8Cx9+4NoQdJB4n8wT3ydcydM731kZXUBv9v0Eb9Y/y6/37qMLU2+RmcScG3q7GFfCy+MHb9K+BXdcjfP7XtO7VAA2FBfjtOyFot9AVEBR98sTRg6C1+ppdOt8J/LQpGA1aXdRz1mpBnTMyMul4utW7eycOGB62MajYaFCxeyYcPh25r/8Y9/JCIigptvvvmYzuN0OrHZbH1uY5YhHryD9/rsbifP7/qafx9my/W1tcXf28tlgLr3QM1jUHgWbI+BTTrIz4KaP0DH14AHAuZC9L2QvglmemB6PaSvgbjfg382+M/E1xsEQAv6SJiyHiJuAeC8+EwumpDdpyDMeVCXQaNGx82TT2b6MHcIFMaW+ybch1Ey8ljFyCgUvfzbP4LGzb+m3aN2KOPan9e0srHKyXlpZm6aaSXET8OuepfaYQ2Ya//MiGF01IwMqIC1qakJr9dLZGRkn/sjIyMpLCzs95hvv/2Wl19+mR07dhzzeR5//HH+8Ic/DCS00cs8GTo3gqcNdEEn9FSdbhd/y/2Smq72w475pq4YjaThmpQZR+/B4aiA1vfBtgq688BVx4FiU0Ab7EssAk+G4EvBf57v0tPR+GUDWsALgadB6rugP7APgiRJnJ+QydyIJL6pK6agtRaH10OA3si0sHjmRiTjrxd7zggnRqPRcE3UNbxe+zorm1dyVuhZqsXicLmoNa5E2z6ba1NnH/0AYUjsqnfxwBethJg1LP2h731uSrie9ZVOZFlGcyx/30YIV8/MiGmUTB4P6Wqajo4Orr/+ev7zn/8QFnbsm+7cd9993H333b3f22w24uPH6KdgvxnA6z3Le09sD4ol5Tt6E5FAvZFTo1KJCwjG6fGQ27KP7T09PNbU7iErJIbMkIMajrlqfYlH+5e+/XLcNaActNuj1gp+U32zHsEXQ+B8X0v746ExQ8RPQBcKsY+A1P9vS4jJn0sSp3JJougjIgyNp1Of5o3aN/j13l+TG6peIfn5q/8G5n1cFSBav6vF45FZ8GINigJf3RqNrmcVymlJJr6tcLJxn4u5CSNvD6PDcXl9X/3G4sxIWFgYWq2W+vr6PvfX19cTFRV1yPiSkhLKy8u58MILe+/bXyym0+koKioiJSXlkOOMRiNGo3EgoY1egT0FvfbvTigZ6XS7+K6hDPBdxvjd1LMJNx/YUXJeVDJf1+7lreLN+GGjofJv0FwBXdvBVQ3KQf06NIFgSoeAkyDoArCeDZpBnolIHBnX6YXxLcgQxOlBp7OmbQ0lXSWk+B3692g4fNX1AWhTeeP8W1Q5vwBXvt1AY5fMHxYGkx194P3nyqwAHlvTzgf59lGWjPTMjIySBh4DCtNgMDBjxgxWrVrVuzxXlmVWrVrFnXfeecj4yZMnk5eX1+e+Bx98kI6ODv7xj3+M3dmOgTD3rDHvOrFPZXmt1bhlXyo8NzL5QCLiKAV3PXRu5bTGF5hn3INOcSO5QHGBpPEH00TfLsJB5/tumtHzCycIJ+rZtGfJ3JjJHUV3sGLaimE//xM7V6BYtjGx4050ulHyzjHG/G97Bx/t7mJGjIGHzwzu81hOjBGtBGvLDr8KcCTan4yMlktLA/7Jv/vuu7nhhhuYOXMms2fP5umnn6azs5ObbroJgB/96EfExsby+OOPYzKZyMzM7HN8UFAQwCH3j1saDUjmE969t+OgbadTenYpxV0PuZMAL6BF0gZil6Ip8sSTr0zlkqkPERZw6IzWUPqsahfbm6qo67Zh0GhJtoRzWWIOUX5HXj2wtbGSpRW5NDvsRJgDuSwph6yQ2N7HFUXhk4o81tYV0+11k2IJ49rUWUSaxaoE4cgyAjJI80tjZctK7B47AUOwNcORPLLnnxBoYfkZDw3reQWfOpuHmz5oxKyXWH1rTL9jIgO07Gny9PvYSLU/GRktBpwyXX311Tz55JM8/PDD5OTksGPHDlasWNFb1FpZWUlt7eAvVR3T9KHgrjuhpzBqD3QibXJ0grcT9lwAWgtM/Bhm2mFGK8/r/s2r3p+xWT4ZkzHoBAMfuD3tDcyPmcS9U8/mrswz8Moy/8hf3We1zPeV2Bp5qXAdJ0cl8+D0c8kJjeNfu9dS3dnWO+bzfQWsriniuomzuTfnbIwaHc/kf9U7WyQIR/KXlL/4mqDtHd4maLnN1XQHfkNAx3xSreHDem7B57QXa3B7YckPI7Acpt17VpSBNoeM2zNyetIcjXusJyMAd955JxUVFTidTjZu3MicOXN6H1uzZg2vvfbaYY997bXX+Oijj47ntGOXPgG8HSf0FGlBEb3/XldXhFx8DXQXwuRVEHwhaEyU2BqptLcAEOsXRIB++C/H3JW5gHmRycT4BxEfEMyNk06ixdlFRU9c/VlVXURGSDSL4v6/vfuOj7q+Hzj+un0Zl0X2IswEEoZMAREQFJHiaGutWsVdR20rtu6Kq2qtWmvl556tihsFEQdD9t6QhJHFyF6XdfP7/f1xcCQkgQSSXMb7+XjkAfne5/vN+74cufd9xvszmBj/YC5LGkZiYCgrju4DPL0iS49kcEliGsN7xRMfEMqNyeOosNexveRQRz010YVdFnkZ4YZw3i94v0OLoM36+QnQ1/LPIfd22M8UJ9z9dQn7S13cMsrC9IHNb5Nx4QDPrs5L9nedeiNOpWE1p86uawwmdXd+gwA3OEvO+BJRfkEMCo6inyad+9UboHIRJfHvQMA5uFWFrSV5vLb3RO2RSTEDzj7uNlDn9qzYCdA3P0E2q6qElJCGw0mDQ2PIqvLcrxJbDVanjUH12vjpjfSxhHvbCHE69ybeS51Sx8uHX+6Qn+dyucgz/IC2cjS3p0hl6o62IquOV9Zb6R2i5/Urep2y7ZVDPEN33+yt7YjQ2oTTrXK66g2dicyW6gwCRkDJ256iYWG/av357ioo+R93KS9hMHp6C44qcTy+30lo7gLsipNa14llun0svRgf7ftKuIqq8mnWFvoFRTTYzfJkVoeNoJN6cYIMZiqPzZOxOj2fVoKMJ7UxnmgjxOncl3gfj2U9xrO5z/LnxD+3+8+7YsV/wD+HWf5/avefJRqqdSj84v0C9FpYfXvsaSd5JoboMepg/aGu8/vE6ValZ0S0kuV8z5/VG1p3Xu0uyL4DtkVB7l0YHPu8D33l/i0A5Y7aBonIgKBI7k6d3CnKqH98YBNHayq5NWWCr0MRAq1WyzXR11DoKOT70u/b/ectrpwPtUl8PqnxSkTRvqa9nU+NQ+W1y8OJD27ZZ/L4ID3ZZV1nEqtToUv1jEgy0hmYB3v+rNt9+raqCqXzYc942D0Uit8CpY4T5dVBRcOQ3lfTOzCMQL2JYKMfw8LiuDt1MnOGTiXA4PsaLh8f2MSusqPMGTqVUNOpt3APMpqxOht+IrE6bQQf6wkJMnjGc60n9YJYHSfaCNESLw18CS1a7t3fvnM4Xtv7M0rwZno7p8ty3g72z5UVrMuzc/FAP24e3fLVdiPijNQ4Vay2rjGJ1aV0rZ4R+V/QGbRmeW/dLjh4db0DjTN1jf85nB8/kvPj2y7EtqKqKvMPbmZ76WHmDJ1KuPn0yyj7WsLJqChgWlyK91h6eQF9LZ4lzOHmAIIMZjIqCkgI9NQIqHM5ya4qYVJM//Z5IqJbCtIHMTl0MsvKl7G/dj8D/NtnbtVf9rwIFn8WTZbdeTtSeqGDB5aUEeanZeF1Uac/oZ4ZA/35fHctX+2uZvaozl8ywOUGbRfKRqRnpLMwhKM4CsirLvN+lTW1867fEIh/6hQX0nsqpnZSHx/czIaiHG5OHo9ZZ6DSUUelow5HvaW972au5avs7d7vp8Yls6c8nx8Pp1NQW8nC3J3kVpcxOXYg4NnLZmpcCosP7WZH6WGO1FTw7r51hJj8GC6b6YlWemXgKwDclXlXu1z/QGUxNZaf8aua1HBLBtGuFEVh8puecu9LbzlR7r2lfpXmWW2zeF/XWFHjUtTT7z/WiUjPSCfh1Mejsx/i3e1vEKUpJFJTgJ/Gztjh7xDmF3KioUYDsQ+DMQmyZuMpaFafC4Iu6LjAW+nn/P0AvLBraYPjsweey/goz6TaMnttgx17+wVFcEvyBL7O3cGCnB1E+lm4Y/DEBpNep8cPwuF28b/9G6l1OegfHMEfU6d0irkxomsZFDiIFP8UlpYtxeqyEqRv20/BFy97HCxWnkz5Y5teV5zalR8VUVSj8NjUUIbHtn6oOthPh79Bw5Yj9tM37gScStfqGdGoZ7WffMewWq0EBwdTWVlJUFDn7x5rEVclFL8NtkywZaBUb0SrnpjzcPxf5UjKAeKDPftlLMzdyaI8z7wSDQr36J9moDYdjUYLHBvH1OhhRCXoPPMwpHKpEK23sHghl+68lFtjb+WNQW+02XVdLheGxSlonCEov9rcZtcVp/bJjip+O7+Yc2KMbP3jmY9fp/3rEPtLndif8v1qxNMZ+Hwe+VVuqh7v49M4Wvr+LcM0vmJdCofu9UxArVrZIBEBzyTUg+pAFF3DfRJi/YN5buwV/DvkFQZq07GH3QyGWOBYD0DAud5ERCqXCnFmZkXMIsIQwX8L/tumRdCuXfUGBBxkauAZLOEXZ6So2sX1nxXjp9ew4razGxYbm2DG4YYjlZ1/VY2ri/WMSDLiK6GXQeB4TvVPsNl9bqNjWo2G4LybMNVtQBN6OeYBb0HqJvAf4mkQfKG3rVQuFeLM/aX3X7ApNv516F9tds0vSj+EungWTpGKqx1l4uv5ONzwxSnKvbfUpYM9H/Q+3VXdFqG1K7eioutC2YgkI76i0UG/D0HbdOVRDSpblTGNjkfULUMp/YQ1yjTeVv7imeRqjIZBqyHuCYi41dtWKpcKceb+kvAXzFozz+U+1ybX++++DbiDNxJrvwizsfmKw6Lt/GlhCftKnNw40sKM5ObLvbfUjIGeMgI/doGy8G5VekZES5mSoPe8RocVVUOW2p9KGg7RDFLXc6v+X9j1CYQMeIsSWw3/3PkjNpcTdAEQ9zcwxnjbS+VSIc6cVqvl2qhrKXIWsbhk8Vlf7w87ngPFyIKJspy3I6zMquPltVYSg3W89ctTl3tvKaNeS7BZw84CR5tcrz3Y3S5+OpJBtdOBU3Gx9EgGJXVnt/dZR5BkxNfCZ0PIpag0XPWxSRnXsF3VGvoX3YFO54ff0C2k9urN3WmTqXU52VyS14EBC9FzvDjwRbRo+cv+vzQ4XmarabAMv9ml+Mccrq7AGrgCk3UioyN7t3fYPV6tQ2HmsXLvq26PO22599YYGG6goKrzzalzKwoLcnbw1/Vf8lnWVuxuBZfq4tOsrTy8eSHfH9rr6xBPSZb2+ppGA33eQtmZjNZVjkYDWo3KNne9IRpbLmRMBbQweAMYPMW+/PVGovwsFDeT9bamcmmw0e9EG4eNhMCQtnuOQnRRQfogpoROYWn5UjJrMkkOSKbMVsPfNi/EpTac2KrXaHly1CzCzI2HA6YvfQICy3iw750dFXqPdtE7+VQ7VN68IpzEkLZ9mzsvycymww5259tJi/F9NWsAt6rwevoqdpQd8R5TVdBoTyyW/TJnOy5VYWZimi9CPC3pGekE7NpQNgTM9e4jkKskUUEYAJW1hbBnOKgOGPgN+Kd6z7O5nRTbqhskEvUdr1xaX3OVS487Xrn0eBsherp5yZ6h1ONF0Kpd9kaJCIBLVah2NV2DYi+L0ViHMXfkpe0XqADgxVUVrMm1c9EAM7eMafsSBb9M9SSbn+5uvieso/1wON2biGg1GkaGJ6LX6AkwGBr8Lv8mdyeZFYW+CvOUJBnxsRJbNX/ftoT3iyPYpyQDcEQ9vg5eITprEqq7AhL/zedlUeyrKKTEVs1BazGv7V2FFg2jIzzdvlK5VIi2lxyQzOCAwSwvX47VZW31+TetehsCMxlvuqIdohP1ZRY7+Ot3ZYT6aVl4ffTpTzgD4xNNaIAVWZ1jEqtbUVh+bIWkBvhj6hRuG3QesRYDQyL9uX/4RVyeNMzb/qcjGT6K9NQkGfEhm8vJy7uXU1jn+QX3rvP3AJTrh6JDw72GvxOhLWaF6yLSTVdSbq/lrcy1zN28iDfSVxOgN/LA8IuwHBt2KbPXUuk48R/keOXSVQUHeHLrd2wtOdRk5dIpMcn8b/9Gnt62BLvbKZVLhTjJ8/2fR0Fhzr45rT73vwUfgC2GJdPub4fIxHGKojDpjXxUFX66ORpjK8u9t5RWqyU8QEt6kfP0jTtARmWB9/f+sF7xDAr1JGEhfjr6hBkAuCh+EKFGz7LkXWVHqHF2viqyMmfEh1YVHKDw2HyPKD8LNydfDPueYmZ0DBfalmEszWCPewjz3bPpnbOdh865+JTXu3fotEbHRkYkMjIisdlzNBoNlyYN5dKkoWf3ZIToxmaEzyDSEMmHhR/ySPyzLT5vQfZ2XCHriKz8LYGyg3S7uurjIgqr3fztghBGxLXvvU6NNPJztg1FUdp0cuyZKLfXev8+OPTEasr0IgdOt2fOiE6jJSUkinVF2ahAhaOuU+zeXp/0jPiIqqrefVoAfj9oIr0tYWAeAFUrMZa+g+p/Dl8angYgt7qMnKpSX4UrRI93X+/7sCk23ij4T4vPuWnzs6Dq+GT8I+0YmfhsVzWf765lWIyRJy4Ma/efN6WvHyqwMsf3PQx6zYle7OpjPR478+1UO1QuST4xn7CqXm+I3scJVFM6X0Q9RLXTTrHNU8WvX1D4iaETfThYl0HwRWhSNzIh5sQW5llWKUQmhK/ck3APZq2Z1/Mb1wZqSkltNeUByzBUjvfO0xJtr7jaxe8+KcKs17DilvaZJ3Ky3wz1TGL9ao/vJ7H2sZyoobK2MAu3ovCfdVbig3U8Ns2TmJXaathbkQ+AxWAm3Bzok1hPRZIRH3GqJ9apB9YvTKbUgcYI/T8FjR5Lva60pmbwCyE6hlar5fro6ylzlZKrbDlt+4uW/h1Mxdzd+/cdEF3Pdf4bx8q9XxtJiH/HzDxIiTSi18KaHN8Xh4zyDyI5OArwLIj49451/G9bFXeeG4RBpyG/tpJX965EObb76nnR/dBpOt9bf+eLqIewGMzoj70gDlQW4XAf23gp5ScYUQQ6CwDp9ZbdhjazhFcI0TFeGPACWrSsd3182rbbXAvBmsYLY37TAZH1TPd+W0JGsZPZIwK5JOXsy723RoxFx/7SzjGJ9fKkYeg1WhQFHl8Ugs2l4gzYxjPblvDYlm85VFMOQKjRn6mxyT6OtmmSjPiIQatjRLhnYmmNy8G3ebtRVdVTBE3n6ULLriphfVEOAGadgaG9znzrayHE2XO4NfQzDKeSfMqVI40ez6sqA+DP6z+GoD2MNEhdkfayJqeOf622khCs451fdXxdpGExRqx2FZvD9z3WfYPC+W2fCXy3aRDWWs+H1iO2AnKqy7xtQk3+/GnIFO/qy85GVtP40NS4ZDYW5wCw5PBesqtKmRDdF3+9kV1lR1lTcBD3saGZidH9MOnkn0sIXymxVfPPHT8yQr2W/Wxltfs9ZmkfbtDmwwObCDH583+H3oSASH6a+nAzVxNnw+ZQmPFeAVoNrPp9rE9WtFw0wI9FGXUsyqzl10N8Owcjq8zJzR+rHC0NBjz1Ro6L9LMwMbo/50X3w1/feTdolHc3H0qy9OLKviP4LGsrAJmVhWRWNq6ONzA4ksvqFa0RQnS8dzLXUeGoI1gbTS9NAgVqOpclJeNyG9hcnEuhrQoFlUc2fYMzeC1h1isI8fP3ddjd0vR386myq7x2eTi9Qw0+ieHKtED+uLCMRRm+TUZWZddx6QeFVDsUjhd/V9Hw7Khf4WfUYtLq0Wg6//a9MkzjY9PiUrgleTzhTexnYdTquCB2IH9MkyJkQvhSTlUpB63FAPQyBfBO6uuoqGSznkuThjJ31EyGhsUB8H3pT6BReH/0Q74Mudv695oKVubYmdbfzO/Htn2595aKDtJj0sOGQ75b3vvB1ioueCsfq13BddJokcOlw6wzdIlEBKRnpFMYHZnEyIjepFfkk1NViktR6GUOZER4QqfuVhOipzg+nAowIyGViVH9mVUwi3mH53F73O3otDp+1eccNhblYgteg7b8XH7Re4jvAu6m9hc7uPfbMkLMWr6d3THLeE8lMcRAboWrw3+uoqg88mMZz6yobLaN1a4SZenAoM6S9Ix0ElqNhtTQWGYmDuGypGGdfnxPiJ6kwn5im4WUEM8yymujryW9Np3ncp8DINo/iB+LNoG5gDT9BT6JsztTFIVJb+ajqPDDTe1X7r01RsUZqXOqlNV2bELy/KrKUyYiAJU230+sbQ3pGRFCiNOoP0xa6bAR4Wfhyogrucd4D0vLl/JgnwdxKm7yDSuhKoWZ8ef4MNru6dpPismvcvPg5GBGJ3SOFSEzk/35eEcNn++q5bZ2HDLaV1nED4f3klddTqWjjunR53HRAD9+2F+HTgvuJvKO3SWlLCnaQX5tJaEmfy5JTGN8VN8GbZYf3cePh9OpdNQRHxjKb/uNpI+Pdmz3fWophBCdXL+gCO/fVxV4tnHQarU81e8plpUv42DtQW5a+T4E7yS0dkKD9uLsfbG7hvk7axgSZeDp6b1Of0IHuSLVM9dvyb7a07Q8Ow63i/iAUK7uNwqAvr00fH9TDJlz4rl1VNNjMZ8e2EVySBSPjJjB1Lhk/rtvA3vKj3of31Scy+dZW5mZmMbD58wgPiCEl3cvx+rwTSE36RlpR4qqsDB3FxuKcrA6bQQb/Rgf1YdLEtJOOakos6KQz7K2dpmMVojubkxkb77I3orN7WJ9UQ7hZgsXxQ/i6qirue/AfTy6/xnmF+ZAUBgzos4jJTiKvGM1HgL1JsKamKAuWqak2sW18ws95d5vizn9CR3I36gl0KhhW76jXX9OWlgsaWGxjY4PjDBi1HveS24caWHZwTrvHBajJoAr+44AIMY/mAOVxfx0JJPUUM91fjqSwXnR/ZgQ3Q+Aa/uPYXfZUdYWHuTihNR2fT5NkWSkHS05lM7P+Qe4MflcYvyDya0q4/396/HTGbkgrukqeCW2al7Zs4LzYwZwc8p4MioK+O++DQQbzd4X0fGM9pr+o+ljCWfp0Qxe3r2cx0fOIqiTFrQRoisz6wxc1nsYn2R5ysAvytvFT0fSiQ8IJcjdm4+K34YQI4ayiwmMN/LBgQ3ec/UaLU+OmiUJyRma9GY+djd8fV0kYR1U7r01+oYZSC9q32TkVN7dUkWon5Z3fh2Boqh8t6+Ov63Yz3m9G77eBofG8OmxMhIuxU1eVRkz4gd7H9dqNKSERPtsDzQZpmlHWVXFDO8Vx5CwOMLNgYyMSGRwSAzZp9h99+f8/YSbA7my7whi/IOZEpvMiPAEfjqS6W1TP6ONDQjm2v5jMGr1rC082BFPS4geaUrsQC6tt0LG5nZxwFpMIFGeKlM6BwNCGs8bcKkK1S7f7+7aFd23uJS9RU6uHR7IpYM7ZzI3vrcJpwLZZR2fkHywtYoqu8rtYz1DNVqthpkp/swclUdqVMMFEEFGMza3E4fbRbXTjoLaqBprkNFMpdM3wzSSjLSjvpYIMioKKay1AnCoupwD1mLSwprvasyylpAS0nDJ2uDQGG+2ejyjHVSvja8zWiF6Ao1Gw8zEITx8zsVMiOqL+VhFZJMawPFqU3uN/2Oz6wvP1g7irKzLs/H8qkrignR8cGXnHYK+dJCnsN0nOzt+B9/Hl5aj18JjU0M7/Ge3tc7X59WNXJwwGJvbydwti9BoNKiqymVJwxgb2afZc6xOW6OhlvoZba3L0WxGW1BnbZfnIYQ4ITEwjOsHnsv1A8/Fqbjp99OrUK8m4VblSyrVfCbpb0OvkeX5Z8LmULj4nfxj5d5jfFLuvaUu7OfZC2bZwToemNxxScGufDtZZS5+keLXaJlzkMHcaCKq1WHDrDNg1OnRajRo0VDVRJtgg2+G+iUZaUdbinPZWJTDzcnjiQ0I4VB1OZ9mbSHE6Me4kyakCiG6HoNWxyFXhqePud6c9IPqeqyuIi7W34ufJthn8XVVM94rwGpXmXdpL/qEde6ETq/XEuqnZVdhx+7g+6dFnuH+l2c1Xl3UNyic3WVHGxxLryigb5Cnh0mv1ZFoCSO9opDh4QkAKKpKRkUBU2IHtnPkTeu86WY38EX2dqYnDGZ0ZBJxASGcG9WHqXEpfHdob7PnnC6jDTSYOl1GK0RP9eyO78DU1PCoSomazZfORyhXD7OpOFeGblrolbWVrMi2MaWvmTvHdY1ELiXCQFG1u92ub3M7OVRdzqHqcgAOVVWzMqeOwVEa+oQZ+Sp7O+9mrvW2nxQzgBJbNV9kb6OgtpIVR/expTiPafUWTkyLS2F1wQHWFWaRX1vJRwc24VBcjVZudhTpGWlHDsWFloZLeLUaDSrN/1LqihmtEN2BzeXk69ydbC89RJXTTkJAKFf1G0mSpfm6Fk/t+z8I0YO2cQVOFYUayvja+TiWQ5H8dCSDxMAwWYZ/CgdLHfx5USnBZg1LbvR9ufeWmphkZl2enc2HbYyKb/sPhblVZby4a6n3+5c25OFWBjBrRBHQh0pHHWX2E7VOws2B/CF1Mp9lbWXZkUxCTP5cN3Csd0UmwOiI3lQ7bXyTuxOrw0Z8YCh/TJ1CkNGvzeNvCUlG2tHQsDgWH9pNmNmfGP9gDlWX89PhDMZHn8g8v8reToWjlhuTxwOejHbF0X18kb2NCVF9yagoZEtxHn9Im+Q9Z1pcCu9lriPJEkaSpRdLj2T6NKMVojv4YP8GjtZWcmPyeEKMfmwoyuZfu5bx2MiZhJoa77678ugBaoJWoFUsKNryBo9p0aKgEKQNI1VzCToM6NAQ4xcky/CboSgK57/uKff+/Y0xnaLce0tdOSSA51ZW8sXumnZJRpJDonh94jXe7wPnZhPmp+HZ88cCcEPyuCbPeWTEjFNed0psMlNimy4z0dEkGWlHv+03iq9zd/LRgU1UOe0EG/2YGNOfXySmedt0h4xWiK7O4XaxreQQd6aez8DgSABm9R7KzrIj/Jy/n8uThjU6Z/a6f0FwLUY1lOODpseTkCRzEv/o/w8yjvrjdCsU1FlxqgoJAaGkVxT4rLBUZ3bdp8UcrXJz3/nBjE3sWonaqHgzWg38nN3+y2Lf3mSlxqEy54KuMYTVUpKMtCOz3sBV/UZyVb+RzbbpDhmtEF2doqooqOg1ugbHDVo9B63Fjdq7XC7yjEswVo6HkB0AGDVGpgVfiql6COuV15gRNpOl+xbwyz7D+Tx7GwD7rcWyDL8JX++t4aMdNaRGGvjHjM5T7r01IgN1ZBa3/yTWp5ZVoNfCo1NC2v1ndaSu0w8mhBDtxKw30NcSzuJDu6mw16KoCuuLssmyllDpqGvU/rLl/0bxz2KQdgpp2osZr7+GI+cd4dk+LxGh7U+Ro4TvS5ahoBLjf6IQmkNx+bSwVGdUVuviqo8LMelg5e87V7n31kiLMlBWp+Bytd9uuduO2smpcPGLFH/0XWgYqyW617MRQogzdFPyOFQV7t+4gLtWf8LyI5mMjuiNhsb7SC2xfoq2tj8XRZ/DCP3lpGlnYnfqqXZVA3Bd1HVcEDYFgLzqCu95MpTa2KQ38rG74OPfRnXKcu8tNfVYvZGlWY2T17by54WeHrV/z+p+E6C77r+8EEK0oQg/C38ZNg2724XN7STY6Mcb6asJNwc2aDdv73KU4M30s95FVICFykrPm8+CnB3sd63DoYbzzIC/e5fhry444D13dEQiG4tyZRn+MQ8uKWV3oZOrhwVwRVrnLPfeUlcNDeDB78tZsLeW6QPb/rlYbQqrcu0MiTKQGNL93rqlZ0QIIeox6fQEG/2ocTrYW57PsF7xDR6/f8+/wBXAPQN/SZXDhr/eAMA3xQuZX/IeBoMDt8vM+qIcdBoNpXZPmfAovyCSg6PJqLdUvyfbkGfjHz9XEmPR8b/fRPg6nLPWJ8yIQQvr8tpnH6L7vitFVeEfM8La5fq+1v3SKyGEOAN7yo+iqhDtH0RRXRVfZG8j2j+ICceWzH+VvZ0D1mJqLCvxqzqfq/qP4vEt3zI4JJr5xf9lpfsdQKXWofDE1sUNrm3Q6LgiaRjzD26WZfiAw6Uw/d2uUe69NWKD9BwsbftJrIqi8N9t1YT7a5mR3LV7kJojyYgQQgB1Lidf5eygwl6Lv97IiPAELk8ahu7YG2Wlo443Dy6GICt/H/Qnws2BXDMwjRv33kSme6P3OiZNw2GdUKM/CgpvZayRZfjHzHi3gEqbysuzwujXq3OXe2+NEbFGvtpbS41dIcDUdgnWW5uqqXWq3D8ppM2u2dlIMiKEEMCoiN6Miujd7OO/6zeaGzN/h6ZyBPdMu5DFJYu5Pv16KlwVDdpdGJeKw60QYDAyolcCSZZeaDSNJ8H2VK+ur2RZlo1JfUzcPT7E1+G0qekD/flqby0L9tZw7TmWNrvu35eXY9DCQ5O6V22R+iQZEUKIFrh65esQkMUF7ie4M+NOXj3yqrfI2XEGjYHf9hvtwyg7t+wyB3d/U0qQScOSG7ruMt7mXDnEn9sXwOLM2jZLRjYdtpFX6eZXad1vOW99kowIIUQLfFX2IfhFkRPyPsuPZAM0SETAU/hMNE1RFCYeK/e+5KYYzMbu98Ya5q/HT69h0xFHm13znmO78770i+496bn7vRqEEKKNvb9vHe7gjRj0Lg7aDjZKQo4zaiUZac4Nn5VwxOrm3olBjOti5d5bo3eonryKxhsnnomKWhdrc+0MizESH9y9+w6697MTQoizsDB3J4vydvN10fcQaOYi/Rz2679mn2sjOnS4abhtvElrYktxHl/n7qTUVk2kn4Vf9hnOkLA4bxtVVVmYu4tVBQeoczvpFxTONf1HE+UXdPKP7za+2VvDf7dXMyjCwD8v6d6f8MfEm8godlJY5SLKcnZvsfcuLkcFnu+my3nrk54RIYQ4hWCDP4X+izBbz+fDifewZfzPrBm5hjCD5w2ifoVWHQbeyljDhOi+PDJiBsN7xfPq3lUcqanwtvn+cDrLjmZy7YAxPDD8IkxaPS/vXo5TcZ/8o7uFiloXV31c5Cn3flv3mydyslmDPDs8f7qr+qyuoygKH++oJjJAy7QBjXeN7m4kGRFCiFNYmL8GjGU82O92go1+BBrMpPinUOospZe+FwP9B3rbutwaUsNimB4/mBj/YC5LGkZiYCgrju4DPL0iS49kcEliGsN7xRMfEMqNyeOosNexveSQr55iuzr/zXxsLpUPfxtFeGD374z/RbIncfhh/9mVhX91QxV1LpU/T+i+K2jqk2RECCFO4YD2O4zWsdjdKm9nrKHMVsP1e69HQeHjtI/Zc+4e3h30LjHGGPwIJSUkusH5g0NjyKry7ClSYqvB6rQxqF4bP72RPpZwb5vu5OHvS9lV4OSqIQH8qouXe28ps1FLkEnDjvyzm8T6zIoKjDq4vxsv561PkhEhhGjGfw+uxhW4h5HGGVzTfzQlthoe3/4Fi0sXkxqQyoW9LkSn0XFD7A3kTsjlIt1fCDpp35kgg5lKh2eXXqvT82k5yHhSG+OJNt3F5sM2nllRSbRFx0e/7frl3lujfy8D+VVnPuy2Ls/GEaubKwYHdJvqtKdzRs9y3rx5JCUlYTabGTt2LBs3bmy27ZtvvsnEiRMJDQ0lNDSUadOmnbK9EEJ0Fl+WzgdbDD9ceD+pobHcnTaZn22fAho+Sv2oQVuD1oBO0/2HIVrC4VK48O0CNBpYeWv3KffeUhN6m3EpkFF0Zr0jc7zLeXu1ZVidWqtfIZ988glz5sxh7ty5bN26lWHDhjF9+nSKioqabL9ixQquvvpqli9fzrp160hISOCiiy7iyJEjZx28EEK0ly+ytuIOWU+U7UICj/Vk7KnZwS7394w2X8hQy9BG5wQZzVidDXs4rE4bwcfODzJ4ysBbT+oFsTpOtOkOZr5fQIVN4YVLwhgQ0fOWO1+R6hmS+nRXTavPLa1xseGQnRGxRqKDek5y2+pk5MUXX+TWW2/lxhtvZPDgwbz22mv4+/vzzjvvNNn+ww8/5M4772T48OGkpKTw1ltvoSgKS5cuPevghRCivdyy5R+g6vhk3MPeY7/bcz0GTPw17m9NntPXEk5GRUGDY+nlBfS1eJazhpsDCDKYG7SpcznJrirxtunqXt9g5acDNs5LMvHn80J8HY5PTOpjQgMsz2r9JNY5i8tQgRdm9pxeEWhlMuJwONiyZQvTpk07cQGtlmnTprFu3boWXaO2than00lYWPPrpu12O1artcGXEEJ0lJLaaioClhNgnUKMfzAltmreyf2UfXWZjNJfwfTYkQC8m7mWr7K3e8+bGpfMnvJ8fjycTkFtJQtzd5JbXcbkWM+KG41Gw9S4FBYf2s2O0sMcqang3X3rCDH5MTw8wRdPtU3llju56+sSLCYNP97Y/ZfxNker1dLLX8vewtYN0yiKwqc7a4gO1DG5b8/aTLFVfUAlJSW43W6ioqIaHI+KiiIjI6NF17j//vuJjY1tkNCc7JlnnuHxxx9vTWhCCNFmpi19EvyLmWG6jLcy11LjtPOt8x/4EcT7I/6B5diQSpm9tkGdkX5BEdySPIGvc3ewIGcHkX4W7hg8kbiAEG+b6fGDcLhd/G//RmpdDvoHR/DH1CkYtLqOfpptSlEUznv9KG4VFt8Q3S3LvbfGoEgDq3PtKIrS4jkzL6+1YnOpzJnYM1bQ1NehA1LPPvss8+fPZ8WKFZjNzY+PPvjgg8yZM8f7vdVqJSGh639qEEJ0DTvci8CaxmdX/B6A1w+/zv9lbueOuDvoZ4n1trt3aOMPVSMjEhkZkdjstTUaDZcmDeXSpMZzTrqym74o4XClm3vOC+K8pJ71qb4pk/v6sSrHzro8OxNaeD+eW1mJSQf3ntd9q/E2p1Wpa3h4ODqdjsLCwgbHCwsLiY6ObuYsj+eff55nn32WH374gaFDT/2f0GQyERQU1OBLCCE6wt3rPgTLXkYZLgM8n/jvO3AfZq2Zlwe+7OPoOqdv02t4f2s1yeEGXpzZPea+nK0rj9VV+XJPyyaxrs6pI7/Kza/Ses5y3vpa9YyNRiMjR45sMPn0+GTUcePGNXvec889x5NPPsmSJUsYNWrUmUcrhBDt7PXDb4M9kh+nPgTAY9mPYXVbeSTpEfTanrO6oaUqal38+qMijDpY9fueO0/kZENiTOg0sCqnZfVj5nxbigb4Vw9azltfq/9nzZkzh9mzZzNq1CjGjBnDSy+9RE1NDTfeeCMA119/PXFxcTzzzDMA/OMf/+DRRx/lo48+IikpiYICzyzywMBAAgMD2/CpCCHE2fnxUDrO4LWEWa8gxM8fh+LgudznCNGH8GDvB30dXqc05a0CbC6VT66OJKIHlHtvjWiLjn0lztO2K6p2sfmwg5FxRiJ76D1s9bO+6qqrKC4u5tFHH6WgoIDhw4ezZMkS76TWvLy8Bl1Mr776Kg6Hg1//+tcNrjN37lwee+yxs4teCCHa0DUbnoIglf+O8SznvTPjTuyqndcHvN4ju85P59Efytie7+DXaf78Zqh8uDzZ0Ggj3+2rw+FSMOqbf/3cs6gUlZ7bKwKgUVVV9XUQp2O1WgkODqayslLmjwgh2kVFXS2hy/qir03BeeUKyhxlRK6KJMYUw6Hzuucmdmdj6xEbo145SmSglqMPJkqy1oQXV1Vw7+Iyvr4uiksHN703j6Io+D+aQ5i/jqMP9e7gCNtfS9+/e2Z/kBBCnOTiZc+AuZBbQv8JwPV7r8eNm3cGNV3QsSdzuBSmvuUp9/7zbbGSiDTjN0MDuXdxGZ/sqiA8uI4dR13szHczJkHPZYMCCTMH8MJqK3Y33Hd+z1vOW58kI0IIAWx0fAPOQbw69Tpy6nIabIYnGrr0g0IqbArPXxJGcg8s9346JTVuNh22s+mwHQ3w8XYbH223ex9fmneYzTXZPDlqFi+uqsSs1/DH8T2711+SESFEj/fQpi9Rg3YytOavAFy9+2pU1Eab4Ql4a6OV7/fXMT7RxL0TQ3wdTqdz54JiXt1QBYBOC555EJp6LVRiw6y4VIUfD1RTUO3m+nMCe3zvUs9+9kIIAbyQ8xrYe/H9BY+wqXIT663rOS/4vCY3w+vJ8ipc3PF1CYFGDT/eLMt4mzIk2uT9u1tpqoWGuPBKAJ5aakMDvHBJ89uj9BSSjAgherTVBQdxBK8muGYK0YFBXLf3OjRo+DjtY1+H1qkoisLE147gUuDb2dH49/By7825fayF3w0PRKtp+nGLn41APwe1Nj27C9yMSTAR3kOX89YnryYhRI925eonQePkjRH3s6hkEZm1mVwWfhnx5nhfh+YzO/PtVNS5Gxy79atS8ird/HF8EOf3sE3cWkOj0fDGL8NJjTKi0578mEL8sV6RtelJQM9ezlufJCNCiB7L5nBQYP4JXeW5/KbfKG5Lvw29Rs/7qe/7OjSfsbtURs87Quq/DrPmWPXQ7zJreGdzFQPCDfx7lpR7Px0/g5Zvro8i0KhtOFtE1RIXXomiQE5BGNEWDeMSm9+nrSeRviEhRI918bJ/gt8RrrE8yuuHXyffkc8dcXcQpO8ZKxvKbDVUu+wNjuWWanG4Ib/KzcQ3jvLgpBBeXFWBUQerpdx7iyWFGvj82kguerug3lGV2F6V7MiKRVG13DlOEpHjJBkRQvRYK2u/BF1/3ppxAxFrI3rUZnhlthr+tnkhLrXhLMvs/HCgv2cViApPr6gA4D+XhvXYUuVnalp/f+6aqOGVVZ41NSEBdZiNbnblRKPTurlupMHHEXYeMkwjhOiR/r79W9TgrQxUL+GpQ0/1uM3wql32RokIQEmVmZMrl2uAR74vZ0ELd6AVoKoqC3N3YQ9cR2SwFQA/k5PDxUHYHEb6x5Sy9GgmShP/Bj2RJCNCiB7pqf3zwBHCwikPyGZ49ZRX+eE+aZMQFbDaVa74XyF/+LqELrCLiM/9cCSdRXm70Gjg4tEZgEqkxc2GjCRAZeygHDYW5/JZ1jYfR9o5SDIihOhxthYfwha0ksDqyTx35G/YVTsvDXipxxeeAii1BtBUrnH80Pyd1dQ6JRk5lWqnnYW5u7zf/7p/Kuf3MZPoF0dZlT+p0Sr+Js89XHY0k8Jaq69C7TTkf54Qose5bOUToLXxdNrtvJf/HvGmeGbHzvZ1WD7ndmuorjM1Oq7TgFmv4YFJwey7N4EAqTFySusKs3AqnqXR50f3Z1bvIZybYGZVjg2NBr66JpFfJA7xtv+5YL+vQu00esbgqBBCHONyuThs/AFt5Wh+iHilR26Gp6gKW4sb70RcWWNGrbcYVacBjQbuPDeIhyaHEGWRt4yW2FdZ5P375NiBAIyMM1JhU7lskD8DIozEOAfwTe5OAPbXa99TyStLCNGjXLr8JfDPY6rfTXxb+niP2wzPrSi8mbGGbaWNk5H8suNLmlW0Gg03jrTw6NRQEkLkraI1jveKAISa/D1/+ukAmNrfUzAu0GDCpNVjV1w43O7GF+lh5BUmhOhRvrd+CoYkKqO/Q63qeZvhfZG9rUEiEusfTEJAKBX2Oj7KjuF4LYxfjS7hxYlT0Wt1vgu2iwoynqgfsr+yiGG94pnW34+8+xOID/a87eZWlWFXXAAEG6WirSQjQoge4z+7l6IEbyam6io2Vs3vcZvhVTls/JzvmZ+g12j5/aCJDO0VB8AHW6uoritmalo+/RJzsQPbSg4xOjLJdwF3UaMjerOhKAeAhbm7SAmJxqTTkxDiqSviVhQW5O5o0L6nk1lIQoge44H0f4MrEHP4lh65Gd76omxvbZEpsQO9ici+Ygd3fl3CDSMDmTezv7f9qoKDPomzq0sNjSHSzwLAoZpynt62hJX5B8irLmN9UTbP7viBveX5AAToTYyRhE96RoQQPUNmeSG1lp8x1gwj27CaK8Kv6HGb4R2prfT+fWBgIquz61h/yM7TKyoI89Pyn1nhBBg1BBnMWJ02jtZW+C7YLkyr0XJrygRe2LkUm9tJQZ2VDw9sbNROf6ydSSdvxXIHhBDdxsl7rQTqTYSZAwC4ZMUTYKnCHHIARaPnvdT3fBRlx6u2KXy5t4bXNlnIKBpGtc3EG4utgBWzXoNRBw9NDiXQpEVVPZNXARQpJ3LGEgPDuG/YhXywbz051WWNHo/xD+Z3/UfTPzjSB9F1PpKMCCG6hfp7raiqgoqCUWvkyVGzCNKbyNItgZoBWAP3cUds990Mz+FS+DajjoUZtWw8bCOnzEWNt0iZGZ1WIdDPxvBYA09MTmRcb0/5d82xBCS7qpQKRx0A0f4WHz2L7iEuIIQHz7mYnKpStpcepsZpx6w3kBYay8DgSO89F5KMCCG6ifp7rSxzvcohdTuDtdPIrBnMCzt+hoAsdO5gDN1oMzxFUVh+0MaCvbWszbNxoNSJ1X6iO8Oog/ggPefEGbl4gD9TBmh5fvdCFFSMWh1x4WEYdCdWclQ5bHx0YJP3+wlR/Tr0+XRXSZZeJFl6+TqMTk2SESFEt+PCjoNadiiLmLB9IaojBAjCbazksaQnu+RmeIqisOmwgy/31LAqx0ZmsZPyOsVbpl2vhWiLjolJRqb19+PXQwK9y0jrGxfVlzWFB3Eobv6540fSwmLpHxRJia2aTcU52Nye5aa9TAGyykN0mK73P1IIIU7DpAlAo2pRObYjqqEcNKBFS7g+nBp3DQG6AN8GeRrphQ4+3VXDz9l17Cl0UFKreOdwaDUQGaDjgn5mpvT149dDAkiOMLbour/tN5ISWzWZlYWowK6yo+wqO9qgTZDBzB9SJ2OUiZWig8grTQjR7RjxR4PG22twvMK5gsKd++7k/oP3s3XMVvr5d45hiLwKF5/tquanA3XsKnBQUOX27pyrAcL8tYxLNHF+HzO/TgtgRJz5lNc7FaNOz91pk/npSAY/H91PuaPW+5hBq2NMRBK/6J1GmKlzJ2u+9NDGrym11zQ6PilmANf0H93kOVuK8/g6dyeltmoi/Sz8ss9whoTFeR9XVZWFubtYVXCAOreTfkHhXNN/NFF+3XNu08kkGRFCdDsmjT/NLQTRoCHRnEi4MbxDYzqupNrF57tr+WF/LdvyHRyxunDWqwYebNZwTqyR8b3NXJEawPlJpjbfTdig1TEjIZWL4geRbS3B6rRh0unpYwnHX9+yHpae7MHh01HqvcKO1lTy0u5ljAxPbLL9QWsxb2Ws4fI+wxgaFsfGohxe3buKh8+5mLiAEAC+P5zOsqOZ3JA8jnBzAN/k7OTl3ct5bOQvMPSAKriSjAghuh0jAXB8iKYeDRpm9JrB/LT5BOoD2z2OapvCgvQavsusZfMRB3kVLmyuE29iAUYNKREGzk0wM2uQP9MH+GHUd1wtSp1GK0tLz4DF2LBnasmhvUSYAxnYzL1ceiST1LAYpscPBuCypGGkVxSw4ug+rh0wBlVVWXokg0sS0xjey1P75sbkcfxl/Zds7yFVcCUZEUJ0O0b8UJvoG/lTwp94fsDz6DSeT5olNW5WZtu4ItX/rJdZOlwK3+2rY2F6LRsO2chusKQW/PQaeofoGRVvYmaKH5emBBBgkiLYXZ1LcbOhKIdpcSnNvoayqkqYFpfS4Njg0Bh2lB4GoMRWg9VpY1BItPdxP72RPpZwsqpKJBkRQoiuwlVvp1STpt58B9VTQ2Ne8jzuiL/De3jzYTuXfVDA0So3e/4cz+Colg9PKIrCimw7C/bUsDbXxv7mltTGGrlogD+/HuJPmL/8uu2Otpceps7lYHxUn2bbWB02ggwNe1OCDGYqHTbP405PXZegk3pcgown2nR38r9DCNGlKarC94fT+fFwuveYEc+27ccTke+Gf8f0XtO9j7+z2crtX5V4V6dsPmJvNhlRFIUtRx18sbuGVdk2MppZUnvesSW1VzazpLYjLMzdyaK83Q2ORfkF8cSoXzR7jkysPDtrCg6SGhZDiMnf16F0aZKMCCG6LEVVeDN9DVtLDzU4Xlqjgsnz9xm6+wlyDQDA7lL54zclvLGpytvWoIVNh+1cP8JTbTSz2MEnO2tYkVXH3iInxTXuBktqIwJ0TOl7YkltSmTnmvAZ6x/Mn4dc4P1ed4rhJ5lYeXZKbTWkVxRy++CJp2wXZPTs9VOf1Wkj+FhPSJDBU3jO6rARbDxRhM7qsJEQGNK2QXdSkowIIbqsJYf2ehMRDZAaEkNvSy8+/ikDkiBSGUq8bggf7N+AXgnhji9q2XbU0eAaTgU+2FrFgj01FFS7cR2b93p8Se25iSbOTzLzq7QARsaZOn0Jb61G0+AN7VRkYuXZWVt4EIvBxJCw2FO262sJJ6OioMG8kfTyAvpaPCu6ws0BBBnMZFQUkBAYCkCdy0l2VQmTYvo3ec3uRpIRIUSX5FTcLDuaCXgShz+kTiYtLJZqh50qv23gDOOpvv9ic1EBh0ssTP6xDJtT2+Tmb575Hm6GxRiZ0NvMZYMDmNyn7ZfUdoSiuiru2/AVBq2WvpZwrkga7t0s8GQysfLMKarK2sIsxkX1Radp+Dp5N3MtIUZ/rugzHICpcck8v/MnfjyczpCwWDYV55JbXcbvBowBPEOJU+NSWHxoN5F+FsLNgXydu5MQkx/DwxM6+qn5hCQjQoguaU/ZUaqcnh16R4Ynknbs0+mNW56E6EVc6fcI9rJz+HL1IUqspy/gteK2OM6JNbVrzO2tjyWcGwaOI8rfQqWjjkW5u/nnzh+ZO2ImZr2hUXuZWHnmMioKKLPXMiGqb6PHyuy1aDjRg9YvKIJbkifwde4OFuTsINLPwh2DJ3qHwgCmxw/C4Xbxv/0bqXU56B8cwR9Tp/SYoTBJRoQQXVJJvQqYQ3p5Jlyqqsrn1n8D/ny2cDZfassJMJrRalQU1fPpVa/FOxRznAbPvJGunoyk1RsuiA8IpY8lnAc3fs3mkjzOi+4c1Wa7i8GhMbw+8ZomH7t36LRGx0ZGJDIyoumiaODpHbk0aSiXJg1tsxi7EklGhBBdkrbeJ0+bywlAnctOL8co+msn8OLt8QyPMfJaxnIyKwuptRuYFDKVNTkulmTWUVDtRgNoNKCqnmTktjE+ejLtxF9vJMrPQnFdVZOPy8RK0VlIMiKE6JJ6W8K8f19XlM2kmAH4G8yUzFruPV5iq2ZfZREAsRY9N40M5ZZRGlRVZV+Jk58O1PHD/jqWHqyjxtG4YmtXZ3M7KbZVc24zE1plYqXoLCQZEUJ0SX0t4cT6B3O0tpKcqlI+y97KFUnDvWPspbYa3khf7a3Eel50f7THVsJoNBqSI4wkRxi5a1wwbkVF27kXybTI51lbGRoWR5g5gEpHHQtzd6FFw+iI3oBMrBSdlyQjQoguSaPRcFnSMF7duxLwLFNdX5hDSkgUdS4HGRWF3s3Mgo1+TI4Z0Oy1dN0hEwHK7bW8lbmWGqedQIOJ/kERPDD8Iu9eKjKxUnRWGlVVm9vcstOwWq0EBwdTWVlJUJBU/RNCnPDz0f18fHBTs7v0Bhv9+FPalAZvsEKIjtHS92/pGRFCdGmTYgfQ2xLG0iOZbC3Jw6V65n4EGcxMjO7P5NiBjZamCiE6F+kZEUJ0G3a3i0pHHXqNlhCTH1pN1ytaJkR3Ij0jQogex6TTE+ln8XUYQohWko8NQgghhPApSUaEEEII4VMyTCOE6LRsLidf5+5ke+khqpx2EgJCuarfSJIsvZo9J7OikM+ytpJfW0moyZ9LEtMYf9L+IcuP7uPHw+lUOuqIDwzlt/1G0udYoS8hRMeTnhEhRKf1wf4NpFcUcGPyeB4dcQmDQ6P5165llNtrm2xfYqvmlT0rSA6J4pERM5gal8x/921gT/lRb5tNxbl8nrWVmYlpPHzODOIDQnh593KsPXzjNyF8SZIRIUSn5HC72FZyiF/1Gc7A4Egi/SzM6j2USL9Afs7f3+Q5P+fvJ9wcyJV9RxDjH8yU2GRGhCfw05FMb5ufjmRwXnQ/JkT3IzYgmGv7j8Go1bO28GBHPTUhxEkkGRFCdEqKqqKgotc0rPRp0Oo5aC1u8pwsawkpIdENjg0OjSHLWgKAS3GTV1XGoHpttBoNKSHR3jZCiI4nyYgQolMy6w30tYSz+NBuKuy1KKrC+qJssqwlVDrqmjzH6rQ1KnAWZDRjcztxuF1UO+0oqN7y6PXbVDplmEYIX5EJrEKITuum5HG8v28D929cgBYNiYGhjI7oTV51ma9DE0K0IUlGhBCdVoSfhb8Mm4bd7cLmdhJs9OON9NWEmwObbB9kMDeaiGp12DDrDBh1erQaDVo0VDXRJtggJeOF8BUZphFCdHomnZ5gox81Tgd7y/MZ1iu+yXZ9g8LJqChocCy9ooC+QZ5lu3qtjkRLGOkVhd7HFVUlo14bIUTHk2RECNFp7Sk/yu6yo5TYqtlbns+Lu34i2j+ICcfqhnyVvZ13M9d620+KGUCJrZovsrdRUFvJiqP72FKcx7S4ZG+baXEprC44wLrCLPJrK/nowCYciqtRLRIhRMeRYRohRKdV53LyVc4OKuy1+OuNjAhP4PKkYei0ns9RlY46yurVHAk3B/KH1Ml8lrWVZUcyCTH5c93AsaSGxnrbjI7oTbXTxje5O7E6bMQHhvLH1CkEGf06/PkJITxk114hhBBCtIuWvn+f0TDNvHnzSEpKwmw2M3bsWDZu3HjK9p999hkpKSmYzWaGDBnC4sWLz+THCiGEEKIbanUy8sknnzBnzhzmzp3L1q1bGTZsGNOnT6eoqKjJ9mvXruXqq6/m5ptvZtu2bVx++eVcfvnl7N69+6yDF0IIIUTX1+phmrFjxzJ69GheeeUVABRFISEhgbvvvpsHHnigUfurrrqKmpoaFi1a5D127rnnMnz4cF577bUW/UwZphFCCCG6nnYZpnE4HGzZsoVp06aduIBWy7Rp01i3bl2T56xbt65Be4Dp06c32x7AbrdjtVobfAkhhBCie2pVMlJSUoLb7SYqKqrB8aioKAoKCpo8p6CgoFXtAZ555hmCg4O9XwkJCa0JUwghhBBdSKesM/Lggw9SWVnp/Tp06JCvQxJCCCFEO2lVnZHw8HB0Oh2FhYUNjhcWFhIdHd3kOdHR0a1qD2AymTCZTK0JTQghhBBdVKt6RoxGIyNHjmTp0qXeY4qisHTpUsaNG9fkOePGjWvQHuDHH39str0QQgghepZWV2CdM2cOs2fPZtSoUYwZM4aXXnqJmpoabrzxRgCuv/564uLieOaZZwD405/+xKRJk3jhhReYOXMm8+fPZ/Pmzbzxxhtt+0yEEEII0SW1Ohm56qqrKC4u5tFHH6WgoIDhw4ezZMkS7yTVvLw8tNoTHS7jx4/no48+4pFHHuGhhx5iwIABLFiwgLS0tLZ7FkIIIYTosqQcvBBCCCHaRbuWgxdCCCGEaCuSjAghhBDCpyQZEUIIIYRPSTIihBBCCJ+SZEQIIYQQPiXJiBBCCCF8SpIRIYQQQviUJCNCCCGE8ClJRoQQQgjhU60uB+8Lx4vEWq1WH0cihBBCiJY6/r59umLvXSIZqaqqAiAhIcHHkQghhBCitaqqqggODm728S6xN42iKBw9ehSLxYJGo2mz61qtVhISEjh06JDsedOO5D53HLnXHUPuc8eQ+9wx2vM+q6pKVVUVsbGxDTbRPVmX6BnRarXEx8e32/WDgoLkhd4B5D53HLnXHUPuc8eQ+9wx2us+n6pH5DiZwCqEEEIIn5JkRAghhBA+1aOTEZPJxNy5czGZTL4OpVuT+9xx5F53DLnPHUPuc8foDPe5S0xgFUIIIUT31aN7RoQQQgjhe5KMCCGEEMKnJBkRQgghhE9JMiKEEEIIn+r2yci8efNISkrCbDYzduxYNm7ceMr2n332GSkpKZjNZoYMGcLixYs7KNKurTX3+c0332TixImEhoYSGhrKtGnTTvvvIk5o7Wv6uPnz56PRaLj88svbN8BuorX3uaKigrvuuouYmBhMJhMDBw6U3x8t0Nr7/NJLL5GcnIyfnx8JCQncc8892Gy2Doq2a1q5ciWzZs0iNjYWjUbDggULTnvOihUrGDFiBCaTif79+/Pee++1b5BqNzZ//nzVaDSq77zzjrpnzx711ltvVUNCQtTCwsIm269Zs0bV6XTqc889p+7du1d95JFHVIPBoO7atauDI+9aWnufr7nmGnXevHnqtm3b1PT0dPWGG25Qg4OD1cOHD3dw5F1Pa+/1cdnZ2WpcXJw6ceJE9bLLLuuYYLuw1t5nu92ujho1Sr3kkkvU1atXq9nZ2eqKFSvU7du3d3DkXUtr7/OHH36omkwm9cMPP1Szs7PV77//Xo2JiVHvueeeDo68a1m8eLH68MMPq19++aUKqF999dUp22dlZan+/v7qnDlz1L1796r/+c9/VJ1Opy5ZsqTdYuzWyciYMWPUu+66y/u92+1WY2Nj1WeeeabJ9r/5zW/UmTNnNjg2duxY9fe//327xtnVtfY+n8zlcqkWi0V9//332yvEbuNM7rXL5VLHjx+vvvXWW+rs2bMlGWmB1t7nV199Ve3bt6/qcDg6KsRuobX3+a677lIvuOCCBsfmzJmjTpgwoV3j7E5akozcd999ampqaoNjV111lTp9+vR2i6vbDtM4HA62bNnCtGnTvMe0Wi3Tpk1j3bp1TZ6zbt26Bu0Bpk+f3mx7cWb3+WS1tbU4nU7CwsLaK8xu4Uzv9RNPPEFkZCQ333xzR4TZ5Z3Jff7mm28YN24cd911F1FRUaSlpfH000/jdrs7Kuwu50zu8/jx49myZYt3KCcrK4vFixdzySWXdEjMPYUv3gu7xEZ5Z6KkpAS3201UVFSD41FRUWRkZDR5TkFBQZPtCwoK2i3Oru5M7vPJ7r//fmJjYxu9+EVDZ3KvV69ezdtvv8327ds7IMLu4Uzuc1ZWFsuWLePaa69l8eLFHDhwgDvvvBOn08ncuXM7Iuwu50zu8zXXXENJSQnnnXceqqricrm4/fbbeeihhzoi5B6jufdCq9VKXV0dfn5+bf4zu23PiOgann32WebPn89XX32F2Wz2dTjdSlVVFddddx1vvvkm4eHhvg6nW1MUhcjISN544w1GjhzJVVddxcMPP8xrr73m69C6lRUrVvD000/zf//3f2zdupUvv/ySb7/9lieffNLXoYmz1G17RsLDw9HpdBQWFjY4XlhYSHR0dJPnREdHt6q9OLP7fNzzzz/Ps88+y08//cTQoUPbM8xuobX3+uDBg+Tk5DBr1izvMUVRANDr9WRmZtKvX7/2DboLOpPXdExMDAaDAZ1O5z02aNAgCgoKcDgcGI3Gdo25KzqT+/y3v/2N6667jltuuQWAIUOGUFNTw2233cbDDz+MViufr9tCc++FQUFB7dIrAt24Z8RoNDJy5EiWLl3qPaYoCkuXLmXcuHFNnjNu3LgG7QF+/PHHZtuLM7vPAM899xxPPvkkS5YsYdSoUR0RapfX2nudkpLCrl272L59u/fr0ksvZcqUKWzfvp2EhISODL/LOJPX9IQJEzhw4IA32QPYt28fMTExkog040zuc21tbaOE43gCqMo2a23GJ++F7TY1thOYP3++ajKZ1Pfee0/du3evetttt6khISFqQUGBqqqqet1116kPPPCAt/2aNWtUvV6vPv/882p6ero6d+5cWdrbAq29z88++6xqNBrVzz//XM3Pz/d+VVVV+eopdBmtvdcnk9U0LdPa+5yXl6daLBb1D3/4g5qZmakuWrRIjYyMVJ966ilfPYUuobX3ee7cuarFYlE//vhjNSsrS/3hhx/Ufv36qb/5zW989RS6hKqqKnXbtm3qtm3bVEB98cUX1W3btqm5ubmqqqrqAw88oF533XXe9seX9v71r39V09PT1Xnz5snS3rP1n//8R01MTFSNRqM6ZswYdf369d7HJk2apM6ePbtB+08//VQdOHCgajQa1dTUVPXbb7/t4Ii7ptbc5969e6tAo6+5c+d2fOBdUGtf0/VJMtJyrb3Pa9euVceOHauaTCa1b9++6t///nfV5XJ1cNRdT2vus9PpVB977DG1X79+qtlsVhMSEtQ777xTLS8v7/jAu5Dly5c3+Tv3+L2dPXu2OmnSpEbnDB8+XDUajWrfvn3Vd999t11j1Kiq9G0JIYQQwne67ZwRIYQQQnQNkowIIYQQwqckGRFCCCGET0kyIoQQQgifkmRECCGEED4lyYgQQgghfEqSESGEEEL4lCQjQgghhPApSUaEEEII4VOSjAghhBDCpyQZEUIIIYRPSTIihBBCCJ/6f9DVESgjl0f0AAAAAElFTkSuQmCC", "text/plain": [ "
    " ] @@ -914,7 +1083,7 @@ }, { "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAAiMAAAGdCAYAAADAAnMpAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjcuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/bCgiHAAAACXBIWXMAAA9hAAAPYQGoP6dpAADjOklEQVR4nOydd1gUZ9eH75mtlF16B0VsqNhb7DUxmpiemJhm2pveTDWJ6YlppvcvxfRiEk0z9t4rKiqiUqXDAktbtsx8fwyCKFiBRZj7uvaSnXnmmTMD7pw9zzm/I8iyLKOioqKioqKi4iZEdxugoqKioqKi0rZRnREVFRUVFRUVt6I6IyoqKioqKipuRXVGVFRUVFRUVNyK6oyoqKioqKiouBXVGVFRUVFRUVFxK6ozoqKioqKiouJWVGdERUVFRUVFxa1o3W3AqSBJEllZWZhMJgRBcLc5KioqKioqKqeALMuUlpYSHh6OKDYc/zgnnJGsrCyioqLcbYaKioqKiorKGZCRkUFkZGSD+88JZ8RkMgHKxZjNZjdbo6KioqKionIqWK1WoqKiap7jDXFOOCNHlmbMZrPqjKicNRZbOWXOqpr33loD/kYvN1qkoqKi0ro5WYrFOeGMqKg0FhZbOTO3/o1Tlmq2aQWRlwZMVh0SFRUVFTehVtOotCnKnFV1HBEApyzViZSoqKioqDQvqjOioqKioqKi4lZUZ0RFRUVFRUXFrajOiIqKioqKiopbUZ0RFRUVFRUVFbeiOiMqKioqKioqbkV1RlTaFDan090mqKioqKgcg6ozotImcEkS89N2siIrqd79m/PSiPLyU3sfqaioqLiB046MrF69msmTJxMeHo4gCMyfP/+kx6xcuZJ+/fphMBjo1KkTc+bMOQNTVVTODJcs8em+NSw+vA+H5Kp3zJLMffyeEt+8hqmoqKioAGfgjJSXl9O7d28++uijUxqfkpLCRRddxJgxY4iPj+ehhx7i9ttvZ9GiRadtrIrKmbDkcCK7LJkAaASRQUHtmRLTn6ui+xLrE1I7LnMfuwoz3WWmioqKSpvltJdpJk6cyMSJE095/KeffkqHDh2YPXs2AN26dWPt2rW88847TJgw4XRPr6JyWrhkiRVZ+2ve399jNN38Qmvenx/VjRVZ+/n50DYAlmUl0isgotntVFFRUWnLNHkC64YNGxg/fnydbRMmTGDDhg0NHlNVVYXVaq3zUlE5Ew6U5FFsrwSgl39ErSNSVFAzZlRYF4KN3gAkFudSUj1eRUVFRaV5aHJnJCcnh5CQkDrbQkJCsFqtVFbW/6E/a9YsfHx8al5RUVFNbaZKK6WoqqLm526+tRERJneBceGw6FdEp5PYo/YVV6nOiIqKikpz0iKraWbMmMH06dNr3lutVtUhUTkjdKKm5ucSR7WTcXAPWIugQyw8NgWCI4jrdx6yr5kqgwc+KVlQZYfS4tqXtQiKC6HfcHjyfXdcioqKikqrpcmdkdDQUHJzc+tsy83NxWw24+HhUe8xBoMBg8HQ1KaptAFiTIEIgAxszE3h4nY90X3yPPgHw287ISUR2/fv0HP+HHpXHyMDaLQgCCDLILmUfwFCVadYRUVFpbFp8mWaIUOGsGzZsjrblixZwpAhQ5r61Coq+Bu96OmvJKQW2yv5YeWvyEt+g7iBoNOTGdGOty67hvfveQxJEJEBAcDlBKdD+feIIwIw9QF3XIaKiopKq+a0nZGysjLi4+OJj48HlNLd+Ph40tPTAWWJ5aabbqoZf9ddd5GcnMzjjz9OYmIiH3/8Mb/++isPP/xw41yBispJuKR9L/TVyzV9vnwLgC8vuIiXti/gxe0LyCgvYl+PPsx54GklGtIQ7bvA4LHNYbKKiopKm+K0nZGtW7fSt29f+vbtC8D06dPp27cvzz77LADZ2dk1jglAhw4d+Pfff1myZAm9e/dm9uzZfPHFF2pZr0qzEeXtx709RuEpC/TcE0+hfxCb/Xw4XF5cM8bf4MnE6x5BmPFhwxMV5cMvn4AkNb3RKioqKm0IQZaPjkG3TKxWKz4+PpSUlGA2m91tjso5iu29JzF++Tq/TruPZQOVZcJwTx9GhHZiSEgMHlqdMvD1B+GHD6jOHlHQaABBWbYxeMCFU+CR2eDr3+zXoaKionKucKrPb9UZUWk7jAgAexVsKsMhuRAR0Ij1BAddLrh/MqxfrCSvajRw3X0w/S34+nX44X2w5ClLOj0GwmNvQ99hzX89KioqLRaLrZwyZ1XNe2+tAX+jlxstcg+qM6KicjQr/4YHLoFr7oZnPj75+PJSuGEIHNoLyPDPAWjXqXb/5uUw+zHYt115HxgGNz0CNz0M9Tk4KioqbQaLrZyZW//GKdcu6WoFkZcGTG5zDsmpPr/VT02VtsF7M0AQYfobpzbeywSf/Ad+gTBiUl1HBGDQWPhlG6zIhUlTocQCbz8KAz3h8eugIKfxr0FFReWcoMxZVccRAXDKUp1IiUpdWqTomYrK6SDJEn+n7WZTXipWhw0fvQdDQzowKSoOQRAgKw0O7YH+o8DTu+a4/cW5zE3eTnZFCX4GTya1i2NoSEztxKFRrP7iP5blHKRg7c9Eevtxbcf+dDAF1o4JCIbXfoBXv4Mf3oM5b8HCn5VXbF+Y/iacN64Z74aKiorKuYcaGVE551mYsY9V2Qe5rtMAnu9/EVdE92HR4X2syEpSBrz+oPLvE+/WHFNgK+PDPSvp6hvCM/0mMi6iK98lbWJPUVbNmC35afySe4ALOg/g6b4TifTy5f2EFVjttuONEEW48WFYlgnfrYde58H+ePjfeBgVDJ++CE5n090EFRUVlXMY1RlROedJLs2nT0AEPf0jCDR60z+oHd19w0gpLQS7HVb/C+HtIbZPzTGrsg8QaPTm6ph+hHn6MCa8K/0Co1iaWdvhd2lmIsNDOzIstCPhXj5c32kQelHL+txDJzao9xD4fgOsKoDLb4WKMvj4ORjkCQ9dAdnpJz5eRUVFpY2hOiMq5zwxpiASi3PJrVC6O2eUFXHQmk+cfxj838tKOe7/ZtY5JtlaUKc5HkB3vzCSrUo3X6fkIr3UUqe5nigIxPqG1ow5Kb7+8MKXsKkMZn6qJLkunwcT2sPlcbDyr7O4ahUVFZXWg5ozonLOc2FUd2wuB89t+wdBEJBlmUujezM4uAP8/DF4eCkRiqOwOmyY9cY628x6IzaXA7vLSYXTjoSMqZ4xOZXW0zNQFOHqO5XXvh3wxkOwfS08cCmY/eCau+Cu50GvP4OrV1FRUTn3USMjKuc82/LT2JyXym1dh/JM34lM6zKEJYf3sWPRD1BSCBffeGKZ9+akW1/4ehVsKIFr7lH633wxCwZ7wj2TIO2Auy1UUVFRaXZUZ0TlnOf3lHgmRHVnYHA0EV6+nBfSgXERsdjnfak4IQ+/ftwxZp3xuERUq92GUaNDr9HirTMgIlBazxgfXd1oyRnh6Q3PfAQbS+HlbyAsGtb+B5O7wOSusOjXsz+HioqKW3C4XO424ZxDdUZUznnskhORupEPfVEhfbasg74jwPt4oZ0YcyCJxXW1QPYV5xBjVsp2taKGdiZ/9hXn1uyXZJnEo8Y0GpfcBAsOwrw9cN54yDgEj02BoT7wxsNQUdG451NRUWkSnJKL+ak7eX/Pinr3Jx31eaJSF9UZUTnn6eUfwYKMBHZbMimwlbGjIIPyeV+gczrg8XcAmJcSz9f719ccMyqsMwW2Mn5P2UFORQkrs5LYlp/O+IiuNWPGR8SyNucgG3KTya4o4ceDW7BLzrpaJI1Jx+7w+RLYWAY3TgcE+P5dGGqCO8bDwT1Nc14VFZWzxim5+GTvav7L2IPNVX8Z/9yUHazOPtjMlp0bqHLwKuc8NqeDP9N2EV+YQamjCl+tnicfnoanyQ9xUSoAc/ZvoLCqnEd6ja857mjRM1+DJxcdK3oGrMjaz+LD+7DabYroWUx/OjR2ZORELJ4LH86E1OqS44gOcOdMuOyW5rNBRUXlpMxP3cl/GcoXBlEQ6OMfSTuTP1VOBzstmWRVlAAgIPB03wuJ8vZzp7nNhtqbRqXt8snz8MkL8OxncNX/3G1N45BxSBFvW7dIKVX28FIScx9+vd5lKBUVlebD7nLyxOb5VDjtiAg83HMsXXxDavbLssyvydtYXi3EODQkhpu7nOcuc5sVtTeNStvlpw/B6AlX3O5uSxqPqI7w4T+wqRzueBr0Bpj7KQzzhZtHwJ6t7rZQRaXNstuSRYXTDsCg4PZ1HBFJciIIApdF98FDowMUdWeHpCa5Ho3qjKi0Ltb8B8WFcPENrbN7rl4P978MawoV56RTHOxYC9cNhAvaKboqknTyeVRUVE4LSbYhy/X/37JUlVMhlZDkWssa+ys8nzKEP4qCWF8p8FNROAAGjZYuPsEAOCQXZQ61ad7RqKJnKq2Ld59Qynmnv+luS5qekRcpr5wMpepm5V/w6r0w+1GYMAUena2owKqoqJwVTtnCLkcEMnaQTVS4DBTYIdtWhdVZiVa0M6o7tPcAfz0cLId2npBvF0ks9YYAZZ7y6ugJgEZohV+WzgL1bqi0HnIy4MBu6DusbeVRhEbB27/B5golauJlgr/mwKhAmDoYdqxzt4UqKucUTsnJ2qK1vJj8IpfuvJSeG4eQV1UFSCCU4KnNo51nHoP8Sjg/2M7oAOhjVhwRu0vkPK/76KXPYHH2A/ycpQEgp8LKIWs+AAEGL0w6gxuvsOWhRkZUWg9HuvM+/q5bzXAbWq2ST3LH07BpGbz9OCRshpuHK31xbpquvFrj8pWKyhlQ6ixluWU5q4tXE18Wz6HKQ+TZ86iUKgHQAF29YWSgiEsGWa4r5nzkZ0FQ9lltgczd9RrDQ3txRYcQ+pr68m7GuxywHuanA7s4Ui0yMqwTQktRhW4hqNU0Kq0Dp1PpihsYBovT3G1Ny6EgF96aDkt+B0cV6Aww7nJFfyUw9OTHq6i0Ag7bDrO4cDEbrBvYXbabNFsahY5CHLKjZoyAQIDWi7GBnozwl+hqKsdXV4lY7TOImJFoqC+VBlwdmbPjMewuTwCMGi0eHiW8bvkfI8Tb6aYdAyhRkaf7TsRL1zZ6UZ3q81uNjKi0Dr54VenzcsdT7rakZREYAq/9AK9+Bz+8B3PegoU/K6/YvvDwGzBk/MnnUVFp4UiSxK7yXSyzLGOzdTP7yvdxuOowJc4SJGoTTzVo8NX5EucVR19TB8YG2uliykSrOVTtbJQBoCUIT2EkZi5FopQC+RPs9TojGnSEEGtcwbUxlXx/YDMSMjaXk9SSwwBslH6gszyMEKMfD8aNaTOOyOmgRkZUWgcjg8BWofR6UZchTkz8enjrEdi9SYkt+wXBdffB7U8pSz0qKi0Yu2RnTdEaVhavZFvpNg5UHCDHnkOZq6zOOL2gJ1AXSAePDvTy7sUwn2GM9o8Bzd+USIupYh8SR1otCOgIx1MYhL94Nb7CldhJ4bDrUazyYmTsCOgw0otKth11FhERb2J1G/EQugGQWV7M8qz9bM5LZaPjN7a6fgNggvlK/uj7I57atuWIqKJnKm2HtQvhnomKrsjz/+dua84dii3wzmOw4CeoqgStDkZeDE+8C2Ht3G2dShvHYrewtGgpa4vXsrNsJ8mVyeTb86mS65bEeolehOhD6OTZiX6mfoz0Hcko31F4aj0pl7ZS6PqWUnk5VRxE5sixGvS0w1sYhr/mOkxciCiKSJKTPOk98qT3cJABgI72hIgPESQ+gCBI7HJE4SQHZWFHRxftCrzFocfZ75IkBm8ZzLayWg2gb7p/w01hNzXVLWuRqM6IStvhqt5KFc0aC5h93W3NuYckwW+fwxezICdd2daxBzz4Koy+xL22qbR6kiuSWWJZwgbrBhLKEki3pVPkLMIp1/Z3ERExa81EGCKI9YxlgHkA4/zG0d/UH7E6EipJEqWsoMj1A2XyGqpIBZQ5BPToicEkjMZfcwMmcVgdGyqkBDJdj2GVlwJOBPSYhYlEal7HKHatMzbL+RzZ0ouAQEftPHzFS+u9riJHEQGrA5CpfcQaBANbB20lzjvubG/bOYPqjKi0DXIPw/lR0GcYfLvW3dac++zbAW88BNvXgiyB2Q+uvhPufkERXFNROQMkSWJL6RaWFy1nq3UriRWJZNoysbqsdR7WWkGLv9afdsZ2xHnHMcRnCOf7nU8Hzw71zOmkRP4Ti/Qr5fIGHGRCdW6IgAdGumASzydAvBlP8fiHvyQ5yZXeJF/6qPpY0BNDiOYRAoW7apycY7HLGexz9Cdc8zJBmobbTfya+ytTEqbU2aZBQ7RHNDsG7cCkNZ30vrUGVGdEpW0w/SpY+jv8tAV6DHC3Na2H8lJ450n451uoKAONBoZcAE+8B+07u9s6lRZKhbOClcUrWVW0iviyeA5WHCTHnkOFVFFnnFE0EqQLIsYjht6m3ozwGcE4v3H46RtuHidJFVjkXyiSfqdC3oqTPKh2ZERMGOmOjziRAHEaBrF9g/OUS9vJdD1BqbwSJQpiwEe4mAjNmxjF452e+pBlCeEkomW37L2F73O+rxPhAcUhuTL4Sn6O+7lNlPeqzohK66emnDcUFqe725rWy1/fwqcvwuFDyvv2XeDeF+HCKSc+TqXVkmfPY3HhYtYVr2NX+S5SK1MpcBRgl+11xnlrvAnTh9HZszP9zf0Z7Tua4b7D0Ysnj7I5JQuF8neUSH9RIcfjwlKzT4MfHkJvfIXJBIg3oRVP3ElbkuzkSLPIlz6tzvcAA50J0TxOgHBrg1GQozm2O3iUlx9TOvYn2hRw3FhZlglZE0K+I7/B+T7s8iH3Rt3LiqwklhzeR4m9UukM3rE/HUzN2Bm8iVGdEZXWz2cvw0cz4emPYcrd7ram9XNoryIst3kFSC7wMsPlt8J9r4Cnp7utU2kC9pXtY6llKRutG9lbvpcMWwbFzmJc1DZ5ExHx1foSaYikm1c3BpkHMd5/PHFecaf0kD+CXTpMgTQHq7SAShKQKK3ZpyUYT6E/vuIV+AnXohW9T2nOMmkTma4nKZPXAC4EPPAVLiVS8zp68fSStD/ft5asihKmdhqIr96DTXkpLM3cz/P9L8LPUPfvf2fpTvps7lPvPFq0OHHSwdiBX7qsYM7+DUztNJAOpkCWZSWyvSCdF/pPxqw3npZ9LRXVGTlFLLZyypx1s7O9tQb8jV6Neh6VJmBUsLKEsKlMLedtTiorFSfwjy+grES59wPHKMq3ndtOYl5rwSk52ViykeVFy9lWuo39FfvJqsqizFVWJ59DJ+gI0AUQbYwmzjuOoeahnB9wPpHGyDM6b6W0j0JpDlZpCTYSkams3iOiIxwv4Tz8xKvxFS5DPIVIyhEkyUa29BIF0hfVSzlgIJZQzQz8hRtOy0E6gt3l5MH1c7mnx0h6+kfUbH9lx3/08Avnsujedca/kfYGTxx8AgER+SiNk1j9ACK0nbkj5lKG+wzn28QEor39ua7TQMV2WWbG5vmMCe/ChVE9TtvOlogqenYKWGzlzNz6N85jOjFqBZGXBkxWHZKWzIYlUJQPl9+mOiLNjYcHPPqW8lo8Fz6cqcjPX9kTIjrAnTPhslvcbaXKMVidVpZZlrG2eG290udH8BA9CNYHM8g8iL6mvgz3Gc4Y/zGYtWf3RbBM2kSh61vK5BVUcUhpOgeAtrrMdgT+musxMe6MHIZSaS2ZzhmUsx6QEPHEX7iRCM1r6MXws7JdkmUkZLSCps52nait6TdzNP1M/eilH0U3z+7c1P5iVhet5vX017k/7HH258GUkKtxSi7SS1czMbJ7zXGiIBDrG0qyteCs7D0XadPOSFJJ3nGOCIBTliiqqlCdkZbM7MeUhhCPvOVuS9o2F1ytvDIOKUs46xbBs7fCrPvh4hvh4dfbVtPCFsBh22EWFS5iQ8kGEsoTGpQ+N2lMtDe2p6tnVwaYBzDGdwyDfQajFc/+saCU2S7B4vqRMnktdtKpLbM1YKAjJmEM/pqb8BYHn8V5KsiSnqdA+goXhQAY6UGY5mn8Nded9XUcwajVEWMKZEFGAmGeZsx6I5vz00i2FhDscfyS0Xj/8VziUcnQ4BgmBvagvbE9r6e/zo6K9YiugdhdTiqcdiRkTMcsx5j1RnIqG5Kdb720WWdkyeF9/Jayo8H9c5I28kivcfga1LXwFkdeFiTthN5DVV2RlkJUR/jwH7Db4bMX4ddPYO6n8NtnStn14++o1U6NyNHS55usm0gsTzyp9Hl37+6cZz6P8/3Pp6tX1xPMfib2OCiW51Ek/Uq5vAkHWRwpsxXxxIOemMXzCRCn4SF2O+vzWaXlZDmfppzNKFEQbwKEWwjXvIZeDD7r+evj1q5D+CZpE09sno+IQDtvPwYGtSe9zHLSY3t490BEZHdFPL0Z2CT2neu0SWdkQ25yHUfEqNES6eVLmcNe45Hm2Ur5YM9KnuwzAZ2oaWgqFXfQ1rvztmT0erj/ZeW1+l94bwbsWAvXDYTQKLj1SbjmLnVp7RSpT/o8255Nuau8zjiDYCBQF0h3n+410ufnB5xPsL5pHswuqRyL/BPF0h9UyNtwkk9tma0ZL87DLE4kUJyGXjyznJJjcUplZLlmYpG/wUURippIT8I0z+KnubJRznEigjxMPNp7PFUuJzaXAx+9B5/vW0ugsf5kWrPOiNVuq3kfoAsgrSqZwTodeo0WURAQESg9agyA1W7DR9c6kldPhzbnjLhkiT9Td9W8nxjVg0lRPdBrlFuRVmrhs31rKKwq53B5MVvz0xgSEuMuc1WOxemEFX9CSCT0VL9htGhGXqS8cjLgjYdh5V/w6r0w+1GYMAUenQ2+/u62skVwutLnnX0609fUt470eVPilAoolL6lWP6bSnlntTOgoMEfkzAWH3EyAcKNaMXG/Z2WSIvIcj5DBdsAGREzgcKdRGhebfRznQoGjRaDRku5w87eomyu6NC33nEx5kASLFk177t4dmFrSTwxAUrZrlbU0M7kz77iXPoERgFKbkpicQ5jwrs0/YW0MNqcM5JgyaLIrgjwxPmFHZcF3d7kzy1dh/DWrqUArMo+oDojLYmvX1e68976pLstUTlVQqPg7d8UR/Lr1+GH9+GvOfD3N9BjIDz2NvQddtJpWgOHKg6xxLKEjdaNJ5U+7+TZiVjPWAaZBzHGb0wd6fOmpkpKo1D6mhJpITb2IHGkCZ2AlhB8hIvxFa/EX7gGUWx8R8gpFZPleppC+QckSlCiIH0J1z6Przi50c93KuwpykKWIdTTTF5lKb+n7CDU08yw6ufDvJR4iu0V3NJV6VMzKqwzK7OS+D1lB8NCYuikGcw61hHtW/s7HB8Ry5z9G4g2+RNtCmBZ5n7skpOhbfCZ0+ackZTSwpqfh4V2rPl53LitjBrlx+23R9ApLIhgDxN5laWkllqQZBmxDSjlnRP88B4YPFRdkXMRrRbueFp5bVoGbz8OCZvh5uGKcN2N0+HmR9y6hHNsqf+ZlPnXSJ9blrOldAv7K/afUPq8j3efk0qfNzUVUgKF0teUSsuwkXRMmW0EZuEi/MUp+AiTERshwbUhiqW/yHI+TyXxgIwGX4KE+wjXvIRW9G2y854KlU4H81J3UlxVgadWT7/AKC6L7o2m+u+1xF6JpapWaTbQ6M19PUYzN3k7yzP3o9cqDsZuxxouZRQAA4PaU+aw8VfaLqx2G5HefjzQYwxmvUfzX6CbaXM6I78l72BJ5j4ApvccR1ffEOx2CaNxKUfuhNEo4hXkIrCnjU4XVDHv3ivQqa3V3c+GpXDn+UrZ6ItfudsalcagIBfemq5I+turQGeAcZcrCa+Boc1qSn2l/icq8z9a+nxH2Q4OVhwk1557StLn4/3G46v3bepLapBSaR0W13eUyiuxk1KnzNZAdHWZ7Q14M7rJozFOyUKm60ks8s/VQmcCngwgXPsSPuKEJj13c+KSXGhXaLnA/wIW9V3kbnOaDVVnpAECjLUhxYSiLLr6hqDXi2g0Ai+/3ImoKCNvvJlMwr4yChcY2b/AA+P05URGGhkyxIcpU0KZPDkIrVZNwGt23qku552ulvO2GgJD4LUfQPpOiXrNeQsW/qy8YvvAw2/CkPHNYkqZs+q4Un+nLJFSkcGCoq010ucplSkUOgrrSJ8LCHhpvIgwRJyR9HlTopTZLqwus12HnQyoVlBVymy7YBLGEKC5CS+x+Sqeily/k+V6ARsJKFEQf4LFhwkTXzxlhdVzCY2owUfjw97yve42pUXS5pyR/oHt+S15B05ZYlXWAQYHRxPh6YvTKePvr+Pa60Ko7JfM5vxCSrNFXOsiSdukZc+ecn75JZdffslFECAkRM/AgWauvDKEKVNCMBrb3K1sXvKzITEeeg9Rkx5bI6IINz6svOLXw1uPwO5NSiTMLwiuuw9uf0pZ6mkCJEniQMV+ElwLyZUOUSxnUkYhdir4fEetg3JE+jzWK5Zunmcufd6USJKdInludUO5TTjIprbSxQtP+mAWJxAgTsMoNm/TQ7uUR5brCYrkuUiUV1t0HuHalzGLY5vVFnfQwaMDe8r3uNuMFkmbW6YB+DZpE+tylaZfOlHDeYEduDG2mEdn+2Mencfh8uKafS/0v5iA6hBtfr6db7/N5O+/C9i5s5Ti4tqks4AAHX36mLj00mBuvDEUX1+13Xqj8tgUWPQrfL8Rep25SJLKOUSxRYmGLfgJqipBq1Oqc554D8JOr6/IEZySk/Ul61lZtPKE0uciGgx4YyKIcUFDuSBwDOP9x5+x9HlT4pSsWOQfKJH+pELeXl1mqyDigwc98REnESBOQy+GucVGi+snsl0vY0OJCmgIJFC8lXDxuSZJgG2p3L7vdr7M+pLMYZmEG89OFfZcQe1NcwJsLgfv7F5OanUyqyVZ5Ldp/oT3t3PxO4rOiCgI3BE7jH6BDX/olZU5+fHHbObNy2PbNiv5+bUKh2azhp49vZk0KYhp08IJD297deONhtMJg72Ub8hLD7vbGpXmRpLgt8/hi1mQU92duWMPePBVGH1JvYcckT5fU7yG+NJ4km3JJ5Q+7+TRiRhDLOkFBsLogV6s/f/6dN8LaefdcqJxdikPizSHEukfKtmNi+KafRoC8BT64Stehr9wPVrRx412ZpHpepxieR4SFYCIN8MI176KSRzuNrvcydzcuVyTcA0fdf2IeyLvcbc5zYLqjJwEm8vBvJSdbMhN5p9njKSsNKIxSExbYKGDnz9XdehLV9+Q05rTbpf4449c5s7NZdOmErKyqmqSYj09Rbp18+KCCwK55ZZwOndWpeZPmS9mwftPwZPvw9T73W2NijvZtwPeeAi2rwVZwu7jw5bJw5hzYRC7qvaRZkvD4rDUK30ebgg/ofR5epmFV3YsPO6U7nZGbFIKhdJXWKWF2NhXvbwBIKAjFE9hEH7iVfgJVyGK7v3SI0kSFvk7clyzqGI/oHTcDRT/R5j4tNvtczcVzgq8VnlxZdCV/NbrN3eb0yyozsgpsmN3Ef17b6lxGmZ90J4n72scqWRJkli0qJAff8xh7doiMjJsuKo7bxsMIp06eTB2rD833xxO//7u+wbT4hkdAuVW2FSuKne2QeqTPs8rS2fS5hLu2ABD0iDVD74eDHNH+OIRHEM3726nLX3eUpyRCimeAtc3lMrLqOIAMkcUOkX0ROElDMVfcy1mJjVpme3pYJfSyXA9Ton8V3VZsAZvYSSRmtfxElVxwqPxXOFJpCGSpKFJ7jalWVCraU6Rl59PQxSpcRI+fSuXR+/q3CjVMqIoMnFiEBMnBtVsW7euiO++y2LlyiKSkirYs6ecDz7IQKsViI42MnKkH9dfH8bo0X4tJiHOrWxaBpY8uGSa6oi0cuySnVVFq1hdvPrk0ueGQA5c0JPvr+hFxQ6JEd8v5IWFqbywsBjal8G9k+HCKU1us0POo0RaQIB4E4Jw+n+fkiRRzhosru8plVdhJxUZJaojoENPB0zCKPw1N+DF8Bb1mSBJEoXyF+S63qSKgwDoCCNQfJJQ8UlEN1cRtVSijFFk2DLcbUaLo01HRnbssNKv38bjtv/wQ0+mTm2eRK+EhFK+/jqTZcss7N9fgc1W3VxKRC0nBrimH+yPh1UFahVNK8Fit7DEsoS1JWvZVbbr5NLnnp3pZ+rHKL9RjPAZ0bD0+aG9St+izStAcoGXGS6/Fe57BTxPniR5upGRSimBA84LcZBJrHYjXqfQfVaSnJTI/1Ik/UyZvAEHGRxpKCdgxEBnzOI4AsRpeIq9TzyZm7BJKWS6HqVE/heZKkCLSRhNpOYNPMX6pdFVarlm1zXMzZ9L6ahSvLWtr4T5WNRlmlPgwgu3sXSpBZer9hYIAnTp4snevcMQxeZXXU1Lq+Drr7P4778C9u4tp6zMVWNXmysnLsiBsWHQ6zz4foO7rVE5TQ5VHGKxZTEbSzayp3zPCaXPIwwRNdLnY/3G0s/U78yjADYbfPgM/PEFlJUonv3A0fD4e9A5rt5Dyhw2/kzdxeqcg8ftu6f7SHoH1K2iKZEWkOy8GokqQCZC8zqhmkePO1aSbFjkXymWfqdC3oKDHGrLbL0x0g2zeGF1mW3LlQCXJIl8+WPyXG9jJwUAHREEifcSIj7WYpaLzgU+OfwJ9+y/h5/jfmZKSNNH79xNm3VG/svYw46CDHIqrehFDTHmIK6I7kOoZ93j1q8vZtiwzQ3O8953UTxwQ22ra1mW+TttN2tyDlLpctDRHMjUTgMJ8WjcHJZjycur4rvvsvj773x27iw7rpy4b18Tl1zSSsuJH7sWFv0C361X9EVUWhx1pM+tW0isSCSrKqtB6fN2xnbNK32+eC58+CykJirvIzrAnTMVFd9q0sssfJCwEqvDVu8UWkHkf92G0zsgElmWyZPe57Dr4eq9MiBiFibSWfcPTqmYQvn76jLbHbiobT+hwRcPeuEjXoy/eHOTtbpvTGzSfg67HscqL0TGjoAOkzCeCM0beIr1O3YqJybblk34unBuC7uNL7p/4W5zmpw264y8l7CCgUHtifb2xyXLzE/dSVZFMc/3vxhDdWdeWZYZOXILGzYU1+SKHI0gQkAnJzu2DSHS2w+AhRl7WZixh2ldhxBo9OKv1F1kVs+rEzWNfs0NcSrlxBddFMTNN5/j5cSSBAM91HLeFsLpSp939OhIL1OvFiF9DkDGIXj9IVi3EFxO8PCCi2+g6J7neeXAekqPckQivXzRChoyyiy4qh0qrSDySO9RaDxeoED6rJ4TiAh4IVNas0VLEJ5Cf3zFy/ATpqIVTU18kY2DJEnkS++SK72HA6WUWkc7QsQHCBIfVKMgjYB+uZ7uXt2JHxzvblOanDbrjBxLqd3Go5v+4JFe4+nio3wTOZIrIoqg0Qi4JBnJBRoNiKKAyyUjSfDsT968cO1QZFnm8U3zOD+yGxdEKtGSSqedRzf+wbQu5zEwOLqxL/mUOVJO/OuvSjlxdnYrKSf+6nV490l44l24/kF3W9NmyKnKYbFlMRuKN5xU+jxMH0YXzy4MMA9gpO/IFiF9flLsdvjsRfj1EyixIAsCB2M68+uVN6KJG8jtscMINCrr+GWOKn48uIVtBenoNeVc1v0jfD13AfV/ZGoJwlsYjp94Nb7CledcAmeltIfDrscolZci40BAj1m4kEjNGxjFxqkwVFFot7YdJc4SSkaXuNuUJketpqmm0qVEDry0tR8MnTp58tZbXSgrc+F0yszbsZ89/+oYPdqf2FgvnE6Z9PJCyn2KASiwlWN12OjmW9u4y0Orp4MpkOTSArc6I3q9yLXXhnHttUrCrSRJLFyolBOvW1dEfHwp27aVMmtWyrlVTvzdO6A3wnWqrkhjI0kS+yr2sdSylE3WTewr30eGLYNiZzEuakOFR0ufd/fszmCfwYz3G093r+4tqqrjtNDr4f6X4f6Xcaz8i/zX7qfToSSeemMmUmgUmpfmwKAxIAh46wzc2KUdWsOXxIV/hyjUE0atQSBM8xzBmnub60oaBUlykiu9Rb70IQ4yAdDTgWDNwwQJ9567v+cWTnev7iyyLMIpOeto3bRlWvVdkGSZX5O30dEcRISXb812k0nLI49E17xP/HI7e/715aabwrjppggAVmYl8U+6IqtsdSiqjWZ93WUPs95Iib3+dWZ3IYoikyYFMWlSbTnx2rVFfP/9OVROvGUlFObC5JvUct6z4Ij0+YqiFWy1biWpMonsquzjpM/1gh5/nT8DzQPp6d2TYT7DON///FYvV50zcDjvvjCd8MoDXPX3EiK2psId43BEmijvayTjORN2kukdCbKsJJEr/2qAYx0TkVJp1TnjjFRI8Rx2PU6pvAJwImDAV7iCCM0bGMWO7jav1TPCdwSLLItYXbyasf6tvyfPqdCqnZGfDm4hq7yEx3qff8Jx0lFCZK2R4cP9GD7cr+b97t2lzJmTydKlFpKSKvjqqyy++iqrppx46FBfrrkmxH3lxLMfVT75H53d/Oc+BzlW+vxQ5SHyHHnYpLqOsofoQYg+hEHmQfQ19WWEzwjG+o9tNeWFTqkAGweokpOxy+nY5Qwc5OCU83FhwUUJEuVIVCpaHlqJqdWVqAVDocAFnR4An02leJWX4Stci7dmFNtzQvj1UCp+Hllc0dFBkPd+SuWV1WW5ADrAQam8AlmWEYTmr8I7FSTJTo70GgXSp9XN88BAJ0I0jxEg3N4yvoi0ES4NvJRnkp/h34J/VWekmlbrjPx0cAu7LVk82ns8foYTawzoXMoSjtFYm4hqddjwqY6EmHUeyja7DR+9R+0Yu40ob99Gtrzp6dnTxOzZsTXvjy0n/vnnHH7+OaemnHjQIB+uvDKYa65phnLighzYuw3iBoFfYNOe6xwj3ZbOksIlbCjZwO7y3SeUPo82RhPrGcsA8wBG+44+Tvq8pSNJFdg4SJV8CLuchp0MHHIWTvJwyoW4KMZFGRIVyNg5PlJxNBoE9Ih4osEHPe3RCgHIBLAuuwy7xUSn7cWM/mMbmiIH8rNvortkGlE65XMhwbICECmqjMRXGEcHndImwiFnUyavp0xaR5m8CpdcjqIZ0nwJ7adCubSFw64nKJNXAy4EjPgKU4jUvI5BbO9u89okcaY4REQ2Wo/XuWqrnDufTqeILMv8fGgr8YWHmd5rXE0y2okwu0yAC72+9hvNvqIcYkzKwzDQ6IVZZySxOIeo6uqaSqeDlNICRoV1apLraE7at/fk+ec78fzzyrXk5VXx7bdZ/POPUk7811/5/PVXPjffvKemnPjSS4O54YYmKCd+c7ry72NvN+685wiSJBFfFs+yomVsKVFKZQ9XHabEWYJEbSt7DRr8dH709OpJD+8enOdzHuP8xp2y9HlzIklO7KRRxUHscip2OR2HnFUdtSiodiys1Y5FVY0Caf2ICOgQ8UDECx0haPBHKwShIxS9EIVeaIdBiMFIZ7RCABzYDTkZkJcJuYeVV3Y6ZG2nY04GWoeSnJs7YAQhX/8MwbXLUzsLD7O3SIkiBBi86ORTu/ypE8LwE67ET7yySe7b2SBJNrKlVyiQPsdJHgAGuhKqeRJ/4SY1CtICCNAFcKDigLvNaDG0Omfkp0Nb2ZyXyj3dR2LU6CixK/keHhod+urS3q/3r8dX78nlHfoAEGYPAbLY70qnb4WeLflppJVZuKHzIAAEQWBcRCwLMhII9jARaPTmz7Rd+Bo86BMY5Y7LbFKCgw08+mgHHn1U0YAoK3Pyww/ZzJ+vlBMvXWph6VIL99+f2LjlxJIES/+AoHDoO6yRrqZlYnPaWFOyhpVFK9leup0DlQfIsefUL32uC6SHTw96efdiuO9wxvuPJ0gf1MDMTYskSTjJo4qDNcshDjmz2rHIq14OseKiHBlbddSioYI9AQEtAoZqxyIMDX5ohUB0hKATItAL7dELHTDSCR1Rp/8QnfcVPHdb7XutTkn8cCl6Pdpq6/IDg3l22p10y01ksGxDJ2qILzzM1vy0mkPHRnRFPAPJ9+akVFpHlnMGZawDJEQ88ReuJ0LzOnoxwt3mqRxFZ8/ObCxRIyNHaHXOyKpsxdOcvXtZne03dzmPoSGKwqGlqgKB2iiIh10peU2yZ/LS9gMEe5i4u/uIOkmvEyK7YXc5+f7AZiqcdjr5BPFAjzHNqjHiLry9tdx5ZxR33qk4Xna7xO+/13YnXr++hHXrSnjqqYN4eYnExnpzwQUBp19O/M1scFSxrMd0frt7L7Nnd8XTU0NSqoX18VnYHScKxdePXqdhaJ9wukS7R0r+aOnznaU7SbGlNCh9HqoPpZNPpxrp81E+ozBqm1YrximVUUVStWORhl0+jIPs6uWQguo8i7LqPIuTL4eIGBDwQItftWMRgJZgdEI4eiESAx0wCB0x0LF5OrgOuxA8vaGirPqCj4+6yBot794/AwSBfcU57CvOOW7MwKD2jA1veVEnUJa0sqQXKJS+xomSdG+kO6GapwjQXO9m61QaYojPENaXrCehNIE4kyog1+p1Rk6FF188yHPPJbNly2AGDGjB5a4tlGPLiY/tTty5sydjx/px883h9Ot3gvs7JgxKixnIcrZuK6V3b28WLOjH4s0HsZScedWSv4+RaZfF4ZScvJTyEttLt/NX778aNdHwYMVBlliWnJL0eaQhkljPWAaaB5699PlRKMshKVRxgCo5FYecgV3OwkkuTrkAJ0VIlCJRUS1j7jzBbGJ1noUREW80+KAloHo5JAydEIFBiMYgxGCgE1qxBfcN+u3/4MX/1b9PEOCu59hwxY38k76bAlvdyJS31sC4iK5cGNW9xUVFSqWVZDqfopxNKFEQL3yFq4nQzEIvhp70eBX3styynHE7xvFSzEs80+EZd5vTZDSpzshHH33Em2++SU5ODr179+aDDz5g0KBBDY5/9913+eSTT0hPTycwMJCrrrqKWbNmYTS2DIVQh0Pxx4zGlvVhc65QXznx0d2J9+8vJyGhjPffV8qJO3Q4Uk4czqhRvsqDeOsqKMyhasKN7HhHUbFMSCinX7+N3P6wN/6hynPDy0N3ynaVVzqQZbA7XKRUpnBtwhS8dVu4vR1k2OfTznD5aV2nJElsLt3Mcstytlq3nlT6vK9331rpc//zifaIPq1zOcmpdiyOXg7JxSnnVzsWJUcthzg48XKI7qjlkIjqqEUQekKrl0Oiah0LIlpXTsGVt8N3b0NKYt3tgqjkh9zyOEOMHgwOjiaxOJeMsiJkZIKMJnoFRKATNVhs5ZQ560azvLUG/I3NKyTolMrIlp6lUPoGFxYAjPQkTPMs/pqrmtUWlbNjpO9IANYWr3WzJS2D03ZGfvnlF6ZPn86nn37K4MGDeffdd5kwYQL79+8nOPj4Xgs//vgjTz75JF999RVDhw4lKSmJadOmIQgCb7/dMpIUq6qUxMDWWtrrDoYN82PYsNpy4l27Svnmm9py4i+/zOLLL2vLib8PmMkQNKwd8iyut5IBcLlkCgrsvD7Twg13eTNkhBf/u/rUO5l+PncnZRUONun/5e34l3kwppJB1SYdtv/XoDNS4axgefFy1hStYXvZdg5VHDqh9HlfU1/6mPow3Gc44/zG1St97pSKKZe2VjsWqbXLIXI+Tiy4KD5mOUQ6bo5atIjoEfFCSyAafKvzLJTlEJ0QpUQt6IiBGETRcMr3rNVhLYZ7Jx3viADIEsz4AIxKhZwoiHT3C6O7X92O3RZbOTO3/o1Trvs70QoiLw2Y3CwOSYm0hCzn01SwFZARMREo3EGE5lW0olp1di6iFbWYNWb2lu91tyktgtN2Rt5++23uuOMObrlFaTT16aef8u+///LVV1/x5JNPHjd+/fr1DBs2jKlTpwIQHR3Nddddx6ZNm87S9MbjSGREdUaajl69Gi4nTt+XR5z3dt62XMETVybXOc7lAlww54MySgrhjqtOXcehkjLmBrxA39glfHNU01WHBBZnco30+fri9ewu392g9Lm3xpsIQ0SN9Pkov6H0N4UiienVyyFHqkM+I0t+lQx7cfVySDkSdk5tOcQDEW90RKKtqQ4JRy9EoK+zHOJ7SteuAvzwAcx+RMkTGTwOBoyCj54DZNBolU6+Yy496TRlzqrjHBEApyxR5qzCn6ZxRpySlSzX01jk73FRDAh40Icw7fP4iZc0yTlVmpcYjxj2lO9xtxktgtNyRux2O9u2bWPGjBk120RRZPz48WzYUH+L96FDh/L999+zefNmBg0aRHJyMgsWLODGG29s8DxVVVVUVdWGRK1W6+mYedrY7Yoz4unZ+pNRWwp1yomfvB7533KCrr8Ony80lJTUnyQ578cybmA3X38dh15/YsdxQ8l6lnS8iGc7lxCoB/Eo/0UAtpUuY/I25RuwlwaC9AJdvT3o5OVLV08vOnh6EGnU4KW14aIUiRxkUpFZAMgckKgneHFkOcSIBi90RB3lWNRWh9Quh4S2ruWQlkJOBtx1ISTvBS8TvPMHjLoYnE5Y8hsk7VLGzfhQWftrYRRL/5DlfI5KdqBEQXwIEu4hXPOK6oy2Mvqb+hNfFk+WLavVKx6fjNNyRgoKCnC5XISEhNTZHhISQmJiPWFQYOrUqRQUFDB8+HBkWcbpdHLXXXfx1FNPNXieWbNm8cILL5yOaWeFw6E8VdScETcgSbDkd4SgMK5/9VLu/nDZCYf/+GMOf/yRyyOPRDNypB9DhvjiZZRAqyXNlsa+8nj+L+txJocd5IU4kOS6jgiAVoSxgTA+EAzikeeRDFRUv2pG4sCAiCdagtDgh04IREsI+jrLIZ3QE33ONUZrlXzwDHw5S/m7uuBqeO1HbMj8eWgb8YUZmK+ayhOvJVA65W58OjRcHbO/OJe5ydvJrijBpGs4t+3DPSspd9iJ9Pbj2o796WA6syUTp2Qh0/UUFvknJKyAgCf9Cde+iI848YzmVGn5nO9/Pl9mf8mfBX9yd+Td7jbHrTR5ae/KlSt59dVX+fjjjxk8eDAHDx7kwQcf5KWXXmLmzJn1HjNjxgymT59e895qtRIV1XR6HmoCqxv59h1wVMG0R9m2zUpVVd0kTFFU3ARZUvINfX20mM1aPvvsMK+8ksI7TzzE/Uv3sf0VqBoJIWZ4zAsM1UGuYx2RI9gliNSPVspOUcpO60QtxMav2lJpQg4kKLkhORngFwTv/wm9hwDw7b61ZFWUcEvXofj2HMeyzv34t9LCc1UV9aozF9jK+HDPSkaGdea22KGsz01m8eF99Z52RGgn+ge2Z1lWIu8nrOCF/pOP62F1Iopc88h2PU8luwEZDX4ECQ8SrnlR/RtsA1wUeBGgVNaozshpEBgYiEajITc3t8723NxcQkPrLyWbOXMmN954I7fffjsAPXv2pLy8nP/97388/fTT9YapDQYDBkPzJd0dcUbc0oelrfPtW6A3wA0PsXZ2Wp1dPj5aRozwRe9jIzxaILabB/1i2vPSS8msWlXEII993L0oCdkA/Z+A9JviqLrjJkIM5WS65iMIuxAE5Xd7rFNikyBc+AuT1tRcV6rSFEgSvHQX/PGF8n7KPUpSavXnit3lZEdBBvf0GEkXHyXB/vz+57N5x3+syj7AZdHHJ0Svyj5AoNGbq2P6AYrGSEPOSO+ASMK9fLi+0yASLFmszz3EhVE9TmiyXcojy/UkRfJcJMoAES8GE659GbM47gxvhMq5iLfWGw/Rg51lO91tits5raevXq+nf//+LFtWG0qXJIlly5YxZMiQeo+pqKg4zuHQaJSvrS1F4sTpPFHlgkqTsXW10ovm/KtAFBk+3I8774zkyy97kJg4jKKiMfz9dz96DTCwZomNR+/IZ+jQLfz3XyFdTfn8Gj2LTd1H0eOx2/j3YQj7K4HOE18icu8FDPaIZ/fClSTveJjKCsVRdh3152bWQmJF/UuLKucI29fC6GD4/f8grD3M2wNPf1Sn07Mky0jIaIW6+WA6Ucsha3690yZbC4j1PT2dDlEQiPUNJdla0OAYi+sX9tjj2O0MoVD+GgEDweKj9NFaidVvUB2RNkqkIZLDVYfdbYbbOe1lmunTp3PzzTczYMAABg0axLvvvkt5eXlNdc1NN91EREQEs2bNAmDy5Mm8/fbb9O3bt2aZZubMmUyePLnGKXE3RyIjKs3M7EcAAR5VSryHDPFlyBBfALKybNx9915+/z2PggJFNbOrXz7PXHCAKUWfoSvKwXX5rXTsch2eTg0zuy4g/JVses4sRXfzMIQp9+HqfDuZ+6dSknET111ZQr7rE4qk30Bw4amBKE3bThg7Z7Hb4fFrYfk8EDVw9/Nw93P1DjVqdcSYAlmQkUCYpxmz3sjm/DSSrQUEe9Tft8rqsNVZaqlynqgaqhaz3khOZd1ke7uURabrSYrlP5AoR4mCDCdCOwuTOPyU5lVp3fT27s2BygNUOCvw1J64qWtr5rSdkSlTppCfn8+zzz5LTk4Offr0YeHChTVJrenp6XUiIc888wyCIPDMM8+QmZlJUFAQkydP5pVXXmm8qzhLVGfEDRTmwZ5t0KM/BCjh8+JiO7NmpfLDD9lkZlahExxcEJjIlH5bmWDcQHBpGhyp/DX5Mv/WV3CtTSDQoKUg5yOmhV3J5z/LdH9OwOfnD7nW5w9+vuYz8IzCJI7CJI7CIedRKH2NTUoiSBvWsH0qLZPlf8KM66GyHDr3hE8W1mlsVx+3dh3CN0mbeGLzfEQE2nn7MTCoPelllpOeblNeCj8c2NLg/pTSQtp511WflSQJi/w9Oa5ZVKFE37QEEyw+SJg4s3lk8FXOGcb4j+G3/N/4p/Afrgm5xt3muA1VDh6YOHEbixYVIkkXNPrcKg0w4wb49weqPlvJO6va8dVXhzlwoBItTu4IWcqN7bYzSNqMxl6JJGoQpWPKfd/6las9uvBbej4Bei2FdifT4jaxw/4Mn/WE8LlGIt+0IQsa1k14nBFvvOqe61RpHMqscP9k2LYadHp48n24+s7TmqLK5cTmcuCj9+DzfWupcjm5P270cePe3LmEdt7+tDf58/X++iULjiAA/+s2gn6BUcxJ+hejx690CZmLTCWgwVsYQYTmNbzFwadlq0rbIcuWRcS6CG4Lu40vun/hbnManSaVg29tOJ0t3h9rVUhOJxUL/iTR3o3Bw6uQpAPodAIjRvjy1iVJDPr2HagSlO6qcLwj4m2G0Zew4Z/NeGtESqob6P2ZNIygiJ48tGc3H1xjo6CXH91vq2L4wlmQswo+XQKebTcMes7y2+cw6wGl6qrfCPjwH+Vv4DQxaLQYNFrKHXb2FmVzRYe+9Y6LMQeyqzCTdTmHarb5GTzx03vySK9xZJQV8f6eFVQ4HchIrLe8gta8nG5RaWhEBxpCCBIfJ1R8Si33Vjkp4cZwdIKObaXb3G2KW1HLR1CckRaofdTqmDcvl2HDNnFxwBt4y2U8k3UDffqYmDOnBzbbOFavHsSg6VMVfQjq/4VIgoaEbpP4dN5esiqr8HaBs9ppKbY7kdJmsblIw4v7tbhii9j8rz+ZHQZB/HoYEwzrFzfjFaucFQU5cFUfePFO0Gph9m8wZ/VpOyJ7irJIsGRRYCtjb1E2b+9eSqinmWHVXbznpcTz9f71NeNHhXUm31ZGlaTkirT39qekqpKL28ehFTV0MAcyJSaauJBF3NjvXoZEf0apI4fdOZOJZD299dmEa59XHRGVUyZEH0JKZYq7zXAramQE1RlpSlavtvDKK8msXl2MzSYhCLC+84+UCib+ynscvfGYP0FRhFnfQ3EhbF2plG4evVt2sSP2YrbaKpG1oJeUsl1JUPRIDkoG4oqe42+epbM2hKmdDpP6hRfh675CfPFOuGsCXHwjvDynTtWFSgvj/16Bj59T+gGMuRTe/BX0Z/Zwr3Q6mJe6k+KqCjy1evoFRnFZdG801b//EnsllqpasbtAozfhnj5klBcBYLXbuLHLYLr7hpHv+pwyeR06vx8Z4usivbgPe3LHU1jWnwfjxhFqUPvEqJw+3b26s9iyGKfkRCu2zcdy27zqY1CcEdUbaSzWbs3j1VdSWb3USnmZ4ky0a2fkxhvDePLCbLzv2QMTp8KxjsgRdHqY9hhsXl5ns4yAJbgjldFx7HZYQYYiUT5OlX2PfQhh9oG8nbWFXoY+xEXFkzTpS2KHp8Oto+Gf72DjUvhyBZxAhVPFDaQmwd0TITMZfPzhnXkwYORZTTkgqD0Dgto3uH9a1+NlCY50YdYIIq8NvgynXMQB53hK5eXoiCRcfB4Tl/N/SfEAdDL708GsOiIqZ8YI3xEstixmdfFqxvqPdbc5bkH9aogaGWkM0tMruf32BPwDljNi4A7+m1+ES+ek+2WVTJtvYcf+/rz8cme8P34MEOCxdxqebMnvcN9FSjOz4AioLgEXBAi47UH+d3Vvcj0EjBqBUo7P9xEFEGyvYhA9uCs9EQ8uoJx1HPC5Ff5KhFseh8IcuLw7/J+a2NoikCSYdT9cGguZKXD5bbAq/6wdkTPFU6tEYVyyRFrln+x19KRc3kqI+BRx2lTCtE9TWFmrReKh1bnFTpXWwaWBSsPG/wr/c7Ml7kONjKC0qlcj9qePxWLnlVeS+fnnXLKylMaGZh8Nnc6vot+0CkYXbqJv/BbWFo6hzHE+/pWVkLAFuvdj4b5y9h7aCiiCUUaDhkA/D/qlrqDDh/cgGIzw42YlP+D6wUr+gEYDk6YiSRIZFTbCPAzk2KrqiJmBIm6Wa4P+8gdslm/njp1lfNl7OFb5P5Id1xLz8M8wYQrceQF88DRVS+fz6QXvcN3lfQn2VxNcm53dm5VKGUsehETCR/9Cl17NboYsy7goxCYfpH/4VnxNa+kavIoCTRkmYSzR2jnohaiasYsO17Z+7+kX0ez2qrQeepp6IiKyoeTE1VutGdUZQV2mOR1sNiezZ6fz1VeZJCdXAuDpKTJ5chAzZ8YQ0s3FKzsWAhC7fg/nbVnHeVvWYZ8/F8x+gAyPvAVVEB1hZsKwDkiSTIXNQfFX79Pux+cpCOlKwJyFiBHVofUvlsONQ2H4heDjz8ocCxLgkuXjHJEjyDJszmnPgJiLWG/9l9X5nzI8qIwi+RfSHL607/4prMiBR65Gv2I+1+ffjBD0GlxyVdPfRBUFpxOeuhEW/qzk79w+Ax5ovkhVqbSSUmklNvkANvZSJR+slmcHkxl6m5RoXLa1K3ssL+ET5UOIB2SVl/BfRgLbCtIBMGp0DA6Obja7VVonAboAkiqS3G2G21CdEdRlmpPhdEr83/8d5uOPD7NnTxmyDHq9wOjRfjz5ZAcmTKhdKz9aSKrS0xOnRoPW5UKXlqR4CIIA6xZijLmYKu9QvDyU8LZp9gOE/PYZFaEd+XHKF4wt96QnYLM7WZ3jweHb52MXtQQs2s8/BiUKk2Oz19TcHPFJdDJ0NBgYGRVAvwAz17b/lch1ITy6dwYvF/1Dx16vIUf/H8VFgfQOfhnem8d3b/3MpAXP4PPcVFYsXU/+hbdzzaTuzXBn2zBr/oMnrlX0QzrEKuJl4Q3ndTQFqc6bsZMOaABXvWMqHSb+TXwKSU5lXW4qGkHEJdfNUpraaQBGdZlG5Szp7NmZjSUb3W2G21CdEY4s06jeyNFIksRvv+Xx9tupbN1qxeVSVkn69zfz8MPtufbakHqbHB5NpdETobrs9si/yDLMeYtR8hvk9BgHvb9XSjdX/Antu+A5dyf+iw9xIL2Inl2C+GflIbQakUmTB2DQa9i1P589+3PwEAVGhfojVjrRF9vpZvJiVmkB4/x9uNpmJNRuZFLnSADeMf/IPZarmRP8GItD/yOxZAyy+XUOWr3oZJ7BBdMm84NfFLcseYIxK9/BFf89RC+E7v2a9B63SSoq4KHLYOMS0OrgiXfh+gfdYkqk9i2SndfQkCMiCCDYXkQjGJBkZczRjohe1HB9p0EMDu7QHOaqtHLOM5/H+pL1JJQlEOcd525zmh01UwI1Z+Roli8vZPz4rXh6LmPKlF1s3myla1cv3n+/KzbbeLZsOY+pU8NO6ogAVHp4Ikr1NCGUXCDLhCYshdvGKI5Ir/Pgz31gNOLvY8RaZiczt5ScggouHt2R0EAv/MxGRg2M4hBO4owe/De2L09HhDPSZWDGuO54azUkOaoYM7gd+1MtlFcqPW1ch9oxWXcDO1zr+aL4Y4YEraa0sA9FumfJc32Eh1GLS2vA9vFieOBVNCWFcN0AePfJxr69bZu/voVRAYoj0nMwLM9xmyMC4Cdejb8wFSUyciwaPIS+DPV/gNcGXcoVHfrQxSeYKC8/uvqEcHVMP14bdDnnhaiOiErjMClgEgB/5v/pZkvcgxoZQY2MxMdbeeGFZJYsKaC8XHEeoqON3HxzOI89Fo2X15n9mVR6eNQvXSZqkASRwtBYgpN3w+hL4P3a/4AyiuRZflElDqeLT36Or9lXKLsoFmQGGj1qtpm99Ji89ER4GEivsBEe5IUsg6XEhlYjUl7pYHaXN1lx4A+ePvQ014Vch5D9DRW6q8nwu48g2Qx0Uya7fQaMu0Jxkr56HZbPh69WQuDpdXFVOYqiAqVcd+9WMHgoOjIXXe9uqwAIFO/G4vq5nj0uojRvIwgi3jojEyK7MyFSXbpTaTpG+Y0CYE3xGjdb4h7UeACKrlJbi4ykpFQwbdpu/P2X07fvRubPz8Nk0vLgg+3Izx9NSspInn++0xk7IqAs0xyHRgNmP4qDOhKYtQeuvKOOIwKKE2E2GbA7XHh56LhhcveaV1Z7xQm5c2DMcVN39/Gi0iVhryerVSNq+a/Pf0hIjN0+FkH2Jm/3HES8ydPfgqe5VvqbDl1h6WGYfBOk7ocL2sH8OWd8H9o0c2bD2DDFERl2IawubDGOyGHn4yS5RsJx5eFazMIkTOJoN1il0lbRilrMGjN7y/eefHArpI09gutHktpGZKSgwM5DDyUSFraSmJi1fPNNNgA33xxGcvJwsrNH8+67sQQGNo6MdaXHMc6IqIF2ncFpxzfvIJuveRWe+7zOkPRsKwVFlXRu50dIgCfllQ5EUcDPbMTPbGRVkRWDKNAryKfmGGu5nbIKO0Oqt/19IBtBAH8fIwa9Bi8PHVl5ZQz2Gcwd4XeQbEvm+7zv8fcOppt2F4JspNeY+yiX1x5lqwivfAOfLgKdDp69Bf53vtK+XuXkZKbC5K7w9qPg4QWfLYZP/gMPj5Me2tTYpXQS7J3Ild5ERyjdtXsIFh+m9uPQRaTmDXeaqNJG6eDRgRx7jrvNcAvqMg3KMo2mvmXjVkBFhZM330xlzpxsUlOVUlwvLw2XXRbMs892oG9fn5PMcOoU2MpYcjix9txHNaWTAaHfCNi9CapsbLn9E7K6j6G80lFT2puaaWXz7mxiIn3o3jEAQYDwIG/+Wn6QEf0j8fMxkl5WSZzOQE5BOaGBXgBoNSIL16YwpKvSyn3Z3myuaB9UU6kzMC6U9fFZ+JoMvBr6LssPb+Rn/Zvc1n4iRrEvsdqNbHdeRJ7xakwVCzFpB2LQV//XGHoBrMiHuy5QVFtHBSk6GP2GN9p9a3W8/Th8MxtkSYmCvDRH6S3TAsh1vcdh1yMgu8gpvoN1aZOwOnbhZxjKxd3nodWmEiDciofYo97j9xfnMjd5O9kVJfgZPJnULo6hIXWjdCuyklhyeB8l9koivf24tmN/OphUdVaVk9PP1I+dZTvJqcoh1NC2loZbxieEm1GckdYTGXE6JT75JINPPz3Mvn3lNaW448b5M2NGB8aNC2j0c+62ZPL5vrXYj+qwW2mo/Ra8fcBQ+u1YiyBL8NavFHv2J/VQIZ/9uhNREDAYNAT5eTBmUDt6dAqo0X25fHxn1m7PZNG6VHKq7NhEmb46jxpHA8DXZKBzOz82bMzESxbI0LgYd167mv19uwVTZXexamsGFTYn9/u8x6OeF3LFwUlkhmTipY3Dq+QbbNop7HNeR+7OOVw1bnTtxXl6wrdr4acP4Y2HYNoIuOZueObjRr+P5zSJ8XDvRZCfpeTYfPA39BjgbqsAcEpWDjjHU8EWRMxkF3zBsnSRW7oOJMzTh7RSC3/tv5uJnf8i3OvFeucosJXx4Z6VjAzrzG2xQ0kszuG7pE346I308AsHYEt+Gr8lb2dqp4F0MAWyLCuR9xNW8EL/yZj1xua8ZJVzkAn+E/g6+2vm58/nrsi73G1Os6I6IyhK1Hr9ue2MSJLEzz/n8s47aezYUVuKO2iQmUceiebKK4NPqQLmTEgrtfDp3jU4q8seNQhEefsTlZYGQFJMF/pu24AkipR/vADz0AlcCFw4/OSVCHqdhrGD2zF2cDse3LIfkkq4f1QXTF51l5J6xwbTOzaYGb+uZJ/WhdFQ+6ctCAJD+oQzpE94zbacg9N5Le01/pf4P77o/gX9Oo7GKv3IAecFxIyYiE3ai1E8xr7r7lOSbW8ZBb9+AmsWwFerIKJ59TFaHJIEM2+Bv79V6mFvfFgRtmshiVgW12+kum5ExoZZmERHzTzWFa+nT4CRnv6Kcmqg0Zst+UPYc3g458WG1zvPquwDBBq9uTpGKfkO8/ThYEk+SzP31zgjSzMTGR7akWGhHQG4vtMgEixZrM89xIVR9UdbVFSOcFHgRQAsL1re5pyRlvFp4WYk6dyNjCxaVMCYMVvw8FjG9dfvZts2K926efPxx7HYbOPZuPE8rr46tMkcEYC/03fVOCL9AqJ447zLmdF3Ajds34YzIJjOyUk4tTpeeuIVFoSceVRmWa4FnSDQy8/U4JgoLwN5tpPndczqNIuOHh35MvtL1hWtA8AsjiNG8zsyVexz9sIuZR9/YFg7WJgCU+6F7DS4uCP88MEZX9M5z6ZlMCJAcUSiOsE/B+Cxt1uEIyJJdg44LiLFdTUAHTRz6az7F1HUE2MKIrE4l9wKKwAZZUUctOYT5x/W4HzJ1gJifeuGzrv7hZFsLQDAKblIL7XQ7agxoiAQ6xtaM0ZF5UR4a73xED3YWbbT3aY0O2pkBOWL3bnkjGzZUsJLLyWzbFkhFRWKExAT48Gtt0YwfXo7PDya79daaCsnwZIFgJ/Bk9tih6IVNZCdDsv+QIuAZPbjxSdeIt/Xj6LcFK6I7oNec/o2HiytoKPpxAmQPX292V1cjtXuxKw/8TmW9VtGx3UduXjXxeSPyEcravHTXEZ75pDmupm9zu7EaVPQir7HH/z0hzDpOrh3Erz+APz3I3y+BDy9T/u6zklsNnj0Klj9r9LQ8MFZcFvL0WUpldZy0HkRElY8GUhn7VK0orlm/4VR3bG5HDy37R8EQUCWZS6N7n1CATOrw3bcUotZb8TmcmB3Oalw2pGQMdUzJqfS2rgXqNJqiTREkmHLcLcZzY77v760AJTIiLutODEHD5Zzww278fVdzqBBm/j773x8fXVMn96OwsLRHDo0gqefjmlWRwQgraywpjBycHC04ogAvHKvorY6chLisizad+oNgM3lOKMP5n0lZVRJMmNC/OpsH9onghsvqQ1/Dw/yBWBxduFJ52xvbM+sTrModhYzJWFKzfZAzU1Eaj7ARTF7nF2RpIr6J+g7DFbmw5ALYNdGGB2iyJy3dhb9CiMDFEekWz9YmtliHBFJkkh13E6ScwQS5URq3qObfnMdRwRgW34am/NSua3rUJ7pO5FpXYaw5PA+NuQmu8lyFRWFXt69qJQqqXA28LnTSlGdEVruMk1Ojo17791HSMgKOndexw8/ZKPVCtx2WzhpaSPIzBzF7Nmx+Ps3TinumeA8SmHVS2tQfpBl2LMFOvaAd+aBwYiXzlAzzlWfKutJ+PpQdRlyh/rX848wKVypWliRW3RK8z7W/jF6effij/w/WFCwoGZ7iOY+wsSXcZJHgjMWSWpg6Uevh88WwcvfgNOhREqevF4Jt7U2rMVw4zB4bIqiovviV/DLNggIdrdlAFRK+0hwRlIof4mBTvTUphKieaDesb+nxDMhqjsDg6OJ8PLlvJAOjIuI5b+MhjUezDojVrutzjar3YZRo0Ov0eKtMyAiUFrPGB+dmryqcmqM8RsDwILCBScZ2bpQnRFa1jJNWZmTZ545QPv2qwkLW83HH2dQUSFx1VUh7N49hIKCMXzxRRzt2rlfrwEgwOhV8/OeImW5BkGARWnw6w7QapFkmT1FtfkXfoZ6xNBOwuLsQrSCwOCgE5cit/f2QCPAjqLSU557Wd9l6AQd1+y+Bpuz9kESrn2aEPExHGSw19kTSaq/hwkAl9wESw5DTDdY8COMi4DkfadsQ4vnpw9hdDDsXA+DxsLqArjsFndbVUOm81n2OnvgIIcQ8XHi9AfQi5ENjrdLTsRj9IFFQUA+TgCtlhhzIInFdTUg9hXnEGNWHGCtqKGdyZ99xbk1+yVZJvGoMSoqJ+OyoMsAWGRZ5F5DmhnVGUH5Iu9OZ8Rul3j77VRiY9diNi/nlVdSyMuzc8EF/qxaNYDS0nHMndubuLiGEzfdRQdTIEFGJU8isTiX7QXVa516gyIWhlJhUGBTWrN38w3F9wyckf2lFUR7ndq3Sz+9juSyylOeO1AfyCddP6FcKueiXRfV2RepfYNA4X9UkUSicwDSiSIeAcEwf68iKW/Jhcvj4LOXT9mOFknuYbi8B8y6HwxGRS33i2UtJjfGLuWwx96NHOkltATRTRtPpPb1kx7Xyz+CBRkJ7LZkUmArY0dBBksPJ9InoNaBmZcSz9f719e8HxXWmQJbGb+n7CCnooSVWUlsy09nfETXmjHjI2JZm3OQDbnJZFeU8OPBLdgl53FaJCoqDRFhjEAn6Nhq3epuU5qVNp3AarGVU+asQpJkJNFFepkFb60B/6O+7TcVkiTx3XfZvP9+OvHxpUgSaLUCQ4b48Oij0Vx+eUiT29AYiILAuIhYfj6k/Mf5bN8a+ge2o29AJE5ZYnNeKnuP+jY5PiL2tM+RUlqBzSUxMtjv5IOBaC8P4k8jMgJwW8RtfJ39NcuLlvND9g9cH1YrWd5e9xlORwnF8i8ccI6hq37ViSd74FWYMAXuGAcfzYQlc+GLFeDrf1o2uZ2PnoX/e1VZkjn/Knj9pxYjXgaQ7/qMdNd9gBN/4Xraa7495aqxazsO4M+0Xfx4cAuljip89B6MCOvExe1qu6WW2CuxVNWu2wcavbmvx2jmJm9neeZ+fA2e3NhlcE1ZL8DAoPaUOWz8lbYLq91GpLcfD/QYg1nfMiKZKucGIfoQUipT3G1GsyLIstxwXLKFYLVa8fHxoaSkBLPZfPIDTgGLrZyZW//GKUt8MTaAgE5OLv+8BK0g8tKAyU3mkPzzTx5vvJHKxo0lOBxKt+C4OG/uv78dt94a3qQluE2FJMt8k7SBjXmpJxx3Ubs4Lmnf67Tnnxl/kJf3pLJiXD9Gh578gX7Hxr18cSiL7MuHE+p56mv1Zc4ygtcEI8kSOcNz8NX71tl/wDEJq/wfZuEiOuv+OfmETqeSX7HsD9AZ4NVvYcI1p2yP2zi4B+6ZBDnp4BekREN6D3G3VTU4pTIOOidQznpEvInRzsdHHOdus1RUGo0JOyaw2LIY1xjXOflMOJpTfX6f21d5FpQ5q2q0MWQZhOoiEKcsUeasatRzbdpUzEUXbcfTcymTJ8ezZk0x0dFGZs3qTHn5WHbuHMrtt0ees390oiBwc5chXB7dB1M9iXoBBi9u6jz4jBwRgIXZhWgEGBnse0rjR1VHUP7LOnlFzdF4a735vsf3VMlVnB9//nH7O+sW4MVQrPK/JDtOodmbVgvv/A7v/KHk0Tw2BR64VHFSWiKSBC/eBVf2hNwMRWV2RU6LckSKpb/Y5QymnPWYhPH01uarjohKq2OYzzAAVpesdrMlzUfLibm6E1np4XYyvv02iwUL8vnpp141cuUNkZhYxgsvJLNgQT5Wq5L4GBlpYOrUMGbMiMbX130VME2BKAhcGNWdcRFd2W3JIq+yFEGASC9fuvmGIgpn7mjtLSknytN4ys7aheGKsNrq/GJu6RRxWue6IvgKJgVMYkHhAj5I/4D7291fZ38X7RoSnf0okn8kzWGmve6Tk0867nLloX7HOFj5F4wJURrwtRCpdAB2rIMHL4XiQghvDx//pyTjthAkyUmy62pK5PkI6InWfE+ApmV0/1VRaWwuDbqU51Ke49+CfxntN9rd5jQLqjMCIIOgOfFq1XffZTFtWgKyDA8+WMKQIb7HjcnKsvHii4f444888vMdAAQG6rjzzlCeeaYjkZGtv7xPJ2roFxjVaPNlVdiocEkMq9YPORUCjXp0gsCuorIzOue8XvMIWh3E9IPTuTL4SsKNtTkBoigSq93KXmc3CuRP0Tp9idDOOvmkJh/4eSt89Tq8/xRMHQQ3PQKPvHlGNjYadjs8cS0sm6d45Hc9B/c8716bjqFM2sRB50RcFOFBH7pol6EVz7H8GxWV06C3qTciIhtLNrrblGbj3FwXaGRkThwZ+eWXHG6+WXFEtFqBH3+sLVO1Wp3MmJFEVNQqIiJW89lnmVRVSUyZEsLevUPJzx/Dp5/2aBOOSFPw1SGlXPj6DqfXwTLQoCO1/NQrao5GL+qZ12seTtnJuB3HLwGIopbu2gR0RJIjvUa287VTn/zWJ+DPRAgMg2/egsldoKCeluGyDEt+B+up6aWcEcv/VMTLls2Dzj1hcXqLckQkSSLNcS/7nefhwkqE+Drd9TtUR0SlTeCv8yepIsndZjQbbdIZcUkS63OOUlo8Zpmm6KgM+nnzcpk6dRdH0nydTpkff8xm1qxkunRZi4/Pcl57LZWCAgcTJwawbt1ASkrG8fPPvenWrWWUP57LLMgsRAQmnELi6tF0NHlSbD/z3Iyx/mOZGjKVxIpEXkh+4bj9omigu3YfWoLIkmaQ5zqNDr7tO8OSDLh0GqQdgAui4I8v64756xt45Cp4c/oZX0ODVJTBrWPgocvAYYenP4bfd0HwiQXlmhObdIgEZzQF8sfoaU8P7QFCtY+72ywVlWajs0dnChxtp6dRm6umcUguPt6zqk656ecjA2g/zM6EWUo5qKdGz/Re49i1yslll8XjcsnUd5eOlOI+/ng0F1/cMlQomwKb08GfabuIL8yg1FFFlJcfUzr2J9rUcNO7/cW5zE3eTnZFCX4GTya1iztOa2FFVhJLDu+jxF5JpLcf13bsTwdTXXEo8y8r8NFrybh8xGnZ/OCW/byflEHS5CF0Np9ZZZQkSYSsDcHisJA4JJHOnp2PG+OULCQ4Y3BRcmZ5DBuWKk5BZTkMGgMfLoD8TLiiJ1RVKomvfyRAx+5ndA3H8fsX8Op94KiCvsPhg7/B7Ns4czcSWc5XyJaeBWSChPtpp3vP3SapqDQ7Dyc9zLsZ75IwOIEe3udux2e1mqYB5iZvr+OIdDIHAgL+nh4Yq5u3VbjsPPLVGi6/vGFHZPhwX6qqxrF69aBW7YgAfHtgE/uKc7il61Ce7TeJ7n6hvLN7eZ0I0tEU2Mr4cM9KuvqG8Ey/iYyL6Mp3SZtqFVqBLflp/Ja8nYvaxfF034lEevnyfsKKOnLbBTY7pU4XQwJPrLpaH2NDlYqahadZUXM0oijyX+//kJEZt73+ig2t6E937V5EvEh13Uix9NfpnWTIeFiRB/1GwOYVMDoI7r1IkZYHJWT3biP0fSnIgav7wgt3KFU+b82Fb9a0KEfEKRWwx96LbOkZNPgSq92sOiIqbZaLAhQBxr/yT/Mz5RylTTkjVruNtTmHACXR8pFe43ms9wUIAoztFcWrAy+jgymAPfMMzH3IgMNRvyMCsGNHKXZ7iw8qnTV2l5MdBRlc2aEPXXyCCfYwMbl9L4I9vFmVfaDeY1ZlHyDQ6M3VMf0I8/RhTHhX+gVGsTRzf82YpZmJDA/tyLDQjoR7+XB9p0HoRS3rcw/VjJmTrOTmXBd9evkiAONClGWddQXFp33s0QzwGcC9kfeSUZXBg/sfrHeMXgynm3YnAgYOOS+nVFp5eifx9IQ5q5XlkspySN0PruolJpcTVv0N8bVKoBZbOellljovi6284fn/7xU4PxL2x8PoS2CNBS646vRsbGIKXN+wyxmOjd34ClfRS5uLl9iCqo1UVJqZI1U0q4vbRnlvm6qm2ZSXgqtaW2RMeBe6+AQjy4rDERZm4OvPcvjtO2+2bT5StisjikK9Pc/Ky13891/BOaOUeqZIsoyEjFaom+GrE7UcsubXe0yytYBY37oORHe/MH5N3g6AU3KRXmphYmTt0oMoCMT6hpJsrV0j/etwPgIwOeL0+3p467UYRIGE4hM8pE+R9zq/x/z8+Xxw+ANuDruZfuZ+x40xih2J1W4m0dmfJOf5xGo3nP7DNLZP/ds1Gpj9GHy7FktVRY1Y39HUK9aXdgDuuhAyk8Hsr2ieDBx9ejY1MZJUwQHXRZTJKxHxpKN2Pj7iJHebpaLidrSiFrPGzJ7yPe42pVloU5GRvMpaifB+AUr5aUGBEg5/7LEkHn54P6FBHoy+x87Ix60Mu8/G3XdHMWlSIJ07e2Iw1NUW+e+/1p9cZNTqiDEFsiAjgeKqCiRZYmNeCsnWAkrs9VerWB02zPq61UNmvRGby4Hd5aTMUYWEjKmeMSWO2mWaXcWlhBr1aM9QDC7EqCejwnbygSdBFEWW9l2KgMCF8Rc22J/GU+xJF+0qQGa/cxiV0ml8iJRZFVG0+vRYXC7YuR7Hqr/5K23XcY4IKGJ9mRXFyhtJgtcehEu6QmaK0tBudX6Lc0RKpEXsdAZTJq/Em5HVAmaqI6KicoRoYzQ59nqq7VohbSoycjSu6vUXX18N7dsbueqqEGbM6IC/v46ntqRjqbJj1Ei8N7RW+EmWZfLy7KSmVpKSUkn//o0jTd/SubXrEL5J2sQTm+cjItDO24+BQe1JL7M02TlL7A5KHC7GhJx5GWcXsxfLcixIknTW6rZdvboys8NMXkh5gWn7pvFtj2/rHectDqGT9j8OOi9kn3MgPbT7MIjtT36C92ZATkaDu2Wg5NV72fj0LGjgWubs38gMnR+Bj02FwlwIjoCPF0CXM1O+bSokSSLFNZVi+RcEdLTXfEGg5jZ3m6Wi0uLob+7PrvJd5FTlEGo4/eXqc4k2FRmJ8PKt+XlLfioAOp2G1NSRvPVWVwIC9CSXFtQ0xwr39K1zvCAIhIQYGDzYl2uvDaNz56ZvqNcSCPIw8Wjv8bw/9BpeG3wZM/peiEuWCDTWX7ps1hnrJKKCkq9j1OjQa7R46wyICJTWM8anWk7+2+p8kWvanXly8EB/EzIQf4biZ8fyfMzzdPXsync537GyaGWD43zE84nRzEXGxl5nHHbpFL7ZtO8MHbqB7ihlXkEErdL5WAACcw5zxfyfEIDuvqGcHxFLv8Ao9KIW0elkyv/NJuDWcchF+YqeydLDLc4RKZe2s8sZQrH8C0Z6EKc9rDoiKioNcL6/0pbiz/w/3WxJ09OmnJFBwdHoqgVFVmcfZHtBep39Fls53yVtqnk/IqxTs9rX0jFotPjoPSh32NlblE3vo9qtH02MOZDE4roP4H3FOcSYldwPraihncmffcW5NfslWSbxqDF/HlbyUa6MOvOcnPFhSunxouwzr6g5luV9l6MVtFy681Lskr3BcX6aK2iv+QqJMvY6u+OUik888Q0PwZ97YUsl/JcCnyyEx9+BK26nqu9wKo1K19fxyxYwKyWLB+PGcFVMP+7sNoLXXF688+TdDNq6gZyQMHZ+uwoeOg0htmYiwzmdROcAXFgIE1+ghz4Bvdi6K9FUVM6GiwMvBmB50XI3W9L0tKllGk+tnnHhXVl4eC8SMp/tW0s7b386+wRRZKtgpyWzJsE1xMPEgMB2bra4ZbCnKAtZhlBPM3mVpfyesoNQTzPDqnVD5qXEU2yv4JauQwEYFdaZlVlJ/J6yg2EhMSQW57ItP5374kbVzDk+IpY5+zcQbfIn2hTAssz92CVnjRbJjqJSgg069Noz95ePNNbbWFByxnMcS7gxnLc6vcVDBx7iil1X8E+fhrv3Bmqm4aKEw66H2OPsRk/tIUTR88QnEEWIiFZewyYAsCA1noUZezEVF/HAqhW0e+sx2LwSZn4Kf32L10czkQWRX6+YyrJxFxErVNGnsS64EaiS0khyjsFOCjoi6KJdjlHs4m6zVFRaPCatCaNoJL4s3t2mNDltyhkBuDS6F5aqcjbnpwHUlEYeTYDBi/t7jEavaXO3p14qnQ7mpe6kuKoCT62efoFRXBbdG0117kKJvbJmaQsg0OjNfT1GMzd5O8sz9+Nr8OTGLoPp4Ver8DkwqD1lDht/pe3CarcR6e3HAz3GYNZ7UOF0YrE7mRTesKjaqaAVRTw1IvtKzr6i5mgebPcg3+V8x7+F/zI/bz6XBV/W4NgQzYO4ZCvZ0rMkOLsTp01CFE+vSWJehZJ4Xerrh/Glr+Him2HmNLiwgyIbf+N0uOs5Nu5aCE57nURtd5PjnE2m9ATgIlC4kyjNx+dsd2oVFXcQaYjksO2wu81octrc01YURG7pOpRufmEsz9xPRnlt7w8vrYFhoTFcENHtuEqPtsyAoPYMCGo4CXNa1+NbzB8RPDsRY8K7Mia863Hbf0xVlm+ujDr7EH64h4GsyqqznudYlvZZSsjaEKbumUqefx7e2oal/8O1M3E5S8iTZrPX2Zvu2j2n9UA+ukO0U5Jg9GT4ZTtMGwnPfAwjL0KWpZqonsCJO0o3B06pmCTnOCrZjgZfOmkX4C0e/3eioqJyYnp59+Jg5UEqnBV4ak8SWT2HaXPOCCiaFkNDYhgS3IE8WylWuw29qCXcy6cmp0TFffyengfAtdFnr+HSzceLg2WVOCXpjEuE68NX78uX3b7kxr03Mil+EqsHnFiYKEr7Fi5HMYXylyQ6BxGr3XzKDkmkly/bqvObNuencplXbwhvD4vTasbsKszEVi2UFnlUorY7sLh+ItV1CzJV+AiXEqP5DVFskx81KipnzWjf0fyR/wf/Wf7jyuAr3W1Ok9Gm46WCIBDiYaazTzDtTf6qI9JC2GaxEqDX4qk9+wfYedVS8mvzis96rmO5IewGRvuOZk3JGr7O/Pqk46N1X+ArXEUl2zjgql9evj6GhsQgVkc7lhzex25LZp39WeXF/Jy8rea9uxKvJclOkmMCKa6pgECM5g866earjoiKyllwefDlACwqXORmS5qWNu2MqLQ87E6J/CoH/fwbR8NlQpiiU7Ikp2k0Uf7t/S+eoid37b8Li/3k5+iom4tJuIAyeSUHHZee0jl8DZ41DoZTlvhwzypm7VjITwe38n7CCl7cvqCmT1C0KYAefmFnfkFnSKm0kp3OQErlxXgxhF7afPw0lze7HSoqrY1IYyQ6QcdW61Z3m9KkqM6ISovi13QlX+SyyKBGma+vnwkB2FxobZT5jsVT68kvPX/BLtsZt+PUoh1ddIvwYggl8l+kOG48pWOuielHn6NKqVPLLKzMTmJPUTZHOiSFe/pwT/eRiPWpuDYRkiSR4riZJOcYJCqJ0nxErH49WrHhHBoVFZXTI1gfTHJlsrvNaFJaVfz077Rd/JOeUGdbiIeZFwdc3OAx2/LT+TNtF4W2MoI9TFzRoQ89/SNq9suyzN9pu1mTc5BKl4OO5kCmdhpIiEfbUF9tbuZWOyM3dGicb/eiKGLSaUiy1t9huDG4OPBiLg28lD8L/mR22mweaf9Izb7sqmxcsotIY11Nli7atexz9sEif4/G4Us73QcnPIdW1HBnt+Gsz01hRdZ+DpcX1+zz0yuRk3HhXTFWi6Q1BxVSAgec43GSi4EudNGuQC+Gn/xAFRWV06KbVzeWWpY2ipp0S6VVOSOgfDt8qOfYmvcaoeHKgkPWfL5IXMdlHXrTyz+CzXmpfLJ3DU/3vbBGrXXR4X0sz9rPtK5DCDR68VfqLt5PWMHz/S9Wc0yagM2FVnx1Wsz6xvvTjPQ0cqi06ZwRgN96/kbg6kCeOPgEV4dcTZQhii+yvuDBpAfpa+rLugHr6owXRZFu2u3sccaSL3+IxmkmQvvKCc8hCqLS6TgkhgJbGaWOKowaLSGeZjTNGA0ByHTOIEd6HYBQ8amT2q6ionLmjPAZwVLLUtaWrGWk30h3m9MktDoXSxQEfPQeNS9vXcMlussy99PDP4wJkd0J8/Th0ujetPP2Y2VWEqBERZZlJjKpXRx9AiKJ9PLjlq5DKK6qJL6g4T4iKmeGU5LItdnp7de4If44Hy+qJJlyh7NR5z0arajln97/4MLFqG2jmBQ/if8l/o9KqZK95XvrPUYUtfTQJqAjghzpVXKcb5zSuQRBIMjDRIw5kHAv32Z1ROxSJgn2LuRIr6ElhO7a3aojoqLSxFwSdAkA/xQ0LLJ4rtPqnJG8ylIe3zSPp7f8yZeJ67DYGha8Si6tv9V9cqnSjbfAVo7VYaPbUWM8tHo6mAJrxqg0HvMz8pGBSyIaJ1/kCMOCfAFY1kRJrEcY7jecUb6jSLWlsshSm/le7CzG6rRisZXXiOyll1mw2MoRRSPdtXvREEim9AT5rs+a1MazIc/1Ebud0VRxgABhGj21mXiIPdxtlopKq6e3d29ERDaUbHC3KU1Gq1qm6WAKZFqXIYR4miixV/JPWgJv7lrCc/0uqnct3Wq3YT4mcmLWGSmpbuBmdVQq2+prdW8/+9b0KnX5JV3pZzMtpnGrQS6s7lGzPLeISxpBSK0+LA4LdyfezariVQDINWmlCtuLE5ibmI6zWpgMQCuIvDRgMv5GM3Hafex2diLddRcazPhrrmsSO88Ep2TlgPMCKtiEiJlO2j8xiaPdbZaKSptBEAT8df4kVSS525Qmo1U5I3H+tclzkV5+dDAFMmPzn2wtSGd4aEc3WqZyKmzIt2LWavA3np5c+sno4uOFCGyzNI1MekJZAmO3j8XiaDjysq98P07ZUGebU5Yoc1axKSOVHQUZFFa9wwVdX8BuuI0gWU8nrxMLHDVH8nWRax4prqnI2DALF9JR8+dpy9mrqKicPZ09OrPJuunkA89RWt0yzdF4avWEeJjIb6BXh1lvxOo4po29w4ZPdSTErFM6pVrra3WvysU3KpIkkVVZRZxv05SE+uq1TZbEmm/Px+psuHRYg4a0qpQG9yeV5DE6vAuP9Lyczto/qHKZyJZvp9CxosFjjiRfDwuN4Zl+E+kTEMkne9eQeVSVzZHk6+s7D+LJPhdgELW8n7ACh+Q66TVJkpODjskku64AZDpofqaz7j/VEVFRcRODfQYjIbGvbJ+7TWkSWrUzYnM5yLeV4aP3qHd/jKmeVvdFOcSYlDb2gUYvzDpjnTGVTgcppQU1Y1QahwVZhcjAxRFNc1/bexkpqHI0ydxj/MdwaOghbgq7CQEBjXB8lVWaLbXB4x+MG8PQkBjCvXyJMfWju+EfHJKBQ65JlEv1Cx01ZfJ1qbSOXc5ASuR/8KA/vbQ5+GumnPoNUVFRaXQmBii9vubnz3evIU1Eq3JGfkveTlJxLgW2Mg5Z8/l07xpEBAZWN3n7ev965qXE14wfF9GVPUXZLDm8j5yKEv5O20VamYXR4Up7c0EQGBcRy4KMBHYWHiazvJivkzbga/CgT2CUOy6x1fJTmuLw3dLI+SJH6O1rwiHLFNjsTTJ/hDGCr7p/RfygeEb5jgJArP7v5cLF5uL4eo+rctZT4eOK5d99MxBwsd85jEqp7jehIuk3NMav6iRfW2zlRHj5klicS3qZhUMl+aedfC1JEmmO/5HkHI6LMiLF2XTXb0Ur+p7GnVBRUWkKxvopkhVrSta42ZKmoVXljBRVVfDF/vWUO6rw1hnoZA7iyT4X1HTgtVRV1Olo2tEcxO1dh/Fn2k7mp+4k2MPE3d1H1GiMAEyI7Ibd5eT7A5upcNrp5BPEAz3GqBojjcy6vBK8tBpCPZtm+WtEsC9zUrJZlFXI9U3k8AD0MvViWb9lLCpcxENJD5FYkQhAmiMR6lnh+DppA9N7jSPQqCxPSbLMr8nbCDF2p4v+bw46J7LP2Z84bSJ6sR15ro/JcN1Lr3ARueQhQHFEZm79uyY59pUdC9FU/52favK1TdpPknMsDrLQE0NX7Qr0YrvGui0qKipniVbUYtaY2VO2x92mNAmtyhm5o9vwE+5/pNf447b1D2pH/6CGP3QFQeCS6F5cEt3rrO1TqR9JksiosNG/kfrR1MfEcKWiZlV+UZM6I0eYEDCBbzou4LG9s1jj+hIXDirJo6e5B5VOB5kVxQAUVpXzfsIKnup7IUaNjp8ObiGrvITHep+Pj+hJB82vpLiuYY8zjmDxQXKklwEQBQlJtxroRZmzqk6VDoDrmGqeE5HlfJFs6QVAJlicTpR2diPdBRUVlcakvbE9+yv2u9uMJqFVOSMq5yYr8oqRgEkRAU12jjBPI1pBIN5S1mTnOBqpupIlVjOaSHqyQH6BA8Zf+KrnGrSilszyYj7bt4bcylJyK0vZkJtMToWV3ZYsHu09Hj+DJwD+mqtwyZ+TLt1R44go84s4NIuA+05oh5Js7VHnfZS3LwB2KY8DzjHY2IuWIDprF+Mp9mnsW6GiotJI9Df3Z3f5bnKrcgkxhLjbnEbljHJGPvroI6KjozEajQwePJjNmzefcHxxcTH33nsvYWFhGAwGunTpwoIFC87IYJXWx/cp2QDc0rFp+5oEGHSklFc26TmOsL84lzyb4vj08+/G333ms9m6mTfT3wQgwsuX22OH1Yz/K2038YWHebjX2JolGwBZlqhk13Hzi4KERrccWW5YVdZLa2gw+Trf9SUJzkhs7MVPuI6e2hzVEVFRaeGc738+AH8W/OlmSxqf03ZGfvnlF6ZPn85zzz3H9u3b6d27NxMmTCAvL6/e8Xa7nfPPP5/U1FR+++039u/fz//93/8RERFR73iVtsfqvGI8NCLtveqvemosYrw8KLI3TUXNsaSUFtb8PDQkhuF+w3ms/WM8c+gZ3kl7h0pXJe28/Yny8gOgwmnnps6DMWp0lNgrKbFXUuWsIs15G/lS/U30tJoKVub9SIGt/mjPoOD2xyVf++l1ePveRLrrdgT0dNIuJkb3Y6ttvqWi0pq4OFBp+rrcstzNljQ+p71M8/bbb3PHHXdwyy23APDpp5/y77//8tVXX/Hkk08eN/6rr77CYrGwfv16dDpFBTU6OvrsrFZpVaSVV9KrifRFjqavvzcbCktIK69scsfHdVQOh6dWyVydGT2T9zPeZ/rB6cxMnkmkMZIwuRcx8kS0goH396ysM8etPfei9ZzT4DlkWUOe8w/mHqi/U++Q4A54avQ1yddxgRYu7fUkFZRiEsbSSfMvoqjq5aionCuYtWaMopH4snh3m9LonNbXIbvdzrZt2xg/vjYRVBRFxo8fz4YN9Wvm//XXXwwZMoR7772XkJAQ4uLiePXVV3G5GhZeqqqqwmq11nmptE7W5RXhkmFCWNPlixxhdIg/AP9lFp5k5NnjX53zAbCnSFmG8tJ6UTSqiMTzEnkg6gHSbemsrJzLV45b+dHxAF4h23h58Pl8NmIqn42YSl+fOwkU70DEVD1T3QouQXDRKWAbkUdVfx1NcVUFl0T34vVBlzB98G8MirkXjVhFe803dNEtUx0RFZVzkAhDBBm21teo9bSckYKCAlwuFyEhdRNnQkJCyMnJqfeY5ORkfvvtN1wuFwsWLGDmzJnMnj2bl19+ud7xALNmzcLHx6fmFRWlanq0Vr5LOaIv0rT5IgAXhCnOyNr84iY/V7/AKPTV5d/rcg6RYlW0PQyiga5eXXm54yt8GrGCSdoniRDisFPGOxlvE7wmmKi1UTyc9DDFDgPttZ/TW5dHjHYuPsJEFIektjwd8TDFzvpL/b7cv4HEksXscoZQLP+OB73opc0kUHNTE1+9iopKU9HLuxcVUgUVzqZRlHYXTb5QLEkSwcHBfP755/Tv358pU6bw9NNP8+mnnzZ4zIwZMygpKal5ZWS0Pi9QRWFFbhEGUaCLj1eTn8tHr0MvCuwubvqKGg+tnuGhnQClB81bu5bybdImtuansTIriVnxC1mXe4hIsSeX6J8m7bw8lvZZygT/CRQ6Cnk3411C1oQQuSaSh5OeoMoxnE66v+mtyyFK8wGSs7Zb7uiYTwgweDEwsB09/cJrnKD+kV9SZpyASy4mXJxFd/1OtKKqHKyici4zxncMAP9Z/nOzJY3LaeWMBAYGotFoyM3NrbM9NzeX0NDQeo8JCwtDp9Oh0dSGmLt160ZOTg52ux29/nglKIPBgMFgOG67SusjpaySWLPnyQc2EsFGPenlzdNx+YoOfThcXkRSSR5OWWJd7iHW5R6qM0ZA4OYugwn1NBPqOY5xAeMAWFG0gjfT3mRV0SreP/w+7x9+nzB9GFcGX8kT7Z7kzz1R2NnPhC5vE2JK5uH++QRpLgWgyJ7EXscIjLo8SqsCsFq+pn/7yc1yzSoqKk3LZcGX8cCBB1hcuJgrg0/cTPNc4rQiI3q9nv79+7Ns2bKabZIksWzZMoYMGVLvMcOGDePgwYNIUm1CX1JSEmFhYfU6IiqtG1muFeOKt5TikGXGNUO+yBE6eXtS4nDWsaOp0IkaHogbw/kRsRg1xyeZRnn5cX/cKAYHdzhu3xi/MSzos4DyMeWs6reKiwIuwuq08uHhD4laH8k71pv5t3Qxqw69TZB4N+mu/2Fx/YJVWkIqgzDq8tmTcwE/xb/Pqiw70jGiaCoqKucmUcYotIKWrdb6+1adq5x2Nc306dO5+eabGTBgAIMGDeLdd9+lvLy8prrmpptuIiIiglmzZgFw99138+GHH/Lggw9y//33c+DAAV599VUeeOCBxr0SlRbPy7uTeWtfGiOC/RgT4sfmghKg6frR1MeAABMr84rYU1xGnJ/p5AecJTpRw1Ux/bi4fU92FWZSVFWBVhSJMQUSbQpAEISTzjHSbyQj/UYCsK5oHY/uf4at5RvYKy9lb9FS/m9DCNMiO3JhyLV4a8GbMbTXfs5aawaQTZmzCqvdhq+h+SJQKioqTUeIPoRkW7K7zWhUTtsZmTJlCvn5+Tz77LPk5OTQp08fFi5cWJPUmp6eXkezICoqikWLFvHwww/Tq1cvIiIiePDBB3niiSca7ypUzgkEQaDE4WJBZgELMgs48l398R0HGBPiz6gQP/r7m9A1oebFuFB/3tqXzsJsS7M4I0cwanQMCo4+63mG+Q3jpahPmJu8nVwpCYvHOnZUbOS15FzeSoEe3kYGmTrydLQOzVGOTtPHgVRUVJqLbp7dWFa0DEmSWo1GkCA3R7z6LLFarfj4+FBSUoLZ3HT9S1SalhU5FsYu237cdgEQBJBkuCoqmLkjm64PUJXThfGXFVweFcQfI3s32XmakgRLFh9Ua5L08o/g3h6j2FSyiddSZ7GsaDmlrlIAPDDTXujHefqr+WLoXWhayYeWikpb5/nk53kh5QVW91vNCL8R7jbnhJzq81v9dFJpNgYGmOv9g5NRHBGAa9o3bb8Fg1aDh0Zkb3F5k56nKenmF4qfXlly2WXJZGNuCoN9BjOv93yso61s6L+JvoZROHGQKK9kTtW9hK0N5da9t3Ko4tBJZldRUWnpXBqoJKv/U/CPmy1pPNTIiEqz0uvfjQ2W1r7cuyNPxx2fzNnYxMxfS36Vg9IpY85qnr/TdvFPekKdbSEeZl4ccHGDx2zLT+fPtF0U2soI9jBxRYc+9PSvbY0gVzfYW5NzkEqXg47mQKZ2GkiIR92/++WZ+/kleVvN+47mQOL8Iqh02dmcl0qxXenBU0waFd6bWFOykhKXkqMTqAvkosCLeDr6aTp7dj6re6CiotL8SJKEdoWW4T7DWT1gtbvNOSGn+vxWu/aqNBsWWzn9/DzYV1KG8ygXWASmRofyVI/oZrEj1uxFSnZho6y3hnv68FDPsTXvNSdISD1kzeeLxHVc1qE3vfwj2JyXyid71/B03wuJqFZRXXR4H8uz9jOt6xACjV78lbqL9xNW8Hz/i9GJteXxY8K7kF1Rwuqcg9VzF3CoWljtCFpB5OluN9ErYAYA8aXxvJr6KosLF/NN9jd8k/0NAdoALgq8iKein6KrV9ezuhcqKirNgyiK+Ov8SapIcrcpjYa6TKPSLFhs5czc+jcZ1oN1HBGNAOcF+vDFed1PqbKkMRgc6APAxoKzbzMgCgI+eo+al7euYYn1ZZn76eEfxoTI7oR5+nBpdG/aefuxMkv5QJFlmWWZiUxqF0efgEgivfy4pesQiqsqiS+oK/wnCAJTOw3kps6DCff0qbsPgd7+ETze+wJ6BdRGXfqY+vBrz18pHl3MzkE7uTb4Wly4+DbnW2I3xhKwKoAb9tzAvrJ9Z31fVFRUmpbOHp0pcBScfOA5ghoZUWkWypxVOGWJEMPRXXNlQo0G/hzVG4Om+fziC8L8eX53MotzChka7HtWc+VVlvL4pnnoqst1L4/ug7+xfjXZ5NICxkfE1tnW3S+MnYWHASiwlWN12OjmWysg6KHV08EUSHJpAQOPqcYRBIFhoR0ZGhJDelkRhVVlaASRKG8//A0nVrTtZerFTz1/AiChNIFX015lYeFCfsj5gR9yfsBP68fEgIk8Ff0UPbx7nHAuFRWV5mewz2A2WjeSWJZIrHfsyQ9o4aiREZUm52BJHj8e2AKAt0ZCKyhFvRoBXujhS6CxecXvBgco65abzjIy0sEUyLQuQ3ggbjRTOw2kwFbOm7uWYHM66h1vtdswHxM5MeuMlNgVRVirQ8nzMOuPGaOvHVMfgiDQ3uRPv8B29A6IPKkjcixxpjh+jPsRyygLewfv5frQ6xEQ+DH3R+I2xeG3yo/rdl9HQmnCySdTUVFpFiYGTARgfsF89xrSSKjOiEqTsikvhdm7lpFSpnTKFYQjvWdlJgQUszkvgX/SdjerTaIo4q3VsN96dhU1cf7h9A9qR6SXHz38wrk/bjQVTgdbC9IbydLmp5t3N77v8T2FowpJPC+Rm0JvQoOGn/N+pufmnvit8uOa3dewq3SXu01VUWnTjPNTWkesKV7jZksaB9UZUWky0kotzEnaiFQtueWr92BISAf89CIRBheRnkoE4e/03WzLb94HeKSngRybvVHn9NTqCfEwkV9ZWu9+s96I1VE3wmF12PCpjoSYdR7KtmOiIFZ77Zj/b+++w6MqsweOf6dkMumF9EZICElIaKF3kChi7+ja19Vdy+rKz13Fxtpd2+7ad3Et66qoqNgQlSolUhJCTQHSe6+TyWRm7u+PwEAggSQkmZTzeZ55JHfeO/fMNcmcvOW8fSnaJZoP4j6gYm4FmdMzuSXwFrQqLZ+Xfc64HePw3OjJ1XuvJrU+tc9jE2Ko06q1uGncONDY/q7dA43MGRG95ufCNKxHV47PCojkNyMnYzBbuW3XRt6aHM9wpzq+zE4F4If8AyT4hPbZJNbRHi6k1xkwms3otT3zY2C0tFBubGCazqnd5yPcfEivKWkzbyStuoQIt9addH30Lrg76EmvKcHVwZEvs1PZX1WIwdJChbGeqX4jCHfreB+fjJpSPs9KodhQi5ejMxeExTPDP6JNmw1FmfxckEatqYkQVy+ujZzICLcz7+Qb5RzFe6PfA+CI4QjP5DzDdxXfsbJ8JSvLV+KucSfRO5Glw5cyyWPSGV9PCHH2wvXhZBgy7B1Gj5CeEdErGltMpBxdAeLm4Mi1kZPQqNRsLa/BqsA8fy8Whowm3NUbgPzGavIbq/ssvhk+ngBsKKvp9muszEohs6aUCmMDR+rKefvgZtSomOw7HID3Mrbx1dFkC2BBcDQHqov5uSCNEkMt3+buJbehinlBo4DWuR8LgmP4Pm8/z6T8gNFiJtjFEy9HZ34zcjIu2o7n1lQYG3j9wEaiPf15NGERC4Kj+TBzOweqi2xtdpbnsjIrhQvD4nlkwiJCXDx5df+GU3piziTSOZJ3R79L2ZwysqZn8bug36FX6/my/Esm75qM+0Z3Lt9zOTtrd3bpdYUQXZPgnoBJMVFmKrN3KGdNkhHRKyqbG7Ac3Sl2jHewrUbGCwdycdKoiXJrrSCa4BNmO6fEcPZLbTvr/KDWHob1JVXdfo3qZgPvZGxj2a7v+HfaFly0Oh4afx5uR4dUqpoN1B4tPgYQ6e7L76JnsrnkME+l/EBKRT53jp5tqzECsDAklkBnDwwWEweri9Co1dwffw5jh4Xg69TxXjqbig/ho3fl6ogEAp09mB8UTYJPKGsLj//VtLYwnVkBkcwMiCTIxYPrR05Bp9ayrbT7VVlHOI9geexySueUkjMjh9uDbsdZ48yqilVM2TUFt41uXLbnMrbXbu/2NYQQ7TvX61wAvi7/2s6RnD0ZphG9znpCkV9fvQNGi5X0OgOxHi5YTniubwZoWsV5uqICdlW2P7+jM26PnXXa5/9vbOIpxyb6hjHRN6yd1q1UKhVNZhPzAkdRbTJwqLaM5elbmRsYxezAkR2el1VXQcwJS4KhddnwZ1mtewGZrRby6qtYFDLa9rxapSLGM4Csup6pVTDcaTj/jv03/+bf5BnzeC77OVZVrOLriq/5uuJrXDQuzPecz0PDH2Km18weuaYQQ9nFvhcDsL5qPbcH327naM6O9IyIXuGrd0Orav322ltVQLPFDMB/Z8QT5uzI/ckZKIrCzvIc2zlBJ/QQ9AUPBy2H6g19es3OKDc2sKn4EH5ObtwbP585gVF8mpVMUmnHW4bXtRjbXRJstLRgsphpaGnGimLrtTmxTW1L14ZpOiNMH8ZbsW9RPLuY/Jn53Bl8J+4ad76r/I5ZKbNw3eDKRakXsaV6S49fW4ihwl3rjl6tJ7Uh1d6hnDVJRkSvcNI62OZOGMwt/DfzV0wWM44aNbdGBvNjcRX3bP+VIkPrfikj3Ia1Ga7oC2Euesqbe3ZFTU9QgDBXby4PH0+YqzdzAkcyKyCSTcWH7B1at4ToQ3gz5k2KZhdROLOQe0LuwV3rzveV3zM7ZTYuG1y4IPUCNlZv7PRrflD8Af8r/l/vBS3EABHsGEyeceCWEzhGkhHRa84LibXNFdlVkcfSHV/zv0M7iHSqQKNSeCerHmvrtBIuDIvv8/jGeLpisirUmPpXQuKh0xN4Uon3QCcPqps77sVxd9C3uyRYr3FAp9Hi6uCIGhX17S0bPk0J+54WpA/itejXKJpdRPGsYu4NvRcvrRc/VP7A/JT5OG9w5vzd57O+an2Hr9FsbeaejHu48eCNvJb/WoftqoyN5DVUtXlUGQfubs1CtGeMyxgMVgNGc8/3cPYlSUZErwly8eT2mJm2hKTB3MzmksNsLjnMWNdGTIqaPfVOLI6Y2Gbn2r4y+2gp+J+Kuz+JtTdEuvtS2tR2Mm9pU91pK6tGuLcuGz5RWk0JEe6ty3a1ag1hbt6k1ZTanrcqCukntOlrAY4B/HPUPymYXUDxrGL+FPonhjkM48eqH1mwewHOG5xZuHshP1f+3Oa8dVXraLC07vx8b+a9vJr/6imvfWwvpGd2r2nzeGzXt5KQiEFlvlfr7uM/VP1g50jOjiQjoleNGxbCQ+PPY7LvcDSq499ukzwMOKphX707cwLts439oqDWD+GNpX23pLgzEoNjyKqvYHXeAcqa6tlRlsPmksPMCzp+n77KTuW9jG22r+cGRlFhbOCL7N2UGGrZWJRJcnkeicHRbV53S8lhkkqzKDbU8vHhnZis5lNqkdhDgGMAfx/1d/Jn5VM6u5QloUvwcfDhp6qfOC/1PJw2OHFuyrmsqVzDZ6WfoVUdn3t/X+Z9/DPvn7avW6wWVucfwHx0NdeJzIq1T5eQC9HbLvO7DIAfK3+0byBnSaUoJyxn6Kfq6urw8PCgtrYWd3d3e4cjuqmhpZkSQx0KCj56Vz7KqeCPuzL5U3Qof59kn+3rtR+vZbK3B0nnT7bL9Tuyt7KQr3JSKWuqx0fvSmJwTJvVNO9nJFHZ3Nhmxc6JRc88HZ25sN2iZxn8VJBGncnYWvQsYiIj7NQz0hkVpgpeyH2BT0s/Ja/59OPif4/6O3cF38Or+zdyqK7jugsuWh3/Nzaxz+coCdFbHNY7MNZ1LMlTku0dyik6+/ktyYiwK7+Vm6gxmam5Zi7OPVQJtavXV6mg9Mq5fX5t0TVVpip+n/57Vpav7LDNtZ734m6Yavs62sOfEBdPakxNHKguwnh0VZeXozNPTLwIR41UNxADX/DmYAxWA9Vz+1+vX2c/v2WYRtjV65OjaVEUfr8j3S7XD3dxoqrZbJdri67x1nnjqnVtM0RzshU1r7Kx5d84arQ8NP48loxdwDWRE7kjdhbPTr6U4Ucr/lY3G9osKxdiIIt1iaXWXIvVeurQ5EAhyYiwq2uGBzDcRc/H2SVU9vDGdZ0x3tsVs6JQZBjYM9GHghZrC1+WfYlZOX3ymKls4lPT/bxf/hr7GvbZfkG7ODjym5HHh+O2lHS/8qwQ/cksz1koKGyr3Xbmxv2U9FGKbttUdIhNxYeobG5d2RDo7MFFYWOI9w7q8Jzk8jy+zt1LpbEBPyc3rhgxnnenjWbBuhRuSjrAd/PG823uPjaXHKbJ0kKkuw+/GTkZf6feGZ6b6+fF8sNF/FBUyW0j+35Fj+i8LTVbqLO0XWWkRk2wYzAxzjFYTR7UN2lppJpoT0/+mf9Pnsx+Er1az2Phj/HwiIcJdxuGl86ZapOBsg52VxZioLnE5xKeyH6itaig1+krQ/dXkoyIbvN0dOLyEePwc3IDBZLKsnnz4C88OuH8dqupHqkr5530rVw2YhxjvYPZUZbDWwc388iE84n3cOGHoko+OrKXXWWZzAlO4D9Z1WSW1FJh3MBfJ15kWyLckxYFtu5Rs7msRpKRfi7GJYYHwh4g0DGQKKcoopyjiHCKQKdu3UDwg8xf2Xa0Su1DkecR5OLGN+XfsOTQEh7NehQFhYeGP2TbM0nVpxsQCNF7xruOR4WKpNoke4fSbTJMI7pt3LAQxngH4+/kjr+zO5eFj8NRoyWrvrLd9usKM4jzDmRhyGgCnT24NHwcYa5ebCzK5H8z41GA5w7kk2YI5qot2awuqqHQqKe6uYm1hem9UrjKW6/DQaVib438ldzfBToG8mLUiywJW8LFvhcT4xJjS0SANqtjdpbl4qh25Gr/q8mdmcvjIx7n0axHCdoSQlFz4SnthRjI1Go13lpvMgwZZ27cT0kyInqEVbGysywHk8VMhFv7S0Wz6tvfzC2rvoJgJ0cC9VoONjiyttTAsSVeRYZ6LIqVVTl7eq1wlY/egdxGmTMy0E3zG2HbD2lj8SF2V+QDoFap+WvEX1kS8iBlLSWsMC8hz5p62o0HhRhoRjqPpMLUM5te2oMM04izUthYw99Sf6LFasFRo+UPo2cT5OLRbts6kxH3k0qPO6h0rCmx8nzmFowWK6DixPngFuXUrnSzYqXB3Iw3HVck7YqRrs5sLa/pkdcS9uPq4Mj8oGh+LkzDolh5O20zYa5ejHT3pcLYiKFqHOdr/8xP5r+zxvwi42o0TPZ9zt5hC9EjprpPZXvddjINmYxyHmXvcLpMekbEWfF3cuPRhEU8NH4hcwOjeD/jV4oaazt9/r27S9lWrcdgsdLeorS+WKg20dsNK5BRK2XCB7rLR4xjkk+Y7eu8hmrWF2Wyt6oQKwph6vH80W05AbpA/pb3PHN2zcFslaXdYuBb5LMIgFVlq+wbSDdJMiLOilatwc/JjeFu3lw+Yjwhrp6sL2p/3NJdp6fupO3qLwjUo1EpaDqYS9hez0hPmx/gBcCXeUWyqdoAp1GpuS1mJreMmkaoi1eb59wd9FwQGsczE35D4cwCzvM+j821mwnaEkROU459AhaihyR6tVZj3lSzyc6RdI8M04gepShgtlrafS7CrXUzt8TgGNuxIF0tz8a78WEeHKht5ORywNY+qA+cGNBaCOs/hzPJqTneq6NVqXlq0sV463tmOEj0DbVKxXT/CKb5jaDC2EBdixFHjZZAJw806uN/f/044UeeyX6Gx7IeIyopis/iP+Nyv8vtGLkQ3adVa3HTuHGg8YC9Q+kW6RkR3fZVdiqZtWVUGBsobKw5+nUpU/zCAXgvYxtfZafa2i8IjuZAdTE/F6RRYqjl29y95DZUcX1kLLsWTWVJbGv3uuqElMTaB8svnbVaHNUqKk1tfxyOzU0RA5NKpcLXyY1Id19CXLzaJCLHPDLiEdYnrEer0nLFviu4P/N+O0QqRM8Yrh9OcXOxvcPoFukZEd1W32Lk/Ywkak1NOGkdCHbx5N74+Yz2CgSgqtnQppZDpLsvv4ueyde5e1iVswc/JzfuHD3btsTypYRRLAwcxtWbU6ltaZ3MaumgZ6Sj3pfu8nHUUmbs2dcUA8M8r3nkzsxlys4p/CP/H2yr2camhE3otfoznitEf5LglsD+xv1UmCrw0fXfDTDbI8mI6LabRk077fMn7ih7zETfMCb6hrXTutW5gcPYfO5YLtu4iyyDAwpgtcLJf9R+lpXCkjEL0PXQRmcRrnoKm0ztXksMfn46P7KmZ3HFviv4uuJrgrcGs23SNqJd7LObtBDdca73ufy35L98Xf41twXfZu9wukSSEdGvNFvMfHRoKwuGGVAp7hxp0uPgEMQ8fzfyG6vJrG3dGj67vpIVR3adMSHqrHGezmwur6eyRYuvo6yu6I9+yD/A7op8Sprq0Kk1RLj7ckX4eAKcT79VQHtbEIzxPl5tV1EU2xYEIZbruNF1PB81PE3cr3H8d/R/+U3gb3r7rQnRIy72uRiAddXrBlwyIn8Din5lR1kO1c0GVCq4NVzLHD8PNlc5cuWIBP5vbCIPjjsPR3VrDp1Umk11s6FHrjvbt/UDLd+oO0NLYS+ZtWXMCxrFQ+PO4774c7BYrfxz/3qaLR0nj8e2IJgZEMGjCYsYPyyEtw5uprCxxtbmx4I01hdlcH3UFB4afx7TXOdzh8vrOKr1XH/wev6Q9oc+eHdCnD0PBw/0aj2763fbO5Quk2RE9CtbS4/vpHpD1BRemDCK/bWNfJxTAkCEuw8Lglu7zq0o/FqW3SPXnTTMBVAoa5bOwv7qvvj5zPCPIMjFk1BXL24ZNY2qZgO5DVUdnnO6LQigtVdkXWE6F4TFM35YCCEuXtwaPR212ZPvYpIY6TSSfxX9i/Hbx2Mw90ziK0RvCtIFkW/Mt3cYXSbJiOhXSo/upOrl6MxwN2+m+ngww9eD27cfpLGl9S/gCT6hp7Q/W1q1Gq1KocYsychA0WRpAcBF23Fv1um2IACoMDZS12Ik9oQ2TlodI9x8KDM0kzEtg2v9rmVPwx6CtgSxv35/L7wTIXrOWNexNFobMZoH1hYXkoyIfuXY6huL1YqitC6luT86jGarwk/FrRvwHdt1FXruG7jZbMZZY8VgkR+JgcCqKHyWlUyku+9pN7xrbwsCdwc9tabWX9R1LU2tx3QntdG1tlGr1Xwy5hPejH6Teks943aM4z+F/+nZNyNED5rnNQ+AH6t+tGscXSW/eUW/Enx0X5u6FqNtsuqVYX6McHXi+6LWZGRHWa6tfdBZ7ryqKApr8g/w6oENeGnNmBUV1hNq0H+ZnYrBbDqra4ie98nhnRQ11nJ7zMw+ud6dIXeyc/JOnDXO/C79d9x04KY+ua4QXXWZ32UArKlcY99AukiSEdGvzA44vpPq/w7voLypAZVKRbyHC+8dKSKpJJeNxa3j/Q5qDdP8RnT7Woqi8HlWCl/l7MFkteDnaAZUFDc72Nqk1ZTwyt51NJlbun0d0bM+ObyTfVVFLBm7AC9H59O2bW8LgroWIx5He0LcHZxaj5lOamM63uaYBPcEimcVM9plNB+WfEhsUix15rqzfTtC9Kjh+uFoVVp21u+0dyhdIsmI6FcSfEIJcm7tHSlrqufx5G958+AvhOkNWIH7klOwHh2+mRc4ClcHx25f62BNMeuO7qOjAs47Whbe12UEcwNGoj9awyS/sZpVOandvo7oGYqi8MnhnaRWFnD/2HPw0bue8ZxjWxCcKK26hAi31oJQPnoX3B30bdo0mVvIrq+wtTmRq9aVA9MOcEvgLaQb0gneEsyu2l1n+c6E6Fl+Dn4caTpy5ob9iCQjol/RqjXcEzcPv6MfNFZFYU9lAc3NOahQyGxo/Ut2kk8Yl48Yd1bXWl+Yafv34shJPJkwCyeNGn9nD34TNYWHxi/EQa0BWpcRS++IfX1yZBfby3K4LXoGeo0DtaYmak1NmE5Y2tvZLQjmBbVusa5SqVgQHMPq/P3sqSygsLGG9zKT8HR0YvwJE6VP9t7o93gv9j2aLE1M3TWVN/Lf6LX3LURXxbjEUGuuxWrti33Pe4YsHRD9zjC9Cw+NX8jPhelsKTlCfYsRtRp8dS2UmRxYHDGFeUGRqFXd37emydzCgeoioHXlztzAkahVahK83ThU37qEM9DZg2l+I9hccphmq5n9VYVMPrrvjuh7m4oPAfDyvnVtjt88ahoz/COArm9BALAwJBaTxcz/Du3AYDYx0sOXe+Pm2xLRjtwSdAuT3Sczc9dM7sm8h43VG/k0/lPUUsJX2NlMz5msr15PUm0SM736Zl7V2ZJkRPRLLg6OXBY+jovC4ik21NFsMTPer4G7dh1hR42Gc4LPbgO9hpZm23Z8kW4+qFWtHyD1LWZ2VNSxtayGmX6ejPTwZXPJYYBT5h6IvvWv2WeuhNqdLQhUKhWXhI/lkvCxXY4pzjWOollFzEqexcrylUQlRbFz8k68dd5dfi0hesolwy7hqeyn+K7yuwGTjEgKL/o1rVpDqKsXIz18+X3UcLQqFe8fOftdKXWa43/1VjY32v79zLiRjHRzYs7aXTy1L4vypgbbc449tA+OGFyctc6kTE3hzuA7yTJmEbI1hK3VW+0dlhjCEtwSUKEiqTbJ3qF0miQjYsBQq9VM8nYns96AwXx2+8e4O+gJdGotAZ9dX0lOfeuy4YtCfNl74TQejR/BX/dlcX1SMck1zlSYtIS6DqxdMEXfejPmTVbEraBFaWF2ymxezn3Z3iGJIUqtVuOt9SbDkGHvUDpNkhExoNwbHYIC/DP97Modq1Qq5gRG2b5+6+Av7KsqxKooaNVq7hzpwx/Cod6iIrnOlS9LvIn4ehcjVm3hsk2pPJJ6mI+zS9hTXY/RYjm7NyUGjcUBizk47SDeWm8eOPwAF6VeNKAmEYrBI9I5knJTub3D6DSVcqzMZT9WV1eHh4cHtbW1uLuffodO0f9VNxv4MjuVA9VFmKwWfPWu3DxqGuFuwzo8J6OmlM+zUihqrOV/hV4EOjmQcek5bdpsKMrk54I0ak1NhLh6cW3kREa0szzzGJPFzAt7fia/sdp2zM1Bj16jpdzYOjyTVOXCvgaXNuepAK1KRcvRHx018OnsMVwV5t/FOyEGK5PVxNzkufxa9yuhjqHsmrILP52fvcMSQ8i9GffyWsFrZE7PJMo56swn9JLOfn5Lz4joU40tJl7c8zMatZo/xs/jrxMv5OqIhNPuL1JhbOD1AxuJ9vTnsYmLiHF3JNdgZld5ga3NzvJcVmalcGFYPI9MWESIiyev7t9wSjGrE+k0Wu6Nn8+IE5Kg+hajLREBmOvTgqdD21UVCtgSEQCNSkW0W9uERQxtOrWOpMlJLAldQn5zPsO3Dmd91Xp7hyWGkEXDFgGwqnyVfQPpJElGRJ/6seAgXo7O3DJqGiPcfPDRuzLaKxBfJ7cOz9lUfAgfvStXRyQQ6OzB/42Oodmq5pWDB2xt1hamMysgkpkBkQS5eHD9yCno1Fq2lZ6+8I+7Ts+fx53LH2JnM9ozABetI3qNAyEunlwdkcDzUy7hibGRnG7tzisTRzHG68wFuMTQ8/Kol1k1ZhUWxULi7kSezHrS3iGJIWKB9wIANlVvsnMknSPLA0Sf2ltZwGivQP6VtplDtWV46pyZGxjF7MCRHZ6TVdd259Wrw/y4JUkhubq1CJnZaiGvvopFIaNtbdQqFTGeAWTVVZwxJo1KzQSf0Da7AZ/o91EhPH8ghxKjiZPHNOf7e3H3qJAzXkMMXZf6Xcqh6YeYsnMKy7KXsblmMz+M/wGtWn79it6jU+tw1biyv3Fg7DQtPSOiT5UbG9hUfAg/JzfujZ/PnMAoPs1KJqk0q8Nz6lqMbXZVVavVjPPUk9uko6bZSENLM1YU3NrbebUHaoM4atQ8OS6yTSJyrKdkU2k1/z5ceNbXEIPbcKfhFM4qZK7nXNZWryVsaxgFxoIznyjEWQjXh1PcfPalEPqCJCOiTylAmKs3l4ePJ8zVmzmBI5kVEGmrrtlZ14YNo9mq5tWMvkkEbo4IZLiLvs1wzasTR+Gi1fCHHekkrkvBZJZVE6JjWrWWjRM38sjwRyg2FRO5LZLVFavtHZYYxBLcEjApJipMZ+4htjdJRkSf8tDpCTy6Ed4xgU4eVDcbOjzH3UF/ykTUSd463LVm/pdTiquDI2pU1Lez86qrVsenR5JZumMV92z9lL+l/mSrKdKRjJpSnk75gbu3rODRnd+wrTQLB7WaZ472jqiA64e7U1y3m+uDSpnkYWJdSSV+X/7CzsraLt0PMfQ8PfJpfhj/AwAX7rmQhw8/bOeIxGB1bN7I1+Vf2zmSM5NkRPSpSHdfSpvabrte2lSHt2PHq1Ei3E/deTW9tpQoFzhcb6DZohDm5k1aTanteauikF5TQnWzgbSaEm6NnsHjCRcw2iuAv+9b32Hyc+LKnUcTFrEgOJoPM7dzoLqIa4cHEO/hQpyHI65KFheGxfNYwiLujR7GZf71NJjNTF2zk0dSD5/FHRJDwfnDzid7RjZBuiCey32O2btmY7Ka7B2WGGQuGXYJAOur+/9KLklGRJ9KDI4hq76C1XkHKGuqZ0dZDptLDjMv6Pg6+K+yU3kvY5vt67mBUVQYG/giezclhlo2FmWSXJ7HTRFhKMAr6XkkBsewpeQwSaVZFBtq+fjwTpotLRQb6rhyxHhGefjh5+TGxcPH4ufk2uGw0Mkrd+YHRZPgE8rawgw0ahW/nj+FxcEG5gS2Xbkzyk3FO5N88NfrePZADmO/T6LGJB8uomNB+iDyZ+az0HshW2q3ELIlhGxDtr3DEoOIp84TvVrP7vrd9g7ljCQZEX0q3G0Yd8bOYWd5Dk8kf8/3efu5JmIiU/1G2NrUmpqoOqHnwkfvyj1x80irLuGplB/4uTCdG0dN5Z6YGBxUKj7MKmay73CuipjAN7l7eTrlB/Ibq/lD7BysKGhVbeuEOKi1HKlrvzLhySt3AEZ7BdpW5TiqobChitgT2hxbuWNoqaXw8llcHebHvppGAr/YwncFA6cCouh7arWaNRPW8EzEM1S0VDDq11F8UfaFvcMSg0iQLog8Y569wzijbq0te+ONN3jxxRcpKSlh3LhxvPbaa0yZMuWM561YsYLrrruOSy+9lFWrVnXn0mIQGDssmLHDgjt8/pbo6accOzZscrIpw9zZVlFLg8nM/KBo5gdFt3k+ws2H1fn7CXR2x12nZ0d5Lll1Ffg5tV8X5OSVO9C6KsdoacFkMWMwmzpcuVPSVIdareaz2WP5PLeUG7bt5+JNe7hpRADvTRstW8uLDj084mFmeM5gUeoirtp3FX8K/RN/H/V3e4clBoExrmPIqsjCaDai1+rPfIKddPm346effsqSJUtYtmwZKSkpjBs3joULF1JWVnba83JycnjggQeYPXt2t4MV4mR/ijk+VNOe30ZPR1HgwR2ruHvLp2wozGCy73BUpy1jdvauHu5P/uWziXZz5r/ZJQz/eiu5DU29ek0xsM3zmkfezDyG64fzj/x/MGXHFIzms1+aLoa2eV7zAPip6ie7xnEmXU5GXnnlFW6//XZuvfVWRo8ezdtvv42zszPvvvtuh+dYLBauv/56nnjiCSIiIs4qYCFOdEWoLzq1ig+z219L7+vkxgPjEnl1xjU8P/Uylk44H4tixUfffs9Ieyt36kxG9BoHdBrtaVfueDi0/avDT68j/ZIZ/CkmjAJDM5HfbOXfh6S2hOiYr86XrOlZXOpzKTvrdxK0NYiMxoGz86rofy73vRyANVVr7BzJ6XUpGTGZTCQnJ5OYmHj8BdRqEhMTSUpK6vC8J598Ej8/P2677bZOXae5uZm6uro2DyHao1armTLMgyMNTTSYzB22c9Ro8dA50dhi4mB1MeOGtV81tb2VO2k1JUS4t264p1VrOly5c6zNyf4+cRSbz52Is0bD73ekc67UJBGnoVarWTVuFa9EvUKNuYa4X+P4qPgje4clBqjhTsPRqrTsqNth71BOq0vJSEVFBRaLBX//truT+vv7U1JS0u45W7Zs4T//+Q/Lly/v9HWee+45PDw8bI/Q0PbLdAsB8Kfo1qGal9sZqjlQXcT+qiIqjA0crC7mlX1rCXB2Z6Z/aw9dZ1fuJAYfn4vS3sodk9XMDP+Oe/1m+XlRduVsZvl6srakCv8vf2GX1CQRp3F/2P1sm7QNR7UjNxy8gTvS7rB3SGKA8nXwJaup4yrX/UGvzqirr6/nxhtvZPny5fj4dLyV+8mWLl1KbW2t7ZGfn9+LUYqB7vJQnw6HaprMLXxyZBfLdn3HexlJjHT35b74+WiOTibt7MqdOK8gW5v2Vu7cGzcfd53TaePUa7VsPm8SL0+Ioq7FzJQ1O3lcapKI05jmMY3CmYVEOUWxvGg547aPw2DuuECgEO2JdYmlxlxDTl0FeQ1VtkeVsdHeodmoFEU5ee+vDplMJpydnVm5ciWXXXaZ7fjNN99MTU0NX3/dtspbamoqEyZMQKM5vrTSam3tnlar1WRkZBAZGXnG69bV1eHh4UFtbS3u7u6dDVcMIXN+2sXm8hrqr56Hq67/b0CWUdvI3LXJlBpNjPN0ZeO5CXjqdPYOS/RTVquV6w9cz4qyFbhr3Nk6cSvxbvH2DksMEH/OWMpLBc9zqXYZ/upRtuNalZqnJl2Mt77jopNnq7Of313qGdHpdEycOJF169bZjlmtVtatW8f06acux4yJiWHfvn2kpqbaHpdccgnz588nNTVVhl9Ej7k/NgyAl9Jz7RxJ50R7uFB0+SyuDPVlT00DgV9uYXVh/98/QtiHWq3mkzGf8Fb0WzRYGhi3YxzvFL5j77DEADHH/RwAcq1ti5+ZFSsN5mZ7hHSKLg/TLFmyhOXLl/PBBx+QlpbGnXfeSWNjI7feeisAN910E0uXLgVAr9cTHx/f5uHp6Ymbmxvx8fHo5C9B0UMuDW4dqvlfdvtzl/ojtVrNyjnj+HRWPFZF4cKNqdyadMDWeyjEyf4Q8gd2Td6Fi8aF29Nv56YDN9k7JDEAjHGZAKgoVTLtHUqHupyMLF68mJdeeonHH3+c8ePHk5qaypo1a2yTWvPy8iguHhhbFovBQ61WM82ndVVN3WlW1fRH1wwPsNUkeT+rmHCpSSJOY4L7BIpmFTHaZTQflnxIbFIsdWZZcSg6plarccSZGqX/fjZ3ac6IvcicEdEZq/LLuPyXvTweP4Inxp15LlJ/dP+uDP6RkY9WpeLNKTHcPrLjSrVC/Pbgb3mv+D1cNC5snLCRSR6T7B2S6IfyGqqYtH0KFWRzu+7DNs89MuF8wly9e+3avTJnRIj+7NKQ1gJo/8sZOEM1J/v7pGg2nzsRvUbNHdvTWCg1ScRpvDv6Xd6LfQ+jxcjUXVN5Pf91e4ck+iGz1YKvKgIFKzXW/tk7IsmIGDRUKhXTfTzIGoBDNSea5edF6ZWzmeHjwU8lVQR89QspldINL9p3S9At7Jm6BzeNG3/M/CNX7b1K5h0Jm72Vhbx2YBNhmvEA5FqT2zyfXl3azll9T5IRMajcH3N0VU3awFhV0xFnrZatCyfz0oQoak1mJq3ZwbI9R+wdluin4lzjKJ5VzATXCXxR/gVRSVFUmarsHZawsz2VBbx58BcMZhNBtC4FL1bS27T5Imc3yeX239VXkhExqFwa6oejWsVHOf2zK7Kr/m/0cA5eNB1fvQNP7s9mwve/DuheH9F7nLROpExN4a7gu8gyZhGyNYSt1VvtHZawE5PFzAeZ21FonRYa6xWEk8oZxaGKG0dOYeQJ21f899B2jOYWe4UKSDIiBqFpPh5kNRgHzYd2tIcLxZfP5spQX1JrGgj48hd+kJokogNvxLzBirgVtCgtzE6ZzYu5L9o7JGEHO8tzaTxaQ2SMdxBLxixgkc/5aNVqZgWO5IGx5zJhWGutL6Olhe1lOXaMVpIRMQgtOTpU8+LBHPsG0oOO1SRZMTMei6JwwcZUfis1SUQHFgcsJm1aGt5ab/5y+C9clHqRfK8MMamVx3cIvyA0HrVKxfnDzifXmEuTpQmVSsWFYcer+O6utO+2K5KMiEHnEttQzcBdVdORxeGtNUmi3Jx5L6uYEV9vJa/RaO+wRD800nkkRbOLmOY+je8rvyd8WzhlpjJ7hyX6SEPL8cqqw91al+4WNxdjxcr7xe8DEOLiiRoVgK0XxV4kGRGD0nQfT7IbjdSYTPYOpcf56XVkXjKDP44KIc/QTOTXW/nP4UJ7hyX6IZ1aR9LkJP4v7P/Ib84nbEsY6yrXnflEMeA5aR1s/y4x1LG+aj1PZT/Fed7ncYP/DQCUGeuxHp1T4qSxb0V0SUbEoHR/bOtY6IsH7T9LvLe8OjmGTYmtNUl+tz2N89enYJaueNGOl6JeYtWYVVixcm7quTyZ9aS9QxK9LM4r0Pbvd7O/44p9V3CO9zl8N+473BzcAPipIM3WZvQJ7e1BkhExKF0S0jpU8/EgHKo50Rz/4zVJfiyuwu+LX9hdJTVJxKku9buUQ9MP4evgy7LsZSSmJGK2Do5J3uJU0/0jsKga2Wr+L4+X3oiD4sTbUe/hoHag0tjIx4d3sqWktVyAVqVmVkCEXeOVcvBi0DpnbTIbSqupvnoOnkNgU8YXD+bw0O7DKMDjY0bw17EDsyS+6F1mq5nE3YlsqtlEoC6QHZN3EKIPsXdYoocoisLW2q28WfAmn5V+hgULAPM1dxGlmYle44DR0nYZ77WRk5gfNKpX4pFy8GLIO76qZvAO1Zzoz6PD2X/RNHwdHXhiXzYJq7cPmuXNoudo1Vo2TtzIY+GPUWwqJnJbJKsrVts7LHGW6sx1vJH/BqN/Hc3s5Nl8Xva5LRHR4ECkejpAm0REo1KzOGJiryUiXSE9I2JQ03+yjkAnR7Ivm2XvUPqM1Wrlqs37+KqgHCeNmi/njOX8IJ8znyiGnB8rf+SSPZdgUkw8NPwhnhv5nL1DEl2Ub8znqeyn+LDkQ5qtrStijhU6A1ChYpH3hdw97Hn2VhVgMJtw1uoY4x3ErICReOicejW+zn5+SzIiBrUFa5NZX1pN1VVz8HIc/EM1J/oku5ibkw7Soij8NiKI5VNjUKulM1S0VWQsYvLOyRSZipjpMZP1CevRqYfWz8pA9tiRx3g65+kOn1eh4tVRr3JP6D19GNVxMkwjBPB/scMBeOHgwN6rpjuuGxFI3mUziXJz5t2sIiK+3kZ+N2uSVBkbyWuosj2qjI09HK2wlyB9EPkz81novZCttVsJ2RJCtiHb3mGJTnok/BGu9L2yw+cVFBZ4L+jDiLpHekbEoOf0yXr8nXTkDKGhmpP9cWc6r2cWoFWp+NeUGH47MrjT51YZG3ls17eYlePLhrUqNU9NuhhvvUtvhCvs5NnsZ3k061E0Kg0r4ldwpV/HH3Ki/7AqVv5y+C+8nPfyKc/5OvhSOrsUlUplh8g6//mt7cOYhLCLGb4erUM1RhPe+qHZ/fza5BiuDPXjok17uG17Givzyvhm3ji0nRi2aTA3t0lEAMyKlQZzM95IMjKYPDziYWZ6zuT81PO5at9V3Bt6L/8c9U97hyU6UN1s4MvsVA5UF1HY4ocaLVbMqFChoKBVaTnX+9w2iUhGTSmfZ6VQbKjFy9GZC8LimeHfdlnvhqJMfi5Io9bURIirF9dGTmSEW+/OO5NhGjHoPXB0qObFtKE3VHOieQHelF05m2nDPPihuBL/L34htare3mGJfmau11zyZ+YTrg/n1fxXmbxjMkazbDnQ3zS2mHhxz89o1GrOCffhy5ZHcVI58/fIN9CpdKhRY1bMJHon2s6pMDbw+oGNRHv682jCIhYER/Nh5nYOVBfZ2uwsz2VlVgoXhsXzyIRFhLh48ur+DdSZevd7QJIRMegtCvZBr1bzSU6pvUOxO2etlqTzJ/O38ZHUmMwk/LCdJ/dm2Tss0c/46Hw4Mv0Il/pcyq76XQRtDSKjMcPeYYkT/FhwEC9HZ84LC+Pq9EUoWNk4cR1/Cr+LXyb+gofWA6DNfJFNxYfw0btydUQCgc4ezA+KJsEnlLWFx//fri1MZ1ZAJDMDIgly8eD6kVPQqbVsKz3Sq+9HkhExJMz09SDXYKTKOPj2qumOv8SNYP9F0/BxdGDZviwmSk0ScRK1Ws2qcat4JeoVasw1xP0ax0fFH9k7LHHU3soCAp1dmZQ0D4sVbnV9kSaDJwBTPKaQPCWZj+M+JkwfZjsnq66CGM+ANq8z2iuQrLoKAMxWC3n1VcSe0EatUhHjGWBr01skGRFDwgOjW4dq/jbEh2pOFOvhSskVs7ksxJeU6noCvvyFH4t69xeOGHjuD7ufpElJOKodueHgDdyRdoe9QxJAWVM9TxcspcR6mKWhj3Nj2MV8mpVMUmlrT+cIpxFcF3Bdm3PqWoy46/Rtjrnr9BgtLZgsZhpamrGi4NZOm9oWGaYR4qydH9Q6VLNikO9V01VqtZqv5o7jfzPiMFsVzt+Qyh2/HsR6dMO9/IZqvsnZ2+659b08hiz6j6keUymcWUiUUxTLi5Yz9texGMwGe4c1pO20fEmGdRO/C/odT4xaypzAkcwKiGRT8SF7h9YtkoyIIWOWnyd5hmYZqmnH9Udrkox0dWL5kSIiv9nGqtxMnt29hn0nTG470Tvp28ipr+zjSIW9eOo8SZ+WzrV+17KvcR+BWwLZW99+oip61x1pd7DLspLp+ov5d+y/bccDnTyobu44SXR30J8yEbXOZESvcUCn0eLq4Iga1Sl/aNSZjHg4tO0t6WmSjIgh44HY1rHT54dgAbTOCHDWc+jSmdwVFUJOo5ErtuSS1tC6FFqvcSDWM4CR7j6oaV0maLCYeHX/xtP+8hODi1qt5pMxn/BW9Fs0WBqYsGMC7xS+Y++whpQXc19kedFyRmmncJlL26qqpU11eDt2vNw+wt2H9Jq2vcNpNSVEuLcu29WqNYS5eZNWc3yyv1VRSD+hTW+RZEQMGQuDfNBr1HyaK0M1p/PGlBhuD7egUSlsqnJne20gz02+lD+NOYc/jzuP56Zcykh3XwAazc2sK5RVFkPNH0L+wK7Ju3DRuHB7+u3ccOAGe4c0JHxV9hV/OfwXhmmHsWrsF2Q3VLI67wBlTfXsKMthc8lh5gVFHW+fncp7GdtsX88NjKLC2MAX2bspMdSysSiT5PI8EoOjbW0Sg2PYUnKYpNIsig21fHx4Jyar+ZRaJD1NkhExpMz2bR2qqZShmg4VNFajslZyU3AFwXqFPbUWzlmXSklT6yZcno7O3BE7C62q9dfHttIjmK0We4Ys7GCC+wSKZhUR5xLHRyUfEZsUS525zt5hDVq7andx9b6r0av1pE5NJdYrhDtj57CzPIcnkr/n+7z9XBMxkal+I2zn1JqaqDqh59JH78o9cfNIqy7hqZQf+LkwnRtHTSXOK8jWZrLvcK6KmMA3uXt5OuUH8huruTduPu69vKGelIMXQ8rPRZWct2E3D8QO58WEqDOfMARtLTnCfw9tB+CK8PHUW4dxz850Gi1WlsSE8cS4SADePLCJPVWFADw58SL8neVnc6j67cHf8l7xe7hoXNgwYQOTPSbbO6RBpchYRGRSJC3WFn6d9CuTPCbZO6ROk43yhGjHuUHDcJKhmtOynvD3iV7jwFXD/VmfOBGD2cLW8hrbc44aB9u/Lf3/bxrRi94d/S7vx76P0WJk6q6pvJb3mr1DGjQMZgNjd4zFaDXy2ZjPBlQi0hWSjIghZ7avJ/mGZipkqKZdPnpX27/3Hu35WJlfhk6t4pNZ8QC0WC2k1RQDrUWRvByd+z5Q0a/cHHQze6buwV3jzr2H7uWqvVfZloiL7rFarUzYOYHKlkpeHPkiV/hdYe+Qeo0kI2LI+cuxAmgHc+wbSD8V7emH99HkYn91EUmlObyRWcCtkcH46h1RFIVVOXuob2mdQ5IwLBQnrcPpXlIMEXGucRTPKmaC6wS+KP+CqKQoqkxV9g5rwDo39VwyDZncEXQHDwx/wN7h9CpJRsSQsyDw2FCN7FXTHrVKTWJwjO3rG7bto8xoYraPwrrCdJ5NXcPawnQAVNCmrRBOWidSpqZwV/BdZBmzCNkawpbqLfYOa8C5Pe121lev5xyvc/hX7L/sHU6vk2REDElzZKjmtOYHRTPVN5yd1c5kGZxQobCxcDefZaWQ11Bta3fdyMmM6OX6A2JgeiPmDVbEraBFaWFOyhxeyHnB3iENGC/mvsg7Re8wynkUP4//2d7h9AlJRsSQ9Oe4cACeO5Bj1zj6K4PZwrelLuyub50/4qBqO0E11MWLu0fPZW6grEgSHVscsJj0ael4a7158MiDXJh6ocwjOYMvyr6w1RLZPXk3avXQ+JiWpb1iyHJesZ5hjg7kXz7b3qH0KzkNTVy4MZWMukYsR387eDioWTUrBLVKTZirF8NdvVGpVPYNVAwYJquJecnzSKpLItQxlJ2Td+Lv6G/vsPqdXbW7mLZrGg5qBw5PP0ywPtjeIZ01WdorxBnM8fOiwNBMmQzV2GwqrWbC6u1k1hlsiQiAyQrzgkYxJ3Ak4W7DJBERXaJT69g2eRsPhD1AfnM+w7cOZ13lOnuH1a8UGAuYndL6h9GWiVsGRSLSFZKMiCHr2Kqa52WoBoC3MwtYsC6ZuhYz5pM6TI0WKwOgE1X0cy9GvcjXY77GipVzU8/liawn7B1Sv2AwGxi/fbytlshE94n2DqnPSTIihqxzArxx1qj5XFbV8PS+LO7cmY5FgfZG9BWgWcb6RQ+4xO8SDs04hJ+DH3/N/isLUhZgtprtHZbdWK1Wxu8YT6V58NcSOR2tvQMQwp7m+HmxpriSMqMJP73O3uH0qepmA19mp3KguojkGi1alQtWRdVuMgLQaLaQW1/B51kpFBtq8XJ05oKw+FM20NpQlMnPBWnUmpoIcfXi2siJjHCTFTfiuOH64RTMKuDc3eeyvno9oVtb55GE6EPsHVqfOzf1XA41HRoStUROR3pGxJD24NGhmuf2Z9s5kr7V2GLixT0/o1Gr+WP8PL6Yn8gvibE8HBeKj2P7BczyG+t5/cBGoj39eTRhEQuCo/kwczsHqotsbXaW57IyK4ULw+J5ZMIiQlw8eXX/BupMxr56a2KA0Kq1bJi4gcfCH6PEVELktkhWV6y2d1h9aqjVEjkdSUbEkDbv2FBNXpm9Q+lTPxYcxMvRmVtGTWOEmw8+elem+4Xw1PhoZvt6ADDCRQ+0FjYD2FSchY/elasjEgh09mB+UDQJPqGsLcywve7awnRmBUQyMyCSIBcPrh85BZ1ay7bSI339FsUA8WTkk/w4/kdUqLhwz4UsPbzU3iH1iaFYS+R0JBkRQ95cPy8Km5opbWq2dyh9Zm9lAcNdvflX2mYe+PULnk75gc3FhzGZrXxbWMlwZz1HLp3J2gUJnBfojYNKRVlTDTGeAW1eZ7RXIFl1FQCYrRby6quIPaGNWqUixjPA1kaI9pw37DyyZ2QT7BjM87nPM2vXLEzWwbvKzVZLxGFo1RI5HbkDYsh7aAgWQCs3NrCp+BB+Tm7cGz+fOYFRfJqVzB927MSsKDw1LhKVSsWCAG/WnJOA8bpzUGPEXadv8zruOj1GSwsmi5mGlmasKLi106a2RYZpxOkF6gPJm5HH+d7ns7V2K8Fbgsk2DL7h0121u1i8bzFOaif2TtmLs1Y2mQRJRoRgjr8Xzho1K4fQUI0ChLl6c3n4eMJcvZkTOJJZAZF8W1iNh4OGGyMC27RXS10R0QfUajU/TPiBZyOepbKlklG/jmJl6Up7h9VjTq4lEqQPsnNE/YckI0IA8/xbh2pKDEPjL3gPnZ5AZ482x/bVQoVJy92jQts9x91Bf8pE1DqTEb3GAZ1Gi6uDI2pU1LfTxsOhbW+JEKezdMRSNiRsQKvScvX+q7kv8z57h3TWTqwl8vmYz0lwT7B3SP2KJCNCAA+ODgfguQO59g2kj0S6+1LaVNfm2P9yqnHTWHhibES750S4+5BeU9LmWFpNCRFHN8rTqjWEuXmTVnO8botVUUg/oY0QnTXXay75M/MJ14fzav6rTNoxCaN5YP6xcGItkZdGvsTlfpfbO6R+R5IRIWgdqnHRqFmZPzQKoCUGx5BVX8HqvAOUNdXzTuYB8ptgvr8b2qOT6b7KTuW9jG22c+YGRlFhbOCL7N2UGGrZWJRJcnkeicHRbV53S8lhkkqzKDbU8vHhnZis5lNqkQjRGT46H45MP8JlPpeRXJ9M0NYgMhozznxiP3Oslsjvg37P/w3/P3uH0y9J0TMhjprn78X3RZWUGIwEOA/uYYVwt2HcGTuHr3JS+T5vH79UuaFW6fjP9Em2NrWmJqqaDbavffSu3BM3j8+zUlhfmIGnozM3jppKnNfxce/JvsNpaDHyTe5e6kxGQly9uDduPu46pz59f2LwUKvVfDXuK/6R9w+WHFpC3K9xfDD6A64PvN7eoXXKsVoiC7wW8Hbs2/YOp9+SXXuFOGpLWTWzf07mnlEhvDY5xt7h9JnsegMR32xjtq8nv5w36cwnCGEn22u3c07KORisBm4Pup1/x/7b3iGd1gu5L/Dg4QcZ5TyKtKlpQ3IJr+zaK0QXzfLzwkWr5sv8obOqBuCuna3d3m9Ojj5DSyHsa6rHVApnFhLlFMXyouWM/XUsBrPhzCfawRelX/Dg4QfxcfCRWiKdIHdHiBPM8/OmqMlE0RBZVdNgMvNTcSWj3JyJ93KzdzhCnJGnzpP0aelc63ct+xr3EbglkL31e+0dVhs7a3eyeH9rLZE9U/ZILZFOkGREiBMsjTu6V80QKYD2wO5DWIEXJoy0dyhCdJpareaTMZ/wr5h/0WBpYMKOCbxT+I69wwJaa4nMSZkDSC2RrpBkRIgTzPTzwkWr4YshMFRjtVr5ILsYH0cHLg31s3c4QnTZHcF3kDwlGReNC7en384NB26wazwGs4Fx28dhtBpZOWal1BLpAklGhDjJfH8viofAUM0r6fkYLVb+HBtm71CE6LbxbuMpmlVEvEs8H5V8RExSDHXmujOf2MOO1RKpMlfx0siXuMzvsj6PYSCTZESIkzw0unWo5tlBPlTzwsEc9Go1D8QOt3coQpwVV60r+6bt47eBvyXDkEHQliB21u7s0xgSdydKLZGzIMmIECc5NlTz5SDeq+bbgnLKm1u4MSJAZvmLQeM/o//D+7HvY7QYmbprKq/lvdYn17097XY21Gwg0StRaol0k/wWEqIdC/y9KDaaKBikQzUPpBxCDbwyYZS9QxGiR90cdDN7p+7FQ+vBvYfu5cq9V2K1Wnvtei/kvMA7Re8Q7RzNj+N/7LXrDHbdSkbeeOMNwsPD0ev1TJ06lR07dnTYdvny5cyePRsvLy+8vLxITEw8bXsh+oOH4sIBeG5/jl3j6A37q+vJrDdwbuAwXHVShFkMPqNdR1M8s5gEtwS+LP+SqKQoKk2VPX6dlaUrefBIay2RlMkp0st4Frp85z799FOWLFnCsmXLSElJYdy4cSxcuJCysva7tDdu3Mh1113Hhg0bSEpKIjQ0lPPOO4/CwsKzDl6I3jLd1xNXrWZQFkA7VuTsLSlyJgYxvVZP8pRk7gq+iyxjFqFbQ9lSvaXHXl9qifSsLpeDnzp1KpMnT+b1118HWmcQh4aG8sc//pGHHnrojOdbLBa8vLx4/fXXuemmmzp1TSkHL+zh0o2pfFNYQf7lswgZJHvVVBlN+HzxC2M8Xdlz4TR7hyNEn/is9DOuP3A9FsXC85HP85fwv3TqvMqmBiqaGzArCk4aLZ46Z7z1LhQYC4hKiqLF2sKOyTtkCe9pdPbzu0t9tCaTieTkZJYuXWo7plarSUxMJCkpqVOvYTAYaGlpwdvbu8M2zc3NNDc3276uq+v7ZVpCLI0bwTeFFTy7P5s3p8TaO5we8cfkDBTg7xNlrogYOq7xv4aJbhOZunMqDx55kE01m/h27LcdDqs0mVv4qeAgq/MPtDmuQsVvYyez6MBUjFYjq8askkSkh3RpmKaiogKLxYK/v3+b4/7+/pSUlHTqNR588EGCgoJITEzssM1zzz2Hh4eH7REaGtqVMIXoEdN8PXDVavgqv9zeofQIs9XK57llBDnpOCeg4z8GhBiMIp0jKZpdxAyPGayuXE34tnBKmk/93KowNvDs7h9OSUQALFYL5+6ZbaslcqnfpX0R+pDQp7Ntnn/+eVasWMFXX32FXt9xt/fSpUupra21PfLz8/swSiGOW+DvRckgWVXz5L5sWhSFx8dE2DsUIexCp9axddJWHgh7gPzmfMK3hrOucp3teaOlhX/u30CZscF2LMjZg5HuPjiqtXxveY46SohVLeAcl2vs8RYGrS4lIz4+Pmg0GkpLS9scLy0tJSAg4LTnvvTSSzz//PP89NNPjB079rRtHR0dcXd3b/MQwh6Wxo0A4Jn92XaO5Oy9mpGPq1bD76NC7B2KEHb1YtSLfD3ma6xYSUxN5K9ZfwVga8kRyprqAfB3cufxhAtYNvFC/jzuPFq8N1KsHCRYFc9sh9/yVc4eujjlUpxGl5IRnU7HxIkTWbfueCZptVpZt24d06dP7/C8F154gaeeeoo1a9YwadKk7kcrRB+b6uuB2yAYqvkoq5jaFjN3jAy2dyhC9AuX+F3C4RmH8df580T2EyxIWcDGwnTb83fEziTYxROAtVVr+XfRv0hwS+Aer5cAKG2qI7N28K22s5cuD9MsWbKE5cuX88EHH5CWlsadd95JY2Mjt956KwA33XRTmwmuf/vb33jsscd49913CQ8Pp6SkhJKSEhoaGjq6hBD9yoIAb0qNJvIaB+5QzSN7jqBVqXhunOzOK8QxYfowCmYWMN9zPuur1/Ny/S00WCsZ7upNiIsXAB+XfMxFqReR6J3I9knbmR14/Gcou77na5cMVV1ORhYvXsxLL73E448/zvjx40lNTWXNmjW2Sa15eXkUFxfb2r/11luYTCauuuoqAgMDbY+XXnqp596FEL3o4fhwAJ4doEM1v5bXkmswckmIDzqtFGUS4kRatZb1E9fzUNjDNFHLCvP9ZFuSbc+vLFtJs9JMRmMGX5Z/ibPGwfacRbHYI+RBqct1RuxB6owIe3P/dAPOWg0lV86xdyhdNvmH7eyqqqfo8lkEDpJ6KUL0NKti5crNj/NNy9+wYmZJ6AO8POpFAFLrUnks+zG+q/iOAG0YbpYwQtVjOS94LBOHReKiccFF7dL63xMeapUk/71SZ0SIoSoxwJuvCsrJbWhiuKuTvcPptAKDkV1V9UwZ5i6JiBCnoVapuTroUlwLg/jS/Civ5L/Er7Xb2DBxA+Pdx/PtuG/5qGAVN2cspoQ8Dlm2sD4PyGv/9eJd4tk3bV+fvoeBTNI2ITph6bGhmgM5do2jq+7Z0Toh73Up/S7EGc0PGoWrxovfaF8lRDWObXXb8PslgG8KtvLfzO1szTGyWPMi6k78HR/vGt8HEQ8ekowI0QmTh7WuqllVMHBmzxvNZr4rqmCEi57JwzzsHY4Q/V6gswc3RU1Fo1ZzgcNfmKxeTK2lmssy5vBh0cdYFCuuGh9ucF962tdxUDnwfOTzfRT14CDJiBCdlBjoTZmxhdyGJnuH0ikPpR7BosBz42UFjRCdNd0/gnvi5hHi4skE7SVcpH0UNRrWWl5lu+VDzg2O5Z2Jy1jstxgNmlPOV6HivpD7GO403A7RD1wygVWITtpVWcvkNTu5fWQQ/5462t7hnJbVasX9843o1Gqqrp5n73CEGHAURSGrvoLs+koqTZXcn38txS0FTHSbyJaELRgUA7FJsVS0VGDF2uZcZ5Uzz498nj+G/dFO0fcfnf38lp4RITpp0jAP3LUavh4ABdDeOlRIo9nKfdFh9g5FiAFJpVIR6e5LYnAMi0fMpGBWLpf7XE5yfTJBW4MoM5XxQdwHpyQiV/peCSq499C9BG4O5MfKH9s8X2VsJK+hqs2jytjYl2+tX5KeESG64Mpf9vBlfjk5l87s16tqAr/4hSpTC42L56PtYGdSIUTX/SPvHyw5tAQ1at4f/T6bazbzTtE7KCiE68PJmJ6BChV/OvQn3i54GwsWxriM4dP4T/HXhvHYrm8xK20TGK1KzVOTLsZb72Knd9V7pGdEiF6wNC4cgKf7cQG0n4sqKTGaWDzcXxIRIXrYn8L+xK+TfkWv1nPjwRtptjYT4hiCgsIro17BQe2AVq3l9ejXKZ5VzAXDLmBf4z5Gbx/NFfsvocFSd8prmhUrDeZmO7yb/kPqjAjRBZOGeeDuoOHrgnKW2zuYDixJyUQFvDpplL1DEaJfyawt46eCg+Q1VFNrauLO2NmM9wk97TkZNaV8npVCsaEWL0dnLgiLZ4b/FApmFjA1eSoflHxApEM8s3XX8lN6E2mFP3Jt5EQ+KH+dNwveJH16OuWmchbvX8ym2vWo2EiMaj4zNTehVstH8DHyZ5MQXXRugDflzS1k1xvsHcopDtU1sr+2kbl+XnjqdPYOR4h+xWQxE+LixXWRnduwtcLYwOsHNhLt6c+jCYtYEBzNh5nbOVBdhKfOk7SpaVzqeQPZLWnsN2/gqpgRhLh4cm/q33gi+wnKW8p5s+BNol2iSZ2ayofRn+OEO2nKOt4z385e8w+9/I4HDklGhOiih+NGAPDM/hz7BtKOu3ZmAPDmFClyJsTJ4r2DuCx8HBPO0BtyzKbiQ/joXbk6IoFAZw/mB0WT4BPK2sLWnzO1Ws1UzQ3cM+w5aq3lnLt3JtnqH1ljeg1QAfBy3ssYLK1/uMzxPIcbdG8wU3MLKlT8av0fH5ruIs+6u1fe70AiyYgQXZQwzB13Bw3fFPavVTV1JjPrS6qIcXcm1sPV3uEIMeBl1VUQ4xnQ5thor0Cy6ioAMFst5NVXcWvItSRPScZZ7cyynGVYMAGta0NqzbW8V/Rem9eI05zLLdp3iFctxEg9a8wvce7emRxoONAn76s/kmREiG44L3BYvxuquT85EyvwcoLMFRGiJ9S1GHHXtd3TyV2nx2hpwWQx09DSjBUFN52esa5jmePVupGmwvFFqgoKz+c+j9lqbvM6arWaGQ43cbP2X4SpJpDZlE789njO230eFaaK3n9z/YwkI0J0wyNHh2qe7idDNVarlY9yivHTO3BBsI+9wxFiyHk251lWV65u97mC5gI+L/u83ed0amfOd3iAjWN3MMF1Aj9X/UzA5gDuSLvjlARmMJNkRIhuGO/thoeDhm/7yVDN8wdzabYqLB0dbu9QhBg03B301JmMbY7VmYzoNQ7oNFpcHRxRo2Jd5Toez3q8w9dRoeLJrKf45NDOjtuYPUmZmsLaCWsJdAxkedFy3De583Luyz32fk4uuNafiq1JMiJENx0bqjnSD4ZqXknLxUmj5t7ozk3ME0KcWYS7D+k1JW2OpdWUEOHe2vuoVWsIc/Mmo74QT62nrY36pD1rFBTSm9LYULOuw2t9cngX+6oKWeC9gPxZ+bwd/TYalYYHDj+A/y/+fFP2zVm9lypjI4/t+pZndq+xPR7b9W2/SUgkGRGimx6NP7aqxr4F0L7ILaXSZOaWiEDUUuRMiA4ZLS3kN1ST31ANQEVzI/kN1bYP5K+yU3kvY5ut/dzAKCqMDXyRvZsSQy0bizJJLs8jMfj4arXE4BiMdcF8F72T7RP2cM+wZ5igvYCpbtPQq9vON1lr/SdOWpgfOIobRk7horAxBDi1ViW1ovBO+lYaWlqLn/0+5PfUzqllSegSqsxVXLrvUkYnjWZ//f5uvfcGc/MplV/7U7E1qbgiRDeN9To2VGPfyWYPpR5Go4KXEqLsGocQ/V1ufRWv7DveO/F5VgoA0/1GcEv0dGpNTVQ1H+/p9NG7ck/cPD7PSmF9YQaejs7cOGoqcV5BtjaTfYfT0GLk27x91JmMhLhO5PMJdzDC3Qez1cy68l95Nu2/7LP8QDWFbFC9wJ+CVxHuFA7ABWFx/CttC3sqCzBazGwrzeK8kFigdZLry6NeZlnEMm46cBPfVHzDmB1jWOC1gBXxK/DRDZ75YbI3jRBn4ZrNe/k8r4zDl8wg0s25z6+fWlXPhB+2c0HQML6fP6HPry+EOL3Ps1JYW5gOwLQQd54uvo+alho+HP0hF/heAECpoY7Hk78DINTFi0cTFrX7WtmGbK7efzXJ9cmoUXNr4K28GfMmOvWZCxzmNVTxzO41pxx/ZML5hLl6d/ftnZHsTSNEHzg2VGOvvWru3tn6S+7NyTF2ub4Q4vRqTuhpuTBgLjsn72SC2wQu3HshMUkxPHDoAd4rexMcalvbm5o6fK0RziPYNWUXGxI2EOwYzH+K/4PHJg9m7ZrFz5U/9/p76U0yTCPEWWgdqtHaZaimzGgiqaKWCV6u/XoHYSGGMgfN8Y/ZOlMTI538WDlmJbcevBW1Ss0HxR9Q0dL6+0ONFi9zAIb0tdwQcAMzPGe0+5rzvOaRNyuPdwrf4U+Zf2Jr7VbOSz2P2wJvY3nsclQqVV+8tR4lPSNCnKXzg7ypbG7hUF3fzkq/Z2c6CvDqJCn9LkR/NdL9+LyOTcWHAfB08OSrcV/xxdgvKJtdxmvhnxCjOgc3fKmxlvJW4VvMTJ6Jdp2W8K3hXLfvOr4q++qUuiO/C/4dL4x8wfb1f4r/g9cmL3bWtl1CvL+qiPcyktqNL626pN3jfU2SESHOkj32qjGZrazKLyfU2ZFZfl59dl0hRNdM9g3HSeMAwI7yHL7J3YvR0gKAVbGSXJFHZqmaOQ63sVj3EumTCkiblsZDwx9ivNt4KloqWFG2giv2XYFugw7/X/xZtHsR/yr4F3XmOrbWbkVzwlLiWkstU3ZNYdauWZSZythQlMlrBzZSZKhtN74vc1L5Nndf79+IM5AJrEL0AK/PNqJRqai4em6fXO+h3Yf428Fc3p0ay60jg/vkmkKI7tlQlMmKI7tsXztqtIS4eFJpbGwzRyRhWCh3xM46ZZilzFTGh8Uf8n3F9+xp2EOVucr2nApVm/LzJ1KhIko1i1ma36FVa/HTuxHr6Y9apSa9poTipjpb29/HziahkxsIdkVnP78lGRGiB1y3ZR8rckvJvHg6Ue4uvX49j083oAB1i+f3+rWEEGdvdd4Bvs7d0+Hz47yD+V3MTHSaM0/lNJqNfFb+GR8Vf8RP1T+dsb0GB67xup2PJrzeJtH5seAgX2anAhDuNoyl4xee+Y10kaymEaIPPRIXDvTNqpp3DxdSZ7Zw56iQXr+WEKJnXBAWx6MTFjErINI2bKNVqYn3CuSu0XP4w+g5nUpEAPRaPTcF3sTNQTd3qr0VM59Uv8nEHRPZU388ITovOJZQl9Zh3pz6Sgoba7r2pnqQrKYRogfEe7nh6aDl+z5YVfPXfVloVSqeGhPZ69cSQvScUFcvboyayo1RU7FYrahVqrNa+bKlZgtalRazcnxiqwYNVqwoKKhQo0WHu9qLSmsxuxt2M37HeMa4jGHvtL2oVCrGDwshv7G1Im1ZUz3BLp5n+za7RZIRIXrIoqBhfJJbSkZtI9EevTNUs6WsmnxDM1eH+aHTSsemEAOVpge2bthQvaFNIuLj4MM8r3nM8ZzDcG0c3x4qRK3SMCsgkktHxLKlZguv5r+KRnV8wmuLYrH9255LgiUZEaKHPBI/gk9yS3nmQDb/nRHfK9e4d1cGKuB1KXImxJB3sc/FzGiZwRyvOczymEWEU4QtoWhsaWbNka+wKFZSKwpYHDGRC3wu4AKfC2znWxQru8pzbV8HO3v29VuwkWREiB4S5+mKl673hmpyG5rYXd3ADB8P/PRnLv8shOh9VsXKt7n72F6WQ12LEQ+dEzP8R3BBaPxpexoyakr5PCuFYkMtXo7OXBAWzwz/iDZtNhRl8nNBGrWmJkJcvbg2ciIj3I7XLXkh6oWTX9bGxcGRBJ9Qdpbn0mBu5v3MX7l51DQcj85LabFa+OxIMhVHNwmM9QzA18n1bG7FWZFkRIgedH5g61BNem0DMR49+4N919HS729Ir4gQ/caa/DQ2FR/m1uhpBDp7kFtfxQeHfsVJo+Oc4PYLElYYG3j9wEbmBEZxW8wM0mtK+DBzOx46vW0Tvp3luazMSuE3Iyczws2HdUXpvLp/A09MvBh3nb7d1z3Z+aGj2V2Rj/loPZO0mhLGegejUanYW1VEfYsRADUqLgjrnd7czpJBZyF60CNH96p55kBOj76uwWzmx+JKRro6Md7brUdfWwjRfVn15YwfFswY72B89K5M9A1jtGcg2fWVHZ6zqfgQPnpXro5IINDZg/lB0ST4hLK2MMPWZm1hOrMCIpkZEEmQiwfXj5yCTq1lW+mRTscW4uLFHbGzcFC3zhExmE38WpbN1tKsNonIzaOmMcrDr5t3oGdIMiJEDzo2VLO6h4dq/pxyCIsCz40f2aOvK4Q4OxFuvqTXlFJqaC0glt9QzeG6cuK9Azs8J6uughjPgDbHRnsFklXX+nvDbLWQV19F7Alt1CoVMZ4BtjadNW5YCEvHL2S63wi0quMf+WqVikk+YTw4/jym+Y/o0mv2BhmmEaKHLQoaxsc5paTVNhDbA0M1VquV97KK8dZpuWq4fw9EKIToKeeHjsZoaWFZ8neoVCoUReHS8HFM9ev4A76uxXjKUIu7To/R0oLJYsZgNmFFwa2dNiUnVE3trGAXT26Jns7iyEmUG+tRFPDRu+Di4Njl1+ot0jMiRA97NL5n96p5NSOfJouVJTHDe+T1hBA9J7k8lx1lOdwWPYNHJyzillHT+bkgjaTSLHuHdgonrQNhrt4Md/PuV4kISM+IED0u1uPoUE1RzwzVPHcwB0e1iqVxkowI0d98kZ3KwtDRTPYLB1p7ISqbG/kh/yDTT1odc4y7g546k7HNsTqTEb3GAZ1Gi1qlQo2K+nbaeDh0bvLqQCM9I0L0gguCfKg2mTlY03BWr7O6sIIyYwu/CQ9E3QNFkoQQPctkNaOm7RJetarjzesAItx9SK8paXMsraaECPfWZbtatYYwN2/Sakptz1sVhfQT2gw20jMiRC94JD6cj3JKeOZANh/NHNPt1/m/lEzUwD8mjuq54IQQPWasdzCr8/fjrXcm0NmD/IZq1hakMyPgeK/IV9mp1JgM3Bo9A4C5gVFsLMrki+zdzPSPIL2mlOTyPO6JP77rd2JwDO9nJBHu5k242zDWFWZgsppPqUVS3Wzgy+xUDlQXYbJa8NW7cvOoaYS7Desw5p6ocdLTJBkRohfEerjirdPyQ1HHy/vOJK22gfQ6A4kB3rjr5EdViP7o2shJfJ27l48P76S+pRkPnROzA0dy0Ql1O2pNTVQ1G2xf++hduSduHp9npbC+MANPR2duHDXVVmMEYLLvcBpajHyTu5c6k5EQVy/ujZuPu87J1qaxxcSLe35mlKc/f4yfh5uDnrKmely0HRdF7KsaJ12lUhSl476kfqKzWxAL0Z/ctG0/H2aXsP/CacR5dn1Vzfyfk9lYVk3mxdOJcu+dvW6EEAPXl9mpHKkr58/jzu30OV9k72Z/VRHLJl5oO7Y8bQsGSwv3xc8H4LnUHwl39ea6kZOB1iGipTtWMT9oFOeHxnUpxs5+fssgtBC95JG4Y6tqsrt8bnWziU1l1cR5uEgiIoRo197KAoa7evOvtM088OsXPJ3yA5uLD5/2nL6scdIV0vcrRC+J9nDp9lDNfcmZKMDfE2SuiBCifeXGBjYVHyIxJIZFoXHk1FfxaVYyWrW6w5U8fV3jpLOkZ0SIXnRhsA81LWb2d2FVjdlq5dPcUgL0Os4N6ngSmhBiaFOAMFdvLg8fT5irN3MCRzIrIJJNxYfsHVqXSTIiRC/qzlDNM/tzMFkVHokP76WohBCDgYdOT6CzR5tjgU4eVJ8wWfZkZ6px4urgaJcaJ5KMCNGLoj1cGKbTsqYLQzX/zMjDRaPmrqiQXoxMCDHQRbr7UnrS0ElpUx3ejh3PM+uvNU4kGRGilx0bqtlXXW87Vt9ipslsOaXtpzklVJvM3BYZLEXOhBCnlRgcQ1Z9BavzDlDWVM+Oshw2lxxmXlCUrc1X2am8l7HN9vXcwCgqjA18kb2bEkMtG4sySS7PIzE4us3rbik5TFJpFsWGWj4+vLPdGic9SZb2CtHLDtU1MurbJK4I9eWKUD9W5JbyY1Eli4KG8fW88W3aRqzaQp7BSMM189BrZX65EOL09lYW8lVOKmVN9fjoXUkMjmF24PHdvd/PSKKyuZH/G5toO3Zi0TNPR2cubLfoWQY/FaTZapxcGzGREd3oGens57ckI0L0ovoWM98WVHBL0gFajv6oaVRgVeD68AA+nHm8MNLOylqmrNnJpcE+rDopSRFCiIGos5/f8qeXEL3gSL2BJcmZ/FBUSYuitNm5wqKAVqVipJtzm3Pu2ZkBwOtTYvowUiGEsD9JRoToBXtrGvim8HiBoJO7H82Kwki342WdiwxGdlTWMdHbjRDnwbkrpxBCdERmyAnRCy4P9ePZcZGnbXNiz8g9u1p7RV6bFN1RcyGEGLQkGRGilyyNH8Fz40d2+HzU0WTEZLbybUEFw531TPf17KPohBCi/5BkRIhe9FBcOM+3k5C4aTV4OzoAsHTPYcyKwtNn6EkRQojBSuaMCNHLHowLB+Ch1OMbWPno4POsFLx0TvzrUDEeDhpuiAi0U4RCCGFfkowI0QcejAunxFDHPzLLAIUWq4G1hcUcrNfTaHHnygAnrIoVtUo6K4UQQ4/85hOiD/xSfAiDcT9j3RoBFQZL649eSq0LahS8VLksT9+KVbHaN1AhhLCDbiUjb7zxBuHh4ej1eqZOncqOHTtO2/7zzz8nJiYGvV7PmDFjWL16dbeCFWIgyqmv5OPDuwCY5tWIj4MFL50jYe6jMFg1jHA2olZDSkU+Pxak2TlaIYToe11ORj799FOWLFnCsmXLSElJYdy4cSxcuJCysrJ222/bto3rrruO2267jd27d3PZZZdx2WWXsX///rMOXoiBYF1hBsrRSiMLgqL5W0I8WY1WtlSq0ajgvenjbEXR1hdmYLFK74gQYmjpcjLyyiuvcPvtt3PrrbcyevRo3n77bZydnXn33Xfbbf/Pf/6T888/nz//+c/Exsby1FNPkZCQwOuvv37WwQvR35ksZlIq8gBw0eq4fMR4Lg/1Q6OC9aXVPBw3gtkBYYwfFgpAXYuRgzXF9gxZCCH6XJeSEZPJRHJyMomJxzfcUavVJCYmkpSU1O45SUlJbdoDLFy4sMP2AM3NzdTV1bV5CDEQ1ZiaMB+dBxLjGYCDWoOXowMRrs60WBXuHhUCwBjvINs5FcYGu8QqhBD20qVkpKKiAovFgr+/f5vj/v7+lJSUtHtOSUlJl9oDPPfcc3h4eNgeoaGhXQlTiH5Dc8LqmCazyfbvG0YEcGGwD356XetzlpZ2zxFCiKGgX/7WW7p0KbW1tbZHfn6+vUMSolu8HJ1wd2jdaya9ppQqYyMAj42J4Nt541GpVFgVhaTSLNs54W7D7BKrEELYS5eSER8fHzQaDaWlpW2Ol5aWEhAQ0O45AQEBXWoP4OjoiLu7e5uHEAORWqVmVkBrZVUrCv9K30Ll0YQEoNliZsWRXRQ01gAw3NWbMFdve4QqhBB206VkRKfTMXHiRNatW2c7ZrVaWbduHdOnT2/3nOnTp7dpD/Dzzz932F6IwWZ+UDQeutYdenPqK3l05zf8fd863jr4Cw9u/4pNxYcAUAGXDB9rx0iFEMI+ujxMs2TJEpYvX84HH3xAWload955J42Njdx6660A3HTTTSxdutTW/r777mPNmjW8/PLLpKen89e//pVdu3Zxzz339Ny7EKIfc9fpuTd+ni0hsaKQXlNKamWBba6IGhU3jZpG/AkTWYUQYqjocjn4xYsXU15ezuOPP05JSQnjx49nzZo1tkmqeXl5qNXHc5wZM2bw8ccf8+ijj/Lwww8TFRXFqlWriI+P77l3IUQ/F+LixWMTFrGx+BCbSw5Ta2oCwEGtYbLvcBYERxPi4mXnKIUQwj5UiqIo9g7iTOrq6vDw8KC2tlbmj4gBz6oo1JqasCoK7jo9DmqNvUMSQohe0dnPb9koT4g+plap8HJ0tncYQgjRb/TLpb1CCCGEGDokGRFCCCGEXckwjRBnKbO2jJ8KDpLXUE2tqYk7Y2cz3uf0VYMzakr5PCuFYkMtXo7OXBAWzwz/iDZtNhRl8nNBGrWmJkJcvbg2ciIj3Hx6860IIYRdSM+IEGfJZDET4uLFdZGTOtW+wtjA6wc2Eu3pz6MJi1gQHM2Hmds5UF1ka7OzPJeVWSlcGBbPIxMWEeLiyav7N1BnMvbW2xBCCLuRnhEhzlK8d1CX6oNsKj6Ej96VqyMSAAh09uBwbTlrCzOI82p9nbWF6cwKiGTm0eqt14+cwv6qIraVHuH80LiefxNCCGFH0jMiRB/LqqsgxrPtdgijvQLJqqsAwGy1kFdfRewJbdQqFTGeAbY2QggxmEgyIkQfq2sx4q7TtznmrtNjtLRgsphpaGnGioJbO21qW2SYRggx+EgyIoQQQgi7GhBzRo4Via2rq7NzJEKcmaGp6bTfqy5qByoa6tq0KaurQa/WYmw0YLVaUaOitLYaXxxtbSob63FWaeXnQAgxYBz7fXXGYu/KAJCfn68A8pBHv3/c8ctHyvBZE0/bZsofrlWuev/5NsfOeexuZdGLf7F9fdnbTygz7rvpeBuVSvnNyteUcddfbPf3KA95yEMeXX3k5+ef9nN+QOxNY7VaKSoqws3NDZVK1WOvW1dXR2hoKPn5+bLnTS8a7Pe52WKmwtQIwD8yN3Nx0GgiXYfhrNHhpXNidXEatS1GrgubAEBVs4GXMjcxY9hwpniHcbihgq8LD/DbEZOJdvcDILW6iE/zU7kyZAyhzp5sLs9mb20xf46eh5uDY4exDPZ73V/Ife4bcp/7Rm/eZ0VRqK+vJygoqM0muicbEMM0arWakJCQXnt9d3d3+UbvA4P1PmfUlPKPzM22r78tOgjAdL8R3BI9HWOxlQZri+29u+POHx3m8XlWClsrcvB0dObGUVOZfELRsznu7lgcVPxUkEadyUiIqxf3xc8n2L1zRc8G673ub+Q+9w25z32jt+6zh4fHGdsMiJ6R3iK7AfcNuc99R+5135D73DfkPveN/nCfZTWNEEIIIexqSCcjjo6OLFu2DEfHjsfgxdmT+9x35F73DbnPfUPuc9/oD/d5SA/TCCGEEML+hnTPiBBCCCHsT5IRIYQQQtiVJCNCCCGEsCtJRoQQQghhV4M+GXnjjTcIDw9Hr9czdepUduzYcdr2n3/+OTExMej1esaMGcPq1av7KNKBrSv3efny5cyePRsvLy+8vLxITEw84/8XcVxXv6ePWbFiBSqVissuu6x3Axwkunqfa2pquPvuuwkMDMTR0ZFRo0bJ749O6Op9/sc//kF0dDROTk6EhoZy//33YzTKbtan88svv3DxxRcTFBSESqVi1apVZzxn48aNJCQk4OjoyMiRI3n//fd7N8je3lfGnlasWKHodDrl3XffVQ4cOKDcfvvtiqenp1JaWtpu+61btyoajUZ54YUXlIMHDyqPPvqo4uDgoOzbt6+PIx9Yunqff/Ob3yhvvPGGsnv3biUtLU255ZZbFA8PD6WgoKCPIx94unqvj8nOzlaCg4OV2bNnK5deemnfBDuAdfU+Nzc3K5MmTVIuuOACZcuWLUp2drayceNGJTU1tY8jH1i6ep8/+ugjxdHRUfnoo4+U7Oxs5ccff1QCAwOV+++/v48jH1hWr16tPPLII8qXX36pAMpXX3112vZZWVmKs7OzsmTJEuXgwYPKa6+9pmg0GmXNmjW9FuOgTkamTJmi3H333bavLRaLEhQUpDz33HPttr/mmmuUCy+8sM2xqVOnKr///e97Nc6Brqv3+WRms1lxc3NTPvjgg94KcdDozr02m83KjBkzlHfeeUe5+eabJRnphK7e57feekuJiIhQTCZTX4U4KHT1Pt99993KOeec0+bYkiVLlJkzZ/ZqnINJZ5KRv/zlL0pcXFybY4sXL1YWLlzYa3EN2mEak8lEcnIyiYmJtmNqtZrExESSkpLaPScpKalNe4CFCxd22F507z6fzGAw0NLSgre3d2+FOSh0914/+eST+Pn5cdttt/VFmANed+7zN998w/Tp07n77rvx9/cnPj6eZ599FovF0ldhDzjduc8zZswgOTnZNpSTlZXF6tWrueCCC/ok5qHCHp+FA2KjvO6oqKjAYrHg7+/f5ri/vz/p6entnlNSUtJu+5KSkl6Lc6Drzn0+2YMPPkhQUNAp3/yire7c6y1btvCf//yH1NTUPohwcOjOfc7KymL9+vVcf/31rF69msOHD3PXXXfR0tLCsmXL+iLsAac79/k3v/kNFRUVzJo1C0VRMJvN/OEPf+Dhhx/ui5CHjI4+C+vq6mhqasLJyanHrzloe0bEwPD888+zYsUKvvrqK/R6vb3DGVTq6+u58cYbWb58OT4+ndvtV3SP1WrFz8+Pf//730ycOJHFixfzyCOP8Pbbb9s7tEFl48aNPPvss7z55pukpKTw5Zdf8v333/PUU0/ZOzRxlgZtz4iPjw8ajYbS0tI2x0tLSwkICGj3nICAgC61F927z8e89NJLPP/886xdu5axY8f2ZpiDQlfv9ZEjR8jJyeHiiy+2HbNarQBotVoyMjKIjIzs3aAHoO58TwcGBuLg4IBGo7Edi42NpaSkBJPJhE6n69WYB6Lu3OfHHnuMG2+8kd/97ncAjBkzhsbGRu644w4eeeQR1Gr5+7ondPRZ6O7u3iu9IjCIe0Z0Oh0TJ05k3bp1tmNWq5V169Yxffr0ds+ZPn16m/YAP//8c4ftRffuM8ALL7zAU089xZo1a5g0aVJfhDrgdfVex8TEsG/fPlJTU22PSy65hPnz55OamkpoaGhfhj9gdOd7eubMmRw+fNiW7AFkZmYSGBgoiUgHunOfDQbDKQnHsQRQkW3WeoxdPgt7bWpsP7BixQrF0dFRef/995WDBw8qd9xxh+Lp6amUlJQoiqIoN954o/LQQw/Z2m/dulXRarXKSy+9pKSlpSnLli2Tpb2d0NX7/Pzzzys6nU5ZuXKlUlxcbHvU19fb6y0MGF291yeT1TSd09X7nJeXp7i5uSn33HOPkpGRoXz33XeKn5+f8vTTT9vrLQwIXb3Py5YtU9zc3JRPPvlEycrKUn766SclMjJSueaaa+z1FgaE+vp6Zffu3cru3bsVQHnllVeU3bt3K7m5uYqiKMpDDz2k3Hjjjbb2x5b2/vnPf1bS0tKUN954Q5b2nq3XXntNCQsLU3Q6nTJlyhTl119/tT03d+5c5eabb27T/rPPPlNGjRql6HQ6JS4uTvn+++/7OOKBqSv3efjw4QpwymPZsmV9H/gA1NXv6RNJMtJ5Xb3P27ZtU6ZOnao4OjoqERERyjPPPKOYzeY+jnrg6cp9bmlpUf76178qkZGRil6vV0JDQ5W77rpLqa6u7vvAB5ANGza0+zv32L29+eablblz555yzvjx4xWdTqdEREQo7733Xq/GqFIU6dsSQgghhP0M2jkjQgghhBgYJBkRQgghhF1JMiKEEEIIu5JkRAghhBB2JcmIEEIIIexKkhEhhBBC2JUkI0IIIYSwK0lGhBBCCGFXkowIIYQQwq4kGRFCCCGEXUkyIoQQQgi7kmRECCGEEHb1/3w21mifrx52AAAAAElFTkSuQmCC", + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAiMAAAGdCAYAAADAAnMpAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjcuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/bCgiHAAAACXBIWXMAAA9hAAAPYQGoP6dpAADBCElEQVR4nOzddXgU5/bA8e9KNht3d4EETwlSvFipUXeX+6tSuW1v3Xtv21vvbam7Q6lADYpLcUKAQEIg7p7d7GY3KzO/P5YupAmQQJKNvJ/nyRMy887MWWzPzrzvOQpZlmUEQRAEQRBcROnqAARBEARBGNhEMiIIgiAIgkuJZEQQBEEQBJcSyYggCIIgCC4lkhFBEARBEFxKJCOCIAiCILiUSEYEQRAEQXApkYwIgiAIguBSalcH0BGSJFFeXo6Pjw8KhcLV4QiCIAiC0AGyLNPU1ERkZCRK5dHvf/SJZKS8vJyYmBhXhyEIgiAIwgkoKSkhOjr6qPv7RDLi4+MDOF6Mr6+vi6MRBEEQBKEj9Ho9MTExzvfxo+kTychfj2Z8fX1FMiIIgiAIfczxpliICayCIAiCILiUSEYEQRAEQXApkYwIgiAIguBSIhkRBEEQBMGlRDIiCIIgCIJLiWREEARBEASXEsmIIAiCIAguJZIRQRAEQRBcSiQjgiAIgiC4VKeTkXXr1jF37lwiIyNRKBT89NNPxz1mzZo1jB49Gnd3d5KTk/n0009PIFRBEARBEPqjTicjRqORUaNGMX/+/A6NLygo4Oyzz2b69OlkZmZyzz338I9//INly5Z1OlhBEARBEPqfTvemOfPMMznzzDM7PP7dd98lISGBV155BYAhQ4awYcMGXnvtNebMmdPZywuCIAiC0M90+5yRTZs2MWvWrFbb5syZw6ZNm456TEtLC3q9vtWXIAiCIAj9U7cnI5WVlYSFhbXaFhYWhl6vx2QytXvM888/j5+fn/MrJiamu8MUBEEQBMFFeuVqmocffhidTuf8KikpcXVIgiAIgiB0k07PGems8PBwqqqqWm2rqqrC19cXDw+Pdo9xd3fH3d29u0MTBEEQBKEX6PY7IxMmTGDlypWtti1fvpwJEyZ096UFQRAEQegDOp2MGAwGMjMzyczMBBxLdzMzMykuLgYcj1iuvfZa5/hbb72V/Px8HnjgAXJycnj77bdZuHAh//znP7vmFQiCIAiC0Kd1+jHN9u3bmT59uvPne++9F4DrrruOTz/9lIqKCmdiApCQkMCvv/7KP//5T9544w2io6P58MMP+/Wy3nqzEYOtpdU2b7U7gVovF0UkCIIgCL2XQpZl2dVBHI9er8fPzw+dToevr6+rwzmmerORx7f/jE2WWm1XK5Q8O2auSEgEQRCEAaOj79+9cjVNX2awtbRJRABsstTmbokgCIIgCCIZEQRBEATBxUQyIgiCIAiCS4lkRBAEQRAElxLJiCAIgiAILiWSEUEQBEEQXEokI13IKtnZUHHwqPt1lvYbAwqCIAjCQCaSkS5isdt4M2sNayuPnox8un8z5UZdD0YlCIIgCL2fSEa6yDd529mvO9wQcJBvCNMjBnNKUDQapQpw1CCZv28NFrvNVWEKgiAIQq/T7V17B4KGlmY2VRUA4K5Uc/eI6ST5hjj3N1nMvJG1mhJjA7VmI9tri5kYluiqcAVBEAShVxF3RrrApqoCZBxV9WdFp7ZKRAB8NFquSB7j/HlDZZ7z13bZzs6mnbxe/Drn7TqPwLWBvFb8Ws8ELgiCIAi9gLgz0gWqTHrnr08JigHAbDyAOWsw38tBbPSaSZRnCk1KLR7WCHY1ZfBy0S5WN6xmXeM6DHYDykN5oUTbUvKCIAiC0J+JZKQLKI749V93SKrsdQSj4AZFHUOaFjK5GmQcv+FedliTB97AIAV4q8ALCW8FeALTvAb1/IsQBEEQBBcRyUgXiPTyd/56a3URsd6BxPmeCvFvQtGdjAq+lP313xOvsOGmOPp5/vJh/h18WvsHU/2nMitgFv4a/+MeIwiCIAh9lUKWZdnVQRxPR1sQu4reYuahrT9hlyXUCiW3Dp3CiMAosDfDDj9s2qG80PIIt9lvJ0hZf8xzSTKkGOHgEX8qbgo3At0CidfGM8J7BBN9JzInaA6R2shufmWCIAiCcOI6+v4tkpEusiBvB6vK9zt/TvAJItk3hAn1NxJp38XjlpdpJJDH3J8mjGIUtP1tt8qwUnLjQrMak3S4QJoKFUqFEptscz4G+mu7v9qfGG0Mw7yHcarvqcwOnE2KV0r3vlhBEARB6ACRjPQwuyTxfs4GMutKW20Po4ynNQ+QIw3lK/Xz3JeSQsDBSci2BhTtTFbdEngb45PfprKlkq8qv2Jp3VJ2GXZRa611JiJq1PiofdAoNFhlK032Jqyy1XkOBQp8Vb5EaaNI9UxlvO94ZgTMYLTPaJRKsYBKEARB6BkiGXEBSZb4szKfVeX7KW8+XGn1Kc1DhCtKaR5RhpdHBDRtgpypyLLNOflVkh0TXJWAwj0Rov8NwVc4z2GTbCytX8qi6kVsbNxIkbkIi2wBHMlHqFsoUe5R+Lv5Y5EsFJmLqLHWYJbMrWL0UnkRoYlgsOdg0n3TmREwg4l+E9EoNd38uyMIgiAMNCIZcSFZlqk06WmymHFXuRFpy8DtwGwIvAKSv3YMqvkMCq5vddwDtgBeDJ4Kjb8AdlD5Q+idEPUEKNvONc5rzuPLyi9ZXr+cvca9NNoanfu8Vd4M9hjMZL/JDPEaQklLCRlNGeQ251JlqcIoGVudS6vUEqYJI8kjidE+o5niN4UZgTPwVnt37W+OIAiCMGCIZKS3yYwBSyWMMcJfdyGK7oOq1wAZiyqQbYnfMyngNJDMUPoIVL8PkhEUbhBwMcT9D9yCj3oJs83M9zXfs7hmMVubtlLWUoZNdpSeV6EiWhvNWJ+xnB9yPhcEXcAe0x5W1a9iq34rOc05lLeU02RvajUvRaPQEOQWRKJHIiO9RzLFfwqzA2cTrDl6HIIgCIIAIhnpff66ExJ+P8S+5Ngm22H/maBfDjH/hYgH2h5X9T6UPwPWMkAB3hMh7i3wSuvQZTP0GXxT9Q2rG1azv3k/BrvBuc9f7c9Qr6HMDpzN1eFXk+yZDEC2IZs/6v9gi34Le417KTWX0mhrbFWQTa1QE6AOIFYbywjvEUzwm8CcwDnEecSd4G+QIAiC0N+IZKQ32hEAshVG6+GviaS2Rqh+G8LuBJXP0Y/Vr4Pie6B5p+Nn9ySIfg6CLu1UCI2WRr6t/pZfan8hoymDKkuVM8nQKDTEaeOY4DeBi0Mv5sygM1Ef8Xio2FzM8rrl/Kn7kyxDFkXmIupt9c67LwBKlPip/Yh2j2ao11BO9TuVWQGzGOo1VEyeFQRBGGBEMtKFHtm6mLoWY5vt0yIGcWXy2HaP2VFTzOKi3dSZDYR6+HBhQhojmj+C8ich9n/IYfP4uWgP6ysPYrJbSfIN5srksYR5HOf1tRRD4R2g+x3HvJIACLsbIh9td17J8UiSxDrdOhZULmC9bj35pnznsmIFCoLdghnpPZIzg87kqvCrCHcPb3OOeks9y+uXs0G3gcymTApMBdRYa5wTbP86l7fKm0j3SFI9UxnjO4aZgTMZ7zNeJCmCIAj9lEhGulCTxYx0xDyKcqOO17NWce+ImaT4h7UZn6ev4eVdKzg/YRQjA6PYWl3IstJsHh11OlE5kaDyY2nIapaW7OX6lAkEa71YUribsuZGnko/Bzel6vhB2U1Q+hDUfHRoXokGAi9xzCtRB57U6y03l/NVlWNZ8W7Dbmqttc59HkoPkjySmOI/hcvDLmey3+SjJhPNtmZWNa5iXcM6djbt5IDpANWW6lY1VAA8lZ6Ea8JJ9kwm3SedaQHTmOY3Da1ae1KvQxAEQXAtkYx0owV5O9hTX8azY+aiULSt7/5+9gYsko15w05zbnshcxkxXgFcpf4Qaj7gZellRkafxenRQwAw2Szcv/kHrh98KmND4zsejCRBzXtQ/m+wluOYVzIJ4uaD18iTe6GH2CQbv9b+yvc137NZt7nVsmIlSsI14Yz2Gc3ckLlcHnY5vupj/xnZJBsbdRtZ1bCK7frt5DbnUmGpaDWfBcBd4U6oJpREj0RG+Yxiqv9UZgfOPu75BUEQhN5BJCPdxCbZeWDLT8yKSuWs2GHtjnloq2P/rKhU57YlRbvZVVfK4yOnYs8IYIt9IjEjfiLGO8A55uVdK4jx9ueypDEnFpxuFRTfC6Zdjp/dkyHmBQi86MTOdwz7jfv5quorVtStYJ9xHzr74boqPiofUjxTmB4wnavCr2KUz6gOnVOSJDINmaxsWMkW3RZymnMoaylDZ9O1WuHjpnAjyC3IWR5/kt8k5gTNafcRUnepNxsx2FqcP3ur3QnUevXY9QVBEPqCjr5/i0Z5nZRZV4rJZmFiWMJRx+gtZnzdWj9i8HXTorOYQe1Ng+dZjDP+SrM1G5h4eIzm0JgT5TcDRmSCuQiKbgfdMjh4MagCIfweiHgEOvIIqANSvFJ4JvEZnkl8BnA8kvmh5gd+qvmJbfpt7Gzayfam7bxU/BJqhZpo92jG+Y7jgpALOD/4/HYfwSiVSkb7jma07+g2+w40H2B5/XI26zaTZciiuKWYbfptbNZv5oPyD4BD5fHd/Il1j2W493BO9XOUxx/k2bVdkOvNRh7f/jM2+cjVRUqeHTNXJCSCIAgnQCQjnfRnZR7DAiPwd/c84XPow/+NV95y3Evvg4BNXRjdIdo4SPkVbM1Q+iDUfgxlTzge5QReBnGvn/S8kr/zVHtydcTVXB1xtXPbNt02vqn6hjUNa8htzmVh9UIWVi8EIEAdwDCvYcwOnM014deQ4Hn05A5gkOcgBnkO4vbo21ttr2yp5I/6P9jQuIE9hj0UmgvJMmax07CTLyq/AA6Xx4/WRjvK4/uNZ2bATNK8005o8qzB1tIqEQGwyRIGWwuBiGREEAShs0Qy0gl1ZiPZjVXcOnTKMcf5arTora3vcOitZvw0jrsBPl4JrLPPZLbpN7CUgCbGMcZiJsbbv+sCVntC/JsQ+wbUvA3lz0HdF1D3JXhPgfj54Dm86673N2P9xjLW7/Bqo3pLvXNZ8c6mnfyp+5MNug08WfAk7gp34j3imeg3kUtCL2FO4JwOJQrh7uFcG3Et10Zc22p7o6WRlY0r2dC4gZ1NO8k35ZNnymOvcS/f13zvHOet8naWxx/jO8ZZHl99AiuTBEEQhBMj/sfthI1Vefi4uTMiMPKY4xJ9gslprGw1ZyS7oZJEH0fV0mCtF1uVc5kt/woFt0HKL5hsVgqaapkWkdz1gSuVEDbP8aVb6ZhXYlgHWSNAOxii/wuB53f9df8mUBPI7dG3O+9uSJLE6obVLKxeyIbGDeSb89nfvJ9PKj5BgYIQtxBG+YzirKCzuDL8SkI1oR2+lr/Gn4tCL+Ki0NbzZcw2M+t161ndsJqMpgwONB+grKWMA6YD/Fr3K08XPA04Vg2FakJJ9khmtM9opgZMZYb/DDzVJ35HTBAEQWifmMDaQZIs8+i2xYwNiefChLRW+z7ZvxF/jScXHNqep6/h5d0ruDA+jRGBkWyrKeL3kn08esoZRHn5A7C0ZB8BpbdyimorNal5LC7No8zY0PGlvSfLnA9F8xzzSpBAHQTh90L4Q4cLsrlAibmEryq/YlndMvYY9lBnq3Pu81R6kuyRzNSAqVwRdgWn+p7aZTVKbJKNbU3bWFW/im36bexv3k9ZSxkGu6FNefwAdSBYfQlSxBKuTCFaMQKt0odHTzmDWO+uffwlCILQl4nVNF1sX0MFb2St5pn0cwjzbB3DK7tXEOTuxfUpE5zbHEXPdlFnNh4uehYY5dwvyzKrcz9hhu4mPrfdTJ3PpVyZNLbNubudzQilD0DNJyCbQOEOQVdA7Gug9u/ZWNphkSz8UvsLP9T8wGbdZorNxVhlK+BYVhzhHsEYnzHMDZ7LZWGXdXljP0mSyG7OZnn9crboHOXxi80l6O2tV/goUBKoDiTBw7HCZ6LfRE4POp1YbWyXxiMIgtCXiGSkr8gIA7sO0ptdekcCSYLqt6D8ebBVAgrwmebog+PZ/hJmV8k2ZPNl5ZesaljFPuM+9Ha9c5+vypdUr1RmBMzgqvCrGO7d9XNiig31/GfnUpqkGkrlPVRJB6iXS5HUevT2xnbL48doYxjqeag8fuAshngOEZVnBUHo90Qy0ldUvQVFd0LkUxD9pKujcWj8A0ruA1OW42dtCsS8CAHnujauozDYDCyqXsSSmiVsb9pOeUs5duyAo6FfrHss4/3Gc2HIhZwbci6av7omn4CqZj0/Fe0io7akzb55w6YxIjCKWkutozx+4wZ2GXZRYCqg1lrbpjy+j8qnVXn8WYGzGOszViQpgiD0GyIZ6SskCTJ8QaGG9EZXR9Oa6aBjXol+OY55JcEQfh+EP+DauzgdsEW3hW+qvmFtw1pym3Nplpqd+wLVgQz3Hs7pgadzdcTVxGk71ml4V10pH+T8iVWyt7vfXanmzuGnMciv/Ym2BpuB1Q2rWdfoKI9/0HTwmOXxB3kOIt0nndMCTmNawLSTSqIEQRBcQSQjfUnxA1D5EiR8DCE3uDqatmwGKLkfaj8/Yl7JlRD7OvSR0uy1llq+qfyGX+t+JdOQSbWl2jnnw13hToJHApP9J3Np6KXMDJjZ5u5EYVMdL+1a7qwv4qZQEu8ThCTLFDbVYT90Lq3KjUdPOYNQj2N0YP4bi2Rho24jqxtWs12/nQPNByi3lGO0t27OqFVqCXELIckjiTSfNKb6T2Vm4ExRHl8QhF5LJCN9iWSBHd6gDoVTSl0dzdFJElS9ARX/BVsVoASf0w7NKxni6ug6RZIkVjSsYGH1Qv5s/JMCUwEtsqO8uwIFoZpQ0rzTODvobK4Iv4JvD2Sxp74cgDHBsVw1aByeasedCr3FxMf7N5HdWAnA5PAkrhk0vkti3Nm0k5UNK9mq30p2czZl5jL0dn275fETtAmM9B7JRP+JnB54eo+WxxcEQWiPSEb6moNXQf3XkLIC/Ga6Oprja/zdcbfEtM/xszYVYl6CgHNcG9dJKDIV8WXll/xR/wdZhizqbfXOfWrc8SOceLcRvDfqadL9Wpesb7ZZeHjrT5jtNjRKFS+NvxCt2q3bYs015rK8fjmb9JvYa9hLibmERlujc64MOMrjB7gFEOseyzDvYUzwm8DpgaeT5JnUbXEJgiAcSSQjfY2tHjKCwWMojMhydTQdZ8qFojtAvwrHvJIQCP+XY25JL59XcjwWycLimsV8VPolGxs3YaAe+dCbfbR7NGGaMMb4jOGVwa/gpfLik/2b2FxdAMBDaaeTcKjIXU8qN5ezvH45f+r+ZLdhN4XmQuqt9c7l0OBY4eOr9iXa/XB5/FmBsxjpNVJMnhUEoUuJZKQvyp4JTatg+L4+99gDmx6K73eUm5fNoNBC0NUQ+0qfmVdyNDtqink/ZwMAp4R74u7VQE5zDp+Uf0KNtQZflS9Xhl9JjH0SBXXQQhOXDRqK1t1GtaWaKkuV83uVpYpBnoN4bfBrPfoaGi2NrGhYwXrdejKbMsk35VNjqXE+mvrLX+XxUzxTnOXxJ/hNEOXxBUE4ISIZ6YtMB2DPYPCeCkPXujqaEyNJUPkqVL4IthpACb4zIG4+eAx2dXQnpLCpjuczlwGQ5BvCA6NmO/cVmAr4qPwjPi7/mApLRbvHK1GiUqiQkbHJNsb6jmXr2K09EvvxmG1m1urWsqZhjbM8fpWlqtXqI3CUxw/ThDnL408LmMZp/qeJ8viCIByTSEb6qj2jwLQH0qpAE+LqaE5Ow69Q8i8wZzt+9hgKMS+D/5mujauTZFnmmYzfKG/WAXD94FOZEJbYasyvxbv5V969ZEsrj3u+D4d8yE2RN3VLrF3FJtnYotvC6sbVzvL45S3lbcrjuyvcCXYLJtEjkVE+o5jsN5nZgbMJ1Iiy+IIgiGSk72raANlTIOASGLTQ1dF0DVMOFN4BTWtwzCsJhYgHIOyffWZeyZ+VeXx+YIvz5+EBkYwOjsEuS2ytLuKAvhqAHPsa1tk/OOp5PJQeVE+p7vKy9T1FkiT2GveyvH45W/Vb2WfcR2lLKTqbDgnJOU6tUBOoDiROG+csjz8naA7R2mgXRi8IQk8TyUhflhkHlnIY0wRKrauj6To2naNjcN1XILc45pUEXwsxr0Avf3OWZZlv8raztuLAMcedGzeCnfbFPJ7/eLv7vZXe/CfpP8yLntfvJosWmgr5o+4PNuo3kmXIothcTIOtoU15fH+1v6M8vtdQTvU9ldmBsxni3cfmSAmC0CEiGenLar+C/Ksh7G6Ie93V0XQ9SXIUeat85Yh5JbMgfj5ok10d3VHJssyaigMsK91HQ0vrORVhHj6cHTuc8aEJyLLMbftv4/2y91s90gDHcls7djQKDbMDZ/NS8kv9/o242lLN8rrlbNBtYLdhNwWmAuqsde2Wx49yjyLVM5WxvmOZGTiTMT5jui1pk2THXZ4R3iOc23IL69mYWY7F2n6V3WPRuKmYmBbJ4HjxiEoQ/iKSkb5uR6Dj7sHopj7zKOOENCyBkgfBnOP42WOY406J/xzXxnUMkiyR3VhJVXMTCgVEefozyC8UhULhHGOX7Vy4+0J+qf0FCQkFCoZ5DWPn2J28Wfomb5S+QZG5CHAsE54XPY/7Yu8bUKtWDDYDq+pXsbZxLTubdpJnzqPaUo1ZMrca56X0Itw9nMGegx3l8f1PY0rAlJMuj7+oahGXZF3CFWFX8E7qO/ip/fj0pyzqdebjHwxYVVbsqtZJS5CXJ7ecO/ooRwjCwCOSkb6u/HkofcTxxhxxr6uj6X7N+xx9cJrWADKowyDiIQi7q88mYya7iRkZM9im34aExFspb3F79O3O/bnGXB44+AC/1/2ORbagVqg5zf80Xhz0Iqf4nOLCyF3LIlnY0LiBNQ1r2N60ndzmXCotle2Wxw91CyXJI4lTfE5hiv8UZgbOxEfdsVL8j+U9xvOFz6NAQaR7JAtHLGT3Hx4Ymq0oFODlcfSidRalhayQg8iK1v99KmQFz407l0CtV+dfuCD0QyIZ6eskCXZ4gcobRte4OpqeY2s8NK/k60PzSjwg+DpHdddePq+kPfXWek7ddirFLcVUTq7E382/zRhJkni//H1eLn6ZPFMeAOGacG6OuplH4x8VDfIOkSSJHU07nOXxc4w5lLeUt1seP9gtmASPBEZ6jWSy/2RmB80mVNO6geEFuy9gcc1iZGRUOJZen9N8G1Pqr8HXU8vNl4w6aizFhnr+s3Npu/sePeUMYr3FoxpBAJGM9A8Ft0PNO5D8HQRe7OpoepYkQeV/HTVLbLU45pWcfmheSeJxD+9N6qx1lJpLGeVz9De3vxSZinjw4IMsqV2CSTKhQsUk/0k8n/Q8E/0n9kC0fVOOMYfl9cvZrNvMPuM+is3F6Gy6dsvjx2njGOY1jN/qfqPWWtv6RDLEW0Zxi+m/PHTR0R8V7muo4I2s1e3uE8mIIBwmkpH+wNYMGb6giYO0PFdH4zr1P0Hpg2DOdfzsMQJiXwW/WV12iUe2Lqauxdhm+7SIQVyZPLbdY3bUFLO4aDd1ZgOhHj5cmJDGiMAo535Zlvm5aA/rKw9isltJ8g3myuSxhHkc/++wJEl8WfUlzxc+T06zYz5NsFswN0bcyJMJT4piYx1Uai5leZ2jPP4e4x6KzEXUWetarfD5O4WswA13vhj+GZeGX9pqnyzLrCjL4ceCTGen5tYD4LrB45kYLvr/CAKIZKT/yL0AGn+CIZvB5+Q7wfZpzVmH5pWsA2RwC4eIRyD0jpOeV9JkMSMd8eZSbtTxetYq7h0xkxT/sDbj8/Q1vLxrBecnjGJkYBRbqwtZVprNo6ecQZSXPwBLS/axtGQv16dMIFjrxZLC3ZQ1N/JU+jm4KVUdjq2ypZKH8h5iUfUijHYjSpSM8x3Hv5P+zczAPtBUsRfa1LCJiRnHv9MU6hbK3JC5DPUaSrzFk4ZKM1vl0GMeo0TBvOHTGBYQ2VXhCkKf1dH37745M3AgiX8HUDia0Q10nsNhyBoYXQdB1zqaCxbfBRk+jqJqtubjnuJofDRa/DQezq/d9WWEaL0Z7Nf+G8/Ksv0MC4xgTvRQIjz9OC9+FLHeAawpd9y9kWWZlWU5nBU7nLSgaKK9ArghZQKNLSYya0s6FVu4ezifDv0Uw2kGvhv+HcO9h7NFv4VZO2cRuDaQu/bfhd6mP+HXPhCVW8vb3a6UHUmiQlYS7BbMYM/B7GzayXt5rxDfmEKadhK7axydqk+LGMS/x5zLu5OvILUuAa9mx6RVCZkvcrdil6V2ryEIQlsiGentNOHgNQGad8ChpaADnjoAkj6D9GaI+rdjkmv1245HWvvPAnPBSZ3eJtnZUl3IxLCkVst1j5TfVEuqf3irbUMDIshvcsxBqDUb0VvNDDlijIdaQ4JPsHPMibg47GJ2jd9F7ZRabom8Bbts583SN/Ff60/6lnR+qf3lhM89kOwz7kOB489WrXAsp/ZWeTPGcjrX1f2X1xs2UDO1hvVj1rM+ZTHf+H6HjA+GlrfY7PcfftR9wDkxwwjx8EahUOBl9SSqMhLvFsfjswZLM7vqylz2+gShrxHJSF8Q/47je+Gtro2jt1GqIOpRSK+F5EXgngi632F3oqPHj27VCZ02s64Uk83CxLCEo47RW8z4urWujuvrpkVncdSo0FtNjm2av43RHB5zMgI1gbw75F10p+n4ddSvjPYZzU7DTubumovfGj9uzr6ZWsuJJz39XUVLBTIyYW5h3Bx5M8tPWU791HpuMj7PSNMMtDiSipqidWQfKEOW1aRIN5LRHAi73qZGuw6/ZWnct2orz+77CFl2FG4LNwY7r7GnXiQjgtBRIhnpC7xGgjYF9H+AuB3fvsCLYFQuDNsN3lMczQb3z4SdkVD1tmN1Tgf9WZnHsMAI/N37xiTRs4LPYvu47TROa+SemHtQK9R8UP4BIetDGLF5BAuqFrg6xF7nqcSnyBiXQcWUCuanzmdW4CzclG4osJHgl0d6+Bb27PiV4lrHo5dE7ed4yXso1yaT7jMadnyJrG7gVdO5PLHEj7t2u/NesTcriwIorArAaHaj2WY5dhCCIDiJZKSviH0NkKD4bldH0rt5jYCh62B0LQRdDbY6x3ybDF8ovOu480rqzEayG6uYHH7ssvS+Gi16a+s7HHqrGb9Dd0J83Twc2/52F0RvOTymq/mqfXlt8GvUTatj1SmrmOg7kX3GfVyedTneq725du+1lJvbnysx0IRqQjnF5xQUCgU2cy31Rb9QsPtLxiQ0ERuTDB5pWGTHxOVgj1wCrD9gUXiwTyqlIPESGH09FN0E5mhIvxJLxEJym9Usr9Dyx44UvlqVzoMLI5n7WSV5dVbXvlhB6ANEMtJX+J8J6nBHMTDp6MsShUPUgZD0BaQbIeppULhD9ZuH5pWcc9T5Nxur8vBxc2dE4LFXQiT6BJPTWNlqW3ZDJYk+jtv0wVovfN20rcaYbFYKmmqdY7rT9MDp/Dn2T5qmNfFQ3EN4qjz5ovILov6MInVTKp+Wf4rUibtF/ZGhehM5Gd+xKyufgtoI6i2DkBSHqrcqVKBQoJAtRMZNxWap4F2Lld9sL1BPKSnaYXjXXQo7voDSKyD1SRj2LyTl4eSzqUXJLznN1Bo73+dGEAaaE0pG5s+fT3x8PFqtlvHjx7N169Zjjn/99ddJSUnBw8ODmJgY/vnPf2I2n/xz8wEn6imQLVD2lKsj6TuUaoh6AtLrIGkBuMeD7lfYHQ9Zp4B+nXOoJMtsrMpnQlgiKkXrfxqf7N/IjwWZzp9nRqWwt6GC5aXZVDbr+LloN0WGek6LHAyAQqFgZlQqv5VksauulDJjI5/kbsLf3YO04JgeeOEOnmpPnk9+nuqp1Wwas4lp/tM42HyQG7JvwGutF5fuuZQi08CcGG02VmGUEx2JB4Dib32BZBvNtj+5eHsiagV8a4EUxTSuVb/HNO7niqH1IGsg9wnIegXClsCUieC9z3mKJ2b4Mz62H3XeFoRu0uk6IwsWLODaa6/l3XffZfz48bz++ut899137N+/n9DQtssgv/76a2688UY+/vhjJk6cSG5uLtdffz2XX345r776aoeuOaDrjPzddl9AAWN0ro6k7zJmOuqVGDbiqFcSBZGPs099Dm/sW8sz6ecQ5tn679kru1cQ5O7F9SkTnNscRc92UWc2HrfoWbPNQrJfCFcmjW1z7p5mkSy8UPgC75a9S4WlAoBEbSL3xt7LbVG3dVuX3N5GliRKs7+m2pQKR1k19Y7xFqYrM7nQTWJ+zkYa/fTUBB2eGJyZF87W/XGAAiZOA89SkIGKC5lpe5E/rktEqWz/3IIwEHRb0bPx48czduxY3nrrLcBRKTImJoY777yThx56qM34efPmkZ2dzcqVK53b7rvvPrZs2cKGDRu69MUMCCWPQMXzEPcehN3s6mj6NmutYw5O/XcgW0HpBSH/BzHPg3JgfJrNbMrkwYMPsqphFTbZhkah4YygM3gx+UVSvFJcHV63kyU7hVnfUG9pm5Ao5Wq+LCnmxch56K0xfFfxIwBVnnWU+VQ5m+R9vToNg0kLSS87Vr4pcCQksoaXk5/njtjb0aoGxt8nQfi7bil6ZrFY2LFjB7NmHS7DrVQqmTVrFps2bWr3mIkTJ7Jjxw7no5z8/Hx+++03zjrrrKNep6WlBb1e3+pLOCTqGVBooPwpV0fS97kFQ9JXjnolkU+Awg2qXoft3pB7HrQUuzrCbpfmk8ayU5ZhOs3Ei8kvEqYJY0ntElI3pxK7IZaXil7C1o/nKDWZm6huccwP4cjPZbKdMO8GXpmRiEphIyDuCm6+ZBQ3XzKKx8+ewcsTLuDChDSG+Idz49QqxzGGFPgrn1EACgv3591H1PoY3i97H6skJrIKwtF06s5IeXk5UVFRbNy4kQkTDt+ufuCBB1i7di1btmxp97j//e9/3H///ciyjM1m49Zbb+Wdd9456nWeeuopnn766TbbxZ2RQ/Kug7rPYfBS8D96My/hBNR+C2WPQku+42fP0RD3BvhMdm1cPSjHmMMDBx5gWf0yLLIFtULNzICZvJj8IiN9Rro6vE5buqGAfXl1ACgVCrTuKpT+BhZrX+Mhz4vxVA6m0Z5BsModm5zqnEMyfJAP7pUPOtoxpFWCpm1bgL/M+aicPyp2wYR2PmTJgAJi3WN5Me51ylbFcPXcoYQG9o2l44JwMnpNOfg1a9bw3HPP8fbbb5ORkcEPP/zAr7/+yrPPPnvUYx5++GF0Op3zq6Skc+Wz+724NwAlFN/j6kj6n+DLYVQeDNsOXhOheSdkT4HMGKj+0NXR9YhUr1SWpC3BdJqJtwa/Rax7LMvqlzFq6ygi10fyTP4zWKS+VUMjPsqXWy4dReT0Et6MuJ77VLN5zPM6PBWDQN7HzHH/x/ARc/FQOgqVeSnycfcd7OiDpA46ZiIC8OSsQGiOB7md/1IP3S0pbinmfxUdmycnCANNp+6MWCwWPD09WbRoEeeff75z+3XXXUdjYyOLFy9uc8yUKVM49dRTeemll5zbvvzyS26++WYMBkOHJsuJOSPtyJnjKII2fI+jZ4vQPSzVjnklDd8fmlfiDaE3Q/R/Bsy8EoCC5gIeOPgAv9T9glkyo0LFFP8pvJD8AuP9uq6BY73ZiMHW0mqbt9qdQK1Xm7Emu4nSllIGeQ465jl/XX+Q35q/51vti9Tb6gnHj1/8FgH+GJuKCYiawojBIZgtNjZv30WgKoeKBhkjKVwQMB5F4AUw6Hs2ZpaRV9zIqJRQNu8ux9xiJzHaj9kT43DXqNlTaWH63hTqKDxqLKE1F3K3+X60CjcAosO8ufSM1E7/PglCX9HR92/1Ufe0Q6PRkJ6ezsqVK53JiCRJrFy5knnz5rV7THNzc5uEQ6Vy3AbtAw2De6/4dx1lzwtvhaEdmwgsnABNKCR/46jtUvY0VL8Fla9C5f/A/xyIfxM00a6OstsleCbw3cjvkCSJzyo+47/F/2VN4xpO3X4qIW4h3BR5E4/HP46n+sQfPdSbjTy+/Wdsf2swp1YoeXbM3FYJiVWyclbmWWzUbaR4UjFh7m3vXJSby7kr9y5WmNaiU9fiJXnxZPAdnGe9DAkP/Nzy2dc0jNriBkYMDuGLZVk0WM3U+HshaSUmW35FoZAx+9/OX2lnY1ML+wvrOX/mICwWOz+vP8hrv22iJLiMUA8fBqsHsclaDIpDr0EGBUpOV97GgUYl+UHv8rQhj1ej3+T64aeKlTaCcEinH9Pce++9fPDBB3z22WdkZ2dz2223YTQaueGGGwC49tprefjhh53j586dyzvvvMO3335LQUEBy5cv5/HHH2fu3LnOpEQ4AdoEx3wGw0awVB5/vHBylGqIeRbSGyDxS9DEOOYSZMZA1hho+tPVEfYIpVLJDVE3kDMhh7JJZVwTfg1Gu5EXil7AZ60Pk7ZNYk3DmhM6t8HW0iYRAbDJUqu7JbIsc2funaxtXItNtvFu2butxq9rWEf6lnSi/ozi+5rviZQTecT2IUWpaznXeiUSHgR5FpM86lIC/bToDRbKqppo1tuZMyWO+yfM4IFxszgl8FfqLLFsrTxcjddmlzhjcgKhgZ60eJo56FuMRufBfUNnkxYUjWdD9OEaNbICd3yRFRJJ9jjWznmaMy0vY3WvZF7t+Vy98R083Dv1eVAQ+q1OJyOXXXYZL7/8Mk888QRpaWlkZmaydOlSwsIcn0yKi4upqKhwjn/ssce47777eOyxxxg6dCg33XQTc+bM4b333uu6VzFQxb0FyFB4u6sjGViCr4K0fBi6DbxOheYMyJ4MmbFQ84mro+sxkdpIPh/2OcbpRr4d/i1DvYayUb+R6RnTCVobxD9z/0mTranLrzu/dD7vlb2HjIyExJulb2KymXij+A0i10cyLWMaOw07OdX3VDaP2cyrXt8yTR1LYZkVGTfCfKuIH3oh4JxbSk2DCckus+6Pahb+cJCFPx4guKWQgqZJlNUfXs3n66XBx0sDwMqy/cSH+wHgZtFwRuRwIizJ2HGsPlKVXY1q02pirCP5hGdplMr4ZNKN3Ff1BWpzHD9J9xK+6Dpstv67WkkQOqrTdUZcQcwZOYbMBLCUQHoTqDxcHc3AZKmE4rug4adD80p8IPRWiP43KDWujq5H1VpqeTjvYRZULaDJ3oQCBaN9RvNs4rOcGXzmUY+TZInlpTn8UJjZ7v5HTzmDWO9A/qj7gzMyz0Cm9X9bbgo3rLIVjULDJWGX8Pqg1wnWOMrur1v3G16ewYBMVJCR8IQZzuM+X7IXHy8NUaHeZOZUc8kcR20VZeMP+FVexXzT45w14h4SAgPZmFlGdl4dN13kWFH00NafmB6Wwt41Ri6Zk0JooCfPL1jOJ5H38+bI51A1TOSiL+sI9qqhYfTZeGjc2H9KEZ/9mI33cAv35v8XY+ASVA0T2X7aAtKC+//jPmHg6TWraYRuFvNfwA4l/3J1JAOXJhySF0K6ASIeBoUSKl+C7V5w4CKwDJzmdMGaYD4Y8gH60/QsHrGYNO80MpoyOGvXWfit8ePW7Fupt9S3OsZks/D6ntVHTUQAdteVkW3M5qI9F6Gg7TwLSZZ4LvE5TKeZ+HLYl85EpDhnMV6eIYCd+AhaJSLFFXpqG0wMig0gLMgTo8lKjbmJJ/csYU3pT5hlLdOGXkNCYKDzGL3RgqHZsZJIbzGDQYVCAYF+Wtw1KoLcQrjB/DrnhpxLarjMzFMOUN4YQVzRc9TZ6rgu9yoA7LKM4ZLFjDE9gt0nk1M2TebZjJ9P9LddEPo8kYz0dUGXgioIaj6GAd74zOWUGoh5DtIbIeEz0ERBww+QGQVZ46Bps6sj7FHnhp5LxvgMGqY2MC96HkqFkvfK3yN4fTCjtozi+6rvkWSZd7PXs19X5TzO101LtJc/6iP6A31XtJEZO2bTbG9Gou3fczt2JvtPbjVZPj9rETWGKBRYKG+wow0cTZPRQlWdkS27K1i86iCJ0X4MTQoiNsKXyBBvNm+u5sbIqcxWr6FGGsT3m4vJKjkcm1qlZOmGAmrqm9GatORnGxkcF4iXh2N1TFicBu96X/YX1NPUZCVNoeGsEBPZeWcS3jKTX3WLKdJkYdcpMZqsbDj9aZ4I/hqQeaLmCsb98ng3/EkIQu8nHtP0B+UvQekDEP0CRD7o6miEIzVtcTzCMR5qJqmJdVTRDbnOtXG5yIq6FTyW/xjb9NuQkPBQehItpzNedTkhmlCuHzyB4YGRKBUKTDYLvxRn8VvxThba/0UzDUc9rwoVc0Pm8uNIR8n2g7sWoLMmocRItdGbvYWO/+aUCgXu7ipCAjxITQhiWHIQikNl4C1WOxsyyigpOci1MbNYV/sQO+znEJSo5rrh45xLe0cODmHz7goMZgv+IWqumjEC7aGJqIsLd5Gd3UCgIYBms5VmtZmZ6XFc9L1EWVMz7jMm4i5reLjuW9wtPkSFOpb2ZtSUMHbtpUgBm/GqP4/Sc77G30MURRP6vm7rTeMKIhk5DkmCHd6g9HB0pxV6H0ulozlfw2LABipfCL3NkZgMsHklAM22Zp4qeIq3S97HKDuaPsa7J/PJ0A+YFjANhUJBg7WBD8s/5ImDT2PG2Op4FSqUh+6cyMjYZBsKFBRPKsaw70+MUhIqdKSmjkLrHdy54Apug5p3YVgmr+bVEujuyfUpE5zJyDXnDgPg/ewNWCQb84ad5jz0v5l/EO3lz1WDxiHLMg9s+ZHTo4cwzHcQCS8WI3nkoTj1XGI0ieRN2dvqsjabjcifbqTG/ysU+hEsSf+Sc+JEDSGhb+uWOiNCL6VUQsg/oPpNRznz4MtdHZHwd5pwGLQIJAuUPg7V70LFf6HiFQg4H+LedIwZIDzVnrw46EVaasZSaM1ih/QdpZYDTN85nSGeQwhxC2Gbfht27MzyO5u6Jk8ClBEM9g9gWHAwTbYm9Ha987ve5ljx0rB3IxaSUVPDsJFTUWs6fnfhx4JMhgVGEtvwB0qFL79Wy+Tqqrhr+HQAMmtLkSyHyxHMjErh5d0rWF6azYjASLbVFFFkqOfqQeMAUCgUzIxK5beSLEIH+/DJZV5ctyAen+JHyI99gluyb+G9IYdXFarVaqov/pzzVoxmicczzM2axU3Fz/HhlBu74rdcEHo1cWekv5DMsN3HMU8hrdDV0QgdUfMplD0JlmJAAV7jHEmJ91hXR9Zjbt/wLXZZIsrTn0dOOZ2l9Ut5Kv8pMpoyeCTuEe6MuROTRc3zmcsAmBqezFWH3uyPZLNYyN7zOxai0VDGkBFnoNZ07o7T57mbyW0s42H5OjZKs8jyvpM50UMZGhABwCvLNqDWu3P3JYf/fHbUFLO4aBd1ZiOhHj5cmJDGiMAo535Zlvm5aA/rKw/SbLNQXRPNoq2ReIy/CpPPZpalLeP0oNPbxPJp7kZuyL4RPPNJMPyDg+e91aFq1YLQ24jHNAPRgYsdZcuHbACfSa6ORuiopk2OkvPGbY6fNfEQ/SwEX+3SsHrCI1sXU9diRKlQ8MK48/HTeGCTbOjtegLdHKtYlpbs48dDK23OjRvB2bEjWp3DZjGzb/cqrIowtBQxLP3CEw+o6m0ougPiP4TQm078PMcw9b0y1pfUoZw6GXc3G9VTqvFWe7cZV2poJOn3S7EELsetfjo5cxaS6NvJR06C4GJiae9AFPc2oHDMTRD6Dp8JMGwrpJVBwAVgKYX8a2CHP5Q8Cv249fy40HgAJFnmh4JMJFlGrVQ7E5H6FiMrynKc48eGxLc63mysJ2v3BqyE4qnIO7lEBKD2C0ABwd03wXjlTRGEaH2RdnyOyW7itIzT2h0X7e1PyyV/MLjpLqx+G0laPZH5+1Z3W1yC4EoiGelPNKHgPRmaM8Gc5+pohM7SRMKgH2CMAcLvB1mCiudghxccvMzRtK+fmRqR7FzCu7m6gJd2LWdzVQG5jVX8XLSH/2QspclqBmBkYBShHj7OY81NZWRn78aOPz7qPIaMvvTkA2rOBE2Co/x/N3FTK9lyeyRqw0iUBf9kR9MOnsl/5qjj95//BvN8PgK1gXnFFzDnjxe7LTZBcBXxmKa/ad4LWcPBdxakLnd1NMLJqv4Iyp92VNlFAV7jD80rGePqyLrMtupCPtq/qU1V1SOFaL15YNRsfDWOKsNNdfs5WFCDhJYA9wISR1xy8oE0bYbsCRB2N8S9fvLnO47v9xi4+OsqlOMuRvbdxc5xOxnlM+qo41eV7mfW1iuRfXcS2HgZZed+hraT82IEoaeJxzQDlecw8BgK+pVga3R1NMLJCr0J0ophyHpHY0TjZtg3FjITofZrV0fXJcaGxjNv2DTCjrjr8RcFCkYHxfDAqNOdiUh9+XYOFNQjoSXEq6RrEhFwrEYDCPtn15zvOC4a4c2dE/yQdr6HbPdgRsYMbNLR+9TMiE5Bf86f+DZcSH3At3j9PIWNlfk9EqsgdDdxZ6Q/0i2H/adD0FWQ9KWroxG6kqUUCudB4y+AHVT+EDoPop7s1kcLPUGWZXIaqzigq8Yi2fDTeJAeHEug1ss5pqpoDaU1HoCCML9aoged1XUBZISDbHZU0O1BY94qZYdpFZxyHWcGn8lvab8d95ipvz/DesVLYPPjgbA3+O/Yi3ogUkHoPLGaZqDbGQ22akg3gtLN1dEIXU0yQ+mjUP0+SAZQuEHARRD7P9CEuDq6blF24DcqdY6Gd9EhJsLiTuu6k9saISMA/M6ElOMnA13JbJGIeL6Yxph/Q+xHfDjkQ26KOv5Knpd2LeWBojtAW8EI8zx2nyvmkgi9j3hMM9BFPe3oIFsmel30S0otxL4CY5og7j1Qh0H9t5AZBnsngTHD1RF2qeLsH6nUhaDATkKkqmsTEYCq+Y7vITd37Xk7QKtR8uetkSjz7gdDCrfm3Eaxufi4x/1r1BnkTNmISj+GPV4v4bHwbGqbDT0QsSB0PZGM9FehNzlKjlfNh95/80s4GWE3wyklMGQdeKaBcSPsTYddSVC7wNXRnbS83QupMcagpIVBCYEERnbD5N36hYAK/M/t+nN3wNAwDR9fGAm73sVmVzF1x1SkDjS+TAkIw3z+KqIab8Ic8Achy05lYd72HohYELqWSEb6s9C7Hbfwq99xdSRCT/CZAsMzYFQR+M+FliLIvxx2BELpU3CMyZE9ZWnJXm5Z/zUL8nYcc9yOmmKe2P4Lv27+nEZLIkoMDElJwCcoBXDML1lSuJt/bf6BeX8u4LU9K6ky6U8sKEkC0z7wSHW0VnCR69J9uX7YUNj3AkXmIm7O6dhdGrVaTelFH3K52//AvYrL9p/JFWvEv3mhbxHJSH8W9QQoNFD2rKsjEXqSeywMXuKoVxJ2N8gWx/LgHV6QdxVYa10SVmFTHesqDhLt5X/McXn6Gj7M+ZO5soFw9VAUNPC5uYQ65eGJrMtKs1lVvp+rBo3jobTTcVeq+V/WaqySvfOB6ZYCNgi4uPPHdrFPLg5lqHwhlF/ER+Wf8Hvt7x0+9pvTbuO71KXQEsa31ruIWnQTNpvrE1BB6AiRjPRnSrVjRY2tEhp+dXU0Qk9Tah31MkbrIe4dUAdD3dewMxT2TQHj7h4LxWy38tH+jVwzaDye6mPXxlhZtp/rtGqUykG4UcPIkZMI8w5lTXku4LgrsrIsh7Nih5MWFE20VwA3pEygscVEZm1J54P7685hWO+oXLz5tig8858EUwwX7LrU2QSwIy5OTKdmzmY8GudQHvAx2p9msLe+ohujFYSuIZKR/i72dUAJJfe6OhLBVZRKCLsVTimDlFXgOQoMG2DvKNg1COoXdXsI3xzczoiASIYEHLszsc1iYZShFjdlIu6UMnTkTNQaT4YGRJDf5LijU2s2oreaGeJ/+Fweag0JPsHOMZ1i2ADqEHDrHX1ffLRK1t00CLLeoEUyM3X7aZ06PtjTm+ZLfmFk87+w+25n+IZJvLRrafcEKwhdRCQj/Z3aF/zmgDkXjJmujkZwNb/pMHwnjCwEv7OhpQAOXgI7gqD0mW6ZV7KtupBiQz0XJKQdc5zN0sy+3atQK2NQyvkMTz/P2XnX102LzuIoC6+3mhzbNNpWx/tqDo/psJYSsDeC7/TOHdfN0qO1vHXaaXDgIXYZd/JU/lOdPseuuS/yQMAXoLTyQMUlTPn96CXnBcHVRDIyEMS/6/heeJtr4xB6D20cpPzieIQTOs9R7Kv8yUPzSq4BW32XXKa+xciC/AxuSp2Im1J11HFmYx1ZuzdiJZh6Ww7W2LFdcv3jqvqf43vYnT1zvU64Y4IfF/reDjUzeDrvBTL0nV+u/d+xF7Fx7HqUxqFs0DyJ33cXYehswiYIPUAkIwOBeyx4jnGUEreUuzoaoTdRe0L8mzC6CeLeAnUQ1H0JGcGwbyo07zmp0xc31dNkNfOfjKXctv4bblv/Dbm6alaX7+e29d8gyRJGXTHZ2VnY8cfXLY+VCi/01tZvmHqrGb9Dd0J83Rxl4fV/e1PVWw6P6bCGxaBwB5/JJ/4iu9F3V4YRVfYcWH2ZuuVsLJKl0+eYEBaPce56AhuuQB/wE76/TGJ5ac7xDxSEHiSSkYEi/m3Hd3F3RGiPUglhd8Ap5ZCyAjxGgGE9ZI2EXYOh/ocTOm2qfzhPjD6Lx0af6fyK8w5kXGg8j40+k6babPYfKEHCiwBtAYNGXUaiTzA5jZWtzpPdUEmij2NOR7DWC183basxJpuVgqZa55gOkWzQkgeeI0/otfUEpVLJrlvTUe9/DqOiipnbzjuh82g1Guou/po50vPInnmcvmsGt28UrSKE3kMkIwOF91hwT4LGX8HW7OpohN7MbyaM2AUj8x3l0Vvy4OBFsCMYyv7jqMvRQVq1G1Fe/q2+3FVqvNTuaBv3k1ekR0aDTpVL4nBHw7uZUSnsbahgeWk2lc06fi7aTZGhntMiBwOgUCiYGZXKbyVZ7KorpczYyCe5m/B39yAtOKbjr7PuG0CCwCs787vT44K81Kw6/yoo+gcbmv7gneIPTvhcS09/gHdiF4PNm3cM/2DwT3d1YaSCcOJEb5qBpP5HOHghhNwCCe+6Ohqhr7A1Q+m/oOYTkE2OxxpBl0HsG6D27/TpXtm9giFSI2G2GEDBQTkXk28S16dMcI7ZUVPM4qJd1JmNhHr4cGFCGiMCo5z7ZVnm56I9rK88SLPNQrJfCFcmjSXMsxP/P2RPh6Y1MNroeFzVyz2zqpwnG84BrwIKp2US5xF3wucq1NcxeNmlWANXoamfRd6Z3xHt7d91wQrCIaJRntC+jFCwNx1qoCdujAmdIElQPR/Kn3PUrkEBPlMhbj54DuvwaUpzf6VKHwpIxIZaCImd0m0hH9N2b1AHQNoJ1CZxkVM/W8GWsAvxkWNonLMH5Un+G0768Q7yvT+A5kQ+TP2Qm1J659wZoe8SjfKE9kU84lg5UfG8qyMR+hqlEsLvhNEVkPIHeAyHprWQNRx2p0D94uOeomjfD1Tpw1BgJTHGzXWJSPNekIzge4Zrrn+CNl4zA6/iB2nS7GPOxltO+nx5F8znJo/3QN3IP/LPZe6K17ogSkHoPJGMDDRhd4HSCypfcXUkQl/mNxtG7IaRB8F3DpgPwsHzISMEyp9vd17Jwd0LqG2ORYmJwQmhBISN7vm4/1L5uuN7+D2ui+EEKJVKci9/ECrnsqL5Sz4tXHLS5/xw8g38PHwFClMsv3A/oYuuEWXkhR4nkpGBRqmE0JvB3gC1Yja9cJK0SZC6FEbrIORWsBuh9BHY4Qn5N4CtEYDcnQvQWZJQ0sSQ1GS8g5JdG7d+qSMp78Tjpd4i0lfNt2nzwRzJDVl3Umc++Zow58QNR3/OZrwbzqUm4EvcF09mW3VRF0QrCB0jkpGBKPoFQO140xCErqD2hoR3IN0AMa+Byh9qP4WMQHK3vUWTPQk19YwYkY7WO8K1sdqawVIKXj1UWK0bXDYshgvcngNNJfG/X9ol5/TWaGm65EfGmR9D8s5i3JapPLHj+I/eBKEriGRkIFJqIPAisJSAfq2roxH6E6USIu6B0ZXY4n8hR/EBTcoJeHCA4cq7UTf3gr9vtYeWxgbf4No4TtIPZ15GcP0NGHxXMn3Z01123i1nP8szId8ACp6tvZL0n8WHFqH7idU0A5W11tG91WO449m/IHQhm8VC9p4/sBCBliJS3N9G3bwakBxN6cLvd3x1YDVIvdmIwdbSapu32p1ArdeJBbd3HBh3wJgWR2frPqzFYsNjySRk71zei/2Nm4dOOP5BHbS7rozRqy/FHrARz/q5lJ3zLf4evX8JtNC7iKW9wvH9VWdhRA54pLg6GqGfsFkM7Nv9J1ZFMB4UMDT94kM7mqDkfqj93LGiS6GFoKsg9lVHQ8d27KkvY/7edci0/m9KpVDy7zFzTywh2aYFTSyMyu38sb3QqrJsZu6aBuYoymb9SaRv1yUMNpuNmJ/+QaXflygMQ/nxlC85L773VqwVeh+xtFc4PtFAT+hiZkM1Wbu3YiUIb8XBw4kIgNoHEt5z1LiJeRlUvlD7EWQEQPYsMO13DpVlmR8LM3lr79o2iQiAXZb4qWgXktzxarAANG0AuQUCzj3Rl9jrzIgawg3+j4LvLpKW3I7UiQq5x6NWq6m4+FMuUL6KrC3j/H2zuHbtiVeAFYSjEcnIQOaR4uhB0rQGrHWujkbo4wyNBWTn5GDHFz+3PFJGX9b+QKUSIu6D0VUw6FfQpkLTStiTCruHQsNv/F6yl6Ul+5yHuClUhHv44H7EY5Ut1YV8X5DZuSCr3nJ8D7+7k6+ud/t44t1Ems/CHPYl6Qs/6vLz/zDzLj5L+hUswXxhuYO4H24Wy3+FLiUe0wx0ujWwfzoEXg7J37g6GqGP0lXtJq+kCRl3Aj2KSBh2UedOYNoPRXeA3jGvRC/7ssx2DiulMzk37hRmRA1Gq3LDYrexoTKP7woykGQZBfDsmLmEePh07DoZoSBbIb2hsy+x1zPbzHj9PgxJYeZJ3z94amrXL1uuNOiJ//1SWgKXoa6fRvbp35HsF9Ll1xH6D/GYRugYv9NAEwP1i+AE2pMLQl3pnxwsaUZGQ6hPeecTEXDcpUtdAaMbKPG4EC0mLnH7mrfcb+Is5bdoFY7PTBqVmhlRKZwV43ijlYF1lQc7dg1rLdhqwLt/ljzXqrUsn/AZuOl4uuwethZ1fUPMcG9fzJcsZUjTPdj8tjBo7QTezFrZ5dcRBh6RjAgQ9W/ABqUPuzoSoY+pzF9OYaUboCQqsJGYlJOci6H25SfFPO60fMwi6xUoVH5Q/m/YFQu5FzjnlZwWMdh5yAFddcfO/dcjmtD+O0dqRvBkrg+9HUJXMGnpf9Cbu27+yJH2nf8ad/t9AkoTd5VeyIylz3XLdYSBQyQjAoRc6yhSVf1ep9rDCwNb6f4llNX7AxJx4VbCE2d3yXktkh1Qslw6B3taOYzYC95TofEnRy8cwNvNHbXC8d+XxW7v2IkbFgFq8Otb/Wg665NTXiRCGo0t4VWGfXzy5eKP5vXxl7M2fQ0K4yBWqx8j4LtLMVvE3VXhxIhkRHAI/6ejcVj1m66OROgDCvd+T1VTJAosJMV4Ehw9qcvO7afxcP56v64KPIZC3BuODZooAPKbarEdWknjp9Ee/6SSBKYcx7kGQLfq3dOWoZQ8KY18iMsWHui260yNGETz3I34N1xMY8AiPH+eyLqK7rue0H/1/3+VQsdEPAYKd0d7eEE4hoO7FlBnikNJM4OTI/EP69q6E2ND4py/XlK0B4vdBqpDE1TtemySncWFhwv1jQuNP/5JG38G7BB4SZfG2lsFa4JZNPpD8MpjoekpPtmu77ZraTUaGi5ZyDTbs8heuUzbMZ37tixod2yxuRiT3dRme73ZSLGh3vlVbzZ2W7xC7ySSEcFBqYTga8FW3aFW8MLAtD9jATprEir0DElNxds/ocuvMSIwkmCtNwDFhnr+s3Mp66oqkIG8hnxeyPzDcccE8HHTkh4ce/yT1rzn+B42r8vj7a0uCL2Ai0IvhuivuWnDZ+yt6t5HKGvOeJTXon8AScuruusZtvjeVvuzDFmkbErhH9n/aLW93mzk8e0/85+dS51fj2//WSQkA4xIRoTDYl4FVI4qmYLwN/t2LMIgJ6OmjuEjx6H1Du2W6ygVSm4ZMhmtylFTpNKkZ0HenyCDuvYDSoyOZbluShU3p05Co+pASXfDRlCHgdq/W2LurRaO+IpgZSxy6mOM/2QjZkv3zgm7Z/gscqb8iVo3nn3er+Hx3RlUGvTobDrO3XUuZsnMt1Xfkm/Kdx5jsLU4H7n9xSZLbVoACP2bSEaEw9Te4HcmtBwEw3ZXRyP0EjaLhawdP2EiAQ0VDBs5DbXGu1uvGesdyL9GzSbeOxCAccpNKBQQoyjGnzqiPP25d8RMBvuHHf9k5kKw68B3ZrfG3BsplUo2j1+FQmXBmPwAE94r7vZrpgSEYbpgBbG6/8Psv4qIFeOZvvUcis2OaysUCl4serHb4xD6FpGMCK0lvOP4XnS7a+MQegWbxcy+3ctpIQYtxQwZcTrqjkwY7QLRXgE8fMoZPDzqdC7QrkQGFAqZR4PX8vjoM0n0De7YiaoOTX4Nu7PbYu3NkjyT+F/qS+C/nUz3N5i3uLbbr6lWqym68H2ucnsLPIrZadqAHceqJ7ts5+Pyj6lsqez2OIS+QyQjQmuaaPAaD8Zt0NL9n6KE3svWomfv7nVYCcNTkc+w9AtQazQ9Hkc8e/G156EAFIBv0/cojJ24c9e4xNGUz+fU7gqx15sXM49pAVMh8Q3m5/zBoj2GHrnutSPiQd22+JokS7xa/GqPxCD0DSIZEdqKf9vxXTTQG7DMhgqy9uzARiA+qjyGjHbhKpTKV4Ej54WooOgu6EgnC8kGLQXgmdZNwfUdS0ctxUflByPu4fJFOeTVde+E1kJTIZfuuRQFijb77Nh5q/QtGqwNNJjbrxRr72wTRKFPE8mI0JbXaHAfBLqlYOuZT1BC72GozyM75yB2fPBzy2fwKUdpeNcTzPmHluUe2ZTNDsbNUP/d8Y+v/QyQIfiabgqw79CqtSwfvRQ09diHPMj4t8uw2LrvDf+KrCvQ2XXtdl0GMEtmbtn9CG9nr2t3//vZGyg19r8eQkL7RDIitC/2VUCC4ntcHYnQgxqqdpKbX4WEB0GexSSPurRbrpOrq+atvWt4YMuP3LL+azJrS9ofWPUm7f03JaGgpfAukMyttq8uz+WRrYu5Y8O3PJ+5jIaqrwAFhNzY9S+iDxrvN54H4++HkFXUBXzBzA8rjnvM32uAdLQOyLSAaSR5JDnvjChRokLl3C8js6j+Y6yyud3j61uaeWX3SiqbdR18dUJfJrr2CkeXEQ72Rkg3gLIDyyeFPq2meAPF1WpARZhvFdGDz+m2a2XVl3NQX0OcdyDvZq/ntiFTSAuOaT3I3gQ7IxyVgdshywqqgx8kLOl5ALbVFPHp/k1cmTyWBJ9gVpbncFrdZYS7K3A7paDbXktfNHzzcPY25cCWn3lozDiePyOo3XF/1QD5+9JbtULJs2PmEqj1Ou619DY9O5t2sl2/na36rWzWbab4iPloqtrZfJP+IqfHpuDt5k52QyU/Fe5yLuFO9Q/jnyMG3kqo/kJ07RVOXtRjILc4GpUJ/VpF3jKKqzWAkqggXbcmIgDDAyM5P34Up/w9ATlS7eetEhHnxyaF26EvGf+6/zn3ryjLYXJ4EpPCk4j08uOqCA0xyiL2qfp3L5oTsW70OtxVakj7P15YX8Hv+9tP+NqrAQKdqwPiq/ZlWsA07ou7jwUjFlA0uYgXQ5cwR/Egbo2nYi+4gWt//5PKZj0qhZLhgZHcP3IWQe6ORCensUrcHRkARDIiHF3I7aD0hqrXXR2J0I2KcxZT3hCIAjvx4RLhCbNcHZKD0hPck8FzNEWKNHSKSMf20Nsg4gGK/B/gc/sdANgkO8VN9QzxDz98ePX/kGXYoRCfqv8uUBPIguELQFsGQ57g/C+qKNfb2ozTtbQt3X6yJFkiX2cgzm0k90Q/wB3jQzCHf83QjaO5bbOjUq5W7ca0yEHOY/bUl3d5HELvIpIR4eiUSsd//HYd1Hzi6miEbpCftYgaQ5Sj4V2cL0HRvWj5a8gNMOoADN/Bh4pnKHU/lFTEvAbR/6Yp+C6229Kw2G0YrC1IyPgcWQNF9wf1igiq7D6uib+XOy/0PK4KvwoifsQS9Atj3ypDOqJrd73ZyDv72p9cejJa7DakQ7e5Ij39eODUwVyXkoakqeJdw20UGWoAiPEKcB5jtIluwP2dSEaEY4v+t+OWeOnjro5E6GIHdy2gwRyPEiMpydH4hQxzdUjHZFP+1SyvvgODDWAtp1Kd3r1B9XGfD/2cKE0UDL+fcksJZ31a5dxnsLVgP7QSpkmuIce+5qiTTf9itpvJNmYfc4y7Sg2yzD77Cp6ouYy4jXEsrPuEMVyP9/75xHmHADjnjAB4qXu+vo3Qs0QyIhybUuPodGotA91KV0cjdJEcZ8M7HUNSh+HlH3f8g1zI101Lk3woGbE4btnrLWa0Kjc0KjXebu4oUdBkOfRmeagx3kH1bPzceqZibF+kVCpZn74elVJCNeYalh3U8/zqtstpc6X1rLN/wNfWu9lt/xWb3Ha+iF22c+HuCxmxeQQFpvYnDOusOm7NuZVPrDexwf4JRrmBaT5zKJtcxhzpRYIMZwNgtllZW37AedyIwMguesVCbyWSEeH44t4EFFB8t6sjEbrA3h2LMMrJqKll+MgJaL07WFbdhRJ9g8kzH0oqrI7lqNmNlc6S8GqlilifQLIbD32yr/sGGSUbTdEdLxs/QCV4JvBmypvYtYWoU//Do380sC6/9VwRWZZQoKQFA5vt3/CV9S4+rHgHk/3wuPsP3M/S+qXIyMwvnd/q+Ax9BlO2TyFgXQAflH+At8qLdOVF3Kj+mKGW69lQXkqTxYpGBXvqy3h59wrqWhyTalP9wwj39Ov+3wjBpU4oGZk/fz7x8fFotVrGjx/P1q1bjzm+sbGRO+64g4iICNzd3Rk8eDC//fbbCQUsuIA6EHxmgGkvNO9zdTTCCXI0vFuMmQQ0lDFs5AzUGk+XxGK2WykxNFBicHwKr20xUmJocNav+LEgk0/2b3SOnxYxiCqru2NscxlrynPZUVPMrKgU55hZUalsqDzIpqp8bM37OKgYg0WyMzEssQdfWd90W/RtzAicgS3yCxRB6znjk0rqm1uvojlcSVWmBQP/Ln6c2D9jeaP4Dd4sfpPXS15HRkZC4v2y92myNvF+2fvEbYgjfVs6G3QbGOE1gt9G/UbdtFrmRd2PUqnGLkv8UryHL3ZXk1ffwlt71zof0XiqNVyRNLaHfzcEV+h08YgFCxZw77338u677zJ+/Hhef/115syZw/79+wkNbdtS3GKxMHv2bEJDQ1m0aBFRUVEUFRXh7+/fFfELPSX+XdgzyFEifuhaV0cjdJKj4d0qrIpotBQxLP1Cl8ZT1FTPq3sOP/b7Lj8DgAmhCVyfMgGdxUR9y+Ey4cFaby6JHwpl8GVBHjWaYK4ZPJ5hAYdv348NicNgNbOh8DcmKEzsYjJ3DZuOr8aj515YH/Z72u+ErgtFn3YzpnV/MvdjOGOCYx57e2Rkaq213HPgnjb7muxNBK0PwipbcVO4cUHIBbwx+A1itIeXcl8zaBxalZo15bmYLGoamjwBBdWNXoT6GwnRenPr0CmEe4raUgNBp4uejR8/nrFjx/LWW28BIEkSMTEx3HnnnTz00ENtxr/77ru89NJL5OTk4ObmdkJBiqJnvcSeNDDthrRK0LRNPIXeydaiJ2vPFuwE4KnMZ8jo7qmq2u2a90LWcIh4GGKeO/q4AxdDw/eQVg6aiJ6Lrx/YptvG+O3j0bYMwrT+NxLC6pmdfoBttu/YJf2MdKjzbkcoUfJY/GM8nvA46mMUTaw1G7jxhxJ+3uOYpDoq2synl/sxIjASlULMJOjruqXomcViYceOHcyadbgOgVKpZNasWWzatKndY5YsWcKECRO44447CAsLY/jw4Tz33HPY7Uf/S93S0oJer2/1JfQC8W8BMhTd4epIhA4yN5WxZ08GdgLwUef13UQEQBPl+G47Tr+SpjWgChSJyAkY6zeWB+MexOSeiyb1BQqqAskqDIOj9Jc5FgmJqQFTj5mIAJjMWpbudYdDfZl3lXrgbg8VicgA06k/7draWux2O2FhYa22h4WFUVlZ2e4x+fn5LFq0CLvdzm+//cbjjz/OK6+8wr//ffSqns8//zx+fn7Or5iYY1RpFHqOz2TQxEHDT216ggi9T1PdfrL35yPhjb8mn8FpLmx41xWUhz5V2Y+RjFiqwVYHPlN7JqZ+6HTPGwgkBkvUh6gDdrBxXzzGltYJhaIDbx0qVLxe8vpxxz21op4jZ6eolfDi2sbOBS30ed2eekqSRGhoKO+//z7p6elcdtllPProo7z77rtHPebhhx9Gp9M5v0pKjtJES+h50c8DNih50NWRCMdQX7GDAwX1SHgQ7FVC0sg+fEfkL0oloADbMUqDV73h+B52e4+E1N9IssQPBZmco34clcINafS1oDKSVx56xARW2u3Eq0SJWqHGTeGGWqHGjp1fa3+l2FzcZuxfcqotfJJhwH5ENmKT4IudBkoa21aEFfqvTk1gDQ4ORqVSUVVV1Wp7VVUV4eHh7R4TERGBm5sbKtXhbo1DhgyhsrISi8WCRtO2mI27uzvu7u6dCU3oKcFXQNE8qP7QUQnzaLPbBJepLlpDSY0HoCbMr5roQRe4OqQupAL7MR7bNvzgKNLnN7vnQupH9tSXY5FsaJVenK6+m99tL5M87SEOloYCjuRAgZJBTCFClYqPIojBAQGMDAlBZ9M5v/Q2PTWWeooNdfwn4w/cZB9CtN5cN/hU4n0ON+V7ZFk9KgXY/pbbSLLMRYsyeH1ucJvVUKvLc1lemo3OYiLaO4DLk9JJ8BHLt/u6TiUjGo2G9PR0Vq5cyfnnnw847nysXLmSefPmtXvMpEmT+Prrr5EkCeWhN67c3FwiIiLaTUSEPiDifih9BKpeg4j7XB2NcITyg79T0RgEyESHGAmLO8vVIXUthRqkpvb3SRKYD4DniJ6NqR/ZVHW4WNlIj0lMDgng0fxHUUT6IQNxult5f8ItfH/w8BL/UzySuTpiXKvzGK0W/rPzd84LCWNaRDI+blqqTU2tKqluKzHz475m2iOjILMwiA+yduCn0TpXTW2rKWJRfkarzsz/y1rN0+lz8dWI4nZ9Wac/1t5777188MEHfPbZZ2RnZ3PbbbdhNBq54YYbALj22mt5+OGHneNvu+026uvrufvuu8nNzeXXX3/lueee4447xCTIPiv8QVBooeIFV0ciHKE4+0cqGoNRYCchUkVY3GmuDqnrKdxAav8NjMYfADsEXt6jIfUntWaD89eNLSZuDr+Ls4LOQlbr8DvwKkXb/kVBSetqvYHubWvVLCvdR4C7J9cPPpUEn2CCtd4MDYggxONwn6BH/zj2RGSrXUFt9WBWlO13bmvTmTl5HBqlmo1VeSf6koVeotN1Ri677DJqamp44oknqKysJC0tjaVLlzontRYXFzvvgADExMSwbNky/vnPfzJy5EiioqK4++67efBBMeegz1IqIfgGqHkH6hdB4MWujmjAy9/zHQ0tCSgwkxwfhG/wEFeH1D2U2qMnI9UfOL6H3tZz8fQzSkXreSHfFWTwTOKzHDQd5IfLzufU1+H2nxq4cLKWQB/HJPZxofFtzrO7rpShARG8l72eA7pq/DWeTIsYxJSIZOeYkeEadGaJFptMi10mt7YFpQICPdRY7GCVZLQKb/L1ucDhzsxnRg9tFW+qfzj5+tru+Q0RekynkxGAefPmHfWxzJo1a9psmzBhAps3bz6RSwm9VczLUPM+FD8okhEXy81cQJMtCSUGUgYn4enbj1efKbVgN7S/z7AJ3CJALWoRnag470CKDIcbEWbWlVJt8uOd2CVYJTceObOGRxb7smTTcK6esZ0oHx+Ctd5tzlNjNrC24gCzolM5M2YYhU31LMjfgVqpZMKhOSAvnx3U6pig/2QR7qtg752HE5Y99WW8tdeKxW6j2WZp25kZ8NVoqTSJ8g993QklI4KA2hP850LjT9C0BXzGuzqiASknYyFGKQk1jaQMGY3WK9DVIXUvpSfY2unaazrgmEsS0J8m6/a8KRHJrKs82GpbebOOBfk7nD9PHBrGxn3xLNk8nG3zoto9j4wjsbkgPg2AWO9AypsbWVtxwJmM/KXebHR0CJYVKBUSxYZ6vNXuBGq9uvS1Cb2bWAohnLj4dwCFKILmInt3fI9RTsKNGoaNnNj/ExEApTfI1rbbnUt67+rZePqZWO9A0oKijzlmeHwV8WH11Oq9eWVV+8XQ/DRaIv7W3C7Cw4+GltaP2OrNRh7f/jP/2bkUm12JSTLxn51LeXz7z9SbjcfuzHyI3mIWnZn7AZGMCCdOEw5eE6B5B5iLXB3NgOFoeLcEM/G4U8rQkTNd1vCux6m8QW6n/kTjr6DwAO/0no+pn7khZQKp/mHHHHPfzGbiA1S8tVnPoj1tH5sl+YZQ9bdHJ1UmPYHure92GGwt2GRHkRGbXYmHu8Xxa1nCYGs5dmdmHEuAc44YI/RdIhkRTk78O47vhbe4No4BwmZpZt/uVbQQhZZChqefh3ogLZFX+QGtu8kiWcBSBF6jXRJSf6NVuXHXsOlcM2gc0V7+rfYl+ARxw+AJ3D58Cttuj0KrVnDFt9UU1FtajZsVlUp+Uy2/Fe+l2tTE1upC1lce5LTIQc4xPxZksqRwt/Nnq02Fxu1wm5DtNcXH7Mxc0azj64PbsEg20Zm5HxBzRoST4zUStKmgXw42vZg82I3MxnpysjOwE4yXIo/Uvtxn5kSp/B3fJRv81fOk5hNAhqBrXRVVv6NSKpkcnsyksCT0VjPNNgteak2rDsjB3kqW3hDO9A8qGD+/nNKHY9GoHZ9v432CuG3IVH4szOTX4j0Ea725NDGd8aEJzuN1FhM6q8n5syQr0BkOP27ZUl1w1M7MS4p2o7eYifYOEJ2Z+wmRjAgnL/ZVyD0Liu+CxE9dHU2/1KwvYX9uPhL++LrlMWhUH+8zc6LUAY7v9Qscq7iU7lD7OaCAkOtdGVm/pFAo8NN44HeUN/tpiR78+/QAHv2jgZkfVbD+lsMTWkcGRTEyqP0JrgDXp0yg2FDPf3YudW6zS4crdd8xbBqx3m3nQU2PTGF6ZEqb7ULfJpIR4eT5n+lYUln3DcR/ePgTq9AldDV7yStqQMaLAG0BicMHaCICjm68APlXQ8E/HGXfjVvBLQqUA+hx1UmQZImfi/awpboQvdWMn8aDiWEJnBUzHMURdUb+bn9jFd/lZ1DRrCPA3ZOzYoczMSyRR6YHsLbAxB8HzPzj532Ehh3ocKn2yubW80qUysOP4GS5852Chb5LzBkRukbkkyBboOxJV0fSr9SVbSWvSI+MOyFeZSQOv8TVIbmW2xFvbLLZMXEVG1hLYfdwKHkUDKKm0bEsLclmbcVBrkgew1PpZ3NhfBrLSrNZXZ571GNqzQbe2ruGFP8wHht9JjOjUvgidwt7G8oB+P36cKIDrHy+xY1w5RAePeVMor38+V/WavSWth2+ZVnm56I9fLR/I+Co5A8KVEckI7+X7MMuSW2OFfonkYwIXSPsFlD6QNVbro6k36gsWEVhhYyMikj/OmKHnOfqkFzP7a9VHn/913XEm5V5r6NFwb4JYNjS05H1CY9sXcziol0YbS28tXctj25bwvs5G/Bxc6egqa7dY3bUFPOfnUuxSHb2NVRQazYwPTKF0cExrCjbjyzL/FKcxenjMvHUWnjsNzu1RvmYpdpXlOXwS/Ee588KyQ0AjerwnZmddSV8nbeti38HhN5KJCNC1wmbB5Ieqt53dSR9XumBXymrc/TxiAk1E5F8hosj6iWcycgxbuH7nQmeYmVNex5Om8MZ0UMJ0Hjyr5GzuGf4DACabRaGB0a0GZ+nr+HDnD/xULkxPjSetKBo3tm3njJjI0MDIsjX17KsNJuVZTm4qew8NhtMLWrO+yofq93Wbqn2ZpuFJUWHV9GcEzuCJ9PnOn4dn8Q1g8ahVjjemjZU5lFqPHYPG6F/EMmI0HWingGFBsqfcnUkfVrRvh+o0oWhwEpijBuhsVNdHVLv4RZ+6BftJSMq8D4VkheB0q0no+ozfDRazosfxbjQeF7evYI3slYBcHrUkFYrXf6ysmw/wwIjUCmVRHj6cV78KGK9A1hTnouvRovZbmVFaTYzolKRgQuGhPLPyX4UVvtz5hf5+Gq06KytH9NsrirAIjmW8E4OT2Ju3Ai0Ksef17gYLZPDkzk/fpRz/LqK1hVhhf5JJCNC11GqHR1TrRXQuMzV0fRJebsXUtscixITgxNCCQgTn/BbUbf99O6gAo8hMPg3UA2QAnAnaEdNEVurC7l+8AS0KjdGB8WwvCyHTVX5bcbmN9WS6h/eatvQgAjymw7f7WiytTDIL8T584tnhjImsZbVuWqWZbe9/gF9tfPX0yIcdUfMVsfjNkOLI8mcHJ6MEscjmwO6aoT+TyQjQteKewNQQvE9ro6kz8nduYBGSyJKmhiSmox3UPLxDxpg6m2OeyISR975UIEmFlJXgNrvaIcKh3xfkMmcmKGolUpa7DYuS0pnZlQqv5fsazNWbzHj66bF103rnIjq66ZFZzGjt5jRHFo5F+bh26pU+40TWogIMPHpRm/0htbJoVU6XNjM/9CS4a2lLQDUNDv2eajd0Kodf8aWI8YL/ZdIRoSupfYH31lgzoHmLFdH02dkZyykyZ6EmgZGjEhH6320OwAD1/7GKh7dtgRZVtAsaZBlkGWQ1EEwZPUR80mEY7FINpQo+LMyj2GBEfi7e6JUKJCPMQ8n0TeYnMbKVtuyGyuJ8nIkf2qlslWpdpVKwV0zGnDX2Ji/KpRaw+ES/kfWLMk9dNfjz+IWwrxV3DPJcb4SQwPNNkdVV39R0GxAEMmI0PXi33V8L7zVtXH0AY4+Mz/QLCfhRhXDRk5B7S6q2B7JKtn5dP8mXt2zEgkZCSUoQKEAG2o+5BkaCTn+iQQARgZG8UvxHvY1VjIyMJqdtSWsKM1p1SDvx4JMPtm/EV+NFr3VzLSIQdSaDXxfsJPyZh0qhYIdNcVMDXc8ZtFbzK1KtdeaDLQo9JwzNo8mk5rxb5cjHVqmOzYkznmdX4qzaLZaWLTHyIXDvFApFdgliZ8KM51jjhwv9F8iGRG6njbBsZrBsBEslccfP0DZLBay9yyjhTjcKWHoyNmoNaL76JHsssR72evZVF3g3CahQoUdWYb51nvZYfThld0rMFjb1rMQ2ro8aQxBWi8UwML8HSwq2MmUiGTOixvpHKOzmKhvaSbRx3FHJFjrzbxhp5HdUMnaigOY7VauGTyeCWEJ+LppyWmsZGxIHBcnnsLiwt0UGeuxSnaem3Qqd5zqR36DjUu/cdwFSfELI8rTH4CKZh3/98daihptTEqysakqnxd2LSOroQIAT7Wm3Ym1Qv8jSmUK3SPuLcieCIW3w+AfXB1Nr2OzGNi3+0+sikg8KGBo+sWuDqlX2lxVwJ56R2EtjVLF2bHDUVd54Ca30Og2mUrFBGhpptps4KfC3Vw9aJyLI+79NCo1OouJ06OHcmFCWqt9n+zfiL/Gk+tTJgCOpb0v717B8tJsRgRGMiooivJmHQ+MOp2oQ030Zkal8ltJFqEePgz2CyO7sQqVUcGT6WfjplTx1nmwsdjM91nNvLVRx7yJfvzfkEm8tGs5DSY7CzfGAzKr61axrvFwLGqFkv9LnYSHWqyMGgjEnRGhe/hMAE0CNC4BW7Oro+lVzIZqsnZvxUoQ3oqDIhE5ClmWW1UFvWXIFM6IGYbSczgK2UxAxGU8MHI27ocmUW6pLnDOMxCOLqexkvqWZia10+m2vqUZneVw87ok3xD+kTKJ9ZUHeTbjdzJqS7ht6BRnIgIwJ3oI0yNS+PLAVp7buZQWu5W7hk3HTXm4z8yGWyLx0yq4+5c6tpeaifD047bUWazYPgKbpAIUtNgOJx2Rnn78c8QMhgaIuVMDhULuAw0A9Ho9fn5+6HQ6fH3F8/Q+o24h5F0GobdD/HxXR9MrGBoLOHCwBAlP/NzySB6oDe86oKGlmYe2/gRAjFcAj40+07Fj31QwrIeReaBN5KsDW1lX6ahFccuQyYwOjnVRxMKxZFW2kPa/MjzcFOTcG8NFX1WxrbQF6dA70ONn6Rkdo2CofziD/EKP2SdH6Ds6+v4t7owI3SfoUlAHQc3HfzWfGNB0VXvIPViOhCeBHkUiETkOo63F+etW3VttNaBwB21im33izkjvNTzcnQ8uDMZgkRn0cjHbj0hEAGK1iZwfP4rB/mEiERmARDIidK/wBx0NzSpfdHUkLlVX+icHS4zIaAj1KSdh2EWuDqnX81Ad7sJb3tx4eEfiJ5DwSbv7jjxG6H0uGeFNiJcSkw3sRyQibkrIrbW6LjDB5UQyInSv8PtA4QEVL7k6EpepzF9BYaUboCQqsJGYlHNdHVKfEOjuSaSno+5EQVPd4Uqc3qdC8BUA6C0mNlU5VtqoFUpS/ENdEqtwfEaLxJmfVFDX3PYuqU2C/TUiGRnIxGoaoXsplRDyD6h+E2q/cb6JDBSl+3+mqikcsBMXaic4drarQ+ozFAoF0yIG8U3edgDe3reWC+LTODU0AbVSyZ76cr4vyMRkd7yJjQmJw9tNLI3uDRpamvmhIJO9DeVYJDshWm9WZ4xgQ5Gt3fEysLPCxL8zfqeiWUeAuydnxQ5n4t8m2a4uz2V5aTY6i4lo7wAuT0onwSe4B16R0N1EMiJ0v9gXofodKH14QCUjhXu/p84Uh4IWEmN88A8befyDhFYmhyexvaaYA/pqmm1Wvjq4ja8ObkOJAumIiqH+Go9WzdUE1zFaLby0azmD/cO4c/hp+LhpqTY1kX1AQq20YZNApWj9mAagVCeR7BvGTakTyWms5IvcLfhptAwLiARgW00Ri/IzuDJ5LAk+wawsz+F/Wat5On0uvqI+T58nHtMI3U+phYDzwFIETRtcHU2POLhrAXWmOJQ0Mzg5UiQiJ0itVDFv2DRGBUa12n5kIhLp6cf9I2cR4C4a5PUGy0r3EeDuyfWDTyXBJ5hgrTdDAyL49vIo6h6P56vLQhkb7d7mOFlWMDZgBBGefkyPTGF0cAwryvY7968oy2FyeBKTwpOI9PLjquRxaJRqNlbl9eTLE7qJuDMi9Iy4t6HhByi8E0bsdHU03Wp/xkIMUhIq9KSmDkfrLeYxnAyt2o3bh02jsKmO9ZUHKTY0IMkSIVofJoUnMiwgAqVCfK7qLXbXlTI0IIL3stdzQFeNv8aTaRGDmBKRjK9WyZVp3ny6Qw/ARxcG8fjyRsqbHM3wqgx2koIc9UaGBkSwMD8DAJtkp7ipnjOjhzqvo1QoSPUPJ19fi9D3iWRE6BmaUPCe7KgPYc4DbZKrI+oW+3Z8h0lORE0dw0ZOQq3xdnVI/Ua8TxDxPkGuDkM4jhqzgbUVB5gVncqZMcMobKpnQf4O1EolEw7NAdlQ1EKMn4obx/pxfboPyW/upLDSj5JGK8Q5Hrn4arSY7VYsdhvNNgsSMj5/exzjq9FSadL3+GsUup74OCH0nPh3HN/7YQM9R8O7HzGRiIZKho2cJhIRYUCScdR+uSA+jVjvQKZGJDM5PIm1FQcAWJNvwmSVuXiEFwBKpZJLxlXgrbVz9cIaCupFrZiBSCQjQs/xHAYeQ0G/EmyNro6my9gsZvbtXk4LsWgpZsjI00XDO2HA8tNoiTi0JPsvER5+NLQ42kK8dKgBzQNT/J37gz3deegMA3YJxr9djs0mobeY0arc0KjUeLu5o0RBk6V1M0S9xYyfWEHVL4jHNELPin0D9s+GonmQ9KWrozlptpYm9u7ZhI0wPBX5DBl9iatD6lNyddX8UbqPYkMDOouJ24ZMIS045pjH7G+s4rv8DLEEtJdK8g2h6m+PTqpMegLdHXdC1uabifRREe57+O0n0TeYLFs5z85O5LHlDcz4qIJrp1WS6Ov4M1MrVcT6BJLdWOX8+yHJMjmNlUyPHNxDr0zoTuLOiNCz/GaBWxTULwSpb9+ONRsqydqzHRuB+KjyRCJyAix2G9FeAVyRNKZD42vNBt7au4YU/zAeG30mM6NS+CJ3C3sbyp1j/loCenbscB495Uyivfz5X9Zq9H/7VC10j1lRqeQ31fJb8V6qTU1srS5kfeVBToscxMYiM0arzMTBjXyyf6PzmGkRg6g1G0hNKGRmspL1hS0sytIzKyql1Xk3VB5kU1U+Fc06vj64DYtka5OICn2TuDMi9Lyop6HwH1D6OMT+19XRnBBDQx4H8sqR8MHPLV/0mTlBwwMjGR4Y2eHxaysOEKz15pLE0QBEePpxUFfDirL9znoURy4BBbgqeRxZ9eVsrMrjjJhhXf8ihFbifYK4bchUfizM5NfiPQRrvbk0MZ3xoQmc/3klAJOTm6lvOdzNO1jrzbxhp/FdfgaDB+/noH4wyzMGUTzCj2EBjjFjQ+IwWM0sKdqN3mIm2juAu4ZNx1fj4YqXKXQxkYwIPS/0Jii5D6rfhujnHVVa+5CGqkwKSpqR8SDIs5j4oZe6OqQBI19fS6p/eKttYglo7zMyKIqRQVFttq/KNxHmreLutAlt9v11twugdKSNpJeKOf+LKgoeiCXy0COd6ZEpTI9MaXOs0Pf1rXcBof8IvQskA9S86+pIOqWmeAP5JWZk3AjzrSR+6IWuDmlA0VvNbaptHrkE1GBtOeoSUJ1VPKZxpe2lZppaZM4dcvzidNF+an68OgyLHcbNL0MSXb/7PZGMCK4R9YSjDXzZM66OpMMq8pZRXK0BlEQF6YgefI6rQxKEPuO/axsBePg0v2MPPOSsVC8enOZHmd7O2Z9VdWNkQm8gkhHBNZRqCLoSbFXQ8Iurozmukv1LKG8IRIGd+HA74QmzXB3SgOTrpm0zEVUsAe0blh80EeypJCFQ0+FjXjgjiImx7izNNfHCmoZujE5wNZGMCK4T+zqgdMwf6cXysxZR3RSJAgtJcb4ERbd93i30jETfYHIaK1tty25sfwnoX/5aAvrXGKHnZVW0oDPLnJ3a+f5Bq/8vgmBPJY8sa2BDoakbohN6A5GMCK6j9gW/OWDOBWPv7FdzcNcCGszxKDGSkhyNX4hYjdGVzHYrJYYGSgyOT721LUZKDA3Um40A/FiQ2e4S0O8LdlLZrGNNeS47aorFEtBe7nnnIxr/Th+rUSvZfHskKiWc/nEl9c22rg1O6BXEahrBteLfhV1xUHg7DNvk6mhaOdzwTkdq6ii03uKTdVcraqrn1T0rnT9/d2hVzITQBK5PmYDOYjrqEtBVZfvxd/fkmsHjnct6QSwB7Y2W5poI9FCSEtLxRzRHSgrS8NVloVz2TTVj3yrnwP3RKPvYKjzh2BSyLMvHH+Zaer0ePz8/dDodvr6+rg5H6GpZY6F5O6SVgabjNSe6074dizCRgFquYdjIqag1oj29IJyI/TUWUl8t5cpRXnx1edhJneuOn2p4e0sTFw/35Lurwo9/gOByHX3/Fqml4Hrxbzu+F97m2jj4q+HdYkwkoKGcYSNniEREEE7C82saAXh4mv9Jn2v++SGkRWhYlNXM/E26kz6f0HuIZERwPe+x4J4Ejb+Crfn447uJo+HdClqIRksRI9Lnotac2G1lQRAcfs1pxk+rYHiEe5ec789bI/HTKrjr5zoyykTtmP5CJCNC7xDzEmCHkntdcnlbi569u9djJRRPRR7D0kUxM0E4WQX1FmqbJWYnd918HU+Nkg03Ox7nTnu/AoNZFETrD0QyIvQOgReAOgRqP4MerrZobipjz54d2AjAR32QIaNFeXdB6ArPr3E8SjmRVTTHMjzCnQ8uCMZgkRn/TlmXnltwDZGMCL1HxCMgm6HiuR67ZFPdfrL35yPhg78mn8Fpl/fYtQWhv1uS3YyPu4LRUV1fcO7Gsb5cc4o3+6qt3LiousvPL/QskYwIvUfYXaD0hMpXeuRy9ZU7OFBQh4QHwV4lJI0Ud0QEoauU6mxUGezMSOy+JdWfXxpKaogbn+ww8HlGU7ddR+h+IhkReg+lEkJvAXsj1H7h2CbboG4BxtKXKTbUO7/+Kop1oqqL1lBQanM0vPOrJm7IBScfvyAITi8cWkXzYBc/ovm7LbdH4aVRcOOiGvZVWbr1WkL3EXVGhN5FssB2L3ALg4gHoeJFsJZildXMs3zmHKZWKHl2zFwCtV6dvkT5wd+paAwCZKJDTITFndZ18QuCAEDUc0XozBKGZxK6/VrbSsyMf6ccP3clFQ/HotWIz9m9hagzIvRN9kbQDgZrGRTfBdZSAGx/KxZskyUMtpZOn744+0cqGoNRYCchUiUSEUHoBpV6G+VNdqYl9kxzwrExWl47O5BGs8Tk98t75JpC1xLJiNA7mPOg4FbIjAFzTpvdNtxO+hL5e76jxhiDghaS4/0JjBxz0ucUBKGtF9c3AnD/FP8eu+bdk/w5f6gnO8os3P1zbY9dV+gaIhkReof9c6DmPZAtQNulvdaTTEYOZC6goSUBJQZSB8fhGzzkpM4nCMLRLdpjxMNNwfSknu0H9P1VocT5q/nfRj3fZ53cvDKhZ4lkROgd4uaD0gdQtbvbKp94JdScjIXobUmoaWTIkJF4+sac8LkEQTi2+mYbJTo7k+O6puJqZyiVSrbfEYlWreDyb6oorBcTWvsKkYwIvYP/HBieAdpk2ktILJxYMrJ3x/cY5STcqGHYyIlovQJPMlBBEI7lpXWOQmf3TfFzyfWDvdX8fkM4dgnGvV2OzSYqtPYFIhkReg9tMgzbBv5z2+yydjIZsVks7NmxBDPxaChl6MiZouGdIPSAb3cbcVfDnMGdX+nWVU5L9OCZWQHUGCVmflThsjiEjhPJiNC7qHxg0PcQ9Syg4K915y3tJCOS3P4nHpulmX27V2IhCg8KGJF+nmh4Jwg9QG+WKGywMSGmZ1bRHMtjMwOYlaxlXWELj/1R5+pwhOMQyYjQ+yiUEPUY+eEfY5MdS3qDqGkz7Nu8HRitrZ8Jm431ZO3eiJUQvBR5DE2/uEdCFgQBXjm0iuaeya55RPN3S68PJ8JHxX9W61iWKya09mYnlIzMnz+f+Ph4tFot48ePZ+vWrR067ttvv0WhUHD++eefyGWFAWR/YxUvFbvzrPV57LICX4WeYHcvvNSH73AUNNXx9r612A811mvWl5CdvRs7/vi65ZEqGt4JQo/6epcBjQrmpvbsKpqjUamUbL0jCo0Kzvu8inK9zdUhCUfR6WRkwYIF3HvvvTz55JNkZGQwatQo5syZQ3X1sRsVFRYWcv/99zNlypQTDlYYGGRZZmH+DiRZpkqOZJnHf9EqWvhPqj8vn3oRtw2dio+bY6b+QX0N22qK0NfsIye3CAlvAtwLGDTqMhe/CkEYWAxmibw6G2Oj3VEqe89N92g/NT9cHUaLHcbNL0Pq4a7gQsd0+m/Mq6++yv/93/9xww03MHToUN599108PT35+OOPj3qM3W7nqquu4umnnyYxMfGkAhb6v/ymWkqNjQDEegdwxvB7wWMEVLyEUqEgLSiam1ImOceXlfzJwSIdMu6EeJWROOISF0UuCAPXG5t0yMCdE3rHI5ojnZ3qxQNT/SjT2znnsypXhyO0o1PJiMViYceOHcyaNevwCZRKZs2axaZNm4563DPPPENoaCg33XRTh67T0tKCXq9v9SUMHLm6w3fZpoYPQqlUQcS/QPcrNC4DINU/jDAPH2aomohnEDIqIv3riB1ynqvCFoQB7YsMA25KuGRE71y19t8zg5gY687vuSZeWNPg6nCEv+lUMlJbW4vdbicsLKzV9rCwMCorK9s9ZsOGDXz00Ud88MEHHb7O888/j5+fn/MrJkYUqRpIrHa789cB7of+Y/M+9Hiv6g0AFAoFMxV1JGtGAxARZCQi+YwejVMQBAezRSK31sroqN71iObvVv9fBEGeSh5Z1sCGQpOrwxGO0K1/a5qamrjmmmv44IMPCA4O7vBxDz/8MDqdzvlVUlLSjVEKvY2P5vCywAP6Q3dJqt92VGhN/haA/Kzv8ZaHo8DK9pY9hMef5oJIBUEAmL9Fjwzcfmrv7qquUSvZcnskKiWc/nEl9c1iQmtv0alkJDg4GJVKRVVV62duVVVVhIeHtxmfl5dHYWEhc+fORa1Wo1ar+fzzz1myZAlqtZq8vLx2r+Pu7o6vr2+rL2HgGB0cg1KhAGBdxQHq9dlQ+SoEXQUqX/J2L6TBHIcSE3+Y9qENGe4cLwhCz/tkexMqBVyd5rpCZx2VFKThq8tCMVllxs4vFxNae4lOJSMajYb09HRWrlzp3CZJEitXrmTChAltxqemprJnzx4yMzOdX+eeey7Tp08nMzNTPH4R2uWn8WBMcBwAzTYrlfuuQsZOmdel7Mv4hkZLIkqa+N50gAI8mR452MURC8LAZbFJZNdYSYvU9OpHNEe6dKQ3t433Ib/exuXftq1hJPQ8dWcPuPfee7nuuusYM2YM48aN4/XXX8doNHLDDTcAcO211xIVFcXzzz+PVqtl+PDhrY739/cHaLNdEI50WVI6xYZ6Gk2VpCoyqZLCqSmqwK4YjIoGPjGVYEbLBfFpxHqLfjOC4CrvbdUjyXDLuL51B/vt80PYVNzCd3uMvL1Jx+29cBXQQNLpZOSyyy6jpqaGJ554gsrKStLS0li6dKlzUmtxcXGfyY6F3svbzZ1/jZpFyZ4LwSZTo3wVu3IwarmSd011eLn5cUl8GpPDk1wdqiAMaB9tM6BUwA2jvV0dSqf9eWskkc8XcefPdZwa687oKNeXsR+oFLIsy8cf5lp6vR4/Pz90Op2YPzKQSDbs2z3Zr/wMk2IwbnIJ+7wiSQwK5ZTgGNyUbbv7CoLQc2w2CfcnChkRriHzrmhXh3NCsipaGPVmGV4aBeUPxeGt7V0fpuvNRgy2FufP3mp3ArW9f27OXzr6/t3pOyOC0FNshU+So/yWFkUcHhQwdMzFjHR1UIIgOH28w4Akw01jfFwdygkbHuHO+xcE848fajn1nTKy/tk75jLaZYk/K/P4+uA2jrxjoFQoePyUs4j06l+PlXpXCigIh5gNNeytn0ILsXiLhneC0Cu9v02PUgG3jOu7yQjATWN9uTrNm73VVm5c5PoJrTqLif9m/sFXf0tEACRZ5pXdKyhoqnVJbN1FJCNCr2NoLCA7Zx82gglQrCdFNLwThF5HkiQyyy0MCXFDo+77byVfXBZKSogbn+xo4vOMJpfFYbZbeWPPaooM9c5tnmo3fN0Oz2cx2Fp4Y89qKpt1rgixW4jHNIJLPLJ1MXUtbVt6nx7gR4LZHxkvIqU3iRjzkXPfjppiFhftps5sINTDhwsT0hgRGOXcL8syPxftYX3lQUx2K0m+wVyZPJYwDzHPSBC62peZRuwy3NCHH9H83dbbo4h8rogbF9UwNsqdIWGa4x/UxdZWHKCsuRFwVKC+KnkswwIiUSoUlBga+DZvOwf1NZjsVn4o3MXtQ6f2eIzdoe+ns0Kf9HDaHF4cf4Hz657hM0hQtJBgDkJGQ7z0GBHBClA68uU8fQ0f5vzJpPBEHht9JmlB0byzbz1lhxrqASwrzWZV+X6uGjSOh9JOx12p5n9Zq7FK9qNEIQjCiXp7sx4FcMf4/pPs+2qVrPpHBJIMk94rx2zp2YJokiyzruKg8+c7hk5jRGCUs6hjjHcAdw4/DT+NBwC768qob+dDXV8kkhHBJXw0Wvw0Hs6vwqJ1zNYOQ0ZJvOK/BLEcYv/nHL+ybD/DAiOYEz2UCE8/zosfRax3AGvKcwHHXZGVZTmcFTuctKBoor0CuCFlAo0tJjJrRTsBQehKkiSxo6yFwSFuaDX9621kXKyW184JpMEkMeX98h69dn2LkVqzAYDBfqFEe/lTobfx4TY9T69wNPfTqtyYGJYIgIzMgSMai/Zl4jGN4HLFOT8TaksA7MQFlBJU9z34ngHqw5+48ptqmRWV2uq4oQER7KorBaDWbERvNTPE/3BbAg+1hgSfYPKbahkbGt8TL0UQBoTvsozYJLj2lL5XW6Qj7p7kz5p8Mz/ta+aen2t5fW7He6udCJtNYmNxC4v361manYLOqMVscefBbwuwH5rB6qaEJ2b6o1AoCD5iaW+LvX/01xHJiOBShXsXUWeKB1oIi3AnuPFVx474d1uN01vMrSZwAfi6adFZzI79VkcHTl/N38ZoDo8RBKFrvLnR8Yjmnkn9a3npkb6/KpTEl0p5Y6OeaQkeXDD85Gt7GFskVuWbWFdgZmd5CwfrbFQb7JhsR66Z8UetlPDW2jgt3p9rT/GmymDntsV15NXZSA5246Du8Iqfv/+/2FeJZERwmYO7FqKzJqKgmQyVjn+EpEPZJvBMB22cq8MTBKEdkiSxrbSFpCA1nv3sEc2RlEol2+6IJPa/JVz2TRUH7o8hLsCtQ8fWGmwsO2DizyIzuystFNTbqG22Yzli+poC8HFXEBugJjXYjTFR7sxI1rK+4U/ymxyPXq4ffCoTwsJpapG48+c6lh804eFhZFtNEQAeKjeGBER09Ut3CZGMCC6Rm7GAJikJJXo+N5Vy3dAZUHibY2f8O23G+2q06K2t73DorWb8Dt0J8XVzTOjSW8zOyV1//Rzj7d89L0IQBqCfc0xY7HDlqP75iOZIId5qfrs+nJkfVjBufhllD8WiPmIZc0G9hT8OmNlUbCarykJxg40G8/+3d9/xVdX348df5+7sQfYeQMLeYBBEJEodKGqrdaKtWiu2/WqHtlqxtRVXrT931aq1Dpw4UQsoKkNA9ghhZO+9bnJz1/n9ccNNAgkk4SY3Ce/n4xFN7v2ccz73kNzzvp/z/rw/Tuwd8l41CgSbNKSHGxgboWdWgpFzR/oyJlzX5dIpJr80/pXlCkb+c3AzOQ1VZESmMDlaw7+3l5Ht3IVddR1gTlQqRu3wuIwPj1chhpT929+lxZmKjmoKgkPR2f2ZEBQERz4DYyr4zzhum5SAMA7UlXXKG8mqLSMlwHUvN8zkR6DexIG6MuL9QwBosdvIbaxiXvTIgXlhQpwGnljvqm3x27nB3u3IAJmXbOSXswJ4dnMj0csLiArQUlTvoKHVibPD3RWdBkJ9NEyJMTAh0sjsRCPnjvIlIbh3l9kpI+KYE5XK+rIjqKh8W3aYb8sOk9swnupGP+Ji9USG2kj0D+WixAkefrXeI8GIGDB2q5UDez6jlRQMlJI2YQErdn1JRmQK2sLfAQ6IfxSAV7I3Emzw5dLkyQAsiE3jsd1rWF2UxYTQGLZW5pPfVMO1o2YCoCgKC2LTWVW4lwifAMJM/nyUv5tgow+TwwZHeWchhoNNha0khegIHGRruJyqo0mkX+W08ENRKwer7ZQ22GmytkccVc1OalucRAdomRBlZHK0kTlJJjJHmgj19czlVFEUrhk5kyCDD6uLsrAeLU2guP7z2dZx/PWSKv5vwnRM2p7dNhoKJBgRA8JutbB/91psSgImCkibeCEHzdXUtDZzZkQS7P8P6CIg9FIAalqbUVx/fQCkBoZzU9qZfJS/iw/zdhHhE8Avx84l1i/Y3WZh3BisDjuvH9pCs93KyKBwfj1uviyoJ4QH1FjMfJLdRKtd5fx0DQVNNUNu0TaAJosrifS7vBZ2lFi7SSIFX71CpL+W2Yk6psYYmZNo5OfvV1JuVnn5x+GcO8q33/qoURQuTpxIZmw6mytyKWyq5W2b6/az3aHl3+tiuWWsBp9hdAWXVXtFv7Nbm9i3eyN2QvHV5DJm6k86Nyj+KxQvc9UVifqVdzophOhWjcXMn3/4hI++H01xdRDXZ27FZHCiUzQ8MH3RoAxIKprsrG5LIt1VaiW31k51N0mkMYE60sL0zIgzcs5IH2bEGDrlhhxVVG8n9dECFCDvDwlEBQ5MNFDZ5CDi7/nun7UKTI8z8vXN0fjoB/cIlazaKwYFS1MFBw7sw0EoAdojjJ5y5fGNyh4HjR9ELB34DgohTqrJ3opddVJWG4CfyYrJ4EqgtKtOmuythNJ1MFLT7OBItY0Z8f03/fRoEunGfAv7yq0U1J04iXRcpJ5Z8UYyT5BE2p24IB3vXxPJotfKmf5MMQV3xfdq+77aVtza6WeHCluLWrnqrQrevzYSrUbpZsuhQ4IR0W+aao9w6EgxTgII0ucwclIXgUjlK+Coh6jfwwD8UQsheq/R1kpxdQAOp5aUqPIebfP1kRauWlFBldlB3bIk/I19//t2Op3sKrWy5oiFLYUWDlTauk0iHeGrZWqMgQlRRjIS+pZEeiIXjfHjD2cF8ci39Sx6rZzPbuj/qbU/FLei1YCjQ4DlVOHjrGZ+80k1T108AkUZ2gGJBCOiX9SW7yS3sBkVX0b45pM0tpuVd4v+DIoe4v42sB0UQvTI2uIDvJezg905owGVSSmdS6Rn1ZaR4B/q/tnmULlvdQ0Pf+OadaMC2VU2psUaT3osu93J+oJW1h1NIq2yUdro6JRECmDUQbiflolRRiZFGzkr2URmqolgDyWRnszD549gfZ6FVdktPPJNLX+YF9LjbQ/WV/C/ov0UNNVSb23hl2PmnjTJfm1OA06nCnQOOFTgme8bSAjWMWNUBauLsqi3thDnH8JPU6eRHNC/lWM9SYIR4XFVBRvIr9ACeiIDy4gbfXnXDevXgq0YRlwNmoFfHVMIcWJfFWfzTs52AEprAvE1WgnyVbF1+IT+Qd5OAg0mMiJTOFJt44o3y9lRYqVj+LC/3NopGDmaRPptXgs7iq0cqbFR0eTsMok0qi2JdFqskXnJJuYl+QyK9XC+vjmamOUF3P1FLbMTTcxJ8jn5RoDVYSfOL4QzI1N5Puu7k7avsjSxudCCyvEzZxRcAcm9q2v4mbKD60ZPJzkgjLUlB3hy79f8Zdqi46pSD1YSjAiPKjvyJcW1rk8JsSPqiUq+qPvGBb8GFEh8amA6J4TosQZrC+/n7gCgrNYfu0PLkqn+PH3mlVS0NLKqYC+bKnIBWHHkB7IKQ7n941qsDrVTIKJV4J8b6nl+c8MJk0gTQ3Skh+uZHmfknNTuk0gHC4NOw/e/jGHMP4s47+Uyiu6O79H03vGhMYwPjenxcVYePkyLtT3x82gAolFUzkryYeFoX8qUHcyKSeHMqFQArhk5k701JWwsP8KP4sf19qV5hQQjwmMKsz+mojEaBTuJUTAiLrP7xs17oWU/BGaCLrT7dkIIr1hfdsRd6bO4eBQA9y8IByDCJ4Alo8/ArjrZUFLEF1tTeLKypsv9OFTYUWJ1J5GOiWirRBpv5LyRvoyJHLqjoiPDDLx+RQQ/XVHBzGdKOPjbOI8ntG4vbQRcwci4SD2z4oy8vK2JuePz+PrqBdidDn61oYwxwXPc22gUhfTgKHIaqjzal/4kwYjwiNy971FjSUKhldSEIIIixp94A3fp9+dP3E4I4RV7a0vd32eXmYj01xBoVFj+dS3+BoWsSjs7SuP5viCKY3MZjpUQrCX/ruG53tSVk/xZl9vC85sbuXpFJSuujvTo/kOC6vnbojBunjiaCH9XzaR39tZTUuOP1WGn2W7FiUpAF4uElrU0eLQv/UmCEXHKDu96m3pbKhrMjB6ZhF/wSd50rGXQtAF8p4ApdWA6KYToFYvdBkBNvT9NVpWrJvnyf59U88r2JnQaSA/XkxZuICqkmsYWE80WAyoKWgX3svdHFdU7sNpVDLqhPeOjO88tDuf7glbe3mNm3vf1/PIMz61mrNWoTI13ugMRgLQIyKoIwul0nmDLoUWCEXFKsre/Q5MzFS31pKdPwuTfg+zt/NsAFRKf6ff+CSH6xk/vun2y7UgUAHFBGpatqee3cwJ56Ecj0GkVDtVX8NjuLABGB8QTzRRW7jPz6YFmLHYVnQbsTtc01EPVNsYN4VsyJ7Ph1hiiH8zn9o+rmRVvZGqsZxJHA/UmGqydFwmdm+pgW6GBLw/ZuDDdhAaFxmPaNFgtBOmHRvIqwODNDhKD3v5t79GkpqKjivETz+hZIGJvhtqPwZAMARn930khRJ9MGhEHQHFVMAatk2Vr6rl0nC+PXuAKRJyqyueF+9ztZ0fHcvVkf969JpLa+xL5dEkUS6b6E+LjusxUmR1dHme48DVoWP8LV2Lq2S+W0mTxzKhFSqBrkdBOj0VXoVGcvLqtEZ1GS0JAKFl17fVfnKrKgboyUgKHztReCUZEr9mtVvZu+4gWkjFQwriJ56Az9LAcdNHvAQckPNKvfRRCnJqMiBSamvyx2rVYHQr+RgcPXKDQ6rCTXVfOU3u/Zl9bXom/zsj08Pbbsya9hgvTfXnp8ggq700k+8445iQNnU/pfTUh2sgLl4bR2KqS8Xxxl20sDhuFTbUUNtUCUNVqprCplhqLGYCVuTt5JXuju/286FFUWZp4P3cHZc31rCs5yP76QkJ9VTbku0ZDMmPTWV92mE3lOZQ21/Pm4a1YnXZmR6b08yv2HLlNI3rFteDdV9iUOEzkM27aZT3f2OmEypdBFwahP+6/TgohTpmf3sCRvPGAikZxcsmZO3hyn/24dhoUbkg7o9sFKbUahdHhw/f2zLF+PiOQr3MsvLGziZver+Sly8M7PZ/fWMPje9a6f363rY5LRkQyN6RlUG9toaa12f18mMmf28edzbs52/mqOJtgoy/XjZ5F3mEfvjjYQpPFyYzwRJpsFj7O302D1UKcfwi/HjefQEPPap8MBrJQnugxe2sD+/Zsxk4Ivpocxkztpqpqd0qWQ9GfIP4xiP5t/3RSCNFJjcVMk73z2iY9WW23qN5O/EMFAFx1VhYB/vXHtQnQm1gyehYTQmM91+FhQFVV0h8v4mCVjf9eEc61UwI8fow3djRy7TuVPLkolF/NDvb4/j2lp9dvCUZEj1gai8nKPoiTAAJ0Rxg9uYt1Zk5mWyiorTC1UdahEWIAHF1t92i9kKNOttpus9VJzPJ86i0qc5OMrLkpki2V+eytKaHFYcVPZ2TSiFimhiV0OyJyuqtvcRC7vACLXWXPb+I8Xk/Fbndi+HMeZyYa+e7WwRsMyqq9wmMaq7M5nFuBkwCCDTmkTuxDIFL1OjhqIfL/JBARYoAcXW33WCdabdfpdDLlqWLqLa7Pqc9eHIZBq2NOVCpzomQqfk8F+WhZe1M0Gc+VcOa/Sii5O8GjZex1Og1xQVp2lFo9tk9vkquCOKGasm0cyq3GiQ9hvgWkTuzlrZmjiv4E6CB+uUf7J4ToG6eqMu2pIn77WRWODkvfnvdyGQerbJh0EGRSGB998gXuRNdmJZh4/KJQalucnPViyck36KX5KT6YrSq5NUM/IJFgRHSrIn8duUV2VPREBlWQOLYXyaod1a8DayGEXg6a4Z9RL8RQsL/cwfYSK4+vb+Dy18tptjr55YeVrD1i4Yw4AxY7nDty6CRADlb/d2Ywl4z1ZWuRlTs+9Wx59ptnunJRnt/c6NH9eoPcphmG+pqw1lHJ4c8prRsBqMSFNRGZdEHfO+ReEO/pvu9DCOFR7+yrQsGIisLHWWbiH8mmxmxg1Ag946MMfF9k5Y9nB3faZltlAR/l76ba0kSETwCXJU/ulLyqqiqf5O/hu7LDtDhspAaGcfXIGUT6nN65fh9cE0HKo4U8saGBs5J8uHR8z9+LT2ROkg96DXx2oJmHzx/hkX16iwQjw0xfE9Y6KshaSaU5DgU7STE6QmPm971DLdnQsgcC5oN+6BTgEWK421diAEUBFVQUaswGtBqVZy/z5dq3zAQYlU5VRI80VPLSgQ0sTp7ExNBYtlTk8dz+77hnyo+I9QsG4MuiLL4qyeaGtAzCTH58nLebJ/d+zf3TLjqtE101Gg1bl8aS8HAhV75VzqHfxZMYovfIvkeH6TlYZfPIvrxJbtMMMydLWDuZnD3vUmmOR6GVkUnBhMbMOLUO5d3q+n/Sv05tP0IIj3E6FfaWaOg8l1LBqSpc8mo95U0OzkntfItmbXE240KjWRg3lmjfIC5JmkSCfwjrSg4CrlGRtcUHuCBhPJNHxBHnF8KNaRnUtbaws6pw4F7cIBXur2PVDVHYnTDzmWLsds9UaL0w3RebE9bntXhkf94iwchpyGw243AcX5r50M63qW1NRkMT6aMTCQwbc2oHslVB4zfgMxF8Rp3avoQQHlNR74fl+PplqKpCs821mN1Zx1RMzWmsIj04qtNjY0OiyWl05UFUWcw02CyM6dDGR2cgOSDM3eZ0Nz/Vh79khlBhdnLuy2Un36AHbjvDdQvsxS1DO29EgpHTjNVq5cCBAxw8eLBTQHJg+zs02FPRUceYMRPxDYw/9YO5F8R76tT3JYTwmJKqILQnWUC39ZildxusFgKPWXgtUG+ivm2Btgab65N5YBdL2dcfs4jb6ezPC0JYkGpiXa6F+1bXnPL+EkP0+BkUvs6RkRExhNTUuH75m5ubOXz4ME6nk33b3sespqKnknETZ2PyCz31AzktULMSDAkQeNap708I0SutDjvflB7q8rnCqiA6xhpKW2Ci1zoAlXnJJv54dkj/d/I09cUNUUQFaHngqzpWH2o++QYnMSXaQFG9w2O3frxBgpHTiKqqVFW1D5c2NTWxc8dGLCRhoIixExegM/h65mCFdwF2iHvQM/sTQvRYs93K47vXsL7syHHP2R0K5bWuKaFHB0emxhh49cfhLJxUCSgsW3B8IBJoMNFgO2aZepuFoLaRkEC9K8fk2OXuG6ztbYSLTqdhy9JY9FpY9J8yyhq6uGfWC1dM9EMF3t5j9kwHvUCCkdOI3dJKa2vnJFYVH7Q0Mn7qxegMHipX7HRCxYugDYWwazyzTyFEj72SvYm8JtcoqAKMDopgXtRIxgVHs/VAfNujKlOT69m6NIYfbo9jybQA9hX5EuzXyvzU4+uLpAQcv5R9Vm0ZKQGuWXJhJj8C9aZObVrsNnIbq9xtRLv4IB0fXBNJqwNmPluM09n3UY0bp7ryRl7f2eSp7g04mdp7GrHUd53g5CCAoqIi4uM9kCcCUPYPUFsg+j7P7E8I0WPF5jp217iWr/fTGblz4jnE+blGOr7NbSGroJTwwGZ+NGMfPkYHNn0gxeYRfF2US2G1P3NSXOMlr2RvJNjgy6XJkwFYEJvGY7vXsLooiwmhMWytzCe/qYZrR80EQFEUFsSms6pwLxE+AYSZ/PkofzfBRh8mh3novWWYuWiMH7+fG8Sj39Vz8WvlfHpDdJ/242/SEO6nYXPhyWdMDlYSjJwmtChYGrofwquoqECv1xMVFdVtmx4rfRgUH4j6w6nvSwjRKx1vzSxKHO8ORA5UWFn833LmJptYfrGOlw+6Etj/c3Az/nojeSVR2B1B3D0nEoCa1mYU2rNcUwPDuSntTD7K38WHebuI8Angl2PnumuMACyMG4PVYef1Q1totlsZGRTOr8fNP61rjJzMIxeMYH2ehc+yW3j02zp+f1Zwn/ZzZqKJD/c3U9NsJ9R36F3ah16PRbeqLE18kr+ny+eStP5wkgWay8rKiIyMRFFOkmZ/ItXvgKMaIm6XBfGE8IKylgb391PDEgA4WGll8lNFxATo+ODaSAJMCv85pMGhOon2DWLZtAtJfqQAo87OwtGuwoi/nZh53L6nhScwLTyh22MrisLFSRO5OGmih1/V8Lbulmhilhdw1+c1zE4wcmZS78vwXz8lgA/3N/PClkbuHoLJx3K1GCbyG2t4cMcX7uHZY03X+XUZjCiKQmBgIPHx8YwdO/bUAhFoS1zVQsKjp7YfIcQpU9v+5pevq8PugLd+Gk6wjxZUcLYVR7Q6HeyrqiKv1s6MWM9UBRW9Y9Bp2HRrDFoNnPtyGTXNvU9ovWSsDxoFPtg3NJNYJRgZBsw2K0/vW4fZ7lq50ajRMWVEHHOjUonzC2a+tpEgTaB7/p5erycsLIyRI0cyefJkRo0aRUREBIZTTWBt3ADWPAhZLAviCeElMb5B7u+3Vubz1ZEWXt3exKMXhDIrwfWJ++uSgxz9aFJlaeL6j/YBEBC2jxrL0LyYDXWjwg3894pwWmwqs54t6XVCq0ajISlYx96yoVkaXoKRYWBD+RH3lLvUwDCWz1zMrWPP4tpRs/jlCD3phlTAQYWtkI+shYwam05iYiJBQUFoPHkrJf92XAviPeu5fQohemVOVKr7+4/y9nLRf0oJNCr8KsMVpKwtzubd3O2dtjlcEoZGcRIbXsPeWs8vdS965qeTArh1VgCHq+1cvaKy19ufO8qHFrvK/nJrP/Suf0kwMgx0TFhbMuoM/PSuEY7Kws2UVpoxkU+lsYAPbc2U25vZ3h/rRLQcguad4D8HDBGe378QokeifYOY2jZ75YsdCbTY4NwJlXxSuIsHd3zBOznbOrW32jU0NJsID25Co4EVh38gu67cG10XwHOLw5kUbeDtPWb+tbnh5Bt0cMtMV/2Y53u53WAgwcgQ51SdlLclrMX5BRPp65pvXpr9JgXlWuxKGCljLyE+7kz3Nh0T3Dwm75eu/yc95/l9CyF6ZcnoMwhQozlSEkagbwsjIg7zReF+8pvay48bNFouT5pCSOtsQOGsNNfUfwcqL2dvxHEKdS/Eqdl4awyBRoXbPqpiZ0nPp+tOjTVh1MIXh4ZeaXgJRoaj8ufQ1H+CXqlmwthUDL5hJ5tIc2rsNdD4FfiMA99x/XggIURPmLR6Pt7iul1zRUbBcc9H+wTy8MxLOS9+DKW1RkJ9NLxxUQajg1yjmnXWFnZWFw1on0U7X4OG9b+IAeCsF0posvQ8MBwbYSCn2nZKRdS8QYKRIU6jaIj2cY2GFJtrMB+5HfJvIzIykolTM9H5uIro/FDV/oYU3SHBzSPybgdUSPh/nt2vEKJPnvu+nkPVdq6a5M+/Fizknik/6pTYeuvYufjqDdgdKl8eauHmmQHotTrOj2//MLG96vggRgycCdFGnl8cRmOryuznu54l2ZWLx/rhUGH14aE1OiLByFDnaODi4GKu1L7K04Yb8Kl+hta4xyHxCVBchYa2VRbwfXkuAD5aPdPCuq8T0GtOK9S8C4Y4CFrguf0KIfrEYnVy52c1+OoVXv1xOBpFQ4J/KI624VGjVkdUW2Dyq4+rqG1xMiHSlWeWHDDCvZ+js/OE99w8M5BrJvuzp9zGze/3LKH11ra8kX//MLRKw0vRs6HG0QiN66FxHdSvgeadTMWJqnXN3N3lmMy/82KZ1vQ9gQYT2XXl5DZWuzfPjE3HqPXgP3vRPYAdYv/muX0KIfrsqrcrsNhV/vOTcAy69s+bPm1/960OO3Wtzby+zcbzWxq5dJwvV01yFTorb2lfMsKj7xOiz177SRhbi1p56YdGzk4xcc2UgBO2jwrUEWRS+C7PcsJ2g438tg0VNe9DyYOuGSs4cf3TtRfGURRwqFpetd9GK3Y2lucct4szIpK5IGG85/rkdELFc6ANhvAlntuvEKJPthdb+HB/M+Mi9Fw/tfNFa0xItHvxvLvW5PDCel/unBPEYxeEoigKqqqypviAu/3YkL6tkyI8S6PRsPmX0cQ9VMiSdyuZHmckLfzENaGmxxpZe8SCxerEZBgaN0AkGBkqzNuhuWNtgGMr9GmxhV7HdCaxuSKPVmf783F+wZwTk8bsyJRTr7DaUcVT4DRD7F89t08hxElZ7DY+yt/NzupCGm2txPuFcGXqNC57vQkF+GRJ5HHbBGqCOFAYzq6caBrMPlwytZT7MqNQFIVqi5lVhXvZWpnvbr+h7AgJ/iEky4q7Xhfsq2PtTdFkPFdCxnMllNydcMIg46pJ/qw9YuG1HU3cMitwAHvad4qq9us8C49oaGggKCiI+vp6AgOHxon1OKcNshdC47eAo+s243eC7yRa7DaKzLXYnA6CDD7E+AZ5Ngg5ansEOBpgWrOsQyPEAHohaz0lzfVcPXIGwQYfNlfk8tKOYj7enMZN0wN48fJwAMxWJ59kNfPK9jrWHLLgVF3vAxpF5WcLt6DRQIDeSKOt8/TRSxInUt1qZntVAX+ZtohAg1RUHgz++V0dd66qYWacgc1L47ptZ7E68VmWx/wUE1/dHDOAPTxeT6/fMjLiRTUWM0329jcBf52RUJNf1401ehi1EvbNgNZDxz4JfrPAdxIAPjo9o4L6ufBYzftgr4TwX0ggIsQAsjrs7Kgq5LZxZ7mn4s6PHM81u/WM8G/lqUWJfJJl5s2dTXy4vxmLXUWjqDjVo3+nKunxFe4/246BiAJcPXImZ0WPxKmq7K0pYWP5EX4UL1P2B4M75gazLtfCx1nN3PlZFY9f2PWolcmgITpAy7bintco8TYJRrykxmLmzz98gl1tnwuuUzQ8MH1R9wGJagVHXRdPOCHqN/3Sz24V/gHQQvzjA3tcIU5zTlXFiYqubbYcwOVvltHUYuAXCwpJ/6cf+XV2dBqwO49u03FkVOHvZ6dT6LCyr7aEUKMfvjo9ReY6rhs1izPbyslrFIX04ChyGqoG8NWJk1l5bQTJjxbyz/UNzE304dLxXV8vzkoy8fYeMyUNdmICB/+lvk8faZ955hmSkpIwmUzMmjWLLVu2dNv2xRdfZO7cuYSEhBASEkJmZuYJ258umuytnQIRALvq7DRS0ol5F+xKco1GjPgZKAZcn2MAXRiEXNqv/e2kcTO05kDwRaDzHbjjCiEw6fSkBISxqnAvda3NrM9tZvXhFsYnlRIe3MiFaa7F8Ozd1LwKMmm4aHQIZ8eMQgXun3Yht487GxWI8u08jB5oMFFvG1qzMoY7jUbD1qWxmHQKV75VTn5t1wvj3TRjaJWG73Uw8vbbb3PnnXeybNkytm/fzqRJk1i4cCEVFRVdtl+3bh1XXXUVX3/9NZs2bSI+Pp7zzjuP4uKeF3E57dV8gLpvOs0OeFJ9iNvLzmOl9g9wdN3NiKWgOT67OruunL9t/5yl61dw79aPu5xh83XJQf605SOWrl/B8p1fktvYg09B+UsBBZJkQTwhvOFnaRmoKty15UOu/Wg/Jr2dn5+hQUHh6UvCuD2j63vzOg1cNs4XnbYfcsjEgInw1/HZDVHYnTDzmWLsXUSe56Sa0CrwcVazF3rYe70ORh5//HFuvvlmbrzxRsaOHcvzzz+Pr68vL7/8cpft33jjDW677TYmT55Meno6L730Ek6nk7Vr155y508LxX+Hw5dTrY7gec3/40fpN3Lf1AvQjfgJHzquw6kNgYhbjtusytLE0/vWkRYcyb1Tz2dBbBr/PbiZfR1W5Nxamc97Odu5MGE890w5nzi/YJ7c+zUN1hN8ErLkQfM28MsAg3cTo4Q4XYX7BPC7SZlEWM4jvzyUX8wYgY/BSZjJH0VReHLRCM5KMh63nd0Jl4/3B6DBasGk1WPQ6vDXG9Gg0HjM336D1UKQXpJXB6NzUn24PzOECrOTc18uO+55jUbDyBF6siqGRvG6XgUjVquVbdu2kZmZ2b4DjYbMzEw2bdrUo300Nzdjs9kIDQ3ttk1raysNDQ2dvk5LR66B4ntx6iL5m3U556aez+igCCJ8AliUOJF9pqv4JHR1l0HBN6WHCDP585OUqUT7BjE/Jo2pYfGsKc52t1lTfIA5UamcGZVKjF8Q14yciUGjY2P5keP255Z3q+v/siCeEF5V02znoXUNhPpo+Ot5/uyvLSXaN5Cn963jik/+x4aCZnz0nT8x++gVFqS6gousujJSAsPIrivnoZ3/w4nKKwe/d4+gOlWVA21t+jSCKvrdfQtCWJBqYl2uhWWrazo9Z7Y6mRxjwOqArUWD/1Zbr4KRqqoqHA4HkZGd57BHRkZSVnZ8ZNaVu+66i5iYmE4BzbGWL19OUFCQ+ys+Pr433Rz0Ssz1fJq/t8vnqi1mcNph7wyofhN8JmIdf5gWjJ0S1gD0Gh2HG2u73E9OQxXpwVGdHhsbEu1ORrM7HRQ01jCmQ5uTJqzZ66BhNZjSwW9iD1+tEMLT9tWWsOj1XOxOlUcu1vDE3q+I8g1kVFAEuWXBrNycSmRIE6tu0bFsQXDbViqT41upszWyruQg2yoLmBme6B5B/XHyFKxOO68d/J7vSg/x5uGtWJ12fHSG3o+gigHzxQ1RRPlr+etXdaw+5Lolc6Taxoyni3l7txmAFzY3nmgXg8KAzsl86KGHWLFiBStXrsRk6n7o749//CP19fXur8LCwgHsZf/aXlXI33d8zq6arlfEXHHgC2w74qD5Bwi5DCbswmTw75Sw5lSdfF+RS05DFfXWrhdDarBZjqsNEGgwYXHYsDrsNNlacaIS0EWbbhPW8n8DOCHhid6+bCGEB63Ps/B9nsKU1BIOWH5gZGA4vxk/n525gTy+JpAQfysLp2UTbNJyf2Yofz8vBFBIjKzkge2fs7r4ANeNnkVJc717BPXcuDFckTIVvUbLG4e3Umiu5dfj5rOxPKf3I6hiwOh0GjYvjUWvhUWvlfHG9kamPFnEwSpXYqtBC2uODP5F83o13ycsLAytVkt5eXmnx8vLy4mKiupmK5fHHnuMhx56iDVr1jBx4ok/VRuNRozG4+93DnW5jVX8+8AG9ywao0ZHSmAYqqpypKGKCDWHu/R/QWdvpSH8twSmPObe9mdpGfzn4Gbu2vIhGhQS/EOYEZ5IQVNNd4fzLKcdat4CfQwELxyYYwohjuN0OrnnUw0aBf730wzC/F1v42/tauTG96vwNyjsWjqav+za6d7mT/NDuGqSP0khyZ0KID66a3WnEdT5MWkYNDreydnOHycvdI+gnh831t1GpvwOPgnBOt69OoLF/63g2ncrUXBNb9BrYISvhoI6O06nE80grgnVq2DEYDAwbdo01q5dy+LFiwHcyai33357t9s98sgj/P3vf+fLL79k+vTpp9Thoeyzgr3uQGRmeBLXjJqBSasHwFK1EkPOvaCqvGRfitZ2GT/rsO3RhLVWhx2Lw0aQwYcXstYTZvLv8liBetNxw6gdE9Y0itK7hLXiP4Nqg9i/9P0ECCFO2e8/r6G62cm984Pdgcj7e5q4ZkUlvnqFfXfEd1lXIjlUf9xjJxtBbbZbux1BLWs5TXP5BqF6i5OXtrav0nu0rLrNCUatglOF13bWcM7o9mDkhEU2vaDXlVDuvPNOlixZwvTp05k5cyZPPPEEZrOZG2+8EYDrr7+e2NhYli9fDsDDDz/Mfffdx5tvvklSUpI7t8Tf3x9//64vpMNRTauZvTWumSwhBl+WjJ6FTtOWA1L/P0y5V6FqTPzT9meynQnoKgu4MmU6fvrOU3aNWh1GrQ6zzcr+2lIuS57S5fFSAsPcxzvqaMIagE6jJSEglKy6ciaHuXJyjiaszY8Z3XlnTieUPw3aQIi46VRPhRCiB1RV5cWtjcxLNrkXRitpsPPEhgYi/bU8cJ5rEsDH+8385M0KTDqFPf8XS0Lw4C9wJTxnf7mVRa+VkV977HplLuVNruVD/vJNPpvM7RMYTlpkc4D1eszmyiuv5LHHHuO+++5j8uTJ7Ny5ky+++MKd1FpQUEBpaam7/XPPPYfVauXHP/4x0dHR7q/HHnusu0MMS8XmOne0Oj08sT0QOXwVZJ8PgfNRppQRHjYfcBVAK22ud2+/r7aEvTUlVFma2F9byuN71hDlG8iZkSkArMzdySvZG93t50WPosrSxPu5OyhrrncnrGXGprnbZMams77sMJvKcyhtrncnrM1u26db5fPgbIKIAa7yKsRprLDewS9WVjH+iSL+9GU1zVYnl7xWhlOFd692lYH/8qCZS18vx6hT2PHrWJJDT7ya67FONoIqU34Hvzs+qyanxo6jm1XmWuwQYISy2s4f/k9YZNML+hRC33777d3ellm3bl2nn/Py8vpyiGHH0WE9QqO27bSrattKvE7Xqrzlz+LPGe52zg4VWlvsNlbm7aKutRlfnYGpYfEsTpqEtu0eYL21hZrW9uI2YSZ/bh93Nu/mbOer4myCjb5cN3oW40LapwHPCE+kyWbh4/zdNFgtxPmH8Otx8wk0+HTufPFfQTFC7H0ePCNCiBOpaPtEa3fCw9/U86/NjdS0OMkcaWJusg9fHWnhglfL0Wngh9tjT7qsfFc8OoIqvOLFy8J5+JtaXtraiN0Jzi6CkthADQcqdVhtGgz6bkrzepmM5w2Q8A65HbtrirkoYbwrkWzCfmg5DOX/QC2+j4tVOz8yGKhVQ4nID4J8G6itTFdtTNdYwWQF1Q7Oc0H3sXufN6RlHHfMowXPTmR+TBrzY9K6b1D7MdjLIeznoJFfFyEGSqW5fXVupwo1La6LiAK8t7uRn66oRKvA5ttiGRfpCkQsDhuVLe25A1WtZgqbavHTGQg1+bEydyd11mZuTJsNuEZQ15Uc5P3cHZwZmcKBunK2VRZw+/h57n1kxqbzavYmkgJCSQoYwdri7K5HUIVXJATreOaScJYtCOXJjfU8uaGeJqtKe0yi0qzWAYEcKIpgYnJ7GY7d1cUk+Hdf82sgydVlgMT4BpHgH0pBUw0FTTWsKz3k+mShaME3DZJfYC0/ZVL5TwnXVOKjlEBrSfc71IV7vpOtBXDoEgi5HCJvA10oFPwO0Mh0XiEGWMdgpKO1hy2sPmxBo8C6W6KZHNM+8zC/sYbH97RXt343ZzsAGRHJ3JCW0b8jqMKrIvy1/O28UO6aF8wLWxp45Js6KswOQKG01hdQyS0d0SkY+aRgDyoqixK9XzdKUVW1mztNg0dDQwNBQUHU19cTGNj1mgtDwQ+V+bx4YIP759FBEUwNi8epqmytzCe3sRoNdu7WLyNBk0f3q0coMOEA+Hh4mLThGzhwdtshTBC8GGpXQNCFkPapZ48lhDihf3xXxx8+r+ly2P2oz5ZEcUG6LFYpjvdtcQ5//uYI6/cm41QV/I0ObA4tK37WxL66Egqa2gtmLh07j4kjYvulHz29fg/eScfD0PTwRBZ2mK9/sL6CFUe28U7OdnIbqwFwouNw1KsounC6/ufRQPClng9EADQdEtJUiysQAdDooXm3548nhOhWpdlBd+vZGbTw+IWhLBwtoxPieKqq8k35AdLjK7nhvK2MiwTVqaPVrnBWpKuS7uUdZmKuLs7yYm9dJBgZYJclT+aG0WcQ6RNw3HMxvkHckj6HBUnzYNRHdP3P44T6z6HwHlchMk/SdPPGVvsp7J0EB86F5n2ePaYQAoAai5kDdWVsrypgX00JuXXNXc6QmBFn4OBv47ljTjBajay+K45XZK6jyFwHwKjgUNb8PBE/o+t6svqQqxrrubHpRPq4RioO1le4liLxIskZ8YKMyBTOiEjmcEMl5W2Fg2J8g0kOGNFeHTEgAxKfhPzbOmypBUM82Gug9EEo+weEXQ/xT4DOA0O1SndT9dqCnoY1UP1f8H3o1I8lhABcn2K/LTvEW4d/oGPs8X3JaJyqq4z7UXefFcSDPwrtVEVViGNVW9qTmCeExhAVoOPDa6OY/XwJD3xVy5WTXKs7jw+Jdl+Dqi1NjPBizREJRrxEURRGBUUwKiii+0YRt4J5C1S9BjgBB6T8GwLPgfJnofgvUPkiVL4MIZdA4nNgOMH+TkZzkroBEb+C2Af6vn8hRCdO1clrBzezqSL3uOfK6wLAXdhb4bWfhHPd1ONHVIU4lkZpH1VvsbvWqMlINHH9FH9CfNufszhs7u+1Xi4VL7dpBjNFgaRnwWeC62ffKRDgKopG5G0wtRxGvgeGBKj9AHZGQdY5YOndAlY1FjMFTTUUtXS1mJIWFD0kvwpJT7ryR4QQHrEyb1enQCTU6Mv4kGiCtKG02nQcLex97ewKrp1y+lSsFqcm3j8EpW1EbWtlPjana2bWf66I4ImLXDVkWuw2tle5FqHVa7RE+wZ5p7NtZGRksNP4wOiP4OAiiH/YFaB0FHq566txPeTdBo1fw+6R4DsVkp4H/xkn3H2Nxcyff/gEu+rESAtPdlqfUAv6cBj1CfifvmsKCdEfGqwW1ha7ynNrFIUbRp/BzPAkFEXhurfLATOgcvbEI/gGV3GgLokxISdekFQIgBCjLxNHxLKruog6awsvZ2/k2pGz3MuLNFgtvHpwEy1tIyMzwhPx1fW+aJ4nSTDiQZ/k7+bTgr2dHov0CeSv0y/qdpttlQV8lL+baksTET4BXJY8mQmh7VOsVFXlk9J6vjPfT8veGlID13L1yBnuxCO3gDkwYbcrwTTvVmjaAPtngnGUq0ZIyAXHHftAXRkf5e12L95no33UQwUU/1kw6gPQR/b+ZAghTmhTeQ6Otr+9BTFpzIpIBmDtoWZe32lGo8Bd5yhUG12r435bdkiCEdFjFyWMZ19NCXbVyfaqQvbWlDAmOApHWwXdo+/7Jq2u0yxPb5FgxMNifIP4vwnnuH/WniDR7EhDJS8d2MDi5ElMDI1lS0Uez+3/jnum/IhYv2AAvizK4quSbG5IyyDM5MfHebt5cu/X3D/tIvRH17fpyHccjP0OrCWQ+wuoXwWHLgR9NMT9HcJdCxp+VZzN2znbOm3qRIuqugZfvnWcR0jEv5gogYgQ/SK/qcb9fUZbNdMmi4PFr5ejUWDtTdHMTTJyx6YfaHXaO9WFEOJkEvxDuXXsXP6VtR6b04HV6WBXTXGnNiatntvGnkWUr/frd0nOiIdpFIUgg4/7y/8Ei0mtLc5mXGg0C+PGEu0bxCVJk0jwD2FdyUHANSqytvgAFySMZ/KIOOL8QrgxLYO61hZ2tt3r65YhBtI+gam1ELYE7FWQ+zPYFkrp4T/xds5Wd9Nggw/TwxJYGFyPosAPjpm8aV/CC9mbKTHXn+AgQoi+cnaxXtXOMiutDpWnLw7j7BQfNIriXlSz41pVQvTEhNBY7pt6AWdHj8akbR978NUZODc2nWVTLyAteHB84JSREQ+raGnkD5tXotdoSAkI49Kkyd0u0ZzTWEVmbHqnx8aGRLOrugiAKouZBpuFMcHtQ7M+OgPJAWHkNFYxIyLp5B3SBULKq5D0AhTdAxXPEl2znCcNBr51LKAp6n4uSZ7uyr4+9DiqM43t+kehugib08Hq4iyWjD7jpIcRQvROWMf1qqqLOSc2jTlJPjQuS8Kod31OzGmswty2suoIoySwit6L8AngqpHT+UnKFNcKzQoEGXzQKoNrLGJw9WaISw4I44bRGfx6/NlcPXIGVRYzj+5ejcVu67J9g9VC4DEjJ4F6E/Vty3U32FyzWwINx7QxtLfpMY0BEh6lKK2A920/xY6ec3Wfs7h6LpqKf4F5D9R+iBL9O65Py8BH68of2VqZ323/hRB9lxGZ7P7+88J9VLY0ArgDkRa7jXfa1pYBmB0lC9OJvtNptISa/Ag1+g26QARkZMSjxoe2Ly4V5xdCckAYf9zyET9UFTAnKtWLPWtX0tLI/5yL+J91EbdF5DLJ+h7kL3XN2tEGQNi1mDR6Jo6IZXNFHjang0pLE/H+Id7uuhDDSqxfMONCotlXW0qDzcJft6/ijIhkUgLDKG9pZEPZERpsrg8dIQZfpocleLnHQvSfwRceDSO+OgORPgHuTzzHCjSY3G82RzXYLAS1jYQE6l3l2RuOGQVpsLa36a2OC0uX+V0KE3bA+P1gSISAs92FzzoWzVEZ9GspCjEk/Swtw13fwep08G3ZYV49+D2fF+5zvzf46gzcNu4sDFr57CiGL/nt7kcWh41KSxNndLPUdkpAGAfqyjrljWTVlpES4CpKE2byI1Bv4kBdmXtkosVuI7exinnRI/vUp45TgndUFbqmdPmmw8T97sdtTgd7ql1Z11pF0+nethDCc/z1Jn4/8Vw+zNvJ9xW5WNuKUwEoKEwaEctlSZOJHASzHcTg8k3JIb4pPUR1q6v0e7RvEBclTOg0Qn+sHpWSyN/Dd2WHaXHYSA0M67qURD+QYMSD3svZzsTQWEJNftRbW/gkfw8aFGaEJwLwSvZGgg2+XJo8GYAFsWk8tnsNq4uymBAaw9bKfPKbarh21EzAVTJ+QWw6qwr3EuETQJjJn4/ydxNs9GFyWHyf+pjoH0qcXzBF5jpyG6tZXZRFZmy6e60Lh+pkxZEfaGpLmpsaFu/1YjhCDGd+egPXjJrJZcmT2VtbSpOtFZNWR1pwJKFG760VIga3YKMPlyZPIsInAFTYVJHLs/u/5d4pPyKmrTRER/1SSsKDJBjxoNrWZl7K3ojZ1oq/3sjIwHDunnweAW23VGpam90legFSA8O5Ke1MPsrfxYd5u4jwCeCXY+e6fzEAFsaNweqw8/qhLTTbrYwMCufX4+b3+RdDURR+FD+Olw5sAOC93B1srshj0og47E4HWyvzqW51rd6oURTOixvTx7MhhOgNH53B/cFFiJOZNCKu08+LkybxTekhchqruwxGOpaSALgkaRJZdWWsKznINaNmHldKAuDGtAx+9/0H7Kwq7NnszVMgwYgH3Txmzgmf/+3EzOMemxaewLTw7hPTFEXh4qSJXJw08ZT7d9SM8ERKm+v5rK1abKG5lkJz54JKGlzlqRP8Qz12XCGEEJ7nVJ1sqyzA6rC7b/Mfa0BKSZwCCUZOUxcnTiTOL5gvi7LIa6zu9NzYkGgujB/HyBOtKCyEEMKris11PLzzf9icDoxaHbeOnUuMX9cL3g1oKYk+kGDkNDY1LIGpYQkUm+uobGlEURRi/YIlYVUIDzlYX8H/ivZT0FRLvbWFX46Ze9J8r+y6ct7N2U5pcz0hRl8uSBjP7MjONUa+LjnI6qIs6q0txPmH8NPUaSR384lYDF+RPgHcO/X8thV4C3g1+3t+OzGz24BkMJOpvYJYv2Amh8UzaUScBCJCeJDVYSfOL4SrUnu26nWVpYmn960jLTiSe6eez4LYNP57cDP7akvcbbZW5vNeznYuTBjPPVPOJ84vmCf3fn1cCQAx/Ok0WiJ8AkgMCOXS5MnE+QfzVUl2l229UUqiNyQYEUKIfjI+NIbFSZOY0sPZb9+UHiLM5M9PUqYS7RvE/Jg0pobFs6a4/QKzpvgAc6JSOTMqlRi/IK4ZORODRsfG8iP99TLEEKGqYO8wPbyjo6UkOuqulMRRR0tJdJeH4kkSjAghxCCR01BFeocEQnDlcOU0VAGuC01BY02nJEONopAeHOVuI04PK3N3crC+gipLE8Xmurafy5nZlmj6SvZGVubudLdfEJvGvtpSVhdlUdZczyf5u8lvquHsmNFA51ISu6qLKDbX8crBTadUSqI3JGdkGPq8cB87qgopa2nAoNGSEhjOZUmTT7pM9GAuiCPE6aDBZukygdDisGF12Gm2W3GiussFdGxT1tIwkF0VXtZos/Bq9ibqrS346PTE+gXz6/HzGRsSDQyOUhK9IcHIMHSwvoKzY0aT5B+KQ1X5MG8X/2/vV9w/7SL3UuXHGuwFcYQQQrS7/iSrqQ+WUhI9JbdphqHfjJ/P7MgUYvyCifcP4YbRZ1DT2kx+U02323QsiBPtG8QlSZNI8A9hXclBgOMK4sT5hXBjWgZ1rS3srCocqJcmxLAWqDd1mUBo0uoxaHX4641oUGjsKslQ3/9JhkL0FwlGTgMtDhsAfico657T2M296kbXfeiTFcQRQpy6lMAukgzrykgJdCUQ6jRaEgJCyaordz/vVFUOdGgjxFAkwcgw51RV3snZRmpgeKd7g8ca7AVxhBiKLA4bhU21FDa5KhxXtZopbKqlxuJacmFl7k5eyd7obj8vehRVlibez91BWXM960oOsq2ygMzYNHebzNh01pcdZlN5DqXN9bx5eCtWp/24WiRCDCWSMzLMvXV4KyXmen4/6Vxvd0WI005+Yw2P71nr/vndnO0AZEQkc0NaBvXWFmpam93Ph5n8uX3c2bybs52virMJNvpy3ehZjAtpX4l1RngiTTYLH+fvpsFqIc4/hF+Pm09gN6uDCzEUSDAyjL11eCt7akr43aRMQoy+J2zbm4I4QR3e9BqsFuL9gz3bcSGGibTgSP419+pun78hLaPLbe6dev4J9zs/Jo35MWknbCPEUCK3aYYhVVV56/BWdlYXccfEc3pUVXWwF8QRQggxfEkwMgy9deQHNlfk8fO02Zi0euqtLdRbW7A67O42Q60gjhBCiOFLbtMMQ9+UHgLgHx3uVQMsGX2GO8ltqBXEEUIIMXwpqqqq3u7EyTQ0NBAUFER9fT2BgVLtUwghhBgKenr9lts0QgghhPAqCUaEEEII4VUSjAghhBDCqyQYEUIIIYRXSTAihBBCCK+SYEQIIYQQXiXBiBBCCCG8SoIRIYQQQniVBCNCCCGE8CoJRoQQQgjhVRKMCCGEEMKrJBgRQgghhFdJMCKEEEIIr5JgRAghhBBeJcGIEEIIIbxKghEhhBBCeJUEI0IIIYTwKglGhBBCCOFVEowIIYQQwqskGBFCCCGEV/UpGHnmmWdISkrCZDIxa9YstmzZcsL27777Lunp6ZhMJiZMmMCqVav61FkhhBBCDD+9Dkbefvtt7rzzTpYtW8b27duZNGkSCxcupKKiosv2Gzdu5KqrruLnP/85O3bsYPHixSxevJi9e/eecueFEEIIMfQpqqqqvdlg1qxZzJgxg6effhoAp9NJfHw8v/rVr7j77ruPa3/llVdiNpv59NNP3Y+dccYZTJ48meeff75Hx2xoaCAoKIj6+noCAwN7010hhBBCeElPr9+9GhmxWq1s27aNzMzM9h1oNGRmZrJp06Yut9m0aVOn9gALFy7stj1Aa2srDQ0Nnb6EEEIIMTz1KhipqqrC4XAQGRnZ6fHIyEjKysq63KasrKxX7QGWL19OUFCQ+ys+Pr433RRCCCHEEDIoZ9P88Y9/pL6+3v1VWFjo7S4JIYQQop/oetM4LCwMrVZLeXl5p8fLy8uJiorqcpuoqKhetQcwGo0YjcbedE0IIYQQQ1SvRkYMBgPTpk1j7dq17secTidr164lIyOjy20yMjI6tQdYvXp1t+2FEEIIcXrp1cgIwJ133smSJUuYPn06M2fO5IknnsBsNnPjjTcCcP311xMbG8vy5csB+M1vfsO8efP4xz/+wYUXXsiKFSv44YcfeOGFFzz7SoQQQggxJPU6GLnyyiuprKzkvvvuo6ysjMmTJ/PFF1+4k1QLCgrQaNoHXGbPns2bb77Jvffey5/+9CdGjRrFhx9+yPjx4z33KoQQQggxZPW6zog3SJ0RIYQQYujplzojQgghhBCeJsGIEEIIIbxKghEhhBBCeJUEI0IIIYTwKglGhBBCCOFVEowIIYQQwqskGBFCCCGEV0kwIoQQQgivkmBECCGEEF7V63Lw3nC0SGxDQ4OXeyKEEEKInjp63T5ZsfchEYw0NjYCEB8f7+WeCCGEEKK3GhsbCQoK6vb5IbE2jdPppKSkhICAABRF8dh+GxoaiI+Pp7CwUNa86UdyngeOnOuBIed5YMh5Hhj9eZ5VVaWxsZGYmJhOi+gea0iMjGg0GuLi4vpt/4GBgfKLPgDkPA8cOdcDQ87zwJDzPDD66zyfaETkKElgFUIIIYRXSTAihBBCCK86rYMRo9HIsmXLMBqN3u7KsCbneeDIuR4Ycp4HhpzngTEYzvOQSGAVQgghxPB1Wo+MCCGEEML7JBgRQgghhFdJMCKEEEIIr5JgRAghhBBeNeyDkWeeeYakpCRMJhOzZs1iy5YtJ2z/7rvvkp6ejslkYsKECaxatWqAejq09eY8v/jii8ydO5eQkBBCQkLIzMw86b+LaNfb3+mjVqxYgaIoLF68uH87OEz09jzX1dWxdOlSoqOjMRqNjB49Wt4/eqC35/mJJ54gLS0NHx8f4uPjueOOO7BYLAPU26Hp22+/ZdGiRcTExKAoCh9++OFJt1m3bh1Tp07FaDQycuRIXn311f7tpDqMrVixQjUYDOrLL7+s7tu3T7355pvV4OBgtby8vMv2GzZsULVarfrII4+o+/fvV++9915Vr9ere/bsGeCeDy29Pc9XX321+swzz6g7duxQs7Ky1BtuuEENCgpSi4qKBrjnQ09vz/VRubm5amxsrDp37lz1kksuGZjODmG9Pc+tra3q9OnT1QsuuEBdv369mpubq65bt07duXPnAPd8aOnteX7jjTdUo9GovvHGG2pubq765ZdfqtHR0eodd9wxwD0fWlatWqXec8896gcffKAC6sqVK0/YPicnR/X19VXvvPNOdf/+/epTTz2larVa9Ysvvui3Pg7rYGTmzJnq0qVL3T87HA41JiZGXb58eZftr7jiCvXCCy/s9NisWbPUX/ziF/3az6Gut+f5WHa7XQ0ICFD/85//9FcXh42+nGu73a7Onj1bfemll9QlS5ZIMNIDvT3Pzz33nJqSkqJardaB6uKw0NvzvHTpUvWcc87p9Nidd96pnnnmmf3az+GkJ8HIH/7wB3XcuHGdHrvyyivVhQsX9lu/hu1tGqvVyrZt28jMzHQ/ptFoyMzMZNOmTV1us2nTpk7tARYuXNhte9G383ys5uZmbDYboaGh/dXNYaGv5/qvf/0rERER/PznPx+Ibg55fTnPH3/8MRkZGSxdupTIyEjGjx/Pgw8+iMPhGKhuDzl9Oc+zZ89m27Zt7ls5OTk5rFq1igsuuGBA+ny68Ma1cEgslNcXVVVVOBwOIiMjOz0eGRnJgQMHutymrKysy/ZlZWX91s+hri/n+Vh33XUXMTExx/3yi876cq7Xr1/Pv//9b3bu3DkAPRwe+nKec3Jy+Oqrr7jmmmtYtWoVhw8f5rbbbsNms7Fs2bKB6PaQ05fzfPXVV1NVVcWcOXNQVRW73c6tt97Kn/70p4Ho8mmju2thQ0MDLS0t+Pj4ePyYw3ZkRAwNDz30ECtWrGDlypWYTCZvd2dYaWxs5LrrruPFF18kLCzM290Z1pxOJxEREbzwwgtMmzaNK6+8knvuuYfnn3/e210bVtatW8eDDz7Is88+y/bt2/nggw/47LPPeOCBB7zdNXGKhu3ISFhYGFqtlvLy8k6Pl5eXExUV1eU2UVFRvWov+naej3rsscd46KGHWLNmDRMnTuzPbg4LvT3XR44cIS8vj0WLFrkfczqdAOh0OrKzs0lNTe3fTg9Bffmdjo6ORq/Xo9Vq3Y+NGTOGsrIyrFYrBoOhX/s8FPXlPP/5z3/muuuu46abbgJgwoQJmM1mbrnlFu655x40Gvl87QndXQsDAwP7ZVQEhvHIiMFgYNq0aaxdu9b9mNPpZO3atWRkZHS5TUZGRqf2AKtXr+62vejbeQZ45JFHeOCBB/jiiy+YPn36QHR1yOvtuU5PT2fPnj3s3LnT/XXxxRczf/58du7cSXx8/EB2f8joy+/0mWeeyeHDh93BHsDBgweJjo6WQKQbfTnPzc3NxwUcRwNAVZZZ8xivXAv7LTV2EFixYoVqNBrVV199Vd2/f796yy23qMHBwWpZWZmqqqp63XXXqXfffbe7/YYNG1SdTqc+9thjalZWlrps2TKZ2tsDvT3PDz30kGowGNT33ntPLS0tdX81NjZ66yUMGb0918eS2TQ909vzXFBQoAYEBKi33367mp2drX766adqRESE+re//c1bL2FI6O15XrZsmRoQEKC+9dZbak5Ojvq///1PTU1NVa+44gpvvYQhobGxUd2xY4e6Y8cOFVAff/xxdceOHWp+fr6qqqp69913q9ddd527/dGpvb///e/VrKws9ZlnnpGpvafqqaeeUhMSElSDwaDOnDlT/f77793PzZs3T12yZEmn9u+88446evRo1WAwqOPGjVM/++yzAe7x0NSb85yYmKgCx30tW7Zs4Ds+BPX2d7ojCUZ6rrfneePGjeqsWbNUo9GopqSkqH//+99Vu90+wL0eenpznm02m3r//ferqampqslkUuPj49XbbrtNra2tHfiODyFff/11l++5R8/tkiVL1Hnz5h23zeTJk1WDwaCmpKSor7zySr/2UVFVGdsSQgghhPcM25wRIYQQQgwNEowIIYQQwqskGBFCCCGEV0kwIoQQQgivkmBECCGEEF4lwYgQQgghvEqCESGEEEJ4lQQjQgghhPAqCUaEEEII4VUSjAghhBDCqyQYEUIIIYRXSTAihBBCCK/6/zF3HoxB1JYoAAAAAElFTkSuQmCC", "text/plain": [ "
    " ] @@ -925,7 +1094,7 @@ ], "source": [ "# Greedy rollouts over trained model (same states as previous plot, with 20 nodes)\n", - "model = new_model_checkpoint.model.to(device)\n", + "model = new_model_checkpoint.to(device)\n", "env = new_model_checkpoint.env.to(device)\n", "\n", "out = model(td_init, phase=\"test\", decode_type=\"greedy\", return_actions=True)\n", diff --git a/pyproject.toml b/pyproject.toml index c45b10ca..f11d1442 100644 --- a/pyproject.toml +++ b/pyproject.toml @@ -37,25 +37,22 @@ dependencies = [ "torch>=2.0.0", "torchrl>=0.1.1", "tensordict>=0.1.1", - "lightning>=2.0.0", + "lightning>=2.0.5", "hydra-core", "hydra-colorlog", "omegaconf", "pyrootutils", "rich", - "numpy", "einops", "wandb", - "pre-commit>=3.3.3", "matplotlib", "scipy", - "pydantic<2.0.0" # Temporary bugfix https://github.com/Lightning-AI/lightning/pull/18022 ] [project.optional-dependencies] graph = ["torch_geometric"] -testing = ["pytest"] -linting = ["black", "ruff"] +testing = ["pytest", "pytest-cov"] +dev = ["black", "ruff", "pre-commit>=3.3.3"] [project.urls] "Homepage" = "https://github.com/kaist-silab/rl4co" @@ -128,3 +125,13 @@ exclude = ''' ) ''' +[tool.coverage] +include = ["rl4co.*"] + +[tool.coverage.report] +show_missing = true +exclude_lines = [ + # Lines to exclude from coverage report (e.g., comments, debug statements) + "pragma: no cover", + "if __name__ == .__main__.:", +] diff --git a/rl4co/__init__.py b/rl4co/__init__.py index 034f46c3..3dc1f76b 100644 --- a/rl4co/__init__.py +++ b/rl4co/__init__.py @@ -1 +1 @@ -__version__ = "0.0.6" +__version__ = "0.1.0" diff --git a/rl4co/data/transforms.py b/rl4co/data/transforms.py new file mode 100644 index 00000000..7e006c4f --- /dev/null +++ b/rl4co/data/transforms.py @@ -0,0 +1,121 @@ +import math + +import torch + +from tensordict.tensordict import TensorDict +from torch import Tensor + +from rl4co.utils.ops import batchify + + +def dihedral_8_augmentation(xy: Tensor) -> Tensor: + """ + Augmentation (x8) for grid-based data (x, y) as done in POMO. + This is a Dihedral group of order 8 (rotations and reflections) + https://en.wikipedia.org/wiki/Examples_of_groups#dihedral_group_of_order_8 + + Args: + xy: [batch, graph, 2] tensor of x and y coordinates + """ + # [batch, graph, 2] + x, y = xy.split(1, dim=2) + # augmnetations [batch, graph, 2] + z0 = torch.cat((x, y), dim=2) + z1 = torch.cat((1 - x, y), dim=2) + z2 = torch.cat((x, 1 - y), dim=2) + z3 = torch.cat((1 - x, 1 - y), dim=2) + z4 = torch.cat((y, x), dim=2) + z5 = torch.cat((1 - y, x), dim=2) + z6 = torch.cat((y, 1 - x), dim=2) + z7 = torch.cat((1 - y, 1 - x), dim=2) + # [batch*8, graph, 2] + aug_xy = torch.cat((z0, z1, z2, z3, z4, z5, z6, z7), dim=0) + return aug_xy + + +def symmetric_transform(x: Tensor, y: Tensor, phi: Tensor, offset: float = 0.5): + """SR group transform with rotation and reflection + Like the one in SymNCO, but a vectorized version + + Args: + x: [batch, graph, 1] tensor of x coordinates + y: [batch, graph, 1] tensor of y coordinates + phi: [batch, 1] tensor of random rotation angles + offset: offset for x and y coordinates + """ + x, y = x - offset, y - offset + # random rotation + x_prime = torch.cos(phi) * x - torch.sin(phi) * y + y_prime = torch.sin(phi) * x + torch.cos(phi) * y + # make random reflection if phi > 2*pi (i.e. 50% of the time) + mask = phi > 2 * math.pi + # vectorized random reflection: swap axes x and y if mask + xy = torch.cat((x_prime, y_prime), dim=-1) + xy = torch.where(mask, xy.flip(-1), xy) + return xy + offset + + +def symmetric_augmentation(xy: Tensor, num_augment: int = 8): + """Augment xy data by `num_augment` times via symmetric rotation transform and concatenate to original data + + Args: + xy: [batch, graph, 2] tensor of x and y coordinates + num_augment: number of augmentations + """ + # create random rotation angles (4*pi for reflection, 2*pi for rotation) + phi = torch.rand(xy.shape[0], device=xy.device) * 4 * math.pi + # set phi to 0 for first , i.e. no augmnetation as in original paper + phi[: xy.shape[0] // num_augment] = 0.0 + x, y = xy[..., [0]], xy[..., [1]] + return symmetric_transform(x, y, phi[:, None, None]) + + +def env_aug_feats(env_name: str = None): + """What features to augment for a given environment + Usually, locs already includes depot, so we don't need to augment depot + """ + return ("locs",) + + +def min_max_normalize(x): + return (x - x.min()) / (x.max() - x.min()) + + +class StateAugmentation(object): + """Augment state by N times via symmetric rotation/reflection transform + + Args: + env_name: environment name + num_augment: number of augmentations + use_dihedral_8: whether to use dihedral_8_augmentation. If True, then num_augment must be 8 + normalize: whether to normalize the augmented data + """ + + def __init__( + self, + env_name: str = None, + num_augment: int = 8, + use_dihedral_8: bool = False, + normalize: bool = False, + ): + assert not ( + use_dihedral_8 and num_augment != 8 + ), "If use_dihedral_8 is True, then num_augment must be 8" + if use_dihedral_8: + self.augmentation = dihedral_8_augmentation + else: + self.augmentation = symmetric_augmentation + + self.feats = env_aug_feats(env_name) + self.num_augment = num_augment + self.normalize = normalize + + def __call__(self, td: TensorDict) -> TensorDict: + td_aug = batchify(td, self.num_augment) + for feat in self.feats: + aug_feat = self.augmentation(td_aug[feat], self.num_augment) + td_aug[feat] = aug_feat + if self.normalize: + td_aug[feat] = min_max_normalize(td_aug[feat]) + + return td_aug diff --git a/rl4co/envs/__init__.py b/rl4co/envs/__init__.py index 455adde3..1926bd49 100644 --- a/rl4co/envs/__init__.py +++ b/rl4co/envs/__init__.py @@ -4,6 +4,7 @@ from rl4co.envs.common.base import RL4COEnvBase from rl4co.envs.cvrp import CVRPEnv from rl4co.envs.dpp import DPPEnv +from rl4co.envs.ffsp import FFSPEnv from rl4co.envs.mdpp import MDPPEnv from rl4co.envs.mtsp import MTSPEnv from rl4co.envs.op import OPEnv @@ -12,3 +13,37 @@ from rl4co.envs.sdvrp import SDVRPEnv from rl4co.envs.spctsp import SPCTSPEnv from rl4co.envs.tsp import TSPEnv + +# Register environments +ENV_REGISTRY = { + "atsp": ATSPEnv, + "cvrp": CVRPEnv, + "dpp": DPPEnv, + "mdpp": MDPPEnv, + "mtsp": MTSPEnv, + "op": OPEnv, + "pctsp": PCTSPEnv, + "pdp": PDPEnv, + "sdvrp": SDVRPEnv, + "spctsp": SPCTSPEnv, + "tsp": TSPEnv, +} + + +def get_env(env_name: str, *args, **kwargs) -> RL4COEnvBase: + """Get environment by name. + + Args: + env_name: Environment name + *args: Positional arguments for environment + **kwargs: Keyword arguments for environment + + Returns: + Environment + """ + env_cls = ENV_REGISTRY.get(env_name, None) + if env_cls is None: + raise ValueError( + f"Unknown environment {env_name}. Available environments: {ENV_REGISTRY.keys()}" + ) + return env_cls(*args, **kwargs) diff --git a/rl4co/envs/atsp.py b/rl4co/envs/atsp.py index 80e1ae5f..fe451db9 100644 --- a/rl4co/envs/atsp.py +++ b/rl4co/envs/atsp.py @@ -191,7 +191,8 @@ def generate_data(self, batch_size) -> TensorDict: break return TensorDict({"cost_matrix": dms}, batch_size=batch_size) - def render(self, td): + @staticmethod + def render(td, actions=None, ax=None): try: import networkx as nx except ImportError: @@ -201,12 +202,16 @@ def render(self, td): return td = td.detach().cpu() + if actions is None: + actions = td.get("action", None) + # if batch_size greater than 0 , we need to select the first batch element if td.batch_size != torch.Size([]): td = td[0] + actions = actions[0] - src_nodes = td["action"] - tgt_nodes = torch.roll(td["action"], 1, dims=0) + src_nodes = actions + tgt_nodes = torch.roll(actions, 1, dims=0) # Plot with networkx G = nx.DiGraph(td["cost_matrix"].numpy()) diff --git a/rl4co/envs/common/base.py b/rl4co/envs/common/base.py index c55a55de..f5c9f82c 100644 --- a/rl4co/envs/common/base.py +++ b/rl4co/envs/common/base.py @@ -103,10 +103,12 @@ def dataset(self, batch_size=[], phase="train", filename=None): try: td = self.load_data(f, batch_size) except FileNotFoundError: - raise Exception( + log.error( f"Provided file name {f} not found. Make sure to provide a file in the right path first or " f"unset {phase}_file to generate data automatically instead" ) + td = self.generate_data(batch_size) + return TensorDictDataset(td) def generate_data(self, batch_size): diff --git a/rl4co/envs/cvrp.py b/rl4co/envs/cvrp.py index 0ce3f9f4..14b31553 100644 --- a/rl4co/envs/cvrp.py +++ b/rl4co/envs/cvrp.py @@ -314,17 +314,19 @@ def render(td: TensorDict, actions=None, ax=None): _, ax = plt.subplots() td = td.detach().cpu() + + if actions is None: + actions = td.get("action", None) + # if batch_size greater than 0 , we need to select the first batch element if td.batch_size != torch.Size([]): td = td[0] + actions = actions[0] locs = td["locs"] scale = CAPACITIES.get(td["locs"].size(-2) - 1, 1) demands = td["demand"] * scale - if actions is None: - actions = td.get("action", None) - # add the depot at the first action and the end action actions = torch.cat([torch.tensor([0]), actions, torch.tensor([0])]) diff --git a/rl4co/envs/mpdp.py b/rl4co/envs/mpdp.py new file mode 100644 index 00000000..77e6c7cc --- /dev/null +++ b/rl4co/envs/mpdp.py @@ -0,0 +1,541 @@ +from typing import Optional + +import torch + +from tensordict.tensordict import TensorDict +from torchrl.data import ( + BoundedTensorSpec, + CompositeSpec, + UnboundedContinuousTensorSpec, + UnboundedDiscreteTensorSpec, +) + +from rl4co.envs.common.base import RL4COEnvBase +from rl4co.utils.ops import gather_by_index +from rl4co.utils.pylogger import get_pylogger + +log = get_pylogger(__name__) + + +class MPDPEnv(RL4COEnvBase): + """Multi-agent Pickup and Delivery Problem environment. + The goal is to pick up and deliver all the packages while satisfying the precedence constraints. + When an agent goes back to the depot, a new agent is spawned. In the min-max version, the goal is to minimize the + maximum tour length among all agents. + The reward is the -infinite unless the agent visits all the cities. + In that case, the reward is (-)length of the path: maximizing the reward is equivalent to minimizing the path length. + + Args: + num_loc: number of locations (cities) in the TSP + min_loc: minimum location coordinate. Used for data generation + max_loc: maximum location coordinate. Used for data generation + min_num_agents: minimum number of agents. Used for data generation + max_num_agents: maximum number of agents. Used for data generation + objective: objective to optimize. Either 'minmax' or 'minsum' + check_solution: whether to check the validity of the solution + td_params: parameters of the environment + """ + + name = "mpdp" + + def __init__( + self, + num_loc: int = 20, + min_loc: float = 0, + max_loc: float = 1, + min_num_agents: int = 2, + max_num_agents: int = 10, + objective: str = "minmax", + check_solution: bool = False, + td_params: TensorDict = None, + **kwargs, + ): + super().__init__(**kwargs) + self.num_loc = num_loc + self.min_loc = min_loc + self.max_loc = max_loc + self.min_num_agents = min_num_agents + self.max_num_agents = max_num_agents + self.objective = objective + self.check_solution = check_solution + self._make_spec(td_params) + + def _step(self, td: TensorDict) -> TensorDict: + selected = td["action"][:, None] # Add dimension for step + + agent_num = td["lengths"].size(1) + n_loc = td["to_delivery"].size(-1) - agent_num - 1 + + new_to_delivery = (selected + n_loc // 2) % ( + n_loc + agent_num + 1 + ) # the pair node of selected node + + is_request = (selected > agent_num) & (selected <= agent_num + n_loc // 2) + td["left_request"][is_request] -= 1 + depot_distance = td["depot_distance"].scatter(-1, selected, 0) + + add_pd = td["add_pd_distance"][is_request.squeeze(-1), :].gather( + -1, selected[is_request.squeeze(-1), :] - agent_num - 1 + ) + td["longest_lengths"][is_request.squeeze(-1), :].scatter_add_( + -1, td["count_depot"][is_request.squeeze(-1), :], add_pd + ) + td["add_pd_distance"][is_request.squeeze(-1), :].scatter_( + -1, selected[is_request.squeeze(-1), :] - agent_num - 1, 0 + ) + remain_sum_paired_distance = td["add_pd_distance"].sum(-1, keepdim=True) + remain_pickup_max_distance = depot_distance[:, : agent_num + 1 + n_loc // 2].max( + dim=-1, keepdim=True + )[0] + remain_delivery_max_distance = depot_distance[ + :, agent_num + 1 + n_loc // 2 : + ].max(dim=-1, keepdim=True)[0] + + # Calculate makespan + cur_coord = gather_by_index(td["locs"], selected) + path_lengths = (cur_coord - td["cur_coord"]).norm(p=2, dim=-1) + + td["lengths"].scatter_add_(-1, td["count_depot"], path_lengths.unsqueeze(-1)) + + # If visit depot then plus one to count_depot\ + td["count_depot"][ + (selected == td["agent_idx"]) & (td["agent_idx"] < agent_num) + ] += 1 # torch.ones(td["count_depot"][(selected == 0) & (td["agent_idx"] < agent_num)].shape, dtype=torch.int64, device=td["count_depot"].device) + + # `agent_idx` is added by 1 if the current agent comes back to depot + agent_idx = (td["count_depot"] + 1) * torch.ones( + selected.size(0), 1, dtype=torch.long, device=td["count_depot"].device + ) + visited = td["visited"].scatter(-1, selected.unsqueeze(-1), 1) + to_delivery = td["to_delivery"].scatter(-1, new_to_delivery[:, :, None], 1) + + # Get done and reward + done = visited.all(dim=-1, keepdim=True).squeeze(-1) + reward = torch.ones_like(done) * float( + "-inf" + ) # reward calculated via `get_reward` for now + + td_step = TensorDict( + { + "next": { + "locs": td["locs"], + "visited": visited, + "lengths": td["lengths"], + "count_depot": td["count_depot"], + "agent_idx": agent_idx, + "cur_coord": cur_coord, + "to_delivery": to_delivery, + "left_request": td["left_request"], + "depot_distance": depot_distance, + "remain_sum_paired_distance": remain_sum_paired_distance, + "remain_pickup_max_distance": remain_pickup_max_distance, + "remain_delivery_max_distance": remain_delivery_max_distance, + "add_pd_distance": td["add_pd_distance"], + "longest_lengths": td["longest_lengths"], + "i": td["i"] + 1, + "done": done, + "reward": reward, + } + }, + td.shape, + ) + td_step["next"].set("action_mask", self.get_action_mask(td_step["next"])) + return td_step + + def _reset( + self, + td: Optional[TensorDict] = None, + batch_size: Optional[list] = None, + agent_num: Optional[int] = None, # NOTE hardcoded from ET + ) -> TensorDict: + if batch_size is None: + batch_size = self.batch_size if td is None else td["locs"].shape[:-2] + + if td is None or td.is_empty(): + td = self.generate_data(batch_size=batch_size) + + self.device = td.device + + # NOTE: this is a hack to get the agent_num + # agent_num = td["agent_num"][0].item() if agent_num is None else agent_num + # agent_num = agent_num if agent_num is not None else td["agent_num"][0].item() + + depot = td["depot"] + depot = depot.repeat(1, agent_num + 1, 1) + loc = td["locs"] + left_request = loc.size(1) // 2 + whole_instance = torch.cat((depot, loc), dim=1) + + # Distance from all nodes between each other + distance = torch.cdist(whole_instance, whole_instance, p=2) + index = torch.arange(left_request, 2 * left_request, device=depot.device)[ + None, :, None + ] + index = index.repeat(distance.shape[0], 1, 1) + add_pd_distance = distance[ + :, agent_num + 1 : agent_num + 1 + left_request, agent_num + 1 : + ].gather(-1, index) + add_pd_distance = add_pd_distance.squeeze(-1) + + remain_pickup_max_distance = distance[:, 0, : agent_num + 1 + left_request].max( + dim=-1, keepdim=True + )[0] + remain_delivery_max_distance = distance[:, 0, agent_num + 1 + left_request :].max( + dim=-1, keepdim=True + )[0] + remain_sum_paired_distance = add_pd_distance.sum(dim=-1, keepdim=True) + + # Distance from depot to all nodes + # Delivery nodes should consider the sum of distance from depot to paired pickup nodes and pickup nodes to delivery nodes + distance[:, 0, agent_num + 1 : agent_num + 1 + left_request] = ( + distance[:, 0, agent_num + 1 : agent_num + 1 + left_request] + + distance[:, 0, agent_num + 1 + left_request :] + ) + + # Distance from depot to all nodes + depot_distance = distance[:, 0, :] + depot_distance[:, agent_num + 1 : agent_num + 1 + left_request] = depot_distance[ + :, agent_num + 1 : agent_num + 1 + left_request + ] # + add_pd_distance + + batch_size, n_loc, _ = loc.size() + to_delivery = torch.cat( + [ + torch.ones( + batch_size, + 1, + n_loc // 2 + agent_num + 1, + dtype=torch.uint8, + device=loc.device, + ), + torch.zeros( + batch_size, 1, n_loc // 2, dtype=torch.uint8, device=loc.device + ), + ], + dim=-1, + ) + + # Create reset TensorDict + td_reset = TensorDict( + { + "locs": torch.cat((depot, loc), -2), + "visited": torch.zeros( + batch_size, + 1, + n_loc + agent_num + 1, + dtype=torch.uint8, + device=loc.device, + ), + "lengths": torch.zeros(batch_size, agent_num, device=loc.device), + "longest_lengths": torch.zeros(batch_size, agent_num, device=loc.device), + "cur_coord": td["depot"] + if len(td["depot"].shape) == 2 + else td["depot"].squeeze(1), + "i": torch.zeros( + batch_size, dtype=torch.int64, device=loc.device + ), # Vector with length num_steps + "to_delivery": to_delivery, + "count_depot": torch.zeros( + batch_size, 1, dtype=torch.int64, device=loc.device + ), + "agent_idx": torch.ones( + batch_size, 1, dtype=torch.long, device=loc.device + ), + "left_request": left_request + * torch.ones(batch_size, 1, dtype=torch.long, device=loc.device), + "remain_pickup_max_distance": remain_pickup_max_distance, + "remain_delivery_max_distance": remain_delivery_max_distance, + "depot_distance": depot_distance, + "remain_sum_paired_distance": remain_sum_paired_distance, + "add_pd_distance": add_pd_distance, + }, + batch_size=batch_size, + ) + td_reset.set("action_mask", self.get_action_mask(td_reset)) + return td_reset + + @staticmethod + def get_action_mask(td: TensorDict) -> torch.Tensor: + """Get the action mask for the current state.""" + + visited_loc = td["visited"].clone() + + agent_num = td["lengths"].size(1) + n_loc = visited_loc.size(-1) - agent_num - 1 # num of customers + batch_size = visited_loc.size(0) + agent_idx = td["agent_idx"][:, None, :] + mask_loc = visited_loc.to(td["to_delivery"].device) | (1 - td["to_delivery"]) + + # depot + if td["i"][0].item() != 0: + mask_loc[:, :, : agent_num + 1] = 1 + + # if deliver nodes which is assigned agent is complete, then agent can go to depot + no_item_to_delivery = ( + visited_loc[:, :, n_loc // 2 + agent_num + 1 :] + == td["to_delivery"][:, :, n_loc // 2 + agent_num + 1 :] + ).all(dim=-1) + mask_loc[no_item_to_delivery.squeeze(-1), :, :] = mask_loc[ + no_item_to_delivery.squeeze(-1), :, : + ].scatter_(-1, agent_idx[no_item_to_delivery.squeeze(-1), :, :], 0) + + condition = (td["count_depot"] == agent_num - 1) & ( + (visited_loc[:, :, agent_num + 1 :] == 0).sum(dim=-1) != 0 + ) + + mask_loc[..., agent_num][condition] = 1 + + else: + return ( + torch.cat( + [ + torch.zeros( + batch_size, 1, 1, dtype=torch.uint8, device=mask_loc.device + ), + torch.ones( + batch_size, + 1, + n_loc + agent_num, + dtype=torch.uint8, + device=mask_loc.device, + ), + ], + dim=-1, + ) + > 0 + ) + action_mask = mask_loc == 0 # action_mask gets feasible actions + return action_mask + + def get_reward(self, td: TensorDict, actions: TensorDict) -> TensorDict: + # Check that the solution is valid + if self.check_solution: + self.check_solution_validity(td, actions) + + # Calculate the reward (negative tour length) + if self.objective == "minmax": + return -td["lengths"].max(dim=-1, keepdim=True)[0].squeeze(-1) + elif self.objective == "minsum": + return -td["lengths"].sum(dim=-1, keepdim=True).squeeze(-1) + else: + raise ValueError(f"Unknown objective {self.objective}") + + @staticmethod + def check_solution_validity(td: TensorDict, actions: torch.Tensor): + assert True, "Not implemented" + + def generate_data(self, batch_size) -> TensorDict: + # Batch size input check + batch_size = [batch_size] if isinstance(batch_size, int) else batch_size + + # Initialize the locations (including the depot which is always the first node) + locs_with_depot = ( + torch.FloatTensor(*batch_size, self.num_loc + 1, 2) + .uniform_(self.min_loc, self.max_loc) + .to(self.device) + ) + + return TensorDict( + { + "locs": locs_with_depot[..., 1:, :], + "depot": locs_with_depot[..., 0, :], + }, + batch_size=batch_size, + ) + + def _make_spec(self, td_params: TensorDict): + """Make the observation and action specs from the parameters.""" + max_nodes = self.num_loc + self.max_num_agents + 1 + self.observation_spec = CompositeSpec( + locs=BoundedTensorSpec( + minimum=self.min_loc, + maximum=self.max_loc, + shape=(max_nodes, 2), + dtype=torch.float32, + ), + current_node=UnboundedDiscreteTensorSpec( + shape=(1), + dtype=torch.int64, + ), + action_mask=UnboundedDiscreteTensorSpec( + shape=(max_nodes, 1), + dtype=torch.bool, + ), + visited=UnboundedDiscreteTensorSpec( + shape=(1, max_nodes), + dtype=torch.bool, + ), + lengths=UnboundedContinuousTensorSpec( + shape=(self.max_num_agents,), + dtype=torch.float32, + ), + longest_lengths=UnboundedContinuousTensorSpec( + shape=(self.max_num_agents,), + dtype=torch.float32, + ), + cur_coord=BoundedTensorSpec( + minimum=self.min_loc, + maximum=self.max_loc, + shape=(2,), + dtype=torch.float32, + ), + to_delivery=UnboundedDiscreteTensorSpec( + shape=(max_nodes, 1), + dtype=torch.bool, + ), + count_depot=UnboundedDiscreteTensorSpec( + shape=(1,), + dtype=torch.int64, + ), + agent_idx=UnboundedDiscreteTensorSpec( + shape=(1,), + dtype=torch.int64, + ), + left_request=UnboundedDiscreteTensorSpec( + shape=(1,), + dtype=torch.int64, + ), + remain_pickup_max_distance=UnboundedContinuousTensorSpec( + shape=(1,), + dtype=torch.float32, + ), + remain_delivery_max_distance=UnboundedContinuousTensorSpec( + shape=(1,), + dtype=torch.float32, + ), + depot_distance=UnboundedContinuousTensorSpec( + shape=(max_nodes,), + dtype=torch.float32, + ), + remain_sum_paired_distance=UnboundedContinuousTensorSpec( + shape=(1,), + dtype=torch.float32, + ), + add_pd_distance=UnboundedContinuousTensorSpec( + shape=(max_nodes,), + dtype=torch.float32, + ), + ## NOTE: we should have a vectorized implementation for agent_num + # agent_num=UnboundedDiscreteTensorSpec( + # shape=(1,), + # dtype=torch.int64, + # ), + i=UnboundedDiscreteTensorSpec( + shape=(1,), + dtype=torch.int64, + ), + ) + self.input_spec = self.observation_spec.clone() + self.action_spec = BoundedTensorSpec( + shape=(1,), + dtype=torch.int64, + minimum=0, + maximum=max_nodes, + ) + self.reward_spec = UnboundedContinuousTensorSpec(shape=(1,)) + self.done_spec = UnboundedDiscreteTensorSpec(shape=(1,), dtype=torch.bool) + + @staticmethod + def render(td: TensorDict, actions=None, ax=None): + # TODO: color switch with new agents; add pickup and delivery nodes as in `PDPEnv.render` + + import matplotlib.pyplot as plt + import numpy as np + + from matplotlib import cm, colormaps + + num_routine = (actions == 0).sum().item() + 2 + base = colormaps["nipy_spectral"] + color_list = base(np.linspace(0, 1, num_routine)) + cmap_name = base.name + str(num_routine) + out = base.from_list(cmap_name, color_list, num_routine) + + if ax is None: + # Create a plot of the nodes + _, ax = plt.subplots() + + td = td.detach().cpu() + + if actions is None: + actions = td.get("action", None) + + # if batch_size greater than 0 , we need to select the first batch element + if td.batch_size != torch.Size([]): + td = td[0] + actions = actions[0] + + locs = td["locs"] + + # add the depot at the first action and the end action + actions = torch.cat([torch.tensor([0]), actions, torch.tensor([0])]) + + # gather locs in order of action if available + if actions is None: + log.warning("No action in TensorDict, rendering unsorted locs") + else: + locs = locs + + # Cat the first node to the end to complete the tour + x, y = locs[:, 0], locs[:, 1] + + # plot depot + ax.scatter( + locs[0, 0], + locs[0, 1], + edgecolors=cm.Set2(2), + facecolors="none", + s=100, + linewidths=2, + marker="s", + alpha=1, + ) + + # plot visited nodes + ax.scatter( + x[1:], + y[1:], + edgecolors=cm.Set2(0), + facecolors="none", + s=50, + linewidths=2, + marker="o", + alpha=1, + ) + + # text depot + ax.text( + locs[0, 0], + locs[0, 1] - 0.025, + "Depot", + horizontalalignment="center", + verticalalignment="top", + fontsize=10, + color=cm.Set2(2), + ) + + # plot actions + color_idx = 0 + for action_idx in range(len(actions) - 1): + if actions[action_idx] == 0: + color_idx += 1 + from_loc = locs[actions[action_idx]] + to_loc = locs[actions[action_idx + 1]] + ax.plot( + [from_loc[0], to_loc[0]], + [from_loc[1], to_loc[1]], + color=out(color_idx), + lw=1, + ) + ax.annotate( + "", + xy=(to_loc[0], to_loc[1]), + xytext=(from_loc[0], from_loc[1]), + arrowprops=dict(arrowstyle="-|>", color=out(color_idx)), + size=15, + annotation_clip=False, + ) + + # Setup limits and show + ax.set_xlim(-0.05, 1.05) + ax.set_ylim(-0.05, 1.05) + plt.show() diff --git a/rl4co/envs/mtsp.py b/rl4co/envs/mtsp.py index 7495f964..e85fa624 100644 --- a/rl4co/envs/mtsp.py +++ b/rl4co/envs/mtsp.py @@ -271,7 +271,7 @@ def generate_data(self, batch_size) -> TensorDict: ) @staticmethod - def render(td): + def render(td, actions=None, ax=None): import matplotlib.pyplot as plt from matplotlib import colormaps @@ -283,14 +283,15 @@ def discrete_cmap(num, base_cmap="nipy_spectral"): cmap_name = base.name + str(num) return base.from_list(cmap_name, color_list, num) - td = td.detach().cpu() + if actions is None: + actions = td.get("action", None) # if batch_size greater than 0 , we need to select the first batch element if td.batch_size != torch.Size([]): td = td[0] + actions = actions[0] num_agents = td["num_agents"] locs = td["locs"] - actions = td["action"] cmap = discrete_cmap(num_agents, "rainbow") fig, ax = plt.subplots() diff --git a/rl4co/envs/pdp.py b/rl4co/envs/pdp.py index e263bcd0..7d6a309d 100644 --- a/rl4co/envs/pdp.py +++ b/rl4co/envs/pdp.py @@ -221,7 +221,7 @@ def generate_data(self, batch_size) -> TensorDict: ) @staticmethod - def render(td, actions=None): + def render(td: TensorDict, actions=None, ax=None): import matplotlib.pyplot as plt markersize = 8 @@ -291,14 +291,7 @@ def render(td, actions=None): label="Delivery" if i == 0 else None, ) - # Legend - # plt.legend(['Actions', 'Depot', 'Delivery', 'Pickup']) - # get handles - handles, labels = ax.get_legend_handles_labels() - - # plot legend - ax.legend(handles, labels) - ax.set_title("Pickup and Delivery Problem Solution") - ax.set_xlabel("x-coordinate") - ax.set_ylabel("y-coordinate") + # Setup limits and show + ax.set_xlim(-0.05, 1.05) + ax.set_ylim(-0.05, 1.05) plt.show() diff --git a/rl4co/envs/tsp.py b/rl4co/envs/tsp.py index bfff2c3a..bbb76864 100644 --- a/rl4co/envs/tsp.py +++ b/rl4co/envs/tsp.py @@ -87,6 +87,7 @@ def _reset(self, td: Optional[TensorDict] = None, batch_size=None) -> TensorDict self.device = device = init_locs.device if init_locs is not None else self.device if init_locs is None: init_locs = self.generate_data(batch_size=batch_size).to(device)["locs"] + batch_size = [batch_size] if isinstance(batch_size, int) else batch_size # We do not enforce loading from self for flexibility num_loc = init_locs.shape[-2] @@ -179,15 +180,16 @@ def render(td, actions=None, ax=None): _, ax = plt.subplots() td = td.detach().cpu() + + if actions is None: + actions = td.get("action", None) # if batch_size greater than 0 , we need to select the first batch element if td.batch_size != torch.Size([]): td = td[0] + actions = actions[0] locs = td["locs"] - if actions is None: - actions = td.get("action", None) - # gather locs in order of action if available if actions is None: log.warning("No action in TensorDict, rendering unsorted locs") diff --git a/rl4co/models/__init__.py b/rl4co/models/__init__.py index 7c650a85..4d9b165a 100644 --- a/rl4co/models/__init__.py +++ b/rl4co/models/__init__.py @@ -1,9 +1,7 @@ from rl4co.models.zoo.am import AttentionModel, AttentionModelPolicy -from rl4co.models.zoo.ham import ( - HeterogeneousAttentionModel, - HeterogeneousAttentionModelPolicy, -) -from rl4co.models.zoo.mdam import MDAMPolicy -from rl4co.models.zoo.pomo import POMO, POMOPolicy +from rl4co.models.zoo.common.autoregressive import AutoregressivePolicy +from rl4co.models.zoo.ppo import PPOModel, PPOPolicy from rl4co.models.zoo.ptrnet import PointerNetwork, PointerNetworkPolicy from rl4co.models.zoo.symnco import SymNCO, SymNCOPolicy +from rl4co.models.zoo.ham import HeterogeneousAttentionModel, HeterogeneousAttentionModelPolicy +from rl4co.models.zoo.mdam import MDAM, MDAMPolicy \ No newline at end of file diff --git a/rl4co/models/nn/attention.py b/rl4co/models/nn/attention.py index 4ba29b56..80576682 100644 --- a/rl4co/models/nn/attention.py +++ b/rl4co/models/nn/attention.py @@ -24,7 +24,7 @@ def scaled_dot_product_attention( ): """Simple Scaled Dot-Product Attention in PyTorch without Flash Attention""" if scale is None: - scale = Q.size(-1) ** -0.5 # scale factor + scale = math.sqrt(Q.size(-1)) # scale factor # compute the attention scores attn_scores = torch.matmul(Q, K.transpose(-2, -1)) / scale # apply causal masking if required @@ -53,19 +53,35 @@ def flash_attn_wrapper(self, func, *args, **kwargs): return func(*args, **kwargs) -class NativeFlashMHA(nn.Module): - """PyTorch native implementation of Flash Multi-Head Attention with automatic mixed precision support.""" +class MultiHeadAttention(nn.Module): + """PyTorch native implementation of Flash Multi-Head Attention with automatic mixed precision support. + Uses PyTorch's native `scaled_dot_product_attention` implementation, available from 2.0 + + Note: + If `scaled_dot_product_attention` is not available, use custom implementation of `scaled_dot_product_attention` without Flash Attention. + In case you want to use Flash Attention, you may have a look at the MHA module under `rl4co.models.nn.flash_attention.MHA`. + + Args: + embed_dim: total dimension of the model + num_heads: number of heads + bias: whether to use bias + attention_dropout: dropout rate for attention weights + causal: whether to apply causal mask to attention scores + device: torch device + dtype: torch dtype + force_flash_attn: whether to force flash attention. If True, then we automatically cast to fp16 + """ def __init__( self, - embed_dim, - num_heads, - bias=True, - attention_dropout=0.0, - causal=False, + embed_dim: int, + num_heads: int, + bias: bool = True, + attention_dropout: float = 0.0, + causal: bool = False, device=None, dtype=None, - force_flash_attn=False, + force_flash_attn: bool = False, ) -> None: factory_kwargs = {"device": device, "dtype": dtype} super().__init__() @@ -107,85 +123,6 @@ def forward(self, x, key_padding_mask=None): flash_attn_wrapper = flash_attn_wrapper -class MultiHeadAttention(nn.Module): - """Multi-Head Attention module following Kool et al. (2019)""" - - def __init__(self, embed_dim, num_heads, **kwargs): - super(MultiHeadAttention, self).__init__() - - self.num_heads = num_heads - self.embed_dim = embed_dim - self.hdim = embed_dim // num_heads - - self.norm_factor = 1 / math.sqrt(self.hdim) # See Attention is all you need - - self.Wq = nn.Parameter(torch.Tensor(num_heads, embed_dim, self.hdim)) - self.Wk = nn.Parameter(torch.Tensor(num_heads, embed_dim, self.hdim)) - self.Wv = nn.Parameter(torch.Tensor(num_heads, embed_dim, self.hdim)) - - self.Wout = nn.Parameter(torch.Tensor(num_heads, self.hdim, embed_dim)) - - self.init_parameters() - - def init_parameters(self): - for param in self.parameters(): - stdv = 1.0 / math.sqrt(param.size(-1)) - param.data.uniform_(-stdv, stdv) - - def forward(self, q, h=None, mask=None): - """q: queries (batch_size, n_query, input_dim) - h: data (batch_size, graph_size, input_dim) - mask: mask (batch_size, n_query, graph_size) or viewable as that (i.e. can be 2 dim if n_query == 1) - Mask should contain 1 if attention is not possible (i.e. mask is negative adjacency) - """ - - if h is None: - h = q # compute self-attention - - batch_size, graph_size, input_dim = h.size() - n_query = q.size(1) - assert q.size(0) == batch_size - assert q.size(2) == input_dim - - hflat = h.contiguous().view(-1, input_dim) - qflat = q.contiguous().view(-1, input_dim) - - # Last dimension can be different for keys and values - shp = (self.num_heads, batch_size, graph_size, -1) - shp_q = (self.num_heads, batch_size, n_query, -1) - - # Calculate queries, (num_heads, n_query, graph_size, key/val_size) - Q = torch.matmul(qflat, self.Wq).view(shp_q) - # Calculate keys and values (num_heads, batch_size, graph_size, key/val_size) - K = torch.matmul(hflat, self.Wk).view(shp) - V = torch.matmul(hflat, self.Wv).view(shp) - - # Calculate compatibility (num_heads, batch_size, n_query, graph_size) - compatibility = self.norm_factor * torch.matmul(Q, K.transpose(2, 3)) - - # Optionally apply mask to prevent attention - if mask is not None: - mask = mask.view(1, batch_size, n_query, graph_size).expand_as(compatibility) - compatibility[mask] = float("-inf") # -np.inf - - attn = torch.softmax(compatibility, dim=-1) - - # If there are nodes with no neighbours then softmax returns nan so we fix them to 0 - if mask is not None: - attnc = attn.clone() - attnc[mask] = 0 - attn = attnc - - heads = torch.matmul(attn, V) - - out = torch.mm( - heads.permute(1, 2, 0, 3).contiguous().view(-1, self.num_heads * self.hdim), - self.Wout.view(-1, self.embed_dim), - ).view(batch_size, n_query, self.embed_dim) - - return out - - class LogitAttention(nn.Module): """Calculate logits given query, key and value and logit key If we use Flash Attention, then we automatically move to fp16 for inner computations @@ -196,18 +133,28 @@ class LogitAttention(nn.Module): 2. Project heads to get glimpse 3. Compute attention score between glimpse and logit key 4. Normalize and mask + + Args: + embed_dim: total dimension of the model + num_heads: number of heads + tanh_clipping: tanh clipping value + mask_inner: whether to mask inner attention + mask_logits: whether to mask logits + normalize: whether to normalize logits + softmax_temp: softmax temperature + force_flash_attn: whether to force flash attention. If True, then we automatically cast to fp16 """ def __init__( self, - embed_dim, - num_heads, - tanh_clipping=10.0, - mask_inner=True, - mask_logits=True, - normalize=True, - softmax_temp=1.0, - force_flash_attn=False, + embed_dim: int, + num_heads: int, + tanh_clipping: float = 10.0, + mask_inner: bool = True, + mask_logits: bool = True, + normalize: bool = True, + softmax_temp: float = 1.0, + force_flash_attn: bool = False, ): super(LogitAttention, self).__init__() self.num_heads = num_heads diff --git a/rl4co/models/nn/graph/attnnet.py b/rl4co/models/nn/graph/attnnet.py new file mode 100644 index 00000000..0373e768 --- /dev/null +++ b/rl4co/models/nn/graph/attnnet.py @@ -0,0 +1,99 @@ +from typing import Optional + +import torch.nn as nn + +from torch import Tensor + +from rl4co.models.nn.attention import MultiHeadAttention +from rl4co.models.nn.ops import Normalization, SkipConnection +from rl4co.utils.pylogger import get_pylogger + +log = get_pylogger(__name__) + + +class MultiHeadAttentionLayer(nn.Sequential): + """Multi-Head Attention Layer with normalization and feed-forward layer + + Args: + num_heads: number of heads in the MHA + embed_dim: dimension of the embeddings + feed_forward_hidden: dimension of the hidden layer in the feed-forward layer + normalization: type of normalization to use (batch, layer, none) + force_flash_attn: whether to force FlashAttention (move to half precision) + """ + + def __init__( + self, + num_heads: int, + embed_dim: int, + feed_forward_hidden: int = 512, + normalization: Optional[str] = "batch", + force_flash_attn: bool = False, + ): + super(MultiHeadAttentionLayer, self).__init__( + SkipConnection( + MultiHeadAttention( + embed_dim, num_heads, force_flash_attn=force_flash_attn + ) + ), + Normalization(embed_dim, normalization), + SkipConnection( + nn.Sequential( + nn.Linear(embed_dim, feed_forward_hidden), + nn.ReLU(), + nn.Linear(feed_forward_hidden, embed_dim), + ) + if feed_forward_hidden > 0 + else nn.Linear(embed_dim, embed_dim) + ), + Normalization(embed_dim, normalization), + ) + + +class GraphAttentionNetwork(nn.Module): + """Graph Attention Network to encode embeddings with a series of MHA layers consisting of a MHA layer, + normalization, feed-forward layer, and normalization. Similar to Transformer encoder, as used in Kool et al. (2019). + + Args: + num_heads: number of heads in the MHA + embedding_dim: dimension of the embeddings + num_layers: number of MHA layers + normalization: type of normalization to use (batch, layer, none) + feed_forward_hidden: dimension of the hidden layer in the feed-forward layer + force_flash_attn: whether to force FlashAttention (move to half precision) + """ + + def __init__( + self, + num_heads: int, + embedding_dim: int, + num_layers: int, + normalization: str = "batch", + feed_forward_hidden: int = 512, + force_flash_attn: bool = False, + ): + super(GraphAttentionNetwork, self).__init__() + + self.layers = nn.Sequential( + *( + MultiHeadAttentionLayer( + num_heads, + embedding_dim, + feed_forward_hidden=feed_forward_hidden, + normalization=normalization, + force_flash_attn=force_flash_attn, + ) + for _ in range(num_layers) + ) + ) + + def forward(self, x: Tensor, mask: Optional[Tensor] = None) -> Tensor: + """Forward pass of the encoder + + Args: + x: [batch_size, graph_size, embed_dim] initial embeddings to process + mask: [batch_size, graph_size, graph_size] mask for the input embeddings. Unused for now. + """ + assert mask is None, "Mask not yet supported!" + h = self.layers(x) + return h diff --git a/rl4co/models/nn/graph/gat.py b/rl4co/models/nn/graph/gat.py deleted file mode 100644 index 211a159e..00000000 --- a/rl4co/models/nn/graph/gat.py +++ /dev/null @@ -1,89 +0,0 @@ -import torch.nn as nn - -from rl4co.models.nn.attention import MultiHeadAttention, NativeFlashMHA -from rl4co.models.nn.env_embeddings import env_init_embedding -from rl4co.models.nn.ops import Normalization, SkipConnection -from rl4co.utils.pylogger import get_pylogger - -log = get_pylogger(__name__) - - -class MultiHeadAttentionLayer(nn.Sequential): - def __init__( - self, - num_heads, - embed_dim, - feed_forward_hidden=512, - normalization="batch", - use_native_sdpa=False, - force_flash_attn=False, - ): - MHA = NativeFlashMHA if use_native_sdpa else MultiHeadAttention - super(MultiHeadAttentionLayer, self).__init__( - SkipConnection(MHA(embed_dim, num_heads, force_flash_attn=force_flash_attn)), - Normalization(embed_dim, normalization), - SkipConnection( - nn.Sequential( - nn.Linear(embed_dim, feed_forward_hidden), - nn.ReLU(), - nn.Linear(feed_forward_hidden, embed_dim), - ) - if feed_forward_hidden > 0 - else nn.Linear(embed_dim, embed_dim) - ), - Normalization(embed_dim, normalization), - ) - - -class GraphAttentionEncoder(nn.Module): - """Graph Attention Encoder with a series of MHA layers - Multi-Head Attention Layer with normalization and feed-forward layer - If use_native_sdpa is True, use NativeFlashMHA instead of MultiHeadAttention: - native PyTorch `scaled_dot_product_attention` implementation, available from 2.0 - You may force FlashAttention by setting force_flash_attn to True (move to half precision) - """ - - def __init__( - self, - num_heads, - embedding_dim, - num_layers, - env=None, - normalization="batch", - feed_forward_hidden=512, - use_native_sdpa=False, - force_flash_attn=False, - disable_init_embedding=False, - ): - super(GraphAttentionEncoder, self).__init__() - - # To map input to embedding space - if not disable_init_embedding: - self.init_embedding = env_init_embedding( - env.name, {"embedding_dim": embedding_dim} - ) - else: - log.warning("Disabling init embedding manually for GraphAttentionEncoder") - self.init_embedding = nn.Identity() # do nothing - - self.layers = nn.Sequential( - *( - MultiHeadAttentionLayer( - num_heads, - embedding_dim, - feed_forward_hidden=feed_forward_hidden, - normalization=normalization, - use_native_sdpa=use_native_sdpa, - force_flash_attn=force_flash_attn, - ) - for _ in range(num_layers) - ) - ) - - def forward(self, x, mask=None): - assert mask is None, "Mask not yet supported!" - # initial Embedding from features - init_embeds = self.init_embedding(x) - # layers (batch_size, graph_size, embed_dim) - embeds = self.layers(init_embeds) - return embeds, init_embeds diff --git a/rl4co/models/nn/graph/gcn.py b/rl4co/models/nn/graph/gcn.py index a01b0270..b62ac8b6 100644 --- a/rl4co/models/nn/graph/gcn.py +++ b/rl4co/models/nn/graph/gcn.py @@ -5,27 +5,31 @@ from torch_geometric.data import Batch, Data from torch_geometric.nn import GCNConv -from rl4co.models.nn.env_embeddings import env_init_embedding from rl4co.utils.pylogger import get_pylogger log = get_pylogger(__name__) class GCNEncoder(nn.Module): + """Graph Convolutional Network to encode embeddings with a series of GCN layers + + Args: + embedding_dim: dimension of the embeddings + num_nodes: number of nodes in the graph + num_gcn_layer: number of GCN layers + self_loop: whether to add self loop in the graph + residual: whether to use residual connection + """ + def __init__( self, - env, - embedding_dim, - num_nodes, - num_gcn_layer, - self_loop=False, - residual=True, + embedding_dim: int, + num_nodes: int, + num_gcn_layer: int, + self_loop: bool = False, + residual: bool = True, ): super(GCNEncoder, self).__init__() - # Define the init embedding - self.init_embedding = env_init_embedding( - env.name, {"embedding_dim": embedding_dim} - ) # Generate edge index for a fully connected graph adj_matrix = torch.ones(num_nodes, num_nodes) @@ -42,10 +46,17 @@ def __init__( self.residual = residual self.self_loop = self_loop - def forward(self, x, mask=None): + def forward(self, x, node_feature, mask=None): + """Forward pass of the GCN encoder + + Args: + x: [batch_size, graph_size, embed_dim] initial embeddings to process + node_feature: [batch_size, graph_size, embed_dim] node features, i.e. raw ones + mask: [batch_size, graph_size] mask for valid nodes + """ + assert mask is None, "Mask not yet supported!" # initial Embedding from features - node_feature = self.init_embedding(x) # Check to update the edge index with different number of node if node_feature.size(1) != self.edge_index.max().item() + 1: diff --git a/rl4co/models/nn/utils.py b/rl4co/models/nn/utils.py index 15d7b418..3c694556 100644 --- a/rl4co/models/nn/utils.py +++ b/rl4co/models/nn/utils.py @@ -64,4 +64,8 @@ def rollout(env, td, policy): td = policy(td) actions.append(td["action"]) td = env.step(td)["next"] - return env.get_reward(td, torch.stack(actions, dim=1)) + return ( + env.get_reward(td, torch.stack(actions, dim=1)), + td, + torch.stack(actions, dim=1), + ) diff --git a/rl4co/models/rl/__init__.py b/rl4co/models/rl/__init__.py new file mode 100644 index 00000000..d5578269 --- /dev/null +++ b/rl4co/models/rl/__init__.py @@ -0,0 +1,3 @@ +from rl4co.models.rl.common.base import RL4COLitModule +from rl4co.models.rl.ppo.ppo import PPO +from rl4co.models.rl.reinforce.reinforce import REINFORCE diff --git a/rl4co/models/rl/common/base.py b/rl4co/models/rl/common/base.py new file mode 100644 index 00000000..baf653ab --- /dev/null +++ b/rl4co/models/rl/common/base.py @@ -0,0 +1,290 @@ +from functools import partial +from typing import Any, Union + +import torch +import torch.nn as nn + +from lightning import LightningModule +from torch.utils.data import DataLoader + +from rl4co.data.dataset import tensordict_collate_fn +from rl4co.data.generate_data import generate_default_datasets +from rl4co.envs.common.base import RL4COEnvBase +from rl4co.utils.optim_helpers import create_optimizer, create_scheduler +from rl4co.utils.pylogger import get_pylogger + +log = get_pylogger(__name__) + + +class RL4COLitModule(LightningModule): + """Base class for Lightning modules for RL4CO. This defines the general training loop in terms of + RL algorithms. Subclasses should implement mainly the `shared_step` to define the specific + loss functions and optimization routines. + + Args: + env: RL4CO environment + policy: policy network (actor) + batch_size: batch size (general one, default used for training) + val_batch_size: specific batch size for validation + test_batch_size: specific batch size for testing + train_data_size: size of training dataset for one epoch + val_data_size: size of validation dataset for one epoch + test_data_size: size of testing dataset for one epoch + optimizer: optimizer or optimizer name + optimizer_kwargs: optimizer kwargs + lr_scheduler: learning rate scheduler or learning rate scheduler name + lr_scheduler_kwargs: learning rate scheduler kwargs + lr_scheduler_interval: learning rate scheduler interval + lr_scheduler_monitor: learning rate scheduler monitor + generate_data: whether to generate data + shuffle_train_dataloader: whether to shuffle training dataloader + dataloader_num_workers: number of workers for dataloader + data_dir: data directory + metrics: metrics + litmodule_kwargs: kwargs for `LightningModule` + """ + + def __init__( + self, + env: RL4COEnvBase, + policy: nn.Module, + batch_size: int = 512, + val_batch_size: int = None, + test_batch_size: int = None, + train_data_size: int = 1_280_000, + val_data_size: int = 10_000, + test_data_size: int = 10_000, + optimizer: Union[str, torch.optim.Optimizer, partial] = "Adam", + optimizer_kwargs: dict = {"lr": 1e-4}, + lr_scheduler: Union[ + str, torch.optim.lr_scheduler.LRScheduler, partial + ] = "MultiStepLR", + lr_scheduler_kwargs: dict = { + "milestones": [80, 95], + "gamma": 0.1, + }, + lr_scheduler_interval: str = "epoch", + lr_scheduler_monitor: str = "val/reward", + generate_data: bool = True, + shuffle_train_dataloader: bool = True, + dataloader_num_workers: int = 0, + data_dir: str = "data/", + log_on_step: bool = True, + metrics: dict = {}, + **litmodule_kwargs, + ): + super().__init__(**litmodule_kwargs) + + # This line ensures params passed to LightningModule will be saved to ckpt + # it also allows to access params with 'self.hparams' attribute + # Note: we will send to logger with `self.logger.save_hyperparams` in `setup` + self.save_hyperparameters(logger=False) + + self.env = env + self.policy = policy + + self.instantiate_metrics(metrics) + self.log_on_step = log_on_step + + self.data_cfg = { + "batch_size": batch_size, + "val_batch_size": val_batch_size, + "test_batch_size": test_batch_size, + "generate_data": generate_data, + "data_dir": data_dir, + "train_data_size": train_data_size, + "val_data_size": val_data_size, + "test_data_size": test_data_size, + } + + self._optimizer_name_or_cls: Union[str, torch.optim.Optimizer] = optimizer + self.optimizer_kwargs: dict = optimizer_kwargs + self._lr_scheduler_name_or_cls: Union[ + str, torch.optim.lr_scheduler.LRScheduler + ] = lr_scheduler + self.lr_scheduler_kwargs: dict = lr_scheduler_kwargs + self.lr_scheduler_interval: str = lr_scheduler_interval + self.lr_scheduler_monitor: str = lr_scheduler_monitor + + self.shuffle_train_dataloader = shuffle_train_dataloader + self.dataloader_num_workers = dataloader_num_workers + + def instantiate_metrics(self, metrics: dict): + """Dictionary of metrics to be logged at each phase""" + + if not metrics: + log.info("No metrics specified, using default") + self.train_metrics = metrics.get("train", ["loss", "reward"]) + self.val_metrics = metrics.get("val", ["reward"]) + self.test_metrics = metrics.get("test", ["reward"]) + self.log_on_step = metrics.get("log_on_step", True) + + def setup(self, stage="fit"): + """Base LightningModule setup method. This will setup the datasets and dataloaders + + Note: + We also send to the loggers all hyperparams that are not `nn.Module` (i.e. the policy). + Apparently PyTorch Lightning does not do this by default. + """ + + log.info("Setting up batch sizes for train/val/test") + train_bs, val_bs, test_bs = ( + self.data_cfg["batch_size"], + self.data_cfg["val_batch_size"], + self.data_cfg["test_batch_size"], + ) + self.train_batch_size = train_bs + self.val_batch_size = train_bs if val_bs is None else val_bs + self.test_batch_size = train_bs if test_bs is None else test_bs + + log.info("Setting up datasets") + + # Create datasets automatically. If found, this will skip + if self.data_cfg["generate_data"]: + generate_default_datasets(data_dir=self.data_cfg["data_dir"]) + + self.train_dataset = self.wrap_dataset( + self.env.dataset(self.data_cfg["train_data_size"], phase="train") + ) + self.val_dataset = self.env.dataset(self.data_cfg["val_data_size"], phase="val") + self.test_dataset = self.env.dataset( + self.data_cfg["test_data_size"], phase="test" + ) + + # Log all hyperparameters except those in `nn.Module` + if self.loggers is not None: + hparams_save = { + k: v for k, v in self.hparams.items() if not isinstance(v, nn.Module) + } + for logger in self.loggers: + logger.log_hyperparams(hparams_save) + logger.log_graph(self) + logger.save() + + self.post_setup_hook() + + def post_setup_hook(self): + """Hook to be called after setup. Can be used to set up subclasses without overriding `setup`""" + pass + + def configure_optimizers(self, parameters=None): + """ + Args: + parameters: parameters to be optimized. If None, will use `self.policy.parameters() + """ + + if parameters is None: + parameters = self.policy.parameters() + + log.info(f"Instantiating optimizer <{self._optimizer_name_or_cls}>") + if isinstance(self._optimizer_name_or_cls, str): + optimizer = create_optimizer( + parameters, self._optimizer_name_or_cls, **self.optimizer_kwargs + ) + elif isinstance(self._optimizer_name_or_cls, partial): + optimizer = self._optimizer_name_or_cls(parameters, **self.optimizer_kwargs) + else: # User-defined optimizer + opt_cls = self._optimizer_name_or_cls + optimizer = opt_cls(parameters, **self.optimizer_kwargs) + assert isinstance(optimizer, torch.optim.Optimizer) + + # instantiate lr scheduler + if self._lr_scheduler_name_or_cls is None: + return optimizer + else: + log.info(f"Instantiating LR scheduler <{self._lr_scheduler_name_or_cls}>") + if isinstance(self._lr_scheduler_name_or_cls, str): + scheduler = create_scheduler( + optimizer, self._lr_scheduler_name_or_cls, **self.lr_scheduler_kwargs + ) + elif isinstance(self._lr_scheduler_name_or_cls, partial): + scheduler = self._lr_scheduler_name_or_cls( + optimizer, **self.lr_scheduler_kwargs + ) + else: # User-defined scheduler + scheduler_cls = self._lr_scheduler_name_or_cls + scheduler = scheduler_cls(optimizer, **self.lr_scheduler_kwargs) + assert isinstance(scheduler, torch.optim.lr_scheduler.LRScheduler) + return [optimizer], { + "scheduler": scheduler, + "interval": self.lr_scheduler_interval, + "monitor": self.lr_scheduler_monitor, + } + + def log_metrics(self, metric_dict: dict, phase: str): + """Log metrics to logger and progress bar""" + metrics = getattr(self, f"{phase}_metrics") + metrics = { + f"{phase}/{k}": v.mean() for k, v in metric_dict.items() if k in metrics + } + + log_on_step = self.log_on_step if phase == "train" else False + on_epoch = False if phase == "train" else True + self.log_dict( + metrics, + on_step=log_on_step, + on_epoch=on_epoch, + prog_bar=True, + sync_dist=True, + add_dataloader_idx=False, + ) + return metrics + + def forward(self, td, **kwargs): + """Forward pass for the model. Simple wrapper around `policy`. Uses `env` from the module if not provided.""" + if kwargs.get("env", None) is None: + env = self.env + else: + log.info("Using env from kwargs") + env = kwargs["env"] + return self.policy(td, env, **kwargs) + + def shared_step(self, batch: Any, batch_idx: int, phase: str): + """Shared step between train/val/test. To be implemented in subclass""" + raise NotImplementedError("Shared step is required to implemented in subclass") + + def training_step(self, batch: Any, batch_idx: int): + # To use new data every epoch, we need to call reload_dataloaders_every_epoch=True in Trainer + return self.shared_step(batch, batch_idx, phase="train") + + def validation_step(self, batch: Any, batch_idx: int): + return self.shared_step(batch, batch_idx, phase="val") + + def test_step(self, batch: Any, batch_idx: int): + return self.shared_step(batch, batch_idx, phase="test") + + def train_dataloader(self): + return self._dataloader( + self.train_dataset, self.train_batch_size, self.shuffle_train_dataloader + ) + + def val_dataloader(self): + return self._dataloader(self.val_dataset, self.val_batch_size) + + def test_dataloader(self): + return self._dataloader(self.test_dataset, self.test_batch_size) + + def on_train_epoch_end(self): + """Called at the end of the training epoch. This can be used for instance to update the train dataset + with new data (which is the case in RL). + """ + train_dataset = self.env.dataset(self.data_cfg["train_data_size"], "train") + self.train_dataset = self.wrap_dataset(train_dataset) + + def wrap_dataset(self, dataset): + """Wrap dataset with policy-specific wrapper. This is useful i.e. in REINFORCE where we need to + collect the greedy rollout baseline outputs. + """ + return dataset + + def _dataloader(self, dataset, batch_size, shuffle=False): + """The dataloader used by the trainer. This is a wrapper around the dataset with a custom collate_fn + to efficiently handle TensorDicts. + """ + return DataLoader( + dataset, + batch_size=batch_size, + shuffle=shuffle, + num_workers=self.dataloader_num_workers, + collate_fn=tensordict_collate_fn, + ) diff --git a/rl4co/models/rl/common/critic.py b/rl4co/models/rl/common/critic.py new file mode 100644 index 00000000..105c229e --- /dev/null +++ b/rl4co/models/rl/common/critic.py @@ -0,0 +1,77 @@ +from typing import Union + +from tensordict import TensorDict +from torch import Tensor, nn + +from rl4co.models.nn.env_embeddings import env_init_embedding +from rl4co.models.nn.graph.attnnet import GraphAttentionNetwork + + +class CriticNetwork(nn.Module): + """We make the critic network compatible with any problem by using encoder for any environment + Refactored from Kool et al. (2019) which only worked for TSP. In our case, we make it + compatible with any problem by using the environment init embedding. + + Args: + env_name: environment name to solve + encoder: Encoder to use for the critic + embedding_dim: Dimension of the embeddings + hidden_dim: Hidden dimension for the feed-forward network + num_layers: Number of layers for the encoder + num_heads: Number of heads for the attention + normalization: Normalization to use for the attention + force_flash_attn: Whether to force the use of flash attention. If True, cast to fp16 + """ + + def __init__( + self, + env_name: str = None, + encoder: nn.Module = None, + embedding_dim: int = 128, + hidden_dim: int = 512, + num_layers: int = 3, + num_heads: int = 8, + normalization: str = "batch", + force_flash_attn: bool = False, + **unused_kwargs, + ): + super(CriticNetwork, self).__init__() + + if env_name is None: + self.init_embedding = nn.Identity() + else: + self.init_embedding = env_init_embedding( + env_name, {"embedding_dim": embedding_dim} + ) + + self.encoder = ( + GraphAttentionNetwork( + num_heads=num_heads, + embedding_dim=embedding_dim, + num_layers=num_layers, + normalization=normalization, + feed_forward_hidden=hidden_dim, + force_flash_attn=force_flash_attn, + ) + if encoder is None + else encoder + ) + + self.value_head = nn.Sequential( + nn.Linear(embedding_dim, hidden_dim), nn.ReLU(), nn.Linear(hidden_dim, 1) + ) + + def forward(self, x: Union[Tensor, TensorDict]) -> Tensor: + """Forward pass of the critic network: encode the imput in embedding space and return the value + + Args: + x: Input containing the environment state. Can be a Tensor or a TensorDict + + Returns: + Value of the input state + """ + + # Initial embedding of x. This is the identity function if env_name is None. + x = self.init_embedding(x) + x = self.encoder(x) + return self.value_head(x).mean(1) diff --git a/rl4co/models/rl/ppo/model.py b/rl4co/models/rl/ppo/model.py deleted file mode 100644 index 4dee2c47..00000000 --- a/rl4co/models/rl/ppo/model.py +++ /dev/null @@ -1,141 +0,0 @@ -from math import log -from typing import Union - -import torch -import torch.nn as nn -import torch.nn.functional as F - -from tensordict import TensorDict - -from rl4co.utils.pylogger import get_pylogger - -log = get_pylogger(__name__) - - -class PPO(nn.Module): - def __init__( - self, - env, - policy: nn.Module, - critic: nn.Module, - clip_range: float = 0.2, # epsilon of PPO - ppo_epochs: int = 2, # K - mini_batch_size: Union[int, float] = 0.25, # 0.25, - vf_lambda: float = 0.5, # lambda of Value function fitting - entropy_lambda: float = 0.0, # lambda of entropy bonus - normalize_adv: bool = False, # whether to normalize advantage - max_grad_norm: float = 0.5, # max gradient norm - **unused_kw, - ): - super().__init__() - if len(unused_kw) > 0: - log.warn(f"Unused kwargs: {unused_kw}") - self.env = env - self.policy = policy - self.critic = critic - - # PPO hyper params - self.clip_range = clip_range - self.ppo_epochs = ppo_epochs - self.mini_batch_size = mini_batch_size - self.vf_lambda = vf_lambda - self.entropy_lambda = entropy_lambda - self.normalize_adv = normalize_adv - self.max_grad_norm = max_grad_norm - - def forward( - self, - td: TensorDict, - phase: str = "train", - extra=None, - policy_kwargs: dict = {}, - critic_kwargs: dict = {}, - optimizer=None, - ): - # Evaluate model, get costs and log probabilities - with torch.no_grad(): - # compute a_old and logp_old - out = self.policy(td.clone(), phase, return_action=True, **policy_kwargs) - old_logp = out["log_likelihood"] # [batch, decoder steps] - actions = out["actions"] # [batch, decoder steps] - rewards = out["reward"] # [batch] - - iter_i = 0 - if phase == "train": - batch_size = old_logp.shape[0] - - if isinstance(self.mini_batch_size, float): - mini_batch_size = int(self.mini_batch_size * batch_size) - if self.mini_batch_size >= batch_size: - mini_batch_size = batch_size - - for _ in range(self.ppo_epochs): # loop K - for mini_batch_idx in torch.randperm(batch_size).split(mini_batch_size): - # compute a and logp - mini_batched_out = self.policy( - td[mini_batch_idx].clone(), - phase, - given_actions=actions[mini_batch_idx], - return_entropy=True, - calc_reward=False, - **policy_kwargs, - ) - - # compute ratio - ratio = torch.exp( - mini_batched_out["selected_log_p"].sum(dim=-1) - - old_logp[mini_batch_idx].sum(dim=-1) - ) # [batch size] - - # compute advantage - - value_pred = self.critic(td[mini_batch_idx], **critic_kwargs) - adv = rewards[mini_batch_idx] - value_pred.detach() # [batch size] - - if self.normalize_adv: - adv = (adv - adv.mean()) / (adv.std() + 1e-6) - - # compute surrogate loss - surrogate_loss = -torch.min( - ratio * adv, - torch.clamp(ratio, 1 - self.clip_range, 1 + self.clip_range) - * adv, - ).mean() - - # compute entropy bonus - entropy_bonus = mini_batched_out["entropy"].mean() - - # compute value function loss - value_loss = F.huber_loss( - value_pred, rewards[mini_batch_idx].view(-1, 1) - ) - - # compute total loss - loss = ( - surrogate_loss - + self.vf_lambda * value_loss - - self.entropy_lambda * entropy_bonus - ) - - # perform optimization - if optimizer is not None: - optimizer.zero_grad() - loss.backward() - if self.max_grad_norm is not None: - nn.utils.clip_grad_norm_( - self.parameters(), self.max_grad_norm - ) - optimizer.step() - - iter_i += 1 - - # log training results - out.update( - { - "loss": loss, - "surrogate_loss": surrogate_loss, - "value_loss": value_loss, - "entropy_bonus": entropy_bonus, - } - ) - return out diff --git a/rl4co/models/rl/ppo/ppo.py b/rl4co/models/rl/ppo/ppo.py new file mode 100644 index 00000000..4409d8e4 --- /dev/null +++ b/rl4co/models/rl/ppo/ppo.py @@ -0,0 +1,208 @@ +from typing import Any, Union + +import torch +import torch.nn as nn +import torch.nn.functional as F + +from torch.utils.data import DataLoader + +from rl4co.envs.common.base import RL4COEnvBase +from rl4co.models.rl.common.base import RL4COLitModule +from rl4co.utils.pylogger import get_pylogger + +log = get_pylogger(__name__) + + +class PPO(RL4COLitModule): + """ + An implementation of the Proximal Policy Optimization (PPO) algorithm (https://arxiv.org/abs/1707.06347) + is presented with modifications for autoregressive decoding schemes. + + In contrast to the original PPO algorithm, this implementation does not consider autoregressive decoding steps + as part of the MDP transition. While many Neural Combinatorial Optimization (NCO) studies model decoding steps + as transitions in a solution-construction MDP, we treat autoregressive solution construction as an algorithmic + choice for tractable CO solution generation. This choice aligns with the Attention Model (AM) + (https://openreview.net/forum?id=ByxBFsRqYm), which treats decoding steps as a single-step MDP in Equation 9. + + Modeling autoregressive decoding steps as a single-step MDP introduces significant changes to the PPO implementation, + including: + - Generalized Advantage Estimation (GAE) (https://arxiv.org/abs/1506.02438) is not applicable since we are dealing + with a single-step MDP. + - The definition of policy entropy can differ from the commonly implemented manner. + + The commonly implemented definition of policy entropy is the entropy of the policy distribution, given by: + H(pi(a|x_t)) = - sum_a pi(a|x_t) log pi(a|x_t), where x_t represents the given state at step t. + + If we interpret autoregressive decoding steps as transition steps of an MDP, the entropy for the entire decoding + process can be defined as the sum of entropies for each decoding step: + H(pi) = sum_t H(pi(a|x_t)) + + However, if we consider autoregressive decoding steps as an algorithmic choice, the entropy for the entire decoding + process is defined as: + H(pi) = sum_a in A pi(a|x) log pi(a|x), + where x represents the given CO problem instance, and A is the set of all feasible solutions. + + Due to the intractability of computing the entropy of the policy distribution over all feasible solutions, + we approximate it by computing the entropy over solutions generated by the policy itself. This approximation serves + as a proxy for the second definition of entropy, utilizing Monte Carlo sampling. + + It is worth noting that our modeling of decoding steps and the implementation of the PPO algorithm align with recent + work in the Natural Language Processing (NLP) community, specifically RL with Human Feedback (RLHF) + (e.g., https://github.com/lucidrains/PaLM-rlhf-pytorch). + + + """ + + def __init__( + self, + env: RL4COEnvBase, + policy: nn.Module, + critic: nn.Module, + clip_range: float = 0.2, # epsilon of PPO + ppo_epochs: int = 2, # inner epoch, K + mini_batch_size: Union[int, float] = 0.25, # 0.25, + vf_lambda: float = 0.5, # lambda of Value function fitting + entropy_lambda: float = 0.0, # lambda of entropy bonus + normalize_adv: bool = False, # whether to normalize advantage + max_grad_norm: float = 0.5, # max gradient norm + **kwargs, + ): + super().__init__(env, policy, **kwargs) + self.automatic_optimization = False # PPO uses custom optimization routine + self.critic = critic + + if isinstance(mini_batch_size, float) and ( + mini_batch_size <= 0 or mini_batch_size > 1 + ): + default_mini_batch_fraction = 0.25 + log.warning( + f"mini_batch_size must be an integer or a float in the range (0, 1], got {mini_batch_size}. Setting mini_batch_size to {default_mini_batch_fraction}." + ) + mini_batch_size = default_mini_batch_fraction + + if isinstance(mini_batch_size, int) and (mini_batch_size <= 0): + default_mini_batch_size = 128 + log.warning( + f"mini_batch_size must be an integer or a float in the range (0, 1], got {mini_batch_size}. Setting mini_batch_size to {default_mini_batch_size}." + ) + mini_batch_size = default_mini_batch_size + + self.ppo_cfg = { + "clip_range": clip_range, + "ppo_epochs": ppo_epochs, + "mini_batch_size": mini_batch_size, + "vf_lambda": vf_lambda, + "entropy_lambda": entropy_lambda, + "normalize_adv": normalize_adv, + "max_grad_norm": max_grad_norm, + } + + def configure_optimizers(self): + parameters = list(self.policy.parameters()) + list(self.critic.parameters()) + return super().configure_optimizers(parameters) + + def on_train_epoch_end(self): + """ + ToDo: Add support for other schedulers. + """ + + sch = self.lr_schedulers() + + # If the selected scheduler is a MultiStepLR scheduler. + if isinstance(sch, torch.optim.lr_scheduler.MultiStepLR): + sch.step() + + def shared_step(self, batch: Any, batch_idx: int, phase: str): + # Evaluate old actions, log probabilities, and rewards + with torch.no_grad(): + td = self.env.reset(batch) + out = self.policy(td, self.env, phase=phase, return_actions=True) + + if phase == "train": + batch_size = out["actions"].shape[0] + + # infer batch size + if isinstance(self.ppo_cfg["mini_batch_size"], float): + mini_batch_size = int(batch_size * self.ppo_cfg["mini_batch_size"]) + elif isinstance(self.ppo_cfg["mini_batch_size"], int): + mini_batch_size = self.ppo_cfg["mini_batch_size"] + else: + raise ValueError("mini_batch_size must be an integer or a float.") + + if mini_batch_size > batch_size: + mini_batch_size = batch_size + + # Todo: Add support for multi dimensional batches + td.set("log_prob", out["log_likelihood"]) + td.set("reward", out["reward"]) + td.set("action", out["actions"]) + + dataloader = DataLoader( + td, batch_size=mini_batch_size, shuffle=True, collate_fn=lambda x: x + ) + + for _ in range(self.ppo_cfg["ppo_epochs"]): # PPO inner epoch, K + for sub_td in dataloader: + ll, entropy = self.policy.evaluate_action( + sub_td, action=sub_td["action"] + ) + + # Compute the ratio of probabilities of new and old actions + ratio = torch.exp(ll.sum(dim=-1) - sub_td["log_prob"]).view( + -1, 1 + ) # [batch, 1] + + # Compute the advantage + value_pred = self.critic(sub_td) # [batch, 1] + adv = sub_td["reward"].view(-1, 1) - value_pred.detach() + + # Normalize advantage + if self.ppo_cfg["normalize_adv"]: + adv = (adv - adv.mean()) / (adv.std() + 1e-8) + + # Compute the surrogate loss + surrogate_loss = -torch.min( + ratio * adv, + torch.clamp( + ratio, + 1 - self.ppo_cfg["clip_range"], + 1 + self.ppo_cfg["clip_range"], + ) + * adv, + ).mean() + + # compute value function loss + value_loss = F.huber_loss(value_pred, sub_td["reward"].view(-1, 1)) + + # compute total loss + loss = ( + surrogate_loss + + self.ppo_cfg["vf_lambda"] * value_loss + - self.ppo_cfg["entropy_lambda"] * entropy.mean() + ) + + # perform manual optimization following the Lightning routine + # https://lightning.ai/docs/pytorch/stable/common/optimization.html + + opt = self.optimizers() + opt.zero_grad() + self.manual_backward(loss) + if self.ppo_cfg["max_grad_norm"] is not None: + self.clip_gradients( + opt, + gradient_clip_val=self.ppo_cfg["max_grad_norm"], + gradient_clip_algorithm="norm", + ) + opt.step() + + out.update( + { + "loss": loss, + "surrogate_loss": surrogate_loss, + "value_loss": value_loss, + "entropy": entropy.mean(), + } + ) + + metrics = self.log_metrics(out, phase) + return {"loss": out.get("loss", None), **metrics} diff --git a/rl4co/models/rl/ppo/task.py b/rl4co/models/rl/ppo/task.py deleted file mode 100644 index f1be1ea1..00000000 --- a/rl4co/models/rl/ppo/task.py +++ /dev/null @@ -1,39 +0,0 @@ -from typing import Any - -import torch.nn as nn - -from omegaconf import DictConfig - -from rl4co.envs.base import EnvBase -from rl4co.tasks.rl4co import RL4COLitModule - - -class PPOTask(RL4COLitModule): - def __init__(self, cfg: DictConfig, env: EnvBase = None, model: nn.Module = None): - super().__init__(cfg=cfg, env=env, model=model) - self.automatic_optimization = False - - def shared_step(self, batch: Any, batch_idx: int, phase: str): - td = self.env.reset(batch) - out = self.model( - td, - phase, - td.get("extra", None), - optimizer=self.optimizers() if phase == "train" else None, - ) - - # Log metrics - metrics = getattr(self, f"{phase}_metrics") - metrics = {f"{phase}/{k}": v.mean() for k, v in out.items() if k in metrics} - - log_on_step = self.log_on_step if phase == "train" else False - on_epoch = False if phase == "train" else True - self.log_dict( - metrics, - on_step=log_on_step, - on_epoch=on_epoch, - prog_bar=True, - sync_dist=True, - add_dataloader_idx=False, - ) - return {"loss": out.get("loss", None), **metrics} diff --git a/rl4co/models/rl/reinforce/base.py b/rl4co/models/rl/reinforce/base.py deleted file mode 100644 index 511b61fb..00000000 --- a/rl4co/models/rl/reinforce/base.py +++ /dev/null @@ -1,71 +0,0 @@ -from tensordict import TensorDict -from torch import nn - -from rl4co.utils.lightning import get_lightning_device - - -class REINFORCE(nn.Module): - """Base model for REINFORCE-based models - - Args: - env: TorchRL Environment - policy: Policy (set up in model) - baseline: REINFORCE Baseline (set up in model) - """ - - def __init__(self, env, policy=None, baseline=None): - super(REINFORCE, self).__init__() - self.env = env - - def forward(self, td: TensorDict, phase: str = "train", extra=None, **policy_kwargs): - # Evaluate model, get costs and log probabilities - out = self.policy(td, phase, **policy_kwargs) - - if phase == "train": - # REINFORCE loss: we consider the rewards instead of costs to be consistent with the literature - bl_val, bl_neg_loss = ( - self.baseline.eval(td, out["reward"]) if extra is None else (extra, 0) - ) - advantage = out["reward"] - bl_val # advantage = reward - baseline - reinforce_loss = -(advantage * out["log_likelihood"]).mean() - loss = reinforce_loss - bl_neg_loss - - out.update( - { - "loss": loss, - "reinforce_loss": reinforce_loss, - "bl_loss": -bl_neg_loss, - "bl_val": bl_val, - } - ) - - return out - - def setup(self, lit_module): - # Make baseline taking model itself and train_dataloader from model as input - self.baseline.setup( - self.policy, - self.env, - batch_size=lit_module.val_batch_size, - device=get_lightning_device(lit_module), - dataset_size=lit_module.cfg.data.val_size, - ) - - def on_train_epoch_end(self, lit_module): - self.baseline.epoch_callback( - self.policy, - env=self.env, - batch_size=lit_module.val_batch_size, - device=get_lightning_device(lit_module), - epoch=lit_module.current_epoch, - dataset_size=lit_module.cfg.data.val_size, - ) - - def wrap_dataset(self, lit_module, dataset): - """Wrap dataset for baseline evaluation""" - return self.baseline.wrap_dataset( - dataset, - self.env, - batch_size=lit_module.val_batch_size, - device=get_lightning_device(lit_module), - ) diff --git a/rl4co/models/rl/reinforce/baselines.py b/rl4co/models/rl/reinforce/baselines.py index 4f116347..242823e1 100644 --- a/rl4co/models/rl/reinforce/baselines.py +++ b/rl4co/models/rl/reinforce/baselines.py @@ -10,6 +10,7 @@ from rl4co import utils from rl4co.data.dataset import ExtraKeyDataset, tensordict_collate_fn +from rl4co.models.rl.common.critic import CriticNetwork log = utils.get_pylogger(__name__) @@ -25,7 +26,7 @@ def wrap_dataset(self, dataset, *args, **kw): """Wrap dataset with baseline-specific functionality""" return dataset - def eval(self, td, reward): + def eval(self, td, reward, env=None): """Evaluate baseline""" pass @@ -43,23 +44,33 @@ def setup(self, *args, **kw): class NoBaseline(REINFORCEBaseline): - def eval(self, td, reward): + """No baseline: return 0 for baseline and neg_los""" + + def eval(self, td, reward, env=None): return 0, 0 # No baseline, no neg_los class SharedBaseline(REINFORCEBaseline): - def eval(self, td, reward, on_dim=1): # e.g. [batch, pomo, ...] + """Shared baseline: return mean of reward as baseline""" + + def eval(self, td, reward, env=None, on_dim=1): # e.g. [batch, pomo, ...] return reward.mean(dim=on_dim, keepdims=True), 0 class ExponentialBaseline(REINFORCEBaseline): - def __init__(self, beta=0.8): + """Exponential baseline: return exponential moving average of reward as baseline + + Args: + beta: Beta value for the exponential moving average + """ + + def __init__(self, beta=0.8, **kw): super(REINFORCEBaseline, self).__init__() self.beta = beta self.v = None - def eval(self, td, reward): + def eval(self, td, reward, env=None): if self.v is None: v = reward.mean() else: @@ -69,12 +80,15 @@ def eval(self, td, reward): class WarmupBaseline(REINFORCEBaseline): - def __init__( - self, - baseline, - n_epochs=1, - warmup_exp_beta=0.8, - ): + """Warmup baseline: return convex combination of baseline and exponential baseline + + Args: + baseline: Baseline to use after warmup + n_epochs: Number of epochs to warmup + warmup_exp_beta: Beta value for the exponential baseline during warmup + """ + + def __init__(self, baseline, n_epochs=1, warmup_exp_beta=0.8, **kw): super(REINFORCEBaseline, self).__init__() self.baseline = baseline @@ -91,13 +105,13 @@ def wrap_dataset(self, dataset, *args, **kw): def setup(self, *args, **kw): self.baseline.setup(*args, **kw) - def eval(self, td, reward): + def eval(self, td, reward, env=None): if self.alpha == 1: - return self.baseline.eval(td, reward) + return self.baseline.eval(td, reward, env) if self.alpha == 0: - return self.warmup_baseline.eval(td, reward) - v_b, l_b = self.baseline.eval(td, reward) - v_wb, l_wb = self.warmup_baseline.eval(td, reward) + return self.warmup_baseline.eval(td, reward, env) + v_b, l_b = self.baseline.eval(td, reward, env) + v_wb, l_wb = self.warmup_baseline.eval(td, reward, env) # Return convex combination of baseline and of loss return self.alpha * v_b + (1 - self.alpha) * v_wb, self.alpha * l_b + ( 1 - self.alpha * l_wb @@ -112,18 +126,36 @@ def epoch_callback(self, *args, **kw): class CriticBaseline(REINFORCEBaseline): - def __init__(self, critic, **unused_kw): + """Critic baseline: use critic network as baseline + + Args: + critic: Critic network to use as baseline. If None, create a new critic network based on the environment + """ + + def __init__(self, critic: nn.Module = None, **unused_kw): super(CriticBaseline, self).__init__() self.critic = critic - def eval(self, x, c): + def setup(self, model, env, **kwargs): + if self.critic is None: + log.info("Creating critic network for {}".format(env.name)) + self.critic = CriticNetwork(env.name, **kwargs) + + def eval(self, x, c, env=None): v = self.critic(x) # detach v since actor should not backprop through baseline, only for neg_loss return v.detach(), -F.mse_loss(v, c.detach()) class RolloutBaseline(REINFORCEBaseline): - def __init__(self, bl_alpha=0.05, progress_bar=False): + """Rollout baseline: use greedy rollout as baseline + + Args: + bl_alpha: Alpha value for the baseline T-test + progress_bar: Whether to show progress bar for rollout + """ + + def __init__(self, bl_alpha=0.05, progress_bar=False, **kw): super(RolloutBaseline, self).__init__() self.bl_alpha = bl_alpha self.progress_bar = progress_bar @@ -134,6 +166,7 @@ def setup(self, *args, **kw): def _update_model( self, model, env, batch_size=64, device="cpu", dataset_size=None, dataset=None ): + """Update model and rollout baseline values""" self.model = copy.deepcopy(model).to(device) if dataset is None: log.info("Creating evaluation dataset for rollout baseline") @@ -145,10 +178,15 @@ def _update_model( ) self.mean = self.bl_vals.mean() - def eval(self, td, reward): - # Use volatile mode for efficient inference (single batch so we do not use rollout function) + def eval(self, td, reward, env): + """Evaluate rollout baseline + + Warning: + This is not differentiable and should only be used for evaluation. + Also, it is recommended to use the `rollout` method directly instead of this method. + """ with torch.no_grad(): - reward = self.model(td)["reward"] + reward = self.model(td, env)["reward"] return reward, 0 def epoch_callback( @@ -175,8 +213,9 @@ def epoch_callback( log.info("Updating baseline") self._update_model(model, env, batch_size, device, dataset_size) - def rollout(self, model, env=None, batch_size=64, device="cpu", dataset=None): + def rollout(self, model, env, batch_size=64, device="cpu", dataset=None): """Rollout the model on the given dataset""" + # if dataset is None, use the dataset of the baseline dataset = self.dataset if dataset is None else dataset @@ -186,7 +225,7 @@ def rollout(self, model, env=None, batch_size=64, device="cpu", dataset=None): def eval_model(batch): with torch.no_grad(): batch = env.reset(batch.to(device)) - return model(batch, decode_type="greedy")["reward"].data.cpu() + return model(batch, env, decode_type="greedy")["reward"].data.cpu() dl = DataLoader(dataset, batch_size=batch_size, collate_fn=tensordict_collate_fn) @@ -196,7 +235,13 @@ def eval_model(batch): return retval def wrap_dataset(self, dataset, env, batch_size=64, device="cpu", **kw): - """Wrap the dataset in a baseline dataset""" + """Wrap the dataset in a baseline dataset + + Note: + This is an alternative to `eval` that does not require the model to be passed + at every call but just once. Values are added to the dataset. This also allows for + larger batch sizes since we evauate the model without gradients. + """ rewards = ( self.rollout(self.model, env, batch_size, device, dataset=dataset) .detach() @@ -217,3 +262,39 @@ def __setstate__(self, state): """Restore datasets after unpickling. Will be restored in setup""" self.__dict__.update(state) self.dataset = None + + +REINFORCE_BASELINES_REGISTRY = { + "no": NoBaseline, + "shared": SharedBaseline, + "exponential": ExponentialBaseline, + "critic": CriticBaseline, + "rollout_only": RolloutBaseline, + "warmup": WarmupBaseline, +} + + +def get_reinforce_baseline(name, **kw): + """Get a REINFORCE baseline by name + The rollout baseline default to warmup baseline with one epoch of + exponential baseline and the greedy rollout + """ + if name == "warmup": + inner_baseline = kw.get("baseline", "rollout") + if not isinstance(inner_baseline, REINFORCEBaseline): + inner_baseline = get_reinforce_baseline(inner_baseline, **kw) + return WarmupBaseline(inner_baseline, **kw) + elif name == "rollout": + warmup_epochs = kw.get("n_epochs", 1) + warmup_exp_beta = kw.get("exp_beta", 0.8) + bl_alpha = kw.get("bl_alpha", 0.05) + return WarmupBaseline( + RolloutBaseline(bl_alpha=bl_alpha), warmup_epochs, warmup_exp_beta + ) + + baseline_cls = REINFORCE_BASELINES_REGISTRY.get(name, None) + if baseline_cls is None: + raise ValueError( + f"Unknown baseline {baseline_cls}. Available baselines: {REINFORCE_BASELINES_REGISTRY.keys()}" + ) + return baseline_cls(**kw) diff --git a/rl4co/models/rl/reinforce/critic.py b/rl4co/models/rl/reinforce/critic.py deleted file mode 100644 index a2a59897..00000000 --- a/rl4co/models/rl/reinforce/critic.py +++ /dev/null @@ -1,60 +0,0 @@ -from torch import nn - -from rl4co.models.nn.graph.gat import GraphAttentionEncoder - - -class CriticNetwork(nn.Module): - """We make the critic network compatible with any problem by using encoder for any environment - Refactored from Kool et al. (2019) which only worked for TSP - Reference: https://github.com/wouterkool/attention-learn-to-route - - Args: - env (EnvBase): environment - encoder (nn.Module, optional): encoder. Defaults to None. Initialized with GraphAttentionEncoder. - embedding_dim (int, optional): embedding dimension. Defaults to 128. - hidden_dim (int, optional): hidden dimension. Defaults to 512. - n_layers (int, optional): number of encoder layers. Defaults to 3. - num_heads (int, optional): number of attention heads. Defaults to 8. - encoder_normalization (str, optional): normalization. Defaults to "batch". - """ - - def __init__( - self, - env=None, - encoder=None, - embedding_dim=128, - hidden_dim=512, - num_layers=3, - num_heads=8, - encoder_normalization="batch", - use_native_sdpa=False, - force_flash_attn=False, - ): - super(CriticNetwork, self).__init__() - - self.encoder = ( - GraphAttentionEncoder( - num_heads=num_heads, - embedding_dim=embedding_dim, - num_layers=num_layers, - env=env, - normalization=encoder_normalization, - feed_forward_hidden=hidden_dim, - use_native_sdpa=use_native_sdpa, - force_flash_attn=force_flash_attn, - ) - if encoder is None - else encoder - ) - - self.value_head = nn.Sequential( - nn.Linear(embedding_dim, hidden_dim), nn.ReLU(), nn.Linear(hidden_dim, 1) - ) - - def forward(self, td): - graph_embeddings, _ = self.encoder(td) - # graph_embedings: [batch_size, graph_size, input_dim] - # return self.value_head(graph_embeddings.mean(1)) - - # L2D style - return self.value_head(graph_embeddings).mean(1) diff --git a/rl4co/models/rl/reinforce/reinforce.py b/rl4co/models/rl/reinforce/reinforce.py new file mode 100644 index 00000000..0b3e3f3a --- /dev/null +++ b/rl4co/models/rl/reinforce/reinforce.py @@ -0,0 +1,156 @@ +from typing import IO, Any, Optional, Union, cast + +import torch +import torch.nn as nn + +from lightning.fabric.utilities.types import _MAP_LOCATION_TYPE, _PATH +from lightning.pytorch.core.saving import _load_from_checkpoint +from typing_extensions import Self + +from rl4co.envs.common.base import RL4COEnvBase +from rl4co.models.rl.common.base import RL4COLitModule +from rl4co.models.rl.reinforce.baselines import REINFORCEBaseline, get_reinforce_baseline +from rl4co.utils.lightning import get_lightning_device +from rl4co.utils.pylogger import get_pylogger + +log = get_pylogger(__name__) + + +class REINFORCE(RL4COLitModule): + """REINFORCE algorithm, also known as policy gradients. + See superclass `RL4COLitModule` for more details. + + Args: + env: Environment to use for the algorithm + policy: Policy to use for the algorithm + baseline: REINFORCE baseline + baseline_kwargs: Keyword arguments for baseline. Ignored if baseline is not a string + **kwargs: Keyword arguments passed to the superclass + """ + + def __init__( + self, + env: RL4COEnvBase, + policy: nn.Module, + baseline: Union[REINFORCEBaseline, str] = "rollout", + baseline_kwargs={}, + **kwargs, + ): + super().__init__(env, policy, **kwargs) + + self.save_hyperparameters(logger=False) + + if isinstance(baseline, str): + baseline = get_reinforce_baseline(baseline, **baseline_kwargs) + else: + if baseline_kwargs != {}: + log.warning("baseline_kwargs is ignored when baseline is not a string") + self.baseline = baseline + + def shared_step(self, batch: Any, batch_idx: int, phase: str): + td = self.env.reset(batch) + # Perform forward pass (i.e., constructing solution and computing log-likelihoods) + out = self.policy(td, self.env, phase=phase) + + # Compute loss + if phase == "train": + # Extra: this is used for additional loss terms, e.g., REINFORCE baseline + extra = td.get("extra", None) + + bl_val, bl_neg_loss = ( + self.baseline.eval(td, out["reward"], self.env) + if extra is None + else (extra, 0) + ) + + advantage = out["reward"] - bl_val # advantage = reward - baseline + reinforce_loss = -(advantage * out["log_likelihood"]).mean() + loss = reinforce_loss - bl_neg_loss + out.update( + { + "loss": loss, + "reinforce_loss": reinforce_loss, + "bl_loss": -bl_neg_loss, + "bl_val": bl_val, + } + ) + + metrics = self.log_metrics(out, phase) + return {"loss": out.get("loss", None), **metrics} + + def post_setup_hook(self, stage="fit"): + # Make baseline taking model itself and train_dataloader from model as input + self.baseline.setup( + self.policy, + self.env, + batch_size=self.val_batch_size, + device=get_lightning_device(self), + dataset_size=self.data_cfg["val_data_size"], + ) + + def on_train_epoch_end(self): + """Callback for end of training epoch: we evaluate the baseline""" + self.baseline.epoch_callback( + self.policy, + env=self.env, + batch_size=self.val_batch_size, + device=get_lightning_device(self), + epoch=self.current_epoch, + dataset_size=self.data_cfg["val_data_size"], + ) + # Need to call super() for the dataset to be reset + super().on_train_epoch_end() + + def wrap_dataset(self, dataset): + """Wrap dataset from baseline evaluation. Used in greedy rollout baseline""" + return self.baseline.wrap_dataset( + dataset, + self.env, + batch_size=self.val_batch_size, + device=get_lightning_device(self), + ) + + @classmethod + def load_from_checkpoint( + cls, + checkpoint_path: Union[_PATH, IO], + map_location: _MAP_LOCATION_TYPE = None, + hparams_file: Optional[_PATH] = None, + strict: bool = False, + load_baseline: bool = True, + **kwargs: Any, + ) -> Self: + """Load model from checkpoint/ + + Note: + This is a modified version of `load_from_checkpoint` from `pytorch_lightning.core.saving`. + It deals with matching keys for the baseline by first running setup + """ + + if strict: + log.warning("Setting strict=False for loading model from checkpoint.") + strict = False + + # Do not use strict + loaded = _load_from_checkpoint( + cls, + checkpoint_path, + map_location, + hparams_file, + strict, + **kwargs, + ) + + # Load baseline state dict + if load_baseline: + # setup baseline first + loaded.setup() + loaded.post_setup_hook() + # load baseline state dict + state_dict = torch.load(checkpoint_path)["state_dict"] + # get only baseline parameters + state_dict = {k: v for k, v in state_dict.items() if "baseline" in k} + state_dict = {k.replace("baseline.", "", 1): v for k, v in state_dict.items()} + loaded.baseline.load_state_dict(state_dict) + + return cast(Self, loaded) diff --git a/rl4co/models/zoo/am/decoder.py b/rl4co/models/zoo/am/decoder.py deleted file mode 100644 index 44b97b75..00000000 --- a/rl4co/models/zoo/am/decoder.py +++ /dev/null @@ -1,176 +0,0 @@ -from dataclasses import dataclass - -import torch -import torch.nn as nn - -from einops import rearrange - -from rl4co.models.nn.attention import LogitAttention -from rl4co.models.nn.env_embeddings import env_context_embedding, env_dynamic_embedding -from rl4co.models.nn.utils import decode_probs -from rl4co.utils.ops import batchify, select_start_nodes, unbatchify - - -@dataclass -class PrecomputedCache: - node_embeddings: torch.Tensor - graph_context: torch.Tensor - glimpse_key: torch.Tensor - glimpse_val: torch.Tensor - logit_key: torch.Tensor - - -class Decoder(nn.Module): - """Auto-regressive decoder for the Attention Model for constructing solutions - We additionally include support for greedy multi-starts during inference (as in POMO) - - Args: - env: Environment to solve - embedding_dim: Dimension of the embeddings - num_heads: Number of heads for the attention - """ - - def __init__(self, env, embedding_dim, num_heads, **logit_attn_kwargs): - super(Decoder, self).__init__() - - self.env = env - self.embedding_dim = embedding_dim - self.num_heads = num_heads - - assert embedding_dim % num_heads == 0 - - self.context = env_context_embedding( - self.env.name, {"embedding_dim": embedding_dim} - ) - self.dynamic_embedding = env_dynamic_embedding( - self.env.name, {"embedding_dim": embedding_dim} - ) - - # For each node we compute (glimpse key, glimpse value, logit key) so 3 * embedding_dim - self.project_node_embeddings = nn.Linear( - embedding_dim, 3 * embedding_dim, bias=False - ) - self.project_fixed_context = nn.Linear(embedding_dim, embedding_dim, bias=False) - - # MHA - self.logit_attention = LogitAttention( - embedding_dim, num_heads, **logit_attn_kwargs - ) - - def forward( - self, - td, - embeddings, - decode_type="sampling", - softmax_temp=None, - num_starts=None, - calc_reward=True, - ): - # Greedy multi-start decoding if num_starts > 1 - num_starts = 0 if num_starts is None else num_starts - assert not ( - "multistart" in decode_type and num_starts <= 1 - ), "Multi-start decoding requires `num_starts` > 1" - - # Compute keys, values for the glimpse and keys for the logits once as they can be reused in every step - cached_embeds = self._precompute(embeddings, num_starts=num_starts) - - # Collect outputs - outputs = [] - actions = [] - - # Multi-start decoding: first action is chosen by ad-hoc node selection - if num_starts > 1 or "multistart" in decode_type: - action = select_start_nodes(td, num_starts, self.env) - - # Expand td to batch_size * num_starts - td = batchify(td, num_starts) - - td.set("action", action) - td = self.env.step(td)["next"] - log_p = torch.zeros_like( - td["action_mask"], device=td.device - ) # first log_p is 0, so p = log_p.exp() = 1 - - outputs.append(log_p) - actions.append(action) - - # Main decoding - while not td["done"].all(): - log_p, mask = self._get_log_p(cached_embeds, td, softmax_temp, num_starts) - - # Select the indices of the next nodes in the sequences, result (batch_size) long - action = decode_probs(log_p.exp(), mask, decode_type=decode_type) - - td.set("action", action) - td = self.env.step(td)["next"] - - # Collect output of step - outputs.append(log_p) - actions.append(action) - - outputs, actions = torch.stack(outputs, 1), torch.stack(actions, 1) - if calc_reward: - td.set("reward", self.env.get_reward(td, actions)) - - return outputs, actions, td - - def _precompute(self, embeddings, num_starts=0): - # The projection of the node embeddings for the attention is calculated once up front - ( - glimpse_key_fixed, - glimpse_val_fixed, - logit_key_fixed, - ) = self.project_node_embeddings(embeddings).chunk(3, dim=-1) - - # Batchify and unbatchify have no effect if num_starts = 0. - # Otherwise, we need to batchify the embeddings to modify key value (i.e. for the lenght of queries) - graph_context = unbatchify( - batchify(self.project_fixed_context(embeddings.mean(1)), num_starts), - num_starts, - ) - - # Organize in a dataclass for easy access - cached_embeds = PrecomputedCache( - node_embeddings=embeddings, - graph_context=graph_context, - glimpse_key=glimpse_key_fixed, - glimpse_val=glimpse_val_fixed, - logit_key=logit_key_fixed, - ) - - return cached_embeds - - def _get_log_p(self, cached, td, softmax_temp=None, num_starts=0): - # Compute the query based on the context (computes automatically the first and last node context) - - # Unbatchify to [batch_size, num_starts, ...]. Has no effect if num_starts = 0 - td_unbatch = unbatchify(td, num_starts) - - step_context = self.context(cached.node_embeddings, td_unbatch) - glimpse_q = step_context + cached.graph_context - glimpse_q = glimpse_q.unsqueeze(1) if glimpse_q.ndim == 2 else glimpse_q - - # Compute keys and values for the nodes - ( - glimpse_key_dynamic, - glimpse_val_dynamic, - logit_key_dynamic, - ) = self.dynamic_embedding(td_unbatch) - glimpse_k = cached.glimpse_key + glimpse_key_dynamic - glimpse_v = cached.glimpse_val + glimpse_val_dynamic - logit_k = cached.logit_key + logit_key_dynamic - - # Get the mask - mask = ~td_unbatch["action_mask"] - - # Compute logits - log_p = self.logit_attention( - glimpse_q, glimpse_k, glimpse_v, logit_k, mask, softmax_temp - ) - - # Now we need to reshape the logits and log_p to [batch_size*num_starts, num_nodes] - # Note that rearranging order is important here - log_p = rearrange(log_p, "b s l -> (s b) l") if num_starts > 1 else log_p - mask = rearrange(mask, "b s l -> (s b) l") if num_starts > 1 else mask - return log_p, mask diff --git a/rl4co/models/zoo/am/model.py b/rl4co/models/zoo/am/model.py index d1f9d848..685e7206 100644 --- a/rl4co/models/zoo/am/model.py +++ b/rl4co/models/zoo/am/model.py @@ -1,25 +1,33 @@ -from rl4co.models.rl.reinforce.base import REINFORCE -from rl4co.models.rl.reinforce.baselines import RolloutBaseline, WarmupBaseline +from typing import Union + +from rl4co.envs.common.base import RL4COEnvBase +from rl4co.models.rl import REINFORCE +from rl4co.models.rl.reinforce.baselines import REINFORCEBaseline from rl4co.models.zoo.am.policy import AttentionModelPolicy class AttentionModel(REINFORCE): - """ - Attention Model for neural combinatorial optimization based on REINFORCE - Based on Wouter Kool et al. (2018) https://arxiv.org/abs/1803.08475 - Refactored from reference implementation: https://github.com/wouterkool/attention-learn-to-route + """Attention Model based on REINFORCE. Args: - env: TorchRL Environment - policy: Policy - baseline: REINFORCE Baseline + env: Environment to use for the algorithm + policy: Policy to use for the algorithm + baseline: REINFORCE baseline. Defaults to rollout (1 epoch of exponential, then greedy rollout baseline) + policy_kwargs: Keyword arguments for policy + baseline_kwargs: Keyword arguments for baseline + **kwargs: Keyword arguments passed to the superclass """ - def __init__(self, env, policy=None, baseline=None, **policy_kwargs): - super(AttentionModel, self).__init__(env, policy, baseline) - self.policy = ( - AttentionModelPolicy(self.env, **policy_kwargs) if policy is None else policy - ) - self.baseline = ( - WarmupBaseline(RolloutBaseline()) if baseline is None else baseline - ) + def __init__( + self, + env: RL4COEnvBase, + policy: AttentionModelPolicy = None, + baseline: Union[REINFORCEBaseline, str] = "rollout", + policy_kwargs={}, + baseline_kwargs={}, + **kwargs, + ): + if policy is None: + policy = AttentionModelPolicy(env.name, **policy_kwargs) + + super().__init__(env, policy, baseline, baseline_kwargs, **kwargs) diff --git a/rl4co/models/zoo/am/policy.py b/rl4co/models/zoo/am/policy.py index 6af4e9f6..4d917eb7 100644 --- a/rl4co/models/zoo/am/policy.py +++ b/rl4co/models/zoo/am/policy.py @@ -1,101 +1,34 @@ -import torch.nn as nn +from rl4co.models.zoo.common.autoregressive import AutoregressivePolicy -from tensordict.tensordict import TensorDict -from torchrl.envs import EnvBase -from rl4co.models.nn.graph.gat import GraphAttentionEncoder -from rl4co.models.nn.utils import get_log_likelihood -from rl4co.models.zoo.am.decoder import Decoder -from rl4co.utils.pylogger import get_pylogger +class AttentionModelPolicy(AutoregressivePolicy): + """Attention Model Policy based on Kool et al. (2019): https://arxiv.org/abs/1803.08475. + We re-declare the most important arguments here for convenience as in the paper. + See `AutoregressivePolicy` superclass for more details. -log = get_pylogger(__name__) + Args: + env_name: Name of the environment used to initialize embeddings + embedding_dim: Dimension of the node embeddings + num_encoder_layers: Number of layers in the encoder + num_heads: Number of heads in the attention layers + normalization: Normalization type in the attention layers + **kwargs: keyword arguments passed to the `AutoregressivePolicy` + """ - -class AttentionModelPolicy(nn.Module): def __init__( self, - env: EnvBase, - encoder: nn.Module = None, - decoder: nn.Module = None, + env_name: str, embedding_dim: int = 128, num_encoder_layers: int = 3, num_heads: int = 8, normalization: str = "batch", - mask_inner: bool = True, - use_native_sdpa: bool = False, - force_flash_attn: bool = False, - train_decode_type: str = "sampling", - val_decode_type: str = "greedy", - test_decode_type: str = "greedy", - **unused_kw, + **kwargs, ): - super(AttentionModelPolicy, self).__init__() - if len(unused_kw) > 0: - log.warn(f"Unused kwargs: {unused_kw}") - - self.env = env - - self.encoder = ( - GraphAttentionEncoder( - num_heads=num_heads, - embedding_dim=embedding_dim, - num_layers=num_encoder_layers, - env=self.env, - normalization=normalization, - use_native_sdpa=use_native_sdpa, - force_flash_attn=force_flash_attn, - ) - if encoder is None - else encoder + super(AttentionModelPolicy, self).__init__( + env_name=env_name, + embedding_dim=embedding_dim, + num_encoder_layers=num_encoder_layers, + num_heads=num_heads, + normalization=normalization, + **kwargs, ) - - self.decoder = ( - Decoder( - env, - embedding_dim, - num_heads, - mask_inner=mask_inner, - force_flash_attn=force_flash_attn, - ) - if decoder is None - else decoder - ) - - self.train_decode_type = train_decode_type - self.val_decode_type = val_decode_type - self.test_decode_type = test_decode_type - - def forward( - self, - td: TensorDict, - phase: str = "train", - return_actions: bool = False, - return_entropy: bool = False, - **decoder_kwargs, - ) -> dict: - # Encode inputs - embeddings, _ = self.encoder(td) - - # Get decode type depending on phase - if decoder_kwargs.get("decode_type", None) is None: - decoder_kwargs["decode_type"] = getattr(self, f"{phase}_decode_type") - - # Main rollout: autoregressive decoding - log_p, actions, td_out = self.decoder(td, embeddings, **decoder_kwargs) - - # Log likelihood is calculated within the model since returning it per action does not work well with - ll = get_log_likelihood(log_p, actions, td_out.get("mask", None)) - - out = { - "reward": td_out["reward"], - "log_likelihood": ll, - } - if return_actions: - out["actions"] = actions - - if return_entropy: - entropy = -(log_p.exp() * log_p).nansum(dim=1) # [batch, decoder steps] - entropy = entropy.sum(dim=1) # [batch] - out["entropy"] = entropy - - return out diff --git a/rl4co/models/zoo/amppo/decoder.py b/rl4co/models/zoo/amppo/decoder.py deleted file mode 100644 index 37376132..00000000 --- a/rl4co/models/zoo/amppo/decoder.py +++ /dev/null @@ -1,60 +0,0 @@ -import torch - -from rl4co.models.nn.utils import decode_probs -from rl4co.models.zoo.am.decoder import Decoder - - -class PPODecoder(Decoder): - - """ - A slightly modified AM decoder to support PPO training. - """ - - def forward( - self, - td, - embeddings, - decode_type="sampling", - softmax_temp=None, - calc_reward: bool = True, - given_actions: torch.Tensor = None, # [batch_size, graph_size] - ): - outputs = [] - actions = [] - - # Compute keys, values for the glimpse and keys for the logits once as they can be reused in every step - cached_embeds = self._precompute(embeddings) - - decode_step = 0 - while not td["done"].all(): - log_p, mask = self._get_log_p(cached_embeds, td, softmax_temp) - - # Select the indices of the next nodes in the sequences, result (batch_size) long - - if given_actions is not None: - action = given_actions[..., decode_step] - else: - action = decode_probs(log_p.exp(), mask, decode_type=decode_type) - - td.set("action", action) - td = self.env.step(td)["next"] - - outputs.append(log_p) - actions.append(action) - - decode_step += 1 - - if given_actions is not None: - if len(outputs) != given_actions.shape[1]: - # print(given_actions.shape, decode_step) - # print(td["done"].all()) - raise ValueError( - f"Given actions have {given_actions.shape[1]} steps, but we decoded {decode_step} steps." - ) - - # output: logprobs [batch, problem size, decoding steps] - outputs, actions = torch.stack(outputs, 1), torch.stack(actions, 1) - if calc_reward: - td.set("reward", self.env.get_reward(td, actions)) - - return outputs, actions, td diff --git a/rl4co/models/zoo/amppo/model.py b/rl4co/models/zoo/amppo/model.py deleted file mode 100644 index 3696fcfd..00000000 --- a/rl4co/models/zoo/amppo/model.py +++ /dev/null @@ -1,19 +0,0 @@ -from rl4co.models.rl.ppo.model import PPO -from rl4co.models.rl.reinforce.critic import CriticNetwork -from rl4co.models.zoo.amppo.policy import PPOAttentionModelPolicy - - -class AttentionModel(PPO): - def __init__(self, env, policy=None, critic=None, **policy_kwargs): - policy = ( - PPOAttentionModelPolicy(env=env, **policy_kwargs) - if policy is None - else policy - ) - critic = CriticNetwork(env=env) if critic is None else critic - super(AttentionModel, self).__init__( - env=env, - policy=policy, - critic=critic, - **policy_kwargs, - ) diff --git a/rl4co/models/zoo/amppo/policy.py b/rl4co/models/zoo/amppo/policy.py deleted file mode 100644 index 89837919..00000000 --- a/rl4co/models/zoo/amppo/policy.py +++ /dev/null @@ -1,119 +0,0 @@ - -import torch -import torch.nn as nn - -from tensordict.tensordict import TensorDict -from torchrl.envs import EnvBase - -from rl4co.models.nn.graph.gat import GraphAttentionEncoder -from rl4co.models.nn.utils import get_log_likelihood -from rl4co.models.zoo.amppo.decoder import PPODecoder -from rl4co.utils.pylogger import get_pylogger - -log = get_pylogger(__name__) - - -class PPOAttentionModelPolicy(nn.Module): - def __init__( - self, - env: EnvBase, - encoder: nn.Module = None, - decoder: nn.Module = None, - embedding_dim: int = 128, - num_encoder_layers: int = 3, - num_heads: int = 8, - normalization: str = "batch", - mask_inner: bool = True, - use_native_sdpa: bool = False, - force_flash_attn: bool = False, - train_decode_type: str = "sampling", - val_decode_type: str = "greedy", - test_decode_type: str = "greedy", - **unused_kw, - ): - super(PPOAttentionModelPolicy, self).__init__() - if len(unused_kw) > 0: - log.warn(f"Unused kwargs: {unused_kw}") - - self.env = env - - self.encoder = ( - GraphAttentionEncoder( - num_heads=num_heads, - embedding_dim=embedding_dim, - num_layers=num_encoder_layers, - env=self.env, - normalization=normalization, - use_native_sdpa=use_native_sdpa, - force_flash_attn=force_flash_attn, - ) - if encoder is None - else encoder - ) - - self.decoder = ( - PPODecoder( - env, - embedding_dim, - num_heads, - mask_inner=mask_inner, - force_flash_attn=force_flash_attn, - ) - if decoder is None - else decoder - ) - - self.train_decode_type = train_decode_type - self.val_decode_type = val_decode_type - self.test_decode_type = test_decode_type - - def forward( - self, - td: TensorDict, - phase: str = "train", - return_action: bool = False, - return_entropy: bool = False, - given_actions: torch.Tensor = None, - **decoder_kwargs, - ) -> dict: - # Encode inputs - embeddings, _ = self.encoder(td) - - # Get decode type depending on phase - if decoder_kwargs.get("decode_type", None) is None: - decoder_kwargs["decode_type"] = getattr(self, f"{phase}_decode_type") - - # Main rollout: autoregressive decoding - log_p, actions, td_out = self.decoder( - td, embeddings, given_actions=given_actions, **decoder_kwargs - ) - - # Log likelihood is calculated within the model since returning it per action does not work well with - ll = get_log_likelihood( - log_p, actions, td_out.get("mask", None), return_sum=False - ) - - out = { - "reward": td_out["reward"], - "log_likelihood": ll, # [batch, decoder steps] - } - - if given_actions is not None: - selected_log_p = get_log_likelihood( - log_p, given_actions, td_out.get("mask", None), return_sum=False - ) - assert selected_log_p.isfinite().all(), "Log p is not finite" - out["selected_log_p"] = selected_log_p # [batch, decoder steps] - - if return_action: - out["actions"] = actions # [batch, decoder steps] - - if return_entropy: - # log_p [batch, decoder steps, num nodes] - log_p = torch.nan_to_num(log_p, nan=0.0) - entropy = -(log_p.exp() * log_p).sum(dim=-1) # [batch, decoder steps] - entropy = entropy.sum(dim=1) # [batch] -- sum over decoding steps - assert entropy.isfinite().all(), "Entropy is not finite" - out["entropy"] = entropy - - return out diff --git a/rl4co/models/zoo/common/autoregressive/__init__.py b/rl4co/models/zoo/common/autoregressive/__init__.py new file mode 100644 index 00000000..3c5afd87 --- /dev/null +++ b/rl4co/models/zoo/common/autoregressive/__init__.py @@ -0,0 +1,3 @@ +from rl4co.models.zoo.common.autoregressive.decoder import AutoregressiveDecoder +from rl4co.models.zoo.common.autoregressive.encoder import GraphAttentionEncoder +from rl4co.models.zoo.common.autoregressive.policy import AutoregressivePolicy diff --git a/rl4co/models/zoo/common/autoregressive/decoder.py b/rl4co/models/zoo/common/autoregressive/decoder.py new file mode 100644 index 00000000..34744750 --- /dev/null +++ b/rl4co/models/zoo/common/autoregressive/decoder.py @@ -0,0 +1,253 @@ +from dataclasses import dataclass +from typing import Tuple, Union + +import torch +import torch.nn as nn + +from einops import rearrange +from tensordict import TensorDict +from torch import Tensor + +from rl4co.envs import RL4COEnvBase, get_env +from rl4co.models.nn.attention import LogitAttention +from rl4co.models.nn.env_embeddings import env_context_embedding, env_dynamic_embedding +from rl4co.models.nn.utils import decode_probs +from rl4co.utils.ops import batchify, select_start_nodes, unbatchify + + +@dataclass +class PrecomputedCache: + node_embeddings: Tensor + graph_context: Union[Tensor, float] + glimpse_key: Tensor + glimpse_val: Tensor + logit_key: Tensor + + +class AutoregressiveDecoder(nn.Module): + """Auto-regressive decoder for constructing solutions for combinatorial optimization problems. + Given the environment state and the embeddings, compute the logits and sample actions autoregressively until + all the environments in the batch have reached a terminal state. + We additionally include support for multi-starts as it is more efficient to do so in the decoder as we can + natively perform the attention computation. + + Note: + There are major differences between this decoding and most RL problems. The most important one is + that reward is not defined for partial solutions, hence we have to wait for the environment to reach a terminal + state before we can compute the reward with `env.get_reward()`. + + Warning: + We suppose environments in the `done` state are still available for sampling. This is because in NCO we need to + wait for all the environments to reach a terminal state before we can stop the decoding process. This is in + contrast with the TorchRL framework (at the moment) where the `env.rollout` function automatically resets. + You may follow tighter integration with TorchRL here: https://github.com/kaist-silab/rl4co/issues/72. + + Args: + env_name: environment name to solve + embedding_dim: Dimension of the embeddings + num_heads: Number of heads for the attention + use_graph_context: Whether to use the initial graph context to modify the query + """ + + def __init__( + self, + env_name: str, + embedding_dim: int, + num_heads: int, + use_graph_context: bool = True, + **logit_attn_kwargs, + ): + super().__init__() + + self.env_name = env_name + self.embedding_dim = embedding_dim + self.num_heads = num_heads + + assert embedding_dim % num_heads == 0 + + self.context_embedding = env_context_embedding( + self.env_name, {"embedding_dim": embedding_dim} + ) + self.dynamic_embedding = env_dynamic_embedding( + self.env_name, {"embedding_dim": embedding_dim} + ) + self.use_graph_context = use_graph_context + + # For each node we compute (glimpse key, glimpse value, logit key) so 3 * embedding_dim + self.project_node_embeddings = nn.Linear( + embedding_dim, 3 * embedding_dim, bias=False + ) + self.project_fixed_context = nn.Linear(embedding_dim, embedding_dim, bias=False) + + # MHA + self.logit_attention = LogitAttention( + embedding_dim, num_heads, **logit_attn_kwargs + ) + + def forward( + self, + td: TensorDict, + embeddings: Tensor, + env: Union[str, RL4COEnvBase] = None, + decode_type: str = "sampling", + num_starts: int = None, + softmax_temp: float = None, + calc_reward: bool = True, + ) -> Tuple[Tensor, Tensor, TensorDict]: + """Forward pass of the decoder + Given the environment state and the pre-computed embeddings, compute the logits and sample actions + + Args: + td: Input TensorDict containing the environment state + embeddings: Precomputed embeddings for the nodes + env: Environment to use for decoding. If None, the environment is instantiated from `env_name`. Note that + it is more efficient to pass an already instantiated environment each time for fine-grained control + decode_type: Type of decoding to use. Can be one of: + - "sampling": sample from the logits + - "greedy": take the argmax of the logits + - "multistart_sampling": sample as sampling, but with multi-start decoding + - "multistart_greedy": sample as greedy, but with multi-start decoding + num_starts: Number of multi-starts to use. If None, no multi-start decoding is used + softmax_temp: Temperature for the softmax. If None, default softmax is used from the `LogitAttention` module + calc_reward: Whether to calculate the reward for the decoded sequence + + Returns: + outputs: Tensor of shape (batch_size, seq_len, num_nodes) containing the logits + actions: Tensor of shape (batch_size, seq_len) containing the sampled actions + td: TensorDict containing the environment state after decoding + """ + + # Greedy multi-start decoding if num_starts > 1 + num_starts = 0 if num_starts is None else num_starts + assert not ( + "multistart" in decode_type and num_starts <= 1 + ), "Multi-start decoding requires `num_starts` > 1" + + # Compute keys, values for the glimpse and keys for the logits once as they can be reused in every step + cached_embeds = self._precompute_cache(embeddings, num_starts=num_starts) + + # Collect outputs + outputs = [] + actions = [] + + # Instantiate environment if needed + if isinstance(env, str): + env_name = self.env_name if env is None else env + env = get_env(env_name) + + # Multi-start decoding: first action is chosen by ad-hoc node selection + if num_starts > 1 or "multistart" in decode_type: + action = select_start_nodes(td, num_starts, env) + + # Expand td to batch_size * num_starts + td = batchify(td, num_starts) + + td.set("action", action) + td = env.step(td)["next"] + log_p = torch.zeros_like( + td["action_mask"], device=td.device + ) # first log_p is 0, so p = log_p.exp() = 1 + + outputs.append(log_p) + actions.append(action) + + # Main decoding + while not td["done"].all(): + log_p, mask = self._get_log_p(cached_embeds, td, softmax_temp, num_starts) + + # Select the indices of the next nodes in the sequences, result (batch_size) long + action = decode_probs(log_p.exp(), mask, decode_type=decode_type) + + td.set("action", action) + td = env.step(td)["next"] + + # Collect output of step + outputs.append(log_p) + actions.append(action) + + outputs, actions = torch.stack(outputs, 1), torch.stack(actions, 1) + if calc_reward: + td.set("reward", env.get_reward(td, actions)) + + return outputs, actions, td + + def _precompute_cache(self, embeddings: Tensor, num_starts: int = 0): + """Compute the cached embeddings for the attention + + Args: + embeddings: Precomputed embeddings for the nodes + num_starts: Number of multi-starts to use. If 0, no multi-start decoding is used + """ + + # The projection of the node embeddings for the attention is calculated once up front + ( + glimpse_key_fixed, + glimpse_val_fixed, + logit_key_fixed, + ) = self.project_node_embeddings(embeddings).chunk(3, dim=-1) + + # Optionally disable the graph context from the initial embedding as done in POMO + if self.use_graph_context: + graph_context = unbatchify( + batchify(self.project_fixed_context(embeddings.mean(1)), num_starts), + num_starts, + ) + else: + graph_context = 0 + + # Organize in a dataclass for easy access + cached_embeds = PrecomputedCache( + node_embeddings=embeddings, + graph_context=graph_context, + glimpse_key=glimpse_key_fixed, + glimpse_val=glimpse_val_fixed, + logit_key=logit_key_fixed, + ) + + return cached_embeds + + def _get_log_p( + self, + cached: PrecomputedCache, + td: TensorDict, + softmax_temp: float = None, + num_starts: int = 0, + ): + """Compute the log probabilities of the next actions given the current state + + Args: + cache: Precomputed embeddings + td: TensorDict with the current environment state + softmax_temp: Temperature for the softmax + num_starts: Number of starts for the multi-start decoding + """ + + # Unbatchify to [batch_size, num_starts, ...]. Has no effect if num_starts = 0 + td_unbatch = unbatchify(td, num_starts) + step_context = self.context_embedding(cached.node_embeddings, td_unbatch) + glimpse_q = step_context + cached.graph_context + glimpse_q = glimpse_q.unsqueeze(1) if glimpse_q.ndim == 2 else glimpse_q + + # Compute keys and values for the nodes + ( + glimpse_key_dynamic, + glimpse_val_dynamic, + logit_key_dynamic, + ) = self.dynamic_embedding(td_unbatch) + glimpse_k = cached.glimpse_key + glimpse_key_dynamic + glimpse_v = cached.glimpse_val + glimpse_val_dynamic + logit_k = cached.logit_key + logit_key_dynamic + + # Get the mask + mask = ~td_unbatch["action_mask"] + + # Compute logits + log_p = self.logit_attention( + glimpse_q, glimpse_k, glimpse_v, logit_k, mask, softmax_temp + ) + + # Now we need to reshape the logits and log_p to [batch_size*num_starts, num_nodes] + # Note that rearranging order is important here + log_p = rearrange(log_p, "b s l -> (s b) l") if num_starts > 1 else log_p + mask = rearrange(mask, "b s l -> (s b) l") if num_starts > 1 else mask + return log_p, mask diff --git a/rl4co/models/zoo/common/autoregressive/encoder.py b/rl4co/models/zoo/common/autoregressive/encoder.py new file mode 100644 index 00000000..1db65f22 --- /dev/null +++ b/rl4co/models/zoo/common/autoregressive/encoder.py @@ -0,0 +1,71 @@ +from typing import Tuple, Union + +import torch.nn as nn + +from tensordict import TensorDict +from torch import Tensor + +from rl4co.models.nn.env_embeddings import env_init_embedding +from rl4co.models.nn.graph.attnnet import GraphAttentionNetwork + + +class GraphAttentionEncoder(nn.Module): + """Graph Attention Encoder as in Kool et al. (2019). + + Args: + env_name: environment name to solve + num_heads: Number of heads for the attention + embedding_dim: Dimension of the embeddings + num_layers: Number of layers for the encoder + normalization: Normalization to use for the attention + feed_forward_hidden: Hidden dimension for the feed-forward network + force_flash_attn: Whether to force the use of flash attention. If True, cast to fp16 + """ + + def __init__( + self, + env_name: str, + num_heads: int, + embedding_dim: int, + num_layers: int, + normalization: str = "batch", + feed_forward_hidden: int = 512, + force_flash_attn: bool = False, + ): + super(GraphAttentionEncoder, self).__init__() + + self.env_name = env_name + self.init_embedding = env_init_embedding( + self.env_name, {"embedding_dim": embedding_dim} + ) + self.net = GraphAttentionNetwork( + num_heads, + embedding_dim, + num_layers, + normalization, + feed_forward_hidden, + force_flash_attn, + ) + + def forward( + self, td: TensorDict, mask: Union[Tensor, None] = None + ) -> Tuple[Tensor, Tensor]: + """Forward pass of the encoder. + Transform the input TensorDict into a latent representation. + + Args: + td: Input TensorDict containing the environment state + mask: Mask to apply to the attention + + Returns: + h: Latent representation of the input + init_h: Initial embedding of the input + """ + # Transfer to embedding space + init_h = self.init_embedding(td) + + # Process embedding + h = self.net(init_h, mask) + + # Return latent representation and initial embedding + return h, init_h diff --git a/rl4co/models/zoo/common/autoregressive/policy.py b/rl4co/models/zoo/common/autoregressive/policy.py new file mode 100644 index 00000000..f3df7036 --- /dev/null +++ b/rl4co/models/zoo/common/autoregressive/policy.py @@ -0,0 +1,158 @@ +from typing import Union + +import torch.nn as nn + +from tensordict import TensorDict + +from rl4co.envs import RL4COEnvBase, get_env +from rl4co.models.nn.utils import get_log_likelihood +from rl4co.models.zoo.common.autoregressive.decoder import AutoregressiveDecoder +from rl4co.models.zoo.common.autoregressive.encoder import GraphAttentionEncoder +from rl4co.utils.pylogger import get_pylogger + +log = get_pylogger(__name__) + + +class AutoregressivePolicy(nn.Module): + """Base Auto-regressive policy for NCO construction methods. + The policy performs the following steps: + 1. Encode the environment initial state into node embeddings + 2. Decode (autoregressively) to construct the solution to the NCO problem + Based on the policy from Kool et al. (2019) and extended for common use on multiple models in RL4CO. + + Note: + We recommend to provide the decoding method as a keyword argument to the + decoder during actual testing. The `{phase}_decode_type` arguments are only + meant to be used during the main training loop. You may have a look at the + evaluation scripts for examples. + + Args: + env_name: Name of the environment used to initialize embeddings + encoder: Encoder module. Can be passed by sub-classes. + decoder: Decoder module. Can be passed by sub-classes. + embedding_dim: Dimension of the node embeddings + num_encoder_layers: Number of layers in the encoder + num_heads: Number of heads in the attention layers + normalization: Normalization type in the attention layers + mask_inner: Whether to mask the inner diagonal in the attention layers + use_graph_context: Whether to use the initial graph context to modify the query + force_flash_attn: Whether to force the use of flash attention in the attention layers + train_decode_type: Type of decoding during training + val_decode_type: Type of decoding during validation + test_decode_type: Type of decoding during testing + **unused_kw: Unused keyword arguments + """ + + def __init__( + self, + env_name: str, + encoder: nn.Module = None, + decoder: nn.Module = None, + embedding_dim: int = 128, + num_encoder_layers: int = 3, + num_heads: int = 8, + normalization: str = "batch", + mask_inner: bool = True, + use_graph_context: bool = True, + force_flash_attn: bool = False, + train_decode_type: str = "sampling", + val_decode_type: str = "greedy", + test_decode_type: str = "greedy", + **unused_kw, + ): + super(AutoregressivePolicy, self).__init__() + + if len(unused_kw) > 0: + log.warn(f"Unused kwargs: {unused_kw}") + + self.env_name = env_name + + if encoder is None: + log.info("Initializing default GraphAttentionEncoder") + self.encoder = GraphAttentionEncoder( + env_name=self.env_name, + num_heads=num_heads, + embedding_dim=embedding_dim, + num_layers=num_encoder_layers, + normalization=normalization, + force_flash_attn=force_flash_attn, + ) + else: + self.encoder = encoder + + if decoder is None: + log.info("Initializing default AutoregressiveDecoder") + self.decoder = AutoregressiveDecoder( + env_name=self.env_name, + embedding_dim=embedding_dim, + num_heads=num_heads, + use_graph_context=use_graph_context, + mask_inner=mask_inner, + force_flash_attn=force_flash_attn, + ) + else: + self.decoder = decoder + + self.train_decode_type = train_decode_type + self.val_decode_type = val_decode_type + self.test_decode_type = test_decode_type + + def forward( + self, + td: TensorDict, + env: Union[str, RL4COEnvBase] = None, + phase: str = "train", + return_actions: bool = False, + return_entropy: bool = False, + return_init_embeds: bool = False, + **decoder_kwargs, + ) -> dict: + """Forward pass of the policy. + + Args: + td: TensorDict containing the environment state + env: Environment to use for decoding + phase: Phase of the algorithm (train, val, test) + return_actions: Whether to return the actions + return_entropy: Whether to return the entropy + decoder_kwargs: Keyword arguments for the decoder + + Returns: + out: Dictionary containing the reward, log likelihood, and optionally the actions and entropy + """ + + # ENCODER: get embeddings from initial state + embeddings, init_embeds = self.encoder(td) + + # Instantiate environment if needed + if isinstance(env, str) or env is None: + env_name = self.env_name if env is None else env + log.info(f"Instantiated environment not provided; instantiating {env_name}") + env = get_env(env_name) + + # Get decode type depending on phase + if decoder_kwargs.get("decode_type", None) is None: + decoder_kwargs["decode_type"] = getattr(self, f"{phase}_decode_type") + + # DECODER: main rollout with autoregressive decoding + log_p, actions, td_out = self.decoder(td, embeddings, env, **decoder_kwargs) + + # Log likelihood is calculated within the model + log_likelihood = get_log_likelihood(log_p, actions, td_out.get("mask", None)) + + out = { + "reward": td_out["reward"], + "log_likelihood": log_likelihood, + } + if return_actions: + out["actions"] = actions + + if return_entropy: + entropy = -(log_p.exp() * log_p).nansum(dim=1) # [batch, decoder steps] + entropy = entropy.sum(dim=1) # [batch] + out["entropy"] = entropy + + if return_init_embeds: + out["init_embeds"] = init_embeds + + return out diff --git a/rl4co/models/zoo/et/model.py b/rl4co/models/zoo/et/model.py new file mode 100644 index 00000000..a968ffcc --- /dev/null +++ b/rl4co/models/zoo/et/model.py @@ -0,0 +1,29 @@ +from typing import Optional, Union + +from rl4co.envs.common.base import RL4COEnvBase +from rl4co.models.rl import REINFORCE +from rl4co.models.rl.reinforce.baselines import REINFORCEBaseline +from rl4co.models.zoo.am.policy import AttentionModelPolicy + + +class EquityTransformer(REINFORCE): + """Equity Transformer from Son et al., 2023. + Reference: https://arxiv.org/abs/2306.02689 + + Warning: + This implementation is under development and subject to change. + """ + + def __init__( + self, + env: RL4COEnvBase, + policy: Optional(AttentionModelPolicy) = None, + baseline: Union[REINFORCEBaseline, str] = "rollout", + policy_kwargs={}, + baseline_kwargs={}, + **kwargs, + ): + if policy is None: + policy = AttentionModelPolicy(env.name, **policy_kwargs) + + super().__init__(env, policy, baseline, baseline_kwargs, **kwargs) diff --git a/rl4co/models/zoo/et/policy.py b/rl4co/models/zoo/et/policy.py new file mode 100644 index 00000000..11410e15 --- /dev/null +++ b/rl4co/models/zoo/et/policy.py @@ -0,0 +1,42 @@ +from rl4co.models.zoo.common.autoregressive import AutoregressivePolicy +from rl4co.utils.pylogger import get_logger + +log = get_logger(__name__) + + +class EquityTransformerPolicy(AutoregressivePolicy): + """Equity Transformer Policy from Son et al., 2023. + Reference: https://arxiv.org/abs/2306.02689 + + Warning: + This implementation is under development and subject to change. + + Args: + env_name: Name of the environment used to initialize embeddings + embedding_dim: Dimension of the node embeddings + num_encoder_layers: Number of layers in the encoder + num_heads: Number of heads in the attention layers + normalization: Normalization type in the attention layers + **kwargs: keyword arguments passed to the `AutoregressivePolicy` + """ + + def __init__( + self, + env_name: str, + embedding_dim: int = 128, + num_encoder_layers: int = 3, + num_heads: int = 8, + normalization: str = "batch", + **kwargs, + ): + if env_name not in ["mtsp", "mpdp"]: + log.error(f"env_name {env_name} is not originally implemented in ET") + + super(EquityTransformerPolicy, self).__init__( + env_name=env_name, + embedding_dim=embedding_dim, + num_encoder_layers=num_encoder_layers, + num_heads=num_heads, + normalization=normalization, + **kwargs, + ) diff --git a/rl4co/models/zoo/et/positional_encoding.py b/rl4co/models/zoo/et/positional_encoding.py new file mode 100644 index 00000000..0f3ec9dd --- /dev/null +++ b/rl4co/models/zoo/et/positional_encoding.py @@ -0,0 +1,36 @@ +import torch + +from torch import nn + + +class PositionalEncoding(nn.Module): + """Compute sinusoid encoding. + Reference: https://arxiv.org/abs/2306.02689 + + Warning: + This implementation is under development and subject to change. + + Args: + d_model: Dimension of model. + max_len: Max sequence length. + """ + + def __init__(self, d_model, max_len): + super(PositionalEncoding, self).__init__() + + # Initialize encoding matrix + self.encoding = torch.zeros(max_len, d_model) + self.encoding.requires_grad = False # no need to compute gradient + + # 'i' means index of d_model (e.g. embedding size = 50, 'i' = [0,50]) + # "step=2" means 'i' multiplied with two (same with 2 * i) + _2i = torch.arange(0, d_model, step=2).float() + + # Compute the positional encodings + pos = torch.arange(0, max_len).unsqueeze(1).float() + self.encoding[:, 0::2] = torch.sin(pos / (10000 ** (_2i / d_model))) + self.encoding[:, 1::2] = torch.cos(pos / (10000 ** (_2i / d_model))) + + def forward(self, seq_len): + # Return encoding matrix for the current sequence length + return self.encoding[:seq_len, :] diff --git a/rl4co/models/zoo/ham/encoder.py b/rl4co/models/zoo/ham/encoder.py index 7f03f8ef..736ed9a6 100644 --- a/rl4co/models/zoo/ham/encoder.py +++ b/rl4co/models/zoo/ham/encoder.py @@ -1,7 +1,7 @@ import torch.nn as nn from rl4co.models.nn.env_embeddings import env_init_embedding -from rl4co.models.nn.graph.gat import Normalization, SkipConnection +from rl4co.models.nn.graph.attnnet import Normalization, SkipConnection from rl4co.models.zoo.ham.attention import HeterogenousMHA @@ -34,8 +34,8 @@ def __init__( self, num_heads, embedding_dim, - num_layers, - env=None, + num_encoder_layers, + env_name=None, normalization="batch", feed_forward_hidden=512, force_flash_attn=False, @@ -44,7 +44,7 @@ def __init__( # Map input to embedding space self.init_embedding = env_init_embedding( - env.name, {"embedding_dim": embedding_dim} + env_name, {"embedding_dim": embedding_dim} ) self.layers = nn.Sequential( @@ -55,7 +55,7 @@ def __init__( feed_forward_hidden, normalization, ) - for _ in range(num_layers) + for _ in range(num_encoder_layers) ) ) diff --git a/rl4co/models/zoo/ham/model.py b/rl4co/models/zoo/ham/model.py index d600d9b2..a95f558b 100644 --- a/rl4co/models/zoo/ham/model.py +++ b/rl4co/models/zoo/ham/model.py @@ -1,28 +1,37 @@ -from rl4co.models.rl.reinforce.base import REINFORCE -from rl4co.models.rl.reinforce.baselines import RolloutBaseline, WarmupBaseline +from typing import Union + +from rl4co.envs.common.base import RL4COEnvBase +from rl4co.models.rl import REINFORCE +from rl4co.models.rl.reinforce.baselines import REINFORCEBaseline from rl4co.models.zoo.ham.policy import HeterogeneousAttentionModelPolicy class HeterogeneousAttentionModel(REINFORCE): - """Heterogenous Attention Model for solving the Pickup and Delivery Problem based on REINFORCE - https://arxiv.org/abs/2110.02634 + """Heterogenous Attention Model for solving the Pickup and Delivery Problem based on + REINFORCE: https://arxiv.org/abs/2110.02634. Args: - env: TorchRL Environment - policy: Policy - baseline: REINFORCE Baseline + env: Environment to use for the algorithm + policy: Policy to use for the algorithm + baseline: REINFORCE baseline. Defaults to rollout (1 epoch of exponential, then greedy rollout baseline) + policy_kwargs: Keyword arguments for policy + baseline_kwargs: Keyword arguments for baseline + **kwargs: Keyword arguments passed to the superclass """ - def __init__(self, env, policy=None, baseline=None, **policy_kwargs): - super(HeterogeneousAttentionModel, self).__init__(env, policy, baseline) + def __init__( + self, + env: RL4COEnvBase, + policy: HeterogeneousAttentionModelPolicy = None, + baseline: Union[REINFORCEBaseline, str] = "rollout", + policy_kwargs={}, + baseline_kwargs={}, + **kwargs, + ): assert ( - self.env.name == "pdp" + env.name == "pdp" ), "HeterogeneousAttentionModel only works for PDP (Pickup and Delivery Problem)" - self.policy = ( - HeterogeneousAttentionModelPolicy(self.env, **policy_kwargs) - if policy is None - else policy - ) - self.baseline = ( - WarmupBaseline(RolloutBaseline()) if baseline is None else baseline - ) + if policy is None: + policy = HeterogeneousAttentionModelPolicy(env.name, **policy_kwargs) + + super().__init__(env, policy, baseline, baseline_kwargs, **kwargs) diff --git a/rl4co/models/zoo/ham/policy.py b/rl4co/models/zoo/ham/policy.py index 993d4d8b..d2ae43c8 100644 --- a/rl4co/models/zoo/ham/policy.py +++ b/rl4co/models/zoo/ham/policy.py @@ -1,91 +1,44 @@ import torch.nn as nn - -from tensordict.tensordict import TensorDict -from torchrl.envs import EnvBase - -from rl4co.models.nn.utils import get_log_likelihood -from rl4co.models.zoo.am.decoder import Decoder +from rl4co.models.zoo.common.autoregressive import AutoregressivePolicy from rl4co.models.zoo.ham.encoder import GraphHeterogeneousAttentionEncoder -from rl4co.utils.pylogger import get_pylogger -log = get_pylogger(__name__) +class HeterogeneousAttentionModelPolicy(AutoregressivePolicy): + """Heterogeneous Attention Model Policy based on Kool et al. (2019): https://arxiv.org/abs/1803.08475. + We re-declare the most important arguments here for convenience as in the paper. + See `AutoregressivePolicy` superclass for more details. + + Args: + env_name: Name of the environment used to initialize embeddings + encoder: Encoder to use for the policy + embedding_dim: Dimension of the node embeddings + num_encoder_layers: Number of layers in the encoder + num_heads: Number of heads in the attention layers + normalization: Normalization type in the attention layers + **kwargs: keyword arguments passed to the `AutoregressivePolicy` + """ -class HeterogeneousAttentionModelPolicy(nn.Module): def __init__( self, - env: EnvBase, - encoder: nn.Module = None, - decoder: nn.Module = None, + env_name: str, embedding_dim: int = 128, num_encoder_layers: int = 3, num_heads: int = 8, normalization: str = "batch", - mask_inner: bool = True, - force_flash_attn: bool = False, - train_decode_type: str = "sampling", - val_decode_type: str = "greedy", - test_decode_type: str = "greedy", - **unused_kw, + **kwargs, ): - super(HeterogeneousAttentionModelPolicy, self).__init__() - if len(unused_kw) > 0: - log.warn(f"Unused kwargs: {unused_kw}") - - self.env = env - - self.encoder = ( - GraphHeterogeneousAttentionEncoder( + super(HeterogeneousAttentionModelPolicy, self).__init__( + env_name=env_name, + encoder=GraphHeterogeneousAttentionEncoder( num_heads=num_heads, embedding_dim=embedding_dim, - num_layers=num_encoder_layers, - env=self.env, + num_encoder_layers=num_encoder_layers, + env_name=env_name, normalization=normalization, - ) - if encoder is None - else encoder - ) - - self.decoder = ( - Decoder( - self.env, - embedding_dim, - num_heads, - mask_inner=mask_inner, - force_flash_attn=force_flash_attn, - ) - if decoder is None - else decoder - ) - - self.train_decode_type = train_decode_type - self.val_decode_type = val_decode_type - self.test_decode_type = test_decode_type - - def forward( - self, - td: TensorDict, - phase: str = "train", - return_actions: bool = False, - **decoder_kwargs, - ) -> TensorDict: - # Encode inputs - embeddings, _ = self.encoder(td) - - # Get decode type depending on phase - if decoder_kwargs.get("decode_type", None) is None: - decoder_kwargs["decode_type"] = getattr(self, f"{phase}_decode_type") - - # Main rollout: autoregressive decoding - log_p, actions, td_out = self.decoder(td, embeddings, **decoder_kwargs) - - # Log likelyhood is calculated within the model since returning it per action does not work well with - ll = get_log_likelihood(log_p, actions, td_out.get("mask", None)) - out = { - "reward": td_out["reward"], - "log_likelihood": ll, - } - if return_actions: - out["actions"] = actions - - return out + ), + embedding_dim=embedding_dim, + num_encoder_layers=num_encoder_layers, + num_heads=num_heads, + normalization=normalization, + **kwargs, + ) \ No newline at end of file diff --git a/rl4co/models/zoo/mdam/__init__.py b/rl4co/models/zoo/mdam/__init__.py index 121d5c46..0dcc6521 100644 --- a/rl4co/models/zoo/mdam/__init__.py +++ b/rl4co/models/zoo/mdam/__init__.py @@ -1 +1,2 @@ from .policy import MDAMPolicy +from .model import MDAM \ No newline at end of file diff --git a/rl4co/models/zoo/mdam/decoder.py b/rl4co/models/zoo/mdam/decoder.py index ac5d8e6a..87fd0dee 100644 --- a/rl4co/models/zoo/mdam/decoder.py +++ b/rl4co/models/zoo/mdam/decoder.py @@ -1,11 +1,15 @@ import math +from typing import Union from dataclasses import dataclass +from tensordict import TensorDict import torch import torch.nn as nn import torch.nn.functional as F +from rl4co.envs import RL4COEnvBase + from rl4co.models.nn.attention import LogitAttention from rl4co.models.nn.env_embeddings import env_context_embedding, env_dynamic_embedding from rl4co.models.nn.utils import decode_probs, get_log_likelihood @@ -23,7 +27,7 @@ class PrecomputedCache: class Decoder(nn.Module): def __init__( self, - env, + env_name, embedding_dim, num_heads, num_paths: int = 5, @@ -39,7 +43,7 @@ def __init__( ): super(Decoder, self).__init__() self.dynamic_embedding = env_dynamic_embedding( - env, {"embedding_dim": embedding_dim} + env_name, {"embedding_dim": embedding_dim} ) self.train_decode_type = train_decode_type @@ -52,36 +56,36 @@ def __init__( ) # Placeholder should be in range of activations self.context = [ - env_context_embedding(env.name, {"embedding_dim": embedding_dim}) + env_context_embedding(env_name, {"embedding_dim": embedding_dim}) for _ in range(num_paths) ] self.project_node_embeddings = [ - nn.Linear(embedding_dim, 3 * embedding_dim, device=env.device, bias=False) + nn.Linear(embedding_dim, 3 * embedding_dim, bias=False) for _ in range(num_paths) ] self.project_node_embeddings = nn.ModuleList(self.project_node_embeddings) self.project_fixed_context = [ - nn.Linear(embedding_dim, embedding_dim, device=env.device, bias=False) + nn.Linear(embedding_dim, embedding_dim, bias=False) for _ in range(num_paths) ] self.project_fixed_context = nn.ModuleList(self.project_fixed_context) self.project_step_context = [ - nn.Linear(2 * embedding_dim, embedding_dim, device=env.device, bias=False) + nn.Linear(2 * embedding_dim, embedding_dim, bias=False) for _ in range(num_paths) ] self.project_step_context = nn.ModuleList(self.project_step_context) self.project_out = [ - nn.Linear(embedding_dim, embedding_dim, device=env.device, bias=False) + nn.Linear(embedding_dim, embedding_dim, bias=False) for _ in range(num_paths) ] self.project_out = nn.ModuleList(self.project_out) self.dynamic_embedding = env_dynamic_embedding( - env.name, {"embedding_dim": embedding_dim} + env_name, {"embedding_dim": embedding_dim} ) self.logit_attention = [ @@ -94,7 +98,7 @@ def __init__( for _ in range(num_paths) ] - self.env = env + self.env_name = env_name self.mask_inner = mask_inner self.mask_logits = mask_logits self.num_heads = num_heads @@ -103,11 +107,20 @@ def __init__( self.tanh_clipping = tanh_clipping self.shrink_size = shrink_size - def forward(self, td, encoded_inputs, attn, V, h_old, **decoder_kwargs): + def forward( + self, + td: TensorDict, + encoded_inputs: torch.Tensor, + env: Union[str, RL4COEnvBase], + attn, + V, + h_old, + **decoder_kwargs + ): # SECTION: Decoder first step: calculate for the decoder divergence loss # Cost list and log likelihood list along with path output_list = [] - td_list = [self.env.reset(td) for i in range(self.num_paths)] + td_list = [env.reset(td) for i in range(self.num_paths)] for i in range(self.num_paths): # Clone the encoded features for this path _encoded_inputs = encoded_inputs.clone() @@ -147,7 +160,7 @@ def forward(self, td, encoded_inputs, attn, V, h_old, **decoder_kwargs): output_list = [] action_list = [] ll_list = [] - td_list = [self.env.reset(td) for _ in range(self.num_paths)] + td_list = [env.reset(td) for _ in range(self.num_paths)] for i in range(self.num_paths): # Clone the encoded features for this path _encoded_inputs = encoded_inputs.clone() @@ -182,7 +195,7 @@ def forward(self, td, encoded_inputs, attn, V, h_old, **decoder_kwargs): ) td_list[i].set("action", action) - td_list[i] = self.env.step(td_list[i])["next"] + td_list[i] = env.step(td_list[i])["next"] # Collect output of step outputs.append(log_p[:, 0, :]) @@ -190,7 +203,7 @@ def forward(self, td, encoded_inputs, attn, V, h_old, **decoder_kwargs): j += 1 outputs, actions = torch.stack(outputs, 1), torch.stack(actions, 1) - reward = self.env.get_reward(td, actions) + reward = env.get_reward(td, actions) ll = get_log_likelihood(outputs, actions, mask) reward_list.append(reward) @@ -248,7 +261,7 @@ def _get_log_p(self, fixed, td, path_index, normalize=True): step_context = self.context[path_index]( fixed.node_embeddings, td ) # [batch, embed_dim] - glimpse_q = fixed.graph_context + step_context.unsqueeze(1) + glimpse_q = fixed.graph_context + step_context.unsqueeze(1).to(fixed.graph_context.device) # Compute keys and values for the nodes ( diff --git a/rl4co/models/zoo/mdam/model.py b/rl4co/models/zoo/mdam/model.py index 32cda9a0..b0696cf3 100644 --- a/rl4co/models/zoo/mdam/model.py +++ b/rl4co/models/zoo/mdam/model.py @@ -1,24 +1,38 @@ -from rl4co.models.rl.reinforce.base import REINFORCE -from rl4co.models.rl.reinforce.baselines import RolloutBaseline, WarmupBaseline + +from typing import Union + +from rl4co.envs.common.base import RL4COEnvBase +from rl4co.models.rl import REINFORCE +from rl4co.models.rl.reinforce.baselines import REINFORCEBaseline from rl4co.models.zoo.mdam.policy import MDAMPolicy class MDAM(REINFORCE): - """! FIX comment - Attention Model for neural combinatorial optimization based on REINFORCE - Based on Wouter Kool et al. (2018) https://arxiv.org/abs/1803.08475 - Refactored from reference implementation: https://github.com/wouterkool/attention-learn-to-route + """ Multi-Decoder Attention Model (MDAM) is a model + to train multiple diverse policies, which effectively increases the chance of finding + good solutions compared with existing methods that train only one policy. + Reference link: https://arxiv.org/abs/2012.10638; + Implementation reference: https://github.com/liangxinedu/MDAM. Args: - env: TorchRL Environment - policy: Policy - baseline: REINFORCE Baseline + env: Environment to use for the algorithm + policy: Policy to use for the algorithm + baseline: REINFORCE baseline. Defaults to rollout (1 epoch of exponential, then greedy rollout baseline) + policy_kwargs: Keyword arguments for policy + baseline_kwargs: Keyword arguments for baseline + **kwargs: Keyword arguments passed to the superclass """ - def __init__(self, env, policy=None, baseline=None, **policy_kwargs): - super(MDAM, self).__init__(env, policy, baseline) - self.policy = MDAMPolicy(self.env, **policy_kwargs) if policy is None else policy + def __init__( + self, + env: RL4COEnvBase, + policy: MDAMPolicy = None, + baseline: Union[REINFORCEBaseline, str] = "rollout", + policy_kwargs={}, + baseline_kwargs={}, + **kwargs + ): + if policy is None: + policy = MDAMPolicy(env.name, **policy_kwargs) - self.baseline = ( - WarmupBaseline(RolloutBaseline()) if baseline is None else baseline - ) + super().__init__(env, policy, baseline, baseline_kwargs, **kwargs) \ No newline at end of file diff --git a/rl4co/models/zoo/mdam/policy.py b/rl4co/models/zoo/mdam/policy.py index f98f08a4..7a8b7c04 100644 --- a/rl4co/models/zoo/mdam/policy.py +++ b/rl4co/models/zoo/mdam/policy.py @@ -1,103 +1,63 @@ import torch.nn as nn +from typing import Union from tensordict import TensorDict -from torchrl.envs import EnvBase +from rl4co.envs import RL4COEnvBase, get_env from rl4co.models.nn.env_embeddings import env_init_embedding from rl4co.models.zoo.mdam.decoder import Decoder from rl4co.models.zoo.mdam.encoder import GraphAttentionEncoder +from rl4co.models.zoo.common.autoregressive import AutoregressivePolicy +from rl4co.utils.pylogger import get_pylogger +log = get_pylogger(__name__) -class MDAMPolicy(nn.Module): - """ + +class MDAMPolicy(AutoregressivePolicy): + """ Multi-Decoder Attention Model (MDAM) policy. Args: - env: environment to solve - encoder: encoder module - decoder: decoder module - embedding_dim: embedding dimension/hidden dimension - num_encode_layers: number of layers in encoder - num_heads: number of heads in multi-head attention - num_paths: number of paths to sample (specific feature for MDAM) - eg_step_gap: number of steps between each path sampling (specific feature for MDAM) - normalization: normalization type - mask_inner: whether to mask the inner product in attention - mask_logits: whether to mask the logits in attention - tanh_clipping: tanh clipping value - shrink_size: shrink size for the decoder - use_native_sdpa: whether to use native sdpa (scaled dot product attention) - force_flash_attn: whether to force use flash attention - train_decode_type: decode type for training - val_decode_type: decode type for validation - test_decode_type: decode type for testing - """ + """ + def __init__( - self, - env: EnvBase, - encoder: nn.Module = None, - decoder: nn.Module = None, + self, + env_name: str, embedding_dim: int = 128, - num_encode_layers: int = 3, + num_encoder_layers: int = 3, num_heads: int = 8, - num_paths: int = 5, - eg_step_gap: int = 200, normalization: str = "batch", - mask_inner: bool = True, - mask_logits: bool = True, - tanh_clipping: float = 10.0, - shrink_size=None, - use_native_sdpa: bool = False, - force_flash_attn: bool = False, - train_decode_type: str = "sampling", - val_decode_type: str = "greedy", - test_decode_type: str = "greedy", - **unused_kw, + **kwargs, ): - super(MDAMPolicy, self).__init__() - if len(unused_kw) > 0: - print(f"Unused kwargs: {unused_kw}") - - self.env = env - self.init_embedding = env_init_embedding( - self.env.name, {"embedding_dim": embedding_dim} - ) - - self.encoder = ( - GraphAttentionEncoder( + super(MDAMPolicy, self).__init__( + env_name=env_name, + encoder=GraphAttentionEncoder( num_heads=num_heads, embed_dim=embedding_dim, - num_layers=num_encode_layers, + num_layers=num_encoder_layers, normalization=normalization, - use_native_sdpa=use_native_sdpa, - force_flash_attn=force_flash_attn, - ) - if encoder is None - else encoder - ) - - self.decoder = ( - Decoder( - env=env, + **kwargs + ), + decoder=Decoder( + env_name=env_name, embedding_dim=embedding_dim, num_heads=num_heads, - num_paths=num_paths, - mask_inner=mask_inner, - mask_logits=mask_logits, - eg_step_gap=eg_step_gap, - tanh_clipping=tanh_clipping, - force_flash_attn=force_flash_attn, - shrink_size=shrink_size, - train_decode_type=train_decode_type, - val_decode_type=val_decode_type, - test_decode_type=test_decode_type, - ) - if decoder is None - else decoder + **kwargs + ), + embedding_dim=embedding_dim, + num_encoder_layers=num_encoder_layers, + num_heads=num_heads, + normalization=normalization, + **kwargs, + ) + + self.init_embedding = env_init_embedding( + env_name, {"embedding_dim": embedding_dim} ) def forward( self, td: TensorDict, + env: Union[str, RL4COEnvBase] = None, phase: str = "train", return_actions: bool = False, **decoder_kwargs, @@ -105,17 +65,23 @@ def forward( embedding = self.init_embedding(td) encoded_inputs, _, attn, V, h_old = self.encoder(embedding) + # Instantiate environment if needed + if isinstance(env, str) or env is None: + env_name = self.env_name if env is None else env + log.info(f"Instantiated environment not provided; instantiating {env_name}") + env = get_env(env_name) + # Get decode type depending on phase if decoder_kwargs.get("decode_type", None) is None: decoder_kwargs["decode_type"] = getattr(self, f"{phase}_decode_type") reward, log_likelihood, kl_divergence, actions = self.decoder( - td, encoded_inputs, attn, V, h_old, **decoder_kwargs + td, encoded_inputs, env, attn, V, h_old, **decoder_kwargs ) out = { "reward": reward, "log_likelihood": log_likelihood, - "kl_divergence": kl_divergence, + "entropy": kl_divergence, "actions": actions if return_actions else None, } - return out + return out \ No newline at end of file diff --git a/rl4co/models/zoo/pomo/model.py b/rl4co/models/zoo/pomo/model.py index 57f2c752..2b2ed4b4 100644 --- a/rl4co/models/zoo/pomo/model.py +++ b/rl4co/models/zoo/pomo/model.py @@ -1,6 +1,6 @@ from tensordict import TensorDict -from rl4co.models.rl.reinforce.base import REINFORCE +from rl4co.models.rl.reinforce.reinforce import REINFORCE from rl4co.models.rl.reinforce.baselines import SharedBaseline from rl4co.models.zoo.pomo.augmentations import StateAugmentation from rl4co.models.zoo.pomo.policy import POMOPolicy diff --git a/rl4co/models/zoo/pomo/policy.py b/rl4co/models/zoo/pomo/policy.py index f7a852a7..d115e24e 100644 --- a/rl4co/models/zoo/pomo/policy.py +++ b/rl4co/models/zoo/pomo/policy.py @@ -3,7 +3,7 @@ from tensordict.tensordict import TensorDict from torchrl.envs import EnvBase -from rl4co.models.nn.graph.gat import GraphAttentionEncoder +from rl4co.models.nn.graph.attnnet import GraphAttentionEncoder from rl4co.models.nn.utils import get_log_likelihood from rl4co.models.zoo.pomo.decoder import Decoder from rl4co.utils.pylogger import get_pylogger diff --git a/rl4co/models/zoo/ppo/__init__.py b/rl4co/models/zoo/ppo/__init__.py new file mode 100644 index 00000000..9643a595 --- /dev/null +++ b/rl4co/models/zoo/ppo/__init__.py @@ -0,0 +1,2 @@ +from .model import PPOModel +from .policy import PPOPolicy diff --git a/rl4co/models/zoo/ppo/decoder.py b/rl4co/models/zoo/ppo/decoder.py new file mode 100644 index 00000000..2301fbe0 --- /dev/null +++ b/rl4co/models/zoo/ppo/decoder.py @@ -0,0 +1,70 @@ +from typing import Tuple, Union + +import torch +from tensordict import TensorDict +from torch import Tensor + +from rl4co.envs import RL4COEnvBase, get_env +from rl4co.models.nn.utils import get_log_likelihood +from rl4co.models.zoo.common.autoregressive import AutoregressiveDecoder + + +class PPODecoder(AutoregressiveDecoder): + def evaluate_action( + self, + td: TensorDict, + embeddings: Tensor, + action: Tensor, + env: Union[str, RL4COEnvBase] = None, + ) -> Tuple[Tensor, Tensor]: + """Evaluate the (old) action to compute + log likelihood of the actions and corresponding entropy + + Args: + td: Input TensorDict containing the environment state + embeddings: Precomputed embeddings for the nodes + action: Action to evaluate (batch_size, seq_len) + env: Environment to use for decoding. If None, the environment is instantiated from `env_name`. Note that + it is more efficient to pass an already instantiated environment each time for fine-grained control + Returns: + log_p: Tensor of shape (batch_size, seq_len, num_nodes) containing the log-likehood of the actions + entropy: Tensor of shape (batch_size, seq_len) containing the sampled actions + """ + + # Instantiate environment if needed + if isinstance(env, str) or env is None: + env_name = self.env_name if env is None else env + env = get_env(env_name) + + # Compute keys, values for the glimpse and keys for the logits once as they can be reused in every step + cached_embeds = self._precompute_cache(embeddings) + + log_p = [] + decode_step = 0 + while not td["done"].all(): + log_p_, _ = self._get_log_p(cached_embeds, td) + action_ = action[..., decode_step] + + td.set("action", action_) + td = env.step(td)["next"] + log_p.append(log_p_) + + decode_step += 1 + + # Note that the decoding steps may not be equal to the decoding steps of actions + # due to the padded zeros in the actions + + # Compute log likelihood of the actions + log_p = torch.stack(log_p, 1) # [batch_size, decoding steps, num_nodes] + ll = get_log_likelihood( + log_p, action[..., :decode_step], mask=None, return_sum=False + ) # [batch_size, decoding steps] + assert ll.isfinite().all(), "Log p is not finite" + + # compute entropy + log_p = torch.nan_to_num(log_p, nan=0.0) + entropy = -(log_p.exp() * log_p).sum(dim=-1) # [batch, decoder steps] + entropy = entropy.sum(dim=1) # [batch] -- sum over decoding steps + assert entropy.isfinite().all(), "Entropy is not finite" + + return ll, entropy diff --git a/rl4co/models/zoo/ppo/model.py b/rl4co/models/zoo/ppo/model.py new file mode 100644 index 00000000..63ca3ab2 --- /dev/null +++ b/rl4co/models/zoo/ppo/model.py @@ -0,0 +1,30 @@ +from rl4co.envs import RL4COEnvBase +from rl4co.models.rl import PPO +from rl4co.models.rl.common.critic import CriticNetwork +from rl4co.models.zoo.ppo.policy import PPOPolicy + + +class PPOModel(PPO): + """PPO Model based on Proximal Policy Optimization (PPO). + + Args: + env: Environment to use for the algorithm + + """ + + def __init__( + self, + env: RL4COEnvBase, + policy: PPOPolicy = None, + critic: CriticNetwork = None, + policy_kwargs={}, + critic_kwargs={}, + **kwargs, + ): + if policy is None: + policy = PPOPolicy(env.name, **policy_kwargs) + + if critic is None: + critic = CriticNetwork(env.name, **critic_kwargs) + + super().__init__(env, policy, critic, **kwargs) diff --git a/rl4co/models/zoo/ppo/policy.py b/rl4co/models/zoo/ppo/policy.py new file mode 100644 index 00000000..a37bf5d0 --- /dev/null +++ b/rl4co/models/zoo/ppo/policy.py @@ -0,0 +1,56 @@ +from typing import Tuple, Union + +from tensordict import TensorDict +from torch import Tensor + +from rl4co.envs import RL4COEnvBase +from rl4co.models.zoo.common.autoregressive import AutoregressivePolicy +from rl4co.models.zoo.ppo.decoder import PPODecoder + + +class PPOPolicy(AutoregressivePolicy): + """PPO Policy based on Kool et al. (2019): https://arxiv.org/abs/1803.08475. + PPOPolicy supports 'evaluate_action' method to evaluate the action probability + + Args: + env_name: Name of the environment used to initialize embeddings + embedding_dim: Dimension of the node embeddings + num_encoder_layers: Number of layers in the encoder + num_heads: Number of heads in the attention layers + normalization: Normalization type in the attention layers + **kwargs: keyword arguments passed to the `AutoregressivePolicy` + """ + + def __init__( + self, + env_name: str, + embedding_dim: int = 128, + num_encoder_layers: int = 3, + num_heads: int = 8, + normalization: str = "batch", + **kwargs, + ): + super(PPOPolicy, self).__init__( + env_name=env_name, + decoder=PPODecoder( + env_name=env_name, + embedding_dim=embedding_dim, + num_heads=num_heads, + **kwargs, + ), # override decoder with PPODecoder to support 'evaluate_action" + embedding_dim=embedding_dim, + num_encoder_layers=num_encoder_layers, + num_heads=num_heads, + normalization=normalization, + **kwargs, + ) + + def evaluate_action( + self, + td: TensorDict, + action: Tensor, + env: Union[str, RL4COEnvBase] = None, + ) -> Tuple[Tensor, Tensor]: + embeddings, _ = self.encoder(td) + ll, entropy = self.decoder.evaluate_action(td, embeddings, action, env) + return ll, entropy diff --git a/rl4co/models/zoo/ptrnet/model.py b/rl4co/models/zoo/ptrnet/model.py index b421d193..6bc6bcee 100644 --- a/rl4co/models/zoo/ptrnet/model.py +++ b/rl4co/models/zoo/ptrnet/model.py @@ -1,5 +1,8 @@ -from rl4co.models.rl.reinforce.base import REINFORCE -from rl4co.models.rl.reinforce.baselines import RolloutBaseline, WarmupBaseline +from typing import Union + +from rl4co.envs.common.base import RL4COEnvBase +from rl4co.models.rl import REINFORCE +from rl4co.models.rl.reinforce.baselines import REINFORCEBaseline from rl4co.models.zoo.ptrnet.policy import PointerNetworkPolicy @@ -8,18 +11,25 @@ class PointerNetwork(REINFORCE): Pointer Network for neural combinatorial optimization based on REINFORCE Based on Vinyals et al. (2015) https://arxiv.org/abs/1506.03134 Refactored from reference implementation: https://github.com/wouterkool/attention-learn-to-route - Args: - env: TorchRL Environment - policy: Policy - baseline: REINFORCE Baseline + env: Environment to use for the algorithm + policy: Policy to use for the algorithm + baseline: REINFORCE baseline. Defaults to rollout (1 epoch of exponential, then greedy rollout baseline) + policy_kwargs: Keyword arguments for policy + baseline_kwargs: Keyword arguments for baseline + **kwargs: Keyword arguments passed to the superclass """ - def __init__(self, env, policy=None, baseline=None, **policy_kwargs): - super(PointerNetwork, self).__init__(env, policy, baseline) + def __init__( + self, + env: RL4COEnvBase, + policy: PointerNetworkPolicy = None, + baseline: Union[REINFORCEBaseline, str] = "rollout", + policy_kwargs={}, + baseline_kwargs={}, + **kwargs, + ): self.policy = ( PointerNetworkPolicy(self.env, **policy_kwargs) if policy is None else policy ) - self.baseline = ( - WarmupBaseline(RolloutBaseline()) if baseline is None else baseline - ) + super().__init__(env, policy, baseline, baseline_kwargs, **kwargs) diff --git a/rl4co/models/zoo/ptrnet/policy.py b/rl4co/models/zoo/ptrnet/policy.py index b8e5eceb..57a07679 100644 --- a/rl4co/models/zoo/ptrnet/policy.py +++ b/rl4co/models/zoo/ptrnet/policy.py @@ -14,7 +14,7 @@ class PointerNetworkPolicy(nn.Module): def __init__( self, - env, + env_name, embedding_dim: int = 128, hidden_dim: int = 128, tanh_clipping=10.0, @@ -25,8 +25,8 @@ def __init__( super(PointerNetworkPolicy, self).__init__() # torch.backends.cudnn.enabled=False - self.env = env - assert self.env.name == "tsp", "Only the Euclidean TSP env supported" + assert env_name == "tsp", "Only the Euclidean TSP env supported" + self.env_name = env_name self.input_dim = 2 @@ -53,6 +53,7 @@ def __init__( def forward( self, td, + env, phase: str = "train", decode_type="sampling", eval_tours=None, @@ -79,7 +80,7 @@ def forward( # making up the output, and the pointer attn _log_p, actions = self._inner(embedded_inputs, decode_type, eval_tours) - reward = self.env.get_reward(td, actions) + reward = env.get_reward(td, actions) # Log likelyhood is calculated within the model since returning it per action does not work well with # DataParallel since sequences can be of different lengths diff --git a/rl4co/models/zoo/symnco/augmentations.py b/rl4co/models/zoo/symnco/augmentations.py deleted file mode 100644 index 559f5032..00000000 --- a/rl4co/models/zoo/symnco/augmentations.py +++ /dev/null @@ -1,66 +0,0 @@ -import math - -import torch -import torch.nn as nn - -from tensordict.tensordict import TensorDict - -from rl4co.utils.ops import batchify - - -def rotation_reflection_transform(x, y, phi, offset=0.5): - """SR group transform with rotation and reflection (~2x faster than original)""" - x, y = x - offset, y - offset - # random rotation - x_prime = torch.cos(phi) * x - torch.sin(phi) * y - y_prime = torch.sin(phi) * x + torch.cos(phi) * y - # make random reflection if phi > 2*pi (i.e. 50% of the time) - mask = phi > 2 * math.pi - # vectorized random reflection: swap axes x and y if mask - xy = torch.cat((x_prime, y_prime), dim=-1) - xy = torch.where(mask, xy.flip(-1), xy) - return xy + offset - - -def augment_xy_data_by_n_fold(xy, num_augment: int = 8): - """Augment xy data by N times via symmetric rotation transform and concatenate to original data""" - # create random rotation angles (4*pi for reflection, 2*pi for rotation) - phi = torch.rand(xy.shape[0], device=xy.device) * 4 * math.pi - # set phi to 0 for first , i.e. no augmnetation as in original paper - phi[: xy.shape[0] // num_augment] = 0.0 - x, y = xy[..., [0]], xy[..., [1]] - return rotation_reflection_transform(x, y, phi[:, None, None]) - - -def env_aug_feats(env_name: str): - return ("locs", "depot") if env_name == "op" else ("locs",) - - -def min_max_normalize(x): - return (x - x.min()) / (x.max() - x.min()) - - -class StateAugmentation(nn.Module): - """Augment state by N times via symmetric rotation/reflection transform""" - - def __init__(self, env_name: str, num_augment: int = 8, normalize: bool = False): - super(StateAugmentation, self).__init__() - self.augmentation = augment_xy_data_by_n_fold - self.feats = env_aug_feats(env_name) - self.num_augment = num_augment - self.normalize = normalize - - def forward( - self, td: TensorDict, num_augment: int = None, normalize: bool = False - ) -> TensorDict: - num_augment = num_augment if num_augment is not None else self.num_augment - normalize = normalize if normalize is not None else False - - td_aug = batchify(td, num_augment) - for feat in self.feats: - aug_feat = self.augmentation(td_aug[feat], num_augment) - td_aug[feat] = aug_feat - if normalize: - td_aug[feat] = min_max_normalize(td_aug[feat]) - - return td_aug diff --git a/rl4co/models/zoo/symnco/decoder.py b/rl4co/models/zoo/symnco/decoder.py deleted file mode 100644 index 1a424072..00000000 --- a/rl4co/models/zoo/symnco/decoder.py +++ /dev/null @@ -1,185 +0,0 @@ -from dataclasses import dataclass - -import torch -import torch.nn as nn - -from einops import rearrange - -from rl4co.models.nn.attention import LogitAttention -from rl4co.models.nn.env_embeddings import env_context_embedding, env_dynamic_embedding -from rl4co.models.nn.utils import decode_probs -from rl4co.utils import get_pylogger -from rl4co.utils.ops import batchify, select_start_nodes, unbatchify - -log = get_pylogger(__name__) - - -@dataclass -class PrecomputedCache: - node_embeddings: torch.Tensor - graph_context: torch.Tensor - glimpse_key: torch.Tensor - glimpse_val: torch.Tensor - logit_key: torch.Tensor - - -class Decoder(nn.Module): - def __init__( - self, - env, - embedding_dim, - num_heads, - num_starts=20, - use_graph_context=True, - **logit_attn_kwargs, - ): - super(Decoder, self).__init__() - - self.env = env - self.embedding_dim = embedding_dim - self.num_heads = num_heads - - assert embedding_dim % num_heads == 0 - - self.context = env_context_embedding( - self.env.name, {"embedding_dim": embedding_dim} - ) - self.dynamic_embedding = env_dynamic_embedding( - self.env.name, {"embedding_dim": embedding_dim} - ) - - # For each node we compute (glimpse key, glimpse value, logit key) so 3 * embedding_dim - self.project_node_embeddings = nn.Linear( - embedding_dim, 3 * embedding_dim, bias=False - ) - self.project_fixed_context = nn.Linear(embedding_dim, embedding_dim, bias=False) - - # MHA - self.logit_attention = LogitAttention( - embedding_dim, num_heads, **logit_attn_kwargs - ) - - # POMO - self.num_starts = num_starts # POMO = 1 is just normal REINFORCE - self.use_graph_context = use_graph_context # disabling makes it like in POMO - - def forward( - self, - td, - embeddings, - decode_type="sampling", - softmax_temp=None, - single_traj=False, - num_starts=None, - ): - # Greedy multi-start decoding if num_starts > 1 - num_starts = ( - self.num_starts if num_starts is None else num_starts - ) # substitute self.num_starts with num_starts - assert not ( - "multistart" in decode_type and num_starts <= 1 - ), "Multi-start decoding requires `num_starts` > 1" - - # Compute keys, values for the glimpse and keys for the logits once as they can be reused in every step - cached_embeds = self._precompute(embeddings, num_starts=num_starts) - - # Collect outputs - outputs = [] - actions = [] - - # Multi-start decoding: first action is chosen by ad-hoc node selection - if num_starts > 1 and not single_traj or "multistart" in decode_type: - action = select_start_nodes(td, num_starts, self.env) - - # Expand td to batch_size * num_starts - td = batchify(td, num_starts) - - td.set("action", action) - td = self.env.step(td)["next"] - log_p = torch.zeros_like( - td["action_mask"], device=td.device - ) # first log_p is 0, so p = log_p.exp() = 1 - - outputs.append(log_p) - actions.append(action) - - # Main decoding - while not td["done"].all(): - log_p, mask = self._get_log_p(cached_embeds, td, softmax_temp, num_starts) - - # Select the indices of the next nodes in the sequences, result (batch_size) long - action = decode_probs(log_p.exp(), mask, decode_type=decode_type) - - td.set("action", action) - td = self.env.step(td)["next"] - - # Collect output of step - outputs.append(log_p) - actions.append(action) - - outputs, actions = torch.stack(outputs, 1), torch.stack(actions, 1) - td.set("reward", self.env.get_reward(td, actions)) - return outputs, actions, td - - def _precompute(self, embeddings, num_starts=0): - # The projection of the node embeddings for the attention is calculated once up front - ( - glimpse_key_fixed, - glimpse_val_fixed, - logit_key_fixed, - ) = self.project_node_embeddings(embeddings).chunk(3, dim=-1) - - # By default, the query is modified with the graph context. - # In POMO, the graph context is not used - if self.use_graph_context: - graph_context = unbatchify( - batchify(self.project_fixed_context(embeddings.mean(1)), num_starts), - num_starts, - ) - else: - graph_context = 0 - - # Organize in a dataclass for easy access - cached_embeds = PrecomputedCache( - node_embeddings=embeddings, - graph_context=graph_context, - glimpse_key=glimpse_key_fixed, - glimpse_val=glimpse_val_fixed, - logit_key=logit_key_fixed, - ) - - return cached_embeds - - def _get_log_p(self, cached, td, softmax_temp=None, num_starts=0): - # Compute the query based on the context (computes automatically the first and last node context) - - # Unbatchify to [batch_size, num_starts, ...]. Has no effect if num_starts = 0 - td_unbatch = unbatchify(td, num_starts) - - step_context = self.context(cached.node_embeddings, td_unbatch) - glimpse_q = step_context + cached.graph_context - glimpse_q = glimpse_q.unsqueeze(1) if glimpse_q.ndim == 2 else glimpse_q - - # Compute keys and values for the nodes - ( - glimpse_key_dynamic, - glimpse_val_dynamic, - logit_key_dynamic, - ) = self.dynamic_embedding(td_unbatch) - glimpse_k = cached.glimpse_key + glimpse_key_dynamic - glimpse_v = cached.glimpse_val + glimpse_val_dynamic - logit_k = cached.logit_key + logit_key_dynamic - - # Get the mask - mask = ~td_unbatch["action_mask"] - - # Compute logits - log_p = self.logit_attention( - glimpse_q, glimpse_k, glimpse_v, logit_k, mask, softmax_temp - ) - - # Now we need to reshape the logits and log_p to [batch_size*num_starts, num_nodes] - # Note that rearranging order is important here - log_p = rearrange(log_p, "b s l -> (s b) l") if num_starts > 1 else log_p - mask = rearrange(mask, "b s l -> (s b) l") if num_starts > 1 else mask - return log_p, mask diff --git a/rl4co/models/zoo/symnco/model.py b/rl4co/models/zoo/symnco/model.py index 9889376c..7ff50bf6 100644 --- a/rl4co/models/zoo/symnco/model.py +++ b/rl4co/models/zoo/symnco/model.py @@ -1,8 +1,8 @@ -from tensordict import TensorDict +from typing import Any -from rl4co.models.rl.reinforce.base import REINFORCE -from rl4co.models.rl.reinforce.baselines import NoBaseline -from rl4co.models.zoo.symnco.augmentations import StateAugmentation +from rl4co.data.transforms import StateAugmentation +from rl4co.envs.common.base import RL4COEnvBase +from rl4co.models.rl.reinforce.reinforce import REINFORCE from rl4co.models.zoo.symnco.losses import ( invariance_loss, problem_symmetricity_loss, @@ -16,90 +16,94 @@ class SymNCO(REINFORCE): - """SymNCO Model for neural combinatorial optimization based on REINFORCE - Based on Kim et al. (2022) https://arxiv.org/abs/2205.13209 + """SymNCO Model for neural combinatorial optimization based on REINFORCE with shared baselines + based on Kim et al. (2022) https://arxiv.org/abs/2205.13209 + Args: - env: TorchRL Environment - policy: Policy - baseline: REINFORCE Baseline - num_augment: Number of augmentations (default: 8) + env: Environment to use for the algorithm + policy: Policy to use for the algorithm + policy_kwargs: Keyword arguments for policy + num_starts: Number of starts + num_augment: Number of augmentations alpha: weight for invariance loss beta: weight for solution symmetricity loss - augment_test: whether to augment data during testing as well + **kwargs: Keyword arguments passed to the superclass """ def __init__( self, - env, - policy=None, - baseline=None, - num_starts=10, - num_augment=4, - alpha=0.2, - beta=1, - augment_test=True, - **policy_kwargs, + env: RL4COEnvBase, + policy: SymNCOPolicy = None, + policy_kwargs={}, + num_augment: int = 4, + num_starts: int = 1, + alpha: float = 0.2, + beta: float = 1, + **kwargs, ): - super(SymNCO, self).__init__(env, policy, baseline) - - self.policy = ( - SymNCOPolicy(self.env, num_starts=num_starts, **policy_kwargs) - if policy is None - else policy - ) - if baseline is not None: - log.warn( - "SymNCO uses shared baselines in the loss functions. Baseline argument will be ignored" - ) - self.baseline = NoBaseline() # baseline is calculated in the loss function + self.save_hyperparameters(logger=False) + + if policy is None: + policy = SymNCOPolicy(env.name, **policy_kwargs) - # Multi-start parameters from policy, default to 1 + # Pass no baseline to superclass since there are multiple custom baselines + super().__init__(env, policy, "no", **kwargs) + + self.num_starts = num_starts self.num_augment = num_augment - self.augment = StateAugmentation(self.env.name) - self.augment_test = augment_test + self.augment = StateAugmentation(self.env.name, num_augment=self.num_augment) self.alpha = alpha # weight for invariance loss self.beta = beta # weight for solution symmetricity loss - def forward(self, td: TensorDict, phase: str = "train", extra=None, **policy_kwargs): - """Evaluate model, get costs and log probabilities and compare with baseline""" - - # Get num_starts from policy. If single_traj, set num_starts and num_augment to 0 - num_starts = getattr(self.policy.decoder, "num_starts", 0) - num_augment = self.num_augment - - if policy_kwargs.get("single_traj", False): - num_starts, num_augment = 0, 0 - - if num_augment > 1: - td = self.augment(td, num_augment) - - # Evaluate model, get costs and log probabilities - out = self.policy(td, phase, **policy_kwargs) - - # Unbatchify reward to [batch_size, num_starts, num_augment]. - reward = unbatchify(out["reward"], (num_starts, num_augment)) + # Add `_multistart` to decode type for train, val and test in policy if num_starts > 1 + if self.num_starts > 1: + for phase in ["train", "val", "test"]: + attribute = f"{phase}_decode_type" + attr_get = getattr(self.policy, attribute) + # If does not exist, log error + if attr_get is None: + log.error( + f"Decode type for {phase} is None. Cannot add `_multistart`." + ) + continue + elif "multistart" in attr_get: + continue + else: + setattr(self.policy, attribute, f"{attr_get}_multistart") + + def shared_step(self, batch: Any, batch_idx: int, phase: str): + n_aug, n_start = self.num_augment, self.num_starts + td = self.env.reset(batch) + out = self.policy(td, self.env, phase=phase, num_starts=n_start) + + # Run augmentation + if n_aug > 1: + td = self.augment(td) + + # Unbatchify reward to [batch_size, n_start, n_aug]. + reward = unbatchify(out["reward"], (n_start, n_aug)) # Get multi-start (=POMO) rewards and best actions - if num_starts > 1: + if n_start > 1: # max multi-start reward max_reward, max_idxs = reward.max(dim=1) out.update({"max_reward": max_reward}) - # Reshape batch to [batch, num_starts, num_augment] + # Reshape batch to [batch, n_start, n_aug] if out.get("actions", None) is not None: # TODO: actions are not unbatchified correctly - actions = unbatchify(out["actions"], (num_starts, num_augment)) + actions = unbatchify(out["actions"], (n_start, n_aug)) out.update( {"best_multistart_actions": gather_by_index(actions, max_idxs)} ) out["actions"] = actions # Get augmentation score only during inference - if num_augment > 1: + if n_aug > 1: # If multistart is enabled, we use the best multistart rewards - reward_ = max_reward if num_starts > 1 else reward - # [batch, num_augment] + reward_ = max_reward if n_start > 1 else reward + # [batch, n_aug] max_aug_reward, max_idxs = reward_.max(dim=1) out.update({"max_aug_reward": max_aug_reward}) if out.get("best_multistart_actions", None) is not None: @@ -111,21 +115,15 @@ def forward(self, td: TensorDict, phase: str = "train", extra=None, **policy_kwa } ) - # Get best actions and rewards # Main training loss if phase == "train": - # [batch_size, num_starts, num_augment] - ll = unbatchify(out["log_likelihood"], (num_starts, num_augment)) + # [batch_size, n_start, n_aug] + ll = unbatchify(out["log_likelihood"], (n_start, n_aug)) # Calculate losses: problem symmetricity, solution symmetricity, invariance - - loss_ps = problem_symmetricity_loss(reward, ll) if num_starts > 1 else 0 - loss_ss = solution_symmetricity_loss(reward, ll) if num_augment > 1 else 0 - loss_inv = ( - invariance_loss(out["proj_embeddings"], num_augment) - if num_augment > 1 - else 0 - ) + loss_ps = problem_symmetricity_loss(reward, ll) if n_start > 1 else 0 + loss_ss = solution_symmetricity_loss(reward, ll) if n_aug > 1 else 0 + loss_inv = invariance_loss(out["proj_embeddings"], n_aug) if n_aug > 1 else 0 loss = loss_ps + self.beta * loss_ss + self.alpha * loss_inv out.update( { diff --git a/rl4co/models/zoo/symnco/policy.py b/rl4co/models/zoo/symnco/policy.py index a8bbbb9b..60e8cbab 100644 --- a/rl4co/models/zoo/symnco/policy.py +++ b/rl4co/models/zoo/symnco/policy.py @@ -1,107 +1,81 @@ +from typing import Union + import torch.nn as nn from tensordict.tensordict import TensorDict -from torchrl.envs import EnvBase from torchrl.modules.models import MLP -from rl4co.models.nn.graph.gat import GraphAttentionEncoder -from rl4co.models.nn.utils import get_log_likelihood -from rl4co.models.zoo.symnco.decoder import Decoder +from rl4co.envs import RL4COEnvBase +from rl4co.models.zoo.common.autoregressive import AutoregressivePolicy from rl4co.utils.pylogger import get_pylogger log = get_pylogger(__name__) -class SymNCOPolicy(nn.Module): +class SymNCOPolicy(AutoregressivePolicy): + """Docstring for SymNCOPolicy. + + TODO + """ + def __init__( self, - env: EnvBase, - encoder: nn.Module = None, - decoder: nn.Module = None, + env_name: str, embedding_dim: int = 128, - projection_head: nn.Module = None, - num_starts: int = 10, - num_encoder_layers: int = 6, - normalization: str = "instance", + num_encoder_layers: int = 3, num_heads: int = 8, - use_graph_context: bool = True, - mask_inner: bool = True, - use_native_sdpa: bool = False, - force_flash_attn: bool = False, - train_decode_type: str = "sampling", - val_decode_type: str = "greedy", - test_decode_type: str = "greedy", - **unused_kw, + normalization: str = "batch", + projection_head: nn.Module = None, + use_projection_head: bool = True, + **kwargs, ): - super(SymNCOPolicy, self).__init__() - if len(unused_kw) > 0: - log.warn(f"Unused kwargs: {unused_kw}") - - self.env = env - - self.encoder = ( - GraphAttentionEncoder( - num_heads=num_heads, - embedding_dim=embedding_dim, - num_layers=num_encoder_layers, - env=self.env, - normalization=normalization, - use_native_sdpa=use_native_sdpa, - force_flash_attn=force_flash_attn, - ) - if encoder is None - else encoder + super(SymNCOPolicy, self).__init__( + env_name=env_name, + embedding_dim=embedding_dim, + num_encoder_layers=num_encoder_layers, + num_heads=num_heads, + normalization=normalization, + **kwargs, ) - self.decoder = ( - Decoder( - env, - embedding_dim, - num_heads, - num_starts=num_starts, - use_graph_context=use_graph_context, - mask_inner=mask_inner, - force_flash_attn=force_flash_attn, + self.use_projection_head = use_projection_head + + if self.use_projection_head: + self.projection_head = ( + MLP(embedding_dim, embedding_dim, 1, embedding_dim, nn.ReLU) + if projection_head is None + else projection_head ) - if decoder is None - else decoder - ) - self.projection_head = ( - MLP(embedding_dim, embedding_dim, 1, embedding_dim, nn.ReLU) - if projection_head is None - else projection_head - ) - self.train_decode_type = train_decode_type - self.val_decode_type = val_decode_type - self.test_decode_type = test_decode_type def forward( self, td: TensorDict, + env: Union[str, RL4COEnvBase] = None, phase: str = "train", return_actions: bool = False, + return_entropy: bool = False, + return_init_embeds: bool = True, **decoder_kwargs, - ) -> TensorDict: - """Given observation, precompute embeddings and rollout""" - - # Set decoding type for policy, can be also greedy - embeddings, init_embeds = self.encoder(td) + ) -> dict: + super().forward.__doc__ # trick to get docs from parent class - # Get decode type depending on phase - if decoder_kwargs.get("decode_type", None) is None: - decoder_kwargs["decode_type"] = getattr(self, f"{phase}_decode_type") + # Ensure that if use_projection_head is True, then return_init_embeds is True + assert not ( + self.use_projection_head and not return_init_embeds + ), "If `use_projection_head` is True, then we must `return_init_embeds`" - # Main rollout - log_p, actions, td = self.decoder(td, embeddings, **decoder_kwargs) + out = super().forward( + td, + env, + phase, + return_actions, + return_entropy, + return_init_embeds, + **decoder_kwargs, + ) - # Log likelyhood is calculated within the model since returning it per action does not work well with - ll = get_log_likelihood(log_p, actions, td.get("mask", None)) - out = { - "reward": td["reward"], - "log_likelihood": ll, - "proj_embeddings": self.projection_head(init_embeds), - } - if return_actions: - out["actions"] = actions + # Project initial embeddings + if self.use_projection_head: + out["proj_embeddings"] = self.projection_head(out["init_embeds"]) return out diff --git a/rl4co/tasks/__init__.py b/rl4co/tasks/__init__.py new file mode 100644 index 00000000..e69de29b diff --git a/rl4co/tasks/rl4co.py b/rl4co/tasks/rl4co.py deleted file mode 100644 index 7b2ea6d5..00000000 --- a/rl4co/tasks/rl4co.py +++ /dev/null @@ -1,217 +0,0 @@ -from typing import Any - -import torch -import torch.nn as nn - -from hydra.utils import instantiate -from lightning import LightningModule -from omegaconf import DictConfig -from torch.utils.data import DataLoader - -from rl4co.data.dataset import tensordict_collate_fn -from rl4co.data.generate_data import generate_default_datasets -from rl4co.envs.common.base import RL4COEnvBase -from rl4co.utils.pylogger import get_pylogger - -log = get_pylogger(__name__) - - -class RL4COLitModule(LightningModule): - """ - Base LightningModule for Neural Combinatorial Optimization - Args: - cfg: Hydra config - env: Environment to use overridding the config. If None, instantiate from config - model: Model to use overridding the config. If None, instantiate from config - """ - - def __init__( - self, cfg: DictConfig, env: RL4COEnvBase = None, model: nn.Module = None - ): - super().__init__() - - # this line ensures params passed to LightningModule will be saved to ckpt - # it also allows to access params with 'self.hparams' attribute - # self.save_hyperparameters("env", "model", logger=False) - self.save_hyperparameters(logger=False) - - if cfg.get("train", {}).get("disable_profiling", True): - # Disable profiling executor. This reduces memory and increases speed. - # https://github.com/HazyResearch/safari/blob/111d2726e7e2b8d57726b7a8b932ad8a4b2ad660/train.py#LL124-L129C17 - try: - torch._C._jit_set_profiling_executor(False) - torch._C._jit_set_profiling_mode(False) - except AttributeError: - pass - - cfg = DictConfig(cfg) if not isinstance(cfg, DictConfig) else cfg - self.cfg = cfg - - # Instantiate environment, model and metrics - self.env = env if env is not None else self.instantiate_env() - self.model = model if model is not None else self.instantiate_model() - self.instantiate_metrics() - - if cfg.get("train", {}).get("manual_optimization", False): - log.info("Manual optimization enabled") - self.automatic_optimization = False - - def instantiate_env(self): - log.info(f"Instantiating environment <{self.cfg.env._target_}>") - return instantiate(self.cfg.env) - - def instantiate_model(self): - log.info(f"Instantiating model <{self.cfg.model._target_}>") - return instantiate(self.cfg.model, env=self.env) - - def instantiate_metrics(self): - """Dictionary of metrics to be logged at each phase""" - metrics = self.cfg.get("metrics", {}) - if not metrics: - log.info("No metrics specified, using default") - self.train_metrics = metrics.get("train", ["loss", "reward"]) - self.val_metrics = metrics.get("val", ["reward"]) - self.test_metrics = metrics.get("test", ["reward"]) - self.log_on_step = metrics.get("log_on_step", True) - - def setup(self, stage="fit"): - log.info("Setting up batch sizes for train/val/test") - # If any of the batch sizes are specified, use that. Otherwise, use the default batch size - - data_cfg = self.cfg.get("data", {}) - batch_size = data_cfg.get("batch_size", None) - if data_cfg.get("train_batch_size", None) is not None: - train_batch_size = data_cfg.train_batch_size - if batch_size is not None: - log.warning( - f"`train_batch_size`={train_batch_size} specified, ignoring `batch_size`={batch_size}" - ) - elif batch_size is not None: - train_batch_size = batch_size - else: - train_batch_size = 64 - log.warning(f"No batch size specified, using default as {train_batch_size}") - # default all batch sizes to train_batch_size if not specified - self.train_batch_size = train_batch_size - self.val_batch_size = data_cfg.get("val_batch_size", train_batch_size) - self.test_batch_size = data_cfg.get("test_batch_size", train_batch_size) - - log.info("Setting up datasets") - - # Create datasets automatically. If found, this will skip - if data_cfg.get("generate_data", True): - generate_default_datasets( - data_dir=self.cfg.get("paths", {}).get("data_dir", "data/") - ) - - # If any of the dataset sizes are specified, use that. Otherwise, use the default dataset size - def _get_phase_size(phase): - DEFAULT_SIZES = { - "train": 100000, - "val": 10000, - "test": 10000, - } - size = data_cfg.get(f"{phase}_size", None) - if size is None: - size = DEFAULT_SIZES[phase] - message = f"No {phase}_size specified, using default as {size}" - log.warning(message) if phase == "train" else log.info(message) - return size - - self.train_size = _get_phase_size("train") - self.val_size = _get_phase_size("val") - self.test_size = _get_phase_size("test") - self.train_dataset = self.wrap_dataset(self.env.dataset(self.train_size, "train")) - self.val_dataset = self.env.dataset(self.val_size, "val") - self.test_dataset = self.env.dataset(self.test_size, "test") - - if hasattr(self.model, "setup") and not self.cfg.get( - "disable_model_setup", False - ): - self.model.setup(self) - - def configure_optimizers(self): - train_cfg = self.cfg.get("train", {}) - if train_cfg.get("optimizer", None) is None: - log.warning("No optimizer specified, using default") - opt_cfg = train_cfg.get( - "optimizer", DictConfig({"_target_": "torch.optim.Adam", "lr": 1e-4}) - ) - if "_target_" not in opt_cfg: - log.info("No _target_ specified for optimizer, using default Adam") - opt_cfg["_target_"] = "torch.optim.Adam" - - log.info(f"Instantiating optimizer <{opt_cfg._target_}>") - optimizer = instantiate(opt_cfg, self.parameters()) - - if "scheduler" not in train_cfg: - return optimizer - else: - log.info(f"Instantiating scheduler <{train_cfg.scheduler._target_}>") - lr_scheduler = instantiate(train_cfg.scheduler, optimizer) - return [optimizer], { - "scheduler": lr_scheduler, - "interval": train_cfg.get("scheduler_interval", "epoch"), - "monitor": train_cfg.get("scheduler_monitor", "val/reward"), - } - - def shared_step(self, batch: Any, batch_idx: int, phase: str): - td = self.env.reset(batch) - out = self.model(td, phase, td.get("extra", None)) - - # Log metrics - metrics = getattr(self, f"{phase}_metrics") - metrics = {f"{phase}/{k}": v.mean() for k, v in out.items() if k in metrics} - - log_on_step = self.log_on_step if phase == "train" else False - on_epoch = False if phase == "train" else True - self.log_dict( - metrics, - on_step=log_on_step, - on_epoch=on_epoch, - prog_bar=True, - sync_dist=True, - add_dataloader_idx=False, - ) - return {"loss": out.get("loss", None), **metrics} - - def training_step(self, batch: Any, batch_idx: int): - # To use new data every epoch, we need to call reload_dataloaders_every_epoch=True in Trainer - return self.shared_step(batch, batch_idx, phase="train") - - def validation_step(self, batch: Any, batch_idx: int): - return self.shared_step(batch, batch_idx, phase="val") - - def test_step(self, batch: Any, batch_idx: int): - return self.shared_step(batch, batch_idx, phase="test") - - def train_dataloader(self): - return self._dataloader(self.train_dataset, self.train_batch_size) - - def val_dataloader(self): - return self._dataloader(self.val_dataset, self.val_batch_size) - - def test_dataloader(self): - return self._dataloader(self.test_dataset, self.test_batch_size) - - def on_train_epoch_end(self): - if hasattr(self.model, "on_train_epoch_end"): - self.model.on_train_epoch_end(self) - train_dataset = self.env.dataset(self.train_size, "train") - self.train_dataset = self.wrap_dataset(train_dataset) - - def wrap_dataset(self, dataset): - if hasattr(self.model, "wrap_dataset") and not self.cfg.get( - "disable_wrap_dataset", False - ): - dataset = self.model.wrap_dataset(self, dataset) - return dataset - - def _dataloader(self, dataset, batch_size): - return DataLoader( - dataset, - batch_size=batch_size, - shuffle=False, # no need to shuffle, we're resampling every epoch - num_workers=self.cfg.get("data", {}).get("num_workers", 0), - collate_fn=tensordict_collate_fn, - ) diff --git a/rl4co/tasks/train.py b/rl4co/tasks/train.py new file mode 100644 index 00000000..8d04a01c --- /dev/null +++ b/rl4co/tasks/train.py @@ -0,0 +1,117 @@ +from typing import List, Optional, Tuple + +import hydra +import lightning as L +import pyrootutils +import torch + +from lightning import Callback, LightningModule +from lightning.pytorch.loggers import Logger +from omegaconf import DictConfig + +pyrootutils.setup_root(__file__, indicator=".gitignore", pythonpath=True) + +from rl4co import utils +from rl4co.utils import RL4COTrainer + +log = utils.get_pylogger(__name__) + + +@utils.task_wrapper +def run(cfg: DictConfig) -> Tuple[dict, dict]: + """Trains the model. Can additionally evaluate on a testset, using best weights obtained during + training. + This method is wrapped in optional @task_wrapper decorator, that controls the behavior during + failure. Useful for multiruns, saving info about the crash, etc. + + Args: + cfg (DictConfig): Configuration composed by Hydra. + Returns: + Tuple[dict, dict]: Dict with metrics and dict with all instantiated objects. + """ + + # set seed for random number generators in pytorch, numpy and python.random + if cfg.get("seed"): + L.seed_everything(cfg.seed, workers=True) + + # We instantiate the environment separately and then pass it to the model + log.info(f"Instantiating environment <{cfg.env._target_}>") + env = hydra.utils.instantiate(cfg.env) + + # Note that the RL environment is instantiated inside the model + log.info(f"Instantiating model <{cfg.model._target_}>") + model: LightningModule = hydra.utils.instantiate(cfg.model, env) + + log.info("Instantiating callbacks...") + callbacks: List[Callback] = utils.instantiate_callbacks(cfg.get("callbacks")) + + log.info("Instantiating loggers...") + logger: List[Logger] = utils.instantiate_loggers(cfg.get("logger")) + + log.info("Instantiating trainer...") + trainer: RL4COTrainer = hydra.utils.instantiate( + cfg.trainer, + callbacks=callbacks, + logger=logger, + ) + + object_dict = { + "cfg": cfg, + "model": model, + "callbacks": callbacks, + "logger": logger, + "trainer": trainer, + } + + if logger: + log.info("Logging hyperparameters!") + utils.log_hyperparameters(object_dict) + + if cfg.get("compile", False): + log.info("Compiling model!") + model = torch.compile(model) + + if cfg.get("train"): + log.info("Starting training!") + trainer.fit(model=model, ckpt_path=cfg.get("ckpt_path")) + + train_metrics = trainer.callback_metrics + + if cfg.get("test"): + log.info("Starting testing!") + ckpt_path = trainer.checkpoint_callback.best_model_path + if ckpt_path == "": + log.warning("Best ckpt not found! Using current weights for testing...") + ckpt_path = None + trainer.test(model=model, ckpt_path=ckpt_path) + log.info(f"Best ckpt path: {ckpt_path}") + + test_metrics = trainer.callback_metrics + + # merge train and test metrics + metric_dict = {**train_metrics, **test_metrics} + + return metric_dict, object_dict + + +@hydra.main(version_base="1.3", config_path="../../configs", config_name="main.yaml") +# @hydra.main(version_base="1.3", config_path="configs", config_name="experiment/tsp/am-ppo.yaml") +def train(cfg: DictConfig) -> Optional[float]: + # apply extra utilities + # (e.g. ask for tags if none are provided in cfg, print cfg tree, etc.) + utils.extras(cfg) + + # train the model + metric_dict, _ = run(cfg) + + # safely retrieve metric value for hydra-based hyperparameter optimization + metric_value = utils.get_metric_value( + metric_dict=metric_dict, metric_name=cfg.get("optimized_metric") + ) + + # return optimized metric + return metric_value + + +if __name__ == "__main__": + train() diff --git a/rl4co/utils/__init__.py b/rl4co/utils/__init__.py index 902431e2..89789006 100644 --- a/rl4co/utils/__init__.py +++ b/rl4co/utils/__init__.py @@ -1,5 +1,5 @@ from rl4co.utils.instantiators import instantiate_callbacks, instantiate_loggers -from rl4co.utils.logging_utils import log_hyperparameters from rl4co.utils.pylogger import get_pylogger from rl4co.utils.rich_utils import enforce_tags, print_config_tree -from rl4co.utils.utils import extras, get_metric_value, task_wrapper +from rl4co.utils.trainer import RL4COTrainer +from rl4co.utils.utils import extras, get_metric_value, log_hyperparameters, task_wrapper diff --git a/rl4co/utils/helpers.py b/rl4co/utils/helpers.py deleted file mode 100644 index 829fb007..00000000 --- a/rl4co/utils/helpers.py +++ /dev/null @@ -1,90 +0,0 @@ -"""Basic utilities for common tasks in Python and PyTorch.""" -import re - -from pathlib import Path - -import torch - - -def flatten_params(params): - """Flatten an iterable of parameters.""" - flat_params = [p.contiguous().view(-1) for p in params] - return torch.cat(flat_params) if len(flat_params) > 0 else torch.tensor([]) - - -def flatten_params_grad(params, params_ref): - """Flatten an iterable of parameters and their gradients.""" - _params = [p for p in params] - _params_ref = [p for p in params_ref] - flat_params = [ - p.contiguous().view(-1) if p is not None else torch.zeros_like(q).view(-1) - for p, q in zip(_params, _params_ref) - ] - return torch.cat(flat_params) if len(flat_params) > 0 else torch.tensor([]) - - -def parameter_count(model): - "Returns parameter count of an nn.Module." - return sum([p.numel() for p in model.parameters()]) - - -def strictly_increasing(L): - return all(x < y for x, y in zip(L, L[1:])) - - -def strictly_decreasing(L): - return all(x > y for x, y in zip(L, L[1:])) - - -def non_increasing(L): - return all(x >= y for x, y in zip(L, L[1:])) - - -def non_decreasing(L): - return all(x <= y for x, y in zip(L, L[1:])) - - -def monotonic(L): - return non_increasing(L) or non_decreasing(L) - - -def find(tensor, values): - "Finds indices of elements in a tensor that are equal to values." - return torch.nonzero(tensor[..., None] == values) - - -def sum_except(x, num_dims=1): - """ - Sums all dimensions except the first `num_dims`. - Args: - x: Tensor, shape (batch_size, ...) - num_dims: int, number of batch dims (default=1) - Returns: - x_sum: Tensor, shape (batch_size,) - """ - return x.reshape(*x.shape[:num_dims], -1).sum(-1) - - -def load_checkpoint(path, device="cpu"): - "Loads nn.Module from a path." - path = Path(path).expanduser() - is_deepspeed = False - if path.is_dir(): # DeepSpeed checkpoint - is_deepspeed = True - latest_path = path / "latest" - if latest_path.is_file(): - with open(latest_path, "r") as fd: - tag = fd.read().strip() - else: - raise ValueError(f"Unable to find 'latest' file at {latest_path}") - path /= f"{tag}/mp_rank_00_model_states.pt" - state_dict = torch.load(path, map_location=device) - if is_deepspeed: - state_dict = state_dict["module"] - - # Replace the names of some of the submodules - def key_mapping(key): - return re.sub(r"^module.model.", "", key) - - state_dict = {key_mapping(k): v for k, v in state_dict.items()} - return state_dict diff --git a/rl4co/utils/lightning.py b/rl4co/utils/lightning.py index a6b0e316..a3f29cb7 100644 --- a/rl4co/utils/lightning.py +++ b/rl4co/utils/lightning.py @@ -2,11 +2,10 @@ import lightning as L import torch -import yaml from omegaconf import DictConfig -from rl4co.tasks.rl4co import RL4COLitModule +# from rl4co. from rl4co.utils.pylogger import get_pylogger log = get_pylogger(__name__) @@ -16,9 +15,12 @@ def get_lightning_device(lit_module: L.LightningModule) -> torch.device: """Get the device of the Lightning module before setup is called See device setting issue in setup https://github.com/Lightning-AI/lightning/issues/2638 """ - if lit_module.trainer.strategy.root_device != lit_module.device: - return lit_module.trainer.strategy.root_device - return lit_module.device + try: + if lit_module.trainer.strategy.root_device != lit_module.device: + return lit_module.trainer.strategy.root_device + return lit_module.device + except Exception: + return lit_module.device def remove_key(config, key="wandb"): @@ -72,66 +74,3 @@ def replace_dir_recursive(d, search, replace): replace_dir_recursive(cfg, root_dir, os.getcwd()) return cfg - - -def load_model_from_checkpoint( - config, - checkpoint_path, - device="cpu", - only_policy=True, - disable_model_setup=True, - disable_wrap_dataset=True, - validate_only=True, - clean_cfg_path=True, - phase="test", -): - """Load model from checkpoint - - Args: - config: Hydra config or its path - checkpoint_path: Path to checkpoint - device: Device to load model on - only_policy: If True, load only policy parameters - disable_model_setup: If True, disable model setup during RL4COLitModule init - disable_wrap_dataset: If True, disable dataset wrapping during RL4COLitModule init - validate_only: If True, only load model for validation and make train size small - """ - if only_policy and not (disable_model_setup or disable_wrap_dataset): - log.warning( - "only_policy is True, but disable_model_setup and disable_wrap_dataset are False. " - "This may cause errors due to missing model setup and dataset wrapping. " - ) - - # Load config if path is given - if not isinstance(config, DictConfig or dict): - log.info(f"Loading config from {config}") - with open(config, "r") as stream: - config = yaml.safe_load(stream) - - # Clean hydra config - config = clean_hydra_config(config, clean_cfg_path=clean_cfg_path) - - # Add to cfg disable_model_setup and disable_wrap_dataset - config["disable_model_setup"] = disable_model_setup - config["disable_wrap_dataset"] = disable_wrap_dataset - if validate_only: - config["train_size"] = 10 # dummy - - # Load model and checkpoint - lit_module = RL4COLitModule(config) - checkpoint_path = torch.load(checkpoint_path, map_location=device) - - # Load model from checkpoint: only policy parameters or full model - if only_policy: - state_dict = checkpoint_path["state_dict"] - # get only policy parameters - state_dict = {k: v for k, v in state_dict.items() if "policy" in k} - # remove leading 'policy.' from keys - state_dict = {k.replace("model.policy.", ""): v for k, v in state_dict.items()} - # load policy state_dict - lit_module.model.policy.load_state_dict(state_dict) - else: - lit_module = lit_module.load_from_checkpoint(checkpoint_path) - - lit_module.setup(stage=phase) - return lit_module diff --git a/rl4co/utils/logging_utils.py b/rl4co/utils/logging_utils.py deleted file mode 100644 index 5d160136..00000000 --- a/rl4co/utils/logging_utils.py +++ /dev/null @@ -1,49 +0,0 @@ -from lightning.pytorch.utilities.rank_zero import rank_zero_only - -from rl4co.utils import pylogger - -log = pylogger.get_pylogger(__name__) - - -@rank_zero_only -def log_hyperparameters(object_dict: dict) -> None: - """Controls which config parts are saved by lightning loggers. - Additionally saves: - - Number of model parameters - """ - - hparams = {} - - cfg = object_dict["cfg"] - model = object_dict["model"] - trainer = object_dict["trainer"] - - if not trainer.logger: - log.warning("Logger not found! Skipping hyperparameter logging...") - return - - hparams["model"] = cfg["model"] - - # save number of model parameters - hparams["model/params/total"] = sum(p.numel() for p in model.parameters()) - hparams["model/params/trainable"] = sum( - p.numel() for p in model.parameters() if p.requires_grad - ) - hparams["model/params/non_trainable"] = sum( - p.numel() for p in model.parameters() if not p.requires_grad - ) - - hparams["data"] = cfg["data"] - hparams["trainer"] = cfg["trainer"] - - hparams["callbacks"] = cfg.get("callbacks") - hparams["extras"] = cfg.get("extras") - - hparams["task_name"] = cfg.get("task_name") - hparams["tags"] = cfg.get("tags") - hparams["ckpt_path"] = cfg.get("ckpt_path") - hparams["seed"] = cfg.get("seed") - - # send hparams to all loggers - for logger in trainer.loggers: - logger.log_hyperparams(hparams) diff --git a/rl4co/utils/ops.py b/rl4co/utils/ops.py index b06a0df3..82d68d20 100644 --- a/rl4co/utils/ops.py +++ b/rl4co/utils/ops.py @@ -94,7 +94,7 @@ def get_tour_length(ordered_locs): return get_distance(ordered_locs_next, ordered_locs).sum(-1) -def select_start_nodes(td, num_nodes, env=None): +def select_start_nodes(td, num_nodes, env): """Node selection strategy as proposed in POMO (Kwon et al. 2020) and extended in SymNCO (Kim et al. 2022). Selects different start nodes for each batch element @@ -104,7 +104,7 @@ def select_start_nodes(td, num_nodes, env=None): num_nodes: Number of nodes to select env: (TODO) Environment may determine the node selection strategy """ - if env.name != "pctsp": + if env.name not in ["pctsp", "spctsp", "mtsp"]: selected = torch.arange(num_nodes, device=td.device).repeat_interleave( td.shape[0] ) diff --git a/rl4co/utils/optim_helpers.py b/rl4co/utils/optim_helpers.py new file mode 100644 index 00000000..f784a62b --- /dev/null +++ b/rl4co/utils/optim_helpers.py @@ -0,0 +1,39 @@ +import inspect + +import torch +import torch.nn as nn +from torch.optim import Optimizer + + +def get_pytorch_lr_schedulers(): + """Get all learning rate schedulers from `torch.optim.lr_scheduler`""" + return torch.optim.lr_scheduler.__all__ + + +def get_pytorch_optimizers(): + """Get all optimizers from `torch.optim`""" + optimizers = [] + for name, obj in inspect.getmembers(torch.optim): + if inspect.isclass(obj) and issubclass(obj, Optimizer): + optimizers.append(name) + return optimizers + + +def create_optimizer(parameters, optimizer_name: str, **optimizer_kwargs) -> Optimizer: + """Create optimizer for model. If `optimizer_name` is not found, raise ValueError.""" + if optimizer_name in get_pytorch_optimizers(): + optimizer_cls = getattr(torch.optim, optimizer_name) + return optimizer_cls(parameters, **optimizer_kwargs) + else: + raise ValueError(f"Optimizer {optimizer_name} not found.") + + +def create_scheduler( + optimizer: Optimizer, scheduler_name: str, **scheduler_kwargs +) -> torch.optim.lr_scheduler.LRScheduler: + """Create scheduler for optimizer. If `scheduler_name` is not found, raise ValueError.""" + if scheduler_name in get_pytorch_lr_schedulers(): + scheduler_cls = getattr(torch.optim.lr_scheduler, scheduler_name) + return scheduler_cls(optimizer, **scheduler_kwargs) + else: + raise ValueError(f"Scheduler {scheduler_name} not found.") diff --git a/rl4co/utils/rich_utils.py b/rl4co/utils/rich_utils.py index a2f33065..652ba568 100644 --- a/rl4co/utils/rich_utils.py +++ b/rl4co/utils/rich_utils.py @@ -19,7 +19,7 @@ def print_config_tree( cfg: DictConfig, print_order: Sequence[str] = ( - "data", + # "data", # note: data is dealt with in model "model", "callbacks", "logger", diff --git a/rl4co/utils/trainer.py b/rl4co/utils/trainer.py new file mode 100644 index 00000000..9062089a --- /dev/null +++ b/rl4co/utils/trainer.py @@ -0,0 +1,106 @@ +from typing import Iterable, List, Optional, Sequence, Union + +import torch + +from lightning import Callback, Trainer +from lightning.pytorch.accelerators import Accelerator +from lightning.pytorch.loggers import Logger +from lightning.pytorch.strategies import DDPStrategy, Strategy + +from rl4co import utils + +log = utils.get_pylogger(__name__) + + +class RL4COTrainer(Trainer): + """Wrapper around Lightning Trainer, with some RL4CO magic for efficient training. + + Note: + The most important hyperparameter to use is `reload_dataloaders_every_n_epochs`. + This allows for datasets to be re-created on the run and distributed by Lightning across + devices on each epoch. Setting to a value different than 1 may lead to overfitting to a + specific (such as the initial) data distribution. + + Args: + accelerator: hardware accelerator to use. + callbacks: list of callbacks. + logger: logger (or iterable collection of loggers) for experiment tracking. + min_epochs: minimum number of training epochs. + max_epochs: maximum number of training epochs. + strategy: training strategy to use (if any), such as Distributed Data Parallel (DDP). + devices: number of devices to train on (int) or which GPUs to train on (list or str) applied per node. + gradient_clip_val: 0 means don't clip. Defaults to 1.0 for stability. + precision: allows for mixed precision training. Can be specified as a string (e.g., '16'). + This also allows to use `FlashAttention` by default. + disable_profiling_executor: Disable JIT profiling executor. This reduces memory and increases speed. + auto_configure_ddp: Automatically configure DDP strategy if multiple GPUs are available. + reload_dataloaders_every_n_epochs: Set to a value different than 1 to reload dataloaders every n epochs. + matmul_precision: Set matmul precision for faster inference https://pytorch.org/docs/stable/generated/torch.set_float32_matmul_precision.html#torch.set_float32_matmul_precision + **kwargs: Additional keyword arguments passed to the Lightning Trainer. See :class:`~lightning.pytorch.trainer.Trainer` for details. + """ + + def __init__( + self, + accelerator: Union[str, Accelerator] = "auto", + callbacks: Optional[List[Callback]] = None, + logger: Optional[Union[Logger, Iterable[Logger]]] = None, + min_epochs: Optional[int] = None, + max_epochs: Optional[int] = None, + strategy: Union[str, Strategy] = "auto", + devices: Union[List[int], str, int] = "auto", + gradient_clip_val: Union[int, float] = 1.0, + precision: Union[str, int] = "16-mixed", + disable_profiling_executor: bool = True, + auto_configure_ddp: bool = True, + reload_dataloaders_every_n_epochs: int = 1, + matmul_precision: Union[str, int] = "medium", + **kwargs, + ): + # Disable JIT profiling executor. This reduces memory and increases speed. + # Reference: https://github.com/HazyResearch/safari/blob/111d2726e7e2b8d57726b7a8b932ad8a4b2ad660/train.py#LL124-L129C17 + if disable_profiling_executor: + try: + torch._C._jit_set_profiling_executor(False) + torch._C._jit_set_profiling_mode(False) + except AttributeError: + pass + + # Configure DDP automatically + if auto_configure_ddp and isinstance(devices, Sequence): + n_devices = len(devices) + if n_devices > 1 and strategy is None: + log.info("Configuring DDP strategy automatically") + strategy = DDPStrategy( + find_unused_parameters=True, # We set to True due to RL envs + gradient_as_bucket_view=True, # https://pytorch-lightning.readthedocs.io/en/stable/advanced/advanced_gpu.html#ddp-optimizations + ) + + # Set matmul precision for faster inference https://pytorch.org/docs/stable/generated/torch.set_float32_matmul_precision.html#torch.set_float32_matmul_precision + if matmul_precision is not None: + torch.set_float32_matmul_precision(matmul_precision) + + # Check if gradient_clip_val is set to None + if gradient_clip_val is None: + log.warning( + "gradient_clip_val is set to None. This may lead to unstable training." + ) + + # We should reload dataloaders every epoch for RL training + if reload_dataloaders_every_n_epochs != 1: + log.warning( + "We reload dataloaders every epoch for RL training. Setting reload_dataloaders_every_n_epochs to a value different than 1 " + + "may lead to unexpected behavior since the initial conditions will be the same for `n_epochs` epochs." + ) + + # Main call to `Trainer` superclass + super().__init__( + accelerator=accelerator, + callbacks=callbacks, + logger=logger, + min_epochs=min_epochs, + max_epochs=max_epochs, + strategy=strategy, + devices=devices, + precision=precision, + **kwargs, + ) diff --git a/rl4co/utils/transfer.py b/rl4co/utils/transfer.py index e932071a..f485036b 100644 --- a/rl4co/utils/transfer.py +++ b/rl4co/utils/transfer.py @@ -1,7 +1,8 @@ import torch.nn as nn -def transplant_weights( +# Work in progress on transfer learning between models +def transfer_learning_weights( source: nn.Module, target: nn.Module, load_encoder: bool = True, diff --git a/rl4co/utils/utils.py b/rl4co/utils/utils.py index 9fc26a24..227cf05b 100644 --- a/rl4co/utils/utils.py +++ b/rl4co/utils/utils.py @@ -154,7 +154,9 @@ def log_hyperparameters(object_dict: dict) -> None: p.numel() for p in model.parameters() if not p.requires_grad ) - hparams["data"] = cfg["data"] + ## Note: we do not use the data config, since it is dealt with in the model + ## which is a `LightningModule` + # hparams["data"] = cfg["data"] hparams["trainer"] = cfg["trainer"] hparams["callbacks"] = cfg.get("callbacks") diff --git a/run.py b/run.py index 82c3e76d..92dc7a4a 100644 --- a/run.py +++ b/run.py @@ -1,148 +1,5 @@ -from typing import List, Optional, Sequence, Tuple - -import hydra -import lightning as L -import pyrootutils -import torch - -from lightning import Callback, LightningModule, Trainer -from lightning.pytorch.loggers import Logger -from omegaconf import DictConfig - -pyrootutils.setup_root(__file__, indicator=".gitignore", pythonpath=True) - -from rl4co import utils - -log = utils.get_pylogger(__name__) - - -@utils.task_wrapper -def run(cfg: DictConfig) -> Tuple[dict, dict]: - """Trains the model. Can additionally evaluate on a testset, using best weights obtained during - training. - This method is wrapped in optional @task_wrapper decorator, that controls the behavior during - failure. Useful for multiruns, saving info about the crash, etc. - Args: - cfg (DictConfig): Configuration composed by Hydra. - Returns: - Tuple[dict, dict]: Dict with metrics and dict with all instantiated objects. - """ - - # set seed for random number generators in pytorch, numpy and python.random - if cfg.get("seed"): - L.seed_everything(cfg.seed, workers=True) - - # Note that the RL environment is instantiated inside the model - log.info(f"Instantiating task <{cfg.task._target_}>") - model: LightningModule = hydra.utils.instantiate(cfg.task, cfg, _recursive_=False) - - if cfg.get("transfer"): - from rl4co.utils.lightning import load_model_from_checkpoint - from rl4co.utils.transfer import transplant_weights - - log.info("load pretrained model") - device = model.device - pretrained_model = load_model_from_checkpoint( - cfg.transfer.source.config, - cfg.transfer.source.checkpoint_path, - device=device, - ) - - transplant_weights(pretrained_model, model, **cfg.transfer.transfer_config) - del pretrained_model - - log.info("Instantiating callbacks...") - callbacks: List[Callback] = utils.instantiate_callbacks(cfg.get("callbacks")) - - log.info("Instantiating loggers...") - logger: List[Logger] = utils.instantiate_loggers(cfg.get("logger")) - - # Configure DDP automatically - n_devices = cfg.trainer.get("devices", 1) - if isinstance(n_devices, Sequence): - n_devices = len(n_devices) - if n_devices > 1 and cfg.trainer.get("strategy", None) is None: - log.info("Configuring DDP strategy automatically") - cfg.trainer.strategy = dict( - _target_="lightning.pytorch.strategies.DDPStrategy", - find_unused_parameters=True, # We set to True due to RL envs - gradient_as_bucket_view=True, # https://pytorch-lightning.readthedocs.io/en/stable/advanced/advanced_gpu.html#ddp-optimizations - ) - - # Set matmul precision for faster inference https://pytorch.org/docs/stable/generated/torch.set_float32_matmul_precision.html#torch.set_float32_matmul_precision - torch.set_float32_matmul_precision(cfg.get("matmul_precision", "medium")) - - log.info(f"Instantiating trainer <{cfg.trainer._target_}>") - if cfg.trainer.get("reload_dataloaders_every_n_epochs", 1) != 1: - log.warning( - "We must reload dataloaders every epoch for RL training. Ignoring reload_dataloaders_every_n_epochs key in trainer." - ) - reload_dataloaders_every_n_epochs = 1 - - trainer: Trainer = hydra.utils.instantiate( - cfg.trainer, - callbacks=callbacks, - logger=logger, - reload_dataloaders_every_n_epochs=reload_dataloaders_every_n_epochs, - ) - - object_dict = { - "cfg": cfg, - "model": model, - "callbacks": callbacks, - "logger": logger, - "trainer": trainer, - } - - if logger: - log.info("Logging hyperparameters!") - utils.log_hyperparameters(object_dict) - - if cfg.get("compile", False): - log.info("Compiling model!") - model = torch.compile(model) - - if cfg.get("train"): - log.info("Starting training!") - trainer.fit(model=model, ckpt_path=cfg.get("ckpt_path")) - - train_metrics = trainer.callback_metrics - - if cfg.get("test"): - log.info("Starting testing!") - ckpt_path = trainer.checkpoint_callback.best_model_path - if ckpt_path == "": - log.warning("Best ckpt not found! Using current weights for testing...") - ckpt_path = None - trainer.test(model=model, ckpt_path=ckpt_path) - log.info(f"Best ckpt path: {ckpt_path}") - - test_metrics = trainer.callback_metrics - - # merge train and test metrics - metric_dict = {**train_metrics, **test_metrics} - - return metric_dict, object_dict - - -@hydra.main(version_base="1.3", config_path="configs", config_name="main.yaml") -# @hydra.main(version_base="1.3", config_path="configs", config_name="experiment/tsp/am-ppo.yaml") -def main(cfg: DictConfig) -> Optional[float]: - # apply extra utilities - # (e.g. ask for tags if none are provided in cfg, print cfg tree, etc.) - utils.extras(cfg) - - # train the model - metric_dict, _ = run(cfg) - - # safely retrieve metric value for hydra-based hyperparameter optimization - metric_value = utils.get_metric_value( - metric_dict=metric_dict, metric_name=cfg.get("optimized_metric") - ) - - # return optimized metric - return metric_value - +from rl4co.tasks.train import train +# Call the train function directly from inside the package if __name__ == "__main__": - main() + train() diff --git a/tests/test_envs.py b/tests/test_envs.py index a5766d94..b98a5509 100644 --- a/tests/test_envs.py +++ b/tests/test_envs.py @@ -1,53 +1,58 @@ -import pytest +import warnings -from rl4co.envs import ATSPEnv, CVRPEnv, DPPEnv, MTSPEnv, PDPEnv, SDVRPEnv, TSPEnv +import matplotlib.pyplot as plt +import pytest +import torch + +from rl4co.envs import ( + ATSPEnv, + CVRPEnv, + DPPEnv, + FFSPEnv, + MDPPEnv, + MTSPEnv, + OPEnv, + PCTSPEnv, + PDPEnv, + SDVRPEnv, + SPCTSPEnv, + TSPEnv, +) from rl4co.models.nn.utils import random_policy, rollout - -@pytest.mark.parametrize("size, batch_size", [(20, 2)]) -def test_tsp(size, batch_size): - env = TSPEnv(num_loc=size) - reward = rollout(env, env.reset(batch_size=[batch_size]), random_policy) - assert reward.shape == (batch_size,) - - -@pytest.mark.parametrize("size, batch_size", [(20, 2)]) -def test_atsp(size, batch_size): - env = ATSPEnv(num_loc=size) - reward = rollout(env, env.reset(batch_size=[batch_size]), random_policy) - assert reward.shape == (batch_size,) - - -@pytest.mark.parametrize("size, batch_size", [(20, 2)]) -def test_dpp(size, batch_size): - env = DPPEnv() - reward = rollout(env, env.reset(batch_size=[batch_size]), random_policy) - assert reward.shape == (batch_size,) +# Switch to non-GUI backend for testing +plt.switch_backend("Agg") +warnings.filterwarnings("ignore", "Matplotlib is currently using agg") -@pytest.mark.parametrize("size, batch_size", [(20, 2)]) -def test_cvrp(size, batch_size): - env = CVRPEnv() - reward = rollout(env, env.reset(batch_size=[batch_size]), random_policy) +@pytest.mark.parametrize( + "env_cls", + [TSPEnv, CVRPEnv, SDVRPEnv, PCTSPEnv, SPCTSPEnv, OPEnv, PDPEnv, MTSPEnv, ATSPEnv], +) +def test_routing(env_cls, batch_size=2, size=20): + env = env_cls(num_loc=size) + reward, td, actions = rollout(env, env.reset(batch_size=[batch_size]), random_policy) + env.render(td, actions) assert reward.shape == (batch_size,) -@pytest.mark.parametrize("size, batch_size", [(20, 2)]) -def test_sdvrp(size, batch_size): - env = SDVRPEnv() - reward = rollout(env, env.reset(batch_size=[batch_size]), random_policy) +@pytest.mark.parametrize("env_cls", [DPPEnv, MDPPEnv]) +def test_eda(env_cls, batch_size=2, size=20): + env = env_cls(num_loc=size) + reward, td, actions = rollout(env, env.reset(batch_size=[batch_size]), random_policy) + ## Note: we skip rendering for now because we need to collect extra data. TODO + # env.render(td, actions) assert reward.shape == (batch_size,) -@pytest.mark.parametrize("size, batch_size", [(20, 2)]) -def test_pdp(size, batch_size): - env = PDPEnv(num_loc=size) - reward = rollout(env, env.reset(batch_size=[batch_size]), random_policy) - assert reward.shape == (batch_size,) - - -@pytest.mark.parametrize("size, batch_size", [(20, 2)]) -def test_mtsp(size, batch_size): - env = MTSPEnv(num_loc=size) - reward = rollout(env, env.reset(batch_size=[batch_size]), random_policy) - assert reward.shape == (batch_size,) +@pytest.mark.parametrize("env_cls", [FFSPEnv]) +def test_scheduling(env_cls, batch_size=2): + env = env_cls( + num_stage=2, + num_machine=3, + num_job=4, + batch_size=[batch_size], + ) + td = env.reset() + td["job_idx"] = torch.tensor([1, 1]) + td = env._step(td) diff --git a/tests/test_models.py b/tests/test_models.py deleted file mode 100644 index a8fd752b..00000000 --- a/tests/test_models.py +++ /dev/null @@ -1,74 +0,0 @@ -import pytest - -from rl4co.models import ( - POMO, - AttentionModel, - HeterogeneousAttentionModel, - MDAMPolicy, - PointerNetwork, - SymNCO, - SymNCOPolicy, -) -from rl4co.utils.test_utils import generate_env_data - - -@pytest.mark.parametrize("size", [20]) -@pytest.mark.parametrize( - "env_name", ["tsp", "cvrp", "sdvrp", "mtsp", "op", "pctsp", "spctsp", "dpp", "mdpp"] -) # todo: sdvrp -def test_am(size, env_name, batch_size=2): - env, x = generate_env_data(env_name, size, batch_size) - td = env.reset(x) - model = AttentionModel(env) - out = model(td, decode_type="sampling") - assert out["reward"].shape == (batch_size,) - - -@pytest.mark.parametrize("size", [20]) -def test_ptrnet(size, batch_size=2): - env, x = generate_env_data("tsp", size, batch_size) - td = env.reset(x) - model = PointerNetwork(env) - out = model(td, decode_type="sampling") - assert out["reward"].shape == (batch_size,) - - -@pytest.mark.parametrize("size", [20]) -def test_pomo(size, batch_size=2): - env, x = generate_env_data("tsp", size, batch_size) - td = env.reset(x) - model = POMO(env, num_starts=size) - out = model(td, decode_type="sampling") - assert out["reward"].shape == (batch_size * size,) - - -@pytest.mark.parametrize("size", [20]) -def test_symnco(size, batch_size=2, num_augment=8, num_starts=20): - env, x = generate_env_data("tsp", size, batch_size) - td = env.reset(x) - policy = SymNCOPolicy(env, num_starts=num_starts) - model = SymNCO(env, policy, num_augment=num_augment) - out = model(td, decode_type="sampling") - assert out["reward"].shape == (batch_size * num_augment * num_starts,) - - -@pytest.mark.parametrize("size", [20]) -def test_ham(size, batch_size=2): - env, x = generate_env_data("pdp", size, batch_size) - td = env.reset(x) - model = HeterogeneousAttentionModel(env) - out = model(td, decode_type="sampling") - assert out["reward"].shape == (batch_size,) - - -@pytest.mark.parametrize("size", [20]) -def test_mdam(size, batch_size=2, num_paths=5): - env, x = generate_env_data("tsp", size, batch_size) - td = env.reset(x) - model = MDAMPolicy(env, num_paths=num_paths) - out = model(td, decode_type="sampling") - print(out["reward"].shape) - assert out["reward"].shape == ( - num_paths, - batch_size, - ) diff --git a/tests/test_policy.py b/tests/test_policy.py new file mode 100644 index 00000000..36fe9242 --- /dev/null +++ b/tests/test_policy.py @@ -0,0 +1,35 @@ +import pytest + +from rl4co.models import AutoregressivePolicy, PointerNetworkPolicy +from rl4co.utils.test_utils import generate_env_data + + +# Main autorergressive policy: rollout over multiple envs since it is the base +@pytest.mark.parametrize( + "env_name", ["tsp", "cvrp", "sdvrp", "mtsp", "op", "pctsp", "spctsp", "dpp", "mdpp"] +) +def test_base_policy(env_name, size=20, batch_size=2): + env, x = generate_env_data(env_name, size, batch_size) + td = env.reset(x) + policy = AutoregressivePolicy(env.name) + out = policy(td, env, decode_type="greedy") + assert out["reward"].shape == (batch_size,) + + +@pytest.mark.parametrize("env_name", ["tsp", "cvrp", "pctsp", "spctsp"]) +def test_base_policy_multistart(env_name, size=20, batch_size=2): + env, x = generate_env_data(env_name, size, batch_size) + td = env.reset(x) + policy = AutoregressivePolicy(env.name) + out = policy(td, env, decode_type="greedy_multistart", num_starts=size) + assert out["reward"].shape == ( + batch_size * size, + ) # to evaluate, we could just unbatchify + + +def test_pointer_network(size=20, batch_size=2): + env, x = generate_env_data("tsp", size, batch_size) + td = env.reset(x) + policy = PointerNetworkPolicy(env.name) + out = policy(td, env, decode_type="greedy") + assert out["reward"].shape == (batch_size,) diff --git a/tests/test_tasks.py b/tests/test_tasks.py new file mode 100644 index 00000000..d0f67061 --- /dev/null +++ b/tests/test_tasks.py @@ -0,0 +1,54 @@ +import pyrootutils +import pytest + +from hydra import compose, initialize +from hydra.core.global_hydra import GlobalHydra +from hydra.core.hydra_config import HydraConfig +from omegaconf import DictConfig, open_dict + +from rl4co.tasks.train import run + + +@pytest.fixture(scope="package") +def cfg_train_global() -> DictConfig: + with initialize(config_path="../configs"): + cfg = compose(config_name="main.yaml", return_hydra_config=True, overrides=[]) + + # set defaults for all tests + with open_dict(cfg): + cfg.paths.root_dir = str(pyrootutils.find_root(indicator=".gitignore")) + cfg.trainer.max_epochs = 1 + cfg.model.train_data_size = 100 + cfg.model.val_data_size = 100 + cfg.model.test_data_size = 100 + cfg.trainer.accelerator = "cpu" + cfg.trainer.devices = 1 + cfg.extras.print_config = False + cfg.extras.enforce_tags = False + cfg.logger = None + cfg.callbacks.learning_rate_monitor = None + + return cfg + + +@pytest.fixture(scope="function") +def cfg_train(cfg_train_global, tmp_path) -> DictConfig: + cfg = cfg_train_global.copy() + + with open_dict(cfg): + cfg.paths.output_dir = str(tmp_path) + cfg.paths.log_dir = str(tmp_path) + + yield cfg + + GlobalHydra.instance().clear() + + +def test_train_fast_dev_run(cfg_train): + """Run for 1 train, val and test step.""" + HydraConfig().set_config(cfg_train) + with open_dict(cfg_train): + cfg_train.trainer.fast_dev_run = True + cfg_train.trainer.accelerator = "cpu" + print(cfg_train) + run(cfg_train) diff --git a/tests/test_training.py b/tests/test_training.py new file mode 100644 index 00000000..c3d2f591 --- /dev/null +++ b/tests/test_training.py @@ -0,0 +1,52 @@ +import pytest + +from rl4co.envs import PDPEnv, TSPEnv +from rl4co.models import AttentionModel, HeterogeneousAttentionModel, PPOModel, SymNCO +from rl4co.utils import RL4COTrainer + + +# Test out simple training loop and test with multiple baselines +@pytest.mark.parametrize("baseline", ["rollout", "exponential", "critic", "no"]) +def test_reinforce(baseline): + env = TSPEnv(num_loc=20) + + model = AttentionModel( + env, baseline=baseline, train_data_size=10, val_data_size=10, test_data_size=10 + ) + + trainer = RL4COTrainer(max_epochs=1) + trainer.fit(model) + trainer.test(model) + + +def test_ppo(): + env = TSPEnv(num_loc=20) + model = PPOModel(env, train_data_size=10, val_data_size=10, test_data_size=10) + trainer = RL4COTrainer(max_epochs=1) + trainer.fit(model) + trainer.test(model) + + +def test_symnco(): + env = TSPEnv(num_loc=20) + model = SymNCO( + env, + train_data_size=10, + val_data_size=10, + test_data_size=10, + num_augment=2, + num_starts=20, + ) + trainer = RL4COTrainer(max_epochs=1) + trainer.fit(model) + trainer.test(model) + + +def test_ham(): + env = PDPEnv(num_loc=20) + model = HeterogeneousAttentionModel( + env, train_data_size=10, val_data_size=10, test_data_size=10 + ) + trainer = RL4COTrainer(max_epochs=1) + trainer.fit(model) + trainer.test(model) diff --git a/tests/test_ops.py b/tests/test_utils.py similarity index 100% rename from tests/test_ops.py rename to tests/test_utils.py