"
@@ -364,19 +361,21 @@
"cell_type": "markdown",
"metadata": {},
"source": [
- "### Lightning Trainer"
+ "### Trainer\n",
+ "\n",
+ "The RL4CO trainer is a wrapper around PyTorch Lightning's `Trainer` class which adds some functionality and more efficient defaults"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
- "The Lightning Trainer handles the logging, checkpointing and more for you. "
+ "The Trainer handles the logging, checkpointing and more for you. "
]
},
{
"cell_type": "code",
- "execution_count": 9,
+ "execution_count": 8,
"metadata": {},
"outputs": [
{
@@ -393,15 +392,13 @@
}
],
"source": [
- "# Lightning Trainer with few epochs\n",
- "trainer = L.Trainer(\n",
- " max_epochs=3, # only few epochs for showcasing training\n",
- " accelerator=\"gpu\", # use GPU if available, else you can use others as \"cpu\"\n",
- " logger=logger, # can replace with WandbLogger, TensorBoardLogger, etc.\n",
- " precision=\"16-mixed\", # Faster training with Lightning with mixed precision\n",
- " gradient_clip_val=1.0, # clip gradients to avoid exploding gradients\n",
- " reload_dataloaders_every_n_epochs=1, # necessary for sampling new data,\n",
- " callbacks=callbacks, # may add other callbacks here\n",
+ "from rl4co.utils.trainer import RL4COTrainer\n",
+ "\n",
+ "trainer = RL4COTrainer(\n",
+ " max_epochs=2,\n",
+ " accelerator=\"gpu\",\n",
+ " logger=logger,\n",
+ " callbacks=callbacks,\n",
")"
]
},
@@ -414,56 +411,64 @@
},
{
"cell_type": "code",
- "execution_count": 10,
+ "execution_count": 9,
"metadata": {},
"outputs": [
{
"name": "stderr",
"output_type": "stream",
"text": [
- "You are using a CUDA device ('NVIDIA GeForce RTX 3090') that has Tensor Cores. To properly utilize them, you should set `torch.set_float32_matmul_precision('medium' | 'high')` which will trade-off precision for performance. For more details, read https://pytorch.org/docs/stable/generated/torch.set_float32_matmul_precision.html#torch.set_float32_matmul_precision\n"
- ]
- },
- {
- "name": "stderr",
- "output_type": "stream",
- "text": [
+ "/home/botu/miniconda3/envs/rl4co/lib/python3.10/site-packages/lightning/pytorch/callbacks/model_checkpoint.py:615: UserWarning: Checkpoint directory /home/botu/Dev/rl4co/notebooks/examples/checkpoints exists and is not empty.\n",
+ " rank_zero_warn(f\"Checkpoint directory {dirpath} exists and is not empty.\")\n",
"val_file not set. Generating dataset instead\n",
"test_file not set. Generating dataset instead\n",
- "LOCAL_RANK: 0 - CUDA_VISIBLE_DEVICES: [0]\n",
- "No optimizer specified, using default\n"
+ "LOCAL_RANK: 0 - CUDA_VISIBLE_DEVICES: [0]\n"
]
},
{
"data": {
"text/html": [
- "┏━━━┳━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━┳━━━━━━━━━━━━━━━━━━━━━━━┳━━━━━━━━┓\n",
- "┃ ┃ Name ┃ Type ┃ Params ┃\n",
- "┡━━━╇━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━╇━━━━━━━━━━━━━━━━━━━━━━━╇━━━━━━━━┩\n",
- "│ 0 │ env │ SDVRPEnv │ 0 │\n",
- "│ 1 │ model │ AttentionModel │ 1.4 M │\n",
- "│ 2 │ model.policy │ AttentionModelPolicy │ 692 K │\n",
- "│ 3 │ model.policy.encoder │ GraphAttentionEncoder │ 594 K │\n",
- "│ 4 │ model.policy.decoder │ Decoder │ 98.8 K │\n",
- "│ 5 │ model.baseline │ WarmupBaseline │ 692 K │\n",
- "│ 6 │ model.baseline.baseline │ RolloutBaseline │ 692 K │\n",
- "│ 7 │ model.baseline.warmup_baseline │ ExponentialBaseline │ 0 │\n",
- "└───┴────────────────────────────────┴───────────────────────┴────────┘\n",
+ "┏━━━━┳━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━┳━━━━━━━━━━━━━━━━━━━━━━━┳━━━━━━━━┓\n",
+ "┃ ┃ Name ┃ Type ┃ Params ┃\n",
+ "┡━━━━╇━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━╇━━━━━━━━━━━━━━━━━━━━━━━╇━━━━━━━━┩\n",
+ "│ 0 │ env │ SDVRPEnv │ 0 │\n",
+ "│ 1 │ policy │ AttentionModelPolicy │ 694 K │\n",
+ "│ 2 │ policy.encoder │ GraphAttentionEncoder │ 595 K │\n",
+ "│ 3 │ policy.encoder.init_embedding │ VRPInitEmbedding │ 896 │\n",
+ "│ 4 │ policy.encoder.net │ GraphAttentionNetwork │ 594 K │\n",
+ "│ 5 │ policy.decoder │ AutoregressiveDecoder │ 98.8 K │\n",
+ "│ 6 │ policy.decoder.context_embedding │ VRPContext │ 16.5 K │\n",
+ "│ 7 │ policy.decoder.dynamic_embedding │ SDVRPDynamicEmbedding │ 384 │\n",
+ "│ 8 │ policy.decoder.project_node_embeddings │ Linear │ 49.2 K │\n",
+ "│ 9 │ policy.decoder.project_fixed_context │ Linear │ 16.4 K │\n",
+ "│ 10 │ policy.decoder.logit_attention │ LogitAttention │ 16.4 K │\n",
+ "│ 11 │ baseline │ WarmupBaseline │ 694 K │\n",
+ "│ 12 │ baseline.baseline │ RolloutBaseline │ 694 K │\n",
+ "│ 13 │ baseline.baseline.model │ AttentionModelPolicy │ 694 K │\n",
+ "│ 14 │ baseline.warmup_baseline │ ExponentialBaseline │ 0 │\n",
+ "└────┴────────────────────────────────────────┴───────────────────────┴────────┘\n",
" \n"
],
"text/plain": [
- "┏━━━┳━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━┳━━━━━━━━━━━━━━━━━━━━━━━┳━━━━━━━━┓\n",
- "┃\u001b[1;35m \u001b[0m\u001b[1;35m \u001b[0m\u001b[1;35m \u001b[0m┃\u001b[1;35m \u001b[0m\u001b[1;35mName \u001b[0m\u001b[1;35m \u001b[0m┃\u001b[1;35m \u001b[0m\u001b[1;35mType \u001b[0m\u001b[1;35m \u001b[0m┃\u001b[1;35m \u001b[0m\u001b[1;35mParams\u001b[0m\u001b[1;35m \u001b[0m┃\n",
- "┡━━━╇━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━╇━━━━━━━━━━━━━━━━━━━━━━━╇━━━━━━━━┩\n",
- "│\u001b[2m \u001b[0m\u001b[2m0\u001b[0m\u001b[2m \u001b[0m│ env │ SDVRPEnv │ 0 │\n",
- "│\u001b[2m \u001b[0m\u001b[2m1\u001b[0m\u001b[2m \u001b[0m│ model │ AttentionModel │ 1.4 M │\n",
- "│\u001b[2m \u001b[0m\u001b[2m2\u001b[0m\u001b[2m \u001b[0m│ model.policy │ AttentionModelPolicy │ 692 K │\n",
- "│\u001b[2m \u001b[0m\u001b[2m3\u001b[0m\u001b[2m \u001b[0m│ model.policy.encoder │ GraphAttentionEncoder │ 594 K │\n",
- "│\u001b[2m \u001b[0m\u001b[2m4\u001b[0m\u001b[2m \u001b[0m│ model.policy.decoder │ Decoder │ 98.8 K │\n",
- "│\u001b[2m \u001b[0m\u001b[2m5\u001b[0m\u001b[2m \u001b[0m│ model.baseline │ WarmupBaseline │ 692 K │\n",
- "│\u001b[2m \u001b[0m\u001b[2m6\u001b[0m\u001b[2m \u001b[0m│ model.baseline.baseline │ RolloutBaseline │ 692 K │\n",
- "│\u001b[2m \u001b[0m\u001b[2m7\u001b[0m\u001b[2m \u001b[0m│ model.baseline.warmup_baseline │ ExponentialBaseline │ 0 │\n",
- "└───┴────────────────────────────────┴───────────────────────┴────────┘\n"
+ "┏━━━━┳━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━┳━━━━━━━━━━━━━━━━━━━━━━━┳━━━━━━━━┓\n",
+ "┃\u001b[1;35m \u001b[0m\u001b[1;35m \u001b[0m\u001b[1;35m \u001b[0m┃\u001b[1;35m \u001b[0m\u001b[1;35mName \u001b[0m\u001b[1;35m \u001b[0m┃\u001b[1;35m \u001b[0m\u001b[1;35mType \u001b[0m\u001b[1;35m \u001b[0m┃\u001b[1;35m \u001b[0m\u001b[1;35mParams\u001b[0m\u001b[1;35m \u001b[0m┃\n",
+ "┡━━━━╇━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━╇━━━━━━━━━━━━━━━━━━━━━━━╇━━━━━━━━┩\n",
+ "│\u001b[2m \u001b[0m\u001b[2m0 \u001b[0m\u001b[2m \u001b[0m│ env │ SDVRPEnv │ 0 │\n",
+ "│\u001b[2m \u001b[0m\u001b[2m1 \u001b[0m\u001b[2m \u001b[0m│ policy │ AttentionModelPolicy │ 694 K │\n",
+ "│\u001b[2m \u001b[0m\u001b[2m2 \u001b[0m\u001b[2m \u001b[0m│ policy.encoder │ GraphAttentionEncoder │ 595 K │\n",
+ "│\u001b[2m \u001b[0m\u001b[2m3 \u001b[0m\u001b[2m \u001b[0m│ policy.encoder.init_embedding │ VRPInitEmbedding │ 896 │\n",
+ "│\u001b[2m \u001b[0m\u001b[2m4 \u001b[0m\u001b[2m \u001b[0m│ policy.encoder.net │ GraphAttentionNetwork │ 594 K │\n",
+ "│\u001b[2m \u001b[0m\u001b[2m5 \u001b[0m\u001b[2m \u001b[0m│ policy.decoder │ AutoregressiveDecoder │ 98.8 K │\n",
+ "│\u001b[2m \u001b[0m\u001b[2m6 \u001b[0m\u001b[2m \u001b[0m│ policy.decoder.context_embedding │ VRPContext │ 16.5 K │\n",
+ "│\u001b[2m \u001b[0m\u001b[2m7 \u001b[0m\u001b[2m \u001b[0m│ policy.decoder.dynamic_embedding │ SDVRPDynamicEmbedding │ 384 │\n",
+ "│\u001b[2m \u001b[0m\u001b[2m8 \u001b[0m\u001b[2m \u001b[0m│ policy.decoder.project_node_embeddings │ Linear │ 49.2 K │\n",
+ "│\u001b[2m \u001b[0m\u001b[2m9 \u001b[0m\u001b[2m \u001b[0m│ policy.decoder.project_fixed_context │ Linear │ 16.4 K │\n",
+ "│\u001b[2m \u001b[0m\u001b[2m10\u001b[0m\u001b[2m \u001b[0m│ policy.decoder.logit_attention │ LogitAttention │ 16.4 K │\n",
+ "│\u001b[2m \u001b[0m\u001b[2m11\u001b[0m\u001b[2m \u001b[0m│ baseline │ WarmupBaseline │ 694 K │\n",
+ "│\u001b[2m \u001b[0m\u001b[2m12\u001b[0m\u001b[2m \u001b[0m│ baseline.baseline │ RolloutBaseline │ 694 K │\n",
+ "│\u001b[2m \u001b[0m\u001b[2m13\u001b[0m\u001b[2m \u001b[0m│ baseline.baseline.model │ AttentionModelPolicy │ 694 K │\n",
+ "│\u001b[2m \u001b[0m\u001b[2m14\u001b[0m\u001b[2m \u001b[0m│ baseline.warmup_baseline │ ExponentialBaseline │ 0 │\n",
+ "└────┴────────────────────────────────────────┴───────────────────────┴────────┘\n"
]
},
"metadata": {},
@@ -491,7 +496,7 @@
{
"data": {
"application/vnd.jupyter.widget-view+json": {
- "model_id": "12ece566b1324443b6513e4ce45583a1",
+ "model_id": "b09270c01f97472b84b66fd7dfc4e7af",
"version_major": 2,
"version_minor": 0
},
@@ -515,7 +520,7 @@
{
"data": {
"application/vnd.jupyter.widget-view+json": {
- "model_id": "af283bfeda964ac8b122fef2c4aef53a",
+ "model_id": "26c9ac5e5f994dd39d7e375b52f367aa",
"version_major": 2,
"version_minor": 0
},
@@ -529,21 +534,7 @@
{
"data": {
"application/vnd.jupyter.widget-view+json": {
- "model_id": "ecd7e75d87fe43339fe0918b5c738b26",
- "version_major": 2,
- "version_minor": 0
- },
- "text/plain": [
- "Validation: 0it [00:00, ?it/s]"
- ]
- },
- "metadata": {},
- "output_type": "display_data"
- },
- {
- "data": {
- "application/vnd.jupyter.widget-view+json": {
- "model_id": "37d0b02d1db34667ac62104cddc3d856",
+ "model_id": "e97b5d5ac8104b2ab7618bb9c0e204fb",
"version_major": 2,
"version_minor": 0
},
@@ -557,7 +548,7 @@
{
"data": {
"application/vnd.jupyter.widget-view+json": {
- "model_id": "c01fd90970714d67859c2264411b7114",
+ "model_id": "6f672d7708694c99b48c21a0ff9f4921",
"version_major": 2,
"version_minor": 0
},
@@ -572,12 +563,12 @@
"name": "stderr",
"output_type": "stream",
"text": [
- "`Trainer.fit` stopped: `max_epochs=3` reached.\n"
+ "`Trainer.fit` stopped: `max_epochs=2` reached.\n"
]
}
],
"source": [
- "trainer.fit(lit_module)"
+ "trainer.fit(model)"
]
},
{
@@ -598,19 +589,19 @@
},
{
"cell_type": "code",
- "execution_count": 11,
+ "execution_count": 10,
"metadata": {},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
- "Tour lengths: ['6.99', '6.68', '7.79']\n"
+ "Tour lengths: ['6.73', '6.81', '8.23']\n"
]
},
{
"data": {
- "image/png": "iVBORw0KGgoAAAANSUhEUgAAAiMAAAGdCAYAAADAAnMpAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjcuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/bCgiHAAAACXBIWXMAAA9hAAAPYQGoP6dpAADGfUlEQVR4nOzdd3wb9fnA8c+dTsPykPe2YzvDiTOcSRYjIWEECLNsKNAWWn4UWmhL2VBoaUsLpZRVyipl770SQgKB7OkkHnHseO8ly7Ysne5+f5yjxIkdMmzLdr7v10uv2NJJes52pEff8TySrus6giAIgiAIASIHOgBBEARBEI5tIhkRBEEQBCGgRDIiCIIgCEJAiWREEARBEISAEsmIIAiCIAgBJZIRQRAEQRACSiQjgiAIgiAElEhGBEEQBEEIKCXQARwKTdOorKwkNDQUSZICHY4gCIIgCIdA13VaW1tJTExElnsf/xgSyUhlZSUpKSmBDkMQBEEQhCNQVlZGcnJyr7cPiWQkNDQUME4mLCwswNEIgiAIgnAonE4nKSkp/vfx3gyJZGTP1ExYWJhIRgRBEARhiPmhJRZiAasgCIIgCAElkhFBEARBEAJKJCOCIAiCIASUSEYEQRAEQQioIbGAVRCEw9fobsOldvq/D1GsRNqCAxiRIAhCz0QyIgjDUKO7jbvXf4Sqa/7rFEnmgemLRUIiCMKgI6ZpBGEYcqmd3RIRAFXXuo2UCIIgDBYiGREEQRAEIaBEMiIIgiAIQkAddjLyzTffsHjxYhITE5Ekiffff/8H77N8+XKmTp2K1Wpl1KhRvPjii0cQqiAIgiAIw9FhJyNtbW1kZ2fzxBNPHNLxxcXFnHnmmcyfP5/Nmzfz61//mp/97Gd88cUXhx2sIAiCIAjDz2Hvplm0aBGLFi065OOffvpp0tPTefjhhwEYN24cK1eu5B//+AennXba4T69IAiCIAjDTL+vGVm1ahULFy7sdt1pp53GqlWrer1PZ2cnTqez20UQBEEQhOGp35OR6upq4uLiul0XFxeH0+mko6Ojx/v8+c9/xuFw+C8pKSn9HaYgDCtNne2BDkEQBOGQDcrdNLfffjstLS3+S1lZWaBDEoQhweV189SOb3hyxzc93r61oWKAIxIEQfhh/V6BNT4+npqamm7X1dTUEBYWRlBQUI/3sVqtWK3W/g5NEIYVl7eTv21ZSnVH79OaH5XmYFPMLEwaO4CRCYIgHFy/JyOzZ8/m008/7XbdkiVLmD17dn8/tSAcU97Ytd6fiAQrVubEpZMUHE6718PGhjIKnXUAvF20kUxHHCkhEYEMVxAEwe+wkxGXy0VhYaH/++LiYjZv3kxkZCSpqancfvvtVFRU8NJLLwHwi1/8gscff5xbb72Vn/zkJyxbtow333yTTz75pO/OQhCOcc2d7ayvLwXArpi5Y8ppRNtC/LcvSB7Lu8Wb+aJ8BzqwvKqAK0fPDFC0giAI3R32mpH169czZcoUpkyZAsAtt9zClClTuOeeewCoqqqitLTUf3x6ejqffPIJS5YsITs7m4cffphnn31WbOsVhD60qaEMTdcBOClhjD8R8WiV+LQ2AM5IHY/NZHz+WFdXgt51vCAMV43uNkpdjf5Lo7st0CEJvTjskZF58+Yd9EWsp+qq8+bNY9OmTYf7VIIgHKIWj9v/9ShHG3Xqszj1z2nW3yVYmsUY6WtsJisjQqLIb6mh06fS6VOxKeYARi0I/Ud0rh5a+n3NiCAI/UvTNEJs33L6mGeJDy3AbeqgVAO7NA2HtJgW/TMK1Pmkm96iqdP4ZCgBZtkU2MAFoR8drHN1JCIZGWxEMiIIQ5CqOanTnqRJe50OthMRqRKuQ4fXQV3rHBZEP0qwaQIAbdoadqnns80zmTjHqTR0nkJaaBImeVDu7BcE4RgkkhFBGCI6tO3U+B7BqX+Ol8qua03YGEu4fBEv5oym1GVModY2tXBBejsRVjtB0nForo9wW09idtqrzBrxKviyKFVPJliaRbA8EysjkSQpcCcnCMIxTSQjgjBIaZpGs/4W9dp/aNNXo2FMsciEECqdQrR8HeHS+chdIxznp1Xz2Lav0dBZV1fChrpSEuwOXGonLZ4OIoLu4EcT70CSAGUHddpO6ngcfGDCQbA0mxB5Dg7pbOxydgDPXBCEY41IRgRhEFG1Rmq1x2jS3sJNPuADwEwSkdKlxJp+TZA8vsf7jouI52dj5/JCwSq8mg8NnYr2Zv/tTR0jqGs9ntiw7wAd8Ppv89GCU/8Cp+9zGnmD8ZZt/XeSgiAI+xHJiCAEWJu2nlrfozj1pajsqVasEMREIuVLiZb/D0UOOehj7DEtJpWMsGi+rSpkdW0xzZ4OFFkmIzSakxJGMypiJAW+Wb3cWwdkUpR/9sVpCYIgHDKRjAjCANM0lUb9FRp8z9PGOnSMhpEyDsKkM4g13UAop/unXw5XhNXO2WmTODttUg+3phCinYBL/549oy77SjY9TJi84IieVxAE4UiJZEQQBoBHq6ZO+ydN2rt0UghogISZVMKls4g13YxNHjkgscSbbqNQPfOA62XCiebaAYlBEARhXyIZEYR+0qqtpNb3GK361/ioB0DCgp1pRJquJEa6Flm2DXhcYdIibIztWpOiAwoywWg0k+NLJlP6niB53IDHJQh9Rdd1ilsbAh2GcBhEMiIIfUTTPDToL9Dg+y/tbESnEwATkTik84gx3YDjKKZA3KqXD0q2srmhjFZvJynBEVw8chppoVG93ie/uYa3ijZS1d5ChNXOGakTmBOXQbzpNnb7rgYkNC2YT3P/ji6XsGD0P8jRJjPK/CKRpkuPOFZBCJR6t4und3xLWVtTj7cvKc/l6jGzRZ2dQUYkI4JwFDxaKTXaP2jWPsRDMcZIg4SVDBzyOcTJv8Yip/TJc720cw2V7S1ckzmHcEsQa2qL+UfOMu6bdiYRVvsBx9e7XTy+fTknJozmp2PnkNdczf8K1uCw2BgXfinlvt/j1ev4PP8mTk6YT3poNMurxhMVeRtF0mW4tJWkmp/ok9gFYSA0dbbzty1LaPZ09HrM2roSfLrOz8bORRa1dQYNkYwIwmFq0ZZS53scl/4NPoxPXxI2gplNlOkqoqSrkWVLnz6nx6eyqb6M/xt/ImMcsQAsHjGJrY0VrKjayblpB9YFWVG1k2hbCBdmTAUgwe6gsKWOpRX5jI9IJEN5k9eLVjAq+HTmxhvrVS7JuJg71+mcMuYvSPYnafOsIVNZGZDpJEE4XG8XbfQnIrG2EM5Oy2ZiZCIdqpfva3bxael2VF1jQ30p0xtSmRqdGuCIhT1EMjLAGt1tuNTObteFKFbRuOkI7P+z/KGfo09vQcONWYo7rOfRtHbqtGdo1F6mgxx0PAAoxBAuXUys6SZC5TlHdhKHGoOuo6GjSN37yZhlhV3Ouh7vU+SsZ2x4fLfrsiISeLNoIwBBzGVjVQU/H7f3GFmSGONII7fin5w25jFa9PfYqiYxVlmNTR7dx2clCH2nxdPBxoYyAIIVK7/LPpUwi5FE20xmzkydSFxQGP/J+w6ArysLRDIyiIhkZAD11EUSRCfJI3G4HTnd+k4KvPMx4WC8ZfsPPr5bK6TG9wgt+id4KWNPDQ4ro4mQLyBGvgmLfHhJzdGwKWYyQqP5tGwbCfYwwiw21taVUOSsJzao5xokTq/b/2K8R5jFhtvnxeNTaVc9aOiE9nBMdYeTUeZ3qVYfpkL7HdvVLNJNrxFp+lG/naMgHI1tjZVoXR3lT4gf6f/bX7KknhEjghgzJphp0al8YNtCrdtFQUstHaqXING5elAQycgA6qmLJIhOkkficDpytmtbKVBPxkcjXiro1IuxSundjtE0DScfU+d7Gpf+HRpOAGTshEgnEi3/lAjpUmQ5cP9lfpI5m/8WrOH3a99HRiI1JIIZMSModTX223PGK78hWJvJTvVUin0X4tJ+Tar5H/32fIJwpNpUj//rlJAIALxejTPO2MTIkUHk5s5FkiRSQiKpdbsAaFc9IhkZJEQyIgw51e0tfLh7a4+3FbbUkRoS6f/epa1mp3oqGu3sGd1o0T4m1nTjAZ1vQQVAIZ5w6RxiTb8mWJ7a/yd0iGKCQvlt9kI6fSpunxeHJYhnclcSbet5ZCTMbMPpcXe7zulxYzOZsZgUZElCRqK1h2Mc5r2jJaHy8UxSStmhTqdOf5R2z2rGKCv6fF2MIBwN+z5JRWVbC8SA2SwTFCSTn9/Oyy9XccUVCVS0NfuPE4nI4CGSEWFIyW2q5qkd39CpqT3e/kbRBjp8Xs5MnYBTW0qhurhrjceeURSdKt9fqPb95YDOtxHyRcTKv0SRI3t87MHCalKwmhTavB52NFVxfvqUHo/LCItmW2Nlt+tym6vJCIsGQJFNpIZGkttcw+RoY8ePpuvkNVczP3FMt/spcjQTlCJ2+c7BqX/ctY5kLTa5+wiTIARKVngCEhI6Ot9WF7IgaSzBZgudnRqTJ4dwzTXb8Ea0Uu0wRj0zQqOxKyKhHizERmthyKjrcPFU7t5ExGYykx2ZzIzoEd22tn5YspW1Tc+wU13UVetj3+kcHZVKVFoIlU4h3fQWUxQP4y3bSFTuGdSJyPamSrY1VlLvdrGjqYpHcpYSbw9jblwGAO8Vb+aF/O/9x5+UMJp6t4t3ijdR3d7C8soCNtSVsjAp03/MwqSxrKwuZFVNEVXtLbxauA6PpjKn6zH3Jcsyo80fkSg/iI8GtqtjaPJ90P8nLgiHINIWTHZUEmCsl3p461LWV5bh8ehccZWxvusXF+9mz2zO/gm3EFhiZEQYMr6qzKPTZyQiEyMT+VnmXGxdw6yarvNl+Q7e272FcTFLkO0vHvSx0pWXiJDP7++Q+1SH6uW93Vto7mzHrliYGp3CuWnZ/uJNLZ4OGjvb/cdH20L45fh5vFW0kWUV+YRb7Vw5ZibjIxL9x8yIGYHL6+bDkq04PW6SQyK4afx8wixBvcaRoNxOiDaLneoZFPnOJU6/lWTlr/134oJwiC7MmMouZz2tXjcV7c38+bPvgEhe37aVmTdqfP9oCF/cHsZtL4QwPUbspBlMRDIiDAmq5mNVTTEAZtnENWNm+xMRAJVKpiV+hzXsr4QFFf3Aoym0+D4acsnI9JgRTI8Z0evtV2fOPuC6zPA47pq66KCPOz8xk/mJmQc9Zn+h8nwmKMXkqdOp0R6izbOK0cqygC7wFYRoWwi/mbSAp3Z8Q01HK+ueMxaz7/7OwvnPtLBrqY2KdRaC149EHi8mBgYT8cohDHqa1k515yYSHN8SZq1lRJibOmkJzWoMLv073Ho+KrWAjF3JorkjHq/PSrTdhSTv6U8hASaMRaoqzfqH6LqGJIkXpCNlkeOZoJRS6DuDVv0LctQkxinrsMjiE6cQOAl2B/dOO5N3VxbxzCrjg0lDgcIUy0huWTqSqRmb+fm1eZx1RhwxMWLNyGAhkhFhwGmaiodi3OTTqe/Co5fg0ctR9VpU6vHRjI9WdNzoeAEdTHDKPjW3GjQJC8YogUwI6aZ/ECafzncNDbxZuA6Ay0bNYG58FB36Njr0HDr0HNr1Tbj1bWi0otGKCUcAfgLDhyzLjJE/p1K9nyrtXrapoxmpvIdDPiPQoQnHMBmJJ+9pQpZB0wBdon5JDJl3RfPWW9mceeYm5s9fx7ZtcwMdqtBFJCMDxKdpbKgr7fV2VfP1elu7tolK373EmW4mVJ7fH+EdFU3TUKnBTR6deiEefTcevRwvVah6HSpNXW/+7fvtbNmfjIQVGTsKkZiIxCzFYiYBE4m8u6uBho4YOrwp3D/16h635W2s3+T/Oj4oDEWKJFQ6kVBO9F+v6zo6bmSp93URwuFJVO4hWJvNLvUsCtUziZfvIkl5INBhCceoDz+sY/nyvY3ydB0ee6yE3/8+jTPOiOHii+N4440a7ruvkPvuGxXASIU9JF3vKlk3iDmdThwOBy0tLYSFhQU6nMPm8ak8ueMbcpurez0mLSSKmyee3G0dhE93UuG7mzrtX4BOvHwbScqfByBiUDUnneTj1gvo1Ivx6mV4qcSr1+KjER8taLSh0Qn0lkhJSJiRCUImFBMRKFI0ZuKxSElYpDSs0khsjMVMKvIPdNF8eedavq0uBIyFl1eNmYVZ3lse/ZuqnbzSNSoSYwvh/umLRSOsAebRKslTp+OlilDpZEaZvhDrSIQB1dmpkZm5krIytzEqso/XXpvIJZckoGka8fEraGjwkpMzh6ysnmv1CEfvUN+/xavEAHhp55puiUii3UFcUCh1bhflXQV4drsaeL5gFf+XdSK6rtOkvUmZ70ZUGjCKdSl4qT3iGDTNQyeFuPUCPPouOvVSvFTg1Wvw0dA1NeLaZ2qkNwoyNmRCMJOCQhSKFIeFJCxSKlYpA6uUiY1Rfd5cbWFSJqtri/FqPtbVlbCzpZYZMWnYTApbGyso2acS6ekpWSIRCQCLnMgEpZSdvlNp1ZexTU1lrLIei5z4w3cWhB/gVr18ULKVzQ1ltHo7SQmO4OKR00gLjfIf89hjJZSWutn/Y7Yk69xy/xZS53cwJy6Dr76aTnb2KhYsWM8r6+JZWplPi6eD5JAILhk5jfTQ6AE+u2ObGBnpZ5VtLfxh4ycA2EwK12ed2K15WWFLLU/sWEG7aiQAv58yGtV6G636MoxFl3t/PWHSmYw2fwzsmRopp8O/7sKYGlGpQtXr95ka6eiaGunt12xCxoqEHRNhKESiSLFYSMQspWCR0rBJo7GROShqcGxuKOc/uSt7LKu/x8KksfwofQqSSEYCqkK9k2rtQSSsjFQ+wiGfEuiQhCHumdyVVLa3cNmoGYRbglhTW8zSinzum3YmEVY7NTWdZGR8S3t7768P5z3dwgMXzWV8RCJ33rmTBx8s5sTfunjwN9mkh0bzVWUeG+tL+cO0xQf0dhIOnxgZGST2TCuA0fJ9/y6qoxyxnDtiMm8Ufce0pLdpNH+G5M8buicQTv1zNnrsXcnFwaZGLMjYkQnDwoiuqZEELFIyFikNizSKIDJRSPzBqZHBZnJUMr/LPoVPSreR01jR7SeUEhzBqcnjmBEzQiQig0CS8idCtLnsUs+lUD2VBPkPJCr3BDosYYjy+FQ21Zfxf+NPZIwjFjBeU7c2VrCiaifnpmXzl78UHzQRkSSo/DiSpXPzGR+RyJ/+NJp31xWw8tFg2k91kHiKg8tHHce2xkq+r9nF6SnjB+r0jnkiGeln5W17F1HNik0DoEPLYZd6ATLBgERktJOfRO3ih98/dayk+6dGzCRjlUZ0TY2MwUrGMdEvJC00ihvGn0RTZzvlbU34dJ0oazDJweEiCRlkHPIZTFAKyVVnUKXdS5v3e0aaPh1ySbAQeJquo6GjSKZu15tlhV3OOgDmzYukqspDc7OXxkYvm7e1oHZCkM1Ee7uGrkNVrkyRsx4wNg7M/Y2T3auiOO+8zdTWzsNuVxgbHu8/RhgYIhnpZ9o+s2BK12JLD1V4qEBnT7VMGa/PiiTpmE0ejCr9B2b3EhbGW7b3f9BDRITV3q0MvDA4WeRUJioVFKjzcepfsE0d0bWOJC7QoQlDiE0xkxEazadl20iwhxFmsbG2roQiZz2xQcYC1HPOieWcc2L998k4/hPaqszU7FqIpum0tqoUuKp5tqgKj0+lXfVgsus88I8UfndtGYsWbWTFiuMIs9io7nAG6lSPSeLjST+LDQr1f725oRwAh3wqUy1tZJsbGWF6EdSxyJLWlYjssedXs/eTvo4bn97W/0ELQh+TZYWxlm+Jk3+Hl3K2qWm0assDHZYwxPwkcza6Dr9f+z43rHyDryvyjWlZeh4R7WyDPZ9XZFnC4TBjCzrwbe+8i6KZPz+Cb75p5plnyvrzFIReiJGRfjYnLoPva4wqgO/v3sKYsFgibUaJYkWKwKReyHvbI6hzuwizVnFF1i4Uy0o6Kehq8tZ93YhL+xaH6fSBPg1B6BPJykME+2ZT5LuIAvVkEuUHSVBuC3RYwhARExTKb7MX0ulTcfu8OCxBPJO7kmhbz1tzO1tlImO7X+f0uLGZzFhMCrIkISPR6nHz6adTiIlZwQ035PHwyiAcIWLx6kASyUg/GxUWQ0ZoNEWt9TR1tnPvho+ZGZtOSnAE5W1NrKnb7W/+5lCymBh8i39Laoe2nXrtOVq0j+mkCPBR6FuE5LNgZQxh8qlEyz8jSB4XwDPsOysqd7KiaicNnS7AKOt8VupEJkT2vi10Q10pH5RspcHtIjYolPPTJzMxMsl/u67rfFSSw7fVhXT4vIwMi+ayUTOICxpau7KGkwjTeYyXCshTj6NSux2XdyUjTR+KdSTCIbOaFKwmhTavhx1NVZyfPqXH49wtMrbxnm7X5TZXkxFmbNtVZBOpoZHkNtcwOTqFDz6YzIIFG3jinmb++Wx6v5+HsJf439/PJEni5+OOJ7Yrc/doPr6tLuTVXev4prrQn4hEWYO5PuvEbrUxguTxpCiPMMFSwDSLyjhlCzHSjVjJoJN8arVH2KFmsdFjY4cnm3L197i1XQE5z74Qbg3ivPRs7phyOndMPp2x4fE8ueMbKrtqsexvl7OOZ/O+Y258BndNXcTkqGSe2vEtFfsc/0V5Lssq87l89HHcNvlUrLLCY9u+xnuQirdC/7PJ6UxSKghmFk79E7arGaiaWDAoHNz2pkq2NVZS73axo6mKR3KWEm8PY25cBgDvFW/mhfzv/ce7WyQsET7eKd5EdXsLyysL2FBXysKkvY0hFyaNZWV1Iatqihg3S+HMG2UKvrTw5eMDfnrHNDEyMgDCrXZ+P/lUPti9lTW1u+nUVP9tZtnEzNg0zhkx6aBt2wHs8iRS5cf837dp66n3PU+r/hUd7KBD20qN9hASNmyMwyEvIlq+Dqvce6fXwSQ7Krnb9+emZbOiaidFrQ0kBocfcPxXFfmMj0zgtOQsAM5Jyya3uZrllQVcPvo4dF3nq4o8zkidwOSux74mcza/Xf0um+vLmNG1u0kIDFm2MNayilLvzdTpj7JVTWW0soRQWfQLEXrWoXp5b/cWmjvbsSsWpkancG5aNqauUbUWTweNne3+431eiGmPIbepmmUV+YRb7Vw5ZibjI/aOts6IGYHL6+bDkq04PW7mXB3Bpo8VHv1bBT++NIXJk8Uo6kAQycgACTHbuHz0cZyfPpn85hrafV6CTGbGOOIINh/ZdtxgeTrB8nT/9y5tFQ2+F2jVv6aDrXRom7qKTgURRBYO+Syi5Z9hkZMP8qiDg6YbvXw8PpWMXiohFrXWszBpbLfrsiIS2NK1ULje3YbT62bcPrVdghQL6V3TZiIZGRxSzf8gxDebYt/lFKgnkCz/nTjllkCHJQxC02NGMD2m9w9XV2fO9n/t8Rg7EuPsodw1dc5BH3d+YibzE/eOllzwmYusrO9ZuHADtbUniSnEASCSkQEWpFiYHJ3SL48dIs8mRN77n7FV+6YrOfmGdjbTrm2gSvsDMsHYGI9DXtyVnMQf5FEHVkVbM3/d/CVezYfVpPCLrBNIDO65s67T4ybM3H2RWZjZRovHbdzu7TCu26+KYphl7zHC4BBpugi7NIU8dSbl2m9o9a4kw/S2eBMQjlhlpfF/PCrqwIaaPyQzM4T77x/FXXcVcvHFObz1VnZfhyfsR/xPH8ZC5RNJM7/ARMsupigeRilLiZSuRCGadtZTpd1NjprAJk8oeZ45VKl/Cfi8fVxQKHdNXcRtk0/jpITRvJi/msq2loDGJAwMmzyaSUoldqbRor/HdnU0qtb4w3cUhB5UVHQCEB19ZCPPd96ZwcSJIbz9dg0ffXTkfcGEQyOSkWOELMs45AWkm19iomU3UxQvo5RPiZAuxUQEbaymUrudLWoMmzwO8jwnUK0+POBvBopsIjYolBGhkZyXPpnkkHCWVeb3eGyYxYbT232Ew+l14+gaCQkzG2twnPuNgjg9e48RBhdZtjHOsp5o6Xo8FJGjpuDS1gQ6LGEIqqoykpHY2COvSr1s2XQsFomLL96Ky6X+8B2EIyamafrAoXSS3F9+cw1vFW2kqr2FCKudM1InMKdrRfgeX1cWsKQ8t186ScqyjINFOORFgNF4z8nHNPhepk3/nja+o01bSYX2W2Qc2KXJhMvnESVdgyIP3IIuXTdKNvckIzSavObqbutGcpuq/WtMom3BhJlt5DVXkxISARgL4Ipb6zkpYVT/By8csRHmJwnxzWW37yry1dkkmx4jzvTLQIclDCE1NcaW3vj4I09GoqMtPP/8BK64IodTTtnAqlUz+yo8YT9iZKQPvLRzDbnN1VyTOYd7pp5BVkQ8/8hZRtM+q7r3Ve928fj25WSGx3HX1EUsSMrkfwVr2N5U6T9mXV0Jbxdt5MzUCdw5ZRHJweE8tu3rAz7l9xVZlgmXz2ak+U0mWcqZonjIML1NuHQ+Juy49G8o9/2aLaqDzZ5ICrwLqfU9iaq5+iyG94o3U9BSS73bRUVbc9f3NRzXtdD0hfzvea94s//4BUmZbG+qYkl5LtXtLXxUspUSVyPzEscAxrbqBUlj+bRsG1sayqloa+aFglWEW4P6bd2O0HeiTJeTpeRgwkG570Z2eS9B03pvgiYI+6qrM5KRhATrUT3O5ZcncPrpUaxe3cJjj5X0RWhCD8TIyFE6lE6S+1tRtZNoWwgXZkwFjOJehS11LK3I9285W1qRx/HxI5kbPxJgwDtJyrJCBBcQYboAAE1TadbfoVF7jTZ9Na36V7T6vqKMGzARiV2aToR8AVHSFcjykfWLafW6eTF/FS2eDoIUM0nB4dw0YT5ZEQkANHa2dyv7PDIshp9lzuWDki28v3sLsUGhXJ91Akn7bAM+LXkcHp/KyzvX0q56GOWI4abx8zHLpv2fXhiEguRxTFIqyFPn0Ky/wQ51E2OVdQM6OicMTXV1XgCSk49+SvaDD6YQG7ucW27J55xzYhgxQvTE6msiGTlKh9JJcn9FznrGhnffwZIVkcCbRRsBY1qitLWRRV31MwBkSQpoJ0lZVojkYiJNFwOgaR6a9Ddp1F6nXV9Lq/4lrb4vKeXnmIgmWJpBhHwxkdLFyPKhvRj8eMysg97+m0kLD7huWkwq02JSe72PJEmcnTaJs9MmHVIMwuAjy3ayLJvZ7f0ZDfpz5KhJjFFWECxPDXRowiDW2GgkI9HRh7+bZn8Wi8wnn0zh+OPXMW/eeoqLTzzqxxS6E9M0R2nfTpLNne1ousbq2mKKnPW0eDp6vI/T6+5xu6nb58XjU3F5O9HQCe1pS6p3cGxJlWULUaYrGG3+mGxLLVOUDkaYnidMOh3QceqfUeK7mk1qEFs8cRR6F9PgewVN8/zgYwtCT9LMzzLC9AIa7eSpM6jzPRPokIRBrLnZiyTRZ9vD586N4Prrk9m9282NN+b2yWMKe4lkpA8cbifJ4UiWbUSbrmG0+TMmW+qZorSRavo3odIp6Ki06B+z23cFm1QbWzwJFHrPo9H3JpomVqgLhy7adDXjlM3IhFDq+znF3h8HOiRhkGppUTGZ+vY1+PHHx5KaauPxx8tYvbq5Tx/7WCemafrA4XaSDDPbetxu2lMnyf2PcZiHxpZUWbYTw3XEmK4DQNWcNOov06y9Q7u+kRb9fVp87wMSZuIJluYQKV+OQzobWaznEA7CLk9kolJBvjqLRv1/tHs2kKmsQZF7/v8mHJtaW30oSt8mI7Iss3z5dEaPXsmiRRupq5uHoojP9H1B/BT7kNWk4LAE+TtJ7t9rZY+MMGNL6r566yS5h6br5O1zzFCjyGHEmv6PMeavmGxpIltpItn0KCGciI92mvV3KPKdzybVzFZPMru8l9CsfSx2Twg9UuQQxlu2ESldiZsd5KiJtGtbAx2WMIi0tfmwWPp+dDo93c5f/zqG5maV887b3OePf6wSyUgfONxOkicljKbe7TrkTpJV7S28WrgOj6YeUItkqFLkcOJMvyLTspwplmaylQaS5L8RzFx8OGnW32CXurgrOUmlyHs5LdoXIjkRukk3v0Sq6d9otJGrTqHe90KgQxIGifZ2HzZb/7zF/eY3aUybFsbHH9fz5pvVP3wH4QdJuq7rgQ7ihzidThwOBy0tLYSFDb4tfevrSnrsJBmkGMV2XsxfRUNnW7fdIPsWPQu32jmzx6Jn+XxZnovT4zaKnmVMI32IjowcLo9WS4P2HC3aR3SQg8aeeiYyFlIIkU4iynQVIcwT/UsE2rSNFKgnoeEiSvoJaebnAh2SEGDh4cuIiFD6beeL06kSF7ccXdeprj6J8PAjL642nB3q+7dIRoQhwaNVUq89S4v2CW62o9HWdYsJCyMIlU4iyvQTQuXjAxqnEDiq5iRPnUEnBQQxibHKqiOueSMMfXb7UjIygti2bW6/Pcc771Tzox9tZcqUUDZunP3DdzgGHer7t/hIKQwJFjmRROUexlnWMMXiYqJSQrx8N0FMxksVDfoLFKgnsMFjZptnDCXe60RPk2OMIoeRpeQSIV1CB1vZoibSoe0IdFhCgHi9OqGh/btH44IL4jn33Bg2bWrlr38t7tfnGu7EyIgwLLi1Yhq0/9CifYabPHT27ERSsDKSMGkBUaafikJZx4ga3+OU+24CZNJM/yXKdHmgQxIGmCx/yamnRvH559P69XlUVSMubjnNzSr5+cczapQYjduXGBkRjik2OZ0k5UGyLJuYaulgvFJAnPw7bIzDw27q9CfJU6ex0WNhuyeLUu+vaNdyAh220E/iTL9krLIaGSu7fVdQ4r0+0CEJA0jTNHQdwsP7v3qFosh88cU0dB3mzVsnFtkfIZGMCMOSTR5NsvIQ4y1bmWpxk6VsI1a+GStj6GQXdfpj5KqT2Oixst0zkTL1N3RooqricBIsH8dEpQIrI6nXn2aHZzqaNjgqGAv9q7HRKKYYGXn0peAPxfTpDm6+OZWKik5+8QvxOnIkRDIiHBOC5PGkKI8w3rKNqZZOxilbiJFuxEoGneRTqz3CDjWLjR4bOzzZlKu/x63tDHTYfa7R3Uapq9F/aXS3/fCdhjBFDidLKSBcuoAONrBVTcStFQQ6LKGfVVZ2AhAdPXA7XB5+eCwjRwbxn/9UsGJF44A973AhKrAKxyS7PIlU+TH/923aeup9z9Oqf0UHO+jQtlKjPYSEDRvjcMiLiJKvxSanBS7oo9TobuPu9R+h6nuHkRVJ5oHpi4m0BQcwsv4lyzIj5bepUR+lXLuF7ep40k2vEGm6KNChCf2kosIYAYuJGZiRkT2WL59Bevq3LF68ibq6eVitopr0oRIjI4IABMvTGWF+kgmWfKZZvGQq3xMtXYuFZDrYSrX2INvVdDZ67OR6plOp3otHKwt02IfFpXZ2S0QAVF3DpXYGKKKBFaf8mjHKt0iYKfZdTKn3V4EOSegn1dVGQ864OOuAPm9yso1//jOT1lYfZ521aUCfe6gTyYgg9CBEns0I8zNMsOxkmkVljLKCKOkazCTQzmaqtPvJUVPZ5Akh1zOTSvWPeLSqQIct/IBQeS6TlFIspBnrhjyzRCfpYaiuzvidJiYObDIC8H//l8qcOQ6WLm3kpZcqBvz5h6ojSkaeeOIJ0tLSsNlszJw5k7Vr1x70+EcffZTMzEyCgoJISUnh5ptvxu0WC8mEoSNUPpE08/NMtOxiiuJhlLKUSOlKFKJpZz1V2t3kqIls8oSS55lDlfoXvFpdoMMWeqDI0YxXduGQFtPOmq51JEWBDkvoQ3uSkYSEgU9GAL74Yhp2u8zPfraD2tpjY+TxaB12MvLGG29wyy23cO+997Jx40ays7M57bTTqK2t7fH4V199ldtuu417772X3NxcnnvuOd544w3uuOOOow5eEAJBlmUc8gLSzS8x0bKbKYqXUcqnREiXYiKCNlZTqd3OVjWWTR4HeZ4TqFYfRtXEorbBQpZlRpk/JEn+Kz4a2a5m0uR7L9BhCX2kvt4LQFJSYEq0h4QovPVWNl6vzsknrw9IDEPNYScjjzzyCNdeey3XXHMNWVlZPP3009jtdp5//vkej//++++ZO3cul112GWlpaZx66qlceumlPziaIghDhZGcLCLD/CqTLKVMUVRGKh8QLl2IiVDa+I4K7bdsUaPY5Akn3zOPGt8/UbWWQId+zItXbmWMsgwJhSLf+ZSpvwt0SEIfaG42khGbLXB7NM44I4ZLLoln+/Y27ruvMGBxDBWHlYx4PB42bNjAwoV7G77JsszChQtZtWpVj/eZM2cOGzZs8CcfRUVFfPrpp5xxxhm9Pk9nZydOp7PbRRCGClmWCZfPZqT5TSZZypmieMgwvU24dD4m7Lj4hnLfr9mihrPZE0GBdwG1vidRNdcPP3gvWrRP8eni/8mRCJXnMUEpwUwKtdrfyfMcj6apgQ5LOArNzSqDoX/mK69MICbGzP33F7F9e2ugwxnUDuvXVV9fj8/nIy4urtv1cXFxVFf33Eb5sssu4/777+f444/HbDYzcuRI5s2bd9Bpmj//+c84HA7/JSUl5XDCFIRBRZYVIkwXMNL8DpMslUxRPKSbXschnYOElVZ9GWW+G9iihrLZE0WB9zTqfM+gae2H9Pjt2lYK1TPJ887Eo5f289kMTxY5lgnKbsKk02njO3LUJDq1kkCHJRwhp1NFUaRAh4EsyyxbNh2ABQs2iOqsB9HvuePy5ct58MEHefLJJ9m4cSPvvvsun3zyCQ888ECv97n99ttpaWnxX8rKhtYWSkE4GFlWiDRdzCjz+2RbqpmidJJm+h9h0plImGjVv6TU93M2qcFs9sSw03sG9b4Xe60e2qovA2Tc7CTXO402bcMBx3h8Kpvry3u8/xBoTzUgZFlmtPkzEuQHUKljuzqaZu3jQIclHAGXy4fZPAiGRoAJE0K5/fZ0amo8XHXV9kCHM2gdVqM8j8eD3W7n7bff5txzz/Vff9VVV9Hc3MwHH3xwwH1OOOEEZs2axd/+9jf/dS+//DLXXXcdLpcL+RDG0kSjPOFYomluGvVXadLeok1fh48G/20KMQRLM4mQLyFCuhBZtlDoXUyL/imgASYkzGQobxAunw1AqauRJ7avoNnT0ePzjQ6L4YbxJxGkBGax32DUon3FLvVMdDqJl+8gSflToEMSDkNy8go6OjQaGuYHOhS/ceO+Iy+vjS++mMqpp0YHOpwB0y+N8iwWC9OmTeOrr77yX6dpGl999RWzZ8/u8T7t7e0HJBwmk1GVTnwiE4QDybKNaNNPGG3+jMmWeqYobaSa/k2odAo6Plr0j9ntu4JNqpXNnjha9M8wEhEAHzqd7FLPpdb3GNXtTv6R81W3RMRmUlCkvf8ndzrreHz7ClTNN7AnOog55AVMUIowk0C19iD53vliHckQ0tGhERQ0OEZG9lixYjpms8T552+mvV38Le3vsH9bt9xyC//5z3/473//S25uLtdffz1tbW1cc801APz4xz/m9ttv9x+/ePFinnrqKV5//XWKi4tZsmQJd999N4sXL/YnJYIg9E6W7cSYrmOM+UsmWxrIVlpIMT1OqDQfnXZg/yRCB3TKfL9ivetqOroqrKaHRvH77FN5dPaF/HPOhfwkczbBilGHodBZx6qa4gE9r8HOIicyQSklVFqAS19OjpqCR+t5qksYXDo7NYKDB9f7S2yslX//O4u2No3TT98Y6HAGncPe93TxxRdTV1fHPffcQ3V1NZMnT+bzzz/3L2otLS3tNhJy1113IUkSd911FxUVFcTExLB48WL+9Ccx7CkIR0KRw4jlBmJNN1Dje5hy363sHRnpLt7xHpdN/prviu7gV+N/5J+KUSQTM2PTibDYeTjHGOlcUbWTExJGDdRpDAmyrDBGXkqFejfV2h/Zpo5kpPIhDvm0QIcmHITXqxESMriSEYBrrkni5ZcrWbasiWeeKeO668TmjD0Oa81IoIg1I4LQs53eM3DqX9BTMqLrIEl7/1WII0Q6CauURqi8AId8KgB/2vQZpa4mAP4+83xCLbaBPIUho0X7jF3queh4SJDvI1G5N9AhCb0wmb7kxBMj+PrrGYEO5QBut0pMzArcbo2SkhNITBze/9/6Zc2IIAiDh66ruPQVGImIAhhbGSVshEgn4u64ji/yb+G1zY/gc/2XaPknePQSarSHKFd/63+cWFuo/2u3T8xl98YhL2KCshOFOKq0+yjwniq2ag5Smgbh4YOzKb3NpvDBB5NRVZ1580R11j1EMiIIQ5SGGwkLVkYSJV1BqulpxilbmGJ2kWlegeK5jZLmabg8cRQ3jSdJeZBxltXEyjfjpQJdV9F0nd2uvbt1QsxiR83BWORUJirlhHAirfoStqmpeLSeaywJgeF2Gwl1eLg5wJH07uSTo7j66kR27mzn1lvzAx3OoCCSEUEYokxSCNnmRiZYCkkzv0CM6Trs8iQkyZgrnxCRiFk2vv6+ZhcN7jYAIuVL8dFIo/Y6a2qLqe+6flx4vNjeewhkWSHTsoI4+fd4qWCbmoZTWxbosIQuFRVGk7zo6MGbjAA891wWCQlW/v73EjZuFK0hRDIiCEOYJPVeZTLEbOW4mBGAMf3y1y1f8nVlAR2ecaCbyO+4j5cK1viPn5c4pt/jHU6Slb8w0vQBoLFTXUiV+udAhyQAVVXG7rGYmMGdWMuyzNdfT0OS4NRTN6Kqx/aUn0hGBGEYOz99CnFBxpqQFk8Hr+9az53rPqSuLQWLuQgNo6HYnLgMsiOTAhnqkBRuOpvxSgEK0VRqd7DTe6ZYRxJglZVDIxkByMwM4f77R9HQ4OWSS7YGOpyAEsmIIAxjIWYrv520kHHh8d2uz6udhyTpTIhdzqnJ47hy9HEHHWURemeV05iolBPMbJz6p2xT0/FqdYEO65hVU2MkI/Hxgz8ZAbjzzgwmTQrhnXdq+fDD2kCHEzAiGRGEYS7MEsSvJ57MXVMWsSApk8lRydj1q9B1mfnpG7kgfQqyJF4KjoYsWxhr+b5rcXApOeoIWrWVgQ7rmFRXZ4z2JSUNnS2zX389HYtF4pJLttLaemzuaBOvQIJwjEgJieCijGlcn3Ui142bR5CURSfbxLRCH0pRHiHd9BY6XgrUE6lWHw50SMec+npjAWtiojXAkRy6yEgLL744gY4OjVNOOTa3+4pkRBCOUVHy1YCPRv2lQIcyrESafsR4JRcTEVRov6XQe55I+AZQY6MxMhIZOTjrjPTm0ksTWLQoijVrnDz66O5AhzPgRDIiCMeoWPkGQKLO93SgQxl2bPIoJikV2JlOi/4+29XRqFpjoMM6JjQ3q0gSh9QRfrB5//0pOBwKv/1tASUl7YEOZ0ANrdRREAQ/Tdf4qCSHNbW7cXrdOCxBzIlL54yUCQddjJrfXMNbRRupam9h3sjjSXFsRFO0bi/eX1cWsKQ8lxZPB8khEVwychrpocdO2/O+IMs2xlnWUer9JXX6E+SoKYxWviJEnhXo0Ia1lhYVk2loLsa2WGQ++2wKc+asY9689RQXnxjokAbM0EsdBUEA4POyXFZUFXLpqOncN+1Mzk+bzBfluXxdWdDrferdLh7fvpzM8DjumrqICNM8zEobm1r2TtWsqyvh7aKNnJk6gTunLCI5OJzHtn2N0+MeiNMadlLNj5NuehWNTvLVOdT4/hXokIa11lYVs3loJiMAs2dH8H//l8Lu3W5uvDH3oMc2utsodTX6L41dBQyHIpGMCMIQVdRax+SoJCZGJhFtC2FaTCpZ4QkUtzb0ep8VVTuJtoVwYcZUEuwO5kXfitdnpbjjbf8xSyvyOD5+JHPjR5IY7ODyUcdhkRW+r9k1EKc1LEWaLiVL2YYJB+W+m9jlvUisI+knbW0+LJah/db2xBPjGDHCxuOPl7FqVdMBt2uaTqO7jbvXf8SfNn3uv9y9/qMhm5AM7d+YIBzDMkJjyGuuoabdCUCZq4lCZx0TIhN6vU+Rs56x+9QcUeQQPN5RhAdvAkDVfJS2NnarSyJLEmPD4yly1vfTmRwbguSxTFIqCWIyzfpb7FDHomrNgQ5r2Glv92GzDf23tq+/no7JBGecsclfnXXr1lbGj/+O88/fjEvtRNW7J7SqruFSOwMR7lETa0YEYYg6PSULt8/LvRs+RpIkdF3nnLRsZsam93ofp9dNmKV7/QWrdibB9oeo836EWVuAhk7ofseEWWxUdzj75TyOJbIcRJZlEyXe66jX/0OOmswYZTnB8vRAhzZsuN0akZGDuy/NoUhPt/PQQ2P4zW8KOOecTSxYEMXvf78TVdWpqfEAIwIdYp8a+umjIByjNtSVsLZ2Nz/NnMNdUxZx9ZjZLCnPZVVN0WE9js13NV6flXr9sX6KVNjfCPMzjDD9Fw03eepMan1PBTqkYcPj0QkJGR6fs2+5JY1Jk0L49NMGfvObAlRVB6ChwUur0xfg6PqWSEYEYYh6p3gzp6VkMSM2jaTgcGbFpbMgaSyfle3o9T5hZtsBC1FdXgvlLdl08B0hZisyEq37HeP0uHGYh05Fy6Eg2vRjximbkQmhzPd/FHmvCHRIw4Kq6oSGmgIdRp94881qioo6erytuHB4LSgXyYggDFEeTUWm+64BWZLQ0Xu9T0ZYNHnN1d2uy22upr1jFjoddPAtqaGR5DbX+G/XdJ285moywsTW3r5mlycwUanAxkSa9FfY7slC1VyBDmtI8/l0HI6hPTLS1qZyxRVbufjirbS19TwCUiSSEUEQBoNJkUl8WraNnMYK6t0uNtWXsbQ8j8lRyf5j3ivezAv53/u/PylhNPVuF+8Ub6K6vYXllQVsqCtlsuNnAFT7/s7CpLGsrC5kVU0RVe0tvFq4Do+mMicuY8DP8VigyCGMt2wlUroKN7nkqIm0a5sDHdaQpGkaug4REUN7zcjXXzfxyivGhwa9h88WiiJRtHN4JSNDO30UhGPYJSOn80HJVl4tXEertxOHJYgTEkZxVuoE/zEtng4aO/dWcoy2hfDL8fN4q2gjyyryCbfauXLMTCZFZrDVk4BLX86MmBG4vG4+LNmK0+MmOSSCm8bPJ8wSFIjTPGakm18kxHc8pb6fk6tOY4TpGaJNPw10WENKfb1RCn6oJyNnnhnNu+9m87vfFbBr14HTNJqmU7TTTe/75oYeSdd7yrsGF6fTicPhoKWlhbCwsECHIwjDUon3eur1pxmrrCVYnhHocI5Z7dpm8tUT0HARJV1Dmvn5QIc0ZGzc2MK0aWu4994M7rtvVKDDOWqqqvHCC5XceedO6uu93UZJUseYOP3ZmgPuc1v2qaQPoinVQ33/FtM0giAAEG+6DYBq318CHMmxzS5P7lpHMpYG/QW2eyahacdWn5IjVVVl1NiIjbUEOJK+oSgy116bzO7dJ/LHP44iONjEnk4PZYVqj1M4LxasprFz6BU+E8mIIAgAWOURKMTg1JcGOpRjniKHMd6SS4R0GW5y2KIm0qFtD3RYg151tQcYPsnIHna7iTvuyGBT3jSmXOQBdHRNomabiRDFSpBp77RUdYeTR3OW0a56AhfwERDJiCAIfg7pTDSctGs5gQ5FADLMr5BiegKNVnao2TT4Xg50SINaba3xBpyQYA1wJP3ju7Zcpt/g5Jynm7HYdcr+m8hfpp/LP2b/iF9NmE+0LQSAmo5WlpbnBTjawyOSEUEQ/OJNtwNiqmYwiTX9H2OV1cjY2O27khLvLwId0qBVX28kI8nJwy8ZcXk7WVdXAkDaRJmPP53ClvUdPPRQCZIkkRWRwE0T5vm3+39bXYhvCPU/EsmIIAh+NnkMJiJw6p8HOhRhH8HyDCYq5VgZRb3+b3Z4pqJpw2trZ19oaDB20yQkDL8CfUXOen8vmpmxaZxyUix33JHBvfcW8tprVQDEBYUxITIRMFo/VHW0BCzewyWSEUEQugmTTsNHI25tZ6BDEfahyOFkKfmESxfSwSa2qom4tfxAhzWoNDWpAEO+a29POn1e/9d7pmOysoLRNPj973cecJtxH3XgAjxKw+83JgjCUdk7VfPnAEci7E+WZUaa3yTZ9Cg+mtmujqfR90agwxo0mpu9yMP0XW3f5pU7m2u55JItXHZZDuecE8u2bbP9txU66/beZwi1cBimvzZBEI6UXZ6ETBgt+ieBDkXoRZzpV2Qq3yFhodh3CaXemwId0qDQ2upDUaQfPnAIGhUWQ5jZhqcdbj+9jTfeqOGii+J4991swsKM3TSbG8opdTUCkBIcQcw+oySDnUhGBEE4QKh0Miq1eLSyQIci9CJEns0kpRwL6dTp/yLXcxyaNrS2c/Y1l0sdllM0AIpsYrQnnVcviMRZYWLCuW6ueEimsr2FUlcjbxdt5Jnclf7j5yeOQZKGTmImysELgnCAeNOttKjvU+X7CyPkJwIdjtALRY5kvFJIke98WvQP2KomMlZZg00eGejQAqKtTcNqHZ7JyJIl9fzyzHq8qsycX7Uy4YJOPi7N4ePSA7fhT41OYfYQ6yU1PH9rgiAclRB5NjLBtOjvBzoU4QfIsswo8/skyX/FRyPb1bE0+d4JdFgB4Xb7CAoafm9r//pXCaedthGATz+fzM+uT0DiwFEPRZJZkJTJz8bORR5CoyIgRkYEQehFiHQiTv0zPFotFjk20OEIPyBeuZVgbRY71dMo8v2IWP0WUpSHAx3WgOrs1IiJGV7VV6+7bjv/+U8F4eEKGzfOIj3dDsRyzohsVtUWUdvRCkgkBYczOza920LXoUQkI4Ig9CjO9Fuc6mfUaA+RIv890OEIhyBUPpEJSgl56nRqtUdo86xmjPI1sjy83qB74/HohIQMj7c1VdWYP389K1c2M3q0nY0bZ3U7t0hbMGemTgxghH1r+I1nCYLQJ8Lkk5Gw0aS9FehQhMNgkWOZoOwmTFpEG9+ToybTqZUEOqwB4fPphIWZAh3GUWtu9pCRsZKVK5s5/fQo8vLmDJskqzciGREEoVch0hy8lKJqzYEORTgMsiwz2vwpCfIfUalnuzqaZu2jQIfV7zQNwsPNP3zgILZ9eyspKd9SVubmlltS+eyzacjDtXjKPoZ3qiUIwlGJNf2KVnUZNdrDJMkPBDqcY0Kjuw2X2un/PkSxEmkLPqLHSlTuJFibxS71THapZxMv30aSMjyL2bW3G9VGIyOH7tvaBx/WcMmVm0HROf/pVmxTC/ik1MsZKRMOuk03v7mGt4o2UtXeQoTVzhmpE5iz326arysLWFKeS4ung+SQCC4ZOY300Oh+PqNDN3R/a4Ig9Ltw+WwkLDRqr5GESEb6W6O7jbvXf+TvQQLGDokHpi8+4oTEIS9gglJMnjqdau0vuDyrGK0sRZaH18t/RYWRwEVGDs2Rkb/8pZi77ikgLMnH48+O4tS5iZS0NvLfnasJMlk4OSmzx/vVu108vn05JyaM5qdj55DXXM3/CtbgsNgYH2H0qVlXV8LbRRu5bNQM0kOj+aoyj8e2fc0fpi0mbJAseB3+Yz+CIBwVO8fhoQif1hboUIY9l9rZLREBUHWt20jJkbDICUxQygiVFuJiBTlqCh6t/Kgec7DZk4wMxd00V1yRw+237yQuU+MPr4dz2YIxRNtCmBaTSlZ4AsWtDb3ed0XVTqJtIVyYMZUEu4P5iZlMjU5hacXevkVLK/I4Pn4kc+NHkhjs4PJRx2GRFb6v2TUQp3dIRDIiCMJBxZp+CejUav8MdCjCUZBlmTHmJSTI96JSzTZ1JC3a8OnOXF1tJCNxcUMnGfF4NKZPX80rr1QxcWIIT76XRJVUR027E4AyVxOFzjomRCb0+hhFznrGhsd3uy4rIoEiZz0AquajtLWRcfscI0sSY8Pj/ccMBsNrnE4QhD4XLl0IXEGj9j8SuCPQ4QhHKVG5j2BtJrvUcylUF5Eg30uicl+gwzpqNTVGKfy4OGuAIzk0tbWdZGevorrawwUXxPL225PRdB2fSePeDR8jSRK6rnNOWjYzY9N7fRyn133AVEuYxYbb58XjU2lXPWjoB9QfCbPYqO5w9su5HQkxMiIIwkHJsoydKbjJP+Z7nwwXDnkRE5RdKMRTpf2BAu9CNM0X6LCOSm2t8beZlDT4k5H161tIS/uW6moP99yTwdtvTwZgQ10Ja2t389PMOdw1ZRFXj5nNkvJcVtUUBTbgASCSEUEQflCM6eeATp32ZKBDEfqIRU5molJGiHQSrfpXbFNT8WhVgQ7riDU0eAFITh7cycgbb1Qxc+YaPB6NN96YxB/+MMp/2zvFmzktJYsZsWkkBYczKy6dBUlj+axsR6+PF2a24fS4u13n9LixmcxYTAohZisyEq09HOMwD47FqyCSEUEQDkGkdBVgol57PtChCH1IlhUyzcuJl2/DSyXb1HSc2rJAh3VEGhuNZCQsbPCuPrj77p1cckkONpvMunWzuOii7ms9PJqKvF/PGVmS0NF7fcyMsGjymqu7XZfbXE1GmLFtV5FNpIZGkttc479d03Xy9jlmMBDJiCAIP0iWFYKYgJvtaJoa6HCEPpak/JmRygeAxk51IZXqnwId0mFrbvYiSQzKAmGapnHeeZv44x+LSUiwUFx8AlOmhB1w3KTIJD4t20ZOYwX1bheb6stYWp7H5Khk/zHvFW/mhfzv/d+flDCaereLd4o3Ud3ewvLKAjbUlbJwn63AC5PGsrK6kFU1RVS1t/Bq4To8mnpALZJAGrwppCAIg0qU6WeU+26kQX+eGK4LdDjDzi5nHW/s2tDjbd9V7yJpZDgmqf/eaMPlsxmv7CRPnUGVdhdt3u8Yafp4UL6596SlRcVkGnydat1ulRkz1rJtm4sZM8L4/vvjUJSef6aXjJzOByVbebVwHa3eThyWIE5IGMVZqRP8x7R4OmjsbPd/H20L4Zfj5/FW0UaWVeQTbrVz5ZiZ/hojADNiRuDyuvmwZCtOj5vkkAhuGj+fMEtQ/534YZJ0Xe99/GeQcDqdOBwOWlpaCAs7MJsUBKH/aZqHTWoQQUwhy7I+0OEMK5sbynkmdyW+/WqM7Cs7MomfjzsBUz8nB5rmoUA9mTa+w0wKY5X1Q6Jr8/jx31Fc3EF7+8JAh+JXXu5m8uRVNDR4ufLKBF56afg0tjtUh/r+PTRSXkEQAk6WLdgYSweb0bTe3zSFw1PX4eLZvO/8iUiU1c5J8aNYlJzFGMfeJGBLYwUfleb0ezyybGGsZSWx8i14KWObOoJW7Zt+f96j1dbmw2odPG9p333XxKhRK2lo8PLXv44+JhORwzF4fnOCIAx6UfJVgI8m/dVAhzJsLK8qwNu1rXZ6dCoPzDiby0Yfx7npk/nNpIX8esLJ/kWNyysL6PQNzJqdFOVhMkzvoKNSoM6jWv3bgDzvkWpv92GzDY63tOeeK+eEE9bh8+l89NFkbr219zohgmFw/OYEQRgSYuVfAhJ1PrHFty9ous6qmmLA6EFz6agZmCS528jTuIh4ZsYZb2YdPi+bG8oGLL4I0/mMV/IwEUmFdiuF3nMH7ahYZ6eG3W4KdBjcckseP/vZDkJCTGzZMpuzzhr8U1yDgUhGBEE4ZLJsx8oo2lk/aN+UhhK3z0tbV9+ZkWExhJiNGhk/XZNL+Jtfc8PaPJo9HrIjk/z3qXe7BjRGmzySSUoldo6jRf+A7epIVK1xQGM4FB6PTnBw4JIRTdM47bT1/OMfpaSm2igtPYGsrJCAxTPUiN00giAclkj5Mqq0P9Cif0AE5wU6nCFt35oSnn22TGeG2ZGQeHJnOU/uLCdckUiwBJNs9/J5VQcbW4qodXuoc3uocnuo6uikvtOos7HjrNnEB/Vt4S9ZtjDOsoZS703U6f9iq5rMGOUrQuTZffo8R8Pr1QgLC0wy4nKpTJmyisLCDk48MZyvv54+ZHYhDRYiGREE4bDEyrdQpf2BWu0xIkwiGTkaVpNCrC2EWreL4tYGqttbiLc7uG18OreNT+eLynquW5NHabubZjWY3HZYUu/EhBNZkvDpOvuOTznMCuGW/ntZTzU/RohvLsW+y8lX55Js+gdxpl/12/MdDk0Dh2Pg39J27Wpn2rTVtLSo/OIXyTz1VNaAxzAciNRNEITDoshhWEijTV8V6FCGPEmSOD5hbznwZ/O+p8Hd5v9+YUIkT00L55KEWkxo0FWJ0wd490tETJLET0YmYjP17+hApOlixivbMRFOue/X7PJeGPApO03T0HUIDzcP6PMuXVrPuHHf4XSq/OtfY0UichTEyIggCIctQr6IGu0hWrQvccinBjqcIe2E+FF8XVlAU2c7ZW1N3LX+Q7LCEwgxW8lrrqbZ00GYGa5IbmBZYyLl7d4ei4P7dJ3rRiX1cEvfs8mZTFIqyVPn0qy/zQ41k7HKOhQ5fECef3/V1UaTvKiogUtGHn+8lJtuykNRJJYsmcaCBVED9tzDkRgZEQThsMXLvwOgxvdIgCMZ+uyKhV9NmE+ExQ4YO2y2NVWyuraYZk+H/7iL0ifx3akzibVZ6K3Q6JRPV/PbDQUDETaybCPLsoFo6ed0UkiOmkybtm5Annt/lZXGIuDo6IFJRn7xi+3ceGMeDodCXt5ckYj0gSNKRp544gnS0tKw2WzMnDmTtWvXHvT45uZmbrjhBhISErBarYwZM4ZPP/30iAIWBCHwFDkaM0m06d8GOpRhIcHu4M4pp3NGynjC9umkKiGRHZXMLRMXcEbqeFKCbSw5eSo2k+mAF2+bLOHWdB7OK0V6ZSmjP/iO7c39v/NmhPlp0kwvoeEmT51FbQC2fe9JRmJiLP36PJqmceKJa/n3vysYPdpOWdmJZGTY+/U5jxWHPU3zxhtvcMstt/D0008zc+ZMHn30UU477TTy8/OJjT1wP7XH4+GUU04hNjaWt99+m6SkJEpKSggPD++L+AVBCJBw6Xzq9H/Rqq0kVD4+0OEMeaEWG+ekZXPWiIk0uNtQNR8Oi51gc/c32IkRIXx0UjanLtuE1tXNI0wxUX3BibSpXs5cvpV1DU4KXR1M+GQ1Vlni56OS+OeMsf0We5TpSuzSVPLUuZT5bsClrSTDPHCF8aqrjWQkPr5vdxHtq7nZQ3b2akpL3Zx+ehSffDJF7JjpQ4f9k3zkkUe49tprueaaa8jKyuLpp5/Gbrfz/PM9txZ//vnnaWxs5P3332fu3LmkpaVx0kknkZ2dfdTBC4IQOPGm2wCo8Q3uypxDjUmSiQ0KJTE4/IBEZI/58ZG8PGe8//urRyYSpJiIttlYc/pxaJcv5PHpYwhTTHRqOo8VlCO9spSRH6xka6OzX+IOkseTrVRiYyJN+mts84xD1frnufZXV2dsa05I6J9kZPv2VlJSvqW01M0tt6Ty2WfTRCLSxw7rp+nxeNiwYQMLF+5tRCTLMgsXLmTVqp5X1n/44YfMnj2bG264gbi4OCZMmMCDDz6Iz+fr9Xk6OztxOp3dLoIgDC4WORGFeFr1rwMdyjHp4rR4/jFtDDaTzC9GJx9w+w2ZqbRcPJ+mC05gdnQYElDkcpP92Vqsr33F9Wty+zwmWbYz3rKVKOkaOskjR02iXdvc58+zv/p6YwFrYmLfJyOvvFNK9uRVtLX7+NuTI7jzTyl9/hzCYSYj9fX1+Hw+4uLiul0fFxdHdXV1j/cpKiri7bffxufz8emnn3L33Xfz8MMP88c//rHX5/nzn/+Mw+HwX1JSxC9fEAajcGkxGq20aRsCHcox6ddjU2n80UmMcwT3eky4zcr3pxmjJU/PyCRMMeHRdJ4urEB6ZSnp769kY31zn8aVZn6eEaZn0WgnV51Gne/ZPn38/TU0GCMjfZ2M3PunfK74US5IOov/1czOCRu4e/1HNO6z/VroG/2+tVfTNGJjY3nmmWcwmUxMmzaNiooK/va3v3Hvvff2eJ/bb7+dW265xf+90+kUCYkgDEJxptupV/9Dte+vjJTfDHQ4g5Kma3xUksOa2t04vW4cliDmxKVzRsoEJKmXbTFAfnMNbxVtpKq9hQirnTNSJzAnLqPbMV9XFrCkPJcWTwfJIRFcMnIa6aHRvT7mz8ek8PMxKTS7O1m8Iofv6pvZ3eZm2hfrMUsSP86I5+npmSjK0b81RJt+il2aQb56PKW+a3FpK0k3v3jUj9uTpiYjGVGUvps6ufLKHF5+uQqbQ+f855oJiTVqqai6hkvtJJLeE0Dh8B3WX1x0dDQmk4mamppu19fU1BAfH9/jfRISEjCbzZj2KcQzbtw4qqur8Xg8WCwHzolarVas1v5biHS0Gt1tuLr6SewRoliJtIk/TuHYYpPTMRFFq74EAF334dK/xaWvIlb+JSYpNMARBt7nZbmsqCrkmsxZJNgdlLQ28t+dqwkyWTg5KbPH+9S7XTy+fTknJozmp2PnkNdczf8K1uCw2BgfkQjAuroS3i7ayGWjZpAeGs1XlXk8tu1r/jBtMWEWW4+Pu0e4zcq3p00H4MVdFdy8YSfNXpXndlXx3K4qUuxW3jh+IrNjwo/q3O3yJCYqleSrM2nU/0u7ZwOZyioUuW97trS0qPRVrTePR2Pu3LWsX+8kM8vG3H+Wowzet6Nh47CSEYvFwrRp0/jqq68499xzAWPk46uvvuKXv/xlj/eZO3cur776Kpqm+Rf8FBQUkJCQ0GMiMtg1utu4e/1HqHr3ioOKJPPA9MUiIRGOOWGcThOvsMt7Ea36V/gwmqiFSicSIs0NcHSBV9Rax+SoJCZ2NbuLtoWwrq6E4taGXu+zomon0bYQLsyYChhbfwtb6lhake9PRpZW5HF8/Ejmxo8E4PJRx7GtsZLva3Zxesr4Xh97f1ePTOLqkUm4OlXO+mYL39Y2UdbeyZwvjdGSy9LiePa4sUc8WqLIIYy3bKfYewWN+ivkqElkKt9hlycc0eP1xOlUUZTeR5kOVW1tJ9nZq6iu9rD43CjO+0snq2sPPG53awOpIZFH/XzCXoc9pnXLLbfwn//8h//+97/k5uZy/fXX09bWxjXXXAPAj3/8Y26//Xb/8ddffz2NjY386le/oqCggE8++YQHH3yQG264oe/OYgC51M4DEhHYO3QnCMcCTXfTrH1EsfcqWngfgGb9bX8iAmCVRgYousElIzSGvOYaatqNhfhlriYKnXVMiEzo9T5FznrGhncfbc6KSKDIWQ+AqvkobW1k3D7HyJLE2PB4/zGHK8SqsPyUafguX8jLs7OItCh4dZ3/FldjfmM5ye9+w8rapiN6bIB088ukmp5Cw0WuOpl630tH/Fj7a2vzYbEc3RTNxo0tpKV9S3W1h5t+n0Dm70tYXbu7x2NfKVzH52Xbj+r5hO4OO9W9+OKLqaur45577qG6uprJkyfz+eef+xe1lpaWdtvylJKSwhdffMHNN9/MpEmTSEpK4le/+hW///3v++4sBEEYUDu82XRSgPESsqfb7N4i5TLBKMT1dNdjzukpWbh9Xu7d8DGSJKHrOuekZTMzNr3X+zi97gOmWsIsNtw+Lx6fSrvqQUMntIdjqjuOfvfh5RmJXJ6RiKtT5bxvt7CspomKDg8nLNmAIklcmBrLS7PGHfZoSYzpF9ilGRSoJ1Hiu4o2bSUjzM8cdbxtbRpW65EnI2+8UcVll+UgSfDfV8aybeQGWjxuAExIZIRFY1Ms7HY20Koa17+3ewsRVvtBf4/CoTuicbdf/vKXvU7LLF++/IDrZs+ezerVq4/kqQRBGIQi5Iuo1v7I3kSkO6s06qCLM48lG+pKWFu7m59mziExOJwyVxNvFm0g3BLE7P0WpA42IVaFJQunAfB6cTU3rM+j0aPyWkkNr5XUkBhk4eXZE5ifcOhTFsHyNCYqFeSpM6jX/0ObZx1jle+Q5SOvZOp2+wgJObJppHvuKeSBB4qw22W+/XYGVdGltJQYZfjTQqO4ftwJhFuN2Hy6xmel2/moNAeAj0pymBGThiz+1o+aqNpymDpUb6BDEISASzTdT1xXf5oD6CY0dTSlrkZKXY3H/DbId4o3c1pKFjNi00gKDmdWXDoLksbyWdmOXu8TZrbh7PpkvofT48ZmMmMxKYSYrchItPZwjMN88MWrR+qS9HgaLpxHx8XzOD0hEhmo7PBw8rKNmF9dykXfbEVVe05O96fIDrKUPMKli+hgM1vVJDq0I6970tmpERx8eCtYNU3j/PM388ADRSQkWCguPoEpU8L4tmoXYJTiv3bsXH8iAkZBurNGTCTTYYz61bld5DfX9Pj4wuERychh2FRfxuPbl/d6+zdVhf7yzIIwnEmSRJLpr8TKNx9wm6brrKyEP236nD9t+vyYr8vg0VRkun9yliUJvcfeu4aMsGjymrvXbsptriYjzNi2q8gmUkMjyd3njVDTdfL2Oaa/2BSFz06eiu/yhbxz/ESiLWZUHd4qq8X8xnIS3vmGJZU/vG5FlmVGmt8g2fQYPlrYoU6k0ffaEcXk9eqEhByYjFRXd5Kff+Dfntutkp29mvfeq2XGjDBKS08kNtZKm+qhydMOwKiwGKJtIbhVNzfm38jsdbP9958Zm+b/uqztyNfRCHuJZOQQ5TRW8O/clXi0vZVjbabuw4LfVhfybvGmgQ5NEAJCkiSSTQ8TI9/U7XpZ1mhx711Yeawv7p4UmcSnZdvIaayg3u1iU30ZS8vzmBy1t2rqe8WbeSH/e//3JyWMpt7t4p3iTVS3t7C8soANdaUs3Gcr8MKksaysLmRVTRFV7S28WrgOj6YeUIukP50/Io66C0+i4+J5nJUYjUmCareHU7/ejPLqUs5fseUHR0viTDeSqaxCxkqx7zJKvTcedhyqquNwHDhNc9FFW5gyZRWbNu1dR1NW1kFyxlK2bXdy5ZUJrF07y1+fZN8Pk63UM2fdHEJWhPB4+eMUdhTSrhqJimWf137xAbRv9HvRs+HAp2u8snOd/5PM1KgUzk6bRILdgcvr5uvKAj4t3Y6GzpKKPGbHZZAUHN79QRpq4Mu34JtP4cY/QtbUgT8RQehjkiSRYnoUUKnT9nZrbXH3vlPkWHPJyOl8ULKVVwvX0ertxGEJ4oSEUZyVundra4ung8bOdv/30bYQfjl+Hm8VbWRZRT7hVjtXjpnp39YLMCNmBC6vmw9LtuL0uEkOieCm8fMJswQN6PmBMVry0fzJAHxcXstPVudS1+nlvfI6zG8sJ9Zq5vnZ4zgz6cBmqgAh8kwmKmXkqjOo0x+nzbOaTOVbZPnQppx0HcLDu7+d5eS08u23zUgSLFq0kbXrZ1C6u5OT3r0K7X8fA/C6ZOadr81YZSsW2YJVstLgcdFOE3q98Xofb47nkTGPcGn8pf7H3tJQ7v86xta3NVOOVSIZOQRbGyr8Q3eZjjiuHXe8f8FSiNnG4hGTUGQT7+/eAsDyygIuH30cuJzw1Xvw8f9g3degdW0JXnylSEaEYUOSJCobf8OuznzGxn0F0G1kBGBzQ/kxW5fBppi5eOQ0Lh45rddjrs6cfcB1meFx3DV10UEfe35iJvMTey6cFihnJcdS+6NYVFXlwpXb+KiyntpOL2ct34pJgkUJ0bx1wgRs++3EUeRIxis7KfL9iBb9Pb5pG4Wl8zPmRE886PO5XMbIS0SEudv1//pXKYoioao69Z2NjFwxFvX76cg1e6t5e3UvXt1Lu9bOgSSujbiXp6bcjUnaO4mQ01jB+roSwCh2OSkq6XB+PEIvxDTNIdjRVOX/emHSWCMR0XV46n4o2Aod7cxLGI0iySheDyx7D26+AE6Kgbuv7p6IACSJrWDC8LG2djcv5K/mm91X43RHo+tgkrrP339Suo2vKvIOvLOuw7efwVUnwCkpxvfCsKAoCu/Nm4x62UI+m5dNvM2CT4ePK+sJemM5MW+t4IOy7hXFZFlmlPldovk7PpzUm05lZcPrB32esjJjEW909N5kpKnJy0svVaGqOsg+fL9/EDW+HM7+iA/uvA6H4jjoY9oJ52rzM0hto7l3/cd8UprD15UFPL59OY9vX+Ff7XNy0hjMch+Vfj3GiZGRQ9Dh27uDJsEeZnyRvwWeute4AEGRsfzV00Gwq9VYqrYnYYHuiQhAUlq/xywIA6HTp/LarnVd38lU1P2LcSmX8odZYWieU/myfAfLq3YCxq6S6TEjcFiCQFXhizfhP3+Coh2AZPyfEVskh6XTk2KouiAGVVW59PvtvFdeR73Hy7nfbEUGTk2I5L0TJ/lHS1aUX8ptW+L4+5z7iAy9mmVV31G65ud4vAd2e8/LMdYjFVbU88xbxpbcJR+34fF0ve5e9RJM72rkKOncv+5Jbpx/I38s7blZq12287/R77F0dzU+XaPO7eLDkpwDjpsWncqiw6h0KxycSEYOQfA+jQmKWxuICQqFMZPgr6/BfT+DoBDcJ5+Da8UHBLta0QHpYJ/wfn0+pI6CURMgaxpMmgl2Me8oDD1ra3fT3rXdfWpUCpdnHE+u+iDN2juk287j0lEz0DHKm/t0je9357Bow1p4/q9QUw7+4W8dlKHXHmKo2L+fVqB6aSmKwlsnZgOwrKqBK77fTpXbw+dVjQS9sZxIi8K/jxvL0zsrqGmP5ydfP8o90x/mtNTHiZu2ktzlT4DW/e+kpsb4+zMH6bjavWiaztKP243PgsevhMv3GVkxaaxLfZ51RXqv736vTXiNs2PmMSm0jg9LtpLf0n3rboTVzsmJmSxMykSWxORCXxHJyCGYEp3M8qoCAL4sz2VKdIoxNLfoEhiZBZdMx/Luc7x13a9pDQvnxpefJbSqtOchZ0mCbWth66ru18smCAqG8CiIS4aUkUayMn4GZE0H+5EXBBKE/rKtqdL/9anJ45AkCUfH6ehvP0pb9hzkoCjmmxtobVhH9tfbmbI6B73DGFaXAPZtrWDuPucv9I2e+mkNhl5aJydEUXnBiaiqypWrcnm7rJZGj8pzpf+ktGMcGol0+mzcueYOcptGc9OkZ5l59mJ2fvs/PB1712l4OjwAxMWZCbGbydnYSXOjBqklcNtDRmHgfQfczD7oNBNvSaBWq0Jj78/lnrR7ODvmbABGOWK4ZdICatqdFLsa8GkakdZgxoTHdltDIvQNkYwcgkxHHAl2B1XtLZS1NfH3LUtYlDqBUWEx1CUksuX+Jznznuv55dMP88ZFV9H55gZCX/i78elPkmGf7cDMPgWe/gLaXbB9HWzfAIXboKwQaiuguR6qSmDjt92DMJkgKAQioo1kJXU0jO5KVsZNg0Hc5VgYvvYtApgQbMzDO9aZCXnUC9yAKxsqn4NrfgGWuoM/lt7hwnOahK6w30UCk/GvrkjoJhkUGV3Z868JFAXdrIBiBosFzBYw25AsQWANAkswkiUEyRqKZHMg28PBFoVsj0a2x6LY45DtScjDcGdET/209my3jiTwjT0VReG1EybyGvBt5Q7sFOOb/BzvlM3m2R1X0NgZwcsFF7GzOYOH5tzPxFPOJUN5iwjTOQDs3rQTcHHtJVlkZYUw7S+rILgN/nQPmL3Qw8xfmNnB1zOWMn6NMc1iwsTpUadzb8a9BxwbZw8jbs/0vNBvRDJyCCRJ4uoxs3h461I8mo/drkae2vHN3gMcdtbc83fu+vMdXPzmf5EsEXDrP+Dk8+D2K6Bsl/EJ0KRAUlcNAHsIzJhvXHrickLOGtixHgp3QPkuI1lpqIHyYli/ovvxJsV4zMgYiEuBEaNh9CQjWRk7WXzqFPpFsHnvkHmpq4kxjliCjr8NdcyrSEEO5N/9mtgdm/j+wm/J/rCAiPI2dAmkHgYNdYtEx0Q7qBqSzweqjqRqSKpuXNw6sqohqT4klW4X2QtS10U+iiLJugk0M+h7LvsmRXu+N0n+JMlIlLr+VUz7JEgKKAqYFXTznuTIimSxgsWOZLEbCZItBKwOJFsYUlAkpqAoJHs0JnsccnACclA88hF2ywXoUD2srS3p8TZVO3D9RaClK1BT9jtMVTfzI8eXnHPy/bxUms3L+ReypnY6ly15mmfm3QpB5xKn30qy8lcaGoyRkeRkGy+8UM7GTS3wyF0QX91jIgLglOv53vk9F8VexOu1rzPCNoJXJrwipl0CSNL1wb983el04nA4aGlpISwscBlqcWs9z+V9T53bdcBtNpPChXFjOP6G86ByN8w7Gx59D7weePJeePFvxrTNr/8KP7n16INpbuxKVjZA0XYjQamrhJZGcLcfOEWkmCE4FCJiID7VSFbGZMPE44zpoKN4wROOXatri3kh35hyzAqP58YJ843dZu+/APf8BP3l1bxg9bGmq/vpz9o1Zrz0uPG3K8vdF3cnjoDPdx91TJqqorlr0dqq0Npq0Nrr8Lkb0Dua0DtaoLMFvdMFnS50Tzt4O6DTje7tNP6/ql4krxe8Kqi+ruRH6/paB5++N0FSQfLpexMjL92/7kqOpKN43983OdL2T5D2HT3akyCZJHRFRjdJeE06mknGZ5KNfxUTPpMJVVHAbCEiJAKT1d41ghSMZN1n9CgoHKyRyPYoZHsssj0OxZ5kjCr1k093fkecc09tERVQ0O2b6Ah/m6fLRvLWrjNRJB9/mf1H5iasxSGdzat//jv337+bF18cz49feRj9ypcgrp5uBW57SEpGBo3kw0kf8tPcn/J81vOMCx7Xb+d1LDvU92+RjBwmTdfY3lTF+rpSWr1urCaFseHxzIxJw6aYjV0C15wIW1ZB5mR4ZY0xbLx1DTx+N9zykDFS0d8aamHrasjbCLt2GMlKfRU4m6Czo+dkJSQMImMhYQSMGGMs0p0401gXI4tPDMKBvJqP29d+QKvXWAeSFZHAopTxjMCM5YQoakeN5Z6b7wLALJv4y3HnEqJYYPlH8I9bYXf+3p1nI8bAR/mBPJ1+o7ldaB1VqG01aB216O216B1NaB1N6O4WdE+rkRx1tqF7OsDTAZ5O8HaC6gFvV4Kk+vwJEqrWNXKkgY99EiT9gJGjA5Ijb8+jU4dCl/dJjMz7jRrtkxztGUViz/TaPlNsxiiSAmaT8dpjNqObLayNO4GYcfs1YdV9IJmASjzmt3mj0sTrpQs4eex3XDP+FWqqxnPPQ9kUn/U6RDUDECQHcXLEydRW+ujQ3GgmD9GxCh2+Dtyamw6tgzhLHN9O+5Yvynfw3u4tnJyYedBaMBvqSvmgZCsNbhexQaGcnz6ZiZF7167ous5HJTl8W11Ih8/LyLBoLhs1g7igY3uKRyQjgXbrpfD56xCTCO/kQPggK/hUU24kSHmboCjXGM2prwJnM3S6Yf++GWYLhDggKg4SUiFtLGRmG8nKiNEiWTmGbWus5IntK9D2+5u58893kFxeys1/fwZ3kJ2rx8zq3qXW5zMKAj52B9RVGcnv21sGOPrh6akd37C5q0ro6LBYLhs1ncTgcHRdJ7+lhv/lf09rew1hnmZOiYhkRkgoWkcDuBu7EiQnemcruqcNPG1GcuQfPeo0kiO1++gRXSNIRnK0NzFiv9Ejo9GzFUx2NNmObrKjmezoZjtt6VlUnX99zye1561K10h6459YC7ey63dPIllsSD4vx7ecyFkJ5/PE2CeIscQA8MxbW3C1ewmxm7nuwuwDHnJ3awPP5K4kSDEzxhHXazKyy1nH37cs5dz0bCZFJrG2djdflOdy55TT/dW2Py/bwedl27k6czbRtmA+3L2VivZm7pt21jFdi0QkI4PBY3fCsw8a0yOvbzDetIeKihLIWQ15m6E4Fyp2G+tVWpthv06hAFisRrISHQ+JaZCWaYwMZc826qqI+hHDWk5jBf8tWE2rd+/20fHbNnPTU3/jm3mnYb3rKWbG9lLsr9MN7/wHwqPhjEt7PkY4ZE2d7dy+9gN0dMLMNh6YsRibqfuasar2Fv6w4RN0jK2qD844u9f1EqqqoqoqXq/X/7XP5/P/u+eiaZr/X03T0HUdrWsaTtd1+uStRtcB3fhXkpBUD0GlO2nvyGPSFQ9g3u88D5aMuH1e/rTpcy4bOYNPy7aRHBzRazLyTO5KPJrKL8fP81/3l81fkBIcweWjj0PXdW5d8x6nJI/j1GRjuqdD9fDb1e9y9ZhZzNinsd6x5lDfv8VCgf50058gOQP+cC2cNx7+/SXMmBfoqA5N0gjjcvrFB96maVBRDFtWQ/5m2J0HlSVGslKcb1Sl3Z/VBqHhEBVvJCcZ4/YmK/EpBx4vDCkTI5P483HnsqG+lC315bjUTpSTzsL70r85Yf0qpN4SETD+Ni47/OZoQs8KW2r9fbTmxGf4E5HKyko0TcNsNtPW2sol9pF4fT4USWLL1q1I+t6k4UgTB0mSul0URUGWZf/FZDIhyzKKomAymTCZTCiK4r+0+lZTWRhxwOPq6EhI6BKYZIXQ0FCirQqOK2ciZU2DJz457A88rxWuZ2JEIuMi4vm0bNtBjy1qrWdh0thu12VFJPh71NS723B63YwL39sGIUixkB4aTVFr/TGdjBwqkYwAH5Vs5ePS7n+McUFh3D/9rF7vc8jzh4kRBN/7ML969I+EXbcQ0x+eh7N/3G/nMiBk2aiDkjISzrr8wNs1zVgLkLO2K1nJh6pSI1kp2mFct+z9fe4gGW9IYREQk2CUy88YB2OnGMlKdPyBzyEMOmbZxKzYdGbtm3icew288k9Y9gGcfE7ggjuGdO6zSybSunfrbk1NDZqmIcsyuq4TjAmfLKNhJB8m2XRYiYPZbO6WbBwtTdOore2pu7OO6oOKep2mDhM/u2AKNDXAxVONEZIHXjzsRGRd7W5KXY3cMeX0Qzre6XETZu7etC/MbKOla5TY6TUqv4ZZ9jvGsvcY4eBEMtIl0e7g1xNP9n9vOsgf9y5nHc/mfddt/vCpHd92mz/8ojyXZZX5xvzhxPm8F53Mwr/+npS7rkIqL4L/u6+fzyiAZNlIJjLGAVcdeLumGbVVctYaoyi786G6FJrqjO93bOh+vCQZtSIckV3JSgZkZBnNBifNMmqvCIPTjX+EV/8FT94jkpEB4tjnDbGwpY6TEozp4eDgYKP3y6hR6LrOvRs+pqajFYCHZp5nlOkfYK2trdTV1dHa2oqqqsCeDx5GpTJ7sJ20EWn87+MCXO1eHOZOeP4h+Ned4FPh6t9BVM+dgHvT2NnGG0Ub+fXE+cf0Wo7BRiQjXWRJOuT/jF9V5DM+MoHTkrMAOCctm9zman+3Xl3X+aoijzNSJzA5KhmAS+ecw+2/aefev/+BiKf/YBQ5+/PL/XY+g5osG4sVx0zq+XZVNZKSnDWwMwdKdxojK011xoLbbeu6Hy/JYOtKVmKTjKmxkVlGMbhJsyAsvN9PSeiFPcT4HWz53tjhteeNw9lkJKXhUYGNbxjKdMQRrFhoUz2sry/hFNdYUkMiMZvNeDxGTY5VtcX+RGSMI3bAEhGPx0NdXR3Nzc243XtHDGRZJjQ0lIiICMoryrCYbaSkpPjXGMg+L9mb32LOqmegvQX/AvvLbjrsGEpbG2n1uvnTxs/912no7GypZXllAU8cf/EB62fCLDac3u4jHE6v25/4hZmNn5/T4+72s3R63KSEhB92jMcikYx0qe1o5dY172GWZTJCozkvbXKvpZKPdP4wOSqJJf94lYtuvxY+ecXYwfLCN2Inyv4UxRj1yJra8+0ej5GUbF9nJC2lhcbuoKY62L7e2NK8L1kGW7CxoykmaW+pfdEX6AetqNzJiqqdNHQatXUS7A7OSp3IhMjEXu+z/xTmxb+4g7HXnwWP/A4u/Dn6G0+if/4GxRmjeeTme0gOjuCC9MmMCY8bqNMa1iwmhRMSRvF52Q40XefvW5eyIDGTUVoQnZ1u/rdzDd9VF/mPn584pt9i0TSNpqYmGhoaaGtr8y9oBbDZbISHhxMTE4PFsrd4XmRkJLIsI0mSsePqk1e45F+3EtzavUcMtiCIS+JwjQ2P556pZ3S77r8Fq4m3h3FaclaPC3kzQqPJa67u9rqf21RNRqgxKhttCybMbCOvuZqUEGPNS4fqpbi1npMSRh12jMcikYwA6aHRXD1mNnH2UFo8HXxcso2/bV3CvVPPNGqH7Odo5g+bNdXYvvjLxbDyUzhrtPG9eEM8dBaLkURMmtnz7W63Ubl2+3oozIGSQqgtN0rtV5cbn9L31VNfoNETjZ5Ax3hfoHBrEOelZxMbFAq68Yn6yR3fcNeU00nsmpLcV09TmM/s3MBfQxyYP/4ffPQSumxC1nx4McqS73Y18HDOV9w/7SxRdruPnJkygZ0ttexy1tPpU/m0bDvnW0cQJVtZ3VLkX+B6QvwopkT17QLy9vZ26urqcDqd/pEYMMq+h4WFERMTc9BdFSaTyVgL8tV78OhtUFJAMNIBdcvqwkfw3ts9LJbfR1vHgeV4bYqZJCW823VWk0KwYvVPs7+Q/z3hFjvnpU8GYEFSJn/fupQl5blMjExkXV0JJa5Grhh9HGAs3F2QNJZPy7YRGxRKtC2ED0q2Em4NYnK0WKB/KEQyAt0+5SUHR5AeGs3taz9gfX0px8eP7PsnlGV48hN48EZ4/XE4bQS8tVnsKukrNhtMPd649KTdZTQr3L4Bdm03RlYOuS9QitFxefQEmHCcMRW0z6e64Sa7a5pxj3PTsllRtZOi1oYek5FuU5h5mznnjSc548P/onj3vinJmg9NkmgNc3S778aGMhbZRUv2vmAxKdw0YT6vF65nTe1udHTCZQuSJDHFHMVWrZlTk8ZxRuoEYwTiKKiqSn19PU1NTXR0dPh34siyTHBwMBEREURFRaEcTpXnvM1w8/n+b6X9atj4JBO1USNxtR9a7X+L+fDWhjR2tndLf0aGxfCzzLl8ULKF93dvITYolOuzTvAnLwCnJY/D41N5eeda2lUPoxwx3DRerEs5VCIZ6YFdsRAXFEpd15zq/vps/vCOfxmfwv92M5w1Bv77LYyf3rcnIxzIHgLHnWxcerKnL9D29UayUl4ENfv2BVre/XiT0lVqvytZGTHGGFkZPwPGTRk2pfY1XWNDXSken+ofnt6ffwpzdwFcNAUkCXMP20Q1SaYtuPtoYEVbc3+EfcyymcxcnTmbc9Ky2VS2C6XFSAgnm6P40dg5hAcf2Wispmn+hadtbW1dC08NFosFh8NBTEwMQUFHsQ4lMxuuvw+e/oOxgH3ftgEYyYkrfhQh9h/uuWUxm5gzufdpRYDfTFp40O8BpsWkMi0mtdfHkCSJs9MmcXZaL2vhhIMaHq+Sfczt81LndjGrl0VdfTp/eOWvja2st1wAl8+Ch9+CBef1y3kJhygkzOiuPPuUnm9vbjQKwu3YuDdZqa+C2kpjlGXtsu7H+/sCxRqjXyNGGy+2E44zFvEO8jVDFW3N/HXzl3g1H1aTwi+yTiAx2NHjsf4pzPgUOOca+OCFnh9UAldwaLerXN6etnUKRyvCaidZs9KKkYxIQG1FJY7Row95VMTtdlNXV0dLSwudnXt/TyaTibCwMKKioggPDz/kLb6fryxmx64GwNg8YLOaiI4IYmx6FONHRSHJMlx/L8xcAL+7yKjQuw9Z15h57kJmnnRgVdXD1eLq5Ll3crhicRaxkcfulGygiWQEeLtoI5Mik4i0BdPi6eCjkhxkJGbEjAAGYP7w5HPgldVw9QnG0OTvHoErbx6o0xcOV3gknHCGcelJfU1XX6BNRl2V8iKorza2L5fkw+ol3Y9XLBASCpFdpfZHjDH6F004ztgeHeBkJS4olLumLqJD9bKxvpQX81fzm0kLe01IAGNq6/7njOZ3T913wM2ypuEKCT3wfkKfc7vdtLZ2H+VtbW2lpaWF8PDwHu+jaRoNDQ00NjbS3t7uX3gqSRJBQUH+hafmo+gGnpYUxmlz09E0nXa3l90VTr5eW0pBSSPnnjwaWZaMqdbkkQckI0BX6QBhuBDJCEb55Gfzv6fN20mI2cqosBhum3wqoV3TLgMyfzh+Ony8E36UDX+7Bcp2wR2P9+dpC/0lOs5IMHurq1FTblSvzdsExXlGNdv6auPfoh3w3efdjzdbjdGaqDjjzX1EpjGykj3bmObr52RFkU3GAlZgRGgku10NLKvM9yff++o2hSlJcP29bLKayH7sXmQd0I03NVnXce03TRBitvbreRyr6uvre7y+tLSUsLAw/2iGy+Xy1/zweveuxTCbzYSHhxMdHU1oaN8lkCZZJjjISGZCgy3ERQWTEBPM218WsL2wnoljYuh87Sksm75j/cyrcUamMm/JX5BVD5LZAolpfL+5gl2lzWRnxrJ6ayXuTh8ZyQ5OmTMCq8V4e9N1ndVbq8gpqKPDrRLpsHH8tGTSk4xk+rl3cgB4+aMdACTHhXDR6WN7iFjoTyIZAa4d18tCxy4DNn8YlwxflBgJyetPGJ+oH/844J+MhT4Wlwyn/si49GRPX6DcjUZBuIrd0FBtTAEVbgM+6X68xdpVaj/O6AuUPrZ7X6A+puug7lPlc189TWF+OfU4Gu96lAUP3Ybe2YHUtYZk/5GRpB4WxAo9O9Qt15qmUVdX1+NjeL1edu7cic/nw+12+8vA1+udlPva0CwKizOnkXCwEbA+lpoQRkxEEDtLm5gY3I762N24YkaR8oeHsYbY2XD8fDL+eR0RiXHGrhugubWT/N2NnLtgNB6Pjy+/381Xq0s540SjKePGHTVs2F7DwtkjiI20s62wng+WFXLVOeOJCLNx2ZnjePWTXH506hiiwoOMERlhwIlkZLCxhxgjJD85CVZ+1pWYbBjWOzaE/fxQX6CyXcYC27zNRl+gqlIjWdnTF2j5h93vs6cvUHSCkaz4S+3PMhKjg3iveDPjIxOJtNrp9Kmsrd1NQUsNN02YDxzGFOaiK9EnnIDn2gVYWhqROHDNSF2HE03Xem3YJux1qFuum5qautX22J/LZSQzVquVcsnNspYSLsucyYSurrOP71g+4F1nIx026hrbab/2bBSvG8dDz6MkGl3Pj1s8j+c8bzMjK4Y9H/NUn8bpx6cTGmy8Rs6fmcr7X+3kpBkpBAeZWb+9hhkT4hmbbjzGidOSKatysnFHDQtmjSDIZrwN2qyKf6RGGHgiGRmMZBle/Bbu+LHRYv30EfBOjih7Lhh/GyNGG5ezrjjwdk0zpn5y1hiJSXG+sV25sdZYbJu3CZa9t/d4qasvUOj+fYGmQvYsWr1uXsxfRYungyDFTFJwODdNmE9WRAJw6FOYiXYHryletv7uPu574HfYOjtps3cvKvhdTTEeTeMnmXOQRZfngzrULdfV1dW9Poau60iSRGxsLMnJyfx3zXuckprlrxp9TeZsfrv6XTbXlw1oozcdGL3qVezl+Xxy1p8oyrND3kb/7apPo7l978hcWLDFn4gAJMYEo+vQ2OJGMcm0dXhJjO0+JZgUG0JdU0e/n4tw6EQyMpg9+JKxJuCp++D0NHht3WEt2mp0t+FS9658D1GsvVaVFYYJWTZK4Y/M6vl2VTXWpWxdDQU5UFLQVWq/tse+QD+WJKPSZdg+fYFGZhnVayfOOuQpzHV1Jayo2gkRUfzp1ge470+3cc3uckpnnEZecw05TZX+40aFxTCvH6uCDjf7brlOC46gpqbGX/Njz6iIT9fQJQkFCZPJRExMDPnOWkram7g8buKg6jrrzdvKzCWPUDd6FhVTzuSK0zIPOMZmEbU7hhuRjAx2199rfFq9+2pjyubJz2DWgu7HdLqhrtLoydKl0d3G3es/QtX3DtEqkswD0xeLhORYpig/3Bcof7NRFK6gqy9QdZlRaj+3t75A9q6+QIlG8pzRlaxMmgWhxnqDryry/Hc57YTzMZ2xlTFL3mPMrx5iYfI4NjeU89SOb4xjK/M5MWG0GB35AXu2XAfpMiOUEK4IHkVNQbH/dovF4q94+tuNH3L1mFnIFU0oikJSUhI7pTa2txRjsVhwOluAwHedLS2qZvbbd+KzBNHxwCu0rW9EliUcIb0vbna2eXC1ewixG6MjVXVtSJIx3WO1mAgOMlNZ6yIlfu+0YEWti/ho43XQ1LVGRO+hHo4wcEQyMhSc/WNjy+fPT4WfnwL3/gfO/6lxm9cDN5wBm76DL8v8jchcame3RASM0tsutZNIRDIi9EJRjJ1dvRXf6+w0hsy3rd/bxLCmHJrrYHtFj32BNJudn9lsNIdH0hafzKRT2uGkxfDxy7BqCcw9jclRyYxxxFLQUkttRyslrgbSeymsdqzb02yuqbmJK20ZyEhouk6d101CaDipsQlERET0WPNDlmV8vp4XHw80n6bR1uHttrVXefR3TKktgD++QMq4dBJLPHy4rJATpiUT4bDR1u6lqLyZUakR/mRCMcl8vrKYk6an0On18fXaUsaMiPSv/5gxIZ7vN1cSHmolJtLO9sJ66po6/Atc7TYziklmd0ULIXYLikny78QRBo74iQ8VM+bBe9vhkmlw38+MnTY3/hHu/SmsW2Ec88GL8JNbAxmlMNxZrcYunezZPd/e3g65G4wmhoXboLQQtbqE4MY6IpoakYsKkL7fpyjc3VfDMqOGRFZEAgUttQA0dXaQLsqQAMaOmMbGRhobGw9oNme37a358UT+tzQq7UyJOrAT8p4t13Gy7K+YGuius7srnPz7zS3IkoTVamL87hXMXP8K+olnIi2+EoDzFo5m5cYKvvhuNx2dKsFBZpLiQrotNA0PtTI6NYJ3l+7E7VHJSA5nway904RTxsXS6fGxYn0Z7W6VKIeNc04eRUSYce6yLDH/uBRWb63i+82VJMWKrb2BIJKRoWTEaPhsN1wwEZ59EJa9b8z/7/HGk3D1b8VWYCFw7HaYdoJx6VLhrOcvW74EYE5oLFeFJhpFrL5+H/aZFnB69i4oNB/jf8NtbW3+ZnP71vxQFAWHw0F0dPQBzeYOZct1oinW/3iB7Dp7+vHpnH58+t4rinLhwVvAEYX06Pv+qy1mEyfPTOXkmb2XUQDIHhtL9tjYHm+TJInZkxOZfZCS8BPHxDBxTMxhnYPQt0QyMtSER8JnxXDmyO6JCBi7JtZ81XsZc0EIgMTgcGwmBbdPZX1bA+dnHU/oyKxua5/cPi9ra0sAMEkyI0IO/HQ/nKmqSl1dHc3Nzb02m4uJifFPvbxXvJnx+uFvuR4basehy3xUsnXwdJ3VNPjJPECHZ78aNr2chMMjfutD0eolxoLV/ZlM8OZTIhkRBhWrSWFWbDrLq3bi0Xw8sWMF12TOJi7I+GTf4G7jfzvX+Hd+TY1OOWAh5XCjaRpOp5P6+npcLle3dRxWq9W/8LS3ZnNHuuV6U3EB2XI4G+vLBk/X2d9eZGw9/8W9RmVh4Zgk6UNgCbHT6cThcNDS0nLA0OQxZ/t6uOoE8HYa47L7k2X4soySICsPbv7igJvvnHI6qSGRAxCoIOzV2NnGg5s+p3WfZnipIZGYJIndrY3oXS3ibSaF2yefRrx94Kp+DpSDNZsLDg4mOjoah8NxyM3mjkRpaSl1dXVMnDgRy2AopPjl2/DbC2FMNry9OdDRCP3gUN+/xcjIUHPvT+FgW+10qHzlEZ47/qQeb97RVCWSEWHARVqDuWnCfP61bbm/d02pq7HbMXbFwg1ZJw6bRORQms3FxsaiDOC0xJ7Gdp2dnYFPRprq4fYrjHVDzy8PbCxCwIlkZKi5+9/w2WtGqfjSncZ1JgV8xgp5dA3HG09TO3VyjwtZ39u9BZ+ucWbqxIGLWRAwRkLum3YmK6t38W11IXVuoxR5hNXO8XEjOTFhFGGWnqclhorW1lbq6+t7bTYXExNDSEjIQR6hf+1JQDweT8Bi8LvmJGOE97EPICw80NEIASaSkaEme5Zx4Z9QW2ksWF291Oj02mhsiwxub+NH77zMqqtuJLOromJuczWV7UZhow9LckgKjvCXfRaEgRJstnJaShanpWTh7dr5MZB9T/qax+Ohvr6e5uZmf7M5MBaehoSEEBkZSVRUVL9OvRyOQZOMPHq7sQD/jMtg3tmBjUUYFMSakeFC13nhixcI/+ZzzvjiA8yqivzHF6Frvz7AF2U7eHf3ZsBY0HZrtljoKgiHQ9M0mpubaWhooK2t7YCFpw6Hg9jYWKzW3iuGBpLH4yEnJ4eYmBhSUw++Xbbf5KyDK2ZCVDwsLRelCIY5sWbkGFPf2cbqYBssOpctZ1/GvZ9+CHf+2Og7cu0dIEmcmjyO1bXFVLa3sMtZR027kzi7SO4E4WA6Ojqora3F6XR2G1FQFIXw8HCio6MJDQ0dNKMfB7Nnfcq+U0gDyuOBX5xqNGh8YYVIRAQ/kYwME3UdLv/XE2JHIP3hOUgYAY/fBZ+/Ae9uRZIkJkUl+adr6twukYwIfeKOtR/Q0Nl2wPUnJYzmslEzerzPhrpSPijZSoPbRWxQKOenT2ZiZJL/dl3X+agkh2+rC+nweRkZFs1lo2b4twT3F1VVaWhooKmpifb2dv/UiyRJ2O12IiIiiI6OHtCFp31lT8IUsJLwNy6G1mb47SNGEUdB6DL0/jcJPdq3qZhX8xmfPE5aDE//AUbsraDo3edFSDQiE/rK7ZNPQ2PvjG9lWwuPblvGtOiepwJ2Oet4Nu87zk3PZlJkEmtrd/PUjm+5c8rp/toXX5Tnsqwyn6szZxNtC+bD3Vt5bNvX3DftrD5dZ6Jpmn/hqcvl8pdLh+7N5ux2e589ZyBJktTtHAfMu8/Bqi8hew78+OaBf35hUBPJyDCRYHcgS0bDrI31pfwoeTzmWy+GkePhoTcAI0nZUF8KgIRE4jDZQikEXuh+Rco+L9tBjC2EMY6eS3R/VZHP+MgETkvOAuCctGxym6tZXlnA5aOPQ9d1vqrI44zUCf6F1tdkzua3q99lc33ZUbe093g81NbW0tLSgtu9d6u8LMuEhoYSFRXVa7O5oU6SpIEfGakphwd+AUHB8O8lA/vcwpAgkpFhIsxiY3JUMhvry3B63ZTduIj00kKkf34AZjOdPpVXCtfS3NX/IzsqiXDr8PikJwwuquZjTe1uFiaNRepl9K2otZ6FSd2bkWVFJLCloRyAencbTq+bcV27wQCCFAvpodEUtdYfdjLSW7M5SZKw2Wz+bbcBr70xAGRZ7tZsb0BcfaJRfuDxJUb/IkHYj0hGhpFFKePZ2lBB4u5C0tesoDohmU8SopDyviensYIOn7FoTZFkFqWMD3C0wnC1snoX7aqHEaER/sJmIYqVSFuw/xinx02YuftoSpjZRktXQT+n10ia9y8LH2bZe8wP6a3ZnNlsxuFwEBMTQ2josdca2GQyDewC1geuh4piuOh6o/u4IPRAJCPDSGpIJNeNO57UO/4PXZJ47Prf0lhX0u0YRZL56di5pIUeW43IhIHR6G7j9V3r0YHHti33X69IMg9MX9wtIelre5rNNTU1HVDzo6dmc8cqk8k0cHVG1i6Dt56GpAy468mBeU5hSBLJyDCT/foz0NxE7qILaY2Jh30KS02PGcEpSWO7NccShL5U0d5MT4WLVF3DpXYSiZGMhFls/rLwmqZRXV1Nm7sDR9dISJjZqMTq9Lhx7FOV1elxkxIS7r/fDzWbi42NxWYb3k33DpfJZGJAyku1t8ONZxsVol9c0f/PJwxpIhkZThpq4dkHITyKcX9+nb/rPhrcxnbLKGswNsUc4ACF4W7Pmo8fkhEaTV5zNfPiRlFYWEhbWxudUgcZodEARNuCCTPbyGuuJiUkAoAO1UtFayMzrbFs27btgGZzDoeDqKiofm82N9Tt6U+jaVr//px+fgp0tMH9z0OcqPYsHJxIRoaT/2/vvsOjKrMHjn+nZGYS0pn0QgoQCFVAEBBRQUFsWHZRXESsu5ZdxbJ2LKuo67rsKoq6tt+qi2XXjqCgiCKK0iEFQkghIb2XybT7++MmEwYSSCCZSTmf58ljcuedmzPXkDl57/uec9sF4HDAs++DVosJrcyCCI9xKgrbywvaffzbwkwWDp0MwIyYFF7atZ6tu3eic6h/pQc7dEyKHgqoC0tnxAzjy7zdBNo06BtsVDfWMd+UhLbehtWLzeZ6u5ZrZbVau2/W6P+egx0/wpRZMHdR93wP0afIv+C+Ys37sPsXOO0cmHi2t6MR/dBnuTuptbW/uDS7pgxFUdBoNET7+HOlXzJOu1OtiQMEaQ2E+fhRW1tLaWkpUbU25hkS0FfU06Q4aFQchAWHkhgV49Vmc71dy46hpqam7klGcvfBc3dDQDD889OuP7/okyQZ6Qvsdnj4WvAxwrL/eTsa0Q/tKD/Il/lpbscMWj1WZ2txraLGWj7O3cE55sHs27cPnMpRhfd27drl+lyr1RISGERoaCihoaFy66WLtNym6ZYdNU4nLDoDFAVe+Rr6wVZp0TUkGelF2iu5fd3a1UxsrIf7l4Of+1+MPbXktug7HE4n72T9gtK8dHWcOY6LBo0myi+IGquFbwozWZ2/BwVIL8wjvrz9gltarZawsDDCwsJ6bLO53q7lunbLjpr7fgdlRXD9fTBiQtefX/RZkoz0Im2V3H594/8Y/8m7MGgoXHGz2/ieVHJb9F3byw9S3VxMb3hwJDcMO9014xFoMDE3YQw+ClhKqhikG4CCgob2WxHExMS0WyxNnLyWZKTLZ0a++QS+/I9a9fmPT3btuUWfJ/OevUiAwUSQwdf1sbOigAXvvYlWccKLq44af3jJ7Si/IC5OGEO8fwjrC/cCHFVyO3ZACItSJlPV1Mj2snxPvzzRS+2pLHR9fk7sMLQaDYqiUFRURH5+PmlpaURW2EnQ+6PRaI6ZiDidThoaGjwRdr/VsoC1S/vT1FTBPVeot4rf2NB15xX9xgklI8uXLychIQGTycSkSZPYvHlzh563cuVKNBoNc+fOPZFvKw5jdzqoWvsBo3f8guayGyEu+agx2bVlDDusnDaoJbeza8uA45fcFqIjGu2tf2FH+ar9jurr6ykoKKC0tBSTyURCQgKfOgr4T2M2P9hLiYyMJCAgAJ3u6Nm36upqj8Xen3VpMnLtdLBa4Kl3IDi0684r+o1O36Z57733WLx4MStWrGDSpEksW7aMWbNmkZmZSXh4202xAHJycrjrrruYNm3aSQUsVDsP7OGyla9jCx6ITzuVDT1RclsIf5/WtR05dRWEmgbg7+9PXFwcBQUFNDY24m8OpbipDgWo0juIiVHXLSmKgs1mo6GhwfXh6+vbzncSXaVLO/cufxj27oRzLodzLuuac4p+p9MzI8899xw33HADixYtIjU1lRUrVuDn58frr7/e7nMcDgdXXXUVjz76KElJSScVsFA5/vFnQior8Fn6DsguA+FFYwa2FrRak78He3PV3/DwcIYOHYrFYiF3XxZmrZq0jD1svEajwWAwEBwcTHR0NIMHDyYkJMSzL6Af6rLOvRnb4ZW/QGg4/PW9kz+f6Lc69S5mtVrZsmULM2fObD2BVsvMmTPZtGlTu8977LHHCA8P57rrruvQ92lqaqKmpsbtQ7Sq+vpDxm34mpLJZ8PUWe2OO7zkdosam6XNkttuY6ytY4Q4ntSQKMJ91YZzOXUV/G3nOnZVFFBvs1LqtLDfaAUFLjYOIkkXwLSowV6OWOh0upPv3Gu3ww0z1Doxr6+XP4rESenUbZqysjIcDgcRERFuxyMiIsjIyGjzOT/88AOvvfYa27dv7/D3Wbp0KY8++mhnQus/7Hacz/yJ8lAz4c+8f8yhLSW3D2/Vnl5ZdNyS2wdqy5gubxiig7QaDYuGTua5XeuwOR1k15bxwh73XiShGgNzTYOYYYzGVlUHEd3XME8cn1arPfmZkT/NheoKuP1pSBreJXGJ/qtbU9na2loWLFjAq6++itls7vDz7rvvPqqrq10f+fmys6OFc8l1hBYXkrHgVnQBwW6PvZH5Ix8d2O76ekZMCnsqD/H1wXSKGqr5LHcnuXUVnHlEye1V+bvZUX6Qgvoq3ti7iWCjL2PNcR58VaK3Swo0c/vIsxlobDvJqNc6sUUGodfpOHjwIAcPdqyHjegeJz0z8tm/4fsvYOREuPaergtM9Fudmhkxm83odDqKi4vdjhcXFxMZGXnU+P3795OTk8OFF17oOtbyD0Cv15OZmUly8tG7QIxGoxQ8akvWHpRV7/DjpGmkzPvjUQ9XNDW4bZtMDgzj+pSpfJK7g49zdhDuG8AfUqe59auZFTscq8PO2/s202C3MjgojD+OOEtqjIhOGxwUxuOnXsiu8gK2lOVTZ7Ng1PkwPCSSSWEJmPQ+2CPtpKWlUVxcjNVqlTVkXnJSvXzKimDJdWDyg3+t67qgRL+mUTrZS3rSpElMnDiR559/HlCTi/j4eG699Vbuvfdet7EWi4WsrCy3Yw8++CC1tbX84x//YOjQoa4+CcdSU1NDUFAQ1dXVBAb248qg5yVBYQ58nA6JKd6ORogT4nQ6ycjIUHfZ+PszZMgQKfXuYQcOHKCiooJTTjml89f+gqGQtw9e/gomn9M9AYo+o6Pv351OjxcvXszChQuZMGECEydOZNmyZdTX17NokdqZ8eqrryYmJoalS5diMpkYOXKk2/ODg4MBjjoujuONv0LBAbUDpiQiohfTarUMGzaM/fv3U1NTQ1paGqmpqZKQeFBLf5qmpqbObaV+6k9qInLJdZKIiC7V6WRk3rx5lJaW8vDDD1NUVMTYsWNZvXq1a1FrXl6e/FLpajVV8PwD4B8Ej/zL29EIcdK0Wi1DhgwhJyeH8vJydu3axYgRI07u9oHosJZkxGq1djwZ2foDvPtPiIyHJa90Y3SiP+r0bRpv6Pe3aa6ZDls3wPOfwfQLvB2N6OdW5+/ho5wdnB2dwrzk8e2O62iTxn1FB5mqD6NOsTNsyBBigzu+2F2cmMrKSrKzs4mPjycsLOz4T7BY4KxwsDTCqv0QFd/9QYo+oaPv3zKF0dN9v0pNRE45XRIR4XU5teVsOJRF7GGLoNvS0qRxamQSD447j7EDY3kp7XsK6qtcY1qaNM4YMpqgyDAGaHTs3bePKqkr1O063bn397Ogvhbuf0ESEdEtJBnpyZxO+PN80OvhH594OxrRz1kcNl7L/JEFQybhpz/2wvPONmkcHptAUlIyWjRk7s2ksrLSEy+p32rZONChkvD/eUH9g2ji2fCbm7o5MtFfSTLSkz12E9RVwy2PS/Mp4XX/yfqVUSHRDA85ehv/kU6kSWNE6EB26Gtpwkl2dvZRJQRE12lZm2Oz2Y498OABePp28A+EF7/s/sBEvyXJSE91IBM+eg2iB8F19x5/vBDd6JeSHPLqKrgkcWyHxp9ok0Zfky97fa3opDiaRxxzZsTphGumqf99aTV0oAyDECdKkpGe6rYLQQGe/9zbkYh+rqKpnveyt3LdsCkeKYbn1GoYOXIkPj4+FBcXk52d3e3fsz86brO8h6+FkgJYcAeMmey5wES/JPvoeqJ3/qHu5T//Khgi9ViEd+XVVlBrs/DE1tWuY04U9lWXsL5wL8tPn4dW4/53TWeaNAYZWreW1lgtxPkHo9frGTlyJBkZGVRWVpKRkcHQoUOlbEAXOmZ/mu9XwadvQUIK3P03zwYm+iVJRnqauhp47h4YEACPv+ntaIRgWHAkD4+b43bsrb0/EekXyKzY1KMSEeiaJo1SHK17abXatvvT1NXA4svBxwBvbPB8YKJfkn/VPc0dl4LNCo+9oe6iEcLLTHofYgYEu30YdXoG6I2uPkfd1aSxpTia2WymqamJXbt2dWwHiDiudpvlXX82NDWqfwwNDPd4XKJ/kne7nmTTWvh5HYyaBOdc5u1ohOiw7m7SOGjQIHx8fDh06BC7du1i+PDhmEymo8aJjtPpdBxV8/Llv0DaFjjrYphzpXcCE/2SVGDtKZxOmB6mTpF+cwhCpAqlEEcqKysjNzcXjUbDkCFDCAgI8HZIvVZWVhbV1dWMH99cRXffbrh8NAQNVH8Hycys6AJSgbW3efI2qK6Amx6SRESIdpjNZgYPHoyiKOzdu1eKo52Ellojdrsd7Ha47iz1gde+lUREeJwkIz3BwQPwwUsQEQu/f9jb0QjRowUFBTF8+HA0Go0URzsJhzfL487fQFUZ3PyY7OATXiHJSE9wyxxQFCn5LkQH+fn5MXLkSFdxtPz8fG+H1Ou4kpENX8K3H8PwcXDTg94NSvRbkox42/sr4EAGnPsbSB3n7WiE6DUMBoOrOFpJSYkUR+uklmZ5mn//DYy+6u0ZIbxEkhFvamiAZ24H3wHw5NvejkaIXqelOJqvr6+rOFqb21XFUVqa5TkNJnjuQ7X/jBBeIsmIN915GVib4JF/Sd8HIU5QS3G0wMBA6uvrSUtLk4SkA4wvLQGgftqFMG3OcUYL0b0kGfGWXzfAxtWQOh7Ou8Lb0QjRq0lxtE7a+TPaN59F09RI47QLvB2NEJKMeIXTqc6KaHXwgjTCE6KrDBo0iKioKOx2O7t27cJisRz/Sf2N1Qq/nwVaLRiMx26WJ4SHSDLiDc/eCZVlcO2fwRzp7WiE6FOio6MZNGgQTqeTtLQ0amtrvR1Sz3LLHKirhj8vQ6PTywyS6BEkGfG0Q3nwzj/BHAV/fMLb0QjRJx1ZHK2iosLbIfUMH76itpwYNw2uvBWNRiPra0SPIMmIp916AShOWPaRtyMRok87vDjagQMHpDjaoTx44hbwC4AVXwHH6NwrhIdJMuJJH78B+3bBWXNh9CRvRyNEnyfF0Zo5nXDNNHDY4cVV0NxksN3OvUJ4mCQjnmKxqH+VGH3h6f94Oxoh+o0ji6Pt37/f2yF53mM3qTMjV94G4053Hdbr9Ud37hXCCyQZ8ZR75kFTIzy0wvVXiRDCMw4vjlZVVdW/iqNtWgv/+xfEDYb7/un2kE6n81JQQriTZMQTdmyC9Z/C0NFw0dXejkaIfkmr1TJ8+HCCgoL6T3G0hjr408Wg94E3Nxz1cEt/GtlRI7xNkpGu9t3nsOOn1q+dTrj9EnVP//IvvBeXEAKNRsPgwYPdiqPZbDZvh9V9rp8Blga1ynNY1FEPtyQjTU1Nno5MCDeSjHS1+34HCybDozdCTSX84z4oL4YFiyEi1tvRCSFQi6NFR0djt9vZvXt33yyO9vozsHuzWuq9nRlZSUZET6FResHqpZqaGoKCgqiuriYwsAc3c7I2wYTm9SBaHQwIUIsLBZvh2yJ1dkQI0WOUlZWRm5uLRqNhyJAhBAQEeDukrpGdDpeOhIBg+LYY9Po2h1VXV5OVlUVsbCwRERGejVH0Cx19/5Z3x65UUdL6udMBtVWgKBAZBwelvbkQPU2fLI7mdMJ1Z6m/e15d124iAmA0GgGwWq2eik6INkky0pXKito+vncHzE2FV/4CNvlHL0RP0ueKo91zhXpr+IYHYdjYYw41NHcLlwWswtskGelK7SUjDgfYbfDCQ/DeS56NSQhxXH2mONrX/4WvPoAho+DWx447XNt861iSEeFtkox0pfaSEW3zXv6Lr5GtvUL0UC3F0QwGQ+8sjlZVAfdeBQYjvHH0Nt72aDQaSUaE17V/M1EcV4WlnhJLDfU2Gz5aHfGF2QTpdGjcWnJrIH4wLHkVxk/zWqxCiOPT6/WMGDGCjIwMV3G0oUOHumYQerRrp4OtCZZ9DIHBHX6aRqPB4fY7SwjPk2TkBCiKwg9FWbyT9QuHb0W6cu+vTG/5R63VqYWGbnkMfnc7NG+hE0L0bFqtltTUVLKysqiuriYtLY3U1NSenZD8837I2g2zr4CzL+7UU6VZnugJevC/rp7JqSi8nbWZt49IRABSMvegaf7cdvps+CwTFt0tiYgQvdCRxdF67I6TPb/Ca0+BORKeeqfTT9dqtTIzIrxOkpFO+jxvFz8Utd5LDjH4MiokmiS9L+ElxTg1GpbfeAfPXn8bjkgpciZEb3Z4cbQ9e/b0vOJoVivceA5oNPDa+hOqZaTT6aRZnvA6uU3TCQ12K18dTAdAg4arh07itPBEtBoN/O1unDo9f3voWbLMA6G2nF3lBYw1x3k5aiHEyYiKisJgMJCTk0NaWlrPKo72x4vUekZ3/Q0SU07oFJKMiJ5AZkY64eeSA9ic6nTmGVGDmRKRpCYimTvg7b+j/cMSZk+/1DV+Q1GWt0IVQnShgQMHMmTIkJ5VHO3jN+DHNTBmMly9+IRPo28uiibrRoQ3STLSCfl1la7PTwtPVD+x2eCmcyFqEFxzFyNCovHXq1UN8w4bL4To3QIDA3tOcbSSQnjsRvAdAC+vPalTSede0RNIMtIJjsOmMo265jtc+3ap/WcO5cGrT6K12zDo1LoiTkX+0hCiLzmyOFpeXp53ArlmGtjt8Pyn4Od3UqdqmRmRZnnCmyQZ6QSzyd/1+Y7yAvWT1HHwQyVcfx+8/BjOyUEM+W4NAGGHjRdC9A2HF0crLS31fHG0v9yi9rr6zU0w8eyTPl1LSXibzXbS5xLiREky0gmTIxJdW3e/LkijsL5K/cLkC7c8hvXZ93CgsOjfK/jzX5dwhu9Ab4UqhOhGLcXR/Pz8XMXRPLLm4pf18P6LEJ0AD63oklNKszzRE0gy0glmkz/jzPEANNhtPLFtNW/u/Ykfivbzcc4OHgzUc/vTL5I2fBSJOVlMmT9VetEI0UdptVqGDx9OUFAQ9fX1pKWldW9C0tAAt14AOj289X2XnVaSEdETaJResKerpqaGoKAgqqurCQwM9GosjXYrz+36hry69lfT++p8uLfGRuQjN0FDHQwdAy+vgYERHoxUCOEpeXl5lJaWotfrGT58uOvWx/FUWOqps7uv1fDXGwk1DTh68NWnw/aNsORfcNl1XRE2oO6i2bZtGyEhISQlJXXZeYWAjr9/S52RTvLVG7hz9Aw+zd3JxqJsLI7W+6waNIweGMMlCWOI9AuCsy+Hu+fBtx/DzFj445NqRVYhRJ8SHx+Pj48PhYWF7Nmzh2HDhuHr6+s2xmazoSiKK1GpsNTz0K+fYT9iobteo+XxCRe6JyT/XqYmIqed06WJCEjnXtEzyMzISbA4bKRXFlFjs2DU6RkaGN72XzSbv4E7LlOLEyWkwMtfQVS8x+MVQnSv8vJycnJy0Gg0bsXRmpqayMjIQK/Xk5qaikajIa+ugie2rW7zPA+cMpt4/1D1i/z9cOFQGBAI3xZDB2ddOmPr1q2YTCZSU1O7/Nyif+vo+7esGTkJJp0Pp5jjmB41hNPCE9tOREBd8f5dKcyZDzmZcF4ivPiIR2MVQnS/toqj2Ww29u7di91ux2Kx0NDQ0PETOp3qNl5FgRVfdUsiAmrnXil6JrxJkhFP0evVJlZvb4KgUFjxKJyXBLn7vB2ZEKILBQYGurr8HjhwgPT0dLfFoaWlpR0/2f0LoPQQLLoHRp3aDdGqpFme8DZJRjxt9GnqVOulN0BBDlyUAn+909tRCSG6kK+vr+uWx5H1OyoqKjr2xr/+U1j1LiSlwu1PdUeYLjqdTmZGhFfJAtYj7K0u4auDaeTVVVJtbeQPw6cdt9ldZlUxH2Rv5VBDNSFGP+bEj2RKhPuq9G8L9/L1wXSqrY3E+odwxZ1PknjlLXDzefDv52DNe/DiKhg6ujtfnhDCAxRFobCwsN3HKisrwXSMvwVrq+CueeBjhDe+654gD6PVaqVZnvAqmRk5gtVhJ3ZACFcmT+jQ+DJLHS/sWU9KcAQPjjuPGTEp/Hvvz+ypbP1F9EtpLh9mb+X8+JE8cMp5xA4I5p+7v6UmMQW+PggL7oDSQvjNWHj89+p9YiFEr1VQUHDMZnrHu1UTcevFYLXA0rchxNzV4R1Fr9dLMiK8SpKRI4wMjWZuwhhOOc5sSIvvDu3DbPLnN0njiPIL4qzoFMaZ41hbkOkas7Ygg9Mjk5kamUz0gCCuGjwRg1bPj8X7QauFu5+Dj9PVHTYfvAxnRcKuzd31EoUQ3aipqem4TfQaGhr4+WDbXb0v+OK/GPfthpmXwbmXd0eIR5HOvcLbJBk5Sdk1ZQwLjnQ7lhoSRXZNGQB2p4O82gqGHzZGq9EwLDjSNQaAxBRYnQM3PAjV5XDVJLjvdzJLIkQvYzQaGTx4MGFhYe0WP1NQaKqqPep4TH4O53/5EbUBgRx89OXuDtWlJRmRWiPCWyQZOUk1NguBBpPbsUCDCYvDhtVhp87WhBOFgDbGVNssR5/wtsfhi2wYNBS+eAfOMKv9KIQQvUZQUBDx8fGMGjWKkSNHEh8fT1BQkKvAmAYNw/RB+KEjJSiCmTHDmBAczeLnlwLw1z89yAvp39Pk8Exy0JI0Sede4S2SjPREMYPgs0z401Kor4HrzoLbLwXpHSFEr2M0GgkLC2Pw4MEMGj6UTy15ZNtrUYDfBQzllpTT+U3SOG748G386+v47rKFFEfFUNnUwC+lOR6JUZIR4W2SjJykQB8TNVb3GY4aqwWTzgeDTo+/jxEtGmrbGBPk4z5bcpTr7lUXuA4ZBd98BNPN8P2qrn4JQoiusncXnB6q9pF54SH4aS001Lse/qkkhyJnI2uthZSE+mDU+5CRkUH9ri3w6Vsw5yoS73jWNf6Hov0eCbslGZFmecJbTigZWb58OQkJCZhMJiZNmsTmze0vtnz11VeZNm0aISEhhISEMHPmzGOO722SAs1kVBW5HUuvKiIpUF0Br9fqiA8IJb2qdUGbU1HIOGzMMZkj4b874b7nockCt5wPfzgPLG3c4hFCeJfBCDWVah+Z156CG8+BKUFw5amw7F58Nq7G1KhWYB1jCiSlMh+fihIyGh0ULLgH5bHXSAgYSIjBD4CSxqPXlXRL2M3JiKwZEd7S6Toj7733HosXL2bFihVMmjSJZcuWMWvWLDIzMwkPDz9q/Pr167nyyiuZMmUKJpOJp59+mnPPPZc9e/YQExPTJS+iK1kcNkob61xflzXVk19XyQC9gVDTAD46sJ0qawOLUqYAMD1qCOsL9/LfA9uYGpFERlUxW0rzuHXkdNc5ZsYM483MTSQEhJIQMJB1BZlYnfajapEc05W3wnnz4ebZsHE1nDEQ/vKWx1bbCyE6YNAQ8A+CumpoWe/hdMCeXyF9G+c4HcwEnBoNuuattMnxKWTevoyi6ZdSdyCH6OhoV/M8DRqPhN2ygPXIAm1CeEqnG+VNmjSJU089lRdeeAFQt4LFxcVx2223ce+99x73+Q6Hg5CQEF544QWuvvrqDn1PTzbKy6wq5rld6446Pjk8kWtSJvNm5ibKm+q5c/RMt+e0FD0LNvpxfptFzzL56mA6NVaLWvQsaTyJHZkZacsnb8FjN4GtCcafAcu/AD//EzuXEKJr3XoBfP8lKO3vhGs0mth5/V1MOm8hxCWDRkN1dTXZ2dk4nU7y7XV8ZS1gcFAEi0fP8EjYW7Zswd/fn5SUFI98P9E/dPT9u1PJiNVqxc/Pjw8//JC5c+e6ji9cuJCqqio++eST456jtraW8PBwPvjgAy644II2xzQ1NbktpKqpqSEuLq7Hde31qroauPVC2LpBnRp+6GW4eKG3oxKif8rYru5+++Vbdd2Ivf21F9+cNZsPLpkPej03DDudUwbGotGoMyCFtZXsycwgBB8cKGhDAzg1aZhHXoJ07hXdoaPJSKdu05SVleFwOIiIiHA7HhERQUZGRofO8ec//5no6GhmzpzZ7pilS5fy6KOPdia0/sc/EN78Dta8Dw9do368txxeXA3Bod6OToi+y2qFbz+Gtf+DXT9D8cHWWzI6HQSbofyIomdaLWi08NAKKsaOw1mQDorCy+nfE+8fQnJgGOWWenZXFOJEIUkbwJmmSLSV9ezZs4fBgwdjNBq79WVpNBpplie8xqO9aZ566ilWrlzJ+vXrMZna30ly3333sXjxYtfXLTMjog2zfgvTL4Lb58KPa+DsSLhnGVxxs7cjE6JvKD4In/0bNq6BrF1QfViZd98B6m63U8+EOfNhxASwNMLkQPcExT8I/vkpnDKVSxQnVdYGfinNBSCvrpK8ukq3b1lnhOThw6g+VEJVVRW7d+8mLCyM2NhYV62SribN8oQ3dSoZMZvN6HS6o0odFxcXExkZ2c6zVM8++yxPPfUUa9euZfToYzeDMxqN3f5XQJ9iMsGK1eq237vnwZO3wIcvw4o16m4cIUTHOJ2wZQOsfk+9BZqfrfaIAdBoICQMJp8LZ1wAc65su2+MyRdSxkDaFnVGJHG4uq4rKh4AnUbLtSlTGBESxTeFe8mra01uAn1MTIsczIyYYQzwMWBODqC+vp79+/dTWlpKRUUFycnJBAQEdPlL12q1soBVeE2nkhGDwcD48eNZt26da82I0+lk3bp13Hrrre0+75lnnuGJJ55gzZo1TJjQsQZ04gRMmwMbyuGeK9S6JOfEwW1PwLX3eDsyIXqmuhq1Y/b6z9TkoayodeGpjwGiB8HYqXDub2DqbDW56IjxZ6jnO2suPPF/4DfA7WGtRsPkiCROC0+kzFJPja0Rk86HSN9AdEd8jwEDBjB69GgKCgooKipi7969BAYGkpyc3KWzJDqdTuqMCK/p9G6a9957j4ULF/Lyyy8zceJEli1bxvvvv09GRgYRERFcffXVxMTEsHSpWtb46aef5uGHH+bdd99l6tSprvP4+/vj79+xHSCe3E3TZ/yyHm6/RG1FnpACL3/l+stMiH5rfxp88Tb8tA4OZKgVjlv4B0FyKpw2Ey5YoG7TPVGlh2Dzt+rsiabrtudarVaysrJobGxEo9EQFxdHWFhYl5x737591NTUMH78+C45nxDQTQtYAebNm0dpaSkPP/wwRUVFjB07ltWrV7sWtebl5bll6y+99BJWq5XLL3evh7FkyRIeeeSRzn570VGnngnfl8MDV6ur/M9LhBsegFse83ZkQniG3Q4bvoC1H8KOTXAoD+zNtyG0WgiLhkkz4KyL4ZzfgJ9f133vsCg4f37Xna+ZwWAgNTWV8vJy8vLyyMvLo6SkhCFDhrTblK+jDu/c213rUoRoT6dnRrxBZkZO0s6f4bYLobIUohPgpdVql2Ah+pLyYvj8bfjhS9i7EyrLgOZfb0ZfiB8M46ersxWjT+v4LZceyul0cuDAAaqqqgAIDw8nJibmhBOJ/Px8SkpKGDFixDE3GAjRGd02MyJ6odGT4Nsi+MvN8OErMHc4/O52uPPZXv8LWfRjO36CVe/Clu8gLwssDa2PBZth4llw+hy44CqPLeS+f/MnlDfVH3V8etQQ5g8+tc3nbCnN45PcnZRb6gj3DeDSxLGMCm2tTq0oCp/l7uL7oiwaHTaSA83MH3wqEb7qupG6ujqys7MpKSmhoqKCpKSkdhe4NjQ0YDKZ2kxYDm+WJ8mI8DSZGelv9u5Ue9uUFqpTyS+thqHH3t0khNc1NKi3W779WC2tXlKollkH0PtAZDyMOQ1mXgbTLwS9d/7OqrVacNL6K7Wwvpplu79h8agZpARHHDV+f00pz+5Yy9zEMYwOjWFzSQ5rDqbzwCmziRkQDMDq/DRW5+/hmpTJmE0D+DRnJwUNVTwy/gJ8tDrXuVoWuAJtLnCtr68nIyOD0NBQEhMTj4olv/gQJQcL8Y8YiG+w+nvWX28k1DTgqLFCdJTMjIi2DR0N6wrgr3fC23+Hy8fCZdfDQytklkT0HPn71doem76G7D1QW9362IAASB2nrvc4/3cweIT34jxCgMF9RmF1fhphJn+GBh3dtwtgXUEmI0KjmBWrVj29OGEM6VVFrC/cy1VDJqIoCusKMpgTP5KxA2MBWJQymbt++h/by/I5NTzBda6YmBjCwsLIysqipqaG7du3Ex8fj9lsRlEUcnPVuiYVFRWYzWa32ZMKSz2v7tvExb6DWJ+fydYD5QDoNVoen3ChJCSi20ky0l/d/Tf47e/h97Pgv6+qW4Gf/0y9ly6EJzmdakGxrz+AbRuhMAdszVtMNVowR8C4aeqMx+wr1OrDvYDd6eDnkhxmxgxzlXs/UnZtGTNj3Mu9p4ZEsaP8IEDztl8Lw4NbbzP56g0kBpjJri1zS0agdYFrWVkZeXl55ObmUlxcTEhICI2Nja5xubm5pKamumZO6uxNVCrqNffTtL4t2BUndfYmQpFkRHQvSUb6s0FD4MtsWP4wvPoE/G6yWkXyL295bZpb9ANVFbDqHXWnS+Z2qCiBlrvFBhPEDVaTj9nzYML0Xjtjt738II12K1Mijr4l0qLGaiHQx302JdDHRHVzobUam5pABB4x4xJoaB3TFrPZTGhoKNnZ2VRXV3Po0CG3x5uamigpKXErVmnFiaIo+Gp65/UWvZu84wh1u+8l16mzJKveVSu5/v2/MPFsb0cm+oL0beoul1/XQ04mNB62wDMoVE08ps6G86/qU7VwNhbtZ0RoFMHGLtwy3AlarZbk5GQyMzOprz96UW1hYSGhoaEYDAYszVueFcCokbcF4XnyUydU0YPg0wx4/Rl4/gG4foZaPfKv78FJ1i8Q/UhTk7rIdF1LE7mCw3q06CEiVi2lPuMSOPuSPvuzVW6pJ72qmN+nTjvmuECDiRqb+wxHjc1CUPNMSKCPr3rMaiHI4Ns6xmohzj/4uHFUVVW1mYiAuksnLy+PAyYbn+TsBMCJggn3mZHKpgbi/aX5puhekowId9feAxddDb+frb6pnDEQnv4PTL/A25GJnuhQnjrrsXENZO2GmiOayA0dDaeepd7+Sx3nvTg97Mfi/QT4GBkVGn3McUkBZjKqitzWjaRXFpEUoPa8MZsGEOhjIqOqiDj/EAAa7TYO1JYxPWrwMc/tcDjIy8s75pjq6mp+Lj6ITVF3JjlQ8NHo3Mb8e9/PxA4IYaAsYhXdSJIRcTRzJHy4HVa+CM/crhZMm3wu/P2jrq1SKXoXp1O91bL6fdj6PRw8oolcaLh6u+WM8+G8+RDcP/+adioKPxZnMzkiCd0R6y/eyPyRYIMflySOBWBGTArP7lzL1wfTGRUazS+lueTWVfC7IRMB0Gg0zIgZxqr83YT7BmA2+fNJ7k6Cjb6MNR+7k3lDQwN2u93tmEaj4fBqDoqicK4xhncb9zPCHIPBoscInB83ko3F+6myNlJra+LdrF+4beSZJ31thGiPJCOifVfcrO5euPk82PQVTDfD42+oCwtF31dXA1+uhO8+g/QtUFbs3kQuJhFOmaqWUp9ybq9daNrVMqqKqGhqYGpE0lGPVTQ1oKF1Z01yYBjXp0zlk9wdfJyzg3DfAP6QOs1VYwRgVuxwrA47b+/bTIPdyuCgMP444iy3GiNtCQgIYNSoUVitVmw221EfxbVVGBTQomG+32CGRCZRUVFBY2MjFyWM5OyYoTy+9UuqrI3sriykpLGWcN+u7xYsBEjRM9FRn7wFj98E1iZ1weELn7e/xdLplDem3ihrj3rLZXNLE7na1scCgtUmcpPPhQsXQOzRb7Si91AUhT/9+AFNTjtmnS8Lw0ZQW1OL0WjE6XQyerRaCHF1/h4+ytkBwKWJY131UIToKCl6JrrWxQvhnMvg1gvg1+9gejg8+CJccq37uIztcMNMePL/YNocr4QqOsBuV2c81v5XLatedHgTOR2ER8Np56hN5GZeLrfn+hib00GTU72FEzIggCGDh1BVVUVOTg5OpxOHw4FOpyOxee0KQJ2tyVvhin5AkhHRcX7+8Pp6+OpDeHAhLLkO3n8JXlqjrg+w2eD+BVBdrvbB+SwTDEZvRy0Ayorcm8hVlbU+ZvKDpOEw4Ux1oenoSV4LU3iGXqtDq9HgVBRKLbUoKISEhGA0GqmqqkKnU28BlTS2zo6ZdPJ2IbqP/HSJzjv3cnV75h2XwsYv4exIuPs5dY3B/j3qmKI8+Pff4bp7vRtrf+R0wo5N6nqPliZyTS3VNzUQYobTZqhN5M6/CgYe3TNF9G1ajYbhwZHsqTxElbWRLWX5nBo2CD8/P/yaZ8EcTifrD+11PWd4cJS3whX9gKwZESfn+y/hnnnu6wtaGE3wxX51yl90n4YG+Op9WP+J2kSutFBNSEBtIhc1CMZMhnMuV2+dSXVdAewoP8iLaRsAMGr1XJ50CqeFJ2LQ6Smor+J/B7axu1Kt3BrvH8L9Y2e3W9ZeiPZ09P1bkhFx8hobYWY01Fa5H9fp1N04S992HcqpLaewvhqtRkOocQBm0wBpwtVZufvg83/DT2thfxrUHd5ELlC95TJpBlzwO/VzIdqgKAor0r9ne3MfHFAb4/nqDdQeVohNr9GyePQMkgPDvBGm6OVkAavwnA9eOjoRAXA44It34IpbyRyUyOd5u9hbXeI2RIOGO0ad3WZ7dUFzE7nV8NUHsH0jFOYe0UQuUu3fMv0imP1btaOtEB2g0Wi4fthU3szcxK9lanE0u+J0S0T89AZuHHa6JCKi28nMiDg5eVlwyUhob6W9RkNN0jDuuf1+lHa2+xq0Om4ZMZ1hh3Um7bcqy9T+QC1N5CpLW5vIGU0Qmwzjp8HsK2Hc6bKFWpw0RVHIqS3nu0P72F9Tis3pJNjoy6TwBE4LT8RX3zdL9gvPkJkR4Rnv/lNNRHQ6tQrnERUfURQC96dz7tefsWbWxQQZTCQHhmFzOMisLsHqtGN1OngxbQMPnXIeYf2tqNKeX9Xk45dv1dsvbk3kBsL4M9Sqphf8Tu3rIkQX02g0JAaaSQw0H3+wEN1EkhFxcm58CEZOVHuUFOWptxEOZkPxQbA0uIZd8un7xA4bz4T5d6JtrhzZaLfxWuZGdlUU0uSws7YggysHn+qtV9L9LBb45iO1idzuX6DkoHorC9QmcpFxMGoSzLwUzry4zzaRE0KII8ltGtFtcg8d4M3v3mNwViZnbd5IdM4+OHsuPPAihKnbBOttVu7d/BFWpwOTTs+zp1123DLXvUZBrrrQdNNXzU3kKlsf8/OHhBS1idz5V8GwsV4LUwghuovcphFed1DjpDAmnsKYeMKvuYfo9DR44mY4LxEuWggPv8wAHwMjQ6LZWp6PxWGn3FJHpF+Qt0PvPKcTNn8La95Tm8gVHFBL50NzE7kIOP08tT7LeVdCUIh34xX9Tktp97OjU5iXPL7dcVtK8/gkdyflljrCfQO4NHEso0JjXI8risJnubv4viiLRoeN5EAz8wefSoSv/KEoTpwkI6LbHD7lptNo1XLyp54Jc5Igp7WYku6wRZjOHj9P16ymCr78D2z4HNK3QXlR60JTH6PaRG7cVDj3t3DaTFloKrwqp7acDYeyiD2sAV9b9teU8q+MjcxNHMPo0Bg2l+TwUtr3PHDKbFfzvjUH0/mmMJNrUiZjNg3g05yd/HP3tzwy/oK+M6spPE6SEdFtIg5bjLq9/CBnx6RA8EAw+sLEswCwOuzsqSwE1HoGoaZj90CpsNRTZ3ffueOvN3Z/rZJ9u9VbLj+vg5xMaKhrfSwgGMZOUZvIXbAAYhO7NxYhOsHisPFa5o8sGDKJVfm7jzl2XUEmI0KjXA3xLk4YQ3pVEesL93LVkIkoisK6ggzmxI9k7EB1QfWilMnc9dP/2F6Wz6nhCd39ckQfJcmI6DbJgWGE+wZQ0lhLZnUxGw5lcUZEElSUQEMdDsXJyv2/0tDcoG1C2CBMOp92z1dhqeehXz/D3tLGvpleo+XxCRd2XUJitcL6z2Ddf2Hnz+rCXEfzLiGtDsJjYMosmHEJzLgMTKau+b5CdIP/ZP3KqJBohodEHjcZya4tY2bMMLdjqSFR7GgujFZmqafGZmH4YdvwffUGEgPMZNeWSTIiTpgkI6LbaDUaZsem8n/7fgbgnazNbN23ldsVhQPFOfzr188os6hbWXUa7VG/BA/XaLfxRf7uoxIRUAs1VVkbTjwZKSlUm8ht/BL27YKq8tbHTH6QPKL59tJ8GDXxxL6HEF7wS0kOeXUV3H/K7A6Nr7FaCPRxT64DfUxUW9VCaDU2tcdRoOGIMYbWMUKcCElGRLeaEpFEYUM1awsyAKjPU9eK7NI4XYmIVqNh0dDTiPNve1FnjbWRv+/6hsKG6jYfB1i5fwuLR8845swKoC403f4jrPoPbN0A+fvdm8iFmuG0c9QeLnPmw8Dwzr1gIXqIiqZ63sveyu2jzpK1HKLHk2REdCuNRsPliacQ5x/CV/nphFSqsw7VQcEADA+O5IL4kQwOavtNv6V/RksiogGGBIUz0DSAQ/U15NSp58utq+D/9v7MjcNPdz9BQx2sfg+++0wtMFZ2yL2JXHSC2kTu3N+oxcWkiZzoI/JqK6i1WXhi62rXMScK+6pLWF+4l+Wnz0OrcV9YHWgwUWNzn+GosVkIap4JCfTxVY9ZLQQZfFvHWC3E+Qd30ysR/YH85hXdTqPRcFp4IpPCEqjYuQuA00ZNY/aEC49bcTWjqpj9NWUABBt8uX3U2UQdtvU3u6aMf+7+lkaHjS1leRSn/0rE2o/VhabZaVBX03oy/0C1QNukmWpF08SULn+tQvQUw4IjeXjcHLdjb+39iUi/QGbFph6ViAAkBZjJqCpyu2WaXllEUoBandVsGkCgj4mMqiLXTGaj3caB2jKmRw3uxlcj+jpJRoTHaDQaBtaqycGQlPHQgdLvPxRluT6/PGmcWyKC00nSwVzuef8ddLt+ZmBFKfqWiqZaLZij1KJiZ14Es36rFhoTop8w6X2I0Qe7HTPq9AzQG13bdN/I/JFggx+XJI4FYEZMCs/uXMvXB9MZFRrNL6W55NZV8Lsh6lopjUbDjJhhrMrfTbhvAGaTP5/k7iTY6MtYc5wHX53oayQZEZ5V0dy1NyahQ8Nbbs/oNFrGDWz+Zffj13DfVWr32rpqogCbjw/F4VGUjxjP6N/dpW61ldoeQhxTRVMDGjSur5MDw7g+ZSqf5O7g45wdhPsG8IfUaa7kBWBW7HCsDjtv79tMg93K4KAw/jhC1qWIkyPJiPCsSvWWywnNUmhQC4u98jjUVcOCO+C0mdQkDOWefT8A6jbE0SNPP/Z5hOin7hw985hfA4wPi2d8WHy759BoNFyUMJqLEkZ3eXyi/5JkRJyUvdUlfHUwjby6Sqqtjfxh+LRjT9dWV2DzMfD01i851FBNiNGPOfEjmRKR5Dbs28K9fH0wnYomdceNQ3Gys7yAU77/Wi23/sLncMb5AGwpyHQ9L1JKUgshRK8j89jipFgddmIHhHBl8oQOjW9srKXUHEZKcAQPjjuPGTEp/Hvvz64qrAC/lObyYfZWzo8fyfzk1i6+X/6yGufTt8PF17gSkfy6Sj7P2+Uac3pkcpe8LiGEEJ4jMyPipIwMjWZkaHSHx5fgBIOJ3ySNAyDKL4is6lLWFmQyIkQ9z9qCDE6PTGZqZDJORWHDoX2EbvyKG994Aaei8M7cKxiYt4fcunJ2lhfgbO6CMzo0xu3ethBCiN5BkhHhUXa7DZPO/ccuNSSK97O3qo87HeTVVnBec28MbeYO/vzPJ/HZthGAvNhB/NBQDrnlbudI8A9lUcpkD7wCIYQQXU2SEeFR+iYLygD3Lb2BBhMWhw2rw06D3YoTheDaanj+Efj4DXya6yEowJ5TJrk/18fEGVGDOTc2FaNOfpyFEKI3kt/ewqN8G+upDzvGbZ0mC7PXfEL8muvAblN3zyhq7RANcM6ps0kaNYNGhw1/vYGEgIHoZUuhEEL0apKMCI/ya6inODDI7ViN1YJJ54Nh6w/43L+AucUFaJrXgRxJHzeYlOAIT4QqhBDCQ2Q3jfAo38YGDga7N8RLryoiKdAMa/+Lpvhgu4kIADGJ3RyhEEIIT5NkRJwUi8NGfl0l+XWVAJQ11ZNfV0lFc0fejw5s543MH9XBVRXonE5KAvz574FtFDVUs75wL1tK85gZkwL3LIO7n8Op98HRRvVURaeHsChPvTQhhBAeIrdpxEnJra3guV3rXF9/0LwrZnJ4ItekTKba2khFU4P6YGEOADP8zLxZWcQ3BZkYdHpCjH68nP4DBq2OpPHj+c07mwi48Vx01RVu30sTHgM6dX3IltI8PsndSbmljnDfAC5NHMuo0BjXWEVR+Cx3F98XZdHosJEcaGb+4FOJkKJoQgjR40gyIk5KSnAEL0+b3+7j1xy+3bYoH4DYsFgeHHceAP/Y/S2nhg0iwT8Uh6Lwcc4O3ty/ibuqK2BgBFRXgOIEhwPi1a6g+2tK+VfGRuYmjmF0aAybS3J4Ke17HjhltqvOyJqD6XxTmMk1KZMxmwbwac5O/rn7Wx4Zf4H00BBCiB5GbtMIzykpUP8b3jqD8aeRZzElIonoAcHE+YdwTfIELn5rOTajCT7YDh/ugKFj1MGxasn4dQWZjAiNYlZsKlF+QVycMIZ4/xDWF+4F1FmRdQUZzIkfydiBscQOCGFRymSqmhrZXpbvyVcshBCiAyQZEZ5Tekj9b1T7Tbh46BqGZmVQfdvjYI6EpOHwzs/w6GtqYzwgu7aMYcGRbk9LDYkiu1ZtwldmqafGZmH4YWN89QYSA8yuMUIIIXoOuU0juo/NBnn7wD8IAkOgvEg9Hp3Q5nDnprWYvvmELaedyfir72p9QK+HS651fVljtRDoY3J7bqCPiWqrRX3c1qgeMxwxxtA6RgghRM8hyYjoPq8+ASsebf1ao1H/O28cBA2EEDMkDoPFfwW7nbJHFqELDCbp0Te9Eq4QQgjvkNs0ovtMPMv9a6W5fkj+fti9Gb5fBZ+/DRoNW5cswFxUgO6GBwmJGnTM0wYaTNTY3Gc4amwWgppnQgJ9fNVjR8yC1FhbxwghhOg5JBkR3Wf8GZCQ0joj0gblzmf5/Ms3GLXmIxpTxxF81Z+Oe9qkADMZVUVux9Iri0gKMANgNg0g0MfkNqbRbuNAbZlrjBBCiJ5DkhHRfTQauOpPtFlQVaeDkRNZmZzEiBVPouj12P/xMdXWRqqtjVgddtfQNzJ/5KMD211fz4hJYU/lIb4+mE5RQzWf5e4kt66CM6OHNn9bDTNihrEqfzc7yg9SUF/FG3s3EWz0Zaw5rptftBBCiM6SNSOie124AOVvd6GxNLgdVhxONA++iM97zzEoN5tn73iI/ZkbXI8vHHoaUyLUrbwVTQ1oaJ1dSQ4M4/qUqXySu4OPc3YQ7hvAH1KnuWqMAMyKHY7VYeftfZtpsFsZHBTGH0ecJTVGhBCiB9IoinKMRiA9Q01NDUFBQVRXVxMYKBU0e5MKSz07776Mad9/jc7pBMCh0fLT5OmMuvwWAhdfDqnjYeWvXo5UCCFEV+vo+7fcphHdqs7exDdnzHQlIgA2gw+fzp6L//1Xg94HVnzlxQiFEEJ4myQjoltVWOopjowmY2gqCurykY8v/C0LVr6u3rq5fzkEh3o7TCGEEF4kyYjoFkpzn5mX0r8H4JszZ6EBLEYjFSGhjEjbQc3QUXD5Dd4NVAghhNdJMiK6xSe5O/kyf4/r6/SUEQBsHj+Z695agUOn5+EbbuPX0lxvhSiEEKKHOKFkZPny5SQkJGAymZg0aRKbN28+5vgPPviAYcOGYTKZGDVqFKtWrTqhYEXvUNxYw+rmREQDzIkbwdIRZwMwpbwKg7WJd65YhMVvAO9m/YrN6fBitEIIIbyt08nIe++9x+LFi1myZAlbt25lzJgxzJo1i5KSkjbH//jjj1x55ZVcd911bNu2jblz5zJ37lx279590sGLnmnDoSxXaZE58SO5OGEM/o1qvxifvTvhtHOov+AqAOrtTWwpzfNSpEIIIXqCTicjzz33HDfccAOLFi0iNTWVFStW4Ofnx+uvv97m+H/84x/Mnj2bu+++m+HDh/P4448zbtw4XnjhhZMOXvRMaZVqd14NGs6OTlEPVpSq/41NQvPCZ8yIGeYav6d5vBBCiP6pU8mI1Wply5YtzJw5s/UEWi0zZ85k06ZNbT5n06ZNbuMBZs2a1e54gKamJmpqatw+RO/R6LAB4O9jxN/HqB78cY363/ueB4ORSL/W/eZNzeOFEEL0T51KRsrKynA4HERERLgdj4iIoKioqM3nFBUVdWo8wNKlSwkKCnJ9xMVJCe/exF+vJiC1Ngtlljr14B+WwKvrYPI5AByoLXeNH9CSsAghhOiXeuRumvvuu4/q6mrXR35+vrdDEp1wymH9X1bl7UZRFDAYYdLZoNNhdzpcC1wBxkm/GCGE6Nc61ZvGbDaj0+koLi52O15cXExkZGSbz4mMjOzUeACj0YjRKH8t91anRyazKm83dsXJxuJsGuw2ZsakEO4bwIHacr7M3+OaGTGb/BkREuXliIUQQnhTp2ZGDAYD48ePZ926da5jTqeTdevWMXny5DafM3nyZLfxAF9//XW740XvF2TwZf7gU11fbyvP568713L3zx/xYtoGVyLio9VxbcpktJoeOUEnhBDCQzrdtXfx4sUsXLiQCRMmMHHiRJYtW0Z9fT2LFi0C4OqrryYmJoalS5cC8Kc//Ynp06fzt7/9jfPPP5+VK1fy66+/8sorr3TtKxE9ytTIZHy0Ov6z/1ca7NajHjebBnBtyhSSA8O8EJ0QQoiepNPJyLx58ygtLeXhhx+mqKiIsWPHsnr1atci1by8PLTa1r90p0yZwrvvvsuDDz7I/fffz5AhQ/j4448ZOXJk170K0SNNDE9g7MBYfinNJb2qCIvDhr/eyCnmOEaFRsuMiBBCCAA0iqIoxx/mXR1tQSyEEEKInqOj79/yp6kQQgghvEqSESGEEEJ4VafXjAjxXeE+vju0j/ImtaBZlF8QF8SPYmRodLvP2VKaxye5Oym31BHuG8CliWMZFRrjelxRFD7L3cX3RVk0OmwkB5qZP/hUInzltpwQQvR1MjMiOi3Y6MsliWO4/5TZ3D92NsOCI3kxbQOF9VVtjt9fU8q/MjYyNTKJB8edx9iBsbyU9j0Fh41fczCdbwozuWrIRO4dey5GrZ5/7v5WOvoKIUQ/IMmI6LQxA2MZFRpDhG8gEX6BzE0Yg1GnJ/uwEu+HW1eQyYjQKGbFphLlF8TFCWOI9w9hfeFeQJ0VWVeQwZz4kYwdGEvsgBAWpUymqqmR7WVSfVcIIfo6SUbESXEqTn4pycHqsJMUYG5zTHZtGcOC3SvupoZEkV1bBkCZpZ4am4Xhh43x1RtIDDC7xgghhOi7ZM2IOCEF9VU8vf0rbE4HRp2e36dOI3pAUJtja6wWAn1MbscCfUxUWy3q47ZG9ZjhiDGG1jFCCCH6LklGxAmJ8A3gwXHn0Wi3sbUsjzczf+LO0TPbTUiEEEKI9shtGnFC9Fod4b4BDAoI5ZLEscT6B/NNYWabYwMNJmps7jMcNTYLQc0zIYE+vuqxI2ZBaqytY4QQQvRdvWJmpKVIbE1NjZcjEe2x2e00NFna/H8Ubwpid9lBJga0bv3dXVZArG8gNTU1GBSFAL2R7UU5BIXrALA4bByoLWNicIz8fxdCiF6q5ff3cYu9K71Afn6+AshHD/k49cZ5SuSYYYp/pFkJSYpTTr1xnnLD+n8rMRNGKoBy5v2/V069cZ5rfMTIIcr137yljJo3RwmKj1LGL7pUuW7dW0pIYqxrzJj5FygLv3hFGTR1nBKSFKec+8QdyhUr/67oDD5ef73yIR/yIR/ycXIf+fn5x3yf7xW9aZxOJ4WFhQQEBKDRaLrsvDU1NcTFxZGfny89bzrh/fwdZNWWUWNvwqTTE2UK5KzwZIYGqB14X8r6kRCDH1fEjwXU63zGgsuYt/Requ1NmI0DOD9qGMMDI1znVBSFr4r38lN5HhaHjYQBoVwaO5Iwo783XmKvJT/TniHX2TPkOntGd15nRVGora0lOjrarYnukXpFMtJdpAGfZ8h19hy51p4h19kz5Dp7Rk+4zrKAVQghhBBeJcmIEEIIIbyqXycjRqORJUuWYDQavR1KnybX2XPkWnuGXGfPkOvsGT3hOvfrNSNCCCGE8L5+PTMihBBCCO+TZEQIIYQQXiXJiBBCCCG8SpIRIYQQQnhVn09Gli9fTkJCAiaTiUmTJrF58+Zjjv/ggw8YNmwYJpOJUaNGsWrVKg9F2rt15jq/+uqrTJs2jZCQEEJCQpg5c+Zx/7+IVp39mW6xcuVKNBoNc+fO7d4A+4jOXueqqipuueUWoqKiMBqNDB06VH5/dEBnr/OyZctISUnB19eXuLg47rjjDiwWyzGf099t2LCBCy+8kOjoaDQaDR9//PFxn7N+/XrGjRuH0Whk8ODBvPnmm90bZDe3lfGqlStXKgaDQXn99deVPXv2KDfccIMSHBysFBcXtzl+48aNik6nU5555hklLS1NefDBBxUfHx9l165dHo68d+nsdZ4/f76yfPlyZdu2bUp6erpyzTXXKEFBQcrBgwc9HHnv09lr3eLAgQNKTEyMMm3aNOXiiy/2TLC9WGevc1NTkzJhwgRlzpw5yg8//KAcOHBAWb9+vbJ9+3YPR967dPY6v/POO4rRaFTeeecd5cCBA8qaNWuUqKgo5Y477vBw5L3LqlWrlAceeED53//+pwDKRx99dMzx2dnZip+fn7J48WIlLS1Nef755xWdTqesXr2622Ls08nIxIkTlVtuucX1tcPhUKKjo5WlS5e2Of63v/2tcv7557sdmzRpknLTTTd1a5y9XWev85HsdrsSEBCgvPXWW90VYp9xItfabrcrU6ZMUf71r38pCxculGSkAzp7nV966SUlKSlJsVqtngqxT+jsdb7llluUs88+2+3Y4sWLlalTp3ZrnH1JR5KRe+65RxkxYoTbsXnz5imzZs3qtrj67G0aq9XKli1bmDlzpuuYVqtl5syZbNq0qc3nbNq0yW08wKxZs9odL07sOh+poaEBm81GaGhod4XZJ5zotX7ssccIDw/nuuuu80SYvd6JXOdPP/2UyZMnc8sttxAREcHIkSN58skncTgcngq71zmR6zxlyhS2bNniupWTnZ3NqlWrmDNnjkdi7i+88V6o77Yze1lZWRkOh4OIiAi34xEREWRkZLT5nKKiojbHFxUVdVucvd2JXOcj/fnPfyY6OvqoH37h7kSu9Q8//MBrr73G9u3bPRBh33Ai1zk7O5tvvvmGq666ilWrVpGVlcXNN9+MzWZjyZIlngi71zmR6zx//nzKyso4/fTTURQFu93O73//e+6//35PhNxvtPdeWFNTQ2NjI76+vl3+PfvszIjoHZ566ilWrlzJRx99hMlk8nY4fUptbS0LFizg1VdfxWw2ezucPs3pdBIeHs4rr7zC+PHjmTdvHg888AArVqzwdmh9yvr163nyySd58cUX2bp1K//73//44osvePzxx70dmjhJfXZmxGw2o9PpKC4udjteXFxMZGRkm8+JjIzs1HhxYte5xbPPPstTTz3F2rVrGT16dHeG2Sd09lrv37+fnJwcLrzwQtcxp9MJgF6vJzMzk+Tk5O4Nuhc6kZ/pqKgofHx80Ol0rmPDhw+nqKgIq9WKwWDo1ph7oxO5zg899BALFizg+uuvB2DUqFHU19dz44038sADD6DVyt/XXaG998LAwMBumRWBPjwzYjAYGD9+POvWrXMdczqdrFu3jsmTJ7f5nMmTJ7uNB/j666/bHS9O7DoDPPPMMzz++OOsXr2aCRMmeCLUXq+z13rYsGHs2rWL7du3uz4uuugizjrrLLZv305cXJwnw+81TuRneurUqWRlZbmSPYC9e/cSFRUliUg7TuQ6NzQ0HJVwtCSAirRZ6zJeeS/stqWxPcDKlSsVo9GovPnmm0paWppy4403KsHBwUpRUZGiKIqyYMEC5d5773WN37hxo6LX65Vnn31WSU9PV5YsWSJbezugs9f5qaeeUgwGg/Lhhx8qhw4dcn3U1tZ66yX0Gp291keS3TQd09nrnJeXpwQEBCi33nqrkpmZqXz++edKeHi48pe//MVbL6FX6Ox1XrJkiRIQEKD85z//UbKzs5WvvvpKSU5OVn7729966yX0CrW1tcq2bduUbdu2KYDy3HPPKdu2bVNyc3MVRVGUe++9V1mwYIFrfMvW3rvvvltJT09Xli9fLlt7T9bzzz+vxMfHKwaDQZk4caLy008/uR6bPn26snDhQrfx77//vjJ06FDFYDAoI0aMUL744gsPR9w7deY6Dxo0SAGO+liyZInnA++FOvszfThJRjqus9f5xx9/VCZNmqQYjUYlKSlJeeKJJxS73e7hqHufzlxnm82mPPLII0pycrJiMpmUuLg45eabb1YqKys9H3gv8u2337b5O7fl2i5cuFCZPn36Uc8ZO3asYjAYlKSkJOWNN97o1hg1iiJzW0IIIYTwnj67ZkQIIYQQvYMkI0IIIYTwKklGhBBCCOFVkowIIYQQwqskGRFCCCGEV0kyIoQQQgivkmRECCGEEF4lyYgQQgghvEqSESGEEEJ4lSQjQgghhPAqSUaEEEII4VWSjAghhBDCq/4fpXrkWtXdqScAAAAASUVORK5CYII=",
+ "image/png": "iVBORw0KGgoAAAANSUhEUgAAAiMAAAGdCAYAAADAAnMpAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjcuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/bCgiHAAAACXBIWXMAAA9hAAAPYQGoP6dpAADL/0lEQVR4nOzdd3xUVdrA8d/cKZm0mfTeAwRCIIHQm6AoImLvrnXVV1fUFXtB7Ozq6lrXstZddcWyiG1VuvSSEEJJIyG99zr1zvvHhIFAAgSSTMr57icfJ/eeO/fMMpn7zLnnPI/CZrPZEARBEARBcBLJ2R0QBEEQBGFoE8GIIAiCIAhOJYIRQRAEQRCcSgQjgiAIgiA4lQhGBEEQBEFwKhGMCIIgCILgVCIYEQRBEATBqUQwIgiCIAiCU6mc3YFTIcsypaWleHp6olAonN0dQRAEQRBOgc1mo6mpiZCQECSp6/GPARGMlJaWEh4e7uxuCIIgCIJwGoqKiggLC+ty/4AIRjw9PQH7i9HpdE7ujSAIgiAIp6KxsZHw8HDHdbwrAyIYOXxrRqfTiWBEEARBEAaYk02xEBNYBUEQBEFwKhGMCIIgCILgVCIYEQRBEATBqUQwIgiCIAiCU4lgRBAEQRAEpxLBiCAIgiAITiWCEUEQBEEQnEoEI4IgCIIgOJUIRgRBEARBcKpuByO///47CxcuJCQkBIVCwXfffXfSY9avX8/48eNxcXFh2LBhfPLJJ6fRVUEQBEEQBqNuByMtLS0kJiby9ttvn1L7Q4cOsWDBAubMmUNaWhp//vOfue222/j111+73VlBEARBEAafbtemmT9/PvPnzz/l9u+++y7R0dG88sorAIwaNYpNmzbx97//nXnz5nX39IIgCIIgDDK9Pmdk69atzJ07t8O2efPmsXXr1i6PMRqNNDY2dvgRBEEQBGFw6vVgpLy8nMDAwA7bAgMDaWxspK2trdNjli1bhl6vd/yEh4f3djcFQRAEQXCSfrma5rHHHqOhocHxU1RU5OwuCYIgCILQS7o9Z6S7goKCqKio6LCtoqICnU6Hq6trp8e4uLjg4uLS210TBEEQBKEf6PWRkalTp7JmzZoO21atWsXUqVN7+9SCIAiCIAwA3Q5GmpubSUtLIy0tDbAv3U1LS6OwsBCw32K58cYbHe3vvPNO8vLyePjhh8nMzOQf//gHX331Fffff3/PvAJBEARBEAa0bgcju3btYty4cYwbNw6AxYsXM27cOJ566ikAysrKHIEJQHR0ND/99BOrVq0iMTGRV155hQ8++EAs6xUEQRAEAQCFzWazObsTJ9PY2Iher6ehoQGdTufs7giCIAiCcApO9frdL1fTCIIgCIIwdIhgRBAEQRAEpxLBiCAIgiAITiWCEUEQBEEQnEoEI4IgCIIgOJUIRgRBEARBcCoRjAiCIAiC4FQiGBEEQRAEwalEMCIIgiAIglOJYEQQBEEQBKcSwYggCIIgCE4lghFBEARBEJxKBCOCIAiCIDiVytkdGKxqDS00W4wdtnmoXPDRujupR4IgCILQP4lgpBfUGlpYsusHLDa5w3aVQuK5CQtFQCIIgiAIRxG3aXpBs8V4XCACYLHJx42WCIIgCMJQJ4IRQRAEQRCcSgQjgiAIgiA4lQhGBEEQBEFwKhGMCIIgCILgVCIYEQRBEATBqUQwIgiCIAiCU4lgRBAEQRAEpxLBSA9rNLWx4lBal/tLWur7rC+CIAiCMBCIDKw9qMHUxkt7VlFtaO6yzWc5O/BxcSfOK7APeyYIgiAI/ZcIRnrQx1lbHYGIq1LNOL9wwty8qDO1kVpdSI2xBYtN5t2MjTw4di7Wo7K0iro1giAIwlAlgpEeUtxSR0Z9OQBeGlceTZqHt4ubY/8lUWN5+8DvHKgro9Vi4vnd/0O22Rz7Rd0aQRAEYagSc0Z6yPbKfMfj88PjHYFIndEMgEpScmX0OEebowMREHVrBEEQhKFLBCM9pM7Y6ngc7xUMQHptE37fbODi9WmUtRkJcffCW+PW1VMIgiAIwpAkbtP0EJXiSFzXbDESCER4aBmhc+P7kmp+XrGRRG9PhrlY0Kud109BEARB6G/EyEgPifb0czzeXJ4LgJdGza75k0n08kAjSaTUNrG8TM/XZd5UGEQcKAiCIAgggpEeMykgChelPcDYXJHHb8UZWGQr7iolP85OxFUCFTJ+ajN1ZhUrK735qtSHMhGUCIIgCEOcwmY7ZiZlP9TY2Iher6ehoQGdTufs7nTp1+ID/PeohGeeahciPHyoNjSzrtLEpjo9AL4qMyigxmwPRPQqKzN9GrkgNIhb46Y5ghpBEARBGMhO9fotRkZ60Hmho5gXFu/4vclsZH9dGRVtTYz0MKLAHvfVWFTUmNVoFTJ6lZUGi5IfK715dG8ri7auxWS1OOslCIIgCEKfE8FID1IoFFwWncRDY+eS7BeB8qhJrWHuekJcTIANUABgsClptKhQosBTKdNoUfJBgYLwFb/zc0m1c16EIAiCIPQxcT+gFwzTBzBMH4BVlmmzmtBIKj7J3kaItppSo4aj74vZACvQKisB8FGbqTLCgvVpRLppeWPiCC4KC3DGyxAEQRCEPiGCkV6klCQ8JC0mq4XdNUUEu6iwtY+KdMZFghnezfhozJSaY1hT2czFG9IJc3PhtfFxXB4pghJBEARh8BG3afpAk9mIbLPh72JG2UksolRAiKsLn0yOIEhrRiPBgyP11F8xmxujgyhvM3HFpnRC//s7y/PL+/4FCIIgCEIvEsFIH1BL9lswSgWEux6/eCle707K/Mn4aqyObRpJhYdGxafTEmi46ixuiQmh0mDmms37CP72d/6dV9pn/RcEQRgsag0tFDbXOn5qDS3O7pKAWNrbLQaLmZUF6aTVFNFkNhLu7s3VsclEefp2eUxWfQVf56VS1FIHwK56d/Y0uWNt/3/dRVJwa5QGvbKG2qNSyi8ZP58wd+9jzm/hzyk5fJRbitlmw99FzV+ShnHrsNCef7GCIAiDTK2hhSW7fsByVMV0UaS0d4mlvb3gXznbyagv55a4aTw1/gLivYP4+961HerSHK3a0Mxb+9cT5xXIvLBRAAS5mByByAuJsdwW7YrJXIS7ysVxnIQCndr1uOfTqlS8O3kUzVfN4U/Dw2gwW/jj9gz8vtnAeznFPf+CBUEQBpFmi7FDIAKiSGl/IYKRU2SyWthdXcTl0UmM0AcQ4OrJwsixBLh6sKEsp9NjNpTl4Kf14MqY8VwQkUCwq44gFzPhWiNz/RpoM+zDZCri0yI/Pimw5xZRosBNpWFLRW6XfdGoJN6eNJKmK+fw57hwms0W7tyRic/X63krq7BXXr8gCIIg9BYRjJwi2WZDxoZKoeywXS2pyG2s6vSYvMZqRnoFAaBVqrlvzNn4aV2ZH9BAjJuRyrYmmiw2LEjktrqS0ezO/8XPJMEnhLzGk+cZ0agk/j4hjuar5/DgqAjaLDL37MrG+6v1vHqgAFmWT/ocgiAIguBsIhg5RVqVmhhPP34u2ke9sRXZJrOt8hB5jdU0mNo6PabRbECn0Tp+93Zx49rYCQBEevgAR/KLAGysdee7EiOeahcazIZT7ptKknh5/Aiarp7No/GRGGWZB3bn4P3NBl7af0gEJYIgCEK/JoKRbrg1bio2Gzyy4zvu3rScdSVZTPSPRHGC3CHHUkr2/8sfHDuXv0y8mGZLx3+Cp/ce4pP8Fk5nWrFKklg2bjjNV81mSUI0FtnGI2m56L/ewPN780RQIgiCIPRLIulZN/i7evJg4lyMVgsGqxm9xpX3Mzbhp/XotL1OraXR1HGEo9FkQKtUo1GqkBQKWq1KJODoMOGnMiO1RhWPyDaU0qkHOodJksSzibE8PSaaF/bn89KBApak5/GXA/k8OCqSpxKikSQRhwqCIAj9g7ginQYXpQq9xpUWs4kDdWUk+oZ12i5G50dmfcckZRn15cTo/ABQSUoUkhuKTuKNrbU2rt60F5P19EczJEliyZgYGq48i2VJsUgoeGbvITy+Ws/ju3PESIkgCILQL4iRkW7YX1eKzQZBbjoq25r49tBugtx0TA+MAeA/B3eyt7YUg9WMSbbirXGjztTKt4d2Mz0whsz6ClKqClmUcJbjOW1osdqM0Mmtnv8WVXLRhjQejnNndUkmDaY2wjy8uSY2mWhPv1PutyRJPDo6modHRfL3zCKe25fHsgMF/D2riHtGhPNiUiwqMVIiCMIglt9Uw1e5KZ3u21lVQJi7N1Jn3wyFPiGSnnXDrqoCVuTvod7YiptKw3i/cC6JSsRVpaHFbOKxHd/holTxp9Gz8FRr7atlTAZWlWRS1tqAl4sbCyISmNYevFQbmhn1wyaqTcfHhCqFAovNRqirmgV+Zdw4YiLRnn6sKc0ktbqQZ5IXdpgc212vZxbyzN486kwWtJLEXSPCeGncMBGUCIIw6OytLeHdAxuPyzFytMkBUdw8YqoISHrYqV6/RTDSQ/57KI3cxioeSjz3lI/59tBubtxeTavV/uZXYK/iq1TYuC4qmJtiQthWtpMYTx+uHTYRsC8xfmzHd8wJGcH54aPPuN/vZBexZE8uNSYLLpKC24eF8sq4EWhUIigRBGHgqzY080zKT5hke7kNvUbLaO8QXJVqchuryW+ucbS9NCqxRz5XhSNO9fotbtP0kPSaYuK9g3kvYyM5DZV4adw4K3g4M4OHdXlMTkPHQGRWgBebq+qIdjXyr2kJWGQr3+TUsiA83nGMpFAw0ivolPKQnIq7RoRz14hwPjhYwuNpB3kru5j3D5Zwa2wIfx8/HK1KvEUEQRi41pVmOwKR8b7h3DpymqNeGMDu6iLey9iIDVhdksk5oSM77Bf6hvj620OqDM1sKMshwNWTexPmMCt4OMvzUthakdflMc1mA+cHubIsaRgFl8xg/bkTmOjjSn6bhvLWVprNRmRseB5zO0an0XYrD8mpuG1YKJVXnMUnU+Px1qh5N6cE3VcbuG3rAVotlh49lyAIQl+QbbLjM1ilkLh++ERHoHH4psA4v3DG+0UA9grre2tLnNPZIU4EIz3EBkR4+HBpVBIRHj7MCh7GjKDYLlPFAygUcO8ILx4dHUW4uz3guD3WH7NN4oV9+X3T8WPcFBNC+eWz+HzaaPy0aj7MK0X/1QZu3rKfZpMISgRB6F9ONNOgxWyixWICYLg+AA+1lsyWTM7bfR7BG4Mxy2bAHpAcVtnW1LsdFjolxuB7iF6jJdhN32FbsKue3dVFXR7TWR6SEZ4qAjRmlhdW8fcJcUgoaOokV4leffqTV0/FddHBXBcdzFcF5SxOyeHTQ2V8ll/G1ZGBvDNxFDpN7751ag0tHYpXeahcRFVNQRCOc+OBG/mm8ht81b4EaYIIcQkhSBNEoCYQL6UvefIhJJuK0uZWvt21lE0NmwAY6z4Wq2xFLamxtN/GAbqVxFLoOSIY6SGxOn8q2ho7bKtoa8THpesLaIzOj321pR22ZdSXk6iXWFVl5kBDKxGePmTUV5DUHrnLNhuZ9eXMCRnR8y+iE1dFBnFVZBAriir5864svsivYHlBBZeHB/De5JF4aTQ9fk5R5lsQhFMVqAnEIBsoMZZQYiwhpSkFlUKFAgUWmwUb7SMnreCisFdH/2vsX3ko8iEU7StndlTmO54v1N2rj1+BAOI2TY+ZGzqSvKZqfi7cT2VbEzsq89lYfpDZIcMdbVYcSuPjrC2O388KHk61oZlvD+2mvLWB9aXZpFQV8lB8HABP7sllbuhINpUfZGtFHmWtDXxxcCcm2eJYHtxXLg0PoODSmfxwViLhblq+KqzE9+vfufz3PdQaTD16LlHmWxCEU3VbyG3HbbPYLJht5iOBCCChwmgz8kD4wzwc9TAKhQLZZuPX4gMcaE9O6eviTrx3UJ/1XThCjIz0kChPX+4aNYsV+Wn8VLgXP60HV8UkMzkg2tGmwdRGrbHV8buf1oNFo2fzdV4qa0uy8HJx44YRk5kWGEWYWxGrymv5fnYSzWYD3xek02gyEObhzb2j56DTuDrjZXJhmD8XhvnzS2k1i3Zm8d+iKr4rquLCUD8+nBKPn7bnR0oEQRC6MtJ9JFN1U9nWuK1D8HE0BRIyVs5S3oGhajzvWzfhrtJwoL6cakOzo92CiAQkhfiO7gynlWfk7bff5uWXX6a8vJzExETefPNNJk2a1GX71157jXfeeYfCwkL8/Py44oorWLZsGVrtqc17GAh5RnraU3tyeW7fIZbPSOCqyP4bqa8pq+GunVnkNLWiAOaH+PLh5FEEuZ3439ZmszmGSI9V2FzLC7t/OW77E+POJ6K92rEgCEJOaw4P5zzMj9U/YqHrCfZqhYZL1UvwousR5QURCVwUObY3ujmkner1u9sh4PLly1m8eDFLly4lNTWVxMRE5s2bR2VlZaftv/jiCx599FGWLl1KRkYGH374IcuXL+fxxx/v7qmHlEdHR6IAXtpf4OyunNA5wb5kXzSNDXOTidO58XNpDSErNnH+2t2Utna+/LiszUjUd5v57FBZH/dWEISBziJbeKXgFaI2RzFi6wi+q/6OAE0AGkXno7LeKm9ypmbzzqT7OTtkBFqlusP+UV5B3DN6tghEnKzbIyOTJ09m4sSJvPXWWwDIskx4eDj33HMPjz766HHtFy1aREZGBmvWrHFse+CBB9i+fTubNm06pXMOxZERgHE/byO9rpmWq2cPmORjmyvruGNHJgcaWlAAZwd689HU0US4HxkpuX9XFq9lFeEiKdg1fzIJXh2rHouREUEQjpXWlMajBx9lTd0aLDYLGoWG83zO4y/D/sJoj9H8KfNPvF/yPlaOrIyJdY0lbVIaHqojnzEmq4WKtiYsNis+Lu7onXTLe6jolZERk8lESkoKc+fOPfIEksTcuXPZunVrp8dMmzaNlJQUduzYAUBeXh4///wzF1xwQZfnMRqNNDY2dvgZih4eFYkM/PVAobO7csqmB3iz/8KpbJ83kTFeHqypqCPqu03MWZVCflMbFW1G3skpBsBis3HJhj00mUX+EkEQjmeSTTyd9zQhG0MYt2Mcv9b+SoRLBG+OeJO22W38kPQDoz3s6dvvCL2jQyBytvfZZE/J7hCIAGiUKsI9vIn29BOBSD/SrWCkuroaq9VKYGBgh+2BgYGUl5d3esx1113Hs88+y4wZM1Cr1cTGxjJ79uwT3qZZtmwZer3e8RMeHt5l28Hs6shAXCQFH+YOvIyAk/z07FkwhdT5k0j09mB9ZR3R329m/P+2Y5btg3FWG+S3tHHbtgMnTFwkCMLQsrluM7NSZuG2zo1nDj1DnaWOqwKuIn9aPrnTc1kUvgjpmKKeeqUeJfbsqneE3MGa8WuOayP0X73+L7V+/XpefPFF/vGPf5Camsp///tffvrpJ5577rkuj3nsscdoaGhw/BQVdZ04bDCTJIm5Qb4UtRopaG5zdndOyzgfHbsvmMKeCyaT6OVBaZuJoxftWm3wVWEl7+XYA66SlnpWHErr9Lmy6ip6v8OCIDhFs6WZB3MexO93P2akzmBj/UZGuI3g0/hPaTmrheVjlhPpGtnpsevr1jNy20hkZN4Y/gbvjXqvj3svnKluTUTw8/NDqVRSUdHxolBRUUFQUOcrPpYsWcINN9zAbbfZ14KPGTOGlpYW7rjjDp544olOI1cXFxdcXFy607VB69mxMfxUWs2S9Fz+NS3B2d05bWO9PTk/xJe99c10VsT7nl1Z+GlMbCjZ6Shqdaxv8nfTYjVxSVRi73ZWEIQ+87/q/7E0bym7mnZhw4aH0oObg29mWewyglxOvpLw/eJ/sijrXrTouUL9KOUVkfzEXi4IT+hyxR5AVn0FX+elUtbagLeLGxdEJByXv2ldaTarijNoMLUR5uHNNbHJRHv6nfFrFo7XrZERjUZDcnJyh8mosiyzZs0apk6d2ukxra2txwUcSmXHQkVC18b76vB1UbOyqMrZXTkj1QYTr2cVdRqIgH3+yE1bD9JksbdwU2oY7xfO1IBo/LRH7vn+r2j/CYsPCoLQ/9Waarkz40681ntxwZ4L2NW0i0SPRP475r80zW7i4/iPTykQeSD7Ae7MuhNvRRhfjPyO1yfdwWVRSfxanMG60uwuj6s2NPPW/vXEeQXy5Pj5nBMax7+zt7O/7khG7J1VBXyTl8qCiASeGDefMHcv3ti37rgSHkLP6PYSjcWLF3PTTTcxYcIEJk2axGuvvUZLSwu33HILADfeeCOhoaEsW7YMgIULF/Lqq68ybtw4Jk+ezMGDB1myZAkLFy50BCXCiV0dEcg/copZW17L2UEDczXJG1lFGKxdhSJ2rbLElyU+PBWv5cEx09Eo7W9Pm83GmtIsvs5LBeDnov1MDohGOsG3HkEQzsyx9aHgzGtEfV3xNc8deo69LXsB8FJ5sShsEc9FP4eXxuuUn0eWZRamL+Tnmp+JVo7jkaC/cWHoNMCeTHJnVQGHmmq6PH5DWQ5+Wg+ujBkPQLCbnoMNVawuyWK0dwgAq0symREUy/SgWACuHzaJfbWlbKnI5fzw0afz8oUT6HYwcvXVV1NVVcVTTz1FeXk5SUlJ/PLLL45JrYWFhR1GQp588kkUCgVPPvkkJSUl+Pv7s3DhQl544YWeexWD3DNjY/hHTjHP7s0bsMGIp1pJrIcrCgVIKFAoQNn+X4DS1kaaLAqMNolnMiyUmA46qhkrFArmho5kT00x2Q2VVLY1kdNQSZxX4IlPKgjCaemsPhScXo2oUkMpj+Q+worKFbTILUhITNFN4fmY5znH95xu981gMTB+53gyWjOYpp/Go/7/YGtFPhWtjQS66ShqruNgYxVXxozr8jnyGqsZ6dVx5CXeO5iv2r/wWGQrhU21zA+Ld+yXFApGegWR11jd7T4LJ3daySsWLVrEokWLOt23fv36jidQqVi6dClLly49nVMJgJ9Ww3BPNzZXNSDL8oCcIf5QfBQPxUd1uq/a0MwTO78HYIQ+BKMUySsZhbx3sJgRnm7sXTAFpSQxwT+S7AZ7cr2y1gYRjAhCL+msPhQcqRHlw4mDEVmW+bjsY14qfInsVvvtEn+1P/eE38OSqCW4qdxOq1/FhmKSdiRRY67h5uCb+Tj+Y2SbDbNsY2nKjygUCmw2GxdHJXYoxXGsRrMBnaZjlmidRovBasZktdBqMSFjw7OTNuVtQzPVRG8beFe1IeruEWFYbDbezRl4y3y7w1Ul8XhCNPmXTOfK8EAyGlt5OcOeZ0WU9haE3meyWthSntvlfrO18wnmALmtuVyefjlu6924LfM2cltzmeM1h20TtlE5q5Jlw5addiCyvWE7w7cOp8Zcw19j/8rH8R8DkFJVwI7KfP4YN40nx83n5hFTWVWcIeaWDTADI62nwN0jwnggNZs3sov4U9zgyrvipXFFq1RhsFrIqCuj1WLCU63hPzPHMHyPG4+lHcQiy7hzJDV+sJveiT0WhMGp1WLi9b1ryW+u7bLNl7m7WDx2Lq4qe1p1WZZ5o/gNXit6jQKD/W80VBPKXWF38VDkQ2ikMy+e+UX5F9yw/wYUKPhuzHdcHHCxY9+3h9KYFx7PxIAo+7ndvagxtvC/ogNM7aK6uU6tPW4iaqPJgFapRqNUISkUSCho6qSNXn1qNdWE7hEjIwOESpKY5udFVmMrtQaTs7vTo1SSkintQ6om2cq/srdjstqzsj4zNoY4T1eWpOfxfXE9AAFaD4brA5zVXUEYlGw2G//M3NwhEIn29GOyfxRRHr6ObYUtdXyctYV9TfuYv3s+2vVa7s+5n1JjKRf4XsDeSXspnlnME9FP9Egg8lTeU1y//3q0kpbUSakdAhEAk2xBOmbUVFIouqzgCxCj8yOzvmOizoz6cmJ09mW7KklJhKcPGfVH0ljINhuZR7URepYYGRlAliREc9663Tyz9xCvT4xzdnd61DmhI9lSkYdJtrK7pojHd1YxwT8CrVLNpUEN/K1ZxfpaHXp1HTcOHy1W0ghCD8tvruFAnb14pYfKhfvGzOlQC+pQUzWvpq9iq+lbPitfQ2t5PQDR2mjuD7+fu8Pu7vH5bFemX8k3Vd8QpAkifXI6/hr/49qM9Qnl56J9+GjdCHbTU9Rcx+riTKYFHRkVWXEojXpTK7fE2VfcnBU8nPWl2Xx7aDfTA2PIrK8gpaqQRQlnOY6ZGzqST7K2EuXpQ5SnL2tKsjDJluNykQg9o9uF8pxhqBbK64zn8nW4KiUqrzjr5I0HmH21pbybsRFzJ0nPakwS/y33RaVQUHDJDILdxFCpIPSkf+dsZ1P7XJEbhk9iRtAwx75CQyFP5D7BF+VfICOjRE2y60y+TPqAaLeuJ4qeLpNsYsrOKexu3s14j/Fsnbi1y1EWg8XMyoJ00mqKaDIb0WtcmegfyYURCagke/qIT7K2UmNs4YGxR+qqHZ30zMvFjQWdJj3L4rfiDBpNBnvSs5hkosXISLec6vVbBCMDzPWb9/JFfgV7LpjMWG9PZ3enxxU11/G/ov3srilCPuqtGe3pi0oVxkN7ygjQqim6eCYalbjLKAg95S9pvzpyc7wx7SpclCrW1Kzhuv3XUWWuwkVyIUobTaBxJsMVM4nzCuLBxLknedbuqzRVkrg9kXJTOVcFXMXyMct7/BxC3znV67e4TTPAPD82li/yK1iyJ5eVs5Oc3Z0eF+7hzR2jZtBoaqO4pR7ZZsNX6+6YsNoqu7J0bx5Tf9tJygWTndxbQRg8jv5WKikUpDSmcO3+a2m0NPJczHPcG34varTct/Xr9vY9/z02vSmdqbum0iq3sjR6KU/HPN3j5xD6JxGMDDDRnm6EurrwW3nXs90HA53GlfhOyns/NTaG9Pomvi2q4vrNe/l8+hgn9E4QBp8gV0/y20dG3sr7F0uK7yHePZ4fxv5AoIs9p8/mo5b8Brr27Cj1isoVXLn3SmzY+GL0F1wbdG2PPr/Qv4lx7gHo1phgDFaZrwrKT954EPpmViJj9O58kV/BS/sPObs7gjAoRHqpybSu5wvTfSwuuJWZ+tmsG7/OEYhUtDaysiDd0X5Ge5r0nvDX/L9y2d7LUEtqtk3YJgKRIUiMjAxAjyZE8fz+fF7aX8BVkScvJjUY7Th/IuHfbeaRtFzi9R5cGHb8LHtBELpWYaxgbd1a1tSu4bfa3ygyFjn2qdES1XwdX+bsIczdi+KWOlKrixxZWUfoA4j29O3qqbvllgO38EnZJ/ip/dgzaQ8h2pAeeV5hYBHByADkplKR6O3B7romDBYLWlX//2eUbTI/FOxle2U+jWYDeo0r0wKjT7vMt1alImX+ZEZ8v5krN6ZxW2QLsmwQZb4F4QTKjeW8mP8iv9b+6kjTrlKosNgsHdqdJf0fMrCjKp8dxxQMD3HTc/vIGSf8uz0VFtnCrJRZbG3cSrx7PCkTUtCqxCq5oUrcphmgHhwViQy8dKDQ2V05Jb8UZbCh7CDXDpvA08kLeqTMd4S7lncmhAA2Pi/24N6Ec0WZb0E4gc0Nm3mz+E1HIAIcF4gEqgP5Y8R1uLVnWD3MXaXhvLBRPJx47nF1Xbqr3lRPzJYYtjZu5ULfC9k7aa8IRIa4/v+VWujUtZGB/HHbAT7MLeGpsf0/CU9eUxVJvqGM8QkFeq7Md3lLIXdEu/JGron56zPIXjhVlPkWhC5c5n8Zfwz+Ix+VfdTpahgJiT+F/YlrYiZxWdR4churabWYcFNpiNX5oVGe+SUjqyWLiTsn0mRt4sGIB3l5+Mtn/JzCwCdGRgYoSZI4J8iHwlYjBc1tzu7OScV4+pNZX0FFq73i5eEy3wk+wV0e01WZ78MlvA+X+b5lWDSLRoRxqMXA+ev3iDLfgtAFhULBOyPf4RzvczotPKlAwW2htwGgUaoY5R1Esn8Eo7yDeiQQ+bXmVxK2J9BsbeaDkR+IQERwECMjA9hzY2P5ubSGp9Jz+XRagrO7c0Lnh8djsJp7rcz3mxPD2VffwpryWvxUahL14jaNIHRGLakZ6zGW1XWrO2xXoeIi/4sIcemdCaRvFb3Fvdn3olaoWTN+DbO8Z/XKeYSBSQQjA9h4Xx2+GjXfFVWdvLGTHV3mO8Tdi6LmOr7KS8FL49plZc3uWnPOOGK+38LXxW1oFXKPPKcgDDZXpF/Bt1XfEqQOQkamxlyDFSsWLNwddnevnPNPmX/inZJ38FJ5kToxtVdSyAsDmwhGBrirIwP5R04x68prmRPkc/IDnKQvynxLkkTaBZMY9t06/lOi5PbKOqYHePfq6xKEgWJNSQaLD95LumU1Y5XzudrzHuIC1NyYfTGtciuxrrHM8Z7T4ZiUqkJWFqRTY2gmwNWTy6KTHPO+wF7p94eCvWwsP0ib1Uyszo/rhk10JESTZZlz085lbd1aYl1jSZuUhofKo09ftzAwiDkjA9wz7ZNXn93bv5N/9VWZb51azVUhbUgoOGfNbopbxe0aQag11XJz7oWkW1Zzie+V/DbpS+K9Q1hzqJoPR3yGSqFiccTiDst1cxur+CBzM9ODYnhy/HySfMN458BGSlrqHW1+Lc5gbWkW1w+fxKNJ5+EiqXhj3zrMspVmSzMjto1gbd1azvY+m+wp2SIQEbokgpEBzk+rYbiHK5uq6pHl/ntr4nCZ7721JVQbmtldXcTq4kySfMMcbVYcSuPjrC2O388KHk61oZlvD+2mvLWB9aXZpFQVMjc0ztFmbuhINpUfZGtFHmWtDXxxcCcuSjOfTB2FUZYZ//N2DJaOSxcFYSjJaM4gckskxeY8Ho98nBVJXxHopuOSqERclCrClGMpn1nOXaF3dThuTUkWo32CmRcWT7CbnoujEonw8GZ9+3J8m83GmpJMLohIIMk3jDB3b26Jm0q9sY1fSncQvjmc3LZc/hT6J9aMX4MkicuN0DVxm2YQuDsunD+nZPNuTgl/igt3dnc6dU3sBFYWpPPFwZ2OMt8zg4dxYcSRibcNpjZqja2O3/20HiwaPZuv81JZW5KFl4sbN4yY7FjWCzDRP5Jms4HvC9IdZb7vHT2HaJ0fec1mHt+Ty5Rfd5G2YEqfvl5B6A9W1axiwZ4FWGwWPhr5EbeE3gLYkxCmVBVislqI8fTDV60/7ti8pmrmho7ssC3eO5g9NcUAVBtaaDQbGHXUijdXlQattolrsxfQamvgjRFvcE/4Pb34CoXBQgQjg8DdI8J4IDWbN7OL+m0wolWpuTo2matjk7tsc3Pc1OO2HU54diJzQuKYExJ33PbHEqJJr2/my4IKrtmUzpczxna/44IwQL1X/B53Zd2FWqFm/fj1zPKeRUlLPX9N+w2zbMVFqeLO+JmEuB8fiIB9fpZOfcxqNrWWhvY5Wo1me0qBo1e8fVjyIW81/Bk1Gv6X9D/m+c7rpVcnDDZi3GwQUEkSU/28yGxspdZgcnZ3+pX/zBhDopcHywsqeaGfz6sRhJ7yQPYD3Jl1JzqljgNTDjiW0Qa6evLk+Pk8mjSPs4KH80nWNkpbGnrknA/nPMxtmbfhKfnyeMAHIhARukUEI4PEkgT7Urln94kL7rF2zJuEv4uaJ9NzWVlU6ezuCEKvkWWZi/dczKtFrxLhEkHhjEJi3Y5U11VJSgJcPYn09OHS6CTCPLxYW5rV6XPpNFoazcesZjMb0LePhOjUrgDUG1pZmLaQlwtfJtwlnPu9/0GsW2QvvUJhsBLByCBxXogvHiolX+SXn7zxEKNRSaRdMBmtJHHFxr3sr292dpcEoceZZBNJO5L4vvp7puimkDstF51Kd8JjbDZ7JuPOxHh2spqtrpyY9iKUflp3PFRqLtgznx9rfmSabhr7J2VR2tzsaCMIp0oEI4PIwlA/qoxm0uuanN2VfifETcvaueORbTam/LqTepO4nSUMHpWmSiI3R7K3ZS/XBV7H1olbUUkdpwSuOJRGdkMl1YZmSlrq23+vYFJ77p+Ps7aw4lCao/05oXHsrytjVXEG5a0N/FCQTkFzLbNDRgBQZizjC+MjZJhSuML7Zr6K/4l/H9yJl4srSX79c+6a0H8pbDZb14ke+onGxkb0ej0NDQ3odCeO9IeyvKZWYr/fwkWhfqycneTs7vRLHx8s4dbtGUS6acm7eJpYbigMePua9jFl1xRa5Baejn6apTFLO233r+xtZNZX0GBqw1WlJtTdi3lh8cR72+tDvZK+Gl8X9w4Tye1Jz/ZQY2jpkPRsZ8NOZqXOwiAbuNP3aTwMY2i1mBim9+e62IkEuonPacHuVK/fIhgZZML+u5Eak5m2a852dlf6rcUp2fw9s5DZgd6sm9txdU9mQwsR7lrcVEoAag0tNFuMjv0eKhd8tO592l9B6MrP1T9zcfrFyDaZf8X/i+uDr+/1c35Z/iXX778eBQq+GfMNlwRc0uvnFAauU71+i6+Fg8wtMcEYrDJfFYi5I115NXkEc4N8WF9Rxz07MwF7AqfXMgsZ/eNWXmifBFxraGHJrh94Yfcvjp8lu36g1tDizO4LAgBvFr7JhXsuRImS38f/3ieByDN5z3Dt/mvRSlpSJqWIQEToMSIYGWQeS4hCAbx0oMDZXenXfp2TRIyHK29lF/NOVhF37cjk/pRsZODXshoAmi1GLLaOWW0tNrnDSIkgOMO9Wfdyb8696FV6sqZmMd17eq+f85q91/D0oacJ0gRxaPohEj0Te/2cwtAhkp4NMm4qFYneHuyubcJgsaBViX/izkiSxO75kwlb8Tt/2pXVoWpOWl0TzWaRQl7of2RZZsGeBfxS+wsx2hj2TN7T6/VeTLKJabumkdKUwjiPcWybuA2NpOnVcwpDjxgZGYQeHBWJDLx0oNDZXenXqo0mfFzsH6pHT5yy2mBrdc8kghKEnmKwGEjYnsAvtb8wUz+TnKk5vR6IVJuqidocRUpTClf4X0Hq5FQRiAi9QgQjg9C1kYG4SAo+zC1xdlf6rc2V9Uz4ZUenVX1VCgW/V9b3facEoQvlxnIitkSQ0ZrBzcE38/uE33t9JVh6UzpRm6MoM5WxJGoJX4/9ulfPJwxtIhgZhCRJ4pwgHwpbjRS2HH+xHeqKWw3MWZ1CncmCtZO1ZBabjXUVtX3fMUHoxO7G3cRsiaHKXMWLMS/ycfzHvX7OlZUrGb9jPG1yG5/Ff8azsc/2+jmFoU0EI4PUc2PtKaCX7Dno5J70P0FaDfeNDMdDpUQBHeaLHLajupEaQ1tfd00QOlhZuZKJOydilI0sT1jOY9GP9fo5Xy54mUv2XoJaUrNlwpY+WaUjCCIYGaTG++rw1aj4rrjK2V3pd1SSxMvjR1B22Uz+MXEkwzztNTaUiiNhidlm4+ndWzs9fm+tuP0l9L5XCl5xBAXbJmzjqsCrev2ctx64lYcPPoyf2o+cqTlM1k/u9XMKAohgZFC7KjKQRrOV9eXilkNnPNQq7hwRRtbCaaw+ZzzzQ3zbR0ns9272N7l0etz3BXtZXZLZZ/0Uhp47M+7kwYMP4qPyIWdqDhP1E3v1fLIsM2PXDD4u+5hRbqMonFZImDasV88pCEcTwcgg9mz7rZpnRCXfE1IoFJwT5MMPs5N4NdGTUe5tgI1DbVrG+sZw/bCJXBaVRPRRxb++yUulsFkEeULPkmWZc1LP4b3S9xjuOpyi6UW9HhTUm+qJ2RrD5obNXOB7Afsm78NV5dqr5xSEY4lgZBDz02oY7uHKpsp6ZFk++QFDXIvZxMGGfGb6NvOHkHp8NSr+XSgx0T+GeeHxPJp0HueHxQP2sZO1pdnO7bAwqLRaWhm5bSRr69Zyjvc5ZE7JxE3l1qvnzGrJInJLJAWGAhaHL+anpJ9EvSbBKcS7bpD704gwLDYb7x0U8xxOJq2mCHN7OfUFEdH87+xk0uubuWnrfuT2Ek4LIhJwU6kB2FVVgNUmgjzhzBUbionYHEFOWw7/F/J/rB6/uteDglU1qxizfQxN1ib+OfKfvDLilV49nyCciAhGBrlFceEoFfBGVpGzu9Lv1ZuOrJ4ZqQ8k2VfHZ9MS+LqwkvlrdwOgUaqIab9dY5attJpNTumrMHjsbNjJ8K3DqbHU8Ldhf+PdUe/2+jn/UfwP5qXNQ4GCtePXclvobb1+TkE4EZErfJBTSRJT/bzYVFVPrcGEj1ZkT+yKRlI6HjeY7flZ5rVPaj0nyOfIPtOR3C3qo44RhO76uuJrrtl3DQoUfDfmOy4OuLjXz3lP1j28VfwWepWe1ImpxLjF9Po5BeFkxMjIEPBkQhQAz4mJrCcUq/N3PN5YdhDZZiOjvhkbMDvQG4BDjdUUtdQBEObuhbb9lo0gdNeyQ8u4at9VuEgu7Jq0q9cDEVmWOTf1XN4qfosYbQzF04tFICL0GyIYGQLmhfjhoVLyeX65s7vSr0V7+hLubg86ilrq+DR7Kx/kFgMwwtOV7PoK3s/c5Gg/K3i4U/opDHy3HLiFx/Mex1/tT960PJI8k3r1fC2WFkZuG8nqutXM9prdJ3VtBKE7RDAyRCwM9aPKaGZvXZOzu9JvKRQKLo8eh9SebWRbZT4rCgtRYOOV9F94Ze8aao2tgH1UZGpAtDO7KwxAsiwza9csPin7xJHPI8glqFfPWdBWQPjmcHLacrgz5E7WJa8TK2aEfke8I4eI5xIPp4fPdXJP+rdR3kHcNnI6KoX9T6PRIuEi2ag0NDvahLt7c2/CHDRKMeVKOHXNlmaGbx3OxoaNnO9zPvsm70Or0vbqOTfVbSJuaxz1lnpeG/4a74x6p1fPJwinS3yaDhGxnm6Eurrwm8jGelLJ/hFEevqwoSyHDwqr8VFbUKAgytOHs4KHM8E/UkxcFbqloK2AcTvGUWep456we3gj7o0ee+4KYwWBLoHHbf+09FNuzbgVSSHxU+JPzPeb32PnFISeJkZGhpCbY4Jps8p8U1Dh7K70e35aD84KHo2MggvDwvnHjGt4NGkeUwNjRCAidMuW+i2O0Yk3hr/Ro4HIyqqVBG0K4qPSjzpsfyTnEW7OuBk3pRvpk9JFICL0eyIYGUIeT4hCAfzlQL6zuzIg/FpWA8CMAG8kRWe1fQXhxD4v+5yZKTOxYuXHxB+5J+KeHn3+VwtfBeCOjDtYXbsaWZa5eM/FvFT4EmEuYRRMK2CUx6gePacg9AZxm2YIcVOpGOvlwe7aJgwWC1qV+Oc/kY2V9QCcH+Lr3I4IA9Izec/w9KGncZfc2TZhGwmeCT36/AeaD/B7/e8AyMhcsucSgl2COdh2kCm6KWxM3ohKEn/jwsAg3qlDzIOjIrlh635ezihkyZihl2Pg8R0rqTG2HLf9rODhXDesY2XUPXXNKBVQ3lLJewfSqTE0E+DqyWXRSYzxCXW0s9ls/FCwl43lB2mzmonV+XHdsIkEuup6/fUI/dP1+67ni4ovCNIEsWfyHgI0Aaf1PLWGFpotxg7bPFQu+Gjdebv4bVQKFRabBRs2WuQWDrYd5Ar/K/h67Nc98TIEoc8obLb2ohv9WGNjI3q9noaGBnQ68QF/JmRZxm35OgK1Ggounens7vS5JpMBmSNv+dKWBl7bt5bFY84hzqvjJMCgb39Htlm4PLCCS6ITGesTyo7KfH4tzuCJcecT6u4FwC9FB/ilaD83x03FT+vO9/nplLTW83TyhWJ+yRBjkS3MTJnJtsZtjHEfw65Ju9BIp5f1uNbQwpJdP2A5pv6RSiHxcNJs4nfG0iq3dtgnITHWYyybJ2zGTdm7RfYE4VSc6vVbzBkZYiRJ4uxAHwpbjRS2GE5+wCDjqdGi17g6ftJrS/DXejBCf/w31xqjmRAXM6N9gpkXFk+wm56LoxKJ8PBmfXvFXpvNxpqSTC6ISCDJN4wwd29uiZtKvbGNtGpRD2goabQ0Ersllm2N27jI7yLSJqWddiAC0GwxHheIAFhsMv+u+Ddtcttx+2Rk0pvTuXbftVht1tM+tyD0NRGMDEHPJtpvzzw1xHOOWGQr2yvzmRYYi+KYCao1BhMWmw1fjZGRXh2TUsV7B5PXVA1AtaGFRrOBUUe1cVVpiPb0c7QRBr/c1lzCN4VTaCxkcfhiViauPKPEYq0WE78UHeh0n81m44Oyd7HR+aC2jMz31d/zfsn7p31+QehrIhgZgib46vHVqFhRXOnsrjhVWk0xbRYT0wKPz6T6W/tKGr3SiE7dMTGVTq11FMtrNNu/neo0x7TRaDsU1BMGrw11G4jfFk+TtYl3497llRGvnNHzNZkMvLRnFSnVhZ3uL7NlUmDM67BNpTgy/S9KG8VtIbdxrs+5Z9QPQehLYgLrEHVVZCDv5JSwoaKOs9qLwA01m8tzGe0TjJfL8ffWf6+qB8Bbc/wwuSAc9mnpp9yScQsqhYpfk37lXN8zDwA+ytpCWWsDYJ8fMto7hBA3HdWGFtJri1hler1D+3CXcOb6zOVs77OZ7T2bMG3YGfdBEPqaCEaGqKfHxvJOTgnP7M1jbWCys7vT52oMLWTUV3BnfOeTeA+vpPHXutBo7jjC0Wg2oG8fCdGpXe3bTAb0GtcjbUwGwj28eqfzQr/wxMEneLHgRTyUHuyYsKNH8nkUNtdyoN5e0FKn1vJQ4rkEuHoC0Gpt5Yd9L2M0NOGBHxOUl/PA8Bu5MHTaGZ9XEJzttG7TvP3220RFRaHVapk8eTI7duw4Yfv6+nruvvtugoODcXFxYcSIEfz888+n1WGhZwRoNQzzcGVjZT2yPPS+/W+pyMVT7cIYn5BO9x9qbsNLrSbG04/M+o7VjjPqyonx9APAT+uOTq3t0KbNYuZQU7WjjTD4XJl+JS8WvEioJrRHE4ttrThy++XCyDGOQKTMUMac1Dmsrl3F2zGfcp3mdUYoZ3GoztQj5xUEZ+t2MLJ8+XIWL17M0qVLSU1NJTExkXnz5lFZ2fn8A5PJxLnnnkt+fj7ffPMNWVlZ/POf/yQ0NLTT9kLfuXtEGBabjfcOlji7K31KttnYUpHH1MAYlIqOfwIfZ21hxaE0aoxmIt21nBMax/66MlYVZ1De2sAPBekUNNcyO2QEYK/0e07oSH4u2seemmJKWur5OHsrXi6uJPmFO+PlCb3IIluYsGMC31R9Q7JnMvnT8/HR+PTY81cdVZAxsT2XzYa6DURuiSS3NZffk3/nrqgbcGlPZlZlEFW4hcGh27dpXn31VW6//XZuueUWAN59911++uknPvroIx599NHj2n/00UfU1tayZcsW1Go1AFFRUWfWa6FHLIoL58HdObyRVcRdI4bOhTOzvpxaYyvTA49P+lZrbKXNasNss5Hg5U6szp/b4qazsmAP3+XvIcDVk7viZzpyjADMCxuFyWrhs5wdtFpMDNP7c+/oOSLHyCBTa6pl7I6xlBhLuNz/cr4Z+02Pn0PiyKous2wlry2PP+z/A1pJy89JP5OsS8YsW7G2L/k9ur0gDGTdCkZMJhMpKSk89thjjm2SJDF37ly2bt3a6THff/89U6dO5e6772blypX4+/tz3XXX8cgjj6BUdv5hbTQaMRqPZB1sbGzsTjeFU6SSJKb46tlc3UC9yYSX5vRzIgwk8d7BvDfzuk73PTB2Lsvzy4F9TPf3AuxVfJP9I7p8PoVCwUVRY7koamwv9FboD7JaspiwcwLN1mYei3yMF4e92CvnCXP3Zk+tfaTyg/yvea58EYHqQDKmZBCqtY+UpFQXOvKPhHsMzcnnwuDTrds01dXVWK1WAgM7ZqoMDAykvLy802Py8vL45ptvsFqt/PzzzyxZsoRXXnmF559/vsvzLFu2DL1e7/gJDx8639r72pIx9mWtz6QfcnJP+o/f22vSzAsWNWkEWFOzhjHbx9BibeGjkR/1WiACMD0oFgUKSuUMnii9HbNs5qeknxyByKGmar7JS3W0nxk0rNf6Igh9qddX08iyTEBAAO+//z5KpZLk5GRKSkp4+eWXWbp0aafHPPbYYyxevNjxe2NjowhIesm8ED88VEq+yC/n7xPinN2dfiGtrgkJiPRwPWlbYXB7v+R97sy8E7VCzdrxa5ntPbtXz+erdcfPq5H3K19EgYKFqqX8N7uAFM8mylsbOdhY5Wg70iuQ4Z1kDhaEgahbwYifnx9KpZKKiooO2ysqKggKCur0mODgYNRqdYdbMqNGjaK8vByTyYSmk1sDLi4uuLi4dKdrwhm4MNSPLwsq2FfXRIK3p7O743R5zW14a8Sq96HuoZyH+Fvh39ApdaROSiXWLbbXz7mxbiN/qbwbqT0Q8ZdiKGqpo6ilrkO7aE9f7hg587jMwYIwUHXrNo1GoyE5OZk1a9Y4tsmyzJo1a5g6dWqnx0yfPp2DBw92WD6anZ1NcHBwp4GI0PeeT7R/yD6ZnneSlkNDjdFMhLv25A2FQUmWZS7Zcwl/K/wbES4RFEwr6JNAZFPdJuakzkGhULA5eTMPj7yeCI+OK3UCXD25MmY8D4ydi7tafH4Kg0e3v/4tXryYm266iQkTJjBp0iRee+01WlpaHKtrbrzxRkJDQ1m2bBkAd911F2+99Rb33Xcf99xzDzk5Obz44ovce++9PftKhNMW6+lGqKuLIwX6UFZvMrWvpPFwdlcEJzDJJibunEh6czqTdZPZlLwJldT7o2Sb6jYxO3U2CoWCLclbmKifCMDUwBhqjS20mE1olWp8te5IYjREGIS6/Vd29dVXU1VVxVNPPUV5eTlJSUn88ssvjkmthYWFHQpEhYeH8+uvv3L//fczduxYQkNDue+++3jkkUd67lUIZ+ymmGBe3J/PNwUVXBEZePIDBqnfymoBHCtphKGj2lTNmO1jKDeVc13gdXye8HmfnLerQOQwHxd3fFzc+6QvguAsCpvN1nnpx36ksbERvV5PQ0MDOp3O2d0ZlJpNFnRfryfZR8fO+ZOc3R2nWbQzk7ezi8m/eLqYwDqE7G/ez+Sdk2mRW1gavZSnY57uk/NuqtvE7N2zUaBgU/ImJusn98l5BaGvnOr1W8zSEwDw0KgY6+VBam0jBosFrWpovjXSasVKmqHmf9X/46L0i5BtMp/Ff8b1wdf3yXk3121mzu45IhARBEQwIhzlwVGR3LB1P3/LKOTJMcdnJx0K8lra8BIraYaMt4re4t7se9EoNKwfv57p3tN79XwbSnPYUJZDblse/zU+gws6PhzxxQkDkZSqQlYWpFNjaCbA1ZPLopMY43OknIbNZuOHgr1sLD9Im9VMrM6P64ZNJNBVjCILA8dpFcoTBqfrogJxkRR8cLDU2V1xmmqDWEkzVNyXfR/3ZN+DXqUna2pWrwciAF4urgzzs/Ef4wMYFU08G/ouGwrqKG2p77R9bmMVH2RuZnpQDE+On0+SbxjvHNhIyVHtfy3OYG1pFtcPn8SjSefhIql4Y986zLK111+PIPQUEYwIDpIkcXagDwWtBopaDM7uTp9rMJnFSpohQJZlLth9AW8UvUG0Npqi6UVEukb2ybmbpQJuyr0Em0JmQ/I6Fo+8EhelirymzleyrSnJYrRPMPPC4gl203NxVCIRHt6sL80G7KMia0oyuSAigSTfMMLcvbklbir1xjbSqov65DUJQk8QwYjQwbOJ9tszS/bkOrknfW9V+0qaaX56J/dE6C0Gi4ExO8bwv9r/MUM/g4NTD+Kh6pvgc2vDVmbvng3A78m/M1k3mZ2V+ZisFmI8/To9Jq+pmpFeHRNKxnsHk9dUDUC1oYVGs4FRR7VxVWmI9vRztBGEgUDcHBc6mOCrx0ej4rviSmC0s7vTpzZU2rNcni9q0gxK5cZyErcnUmmu5Obgm/k4/uM+O/fWhq3MSpkFwIr4X/jPviL+JefjolRxZ/xMQtw7D4AbTQZ06o63DXVqLQ0m+8hlo7nNvk1zTBvNkTaCMBCIYEQ4zlWRgbybU8LvFXXMChw6VUHT6pqRgGhPN2d3RehCraGFZouxwzYPlQs+2hPn4UhrSmParmm0yW28EPMCj0c/3pvd7ODoQGT9uPVM1k9hkr6VNouZ1OpCPsnaxgNj53YZkAjCUCCCEeE4z4yN5d2cEp7em8fawGRnd6fP5DW3ipU0/VitoYUlu37AYpM7bFcpJJ6bsLDLgOT7yu+5bO9l2LCxPGE5VwVe1RfdBWBbw7YOgcjhSbIBrvYaUJGePuQ317C2NIs/DD8+v49Oo6XR3HGEo9FsQN8+EqJT25egN5oM6DVHlqM3mgyEe3j1+OsRhN4i5owIxwnQahjm4crGyvoONYUGu2qjmXA3sZKmv2q2GI8LRAAsNvm40ZLD/l7wdy7eezFqSc22Cdv6NBDZ3rCdmSkzgY6ByLFsNrB0sfIlxtOPzPryDtsy6sodc0z8tO7o1NoObdosZg41VXc5D0UQ+iMRjAidumt4GBabjX/mDo1lvo0mCybZRoKXSLs9WNyVcReLDy7GR+VD9tTs49Ks96btDduZkTIDgHXj1jkCkRWH0shuqKTa0ExJS3377xVMCogC4OOsLaw4lOZ4nnNC49hfV8aq4gzKWxv4oSCdguZaZoeMAEChUHBO6Eh+LtrHnppiSlrq+Th7K14uriT5hffZ6xWEMyXGpIVO3TsynIfTcng9s5D/Gx7m7O70uiMrabyc2xHhjMmyzHlp57Gmbg3DXYeTNikNN9XpzwM6dp7K4TkqNpuNWw7cwnSv6dweertj/+FAxGazsX78emZ4z3DsazIb+CRrKw2mNlxVakLdvbg3YQ7x3sH2cxlbUXCkEF6szp/b4qazsmAP3+XvIcDVk7viZxLq7uVoMy9sFCarhc9ydtBqMTFM78+9o+eglpSn/ZqFvtfV+2yoEMGI0CmVJDHFV8/m6gbqTSa8NIO7XPnvlfZgZF6IWEkzkLVaWhm3cxzZrdmc7X02q5JWdSjc2V2dzVM5PEel1HKIT8s/5dPyTzHKRhaFL2Jnw84uAxGAG0dMOeH5Hhg797htyf4RJPtHdHmMQqHgoqixXBQ1tpuvTugvTvQ+GyoBibhNI3TpiTHRADyTfsjJPel9u9tX0sSKlTT9VpvFfML9xYZiIrZEkN2aze0ht7Nm/JozCkSg83kqh+eofF35NUrsow/3ZN/DQzkPMS1lWpeBiCB05UTvs6FCBCNCl+aH+OGuUvJFfvnJGw9wuc1t6MVKmn5rbUkWb+xb1+X+VZW/M3zrcGrMNbw87GXeH/V+r/fpi/IvsHJk4unfCv+G1WYVgYggnAYRjAgntDDUj0qjmX11Tc7uSq+qNprESpp+6rfiDJbnpXS6kgYgz7qD2w9djkk2s2LMCh6MfLDX+5TdmsnBtoPHbbdhI7U5tdfPLwiDjQhGhBN6PjEWgCXpeU7uSe9pEitp+q2qtib+e9Tqkgl+Edw+cjoPjT2Xa2MnkCetYrX1dSRU3Or+Mhf5X9wn/fqpdqXjFs2x7su+jzeK3uiTfggDn1WWOVBX1um+k92aHExEMCKcUKynGyGuGn4t67yQ12CwusI+eXWqqEnT72woO4gNGwDnho7k9lEzmOAfyTC9P7vNP7Ha8AluCh3Xql5FMgcel5PjTLWYO79nv7Lm2w63aI51X/Z9bG3Y2qN9EQYWi2xhZdVKmi3NXbZpMLXxlz2/siJ/T6f73zmwkYMNVb3VxX5FBCPCSd0cE0KbVebbgkpnd6VXbKiw16SZJ2rS9Dt7aosBkBQK5oXFA/alu3dk3MHig4uZ7zufX0fvwE2yly1IqynukfMaLGb+lb2dN/etP25frVzMIcPxhSSVCvtISaQ2ksejHifRI7FH+iIMTJsbNnNJ+iWEbQrj+UPP02Bp6LDfYDXz2t61FDbXOba5qzR4H5VJt81q4o396yhpqe+rbjuNCEaEk3osPgoF8JcD+c7uSq/YXdeEBAzXids0/U2L2QSAj4sbnhotbdY2pqdM55+l/+SRiEf4KfEn4nQhjvatFtMZn9NgMfPq3jVsrsjF2j4qc7R91l8cjw/fqonQRvBQxEOkTkrl0LRDvBD7Am5KsTJrKLPYLAA0WBtYmreUsE1hLM1bSq3ZPhL7e9lBSlvtAYqPixv3JczhlSmX85fJl/J08gLi9IEAGK2WDrcqByuxfEA4KQ+NijFeHqTWNmKwWNCqBtfbJrepDZ16cL2mwcJVpabFYqTe2EZuSz7X7L+Sfc37eCrqKZ6JfQaAktYj3zhdleozPue3h3ZT0Gy/YLgoVUz0iyLcw4s2i4n1VWlk1q8HQIuOW0Nu4Y+hNzLOcxwKheIEzyoMNdJR3/VlZJqtzTx/6HleLniZe8PvxVgzGtqD2btHn0WY+5GipMFuehaNPoundv1InamV/XWlVBua8dN69PXL6DPiE1g4JQ+MiuCmrQd4JaPIkX9ksKgymojTiW+x/VGCdzC/lO4m3fIj/9p+J14aTzZP2Mx43XgAZJvM6uLMI+19Qrp6qlPSbDaytdKeV8dFUvFI4nmObKelxlLuK34WD4WOZOkaRkgzmaIa5uiLMDDIsowFCxbZgtlmxmwzY7HZH1tkCxYsmGQTVpu1w3YrVsyy2X6szeJoa5Htvx/eb8WK1WalwryRSV5Q0AaVRrBhD0ra5DZeKngJUOBLJGe5X8ymJglro4Um2094qgu53n8zGqWK6UEx/Fi4DxuQ01ApghFB+ENUEHdsz+CfB0sGVTDS3L6SZrR+8P6RDyQ2m43ctlw2N2xmU/0m1tSu5ZDZvpJLiZrXAr8mVjsKgKLmOlYW7CGn0T6XydfFnTFnGIyk1RRhbi9aNz0otkMgMid1Dm1yG9snbeO99HQMVgs7KvK5JmY8VpsVM/aLlhnzkYuWbOlwATt6+9EXsqN/Dl8EO/v98GOrzYoV6/Hb2rc7HneyTbbJWGwWZOTjHlux77farEe2HfX4VP5rs9kcv9vo+NiG7cjj9naHHzv2I4MNbEf/r30/HNl++P1y9HbH+6iT22t97T/jYWGo/bFJhlIDHGq1BydFbTYK2mwUtR1ileE1Gsrh0WEwUgNGGaxWC0qlCh+XI7eOjVaLk15J3xDBiHBKJEliTqAPv5TVUNxqIGyQ5ORYU3G4Jo1YSeMsxYZillcsZ1P9Jn6v/51ai/3fRKVQOe67A5wt3cOO8ip2lK9ALSkdQQOAhII/DJ+EpDizaXB1xlbH45Fe9nv2rdZWojZHYbFZcFG4MHr7qA7HvLX+jE7ZLxxdD+fwY8d/FUd+d/yvi21HP5aQjnssKSRUCpX9sXRk29H7D/9+9HalQml/rDjyWFJIKFE62ikVyg7bDrc7vF2lUDn2KxXtP0c/VijtbbC3VUr2/SqFyrFfrVDbj5Hat7fvP/zjaCMpsfIysu13JAVoJIhygwhXsNpApYDDd/UOtdonb6olaDOdTZLmc5RK+6X5YOORlTS6oya2DkYiGBFO2bOJMfxSVsOSPbl8PHW0s7vTI9YfXkkjatI4zZLcJXxS/gkSkv1bcbujA5FwdSzRJDt+PzoQcVOpuTVumqPY3Jk4urhcU/uyXjelG1cEXEGMawz+an/Sm9PZUX2QNosFBQqmBcaiVqgdF7xjL3RHbzt8ATt2u1qh7vDfDo9RopbUjvYahcZ+MURl3374v+0XRLVCjUpSoUKFRtI49itF4bw+tb2pFEnxe4dtksL+A2BrH7yJdgOrNYAEl1W4SUfqC5W01LOjMh+wz4Ua3QPv7/5MBCPCKZvoq8dHo2JFUeWgCUZ21zWhAEaIlTRO81TMU3xX/R2NlsYu2zw3fAkLvS/m9/KDZNaXY7Ra8FRrSfaPYLJ/FFrVmU9cBXuV3MM2lh9kWmAMkkLBFwlfOLbnNVbz15rfQA3h7t48OXp+j5xbGFyM5mhaJdB18tY8HIjINiU7Cq9mX/kCpga2MjWgAhelmvTaYlaXZDmyDk8PisVFObgv14P71Qk97qrIQN7NKeH3ijpmBXqf/IB+LrepDb1YSeNU0a7RrBy7knN2n4PcScp3X7Uv1wReg4vkwiVRiUDv5e8YpvMnxE1PaWsD+U01fJazg8uik/BQu9jnszRW8WHWFkf7WcHDe60vgnPUGlo6FKjzULmccuXcBlMVX1T/AZNiPaM8Tfiq7YHHsQutFArwYDapRc+xt7wQgC0VeWypOD7TdZSHDxdFDv6KzOJTWOiWZ8bG8m5OCc/szWNNYPLJD+jnqowmRohKvU43y3sWk3ST2NKwpcN2CYn7wu/DRXLpk34oFAoujx7HW/s3YMPG5opcdlTlE+nhQ7PZSHnbkdGbMHcvpgRE9Um/hL5Ra2hhya4fOtRBUikknpuwsMuApMZUwn+q/4Cs2Ey8zswkP/vqmexmdzylJBK8Nh9zhIJo6Qt8VNcwItaGXuPNr8X7MRwzQVWBgon+kVw/bOKgHxUBEYwI3RSg1RDr4crGynpkWT7jEu3O1GK2YJRtxHuJlTTOZLAYmJYyjd3Nu/FWelNvrXeshlApVNwZemef9ifBJ4Rb4qbwafZ2rDYZs2ztMJEQ7Ldn7kmYjWYIXCSGkmaL8biCjBabTLPFiA9HgpEKYz5fVl+PQrmD0Z4WpvpBhREymzyI1NzMfN3fme+potG6gRzrHHCs7nFhpOp33KVJgD34vSBiNGeHjGBHVQFFzbXI2PB18WBKYFSH1TSDnfhLErrtT8PDeGB3Dv/MLeX/hoc5uzunbY2oSeN0BW0FTNgxiRpLFTNVNzJaOo9fFS9RaNkPwI3BN+Kv8T/uuKz6Cr7OS6WstQFvFzcuiEhgWmBMhzbrSrNZVZxBg6mNMA9vrolNJtrT75T6NTkgmmhPP9aXZbOtIp+W9mH7KA8fZgUPZ1JAVIfJrsLgV9SWxdc1N6BWpZLgaWWGP1QYIKNJR6zmds73egnJ0/7lzCJXk2W6nGZ+B8fqJA/iVOtwlyYc99xalZpZwcP68uX0OyIYEbrt3pHhPJyWw+uZhQM6GNlQUQ/AvGAf53ZkiPqt5jcW7rkIbBK3eC3hyRH34KnWcmPTeK7NuoACYz73h99/3HHVhmbe2r+eWcHD+ePIaWTWl/Pv7O3oNVpGe9vzjOysKuCbvFSuGzaRaE8/1pRm8sa+dTyTvBCd5tSWpQe4enJVTDJXxSRjslpQShLKM1w6LAwsRgrx9HuXlc03MEYnc1YAlBigwaxFpzYw0vV6LtB95mgvyzIl8oNUym8AVtyZRrDyaYqti4lSfYK7NPBvbfcWEYwI3aaSJCb76tla3UC9yYSXRuPsLp2W1Fr7SpqRIuFZn/tr/l95LPcx3BR6/qhfxuvJR27F+GlH8bvnBnY27iTeI/64YzeU5eCn9eDKGHvm02A3PQcbqlhdkuUIRlaXZDIjKJbpQbEAXD9sEvtqS9lSkcv54d1fCSZuxwwdBnLRB7zPcH0JiTob7iooboMDjT4kaBdzjudCMq32oKLO9jnN8p/wkKZRZ/2WAuttWKlHRSDRqs/RSecAoFfudeZLGhDEX5hwWp4cE80F69J4dm8+ryaPcHZ3TsvB5lZRk6aPybLM1fuu5puqb/BV+3KL6xtM9I7jvYyN5DRU4qVx46zg4cwMHkaENqLT58hrrGakV1CHbfHewXyVlwqARbZS2FTL/LAjgYykUDDSK4i8xuree3HCgLW3eSM/1d2BpyaL2ybYcFNCYRtsq/GkvGYhfx72JhcH+WCzWciwTObIHBAl+ZbbACVG9qFAQ7D0PCGqJ/ihIJ0fC7/ocJ5AVx3PTriwy36kVBWysiCdGkMzAa6eXBadxBifUMd+m83GDwV72Vh+kDarmVidH9cNm0igq67n/0/pY+KTWDgt80P8cFcp+Ty/bMAGI1UGE8PFSpo+02xpZuLOiWS2ZjLeYzybkzfzwLbv2FCWw9ywkcwPH01+Uy3L81JQSRJTj5kDclij2XDcrRadRovBasZktdBqMSFjw7OTNuVtjdQZW/nvoTT215Vikq34az24acQUojy7TnzX23NUhL6X0rSKX+v+hJdLLmN1Ns4NhIJW2FKtp6L6Ulqazz3umAr5NdpsqUdtsWIkAwC9YiFRyi9QSUdGWkPc9Px5zNmO35UnKKaY21jFB5mbuSQ6kbE+oeyozOedAxt5Ytz5jrIEvxZnsLY0i5vjpuKndef7/HTe2LeOp5MvHPBzmMQNUOG0XRjqS6XBzP76Zmd3pdtaLe0rafRDZ7a6M2W1ZBG2KYzM1kxuDr6ZlMkpaFVabECEhw+XRiUR4eHDrOBhzAiKZUNZTq/0Q5ZlXt6zCqUkcU/CbJ5OXsCVMeNxV3V9q/HwHJU4r0CeHD+fc0Lj+Hf2dvbXlTraHJ6jsiAigSfGzSfM3Ys39q2j0WToldchnJ6tDd/zfGEM71ZIGFTnMS/oIAEuNvY3hFBR/yrZ+b+Sl/+P4wKRZrMRgy2HUusTnT6vhCdRqn91CETAPiKn17g6fjzUXc9XWlOSxWifYOaFxRPspufiqEQiPLxZX5oN2EdF1pRkckFEAkm+YYS5e3NL3FTqjW2kVRed4f8zzieCEeG0PTfWfj/+yT25Tu5J960tt6eBFytpet+KyhUkbE+g0drI23Fv83H8x459eo2WYLeO/wbBrvoONWKOpVNrj7vIN5oMaJVqNEoVHmoXJBQ0ddKmzWrG28WNm0dMIdrTDz+tB/Hewfi7enZ5vqPnqAS76ZkTEsd4v3BWl2Q52hw9RyXEXc/1wyahkVRsqRh4fxuDzfq6r3iuMJL3KhXgcjHzgw7hq7GxvzEcV/N/uFwvE2j4mZVZgRxq6vw23sdZm8g23oANa6f7ZVoosz593PbKtiYe3r6CJ3au5MPMzdQaWrrsZ15T57cf89r7VG1oodFsYNRRbVxVGqI9/RxtBjJxm0Y4bcN17oS4avi1rMbZXem2wzVpzgsWNWl605O5T/JC/gtoJS3rx61nuvf0Dvtjdf5UtHVMA1/R1njC/AoxOj/21ZZ22JZRX06Mzn5LRCUpifD0IaO+giS/cABkm43M+nKsssxYn9BO56h0RcxRGXhW1XzC1pYnCdKWMFYHF7hDbouCfQ2RzNG9ypXelzra/l52kP8V7Xf87qVxJdLDl1aLkdzGamRsRPqsxCxtP8EZZSrlN/GTb8dVsk+Qjvb04+YRUwl086TB1MaPBft4OX0VS8cv6LR8QaPJgO6YkROdWktDe1DdaG6zb+vk9mPDIBiBE8GIcEZuig5m2YECvi2o5PLIAGd355SlttekEQnPeocsyyzYs4Bfan8hWBNM6qRUglyCjms3N3Qkf93zGz8X7meCfwT5TTVsLD/IH4ZPcrRZcSiNelMrt8RNA+Cs4OGsL83m20O7mR4YQ2Z9BSlVhSxKOKvD836StZUoTx+iPH1ZU5KFSbZgtFj6fI6K0Dd+rH6XlNZnCHEtZ6wnzPeAvFYF+xtjONvzTZK9j68hZJVlfio8stLliuhxnBMa56j+XGNsZmXxU4wN+9xRT6braR82jOTgij0YSfAJcewJc/cm2tOPx3asZFd1ITPaV3kJR4hgRDgjj4+O5i8HCvjrgfwBFYwcbGpFpx7YE776q3pTPeN3jueQ4RAz9DNYN34dKqnzj5ooT1/uGjWLFflp/FS4Fz+tB1fFJDM5INrRpsHURu1Rt238tB4sGj2br/NSWVuShZeLGzeMmOxY1gsw0T+SZrOB7wvSaTQZCPPw5t7Rc3g5fbVjjgrY56uUttazoSyny2BE6J9kWWZF9Wvsbfsr4W6VJOhgvifktSg40DiCc/X/YKL32Sd8jr11pdSb7CMOY31COTdslGNfmy2DWunPJIb/hsHsTknjaIymkZwfNg0lXqgU3ijxRqnwRoUXSrxQKLq+pLqpNAS6elLV1tTpfp1GS6P5mFuLZgP69iBXp3a1bzMZ0Gtcj7QxGQj38Drh6xwIRDAyhBxbAAq6VwSqMx4aFWO8PEipbcRgsaBVDYy3VKXBxDCxkqbHpTWlMSNlBi3WFhaFLeLNuDdPesxY31DG+oZ2uf/muKnHbTs8mfRE5oTEMSckrsO2ruao7D7BBMCTzVGRFIou56joTzBhUeg+WZb5qvIvZBhfJdKthgQ9hOsht0Uis3EU5+vfY5LP9JM/Ubui5jrH4yntAbBFriPbMpc29uBCFLGqH3h7v5LC9rbXhF99WitXDFYzVYZmphwVSBwtxtOPzPpy5oaOdGzLqCsnpn1Flp/WHZ1aS2Z9OeEe9iKlbRYzh5qqOWsQZG8dGFcO4Yx1VgAKTl4E6lQ8MCqCm7Ye4JWMIp4YE33yA5ysTayk6RWflX3GTQduAuCTUZ9wU8hNTu7R8fp6jsqckIG57L0/scpWPqt4mjzT20S515HgDTHYA5CsxjFcoP+AST7Hp1g/FbbD916wJ3ME+8oYI9moCWKUai9KyRWNtMrRTj7qmBP5Ji+VsT6h+GjdaTC18UPBXqT24ncAH2dtwUvjxqXRSQCcExrH39JXs6o4gzE+IeysKqCgudZxy1KhUHBO6Eh+LtpHgKsnfloPVhak4+Xi6njfDWQiGBkiOisABZ0XgequP0QFcfv2DP6ZWzIggpF17Wngp/iKlTQ95f7s+3mt6DXcJXd+T/6d8brxzu5Sp/p6jsqxuUiEU2ORLXxS/hhF5n8S495Agi/EyZDXqiSncRwX6D9iks+YMz6Pv+uROWN7akpI9A1DklQMU/5MtnUWtfKnaCw3OVar6NRaNKc4KlJnbOWDrC20mI14qF0YpvPn0aTzHHOLao2tKDgyASVW589tcdNZWbCH7/L3EODqyV3xMx05RgDmhY3CZLXwWc4OWi0mhun9uXf0nAGfYwREMCL0AEmSODvQh1/KaihuNRDm1r+Hpte1r6SZFyJW0pwpi2zh7NSz2diwkUhtJKkTU/HR9N9aP309R0XXxZC8cDyj1chHZQ9Sbv2UYR5NjPOD0TIcalVysHESF3h9zBSfuJM/UTeM8wvny9xdGKwWtlbmMdE/klHeQXgqZ+Iqj6NQvpvUvEDHaMi0oBgUJ0hcdrTbR8044f4Hxs49bluyfwTJ/p1nHgb76MhFUWO5KGrsKfVhIFHYbKc45uREjY2N6PV6Ghoa0OkGftpbZyhsruWF3b90uu+JcecT4XFmF5CdNQ1M+mUnN8cE8/HU7tf+6EvnrE5hXUUdlmvPRpJEqp3TVWmqZNz2cZSaSjnP5zz+l/g/8f+n0C2tllY+KPsz1fIXxHm2MNIDTDLktajQMJUF+k9xU/XuaOuK/DR+KTrg+D3RJ5RR3kEY2Ia/782UN43gh4yluChVPJ284IS39ITjner1W4yMCD1ioq8eH42KFUWV/T4YObySRlw4T9/Whq2cnXo2BtnAY5GP8eKwF53dJWGAaLI08X7p3TTyLXEerUwPBKMMeS1qCptnMV/3CVN9+64a+EURYylraWBPbQkAe2pL2h+rWagZQZBnNiGeOVwecbsIRHqR+DQeAsyylbVHZYs8VlFTbY+c58qIQBrMVjZV1p28sRNVGsyE9vNbSf3Ze8XvMX3XdMw2M98kfCMCEeGk6kx1vFR4NUsLXfmpScfsoH9znn8rsk1DSct8xqtK+IOviUt9VqNV9V0gAqCUJP4vfiaXRiXidcxttdU59wEKLhr5foe8IULPEyMjg5zJauHN/evJbqjsss1nB3firtGSdIbfRp5NjOW9gyUsTc9jzdzkM3qu3mKwWDDIslhJc5puO3AbH5Z9iE6pY9uEbYzyGHXyg4QhqcpUxfuld2CS/sdoTyPnBEGbFfJbXahoOZ+5nu8z3bd/5CZSKiTODx/NuWGjyK6vpM7UikohEaPzo0XaTbXtAyqtbxOgvNvZXR20RDAyyH17KM0RiEgoGO0dTJSnLy0WE3tqiqkxtiBj44PMzTybfOEZLfEN0GqI9XBlY2U9siz3y9sg6yrrAbGSprtMsolpu6aR0pRCnFscuybuwkMlstcKHRW3FfNRxe1YpbWM0Zk4PwRarVDQqqWmdSFn695jhqu3s7vZJaVCYpR3x0zBPvI71Fq+oNj6MH6K/0PqIoGfcGb639VC6DEtZiOb2wt1qSUlDyedy6KE2VwYOYarY5N5buJCkv3sM7fNsrVHKqXeNTwMs83GB7mlJ2/sBEdq0vTfFR/9TaGhkLBNYaQ0pXCp/6UcmHxABCKCQ35rPksPzeXpQg07jOEsCPmFc/xMGKyuNLT9gakuDfzBt43zvL5CJfXfQKQrkqQiVPk3bLRSaL3T2d0ZtEQwMoilVBdilu1VJmcGxRLdnsnPaLRvUyokro5NRtleh2FLRd4Zn/O+keEoFfBaZuEZP1dvSKlpRAGMFrdpTsmamjUM3zKcKnMVL8S8wH/H/rdfjngJfSu7JZsn82bxdKGaNHM0F4WuYY6fmVarOy2GPzJN28QffFs5W/9vVNLAXwEZoLwLNRHU2D7GJJc5uzuDkhhvGsSqjypXPcbHnm67rs5MaOgGbrghmPfeG41e40qkhw95TdU0mg2YZesZJdBRSRKTffVsrW6g3mTCS6M549fRk3KaWvEUK2lOySsFr/DQwYdQKVT8nPgz8/1OnH5dGNz2Ne/j88rb0ap3Ml5v5dIwaLJAcZsHRuMNzHT/G5Jb/yux8PiOldQYW47bflbwcK4bNrHTY1KqCllZkE6NoZkAV08ui04i2us/ZFumk2e5gjj1Jn4o2MvG8oO0Wc3E6vy4bthEAl0HfuDlLCIYGcSURyXnabOYAfj552ra2mQ+/7ycxx+PITLSFYPV7GgnnWJCnxN5IiGaBevTeG5vPq8k96902JUGM9EeYiXNyVyz9xqWVy7HR+XDrom7iHbr/5l1hZ6X2rSL5VV34q5OI1lv5YowaDRDiUFHkPRHZrm9iNTPV6Y9ljQPmSPptEpbGnht31rHLepj5TZW8UHmZi6JTmSsTyg7KvN558BGnhh3Pu7qGbSwiV9Kv2ZtqYKb46bip3Xn+/x03ti3jqeTLxwU2VCdQXw9HMQiPY9kGN1amYfZbOWxx7I57zwf/PzU3HDDXnLrqyltbQAg3N3bccvmTFwQ6oe7SuLz/PIzfq6eJFbSnFyrpZWEbQksr1xOkkcSJdNLRCAyxGxr2MhDuYk8V6SknIlcFZbCDB8r9WYvJPOjnOVq5A++DUz0eBVJ6t+BCICnRote4+r4Sa8twV/rwQh95yt51pRkMdonmHlh8QS76bk4KpEID2/Wl2YTo/oabBJtqpe5ICKBJN8wwty9uSVuKvXGNtJOUHBRODERjAxiY3xCHOvm99aWctHNWygqMvLgg9H8+99j2Lixnkuv38HhHLyzerDy44WhflQYTOyvb+6x5zxTG9pX0kz2EytpOpPTmkPo5lD2t+znhqAb2D15N1pV/7/YCGduQ91qHjgYz/PFShqUs7gmPJ1pPjL1Jh80lqXMdjVxvW8d49yXIUn969Zrd1hkK9sr85kWGNtlWve8pmpGenVcURPvHUxeUzUaKQit9Y9Eeu8iVP+rY7+rSkO0p5+jho3QfSIYGcSUComLIu01DCxG+G15K24+MofCMtim24XfSDN7f1bx1Q1eWPP0jhLaPeG5sbEALNmT22PPeabWHq5JEyxq0hzr+8rvid8WT4OlgdeHv86/Rv/L2V0SetlvNT+y+GAcLxRLGNXncl1EBlO8ZGpNfrhZlzHH1cx1vjWMcXsaSVI7u7s9Iq2mmDaLiWmBXX/WNZoM6NQdg3CdWkuDyQCAxvwslc0xtGmWIMuWI200R9oI3SeCkUFuelAsF0cmsuUNd2Srgsl/aialupCDjVWMv9FeDKyhUMmHN6u59qp9ZGUdP9HrdAzXuRPsquGXspoeeb6ekFrbhAJIELdpOngm7xku3nsxSpSsH7+eeyPudXaXhF7yfdXX/PlgLC8WSyi1C7k+IpuJXjZqjQHorK9wtpuVa32qGOX66KDMp7G5PJfRPsF4uZz+RFtJoWRrwQ0oFM0UWu/owd4NbSIYGYSamixYrUcmbJ0dEMfB/7mi84O4845MVo0d5dL+yD5cuXJlFfHxm7n99v2UlJx5hH9zdDBtVpkVRV1nf+1LOY2teKrESprDZFnmwrQLefrQ0wRqAsmblscs71nO7pbQg2RZ5uuKz7j3YCTLihV4uF3FDRF5TPCyUW0Ixtv2NnPdrFzjW8Fw18WD+m+jxtBCRn0FM4JOfDtap9HSaO74+ddoNqDX2EdLdGpXKppHYLXEUmP7FJNsz6nUaDrSRui+03rnvf3220RFRaHVapk8eTI7duw4peO+/PJLFAoFl1xyyemcVjhFI0ZsYsSITXz+eRlWq41Fi7KwWODdN8bw92lX8PyEi/jrpEt4c+GFaDRH7ptarTZkGT7+uJSYmI08/HA2dXXmE5zpxB4fHY0CWLYv/8xfVA+oMJoIcXM5ecMhoNHSyIhtI/ip5iem6qZSPL2YEK2ovTEYyLLMF2X/5J6cMF4uU+LveQM3RRQyXg/VxjD8+Sdz3axc7VtKjMufBnUAcrQtFbl4ql0Yc5IaMzGefmTWd5x8n1FXTkx7niY/rTs6tZa6upcAmTzLFbRZzBxqqna0Ebqv2+/C5cuXs3jxYpYuXUpqaiqJiYnMmzePysoTf/vNz8/nwQcfZObMmafdWeHU1NSYyctr4w9/2MuIEZv4+OMSgoLUXHttMFqlGn9XD7xc3FAqJWJjjx+utFptmEw2Xn45n2HDNtHUZOnkLCfnoVGR4OVOSm0jJot8pi/rjJgsMgarWEkDkN6UTuimUHLbcrkz9E62TNyCahAOyQ8lsizzUcnr3JMTzN/KlITq7+DmyBLG6qDaEEkwn3Guu5WrfIqI0Nw2ZAKQw2SbjS0VeUwNjDluxeDHWVtYcSjN8fs5oXHsrytjVXEG5a0N/FCQTkFzLbND7GkKFAoF54SO5JdCK0bDOTTbtvFZ7md4ubiS5Bfely9rUOn2O/LVV1/l9ttv55ZbbiE+Pp53330XNzc3Pvrooy6PsVqtXH/99TzzzDPExMScUYeFztUaWihsrqWwudaxOgYgL68NWQZQ8OWXZR1u3wAkJHjQ2efS4Ynml18egIfH6a+bf2BUBDLwSmbBaT9HT9jQXkl4su/QTkr0n/L/MH7HeFqtrXw48kPeGfmOs7s0oBz9d1bYXEutoWfmWJ0Oi2zh3eKXWHQwkFfKlQzz/jM3R5aToFNQY4ghjOXM97RxhU8+IZrrh1wAcrTM+nJqja1MDzz++lNrbKXB1Ob4PVbnz21x09lYfpDnUv9HanURd8XPJNTdy9FmXtgo5gTH8X3mLbSa9YT4vs69o+eIHCNnoFtfh0wmEykpKTz22GOObZIkMXfuXLZu3drlcc8++ywBAQH88Y9/ZOPGjSc9j9FoxGg0On5vbGzsTjeHnFpDC0t2/YDFZh99sNp8OTwP5LDKShPXXruXpUtzeeutUZx7rn1FyciR7kiSAlk+EqQoFKDTqfj449FcemngGfXthqhg7tieyXsHS3gswXn5KtZW1AJw7hBeSfNg9oO8UvQKbpIb68evZ6K+8+yTQueO/TsDUCkknpuw8IwKTHaH0Wrk3ZK/kmN8g2j3Gib7wkQllBsU1BqHE695iWTPi/ukLwNJvHcw7828rtN9D4yde9y2ZP8Ikv07T4oG9tGRi6LGclHUWArMG6nWvAfKT4F7eqrLQ063gpHq6mqsViuBgR0vUIGBgWRmZnZ6zKZNm/jwww9JS0s75fMsW7aMZ555pjtdG7J+KEjnx8J9J20nt39+Zme38sxfM9noXUeNoZlyFx0WS8e3gc0Gf3xBy5bgzazZfGapjiVJYk6gD7+W1VDcaiDMSdkaU9pX0iR6Db0Cb7IsM3f3XNbVryPcJZzUSan4acS97e5qthg7BCIAFptMs8WID70XjLRaWnm75Hnyze8Q617PZH+YoYQyg4Jaw0hmeL5Csk6k6neWcOVb1Fo+o8T6CP6K/xvQeVicqVfH7Zqamrjhhhv45z//iZ/fqX/4PfbYYzQ0NDh+iopEVrsT8dcec4G1dd4O4MIrvIl7qJDpQTE8OX4+08basxBKEqhUCl58MRZ3Hxsf/62eiwPH82jSebhIKt7Yt85RdK+7nku0D40+tefMC/GdruymVjyG4EqaalM1kVsiWVe/jnO8zyF/Wr4IRAaAZkszLx66n7tz9Lxf5c70wGXcGlHPcHeJOuMYhklruFAnc5H3AXxUIhBxJklSEaZ8FRttFFr/z9ndGbC6NTLi5+eHUqmkoqKiw/aKigqCgoKOa5+bm0t+fj4LFy50bJPbv6KrVCqysrKIjY097jgXFxdcXMSqh1PVVSbBw5RKUCoVvP32KKzTDmG22VMdA/zfnCQeUa8hIFzJLysmM2aMBwdC0vn8VjfuuayM3bujuCVuKg9u+y9p1UVMDIjqdv8m+urx0aj4b1EFH02NP52XeMYqDSYi3YfWsrvtDduZkzqHNrmNhyMe5q/D/+rsLgknUG+q57Wix6mSPyPOs4k5waCRoNQg0WBMYpr7ayTrxAKA/shfeQfl1hepsf2LEPl5NFKos7s04HTra6JGoyE5OZk1a9Y4tsmyzJo1a5g6depx7UeOHMnevXtJS0tz/Fx00UXMmTOHtLQ0wsPFzOOecKJJdJIE0dGu7No1hdtuC+NQc02HVMceHire+s2f2z4zMXasJ9WGFtxi2lhwuRdpaU0sW5bXI6mOr4wIpMFsZVP7RNK+ZLLItFllRuqGzkqaD0o+YNquaZhkE1+O/lIEIv1UtamaJ/Nu4+4cDz6r9eb80He4NbKJKFcljcbJjJC2slBnZb4+Bb1KBCL9WbRqOYeX+grd1+31fIsXL+amm25iwoQJTJo0iddee42WlhZuueUWAG688UZCQ0NZtmwZWq2WhISEDsd7eXkBHLdd6L4Ws5Gs+orj7mPbf7UBCq69Noh3343Hw8P+T91ZquORIzw4WGhP8tNots8q/+STBOLW7uDJJw9y2WUBZ5zq+Okx0bx3sISn0/NYPTf5tJ/ndGysal9J4zc0VtLcmXEn75W+h6fSky3JW0jwFH9r/UmpoZTXih6mhf8yWtfGwhCQFFBmUNJsmspUj9dI1vft34hw5jykyXgwi2Z+p0negKd0lrO7NKB0Oxi5+uqrqaqq4qmnnqK8vJykpCR++eUXx6TWwsLCIXdf3hlazCb+lr7aUXH3MOvhHGUKOOuRJm5dFOEIRLpDpZJYvTqZ8eO3MXv2LpaukZDOoKJvkJuWWA9Xfq+sR5blPn2PrClvX0kTNLhX0phkEzNTZrKjcQfDXYeza9IudKqhEYD1tpKWen4o2NvpvjpDCxEePic8vqCtgNeLH8Ko+IExOgOXR9iHpUsNKtpMM5jk8ToTXcb2Qs+FvhSt+pq9lmAOWa5nrKbY2d0ZUE4r09GiRYtYtGhRp/vWr19/wmM/+eST0zmlcIzlebscgYibSsPUgChC3bxY/kkd0bPLGHaugeiZFr7K202cV5BjjfyppDoG+whKUpI3jzwSxV/+ks+371u47Z7OS26fqruGh/Hg7hw+yC3ljuFhZ/Rc3ZFS2wTAOO/Bu5Km2FBM8o5kKs2VXOR3ESvGrBBfCnpISlUhH2VtOW4E8rAPsrZwl3IW8d7BHbbntubyRvEDWKT/kagzcU37StEygxqTaQ4T3P/ORBfnzKESeodGCsBPcQfVtnepsL5OoPI+Z3dpwBCfVgNQg6mNnVX2JGKuSjWPJ83jqtgJTPCJ4YePWjjn8TbmXWj/pmbDxvrSbMexp5rq+HCbZctGMDLelfXvKandf2YTQO8bGY5SAa9n9e3qqOymwV2TZn3deoZtGUaluZJnop9hZeLKQfta+1peYzUfZG12BCIukopRXkGM1Aeiah8pNMlW3jnwO2WtDRxoPsDdWfNZdFDDupZh/CFyJTeGmwh00WAxL2CsOouL9SZmev6KqyQCkcEoXPkmEu6UWB9Dlk3O7s6AIT6xBqDU6kLk9jSrga6e1BlbqTY088q/9hH/pyrcXZXcOHwKLu0pvjdX5GFrb3+qqY5/LtrHnppiSlrq+eOHFly9ZR68rpzW1tNLDQ+gkiQm+erJaGih0XT6z9NdFQYTIa6Dc3XWa4WvcXbq2cjI/JD4A0/FPOXsLg0qPxXudfytTQmI5uUpl/HnMWdz/9hzeGnyZYz1CaVazidd+RzPlfiy3TCaW6N/4YYwM/4aF2TLpSSqc7lYb2Sax49opRFOfkVCb7Mv9X0NG20UiKq+p0wUpBiA6o9KXaxRqvggawvNZiONvuDa6soTyWfj7+pBpKcP2Q2VWG0yRtmCVql2pDpeWbCH7/L3EODq2WmqY5PVwmc5O2i1mBim92fZi8NZdEse556bwubNk0+7708mRLNgfRrP7M3jleTe/2B2rKQZhDVprt93PV9UfIG3ypudE3cS63b8Mnnh9NUYWthfVwaAj4sbNw6fjLJ9xGl7w3ZeKXwKT5e1XDTaQoIOzDKUG7VguYgk7Uu4aCOd2X3BifyVt1FufYFa278JlZ9HI/XdbemBSgQjA5DmqPoH0wJjmBoYw4oVFVx2+R6+/TYRf1dPbDZbh6Dl6JoJ3Ul17DAGVn5Rz6pVtbz5ZgH33HN6H7QXhPrhrpL4PL+8T4KRTdX1wOCqSWOwGJi0axJ7W/Yyxn0M2yZsw011fMFD4eTKrM9hs1nRKkbgoohDqxiBUuEJQHFLnSN/4ET/KDY3bOLvRUvZ27KR3FYrWgV8mQwW2YUdpRPILr+ae+KvJcZNJJUTIFr1JVmWKeRarmCUZpuzu9PviWBkABqmOzKRdENZDpMDonnppXySkz257DL7qqbM+goq2+wTN2M8/Y6rVHk6fvxxPP7+67j//iwuusifyMjTuwBeEOLH14WV7K9vZnQvp2c/vJJmbvCJVzsMFLmtuUzcOZE6Sx3XBl7LFwlfOLtLA5bNJlNu/SsyHfP0qPDDRTESi0sEEYFlFFsPsLi0ioI8GY0CpnrD9aFeXO3/AnHaG/k6L5O09nlZcheTXIWhx77U9yya2UCTvB5Pabazu9SviTkjA9AIfQDB7XViDjXV8Phnm9m2rYHp072x2Wzsqy3lo6wtjvZnBQ/vkfNqNBI//zweqxXOOmvXaT/PC4n22wlL0nN7pF8ncnglTbK3Z6+fq7f9XP0zo7aNot5Sz6vDXhWByBlSKCT0ios49juZhWpabJuQ1V8wL3Idt8VW8NhwmSWxI9g39Z+sTWrhmYg64l3/hAJ39taWOI71PbY0gzCkxaq+AZQcslzv7K70eyIYGYAUCgVXxIxH0V6Z9+O/NAA2PC7O5/GdK3lz/3rH8t0YTz8m+vfcvevp0725++5wCgoM/OlPB07rOYbr3Al21fBLaU2P9asr2Y0tg6ImzfOHnmfBngVISKwet5r7I+93dpcGBW/llUDnk6ml9ioLDQYf9h38B2drfmC4621ICvuIoM1m46fCvVS3Z0CO9wrC20XcLhOOUEl++CnuwEwpFZbXnN2dfm1gf0IPYQk+IdwaNxW5VaIyQ4VvrJVqdS21xlZHm1idH3ePPssx6a6nvPXWKKKitLzzTjGbNp1eevebooNps8qsKKrs0b4dq3yAr6SRZZlL9lzCkrwlBKgDODjtIGf7nO3sbg14sizzedmnPHrwz1i7LCwpgWU636S/gsmq5z+5u3glfTXrSrNYXZLJX/b81qFi9rlho/qk78LAEq58CwkPSmSx1PdERDAygE0KiILv48Gm4Kw77alXVQqJEfoAbh85nQfGzsVD3TsX4vXrJ6BUwoIFqZhM3b9P/sToaBTAX/bn93jfDrPIh2vSDMxvq42WRkZuG8nK6pVM8pxE0YwiwrRiVv7pkmWZD0ve4fasMJ4tUeLneTN3RBUi28B2XEAi4ak4h3GuqzgnNNGxNbuhki9zU/g6L5X8piMje5dFJx2X9EwQACRJIlz5GjYMFFhvd3Z3+i0xgXWA+/rzavR6Fd8+eDGyzYaCk1fx7QmRkW689tpI7rknkwULUlm1akK3jvfQqEjwcmdXTSMmi4xG1fNx8abKegAm+ep7/Ll72/7m/UzdNZUmaxO3h9zO+6Ped3aXBiSLbOGfpW+wu/VlItzKmeoNSf5Qb4ZmcyhBmkfRqrzJl/9w1FESOsU8YlUrkBQuXBaVRLCbnl+K9lPRPin8sDB3LxZEJDDer+vVaYLgp/wjZdbn25f6viCW+nZCBCMD2A8/VNLQYOGee+zVj6U+CEKOtmhRBP/5TxmrV9fy6acl3HRT98pmPzAqgpu3ZvBKZgGPJUT3eP8cNWkG2Eqaryq+4rp912HDxnsj3+OOUJE4qTtMsol3i1/mgOE1otyrmeIDkwKgxgQt5igSXJ5inOtNSO72ANhqa0Ihq7FhBiT0igXEqL5GUthHFRUKhX0JfUA0BxurqGhrRIGCEHc9UR6+fRL8CwNfjOorMi2TyLVczijNdmd3p99R2GzHD1D2N42Njej1ehoaGtDpBk++iDM1btwW9uxppr7+bHQ658SVra0W/P3XYzbbKCycSVDQqaeMl2UZ1+XrCHF14dAlM3q8b/PX7uaXshqs1549YCawPpLzCC8VvoSr5Mq68euYrD/9BHNDSaullbdLXiDP+A4xHnVM8QY3JVQaFVjkYUx1fx4f6You3wcHzQtpsP2IXnEJMarlSApNH78CYSjIMs+h2bae4ao16KShMffrVK/fYmSkn/qhIL3D5DiAQFcdz064EIDqahNpac1MmaJ3BCIpVYWsLEinxtBMgKsnl0UnMcbnyGiFzWbjh4K9bCw/SJvVTKzOj+uGTSTQ9fQDPDc3FStWJDFvXiqzZ+8iM/PUgwpJkpgT6MOvZTWUtBoIdTuz2jfHym4aOCtpZFnmvLTzWFO3hlBNKKmTUwnQnFlhwsGu2dLMG0VLKLF8xHCPRqYFwNlKKDcoaDSNIsH9ZZI9Lzil5wpWLsVVTiJE+RQKhbqXey4MVbHKr9ljCSLf8gfGakqd3Z1+RQQj/ViIm54/jzkSPSuPGg5++GF7kqVly+w5RHIbq/ggczOXRCcy1ieUHZX5vHNgI0+MO9+R6v3X4gzWlmZxc9xU/LTufJ+fzhv71vF08oUdMrR213nn+XHjjcH8619lPPJINn/966lnVn1mTAy/ltWwZE8eH03t2cJh5W2mHg9wekOtqZZxO8ZRaCzkLK+zWD1uNSpJ/Gl2pt5Uzxslj1Fl/Yw4j2bODga1BKUGiUZTIgnur5Ksm93t53WXJuAudW/ekyB0l0ryw1/xf1TZ/kGF5VUCVYud3aV+Q9ym6ad+KEgnraaYJeM7/2bn4bEaV1clVVVzAHg/YxMm2cKi0bMdbf6S9ivh7t5cP3wSNpuNh7ev4NywUZzXvgSxzWLiwW3/5eYRU5gYEHVG/ZVlmbCw3ykvN7Fr12TGjz/1SaM+X6/HZoO6q2aftO2pssgy6v+sZWGoH9/PTuqx5+1puxp2cVbqWbTKrSwOX8wrI15xdpf6nWpTNW8WP0C97RtGebYyTm9fBlhqUOLKRKa6v4an6vRvZ9UZW/nvoTT215Vikq34az24acQUojx9uzwmq76Cr/NSKWttwNvFjQsiEpgWGNOhzbrSbFYVZ9BgaiPMw5trYpOJ9hSp4oc6WZbZY9Fjw0KSqgFJGty3BE/1+t3/x6+HsMq2Jh7evoIndq7kw8zN1LYnV/r881JaWmRuv/3IjOy8pmpGegV1OD7eO5i8pmoAqg0tNJoNjDqqjatKQ7Snn6PNmZAkiXXrJqBQwLnnpmKxnPpy3ysiAqg3W9hceXo5SzqzpaoBgEn9uCbNxyUfM3nXZIyykc/jPxeByFFKDaU8kXsVD+S5srLBnwtD/8X1Ya0EalQ0Gc9itHovF+stnKffekaBSIvZxMt7VqGUJO5JmM3TyQu4MmY87qquLxDVhmbe2r+eOK9Anhw/n3NC4/h39nb21x0Zdt9ZVcA3eaksiEjgiXHzCXP34o1962g0GU67r8LgYF/q+3r7Ut/bnN2dfkMEI/1UtKcfN4+Yyr0Js7lu2ESqDS28nL4Kg8XM888fQqmEp546sgKl0WRAp+54S0Kn1tLQ/uHXaLYXzdNpjmmjOdLmTMXFefD888OprTVz5ZV7Tvm4Z8fYv1EuTc/rkX4ArD5ckyaof66kuTvzbm7NvBU3pRupk1K5Lvg6Z3fJ6QoNhTyaezEP5WlZ1RzKZeFfc1WIAS+1hmbjPMaqs7nUy8xc3XrcpIQeOeevxQfwdnHj5hFTiPb0w0/rQbx3MP6uXZcP2FCWg5/WgytjxhPspmdOSBzj/cJZXZLlaLO6JJMZQbFMD4olxF3P9cMmoZFUbKno/RIIQv/np7wVDdHU2j7DJBc6uzv9grgx3U8l+IQ4Hoe5exPt6cdjO1by6/5cMjNbmDPHG622//3zPfZYNF9/Xc5331XxzTflXHFF0EmPCXLTEuPhyu+V9ciy3CMTTnfVNAL9b2TEIluYlTKLrY1bidHGkDIxBS+Nl7O75TS5rbm8V3YXCuV6xurMXBkOJhmK21xoMc5nivvrTNb2Xg6P9Jpi4r2DeS9jIzkNlXhp3DgreDgzg4d1eUxeY+ejkF/lpQJgka0UNtUyP+zIHChJoWCkVxB5jWc+CikMDjGq5e1Lfa9glGaHs7vjdGJkZIBwU2kIdPXk3TftQ8EvvdRxkqhOo3XUozms0WxA3z4SolO72rcdMwrSaDrSpqesXZuMVivxhz/so77+1NIf3zk8FLPNxkd5ZT3Sh6ymVtxVUr9aSVNqKCV8czhbG7eywHcBOVNzhmQgsr95Pw8fPIvH89WkGodxdfgqLgo0o1a4YjReS7KmjCu9DczyXIFG6t1kYlWGZjaU5RDg6sm9CXOYFTyc5XkpbK3oepSu0WzodITRYDVjslpoNhuRseHZ2SikWdymEezcpYl4KObQyk4a5DXO7o7T9Z9PauGEDFYzlW3NbPrOTHCwCxMmdJwgGuPpR2Z9eYdtGXXlxLRPmPPTuqNTazu0abOYOdRU7WjTU7y8NHz+eQJGo8ycOSmndMz9IyNQKuDvmT0zZFneZiRE239q0myq20Ts1ljKTeUsiV7Cj0k/9qtAqbelNqXyYO5klhSqyLYmcHXE78wPtCDb3LGa/8hklxqu8m5lmucXaKSTj6b1FBsQ4eHDpVFJRHj4MCt4GDOCYtlQltNnfRCGrljlV4CSAssNzu6K0w2dT8MB5pu8VLLrK6g2NJPbWMW7BzZSnCbRXKPg3nsj+DhrCysOpTnanxMax/66MlYVZ1De2sAPBekUNNcyO8Q+gqJQKDgndCQ/F+1jT00xJS31fJy9FS8XV5L8wnu8/5ddFsSllwaQltbECy+cfC6ISpKY5Ksno6GFRlPnVVRPlUWWabXKxOndz+h5esqbhW8yK3UWFpuF78Z8x7Mxzzq7S31iW8NmHjiYxDOFSkpsyVwbvoO5flaMVh0K871MdWniap9mJrl/gEpyztwevUZLsFvHwD7YVU/dUQUnj6VTazsdYdQq1WiUKjzULkgoaOpsFFLd/5eaC33HvtT3LsyUUW4Z2hPY+9+kAwGwLzf8IGsLLWYjHmoXhun8SX3dB5XKzIMPRvL6gVwUHMk7Eqvz57a46aws2MN3+XsIcPXkrviZjhwjAPPCRmGyWvgsZwetFhPD9P7cO3rOGeUYOZGvvx5LYOAGnnrqIJddFsCoUR4nbP9EQjQXrk/juX15vDz+1HOVHGtbtX0lzUQf588XuWn/Tfyr/F94qbzYPmE7I9xP/3UNBBvqVvF9zX14a7NI1stcFwENZqgweKNW/R8ztUuR+lHul1idPxVtjR22VbQ14uPSdSAbo/NjX23HhFUZ9eXE6OwjjCpJSYSnDxn1FY5AX7bZyKwvZ07I4P73F7ovTPk6NZZPKJWfJEC+Z9Av9e2KCEb6qdtHdcxkmpXVzB3ZW7jgAj9UKokHxs497phk/wiS/bu+x65QKLgoaiwXRY3t8f52RqmUWL06mfHjt3H22bsoKZl1wlsTC0L9cFdJ/PtQ+RkFI46VNE6sSWOwGJiaMpW05jTi3ePZOWEnbqqBWT34ZH6r+YHf6hfj65LLBC8b10VAnQmqTH5Equ5jnOvDSO798wN2buhI/rrnN34u3M8E/wjym2rYWH6QPwyf5Giz4lAa9aZWbombBsBZwcNZX5rNt4d2Mz0whsz6ClKqClmUcFaH5/0kaytRnj5EefqypiQLk2w5LheJINiX+r5JgfUWCqy3Ei195uwuOYUIRgaIBx+0Z1x95ZWB9c0qKUnHo49Gs2zZIW68cT+ffTbmhO0vCPHj68JKDjQ0E68/8UhKV3a2r6SZ4qSVNPlt+UzYMYEaSw1XBVzFlwlfDrpiaj9Uf8mGxkcJcClkopeNa8Oh2gjVxkCilI8wzu0+JI/+fxc4ytOXu0bNYkV+Gj8V7sVP68FVMclMDjiybL7B1EbtUbdt/LQeLBo9m6/zUllbkoWXixs3jJjMaO8jK+Am+kfSbDbwfUE6jSYDYR7e3Dt6DjqNa5++PmFg8FPeTJn1OWptXxAqv9jrE7f7I5GBdQCwWGTc3NYQGurCoUOznN2d0zJq1GYyM1v45ZfxzJvX9YTZrIYWRv64lcvC/fl2VuJpnWvYys2UtxlpvqbvC1H9WvMrC/cs5P/bu+/4qKr8/+Ove6en90pCSOgdQpEmKigKFkRWd1VE113Xr7r6k13Xgopr72vXVXfVXV1R7AVRuqL00KQEEkgC6X0yk0y95/fHhIFAKIEkk4TzfDzy2M2dM5PPvYbMe849xSM8PNXzKe7qfle719AWNE3js/J/s9b+EAmWQkaEQ4geSh1Q607mrJB5dDfceEYNypWk1mTXNrDLM5IgRtDPuD7Q5bQauVFeF/L88/m43YK77koLdCmnbOXKEXTr9iMzZmymtPQcQkKa/9XrEx5MotnIoqLKU/5ZJQ1OEi3tP5PmibwnmJs7F4Ni4Puh33N+9PntXkNr0jSNj8peJav+cVKCSsgMh99GQpFDobghlXGhT5AZ9rtAlylJXUKwOoJQ5TzqxDJqtaWEq5MCXVK7kh9jOoEXXyzAZFK4+eZuJ27cQcXFmXj77f7U12tccMHxp/vOTk+k3qvx5f6yFv8cj6Zh92r0CWu/mTSapnHF1iu4L/c+og3R7B6zu9MGEU3TeLfoCe7eF8Pr5TrSIm7nt91KSLUoHKjvSTJfckmYxm+j80gxyiAiSa0pXbcA0JHnuTbQpbQ7GUY6uKysWoqKnFx6aVyn7wK/7rpkLrggitWra3n55fxjtps7oAcK8Pj2vBb/jLUHZ9K003gRm8fGgLUD+Kz8MzJDMykcX0h3S/d2+dmtxaN5eLPwAe7Ni+KtCh39ou5jZlIliSaV/fYBpLKU6eEaV0XvIcF4aaDLlaQuS69GEavcgocSSjzPBrqcdtW5393OAHfd5Ru4+uyznWvg6rF8/fVwwsP13HlnNvn5za/lEGLUMzA8mA2VVlwt2HAPYEmJb7O9SQmRp13rieyy76Lbqm7sqt/FDYk3sGHUBoydZFqeS3PxWuFfmJsXznuVBobGPMrlidVEG1QK7MPorVvHjAgvV0b/Sqyx/cfeSNKZqpvuBVRCKdIeQNNObgXrrkCGkQ7M4fCwcmU1ffoEkZraNUbhG40qCxcOw+uFiRM3HLPdnH6paMBz2cfuQWmOfyZNTPgJWp6eT8s+ZdDaQVi9Vl7t8yr/7v/vNv15raHeU89L+2/m/vxQPqwyMTr2eS5NsBKi07HfNpp+um3MjPTym+gswvUjA12uJJ2RDk71FTjI894Q6HLajQwjHdijj+7D64X77+9aaxOMHRvJbbelkJ/v4JZbdjTb5roeiRhVhTf3FLbotbOtdoJ0Kvo2vKU1N2cuM7fNRK/o+Wn4T9zS7ZY2+1mny+ax8VzBdTyYH8wX1mDGxf+TafE2jKqe/baJDNbncFWUhyui1xCqb52dcCVJOj0xutmYyKBafHjG7Oorp/Z2YHFxy7HbvdjtRy9w1hX06PEjeXkOfvppJOPHH31bZcrSLH4oqaLw8vEkneSqnSEfLSPBbCLnsnGtXS6apjF1y1S+r/qeRGMiWaOySDC13z4qJ6vKVcW/Sv6EnW/oH+ogIxgcXsirNxKmnsv5oW9j1nfewdCSdCawa1ns8mQSRCb9jMfuRe7oTvb9W/aMdFA//lhFebmbK6/seG92rWXlypHodDBtWhYu19FjQx4enAHAg1tOvLcN+MKC3aPRJ6z1VzqtdlWTsTqD76u+Z0L4BArGFXSoIFLmLOOpgot5ZL+JFfXRnJfwCZNiHTg1E6X2yxhpKOWaaCeXRC6SQUSSOoFgdTihyiTq2UittjjQ5bQ5GUY6qHvu8e0a+tRTvQJcSdtJTbXw4ot9sVq9TJuWddTjo2PDiTTq+fQkp/iubRwv0tozaTbXbSbl5xTyHHnc3u12fhzxI3o18Ev0HGgo4PH8STx+wMgaZzyTE77l7GgXdR4LFfW/ZYypllnRDqZGfoFRHxfociVJaqH0xl198zzXBbqUNifDSAdks3lYs6aWIUNCiItr/8W72tOtt6YyblwES5ZU8c47R48PmZkaR43bw89l1Sd8rcXFvj1pJsW33p40/y3+L5nrMmnQGniv/3u82OfFVnvtU5HXkMtj+eN5stDAVk93piQu46xIN1XOYGoabmSC2c7smHqmRHyIXj1zbmlKUlfkm+p7a+NU36cDXU6bkmGkA7r//hyEgIcf7hnoUtrFDz8MJzhY5U9/2kFJSdNt1x8e5Bu8+9C2fSd8nfVVvp6RMbGtM5Pmjt13cN2O67CoFtaPXM91iYH5dLLHvp1H80fyTKGe3d6eXJj4M5nhHkocodgb/sw5FifXx9qYFP42qto1N+OTpDNVN90/Gqf6PoimOU78hE5KhpEO6L33iggP13PppWdG13pQkJ7PPx+K2y2Omu6bEGQmPcTMytJqNO34a45k17bOTBqP5mHChgm8tP8l0sxpFIwrYHjY8NN6zZb61baOR/KH8Hyxjv0M5KLEDQwK87K/IQKn814mBbn5fayVs8NfOmO3HJekM4Fvqu8rCJzkeX8f6HLajAwjHczCheXU1HiYNSsx0KW0q/PPj+G66xLZvbueu+/e3eSxm3t1wy0E/95bfNzXKHK4SDjNPWlKnaV0/7k7q2pXMSVqCrljcokytt5tn+PJqlvBI/n9eLFEpVIdzdTErfQJ1thnj0a4HuWCYC83xlYzNvRx1A4wZkWSpPYRo7uucarvfJxay9Ze6ixkGOlg5s7NQVHgsce67sDVY3nnnQEkJpp45pk8srJq/cfv6J2KToEXdh17vr1vJo2XPqGnfpvi5+qfSfsljSJXEfd1v49Fwxa1+RL8q2sX8nBBT14tUbHrz2Vq4i56WAQ5tjj07pe4KMTLjXEVjAiZ2+m3A5Ak6dT10H8MCHI9VwS6lDYh/7p1IJWVLrZsqWPUqDDCws68T76qqrJy5QgUBc4/PwtP41LwRr3KyKhwdtTasbo8zT53fWUdACNOcSbN6wdeZ0LWBDzCwyeDPuGxno+d2kmchJXVH/NIQXfeKFPQjNOYlpBLolmQXZeE2f02l4YLbowrZUjwn2UAkSQJODjVdzINbKRW+z7Q5bQ6+ZeuA7n77t0IAU8+2TX2oTkVvXoF89hjvaiqcjNz5hb/8bkD0xDAI782v+bI4pJKACYltPyWyo07buSW7FsI1YWyddRWrohr/U8eP1T9i0cLknmrXMFkuYqpCQVEGxV21XUnzPsRMyIEf4grZEDwja3+syVJ6hrSdR/hm+p7faBLaXVyBdYOJCRkKWazSkXFuYEuJeAyM1eTlVXHggWDmTnTt7hYyPxlhBr0FF9xNh/uK2ZxSRX9w0MYEB7M8zvzWVJajft35530AFaX5mLshrFsrNtIn6A+bBi5gRB9SKudw7eVL7Gp/jGSzGUMCPMl/9x6BZsrg0lhL9LDMrXVfpYkSWeGAvedlIsXSFafIkH/t0CXc0In+/595t0L6KA+/LAYu93Ln/+cGuhSOoSlSzNJTPyRa6/9lfPOiyIqyshFyTF8UlDGzlobi0uqeGdvMSpw+BybkYvWMyTSF1CmJsUwIKL5cFHgKCBzXSYV7gpmxM5gwcAFp31LRNM0vqx8ih2O50gJqqRfCJwfAjl2le01fZgS8QYjI88+rZ8hSdKZrZvuOSo9/6ZIe5A47XZU9eS2yujoZM9IB9G//89kZ9ux28/DbJYZEeCLL0q5/PItDBkSwubNY8mutdP3m9VckRLLNT0SmfHj1mafp1PAK2BCbAQ/XjDiqMeXVC5h2pZpuISLxzMe5960e0+5Rk3T+KTiQXKdr9I9uIY+IeDSfAHE4xnE1Mi3iTceXYMkSdKpqvS+T553FpHKb0k3fBjoco5L7k3TiRw44GDnTjtnnx0pg8hhpk+PZ8aMOLZssfHoo7n0CQ8m0Wzku6JKLkiMxqgqzT7PK3y/2E8OO3rRuGfzn+WCzRcgEHw35LtTCiKapvF+6R08eSCcT2p1ZEQ8xsTYGlyajm01I+mj7mBWtJcb4jfLICJJUquL1l2LiZ5Ui4+6zFRfGUY6gLvu8q2r8cwzZ+7A1WNZsGAwMTEG5s3LZedOG7PSE6n3aiwprmRyQhS6Yzzv4SEZjI2N8H8vhOCqbVdxV85dROmjyD4rmwtjLjzpOlweF+8U/4GnC0P4wqqjX+RLjIu2YvPo2V4zgYHqPq6P8XB93DqijP1O76QlSZJOIN0/1XdGoEtpFfI2TYBpmkZw8DIiIw0UFU0MdDkd0pYtVoYNW0N8vJFd+8YS+emPjIoO4w89k7lp7U4O/wXWKQpjY8JZPjkTXWPPSb2nnpEbRrLDvoNBwYNYN2IdZv2J77M6PA4+KP891doX9A5pINkCNg/ssRkwcw4zot4nSG5AJ0lSgOx2T6FO/EBP/SLC1SmBLqdZcgBrJ/H224U4HBq33ZYS6FI6LEu4h2lXhPDNJzYuOH81iTfrWFdpZXqNjiOTtFHAtBqVf33qG09SbTjAY+HXUKf5FlG7KOai4wYRm8vK/yqvwyYW0SfEydBoqHXDHrsJu/MCLo/6DxPjItroTCVJkk5eum4+Wzyx5HlmM8RYEuhyTou8TRNgTz2Vh16v8Le/pQW6lA7rl81FnHuxkbhElXWrnGTk+ELIT64GUoSOwxPJb71BGBo0bPVu1niXcF/IZdR5D63m+mHJhxzZGWh1VfB60RReKDbxsyuczOgvGRTmZH+DhdzaKznbZOdPcQ5+F/cVZn1E+5y0JEnSCejVSOLU2/FQSrHnyUCXc1pkGAmgPXvs7N3bwAUXRKPXy/8Ux+JyewG49b4wdDpY/bgDnYC1Ohcj9GZoHMd6jmrmLEsQIUEGlkW9zTsxf0Ug/I8D7HfuZ7NtM5WuQl4tOoeXSoysd8cyKuYH+oa4yLUHU2C9nnPNTm6Or+fK2I/Q6+VOuJIkdUzJ6rOohFGsPdSpd/WV74AB9Je/ZAPw7LNy4OrJSIg38e67A/G4IGSjjko07jjHd+2CdSrfXTmGP1wxiK96zeXboH9ixIxQDq1CYlTg7ChYUpfJNk83zopZSXqQm511IRTZbmOyxc0t8TYuj3kHvV7uhCtJUsenqiqputcQONnnvT7Q5ZwyOWYkQLxejUWLKune3Uy/fq236mdXd+21Sbz/fjHf/7cSMhXeyCkC4MFB6Ti8dQxYn8lex16SjEkUuYowqzA2EibFwPgoCNbDvnrBttpwMkw3MzXicdQwmcklSeq8onXXUOz9OzXiYxzaE5jVHoEuqcVkGAmQ55/Px+0W/PWvaYEupdP56qthxMWtoHaXl0UG3540A6PLSPllEDavjcyQnsRYcvh/Mb4gYtZBtg3+cwCWVsB+B2watYxBIcMDfCaSJEmtI12/gJ2eoez1zKS/caP/eL22lTqXgtOT3KR9iN5ElDm4vcs8JhlGAuTFFwswmRRuuaVboEvpdIxGlcWLhzPmxvXU9HVjMOVyw+67GRtp47dJCn1DczCqsL0O3iyAZRW+550VCX/uAaMioEK7ECgL5GlIkiS1miB1CGHKFKzie2q177Aogyn03E2V+ID91iF8l910Hxu9ovLIiEs6TCCRYSQANm+2UljoZObMeLlF/CkaOTKCt+/tx+4R4xkek0+yGQwqVLoUPi60kFOXhBAlDI6y8cYgSDCDJnwTb1Qgr94GHePfoCRJUqvooZvPFk8Mez2/QeBF4AbArLce1dYjNGweJ1Ed5A+hDCMB8Ne/+lZclQNXT53XK8je2sCoiw7QzQKqAgiFRFMSs1LKEeQAoGk6VNU3G+fg6vEeTaHcGRugyiVJklqfEAKr+A4VMxr2Jo8Z9fUBqurkndLH8ldffZW0tDTMZjOjR49m3bp1x2z71ltvMWHCBCIjI4mMjGTy5MnHbd/VuVwaK1ZU0bt3EN27WwJdTqdUVeVm2rQsnn56H1v+uZlhugb66TfRXf8WZvojcPrbHgwih9OrgtnxnXtOviRJ0kH1Wha7PGexz3s1GkcHD4OuIQBVtUyLw8hHH33EnDlzmDdvHllZWQwZMoQpU6ZQVtb8/fcVK1bwu9/9juXLl7N69WpSUlK44IILKCwsPO3iO6NHH92L1wv3358e6FI6DU0TlBR6+HlZA1OmbCQ2djmrV9ewaFEmD909EL3eTJA6lBjdjfQ2fk9/ww5MZCBE8xvpAezzzmabK40c92WUel/EpR1oxzOSJElqPQXeW6gXBz/kH73Di0Ht+OuPtHhvmtGjRzNy5EheeeUVwLe3SkpKCn/+85+55557Tvh8r9dLZGQkr7zyCtddd91J/cyutDdNXNxy7HYvdvvkQJfSYRUXO1m7tpa1a2tZvbqG1aurcbmatlmyZDiTJsUc8zW8wsayvMuJSl7SzKN6TPTFTR4aNv9RBQN6kghSBhGqTCJSvQKjKpfplySpY3OKvezzzMYuVh2zzVtr/4s4ov9h7rALSQ2JatPa2mRvGpfLxcaNG7n33kPbrquqyuTJk1m9evVJvUZ9fT1ut5uoqGNfAKfTidN5qKvdaj168E1ntGpVNeXlbq67LjHQpXRINTVuRoxYQ26ur0tRr1fweI7OyldeGX/cIAKgU0LYt+EZqkr/Q8bQF1FUAN8CaMHKWfQ1/ASApjmoFQup1RZSL9bjZB+14htqxTcc0O5sDCiJWJRBhCnnEanOxKimtup5S5IknQ6Tkk4f/UrKtdc54P1r48DVpreo9ToHbm/HXU26RbdpKioq8Hq9xMfHNzkeHx9PScnJbdJz9913k5SUxOTJx+4ZeOKJJwgPD/d/paR0jU+nd9/tG7j6zDNy4GpzgoJ0GI0qysGBps0EEYB58zJO8hUVCrOvJvvnf6EnGtABOoKVUf4WqmomUjeDNMPb9DduYZjRyjC9g3Td58Qof8RMf7xUYxXfckD7C9s83clyGdnqSmWPexolnudwavmndd6SJEmnS1FU4nS3MsCwnWBlzFGPG5sZN9LCGyNtql1n0zz55JPMnz+fFStWYDYfe+fUe++9lzlz5vi/t1qtnT6Q2Gwe1qypZdCgEOLiTIEup0MyGlW++WYYw4atxmbzomlNH1dV6D/EyKrtuazafuLXszf4prXZq4bR37CVXM9vsItVBCsjjvs8VTURyXQiddP9xzTNhVUsolb7FrtYh5O9WMVCrGIhhdpfAT0GErEoAwlVziVCndkpV0GUJKlzO7yXZL/nLwicKIovjNiPaPttwa/8sd94DKouILUerkVhJCYmBp1OR2lpaZPjpaWlJCQkHPe5zz77LE8++SRLlixh8ODBx21rMpkwmbrWG/YDD+SgafDwwyf7qf7MlJ4exIIFQ5gyJeuoxzQNJl5kwlbvbtFrGg06DEoCffTLqRXfEK5Ma3FdqmokgkuJ0F16WD0urHxPrfdb7GJtY0D5Dqv4jkLtb/gCSsJhAeUKzKr87y9JUttSFJXS2unMz3Fzcb+HCTFVkxqxEc3TE7vHhUf4PultqSrkvd1ruLHPWBTl2AP+26XmUxnAOmrUKF5++WXAN4A1NTWV22677ZgDWJ9++mkee+wxvv/+e84666wWF9kVBrBGRi5D0wS1tZMCXUqH5nJpTJiwjnXrmo4TUlTo3kPPPY9HtegfjdGgY+zQJHqnte0grYN8AWUxtd5vGgNKLhqHn4seA/FYlIGEKOcQqc7ErPZsl9okSTozaELjgQ1fU+GwA16uHfogYUYjg43bcWuwpmwfH+/Nwq35xpXMGTSJPhHxx3/RU9QmA1gB5syZw+zZsxkxYgSjRo3ihRdewG63c8MNNwBw3XXXkZyczBNPPAHAU089xYMPPsj//vc/0tLS/GNLQkJCCAk5MzaIW7iwnJoaD7fc0rlvNbW13Nx6Ro9eS2Wlm0suicFoVPn88zI0DYQGLzw3kMsuiwt0mcfl60GZRoR6qPdF0zzUsZga7zfYxRqc5GIV32MV31Ok3cvBgGJWBhCqHAwovQJ2DpIkdW7bq4sbgwj0CktkWPCnZHtGUK69QZzuNs5O7IVOUfnPnrUArCje3WZh5GS1OIxcddVVlJeX8+CDD1JSUsLQoUNZtGiRf1BrQUFBkyXOX3/9dVwuFzNnzmzyOvPmzeOhhx46veo7iQceyEFR4Ikn5BsMwKJV+9iR69vgTlUUzCYd5YXwxAPlOBoETz/di7vu6oHN5mH79rXs2mUnI8PCJZe0/qqptTYn//p0G9de0p+4qLYZaa6qesK5iHD1Iv8xX0BZQq33G2xiDS5yqRM/UCd+oEi7D9D5A0qIMpEodSZmtU+b1CdJUteyq+bQUIpzk3oToqYSo97IAe89hClTMKu9GB2Xxif7NlHvcTVpHyinNID1tttu47bbbmv2sRUrVjT5Pi8v71R+RJdRVeVi06Y6Ro4MIyxMrr5/UFpyGFPG9UDTBPfck80/Xy8mLknH3x6M5/bfpwEQEqLnm2+Gcc4563n88V6oamDvabYmX0C5kHD1Qv8xX0BZTq33a+xiNU5yqBOLqROLKdbuxxdQ4jAr/QlRJhKpXoFF7R+4k5AkqUNyej3+/x9r8d2BiFb/QIX2NsXeh+mh/he9qiPKFES9x4XrsPaBIt8d29jdd+9BCHj8cdkrcjidqqJTFM49dyPr11vp3t3MV98NYMm6fWzPqWBQ71gcLg+5pWXc+3QYZZ4iFnxfyzkjU4ht7MH4ZXMhuQU1DOkTx5qtRTicXtK7hXP+2O6YjL5fbSEEa7YWs213OQ0OD1HhZsZndqNHcjgA//p0GwDvf70DgG7xIVx5Yd8AXJGDAeV8wtXz/cd8AWUltd6vDgsoS6kTSynWHgR06InF4g8oM7CoAwNSvyRJHUOo4dAEkFxrOakhUVRrH6Ijku76NwGwuZ2U1PvGs4UYAj9hRIaRNjZ/fgnR0QYmTYoOdCkdSmWFm+TkH6mq8nDppbF8/vkQVFVly54S9hRUM6h3LN+syEWvU5lxfm9MRh1bs8tZ8MNubrh8IBaT71e3ps5Jdl4V0yf1wuXy8sMveSxdU8DUs33L7WftKGXj9lImj+lOXFQQv+ZU8OWyHGZfNoDIMDNXT+vH/77dycwLehMdYelwvS++gDKJcPXQwGdN07Cxghrv19jFLzjZQ51YTp1YRrE2j4MBxaz0I1Q5mwj1CoLUQYE7CUmS2lVmbCoL9/vWP1h8YBdDY4yU8Sqxyq2oim9PtIX7f/XPqsmMDfxCjnL/+jb00UfF2GxebrwxOdCldCibN9q586YDVFd7ePbZXnz55TD/OKOocDNWm4vC0jpKKuq5+JwMEmKCiQwzM3FkCiajjj351f7X8ng1Lhzfg7ioILolhHLu6FSy86r8a4xs2F7KyIEJ9O0RRVS4mbMzuxEbaSFrh+8eqcXsCzVmk55gi8EfcjoyVVUJU88j1fAP+hnXMtRYxTC9h9765cSpdxLECAQubGIFxdrf2ekZzEaXji2uBLLd51LomUe9tiXQpyFJUhvpFhxJrzDfYP9Kp51VNVcjhAfFM5PsmlL+ueMnlhZmA6CiMDEx8D33Hf8vbyf28MN7UVV46CG5Kd5Bt9++k9deLyIqWse33wxn/PjIJo8LQAHKqxtwe7y8Pn9zk8c9Xo2aukNbBYQFGwkNNvq/T4oNRgioqnWg16nYG9wkxTWdtZUcF0J5dcffxbIlVFUllHMIVc/xH9M0DTurqNG+xK79goPd2MRKbGIFJdrDgNrYg9KXEOVsItTLCVaHBewcJElqPbN7j+apLYuxu20khK3D5ozhrS0FQEGTdr9JH068JfBLZsgw0krWrKlhz556rrginqAgHUVFDnbssHP22RFYLPIyOxweJkzYwIYNVgYMNTH34YSjggj4QkRYqAmX20uwxcBvphw9g8RsDPxqgZ2BL6CcTah6tv+YL6D80hhQfm4MKD9iEysp0R7BF1BiMNOXEHUCEerlBCnDA74gkiRJLRNrCeVvQ85nZdUfUVWNjYUzmjwerDcxM30YY+M7xodl+S7ZSp55Jo/PPivjllt2csMNSf7N3p59Vk7H3LPHzllnraWqysNll8Xyp7+E43JrR7UrKLZSUd3A8H7xhAYbsDe4UVWF8JBjD66y2l3Y6l2EBPl6R4rL7SiK73aPyagj2GKgqMxGSkKo/zmFZTYSYoIB0DWOEelIezS0JV9AGU+oOt5/zBdQVlOrfYlN+xkH2dj4CZv2IyXaY/gCSvRhAWU6FjKbTOGXJKnjibOE0iv2e7wimBTTTYTHOjCqOnqFxzEitnuHWAb+IBlGWklkpAGdDmw2L6+9dgCvV2AwKOTm1jN4cCgm05n5h/ujj4q59tpf8XoFzz7bm7/8JY1Fq/bh1TTsDW40TVDvcJNXaGXdtmLSu4XTPyMaRYGk2BC+WpbDhMxuRIabsde72Xughp6pkf4wodepLFq1j4kjUnC6vSxfV0Dv7lEEWwwAjByYwC+bi4gINREbFcT2nArKqxv8A1yDzAb0OpW8wlpCgozodYp/Js6ZwhdQxhGqjvMf0zSNetZSo31xWEBZhU37iRLtcQ4GFBN9CFXHE6FejoURMqBIUgdS5f0ELzXEqreTmZ4Z6HKOq8XLwQdCZ1gO/u67d/OPf+Tjdh+6nIoCQkBkpJ6bburGvHkZWCwdJ4m2tT//eSevvLIfi0Vl8eJMxo3z3ZY5ctEzk0lHbKSFvj2iGdAz2n9LwOX2siqrkD351TQ4PQRbDCTHhzBheDdCg43+qb2De8eyZmsxDpeH9G4RnD+mO2bTYVN7txSzbU859Q4P0UdM7QXYtrucNVuLsdW7SI4L3NTejs4XUNZTq31BnbYKJ9l4qMA30gdA8QeUEHU8Eep0ghglA4okBcivrt442cswvRVVbZtFHU/kZN+/ZRhpJc88s497792D13vsNitWjGDixPbZIyWQHA4P48dvYONGKz16WNiwYTRRUcYTP7GFDoaRWZcOaPXXlk6Opmk0sJEa7XNs2ioc7MJDJXDwNpyCjmjM9CZEHU+4ehnBnCUDiiS1sQZtJzs8/QlTLqSX4buA1dFme9NIzYuJMTYbRA6O+3vttX5nRBDJzrYxZsw6qqs9XH55HJ98Mli+8XRhqqoSzEiC1ZH+Y76AktUkoNhZg137hVLtaXwBJQozvQlWxxGhXkYwY+XviSS1wH3rvqTSaT/q+MTEXlzdcyT7vX8GIEX3sv+xjeUFfJm/lUqHjThLKDN6DGVQ1KGlJ4QQfJ2/jZ9KcmjwuskIi+HqniPbZbaNDCOnqcphx+ZxogU5j3pMpwODQWXBgiFcfHHr76vS0Xz0UTHXXLMNTYPnnuvNnDlpgS5JCgBfQBlBsDqiyXG7djCg/ISDndhZi11bTZn2LL6AEtkYUMY2BpTxMqBI0jHcO3QKGodubBTZa3nh12VkxqTi0WzUieWY6effFTzXWs7bu35meo8hDI5KZl1ZHq/v+Im5wy4kOTgCgO8P7GRZUTbX9xlDjDmYr/K28tKvy3ko8+I2H+wqw8hpqHLYeWDD13iERkmlHojwP6bXK4SF6Vm0aDgjR4Yf8zW6iltv3clrrx09PqQtjR2azNihckG5ziJYHU6wOrzJsXptM9XaZ9jETzjETuysw66toUx7noMBxUQvQtSxRKiXEszZMqBIEhBqNDf5ftH+HcSaQ+gdHkeB5xZAI1n/pP/xpYXZDIhKZEo3335Wl6UNYWdNCSuKdnNNr1EIIVhauIupqQMZGt0NgBv6jOGvaz5jc8V+Rsalten5yDByioQQ7Kwp8S+na444NFVVUSE11czixZmkpwdm0FB78Y0PWc/GjXWkp1tYv75txodIXVOQOpQgdWiTY/XaVmq0z6gTP+IQO6lnPfXaWsq0f+ALKBGY6EWwMpYI3SWEcI4MKNIZzaN5WVuWx+TkvgghqBL/QUc0Eeql/jZ76yqYnNx0cH7/yES2VB4AoMJhx+p20C8iwf+4RW+kR2gMe+sqZBjpiOxuF2/tWsXOmhL/MXP4oe6ypP4aixYNIj25aweRw8eHzJgRx4IFcnyIdPqC1MEEqYObHKvXfqVG+xSb+JEGsYN6NlIv1lHueYFDAaUnwcoYwnWXEsq58ndROmNsrjxAg8fF2PgeVIg30agnUf1bkzZWl4MwQ9PelDCDmVqXw/e427c2VtgRPS5hxkNt2pIMIy3k8np4afty8uoqmxzXnACC4FiNKf+o5p3CldwTO+Wo/7BdxYcfFjNrlm98yD/+0Zv/9//SAl2S1IUFqQMJOmI34gZtO9WNAcUhdlBPFvViPeWelwCOCCiXNAYU+SdP6np+LsllQFQiEaYgtroeQ8FAgjo30GW1iPyX2ULLi3f7g0iowcSMHsMYGdudp57Iw2jK5U8furEZfZsTfZ2/lWt6jQpwxa3v1lt38NprBwgKUlmyJJMxY9p+fIgkHcmiDsCiNp3W3aDtaByDshKH2E49m6gXGyj3+GYU+AJKRmNAuZhQJsmAInVqlQ47O2tKubn/BGzaatwcIEL5zVG/12FGM1Z30x4Oq9tBeOMH5jCDbzdfq8tBuNFyqI3LQUpIRNueBDKMtIgmBD8W7/F//+cB59I9NAqvV/DWm4Vcc3US949PZ96Gb3BqHtaW5TGjx1As+q4xhsLh8DBu3HqysuT4EKljsqj9saj9gfv9xxq0nUcElM3Ui42Ue14BQCUcEz0JUUY3BpTzZUCROjyvsJPtGU9FQx+SQsYzKCqJ3e4rAEjRvXRU+/TQGHbVlDQZN7KzuoT00BgAYszBhBnM7KopISXE9wGzweNmX10FExN7tvn5yH9xLVDaYKXC4ZvX3Tcinu6hvnVD3nxzPwUFDv7v/1KINAUxMq47q0pycWoecqzlTeZxd1Y7d9oYO3YdNTVyfIjUuVjUfljUucChbmuHlk219hl1YgUOsZ0GttAgNlLueQ04GFAyCFZGE6G7mFAukAFF6lA0rDSIzQQFbWbagI/IcX9GPeuwMByjmsA72b8QYQzi8h5DAZiU3Idnty5h8YGdDIpKYn15Pvm2Kq5t7L1XFIVJyX1ZuP9X4iyhxJhD+DJ/KxEmC0NjUtr8fOS/rhao97j8/z8x6NB03ccf3wfAAw/k8JvfxJNw9qFN2Ro87vYrsI188EExs2f7xoe88EIf7rije6BLkqTTYlb7kKjeSyL3+o85tD2NY1BW0CB+pYGtNIgsKjyvA6AS5g8o4bpphHEBqip7BqXAUPG9zxxcWNPGCgA8lFPufZMaVxIKh3bbzgiL5Q99xvFl/ha+yNtCnCWU/+s/wb/GCMCUbv1weT28v2cd9R4XPcNjuX3Aue2yoZ5cDr4FSuutPLjxG8D3H/ZvQ84HoKzMydtvF/L112WsWWNFUSC2n5uRN9l5ctZ4BkYlBazm0/V//7eDN97wjQ9ZunQEZ50VEeiSJKndOLRcarRPqRPLaRC/4qYE8Pgf9wWU9MaAMpUwLpQBRWoXQgiy3DrgyLdwBRCohJGse5w43a0BqO4QuTdNGxBC8NDGbylpsALwl0GT6B0R36TNex/n8Zf7dlCZqwMUIiP1zJ6dxMMP9yQ0tPN0RDkcHsaOXc+mTXVkZFhYt06OD5EkAIe2jxrtk8MCSjFNA0poY0AZRZg6jXDlIhlQpDaxyRWCxtFLwh8UqVxFumF+O1Z0NBlG2sjyot3Mz90AgFmnZ2rqQM6K64FOUdlUsZ+v8rdidTtw1ELhB8msX+jBavWiKJCZGcajj/ZkypSYgJ7DiRw+PmTmzHg++miQHB8iScfh1PKp1j6hTiyjQWzDQwmCQ7dofQGlR2NAmdoYULrmtH+pbR3cggSgwtAXoZQ32y5GvYlU3SsoiqE9yzuKDCNtxKtpvLR9ObtqSo/bLikonLuGnE+Q3shXX5Xx0EO5bN5chxAQHq7nmmsSeeyxDCIiOtYnpiPHh9x+uxwfIkmnwqnlU6N9itUfUIqPCCghGBsDSrh6EeHKNBlQpOM6fAsSgKuGzCHcfPh7kW+MSIruRWLV21AUpZlXaV8yjLQhl9fDf/esZV15frOP942I5w99xh21d0BNjYu5c3P54INiams9KAoMHRrK3/+ewSWXxLVH6cd1883b+ec/CwkKUlm2bASjR0cEuiRJ6lJcWkHjLJ6l1ItteCg6RkAZQZg6lQjlYhlQJL8CWxWPbVrk//7yAXOJDcnzfSN0qIqZdP0nhKsXBqbAZsgw0g5K6q2sKsnhgL0GgSDOHMq4hAzSQqNP+NzvvivnwQdz2bjRihAQFqbjt79N4Iknep1wbMaHHxYTHKzj0kuPHWAO78oDCNGbiDIHN9u2vt63fsjmzXX07OlbP6Sj9dhIUlfl0g5QLT6lTltGg9iCm2IEh2buqQQfFlAuagwoXXurCelodS4Hn+zLYk1Znv/Ypf0fIiF0D0KAjm70Nf6ARekXuCKbIcNIJ2G1enjwwRz+858iqqt9vSWDBoUwb14GM2bEH9W+rs5DfPwKnE6Nr74axrRpsUe1ObIrD0CvqDwy4pKjAsmOHTbGjfOND/nNb+KZP1+OD5GkQHNpRY0BZWljQClqJqCkEaSMIFy9iAjlEhlQurDyhjr+sW0Zlc6mg1WvGXYLwcZaym1p5Je+yB/7XoyqdKy/3yf7/t2xqj4DhYXpeeGFvlRVnceSJZmMGhXGtm02rrhiC6GhS/n973+lrOxQD8f8+SU4HBpCwMyZW1i3rvao17R5nE2CCIBHaE16SgDef7+IwYN/obbWw0sv9eHjj4fIICJJHYBRTSJe92d6Gr5gkHEfw41OBumLSNG9QrgyHT1xONlDlXiPfd7fsskTzCZXCNtdA9jnnk2V90M8mi3QpyG1Arfm5eXtK/xBRIdC34h4RsV2w6i6sLvC+XLH38mqsPFl3tYAV3vqOs9c0zPApEnRTJoUjc3m4e9/z+Wdd4r8XwMGBPPAA+m8/vp+AIQAl0vjwgs3snbtaHr1OtTjYXM7j/Uj/G66aTtvvVVIcLBv/RA5PkSSOjajmkgctzZZN8KllVIjPsWqLaFBbMFJLg6xgyrvfwBQCcJId4KUEYSpUwhXLkOvhgTqFKRTsL48n9KGOsC32ObtA84hyhxMtfYJez0NGGyfAjWAYGlRNlNS+hPUCbcgkbdpjvDd/u1sqthPSYMVo6ojPSyWGWlDSQg6/s/dWF7Al/lbqXTYiLOEMqPH0CbLwAsh+Dp/Gz+V5NDgdZMRFsPVPUcSbzn+6/74YxX33beH1atr0bSjH9fpFJKSTKxfP5rYOANf5G1lyYGdeI9aCAe6h0RxQ49xXHTONrZsscnxIZLUBbm0MmrFZ1i1JdSLzbg5gODQBxRfQEklSMkkTL2QcOVS9GrXuv3dlTy95QdyrRUA/G3I+WSE+W7N73KPR0FHH8NKPsxZz4rGfdN+mzGCc5N6B6zeI8nbNKdod20Z5yT15p4hF3DHwPPwahov/roMp9dzzOfkWst5e9fPjEtI5/7hFzE0uhuv7/iJQnuNv833B3ayrCiba3qN4p6hF2BS9bz063Lcmve49Zx9dhSrVo2mru48hg07+hON1ysoKnJywQUbeWvTOr4/sKPZIAKwaVsNPVJ+YcsWG1ddFU929jgZRCSpizGqccTqbibD8AmDjDkMNzoYrC8jVfdPIpSZGEjEyT6qxAfkeWexxRNOliuIX1392Ou+hgrve3g0a6BPo0WqHHYKbFX+ryrHsRcC62wOvo9EmYL8m9qVe/+JXfxMrHoHACNj0/ztiw573+lM5G2aI9wx8Nwm31/f+yz+uvYz8m1V9A5vfvbK0sJsBkQlMqVbfwAuSxvCzpoSVhTt5ppeoxBCsLRwF1NTBzI0uhsAN/QZw1/XfMbmiv2MjEs7YV1CQHZ2fbOPeb2CrVttPHSDi4tfAL1eYUx8D/pHJmLS6cmpLeetd/JZ9JgZIeDa+43895EhJ39RJEnq1AxqLLHcRKzuJv8xj1ZBtfgcq7aYBrEJF3k4xS6qvf8jn+tRsGAkhSBlOGHqFCKU6ejViMCdxDG0ZMB+Z3Two6VOUf3rhnhEDQBGEhofU45q39nIMHICDV7fGgDBx7kHt7euosm2zAD9IxPZUnkAgAqHHavbQb+IBP/jFr2RHqEx7K2rOKkw8vHHpdTXN3Of5jAlW428f0UkL76fyqzx/f2/uF+/4eS7RyzozYKLX6whrL/A5nYQYpDrF0jSmUqvxhDLH4nV/dF/zKNVNQaUHxoDSgFOsZtq73zyuQEFc+MtnmGEqRcQocwIeEA53oD9KDp/GIm3hFFgq6LcYWO/rZqUkEgSdH+lTHuBKu1jgtRMdtr/y6SeH2HRWzE7Pwl0yadEhpHj0ITg470byQiLbbKz4ZGsLgdhR7yxhxnM1LocvsfdDb5jRyyCFmY81OZE/ve/4maPK4pvRo7H5MRtV/DUK/xpWiGvDq7l979PZscOG2++Wcjo0eHc9IbK2rpKPAK2VRUxJj79pH62JElnBr0aRSw3Equ70X/Mo1VT0xhQ6psElI/I58bGgJKCRRlGuHoBEcrl6NWoAJ5F1zI+PoP/2aoAeD9nHbcPOIcgvQ4j3SkXL1Hueov46HriBHg0I/3CewS44lMjw8hxfJizniJ7LXc17s4bSPfe24OLL44lLs7Y5Cs62kCNp565678CYFhkCt339+Wttwq5885shIBXXunLLbeksKE8n7XZvkFOJzPjRpIkSa9GEsPvidH93n/Mo9VQI77Aqn1PvcjCxX6cYg813o/J5w+NAaUbFmUYYer5RCoz0KsnXgzyVHhOMO6usxsdl8bC/b9S42qgXqzhy9Ln6Rm9Gp3ON8MGxXf7XlFA8yYTbrEEsNpTJ8PIMXyYs55tVUX8dchkIk3HX0wozGjG6m7aw2F1Owhv7AkJM/h+OawuB+HGQ78oVpeDlJCIk6rnvPOiOe+85v8xm8WhjZDKXXXcfFEsF10Uy6ZNVlaurObWW1MBKHPUHXqOLrCbJ0mS1Hnp1QhiuJ4Y3fX+Yx6ttjGg/NAYUPJxihxqvAso4CYUTIcFlMlEKlegV09901AhfFNZvy34tdnHVxXn8tuekagdYH+W02HWG7htwDn8c9cCpg94CCF8weNIQijEGge3f4GtRIaRIwghmJ+7gc2VB5gzeBIx5hPPyU8PjWFXTUmTcSM7q0v8I59jzMGEGczsqikhJSQSgAaPm311FUxM7HnaNYcYTKSGRFJgq+aAvYZdNSX0jUhg2LAwhg3zTaVyeN38VJwL+LZS6nvY+BVJkqTTpVfDiWE2MbrZ/mMezUqt+Aqrtoh6sbHxFk8uNd5PKOBmFEwYSCZIGUqoOpkI5QqM6on36fL9nd7IiuLdx2yzsmQPTs3D9b3P6hAbxp2OlJBI7hj4OzbU/ERcxPvNtlEVPRb19N9PAkVO7T3Ch7kbWFuWx419xmLWGah1NVDrasB12NTed7J/4fN9m/3fT0ruw/bqYhYf2ElJfS1f528l31bFOY1zvRVFYVJyXxbu/5UtlQcotNfwzu7VRJgsDI1JaZW6JyYemlf+5s5VrC7di1vzIoQg11rOi9uWU+3ydecNiEwi1iIXPpIkqW3p1TCiddfSw/A+A4w7GWa0M0RfR5rufaKUWZhIx0MJNeIz9ntvYZsnniyXmW2uDHLcMyjzvoZLKznqdTdUFDQJIgMjEpmRNpQr0oYx4LAPWmvK9vFTSe5Rz3eJIoq9j7LVlcoBz91tc/KtLNYcyoWx/yGae5t9XODBqHTecYBy0bMj/Omn/zV7fHbvsxjbOODzua1LiDYFc32fMf7HfYuebaHSYT/homf1Hhc9w2O5OmMk8SdYTO1keTWNf2xbxh5rmf+YQdVhUHXUew7taWHRGbh76AUkBoW3ys+VJEk6XR7NhlV8Ta22iHqxARf5aBxaK0TBiIFkLMoQQtVJfLA9muxa31vXrF6jGZ+Q0eT1NpYX8OauVQAkWsKYlzkN0LCKxZR7X6dWfNPYUiNanU2a/t12OMvWU+x9hCLvg0cd76n/rkPt2Atyo7wzUoPHzdu7VvFrdfMzbyKMFm7pP5HuoXKkuyRJHZum1VMjvqZW+64xoOT5A4oQoAk9Tk8UyaYpxOr+QJAyDJ0S6n/+M1sWk2Mtx2Ko5k+Di3Dr38NNIb7RCb6ebgUDcer/o5v+6QCc4ekp8T5JofeIXpK65ZiV3oQYTIQazB1inRUZRs5QQghyrOX8WLyHPFsVXk0j2hzMmPh0RsSkYtTJYUKSJHVOmlbPDtsHbK17n9jgvUSYK1FVJ+BbZ0TBgkXph55YSutdKPq1mPT1KL4Hm6EjWfcECbq72u8kWlGJ5zkKtb8CvoD2r/XvojVOaFAVhYczLybWEnq8l2hzJ/v+Ld+ZuhhFUegVHkevY6wWK0mS1FmpahAWprNyr+8T/5i4HszuPYIGsZMK7S1cohCDEodHlKPqcjDq65udeXKIl0LvXEq8T6EjFB2R6JUYDCRgVLphVLpjVNIx0xsDKW2yq/nKoj2sLN5DpdO3y3JiUDgXpw5iYFTSMZ9zcFhAWUMi/eNnMy7tPQSKP4iAb52seRu/QVUUMsJiT2ovtECSYUSSJEnqNJKDIjCpepyah6zK/cz0DCfEMJhU9WV/G4fXzWvbvsKrlDC2+wdkRK/GN1/j6FWsDSQAGh6qcVOEEG5AHGNddRUFIypBR4SXeAxKMkalOyYlAxO9MdL9pMJLhMnC5T2GEGcJBQGry/bx2o4fuX/YhSQ1s9jmwb3QUkIiEcD20gsINlbQN3Y5Q6IiKG3QKGnw7S3kFYJeYXH+vdAeyrwYg6o7iavc/mQYkSRJkjoNs97A6Lg0fizJwen18PqOH7mhzxj/MgzVznr+s3sNNo8TiMRa+wy94p0UeG7CyV6OTBkZ+k8IVkc1OaZpTpzk4BA5uMRenKIAN4V4RBkeKvBSg4ca3BSfZHixoBKKngj0Six64jEqyRiUVNIi0zHRByPxqKqe6WlDWFm8h711lc2GkaWF2fQMj2V3rW+yglHVkV9xA3XOeGb1rSJKvYY5az7F5fXgERq7akv5y+BJvLht+UnvhRYIMox0EqfelbeVSofthDN8GrxuMsJiOnxXniRJ0pSU/mys2I/d4yTHWs79678iLTQaVVHZZ61Aa0wGZp2eaakDCVPD6W/YQan2HMXevyPwcnAQq145+pa2qpqwMAALA06qHk1z4SQXB3twaXtxsR+3KMRNKR7hCy8aVhyUIsQ2jhlehIrLG8J5PbthCmlguyvksJ6XbhiVVMpcHsL1cYAX8J2fS/OytmII1dp8NNd06j0uLuo2gO8ObAdgXVl+i/ZCCwQZRjqJU+3Km95jCIOjkllXlsfrO35i7rAL/fvsfH9gJ8uKsrm+zxhizMF8lbe1w3flSZIkxZhDuH3gObyyfSV1bgcC2FdX2aRNkN7A//Wf6F/GQFWMJOruJUr9Hfs9t1MrvgZAT+xp16OqRiz0w0K/k1q9S9M8uNiLkz04xF7KHHmsLKzCoK8j2FBLemQ+Bl0NTopwiO2A5g8vF/Xz/e8YAaCgYGR/1cXY3VOoFQtxODf7Hk/o4Q8jBbYqYswhJ70XWiDIMNJJDInu1uT7k+nKGxCVyJRu/QG4LG0IO2tKWFG0m2t6jfItpVy4i6mpAxna+No39BnDX9d81qG78iRJkgDSQqN5KHMqPxbnsqokh0qnb9pvhNHCuIQMJib2arL9xkEmJY2ehq+o0b6hQWxBp7T/9FdV1WOmN2Z6Ew5EW7zEp9TT4HGTVVHAp9ty+cvgySQF+4KUL7zk42Q3L2xdTfeIfMzGHCyGWnqGG0DEoqCgYMAlCgDf7RsVBQ2B1vEnzcow0hlpQmNjeQEur8e/5PyR9tZVNFmeHqB/ZCJbKg8AUOGwY3U76HfYaoUWvbHDd+VJkiQdFGIwMzV1ABel9MeleREITKr+pJZ/j1AvJoKL26HKE9OrOl+vN9A9NIo8WyXLirK5tpdvLIsvvGRgJoMGl5OS6nHss/l6gm7oMwbVXUeU8QDDDA4qzHbgK7Iq9vtvV8WYQ1q0F1ogyDDSiRTaa3hq8w+4NS8mnZ6b+0/wJ+cjWV0OwgzmJsfCDGZ/N53V3eA7ZjyijdHcobvyJEmSjqQoCqYutIaSEMfejTg9NIZqZ73/+6/ythJsMJEeGoOiKMSYgwk1mPiuYLu/zYiYVN7ZvbpV9kJrK3Jvmk4k3hLK/cMv4p6hU5iY2It3s9dQZK8NdFmSJEnSKfp832Z215ZR4bBRaK9p/L6UUY29083thZZnqySqcTf5SqedAlsVDV43P5fk8sm+TTi8Huo8TgBizSGsK89r1b3Q2kLXiZJngBN15R0uzGjG6m7aw2F1Owhv7AkJM/jupVpdjib3VTt6V54kSWeWRfu383neFs5L6sNVGZnHbNdZZw/WuR28m72aWlcDFr2B5OAIbh94Lv0jEwGoctajHLZ8bEZYLH/oM47P8jY3eZ315fmsL89vckzBN9U52hzM7QPO7dATE2QY6cRO1JW3q6akybiRndUl/jEmMeZgwgxmdtWUkBISCfj2ttlXV9Ghu/IkSTpz5NVV8mNxDt2aGaR/uM48e/C63mcd9/G/DJ581LHM2FQyY1Oxuhx8kbeZdeX5uA97L9ArKsNjUpnRYyiRjT0oHZ0MI53E5/s2MyAqiShTEE6vh3VleeyuLeX2gecCvq68CGMQl/cYCvi68p7duoTFB3YyKCqJ9eX55Nuq/L0oiqIwKbkvC/f/SpwllBhzCF/mb+3wXXmSJJ0ZHF43/8r+hVm9RrNw/6/HbXumzh4MM5q5rvdZzOgxjJ01JdR7XFh0BvpGJBw1HrCjk2GkkzjVrrwv87fwRd4W4iyh/F//Cf5PCQBTuvXD5fXw/p511Htc9AyP7fBdeZIknRk+zNnAoMgk+kUmnDCMnOmzB0MMJkbGdg90GadFhpFO4nS68o5FURQuTRvMpWmDT7s+SZKk1rK+LI8CWxX3DbvwpNrL2YOdn5xNI0mSJHUYVU47H+3N4sa+Y2Uv7RlE9oxIkiRJHUZBXRV1bgePZS3yH9MQ7KktY0XRbl4dfxWq0vRzdFecPbi7towfDuygwFZNrauB/+s34YTj+bJrSlmwN4vi+loiTUFMTR3I2Pj0Jm2WF+1m8YGd1Loa6BYSyW8zMulxjMUz29Mp9Yy8+uqrpKWlYTabGT16NOvWrTtu+wULFtC3b1/MZjODBg1i4cKFp1SsJEmS1LX1jUjgweFTuX/4Rf6v7iFRjIpL4/7hFx0VRODQ7MHDHWv24EEHZw8eaxXrQHN5PXQLjuR3GSNOqn2Fw8Yr21fQJyKe+4dfxKTkPvx391q2Vxf526wvz+eTvVlMSx3I3GEX0S04gpd+XY61A9yqanEY+eijj5gzZw7z5s0jKyuLIUOGMGXKFMrKyppt/8svv/C73/2OG2+8kU2bNjF9+nSmT5/Or78ef0CSJEmSdOYxNw7QP/zLpNMTrDf5B+A3txDY9upiFh/YSUl9LV/nbyXfVsU5Sb2BprMHt1QeoNBewzu7V3fo2YMDo5KYnjaEYSdZ38riPcSYQ/hN+nASg8I5N6kPw2NSWFKY7W+zpHAX4xMyGJeQQVJwONf0HIVR1fNLaW5bncZJa3EYef755/njH//IDTfcQP/+/XnjjTcICgri3//+d7PtX3zxRS688ELuuusu+vXrxyOPPMLw4cN55ZVXTrt4SZIk6cxT5ayn1tXg//7g7MGfSnJ4JOs7sir2Nzt78NzEPry/Zx2Pb1qE0+vuUrMH91or6HvYbCHwzSjaa60AfGtSFdRVNZlRpCoKfSMS/G0CqUVjRlwuFxs3buTee+/1H1NVlcmTJ7N69epmn7N69WrmzJnT5NiUKVP44osvjvlznE4nTqfT/73Vam1JmZIkSVIXcuRsQTl78GhWt6PZ2UIOrxuX10O9x4WGILSZNiUNgX+PbVHPSEVFBV6vl/j4+CbH4+PjKSkpafY5JSUlLWoP8MQTTxAeHu7/SknpmN1okiRJkiSdvg45tffee++ltrbW/7V///5AlyRJkiRJHVaYwXzUQFSry4FZZ8Co0xNiMKGiUNdMm3BD4FdrbVEYiYmJQafTUVpa2uR4aWkpCQkJzT4nISGhRe0BTCYTYWFhTb4kSZIkSWpeelgzM4pqSkgP880W0qs6UkOj2Flz6P1YE4Jdh7UJpBaFEaPRSGZmJkuXLvUf0zSNpUuXMmbMmGafM2bMmCbtARYvXnzM9pIkSZJ0pnN43ey3VbPfVg1AhdPOfls1VQ474Nuv7J3sX/ztJyb2osJh49N9myipr2VF0W42lhcwObmPv83k5L6sKslhdeleiutr+V/Oelya56i1SAKhxYuezZkzh9mzZzNixAhGjRrFCy+8gN1u54YbbgDguuuuIzk5mSeeeAKAO+64g4kTJ/Lcc88xbdo05s+fz4YNG3jzzTdb90wkSZIkqYvIr6vi+W2HPsgv2JsFwJi4HlzfZwy1rgaqnPX+x2PMIdw24BwW7M1iWWE2EaYgZvUezYDIJH+bkbHdsbkdfJW/FavLQbeQSG4fcC5hhy0EFyiKEEK09EmvvPIKzzzzDCUlJQwdOpSXXnqJ0aNHA3DOOeeQlpbGu+++62+/YMEC7r//fvLy8ujVqxdPP/00U6dOPemfZ7VaCQ8Pp7a2Vt6ykSRJkqRO4mTfv08pjLQ3GUYkSZIkqfM52ffvDjmbRpIkSZKkM4cMI5IkSZIkBZQMI5IkSZIkBZQMI5IkSZIkBZQMI5IkSZIkBZQMI5IkSZIkBZQMI5IkSZIkBZQMI5IkSZIkBZQMI5IkSZIkBVSL96YJhIOLxFqt1gBXIkmSJEnSyTr4vn2ixd47RRipq6sDICUlJcCVSJIkSZLUUnV1dYSHhx/z8U6xN42maRQVFREaGoqiKK32ularlZSUFPbv3y/3vGlD8jq3H3mt24e8zu1DXuf20ZbXWQhBXV0dSUlJqOqxR4Z0ip4RVVXp1q1bm71+WFiY/EVvB/I6tx95rduHvM7tQ17n9tFW1/l4PSIHyQGskiRJkiQFlAwjkiRJkiQF1BkdRkwmE/PmzcNkMgW6lC5NXuf2I691+5DXuX3I69w+OsJ17hQDWCVJkiRJ6rrO6J4RSZIkSZICT4YRSZIkSZICSoYRSZIkSZICSoYRSZIkSZICqsuHkVdffZW0tDTMZjOjR49m3bp1x22/YMEC+vbti9lsZtCgQSxcuLCdKu3cWnKd33rrLSZMmEBkZCSRkZFMnjz5hP9dpENa+jt90Pz581EUhenTp7dtgV1ES69zTU0Nt956K4mJiZhMJnr37i3/fpyEll7nF154gT59+mCxWEhJSeHOO+/E4XC0U7Wd048//sgll1xCUlISiqLwxRdfnPA5K1asYPjw4ZhMJnr27Mm7777btkWKLmz+/PnCaDSKf//732L79u3ij3/8o4iIiBClpaXNtv/555+FTqcTTz/9tNixY4e4//77hcFgENu2bWvnyjuXll7nq6++Wrz66qti06ZNYufOneL6668X4eHh4sCBA+1ceefT0mt90L59+0RycrKYMGGCuOyyy9qn2E6spdfZ6XSKESNGiKlTp4pVq1aJffv2iRUrVojNmze3c+WdS0uv8wcffCBMJpP44IMPxL59+8T3338vEhMTxZ133tnOlXcuCxcuFHPnzhWfffaZAMTnn39+3PZ79+4VQUFBYs6cOWLHjh3i5ZdfFjqdTixatKjNauzSYWTUqFHi1ltv9X/v9XpFUlKSeOKJJ5ptf+WVV4pp06Y1OTZ69Gjxpz/9qU3r7Oxaep2P5PF4RGhoqHjvvffaqsQu41SutcfjEWPHjhVvv/22mD17tgwjJ6Gl1/n1118X6enpwuVytVeJXUJLr/Ott94qzjvvvCbH5syZI8aNG9emdXYlJxNG/va3v4kBAwY0OXbVVVeJKVOmtFldXfY2jcvlYuPGjUyePNl/TFVVJk+ezOrVq5t9zurVq5u0B5gyZcox20undp2PVF9fj9vtJioqqq3K7BJO9Vo//PDDxMXFceONN7ZHmZ3eqVznr776ijFjxnDrrbcSHx/PwIEDefzxx/F6ve1VdqdzKtd57NixbNy40X8rZ+/evSxcuJCpU6e2S81nikC8F3aKjfJORUVFBV6vl/j4+CbH4+Pj2bVrV7PPKSkpabZ9SUlJm9XZ2Z3KdT7S3XffTVJS0lG//FJTp3KtV61axb/+9S82b97cDhV2Dadynffu3cuyZcu45pprWLhwITk5Odxyyy243W7mzZvXHmV3Oqdyna+++moqKioYP348Qgg8Hg8333wz9913X3uUfMY41nuh1WqloaEBi8XS6j+zy/aMSJ3Dk08+yfz58/n8888xm82BLqdLqaurY9asWbz11lvExMQEupwuTdM04uLiePPNN8nMzOSqq65i7ty5vPHGG4EurUtZsWIFjz/+OK+99hpZWVl89tlnfPvttzzyyCOBLk06TV22ZyQmJgadTkdpaWmT46WlpSQkJDT7nISEhBa1l07tOh/07LPP8uSTT7JkyRIGDx7clmV2CS291rm5ueTl5XHJJZf4j2maBoBeryc7O5uMjIy2LboTOpXf6cTERAwGAzqdzn+sX79+lJSU4HK5MBqNbVpzZ3Qq1/mBBx5g1qxZ/OEPfwBg0KBB2O12brrpJubOnYuqys/XreFY74VhYWFt0isCXbhnxGg0kpmZydKlS/3HNE1j6dKljBkzptnnjBkzpkl7gMWLFx+zvXRq1xng6aef5pFHHmHRokWMGDGiPUrt9Fp6rfv27cu2bdvYvHmz/+vSSy/l3HPPZfPmzaSkpLRn+Z3GqfxOjxs3jpycHH/YA9i9ezeJiYkyiBzDqVzn+vr6owLHwQAo5DZrrSYg74VtNjS2A5g/f74wmUzi3XffFTt27BA33XSTiIiIECUlJUIIIWbNmiXuuecef/uff/5Z6PV68eyzz4qdO3eKefPmyam9J6Gl1/nJJ58URqNRfPLJJ6K4uNj/VVdXF6hT6DRaeq2PJGfTnJyWXueCggIRGhoqbrvtNpGdnS2++eYbERcXJx599NFAnUKn0NLrPG/ePBEaGio+/PBDsXfvXvHDDz+IjIwMceWVVwbqFDqFuro6sWnTJrFp0yYBiOeff15s2rRJ5OfnCyGEuOeee8SsWbP87Q9O7b3rrrvEzp07xauvviqn9p6ul19+WaSmpgqj0ShGjRol1qxZ439s4sSJYvbs2U3af/zxx6J3797CaDSKAQMGiG+//badK+6cWnKdu3fvLoCjvubNm9f+hXdCLf2dPpwMIyevpdf5l19+EaNHjxYmk0mkp6eLxx57THg8nnauuvNpyXV2u93ioYceEhkZGcJsNouUlBRxyy23iOrq6vYvvBNZvnx5s39zD17b2bNni4kTJx71nKFDhwqj0SjS09PFO++806Y1KkLIvi1JkiRJkgKny44ZkSRJkiSpc5BhRJIkSZKkgJJhRJIkSZKkgJJhRJIkSZKkgJJhRJIkSZKkgJJhRJIkSZKkgJJhRJIkSZKkgJJhRJIkSZKkgJJhRJIkSZKkgJJhRJIkSZKkgJJhRJIkSZKkgJJhRJIkSZKkgPr/ck3XK9GoSpgAAAAASUVORK5CYII=",
"text/plain": [
""
]
@@ -620,7 +611,7 @@
},
{
"data": {
- "image/png": "iVBORw0KGgoAAAANSUhEUgAAAiMAAAGdCAYAAADAAnMpAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjcuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/bCgiHAAAACXBIWXMAAA9hAAAPYQGoP6dpAADGyUlEQVR4nOzddXiT19vA8W+kSWqpu1ChFClQKDIchsvGmI9tyMbc5Td3f6fM2cYGG1MYA4a7O5SipULdvanF8/4RVigUaKFt2nI+u3qNPjnP89wpIbl75D4Si8ViQRAEQRAEwUaktg5AEARBEISrm0hGBEEQBEGwKZGMCIIgCIJgUyIZEQRBEATBpkQyIgiCIAiCTYlkRBAEQRAEmxLJiCAIgiAINiWSEUEQBEEQbEpu6wAawmw2k5OTg7OzMxKJxNbhCIIgCILQABaLhYqKCvz9/ZFKL9z/0SaSkZycHIKCgmwdhiAIgiAIlyEzM5PAwMALPt4mkhFnZ2fA+mTUarWNoxEEQRAEoSE0Gg1BQUG1n+MX0iaSkf+GZtRqtUhGBEEQBKGNudQUCzGBVRAEQRAEmxLJiCAIgiAINiWSEUEQBEEQbEokI4IgCIIg2JRIRgRBEARBsCmRjAiCIAiCYFNtYmmv0LJKtFVUGnW13zvJlbirHG0YkSAIgtCeiWREqKNEW8WrB5ZjtJhrj8klUt7uc51ISARBEIRmIYZphDoqjbo6iQiA0WKu01MiCIIgCE2p0cnItm3buO666/D390cikbB06dJLnrNlyxZ69+6NUqmkY8eOzJ8//zJCFQRBEAShPWp0MlJVVUXPnj35+uuvG9Q+NTWViRMnMmLECOLi4njyySeZNWsWa9eubXSwgiAIgiC0P42eMzJ+/HjGjx/f4PZz5swhNDSUTz75BIAuXbqwY8cOPvvsM8aOHdvY2wvNrKCmot7jJrO53uOCIAiCcKWafc7I7t27GTVqVJ1jY8eOZffu3Rc8R6fTodFo6nwJzctgNvFTwi5+OLmz3se/O7mD7Kqylg1KEARBuCo0ezKSl5eHj49PnWM+Pj5oNBpqamrqPef999/HxcWl9isoKKi5w7yqmS0Wfji5k70FaXWOn73HYqmumk+ObCC/RiSGgiAIQtNqlatpXnzxRcrLy2u/MjMzbR1SuxZblMHh4iwAFFIZt4T1ZvaAm/lm8B08ETWCIEc3AKqMehaeirVlqIIgCEI71Ox1Rnx9fcnPz69zLD8/H7Vajb29fb3nKJVKlEplc4cmnLYlJ6n2z/dEDqSX55meqK5ufoQ6e/LGwRWU6Ws4XppDYU0lXvZOtghVEARBaIeavWdkwIABbNy4sc6x9evXM2DAgOa+tdAAWpOBJE0BAN72zkR7BAKwrziHJVkJWCwW7OV2DPXrCIAFOF6aU3t+hUHHjqIsvkw6yD37VzFh+yIqDKImiSAIgtBwje4ZqaysJDk5ufb71NRU4uLicHd3Jzg4mBdffJHs7Gx++eUXAB588EG++uornnvuOe655x42bdrEwoULWblyZdM9C+GyaY2G2j/7ObggkVhnijx8aD0HS/NwlttxU0Ak3ZzdKDPoqTCbmJ8Rz9fpJzhQkkt6tQYLdeeXGCxi5Y0gCILQcI1ORg4cOMCIESNqv3/66acBmD59OvPnzyc3N5eMjIzax0NDQ1m5ciVPPfUUn3/+OYGBgcydO1cs620lHOQKJFh7PLIqSzFbLEglEjYMvZWn4jbxS/oxfk4/huXsk0qLas/5z39/7uPmi7ui/uE3QRAEQaiPxGKxWC7dzLY0Gg0uLi6Ul5ejVqttHU67M/voJuLL8gCYGTmAa7xDax87VVnKwE2/UqCrvuR1ZBIJr3UdxGtdBzVbrIIgCELb0dDP71a5mkZoWSP8O9X+eUHiXv5NO0KJtgqt0UBpjYb7fIOJdnCuMxRTH5PFwr/ZScxLPYJRFEkTBEEQGkj0jAhYLBZ+StjNvsK0i7aTS+3YU1VJbHlBvY+fPXQjAYId1Iz3DePRjr3p5uLVlCELgiAIbUBDP79FMiIAYLKYWZQSy5acJCyc/5IIcnTjgS6D8bJ3ZklWInfs/Red2VT7uFwi4ZbAzsztM475acf4LeMEh8ryqTEZAXCQyent6sPU4K7MDOmBSt7sq8oFQRAEGxPJiHBZirVV7MhLJrWiGJPFjLvSkQE+oUS6+NSutAEwm82M2PoH24qyao/91Gc8M0N71LnesfJCvkg6yLr8VDLOWnkTYO/MKJ8OPNYxht5uvi307ARBEISWJJIRoUV8d+oQD8auA8BeJufb3mOYHtK93rZ6s5EFacf5NeM4+0vyqDJZlxWrpDJ6unpze1AXZoX1xEmuaLH4BUEQhOYjkhGhxewtzuGr5IP8nZWI1mykm9qTFYNvJsTR5aLnJVWU8EXSQVblpZBaVVY7OOSrcuRarw483LEXgzwDm/8JCIIgCM1CJCNCi9Majdyx91+W5iQhAe4P68k3vcYglV560ZbRbOavzHh+TjvG3pIcNEY9YN0rJ0rtyS1BkTwY1gtXhaqZn4UgCILQVEQyItRann6EFRnH6hzzsVfzVp9JFzznYGEGy9KPUKytxNvemRtDo+nuHlD7uMViYXn6UbbnJVNjMhCu9mRqx7742Ks5WJrHlJ3/kFlTgaudkgX9JjHJv2OjYk6vKuer5IP8m5NMcmUZ5tP9Jl5KB4Z5BfFgWDQjfUIadU1BEAShZYlkRKi1PP0IsUWZPNn92tpjMokEJ7v6exlOaQr5+PAGbgjtSQ/3APYVpLE2K56Xe40jwNEVgDWZJ1iTeZwZkQPwVDnyb9oRsqvLeCNmEnZSGQDvxe/ijeM7MVjMDPDw59+BN+Gpcmh0/GazmaU5SfyYeoRdxdmUnd77xk4ipbPagxsDOvFoeO/LurYgCILQfEQyItRann6EuOIsXu09oUHtv4/fgd5s5NFuw2uPfRC3liBHN+6M6IfFYuG5vUsYHdiFMYFdAKgx6nl2zz/M6HQNfb1Das8r02uZsusfthRmIpNIeLHzNbwdNfSKnk9OdQVfn4plaU4yCRXFmE6/hN0VKgZ7BnJfaE8m+IY1aHhIEARBaD4N/fwWxR6uEgU1FTy3dwl2Uilhzp5MCYnGXeVYb9uUiiJGBXSuc6yrmx+Hi63LeIu0VWgMWrq4nlmSay9XEOrsSUpFUZ1kxFWhYvPwqWzIS+X2vf/yTvxu5qYe4Z+BUxjgEcDl8Hdw5t3uw3i3+zDMZjNr81P5PuUw24uy+DcnmX9zkpFJJHRycmeyf0ce6xiDv4PzZd1LEARBaH4iGbkKhDp7MqPTAHwcnCnX17Ai/RgfHVnP670nopLbnddeo9eiPmcIR22nolyvtT5uqLEeO2cyqVpxps25RvmGUnDdYzxzZDNfJB1k4KZfGe8bxt8DJuNwBUt5pVIp4/3CGe8XDkCRtppvTsXyT3YSJzRFfJCwlw8S9uJqp2SAhz/3hPTgxoBOotdEEAShFRHJyFUgyt2/9s+Bjm6EOnvy4r5lHCjKYLBveIvFIZVK+Sx6JM906sv1OxezOi8F92Vf8FGPETwWEdMk9/BUOfBat8G81m0wAJvy0/kuJY4thRmszktldV4qUiSEO7kyyS+cxyP6XHIJsiAIgtC8RDJyFXKQK/Cxd6awpqLex9UKFRpD3R4OjUGLy+meELWdvfWYXouLwv5MG72WICfXS94/0EFN7OiZ/JV5glkH1vB43AY+TzrA8sE300XtcZnPqn7X+nTgWp8OtfHNSYljYdZJjpUX8VnSAT5LOoCzXEE/dz+md4jijuCuyEWviSAIQosS77pXIa3JQKG2sk4icbYwZ09OluXVORZfmkeYsycAnipH1HaqOm1qjAZSK4pq2zTEbUFdKZ38JHd36EZKVRnd1s7lzj3Lm23HX7VCxXOdr+HAqBlob3qWXdfexV3BXXGWK9hYkM60/StRLP6IsJVzeOTgOk5qipslDkEQBKEusZrmKvB3Siw93ANwVzlSrq9hefpRMitLeSNmIs4KFfMSduGqcGBKaDRwemnvkQ3cGBJNd3d/9hemszrzxHlLe9dmHWdGpwF4qpxYln6E7KrSOkt7GyNeU8z1O/8mubIMR5kdP8SM444OXZvwp3Bx1UY9c1OP8EdGPIfLC2o3+HOU2RHj5sNdHboxPSQKhVR0Jgq2V6KtotKoq3PMSa684KR0QbAVsbRXqPVD/A6SNIVUGXQ42SnpqPbihpCeeNlbV5h8cmQDHkpHZkQOqD3HWvTsMMXaqksWPas26uno4sXU8L74OFzZ38/XSQd55shmdGYT0S7eLB98E4FXeM3LEVeaz1enYlmXl0pWTUXtBn+B9s6M8Q3l8Y696eHq0+JxCUKJtopXDyzHaKnbgyiXSHm7z3UiIRFaFZGMCG1WtVHPrXuWsTI3BSkSHu3Ym896XmuzFTA6k5Gf04/xa/pxYkvzazf4s5fJiXb15o6grtwb2v2KVgXZyrm/YYvfrlu/jMoS3j20pt7HXu41jmAn9xaOSBAuTCQjQpu3pziHG3ctIVdbibtCxZ/9r2e0b6itwyJeU8yXSQdYk5dKWnV57QZ//ionRnoH80jHGPp7+F/0Gq1Bfb9hi9+uWz+RjAhtiSh6JrR513j4k3PdI7x+bDvvndzNmO0LGeoZyLJBN9l0w7wuag++iRkLWDf4+z3jOL+kH2dfSS4LMk6wIOMESqmMKBdPbgvswgNhPc+rydIaVBp153X1Gy1mKo063BHJiCAILUckI0Kr92bUEB7rGMPkXf+wrSgLr3+/5I1ug3i5y0Bbh4ZcKmVaSHemhXQHILWyjC+TD7Ii9xSHSgs4WJrPc0e34KN0YLhXMA+G92K4d7BtgxbatBqjwdYhCEKTE8M0QpuyKjeZO/euoMygI8DeiaUDb6SPu5+tw6qX2WxmcXYiP6UdYU9xTp0N/rqqPbkxIIJHI3rjrrDNBn8X6u4XXf2t19GSbH6I34nObKz38V4egdzbedBlrWgThOYg5owI7ZbZbOaxQxuYk3IIMzDZvyN/9p+MSt66O/qyqjV8nRzLspxkEitLajf481DYM8QzkPvDejLWJ7TFJuqKZKRtSSjLZ/axTZjPest2lCvQGg2YOHOsj2cwszoPQiKR2CJMQahDJCNCu5deVc51O/7mqKYIlVTO571Gcn9YtK3DahCz2cyqvBR+SD3MjqIsSk7v6SOXSIh09rBu8BcRg6/KqdliEMlI22GxWHjj4EryajQA9HQP4MbQaHwdXNCZjOzKT2Fx6iEMZhMAT0ZdSxc334tdUhBahEhGhKvGgrRjPBi7lmqTkUgnd5YPvokI57b1YVqgreKbU4f4JzuReE1x7cRSNzsVAzz8mRXak8n+HZu010QkI21HQlk+nx7dCECIkzvPRY9BJqn7WtiVn8LPiXsAiPYI5KGuQ1s8TkE4V0M/v0U5eKHNuzskitIbnuC2wM4kVJYQueYH7tm/qtnKyjcHb5Ujb3QbzJEx92C4+X9sGHobNwdGIpdKWJWXwo27l2C3+GMiV3/P/w5vIr2q3NYhCy3oRFlu7Z9H+EfWJiIvv1xMQoIegP5eITjJlQDEn7OdQ3m5mZ07tcyZo+HRR4v455+qFopcEBpG9IwI7cqRsnwm71xCWnU5armCn/pO4KbASFuHdUXK9FrmpBxiUWYCxzRF6E93xavlCvq7+zM9JIrbgro0aoO/Ul01y9IOs7sg9bzHHus2vM5Oz4Lt/ZF8gC25iQC80HMMoWpPDhzQ0rdvDgAxMQomTXIgL+QwBaZyytLs6avvw5EjeuLi9OTlWV8zEglYLDBzphM//eRts+cjXD3EMI1wVfskYR8vHduK3mymj5svywff1KzzL1rSjsJMvj0Vx+bCdHK11t9wpUgIcXRhgm8Yj0fEXHSYKrEsn29ObKPGVP8SUZVMzqPdhhPhIj6sWosV6UdZnnEUgFvDejMyoDMTJ+Zy4oSBN95wY82aalavrqa8/MzbuVRqTTzqe4dftMibm29uH/8ehNZNJCPCVa/CoOPm3UtZl5+GTCLh6Yi+fNB9mM3KyjeHSqOeuSmH+TMznsNlBWhP95o4yuzo6+7LXcHduDukW+0Gf7nV5bwftxbd6Y0ApUgIcnIDrHNI/nszUMnseDF6LL422BdIOF9OVRlvxq4CwEPpiMu2wbzwv3L+/tubm26yJhWLkw7z1msajvzlj/Uvsv7VNHI5FBeHoFa3n38HQuslkhFBOG1bYQa37F5Gga4aL6U9C6+5od0WHjtYmsdXyQfZkJ9O9lkb/AU7qBnjE0qATEpOZREAXd38mNHpGlwU9gCU6ar5OXEPJ07PN7jGO5SZZ22eKNjWJ0c2kFhegFEPP0/oh0opJT3fmzJDDdtyk9hTkAZA/lEnNjwXRU0N1DdtysVFwmefeXD33U7I5SIhEZqXSEYE4Sxms5mXjm3j48R9mCwWRnl3YPGAG1plmfamojUamZd2hN8zThBblk/16d4QGeCtUPFG1FDuCe1ZZ65JjdHAS/uXUm00IJdI+bD/FBztlDZ6BsLZCmsq+L/D6/n3jQCS1nox7MVkIscXndducoee+Jd05Nprc9FozJhM9V9PKoXwcDtuvNGBJ590wde3ddfpEdomkYwIQj3ytVVcv3Mx+0pyUUilvBc1jGci+9k6rBaxPDOe5w9vJFOnpfL0cI6LnZLOzu4M9gzkox4jkEgk/Jq0j+15yQA83X0kka4+tgxbOMvhlFJ6dSzB0VfH1L/i6jymksm5ISSaEf6dAEhI0DN8eC5FRSaMZxVsPXEigI0btSxYUEFcnB69dTEOnp5SRoyw54kn1AwaZN9Cz0ho70QyIggXsSQrkRn7V6Ix6ungoObfQTfSo51/6B4tyear41sBGBXQBR9nD7YUZvJl0kGK9DWM9w3jy16jOFKYzpqsEwA8ETWCrm6ts9z+1WjQoGx27dKxaL09hpAsyvQ1KKRyIly86OcdgkpmV6d9erqB4cNzycw0YjJBRIQdiYlBddps2lTDV1+Vs2WLltJS67iOSiWhd28F06c7M2OGEwqFGM4RLo9IRgThEsxmM/fHruWn1CNYgFsCO/Nr/4m1kz3bm7MnQXZwcuelXuMAa3XPJdmJPHV4E/naKro6OuMnl+Mit+OdmAmEOXvaMmzhtN27tQwcmMOgQUp27Aho8Hl5eUZGjrSuvHn+eRc++MDjgm0zMozMnl3GsmXVpKYasVisy4HDwuRMmeLAE0+4EhjYPv99CM1DJCOC0EDJFaVct/NvTlaU4CCT803vMUw/vQtve2KxWHj30Boyq0oBmBbRn0G+4bWPVxn1PHRgFQsyE+qcp5TKcFeo8FQ64KtyxFvpgJfSganBXenbSjcpbI9CQzPIyDCSmRmMv3/jEoLSUhOvvlrKs8+6EBJid+kTAL3ezLx5lcyfX8GhQzp01n0ecXeXMny4iieecGHoUDGcI1ycSEYEoZHmpsTx2KGNaM1GotSerBh8Mx0cXWwdVpPaU5DKvITdtd/39Aikj2cwFiwcKMzgSEk2W8uKSdBWX/AaUiSYsfBi52t4r/uwlgj7qjdvnoZ77ili2jQnfv7ZNvVftm2r4csvy9m8WUtxsXU4R6mE6Ggl06Y5MWuWsxjOEc4jkhFBuAxao5E79v7L0pwkJMADYdF83Wt0u6lNYrFY+PPUAbbkJl2wjdliYW15KVnaKi705uAiV5A84QE8lQ7NE+hVZnn6EVZkHKtzzMdezVt9JmE2m3F1TcdggPLyDrUf+AcLM1iWfoRibSXe9s7cGBpNd/czwzcWi4Xl6UfZnpdMjclAuNqTqR374mN/5e+hOTlGZs8uZ8mSKk6dOjOcExIiZ/JkB556ypXgYDGcI4hkRBCuyMHSPKbs/IfMmgpc7ZQs6DeJSf4dbR1Wk7BYLGzOSWRt1gnK9DV1HnNV2DMuqCtOSmf6b1pwwWTk+5ix3NdGdkhuC5anHyG2KJMnu19be0wmkeBkp+KZZ4r49FMN//d/bjz3nLVA3SlNIR8f3sANoT3p4R7AvoI01mbF83KvcQQ4ugKwJvMEazKPMyNyAJ4qR/5NO0J2dRlvxEzCTiprstiNRjM//1zJvHkVHDyoR6u1vmrc3KQMHariscfUjBwpktarlUhGBKEJvBe/izeO78RgMTPAw59/B96Ep6p9vLGazGaOleaQW61BAvg6qIly96/dhO2puI18kXQQ8zkpiZ1EyvbhU+nv2fBJlMLFLU8/QlxxFq/2nlDnuEZjxsMjDXd3Kfn5IbXHv4/fgd5s5NFuw2uPfRC3liBHN+6M6IfFYuG5vUsYHdiFMYFdAKgx6nl2zz/M6HQNfb1DaC67d2v5/PNyNm2qobDQOpyjUECPHgqmTXPivvvUqFTto6dRuDSxa68gNIGXugyk4PrHGOYVxO7iHPxWfMVrx7bbOqwmIZNK6ekRyLigrowN6kpPj8A629K/HTUEX5Uj0nPKihstZq7Z/CuTti+i2qhv6bDbrYKaCp7bu4SX9y/jx5M7KdFWMXVqPkYj/PijV522KRVFdHb1rXOsq5sfKRXWImhF2io0Bi1dzmpjL1cQ6uxZ26a5DBig4s8/fSgoCCEvL5gXX7ROmo2N1fP44yU4OKQREpLBY48VkZoqXj+ClUhGBOESXBUqtgyfyvoht+Jip+Tt+F34L/+K3cXZtg6tWTnJFXzfZ1xtz4hMIuGh8F6kTniQni7erMxLwX3ZF3yedKDJ712irSKjsqT2q0Tbvre8D3X2ZEanATweNZypHftSpK3itU2bWLWqmu7d7Zg0ybFOe41ei9qubvVgtZ2Kcr3W+rjBOvx2boVhteJMm5bg4yPnvfc8SEgIQqcLYf58T4YMUVJQYOKrrzSEhWXh6prKddflsnp1+/47Fi5OJCOC0ECjfEMpuO4xnozoQ762moGbfmVCO+8dmOgXzs2BkQCo5UrejRpKB0cX4sbM5M9rrsNOKuXJuI2ErpzDkbL8JrlnibaKVw8s591Da2q/Xj2wvF0nJFHu/sR4BRPo6EY3N38eixrO5u+9kMgt/PVX+yjGJ5dLmT5dzdatAVRXh7Jvnz9TpzqiVEpYsaKGCRPyUShSiInJ4tNPy6iurmdjHaHdEtOdBaERpFIpn0WP5JlOfbl+52JWn+4d+LjHCB6NiLF1eJgtZpanH2VvQRoagxYXhT0DfUKZEBSFRFL/Lq4ACWX5LEqJJbe6HDelAxOCoxjoEwbAl71GEVeazx0BEXwUt5ZyfQ2BTm7cHh5D6eQnue/gan5OO0bP9fOZEhDB7/2uRyW//LeWSqMOo6XuB5HRYqbSqMMdxwuc1b5sWmMgfrkXw+6opEsXxXmPqxUqNIa6PRzWv29rT4jazlr/Q6PX1m6E+N/3QU6uzRd4I/Ttq+K336zxFhUZ+eILDYsWVREXpyc2toRnnikhKEjGxIkOPP20CxER5/8chPZD9IwIwmUIdFATO/p074BEymNxG+i46jviNcU2jWtNZjxbc5O5o2Mf3oiZyI0h0azNimdzTuIFzynSVvLV8S1EuvrwSu/xjAyIZEHiXo6X5gDgq3Litz5jKa4oYGJwFC/3Gk+goytfHNtMtVHPvL4TSRp/P12dPViSnYTbss/57tShlnrK7dK9swpw9NbzzGv1b1IY5uzJydO7K/8nvjSvtlqup8oRtZ2qTpsao4HUiqJWWVHX01POW2+5Ex8fhMEQwq+/ejFihIriYjNz5lTQqVMWLi6pTJiQy/LlVZjr245YaNNEMiIIV+C2oK6U3vAkdwV3JaWqjG5r53LX3uUYbfRmmVJRSLRHAN3dA/BUORHjFUxXVz9SKy6cJG3NTcJT5cQtYb3xc3BhhH8kvT2D2JB9phLrxpwEBvuGM8g3HH9HF+7s2A+FVM6u/FMAhDu5cXzcLOb3nYBUAg/GrqPT6u9tnpy1FX+nxJJYlk+RtpKX/i+dgnwLgx7MZlhICADzEnaxJDWutv3IgEiOl+ayPiuevOpylqcfIb2yhOGnN8mTSCSMDOjMqsxjHC7OIruqjHmJu3FV2hPtGVRPBK2HVCrlzjud2bTJn6qqUA4dCmDaNCccHKSsXl3D9dfno1Sm0atXFh9+WEplpUhM2gORjAjCFZJLpSzofx3Hx84i3MmV3zJO4LZ0Nn9mnGjxWMKcvThZlk9+tQaAzMpSkjWFRF2kbHuK5gIrMzTWVRdGs4mMipI6KzOkEgmdXX1r2/xnekh3Sm94gjuCupBcWUq3tXO5Y8+/6M1GhAsr1VUzN2EXr+5dwZxvK/EMq+HnZ/vifHrYpURXTflZNWHC1V7MihzE9rxk3o5dTWxRJg91HVJbYwRgbGAXRvhF8mvSPt47tAadycDj3UY0aY2RlhAdreTnn73Jze1AcXEwb7zhRmSkHUeP6nn++VKcndMIDEzn/vsLiY9vv/O32jtRZ0QQmtjXSQd55shmdGYT0a7eLB90E4EOLfO6NVssLE07zLqsE0gkEiwWC5NDejI+qNsFz3n1wHIG+oTVafPfDr9fDryVaqOe5/ct5bmeowlXn1liujj1EInlBbwYPbbe68Zripm8czFJlaWN2vMno7KEdw+tOe/4y73GEezkfsnz27Lp0wv45ZdKfvrJk5kzxXvdxZjNZv7+u5rvv9ewZ4+OqirrR5mzs4QBA5Q8+KALkyfbt5vqyW2VqDMiCDbySEQMJZMfZ6JfGHFlBXRYOYcn4za0yDj3wcJ09hWkcW/kQF7pNZ4ZnQawPiue3fkpzX7vc3VRe5A4/n7m9B6D2QIz9q+i65q5nKosbfFY2oKcHCO//lpJSIhcJCINIJVKufVWJzZs8KeyMpSjRwOYOdMZJycp69ZpufFG63BOjx6ZvPtuKRqNGM5pzUQyIgjNwEGuYMXgW9h97d34qBz4POkg3su/ZH1earPed3FqHGODutLXO4QAR1eu8QllZEBnVmdeeMhIbadCc07tCY1ei0pmh0Imx8lOiRQJFfW0cTmn1kV9HgjvRenkJ7gxoBPxFcVErP6emftW2mxeTWt16635mM3w+++22QivrYuKUvLTT17k5HSgvDyEd95xo0sXO06cMPDKK6W4uKQREJDOPfcUcuyYztbhCucQyYggNKNrPPzJue5RXusykHKDjjHbFzJ88++UNVPhKb3ZeF7FVKlEguWCu8xAmLqelRlleYSprasu5FIZwc7uxJ9VR8RssXDyrDaXopLLWTxwCnGjZxDi4ML89GO4LZvNX+ckSTlVZaw8Z8O4/5Tpauo93h7s2aNl504dAwcqGTDg0gmecHFqtZSXX3bjyJEg9PoQFi/2YcwYFRUVZubNq6B792ycnFIZNSqHhQsrxeqcVkAkI4LQAt6MGkLupEcZ6BHA1qJMvP79knfjdzX5fXq4B7Aq8xhHS7Ip0lZyqCiTDVknifYIrG2zJDWOeQln7j3ML4IibSWLUw+RV13OlpxEDhZmMCogsrbNqIDO7MhLZnd+CrnV5fyevB+92Vhbi6Sherr6kDLxQWZHj8RgNnP7nuX0XPcT6VXlHCzM4N1Da4grzqr33Lknd5JYXtDIn0jbcMcdBUilsGhR+yhw1ppIpVJuvNGRtWv90WhCOXEikPvuc8bVVcrGjVpuu60AhSKNqKhM3nqrlLIyMdnaFsQEVkFoYStzkrlr3wrKDDoC7Z1ZMnAKfS6y2qUxtEYDy9KPEFecSYVBh4vCnr5eHZgUHIX89CqK+Qm7KdZV8UyPUbXnnV30zFXpwMSzip79Z3NOAuuy4tHotdaiZ2ExhDawZ6Q+1UY9t+5ZxsrcFCRAZ3snBjm7IJVKUUrlhDp7YLSYSdUUYTrds6OS2fFKr3F42Ttf9n1bm/nzNcycWcTddzvxyy9iiKYlVVaa+eabcv74o4pjx/QYT+chvr4yxoyx56mnXIiOrr/Wi9AwYtdeQWjFzGYzjx5az3cpcZiBG/wj+KP/lVUubav2F+cwZtuflBkNKCQS7g/uwkcx41DJ7ACo0Gv5KWEXJ04PJQ317cidEf1sGXKTMZvNuLmlo9dDeXkHFArRWW0rZrOZlStr+PZbDTt3atForB+NDg4S+vVTMmuWM3fc4ShW5zSSWE0jCK2YVCrlm5ixpEx4kCi1J0tzrJVLv0+Js3VoLS7EQc2tnr70dXLBaLHwVfoJnji0kQqDdZKhs0LFrM6DUcqsidregjS0JoMtQ24yzz1XgkZj4fXXXUUiYmNSqZTrrnNk1So/ystDSUwM5MEHnfHwkLJli5a77irEzi6NLl0yee21EoqKxHBOUxI9I4LQCvycdpSHY9dRbTLS2dmdFYNvJtzJzdZhtYjYogy+i98BwHC/SNaV5PFnZjwmrYzo4kj2PT4BgB9P7mJfYRoAL0WPo4Nz2645otGY8fBIw81NSkFBiK3DES6iutrMnDkafvutkqNH9RhO58Le3lJGjbIO5/TpIyYe10f0jAhCG/Jf5dJbAztzsqKEiNXfc+/+VZiugln+prN+H3JX2jOv30SOjb4HU7WM/Z7H+GBeJgD2crvadmZL2/+53HlnPkYjzJ3rdenGgk05OEh5+mlXDh4MRK8PY9UqHyZNskens/D771X07ZuDg0Mqw4Zl8/PPGozGtv/6bGkiGRGEVkIhlfPXgMkcHj2DDg4u/JR2FPdln7Mk68Kb3LUHnqozO/EeKckGIFztTvJ1s6DEgRfjtvH3sjKOnn5MArir2vbuvQkJelasqCEqyo7rr2/bz+VqNH68I8uX+1FWFsqpU4E8+qgab28p27frmDGjCKUyjcjITF56qZiCAjGc0xCXlYx8/fXXhISEoFKp6N+/P/v27bto+9mzZxMZGYm9vT1BQUE89dRTaLXNU2dBENq6Hq4+pE58kI97jEBrNnLj7iX02/AzedpKW4fWLEKcPPCzt3bfJmsKa6vFhvo68FP36+C7vtzy2ClWfuqJ2Sihm5s/Lgp7W4Z8xW65xVqzZeFCsZS3rQsLU/Dll56kpXWgujqEzz93p3dvBWlpBt5/vxwfnwy8vdO4/fZ8du8Wn3sX0ug5I3/99RfTpk1jzpw59O/fn9mzZ7No0SISEhLw9j5/Wdrvv//OPffcw08//cTAgQNJTExkxowZ3H777Xz66acNuqeYMyJcrSoMOm7atZT1BWnIJBKe6dSP96OGtrsZ/TvzTvFL0t7a77u6+dHLIwij2cTtz6dReH0cnHJDOq8XNw/y5pGZ3gwerEIqlVz4oq3UqlVVTJyYz4QJ9qxc2TRLuoXWacOGar76SsO2bVpKS61DNyqVhJgYBTNnOjN9uhNyefv6t3yuZlva279/f/r27ctXX30FWJdDBQUF8dhjj/HCCy+c1/7RRx8lPj6ejRs31h575pln2Lt3Lzt27GjSJyMI7dW2wgxu2b2MAl013koHFg2YzFCvYFuH1WQsFgt/njrAltyk8x7TGkz8UpRj/UYC7PeHhd3w1Xlw991OTJ3qRM+eCiSStpGY+PikUVJiprAwGFfXq28p99UqPd3A7NnlLFtWTVqaEYsFJBIID5czZYojTz7pgr9/+3s9NMsEVr1ez8GDBxk16kyxJKlUyqhRo9i9e3e95wwcOJCDBw/WDuWkpKSwatUqJkyYcMH76HQ6NBpNnS9BuJoN9Qomd9IjPB/Zn2J9DcO2/MHorX+et6dMWyWRSLg9vA9Tw/vioaw7h0JlJ8MJBbVV7nvnwkfrybtzG5/+nU6vXtlERmbyzjul1NS07omDH35YSkGBmcceU4tE5CrToYMdn33mSUpKMFptCF9/7UG/fkoyM4189FE5AQEZeHqmccsteezY0X63PriQRvWM5OTkEBAQwK5duxgwYEDt8eeee46tW7eyd+/ees/74osvePbZZ7FYLBiNRh588EG+/fbbC97njTfe4M033zzvuOgZEQTI01Zy/Y7F7C/NQyGV8l7UMJ6JbB9FwMC6UiahrICCmgokEghwdOWl47tYmHGy7q9PJgnILLA3ABZ2g0wXli/3YdKk1jkhVK834+KSjp0dlJV1aHdDbcLl27Klhi+/LGfLFi0lJdaEWqmEXr2UTJ/uzD33ODVbHZoSbRWVxjMbBzrJlU06QbxZhmkuJxnZsmULt99+O++88w79+/cnOTmZJ554gvvuu49XX3213vvodDp0ujM/HI1GQ1BQkEhGBOEsS7ISmbF/JRqjnhAHF5YNmkIP1/onRJYbdNhJpDictTy2LXkvfjevHt2OWVLP29XppOS6UyNY9nzfVjtcM2NGAT//XMncuZ7ce694HxPql5VlZPbsMpYurSYl5cxwTmionMmTHXjqKVeCgpqmV61EW8WrB5ZjPGupvFwi5e0+1zVZQtIswzSenp7IZDLy8/PrHM/Pz8fX17fec1599VXuvvtuZs2aRffu3ZkyZQrvvfce77///gV3SlQqlajV6jpfgiDUNSWwEyWTn+CekO6kV5fTc/18bt29DL257lJCrclIr/XzGLL5N0xttD5HDxev+hOR09R6Rz56OLzVJiI5OUYWLKikQwe5SESEiwoMlPPxx54kJ1uHc777zpMBA5Tk5Jj47DMNwcEZuLunMWVKHps2XdlwTqVRVycRATBazHV6SlpKo5IRhUJBTExMncmoZrOZjRs31ukpOVt1dfV53ZEymXXDrjZQ/FUQWjWZVMqPfSeQMO4+Oju7syjrJG5LP+eXtKO1bT44uYe0qnJiy/KZcyruvGuUaKvIqCyp81WirWrBZ3FpPVwvsoHcAX+WRdxNpNqj5QJqpNtuy8dsht9/FxvhCQ2nUEi5/341O3cGUFMTyvbtftxyiyMyGSxdWs3IkbkolSn065fFV1+Vo9U2/JeNKoOOHbnJ9T6WV93y8zQva2nv9OnT+e677+jXrx+zZ89m4cKFnDx5Eh8fH6ZNm0ZAQADvv/8+YJ3/8emnn/L999/XDtM89NBDxMTE8NdffzXonmI1jSA0zA8pcTx+aCNas5EotSdf9hrF6G0La3/7cZDJSRp/P/6nd72tr5sWmr6r1mwxszz9KHsL0tAYtLgo7BnoE8qEoKiL9mb8t5twTlUZc/MzMfz3dmUGJCBJ9ED+wVDsXYzc+E08nTo4cXt4DKHOl7+bcFPbu1fLNdfkMHCgkp07A2wdjtBO5OUZmT27nH/+qebUKQNms3U4p0MHOddd58Azz7jQoUP9w7J51eXMPraZUl11vY9LgLsi+jPYN/yK42zWXXu/+uorPvroI/Ly8oiOjuaLL76gf//+AAwfPpyQkBDmz58PgNFo5N1332XBggVkZ2fj5eXFddddx7vvvourq2uTPhlBEEBrNHLH3n9ZmmNdJisB/vtHLpNIuME/gr8HTgEgo7KEdw+tqfc6L/caR7BT0+z/sirjOBuyTzIz8hr8HFxIryjh56Q93NChJ9cGRNZ7TpG2kjcPrmSoXwSDfcMZtW0hJypKrHNEiu1xyvChsk8qnY5GkPpxd2RSCe+uKibTLoM3Y65DrWgde4WEhWWQlmYkMzOYgACxgkZoekajmQULKvnppwoOHtRTU2P9F+/qKmXoUCUPP6xm7FjrLxZVBh1vH1pdJxEJdnJDKZWTUVmK7vQwrwR4pNswurtfWQLdrMlISxPJiCA03vvxu3np2LZ6H1sx+GYm+oWTXlHMe3Fr623TlMnIV8e3oLZTMa3TNbXH5pzYjp1Uxr2dB9Z7zuLUQxwryeH1mIkAPHZoPV8lx+KW7ssHPpO45w4X1J/Np8ZTw705E/npVTtUKrh3yTEmdg1nXFC3Jon9Svz8s4YZM4q46y4nFiwQQzRCy9i3T8vs2eVs2FBDYaG119PODnr0UNB7QiWmIXHIVWYCHV15oMsQvE/3lOpMRv5JjWNLrnULikBHV17pNf6K5mKJjfIE4SqmMej4LOkA9b2FSIEHDq7hRGke35/cecFrJJblX/Cxxgpz9uJkWT75p8eiMytLSdYUEuV+4QqkKZoiOruemRj/Qudr+L+uA7lrgD333+0BUgk3dncAvYwf7bbwzVwXtFr47f6OHM4obrLYL5fZbObxx4tRKiXMndt6ho2E9k2vt9C9u4Lff/ehoCCE/PxgXn7ZlfBwOw4d0vPD2wp+GtOX32/pReZP0chrHGrPVcrk3B4eU/tLSFZVGakVLfNvSSQjgtAOvXpsO8W6Gurr9jQD2TWV3L17CUUX2e9mUeohDhZmNEk844K60serA68fXMFDO/7g3UOrGRkQSX/v0AueozFo6wy1BNg7M94vDJ3ZiN5kpNKgw9ERZqh7Q1A5T57YwIIFXmjyFHxyrxv5+S23QVllpZmgoHTuvbeA3FzrfZ9/vgSNxsLrr7uiVIq3WqFljB2bi5NTGp07ZzJtWgG//17F6NH27NkTQEGFD8NfTsIvWoOu3I4fvtbi6ZlOZGQmkyblYrFYkEgkDPQJq71eemXLJCNiAFMQ2hmzxcI3p2IxY0GKBJlEggXOm6QaW6XBVS5niLs//X1C8Ld3oVhXxd6CNNJOvwH9nLiHSFcfnOyUVxTTwcJ09hWkcW/kQPwdXcmsLGVhykFcFfYMOOuN73K8MrEzG74oIKt/Mp8dPsjjX7jw5RNORHbOZNthZ1zdrYlAUxdzOrtYVNopE1lZJubNq+T336t49lkXPvtMg5eXlBdfdGuyewqtX3MXEbuU0FA5W7dCQoKBU6cM/PZbJf9V0QgMkiLr4I6dvZleo6upSHYlPt5IYqKhTvJ+dj0i4wVKcDQ1kYwIQjsjlUg4OGoGJzRFFOiqKdBVU6irJl9bTW5NJZnV5eTpqrEAm8tLGB0UxaiAzthJrUvuh/t3Yu7JnRwsykBnNrI7P4XRgV2uKKbFqXGMDepKX+8QwFpVtVhXxerMExdMRtR2qvPK3Wv0WlQyOxQyOVKJBCkSKvRaUl68AdVHP3Ew7BDRDj2Y+mElvzzhT/8exdz+xyEUTuYmXSF07iqkokQHoAcWC2i1Ft55pwyAu+5ywmy2tMkN/YTGa4kiYpcybpwD8+ZZezyN53QOZmWaIdMdkJApM3PH7QpeftmN0aMd8PKS1s4NOVaSU3uORwvFLZIRQWiHerh6X7A2x/zEPezOT6HGZMKkdOblY9v5NeMEt/a05zXfqUglEq7v0IODRdYhmoNFGVecjOjNRqTnzGCRSiRY6h1IsgpTe9Z5UwSIL8sjTG2dfyGXygh2die+LJ9ozyB23DaFget/Y37GKe6OcqH/Q0b2fhvMX3dFc8efcaAys6cglQnBUVf0XOD8YlGGGlm97T77TMPmzVq++MKDIUPsr/i+Qut2sSJi7rTMh/qoUfZIJHCxpSnu4VVc98VxxkV25LawmDoTVBPK8tl/enjWUa684tU0DSUGMgXhKlNxurfBXibj25hxHBw9nSrPo7zucycdioZgtpjxdVDjKFdY2xuufDO+Hu4BrMo8xtGSbIq0lRwqymRD1kmiPQJr2yxJjWNewq7a74f5RVCkrWRx6iHyqsvZkpPIwcIMRp21FHhUQGd25CWzOz+FIC8Zw+R+mILL+HW9iZ535BIzM4uaEjv+urMnRh0sSz/Cuqz4K34+5zJU15+MABw5omfo0Fx+/bWiye8rCGCdLL14cRUTJ+bSsWPmRRORm+5QcOMPx1E6m9mck8j7cWvZkpPIvoI0fjy5i8+Obqr9JWG4f0Rtj2lzEz0jgnCVUcrO/LMv0lYS7erD4N4lZJnsyfDcQVDWeLa5LaDaaLC2l175fja3h/dhWfoRfk/eT4VBh4vCniF+HZl0Vi9Fub6GkrNqH3iqnHi023AWpcSyKTsBV6UDd3fqTzc3/9o2fb06UGnQ8m/6Ecp0NURGWIjb4kv5wEzW/hPFd29684PKwOJvFSyaFs0tC+JYnHqIMGdPOrp4XfHz+o+h5sK/11ks0LmzHQMGtI66J0L7kJys58svNaxeXc2pU8baeSFeXlK6dLEjIcHAudM9nn/ehfffd2dnfh9+TdqHBUivLCG9suS863d392di0JX3IjaUSEYE4SrT2dW3dghmU04ChepT/Cb5ldny2aQXW/j0SDYdXZ5liIM/nau70/kCm+81hkpux23hMdwWHnPBNjMiz99SItLVh1d6j7/otUf4RzLEtyMv7FtGhUHLrUNl/LjHjXSvbHL29+Pvb7x4wq6IL74oZ/HMHtzy8xE25pxs2mSknp4RmQzMZusHwBtvuKNUinkjwuXT683Mn1/J779XcOCAnqoqa++FdXdfBbfe6sj99zvj6ipnzx4tAwbUHeL87DMPnnzSBYDBvh1R29mzNO0w2dVlddo5yhUM9+/ExKAoZC24s7RIRgThKtPPuwOLUw+hNRnYX5jOq2EvILGTcJ/kPnCRkRv0I39EfMN2VRW7DfYUSiZQwiiGMYzOdEZSb/US2zpRmlc7nNTHuwOPTo2i55iT3Fuax5gBaj7/3JPqGjNzf4DFs7oj/ekYNREG7C9zF2Oj2VTne0ONDCQWsFh/NlIphITI+e03b/r3Fz0iV4ucqvJ6j19ubdEDB7R8/bWGDRtqyM421e7gGxAg45Zb7Hn4YTV9+57/+urbV4mzs4SKCgtyOfz8szdTpzrVadPDI4Du7v6kVBSRXlGCyWLGXelId3d/FLKWTw1EMiIIVxmVzI5bw3rzS9JecpzjybPLpENxDG+nrKNcX4OzxYXwvCGcClmD0a6GpZZ/WMY/WLDghhsjGMGw0/91pzvSVjD1rER3ZmO/rm5+9PB15d03vHh5uonwmw5QvXMgP3zvzbG8AvYsd+Sf+7vxxsEq7J1cG3Ufi8XCuqx4VmUer3NcVyE7XXPfWqfhiSfUvPuuO/b2tv/ZCM2vyqBj7smdnCjLq/fxhSmxPNR16CWXyGs0ZubMKWfRoiqOHtWjO71C2NFRwpAhSu6805lp05xQqS7+upLJJFx3nQNLllSzdKkPY8Y41NtOIpEQrvYiXN10vYSXS/xLEYSr0CDfcO4I78P2Tj8CEoYlzaJYV1W7EmBo9i0ozKffOCWW2gltpZSyjGU8yZNEE81HfGSjZ1CX/KxJdlUG6zv4S7eFE35PFrrdfkQ8tAW92cTt7xYQOryIokQnbhjTuJ1JLRYLvyXv59eDx9nwUQAlKWdWx6TtsC6XVDobeX5BMR9/4iESkauEzmRk9rFNF0xEAJI1hcw+ugmtyVDnuNlsZu3aKm6+OQ9v7zRcXNJ4/vlSYmP1BAXJefxxNYmJgVRWhrJ1awD336++ZCLyn2++8SI5OeiCiUhrI3pGBOEqZedfSLkll5iaIYTYBVIl0aGU2dHV1Zfh/p1wlh7ma8vXmCR1hyRMmJAgwQEHJjLRRtHXFersUfvnXfkpjA7sjFQiJfmba/HfdYKUeQH07r6M/lE1jH5LwoYX7di304VRo3LYsMH/Ilc+Y19hGtvzksmJ9eDEUl/i//Vh0t1mbnvQyM+5cuw9dNz+22FKHMzsyHNjqF/H5nq6QiuyLiuejMpSAJztlEzu0JM+Xh0A67L4pWmHqTBoyawqZV1WPH3suvLVV+UsW1ZNYqKhthaIm5uUCRPsmTnTmRtvdEB6hfM1XFykuLi0nYRYJCOCcJW6n/uRSCSscvgb7z7n1yR5jMf4UvLlBc9fzGKiaLnZ9hcT4OhKuNqLU5pC8mo0zE/cw21hfXC0U3BkQyf8w1I4nqXhuFc+oSoVt33pye6X3di4WsukSbmsWHHhPXLA2iuyIfskAPoqOUjAYpaw6lcZa/+QYTbDX5vsWKWz9ixtyj7JEN/wK9pgTGj9TGYz2/OSAZAg4cnu1xLoeKbi7mDfcILt3bjn0/0krPFi/gl79JXWyeN2dtClix033ODIww+r8fVtmo/jrTlJbM1NolhnLXzm5+DCpODuRLlfOOk+WJjBsvQjFGsr8bZ35sbQ6Dr1RSwWC8vTj7I9L5kak4FwtSdTO/bFx77pNq4VyYggXIX2spcTnGAc4/Cm/uJoHenIGMawgQ2YqNs7cmvVfYxzHNcSoTbYDSE9+ezoRswWC3sL0ogtyqSj2gutycDIV4ys2esJvfNJ1Wn5IPkQ0plxOI/1YOUWX0bdF8K677sivUDykF9TUfvbr73BCbnMWt3SZLJ+ATx3t4yhTwYjjcogt0ZDZlVpk+16LLROGZUllOtrAOjh7l+biBw9qmPjxhpiY/X88UclRmMEYMHe3cCEKUqeedSLa69tniJ4rkp7poT2tO7Ea4HdBal8c2Ibr/Qah7+j63ntT2kKmXtyJzeE9qSHewD7CtL49sR2Xu41joDT7ddmxbMpJ4EZkQPwVDnyb9oRvji2mTdiJjVZHZK204cjCEKTmcUsJEj4kR8v2u4pnqqbiFgAgx1/yX5jRu57zRtkI3Vy8WZW5CDkEuvbmsFsIr4sj9SKYoIHlBOJC+jOvOWZsVDpXwS3H2fjmBU4/P45M/at5FBp3d2KS7RVJJy1g7Fca61wea7kZANzH/Zn9XORGLVSSs+qmSK0T1VGfe2f/0tEEhP19OuXw1NPlXD0qJ7Jkx249xUdM9bs5+6lsXwwV9ZsiQhAT49AursH4GOvxsdBzQ0hPVHK5KRcYPfdjdkJdHP3Y2xgV/wcXJgc0pNgJze25CQC1l6RjdknmRAcRbRHIIGObsyMHECZroa4oswmi1v0jAhCO3OpbtoDHOAYxxjNaPyxHrtQN+1oRhNGGCmWFKRICSrvTv8Ts1jc+SN+9n6dw5nxHApaYLPneq4Yr2CCnNzYnJPInoKU2sJtXionPv/cg1u/CEHTOxVk1gm5FgCp9c86hY6f04/hJFfwldtooP69RtIKqjBZHDj3dzmzGSQSC7lxamrK5C1WuVKwHYfTVYoBsqrL2L9fy4QJefj7y1i40IeYGOsk8DknkjhUbD7vnOZmtpg5WJiB3mQkzNmz3jYpFUWMCuhc51hXNz8OF2cBUKStQmPQ0sXVt/Zxe7mCUGdPUiqKavebulIiGRGEduZS3bT/9Yr8xE/Apbtpn+IpHpM8hku1L7+a/yCkpy/RKWG8W/MKcUG/4p6VToH/JuTS1vF24m3vzG3hMdwS1otqowGZRIJKZodEImHRQ86MPZBS/4kmCaS7YNnTDXpbD9W314i+SobFXP9wTlCfCgY/l4yrr1EM0VwFOji5o7ZTUabV8vPnJp5ZkEN0TyUrVvji4WFNRnOryzlcYv1gd7ZTtcjrIruqjP+LW4fBbEIpk/Ng1yH4O7rU21aj16K2q1urRG2novz0thEag3UYSq04p43iTJum0DrePQRBaDI9z9rvBaxzKbbmJpFSUUyBYxqHOcy1XEsg1nZnd9MCTA7pSXxZHltyErkzoh/TLdOZn7uOJySPM9jPumHek11GkbG7jEXGHyjusAX7/O6kum0jUGH7egX/kUqk59V1GB0SSMBBV7LNZZxdu00ChDirMS4YwTfHtagVxbz/vgf10VfUTUZkMlCpJEz8XwEuI04hkUCMV8gla0oIbVturpF162rY83c3dq2RYTZKcfLW8fZvFpxdLehNRg4WZfBPahzm00XPBvuGt0iPmY+9M6/0Hk+N0UBsUQbzE/bwTI9RF0xIWgORjAhCO3ZuN+0kbgGo7RWBS3fTarUSYk7dzvBeZ0q528sVhKu9+dr4Ee9lfsoR/0UEaaJZpVvMeOdrWuCZXR6JRMLTPXrxTNzmOsctQIijmlUHOhIRkckHH5SjVEmImZF93jWqS+zOOktCeP8q+j1zEgcv65CQvcyuRff0EFqGXm9h924ta9bUsGJFFceOWf++JRK72o3pxn10kkXZNSzK3nve+YGOrow7nfA3N7lUZu0ZBTo4u5NWWcymnATuiuh3Xlu1QoXmnM0wNQYtLqd7QtR21vktGr0WF8WZuS4avZagRhYNvBgxgVUQ2qHsqjIe37mQR3b8xW/J+3mw6xCKHNM5xCGGMYwOdKhte6XdtIeDfufuglfBoYwJ0vG8UTivmZ/dlbm7QxRy6emeDTOosKOnizebCzMZsmMBJ+ID8PGV8uYbpbz7f0XnnV+Wbn1DlinNDH8pmWHvH61NRBzlSh6LGo6PQ9MteRRs79VXS3BzS2P48Fw+/risNhEBahOR0N41uIfW1Ht+Jxdvnoy6FtVlbj9wpSyW87cw+E+YsycnzynYFl+aVzvHxFPliNpOVadNjdFAakXRBeehXA7RMyII7VB93bRb+nwEdjCPpk8WfvF7jf4l3XnU7n7edHmIfdlHWRXwaZPeY3XmcQ4VZZJXo0EhlRGm9uLGkGh8L/HBX9/k3Ov8O7IkOwlMUgxvD+bpX5T8YNnHjtI8YrbM4eUVvXhupCd7vw1GpjAz6q4aghzdSE0zYNJLUbrouWXeURw8rR9KHkpHBvmGM8S343lJm9D2VVWZqa62Zh3/FSk711tPBTOgpzc7806RU23do8bPwYXBvuGEOXu2WM2ZJalxdHP3x13pgM5kZF9BGonl+TweNQKAeQm7cFU4MCU0GoCRAZF8fGQD67Pi6e7uz/7CdNIrS2p7USQSCSMDOrMq8xje9s54qpxYln4EV6U90Z5BTRa3SEYEoR06t5s2tuYkcbKDDGYwoYTWadtU3bSPuE+hT3VnBlSMZ7Xf54RmJpEatLzJnlNieQHD/TsR4uSOyWJhadphPj+2iTdiJqG8wMZeF5qce3twd9bmpfK8w1jeTFDx1rOlLPxrLN+kHuWn9GP8X9Z+rl/gxdKpfdn1eSiPD/DmttucuOW1fHz9apj+50lKJdZEZFpEfwb5hjfZ8xRanw8/9ODUKSMrVlRjNp//uJOThJtucsTe3tnm+7xUGLTMT9hNub4Ge7kdAY6uPB41gq5u1sJ+JbrqOptdhqu9mBU5iGXph1madhhve2ce6jqktsYIwNjALuhNRn5N2ke1UU9HFy8e7zaiSee/iGREEK4CKz3n1VlBc7b/umnPnjdyoW7aICdrLYX/ummHnVPyvL9DF0oUx/DNH0xa0AoccmIo8N2Ok/TK98d44vRvdv+Z0ekant37D+mVJXRyqb9w24Um5xp0VZTd8CRyiZRdL25i7duhfPqUil9/nYjZbGBBViIrJTm8sjqPb24JZtasQjQaM3//XcWCBV7069mXT45sAGB3fqpIRto5uVzCX395M2RIDgcO6M95DO6+26nV7EU0rdPF52w902PUecdivIKJ8Qq+4DkSiYTrQ3pwfUiPK47vQlrHT08QhCazJDWOxPICirSVZFeVMSd9NUc9thKjG0AEEcxL2MWS1Lja9iMDIjlemsv6rHjyqstZnn6E9MoShvt3Aup20x4uziK7qox5ibsv2E3rKndC6xeHf+ZYavwOoS6O4oj2Astpr0CN6b95Gheu25BSUUTns+ojgHVybkpFEXZSGUXaKjqMzqdrL/jtt0r++quCER5+jHX1RGex8E7+Xn7fZ0eXLgoeeqiI7t3tmDrViQi1F66ne4myq0ub/LkJrc+JE3qOHrUmImdvG2M0wqxZYo7QlRI9I4LQzpzbTbs5bC4mqYFf7L8HWq6bNjtoDcOzH2Gr94/0rBnAjzXzuMdtQpM8R7PFwsKUg4SrverEea6GTs5dtcabLiGFTJtewMPLCwlQqZji7s3K0iLG7v2dr76+nudGK3joITXS05NfZacrvRrNZt6JXU1udTluSgcmBEcx0Ceszj035ySyPiuecn0NgU5u3B4eQ2gTTv4Tmtc/q0u4685CZM4Wrv8omS3vRFBVbIfZDN262dG79/nLuBPK8lmUEiteFw0kkhFBaGfO7qZNJplPWEM/+hFJJNCy3bRbAr7mfwXd+NjpRe5V3Mbe3Nf4zu9/jbpGff5I3k9OVTn/6zn6iq8F4Ooq4+9l7kyeXMDiF4MY+8lx3OwUPBPanY9Sj/Jg2lLmHhrPPaHW+TYZlSUU66oAa9n5SFcf7u08kJNleSxI3IuLQkU3N2t12/2F6fydEsvUjn0JdfZkY85Jvji2mTdjrhOTXduAH38u4ZHHC7FTWfj1bxcG9R3O/gHlTB2jp6zUwoMPnt8rUqSt5KvjWxjqFyFeFw0khmkEoR2byUyAeueKtJSPvB9mkeFf0DrxvdfL9M2ceUXX+yN5P0dLcni6x0jclBefi9KYybnajqlMeDafzIPOHP799GS/mjJWDpyCk1zBvQdW8378bqoMen5L2nfWPey5Jaw3fg4ujPCPpLdnEBuyE2of35B9ksG+4QzyDcff0YU7O/ZDIZWzK//UFf0chOb3wQel3H9fCc5eBmJ3hDF5iB+eKifG9wlgw3p/br7ZkTvvdDrvvK25SXiqnMTrohFEMiII7VQqqexgBzHE0I1uNo3lZpdhJDkcQFbSgQNB8/HMGo7RfIE1khdgsVj4I3k/ccVZPNXjWjxV538InKsxNRSOFGdx53R7uo4u5+C8IPJPOGIwm1iYvJdXwqJwkSt46dg2Bq7/kbTKEgDkEinR51S87ermR4rGWp/EaDaRUVFSZ18PqURCZ1ff2jZC6/T440W8+GIpft0r+WCRlk3GvTy7ZzHvxK5me24yMTFKFi3ywdX1/KHKFM0F5iqJ18UFiWREENqp/3pF5jPftoGc1lERQKXncdTZ11AcuBWHgp7kGUsafP4fpw6wtyCNeyMHopLZUa6voVxfg950Jqm5ksm5BdoKtuQmcd1rWbgGa1nzvy7oKmRYsC4RvsndC2epjCNVGtaXFuEkV6JWqM7rnVErVGhNBvQmI5UGHWYsONdXMM7QdPt6CE3r5pvz+PJLDWFhciZ9kkBsVTLe9s48HjWCoX4R/JVykN35F56UrTFo6y0SKF4XFyaSEUFoh9JJZytb6UUvomg9pclVUgXlAbvpknULBq8E/DQ9WV9xsEHnbs1NosZk4JOjG3lu75LarwNFGbVtSnTVlOvPVMH8b3Lu9rxk3o5dTWxRZr2Tc0f4RWKyWDBZzPi4ODD3Wx90FXI2vNQF6enJvnKplNs8ffG2U5Cqq2FHVSUy8RbarpjNZgYPzmbx4mr69FGQkBCIVG4h2MmdKSHRBDu5M9SvI4N9w9mam2TrcNsVMYFVENqhe7gHsO1ckYs5EbiQ23JeY6HHx4wxjObdoi94yfOui57z3ZCpl7zulUzO3V2QQhdXP6Z16g/d4dlnJXz8MRxf5M/ctzqjMWhRSOV8pvbk9r3/sjI3BY2uii5udbvjNXotKpkdCpkcqUSCFAkV5+xuqtFrcbG7+iYptmZarZno6GwSEgxMnGjPihXWeUMuChV+DnU3mPOzd+FQUeYFr6W2U6Gp5+9cvC4uTKT1gtDOZJHFZjbTgx5EE23rcC7oL/+3+LhyHiDhZfV93JD9gk3jCVd7kV+jqf3+o4886X5tJTu/DWDfCgf6eHWgh0cATnZKVgy+hftCe3CyuoKX4vdQdtaHSnxZHmFq65wUuVRGsLM78WX5tY+bLRZOntVGsL2SEiNhYZkkJBi47z7n2kQEzn9dAOTXaHBXOl7wemHqeuYqidfFRYlkRBDamXu4BwsWfuRHW4dySc943MZ2yRYklV4s8/uYiMwbbRbLqIDOpFQUsSrjOAU1FewrSGPwKydxcjMzc2YhGRlGlqTGMS9hFwDf9xnP8536kq3TErFqDrHF2WzJSeRgYQajAiLrXHdHXjK781PIrS7n9+T96M3G82pOCLaRnm4gNDST3FwTr7/uyvff1y3nXt/rYnteMsP9I2rbnP26ABjmF0GRtpLFqYfIqy4Xr4sGkFgs/+052HppNBpcXFwoLy9HrRaV7gThQnLIIZBAutGNoxy1dTgNVmQsI6BwCHq/Yzhm96HIbycq6YUrqzaXI8XZLEmLo6CmAk+VE6MCOmNKCGDEiFwCAmS8tSGHUn1VneGg945t442Te3CWybnDJ5ip4b3rKW6VwLqseDR6rbW4VVgMoVfpb8CtSWyslkGDctHpLMyZ48n999f/+VLf62LIWVshzE/YTbGu7uvi7KJnrkoHJtZb9Kz9vy4a+vktkhFBaEfGM541rGEPe+hPf1uH0yhGs5HA7HHkB25CWhTGEef1dFOFXvrEK7Qm8zhL0g5zrX8kt4XH1Nvm+eeL+fDDcoY+nEPUHVm1u/92dw8AYGl2IjftWopSKuF27yAcpBLC1Z5M7dgXH3vxntUarV1bxaRJ+Vgs8M8/Plx//YWHXYTL19DPbzFMIwjtRB55rGUtXejS5hIRALlUTl7QBgZl34fZLZMo3QB+L1vfrPdMqyhmW24ygRcpKQ9w/8tmom7KZfscP7qeGk60RyDfnthOdlUZADcEdOLzqEEoJFIW5GfQzTscpVTOF8c2YzCbmvU5CI33yy8VjB+fj1QKO3f6i0SkFRDJiCC0E7OYhQULP/CDrUO5IjsCv+Pxkg9BUc2dypt4LH92s9xHazLwY8Iu7o7oj8NFNtsD6+6/M18y4GAv5clZ1URLuhLs5MaWnETAWpAtvTyfz7sPRSmV83DcRiqkCsp0NcRdZNWF0PI++KCU6dMLcXSUcOxYIP37X52rV1obkYwIQjtQRBGrWEUkkQxikK3DuWKfez/B77oloHfgK4/nGZR1f5Pf44/kA3R38z9vaW59UiqK6OHjy6pVvphMMGBADl1crLv/AhRpq9AYtFzr15HkCffjoVDxwrFtZBuNtW0E2/uvqqqXl5RTp4KIiGj5eUlC/UQyIgjtwH+9It/zva1DaTJ3uI4kXrkPaWkQuwLm4pM5stEl5C9kf0EaGZUlTAmNblD7/3b/HTrUnuefdyE318S3r8vP2/1XrVDhq3IibeJDBDuoWVaYzU/pJ5okZuHKnF1VNS0tGG9vUWarNRHJiCC0cSWUsJzlRBDBUIbaOpwm1VkVTJXHCZxy+lAQtAnH/F4UGcuu6Joluir+Sonl3s4DsZOev6/Ipbz/vge9eytY96uSzMP29bZxkis4Nf4BopxcWFecy7Vb/sBsNl9R3MLlqa+qqoOD+OhrbcTfiCC0cfdxH2bMzGGOrUNpFiqpgoqAfURkTkHvE4+3pgfbKg9f9vUyKkqoMGh5N3YND23/g4e2/0FieQGbcxJ4aPsfmC3nJw3n7v67das/rv4GVr4SSmqqvs7uv/+RS6VM8wtjkKsXmwsziF4/H30T9ewIDaPVmunaNZudO3VMnGjP/v2ByOXiY681En8rgtCGlVHGUpYSRhjXcq2tw2lWiUH/cEPe/7A4FTGMa/mk+K/Luk5nV19e6z2BV3qPr/3q4OROP+8QXuk9Hqnk/LfFc3f/dXKSMuOrbHSVMgYOzMVdYV+7++9/aowG0ipL+KzntdzdoRtHNYV0XPX9eWXCheZxsaqqQusjkhFBaMPu537MmPmGb2wdSotY4v8+72t+ACw86zSTW3JeafQ1VHI7Ahxd63wpZXIc5craDfQasvuv1rOQx/9nT16eiZtuKqzd/fdwcRbZVWXMS9yNq9KeaM8gfuk3iecj+5NZU0Hoqu/Iqa5omh+IUK9LVVUVWh9R9EwQ2igNGtxxJ4ggUkm1dTgtalNlLKP0k7G45NI550bigxZe0fU+ObKBQEe32qJnnxzZgIfSkRmRA2rbHCzMYFn6YYq1VXWKnvXpk8XBg3rmzvXAa2Q62/OSqTbq6ejixdTwvvg4nHnP+jzpAE/GbcRBJmf/yOl0dWlf1TZbg0OHtAwceOmqqkLLEBVYBaGdm8pU/uAPVrKSCUywdTgtLs9YQnDREAy+J3DO7k+B3zablJCvrjbj45NOTY2FhIRAwsMvHsNfmfFM3bMcmUTCxmG3M8QrqIUibf/Wratm4sQ8UVW1FREVWAWhHaukkoUsJJjgqzIRAfCVu1PtfRjPrOFU+O/DqSiKJF1Wi8fh4CBl3To/zGYYNCj3kqtmbgvqwsZht2MBhm/5g8WZJ1sm0Hbul18qGDcuT1RVbaNEMiIIbdDDPIwJE1/ypa1DsSm5VE5h4Gb6Zc/E5J5Gp5q+/F2+tcXjGDBAxSuvuJKfb2Ly5PxLth/uHcyh0TNQymTcvGcZXycdbIEo26//+z9RVbWtE8mIILQx1VTzB38QSCDXc72tw2kV9gb+yINF74GqklvsrufZ/K9bPIa33nKnb18FK1bU8P33mku2j3LxInHcfbjaKXk0bgMvH235JKo9eOKJIl54QVRVbetEMiIIbcwjPIIRI7OZbetQWpVvfZ9lXs1CMCr5xP1phmc/0uIxbNnij7OzhIcfLiIpSX/J9oEOalInPIi/yon3Tu7hnv2rWiDK9uPmm/P44gsNoaGiqmpbJyawCkIbUk01Lrjggw9ZtPz8iLbgiDaFXhWjMHum4Z81mvSAlcilLfchtXevlgEDcvDykpKdHdygIlt6s5Fe6+ZzoqKYcb6hrBx0M1Kp+F3xQsxmM0OH5rJzp46YGAV79viLYmatlJjAKgjt0OM8jhEjn/KprUNptXqowij3OIZDbm9ygtbhlB9DmbGyxe7fv7+K1193o6DA3KD5IwAKqZyjY+5hqGcga/JS6bvxF4yifHy9zq6qOmGCPQcOiKqq7YH4GxSENkKLll/4BT/8uJVbbR1Oq+YkdaDK/wBhmdej8zmGe3kUu6tbbsO61193o39/JatW1TBnTnmDzpFKpWwdcSe3BnYmtiyfTqu/p9p46aGeq0lp6ZmqqrNmObNypaiq2l6IZEQQ2ogneRIDBj7iI1uH0macClrGhLynsDjnM9A0lC9LFrfYvbds8cPZWcKjjxaTkNDwpOKvAZN5MiKG1OpyOqycQ4G2qhmjbDvOrar6ww+iqmp7IpIRQWgD9Oj5iZ/wwYc7udPW4bQpK/0/5o3yb0Fq4nHHadyV+1aL3FelkrJxo7X+yJAhORiNDR92+Sx6FP/XfRhF+hrCV31HUkVJM0ba+h06pKVz5yw0GmtV1TfecLd1SEITE8mIILQBT/EUBgx8yIe2DqVNet1rBqvNa6Dajd+836Z75tQWuW/fvireesuNwkIz113XsPkj/3mu8zX83HcCVSYDUet+Ym9xTjNF2bqtW1dNv345GAwWli714YEHxCKG9kisphGEVk6PHmecccGFAgpsHU6blqUvJLR0KEafk7hkDaTIf2uLrLQZODCb3bt1fP21Bw8/7NKoc9fmpTBxx98ALB14I5P8OzZHiK3SggUVTJ9eiJ0dbN3qzzXXiGJmbU2zrqb5+uuvCQkJQaVS0b9/f/bt23fR9mVlZTzyyCP4+fmhVCrp1KkTq1aJ9fSC0BD/43/o0fM+79s6lDYvUOFFjddR3LOGUB64C1VhFGn6vGa/76ZNfqjVEh57rJj4+MZNSh3rG8a+kdOQS6Rcv3Mxc1PimifIVubDD0uZNq0QBwdrVVWRiLRvjU5G/vrrL55++mlef/11YmNj6dmzJ2PHjqWgoP7f2PR6PaNHjyYtLY2///6bhIQEfvjhBwICAq44eEFo74wY+Y7v8MCDe7nX1uG0C3KpnOLAbfTKvBuT5ylCq3qzTLOjWe/53/wRiwWGDm3c/BGA3m6+nBx3H85yBfcdXMtbx5s3Xlt74okinn/eWlU1JUVUVb0qWBqpX79+lkceeaT2e5PJZPH397e8//779bb/9ttvLWFhYRa9Xt/YW9UqLy+3AJby8vLLvoYgtEVPW562YMEyxzLH1qG0SzNy3rNQ42ihysXyYv53zX6/994rscApy5gx2Zd1frGuyuKz7AsLCz+wPHRgTRNH1zrcfHOuBU5ZQkPTLVVVJluHI1yhhn5+N2rOiF6vx8HBgb///psbbrih9vj06dMpKytj2bJl550zYcIE3N3dcXBwYNmyZXh5eTF16lSef/55ZDJZvffR6XTodLra7zUaDUFBQWLOiHBVMWLEGWcccKCYYluH0259V7qcB2X3gH0FowoeYH3A5816v8GDrQW7vvjCnccec230+VqjkR7rfyKpspTJ/h1ZOuimpg/SBkRV1fapWeaMFBUVYTKZ8PHxqXPcx8eHvLz6x11TUlL4+++/MZlMrFq1ildffZVPPvmEd95554L3ef/993Fxcan9CgoKakyYgtAuvMzLaNHyJm/aOpR27QG36zgo34mk3I8Nfl8RnDmxWe+3YYMfLi4SnnyyhOPHG1/UTCWXc3LsLPq7+7EsJ5lrNv6C+TKqtZZoq8ioLKn9KrFhPRNRVVVoVM9ITk4OAQEB7Nq1iwEDBtQef+6559i6dSt79+4975xOnTqh1WpJTU2t7Qn59NNP+eijj8jNza33PqJnRLjamTHjhBNKlJRSautwrgqV5mq88gah9Y9DlRNNgc9OnGUOzXKv2Fgtffrk4O4uJS+vYfvX1OeGnYtZlpNMhJMbR0bfg0resJVBJdoqXj2wHKPlTBIjl0h5u891uKscLyuWy1VaaqRbt2xyc03MmuUsipm1M83SM+Lp6YlMJiM/v+56+fz8fHx9fes9x8/Pj06dOtUZkunSpQt5eXno9fX/VqBUKlGr1XW+BOFq8iqvUkMNr/O6rUO5ajhJHajxP0Rw5gS0vkdwKe3GwerEZrlX794q3nvPjeJiM+PHX/5qnqWDbuLBsGiSKksJXT2HEn11g86rNOrqJCIARouZSqPuAmc0j7Orqr76qqiqejVrVDKiUCiIiYlh48aNtcfMZjMbN26s01NytkGDBpGcnFynGzExMRE/Pz8UCjFDWhDOZcbMbGbjggtP8qStw7nqpAetZFTuo1hcculjHMx3pcub5T4vvODGkCFKNmzQMnt22WVf59uYsbzZdRB52ipCV35HelXD9sJpTg0ZAoqL09WpqvrWW6Kq6tWs0X2DTz/9ND/88AM///wz8fHxPPTQQ1RVVTFz5kwApk2bxosvvljb/qGHHqKkpIQnnniCxMREVq5cyXvvvccjjzzSdM9CENqRt3iLaqp5mZdtHcpVa33A57xY+gXI9Dxofwczc5unxsuGDX64ukp55pkSjh27/F6J17oN5oeYsVQY9XRe8wOxpc1fO+VC/hsCevfQmtqvVw8sr5OQrF9fTd++2ej1FpYsEVVVhctIRm677TY+/vhjXnvtNaKjo4mLi2PNmjW1k1ozMjLqzAUJCgpi7dq17N+/nx49evD444/zxBNP8MILLzTdsxCEdsKMmY/5GGeceYZnbB3OVe097/tZaloBNWrme79G78xpTX4PhULK5s3WnWeHDctFr2/8RNT/zAqLZtmgGzFYzPTf+Atr81KaKsxGKdFVX3QIaMGCCsaOzUMqhR07/Jk8uWXnqAitkygHLwityDu8w6u8ynu8x4u8eOkThGaXps+jY+lwTD4JuGUNocB/U5OXkP/oozKee66Ea69VsXGj/xVda29xDkO3/IbBbOaXfpO4q0O389pkVJbw7qE15x1/udc4gp0ub7jEYrGwNiueVRnH0JmN5z3eyyOQkmVRvPxSGY6OEmJjA+jUSQzVt3fNWg5eEISmZ8bM//F/OOHE8zxv63CE00IUvmi9juGaNZDSwO3YF3YnS1/YpPf43/9cGTZMyaZNWj79tOyKrtXfw59jY+7FQWbH3ftW8OHJPU0T5EVYLBb+PHWQJWlx9SYiAF+/LuXll0rx9LRWVRWJiHA2kYwIQivxIR9SSSXP8zxS8U+zVZFL5ZQG7qR75h0YPZMJqurFmorzSxlciXXr/HBzk/K//5Vw9OiVrWqJcHYnZcIDeCrsef7oVp6K29BEUdbvcEk2W3KtK48kQC+PIKaG92Vax/5c4x3ChtciOPa3H85+Or7eqsHbu/k3JxTaFvGOJwitgBkz7/EejjjyEi/ZOhzhAo4E/c6dBa+CQynjpeN4s3B+k11boZCyZUvTzB8B8FY5kj7xQUIcXJiddJBbd5+pkK0z1t97cbk2ZSfU/nlqx3482HUIw/wjGOgbxoqXwkjZ4oFnpypu+y2OfZokDGZTk95faPtEMiIIrcBnfEYFFTzLs6JXpJX71e81vqz6Fcxy3nB5iInZzzbZtXv0UPLRR+6UlpoZO/bKV8Q4yBUkjb+fXq7eLMo6ydDNv7Ei7QifH99cb/t/UuOoMTauKqxGX0NCubX2lLe9M4N9wwGoqDBx//1F/PNPNXff7cS7SzVI5VBh0JFQln+xSwpXIfGuJwitwNu8jQMOvMZrtg5FaIBH3aewS7YVSYUPq/w+Iyzz+ia79tNPuzJihIotW7R8/HHZFV9PLpVyYOR0xvqEsr0oi7tj11NjNNTbNr4sj0+PbkJrqv/x+pTrtbV/jlB7I5VIABg4MIe5cyuYN8+LX37xJtLlzDYiZfqay3w2QnslkhFBsLHP+ZxyynmSJ0WvSBsywKErJS7HUOZHkRq0HIecPlSaG1YB9VLWrPHF3V3K88+XcOTIlVdFlUqlfBQ1iAiVA2UmI38W5dLV1Z+7O/bj3siBDPXtiPL0CqGMyhKWpR1p8LUV0jPVtUvPqgBrZydh6FAlM2Y4n/fY2ecIAohkRBBs7g3ewB573uZtW4ciNJKr3Ika3zj8M8dS4xeLS3EUR7RXXt9DoZCydat1iW9TzB8B2JSTyAhXD6Idnak2m/kw7Tg9PIPo5x3CnRH9eCF6DHKJ9SNhV/6pBveOeNk74aqwByC+NI/8Gg1ms4WkJAMTJ1priOhNRnbnW38uEiR0VIuy70JdIhkRBBv6iq8oo4zHeEz0irRREomE7KA1DMt5CLNrNj311zC/dPUVXzcqSsEnn7hTVmZm9Oj6NxVtqGqjnhOl1muM9wzgh5hxlBt0DN/yO/HlxQD4O7rS3zsUAK3JyPGSht1TKpEy2LcjABYsfH18KxsPFVBZaaFXLwX5NRq+PrG1dmimu7t/i2/GJ7R+4t1PEGzodV5HhYp3edfWoQhXaEvA1zxT+hnIdcxU3cpDeR9f8TWffNKVkSNVbNum44MPLn/35oqz5nWEq72YFdaTXdfeRWJFKb03zMN4eu+wCJczPRYaQ8PndYwMiMRb5QRAfk0FT7x7CoB1km28dmAFJ09PWFXK5NwQ0vOyn4fQfolkRBBs5Du+o4QSHuZh5Ii6C+3Bx94Ps8jwL+icmOP5Ev2yZl7xNdes8cXDQ8pLL5USG6u99An1UMjOvL6KddY9Ynq4evNW1BC0ZhPFp3stis7aP0bRiCqzDnIFT3S/Fj97NVWFdpxcdnp7kPwz80Qc5Qoe7zacAEfXy3oOQvsmkhFBsJGXeRklSv6P/7N1KEITutllGEkOB5CVhLA/4Ge8skZgvEBV0oaQy63zRyQSuPbaXLTaxs8fcVXY421vnUh6SlNIRmUJAHcGdwVgfX4aepORnfnWHg0J0Oms1S8N4aly4rnu44h7Lwbr1jQWsve54Wuv5sbQaN7qcx0dXbwbHbtwdRDJiCDYwI/8SDHFPMADolekHeqoCKDS8xjqnP4UBW7BoaAnecaSy75et24KZs92p7zcclnzRyQSCcP8Imq//+b4No6V5OCldCDa1ZslWQl8dXwrpTprT0Y3Nz+87J0afZ9XXyrjRCxY0xkJjic782afSYwN7IqTnbLR1xOuHmKjPEGwAW+8KaecCipQIPboaM+6Zt1KvN8/UO7HBsUyRjr1vuxrjR2bw7p1Wt57z40XX3Rr1Ll6k5H/O7yOrKqy2mNqOxVLCnM4pa3iLk9fHOR2KGVynu85ptHDKf/8U8VNN9UtZqZUQmlpCPb24vfeq5XYKE8QWqlf+IVCCpnFLJGIXAVOBC7k5vwXwLGYUYzig6LfLvtaK1f64ukp5eWXSzlwoHHzRxQyOU9EjSDkrF15NQYtVaeX8C4rLUQptePxbiManYgkJRmYNq2A0/XOaul0sH375c1zEa4uomdEEFqYL76UUEIllSIZuYp8UvwXzyofBkU1NxQ+wZKADy7rOvHxeqKisnBykpCf3wGVqnG/U5osZg4XZ7MtN4mMyhJ+z88i32AtrDbWJ4QVg29BLq17zdWZxzlUlElejQaFVEaY2osbQ6LxdVBTU2OmT59sEhIMmM7ZckYmh763FtP7oVN42ztzY2g03d0Dah+3WCwsTz/K9rxkakwGwtWeTO3YFx978T7fXoieEUFohf7gD/LJ5x7uEYnIVeYZj9vYyiYklV4s9fuYiMwbL+s6Xboo+PJLDzQaCyNHNn7+iEwipbdnEE92v5aPr7mJirM2rVuXn8YDB9dw7u+oieUFDPfvxAs9x/BE1LWYzGY+P7YJncnII48UER9/fiICYDJC5m43Xuk9nmiPQL49sZ3ss4aJ1mbFsyknobbomlIq54tjm8VGelchkYwIQgt6hmeww47ZzLZ1KIINDHXqSYH6CIr8LiQHLcEpux9ac+M2pgN4+GEXxo2zZ9cuHe+8c/n1R5IrS6k2nVnpYwF+SjvKa8e312n3RNQIBvqE4e/oSpCTGzM6XUOJrppUTTH//luNxQISCcjrmYudnSrFWOzI5JCeBDu5sSUn0Xovi4WN2SeZEBxFtEcggY5uzIwcQJmuhriizMt+TkLbJJIRQWghC1lILrlMYxoqVLYOR7ART7krVT6H8MkcSZX/ARyLu3JSm9Ho6yxf7oOXl5TXXitl//7Lm5dxsLT+nYHfid/Nt6cOXfC8mtPzTJwVStLTg9m5058vvvDg+usdAM6bO7Jxo7WOSVc3P1IqigBrTRONQUsXV9/advZyBaHOnrVthKuHWFMoCC3kaZ5Gjpwv+MLWoQg2JpfKyQvawKCs+9nl+zNdqvrxm3YBU11HN/wacinbt/vTrVsWo0blkp/fAeQmlqUfIa44kwqDjiBHN24LjyHE2aPea8SW5iOXSDDWM3Xwkdh1+CgduDEwks05iazPiqdcX0OAoytyqZRwtVftRNeBA1UMHKiistLMP/9Us3y5D/PzNxJZ3p2aLDXXXGNd1qu2U9Xu8vtfhVe1om5irlao6uwELFwdRM+IILSAJSwhm2zu5E4ccLB1OEIrsTPwex4t/j9QVHOn8iYeL/i8UedHRp6ZPzJiRC6/JO0lviyPmZEDea33BLq6+fLZ0U219UPOu39RVr2JCFiHbO7Yu5z12Yn8nRLLxOAoXu41Hp3JSIqmiNvDYs47Z+tWaxIxdqw9Xp2quf5OCZ984kHnzmJ+lHBxIhkRhBbwBE8gQ8ZXfGXrUIRW5kufJ/lNtxj0Dnzp/hxDsh5o1PkPPeTChAn27NmjY+lyDTeFRtPJxRtve2eu69ADb3sntuYmnXeexWLhUFl+PVe0lizr5+7HW90Gs68ghcG+4QzyDWdrbiI6kxEnOyUnys6fPHv8uB61WoJcLkWtUKEx1O3h0Bi0uJzuCVHbWXf61ZzTC6LRn2kjXD1EMiIIzexf/iWTTG7ndpxofFVLof2b6jqaY8rdSEuD2BHwA76ZoxpVQn7ZMh+8fSRsei+chKN1ezrspHJOaQrPOye1qhztWatWfJXWnXT7u3pzv18H9o6cxjOd+pJVWUpnFx/+SN5PXHEWT/W4lm5u/qRozp/XkZdnIjTUDoAwZ09OltWdkxJfmkeYsycAnipH1HaqOm1qjAZSK4pq2whXD5GMCEIze5zHkSFjDnNsHYrQinVThVLlcQLHnD7kB23EMb8XRcayBp0rl0vZsT0AqczCQ7PKyCmrxGwxs6cglRRNEeX683fg9VU5EuPsxkMhUSSOu4+c6x7BSWZHjrYai8WM3mSk0qDDjIU9hWnsLUjj3siBqGTWKq3Fumr0Z63E+WLvbgwG6NPHOj9kZEAkx0tzWZ8VT151OcvTj5BeWcJw/06AtUT9yIDOrMo8xuHiLLKrypiXuBtXpT3RnkFX/gMV2hQxgVUQmtEqVpFOuugVERpEJVVQGbCPiMwbSQ5YhndpD7YpVzDYqcclz42IUPDu+64881AV4x+OY+BDmQQ7udHXq0Ptxnhnc5DbMd7Tj4E+IUQ4W6uy9nLzYWdRFmaLa522ccVZAHxydGOd4weKMhjoEwZA7AHrCpsxY6zDL+FqL2ZFDmJZ+mGWph3G296Zh7oOqVPddWxgF/QmI78m7aPaqKejixePdxuBnVTWsB+Y0G6IZEQQmtGjPIoUKd/xna1DEdqQpKB/mJL9Aku9PmeIfgQfF3/DMx63XfK8p+73ZdPyXFb84c+EiI68+KYv38fvwFNVfyKstlPVmbMxNbgr24uyKDOZUMjkSCUSpEh4oMvgOr0V8xJ2U2PU1yYiAJWbOwHVTJp0ZoJ2jFcwMV7BF4xXIpFwfUgPrg+5dLIltG9imEYQmsk61pFKKjdyI2pEeWuhcZYEfMA7mu8BC886zeSWnFcadN6yZT74+Mj4v7er2byjghOlufT0CKy3bZi67ryO6R2ikCMhU28tDy+Xygh2dif+rImuZouFk2V5hKnrzus4fFiPg4MEBwfxsSI0nnjVCEIzeZiHkSLlB36wdShCG/Wy591sYANUu/O3zwd0zbr1ou2Pl+ZwoiyPFZvV2KnM3HpPOp5yNYNO92AsSY1jXsKu2vbD/CIo0layOPUQedXl7C1IJVCpIqG6srbNqIDO7MhLZnd+CrnV5fyevB+92VinVwQgK8tEUJDobBcuj3jlCEIz2MQmTnGKKUzBFVdbhyO0YSOdepNrPEJw4RDiAxehzr6GAr9tqKTn1+6oMRpYknaYMl01N3zqwqJHOrH0sS68stf6e2e5voaSs2qOeKqceLTbcBalxLIpOwFXpQM9XH34Nz+NjGoNwQ5q+np1oNKg5d/0I2j0WgKd3Hi82wjUCvva62g0ZrRaC716iXoiwuURu/YKQjPoRCdOcYpCCnHH/dInCMIlGM1G/HJGURS4FVlBR066bqGjIuCi59xwQx7LllXz8ssuvPNO/VVYz7WtMINhW/7ghcj+vN9jeIPO+fXXCu6+u5AffvBk1izxHi2cIXbtFQQb2cY2kkhiEpNEIiI0GblUTmHgFvpmzcDknk5EdR/+Lt960XP++ccbX18Z771Xzs6d5y/vrc9Qr2DsJFL+zU1ucGzr11uvfcMNorqwcHlEMiIITewBHkCChB/50dahCO3QvsB53Ff0DqgqucXuep4t+OaCbaVSKbt2+SGVwtixeVRWmht0j87OHiRWNHw34IMHdSgU4OkpRv6FyyOSEUFoQjvZyUlOMp7xeCKqSArN43vf55hXsxCMSj5xe4rh2Y9csG1oqIIffvCkqsrCsGE5Dbr+9QEdMVrMbMpPb1D79HQj/v4iEREun0hGBKEJ3c/9oldEaBEz3MZzWLEHSXkAW/2/JSBzHBeaAjhzppopUxyIjdXz0kvFl7z2Q2G9APg+Je6SbfV6M5WVFrp3t2tU/IJwNpGMCEIT2cteTnCCMYzBF19bhyNcBXqowtC4H8M+txc5QWuxz4umzFhZb9u///bGz0/GBx+Us337xeePBDg44yJXsrUo85IxrF1rvdbw4faXaCkIFyaSEUFoIvdxHxIk/MRPtg5FuIo4SR2o9j9ISOYkdD7HcC+LYnf1ifPaSaVSdu/2RyaD8eMvPX+kr7svedoqqo36i7Zbvdq6VHjKFDF5Vbh8IhkRhCZwgAMc5SgjGYk//rYOR7gKpQYtZ3zuE1jUeQw0DeOrkiXntenQwY65c72oqrIwZMjF54/c3aEbAD+lHr1ou337dMjl1rkpgnC5RDIiCE1gFrOQIGEe82wdinAVWxXwKa+VfwNSI4853M1duW+d12b6dGduusmBuDg9zz9/4fkjdwR3RQL8mRl/0XueOmXE21tsbCdcGZGMCMIViiOOwxxmOMMJpP49QAShpbzpdQ+rzWugxoXfvN+mZ+bU89osXOhNQICMDz8sZ8uW+ueP2EllBDmoiSsruOC9zGYz5eVmunQRk1eFKyOSEUG4QvdyL4DoFRFajXHO/cl0jENeFM6RoD9wyxqE0WysfdxafyQAuRwmTsxDo6l//sgo7w5UmQwkVtTfg7Jzpw6LBQYPVjXL8xCuHiIZEYQrcIxjxBLLUIbSgQ62DkcQagUqvKjxOoZb1mDKAnehKooiTX9mh97gYDnz5nlRXX3h+SMPhVuX+H6dfKjex5cvt05eveEGxyaOXrjaiGREEK7ATGYCMJ/5tg1EEOohl8opCdxOr6y7MHmcIrSqN8s0O2ofv+suZ265xZEjR/T8739F553fx90PpVTG6ryUeq+/e7cWqRSio5XN9hyEq4NIRgThMh3nOAc4wCAGEUqorcMRhAuKDVzA9II3wF7DDfJJvFw4t/axP//0IjBQxscfa9i06fz5I93UnpyqLMNsPn8oJyHBgLu7+BgRrpx4FQnCZRJzRYS2ZL7fy3xb/RuY7HjP9VHGZj8JWOeP7NxpnT8yadL580cmuHXCjIUVeafOu2ZxsZlOncTkVeHKiWREEC5DAgnsZS8DGEAEEbYORxAa5EH3yeyTbUdS7ss6vy/pkDkRsM4f+flnL2pqLAwenF3bftGiSj4Z5QVGyXn1Ro4c0WE2w4ABYohGuHJiZyNBuAz3cA8gekWEtqevQ2dKFMfwyx9MRtAq7HN6Uei7k6lTnVm+vJo//6xi8P9tIsU9g9wHhoBFhizFg50OWXWus3SpdfLqpEli8qpw5UTPiCA00ilOsYtd9KMfkUTaOhxBaDRXuRM1fnEEZY5H63sEdUk3YqsT+e03L1wnZLEzbD+5rvnQOxcA834/ivQ1lOm1tdfYscM6v2ToUNEzIlw5kYwIQiPNYAaA2INGaPMyglYxKvcRLC65xBgHc+PyPym7aw9YAJMEJiYCYIn1A+ru4nvihAEXFwlSqfgYEa6ceBUJQiOkksoOdhBDDN3oZutwBOGKrQ/4gucKPwepkWVjHgDPDJAAMgtEFUKABjLVSPQy/s5KqD0vP99EeLiYvCo0DTFnRBAa4b+6IqJXRGhPeu67BQpLYMocuPY72HsbZHe39o6MS0I2vzeKTHfiFAV8v+gwxYVgNDrj6F7J94sO17mWwk7GwGh/OoW42+jZCG2R6BkRhAbKIIOtbKUXvehBD1uHIwhNwmg285PrOqQuMth6H2R3g4G/QefNIDPDiDRMSj2Kw/4YMJNQXcKeHdaPjvCuOiqrDXW+Ssq17Iq7+I7AgnAukYwIQgP91ysyl7mXaCkIbcdLR7eysTAds8QCZjvYezscHwnd10LfRaDQw4h09Futm0Duc8ghPUkBWIjpB04OdrVfEon1mnqDyXZPSGiTxDCNIDRAFllsZjM96EFvets6HEFoMhKJBJVUhtZsQooEkGA+MRoqvKzJiGMJVEmoWRWBCjuyHCqQFNvj6Gji0Tt71rnW94sOU1ltsM0TEdo0kYwIQgPcwz1YsIheEaHd+b8ew3knagixpflsLcxkS2EGG/PS0WdGQ7UbDPwFbv4UtvjimuVDemAWdrkGOoYpbB260I6IZEQQLiGHHDawgSii6EtfW4cjCE3OTiqjv4c//T38ea5zf+YsiiOxppSs4s6cPBTE0a6z4buHyftrOhCG3k7HkCFqW4cttCNizoggXMK93IsFC9/zva1DEYQWIUVCoMWZUYRwZMCLHHXYiZ1ECXd/D0EHYEQas2aJZERoOiIZEYSLKKCAtaylC10YwABbhyMINhFl1xGNvJCOWZN4wuFvdt01hYjIaluHJbQjl5WMfP3114SEhKBSqejfvz/79u1r0Hl//vknEomEG2644XJuKwgt7r+5IqJXRLjaqaQKEgKX0TfFkwGlemRLgqFgr63DEtqJRicjf/31F08//TSvv/46sbGx9OzZk7Fjx1JQUHDR89LS0nj22WcZMmTIZQcrCC2piCJWsYpIIhnMYFuHIwg2J5VImTq5gL2duuOorcSy9BpY0g+0JbYOTWjjGp2MfPrpp9x3333MnDmTrl27MmfOHBwcHPjppwtXpDSZTNx55528+eabhIWFXVHAgtBSZjELCxbmMMfWoQhCqyGRSOg7LJY9oQEUKsFcuB9+9YN40XsoXL5GJSN6vZ6DBw8yatSoMxeQShk1ahS7d+++4HlvvfUW3t7e3HvvvQ26j06nQ6PR1PkShJZUQgnLWU4EEQxnuK3DEYRWRSqREz3iCCUq64dItUSPZfsDTC6/DZW5zNbhCW1Qo5KRoqIiTCYTPj4+dY77+PiQl5dX7zk7duzgxx9/5Icffmjwfd5//31cXFxqv4KCghoTpiBcsfu4DzNmvuVbW4ciCK2SvdydjDDrpG57k3VvPW9zAtPNYwg3fmXb4IQ2p1lX01RUVHD33Xfzww8/4Onp2eDzXnzxRcrLy2u/MjMzmzFKQairjDKWspQwwhjJSFuHIwitVkj4M4A1Efnv/w4mC9dWzCXndwXHMz7FYjHbLD6h7WhU0TNPT09kMhn5+fl1jufn5+Pr63te+1OnTpGWlsZ1111Xe8xstr4w5XI5CQkJhIeHn3eeUqlEqVQ2JjRBaDL3cz9mzHzDN7YORRBsqqrGcN6uvGczW0LwtgPXsyrA/5eY+FUa8F/zDBnOz2N/Qxxe9t2aN1ihTWtUz4hCoSAmJoaNGzfWHjObzWzcuJEBA86vwdC5c2eOHj1KXFxc7df111/PiBEjiIuLE8MvQqujQcM//EMIIYxlrK3DEQSbUNjJALBYOG9X3rO/qmssHHDzxCg5/xoSwAIEVxhxWjEFqusfyhcEuIxy8E8//TTTp0+nT58+9OvXj9mzZ1NVVcXMmdYdTadNm0ZAQADvv/8+KpWKqKioOue7uroCnHdcEFqDB3kQEya+5mtbhyIINjMw2p9dcTkN2n03UxWNxLLhvONGCaS6KvFWD8AlfQv8FgT9PoCezzRDxEJb1+hk5LbbbqOwsJDXXnuNvLw8oqOjWbNmTe2k1oyMDKRSUdhVaHsqqWQhCwkmmAlMsHU4gmAznULc6RTi3qC2SSUPI8uom4xYgOOeSsImpuCs8IfsTbD+Rtj7LCT+BBPWg6N/M0QutFUSi8VisXUQl6LRaHBxcaG8vBy1WuyHIDSPaUxjAQtYylImM9nW4QhCk1qzI5UTp4oBkEokqJQyPN3s6RzqQbeOHkgk9Yy1NIDZYkTzsx2u+jPH8lUgsUDW2K/o7fvI6YZG2HQXpPyFWaLgH/mnDJ08E293hyt9akIr1tDPb5GMCAJQTTUuuOCLL5mI1VtC+7NmRyrVWgNjB4ViNluo1hpIy9aw72guAT5O3HBtBFLp5SUke9YF0D8tBwuwfcAU/AJmoFwzGb0UVJN2EeR01pzCnG0Y192MXF9IjXNP7K9bDk5i/mB71dDP70YP0whCe/QIj2DEyGxm2zoUQWg2MqkUR3s7AJwdFfh4OOLn5cjf6xI5nlxE905eaPVGth3I4lRGGSazGR8PR4b3DcLrdA/GrrhsTmWU0TPSmz1HctDqTHgGDqGH/C+OXvsiw0Lew2KxsDDsfcacfJHj68axQb6O4TGdCQ1wAf+hfMFKusuXMKzicyp+78Mh1xcYeutTtvzRCDYmJncIV70aaviVX/HHn5u4ydbhCEKLCvZT4+VmT1JGKQArtpyiusbAlFER3DmpK97uDixal0iNzlh7TlmFjoS0Em4YGcGNoyKoKX6RjeFx9A95D4DYE/kUpoxlTZc76VeiwUs2kaUbEynVaAGYOqkrR2U3UjhwJQ4KGFr2NPzVCSrSW/4HILQKIhkRrnqP8zhGjHzKp7YORRBswt1FhaZST3Z+BXlF1UwaHo6vpyNuahXD+gahVMhISi+tbW80mRk3OBRvdwcCfZ259poQktMNVNVYC44cOJ5P3yhf7uj/K//26MSk7GI8vB4k9oS1RpW9ytopb+ffD9m0XIiYBuVJ8GcYHHijxZ+/YHtimEa4qmnR8jM/44svt3GbrcMRBJuwYK0LUlhag8Fo4ts/4+o8bjSZKavQ1X6vdlTg7Kio/d7fyxGLBUrKtchlUqpqDPh7OwFwc78EllW5MC0plu9lTzKSJXVvLpXCiJ+h68OwdhLEvgnJv1pX3KhDm+kZC62NSEaEq9pTPIUBAx/zsa1DEQSbKSnXonZWojeYcLS345axkee1USlkl33964YVs67Sk7szl7ImaRoD/OrZq8ynP9yVD9vvg4Sf4K+O0PMF6PfuZd9XaDvEMI1w1dKj5yd+whtv7uROW4cjCDaRkauhqLSGiGA3fDwcqKoxIJVKcFOr6nzZq+xqz9FU6amsPrOWN7ewConEOtyjVMhwtLcjp6Cy9nGpVE6udCUnXBT03r2AY0XfA3DeYk6pFIb9CFP2g9IT4t6D30OhLKl5fwiCzYlkRLhqPcMz6NHzIR/aOhRBaBEms5mqGgMVVXryi6vYeySXZZuSCQt0oWu4B8F+avy9nPh3UzJp2eWUV+rIKahkR2wWeUVVtdeRy6Ss2ZFKYUk1WfkVbN6XQacO7rUrdfpG+bL/WB4JqSWUlGvZfjCL0hIVsgFLqJaDz57HQZlLWnY5VTUGdHpj3UC9+sBdudD5fqhMh4WdYe/zLfmjElqYqDMiXJX06HHGGRdcKKDA1uEIQrM7t+iZUinDq56iZ3qDiR2x2SSll1KjM+Job0eAjxNDegfi7KioXdrbo5MXe47kotUbCQt0ZfSADqiU1pF/i8XCnsO5HE0qpFprxMNFxeCYQEIDXNiV9S5dNrxColrBIdNmamoUBHg7ceu4zvUHXhQHq8dDTR44BcOEdeB6/jCS0DqJomeCcBFP8RSzmc1c5nIv99o6HEFoM/5LRu6+/vJ34V158mZG71jMlgA7Ro2tRiq9xPRFsxl2PQYnvrV+3/0pGPDJZd9faDkN/fwWwzTCVceIkW/5Fg88RCIiCDYwsfPf/NuzK2MyDSzd4XvpE6RSGPw13BQHDn5w9FPrxnslx5s9VqFliGREuOq8yIvo0PEuYpa+INjKzX2PszTChRtPFrP4YO+GneTRA6ZmQtQTUJUNf3eHXU9Ye06ENk0M0whXFSNGnHHGAQeKKbZ1OIJwVTObjWxao2JwroktQ+9kXMSvDT+55DisHgdVWeDgD+PXgEf35gtWuCximEYQ6vEqr6JFy5u8aetQBOGqJ5XK6TcqjRNu0GfXb+zPnd3wk927wZ2Z0P1pqM6FxT1hxyOil6SNEj0jwlXDjBknnFCipJTSS58gCEKLSClbj2T1GMyA3cStBKuHNu4CZQmwagxUZoC9L4xfDZ7RzRGq0EiiZ0QQzvE6r1NDDa/zuq1DEQThLGGuoykY9gFuOsjfOJxKfV7jLuAaCVPToedzUFMA//SGbQ+KXpI2RPSMCFcFM2acccYOO8oos3U4giDUY1XCrYzcvohtAXJGjq259JLf+pQlweqxUJEKKm8Yv9JaRE2wCdEzIghneZu3qaaal3nZ1qEIgnABEyIXsjw6itGZRpZt97m8i7hGwB0pEP0S6IpgSV/Yeo/oJWnlRM+I0O6ZMaNGjRQpZZQhFTm4ILRqS7a4MSWxjMW9u3NTnyOXfyFNKqwaDZpToPKEsSusG/IJLUb0jAjCae/zPlVU8SIvikREENqAyUML2RAoZ1LcUVYl3HH5F1KHwu3J0Pt10JXAsmtg83TRS9IKiZ4RoV0zY8YFFwDKKRfJiCC0EZX6PBJW+BFSAcmjP6S///+u7IIV6dZekvIkULrD2OXgO7BpghUuSPSMCALwMR9TSSX/438iERGENsRJ4YvHyI2UK8Br63OklW+6sgs6d4DbEqHP26Avh38HwcY7RS9JKyF6RoR2y4wZN9wwYUKDRiQjgtAG7cv5hLD1z5LuDBGTMlErAq/8opUZsHIs/H97dx4XVbk/cPwzC8Ow7/sigoqiKIpLbrnhkmZp2Wpp3qxbWd2yX6XXzEorK2/ZYtm+3FuZmph7Ku6KK+LKIrLJDrKvw8yc3x/oKAIqODCAz5vXvIJznnPO9zzhzJfnPEtRLKgcYMxa8KxnbhNdFeQeBbdBcGlV48vyK8so1VbV2matNMdRbXXr8bUjN/v53YRxU4LQNixlKcUUM5/5IhERhDaqv+crbLrjKCP3rWDf9o6MHNfEIb9Xs/aFh2Lg+GI4+gZsGAb+D8LIX+Hqcx/8PzjzBYzbAL4TDJvzK8uYf3Q9Wql2q4pSJmdh34kiIWkC8Q4ttFvv8A4WWPAWb5k6FEEQbsH4wN/ZGNKTsDQtf+1xMd6Je8+BR1PBPggSV8IvzpB+6XFQ5p6aRARg/4ug0xgOK9VW1UlEALSSvk5riXBzRDIitEuf8ilFFPESL4lWEUFoB+4PPUF4oCOT4wtZfbSH8U5s5QkPnoEBS6C6DDaOgr8nwc7HQaaoKVOSBGeWGe+aQh3iXVpol97mbdSoWcQiU4ciCIKR3Ds0m20+SiZGn2FT7APGPXmvV2oW3nMMhpS/avqVSLpLOyU4+iZU5Br3moKBSEaEdudLvqSAAl7kRdEqIgjtiFyuZOCoC5x0knHHwdUczFhs3AtYusOQr+rfp6uAI28Y93qCgXinFtqd+cxHjZp3edfUoQiCYGTWKnfcRu0iXw1uu+aSWLjNeCfXVsDOaVcez1xN0kHst5RmHSE8KbrBU6SVFhovntuISEaEduUbviGffJ7jOZRisJggtEu+tndSMOwTrKuhcMcYijVpxjnx0TehJPGqxzO1SUBexHTOFmQ2eIr/nTt03f1C/UQyIrQr85iHOeZ8wAemDkUQhGbUz+Mljg2aSlABHNnmh16vvfWTFpy9ZoMM5GZc/qiUIeFXFsPE3FWoFWYMcvPnQf8+jPHuhrPaGgAdEt/E7KOsWoyqaQzxp6PQbvzIj+SRx4u8KFpFBOE2MK7z//iz+Cz3HzvO2t3OTBpReGsnvGsjaEqgNKXmVZJcM418aQqawjikgljMpSomXPyLkR36YNlpsmFekkkdevFVzB5O5WdQoavmQHYio7273fI93i7EDKxCu+GGG4UUUkIJKlSmDkcQhBayZo8z98VeZHVIIFP6xzbLNcKTo9ly4SwW2jJerj5Ah5RfwLkPDP0GnEJAJiOrvJgFxzYA4G1lz/w+45sllrZErE0j3FZ+4RdyyGEmM0UiIgi3mUlDsvjb14x7TsaxIea+ZrlGQVU5ABVKK1RDlsK9B6CqENb0qelrArhb2uJkblWrvHBzRDIitAuv8zpmmPEJn5g6FEEQWphcrmRoWAbRTjIGHwrnQNpCo19DedUIm9LqKnAdAPefBEsPyNoLgE6vp+LSTK1KeT0jcoQGiWREaPN+53eyyGIGM0SriCDcpiyVzriH7SFPDZ573iShcItRz+9v62T4fl/W+ZpvzCzgjiWQuRuyIonKS6VcWw1ARxun+k4jNEAkI0Kb9wqvYIYZn/KpqUMRBMGEfG2GUDTsMyy1UBJxF4WVyUY7d1+XDqgVZgAczEliy4UzVOt14P8AktyMqohH+f38UUP5YR6djXbt24FIRoQ2bTWrySSTaUxDjdrU4QiCYGJ9PV7g+MDpdC2E4xGd0OorjXJetcKMiR2CDT+HJ5/g9UNr+fTsPuKte6EqS8ahJB6AIHt3utq7G+W6twuRjAht2ku8hBIln/GZqUMxmvzKMlJL8w2v/MoyU4ckCG3K2M4/salPX0ak69i4281o5x3lGch4n+6Gn8u0VZwtyOQHl8cBeCT7J7rYufJ0t6HIZTKjXfd2ICZjENqscMJJJ53pTMcSS1OHYxT5lWXMP7q+1vLkSpmchX0n4qi2MmFkgtC23N/7CH+WunJ/TC6rrQKZ0j/uls8pk8m4168XPRw92ZkRz/G8C2glPYUqZ7ItAwgoT+ClgB4olGZGuIPbi0hGhDbrX/wLBQq+4AtTh2I0pdqqWokIgFbSU6qtwhGRjAhCY0wenMGWMkvuORnPept7mdjtL6OcN8DWhQBbF3SSnkptNSqFErNOvrB+KIoDL8LolUa5zu1EPKYR2qR1rOMCF3iYh7HG2tThCILQCsnlSu4My+C4s4yhh9axP+1to55fIZNjZWaOmVwBHkPAygeSw0GrMep1bgciGRHapBd5EQUKlrPc1KEIgtCKWSqd8QzbT44afHa/xbmCDc13sb5vg6SFY/Ob7xrtlEhGhDZnM5tJIYUHeKDdtYrkVpaaOgRBaHd8rAdSOuIr1Dooj5ho1CG/tQTOADNbOCv+SGossTaN0OYEEEAyyRRQgC3t4/ehXKvhp/iDnLhY/1LoIU7ezOw6uKY5WBCEJtmWMJPBu7/nkJuCoeNLUcqvTAewPuUkG1JP1yrvZmHLO33vbvB8x3JT+SvlJBcrS3G1sOG+jiEEJ3wB0Yth2PdIXWawPuUUe7MSqNBVE2DrzKOd+uFm0T7et26GWJtGaJe2sY1EErmP+9pNIlKpq+aTUzsaTEQAoi+m8XXMXnTXdG4VBOHmje70HVv69GdYho6Nu1zq7Pe0tOPDAZMNr9d6hTV4rvPFuXwXu5/B7v680ecuQpy8+ersXtIDXwa5GRxdwN9pMezIiGNq5/7MCRmDuVzJZ6d31kyWJtQikhGh1bh2fo365th4jueQI+dbvjVRlMa3KfUMqaX5AFgpVUzw7cFzQXfyTLehDHUPQCmr+Wd6Kj+D/VmJpgxVENq8+3ofIrybK/cmlLL6UO1ZUuUyGXYqC8PL2qzhiRQj0uPo7ujBWO8gPCztuNevF77WDuzKSQa/yUhlaUQl7mS8bw9CnLzxtnJgRuBACqsqiM670Mx32faIob1Cq1Df/BpQe46NHewggQQmMxl77E0TaBM8yZNISNzFXYQRhgMOhn0anZZ9WQlATc/8V3qG4WVlb9jf29mH3s4+fHZ6FwC7MuIZ6h6ATEyoJAhNNnlwOpvLrbj3ZALrbSYwMWgjADkVJbx2KBwzuRx/G2cm+4U0OL9PYkkeYV5da20LcvCoaeEc9DlS4mr6524gMPRRw34LpYqONs4kluTRz9Wv2e6vLRItI0KrcO38GoUWGewN+IEsy0RKtVUAPMuzyJHzHd+ZKswm2cxmfuRHHuRBnHCiP/15h3c4zGHiirMouzQMsI+zjyEROcMZUkgBoLuDp2HRrfTyQtHJVRBukVyuZMSobI66yhh6aBN7L8yno40zT3QZyIs9hvNop37kVZbx0cltVF5a+O5axZpKbK9pObE1U1OkqQRLV4pchzCkcBe2VTm1y6gulRFqEcmI0Cql258mxjOCNX3m8Q/1o3zP98QTz93cjSOOpg6vUfrRD/mlf2oSEkc4wju8wwAGMMguiM1BH7Gjy5fs91jJwzxMF7rQ49JXOOFISPhdtQJoaXWVqW5FENoNtdIe31GHyLaEDnsWoZQOEurii7eVA90dPHmhx3DKtdUczUtt0vmL+ixEIWlRHXrFyJG3TyIZEVopGVwa57VLsZ2ZzARgFrNMGFPT9KEPMmo/VtFR04GtVF7CBadoEtz28z+br0gjjbGMZRGLCCGE+7gPL7z4W3llbgS1QjxdFQRj8LLuR8WIrzHXgWbn/eRXJhj2WSpVuFnYkFtRUu+xtio1xdW1WziKqyuxU9W0lli59OGI7SDM0reCtvxKGc2VMsIVIhkRWqWrP7x1Mp1h29hLXwc5aKrQbooGDZvYxAu8wP/4nyH5qEMCJBlB6aN55uDPbNJs43M+Zx7z2Mte/st/yZPy+Mn3bVb2eRW93UXcLdvHKCJBaA1CXJ/m1JBnCCiGU9sDDav8Vuqqya0sxU5lUe9x/jbOxBZm1doWU5CFv40zAM5qKyJdJ6KUquHgqwBUaKtJKskzlBGuEMmI0DrVM/uNdGnjdrYzkIH8zd8tHFT9iinmV37lCZ4gmGBssMEccyYwgS/4gkTqHwGjQIGnzJM3L3zHkMQn0OgkPj61g5iCLCRJQifpCcq7k1lHf6bDxVAKLTP4LvhF7pPdRymi34ggGEuY/1f8GDSaoRl61u9043xxLsvP7kWOjH4uHQD4Me4A4UnRhmNGeQVypiCTbWkxZJUXsT7lJCml+Qz37ALULKrXvdN4Yq26Ux7/G+kl+fwYH4m9uQUhzj6muM1WTbT3Cq1Uw6NF9OgZwQgGMKAF46mRQQZrWcsOdnCSk1zgApVcaapVocIDD4Zd+prMZAIIwBFHCimsda5RjOI3fkPhZsH7mX9TqKkgs7yIpad3oFYo0UmSYT6CsTGzMXcoYXv3z/iLv3DEkX/zb97kTUN/FEEQms7c7k2Wdcnlhfho/mN2L7YuHzInZAw2lx6p5FeV12qxDbB1YWbgYP5KOcHa5BO4WtjwbNDQWqPhxnp346Dv/XSNeYdvDnyM5DmCF7uPEJMX1kPMwCq0Cqml+bx7fIvh5xj3Hezt/H2tMnLkSEgsYAFv8AYKmvcfdAwxrGUte9jDGc6QRRbVXOlZb4kl3njTm96MZCSTmIQrrvWeK4wwIogw3MNCFjKXuYZEIruimGVn9pBdUVzv8f42zjwbdCe2KjV/8idP8RQFFOCEEz/xE3fT8CyRQvuQW1HC2YIsSqorMZMr8LKyx9PSrsGhp0Lj6fVa/t5mzejUKjYOGsu93bfc+KAbnxR+tAQzO5iWfevna2Nu9vNbtIwIrZJMqt0yokSJLbasZCWjGGXUa+nRE0kkG9jAAQ4QRxx55NXq52GLLUEE0Ze+jGEME5iAFTf/IRBKKBFEYIcdq1hV5x7cLGxZ0Gc80RfT2Jd9npyKEuSAl5UDQz0C6GbvgfzS3CL3cz+Tmcw85rGEJUxkIj3pyRrWEECAUepEaD20eh1rk0+wLT22zj4Z8K8eI+nm4N7ygbVDNUN+sziy0ZHhh/9mr82/Ger73q2eFDpNhbgfIHUT+I43TrDtTJNaRpYtW8ZHH31EVlYWvXr14vPPP6d///71lv3222/55ZdfOH26Zs7/0NBQ3nvvvQbL10e0jLRvOknP5tQzrE89ZdgW67aLPV1qZlmVSTIGyQaxkpV44nlL19KgYStb2cxmDnOY85ynkEJDfxQZMhxxpDOduYM7GM94RjAC5S3m7Sc5ycd8zLu8ixdet3SuqxVTzMM8zGY2I0PGFKbwC7+gRvTWbw+q9Tq+PLuHswWZDZYxlyt4sccIOtnV3yonNF5mWRRFG0Kx0kLZuFV0dZpyayfUFMNPDmDfBR6MMU6QbUSzrU3zxx9/MHv2bBYsWEBUVBS9evVi7Nix5OTk1Ft+165dPPLII+zcuZPIyEh8fHwYM2YM6enpjb200A5Vaqv59NTOWokIQJnqouH7u/IfY4e0s9GJyOWOpdOZXqtj6UQm8iVfcpzjqFEzghHMZz5HOIIWLXnkEUkkn/AJoxl9y4kIQE968hM/GTURgZoWm01s4gQn6ExnVrEKe+xZzGKjXkcwjTVJx2slIl3sXBnt1Y2Brh2xUqoAqLqUsJRWi4m0jMXDqg+akT+i1EP1jgfIq4y7tROqbMFzJBTGQsHtlYzcrEa3jAwYMIB+/frxxRdfAKDX6/Hx8eGFF15gzpw5Nzxep9Ph4ODAF198wbRp027qmqJlpH2SJIllZ3dzKj/DsM3Z3AoHtRWf+czmgv0phsU9TWDuMCb49uCeDj0bPFcGGYQTzk52coITpJFWb8fSYIIZznAmMaldPtL4lV95jucophg33Pgv/2U0o00dltAEpdVVzDm8lmq9DqVMzr+CR9LlqtaPKp2WZWd2E1dU0w9hsl8I43yCTBVuuxSR+BwDdn1FlIucQRPKaq3y22iF52BlF/AYDhN3Gi3G1q5Z+oxoNBqOHTvG3LlzDdvkcjlhYWFERkbe1DnKy8uprq7G0bHhWTSrqqqoqroyy2Rxcf2d+oS2LaE415CIWCrNeKrrELrZu5Mjy+FNKYHppbNQ5w5GQuLvC2cZ6RmItZk5ZznLWtayl70NdiztQAd605tRjGISk3DGdOP6jbY0ueOVVhVJkupdmnyqxVQe4RFe4RU+53PGMIZQQlnDGnzxbbZ7FIzvSG6KYTTVnR6dDYmIhIQMGeYKJY917s/8o+sBOJB9XiQjRjbK/0vCS05xz+F9bNzhzD1htzCk3r4zOPSAzN1QWQBqhxsfcxtp1GOavLw8dDodbm5utba7ubmRlZXVwFG1vf7663h6ehIW1vDSzO+//z52dnaGl4+PGJPdHu3JPGf4/gH/UIIcPJDJZCxhCUqZkv/YvI27XzmH/H5nTfDb+Mi9UKCgO92Zxzy2sIUiiggiiCd5klWsouzSVyyx/M7vzGSmSRORy4yyNHlZoaHM9ZYmlyPnEz4hhxxGMYpjHMMPPx7jMTRoWuBuBWO4eubPECdvAEoowQEHZjCDCipwtbDB+9JQ0pyKUtrA4Mg2Z3KvvYQHeXJPYhmrI/1u7WQDPwEkiPyXMUJrV1p0goLFixezYsUKwsPDUasbbu6aO3cuRUVFhteFC2K55fYouaSmX4iZXGGYWOgAB1jKUpxwwhdf3vaZyQmfDWTZxlEtaelPf17iJbaxjWqqKaKIaKL5ju+YwhQssTTlLTXIKEuTZ8QDNa0iEemxN1ya3BFHtrOdIxyhIx35lV+xw46lLG3u2xWMQH7Vysxa6crILgmJX/gFP/x4kicpoyZpEQs5N58pg9PZ6Kdm0ukU/jp9C489vcPAwh3O/wF6rfECbAcalYw4OzujUCjIzq49Vjo7Oxt39+sPLVuyZAmLFy9m69at9OzZ8LN/AHNzc2xtbWu9hPbn8iq95nKlYRKgSCKRkOhOd17gBV6vnsfkqEXM3PcLH8WvM3QsDSPMKB1LW8rlpcnnHfmL72P3k19Z1mDZxJI8utrX/vcU5OBBYkkeAHmVZRRXV9LtqjJXL01+rb705Tzn+Y7vUKLkZV7GG2/2sMdIdyc0h6snzzqUkwyADTY8wiP44ksQQfwg/cCHIY+yp9N3uFtZIRMZSbMZPTKXQ64yRhzZzq6UV5t+ot5vgF4Dx981XnDtQKOSEZVKRWhoKBEREYZter2eiIgIBg4c2OBxH374IQsXLmTLli307du36dEK7Yqjec08HaXaKkMrySu8QgUVbGADi1nM+LzpuJR1RI7cUL6tMerS5EBxdUXNtmsW27rR0uRP8iQFFPAMz5BJJsMYxiAGkUFGg8cIphPq7Iul0gyoSUb2ZSUgSRKjGEUyyXxauZyHzs/DotqWWI+dvBsyhVd5FT16E0fePqmU1nQaHU26FXTeu4SzeSuadqKgZ0FpBac+NW6AbVyjH9PMnj2bb7/9lp9//pmYmBieffZZysrKmDFjBgDTpk2r1cH1gw8+YP78+fzwww/4+fmRlZVFVlYWpaVibY3b3UC3jobvVyVGodHVNFuaUfMGXFBVzqbUM/WWb0t6OHoadWnyW6FEyVd8RSaZDGUokUTigw8zmYkW0WzcmqgUSsZ6dzf8/N9zh3nr2EYunrcDYOrFf2GXGcRjh5cxMfFFbLBlCUuwwYZ3eVckJc3AzbIn2pE/IwP0Ox8hp/zMDY+pQy6Hrk+CpgAS/jB6jG1Vo5ORhx56iCVLlvDmm28SEhJCdHQ0W7ZsMXRqTU1NJTPzyrj4r776Co1Gw5QpU/Dw8DC8lixZYry7ENqkfi5+hhaAhOJc3jq2kS0XzhKVd4E/k47zTtQmCjQ1S293sXPF17rhEVhtya0uTW5rVrOKaPE1rSCNWZrcFVf2sId97MMLL77ne+yw4yu+auztCM1orHc3hnt0NvycVVHMscwskOC051YKLTJwMrfiO49FXJTl8QmfoEDBG7yBAw4sY5kJo2+fgp2nETf4RfxKIG57TzTaJvxh3f8DkCngyNwbl71NNKkD6/PPP09KSgpVVVUcOnSIAQOuLFi2a9cufvrpJ8PPycnJSJJU5/XWW2/dauxCG2euUPJc0J2YK2r6flysKiM8OZqvY/ayNS2Gcm3NyA9ntRVPBg4yZahGZYylyW3N1LXKNHVp8sEMJpVUw4fWczxHBzoQyc0N1Real0wm4+GAvvyz21A629YM7c23TLu0jqRERMgSZvYOwdXCBoCXeIlCCnmLt6immud5Hldc+ZVfTXcT7dCIjp+yve+dDMrW8/euJsx8q1SD791QkgQ5R4wfYBsklvsUTKqjrTOv9xpDV3u3OvsUMjn9XTrweq8x2Ju3zlEyN2N1YhTxhdnkVZYabWnyUV5d2XThNCcuppFeVnjLS5M/x3MUUcQMZpBGGoMYxHCGk0fdDrFCy5LJZPRx9uH/eoWxuP8kQoPMQQJkUKDM5X6zSZRxpUO0HDkLWEAxxbzMyxRRxGM8hg8+bGSj6W6knZnUczfh3b2YmFjB6sgmzOEzuGbiUPa/YNzA2iixaq/QamSVFxNTmEWVrhprM3N6Onph20DrQVvybcw+zhXnUlZdhbWZOZ1sXZjk1wuXS3/N/ufkdpzMrXgi8Eon8JpJz05wsbLshpOelWs1dLJz4dGAfrhZ3vq/j3TSmcIUDnIQBQr+yT/5nM8NKwwLpvUP/sF/+a+hj48CBWMZy1/8Ve8Is0oqmcUsfuZndOjoRCd+5EeGMKSlQ2+XNmyz4K7kStbfMYJJwTsad/CafpB3FB7LBMv2udjhzX5+i2REEIR67WQnj/EYGWRgjTVf8AXTmW7qsG57XelKHLXXSpEh45/8ky/5Ehn1D+8tppgneZI1rEGPnmCC+YVfCCGkBaJuvzTaUg5vsqVXnsTRkf9ihN/Smz84+yD8NRA63gej/2y2GE2p2RbKEwTh9jCCEaSTzn/4D1q0PMETBBBAFFGmDu22VUIJ8cTX2S4hsZzlfMRHDR5riy2rWEUmmYxjHKc5TW96cwd3kEBCc4bdrqmU1nQOiybVGgL3fcrpvN9u/mC3O8C6AySvA+3tPTuyaBkRBOGGNGiYwQx+53ckJEYzmpWsxB57U4fWpsUX5bA17SyppQUUaSp4ttvQ6/b72c1uhjP8uudcy1psM7qxLS2GIk0F3tYOPBwQSsdrOjenkMJjPMY+9gEwkpH8l/82enVsocbpvN9w3DKVQhU43X0CN8vrT+5pEP8/2PU4BM+Ggf9p3iBNQLSMCK1CpbaaP84fY+7htTy//w8+iN5qmOCsIXGF2SyK2sysfSt448g6DmQn1imzMyOefx/+i1n7VvB+9N8k1TPzqGA8KlT8yq8kkUQooWxjGy648AqviPksboFGp8XbyoFHAm5uMsid1XuRSdc8hpFALtW8lVtjTXRxIqsTo5jg24N5ve/C28qez07vrDMUvAMd2MteTnOaPvRhBzvwxpt7uZd88o1yf7eTHs6PEj9kNj6lcG57yM0P+e3yGKjsIOab5g2wlRPJiNCsfjl3iJjCLGYEDuLNPuMJcnDnk1M7KKgqr7d8XmUpX5zZRaC9G2/0uYtRXoH8N/4QZwquzBJ6JDflpt5sBePrQAeOcpTNbMYRRz7mYxxx5A/E5E1N0cPRk0l+veh9k6Ogtmh2ISHV6qhqplNzV/Y/OMQhCihAlRjEEPcABrsH4Gllx9RO/VHJlRzIPl/vObvTnWMc4xCHCCSQdazDBRemMpVy6v93KtRvuN9/iOg3goHZElt3NmLIb/cXQFsKZ79uvuBaOZGMCM1Go9NyPO8C93cMoYudK64WNkzs0BNXC2t2X7Vi79V2Z57DWW3NA/598LC0Y4RnIH2cfdiefqXD3vb02Ea92QrGN45xZJPNIhZRQQUP8zBd6cppTps6tHZNWW5Dx6quvMqrbGc74xiHVqGhQ9Jw+tMf9DJSS/JrrVskl8noau9OYvH1Ww/7058YYtjGNnzw4Td+ww47nuVZsdpzI0wK3kF4D1/uTqpg9X7vmzsodAHIVRD1TvMG14qJZERoNnpJQo+EUqaotd1MruR8cW69xyQWN7BI3KU3Uq1e1+Q3W8H45jGPAgq4n/uJJ55ggrmbuylFLPfQHEak/INluat5j/cYxSimMQ1JpifVKgaNTktpdRV6JGzqW7eo+uZaDsMII5lkVrMaZ5xZznJssWUuc8UjuZs0ZWAK6/0tmHw2nbUnh934ALkSOk6B8gxIb+Tw4HZCJCNCs1ErzfC3cWbThdMUVpWjl/QczEkisTiPIk1FvccUV1fWuwBcpa7aaG+2gnFZYslqVhNHHMEEs5GNOOLIPOaJD69m9gAPoNArSbdvwhopN3A/95NJJt/xHVZYsZjF2GLLYhYb7f9rfmUZqaX5tV7XW9G6LRk7PIcDbnLCju5hZ9K/bnzA4M8AGUS+3OyxtUYiGRGa1T8CByJJ8Prhtcza9wc70+Po59KhwbkQhLarM505ycma0RzY8h7v4YIL4YSbOrR2w9ZMXatvlBIlnpqOpNufQqVQYm1mjhwZJfWtW2R2c+sWXetJnuQiF1nCEmTImMtcnHDia26tf0N+ZRnzj67n3eNbar3mH13fLhISldKawLCTpNhA132fcTL35+sfoHYC9yGQfxKKk1omyFZEJCNCs3KxsOH/eoXx2aAHWTxgEnN7j0Mn6XFWW9db/to3W6h5I1UrzJrtzVYwrnu5lxxymM98SijhPu4jmOA6E3UJjedvW3fdom6FA8m1SSSNNJRyBb42jsQUZhv26yWJ2MIs/G0bt27RtV7hFYooYj7zqaSSZ3gGN9yu23k5l1zmM7/ex3al2iq0Ut0WFq2kp1RbdUuxthault2RjfgdvQzMdj5BdvnJ6x8w+Mua/+57tvmDa2VEMiK0CHOFEjuVBWXVGs4WZNLLqf6OXfW92cZc9UbanG+2gvHIkfMO75BPPhOZyGlO041u3Md9YoTGVSp11VwoLeBCaQEAeVVlXCgtMLQMhCdF82PcAUP5YR6dyass5c+k42SVF7ErIx7HC72QZBLfUDM0NMyrK/uyEojMTiSzvIjfEo6g0WsZ5OZ/y/Fe/v9aQgkv8iIFFPAwD+OLL5vZXKf8fOaziEW8yIu3fO22Ksj5Yc4N/T+8yiBh2w2G/Dr1ALsukL4NNLdXvyuRjAjN6kxBBqfzM8irLOVsQSYfn9qOu6Utgy+9Md7Mm+2x3FTCvAINZZrzzVYwLmusWcc6TnOaQAIJJxwHHFjIQlOH1iqklOSz6PhmFh2v+SBflRjFouObWZdS8xd0kaaC/KuGwTurrXm++3BiCrJYGLWZbemxzPK9BwUKNrABgH4uHZji35t1KSdZFLWZC2UFvNh9hFHXeVKi5FM+pZhipjOdDDIYz3i60IX97AfgPOf5ju8A+JEfWclKo12/rRne4SN29gtjQI7Eth0u1y98x0cg6eHg7JYJrpUQM7AKzepobgrhyScorCrHUqmij7MPk/x6YaFUAfBTXCQXq8p4pWeY4Zi4wmxWJUaRWV6EvbklE3x71Ek0dmbEsTUthmJNZc0Mk/6hdBQtI63eSlbyT/5JIYW44MLP/Mxd3GXqsNq8znQmjTQqqL9jeHMrpJB/8A/WshYJiV70wgsvtrIVLVpkyLDCilOcwg8/AFJL83n3+JZ6zzev9zh8rR1b8A5axupIP6acSmF1d0+mDE5vuOAvrlBdAjPKQN622wzEQnmCILRKevTMYQ6f8AlatPSmN3/yJx3paOrQ2qxneZblLOc0p+lOd5PFkUUW05jGNrbV2adAQV/6so99KFGSUnKR96L/rvc87TUZAVi/3YoJieX8NWAwk3vtq7/QiY/g0Gsw4APo9VrLBmhkYjp4QRBaJTlyPuRDcsllLGM5znECCOARHqESMTy7KZ7iKYBbHuFyq9xxZytbCSOszj4dOg5zmLd5m5yKEn6Mi2zwPIdykmkDfyc3yV0jL7LPQ86YY/uJSHyu/kLBr4BCDSeWtGxwJiSSEUEQTMIee7awxZCMrGAF9thfd+VZoX596IMKFVvZaupQOMIRtrO93n0SEu9K7/Ji4lIyK4obPMf29Fg2pLbP2XyVcjVBo8+SaAPd93/FiZzv6xaSy6Hz41CZCynrWj5IExDJiCAIJhVCCOc4x8/8jAoVr/EaHngQQYSpQ2tTAgnkPKZfEmEOc647j5CExOquCylT5eFkbslE32Ce7z6MJ7rcQU9HL0O5DamnSC1tnwv2OasDMRu5Cq0MzHfOJLMsqm6hOz4GmRwOvtryAZqASEYEQWgVpjGNQgp5gRfIJZcwwhjAANJIM3VobcIEJqBFyx72mCyGKqrYxz4krvOIRQY6RTV/9H2Nzn2KGd+hO8GOXgx082dW92FM9A02FN2VUf8aVu1BV6cpJA59HY9ySN7el0ptYe0CKmvwGg1F8XCxfbYSXU0kI4IgtBpy5HzGZ2SRxQhGcJjDdKADT/CEWKztBp7hGQC+p55m/xZijjkZZBBPPGc5ywlOcJSjHOQge9nL+9k/MP7UHPok30ewpg//UE6nN735gR/QoQMgzLsr5oqaVYmPX0w12b20hDs7LGZX/7H0y5HYGeGOXq+tXWDIVzX/3d9A35J2RIymEQSh1TrCER7kQZJJxgILPuRDnud5U4fValljjRNOpJBi6lDqtfL8MSIyambifbXnaHLtEpjLXHazG3PM6U9/FCiozrHHIas77kVdWT7kURSy9v1386qD/jxwMok/g9y5f0hm7Z2re0H+KZiWWzNlfBsjRtMIgtDm9aMfSSTxDd8gR84LvIAPPuyjgSGRt7lggrnAhVa7QKFaaWb4PqeyhIEMZDvb+YAP+D/+D1ts2SftY7/rWjb0fJfvhjyOG64MYQhzmctRjpow+ubzwB2JrAuwYvLZLMKjB9XeOehTQIL97XsWW5GMCILQ6j3FUxRSyFM8RQYZDL30lUXWjQ++jUxmMhJSq12cMMje3fD9jvQ4dJIeJUpe4zUWsYgNbGBvbjz3H1tMn+TJdC4LQSFTcIADLGYx/eiHAgXuuDOKUbzDO8QQY8I7Mp7xI/LY6ylnTFQk284/fWWH53Cw9IKkVXD1YxxtOVS3nynjRTIiCEKboETJN3xDOukMZjD72IcXXjzDM2jR3vgEt4GZzATgf/zPxJHUL8DWBS9LewAulBXw1dk9ZJQVAlCl07IrI55fzx3GqdyHvhemEF69kWyy0aLlIAd5jdcYwACqqWYnO1nAAoIIQokSb7y5i7v4D/8hlbbX10QpVxMcFsd5W+i5/1uic765srPPfNBXw7G3oTQNDr0Ov7jB3/eYLmAjE31GBEFok/axj0d4hDTSsMKKpSw1fBjfzhxwQIWKbLJvXNgEEopy+OTUjlor9tqYqanQampt6+Psw9NdhyCT1T9MWI+eXexiLWs5wAESSKCIIsN+M8zwwosQQhjDGO7nflxxbb4bM5LYi2uw3HI/FUqwnnAYL+t+NTu+t7zUMnKpjiQdVU6hZI+9MreMtdIcR7VVywd9HWI6eEEQbguf8zmv8zoVVOCHHytZST/6mToskxnDGLaxjQoqUKM2dTj1OlOQwbcx+6nQVde7v79LB6Z1uQMzuaJR59WgYQtbWM96DnGIRBIpo8ywX40aH3wIJZRxjGMyk7Gl9X2m7E2dR3DEe8Q5yAjp+Svmp5dDVt0h22etevCp71zDz0qZnIV9J7aqhEQkI4Ig3DY0aHiap/mFX5CQGMEIVrISZ26/xRO/53tmMpOv+ZqnefrGB5hIuVbDwewkDucmU1hVgZlCQSdbF4Z5dMbPxnijRsop5y/+YjObOcIRUkiptaCgJZb44Ud/+jOBCdzN3a0iidt0cix3HdyKDJCQI7umU7IERFv3ZbnPy7W2t7Z1fUQyIgjCbSeNNO7jPo5wBAUKnuM5lrIU+W3UPa6SSiywYBSjGpyW/XaXTz5rWMPf/E0UUaSTThVVhv022BBAAHdwB/dwD6MZjRJlywapryb/V2scK+qfX0eHnCO2A/nRq/YcJG01Gbl9/oUKgtDueePNYQ6zne244MLnfI499q22Q2dzUKPGHXeOcczUobRajjgyk5msYhXnOU8llaSTzmd8xt3cjQMOnOY0y1nOeMZjhhkOONCf/sxmNvvY1/zDp+VmOD5SRKp1/UmQhAyN3Lx5Y2hBIhkRBKHdGcUoMsnkQz5Eg4bHeZwudOEkJ00dWosYxCAKKSSPPFOH0mZ44skLvMB61pNCCtVUk0AC7/M+YxiDBRZEEcUnfMJQhqJEiQsuDGUo85hHFPWsL9ME29h2ZV0mpRrPh4pJsJUhQZ1J9ttTMiIe0wiC0K5VUskMZvAHfyAhMZaxhhWC26u/+ItJTOJ93mcOc1r02gVV5axJiuZMQQYavQ4XtTXTu9xx3X4gcYXZrEqMIrO8CAdzS8b79mCQm3+tMjsz4tmWFkORpgJvawceDgilo03L9wk6yUlWs5o97OEsZ8kjz7AWjxw5rrjSne4MZzgP8ACBBDbq/L74coELvMEbvMVbKFCQX5lAQXhnOpaADBkyJPTI2Ox0L+tcH6h1fFt9TCOSEUEQbgtJJHE/93Oc4yhR8jIvs5jF7bI/iR49ZpjRj34c5GCLXbesWsO7xzfTxd6NYR6dsDFTk1NRgovaGhcLm3qPyass5e1jG7nTozND3AOILcxi5fkonu8xjO4OngAcyU3hp7hIHu3Uj442zkRkxBKVl8rboROxVZm2s6kePYc4xBrWsI99xBNPPldWG1aixB13etKTUYziQR7EG+96z3WRi7U6XY9mNCtYgSOOnCvYgNXGiThXgNmlT+2/nKew2WVyrXP8s9tQ+jj7GP9Gm0j0GREEQbhKRzoSRRQb2YgDDnzERzjhxEpWNnhMAQXsZW8LRmkccuT44MMpTrXodf9OO4uDuSVPdLmDjjbOOKutCXLwaDARAdideQ5ntTUP+PfBw9KOEZ6B9HH2YXt6nKHM9vRYhrgHMNg9AE8rO6Z26o9KruRA9vmWuK3rkiNnIAP5iI+IJJKLXESLlq1s5Xmepyc9KaaYTWziFV7BBx/MMccff+7jPr7ma8PjtGv7+exgByGEEE00nR3uJnrga1QooVQJMqBzeWydeH6OP0j6pYnk2hKRjAiCcFsZz3hyyOFt3qacch7iIbrRrd5pxZ/gCYYxrE2uhTOCEZRTThJJLXbNkxfT6GDtyNcxe/m/g3+yKGozezMTrntMYnEeXa+aJh4gyMGDxOKaD2itXkdqST7driojl8noau9uKNPaKFAwmtF8zucc4xhFFFFFFWtZy5M8SSCB5JBDOOE8wzO44IIFFjzKo8i4MsmbDh0ZZDCAAfws/cz+/MF80ak3ah1csAQPqZRH/EMZ6RmInVlNC1GlrprlZ/egl1rn+kQNEcmIIAi3pTd5kwIKmMxk4ogjiCDu5V5KqVnvI4II1rEOgGlMo5zyOufIrywjtTTf8MqvLKtTxlQuz0a7nOUtds3cylJ2Z57D1cKGF3uM4E6PzvyReIzI7MQGjymurqzzqMVWpaZSV41Gp6W0ugo9Ejb1lCmqrmyW+2gOKlTcy718x3ec5CSllFJCCf/jf0xlKh3oQAEFhv4nl+nQoUHDE7InWOP1KUmyl/gh0BOfcki1SGa4IpeHAkJ5p+9EfKwcAMipLOVUfoYpbrPJWnjgtCAIQuthiSVrWEMccUxhCutYhyOOvMZr/MmfKFCgQ0cKKbzBG3zMx4Zj8yvLmH90fa0pzFvTDJiDGYwSJZvZzAd80CLXlIAO1o5M9gsBwNfakYzyQnZnnmPgNR1SBbDGmqmXvgDccCOHnAbLx3ruIN5tD5rqGZibr2PqiWwuRj6B0+QE1Eoz7vXryRdndgNwMCeJXk71901pjUTLiCAIt71AAjnFKdawBmuseZd3iSUWHTqgppPiUpZygAOGY0q1VbUSEQCtpKdUW0Vr0YlOxBF344JGYqdS42FpV2ubh4UdBVV1W5UuszVTU6yp3cJRrKlErTBDpVBibWaOHBkl9ZS5/GiiPcgks95E5OrJ1pRaNRbVduw3j2BG/2yiXMAx9zy7k2cDEGTvYShbWFVR51ytmUhGBEEQLpnMZM5xDnPqzt8gR840plFBBRVaDQcaePSQ14oe1YxjHBo0HOVoi1wvwNaF7IriWtuyK4pxNG+4pcjf1pnYwqxa22IKs/C3rRlVopQr8LVxJKbwysJ/ekki9qoy7cHl/0dy5IZ+I+648ziP8xu/Mf/MH/wj8numHvmM49WnyZPlUXDX75xwt6Or08MAlFz12Eopb1sf720rWkEQhGa2kIVo0dbZrkNHEkn8X/UcFkZtZmdGfL3Hfxuzj8M5yc0c5c25vDbNF9qvWqRvS5hXVxJL8tiUeoacihIO5ySzNyuB4Z6dDWXCk6L5Me5KC9Mwj87kVZbyZ9JxssqL2JURz7HcVMK8Amudd19WApHZiWSWF/FbwhE0em2duUjaMgUKnHHmbu7mcz4njjgyyOAHfuARHqGX5ZU63JuVgBNOjFM/TMg9hbjZ9AdgT9aVzsJtLVET84wIgiBcEkssPehheDxTLwkmnXgb15JOAHha2mEuV3KhrMDw2EaOjH8Fj6gzSsQULCQLVJV2PHz0Sn+X5uzbcvJiOuHJ0eRUlOCstibMqytDPToZ9v8UF8nFqjJe6Rlm2Hb1pGf25pZMqHfSszi2psVQrKmsmfTMP5SObewD91bkVpTwxtH1AChkcqZ26scdbh1RyOToJD2R2Un8lnAEnaRHBizqdw/OamvTBo2Y9EwQBKHRFrGI+cyvtU2BAjly9OjRSTqQgUwvZ9bZr/i3/0OGPhLlWg2rEqMMj2862jgxJ2Rsi9/DtYJ1IZyRn+LJfT/XmuCttc3UKdzY7wlH2ZV5pUXOTmWBh6UtGWVFFF/1iGakZyAPBYSaIsQ6bvbzW4ymEQRBuOQ1XmMUoyi69FVMseH7QqmQnXmnSbU+S6l5Hsu7z0Ili2M+87HHHkulisc7DyC55CIZ5UUklVzkQmkBPtYOzRKrFi0SEmaYXbdcmHYcp81PkG5/Gp/Cns0Si9AyHgzoQ5WumsicmrljijQVFGlqd1Qd5ObPFP/epgjvlohkRBAE4RIVKgYysN59BZpy5sSuZTDgb2+PNvg47/M+3/M9IxnJAzyAh8wDF69K0s5pkaMksSSv2ZKR+cxnOctZxjIe4ZFak2VdVqGtplvGCPD7gHi3PbWSkZyKEtEy0sYoZHKmd7mD/q5+7MyI53RBBnpJQi6TEezoxXCPznSzd0cmq/u70NqJZEQQBOEmaPVXhvHaK234J/OYwQwmMIF1rCOc8Jqd7oAbyCQ5v2KFGy544UVHOtKVroQQQj/61VqDpCmiiKKQQqYyld/5na/5Gk88DftzK0pYenoneZWlmPmoybSrPXX4d7H7qdJpGewecEtxCC1LJpMR5OBBkIMHeklPlU6HuUKBXNa2x6OIZEQQBOEm2KnUhs6C8YU5VOt1eMo9Oc5xqqiikkpOcIIPc38kRoqlRJ2LwqqSHHJIJrnOGjcyZFhggR12uOOOL750pjPBBBNKKN3odt1F/K6e5n0zm+lKVz7jM6YznUqtlk8vJSIATqV+ZNnF0sHGjsyyUjR6HRLw33OHsFWpCXb0apY6E5qXXCbHQtm2k5DLRDIiCIJwE1QKJX2cfTiSm0Kptor1KaeY7NcLmUyG+aUv98JAvGPH4MVorJXmLB4wCTMUAJRRxjGOcZzjnOUs5zlPOunkkssZznCc43WuaYYZNtjgjDNeeOGPP0EEEUIIaaQZyunQUUIJM5jBr/zK9Nw55F5KRDws7XhJ/RRzZK8wIETNYO0Y1iRHszvzHBKwNvkEPRw822TTvtB+iNE0giAINympOI8PTmw1rB7S2daVgW4dsVCacTI/g0M5SegvvaVO8O3BPR1uvsOoHj3nOMdRjnKKU8QTTyqpZJFFIYVUUIGeGy9+JpNkyCUFvVMmE5I2kXdC78HJ0gJ77Hmbt3mVV5EkicXRf5NcWrPU/Wu9RhNg69Lo+hCMq6CqnDVJ0ZwpyECj1+GitmZ6lzvws3Fq8Jirh0U7mFsyvt5h0fFsS4uhSFNRMyw6IJSONi0zLFoM7RUEQWgGEemxrEyMum6ZHg4ePBc0DIWRZ8HMJ59jHGMjG/mUT29YXqaX003elQ504BSnsMKKWGr6juzOPMdvCUcAeMC/D2FeXY0aq9A4ZdUa3j2+mS72bgzz6ISNmZqcihJc1Na4WNjUe0xeZSlvH9vInR6dGeIeQGxhFivPR/F8j2F0d6jpP3QkN4Wf4iJ5tFM/Oto4E5ERS1ReKm+HTqyzQGFzEEN7BUEQmsEor67YqSz4K+UkORUltfZZKMwY5tGZezr0NHoiAuCII6MZTQUV9SYjSpRo0aLUmWNX7kGvyv50d3EjlVT06EkjDQkJGTKslCrDcVd3zhVM4++0sziYW/JElzsM2240adnuzHM4q615wL8PUPNILqEol+3pcYZkZHt6LEPcAwwdlad26s/p/AwOZJ9nnE/3ZrqbxhPJiCAIQiP1delAH2df4ouySSnJRyfpcVZb08vJG3NF87+tppBi+P7yysJq1ExhCo/qp7L+YD46PagVZnzoOBlzhdKQhFx2uiDT8L2TuWWzxyxc38mLaQQ5ePB1zF7OFeVgr7JkmEfnWrPXXiuxOK/OLL9BDh6GljutXkdqST53eQcZ9stlMrrau5NYnNc8N9JEIhkRBEFogstv6qaY8j2DDKBmRM5IRjKd6UxiElZYgRxyXQ6yPzuRSl014cnRPOQfWquDakJRLocuTZxloTCjZxtaar69yq0sZXfmOcK8u3KXT3eSS/L5I/EYSrmcgQ2swVNcXVnnUYutSk2lrhqNTku5VoMeCZt6ymRds6ChqYlkRBAEoY2ZxjT88ONe7sWdusnQSK9ADmQnISGxMyOe5JKLDHILwEqp4nRBBodykg0dbe/06NwirTnC9UlAB2tHJvuFAOBr7UhGeSG7M881mIy0J+I3UBAEoY3pdumrId5WDkzt1I//JRwGIKnkIkklF+uex96dezoEN1ucws2zU6kN6xxd5mFhx/G8Cw0eY2umplhTWWtbsaYStcIMlUKJXCZDjoySesrYmTV/59XGEMmIIAjCJbszzrE78xwXq67M0XG3bzA9HD0bPOZYbip/pZzkYmUprhY23NcxpNYkYpIksT7lFHuzEqjQVRNg68yjnfrhZtG8IwOHenTCVqUmPPkEmeVFtfapFWbc6dGJezr0RClXNGscws0JsHUh+5pHJ9kVxTiaN7yysr+tM6fzM2ptiynMwv/SasZKuQJfG0diCrMJcfYBQC9JxBZmMcKzi5Hv4NaIZEQQBOESe3MLJnfshauFDUgQmZPEl2f38EbvcXha2dcpf744l+9i9zOpYy96OnpxOCeZr87uZV7vcXhdKv93Wgw7MuJ4InAgzmor1iWf5LPTO3kr9G7MmjkR6OXkTU9HL84X55JUchGtpMfJ3KrFOtoKNy/MqysfnNjKptQz9HXxJbnkInuzEnisc39DmfCkaAo15cwIHATAMI/O7MqI58+k4wx28ye2MJtjuak832NYrfP+FBeJn40jfjZORKTHodFr68xFYmpNGnu2bNky/Pz8UKvVDBgwgMOHD1+3/KpVq+jatStqtZrg4GA2bdrUpGAFQRCaUy8nb4IdvXCzsMXN0pZJfr0wVyhJrOcRB0BEehzdHT0Y6x2Eh6Ud9/r1wtfagV0ZNcu8S5JERHos4317EOLkjbeVAzMCB1JYVUH0dZrfjUkmk9HJzpXR3t24y6c7/V39RCLSCvnZOPFstzs5kpvM28c2sjH1NA/6hzLAtaOhTJGmgvyqcsPPzmprnu8+nJiCLBZGbWZbeiyPdxlgGNYL0M+lA1P8e7Mu5SSLojZzoayAF7uPwFZl0aL3dyON/o38448/mD17NsuXL2fAgAEsXbqUsWPHEhcXh6ura53yBw4c4JFHHuH999/n7rvv5rfffmPSpElERUXRo0cPo9yEIAiCseklPcdyU9HotPg3MFtlYklencnCghw8OHGxZqr2vMoyiqsr6XbViBsLpYqONs4kluTRz9Wv2eIX2p6eTl70dGp4naAnAuuuKB1o78Ybfe667nlHeAYywjPwluNrTo1uGfn444956qmnmDFjBkFBQSxfvhxLS0t++OGHest/+umnjBs3jldffZVu3bqxcOFC+vTpwxdffHHLwQuCIBhbelkhL+5fyax9f/BrwhGeCRqKp5VdvWWLNZXYXtMR0NZMTdGlDoPF1RU12+oZWll0TadCQbidNaplRKPRcOzYMebOnWvYJpfLCQsLIzIyst5jIiMjmT17dq1tY8eOZe3atQ1ep6qqiqqqKsPPxcWtazy0IAjtl5uFDW/0uYsKbTVRean8FHeQV3qGNZiQtAZbLpwhPPkEIz0DeSggtMFyrbWzrSA0qmUkLy8PnU6Hm5tbre1ubm5kZWXVe0xWVlajygO8//772NnZGV4+Pj6NCVMQBKHJlHIFrhY2dLBxZHLHELyt7dmREVdvWVuVmuLqa4ZNVldid6klxNas5rl8fcMv7Yy0LkhyyUX2ZCbgXU8H26td7mw72N2fN/rcRYiTN1+d3Ut6WaGhzOXOtlM792dOyBjM5Uo+O72Tar3OKLEKQkOMv3iCEcydO5eioiLD68KFlunoJQiCcC1JqplWuz7+Ns7EFtb+wyqmIMvQx8RZbYWtmbpWmQptNUkleQ32Q2mMSl0138cd4PHOA7C8aq2Z+rSFzrbC7atRyYizszMKhYLs7Oxa27Ozs3F3r39KZHd390aVBzA3N8fW1rbWSxAEobmFJ0UTX5RDXmUp6WWFl37Opv+ljqY/xh0gPCnaUH6UVyBnCjLZlhZDVnkR61NOklKaz/BLczjIZDJGeXVl04XTnLiYRnpZIT/GR2JvbmGY9+FW/J5wlGAHT7o53HhK+sSS+tcxSSypWaPkRp1tBaE5NarPiEqlIjQ0lIiICCZNmgSAXq8nIiKC559/vt5jBg4cSEREBC+99JJh27Zt2xg4sG6vYEEQBFMqqa7kp7hIijQVWCjN8LKy58UeIwhy8AAgv6q81mJzAbYuzAwczF8pJ1ibfAJXCxueDRpqmGMEYKx3NzQ6Lf87d5hyrYZOdi682H3ELc8xciQnmdTSfP7de9xNlRedbYXWrNFDe2fPns306dPp27cv/fv3Z+nSpZSVlTFjxgwApk2bhpeXF++//z4A//rXvxg2bBj/+c9/mDBhAitWrODo0aN88803xr0TQRCEWzTtquXb6/NKz7A620JdfAl18W3wGJlMxj1+PbnHr+ctx3dZflUZfyRG8VLwrSc1gtAaNDoZeeihh8jNzeXNN98kKyuLkJAQtmzZYuikmpqailx+5enPoEGD+O2333jjjTf497//TefOnVm7dq2YY0QQBKGJUkvyKamu5N2oLYZteiTOFeWwKyOeZUMeQi6r/RS+MZ1t7a6aEKtYU4mPtX0z3Ykg1JBJ0qWlG1ux4uJi7OzsKCoqEv1HBEG47VVqq7lYVVZr28/xB3G3tGWsd1Ctx0SXfROzD41ey/Pdhxu2fRC9FW8re6Z27o8kSbx2KJwx3t0Y7V2zCF+Ftpr/O/gnT3S5Q0zQJjTJzX5+izmBBUEQ2hi10gwvpX2tbeYKJVZKc0Mi8mPcAexVlkzuGALUdLZdcnI729JiCHb05EhuCiml+Ya1T67ubOtqYYOz2pq/Uk4arbOtIFyPSEYEQRDaodbU2VYQbkQ8phEEQRAEoVnc7Od3q5z0TBAEQRCE24dIRgRBEARBMCmRjAiCIAiCYFIiGREEQRAEwaREMiIIgiAIgkmJZEQQBEEQBJNqE/OMXB59XFxcbOJIBEEQBEG4WZc/t280i0ibSEZKSkoA8PERswAKgiAIQltTUlKCnZ1dg/vbxKRner2ejIwMbGxskMlkNz7gJhUXF+Pj48OFCxfEZGrNSNRzyxF13TJEPbcMUc8toznrWZIkSkpK8PT0rLWI7rXaRMuIXC7H29u72c5va2srftFbgKjnliPqumWIem4Zop5bRnPV8/VaRC4THVgFQRAEQTApkYwIgiAIgmBSt3UyYm5uzoIFCzA3Nzd1KO2aqOeWI+q6ZYh6bhminltGa6jnNtGBVRAEQRCE9uu2bhkRBEEQBMH0RDIiCIIgCIJJiWREEARBEASTEsmIIAiCIAgm1e6TkWXLluHn54darWbAgAEcPnz4uuVXrVpF165dUavVBAcHs2nTphaKtG1rTD1/++23DB06FAcHBxwcHAgLC7vh/xfhisb+Tl+2YsUKZDIZkyZNat4A24nG1nNhYSGzZs3Cw8MDc3NzunTpIt4/bkJj63np0qUEBgZiYWGBj48PL7/8MpWVlS0Ubdu0Z88eJk6ciKenJzKZjLVr197wmF27dtGnTx/Mzc3p1KkTP/30U/MGKbVjK1askFQqlfTDDz9IZ86ckZ566inJ3t5eys7Orrf8/v37JYVCIX344YfS2bNnpTfeeEMyMzOTTp061cKRty2NredHH31UWrZsmXT8+HEpJiZGeuKJJyQ7OzspLS2thSNvexpb15clJSVJXl5e0tChQ6V77723ZYJtwxpbz1VVVVLfvn2l8ePHS/v27ZOSkpKkXbt2SdHR0S0cedvS2Hr+9ddfJXNzc+nXX3+VkpKSpL///lvy8PCQXn755RaOvG3ZtGmTNG/ePGnNmjUSIIWHh1+3fGJiomRpaSnNnj1bOnv2rPT5559LCoVC2rJlS7PF2K6Tkf79+0uzZs0y/KzT6SRPT0/p/fffr7f8gw8+KE2YMKHWtgEDBkj//Oc/mzXOtq6x9XwtrVYr2djYSD///HNzhdhuNKWutVqtNGjQIOm7776Tpk+fLpKRm9DYev7qq68kf39/SaPRtFSI7UJj63nWrFnSyJEja22bPXu2NHjw4GaNsz25mWTktddek7p3715r20MPPSSNHTu22eJqt49pNBoNx44dIywszLBNLpcTFhZGZGRkvcdERkbWKg8wduzYBssLTavna5WXl1NdXY2jo2NzhdkuNLWu33nnHVxdXXnyySdbIsw2ryn1vG7dOgYOHMisWbNwc3OjR48evPfee+h0upYKu81pSj0PGjSIY8eOGR7lJCYmsmnTJsaPH98iMd8uTPFZ2CYWymuKvLw8dDodbm5utba7ubkRGxtb7zFZWVn1ls/Kymq2ONu6ptTztV5//XU8PT3r/PILtTWlrvft28f3339PdHR0C0TYPjSlnhMTE9mxYwdTp05l06ZNJCQk8Nxzz1FdXc2CBQtaIuw2pyn1/Oijj5KXl8eQIUOQJAmtVsszzzzDv//975YI+bbR0GdhcXExFRUVWFhYGP2a7bZlRGgbFi9ezIoVKwgPD0etVps6nHalpKSExx9/nG+//RZnZ2dTh9Ou6fV6XF1d+eabbwgNDeWhhx5i3rx5LF++3NShtSu7du3ivffe48svvyQqKoo1a9awceNGFi5caOrQhFvUbltGnJ2dUSgUZGdn19qenZ2Nu7t7vce4u7s3qrzQtHq+bMmSJSxevJjt27fTs2fP5gyzXWhsXZ8/f57k5GQmTpxo2KbX6wFQKpXExcUREBDQvEG3QU35nfbw8MDMzAyFQmHY1q1bN7KystBoNKhUqmaNuS1qSj3Pnz+fxx9/nJkzZwIQHBxMWVkZTz/9NPPmzUMuF39fG0NDn4W2trbN0ioC7bhlRKVSERoaSkREhGGbXq8nIiKCgQMH1nvMwIEDa5UH2LZtW4PlhabVM8CHH37IwoUL2bJlC3379m2JUNu8xtZ1165dOXXqFNHR0YbXPffcw4gRI4iOjsbHx6clw28zmvI7PXjwYBISEgzJHkB8fDweHh4iEWlAU+q5vLy8TsJxOQGUxDJrRmOSz8Jm6xrbCqxYsUIyNzeXfvrpJ+ns2bPS008/Ldnb20tZWVmSJEnS448/Ls2ZM8dQfv/+/ZJSqZSWLFkixcTESAsWLBBDe29CY+t58eLFkkqlklavXi1lZmYaXiUlJaa6hTajsXV9LTGa5uY0tp5TU1MlGxsb6fnnn5fi4uKkDRs2SK6urtKiRYtMdQttQmPrecGCBZKNjY30+++/S4mJidLWrVulgIAA6cEHHzTVLbQJJSUl0vHjx6Xjx49LgPTxxx9Lx48fl1JSUiRJkqQ5c+ZIjz/+uKH85aG9r776qhQTEyMtW7ZMDO29VZ9//rnk6+srqVQqqX///tLBgwcN+4YNGyZNnz69VvmVK1dKXbp0kVQqldS9e3dp48aNLRxx29SYeu7QoYME1HktWLCg5QNvgxr7O301kYzcvMbW84EDB6QBAwZI5ubmkr+/v/Tuu+9KWq22haNuexpTz9XV1dJbb70lBQQESGq1WvLx8ZGee+45qaCgoOUDb0N27txZ73vu5bqdPn26NGzYsDrHhISESCqVSvL395d+/PHHZo1RJkmibUsQBEEQBNNpt31GBEEQBEFoG0QyIgiCIAiCSYlkRBAEQRAEkxLJiCAIgiAIJiWSEUEQBEEQTEokI4IgCIIgmJRIRgRBEARBMCmRjAiCIAiCYFIiGREEQRAEwaREMiIIgiAIgkmJZEQQBEEQBJMSyYggCIIgCCb1/08mOEydZ8xNAAAAAElFTkSuQmCC",
+ "image/png": "iVBORw0KGgoAAAANSUhEUgAAAiMAAAGdCAYAAADAAnMpAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjcuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/bCgiHAAAACXBIWXMAAA9hAAAPYQGoP6dpAADOxElEQVR4nOzdd3xTVf/A8U9mk46ke7e0hQKFAmWDIIKiuNfjo+JGce+9UB8nrsc9HxXcuH7uASpDtuxRKIXSvXfSpE0z7v39cUuh0CKjbdJy3q9XpU1O7v0GQ/PNud/zPSpZlmUEQRAEQRC8RO3tAARBEARBOLaJZEQQBEEQBK8SyYggCIIgCF4lkhFBEARBELxKJCOCIAiCIHiVSEYEQRAEQfAqkYwIgiAIguBVIhkRBEEQBMGrtN4O4FBIkkRpaSlBQUGoVCpvhyMIgiAIwiGQZZmGhgZiY2NRqzue/+gRyUhpaSkJCQneDkMQBEEQhCNQVFREfHx8h/f3iGQkKCgIUJ6MyWTycjSCIAiCIBwKq9VKQkJC6/t4R3pEMrLn0ozJZBLJiCAIgiD0MP9UYiEKWAVBEARB8CqRjAiCIAiC4FUiGREEQRAEwatEMiIIgiAIgleJZEQQBEEQBK8SyYggCIIgCF4lkhFBEARBELxKJCOCIAiCIHiVSEYEQRAEQfCqw05Gli5dyllnnUVsbCwqlYrvv//+Hx+zZMkSRowYgZ+fH/369ePDDz88glAFQRAEQeiNDjsZsdvtDBs2jDfffPOQxufl5XHGGWcwZcoUNm3axB133MHMmTNZsGDBYQcrCIIgCELvc9h705x22mmcdtpphzz+nXfeITk5mf/+978ApKWlsXz5cl5++WWmTZt2uKcXBEEQBKGX6fKakVWrVjF16tQ2t02bNo1Vq1Z1+Jjm5masVmubL0EQBEEQeqcuT0bKy8uJiopqc1tUVBRWq5WmpqZ2HzN79mzMZnPrV0JCQleHKQiCIAiCl/jkapoHH3wQi8XS+lVUVOTtkARBEARB6CKHXTNyuKKjo6moqGhzW0VFBSaTCaPR2O5j/Pz88PPz6+rQBEEQBEHwAV0+MzJ+/HgWLlzY5rY//viD8ePHd/WpBUEQBEHoAQ57ZsRms5GTk9P6c15eHps2bSI0NJTExEQefPBBSkpK+PjjjwG44YYbeOONN7jvvvu4+uqrWbRoEV999RW//PJL5z0LQRAEoVPVOuzY3M2tPwdq/Qg1BHgxIqE3O+xkZN26dUyZMqX157vuuguAK6+8kg8//JCysjIKCwtb709OTuaXX37hzjvv5NVXXyU+Pp73339fLOsVBEHwUbUOO4+s+wm3LLXeplWpeXLUWSIhEbrEYScjkydPRpblDu9vr7vq5MmT2bhx4+GeShAEQfACm7u5TSIC4JYlbO5mQhHJiND5fHI1jSAIguAdZY0Wfszf3O59uyyV3RyNcKzo8tU0giAIQs+QVVfO29uX0iy5273/q9wNODxuzkhM7+bIhN5OzIwIgiAIVDXZeDtrbyJi0OjICItndEQfQvz8W8f9WLCFNZX5XopS6K3EzIggCILAwtIdNHuURGRoaBzXDDwOg0YHgCTLLCjezvctl29+LcxkdEQfVCqV1+IVehcxMyIIgnCMc0keVlXkAaBTa7iq/7jWRARArVJxWsJg+poiAChrsrLbWuWVWIXeSSQjgiAIx7j65kYcHhcAg0NiCND5gaeBwq3vsX3990gt942OSGx9TGmjxSuxCr2TSEYEQRCOBZIDmovAVQUeK0hOaGnTsG+zBn+pDooehk2JeBxlNMnxZG5ejttpQ73PW0bHDR4E4fCJmhFBEIRjQc50qP9+vxtVoNITodLxit6DnmZUdgnZEYgq8jqSo2agL8rBUldGzpYvKFQFtT4y2mjq1vCF3k3MjAiCIBwLTJPauVEGuRmVZMOoakKjkqiSo/gk4Ctc8c+DXwJx/aYQEqynif4MkpM4SxdIf0MI/VrqRwShM6jkg7VT9RFWqxWz2YzFYsFkEtm4IAjCYfM0wMY4kBravVtGRb6UwvOuR5HQEqw3MjoiCYNGy+baEoY6SojVZ7SOV6vVmEwmzGYzJpMJvV7fTU9E6EkO9f1bXKYRBEE4FmiCIPJGKH+BAys+NKi04djjvka9KxtJlqh3NvFHSVbriEKMXKax4a8OAJUKSZKor6+nvr4eAD8/P8xmMyEhIQQGBnbb0xJ6B3GZRhAEobdzVsKuf0H5i7RbeqpSQ/8fSY8azr3DTmZYWDwq2vYQSQgIwRAeBR30FmlubqayspLdu3cfdP8yQWiPmBkRBEHorRqzIP8GsC0DZNAngSEVrIsAz95xSe9C4Bjl26Awbho0ibrmRortdXhkmXBDAHH+wUiSxBbLFiRJau9sAPTpI5qhCYdPJCOCIAi9jWUJFN4KTZnKz/4Z0OcNCJoAjhzY0r9loAoib4CIGQccIsTPv00beACNRkNoaCjV1dXtnrZPnz4EBwd32tMQjh3iMo0gCEJvUf0ZbEqE7CnQtA2CToQhOyF9o5KIABj6Qcj5yveB4yDxlcM6RURE+6to1LKNYJN/u/cJwj8RMyOCIAg9mSQpRallz4OnFtBC6EXKTIguvP3HxD8BshuS3gH14a2C8ff3x2g00tTU1HqbFgtuTGRuWc3AgWkYAmOO4gkJxyKRjAiCIPREkgMK74Oq90FuApURom6HhGdBbThg+F+lu/irbBc1zTYAYvxv5EybRHpox6dYX1XIDwVbqHHYiDQGcX5yBkNC44iIiKCwsBCAJp2KHxvrmUAh8dp0tu/YTd8+tZgjBnfJ0xZ6J3GZRhAEoSdxVUPOhbAuCCpfB7UR4p+DkTbo80q7iQhAsJ+R85KH8dDwU3ko41QGBkfz1vallNrr2x2/21rF+ztWMCE6hVkjTiMjLJ63ty+jxF5PaGgoarUal1bFd7ZcLkkdw8gh51BOFjJ+7C5ooLpwRdf9HQi9jkhGBEEQeoKmXZB1ImyMhNqvQR8LKZ/ByBqIvQ/UB/91PiwsniGhcUQZTUT5mzg3aRh+Gi25DTXtjl9Yks3g0BimxQ8ixt/MOUnDSAwMYUnpTjQaDWlpaXzfVMC0xMFkhMUTHxDCiRkXsdq5FRkVBZU6inf92hV/E0IvJC7TCEI7ah12bO7m1p8DtX6EGgK8GJFwzGpYAfk3Q9Nm5WfjEKUepN327odGkiXWVxXi9LhJCWq/riS3oZqpcQPb3DYoJIbNNcVKWLKbOlcTacHRrfcbtXqaAhIpUZUT74ykwhKJa9v/kTz4X0ccq3BsEMmIIOyn1mHnkXU/4Zb39lLQqtQ8OeoskZAI3afmKyi6H5z5gAoCJykFp/5pR3zIEns9z236HZfkwU+j5YZBxxMbYG53rNXpwKRre8nHpDNgcTqU+11KAatJv98YvYFyDJwYF8GuvFJqm/rg3vQlqRkXHXHcQu8nLtMIwn5s7uY2iQiAW5bazJQIQpeQJCh7CTZEwO6LwFkEIf+CjHIY9NdRJSIAUcYgZo04jQcypnFCTCofZq+m1G7ppODbCgzrR9rAQWipx+ruS9aGr9sdJ0tu5IM0UROODSIZEQRB8DbJCYV3wwYTFN0NHhtE3gQjrJD6DegjO+U0WrWGSGMQfYJCOS85g/jAYBaVZrc71qQ3YHU52txmdTkwt8yEmHRG5TbnfmOce8cYAsMZPHQiespplFPYuv4H3E5n61hnQz6ZG/+kfNeXnfL8hJ5LJCOCsI9ah53fi7Lava+rPkEKxzB3LeRcCusCofwlUOkg7ikYaYekN0HbtU3EZBnckqfd+1KCwtlRX97mtqy68tYak3BDACadoc2YJreLvIbqNnUoWr2BtKGnYCAfJ/Fs37IYt9OG21HNzp1bcRJBhS0ayd02qRGOLSIZEYQWu61VPLnxN9ZWF7R7/9ydq1hevruboxJ6JUce7DgZNoRD7eegj4LkD2FkHcQ9/I8rY47Ed3mb2GmppNpho8Re3/JzBWMikwCYm72S7/I2tY4/KW4A2+rK+KM4i/JGCz8VbKHAVsvkWKWVvEql4qS4gfxalMnmmmJK7PXM3bmKYD8jGeEJbc6t1esZPPJfBKpycBHGli1r2bntL5plZcbHgwlL2eJOf85CzyEKWAUBZUbkjW1LaHS7AKVgNcUUjk6lJrehhiaPcvunu/4m1M+fQSGiw6RwBBr+hoKboHGD8rNxECS+BuaTuv7ULgcfZq/C4mzCqNURFxDMbelTWl/Ltc2NbXbq7WuKYOaACfxQsJnv8zcTaQzixkHHExcQ3DpmWnwaTo+bT3etodHtpJ85gtsGT0Gn1rQbw4ARF5Gz+SssrhSa5KC9OwDLHqqqLYQktPsw4RigknvAXs9WqxWz2YzFYsFkMnk7HKEX+mr3eha2XDsfYI7i2oETCGq57u2SPPxf3kYWl+4ElOnr+zNO8VqsQg9U+x0U3QPNuSgrY45rWRmT7u3IupUsSRRu+4zq5rS9icjeO9ldUkO989ASfb1Ow3EZsfRPOkgLWcHrDvX9W8yMCMc8l+RhZUUuADq1pk0isue2C1NGkl1fQWmjhdyGaortdcQHhHgrZKEnkCSoehNKngJ3JaCB4HMg6S2lYdkxqGznF1Q7B4GqvXtlkoILWJ7fwX46B3CxclOpSEZ6CZGMCMe8Goe99TJMekjs3kSk8C5o3AqJr6P2H8i4yGS+zd8EQJFNJCNCByQ3FD8MlW+BZAOVH0RcCwmvdHlBqi9rKF9GmX1AxwNUGvQBKQT5q5D/4a3J3uRClsHpar/4Vuh5RDIiHPOkfXqK6DX7XOuu+RJcFZCZBtpoRmtSyFIdT5Y8FI/vX90UupvbCgW3Qu08kF2gMUPsYxD7aJcUpPY0BnMq4VV/YHFG4SIMZAmQQbX335xHFcq/x9cSHH/yQY/1v683Y2t0dXHEQncSyYhwzAvxC0CtUiHJMtvrynBJHnRNm8BVCn2/BrUWih4ixLGSO/Qrcco6nNUTwDirWwoPBR/XXAh514P1d0ACXQzEPQGRM70dmU/RGaPpM+RyZEmiuWEn1upMLA1OGtx9kFUGZZ2xSkVBOQTHeztaobuJdF045hm1OkaEKWX8Da5mvs3bhFz5DujjIfRcCDmXNdG/clfzuyxwn0mjykxA4xLIngpr/WHHaWBZ4s2nIHiDbR1sGwOb+4B1Phj6Q/9fYXipSEQOQqVWYzAPJLLvBaRmXMLGPD+KS7LBsR6V3IRbFcrmDcuRPOISzLFEJCOCAEyNH9i6rHFb6UKkqjnk6E5nSVkur25dxAfZK2kkkG8909kUvwLV8CqIvht0YcobUfYUWBcA2WdAw3IvPxuhS9X9DJv7w/bRYF8LAeNg8EYYmgXBp3k7uh7Hg47ddf1ZXzaOEaMmYtDacMtGMjctQRJbMBwzRDIiCEByUDiX9BtNOJU8pH8UDRJL6tTM272O7ft0mJwY3ZcTYlJBFw6JL0JGEWRUQNQdoAkBy6+QdbzSUTP7LGXHVaF3qHgXNsTArrOgeTeYz1D+/w9eBQEZ3o6u1xg87AQigupwyWY2bVrOhvxMb4ckdAORjAhCi0kmC48bn8BPpXwaa1btXfkQbgjg4r6juKzfGFT790fQR0Kfl2F4MWSUQeStoDGB5WfImgjrgmDnOUrDK6FnkdxQNAvWmaDgBvDUQvgMGFEPA35WLuUJnarOVcdH8jcYPK8gE8RPWZ9R1yQu2fR2ooBVEADq58Ou89DKe6eFT4kKZ1jgGCIMQaSaI1Hvn4S0Rx8NSa8pX85SKH0G6v4P6n9UvtRBYDoJYh+CwNFd+ISEo+K2QeHtUPMpyE7l/1vMQxD3uFLQLBy2suYy6t31NHmaaJKaaPQ00iQ1sVa/gwbsePxszFm7gpjGrXxoaMTmCeSSuo2ssqTw9kvF/H51NENj/Lz9NIQuIv5VCULVh5B3DSC3fAFoSPVXkRrd78iPq4+FpDeUL2cxlDwNdd9B/ffKl9oE5pOVxCRgxNE+C6EzOIsh7waw/AZIoI2GuEch6kZvR9ajrbOuY/TaDpLvwL3fjrXBPH/QqfxI/+NXRk/7Hrf2VSq31TLqDQ+Lro1hYpKxe4IWupW4TCMcu2QZSp6EvBlAS8+DPVRqcFd13rn08ZD8Nowoh6H5EHEdqA3KrMm2kbDeDLv+DfZNnXdO4dDZt8C28bApASy/gF9fSP0BRpSJRKQTDAoYRJQ+6qBjTtfAEn8waEyct2UFNuK5q/+/kVUezjj9f8jACf8r4+cse/cELXQrkYwIxyZZhvwboOTRDu6XwNWJyci+DH0g+V0YUQFD8yD8GqVLZ903sG04rA+GnIuhURTudbn6BbAlDbYNA/tq8B8Fg9bCsJ0Qcra3o+s1/DX+PNP3mQ7vn6GFH4yg1kXxeM1mftodgkGrZmLoOEwaE6td37D25jh0Gjj74wpW14pJ/d5GJCPCMWd+0TZuX/4BrqpP6GCTDMCDpbGAR9f9zM3Lv+Dx9b+wtbakzQhZlvkxfwv3rv6WW1Z8yctbF1LRZD28YAxJkPI+jKiEoTlKcaRKB7VfQuYQWB8COZdA47YjeapCRyrnwMY42HkqOHaCaZoyY5W+FgJHeTu6XunKmCtJ9Es84PYH9DDHCLtc0dxTtJH/LFE6IicEK51ZTws7jWpXNQZzHtvuiMdfr2JuvoFltaJ+pDcRyYhwTMlvqGFpWQ7hAbH8EvIjJDwP+uR2xzbY85kQncKsEaeRERbP29uXUWKvb71/QXEWi0qzuTR1DA9knIKfWstrmYtxSUdY+W/oCylzYEQVDNkJ4VcCGqW9eGY6rA+F3ZdB044jO/6xTpKg+HFl5in/GuUyXNjlMKIGBs5XZqyELrG7cTdj146lsLmw9TYV8KofzPaDLxsjuXjpQl5f3dh6f2l1E//7ejNpOy8CGa74604WLsrisf5WjGqZ7yv9+alU54VnI3QFkYwIxwyHx8UH2Su5PHUs/lo9zeoQiLkHhu0GXVzLKA2gRgZC1DamxQ8ixt/MOUnDSAwMYUnpTkCZFVlYsoPTE9PJCIsnPiCEGQPGU9/cxKbqoqMP1pgKKR/CyGoYskN500QFNZ/B1jRYHwa7r4SmXUd/rt7O3agUpa73h9L/gOyG6PtgpA36fgzaYG9H2GvVO+s5Y9MZpK5KZX3DeiabJzPWNBYjauYZ4GYdPNAUwP3Lf2drgx/7zlRaXCpsjS6CbAkESGa26pZja3Shcbt4KKWeII3Mz+V+3PpDtfeeoNBpRDIiHDPm5axjSEgsaSHRbe9oLgRXCZimKq28E2ZTTwQqTdsdVgeFxJDboPziq3bYsbocpAXvPZZRqyc5KLx1TKcxDlDeNEfWQHomhF0CyFDzMWztDxvCIXcGOHZ37nl7Omc57DwPNpig6l2l90viazDCConPgVrv7Qh7Lafk5Lqs6whfFs6vNb8yOGAwW8dsZfGoxbyV9DA/GyXO0cKFDhWfb/mSInsg8n6XTBs9KgKMOgL9dQx3nYhDbaMqaAeB/joiTTpeHOEgwaTmjdVWLv2iwkvPVOgsogpIOCasrcyn0FbLQ8NPPfDOonuUPxOeB10kxNzHrN3xXJk6hjH7DDPpDFicDgCsriblNr2hzaFM+r1juoT/YOj7mfJ9YyaUPgWWBVD9ofKljYDgsyB2Fhjav/zU6zVug/zrwbYSkMEvRfl/G/ovb0fW60mSxOyC2TyV/xQOyUGcPo4PBn3AtLBpygD7JkbkX4hNAyc3wZb8e7GXpyG1dyxUXHhWOiFGDac7XiNhxXdkpnzJ7IzLWsdc7ZYY9VYpn2+2U9NYxvyrY7rniQqdTsyMCL1ebbOdL3M3cM3A49CpNW3vlCSo/0nZaTVgeOvNMmpQ+Xiu7p8O/b6AkXUweBOE/ltp0FU9B7akwIZIyL0Omgu8HWn3sCyCrYOV+hrbCvAfDmkrlctwIhHpcp+VfUb4snBm5c4ipmkgt1Z+wD15P5D3ZxTf/J7Nzq0/I28bDbITR9IcJPuTWLNnIrWXibSoaFDqr+IN8cTqY1lUt6jN/Vqtmg23xHJCsh8LdjUx7q0SpH0OaLE189JH66isbUTwbT7+21YQjl5hQy0NLgdPb5jfepuEzC5LJQVlP3Ofvhkib27zGJPegNXVdobD6nJgbpkJMemUxktWpwOzfm8TJqvTQUJgcBc9k4MIGAb9vlK+t29QOr9a/oDq95QvbRSEnAuxD4NfQreGVuuwY9tnw7NArR+hhoDOO0H1J1D8kNKwDJVyuS3pXTCkdN45hA4trVvKFduvoMBRgF6l5yb5aU7U/YtTz01BkmQaHS6qcr8hoeF2GuRwAtP/j3DzcSyYKvF5hI23V1vZVOZs99jlNg8DI5XvL466mJeKXuL3mt85JeyU1jFqtZol18Vx3iflfL+9kSGvlrDx1jj0WvFZuycRyYjQ6w0MjubREae3ue2jnauJ9jdxUeOT4NJCzP1t7k8JCmdHfTlT4wa23pZVV05KUDig7FVj0hnYUV9OQmAIAE1uF3kN1ZwQcxRdWztDwAhI/Ub53rYWSmeD9U+lbqLqXaWraOj5SudXfdzBj3WUah12Hln3E25576dVrUrNk6POOrqERJKg/FkoexE8dYAWQqcr3W61oUcfuPCPdjXu4uLMi9nQsAE1ai6Lvoz3BrzHktVlNDs9BBiVlS5B9S8QJc+iWRPBp7s+4fiIVIaYQauSSHLXcl1kPZt1Kt4tDESrVuGWQK0CSYavlxQQ6gpj9ZZSYprPRxf9Js/mPt+ajMiyzOotZWzdWcVk3BgT/JlXJJP6YhFZdyXwwf9tBeDTn7YDEB8VyIWnDmz/CQleJZIRodczaHXE7bdiwk+jJRgLAa4dYDqFubvWEKz357zkDABOihvAi1v+5I/iLIaExrK2qoACWy2XpSpVJCqVipPiBvJrUSaRxiDCDYH8ULCFYD8jGeHdO/NwUIGjof+3yvcNf0PZbLAuhMq3lC9dDIT8qyUx6fzr7TZ3c5tEBMAtS9jczYRyBMmI5IDCe6DqA5AdoPaH6Dsh/llRkNpNap21XLb9Mn6r+Q2AE0NOZF76PCL1kQcOzrsRqt4BbSR+Q7YRVFHBrsI6hvSP4Oclu9Fq1Jw3NZWvvqlFq3Ly1AALEQNTmLPBxoqCZhodLrLzazn3pFScTg+frz+ejXVbkSQJtVrNhu0VrN9WwdTxfYgM9Wd4TjV6qYaPSgJJer6Qv67oz2+Ld3LBKf0JCzaiVh/C/lKCV4h5LOGYldT4sfJNwgvUNjdicTa13tfXFMHMARNYVp7Dkxt+Y0N1ETcOOp64gODWMdPi05gSM4BPd63hmY3zafa4uG3wlAPrUnxF0Fjo/z2MaoC0FWA+CzxWqHwDNsUqTcAK7gDnIa5MaM6D/JvBXd+FQbdwVirt8tcFQuWboAmAhBdhRAMkviQSkW7glJzM3D6TyGWR/FbzG0MChpA5NpOFIxa2n4hkn6kkIn6pkFEAunBCzQasNiclFQ2UVzdy5uS+hAYbWVboom+YnvBALaOCnSy/IY5fztWTHtDMqROTiQz1Jz46iFNjplCvqeCzYuWS5LptFYxOj2ZgciihZgOTRsZzcpKOe4ZClV1iwtxqHB4w+GkJMOow+onP375K/J8Rjkl3p58I689U+osEDOXuoQeOGRmRyMiIAztG7qFSqTg7aShnJ7XzYF8XdBwM+FH5vmE5lD4LDYuh4lXlSxcPYRdCzAOgi2j/GOWvKbMrtlUwcFHX9Otoyoa868G2FJBB3wcSnoOwizr/XEK7JEniqfynmF0wG4fkIN4vnjlpczg57OQOHuFhsPpuZY+fwAkwcCmolc+9Mkonkaq6JlxuD29/sYmtVg0eOYjTgmqx2lzUNyj1RcF+KoID9QQF7E007x14K68uf563C9/lwuh/Y29yERsZ2ObscZGB6HVNvHNuDDd9X8XbhSam1LiIFFfvfJpIRoRjU9U7IDdD1C3ejsT7gibCgJ+V7y1LoPx5sP4F5S8pX/oECL2oJTEJU8bJEtTMU75v3AI7TmpJSMydE5N1GRTcDE3KNX+MQyHpTSVWodt8WvYpt+28jTp3HSaNiTcGvsE1cdd0/AC3jaHy5cQY/4aQCyD16zZ311ocmIL8cLqUmpJ/TxvAsDfL8NfKPHJhKiq1GoO+45lFf62RYU0nsV79K27JfdDYrx9rIkDt4aYfajjpoxr+ut6P0QmGgz5G8B5xmUY4NpX9F9BC9D3ejsS3mCfDgF9htB0G/Kns2eKqhvIXYWM4bOoDhQ8ovU3cey7neKBxs5KQuC2th8qqK+eTXX+3e5pdlsr2z1/9BWxKgh2ToCkTgiYrHWiHbBaJSDdaWreUpBVJXL79cuweO7OSZlE3qe7giYizFDb3IVq/lnW2xw5IRArLrFTXNZGaGEJUmD/2Jhc7q5wUWWVOHeBPaLA/ISYDRsPeFu9WuxNb496VNmVVdoY3noJT5eDj6jkEGHWUVtranKek0kaoWUk6zh0cwM19rHhkmfFvl/LHLrHE11eJZEQ49jh2gzNXWQKqFpODHTKfpOzZMroRBvwOppPBVQnlz8HO0/cb7IHGTZB9MnisLC3L4dXMRRTa6to99Fe5G/i9OEv5QZKUVTHrwyF3OjhLlJ4pwyshbbHSgVboFrsadzHi7xGcsOEEihxFXB59OZZJFp7s+yRq9UHeLhq3wZZU8NSyzvEKRfJ07E0uGuxOKmrs/L2ljB8W5ZASb2ZQ3zASY0zERgTy5M8lqJB5dFIgpZU2lm8oprza3npYrUbN/OV5VNU2UlzRwOI1hUyLORENGt4ufpvR6dGszSwnO6+WWouDZeuLqaprYsSgKAD8DTpijDDnFD1aNZw6t5xvtto6ehaCF6lkWZa9HcQ/sVqtmM1mLBYLJpPJ2+EIPd3O86D+e6W1uv9gb0fT89T9Ajnngexq504NDr8hPGC9mSaUdvrhfgEMCI5CpVKxo76CaoetZaSLJyKXE97wOUiNoDJCxExIfB7UYjq9O9U6a7lk2yUsqF0AwNSQqXyW/ln7han7syyC7GmABH3nMT9rNNt31wCgVqnw89MQEWJkYHIYg/uFoVIpK1oczS6iniog2d/NVfF2Aow64qICOX5EPEEBelZuKmF3YT1D+0eweksZDqeblPhgTh7fh4mbx7GhYQP2SXY2batj664qGh1uwswGJo6MJzlu7+XCrTurWL2ljHKLizeLTFQ2a3jn3HCuGyveS7rDob5/i2REOLZIEqw3Km3fMzphQ7tjUcMyyJrU4d0yUC+H8LTzScbEjeOC5BGoW96AZFnmt/xlhJffz0j1GjQqCTShEHOvsnndwT59C53OKTm5YccNfFT2ERISQwOH8sXgL0gLTDu0A1R/BrmXK92KB/wJpo5fF/t7fWU9t/1Uy8tnhHLHxOAD7t+TjFx+9oEfGD4p+4Qrtl/BM32f4cGkBw/5nIX1boa8UoS1WWb2tBAemBxyyI8Vjsyhvn+Lf/nCsaXyTaVleuRt3o6k56r5ko5q3+WW/4So6njO7zYu4HXUlvkgOcFdi6r4MU6rmsJozWrq5RA+cN1IeVoexD4gEpFuJEkSj+c+jmmJibllc4nzi+PPjD/ZPHbzoScipc9D7mVKr5fBmw8rEQF4ebkVnRpuO+7wP2BeGnUpOpWOOaVzDutxicFadt+TQESAmgcX1HHfrzWHfW6ha4gL5sKxpfwlUOmURlnCkan7DthvJYM2DPxSsWqSWFzrxkATSQFBDLStguqPQGUAPCCrUQVNZrn6Yj6pVJqejWqyEu0vZjy7y8dlH3P7ztupd9dj1ph5K/Utro67+vAOkn8bVL4O2nBI3wr66H9+zD7yap3k1bk5tb/x4LUoHVCr1YwzjWOZZRkWlwWz7tBXcYUHasm9J5HBrxTxwjILtU0S7/+rg+XrQrc5oo8ib775JklJSRgMBsaOHcuaNWsOOv6VV15hwIABGI1GEhISuPPOO3E4unBnU0FoT9MucOYrhZiicPXIxT2idDzt9w2kb4KRDTCiGgavojLmVX7znMd3nkvYEHCXshImfTMEHQ+BE2F4EaQtpEo/uvVwKkRXzO6wpG4JfZb34crtV9LkaeLR5EepnVR7+InIzvOURMQvBYYWHHYiAnD/fKWw+blTO27+cVxGXLuXaPa4L+k+AGbnzz7s8wca1Oy6J4G0CB0frGvgvE/KD/sYQuc67GTkyy+/5K677uKxxx5jw4YNDBs2jGnTplFZ2f5Svc8//5wHHniAxx57jKysLD744AO+/PJLHnrooaMOXhAOS1HLMt6EF70bR08XeQPE3q/shOs/DDR7m05FGU2oW5KLjdVFuGQJ/IfCwN8hbRHoIpBkiXXVha2PifHvpN4kQruy7dlk/J3BlA1TKG4u5qqYq7CcYOHxlMcPb1ZCkmDbWKX4O2AMDNkFWv/DjkeSJH7KaiQmSMPQGL/DfvweZ4afiUFt4POKz4/o8Xqtmsw74hib4Mf32xuZ/L+2O/4K3euwk5GXXnqJa6+9lhkzZjBo0CDeeecd/P39mTOn/Wt3K1euZMKECVxyySUkJSVxyimnMH369H+cTRGETiVJYJkP+kTwP8Rr4sJhM+kNZITFA8oux5/lrMUleVrv90gSX+7e0LqiJi04mghjYLvHEo5OtbOaaRunMXD1QDbbNnNK6ClUHF/B3EFz8dMcZhLgboStqWBfA8HnwuC/j7jG59NNdhxumevHHP2lucnBkylqLqK8+chmNtRqNatvimNaqpG/8poZ8UYpbrdISLzhsF5NTqeT9evXM3Xq1L0HUKuZOnUqq1atavcxxx13HOvXr29NPnJzc/n11185/fT9+xTs1dzcjNVqbfMlCEel8jWlcDXqDm9H0utNSxiERqX8allVkctDa37gs11rmJezlofW/sCSsp2AcnnmtASxtLqzOSUnM7bPIGpZFL/X/k5GYAZZY7NYMHwB4frwIzhgJWxJguZciLwV+n93VPHNXlKPRgUPTj76GbFZSbMAeCLviaM6zvyrY5g+LIDNZU4GvlyMwykSku52WMlIdXU1Ho+HqKioNrdHRUVRXt5+ZnrJJZfwxBNPMHHiRHQ6HX379mXy5MkHvUwze/ZszGZz61dCgg/tgir0TOWvKIWrUbd7O5JeLykojKsHjG9NSKwuB0vLc1hStov6ls0IVai4LHUMA4KjDnYo4TBIksR/cv+DaYmJD8s+JN4vnkUjFrFx7EYGBg48soM2ZcOWFHBXQfxzkPTaUcVYbnWzo8rFhD5+6LVHv3pqQsgEgjRB/F/l/x31sT6/OIpbxpnYXesm5cUirA6RkHSnLl9Lt2TJEp555hneeustNmzYwLfffssvv/zCk08+2eFjHnzwQSwWS+tXUZHoByEchaZscBYorc3F8tFuMSqiD/cNO5mR4YmtPUZASUKGhcVz77CpTIzu68UIe5e5JXMJXRrK43mPY9QY+TDtQwomFjAlZMqRH7RhOWQOURrSpXwKsfcddZwP/l4LwDPTOm/Xummh06h0VbKrcddRH+v1c8J57KRgyho8JD9fSLn14PvfCJ3nsJqeOZ1O/P39+eabbzj33HNbb7/yyiupr6/nhx9+OOAxxx9/POPGjeOFF15ove3TTz/luuuuw2azHVIBlWh6JhyV7DOVHUSH7BCtxb2gwemgoqkBkIkwBmHWG70dUq+xqHYRV22/iqLmIvxUfjyY9CCPJD1yRMtl26j5CnZPB9QwYAGYT+yUeIMey8NPq6L6kaROOR5AZkMmQ9YM4dLoS/l08KedcsxXV9Rzx8+1BOpVbLotjr5h+n9+kNCuLml6ptfrGTlyJAsXLmy9TZIkFi5cyPjx49t9TGNj4wH/MDQaZVfGHtD8VejpJAmsvytbz4tExCuC9Ab6mSPoZ44UiUgnybJlMezvYZy08SRKmkuYETMD62Qrj6U8dvSJSNkrsPsiUPlB+sZOS0R+2G7H5pS5ckTnFiynB6UTqg3ll+pfOu2Yt08I5pMLI7A7ZQa/Uszm0uZOO7bQvsN+1d5111289957fPTRR2RlZXHjjTdit9uZMWMGAFdccQUPPri3Pe9ZZ53F22+/zRdffEFeXh5//PEHjzzyCGeddVZrUiIIXabiZWUPlei7vB2JIBy1amc1J284mUF/D2KLbYtyieL4SuYMmoNe3Qmf3gvvhqI7lRb9w3LAP/3oj9ni8T/rUAGPn9R5l2j2OCfiHOrd9ayzrOu0Y142PIjvL4/C5YFRb5awPL+p044tHOiwOz9ddNFFVFVV8eijj1JeXk5GRgbz589vLWotLCxsk5nPmjULlUrFrFmzKCkpISIigrPOOounn366856FIHSk4lVQ6SHyFm9HIghHzOF2cH329Xxa/ikSEhmBGXyR/gUDAjpxti/nQqj9WplFTM8EbefNYFgdEpvKnIyM0xNo6Py6rceSH2Nu2Vyeyn+K74d932nHPXtQAH9dF8OU98o44X9lfHdZFGcPCui04wt7iY3yhN6rcRtkpkPwOdD/e29H02v8VLCFnwsz29wWZTTxxKgzO3zM+qpCfijYQo3DRqQxiPOTMxgSGtd6vyzL/FSwlWXlOTR5XPQ1hXNJv9FEGY/tf++SJPFY3mO8UPACzXIzfQx9+HDQh0wOmdyZJ4Edk8C2AvxHwKC/O71D8W0/VvP6Kiu/XBnF6QO75s08ZlkMDe4GbFNsnX7sLWXNjH2rlGa3zIf/juCKEUGdfo7eSmyUJwhF9yp/Jv7Xu3H0QrH+Zp4fe17r133DpnY4dre1ivd3rGBCdAqzRpxGRlg8b29fRom9vnXMguIsFpVmc2nqGB7IOAU/tZbXMhe3aZh2rPmg5ANClobwVP5TGDVGPh70MfkT8js5EXHA1jQlETGfAenru2SrhE832TD5qbosEQG4MOpC7JKdhbUL/3nwYRoa40fmHXEE6FVc+XUVr66o7/RzHOtEMiL0TpIbLH+APhkMYglpZ1OrVJj1xtavQJ2hw7ELS7IZHBrDtPhBxPibOSdpGImBISwpVZqfybLMwpIdnJ6YTkZYPPEBIcwYMJ765iY2VR97y/oX1iwkYXkCM3fMpFlu5omUJ6g5vobLYy7v3BO5qmFTEjTvhIjrYcDPnXv8Fot2N1HXJHHR0K7ttPtI0iPAke1Vcyj6hunZdXcCoUY1d/xcy6N/1HbJeY5VYrcwoXcqfwlwQ8zd3o6kV6psauC+v79Dp1aTEhTOeUkZhBra/9Sb21DN1Li2TbcGhcSwuaYYgGqHHavLQVrw3g3XjFo9yUHh5DZUMzoyqcuehy/ZZtvG9MzpbLVvRYOGa2Ku4a2Bb3VOYer+mnJg23CQbBD3JMTN6vxztHhkT2+RU0K67BwA4fpw+hj6sLx+ObIso1J1/gaM0SYtefclkvZSEU8uqqe2UeKNc46gq61wADEzIvROFa8rhasRN3o7kl4nOSicq/qP57b0yVzSbzTVDjsvbPkDh9vV7nir04Fpv5kTk86Axans3G11KasUTPr9xuj3junNKp2VTN0wlfS/09lq38qpoadSeXwl7w96v2sSkYZVkDkYJDskz+nSRMThlFhd1Ex6lI7wwK7/7HtFzBU0y818W/ltl53DZFCz+54E+oZqeXO1lenzKrrsXMcSkYwIvU9jJriKlWvgouNqp0sPjWVkRCLxASEMDonl1vTJNLpdbXbiFf6Zw+3g8m2XE7MshoV1CxkRNIKd43fy2/DfCNV3/vJXAGq/g6yJIEvQ/zeImNE152nx5OI6JBkemhLcpefZ477E+1Ch4r+FXVsnZtCr2XFnPBkxer7YYufUOWVder5jgfhNLfQ+hfcof4rC1W7hr9UTZQyiqqmh3ftNegNWV9sZDqvLgbllJsSkUxqhWfebBbE6947pTSRJ4uGchzEvNfNp+ackGhJZOmIp68esJ9U/tetOXPEG5PxLmTEcvBaCp3XduVp8sM6Gv07F9GHds/okUBvIAP8BrG1YiyR17d4yWq2a9bfEMjnZwIJdTYx9s7jLz9mbiWRE6F0kN1gXgl8KGJK9Hc0xweFxUeWwddhdNSUonB31bTfSzKorJyVIudYebgjApDO0GdPkdpHXUN06prd4v+R9QpaG8EzBMwRoAvh00KfkTcjj+JDju/bERQ9Cwa2gMcPQbAjI6NrzAeuKHVTYPJwzyL/Lz7Wva2OvxS27mVM2p8vPpVarWXxdLOcN8mdNsZPBr5TgdIuE5EiIZEToXcpfANwQfa+3I+m1vsndwM76CqodNnZbq3hn+zLUqBgd0QeAudkr+S5vU+v4k+IGsK2ujD+KsyhvtPBTwRYKbLVMju0PgEql4qS4gfxalMnmmmJK7PXM3bmKYD8jGeG9Y8fuBTULiF8Wz7U7rsUpO3kq5Smqj6/m0phLu/7kuy+DsmdBHw/DCsAvsevPCTy4QClcff60sG453x63JNyCGjVvFL/Rbef89vJorhkVxI4qF/1eLMImdvw9bGI1jdC7VLyh7KkRcZ23I+m16pobeT97JXZXM4E6P/qZIngg4xSCWi6p1DY3omLvSoa+pghmDpjADwWb+T5/M5HGIG4cdDxxAcGtY6bFp+H0uPl01xoa3U76mSO4bfAUdOqevWVEZkMm07dNJ9OeiQYN18ZeyxsD3uiawtT9SRJknwQNS8A4FAavA7Wu688LuN0SS3Id9AvTEm/u3rcZvVrPsMBhbLZtxik5u+fvGnj/XxGEGtW8sMxCyguFbL8zvluKdnsL0YFV6D3sm2FbBoT8C1K/8XY0wjGsvLmcSzIvYXH9YgBODzudTwd9Soi+a5e3tpKckJkBjiwwnaIUq3ZjMffzf9Vx//w63j4njBvGmbvtvHvMLZnL1Tuu5vl+z3Nvn+6dJd3z3E1+KrbekUBi8LGdkIgOrMKxZ0/H1QRRuCp4h8Pt4NLMS4lbHsfi+sWMDBpJzvgcfsn4pfsSEXctbE5SEpHwGTBwQbevKntjlRW9Bq4b45226VfGXIlWpeX90ve7/dz3nRDCu+eG09AsM/ClIrIqnN0eQ08kkhGhd5DcYF0Mfv3A0Mfb0QjHGEmSeDDnQcxLzXxe8TmJhkSWjVjGujHr6OvfjR2AHXmwORlcZRDzCKR0fRHn/rKrnBRZPJyaamyzaWp3UqvVjDGNYVfjLqxua7ef/7qxJr66JJJmt0zG68X8Xdj7++UcLZGMCL1D2bMoHVfv83YkwjHmfyX/I3hpMM8WPEugJpDPBn9G3oQ8JoZM7N5AbGuVfWY8DdDnXUh4onvP3+L+31oKV0/v3sLV/d2beC8yMs/lP+eV818wJJDfZ0TjkWDCO6X8savRK3H0FCIZEXqHyrdAZYDwa7wdiXCMmF89n7hlcVy/43pcsotnUp6h5oQaLom+pPuDqfsZto8H2Q2pP0KUdwq4JUnit52NJJg1DIjonsLRjpwbeS5+Kj8+Lf/UazGclOrPqhtj0ahh2txyvtrS+TsK9xYiGRF6PvsGZVo65GzRcVXoclsbtjJ49WBO23waFc4Kro+9noYTGngw+UHvBFTxP9h1Nqi0MGg1hJzpnTiA99bacHrglvG+sdBgUsgkCpsLqXRWei2G0QkGNt0aj1Gr4qJ5lbz7d/dfNuoJxG9uoecrbLk0k/CCd+MQerXy5nKmrJ/C0DVDybJncWbYmVQfX807ae+gVXtpxUTRo1BwPWiCYEg2BI7yThwtXlxWj1YNd03o/hU07Xko6SEAnsx70qtxpEXpyb47AbNBxQ3fVzN7cZ1X4/FFIhkRejbJqfRR8EvttmZOwrGl0d3IJZmXELc8jiX1SxgVNIpd43fxU8ZPBOuDvRdY7gwoexJ0sTAs3+uF20UWNzk1bk5IMaDV+sZby+SQyQRoAvi68mtvh0K8WUvuvQlEBqh56Pc67vml2tsh+RTfeMUIwpEqnQ14INZLU+RCryVJEvfvup/gpcHMq5hHkiGJ5SOWs3bM2u5dIXNgYLDjZKj+EAyDYFgeaLtp2fBBPPBbDQDPTuuiTf6O0Ckhp1DhrCCvMc/boRDqryXvvkT6BGv473IrV3/jvctHvkYkI0LPVvmOUrgadqW3IxF6kXeK3yF4aTDPFz6PSWPii8FfsHvCbiaETPBuYJJTaexn/ROCpkD6VuimDqP/5PvtjUQGqBkV71ubGz6a8igAj+c/7uVIFP56NTvvTmBQpI65622c+3H5Pz/oGCCSEaHnsq0FdzmEnCsKV4VO8Wv1r8Qui+XG7Btxy25m951N9QnVXBR9kbdDA3c9bE6Bpq0QdimkLfKZ1/28zQ00umRmjvZOk7ODyQjKIEQbwo9VP3o7lFZ6rZqtt8cxLsGPH7IamfRuyTG/469vvJIF4UgU3a/8mSgKV4Wjs6VhC4NXD+aMzWdQ6azkhrgbsJ5g5YGkB7wdmqK5sKWZWQnEPAB9vbdctT3PLK5HrYJHpnj/clF7zgo/izp3HVsatng7lFZqtZpVN8Vxan8jy/KbGf56Ke5jeMdfkYwIPZPkhIalYBig7EYqCEeg1FHKCetPYNiaYWTZszgr/Cyqj6/m7YFve2+FzP7sG2HLAPBYoM+bkDDb2xG1UW1zk1nhYlyCHwa9b76l/Cf5PwA8nucbl2r29duMGC4ZFsCWcicDXi7G4Tw2ExLffOUIwj8peQrwQMxD3o5E6IEa3Y1cvPVi4lfEs7R+KWNMY9g9fjc/DvvRuytk9lc/H7aNBtkF/b6DqJu8HdEBHv5DWab65Cm+Vbi6r2T/ZKL0Ufxe+7u3Q2nXZxdHcet4E7m1blJeLKK+0e3tkLqdSEaEnqnqXVAZIeIKb0ci9CCSJHHvrnsJXhrMl5VfkmJMYeWolfw9+m+S/ZO9HV5bVXNh5+mg0kDaCgg9x9sRteuLzTZCjGpO7Gv0digH9e/If2Pz2Fhat9TbobTrtbPDeeykYMoaPKS8WEyZ9dhKSEQyIvQ8DX+DuxJCz/d2JEIP8lbxW5iXmnmx8EXMWjNfpX9FznE5jDeP93ZoByp5AvKuBnUgDNkOQWO9HVG7fsu2Y22WuSwj0Nuh/KNHkh8B4On8p70cScf+MzWU184Kpa5JIvW/ReyuOXZ2/PWRi6KCcBiK9nRcfd67cQg9wi/VvzAzayblznKMaiPP9X2O+5K6ZkPFWocdm7u59edArR+hhoDDO0jedVD1HmijYEgm6MI7OcrO8+gfdaiAJ6YGezuUfxSpjyTBL4Gl9b45M7LHrccFE2LUcMVXVQx+pZjVN8aREevn7bC6nEhGhJ5FcoBtORgGgj7W29EIPmxTwyamZ05nR+MOtCotN8XdxKv9X+2ywtRah51H1v2EW95bgKhVqXly1FmHlpBIEuw6Eyy/gaE/pG8GtW/17NiXzSGxvsRJRoyeYP+e8VZyWfRlzC6YzQ+VP3BOpG9e9gK4bHgQwQY153xSweg3S1h4TQyTUnz7MtjREpdphJ6l5ElAgthZ3o5E8FGljlImrZvE8DXDyW7M5pzwc6iZVMObA9/s0hUyJfb6NokIgFuW2syUdEhyw/ZRSiISOBHSs3w6EQF4bGEtMvDYVN9cztueB5IeQIWKFwp9vx3AmWkB/HVdDCpgyvtl/Ljd7u2QupRIRoSepeo9UPtD+KXejkTwMXa3nQu3Xkj8iniWWZYx1jSWvOPy+H7Y95i0XbuLbK3Dztvb25/+tzQ3Kd9IzSC3s2zTbYUtfaFxI4ReBIOW+Uwzs4P5aIONQL2KcwYd5mUoLzJpTfQz9uNv6989osnYxCQj626JQ69Rce4nFXy0rvfu+Ov7r3hB2KNhBbirIOQCb0ci+BBJkrh7592ELA3h68qv6Wvsy+pRq1k9ejV9jN2zeZzN3YwHud37Gj0tRYg7z4TMEeDZ5w3FWaI0M3MWQvQ90O+Lboj26C3Pb6KmUeKCIT0nEdljZuxM3LKbj8s/9nYoh2RojB/b74wjQK/iqv+r5pXl9d4OqUuIZEToOYpaumEmPOfdOASf8XrR65iXmnmp6CWCtcF8nf41u47bxVizj60+adqp7CfTtBl2nqM07WvMhM2p4KmFxFd6VCfhhxfUAjDbh3uLdOSOxDtQo+b1ote9HcohSw7Vs/veBEKNau78pZZHfq/1dkidTiQjQs/gaQLbSjAOAn20t6MRvOynqp+IXhbNbTtvQ5IlXuz3IpWTKrkgykdnzao/ADTK9w1LIXsaZGaA3Az9vobo270Z3WFxuiVWFDQzMEJHtKlnFK7uS6/Wkx6YzibbJpxSz1k6Gxmo7PgbG6ThqcX13PR9lbdD6lQiGRF6htInAAliHvV2JIIXbbBuYOCqgZy95WxqXDXcEn8LlhMs3N3nbm+H1iGV7ITK9wFPyy0SNCxR/hy4BEJ9NIHqwOwlFjwyPDDJ7O1QjtjN8TcjIfFW8VveDuWwmAxqdt+TQL8wLW//3cDFn1d4O6ROI5IRoWeoeh/UARDuA7unCt2u2FHMxHUTGbl2JDsbd3Ju+LnUTKrh9QGv+8QeMjWOjlc66C0LlEsxB5DBvqrrguoi766xYtCquHyE7zc668jMmJloVVreLXnX26EcNoNeTdYd8QyP0fPlVjvTPijtEcW4/0QkI4Lva1gO7moI/be3IxG6mc1t499b/k3iikRWWFYw3jSevAl5fDfsuy5fIXOottSU8P6OFR3er6/5AHnPJZr9Fd0P1T2jkBJgS1kzZQ0ezhxoRN0DVvx0RK1WMypoFNmN2djcNm+Hc9i0WjXrbollSoqB33McjHv7wITku212XlpW750Aj0DPfTUJx47C+5U/40Xh6rFCkiTu3HknIUtD+KbqG/oZ+7Fm1BpWjl5JH0P3rJA5FEW2Ot7NWnZAf5E9QqgmTb0FVeslmnbkXg3O4i6KsHPdP1+Z4Xn+tJ5XuLq/uxPvRkbmxcIXvR3KEVGr1Sy6NpbzBvmzttjJ4FdKcLqV1+H32+xc8FkF9/5WS0VDz9jjRiQjgm9zN4J9NRjTQR/p7WiEbvBq4auY/jLxStErhGhD+L8h/8fO43Yy2jza26Ed4If8zR0mIgATNYvbuXXPZSU1BIyHhGdA5/tF2ZIksTCnieQQLcmhem+Hc9TOjzgfP5UfH5V95O1Qjsq3l0czc1QQO6pc9HuxiJ+32/n35xVILSvNP9vUM2Z+vH+xVRAOpvQxQIK4x7wdidDFfqj8get2XEelqxJ/tT8vp77MHYl3eDusDtU129laV9rmtviAYMw6IyWN9TQ4LZym+REAWQaVCiRdLOrgM8F8KphOBG3PKQJ9baUVlwR3TPCNy2NHS61WMzF4IgvrFlLtrCZc77t7AP2T9/4VQai/mueXWjjrkwpULbdLMnywroG7jg/2ZniHRCQjgm+rmqvsXNrDVhwIh269ZT2XbL+EnY070aq03JZwG//t91+fKEw9mBXlua3f69Ua7h46lSR/HeRdj2TUYLHloW6WqJHD+cNzBtvloVyWegkDQnx/FqQ9r660olPDLeN7RzIC8GCfB1lYt5Cn85/m5f4vezuco3LZ8CBeXWGh2UOb9nvbK11sKm0mI9bvgI0c4Qg3c+wCvv2vXTi2WZaApwbCr/F2JEIXKHQUMj1zOistK1Gh4vyI8/lo0EcEanvGKo2ttSWt358RlEtS8UVg/xskG2qVkRCVlj+D3uTrmuDWcR11afV1u2uc5Ne5Oa1/zy5c3d9JYSfhr/bny4ove3QysrvGxYnvleJu54qhVg0fbWggMdR9wEaOcJibOXYhkYwIvqv4QeXPhGe9G4fQqWxuG1duv5Lvqr5DRuY483HMS59HoiHR26EdljpHNf/SfM5EzV/4OxqRHRpUhoHg2AaoIO0vUtzxUPNH62MiDD0j0dpfa+HqqT2/cHV/U0On8mP1jxQ0FXTb9gGdydYsMeW9UmoapXZTXbcEH2+wcfNE2q1v2rOZYyjeTUZ6T4or9C5um/Ip0zgUdD33Wq6wl0fycMfOOwhZGsK3Vd+S6p/K2lFrWTFqRc9KROybIetEnlVfwSna31Ahs9B9CtuCnwHHdmVMzAMQMJwNNUWtDwvS+RFhDPJS0EdOkiR+2dFEbJCG9Bg/b4fT6R5JegSAx/Me93IkR6bZLRMRoEEGVIBadeCY2iaJWUu3dniMggbvt5cXMyOCbyp9DJAh7j/ejkToBC8XvMys3Fk0So1E6iL538D/cU7kOd4O69BJElS9DWXPK5vaAbWqBL51nct6aRxD1BuYXPcgskpGRktRQxFfbf6DHOvelt0DzFHeiv6ofLTBhsMtc+PY3lMrsq9R5lGYNWZ+rPrR26EckbAADetvjafY4uaXHY38mGXnz5wmnB7QqMAjA8gs2h7KeRPK2j3GvJy1hBkCGBQS062x70vMjAi+qepDUAdB6HnejkQ4Ct9Vfkfk0kjuyrkLFSpeSX2FikkVPScRcVbA7stgfQAU3AKuMgg+F4bmkxn/J+ulcaSptnCj9hXUSMoqBtlDXf36NokIwLlJw7zxDI7ac0staFRw3wk9Z+XP4Toj/Axq3DVkNmR6O5QjFm/Wcv1YE79cFUPdo0n8fGU014wOxKh3AyqqLIE0NURyZuIQZg48jnP7DCXGX/l/6kHm/R0rafZ4ryeJSEYE32NZqLTPDrvY25EIR2itZS39V/bn/K3nU+eu446EO7CeYOX2xB6yIVz9AsgcDpuioeYz0ARD/DMwshH6fweGPoyLTCZDt5ubdf9FhYSqZXpcrZKJVxe1OdzwsIQeeYmmzOomu8rFxCQDem3vfbv4T8p/AHgi/wmvxtFZ/PVqzhjoz42TnFx20jpOH72dEH8X36zui765L6MjkjgtMZ1HRpzWOhtidzeztirfazH33leX0HMVPwSoROFqD1ToKOS4tccxZt0YcppyuCDiAuom1fFy/5d9fxWG5ISih2B9GOw8FRo3Q8A4SFsOI8og9kHYZ7mxoWkt12ueQYMHtapt6WAo1WhQPmXGBwRzeerYbn0qneXBBUotwexeWLi6r1T/VCJ0Ecyvme/tUDrVuqoCVCqIj7Cy4LpATkwxcuZH5Xy2sQEAjUrNOX2Gto5fW1XgrVBFMiL4GLcN7GvBfxhoe/cvwN6kwd3AeZvPI2lFEqusq5hgnkDhhEK+Hvq17y/VbcyCHdNgnT+UzQa5GSKuhxG1MHgVBE048DH2jZB9CmrZeUAiAi2zI5oqJsf0556hJxOg65kdS7/JtBPur2Z8osHboXS5f0X8iwZPA6ssPW/zwo5YnY7W74eERfHd5VGc1t+fy76qat23JikoDJ1ac8D47iaSEcG3lMxCKVztmZXtxxq35ObW7FsJXRrK99Xf09+/P+tHr2f5qOXEG+K9HV7HJAkqP4BNKZA5CKy/g18KpHwCo2yQ/A5ogzt+vGUBSHagnaULLe5JjWN6v1EYtbpOD787/F+mHbtTZsbInnd56Ug8kqysqnky70kvR9J59Jq9GzTWNtvRaVTcOVEpRD4l1QgoCYhLUvZO0qs72NCxG4hkRPAt1R+B2gQhZ3s7EuEf/Lfgv5j/MvNG8RuE6cL4YcgP7Bi/gxGmEd4OrWPuWmVjug1BkD8TnEVgPh2G7IRhOyH8skM7Tsz9kL4F4h5V9k0ClF+nqtbv9c5dXfAEus+Ti+pQqeDRE0O8HUq3iDXEEu8Xz5K6Jd4OpdP032cF15Iy5fVYWKdcPkwKUZLkv8p27h0f7L0VX2Jpr+A7LL+Dpx4ibvB2JMJB/F/l/3HjjhupclURoA7gtdTXuDXxVm+HdXCWJVB0LzSuB2TQRkD0vRD7EKg7voTy0JofqGm2H3D7CTGpXNJvNPgPURKS5nyo+x5qv0G2rUSFxOrCP1lQPoLzkzMYEhrX+lhZlvmpYCvLynNo8rjoawrnkn6jiTL6ztLZ+kY3W8qcjI7XE2g4dj6zXhJ1Cc8XPs+v1b9yevjp3g7nqB0XldK6meNfZbsI1PnxVWYYahXotBJ/FGfza+E2QEmjJ0X381qsKlmWfb4/sdVqxWw2Y7FYMJl85x+s0MkyRytvFiNqDz5FLnjFGssaLt12KTlNOehUOm6Nv5UX+r3gu4WpkhtKn4bKN8FdBajAfwQkPA/mEw/pEA1OB/v2tSy1W3glcxF3DTmJAe18itxtreKdzd9yRVQN0WETWdlgZkFxFg8PP5W4gGAA5hdtZ37RNq4aMJ5wQwA/5m+hpLGe/4w8s/Xavbfd8kM1b662Mn9GFNP6e3/fku5S76wnZFkIk4In8dfIv7wdTqdYULydb/M2tf78zbKhWOwGbjp9A83S3qW8J8elcUHK8E4//6G+f4uZEcE3uK1KIuI/XCQiPqagqYCLMy9mtXU1KlT8O/LffJj2If5af2+H1j7Hbii4XanrwA0qI4RfBQkvHFY3345mRQwaHf3Nke0+5pvcjTjUIbxTaSayoYHzk/uSGBjCktKdXJo6BkmS+LVQ6WXx/o4V9DWFc35SBs9v/oNN1UWMjkw6gifc+T7bZMNsUB1TiQhAsD6Yvsa+rLKsQpIk3020D8MpcWm4PB5+KlQ6sDY5teg0njaJyJTY/pyfnOGlCBUiGRF8Q/HDKIWrvad4rKezuq1cse0Kfqz+ERmZ483H83n6575bmFr9KZQ8Ac0ttRr6JIh9GMKvhiN4U3kwY1qbWZGihjpe376EkeGJqFQHFq7utlaR21DN0NBYzk8ezprKfN7evowJUSnkNlQD8F3+ZpolN/9OGcHA4Ch+zN/C/3YsJykojNyGap9IRhbuaqTeIXHD2GOjcHV/V8dczcO5D/N5xedcFnOINUQ+TKVScWafIYwIT2BJ2S7muDUEGpyYdAYGh8YyOSaVpKAwb4cpCliF7lfrsFNoq239qnXYoeYT0JghpOdfp+3p3JKbm3fcTNjSMH6o/oEB/gPYOGYjS0ct9b1ExG2FvBtgXSDkXg7NuWA6GdIzISMPImceUSICEKQ3YNYbW78WlWUDcFZiervjF5ZkowJGRyQR42/mnKRhJAaGUNpoweJ0IMsyy8t3AzA6og/xASHMGDCe+uYmPLKExYvLKvc16486VMDTpxwbhav7uyuhpVtw0SveDqVTxQYEc0m/0UiShuFRIbww7nyu6j/OJxIREDMjQjerddgP2MZ6iGozt+gtEHmTFyMTAF4seJFHcx+lSWoiWh/Ne2nvcWb4md4O60ANq6DwbrCvBmTQhELMrRD3GKg7vyeGW/Kwo76cKKOJkA62WldmP9rOmAwKiWFFSwJS7bDT6HG2ud+o1ZMcFI7F2Uion/cviTQ6JdYUN5MerSPU/9h8ezBoDQwOGMymhk24JTdade/5e7A5JCQZ+oT43nMSMyNCt7K5mw/Yxvos7VfIqCB+tpeiEr6u+JqIpRHcm3MvGpWGNwe8SdnxZb6ViEhuKH0WNsRA1nFgX6Xs6tz/VxhZAwmzuyQRAVhWnoNHlpkWn9bhGKvTgb9Wh9W1d4bDpDPQ6HZi1huwuprajG0dozfQ6HZh1nu/sdiTi+qQZJg15dicFdnjxvgb8eDh7eK3vR1Kp9pU3gxA/zDf631zRMnIm2++SVJSEgaDgbFjx7JmzZqDjq+vr+fmm28mJiYGPz8/+vfvz6+//npEAQu9iwE7iap8nIZhoBUrpbrbastq+q3ox4WZF2JxW7gn8R4skyzcFO9Ds1SOAth5Pqz3h+IHleXfYZdARhkM2QTBp3V5CH8W70CrUjMuKvmg4yKNQeyoL29zm1uWSAnaWzgbpPNrM8YjSdjdzW3GeMucdQ0E6FRcONTHu+Z2setir0ODhndK3/F2KAf1W9E2ntk4n9tWfsU9q/+Pt7YvpbzR2uH4LWXKzFxQYB2PrvuZm5d/wePrf2FrbUmbcbIs82P+Fu5d/S23rPiSl7cupKKp4+N2hsNORr788kvuuusuHnvsMTZs2MCwYcOYNm0alZWV7Y53Op2cfPLJ5Ofn880335Cdnc17771HXFxcu+OF3s3p8bT5+TzNV6hUUB/xsJciOjblN+Uzds1Yxq8bT64jl4siL6J+Uj0vpPrQUt3ab2BLGmxJgvrvQBcNfV6HkXbo+xnoo7sljKomG9XNdoaExqFRtf27mZu9ku9alk2a9AaSgsLYVlfGH8VZlDdaWFdVgCTLTI7tj0mndLwcHdGHX4sy2VxTTIm9nl3WSvw0OjLCE7rl+XRkbZGDSrvEuYO9f7nI27RqLSOCRpBlz6LR3ejtcDq001LJ5Nj+PDDsFG5PPxGPJPFq5qIOd9/NqnIBsLFhHROiU5g14jQywuJ5e/sySuz1reMWFGexqDSbS1PH8EDGKfiptbyWubi1U2tXOOzfOi+99BLXXnstM2bMYNCgQbzzzjv4+/szZ86cdsfPmTOH2tpavv/+eyZMmEBSUhInnHACw4b1zO20hSPjljx8l7eJVzMXt7l9jGYFdtmfta4BXors2GJxWTh709mkrExhTcMaJgVPonhCMV8M+cI3luq6bZB/G6wzQ86/wbETgibD4I2QUQhRtxxxQeqR+qlgMwBnJw054L7a5kYsTuXyS0pQONUOGzMHTGBZeQ5PbviNfFst6SExxAUEE24IwKQzEKL3Z0rMAD7dtYZnNs6n0e3krMR0r/cYeWC+sinec718U7xDdWfincjIvFT0krdD6dDt6VM4LiqF2IBgEgJDuKr/OGqbGymw1bY7PrfWhUbtYXhUJNPiB7UptF5SqnRilWWZhSU7OD0xnYyw+DaF1puqi9o9bmc4rH/VTqeT9evXM3Xq1L0HUKuZOnUqq1a1v7nQjz/+yPjx47n55puJiooiPT2dZ555Bo+n4wyrubkZq9Xa5kvwYc1F0JjZ4d0eSeKdrGXML96Oc5+17UNUG/BXNbHaczw/FWxlftH27oj2mOSW3Ny440bCloXxU81PpPmnsWnMJv4a+Rexhlhvhwe2dbD9BNhghsrXQaWC6DthRAOkLYaADK+EJckyu6xVTIsfRKx/cJv75mavJCUonKsGjAfgpLgBbKsro7bZzk2DJnFqwiAkWeb8ZKWRlEql4qS4gfxWvI0+QaHcMeREBofGEmYI4ITY/t391NpwuyX+ynOQGq4jzux7xY3ecFHkRehVeuaWzvV2KIesyaPMfARo2+8qXGL1EGhwMjC47azioJCY1uXn1Q47VpeDtH3G7Cm03jOmKxzWq666uhqPx0NUVNvOg1FRUezYsaPdx+Tm5rJo0SIuvfRSfv31V3JycrjppptwuVw89thj7T5m9uzZPP642Citxyi8B+q+gsDjIPouCDkHVHtfWvOLt7G1thQAtUrF8LAEkgPDGFP1JLJbxY+eCwD4Ln8T/Uzh9OugoZRwZJ7Lf47H8x6nSWoiRh/D+2nv+0ara0mCiteg/EVwtVyzNg5Wes2Enufd2FrsqC+ntrmRCVEpB9xX29yIap/VM31NEcwcMIEfCjbzff5mIo1B3Djo+NbOqwDT4tNwetx8umsNjW4n/cwR3DZ4itdnRV5YZsEjwz0TzV6Nw5eo1WqOMx/Hkvol1DprCdX79oyRJMt8lbuevqaINq+5fVXZPAT6N2PStX0uJp2hdWn5nkJr034F1Sa9oUuXn3d5CixJEpGRkfzvf/9Do9EwcuRISkpKeOGFFzpMRh588EHuuuuu1p+tVisJCd69nnq4Chpq2VBdiM3djE6lJiEwlIHmKMKMvbAwTK0FVGBbDTkXgC4Gom6HiJm4NMEsLlWaUKlQcUf6iUobbakJyvMh6ESmRo3h55aulAtLskUy0km+rPiSm7NvpsZVQ6AmkLcGvMWN8Td6OyxwlkLhXcpeLnIzqPQQcgH0eRn0vtXHZFBIDO8ef0m79909dOoBt42MSGRkRGKHx1OpVJydNJSzk4Z2Woyd4a2/rfhpYOboXvj76Sg8kPQASzYtYXbBbF5IfcHb4RzUvJy1lNot3Dvs5A7HWBwScWZnh/d702ElI+Hh4Wg0GioqKtrcXlFRQXR0+8VkMTEx6HQ6NPtsZZyWlkZ5eTlOpxO9/sDpJD8/P/z8/A4nNJ9hdzn5dNffbKhp/9ra1f2PY2xUUvcG1dU0ZpSXkjJFiKsMih+CkkexBp5PkHsYDSQyIjxh734etd+A7IDkdzhNn8zSshysLgebaoppcrt67LbrvmBl/Uou33Y5uY5cdCod9yXex+y+s71fmFr3s/K6aFLaUqOLVWbSou7s9joQYa+sCifFFg/nDvL3/mvEx0wLm4ZRbWRe+TyfTkbm5axla20p9wybSohfx7VfTW6ZIIPUZvk5gNXlaF1avqfQ2up0YNYb945xOkgIDO784Fsc1itPr9czcuRIFi5c2HqbJEksXLiQ8ePHt/uYCRMmkJOTgyTt7S2xc+dOYmJi2k1EejK7y8mLW/7oMBEBmLtzJRuqC7sxqi4iScp27PYt4KoGpP0HgOwktOELHtM/yOv6q/h3892wbTxsHQx5M5V23YZ+aNUaBrYkKRJya0GgcHjyGvMYvWY0E9ZPIN+Rz/So6dRPque51Oe89yYjOaDwXlgfArvOgqZMCJwAaX/D8BKIuVskIl523/waAJ4XhavtOjHkREqcJRQ7ir0dygFkWWZezlo21RRz59ATCTd0PLPV6FQanoUbdQcsP8+qK29dWr6n0HrfMU1uF3kN1V26/PywL9PcddddXHnllYwaNYoxY8bwyiuvYLfbmTFjBgBXXHEFcXFxzJ6tNLC68cYbeeONN7j99tu59dZb2bVrF8888wy33XZb5z4TH/B5zhpKGy0A+Km1DA+PJzEwlAZnMxtriihvsiIDc7JXkRQU5r2Oi5IDnCXKDIazFFwV4KoCT42SYLjrwGMFqQE8dpAalVkMyQmyC/AAh7bZ854r6hrcuNCBsT+oTaDvC0ETWsc1uJpbv9eKN6fDUu+s5/Ltl/NLzS/IyEwOnsy89HlE+3XP0td2NWZCwR3QsATwgDoIIm9WGttpj809T3yRJEn8vquJRLOG1Ije9eGws8xKnsUvNb/wRN4T/C/tf94Op415u9expjKfmwZNwqDRtX6QM2p06DXK2/vc7JUE6/2J0QwEYEhYJNvqVvJHcRZDQmNZW1VAga2Wy1LHAHsLrX8tyiTSGES4IZAfCrYQ7Gfs0uXnh52MXHTRRVRVVfHoo49SXl5ORkYG8+fPby1qLSwsbPMpLCEhgQULFnDnnXcydOhQ4uLiuP3227n//vs771n4gFqHnfUty578tXoeyDiFKOPeJl5nJw1hbvYq1lQV4JI8LC3L4dykw1zeLEnKVuiuEnCWgasc3JXgrgZ3jZJEuC0gWcFjU5IIqUm5Li+7QHZz4AxGe1SARilCVfuByg80IaAPUN5UNGZlZ11NKGjDwJENdd9wYIKiQVIb+dp5Hks8U4nQhPJY8ukH9GqoarKxo1659BesNxJ6kGlGYS+35OaW7Ft4v/R9PHgYHDCYzwd/ztAgL9UjSBJUvQtlz4GzQLnNMABiH4fwi7wTk3BQ7/zdgNMDtx4nClc7Ms48DpPGxHdV3/lcMvJXmVKP99+tC9vcfmX/cRzXUnS9p9C6ql6pFRkXF05SlO8VWqtkWT60j7heZLVaMZvNWCwWTCbf7NK5oGg73+ZvAuDMxCGc1aelJ4HkBJUGZA8W2y4+2DyPIHU90bomzoqJVpIITy246/ebjWhSZjDkPbMREoc2G6FWkgiVXkki1EbQ+LckEUGgCQZtiJJEaMNBF6k0k9LFKMWDmtDDnzav/lTZpKyVVok38gaIe5wXtm8kx1oFwJiIPlzUdxSBOqUmqKzRwvs7VlDc0nCnzd+d0KHZ+bN5Iu8JHJKDWH0s76e9z2nhXd+JtF3OSii6B2q/VmbQVDownw6JL4Ph4B1LBe/q90IhBfVumh5PQqsVM5IduXjrxXxZ+SXbx24nLbDjLQF82Z0/V/PKCit598aTFNp9s2CH+v4tFpR3ktrmvV36BoW0TI+7amFjJKjUILswA3ftW5dbtu8R9sxG6FpmIwxKsqBpmY3QmlsSiTDlSxcJuqiWRCIO9LGg9tI0q2bPpyo1IEHQJOjzGvgPBuC8pGH8d+tCJFlmTVUBG6qL6GuKoFlyk99Q03qYED9/pni534Kvm1c+j1uyb6HWXUuQJohXBrzC9fHXeycYyx9QdD80blR+1kZB1CyIub9lhZXgywrqXOyudXNyP4NIRP7BY8mP8WXllzyR9wTzhszzdjhHJLdGWWCQGOyb/zZ9M6oeSLfPbIJtT/2DLhT8+ip7acTPRnaV8Gvxbirc/tgJ4dbh01tmI8xKk6eeSttS1KTvoyQhwWe0eT79zJFcO3AiH+xYgVuWcMsS2Za2K7LC/AK4LX1y64yJ0NbyuuVcvv1y8h356FV6HujzAE+nPN39hamSE0oeh8p3lRojVBAwFhJfgKDjuzcW4ajs6bj6rChc/UdpgWmE6cL4tabn7qlWbPWg1+CzK6ZEMtJJUkzh0NK3aVl5DsPCWvol9P0Eto8FtR/bjNfwo3MJAAPMUeCf7p1gO1vgOBi4WGl61sHszIjwBBJGnsHisp2sqsij0a1cv4w0BDIpJpWJ0X0xdtA18Fi2u3E3F2VexPqG9ahRc0nUJXww8AMM2m7e4bUpWylItf6BUpAaAOHXQuLzSv2Q0OP8kNVIdKCGEXHe3y24Jzgv4jzeL32fvy1/M9Y81tvhHLZKu4cAvW8mIiCSkU4zLDQek86A1eVga20p3+Vv4vSEdPwCxyCbz8BV+CifuJ5rHX9CTKoXo+1kKhWYJv/jsAhjEBemjOSC5BE0uV1oVCoMop9Iu+qcdVy2/TJ+q/kNGZkpwVP4PP3z7l8hUzUXSp+C5lzlZ7++EPsIRFzZvXEIneqzjQ00uWTuOV6sbDpUjyU/xvul7/NU3lP8lPGTt8M5bPVNElGB3u30ezAiGekkGrWa85Mz+HDnagDmF21nSekukoPCCGiazLX8wq3ynczmSRKDYskI961Ok91JrVIRoBOzIO1xSk5uyb6FOaVz8OAhPSCdeYPnkR7UjbNo7loovA9q5ykrstCC+TSlINUoNjTsDZ5ZUo9aBQ+dEOztUHqMeEM8sfpYFtUt8nYoR6TJJRMd5LvJiO/O2fRA46NSuCB5eGtvDYfHRVZ9OZublZqKeHUx//F7jFv6xhywvFU4tkmSxNN5T2P+y8x7pe8RrY9mfsZ8to7b2n2JiHUpbBsDG8Kh+gNQ+0PMIzDKDgN+FYlIL1Fpc7O90sX4RD8MPjxt74sujrqYRqmR32t+93Yoh8XplvDIkOCjxasgkpFOd3J8Gg8NP5XjolLQt7MmO5wiArLHQvXnXohO8EWflX1G+LJwZuXOQq/S8+7Adyk+vphpYdO6/uSSG0qegg1RsOMEsK8D/+Ew4A8YUQUJT3hvlZbQJR5eUAfAM6eIwtXD9XDSwwA8m/+slyM5PFsrlBq9/mG+e1ncd9OkHiwxMJQr+4/j8tQxNLnd6FUu2KB0qFUhKz1Eci8F6yJl9Ymm9zT5ml+0je/yN3Ni7AAu6juyw3Hrqwr5oWALNQ4bkcYgzk/OYEhoXOv9sizzU8FWlpXn0ORx0dcUziX9RrdpJNfTLatbxhXbr2hdIfNQn4d4MuXJ7ql2d+RB4R1g+U3pY6MyQtgVkPhf0HVdy2fB+77caiPUqGZSivGfBwtthOpDSTGksMKyAkmSfHZlyv42lSrJyKAo301GesbfZA+lVqkJ0OnRddRzoXoubBsJTVndG1gXyW+oYWlZDvEdbF+9x25rFe/vWMGE6BRmjTiNjLB43t6+jJKWxmcAC4qzWFSazaWpY3gg4xT81Fpey1yMS/J07ZPoBrsadzHy75FM2jCJQkchl0dfjmWShaf7dcNS3ep5sGUAbEmB+h+Vzer6vAMjbdD3I5GI9HI/Z9lpaJa5YoTYnfdIXRlzJU7ZydeVX3s7lEO2o0pJRkbE+G7rBJGMeJUEjl2QOQJqv/N2MEfF4XHxQfZKLk8di/8/LNFdWJLN4NAYpsUPIsbfzDlJw0gMDGFJ6U5AmRVZWLKD0xPTyQiLJz4ghBkDxlPf3MSm6o43IfR1tc5aTt94Ov1X9WeDbQMnhZxE2fFlfDz4465dquu2Qt5NsC4Ici8Bx24wTYX0rZCRD1HXi83qjhH/+bMOFfD4VHGJ5kjdk3gPKlS8VPSSt0M5ZLtr3AD0DfPdiyHiN1C3OFhDM1lpoV3/c7dF0xXm5axjSEgsaSH/vPQ0t6GagcFtxw0KiSG3oRqAaocdq8tB2j5jjFo9yUHhrWN6EqfkZOb2mUQui+S32t8YEjCEzLGZ/DniTyL1kV134oa/YdsE2BAMVW8r3X2j74NRNhj4R+/pcyMcEqtDYkOpkxGxekwG8av/SPlr/UkLSGO9dT1uye3tcA5JkcWNTu27Dc9A1Iwclp2WSn4v3k6hrQ6Ls4kb047/x10Ms+sr+L/da3ioowHGNLb638S86lgspV8QHxjCxX1HktyFWzV3trWV+RTaanlo+KmHNN7qdGDStZ0JMOkMWJwO5X6XsvOkSb/fGP3eMT2BJEk8nf80zxQ8g0NyEO8Xz5y0OZwcdnJXnhTK/wsVLyu7MgMYh0L8MxByRtedV/B5j/1Ziww8NjXE26H0eNfHXs/tu27nvdL3uDH+Rm+H848qbb7d8AzEzMhhcXrcxAeEML3vqEMaX+2w8ca2JfQP3vvpV5L3mSUJmsLaqJ94pyyUMxKH8PDw04gPCOa1zMVYe8ibbm2znS9zN3DNwOO6dEfHnuaTsk8IWxbGo3mP4qfy4/2B71M0sajrEpHmQth1Aaw3QvF9Sq+Q0IshowSGbBaJiMDHG2wE+ak4Ky3A26H0eDfF34QaNW8Xv+3tUA5JvUMixOjbb/diZuQwpIfGkh4ae8jj/yrbRbghkAtSRkLLfnAWdQIrdTM4Q3oPGpaxqGkbE6P7MiG6LwCX9htDZm0pKyt2c2rC4K54Gp2qsKGWBpeDpzfMb71NQmaXpZIlpTt5c+JFqPfrqWLSK51q92V1OTC3zISYdEqVv9XpwKzfW/FvdTpICAzuomfSOf6q+4srtl9BoaMQvUrPrKRZPJ78eNdNj9Z+ByWzoGm78rM+HqLvgchbRR2I0GppbhO1TRLXjBIdVzuDVq1leNBwNjRswOF2dP/2DIfJ7pIZ5MPdV0EkI10q19pSG6HSQvxTYOjP9uYMfs/bxBkDX4OcC4hr+p60xMdaH6NWqRgYHE2utWfURgwMjubREae3ue2jnauJ9jcxLX7QAYkIQEpQODvqy5kaN7D1tqy6clJaLk2FGwIw6QzsqC8nIVCZUm5yu8hrqOaEmH5d+GyO3E77Ti7OvJiNto2oUXNF9BW8O+Ddrvkl5W6EkoeV1VgeC6CGwBOgz0sQMKLzzyf0eA//rmyK98w0cYmms9yWcBtXbr+Sl4te5sHkB70dTofcbgmP5Lu79e4hPjp1IavLsbfuIfZhCP03Jj9/HB4XTvM5OLWJnKr9kSCN1OZxJr0Bi6tnXKYxaHXEBQS3+fLTaAnQ+hHXssR3bvZKvsvb1PqYk+IGsK2ujD+KsyhvtPBTwRYKbLVMju0PgEql4qS4gfxalMnmmmJK7PXM3bmKYD/jP9bodLcaZw2nbjyVAasHsNG2kakhUyk7voyPBn/U+YmIfQNsnwwbgqDiFUCGqNthhBUGLRGJiNAuh1NiZWEzgyJ1RAb69htST3JZ1GXoVDrmlM3xdigHlVXlAqCfD6+kATEz4lWOuBcJzb8IqfwRCPnY2+F0mdrmRlT7rCjqa4pg5oAJ/FCwme/zNxNpDOLGQce3Ji8A0+LTcHrcfLprDY1uJ/3MEdw2eIrP1KU4JSc37LiBj8s+xoOHoYFD+WLwF6QFpnXuiSQJKt+E8ufBWazcZhgE8U9A6L8691xCr/TMX/VIMjw4OdjbofQqarWacaZxLLMso95ZT7A+2NshtWtjWUvDs0jf7qQskpEuZNIZDihEtTodGDQ69Bot6ojz2ZA7hqENX4P7LdAGto4x63z7GuTB3D106kF/BhgZkcjIiMQOj6FSqTg7aShnJw3t9PiOhiRJPJH/BM/mP0uz3EyCXwJz0+ZyUthJnXsiZzkU3gV134LcDCo9hJyvbFbn1/HfmyDs7721DRh1Ki4bLupFOtt9SfexbPMyni18lmf7+UaL+PUlzcxZ10BMkIZ4s5YFOxsB6B/uu91XQSQjXSrFFE5mbWmb27Lqy0kxKbURWrWGDfpLGen+Gwquh76fIckyO+rLmdJyyULwHR+VfcQdO++g3l2PWWPm7dS3mRE3o3NPUvcrFD8ITVuUn3UxEHWHUpQqClKFw7SptJnyBg8XDREraLrCmeFnYlAb+Kz8M59JRlYVOHhrtRWNCjzy3tvHvFVKoF5FrEnDyDg/Pv53JFrNwXpgdS/x2+0wODwuimx1FNmUjaaqm+0U2eqoddgB+C5vE3OzV7aOPyEmlWqHjf/L20h5o4UlpTtZX1XI1Li9u58OTzyb9dI4mmu+o8xazOc5a3FKbo6LSuneJyd0aHHtYvos78NV26+iydPEY8mPUTuptvMSEckBhffD+lDYdQY0bYWA4yBtJQwvhdj7RCIiHJH75yvL+J47TXRc7SqTgydT3FxMmaPM26EAcMGQANT7JSJ72JwyO6vdrChwoPadPAQQMyOHpaChlpe2Lmz9+evcDQCMj0zmqgHjsTibqG1ubL0/3BDILYMn83XuBhaVZBPs58/l/ccyOGTv8uDREX3423ojuuqrWJL5KEX+F3Hb4CmY9GITK2/bYd/BxZkXs9m2GTVqroq5incHvou+s3axbdymbFZnXQx4QB0IETdAwnOg7T0bAgre4XZLLNrtICVUS58Q356i78lmJc1ifu18nsh/grcHer/vSHSQllP6Gfkjp6ndhARgzr8iUftYNqKSZbmDcH2H1WrFbDZjsVgwmXrpL+lNSUqB4oha8UbkZdXOai7ddim/1/4OwCmhp/DZ4M8I13dCV1xJgqr3oewZcBYot/n1h7hHIfzSoz++ILT477J67vm1ltfPCuOW48zeDqdXMy0xYVQbqZhUAYDD42CNdQ1jTGMwaLq//u+rLTYumld5wO0aFVwxIpA5F3ThNhT7OdT3bzH36yv6vAV4IP9ab0dyzHJKTmZsn0HUsih+r/2djMAMdozbwYLhC44+EXFVQ+5VsD5QqQ9yloD5TBiaA8OyRSIidLrXV1rQa+CmcaJwtatNC51GpauSD0o+4IptVxC2NIwTNpzAgtoFXonn7DR/AvVtZz5UQIhRzX/PCPNKTP9EXKbxFSGngz4Jar8Bdz1og70c0LFDkiQez3+c5/Kfo1luJtEvkY8Gf8TkkMlHf3DLQii6Hxo3ADJoIyHqAYh5CNTin5/QNXZVOSmo93DGAKNPb47W00myxIr6FahbPtfP3DETrUqLW1Y20AvXeWePMYNOzfnpfny2yYGnpY2VDLxzXjghRt9oj7A/8dvQlyS9AztPhbxrIfVrb0dzTJhbMpc7d92JxWMhWBvMu6nvcmXslUd3UMkJJU8pO+W6qwEVBIyC+OfBPLkzwhaEg7p/vtJx9bnTfPNTcG/wVvFbPJX3FGXOMrSqvW+lexIRgBSjdxYi1DrsNPhtwCMNarlFJimqnin9orwSz6EQyYgvCZ4G+hSlt4SYHelSC2sXctX2qyhuLsZP5cd/kv/DI0mPHN2nyKZdUHg7WP4A3KD2h/BrIPF50IrVDEL3kCSJX3c2EmfSMDjKtxtd9WRL65dS5lRW0OybgOyhU+lxOvUUumoJ1PoRauie5dX5DTV8n7+Z8GArBp0Lh0uHRi0zcXAuxfbobovjcIlkxNckvw3Z0yBvJqR+4+1oep3ttu1M3zadLbYtqFEzI2YG7wx85+hWyFR9DKVPQnOO8rNfCsTOgohO7kEiHFStw05Nsx2PLGHQaDHpjD77i7crzVlno9kNN40ThfBdaW7aXGpdtSysXYiEdMD9RjmYZzYpNSNalZonR53V5a/H5eU5fLprLTIyKhWEBDVSVmtmWEoJ/gYXH2Sv4NbBU+hnjujSOI6ESEZ8jfkU5c2s7jtlG3jxibpTVDmruCTzEv6s+xNQCs4+H/w5ofoj/Pt110PRfVDzOUh2QAOmaUqHVP9ObgkvHJTT4+b34ix+Ktza5nYVKm5Ln8ygkBgvReYdLyyzoFHBfceLFTRdyagx8tOwn/jXln/xW81vByQkZtXe151blrC5mwml65KRzNpSPt21hj3LYwO0ekYluPmpVmZ0ahky4PC4eXP7EmYNP50wH0vURWWTL0r6HyBB7jXejqTHc7gdXLntSqKXRfNn3Z8MDxzOjnE7mD98/pElIg3LYds42BAKVe+ByqAUo45qhIHzRSLSzeqaG3lm04IDEhEAGZlXMxeztCzHC5F5R6nVzc5qF5OSDWi14td7V/NT+/Ht0G85J+KcNvtvqVATpOq+5bMAPxdubU1EToztz3Njz2NISF/6BOt4cfy5pAVHA9DodvFnyY5uje1QiFerLzKfBH79oP5HZXZEOGySJDFr9yzMS818XP4xCYYEFo9YzIaxGxgQMOCfD9DmYG4oeRo2REPW8WD/G/wzoP98GFkNCU9DZzVCEw6Z0+Pm1czFlDVaWm+LNgaRFBjWZkPFz3LWsLG6yBshdrsHflN+X8yeJmZUu4tereer9K/4d+S/WxMSGQmTqvsuhRTb68hrULrtxvkHc2HKSHRqDcUWN/FmDYE6AzMHHtf672JVRS4uydNt8R0KcZnGVyW9C9knQe7V0P97b0fTo3xQ8gF37boLq8dKiDaED/p/wGUxlx3+gRx5UHgnWH4F2aXMgoRdDgkvgr57P/UIB1pVkdeaiIQbArlu4ET6BClvwg63ix8KNrOodCcA3+VvIiMsHpXKt7pOdrZvt9mJCFAzNrHnbrTZE2nVWuYO/Igim4VVjUqdSCBtk5HlZbuZ3i+kS16De7YoARgbmdR6juUFDiIDlAQkUGcgPSSWjTVFNHlc1DhsRPv7zqU8MTPiq8wngl8q1P+kNMwS/tGfNX+SsDyBmTtm4pSdPJnyJNXHVx9+IlLzFWxJgy0pUP8D6GKVpnQj7dD3Y5GI+Iil5btav7924ITWRATAoNVxYcpI+pmUN4SKpgayLRXdHmN3+mqLDbtL5ppRoslZd3NJHt7cvozBrssIpQ8AHrm5zZi/yncxb/c6uqLpubTPMfWavbOCdY1t61j2vU/ysebrIhnxZXtqR/Ku9nYkPm2bbRtDVw/l5E0nU9ZcxszYmVhOsDAredahL9V12yD/Vlhngt0XgWMnBJ0IgzdDRj5E3Sg2q/MhTo+bYns9APEBwRj0LlbUr2DW7lmcs/kcAFQqFROi+7Y+Jtda441Qu83Ti+tRq+CRE0O8Hcox55fCTHKsVahVai7SP4UfRuJC4NJ+oxkaGtc67q+yXWyuLen080cYAlu/31yz9/gxJg1jE/wAJWHaVqssRdao1IT4+Xd6HEdDXKbxZebJYOgP9T+Ds1J8It9PpbOS6ZnTWVS3CIDTQk/j08GfHl5hqm0tFN4FtpWABJpgiL4H4p8EtZjq9iWN7kaW1C9hef1y1lk38LdzM03U43I6eHS5MkaFChmZvMY8kv2TCdT6tT7eLfvWNfLOVNvoZmu5k7EJfvjrRdLcnVySp7VIWq1Scd+w03AXX8aftQv4OPotJsWksrw8h092rQFgUUk2GWHxnRpDP3Mk4YZAqh02surLWV2Zx7jIZMobPBRb3EiyzP/lbcTmVmZrRoQnYNT6Vp2bSEZ8XfIHStFk3tUw4GdvR+MTHG4HM7NnMq98HhISI4NGMi99Hqn+qYd2AEmCipeh/CVwlSq3GYdA/FMQcnbXBS4ckmx7NgvrFrLGuobttu0UNhdS66rFJbvajNPihxET0epULok/k0tjphOrj6X/qv68Xvw6L/V/iW11e7d1D/XzraWMnWnW73XIwBMni1mR7rajvhx7y5v8yPBEkoLCmB41nfdK32NR3SJOCj2J46L6sqA4i8qWy4VWZ1On7syuVqk4JS6Nz3evBWBu9ipWVeRicSSxvdrGkxvWU9pSX6VCxdS4gZ127s4ikhFfFzQRDAOVIspjfHZEkiQeyX2EFwtfxCk7STIk8cmgT5gYMvHQDuAshoI7lVVKshNUfhB6ESS+BPrYrg1eaGPPLMey+mVsatjE7qbdlDvLsXlsyOy9lq1VaQnRhpAekM7AgIGMMY1hcshkhgYM5Yvc9fxVptSNDKEf6QHpqFQqboi/gdeLXufqyNtYUbEbAJ1aw/CwBG881W7x+WYbwQY1J6f61tT7scDidLR+n2qORJZlqlxVaNBw58472TJuC2qVilRTJJVNDa2P6cxkBGBSTD+K7XUsLVdmaXbUVyDJSdQ5bfskInBZ6miSgnxvmwCRjPQEye9D1kTImwEDfvF2NF7xfsn73L3r7tYVMnP6z+HSmEPc6bb2Byh5GJq2KT/r4pRLMVG3iTqQLiTLMtn2bBbVL/rHWY4AdQCR+kjGmsYyNHAoE4MnMiV4CsH64A6PPyW2P8vKc5BkmaXlORTZ65gY3ZcTAs5jtudZztl4IVO1dwBwXFQKATrfmpbuLAt22rE4ZLE7r5fo91lG/k3V51y2+32Km4sZETiCB5IeaL2vrtne+r2fpvPfelUqFZf0G018YAh/FGdR5bAhA2q1ktynBIVzZp90Bof45gcvkYz0BEETWmZHfgNnOeijvR1Rt1lQs4Brtl9DibMEg9rAUylP8WCfB/+5MNXdCKWPQNUH4LEAagg8HhL/C4GjuyX2Y4Xdbeev+r9aZzlymnIod5Zj99g7nOVIC0hjtGl06yzHkewJFONv5vLUsXy8czUykNdQ09prQY2WXGkt69zfcGHI9VyQPLyTnq3vefSPOlTA0ycHezuUY1I/cwQV0i4Wut/AVlWNQW3gx6E/clbEWa1jyhutZNWXAxCi9ye8i7qfqlQqTohJ5fjofuRYKnnvVxsJgWYeGXEa8QG+fQlPJCM9RfIcyDoOcmfAwN+8HU2Xy2zIZPq26WTaM9Gg4drYa3ljwBv/vIeMfZNSkNrwFyCB2gSRt0L8M6ANPPhjhQ7tO8vxt+Vvttu3U9RcdNBZjnGmcYc8y3GkjotKIVDrx7f5m9o0P/MnmAYq2SB9Rx+VChcT0ffCX3eNTom1JU6GxugJ9u99z8/XFTuKuXDrhaxyrwJUpKomMjPkIUYHTACUfze7rFV80pIwAxwf0w+1qmtnZNUqFf2Do5CxE2E0+nwiAiIZ6TmCxoNxEFgXgLO019Y4lDeXMz1zOkvql6BCxelhp/PZoM8O/kYmSVD1FpQ9D86WTpuGgRD3OIRd2C1x9xY2t42/6v9ief3yw57lmBIyhSEBQ45u5+MjMDQsjiGhseyyVpFnrcYte5hfEEiDsxKAH6q/Z/za8fyc8TOJhsRuja2rPb6wDlmGR6YEezuUY4rD7WDmjpl8XvE5MjKjg8YxxHklWtnE7oY6Hlv/M9FGE07JTW1zY+vjooxBnBjbv1tj1Wt6RqM/kYz0JElzIGtcy+zIAm9H06ma3E3M3DGTLyq+aF0h82X6l/T179vxg5zlUHQ31H4LsgNUOgg+T9msztCn+4LvYSRJIrsxm8X1i/fOcjiKqHW3P8sRpY8ixZTCsKBhTDBP6LJZjqOhUqnob46kv1kp8JYKna33SUhk2bMY/vdwfhr2E8cFH+etMDvd3HUNBOhV/GuImPXrLk/nPc2TeU/SLDeTbEhmXvo8xprHsttaxZvblraurClvsrZ5XKy/mVsHT+72JbU6tUhGhM4WNBaM6WD9A5wloI/758f4OEmSeDj3YV4qfAmn7CTZkMzHgz4++AqZ+vlQ9CA0bVJ+1kZD9O1KUapavKT36ImzHJ3F7rG3+dmNm3p3PSdsOIH3Br7HVbFXeSewTvR3oYOqRokrhotEpDt8V/kd1+64lhpXDSaNif8N+B9XxFzRen9fUwRPjjqTlRW5rKzIpcphQ42K+MAQJkX3Y2REYps9kw7Xb0Xb2FhdRHmTFb1aQ4opgvOTMoj2N7U7XpKU7qsutYVH162lxmEj0hjE+ckZDNmnEZssy/xUsJVl5Tk0eVz0NYVzSb/RRBnbP25XEb+5e5rkObB9DOReBQP/8HY0R+V/xf/jnpx7aPA0EKoN5Y0BbzA9enr7g6VmKPkPVP4PPLWACgLGQ+ILSoHvMWrPLMeiupYVK71glqMzNElNB9wmISHJEjOyZlDcXMys5FleiKzzPDC/ZVO8U8WmeF0psyGTCzMvJKsxC51Kx32J9zG77+x2E/UAnR8nx6dxcnzn796901LJ5Nj+JAWG4pFlvs/fzKuZi/jPyDPbXZ3T7Fb+rJELmBCdwtDQONZU5vP29mU8PPxU4gKCAVhQnMWi0myuGjCecEMAP+Zv4bXMxfxn5JlHlTwdLpGM9DSBo5UGXdaF0FwEfj2vd8Jv1b8xM2smpc5SDGoDz6Q8w4PJD7Y/uDELCu9Qni8eUAdCxPWQ8BxofWeTp65mc9tYUr+EFfUrjplZjp2WSn4v3k6hrQ6Ls4kb044nI/zgr/fs+gq+3L0Oh+Ro936tSotbdvND0d+UlXxBfGAIF/cdSXJQeFc8hS7jdEssy3cwIFxHrEn8Gu8Ktc5apm+bzu+1v6NCxTnh5/Dp4E8J9FIh/O3pU9r8fFX/cdzz97cU2GpbL0/uq8mtzIyYNEFMix8EwDlJw8iqL2dJ6U4uTR2DLMssLNnB6YnprV1hZwwYzz2rv2VTdRGjI5O69kntQ7yKe6LkObB9tFI7kvant6M5ZFsatjB923S227ejQcMNsTfw+oDX0e5/aUWSoHoOlD4DzjzlNr9UiHsUwo9g990eQpIkdjTuYHHd4tZZjkJHIXXuuo5nOcwpDAvsnbMcTo+b+IAQJkT15Z2sZf84vtph441tSxgTFQ/1B96vV+k5M+Tf+DWM4Ob+55AcFM7C0h28lrmYx0eehUnfc9r/P/+XBY8M9046dhLy7uKW3Ny+83beLXkXDx4yAjP4esjX9PPv5+3Q2mjyKL8TAjqoQWls+ZVh1rXtPzMoJIbNNcUAVDvsWF0O0oL3toswavUkB4WT21AtkhHhHwSOAuNQaFgEzYXg59srBMqay5ieOZ2/6v9ChYozw87kk0GfHPjG6a6Fwruh5kuQmwAtmM9QClKNh9jqvQfYM8uxp5ZjT/fR3jzLcSTSQ2NJDz30VWN/le0i3BDItMRUKNi7T41RFUST3MAJwScwSnU5SbGhrRvoXdpvDJm1pays2M2pCYO76ql0unfWWDFoVcwYKepFOtPbxW9z7657sUt2YvQxzB00l2lh09qMmV+0je/yN3Ni7AAu6juyw2Otryrkh4ItXVKrIckyX+Wup68povVyy/6anMrMiFGra3O7SWdo7RprdSmXM/dPxE16Q5vOst1BJCM9Vcpc2DZSqR1JW+TtaNrV6G7kmh3X8FXFV0hIjA4azRfpX5Din9J2oGUxFN0HjesBGbQREHk/xD5MrbNZ2dzJVts6PFDrR2gXNQ3qLHtmORbVLWKtde0hz3JkBGYwwTyBycGTe9UsR3fItVYzMDgarUqLVqWlv7E/54XMoK4mlgWqR1lUt4gk3eWc1jJlDUo/hoHB0eRaq70Y+eHJLG+mxOrh/MH+x0RS2h0W1y7m8u2XU9JcglFt5OXUl7kj8Y4DxuU31LC0LIf4DhKAPXZbq3h/xwrOTR7WJbUa83LWUmq3cO+wkzsc0+RWPthoe8hLRCQjPVXACPDPgIbF4CjwqaWskiTx4O4HebnoZVyyixRDCp8M/qTtkkrJDaVPQeVb4K4CVOA/UqkFMZ8IQK3DziPrfsItS22Or1WpeXLUWR0mJB7ZQ4O7gWBdcBc9w71sbhuL6xazwrK3lqPCWdHhLMeQgCGkBaQxyjSKE0NOJD0gXbyhdBKry4FJbyBUF0rV8VWYtWYy60p5o+ovnur3NNO3X8xuaQ1B+lPbPM6kNxywDNOX3d9SuPr8aaJw9WgVNBXwr63/Yn3DetSouS72Ot4c8OaBl44Bh8fFB9kruTx1LL8WZR70uAtLshkcGtMltRrzctaytbaUe4ZNJcSv472Imlwtv39UbT/8WF0OzC0zISadsj+O1enAvM9eOVang4TA4IM+x84mkpGeLHkubBsOeVdC2hJvRwMo05z359xPg6eBMF0Ybw14iwuj9mk85tgNBbeDZQHgBpURwmdAwguga7t5U43DfkAiAuCWJWzuZkI5MBnJa8pjeuZ0shuzqTy+Ep1ad8CYw7XvLMe+K1YOdZZjSsgUzDpxbb877Z+Inh/5L0J3hrPV8yuy9Ih3guoEkiTxR04TfYK19A3rnXvtdIdGdyNXbr+S/6v6P2RkTgw5kS/TvyRc33Eh87ycdQwJiSUtJPofk5HchuoDdsY92loNWZb5Yvc6NtUUc9fQkwg3HPwSXXPLzIhNsrS5PauunJSWgu1wQwAmnYEd9eUkBCpdWpvcLvIaqjkhpntrZEQy0pMFZID/cKX1uZdnR36t/pVrsq6h3FmOUW3k2b7Pcn/S/XsHVH8KJU9As7LLKvpkiH0Iwq9ud7O6lRW5zMtZ2+H58htqSAzc+8lQlmU+Kf+EG3fcSJPUhIxMniOP/v6H3u1wzyzH8vrlbLZtPuRZjtGm0ZwYciKDAwaLWQ4vMukMWPe7zm11OjBodOg1Wm6Nv4XH8//DJ+Wf8njwXW3GmHU9o3j1zdVWXB647bju7QHRW0iSxKN5j/JCwQs4ZSf9jf35YsgXDA86+N5FayvzKbTV8tDwUw86bg+r04Fpv9fU0dZqzNu9jjWV+dw0aBIGjQ6LUzmGseX1DTA3eyXBen/OS85oXU1T76nlj+IshoTGsraqgAJbLZeljgGUZoEnxQ3k16JMIo1BhBsC+aFgC8F+xn9cudbZRDLS0yV/CNuGQe4VMOivbj/95obNTM+cTlZjFho03Bh3I6/1f02Z5nRboOh+qPkUJDugAdMpkPgS+HdcLLisLIdPc9Yc9Lxf5Kwj2miif3AUda46rt9xPV9Xft1mTLY9+4BkRJIkshqz2qxY+adZjr7mvntXrIhZDp+VYgons7a0zW1Z9eWkmJRPgbOSH+bl/LeYW/4+jw9UkhFJltlRX86Ubm7RfaReWW5Fp4Y7Johk5HB9Uf4FN2bfSL27nhBtCJ8M/KTtrG0HapvtfJm7gTuGTOnWvhv7+6tM+SD3360L29x+Zf9xHBel1OHVNjeiQum46mjpMzIieCDLyrP4Pn8zkcYgbhx0fJui12nxaTg9bj7dtYZGt5N+5ghuG9z9z1UkIz1dwFCl1sK2FBx5YEjultOWOkqZvm06S+uXokLF2eFn8/Ggj5U36oaVUHgP2FcDMmhCIeb/27vv8KjK9OHj3+mTXkgvkAIkkACRKiAiyoplRXZXF8siuorr6uqu2BvYVll/6vq6Yl/F3VVR146IqxSVJjWQQBJKGpBeJ20y5Zz3j4EhIQkQTDIp9+e65pI585wzzzlO5tzzlPu5A6IXg9Z00uPW2ppYfnCb+/no4GjGhQwm2ORNUWMt60sOcqihGicqy/ZtZuZQP36353eUHV2H5BgdOj4p++T0Wzl8RzHCW1o5ehOr0055U737eUVzA4fqq/HRGwk2+/BpXjo1tkZuSHKNRZoeOYx1Rfv4OG8nU8MTyK4pZXt5IX9KnQ6AXqvngsCL+LTm37x68L9cHvkLVh/JwaY43F/mvVlelY3cagezhnnJZ7MTdlh2cFXmVexv2o9RY2Rx/GIWxS067WtYWFdFnd3KX3escm9TUNlfW8a6on0sPWdum4Xv/I1mLPYTWul+5liN16Zdc8q63jV6pvvfVrurZSTeJ4z54zvuctFoNMyOG83suNGnPH53kmCkP0hYBpmjjraOnDofw8/R6Gjk91m/58OyD1FRmeg/keUpy4k3x0LJ/0HJi+BwLZWNd5prtdzAi0/7+D8WH3CPE5kWMdTdnAgwPDCcaZFDeW73avbVFvNV/Rs8vfMr9xTOlpw4WVayzP1cWjn6noK6Kp5v8Svwo9wdAEwOi+f6pMnU2ppaLUIWYvblTynn8VHuDtYcySHQ5M284ZNICTo+PfjNUX/nyx+X89KhV8kodhDjG8QdKTPwb3FD6K3uW1UNyMDV01VmK2Nuxlz3opu/Dfstb494G299x4M+25McGMGisZe02vbOvs1EePszK2ZkuyvwJviFkF1T0mrcSE+P1TjWMmI2yNo0oqd4p4L3eKhf7xoganblUKiyNrimxR71c6bEKorCvQfu5cXDL2JX7SR6JfLvlH8z2RQFhXdC7QpQ7aAxw6BrIfY5MIZ3+n3Sjw7wArjkaN6HZmczX1d+jYpKTmMOm5w7+NL+MSquoOXEQOSYOHMcX4z+Qlo5+qikwPCT/hq8Pmlyu/s8PLbj4DfYGMzkwEn8WLOaLye+Qbx3z7Qk/lyKovBlViORfjpGR568dXGgcygObsm+hbeL33anFPho1EcM8TqzMXVmvYFofWCrbSadHh+9yd3d0XKsBsAF0Uk8u/s7j47VODaA1WzoG999Eoz0FwnLIDMVcufDyPXtTos91ZTYjiw9tJT7D95PvbOeEEMIryS9whUGoOD3YM12FTLGQuS9EHpruwNST9exFS/9DGYCTV58Vv4Z9+6/l/1Nrv7SAH0Aw7yG400ATdSh4ECLFoW2s25qHbWM8ht1xnUR/dPS4UsZvWU0t+27jZVpKz1dndPyn/QGrA6Vmyf6nbrwAPZ8wfM8nPswTUoTsaZY/pPyH84NOrfb37flWA1wLZp3U9JUPi/Y5bGxGs1O13eiyXPDXDpFgpH+wjsFfCZA/QZo2k+9c1CbabEdTolVFdcquN6jIeRa9+YVFStYkLXAPUPmuYTHWagph0M3gmIBtOA3wzUg1SetS07DS2fEoVTxVeObvLT2WppVK1MCprAgagHzIuYRbgpnX20Zz2esRlVVwoOs2L32s7x0OQXWAnTocOIEoNpRTZW9imCDNGuL40b5jWKY1zC+qfyGRkdjp5vtPWHJuhq0GnjwvEBPV6VX+rria36f9XtKbCX46Hx4NelV/hDzh257v5ZjM9p7DjAudDDjQjvOjt3dYzWOd9P0jZaRM6rl0qVLiYuLw2w2M2nSJLZsOfnMh2OWL1+ORqNhzpw5Z/K24lTi33H9N3d+5/Y7vAhKnnF1tyh2dtbtZMSmEVy26zIq7BU8Gn4F9eHjWFj+KJT9AzQaiFgIY+tc2V+7KBCpsFWw0vY8bzsWkK2uxaz15qPUj9gwfgP3xN1DhNk1J/9/h7MA1x/zL8PPZ8nQJeRNySNjUgaL4hcx0vt4hs0Ca0GX1E30L0uGLkFB4Z4D93i6KqdUYnGQVW5n6hATxr6STrOH7G/cT9pPaVyy6xLKbeXcHnM7lnMt3RqI9BXNR5Oeeen76ZiRDz74gIULF/Lqq68yadIkXnjhBWbNmkVOTg5hYW1XDjwmPz+fu+++m2nTpv2sCouT8B4BPpOgYRP6Y/k8TqX8bSj+q+vfjnIWbR/FE5YcNMDTASncratC3/hf1+teKRD9JATP6dJq5zXmsSB7AWuq16Ci4ksok3XXEK+bCA2J1DQ3EmjyprixlhUFGWRWu6Zv+hlMjA1x/fLQaDSk+qaS6pvKooRFHGg8wFbLVlJ9Uru0rqJ/+HXYrxmkH8TbxW/zj+H/6NVjih78n2vg6lOzpIXvGIvDwu8yf8eKyhWoqFwUfBHvp7wvSyi0YHMeDUb6yADWTv8FPv/88yxYsIAbbriBkSNH8uqrr+Lt7c1bb73V4T5Op5Nrr72Wxx57jISE3j+Frk9LcLWO+B/+46nLWtZA3gL3U4cKF9tzeM0nGJu/kfuVPegdlRB8JaQdglGZXRqIpNelM3HLRBI2JbC6ejUpPil8P/Z7lg9b7QpEgG+PZHHfls+4Y+OHPLr9K7ZVFAKgAa4ZOrHD/tWh3kO5OuLqLsnAKvqnOwffSZPSxNLDSz1dlZP6KKOeQd5azonr/TN+upuiKNyz/x4G/TCILyu/ZITPCDInZfL1WV9LIHKCZmffahnpVDBis9nYvn07M2ce7x/TarXMnDmTTZs2dbjf448/TlhYGDfeeONpvU9zczMWi6XVQ5yeen0cJdqR+Fh3Es6RNq//WHwAVVWhaS/qvstRjo6vANBrYLIebtZWodeHQOyzMK4Jhn4Ixpguq+OaqjWM3DSSs7acxda6rZztfzYZEzPIODuDc4PO5ZLYVGYPGd1qQFiz0+H+t0mr58bkqYzt4QyBon95YMgDmDQmnip4ytNV6dDnexuot6nMHyur8y4rWkbQD0E8W/gsQfogPh/1OXvO3kOKb99ZbbknHWsZ6StjRjrVTVNRUYHT6SQ8vPWUzfDwcLKzs9vdZ/369fzzn/8kPT39tN/n6aef5rHHHutM1QTQYLfx3O7vsDf9nieMd3OD4TWW2B9vVeaHkgN4q9XMtFyFl7OedoPmwF/D8I+7vH4fln7IPfvvobC5EA0aLgy+kDdGvMFgc+tBXhqNhksHpzI5LJ4fSg6QVV2M1enA12DirJBYJocl4GOQdTnEz6PVarkq4ireKX6Hbyu/5ReDOl4B1VMeW12NBnjsgoHbRbOpdhPXZF5DvjXfFTwmPsUDcQ94ulq93rGpvV59ZJpKt1azrq6OefPm8cYbbxAS0vECRCd64IEHWLiwxdoRFguxsfIr+FQ+zU+nqLEWiCSfJOK0OdyeGI5FG8/uqsPsrDxMibKZYZVL8dYq6Dpqvatd6Urlru+ahGBLDy3lsbzHKLeXo9fomRs2l5eTXibYePIv2GCzD3PixjAnbkyX1EOIE70w9AX+Vfwv7tp/F7sH7fZ0dVqxWBXSi2yMizbia+4bv267UpG1iCszr2Rj7Ua0aJkXMY83R7yJUSs/RE6H7Wijt7exb3x2OhWMhISEoNPpKC0tbbW9tLSUiIiINuUPHjxIfn4+l112mXuborimm+r1enJyckhMTGyzn8lkwmSSxD6d0WC3sbksD3B1Y/gnLUezbzypzR9B/KuE+jl4ueIq3jYWk3qqeeeqFSr+BRG3n3F9FEXh8fzHeb7weeqcdZg0Jm6JuoXnhj3XJ6ZSioEh0BjI9MDprKtZx8HGgyR6t/0+8pRHvq1CBR6bGeTpqvQoq8PKTTk38V7Je6ioTA2YyoepHxJljjr1zsLNfqybpo+0jHQqZDIajYwbN47Vq4+naFYUhdWrVzN5cttsiMnJyWRkZJCenu5+zJ49mxkzZpCeni6tHV0oo/oIdsUVCk8OT2BQYBpE3Y9SsYyvMs7nh51JWBzF6NBSo/hxWIlFMcaDLoh2Y9Kaz8+oHlaHldtzbsfnex8ey3sMFZWH4x6m/rx6XhnxigQiotd5KeklAG7Luc3DNWnt3zvr8TdpuCT5zLIm90VP5T1F4A+BvFvyLnHmODaP38z68eslEDkDx8aM9OaZYi11OmZauHAh8+fPZ/z48UycOJEXXniBhoYGbrjhBgCuu+46oqOjefrppzGbzaSmtp5aGRgYCNBmu/h56losO514dJXSooC5RBz5K5c0riXbZyh7Rv6Nd0tCeOVoyvW/ps0mxOwLqgpKIzirwVEFjmowdW7WU42thtv23caHZR/iUB0MMgxiSeISbo+5vdUfw9eH9rCz4hAlTRaMWh0J/qH8Oi6NCO+Tr0K6vbyQzwt2U2mtJ8zLj1/HpzEqONr9uqqqfFmQwY8lB2hy2kn0D+GaoRMI95LVTcXJpfimkOSdxLdV31LvqMdX7/nBoutym6huUlgwYWBkXP287HNuyr6JCnsF/jp/Xkt6jfmRncyXJFo5Foz0FZ0ORubOnUt5eTmLFi2ipKSEtLQ0Vq1a5R7UWlhY2Gcisf7EpDs+hbXC2kCDs4HLs37PlQ4Tlya+RErETQCUFxxfedKsO/q/X6MBnY/r0clZM4eth7k5+2a+qfwGBYUYUwxLEpdwbeS17ZbfV1vGeVHDifMNxqmqfJa/i/+XuYZHx/0Sk679j+NBSzlvZm9gTvwYRgdHs6Usn1f2/shDZ13kTq/8zeEs1hTlcH3SZELMPnyRv5sXM9fy6LhfenTZb9E3/C3xb8zJmMM9++/hlRGveLo6PPRNFQBPXdi/u2gy6zL5beZvyWrMQq/Rc8/ge1iSuETuIV2grwUjGlVVe32NLRYLAQEB1NbW4u8vv3TbU9pkYdG2FQAEGc1kmt7m+5p1/DDuB87yOwtw3dSf2fUtANHegSwad0mHxzuVrPosFmQvYGPtRlRUkryT+Mfwf3R6RkKdzcrdP33CXaNnMjyg/aR5r2etx6Y4+FPKee5tS9K/IdYniGuHTURVVe796VN+ETOCC2NGANDksHH35k+4fvjZTAiLO9PTFANI6A+hNDgbqJ9e79GbodWm4PNoPiPDDGT8pX92ZVfbqrl6z9V8U/UNGjTMDpnNf1L+0ytapfqLi98u5pt9TShPeza31+nevyX87CfCvfxJDginyJnFC/XX81XlCl4e+hZn+Z2FU1XYUVHIq3t/dJefHjnsjN5nQ/UGxmwew8ifRrKhdgNj/caydfxWsidnn9HUyCanHQAffccj5HPrKkgObD1AemRQJLl1FYCrJchitzKiRRkvvZF4vxB3GSFO5a7Bd9GkNPHi4Rc9Wo8n19agqPDgjECP1qM7KIrC7Tm3E/pjKN9UfUOabxo5k3P4bMxnEoh0MbtTRdM38p0BslBev1DnqOM/Jf/h5boXOODcB0AQ0azPs7PnyGc0K3YaHXZ3+Xi/QUyJ6Fy0/EXZF9y5/05yrblo0HBe4Hm8PuJ1hnmfWVADoKgqH+ZuJ9E/tNVqliey2Kz4G8yttvkbzNQeHSdjsTe5thlPKGM8XkaIU7l38L08mvsoSwqW8JfBf/FYPd7cVoe3QcPVY/rXeJFXD7/K3QfupsHZQIQxgmUjlzFr0CxPV6vfsjtV+lAsIsFIX5ZRn8HLh1/mneJ3sCpWVI73uE3UXwVAta2x1T7D/MP448hppz2O4u0jb/NQ7kMU24rRoWNOyBxeG/EaYcaO1yE6Xe8f2EpRQy33jOl9yabEwKPVarkm4hreLn6bbyq/8ciNctthK6X1Tq4e039m0KyrXse8PfM43HwYL60Xfx/2d48GewOFXUFaRkT3UVWVD0o/4MVDL7LJsgm9Ro9DdbQqo0HDbQlXk1FRTqW1AZ1WS5xvMOdGDmNkUCTaU3xCFUXhmcJneKbgGaod1Rg0Bm6IvIEXh7/YZU2p7x/YSkZVEXePmUmQ6eTTff2NZiz21i0cFruVgKMtIf4G15odFpuVAOPx9TssNiuxvoFdUl8xMLww/AXeKX6Hu/bf5ZFg5IGjA1eXXDSox9+7qxU0FXBFxhVsq9uGFi0LohbwctLL6LVy2+kJDkVaRkQ3yqjP4Oo9V7ufnxiIAJzldxaXxY7jsk6OfXMoDh44+AAvH36ZRqURb603dw++m78m/rXLsh6qqsryg9tIrzzMwtEXuKYWn0KCXwjZNSXMjE52b8uqLiHBzzWFOcTsg7/BTHZNCbG+rtkHTQ47eXUVTI8c2iX1FgODv96f84LOY031GvY37v9Z3ZCd5XAorMu1MnSQnsGBfferudHRyPy98/m4/GNUVGYEzuCDUR8Qagz1dNX6tU/3NPBxZgN6LRh0GvKqHCgq3L2y0rVNqyEl3MhVY3rn2Jy++4nvh6qsDdQ7mt3PffUmgs2tm2tH+Y7iyYQneTj34XaPodfouTD4wk69b72jnjv23cG7Je9iU20E6gN5JP4R7h18b5fPKnj/4Da2lOVz68hzMesM1Npc4z28dAaMR6f2vp2zkUCjN7+KTwPggugknt39Hd8ezmJUcBRbywsoqK/id8NcK/tqNBouiE5m5aFMwrz8CDH78nnBbgJNXqTJYnqik14a/hIjfxrJbTm38b+z/tdj7/v8hlocCiw8p2uWYehpiqLwaP6j/C3/b9hUG8O8hrE8dTlj/cd6umoDwvd5TbybXo9O4+qecbiSnfPihlrA1W0zdJBeghFxclXWBh7Z9iUOVXFv02u0PDH+slYBiUaj4aH4h4jzimP+nvk4W6y6C66WkvODzj+t9yyzlfGHrD/wZcWXOHESYYzgyYQnuTH69FZXPhPfF+8H4LmM1a22zx9+NlPCXYNqq5obW63Ym+gfyk1JU/m8YBef5e8izMuPP46c1mrQ66yYEdicDv6zfwuNDhtDA0K5I2WG5BgRnTbCdwTJ3smsrlqNxWHBX98z6QRe2mTBqIM/TOx7A1c/KPmAP+b8kWpHNUH6IP6V9C/mRsz1dLUGlDumBPCPjRacKrQYPoj9+C2Fe88N7OlqnTYJRnqJekdzq0AEwKEq1DuaCcYVjHxZsJsVhZmAq7sjTDOcYjULLVoUjq75o9EzNXCq+xjtZS71NltZkLWAdTXrUFEZakhjsm4e/kRjqQqhNNjSbZlLX5t2zSnL3DV6Zptt40IHMy50cDulXTQaDbPjRjM7bvTPqp8QAM8MfYbZu2dz9/67eX3E693+fjnlNg7VOpmd7NWnEn7tsOzgqsyr2N+0H6PGyKL4RSyOW9ynzqG/SAg2cNVoHz7MaHC3ihyjAYYE6rl+XO8NdOUT08dEeQfwzKRfsdP0EsVqFteH30iUKQqdxtUCcLb/2XjrXANCj2UunRqRwMNjLybIx8a1uxYwbNMw1tasZZTvKF6M+S+X6h9kYfJvuT/tQkxaPS9mrnWvcyPEQHRZ6GWEGkL5d8m/3Yt7dqf7vnYNXP3bxX1j4GqZrYzzt5/PuK3jONB0gCvDrqT63GoeS3hMAhEPenBGUJtABFwNJU/NCsbQ4VLtniefmj5Gq9FwS87v2Vb/E3NC5vB26ptsnbCVUT6jAPhF8PFpsquP5JASHInW6wgzdk3iz0d+TbaylvGmC8mclEn6xHQKqzVcMjiVtEExxPgEcUPSZGqam0ivOOSpUxSiV7h7yN1YFSt/P/T3bn0fRVFYta+R2AAdyWFdM1C8uzgUBwuyFhD5YyRra9YywW8CeVPy+HDUh7IIZi+QEm5k9ghv9C3u7FoNjAg1MHd0754uLsFIH7Opbg0flH1AlCaJkZpLqLI2EGGKYP349Tye8DgLohe4y/5YtYH/q/gjF6ZfyP7G/Vw86GLeiFvJZd53kOKbIplLhTiJu2Pvxqw180zBM936Pm9srafZCbee3buXuni+4Hn8v/fnzaI3iTJFsW7sOrZM3MIQryGerppo4aEZga1aRxQV/nZxMFpt720VAQlG+pQc+2ZWOf6Ovy6IIjWHN6ue5Jld/8PqsOOj8+GR+EcIN4Tz/wr/HyE/hPAf6/2UOgq5JvwaKqdVsjJtJUO8oiVzqRCnQavVcm34tZTZy1hZsbLb3ue5H2vQa+HuXjqL5pvKb4j8MZK7DtyFVqPl1aRXOXTOIaYHTfd01UQ7xkTpGROt4OqcURkepnD2kN7f7S7BSB+xoXoD9xX8EZPWSIPTAkCZs5C9tp/YVlGIQ3HwyMFHCPghgL/s/wsNzgYu0N3Gdyk7eTf1XQKNgZ49ASH6oOeHP48WLXfvv7vV9iprA4X1Va0eVdaGTh//cK2D/ZUOpseb0et719fx/sb9pP2UxkXpF1FuK+f2mNuxnGvhDzF/8HTVRDucisJn+bu4Z/MnxMZk4xq2qmF4fDYPb1/BN4f2erqKJyWzafqAgqYCLth5ARo0+On8qFJcg9106Njh/JS/F9bw1d5lNKvN+Ov8WRy/mEVxi3hw2xdYna1HM0nmUiFOn7/enxlBM1hdvZqchhySfJLanYYP7U/FP5X7vq4EYMlFwV1a75/D4rAwb888vqz4EhWVi4Iv4r2U9wgyBnm6aqIDTlXhtawf2VV1BIDIYAtajYJGoxI1yPXj9ZP8dByqwqWDUz1Z1Q71rlB8gGp2OthWXtDua0fqS0nbkoZNtTHSZyRVjip3bhEnTo449/FJ3Wv46/1ZmrSU2vNqeTThUbRarTtzaUsdZS495ljm0mNlhBjoliYtBeC2nNuA9qfhw/Gp+J3x2d5Gwny0jI8xn7pwN1MUhXv238OgHwbxRcUXjPAZQeakTL4+62sJRHq5/x3OcgciWo2G8aGDGREOU+LVVt/lXxTsJqem1FPVPCkJRjyswlrPX3eu4pvDWW1eUxSFWXumU+Oo4fzA88loyMCptu37S/UeTdm5ZXg1pPFpXrp7+wXRSeypLubbw1mUNNbyZcFuCuqrOC9qONA6c+muysMcaajh7X2bJHOpEC0k+SQx0mcka6vXYnFYuuy4y3fV0WhXuWmC53M/vFP0DkE/BPFs4bME6YP4bNRn7Dl7Dym+KZ6umjgFp6Kwtsi1WrsGuCNlBjePOIdAkxcJAYHcl3Yhc+LGuMt/dyTbQzU9OQlGPMjqsPNi5lpKm45/wYWZfRnsG4QODSscf6WOcmI1o1lds7rD42Q27ia9Lp2q5kZ3enU4nrn0x5IDPLHja3ZUHGo3c+mMyCT+s38LT+1cRbPTLplLhTjBs0OfRUFh4b6FXXbMp9bWoNXAIzM81+qwqXYT8RviuT7repqVZv6a8FfKzi3j8rDLPVYn0TnZtSXu7/0xg2IYEeSaHdnsUN15RS6MGUGQ0TX1OqPqCA32zrXg9QQZM+JBP5YcoLSpDoBwLz9uTJrKED9X3/GNexdQUpxNMIM5pGac9DhatDyV/xQfjv6wzWuSuVSIn+/ikIsJM4Txbum7PByz5Gcfr6LeQUapncmDTZiNPf+bsMhaxJWZV7KxdiNatMyLmMcbyW9g0pl6vC7i56lubnT/e2RQpPvf2eV29xRfnUZLcmA4m8ryUIEaWxM+ht71/1paRjxEVVX3Oi0AfxgxzR2IfFf1HcuK3yJIH0QVhbRaaKAdCgofl33cbheOEKJr3DvkXqyKlddL/vGzj/Xwt9UAPHlhzw5ctSk2rttzHbEbYtlYu5GpAVM5NPUQ/0r5lwQifZRec7wVu/5oi8fu4mbqbSqXJB1PRFfXojVE3wuz5ErLiIfU25spt9YDkOgf4u46ea/4PeZnzUdBwUfrw9Wht1BdFY5Wq+Pi2BGMD4vBptqwKTbsqh2bYsOm2hhkGOROCS+E6Hp3xt7Jw7kP81rxUq7QvvizjvX+rnqCvLScn+h16sJd5Om8p3ks7zGa1WbizHG8n/o+Zwec3WPvL7pHvN/xJQQ2luZyUcxIHl9TTZS/lkdnuroAK60N7K0pBsDPYCbE3PtW7pVgxEPsLVoxfA3HR9K/Xfw2OnT8I+kf3Bh1I+kVR3izdiMAoYYoknySeryuQghXErTrIq7j9aLXKdBvZ4h23Bkd5+ucBizNKrdP7pmBq5+Xfc5N2TdRYa/AX+fPa8NfY37U/B55b9H9wr39SQoIJ6e21DUhYstmPs6M4Dep3hh0Gooba/ln9kYU1dXCfk5EIjqNtIyIo/wMZvQaLQ5V4UBtGTanA6NOz4q0FTQ7m/E3uFJDZ7WYdhtk7LlfUUKItp4b9hxvFr3JZsf7DDGeWTCy+LtqNMDjMwO7tG4n2lO/h99m/pa9DXvRa/TcM/geliQukYXs+qE5cWN4bvd3OFSFNzaYAZXEIdk8vTOd/Poqd7kgozcXRPXOH7TyqfQQg1bH2BDXwNIGh42vCjNRVRWT1uQORPLqKthclg+AWWdg9KAYT1VXCAHYnBoSDWnUUky1cqTN64V1Ve3sdVy9VWHbYRtjIo0EenfPb8EaWw0X7byI1J9SyWrIYnbIbKrOreKZYc9IINJPJfiHcPOIc9AoOo5UBODvbaVGLWodiJi8+fOoGfgZPZ/Tpj3SMuJBF0QnsaU8H4BVh/eSV1fJ1IgEvPVGMqqK2FByEOfR5ErTIhIx6eR/lxCeUmGt5/92fctY9Vr2s4P1zmVcpn2oVZl3D2wl0ORNanBUu8d4bE0VKrDo/K6fzqsoCn/e/2deOfwKTpyk+abx4agPGeY9rMvfS/Q+YwbFoK09F5UmzhlxvEU9zMuPaRFDOSciEW99710VWu5uHhTnN4grE8byUe4OAHJqS8mpbZsdb3hAGJe3SFojhOh5b+VsosbWRIA2gkGaWErULC6PS8LhNLCtvIBSax0KKm9kb+CpCbPbnTr59vZ6fI0afpXatcu5v3b4Ne46cBcNzgYijBEsG7mMWYNmdel7iN7v3R1WAswaVvzmfKxOOxqNBpNWj0bTu1fsBemm8biZ0cnclDSFkHbWszBqdZwfNZw7UiUJmRCelF9XyUFLOQCDTD68lfIaKip5bGZ23GgWj7+U0cHRAFiddjaW5rY5xob8JiobFa4Y1XWByLrqdcSuj+WWnFtQVIW/D/s7xdOKJRAZgN7fVYelWWXBBH80Gg1eeiNmnaFPBCIgLSO9woSwOMaFDiGrppj8ukocisIgsy9jQ2J7dbOaEAPFse5UgItjU5gWPpTLSi5j6eGl3BJ9Czqtjt/En8Xuo+uDbCnP5xcxI1od48FvXP33T3dBbpGCpgKuyLiCbXXb0KLlpqibeCXpFfRa+UofqBZ9W41OA0/M7JvrCMknt5fQajSkBEWREtR+X7MQwnNqmo8vs5AcGA7AtRHXclXmVTxT8AwPxD9AhLc/gUYvamxNrcoD2BwKGwqaSQ41EOF/5l+7jY5Grs+6nv+W/RcVlRmBM1g+ajlhxrAzPqbo+/aW2jhQ6eDi4V4eyejbFSQYEUKIU2jZTVprsxLq5ceVoVdyp/FOVlev5oH4B7ArThodtjblAZasq8Wpwv3nBpzR+yuKwqP5j/K3/L9hU20M8xrG8tTljPUfe+YnJfqMfbVl/O/wXgrrq6m1NfHHEdNaLWb65xUVALx42fEEaDk1pXyUu4PixlqCTN5cMjiVKeEJrY67tmgf3x7OotbWRIxvEFcljiPeQyu2980QSgghelCif6j73z+WuJZx0Gq1PJn4JGuq13Cw8SA/leVhU5xtygO8usWCWa9h3tjOZ778oOQDQn4M4Ym8J/DR+bA8ZTn7puyTQGQAsTkdxPgEcXXi+DavNdoU1hy0khxqYGiIq1u/wlrPS3vWkRQYzsNjL+aC6CT+ve8n9lQXuffbWl7Af3N3cOngVB4662JifAJ5MXMtFpu1x86rJWkZ6UaKqvBlQQY/leVjsVsJMHoxJTyeS2JTTzqoqK9FtEL0dxPDhvBx3g6sTgeby/IJMftxYcwIrg6/mnsP3Mui/U8zqOFCd/nkgHAKj+Z4yK/UUlzn5IpU71Z5PirtlQwyDGrzXsfssOzgqsyr2N+0H6PGyCPxj/Bo3KOSK2QASg2O6nC6+APfVKGordc5+r54PyFmX65McAWskd4BHKgt57sjOe6hAN8dyeaciESmRiQCcO3QiWRWFbGx9CAXxaZ08xm1JcFIN1p1KIvviw9wQ9LZRHoHUFBXxTv7N+OlM3J+dPtZ8I5FtOdGDuPG5Clk15Tw730/EWA0uz9ExyLaa4ZOIN4vhNVF2byYuZbHxl2Gfy9NaCNEX2bWGbh8yBg+yN0OwIrCDL47kkWMTxD+ziG8V/FPZukCGaJzffn/68BP7n2/3poMBPLMxcdvFq8dfo1bc25l3dh1TAua1uq9ymxlXJVxFWtr1qJBw5VhV7JsxDK89d4IcaK3t9cRaNbymxbTxXMtFSQHRrQqNzIokg+PppFwKE4K66q4OGak+3WtRkNyYAS5loqeqfgJJMTuRrl15aQNimZUcDQhZl/GhQ5mZGAkeXWVHe7TMqKN9A5gRlQSY0Ni+e5IjrtMy4g2yieAa4dOxKjVs7H0YE+clhAD0oyo4cweMsr93Op0cMBSji+uAa3fOJ/ngHNjq30UBY5U+BMboCE+2NWEfrDxIH/Z/xcUFO7YdwfK0cSGDsXBzVk3E/ljJGtr1jLBbwJ5U/L4cNSHEoiIdr2zvY66ZpVbJrVe58hit7b5YepvNGN12rE5HdTbm1FQ22Rj9TeaqbV7pptGgpFulOAXSnZNKaWNFgAO1VdzwFJOanBkh/t0FNEei1aPRbQjWpTxdEQrxECg0Wi4dPAoHjrrIqaGJ2A+mhHZS3PsRqCyxrmUbY6PUY8uSpZZEIGiavn9RNeXvlN1ct3e63CoDgDS69N5r+Q9Xih8Af/v/Xmj6A2iTFGsHbuWLRO3MMRrSI+fp+g7Hl9djV4Lj/XR6bwtSTdNN7oodiRWp53F21eg0WhQVZXL48YwKSy+w31OFdE2OmwdRrQlTZZuOQ8hxHGDfYO5bvjZXDf8bOyKkwcP7mR7oQ4nrsGrO5RPqFWLma6/mcz8CLQahevHGwD4f4f+HxtrW7eezN87HwUFH50PryS9wi0xt/T4OYm+Z3dxM7nVDn6Z7IVR37pdwd9gbjMQ1WKzYtYZMOr0aDUatGioa6dMgMEzXf0SjHSj7eUFbCnL58akKUT5BHKovpoPc7cTaPRi8gkDUoUQfY9Bq8PisLgGpKvHtx9UN1PdXE69411iB+nQaoPJasji/gP3tzmGgsLZ/mezftx6dJJpWZymv6xwdfe3nM57TIJ/CJlVRa22ZdWUkODvmuSg1+oY7BdMVk2pe4qwoqpk15QwI2p4N9e8fdJN040+zktnVuxIJoTFEe0TyNnh8VwQnczXh/Z2uM+pIlpfg6nXRbRCDGQ1jhqcqvOErSpVmjyYdDnJIzawuewg12Ze6x4fcqL0+nTK7eXdX1nRJ1mddg7VV3OovhqAQ3X1/JDfxMhw11ikT/PSeTvneIvb9MhhVFjr+ThvJyWNtawr2sf28kJmtpg4MTM6mfUlB9hUmktxYy3vHdiKTXG0mbnZU6RlpBvZFAdaWk/h1Wo0qC1/Qp2gL0a0QvQHVoedzwt2k155iDp7M7E+QcxNHEecX8fTb3NqSvmpIrv9v2mNE0wlfK95gMr8i9ip7uzwOHbFziO5j/DGiDe64lREP1NQV8XzGavdz//+UyFOZRiXjS0D4qm1NVHV3Oh+PcTsy59SzuOj3B2sOZJDoMmbecMntcrwPSF0CPV2K18U7MZisxLjG8QdKTPwN3r15Km5adRjI616MYvFQkBAALW1tfj7+3u6OqdtWc4msmpK+N2wiUR6B3Covpr/7N/ClIgEfhN/FgCf5qVTY2vkhqQpgGtq72Pbv+K8qOFMDU8gu6aUDw5u50+p01tN7V2Ws4nfDZtInN8gVh/JYXtFAY+N+6XHPkhC9HWvZ62nqLGWa4ZOINDoxU9leXx3JIdHx11KkKntbJYKaz2Pbv+KD5ofoELNa/WaBi0qCiZlEPG6MWSra9rsr0OHRqNBgwaH6kCDhuJpxZLaXZyS7+I8TDoNlYviPF2VUzrd+7e0jHSjqxLH83nBbt47sJU6ezMBRi+mRQ7ll4NT3WX6Q0QrRF9nczrYWXGIW1POZXiAKxi4bMhodlcd4fvi/cyJG9Nmn++L92PU6rCpx/9+tWhdg1Gdsah5f+TKFG/W2pYBYMKHGFMszXYt0V5hJPpG4avzxVfvi5/OjyhTFEH6vj8rQnSvf2610GBTWTjjzJYW6K0kGOlGZr2BuYnjmJs4rsMy1ydNbrPtWArfk5kRlcSMqPYTpwkhOkdRVRRU9JrWA0gNWj0HLe2P5ci1VKABbLiCEaPGyMyA2ZjqR/Gp7QUMiY+jV17luvAbKa78C1qNjrOCYzHp9DQ5bNyaMr27T0v0Q0+sqUGvhUXnB3q6Kl1KBrAKIQY8s95Agl8IKw9lUtPciKIqbC7LI9dSQa2tqd19LHYrKpCqvYgp+ms4cs4RlsS/QKh2KDpDPZf4XodWo+O3kZejPRrk2BSHRxNLib5txxErBTUOfpnsjV7fv27f/etshBDiDP0+aTKqCvdt+Yzb1n/A2iM5TAgdgoaO15Ey6QyM1c8hVXspzXY99c2u2TKza79j2VnPAVBYX+MuL12p4uc4Np33/13W/9Yhk24aIYQAQr38uHvMTJqdDqxOOwFGL17PWk+Iuf2Vdv0NZrQaDVXNDQB8lr+L/UWB2HQ6Xr5wCr4GV2Kp9SUH3PtMCB3MlrICmYYvOs1iVVhf0MyocAODA/vfrVtaRoQQogWTTk+A0YsGu4291cWMGRTTbrkE/xDqbFa89a7sql9k1bN8p4pB9cWprWdzWT46jYbKo8FKuJc/SQERZLeYqi/E6bpnZSWqCn9rseBif9L/wishhDgDe6qLUFWI8PanrKmOj/N2EuHtz9SjSaBOnIY/PXIY64r2MTIwkuXpNn7IjAc0NDr38/iOla2ObdDo+FXcGJYf3ObRxFKib1IUhf+k1xPireXiJJ9T79AHSTAihBBAk8POp/m7qGluxFtvZGxILHPixqDTuhqQ25uGf038dG74bxk5xce7ckxGR6vjBhm9UVB4M3uDTMMXZ+SNrfU02lXumx7o6ap0GwlGhBACGB86hPGhHa+Se+I0/JXZjVz3kZWaptZjSn4ROxyb04GPwcjYQbHE+Q1yrV0jxBn669pqDFp4cHr/yi3SkgQjQgjRCY02hbtXVvLKT3VoNaC0yGFt0MJVJ8krJERnbT1k5VCtk9+k9r/pvC1JMCKEEKdpx5Fm5r5fSm6VqytGOWExDaNOWkBE1/rLV67pvC/8sn8PepZgRAghTtNNn5RzoNLR4etGvQQjoutUNzrYVNDMmEgjMQH9+3bdv89OCCF+hi8LdrOiMNP9fNhQMw1qIvuK/dBpwHlCy4hJp2F7eSGfF+ym0lpPmJcfv45PY1RwtLuMqqp8WZDBjyUHaHLaSfQP4ZqhEwj36juLgIqecdfKalTg2X46nbclCUaEEOIkorwD+Muo893PdTM17C6COf8uobxBQQMci0l0OoU3szczJ34Mo4Oj2VKWzyt7f+Shsy4i2icQgG8OZ7GmKIfrkyYTYvbhi/zdvJi5lkfH/RKDVtfm/cXApCgKy3fVE+ajZeawtqtG9zf9dzSMEEJ0Aa1GQ4DRy/3wNZhJDtVT2aAwyFvL8BCDu6xDtZESHMmsmJFEegdwedwYBvsGsa5oH+BqFVl9JJtLBqeSNiiGGJ8gbkiaTE1zE+kVhzx1iqIXenlzHU0Olb9M7b8zaFqSlhEhhDiJsqY67v3pUwxaLQl+IfwqLo3rPrSgAO9fFcb5iV78e2c9D35ThclcR3JgRKv9RwZFsqvyMAAV1gYsdisjWpTx0huJ9wsht66CCWFxPXhmojdb8n0NRh3c14+n87YkwYgQQnQg3i+E64dPJtzbj1pbEysKMnls6xpW5owkJczIL442n18/zo9r03z504bN+BsmtTqGv8FMrc21Sq/F7loB2N/Yem0af+PxMkJsKrRyxOJk7igftNqB0YFxRme5dOlS4uLiMJvNTJo0iS1btnRY9o033mDatGkEBQURFBTEzJkzT1peCCF6i9TgKMaFDibGJ4iUoChuTz2P77ODQQPvXRXWqqxBp0GnVTs4khCnb+GKY9N5B3m4Jj2n08HIBx98wMKFC1m8eDE7duxgzJgxzJo1i7KysnbLr1u3jquvvpq1a9eyadMmYmNjufDCCzly5MjPrrwQQvSkPSUKGfnhTIhvYHSkqc3r/kYzFnvrFg6L3UrA0ZYQf4MrDbzlhFYQi+14GTGwVdQ7+OlQM2OjjET4D5zOi04HI88//zwLFizghhtuYOTIkbz66qt4e3vz1ltvtVv+3Xff5dZbbyUtLY3k5GTefPNNFEVh9erVP7vyQgjRk373QSkGnZN7zjO2+3qCXwjZNSWttmVVl5Dg50pYFWL2wd9gblWmyWEnr67CXUYMbHetrEIFnrt04LSKQCeDEZvNxvbt25k5c+bxA2i1zJw5k02bNp3WMRobG7Hb7QQHdzxvurm5GYvF0uohhBA97b+5O9hXU0qFtZ630g+zr8LB+KElzBoSB8DbORv5NC/dXf6C6CT2VBfz7eEsShpr+bJgNwX1VZwXNRwAjUbDBdHJrDyUya7KwxxpqOHtfZsINHmRFhLrgTMUvYmiKHyY0UCEr47zEgbWYoqdagOqqKjA6XQSHh7eant4eDjZ2dmndYz77ruPqKioVgHNiZ5++mkee+yxzlRNCCG6XHVzI2/mbKTB3sxXW4fjZfThndlp+B3tUqlqbkTD8ayrif6h3JQ0lc8LdvFZ/i7CvPz448hp7hwjALNiRmBzOvjP/i00OmwMDQjljpQZkmNE8OJGC1aHysJpA2MGTUs92iG1ZMkSli9fzrp16zCbO+4ffeCBB1i4cKH7ucViITZWfjUIIXrWghHnAPDaTxZeLqvgj5P8SAw8fqO4a3TbH1XjQgczLnRwh8fUaDTMjhvN7LjRXV9h0ac980MtJh3cdc7Ay8bbqWAkJCQEnU5HaWlpq+2lpaVERER0sJfLs88+y5IlS/juu+8YPfrkf4QmkwmTqe3gMCGE6GmKonDv15WY9RpeHECzG0TP+jGvieI6J9eMGTjTeVvq1BkbjUbGjRvXavDpscGokydP7nC/Z555hieeeIJVq1Yxfvz4M6+tEEL0sEdX12BpVnn4/MB+vYS78KyFX1WiAf4+QAPeTnfTLFy4kPnz5zN+/HgmTpzICy+8QENDAzfccAMA1113HdHR0Tz99NMA/O1vf2PRokW89957xMXFUVLiGkXu6+uLr69vF56KEEJ0LZtD4Znvawg0a3lggGTCFD2vrN7B9iM2xkUbCfMdONN5W+r0Wc+dO5fy8nIWLVpESUkJaWlprFq1yj2otbCwsFUT0yuvvILNZuOKK65odZzFixfz6KOP/rzaCyFEN7r180qanfDanOAB2XQuesadKypRGbitIgAaVVV7fcpAi8VCQEAAtbW1+PsPvIE9QoieV9XoIOzJQiL9dRy6f4inqyP6KUVR8F6UT7C3jqIH+9/n7HTv3wOzPUgIIU7hug/Lcarw1m9CPV0V0cdVWRuodzQD8NpmK/4mDdem+RHj58uzP1podsK95w7sbkAJRoQQ4gT51XZW5jSREmZwL4YnxJmosjbwyLYvcagKAG+tm4DDqeOR/9Vxy0R/3k+3YtZruGPKwG71l05QIYQ4wdXvl6HSdjE8ITqr3tHsDkQADHonAHaHnqWbGqloVAj10bK+oJk+MGqi20gwIoQQLWw9bGXzoWbOGWJqdzE8IX4O49FgBEA5GnsUWZxMf72YUS8c5oPd9R6qmWdJMCKEEC3M+6AcDfD+1eGnLCtEZ7UMRo5xHg1K9pTZ+eNnFTiVgddCImNGhBDiqBVZDeRU2Jkz0puYAPl6FF3PZHC0u12nhTAfHV/fEIFOq2m3TH8mf21CCHHUzZ9WoNfCO1fKWBHRPUwGBxpU1BYLLGo1MDrCyFfzI4j0H5i35YF51kIIcYLXfrJQXOfkj5P88DcPjB7sllNOj/HVmwg2+3ioRv2foZ1uml+n+PCv34biZRgYn7v2SDAihBjwBuJieCdOOT1Gr9HyxPjLJCDpIqVNllbPjQYnrhEhKqDh4RmBPDYzCO0A7JppaeCGYUIIcZR7MbwZA2cxvBOnnB7jUJU2rSWi81RV5cuCDN7M3thqu7VZD0e7aG6aVs1jvwgc8IEISDAihBjgWi2Gd97AzoIpus7/jmSxojDD/Vyv0RJu9qO2wRtQuWh8Flq/HD7K3em5SvYi0k0jhBjQZDE80dXq7c18WXA8EPnl4FHMjE7G7tDxwlcFXD3WQUB4HYoKa4pyOC9yGOHekoFVCCEGpOpGB8u21xEToGP++IF9MxBdZ1NpLnbFNVD13IihXDZkFF56A+/sqKPRrvJ/F8bzy8Gj3OW/L9nvqar2GtIyIoQYsK77aGAuhqeoCjvKD3X4eqPDdtL9f8hrwqzXMDHW3NVV6/MabQobDldSXOmH1aYnkcF85Wigzqbw5JoaLk3yIjpAT4D3ML4o2A3A/toyD9fa8yQYEUIMSPnVdr7KHniL4TkVhTeyN7CzsuNgZNm+zdw9eiYhZt9W2/eV21j4VSVf5TQxPtrI1j/FdHd1e0SjTaG4zkFxnZPSeoWyegeVDQqVTU6qmxRqrAoWq0Jds0K9TaXRrmC1q1gdKnYn2BUVpwLH86ZGHX3AtzsbgUb3KzOHuj5rvgYTJq2eZsWBzdl2uu9AI8GIEGJAGqiL4X2ct7NVIBLlHUCsTxC1tib21ZahoFLd3MhLe77n4bMuQq/VUd3k5LHV1by00XJsIghVTW1n4vSkrg8gTk6rcWVJNWg1GHUazHoNg7y1eBs0+Jq0+Jk0BJi1BJp1HLYWU2Wrwstk5zeJSfwqKRJ/sw6bQyHERwdAQV0VzYorG2uA0aubrlLfIcGIEGLA2TZAF8Ors1n5vtg1PkGv0fKHEdMYPSja/XqFtZ4XM9dS2lRHcWMtW0sL2ZYXzCP/q6LeprrWUDl6965v7nwwcsoAoknB0ux6NPRwABHspSXYW0uoj45QHx2RfjrC/fRE+GoxdnK6d0aVjZf2ZAJgMTgI84vCpNNybJimU1H4rGCXu/yE0CGdOn5/JMGIEGLA+d0AXQxvc1meO7fIjKjhrQIRgBCzL9cOnchzu1dzqDyQ2T/YqKivbPdYVU0K139U1jaAsClYHT0TQAR5aRnURQFEV0oJiiTMy4+ypjoONVTz1M5VXBCdTJxfMEWNtaw+kkNhfRUAPnoTE8PiPFbX3kKCESHEgHJsMbxfDcDF8I401rr/Pdx3MOvzmthYaOXlzRZi/PVotRrqmhUySifgVHScLIRwKPDODtdy920CCEPPtED0VlqNlgXJU3lu92qsTjslTRbePbClTTn90XIm3cD6HLZHroAQot84ca2V9tZZObYY3rIBtBhevVXhk70NvLrVj+yyMdRbTby+0gJYMOs1GHUQ7Q9DAvX4mjTUOis4VOmDw6lDQ8chSeXDgwn2kdtIewb7BnPvmF/wr32byT/aCtJSpHcAvxs6gaEBA+dzeDLyKRJC9AvtrbVy4jorrw+AxfBsDoWvspv4MruRLYet5Fc5aLAfCyfM6LQKvl5W0qIMPH7eYCYPMWPQHU9HnmupQNm1F1UFnS2G0uLhfJbViBZcY0ZasMokkJOK9gnkgbMuIr+ukvTKwzTYmzHrDaQGRTE8IAyNRtLAHyPBiBCiX2hvrZVj66wE44OiKNzTzxbDUxSFtQetfLa3kY2FVg5U2rE0H48YjDqI8ddzVrSRi4Z5M2OYlmczv0RBxajVER0SjEF3fCZHnc3Kewe2AqDRwO9So5k6M4L8ajsvbbLw2k8WGmyqu6Wk7gwGsQ5EcX6DiPPrH5+57iLBiBBiQDi2GN4TM4P65GJ4iqKw9bCNT/Y08GO+lZxyO9VNijsw0Gshwk/HtDgjM4d6ccUo33bHxEwOT2BD6UFsipP/2/UtqcFRDPUPo8Jaz9byfKxO13TTQSYf9yyPuCADz14yiEcvCOJfO+p4bn0tuVUOdPLLXnQRCUaEEP1ey8XwHpzRNxbDyyq18WFGA9/nNbGn1EZFo4JyNPLQaiDMR8f5iWZmJHhxxSgfkkKNp3XcqxLHUWGtJ6e2FBXIqCoio6qoVRl/g5k/pZyH8YSBlb4mLbdODuCWSf4U1jqICzJ0xakKIcGIEKL/6+2L4RXWOPgoo57vDjSRUWKjpM7pHp+hAYK9tUwebOLceDNXpPowNvrM07AbdXpuTz2P745k833Rfqptx7ODGrQ6JobG8cshqQSbfDo8hlarGdCByINbPqeyuaHN9umRw7hm6IR299leXsjnBbuptNYT5uXHr+PTGBV8fGq1qqp8WZDBjyUHaHLaSfQP4ZqhEwj3GhhrJkkwIoTo12qblF61GF5FvYP/Zjbyv/2N7Cy2ccTiwN5iIGiAWcNZUUamDDHzqxQfzo0zdXkAZdDquDg2hQtjRpBnqcBit2LS6Yn3C8Fbf3otLAPZA2mzUFrMMSpqqOWFzDWMCxncbvmDlnLezN7AnPgxjA6OZktZPq/s/ZGHzrqIaJ9AAL45nMWaohyuT5pMiNmHL/J382LmWh4d90sMWl1PnJZHSTAihOjX7vyiEacK//x1SI+/d71V4bOsBr7OaWTbERuFNQ6sjuM3MR+jhuRQA2fHmrlshDezhnn1aK4NnUYrU0vPgJ+xdcvUqkN7CTX7MryDa7n6SA4pwZHMihkJwOVxY8iqKWFd0T6uHTYRVVVZfSSbSwankjbItd7PDUmTuXvzJ6RXHGLCAEiKJsGIEKLfqms0suaAg5FhBi4c3rbboaLByQ95Vn6V4v2zp1naHApf72viy6xGfjpkJa/VlFrw0msYEqhnfIyJS5O9mJ3sg4+p93UZic5xKE5+KstnZnRyh5+h3LoKZkYnt9o2MiiSXZWHAaiwNmCxWxkRGOF+3UtvJN4vhNy6CglGhBCir3AobZNerE4fhgq8O7ftL9Zth5u5/F8lFNU52fOXGEaGn373hKIorMtr5rM9DWwssLK/oym1UUYuHObNFaO8CfaWr9v+KL3yME0OG1PC4zssY7FZ8Te0bk3xN5iptVldr9ubXNtOaHHxNx4v09/JX4cQok9TVIVvDmfx7eGsVtvLa70pq/FlVKRKWlTrxfDe2mbhlk8r3LNTth1p7jAYURSF7UU2Ps5s4Mc8K9kdTKk95+iU2is7mFLbE74s2M2KwsxW28K9/Hl8/C873EcGVv48G0oOkhIcSaDJ29NV6dMkGBFC9FmKqvBG1gZ2VB5q89qa9KEAjErewaZSDZPDE2h2qNzxRQWvb61zlzNoYevhZq4b6wdATrmND3Y3sC63ib1ldsobnK2m1Ib66JiRcHxKbXJY7xrwGeUdwF9Gne9+frJcIDKw8ueptDaQVVPKLSOnnbScv9GMxd66hcNitxJwtCXE3+BKPGexWQkwHk9CZ7FZifUN7NpK91ISjAgh+qxVh/a6AxENkBIYyRC/QWzMg9oGL+LCq/D1svOv/T+hVwL548eN7CyytTqGXYF/7ajjsz0NlNQ7cRxNKnpsSu3Zg02cG2fmN6k+jIs29foU3lqNptUN7WRkYOXPs7H0IH4GE6OCo05aLsEvhOyaklbjRrKqS0jwcw2qDjH74G8wk11TQqxvEABNDjt5dRVMjxzafSfQi0gwIoTok+yKkzVFOYArcPhTynmkHr0pLPriEAatnQd/obKtCg5X+HHet1VY7Vp3K0dLrvEeTsZEGpk6xMzlI304L77rp9T2hLKmOu796VMMWi0JfiH8Ki6tzWKBx8jAyjOnqCobS3OZHJ6ATtP6c/J2zkYCjd78Kj4NgAuik3h293d8eziLUcFRbC0voKC+it8NmwiARqPhguhkVh7KJMzLjxCzL58X7CbQ5EVaSGxPn5pHSDAihOiT9lQVUWd3rdA7LmSwOxDZVGBlV7GdxRcE0mwJ4pP1ZiosHSfwOmbdzdGcdcLYkr4m3i+E64dPJtzbj1pbEysKMvm/3d+yeOylmPVtk5TJwMozl11TQlVzI1PDE9q8VtXciIbjLWiJ/qHclDSVzwt28Vn+LsK8/PjjyGnurjCAWTEjsDkd/Gf/FhodNoYGhHJHyowB0xUmwYgQok+qaJEBc9Qg14BLVVW5ZFkJGuCx1TXotOBjNKPVqCiq69erXou7K+YYDa5xI309GElt0V0Q4xNEvF8ID2z5nG0VhZwTkejBmvU/I4MieW3aNe2+dtfomW22jQsdzLjQ9pOigat1ZHbcaGbHje6yOvYlEowIIfokbYtfnlaHHQCnApNiTSQG67n2LD/SIo28mr2WnNpSGpsNTA+8gA35DlblNFFS70SDa3VaVXUFIzdP9NDJdBNvvZFwLz/Km+rafV0GVoreQoIRIUSfNMQv2P3vTWV5TI8chl6nYdXvI93bK6z17KstAyDKT8/vxwVx03gNqqqyr8LOdwea+N/+JlYfbKLBprR5j77O6rRTbq3n7A4GtMrAStFbSDAihOiTEvxCiPIOoKixlvy6Sj7K28Gv4tLcfeyV1gZez1qPejQjyDkRQ9EenQmj0WhICjWSFGrktskBOBUVbe+eJHNa/pu7g9HB0QSbfai1NfFlQQZaNEwIHQLIwErRe0kwIoTokzQaDZfHjeGVvT8Armmqm0vzSQ4Mp8lhI7um1L2YWYDRi/Mih3V4LF1/iESA6uZG3szZSIO9GV+DiaH+odyfdqF7LRUZWCl6K42qqu1MdOtdLBYLAQEB1NbW4u8vWf+EEMd9X7Sf9w9upaMvsgCjF39OndHqBiuE6Bmne/+WlhEhRJ82PWoYQ/yCWX0khx0VhThU19gPf4OZaRFDOS9qeJupqUKI3kVaRoQQ/Uaz00GtrQm9RkugyQutpu8lLROiP5GWESHEgGPS6Qnz8vN0NYQQnSQ/G4QQQgjhURKMCCGEEMKjpJtGCNFrWR12Pi/YTXrlIerszcT6BDE3cRxxfoM63CenppSPcndQ3FhLkMmbSwanMuWE9UPWFu3j28NZ1NqaiPEN4qrEccQfTfQlhOh50jIihOi1/rX/J7JqSrghaQqLxl7CyKAI/p6xhurmxnbLV1jreWnPOpICw3l47MVcEJ3Ev/f9xJ7qIneZreUF/Dd3B5cOTuWhsy4mxieQFzPXYhngC78J4UkSjAgheiWb08HOikP8Jj6N4QFhhHn5cdmQ0YR5+fJ98f529/m+eD8hZl+uTBhLpHcAM6KSGBsSy3dHctxlvjuSzTkRiUyNSCTKJ4Brh07EqNWzsfRgT52aEOIEEowIIXolRVVRUNFrWmf6NGj1HLSUt7tPrqWC5MCIVttGBkWSa6kAwKE4KayrYkSLMlqNhuTACHcZIUTPk2BECNErmfUGEvxCWHkok5rmRhRVYXNZHrmWCmptTe3uY7Fb2yQ48zeasTrt2JwO6u3NKKju9Ogty9TapZtGCE+RAaxCiF7r90mTeWffT9y35TO0aBjsG8SE0CEU1ld5umpCiC4kwYgQotcK9fLj7jEzaXY6sDrtBBi9eD1rPSFm33bL+xvMbQaiWmxWzDoDRp0erUaDFg117ZQJMEjKeCE8RbpphBC9nkmnJ8DoRYPdxt7qYsYMimm3XIJ/CNk1Ja22ZdWUkODvmrar1+oY7BdMVk2p+3VFVcluUUYI0fMkGBFC9Fp7qovIrCqiwlrP3upins/4jghvf6YezRvyaV46b+dsdJefHjmMCms9H+ftpKSxlnVF+9heXsjM6CR3mZnRyawvOcCm0lyKG2t578BWbIqjTS4SIUTPkW4aIUSv1eSw82n+LmqaG/HWGxkbEsucuDHotK7fUbW2Jqpa5BwJMfvyp5Tz+Ch3B2uO5BBo8mbe8EmkBEW5y0wIHUK93coXBbux2KzE+AZxR8oM/I1ePX5+QggXWbVXCCGEEN3idO/fZ9RNs3TpUuLi4jCbzUyaNIktW7actPxHH31EcnIyZrOZUaNGsXLlyjN5WyGEEEL0Q50ORj744AMWLlzI4sWL2bFjB2PGjGHWrFmUlZW1W37jxo1cffXV3HjjjezcuZM5c+YwZ84cMjMzf3blhRBCCNH3dbqbZtKkSUyYMIGXXnoJAEVRiI2N5fbbb+f+++9vU37u3Lk0NDSwYsUK97azzz6btLQ0Xn311dN6T+mmEUIIIfqebummsdlsbN++nZkzZx4/gFbLzJkz2bRpU7v7bNq0qVV5gFmzZnVYHqC5uRmLxdLqIYQQQoj+qVPBSEVFBU6nk/Dw8Fbbw8PDKSkpaXefkpKSTpUHePrppwkICHA/YmNjO1NNIYQQQvQhvTLPyAMPPEBtba37cejQIU9XSQghhBDdpFN5RkJCQtDpdJSWlrbaXlpaSkRERLv7REREdKo8gMlkwmQydaZqQgghhOijOtUyYjQaGTduHKtXr3ZvUxSF1atXM3ny5Hb3mTx5cqvyAN9++22H5YUQQggxsHQ6A+vChQuZP38+48ePZ+LEibzwwgs0NDRwww03AHDdddcRHR3N008/DcCf//xnpk+fznPPPcell17K8uXL2bZtG6+//nrXnokQQggh+qROByNz586lvLycRYsWUVJSQlpaGqtWrXIPUi0sLESrPd7gMmXKFN577z0efvhhHnzwQYYNG8Znn31Gampq152FEEIIIfosSQcvhBBCiG7RrenghRBCCCG6igQjQgghhPAoCUaEEEII4VESjAghhBDCoyQYEUIIIYRHSTAihBBCCI+SYEQIIYQQHiXBiBBCCCE8SoIRIYQQQnhUp9PBe8KxJLEWi8XDNRFCCCHE6Tp23z5Vsvc+EYzU1dUBEBsb6+GaCCGEEKKz6urqCAgI6PD1PrE2jaIoFBUV4efnh0aj6bLjWiwWYmNjOXTokKx5043kOvccudY9Q65zz5Dr3DO68zqrqkpdXR1RUVGtFtE9UZ9oGdFqtcTExHTb8f39/eWD3gPkOvccudY9Q65zz5Dr3DO66zqfrEXkGBnAKoQQQgiPkmBECCGEEB41oIMRk8nE4sWLMZlMnq5KvybXuefIte4Zcp17hlznntEbrnOfGMAqhBBCiP5rQLeMCCGEEMLzJBgRQgghhEdJMCKEEEIIj5JgRAghhBAe1e+DkaVLlxIXF4fZbGbSpEls2bLlpOU/+ugjkpOTMZvNjBo1ipUrV/ZQTfu2zlznN954g2nTphEUFERQUBAzZ8485f8XcVxnP9PHLF++HI1Gw5w5c7q3gv1EZ69zTU0Nt912G5GRkZhMJoYPHy7fH6ehs9f5hRdeICkpCS8vL2JjY7nzzjuxWq09VNu+6YcffuCyyy4jKioKjUbDZ599dsp91q1bx9ixYzGZTAwdOpRly5Z1byXVfmz58uWq0WhU33rrLXXPnj3qggUL1MDAQLW0tLTd8hs2bFB1Op36zDPPqHv37lUffvhh1WAwqBkZGT1c876ls9f5mmuuUZcuXaru3LlTzcrKUq+//no1ICBAPXz4cA/XvO/p7LU+Ji8vT42OjlanTZumXn755T1T2T6ss9e5ublZHT9+vHrJJZeo69evV/Py8tR169ap6enpPVzzvqWz1/ndd99VTSaT+u6776p5eXnqN998o0ZGRqp33nlnD9e8b1m5cqX60EMPqZ988okKqJ9++ulJy+fm5qre3t7qwoUL1b1796r/+Mc/VJ1Op65atarb6tivg5GJEyeqt912m/u50+lUo6Ki1Keffrrd8r/97W/VSy+9tNW2SZMmqX/4wx+6tZ59XWev84kcDofq5+envvPOO91VxX7jTK61w+FQp0yZor755pvq/PnzJRg5DZ29zq+88oqakJCg2my2nqpiv9DZ63zbbbep559/fqttCxcuVKdOndqt9exPTicYuffee9WUlJRW2+bOnavOmjWr2+rVb7tpbDYb27dvZ+bMme5tWq2WmTNnsmnTpnb32bRpU6vyALNmzeqwvDiz63yixsZG7HY7wcHB3VXNfuFMr/Xjjz9OWFgYN954Y09Us887k+v8xRdfMHnyZG677TbCw8NJTU3lqaeewul09lS1+5wzuc5Tpkxh+/bt7q6c3NxcVq5cySWXXNIjdR4oPHEv7BML5Z2JiooKnE4n4eHhrbaHh4eTnZ3d7j4lJSXtli8pKem2evZ1Z3KdT3TfffcRFRXV5sMvWjuTa71+/Xr++c9/kp6e3gM17B/O5Drn5uayZs0arr32WlauXMmBAwe49dZbsdvtLF68uCeq3eecyXW+5pprqKio4JxzzkFVVRwOB7fccgsPPvhgT1R5wOjoXmixWGhqasLLy6vL37PftoyIvmHJkiUsX76cTz/9FLPZ7Onq9Ct1dXXMmzePN954g5CQEE9Xp19TFIWwsDBef/11xo0bx9y5c3nooYd49dVXPV21fmXdunU89dRTvPzyy+zYsYNPPvmEr776iieeeMLTVRM/U79tGQkJCUGn01FaWtpqe2lpKREREe3uExER0any4syu8zHPPvssS5Ys4bvvvmP06NHdWc1+obPX+uDBg+Tn53PZZZe5tymKAoBerycnJ4fExMTurXQfdCaf6cjISAwGAzqdzr1txIgRlJSUYLPZMBqN3VrnvuhMrvMjjzzCvHnzuOmmmwAYNWoUDQ0N3HzzzTz00ENotfL7uit0dC/09/fvllYR6MctI0ajkXHjxrF69Wr3NkVRWL16NZMnT253n8mTJ7cqD/Dtt992WF6c2XUGeOaZZ3jiiSdYtWoV48eP74mq9nmdvdbJyclkZGSQnp7ufsyePZsZM2aQnp5ObGxsT1a/zziTz/TUqVM5cOCAO9gD2LdvH5GRkRKIdOBMrnNjY2ObgONYAKjKMmtdxiP3wm4bGtsLLF++XDWZTOqyZcvUvXv3qjfffLMaGBiolpSUqKqqqvPmzVPvv/9+d/kNGzaoer1effbZZ9WsrCx18eLFMrX3NHT2Oi9ZskQ1Go3qf//7X7W4uNj9qKur89Qp9BmdvdYnktk0p6ez17mwsFD18/NT//SnP6k5OTnqihUr1LCwMPXJJ5/01Cn0CZ29zosXL1b9/PzU999/X83NzVX/97//qYmJiepvf/tbT51Cn1BXV6fu3LlT3blzpwqozz//vLpz5061oKBAVVVVvf/++9V58+a5yx+b2nvPPfeoWVlZ6tKlS2Vq78/1j3/8Qx08eLBqNBrViRMnqps3b3a/Nn36dHX+/Pmtyn/44Yfq8OHDVaPRqKakpKhfffVVD9e4b+rMdR4yZIgKtHksXry45yveB3X2M92SBCOnr7PXeePGjeqkSZNUk8mkJiQkqH/9619Vh8PRw7Xuezpzne12u/roo4+qiYmJqtlsVmNjY9Vbb71Vra6u7vmK9yFr165t9zv32LWdP3++On369Db7pKWlqUajUU1ISFDffvvtbq2jRlWlbUsIIYQQntNvx4wIIYQQom+QYEQIIYQQHiXBiBBCCCE8SoIRIYQQQniUBCNCCCGE8CgJRoQQQgjhURKMCCGEEMKjJBgRQgghhEdJMCKEEEIIj5JgRAghhBAeJcGIEEIIITxKghEhhBBCeNT/BxSDA/zkf0wLAAAAAElFTkSuQmCC",
"text/plain": [
""
]
@@ -630,7 +621,7 @@
},
{
"data": {
- "image/png": "iVBORw0KGgoAAAANSUhEUgAAAiMAAAGdCAYAAADAAnMpAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjcuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/bCgiHAAAACXBIWXMAAA9hAAAPYQGoP6dpAADjOklEQVR4nOydd1gUZ9eH75mtlF16B0VsqNhb7DUxmpiemJhm2pveTDWJ6YlppvcvxfRiEk0z9t4rKiqiUqXDAktbtsx8fwyCKFiBRZj7uvaSnXnmmTMD7pw9zzm/I8iyLKOioqKioqKi4iZEdxugoqKioqKi0rZRnREVFRUVFRUVt6I6IyoqKioqKipuRXVGVFRUVFRUVNyK6oyoqKioqKiouBXVGVFRUVFRUVFxK6ozoqKioqKiouJWVGdERUVFRUVFxa1o3W3AqSBJEllZWZhMJgRBcLc5KioqKioqKqeALMuUlpYSHh6OKDYc/zgnnJGsrCyioqLcbYaKioqKiorKGZCRkUFkZGSD+88JZ8RkMgHKxZjNZjdbo6KioqKionIqWK1WoqKiap7jDXFOOCNHlmbMZrPqjKicNRZbOWXOqpr33loD/kYvN1qkoqKi0ro5WYrFOeGMqKg0FhZbOTO3/o1Tlmq2aQWRlwZMVh0SFRUVFTehVtOotCnKnFV1HBEApyzViZSoqKioqDQvqjOioqKioqKi4lZUZ0RFRUVFRUXFrajOiIqKioqKiopbUZ0RFRUVFRUVFbeiOiMqKioqKioqbkV1RlTaFDan090mqKioqKgcg6ozotImcEkS89N2siIrqd79m/PSiPLyU3sfqaioqLiB046MrF69msmTJxMeHo4gCMyfP/+kx6xcuZJ+/fphMBjo1KkTc+bMOQNTVVTODJcs8em+NSw+vA+H5Kp3zJLMffyeEt+8hqmoqKioAGfgjJSXl9O7d28++uijUxqfkpLCRRddxJgxY4iPj+ehhx7i9ttvZ9GiRadtrIrKmbDkcCK7LJkAaASRQUHtmRLTn6ui+xLrE1I7LnMfuwoz3WWmioqKSpvltJdpJk6cyMSJE095/KeffkqHDh2YPXs2AN26dWPt2rW88847TJgw4XRPr6JyWrhkiRVZ+2ve399jNN38Qmvenx/VjRVZ+/n50DYAlmUl0isgotntVFFRUWnLNHkC64YNGxg/fnydbRMmTGDDhg0NHlNVVYXVaq3zUlE5Ew6U5FFsrwSgl39ErSNSVFAzZlRYF4KN3gAkFudSUj1eRUVFRaV5aHJnJCcnh5CQkDrbQkJCsFqtVFbW/6E/a9YsfHx8al5RUVFNbaZKK6WoqqLm526+tRERJneBceGw6FdEp5PYo/YVV6nOiIqKikpz0iKraWbMmMH06dNr3lutVtUhUTkjdKKm5ucSR7WTcXAPWIugQyw8NgWCI4jrdx6yr5kqgwc+KVlQZYfS4tqXtQiKC6HfcHjyfXdcioqKikqrpcmdkdDQUHJzc+tsy83NxWw24+HhUe8xBoMBg8HQ1KaptAFiTIEIgAxszE3h4nY90X3yPPgHw287ISUR2/fv0HP+HHpXHyMDaLQgCCDLILmUfwFCVadYRUVFpbFp8mWaIUOGsGzZsjrblixZwpAhQ5r61Coq+Bu96OmvJKQW2yv5YeWvyEt+g7iBoNOTGdGOty67hvfveQxJEJEBAcDlBKdD+feIIwIw9QF3XIaKiopKq+a0nZGysjLi4+OJj48HlNLd+Ph40tPTAWWJ5aabbqoZf9ddd5GcnMzjjz9OYmIiH3/8Mb/++isPP/xw41yBispJuKR9L/TVyzV9vnwLgC8vuIiXti/gxe0LyCgvYl+PPsx54GklGtIQ7bvA4LHNYbKKiopKm+K0nZGtW7fSt29f+vbtC8D06dPp27cvzz77LADZ2dk1jglAhw4d+Pfff1myZAm9e/dm9uzZfPHFF2pZr0qzEeXtx709RuEpC/TcE0+hfxCb/Xw4XF5cM8bf4MnE6x5BmPFhwxMV5cMvn4AkNb3RKioqKm0IQZaPjkG3TKxWKz4+PpSUlGA2m91tjso5iu29JzF++Tq/TruPZQOVZcJwTx9GhHZiSEgMHlqdMvD1B+GHD6jOHlHQaABBWbYxeMCFU+CR2eDr3+zXoaKionKucKrPb9UZUWk7jAgAexVsKsMhuRAR0Ij1BAddLrh/MqxfrCSvajRw3X0w/S34+nX44X2w5ClLOj0GwmNvQ99hzX89KioqLRaLrZwyZ1XNe2+tAX+jlxstcg+qM6KicjQr/4YHLoFr7oZnPj75+PJSuGEIHNoLyPDPAWjXqXb/5uUw+zHYt115HxgGNz0CNz0M9Tk4KioqbQaLrZyZW//GKdcu6WoFkZcGTG5zDsmpPr/VT02VtsF7M0AQYfobpzbeywSf/Ad+gTBiUl1HBGDQWPhlG6zIhUlTocQCbz8KAz3h8eugIKfxr0FFReWcoMxZVccRAXDKUp1IiUpdWqTomYrK6SDJEn+n7WZTXipWhw0fvQdDQzowKSoOQRAgKw0O7YH+o8DTu+a4/cW5zE3eTnZFCX4GTya1i2NoSEztxKFRrP7iP5blHKRg7c9Eevtxbcf+dDAF1o4JCIbXfoBXv4Mf3oM5b8HCn5VXbF+Y/iacN64Z74aKiorKuYcaGVE551mYsY9V2Qe5rtMAnu9/EVdE92HR4X2syEpSBrz+oPLvE+/WHFNgK+PDPSvp6hvCM/0mMi6iK98lbWJPUVbNmC35afySe4ALOg/g6b4TifTy5f2EFVjttuONEEW48WFYlgnfrYde58H+ePjfeBgVDJ++CE5n090EFRUVlXMY1RlROedJLs2nT0AEPf0jCDR60z+oHd19w0gpLQS7HVb/C+HtIbZPzTGrsg8QaPTm6ph+hHn6MCa8K/0Co1iaWdvhd2lmIsNDOzIstCPhXj5c32kQelHL+txDJzao9xD4fgOsKoDLb4WKMvj4ORjkCQ9dAdnpJz5eRUVFpY2hOiMq5zwxpiASi3PJrVC6O2eUFXHQmk+cfxj838tKOe7/ZtY5JtlaUKc5HkB3vzCSrUo3X6fkIr3UUqe5nigIxPqG1ow5Kb7+8MKXsKkMZn6qJLkunwcT2sPlcbDyr7O4ahUVFZXWg5ozonLOc2FUd2wuB89t+wdBEJBlmUujezM4uAP8/DF4eCkRiqOwOmyY9cY628x6IzaXA7vLSYXTjoSMqZ4xOZXW0zNQFOHqO5XXvh3wxkOwfS08cCmY/eCau+Cu50GvP4OrV1FRUTn3USMjKuc82/LT2JyXym1dh/JM34lM6zKEJYf3sWPRD1BSCBffeGKZ9+akW1/4ehVsKIFr7lH633wxCwZ7wj2TIO2Auy1UUVFRaXZUZ0TlnOf3lHgmRHVnYHA0EV6+nBfSgXERsdjnfak4IQ+/ftwxZp3xuERUq92GUaNDr9HirTMgIlBazxgfXd1oyRnh6Q3PfAQbS+HlbyAsGtb+B5O7wOSusOjXsz+HioqKW3C4XO424ZxDdUZUznnskhORupEPfVEhfbasg74jwPt4oZ0YcyCJxXW1QPYV5xBjVsp2taKGdiZ/9hXn1uyXZJnEo8Y0GpfcBAsOwrw9cN54yDgEj02BoT7wxsNQUdG451NRUWkSnJKL+ak7eX/Pinr3Jx31eaJSF9UZUTnn6eUfwYKMBHZbMimwlbGjIIPyeV+gczrg8XcAmJcSz9f719ccMyqsMwW2Mn5P2UFORQkrs5LYlp/O+IiuNWPGR8SyNucgG3KTya4o4ceDW7BLzrpaJI1Jx+7w+RLYWAY3TgcE+P5dGGqCO8bDwT1Nc14VFZWzxim5+GTvav7L2IPNVX8Z/9yUHazOPtjMlp0bqHLwKuc8NqeDP9N2EV+YQamjCl+tnicfnoanyQ9xUSoAc/ZvoLCqnEd6ja857mjRM1+DJxcdK3oGrMjaz+LD+7DabYroWUx/OjR2ZORELJ4LH86E1OqS44gOcOdMuOyW5rNBRUXlpMxP3cl/GcoXBlEQ6OMfSTuTP1VOBzstmWRVlAAgIPB03wuJ8vZzp7nNhtqbRqXt8snz8MkL8OxncNX/3G1N45BxSBFvW7dIKVX28FIScx9+vd5lKBUVlebD7nLyxOb5VDjtiAg83HMsXXxDavbLssyvydtYXi3EODQkhpu7nOcuc5sVtTeNStvlpw/B6AlX3O5uSxqPqI7w4T+wqRzueBr0Bpj7KQzzhZtHwJ6t7rZQRaXNstuSRYXTDsCg4PZ1HBFJciIIApdF98FDowMUdWeHpCa5Ho3qjKi0Ltb8B8WFcPENrbN7rl4P978MawoV56RTHOxYC9cNhAvaKboqknTyeVRUVE4LSbYhy/X/37JUlVMhlZDkWssa+ys8nzKEP4qCWF8p8FNROAAGjZYuPsEAOCQXZQ61ad7RqKJnKq2Ld59Qynmnv+luS5qekRcpr5wMpepm5V/w6r0w+1GYMAUena2owKqoqJwVTtnCLkcEMnaQTVS4DBTYIdtWhdVZiVa0M6o7tPcAfz0cLId2npBvF0ks9YYAZZ7y6ugJgEZohV+WzgL1bqi0HnIy4MBu6DusbeVRhEbB27/B5golauJlgr/mwKhAmDoYdqxzt4UqKucUTsnJ2qK1vJj8IpfuvJSeG4eQV1UFSCCU4KnNo51nHoP8Sjg/2M7oAOhjVhwRu0vkPK/76KXPYHH2A/ycpQEgp8LKIWs+AAEGL0w6gxuvsOWhRkZUWg9HuvM+/q5bzXAbWq2ST3LH07BpGbz9OCRshpuHK31xbpquvFrj8pWKyhlQ6ixluWU5q4tXE18Wz6HKQ+TZ86iUKgHQAF29YWSgiEsGWa4r5nzkZ0FQ9lltgczd9RrDQ3txRYcQ+pr68m7GuxywHuanA7s4Ui0yMqwTQktRhW4hqNU0Kq0Dp1PpihsYBovT3G1Ny6EgF96aDkt+B0cV6Aww7nJFfyUw9OTHq6i0Ag7bDrO4cDEbrBvYXbabNFsahY5CHLKjZoyAQIDWi7GBnozwl+hqKsdXV4lY7TOImJFoqC+VBlwdmbPjMewuTwCMGi0eHiW8bvkfI8Tb6aYdAyhRkaf7TsRL1zZ6UZ3q81uNjKi0Dr54VenzcsdT7rakZREYAq/9AK9+Bz+8B3PegoU/K6/YvvDwGzBk/MnnUVFp4UiSxK7yXSyzLGOzdTP7yvdxuOowJc4SJGoTTzVo8NX5EucVR19TB8YG2uliykSrOVTtbJQBoCUIT2EkZi5FopQC+RPs9TojGnSEEGtcwbUxlXx/YDMSMjaXk9SSwwBslH6gszyMEKMfD8aNaTOOyOmgRkZUWgcjg8BWofR6UZchTkz8enjrEdi9SYkt+wXBdffB7U8pSz0qKi0Yu2RnTdEaVhavZFvpNg5UHCDHnkOZq6zOOL2gJ1AXSAePDvTy7sUwn2GM9o8Bzd+USIupYh8SR1otCOgIx1MYhL94Nb7CldhJ4bDrUazyYmTsCOgw0otKth11FhERb2J1G/EQugGQWV7M8qz9bM5LZaPjN7a6fgNggvlK/uj7I57atuWIqKJnKm2HtQvhnomKrsjz/+dua84dii3wzmOw4CeoqgStDkZeDE+8C2Ht3G2dShvHYrewtGgpa4vXsrNsJ8mVyeTb86mS65bEeolehOhD6OTZiX6mfoz0Hcko31F4aj0pl7ZS6PqWUnk5VRxE5sixGvS0w1sYhr/mOkxciCiKSJKTPOk98qT3cJABgI72hIgPESQ+gCBI7HJE4SQHZWFHRxftCrzFocfZ75IkBm8ZzLayWg2gb7p/w01hNzXVLWuRqM6IStvhqt5KFc0aC5h93W3NuYckwW+fwxezICdd2daxBzz4Koy+xL22qbR6kiuSWWJZwgbrBhLKEki3pVPkLMIp1/Z3ERExa81EGCKI9YxlgHkA4/zG0d/UH7E6EipJEqWsoMj1A2XyGqpIBZQ5BPToicEkjMZfcwMmcVgdGyqkBDJdj2GVlwJOBPSYhYlEal7HKHatMzbL+RzZ0ouAQEftPHzFS+u9riJHEQGrA5CpfcQaBANbB20lzjvubG/bOYPqjKi0DXIPw/lR0GcYfLvW3dac++zbAW88BNvXgiyB2Q+uvhPufkERXFNROQMkSWJL6RaWFy1nq3UriRWJZNoysbqsdR7WWkGLv9afdsZ2xHnHMcRnCOf7nU8Hzw71zOmkRP4Ti/Qr5fIGHGRCdW6IgAdGumASzydAvBlP8fiHvyQ5yZXeJF/6qPpY0BNDiOYRAoW7apycY7HLGexz9Cdc8zJBmobbTfya+ytTEqbU2aZBQ7RHNDsG7cCkNZ30vrUGVGdEpW0w/SpY+jv8tAV6DHC3Na2H8lJ450n451uoKAONBoZcAE+8B+07u9s6lRZKhbOClcUrWVW0iviyeA5WHCTHnkOFVFFnnFE0EqQLIsYjht6m3ozwGcE4v3H46RtuHidJFVjkXyiSfqdC3oqTPKh2ZERMGOmOjziRAHEaBrF9g/OUS9vJdD1BqbwSJQpiwEe4mAjNmxjF452e+pBlCeEkomW37L2F73O+rxPhAcUhuTL4Sn6O+7lNlPeqzohK66emnDcUFqe725rWy1/fwqcvwuFDyvv2XeDeF+HCKSc+TqXVkmfPY3HhYtYVr2NX+S5SK1MpcBRgl+11xnlrvAnTh9HZszP9zf0Z7Tua4b7D0Ysnj7I5JQuF8neUSH9RIcfjwlKzT4MfHkJvfIXJBIg3oRVP3ElbkuzkSLPIlz6tzvcAA50J0TxOgHBrg1GQozm2O3iUlx9TOvYn2hRw3FhZlglZE0K+I7/B+T7s8iH3Rt3LiqwklhzeR4m9UukM3rE/HUzN2Bm8iVGdEZXWz2cvw0cz4emPYcrd7ram9XNoryIst3kFSC7wMsPlt8J9r4Cnp7utU2kC9pXtY6llKRutG9lbvpcMWwbFzmJc1DZ5ExHx1foSaYikm1c3BpkHMd5/PHFecaf0kD+CXTpMgTQHq7SAShKQKK3ZpyUYT6E/vuIV+AnXohW9T2nOMmkTma4nKZPXAC4EPPAVLiVS8zp68fSStD/ft5asihKmdhqIr96DTXkpLM3cz/P9L8LPUPfvf2fpTvps7lPvPFq0OHHSwdiBX7qsYM7+DUztNJAOpkCWZSWyvSCdF/pPxqw3npZ9LRXVGTlFLLZyypx1s7O9tQb8jV6Neh6VJmBUsLKEsKlMLedtTiorFSfwjy+grES59wPHKMq3ndtOYl5rwSk52ViykeVFy9lWuo39FfvJqsqizFVWJ59DJ+gI0AUQbYwmzjuOoeahnB9wPpHGyDM6b6W0j0JpDlZpCTYSkams3iOiIxwv4Tz8xKvxFS5DPIVIyhEkyUa29BIF0hfVSzlgIJZQzQz8hRtOy0E6gt3l5MH1c7mnx0h6+kfUbH9lx3/08Avnsujedca/kfYGTxx8AgER+SiNk1j9ACK0nbkj5lKG+wzn28QEor39ua7TQMV2WWbG5vmMCe/ChVE9TtvOlogqenYKWGzlzNz6N85jOjFqBZGXBkxWHZKWzIYlUJQPl9+mOiLNjYcHPPqW8lo8Fz6cqcjPX9kTIjrAnTPhslvcbaXKMVidVpZZlrG2eG290udH8BA9CNYHM8g8iL6mvgz3Gc4Y/zGYtWf3RbBM2kSh61vK5BVUcUhpOgeAtrrMdgT+musxMe6MHIZSaS2ZzhmUsx6QEPHEX7iRCM1r6MXws7JdkmUkZLSCps52nait6TdzNP1M/eilH0U3z+7c1P5iVhet5vX017k/7HH258GUkKtxSi7SS1czMbJ7zXGiIBDrG0qyteCs7D0XadPOSFJJ3nGOCIBTliiqqlCdkZbM7MeUhhCPvOVuS9o2F1ytvDIOKUs46xbBs7fCrPvh4hvh4dfbVtPCFsBh22EWFS5iQ8kGEsoTGpQ+N2lMtDe2p6tnVwaYBzDGdwyDfQajFc/+saCU2S7B4vqRMnktdtKpLbM1YKAjJmEM/pqb8BYHn8V5KsiSnqdA+goXhQAY6UGY5mn8Nded9XUcwajVEWMKZEFGAmGeZsx6I5vz00i2FhDscfyS0Xj/8VziUcnQ4BgmBvagvbE9r6e/zo6K9YiugdhdTiqcdiRkTMcsx5j1RnIqG5Kdb720WWdkyeF9/Jayo8H9c5I28kivcfga1LXwFkdeFiTthN5DVV2RlkJUR/jwH7Db4bMX4ddPYO6n8NtnStn14++o1U6NyNHS55usm0gsTzyp9Hl37+6cZz6P8/3Pp6tX1xPMfib2OCiW51Ek/Uq5vAkHWRwpsxXxxIOemMXzCRCn4SF2O+vzWaXlZDmfppzNKFEQbwKEWwjXvIZeDD7r+evj1q5D+CZpE09sno+IQDtvPwYGtSe9zHLSY3t490BEZHdFPL0Z2CT2neu0SWdkQ25yHUfEqNES6eVLmcNe45Hm2Ur5YM9KnuwzAZ2oaWgqFXfQ1rvztmT0erj/ZeW1+l94bwbsWAvXDYTQKLj1SbjmLnVp7RSpT/o8255Nuau8zjiDYCBQF0h3n+410ufnB5xPsL5pHswuqRyL/BPF0h9UyNtwkk9tma0ZL87DLE4kUJyGXjyznJJjcUplZLlmYpG/wUURippIT8I0z+KnubJRznEigjxMPNp7PFUuJzaXAx+9B5/vW0ugsf5kWrPOiNVuq3kfoAsgrSqZwTodeo0WURAQESg9agyA1W7DR9c6kldPhzbnjLhkiT9Td9W8nxjVg0lRPdBrlFuRVmrhs31rKKwq53B5MVvz0xgSEuMuc1WOxemEFX9CSCT0VL9htGhGXqS8cjLgjYdh5V/w6r0w+1GYMAUenQ2+/u62skVwutLnnX0609fUt470eVPilAoolL6lWP6bSnlntTOgoMEfkzAWH3EyAcKNaMXG/Z2WSIvIcj5DBdsAGREzgcKdRGhebfRznQoGjRaDRku5w87eomyu6NC33nEx5kASLFk177t4dmFrSTwxAUrZrlbU0M7kz77iXPoERgFKbkpicQ5jwrs0/YW0MNqcM5JgyaLIrgjwxPmFHZcF3d7kzy1dh/DWrqUArMo+oDojLYmvX1e68976pLstUTlVQqPg7d8UR/Lr1+GH9+GvOfD3N9BjIDz2NvQddtJpWgOHKg6xxLKEjdaNJ5U+7+TZiVjPWAaZBzHGb0wd6fOmpkpKo1D6mhJpITb2IHGkCZ2AlhB8hIvxFa/EX7gGUWx8R8gpFZPleppC+QckSlCiIH0J1z6Przi50c93KuwpykKWIdTTTF5lKb+n7CDU08yw6ufDvJR4iu0V3NJV6VMzKqwzK7OS+D1lB8NCYuikGcw61hHtW/s7HB8Ry5z9G4g2+RNtCmBZ5n7skpOhbfCZ0+ackZTSwpqfh4V2rPl53LitjBrlx+23R9ApLIhgDxN5laWkllqQZBmxDSjlnRP88B4YPFRdkXMRrRbueFp5bVoGbz8OCZvh5uGKcN2N0+HmR9y6hHNsqf+ZlPnXSJ9blrOldAv7K/afUPq8j3efk0qfNzUVUgKF0teUSsuwkXRMmW0EZuEi/MUp+AiTERshwbUhiqW/yHI+TyXxgIwGX4KE+wjXvIRW9G2y854KlU4H81J3UlxVgadWT7/AKC6L7o2m+u+1xF6JpapWaTbQ6M19PUYzN3k7yzP3o9cqDsZuxxouZRQAA4PaU+aw8VfaLqx2G5HefjzQYwxmvUfzX6CbaXM6I78l72BJ5j4ApvccR1ffEOx2CaNxKUfuhNEo4hXkIrCnjU4XVDHv3ivQqa3V3c+GpXDn+UrZ6ItfudsalcagIBfemq5I+turQGeAcZcrCa+Boc1qSn2l/icq8z9a+nxH2Q4OVhwk1557StLn4/3G46v3bepLapBSaR0W13eUyiuxk1KnzNZAdHWZ7Q14M7rJozFOyUKm60ks8s/VQmcCngwgXPsSPuKEJj13c+KSXGhXaLnA/wIW9V3kbnOaDVVnpAECjLUhxYSiLLr6hqDXi2g0Ai+/3ImoKCNvvJlMwr4yChcY2b/AA+P05URGGhkyxIcpU0KZPDkIrVZNwGt23qku552ulvO2GgJD4LUfQPpOiXrNeQsW/qy8YvvAw2/CkPHNYkqZs+q4Un+nLJFSkcGCoq010ucplSkUOgrrSJ8LCHhpvIgwRJyR9HlTopTZLqwus12HnQyoVlBVymy7YBLGEKC5CS+x+Sqeily/k+V6ARsJKFEQf4LFhwkTXzxlhdVzCY2owUfjw97yve42pUXS5pyR/oHt+S15B05ZYlXWAQYHRxPh6YvTKePvr+Pa60Ko7JfM5vxCSrNFXOsiSdukZc+ecn75JZdffslFECAkRM/AgWauvDKEKVNCMBrb3K1sXvKzITEeeg9Rkx5bI6IINz6svOLXw1uPwO5NSiTMLwiuuw9uf0pZ6mkCJEniQMV+ElwLyZUOUSxnUkYhdir4fEetg3JE+jzWK5Zunmcufd6USJKdInludUO5TTjIprbSxQtP+mAWJxAgTsMoNm/TQ7uUR5brCYrkuUiUV1t0HuHalzGLY5vVFnfQwaMDe8r3uNuMFkmbW6YB+DZpE+tylaZfOlHDeYEduDG2mEdn+2Mencfh8uKafS/0v5iA6hBtfr6db7/N5O+/C9i5s5Ti4tqks4AAHX36mLj00mBuvDEUX1+13Xqj8tgUWPQrfL8Rep25SJLKOUSxRYmGLfgJqipBq1Oqc554D8JOr6/IEZySk/Ul61lZtPKE0uciGgx4YyKIcUFDuSBwDOP9x5+x9HlT4pSsWOQfKJH+pELeXl1mqyDigwc98REnESBOQy+GucVGi+snsl0vY0OJCmgIJFC8lXDxuSZJgG2p3L7vdr7M+pLMYZmEG89OFfZcQe1NcwJsLgfv7F5OanUyqyVZ5Ldp/oT3t3PxO4rOiCgI3BE7jH6BDX/olZU5+fHHbObNy2PbNiv5+bUKh2azhp49vZk0KYhp08IJD297deONhtMJg72Ub8hLD7vbGpXmRpLgt8/hi1mQU92duWMPePBVGH1JvYcckT5fU7yG+NJ4km3JJ5Q+7+TRiRhDLOkFBsLogV6s/f/6dN8LaefdcqJxdikPizSHEukfKtmNi+KafRoC8BT64Stehr9wPVrRx412ZpHpepxieR4SFYCIN8MI176KSRzuNrvcydzcuVyTcA0fdf2IeyLvcbc5zYLqjJwEm8vBvJSdbMhN5p9njKSsNKIxSExbYKGDnz9XdehLV9+Q05rTbpf4449c5s7NZdOmErKyqmqSYj09Rbp18+KCCwK55ZZwOndWpeZPmS9mwftPwZPvw9T73W2NijvZtwPeeAi2rwVZwu7jw5bJw5hzYRC7qvaRZkvD4rDUK30ebgg/ofR5epmFV3YsPO6U7nZGbFIKhdJXWKWF2NhXvbwBIKAjFE9hEH7iVfgJVyGK7v3SI0kSFvk7clyzqGI/oHTcDRT/R5j4tNvtczcVzgq8VnlxZdCV/NbrN3eb0yyozsgpsmN3Ef17b6lxGmZ90J4n72scqWRJkli0qJAff8xh7doiMjJsuKo7bxsMIp06eTB2rD833xxO//7u+wbT4hkdAuVW2FSuKne2QeqTPs8rS2fS5hLu2ABD0iDVD74eDHNH+OIRHEM3726nLX3eUpyRCimeAtc3lMrLqOIAMkcUOkX0ROElDMVfcy1mJjVpme3pYJfSyXA9Ton8V3VZsAZvYSSRmtfxElVxwqPxXOFJpCGSpKFJ7jalWVCraU6Rl59PQxSpcRI+fSuXR+/q3CjVMqIoMnFiEBMnBtVsW7euiO++y2LlyiKSkirYs6ecDz7IQKsViI42MnKkH9dfH8bo0X4tJiHOrWxaBpY8uGSa6oi0cuySnVVFq1hdvPrk0ueGQA5c0JPvr+hFxQ6JEd8v5IWFqbywsBjal8G9k+HCKU1us0POo0RaQIB4E4Jw+n+fkiRRzhosru8plVdhJxUZJaojoENPB0zCKPw1N+DF8Bb1mSBJEoXyF+S63qSKgwDoCCNQfJJQ8UlEN1cRtVSijFFk2DLcbUaLo01HRnbssNKv38bjtv/wQ0+mTm2eRK+EhFK+/jqTZcss7N9fgc1W3VxKRC0nBrimH+yPh1UFahVNK8Fit7DEsoS1JWvZVbbr5NLnnp3pZ+rHKL9RjPAZ0bD0+aG9St+izStAcoGXGS6/Fe57BTxPniR5upGRSimBA84LcZBJrHYjXqfQfVaSnJTI/1Ik/UyZvAEHGRxpKCdgxEBnzOI4AsRpeIq9TzyZm7BJKWS6HqVE/heZKkCLSRhNpOYNPMX6pdFVarlm1zXMzZ9L6ahSvLWtr4T5WNRlmlPgwgu3sXSpBZer9hYIAnTp4snevcMQxeZXXU1Lq+Drr7P4778C9u4tp6zMVWNXmysnLsiBsWHQ6zz4foO7rVE5TQ5VHGKxZTEbSzayp3zPCaXPIwwRNdLnY/3G0s/U78yjADYbfPgM/PEFlJUonv3A0fD4e9A5rt5Dyhw2/kzdxeqcg8ftu6f7SHoH1K2iKZEWkOy8GokqQCZC8zqhmkePO1aSbFjkXymWfqdC3oKDHGrLbL0x0g2zeGF1mW3LlQCXJIl8+WPyXG9jJwUAHREEifcSIj7WYpaLzgU+OfwJ9+y/h5/jfmZKSNNH79xNm3VG/svYw46CDHIqrehFDTHmIK6I7kOoZ93j1q8vZtiwzQ3O8953UTxwQ22ra1mW+TttN2tyDlLpctDRHMjUTgMJ8WjcHJZjycur4rvvsvj773x27iw7rpy4b18Tl1zSSsuJH7sWFv0C361X9EVUWhx1pM+tW0isSCSrKqtB6fN2xnbNK32+eC58+CykJirvIzrAnTMVFd9q0sssfJCwEqvDVu8UWkHkf92G0zsgElmWyZPe57Dr4eq9MiBiFibSWfcPTqmYQvn76jLbHbiobT+hwRcPeuEjXoy/eHOTtbpvTGzSfg67HscqL0TGjoAOkzCeCM0beIr1O3YqJybblk34unBuC7uNL7p/4W5zmpw264y8l7CCgUHtifb2xyXLzE/dSVZFMc/3vxhDdWdeWZYZOXILGzYU1+SKHI0gQkAnJzu2DSHS2w+AhRl7WZixh2ldhxBo9OKv1F1kVs+rEzWNfs0NcSrlxBddFMTNN5/j5cSSBAM91HLeFsLpSp939OhIL1OvFiF9DkDGIXj9IVi3EFxO8PCCi2+g6J7neeXAekqPckQivXzRChoyyiy4qh0qrSDySO9RaDxeoED6rJ4TiAh4IVNas0VLEJ5Cf3zFy/ATpqIVTU18kY2DJEnkS++SK72HA6WUWkc7QsQHCBIfVKMgjYB+uZ7uXt2JHxzvblOanDbrjBxLqd3Go5v+4JFe4+nio3wTOZIrIoqg0Qi4JBnJBRoNiKKAyyUjSfDsT968cO1QZFnm8U3zOD+yGxdEKtGSSqedRzf+wbQu5zEwOLqxL/mUOVJO/OuvSjlxdnYrKSf+6nV490l44l24/kF3W9NmyKnKYbFlMRuKN5xU+jxMH0YXzy4MMA9gpO/IFiF9flLsdvjsRfj1EyixIAsCB2M68+uVN6KJG8jtscMINCrr+GWOKn48uIVtBenoNeVc1v0jfD13AfV/ZGoJwlsYjp94Nb7CledcAmeltIfDrscolZci40BAj1m4kEjNGxjFxqkwVFFot7YdJc4SSkaXuNuUJketpqmm0qVEDry0tR8MnTp58tZbXSgrc+F0yszbsZ89/+oYPdqf2FgvnE6Z9PJCyn2KASiwlWN12OjmW9u4y0Orp4MpkOTSArc6I3q9yLXXhnHttUrCrSRJLFyolBOvW1dEfHwp27aVMmtWyrlVTvzdO6A3wnWqrkhjI0kS+yr2sdSylE3WTewr30eGLYNiZzEuakOFR0ufd/fszmCfwYz3G093r+4tqqrjtNDr4f6X4f6Xcaz8i/zX7qfToSSeemMmUmgUmpfmwKAxIAh46wzc2KUdWsOXxIV/hyjUE0atQSBM8xzBmnub60oaBUlykiu9Rb70IQ4yAdDTgWDNwwQJ9567v+cWTnev7iyyLMIpOeto3bRlWvVdkGSZX5O30dEcRISXb812k0nLI49E17xP/HI7e/715aabwrjppggAVmYl8U+6IqtsdSiqjWZ93WUPs95Iib3+dWZ3IYoikyYFMWlSbTnx2rVFfP/9OVROvGUlFObC5JvUct6z4Ij0+YqiFWy1biWpMonsquzjpM/1gh5/nT8DzQPp6d2TYT7DON///FYvV50zcDjvvjCd8MoDXPX3EiK2psId43BEmijvayTjORN2kukdCbKsJJEr/2qAYx0TkVJp1TnjjFRI8Rx2PU6pvAJwImDAV7iCCM0bGMWO7jav1TPCdwSLLItYXbyasf6tvyfPqdCqnZGfDm4hq7yEx3qff8Jx0lFCZK2R4cP9GD7cr+b97t2lzJmTydKlFpKSKvjqqyy++iqrppx46FBfrrkmxH3lxLMfVT75H53d/Oc+BzlW+vxQ5SHyHHnYpLqOsofoQYg+hEHmQfQ19WWEzwjG+o9tNeWFTqkAGweokpOxy+nY5Qwc5OCU83FhwUUJEuVIVCpaHlqJqdWVqAVDocAFnR4An02leJWX4Stci7dmFNtzQvj1UCp+Hllc0dFBkPd+SuWV1WW5ADrAQam8AlmWEYTmr8I7FSTJTo70GgXSp9XN88BAJ0I0jxEg3N4yvoi0ES4NvJRnkp/h34J/VWekmlbrjPx0cAu7LVk82ns8foYTawzoXMoSjtFYm4hqddjwqY6EmHUeyja7DR+9R+0Yu40ob99Gtrzp6dnTxOzZsTXvjy0n/vnnHH7+OaemnHjQIB+uvDKYa65phnLighzYuw3iBoFfYNOe6xwj3ZbOksIlbCjZwO7y3SeUPo82RhPrGcsA8wBG+44+Tvq8pSNJFdg4SJV8CLuchp0MHHIWTvJwyoW4KMZFGRIVyNg5PlJxNBoE9Ih4osEHPe3RCgHIBLAuuwy7xUSn7cWM/mMbmiIH8rNvortkGlE65XMhwbICECmqjMRXGEcHndImwiFnUyavp0xaR5m8CpdcjqIZ0nwJ7adCubSFw64nKJNXAy4EjPgKU4jUvI5BbO9u89okcaY4REQ2Wo/XuWqrnDufTqeILMv8fGgr8YWHmd5rXE0y2okwu0yAC72+9hvNvqIcYkzKwzDQ6IVZZySxOIeo6uqaSqeDlNICRoV1apLraE7at/fk+ec78fzzyrXk5VXx7bdZ/POPUk7811/5/PVXPjffvKemnPjSS4O54YYmKCd+c7ry72NvN+685wiSJBFfFs+yomVsKVFKZQ9XHabEWYJEbSt7DRr8dH709OpJD+8enOdzHuP8xp2y9HlzIklO7KRRxUHscip2OR2HnFUdtSiodiys1Y5FVY0Caf2ICOgQ8UDECx0haPBHKwShIxS9EIVeaIdBiMFIZ7RCABzYDTkZkJcJuYeVV3Y6ZG2nY04GWoeSnJs7YAQhX/8MwbXLUzsLD7O3SIkiBBi86ORTu/ypE8LwE67ET7yySe7b2SBJNrKlVyiQPsdJHgAGuhKqeRJ/4SY1CtICCNAFcKDigLvNaDG0Omfkp0Nb2ZyXyj3dR2LU6CixK/keHhod+urS3q/3r8dX78nlHfoAEGYPAbLY70qnb4WeLflppJVZuKHzIAAEQWBcRCwLMhII9jARaPTmz7Rd+Bo86BMY5Y7LbFKCgw08+mgHHn1U0YAoK3Pyww/ZzJ+vlBMvXWph6VIL99+f2LjlxJIES/+AoHDoO6yRrqZlYnPaWFOyhpVFK9leup0DlQfIsefUL32uC6SHTw96efdiuO9wxvuPJ0gf1MDMTYskSTjJo4qDNcshDjmz2rHIq14OseKiHBlbddSioYI9AQEtAoZqxyIMDX5ohUB0hKATItAL7dELHTDSCR1Rp/8QnfcVPHdb7XutTkn8cCl6Pdpq6/IDg3l22p10y01ksGxDJ2qILzzM1vy0mkPHRnRFPAPJ9+akVFpHlnMGZawDJEQ88ReuJ0LzOnoxwt3mqRxFZ8/ObCxRIyNHaHXOyKpsxdOcvXtZne03dzmPoSGKwqGlqgKB2iiIh10peU2yZ/LS9gMEe5i4u/uIOkmvEyK7YXc5+f7AZiqcdjr5BPFAjzHNqjHiLry9tdx5ZxR33qk4Xna7xO+/13YnXr++hHXrSnjqqYN4eYnExnpzwQUBp19O/M1scFSxrMd0frt7L7Nnd8XTU0NSqoX18VnYHScKxdePXqdhaJ9wukS7R0r+aOnznaU7SbGlNCh9HqoPpZNPpxrp81E+ozBqm1YrximVUUVStWORhl0+jIPs6uWQguo8i7LqPIuTL4eIGBDwQItftWMRgJZgdEI4eiESAx0wCB0x0LF5OrgOuxA8vaGirPqCj4+6yBot794/AwSBfcU57CvOOW7MwKD2jA1veVEnUJa0sqQXKJS+xomSdG+kO6GapwjQXO9m61QaYojPENaXrCehNIE4kyog1+p1Rk6FF188yHPPJbNly2AGDGjB5a4tlGPLiY/tTty5sydjx/px883h9Ot3gvs7JgxKixnIcrZuK6V3b28WLOjH4s0HsZScedWSv4+RaZfF4ZScvJTyEttLt/NX778aNdHwYMVBlliWnJL0eaQhkljPWAaaB5699PlRKMshKVRxgCo5FYecgV3OwkkuTrkAJ0VIlCJRUS1j7jzBbGJ1noUREW80+KAloHo5JAydEIFBiMYgxGCgE1qxBfcN+u3/4MX/1b9PEOCu59hwxY38k76bAlvdyJS31sC4iK5cGNW9xUVFSqWVZDqfopxNKFEQL3yFq4nQzEIvhp70eBX3styynHE7xvFSzEs80+EZd5vTZDSpzshHH33Em2++SU5ODr179+aDDz5g0KBBDY5/9913+eSTT0hPTycwMJCrrrqKWbNmYTS2DIVQh0Pxx4zGlvVhc65QXznx0d2J9+8vJyGhjPffV8qJO3Q4Uk4czqhRvsqDeOsqKMyhasKN7HhHUbFMSCinX7+N3P6wN/6hynPDy0N3ynaVVzqQZbA7XKRUpnBtwhS8dVu4vR1k2OfTznD5aV2nJElsLt3Mcstytlq3nlT6vK9331rpc//zifaIPq1zOcmpdiyOXg7JxSnnVzsWJUcthzg48XKI7qjlkIjqqEUQekKrl0Oiah0LIlpXTsGVt8N3b0NKYt3tgqjkh9zyOEOMHgwOjiaxOJeMsiJkZIKMJnoFRKATNVhs5ZQ560azvLUG/I3NKyTolMrIlp6lUPoGFxYAjPQkTPMs/pqrmtUWlbNjpO9IANYWr3WzJS2D03ZGfvnlF6ZPn86nn37K4MGDeffdd5kwYQL79+8nOPj4Xgs//vgjTz75JF999RVDhw4lKSmJadOmIQgCb7/dMpIUq6qUxMDWWtrrDoYN82PYsNpy4l27Svnmm9py4i+/zOLLL2vLib8PmMkQNKwd8iyut5IBcLlkCgrsvD7Twg13eTNkhBf/u/rUO5l+PncnZRUONun/5e34l3kwppJB1SYdtv/XoDNS4axgefFy1hStYXvZdg5VHDqh9HlfU1/6mPow3Gc44/zG1St97pSKKZe2VjsWqbXLIXI+Tiy4KD5mOUQ6bo5atIjoEfFCSyAafKvzLJTlEJ0QpUQt6IiBGETRcMr3rNVhLYZ7Jx3viADIEsz4AIxKhZwoiHT3C6O7X92O3RZbOTO3/o1Trvs70QoiLw2Y3CwOSYm0hCzn01SwFZARMREo3EGE5lW0olp1di6iFbWYNWb2lu91tyktgtN2Rt5++23uuOMObrlFaTT16aef8u+///LVV1/x5JNPHjd+/fr1DBs2jKlTpwIQHR3Nddddx6ZNm87S9MbjSGREdUaajl69Gi4nTt+XR5z3dt62XMETVybXOc7lAlww54MySgrhjqtOXcehkjLmBrxA39glfHNU01WHBBZnco30+fri9ewu392g9Lm3xpsIQ0SN9Pkov6H0N4UiienVyyFHqkM+I0t+lQx7cfVySDkSdk5tOcQDEW90RKKtqQ4JRy9EoK+zHOJ7SteuAvzwAcx+RMkTGTwOBoyCj54DZNBolU6+Yy496TRlzqrjHBEApyxR5qzCn6ZxRpySlSzX01jk73FRDAh40Icw7fP4iZc0yTlVmpcYjxj2lO9xtxktgtNyRux2O9u2bWPGjBk120RRZPz48WzYUH+L96FDh/L999+zefNmBg0aRHJyMgsWLODGG29s8DxVVVVUVdWGRK1W6+mYedrY7Yoz4unZ+pNRWwp1yomfvB7533KCrr8Ony80lJTUnyQ578cybmA3X38dh15/YsdxQ8l6lnS8iGc7lxCoB/Eo/0UAtpUuY/I25RuwlwaC9AJdvT3o5OVLV08vOnh6EGnU4KW14aIUiRxkUpFZAMgckKgneHFkOcSIBi90RB3lWNRWh9Quh4S2ruWQlkJOBtx1ISTvBS8TvPMHjLoYnE5Y8hsk7VLGzfhQWftrYRRL/5DlfI5KdqBEQXwIEu4hXPOK6oy2Mvqb+hNfFk+WLavVKx6fjNNyRgoKCnC5XISEhNTZHhISQmJiPWFQYOrUqRQUFDB8+HBkWcbpdHLXXXfx1FNPNXieWbNm8cILL5yOaWeFw6E8VdScETcgSbDkd4SgMK5/9VLu/nDZCYf/+GMOf/yRyyOPRDNypB9DhvjiZZRAqyXNlsa+8nj+L+txJocd5IU4kOS6jgiAVoSxgTA+EAzikeeRDFRUv2pG4sCAiCdagtDgh04IREsI+jrLIZ3QE33ONUZrlXzwDHw5S/m7uuBqeO1HbMj8eWgb8YUZmK+ayhOvJVA65W58OjRcHbO/OJe5ydvJrijBpGs4t+3DPSspd9iJ9Pbj2o796WA6syUTp2Qh0/UUFvknJKyAgCf9Cde+iI848YzmVGn5nO9/Pl9mf8mfBX9yd+Td7jbHrTR5ae/KlSt59dVX+fjjjxk8eDAHDx7kwQcf5KWXXmLmzJn1HjNjxgymT59e895qtRIV1XR6HmoCqxv59h1wVMG0R9m2zUpVVd0kTFFU3ARZUvINfX20mM1aPvvsMK+8ksI7TzzE/Uv3sf0VqBoJIWZ4zAsM1UGuYx2RI9gliNSPVspOUcpO60QtxMav2lJpQg4kKLkhORngFwTv/wm9hwDw7b61ZFWUcEvXofj2HMeyzv34t9LCc1UV9aozF9jK+HDPSkaGdea22KGsz01m8eF99Z52RGgn+ge2Z1lWIu8nrOCF/pOP62F1Iopc88h2PU8luwEZDX4ECQ8SrnlR/RtsA1wUeBGgVNaozshpEBgYiEajITc3t8723NxcQkPrLyWbOXMmN954I7fffjsAPXv2pLy8nP/97388/fTT9YapDQYDBkPzJd0dcUbc0oelrfPtW6A3wA0PsXZ2Wp1dPj5aRozwRe9jIzxaILabB/1i2vPSS8msWlXEII993L0oCdkA/Z+A9JviqLrjJkIM5WS65iMIuxAE5Xd7rFNikyBc+AuT1tRcV6rSFEgSvHQX/PGF8n7KPUpSavXnit3lZEdBBvf0GEkXHyXB/vz+57N5x3+syj7AZdHHJ0Svyj5AoNGbq2P6AYrGSEPOSO+ASMK9fLi+0yASLFmszz3EhVE9TmiyXcojy/UkRfJcJMoAES8GE659GbM47gxvhMq5iLfWGw/Rg51lO91tits5raevXq+nf//+LFtWG0qXJIlly5YxZMiQeo+pqKg4zuHQaJSvrS1F4sTpPFHlgkqTsXW10ovm/KtAFBk+3I8774zkyy97kJg4jKKiMfz9dz96DTCwZomNR+/IZ+jQLfz3XyFdTfn8Gj2LTd1H0eOx2/j3YQj7K4HOE18icu8FDPaIZ/fClSTveJjKCsVRdh3152bWQmJF/UuLKucI29fC6GD4/f8grD3M2wNPf1Sn07Mky0jIaIW6+WA6Ucsha3690yZbC4j1PT2dDlEQiPUNJdla0OAYi+sX9tjj2O0MoVD+GgEDweKj9NFaidVvUB2RNkqkIZLDVYfdbYbbOe1lmunTp3PzzTczYMAABg0axLvvvkt5eXlNdc1NN91EREQEs2bNAmDy5Mm8/fbb9O3bt2aZZubMmUyePLnGKXE3RyIjKs3M7EcAAR5VSryHDPFlyBBfALKybNx9915+/z2PggJFNbOrXz7PXHCAKUWfoSvKwXX5rXTsch2eTg0zuy4g/JVses4sRXfzMIQp9+HqfDuZ+6dSknET111ZQr7rE4qk30Bw4amBKE3bThg7Z7Hb4fFrYfk8EDVw9/Nw93P1DjVqdcSYAlmQkUCYpxmz3sjm/DSSrQUEe9Tft8rqsNVZaqlynqgaqhaz3khOZd1ke7uURabrSYrlP5AoR4mCDCdCOwuTOPyU5lVp3fT27s2BygNUOCvw1J64qWtr5rSdkSlTppCfn8+zzz5LTk4Offr0YeHChTVJrenp6XUiIc888wyCIPDMM8+QmZlJUFAQkydP5pVXXmm8qzhLVGfEDRTmwZ5t0KM/BCjh8+JiO7NmpfLDD9lkZlahExxcEJjIlH5bmWDcQHBpGhyp/DX5Mv/WV3CtTSDQoKUg5yOmhV3J5z/LdH9OwOfnD7nW5w9+vuYz8IzCJI7CJI7CIedRKH2NTUoiSBvWsH0qLZPlf8KM66GyHDr3hE8W1mlsVx+3dh3CN0mbeGLzfEQE2nn7MTCoPelllpOeblNeCj8c2NLg/pTSQtp511WflSQJi/w9Oa5ZVKFE37QEEyw+SJg4s3lk8FXOGcb4j+G3/N/4p/Afrgm5xt3muA1VDh6YOHEbixYVIkkXNPrcKg0w4wb49weqPlvJO6va8dVXhzlwoBItTu4IWcqN7bYzSNqMxl6JJGoQpWPKfd/6las9uvBbej4Bei2FdifT4jaxw/4Mn/WE8LlGIt+0IQsa1k14nBFvvOqe61RpHMqscP9k2LYadHp48n24+s7TmqLK5cTmcuCj9+DzfWupcjm5P270cePe3LmEdt7+tDf58/X++iULjiAA/+s2gn6BUcxJ+hejx690CZmLTCWgwVsYQYTmNbzFwadlq0rbIcuWRcS6CG4Lu40vun/hbnManSaVg29tOJ0t3h9rVUhOJxUL/iTR3o3Bw6uQpAPodAIjRvjy1iVJDPr2HagSlO6qcLwj4m2G0Zew4Z/NeGtESqob6P2ZNIygiJ48tGc3H1xjo6CXH91vq2L4wlmQswo+XQKebTcMes7y2+cw6wGl6qrfCPjwH+Vv4DQxaLQYNFrKHXb2FmVzRYe+9Y6LMQeyqzCTdTmHarb5GTzx03vySK9xZJQV8f6eFVQ4HchIrLe8gta8nG5RaWhEBxpCCBIfJ1R8Si33Vjkp4cZwdIKObaXb3G2KW1HLR1CckRaofdTqmDcvl2HDNnFxwBt4y2U8k3UDffqYmDOnBzbbOFavHsSg6VMVfQjq/4VIgoaEbpP4dN5esiqr8HaBs9ppKbY7kdJmsblIw4v7tbhii9j8rz+ZHQZB/HoYEwzrFzfjFaucFQU5cFUfePFO0Gph9m8wZ/VpOyJ7irJIsGRRYCtjb1E2b+9eSqinmWHVXbznpcTz9f71NeNHhXUm31ZGlaTkirT39qekqpKL28ehFTV0MAcyJSaauJBF3NjvXoZEf0apI4fdOZOJZD299dmEa59XHRGVUyZEH0JKZYq7zXAramQE1RlpSlavtvDKK8msXl2MzSYhCLC+84+UCib+ynscvfGYP0FRhFnfQ3EhbF2plG4evVt2sSP2YrbaKpG1oJeUsl1JUPRIDkoG4oqe42+epbM2hKmdDpP6hRfh675CfPFOuGsCXHwjvDynTtWFSgvj/16Bj59T+gGMuRTe/BX0Z/Zwr3Q6mJe6k+KqCjy1evoFRnFZdG801b//EnsllqpasbtAozfhnj5klBcBYLXbuLHLYLr7hpHv+pwyeR06vx8Z4usivbgPe3LHU1jWnwfjxhFqUPvEqJw+3b26s9iyGKfkRCu2zcdy27zqY1CcEdUbaSzWbs3j1VdSWb3USnmZ4ky0a2fkxhvDePLCbLzv2QMTp8KxjsgRdHqY9hhsXl5ns4yAJbgjldFx7HZYQYYiUT5OlX2PfQhh9oG8nbWFXoY+xEXFkzTpS2KHp8Oto+Gf72DjUvhyBZxAhVPFDaQmwd0TITMZfPzhnXkwYORZTTkgqD0Dgto3uH9a1+NlCY50YdYIIq8NvgynXMQB53hK5eXoiCRcfB4Tl/N/SfEAdDL708GsOiIqZ8YI3xEstixmdfFqxvqPdbc5bkH9aogaGWkM0tMruf32BPwDljNi4A7+m1+ES+ek+2WVTJtvYcf+/rz8cme8P34MEOCxdxqebMnvcN9FSjOz4AioLgEXBAi47UH+d3Vvcj0EjBqBUo7P9xEFEGyvYhA9uCs9EQ8uoJx1HPC5Ff5KhFseh8IcuLw7/J+a2NoikCSYdT9cGguZKXD5bbAq/6wdkTPFU6tEYVyyRFrln+x19KRc3kqI+BRx2lTCtE9TWFmrReKh1bnFTpXWwaWBSsPG/wr/c7Ml7kONjKC0qlcj9qePxWLnlVeS+fnnXLKylMaGZh8Nnc6vot+0CkYXbqJv/BbWFo6hzHE+/pWVkLAFuvdj4b5y9h7aCiiCUUaDhkA/D/qlrqDDh/cgGIzw42YlP+D6wUr+gEYDk6YiSRIZFTbCPAzk2KrqiJmBIm6Wa4P+8gdslm/njp1lfNl7OFb5P5Id1xLz8M8wYQrceQF88DRVS+fz6QXvcN3lfQn2VxNcm53dm5VKGUsehETCR/9Cl17NboYsy7goxCYfpH/4VnxNa+kavIoCTRkmYSzR2jnohaiasYsO17Z+7+kX0ez2qrQeepp6IiKyoeTE1VutGdUZQV2mOR1sNiezZ6fz1VeZJCdXAuDpKTJ5chAzZ8YQ0s3FKzsWAhC7fg/nbVnHeVvWYZ8/F8x+gAyPvAVVEB1hZsKwDkiSTIXNQfFX79Pux+cpCOlKwJyFiBHVofUvlsONQ2H4heDjz8ocCxLgkuXjHJEjyDJszmnPgJiLWG/9l9X5nzI8qIwi+RfSHL607/4prMiBR65Gv2I+1+ffjBD0GlxyVdPfRBUFpxOeuhEW/qzk79w+Ax5ovkhVqbSSUmklNvkANvZSJR+slmcHkxl6m5RoXLa1K3ssL+ET5UOIB2SVl/BfRgLbCtIBMGp0DA6Obja7VVonAboAkiqS3G2G21CdEdRlmpPhdEr83/8d5uOPD7NnTxmyDHq9wOjRfjz5ZAcmTKhdKz9aSKrS0xOnRoPW5UKXlqR4CIIA6xZijLmYKu9QvDyU8LZp9gOE/PYZFaEd+XHKF4wt96QnYLM7WZ3jweHb52MXtQQs2s8/BiUKk2Oz19TcHPFJdDJ0NBgYGRVAvwAz17b/lch1ITy6dwYvF/1Dx16vIUf/H8VFgfQOfhnem8d3b/3MpAXP4PPcVFYsXU/+hbdzzaTuzXBn2zBr/oMnrlX0QzrEKuJl4Q3ndTQFqc6bsZMOaABXvWMqHSb+TXwKSU5lXW4qGkHEJdfNUpraaQBGdZlG5Szp7NmZjSUb3W2G21CdEY4s06jeyNFIksRvv+Xx9tupbN1qxeVSVkn69zfz8MPtufbakHqbHB5NpdETobrs9si/yDLMeYtR8hvk9BgHvb9XSjdX/Antu+A5dyf+iw9xIL2Inl2C+GflIbQakUmTB2DQa9i1P589+3PwEAVGhfojVjrRF9vpZvJiVmkB4/x9uNpmJNRuZFLnSADeMf/IPZarmRP8GItD/yOxZAyy+XUOWr3oZJ7BBdMm84NfFLcseYIxK9/BFf89RC+E7v2a9B63SSoq4KHLYOMS0OrgiXfh+gfdYkqk9i2SndfQkCMiCCDYXkQjGJBkZczRjohe1HB9p0EMDu7QHOaqtHLOM5/H+pL1JJQlEOcd525zmh01UwI1Z+Roli8vZPz4rXh6LmPKlF1s3myla1cv3n+/KzbbeLZsOY+pU8NO6ogAVHp4Ikr1NCGUXCDLhCYshdvGKI5Ir/Pgz31gNOLvY8RaZiczt5ScggouHt2R0EAv/MxGRg2M4hBO4owe/De2L09HhDPSZWDGuO54azUkOaoYM7gd+1MtlFcqPW1ch9oxWXcDO1zr+aL4Y4YEraa0sA9FumfJc32Eh1GLS2vA9vFieOBVNCWFcN0AePfJxr69bZu/voVRAYoj0nMwLM9xmyMC4Cdejb8wFSUyciwaPIS+DPV/gNcGXcoVHfrQxSeYKC8/uvqEcHVMP14bdDnnhaiOiErjMClgEgB/5v/pZkvcgxoZQY2MxMdbeeGFZJYsKaC8XHEeoqON3HxzOI89Fo2X15n9mVR6eNQvXSZqkASRwtBYgpN3w+hL4P3a/4AyiuRZflElDqeLT36Or9lXKLsoFmQGGj1qtpm99Ji89ER4GEivsBEe5IUsg6XEhlYjUl7pYHaXN1lx4A+ePvQ014Vch5D9DRW6q8nwu48g2Qx0Uya7fQaMu0Jxkr56HZbPh69WQuDpdXFVOYqiAqVcd+9WMHgoOjIXXe9uqwAIFO/G4vq5nj0uojRvIwgi3jojEyK7MyFSXbpTaTpG+Y0CYE3xGjdb4h7UeACKrlJbi4ykpFQwbdpu/P2X07fvRubPz8Nk0vLgg+3Izx9NSspInn++0xk7IqAs0xyHRgNmP4qDOhKYtQeuvKOOIwKKE2E2GbA7XHh56LhhcveaV1Z7xQm5c2DMcVN39/Gi0iVhryerVSNq+a/Pf0hIjN0+FkH2Jm/3HES8ydPfgqe5VvqbDl1h6WGYfBOk7ocL2sH8OWd8H9o0c2bD2DDFERl2IawubDGOyGHn4yS5RsJx5eFazMIkTOJoN1il0lbRilrMGjN7y/eefHArpI09gutHktpGZKSgwM5DDyUSFraSmJi1fPNNNgA33xxGcvJwsrNH8+67sQQGNo6MdaXHMc6IqIF2ncFpxzfvIJuveRWe+7zOkPRsKwVFlXRu50dIgCfllQ5EUcDPbMTPbGRVkRWDKNAryKfmGGu5nbIKO0Oqt/19IBtBAH8fIwa9Bi8PHVl5ZQz2Gcwd4XeQbEvm+7zv8fcOppt2F4JspNeY+yiX1x5lqwivfAOfLgKdDp69Bf53vtK+XuXkZKbC5K7w9qPg4QWfLYZP/gMPj5Me2tTYpXQS7J3Ild5ERyjdtXsIFh+m9uPQRaTmDXeaqNJG6eDRgRx7jrvNcAvqMg3KMo2mvmXjVkBFhZM330xlzpxsUlOVUlwvLw2XXRbMs892oG9fn5PMcOoU2MpYcjix9txHNaWTAaHfCNi9CapsbLn9E7K6j6G80lFT2puaaWXz7mxiIn3o3jEAQYDwIG/+Wn6QEf0j8fMxkl5WSZzOQE5BOaGBXgBoNSIL16YwpKvSyn3Z3myuaB9UU6kzMC6U9fFZ+JoMvBr6LssPb+Rn/Zvc1n4iRrEvsdqNbHdeRJ7xakwVCzFpB2LQV//XGHoBrMiHuy5QVFtHBSk6GP2GN9p9a3W8/Th8MxtkSYmCvDRH6S3TAsh1vcdh1yMgu8gpvoN1aZOwOnbhZxjKxd3nodWmEiDciofYo97j9xfnMjd5O9kVJfgZPJnULo6hIXWjdCuyklhyeB8l9koivf24tmN/OphUdVaVk9PP1I+dZTvJqcoh1NC2loZbxieEm1GckdYTGXE6JT75JINPPz3Mvn3lNaW448b5M2NGB8aNC2j0c+62ZPL5vrXYj+qwW2mo/Ra8fcBQ+u1YiyBL8NavFHv2J/VQIZ/9uhNREDAYNAT5eTBmUDt6dAqo0X25fHxn1m7PZNG6VHKq7NhEmb46jxpHA8DXZKBzOz82bMzESxbI0LgYd167mv19uwVTZXexamsGFTYn9/u8x6OeF3LFwUlkhmTipY3Dq+QbbNop7HNeR+7OOVw1bnTtxXl6wrdr4acP4Y2HYNoIuOZueObjRr+P5zSJ8XDvRZCfpeTYfPA39BjgbqsAcEpWDjjHU8EWRMxkF3zBsnSRW7oOJMzTh7RSC3/tv5uJnf8i3OvFeucosJXx4Z6VjAzrzG2xQ0kszuG7pE346I308AsHYEt+Gr8lb2dqp4F0MAWyLCuR9xNW8EL/yZj1xua8ZJVzkAn+E/g6+2vm58/nrsi73G1Os6I6IyhK1Hr9ue2MSJLEzz/n8s47aezYUVuKO2iQmUceiebKK4NPqQLmTEgrtfDp3jU4q8seNQhEefsTlZYGQFJMF/pu24AkipR/vADz0AlcCFw4/OSVCHqdhrGD2zF2cDse3LIfkkq4f1QXTF51l5J6xwbTOzaYGb+uZJ/WhdFQ+6ctCAJD+oQzpE94zbacg9N5Le01/pf4P77o/gX9Oo7GKv3IAecFxIyYiE3ai1E8xr7r7lOSbW8ZBb9+AmsWwFerIKJ59TFaHJIEM2+Bv79V6mFvfFgRtmshiVgW12+kum5ExoZZmERHzTzWFa+nT4CRnv6Kcmqg0Zst+UPYc3g458WG1zvPquwDBBq9uTpGKfkO8/ThYEk+SzP31zgjSzMTGR7akWGhHQG4vtMgEixZrM89xIVR9UdbVFSOcFHgRQAsL1re5pyRlvFp4WYk6dyNjCxaVMCYMVvw8FjG9dfvZts2K926efPxx7HYbOPZuPE8rr46tMkcEYC/03fVOCL9AqJ447zLmdF3Ajds34YzIJjOyUk4tTpeeuIVFoSceVRmWa4FnSDQy8/U4JgoLwN5tpPndczqNIuOHh35MvtL1hWtA8AsjiNG8zsyVexz9sIuZR9/YFg7WJgCU+6F7DS4uCP88MEZX9M5z6ZlMCJAcUSiOsE/B+Cxt1uEIyJJdg44LiLFdTUAHTRz6az7F1HUE2MKIrE4l9wKKwAZZUUctOYT5x/W4HzJ1gJifeuGzrv7hZFsLQDAKblIL7XQ7agxoiAQ6xtaM0ZF5UR4a73xED3YWbbT3aY0O2pkBOWL3bnkjGzZUsJLLyWzbFkhFRWKExAT48Gtt0YwfXo7PDya79daaCsnwZIFgJ/Bk9tih6IVNZCdDsv+QIuAZPbjxSdeIt/Xj6LcFK6I7oNec/o2HiytoKPpxAmQPX292V1cjtXuxKw/8TmW9VtGx3UduXjXxeSPyEcravHTXEZ75pDmupm9zu7EaVPQir7HH/z0hzDpOrh3Erz+APz3I3y+BDy9T/u6zklsNnj0Klj9r9LQ8MFZcFvL0WUpldZy0HkRElY8GUhn7VK0orlm/4VR3bG5HDy37R8EQUCWZS6N7n1CATOrw3bcUotZb8TmcmB3Oalw2pGQMdUzJqfS2rgXqNJqiTREkmHLcLcZzY77v760AJTIiLutODEHD5Zzww278fVdzqBBm/j773x8fXVMn96OwsLRHDo0gqefjmlWRwQgraywpjBycHC04ogAvHKvorY6chLisizad+oNgM3lOKMP5n0lZVRJMmNC/OpsH9onghsvqQ1/Dw/yBWBxduFJ52xvbM+sTrModhYzJWFKzfZAzU1Eaj7ARTF7nF2RpIr6J+g7DFbmw5ALYNdGGB2iyJy3dhb9CiMDFEekWz9YmtliHBFJkkh13E6ScwQS5URq3qObfnMdRwRgW34am/NSua3rUJ7pO5FpXYaw5PA+NuQmu8lyFRWFXt69qJQqqXA28LnTSlGdEVruMk1Ojo17791HSMgKOndexw8/ZKPVCtx2WzhpaSPIzBzF7Nmx+Ps3TinumeA8SmHVS2tQfpBl2LMFOvaAd+aBwYiXzlAzzlWfKutJ+PpQdRlyh/rX848wKVypWliRW3RK8z7W/jF6effij/w/WFCwoGZ7iOY+wsSXcZJHgjMWSWpg6Uevh88WwcvfgNOhREqevF4Jt7U2rMVw4zB4bIqiovviV/DLNggIdrdlAFRK+0hwRlIof4mBTvTUphKieaDesb+nxDMhqjsDg6OJ8PLlvJAOjIuI5b+MhjUezDojVrutzjar3YZRo0Ov0eKtMyAiUFrPGB+dmryqcmqM8RsDwILCBScZ2bpQnRFa1jJNWZmTZ545QPv2qwkLW83HH2dQUSFx1VUh7N49hIKCMXzxRRzt2rlfrwEgwOhV8/OeImW5BkGARWnw6w7QapFkmT1FtfkXfoZ6xNBOwuLsQrSCwOCgE5cit/f2QCPAjqLSU557Wd9l6AQd1+y+Bpuz9kESrn2aEPExHGSw19kTSaq/hwkAl9wESw5DTDdY8COMi4DkfadsQ4vnpw9hdDDsXA+DxsLqArjsFndbVUOm81n2OnvgIIcQ8XHi9AfQi5ENjrdLTsRj9IFFQUA+TgCtlhhzIInFdTUg9hXnEGNWHGCtqKGdyZ99xbk1+yVZJvGoMSoqJ+OyoMsAWGRZ5F5DmhnVGUH5Iu9OZ8Rul3j77VRiY9diNi/nlVdSyMuzc8EF/qxaNYDS0nHMndubuLiGEzfdRQdTIEFGJU8isTiX7QXVa516gyIWhlJhUGBTWrN38w3F9wyckf2lFUR7ndq3Sz+9juSyylOeO1AfyCddP6FcKueiXRfV2RepfYNA4X9UkUSicwDSiSIeAcEwf68iKW/Jhcvj4LOXT9mOFknuYbi8B8y6HwxGRS33i2UtJjfGLuWwx96NHOkltATRTRtPpPb1kx7Xyz+CBRkJ7LZkUmArY0dBBksPJ9InoNaBmZcSz9f719e8HxXWmQJbGb+n7CCnooSVWUlsy09nfETXmjHjI2JZm3OQDbnJZFeU8OPBLdgl53FaJCoqDRFhjEAn6Nhq3epuU5qVNp3AarGVU+asQpJkJNFFepkFb60B/6O+7TcVkiTx3XfZvP9+OvHxpUgSaLUCQ4b48Oij0Vx+eUiT29AYiILAuIhYfj6k/Mf5bN8a+ge2o29AJE5ZYnNeKnuP+jY5PiL2tM+RUlqBzSUxMtjv5IOBaC8P4k8jMgJwW8RtfJ39NcuLlvND9g9cH1YrWd5e9xlORwnF8i8ccI6hq37ViSd74FWYMAXuGAcfzYQlc+GLFeDrf1o2uZ2PnoX/e1VZkjn/Knj9pxYjXgaQ7/qMdNd9gBN/4Xraa7495aqxazsO4M+0Xfx4cAuljip89B6MCOvExe1qu6WW2CuxVNWu2wcavbmvx2jmJm9neeZ+fA2e3NhlcE1ZL8DAoPaUOWz8lbYLq91GpLcfD/QYg1nfMiKZKucGIfoQUipT3G1GsyLIstxwXLKFYLVa8fHxoaSkBLPZfPIDTgGLrZyZW//GKUt8MTaAgE5OLv+8BK0g8tKAyU3mkPzzTx5vvJHKxo0lOBxKt+C4OG/uv78dt94a3qQluE2FJMt8k7SBjXmpJxx3Ubs4Lmnf67Tnnxl/kJf3pLJiXD9Gh578gX7Hxr18cSiL7MuHE+p56mv1Zc4ygtcEI8kSOcNz8NX71tl/wDEJq/wfZuEiOuv+OfmETqeSX7HsD9AZ4NVvYcI1p2yP2zi4B+6ZBDnp4BekREN6D3G3VTU4pTIOOidQznpEvInRzsdHHOdus1RUGo0JOyaw2LIY1xjXOflMOJpTfX6f21d5FpQ5q2q0MWQZhOoiEKcsUeasatRzbdpUzEUXbcfTcymTJ8ezZk0x0dFGZs3qTHn5WHbuHMrtt0ees390oiBwc5chXB7dB1M9iXoBBi9u6jz4jBwRgIXZhWgEGBnse0rjR1VHUP7LOnlFzdF4a735vsf3VMlVnB9//nH7O+sW4MVQrPK/JDtOodmbVgvv/A7v/KHk0Tw2BR64VHFSWiKSBC/eBVf2hNwMRWV2RU6LckSKpb/Y5QymnPWYhPH01uarjohKq2OYzzAAVpesdrMlzUfLibm6E1np4XYyvv02iwUL8vnpp141cuUNkZhYxgsvJLNgQT5Wq5L4GBlpYOrUMGbMiMbX130VME2BKAhcGNWdcRFd2W3JIq+yFEGASC9fuvmGIgpn7mjtLSknytN4ys7aheGKsNrq/GJu6RRxWue6IvgKJgVMYkHhAj5I/4D7291fZ38X7RoSnf0okn8kzWGmve6Tk0867nLloX7HOFj5F4wJURrwtRCpdAB2rIMHL4XiQghvDx//pyTjthAkyUmy62pK5PkI6InWfE+ApmV0/1VRaWwuDbqU51Ke49+CfxntN9rd5jQLqjMCIIOgOfFq1XffZTFtWgKyDA8+WMKQIb7HjcnKsvHii4f444888vMdAAQG6rjzzlCeeaYjkZGtv7xPJ2roFxjVaPNlVdiocEkMq9YPORUCjXp0gsCuorIzOue8XvMIWh3E9IPTuTL4SsKNtTkBoigSq93KXmc3CuRP0Tp9idDOOvmkJh/4eSt89Tq8/xRMHQQ3PQKPvHlGNjYadjs8cS0sm6d45Hc9B/c8716bjqFM2sRB50RcFOFBH7pol6EVz7H8GxWV06C3qTciIhtLNrrblGbj3FwXaGRkThwZ+eWXHG6+WXFEtFqBH3+sLVO1Wp3MmJFEVNQqIiJW89lnmVRVSUyZEsLevUPJzx/Dp5/2aBOOSFPw1SGlXPj6DqfXwTLQoCO1/NQrao5GL+qZ12seTtnJuB3HLwGIopbu2gR0RJIjvUa287VTn/zWJ+DPRAgMg2/egsldoKCeluGyDEt+B+up6aWcEcv/VMTLls2Dzj1hcXqLckQkSSLNcS/7nefhwkqE+Drd9TtUR0SlTeCv8yepIsndZjQbbdIZcUkS63OOUlo8Zpmm6KgM+nnzcpk6dRdH0nydTpkff8xm1qxkunRZi4/Pcl57LZWCAgcTJwawbt1ASkrG8fPPvenWrWWUP57LLMgsRAQmnELi6tF0NHlSbD/z3Iyx/mOZGjKVxIpEXkh+4bj9omigu3YfWoLIkmaQ5zqNDr7tO8OSDLh0GqQdgAui4I8v64756xt45Cp4c/oZX0ODVJTBrWPgocvAYYenP4bfd0HwiQXlmhObdIgEZzQF8sfoaU8P7QFCtY+72ywVlWajs0dnChxtp6dRm6umcUguPt6zqk656ecjA2g/zM6EWUo5qKdGz/Re49i1yslll8XjcsnUd5eOlOI+/ng0F1/cMlQomwKb08GfabuIL8yg1FFFlJcfUzr2J9rUcNO7/cW5zE3eTnZFCX4GTya1iztOa2FFVhJLDu+jxF5JpLcf13bsTwdTXXEo8y8r8NFrybh8xGnZ/OCW/byflEHS5CF0Np9ZZZQkSYSsDcHisJA4JJHOnp2PG+OULCQ4Y3BRcmZ5DBuWKk5BZTkMGgMfLoD8TLiiJ1RVKomvfyRAx+5ndA3H8fsX8Op94KiCvsPhg7/B7Ns4czcSWc5XyJaeBWSChPtpp3vP3SapqDQ7Dyc9zLsZ75IwOIEe3udux2e1mqYB5iZvr+OIdDIHAgL+nh4Yq5u3VbjsPPLVGi6/vGFHZPhwX6qqxrF69aBW7YgAfHtgE/uKc7il61Ce7TeJ7n6hvLN7eZ0I0tEU2Mr4cM9KuvqG8Ey/iYyL6Mp3SZtqFVqBLflp/Ja8nYvaxfF034lEevnyfsKKOnLbBTY7pU4XQwJPrLpaH2NDlYqahadZUXM0oijyX+//kJEZt73+ig2t6E937V5EvEh13Uix9NfpnWTIeFiRB/1GwOYVMDoI7r1IkZYHJWT3biP0fSnIgav7wgt3KFU+b82Fb9a0KEfEKRWwx96LbOkZNPgSq92sOiIqbZaLAhQBxr/yT/Mz5RylTTkjVruNtTmHACXR8pFe43ms9wUIAoztFcWrAy+jgymAPfMMzH3IgMNRvyMCsGNHKXZ7iw8qnTV2l5MdBRlc2aEPXXyCCfYwMbl9L4I9vFmVfaDeY1ZlHyDQ6M3VMf0I8/RhTHhX+gVGsTRzf82YpZmJDA/tyLDQjoR7+XB9p0HoRS3rcw/VjJmTrOTmXBd9evkiAONClGWddQXFp33s0QzwGcC9kfeSUZXBg/sfrHeMXgynm3YnAgYOOS+nVFp5eifx9IQ5q5XlkspySN0PruolJpcTVv0N8bVKoBZbOellljovi6284fn/7xU4PxL2x8PoS2CNBS646vRsbGIKXN+wyxmOjd34ClfRS5uLl9iCqo1UVJqZI1U0q4vbRnlvm6qm2ZSXgqtaW2RMeBe6+AQjy4rDERZm4OvPcvjtO2+2bT5StisjikK9Pc/Ky13891/BOaOUeqZIsoyEjFaom+GrE7UcsubXe0yytYBY37oORHe/MH5N3g6AU3KRXmphYmTt0oMoCMT6hpJsrV0j/etwPgIwOeL0+3p467UYRIGE4hM8pE+R9zq/x/z8+Xxw+ANuDruZfuZ+x40xih2J1W4m0dmfJOf5xGo3nP7DNLZP/ds1Gpj9GHy7FktVRY1Y39HUK9aXdgDuuhAyk8Hsr2ieDBx9ejY1MZJUwQHXRZTJKxHxpKN2Pj7iJHebpaLidrSiFrPGzJ7yPe42pVloU5GRvMpaifB+AUr5aUGBEg5/7LEkHn54P6FBHoy+x87Ix60Mu8/G3XdHMWlSIJ07e2Iw1NUW+e+/1p9cZNTqiDEFsiAjgeKqCiRZYmNeCsnWAkrs9VerWB02zPq61UNmvRGby4Hd5aTMUYWEjKmeMSWO2mWaXcWlhBr1aM9QDC7EqCejwnbygSdBFEWW9l2KgMCF8Rc22J/GU+xJF+0qQGa/cxiV0ml8iJRZFVG0+vRYXC7YuR7Hqr/5K23XcY4IKGJ9mRXFyhtJgtcehEu6QmaK0tBudX6Lc0RKpEXsdAZTJq/Em5HVAmaqI6KicoRoYzQ59nqq7VohbSoycjSu6vUXX18N7dsbueqqEGbM6IC/v46ntqRjqbJj1Ei8N7RW+EmWZfLy7KSmVpKSUkn//o0jTd/SubXrEL5J2sQTm+cjItDO24+BQe1JL7M02TlL7A5KHC7GhJx5GWcXsxfLcixIknTW6rZdvboys8NMXkh5gWn7pvFtj2/rHectDqGT9j8OOi9kn3MgPbT7MIjtT36C92ZATkaDu2Wg5NV72fj0LGjgWubs38gMnR+Bj02FwlwIjoCPF0CXM1O+bSokSSLFNZVi+RcEdLTXfEGg5jZ3m6Wi0uLob+7PrvJd5FTlEGo4/eXqc4k2FRmJ8PKt+XlLfioAOp2G1NSRvPVWVwIC9CSXFtQ0xwr39K1zvCAIhIQYGDzYl2uvDaNz56ZvqNcSCPIw8Wjv8bw/9BpeG3wZM/peiEuWCDTWX7ps1hnrJKKCkq9j1OjQa7R46wyICJTWM8anWk7+2+p8kWvanXly8EB/EzIQf4biZ8fyfMzzdPXsync537GyaGWD43zE84nRzEXGxl5nHHbpFL7ZtO8MHbqB7ihlXkEErdL5WAACcw5zxfyfEIDuvqGcHxFLv8Ao9KIW0elkyv/NJuDWcchF+YqeydLDLc4RKZe2s8sZQrH8C0Z6EKc9rDoiKioNcL6/0pbiz/w/3WxJ09OmnJFBwdHoqgVFVmcfZHtBep39Fls53yVtqnk/IqxTs9rX0jFotPjoPSh32NlblE3vo9qtH02MOZDE4roP4H3FOcSYldwPraihncmffcW5NfslWSbxqDF/HlbyUa6MOvOcnPFhSunxouwzr6g5luV9l6MVtFy681Lskr3BcX6aK2iv+QqJMvY6u+OUik888Q0PwZ97YUsl/JcCnyyEx9+BK26nqu9wKo1K19fxyxYwKyWLB+PGcFVMP+7sNoLXXF688+TdDNq6gZyQMHZ+uwoeOg0htmYiwzmdROcAXFgIE1+ghz4Bvdi6K9FUVM6GiwMvBmB50XI3W9L0tKllGk+tnnHhXVl4eC8SMp/tW0s7b386+wRRZKtgpyWzJsE1xMPEgMB2bra4ZbCnKAtZhlBPM3mVpfyesoNQTzPDqnVD5qXEU2yv4JauQwEYFdaZlVlJ/J6yg2EhMSQW57ItP5374kbVzDk+IpY5+zcQbfIn2hTAssz92CVnjRbJjqJSgg069Noz95ePNNbbWFByxnMcS7gxnLc6vcVDBx7iil1X8E+fhrv3Bmqm4aKEw66H2OPsRk/tIUTR88QnEEWIiFZewyYAsCA1noUZezEVF/HAqhW0e+sx2LwSZn4Kf32L10czkQWRX6+YyrJxFxErVNGnsS64EaiS0khyjsFOCjoi6KJdjlHs4m6zVFRaPCatCaNoJL4s3t2mNDltyhkBuDS6F5aqcjbnpwHUlEYeTYDBi/t7jEavaXO3p14qnQ7mpe6kuKoCT62efoFRXBbdG0117kKJvbJmaQsg0OjNfT1GMzd5O8sz9+Nr8OTGLoPp4Ver8DkwqD1lDht/pe3CarcR6e3HAz3GYNZ7UOF0YrE7mRTesKjaqaAVRTw1IvtKzr6i5mgebPcg3+V8x7+F/zI/bz6XBV/W4NgQzYO4ZCvZ0rMkOLsTp01CFE+vSWJehZJ4Xerrh/Glr+Him2HmNLiwgyIbf+N0uOs5Nu5aCE57nURtd5PjnE2m9ATgIlC4kyjNx+dsd2oVFXcQaYjksO2wu81octrc01YURG7pOpRufmEsz9xPRnlt7w8vrYFhoTFcENHtuEqPtsyAoPYMCGo4CXNa1+NbzB8RPDsRY8K7Mia863Hbf0xVlm+ujDr7EH64h4GsyqqznudYlvZZSsjaEKbumUqefx7e2oal/8O1M3E5S8iTZrPX2Zvu2j2n9UA+ukO0U5Jg9GT4ZTtMGwnPfAwjL0KWpZqonsCJO0o3B06pmCTnOCrZjgZfOmkX4C0e/3eioqJyYnp59+Jg5UEqnBV4ak8SWT2HaXPOCCiaFkNDYhgS3IE8WylWuw29qCXcy6cmp0TFffyengfAtdFnr+HSzceLg2WVOCXpjEuE68NX78uX3b7kxr03Mil+EqsHnFiYKEr7Fi5HMYXylyQ6BxGr3XzKDkmkly/bqvObNuencplXbwhvD4vTasbsKszEVi2UFnlUorY7sLh+ItV1CzJV+AiXEqP5DVFskx81KipnzWjf0fyR/wf/Wf7jyuAr3W1Ok9Gm46WCIBDiYaazTzDtTf6qI9JC2GaxEqDX4qk9+wfYedVS8mvzis96rmO5IewGRvuOZk3JGr7O/Pqk46N1X+ArXEUl2zjgql9evj6GhsQgVkc7lhzex25LZp39WeXF/Jy8rea9uxKvJclOkmMCKa6pgECM5g866earjoiKyllwefDlACwqXORmS5qWNu2MqLQ87E6J/CoH/fwbR8NlQpiiU7Ikp2k0Uf7t/S+eoid37b8Li/3k5+iom4tJuIAyeSUHHZee0jl8DZ41DoZTlvhwzypm7VjITwe38n7CCl7cvqCmT1C0KYAefmFnfkFnSKm0kp3OQErlxXgxhF7afPw0lze7HSoqrY1IYyQ6QcdW61Z3m9KkqM6ISovi13QlX+SyyKBGma+vnwkB2FxobZT5jsVT68kvPX/BLtsZt+PUoh1ddIvwYggl8l+kOG48pWOuielHn6NKqVPLLKzMTmJPUTZHOiSFe/pwT/eRiPWpuDYRkiSR4riZJOcYJCqJ0nxErH49WrHhHBoVFZXTI1gfTHJlsrvNaFJaVfz077Rd/JOeUGdbiIeZFwdc3OAx2/LT+TNtF4W2MoI9TFzRoQ89/SNq9suyzN9pu1mTc5BKl4OO5kCmdhpIiEfbUF9tbuZWOyM3dGicb/eiKGLSaUiy1t9huDG4OPBiLg28lD8L/mR22mweaf9Izb7sqmxcsotIY11Nli7atexz9sEif4/G4Us73QcnPIdW1HBnt+Gsz01hRdZ+DpcX1+zz0yuRk3HhXTFWi6Q1BxVSAgec43GSi4EudNGuQC+Gn/xAFRWV06KbVzeWWpY2ipp0S6VVOSOgfDt8qOfYmvcaoeHKgkPWfL5IXMdlHXrTyz+CzXmpfLJ3DU/3vbBGrXXR4X0sz9rPtK5DCDR68VfqLt5PWMHz/S9Wc0yagM2FVnx1Wsz6xvvTjPQ0cqi06ZwRgN96/kbg6kCeOPgEV4dcTZQhii+yvuDBpAfpa+rLugHr6owXRZFu2u3sccaSL3+IxmkmQvvKCc8hCqLS6TgkhgJbGaWOKowaLSGeZjTNGA0ByHTOIEd6HYBQ8amT2q6ionLmjPAZwVLLUtaWrGWk30h3m9MktDoXSxQEfPQeNS9vXcMlussy99PDP4wJkd0J8/Th0ujetPP2Y2VWEqBERZZlJjKpXRx9AiKJ9PLjlq5DKK6qJL6g4T4iKmeGU5LItdnp7de4If44Hy+qJJlyh7NR5z0arajln97/4MLFqG2jmBQ/if8l/o9KqZK95XvrPUYUtfTQJqAjghzpVXKcb5zSuQRBIMjDRIw5kHAv32Z1ROxSJgn2LuRIr6ElhO7a3aojoqLSxFwSdAkA/xQ0LLJ4rtPqnJG8ylIe3zSPp7f8yZeJ67DYGha8Si6tv9V9cqnSjbfAVo7VYaPbUWM8tHo6mAJrxqg0HvMz8pGBSyIaJ1/kCMOCfAFY1kRJrEcY7jecUb6jSLWlsshSm/le7CzG6rRisZXXiOyll1mw2MoRRSPdtXvREEim9AT5rs+a1MazIc/1Ebud0VRxgABhGj21mXiIPdxtlopKq6e3d29ERDaUbHC3KU1Gq1qm6WAKZFqXIYR4miixV/JPWgJv7lrCc/0uqnct3Wq3YT4mcmLWGSmpbuBmdVQq2+prdW8/+9b0KnX5JV3pZzMtpnGrQS6s7lGzPLeISxpBSK0+LA4LdyfezariVQDINWmlCtuLE5ibmI6zWpgMQCuIvDRgMv5GM3Hafex2diLddRcazPhrrmsSO88Ep2TlgPMCKtiEiJlO2j8xiaPdbZaKSptBEAT8df4kVSS525Qmo1U5I3H+tclzkV5+dDAFMmPzn2wtSGd4aEc3WqZyKmzIt2LWavA3np5c+sno4uOFCGyzNI1MekJZAmO3j8XiaDjysq98P07ZUGebU5Yoc1axKSOVHQUZFFa9wwVdX8BuuI0gWU8nrxMLHDVH8nWRax4prqnI2DALF9JR8+dpy9mrqKicPZ09OrPJuunkA89RWt0yzdF4avWEeJjIb6BXh1lvxOo4po29w4ZPdSTErFM6pVrra3WvysU3KpIkkVVZRZxv05SE+uq1TZbEmm/Px+psuHRYg4a0qpQG9yeV5DE6vAuP9Lyczto/qHKZyJZvp9CxosFjjiRfDwuN4Zl+E+kTEMkne9eQeVSVzZHk6+s7D+LJPhdgELW8n7ACh+Q66TVJkpODjskku64AZDpofqaz7j/VEVFRcRODfQYjIbGvbJ+7TWkSWrUzYnM5yLeV4aP3qHd/jKmeVvdFOcSYlDb2gUYvzDpjnTGVTgcppQU1Y1QahwVZhcjAxRFNc1/bexkpqHI0ydxj/MdwaOghbgq7CQEBjXB8lVWaLbXB4x+MG8PQkBjCvXyJMfWju+EfHJKBQ65JlEv1Cx01ZfJ1qbSOXc5ASuR/8KA/vbQ5+GumnPoNUVFRaXQmBii9vubnz3evIU1Eq3JGfkveTlJxLgW2Mg5Z8/l07xpEBAZWN3n7ev965qXE14wfF9GVPUXZLDm8j5yKEv5O20VamYXR4Up7c0EQGBcRy4KMBHYWHiazvJivkzbga/CgT2CUOy6x1fJTmuLw3dLI+SJH6O1rwiHLFNjsTTJ/hDGCr7p/RfygeEb5jgJArP7v5cLF5uL4eo+rctZT4eOK5d99MxBwsd85jEqp7jehIuk3NMav6iRfW2zlRHj5klicS3qZhUMl+aedfC1JEmmO/5HkHI6LMiLF2XTXb0Ur+p7GnVBRUWkKxvopkhVrSta42ZKmoVXljBRVVfDF/vWUO6rw1hnoZA7iyT4X1HTgtVRV1Olo2tEcxO1dh/Fn2k7mp+4k2MPE3d1H1GiMAEyI7Ibd5eT7A5upcNrp5BPEAz3GqBojjcy6vBK8tBpCPZtm+WtEsC9zUrJZlFXI9U3k8AD0MvViWb9lLCpcxENJD5FYkQhAmiMR6lnh+DppA9N7jSPQqCxPSbLMr8nbCDF2p4v+bw46J7LP2Z84bSJ6sR15ro/JcN1Lr3ARueQhQHFEZm79uyY59pUdC9FU/52favK1TdpPknMsDrLQE0NX7Qr0YrvGui0qKipniVbUYtaY2VO2x92mNAmtyhm5o9vwE+5/pNf447b1D2pH/6CGP3QFQeCS6F5cEt3rrO1TqR9JksiosNG/kfrR1MfEcKWiZlV+UZM6I0eYEDCBbzou4LG9s1jj+hIXDirJo6e5B5VOB5kVxQAUVpXzfsIKnup7IUaNjp8ObiGrvITHep+Pj+hJB82vpLiuYY8zjmDxQXKklwEQBQlJtxroRZmzqk6VDoDrmGqeE5HlfJFs6QVAJlicTpR2diPdBRUVlcakvbE9+yv2u9uMJqFVOSMq5yYr8oqRgEkRAU12jjBPI1pBIN5S1mTnOBqpupIlVjOaSHqyQH6BA8Zf+KrnGrSilszyYj7bt4bcylJyK0vZkJtMToWV3ZYsHu09Hj+DJwD+mqtwyZ+TLt1R44go84s4NIuA+05oh5Js7VHnfZS3LwB2KY8DzjHY2IuWIDprF+Mp9mnsW6GiotJI9Df3Z3f5bnKrcgkxhLjbnEbljHJGPvroI6KjozEajQwePJjNmzefcHxxcTH33nsvYWFhGAwGunTpwoIFC87IYJXWx/cp2QDc0rFp+5oEGHSklFc26TmOsL84lzyb4vj08+/G333ms9m6mTfT3wQgwsuX22OH1Yz/K2038YWHebjX2JolGwBZlqhk13Hzi4KERrccWW5YVdZLa2gw+Trf9SUJzkhs7MVPuI6e2hzVEVFRaeGc738+AH8W/OlmSxqf03ZGfvnlF6ZPn85zzz3H9u3b6d27NxMmTCAvL6/e8Xa7nfPPP5/U1FR+++039u/fz//93/8RERFR73iVtsfqvGI8NCLtveqvemosYrw8KLI3TUXNsaSUFtb8PDQkhuF+w3ms/WM8c+gZ3kl7h0pXJe28/Yny8gOgwmnnps6DMWp0lNgrKbFXUuWsIs15G/lS/U30tJoKVub9SIGt/mjPoOD2xyVf++l1ePveRLrrdgT0dNIuJkb3Y6ttvqWi0pq4OFBp+rrcstzNljQ+p71M8/bbb3PHHXdwyy23APDpp5/y77//8tVXX/Hkk08eN/6rr77CYrGwfv16dDpFBTU6OvrsrFZpVaSVV9KrifRFjqavvzcbCktIK69scsfHdVQOh6dWyVydGT2T9zPeZ/rB6cxMnkmkMZIwuRcx8kS0goH396ysM8etPfei9ZzT4DlkWUOe8w/mHqi/U++Q4A54avQ1yddxgRYu7fUkFZRiEsbSSfMvoqjq5aionCuYtWaMopH4snh3m9LonNbXIbvdzrZt2xg/vjYRVBRFxo8fz4YN9Wvm//XXXwwZMoR7772XkJAQ4uLiePXVV3G5GhZeqqqqwmq11nmptE7W5RXhkmFCWNPlixxhdIg/AP9lFp5k5NnjX53zAbCnSFmG8tJ6UTSqiMTzEnkg6gHSbemsrJzLV45b+dHxAF4h23h58Pl8NmIqn42YSl+fOwkU70DEVD1T3QouQXDRKWAbkUdVfx1NcVUFl0T34vVBlzB98G8MirkXjVhFe803dNEtUx0RFZVzkAhDBBm21teo9bSckYKCAlwuFyEhdRNnQkJCyMnJqfeY5ORkfvvtN1wuFwsWLGDmzJnMnj2bl19+ud7xALNmzcLHx6fmFRWlanq0Vr5LOaIv0rT5IgAXhCnOyNr84iY/V7/AKPTV5d/rcg6RYlW0PQyiga5eXXm54yt8GrGCSdoniRDisFPGOxlvE7wmmKi1UTyc9DDFDgPttZ/TW5dHjHYuPsJEFIektjwd8TDFzvpL/b7cv4HEksXscoZQLP+OB73opc0kUHNTE1+9iopKU9HLuxcVUgUVzqZRlHYXTb5QLEkSwcHBfP755/Tv358pU6bw9NNP8+mnnzZ4zIwZMygpKal5ZWS0Pi9QRWFFbhEGUaCLj1eTn8tHr0MvCuwubvqKGg+tnuGhnQClB81bu5bybdImtuansTIriVnxC1mXe4hIsSeX6J8m7bw8lvZZygT/CRQ6Cnk3411C1oQQuSaSh5OeoMoxnE66v+mtyyFK8wGSs7Zb7uiYTwgweDEwsB09/cJrnKD+kV9SZpyASy4mXJxFd/1OtKKqHKyici4zxncMAP9Z/nOzJY3LaeWMBAYGotFoyM3NrbM9NzeX0NDQeo8JCwtDp9Oh0dSGmLt160ZOTg52ux29/nglKIPBgMFgOG67SusjpaySWLPnyQc2EsFGPenlzdNx+YoOfThcXkRSSR5OWWJd7iHW5R6qM0ZA4OYugwn1NBPqOY5xAeMAWFG0gjfT3mRV0SreP/w+7x9+nzB9GFcGX8kT7Z7kzz1R2NnPhC5vE2JK5uH++QRpLgWgyJ7EXscIjLo8SqsCsFq+pn/7yc1yzSoqKk3LZcGX8cCBB1hcuJgrg0/cTPNc4rQiI3q9nv79+7Ns2bKabZIksWzZMoYMGVLvMcOGDePgwYNIUm1CX1JSEmFhYfU6IiqtG1muFeOKt5TikGXGNUO+yBE6eXtS4nDWsaOp0IkaHogbw/kRsRg1xyeZRnn5cX/cKAYHdzhu3xi/MSzos4DyMeWs6reKiwIuwuq08uHhD4laH8k71pv5t3Qxqw69TZB4N+mu/2Fx/YJVWkIqgzDq8tmTcwE/xb/Pqiw70jGiaCoqKucmUcYotIKWrdb6+1adq5x2Nc306dO5+eabGTBgAIMGDeLdd9+lvLy8prrmpptuIiIiglmzZgFw99138+GHH/Lggw9y//33c+DAAV599VUeeOCBxr0SlRbPy7uTeWtfGiOC/RgT4sfmghKg6frR1MeAABMr84rYU1xGnJ/p5AecJTpRw1Ux/bi4fU92FWZSVFWBVhSJMQUSbQpAEISTzjHSbyQj/UYCsK5oHY/uf4at5RvYKy9lb9FS/m9DCNMiO3JhyLV4a8GbMbTXfs5aawaQTZmzCqvdhq+h+SJQKioqTUeIPoRkW7K7zWhUTtsZmTJlCvn5+Tz77LPk5OTQp08fFi5cWJPUmp6eXkezICoqikWLFvHwww/Tq1cvIiIiePDBB3niiSca7ypUzgkEQaDE4WJBZgELMgs48l398R0HGBPiz6gQP/r7m9A1oebFuFB/3tqXzsJsS7M4I0cwanQMCo4+63mG+Q3jpahPmJu8nVwpCYvHOnZUbOS15FzeSoEe3kYGmTrydLQOzVGOTtPHgVRUVJqLbp7dWFa0DEmSWo1GkCA3R7z6LLFarfj4+FBSUoLZ3HT9S1SalhU5FsYu237cdgEQBJBkuCoqmLkjm64PUJXThfGXFVweFcQfI3s32XmakgRLFh9Ua5L08o/g3h6j2FSyiddSZ7GsaDmlrlIAPDDTXujHefqr+WLoXWhayYeWikpb5/nk53kh5QVW91vNCL8R7jbnhJzq81v9dFJpNgYGmOv9g5NRHBGAa9o3bb8Fg1aDh0Zkb3F5k56nKenmF4qfXlly2WXJZGNuCoN9BjOv93yso61s6L+JvoZROHGQKK9kTtW9hK0N5da9t3Ko4tBJZldRUWnpXBqoJKv/U/CPmy1pPNTIiEqz0uvfjQ2W1r7cuyNPxx2fzNnYxMxfS36Vg9IpY85qnr/TdvFPekKdbSEeZl4ccHGDx2zLT+fPtF0U2soI9jBxRYc+9PSvbY0gVzfYW5NzkEqXg47mQKZ2GkiIR92/++WZ+/kleVvN+47mQOL8Iqh02dmcl0qxXenBU0waFd6bWFOykhKXkqMTqAvkosCLeDr6aTp7dj6re6CiotL8SJKEdoWW4T7DWT1gtbvNOSGn+vxWu/aqNBsWWzn9/DzYV1KG8ygXWASmRofyVI/oZrEj1uxFSnZho6y3hnv68FDPsTXvNSdISD1kzeeLxHVc1qE3vfwj2JyXyid71/B03wuJqFZRXXR4H8uz9jOt6xACjV78lbqL9xNW8Hz/i9GJteXxY8K7kF1Rwuqcg9VzF3CoWljtCFpB5OluN9ErYAYA8aXxvJr6KosLF/NN9jd8k/0NAdoALgq8iKein6KrV9ezuhcqKirNgyiK+Ov8SapIcrcpjYa6TKPSLFhs5czc+jcZ1oN1HBGNAOcF+vDFed1PqbKkMRgc6APAxoKzbzMgCgI+eo+al7euYYn1ZZn76eEfxoTI7oR5+nBpdG/aefuxMkv5QJFlmWWZiUxqF0efgEgivfy4pesQiqsqiS+oK/wnCAJTOw3kps6DCff0qbsPgd7+ETze+wJ6BdRGXfqY+vBrz18pHl3MzkE7uTb4Wly4+DbnW2I3xhKwKoAb9tzAvrJ9Z31fVFRUmpbOHp0pcBScfOA5ghoZUWkWypxVOGWJEMPRXXNlQo0G/hzVG4Om+fziC8L8eX53MotzChka7HtWc+VVlvL4pnnoqst1L4/ug7+xfjXZ5NICxkfE1tnW3S+MnYWHASiwlWN12OjmWysg6KHV08EUSHJpAQOPqcYRBIFhoR0ZGhJDelkRhVVlaASRKG8//A0nVrTtZerFTz1/AiChNIFX015lYeFCfsj5gR9yfsBP68fEgIk8Ff0UPbx7nHAuFRWV5mewz2A2WjeSWJZIrHfsyQ9o4aiREZUm52BJHj8e2AKAt0ZCKyhFvRoBXujhS6CxecXvBgco65abzjIy0sEUyLQuQ3ggbjRTOw2kwFbOm7uWYHM66h1vtdswHxM5MeuMlNgVRVirQ8nzMOuPGaOvHVMfgiDQ3uRPv8B29A6IPKkjcixxpjh+jPsRyygLewfv5frQ6xEQ+DH3R+I2xeG3yo/rdl9HQmnCySdTUVFpFiYGTARgfsF89xrSSKjOiEqTsikvhdm7lpFSpnTKFYQjvWdlJgQUszkvgX/SdjerTaIo4q3VsN96dhU1cf7h9A9qR6SXHz38wrk/bjQVTgdbC9IbydLmp5t3N77v8T2FowpJPC+Rm0JvQoOGn/N+pufmnvit8uOa3dewq3SXu01VUWnTjPNTWkesKV7jZksaB9UZUWky0kotzEnaiFQtueWr92BISAf89CIRBheRnkoE4e/03WzLb94HeKSngRybvVHn9NTqCfEwkV9ZWu9+s96I1VE3wmF12PCpjoSYdR7KtmOiIFZ77Zj/b+++w6MqsweOf6dkMumF9EZICElIaKF3kChi7+ja19Vdy+rKz13Fxtpd2+7ad3Et66qoqNgQlSolUhJCTQHSe6+TyWRm7u+PwEAggSQkmZTzeZ55JHfeO/fMNcmcvOW8fSnaJZoP4j6gYm4FmdMzuSXwFrQqLZ+Xfc64HePw3OjJ1XuvJrU+tc9jE2Ko06q1uGncONDY/q7dA43MGRG95ufCNKxHV47PCojkNyMnYzBbuW3XRt6aHM9wpzq+zE4F4If8AyT4hPbZJNbRHi6k1xkwms3otT3zY2C0tFBubGCazqnd5yPcfEivKWkzbyStuoQIt9addH30Lrg76EmvKcHVwZEvs1PZX1WIwdJChbGeqX4jCHfreB+fjJpSPs9KodhQi5ejMxeExTPDP6JNmw1FmfxckEatqYkQVy+ujZzICLcz7+Qb5RzFe6PfA+CI4QjP5DzDdxXfsbJ8JSvLV+KucSfRO5Glw5cyyWPSGV9PCHH2wvXhZBgy7B1Gj5CeEdErGltMpBxdAeLm4Mi1kZPQqNRsLa/BqsA8fy8Whowm3NUbgPzGavIbq/ssvhk+ngBsKKvp9muszEohs6aUCmMDR+rKefvgZtSomOw7HID3Mrbx1dFkC2BBcDQHqov5uSCNEkMt3+buJbehinlBo4DWuR8LgmP4Pm8/z6T8gNFiJtjFEy9HZ34zcjIu2o7n1lQYG3j9wEaiPf15NGERC4Kj+TBzOweqi2xtdpbnsjIrhQvD4nlkwiJCXDx5df+GU3piziTSOZJ3R79L2ZwysqZn8bug36FX6/my/Esm75qM+0Z3Lt9zOTtrd3bpdYUQXZPgnoBJMVFmKrN3KGdNkhHRKyqbG7Ac3Sl2jHewrUbGCwdycdKoiXJrrSCa4BNmO6fEcPZLbTvr/KDWHob1JVXdfo3qZgPvZGxj2a7v+HfaFly0Oh4afx5uR4dUqpoN1B4tPgYQ6e7L76JnsrnkME+l/EBKRT53jp5tqzECsDAklkBnDwwWEweri9Co1dwffw5jh4Xg69TxXjqbig/ho3fl6ogEAp09mB8UTYJPKGsLj//VtLYwnVkBkcwMiCTIxYPrR05Bp9ayrbT7VVlHOI9geexySueUkjMjh9uDbsdZ48yqilVM2TUFt41uXLbnMrbXbu/2NYQQ7TvX61wAvi7/2s6RnD0ZphG9znpCkV9fvQNGi5X0OgOxHi5YTniubwZoWsV5uqICdlW2P7+jM26PnXXa5/9vbOIpxyb6hjHRN6yd1q1UKhVNZhPzAkdRbTJwqLaM5elbmRsYxezAkR2el1VXQcwJS4KhddnwZ1mtewGZrRby6qtYFDLa9rxapSLGM4Csup6pVTDcaTj/jv03/+bf5BnzeC77OVZVrOLriq/5uuJrXDQuzPecz0PDH2Km18weuaYQQ9nFvhcDsL5qPbcH327naM6O9IyIXuGrd0Orav322ltVQLPFDMB/Z8QT5uzI/ckZKIrCzvIc2zlBJ/QQ9AUPBy2H6g19es3OKDc2sKn4EH5ObtwbP585gVF8mpVMUmnHW4bXtRjbXRJstLRgsphpaGnGimLrtTmxTW1L14ZpOiNMH8ZbsW9RPLuY/Jn53Bl8J+4ad76r/I5ZKbNw3eDKRakXsaV6S49fW4ihwl3rjl6tJ7Uh1d6hnDVJRkSvcNI62OZOGMwt/DfzV0wWM44aNbdGBvNjcRX3bP+VIkPrfikj3Ia1Ga7oC2Euesqbe3ZFTU9QgDBXby4PH0+YqzdzAkcyKyCSTcWH7B1at4ToQ3gz5k2KZhdROLOQe0LuwV3rzveV3zM7ZTYuG1y4IPUCNlZv7PRrflD8Af8r/l/vBS3EABHsGEyeceCWEzhGkhHRa84LibXNFdlVkcfSHV/zv0M7iHSqQKNSeCerHmvrtBIuDIvv8/jGeLpisirUmPpXQuKh0xN4Uon3QCcPqps77sVxd9C3uyRYr3FAp9Hi6uCIGhX17S0bPk0J+54WpA/itejXKJpdRPGsYu4NvRcvrRc/VP7A/JT5OG9w5vzd57O+an2Hr9FsbeaejHu48eCNvJb/WoftqoyN5DVUtXlUGQfubs1CtGeMyxgMVgNGc8/3cPYlSUZErwly8eT2mJm2hKTB3MzmksNsLjnMWNdGTIqaPfVOLI6Y2Gbn2r4y+2gp+J+Kuz+JtTdEuvtS2tR2Mm9pU91pK6tGuLcuGz5RWk0JEe6ty3a1ag1hbt6k1ZTanrcqCukntOlrAY4B/HPUPymYXUDxrGL+FPonhjkM48eqH1mwewHOG5xZuHshP1f+3Oa8dVXraLC07vx8b+a9vJr/6imvfWwvpGd2r2nzeGzXt5KQiEFlvlfr7uM/VP1g50jOjiQjoleNGxbCQ+PPY7LvcDSq499ukzwMOKphX707cwLts439oqDWD+GNpX23pLgzEoNjyKqvYHXeAcqa6tlRlsPmksPMCzp+n77KTuW9jG22r+cGRlFhbOCL7N2UGGrZWJRJcnkeicHRbV53S8lhkkqzKDbU8vHhnZis5lNqkdhDgGMAfx/1d/Jn5VM6u5QloUvwcfDhp6qfOC/1PJw2OHFuyrmsqVzDZ6WfoVUdn3t/X+Z9/DPvn7avW6wWVucfwHx0NdeJzIq1T5eQC9HbLvO7DIAfK3+0byBnSaUoJyxn6Kfq6urw8PCgtrYWd3d3e4cjuqmhpZkSQx0KCj56Vz7KqeCPuzL5U3Qof59kn+3rtR+vZbK3B0nnT7bL9Tuyt7KQr3JSKWuqx0fvSmJwTJvVNO9nJFHZ3Nhmxc6JRc88HZ25sN2iZxn8VJBGncnYWvQsYiIj7NQz0hkVpgpeyH2BT0s/Ja/59OPif4/6O3cF38Or+zdyqK7jugsuWh3/Nzaxz+coCdFbHNY7MNZ1LMlTku0dyik6+/ktyYiwK7+Vm6gxmam5Zi7OPVQJtavXV6mg9Mq5fX5t0TVVpip+n/57Vpav7LDNtZ734m6Yavs62sOfEBdPakxNHKguwnh0VZeXozNPTLwIR41UNxADX/DmYAxWA9Vz+1+vX2c/v2WYRtjV65OjaVEUfr8j3S7XD3dxoqrZbJdri67x1nnjqnVtM0RzshU1r7Kx5d84arQ8NP48loxdwDWRE7kjdhbPTr6U4Ucr/lY3G9osKxdiIIt1iaXWXIvVeurQ5EAhyYiwq2uGBzDcRc/H2SVU9vDGdZ0x3tsVs6JQZBjYM9GHghZrC1+WfYlZOX3ymKls4lPT/bxf/hr7GvbZfkG7ODjym5HHh+O2lHS/8qwQ/cksz1koKGyr3Xbmxv2U9FGKbttUdIhNxYeobG5d2RDo7MFFYWOI9w7q8Jzk8jy+zt1LpbEBPyc3rhgxnnenjWbBuhRuSjrAd/PG823uPjaXHKbJ0kKkuw+/GTkZf6feGZ6b6+fF8sNF/FBUyW0j+35Fj+i8LTVbqLO0XWWkRk2wYzAxzjFYTR7UN2lppJpoT0/+mf9Pnsx+Er1az2Phj/HwiIcJdxuGl86ZapOBsg52VxZioLnE5xKeyH6itaig1+krQ/dXkoyIbvN0dOLyEePwc3IDBZLKsnnz4C88OuH8dqupHqkr5530rVw2YhxjvYPZUZbDWwc388iE84n3cOGHoko+OrKXXWWZzAlO4D9Z1WSW1FJh3MBfJ15kWyLckxYFtu5Rs7msRpKRfi7GJYYHwh4g0DGQKKcoopyjiHCKQKdu3UDwg8xf2Xa0Su1DkecR5OLGN+XfsOTQEh7NehQFhYeGP2TbM0nVpxsQCNF7xruOR4WKpNoke4fSbTJMI7pt3LAQxngH4+/kjr+zO5eFj8NRoyWrvrLd9usKM4jzDmRhyGgCnT24NHwcYa5ebCzK5H8z41GA5w7kk2YI5qot2awuqqHQqKe6uYm1hem9UrjKW6/DQaVib438ldzfBToG8mLUiywJW8LFvhcT4xJjS0SANqtjdpbl4qh25Gr/q8mdmcvjIx7n0axHCdoSQlFz4SnthRjI1Go13lpvMgwZZ27cT0kyInqEVbGysywHk8VMhFv7S0Wz6tvfzC2rvoJgJ0cC9VoONjiyttTAsSVeRYZ6LIqVVTl7eq1wlY/egdxGmTMy0E3zG2HbD2lj8SF2V+QDoFap+WvEX1kS8iBlLSWsMC8hz5p62o0HhRhoRjqPpMLUM5te2oMM04izUthYw99Sf6LFasFRo+UPo2cT5OLRbts6kxH3k0qPO6h0rCmx8nzmFowWK6DixPngFuXUrnSzYqXB3Iw3HVck7YqRrs5sLa/pkdcS9uPq4Mj8oGh+LkzDolh5O20zYa5ejHT3pcLYiKFqHOdr/8xP5r+zxvwi42o0TPZ9zt5hC9EjprpPZXvddjINmYxyHmXvcLpMekbEWfF3cuPRhEU8NH4hcwOjeD/jV4oaazt9/r27S9lWrcdgsdLeorS+WKg20dsNK5BRK2XCB7rLR4xjkk+Y7eu8hmrWF2Wyt6oQKwph6vH80W05AbpA/pb3PHN2zcFslaXdYuBb5LMIgFVlq+wbSDdJMiLOilatwc/JjeFu3lw+Yjwhrp6sL2p/3NJdp6fupO3qLwjUo1EpaDqYS9hez0hPmx/gBcCXeUWyqdoAp1GpuS1mJreMmkaoi1eb59wd9FwQGsczE35D4cwCzvM+j821mwnaEkROU459AhaihyR6tVZj3lSzyc6RdI8M04gepShgtlrafS7CrXUzt8TgGNuxIF0tz8a78WEeHKht5ORywNY+qA+cGNBaCOs/hzPJqTneq6NVqXlq0sV463tmOEj0DbVKxXT/CKb5jaDC2EBdixFHjZZAJw806uN/f/044UeeyX6Gx7IeIyopis/iP+Nyv8vtGLkQ3adVa3HTuHGg8YC9Q+kW6RkR3fZVdiqZtWVUGBsobKw5+nUpU/zCAXgvYxtfZafa2i8IjuZAdTE/F6RRYqjl29y95DZUcX1kLLsWTWVJbGv3uuqElMTaB8svnbVaHNUqKk1tfxyOzU0RA5NKpcLXyY1Id19CXLzaJCLHPDLiEdYnrEer0nLFviu4P/N+O0QqRM8Yrh9OcXOxvcPoFukZEd1W32Lk/Ywkak1NOGkdCHbx5N74+Yz2CgSgqtnQppZDpLsvv4ueyde5e1iVswc/JzfuHD3btsTypYRRLAwcxtWbU6ltaZ3MaumgZ6Sj3pfu8nHUUmbs2dcUA8M8r3nkzsxlys4p/CP/H2yr2camhE3otfoznitEf5LglsD+xv1UmCrw0fXfDTDbI8mI6LabRk077fMn7ih7zETfMCb6hrXTutW5gcPYfO5YLtu4iyyDAwpgtcLJf9R+lpXCkjEL0PXQRmcRrnoKm0ztXksMfn46P7KmZ3HFviv4uuJrgrcGs23SNqJd7LObtBDdca73ufy35L98Xf41twXfZu9wukSSEdGvNFvMfHRoKwuGGVAp7hxp0uPgEMQ8fzfyG6vJrG3dGj67vpIVR3adMSHqrHGezmwur6eyRYuvo6yu6I9+yD/A7op8Sprq0Kk1RLj7ckX4eAKcT79VQHtbEIzxPl5tV1EU2xYEIZbruNF1PB81PE3cr3H8d/R/+U3gb3r7rQnRIy72uRiAddXrBlwyIn8Din5lR1kO1c0GVCq4NVzLHD8PNlc5cuWIBP5vbCIPjjsPR3VrDp1Umk11s6FHrjvbt/UDLd+oO0NLYS+ZtWXMCxrFQ+PO4774c7BYrfxz/3qaLR0nj8e2IJgZEMGjCYsYPyyEtw5uprCxxtbmx4I01hdlcH3UFB4afx7TXOdzh8vrOKr1XH/wev6Q9oc+eHdCnD0PBw/0aj2763fbO5Quk2RE9CtbS4/vpHpD1BRemDCK/bWNfJxTAkCEuw8Lglu7zq0o/FqW3SPXnTTMBVAoa5bOwv7qvvj5zPCPIMjFk1BXL24ZNY2qZgO5DVUdnnO6LQigtVdkXWE6F4TFM35YCCEuXtwaPR212ZPvYpIY6TSSfxX9i/Hbx2Mw90ziK0RvCtIFkW/Mt3cYXSbJiOhXSo/upOrl6MxwN2+m+ngww9eD27cfpLGl9S/gCT6hp7Q/W1q1Gq1KocYsychA0WRpAcBF23Fv1um2IACoMDZS12Ik9oQ2TlodI9x8KDM0kzEtg2v9rmVPwx6CtgSxv35/L7wTIXrOWNexNFobMZoH1hYXkoyIfuXY6huL1YqitC6luT86jGarwk/FrRvwHdt1FXruG7jZbMZZY8VgkR+JgcCqKHyWlUyku+9pN7xrbwsCdwc9tabWX9R1LU2tx3QntdG1tlGr1Xwy5hPejH6Teks943aM4z+F/+nZNyNED5rnNQ+AH6t+tGscXSW/eUW/Enx0X5u6FqNtsuqVYX6McHXi+6LWZGRHWa6tfdBZ7ryqKApr8g/w6oENeGnNmBUV1hNq0H+ZnYrBbDqra4ie98nhnRQ11nJ7zMw+ud6dIXeyc/JOnDXO/C79d9x04KY+ua4QXXWZ32UArKlcY99AukiSEdGvzA44vpPq/w7voLypAZVKRbyHC+8dKSKpJJeNxa3j/Q5qDdP8RnT7Woqi8HlWCl/l7MFkteDnaAZUFDc72Nqk1ZTwyt51NJlbun0d0bM+ObyTfVVFLBm7AC9H59O2bW8LgroWIx5He0LcHZxaj5lOamM63uaYBPcEimcVM9plNB+WfEhsUix15rqzfTtC9Kjh+uFoVVp21u+0dyhdIsmI6FcSfEIJcm7tHSlrqufx5G958+AvhOkNWIH7klOwHh2+mRc4ClcHx25f62BNMeuO7qOjAs47Whbe12UEcwNGoj9awyS/sZpVOandvo7oGYqi8MnhnaRWFnD/2HPw0bue8ZxjWxCcKK26hAi31oJQPnoX3B30bdo0mVvIrq+wtTmRq9aVA9MOcEvgLaQb0gneEsyu2l1n+c6E6Fl+Dn4caTpy5ob9iCQjol/RqjXcEzcPv6MfNFZFYU9lAc3NOahQyGxo/Ut2kk8Yl48Yd1bXWl+Yafv34shJPJkwCyeNGn9nD34TNYWHxi/EQa0BWpcRS++IfX1yZBfby3K4LXoGeo0DtaYmak1NmE5Y2tvZLQjmBbVusa5SqVgQHMPq/P3sqSygsLGG9zKT8HR0YvwJE6VP9t7o93gv9j2aLE1M3TWVN/Lf6LX3LURXxbjEUGuuxWrti33Pe4YsHRD9zjC9Cw+NX8jPhelsKTlCfYsRtRp8dS2UmRxYHDGFeUGRqFXd37emydzCgeoioHXlztzAkahVahK83ThU37qEM9DZg2l+I9hccphmq5n9VYVMPrrvjuh7m4oPAfDyvnVtjt88ahoz/COArm9BALAwJBaTxcz/Du3AYDYx0sOXe+Pm2xLRjtwSdAuT3Sczc9dM7sm8h43VG/k0/lPUUsJX2NlMz5msr15PUm0SM736Zl7V2ZJkRPRLLg6OXBY+jovC4ik21NFsMTPer4G7dh1hR42Gc4LPbgO9hpZm23Z8kW4+qFWtHyD1LWZ2VNSxtayGmX6ejPTwZXPJYYBT5h6IvvWv2WeuhNqdLQhUKhWXhI/lkvCxXY4pzjWOollFzEqexcrylUQlRbFz8k68dd5dfi0hesolwy7hqeyn+K7yuwGTjEgKL/o1rVpDqKsXIz18+X3UcLQqFe8fOftdKXWa43/1VjY32v79zLiRjHRzYs7aXTy1L4vypgbbc449tA+OGFyctc6kTE3hzuA7yTJmEbI1hK3VW+0dlhjCEtwSUKEiqTbJ3qF0miQjYsBQq9VM8nYns96AwXx2+8e4O+gJdGotAZ9dX0lOfeuy4YtCfNl74TQejR/BX/dlcX1SMck1zlSYtIS6DqxdMEXfejPmTVbEraBFaWF2ymxezn3Z3iGJIUqtVuOt9SbDkGHvUDpNkhExoNwbHYIC/DP97Modq1Qq5gRG2b5+6+Av7KsqxKooaNVq7hzpwx/Cod6iIrnOlS9LvIn4ehcjVm3hsk2pPJJ6mI+zS9hTXY/RYjm7NyUGjcUBizk47SDeWm8eOPwAF6VeNKAmEYrBI9I5knJTub3D6DSVcqzMZT9WV1eHh4cHtbW1uLuffodO0f9VNxv4MjuVA9VFmKwWfPWu3DxqGuFuwzo8J6OmlM+zUihqrOV/hV4EOjmQcek5bdpsKMrk54I0ak1NhLh6cW3kREa0szzzGJPFzAt7fia/sdp2zM1Bj16jpdzYOjyTVOXCvgaXNuepAK1KRcvRHx018OnsMVwV5t/FOyEGK5PVxNzkufxa9yuhjqHsmrILP52fvcMSQ8i9GffyWsFrZE7PJMo56swn9JLOfn5Lz4joU40tJl7c8zMatZo/xs/jrxMv5OqIhNPuL1JhbOD1AxuJ9vTnsYmLiHF3JNdgZld5ga3NzvJcVmalcGFYPI9MWESIiyev7t9wSjGrE+k0Wu6Nn8+IE5Kg+hajLREBmOvTgqdD21UVCtgSEQCNSkW0W9uERQxtOrWOpMlJLAldQn5zPsO3Dmd91Xp7hyWGkEXDFgGwqnyVfQPpJElGRJ/6seAgXo7O3DJqGiPcfPDRuzLaKxBfJ7cOz9lUfAgfvStXRyQQ6OzB/42Oodmq5pWDB2xt1hamMysgkpkBkQS5eHD9yCno1Fq2lZ6+8I+7Ts+fx53LH2JnM9ozABetI3qNAyEunlwdkcDzUy7hibGRnG7tzisTRzHG68wFuMTQ8/Kol1k1ZhUWxULi7kSezHrS3iGJIWKB9wIANlVvsnMknSPLA0Sf2ltZwGivQP6VtplDtWV46pyZGxjF7MCRHZ6TVdd259Wrw/y4JUkhubq1CJnZaiGvvopFIaNtbdQqFTGeAWTVVZwxJo1KzQSf0Da7AZ/o91EhPH8ghxKjiZPHNOf7e3H3qJAzXkMMXZf6Xcqh6YeYsnMKy7KXsblmMz+M/wGtWn79it6jU+tw1biyv3Fg7DQtPSOiT5UbG9hUfAg/JzfujZ/PnMAoPs1KJqk0q8Nz6lqMbXZVVavVjPPUk9uko6bZSENLM1YU3NrbebUHaoM4atQ8OS6yTSJyrKdkU2k1/z5ceNbXEIPbcKfhFM4qZK7nXNZWryVsaxgFxoIznyjEWQjXh1PcfPalEPqCJCOiTylAmKs3l4ePJ8zVmzmBI5kVEGmrrtlZ14YNo9mq5tWMvkkEbo4IZLiLvs1wzasTR+Gi1fCHHekkrkvBZJZVE6JjWrWWjRM38sjwRyg2FRO5LZLVFavtHZYYxBLcEjApJipMZ+4htjdJRkSf8tDpCTy6Ed4xgU4eVDcbOjzH3UF/ykTUSd463LVm/pdTiquDI2pU1Lez86qrVsenR5JZumMV92z9lL+l/mSrKdKRjJpSnk75gbu3rODRnd+wrTQLB7WaZ472jqiA64e7U1y3m+uDSpnkYWJdSSV+X/7CzsraLt0PMfQ8PfJpfhj/AwAX7rmQhw8/bOeIxGB1bN7I1+Vf2zmSM5NkRPSpSHdfSpvabrte2lSHt2PHq1Ei3E/deTW9tpQoFzhcb6DZohDm5k1aTanteauikF5TQnWzgbSaEm6NnsHjCRcw2iuAv+9b32Hyc+LKnUcTFrEgOJoPM7dzoLqIa4cHEO/hQpyHI65KFheGxfNYwiLujR7GZf71NJjNTF2zk0dSD5/FHRJDwfnDzid7RjZBuiCey32O2btmY7Ka7B2WGGQuGXYJAOur+/9KLklGRJ9KDI4hq76C1XkHKGuqZ0dZDptLDjMv6Pg6+K+yU3kvY5vt67mBUVQYG/giezclhlo2FmWSXJ7HTRFhKMAr6XkkBsewpeQwSaVZFBtq+fjwTpotLRQb6rhyxHhGefjh5+TGxcPH4ufk2uGw0Mkrd+YHRZPgE8rawgw0ahW/nj+FxcEG5gS2Xbkzyk3FO5N88NfrePZADmO/T6LGJB8uomNB+iDyZ+az0HshW2q3ELIlhGxDtr3DEoOIp84TvVrP7vrd9g7ljCQZEX0q3G0Yd8bOYWd5Dk8kf8/3efu5JmIiU/1G2NrUmpqoOqHnwkfvyj1x80irLuGplB/4uTCdG0dN5Z6YGBxUKj7MKmay73CuipjAN7l7eTrlB/Ibq/lD7BysKGhVbeuEOKi1HKlrvzLhySt3AEZ7BdpW5TiqobChitgT2hxbuWNoqaXw8llcHebHvppGAr/YwncFA6cCouh7arWaNRPW8EzEM1S0VDDq11F8UfaFvcMSg0iQLog8Y569wzijbq0te+ONN3jxxRcpKSlh3LhxvPbaa0yZMuWM561YsYLrrruOSy+9lFWrVnXn0mIQGDssmLHDgjt8/pbo6accOzZscrIpw9zZVlFLg8nM/KBo5gdFt3k+ws2H1fn7CXR2x12nZ0d5Lll1Ffg5tV8X5OSVO9C6KsdoacFkMWMwmzpcuVPSVIdareaz2WP5PLeUG7bt5+JNe7hpRADvTRstW8uLDj084mFmeM5gUeoirtp3FX8K/RN/H/V3e4clBoExrmPIqsjCaDai1+rPfIKddPm346effsqSJUtYtmwZKSkpjBs3joULF1JWVnba83JycnjggQeYPXt2t4MV4mR/ijk+VNOe30ZPR1HgwR2ruHvLp2wozGCy73BUpy1jdvauHu5P/uWziXZz5r/ZJQz/eiu5DU29ek0xsM3zmkfezDyG64fzj/x/MGXHFIzms1+aLoa2eV7zAPip6ie7xnEmXU5GXnnlFW6//XZuvfVWRo8ezdtvv42zszPvvvtuh+dYLBauv/56nnjiCSIiIs4qYCFOdEWoLzq1ig+z219L7+vkxgPjEnl1xjU8P/Uylk44H4tixUfffs9Ieyt36kxG9BoHdBrtaVfueDi0/avDT68j/ZIZ/CkmjAJDM5HfbOXfh6S2hOiYr86XrOlZXOpzKTvrdxK0NYiMxoGz86rofy73vRyANVVr7BzJ6XUpGTGZTCQnJ5OYmHj8BdRqEhMTSUpK6vC8J598Ej8/P2677bZOXae5uZm6uro2DyHao1armTLMgyMNTTSYzB22c9Ro8dA50dhi4mB1MeOGtV81tb2VO2k1JUS4t264p1VrOly5c6zNyf4+cRSbz52Is0bD73ekc67UJBGnoVarWTVuFa9EvUKNuYa4X+P4qPgje4clBqjhTsPRqrTsqNth71BOq0vJSEVFBRaLBX//truT+vv7U1JS0u45W7Zs4T//+Q/Lly/v9HWee+45PDw8bI/Q0PbLdAsB8Kfo1qGal9sZqjlQXcT+qiIqjA0crC7mlX1rCXB2Z6Z/aw9dZ1fuJAYfn4vS3sodk9XMDP+Oe/1m+XlRduVsZvl6srakCv8vf2GX1CQRp3F/2P1sm7QNR7UjNxy8gTvS7rB3SGKA8nXwJaup4yrX/UGvzqirr6/nxhtvZPny5fj4dLyV+8mWLl1KbW2t7ZGfn9+LUYqB7vJQnw6HaprMLXxyZBfLdn3HexlJjHT35b74+WiOTibt7MqdOK8gW5v2Vu7cGzcfd53TaePUa7VsPm8SL0+Ioq7FzJQ1O3lcapKI05jmMY3CmYVEOUWxvGg547aPw2DuuECgEO2JdYmlxlxDTl0FeQ1VtkeVsdHeodmoFEU5ee+vDplMJpydnVm5ciWXXXaZ7fjNN99MTU0NX3/dtspbamoqEyZMQKM5vrTSam3tnlar1WRkZBAZGXnG69bV1eHh4UFtbS3u7u6dDVcMIXN+2sXm8hrqr56Hq67/b0CWUdvI3LXJlBpNjPN0ZeO5CXjqdPYOS/RTVquV6w9cz4qyFbhr3Nk6cSvxbvH2DksMEH/OWMpLBc9zqXYZ/upRtuNalZqnJl2Mt77jopNnq7Of313qGdHpdEycOJF169bZjlmtVtatW8f06acux4yJiWHfvn2kpqbaHpdccgnz588nNTVVhl9Ej7k/NgyAl9Jz7RxJ50R7uFB0+SyuDPVlT00DgV9uYXVh/98/QtiHWq3mkzGf8Fb0WzRYGhi3YxzvFL5j77DEADHH/RwAcq1ti5+ZFSsN5mZ7hHSKLg/TLFmyhOXLl/PBBx+QlpbGnXfeSWNjI7feeisAN910E0uXLgVAr9cTHx/f5uHp6Ymbmxvx8fHo5C9B0UMuDW4dqvlfdvtzl/ojtVrNyjnj+HRWPFZF4cKNqdyadMDWeyjEyf4Q8gd2Td6Fi8aF29Nv56YDN9k7JDEAjHGZAKgoVTLtHUqHupyMLF68mJdeeonHH3+c8ePHk5qaypo1a2yTWvPy8iguHhhbFovBQ61WM82ndVVN3WlW1fRH1wwPsNUkeT+rmHCpSSJOY4L7BIpmFTHaZTQflnxIbFIsdWZZcSg6plarccSZGqX/fjZ3ac6IvcicEdEZq/LLuPyXvTweP4Inxp15LlJ/dP+uDP6RkY9WpeLNKTHcPrLjSrVC/Pbgb3mv+D1cNC5snLCRSR6T7B2S6IfyGqqYtH0KFWRzu+7DNs89MuF8wly9e+3avTJnRIj+7NKQ1gJo/8sZOEM1J/v7pGg2nzsRvUbNHdvTWCg1ScRpvDv6Xd6LfQ+jxcjUXVN5Pf91e4ck+iGz1YKvKgIFKzXW/tk7IsmIGDRUKhXTfTzIGoBDNSea5edF6ZWzmeHjwU8lVQR89QspldINL9p3S9At7Jm6BzeNG3/M/CNX7b1K5h0Jm72Vhbx2YBNhmvEA5FqT2zyfXl3azll9T5IRMajcH3N0VU3awFhV0xFnrZatCyfz0oQoak1mJq3ZwbI9R+wdluin4lzjKJ5VzATXCXxR/gVRSVFUmarsHZawsz2VBbx58BcMZhNBtC4FL1bS27T5Imc3yeX239VXkhExqFwa6oejWsVHOf2zK7Kr/m/0cA5eNB1fvQNP7s9mwve/DuheH9F7nLROpExN4a7gu8gyZhGyNYSt1VvtHZawE5PFzAeZ21FonRYa6xWEk8oZxaGKG0dOYeQJ21f899B2jOYWe4UKSDIiBqFpPh5kNRgHzYd2tIcLxZfP5spQX1JrGgj48hd+kJokogNvxLzBirgVtCgtzE6ZzYu5L9o7JGEHO8tzaTxaQ2SMdxBLxixgkc/5aNVqZgWO5IGx5zJhWGutL6Olhe1lOXaMVpIRMQgtOTpU8+LBHPsG0oOO1SRZMTMei6JwwcZUfis1SUQHFgcsJm1aGt5ab/5y+C9clHqRfK8MMamVx3cIvyA0HrVKxfnDzifXmEuTpQmVSsWFYcer+O6utO+2K5KMiEHnEttQzcBdVdORxeGtNUmi3Jx5L6uYEV9vJa/RaO+wRD800nkkRbOLmOY+je8rvyd8WzhlpjJ7hyX6SEPL8cqqw91al+4WNxdjxcr7xe8DEOLiiRoVgK0XxV4kGRGD0nQfT7IbjdSYTPYOpcf56XVkXjKDP44KIc/QTOTXW/nP4UJ7hyX6IZ1aR9LkJP4v7P/Ib84nbEsY6yrXnflEMeA5aR1s/y4x1LG+aj1PZT/Fed7ncYP/DQCUGeuxHp1T4qSxb0V0SUbEoHR/bOtY6IsH7T9LvLe8OjmGTYmtNUl+tz2N89enYJaueNGOl6JeYtWYVVixcm7quTyZ9aS9QxK9LM4r0Pbvd7O/44p9V3CO9zl8N+473BzcAPipIM3WZvQJ7e1BkhExKF0S0jpU8/EgHKo50Rz/4zVJfiyuwu+LX9hdJTVJxKku9buUQ9MP4evgy7LsZSSmJGK2Do5J3uJU0/0jsKga2Wr+L4+X3oiD4sTbUe/hoHag0tjIx4d3sqWktVyAVqVmVkCEXeOVcvBi0DpnbTIbSqupvnoOnkNgU8YXD+bw0O7DKMDjY0bw17EDsyS+6F1mq5nE3YlsqtlEoC6QHZN3EKIPsXdYoocoisLW2q28WfAmn5V+hgULAPM1dxGlmYle44DR0nYZ77WRk5gfNKpX4pFy8GLIO76qZvAO1Zzoz6PD2X/RNHwdHXhiXzYJq7cPmuXNoudo1Vo2TtzIY+GPUWwqJnJbJKsrVts7LHGW6sx1vJH/BqN/Hc3s5Nl8Xva5LRHR4ECkejpAm0REo1KzOGJiryUiXSE9I2JQ03+yjkAnR7Ivm2XvUPqM1Wrlqs37+KqgHCeNmi/njOX8IJ8znyiGnB8rf+SSPZdgUkw8NPwhnhv5nL1DEl2Ub8znqeyn+LDkQ5qtrStijhU6A1ChYpH3hdw97Hn2VhVgMJtw1uoY4x3ErICReOicejW+zn5+SzIiBrUFa5NZX1pN1VVz8HIc/EM1J/oku5ibkw7Soij8NiKI5VNjUKulM1S0VWQsYvLOyRSZipjpMZP1CevRqYfWz8pA9tiRx3g65+kOn1eh4tVRr3JP6D19GNVxMkwjBPB/scMBeOHgwN6rpjuuGxFI3mUziXJz5t2sIiK+3kZ+N2uSVBkbyWuosj2qjI09HK2wlyB9EPkz81novZCttVsJ2RJCtiHb3mGJTnok/BGu9L2yw+cVFBZ4L+jDiLpHekbEoOf0yXr8nXTkDKGhmpP9cWc6r2cWoFWp+NeUGH47MrjT51YZG3ls17eYlePLhrUqNU9NuhhvvUtvhCvs5NnsZ3k061E0Kg0r4ldwpV/HH3Ki/7AqVv5y+C+8nPfyKc/5OvhSOrsUlUplh8g6//mt7cOYhLCLGb4erUM1RhPe+qHZ/fza5BiuDPXjok17uG17Givzyvhm3ji0nRi2aTA3t0lEAMyKlQZzM95IMjKYPDziYWZ6zuT81PO5at9V3Bt6L/8c9U97hyU6UN1s4MvsVA5UF1HY4ocaLVbMqFChoKBVaTnX+9w2iUhGTSmfZ6VQbKjFy9GZC8LimeHfdlnvhqJMfi5Io9bURIirF9dGTmSEW+/OO5NhGjHoPXB0qObFtKE3VHOieQHelF05m2nDPPihuBL/L34htare3mGJfmau11zyZ+YTrg/n1fxXmbxjMkazbDnQ3zS2mHhxz89o1GrOCffhy5ZHcVI58/fIN9CpdKhRY1bMJHon2s6pMDbw+oGNRHv682jCIhYER/Nh5nYOVBfZ2uwsz2VlVgoXhsXzyIRFhLh48ur+DdSZevd7QJIRMegtCvZBr1bzSU6pvUOxO2etlqTzJ/O38ZHUmMwk/LCdJ/dm2Tss0c/46Hw4Mv0Il/pcyq76XQRtDSKjMcPeYYkT/FhwEC9HZ84LC+Pq9EUoWNk4cR1/Cr+LXyb+gofWA6DNfJFNxYfw0btydUQCgc4ezA+KJsEnlLWFx//fri1MZ1ZAJDMDIgly8eD6kVPQqbVsKz3Sq+9HkhExJMz09SDXYKTKOPj2qumOv8SNYP9F0/BxdGDZviwmSk0ScRK1Ws2qcat4JeoVasw1xP0ax0fFH9k7LHHU3soCAp1dmZQ0D4sVbnV9kSaDJwBTPKaQPCWZj+M+JkwfZjsnq66CGM+ANq8z2iuQrLoKAMxWC3n1VcSe0EatUhHjGWBr01skGRFDwgOjW4dq/jbEh2pOFOvhSskVs7ksxJeU6noCvvyFH4t69xeOGHjuD7ufpElJOKodueHgDdyRdoe9QxJAWVM9TxcspcR6mKWhj3Nj2MV8mpVMUmlrT+cIpxFcF3Bdm3PqWoy46/Rtjrnr9BgtLZgsZhpamrGi4NZOm9oWGaYR4qydH9Q6VLNikO9V01VqtZqv5o7jfzPiMFsVzt+Qyh2/HsR6dMO9/IZqvsnZ2+659b08hiz6j6keUymcWUiUUxTLi5Yz9texGMwGe4c1pO20fEmGdRO/C/odT4xaypzAkcwKiGRT8SF7h9YtkoyIIWOWnyd5hmYZqmnH9Udrkox0dWL5kSIiv9nGqtxMnt29hn0nTG470Tvp28ipr+zjSIW9eOo8SZ+WzrV+17KvcR+BWwLZW99+oip61x1pd7DLspLp+ov5d+y/bccDnTyobu44SXR30J8yEbXOZESvcUCn0eLq4Iga1Sl/aNSZjHg4tO0t6WmSjIgh44HY1rHT54dgAbTOCHDWc+jSmdwVFUJOo5ErtuSS1tC6FFqvcSDWM4CR7j6oaV0maLCYeHX/xtP+8hODi1qt5pMxn/BW9Fs0WBqYsGMC7xS+Y++whpQXc19kedFyRmmncJlL26qqpU11eDt2vNw+wt2H9Jq2vcNpNSVEuLcu29WqNYS5eZNWc3yyv1VRSD+hTW+RZEQMGQuDfNBr1HyaK0M1p/PGlBhuD7egUSlsqnJne20gz02+lD+NOYc/jzuP56Zcykh3XwAazc2sK5RVFkPNH0L+wK7Ju3DRuHB7+u3ccOAGe4c0JHxV9hV/OfwXhmmHsWrsF2Q3VLI67wBlTfXsKMthc8lh5gVFHW+fncp7GdtsX88NjKLC2MAX2bspMdSysSiT5PI8EoOjbW0Sg2PYUnKYpNIsig21fHx4Jyar+ZRaJD1NkhExpMz2bR2qqZShmg4VNFajslZyU3AFwXqFPbUWzlmXSklT6yZcno7O3BE7C62q9dfHttIjmK0We4Ys7GCC+wSKZhUR5xLHRyUfEZsUS525zt5hDVq7andx9b6r0av1pE5NJdYrhDtj57CzPIcnkr/n+7z9XBMxkal+I2zn1JqaqDqh59JH78o9cfNIqy7hqZQf+LkwnRtHTSXOK8jWZrLvcK6KmMA3uXt5OuUH8huruTduPu69vKGelIMXQ8rPRZWct2E3D8QO58WEqDOfMARtLTnCfw9tB+CK8PHUW4dxz850Gi1WlsSE8cS4SADePLCJPVWFADw58SL8neVnc6j67cHf8l7xe7hoXNgwYQOTPSbbO6RBpchYRGRSJC3WFn6d9CuTPCbZO6ROk43yhGjHuUHDcJKhmtOynvD3iV7jwFXD/VmfOBGD2cLW8hrbc44aB9u/Lf3/bxrRi94d/S7vx76P0WJk6q6pvJb3mr1DGjQMZgNjd4zFaDXy2ZjPBlQi0hWSjIghZ7avJ/mGZipkqKZdPnpX27/3Hu35WJlfhk6t4pNZ8QC0WC2k1RQDrUWRvByd+z5Q0a/cHHQze6buwV3jzr2H7uWqvVfZloiL7rFarUzYOYHKlkpeHPkiV/hdYe+Qeo0kI2LI+cuxAmgHc+wbSD8V7emH99HkYn91EUmlObyRWcCtkcH46h1RFIVVOXuob2mdQ5IwLBQnrcPpXlIMEXGucRTPKmaC6wS+KP+CqKQoqkxV9g5rwDo39VwyDZncEXQHDwx/wN7h9CpJRsSQsyDw2FCN7FXTHrVKTWJwjO3rG7bto8xoYraPwrrCdJ5NXcPawnQAVNCmrRBOWidSpqZwV/BdZBmzCNkawpbqLfYOa8C5Pe121lev5xyvc/hX7L/sHU6vk2REDElzZKjmtOYHRTPVN5yd1c5kGZxQobCxcDefZaWQ11Bta3fdyMmM6OX6A2JgeiPmDVbEraBFaWFOyhxeyHnB3iENGC/mvsg7Re8wynkUP4//2d7h9AlJRsSQ9Oe4cACeO5Bj1zj6K4PZwrelLuyub50/4qBqO0E11MWLu0fPZW6grEgSHVscsJj0ael4a7158MiDXJh6ocwjOYMvyr6w1RLZPXk3avXQ+JiWpb1iyHJesZ5hjg7kXz7b3qH0KzkNTVy4MZWMukYsR387eDioWTUrBLVKTZirF8NdvVGpVPYNVAwYJquJecnzSKpLItQxlJ2Td+Lv6G/vsPqdXbW7mLZrGg5qBw5PP0ywPtjeIZ01WdorxBnM8fOiwNBMmQzV2GwqrWbC6u1k1hlsiQiAyQrzgkYxJ3Ak4W7DJBERXaJT69g2eRsPhD1AfnM+w7cOZ13lOnuH1a8UGAuYndL6h9GWiVsGRSLSFZKMiCHr2Kqa52WoBoC3MwtYsC6ZuhYz5pM6TI0WKwOgE1X0cy9GvcjXY77GipVzU8/liawn7B1Sv2AwGxi/fbytlshE94n2DqnPSTIihqxzArxx1qj5XFbV8PS+LO7cmY5FgfZG9BWgWcb6RQ+4xO8SDs04hJ+DH3/N/isLUhZgtprtHZbdWK1Wxu8YT6V58NcSOR2tvQMQwp7m+HmxpriSMqMJP73O3uH0qepmA19mp3KguojkGi1alQtWRdVuMgLQaLaQW1/B51kpFBtq8XJ05oKw+FM20NpQlMnPBWnUmpoIcfXi2siJjHCTFTfiuOH64RTMKuDc3eeyvno9oVtb55GE6EPsHVqfOzf1XA41HRoStUROR3pGxJD24NGhmuf2Z9s5kr7V2GLixT0/o1Gr+WP8PL6Yn8gvibE8HBeKj2P7BczyG+t5/cBGoj39eTRhEQuCo/kwczsHqotsbXaW57IyK4ULw+J5ZMIiQlw8eXX/BupMxr56a2KA0Kq1bJi4gcfCH6PEVELktkhWV6y2d1h9aqjVEjkdSUbEkDbv2FBNXpm9Q+lTPxYcxMvRmVtGTWOEmw8+elem+4Xw1PhoZvt6ADDCRQ+0FjYD2FSchY/elasjEgh09mB+UDQJPqGsLcywve7awnRmBUQyMyCSIBcPrh85BZ1ay7bSI339FsUA8WTkk/w4/kdUqLhwz4UsPbzU3iH1iaFYS+R0JBkRQ95cPy8Km5opbWq2dyh9Zm9lAcNdvflX2mYe+PULnk75gc3FhzGZrXxbWMlwZz1HLp3J2gUJnBfojYNKRVlTDTGeAW1eZ7RXIFl1FQCYrRby6quIPaGNWqUixjPA1kaI9pw37DyyZ2QT7BjM87nPM2vXLEzWwbvKzVZLxGFo1RI5HbkDYsh7aAgWQCs3NrCp+BB+Tm7cGz+fOYFRfJqVzB927MSsKDw1LhKVSsWCAG/WnJOA8bpzUGPEXadv8zruOj1GSwsmi5mGlmasKLi106a2RYZpxOkF6gPJm5HH+d7ns7V2K8Fbgsk2DL7h0121u1i8bzFOaif2TtmLs1Y2mQRJRoRgjr8Xzho1K4fQUI0ChLl6c3n4eMJcvZkTOJJZAZF8W1iNh4OGGyMC27RXS10R0QfUajU/TPiBZyOepbKlklG/jmJl6Up7h9VjTq4lEqQPsnNE/YckI0IA8/xbh2pKDEPjL3gPnZ5AZ482x/bVQoVJy92jQts9x91Bf8pE1DqTEb3GAZ1Gi6uDI2pU1LfTxsOhbW+JEKezdMRSNiRsQKvScvX+q7kv8z57h3TWTqwl8vmYz0lwT7B3SP2KJCNCAA+ODgfguQO59g2kj0S6+1LaVNfm2P9yqnHTWHhibES750S4+5BeU9LmWFpNCRFHN8rTqjWEuXmTVnO8botVUUg/oY0QnTXXay75M/MJ14fzav6rTNoxCaN5YP6xcGItkZdGvsTlfpfbO6R+R5IRIWgdqnHRqFmZPzQKoCUGx5BVX8HqvAOUNdXzTuYB8ptgvr8b2qOT6b7KTuW9jG22c+YGRlFhbOCL7N2UGGrZWJRJcnkeicHRbV53S8lhkkqzKDbU8vHhnZis5lNqkQjRGT46H45MP8JlPpeRXJ9M0NYgMhozznxiP3Oslsjvg37P/w3/P3uH0y9J0TMhjprn78X3RZWUGIwEOA/uYYVwt2HcGTuHr3JS+T5vH79UuaFW6fjP9Em2NrWmJqqaDbavffSu3BM3j8+zUlhfmIGnozM3jppKnNfxce/JvsNpaDHyTe5e6kxGQly9uDduPu46pz59f2LwUKvVfDXuK/6R9w+WHFpC3K9xfDD6A64PvN7eoXXKsVoiC7wW8Hbs2/YOp9+SXXuFOGpLWTWzf07mnlEhvDY5xt7h9JnsegMR32xjtq8nv5w36cwnCGEn22u3c07KORisBm4Pup1/x/7b3iGd1gu5L/Dg4QcZ5TyKtKlpQ3IJr+zaK0QXzfLzwkWr5sv8obOqBuCuna3d3m9Ojj5DSyHsa6rHVApnFhLlFMXyouWM/XUsBrPhzCfawRelX/Dg4QfxcfCRWiKdIHdHiBPM8/OmqMlE0RBZVdNgMvNTcSWj3JyJ93KzdzhCnJGnzpP0aelc63ct+xr3EbglkL31e+0dVhs7a3eyeH9rLZE9U/ZILZFOkGREiBMsjTu6V80QKYD2wO5DWIEXJoy0dyhCdJpareaTMZ/wr5h/0WBpYMKOCbxT+I69wwJaa4nMSZkDSC2RrpBkRIgTzPTzwkWr4YshMFRjtVr5ILsYH0cHLg31s3c4QnTZHcF3kDwlGReNC7en384NB26wazwGs4Fx28dhtBpZOWal1BLpAklGhDjJfH8viofAUM0r6fkYLVb+HBtm71CE6LbxbuMpmlVEvEs8H5V8RExSDHXmujOf2MOO1RKpMlfx0siXuMzvsj6PYSCTZESIkzw0unWo5tlBPlTzwsEc9Go1D8QOt3coQpwVV60r+6bt47eBvyXDkEHQliB21u7s0xgSdydKLZGzIMmIECc5NlTz5SDeq+bbgnLKm1u4MSJAZvmLQeM/o//D+7HvY7QYmbprKq/lvdYn17097XY21Gwg0StRaol0k/wWEqIdC/y9KDaaKBikQzUPpBxCDbwyYZS9QxGiR90cdDN7p+7FQ+vBvYfu5cq9V2K1Wnvtei/kvMA7Re8Q7RzNj+N/7LXrDHbdSkbeeOMNwsPD0ev1TJ06lR07dnTYdvny5cyePRsvLy+8vLxITEw8bXsh+oOH4sIBeG5/jl3j6A37q+vJrDdwbuAwXHVShFkMPqNdR1M8s5gEtwS+LP+SqKQoKk2VPX6dlaUrefBIay2RlMkp0st4Frp85z799FOWLFnCsmXLSElJYdy4cSxcuJCysva7tDdu3Mh1113Hhg0bSEpKIjQ0lPPOO4/CwsKzDl6I3jLd1xNXrWZQFkA7VuTsLSlyJgYxvVZP8pRk7gq+iyxjFqFbQ9lSvaXHXl9qifSsLpeDnzp1KpMnT+b1118HWmcQh4aG8sc//pGHHnrojOdbLBa8vLx4/fXXuemmmzp1TSkHL+zh0o2pfFNYQf7lswgZJHvVVBlN+HzxC2M8Xdlz4TR7hyNEn/is9DOuP3A9FsXC85HP85fwv3TqvMqmBiqaGzArCk4aLZ46Z7z1LhQYC4hKiqLF2sKOyTtkCe9pdPbzu0t9tCaTieTkZJYuXWo7plarSUxMJCkpqVOvYTAYaGlpwdvbu8M2zc3NNDc3276uq+v7ZVpCLI0bwTeFFTy7P5s3p8TaO5we8cfkDBTg7xNlrogYOq7xv4aJbhOZunMqDx55kE01m/h27LcdDqs0mVv4qeAgq/MPtDmuQsVvYyez6MBUjFYjq8askkSkh3RpmKaiogKLxYK/v3+b4/7+/pSUlHTqNR588EGCgoJITEzssM1zzz2Hh4eH7REaGtqVMIXoEdN8PXDVavgqv9zeofQIs9XK57llBDnpOCeg4z8GhBiMIp0jKZpdxAyPGayuXE34tnBKmk/93KowNvDs7h9OSUQALFYL5+6ZbaslcqnfpX0R+pDQp7Ntnn/+eVasWMFXX32FXt9xt/fSpUupra21PfLz8/swSiGOW+DvRckgWVXz5L5sWhSFx8dE2DsUIexCp9axddJWHgh7gPzmfMK3hrOucp3teaOlhX/u30CZscF2LMjZg5HuPjiqtXxveY46SohVLeAcl2vs8RYGrS4lIz4+Pmg0GkpLS9scLy0tJSAg4LTnvvTSSzz//PP89NNPjB079rRtHR0dcXd3b/MQwh6Wxo0A4Jn92XaO5Oy9mpGPq1bD76NC7B2KEHb1YtSLfD3ma6xYSUxN5K9ZfwVga8kRyprqAfB3cufxhAtYNvFC/jzuPFq8N1KsHCRYFc9sh9/yVc4eujjlUpxGl5IRnU7HxIkTWbfueCZptVpZt24d06dP7/C8F154gaeeeoo1a9YwadKk7kcrRB+b6uuB2yAYqvkoq5jaFjN3jAy2dyhC9AuX+F3C4RmH8df580T2EyxIWcDGwnTb83fEziTYxROAtVVr+XfRv0hwS+Aer5cAKG2qI7N28K22s5cuD9MsWbKE5cuX88EHH5CWlsadd95JY2Mjt956KwA33XRTmwmuf/vb33jsscd49913CQ8Pp6SkhJKSEhoaGjq6hBD9yoIAb0qNJvIaB+5QzSN7jqBVqXhunOzOK8QxYfowCmYWMN9zPuur1/Ny/S00WCsZ7upNiIsXAB+XfMxFqReR6J3I9knbmR14/Gcou77na5cMVV1ORhYvXsxLL73E448/zvjx40lNTWXNmjW2Sa15eXkUFxfb2r/11luYTCauuuoqAgMDbY+XXnqp596FEL3o4fhwAJ4doEM1v5bXkmswckmIDzqtFGUS4kRatZb1E9fzUNjDNFHLCvP9ZFuSbc+vLFtJs9JMRmMGX5Z/ibPGwfacRbHYI+RBqct1RuxB6owIe3P/dAPOWg0lV86xdyhdNvmH7eyqqqfo8lkEDpJ6KUL0NKti5crNj/NNy9+wYmZJ6AO8POpFAFLrUnks+zG+q/iOAG0YbpYwQtVjOS94LBOHReKiccFF7dL63xMeapUk/71SZ0SIoSoxwJuvCsrJbWhiuKuTvcPptAKDkV1V9UwZ5i6JiBCnoVapuTroUlwLg/jS/Civ5L/Er7Xb2DBxA+Pdx/PtuG/5qGAVN2cspoQ8Dlm2sD4PyGv/9eJd4tk3bV+fvoeBTNI2ITph6bGhmgM5do2jq+7Z0Toh73Up/S7EGc0PGoWrxovfaF8lRDWObXXb8PslgG8KtvLfzO1szTGyWPMi6k78HR/vGt8HEQ8ekowI0QmTh7WuqllVMHBmzxvNZr4rqmCEi57JwzzsHY4Q/V6gswc3RU1Fo1ZzgcNfmKxeTK2lmssy5vBh0cdYFCuuGh9ucF962tdxUDnwfOTzfRT14CDJiBCdlBjoTZmxhdyGJnuH0ikPpR7BosBz42UFjRCdNd0/gnvi5hHi4skE7SVcpH0UNRrWWl5lu+VDzg2O5Z2Jy1jstxgNmlPOV6HivpD7GO403A7RD1wygVWITtpVWcvkNTu5fWQQ/5462t7hnJbVasX9843o1Gqqrp5n73CEGHAURSGrvoLs+koqTZXcn38txS0FTHSbyJaELRgUA7FJsVS0VGDF2uZcZ5Uzz498nj+G/dFO0fcfnf38lp4RITpp0jAP3LUavh4ABdDeOlRIo9nKfdFh9g5FiAFJpVIR6e5LYnAMi0fMpGBWLpf7XE5yfTJBW4MoM5XxQdwHpyQiV/peCSq499C9BG4O5MfKH9s8X2VsJK+hqs2jytjYl2+tX5KeESG64Mpf9vBlfjk5l87s16tqAr/4hSpTC42L56PtYGdSIUTX/SPvHyw5tAQ1at4f/T6bazbzTtE7KCiE68PJmJ6BChV/OvQn3i54GwsWxriM4dP4T/HXhvHYrm8xK20TGK1KzVOTLsZb72Knd9V7pGdEiF6wNC4cgKf7cQG0n4sqKTGaWDzcXxIRIXrYn8L+xK+TfkWv1nPjwRtptjYT4hiCgsIro17BQe2AVq3l9ejXKZ5VzAXDLmBf4z5Gbx/NFfsvocFSd8prmhUrDeZmO7yb/kPqjAjRBZOGeeDuoOHrgnKW2zuYDixJyUQFvDpplL1DEaJfyawt46eCg+Q1VFNrauLO2NmM9wk97TkZNaV8npVCsaEWL0dnLgiLZ4b/FApmFjA1eSoflHxApEM8s3XX8lN6E2mFP3Jt5EQ+KH+dNwveJH16OuWmchbvX8ym2vWo2EiMaj4zNTehVstH8DHyZ5MQXXRugDflzS1k1xvsHcopDtU1sr+2kbl+XnjqdPYOR4h+xWQxE+LixXWRnduwtcLYwOsHNhLt6c+jCYtYEBzNh5nbOVBdhKfOk7SpaVzqeQPZLWnsN2/gqpgRhLh4cm/q33gi+wnKW8p5s+BNol2iSZ2ayofRn+OEO2nKOt4z385e8w+9/I4HDklGhOiih+NGAPDM/hz7BtKOu3ZmAPDmFClyJsTJ4r2DuCx8HBPO0BtyzKbiQ/joXbk6IoFAZw/mB0WT4BPK2sLWnzO1Ws1UzQ3cM+w5aq3lnLt3JtnqH1ljeg1QAfBy3ssYLK1/uMzxPIcbdG8wU3MLKlT8av0fH5ruIs+6u1fe70AiyYgQXZQwzB13Bw3fFPavVTV1JjPrS6qIcXcm1sPV3uEIMeBl1VUQ4xnQ5thor0Cy6ioAMFst5NVXcWvItSRPScZZ7cyynGVYMAGta0NqzbW8V/Rem9eI05zLLdp3iFctxEg9a8wvce7emRxoONAn76s/kmREiG44L3BYvxuquT85EyvwcoLMFRGiJ9S1GHHXtd3TyV2nx2hpwWQx09DSjBUFN52esa5jmePVupGmwvFFqgoKz+c+j9lqbvM6arWaGQ43cbP2X4SpJpDZlE789njO230eFaaK3n9z/YwkI0J0wyNHh2qe7idDNVarlY9yivHTO3BBsI+9wxFiyHk251lWV65u97mC5gI+L/u83ed0amfOd3iAjWN3MMF1Aj9X/UzA5gDuSLvjlARmMJNkRIhuGO/thoeDhm/7yVDN8wdzabYqLB0dbu9QhBg03B301JmMbY7VmYzoNQ7oNFpcHRxRo2Jd5Toez3q8w9dRoeLJrKf45NDOjtuYPUmZmsLaCWsJdAxkedFy3De583Luyz32fk4uuNafiq1JMiJENx0bqjnSD4ZqXknLxUmj5t7ozk3ME0KcWYS7D+k1JW2OpdWUEOHe2vuoVWsIc/Mmo74QT62nrY36pD1rFBTSm9LYULOuw2t9cngX+6oKWeC9gPxZ+bwd/TYalYYHDj+A/y/+fFP2zVm9lypjI4/t+pZndq+xPR7b9W2/SUgkGRGimx6NP7aqxr4F0L7ILaXSZOaWiEDUUuRMiA4ZLS3kN1ST31ANQEVzI/kN1bYP5K+yU3kvY5ut/dzAKCqMDXyRvZsSQy0bizJJLs8jMfj4arXE4BiMdcF8F72T7RP2cM+wZ5igvYCpbtPQq9vON1lr/SdOWpgfOIobRk7horAxBDi1ViW1ovBO+lYaWlqLn/0+5PfUzqllSegSqsxVXLrvUkYnjWZ//f5uvfcGc/MplV/7U7E1qbgiRDeN9To2VGPfyWYPpR5Go4KXEqLsGocQ/V1ufRWv7DveO/F5VgoA0/1GcEv0dGpNTVQ1H+/p9NG7ck/cPD7PSmF9YQaejs7cOGoqcV5BtjaTfYfT0GLk27x91JmMhLhO5PMJdzDC3Qez1cy68l95Nu2/7LP8QDWFbFC9wJ+CVxHuFA7ABWFx/CttC3sqCzBazGwrzeK8kFigdZLry6NeZlnEMm46cBPfVHzDmB1jWOC1gBXxK/DRDZ75YbI3jRBn4ZrNe/k8r4zDl8wg0s25z6+fWlXPhB+2c0HQML6fP6HPry+EOL3Ps1JYW5gOwLQQd54uvo+alho+HP0hF/heAECpoY7Hk78DINTFi0cTFrX7WtmGbK7efzXJ9cmoUXNr4K28GfMmOvWZCxzmNVTxzO41pxx/ZML5hLl6d/ftnZHsTSNEHzg2VGOvvWru3tn6S+7NyTF2ub4Q4vRqTuhpuTBgLjsn72SC2wQu3HshMUkxPHDoAd4rexMcalvbm5o6fK0RziPYNWUXGxI2EOwYzH+K/4PHJg9m7ZrFz5U/9/p76U0yTCPEWWgdqtHaZaimzGgiqaKWCV6u/XoHYSGGMgfN8Y/ZOlMTI538WDlmJbcevBW1Ss0HxR9Q0dL6+0ONFi9zAIb0tdwQcAMzPGe0+5rzvOaRNyuPdwrf4U+Zf2Jr7VbOSz2P2wJvY3nsclQqVV+8tR4lPSNCnKXzg7ypbG7hUF3fzkq/Z2c6CvDqJCn9LkR/NdL9+LyOTcWHAfB08OSrcV/xxdgvKJtdxmvhnxCjOgc3fKmxlvJW4VvMTJ6Jdp2W8K3hXLfvOr4q++qUuiO/C/4dL4x8wfb1f4r/g9cmL3bWtl1CvL+qiPcyktqNL626pN3jfU2SESHOkj32qjGZrazKLyfU2ZFZfl59dl0hRNdM9g3HSeMAwI7yHL7J3YvR0gKAVbGSXJFHZqmaOQ63sVj3EumTCkiblsZDwx9ivNt4KloqWFG2giv2XYFugw7/X/xZtHsR/yr4F3XmOrbWbkVzwlLiWkstU3ZNYdauWZSZythQlMlrBzZSZKhtN74vc1L5Nndf79+IM5AJrEL0AK/PNqJRqai4em6fXO+h3Yf428Fc3p0ay60jg/vkmkKI7tlQlMmKI7tsXztqtIS4eFJpbGwzRyRhWCh3xM46ZZilzFTGh8Uf8n3F9+xp2EOVucr2nApVm/LzJ1KhIko1i1ma36FVa/HTuxHr6Y9apSa9poTipjpb29/HziahkxsIdkVnP78lGRGiB1y3ZR8rckvJvHg6Ue4uvX49j083oAB1i+f3+rWEEGdvdd4Bvs7d0+Hz47yD+V3MTHSaM0/lNJqNfFb+GR8Vf8RP1T+dsb0GB67xup2PJrzeJtH5seAgX2anAhDuNoyl4xee+Y10kaymEaIPPRIXDvTNqpp3DxdSZ7Zw56iQXr+WEKJnXBAWx6MTFjErINI2bKNVqYn3CuSu0XP4w+g5nUpEAPRaPTcF3sTNQTd3qr0VM59Uv8nEHRPZU388ITovOJZQl9Zh3pz6Sgoba7r2pnqQrKYRogfEe7nh6aDl+z5YVfPXfVloVSqeGhPZ69cSQvScUFcvboyayo1RU7FYrahVqrNa+bKlZgtalRazcnxiqwYNVqwoKKhQo0WHu9qLSmsxuxt2M37HeMa4jGHvtL2oVCrGDwshv7G1Im1ZUz3BLp5n+za7RZIRIXrIoqBhfJJbSkZtI9EevTNUs6WsmnxDM1eH+aHTSsemEAOVpge2bthQvaFNIuLj4MM8r3nM8ZzDcG0c3x4qRK3SMCsgkktHxLKlZguv5r+KRnV8wmuLYrH9255LgiUZEaKHPBI/gk9yS3nmQDb/nRHfK9e4d1cGKuB1KXImxJB3sc/FzGiZwRyvOczymEWEU4QtoWhsaWbNka+wKFZSKwpYHDGRC3wu4AKfC2znWxQru8pzbV8HO3v29VuwkWREiB4S5+mKl673hmpyG5rYXd3ADB8P/PRnLv8shOh9VsXKt7n72F6WQ12LEQ+dEzP8R3BBaPxpexoyakr5PCuFYkMtXo7OXBAWzwz/iDZtNhRl8nNBGrWmJkJcvbg2ciIj3I7XLXkh6oWTX9bGxcGRBJ9Qdpbn0mBu5v3MX7l51DQcj85LabFa+OxIMhVHNwmM9QzA18n1bG7FWZFkRIgedH5g61BNem0DMR49+4N919HS729Ir4gQ/caa/DQ2FR/m1uhpBDp7kFtfxQeHfsVJo+Oc4PYLElYYG3j9wEbmBEZxW8wM0mtK+DBzOx46vW0Tvp3luazMSuE3Iyczws2HdUXpvLp/A09MvBh3nb7d1z3Z+aGj2V2Rj/loPZO0mhLGegejUanYW1VEfYsRADUqLgjrnd7czpJBZyF60CNH96p55kBOj76uwWzmx+JKRro6Md7brUdfWwjRfVn15YwfFswY72B89K5M9A1jtGcg2fWVHZ6zqfgQPnpXro5IINDZg/lB0ST4hLK2MMPWZm1hOrMCIpkZEEmQiwfXj5yCTq1lW+mRTscW4uLFHbGzcFC3zhExmE38WpbN1tKsNonIzaOmMcrDr5t3oGdIMiJEDzo2VLO6h4dq/pxyCIsCz40f2aOvK4Q4OxFuvqTXlFJqaC0glt9QzeG6cuK9Azs8J6uughjPgDbHRnsFklXX+nvDbLWQV19F7Alt1CoVMZ4BtjadNW5YCEvHL2S63wi0quMf+WqVikk+YTw4/jym+Y/o0mv2BhmmEaKHLQoaxsc5paTVNhDbA0M1VquV97KK8dZpuWq4fw9EKIToKeeHjsZoaWFZ8neoVCoUReHS8HFM9ev4A76uxXjKUIu7To/R0oLJYsZgNmFFwa2dNiUnVE3trGAXT26Jns7iyEmUG+tRFPDRu+Di4Njl1+ot0jMiRA97NL5n96p5NSOfJouVJTHDe+T1hBA9J7k8lx1lOdwWPYNHJyzillHT+bkgjaTSLHuHdgonrQNhrt4Md/PuV4kISM+IED0u1uPoUE1RzwzVPHcwB0e1iqVxkowI0d98kZ3KwtDRTPYLB1p7ISqbG/kh/yDTT1odc4y7g546k7HNsTqTEb3GAZ1Gi1qlQo2K+nbaeDh0bvLqQCM9I0L0gguCfKg2mTlY03BWr7O6sIIyYwu/CQ9E3QNFkoQQPctkNaOm7RJetarjzesAItx9SK8paXMsraaECPfWZbtatYYwN2/Sakptz1sVhfQT2gw20jMiRC94JD6cj3JKeOZANh/NHNPt1/m/lEzUwD8mjuq54IQQPWasdzCr8/fjrXcm0NmD/IZq1hakMyPgeK/IV9mp1JgM3Bo9A4C5gVFsLMrki+zdzPSPIL2mlOTyPO6JP77rd2JwDO9nJBHu5k242zDWFWZgsppPqUVS3Wzgy+xUDlQXYbJa8NW7cvOoaYS7Desw5p6ocdLTJBkRohfEerjirdPyQ1HHy/vOJK22gfQ6A4kB3rjr5EdViP7o2shJfJ27l48P76S+pRkPnROzA0dy0Ql1O2pNTVQ1G2xf++hduSduHp9npbC+MANPR2duHDXVVmMEYLLvcBpajHyTu5c6k5EQVy/ujZuPu87J1qaxxcSLe35mlKc/f4yfh5uDnrKmely0HRdF7KsaJ12lUhSl476kfqKzWxAL0Z/ctG0/H2aXsP/CacR5dn1Vzfyfk9lYVk3mxdOJcu+dvW6EEAPXl9mpHKkr58/jzu30OV9k72Z/VRHLJl5oO7Y8bQsGSwv3xc8H4LnUHwl39ea6kZOB1iGipTtWMT9oFOeHxnUpxs5+fssgtBC95JG4Y6tqsrt8bnWziU1l1cR5uEgiIoRo197KAoa7evOvtM088OsXPJ3yA5uLD5/2nL6scdIV0vcrRC+J9nDp9lDNfcmZKMDfE2SuiBCifeXGBjYVHyIxJIZFoXHk1FfxaVYyWrW6w5U8fV3jpLOkZ0SIXnRhsA81LWb2d2FVjdlq5dPcUgL0Os4N6ngSmhBiaFOAMFdvLg8fT5irN3MCRzIrIJJNxYfsHVqXSTIiRC/qzlDNM/tzMFkVHokP76WohBCDgYdOT6CzR5tjgU4eVJ8wWfZkZ6px4urgaJcaJ5KMCNGLoj1cGKbTsqYLQzX/zMjDRaPmrqiQXoxMCDHQRbr7UnrS0ElpUx3ejh3PM+uvNU4kGRGilx0bqtlXXW87Vt9ipslsOaXtpzklVJvM3BYZLEXOhBCnlRgcQ1Z9BavzDlDWVM+Oshw2lxxmXlCUrc1X2am8l7HN9vXcwCgqjA18kb2bEkMtG4sySS7PIzE4us3rbik5TFJpFsWGWj4+vLPdGic9SZb2CtHLDtU1MurbJK4I9eWKUD9W5JbyY1Eli4KG8fW88W3aRqzaQp7BSMM189BrZX65EOL09lYW8lVOKmVN9fjoXUkMjmF24PHdvd/PSKKyuZH/G5toO3Zi0TNPR2cubLfoWQY/FaTZapxcGzGREd3oGens57ckI0L0ovoWM98WVHBL0gFajv6oaVRgVeD68AA+nHm8MNLOylqmrNnJpcE+rDopSRFCiIGos5/f8qeXEL3gSL2BJcmZ/FBUSYuitNm5wqKAVqVipJtzm3Pu2ZkBwOtTYvowUiGEsD9JRoToBXtrGvim8HiBoJO7H82Kwki342WdiwxGdlTWMdHbjRDnwbkrpxBCdERmyAnRCy4P9ePZcZGnbXNiz8g9u1p7RV6bFN1RcyGEGLQkGRGilyyNH8Fz40d2+HzU0WTEZLbybUEFw531TPf17KPohBCi/5BkRIhe9FBcOM+3k5C4aTV4OzoAsHTPYcyKwtNn6EkRQojBSuaMCNHLHowLB+Ch1OMbWPno4POsFLx0TvzrUDEeDhpuiAi0U4RCCGFfkowI0QcejAunxFDHPzLLAIUWq4G1hcUcrNfTaHHnygAnrIoVtUo6K4UQQ4/85hOiD/xSfAiDcT9j3RoBFQZL649eSq0LahS8VLksT9+KVbHaN1AhhLCDbiUjb7zxBuHh4ej1eqZOncqOHTtO2/7zzz8nJiYGvV7PmDFjWL16dbeCFWIgyqmv5OPDuwCY5tWIj4MFL50jYe6jMFg1jHA2olZDSkU+Pxak2TlaIYToe11ORj799FOWLFnCsmXLSElJYdy4cSxcuJCysrJ222/bto3rrruO2267jd27d3PZZZdx2WWXsX///rMOXoiBYF1hBsrRSiMLgqL5W0I8WY1WtlSq0ajgvenjbEXR1hdmYLFK74gQYmjpcjLyyiuvcPvtt3PrrbcyevRo3n77bZydnXn33Xfbbf/Pf/6T888/nz//+c/Exsby1FNPkZCQwOuvv37WwQvR35ksZlIq8gBw0eq4fMR4Lg/1Q6OC9aXVPBw3gtkBYYwfFgpAXYuRgzXF9gxZCCH6XJeSEZPJRHJyMomJxzfcUavVJCYmkpSU1O45SUlJbdoDLFy4sMP2AM3NzdTV1bV5CDEQ1ZiaMB+dBxLjGYCDWoOXowMRrs60WBXuHhUCwBjvINs5FcYGu8QqhBD20qVkpKKiAovFgr+/f5vj/v7+lJSUtHtOSUlJl9oDPPfcc3h4eNgeoaGhXQlTiH5Dc8LqmCazyfbvG0YEcGGwD356XetzlpZ2zxFCiKGgX/7WW7p0KbW1tbZHfn6+vUMSolu8HJ1wd2jdaya9ppQqYyMAj42J4Nt541GpVFgVhaTSLNs54W7D7BKrEELYS5eSER8fHzQaDaWlpW2Ol5aWEhAQ0O45AQEBXWoP4OjoiLu7e5uHEAORWqVmVkBrZVUrCv9K30Ll0YQEoNliZsWRXRQ01gAw3NWbMFdve4QqhBB206VkRKfTMXHiRNatW2c7ZrVaWbduHdOnT2/3nOnTp7dpD/Dzzz932F6IwWZ+UDQeutYdenPqK3l05zf8fd863jr4Cw9u/4pNxYcAUAGXDB9rx0iFEMI+ujxMs2TJEpYvX84HH3xAWload955J42Njdx6660A3HTTTSxdutTW/r777mPNmjW8/PLLpKen89e//pVdu3Zxzz339Ny7EKIfc9fpuTd+ni0hsaKQXlNKamWBba6IGhU3jZpG/AkTWYUQYqjocjn4xYsXU15ezuOPP05JSQnjx49nzZo1tkmqeXl5qNXHc5wZM2bw8ccf8+ijj/Lwww8TFRXFqlWriI+P77l3IUQ/F+LixWMTFrGx+BCbSw5Ta2oCwEGtYbLvcBYERxPi4mXnKIUQwj5UiqIo9g7iTOrq6vDw8KC2tlbmj4gBz6oo1JqasCoK7jo9DmqNvUMSQohe0dnPb9koT4g+plap8HJ0tncYQgjRb/TLpb1CCCGEGDokGRFCCCGEXckwjRBnKbO2jJ8KDpLXUE2tqYk7Y2cz3uf0VYMzakr5PCuFYkMtXo7OXBAWzwz/iDZtNhRl8nNBGrWmJkJcvbg2ciIj3Hx6860IIYRdSM+IEGfJZDET4uLFdZGTOtW+wtjA6wc2Eu3pz6MJi1gQHM2Hmds5UF1ka7OzPJeVWSlcGBbPIxMWEeLiyav7N1BnMvbW2xBCCLuRnhEhzlK8d1CX6oNsKj6Ej96VqyMSAAh09uBwbTlrCzOI82p9nbWF6cwKiGTm0eqt14+cwv6qIraVHuH80LiefxNCCGFH0jMiRB/LqqsgxrPtdgijvQLJqqsAwGy1kFdfRewJbdQqFTGeAbY2QggxmEgyIkQfq2sx4q7TtznmrtNjtLRgsphpaGnGioJbO21qW2SYRggx+EgyIoQQQgi7GhBzRo4Via2rq7NzJEKcmaGp6bTfqy5qByoa6tq0KaurQa/WYmw0YLVaUaOitLYaXxxtbSob63FWaeXnQAgxYBz7fXXGYu/KAJCfn68A8pBHv3/c8ctHyvBZE0/bZsofrlWuev/5NsfOeexuZdGLf7F9fdnbTygz7rvpeBuVSvnNyteUcddfbPf3KA95yEMeXX3k5+ef9nN+QOxNY7VaKSoqws3NDZVK1WOvW1dXR2hoKPn5+bLnTS8a7Pe52WKmwtQIwD8yN3Nx0GgiXYfhrNHhpXNidXEatS1GrgubAEBVs4GXMjcxY9hwpniHcbihgq8LD/DbEZOJdvcDILW6iE/zU7kyZAyhzp5sLs9mb20xf46eh5uDY4exDPZ73V/Ife4bcp/7Rm/eZ0VRqK+vJygoqM0muicbEMM0arWakJCQXnt9d3d3+UbvA4P1PmfUlPKPzM22r78tOgjAdL8R3BI9HWOxlQZri+29u+POHx3m8XlWClsrcvB0dObGUVOZfELRsznu7lgcVPxUkEadyUiIqxf3xc8n2L1zRc8G673ub+Q+9w25z32jt+6zh4fHGdsMiJ6R3iK7AfcNuc99R+5135D73DfkPveN/nCfZTWNEEIIIexqSCcjjo6OLFu2DEfHjsfgxdmT+9x35F73DbnPfUPuc9/oD/d5SA/TCCGEEML+hnTPiBBCCCHsT5IRIYQQQtiVJCNCCCGEsCtJRoQQQghhV4M+GXnjjTcIDw9Hr9czdepUduzYcdr2n3/+OTExMej1esaMGcPq1av7KNKBrSv3efny5cyePRsvLy+8vLxITEw84/8XcVxXv6ePWbFiBSqVissuu6x3Axwkunqfa2pquPvuuwkMDMTR0ZFRo0bJ749O6Op9/sc//kF0dDROTk6EhoZy//33YzTKbtan88svv3DxxRcTFBSESqVi1apVZzxn48aNJCQk4OjoyMiRI3n//fd7N8je3lfGnlasWKHodDrl3XffVQ4cOKDcfvvtiqenp1JaWtpu+61btyoajUZ54YUXlIMHDyqPPvqo4uDgoOzbt6+PIx9Yunqff/Ob3yhvvPGGsnv3biUtLU255ZZbFA8PD6WgoKCPIx94unqvj8nOzlaCg4OV2bNnK5deemnfBDuAdfU+Nzc3K5MmTVIuuOACZcuWLUp2drayceNGJTU1tY8jH1i6ep8/+ugjxdHRUfnoo4+U7Oxs5ccff1QCAwOV+++/v48jH1hWr16tPPLII8qXX36pAMpXX3112vZZWVmKs7OzsmTJEuXgwYPKa6+9pmg0GmXNmjW9FuOgTkamTJmi3H333bavLRaLEhQUpDz33HPttr/mmmuUCy+8sM2xqVOnKr///e97Nc6Brqv3+WRms1lxc3NTPvjgg94KcdDozr02m83KjBkzlHfeeUe5+eabJRnphK7e57feekuJiIhQTCZTX4U4KHT1Pt99993KOeec0+bYkiVLlJkzZ/ZqnINJZ5KRv/zlL0pcXFybY4sXL1YWLlzYa3EN2mEak8lEcnIyiYmJtmNqtZrExESSkpLaPScpKalNe4CFCxd22F507z6fzGAw0NLSgre3d2+FOSh0914/+eST+Pn5cdttt/VFmANed+7zN998w/Tp07n77rvx9/cnPj6eZ599FovF0ldhDzjduc8zZswgOTnZNpSTlZXF6tWrueCCC/ok5qHCHp+FA2KjvO6oqKjAYrHg7+/f5ri/vz/p6entnlNSUtJu+5KSkl6Lc6Drzn0+2YMPPkhQUNAp3/yire7c6y1btvCf//yH1NTUPohwcOjOfc7KymL9+vVcf/31rF69msOHD3PXXXfR0tLCsmXL+iLsAac79/k3v/kNFRUVzJo1C0VRMJvN/OEPf+Dhhx/ui5CHjI4+C+vq6mhqasLJyanHrzloe0bEwPD888+zYsUKvvrqK/R6vb3DGVTq6+u58cYbWb58OT4+ndvtV3SP1WrFz8+Pf//730ycOJHFixfzyCOP8Pbbb9s7tEFl48aNPPvss7z55pukpKTw5Zdf8v333/PUU0/ZOzRxlgZtz4iPjw8ajYbS0tI2x0tLSwkICGj3nICAgC61F927z8e89NJLPP/886xdu5axY8f2ZpiDQlfv9ZEjR8jJyeHiiy+2HbNarQBotVoyMjKIjIzs3aAHoO58TwcGBuLg4IBGo7Edi42NpaSkBJPJhE6n69WYB6Lu3OfHHnuMG2+8kd/97ncAjBkzhsbGRu644w4eeeQR1Gr5+7ondPRZ6O7u3iu9IjCIe0Z0Oh0TJ05k3bp1tmNWq5V169Yxffr0ds+ZPn16m/YAP//8c4ftRffuM8ALL7zAU089xZo1a5g0aVJfhDrgdfVex8TEsG/fPlJTU22PSy65hPnz55OamkpoaGhfhj9gdOd7eubMmRw+fNiW7AFkZmYSGBgoiUgHunOfDQbDKQnHsQRQkW3WeoxdPgt7bWpsP7BixQrF0dFRef/995WDBw8qd9xxh+Lp6amUlJQoiqIoN954o/LQQw/Z2m/dulXRarXKSy+9pKSlpSnLli2Tpb2d0NX7/Pzzzys6nU5ZuXKlUlxcbHvU19fb6y0MGF291yeT1TSd09X7nJeXp7i5uSn33HOPkpGRoXz33XeKn5+f8vTTT9vrLQwIXb3Py5YtU9zc3JRPPvlEycrKUn766SclMjJSueaaa+z1FgaE+vp6Zffu3cru3bsVQHnllVeU3bt3K7m5uYqiKMpDDz2k3Hjjjbb2x5b2/vnPf1bS0tKUN954Q5b2nq3XXntNCQsLU3Q6nTJlyhTl119/tT03d+5c5eabb27T/rPPPlNGjRql6HQ6JS4uTvn+++/7OOKBqSv3efjw4QpwymPZsmV9H/gA1NXv6RNJMtJ5Xb3P27ZtU6ZOnao4OjoqERERyjPPPKOYzeY+jnrg6cp9bmlpUf76178qkZGRil6vV0JDQ5W77rpLqa6u7vvAB5ANGza0+zv32L29+eablblz555yzvjx4xWdTqdEREQo7733Xq/GqFIU6dsSQgghhP0M2jkjQgghhBgYJBkRQgghhF1JMiKEEEIIu5JkRAghhBB2JcmIEEIIIexKkhEhhBBC2JUkI0IIIYSwK0lGhBBCCGFXkowIIYQQwq4kGRFCCCGEXUkyIoQQQgi7kmRECCGEEHb1/3w21mifrx52AAAAAElFTkSuQmCC",
+ "image/png": "iVBORw0KGgoAAAANSUhEUgAAAiMAAAGdCAYAAADAAnMpAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjcuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/bCgiHAAAACXBIWXMAAA9hAAAPYQGoP6dpAADL0UlEQVR4nOzdd1gUV9vA4d/OVnrvRUARQVHsYokaTUyPKV96j+nmTWLKm94T03vvPTHJG9OjUaPG3hFUQKR3pLMsW2e+PxZRBBF0Ecu5c+0VmDkzcwaVffbMc56jUhRFQRAEQRAEoY9Ifd0BQRAEQRBObCIYEQRBEAShT4lgRBAEQRCEPiWCEUEQBEEQ+pQIRgRBEARB6FMiGBEEQRAEoU+JYEQQBEEQhD4lghFBEARBEPqUpq870B2yLFNWVoaXlxcqlaqvuyMIgiAIQjcoikJTUxPh4eFI0oHHP46JYKSsrIyoqKi+7oYgCIIgCIeguLiYyMjIA+4/JoIRLy8vwHkz3t7efdwbQRAEQRC6o7GxkaioqLb38QM5JoKRPY9mvL29RTAiCIIgCMeYg6VYiARWQRAEQRD6lAhGBEEQBEHoUyIYEQRBEAShT4lgRBAEQRCEPiWCEUEQBEEQ+pQIRgRBEARB6FMiGBEEQRAEoU+JYEQQBEEQhD4lghFBEARBEPpUj4ORf//9l7PPPpvw8HBUKhU///zzQY9ZtmwZI0aMQK/XM2DAAD777LND6KogCIIgCMejHgcjzc3NDBs2jLfffrtb7fPz8znzzDOZOnUqaWlp3HnnncyaNYuFCxf2uLOCIAiCIBx/erw2zemnn87pp5/e7fbvvfcesbGxvPzyywAkJiaycuVKXn31VWbMmNHTywuCIAiCcJzp9ZyRNWvWMH369HbbZsyYwZo1aw54jMViobGxsd1LEARBEITjU68HIxUVFYSEhLTbFhISQmNjIy0tLZ0eM3fuXHx8fNpeUVFRvd1NQRAEQRD6yFE5m+aBBx6goaGh7VVcXNzXXRIEQRAEoZf0OGekp0JDQ6msrGy3rbKyEm9vb9zc3Do9Rq/Xo9fre7trgiAIgiAcBXp9ZCQ1NZUlS5a027Zo0SJSU1N7+9KCIAiCIBwDehyMGI1G0tLSSEtLA5xTd9PS0igqKgKcj1iuuuqqtvY333wzeXl53HfffWRlZfHOO+/w/fffc9ddd7nmDgRBEARBOKb1+DHNxo0bmTp1atv3c+bMAeDqq6/ms88+o7y8vC0wAYiNjeWPP/7grrvu4vXXXycyMpKPPvrouJ7WW2tuxmi3tNvmqdHjb/Doox4JgiAIwtFLpSiK0tedOJjGxkZ8fHxoaGjA29u7r7vTpVpzM49s/A27IrfbrlFJPDXqbBGQCIIgCCeM7r5/H5WzaY5lRrulQyACYFfkDqMlgiAIgiCIYEQQBEEQhD4mghFBEARBEPqUCEYEQRAEQehTIhgRBEEQBKFPiWBEEARBEIQ+JYIRF7LJDlaW7zrg/gZr5wsDCoIgCMKJTAQjLmJ12Hlz2zKWVxw4GPksey1lzQ1HsFeCIAiCcPQTwYiLfJu7keyGvQsCxnsHMTVsIMMDItFJasBZg+TtHcuwOux91U1BEARBOOr0+qq9J4I6i4k1lfkA6CUNdyRPpb93UNv+JquZ17ctpbi5jmpzMxurixgfEtfuHGazmYaGBhoaGggNDT3qK80KgiAIgquIkREXWFOZj4Kzqv70yEHtAhEAL52BSweMavt+ZUUuiqLQ3NxMaWkJ2zI2sX37dkpKimlqasJS9ecR7b8gCIIg9CUxMuIClS2NbV8PD4gCQLab2Lp1A1qa0EtGDNompugc5NoDSLQ0k562BrusB8UBKnXr0SoADFrTkb4FQRAEQegzIhhxAdU+X+8ZIbGZStHQjFXxQ7HbaHT0Z6BGYqAGUBTscutRbYHIXgafwb3faUEQBEE4SohgxAXCPXzbvl5fVUi0pz9673iSR8YDILeUUJT/PbKxknrpHBT0Bz6ZIpOVW45emoe7hyeB4aMxeAb38h0IgiAIQt8RwYgLjAuO5eeCrTgUmaVl2ST4BpPsH9G2v1bly8emeKosoYyWfmKqLoh61SmgyKDaP21HxqpEYJUlmpqgMqsIyEeNCbXKiFZlwt1Nh39YCp6+sUf0PgVBEAShN4hgxAW8dQYmh8XzT1k2dkXmre3LifUKYIB3ELvNRjJqy3AoMgClhpOJHhiCb84rFCq3oigaULX+MSg2AlWL6CfPpUX2o4lxGFXDaFENxEYwViUEK2qaTbA7txaU3Ui0oMaIVjLhppfwDYzHN2RoH/40BEEQBKFnVIqiKH3diYNpbGzEx8eHhoaGo3bKq0OW+SBrJWk1JQdsE2Tw5K7kaQQYPMBWiTlrFnmWS2hhoHOERHEQGdBISOx0sFZAzdfQsABMW8FeDShY8KOBKTSpxmBWxWEjAAcegAZUrXkoioyEGTVGNKpmDDoFH79IfIJHotHpjsjPQxAEQRC6+/4tghEXkhWZVRV5/FOWTZlpb6VVT42eiaH9OTUyEQ/tPvkishU5fzZltToqVdeASsWA2EB8/Pt1cnK7MzCp+xGaVoO1EBRr604VVnUMdarTaGIoZiUEh+KFAw8UtPsEKQoqLG1Bil5jw8snmIDwsWh07r32cxEEQRBOTCIY6UOKolDR0kiT1YxerSXcwwet1HHWTGtjqHqbxsIv2a2+gpiUW1GrD9B2f+ZcqP4KGhdBy3Zw1O/dJ3mCYSB2t5OodozC2KLBYtdiVzxbgxT9fkGKDQkjGpURndqKp6c3/mFjMXj4H9bPQhAEQThxiWDkWGNcB4oNvCYe+jlkM9T+D+p+geb1YC0F9pSeV4MuEjxGg99M7J5nU1+VQUN9KWabhKM1SJEx7E2qVRTA3po824ROZcbdw42g8JEYvCIO0AlBEARBcBLBiODUvBlqvoXGpWDOBtm4d5/aFwxJ4HMKBF4BhgEA1FWmUb97F2argk12x4EnMm57a6IoCuBAogVN6wwfN4MG/5DBeAUkHPFbFARBEI5OIhgROmevh5rvoP53MG0GWyXgnOmDSge6fuCVCn4Xgs/pIO2dcGWs2UVtVQamFhs2xa11NMUdUO+XPOuc4aORmjHoVPgGxuLtnyySZwVBEE4wIhhxoQfX/0KNpbnD9slh8Vw2YHSnx2zaXcQvhenUmI0Eu3lxfmxKu9ojiqLwW2EGKyp20eKw0d87kMsGjCbE7QjfnyxD079QOw+MK8CcB0pL604VaALBbSj4ng4Bl4MutMMpzMZyqks3YjKZsMoG7IonMh4oHWb4WFrzUprRa+34+EbgFzpGBCmCIAjHKRGMuFCT1YzM3h9TWXMDr237hznJ00jwDenQPrdxNy9tXczM2GEM9Y9gfVUBC0syeWj4aUS0VmtdULyDBcXbuSYhlUCDB78WpFNqqufxkWcdONn1SLGWQXXrtOKW9NZpxa1UbmDoD56TIOAS8JwIUufrLdotjewuXo3R2IDVodsneVbXyQyfZtQqIwaNDU8vfwIjU9HoPI/AzQqCIAi9RQQjvWhe7iYyakt5atTZqFSqDvs/yFyJVbYze/CUtm3PpS0kysOPy+PHoCgK962bzymRiZwamQhAi93KPWt/4pqB4xgdHHOE7qSbZDvU/wF1/wPj2v2mFUugDQX3EeB7tjNA0XT9Z2S3mqkpX0tTfSUWuwaH4okdzwPM8DGhUTWhkyy4e3oSGDYWg2dg796vIAiC4BLdff8WFVh7yC47WFdVwPSIQZ0GIgB5TdVMjxjUbluSXxhbWwuiVZubabSZSfTd+8jDTaMj1iuQvKbqoy8YkTTgf67ztUdLtnP0pHExmHdAw+/OV+FNIHmBIQG8pzof7XgMa3c6jc5ASL8phOxXTsVutdKwewsNtUWYrbSNpFiUCCyyRFMjVDYUALlt5fF1qhbc3PQEhKXg4dtJfZZeUmtuxmi3tH3vqdHjb/A4YtcXBEE4nohgpIfSakposVsZH3LgdWEarWa8tYZ227y1BhqsZud+mzMnw1u3Xxvd3jZHPbcEiHoSeNL5vd0E9T9B3c/QvAFMW8C0ESpeBDTOacWeY8D3PPCfCZKhwyk1Oh0BEWMJiBjbYV9DZQZ1NTtpMTuwy+7Y8Wwrj280we7calAqnSMpGNFILbgZJPwCBuITkuzSW681N/PIxt+wt5b4B9CoJJ4adbYISARBEA6BCEZ6aFVFLoP9w/DVi4ql7WjcndODA6/Yu824AWq/hcZlYN4Jtd87X3mA2g/cBjunFQdcCYauF/3zCUnuNKhori+kpiKNFpMZG27YFU+sBGGV1ZhaVNSUWKF4Q8fy+P7R+AQNP6TkWaPd0i4QAbArMka7BX9EMCIIgtBTIhjpgRpzM5n1ldycNKnLdt46A4229iMcjTYzPq0jId5aN+c2qxkfndveNlYzUZ6+ru10X/Ic7XztYa/dO624eQsYV4FxJZQ+Bio96GPAczz4/R/4zDhgYuy+PHz7dfp4xmysorp8AyajEausx654YscXmxJEi1VFXQVQnr5PeXwjeo0dL98QAsLGodF1HLkRBEEQeocIRnpgdWUuXlo9yf7hXbaL8wokq76iXd5IZl0FcV7OxMtAgwfeWgNZ9RVEefoB0GK3kd9UzeSwAb13A31N4w8htzpf0DqteKlztKRpJVjynIXZqj/FOa04CNyHgc8ZEHAZ6IK7fSmDZzCR8Wd22G63GqkuWYuxqWaf8vie2JUAzHYVDdVQsnsbKuf6yM68FLUVL08fgqLGo9H3fQK1IAjC8UYEI90kKwqrK/NIDYlDrWr/if3T7NX46tw5LzYFgGkRCbyUvphFJZkk+4ezYXchhcZarogfA4BKpWJaxCD+LN5GsJsXgQZPfilMx1fvRkpg1JG+tb4jSeAzzfnaw1rcOq14IZgynOvuNC6C4rtA5e6sEut1EgRcCh7jujV6si+NzpPQuOkdttutZuoqNtJYX95aHt+jNUjxxeKQaGqAsvqdOMvjN3Obmzt2pZFKRwurbRqqcOt4MUEQBKFbxNTebtpRV87r25by5MizCHFv34eX0xcToPfgmoTUtm3OomdbqTE3H7TomcluZYBPEJf1H93h3Cc82ep8rFP3U+u04iLnGj6Ac1pxGHiMck4r9r8YNK6tTWK3Wmmq20bd7jwsVgWb7NFaHt/QSXl8U2t5/Bbc3LQEBCfjGXAcj3QJgiAchKgzIhy/TJlQ8xU0/uOcVuxo3LtP8ga3QeB9snNasfsQl1++yFjLM1sW0B8To7QyfmoP1CpvHHg51/BpVx7f0Zo824RWMjnL4wfF4eU3RFSeFQThuCeCEeHEYTdC3Y9Q96tzOrG1DHC07tSALho8x4L/+eB7DkiHHgRUmhr5uXArm6uLO+ybPXgyyf4RmJtKqS7bRHOzGauib1sRmQ7l8c17K89qFXx8w/ENHS2CFEEQjhsiGBFObE3rWqcVLwfLTpBNe/ep/cFtCPicCgFXgKF7xdK21pTwYdYqbLKj0/16ScPtQ6YQ79N5oq25uZa68vU07VMeX+6iPL5zho8NT68AAiPHo9GJ6eSCIBxbRDAiCPuyVUPNt86y9qY0sFfBnvWGVHrQxzrX2Qm4CLymdUiMLWiq4cWti9rqi2hVEjFeAciKQkFTDY7WcxnUWh4afhrBbl6d98Pe4ByZkfYmvNqtJmrK1tHYUIXVrsXemjzbWXn8thk+kgV3Ty8Cw8aI8viCIBy1RDAiCF2RZWhaDDXfO+udWPJB2VPeXQWaYHBPAd8zIeBS3tq5jYzaMgBGBUZzefwY3DXOxymN1hY+yV5DZn0FABND+3Nl/D5VZGWzMwiq/hzq/3LmsvT/7KBddJbH30xDbTFmq6otSHEmz7YGS4qCc4bPnuRZM27uegJCj2x5fEEQhM6IYEQQespc6EyMbfgbWraBoxZwjp9YFT2VSihFUjLjkp5A4zmi3aEmu5UH1v+M2WFHJ6l5ccxMDC1rofpLqJ0HshFQAzIE3QCx7x9WVxsq06mr3kmLRcEuu2Hfkzyr2mfFZ8WxT3l8E24GDX5BCfgEDT6sawuCIHSXCEYE4XDJVqj7hdqKr3A0rcFfVYta1ZovoosETQjo48DvbNBF80NpNTtqshkjreUU/Xo0jkqcpXzs+5xUA5GPQ/hDvdJlY30+teXptLRYsCoGHIoXDtxpP8NHRqKltfKsyVkePyAGn8BhInlWEASXEsGIILjIpt1FfJC1EoArItyZ5FUH5izY/ZlzWrHSvvS/oux93+9U3Jft1/A5AszGKqrLNmBqNmKVDdgVj9bkWe1+eSlmNK3JszqNAy/fYFEeXxCEQyaCEUFwkYKmGuamLQSgv3cQ9w07pX0DhwnZUsT32z5muvwpgVINCtBVPIJKD2pv0AaDNgoM/Z0LB7qPBI9hIOl763bacZbHX0NTUy0Wu7Z1JKWzGT7Wthk+Oo0VT09fgiJTRXl8QRC61N33b1EOXhAOop+nP+HuPpSZGsht3M2a1mUB2qjd+btGZqllOEsZztleOzlLfgvs9eytd7IPrylgrwFbFZhzoWUHNO7/mUANag/nNGRtuHNVY0OCc60ejzGgC3XJvTnL45/C/mezW83UVqynsb4cq02NrW0NHz/MdhWN9VBWtxMVdqQ9QYpkxt3dncCIURg8w1zSP0EQTgxiZEQQumFVRS5f5Kxr+36IXzgjAqNwKDLrqwrJaaxq23f74CkM8dJD0R1Q8zXOMZI9/8wkGGUGSdv+AtYSMG4EU7rzEZClAGzlzpWO5WY6BjUqUBlA7eMcXdFFgSHeWT/FY6Tz/5LrP2vYrVYaazKor8nHbFWwt5XHd9tvhs++5fFNuLvp8A8diqdff5f3SRCEo5d4TCMILqQoCt/mbmR5eU6X7c7pl8yZ0cl7N9T/AXnXg70acDiTXkdU9LwDshmat4BpM5h2gGWXM4Cx727NW7F0cpAG1J6gCWgdXYkDQ6JzdMVzjHMVZRdqrM6irmoHLWY7NsW9taibeyczfJzJs1rJhEGvwjdwAH4hKS7tiyAIRwcRjAiCiymKwrLyHBaW7KDOYmq3L8TNizOjhzA2OLbjgfYGKLobqj8Gj7EweK3rOyfLzkUEm9c7Vzs2Z4O1AGwVYK9rrUAr73eQyll8Te0L2hBn2XzDQHBLdo6uGAb1eFXkzpgai6kp34KpuWW/GT6dlcc3olE1o9fK+PhH4Bvce+XxFdmBuX4bbv7D2rbtLKhldVoZVlvnVXa7otOqGZ8SzsAY1wZ5gnAsE8GIIPQSWZHJrK+g0tSESgUR7r7E+wSj6nIKDdC0EiR38BjRdbveYjeCaZNzhMW8w5mvYit1VqeVm0CxdjxGpQXJC7SBoI1wTmV2S3IWhPMYDZoDVJrtBnNzLTXl62g2NraWx/c6wAwfy94gRWPD0zuAwIjDL49fV/wneVUh+Gkz6ZdwBmq9P5/9vI3aBvPBDwZsahsOdfugJcDDnZvO6aM/X0E4ColgRBCEnpFlsORA857clRywFoKtEhz1ILfQcXRFco6uaPxAEwr6fs5EW7eh4DkKdLE9Hl2xW01Ul67F2Lgbi12LvXWhwS7L46vNuHt4Exg2FoNnQLeuU5r1NRXGgYCCVlVLXLQf3ywzYDTZUKnAw017wGOtkpVtQbtQVO1/faoUFc+OOQd/g0eP7lkQjldiNo0gCD0jSeCW4Hxxeedt7LXQvGd0JRPMeWAra50dtNW5avL+VHpQe4EmyFksTt/fObriMQLcR4DarV1zjc6d0NiTO17aaqWhaiP1tSVYbFJbeXy74oPFIdHUCJUN+UAOakyoVU3oVGbcPdwICBuOu3dUu/O17BkAUamxKf5kF8Lw0PWszBuKh5uBG/9vWIc+7FFkrCVjS8f8IUWlYLRb8EcEI4LQEyIYEQSh+zT+4HOK89UZ2e6cqmza5Cyp37ITrMVgr3TOEDJnAYv2O0jtfHyl8QdtGOhjWqcxD3Um2uoinZfW6QiIHE9AZMfL1ldupa56F2aLA1vrDB+rEoYVNUYjVOVUgVLeNsNHozJhkUP3zgBqTbKV3IYzbdAuMiu6Hl0x2jpLGBYE4VCJxzSCADy4/hdqLM0dtk8Oi+eyAaM7PWbT7iJ+KUynxmwk2M2L82NTSPaPaNuvKAq/FWawomIXLQ4b/b0DuWzAaELcTvC/w9ZKaN4Apq2t05jzwVoOjhpwNNO+fH4rlWFvkThdFOgHOIvEeYxwzg6SOk9yNdblUluRjqnFhk1xw6F4diyPvz9FRoWF6IB6AmPPar9LUVhcmsX8/LS2lZrbN4CrB45lfKiYwiwIIHJGBKFHmqxm5H3eXMqaG3ht2z/MSZ5Ggm9Ih/a5jbt5aetiZsYOY6h/BOurClhYkslDw08jwsMXgAXFO1hQvJ1rElIJNHjwa0E6paZ6Hh95FlpJ3eGcQivZ6gxUmjdDy/bWaczFziJxnZTfd9K0FokLAF0Y6GOds4H2JNrqgtu1ri9bRW75wUvcS0oTKpUWD50RNDZ+q95MNgO6PgYVs4dMZrBfeA9uWhCOTyJnRBB6wGu/tVcWFO8gyODJQJ/gTtsvKc1msH8YMyKTADg3ZhiZ9RUsK9vJ5fFjUBSFJaVZnBE9hJTW5wrXJqRyz9qfSKsuZnRwTK/ezzFN0oHnaOfrQCxF+yTaZu9TJG63M+nWuGq/A1qLxGl8QBOCIo8Gbu54XsUOKk1rPRQjEjbsuNNoCQCrislupzM/fwNJob5MCYtnekQigQYPXvtlLcVuVTS7NyOj8OXO9Twz5hzUqsOfGi0IJwIRjAjCfuyyg3VVBUyPGHTA6bp5TdVMjxjUbluSXxhba0oAqDY302gzk+i7t9C6m0ZHrFcgeU3VIhg5XPpo58v//M73O1paC8TtKRKXu7dInDkLM6NAJTtzRloDEEkx4a2swN22HtlWQURkEhgGUa+L5b68h3hRcecPWzwrVbk0b/uS18Ym4qZzBhseNnciGsIpiyjFqDdRZzWxtaaUEYFRnfdPEIR2RDAiCPtJqymhxW5lfEgnBcxaNVrNeGvbj6Z4aw00WJ2PEBptLc5t+424eOv2thF6kdoNvCY4X52wbfsSLBIaavFTb8VXk4WXkk6zsQidqhGN3gLVzvL/vsAHOAv6n6vOZGmYzBrDFYx/9XnmnW9koE8dEsNQoSK0OZBd+iIAMmpFMCII3SWCEUHYz6qKXAb7h+GrP7yiWsLRK6z/dAJN5bj5TUMl7Z0Z9OUPG9lm30Su1zpyfBaCrYw5OrhNB7sJo8WuJkSq4pSANL4P+IOp31zMj2OeJkA3h0bTINzse4NPk72TInKCIHRKBCOCsI8aczOZ9ZXcnDSpy3beOgONtvYjHI02Mz6tIyHeWmftjEarGR/d3joajVYzUZ6+ru200GNatzC0bs6Vhcst5SyoWUBzxdtcE72JFgWagAYFjGpIVQOSBwXKCByqWtKLJ/CgVI459k3CjElM/Pd7RvjauTjYSIt2798Jd03vlLEXhOORyK4ShH2srszFS6sn2b/rmRBxXoFk1bdf8C6zroI4r0AAAg0eeGsN7dq02G3kN1W3tRH61pLaJQxbN4zwleFcl3kdixu34KmCIAniJBiuhkkaUKsA2cRo5Q9SdWu4IfZ7TNtexNwSQXHynSSEt7CxXsfcfB/ytLVt5x+2zzRvQRC6dkjByNtvv01MTAwGg4GxY8eyfv36Ltu/9tprJCQk4ObmRlRUFHfddRdms3huLhxdZEVhdWUeqSFxHWZBfJq9mvn5aW3fT4tIYHtdOYtKMqkwNfBbYTqFxlqmhA8EQKVSMS1iEH8Wb2NrTQmlzfV8unMNvno3UkQewVGhyFxEujG97fvfHDIFMsj7FTtwpjArqABFgXPWfIDZFoi85SOsDqiIP5NRAY3U2iQ+XJlIWbUXfnp3kgNEMCII3dXjYGTevHnMmTOHxx57jM2bNzNs2DBmzJhBVVVVp+2/+eYb7r//fh577DEyMzP5+OOPmTdvHg8++OBhd14QXCmrvoJai4kJIXEd9tVaTDRYW9q+7+8dxKyECayo2MVTm/9ic3UxtyRNaqsxAjAjMpGpYQl8lbOeZ7cswOKw8Z/BU0WNkaPENWHXMCdqTtv3MvDqQdI8vqi8gz8qW0vVm+Jhx1zqtMXsHnoX04fnICsqfl+fhLFyhJjWKwg90OOiZ2PHjmX06NG89dZbAMiyTFRUFLfffjv3339/h/azZ88mMzOTJUuWtG27++67WbduHStXruzWNUXRM0EQeoOiKFy9/Wq+rPySMRLco4MLNR2LsyqKikzjBbyU8xifFu6X2JzwKER8zxj7bAZrJvPL2mRqTTA5Vs/i68LQaERQIpy4uvv+3aN/JVarlU2bNjF9+vS9J5Akpk+fzpo1azo9Zvz48WzatKntUU5eXh5//vknZ5xxxgGvY7FYaGxsbPcSBEFwNYe9iYFNf7LGHdZ5OPNEVjqcj2P2UqPyPomkqd8wKDHSmUOyr50PQdMg1svfcWZsPJUPxHByfwPL8y2EP1dEbo2YVSMIB9Oj2TTV1dU4HA5CQtqXxw4JCSErK6vTYy677DKqq6uZOHEiiqJgt9u5+eabu3xMM3fuXJ544omedE0QBKFTC1bmsyO3BgBJpcKgVxPuZ2SkzysYmM/DashTtPxXDuHV5jLe1ctMbHuSpgZdNMT/BJKWskY7kgoc+wYrih4y3oaxZ3PhptsoCPiLJbPCeXpJHY8urmPQKyV8dVEQFw/zosFo4eP/ZXDF2UkE+4up44KwR6+PHy5btoxnn32Wd955h82bN/PTTz/xxx9/8NRTTx3wmAceeICGhoa2V3FxcW93UxCE41hMhDc3XTSMG6YXcdWAazjTZwqB/MzPNhWvGs4gbqyVB0dt40y3CK7WQjFa54GSOyT85VxRGChvcrQPRFqpzBGotr8Mgcu4LtdZFfbhaX4suyEMrVrFJd/t5qb5u4/U7QrCMadHIyOBgYGo1WoqKyvbba+srCQ0NLTTYx555BGuvPJKZs2aBUBycjLNzc3ceOONPPTQQ0hSx3hIr9ej1+t70jVBEI4DteZmjHZLu22eGj3+Bo/DOKuDcGk+HjteAEctMhKv2lS8YIFzd7/O7SMuAUBvd+M9WUMJen6rvp2bgj/AFP41vm4JAKxOK2VTvglZcQ6bSCjIqPDQqnh2hj+XpVzDzB2f8k/9Av7z07v0bx6Dv4+BNVeHceF8Ix+sb2Lbzt2cGwJf/bYDgMgQTy46bVDn3RaEE0iPghGdTsfIkSNZsmQJM2fOBJwJrEuWLGH27NmdHmMymToEHGq18x/zMbBgsCAIR0ituZlHNv6GXZHbbdeoJJ4adXbPAxJrGRT+h0nScjw8q0HxoNT3IpJKf6FJtvLBoA/QN6eSU1RH8sAgVi17hmn++XxoepgC7+G8XnsWhjwvZl1gx03v/FVZ1xoneelUXJhoYE1uIxVWiSz5L97O8uIe5X0qrFfxnvddLB63Asq8WbIqj/NHl7GmxINV22MoNWt4b2YAkwZ6I0mdr30kCCeaHj+mmTNnDh9++CGff/45mZmZ3HLLLTQ3N3PttdcCcNVVV/HAAw+0tT/77LN59913+e6778jPz2fRokU88sgjnH322W1BiSAIgtFu6RCIANgVucNoSZca/4VtIyEtAur+R6Mjjn+bPuKf2F+IKfkJo2xjfvJ8ZkXMwt/HQKPRSllpLmO93qFeiuOcsfdy35jpxCf50qyY2bCztO3U5wSb+OICf3Y/EsNDZ2hJHlBMvVVDqGUCKQGR7NzZxKP+r+BQ2Th753Qagqqx6CyMUAbwzcwR3Dihknq7xNnz6vlwc3NbkCMIJ7oe/0u4+OKL2b17N48++igVFRWkpKSwYMGCtqTWoqKidiMhDz/8MCqViocffpjS0lKCgoI4++yzeeaZZ1x3F4IgnNhkGarehPLnwVYOqMBjHES/xtatwWx0rOWxtFNRq9QsH7GciX4TAefidypAXXwrBnUTX+V+QlP2rrbTau1aSmv3zuabGKbiylG+ACwpzWZigpZ/tjv4erOK/540hFzHFhwaiTcGvsHsnbN5NP9h7gx+BsmiJtLDj8cnDCW0Ipt3yj256/da/tnVws9XhnT6uFoQTiSHFJbPnj37gI9lli1b1v4CGg2PPfYYjz322KFcShCEE4CsyGTWVRy84f7s9VB0D9R8DYoZVDoIuByiXwOts+z+Ssv7vKi6E72kZ8PoDQz2HNx2eG2DmXDPnQSpFrGp7jrOPd25aJ6iyGyrLed/BWmcnzy100vnNVUzNSSB0T4WFlZLlDfZASgzNfBQ1G38sftv/qr7lbWkcjL/B4BBo8VLo/DcGU28tyaU37Ja6PdCMetvjSDMW4ySCCcuEY4LgtCnWuxWXstYyk8FaQdsk15T2n5DczrsmAyb/aH6Y1B7QeRcGNkC/b9qC0Qez3uc55TZhMgx7Ezd2S4QKSpvpLrORKrnHBy4s2b3tew2N/FYxq88lP4LP5VvZtawccT6+7cd09hsxWhy1g1ptJrBqGaUjxUFePyfBrR6FbYmZx7I63EfEKMaxafyXKrd8wBQt+aImGUL626L5J5J3pQ0OIh5oYi/spsP90cpCMcsEYwIgtBnZEXhvcwVZDfsnaHnrTUQ6eGLZp9y6r8VZbCuKh+qv4K0/rB9GBj/BbchMPBPGFEF4ffDPo87bs68mSfynyDOkcxz0nf4KSE0NVuprGlmXXo5v/yzi4mRC/CUCtGE301IYABr11ZxXfhJ3B5/MmPdB/DTqiy2Fe/tm0YtsWBlPrtrTRhaDORlNjMu3pcAdzU/bW8mpJ8Oz1pvsvNraW52cH7jA3jIftxnu4R6az3uBi1ICo4GieYWG09P9+X3q5yPuM/4rJL//lVzBH7qgnD06XE5+L4gysELwvFpa00J7+z4FwAPjY5rBqYyxD8cSaWixW7l96JtLCtN5xz1D0xWL8WgagHU4HM69HsLDP06Pe/5W89nfvV84t3iecX+GzvzmwBn0TO9Xk2QnxuJ/SSSGhJRaQJgRCVWm4OVm0vJKayjxWLHw01Lk85IQJyGq4eMYXVaKblF9QwdGMTa9HKMZiu+QRouPzmZ+xbW8+aaRp45pxGpvh5/ox8msw2Txox+UB731F5NonsiO1J38NI//6Ktcke2QkSwc2pvWaOdMW+XUtroYFyUnqWzwjDoxGdF4djX3fdv8ZBSEIQ+8295TtvXV8SPZeg+K9260cyF8qtcoP8GCZkWxY0Kn5sIjX8NJEOn55NlmcmbJ7OyYSVjvMewZuQaZ3LoSZ003j4BcED/7wDQadWcPDaak8dGtzV5JX0JirZ9pdRhg4IZNiiYDzJX0iI3Y9BreHK6L2+taeTHDBt3T3Xn8vhhKIrCfevmc2rQaK7SXcUXFV9ww46b0emmcM3J4xgdHNN2znBvDUX/jeKcLyr5I7uF8OeKWHVTOIkhuh7/TAXhWCRCb0EQ+syuxmrA+WgmZU8gYlwLOyZBWiSq2m+waaL4yHYrd1o/4l/NDQcMRKyylSHrhrCyYSVnBJzButHrDjxLpWERNK8Gz0ng40xQnZ+fxs6GKqrNRkqb61u/r2RMa9CQVl3SbuXmaREJbK8rZ1FJJmaaSQw3kV3mxYTgAQCoVCqmRQziz+Jt3Bn8FP31g/i0/GOapTJSAqM6dEmSJH6/JoyXz/CnvkUm+fUSPtso1uUSTgwiGBEEoc/YZAcAXloDkkoCawXkXADG1RB8Gwwvozx+ExvkCe3a76/R3kj/1f3JNGVyTdg1/JHyx4EvKsuQexmghvj5bZubbGY+y17DYxt/59WMJRQYa/jPkKkk+YUB0OKw4djnqXZ/7yBmJUxgRcUuntr8F6MGVGCy6Phi495CZjMiE5kalsA3uRs5WbkfT1UA35kfYre1fRXrfc2Z5Mu6W8MxaFVc+79qrpxXJQpECsc9kTMiCEKfeXD9L9RYmpFUKp4fPhbv3DPB3gAJf4PHEAAWFO9gfutMm3P6JXNmdHK7c1RYKhi8djC19lru73c/cwfM7fqixQ9C+VwIux+iDtK2B2RZxv2xAoI81BTf33kuy8KahZyWdhpR+igKxhd0WV+k0SyT+m4pO6psDAzUsvaWMPzcxZN14djS3fdvMTIiCEKfcT4CUUhhDertY1AcTZC0vC0QqbU0s7h074rgo4Ni2h2fY8phwOoB1NpreXnAywcPROy1UP4iaAIhwrWFFyVJYsYAN0oaHOyqtnbaZkbADO6KuotiSzEXb7u4y/N5GyS23xXF9aO82FltI/K5YlYWtHR5jCAcq0QwIgjCkacoYFzHDOUzXtDdxk26N3FXaviAp1nboGFnfSW/FWbwzOYFNNnMAAz1jyDYzavtFBsaNjBk7RBMsomvkr5iTr85B7/uzvMAO8R93W4asKs8e1oAAA8srD1gm1cGvkKKZwo/7v6Rj0s/Pug5P7ogiG8uCcLqUDjp/XLmLq1zWX8F4WghHtMIgnBkKLIzF6T2R6j9vrVsuxpwoCiw0TGWjxz/6fTQIIMn9w07BW+dGwB/Vf/F2VvPBuCPlD+YETDj4NdvWAbZU8FjPAxe5Zp76kTYs4U0mGVMT8YesI3RbiRsZRgtjhYyUzOJd48/6Hlza6yMe6eMapPM9AEG/ro6FI1GfJ4Ujm7iMY0gCEcHRzMU3A5bQiFzElS+3RqIADgTUlUq2Kz9vw6HqlAxIiCK+4ad2haIfFX+FWduPRONSsOaUWu6F4gA5F7C/kmrveG6kZ602BS+TzcesI2nxpPFwxcjIzN+43jssv2g5+0foKP0gWgmxehZvMtM1PPFFNbZXNl1QegzYmREEITe1ZIJGUOAjivyttFFogwtJKuhipyGKqyyHR+dGyMDo/E3eLQ1e7nwZe7ZdQ8eag+2jNnSrREFAEoeh7InIHQORL98WLdzMCarjOfjBQwL1bHlP5Fdtn0m/xkeznuYaX7TWDxicbev8eiiWp76px6tBPMuDeG8IR4HP0gQ+oAYGREE4ejglgj9v8G5Pm5n1BBwOSpJItEvlHNihnJh3AhOiUxsF4jcl3Mf9+y6hwBNALtSd3U/ELHXQ9kzoPaHyBcP924Oyl0nMSJcx9ZyK0ZzFwEY8FDsQ0z2ncySuiW8UPBCt6/x5Cn+LL4uFLWk4vyvK7n91+rD7bYg9CkRjAiC0PsCLob+X9N5QOIA/65nlly9/WpeLHrROSV2QgGh+tDuXzvnQpxJq5/3StJqZx452Q8FePKfgyeb/j38b/w1/tyfez8bGzZ2+xrT4t0p/m8UMX4a3lrTyPA3SjBZuw5+BOFoJYIRQRCODLV/59t1MeCe0ukuRVE4Y8sZfFHxBYM9BrNr/C48NZ7dv2bTKmhaAh6jwe+sHnf5UJ2b5IGHVsXnm5sO2lYn6Vg5ciUqVEzbMg2T3dTt6wR6asi9J5ILh7iTVm4l7NlCtpZZDqfrgtAnRDAiCELvq/sTdp6BER++s13F3kQ1NQRe4cxg3cem3UU8suFXUpadxV+1fzHecxrpY9LRSc61WhRF4deCdO5d+xOzV83j1YwlVLZ0Ujp910WABPE/9+LNde7sJHeqmmXSuhEcJHom8k7COzQ6Gpm8eXKPriNJEj9cHso75wZgtCqMeKuUd9c2HGq3BaFPiGBEEITeVfcb5JyNFTfe4GVy3C5mg8ejrTs7PqLJbdzNB5n/Ms/8GOnyn5zicQnDbLMo3yfYWFiSyT9l2VweP4b7U05FL2l4Y9vS9uXiS58FWxkE3wq68CNwo+09N8M5EvRgFzVH9nVT5E3MDJzJxqaN/Dfnvz2+3i3jfNhyewSeOhW3/lLDhV9VIMvisY1wbBDBiCAIvaf2Z8g5F1ml4xXe4rz4M3DX6Mg3nANxX0DQjeA+pN0hfxRv4S/5OXKsadwScQt/j/uWaE8/lpXtBJyjIktKszgjeggpAZFEevhxbUIq9ZYW0qqLnSexN0HZ46D2gejXj+w9t+rnp6Wfr5oluS3dDgr+l/w/InQRvFD0Aktql/T4mkPD9JQ/2I8R4Tr+t91E/xdLqDIefNqwIPQ1EYwIgtA7av8Hu84HlZ7v3L8lLiCZRL99Ek8Dr4TY99sdUmQuYm7l7ZQ4Mnk89nHeGfQOAEl+YeQ1OWeMVJubabSZSfTdey43jY5Yr8C2Nuy6CBQbxH56xJJWO3PzWG+sDvhk44FrjuxLkiTWjl6LVqXlrK1nUWvt3qjKvtx1Eptuj+T2VG8K6u30e76YJTndz0MRhL4gghFBEFyv5nvY9X+gMrA5bBE5Zi3nxaZ0eci2pm0MWjOIWqWEh8Nf4rG4x9r2eWsNNFidZeEbbc71Wbx1hnbHe+ta2xg3QOMCcB8O/ue59r56aM5EH9QqeHll93M4Ig2RfDP4G8yymdRNqYd87TfOCeSny0NwyArTP6ngkb97HtgIwpEighFBEFyr+htntVPJjbqB6/mmpIrrB41HK6kPeMjKupWM2DACi2zhXO2jnBVwGEHErgvoq6TV/ek0Eqn99GTttlHdg8clF4ZcyPVh17PTtJPrd1x/yNc/b4gHu+6NJtRLzdNL65n0XilWu8gjEY4+IhgRBMF1qr+CvCtAcoch2ym0+dBkM/PM5gXcsuJbblnxLTsbqlhals0tK75FVmTmV81n8ubJKCgsGbGEOEMCja2L4+3RaDPj0zoS4q11loVvtO7Xxmom3vYPWIshaBboo4/MPR/Ek9OdiayPLO7ZAncfJX3EQPeBfFL+CT9U/nDI14/21VB8XxSnxhtYWWghYm7RAVcVFoS+IoIRQRBcY/fnkHelMxBJ3gGGGAb5hvLoiDN4eMTpba9+nv6MCY7h4RGn81HZR1yQcQE6Scem0ZuY4jeFOK9Asuor2p06s66COK9AAAINHnhrDe3atNhtFDZVMM78Ekje0O/dI3nnXZra3w0fg4p56c09PnbNyDUYJAOXb7+cYnPxIfdBo5FYeF04c2f4UWOSSXy1hK+3HLwGiiAcKSIYEQTh8FV9DPnXgOQFQ7PaRiUMGi0RHr7tXnq1Bg+Nnk+r3uKmrJsIkCJ5M+JXhnoNBWBaRALb68pZVJJJhamB3wrTKTTWMiV8IAAqlYppEYP4s3gbW2tKKG2u59Odazhd8wcGpQliP+jTpNXO/N8QT+paZFYWtPToOH+dP78P/R2bYiN1Q+phT9W9f4ofK24KQ6dWccX3u7n+x92HdT5BcJWj61+sIAjHnsr3oWCWc0RiaBboul4cDuDH2k95JO8RgrXB3OH3Jhplb1XV/t5BzEqYwIqKXTy1+S82VxdzS9IkIjx8nQ0UmRmeuUwLjeGrnPU8u2UBGmsRp0nzULknO0vPH2WemeEHwCN/9+xRDcC0gGncF30fpdZSLsi44LD7MiHGjdL7oxgYqOWTTU0kvVJM40HW0BGE3iZW7RUE4dBVvgOFtznreSRnge7ga8ZclHERP1T9QJwhjoyxGbhr3Ht2zcalkHUy6KKh39vOMu9psWAthKF5YIg5tHvpZQNfLiavxob5yRg0mp5/Dhy1fhSbmjbxfsL73Bh5o0v6dPX3VXyxxYiHVsWSWWGMjTYc/CBB6AGxaq8gCL2r4s3WQMQXknceNBCRZZmpm6byQ9UPjPAcQXZqds8DEQBbpfP/1hLIORvSB4O1AAKvPmoDEYC7JnjjUOD1NZ2Ure+Gf0f8i5fai1uzbyXTmOmSPn1+UTCfXRCI2a6Q+m4ZL6+od8l5BaGnRDAiCELPlb8GRf8BtR8MzQFdcJfN7bKdlPUpLKtfxqn+p7Jh9AY0kubQrm2vwbn6b+ujBfMO5/+1EeA4eot73TTGC60a3j7EYMRd484/w/9BRmbSpklYZdfMiLl6lDcZd0Ti6yZxz5+1nPlZuSgjLxxxIhgRBKFnyl6E4rucq/AOzQFtYJfNjXYjA9YMIKM5g8tDL2fh8IVIh5Ngaq8BOqlZUj4X0gdC3c+Hfu5eJEkSU+MM5NfZKao/tBLto3xG8fyA56mx13DqllNd1rfEEB0VD0aTGq3nz+wWop4rpqRBlJEXjhwRjAiC0H1lz0HJfaAJgGE5oA3osnmVtYrY1bEUmguZEzWHrwZ/dfh9sNd0WOXXSQZbKeScBy1Zh3+dXvDMqc6aIw93c/G8ztzb716m+U1jef1yns1/1lVdQ6eRWH1LBPed5ENZk4P+Lxbxe2bPpyMLwqEQwYggCN1T+gyUPACaIBi6CzT+XTbPNeXSf3V/qm3VPN//eV4e+LJr+mGvAaWzxwgaUBkg6mUwJLjmWi42KtJAoLvE/B2H9ya/IGUBQdogHs57mHUN61zUO6fnTw/gz2tCUAFnf1HJ3X9Uu/T8gtAZEYwIgnBwpU9C6cOgCW4NRHy7bL65cTOD1w6m2dHMJ4M+4b6Y+w750rXmZoqMtW2vFnMZ4OjY0HsyDN0BYXMOMHJydLhiuCdGq3JYow4aScOqUauQkJi+ZTpGe/cW4uuu0xM8KLgvmigfNa+sbGTM2yWYrSKPROg9YmqvIAhdK34Uyp8CTSgM3Qkary6bL6lZwmlbT0NRFH4e9jNnBZ51yJfOqC3l7e3/orD319TD2geIkopav1OD2hP6vQkBVxzVQcgejWYZ3ycKGB2pY91tB6/J0pWPSz9mVtYsUjxT2DJ2i4t6uJcsy5z/VRW/ZJrwNUisvDmcwSE6l19HOH6Jqb2CIBy+4gedgYg2zJmsepBA5NuKbzkl7RQkJFaMWnHIgYiiKMwvSOOt7cvbBSIAwaq9ZeAV//9zBkiBVx4TgQiAt0FiSKiWjaXWwx5tuD7iei4MupA0Yxp377zbRT3cS5Ikfr4qlNfO8qfBIjP09RI+Wn9os4EEoSsiGBEEoXNF/3XOUNFGQPIu0Hh22fzNoje5bPtluElupI1JI9Un9ZAv/VfxdhYU72j7XqtSE+rmRYBkQocVhyLxhu1efpTuBW3X04qPRv89yRdZgef+rT/sc80bMo8ofRSvFL/CguoFh9+5TtwxwZf1t4bjrlVxw/xqLv22Ukz/FVxKBCOCIHRUdDdUvAC6KGdBs4MUJ3to10P8J+c/+Gn8yEnNIdEz8ZAv3Wg180fRNsBZTeTcfsN4KfV8nhh1Nk+Frsaucucx20tsl1NYUprF7pZjb8G3S4d5YNCo+GjD4fddkiTWjlqLTqVjZvpMqq29k3A6KtJA+QP9SA7R8l16MwNfLqHWJKb/Cq4hghFBENorvAMqXgFdv9Ycka4DkRsyb+DZwmcJ14VTMKGAcEP4YV1+dWUu9tbZMlPDB3JG9GAMai0Y16Ou+RRtvxcYGzUNAAX4t2LXYV2vL0iSxGkD3ShtdJC9+/CLl4Ubwpk3ZB4WxcK4DeN6bdTC0yCRfmcUN43xIrfWTuTcYv7N69nif4LQGRGMCIKwV8HtUPkG6GKdgYjU9Vol56Sdw0dlHzHIfRD5E/Lx1hx+gnlOQ1Xb15PDnCv14jDDrgvBLRmCb2LKnu37tT+WPNtac+SBBYdec2RfM4NnclP4TeSac7k281qXnPNA3jsviHmXBmOTFaZ8WM6TS3q+AKAg7EsEI4IgOOXfAlVvgb6/c/Vd6cCzJmRZZvyG8fxW8xup3qlsH7sdXRfte8Iq75226693d65FkzkBrMUQdAOoNHhq9WhUzl9fVkcn03yPAYkhOsK91Py103UjC+8lvkeieyJfVHzBvIp5LjtvZy4a6snOuyMJ9JB4bHEdJ39Yht0u8kiEQyOCEUEQIO8G2P0e6OMheUeXgYhVtpK0Lok1jWs4K+AsVo9efXjl3ffjo3Nr+7qy6DXYGu9cFC/+Nwi93dndpuq2Rzk+umN3pdnrR3thtit8u9V1eS+rR67GTXLjih1XUNhS6LLzdibWX0fZ/dFMiTWwNM9MxHNF5Ne6Zs0c4cQighFBONHlXQvVHzmrlh4kEGmwNRC7KpZsUzazwmfxW8pvLu/O6KB+AFyrfofI3feioILBm8HPOU3YLjv4pSC9rf2Y4BiX9+FIeXCyL5IKnlvW4LJz+up8+SvlL+yKndSNqb0+60WjkVh6YziPT/Njd7PMwJdL+DGj8yJsRfV2Wmwd+7N/YbtasyhDf6I5xGUzBUE4LuReDTVfgFsSDN4KXaykW2YuY8i6IdTZ63iw34M8M+CZXulSsrcnT+vvI4hSSuUIPuUVTqptoZ9nLWWmepaUZlPc7MxR8NIaGBkY3Sv9OBIMOomRETo2llhpNMt4G1zz+XCy32Qe7PcgzxY+y7np5/ZK0Li/x6b7MTnOwBmfVvB/31Rx89gW3p0Z1LZ/W4WV0W+Xcv5gd76+JKRte625mUc2/tY20gWgUUk8Neps/A0evd5v4eggRkYE4USVe3lrIDIEBmd0GYhkNWcRvyaeOnsdr8W/1muBCE3rkLZGEkgpa+UpPGl7gWKLna93refZtAV8tnNtWyCildTcOGgCOvWx/Znq0ZP9UIDHl7gmkXWPZwY8w1jvsfxe8zvvlLzj0nMfyJQ4N4r+G0Wcv4b31jUx9PVijGaZBrPMOV9UYLYrfJfeTF6tre0Yo93SLhABsCsyRrvliPRZODqIYEQQTkS7Loaab8BtWOuIyIF/FaxpWMOwdcNokVv4ZvA33BF9R+/0qeI1yEwF2Ywq9nMik38ixrPzxfgi3H2ZkzyNgb4hne4/lpyV6IGnTsVXm127vgzAsuHL8FH7cHv27Wxr2uby83cm0FNDzt2RXDLUg4wKG2FzCzjn83KK6p01SVQqeGF5/RHpi3DsOLY/UgiC0HM5F0Ld/8B9OCRt7DIQ+b36d2ZunYlKpWJhykJOCTjF9f2RZdh1PtT/Amo/SFwF7olEAg8MP42CphrSakow2a24qbUM8Q9ngHcQqmOk/Ht3nJvkwddpRjaWmBkV6bqEXIPGwLKRyxi5fiQnbT6JikkVLpv11BVJkvj20hCmxjVy88/V/Fuwd5TDIcMnG5t4fLofoV7iLUhwEiMjgnAi2XleayAy6qCByGdln3HO1nPQqDSsG7WudwIRWzWkxzkDEfdRMLwM3NtXb43xCmBmzDAuGzCa82JTiPcJPq4CEYBnZzhHgB7+2/X1OlK8Ungp/iXq7HVM2zzN5efvSoxf58GGrMArK12XtCsc+0QwIggniuyzof5n8BgLSeu6DEReKHiBazOvxUPtwfZx2xnhPcL1/WlYBmlRYC2EkP/AkA0HLbJ2vIr21RDjp+Gf3JZemf1yV/RdzPCfwcqGlTyZ96TLz9+ZgjobF31T6azpvx+HAm+taaSuxUGd2dTp8Q5F1Cw5kYhgRBBOBNlnQMPv4DEeEld3GYjcvfNu/pv7XwK1geSOz6W/e3/X96f0acg+GXDAgP9Bv9ddf41jzK3jvLHJ8MF61+eOAPw+7HeCtcE8nv84q+pW9co19nXpt1U0WBQUpfP9ZpvCTX9k8k7mv53u/yBzJSXNorLriUKlKAf6q3L0aGxsxMfHh4aGBry9D7/ctCCcULJOhcZF4DkJBi3rMhC5YtsVfF35Nf0M/dg2dhueB1mpt8dkO+w8HaVhMYUM4hPlASptGm5JnERKYFSXh2bXV/JD3mbKTQ346d05I3oI40Pi2rVZWraTRSWZNFhbiPT045L+I4n1CnTtPfQSu13G8GgB/QO0ZN/d9c/iUOWacklYk4BBMlA2qaxb5ftrzc0dZrZ4avQHnXZ7/4IafsxoJq/WjgJIKucgiWOfdxxJkrl6+ka0ms5HQdw1Ov477BRC3X0O2k/h6NTd92+RPSQIx7PMadD0D3hNgcSlB2wmyzKnbz2dv2v/Jtkjmc1jNqPpYqrvIbGWwPbRYKtgt2E6ad7Pc55XEO9lrjjoodVmI29tX8ZJYfFcP2g8WfUVfLlzHT46A4P9nAvzbdhdyI95m7lswGhivQJZUpbFG9uW8sTIs/E+Bqq0ajQSE2P0LM+3UGW0E+zp+l/P/d3780nSJ1y942ombpxI+rj0Ltt3VgMEulcH5LnTAnjutAAazTJbyixsLLWwvtjC2iIzRQ3OEv6yLPH7uiQ+vFjFlIgBeGr1ZNZV8HPBVoqb6zDZrXybu5G7ko9srotw5InHNIJwPFIUyJzSGohM6zIQsct2Rm8Yzd+1fzPFdwppY9JcH4jU/Q5b+4OtAsIeJnjYImbGjmD4QUZD9lhenkOgwZP/ixtBmLsPU8MTGBEYxeLS7LY2i0uzmBjanwmh/Qn38OHyAWPQSRpWV+a69l560ZPTey+RdY+rwq7ikuBLyGjO4D/Z/+mybWc1QKBndUC8DRKT49y4e5Iv8y4LofD+frzwf6WcPmoHAV5Gdjd48NY/gdhsOtQqiSH+4dwzdDoBemegk1VfSYVJJLse70QwIgjHG1mGzJOgaTl4nwqJiw/Y1GQ3kbAmgc3GzVwUfBFLRy516TozABT9F3LOBlQwcCFEPdXjU+Q1VjPIN7TdtiS/MPIaqwFnifiiploS92kjqVQM8g1ta3MsOCnODV+DxA8ZvVsO/evBXxNjiOHNkjf5vfr3dvt2mnay3bgdgAaL6xbx20NWZPJMJUQFN3LdtFwWXhdKWrmFlDdK+DbNmS9j0GiZHB7fdkxGbZnL+yEcXUQwIgjHE1mGzIlgXAk+Z8CghQdsWmutJXZ1LHnmPG6PvJ15yS5e5VW2wvbxUPECaCNhWD74nnpIp2q0mTs8avHWGTA7bFgddow2CzIKXp20abCZD/kW+sLFQz2oN8ssy3N9ILCHJEmsGbUGnUrHhekXUmWtAuCTsk9IXpvMBRkXUGtu5t0dnSeXHg6Lw47cmqoY7u7DqfEebJodiQq4fF4VRotzJCbKw6/tmGa7WHzveCeCEUE4Xsiys4Jp8xrwPQcS/jhg08KWQmJXx1Jlq+KpuKd4I+EN1/alJQe2hDv74nMGDCsEXZhrr3GcevoU55vwo4tcWx5+f6H6UP439H9YFAuj14/mmu3XcH3m9VgVKzmmHHZb6nDg+vkNerUGqbVOTJmpAYciE+2r4bpRXgS4S3jqnW9LxfvMpPHQ9H6hNqFviWBEEI4Hsgw7xkDzevCdCQN/OWDT9KZ0Bq0dRJOjifcHvc/DsQ+7ti/V8yAjCRy1EPm8Myg6zEc/3loDjdb2IxyNVjMGtRadWoOnVo+EiqZO2vhoj/7k1X0FemoYFKRldaEFu713a22cFXgWV4RcQZGliM8rPm/bLiOT1bKjV64pqSSSW5OOG6wtrK3Md35tltFIziDFbLexvCyn7Zhk//Be6Ytw9BDBiCAc62QZdowE0ybwuxAGzj9g02V1yxi5YSRW2cr85PncGHGja/uSfyvkXQIqLST+C+H3ueS0cd6BZNVXtNuWWV9BnLdz2q5GUhPt5U9mfWXbfllRyNqnzbHkrgk+OBR4ZVXvJm7+VPUT83d3/PuiQsX25oxeu+6U8IFtX3+9awO/FWawqqiF2hYHGbWlvJS+mBqLM29mkG+ImNp7AjikYOTtt98mJiYGg8HA2LFjWb9+fZft6+vrue222wgLC0Ov1zNw4ED+/PPPQ+qwIAj7kGXYPhxMaeB/CcT/cMCmP1b+yLTN01ChYvmI5ZwbfK7r+mE3wbbhsPtd0PeH4SXgNfGAzc0OG8XGOoqNzqH4akszxcY6as3ON6D5+Wl8mr26rf3ksHiqzUb+l7+FClMDy8p2sml3EdMjEtraTI8YxMqKXaypzKPc1MA3uzZgle0dapEcC2aN9kSnhnfWNvXK+RVFYc7OOVyQcQHNcsdkWbVKzbbmrqf9Ho5E31BSW/9cHIrM70UZ5DfUY1dk3tq+vO0RjbtGx6X9R/daP4SjR4/n782bN485c+bw3nvvMXbsWF577TVmzJhBdnY2wcHBHdpbrVZOOeUUgoOD+fHHH4mIiKCwsBBfX19X9F8QTlyyHbanQMt2CLgc+n91wKbvlrzLbdm3YZAMrB+1niFeQ1zXD9M2Z9KsowH8L4K4bw/6WKawqZZXMpa0ff9D3mYAUoNjuSYhlQZrC7WWvWXCAw2ezB48hR/yNvNPaTa+eneuHDi2rcYIwOigfhhtZn4tTKfRaibS04//DJ6Kt87Ndfd6hEiSxMn93Viws4XCOhv9/LQuPX+FtYI3S95EhQqlk7wQu2InzbiZScxw6XX3UKlUXBk/BoNaw7KynSiArDh7s0eQwZObkyYR6i4KXZ4IelyBdezYsYwePZq33noLcBZLioqK4vbbb+f+++/v0P69997jxRdfJCsrC6320P5BiQqsgrAf2Q7bhoI5EwKvgrjPD9j0ibwneDz/cXzUPqSPSyfaEO26flR9BAU3Ob/u9yaE3Oq6c5/gtpRZGPFmKZcN8+DrS0Jcfv7s5myeKXiGryu+RoUKB452+yU0XKf9GEnV+WfW6REJ/F/cyMPuR7XZyIryXdz4rYHGFg1vXFrO2JBYkv3DUatEJsGxrrvv3z36k7ZarWzatInp06fvPYEkMX36dNasWdPpMb/++iupqancdttthISEMGTIEJ599lkcDken7QEsFguNjY3tXoIgtJLtsG1IayByXZeByK1Zt/J4/uOE6kIpGF/g2kAk9woouAEkDxi8QQQiLjY8XE+wh8QvOzpfSO5wJXgk8MXgL9iZupNrwq5B3frfHjJ26pUD1/dYXJrN8vKcA+7vrkCDJ+fFpuClccdNo+ampEmkBESKQOQE06M/7erqahwOByEh7aP0kJAQKioqOj0mLy+PH3/8EYfDwZ9//skjjzzCyy+/zNNPP33A68ydOxcfH5+2V1RU76zTIAjHHNnqnKlizoagGyDu4wM2vSD9At4tfZcBbgPIT83HV+frmj7Y6yF9ENR8DW6DIaUMPHphVV+Bq0Z40mxT+HVH7xVB6+/en4+SPiJvQh43RtzYLiApkDd1eeyvBenY5AN/sOwJu6ygVnWyxK9wQuj10FOWZYKDg/nggw8YOXIkF198MQ899BDvvffeAY954IEHaGhoaHsVFxf3djcF4egnWyEjESw5EHQLxH7QeTNZ5qSNJ/HT7p8Y5TWK7HHZGDQumt7atA7SIp3BUOB1kLwNXL2YntDmsZP9UQFP/dP7q9dGG6J5K+EtrtS/xQDVBAC2yQsZFRjJWdHJjA6MRrffMgFGu4XN1UUuub5NBrUYDDlh9SiBNTAwELVaTWVlZbvtlZWVhIaGdnpMWFgYWq0WtXpvtJ2YmEhFRQVWqxWdrmMxG71ej16v70nXBOH4JpshPRGsBRA8G2Le7LSZVbYyYv0Itjdv5/SA0/kzxYWz1spfg+I5gASxX0DQla47t9ApT4PE0DAdm8usmKwy7rrefbfOqC1Dp3hzsvZW4u0TWCC/SJ72L0Ldx/N19St8kTKPd7evaZt2C5DfVMPY4NgO56qzmPgpP43tdWVYZQdBBk+uHjiOGK+ATq/tcCjotDae3vzXcbsys3BgPfqbrdPpGDlyJEuW7M2Cl2WZJUuWkJqa2ukxEyZMYNeuXcjy3uI9O3fuJCwsrNNARBCE/chmSE9wBiIhdx4wEDHajQxYPYDtzdu5KvQq1wUisgw7Z0LxXaD2hSEZIhA5gh6Y7IuswLNL63v9WmtaC5ABDPVI5fkBz/Nc4XPckX0Hy+qX4atz45yYoe2OscsdC7M126y8uHURakni9iFTeHzkmfxf3IguK6k6kNG71ZPgG8LDI05nWkQCX+5cx/a6vXkre1ZmPjN6CA8NP51ID1/e2La0Q0E84djT4zB7zpw5fPjhh3z++edkZmZyyy230NzczLXXXgvAVVddxQMPPNDW/pZbbqG2tpY77riDnTt38scff/Dss89y2223ue4uBOF4ZTdB+kCwFkHoPdDv1U6bVVoqiVkVQ7GlmHuj7+XzwQdOau0RaxWkx0H9L+AxGoaXgXuia84tdMvFwzxx06r4ZFPv1BzZV7XZ2PZ1vaWFa4JuJtYQS77FGaSoJTXD/CPbHeOvd+9wnoUlO/DTu3PNwHHEegUSaPAkyS+MIDevA15bpbYgqaTjfmVmoXM9rjNy8cUXs3v3bh599FEqKipISUlhwYIFbUmtRUVF7Vb9jIqKYuHChdx1110MHTqUiIgI7rjjDv773/+67i4E4XhkN0HGQLCVQuh9EP18p81yTDkMXz+cZkczLw14ibv73e2a6zf8AzvPBMUMIXdAv9dcc16hx85IcON/20xsr7QyOKT3RpSlfRJIW5RGpm4+pS0QAbDIFmpMxnbHjAmO6XCe9JoSkvzCeD9zBTkNVfjq3JkcFs+ksAFtbWpNDqqbHeg0KnRqlXP03KHDYlfQSiBJKpL8wvi+tQbNnpWZT49MatffY21lZqFzPQ5GAGbPns3s2bM73bds2bIO21JTU1m7du2hXEoQTkx2Y2sgUg5hD0LUM50229CwgYmbJmJTbHye9DlXhV3lmuuXPgmlj4NKAwN+Av/zXHNe4ZDMPdWf/20z8dDCWn6+qvP8PFfo5+lPobGWCjmbRfbXMdN+NObT3MXkVu+dPRPi5kWgoWMC826zkeXlOUyPHMTpUYMpaKplXt4mNJLUVnl11Ful5NfZ9znKjbpmMDzSOgqjgitHqdEFOVdmNtmtB1yZuaJFlH841oncZUE42tgbIT3eGYiEP3rAQGRhzUJSN6biUBz8MewP1wQish0yp0PpY6AJguQcEYgcBeKDdER4q1mY09Iu/87VJoTGkeb4ld/sT2GmEYX211pZmYVd2bvtuoTxnZ5HAaI9/TkvJoVoT39OChvAxND+7eqSnBrvRlcTeR0KBHuJqb4nChGMCMLRZE8gYq+AiCcg8olOm31d/jWnp52OWqVm1ahVnB54+uFf21IEaVHQtAQ8J0NKKRj6Hf55BZe4YbQ3ZrvC12m9U3OkylrFDTmXst4xD6X1v/3ZsLR9PSao3wFnxvjoDITtt7hdmJsPdfuU+L/3JN8ueqMQ5iVxWqL9uFyZWehIBCOCcLSw10P6ALBXQcTTEPFop81eLXyVK3ZcgbvkzrZx2xjrM/bwr133e+u1KyDsEUhaBtIhPcUVesl/T/JBUsEL/9a7/NwZxgyGrB3C0rqlXbazYwVgmH8EVw0cd8B2/b2DqNzv0UllSyP+eo+9bQK0nJmoRaXqbKRHxb1TDOQaj9+VmYX2RDAiCEcDey1sHQD23RD5PEQ81Gmz+3PuZ86uOfhr/Nk1fhfx7vGHf+2i+yDnbECChL8h6snDP6fgcgadxJhIPdsrbdSb7Ac/oAd2mXZRa6s9aDt/g45rB6Zyc9IktJL6gO2mRwwir6maP4u2U9XSxPqqAlZU7GJK+N6/r/Pz0xgcU4SitH8bUqHg49FCZEjFcb0ys9CeCEYEoa/ZqmFrPDhqIOolCL+v02bX7biO54ueJ1IfSf6EfEL1h5nIKFth+3ioeBF0kTCsAHxOObxzCr3q8em+KMBjS+pdet7zgs9j5/idXBV2FRJSu5Lw+zotOoFxIbFIB1k3JsYrgFsST2LD7gKe2PQHfxRt46K4ke2KozVYW/DyaiQysB6Vau8jIQUVYwcVsbE6v9OVmS+MG86vhek8vfkvipvrjtmVmYX2erxqb18Qq/YKxy1rFWQMAkcdRL8GoXd02uzMtDP5s+ZPEt0TSRubhk46zOmdLTmwI9UZAPmcAfG/gSQ+mxwLvB/PR6dWUf1ITK+cP9eUy1P5T/FlxZeoVCocyt7ZM+8Pep8bI2502bWKjLXMXrKK39YObt2iEOTTzMzx23h4xGlEe/q77FpC3+ju+7d4KCwIfcVa4VxrxlEP/d6EkI7T5WVZJnVjKuub1jPRZyLLRyxvV8fnkFR/C3lXAQ7nI6EDjMQIR6fzkjz4YouR9UVmxkT3PHFTVmR+K8xgXVUBjTYzPjo3xofEckbUEFQqFf3d+/PZ4M94OPZhnsx/kq8qvmpLZl1WVMbW/O9cVqq9wtRIqF8TQT5Gdjd4ACrGJRaiUsEx8DlZcCHxUUgQ+oK1DDISWgORdzoNRMx2M4lrE1nftJ6ZgTNZMWrF4Qci+bdA3mWg0kLiChGIHIOemeEcLXho0cFzPDqzoDiT5eW7uHTAKB4feSbnx6SwsCSTpWU727Ub4D6ALwZ/QVZqFlcEXwOAh15xSal2RVH4rTCDj7NXo1JBSv9SQIW73kKYv7O2yV/FO3D04jRm4egiRkYE4UizlkB6EshN0O99COk47F1vrSdpXRLl1nJuCr+J9xIPvMp1t9hNkDkeWraCvj8MXg8aMQR+LIr00RDnr2F5nhlZlnsUoD64/pe2Re7e2r68bXugwYP8pppOj2lqNmBoTAU+o9rcQrXZyNTwBHY17GZxaTZJvmH8VpjBXyXbQYH1uwsY4BPE5QPGsK22jNWVuZwWNbjdOReXZvF7UUbb93FBzgAkKWpvJdUtNcV8k7uBK+NdMFtMOOqJkRFBOJIsRc7Vd+UmiPmo00CkxFxC7JpYyq3lPBr76OEHIs3psDXMGYj4XwzJO0Ugcoy7PdUbmwzvrO3ZejUPpMzgtMgk/HTu3Dt0OncOORkAk93KEP+wDu1zG3fzUdYq3DXOx0Feegfv7lhBaXM9SX5h5DVWs7AkkyWlWSiKwgVxw9FLGt7YthSHIndaqt1kt/JrYXrb92dFJ/PU6HMBuGvkMK6MH4OmNUF2ZUUuJc11PbpH4dgkghFBOFLMhZCRBHIzxH4Gwdd3aLLduJ2BawZSb6/n7YS3eSKu86Jn3Vb1EWwfDg6j83HQgO9EoupxYPY4bzQSvLG6oUfHeekMnBszjDHBMbyUvpjXt/0DwKkRie1muuyxpDSbwf5h6FTOhGk/TzvRnn4sK9uJt86A2WFjcUkmJ0cMQgFivQK4NiGVeksLadXFeOsMNNjaP6ZZW5mPVXYmxU4M7c/Z/ZKRWgfp3bRqJoYOYGbMsLb2/5bv6tE9Cscm8VtJEI4Ecz5sSwLZBHFfQNDVHZqsqlvF8PXDscgWfhjyA7dG3nro15NlyL0cCm4AyQMGb4SQWw7jBoSjiUYjMSnGQE6NnYrGntUc2bS7kPVVBVwzMBWDWsuIgCgWlWaxpjKvQ9u8pmoG+YaiQQuAWTY7R0Sa9o52NNktxPsEtX3vptER6xXYrs2+chqr2r6eHOasO2K2O3NDZNmZtDoxdABSa7H4nIYqhOOfCEYEobeZcyFjMMgtEPc1BF7RocmvVb9y0uaTUFBYNHwRF4ZceOjXs9fDtkSo+QbchkBKGXgMP/TzHUVqzc0UGWvbXrXm3imNfix46hQ/AB76u2ePMf6Xn8aMqCQ0koTFYefi/iOZFjGIv4p3dGjbaDXjrTXgp/MCnMGIt9ZAg9VMo9WMrrVKb4ibd7tS7d66vW32L9Vuk/dOFfZtrQ+StdsZUN2/sJayRjtuGi0GjTMAsu7TXjh+iWBEEHpTSw5kJINihv7fQeClHZp8XPoxMzNmopN0bBi9gZP9Tz706zWtg7RIMO+EwOshOQM0HVdVPRZl11fy0IZfeWbLgrbXwxt/o6bFePCDj0MTYtzwd5P4cVvP7t8q25FQsaoil8H+Yfjq3ZFUqk7Xotmjv08QKtRYZWvbtsz6CiI8nOvPaCSpQ6l25QCl2n32KVC2s3XUY9oAN7bcHkGLTSHp1WLeXV+Bye68lq8oaHZCEMGIIPQWUyZsG+oMRAb8AAEXdWjybP6zzMqahZfai6xxWaR4pRz69cpfg8xUkM0Q9yXEfXTo5zqK2GQHn2Wv4ZWMJcj7vWE6FJn3s1ZSv88CbCeSS4Z50mhRWJLT/fsf6h/B70UZ7KivYKh/JFuqi1lckkVKQGRbm/n5aXyavRpvnYFGm5nJYfGo0VDdrFBmakCtUrFpdxEnhTofszRaze1KtVe3GKloaey0VPvooL2LL/5etI0Wuw2AlHA962+LwCHDrfOb2bgzokN74fglghFB6A2m7c7EUcUCA+aD/wUdmty5804eynuIYG0wueNz6ed2iL90ZRl2zoTiu0DtC0MyOn0UdCxyKDLvZ65gTVX+AdsUGmt5OX0xRlvHehbHu6dO8QXgsSXdf1RzSf9RBBg8UAHf523ix/wtTAobwLn9hra1abC2UGsxEecVSFZ9BYEGT2TsmKwKy8tzMDtsXDlwLKkhsXhrDWTVV7SVav+lIJ3C5lpssqPTUu0JPiFEuDv7XW5q4Oktf/JPaTb5TdUUthQx+7SduOlsbN4VyT9bEjpNrBWOP6LOiCC4mmkbbB8Fig3ifwW/szo0uTTjUr6r+o5YQyzbxm7DXeN+aNeyVsGOMWAtBI/RkPgvSMfPcuprK/PJqHUW1tJJas6MHsK44Fh0ag1ba0r4pTCdOouJKrORnwvSuSJ+TB/3+Mjyd9eQGKRlbZEFq11Gpzn450udWkODtYVTI5M4Pzal3b5Ps1fjq3PnmoRUwDm196X0xSwqyUSFCkljQi1L3DfsVCI8fAGYFjGIP4u3EezmxUCfEDLrK1E3q3hs5JmdLqanUqm4IXECL25dRLPdSrW5mXl5m9q1ufTkGn5bPYRd5X6MfbuC9bdEYNCJz87HM/GnKwiu1JwO20c6A5GBv3cIRGRZZtrmaXxX9R0pninsTN156IFIwz+wtZ8zEAm501nI7DgKRBRFaVcV9KbESZwWNRhfvTvuGh2pIXHcN/QU9K1JlOuq8tvyDE4kd0/ywaHASyu6N803q76CWouJCZ2sdFtrMdFgbWn7vr93ELMSJrCiYhcGvDHbJG5JmtQWiADMiExkalgCX+Ws59ktC7A4bPxn8NQuV/UNc/fhvmGnEu8d3On+aE8fVt8ayiXDPMiosBH9QhFlPZw1JBxbxEJ5guAqzZudi88pdkhY0GEFXLtsZ9SGUWw1bmW633QWpiw89PLupU9C6eOg0kD/eeB/3uH3/yhTZzFx//qfAYjy8OPhEacDkGfKo8Bc0Jbo+3XOev6tcNaiuClxIiMCo/ukv31FlmXcHi0g1FNN4f29l1+h/UfLKK9RrBm9xqXnLWmuY0t1CUabBTeNliTfUOJ9glGpnFN7n11ax0N/12HQqFh2QxhjD2E9HqHviIXyBOFIMm50lltXZEj4G3ymtdttspsYvG4wBeYCLg25lG+GfHNo15HtkD0Dmv4BTTAkrQfD8Zng12y3tH2t1jXwcO7DZBgz+KP6DxQUfkz+kfOCz2u3suuJODIiSRKnDHDjj+wW8mutxPof5orOB7oOEjbF5vLzRnr4Eenhd8D9D071IzFIx/99U8n498r47MIgrhzh5fJ+CH1LPKYRhMPVtK51RESGhMUdApFqazUxq2MoMBdwZ9Sdhx6IWIogLcoZiHhNgZTS4zYQAdhsXMdC2yt8Zp3Fg5WX8kzBM1RZq3g09lGm+03n/IzzuTnrZvKNFW3HuKl75434aPds6+J5DyzovdLpkkpqN7X3SDpviAdbbo/ATaviqh9288CCztfREY5dYmREEA5H0yrInAIokLgMvCa2251vymfY+mE0OZqY238u98fcf2jXqfsVdl3ozEUJewSinjzcnh91ZFnm+6rvebf0XdY3rscsO2fHGPAmXjWSVxOf4sywKYAzn+SD0g+4c+edfKx8RrQqhXh1KoouCZschlbS9uGdHHlDw/SEeKr5Lav3pjirUffKyEh3JYfpKbwvipQ3SnlueQPbKq38cmXI4a9kLRwVRDAiCIeqaSVkTnV+nbgcvCa0272laQvjN47HIlv4aNBHXB/RcS2abim6FypeApW+9RHQKQc/5hhhtpt5r+w9Pi//nAxjBg6c1TZjDDGcH3Q+qfqZLCoqBmBxwW68yGFccCwaSWKc25lc7W7j/ebbyVPWkWdfx8KNr6FGTaxbLEM9hzLYYzBJHkkkeSSR7JnclodwPLp6hCcv/NvAT9uaOX+Ih8vPL6kk7Er3kkjrLCZ+yk9je10ZVtlBkMGTqweOI8Yr4IDHZNdX8kPeZspNDfjp3TkjekiHGiXpDXlcfnImC9MD+D0rnCFv5LPx1ljcxUybY55IYBWEQ9GwDLKnAypIXAle7Zc5X1K7hNPSTkNWZOYnz+ec4HN6fg3ZCpmToXkt6KKc+SG6UJd0vy9VW6t5uehlfqj6gbyWPBQUJCSSPJK4IvQKbou8Dc/WqrF22cFrGUvbrWcCIKFqK4CWZv+N9fJ3Ha4jIbV7A/0s6TOuDuu4JtDxwmiW8X6igOHhOjbdHnnwA3rIb7kfPhofCiYUdNmu2WblmS1/MdA3hMlhA/DSGqhqaSLI4EmQW+e5HtVmI09s+oOTwuKZGNqfrPoKvs/dzOwhkxnsFw7Aht2FfJa9hssGjCbWK5CbftvFH+k++LtJbJodRT+/E2s07FghElgFobc0/APZp4JKgsRV4Dm63e55lfO4bNtlqFVq/h3xLxP8JhzgRF1oyYEd48BRCz5nOuuVHMPD0dnN2bxY+CJ/1PxBhdWZ46FX6Un1SeXGiBu5IuQK1J1MBdVIamYPnswn2avZWlvatn3fSqynel1Mcctyyq3l7Y6VkZEVGRUqfDW+zPCf0Ut3d3TwNEikhOvYUmbFZJVdPlqgRt2tkZGFJTvw07tzzcBxbdsCDV0vSbC8PIdAgyf/FzcCcE793dWwm8Wl2W3ByOLSLCaG9mdCaH8Afrl4BP/ntohf1seR8HIxi64PY1KsKB1/rBLBiCD0RMMiyD4NVGpIWgseI9rtfrP4Tf6z8z+4S+5sHL2RRM/Enl+j+lvIuwpwQOQLEH6va/p+hK2sW8krRa+wtH4p9fZ6ALzUXpwRcAb/ifoPMwK6FxwYNFpuHTyZgqYaVlTsoshYh6zIBBm8mBAax2C/MPqX13Nt5rWdHq+g8NXgrwjVH/ujSgfz0FQ/Lvy6kqf+qWPuaQd+JHIo1Co1DuXgi9al15SQ5BfG+5kryGmowlfnzuSweCaFDTjgMXmNztWB95XkF8b3eZsB5whZUVMtp0cmte2XVCrOGuRFjG85b/wdweQPy/lgZiCzxojR82ORCEYEobvq/4KdZzlreyStA4+UdrsfzX2UpwqewlfjS8bYDCINhzBUnn8z7H4fJHdnfojXIYyq9BFZlvlx94+8W/Iu6xrX0SI7i2cFaYO4IvQK7o2+l6FeQw9ylgOL8Qo4YM7BFaFX8HTB022PffZ1fuD5nBF4xiFf91hywRAP3LUqPttkdHkwolFpsCoHn02z22xkeXkO0yMHcXrUYAqaapmXtwmNJJHaSaE1gEabGW9d+/oh3joDZocNq8OOyW5FRsGrkzaBPlVsuzOS0W+XcsP8arZXWXn1rPaL8wlHv2N33FcQjqS631sDES0M3tQhELkx80aeKniKMF0Y+an5PQ9E7CbIGOYMRPQDIKX4mAhEzHYzrxe9zoh1I9Av03PxtotZVr+MYF0wd0bdSfGEYqpOquLLwV8eViByMBpJw9z+c9sFIlLrr7efqn/ixswbkWW5165/NDlzkDsVRgcZ5ZaDN+4BjUrTrZERBYj29Oe8mBSiPf05KWwAE0P7s7w8x6X92VdCkI6i+6Lo56vhtVWNnPpx2Qnz5328EMGIIBxM3a+Qc+7eQMR9SLvdM7fO5MOyDxnoPpC81Dx8db49O39zOmwNg5Z08L8YkrNB43/w4/pIrbWWh3Y9RPzqeNyXu3Nnzp1sNW4lwT2BZ+OepWlyEwUTCnh14KuHNjp0iC4IvoBkj+S2IEQn6Vg+fDn93frzYdmHxK2Jo9hcfMT601fmznAWEHvw71qXnre7wYiPzkCYu0+7bWFuPtR1sbKyt9ZAo7X9QoeNVjMGtRadWoOnVo+EiqZO2vhonaMlvu4a8u6NZHKsnkW7zCS8UoLRLAKSY4V4TCMIXamdD7sucE6rHbwZ3PfmgMiyzKTNk1jdsJqx3mNZPXJ1z2seVH4Ahbc4v+73HoTc5MLOu06OKYcXC1/k9+rf2xJFdSod47zHMSt8FleFXYVG6vmvk50NVfxdsoMiYx0N1hZuSZxESmBUl8ccaAqopJJ4bsBznLn1TACmaq9n3o4yrvd8mxyvX/m06h3iVsfxbsK7zIqY1fMfwjGif4COKB81i3JakGXZZXU4tJK2W8FIf+8gKlsa222rbGnEX3/g6cZx3oFsa10QcY/M+grivJ2PWzSSmmgvfzLrK9v+fsiKQlZ9BVPDB7YdI0kSy26M4Nafd/PuuiYiny9k0+wI+gecmMXwjiViZEQQDqTm+9ZAxABD0toFIlbZypB1Q1jdsJozA85k7ei1PfulL8uQezkU3gSSh3PE5SgLRFbVreKC9AvwW+7HwDUD+bDsQ5ocTZzmfxp/DPsDy8kWVo9ezXUR1x1SIAJgddiJ9PDj0v6jutW+2mzkre3LSPAN4eERpzMtIoEvd65je53zjez0gNMZ53kSA6VJPNj/Th4afjqRHr74GKfwZ/Ii9JKeG7Ju4NQtp/ZZNdEj4aax3lgc8Plmo8vOqVVpkTn4SMP0iEHkNVXzZ9F2qlqaWF9VwIqKXUwJj29rMz8/jU+zV7d9Pzksnmqzkf/lb6HC1MCysp1s2l3E9IiEduddWbGLNZV5lJsa+GbXBqyyvUMtEoB3Zgbx5tkBNJoVEl8tYUlO7xWDE1xDjIwIQmeq50Hepc5AJDkDDP3bdjXaG0lam0SppZRrw67lk6RPenZuez1sHwuWneCWDImrQdP11McjQZZl5lfP552Sd1jTsKYtATVQG8hlIZdxb797SfFKcek1h/iHM8Q/vNvtDzYFVKVScbbuAWIDApjYOnvj8gFj2FZbhsoSRtXEKk5JO4VFtYsIWRHCopRFjPLpXiB0LLl3kg+PLarjpRUNXDvKNbNLtCotsnLwYCTGK4BbEk9ifkEafxRlEGjw5KK4kYwNjm1r02BtoXafxzaBBk9mD57CD3mb+ac0G1+9O1cOHNs2rRdgdFA/jDYzvxam02g1E+npx38GT8Vb1/l03tnjfUgM0nL65xWc8kkFb54TwG2pPp22FfqeCEYEYX/VX0PelSC5wZBtYNj7S7TcUs6QtUOotddyf7/7mTtgbs/O3bQOsqeB3AyBsyDuQxd3vmesspUPSj/gs/LP2Grc2lZHIlofzcygmdzT7x6iDF0/NjmSujMFtNhYxxlRg9v2SyoVg3xDyWus5rSowawatYpXCl/h3l33MmbjGP7b7789/3M8yuk0EmOj9KwuslBrsuPvfvi/6rVS90ZGAIYGRDA0IOKA+69JSO2wbc9oV1emhicwNTyhyzb7mhbvTuZdkYx6q4zZv9awrdLKuzODun28cOSIxzSCsK/dX7QGIu4wZEe7QCS7OZv41fHU2mt5Nf7Vnr+Blb8CmakgmyHuqz4LRGqttTyS+wgDVw/EsNTA7TtvZ0vTFuLd4nkq7ikaJjdQOLGQ1xNeP6oCETj4FFCjzXLAKaANtr3Jj3P6zSErNYsQXQjPFT7H4LWDqbW6NuGzrz0+3ZnI+uiiepecT6fSdWtk5GjTP0BH8X+jGRCg4b11TUx+v1TMtDkKiWBEEPao+hjyr3bmcCTvaLci7rqGdQxdNxSTbOLrpK+5M/rO7p9XlmHnuVB8N6h9IXk7BF7u8u53Jd+Uz82ZNxOxIoKAFQE8XfA0BeYCxniP4cNBH2KZamFH6g4ejn0Yb82JUTQq3j2e0gmlXBJ8CTuadxC+Mpz/Vf2vr7vlMqfEu+OtV/HtVtfkjegkXYcaLscKT4NE9pxITo038G+BhbgXS6g3dW+dHeHIEMGIIABUfQgFs0DygqGZoI9u2/Vn9Z9M2DgBh+JgQcoCLgu7rPvntVZBeizU/woeY2B4Gbh1f5j5cKxrWMf/pf8f/sv9iVsTx/tl79PgaGCG/wx+H/Y71pOtrB29llkRsw45AfVIc8UU0H1JksS3yd/yU/JPAFyYcSEXZVx03HxyvmCIB7UtMmuKzAdvfBA61bEbjIDzz3rhdeHcNdGbwno70S8Uk1l5/CYxH2tEMCIIle9DwY0gecPQLNDtrY3xefnnnLX1LDQqDWtHreXUgFO7f96Gf2BrP7AWQehdMHgdSB3fEF1FlmXmV81n+ubpeCz1YNzGcfy4+0ckJC4JvoQNozZgnGJkwfAFnBl4Zq/1ozfFeQeSVV/RbtuBpoDusWcK6J42nTkv+DzKJpaR7JHMD1U/EL4qnOzm7N65iSPomVOd9WoeXnj4j6D0kv6YDkb2eOXMQD48LxCjVWHoGyX8mdXc110SEMGIcKKrfAsKbwa1DwzNBt3e7P2XCl/imh3X4KH2YPu47T2bdVH6ZOuqvg4Y8DNEv+LyroMzAfWdkncYtX4U+mV6zs84nyV1SwjQBjA7cjYF4wuonlzNt8nfHpWzRswOG8XGOoqNdQBUW5opNtZRa3a+QfT2FNB9+ev8SR+XzoP9HqTKWkXS2iReKnypF+76yAnz1jAgQMO/BWbs9sMb7dFJx0+tjlljvPn3xjDUKjjr80peXlHf11064akURTnqQ93uLkEsCD1S8ToU3dmax5ENuuC2Xffm3MtLRS8RqA1k+7jtBO+zr0uyHbJnQNM/oAmGpPXtck9cod5az2slr/Fd5XfsNO1EQUFCYqD7QC4NuZQ7o+88ZvI+susreSVjSYftqcGxXJOQymfZa6ixNHP30OntjtlT9MxX786ZrUXP9rW0LJu/SzLbpoBeEjeS2C5GRva3sWEjp6adSp29jnHe41gyfAnuGvdDv9E+9Obqev7zWy2vneXPHRN8D/k8V22/ii8rvsQx1eGyQmp9rajezvA3Sqhtkbl2pBefXChm2rhad9+/RTAinJjKX2lNKPV3joho975R7fmlG62PZvu47Xh2twaIpchZP8ReAV5TIGERuCgXI9+Uz4tFL/Jr9a+UWkoBZ92HFM8UZoXP4trwa9FKWpdcS3CyylbO2XoOC2sX4iF58OuwXznZ/+S+7laPybKM/pEC+vlq2HVv9MEPOIAbMm/go7KPME024abpvLbHschklRn1VimZu22Mi9Kz4sYwNJrjI9g6GnT3/Vv8xIUTT9kLrYFIAAzLaQtEZFnm9C2n82XFlyR7JJM7Prf7gUjdr5A+wBmIhD8KiUsPOxDZ0LCBizIuImB5AHFr4ni39F3qbfVM95/OL8m/YJ5iZv2Y9dwYeaMIRHqBTtKxYPgCPhn0CRbFwrQt07gl85a+7laPSZLE5FgDubV2yhoPfQaJoTXfySi7rqrr0cBdJ7HtzgjOGuTG2mILMS8WUytm2hxxIhgRTixlc6Hkv6AJhGG72hakc8gOxmwcw4LaBUz2nUzamLTuzzApuse5kB6SczQk8olD6posy/xa9SunbjkVz6WejNk4hh+qfgDgouCLWD9qPcapRhYNX8Q5weccN0PlR7trI64lf3w+sYZY3it7j9hVsZSYS/q6Wz2yJ5H1wcNIZG0LRuzHVzACzoDtt6vDuH+yD6WNDqKfK2abi1c9FromfpsJJ47Sp6HkQWcux9BdoPEFwGw3k7A2gU1Nm7gw6EKWjVzWvTd62Qrbx0HFy6CLgmEF4DP9oIftyy7beb/kfcasH4NhmYFzM85lUe0ifLW+3BJxC3mpedRMrmFe8jxG+4zu8S0LrhFpiCRvQh43h99MgbmA2NWxfFz6cV93q9vGRhsIcJf4afuhzxzZE4w0y8fv7JO5pwXw5UVBtNgVUt4sZf624/dejzYiGBFODCWPQ+kjoAmBoTmgca5RUWutJXZNLLktudwacSs/DP2he+dryYEtYdC8DnzOhKEFoAs96GEADbYGnsx7ksQ1ieiX6rk5+2Y2Nm0kzi2Ox2Ifo25SHSUTS3hn0DvEusce/ITCEfNu4rssGb4EvUrPrKxZnLblNGyyra+71S2XDfOkyaKwcOehvcHuCUZMjuN70bkrhnux+uZwtGoV539dyTNL6/q6SycEEYwIx7/iR6DsCdCGtY6IOJOoisxFxK2Oo8JawROxT/D2oLe7d77qbyEjERx1EPUSJPwOBxlJKTIXcXv27UStjML3X18ey3+MXS27GOE1gncS3sE81UxWahaPxz2Or8738O5X6FUn+59M1aQqUr1TWVi7kOAVwWxq3NTX3TqoJ6f7ogKeWFx/SMe7Sc6k1eN5ZGSPsdEGcu+NIshD4uG/67jsu8qDHyQcFhGMCMe34geg/GnQhkPyrrbVcbc1bWPQmkE0Ohp5L+E9Ho17tHvny78Z8i4DSQ+JqyDs7gM23diwkUszLiVweSD9VvXjrZK3qLXVMs1vGvOT52OZYmHDmA3cEnnLcVXD4UTgrnFn9ejVvDjgRRrtjYzeMJqHdj3U193qkq+7hqRgLetKLFgPoeaIm9oZjBzvIyN7hHtrKLovmqGhOr7d2syoN0sO6ecmdI8IRoRjQq25mSJjbdtrT1GsLhXdC+XPOSuqJudAa52If+v+ZcSGEVhkCz8k/8BNkTcd/Fx2E2QMhd3vg34ApJSAV8eVR3+v/p0ZW2bgudST0RtH813Vd8jIXBh0IWtGraF5ajOLRyxmZvBMkYB6HLin3z3sGLeDYF0wzxY+y9C1Q4/qBffuPckHWYHnljf0+Fh3yfnv50QJRgAMOomtd0RywRB3NpVZ6fdCMVVGMdOmNxwbC1IIJ7RaczOPbPwN+z4rhmpUEk+NOht/g0fnBxXNgYpXQRftrCPS+rx7ftV8Lsy4EEklsXTEUk7yO+ngHWhOh8xJIDeC/yUQ93XbYxm7bOez8s/4qOwjtjRtwao417oI14VzReAV3NvvXvq79z+8H4BwVEvwSKBsQhmXbL/EWUp+ZTjfDfmOmcEz+7prHVw53JObfq7mww2NPDrNr0fHnmgjI/v68fJQHl9cyxNL6ol5oZiVN4UxIqL3lnY4EYmPZsJRz2i3tAtEAOyKjNF+gKl3BXe0BiL92gUi75e8zwUZF6CTdGwZvaV7gUjlB7B9OMhG6PceDPiWRtnI0/lPk7QmCf1SPTdk3cD6xvXEGGJ4JOYRaibVUDqplPcS3xOByAlCkiS+T/6eH5N/BOC8jPO4JOOSo27BPUmSmDHAjZIGB7k1PVskzl3tHBlpkVt6o2tHvcen+zPv0mCsdoXRb5cxb2tTX3fpuCKCEeH4kn8bVL0BujgYurMtEHky70luzr4Zb7U32anZDPEa0vV5ZBl2XQaFN4HkQfmAP/lP/XaiV0bjs9yHR/IeIaclh+Few3lz4JuYp5rJHp/Nk/2fxF/nfwRuVDgaXRB8AWUTyxjsMZh5VfOIWBVBjimnr7vVzrOnBQBw/4KePU7a85jmRA1GAC4a6snG2REYNCou+W43jy8+eh/JHWtEMCIcP/Jvht3vOHM6hmZCa1Lo7OzZPJb/GCG6EPLG5xFtOEhJbHs9ZAyC2m9Ziy8RJi3hW07jzZI3qbZVc7LfyfyY/COWKRY2jtnI7KjZIgFVaOOv82fbuG3c3+9+Kq2VDFoziFcKe2ehxEMxOERHqJeaP7J7FlR4qJ2PRFscJ24wApASrif/vijCvNQ8saSeC76qOPhBwkGJYEQ4PuTNciaXGgZCciYtigOA/0v/P94ueZv+bv0pSC046KjFiuJXKNkUgNmcw9UtkNpUj0mRuSDoAlaOWIlpqoklI5ZwQfAFIgFV6NLcAXNZN2od3hpv7t51NxM2TsBkPzryLa4d6UmLTeH79O5XU/WQnMGIWTb3VreOGcGeGorui2JUhI6ftpsY+noxZuvR9UjuWCN+mwrHvrxrofpjMAyCIdv5tuoHvJd5k7w2mR93/8hIr5FkjcvCoOmYcGaX7Xxa+impG1I5e7maQaV341BkLrb5Ygi+kZzUHOom1/Hj0B+Z4DehD25OOJaN9hlN5aRKTvU/ldUNqwleGcyyumV93S0enuqHSgVzl9V3+5g9OSMiGHHSaCQ2zI7k8hQPMipsRD9fREmDmGlzqEQwIhzbcq+A6s/AbTAMyeDTii+5bPtl2LGzrXkbM/xnsH7U+nbrzBjtRubmz2XI2iHol+q5Lus6Jres5ReDjF0y4Jm0hl8m1vF+4vsMcB/Qd/cmHBd0ko6Fwxfy4aAPscgWpm6eym1Zt/Vpn9x1EiPCdWwtt2I0d+8T/Z7HNCIYae+ri0N4doYfu00y8S8Vs7ZI/HwOhQhGhKNag7WFf8t3dbrPv2QW1HwNbskwOJ13yj7guszr2vZr0PDbsN+QJIlScyl37byLmFUxeC334sG8B8k2ZTPeM4lib1+eM4DkOZawUfUEeI87UrcnnEBmRcwid3wu/Qz9eKf0Hfqv6k+ZuazP+vPIyX4owJP/dK/cuafaWTBQBCMdPTDFj5+vDMHmUJjwXhlfbBYzbXpKBCPCUSutpoSHN/zKioqOwcgNmjfwbJyPw20YDE7jlZLXuC27/adNO3ZOTzud4H+DiVwVyWvFr1FlrWKK7xTmDZmHZfifrJByiFTqIXQODF7rrKwqCL0k2hBNXmoeN4TfQJ45j5jVMXxe9nmf9OXcJA88tCo+7+Yb555y8BZZrGbbmXOTPEi7PQI3rYqrf9jNAwtq+rpLx5RDCkbefvttYmJiMBgMjB07lvXr13fruO+++w6VSsXMmTMP5bLCCSS7vpL3M1dglR1t2wINnnhodNykeZVR6nUUyjG8Yn+epwqe5e6czsuyL6lbglWxMjNwJitGrMA01cTSkUu5yJaJlDMDkGHAzxD98pG5MeGEJ0kSHyR+wOKUxWhVWq7JvIYz0s7ALh/5fIOzE92papZJKzt4gLEnYVsEIwc2JExP0X+jiPRR89zyBs76rPyoqzVztOpxMDJv3jzmzJnDY489xubNmxk2bBgzZsygqqqqy+MKCgq45557mDRp0iF3VjgxKIrC93mbkBUFgJGB0cwdcy7PjD6HlwK+YIR6I0XKAJ6xPsnXdW/zaP4jBzxXgDaAupPqmD9sPhP9JoJsh8xpUPY4aIKdC+f5n3uE7kwQ9poWMI3KSZWM8R7DXzV/EbIihC2NW45oH+ae5pxd9uDC7tfLEMFI1/zdNeTfE8X4aD1/ZLcw+LVSTGKmzUH1OBh55ZVXuOGGG7j22mtJSkrivffew93dnU8++eSAxzgcDi6//HKeeOIJ4uLiDqvDwvEvr6makuZ6AKI9/Zg1aDz+eg/IPhOp/jdkj3EsCn6Kb213s1X5rctz1dhq2NTUuqKqpQjSoqDpH/Ca6lxfRn+QmiOC0Is8NZ6sG72O5/s/T729npEbRvJoXjcXbXSBGD8t/XzVLMlt6dYneBUqLIoIRg5Go5FYdUsE14/yImu3jajniiiss/V1t45qPQpGrFYrmzZtYvr06XtPIElMnz6dNWvWHPC4J598kuDgYK6//vpuXcdisdDY2NjuJZw4djbsHWU7KTQeSSUhZ82Ahj/ZofLHv3o7s/IuxUTHT3Pq1v/29fPun6H2F0gfAPYKCH8MEv8BSSzNJBwd7ou5j21jtxGkDeKp/KcYtm4Y9db6I3Ltm8d6Y3XAJxsPXnNEhQqr3LMy8ieyjy4I4tUz/alrkUl4uZh/807sgnFd6VEwUl1djcPhICQkpN32kJAQKio6r0K3cuVKPv74Yz788MNuX2fu3Ln4+Pi0vaKionrSTeEYZ3PszRPx07tD1ilIjX+zzA7TzVruiLqLu6PvRsaBBj0Xqp8nffQ2fhn6C0/3f5rLQy8nxTOlLeHOveZr2DUTkCBhMUQ+3if3JQhdSfRMpHxiORcEXUC6MZ2wVWH8WvVrr193zkQf1Cp4eeXBV/IVwUjP3TnRlz+uCcGhwJQPy/lgnfhw3ZlenU3T1NTElVdeyYcffkhgYGC3j3vggQdoaGhoexUXF/diL4WjjZdub3GykMJzoXExuzRRnGP1Iit1J3bZzstFL6PHk4s1LxOq7cdgryTOCTqH+2Pu5/PBn7Nl7BaaT6qlITiFBykAXRQMKwCfaX12X4JwMJIk8ePQH/lhyA/Iisy5Gedy+bbLezUJUqeRSI3Wk7XbRrWx6yRalUrVtjK10H2nJ3iw7c5IvPQqbvq5mjt+q+7Q5vfM5hN6rZseBSOBgYGo1WoqKyvbba+srCQ0NLRD+9zcXAoKCjj77LPRaDRoNBq++OILfv31VzQaDbm5uZ1eR6/X4+3t3e4lnDhGBEYhqRTu1j5FkG0jdW7jGVRXxuWhl3PXzrt4tvBZAtTBXKp5FQ/Jj1FB/ZBUqvYnaclGlRaBd0sa+JwFQwtA1/HvqCAcjS4MuZDSiaUkuifyTeU3RK2KItfU+e9LV3jiFGci6yOLu645IiFhk0Xuw6FICNJRfH8/Yvw0vLG6kVM+LmsLMtcUmjn/q0qeWFLPtooTM9jrUTCi0+kYOXIkS5YsadsmyzJLliwhNTW1Q/tBgwaRkZFBWlpa2+ucc85h6tSppKWliccvQqd8NHoeMzzPQCmLbY5hjKxuwYGDTQ1pfFL+CaGafpyrehFd6yqiU8MHtj9B9deQMRgcdRD1EiT8BmIdGeEYE6gLZEfqDu6NvpdyazkJaxJ4vej1XrnWyf3d8DGomJfe3GU7SSVhU0Qwcqi8DRK590QyJc7A4l1mBr5cQka5hTM/r8ChgEaCN9cc/HHZ8ajHv6HnzJnDhx9+yOeff05mZia33HILzc3NXHvttQBcddVVPPDAAwAYDAaGDBnS7uXr64uXlxdDhgxBpxMrnQr7kWXInEConEE2o3jZOpt8eQtqtGwwriWEgZzF023l3c+LSSHac5/F7/JvhLwrnMXLEldBWOf1RwThWPFC/AusGbUGT7Und+bcyaSNk2ixuz4R8v+GeFLXIrOy4MDnVqMWwchhkiSJpTeEc+tYb3Jr7aS8WUqjWUZWwC7DF5uN1Lc4Dn6i40yPg5GLL76Yl156iUcffZSUlBTS0tJYsGBBW1JrUVER5eXlLu+ocAKQZdgxFprXgu+5RAxfQab6BwAc2OinGsm5useQJAkvrZ4r48dyWlSS81i7ETKGwu4PQR8PKaXg1XG0ThCORWN9xlJ1UhXT/KaxsmElwSuDWVG3wqXXeGaGHwCP/H3gRzViZMR1Xjs7gPgADbICDmXvdotd4dNNJ145eZWiKMrBm/WtxsZGfHx8aGhoEPkjxytZhh2jwbQZ/M6H+P9RbakmaGUQADO8L+QK33vRSBJxXoEMD4xCK7VO4W3eCpkngdwI/pdC3FfisYxw3Pqg9ANuy74Nu2JnduRs3kx402XnHvhyMXk1NsxPxqDRdPw35LfcDx+NDwUTClx2zRORoijc8NNuPtlkpLN34H6+GvLujUKSVNSamzHa99Z28dTo8Td4HMHeHp7uvn+LQgtC35Nl/r+9+w6PqkofOP6dOzW99x4gCYQSujQBZUXBuq7rqovourp2V/ZnL9hW1LWw9i67a8GKFVGKKE16qClACimkkT7JZNr9/TEwEAhCQpIh4f08T56HmTn3zpnDJPPOOee+LzuHQ1MmBF8GfT+h2FJM39WuirnnBp/L90M/bfvY8jeh8CbXvxPegIgbuqfPQnjIDTE3cG7IuUzYMIGXi19m0f5FrBi+gkjjyW/Q/vtYf275ej//XlPPPyYEHvW4VqPFrnZ/2vre5vmVdbzzG3ldCmvtLMw14x+wjw93r+fweEXRaHho6DSifQK6vqPdSL4+Cs9yOmFHxoFA5Aro+wlZjVmkrkmlRW3BqDHy/dDv2z5u9xVQ+DdQfCF9swQi4rQRb4onf2w+10Vdx+7m3cSviuf9fe+f9HlvHO2HXoFX1rSdC0On0Ukw0gkWZjcBoGhcP225c1E+HxwRiAA4VZXnti4hv+Hoy4N7MglGhOc47bBjEDRvg5AZ0PdD1tStYci6ITQ7XZvoZsXPOvo4ey1sS4Xq+eA1yLU/xGdw9/ZdCA9TFIW3B7zNooxF6DV6ZuycwfmZ559UwT1FUZjcx0R+jZ29tUefR4cOh3r6ba7sbD9eF8Wm22J4dlow09O88TO6IpLDMxTsLvehovZA4kadHn/9ofxLjfYW/r3tJ8qaes+VN7JnRHjEA+u+4FzHy4xTlvM/+19Z7ZxEjVrM17bHcGha8Nf60+hoxDzJ7L5yZmPlXpbnL+IPzjlEa4op8/8Lcf3fcJ9TVVW+KdzGirLdNDts9PEP5cq+I4nwkveM6N0a7Y1M3jSZDQ0bCNGFsHTYUob4DenQuTYUWxj5SikzMnz57+XhrR5LXJVInb2Omom/nY9EtI/TqbKt3MryPAsf76hgbYEGp6rgZbDx/fU+TIiJQdFoKGqsYf6eDeyurwRgSEgsNw8408O9/20n+vktMyOi+zntzDY+wHjlJywh13HxyH+TFFnL17bH0WoUXuj7AtX2aq6IvMIdiOypr2RFzhvcpt5OjFLKKv8XmLN/MiUHCuoB/FCcxbLSHK7qN4p7M87BqOh4cftP2JzyTU70br46X9aPWs+TyU9SY69h6LqhPJr3aIfONSLWRKi3woKdR+cc0Wl0OFWpQNvZFEXDkCgjt431Z/LQLK47dx1nDtqNl1bPXz5yklvpuoIpzjeI2wZOIsDgmjHZur+E6pbfzg3TU0gwIrqX0wrb+mNoyUYT/je8+77Fa6X/5oG9d+CvCWfb6ExeLnkZBYUXU148cIyTytxbuF0/B4POB92g7UzqfyvxvkEsL80FXLMiS0uymRY/kIyQWGJ9grg2dQy1Lc1kVkk5AXF6uC/pPraO3kqoPpRH8h9h6Nqh1NvbXwvlz0N9abSqfJvV+oNOr9HLMk0Xqm4xU2VpRKOBCwcqbLwtDi+9hlGvlDBnuWs2yqTVMzYiGQAVlV2HFRbtySQYEd3HaYWt/aFlN4TfDEmvc2fundy35z6ilf68nPQ/Gp2N5DTlcE7wOfjr/MFaDlsTOcP5KXv1k2DoPvDqB8CAoCjyDmziqrKYqbdZ6B946IoCL52BJL9QdxshTgfpvumUjS/jktBLyGzMJGJFBN9Wfduuc8w+KxAN8Piy1ssxeo0eJzIz0lWsjkP7dEJMviQG6Vl1YwxB3gqzF9dgd7jGPvSwS3tbHL1jQ7EEI6J7OC2wNQWseRBxOyS+whXbr2Bu0VySDP05T3sX50RncGP2jQC8nvY61C2FLQlgLeJN2x1UxL4LyqGsvf56E3VWCwD1NteGV//DiuwdvH2wjRCnC0VR+GLIF8xPn49TdXLBlgu4esfVJ1xwL9Bbx8BIPRtKrFish47Ra/RHLdP0gG2HPYbvYZtU8+orUVWVAJPCi+eHYnNCQY1rVmp3XaW73eEbW3syCUZE13NaYGsqWAsh8k6ccS8wZdMU5pfPZ7DvYG4NeJHBIXE0qbWsqV/DcL/hJOx/D3KmAE7o9xWZ6hmefhVC9DiXR15O0fgi0rzT+F/Z/4hfFU9+U/4JHXvPmYE4oz4l9pdUklYlEbsylq3mrbSoLfj+5ItxmRHtUi0pa1KOfzJxQvwNJlICXJuGy5sb+LXC9X91Vl8vFA28tb6eEnMt6ysLAfDS6ukfFOWx/nYmCUZE17I3wdZ+YN0LkXdhj32G4euHs7RmKWcFncWSQSvJratkfGRfbsq5CQ2w0AsofRR0kTB4NwRdiL/BRL2t9QxHvc1CwIGZEH+9a0NX/RGzIPXWQ22EOB2FG8LJGpPFrLhZlFpL6bemHy8XvXzc464Y4oPOUM9+zW4KLAWUtJS4c4yYnWasqhUVlQRTQle/hNPK5OhU97//k7uWD3ato7KlGh8DvL2hhn9tWYz9wOzU+Mg+GLW9I3epBCOi69gbYVs/sBZD1H00RT9CypoUMhsz+VP4n1g6bCm/VubjpzeS7B/Aqqpv+NVbIbx5I/idBRlFYIwHINkvlOzaslanz6opI9kvFHCtofrrTa3aNNtt5DdUudsIcTp7LuU5Vo1YhY/Wh9tyb2PixolY7MdewlQUhfO8/wotIcdso6LyYNKDXdHd09bQkFjGR/YBXOP7S9lunt7yI74+dVQ3aWhocV1Zk+AbzPkJgzzZ1U4lwYjoGvZG14yIrRSiHqQqYhZJq5PIt+Rze9ztfDToI5yqyuryPMZEJPNq1qWs9lEZpjgh+hHeUx5nQeF29+nOjkllR80+FhdnUdZUxzeFWylsrGZStGuKWKPRcHZMGguLtrNlfzEl5lrey11DoNGLjNA4T42CEKeUMQFjqJhQweTAyfxS+wvhK8NZVbPqmO2fPicG8u7kqDSggILCcL/hTAyc2IU9Pv1oNBqu6juK6fEDMRysvwX0ja4CNOzeF8aI0HjuHHQ2Jq3ecx3tZL1jfkecWuz1rs2q9nKIfoTCkGsYvLoP9Y56nkh+ggeSHgAgu7aM6pYmJjvmcW7zYvYBurQlEHA21VuXoOFQOsI+/mH8NXUcXxVu4cuCLYR7+XHTgAnE+AS620yN7Y/VYef9XetoslvpGxDG7emTDxXUE0Jg1BpZNnwZrxW/xm05tzF+03j+Hvd3Xkh54ai2/SMMRDVcTpnldTRepa2upHHi5O8xd6HRHCOfuegwRaPhwoTBTIlJY21FPkWNNQwLVlmxXUVtTOP6/r3vC5ZkYBWdy157IBCphJjH2eJ/AWdsOIMWZwtvpr3JX2P+eqit0wJZE8G8jo9sUBfzT25MvN9jXRfidFPYXMiEjRMoaimin1c/Vo5YSbihddbVhxdX8/iO92HQHYfdqyGACK40PMcTIy/qUVVke7KoJwtptjmpnZ3k6a6cMMnAKrqfvda1NGOvhNg5/OQ1jhHrR2B1WlkwaEHrQKQ5BzbHgHkdc6w6rrd6c0P8vR7ruhCnowSvBArGFnBN1DXsat5F7MpYPtj3Qas2908MRFMxDW1Tv8PuVRmqvRgHtCpvL7rWhEQjdRaVsvrekVvkcBKMiM5hr4YtfcBeBbHP8Km2D1M2T0GDhp+H/cxF4Rcdalv1AWxLB0cNP/lfzv0tdm6OvQVFkbejEN1NURTeG/AeC4csRKfR8eedf+aiLRe5C+6ZDArpEVocOYe+LHgTSF9ljKe6fNr6y3A/AF5f1/6suqc62TMiTp6tyrU046iBuOd41WHilqw/4qV4sX7ketJ90w+1zb8BKt8CxRtSlzJjyx/Qa/Q80ecJz/VfCMF5oedRNqGMszadxddVXxO1Moqfhv5Eeb2OuNg8tm+YiM4WgV1fTrpyDorG9fGRVVNGvG+wh3vfc+TWVfBj8U72NtZQZ23mpv4TjrvJPqe2nE/zNlFqrsPbmMGX2RU8MqX1mP9Umsvi4izqrM3E+gbxpz7DSepBVxLKV1FxcqwVrqUZRw3Ez+WR5npuybmFAG0AuWNyDwUi9kbYNtgViBj7QUYJS61mSlpKuCz8MgyHZVYVQniGv86fDaM28Hjy4+y37WfwusHcm/sQceG16LRO1F2zAOirGe8+5ouCTNaU53mqyz2O1WEn1ieIK/qMOKH2VZZGXt6xnNTACB4afh6xgSp76+zsqCl1t1lfWchneZuYHj+QB4aeR6xPIC9u/+movEunMglGRMdZy2BbCjhqIeEVbqzJ4tH8R4kyRFEwtoBYU6yrnTkTMqOheRuEXAmDskEXyO27bkeDhpdSXvLkqxBCHOHBpAdZPWwtRnzZ4PyMz60PMDyxHkfppWDz4/6h0xgTfmgT5fw9G7DYbR7scc8xMDiaixOHMPQEUw78vG8XoSZfLkseRpR3AOckh1HT6M1H2bvcbZaUZDM+sg/jIvsQ7RPAVX1HYVB0rC7f01Uvo9NJMCI6xlrqSvHuqIOE1/l92RLeKH2Dfl79yBuTR6Ah0NWu/A3YMRycZkh4A/p8AIrC9obt7DTv5Oygswk2yBSvEKea6gYv/qx7mQTNcPZTwM4+U1CCNoG2iQCjgZkpZzAyzJV91eKws7aiwLMd7qXy6qtIO6wA6E2jXVekrClw7emxOx3sbahuVSRU0WhIC4wkr77nFAmVYES0n7UYtqaBsx5nwhtMKHqfBVULGOk3kuwzsjHpTOB0wu4/QeGNoPWF9M0QcYP7FDfl3AQcKIgnhDjlbK/Zh6LomKqfxZsp8/DX+8CwGaA4aLY3o9Fo+F1M/8Pal/7G2URH1dssrQqADogw4Gt0ULTfF6vDTqOtBScqfm0VCbXJMo3orVr2wtb+4GzAlvAGA/PmsrJuJdNCprFu1DrXFTH2GtiWCtUfg9dgGLIPfAa7T1HWUsaqulUM9R1KH+8+HnwxQohjObjsotMoXB83k5wxOcQ7XNlWX9r+KwBR3ofyRjTLMk23SQ2HkqqAE67C3BNIMCJOnKUQtg0Apxlzwusk73qcrKYsrom6hu8yvnO1aVgNmbHQshvC/gaDtoDOu9Vpbs65GRWVV9Je8cCLEEKcCB+9a1O5XXWyr6mOwio9pateYHztf3hu1J8AKGysPqq96Fz+etNRG1HHJztoajGwKNeGr96IgoaGtoqE6ntOkVAJRsSJseTD9gHgbKI67iXis++nuKWYexPu5b0B77na7HsWssaD0wrJH0LS0UswTfYmvq78miRTEmMCJE+BEKeqISGx7n9/lb+dqz6uoE+QHz9c8GcMigGnqvJ90Q53m4zD2ovOk+x/dJHQPtFVKBon8zY2oFO0xPsFk1Vb7n7cqapk15aR7N9zLu2VPCPi+Jp3wfYhoFoojn2OtOx7MDvNPNf3OWYlzHLtD9l1IdR9B9pgGPArePVr81R37b4LBw6e6ftMN78IIUR7jAlP5uuCrdRZVO7+PJDG5hYWXOuDojjIqa1kUdEOdh74kPTVGRlxYDOr+G0Wh43K5kb37aoWM0WNNfjoDASbfFiQn0mttYlrU8cCMDGqH8tLc/k8fzPjIpLJri1nZ10Rwd4RrN7rmg2ZEpPGvJw1JPoFk+gXwtKSHKxOO2Mjkj3yGjtCghHx25pzYHsGqC1kRT1JRva92FQb7w94n6uirnJd3rtzpGtTq88Z0P9nOEbOEKfTybv73iVUH8ofIv7Qva9DCNEuCjqctSN5f5UDp6rga7KwsHwtC8uPbKfhmtQzpCDlCSpsqOb5bUvdtz/N2wTAmPAkrkkdQ521meqWJvfjoSZfbk2fxKd5m1hWkkOg0ZsZKaMp2O3FotxmGi1ORoYl0Giz8HXhVuqtFmJ9g7g9fTL+Bq9uf30dJcGIOLamLNgxDNQWfg1/gPG5DwLwfcb3TA2ZCnVLIPd8UFsg8v8g/l+/ebqnC5/G4rTwRLJkWxWiu1RbzEfVj/HVGY9Z3M7uUJm3qYEHf6yholFFRQFU+ieUH9XWT29iZspoBgXHdEXXe6XUwAjemHDlMR+/JvXo5evUwAgeHHZeq/v+nNHAotxm3t1Yz+3jApkcncrk6NRO7293kaq9om1NO1z5QVQbi0LuYFrBXAwaAyuGr2BkwEgong2lj4FGD30/g6ALj3vK4J+DaXG20DCxQerQCNENqi1mHtrwDXa19VUXOo3C4yMuaBWQqKrKVzubuOv7/ezeb0cDHP7h8NQFKgGBpTQ7rPjojAwJiWFYaLzMiHiI3e7E8FABYxOMrLzx1A0GT/TzW2ZGxNHMW2HnKFBtfBj4F64qeAEfrQ+bR22mnykJsiZBw8+gi4T0tWCMP+4p39/3PjX2Gv4e93cJRIToJo32lqMCEXBdIdNobyEYVzCyrsjCbV/vZ11xC4rG1ebIb6mX9IsjJUwuxT9V6HQKsQFaMvdZPd2VTiGfCqI1c6ZrD4hq498+l3BV0duE6ELYPWY3/RQDZMa4AhG/syGj6IQCEYD799yPTqNjTvKcru2/EKLdbvmqinXFrqUcZxtz5VoNJAXru7lX4ngmJXthtqrkV/f8gESCEXFI44YDMyJ2Hjaezd/LPifOGEfBuAIizb/Ctn5gr4ToR6D/ElBObGJtec1yilqKuDTsUld2ViHEKeWTKyM4I86I5hiPxwfq0GuP9ajwlBtG+QHw+toGD/fk5MkyTS/U3g1rADSuh6xxoDq5WTuC16oWk+6TzqZRmzAU3QPlc0FjgtRFEHBWu/pze46rIN7LqS934NUIIbrCxsq9zMv5lf0trstMLzgjgFGJ/Xlxhb1VOw2uFOQHj/mqcCv7LY2Ee/nx+6SMVptXVVXlm8JtrCjbTbPDRh//UK7sO5IIL9nr1xXGJ3qhV+C77CaePi/E0905KRKM9DLt2bDm1rAGss5EReVPal8+qV3HmYFn8tOQ71F2joem9WCIhwHrwRDerv7kmHPYZt7G5MDJhBp6TgIeIXo7P4OJS5KGEO7lByqsqchn877NwEAMWg12p2vJRqdA/zA9e+oreTt7FRcnDWFwcAzrKgp4becKHhh6LjE+gQD8UJzFstIcrkkdQ6jJh68LtvLi9p94ZPj5stG1i6SE6smt6vmp+GWZppc53oa1ozSscgciU22RfNKYw+/Dfs/P/d9A2RLrCkQCL4LB+e0ORABuzL4RgDf6v9HuY4UQXSclIJxBwTFEePkT4e3PmeHpLNncF1+jg4K747lhpGsJwOZ0feAtLckhPTiKqbEDiPIO4KLEIcT7BrG8NBdwzYosLclmWvxAMkJiifUJ4trUMdS2NJNZVeTJl9qrTU/zxuaElQXNnu7KSZFg5HRW/wtkTcQJjLUEsNhSwk0xN/F59CWwfSA4aiHuOUj5EjpwBUyVtYqfa39msM9g+nm3nZFVCOF5TtXJ5Hf30NBs5KWLAojy1/HaJWF8OzOSETEGJid7kdfQupQ9wICgKPIaXGXqqyxm6m2WVqXsvXQGkvxC3W1E57v5DNcS2Jvreva+EVmmOR056iFnGjSuwYHCsGYjW+3VPJL0CLMpgrwZoPhA6lLwG93hpzlYEO+l1Jc6sfNCiM5SYq7l6cwf2VPuy9aSNKYNcHLN0Aj349PTvJme5ip0WZ9twf+Iwmv+ehN1Bwq01dtc38z92yplb+05pex7moQgPT4GDcvzZGZE9DSF/weNq1BxMqlZYZu9iTf6Pc9s82dQ9Q6YUiCj+KQCEYvdwoLKBcQb4zkz6MxO7LwQ4kS0OOz8vG+X+7aqwvaCCArKgwBotluJ8PLjqoQp/LgxlYgAC6l9tlBqrvNUl0UHDY0yUFznwG4/eom+p5Bg5HRT/S1UvQWAQ4VnDVYW9v0nN1TMhubtEHIVDMwCXeBJPc09efdgV+082efJTui0EKI9muxWnt+6hJVlewBosWlZtCGV1TuT2LjLVV33P7lrqWtp5vf/bcDh1LBwRjJxfoEsK81p85z+BhP1tiPK1NssBByYCfHXu+qgHFnuvt56qI3oGpcN8kEFPt5m9nRXOkyCkdOIqeFH2H2hO7OiTgOjtHBu+f3gNEPiW9Dn/Q7tDzmc0+nkrZK3CNYFu4rpCSG61Xs5ayhorAagqs6br1YNpaQqEICaBi+cTg37W8xM/d8uShsc3Dnen2ExJlQV7E5Hm+dM9ju6lH1WTRnJfq6r5EJNPvjrTa3aNNtt5DdUuduIrvGX4a59I+9nNh6n5alLgpHTxEDNJsKKrsSJyuHViNxpjKIfgfC/dspzPVf0HM3OZu5KuKtTzieEOHEl5lq2VpcAkF8SxTdrBtPQrMOpun7bnaqC0xpMVZ03mwr8iQ9yMmuSjgX5meTWlTMqPBGA93JWsyA/033es2NS2VGzj8XFWZQ11fFN4VYKG6uZFJ0CgEaj4eyYNBYWbWfL/mJKzLW8l7uGQKMXGaFx3ToGpxtfk0KYj8LaojaumOwhZAPraWCwsoGbdHNpUjX4aFTaTLO473EImgY+w0/6+Z4ueBovxYu74+8+6XMJIdpnZdke7A4NK3ckkVvc9uX4EZoUvsg04220cvaIrbywTUeMTyC3D5xMuCGcr3aa+e96E6U1JrzOa+LcVG/6+Ifx19RxfFW4hS8LthDu5cdNAya4c4wATI3tj9Vh5/1d62iyW+kbEMbt6ZMlx0g3GJdg4sudTVQ32Qn27nkf7T2vx+KYqiyNfFO4rdV9Gco6/qZ7kf2qhn2qk3TFVWfiKKoTci+EgZmgD+twHz4p/4T99v3cGnurFMQTwgMK6hv4cvVAqhu823xcq4F56xRqzV6MG5CPrzaIQfoxrMht5pVFFvZUFx5oF4hDhcLaQxlZh4fFMzzs2PWoNBoNFyYO5sLEwZ37osRxXT3Ujy93NvHGugbumxTk6e60mwQjvURhQzX/3r4Ms/1QwaThyq9cr3uJfaqGWyxOFrT9twnQAzawlbqK4AX/ocP9uGf3PWjR8q8+/+rwOYQQHddsVWiyGI75uEOFfQ2ufSGrs5JYtVMDVKJT4PCLMRwHlnMnJMrm057gogFeKBpYsMMswYjwDLPNyss7lrsDEaOi4wLf7UxpeYkip4YMs8oWHwVVdYIGNGhwFQjXgfdA8B0LPiNdP14DOtyPVTWrKLAUSEE8ITwoPcyXK8/aRHZROFkFidQ0HfqNP0RFr9ixOQ9V4m3rqtAAk0L/cKnW2xMoikJioI7tZT0zNbzMo/cCq8r3uC+56+MfyjN9m5jS8gT5Tg1DzCpXmkKI1Tixo2eDcwK2uLkwYC2MaISBmyHxFQi7BrzTQdPxypy35t6KBg2vpr3aOS9MCNFu4yP7oNOqDEws56rJm5kzzURC4JHfOzVcOHYnw/oWH7itHnkaAKx2J1d8VMEX2809OofF6eJ3/bxotqvsKLcev/EpRoKRXuBgLgGAG0L2YCy8lhwnDDOrPOQdwMvGFn72mcOt1nm8bbuRdZrp4DsKFGOn9WFX0y4yGzMZHzCe8A7UsBFCdI4o7wCGHbh6xapayWc5t567m1GJrb8xZ+0NZ0RKMWdl7ELRqGjaCEgcqit3xaUflGN4qIDIfxYyfd4+3lpXT6NFgpNTzQ2jXPWEXl9b7+GetJ8s0/RwTtVJebPrjTfday0BpS+y3QFnNqm8YVK43DscUr4kzBIINcsBKGvu/DfqTdk3AfBa2mudfm4hRPvMTDmDequF3fWVAKwprmNdQQImg5VRqQWs2NaXPftCeWxKMHcMDGRZ33ru/lqDxaagqoe+o674WzSJQTr+t7mRb7Oa2FJmZWFOMwtzmrlhQRWBJoXBkXqmp3kzc5gfEX7ykeJJw2JMGLXww66elxpe3jm9xHhlGec73iHTCWc3wcdecI5XBKQtB2M0anNplz13tbWaZTXLSPdJJ903vcueRwhxYkxaPX8fdBbLSnP4qXgX/12XCsD5o3cS7GdhaMwe/vtzCu+t8uLrqyMYMDyK6clWxryRR0WdHhUNRi0MjTai12r4x4RA/jEhEIAmq5OPtzbyxQ4zG0qsrCho4ZeCFu5ZVIOPXkNamJ7f9fPi2uF+pIQdeyOt6BoDwg1sLbPidDp71BWNEoz0cIpG4ULjCs5T32GDE1bbYacPREbdAfHPgcZ1ff+Gqr3uY6K8Azq1D7fm3oqKyr/7/btTzyuE6Di9omVq7ADe+yUYi7WJM9MqCfZz7S27d+QZTI3UM/0/ZcxauJ+554eSFGTgm2v9+cMH+9hbGURiaAv6NvIAeBsUrh3hz7UjXFk/7XYnC3Ob+XhrI6sLW8jcZ2VjqZWnfq7DoIU+wXomJpuYMdSXsQle3ToGp6MLB/iweZ+VH3c1c26qj6e7c8IkGOnpyl7iPPV11jmgToU7DGAP/hMkzHU32Vi5l1/L8wHw0uoZHnrsPAHtZXVa+bTiU2KNsZwdcnannVcIcfK+zzbz8bYm0sP1TEyvpLwZjFodkd4BnJcKv+tr4t+r6hkTb+TywX4MDAll6ojlbCuIZFj0iV0Rp9MpXDjAhwsHHPrgW1XQzPuZjSzPs7Cn2kZWpY3X1zag1UBcgI6xCUYuH+zL+WlePerbe09w4yg/Hl1aw7sbGyUYEd1k31wce+9knQN8D9SZ+dZxCYsrL2G4+iv+BhM5teXkN+x3HzIlJg2jtvP+2x/Y8wB21c4TyU902jmFECev0eLk0g8r0Gth+fVRvLVrB+Cq5lvb0sS89VZ+3GXhkgHeXDbQ9aFV3tyARgODk8oYGBLb4ecel+jFuMRDsyA5lVbmbWxg8a5msittfLjFzIdbzGiACD8tI2IM/D7dh8sH++JtkODkZET66wgwaVhRYDl+41OIBCM9VemzOIruYoMTEhUIVxQ+cN7OSsdIwM7q8ryjDjkjPIlp8QM7rQtOp5PXil8jUBfIzOiZnXZeIcTJm/rePpptKv+5LIxQXx39g6LcxfMufL+QFbuN3DTaj1cuCkWj0aCqKktKst3HDwiK6rS+pIYZmHNuCHPOdd0uq7fz380NfJfdxNYyG99mN/NtdjN/+byKIC+FIZEGzu/vzcyhvoT6ysdUe42IMbJ0jwWL1YmphwR38r/cE5U+haPoPjKdMFABo2JC238F03X9UYp2sLaigBbnoRTOsT6BnBWdytiIZDQnkUfkSC8Vv4TZaeaxhMc67ZxCiOOz2G18VbiVzP1FNNhaiPMJ4vI+w0n0CwHg5dV1rN7bwu/6mrh6mOtyz1jvQACyi8JYsdtIn3AzT54bgUajYb/FzMKi7ayvLHQ/x6qyPcT7BpHUBRV3I/113D0xiLsnujKFNlqcfLilkS93mtlY0sLP+RaW51v4v4XV+Bo09A/Xc05fb64d4UufENkUezxXDPFl6R4L/93cyA2j/T3dnROiUVW17Ww3p5D6+noCAgKoq6vD379nDGyXKfkn9uIHyXZCfwXQh6EduBUMke4mzXYbxeYabE4HAQYvor0DOjUIOSj8l3Dq7fU0TWqSdV8hutGbWSspbarjyr4jCTR4sbYinyUlOTwyfDoNzQaSn9mLt0FD1YMJGHQKVZZGHt34HdmF8SzZFk50SD3TRmahKOCnN9Jga13t9aKEwexvMbOpai+PDr8Af0P3ZlS22518ld3Mp1sbWbPXQnG9A+eBTyqjzrUp9qxkL64e5svIOMn2fCSL1YnX7AImJ5tYdn20R/tyop/fMjPiQdUWM432Q38EfHVGgk0HNhypKuROB1MKxL/gyoxa8hj24tkUqjBQCw6vwWjT14PS+puCl05Pv4CuTTz2ecXnVNoq+Vv03yQQEaIbWR12NlcVcXP6maQc+D2/IGEwW6tL+HnfLv7xaRAOFb69OhKDzvW7+fO+XeSXRrJkWwRR/k6mj8xGc+DX9vBARANc2XcUZ0b1xamqbK8uZXX5Hs6N695L9nU6hUsH+nDpgb0sTqeTlQUtvJ/ZyC/5Fnbvt7GzwsbLv9ajUyA+QMe4BBN/GuLDuSmyKdZkUIjy07KxpOX4jU8REox4SLXFzEMbvsGuHspiqNMoPD7iAldAYl4Ldd+7fgwxOO31OEufoEKFJA04Ay9Bm/KFx/p/96670aLl+X7Pe6wPQpyOnKqKExXdgcv2D9IrOt7b0EhetR/Xj/TjzORDG0g/2Gzmu02xJAbpyJkVS709ko92b2BHTSnBRh+8dXqKzbXM6DeacZF9AFA0GtICI8mrr+rW19cWRVE4M9mr1WvaXmblP5saWLK7mZwqG//LbOR/mY1ogCg/LSPjjFya7sNlA316zL6JznRmoomPt5kprbcT7X/qf9R36H/olVdeITExEZPJxOjRo1m3bt0x27711ltMmDCBoKAggoKCmDJlym+2P1002ltaBSIAdtV5aKak7CXcsWLR3ailT9AAhGpAiX4IxYOByNq6teRZ8jg/9Hy8dccsBSyE6AImnZ5kv1AWFm2ntqUJp+rk14p8tpbXs2hLGLEBWl6/OMTd/uHF1Xy1IZKEkBay/h6LQacQavJlUnQ/VOCR4dO5NX0SKhDp3Xoa3d9gos52al6VMTDSwL+mhbD59liaHkui6N54njgniLEJRsw2J1/tbOLqTyvxml1A6GMFnP1WKf9eVUt1k/34J+8F/jqyZ6WGb3e49PHHHzNr1ixef/11Ro8ezdy5c5k6dSo5OTmEhx+9NLB8+XKuuOIKxo4di8lk4umnn+acc85hx44dxMTEdMqL6HVs5VDzCeD6pVFVV9SoRcvr/JPcvYnE7f+x1Ya1tuTUlvNp3ib2NdURZPRmWvxAxkYkt2rzU2kui4uzqLM2E+sbxJ/6DD/uhrVbcm5xFcRLlYJ4QnjCX1LH8J/ctdyz7ksUNMT4BLFkUxpaRWX59VHuZYp//lTD48tqiQ9rYO7F+l49QxAboOOByUE8MNm1Kbbe4uSDzAa+2tnEptIWluVZWJZn4e/fVuNn1DAg3MC5Ka5MsQlBva8y8Vl9TGg18HVWE4/9LtjT3Tmudgcjzz//PNdffz3XXnstAK+//jrfffcd7777Lvfee+9R7T/44INWt99++20+//xzli5dytVXX93BbvdylW/DYbMmGo0rINFrTJyffDa+PqmsrcjnhW3LeGT4dIKMR89OVFkaeXnHcs6M6sd1aWPJri3jf7lrCTCYSA9ybWhaX1nIZ3mbuLLvSJL8Qllams2L23/6zQ1rBU0FbGzYyNiAsUSbPLsxSojTVZiXH/83ZAotDjsWh42Z8+sor2viz+P20SfElfr9uRW1PPhjDeE+Cn+bWEWL2voDqd5qwaTVY9DqUDQaFDQ0WC1HtQnQ98wNov4mhZvOCOCmM1wZp612J1/ubOLTbY38WtTC+uIW1ha18OjSWkw6Df1CdJzV14uZw/wYGt15RUQ9RVEU+oboyapoXcF3v9lBsLfSJRc1nIx2BSNWq5WNGzdy3333ue9TFIUpU6awZs2aEzpHU1MTNpuN4OBjR2otLS20tBzaeFNf3zOmmTqFaofyl4HWSzgaDZiwkFx6FQxY22rD2sWJQ446zc/7dhFq8uWy5GGAKwX87rpKlpTkuIORJSXZjI/s414jvqrvqONuWLsx50YAXkuVgnhCeJpRq+PbrBa+yjIzKLGciwZ48fKO5fy8p4Uv1yUT7qeS8/dklpbXsL26dX2qrNoykv1D3TOoTlTey/2Vyx02xkYk41RVsmvLmByd0qEZ1FONQafwx8G+/HGwL+DaFPvTHgsfbDGzssCVjG1buY1/r3Jtik0I1DEh0cQVQ3yY0rdnboo9N9WLf6+y8dTyGvKq7SzKbaKozsGXMyK4aMCplZ21XcFIVVUVDoeDiIiIVvdHRESQnZ19jKNau+eee4iOjmbKlCnHbDNnzhweffTR9nStRyk11/Ft4fY2H7NXfwm2sjYf0+AASy7s+TOkfote0bHnQFXOI+XVV5EWGNnqvgFBUXySt8n1PE4HexuqOS92gPvx421Yq7XWsrh6MWneaQz2G3y8lymE6CI7akpRVfDS+HD1p5UE+Fi5dHgj/QLiWZOvsGCtLxFBDXx4RTCB3jomRvVjeWkun+dvZlxEMtm15Wys3MvVKaPdM6ijwxP5oiCT/+b+isPpoLCxBqvTjpfOwCd7NrZrBrUnUBSFs/t5c3a/QzPLW/a18J9NDSzdbWFXlY15mxqZt6kRRePaFDs6zsgfBvlwabqP+0qlU02LXWV1oYXFu5v5MddVvfe+H2rQKWA/8B033Ef7G2fwjG7dYvvUU08xf/58li9fjsl07Dfxfffdx6xZs9y36+vriYuL644udrlNVUW8k73qqM2rB/nvuxNV45oJOUTBiYqCiqp4gyGGtRX55NVXEe7l2+Z56m2Wo/5Q+BtMWBw2rA47TXYrTlT82mhT1tz2TNQdu+7AiZO5KXNP9OUKIbpAs93GgoItfLMpBIstgtvPMnN3xiQ+ybTw/BIrof4Wpg7PIcA4DoBQky+3pk/i07xNLCvJIdDozYyU0ZQ21bWaQdUpCl/kZ/LB7vUk+IVwe/pk5udtbPcMak81JMrI89MPLdHsrbUzb2MDi3Kb2FFu5YsdTXyxowmoJNRbYWi0gQv7+/DnDB8CvT1/xYqqqgx4oYi8anur4AMO/VvRQEb0qZc4rl2jFxoailarpby8vNX95eXlREZGHuMol2effZannnqKJUuWMHjwb3+rNhqNGI09f83uSPkNVa0CEaOiI9k/FFVV2VNfxe81/yBUaUJVQcV1zT+KD/idSZPXeBbsD2RVoz+aYi3xvjmMDEtg74H0zl3N7rTzUflHRBuimRoytVueUwjRthFhCfyUFcC2gmouTPNizsS+fLSlgWs/r8LXoGHLLSk8uiWz1TGpgRE8OOy8Vvf9a8viVjOok6NTMSg6PsnbxH0ZUzs0g9qbxAfqePjsIB4+27UptrbJzv8yG/k6q4nMUiuLd1tYvNvCbd/sx9+oYWCEgXNTvLlmhB9xAd0fnGg0Gi4a4M0LK+tbBSKHSwvT46U/9WZ12jVaBoOB4cOHs3TpUi6++GLAte62dOlSbr311mMe98wzz/DPf/6TH374gREjRpxUh3uy7/Zudwcio8ISuarfSExa1y7uFZszGGctwanCXmckFT6XMir5GvDJAI0OX2BGPPzxwIa1AIMXb2atJNTU9syIv95EfRub0Tq6Ye2hvIewqTYeTe69y2dC9BR79lu5d1E1QV4Kn18VwWfbGrlqfiVeeg077ow74bwSXTGD2psFeuu4bWwgt40NBKDF5uSz7WY+325mXXELa4paWL23hYeX1OCl05ASqufsviauGebHoKju+YL97Hkh7K11sGCH2Z219iCdAoOjNextrG6dZPMU0O7QbdasWcycOZMRI0YwatQo5s6di9lsdl9dc/XVVxMTE8OcOXMAePrpp3n44Yf58MMPSUxMpKzMtR/C19cXX9+2P0h7o+oWs3sDWZDBm5kpo9EprnW73KzzcTZv4SsV1vEk1c4EdPUK6cbB+Gha/xcZtTqMWh1mm5WdNfv4fdLQNp8v2T/0mBvWAHSKlni/YLJqy8kIdS2BHb5h7XBOp5OXi1/GX+vPX2P+evKDIYToMKfTyaS39qGq8MO1kSzMbeaPH1Zg0mnY9vcY4gM9v1xwujDqFa4a6sdVQ105PZxOJ4t3N/PRFjMrCyzsqLCypczK8yvr0SuQGKznzEQTV2b4MinJ2CWbYhVFw/t/DGPKO3Z+3duC47CAxO5UKbZn88/NFa2TbJ4C2v2uvfzyy6msrOThhx+mrKyMjIwMFi1a5N7Uunfv3lYD/Nprr2G1WvnDH/7Q6jyzZ8/mkUceObne9yAl5loOvidGhCW4A5EVGxKZ4CwkSOdNQEYhjYV7WFm2B7vqZF9THX0DwoBDG9Yivf2paG7g8/zNRHr7M+5A3pAF+ZnUWpu4NnUswDE3rN06cKK7T1Ni0piXs4ZEv2AS/UJYWpKD1Wk/KhfJ66Wv0+ho5KGkh7p4lIQQbbHYnMzb1MiMob7847v9FNc5+Ps4f6qbHVzyfjlGnYbNt8eQHNy+vQCdPYN6ulMUhakpPkxNOfQBv7HEwn83NfLTnmZ27bfzzoYG3tnQgKKBGH/XptjLBvlyyQBv9J20KdakV/hmZiRnvFrKnmobDveSjYawADNwKMlmMD00GAG49dZbj7kss3z58la3CwoKOvIUvY7jsHqERq1r2FWHgzhHKVuccJ7NmztK3yGCM9ztnIdtcj24Ya22pQlvnYFhoXFcnDgE7YHAr87aTHVLk7v9sTasHbysF2BkWAKNNgtfF26l3moh1jeI29Mn4284lHIZ4LH8xzBqjDyc+HDnDooQ4oR8tMXMTV9W8fLqOnZU2EgO0nFBfx9+984+dApsuDWG1LD2b0rszBlU0bbhMSaGxxwK3PKrrczb2MgPu5rYUW7js+1NfLbd9bc7zEdheLSRiwb4cFWGL36mjgcnQV5allwXxYiXi6kwuz5LNBonwX5NxznSM2Q+r5uEHba3Y2t1CefHD0Sj1RI3oo6WpgLOL36Bh/Mexqba0WHAh2B+2RmAHRstzhZsqg2r04pVtWK32fmd+Xdcofvafc5rUscc9ZxtbVg70uToVCZHpx7z8a8rvqbcWs51UdehU+TtIoQnfL7d9W12R4UNgEemBHDOO/vQamDtzTGkR7gCEYvDRmVzo/u4qhYzRY01+OgMBJt8unQGVZyYpGADj/4umEcPZEXdb7bzv82NfJPVROY+K4t2NbNoVzM3fVVFgMm1KXZaqjfXDPdrd42Z2AAtcy6yccN8DQ6ngpfBhlY59MV46/4S4n1PjeysGlVV1eM386wTLUF8KlNVlSczf3Bf/fKnPiOO+mbx37xl3JL/JxppO3fI4f4S9RfeGfBOp/Zxr2UvF225iEvDL+Xm2JsJ1geTsjqFPc17qJtYh6/u9NnjI8SpoqHFSchjBdgOTJRqcF1tp9XAmpuiGRl36Ft3Tm05z29betQ5xoQncU3qGOblrGF/i5l/DJ7S6piDZSMCjd5Mb7NsRA4/Fme5Z1D/lDycJP+elfSsp7BYnXyy3cwXBzbFljU43Ev83noNqaF6pvT1YuZwP3cQ2hZVVfkkbyPLSnMprvRn4fr++JisXHXW5lbtzo8fyAUJXZc36kQ/vyUY6UYbKgt5K3uV+3ZKQDjDQuNwqirrKwvJb9iPU7XzpW02VRQc8zwaNGSPySbFu3OnSX+u+ZlJmyYBYFJMXBx6MfMr5jM9ZDrfZnzbqc8lhDgxn2xt5PKPKo66PzlIx9pbYgg9BRNYic7jdDr5PqeZ+VvNrCq0sLfO7t4DYtBCUpCeM5NMzBjqy7iEQ5tify3P573cQ5nRF68bjNNhZO5lTeyoLWVvY437sVsGTGRwSNfUijvRz2+Zd+9GI8IS2NtYww/FOwHIrasgt671HxlFo2Nu8jzuLLqM/bb9OI9IC6+gcHHoxZ0eiIArADnI4rQwv2I+AHpFz9aGrZJ1VQgP+CCzoc37C2vtTHijlJ9viCbcVwKS3kpRFKb392F6/0MbTdcVHdgUm9fMnv02cqpsvLW+Aa0GYgK0jIkzofEtwjcAFAVm9BvNKFMY1y+o4syIgVycNIQfi7P4PN81S7K4JKvLgpETJTMjHrCmPI/vi3ZQ3tz6j0y0dwDnxw9ieFg8a+rWcObGM7GrR5e79lK8uDPuTh5NfrRT93FsbdjKkHVH17nRaXTYVTtTgqYwN2Uu6b69K+uiEKeCaouZCksDTXYrRkWHr96IXmMk9p8V/NYf6dRQPTvvjEVRTq3CZ6L77Kq0Mm9TAz/uaiar0obZevAdo+JrdHBhWgB/GOTL798v57Orwrl0oC+qqjJ743eUH8gX8+TIiwjpgst8ZZnmFKeqKrvrK91vhGjvQJL8QlpVUnyt+DVuzrnZfVuLljhTHNW2auod9Rg1Rq6Oupq5/ebirTu6cm975Tblkrrm2JtZAe5JuIen+j510s8lhHBRVZVfynbx0e4NRwUdyzL7sLs07KhjFA04VVcSqz8M9OG/fwxHr5VgRLgs21vI/T/tYW9FEA1mf5qtGhyqa79ReoSebX93XRn1yZ6NLC3NAeAfg84mJTDiN87aMbJMc4rTaDT0CwinX0D4MdvcGHMj6+rX8d99/8WJEwcO3un/DmcFn8Wrxa/yaN6jvFX6Fu+WvstFYRfxWtprhBuOfb7jOXyZpi23xd7G48mPd/j8QojWnKqT/+auZU1F/lGPVTeY2F0aysHiEO5QQwMTk0z8eagvl6T7EOQlSzSitVAfHUOSyxiSXMbvYtK4KGEom0tb+NcvtYQdtsfI4rC5/631cFXiUy9BvXDTaDS8mvoqg3wHATDUbyiTgyYDcHPszZSfWc5ngz4j3hTPF5VfELkikrM2nsWepj3tep5qi5m9jdVUNTcf9ZgWLXqNnnkD5vFi6ovoFf3JvzAhBAALCra0CkSCjd4MDIoi0hTAt2sP1oNxhSEjYg38+4IQSu+LZ9n10fxlhL8EIqJNcb5B7vB1fWUhaJyMijPx6VWRvHqxa6at2W5jU1URAHpFS5R3gMf6CzIzcsrz0nrx1eCvuGDLBTzd5+lWyzgAl4ZfyqXhl7KyZiU359zMT7U/0XdNX4b5DuP1tNcZGTDyN89fbTHz0IZvsKtOrGrrYESLljBDGN8M+YYR/qdvTSEhukK91cLSEtcUuaLRcE3KGYwKS0Sj0XDDF5VYrA2ASlJkFWekFfHQqHH0D/LsB4boGYKM3gwOiWHL/mJqrc28m7OaP/cdjY/edSlwvdXCvNw1NB+YGRkZloC3zrOVfCUY6UTfFG7l273bW90X4eXPYyPOP+YxGyv38lXhVvZbGgn38uP3SRkMCj60q1lVVbaU1zGVR/gqu5rt/ku5su9IIrxar72NDxrP1jO2sqNxBzdm38iqulWM2jCKfl79mJsyl2mh04567uzaMr4q2Oou3qej9azH6IDRfDHoCyKMnb+OKMTpbk15Ho4Dv3tnR6cyOjwJgK37Wnh7vStd+Jt/VFjXsBuAX8p20T/ot6ujC3HQ+fED2VFdil11sqmqiO3VpfQPjMRxIIPuwb/7Jq2OqYdVZfYUWabpZNHeATwz+hL3z91Dphyz7Z76St7OXsW4yGQeHHYeGSGxvLZzBSXmWnebH4qzWFaaw1X9RnFvxjkYFR0vbv8Jm9PR5jnTfdNZMWIFxeOKOT/kfPY072H6lulEr4jmvZL33O2WleTwwrZl5DUcKgOu4dCU70DlHF5M/EACESG6SOGBBIgAYw4kGWuwOJjwhis9+8JrIrhmcALGA1fMHZ4XQojjifcN5sYBE9AfqINmdTrYUl3C9prSwwIRPTcPmEikt+cvDJFgpJMpGg0BBi/3j+9vFJNaWpJDenAUU2MHEOUdwEWJQ4j3DWJ5aS7gmhVZWpLNtPiBZITEEusTxLWpY6htaSbzwFrfsUSbovkm4xtqJtYwM2omVbYq/pL9F4J/DuaOnffz0e717raBBi9GhMYT4F8HQJJmFGN1M3kvZy2l5rpOGBUhxJGcbdSr2lpuw2JXeenCEKam+KBoNO6imofXqhLiRAwKjuHhYdOYFJWCSXtoIcRbZ+B3MWnMHjaN1C64gqYjZJmmk1U0N3D32gXoFYVkv1AuScw4ZonmvIYqpsSktbpvQFAUW/YXA1BlMVNvs9A/8NDUrJfOQJJfKHkNVYwMTzxuf/x1/swbMI83097kgT0P8Grxq7y4bw5aDAxQzuaBhEe4LGkEikbh91ufJ8UrlTsD/8Xm/cXYnA4Wl2QxM+WM4z6PEKJ9Qg+vV7W/hLNiUhmXYKJ+diJGvet7Yl5DFWZ7CwAhRinHINov3MuPK/qO4LLkoa4KzRoIMHih1ZxacxGnVm96uCS/UK5JGcPtAydxZd+RVFnM/GvrYix2W5vt660W/I+YOfHXm6g7UK673ubaUOpvOKKN4VCbE2VQDPyr37/IGrGXUcqf0KFnm/N7ri6YwBslb7CtYRtfVn7JXQn/xzWpY/DSuvaPrK8sPGb/hRAdNyYiyf3v74t2UHkgCeLBQKTZbuOTvE3uNmMjpTCd6DidoiXY5EOw0eeUC0RAZkY61cDgaPe/Y32CSPIL5b51X7Ghai/jI/t4sGeHlDU3kKG7gAwuwDcon2Xmz7gl5xa8FC/8tH78OfLPmLR6BofEsLaiAJvTQaWlkTjfIE93XYheJcYnkPSgKHbU7KPeZuGxTQs5IzyJZP9QypsbWFW2h3qb60tHkMGbEaHxHu6xEF3n1AuPehFvnYEILz/3N54j+RtM7j82B9XbLAQcmAnx13u57jtiFqTeeqhNe6mH5Xg8J/ASNo/ezM7RO0kwJTApaBImreu8ymGRs/qbyaiFEB31l9Qx7vwOVqeDX8p2My/3V74v2uH+2+CtM3Bz+pkYtPLdUfRe8u7uQhaHjUpLI2cYvNp8PNkvlOzaslb7RrJqykj2c5XmDjX54K83kV1b5p6ZaLbbyG+oYmJU3w716fBLgjdXFTE1dgBpvmnsHLPTfb/N6WDb/hIAtBql1dq2EKLz+OpN3DX4d3xZkMmvFflYD7tKToOGISEx/D4xg4hT4GoHcWr5uXQXP+/bxf6WRgCiDtQ2O3yG/kgnkkrim8JtrCjbTbPDRh//0DZTSXQFCUY60Wd5mxgcHEOwyYc6azPfFG5DQcPIsAQA3stZTaDBm0uSMgA4OyaVZ7cuYXFxFoOCo1lfWUhhYzV/7jcKcGVgPTsmjYVF2wn38iPU5MtXhVsJNHqRERrXoT4m+AYT6xNIsbmW/Ib9LC7OYkpMmjuZmkN1Mn/PBhoPbJobFhrn8WQ4QvRmPnoDV/Ubxe+TMthes49GWwsmrY7UwAiCjZ1fuEz0DoFGLy5JGkK4lx+osKYin1d3/sKDQ88l2ifwqPYHU0lcnDSEwcExrKso4LWdK3hg6LnEHGh/MJXENaljCDX58HXBVl7c/hOPDD/ffYlwV5FgpBPVtDTxds5qzLYWfPVG+vqHcW/GOfgdWFKpbmk6vMIEffzD+GvqOL4q3MKXBVsI9/LjpgET3G8MgKmx/bE67Ly/ax1Ndit9A8K4PX1yh98YGo2Gc+PSeTt7FQCf5W9mbUUBQ0JisTsdrK8sZH+LGXBdpnxObP8OjoYQoj28dAb3FxchjmdISGyr2xcnDuHnfbvIa9jfZjByeCoJgIsSh5BVW8by0lyu6jfqqFQSANemjuH/fv2CzKqiE7p682RIMNKJru8//jcf/8fgoxOgDQ+LZ3jYsTemaTQaLkwczIWJg0+6fweNDEtgX1Md3x3IFltkrqHI3DqhkoIrPXW8b3CnPa8QQojO51SdbKzci9Vhdy/zH6k7UkmcDAlGTlMXJgwm1ieQH4qzKGjY3+qxAUFRTI9Lp+9vVBQWQgjhWSXmWp7O/BGb04FRq+PGAROI9mm7flF3ppLoCAlGTmPDQuMZFhpPibmWyuYGNBoNMT6BsmFViE6SW1fBj8U72dtYQ521mZv6Tzjufq+c2nI+zdvEvqY6gozeTIsfyNiI1jlGfirNZXFxFnXWZmJ9g/hTn+EkHeMbsei9Irz8eHDYeQcq8O5lXs6v/GPwlGMGJKcyubRXEOMTSEZoHENCYiUQEaITWR12Yn2CuKLPiVW9rrI08vKO5aQGRvDgsPM4OyaV/+WuZUdNqbvN+spCPsvbxPT4gTww9DxifQJ5cftPR6UAEL2fTtES7uVHgl8wlyRlEOsbyLLSnDbbeiKVRHtIMCKEEF1kYHA0FycOYegJXv32875dhJp8uSx5GFHeAUyOTmVYaBxLSg59wCwpyWZ8ZB/GRfYh2ieAq/qOwqDoWF2+p6tehughVBXsxyiiejCVxOGOlUrioIOpJI61D6UzSTAihBCniLz6KtIO20AIrj1cefWu6tp2p4O9DdWtNhkqGg1pgZHuNuL0sCA/k9y6CqosjZSYaw/cLmfUgY2m7+WsZkF+prv92TGp7KjZx+LiLMqa6vimcCuFjdVMik4BWqeS2LK/mBJzLe/lrjmpVBLtIXtGeqHvi3awuaqIsuZ6DIqWZP8wfp+Ycdwy0adyQhwhTgf1NkubGwgtDhtWh50muxUnqjtdwOFtyprru7OrwsMabBbm5ayhztqMl05PjE8gtw+czICgKODUSCXRHhKM9EK5dRVMik4h0TcYh6ryZcEW/r19GY8MP99dqvxIp3pCHCGEEIdcfZxq6qdKKokTJcs0vdAdAyczNiKZaJ9A4nyDuCblDKpbmihsrD7mMYcnxInyDuCixCHE+waxvDQX4KiEOLE+QVybOobalmYyq4q666UJ0av5601tbiA0afUYtDp89UYUNDS0tclQ3/WbDIXoKhKMnAaaHTYAfH4jrXtewzHWqhtc69DHS4gjhDh5yf5tbDKsLSPZ37WBUKdoifcLJqu23P24U1XJPqyNED2RBCO9nFNV+SRvI338w1qtDR7pVE+II0RPZHHYKGqsoajRleG4qsVMUWMN1RZXyYUF+Zm8l7Pa3X5iVD+qLI18nr+ZsqY6lpfmsrFyL1NiUt1tpsSksbJsN2vK89jXVMeHu9djddqPykUiRE8ie0Z6uY92r6fUXMddQ37n6a4IcdopbKjm+W1L3bc/zdsEwJjwJK5JHUOdtZnqlib346EmX25Nn8SneZtYVpJDoNGbGSmjSQ86VIl1ZFgCjTYLXxdupd5qIdY3iNvTJ+N/jOrgQvQEEoz0Yh/tXs+26lL+b8gUgozev9m2PQlxAg77o1dvtRDnG9i5HReil0gNjOCNCVce8/FrUse0ecyDw877zfNOjk5lcnTqb7YRoieRZZpeSFVVPtq9nsz9xdw5+KwTyqp6qifEEUII0XtJMNILfbRnA2srCrgudSwmrZ46azN11masDru7TU9LiCOEEKL3kmWaXujnfbsAeO6wtWqAmSlnuDe59bSEOEIIIXovjaqqqqc7cTz19fUEBARQV1eHv79k+xRCCCF6ghP9/JZlGiGEEEJ4lAQjQgghhPAoCUaEEEII4VESjAghhBDCoyQYEUIIIYRHSTAihBBCCI+SYEQIIYQQHiXBiBBCCCE8SoIRIYQQQniUBCNCCCGE8CgJRoQQQgjhURKMCCGEEMKjJBgRQgghhEdJMCKEEEIIj5JgRAghhBAeJcGIEEIIITxKghEhhBBCeJQEI0IIIYTwKAlGhBBCCOFREowIIYQQwqM6FIy88sorJCYmYjKZGD16NOvWrfvN9p9++ilpaWmYTCYGDRrEwoULO9RZIYQQQvQ+7Q5GPv74Y2bNmsXs2bPZtGkTQ4YMYerUqVRUVLTZfvXq1VxxxRVcd911bN68mYsvvpiLL76Y7du3n3TnhRBCCNHzaVRVVdtzwOjRoxk5ciQvv/wyAE6nk7i4OG677Tbuvffeo9pffvnlmM1mvv32W/d9Z5xxBhkZGbz++usn9Jz19fUEBARQV1eHv79/e7orhBBCCA850c/vds2MWK1WNm7cyJQpUw6dQFGYMmUKa9asafOYNWvWtGoPMHXq1GO2B2hpaaG+vr7VjxBCCCF6p3YFI1VVVTgcDiIiIlrdHxERQVlZWZvHlJWVtas9wJw5cwgICHD/xMXFtaebQgghhOhBTsmrae677z7q6urcP0VFRZ7ukhBCCCG6iK49jUNDQ9FqtZSXl7e6v7y8nMjIyDaPiYyMbFd7AKPRiNFobE/XhBBCCNFDtWtmxGAwMHz4cJYuXeq+z+l0snTpUsaMGdPmMWPGjGnVHmDx4sXHbC+EEEKI00u7ZkYAZs2axcyZMxkxYgSjRo1i7ty5mM1mrr32WgCuvvpqYmJimDNnDgB33HEHEydO5LnnnmP69OnMnz+fDRs28Oabb3buKxFCCCFEj9TuYOTyyy+nsrKShx9+mLKyMjIyMli0aJF7k+revXtRlEMTLmPHjuXDDz/kwQcf5P7776dfv358+eWXDBw4sPNehRBCCCF6rHbnGfEEyTMihBBC9DxdkmdECCGEEKKzSTAihBBCCI+SYEQIIYQQHiXBiBBCCCE8SoIRIYQQQniUBCNCCCGE8CgJRoQQQgjhURKMCCGEEMKjJBgRQgghhEe1Ox28JxxMEltfX+/hngghhBDiRB383D5esvceEYw0NDQAEBcX5+GeCCGEEKK9GhoaCAgIOObjPaI2jdPppLS0FD8/PzQaTaedt76+nri4OIqKiqTmTReSce4+MtbdQ8a5e8g4d4+uHGdVVWloaCA6OrpVEd0j9YiZEUVRiI2N7bLz+/v7yxu9G8g4dx8Z6+4h49w9ZJy7R1eN82/NiBwkG1iFEEII4VESjAghhBDCo07rYMRoNDJ79myMRqOnu9KryTh3Hxnr7iHj3D1knLvHqTDOPWIDqxBCCCF6r9N6ZkQIIYQQnifBiBBCCCE8SoIRIYQQQniUBCNCCCGE8KheH4y88sorJCYmYjKZGD16NOvWrfvN9p9++ilpaWmYTCYGDRrEwoULu6mnPVt7xvmtt95iwoQJBAUFERQUxJQpU477/yIOae97+qD58+ej0Wi4+OKLu7aDvUR7x7m2tpZbbrmFqKgojEYjKSkp8vfjBLR3nOfOnUtqaipeXl7ExcVx5513YrFYuqm3PdMvv/zCBRdcQHR0NBqNhi+//PK4xyxfvpxhw4ZhNBrp27cv8+bN69pOqr3Y/PnzVYPBoL777rvqjh071Ouvv14NDAxUy8vL22y/atUqVavVqs8884y6c+dO9cEHH1T1er26bdu2bu55z9Lecb7yyivVV155Rd28ebOalZWlXnPNNWpAQIBaXFzczT3vedo71gfl5+erMTEx6oQJE9SLLrqoezrbg7V3nFtaWtQRI0ao06ZNU1euXKnm5+ery5cvVzMzM7u55z1Le8f5gw8+UI1Go/rBBx+o+fn56g8//KBGRUWpd955Zzf3vGdZuHCh+sADD6hffPGFCqgLFiz4zfZ5eXmqt7e3OmvWLHXnzp3qSy+9pGq1WnXRokVd1sdeHYyMGjVKveWWW9y3HQ6HGh0drc6ZM6fN9n/84x/V6dOnt7pv9OjR6t/+9rcu7WdP195xPpLdblf9/PzU//znP13VxV6jI2Ntt9vVsWPHqm+//bY6c+ZMCUZOQHvH+bXXXlOTk5NVq9XaXV3sFdo7zrfccot61llntbpv1qxZ6rhx47q0n73JiQQjd999t5qent7qvssvv1ydOnVql/Wr1y7TWK1WNm7cyJQpU9z3KYrClClTWLNmTZvHrFmzplV7gKlTpx6zvejYOB+pqakJm81GcHBwV3WzV+joWD/22GOEh4dz3XXXdUc3e7yOjPPXX3/NmDFjuOWWW4iIiGDgwIE8+eSTOByO7up2j9ORcR47diwbN250L+Xk5eWxcOFCpk2b1i19Pl144rOwRxTK64iqqiocDgcRERGt7o+IiCA7O7vNY8rKytpsX1ZW1mX97Ok6Ms5Huueee4iOjj7qzS9a68hYr1y5knfeeYfMzMxu6GHv0JFxzsvLY9myZVx11VUsXLiQ3bt3c/PNN2Oz2Zg9e3Z3dLvH6cg4X3nllVRVVTF+/HhUVcVut3PjjTdy//33d0eXTxvH+iysr6+nubkZLy+vTn/OXjszInqGp556ivnz57NgwQJMJpOnu9OrNDQ0MGPGDN566y1CQ0M93Z1ezel0Eh4ezptvvsnw4cO5/PLLeeCBB3j99dc93bVeZfny5Tz55JO8+uqrbNq0iS+++ILvvvuOxx9/3NNdEyep186MhIaGotVqKS8vb3V/eXk5kZGRbR4TGRnZrvaiY+N80LPPPstTTz3FkiVLGDx4cFd2s1do71jv2bOHgoICLrjgAvd9TqcTAJ1OR05ODn369OnaTvdAHXlPR0VFodfr0Wq17vv69+9PWVkZVqsVg8HQpX3uiToyzg899BAzZszgr3/9KwCDBg3CbDZzww038MADD6Ao8v26Mxzrs9Df379LZkWgF8+MGAwGhg8fztKlS933OZ1Oli5dypgxY9o8ZsyYMa3aAyxevPiY7UXHxhngmWee4fHHH2fRokWMGDGiO7ra47V3rNPS0ti2bRuZmZnunwsvvJDJkyeTmZlJXFxcd3a/x+jIe3rcuHHs3r3bHewB5ObmEhUVJYHIMXRknJuamo4KOA4GgKqUWes0Hvks7LKtsaeA+fPnq0ajUZ03b566c+dO9YYbblADAwPVsrIyVVVVdcaMGeq9997rbr9q1SpVp9Opzz77rJqVlaXOnj1bLu09Ae0d56eeeko1GAzqZ599pu7bt8/909DQ4KmX0GO0d6yPJFfTnJj2jvPevXtVPz8/9dZbb1VzcnLUb7/9Vg0PD1efeOIJT72EHqG94zx79mzVz89P/eijj9S8vDz1xx9/VPv06aP+8Y9/9NRL6BEaGhrUzZs3q5s3b1YB9fnnn1c3b96sFhYWqqqqqvfee686Y8YMd/uDl/beddddalZWlvrKK6/Ipb0n66WXXlLj4+NVg8Ggjho1Sv3111/dj02cOFGdOXNmq/affPKJmpKSohoMBjU9PV397rvvurnHPVN7xjkhIUEFjvqZPXt293e8B2rve/pwEoycuPaO8+rVq9XRo0erRqNRTU5OVv/5z3+qdru9m3vd87RnnG02m/rII4+offr0UU0mkxoXF6fefPPNak1NTfd3vAf56aef2vybe3BsZ86cqU6cOPGoYzIyMlSDwaAmJyer7733Xpf2UaOqMrclhBBCCM/ptXtGhBBCCNEzSDAihBBCCI+SYEQIIYQQHiXBiBBCCCE8SoIRIYQQQniUBCNCCCGE8CgJRoQQQgjhURKMCCGEEMKjJBgRQgghhEdJMCKEEEIIj5JgRAghhBAeJcGIEEIIITzq/wGnrs+Hv8mTNAAAAABJRU5ErkJggg==",
"text/plain": [
""
]
@@ -640,8 +631,8 @@
}
],
"source": [
- "# Greedy rollouts over trained model (same states as previous plot, with 20 nodes)\n",
- "model = lit_module.model.to(device)\n",
+ "# Greedy rollouts over trained model (same states as previous plot)\n",
+ "model = model.to(device)\n",
"out = model(td_init, phase=\"test\", decode_type=\"greedy\", return_actions=True)\n",
"\n",
"# Plotting\n",
@@ -669,14 +660,13 @@
},
{
"cell_type": "code",
- "execution_count": 12,
+ "execution_count": 11,
"metadata": {},
"outputs": [
{
"name": "stderr",
"output_type": "stream",
"text": [
- "You are using a CUDA device ('NVIDIA GeForce RTX 3090') that has Tensor Cores. To properly utilize them, you should set `torch.set_float32_matmul_precision('medium' | 'high')` which will trade-off precision for performance. For more details, read https://pytorch.org/docs/stable/generated/torch.set_float32_matmul_precision.html#torch.set_float32_matmul_precision\n",
"val_file not set. Generating dataset instead\n",
"test_file not set. Generating dataset instead\n",
"LOCAL_RANK: 0 - CUDA_VISIBLE_DEVICES: [0]\n",
@@ -687,7 +677,7 @@
{
"data": {
"application/vnd.jupyter.widget-view+json": {
- "model_id": "f3a1dc057c5e4b8e93c1e70dd1130e14",
+ "model_id": "5ab7e228c40f4965b03dc5c003602509",
"version_major": 2,
"version_minor": 0
},
@@ -704,7 +694,7 @@
"┏━━━━━━━━━━━━━━━━━━━━━━━━━━━┳━━━━━━━━━━━━━━━━━━━━━━━━━━━┓\n",
"┃ Test metric ┃ DataLoader 0 ┃\n",
"┡━━━━━━━━━━━━━━━━━━━━━━━━━━━╇━━━━━━━━━━━━━━━━━━━━━━━━━━━┩\n",
- "│ test/reward │ -7.2381415367126465 │\n",
+ "│ test/reward │ -7.224186897277832 │\n",
"└───────────────────────────┴───────────────────────────┘\n",
" \n"
],
@@ -712,7 +702,7 @@
"┏━━━━━━━━━━━━━━━━━━━━━━━━━━━┳━━━━━━━━━━━━━━━━━━━━━━━━━━━┓\n",
"┃\u001b[1m \u001b[0m\u001b[1m Test metric \u001b[0m\u001b[1m \u001b[0m┃\u001b[1m \u001b[0m\u001b[1m DataLoader 0 \u001b[0m\u001b[1m \u001b[0m┃\n",
"┡━━━━━━━━━━━━━━━━━━━━━━━━━━━╇━━━━━━━━━━━━━━━━━━━━━━━━━━━┩\n",
- "│\u001b[36m \u001b[0m\u001b[36m test/reward \u001b[0m\u001b[36m \u001b[0m│\u001b[35m \u001b[0m\u001b[35m -7.2381415367126465 \u001b[0m\u001b[35m \u001b[0m│\n",
+ "│\u001b[36m \u001b[0m\u001b[36m test/reward \u001b[0m\u001b[36m \u001b[0m│\u001b[35m \u001b[0m\u001b[35m -7.224186897277832 \u001b[0m\u001b[35m \u001b[0m│\n",
"└───────────────────────────┴───────────────────────────┘\n"
]
},
@@ -722,16 +712,16 @@
{
"data": {
"text/plain": [
- "[{'test/reward': -7.2381415367126465}]"
+ "[{'test/reward': -7.224186897277832}]"
]
},
- "execution_count": 12,
+ "execution_count": 11,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
- "trainer.test(lit_module)"
+ "trainer.test(model)"
]
},
{
@@ -745,7 +735,7 @@
},
{
"cell_type": "code",
- "execution_count": 13,
+ "execution_count": 12,
"metadata": {},
"outputs": [],
"source": [
@@ -754,7 +744,7 @@
"\n",
"# Generate data (100) and set as test dataset\n",
"new_dataset = env.dataset(50)\n",
- "dataloader = lit_module._dataloader(new_dataset, batch_size=100)"
+ "dataloader = model._dataloader(new_dataset, batch_size=100)"
]
},
{
@@ -766,19 +756,19 @@
},
{
"cell_type": "code",
- "execution_count": 14,
+ "execution_count": 13,
"metadata": {},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
- "Tour lengths: ['14.68', '14.75', '13.97']\n"
+ "Tour lengths: ['11.42', '15.26', '15.04']\n"
]
},
{
"data": {
- "image/png": "iVBORw0KGgoAAAANSUhEUgAAAiMAAAGdCAYAAADAAnMpAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjcuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/bCgiHAAAACXBIWXMAAA9hAAAPYQGoP6dpAAEAAElEQVR4nOzdd3zU9f3A8df3Vi7J5S577zDDCnsLCIqouPf2p23dq7bVaq22VttaR1t3ravuCSooUxDZhA2ZZO99l9vj+/39ceEgJGEGwvg8H4+T5LvuczG5e38/4/2WFEVREARBEARB6COqvm6AIAiCIAhnNhGMCIIgCILQp0QwIgiCIAhCnxLBiCAIgiAIfUoEI4IgCIIg9CkRjAiCIAiC0KdEMCIIgiAIQp8SwYggCIIgCH1K09cNOByyLFNTU0NYWBiSJPV1cwRBEARBOAyKotDe3k5iYiIqVc/9H6dEMFJTU0NKSkpfN0MQBEEQhKNQWVlJcnJyj/tPiWAkLCwM8L8Yo9HYx60RBEEQBOFwWCwWUlJSAp/jPTklgpG9QzNGo1EEI4IgCIJwijnUFAsxgVUQBEEQhD4lghFBEARBEPqUCEYEQRAEQehTIhgRBEEQBKFPiWBEEARBEIQ+JYIRQRAEQRD6lAhGBEEQBEHoUyIYEQRBEAShT4lgRBAEQRCEPnXEwchPP/3E3LlzSUxMRJIk5s2bd8hzVqxYwahRowgKCqJfv368++67R9FUQRAEQRBOR0ccjNhsNkaMGMErr7xyWMeXlpZywQUXMGPGDLZu3coDDzzA7bffzqJFi464sYIgCIIgnH6OuDbNnDlzmDNnzmEf//rrr5ORkcHzzz8PwODBg/n555958cUXmT179pE+vSAIgiAIp5njPmdk7dq1zJo1q9O22bNns3bt2h7PcblcWCyWTg9BEARBEE5Pxz0YqaurIy4urtO2uLg4LBYLDoej23OeffZZTCZT4JGSknK8mykIgiAIQh85KVfTPProo5jN5sCjsrKyr5skCIIgnGZanDYqrC2dHi1OW18364x0xHNGjlR8fDz19fWdttXX12M0GgkODu72nKCgIIKCgo530wRBEIQzVIvTxh82fYtXkTtt10gq/jxmLpH60D5q2ZnpuPeMTJw4kWXLlnXatmTJEiZOnHi8n1oQBEEQupAVhZ9qi7sEIgBeRabc2tIHrTqzHXEwYrVa2bp1K1u3bgX8S3e3bt1KRUUF4B9iuemmmwLH33HHHZSUlPDb3/6W/Px8Xn31VT777DMefPDB3nkFgiAIgnCYZEXm3cK1fF+1q8dj3ilYS4ml6QS2SjjiYGTTpk2MHDmSkSNHAvDQQw8xcuRInnjiCQBqa2sDgQlARkYGCxYsYMmSJYwYMYLnn3+et956SyzrFQRBEE647yt3sb6hLPB9cmg4U+P7MSo6Bb3aP3PBJXt5ZddKrB5nH7XyzCMpiqL0dSMOxWKxYDKZMJvNGI3Gvm6OIAiCcApy+7z8bsPX2L0eJCR+OXgyo6JTA/sdXjev7v6JQnMDAJekj2BOypC+au5p4XA/v0/K1TSCIAiC0Ns2N1di93oAmBCb3ikQAQjW6Lip/wSkju9/ris+wS08c4lgRBAEQTgj1Nn3JdDcG4g0Wr0kPFPOX5a3AhATbCDNEAlAk9OGR/ad+IaegY770l5BEARBONkoKJQ0e8j5VxXtbgWtWgrs23+NjdT1VOE4EMGIIAiCcEZIDDEFvn5zUy2vrXSjKPD25THcOiYMgHq7hYqOpb2xegMalbpP2nqmEcGIIAiCcEbIiUpG9oSyaGsilY3+oZgProrh+pH+QMTqcfFe0brA8VPi+/VJO89EIhgRBEEQTluKorCt1s383Xa+2mVje92wwL5xA0spo5CvSuOxeJxsbqrA5fMCYNTqmRKf1VfNPuOIYEQQBEE4rXh8CitLHf4AZKeNmnYfagl8gUQWCqFBLnKy6qmwEhiW2StUE8S9Q6cTqhVlSU4UEYwIgiAIp5Xxr1azpcaNRgXejtmovk4ZtSRuG68nJjSCSltrYGuQSsP42HRmp2QTrTec0Daf6UQwIgiCIJzyrC6Z7wvtXDE0lMuHhrKlxh0IRA4kSfC7yakkhGVQ57DQ5nKgValICo0gWKM9sQ0XABGMCMJxJysKGxvKA3dgMXoDQyISiA4Wd16C0Fv+trKNp39s45FpJp6ZHYnZKfPcT+Yux6kkmJ6pJ9Ho//hLCDGRsN8qG6FviGBEEI4TRVFYXb+H7yp20OpydNl/WfoIzk3ORpJEJgNBOBYen8IbG/wJzf660kyKScPNIw08v8qMfEDBE1mBm0eF9UErhYMRwYggHCdflW1lcVXeQfZvw+p1c3nGyBPYKkE4/SzIt9No2zcmc/c3zUiAAqglfwCyNyYJUsOlQ0L7opnCQYhgRBCOg9zGik6BSH9jDP1NsQDktdZRam0GYHFVHumGKEbHpHZ7nb11LEXviSD07LX1li6rZRQgPNTF6jvi+eMiD1/tsgH+QCQsqHMllNzGCuaXb6fZaSU2OIzLMnIYFpkU2K8oCt+W72BVXTEOn4csYzTX9RtLXLAo3NpbRDAiCMfBkup9gcg1WWOYkTgg8P3F6SP4saaQT/ZsChy7fzDiU2R+bqrjy6pSPqvcQ054FD+cdcGJa7wgnIRanDasXlenbQZNEBaHjiVFDjqPxvj7RRwuHS9tW8/bV8zC7pZZWOjghpGdh2j2WBp5K381l2SMYHhkEhsaynht9yoeG3keSaHhACyqymN5TQG3DJxItD6Ub8q286+dP/Lk6AvRigytvUIEI4LQy+rsFkrb/T0fyaHhTE/oD4BXltGo/Hdk0xP683NdMVW2Nkrbm6mwtpBntfFFVQlfVpXS6nGhkSS8itJlzFsQzjQtTht/2PQtXqXz8hiNpCLYMgOVdODSXQAJr0/iw1Xp3DSomS9viGPZHifnDwzudNSy6gKGRCYwOzkb8N8s5LXVsaKmkOv7j0NRFJZV53N+6lByopIBuHXgRB5e9xVbmyoZG5t+nF71mUUEI4LQy5pd1sDXQyMTA0MswxZ/Tr3TzlnRCYyJjKVN1rKx3YnZK/PB4q+w+3yBAATAqyhoJRWDjeF98TIOqac71Ui9GI8Xeo/Z7eCdwrVdAhEAt0/mw01WfErPw5h2VxBLC2BKkooLBoV02V/S3sSspEGdtmVHJLCtuQrwV+61eJwMDo8P7A/W6MgIi6akvUkEI71EBCOC0MvU0r7xaIfXE/h6ekwC/ysvYn5tOQvqKgJBx/4O3OZVZAaGhR+3th6tg92p/nnMXBGQCL2izWXn79uW0Oyydbu/tC4Cs6P7QCQ7VktCVDPpsVYemza5x+ewuJ0YtfpO24xaPWa307/f418JZ9QdcIxu3zHCsRPBiCD0sqSQcNSSCp8ik9tYweUZIwlSa3ht9Fm8kDOJp3bl8reCrQDoJXAeZBhGAR7ctoa/5m8lI9TAUFMkE6PimBWXTLy+613eiWL1urq9U/UqMlavi0hEMCIcu/cK1wUCkVCNjlHRqaQYIjC7HKytq+S/2/cVstOq4LoRoZw7IJSZWXqW1m1mV2stvxlxDlq1mAB+shPBiCD0sjCdnlHRKWxsLMfqdfFW/mpuHjAeg1ZPsFrD44NzUHvaeLW8gjafjAoI1WixeT10lzAyWR9Kk9vFz011/NRUx6t7dgOgQsKo1ZKoD2VAmImR4dGcFZPApOhYdKrj96ftkX2sqS/pcb/D6z5uzy2cOWpsbexuqwMgXBfMozmzCQ/yB+CNVh9PfxeBT/b/riVGtvGfq4M4PzUTgI+LN7KjpYaHR8wiIujgQbtRp8fi6dzDYfE4MXX0hBi1/jkmFrcTk27ffBOL20mKIfzYX6gAiGBEEI6L81OGsK25CrfsY3tLNY9smM+g8DgA8tvq8cg+rooJpcrlY53NR4vbhVaSkBUlkB8BQK9SU3z+tYF5J+U2C8saaljf0sBOcwvldit7bBZ2t7cyr6Ys8PxBKhVROj1poQaGGCMZHxnLzNgkMgzHthTR5fPy8q4VFJobejzmvcL1/GbEOYf8EBCEg9nQWB74+tzkwYFAJL/RzYXv1FDWJgMS/RIbOTtnDxsaTcxJyeaTPZvY2lzFQ8NnHlZ9mcywaPLb6jrNG8lrrSMzLBqAaH0oRq2e/LY6UgwRgH/4tbS9iWkJ/bq9pnDkRDAiCMdBYmg4d2VP47W8n3D5vHhkHztaajodE6TW8NzoGWRHJPDX/C08tSsXj+IDQAXIQD+DsVOOkbRQI/+XYeT/MjpPuPPIPtY1N/BTYy25bY0UtpupcdjZ0NzI2uYG3irNB/wLHsM0WuL1IfQPMzEyPIop0QlMjY4n5DBqcnxQtL5TIJIRFk1SiIlml42CtnpkFJpdNl7ZtZLfj5yNSlId5GqC0LNWlz3w9eDweIqbPLzwcxuvrW9H1ZHI7I7xYUQn7aTB6T/+4z2b2NBQxl3ZZ6FXazG7/fM9gtVadGr/x907BWsI14VwaUYOADOTBvKP7UtZUpXHsMhENjaWU25t4Yb+4wB/jp+ZSYNYWLmT2OAwovUG5pdvJzwomJzolBP7QzmNSYrSzSy6k4zFYsFkMmE2mzEaRZIZ4dTR5LSyvKaAtfUl2Dsms4ZotEyMzeTspIGd7tzcspdfbVrF++WFgeGauQmpfDNlzjG1od5pZ1l9NWub69lhbqHU3k6jy4HD5+t0nE6lIlIXREqwgWxjBOMiY5gRm8RAgwmVSkWjo53HN30LgF6t4b6hM8gyxgTOb3RYeWnnMpqc/jH+u7LPYkTHUkhBOFIfFG1gWVUJmwqTqaxLxOyEcL2Eza3gkeE3U008e14ED6//ErvXQ5hWT7un+wmlNw+YwKQ4/xDO89uXEhUUyi0DJwb2+5OebaPZaTtk0jO7100/UwzXZY0lLkR8Hh3K4X5+i2BEEE4Anyxj7piVb9IGo1b13GNQ57Rz1dolrGqqQwKuTM7knbHTD6vn4kjIskxuWxMrG2vZ1NpIQXsbVXYbbR5Xp1U9EhCq1mDQqFErXqI0Ki5OzuL3Qyaj13TuXN3WXMWru38CYHhkEncPmdarbRbODEuK7Ny/oI68egWQ0Gtl7hwXzru5VlqdMn+eFcHjMyPY0FDGfwvWAJATlcyd2Wf1bcOFLkQwIginuE0tjVy7finFVgs6lYrfDczhyezRqA4SyPSWVreTHxtqWdNcx7a2ZkpsFqrsVtwHBCnpoWG0ezw8MiiHhwYMR0HhgTVf4JK9xOgNPD32ouPeVuH0YHHKPL64hf9tsdLmlJGAaJONUf0riDI4+Hr1SBweiZcujOTeSSZ2tFTzbuHaQI/jA0PPZnBE/MGfRDjhRDAiCKeJTyuLuTN3Fa0eNxFaHa+Omso1qSd+4txru39ic2MFbT6FcQlDCNHq2G5u4cuqEprdLsZFxvKnIWP4bs8a3LJPBCPCYVlUaOPxxa3kVrtRAJNe4roRBp45N4Lt5jJe2bqNr34ejldWMXNEGbMHy7S67J1yjwyNSOCeIdNFDaeTkAhGBOE0IssyT+Xl8tf8rbhlmaxQI59MmMWYyJhDn9xLvi7byg+V/mXFl6bncF5KdmDf8oZqHtuxgXUtDagBk0YiNTiUAaZYNCoVaklCI+37N0it4sH+w0kLFaXc+8qBGXRPZPZci1PmsUUtfLB1Xy/IyEQdfzonggsG7WvD9loXY16pwuODmTlFZCW2dLnW4PB47hg8FX0vD2MKvUMEI4JwHBWaG1hctZsKaytmt4M7B0895Mz6grZ6Pi/ZTK3dTERQCOenDg1Mqtvrx5pCllTlYXY7SDZEcE3WaDI6lhgC2L0e/m/jSj6r2oMCTI2O57OJ55yQBGgNjnb+sN8E1geGnk2GcV/bGh3t3LLmWxa2tAe2SYCq42517z2rrICMwsIpc5iT0H21YuH46i6D7onInvt9gY0/LGll8369INfnhPGXc8IJD+k8/2hthZNpb9TgU+DtK0ORQsvY1FSOy+dFQmKAKZZpCf0ZGZ0sVm2dxA7381ss7RWEo+D2eUkOjWByXBav56065PFNTisv71rBWQn9uW3QJPLb6vhf4XpMOj1DIhIB2NhYzhclm7mu31gywqJZVpPPv3b+yFOj5wZSUYdotHwycRZ/t4/n6rVLWdVUR9K3/+PGtAG8OWbqcU12FhscxtiYNDY2luP0efnbtsUMiUgkPSyKeoeFLU2VJOvgbGMQyy3+O24F8B1wv6MChhgjmB0vlkX2le4y6B6v7Lltdi+PLWnjw63tmJ3+PDqjknT8eVYEcwZ1/1zLiuzMfqcOSYJltycwPTMYiOPG/uPwyD40KnUgyBVODyIYEYSjMDQykaGRiYd9/MraIqL1Bq7MHAVAQoiJYnMjS6sLAsHI0up8psRnMTk+C4Dr+41jZ0sNa+r3cF7KkE7XSw0JY+3MS1ndVMf165fxXnkhn1bu4Y9DRvPIoJG99Cq7uqH/ONpcDoosDSjAztYadrZ2zp8yMTKSpPAQPqzY021GWRl4dtg48WFymluY7+8F2VLj7wUJ16u4Z0IYT58bgSlY3eN53+y2cekH9WhU8POvEhmbsq8mjCRJgXwhwulF9G0JwglQYmliUHjnmf7ZEQmUWJoA8Mo+KtpbOlUGVUkSg8LjA8d0Z3J0PGUXXM/bY6ahVal4dMcGYua/x/zq0uPyOvRqLfcPm8Gl6SO6ZFgN0eiYlTSIR3Jm8/roaWQZTKi7CTiCVCrCNbrj0j7h+NhS4+JXXzfi9HQXXu7TZvdy17xGwp8q5YL36tlS42Z0ko6Ft8TR+sd0/n1x9EEDkQ+3tHPJ/+rRqSVy707qFIgIpzcRYgrCCWDxOLut+un0eXD7vNi9bmQUwro5ps5hOeT1b80YxM1pA/jdjvW8VLSDS9YsZnBYOJ9NnMVQU1SvvhatSs15KUM4J3kwFe0tWL0u9GotaYbITnetX046h9FLvsJH52Ealyxz1spvGWqM4L1xMxgVceIm4QpHrqTFw6y3amlxyEzPCObanK4p1r/Ls/HHpZ17Qe6dGMbT50Zi1Hd/z/t95S62NFVS57CgU6mxmBN4a2UcIVoV2+5PIiuq+4DVn6BsO81O6yETlDl8HrKM0VzXbyxxwWK+4clM9IwIwmlCpVLx3IiJtF5yCxcnppPf3sawxV9w7srvaDkOpc7VkooMYzTDIpPob4rt0n0+zBTFSzmT9jteYkpUPHUX3sB58cnssrQyeulXjFn6JXmW1l5vn3DsGq0+Zr1Vi9klo5LgtfX7AuMWu5c75zVierKUue/7e0HGJOv44VZ/L8i/LoruMRAB/yTw6YkDeGTEuRgcE3j7p1hiTVZ2PJDQYyCyx9LIW/mrmRyfyeOj5pATlcxru1dRbWsLHLOoKo/lNQVc338cj+ScS5BKw792/ohH9nV7TeHkIIIRQTgBjFo9lgMCAovbib6jZoZBG4QKifZujjFpj6yr2qDRMW/ybIrmXMOo8CiWNFQT+8373JH7E1754N3sve3OrGwuSkhDwj+R9dnh44gLDuX7qRdQdsF1TItOILe1iexFnzFl+TzKbYfuBRKOXbPT1u12eb/Jxja3zHnv1FJh9uKT/augVpU5eXWtmZH/qiL6zxW8vr4dtUrivklG2v6Yzoa7k5k94PAmwN4/dAaT4jJ5c63MU4tdhAeruGB8Hh51z78Dy6oLGBKZwOzkbBJCTFycPoJUQwQragoBf6/Isup8zk8dSk5UMsmhEdw6cCJtLgdbmyqP4CcknGgiGBGEEyDT6K8Mur+8tjoyO5bGalRqUsMiyWurD+yXFYX8/Y45UlkGE7nnXMHSsy4gLiiYN0ryMM17h38WbT/6F3KEJEninXHTideHMDsumSnRCYF9qSFhrJhxEQXnXcW4yBhWN9eTsfBjzln5HXVO+0GuKhwtr+zj/cL1Pa4Ae6dgLY2Odrw+has+rGdrrRvfAfHr3d80s63WzdhkHYtujaPliXT+OffgvSA9eWhBE08tayMhTM36u6PQqGVCDzKfqKS9h7lX7f55VU1OGxaPs9Pcq2CNjoyw6MAxwslJBCOCcBScPg+V1lYqrf7hhSaXjUprKy0dd5xfl27lnY6aGQDTEvrT5LTyZekW6uxmVtQUkttYwaykgYFjZiUN4ue6YtbWl1BrN/NR8UbcsrdLLpIjNTMumeq5N/JyzmQk4IGta0n89n8sqjv4neIPlbv41aqP+HRP7kGPy22s4IlN33H3z5/wVO4CdrRUd9ofoQ3i+cFDGKx1cs/qT3lxxzLq95sHMyAsgvUzL2PrrMsZZopkaUM1id/+j4tX/3BchpfOVLKi8N/8Nayu39PjMXUOC89tW8r/fVXL94UO5G6yUOnUUP9YGuvvTubcw+wF6c4vv2rkxZ8tpIVrKPx1Mt/XbCHLGENSaHiP51jcTowH9BQatXrMHb8nlo76T93NzzKL36WTmpjAKghHoby9hRd2LAt8/3nJZgAmxmZwy8CJmN0OWvYrgR6tN3DPkOl8XrKZ5dUFhAeFcOOA8YFlvQBjY9Kwepx8U74di9tJsiGC+4bMwKgL7pU2391/KL/KyuaBrat5vSSP81YtZIQpis8nzqJ/WHinY8vam/mptpjkg3wwwL4x/EsyRjA8MokNDWW8tnsVj408L/Chsqgqj/UNe7hl4ESi9aF8U7adf+38kSdHX4hWtW9lxYiIaLadeyVrm+u4deMKvqkpJ2b++1yVksl/xpyF4RhX4PRlxtGTweamCjY3+wNQrUrNBR1J94LVWna21jCvbBv1jnYWb49iW2nPH9xuHyzb4+CaEV0nsh6uaz6q59MdNgZGa9l+fxKfl26ixmbmNyPOOeprCqc2EYwIwlEYGB7HG1Ov63H//uXJ9z/n8VFzDnrdGYkDmZE48KDHHAuNSsXLo6byp6FjuW7dMhbVVzHgh0+5MCGVD8fNxKjT4fR5+G/BGm7sP56FlTsPer39x/ABLk4fQV5bHStqCrm+/7guY/gAtw6cyMPrvmJrUyVjY9O7XHNiVDz5513Dsvoqbt/0E59U7uGLqhJuTh/AyzlTulQKPhx9lXH0ZLKipijw9a0DJjI6Zl/221HRqXgcEVz6cQm1rQdP0a+S4NV1lqMORi58t5YFBQ5yEnTk3pPIpyW57Gip4eERs7osFz+QUafH4jlgXpXHiamjJ8So9QfuFrcT035BvMXtJMUQflTtFU4MMUwjCGegSJ2eH866gJ3nXskQYwTf1VYQ9c27PLR1DR8VbWBYROJhVUA9nmP4M+OSKb3gOuZNOpe4oGD+W1qAcd473Lfl5yOeiHuwjKNnAofXTZGlAYC44DBGRafgU2QWlzdwy+KdTHqtmgmvNmK2hqLXuYk2WsmMUog3qNEekBZk70TWVseRrU6RZZlpb1SzoMDBlLQgNt2dwKcluWxtruLB4WcTrT90cJMZ1s3cq9Y6MjtKJkTrQzFq9Z2OcXg9lLY3BY4RTk6iZ0QQzmBDTJHsnH0V39WUc9umFbxYtIMYrZo/DZ1wWOefiDH8i5MyuDgpgw/LC3lw21r+XbyL/5Tk8+CA4Tw9ZAwqlbinOpAsy5TbrWxsbWSnuYUd5mZWN9tw+BS82Ph7+X/xyD5/hlxFYob2fD6/LpakmCbeLdoAwBUZIzknOQtFUbC6FRptPhqsPhptPiTAFHT4P3dZlhn3ag251W5m9w/mh/9L4KPijWxoKOOu7LPQq7WY3f7fleCOFWYA7xSsIVwXwqUZOQDMTBrIP7YvZUlVHsMiE9nYWE65tYUb+o8D/BOmZyYNYmHlTmKDw4jWG5hfvp3woOBD1o4S+pYIRgRB4MLENPJmX8Ftq+ezuNXOnVtW80z+Vq6MNZEcGtHXzQPg+rQBXJ82gNf37ObRHet5Nn8L/yrawWODR/K7gTlnVFDS5naS29rE1rZm8tpbKbW2U+2w0eR20u714O6m50gCtBKEqFSMioyj3GZjT3s7F4SM5rur/ENo88r2TW4N7pijI0kSYUESYUEqMiOPvDKu1ysz4t/V7G7wcMXQED6/3t9LtrLWP2z0/H5zrwBuHjAhMGm7xWVHYl8W3yxjDLcPnMz88m3MK9tGbHAYd2ZP7TTpdXbyYNw+Lx8UbcDuddPPFMN9Q2Z0mp8knHxEMCIIAgAV7S3EauGGmBAKHB42Wu28VG5jaFMji6oKeOusa7pUR+2LMfw7srK5Iyub5wu28eSuTfx+50b+mr+Vvwwdxz39h3Y53ifL5LXWdXOlznk1DlTvtPPwtnUMNobz+8GjjqqtR8Mry+wwN7O5tYldllaKrRYqHVYanA7aPG4cPi8HtloCgtUawrU6UowGUoIN9DMYGWKMYFRENENNkby4Yzl7LI34ZJlin5eSylCCWwbz8a+HAWDzuPi5rhgAFRJDIhI4Vk63zJCXqihp9XLr6DDevmJftt2Dzbna69fDZ3XZNjomtdN8lwNJksRF6cO5KH340TVa6BMiGBEEAYBB4fE8Mer8wPfNLie/2LCETe12dto8tK9dxnvjphOi2Xd3vHcMf1bSoMC2nsbwUwz+Hpa9Y/jTEvodU3t/PXAED/Yfxp/ycvl7wTbu3bqaJ3dv4vkRE7k53T8JuN5u4ZXdK6l3tHd7jY+KN3Lf0OkY9htqUhSFDyuKuGfzasxeN8NMkb0ajFTarWxsaWSHuZnCdjNl9nZqHXZaPC5sXg/ebgIknUpFmEZLSnAoScGhZBiMDA4LJyc8itER0YTrDp0YLys8kU+qK9lq86AoNiifxaQsPSE62NZcxbyybbR7/HNocqKSDzmZ9FCsTpmBL1ZSY/Fx3yQj/5wr5mwIPZMU5SC3BicJi8WCyWTCbDZjNIr6AoJwojy/fSmSKog3KqsptJoxqFRclpDAOxPOR6VSscfSyD+2L+Wy9JzAGP73lbs7Le39oXI3i6p2ccuAiYEx/Gpba5elvcfCK8s8smM9/y7eiVuWidcH8+yQseQ15tPWMRcBQKdSIytKp8msKaER/GbEOQSpNVTZrdy+aSWL6qsC+8O1OlovufWw2mH1ujuGT5rIs7Sxx2rxD5+4nFi8HlzdpCRXSxKhag0RuiDi9SGkhRgYGGZiqCmKMRHRpIeEHfUQVKPLwaeVe3i3rIDc1n0ThlWOUOS8iVw7fQthIe5O5xi1en6Xc+5hTSjtSYvdy6Dnq2i0yzw+I5w/nxt51NcSTm2H+/ktghFBEHr0/PalJIdGcHXWaD6r3MP9m1dQ5/YSrtXx8sjJXJ82oKNw2TaanbZDFi7bO4Z/XdZY4kJ6/2/ZLXu5b8sa/luaj1dRMKgkphj1TIiM4qrM0QwKj0NWFLY0V/JZyebApMlL00ZQ4ZV4aOtanLIP3wFvi/bLbiNIUrG7vY3NrU3sNDdT1DF8Uud00OZ24fD5kA8YQJEAvVqNSasjJiiYlOBQ+hlMZBsjGBkexYjwKILUvdtBbfN6+KamnPfLClhcX43S0aZOLSsZRhwhXDxpd6dz44ON3Jl9FvHH8P+mxuJlyItVtDll/nZeBL+ddnLMORL6hghGBEHodbIs8+e8zTyTvwW3LJMZGsbH42cxLiq2r5vWSaPDxpRln1Lk8KAA/Q1Gfph6AZmGfe8fldZWnt7yPRavzOp2N5UuT4/X0yDRdaYGaCX/8ElUUBCJ+lAyDGEMDAtnhCmKMRExxOh7J2Hd4Sq1WRi++HOsXi9qpC4VkwEkRULZNp3nL7Pi1TThlWWi9KFMjM1kaGRCl3lBR/T8LW6G/7Maq1vhlYuiuGui6RhejXA6EMGIIAjHjdPr5bZNK/m4shgFmBwVx2cTziEx5ORIILa1qZLX8lbhlGXyXFq2tVuQZYWLk9KZEZuI1eulwt7O15VF1Lp7DkL2GmAwMswURX+DiaGmCMZExNDfYDrpVvDYvB6m/DifHW0t3QYiKkA2RzHGOYGN9yT36nPvrncz+uVqXF6Fd6+M4aZRB0+eJpwZRDAiCMJxV2W3ctW6JaxtbkAFXJfaj7fGTOv1oYcjtba+hHcL1wFwTdZoxsVm8nLxLh7fuQGvohCu1ZEaYsDmdlDmcODDP6TS05vh22OmcWvGoB72nlzMHhdzVn3PhpaGLsNNKEDFYLZdP57hCUG99pybqpxMfr0GrwxfXBfHpUNPjqBU6HuH+/ktVtMIgnDUkkMMrDn7UtY213HduuV8UFHM51Wl/CF7JI8NHt1n7TJo933QlrU3MyNxIL8blMNFiWmokRhgDAfgmS0/UG5tweKVSY/K4rOqUkps7WgkKbCqRSNJVNitffEyjopJG8SSsy4ga+HH1LscnXdKMCgooVcDkVWlDs5+qxZFgR9ujeec/se2Ckc4M4lgRBCEYzYxKp7SC67jvbIC7tuymsd3buLFwh28OfosLks+tqrDBxa4g0MXuRtoiiNEo8Xu9bCpsYLzUoaQEGJisHHfZModLdWUW1sAGGKK4rFhE3hm2AQ2tjbyflkhH1YU0eZx41UUKh22Y3oNJ4rT62F++Xb+W5pPvcuBQa3C5uuYVqsA9jDevbhzJtKCtno+L9lMrd1MRFAI53cU0NvfjzWFLKnKw+x2kGyI4Jqs0WSERfN9gY2579UjSbDylwlMTj+xc2SE04cYphEEoVfJsszvd27khcLteBSZgWEmPptwDsPDo3o8p95pJ07f9Y66uwJ3cHhF7r4o2cyS6nzAH7ycnzqEkVEpeBQf6xvKWFyVh6djqe2N/cczJT6r0/ke2ccPdZV8VFHMnPhUbkofcNg/g77yZt7PfFtbyXfNFvqHhvHMwME8unsLe5weFAVizANo+MWMwPFNTitP5S7grIT+TInPIr+tjs/2bOaeodMCFaU3NpbzbsFarus3loywaJbV5LO5qYLR+rO56XMzOhWsuyuJnMTe620RTh9imEYQhD6hUqn46/DxPJ49kps2/Mi86jJGLPmCs2MT+XT8LKIPWGGytL6Kc39awOujp/LLzOxO+7orcAf7itxF0nMwcmHqMPLb6qm0tWL1uvisZDOflWzuctyIyCQmxWV02a5VqZmbmM7cxPTDfOV9y+3zMq+6hO9bHaSFGNh53lXoVBryzLW8VuCkVt3IPyYP7nTOytoiovUGrsz0J3VLCDFRbG5kaXVBIBhZWp3PlPgsJncEa9f3G8fCohZuWd2KXqNmy71JDIzRndgXK5x2Tq6p4IIgnDYMGh1fTZrNnjnXMjoimuUNNcR/9z9+uWlloOquT5G5b8tqFOD+LWsosVp67fn1Gi0PDpvJsMjEbvdLSEyN78cvB085puWsJ4sXi7azuNVBYpCe3bP9gQiAStHQmp9NauV0bsruXGG5xNJD1WWLP0GaV/ZR0d7SqeryK2stfL66P+GhLvIeTBaBiNArRM+IIAjHVYbByKZZl/NjQzU3bfiR/5Tm80FFEX8ZOhajNoi89jYAPIrMjRuWs2rGxagk6eAXPUyhWh33DJlOja2NNfUlNDjakSSJ5NBwJsdnERl0eqz6eGPPbh7ZsZFEnYZ7UhJw+zzo1Wo2NJazKF+F063ltQviu5xn8Ti7rajs9Hlw+7zYvW5kFMI6jnn2x1Z+v7iVWKObX82sIi1iyAl5fcLpTwQjgiCcEDNik6i88AZeK97Fb7av46Ft69g/5PApCmua6/ln0Q4eHNC7Rc4SQ8O5IvPEFbs7kT4sL+SOzaswaXQsn34h35Zt43cb5qFCIjEkgk2FGWTEmTl/UNahL3YQj/7QzF9XmokNVfGPS51UOQ99jiAcLhGMCIJwQt3Zbwi/yhzMxOXz2NDa2GX/77av57z4FAYbI6iz9zxscwrMvT/uvq4q5cYNPxKq1rB79lUkhoQycMQsXD4vTp+Hh7+14nC3c+Gw7lcDGbV6LO4Dqi67nejVWnRqDSpJQoXEn5aaeX+jimSjmrwHU/i8vBaT9tDF+QThcJ36A6WCIJxyal0Otpmbu90no3D9+mV8XbqN/xas6fEaP1Tuxid3ndx6plhcV8kVaxcTpFKz49wrO2W/DVJrCFYF8f6WdlJjW7kiO6Hba2Qa/VWX95fXVkem0V9hV6NSs6cylfc3SmRFaij6dQohQRL5+x0jCL1B9IwIgnDCPbZjQyCp2IF8isKWtmb+kmdhdJj/7lsrqYnWh9LqtuP0eQHY3FzJe4XrUIBdrTW4ZR8xegM3D5hAeljPy4iPJa/GyeLnpjrO//l7NCoVm2ZdRkZHzZ1drTUoCsSHGPndDw24fTBzsIXJcSMB+Lp0K21uO7cOnATAtIT+rKgp5MvSLUyOyyS/rZ7cxgruGToNgMs+qGPJrgSyU+t5/ZJYWr3tLCsvwC17u/zMBOFYHFUw8sorr/Dcc89RV1fHiBEj+Pe//824ceN6PP6ll17itddeo6KigujoaK644gqeffZZ9HrRzSf0naNJpiUcu3qnnffLCwF/oTnw94bIitIpHXuuzYNWknh8yBhmJg1Cr9bilX2sqS/l0z2b8Coy6xvLyIlM4t6h0wnT6mlwtBOq6Xl1R5PTysu7VnBWQn9uGzSJ/LY6/le4HpNO3ymvxhclmzvl1fjXzh95avTcLpM9+8Lm1kZmrPgGCVg94xKGmCID+xxeD1+XbaPVaeerXcOID4dXZk1G3VFDx+x20OKyB46P1hu4Z8h0Pi/ZzPLqAsKDQrhxwHiGRCRy7n9rWFLsZGyyjmfnRrKwcgeWPU6SDRHcN2QGRp1IcCb0niMORj799FMeeughXn/9dcaPH89LL73E7NmzKSgoIDa2a+XOjz76iEceeYS3336bSZMmUVhYyC233IIkSbzwwgu98iIE4UgdSzIt4cgcGPR5ZJmXRkzA7PVi9Xqwdfzb7nGzvrWR6v2yna6zunm3uo5BkalkGUxoVGrOSuiHw+fmq9KtAIQHhQR6LaL1hoO25WjzauxsqWFN/R7OS+nb1SN5llYmLp+HAqyYNpcxkTGd9o+JSWNMTBqP/tBMm9XMKxdFEbxfcHbLwIldrjkwPI7HR80JfC/LMpNeq2ZthYsZmXqW3haPSqViZvLA4/a6BOGIg5EXXniBX/ziF9x6660AvP766yxYsIC3336bRx55pMvxa9asYfLkyVx33XUApKenc+2117J+/fpjbLogHL1jSaYlHL6Ctnpe2rEc+YASdGpJxdP7BX0+Reb2TSsDgYgEJOjU/HrgaF4o3sWg7z9lakwCb42ZRqbByNT4foFgZH1DGblNFYTrQpiW0J+pCf16bE9PeTX2JkPbm1djTvK+5GsqSWJQeHwg90ZfKbVaGLXkS7yyzMKp5zMlpvt5ILIs8681Fkx6ibsmmo7oObxemTGv1LCtzs2Fg4L59ubun0MQetsRTWB1u93k5uYya9asfRdQqZg1axZr167t9pxJkyaRm5vLhg0bACgpKWHhwoWcf/75PT6Py+XCYrF0egiCcGpZVLmbF3Ys6xKIgD/4+LZ8B7Ki4JVlbli/nPfKCgP7FaDG7ePb2kqMGi1eFH5srOGr6hIAQva725eA+4bO4KyE/nxaksva+pIe23SovBpWj6tTXo39jzF7+m4ta43dxrDFn+OSfXwx8Vxmx6f0eOxffjRj9yg8NiOix2O64/bKDPlnNdvq3Fw3IlQEIsIJdUQ9I01NTfh8PuLi4jptj4uLIz8/v9tzrrvuOpqampgyZQqKouD1ernjjjv4/e9/3+PzPPvsszz11FNH0jRBEE4iy6sL+Kpsa+B7NRKmoBAsbkegR2pNQwk6tZbPG5qYV13WTcgCK5pqGWGK4PWRk5mdkEp6qH+iZkVHgTuApNAIUg2RpBoiqbG3sbK2iImn0eTKJqeD7EWfYfN5+d+4GVya3DV1/V6yLPPcqjYMOolfTzn8Ol52t8zgFyupaPPxq3FhvH5pzKFPEoRedNyX9q5YsYJnnnmGV199lc2bN/PVV1+xYMEC/vznP/d4zqOPPorZbA48Kisrj3czhTOIR/axrr60x/1Or+cEtub0Y/e6+Xq/QOTc5ME8N+Eynh13Mc9PvJzLMnJo8cgsabXz8M5cvu4hEAFI1akZH+xle91OjGo1AD5Z5uuybYFjxsWmBb5OCDbRut8EzQMdKq+GQRuECon2bo7pi7waFrebQYs+xex18/qoqdyQdvBifS+tttDuUvj1VBMq1eG9vbfZvWQ+5w9EHp5qFIGI0CeOqGckOjoatVpNfX19p+319fXEx3dNNQzwhz/8gRtvvJHbb78dgGHDhmGz2fjlL3/JY4891u0fTFBQEEFBogKk0PtcPi8v71pBobmhx2P+V7SBh0fMwtTDagFFUTB7zYRrw49TK09t6+pLcXdUw50cl8nlGSMD+/RqLWNjMrlu0zpaPL5DXqva7etYAixT0FYPEiyrLqDS1gqAColxsemB4+sdloOmeM80RrOzpabTtgPzaqSGRZLXVk9OtH8oRFYU8tvqmJF4Yqv22r0eBi36lGa3i+eGT+BXWdmHPOfpH9sI1ko8cXb4YT1Ho9XLoBeqaHHIPDUrgidmHtnQjiD0liPqGdHpdIwePZply5YFtsmyzLJly5g4sessbQC73d4l4FB33OGIDIrCifa/ovWdApF0QyQT4zIYYIoNpCZvcLbz2u6fkA/4/XT4HLxV/RbZ67KJXRVLi6cFoasC876blRmJ/hUYFreL/9u4grk/f0/sN+/R4um+90lzQE0aH1Dt8gct7xat493CdYFARN3xf2x5dSENjnY2NJSxqq6Y6Yn9A+d/XbqVd/ZLnDYtoT9NTitflm6hzm5mRU0huY0VzErat1JkVtIgfq4rZm19CbV2Mx8VbzzheTXcspfsRZ9R67Tzx+xRPDxwxCHPeWO9hVaHzD0TjIfVK1Jp9tLvH5W0OGRevCBSBCJCnzri1TQPPfQQN998M2PGjGHcuHG89NJL2Gy2wOqam266iaSkJJ599lkA5s6dywsvvMDIkSMZP348xcXF/OEPf2Du3LmBoEQQToR6h4WNjeUA6NUa7h0yg36mfV3SdXYLL+1cTqvLTml7M/ltdWRHJFDtrObV6ld5peoVzF5z4Hi5m9U4gr+U/V57eynWNDfwTlkBQSoV+/eHSED/4CA+mXwhee2trGuq5buqQlq8MhafP+9Is9dH2gFvVUkh4VzXb2xgSGhBxQ6i9QauyhzN+Nh9cyqOJK/GXmNj0rB6nHxTvh2L+8Tn1fDKMsMWfUG53cpDA4bz5JCxh3XeHxa3EKSGZ849dFBR3ORmxL+qsXsU/nNpNLePO/z5JYJwPBxxMHL11VfT2NjIE088QV1dHTk5Ofzwww+BSa0VFRWdovLHH38cSZJ4/PHHqa6uJiYmhrlz5/KXv/yl916FIByG1XX7VlnMSRnaKRABf9bKqUlxPFX0Ev1Vk3m//BvKq1bwecPnAPjoPKwQpgk7/o0+Be2/WqXY0sCIqGTOS0hhydQLuHD1952OVYBCh4t2r5vrUvszJTIKl60K8A+PWH0KBrW/B2R0dCqxwWEMiUignzEGqaMXZXhUUo9tOZy8Gt2ZkTgw0KtzIsmyzJilX1FoNfOrzME8P6L7HucDfbClnUa7zN0TjGg0B+8V2VHrYuyr1bi98PE1MVwzQvweC31PUk6BsRKLxYLJZMJsNmM0igheODov71rBjo75As+MvZgofShbLFuYs20OwwzDqHBUUOQoQkFBjQ4fbiQklG6mV2okDZ6zxUTX7mxvruaV3SsBSDNE8vDwWejUGn67bR3PF27jwP4kFTDUFMmWc64gv62Of+78sdvrPjbyPFINkd3uOx0oisLkH+extrmB61L68eGEmYd9buIz5TTZfFifSkd3kGBkfYWTqW/U4FNg/o1xXDhY5NMRjq/D/fwWtWmEM5Ik+d/8d9l20eBuYGnL0k77fbgBug1EALyKF2mZhBo1GkmDRqUhSApCr9ITog4hRB1CmDqMMHUY4ZpwwjXhRGojidJGEauLJUYXQ4IugfigeKI10Ye98uFUMDQygRi9gUanlXJrC3/duph4Yzz/KNzW7U9TBrabW3hi+2paLD2vnFtdt4eUrIhAj8jp5pyfFrC2uYGLE9OOKBD5cqeN2nYft44OO2ggsqzYwey3a0GCpbclMCNLpHMXTh6iZ0Q4Y3xRspkl1fnIikx8TBPfWd5jq3Vrt70fA6RpVJKLU7GjdLmXh2BVMGdHnI3Fa8Hqs2L1WXHIDhyyA7fsxi278SpeZOQeA5oD7Q1stCotOklHsCqYYHUwoepQDGoDRo0Rk9pEhDaCSE0k0bpoYrQxxOpiA4FNpCbypAhsytqbeWHHMlwd80e+arLR5D34HButBDfEGNCq/MFGiEaL/YBl1uenDOHi9ENP5jzVXLJ6EfNrypgZm8TSaRce0blpfy2n2uLD8mQ6Ibru/99/s9vGpR/Uo1bBql8mMj6172vsCGcG0TMiCAeYHJ/Fkup8CuWfeKvmP0gdqzG6CxbS1COZJN3AFt98tsvfdxy178M0IziD73K+O6znlWWZNm8bte5a6lx1NHgaaHA30OxtptndTJu3jTZvG+3edtp97dh8NuyyHafsxOw245E9RxTYSEioUAUCmyApCL1aT4gqpHNgozERoYkgUhtJtDaaGF0Mcdo44oLiSNQlEq4JP+rAJj0sioeHz+K9wnVU2doYHqqj2u3D4pWx+GTsctdX4lFgXrONvw8ZxiVpw4jWG7B6nCyvLmRh5U4UYGHlLhZV5RF5ilbb7c4N65cxv6aMCZGxLJ7ac2bq7nxfYKPC7OPaEaE9BiIfb23n+k8bCdJIbLwrkaEJIm2CcPIRwYhwxkgIMZETlYyzaQxF8s/UKnk9HqtGi04KYbzmWgYrM1nn/YgyZSNq1PjwYVQffg+dSqUiUhdJpC6SIYZjK7QmyzKt3lZqXbXUueuod9fT6Gmk2dNMi6eFFk8LZp85ENjYfXbsPjtOnxOz99gCG51Kh07V0WOjCsagNnQKbCK1kURoI4jRxBCtiyZOF8el/VNxuftR1GrG4fMSrNHi8LrZ1lzNeWk5uBQVC6uL2NBUwx6nl1afwisV1YyLG0C03oBBq+ei9OFYvS5W1hYBMC4mjbSwyFOu2m537sz9iQ8rihluimT1jIuPOPi795tmVBK8elFUt/v/s8HCL79uIlQrse3+JLKieq5oLAh9SQQjwhnllgETMbsd6CyPst73CTvkhd0ep0Eb+NooxXKu9gHOyTLxdOVjbLNuI0LTNzkZVCoVUbooonRRDGXoMV1LlmWavc2BwKbB3dFj0xHYBHpsfJ0DG7vPTqu3FY/swaf4uqwy6snewMYgRaORtHy4x4lepcfjlQgLTiU5OIjQEIVKSzI5K78nO9zFm8MeZlJkTqAXC6DS1sotAyeeUtV2u/ObbWt5vSSP/gYTubMuP+JA5KcSB3tavFySHUJ4SNe38hdWtfHrhS0YgyR2PZhCskm83QsnL/HbKZxRgjVaHho2k8VVeUTUGYhxpLPC9yYKcqdhGDVd7yDHGSeyedxmPm/4nDR9Wpf9pxqVSkWMLoYYXQzDGX5M15JlmUZPo38oqiOwaXQ30uRpotXTSqu3FYvXgsVnweJUcHnARhV2nw2H7MGpeLDRitfmAjVggF1e+EORkWXjX6XK1opWUuNRfDg65pGcKtV2u/PUrk38o3A7aSEGds6+As1RDIfdMa8JCfjPpV2HoZ5c2spTy1qJClGR/2Ay0QbxVi+c3MRvqHDG0ak1XJg2jDkpQyhtn8wmy1weKL2VRk8DckdAot6vZ2R/KknF1XFXn8jmnhJUKhVxQf75JociKwrzyraxuGo3kkpCVu0bLror+yyGRSbywO6X+Hfdr/nrgHsAaHXZ8Sj+HhiD1j/nYf9qu3avu8dqu3WOk6vq9/MF23hydy7x+mB2z74KnerI34Y3VjrJa/Rw3oDgLoHGwwuaeP5nC/FhagoeSsGo7/sJzYJwKCIYEc5YapWKfqZY+pnOY0r0ZqZvPI89nu0AqJSufxoV1pbTOs/F4fq+chdbmiqpc1jQqdRkGmO4LD2H+JCDz6PJbaxgfvl2Gh3tIME5yYOZEJvB6ro9LKspAOCj4o3IikKlPYrx8p9J1SejKAo2rytwnVEdNWNORW/s2c3D29cRpQuiYPY1hGi6D3oP5Rdfd/SKXNY5cd+vvm7kzQ3tpIWr2f1gSo+TWgXhZCN+U4UznqzIfFmcxwweJpZ+ANilOsIPSP/9YfFGCtvqu7vEGaXQ3MD0xAE8MuJc7h96Nj5Z5p87lweW8XZnj6WRt/JXMzk+E4M2iEGmOJZV+wOQKzJHBj6U29wO9GotiywllNqNPL99Ga/s/glnx7W1KjWT4vxzQk7marvd+bC8kDs2r8Kk0ZE/+2qMuqObTLqz1sW2WjfTMvSd5oFc+3E9b25oZ0C0lsJfi0BEOLWI31bhjLe1uYrdbXWoJDXXBj9NurYfkqmQv42/lKfHXMTIqH3VWz8tyT3jCzzeP3QGk+IySQwNJ8UQwS0DJtDislNu7blw4LLqAoZEJjA7ORufIpMTlUKqIYIVNYWoJBWjo1IDx1Y4anEYnqUl6G3Mbgc7WqoD+67vNzawMqanart77a22u/eYvvR1VSk3bviRULWG3bOvIlp/9AnHbvuqEYC3r9j3uua+V8sn223kJOjY/UDSQZOfCcLJSPzGCqeVVped/+av4aG1X3DP6k95KncBZe3NBz1nYcWuwNdalZa74v7AguYF7LLuIibYwC8GTw70klTZ2ngqdwGl7SffpMi+4vD5J5SGanq+0y9pb2JQeDwAwyOTWFi5kyi9gUJzPVuaKslt9mdeNWl1fO95ESQPak1N4PxgtQ6NpKLGbj6pq+12Z0ldFVesXUyQSs2Oc68kMeToU7AXNbrZUOVmYmoQGZE6ZFlm+ps1fJfvYFJqELn3JKJWi7d14dQj5owIpw2bx81z25YwIDyOe4dOJ0yrp8HRftAPyQaHJVCS3qQN5ryUbD4v2cxQ3VncX3g/i0YuYnNTFRbPvu5/nVpz0uevOFFkReGzklyyjDEkhYb3eJzF7cTYMVxyTdYY5pdvZ11DKXavmy9KtzAiMom1DaWExuTTaMsHwCU1EaJTiNVF8evhsyhtbz6pq+12Z3VTHXN+XohGpWLTrMvIMBxbBum9vSL/vSwGWZYZ/2oNm6rdnNtfz6L/SzzE2YJw8hLBiHDaWFS1m4igEG4ZMCGwLVpvOOg5K2uKAl/HhYRxdtJA9lgasbfO5f3W35CxOoOz1feRHpZMrcU/PDPQFIfZ7Thp81ecSB8Xb6TGZuY3I8457HP0Gi1XZ40mLjiM7yp28pexF7HH0sjXdT/wVtnT+x2pYNeWEKVPQ6fWnNTVdruzubWR6Su+QQJWz7iEIaZjm/xc0eZlVZmL0Yk6+kdpGPbPanY3eLhsSAhf3hDfO40WhD4ighHhtLG9uYrsiATeyFtFkbmBcF0I0xL6MzWhX4/nlFlbUEsSPkWhwtqKy+clOyKBna2pLB+5nP/VfsCi+nepse/GQCQj1BdyuTbnuOevaHHasO63ggTAoAkiUn/yVFn9uHgjO1pqeHjELCKCQg56rFGn79S7BGDxODF19Cy5sbLE+1Kn/RpJw2b7as42HTwAORnlWVqZuHweCrBi2lzGRMYc8pxDuf3LBgD+fVEUA1+soqTFyy2jDbxzRewxX1sQ+poIRoTTRqPTysraImYlD2JOyhDK2lv4tCQXjUrFxB7mDVg8TpJCw6mwtuL0eVhUtZuMsCicPi+TTVMZGTqeB5o/ZJ38P4p8a1jte4+Lij7h7NCrGK296Li8jhanjT9s+hav0rmwnEZS8ecxc/s8IFEUhU/2bGJrcxUPDZ95yN4ngMywaPLb6piVNCiwLa+1jsywaGRF5t7iX+DE2inxnFfxstO1hvRTbDl1qdXC6KVf4pVlFk49nykxCcd8zTqLl6XFTgbHaLnyowaqLT7unWjkXxf1/eRcQegNIhgRThsKkGaI5NL0HABSDZHU2NtYWVvUYzAC/g/KCqt/3siCip30M/rvYmvtFna2VBMkhTJNfQdTpdtpCl7Nete3fG/9gCV8yrx1T/GnzD9xaeylvfY6rF5Xl0AEwKvIWL0uIunbYOTjPZvY0FDGXdlnoVdrMbsdAAR3LLMFeKdgDeG6EC7NyOH3G+bT7LIB8KtVHwWuIwE39B/HM2XPsKx1WbfP5aSdt8u+JUR7BcMikwLbFUXh2/IdrKorxuHzkGWM5rp+Y4kL7tuq3jV2G8MWf47T5+PLiecyO753cqL84utGFKDG4sXsUnh0uolnZndfj0YQTkVi2rVw2jDp9CSEmDptSwg20eqy93iOUatHJam4ZL+y9MUW/yTBZ7b+wDcVOwLbY4JNvJvzEjVTa/hT7AeM1M1it203l+24DNMKE/cV3IfVaz1kO20+G1vatxzpyztprKwtwuHz8PyOZfx2/deBx6amisAxLS57IEh5NGc2fx9/KTf0G0e03oBa8teZuThtBOWe3TxR8kSPz6VChU1XxGu7V1FtawtsX1SVx/KaAq7vP45Hcs4lSOWfVOyRD69OzvHQ5HSQvfgzbD4v74+bwaXJGb1y3Ra7l4UFDlQSmF0Kz86OEIGIcNoRwYhw2sgyxlB/QOrveoeFyKCeexIyjf7hgzkpQ7guaywhPay8idCF8NsR52DSBSMrClZ7MH9K/zvmaWYeSHkASZL4d9W/Ma40MnnTZNaa1/b4nL8p+g2jN4xmfuP8o3uhfeyNqdd1+9h/Ce2vh8/iloETAQjT6THpgpma0I+/jL2IaQkDiNEbOC8lG5fsIjGo51UgMjJF3o2BnCTg7xVZVp3P+alDyYlKJjk0glsHTqTN5WBrU+XxffE9sLjdDFr0KWaPm9dGTeWGtAG9du0bPm1AVkBW4N9zo3hket8UaRSE40kEI8JpY1bSIEram1hYsYsGRzsbGspYVVfM9MT+gWO+Lt3KOwVrAt9PS+hPk9PKl6VbGBgeywUpQ5GAIREJTIhN57yUbC5Pz6Hd4ySvra5L/gqDxsCLA16kbVob84bNY2joUNaY1zBp0yQSViXwdOnTeOV9mUnbve28W/suCgpX77iaDeYNJ/JH1Oe8so/1DWVMistCkiRmRM6gakoVbdPa+GnUT2h9aSDryQwaiFbyZ2Xd2r6VQeFxlHTkdmly2rB4nAwO37eCJFijIyMsOnDMiWT3ehi06FOa3S7+Pmw8d2RlH/qkw5Rb5eT7Qv/E3/eujOGeSaZDnCEIpyYxZ0Q4baSHRXHn4LP4umwrCyp2EK03cFXmaMbH7usuN7sdtOw3bBOtN3DPkOmd8lfcNGBCl0RZWrX6kPkrLo69mItjL6bOVcfDxQ/zZcOX/KHkDzxV+hSzI2fz4oAXWdayDKfs/3DxKB7mbJ3DpnGbyAjunS79k93W5iocXjeT4jq/XpPGxNSIqXgViRAlm48HfMmo6GQK7AU4ZSft1hDMHaneLR7/8M+BOV6MOn3gmBPFLXvJXvQZtU47f8wexW8G5fTatXOrnIx71Z/47ZGzTNw0KqzXri0IJxsRjAinleFRSQyPSupx/96hg/31dv6K+KB4PhjyAe8Pfp//1PyHv5b/lQXNC1iwdgFaSYuCP1+JjIzFZ+HcLeeyYewGIrQRtLudLKnK7/Havm4mtp5KVtftYUhkAuHdLAX2er0oqgbC5RwANCoNQwz+PC4rrIUnspmHxSfLDFv0BeV2Kw8NGM6TQ8b22rV/LnMw/c1aZAWiQlQ8O0fMERFOb2KYRhCOE5VKxa+Sf0Xp5FJ2j9/N+LDxeBRPp2O8ipdSRykXbbuIKlszz25dxIbGsh6vOb90G94+nKR5LJqdNvLa6pkS333elw9rfgSVnTh12kFzkhi1/h4pS3dF8U5QRlxZlhm99CsKrWZ+lTmY50d0DXKP1g+FtkAgAvDKRSIQEU5/omdEOCO0uux8VbqVXa01uGUfMXoDNw+YQHpYz2/0BW31fF6ymVq7mYigEM5PHdpl+ObHmkKWVOVhdjtINkRwTdZoMsK65n4YbBhMRkgGudZcvErn6rY+fKw2r2ZO7uVM5BdIkoQaiQHhcYTrgqm0tVLVsZIkz1zPF6VbuCZrzLH/UE6wNfV7CNMGMSyy+wmrb1d/A8A447Aec5IAROtDMWr15LfVkWLwT+Z0eD2Utjcx7SAJ7nrTlBXz2WZu5rqUfrw++qxeu+6XO6xc9XEDaglUEkQEq7h6hBieEU5/IhgRTntHU7OmyWnl5V0rOCuhP7cNmkR+Wx3/K1yPSacP1EPZ2FjOFyWbua7fWDLCollWk99jzZoGdwNfNHzRJRDZS0Fhp2cljdRyu/FvPDTsnE7JzXa11vDqrp/wKjI/1RZzfsrQU6oujqworKkvYWJcJmqpc4fs3pwkO627gGAe7HcBL+3+kSVVeQyLTGRjYznl1hZu6D8OAEmSmJk0iIWVO4kNDiNab2B++XbCg4LJie6dvB4Hc87K71jb3MDFiWl8OGFmr133vVwLt37RhF4jcdXwUN7bbOWZ2adWwjdBOFoiGBFOe0dVs6a2iGi9gSszRwGQEGKi2NzI0uqCQDCytDqfKfFZTI7PAuD6fuPY2VLTbc2a92rfw6t4UaFCLalRUPApvsD8kb3qKeRN+x1oa+7kF0m/CCx7HRKRyNlJA1lclYdPkVnbUMLs5N5btXG85bfV0eKyM7mb5HMtLjsSEm1yLRDLwMh4bh84mfnl25hXto3Y4DDuzJ7aqRDf7OTBuH1ePijagN3rpp8phvuGzECrUh/X13Hp6kUsbajm7NhE5k0+r9eu+8paM/d804xBJ7HtvkSGvFRDZLCK28b2bRI3QThRRDAinPaOpmZNiWVfyfu9siMS+KxkM+BfolrR3sKc/QIClST1WLNmcOhgLoi6gChtFJHayMC/kRr/1+/nb8HnCwLJgS4in2fLn+Wp0qeI18WzZdwW4oLiGBuTxuKqPABqbebe+NGcMNkRCbwx9bpu9/16+CwAbi1vRK/4A7vRMamMjknt8XqSJHFR+nAuSh/e+43twQ3rlzGvpozxkbEsmXpBr133rytaeXRRK+F6FXkPJvPvtWacXoW/zxH5RIQzhwhGhNPe0das6W7pqNPnwe3zYve6kVEI6+aYugMSrwFcGH0hF0Zf2GW7LMv82Poj2zxLqPTtpp1GfPX+Sa4hqhA8igcJf8bSvf+ejnZYSkHVQrJmVl83pVt35v7EhxXFDDdFsmbGxahUvTP3/7FFzTyzwkxMqIr8h5IJ16v452oLJr3EvZPCe+U5BOFUIIIR4bR3tDVrjocWdwsf13/MguYFbGnfQr27PjBUo0JDGDGcG302T2b9nsGhg5GkfQFI7n7p1uNDTq/u++dKPgFJYXbU5L5uShe/2baW10vy6G8wkTvr8l4LRO79pomX11pIMqrJfzAFg17Fsz+2YvMoPHu26BURziwiGBFOez3VrNlykNThRq2+26Wj+o5icCpJQoVEe3fLS7X7eks2mTfxUf1HrGhdQaG9EJtsC+yL0EQw2TSZcyLPIVs7jSVl1QAk+8JJ1mV0CkSKzA0srfbnH1FJEhNiT68kaStb1oOi4rdZ1/R1Uzp5atcm/lG4nbQQAztnX4GmlwKRWz9v4N3NVjIjNey6Pxm9ToUsy/x1ZRuhWonfniUyrQpnFhGMCKe9o61Zs7OlptO2vLY6Mo3+5aUalZrUsEjy2uoDKzisHhtLm1bSrNnG336+iWpXNT78OUE0kobkoGQuNF7IpTGXcnH0xeg1+4IWj+xjS90CmpxWqmxtPL7xW0bHpBKtD6XY0sTu1trAsZPiMrtNGnYqq/NUgBRDakhMXzcl4IWCbTy5O5d4fTC7Z1+FTtU7b5dXfFDHl7vsZMdq2XZvEhqNP8D591oLFpfC4zPCe633RRBOFSIYEU57s5IG8bdti1lYsYsxMamUtTezqq44sFQU/DVr2tx2bh04CfDXrFlRU8iXpVuYHJdJfls9uY0V3DN0WuCcwVGhvFnyKS81/pYi1w7MvjZk/Et3DWoDOWE5nB1xNtfFX0dOWM5B26hVqbl3yDRe3LGcNrcDl+xlTX1Jl+MGh8efkjlGDsVNAxr5+AUiLU4bVq8r8L1BE9Rp6fSB3tizm19vX0eULoiC2dcQotH2Sjtmv13L4iIHY5J0rL8rsVPQ8adlbeg1Ek/NCu+V5xKEU4kIRoTTXm/UrDHpghgQ7+XvNY+yNm8t5c5y3IobAL03jHhpANm6s5mbMIVfpd5IuC78iNsZH2Li0ZzZLKjYyfqGMlz7FdiLCgplWmJ/ZiYORHOcl6+eaDavA9SNRErDjsv1W5w2/rDpW7z7pdLXSCr+PGZutwHJh+WF3LF5FSaNjvzZV2PU9ZyP5nDJsszUN2pZU+FieoaeZbfHdwpE3tpgocUh89AUo+gVEc5IIhgRzghHWrOmzlXHd+YPWcH3bJe309TehNLun2garApmQMgApoZP5Zq4a5himtJrHyDhQSFc338cl2WMpKy9GZfsxajVkx4WiUo6PT+kXir5CiQ3o8NGHJfrW72uToEIgFeRsXpdRNI5GPm6qpQbN/xIqFrD7tlXEa3vXAzxaPh8MmNeqWFrrZsLBgbz3S0JXY55bHELOjX8TSQ5E85QIhgRzniyLLPGvIaP6z9mVdsqih3FOGRHYH+0NpoZETM4L+o8ro+7nkR99+nMe1OwRsvgiPhDH3ga+LJ+GQB3pV7Wp+1YUlfFFWsXE6RSs+PcK0kM6XkY53C5vTLD/llNYZOHa4aH8vG1cV2O+XhbOw02mTvHhwXmjwjCmUYEI8IZx+K18Gn9p3zb9C25llzq3HXI+O+ctZKWNH0aE00TuTzmci6IvgBNL01cFLpX7CgAycSF8eMOffBxsrqpjjk/L0SjUrFp1mVkGI596bTdLZP9YiXlbT5+MTaMNy/rfk7Mbxa2oFHBC+eLgnjCmUu8ywqnvR3tO/ig7gOWty6nwF5Au689sM+kNjHeOJ5ZkbO4Pv56BoYO7MOWnpmsSj2S0neraDa3NjJ9xTdIwOoZlzDEdOxDJWaHj0EvVFFn9fHQFCPPX9C1eCLA/N02qi0+bh5lQK8TvSLCmUsEI8JpxS27mdc4j68bvma9ZT2VrspAcTo1ahKDEjkn8hwujrmYK2KuIERzYpbIyorMt+U7WN9QhsXjxKQLZlJcBuenDO2UT+RAvVk5+GSlqBoxKMcvrbvD6+7+eRWFPEsrE5fPQwFWTJvLmMhjD4qarF4GvVBFs0PmyZkR/HFWzwnM7v+2GbUEL889df5/CcLxIIIR4ZRW7ijng7oPWNyymJ3WnbR4WwL7QlWhDA0dyvSI6VwTdw3jTeP7rJ0/VOaxsraYWwdOICHERHl7C+8VrSNYrePspO57Y3q7cvDJ6Pv6DaCy0E83oNevrSgKCyt3sbBiZ7f7X9z5M2/UNOKVZRZOPZ8pMV0nlh6pKrOXIS9WYnEpPH9+JA9NDe/x2CVFdsrbvFw9LBSDXvSKCGc2EYwIQNc8DHDoXAwnmizLLGldwuf1n7PavJpSRykuxd9mCYlYXSyzI2dzQdQFXBt/LdG6k+dus6S9kZyoJIZF+lf0ROsNbGwsp7S9ucdzerty8Mno5fKvALgsbmavX/uL0i2BrLUHsnll3q6vw6vA+2POYnZ8yjE/355mN8P/WY3do/DGJdH8cvzB553c/U0zKglev0TMFREEEYwI3eZhgIPnYjgRmtxNfFznr+Oy1bqVBndDoI5LkBRERnAGU8KncEXsFZwTcc5JnZ8hMyyGn+uKqbdbiAsxUmltpdjSyJWZI3s8p7crB5+MNrVvAUXHQ5mX9up1C/dLny8B42LTGRqRSIhGx7aWWm7bmotXgekmPe2ORmDwMT3fzloXY1+tweVV+OiaGK4dEXbQ438uc1DU5OGiQcGEh4i3YUEQfwVCt3kYoOdcDMfLRvPGQB2XIntRpzoukZpIpoZP5dzIc7kh/gbSgtNOSJt6y3kp2Th9Hv6Y+x2SJKEoChenj+iUeO1AvV05+GTU4q0GYgnVHHs+j/2tqCkMfH1F5ihmJQ0CwOXzcdWGVbgUhVnhBjL1Etubq2h22og6yqB7Q4WTKW/W4JNh3o1xXJR96Ovc8XUTEvCfy0+e9PeC0JdEMCIclXxbPnfk38HTWU8zJXzKEZ9v99r5vOFz5jfNZ5NlEzWumk51XFKCUhhvHM+lsZdyScwl6FTHngWzL+U2lrOhoYzbBk4iMTScSmsrn5XkEq4LPuGVg08mXqkRndJzMrqj4VNktjVXAf6hxukJ/QFocNr5v00r2WO18Mn4mYQoDr6r2IECbGuu6nHuzsEs3+Pg3LdrQYEltyVwdtahg6rN1U52NXg4t7+eWIN4CxYEEMGIgL+7/0gsbFrIVTuuwibb+KT+k8MKRgpsBXxQ9wFLW5aSZ8vD7DMH9oWpwxgZNpKzI87m+vjrGR52/FZW9JUvS7cyOyWbsbHpACSFhtPssvF95e4eg5Heqhx8sqpyNICqiXjV5F69rtPrDfT0pRgiAunzr1m3jB8ba5g36VwuTsroVAjR6nF1e62D+TbPxiX/q0ctwao7Ehmfeng/89u/9PeK/Pfy2CN+TkE4XYlg5Ay3rr6UT0tye9y//4ehoig8V/EcjxQ/Eti2snVll3O8spcFTQv4svFL1pr9dVw8igcAFSoSdAlMi5jG3Oi5XBV3FUbNsSeYOtm5ZS8qOi/hVUlSYA5Md46mcrCsKOS31TEjsfdXp/S2v5V8ApLMlPDeTXYWpFYjAQrQ4GhHVhRUkkSL28lZ0fFcnOQfGmtw7Ms3E6Q5srfCT7a1c90njeg0sOGuJIYnBB3Webvq3WypdXNWehDJJvH2Kwh7ib+GM9iPNYV8smfTQY95v2gdj+ach14jcVvebXxc/3Gn/bttuymyFfF149csalnEdut2mjz7Jk8Gq4IZFDKIqeFTuTbuWiaZJp3UE02Pl+GRSSys3EmkPoSEEBOV1laWVuUzKX5fr8jRVA6elTSIdwvWkh4WSXpYFMuqC3DL3i65SE5GixpXgyLxu6yre/W6GpWaAaY4Csz1NLtsbG2uIio4nG3mFj6Z4F+145F9rKjdN68kO/zwl/X+Z4OFX37dRIhWYuu9SfSPOfwhxNu/bATg7SvEXBFB2J8IRs5QdXYLn+7Z1yMyyBTHiKhkwnRBlLe3sq6+lHavE7Pbycv5C5jn+itb27d2uY6MzIB1/rtwCYlobTQzI2YyJ2oO18dfT3zQmVFf5VCuyRrD/PLtfFS8kXaPC5MumKkJ/bgwdWjgmENVDg4PCuHGAeMDy3oBxsakYfU4+aZ8Oxa3k2RDBPcNmYFR17sTQo+HKlcJSFEMN/U8ifdoTU/sT4G5HoB3C9ei6KLRqVTMiU+lvL2FL0u3UN/RM5JljCbF0HNisv29uKqNhxa2YAyS2PFACqnhh/8WuqfZzbpKF+NTgsiKOrXnQAlCb5MURem5n/gkYbFYMJlMmM1mjMbTv0v/RPhkzyZ+7FhxMDNxIFdlje603+x28JctP7DTsYGlvpfw4upxSCHHkMOfMv/EnKg5Z3Qdl1MhV8vJRFqUhkoJxXfe7l6/tqwovLp7JTtaanDJCu83WAlWSfwqMRLbfhlZdSo1Dw8/h7SwQ6eA/9PSVv64rJXIYBV5DyUf8eTT6W9Ws7LUxc4HkhkSJ4IR4cxwuJ/fZ+4nxxkut7ECAK1KzQWpwwLbd7TvoMhRxBrzGua5F7LHl3fQ60hIxOnimBsz97i292R3suZqOVl5vV5QNWBi0nG5vkqS+OWgKbyWt5onCwtQ8M952j8QCdMGccfgqYcViPxmYRP/WGUh3qAm78GkI84NUmX28lOpi5EJOhGICEI3RDByBpIVBYvHPzE1KcSEXqNmXuM8flv0W4ocRQCk6lMZGjISm0fGq7ixS43YFSsSEipUgWW4CgprzGuQFRmVdObNBdnrZMnVcqp4u3oRqJwMDR566IOPkltR+KS+hTZfR4+eJBEVFEpEUAgTYjMYF5tOkPrQb4G/+rqRNze0k2pSk/dQCiFHUdDu9i8bUYA3Lzt5sgILwslEBCNnIJUkoVOpafE28Lb5nzz548W4FTejwkbxYMqD3JdyH+nB6WxsKOMt+xoAZicNZlBsECvbVrKidQXLW5cHJqq2+9optBcyKHRQX76sPmP3ulnWQ9pxAJfPewJbc2p4v3oBALcmX3Bcrm/3epizaiEbWxsD2xyywu9HnY9Boz3s61z/ST0fbbPRP1rLzvuT0GmOPBBpsHpZXOQgO1bLmOSTf8m1IPQFEYycgX5s+ZGvvY9T7S0GIEGbzHtD3+acyHMCx8iKworaosD3AyPiyDYkkm3I5s7kO1EUhSJHEStbV1JoLyQ5KPmEv46Tgdnt4MUdy6m1m3s85qPijTw8/BxCtaJ7fq9dtt1AKDcmnt3r13b6vFz48w+saapHPmCeU2F7G6MiDm8ly0Xv1fJtvoMRCTo23ZWI5igCEYBfftWEArxxqegVEYSeiGDkDCHLMv+q+hd/K/8bde46/1wP+jNJcxMpmoEYvf3wyTJqlYpWl515ZVsptvjvKmP0BgYfsPRRkiQGhAxgQMjJn8/ieFEUhTfyVgUCERUSA8PjiNEbqHe0U2iuRwFq7GbeLljNvUNn9G2DTyIWuRaJWDRHmN/jUFw+HxevXsTKxtougQhA/mEEI7IsM/OtOlaUOpmYGsTPv0o46uXobXYv3+bb6R+lYUr6yb/CSRD6ighGTnMWr4VfF/2aD+s+xCE7CJKCuDH+Rv7R73k+K97FjpYanD4Pbxes5ZM9uYRp9TQ42gMrZyQkrs4ajUqSDvFMZ55CcwN7OgrSRehCeHD42cQF75stXm1r48Udy2j3uNjZWkuFtYVUw6EnS54JZKmRYOXI068Hzldkvi3fwfqGMiweJyZdMONi0vhPZQ1L66voOnsHNJLE6oZqSpqKqbWbiQgK4fzUoZ1yssiyzNg3CthcEcTYAZXMHemk3BZERtjR9WrcOb8ZWYF/XyQq8wrCwZy5Mw5PczvbdzIjdwbhK8N5q+YtDGoDz2Y9i326nfeHvE9sUAy/GDSF4ZH76oLYvW7qHZZAIKJVqblt4MRA2Xuhs5/r9gS+vjwjp1MgAv6U73PThnd7vIJCIyWs5T3e5zb+zAiK+On4N7obLU4bFdaWwKPFaTv0ScdgU2sBqFtJCzr6xGw/VOaxsraYa/uN4cnRF3BZeg5flO9mYV1Fj+fIisLi2hIGhsfx+Kg5zEwayP8K17Or1Z/l1uuVGfZyEZsrgjgv2828q3JIDg3nXzt/7JKW/3BYnTKf77CRFq5m9gAxgVkQDkb0jJxmPq37lMdLHqfY4Z8PMjR0KH/v93fmRM/pcmyQWsNd2WeR11bHT7XFFJkb8Mg+TEH+u8wp8f2ICAo50S/hhDqW3CB1Dv/wjASM7EjHvoe1vMIFjOVaRnEFQ6NHQDGATLm8lRVsoIifKORH2mnsOF+Ngg87bV3ac7zzlHS3JPl4L0f+R+knAJwXfdZRX6OkvZGcqKRAoBytNzA5ppzB4V40QRF8VrWH3FZ/r9Xe1PAy0OZTuDJzFAAJISaKzY0srS4gKzSeof+sYk+LhguGt/Hdtf5jru83jp0tNayp38N5KUOOqI33fteET4GXLhRzRQThUEQwcpydiA8Xt+zmyZInea36Ndq8bahRc37U+bw84GUyQg6e3VKSJLIjEsiOOPx02KeL3swNsnd2gpVGfHhZyaus5FXQqGCSBlQeyiWFcqSOD0dlv3P9y6QjnSNOeGDQ3ZLk470ceXXbJlA0/C7z6NPAZ4bF8HNdMfV2C3EhRiqtrRRbGrkycyTjYzP47aAcUr/9gFqXnUlR8axqqkUB2rw+FEVB6hh2zI5I4OPiLfR/vpIqi5ezc/bw9MzBgedRSRKDwuMpsTT10JLuOd0yH26xkhim5pIholdEEA7lqIZpXnnlFdLT09Hr9YwfP54NGzYc9Pi2tjbuvvtuEhISCAoKYsCAASxcuPCoGnwq2fth95ctPwQef9j0ba91g1c5q7h026WErgjl2fJn8Sk+Hkx5EOs0KwtyFhwyEDnTHSo3yKEkhpgAfyCS2+QfHhjBRfyDRs7ltwCo0ICiIEl7gw+l20y2MfRD8Yb1GBicTho8FSDHEB8SftTXOC8lmzExafwx9zvu/Plj/rLle2YmDWR8rP933up1U+m0MSkqjpUzLqLhopu4MDqcm1PSAoEIgCTr+HZDBlUWLw+fFUK/xCbCdJ2X3xp1esyeIxum+fXCZjwy/H2OmCMkCIfjiHtGPv30Ux566CFef/11xo8fz0svvcTs2bMpKCggNrZrSWy3280555xDbGwsX3zxBUlJSZSXlxMeHt4b7T+pHeld57b2bWQFZ2HQGA563R9bfuShoofYat0KQJo+jT+m/5Fbk27ttbYLhzY5vh/rGsoA+LJkC6mhkSSGmtASxGX8DbUznu91vwG1D8UejxRS1+O12qjmM/11EJcKjRNAPn3zUbhpQiMfW6G43MZyNjSUcdvASSSGhlNpbeWzklzCdcFMjMvkX0U7Abi7nz+pWnRQMDlhIUyK27cEvc7i5aK3nbQ5jDx9Tjh3Tw7mdwe/rzosXq/MW5vaiQlVcf3IsGO/oCCcAY44GHnhhRf4xS9+wa23+j/4Xn/9dRYsWMDbb7/NI4880uX4t99+m5aWFtasWYNW6082lJ6efmytPg0taV7CeVvP4+aEm3k7++0u+7tbmjvJNIl/9v8nY0xjur1mq8vOV6Vb2dVag1v2EaM3cPOACaSH9Tyzv6Ctns9LNve42gD81X6XVOVhdjtINkRwTdboo15tcCrrb4yhvzGWIksDFo+TP29eyLDIxI4PxxZ2tcahaP4Nw59BCq1ChQaZ7hOgSUgUqxchDQCl/3/AFwK2ZGgdjpmhwOlxh23xWEHdQLSUc0zX+bJ0K7NTshkbmw74Jws3u2x8X7mbiXGZfFBehEaSuCJpX++gUasPTEQtb/Uw7KUqbB6JiycU8tjZ5+OVfaiQaD9gsqrF7cSkPfzg8NHFLbh98PQ5p8f/M0E4EY5omMbtdpObm8usWbP2XUClYtasWaxdu7bbc7755hsmTpzI3XffTVxcHEOHDuWZZ57B5/P1+DwulwuLxdLpcTrLt+Vz2Y7LkJH5oO4DGtwNgX0Wr4Vf5P0Cw0oDDxY9SKunlRvjb6RhagOrx6zuMRCxedw8t20JapWKe4dO58nRF3Bl5ihCNT0n3mpyWnl514oeVxsAbGws54uSzVyQOpTHRs45ptUGfc3sdhzT+ZIk8avBU0gODQdARmFbSzXfV+5iZ6t/jgJeExlFbzHRd3uPgQjAH9jBw7ZKlIJfQvNo8AWBsQgp/QteCR3BvQTzJ4bxCfdSwvpjavf+TvT/t+dLvgDJyxjjqGO6jlv2oqLzcnOVJKGg4Ja9FLS3kRMe1Sk/SKYxmvy2OvIb3Ax+oQqrW+GusxuZlunP/6FRqUkNiySvrT5wjqwo5LfVkWk8vGBblmVeWdtORLCKX44XRT0F4XAdUc9IU1MTPp+PuLi4Ttvj4uLIz+8+HXZJSQnLly/n+uuvZ+HChRQXF3PXXXfh8Xj44x//2O05zz77LE899dSRNO2U1eJpYc7WOTh8/g9Gn+Ljjeo3uDT6Uu4tvJeVbStRUIjRxvBExhP8NvW3h5WAaVHVbiKCQrhlwITAtmj9wYd/VtYWEa03dLvaYG/Z+qXV+UyJz2JyfBZwbKsN+pp9v6JpRytMp+c3w89hcXUeq2qLAzV/ACKCQjgrvj9Tk5J4Vv1LJFQo3WTA0BJMNBmU2MugYZr/AYCMYtrFsIHlNATlUk8hNexkBS+jQk04yWQwgVFcwQguQsPhZ3j1yD4+2bOJ1fstN97fd+U7uH3QZHSHUbvlSMyrXw7AfWmXH9N1hkcmsbByJ5H6EBJCTFRaW1lalc+k+Ez+U5KPDEwNN/JOwRpuHegvxjctoT/flZQy9rtS3D4Nf5nrpsJXxqykaYHrzkoaxLsFa0kPiyQ9LIpl1QW4ZW+X3sGePLmsDYdX4ZnZEcf0+gThTHPcV9PIskxsbCxvvvkmarWa0aNHU11dzXPPPddjMPLoo4/y0EMPBb63WCykpKQc76b2qianlaVV3Qdoe2uVeGQPl22/jEpnZaDwnIzMkyVP8kTJE8DBl+YezPbmKrIjEngjbxVF5gbCdSFMS+jP1IR+PZ5TYmliUHh8p23ZEQl8VrIZAK/so6K9hTnJ2YH9R7va4HSi12i5KG04F6QMpcLWgsPrIUSjI8UQgVpS8SF30EpVt4EIgFdx8fqeb9hae+DEZhWYh1G2ZQx3Zf+LTGM0NexiPR+QxxLqKSCXT8nlUwAMxJBCDsO4kHHcgKGHoR2fLPPa7p/Y1Vrb42va1lLNq7t/4p4h09Co1Ef1c+lOibMIiOCc2Jxjus41WWOYX76dj4o30u5xYdIFMzWhHxemDmX8sq9RITHEEEqLyx44J79OzccrhqNSebnyrB1YtSpuzBofCLQBxsakYfU4+aZ8Oxa3k2RDBPcNmYFRd+jsqbIs88LPZoxBEvdNEr0ignAkjigYiY6ORq1WU19f32l7fX098fHx3Z6TkJCAVqtFrd73hjZ48GDq6upwu93odF3v5oKCgggKCjqSpp1UtjRV8t+CNXjk7oei3ilYw4PDZvJE+W/5qe2nLqsrQvQyk5KSeCV2Of2OMt16o9PKytoiZiUPYk7KEMraW/i0JBeNSsXEHu7yLB4nxm5WEjh9Htw+L3avGxml29UGdY5TayhNURT2mBt73G/1HHwFSxNlOLGQzL6kZmqVqsvcmXqKWMUbHQt6e2gLMluNz0Dt/YA/L4ZGpQ78/rR7XLy0czm/GX4OKYYhXMqzXMqz/nbSxHo+ZAffUcVW8lhCHkv4jPsJwkA8gxjEOUzkJuLxFzL8sbYwEIhoVWqmxGXSz+SffJ7XVsf6+lI8ikxeWx3Lawo5N3kwvcWm1CMpxz6/SK/RcnXWaK7OGt1puyzLbDO3MNgYzm2DJgW2Ly60cf679UiSiqW3pTElveeijjMSBzIj8cizw/5jlRmbW+HpcyOOOn28IJypjigY0el0jB49mmXLlnHJJZcA/j/+ZcuWcc8993R7zuTJk/noo4+QZTnwB1pYWEhCQkK3gciprsjcwJv5PyMr/gBDjURCqAmPz0e9sx2AZpedGzY/zGLnm53ODdPDyHQYmAgqqRpFqQeOLhhRgDRDJJem5wCQaoikxt7GytqiHoORM4WsKHxYvKFTRtQDvVOwhl8Pn0V8x/LdvWy08j1Ps5x/YSKBZ+k54ydAFGlcy6vUsIsGiqingDaq980fUTpylMRsQG39gSv1jzExLpMglYbS9ma+LN1CsaURl8/Lp3tyeXjErE7XNxDNTO5nJv5AxoubbcxjM19Ryjoq2EI5m1jEs6jREaWkY9amgmksmLO5d8hMBobvG3YdE5PGhNgM/rF9KQAragqZlTQQldQ7H66KqpEw5djmixzMx5XF+BSFm9L2/d18tdPGlR/Vo1HB6jsSj1vl3GdWtBGilXh0munQBwuC0MkRD9M89NBD3HzzzYwZM4Zx48bx0ksvYbPZAqtrbrrpJpKSknj2Wf+d25133snLL7/M/fffz7333ktRURHPPPMM9913X+++kpPE12XbAoHI2Jg0rs4cHehJqLS28t/81Sxq/4R18oeBc0zB/iCkfwKggKrjJnp7+w76G6ceVTtMOj0JB3yQJgSb2NJU2eM5+6822MvidqJXa9GpNagkqVdWG/S1Hyp3HzQQAbB4XPxr5wqeGH0+erUWHx5W8hrf8AQu2lGQsdN6yOfSoGMad3baJuOjhUqa2MPH1d9Rp90IUZuQM/9HLQYknkNCS6YxmvuHzuDPmxfS4LRSZGmg2tZGUseE2Z6ebzRXMZqrAttKWMt6PqCQlTRSjCemECl2KSgSH0iZTONuUsghlVEEY6K/KZbsiAR2t9bS7LJRbm3pldVS8+t+BpWV/rqjr0lzKK/tyUMC7unnn7/0v83t3Px5I3qNxMZ7khgSd3xugP69xozZqfD76SbRKyIIR+GIg5Grr76axsZGnnjiCerq6sjJyeGHH34ITGqtqKjo9MeYkpLCokWLePDBBxk+fDhJSUncf//9/O53v+u9V3GSqLa1saej0m18sJFbB05E3XFHqSgKJZ7trFe9wTr5OwDCQ2FUOvSLA2VvELJfb/6XjV9yufGuo2pLljGG+gOGTuodFiKDes4GmWmMZmdLTadtefutJNh/tUFOR/rzvasNZiSeGtV7XT4v31fuPOgxWkmFR5FpdtlYW19CRGIen/MQzUppp/8/HrpfjZPbWMH88u00O63EBodxWUZOp/o+kqJiTbmFVXVmLJ5RoMomtO4KJg2vZYX0L7Yzn9k8ygzuQafWcFZCf74o3QLA7tbagwYj3clkIplMBGBXWw3/KvwcJW4VEfHF+PStzOf3eHASSjTPd6SozwyLZnfHUM6hhqwO16vlXwNwVcK5vXK97mxsbSAz1EiIRsura83c/U0zoTqJHfcnkRF5/Hpin1rWil4j8dRMMXFVEI7GUU1gveeee3ocllmxYkWXbRMnTmTdunVH81SnlD37TeKcHJ+FWlLhVbzcZc6m1tFAhdVMXGQcl0UNxRRThjbY6v9sk6C7orhxMW18zD2oUCOhQoW609dSx/f+h6rT9+GpCpuK2ni1bjsZ4Qaa7V7WtrcxJTWGTXyKCg0bqlqweWRmZ6SiQk1yoo/lzXt4q/ITRkTHUWG2samtnGsHDaWG3ajRMC45jC+LthNjlEk1RLG6pgKn4mB0XDweXLQ5Xdi9nk5zJI53fZUjsaQqD/cBc3mMWj1u2Ytz78TivYnqDCV8bXwaN3lIiooDp33I+FjAn3HSjoM2nLTT4rRTYlcTPrCJCH0brS54xaVD76tEUdvx4cXn0yAnSkhpNiTJ/1x2YInif4o2aviM+5jM/6EjpFMPl8PrOabXH6TSgjsGKi+jnzON2wdNxoubfzAF3X6J+Jo6hhT95/TOPPct7duBIO5Nv7BXrnegBTXluGWZq1Oy+NuKVh5Z1Eq4XsWuB5NJNB6/ufrvbLLQbJd5YLIRjUb0igjC0RC1aXqRd78PuTCtfwKuLMv4DEUkGCElLhidZMep5IPKi6LQ5QNufw7jZlay+egaEwKMgO34H+iBSFiJ/wFARzLKor3fBwFjYBP+B8FAPHy8/3Wj/Y8v9n7fz//4w97vO0ZrlP3m5ErgnxjR6bVKXf5LIISROn3n/6rr1/5/pU7/HmqbNcEN8f6z1ZKKZPUgYtUplCrrCPdE0WT34lXZIbgGSWvD3fE6FKn7lTDf8kTnDdogSNTRrnWhRoNaq0XlS0K2xxIe5kKrBFNbn0qsARK1GrbVt6C4Q8CSzZT4TM6KGo8GPVYa0eEvUljW3hy4fKj22O7uUw0RhGh02L1utjRV0uK0EakPRYWGaPwJwlpddnI7hvP0ai2pYb2TvKvFVw3EEaI5PkN6e7OuOqpSeeanVmJCVOT/OpnIkOP7NvfoolZ0avjbeSLJmSAcLRGM9KL9K9zmtdUxMS4TnVrH9a53+ExzKz9tNfB1/zW8sWM77fqdSGmfQ8ROVKiR6bry5kF+JImh+PAi40XG1/Gvt2Obr9N23wHfd/7X/1A6vvfhQ+m0/dDbFOQDriWj7Le93WNna3MlIIOkgCQDCookMygiFr1Gs995cuA8BRmV7MWromOb3FHBRT7gceA2pZvtSscSWuWA/Qqy7ENGDkRHOo0GWWWlnQYckpkoXSRZpFHQYgZfEIqxAEntAUXyv55u3MHXJDGMUGLQY+D3ud8wK2kQs5L2rdb4pm0725qr+MOo82l0Wnm85Bt+OXIOKVIErzevYkuz/4O/wRdLWlTnJHZWj5OVtf5wUQJGRCVzLHRqDZPiMllanY9XkXlp549cmzUGV7gVHaEUmOv5eM+mwEqeiXEZ6NXaY3rOvXxSE0FK2mEff6QVlX9uriPUa+TFn+wkhqnJeygFo/749lR8uq2dequPX44LQyd6RQThqIlgpBcNiUggVKPD5nWzsaGcaQn9yTLGMCPoZn6QHyctpZrh64dzlfoF9J5+jKp7jbMjJObzGEWs7BKUBGPCwKmRZt3h9fBV2RaoK+52/6U5s7tPQ+9thYpfQ9P/YHg+6LOOWxtX1BXy8Z5NAKjwMi02hkuTYsC8EILvgsjLQQd/rPquY6mygj6qECXpO1ymzd0GjXEMJIZ9bba4nRgPmMxr1Ooxd0z6tXj880z2LqGekTggEIwUmhv4bE8uU+L7EaYNYldbLQvKdwQSqQ2LTDpk4rrDcV5yNluaKml22ah3WHhp5zKkSfnUtkv8uGNZ4LjIoBDO76VEdqXWWlA1kaA667COP9KKymub67D7vFCZSkaEht0PJKPXHf/g4OHvW9Co4J8X9FxiQRCEQxPBSC/aO9nw+8pdyCi8sH0Zk+IyGR6VRJbuKixRLxId4eDzlke4VvMSZycOpB8x/JoVFLCCefyeUtYi4U9rrTq6osonXJvLzks7llN7kFwjCyp2ckf21MCEXhQFWr+Esjv8AQkyOPJ6JxiRnWDbDo7t4MwDZwm4KxnvrGG8rg0dLlTISGbA3HFO8HCIvByn17PfhE0JX2s2v0t7AA31LONFVslvg+QL9JS4sB5TUweGxzE9oT8rOno/ltUUsKymoMtxJl0w12R1n/r/SIXp9Dw0fCYv71pJrd0MEVtB7cEXVsDe8bS4YCP3Dpl2WMm+DsffSj8GSWFa5IRDH8yhKyofWGjyioXbQCfRTxtP3r3JJ2Tuxnd5NqrMPm7MMZyQwEcQTmciGOllF6QOpbS9ify2eryKzE91xfxUVwyMgolBzMz28t7PZpao/sx/wm4KnDeQ6fyW1eSzjHn8nnI2EUx4n72Ow+VTZF7ZvbJTIJIRFk1EUDBV1lYanP4P6+0t1Xxduo0rMkeCuwbK7oS2b/APPnRMKPFUHfoJvWawbQHHDnDmg6sM3NXgbQSfGWQHdJfpVNKiRU+rYsBCEq1KFPlyNhVKJucHb2Kw8yfmF29gXUMFNt++NPFu2cdfNv/Q8d10FM0opIRlkPQDaNu7JKwz6vSdUsKDP5mcqaMnxKj1f7hb3E5MHR/0V2eNYXtLNa0uO90NBqUaIvnloClE9eIk4Gi9gcdHnkducxkfGH+LRwFJ7SI5qYZzDVcyKjqlVzOvLm1eA4rEbzOv7rVr7nXe27XU0IaGMAruzzhhS2vv+7YZtQSvXHxq9F4KwslMBCO9TKtSc8+Q6XxdtpWfa/fgkvcWR1NB5UXoMz7n4qwhzN+zi3O2nsOyUfu6xSUkBjOLQcyknQaMxHX/JCeRbc3VVFj9+TaigkK5d+j0wOoPRVHY3FTJWwWrkRWFFTV5XBi8Bn317/y9F/6j/P9IGnDkQ+tCcOwEZyG4y8FTA54m8LWD4tx3/P6kIFAZQJsI2gQISgV9fwjOhpCRoMsAlQqnx8WT67/Gq8iokJA7rvW9QyZHN5+Kum+xKfuyjWaGRXFD//Gdnuq9wnXEux5gpvvfeLTFpDO20/7MMH8xtv3njOS11pHZkacjWh+KUasnv62OFIN/GajL58XidnJdv7HYvR5K2pvwyj4igkKYEJtBP2MMUnfLrY6RRqXGGbMYD9UdWySMmcsZx296/bmq3aVADNnG3ivrIMsyZ71Zy+pqCwxr47q0/icsEFm+x0Fpq5crhoYQdpznpQjCmUAEI8eBVqXmqszRzE0dxuamSpqcVlSSitSwqbytfE9aehlnt8xgeetybt19K+9kv9PpfAnplAhEAFbtN0fkun5jOy1DlSSJ0TGp7DE3UFY3jxs076CvrOnuMqB4oP6f/se+K4CkB3UYBGWALgF06aAfAMFDITQHdIndX68bBm0Q42MzWF2/BxmFIJUGtaSi3JdJixLOBNVKinz7gpGL0kZ0yekRpNYQqgkiLTQOiOOdgjWE60K4NCMHgJlJA/nH9qUsqcpjWGQiGxvLKbe2cEP/cYGfycykQSys3ElscBjRegPzy7cTHhTMxLhMtL3YG3EoDizM57H9tijs5gfqyA+kju8tTqUBtRLTa9eTZZnRL9ewtdZN4qBqaiR4ZPDIXrv+odw1rwmVBG9cKnpFBKE3iGDkOArW6ALVbfc6j98zn9/zQM406tbX827tu6Tp03gy88k+aeOhWGmimh1EkkYEyV0qw1bb2gAI1QSRHZGACxv5jbeQUj2PcN1EVJ46rnBVotIdRql6bSIkPNIRaIwETXivv57LM0ZSYmmk1mHp1GulKGomq1fxkzyLcqUfMxMHMjii+3pL+2tx2TvlVMkyxnD7wMnML9/GvLJtxAaHcWf21E5Bzezkwbh9Xj4o2oDd66afKYb7hsw4oYEIwA88gyMwacZPhZplvMj1vNFrz+P2ukHdSLhyeDVuFEXptJy56/Vksl+qpqDRw9XDQlkeWo1J0THYeGISjq2tcFLQ5OHCQcHHfdmwIJwpJEVRul+zeBKxWCyYTCbMZjNG46ldDVNG5kHCUZD5u9xExuoM6tx1vD3obW5NurWvm9fFZzzAcvb2VkiEEUs0GcSQRRTpLC9pxmkPQR/sICezjejaLzi/yoNXBW3GwcTpz8dMFJurlpOpKiZFVYEqMNRywK9eUCaMOHia9t5g9Th5r3A921uqA9ue1D5MgqoWj6JlQ8xHTMq4/LgMjZwIsiLzbfkO1jeUdcxXCWZSXAbnpwwNvKZmynmC/vjoJomarCFy2ztcmDiJSQfUMfqxppAlVXmY3Q6SDRFckzX6kKniXy77inv3XM70kIf4ceLzBz3W5fPy3/zVbNvv/83+vF6JhWvHUdcucfuYMP4wR0/ago+4LCmDLycdv8yu+xv+UiU76z3UPJpK/HFMpiYIp4PD/fwWf0knmAoVc3iMeTzCEtVf2Tl+JxlrMrgt/zZS9CnMipp16IucQAOYsV8wotBOPe3UU8ZG/5YMH5IEYQ64JleFXpZxJNzBV0l2Nqu+4Ske4eeKOr7xpYEPLk1O47zQHdD4X7BtAtSwd7msu8a/yuY4BwEGrZ67h0yjzm5hXUMpzU4bxnYvKKCRPExuvR3iB0LIsGN+rsMJDLpT0FbP5yWbqbWbiQgK4fzUoYcdGPxQmcfK2mJuHTiBhBAT5e0tvFe0jmC1jrOT/HVhvuaRjnwsXUmSTFJWLv/bpsak0zMkwj8UtrGxnC9KNnNdv7FkhEWzrCaff+38kadGz+1S7Xl/H1b7JwDfnnLxIX5WCm/mrWJnRxp6AJ1KTbBai9njxO1R8elPOThccMsYDf+5PIa7N68C4LcDRxz02r1la42LHfUeZvXTi0BEEHqR+Gs6Qr/fMJ9ml63L9mkJ/bmu39huzuhaq+SSjOvRR/6FJTzHBbon2DR2E6PWj+fSrddyhe7PDA/3XysuuO97gYYyBz1hOGnvtF3ZG0AoMKkRriv3r3Z1pbxCSMJdzKWO1XzAc77pmKv+CPjXzYxJGAH6yRB7BzgKoOl9aHobPHX+CaqyDdTHnkvjcMSHGLkkfYR/Mu2mpkAb8Vkhbxpk/+yfBHsMDicwOFCT08rLu1ZwVkJ/bhs0ify2Ov5XuP6wA4OS9kZyopIC9XCi9QY2NpZT2jH0UclWNvFJj21WJJlS4wfkxMxlaXVB4DmXVuczJT4rMPR4fb9x7GypYU39Hs47SD6SPHs+EMa1iVMO+rPa3lwVCET0ai3XZI1mbEwaGpWavGYzY//dgMOlYlS/KjIzbChKCvOrywhVaxgfdWLmWN3+lb92z38vjz0hzycIZwoRjByhR3NmB1ZhANTYzLy0czmjo1O7PX6PpZG38ldzScYIhkcmsaGhjDd2/8yM0b9nWfCjfMdT6Fqu5oqgJ9gU+Ruqwu9lUOMX/Gvnjzw5+sITPo/gQBp0DGQm25jPgcMqYR64vhRy2qBOjucFz+/xlsUywZ5LtN6A0TiBBsMaFNNqaBnHmJi0zkm7ggdCyl8g+U9gWeFfqtsLgYjT62F++Xa2NlfS7nGREhrB1Vmju0+6BuAsPuC1+VB8FqS8s2Dwan87ObohikMFBt1ZWVtEtN7AlZmjAEgIMVFsbjzswCAzLIaf64qpt1uICzFSaW2l2NLIlZn+CZ4SKtIYg51WXNiw04qXzplOrTSRFO1gSaEd8Jc6qGhvYU7yvuBMJUkMCo+nZL+aTN1pl2uRiD3kSpe9uVYAbh4wgVEdxRgtTpkr37dgc6mZPbyBtORqqmywqamKaqed2XHHlpX2cOXVu8mtdjMlLYjUcPHWKQi9SfxFHaGwA7qjf6jcTYzewABT93dKy6oLGBKZwOyON/GL00eQ11aHsyoDfX8ji5XnUHvqCR//NVM0/t6Gf5fexoW+l9jaVMnY2PTj+np60kw53/Ik25mPndYu+4e1wo2lEOwDS9T9PNcwFSsu8Lr3Je1S3QYT18OA/5C2azY39BvX/ZNJajDN9D96wftF66mxm7l14CTCdcGsbyjlxR3LeXL0BZ1S9u9lsWzlwD4oCR+Kt80fkGSvZmO79qiGKA4VGHSnxNLEoPDOk2ezIxL4rMRfp+hQgcEd2Wfh9Hn4Y+53SJKEoihcnD6C8bH+2jPJDOfRjmE2gC/5LUt4jhnVC7kwaQJu/D1/VSoJp28lbp8Xu9eNjNLl99+o03dkq+2ZrGokRD54D5OsKBSY6wF/WYWcjrT3myqdXPtpAw1WH8tvT0AXqvB+UQkAfy/YBsCDA4Yf9Nq9ZW+vyNuX996qIEEQ/EQwcgy8so/1DWXMShrU4/h/SXtTp5wT4P9g2dpcRjaz2Sx9jifjjU4rMlp9zSz3/Ztp5oEnNBix08b3PMMGPsSMfwluCBFM4GZ28T3tNBDkgysqYGojNAUbMA5cjTZ0OI8mWZlfto3cpkp8ezNnynq0VVfgTf2UfsOWov9/9s46PIqr7cP3rGU3unFXCMHdKdbS0tIWWqBeatRL3d3fyld3d4UChSptcfcAAWLEXTebZLM68/0xYZOQTYhBkNzXlat098zMWZvznEd+j/K8Yzp/URL5NWsPO8tyUAoKvk7dwvjgWC6IGsTeinzWFqbJYZkjSClax3BJgfKIZngCDrCXwcFJ/GN7CaVCxw/p24nw9OWyuBFtClGcG9m/VcPAFUabuZmB463RYnbY2mQY7CzNZltJFvMTxhPmoSe3ppKFGTvRa+Ty4SMx11fU6MRAPPDFA7kqJQ/XSaTtYVPFPlBUEaPp3eo4hyQi1ufS+7t5oKj/PT23ykB6uZ1tt4cxKlJLiqHBc7a+vBQ3hYLpIV2nXdISmRVWNuVYGBWhIT6wc80Ke+ihh+b0GCOdILE8jzq7lfHBrSwsR/QqcWCjzPt3CkPeoIBycOZrNoQJrgu5jg9yvuL1oie5Iv7v5iftQuxYWcN7rONjSkgFQI2OwczkfJ4imhEALOFhDlW/xrUZIj422B86lAHhO6He9R6g9WR+3wlcYjWTbizF4rDhpdaSoL+Mx1jFGuXbzOBxPDl2nU3/zj3IhiK5Guea+DGoFUpnfoZaoeKQsbTZMWXmGhx1B+Q82iNw1BsoNkcdFmsp40MmMym0DysLknl3/2r66UOPGqJor2HQFSzOTGR6ZH+nIRvuoafcUstfuQdcXrMOI5KkwGRt+rjRakarVKNRqlAIAgoEqq3mZmN81C17ht7IXATAjMDJrc5ZJSjQKlWYHXbyaiuxOOy4KVXcPtaL35JN+HvIH1B6/WdoF0WKrVbO8D96+XVXMH+x/Dl/PrvHK9JDD8eCHunATrCx6BAD/ELRu3D9t8RC7mGb7+NImvqcARcOlRfjX2SS9hJ2Wldw+b7Lu2i2DYiIbONH/sdI7kTHL9xPGRn05gxu5zfexcTtLHMaIthNTEv5l/sPitSoYEPfqxkQudtpiDTGW6NleEAk44LjGOgXhlqh5Hq+Q8TBp1zS5a+lMXJ+RgRxXgFsLD5EL+8A+ulD2F6aTYaxjCprXbNj1hamESbkoXRWlsiLngUtaxznYOuzileFbymWwhgVFEOYhw9X9R6NRqHCaK2jyta6fkpjwyDcQ8/Y4FjOCu/LX7kHWjzGW63F6GLRP2wYeKrdWjUMrKIdxRFfLIUgNJOuP4wZI4KoIsVQ3OTxg4Yi4rzlnBiVQkmUlx8HG40RJYnkRmNcsaVqJ0hqHu7V+mcvCIIz78rssLMiT35/+ge7AZBcYqPKWseaAtlgTjLJJcm39+qaRn6tUWC0sybDzJAQDYNC3Y759Xro4XSkxxjpIOXmWg4aijkjpHX385G9SsZzA272AI721l/gcSODNZP4ueRnHk57uCumTCrreIuzuRMdX3AluewilAFcxSe8h4UHWM9gLmh6UOUfkBiIV9VutgcHsL/fo5zp+U27rtufc4hmFCmsIoOtXfJaXBHnFUiyoZiZ0YOQJHh4268kludhtNYxKjC6SSjsMBnGMnyF+pwYTQyEPohBCKdADGOhYx42j/HkmZpWEh3OzzC4MG6OpL2GAUCctywp35j2GAaD/cL5MzeJfRX5lJlr2F2Wy395yc48DIClmYl8mbIJkJv9CQqRMnMNizN3U2SqYk1BKjtLc5jWqOJnWnhfNhSls7k4g0JTFT+kb8cq2puVHDemxJYDjkAC3I5eGTYlrI/z33/kJPFZ8kZMUhlaFfyWns9LiSucv6UcK6gEgcsij413qTE3Li5FAj6d3aO22kMPx4qeME0H2VR8CC+1G4P8WpcjP7JXSTQjCD74IdVxb1LpscnlMRnGUjJrKngx6h1uzjmfV3NeJVoXze0Rt7d7noUc5HeeJom/sdSX5/oTwziu5xweQEMLXh3RDoeugMpfQNAgxH7NmMBrXI9tA7eyhMeI5jMu5X9kd/g8rXE4P+PtpNUIgmx6TI/oz8WxQ/nk4IamlTz1GG1mvhUeJ84nmnP7XAqCQHWtgVjjRwQpDFhFByISAjTxRHhrtJjsNsIayd+74rBh4Kd1J9Tdh9yaSv7LS2Z8SMMiujQzEYPVxPUJ4wG5THxNQSqLM3czITiOZEMxO0tzWDCwIdQxLbwvX6VsJsbLjxgvf1bmpzgNA41CxbLsvfyQvp1qmwUfjY6Job25IGqg8/gqax0VFrlSxkItCkHBggFTWJSxi1X5Kejd3JnXZ4yzegdgVGA0NTYzy7P3YrSaifD05a4BU1vt7GsTylBLbQulRHn6MSt6CMuy5cTU7aXZbC/NxuIYzRdbRa4924QggI9aS4m1mmG+Ace8F01ZjZ2/0+roG6hmVGTL4ageeuihc/QYIx1AlCQ2FWcwLjgOpdD0ZtiWXiV5VXYe43eS+YrFPIgkSdAoefLjg+tB8uO3nP1MF5/hB+5mQcoCIjQRzAyaedT5GSnhD55lJ4uoQY6xexHIOK5hBk/hzVE0Emp2QMq54CgH3WDouxLU8q7w79z9LM3aw5lhCVzWa0SLpzhSW2V27FDG+V3HJr5gNe8xRbqD37L3sb4onTqHjV7eAZ3WVmkpP8PXzZ0DlYXMjnVdwVLrNoytNVbOrU+aNOrn46j6lKmazcB1AAS7e3PQUMzQ+nJTSZIwO6ythigALu81sl2GAcj5N501DC7rNaLVz+e6hHHOf1sxoURFgj6YJ4a3nmQ8NSyBqWGu9VGOpMJqAEUpAYJr/R1XzIgagLtKza9Ze6hz2DCZ1UiSgNWuJiUvkJkDBXDzR8wtZX5M1/bPccXNS8uQJPjooh6vSA89HEt6jJEOkGwoosJiYoIL93Rbe5VEePgSwb30YjwfMweDVCCrhgGNk1k1CnfmqP7HEsfDzN43my0jtzDSZ2Sz61oxsYL/YzNfUUEWAG54MYLLuICnCaVtfUHIvre+WZ0AEf+DsEedT2VVl7OuMJ2II5rHHYkrbZUPD6znkWGvsMPjZ5bwEHV5E1lVkMp1CeMI0HqwPGtvp7VVDudnuKs1VFpM9PYJZLBfOIsydhHp6ev8vBp7IrzVWoJ0XuwozXZ6IrYarCD1ZzT/oa3PzxjoG8aaglSnJ2JPuVxp0lqIAkCrUrfLMDhMVxsGrWGjDiXqTp/nSF7LWASCg7E+Lb92V0wJ68P44Di2l2bz6bbDITKJrQd78dk5kVyRuBwFcFNcG7/THcRoFll20EQvPxWT41r2/vTQQw+dp8cY6QD9fUP5eOKVLp+7f3BzOfcRgVGMCHQtihbLGO6xbeNl02zM+sP5FI4mY7wUgdynf49Xy25l4q6JpIxLIUobhYjIRj5jNe9RSBISEio09GUaM3iSPkxq+4syZ0PyFLBmgSYC+q4BbUOTP7PDxucpm5gXP4Y/c5NaPVVL2irrCzK4NP5tvuNG/rS9zcyoB515DNcnjOOBLUs6pa1yOD+jzm5jadYeDBYTSkGBWqHk7oFTUda79Bt7IuK8A0iqKGjiiVAKCgJVIxkgfQmWdKK8/LCLInPjhrE8ey9VljoQBM4I7t1qiOJkwYYFJV1frrq8ZA0A98S0P3FZo1QxIaQXT5UUIGBGAuwOuPTHIpJCy+nr5YvqGIdobvu1FFGCd2e2IJbXQw89dBk9CazdjCiJfHVgH3X77kQqGQuAX1Aeg/zC8XPzcI4rN7rzUMhrWEQLE5P68ZI4jgW48T23UMh+ohjBfH7iHeq4h3/bZ4gUvg57e8mGSOBtMDi7iSEC8GP6Dgb5hrWpk21GtWvRrozqMs5gPr72eGyRvxCib2jSplNpiPUKIKO69VLZ1jicn+GmVHHvoDO5se8E1AolE0N7o1PJi+3SzEQkJKfRODk0njJzDUmVBdzYdzyXxA3HJjqIj76h/r152Zm4qVWquWvgVMaH9MJNqeSC6IEtTeWkwo4FNV2fD5FpTgeHH5MCOiapX2FysDbD7PQTOiRIrKzALklcHd164nhnMVlFFu6rJcpHyXkJHkc/oIceeugUPZ6RbmZfRUG9NLiAb+bD+Pq9hSV2BbfzKoIksLU0i69TtiB6HKIyZCnzE1QoVSbSHVsIl/owSbiFKSxA1ZGdrd0AyWeBaRco9dDnT/BqHjLYXpJFTk0Fjw07t02nPVJbBeRy1ar6BNAL6j7jG910luquZzA7G8ZoGsZ0hK7Mz+gbHAf5PmD4g1FxX7Y7cfNkwoEVNV2/+6+TSlBIHe/h8nuyCceRRUf6YrCrGKY6tsbIXb+VYxfhjQt6ckV66OF40GOMdDPrCtOd/76i90g8VC/yGmewmyX0E6ZRGPQJSv/3ERXViICHGISpOIavD2xjiIcnz42+r2MXLvsZMq8FyQL6mdB7MSiafx0qLLX8nLGLewZN7bI+OSFSP8i9iMKYn9jDcoZw9KTcttDl+RleZ4JhKVhyuyw/40TEgQ01nTesKsy11NjlHjeiKCIpSvAUG5JX29vBeHFSLUqBpgaJvgSqApi/qJL993qg18nfyY70DWoJq13km13VhHopmTOwxyvSQw/Hgx5jpJvJrZU1LjxUGgb5haMgghjG8C3zsWPBjgWtoMdWPAmy5zBEP4rrE8ZhKL6URaWLmLVnFsuGLGv7BUUrpM4C498gaKH3EvC7uMXhOdUVVNvMvLirQQlWRCKtqoQ1Bam8f8ZlKI6oKDpSWwWoX3xkb4m3Wgf556KI/pVvhOv5P0pRoMBoNRPpqW/7aznWhD4kGyOFr0LMu909m2OGiAM3OrfoVphreXLHb9jrWwEcsqaDwoTOHkyFuRY/rUe7OhjXWkX+Tj3CM+JWC7paKOhNQbWD25eV8cPlwa12MG6tb1BLPPBnBTYRXjn32KkFnwo0Nj4BPFVu+Gl7jLceOkaPMdLNHO7HoVYonf04xnENv/AA5/Awk7gFU50Hz6b90WT8wsELGb99PMvLlnNnyp28m9CGxbJ6PaRcAKIRPMZAwj+gar2Utq8+hKeGz2jy2NepWwhx92Z6RP9mhgg011YBOFhZRFz9TjVA64G3youwirtJCXiFZTzBufZnyawuY3LosXW/twuvsaDwgMqlp7QxIuFA00ljpMZucRoiAAdt+0ENsaq+1Ngt+OHRrg7Gf6easDqOeFBfAg4FGOWQ0qFyO9B6B+PW+ga5wm4X+WSbkQB3BfOGe7Xr2NOJI41PkCX9nx95YY9BcgJyMhiOPcZINxOg9aDaZsZgrSOnpoIoTz8mczuTuM1ZIrylYr9zfGAj4a4NIzYQvzme9/LeI0Ybw/3R97u+iChC1k1Q9gWgguh3IXhBm+anVakJV+mbPOamVOGhciO8vsS3Ldoq2TUVXB0vd+0VBIGzwvvyd5odN+9w/lW9QV7aZPRuOqeOxwmD5xlgXAG2clCfmlUVEhJaunbhLZfyQdTRT9WQCN2eDsa7C+RGOYIgEeQpohI05OtL0AtevHKpgl1ViXw0efZROxi3l8f/rcTigLfP6fGKtMaRxieAXRKdhmcPJw4phmLe2rcKsZFkxIloOPZU03QzjXUqfkzfgdkuV5gcNkQKaqtYkXew/jEY16gpn0KhYN+Yffir/Hkg/QEWFi9sfgHTQdgTIRsibr1haGabDZG2UmExNen7clhbZX1ROs/v+otdZbnc1n+i03gBmB7RjzND+yIcuB8HdjJ9P+GuAV2Xl9JlhNwr/7fote6dxzHCjvx909JxsTlXWIVSEIPQqBr2O+dG9mdkYDRP7/yd2zb8yIu7/+Ks8ASXHYyfOtOXtPsjeeSiA3w5z8rc0SJ4GJngF8q4KC2SwozVYafGZmmxg/HR+gYdiSiKvLvZiF6r4JYxXft+nGoUmYwuH3eIosvHezj+1NqsfHhgHW/sW9nEEAHZcFyevRdROnE+rx7PSDczOiiG33OSqLLWkVFdxpM7fmN8SByBWk/SjWVsL8ly7kCG+UcSqGu6g3VXubN3zF7iN8dzRdIVhGvCmeA7QX4y7xkoeB6QIORBiHq1S+Z8pJZKe7VVQPaOzIwZzEwG8yLfkRuyhDoeBZoLunUr+ukguEH5Qoh8qbtn0+XUInsPdLQua99eJEU5CkdMk8fa08FYoxLoHaBGmSX//35SQRSIsjYtOe9KXlhVRZ1N4vmzfY/ZNU52rA4736RtZXup65YOnyRv4M4BUwg7ijBiD8eWOruNN/b9R16tocUxm0syQRC4Nn6MywTy402PZ6Sb0SrV3NF/Mu4qWQHTaDPzd+4Bvk3bxubiDKchEuXpyzV9xrg8R5g2jC0jt6AQFJy5+0wOVW2BvQOg4FlQ+cOAxC4zRI4Ft7IEAeGYd/XtMB5jwJoJ9prunkmXU00JAO7oO3Wexjtlg70SFBV41Jf1SvV5Tp3pYLy9ugBqfMkoVrarg3FbEUWR/1tvwEsjcO+EHq+IK0RJ5JPkDc0MkcbLWIXFxOt7V1Ja17S5ZA/Hl+XZe5yGiIdKw3mRA7il30Ru6DOOUQFRzs9sc3EGu8vzum2ejekxRk4Aor38eGTIdIb6RzTrLKtVqjkrPIH7B01zCne5YpDXIP4c8icjBSvqg+OQzAfA/0oYWgQeg4/1S+gU/kQzmnmUk8U6Pu7u6TQn+A5AguJ3unsmXU610zPSMW+AJEn8kbOPz1Mamj7use4BQSJUIXsxfsveh010dLiD8bayPKpsVlQ1ARyqsLWrg3FbeXOjkRqrxAOT9Me8+d7Jyo7SHPZVFABy3thlcSN4e9wlfHDGFdw9cCqRHvJ3qMZuYVHGru6c6mmN2W5jU3EGIBdGPDTkbC6KGcLwgEjGBMdyY78zuK5Pg8TB6oKU7ppqE3rCNCcIwe7e3NZ/EpUWE2lVJZgddrzVbvTzDcVN2YaPyW7i7OLnmeYO20W4zuLL37FfojlJbqzz+JRdLOIX7mM881GdSF9N37mACsq/g/DHuns2XUpNvTHi0UFjZGVBCsuz9zn/X61QUixlg6RgqGYQAPsqC/gubWuHOxi/myafP9QRTFldXbs6GLeVF1YZcFcLPDG1a8NVpxJrCtOc/56fMJ4h9a0cQFZYjvHy5+kdv2O0mdlbUUC5uRb/EyhB8nThgKEIs0OuNBsTFENIfWfxnOQqvAPc0AdoGRMUw5+5SRTXVZNaVUK11dws7+p4c3KsVKcRvm7ujA6KYVJob4YGRLbNEDH8BYmBULMewftM/g58nNXWSoZvG454kiSUqdAwl9exYuJ7buru6TRFoQD3YWBOlnVaTiFMyGW1nrRfIKzObmN51l7n/18QNZDXxs7GItSCI5R7BkxzJiRvKcliXHAcwwOi+CF9O8/s/INfMnczMbQ3s6IbPHeuFHKTzSLBaiUhvqXUWgWu6j26WQfjw32DXtj1F7m1le1SyP1wSxUGs8id4717vCItUGe3csgodwAP0XkzuL48O6vCxtc75ZCMu0rDpPrSfAmJ/ZWF3TPZ05zGIcs4rwAcDpE/P0vjpkG/cd+kFYCcsxfXSBSw2mZpdp7jzQm0/eyh3YgiZFwBFQtBUEPsVxB4LU8Bhyy5fFP0DdP3TOffYf9290zbxGRuYwWvsIWvuZBn8aPlBNjjTtBNkLUdSj/p8mqk7qSWetG9DhgjW0sysYjyDmx8cBwX1hsVFtMEdMrRjAuOw+yw8dOhnc7x1/QZ2y6F3FxTDcUWCxeHxxDvNpDtqVXoCW92XGcUcp/6txI3FbwwrSdxtSXq7A19pMLcfRAEgYxyG4PfycNsk5gzwANPrYIwd33DMY5Ty3A/WXBrVMG28uMs3nx/J4ZS2di4/NGG1hgl5oYcOG1bNr3HmJ5twMlK7S5IDJINEd1AGFoAgdc6n/56wNdM1U/lv4r/uPHAjd040fZxM4uQkPiI2d09laYEXA8ooPTz7p5Jl2LCAIAX7e8hk16/UwacO2Kz3YzoCCFY6w7A+OBeqOqF8RqPbyuvJicC8GDCECbGyG7klRl1rRzRPr7ZVU2ZSeTmUd6oVD23w5Zwb5SvllNbyZKkGga8lUutVeKLuQF4auX3LqemwjnOQ+V23OfZA/TxCcK8TyJrroN1zxRgNjkYdW4YQVEenHWlXEafVV3u9HQF6bzwdXPvzikDPZ6RY87agjTWFqZRbpGt0FB3Hy6IGsRAv7AWj9lZmsOy7L2Um2sI0nkxO3aoU7USQMq+D1vR+9Sh4zv7Q1h153ClXUOwuul5/hv2HwO2DuDzws+J0kbxVNxTx+Q1diUxjKIv00jmP5L4i4G46BnTHShUoBsApn2yR+oUceebqQLAi8B2H2sTGyRS9Rr5ZvZJzgqQ3OnlJbvu3ZQqdCo11TYLVvFISdWj82tBFu5KFeP8Q6jxkEOO23K7zqX88N8VqBXw2owekbPW0KrUJPgEk1JVzN97ffhfulyF9ep5flwzXK4+MlrNrC86BMiJyQN9Q7ttvqcrFcUmnpu7nvwNIgjgdT4Me8CbzTOKuOrRQQgKSCzL5YdDO5zHTA6N7yntPR3Qu+m4OHYIjw07l8eGnktffQgfHFhHQQv134eMpXyWvJEJIXE8Mfw8hvpH8OGB9eTXGsCSDYlxCMVvckAaTE7kX8wa+ghuChXvJK1usjiALIq2e9RugjXBPJ35NF8XfH3sX3AXcDOLUKDiK65ptdLiuBNwLeCQE1lPEeqQS3K1eB5lZHN8GuVkJBuKAFhdKpcJ3h8re7YKag3OeLS+nV2OK6xm8upqmeAfDICnVoFaCQdLbUc5sm38sq+GomoH1wz3QtPjFTkqU8P68PeOPuxKjwAkpsRbmT9aTZ3dxraSLP5vzz/U1kuOD/OPRH8C7LZPF+x2kbdu3cJlYYtJ2lBK/Fhf+i53I/ABBZuvr8BWJ7JtcAr3bV7MhwfXO0Uqozx9mRRyYrTg6PkFHmOG+EcwyC+cYJ03we7eXBQzBDeligwX/TgAVuanMMAvlOkR/Ql192FWzBCiPH05cOg92NMLyZrJj45bKQn7ikFh44jw8JUb51nqSCzLbXY+rUpL0pgkPJWeXH/welaWrzzWL7nTuKNnGvdRQxm/8Ux3T6eB4DsAAUo+6u6ZdBlmjEDHdkWjA6Od//4zdz+1Niu7DEUg1DI9qD8OSWRJVmKj8THtOv/rKXJy7D3xg5yP+euU5BnsHZrvkdz3RzkqBbxz4akp89+VbMup46wP7OSU+HH4+xIbk8ij25dxz+ZFfJ6yyZmDoNfouCRueDfO9vTiz8/TuEj/M79/nIZ/qI7X157Nh5sv4J4xU6l4RsCWJY+rc7NS52gw5Ht5B3DXgKloToB8EegxRo4roiSyvSQLq8PeJJO5MRnVZfTVhzQ8YK9iruMlptU9BUpPKuJWssY+kX6Nwjw6lYZYrwAyql334gjQBLBj1A5Ugopz95zL/pr9LsedSFzES7jjxwpeoo4TREBJoZUl9U075FDNKYCFGoQO3gZ6eQcS5SmHN0rqqnlh95/k11WhUFawpTSLlxNXOHUpdEo1Y4Oby763xs+5h9AoFMwIazB6ovRKKs2df+//Sqklt8rBZYM9cdf03AZdIYoSvx+sZez7eYz5sJDKusNeSgl/71rU6uafQ6SHLw8OOfuEyEE41UndUc7VcUt448YtiA6J298ayU95cxkyKYTqSgvvXryTqnUN3nJdtRu+GneG+IWzYMBkHhg8rdvLeRtzYphEpzj5tQZeSfwHm+jATani1v4TCfNwrWdgtJrxPqwcWbEIDs0jTrTyu3g5Fw77BkNNJVDUrDW6t0ZLlbXlXhwJHgmsHLaSKbumMHr7aA6NP0SIW0iL47sbBQqu5Us+ZBafcTl38kd3T0nG/0pZ2dbwO/jN7O7ZdBorJhR0rB+QIAjc2Hc8/7fnP6ptZnLMuTg830Nh78XXqQ2N65SCghv7TmiSBHk0THYbGbVGxteHaA7TP1jDtjwrFSY7fu4dv33dubwchQAfzGp/FdGpTp1N5JtdNfzfOgOHKpp7oZSCwFWDgpgaOYDs6nLskoi/1pNxQbH08Qk6IfIPTmWMFWaev2Q9u1cVIQgwbV4s9302Fo1G/j2U5tXy0LT/yE+vRmoU5b4lfBIDxrQ/Uf140WOMHAeCdV48Mfw86uw2dpXl8FXKFu4fPK1FgwTJBinnQ9WfIGjZ6f8Za8v0XKjo3Mc10Xci3w34jiv3X8ngrYPJGp+Fu+rE3cEMYSYRDGE/f5JLIpEM7e4pyY3zCp6F4rdPEWOkFmUnbgPBOm8eHnI2X6dt4sXSR0CQQNmghhrm7sMVvUfRx6d9N8H30vcjAbf16t/k8bGRWr7aWcOqQ2bmDmp/ngvAmow6DlXYuXiAO97aHq/Ikdz+axlf7Wq59YFDgmm9vLgw5sTdzJyKiKLIh/ftZNl7KYgOiT4j/Xl68SSCoxp+B1n7DTw07V8MpRZER9N8u8ri9jWOPN70/BKPAyqFkiCdF9FeflwcO5QITz2rWpDgjVZXEJ89RTZEPEbDsGIK1SPxqfeEeKvlJECjq14cbXC5XRFyBS/3eplSWylDtg054UXRbmEpIPAxc7t7KjIqH9BEQc3m7p5Jl2DFjBL10Qe2QqDOiyLdvxiQc5ZERTVjQgO4f/A0nho+o92GCMA32akoBYErIpsm150ZJ3/HN2Z3/MZ6269lCAJ8clGPV8QVC8b74KFu3bsxLurEce+fDvz3fQYX+S5k6dvJ+AS48fI/Z/HB9hlNDJF964u5c9xfLg0RAEPJiW2M9HhGugFJAvuRZY6iCFm3ci9fY5a0EP02hNwFwMHKImeOSYDWA2+1lmRDEZGeskhTnd1GZnUZk0PblhX9cMzDZJuz+TD/Qybvmsz6keu77sV1MYHEMoor2M4PbORzJjC/u6cEfnOh6A2oWgM+U7p7Np3CjhkVndOD+K30N17Peb3JY5J7Ln18zunYnESRg0YDQ/R+zRRR4wM1CMCewo4Jam3LMZNcamNGgo4Az57bnys+3mqk1iahFGQvyJHE+qoI8OhYaK+H9pGxt5Jn564lP60atZuC+S8N5YpHBvFX7n7+t3svRXVGNAolgWV6Vs0uxGFzXX2oVAkYSsxHl42QJH7L3sf6onTqHDZ6eQdwZe9RBOuOffPInl/jMWZpZiID/MLwc3PH4rCzrSSL1Kpi7ho4FYAvUzYRpKji/JobwVaAWd2Pp033M8M+nkGmKraXZpNdU8HV8aMBOU5/Vnhf/sxNIkjnRYDWk2XZe9G76RgaENnmeX3Q9wOyzdn8Wf4nVyZdyQ8Dfzgmr78ruJYvSWQJP3M3Y7i2+/vWhDwoGyNFr58CxogFtw6U9R4mqy6Lq/dfjUBDwzslSv4o+4P5YR0zHL/ISkZE4oaYvi6f93ITyKjoWHnvTUvLEIBPZ7dfV+VURxRFzvyskLWZFhIC1Nwx2cC9S7U4xAbDQ6WAybFNvSIn8gJ3slJrtPLC5evZ/lcBCDD5kmge/mY8Gq1870utKmFKWB9iPP1wSBIL9+zCa7wC4wYRSZKQjnB4C4JAVm4lG5P3c1HsEAb7hbOtJIsPD6zn8WHnEu6hB2BF3kFWFaRwXcI4ArQeLM/ayztJq3lmxAXO1g7Hip4wzTGm2mbmq5TNPL3jd97ct5KsmnLuGjiV/vWCQN7Vy5laMRdshRDyAN7DD3B1wtmsL0rn+V1/sassl9v6T3R+WQCmR/RjamgC36Vt43+7/8bisHHXgKnt/rL8Nvg3hngO4cfiH3k0/dGufNldigoNs3kVK7X8yG3dPR3QhIA6BKrXdPdMOo0DG2rap/9xGKtoZc6+OdSKtU30YBw4WFG+ApvYMYPh04yDCMDNvVwbI2HeKkpq2x9e3FtoYW+RlalxWsK8e/Zhjak2i8S/lsfaTAvnxGv55RoNL66UUCokZgw0ISAX9DpEGB/dYIy0qotUz+EF7qr40Twy9JwWdZF6kA3Czx7ZxWz/hWz/q4BeQ3z5Om0WTy6c5DREAO4eOJXxwXGEeeiJ9PTl5lET8H8eXjwwmRteHIaqPsymUMr/ddhF0nPKXMpGrClIBWSjcWV+MjOiBjLUP+KoshFdTc8v8hhzTZ+xrp+wlkDKVOaIB0AdCAkbwWMoACMCoxgR2HJfFkEQmBkzmJkxg1sc0xYUCgU7Ru0gdlMsL2e/TLQ2mlsjbu3UOY8VU7mTf/g/NvEFF/IselpWsD0u6GfKfWpqd4HHyaup4MCGpgVj5LFtyyi31DZ7fHJoPFf2HsWDaQ+yu3q3S2E6k2jipm2vcX+fa9q1SxZFkURDOQleejQtJGzH+6tILrVht4vtknC/cYksf/3F3B6vSGMyK6wMezefKrPEneO8efV8H0Z8vJtigz/XTsznvAQP7hgRx6U/FlNrlZoYI411kQBmxQzhoKGINQWpXBU/utkCB3B9wjge2LKExLJcRgXFdMdLPiFZtzibN27cQo3Bire/Gw9+OZ5xF0Yc/UBw6oeEhXuRcHMgnz+6m8i+3sQN9mXDkhwcdglDkbmpbARyt+U95bJQYZm5FqPNTL9GYxrLRhzrz6rHM9IdlHwOeyKg7gD4XQ5Di5yGyPFGpVCxb/Q+fJQ+3J5yO3+UnSAltC64iYVIiHzExd09FQh9RP5v4SvdO49OIuJAg+s2748Onc6rYy52/t0z8EwARgREsapiFe/kvdOiQq4KFVXqlHbvkn/Jz8QuSVwdHd/inIeHyzkuOwvanjeSWmple56V8VFuRPt2LmH3VGJtRh1938jDaJZ4f6Y/78wMYNZPezmQG8A1w7wYFCG/xzP6urNzQThvnu9P/6CG96+ZLhLyAndY8+hoC1wPkJNcxfwBy3lu7jrMtXbmPT2IX0rmttkQESWJhRk76eUdSLiHni8eTwTgzvdG8eTPk/i5YC63vjECr7lCg2xEPd7qBkkIo01WZW2vbERX0WOMHE/sJjgwBbJuBEEDff6G3j92e58TvUbPnjF70AgaZu2ZxS7jrm6dT0vEMZY+TCGLbRygmzsRa2NB6Q9VJ0dH5JaQcLSYM+Kl0eKj0Tn/9lbkE6j1pI9PEP5qf6bop+CjalqeLtSrc9qxc8C6ud1u4PfTZUG+u+MH0hKTYmVPzup2NMybv1j2inw+p8crcpjPtxuZ+lkhkgQrbgjh9nE+PLoyjX/36xkcouLrS5tWQSUEarjnDJ8mOiJNdJHqOZEWuBOZulobT120mhv6LSf7QBXjZkWwpOISrn1maLPE7db4MX07BbVV3NR3AgCrfsjCU69m+Fmy91gfqGXuvf3xmnJiL/cn9uxOJQx/y112a9aC1xQYWgL66d09KyfRumjWj5CraibsnECOOaebZ+Sam/kFBUq+5Orunor8+TkqoS61u2fSYSSkNiWw2kUHW0uyGB/cC0EQGOI1hNUjVlM5qZK8CXm4OeJBdOcMr3OI1cYiIJBZl0mCPrBdu+RtFSXEuHvh2YpA2hnRsmdkR37bGuZlV9rYkG1hRLiGvkFtF147lXnwz3JuXFKGp0Zg3z0RnB3vzp+pFby5VsLPHbbe1rZdeQ8d45tn93Cx70I2Lcsjqr8Pnx+YyfO/TsXds33fzx/Tt7OvooD7Bp+Fr5s7W//Mw2S0MW1eXLOx3hotRtsRkhA2c5fJRnSWHmOkqyh4FQx/Nn9cFCH9ckg9DyQrxHwO/VbDCSg2NspnFIsHLcYiWhi6dSjV9hNEhr0RnvgzlbuppoQ/eaF7J+MM1bzcvfPoIHZkF7yOo1c1JJbnUWe3Mv4ISXdBEAjXhmOVrOjEBF6L+YiMCRlUT6km74w8fDWebd4l/1uUh1l0cElE67LxGpUCNxWktLFhntMr0lNBgyiKzPy6kNfWVxHpoyTnoUgSAjUUGu1c+n05GrWdC8ft4t6tP3Pb+h9JrSphdUEKt63/EfHIEg1O/AXuRGPz73nMCVzIN8/sReuh4qlFk/hi/0yi+7UggNkCkiTxY/p2EsvzuHfwmQRo5Q3F10/tQRDg+heGNjsmzivA2dDyMC3JRhzmsGxES+1LupIeY6QrqNkCeQ9D+iVgyWx4vDYREoOh4me5/fyQPAi6odum2RZmBc3i7fi3qbRXMmjrIOxi1zQl60rm8H/o0PMHz2OmZaXIY477IFB6g+HEzbNpjWrkRVrL0W+EG4sOMcAv1GUnVlEUkRSl6GnoIeOh9CBI0z6xszfT5MZ4DyQMOerYAHcl+cajV2MUGe2sOmRmULCaIWGd01M52TFbRQa/k89vyXWMjXQj44FI9O4q7HaREe/lU2tV8O6Ffrww9myeGH4eTww/j2hPP0YHxfDE8PNQCM2XixN9gTtRKMgwcsvQ33nywtXUGKxc/vAAlpRfwqS50Uc/2AU/HtrB1pIs5ieMR6tUU2Wto7CsirRdFfQa5oeHt4YvUzaxNDPRecxZ4Qnsryzk37yDFJmq+C17L9k1FUwJ6wM0lY3YU55Hfq2BL1M3t1s2oqP0VNO0gQpzLTX2Bpewp8oNP2190p8kQc79gBJECxy6Gvqtg9xHZB0KBAh/FsKf6pa5d4Q7o+4k25LN6zmvM27HOLaP3t7dU2qCAgVX8ymfcglfcBW3s6z7JuN1Jhh+BWs+aMKPOvxEoqbeGHFH3+q4cnMtBw3F3Np/osvnfyxYBQoTQUJUm3fJPpqGCh6j1Uykp551pSmEat0J0h7daxjrq2JTztHDNDcuKUUCPjnNvSJFRjuD38mjtFZk3lBPvrmswVA86/NCCqsdPDHVl2uH+jU5zk2pwkPl5pQW+DJlE3qNOxfHDpWPDU/gtb3/8W/eQQb5hR0zXaSTFavZzivXbmLdomwkCUadG8bjP03E06dz4cK1hWkAvL6voQt7zUoRSYJrn5WN+QqLyZnDBXJjyxsTJrAsew+/Zu0hSOflUjbC6rDzXdo2THYrvX0COyQb0RF6jJGjUGGu5ckdv2Fv5KJUCQqeH3mhbJAYfoOaTQ0H1GyCXUHgqAB1GPRdBbqEbph553gt/jWy67L5pfQXLtpzEb8O+bW7p9SEEczlDwayl+Xkk0Q4LSc8HlNCH5CNkYJXIOad7plDB6l2GiO+rY7bVHwIL7Ubg/xcl1N/nrccgBFeA0k2FDEtvEEfpK3qwcGegdQ67MxrpYqmMQNDNGzItlBgtLeoGVJhsvNXah0JgWrGnsby5TvzzUz8qJA6u8QL5/jy+NSGz/v+P8pYlyVrizx/jl8rZ5E52Ra47uTHV5L45uk92Cwi4fFePP3LZOIGt/5baysfT7yy2WMXzfoZd2+JcRfI+T73D57WbMzxko3oCD3GyFGosVuaGCIAdkmkxm7BT3KDnAeQo12NxjgqwHc29FrU7ZUynWHR4EWM3T6WZWXLuDv1bt7u83Z3T6kJt7CEp0ngY+bwHK57/RxzvCaAwh0MS4GTyxipQU4a9aDlRUiUJDYVZzAuOA7lEW76w7vkvTVJIOl4IP5C3jmwukO75GXFshv/kb5D2zT3cVFaPtpazX/pdVwz3MvlmFuWliFK8OFp3Jl38b4aLvuxBIBFVwY1aS74055q3thgJMpHyV/XuW56d+SCdrItcN3Bzv8KeHneRiqLzLh7q7n/s3FMu7p5QmlXsntVETWVVmbc1LaWICciPcbIUSgzNxd9clL6JVjSXDyhgLr9gBU4uXdkG0dsJH5zPO/kvkO0WzT3Rd/X3VNyEkw8I5jLThaxhW8Zy7zumYjnGWD8B+wVoDr67vJEwUQlAB74tzgm2VBEhcXEhODmN9PDu2SDowAIop9fSId3yX3/WYy/xo1oj7ZJhE/rLYd5NueYXRojRrPI0v0mYn1VTO3VMYXZk53/ra7k8X8q0akFNtwSyvDwhnvR/mIrV/9cirtaYOeC8HaVkvbgmpLcGp6ds46U7eUolAIX39WX294ccVze2y8e3w3A/JeGHfNrHSt6jJEWqLFZ+Dp1C3sr8l0+v7FgH5E1jzVyWDZGBHMa5D4G0W8cy2kec5QKJXvH7CVmYwz3p99PtC6aOUFzuntaTq7lG/bwGz9yB6O5CkV35GSH3CMbI4WvQ+SLx//6HcREBQBetJxP0d831KVLGBp2yddnl+EmycZKR3bJKcZKDDYrV0W1fVcX5q1CIcC+ItfCZwuWleGQ4N2ZLRtapzLzfi7hu8QagjwU7LkrgpBGoawas8j4D/ORgNU3hfY0DOwkVqudN27cwsrvMpEkGHZmCE8umoi33/HZiJpNdpK3lRE7SI+P/8m7+e3Qnfv9998nJiYGrVbLmDFj2LZtW5uO++mnnxAEgYsuuqgjlz1umOxWXt/7X4uGCIBH2Ttgb01BUITiN6EuuesneJzxVHmyd8xedAodl+67lM1Vm7t7Sk40aLmIF7FQzU/c0T2T0J8HgptcNXUSUVvvGfGifVUvjUmpzgZFBeGa1stxW+OVlD0APJwwtF3H+WgVZFU2r/aqs4r8uLeGCB8l5/d1rS57qmK3i4z9IJ/vEmsYGKwm+6GoJoaIKIqM/CAfo0Xiw1kBjI48eRevE4El7xzkIv1C/vs2k+BoD97bdi7/t/Ls42aIgKxZIokw76mTOwzWbmPk559/5r777uPpp59m165dDBkyhOnTp1NSUtLqcVlZWTzwwANMnOg6I/9EYmlmIgWmKkCunJkROYBb+p3BdX3GMsw/glhSuVC5BCTqxbAb+UcENbjFg34WhD1+0lVYgJy0m1NT0eRPiw9bRm5BISiYsnMKh0yHunuaTqZxH3rCWc8nVFF09AOOBR6jwJIhq+yeJJgxAq17Ro7GKxk/giBxlt/4Dp/jj8JsvFVqBunb58WI8FZSZmpe3nv37+XYRXjj/NPLK2Iw2Yl7LZetuRZm9nNnz13haDVNb/GX/1hKSqmN60d4cfOYnq65HWXfhmIuj/iFD+7egUIhcO+nY/kuczZ9Rx3/qq0VXxxC66HqcJnwiUK7/XNvvPEGN910E9dffz0AH330EX/88QdffPEFjzzyiMtjHA4HV111Fc8++yzr16/HYDB0atLHEpPdyuYSWSvETaHi4aHnEKSrj0lLEuOUG7DXvIIkQZEURrF6HMPCzwJtvPyniQDh5M0Sd1U9BA0VRL8P+Z3zEs9j+LbhZI7PxE9zYuRIzOcnXmciHzOHh9h4/CcQdAfUbICSdyDM9e/gRMOMbHBr6LgA3+qKrSApeKjX5R06vsBUS4nFzKyw9t9IEwLV7Cu2YbWLaOob5lntIl/vqibEU8klg46uLHuqkFJqZdT7+VRbJB6a5MMr5zU3xF5bZ2BRUi3DQjU9zQI7SEWRiWfnrGP/plIEBVxwSzwL3hvdroaNXUnSxhKqyiycc+2xTZA9HrTrHbRarezcuZNp0xoyqhUKBdOmTWPz5pZd98899xxBQUHMnz+/TdexWCwYjcYmf8eLpIoCZ9OuccGxDYaI6SCkzYWMa1H6z+V54Xuetf0fH9fOps7/RvCZBm7RJ7UhAq6rh6Chgmi6/3Q+7fspRoeRQVsHYRXb3qzsWBLPGfRmIhlsIoXVx38CfpcCKij79vhfu4OYqYYWsp7aSqE1C8RAensGd+j4V1ISAXigz9GFzo5kZIQsYrY+q0Hb5OG/K7A64KXpXVNCeTLwb5qJQW/lUWOR+Hx2gEtDZPWhOh76qwI/nYJNt3Zzx+uTELtd5I2bN3NZ+GL2bypl4BmB/Jw/h3s+GttthgjA54/Kias3vnzyJq4epl3vYllZGQ6Hg+Dgpjee4OBgiopcu8c3bNjA559/zqefftrm67z00kv4+Pg4/yIjj584TmPRpl7e9bsH0Qb7h0DVH9B7IUKvbwnzkpP0JORk19OJ+eHzeTLmSQqsBYzYNgJRbG68dAc38wsCSj7HdcLlMUWhAPchYE6GE8RAOxoWahE6mfBroRSl1PFd9tL8THRKJWcEhrb72KlxcpXMYWPEbhf5aGs1/u4Krht5eoQgPthcxfQvihAEORn1hlHNX3d+lZ3zvixEpYAdC8KahW56aJ0/PknlIv1P/PlpOgFh7ry1/hzeWn8ufiHd29LDarazf2MpUf28u30uXcEx/VZWV1czb948Pv30UwIC2l7r/+ijj1JVVeX8y83NPYazbIpW2RC5KjXXS42L1SDZIPL/wO+Sps8hqxSebjzX6znmhcwjqTaJGXtmdPd0APAmiMncjpEi/qYb+sUE3gyIUPrZ8b92B7BQi4KOe/LMdjMoS/FVdCwvymA1k1tXywR/1xoXR2NEmKxiubO+Yd5TKysx2yWenXbqe0UqzLVctziPO5aX4+UmsOUOfybHNS9hPiz1bnHAkquDifXraRTYVpK3lXJVzBLevGUrkggL3hnJj7lzGHhGx7yAXc0P/0tCFCWueHRQd0+lS2iXMRIQEIBSqaS4uLjJ48XFxYSENL+hHDp0iKysLC688EJUKhUqlYpvvvmG5cuXo1KpOHTIdRKkm5sb3t7eTf6OFwk+DV+0DUXpWB12MK6VH9CfD8AhYynZNXJZZJi7D17q07PnxTcDvmGyfjIrKlZw88Gbu3s6AFzKW2jx5jeexspxTiYNvAFQQOnnx/e6HcSKCSXqDh//fvYyEKwM9Wp/iAXgjdR9ANwV3zH1XKVSgU4tkFZmRxRF3t5oxEcrcMe49jUdO9koM1Uz5P0Uvt5hxUtnZvbkrXx26C8qXGgiTf60kOIaB0+fpeeCfqdXZVFHMZSZuX/qPywY8zclObWcc20cSw2XctGd/bp7ak3445M03HRKpl3d8Uq2E4l2GSMajYYRI0awcmWDHr4oiqxcuZJx48Y1G9+3b1/27dtHYmKi82/mzJlMnTqVxMTE4xp+aSuBOi/6+8ou4wqLiXf3r8Gc/3+AEocmml1lOXx0YL1z/JTQPghC5+LuJzOrhq0iwT2BTws+5cXM7tfYUKDgSj7CgZUvuPo4X1wFuv5g2iN3az7BsVHXKWPkp8J/ALglalbHjs9NR6NQcEFox6sAgjyUFFbbeWlNFSabxGNT9R0+18mAySoy+v1y8sr0hPpVcdnkRDQq0ZnT1Zi7fytjU46F8/roeGbaiZFofiIjiiLv3bmNS0N+Yc+aYvqO9ueHnNk89NUENJoTy/uduqOcymIz42ZFnDLrT7vf4fvuu49rr72WkSNHMnr0aN566y1qa2ud1TXXXHMN4eHhvPTSS2i1WgYObLrr0ev1AM0eP5GYGzuMV42lmB12UqtKcGj2YsSLp7cuwWRvaFse6+XP+JATJ4u51YZ+bSS/1tDic3axeRmlQqEgcVQi0ZuieSLjCaK10VwdepyNgCMYzRX8yXMkspRCDhLKcdzR+F8DeQ9BxY8QcNXxu24HsGNBRcfd9ql1KYA3s0PGtvtYs91Oeo2Rsf5BnbqZ9vJTsSrDzivrDHhqBB4449T1iuQY7Ax7J4+KOpG+kcVMGpTZ4tjvd1fzziYjMb4qfr/2xAgrnMj8880h3l2wjbpqO34hOh79bgLDzmp/HtPx4tNHdgFw0yvDu3kmXUe7jZHLLruM0tJSnnrqKYqKihg6dCh///23M6k1JyfnpJcWDvfQc9fAqXx4YD11NiPu1JIkDmliiPT2DuS2/pNOmGZPR23o1wb+zNnPsuw9LT7/Y/oO7hl0Jh5HhKW0Ki37xu4jblMc1xy4hnC3cKb6Te3YC+kibmEJz9Kfj5nNMxw8fhcOugPyHobiD04KY0SL674ubaFGLEIgqEO/9/cP7UcCbo0b0OHrAwwO1bAqw0y1ReLps/Qn/b2nJTbnmJn6aQFWOzw5TUuxpmVDZF+hhWsXHZZ6Dztl35Ou4NCeCp6du46C9GrUbgpuenU4lz3Yue/kscZuF9mzppjweC+Co06d8vUO+Z4WLFjAggULXD63Zs2aVo/96quvOnLJ404v70BeGHkhGZnvIVRCqjAKvUZHtKcfk0Lj6e8biuIEco+12tCPoxsj6wrTmxgiWqWKUHc91dY6yixyLDqntpIPD6znvsFnojiiaVqQJogdI3cweNtgpidOZ8/oPfTz7L4Yayj9GMrFJLKUbfzIaK44PhdWuYNbLzDtOD7X6wR2rKg60TtJVJTiIXXMw/l1VipKQeDqdkjAu+KMaC1vbTSiVsBTZ+o7da4Tle92V3PtolIUAiy/JpjBkRZe3O16rNEsMuGjAiRg7c2h+LmfWOGFE4Uag5UXLl/HjhWFCAJMuTyah74cj0Z74r9fC1/dj+iQuPSB/t09lS7lxH/nuxGtSk1/YQsAc0a+yhzViZmlf6CykF8yXN+dEsvyiNS5I2RcKecz+F0CusHQyJCyiQ6WZTUYIhdEDWJ6RD80ShWSJJFaVcKnyRuptplJM5awt6KAof4Rza7V17Mv/w77lzN3ncmo7aPImJBBkKbjUuOd5Qa+4z78+IFbGcllx69vjd8VUPg8VP4Gvhcen2t2ABF7hwXP1pTtAoWRWHWfdh9rF0X2GysZrPfr9K49xyB7K/sEqk9JD8CT/1TwwmoDHmqBLbeFMTDUjazqOpdjRVFk5Ht5VFslPpsdwMiIHqn3IxFFkU8f3s2Stw7isEv0GurLM0smExrbcQ/h8WbZBymo3RScd+PJ26HXFafer7erqdkGCg84QQ2R9YXpvJO0mnyTweXzf+Qm8WvGJqhcCgUvQtJQ2BMHuY9D7W6QJHaX5TpzTYYHRHJh9CA09eXKgiCQoA9mXn0beIC1ha46FctM9p3MN/2/oVasZeCWgXL5ZzehwZ0LeBYzRhZyz/G7cGh9Z+Pit4/fNTuAiB23NnjNXPFW5iIAZgZOafexX2elICJxQ0xCh67dmJfWyiqyulNwW3XJ90W8sNpAqJeSrIciGRjqxpaSTD7Yv87l+NnflZBWbuemUV7Md6E3crqzZmEWF/svZNFrB/D01fDiH1P5ePcFJ5UhkplUSXl+HWPOP/U6LZ9ar+ZYYM0Dbft3f8eDTGMZ36dvr++PA0FaL6aGxjMtvC9Rng3G099FRdiFRj84axYUvgL7h8OeWDyLniFSyAQkJgaFgWkflC+G5HOg8k8ABvmF463WOq/bGleFXsX/4v5Hqa2UIduGdKso2rk8jDchrOUDjLTeP6nLUOlBEwnVm47P9TqIiIgbHYs5bzUmgqTmwV5z233sJ5kHEYBbenUujPf97mpKa0W0SsitOvGrl9qK1S4y/J08fkkyMSJMQ9ZDkQR4qliRe4AvUzZTZWtu4O9OD2N3rhuRfhY+uKincqYx2QcM3NBvGS9cth6LycG1zw5hccmljJnR3Lt7ovPJQ/WJq6+eOomrhzkF9xPt4+/c/SzN2sOZYQlc1mtE0ydrEwE7eE9lZ2kOy7L3Um6uIUjnxezYoQzyaxB7kiSJ37L3sb4onTqHjV7eAVzZexTBumO3Q/k3Pxmp3hQ5MyyBS+OGN6lM2FB0iG/TtgJQLAUTTnWjo+srY6zZ9ONrntCAKIGiifSLANVrIOxJFKEP4aF2w2gzu5SLP5JHYx8l25zNxwUfM3X3VNaOWNup19oZ5vMDb3ImnzCXB3C9q+xyfOdA8VtgXAfek47PNduN1GFjpNyeBwSh17TPsyKKIrsry+nj6YNG0bnbz0N/VaBWQN9ANftLbEc/4CSgtMbOkHfyKax2cMkgDxZeKRcGpFeVsiQr0Tmut3cgA3xD0SiU/JZsZHtqAFq1nbNH7+aPHCuzYjqm/XIqYaqx8tKVG9n8Wx4IMOHiSB797gy0J2kejSiK7PqvkJAYD8J7nXqer9PaM5JVXc66wnQiPPTyA5W/QsaNsmhV3QEo+14e53Y+nyVvZEJIHE8MP4+h/hF8eGB9kzLYFXkHWVWQwlXxo3lk6Dm4KVS8k7Ta2eemQxS/L4dTKpeDranQXK3Nyu5yWZnWW61lTuzQpiWSoo0zPMq4Vvc3t6rewFfKd3pQWsIg+bHX+znotwGGFcNwI4TcB/nPIO30ZqBZfj983dqWZ/BRv4841+9c1hnWcXVS95X7JjCVOMaTznrS2HB8Lhr6sPzfoteOz/XaiQ05LKejYzc1m1CKugPdfpcWZGGTRK6Miu/QdZ3nSaqloNrB1cM8GRDihk2EavPJ7R3ZV2gh5tVcCqsdPHmm3mmIAKwsSHb++/yogTw45GxmRA1kVEACX24IQq0QmD0hCZUC1hamd+6+c5IjiiJfPZXIbL9FbP4tj5gBPnx5cCbPLply0hoiAEveSsZhk5h974klvtZVnLbGiNlh4/OUTcyLH4O7ql5rwbgKyj6HzBth3wAofgOA0sIfmO5TwPTQSELdfZgVM4QoT1/WFKQCsldkZX4yM6IGMtQ/gggPX65PGIfBUkdiWSek7Es+hsL/Qdos2B0Cu8Mh7RIofJ2aypUoJdldO8A3FJU1Qx6/bxDs8IYdOjg4lvHitwxV7MSNlvrnKJGUvnxgu49Hbe/yVWV/SlVDQB0EKk+IfBlHn9+xSmrmqn/kRfXdnO3b9l3oH0P+YLDHYL4v/p7H0x/v+HvRSW5hMQIKPqdj3WXbjSYEVCFgXHN8rtdOaupDVlrar8tRZjaAoowgVVS7j30vPQmAe+I7J2F97x9lKAV4b2YAYyLl3++aTNeJnScDyw/UMuy9fMx2ie8uDeS5sxtCLWaHjcTyPEDeeMyIlEtPzTaRK3+SNynrbwljarSsgl1rt7C/ouA4v4ITg83Lc5kbtIjvnt+H1lPFU79M4rOkmUQmnPz6M0veSUalVnDRgs7nWp2InLxmYif5MX0Hg3zD6Ocbwp+58g0Sr4lQ/G6jUfJOa7j1S0Yhws6HIPgOiH6H/r6h7Km/QZSZazHazPTTN0ji61QaYr0CyKguY1RQTMcm6X0W1B0E7PL/2wrkRNTKJQQj8q4G7CgRq7SwtxZQgiZGbtgWcDWoQ9lYXsN3hXaGK7Zzk/q95tfQn4ci9nMUaSlQnkut3cILu/9iUmhv+vgEUWE2sa5IIs/yEfOUnzFBuY6J5XNAuhTivgVF66JZCoWC7aO3E7cpjv9l/49oXTQ3hx9/6XgfQpjILazjQ/7jDaZx37G/qP4CKPtMDvd5DD3212sH1ZQCoEPf7mNfyfgJBAfjfEYcffARbCkvIdrdE29Nx8XWVqTWkm1wcPlgD9w1CqbGuQMVbMgyc+FJKHn++noDD/xZgVYlsOamUMZENa2CMVrNiJLs1+zjE4SqXtto2ueFbMy28NFFAYyJ0uIoDmV7aTYgq0efTuQfMvLM7LVk7jWgVAlc8ehArn9hyEmZ5OlKvLI2205Jdu0pmbh6mNPSGNlekkVOTQWPDTu36RNermP7Sg67f0VQy3ki3motVVbZM2G0yTsyb03Tm4i3pmFMh/A+S847aEKD+1UQQCU5SHdEEBn/MlrfM0HZ4HYXJYl/M/5EpIoSqXHvIKVsRES/CwE3gCBwdbwPRaYqCuuMmB02/sk7yD95jcXCFPwg3kpA7Av0Lb0RKhaC4XeI+Vg2fFpBo9CQNDqJ6E3R3Jp8K5FukZwXcF6H35aOcjnvsZXv+JXHmMTtaDqhsdEmwh6RjZHCV6D3j8f2Wu3ksDHiSfuTHf8ok/N/7o9rn5dpZXEeZtHBJRGdUy1esLwchQAfzvIHoH+QCgFILDz+3bM7q3p80+JSPtshdxpOvCuCCJ/mt2RVo8WnulGH8NvGeHOoooK7fy+nxirSL9rc6JgTQ4zxWGM123l53kbWLc4BCUbPCOPxHyfi4X1yNgRsSbzS6xW50ezN/9f+DcDJwmlnjFRYavk5Yxf3DJraXD1VHSwLVlmaN/CTUCD4XgyhDx2fiVpyGhr0uUTAjob3bPdwUBrMwCIfbvDR4lH/kmyig8WZuyk0yaWPHp4D4HBne49R0Ot70DYsCp5qNx4ccjYLM3axvTQbxxFJqlGevlwSN4I+PkEQmgzFH0POPZAxDwr/D/r8Bm4tu+31Gj2JoxPpt6UfF+69kB2jdjDUa2j735dOoEDBFXzAV8zja67hJhYe2wtqe4HSD6r+ObbX6QC1yBVR7h0wRrLNhwB/xvq1r8rszfrGeA8mdDy5ckNWHenldmb1d0dfH/9XKBR4aATSy+0dPm9HaIvqsShKKBTNxRFFUWTKp4Wsz7KQEKhm14Jw3DWud7x6jTu+bu5UWkykVhVTXGckWOfNVcO8mD3Qg8dXVPLgXxV4aRXEhUYQFWTAW+GHJEmnTN8SV/zw0j6+fXYvNotIRB9vnl48idiBJ6YEQ1txJV5pddhJ/KeIwEh3ovud/OGmljjtjJGc6gqqbWZe3PW38zERibSqEtYUpPJBxFkIpdk4QyOAAwUmVS+84r52ioUZbWZ86j0h3mq5dbfRasZH09DG22g1E+mpb9vEbGVy6/nKZVC3D8TmHTgbUIHKH2PMEjKT88BhJ6mykEe3/cpAvzA0CiVJlYVU15cACsA50WOgYp4sfBb6IAjNd04eajeuTxjHnNihJJbnUWWtQ6NU0ccniBhP/6Y3tuBbIOAaOHQZGH6DPbEQvAAi34QW3Iix7rGsHbGW8TvGM37HeFLHpRKhPb7ldWO5mj95np38wkzSCKZziZRHxWe63KemLh10J45IUS2VAHh0wBipk0pQENDu49aWFRKi1RGk7ZjQGsAtS8sQgE8ubnr9EC8lhcbjm7R5NNVjSZIY/1EBsb4qvr8syGmUGM0iQ9/JI7PSzrnxOv64LrhV17tCEJgY0pvl2XuRgI8OrOfGvhMI99CjUyt4broHSs9MXlvhS2JGBIkZESzfYkCnriLWV0XfQDW9/eW/Xv5qxke5oVWfvK7+HSsKePmajRhKzLh7q3ngi/GcdeWp0bnWFcZlYLdKzDpFc0UOc9oZI331ITw1fEaTx75O3UKIuzdjA2Mpr6shgE+cz0kosOHBYvXzXKdscL8erCwizku+IQZoPfBWa0k2FBFZr+9RZ7eRWV3G5NAWFiB7DZR/AxW/gGkXOKrqn1CAJgK8ZsshlKoV9RUZh40jpax70ncFfpoIbu9fzAcH1mJ22LGIdnaW5TS5jIDA1fGj5U7Evt+06T3y1uiYFNqGRVqpgz7LoXorpM+G4neg7Dvo/RP4nO3ykDE+Y1g0aBFz9s1hyNYhZE/IxlN1fPsr3MoSnmMgH3ExT5N0bC8W+rBsjBS+DHGfHdtrtQMTFQB4trMiRhRFJEUp3tLoow9uxK7KUmrsNq6I7LhBtiPPzIESG9PjdQR5Nr119fZXk15uRxTFEyamviHLzNZcC1tzLYT7VPDaDH8OlVsZ8V4+VWaJu8Z78/aFbTPqpoT2YWPRIcottRSYqnhu159EefqiVarJMJZhV4qM6RvC1uQY5zF1NokDJTYOltpQCWCrt5uemKrn+XNOPi2SouwanpuzltSdFSiUAnPu7cctrw0/YT7vY0XVzxIKlcDc+04t+fcjOe2MEa1KTbhK3+QxN6UKpaDg/QNr8ZCsvNqoD5woQU7Yl2zNthKed5BBfmFsL80mu6aCq+tVSQVB4KzwvvyZm0SQzosArSfLsveid9MxNCCy/kRWOc+i/Aeo3Qb28vorCKAOAe9p4D8P9Bce4VmwQ9HLDWO9p0D8EmduSII+mCeGzeDf/INsKcnE4pCNFoUgMNw/kmkRfYn1av8utl14jYFh+ZD3jKzymnIOeE2G+F9lAbAjmB00m8/inuLGjOcYtHUQaePSUHVSc6I9hDGAwcxkL8vZySJGcMmxu5jHEFB4y/k1JxAmDAB40z65/h8KVoLCRF9t+26MrybL7QYe7tvxEM1NS2SvyGdzmhtQw8I0/J1ax74iG0PC3Jof3A28t9mISgF2EV5fX4VDlPhgixGbAz6Y5c9tY9vucvdQa7hn0Jm8nbSaMnMNADk1lU3GDO9VSmlpDJnlNCnjlySw1T+gVQlcM/zkURwFsFrtvHbDZlb/kIUkwbCzQnhy4US8/U59uXtroYi9AAac6Y9KdWobXaedMeIKSZIoMhmxSyJV+FIp+uKrkH/oP9ivZ7LvVG7U1rAsew+/Zu0hSOfFbf0nEn5YnwSYHtEPq8POd2nbMNmt9PYK4N4IK+pDl0HNJrAV4bxFqALAZwb4XQ7+l7VekeI1AQQVSHYIuB5iPgKFusmQQJ0nV/YexdzYYZSaa5CQ8HPzaChZPl5EPCOHalJnQfVa2B0E4c9C2KNNx9VsYX7p80QEjOHcsq1M2DGBraO3Op8+MikQ2p8YeDRu4Hvux5/vuIlhzDm2fWu8p4BhOVgLQBN27K7TDuowAuDZTmPki7zfALg69NyjjGzKP8V5+Gnc6OXZsZh3UqGFxEIrU2K1LpM8J8ZoeYkqVh2qOyGMkaJqO4uTanE0sgre2mhEKcA/N4QwLb79oaognRdPDjuPTcUZrCtMo7BO/gw9VG6MC45lSmgfLg5WcM4XRS2e4/UZfsQHqFt8/kTjl7cO8MWjiVjNDkLiPHnq50n0Genf3dM6JmQay/j50M4mj1V8JH+B+t7rgyhJJ1Rz1q7mtDdGTHYrIJBRXep8rA4dvlSyxTGeDeKZ+JcXMCN6ICMCW07QFCSJmb4VzHT8Ki/EljzIrfeLKn3Aawr4zQX/a2T9jrai0EHoI6DUywJkrXwZNUpVEwOpMWa7jWXZe0ksz6XaZiHSw5fLeo0gxqvlH3aKoZhFGbsoNFXh6+bOjKiBjA9uWgmxuiCVf/MOUmWtI8LTl8t7jSB2wEao/B0yroa8x6DkQ4hfBh7DZKMq80ZAYrplJwv8p/Fe+X/M3jubJYOXuEwKhOaJgZ1Fiyfn8yTLeZLFPMglvN4l53VJ6IOyMVL4KkS/deyu0w7MyGHB9lYU7alOAnTcHNX2aqi0agOVNkunQjQ3LpUTbj+f49rLNzlWztXann/8K2pc8em2apcig2qlQIBHxytdtCo1Z4YncGZ4AlaHHYckoVWqnPlcZ8fDtN5aVmeYcRyhARfnp+K2sSeHcueetUX878oNlBfUofNUcf9nYzlv/jHO7+pGEsvz+PTghib3PVEUMW0EpT8k+mTxZYrE9QnjT1mD5NT2+xwFURL58MA60owNPUt81FpMihCskpqv7bcAsCxnr7N+vwk1OyHzNtjTB3ZoIGUqlH8rh2A8RkPEyzCsFEYYoN8qCL69fYbIYSKeh9D7WzVEjsY3aVs5aCji+oTxPDV8Bv19Q3hz3yoqW9AjKDPX8N7+NXIYaPh5nBWewLepW9lf2SCmtL00m18ydnF+1EAeH3YeER563klajdFqBt8LYFgFBN4i9/fZPxzS5kLRW1C333mOdzVmRnmNZGnpUu5NvddlUiA0JAZ2JTN4Ai+CWM3b1FDuckyFuZacmgrnX4W5tcTiFvA6AwQdVC7p5Iy7DjPVyKnN7aNKLAAxCI2q7fuYV1ISAXgoYXC7rweQXmZla66FcZFuxPm79va5axRolHDwBJCFt4sS728xIrqwRmwOielfFJJX1fnKH41ShU6lblYx88b5AbhqB5VRYWfw23mU1BzfqqP2UFZg4s7xf3H/lH+pLDJz4W3x/Gq47KQ2RIpzatmwNAezyfX7XlJXzWfJG533Pb1GxxkhvYjaGopkBe+Z8ue7rTSbFXkHjtu8jzentTGSWJ5PapVsiHip3bhzwBReGXMxvd0lFP5XMCVsgHPs4szdOOpSIOdB2DcQtrvBgZFQ+hFYc8F9MIQ+AUOyYWQNDNgMYQ+D+hjna7QBq8PO7rJc5sQOpY9PEEE6Ly6MHkyQzrPFDrxrC9MI0HpySdxwQt19mBqWwPCASP7LT3GO+S8/mTNCejEhpBdhHj5c1Xs0GoWKTcX1pdEKBcR+BIMPgbYfVC6G3AcbXcUONRvYHHMbMdoY3sp9iy8KPz6G70Rzruc7RBx8QvOGb4e9NC/u/tv59+SO3zpokEyQvyd2Q+cn3QVYqe1QaMohlKFtZ2jn94IcvFRqhvq2Xz4eYP5i2WvpKlekMX7uSnK7YJFvC3m1lfyaucflcwv3VVFc47qyxyFBSa3Ixd+2HErpLINCNFw/whNlIxvl67kBXDLIg6RiGxEv5fDJVuMxu35HsNtFXr9xM1dELubg5jIGTQzi58I53P3BWJTKk3uZ+v2jVJ6ZvZY5AQt55dqN7PyvEEcjt9XqghSnfP/IgCj+N2oW8+LHYPxHRKVW8PALE53bhpX5Kaes1P9pHaZZ12ghnhc/hoF+YeCoAdNeVEG3cak+guiqdwixridMykO5r37XJajBrbdcthl4I7gPaOEKXUerDf0a4aqhX7x3ECISKkHZpKFftc1MWV0N44JjmzX0yzCW0Vcf0uSx/r6hLMyQu0baRQc51RWcF9GQyKgQBPrqQ8g4squvNhYGH4CkEXLl0BEoc+9n34hEorcO59mcxzhbeTexyvZVa3SU/pxNDKNJZQ0ZbCaOcc7njla62S6C7wHjf1D4OkQ+3wUz7xwWalG08+d/sDoLFBWEK89q8zFFZhPFljouDI1u5wxlcgx21mdZGB6moX9w6zlQ0XoVO/KOfZhmd1luk53skby1wQhH9Pw5nMgKEOGjZFpvXZPnRUnkt+x9bC3JqpcN0DE+OJYZkQNb1QppKZT6/Dl+/LCnFoddYmIvkYP21QRG1XFHSADfrI/hll/L+HpXNSuuD8VT272L/fIPU/j4gZ1YTA4CI915/MeJDJzQPoP3REYfJIdCLXUOVv2Qyb/fZKAP0nL2NXGceXUMW0yZAKgVSq7sPQqlQoGp2sbBLWVc8dgARoZFs6sql51lOVTbzOyrKGD44cKIU4jT2hhJN8o7Lr1G19CBt2Ih4IDi9xGybmEsEqIgUCYFUqObQFzsw3L1yHGkWUO/FjhkLOWz5I1cFDuEwX7hbCvJ4sMD63l82LnEeQXwZ24SKYYi1hSmMS44jlUFKTgkiXeSVvPMiAuaiMAZbWaXirJmhw2rw47JbkVEwsvFmKI6F7suw98uDREAHNV4FDzDe1GLmZcxnf8c7zBTeIZgRdMcg0qLiSjPri9JvJWlPEokn3IZLyGXRkuSRG51pcvxh6W524Xv+SBo5DLfE8AYsWJqtzHyfxk/gSBxlv+ENh/zanIiAPd3MERz05ISJODT2Uf3MA4M1rA110JZjZ0Az2Nza8upqWhiiOiUauJ9ghAQSDOWcCBfR7HBGzlZXTYiQryUnNNbx9ReOqbGaYn2bZ5A+nfuQdYWpnN9wlhC3X3Irq7g67Qt6JQazgx3rS9xOJQ6KTSe+X3Hk2wo4tvUrfhotAzwDeOZab68ubGC3nGJXBA9jFivAFYWJKM4azf7U8ayKt1C4IvZfHdZEHMGujauO6sw2xr7N5fy4uXrKcmpxc1dyZ3vj2bW7aeelkZwdMP75bDL9w5DiZnFbx1k0WsHUIWApg/ETfRi+fo0SnJqSdpQgrnW7gxPDfWPcMo2lNZVN7/IKcBpa4xIkoS93t3lrdE2JAVVbwAEWcsj4BoKiOLZdDOgYKpHH+K8Rh7XeTZu6OfsodMCK/NTGOAXyvR6b8WsmCEcNBSxpiCVGxLG8VXKFv7KO4AAZBhLGR0YQ1Z1ORWWWhLLcjveQ+doiHWQdQtyVNDVbtKBUPYV+dYIZqmeZqn9SX6zP8+lqv/DW9GwQ/oubSuRHr5dWlUDoCeM8dzARj5jJW8z1nYrnyZv5KDBtSv929QtLBg4tc3di514jJIrq+wmUHVc+KsrsGFGRfuqKlZXbAVJwcNxl7X5mMX5meiUSiYHtr+KqKTGzr9pZgYEqRkefvRE27GRbny+o5qVh8xcNuTYaNf8nXvAaYiMDoxhXvxoNEr5Nrojv47Jf+UBEsH6aqYm2Hj+jKH08lcdVQk1o7qUof7hzk1RgNaT7aXZZFa7zmWCpqFUgFB3H9KrSvkvP4UBvmE8PFmP3Wsrcd7RTAjpBcBVvUeTVFHAg+cYuXFkFNf/Usrc74s5r4+OX+cFo6kvHzXZrfyXn8wfOU3vOUpBwfMjLsBf1/H311Bq5rm5a9m7rgRBAdOv78W9n4w9JUtXi3NqyEtzHRIT6w0Te5H8l7TOQLbvfoKiPNBolfQZ6U9QpHyvaxyaOVVVdU9bY0QQBHw0OgzWOvJrqzBa6z0BMR9D9IeglMsDd+ckAXsBWZb5eOOyoV8LZFSXMS28b5PHDjf0C9R5cV3COJ7YsZy7B06ln28onxzcQJDOCx+NrllDP2+1Vk5EbYTRakarVKNRqlAIAgoEql2M8VEfsXAYV4H1sBibol79VZIra+qRJLhL/Qq50vvc4fcK71c8xO/iU3wU/id7y0swWM0YbRZ+OLSdBQOmtOWtaxdX8CHb+ZFfpUfYnBRLbk1Ni2PzTFW8sfc/Hh46HU91O8pIg26Dmo1Q8h6EHae2Ai1gw4yS9pXAFlqzQAgkzjP4qGMBDFYzOaYazuyAIQJy3xYJ+PjituVdndVb/t5tyjk2xki11czucrkLt5dayzV9xji9iX+lmLj0h2ISAnVMGLwHq6IKAfD17I8gHN3oi/MKZENROsUmI8Hu3uTWVJJuLOWSuGEtHtOWUGpebQXnR7kOpd4+ZADnxes458si/kqtI+CFbH6dF0KoXxWfJG+orzRsikMS+TptC7cPmIxW2T5jVhRF3r1zO398nIbokOg3NoCnf5lMQHj3GuYdxWyyk767gvTdFWQfMFBwqIayPBOGUjMmow2bxXUYrwn1doXHVAi8W+CVcy7A38Vma2tJlvPfkR4nt+R9S5y2xgjA6KAY/sk7iEMSWZqVyDXxYxAaaXiUmWtYWZ+wKQCjAjsW9+4oLTb0awGj1Yz3EYaAq4Z+YR56am1WDlQWMjt2GMmGomYN/eK8A0g6og35QUMRcd7ywqBSKIny8uOgodgp7CZKEsmGIqaGHdGzxGcG9FsH1kKwFYO9RP6vrRhshdSaMtFJ5aix8bL2cXSxXzMo6CNuSb6FhwsvZ8+oA7yyZyVV1jr2VRRQWldNoK5rhZtUqLiMt/lWuJHc8JchZQFeai1zYocyMjAaBQKJ5XksztxNuaWWEnMNv+fs4/Je7fCU+V0BGdfJyrvdbIw4sKClfZofFkpRSm1PQn0rTe5Fc1f8wHZdB8BgsvN7Sh3xAWomxOiOfgAQ66dBIcDewuaLaFdQVGd0huiGB0SiVigRRYmrfi7h5321nJ/gzo+XB7GioJR/8qqQgAKTweXiciTnRvbH7LDx9M7fEQQBSZKYFTOEMUEty5x3RShV765i2x0RvLepinv/KOeszwqJDytj8mCrU3vRU+WGRbQ7d+cpVSV8fHADdw6YjEJomzdjxdfpvLdgO3U1dvxDdTzy/RkMmxpy9AO7CVEUKc6uJWV7OZn7KslLqaY4u4aKIjPVlRYsJgei44hwrQAarRIPHzURfbwJjPQgvLcX0f29effO7ThszcfHDfJl7MuBbPWUk/4/T9nIrf0m4l3fVkSURFbkHSSlqhiQPWYJ+rZtBk42TmtjZHJoPKvyU7BLIpuKMyipq2ZSaG/0GndSqopZU5BKbf3uYKh/ZJtuKl1Fqw39OsD+ygIKamVtiVRDMX/nHSDE3ZsJwXEkG4rIrzXwZcomrk8YD8jvzZqCVBZn7q4fU8zO0hwWDJzsPOe08L58lbKZGC8/Yrz8WZmfglW0N9MiQRDAa6LLeUmSxKObF2Fx2IlRFvOw9++QOoOb9bMpD7uGxwq+4cw9E/lfyHcsz5EXt13luc5QVFcyTrqe7y1P4AjcjJB1KXf3v9Yp7w8wIjCKGC9/nt75OzbRwebiTC6KGdL2HaJCAe5DwLQbRDscR9XZI7FjQ90OjRGT3QzKUvykthsWP+QcQi0oOpS8esuv5YgSfDCzfQJXXm4CGRXHpry3ca6QUlCwp9DCbb+WsjnHypBQDb/OC0apEFA36vvU1vyinaXZbCvJYn7CeMI89OTWVLIwYycqQdFs8elqAUCABeN9mD3Qg6HvpZFWEEBuqQ8Lzirl3pGDCPPwwSY62FGazc+HdlLnsHGgspBdZbmMPMoGLXVXOc9fuo7CQzVotEpueW0El9zf/bLmphorabsqOLS7kuyDVRQeqqYsz0RVmQVTtWuvhlIloPVUoQ/U4h+mIyTWk8gEH+KG+JIw0g+/kJY9PD+9vJ+iLLkKT6EUUCgErn1uCJc+0J9a0cqBXflU28wcMpbx6LZlDPYLx12t4WBlEeWWhuq9C6MGnbI6I6e1MRKg9WRenzF8lbIZCTmh9XBSa2OCdd5cHT/quM7taA393j/jsma7Em+NFqPtiLBJfUO/OrvN6eX58dAORgVGc1HMEJQKhTMcU9FIcyRA68mCAVNYlLGLVfkp6N3cmddnDAN8G1zuowKjqbGZWZ69F6PVTISnL3cNmOq06tuCXRKdEvZqj0Eo+t4DRW9D3sM8KtlIC5zNl6VLeKXkbvpxIwA1tmNTMVFgqsKRfCcMfxy3Qe8SqbtHnuO+fTj278ft8svx13owMiCKzSWZmB02Moxlct+fthI4H7Jvh9JPIfi2Y/I62oKIHTVt/5zey/oVBCtDPdsm526220mvqWKMX1C7e4fUmEUWJ9USo1e1W6k01EtFduWxKe8NqvfGWe0KHv5VRXZZPhE+StbcFMKkWJ3To3E4lAMQ3EYP3uLMRKZH9neGSsM99OTVVvJL5u5mYw8LAHZpKBWwCUYunribnanh7EqP4PW/w+jvKXD9CLnSY1xwHO4qDR8cWAfIOSstGSPVlRaev3Qdu/4rQhDgzCtjeODLcWg0x37JEUWRgkM1pO4oJ3OfgbxUI8XZtVQW11FTacVssnNkIZRw2Kuh1xDV10f2asR7ETPAh/gRfsQM9O1UTktInKfTGIkf4cdDX01wduD1RstdA6fwTtJqqm1yBd+uRt+hw8yKHszY4FO3IeBpbYwAjA2KxV2pYVHmLkqOyFIWEBgeEMmVvUfi6eLHeyxpraHf9Ij+Lt2jcV4BJBuKmuSNHG7oNzIwmhEBUTy0dSnnRPTj7Ih+QENDv+v6jG2WwHpY8Kw1poYlMDWs4xnwSkGBUlDgkEQqzeWI6ZeiMPwG6iAImM8XEc9waOdk1hlWUyoITFLPR6s8Nl/bOrsNTDFQPgi/3H2kfD6Z4K0mHDt2gFaLZu5cBJWKsEZVTXX2du7CA2+C7AVQ+nm3GyNa2p5Xsaj4XwBui76oTeM/yjiABNwS16/dc1vwWxkOCd6+sP2y3wkBapJLbdjtYpcnRPq6uVNT2Zuft/rhEAX6BNnZfmsU3jr5+yhJEn/lHqDAJHsge3kHEOLetlCYVbSjOEKEriU9icPl5V0aSq0/FmBEn3zuGhvKe2vcueGXMr7ZWcO7M/0ZGOLGYL9wArSelJlrSKsqwS46UDXy3IqiyCcP7mLJ28mIDon44X48vWQyIdFdl8NTW20ldUcFhxIryDlYReGhGsryTVSVmTFV27FbXXg11AI6TzW+IToCDns1+nrTa4gffUb5ow84tvf3mAF69m8s5caXh3PRnQnNtFOiPP14fNh5/Jt/kM3FGZjq7ysCMMA3jGnhfenne+KGtbqC094YARjsH85AvzBSDMWkVZVgFR3o3XSMCIhqf8VEF9FSQz8PlZtT8v3LlE3oNe5cHDsUgLPCE3ht73/825mGfl3M0frMyAl1weiqFnMNnyJUWsF7OsT/Akr5BvbfkJWEro8hWVyFlz2Ah/SuOwJ3BtFoxOvNd7nrm68IzMlH6YDqkHUIZ8xBN2sWdU8+ieXLL9HedBM5NRXO49rd/0ehAl1fMO0BUTyiKeLxQ0RE0w6tlBRTCuDNrOC2lbV/mZWCUhCYF9180WsNs1Xk+8Qawr2VzOzf/lDE8HA3lh00sS3fwvjotnt+jkZpjZ3zvipiZ34ASoWDM4em0zusgjcPpDEyMAoBBbvKcsitbSgHb08ocbBfOH/mJuGndSfU3Yfcmkq2lWa1ekyXhlIBi6PBsB4e6snya4KY810xazLN3Lm8nNU3hyEIAoH1xogEWBsZI6t/zuStW7ZSW2VDH+TGQ19NYPR54W1+D0A2ZvLTqmWvRpLs1SjJrqWi2ExNpRVLXQteDZ0ST72GmCgPAqM8iIj3Imagnj4j/Ins69PtlTrzXxrGvKeH4OPfctK4r5s7l8aN4OKYoZTUVWMXRXzd3JvlBZ2q9Bgj9SgEgX6+ISeV9VlhMSE02k318g7kxoQJ7Wvo5xPIXQO6Ji+l2fza0mfGXsF8x/24q3ZjR80P9luI8nmAMWjRAAW1VSzO3M0sxQv8IN7NdnEhW2pn0sv7qk7Pz56SQt1rr2H76y+k/HzUQJBSQXFMJFvne7Lr/gOcpenFbJ7AcfAgpqefxnDxhewqk12oHioNvX06oCrqfw3kPQIVP0HAlZ1+HR1DQkvbk4BrxSIEAtsUcrGLIklVlQz08UXZTmPr3j/LsYvw2oyO6clMiZVv3GsyzF1mjPzfOgOPrajALsJ5fXTcdaaRpTmyQVpgqmJ59r5mx8yKHsIQ/4g2X+PyXiNZlr2XH9K3U22z4KPRMcw/ko3FGS0e09WhVK96768owvtbDPy43YpKAW9d4Mcto2URN5vocBrjKkGBVqkiM6mS5+auIzfFiEqj4PoXhnLV44NczrnGYCV1ZxmHEivJOWikMKOasvw6qsrM1NW49mqo1AI6LzX+YTr8w9wJjfMkqq8PvYb60mek30nRvVfnoUbXRttarVC22GPsVEaQpI4oOB1fjEYjPj4+VFVV4e19cjR66kEWiHpx998un3t82LlEVX8FeY8gSTbylCN5xXQbtvqkSrVCibtKQ5W1znmMVarmZ8d9WEQzq4avYrLvZJfnbglRFLH//Tfm997DtmEDVNeH5Tw8UI0bh/bWW1k3qi+/ZO8BRISxtyOoTDxty8MjqwpL/wEkTxrNt88uAOCciH7MiW259LJF7CbY5Qme46H/hvYf30msmLkLHeOZzzV81qZjhH998JAGUnPOxqOO/TIzmRt2rOXNIeO4p0/bxc7sdhGPZ7LQaxUUPxHT5uMaY7WLuD2ZxcUD3Flydec2FpkVVqZ/WUxamQ0frcCiK4M5uz6HZV9FPn/m7CejuqnacLSnH+dGDugShcwUQzFv7Fvp8rnHh53bIQFAQ52DAyU2iqodFFXbKapxUFTtoLDaQbbBSkqZGatdCQhcPUzHW+cH4d+osd+K3AMsyUoEYKh7JHlP29j6Rz4IcMZFkVzx2ACyDxjJSjKQl1ZNSY6cq1FrsGKpczT3aijATSfnavgG6wiq92rEDvIlfoQfUX29251z1MOJRVvX7x7PSA/HHX9KCE0fDdZDoPRG6LWMYK+zGZy6xakyaBMdTQwRd5Wau/vO5CH1JIZsG8LZu89m35h9JHi0nq8ims1YPvoIy3ff4di7F2z1sdiQENQXX4zuvvtQDWlIypwiOthTWUiasQQp5VakAf/H07VnQ/GjPKz3pt/qzVyGyJbnHmJGZAfbAKjcwS0Oard37PhOUoPcj0lH2wz7VWW7QGEkTt22kMvHGQcRgFvj2lc18fCKCqwOePGcjqvsalQKtCqB1NLWc3kkSeLGJWXE+al4fGpz3YaH/izn9Q1ViBJcNdSTr+YENHH1D/KTBcoKag0UmOQy3hCdd5Pqq44iSRL/5B9kedbeFseU1FV3yBiZ9W0x6zLlhFYBWaZeokGq/vCS0DuslPCYQpKqBtBPEUK1zcx/ySmsX5+FOVWidiUcysgCqT7SqIANS3PZsLRp4qVKo0DnqSIg3IOAcB2hcV5E9fOWvRojAvDUtzPM2cMpyyltjKwtSGNtYRrlFlnAKtTdhwuiBsk9aFrAVW8Xp1Q8NOntUuew0cs7gCt7j2rW26UHV4jMUf7ANOXfCFYJ/K+E2K9BoUID3NR3AmdVJ7CuMI10Yxl20YFeo2NMUCxjg2Pr8zNC+WfYP5y560xGbB9B5vhMAjVNQyWOnBzqXn8d27JliDk5sqKaQoGiTx/cLrkE7T33oPBzfSNXK5QsGDiZr1O3sKsMqIkFfRJ4ppM2ehAj/lrH4NVbGTLvflQ/R8DoDvbQ8bscCl+Eyt/lDsfHEWO9MeKOvk3j385cBMDMwClHHSuKIrsqy4j39EHbjs6+oijywZZq/HQKbhzdud9SgIeCfGPrzcR+O2jiix3VCMBZvXSMjZI9cokFFs7/qoiCagchnkp+uzaYkREthwHCPPRNEpq7gt9y9jVTPj2Sb9O2EuauJ8yjfVoxVw31dBojEmBrFhWR8LWY6PtzKnvfgd2VWxBrQbLUH3AEajcFPoFa/IK1BEV7ENHHm9iBevqM9Cc83qvHqwE8tm1Zk/Lcw0wOjefK3q6rNE/HdeiUNkb0bjoujh0il+RJsLkkkw8OrOOJYee6vIG01tvlcAxvRd5BVhWkcF3COAK0HizP2uuyt0sPTYkigwWa1/ARqjBIeupifyE0sGnDNUEQiFPoCN9wELdrrkFQu9bvmOI7hW/6f8O8A/MYuGUg2eOzUWzcivntt7GvWYNUWZ9EqNWiOuMM3ObPR3PVVSjauDhqlWpu6TeRgloD/5X6sMnzQlT9P8A3ZgYI6xEkCXJyMI4bh+7pp9E99hhCOxZeAELvl42R4rePuzFSg1y+7k7bdtbbjIkgqXmgV/POxkeyvCAbmyRyZVTvo45tzNP/GTDbJV45t/OehQgfBdtybU0SjRsnTZttInf+VoZCkL0D1y0qJfHOMG5bXs7XO2tAgHsmePP6DL/jvpjm1lQ2MURGB0YzyC8cb42W7OoK1helU2quweyw8136Vh4ack6bzmsoM5O6vRyPxAoirWry1GokV3oVEsT/kEZdMaAChTuogkDhCbZcEKtlAeW59/bjpleG9xgbbeDRodMRG1lyBbVVvJW0ihEBUS7Hn67r0CltjByZQHZRzBDWFqaRUV3u0hhprbfLVfGjkSSJlfnJzIgayND6c1+fMI4Htiw5tr1dTmIU2Lle9RGjFJuREFhhP58ljit4XNc810I0GDCecw6O7dsRvLxwu/TSFs97ZeDliEmLSdvyK6lz3QkvlX/sgr8/mnrvh3r8+E7NPcxDzzUe5yNxLZvdvsIzrAxBqQS7Xc7yA+qeeQbr77/j9cMPKHu3YwFW+YImUu5VcwRHq0DqLCbkRdqDti38ZfY8IAi95ujXfzddXkjvjW97rogoiry5oQpvN4G7JujbfJwrKsy11Ah5iFIwj25aiadODtc0Tpp+bX0VuQaHc3lILbPh+3wOZrtELz8Vf10XQnxg94QP1hSmOv89M3oQ50c1JIL21YcwOTSeF3f/RYm5hkPGMnJrKgnV+pCVVEnazgqy9leRn1ZNaW4tlSVmag1WrGYHjTMDQwPdyb1haLNrC0hcHCjwzoZphMZ5kmcysDErg7/vzSZ/pQkkGHV+GE/+NBF3z57wSls5UgH379wDBGo96ePjujPx6boOndLGSGNESWRnaQ5Wh504L9e9Llrr7QJQZq7FaDPTr1E/CJ1KQ6xXQLPeLj2Atvof3tDcik6oo1AM5V3bQ5Tj+gcolpRgPPNMHMnJoFBgXbasmTEilpRQ9+abWBcvRkxP53xJwqyBXydLVA6I4NH7N6OMaHsFQ1u5ik/ZyUL2aP/inCPzvSUJx+7dGAYNwuPdd3GbP7/tjax8L4bid+TmjF5nAG2sQOoktU5jpG09X+xCKWqpbcJumyuKiXL3xFvT9sXq1XVV1Nok/ndO570iNXYLgXojZAeTX+ZDQqScYHpYm6PG4MYLqyqbRBwkwGyXuGu8N29fGIDZbuPnQztJLM+l2mYh0sOXy3qNIMarZd2TFEMxizJ2UWiqwtfNnRlRA5uVz64uSOXfvINUWeuI8PTl8l4jiD3iXpRYJt9r3BQqzqq/F5UXmchLNmK1iKRsLyP3NwdFeQ5EI9xg/r1xiycnajcF7l5qgqM9CIhwJ7SXF9H9fEgL8OC5ZDsccYwABHoo+fKOKLy1srdj3Vt5fPd8CnarSGRfb57+ZRIxA07NvijHC7voYGtJFtPC+7Z4nzhd16FT3hjJrzXwSuI/2EQHbkoVt/af2GKcta29XVz1gziyt8tpjb0Ge+pMAmtW40DJp9bb2SE1bTv/3v61vDrmYgAceXkYp0xBzMoChxzrNy9fzmtblmEpzGPEmh2MWbYSj+z65DiNBuXIkey8dg4rhsax1raIbY5F7K94nB8jvu7yl6NCxSW8ySHtLUgSNLuF2O1gt1N7000owsLQzJjh6jTNCX1YNkYKX3MaI5UWUzNDBBoWU792aIO0RE29MeLF0cuSS8yVoCgjSDi6vsiakgLqHA7mhLdPJfKlNQY81AIPT25f/sORSJLEwcpiwv1l0bFig5fTGAF5Q3L/77Kg2pEoBdicbcYhSnyTtpUCUxXXJ4xHr9GxtSSTN/et4pkR57vUHSoz1/De/jVMCo1nft/xJBuK+DZ1Kz4arbPMdntpNr9k7OLK3qOI9QpgZUEy7ySt5tkRFza5n9TWe8SC3b2dbQY+uHsHaxdmA7KmBgrADZReoI/TMiAhmIgEuQIlYZQ/wdEezcInRUY7539dxK4kK24qeOcCf15db6DA6ECUZIPs3ZkBeGsVbPsrn1ev3Yih1IKHj5qHvxnP1MtOXeXP40lieR51divjW1FSPV3XoVPeGAnWefHE8POos9vYVZbDVylbuH/wtHYnfvXQRko+R8q+A6VkIUPszXu2BzG5UPqss1nJqi4nssRA1eTJSEVFTkMEQFFTw40zrsW9sgpREMgenEDIyIsIuuV2NGefzd+5B/g7dz/XJYxjgeZMZuwu4ufS7+iVHs0LvZ9r01T/zt3P0qw9nBmWwGW9RrQ4bmdpDv9mhxFp64UgHmo+QKlEFAS2X3Ie/7qVEbVvZduSyTRhoAoG42oADlQW8llyy6WzieV5RHr4drqFuBl5sfZsg2fklYyfQHAwQX/0hoCvp+4B4KG+Q9s8l3c3GTBaJB6fou9U/oFDFPkqdTPbSrNx18ohh8rqpobDS5uTWbLfdfK6Q4Lt+Vbe2lhJOrncPmCS041+YfRg9lbks7YwjYtimsvhry1MI0DrySVxwwE5UT69qpT/8lOcxsh/+cmcEdKLCSG9ALiq92iSKgrYVHyIcxtVZWmVauocNsrMNdhEB2qFkpKcWhJG+/PUwkn4h7mzvSKLr1K3AHBuZDwXxwxt9b15bEU5r66twiHJOim/XBWMu0ZB7wA1M74qQgDO7KVlopfErcP/IH13BUqVwCUP9OSFdDUbiw4xwC8UfTeJaZ7InPLGiEqhdPaUiPbyI6umnFUFKU5V0sa01tsFwFstCwUZrWZ8GokGGa1mIj31x+gVnCRYiyD1PDAlYseNL213sFMcj5tCSZibJzV2C0P9I9hdlke13YxVcrDw9++48e4XkSoqmhgiIO/U3O0ibrfdhvb++/m8Op1ID98WY6Ybx/7J0A1T+V/2i8TqopkfPr/V6WZVl7OuMJ2Io1RCNE4mi9ZfCTzfbEzZrBn8cNW5XDx5Jve3N5lMfwGUfU5G0UreSy/F4cIrcpg/cpJwU6iYHtm5RmN1GADwbCFk1pg/S+U+JPfFXnbUsWtLCwnR6gjRtv1G+8x/BrQqgefO1rf5GFcszNjFttJs5/+7qR3UWXRO6XJRFPh+YwDyN8u1MScAT/xTxVVngUpo+rmpFSoOuehbBZBhLKOvvqmmSX/fUBZm7AJk13xOdQXnNVJklZWHQ8gwljU7bmdZDia7lc3FGQxSRJCyrZx7Ph5DcLQnDlFkVUGKc3xjgbMj2Zpj5qLviimqdhDooeCxc6sxKVN5ZIcRjUJJnHcg5/eN4980K4PXZXHNzYeQJBhxTihP/jzJWXZ7OlZ2HAvKzbUcNBRza3/XTUMPc7quQ6edyStJ8s3BFYd7uzTmcG8XgACtB95qbZMxh3u7tJSHclqQ/xwkRoApkTrP6dxj+Yid4nh8NDqeGXEBwwMjMTts7KnIR6NU4qlyo9/abVx7zf2IpaXNDBGQFwaFvz+eH3yAqlcv+vuGOgWmXMVMfTSe3Oj3JH6KMG5KvokV5StanK7ZYePzlE3Mix9zVDn3xslksd7yrlis/9Uo+sl9VzYOiGbC6KkM9Y8gwsOX6xPGYbDUkVjWvNlVM0IfRgKMOc86DZF++hAeHHw2H55xBc+NuIDJofHO4Uuz9lBmrjn6eVuhDrl9vKYNXXtzLBng8GOMX+saI4mVpVTbbVzQjg69n283UlEnctvYzpWAVphrWVuYBsi5NfMTxjMo2B3RoeaFkRdyffwkft00gDqrhiMNES83gb6Bas7ro+Om0V7833l+9PL258/cJAwWE6IksqUkkwxjWRPdm8YYbWaXLnOzw4bVYafGZkFEapbI6K3RUnXEojOlUc+Ynw/t5JMvtoEAEy6KJKemgvcOrCWnRq4WC3P3Id67eajNbBWZ9U0hYz8soKTGwX1neFP0WBSCtowpYX14ZMg53D3wTByiSFDFZsZ8vpu93x4iNM6TD3bO4JUV05yGyGFjfEJIHE8MP4+h/hF8eGA9+bUG5/UOV3ZcFT+aR4aeg5tCxTtJq1vsrXO6sqn4EF5qNwa1Ii0Bp+86dEp7RpZmJjLALww/N3csDjvbSrJIrSrmroFTgZOjt8sJjekgpM4AaxYo/aD3Yn4r98KOvHObETkAP60HsV4BXNtrGIEl1ZRv3sCf7jYuf/4DVHaHK+kCJ2JWFo6UFJQJCW2KmQa6+fFgwLs8VXoZF+y5gJ2jdjLYq3lVx4/pOxjkG0Y/3xD+zG1dz6FxMpnCX05gLBqs4K8Xwnng/CRKIqM44/OFaO942HlMu5LJdPE4FD70dsi76N7egdw1cIqzEWKwuzdX9h6FRqHi3/yDSEisK0xndv13tiNYqKEl78CR1EnFKNqQW/JKihyieaQdIZrHVlSgUcIr0zsucgawoegQUv03aXpEf0YHxTBvmIH7/qjgj2QTdywXMdZ44O9VQ/+YIiaEB3J9/wGE+6jw0DQ3gkrrxvF16lYe3vYrCgSiPH0ZFRjdpFT4WBHvHcj44Dg2FWdgMTr498kcFO7wVOpyzI6GrFOVoOCq3qOahey+3mHktmXl1NklBoWo+f3aUKL08m3+7vr7HsDu1UWsu6aUyjwzPgFKFnw1junXNq8GO10rO7oaUZLYVJzBuOA4lEc0Oe1Zh2ROaWOk2mbmq5TNVFnr0KnUhHvouWvgVGfL9xO9t8sJiyhC9u1Q+on8/wE3QcxHoFBQnr/OOeywKzchdQ3GM64CB3i6u3PTBTP49oV7idyfRkC1iZGFRuxJSU55dlEQEBQKBIcD6/Ll6B58sM1T81UFsGbEGs7YcQZjd4wlfVw6YdqGncj2kixyaip4bNi5bTpf42Qy1eTJ+OzZw3fh35Hh/38s50kGvfUavpdeiXTnvbBwkfO49iST5SpHEeP4jwCKmR4xGYWgQJIkLF99heaSS1B4enJORF/+y09GQmJvRX6njRFFG5yidrsdSVGKt3R0Ybd/ivPwU7vRy7NtuVg/7qmmpFbk1jFeqDvZxCy7ptz57/EhcgVLhLcKuwgXflPMtN46VtwQyFvJS5EADw8HfQJblvEP1HnxwJBpWBx2zA4bPhodnxzcQIDWdedZb7UW4xGftdFqRqtUo1GqUAgCCgSqXYzxOSJRURAEro4fjVgDC69OAwcg0MQQ8VBpuKnvGfRuVBqaa7Bz/teF7CuyoVMJfDEngOtHNg+TlOWbeGbOGpK3lqNQCwQ9KfDKg+cS6eXaIDxdKzu6mmRDERUWExNcNCjsWYdkTmlj5Jo+Y1t9/v7B05o9NiIwihGBrsVoQL5ZzIwZzMyYtusonFJUb4DUi8BRDpoo6PMHuA90Pq1qZPXXOawgqiDvBXCA+52gvf1aHL1eJ33LUtLGDiFQ68lZo2YiSRJSYSH2pCSW/fUTQwqrCDqUgyJcNmjaEzMd5zOShYMWMnffXAZvHUzWhCw8VZ5UWGr5OWMX9wzq2I9WEARUgwczqGA+Bw1/8I/+VeLPTiX93EkMX7IER15eh0qLd6guJ8b6H9OVvxHhebP83r30EnWPP4591y48330Xb40OvUZHpdWEyW5t9zUaY6EWRRt++j8WrgKFiX7a1nNUDtVUUWG1cFlkrzbP4cE/K1Ap4M0ZLZfLtpXG1Uc6pRxeCPdRoVTAo5P1PHe2LxKgFBTYJbHVvJzGuClVuClV1NqsHKgsZHYLfYjivANIqiho8thBQxFx3rLLXKVQEuXlx0FDsXPnKkoSyYYipoY1D3/VVdnZemM5tvoon+CAIJ0Xeo2OUYHRjA6KcVbaiKLIg39V8NZGI6IEs/q589PlQWiP8PjY7SJv3LSFf785hCTC4MlBhL+swqETWzRE4PSt7Ohq+vuG8vFE100xe9YhmVPaGOmhCxGtkH4pGJYBSgh7GiKeaTYs2sufHfX9ZTYWZXCZ4hPEPFnISXPt0wjGZxETv8eT/1GNL9H1/TUEQUAIC0MTFkZlpDv/iHYWDJjiPG9LMdPDvUAOx0wnh8qu5jlBc3i99+vcn34/g7cOJn1cOjnVFVTbzLy4q6F5n4hEWlUJawpSef+My5zhkcO4SiarsVnwK7iZCv09/KW7g+Ib5jDir3XUXHklPutkz1B7ksnq3AZiNmkZotxFTq0B3XsfUff44wghIYiHDjnPdzhn4Wh5LkfDhqlNxsjn+b8DMC+s9VLlV5Lrq2gSmleauGL5gVryjQ6uGebZbNHsCP5unkAxAPsq8xkbFMvoSC11z8WiVso7zuTKIqfR4n8UrZb9lQVIEoS4e1NSV83izN2EuHs7d7VLMxMxWE1cnyCL6k0OjWdNQSqLM3czITiOZEMxO0tzWDCwoZHjtPC+fJWymRgvP2K8/FmZn4JVtDfTIqmpsvLgWf+SsbfSKb/uqIWH46fj6dP0c9+QVcfs74oprRUJ8VKy5OpgxkU1zwP69f0UPn1wJ5Y6B0HRHjz580R2+WWyv7KQB/ue3cZ3uYceji09xkgPR6fiF8i4DsRa0A2GhL/kslQXjAuKZVnWHhySnbiSBaDcwob8Kxig+YWKhHspylcRZ3iZJzRPsNR2KeNDnztmMdP7ou8j25LNO7nvMGHnBFYPW8dTw5surF+nbiHE3ZvpEf2bGSLQkEzW2FV9sLKIAR7jyGQo6aq/cI+5iIJzphC+YjX2vXux9e/XxDA6GoP9wkgt78dAx25qFlyP6cd/0T32GISEUHf33TiysvhXqnRKSh8tAe5o2DAjdwNqnX3VSYCOGyOntzrut8IsPFVqhvsePbcE4O7fy1EK8P7Mrkm2Gxccy8Zi2Wj7LXsv/fQh+Gh0TkPEZLeyOHN3w/ig5q7yxtTZbSzN2oPBYsJdpWF4QCQXxQxBWZ9kW2Wto8Jico4P0HqyYMAUFmXsYlV+Cno3d+b1GdOk0mVUYDQ1NjPLs/ditJqJ8PTlrgFT8W7k2as1Wnn47P84tKcS8QgxlPy0ahJGyl4kk1Vk7vfF/JVah1KARyb78NK5zT1MSZtKefHydZTmmnBzV3L3h6O58NYEfkzfzr7yAh4YMs2lbkpjTtfKjh6OPz3GSA8tYzdAyvlQuwkEN4j+GIJvbvUQL5XAfP8DxBvfwkuoxiDpsaUUU+flwcu7/wDiCOB5HtU8xXWaT6DMyO91NxyzmOnbfd4mpy6HX8t+Zd6BK1k0eFGT592UKjxUbs5zt8cwOpdfeVyIhb7v88Pdd3PfyvUUXzuPZd+/2+ZkMqm6moTVmzn4hQPDSuhj+5ekGy4n8uF7iaqowXTXXSTfdiP/PHYDAAICk0Lij3LW1pGNEbejjqsSC4AgNK303Skymygy13F+aMsu5casTDORVWnnkkEeeGq7ppjv/9s77/goyu0PPzPbk03vIY0kEDqhdxBBUVDBimJBr71dFSvXguVeu/689iv2glgAC2JBmiIgvYdASEgI6XWz2Wyd+f0xYSEkIQmkEJjn81mSnXnnnXdfNjNnznvO9yT7h5HgF8KBqlJK7NU8ueknRkcmEW8OJs9WyZ/5Gd4baqjR7A20bIzBYfEMDms8K+j6lBH1tqUERvDYwPOP2+/46BTGRzdcZdpW5eKhc35n3+ayeoYIQO5eCymDQ3jvbwv3LC7F7pYZGK3nx5mRRPvX/f8pL6rh6cv+YMefRQginH9jMve8OwyNRuDLjA1sLc1lVr8JjcbAHE1jxnhLvJQqKs1BNUZUGqbgv3DwQZBd4Dceun0H2uPoBniqoOg9yH+RAe4ib7LGYvfFDNm8BIPtSFpkCRHM1X/OPZpHEcvmc79hIyT9Xae71lwzXdR/EYPXD+bb4m95YO8DvNz95UbbtiyYLJChzGC97xckplaw8sbLOWvuV+h37eafU2Y0Gpfiyc3F9eOPOBctwrViBbjdeD+pGebNvAC2/QbA7CB/glathlpjZGpCP8JMTd9EjocbJyaaDjT1CCUY5eN7EV6qzaKZ1a3vcdsd5vYfShEFeHfayceKHEYQBG7tMZoXty+l3KHE1PyWm1avna/WwB29xno9HB1BQxVcJYeM9UE9pTscDRoiolZg7srN3F1RSNrBcPyMHt6/JJKrByj6SYd1Pv7I20f+T3ZK3pbwVEKvkaHM+XYcIVGK92NexgbWFx3gjl5jMWp03mU/U22gLaiZHSodh2qMqNTFng17zwP7HhD9IPlbCLqo8fauYkXSvOC/IFkBuU7SqOw3Bh/L19SYlXX6WN8gzoruzojwrojiVMi6BYrnwpYY6PGbVxa9tVk3eB3Ja5N55eArxJviuTv2bqB+8FhLg8mu40O2sJC9UU9wy/MHqHr/ay65798EX35bnXayLGP/v//D8ckneLZvV3S9BcFbcE+o/cc0A4yCDXut7PuOs4czcsFvJG1OI/XSGZxzTGbDieDBhQ7TcdvssmSBWEYX7YTjtluQm4lR1HB2RNOBu38dqGFfiYsLe5gI9mndS0+w0ZdH+p/LgqwtbCo5WCdIVUCgX0gXLu86gLBaAcSOoqEKwMimXwAAdvtJREFUri/+tIzSnQ4kSUYUvV8JQAkbyUsJYaVfIu6DWs7tbaVr/G7O6n4kG+zX3DR++HU3BY9L2Isl/AdriHvYyEuXnFvHID6sxfLKjmV1xjSz+3Bv7Iqa2aHSUQiyfGzlr1MPi8VCQEAAlZWV+Purqn5tRs7DUPAyIEHwdEj8HMRGbhqyB3IehKK3USp1NSBwJJpgUBWlBhNyn94Y/16HWdfA8kDJl5B5ndJHzLMQ/UgrfqgjWNwWEv5KoMJdwaK+i5gaPrVV+l3Bm3zF3YzkBi65RYtj7lx85s7FdNNN3jayw0F5RARyZeVx+wpcCId63sX37kuwuhz4Waq58qzLEMeNJXjlqlYZ750YiKYPj7Kp0TYztz3PpyWzuS3sdd7pd3eDbSxOJwHff8RZYdGsOOvCJs/b97WD7Cp0UfBoHOHmtnsOqnTWsLMsD5vbiUmro2dgVJNBqx3FV/s3saPsEPfHn8PaH3JZ+dUBNi8rABlqgo3sOSeRsq5BRORUsPiFXgyOMfL81l+9asTpG0p45JFfqVouoTdq+MdzqUy5K5kH1i3k+u7D1dRalQ6nuffvM06BVaUBqjfDli5Q8CJoQ6HnOkie37ghAuCpVHRGZAcNGiIAPoOQZAFcLvRx8Q0bIgChV0G/NNAGQ+5s2DOp7uNhK+Gv9Wf7sO0YRAOX7riUDZUbWqXf8dxFMHGs5RMcbz4CRiO2Bx5AOuozCAYDfr/8AkYjNLRMIAhohg1DE6MnzvErd/cZz+wB53HXuEvRJCYir1lbp7+TQcaDgeMHLv5R9jfIIg8nNy4D/9q+HQDcndyn0TaH2XzIzs5CFxOTjW1qiAAE6E2MikzinJiejI5MPmUNkcMVXEdGJBEUbmLyTd14cek5mMONZI6LY+2NA7AFm+j/zW6GLt7L4BglaLRXUBTphUU8OHEpdw77merNEiOv78J3lVdw2b296uh8qKh0FlRj5ExGcsP+62DXIHDlQ8S9kJoPfk1XaEUbDL03giEZaMgdqwXzcKSsLAA0SU1oUBiTITUPzKPB8htsiwFnbks/UZPEGGP4a5BSjG7MpjFk12Q3cUTzuImvkZF4Tz8d0+zZUFmJ/em6Bft0w4fj/9NPoGlgvmQZ4w03gM9gcGSA50iMjeGmm8DlwvnZZ60yVgkJQwPFC48mz5kNUhgJPo3Xr5mXsw+dIDItumkJ+JsXKjfG9y9tuh7OmUJDFVyf/6mIpRf2JGt4DEPijVw1eQe33xfGLS8qRfgkSWLD24Wsv7ScLcsK6DrSn7h5Ivf/bwR6/REjT9X5UOlsqMbImUrFr7AlFEo/UwyKfvsg/v8afmpvDFMP6LMZ/BuKK3CD7xA8m5SlALFXM4q7iXro9SdEzVaMo21JUP5D88fTTAb6D+SH/j/glJ30/7s/Fc6Kk+4zkWGkcDbZbCTrsSEIgYHUPP88krOuQJkQH9/wHGu16K+4AiJuB2QofNO7y3jffSCK2F977aTHqSBj5PixE06K0MiNp+o6JTd7rZUMCAppsq5MWqGTzXlOxiQYvNLkKnUruO4rdpLyykFmr7aidbj5v0EG/r4zBmOgzIDLI7jg1u4sm5fFtKCvWftiAfquAs//NoFHloxEYz65Ks4qKqcC6pXhTMNtg4yLFe8DWoh5AaIfalEXdreL77O3s7X0IFZXDXdr80gWhFrLVgBqlxPMQ/Ds+hiAnJSufLP5Z/JtlQQZfJgc16ee4NOKvL0szU2j0tmPfqa3uMHzEPp9UyFyFsS9cpIfvC6TQyfzTso73JZ+G33X9yVrZBba4y1LNYOb+YaHiOAjcSb/fu01qq+/nuo77mDz0w+zKn8f9ryDXHPPv/HXaXDcdCuBb7+nVG7UaNBNmYIYFATSDMi8nqLCr3kzr6e3Uuq1I4YQsHYDkt2OaDSecKVUJ4o+hpHG29ncdtAUE0zjyy/v7N+NDNzStWeT83LjQqXa7QeXNE+HpCl+ObiLRQe2cXZ0CtOTBjXa7lSuNnu4gustPUZxy8Ji3t9QhQz0WJ9L4t+HuPfTqwDFw5GZXsbbY7aSu7cKnUFkzAuRiBNdDB4YTXGNUjRR1flQ6eyonpEzieJPYEuIYoj4DoEB+S02RAA+3fc3aRUF3JAykueCPqG7sJP33bOoSvwBNLUXck0A6BPw7NuHDLwlFXq1GCZ0SeGzvX+zq/yIhPaG4my+zdzMlLg+PDrgfHz8B/G4+x1cungoeBV2DQWpdd3Ot8bcyiPxj5DryGXwhsEnHZNhJpgJ3IuVYpbOPIAYE4Pz448JtLu4pErDvVfcS2huATs/eINXrjwL1zu13g+PB8PMmcrvokiFYRB6ZwajwuO9lVLnzbwAJAn7K4pRdqKVUqtQDAPjcVJ73zywCAQnA/waV1T9KGsvIgIzExrWzTjM/lIna3McDI3R0y3s5JRjAQ5UlfJHfgYxR2VzNHjeU7za7JrC/dhr/Jnwtoe5G6qIC9SwakYIXZZnk3pWBKCIoBW96eaDc3aRu6+KsZfH833FdIznyqd9BVeVMw/VGDkTcBbBzsGQdT0gKFkyvdeDruUXK6fHzZaSg1zaNZXu1vcxW38F8xiKTRNYZo2FPluVuIfAKSAISNnZ2P3NhPj6c3niQKJ8AhgfncLA0Fh+P5Tu7ff3Q3sYHZnEqMgkon0DuDp5KGjMLAteDIEXQfUG2BKtVApuRZ5Lfo6rIq5im3UbF25vOiOkKS7mBXwI5Bf+g/bDN8HjIf6qG4iaOAWNy0XgL79y3hX/wKDRkjF1Er7vvot2+HD0k48ow/4hTyVQqGCSYS1RPgFMTeiPdvBgqkKDcHz4Yb1KqTG+QdyQMoIKRw1bSw4ed3xVFAHgS1Cjbb4u+B2A2+MvbnC/JEnstJTROyAIbRNLNDctUGJFWsMrYve4+CB9Ddd2G9akJP7R1WYPz2GcOYiVeUppgpOZw5Ol3Obm6d+tfLqyB1anzLPnBnHg4Xh2vK+MLepWHe/P3swlIV+T81kN/lMEbl3Xh1s+7s+vhbvJtpZxVm1Nm6N1PraV5nKouoKP9q5VdT5UOh2qMXK6k/ccbO0Ctk0QcD4MKIHQq0+4O0mWkZAx1WyFQ4+BNgx6LEMnatlvKQZDPPTZoBg8gFRQQGV4CD2OquoJSkZApkW5UbklDzlVZXUqf4qCQI/ASDKtpdD9e4j9P/BUwM6+ioenFZnXZx6jA0azpHQJd+y546T6EhG5hg/w4OKTc+YixMXhWb8eBAH/v/5CO/4sNhQdwOlxk+gXivHWWwlYuxbBcCTTaK0zBYdsOFIVGegVHM2u88YhZWZSnHsAm9VCn+VrqbrqKlyrVjU7g8KKst/nOMbI3pp0kPyZFtlwocnPczLwyDLXx9cv8nY0uZVuVmXZSY3S0yeqacXXpvgyYyN9g6LpGRTZZNvMqpKGv3O189NUtdm24tU/K4h+/gCb94czPE5D4aNxzB6v/F/8uSAbbRT89kAO85/fhW+Anme+P4t/vTuWHWIuz2z+mc0lBxvU+RgflcLn+9bz7JZfcHhcqs6HSqdDjRk5XanZp4iXOTJBE6iIlwUcX8CqORi1OrqbffDPvRmPoEPouYb1JblkWkoIP1oZVFCC6uSyMir6JjdY1dPuceH0uLG5nUjI+DXQpqDGoryJuhf8RsGe8YqHx7IMkj496c9zmFUDV9FjXQ/eOfQOCcYEHkpo+fLVYQZyCdH0pWzDT0i5ShRNTb8+POXOxrU6E4NGy229xhDt2/BSSaXTRaVPb8Jt25QUZ1HEX2fkrylnMfzz7/BMmsxjWZno7U6cgHbAAHTjxjUrg8JKKQA+NF6ptVoqQKBxT8a7mbsQgDuSeh/3XDcvLEYG3rv45JcLNhQdIMdaxr8GnNd0Y069arNphU4u+LSAzDI3/gYNX10TzkW9jqQc71hTSMmh2gyqErh2Tl+ufaKfNzj4TKvgqnLmoRojpxuSBDl3Q9E7yvvQ6yHhg5ZlyTTR/508hIZinnU+Td7GDcSZgxgSFk+Otaxec7m6Gmt4K0l/m4co6b+7hytZQNXrodc60AaedNeiKLJ16FYS1iTw8P6HiTXGclXkVSfc361zL8d9/w5KkwXCAwZj3LCB2VI4ztR+bC7J4eP0ddzfb2KjBkmZ71TCKzcjl36NJzeFyHff4NqvFwCgS9tTR+VWjG86tfYw1bXGiJnGDQRJLMZXbjh4VZIkNpaVkGz2x3icmjVFVje/7q2hZ5iOIbH1K8m2hDJHNV9lbubevp3vad/tlrhpUQmfblYCTWcONPP+xaFotcrfo93m5tmrV7PmO2VpqNeIEJ7/bSI+5pOPr1FR6UyoxsjpRNVa2DcV3MWgj4FuP4FvKz8tZV6F0bUPwm/nobgHsXtcBOhNvJe2ul7hLUmSwOXCFRJM9TFPmxanHWNtTQxREBARqGqgTcAxT7do/aHfbsj8B5R8pCxBpfwOfvWLl7UUH60P24dtJ2lNEtfsuoYuhi6MDRrb4n5sL76I9uEnsCbqeGujixnVM+gWvRHjP24mat8+4v2COWAtZXleurfGx9H4640c8rmIHpVPYnvsQezv5RKi0SB6lMDKYxM5i8MCkaxllDmq6ep3fMPPRjkAfo0YI8tKNoNoIVHX8BLM4oIcXLLElbHHL4J266ISZOB/reAVyakqo8pl5z+bf/Fuk5DZV1nEyry9vDV6er2Ky6dCtdkfdldz7ddFWBwyiUFafpgZSe+II0bGZ09v44v/7MTtlNBoBUQNvL5m8nF6VFE5fVFjRk4HJCfsuwzSRoK7VNHpSD3Y+oZI4btQ9jWY+kPXtzFotAToTVS7nOwuz6f/MdVQpX1KLQzf8Kg60f4AaRUFJPorNyqtqCHOL5i0isIjx8oye45qU4/EDyHxM5AckDYK8l5qlY8YaYhk/ZD1iILIxC0TSa9Ob/qgo7A9/jg1Dz+MEBpKzN9ZSH5Gvox8HO1llyJlZOBYoHg3ZFmJlWmIRL9Q0iwVYOiKfmAhGAwgN57p81plBv/Z8gtZVaWEG4+vH1KDIkdvbmQZ5r9ZSlXjqeHjG9z/+r6dAMzq3nhhvAqbmx/SbCSHaBnT9fg1cJpDj8BInhg4mccGnu99xZuDGRqewGMDz69niMCRarNH01i12cO0VhZKmc3N6HcPMfWzQmpcMi9PDmb/Q3FeQ2TdT7lcGvY1n8zZjtFHwwMfDsfjluk7JuKkzqui0pk5IWPkrbfeIiEhAaPRyLBhw1i/fn2jbefOncuYMWMICgoiKCiIiRMnHre9SgspWwSbg6F8AZh6Q/8DEPts65+neitk3wkaf3ZFLWRnWR4ldiu7y/N5dcfvRPr4M6pWN2RR1lY+Sl+DZ/NmAHol9qLEbmVB1hYKbJWszNvLpuIcJnY5khY6sUsPVhdksLYwk3xbJfMyNuCU3PW0SOoQeg303QWaIMh9CNKntIqMfG9zb35N/RW37GbwhsGUOJsX0Gi95x5q/v1vhOhoAvfvxxDahYt5DgdW5r3jj8dgoOzef7Ioayt7KwsZWls35KP0NSzK2urtZ0KXFHaV57NVexm6AS4yPpiFW69DbmCpzaPRYA0+stQT79d4LAhADRUA+NGwEuoGy1aQdTyYeFmD+9eUFhBrMhOob3zp5fbvS5FkePOi1lmeM2p1dPENrPMyaLT4ag3eQM7G5nBpbhoFtkp+zN7eLlkoz60oJ+I/OfyV7WBcVyNFj8Zx/xhljPlZVdw6YDGPXbACa4WTKx7qxcLSK8jdWwXAZbOaIQyoonKa0uJlmq+++opZs2bx7rvvMmzYMF577TUmTZpEeno64eH1L3ArV67kqquuYuTIkRiNRl544QXOPfdcdu3aRZcuXRo4g0qzcFtg7wVg/RMEPcS/BREnlwnS+LmskFa7XNHjT2psGhbt30iFw4aPVs/A0FimJfT3lmavdNZQ5rDh2bULgJABg7grIYpvMjez/FA6gQYfru0+jN5B0d5TDAmLx+qy80P2dixOOzHmIP7Zezz++iaerE0pil5K2llQuQS2xSlpy/ro4x/XBGcHn83HvT5m5u6Z9Pm7DwdGHMCobfwGXHXDDTg//hgxMZGAXbsQjUrbCdzLd1UfsM3vW6R/zeTKOe9h+/EH/nntzfQKigIar5T6Q5aWnrIea9JeKn9YQNilM8BmA88Rj4olNKiOkaJtIqaiBiUgWEvDMQkl7lwgHH99/do1fxTnUePxcGlM1/oH1mJzSnyzo5q4AA2TurdfTZiOrja7Pd/BRZ8WkF3hIdAoMu/KMM5PUT6/0+7mhevX8MfX2cgyDJ4UxWPzx2IOVP4PVs4/gM4gMvR89XqocgYjt5ChQ4fKd955p/e9x+ORo6Oj5eeee65Zx7vdbtnPz0/+5JNPmn3OyspKGZArKytbOtzTk4K3ZHm9Xpb/RpZ3jZFlV3nbnm97P+VcBf9r0WGW6dPlEpA9LlcbDewYsh9SxrleL8tlP7VKl0/vf1rmd+Qea3rIHo+nwTaVF18sl4Bc1qtXg591n7xavlVGft49VC7x8ZFLfH0b7asem2NkeYOPLMuy7Nq6VS4NCpJLNBq5BOQSkP8e0Eu+5Y8vvK/sqtLjdvdf+Vz5VllodD+/Rsi6X1Ib3Dd19c8yX78rH6q2Nnr8Dd8UyTyyX164o/E2pxMul0ee8WWBzCP7ZeGR/fLNC4rq/N/Of2GHfJ7hc3kCn8rXdVsk79tSUud4a4VDnsCn8qyzfm3voauotAvNvX+3aJnG6XSyadMmJk6c6N0miiITJ05k7dq1zerDZrPhcrkIDm7cnexwOLBYLHVeKiiF43b0UZZLBB0kL4Ref7RKNkmjZN0GNdsheDpE3NKiQz3Z2aDRIB4n66JViXtBCdoF2DcFch4+6S4fT3ycG6NuZI9tDxO3TKy3v/Lcc3EtWoRmyBACduxo8LMmM4pujCNLs57yF6+D6mpqHm7m2IIuBskGVX+h7d8f/7/+QggJQQZkoDyqbnxDpaOmwW4OY8eK2GBhQyiyl4NYQoSu4TTSFUV5RBhMRPs07PFwuiU+31JFlJ+Gi/ucmpVyW5MFO6sJeiabeduq6RaqI31WDO9dEoYoimxelscVUd8w9+Et6PQiD386kk/2TiM5te7S1TevKN7Dy+5rWlZfReV0pkXGSElJCR6Ph4iIuoFWERERFBQUNHJUXR5++GGio6PrGDTH8txzzxEQEOB9xcaeAUqC7krIfRLcFQ3vP/gobI2Hml0QdCkMLIPghhUyW42S+VD8PzAkQeK8Fh8uFxSAbzvflIImQ/8s0HWBghdh1wglwPckeL/X+0wMmsiKihVcv/t6QMkUqhgxAvfSpWjHj8d/3brjFoy7lW8R0PC/OxchhIZi/+9/kWy2pk9+WK4//2UALIlxfPzef3D4mBAAY1XdPt5N+/O4CqJOqhs1Rl7InA+Ch5EBg+vt215RisXtYnJU43oX9/1UhkuCF88/ftxKZ6fI6mbYW7lc9kUhTo/M6xcGs/f+WLqF6SnOrebOoUt4aOIyKoodTPtnCt9VTOecaxuuWr3siwNo9SIjLjoDrnEqKsehXbNpnn/+eebPn8+iRYswGhtff589ezaVlZXe18GDbSvP3NaU2avJsZZ5X2X26vqNch+DvKcg54G626u3w9ZYyH8WtCHQ8y/o9q1S4bYtse+HzGtBMCkxGCegUyKVlyvF39obfTT0z4GAyVC9DrZEQU3LsmKO5dfUX+nt25tP8j/hyb2PY0lNxbNuHbqLLiJg+fImK9eaCWU8d1NFITs/ngguF9U33dSMzxID2nCoWo7d7eK/O1aQHuzDW3OfQRLA1+km2ifAGy3hliXe2/MX+yqLGuzOSQ2aRkLFlhT/AcADiVfW2/fCnq0APJzScL0at1vigw0WwnxErhlw/IyezsxTv5cT/WwO63OdTEw2UvpYAnePDMTpdPPCzL+YEbeQ9A2lpI6P4OuCy7jrv0Mb/W7YrE7yM630GNpKOjwqKp2YFvnPQ0ND0Wg0FBYW1tleWFhIZOTxJZpffvllnn/+eX7//Xf69Tt+yqnBYMBgOHn56FOBMns1j2/8EfdRqZlaQeSZwRcSbKz1Gti2QdFbyu8lHyhy7eZxcOBGKKmVPg+/C+L+23riZcdDcirCYnigxwrQnuCTbnU1QsrxC6m1GaIIKT8pKb+5D8OO3pD4sZKBc0LdiWweupnEVXGE3/lv3DvAcPXV+H3+ebP7uIxXWMtHfDVlIU8nJeD86iukV19FbOJvh8ApUPIRm3N+oqBG8YRounXDddstJC78nif6T8Iiufh6/yY2luTgkSUWHdjKQ/3PrdeVixo0jQSv5tgzQQhmSFC3evt+LTxIkE5Pin/DxuW/fivH4YF/n3t6ekU2H7Jz0aeFHLJ4CPER+eqqcCYkK0G+372RxtyHt+Co8RCZ4MtjX4+hx5Cma/EseHUPAJfcqy7RqKi06M6m1+sZNGgQy5Yt826TJIlly5YxYkTjolMvvvgizzzzDL/88guDB9d3AZ/OWN2OOoYIKE+vVrdDeSPLcOB2jvxXiJBxFWwOgZKPwdAV+qZBwhvtY4gA7JkA7hKI+Q/4jT6hLiSPB9xuxI5eYot+UPEmiQbF05P5jxPuSmtzsnmmhsuWw90Pwtr/Xtei45W6Ne/hwcmSb2NAkqi6uhl1gqIeRgZ8Sl7zbrqt11jC/3EzcmEhruXLCdCb+EePkUT5KGm++y0lHLSW1+vKjQMtDRv6NRQiyvVvollWC6VOBxMjYho4SrkGvLnOQpBJ5JZh/k1/nk6E0y1x+RcFDHozj/wqD3cN96fo0TgmJPuwY3UhV8Yu4M1/bkQQBe6bO5zPsy5pliEC8PvnmWh1IqMvVpdoVFRafHebNWsWc+fO5ZNPPiEtLY3bb7+d6upqbrjhBgCuu+46Zs+e7W3/wgsv8Pjjj/Phhx+SkJBAQUEBBQUFWK3W1vsUnZnSL8C6FjicrimBuxCkSoh5FvrvV9JX24uDj4J1NfifC9Gzm27fCNIe5alP063+U3a74zcCUg+BMUVRbd3eS0mNbgFSWRkVSUloDuZRM+tmFp6nZ8q2Keys2tmifgZxBVH04q/U1biG98K9fDnu2hToRjGlIGsCSZY3AZDkH0oX30A0gwYhxMZS8+STuDdvRnS6vFovgFK48BjcOBs0RtxuN7JYjL8QhSzLOL74Ak9uLgAvpG8F4KGU1AaH9/TyCmpcMo+ND2x6AjoRX26rIujpbL7daaNnmI6MB2J4Y2ooFUV27hn9C/eN+Y3SPBuTb07mu4rpTLmp+d91u83NoYwqUoaENLnEp6JyJtDiNIfp06dTXFzME088QUFBAampqfzyyy/eoNacnJw6f1zvvPMOTqeTyy6rK6I0Z84cnnzyyZMb/SmOJMtkVNa/IUCt+qbHAjn3oQh8y8e0EJQqu+1Jxa9KbIouCrr/fFJdebZsAUDb6xQRctIGQr89sP86pa7N1mhlCco8pMlDpYICKnr2RK6owPSf/xDyr3+xvHwmYzePZejGoWSMyCDa2Hxdk9tYyBx68sm3NdwUA9YZMwjctu24x7jM4/GtWEQIRfjrlCdpQRDQJCbiXrWKykGDQBRJ1euJDQ0kv1s8/pPOR7rhdsSj9H88ONFTX7tlXv4KEG30NPZC2r8f6zXXIAQGYv76a36wF2DWaBkcXPeJ3y15+DNvP8+vEjFqITR8L1tKoog3Bx9ZguyEFFjcTPmkgM15TgxaeHdaKLcO88ftlvi/W9ex5P19yBL0HhXGnG/HEhxZX5OlKRb+Nw1kmHpXBy1jqqicYgiyLB97FzzlsFgsBAQEUFlZib9/53ADW5x23k37g/2WhtU7gww+PBbyO+bSd4CGVEM1YOoDfTaC0A6psc4C2JYAyIo3Rt+wS765VM+ejf355wnYsQNtn4aLrnUYxR9B1s2ABLGvKhWBG8GdnU1lnz5gteLzxhuY7rrLu++bwm+4YucVhOhCyBmZg4+2+Tel/3EZW1jA/Zf1JXjBDvyWLUN/9tmNtnda1qPfM4w/3Gfzg3gHzw+dhlbUINvtyG43nh07cH79NSXfLUCfX4jO4TwiAabXI0ZHo+nXjw9uW4w0oBf3R+6o0/9Za//JKtsbvJ20mH+sr8Y6fToIAjLw/OUXsOeOW1g87gJv+3VFWXyzfzN/pQfzd3o8g7vnMDA5D1BM60dSJ5HQRJ2cU5F//VrKi6sq8chwfncT314dgY9e5Ke5e3nnvk3Yq92Exvjw6Jej6Tv6xOXbb+j5PXkZVfzsmKF6RlROa5p7/1aNkTbA7nHx0ral5FZXeLfpRA0aQcDucQMQJeQyR/cwwrFVz44l7nWIvLvtBguKhPr2eEXHpNuPEHRB08c0geXyy3F9+y1BLlf76Yy0BNtupaaNpwICL4LkRfVictxpaYrHwW7H96OPMM6cWa+bV7Jf4YGMB0g0JrJvxL5m31ic2JlFIMYqHbMDbYgxMQRlZx//mPU+2GQDDzvf4sK4vlwQX7c+THZVGS9u+w23LOFndzOnEPh9Oe5Nm5AOHICjl0a1WoSICDS9eqEbO5ZBiUvYE7YV13gLjscfx/7yy+BWvqsyUDVuDPELFiGGhLAiL535+5Ulo49/G4wkCVx/7oY60xdk8OFfqZOaVtA9Rfg7x860zwspqPIQ5ivy7YwIxiaa2LOhmH9f8ScFB6rRmzTc/MIALr775AJOnXY3U3y+JGVoCG+uUwvjqZzeNPf+fQreJTo/K/P2eg2RQL2J6UmD6R/SBRGBfZZivs9Ywd3uJxAE5UIvIFLPOyKaQd8FtA2XmG9V9k1VDJHIB1rFEAGQcnJAqz01DREAn161MvJjoeIH2J4AvdaDXslscW3ciGXUKHC7MX/zDYZLL22wm/vj7yfbns0buW8wetNo1gxZ06zT6zFyEc+w0O8h9s5KofvL6dg//RTjdY0Hxbp8RxNgXYofFfyYs4OsqlJGRSZi0ujZUXaIPwoyvMHSw5P64HfOQLjmSH+Sw8FTe42M/D6WYYvCkDIzcS9dinvpUlYD+cEaLNouyE6n1xABxdPhv3oNFf364fzyM74SlGy6nQcicLq1XDnQzU09R3Cgqoy/i7Kodjspd9j4ImMDt/dqedXj9sTulLhyfhHfp9kQBZg12p+Xzg/GUubkgbN/Y+uKQgQBzrkukfvmDkOvP/nv86I30pFluOgOdYlGReUwqmeklZFkicc2/EipoxoBeGzg+cT41qZDyjKUfYOUfTeyq5gKOYid8iCGx47FYExQjA99DOiiQdNOa+75r8DBB8B3GPRe12rdlickIFVUEFJR0Wp9thk590PBqyAYoNv3OLebqJowAWQZv59+Qj9pUpNdTN02lR9KfuDy8Mv5uu/XzT71w0RjdRXwlL8O0eRLYElJ496VyuWQPoHf3OezwNN4inKyfxj39BmPXlP/xnkbAoO4gpv5CgDJ7cb9xx9cvnwqI3eYuGm1B8rKGu5YEJAFgcV3Xc3aSyfx5fJhuDwaqubEo9UqYy532PjPlp+pcjkQgH8PuYhQo7nZ89GefLLRwu0/lFLjkukboWPx9VHE+Iu8fd9GfnhrL5JHJmVICE8uHEdYTOv9Pd7Y+wcOplv4xaku0aic/jT3/q3+JbQyRTVWSh2KqFmPwMgjhkjFL5A2BvZPR/QbzeLgn/iX6w3mua9nt3Gmon/hPx6M3drPEKlaBwcfBE0w9FzZql13mODZiRD3CnT7HpBw/3IeVZPOAkHAf9WqZhkiAN/3/56B5oF8U/QND+17qNmnvpH5eHQyf7wajlxejv355xtvHHA2CEbGGrYT2MDyh1YQGRuZ3KghYkdZpjFy5IIgarWkD+7KD2dV8/59448fSCvLCJLEha9/xt3T7qfKIfKwZjvyjm14SpTYqCCDD+OjlSd+GdhUktOMWWhfDla46fffg1y/oARk+PDSULbfG8vexTlMC/qa715PJzDMwIu/T+Ct9ZNb1RBxOt3kpFWSnBqkGiIqKkdxivrQOy92j8v7e7jpKCXK7DvBeRCSF0DwJfjnpQOb6h3TbrgrIH0iIEKvNSA2roh7QthsCD07kZhT0EU4Mv5L9S13oImW8XuzN5oRTWfaHM3fQ/4maU0SL+W8RLwxnjtj72zymO6MJYlR/HbrX4x83AeeeQbjQw81vrxlHoGxagXPDhzPDouVA1WleGSJUIOZQWFxmHWNiwVWoWR2mQiss/2lzPkgyJwTMhrP5s0NH6zVgtuNJArUmH1Z2P1C4isOcsf/LsHylASCQFBxMWJICN0CjmTvVDqPXyunPZEkiQd/LuO1vyxIMkzt6cP8K8PJ21PJzO7fcWhfFTqDyM0vDGD6Q20TdL34nX3IMlxwe/c26V9FpbOiGiOtzNE3g6yqozJpDElg7A7BlwCQaSlt8Jh2Y/dwkKoh8bNW1zGR3G5wu9HENV7H5FSj5oMPsN18J5hMmOcOQGNeo6T/9vobjA3XFTkWrahlx/AdxP8Vz9177ybWEMtF4Rc1edytLORhMZqFn2mZPtmC7e67Mb/zTsONI+6BqhVoCl8jNeZJUkOan/VUhSIR73OMMfJn+XqQRR5Omo57Ye15NRokjwcREJOS0F9wAdpzz+UhfTG7SiNYtrU7Nw42E/xIJpZ+/dAMGIAYomTPlDuOlDswiKfGJWb1gRou+byQ4mqJSD8NC6+JoG+AyFNTl7Phl3wEAcZNj+fhj0eiN7bdmH/+IANRI3DeDc37TqmonCmofsJWJsTgS5xZWZ7IsZazrVQRjsJ5EETF3ZtXXeF1X/to9aQEnHiK4Amx/zqwp0PoDScsj348pN27gVNE8KwZ1Lz2GrabbgKzmcC0PWjP/ksRnHOXwfYeUPJls/vy1/qzbdg2DKKBS3ZcwobKDU0fQzjjuI3t51uoSvHDMXcuUmOVqgMvVCo2l7a8cGE1igHsQ93lszxnNkhhxPuEK5lVZjMHx4/jgVuu5uc/lhKUkYHva69hmDyZrhGxrNsTjyBI3DjSju2uu5BdLvzmzwcUbZ1V+Rnevru393f7GGxOickf5TPmf/mU2SQeGRfAoUdi2fnWbi4N/ZoNv+STlBrEp/un8fj8sW1qiLjdEgd2VZDYL1BdolFROQb1L6KVEQTBu2YO8F7aahZlbUW2Z+Cy57A0N42Xt/+OpzbrYVREUoPr+21G8UeK6JepFyR+2CancNcKnmlOFcGz42B76ils992HEBxMUEbGEW9O9Gzo+Ydy48+cAVm3NLvPOGMcqweuBmDMpjFk1xw/ZRfgCl7HiD+ffm1H9niwNpBGDCjpxz6DwJEBkr3ZYwKoRvHU+VJX/8NJEZpaGXifp54i2GLhHw/dzucTx3LlqLraJ4ItiWq7nqSoUtZ/PRfn4sVoJ0xAjIykwmHjk73rvMqv4SY/UgI7zhh5728LIc9k8/PeGgZG68l5JI7zrVYuCfmar17chTlIz39+Gs//tlxAVNe2L+7303uKWNrkmzuHka6i0p6cGj7U04zh4QnsKD3E5tKDuGWJX3J3M03vZo/VxbcVW7zt4sxBXBDXjoJgtl2K2Jdohp5r2+w0nsOekYED2+wcrUH1gw9if/llhMhIAtPSEAMD6zbwGw0DcmHXMCieq8j291wL2qazQwYFDOK7/t9x0baLSF2fSvaobPy1x4skF5nBO3zY92p2To0haflSnvrlQ/zDIpjZfXhdAbHw2yBrHRS+BVH3k15RyDeZm8m3VRJk8GFyXB9GHiULD7Aiby8/VGZAT1i8u4zQ2BK6+oVic9tBU0wwR76HsiyzvbKMXv6BaI95gv/vKgFBgNG9s7joijeRRZGX7roU3aafKLBZkGqVhAUEpicOQmxSSKf1ySpzMuXjQtKKXfjoBD6/IozRRonHhv9ETpoFrV5k5lP9uPaJhisQtxVL5u5DEFVjREWlIVTPSBsgCiI39RjFWVHdEQUBHXYEASzyEc2Q1JAY7us7AaNW1z6DkuyQNhqQaivxtl2KtCdDcdOLHVWxtxlYb7kF+8svI8bHE7h/f31D5DDaYOibDsFXQc1O2BoF1Y0EeR7DBaEX8GbKm1S4K+izrg9uyX3c9r1dlyEWj+Wn14swWm08+NxHXJ44EF/tMVV2Q64FNFDyCSV2K2/uWklKYASPDTyfCV1S+Gzv3+wqz/M231CczbeZm0mOVOofRRrDeH3nCixOO69nLQLByUC/IzfmeQcz8Mgy18XXDbJcvr+GrHI3U3v6cOWvf+JfWsHfUydQ7KMnz1bpNUS0gsiNKSPoE9x8ifzWQJIk7v6+hOSXc0krdnFZHx8OzYpiz5MbubHXD+TssTBqWizflU9vd0PE7ZbI2lFBQp9Abxq0iorKEVTPSBuhEUWuSh7M+bG92H7wFygDoymeSYG9GBmRSKRPO+ul7B6jqI3GvQbmtq2cLB08qAienaLr4lVXXYVz/nzElBQCtm9H1OuPf4AoQvI8KDobDtwKu4ZA/H8h4q7jHwfcEXMH2TXZvJjzIkM3DGXT0E0IjXgLfs3dTZfq2zjY5w92XWui7yer6bb/ELpjK12LIvj0Bdt2Vh3aQ6jRzOWJihcqyieAjMpifj+UTu8gxRj4/dAeRkcmIQYp3rDpXUfwQvF61hTu55vC3wG4Pf5ib/fv7N+NANyZ3LvuZ/muBEGA96cGwa0fIfn6cOCpR/CxluL0eAg0mBgalsCYqGSCDe1bm2b5/hqumFdIqU2ii7+GRVeHs+uDdK68YRlul0R87wCeXDCO2JS2FxEss1cfqcpdy7pPDiF5ZCbflNzm51dR6YyoxkgbE2jwYWwwUAaDokcxKCK1/QeRfS/YNkLgNIi8p81PJxcWIphPTaEry5QpuJYsQZOaiv+mTS0zmMJvAvNwxcOUfbciQpb8bT0Z+WN5odsLZNuz+aroKy7adhE/pv7YYLvtpbn0CuqOpeBKFr42n+SFRkruvJWUvzfVbxz6D8j5JzUVv9Mj8Jw6u3oFRfF1puK9cUsecqrKOD+mF1upBMBfCKNHYCSZlhL21aQD/kyNHO49fmN5MUlmf3yO8tqtzbGTXuJicooJ/f1346ypwfy//3FX38br6bQHVrvExV8U8HuGHY0AcyYEMqnGxnMDf8RS6sAcpGfW3OGMvTS+XcZTZq/m8Y0/epVwD5P7ugdBhCm3qks0KioNcWo+up5uOA4oP42Jx23WJpQtgsL/gj5e0ThpB6TycoTg4HY5V3ORJInKsWNxLVmCdvTolhsih/HpA6n5ShBpxSLYngjOoiYPm993PiMDRrK4dDF3pTfsUSm2W1mVv48h9nvx+Puw+kENwRu3sH7B5/Ubh98KCMS7VuGvr6sR4683Yve4cHrcWF0OJGT89EbsKBk6WvT4641UuuxYpUIE6Ug13sV52TgliStj66ae3rqoGAGYO1bG+eGHiLGxmG5pflBvW/DmmkpC/n2A3zPsDI3Rs+nKYPLu/4vHL1pBdaWTKx/pzcKSy9vNEAGwuh31DBFJknBkQFSKuVXk5FVUTkdUY6Q9cNWm9xra+anIkQ37p4NgVOqutNeyic2GGNGxKZ1HI0kSliFDcP/5J7rzzyfgzz9PbglJY1KqKUf8E5zZsC0eKpc1edifA/8kyZTEW7lv8VL2S/X2y0CcOZjLEoZxgfgYfz5UTXWIAfGF+m0R9WBMobewQUnHbQYOrAjUXSKSxWJ8hCP/V6/vU6r53t+9n3fb9nwHOwpcnJ1kxPcfM0CS8J3X8tTi1mJfsZOUVw5y94+l6DUC8y4LYcqqTO5P/ZHM7RUMPT+ahaVXcNNzA0+JpULrr4AEo685uUrYKiqtSZm9mhxrmfdVZq9u+qA2RDXTT4Afs7ezOGdnnW0RJn+eHtxIkTlnPrIMc3Zso9SxlnCTH5d0TaVvcBdvE1mW+TF7B38WZFDjcZHkH8qM5CFEmE4wtkRyK1kgsgtSfgZ9eNPHtAKS0wkeD2J8+z2NHg/J6aSyf3+kPXvQT5/u1cNoFeL/C35nKQZf+kSIngMxTzbaXBRFtg/dTvyaeB7KeIg4YxzTI6Z79wfojUT5KDEN5zObFYbX+fX5Ui67cTs177yD6fbb63YYcg3Bhx5DrP4TOFLB1+K0Y9To0Gu0iIKAiECV015rjGi8bSo85SBWkqQ7Eqi6trSABKOeZ7f8TKWzhtt7juGmBYoB80HXHNyrVqEZPhz96NHeY5qbzbM0N41KZw0x5iCuTBpEV7/Qlsw2kiRx23elvL+hChmY0d+X8zOL+HTUGlwOiZju/jzxzVgS+51aZQgsi2QQ4OxbTo2/CRWVhpYTtYLIM4MvJNjYvvFeh+n4x4ZOSrRPAC8Ou9j7eqj/xEbbltWUYiGAUVHJPDbwfFJDYnhn958cqq3sC/BrbhrL89K5uttQHkk9F4Oo5fWdK3BJnhMbYPokcBcqN8iACSfWxwkg7VSMtFNB8Eyy2ajs3l0xRG66qXUNkcMEXwx994E2AvKegrSzFEOwEXy0PuwYtgMf0YcZO2ewuny1d1+SfxiFNUfEzm7kC7bOdFOQYsb28MNIx3pAIu7BKeswVv1aZ3NaRQGJ/sqNXitqiPMLJq2iECc2RDRIssyeigI21ih1aKaFjwfgr5ICrB4PwwJDuCpJCZrNqfCw6ZCTUfEG/G+5GgQBv2++8Z6rJdk8U+L68OiA84nxDfRm8zSXX9KrCXkmh7kbqogL1DBvkA7nvX/w8aNb0Rk0zP58FB+nTz3lDBFJknDsA10sbSqopqLSEhpaTnTLUr3A6/ZENUZOEFEQCNCbvC+zrvHaLofsTtzomRTTiyifAKYm9CfOHMTKvL2A4hVZdmgPk+P6kBoSQ4xvEDekjKDCUcPWkoMtH9yhp6FqufLUfpwn9bbAdVjwrHfvJlq2LZLFQkVSElJ2Nsb77sNv7ty2O5kxHlJzwW8CVK1SZOTtWY02jzRE8vfgvxEFkQlbJrDPtg+AiV16kFlVwpKcXRTVVFFZlIicP4Wf/68aqqqwP/44i7K28lH6GqUjrRlJH083eRMLsrZQYKtkZd5eNhXnMLHLkbTqiV16sLogg8oaEDwm5mVswCm52e3YBrKO+xMvA+DldMU4eXnQ2QwIjQXguWVOAD6RfkfKzER/1VVoYo4sN6zK3+fN5onyCWB8dAoDQ2P5/VC6t83hbJ5RkUlE+wZwdfJQ9KKWNYX7m5zayhoPZ72Xx/kfF2J1SvxriA+Tv9nJB5evpLLEwSX39uC78iuYcHUHxGM1QFFNVZ331b8DHvA7T6ATFEhXUekwVGPkBCmqqeKhvxfx6Ibv+WDPX8ddb3N77IhCXT2RXkFRZNbWrimxV2Nx2ekZGOndb9Lq6eoX6m3TbCqXw6EnQRsOKUtbdmwrIKWlAR0reCYVFVHRtStyQQGmOXPwffXVtj+pqIWev0OXp8FdAtu7Q9m3jTbv49eHn/v/jEt2MXD9QMqcZST4hXB7z7FsKD7AU5t+4qecnVysfYz950HeIIGal1+mstpCmcPm7ccYeinR4iEKS9bwzOafWXpoD9d2H+ZN6wUYEhbPZYkDsNp0uCxdOFhdzj97j6fEfRA84fjrfQBYXnSIcIORGB8lE8rh0rA+W8PgaB2Bs/8JBgO+H3xQ53NkWkrocdT3Fmq/2xble3s4m+fo77YoCN5snuPx6p8VhP0nm1VZdkbG6pmdk8f6y5ayd1MZAyZE8m3RZdzxf0NOibgQUFKz5+75q862ytolmoDLYFHWVpyexr1mlaUOdv7VdDC0isrpiOo3PAG6+oVyffcRRPj4UemsYXH2Tl7avpQ5A6c0KGJmpBpZ9KmzzV9npLLWTW1xKZVNG8qKqGyBKxtXCeydAmiUAm8dUKTMs1952hWTOqYQmCcnh4q+fcFiweeVVzDNmtW+A+jyOJjHwN7JkHE5hN0OXd9usOnEkIl80OMD/rHnH/T+uzdZI7LoF9KFfiFd6rQr4RYW/e9/3DnYyaUvfYDfJ58c2Rn5AOS/wB1+P8KQXxod1vjoFJaQjYCG2UGTAHALxejlKAB2VpZicbu4JKar95hdByKRZZiX/iZYLJiefRbRWPc7anHZj5vNY3M7vdk8x7YpOGpJ6mjSCp1c8GkBmWVu/A0CD5jsbL1/HWvsHiITzTzx1Vi6Dw5p8NiO4o/8fSzM2up9rxVEQg2+7E+vQBcDolEkrbKQD9PXcmvP0XW0ZkrybHz7ym5+eHsvLoeH7yuvxMevncQQVc4oCmssHKqupPgYD96pgGqMnABHK0vG+AbR1S+U2eu/Z2NJDqMj69+EfanCLbbxxVOSFDEu2Q7J34AxoW3P19gwDh4Ena5Dnlbd+/ZRmZoKNTX4zJ2L6aab2n0MAAScBak5tTLy74B1DfRcA1qfek1v6HIDOY4cnsx6koEbBrJz2M56czedN7l/0BekXWSlxxef4/vKK4ihtcGfulDQdQHr6np9H4sbp7dIXoG9DMQSwsVhALy4R1mieSQlFYA8i5sdByIZEFpN8MuvIoSF4TN79glOSPNwuyVuWlTCp5utAEyLENC9vIn1h2owmrXc//5wzr+x42ORjsXpcbPowDbv+/Nie3FeTG/2/FHCX+7fOeuaePI0Bdg9braUHmSfpZjuAeHkZ1Xx1Qu7+PmDDGQZJI+yjKMu56i0NiV2Kz9l72BNUePLxx3NqeHf7OT4aPVEmPwatTb9BQtWoa7uhsVlJ6D2adFfZ1K2HeMFsTiPtGmS/VeA8wCE3wXBl7XsA7QiHSV45t6+ncq+faGmBvOXX3acIXIYXSj02wfBl0PNtloZ+a0NNp2TOIcbom4gzZbGuVvPrbdfi5YreZOf/g9kWcJ6zTGVloOmglQNVcevN+TBhQ7lu/bi/q9A8DAqcAgAPxccJFCnJ8VfMVZuXliMy63hzdXPgNuN7/vvN9inv87Y4Pf2cDaPWWfwZvMc2ybgqDirH3ZXE/LvbD7ZbCXeT+TaNfupum81Ffl2LrytG9+VTz8lDRGAjSU52NxKbM2g0DguTkjFpNWxZXkBJrOWWU+O4orEQd72P/65i+euXc11yd+x5P0MPG7Za4gAaHXqZVml9cioLOLfm39uliFSbLe2w4gaRvWMtAJ2j4tiu5XhelOD+81Usd0TxtEhdmnlBSTWpjaGGn3x1xnZU1FArFm5GdS4XWRVlTAuqhny0YVvQvkC8BkICW+c7Mc5KaSKinbXGHGtWYPlrLPA48Fv8WL0kye36/kbRRQh+WsofAey74JdgyD+bYi4tV7TD3t9SLY9m2Xly/jH7n/wYa+6FZVHMJOfE//Dhlv2MfR/v+Letw/t4Yyl6Eeg6G3Ifwn8FjY6HA9u9CjemSUlfwDwYNcrya62UOK0c2kXZYmmxOrm5701DA3cR9LiRYh9+mC46KIG+0z0D2VnWV6dbY1l86TWBsUezuYZH92dMpubCz8tZE22A50IFxeXUfViGock6DsmnCe+HUtQeMN/V6cKGZXF3t/HRSn/J06HmyVzM0joE8hvn2QiaKDiD5nKpRL783IRBJBlkKnvBflzYTZGHy16oxadQYPOIKI3adAbRHRGDQaTFr1RxGDSojOIp0zMjMqph5LttooajwsADQKiIOKSG87SnJu2Gmf34YyIaP+AcNUYOQG+zdxMv+AuBBt9qXTW8GP2DkQEhoQpOgIfpa8hUO/DxV1TwVWCVnCT4QjEkZtG3+BoNhRnk20t45puQwEQBIEJXXqw5OBOwk1+hBrNfJ+9nUCDyXsBb5TqzZB9D2gCoMefbfzJm0FNDWJkZNPtWgnn0qVUnX++knK6bBn6s85qt3M3m4jbwTwK0sZA9m1QtQwS59cToVuaupQ+f/fho/yPiDfGMydxTp39t/Atrz7Zn4Efg/XKKwncVCsTr48FbZiSQXUcJDwYUDQEcuyZIAQzKCiZOzYp35sHU/pj97j4x6JDyLLMQ6tfRxYELJ99iGyvJtjoy6KsrVQ4bdyQMhJQbr4r8/ayIGsLoyIS2VNRyKbiHO7qM8573oldevBx+loS/IJJ8Ath2aF0nJKbv/eGcuHyHNwSpAouIt7cgsXiIizWh0e/HEOfUe2jjXOyuI5K5Q6sfSApOFBNRZGdyhI7aevqB+oebyXm+WvWnPhgBBRZO0G5rgiHf4pHfoqigCAe+V3UCEd+1r40GgFRI6LR1r7XCmi0ovenViciagW0OhGNTkSrFdDqle1anaj8XvvS6UW0Og1ag4jOIKLT1xpWBg1avYjBqFGMLqOI3lhrfBm1XgPM4KNFZxTR6TSN1nVSgezdFfzwzl7Omp5An1FhCILA0tw9XkOke0A4ZQ4bJUd5P3y0Omxul/e9DHyydx1mnaGODlZ7oBojJ0C5w8b76Wuodjkw6wwk+4fxSOq53iC9MoftiNKlXUnbHBMWzmcFGXx3YBvhJj9u7zWGLr6B3j4nxfTE6XHz+b712NxOkgPC+Gfv8ehETeMDcVsVXQuAnqsbjEloTyS7vV0FzxyLFmG97DLQavH/66/6BeVOJXz7KTLyaaOg7BuwboLefyvLObWIosiWoVtIWJPAk1lPkmBMYGb0TO/+GPqRGDGFVbN/YsKTm3GuXn1EfCxwMpR8AradimR9A8hIGFCW0OwUIcqKDPz3eQfw1WgZFhLB5sJ8lmfWMFGzjdFLfuPXW65kddU+RmS7uT5lBJXOmjrZPKFGM3f1PotvMjez/FA6gQafBrN5rC47P2Rvx+K04yOEsGjNALLLqgkQZYb+lI60oxSNScNtbw5l2p2nbrXnhgg0HPm721NZSISPP3EpASyxz6i9qQsUWi08+ucPVP0AlvkCbotMA04RBAEe/HgkLrsHl1PC7ZRwOjy4nVLtew9up4zL6cHjknG7pCO/uyU8TgmPW9nucSu/e1wSHo+yFFTn99qfh19up7JPlpSXJKH8Ltf+rrhyFI/OUb93GLWGlyAItcYXipFV+1OsNcBEjeB9X9fwEhE11DG6tFrFyNJoBDS6usaXRiui1Qu1xtdRBpeu1uDSK8aWVqcYWXrj4e0a9MZaw8ukGFs6gwaDsdbIMmiU7UYNeqOI0efEioxuXVnI92+m8/2b6cT28OeCO7rxV4/9YASdqKFHYAQ/ZCsKyxEmf27uMYouvoE8vekn8o8KJpeBRVnb6KoJpTTPTkx3PzSatve+CXIniJayWCwEBARQWVmJv387V7s9WUq+gMxrIPEzCL2m6fYtYUdfpax9wlyliFsH49qwAcvQoZiefBKfOXOaPuAksH/6KdXXXw9GIwEbNqDtYF2TFpF1JxS/rcj0d/9ZCXg9ihJnCV3XdKXaU83S1KVMCDkiWmfHyuyqIGYluPEN7Erw/kxlhy0NdvaCkGsg6bMGT3sbAoOZzvXuz9GtCCCQoewbs4SwHz/lvMhYfh4zmWu+KuSLrdVkfTgOv7ICgkpLEVvpb87tlpj5bTHztlUjIDN4XzF+C/YhinDOdUnMmjscrbbzLTkctJbz7y0/AxBi8GV26qQ62UOSLDF3z19srtUMuiCyH/YfRD7/93ZsFhdHa09p9SK/OK5u1/G3Jm63hNPuxmmXcNZ4cNo9uBweHDVuXA6p9nflp9vhwelQDCynQ8LlUIwvl8NTa2Qp792u2p9OyWtwuV0yHrd0xOiqfe/xyF4jTPLISG4Zj0fyGl/y4Z+HjS2PjHS0wSXJXmNLlgC59j00aDy2F4JAHW8XgpIif7TxJXlknPb6yy+CEQx+ImIQaJJl3IUyYS5/bnluEKHRPizZmMZf27JwF4JYqMGa48ZdBHLtM8e97w7jglu71+u3uTT3/q16RtoaZ47y09D1+O1aSubNiiESMuOUMEQA3O0keFbz9tvY7rwTzGYCtm9H27WV57at6foWBIyHjKsg/WxFm6TLY97dofpQNg/dTJ91fThv23lsGbKFPn6Kt8OImYl+j7P0P3O46PYsHF9/jeGKK8CnJ2gCofLnBk9px1p7vD9f5K8A0UYvUy9e3rsdgHu79cXmlPhqezXXZf2MX1EuxlmzWs0QWbDDyvXfFmN1ynSx1pD08Q50Vhc9hoUy59uxhMV0jAR1axBrDqKbfzj7LEWUOqr595afGR+dQrJ/GCV2Kyvy93KgqhQAg6jlrPhk/O43MvnmZBa+tof5L+zEZZeQJBmNpnMvQ2i1IlqzHp9Ts2h3qyHLMi6XB1eNhNPuwWH31BpfitHltHtw2RWvlsvhUbbV/nQ5PbgPG15ODy6nXOvxOsrwch1+Kd4st1tCqvWEeQ57uI4yujxumZoqJ6X59Y0R2Q52uwRloCkF2Qk5VRYem7LiSCMB0AAedz2jq+fwlpVtOFFUz0hbc/gpOLWw9erDlMyDzKuVwnt997RfAbwmqL7vPuyvvUZAZmabGQi255+nZvZshMBAAnftQoyObvqgUxV7FuweBu5iRb015Zc62jCry1czbvM4jKKR/SP3E2k4EovzsCOMG3uVEGwNJrRQudGx73Io/xb6HVBUYY+imP08TjLn8CD/XVvDn7Y3eSdpMS/truRQjQ37pTdx84JiPlxfQfYbgzDpBILKy086OLLI6ubCTwpYn+tE75Ho/2M6/nvKCIky8cjnoxlwdvvFF7UlpfZqXtz2GxXOmkbbiAjc2msMqSF1C+ZVljr46oWdLHp9Dz7+OhYUXdHWw1XpxDidbvL3V1OQVUXBgWpKcm2U5tdwaJ+FXX8VN91BC4hJ8eejtItOKlZH9YycKrjylZ+6sOO3ay41+yDzOhB9lJiDU8QQAfBkKksGbRUzUj17Nvbnn0cICyNwzx7E4OCmDzqVMXaF1DxIP0cJat0ao/yfGpT5Gx00mnm953Hlrivp+3dfskdm41MbFzTTMI9fnz+XGVeUUfPKK5juvx+iHlKMkfznoes7dU5VhXKR8iGQXdaNgIkrI8dzx4bPGB0aidMt8cmWKh7cNBdTTRW+73x80obIk7+X8e/lFXgkmaTdRcT9tB+DXuAfLw/k8vs70bJaMwgx+vJw/3P5ImM9O8vz6+2PMvkzPWkwPYPqG18BIQZueXEQl97Xk8qSjqsNotL+VFc5ycuoIj/TStHBakprDYvKYgeWUgfWCic1Vhd2m+Jh8bgbjjVqLoa+EHWrlqcunEJomA9P3LycTV8UNthWEOHc6xLbLWhYNUbaGncxoKld9DtJJCfsHgFIkPIbaE+xomAHD4Je3yaphtY778Tx9tsIXboohkgHaJm0CaIWeq6A3Cch72nY3g2SvlIK8AHTI6eT48jhoYyH6Le+H3uH70UURXpxDt9fOpiDQzYS9cxjGO65B9E8BERfqPgeqGuMWFEyOnwIokLKB8J5J2sPMnBncm8eWFKGwVbFvStfQ+zaFePMmZwomw/ZuejTQg5ZPARU1NDzq92YK+ycdWUCD3444rQtGBds9OXuPuMprLGwueQgVU47Bo2WHoGRdA8Ib/KiHhLlQ0hUxwahq5wYsixTUWInL8NK4QErRTnVlByyUV5gp6LYTlWZg+pKFzVWF44aZbnmaG2ZYxEE0OiUgFijr5aQKBO+AXoCQg0EhhsJjjQRFutDRJwvkYlmohL9ALjA98tjOgJkMPSBsPtFDEnKhvkV6xErBMpvLsZcBNbfqWfkyBKcPaP9lsBPz6vCqYSnDAR96/SVNh48pRDzAviNap0+WxGpqKhNBM+qrrsO52efISYlEbBzZz1J8tOCmCfBb6wi559xCUT8E+L/C8CD8Q+Sbc/mrdy3GLt5LKsHK2qrt4mLmPtcLDdOtGN74AHMr70GfuOgcgk4i+osC1ajLOWYCUESijHKiXyWvQ+tIHBxRAIzN+TwwqoX0HlcmL/88tjRNQunW+Lqr4r4dqcNjVui12/7idxeRLeBwTy58Hwi408TA7IJIkz+nB97enl+ziQkSaI410b+fisFB6wUH7RRmmejrNCOpcROVZmTaosLe7UbZ40S6yFJxzEsREXITm/UYPTVEhhmxBykxz/ESHCkkeAoE2ExPkR0NROVaCYi3nzCgdw6g4jLoUREiyL4BRs4+8lYtvXNrGMM760sqh2bQPhsEYOkoXS564hBIkDPoaFEJrTf36xqjLQ17koQW0G0KecRqF4DAedD9EMn318bIFdUtHoMh+Xii3F99x1i374EbN6MqD2Nv7IBZ0P/bNg9FApfh6rVinaM1oc3U94kuyabxaWLuWrHVXzZ90uCiCFywo3sueADkj54A59//xsxcpZijBS8BHEvebuupgyAwioXiGXEaCeSXlzBgKBQ5iyvJKz0EDM2z0c7Zgy6YcNaPPR5W6u4eWEJNpdM5J4Suv+cQai/loeXnM3Q89tXr0BF5TBOp5uiA9Xk7bdSmG2lONdGaV5NrQaMsgxiqzUsDmfxHJ3ddCyiRvCm6JrMWkK7mPALMhAQZiAowkhIFx/CY32JSPAlOsmPkChTu4rSmQP1lBfaEUS4+J89uO6p/vj669lRFsfinJ3eQOqjEbQCAY96qKkG2994DZKJ17Wv8NlpfGU/RZCqFUGyk6HiZyh4QalB0m1x64yrLWhFwTNJkqg65xzcy5ejGTYM/zVrzgylSX049MuEjMugYhFsi1Y0ZHz68H2/7xm0YRDzi+YTty+OF7q9wAze5aUnPqf7EgdV/7iegK+/VXL5yr6pY4zYKAdgXs5GEGSitX3JAG6MT+GBzyx89NsTiKKA39dft2i4+RY3Uz4uYEueA2OVk0HfpRNaUs01j/flmsf6tebMdCrK7NVY3XXjP8xaA8HGzps11NHUVLvI328lL7OKomxlGaQ0XzEsqmrjK2xVbhy2WsOiifgKjVZAZ1CUbP2D9fgG6vEPVgyL4CgTIdGHl0EUw8I/+NT3yPYZHU5liZ273xxK1z5HlvH7Bnehb3AXDlrL+atwP5uKc7C4jpRoELQCcc/qqXpMx6E11YiiwFlXtI9e1GFUY6StkWpAH3fixzvzYN80Zamn9/pTKmD1aCSbDSQJMSHh5PuSJCwjRuBZvx7txIn4/frrmWGIHEYUoftCReY/+x7Y2R8S/ocYfhMbhmwgcU0iL+a8SIIpgdtjbmfskLfYMvMm+s1fgF9eHqJ5OFStpNy9mzSrlsxKKA0rAx9YtT+H/rkCpYmxiNRQcCCKXgdWMGH/SvQ33NAiY3L2L6W89Eclklsi6c8c4jbkMXZqDI98dgFGn9Pn0vKv9d9T6qiut31cVDdmJA+pt73MXs2jG35AOuZOqBVEnhl8IcFGX2RZ5sfsHfxZkEGNx0WSfygzkocQYepk2YInSGWpnbyMKgoOWCnKtlFyyEZZYQ2VRY7a+AonNqtiWLhrhdwaQxBAoxXR1QqGBUWaMAfq8Q/RK/EVUT6ExZgIj1OWQaISzZh8T8+qyHO+HXfc/bHmIK40D2Z64iD2VhaRVVWKR/YQbPAlNSQWYanAE9NWEhhmICC0fY2v0+eKcaoiu0B7ghV7JQl2DVUSw7v9BPpTN43Vs02pWqrpdnLFzCS3m8rUVKRdu9BNm4b/okWtMbzOScRdYB6pqOweuBksy9Emfs6OYTuIXxPPnel3EmuM5YLQG3np4Sfo92UeuTMvIO29sUyqWskXVX3Y4JzEp+unkZJg4awhMGLlLt75P5l1Kc/w2i3X88quEpb8+jiYTPi++26zhvV3jp1pnxVQYJUIyq6gx5IMeseZmJN2ETHdTr+b6ezUSXUMi7zqSl7buZxBofUfMopqqvgofU09QwTALUtYXDUEG335NTeN5XnpXJ8yglCjLz8c2M7rO1fw5KALjq+6fIohSRKleTXk7a86El9x6HB8Ra1hYXFRY62Nr3A1Ebh5THxFQIgv5qAjgZsh0SbCYn2JiPMlKsmP8Hgf9Hr1NtZSBEEgJTCClMBj6ohp4cXfJnZI5Wj1f7EtkSRAAt0J6ovsuwBchyDyIQg6RYq/NYJ761YANH0aliJvDpLdTmXv3kiZmeivuw6/Tz5ppdF1YnwHKum/aSOh7Euo3kBA77/ZNnQbKWtTmLZtGuuHrOfKbgvZectwer6/hcWaLaQaILVCJitcqSSt09pxufWEWYuRBBi8L5N59z/Guh4f07soA59XXkHUHz/Q2u6UmD6/kB9229DVuOnz636Siqt44KPhjL64fV267YnfMZWzfzm4mzCjme4Bdf+usywlvL5rRZ1aH8fyY/YObu81lmWH9jA5ro9Xc+SGlBE8sG4hW0sOMiQ8odU/Q3NwuyUKsqwUZCrxFUUHqynLt1NeqNTYOTq+wmlvZnyFTinyZzJrCYmuG18RGu1DWJwPEfFmopP8CO3SvvEVKo3TETWAVGOkLXEq8s/oolp+bN6Lipqm70iIe6F1x9UGeNLSANAOGtREy4aRrFYqevRAPnQIw113YX6jY6sPn1JozdB3O2TdCsXvwZYY4nv8xp+D/mTExhGM2jSSPRHdOftCyP8MznsetsyGUcWwLPawMeLA5TYQ4qjEIwroPMpdZMSeDDyCwMK1BfTdXUy/Xg3r4Xyy0cJti0qwe2RiNufTbU0u19yTwvXPnHdG3UDckoe/iw4wsUuPOhdsq8vBW7tXeQ0RnSDSLyQGs9bAAWsp2VYlgHhneT5fZW7C4rLTM/DIkphJq6erXyiZVSWtYozYbW7yM6vI22+lKMdKSW4Npfk2KorsWEqdin5FlQu7zY3Lrqh5Hu9hWKM9HLipxRyoxzdQVxtfoaSZhnQxER7nS1RXM1FJfgS2s4v/TGVvZRG/5e4mx1pOpbOG23uOabK4anpFId9kbibfVkmQwYfJcX0YeUyV3hV5e1mam0als4YYcxBXJg2iq1/bKrGqxkhb4shQfuqbqLx7LFV/Qe4joAlRNCg6AVKt4JkQE9NEywaOLStTDJHiYoyzZ+P77LOtPbzTg67/A7/xkHktpI1lSMyzzOs/l7KyfxBfsQPJH6pvgSGvwLe3wHluiLHmEudjRqd14vZoMdd4kBE5HNknABpZ5txvX6ZkyYf876KHufXLB72nPFjhZvKHeewscmEusjH41wzOHRDAv/Iuwde/lVLWOxFbS3OpcTsZGVFXf2F1wX6qXEcCVq9MHszoyGTv+3kZ61mVr1wP1hZmAeB/jMfFX2+k0mnnWCxldmUZJKuawuxqJc20QImvsNTGV9RUub31X44XX4GgGBZ6gwaDj5agcKMSuBliIDDMSHCUkdAuPkTE+xLZ1Ux0sh8+5jPv/7mz4PS4ifENYlREEu+m/YnT4+ar/ZvYWnqQKpeDWN8gpicNIsFPCRUosVt5c9dKxkZ148YeI9lTUcCne9exJGcn5Q4bQQYfegZGsqYwkxnJQ+jqF8qyvD28sv13zFojVS57mxknqjHSljiUi85hRc1m4S6H9HMBEXqtBbFzXAik3NwTEjyT8vKo6N0buaIC03PP4fPII200wtOE0CvBPAR2D4fc2cQF6bisQtklAklTIOcL6PUslP0LupdXMjU6gS1aOy63gNkGDTlgRWTCbKVcNv8hqmZPxbdPMg/+XMZ/V1YgyzLJf+Qwwmrl6d/OIqH3qSW21578VbCf3sFRdSr1AvxVuN/7u0YQ0NfK+suyjCAIRPsEohVE7MVu7EUSiAIL/kjDmueirKAGS4mDPH05rkqZn/d/heOwfkUzhLEOx1eEBvvW6lfUpplGmQiN8SEiwUx0opmIrr5qfMVpRp/gaPoEH4klXJm/D5vHxQ0pIwnUm/i7KIv/27GcJwdNIcjgw6r8fYQazVyeOBBQqvl+vX8zHlnmsYHns6eigPn7N9EvOJpRkUkApAREsLpgP139Qrgwvh/L8vbw+s4VPDXownoG9cmgfjPbEsfhInlJzWsvSbBrGEg2SPwcTCcXDNqeSEVFCH5+LTrGnZVFZd++UF2Nz1tvYbrjjjYa3WmGMQm5fy6bt3RjePnBuqGSBqi6B/o+COlXQ584D9UR0Wx3OHF5JHxtOgTZXa9Lt6DBgZ4PuZ6a/1XyQUAmpbJIWGY5ff/O5dGXUjn7qk5WkLCVKbVXk1ZRyG29xtTZLskSRTXKclisbxBWtwOLy877szfz03v7CI4yURFaReVqCbx1zGTmscvbhyiCNlpAaxDw8dETHGlSAjfDjF7DIjzOl4h4M1FJZsJjfc6o5TGV5pFZVcKdvcd545kujO/H9rJDrMrfx7SE/mRaSuhx1PLgqvx9+OuN2NxOonwCCDOamb9/E+WOIzWWluWlE2HywyNLRPsGcHXyUHaW5bGmcD/ntaK4n2qMtCWuPOWnIfn47Q6TdS049kHoTRB6apcRlwoKABDCwxFEEdliaZHgmXvXLioHDwaHA/Nnn2G45pq2GuppyTdFX5PoOohHhKMLvWqAXqNhXx/wfxkCXwa2vY++jx235MZcbUArHQmwlFA8Ktvow7vcxI6hvcg0BaKrdNF3xQHuOD+MW76Zqt74gDWF+/HTGegbfOz3XDisuo0kyyT6hbJ8Uwbrny8nLNaHvmPCyejvIjBJpryiBm2ogN9gDWPjk7gotS8BoQYckocH1i3g+u7DOyyAVaXzIwNaoW42lk7Ust+i1KayuOx1vBmZlhLizcFsKzuE0+PG5nYCUFhrXLslDzlVZfQL6eItAikKAj0CI8m0lLTq2FVjpC1xKTdstM2Q1C16H0rngakPJM5t23GdJLLHQ3lcHLhcoNUiRERAdTVyRQXVDz+MGBuLJjYW3TnnIPjUr7Xh2rABy+jR4HZjXrgQw7Rp7f8hOjmTq3/BR6MYEsciiFB5P3S7ASrXQ6/UBfgZPVg9DgKsR0S33IIGl6DjQ/lafow8nz3nJ2MN9SF2Yx79dhcyP+0izIGdY5mwLSmzV1PlsvNHfga9g6KodNTUES/7ZO9afLQGqt0OcivLcczXUjK5kvHvRXHDVUPYVJrN3oMuBo6JZHuZ8oAyKDSWrRXZpGqiCa0x8332dgINpiaDD1VUjkeEyY8lB3cS5eOPv97I+uJsMi0lhJsavgdZXHZCjfX3OSW31ziRkNEfk27urzdSUGNp1bGrxkhb4i6hWVNs2wkHbgXRDD3XtvmwThZBo0GTmopn40Zwu5EPHQJALi7G/n//B243yDI+zz2H6ZgYEOfKlVSdcw7IMn6//YZ+woSO+Aidm4qfMJfNa3S3BhjQC3aNhYi3IOKjfRj1wZTbXESVeNcJ2Bfen1crrufvswaRNyASv/wqhnyyDf/CauzA7nXFDD3vzJZyL7NX8/jGH3HX5rCuLcpiQ3F2HfGy3P0WXBs15C/3YPsDMink8iHJHBpQwn+2/ky4yY+zo7vz+6E9APhodczsNoxfc9P4fN96bG4nyQFh/LP3+E6lMaJy6jEhOoUNxTk8vP47RATizEEMCYsnpzaby19nxHJMkLTD48Ko0aHXaBGFI16+o6l2OwnQtW2GlGqMtCayXLc6r6ccRMPxj3HbIG208nvPVc3zopwCGP/xD6o3bqy/w1W7BODnh+H66+vscixejHXqVNBo8P/jD3QjRrT9QE9HDEkQdAlY13mXAmW0yLIHUVAuI3qg8l6IvwT4VaJbjwoOeiC00oFHECia9QK3LenN3isSkbQi3X/bT8yWAmoPRxDhzbs38OHuKLS6M3eJxup2eA0RAFmSsWV7+HHTXnLXWdm6ooDywroXd/Mk2NElhwHmWPoFx7CnooCltYYIwDldemLQ6rgooR8XJZy5kvkqrU+A3sQD/Sfi8Lixe1wE6E28l7ba6/1I9A9lZ613DhTjJM9WSaK/khmjFTUEG32pcNR4jRMRgayqUibF9PQeZ3HaW904UY2R1mTvBWBZDtog0IaC/YBinGTfq7zXhYLfWWDqceSYPWPAUwnxbygCV50E/fTpVN99t+IFaQDf11+vIy3umD8f64wZoNcTsH492n7qRfiEMfWAbguU311FUL0RoXoDB/f9Tph+ByZtJQIwOhpWj4X+70Df6938LGtYPGAwiVNv5+rtvSifGkh4Wgndl2VhsCprxaJGQBCV8uF5GVX89d1Bxl1++gqatYTyeRIVn8lI1fCZsBNRFOplu4hGCHtAxCV5WF98oF4foyKSWjXoT+XMxu5xUVxj9b4vcVRz0FqOr1ZPsNGXr2vTfK9MUsoWjIvqxsq8vSzI2sKoiER0oobCmiqmJx3RhwrUmyizV7O2MJMEvxB8dXpq3C6vFokky+ypKGB8dPdW/SyqMdKa6KJAtoMrX3mB4u8qelvxmuCGgCmQUlvs7sDdYNsMQZcq0t+diAqTnl2jBtBj9SY0niNPjh6NiGbMGAwzZ3q31bz3HrZbbwUfHwK2bkV7kpLxKkehC4fAyRA4mV/WTMNqcxLhV8bVw7chFPwfw64swP4UxH4HwzOSSQ8+m7sqRmAMdJD67W6SrTV4AgXESBOmAC29e4bi46/DN0CPX7Ce1PERTQ6hM7J1RQFhsT50SW5cvv5QdQULsrZ438tOpe6l8ob6hogocNFd3QntKrK2MAu750igcJw5mAldUhgWltAh6pYqpyfZVWW8umOZ9/03mZsBGBASw9iobqwtykInahhVa0j8mZ9Bkn8YaeUFLD+Ujp/OiFYQ2VNRSIjBlz0VhWRZShkblcwP2duxOO0EGXywuV3sKs8nwS+EZYfScUruekJpJ4sgd4QIfQuxWCwEBARQWVmJv/8pXPvCuhF21y+cVYeef4DfGChboFRm1SdAv/2nbAG8xsixlrHgzWe5bvYrdba79Dpcm9cT2zsVgJpXXsH2wAPg70/grl1oTkAUTaV5vPfNNqw2F2YfHbdc3h8kBxWZ16N9eD6OxeDQCPS5aT1mt5EPLwxi8JAQ/IP1vL9gR93jzgAmm+bhdklMvTOFa57oR0BI3eXUPRUFvL3rDxzSEc+fLMkU/EvCtg4lDekYBBG+OHAJ4bG+ODxu8qorcEoeAvUmInxO4euWymnDxuJsFh3YRoXDho9Wz8DQWKYl9MekVQLRP05fS6mjmvv7TfQec7Qia6DBhykNKrKm81tuGhZnrehZ4iC6+jdP9Ky592/VGGltdqRCzXbqhwBpIORKSPoc7NmwPRkELaQeVJZvOhk51jKe27CYRy+6HZPVBiifePE/r+Xs/7xGnDkY25NPUvPUUwghIQTu2YMY2vk+Z2einjFSy58/TKPX1O+pHilwRfrXmEtr6h8sHClSptWKipiWQURn0KA3aTCYFMVOo68Wk58OHz8dvv46fAN0mAP1mIOV8uv+IQYCQpX6I+bAlovgtQcet8Qk3ReAsixlMGm4dk4/pt3dA71BQ7nDxpObFmP3KIaIr9ZAr8BITFod+wqL+XtGGa6DdfvUaAVGTo1tsmqqisqZRnPv3+oyTWsTcZdSYfVYRCPEvgySG3YPBTzQfWmnNEQAatwuJK2WLZNGM2LBbwDk9khk3cXncjZQPWsW9v/7P4SoKMUQOdWNyNOYEVO+5ZvnhuIe8i8+9BnH3s2llB6qwVrpxFbpIi29BIfNg+ySCTAZcNZ4cNo9uBwerJVOPMUSbreM5JGRJfm4NUwaQhCVJQyNVvTWONHpNeiMIgajBr2PFqOPUkzNaK41dAKUpSJzoB6/ID1+wQb8Qw3e6q0+ftoTNnRqqo94OySPTI3VzXsPbWbhf/dw68uDKB9S7jVE+gRFc2vP0eg1yqUyo7qMtYU/1X4wvM8cHrfMJff2REVF5cRQjZHWJuRKyLn3qMXlWmKeA30kpI0HdxF0eQoCzuqIEZ4UsiyzPC+dhVlbAdh83lhGLvgNGVjwr1uRNSLuW27D/uU3iPHxBOzejdiA1ohK+6HVaLnqkc3e971G1C2G15hH5Xg4nW4qixxUltixlDqwlDqpKnNgLXdirXBRbVEqvNZUuamxKpVeHTUeHEcZOo5yNxUupZaK5JGRJLm+Q7EJBFHxbmg0IhrdEUNHbxTRm7QYD3t0zFpMZsWb06ANI0PpIRv/ufJPTD0Egu4WMPfTcF33YV5DZNeaIh67YDkajYbeD/qz/f/Kwa3EqHftG0ifUQ0XGVRRUWka1RhpbTRmCJ0JRe+iLCwLYOoFEbdD7hyoWgl+Z0OXJzp2nCfIr7m7WXRgm/d9XvcEJEGgICmOooQYrnzidQJW/o3UvRtBO3Y2WZZepXOi12sJi9ESFuPbdOMW4rS7KS+yU1niwFKiFIOrKnNiLXdSXemk2uLCVunCVqUYOYqhoxg7LrsHl0PCUu3G47Lj8TTf0Dns8anZI1Nzp4xolLgn7jeMvlpc42y4ezkJ/1rA18dAqElLhFmkcI5S7fayWb0aDEzdVJzD99nbKbVbCTf5cUnXVPoGdznqnDI/Zu/gz4IMajwukvxDmZE8hAiT6klUObNQjZFWptxhY4NzHOfydu0WmYLwF4m0rIK8p0EbASm/dugYT5QCm4XvjjJEBofFkWoOQ5Rl3Lffwq0PvUz8ui3kdk/ghy9e5TGdrgNHq9JZ0Ru1RMSZiYhrfc0du83N1hUFPHZBw9WwBUExSsQAiBxrYERKDPZqN+n9cuBPA/+67GxEncDHe9diHi/gKhAQlhs468qEen3ttxTz/p6/mNa1P/2Cu7C+6ADv7P6TRwecRxffQAB+zU1jeV4616eMINToyw8HtvP6zhU8OegCVQBN5YxCNUZaCafHzfz9m1hTuB8ZGKoPJFCoYLNnMF/szeYFw71oBB1C7/Ugds5pX5W/z/tweV5MLy7umoonM5MKIPHXVbjXbeHQwD68/erDUGMhw1JMt9qCTSoqpwJGHy2+AfW9dYIIGq3IuTMTOXB2Ho4uDgQ8XD6kR630+zC44Uh7/1rBp6CrRO54ZgR6Q33DYdmhdHoHRzEpphcAUxP6k1ZRwMq8vVzdbSiyLLPs0B4mx/UhNUTJMrshZQQPrFvI1pKDao0alTOKznlXPMVwSx7e3v0HaRUF3m2ZUhIDxE3Md1/LbN0TaGQnPxueZpI+hs76vLOtNBcArSBybu0F1pOdDYD7t98w3nMP1bP/CXvXAbC1NFc1RjqA6hoX732zremGR7U/k7AfDmCtDUD1C9ZzyT09ufD27gSGGfkxezuLc3YiI/Nh+lpu7zUGX52S+ivLMn/kZ7C79m/dT2uoU8L9aDKrSpjYpUedbb2Corx/RyX2aiwuOz2PqqJq0urp6hdKZlWJaoyonFGoxkgrsOxQutcQ0YsaRkckES6Px12RyZ2+Cwh1l/C7+zy+tyThk5/BWa2sXNdeWN0OAEKNZnx1ytOl8/PPAfD5v//DdO+9xFdXettXuxztP8gzGL1OA7iQZbDaWm5gKMef/oi1ZY5juvsz/aHeTJjRFb3xyGdXVCr3YXU72GcpYvaG7xkQEotZZ2B3eT55tiPf8Qvi+6IRGs7qsTjtXg/KYfx1Ripra4NYXEqK9dFVVA+/rzymfoiKyumOaoycJJIssSJ/L6A8aN3TZzzJAeGQPQ90fsQ7/8Bm6M83jmsBWJG3l3FR3TqlCqNJo8PhcVPmqMZeW1zJ9PTTaFJSMN17LwD5R12oTVo1ZqQ9GZkazZqteThdnqYbH4Nep2FkasNP+KcbqeMjeH/nhcT3Cmjw79Bfb+KuPuN4fedKbG4nDo+bdUVZ9dqNjkxiXJSqJqyi0hqoxshJklVVSrlDEf3qHRSlGCIAjmxFEt48Bp+ey0nevoIMSzEFNRbybJXeALbORO+gaP4q3I9T8rAqfx+TYnqh6dIF00MPAYphtixvT532Ku1H94RguicEd/QwTnk0GpGE3oHHbdPVL5RHB5zHLwd3s77oQB0lVo0gckXiwCY9nP56IxZXXQ+HxWUnoNYT4q8zKducdgL0piNtnHZizccfn4rK6cYJqQa99dZbJCQkYDQaGTZsGOvXrz9u+2+++YYePXpgNBrp27cvS5YsOaHBnopUHbUUkeR/lM5A1SpAC92+BUFL8lH7ji3h3Fk4K/rIU+B3Wdv4MXs7VbWf5aC1nLd3/8F+SwkAYUYzvYKiOmScpwu/rM7i1U828uonG3nt0028+9VWvv0tnZ37Smhv4eRKq4NXP9lIUZmtXc/bkYQazVzTbSgvDruYB/tNJDU4Bj+dkTmDJjdrqTXRL5Q9R8WRAaSVF5DoF1rbvy/+OmOdNjVuF1lVJd42KipnCi32jHz11VfMmjWLd999l2HDhvHaa68xadIk0tPTCQ+vH6y4Zs0arrrqKp577jkuuOAC5s2bx7Rp09i8eTN9+vRplQ/RkRiOyowpsR+pnkjcS0rpU50yJ8VH7TNqOqdDKs4czNnRKSzPS0dCZnHOThbn7EQvanBKR5YGREHgmm5DETvhUtSpRkIXfyaN6ookydjsLg4csrBifQ57s8uYdnY3RFGd47bGqNWxvjib9MpC7ug1FqNGR6VTifcwaXReUbSP0tcQqPfh4q6pAEzoksLL239naW4afYOj2VCcTba1jGu6DQVAEAQmdOnBkoM7CTf5EWo08332dgINJlJDYzvks6qodBQtrk0zbNgwhgwZwptvvgmAJEnExsZy991388gjj9RrP336dKqrq1m8eLF32/Dhw0lNTeXdd99t1jlP5do0NW4XD/+9CIfkxiBq+feQC/E/yuUKUGqv5omNP+KWJXy1el4YdnGn1RCQZJlFB7ayNDetQQ0pH62eG1NGNpphoNJ8flmdhcPpYerZyXW25+Rb+Pa3vZwzIp6+3cOwO938sTGX/TkVeCSJiBBfzhoSS1iwony7Zush9udU0D8lnHXb87A7PCTGBHDOyHgMeuVGKssy67bns2NvMTV2N8EBRkYPiqFrlwAAXv1kY50xxESYueK8upkipzO3/jmvwe0zuw/3FhV7ZfvvhBh8uT5lhHe/Inq2jVJ7dZOiZza3k+SAMGYkDVEL66mcNrRJbRqn08mmTZuYPXu2d5soikycOJG1a9c2eMzatWuZNWtWnW2TJk3iu+++a/Q8DocDh+PI8ofFYmnJMNsVk1bHsPAE/ijIwCG5eW3HCmYkD/Yu2aRXFjIvYyNuWSnzOTIiqdMaIqB4PS7tOoCxkcmsys9gb2UhTo8bP72RwWHxDAtLwKgGrrYpcVH+hAWZ2JdTTt/uYSxeuR+tRuTiid0w6DVsTy/mm9/2csPFfTAZlD/xiioH6QfKmDahG06nh9/WHGDZuhwmj1VupJt3F7JpVyETR8QTHuzDzowSvl+ewcypvQnyNzJjSk/m/ZTGZed2JyTQdMZ5ZP43ZkaTbY6uhHqYQWFxDAqLa/QYQRC4KKEfFyX0O6nxqah0dlpkjJSUlODxeIiIiKizPSIigj179jR4TEFBQYPtCwoKGmwP8Nxzz/HUU0+1ZGgdypS4PmwvO0SFs4ZDtgpe2v47/jojMlB1VABbqNGX82JPj2JaYSY/Lksc0NHDOGMJDjBSXF7DocIqCkps3Da9P1qNEgI2bkgsGQcr2JddTr/uilHs9kicN7orfr5KSvb4YXF8t2wf44bE4mvSsXFXIUP6RNKjqxIAO3ZQDAfzLWzeXciE4fGYjMqlwmjQ4mvq3MbmYR2Ro4kw+fP04AsaPUaVdVdRaVtOyeCF2bNn1/GmWCwWYmNP3TXUQIMP9/WdwJu7VnpjQ46Noo8y+XNXn7MwH6M7oKJyIsgoqeTF5TW43B7emb+1zn63R6Ki6oh30d9X7zVEAKLDfJFlKKu0o9WIVNe4iA6vK7/eJdxMcXlNG36KjiPaJ4B7+57tfa85TnyTKuuuotL2tMgYCQ0NRaPRUFhYWGd7YWEhkZGRDR4TGRnZovYABoMBg8HQkqF1OJE+/swZNIVNxTmsLthPQY2ytBTtE8CYyCQGhMaiVS9KKq1EWaUdfz8DTpcHX5OOyyel1Gtj1Kvft8YQBaFOOu3xUGXdVVTanhYZI3q9nkGDBrFs2TKmTZsGKAGsy5Yt46677mrwmBEjRrBs2TLurRXFAli6dCkjRoxosH1nRidqGB7RleERXTt6KCeE6r7uHOTkWygpr2Fgzwj8fHVU17gQRYEAc+MGvKXaidXmxOyjeEfyi6sRBGW5x6DX4GvSkVdkJTbSz3vMoSIrkaFKVV5NbYxIe6cUtxVFNVU89PcidKJIol8oFyek1tagqY8q666i0va0eJlm1qxZzJw5k8GDBzN06FBee+01qqurueEGpYrUddddR5cuXXjuuecAuOeeexg3bhyvvPIKU6ZMYf78+WzcuJH33nuvdT+JSquguq9PLTySRHWNq05q7/od+STGBNArKQRBgOgwMz8sz2DMoBiCAoxU21xk5laQHBfkNSa0GpFfVmcxbnAsDpeHFetz6B4f7I3/GNInkjVb8wj0MxAW7MOujBKKy2u8Aa4+Rh1ajciBQ5WYffRoNYI3E6ez0dUvlOu7jyDCx49KZw2Ls3fy0valzBk4pcHga1XWXUWl7Wnx1WT69OkUFxfzxBNPUFBQQGpqKr/88os3SDUnJwdRPKKlNnLkSObNm8djjz3Gv/71L7p168Z33313WmiMnI6o7utTiwOHLPzv622IgoDBoCEsyMT4oXH0Tg7xSplfPLEbqzcf4te/DlDjcONr0tElwlwn0DTQz0C3uCAW/r4Pu9NNYkwgE4YfyfIY0DMch9PDqo0HsdndhAQYmXp2MkH+yg1WFAXGD41l3fZ81mzNo0t4503tPTrtPMY3iK5+ocxe/z0bS3IYHZnUgSNTUTlzOaFHm7vuuqvRZZmVK1fW23b55Zdz+eWXn8ipTgn2VhbxW+5ucqzlVDpruL3nmCZFidIrCvkmczP5tkqCDD5Mjuvj1SM4zIq8vSzNTaPSWUOMOYgrkwbRtYOVF1X39anDeaO7ct7oppf89DoNZw+L4+xhjaeQAvTvEU7/Hg1XURYEgRGp0Yw4Tn2avt3D6Ns9rNH9nRUfrZ4Ikx/FNVUN7ldl3VVU2p4TkoM/03B63MT4BnFV0uBmtS+xW3lz10pSAiN4bOD5TOiSwmd7/2ZXeZ63zYbibL7N3MyUuD48OuB8YnwDeX3nig6Vij/svv5nn7OYkTyEEns1L21fit3dcAVY1X2tcjpg97gotlsb9Qiqsu4qKm1P51z0bWf6BEe3SFF0Vf4+Qo1mLk8cCECUTwAZlcX8fijdWzzu90N7GB2ZxKhat/DVyUPZWZbHmsL9nBfbu/U/RDNQ3dcqZwLfZm6mX3AXgo2+VDpr+DF7ByICQ8LiAVXWXUWlI1CNkTYg01JCj8C6qcu9gqL4OnMzAG7JQ05VGefXxlqAEqvRIzCSzNpCc6cCqvv69GBkahdGpnZpuuEZQrnDxvvpa6h2OTDrDCT7h/FI6rn41X5vyxw2BI4Ebif5h3FTyii+z97Gdwe2EW7y4/ZeY+pU3p4U0xOnx83n+9Z7Zd3/2Xu8GqStotJMVGOkDbC47A0uTdg9LpweNza3EwnZe/E7us1hfZJTgcPu6+FNuK+PjhtpzH0daw4Cjrivx0UlN9inikpbc3PP0cfdr8q6q6i0P2rMiIqXbzM3s7eikBK7lf2WYt7d/Wc99/WirK3e9hO6pLCrPJ+luWkU2Cr5MXs72dYyb3n1o93X20pzOVRdwUd716ruaxUVFRWVOqiekTbAX2esF4hqcdox1pYbFwUBEYGqBtoEdKBcvOq+VlFRUVHpCFRjpA1I9A9lZ1lenW1pFQUk+ivLF1pRQ5xfMGkVhV4PgSTL7KkoYHytV6EjUN3XKioqKiodgbpM0wzsHhcHreUctJYDUOKo5qC1nDJ7NQCLsrbyUfoab/txUd0osVtZkLWFAlslK/P2sqk4h4ldjtQPmdilB6sLMlhbmEm+rZJ5GRtwSu56WiQqKioqKiqnO6pnpBlkV5Xx6o5l3vff1GbFjAjvyvUpI6h01lDmsHn3hxrN3NX7LL7J3MzyQ+kEGny4tvswb1ovwJCweKwuOz9kb8fitBNjDuKfvcfj30z1UxUVFRUVldMFQe4Ela8qKysJDAzk4MGD+PurBdZUVFRUVFQ6AxaLhdjYWCoqKggICGi0XafwjFRVKToXsbFqBoaKioqKikpno6qq6rjGSKfwjEiSRF5eHn5+ft7iYK3BYYtN9bi0Leo8tx/qXLcP6jy3D+o8tw9tOc+yLFNVVUV0dHSdIrrH0ik8I6IoEhMT02b9+/v7q1/0dkCd5/ZDnev2QZ3n9kGd5/ahreb5eB6Rw6jZNCoqKioqKiodimqMqKioqKioqHQoZ7QxYjAYmDNnDgaDoaOHclqjznP7oc51+6DOc/ugznP7cCrMc6cIYFVRUVFRUVE5fTmjPSMqKioqKioqHY9qjKioqKioqKh0KKoxoqKioqKiotKhqMaIioqKioqKSody2hsjb731FgkJCRiNRoYNG8b69euP2/6bb76hR48eGI1G+vbty5IlS9pppJ2blszz3LlzGTNmDEFBQQQFBTFx4sQm/19UjtDS7/Rh5s+fjyAITJs2rW0HeJrQ0nmuqKjgzjvvJCoqCoPBQPfu3dXrRzNo6Ty/9tprpKSkYDKZiI2N5b777sNut7fTaDsnf/zxBxdeeCHR0dEIgsB3333X5DErV65k4MCBGAwGkpOT+fjjj9t2kPJpzPz582W9Xi9/+OGH8q5du+Sbb75ZDgwMlAsLCxts/9dff8kajUZ+8cUX5d27d8uPPfaYrNPp5B07drTzyDsXLZ3nGTNmyG+99Za8ZcsWOS0tTb7++uvlgIAAOTc3t51H3vlo6VwfJisrS+7SpYs8ZswYeerUqe0z2E5MS+fZ4XDIgwcPlidPniyvXr1azsrKkleuXClv3bq1nUfeuWjpPH/xxReywWCQv/jiCzkrK0v+9ddf5aioKPm+++5r55F3LpYsWSI/+uij8sKFC2VAXrRo0XHbZ2Zmyj4+PvKsWbPk3bt3y2+88Yas0WjkX375pc3GeFobI0OHDpXvvPNO73uPxyNHR0fLzz33XIPtr7jiCnnKlCl1tg0bNky+9dZb23ScnZ2WzvOxuN1u2c/PT/7kk0/aaoinDScy1263Wx45cqT8/vvvyzNnzlSNkWbQ0nl+55135MTERNnpdLbXEE8LWjrPd955p3z22WfX2TZr1ix51KhRbTrO04nmGCMPPfSQ3Lt37zrbpk+fLk+aNKnNxnXaLtM4nU42bdrExIkTvdtEUWTixImsXbu2wWPWrl1bpz3ApEmTGm2vcmLzfCw2mw2Xy0VwcHBbDfO04ETn+umnnyY8PJwbb7yxPYbZ6TmRef7hhx8YMWIEd955JxEREfTp04dnn30Wj8fTXsPudJzIPI8cOZJNmzZ5l3IyMzNZsmQJkydPbpcxnyl0xL2wUxTKOxFKSkrweDxERETU2R4REcGePXsaPKagoKDB9gUFBW02zs7OiczzsTz88MNER0fX+/Kr1OVE5nr16tV88MEHbN26tR1GeHpwIvOcmZnJ8uXLufrqq1myZAkZGRnccccduFwu5syZ0x7D7nScyDzPmDGDkpISRo8ejSzLuN1ubrvtNv71r3+1x5DPGBq7F1osFmpqajCZTK1+ztPWM6LSOXj++eeZP38+ixYtwmg0dvRwTiuqqqq49tprmTt3LqGhoR09nNMaSZIIDw/nvffeY9CgQUyfPp1HH32Ud999t6OHdlqxcuVKnn32Wd5++202b97MwoUL+emnn3jmmWc6emgqJ8lp6xkJDQ1Fo9FQWFhYZ3thYSGRkZENHhMZGdmi9ionNs+Hefnll3n++ef5/fff6devX1sO87SgpXO9f/9+Dhw4wIUXXujdJkkSAFqtlvT0dJKSktp20J2QE/lOR0VFodPp0Gg03m09e/akoKAAp9OJXq9v0zF3Rk5knh9//HGuvfZabrrpJgD69u1LdXU1t9xyC48++iiiqD5ftwaN3Qv9/f3bxCsCp7FnRK/XM2jQIJYtW+bdJkkSy5YtY8SIEQ0eM2LEiDrtAZYuXdpoe5UTm2eAF198kWeeeYZffvmFwYMHt8dQOz0tnesePXqwY8cOtm7d6n1ddNFFjB8/nq1btxIbG9uew+80nMh3etSoUWRkZHiNPYC9e/cSFRWlGiKNcCLzbLPZ6hkchw1AWS2z1mp0yL2wzUJjTwHmz58vGwwG+eOPP5Z3794t33LLLXJgYKBcUFAgy7IsX3vttfIjjzzibf/XX3/JWq1Wfvnll+W0tDR5zpw5ampvM2jpPD///POyXq+Xv/32Wzk/P9/7qqqq6qiP0Glo6Vwfi5pN0zxaOs85OTmyn5+ffNddd8np6eny4sWL5fDwcPnf//53R32ETkFL53nOnDmyn5+f/OWXX8qZmZnyb7/9JiclJclXXHFFR32ETkFVVZW8ZcsWecuWLTIgv/rqq/KWLVvk7OxsWZZl+ZFHHpGvvfZab/vDqb0PPvignJaWJr/11ltqau/J8sYbb8hxcXGyXq+Xhw4dKq9bt867b9y4cfLMmTPrtP/666/l7t27y3q9Xu7du7f8008/tfOIOyctmef4+HgZqPeaM2dO+w+8E9LS7/TRqMZI82npPK9Zs0YeNmyYbDAY5MTERPk///mP7Ha723nUnY+WzLPL5ZKffPJJOSkpSTYajXJsbKx8xx13yOXl5e0/8E7EihUrGrzmHp7bmTNnyuPGjat3TGpqqqzX6+XExET5o48+atMxCrKs+rZUVFRUVFRUOo7TNmZERUVFRUVFpXOgGiMqKioqKioqHYpqjKioqKioqKh0KKoxoqKioqKiotKhqMaIioqKioqKSoeiGiMqKioqKioqHYpqjKioqKioqKh0KKoxoqKioqKiotKhqMaIioqKioqKSoeiGiMqKioqKioqHYpqjKioqKioqKh0KKoxoqKioqKiotKh/D8F7GS/G8iWRwAAAABJRU5ErkJggg==",
+ "image/png": "iVBORw0KGgoAAAANSUhEUgAAAiMAAAGdCAYAAADAAnMpAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjcuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/bCgiHAAAACXBIWXMAAA9hAAAPYQGoP6dpAAEAAElEQVR4nOydd3gU19WH35ktWrVd9d4QAgESvfdiisGAe+9OHNtxS5zEseOWOE4c9+7YX9y7ccGAKaaY3psAUSRAvXet2vb5/lixkpBElbQS3Pd59kE7c2fuGbHaOXPuOb8jKYqiIBAIBAKBQOAmZHcbIBAIBAKB4OJGOCMCgUAgEAjcinBGBAKBQCAQuBXhjAgEAoFAIHArwhkRCAQCgUDgVoQzIhAIBAKBwK0IZ0QgEAgEAoFbEc6IQCAQCAQCt6J2twFngsPhoKCgAF9fXyRJcrc5AoFAIBAIzgBFUaipqSEiIgJZbj/+0SOckYKCAqKjo91thkAgEAgEgnMgNzeXqKiodvf3CGfE19cXcF6MXq93szUCgUAgEAjOBKPRSHR0tOs+3h49whk5sTSj1+uFMyIQCAQCQQ/jdCkWIoFVIBAIBAKBWxHOiEAgEAgEArcinBGBQCAQCARuRTgjAoFAIBAI3IpwRgQCgUAgELgV4YwIBAKBQCBwK8IZEQgEAoFA4FaEMyIQCAQCgcCtCGdEIBAIBAKBWzlrZ2TDhg3MmzePiIgIJEnip59+Ou0x69atY9iwYXh4eJCQkMAnn3xyDqYKBAKBQCC4EDlrZ6Suro7BgwfzzjvvnNH4zMxMLrvsMqZOnUpKSgp/+MMf+O1vf8svv/xy1sYKBAKBQCC48Djr3jSzZ89m9uzZZzz+vffeo1evXrzyyisA9O/fn02bNvHaa68xa9ass51eIBAIBALBBUan54xs3bqV6dOnt9g2a9Ystm7d2u4xZrMZo9HY4iUQCAQCgeDCpNOdkaKiIkJDQ1tsCw0NxWg00tDQ0OYxzz//PAaDwfWKjo7ubDMFAoFAIBC4iW5ZTfP4449TXV3teuXm5rrbJIFAIBAIBJ3EWeeMnC1hYWEUFxe32FZcXIxer8fT07PNYzw8PPDw8Ohs0wQCgUAgEHQDOj0yMnbsWNasWdNi26pVqxg7dmxnTy0QCAQCgaAHcNbOSG1tLSkpKaSkpADO0t2UlBRycnIA5xLLbbfd5hp/7733kpGRwaOPPsqRI0d49913WbBgAX/84x875goEAoFAIBD0aM7aGdm1axdDhw5l6NChADzyyCMMHTqUp59+GoDCwkKXYwLQq1cvli5dyqpVqxg8eDCvvPIKH3zwgSjrFQgEAoFAAICkKIribiNOh9FoxGAwUF1djV6vd7c5AoFAIBAIzoAzvX93y2oagUAgEAgEFw/CGREIBAKBQOBWOr20VyAQCASCi5kKUx21NnOLbT5qDwJ03m6yqPshnBGBQCAQCDqJClMdT+1agk1xtNiulmT+OWKecEgaEcs0AoFAIBB0AoqisKM0q5UjAmBTHFSa691gVfdEOCMCgUAgEHQwDsXBJ+lbWZi1r90xXxzbQY3F1IVWdV+EMyIQCAQCQQezMGsf20qyXO+DPLwZFBBJlLefa1tBfTX/PbwBR/dX2Oh0RM6IQCAQCAQdSI3FxK/5aQDIksSdfccyMjgWSZIAyKmt4O2D66m2NHDcWMahykKSAyLcabLbEZERgUAguEipMNWRU1vR4lVhqnO3WT2erSWZrjyRqRF9GRUS53JEAGJ8Arih9wjX+w1Fx7rcxu6GiIwIBALBRYio8jh3CjjEQv5KALGE059wBhBGf/SEIiGRW1vhGjs2JB47Vg6zhu95hGt5jSRmMTgwEp1Kg8luJafZ+IsV4YwIBALBRUitzdxulUetzUwAwhlpDyOFHOBnJGQUFMCZ8+GBD2H0pzYsBHRa0NSwRLeYY/xCPVUAlJBOErOQkdDIKkx2Kz2gK0unI5wRgUAgEAjOgj5MwgNfzNS02G6mlmx2ggEkP+e2DEscA5jJLr5jHv9gKg8CkFVTTo3VWUkTpPPpSvO7JSJnRCAQCC5CihuM7jahx6JCw2DmI5/ieV5RQMmZi+3AX9mt/ICeUGbzNwAabBa+ydjtGjsuNL7Tbe7uiMiIQCAQXEQ4FIWFWSmszDvc7pgdJVlEe/u3SLoUOHHgYC8/kksKDmxtjJCQJImYvCfJzk6kYeQfkLATlfN3tmgzKWmoZUvxcWqsTnl4f60XI4Nju/QauiPCGREIBIKLiMXZ+1s4ImpJRq/1pNpcj70x92FV/hEMWk9mRPV3l5ndChsWNvI/tvIxeexrxwkBkJBRcTcL6Bt6GU9pr6ReV4pSMJ2D2b4cZEeL0d5qLfcnTUarErdi8RsQCASCi4RyUx0rcg8BICFxedwgpoT3xVOtoc5qZlX+EZbnHgRgUfZ+xobG46PxcKfJbqOeKtbwOrv4mhKOoqAgIRNGP0ZyE9N4mA+4gYOsQMGOhISMmnv5iYHM4ahmE/XBy9BZw1GyfocJq+vcMhJDgqK4Mm4IIZ6+brzK7oNwRgQCgeACoZZyMtlODMMwENZq/4aio43VHzAruj+zo5Nc+7w1HlwRN5g6q5kNRcewOuxsLc64qKIj5WSzkhfZx2KqyAOc+SGxjGQ8v2Usd6JudtscxtWksrQxHqLhfn6mP9OxYeEdLkOWVDyl2Yr36AgOVxZRYzWjU6npawjBz8PLXZfZLRHOiEAgEFwgbOMzvucRAPyJpg+T6c04ejOOCJJJqyp2jZ0WkYiCQhFHWMmL3Mz7qNEyNaKvS4Qrrbr4gndGctjDSl7iMKuooxwALV70ZwZTeZBkLkNup9ZjIHMb4yEePMQv9GEiAG9zGSaMXM+bBBILKhgaFN1l19QTEc6IQCAQXCBEMdj1cyW57OJrdvAloKDBEyk+AUw+SDZPvtcu5SjrqSIfAF9CuIoXWpSZmu3t5Ub0bFJZwVre4BibMFMLgBf+DONapvMn4hl9RufxJZg7+JRwkohhKACb+ZgjrKY3411lvILTI5wRgUAguECIZwwyaleCpQO7a5+VBvA9gKR3lp3m2YcxUnUTfZnMfn5mDa8xghswVoe6jvHV6Lr8GjoDO3Z28AUb+T+y2YUdCwAGIhjFzczkLwTT+5zOPZpbXD9XU8RX3IMWbx5mZYfYfrEgnBGBQCC4QJDREkgcpbTf60SxesHBP+GvnsoVSZNRSTL9uIR9/MSLyjjC8z5zjR3Rg0tOLdSzlrfZzucUcggFByARTG+Gcx3TeQQfAs/p3OsLjrK+8CjlZmdUJdzLwNyYgSwImIodK/ezFC0tc0J2l+awKHs/5aZaQjx9uarXEAYGRLr2K4rCkuwDbCw6RoPdSm99EDcljCTUU3/Ov4OehKT0AB1ao9GIwWCguroavf7i+I8RCASC02HBxB4WsJvvyGInNZRwQpr8ZCRk4pTRFO26m3qTs0Kml28gMyL7E+ltYKNlAWsMv0Opj4I9LxDg4cVzI+dzSFpBMWlM549deGXnhpESVvESe/mBMrIABRkVEQxkLLczkXvRcv7Rnn3leciS5KyEUZyN8VY0fAz932AMd3AHH7cYf9xYysv7VnNFr8EMCohkR0kWv+Qd5omhlxLp7QfAitxDrMg9yB2JYwnSebM4az/59VX8ffhcNLLqvG12F2d6/xbOiEAgEPQQLNSzg6/Yyw9ks5taSl37vPAjiiGEkshG3m917Chu5lY+5Gils329vY2+NCS+jRSyFSn3Ch42vMFe/Qus511A4k3q0OLZiVd3bhSTxi+8QCrLMOJM0FWjI46RTOJeRnBDuwmoHUUWO3neNgUvWwSv6NJazfd/hzdhcdh4IGmKa9t/Un4h2tufm/uMQlEUHt2+kBlR/ZnZmDDcYLPw520/ckffMYwMietU+zuTM71/i2UagUAg6KbUY2QHX5DCQnLZQx1N3V29CaQ/MxjClYziFjxx6lWYqGET/2tclnAyn38ymyeQkBjgH87DyVP5/Oh2Sk21LSdM+z2y/xEcUT/xmbSXSnIbdyiUkN4iQdadHGUTa3iFNNbSQDUAOvQMZC6X8Af6cUmX2WJRLLxqvQIULXfZv2vT8cmoKWN6ZL8W2wb4h7Ov3Fk+XGaqw2g10d+vqRzbU62ll28QGTVlPdoZOVOEMyIQCATdhFoq2MZn7GcReaS4Or0C+BBMErMZxtWM5MZWOQkn0OFLFEPIZQ8qNNzJ54zg+hZjEv1CeXbEPA5VFpJaWUCDzYq3WsugwEjS1PezXHqOCrJbHFPIYbxMCdTazE02qT0I0HV+d18HDlJYyDreJpPtzmRcnL+T0dzKTB4lkuROt6M5+XVVvJCyEkv4IogvYLzxXwzUD2lzrNFiQn9SMrBeo6Pa4myUZ7Q6r0evPWmMtmnMhY5wRgQCgcBNGClhCx9zgCXkcwATJ5rXSegJZRDzGca1jOA61GjP+LxDuYpKcvg9i4lnbJtjZEkiOSCC5IAIAGoo5RNu5yDLW49FTaZtH5/sAluz5R21JPPPEfM6xSFpT4I9gFiGcCUz+TN+RJ7mLJ1HqKcvlw+38J3HV+irJ7PvUCIFg6qJ8Da4zaaejHBGBAKBoIuoJI8tfEQqyykg1aVxARIGwunPDEZwPYO5soXS59lyKY9zKY8hc2aJj3VU8g+SqKWszf0KDgqUQ9iUgS222xQHtTYzAXSMM3I6CfapPORajupKLDSQxQ76MAkJZ/NAk1zJj7rfoEHH3w2Led9nJ78WpHFLn1GtjtdrdRitLSMcRqsJQ2MkRK9x5uIYLSYM2qa8HKPFRLSPXyddVfdCOCMCgUDQSZSTzWY+IJXlFHEYC/WAs7LFj0gGchkjuIlBzO3QJMuzPZcWL+IZy34WI6NqoU8CTmekRHWow+xrjlOC/SX2seiMJNjdwWY+4FseYjCXcysf4kMgrzIVOxbuYTFe6FEUsDnsbR4f7xvEkaqiFnkjhyuLiPcNAiBI541eo+NIVRHRPv4ANNisZNaUMTk8ofMvsBsgnBGBQCDoIIo5ymY+4BArKSbNldsgoSKAaHozgdHcTH9mdkqFx5Ls/fyck9piW6innmdHzG33mCb9ixsJDJqItvd3FGp2IKFCaeaUVJAJ2OEMoy2noj0J9n5MZyoPMrCDnbPzpYCDSMgc4Gf+wQC8K6ZRFJBKsvUGAi0TWViSQnp1MQ8lTwXg47Qt+Gm9uLLXEAAuiUzk5f2rWZV3mIEBEewszSa7tsIVRZEkiUsi+7EsN5UQT1+CdD4syt6Pn4cnQy4SGXnhjAgEAsE5kk8qW/iIw6ymhHRsOJM7ZdQEEEtfJjGa2+jDpC67uUZ4GfjDwGmu9ypJanfscWMpHxzZ3EL/YsX2SG4a4cEG3bPksc8pWyIBsh10pWBq2YBvcdY+7uo3Hi/1qXNa2pdgv4bp/LlNCfYKU12XJ8yePCdAjtd+FNmBAtRSRk3AN2AK5ODu2WSp1hDp7cdDyVMZ4B/uPIe53rWcA9BbH8xvE8ezKHsfP2XtI8TTl/sGTHRpjADMiuqPxW7ji6M7qLdZSDAE81DS1B6tMXI2CJ0RgUAgOEOy2c0WPiaNXynluEtWXIWGQHqRyFTGcnu7SaOdzZLs/aSU5/HUsDlnNP5U+hc39RnJHuUH/md6EDyLAFCO3wgFraMsUd5+/HnQdDybOSQOHGzn8zYl2Acx77QS7BWmOp7ataTLEmbbmxNAGnMPaFqWQUtIhNGfu1lABEkI2kbojAgEAsF5cpwtbONT0lhHOZnYsQKgQksICSQyjbHcQSzD3WxpEyUNNTy6fSEaWSbeN4gr44a0e/M+lf6FhIRn1XiU1BchYgXEf4U6cj1zNH9lW3EOsiRRaa7H7LCRV1fFt8d3c1Pi4EYJ9i8o5GAbEux/xIegM7qOWpu5lVPQ0QmzZzInqrpWjgiAgkIxafyLYdzJZ63KpwVnh3BGBAJBp1FLORlswY6VvLpS8hoqsClmtGoI0OnwUEOUpg/DuNrdpuLAwVHWs43POcoGKshyJXKq8SCUfvRnBuO4s8s1Lc6UXr5B3NF3LKFevlRbGvg5O5WX9q/imWGXoVNrWo0/nf7FhsKjgAoKLmOIx2T2R96HFPMz0XWTAbhvwCT+lboAS/hPbAvawTalDCSnBHskgxjD7UzqIAl2t+FV2O4uBXBgIZcU4YycJ8IZEQgEncYinmiSJvdufOHsGusMdCt4K8EMk7reGXHg4BC/sIMvOcYmKslzJWxq8CSCgSQxi3HcRSh9u9y+c+GEZghAlLc/vXyDeHzHInaV5TAh7Oy60iqKwqEq541YI8ncHnYHq6U8fuYZevENNhp4z+turCOPIEmgODQEW4Yz3+MRRnB9t0pAPS88C1ptkpBRcBDLMK7mZfowyQ2GXVgIZ0QgEHQa4cZ5oG/dJ8WZU6mgKBLq4plYgm1oVZ37deTAwX6WsJOvyWALVeS7JNO1eBPDUJKYzTjuIoi4TrWlq/BSawn19KW0oabN/afSv7A67JjtTucszMuAl1rLZTzNNj7jmGUf+OQQDsRZZ5B5ZARUJzM8agCjGitIehp1VgtrC9Jb7/AsRFFOfGadhNCHq3iRQcxrkagqOHeEMyIQCDqFaksDi1LrURKHgv8+JLmNxmwONVWZE/muZg83tyEWdT7YsLGPH9nJt2SyjWoKOdHR1gMf4hjFQC5jHHfhR8SpT9ZDMdmtlJpqGaNtu8HdqfQvVHJTZKPSXI+iKKgkNVfZ3uaDmkpuDL+GyQxmW2UmmdVbAVD30MqPClMdr6X+SklbTlvgbqcjojiTb6+Q/s1objljQTnBmSGcEYFA0ClsLDyGyW6FrOuQAva22q8oMhROB5svW4ozuDxuED6ac88tsGFhFwvYw3dksaOxg6vT+dChJ4HxDGQeY7kDPSHnPE935vuMPQwKiCRA5021pYEl2QeQkRgZHAucnf6FSpLp5RtIZk05tTYzy3MPMjgwih3ZegI97IwLSkZRFDYWHXPNn6AP7pDrsDrs7K/IP6dj8zmAAzvRDDmj8XaHg7cPrnc5IhLO6/DTepFjzqLYK9+5rJhxE0Pk+xnba9w52SU4NcIZEQgEncLWkgznD/UxhNZeSpH3ypbREUWCfGcJqk1xsLM0m6kRiWd8fgv17OBr9vID2eyillLXPi/86MtkBnE5Y7gNHwI65Jq6O5Xmej5I20Kd1YyPxoMEfTCPDZmJb6Ps+NnqX0wO70NmjVOUbHGjoFofvVP/wmK3syBrN8eMzt97iKcviX6h530NObUVvHtoA5Xm+jb3L8raxz39J7Za1qujkkU8wQbeI4IknubAGc23tzyX/PoqAIJ1PjyUPJUQT18UFN7nFSodvlj3Po1SH8EmKYe5kcNcv09BxyGcEYFA0OE4FIUyUx0AHrKaoiMzYcRK135FkaF4IlianIRW7exPooEadvA5e1lILntdyp0A3gTSj+kM4UpGcQteXJx6RHf3n3DK/X8aNL3VtuHBMQwPjmlz/MjgWNYVpJNVW4EC2BUHFeY6Pj26nZzaCqyN8ucScE2vocinEFg7Ewrrq3l1/xoa7FbXNo2kwqbYOSGIlVpZyPuHN3J/0mRkSUZBYRuf8R1/pAEjoGCk6IznbB7ZuTlhFCGezt43m/mQFBZyj/wjx/xjWV1/BJviYFtJJjOi+p/XdQpaI5wRgUDQ4UiNLwUwO2xgCoXCKRD+K0ggoaDkzWtxjEpqWX1RTxVb+YR9LCKPFOqpcu3zIZgkZjOUqxnFjWjx6uxLuihRyyoeSJrC2wfXkVVbAUCJqZaSZo6jLEnc2mc0gwOjznu+Bcd3uxyRXr6BXNNrKL31wVgcdraVZPJj5l5MdhuplYXsKs0hMqSGL7iHTLbS9IlzfnacTfbad44smCjlGFnalRCRj9azmu1+KzlKDGVksouvGctdDOVKAoIrWJ1/BID8uqrzvk5Ba4QzIhAIOhxJkgjR+VJscq7D61QaRvlNZqP0KwBDuYb48Nl8n9mUS2LwsvALL3KAJeSxHxPGE2fDlxAGMY9hXMtwrkODR1df0gVLW/LnzWXXfbU6/jJ4BrtKc1hfeJTMmjIUwFvtweiQWKaE9yXU6/wjUcUNRg5VOSMaAR5e/GHgNHQqpzaKh0rN5PA++Gk9effQBlDV8730CDUsauZwNImJO7DxKXdSTyU1lFBHBSaMmKnDhgk7tqbxiU43xgpsU8CHIHTo0eLD5fwTAHWzZF6Fbi9a3iMRzohAIOgUPNRNXy8alYMDug/R4oOFWqbxIOlyNUQvhIAU8Mrje9WJElMJA+H0YzojuZ7BXOX2rq0XKu3Jn58su66WVYwJ7cWY0F44FAd2RenwnimHKpuWViaF90Gn0mDHxjY+w4oJFWpqAkrQDlyIxbCXapRmsZDWbONTwNknSI0HWrzwJQQv/PAlGF/C8COCXbm1lFZ6QUMYjw64kd6+zuTm5pGVPWU5rvOGeF6cS4CdjfgLFwgEnYKxUcUT2UTNwL8hScX4lM/EEriS1+pvxx6ehSQ5tUYw+xNQP57r9M6OrSpRNtkltCl/zqll12VJRu4EaY0GmxWwQMg29oR+SArVFHPUFSGTkPGRAnF4W3C5ICea+LXBQ6xkADNOO2+w5jifVW8H4Jtju3k4eRo+Gg+XI5JZU8aqxiUaCYmxob3O5zIF7SCcEYFA0CnYFQf4ZCL1fx10ZSgK1NT4QoCEvT4ECiehNIRBVTIgEx8cyxD9eHebLehCLJjYzbfsZgFHI7dBdAWSBLkKBBHPLP5KKInEM85Zjq1I/G3PYiptFUjB24jss4N89iGjxoGtxbltmNqZtSUjg2NZmpNKubmOnNpKnty5mFEhcQTrfDhmLGVfeb5raWZMSBwBHp3bNfhiRTgjAoGgw3HgQBW9HCI+RsHhTGh16FByr4DcK5GQSA6IIMDTm/VVRwHEl3wPoZQMvrT8haq0yymt1uLv4cWcmGTGhca3GLe2IJ1VeYeptjQQ5ePPDb2HE+nrw06+Zg/ftS7HlgOQqgailI7Eq3Iqjw69Gv1JYm2bi49TaakHdCRZbuJB6f/IYQ8beI/tfI6VE7kvCjXNzn0qtCo19ydN5rUDv1JjNdFgt7K+8GircX30IdyUMPKsfleCM0c4IwKBoEOpooCPuIXqyLUtIug+si+Pj7wSq8OGr8YTi8PG8ym/uPaPDonrclsvdpxLI2fOcbbwlnIZJm0VCRHR3NP7HxypKuLz9O0YtDqS/J1KtjtLs/k+Yw/XJwymxrCBjXULeMF2DJRUkJxRBm8CGcDMxoqom/GQvPm/ok3sLsuhHnhh30rmxgwkyT+CepuFzcXHXRUtAFMi+gAQwzBu4f+4mpfZyVes4x0KSHV1WD4TIr39eHzILJZk72dXWY6rZBmcjQMnh/dhVvSADs+TETQhnBGBQNBh7GMxn3A7ZlrLatdb7aSU5xKs82VrcSYbio5Rb7MA0N8vzCW0JegajBYTXx/b2e5+h9IyNXQn3/AJt2HHDoqER2A64RgI9zJwrLqU1flp9PH3Yydf8511BdLQvXzlfdx5sA6oTiK4eh6z/OYyipvbLMe+Ln4YGTVlVJrrKTPV8Un6tjZtGx8aT7J/Swl/T/RM4l4mcg8lHCWAtrVT2iNQ580diWO5Nn4Yx41lmB029BodCfrgFtL4gs5BUhSl29cpGY1GDAYD1dXV6PUik1kg6I78wKOs4iVop8ZBMQXBzjdabQ/W+fCXwTMwtNM/RdDxFNcbeS3113ZVTgEGB0Rx74AJSJLEcv7NYp5ssV+LNy9SyC4WsKZmEYW2TPBPBUCxe6CzB9Nbm8QwrmEUN/Fl2j4abBZ+nzT5lLaVm+r435FNLuXX5siSxPTIflwZNxhZEg5CT+BM798iMiIQCM4bBYVMnE+x7ZZbKi1D3LIkMTwohuvih6MX8tpdhsVu462D61o4IoEe3oR76smtq6S6sYvvvoo8FmbvpibubbbxWevzUMcfTijd+sgolckMcFxKf9sV/LDDk4cGzaa3tqlXjV6ro6jB2Oo8JxOo8+avg2eSUVPG1uJMys11qBv75IwP6y2c1gsU4YwIBIJzIr26hJV5h8ipraTa0sC9/T9nctAWFvI4FWS3Gh+s9ad/WAIp5XnUWs34a70Y4B/eyhFpK/Gxl29QV13WBc+O0uwW0vsxPgE8MfRS1/s3U9dysLIQ1LWsCrgFlKPtls+G0o+Z/BnPyim8f3A79427jnrFwg/KT+dloyRJ9NYH07uDGu8Juj/CGREIBOdEeUMteo2O6ZH9+CFzL7VWKxO5kWFcw6OEN/aOaYqTaCQt20oymRTehwlhvU+Z+HhTwkh6+QaxpuAIb6au5R/D54noSQexqVkvFr1GR7S3v+u9HSuRARYO1VeijHzQlWzaFhIywcQznt+w2XIcnUqDVqVGliRkJGosLUtrjRYThvPoynw+VJrr+TEzhYOVBVgcdoJ1PtzedwxxvoHtHpNWVcx3GXsorK8+q4qhrnScyxtqKTfXYVcceKo16DWeLqG6noZwRgQCwVlTYarji2M7WghmfXVsJ0n+4WTrfqGOcoZxDXGMYhnPYcJIncVOkM6Ha+OHAbRIfDzhjKzOP8KEsN6MD+sNOBuXpVYUsKX4OJdGJ3X9hV6AnOitEqTzppdvkFOGveQ6wgt+4KivhLF6NtdQQUMe1GmgQQ1mGayyjEnlwKRyvjerHGRJa3HIFg5XFRGvd96E1bKKGN8ADlcVMyQoGnAmwx6pKmJqRN8uv946q4WX9q2ir18oDyZPwVejo6ShBm+1tt1jyky1vH1wHZPC+/CbfuO61nG25IE6COT2z9Fgs7Ay7zDLcg+22C4j8fDAqfTzCzv3+d2EcEYEAsFZ05ZypwOFWpuZr7kfGTW38TE6fJjI7/iVN9hWYmz1JTnAP5wFGXsAsDns5NRUMDtqgGu/LEn08wsjw1jW+Rd1kXAi1iHjTAZ9Yd9KjppV+BJMTfUQaIhiomY12gLnyKZGvK2VWqEBBQ9uUXSoJAfsVAAVD6AntyyU8qoGPFUqcm1BzHT4MdpoZu/eQDLMPhgdOnw1nkwIDibMOxTUgaAOBk0IqENB7ay2Od8IxS95h/D38OKOvmNc44N0Pqf8Ha0vPOoex1lRYH9/UBkg5mUIuL75fwDg7OHzZupaV1fs5jhQeOPAWu5IHMPokJ6lFCucEYFA0GGsNH2I0aeISdyLDucXvicGLuNptpUsocbHxNO7fqbcVEuIpy/DgqIx2a1Y7DbqbRYcKKRU5PHlsZ002K301gcR6OHjSqoUnD9hjYmqJaZa1LLMfWFVLCwawnIuRSs3cG38dBY1/JY1+WkAxHt74yNbuL93DNhKMdvyOGDazQHzEexyKQHlwxiqs9JLUwGOOnDU4etoIMhiptymRWWz4idlEK+qxFork4SNobIFZJyeUUn7tjqQCVb8eUhyoPOwU4cvuRkhVOXV4aeRQfYi3+ZPVX0wv/GVCfDzZn+9D7+kruXWmGi8dcHklpbR1xDJhweXc7imDj+tN5PD+zAxPKHdeTOMZe5xnB0N4Kh1vo7fCIUvQ+yb4DsOgHqbhTcOrKXc3OSIRHgZ8JDV5NVVYVXsOFD4OG0bvhodA/zDz92WLkY4IwKBoINwsFP9MWqHN9fJb7baa7Xb2VWazZW9hjAoIJIdJVmtwswAe0pzuavfOIJ03izO2s+eshyCPX274gIuCsaHxfPN8d0ALEpfyu/tjzIo6la+ictnHW+hNm5i/fFcwNkw7/6Bs/BpluvhAYxofAHQMkjhIqTxdQKL3caftnzH75MmMdAvFGzlYCvh3UOb6O8NUwMUsFWCvQpsVeCo5qDRSqXVxiSvfHDUo3U0YFQaqLHZ8FOKQLHh4/BkjsqER4MZGmAyMFkF5DvnfRig2vmzIoHdqqIux4eGXBuekh0kLchakDycSyOyF6MboghzyJCuAZUeVAYiLb7EOCSsxXU0SH4YKMNAOdgCXVGcM60YahdHbcv39SlweDz4XwXRL7G+tMHliER4Gbi73wQivA2Ac+nmu4y9bC4+joLCT1n7hDMiEAguQkJ/RfI7TL/Kx1D7a1rttjrsBHh4M6vxafLyuMHsKM2i0tyAVqV2FWwMC4pmSGAUAHcmjuWPW39whq8FHcKYkHhW5B7Cz7qf31n+iR1YaLkWVWEdhL3FJ9YHQfkzABPCElo4IueDQ1FwoKCWVCCrQRsK2lBqNUXssUpMDZ3e6pgV+1YRYwiA3sNd2/KKjrMgYw9vjL4Wm8POY5sXcE//Cc78FFst2IpZcGw7dns1N0Z48nr6UaK1Zq4ONiHZq1Hba8ipsVNntzJG53RycJhAMYHVCIqVZKkAb0sdNIvIxQF/0gLZoAH+4wFkNLdW4lLFm0l4w65ap5MjeYDsAbInyF4ge4PKt/GlB5UfqP1BFQCaQLBbTvoNNCrBVi5GqVyMD5fhyWWY8Obe/hMJ9WrS7fBUa7mlzyiya8vJq6siu7aCrJryUybpdieEMyIQCM6KSnM9vzaG8JtQIPpnFGMCV2ofbfM4m2JHdrRc/9bKatSN6pZVjdUXlmZS3B4qDbIkCRnuDsSTGp7y/wnvys+QJMh3RLK6uBCKAf9A8N8POEj2j+La+KEdNq9OrSHeN4hluamEe+nRa3XsKM0mw1hGiGfbORxGq6lVMqheq2u1tOd7YozaB9Q+qLyNHK8ugeBZFGf+RIAhHOJGu85RUXCUZbmpjBl4ZZvzfrhvFTE+AVzfezg4bGArY0fRfn7JO8xTfcOwWcv47/Ec5gZZ6aU1gsMIthqO1oLkMBOsLWhccjGBvRpspaDYQLHjzL05W+fahgRMUBYxQbuIIqkPoUWrQPZxRlPstdDnO2RJYnxob77NcEa+Mi90Z+Sdd97hpZdeoqioiMGDB/PWW28xatSodse//vrr/Pe//yUnJ4egoCCuueYann/+eXQ6UaonEPQk0quKeffQBhrsJ/X9CNyF5FkKOddSElBDlLc/CzNTqLLUc2eic73b6rBjddj5IXMv40PjOVJVTGF9NTqVM4pitDYAkFKWy9biDOJ8AxvzFhR8NB5deZkXJooDyj6BnD/hYzeC5LwlpipNUQfyZyP1/oKBA1O5V39Th8ug35U4lk/Tt/PXHT8hIxHj48/I4Fhyais6dJ7m9NYHU3zS0klxg/GUjRnj9UGkVhQ438hq0Iaxv/44ev0gCJqKGqgt/oVt6kB6xTsXrByKwtc7fmJqRF8Gn0kCa2MUB2uJ01mxlUPdHih5u83hCs5cVocioZWsYEoHSwFYsp0RF4cFZC3emqYqIbvSVtJx9+SsnZFvv/2WRx55hPfee4/Ro0fz+uuvM2vWLNLS0ggJCWk1/quvvuKxxx7jo48+Yty4caSnp3PHHXcgSRKvvvpqh1yEQCDofArrq3n70HrMdmer9iYFEQfELUCpHAgl4/m/kk38w3su1ZYGKlrIjUvMiurPgYoCfs1Pw8/Di1EhcRyqLGoxz9zYgSzO3o/RYiLKx58++hDUIjJyftTvg8x7oG57i80SElNipxCpm4LFYcNXewmvK9+S7/c1Kv7T4WYEe/ry58HTMdttmOxWDFpP/u/wpnarW/QaHcY29ErORtPkRMXQspyDjAiOIaumnI1Fx7ilT9MD9MmO8+TwPqwrSG/hOO8uzeGB5CYp++mR/fgkbStxvgEux9nisLWq9GmXxigOut5N27SRbTgjKsCO4jmYj2smstM+Ek+1Fy95LEFVuxX85kPvr5x5L+AUrGvEX9u6/0935aydkVdffZW7776bO++8E4D33nuPpUuX8tFHH/HYY4+1Gr9lyxbGjx/PTTfdBEBcXBw33ngj27dvbzVWIBB0X5blpLockQH+4dzRdwwGrSff8SfWUEB42W0U4HRQluce5I7EsS2O12t1eGs8eHLYbNe2xdn7MTSG2PUap8z3wIBI5sQku8a8vG+1a4zgLLEbIe8pKH4LZ/nKySh46KJJDmhqOpfEpexnCUUcIYx+nWKWh0qNh0pNndXCocpCrurV9nJQiwhFI2eraRLnG8h9/SexMCuFpTkHCNL5cF388Balryc7zkE6Hx5ImsJ3GXtcjvOtfUe7ynoBRgbHUms1tXCcH0qaiv585OrtzRNYVYAD/OZC+J+RfcZD+lYoOcaD0l9RlWeg+ExA6vMDSE5n/Wh1CTtLnOrHXmotAwMiWs/RTTkrZ8RisbB7924ef/xx1zZZlpk+fTpbt25t85hx48bxxRdfsGPHDkaNGkVGRgbLli3j1ltvbXces9mM2Wx2vTcazyM7WSAQnDe1VhO7y5wVFt5qD+7pPwGdSoMVM7tZQAITuT/iWR7J+R6HorCzNJtr44e3CBnH+wZxpKqI6ZFNN7jDlUXEN+pBBOm80Wt0HKkqItrHqQraYLOSWVPG5FOUYQpOQcELUHyissne9hhNy4qLq3mJ/Szhe/7MA/zcoeYcrCxAUSDMS09JQw0/ZO4lzEvP+MZoQmdFKAYFRjIoMLJdu052nAES/UJbOM5tMTUikakRiWf1OzglSuN9T/aEoN9C2MMtIifTQ0K4onIe/lIFe+wjWGN9mnHFWXiqNaRWFLC1JBNHY7xycngftKqekxZ6VpaWlZVht9sJDQ1tsT00NJQjR460ecxNN91EWVkZEyZMQFEUbDYb9957L3/729/anef555/nH//4x9mYJhAIOpHc2irX+vOI4Bh0Kg0LM1NYqXodR7CZGxyvs6LkoKvtvE1x8MGRTcT4BHBlryEAXBKZyMv7V7Mq7zADAyLYWZpNdm2FK1wuSRKXRPZjWW4qIZ6+BOl8WJS9Hz8PT9dTr+AsCfsDmDOg4huckZE2cgi0LZ+eQ0kkgFgOsxIHDuQ2IyrnRoPNysKsfVSZ6/FSaxkWFM0VcYNduSndJkLhLgxzIP5zZzRE7ddyX0MaMcdHosg1rLDN4yf7DWAs5ZixtNVpBviHM7dZdLEnICnKmdfMFRQUEBkZyZYtWxg7tsmTfPTRR1m/fn2bSy/r1q3jhhtu4LnnnmP06NEcO3aMhx9+mLvvvpunnnqqzXnaioxER0eftgWxQCDoHA5U5PP2wfUAXBadzPy4Qbx1cAP7a/chW/UgO+jjE4VB48mushwAIr38iPHxb/HUubs0h0XZ+yg31RHi6ctVvYYwMKDpiVVRFJZkH2Bj0THqbRYSDMHc1HtkixJGwan5245FLUSxAAZI+7nb4394KW0kio5oYHd5CYuy97vE6BL6HGKj/lGu4RWm80iL/5cTYnQ3JYwk1FP8v3QJ1ashfY6zIqfXh+zmEhZl76O4oabFMJ1Kw6TwBC6PHdRt8qyMRiMGg+G09++ziowEBQWhUqkoLi5usb24uJiwsLa18J966iluvfVWfvvb3wIwcOBA6urq+N3vfscTTzyB3Ea2toeHBx4eInteIOguNK88OFhZwKUxSXxSUEq1NYBrhu0iVVrOssNzucSrLx6Nyqu/6z+eMC9Di/MMD45heHBMu/NIksT8uEHMjxvUORdyEfD4kFmuUD1AQV01r6cqKJzQfpFxph/bQfbheG0NHxzZzBW9BrvE6FbsN6Ia58ka+XWm8wi/5B3m14I07kgc6xKjezN1LX8fPleUXXc2xe9D9n0gaSDxVzBMYThOPZ706hKyasuxOxwE6rwZEhiNRw9ammnOWcXftFotw4cPZ82aNa5tDoeDNWvWtIiUNKe+vr6Vw6FSOT+8ZxGUEQgEbiTCy+Dq7ppVW8Ht21ZyoLqCb8fO5D9hr3G141Xs2FEPvx/z8Afx7fcVaV5fcYxN1FPlXuMvMny1OgxaT9drf0U+0zWb8FaKIfIfkLQbvBqdPU0Ya/LTSAoIZ1bUAMK9DFweN5hYnwAM5fOoJJcC5RBr8o8wJyaZIYFRRHn7c2fiWKrMDaQ05hEJOomcRyD7XqdA2sBDYJji2iVJEol+ocyKGsCcmGRGh/TqsY4InEM1zSOPPMLtt9/OiBEjGDVqFK+//jp1dXWu6prbbruNyMhInn/+eQDmzZvHq6++ytChQ13LNE899RTz5s1zOSUCgaB7I0nOpmpvHd7ML5X1lNtqmBschN1ax/aSWhoqvJmq7oUkKei8KqjxXMrXyjJXC3pfQolmCJEMIoZhDOdaZMTff2djc9g5ULKPp+SPQRsNkU87dyTthNIPQPYmI6OsRVIxOHMOdhXMg+AFfG37K0brjfRv1qvFU62ll28QGTVljAyJ68IrukhwOODofKheCtpYSN4P6gt7SeysnZHrr7+e0tJSnn76aYqKihgyZAgrVqxwJbXm5OS0iIQ8+eSTSJLEk08+SX5+PsHBwcybN49//etfHXcVAoGgUylsqOPL/Hy+Ka1zpUAGU8+HaVtcY3wIQsm4AaX3l42NRpsinzUUc4iVHGYVCg4CiSWetqOpgo4jpTyPOXyKRrJCn2aVMZIKQu4BwHjkG/QnSb7rNTrqG7wIJI7j8hrghjaVUKtP0vcQdAAOExwcAQ0HwWc89FsPF8FS2DnFdB544AEeeOCBNvetW7eu5QRqNc888wzPPPPMuUwlEAjcSLnZxH+O7OWtY6nYFMXliPiqZDQnRTb9tJ7M8HqUX1hNjVIM0slnU5CQGcyV9GLMyTsFnUB2zsdcrdoAgbeC99nn4UznT3yrehAMh4CrOt5AQQuOlh1Cc/xqoknnS9tvGRTyNENO44ikVRXzXcYeCuur8ffwYk5McivhtbUF6azKO0y1pYEoH39u6D2cXo0l9d2FnrvAJBAIOo1qq5lX0/fzctp+zA479mb5XRIwPTSG+/olUVRfDUiEe+lJ9o9AJctoeIavuZ+T+29IioxeCuM2PkJq7akIOpjy2gImWN+nVhWMT6+P2h2n1+owWk9SMLWaMGh1TOb3fO94FFv4GoyWP2NoVi5rtJiI9vHrLPMvPupSiMqYippaMv2fZnNxH07nPpaZann74DomhffhN/3GcaSqiM/Tt2PQ6lzlzztLs/k+Yw83JYykl28QawqO8GbqWv4xfF6raJc76djGAwKBm6kw1ZFTW+F6VZjqTn+QoAUbSguI+flLnju0h3q7rYUjAqCSJAb6BTAkMIpLo5O4NHoAgwOjXFoR47gLA+GcHBpx4MCn4jq88OuiK7m4KU+/i0CpFM/eHzr7q7TDCTG65pwQo5ORSZZmQeAutht3uPafEKOL72ZP1z2WikVwcASeGNEkfElC3zNbSVhfeJQgnQ/Xxg8j3MvA1IhEhgVFs7pZI8vV+UeYENab8WG9ifA2cHPCKLSymi3Fxzvras4J4YwILhgqTHU8tWsJ/9q7wvV6atcS4ZCcJRpZxqYoSFLb0QubopCkD2j/eDyYy985OTLSYPYl2/AW1+XOw+awdaDFgpNxVCwm3rqao+rpqALmtdj3cdoWFmamuN5fEpnIwcpCVuUdpqi+miXZ+8murWBKo5z6NdLLSJLCr9aP2VeeR35dFR+nbxVidB1FwUtw7Apn6e6AbRB43RkfmmEso59fS1mNAf7hZBjLAGcCc05NRYvkY1mS6OcX5hrTXRDOiOCCocRUg61Zl0qbolBosZJVV+1Gq3oeYwPD2D/zGgYZAtpdTEnS+5/yHOO4A3+iAQkZFQOYyYvyMYqLhxAQ/TPXlCexu/ZAh9suABw2TMd/Q5kSQkDf/7XaXWGup9rS4HrfWx/MbxPHs7HoGP/cs5w9ZbncN2Aikd5+AATTm0BiUSKW8/nRbfx77wrMdisPJU0VGiPnS8bdkPcoqANh8FHwGXlWhxutpjYTi012Kxa7jVqrGQcKvm0lH1u7V/KxyBlxMxWmOmptTWqzPmoPAnTtt7YWtKbeZuG/R7azuiiLUquNcqudcpuDGrvzybx6/zbWTBXJd6fjZOXOYR4KpRoVedaWPU1UkkQfX6eYmVNRtUm584SiqgoN83iWz7gTtV1P9t4beM68lqn6/3DI+j3+4Z/ymm0SfQr/wjPh7beGEJwDmXfgpZThFfsa+LaOXPxp0PRW204nRjdD+jPfaO5n5phMZvKXDjX3osThgCPToHY96BJhwB5Q95wOu52BcEbcyIllheZP82pJ5p8j5gmH5Ax5YM9G3s84hK1xReDEk3zzBYJ6s5GtxRmMPdPW3hcpJyt3LshO49OS7UR66GhQFKqtFuyKQry3L1pZxXFjaSvlzv8e2sgTQy8l0tuP0dzChtplFGQO4tZeM1zKnSEllzLUdy7fSveSH/oUV+Wt5auIpehk7SmsE5wRdfug/Evw6APhf+iw007iXr7jj/zKm8IZOV9stXBwsLNnkH4W9F0GbSiRnwl6jQ7jSeXVRosJnUqDVqVGliRkJGraGGPQdJ/kVRDLNG6l1mZu4YiAs8FY80iJ4NRkGktdjgg4nZCTdX1jPdR8dnQ7xfWi+/OpaK7cqSDx5wM78ZJlds+4hkOzrmNKsDM7f7CfM2mxLeXOGB9/1hWkAyArKspTb2Cu/9WtlDtjbUn8zzeVksIxBEeu4abK/qwzbnLbtV8wHJ0HSNB3aYeeVkZmIJdRRR75pHbouS8qTNmwL8bpiIQ8AP1WnLMjAhCvbyP5uKqIeL3zb1Qtq4jxDeBwVVMLF4eicKTZmO6CcEbcSIPN4m4TejS1VhPRKjOBarnd3IZgrRaDWsahKKwrTO9S+3oyk9ctodbu4JHefQn19CZU58XKSZfx8cgpPN5vCAAZNe0kz9U4E+PKTHUYraZ2lTv91AZ+ityMd8Gf8fUu4SPtHP6S/3iXXeMFR94/wJILwfeCZ58OP/3VvATAjyIycm7UbIYDiWCvgpg3Ie6tVkNMdiu5tZXk1lYCUGauI7e20pWEvzAzhY+bCQ1ODu9DmamWHzL3UlRfzbqCdHaX5jA9MtE1ZnpkPzYVHWNrcQaF9dV8dWwnFoetlRaJuxHLNG7AYrfxQ2YKm4qOtbk/pSyPGJ/2qxUETnaX5aKgMMPPk4UVDVgcjhZRERUS04PDUTuqsCkOtpVkcV388HarRAROnjiwg/3VFYz39eDhfk0JdbIkcUdc05ec0WJqU7nzhCqn0epMkjydcuerkS+ypnou79pvxxjxAlfkb+Kz0OXo1T4dfm0XLJZiKPgnqAIh9u1OmSKY3gQRz2FWY8OGWtw+zpyyLyDjdkB2Rq38Zrc5LLumglcPNPV++y5jDwBjQ3pxR+JYqi0NVJjrXfuDdD48kDSF7zL28Gt+Gn4eXtzad7RLYwRgZHAstVYTi7P3Y7SYiPLx56GkqeibacZ0B8SnqYuxOuy8dXAd6dUl7Y5ZmpuKWlYxJyapCy3reVQ2/lHq1TLP9h/EXw+mtNhvR6GmvgRfD+fHvN5mweKw9+hmUp3NzooSnj+yl2gPDddHxuLn0TVJdZcYJjHOcYib8y8jJHIdd1UlcTv/Y57/zC6Zv8eTfhlgh4QF5xX2Px0z+DNf83tW8wqX8tdOm+eCIvdpKPwnyN4wYDt4tf+9nugXyvsTb2p3/x2JrVsoJPqF8uSwtp2bE0yNSGRqROIpx7gbsUzTxSzO3u9yRDSyinEhvbix9wiuihtCQrM1vEXZ+zh2CodF4Ez2PUF1XRH9PVs6GSogTKtq9xhBSywOGzM2LEUlSUwzeDAx4tSh/lMpdwLoNc4nr7YS7AxtKD96yp78GPUrYYV/x1NXzQ/eV3J/XtttJwTNKPsS6neD/lIwTOvUqSZyD2o8WEfrJQZBGxy7wemIaMJhcNYpHZGLHfHN3IWY7TY2FjqXZlSSzJ8GXcLtiWOZEtGXWdED+MvgmcyPHegav6Ygrb1TCaBFAlaZqY6xeh3+qqaPtEqSUDVTnpSRMAuxrXaZvWE51VYL98XGEezhycCAiFOOP5VyJ0CQzhu9RtdizJkodz4b8TQP2n6l2hiJPeodLi8YTam14jyu7ALGYYKs34Gkg4QfOn06GZlkLqOKfPLY3+nz9VgcNkgdCRXfgtdQpyOi6V4Jo90N4Yx0IakVBTTYrQCMCo51NSqqt1ldY2ZFDXCtw6eU5WGyW1uf6BRcTHLo/fzCCNA2LSPoZBULxk5H1ZjOKivwdYmReptTJ8OBwrbiTLfY2t1599hBfi0tYGJQGN5KPWND41GdFEU6W+VOSZK4JLIfy3JTz1q5c5TvML4LOER53hxCwnZzf/1Avir/vsOvu8dz7EZw1DvzRLpIp+JqXgbgRx7tkvl6HLYK2BcH9bvA/ypI3gOibP20CGekC6myNCUenahCUBSFoMWfEr/sK5YWZiNLMn0MIYDz5lljaSrzfTV9P8NWfU+lpe3S34tNDl2WJHobmp42bIqDxZk7Gap3Jj5GacFod/BlWT07asw0OBxsKc5wl7ndlsxaIw+lbEav1vBG8jAqzPWMbyPT/myVOwFmRfVnangiXxzdcdbKnWpZzXdRS0koeQmN2sRq/S3clXtnh1zzBUHNVqj6CTwHQshvumzaYHoRRG+OsAYbItLYgvrDkBIL1nwIfxz6dH606kJBZPJ1Ic2/gE+stSuAVlZhcdiZu2kFnio1CZ5aBukkvNUymsZktAa7jWcP7abaauHqLSv5ZdKcVl/op9ItCeDCFFHTnNQAzGy3EaexswsaW9zbUICUOgsH6iwMqrPxm4Y6wj0vzN/H2eJwOJiwdhEORWHFpDkMDQzj/eC2E+jORblTkiTmxw1iftzZt68/wV/D/sih+st4vPIKwqM/YX5RCm/5LSZWdxH3RXE44OgVgAyJy7p8+pn8ha+4l1W8xGxEOTYA1asgbQ5gh16fQPDt7raoRyEiI11Ib32w6+fNRcexKw4kwGS382jfIayZfBn+Gg0Hauv5sqyOxeUN7Kt21pt/mX2UaqtTl2RdaQF/SNnS1hQXHXKzMt1BAZF4qNT4qiQMKonDDTa0zfbbgZQ6M7FLv+L+PRvJra91g8Xdi1t3rKXAVM9f+g5mbGDY6Q9wEwO8+vJD0H6MuVcTEnSQv1pH8H7px+42y33k/QVsJRD2Z9BGdfn0E7gbNR6s550un7tbUvxfSJsFkgz91glH5BwQzkgXEunt53JIihqMfHhkC8UNtZgddgI9dMR7evKbcH8uD/AkRCNTZLUxZf3PhC/+jCdSd7SQOn/3+CHeOdZSCbGyWf35xUJsMz0WvVbH62Ov5e3x11E8/07eHz4Ri9JSj1UBrIqD9zMOE7/sK367az1V7Sx7XegszMvkq9xjDND788LgMe4257SoZTVfRX/P8Ir/IqGw0/8ebs697uLrAGzKhqLXQR0GMS+4xQSnIutckcgKkP1HyP49qPQw8AjoJ7nboh6JcEa6mKviBrsSA3eX5fCH7YsA+D5zD8+n/EJxQw2hWjW/iwojZ/ZN3ByTQLnFRInZ1Erm/KG9W1hZlIvNYefzo9t599CGNuf84ugOjM3W+i8kRgbHuXRDNhcdZ1PRcXQqDR5qDb+LH8Ds0Mg2j7MrCjZF4cPMI6wvLexKk7sFZaYGbty+Gg9ZZuPU+e4256y4L+Q3/Eezm9KyAfhGf8fVpYM5XN+2gOAFydE5gAP6LnKrGdfwCgA/XKyKrA6Hc1mm+HXQxsHgHND1crdVPRbhjHQxCYYQftd/givfY0eNM3dkr7HGNSbMU8/DyVOJ9vHli9GXMCM0qs3/KAWFq7eu5Nl9v7Kp6Hi7c2bXVvDy/jXUWS+8CICnWsOsqAGAM+rx5bEdPLVrMR+lbeGlfatwmNsuCVVJElpZ5sMRk7k8Mq7rDO4mTF63BLPDwbdjphPQhuZHdydWF82isBQsubcRFHCc55QxvFz0hrvN6nyK34eGQ+B/NfiMcqspgcQSTAJp/HrxJbI6THBwIFQvB58JMOg4qPXutqpHI5wRNzAkMIpnh89laHA8WWZn2WmhxU6Elx83J4zkiaGXEqRzVoQcr61meVEujjbOowC1NhsvHs/A5FDQyCouiUjk9wMm8XDyVGZHJeGr8QCguMHIouwLM5w6JzqJKeFNAl1lpjq2l2RxzFhKoKbtj7ifRsv2S67krl79usrMbsNf9m3lUE0lN8ckcHlkz36S+yj6U6YaP8dm05IW/GeuzZ174S7b2Goh52Gnkmfvr9xtDeBMZHVgYyXuWS5yC5YiSIlxOoVBd8CAjZ2qenuxICmKcnL0v9thNBoxGAxUV1ej11843uflm1awpDDbtfzyw9gZXBXVsqTy4b2befPY6btkysDzSUN5pN8I1M3+MMpMtfxj91KnDLqs5oXRV+Kp1nTgVXQu6wuOsr7wKOVmZ7JpuJeBuTEDST5JkEtRFA5UFLC2II1DzUS2ZCQ+K62j3m5vMV4CrgrSE6aV6a0P4qaEkYR6XjifrfbYXFbExLWLiNB5kXPZzcgXyJdoiaWMu8vnEB6+k6LSvjzh+S0jfYa426yO5cgMMK6G3t9C4HXutgYABw4ewhtvAniBfHeb0/nU7YFDE0BpgKh/Q4SoJDodZ3r/vjC+iXogK4tyWdzMEVEhtel0ZNQZkQEftYYwnSd9fAyM9A9mekgkl4fH0EenJkgto1ep+OvBvcQv+5rnDu1hZ4VTSj5I58PoEOfTr9lh4/BJipndHT8PT67sNZi/Db2Uvw25lH5+Ybx7aAMFdVUtxkmSxKDASObGDkRGYkZkP/44cBqXRg/Av7ECWkbi5UFjuDc2FgX4ocxIgeKLRlLxZuparA57q/kvJEw2G7M3LkOWJDZOvfyCcUQAQrRBLArfgZx3H/6GXN5UTeGZwn+526yOo3qV0xHxHtVtHBFwJrIOYh7VFJBLirvN6VwqfoSDo0CxQML3whHpYERkxA1YHHYGrFhAZp2x1fLLoVnX0V/v73p/4r+nrU6zeXWV/HPPcgDGh/ZmcEgCbxw9wKdZ6agkiZL5t+Gn9WBT0TE+P7oDgFsSRjExPKFzLqyL+OPW77m611AmhPVute//Dm/C4rDxQNIU17Y5axewraqWRRNmMyEojEe3L+SoWWZRSTEAcV4+zPCVubvfWEaGxHXRVXQ9k9YuYmNZEf8dNpF7ew9wtzmdxqKqZXyu3EuAIZ+ygql8FbEMXU9WwHQ4YG8Q2GtgaGG3kxUvJ5sniKMf0/kDq9xtTudQ8CLk/dUpu99/I/iMcLdFPYYzvX8L0bMOZkn2fn7OaRnhCPXU8+yIua73bx1NJaPO2Ko6RgJu37qUD0dOZWCAswpEkiQURWFx1n42Fh2jwW51LSt4qpq+YIsaqrnNL5CPRk7hvt4DmLpuCb/fs4kvR0+joL7aNa4nLdGcjENxsLs0B4vd1m5vk4yaMqZHtswDuadXImPK85gYHE5pQy1Gq4m3hs/m8MZfSK+tJqu+lm/NMhEFmResM/J6+n42lhVxSUjkBe2IAFzuN4eptkPcVngpoZG/clNFPx7SfMYU/QR3m3ZuZN8L9kqIfK7bOSLgTGQNoQ/prMWGFTU98DtGsUNDKngNbr0v4zdQ9hGogyB5H2hP3bNJcG5cOHHabkSEl4EXR1/pej06uEm5srChjqcP7mrliIAzIXV/bQNvpG4gv9kyxC95h/m1II2b+4zisSEz8ZDVvJm6Fl+NB2GNeQ7HjWUcN5YCMDIghP+NmMzXuce4Z/d6tjb2Y1FLMn0NoZ112Z1Gfl0VD21ewP2bvuXLYzu5d8BEIrwNbY41Wkyu3j4nMGg9MTZWEhmtzhJnvVbH1kuuQCerUOEs9X3uaDp/2re1U6/FHaQbq/jTvm34abQsm3ipu83pEvRqH36K3IRvwV/w9S7lY+1s/pzfA1veN6RB6QegjYXIJ9xtTbvM5FEc2HtuImvR65A6BEo/bNrmcMChSU5HRNcPhuQKR6QTEc5IJyBLEgatp+vl0+zm+GTqTurt7Wf7mx0Oyh1q1hWkA85lmjX5R5gTk8yQwCiivP25M3EsVeYG9pXnMaVZm/d3Dm5gS3EGVoed66N7E+vpzf8y00irc4qhDQuKQd8DyziNlgbifAPxUmtpsFv54PBmCuqqT3lMWlUxz+1Zzv2bvmFJ9gGsbVRY7CvL4eZQA7IEgWqZaA+Nq/9P8+aFPRmHw8GkdYtRUFg1aS5a+eIKhr4c+QK3W5ZSWxdMTcRLXJ4/EaOtBynvps9x/tt3qXvtOA3juAs1OtbxrrtNOXsUBxS/6fw583dQvdJZubS/D9RuBP2lkHwQ5J733dmTEM5IJ1DSUMOj2xfyxM5FfHhkc4tGdSEensR76/HXeKBqIw8EIMNkI6OmDHCWqRqtJvr7NUl1e6q19PINIqOmjAlhCfTWO0O3dTYzn6Zv46EtC3hoywImejv/g1dVNuCp9uDKXm2EIHsAdkUhXh/ELX2cugqBOm9+LUhrc6xeq6Owvpq3D64j0S+UJ4fNJtY3AJPdxsHKAvQaTwC2FmfyfcYe7kwYxn3x/cix2AnTSFwRHsPeqnLClnzOrorSLrvGzuL67aspNjfwZP+hjAgIPv0BFyDT9JP40v8IpflTCQ3fwl01A1hctcLdZp2egpfAnAFBt4FXkrutOSUyMoO5HCOF5LDH3eacHdUrwZLT+EaB9CsgJQIsGRDyIPRbLkp3uwDxG+5gevkGcUffsTyUPIWbEkZSZqrjpf2rMDU+aT8/aDTH59xIxRV3YL36boJUEvGenqTMuIZfJ8/lh7Ez+EPvRKotTjG05ssKzdFrdVRbTGhkFQ8mTWGAf7hrn0NRsDrseKllJhl02IB1NQ4CPHpmc7jkgAiuiBvM0Ma28wpga6fyJd43iB2l2QTpfLg2fhjhXgYabFaCdT6szk8jSOeNXqNjXWE6E8J6Mz6sN/8ZNI5BXhq211pI8NTy3rCJ1NlsjFrzI6+m7evCK+1YFuQe5/u8TAYbAnk22b0CWe5GJ2v5MWoN4cX/wFNn5Eevq/l93v3uNqt9bBWQ/wSoDBD3kbutOSOu5kUAfuRRN1tylpS8A5xoOqo4y3YdNRD5T4h7052WXVQIZ6SDSQ6IYHhwDFHe/iT5R/Bg8hTqbVZ2leW0GitJEhbAX+vBYL9ApoZEclVUPL28fc5qTk+1loeSpvCXQTMYExJHhJeBcE89AwMieHXYNC4Lj2FfdQX/OtzDnliAhZkppFeXUGaqdeXRFNRXM6ox0fTjtC0szExxjb8kMpEyUy1eai1F9dUsyd5Pdm0FY0N7kWEsQ5Ikpkb0pdJcj06lIb+uio/Tt3JpUACBGhVvZx1nYlA4+2deg59Gy5/2b+PSDUuxOdqSneu+lJjquXXHr+hkFeunzHO3Od2Gf4Q/yUP2dVRXR+KIepfLC0ZRYilzt1mtSZ8HihXiv+oxT+UBxDQmsq7DhsXd5pwZ5myoWoqzjWZzZKj4xlnBJOgSLq4FZDfgpdYS6ulLaUPbH2qTQ8FHpWqxzWg1YWiMhJxYVjBaTBi0nk1jLCaiffxc7yVJIsEQTIKhdSj+p3GRhC35jKdTd3J5RCzJhsDzvawuo8Zq4pO0rVRbGlyVQHNjkl2RoApzPRJNy1299cEYNDqK6qv5557lhHj6ct+AiQCY7FYsdhtjQ3qxKHs/GwqPsTr/CAmGYB4ZOI1wnwM8dvggE9cuonD+LRTNv5Vp637ml+I8opd+wbZpVxDr3TNKyyeuXYzF4WDZhEsxaD3cbU63YqTPEL7zOsRNeVcQErGCB2oGcXnNm9wceI27TXNSsRBqt4DvFPCf425rzopZPM7n3MUv/IfLeNrd5rjINJaxvyKfBpsVnUpDvD6IKG8/Akr/D+cz+cnOiAMajsDRqyFxGUjiVtnZiN9wJ2OyWyk11TKmmSNxApvDgUUBD6nlH8LhyiJX6eqJZYUjVUVE+zj1RxpsVjJryph8hnohallm3ZR5DFr5PVPX/UzhvFtbqLR2Z27r27Kb7D0bvyLau0mH5U+Dpp98CB5qDeNC45kd3bTOfqCiSR3yhGbLA8mTXV2UAaK9vLgyJIBvisuZsX4p66dezqZpV/B06k6eO7yHhOXf8MXoaVwf3b11Wh7eu4n02mrujEtkdnisu83plqhlNQuifual4jdI8XmWNV63sDr3Zz6O/qTT564w1VFra+oT5aP2IEDXuITqsEHG7SBpoY97G+GdC2O5nW/4Pev5b7dwRirMdXx5dAepla2bYaqx8abnu6haOSIncIBxFZR9BsF3da6hArFM09F8n7GH9Kpiyky1HDeW8t6hjchIjAx23hSaLyvkNziz+h12M6vyDrdYVpgS0Rdw3jgviezHstxU9pXnuZYV/Dw8GdKYQ3EmJBsCeTZpBGUWE9dsXdmxF93N0Gt0GBtzbk5gtJjQqTRoVWp8NB7ISNS0MWZioFPddkNZEc8d2g3As8kjWTdlHhpZ5oZta7hr57quupSzZkNpAW8eO0iMlw8fDBetzE/HX0If5glpK+WVvfGI/pT5RUPINuV22nwVpjqe2rWEf+1d4Xo9tWtJU5J7xq3OfIXol3tk4zVnIusVGCkii11utaW0oZYXUla26YgADJO3oXJUnbS1MUot6UA/A6JfcDYlFHQ6IjLSwVSa6/kgbQt1VjM+Gg8S9ME8NmQmvo3LLs2XFTLrnM7I0KAYNhYd46esfa5lhUhvP6CliNq7hzYAoJVVPDl0tqvz78nsLs1hUfZ+yk21hHj6clWvIQwMiOTJAcP5qSCLRQXZPLF3DRZzdQsRtQulN0u8PojUioIW2w5XFRHfWHWkllXE+AZwuKrY5dA5FIUjVUVMjejL8v4TiVjyOU8f3MUloZGMDQxjUnAEBXNvYcyan/g4K43NZUVsu+QK/LtRqXS9zcqcjctRSxIbp86/oOTeO5MBXn35QbeP23NvIiT8J/7aMILJxue5L6Tjn4ZrbWZsSsv8I5vioNZmJqAuzZmnoEuEsAc7fO6u4ipeZBffsJC/8kfWuMUGRVF4//BGqizOAgAvlZYhQVGEeeopNdVwoOw4t8ofNI2X1EjeY8EwA/TTwHsk9GTV3h6IcEY6mLv7n1rlsfmyQl5jZGRwQAQ3x/Zt95gILwN/GDjN9V4lSS20S5pz3FjKB0c2c0WvwQwKiGRHSRb/PbSRJ4ZeSqS3H79Omkf0z5/xduZxFo6dRl99IIuz9vNm6lr+Pnxuuw6OOzHZrZQ2NGlDlJnryK2txFutJUDnzcLMFKos9dyZOA6AyeF9WFeQzg+ZexkfGs+RqmJ2l+bwQPJk1zmmR/bjk7StxPkGEOcbyJr8NCwOG+NC41HLMlsuuZx+KxYwY/1Siubfio9ai59Wx5HZN/Cbnev4KCuNyJ+/YNmEOUwJ6R5CSJes/5k6u40PR0wmxsvX3eb0KNSymi+jF/Dfko9Y7/k4uwPu5ebcFXwa+RXqrtJmSZ8PSNB3edfM10kEEE0IfUlnPTYsqOn6m/qRqmJy6yoBCPH05dFBM1wPhFhLsFsehjo7Rx19+dl2NVP73smQkD6nOKOgsxGPTm4kr8EZmo09zY3jVCJqJ7MmP42kgHBmRQ0g3MvA5XGDifHxd4mo+Wo0XBWkp9aucG/KrhYiaillnReePh+yayp4bu9yntvr/JL+LmMPz+1dzuLs/QBUWxqoMNe7xgfpfHggaQqHK4v4557lrMo/wq19R5Pk3+Q0jAyO5Zr4oSzO3s9ze5aTW1fJQ0lT0Tfm9iT4+PHB8EnU2W1M+HVxC3s+HDmFb8ZcgtXhYNr6JTyduqOzfwWn5cUjKWyrKGF2WDR39ep3+gMEbXJfyF28oNlFSVkSvtHfcXXpYA7Vp3f6vPqSf4M1H0LuB12vTp+vs5nN31Cws5x/u2X+bSWZrp8vjx3U5Ig0pMOhsagsWWRG/czL1mc4oiSztaztpRxB1yEiI26k2OQMIcacppT3hIiaRpaJ9w3iyrghTQlvJ9FWb5YB/uHsK88DnCJqWsnGjVFxfJmXxcN7N/PG0PEuEbXu2Jsl0S+U9yfe1O7+OxLHtnnMk8Nmn/K8UyMSmRqR2P55e/VjeVEuC/Iy+GPKFl4bMs617/roBMYEhDDm15/45+G9rCkp4NfJc/FQdf2f1MHqCh4/sJ0AjQeLx18ccu+dSawumsVhe7kr9w4Cw77hX5axDC56mkfDHj7vc9c3S1w9gS9VGMped/Y+iXnjvOfoDozmVr7iPjbyPvP4e5fPX95MaDL5xENIxUI4dg1o42DANuK1sUjHv0FBaTFe4B5EZMSNnHBGotpxLOD0Imon01ZvFr1G10pE7a2hE4jx8uHNY6lsLC1wiagJWvL16EuI8fLh9aMHWF7YUism1ltP7mW3cGlYNFvKiwlf8jkHqyu61D6bw8GUdUtQgF8nz+0xVVI9gY+iP2Ga8XOsNg+OhvyJa3PnYmujrcCZYHc4WHB8N28eWNdq30OaFwE7tt4LeoymyOmQkRniSmTd2eXzN/87aLA3flf6jgcUCHsIPOIw260ojV3CVBfI770nI/4H3Ei5xYQEp0w0PBsRtbNBlmU2Tp2PWpKYs2kF1h4m6tVVyLLM9kuuRCvLXLnlF0pM9S32q2WZ5RPn8NrgsVRbLQxa+T3vHT/UZfZdvXUlZRYTzyaNYLB/9+vo2tO5JfBa3vHaT0nRMAKjl3Jt+QB21qac1TkcioP/O7KJNQVp2E9qkTlK3kS0lE2qfQjv58nYlQvn7/CqRkXWhXR9g8JY3wDXz5uLjjt/0ISALhnq9zq3F2e4xsT5BCBwL8IZcSMVFhNq6ez+C04noqbX6jBaTypZbUdELcbLl3eGTaDWZuWT3GzXGEFLwnRefDd2BmaHgzFrfsLRhuP2h76D2Dn9KnzUau7bs5Grtqxsc1xH8kV2OosLshnuH8STA4Z36lwXM8GaIBZF7ECV93sMhnzeVE3hmYLnzvj4DYXHSGlcJlVLMuND4rm9zxju6D2E2zUfYUXDe7aH2F+Rz/qCo511GV2OP1GEkkg6G7pckXViWIJLCnF57kF2lmThUBRQeaKULyClPI/FWftd4yeFi+RVdyOcETditFrRnmV48ISImqENETVw9mY5UlXUYlt7ImoAv4sfwCXB4eyqqSfFKNZN22N+RBy/7z2AzPoabt+5ts0xw/yDKZx3K8P9g1iYn0ncsq8oqO+c32lBfR137VyPl0rNOiH33iW8E/UOV9X/QINJT2HYM1yVdwkNjtY5IM1RFIVfC5oSYO8bMInbEscwLiyesY7vUWOmJOwlbDhVctcWpDlvmhcIJxJZl/GvLp03SOfjcjBsioMP0rbw1K4lHDYHIykNfHPoB8yNS26jguNcUgoC9yGcETdSY7PieZqEx7MRUQNnb5aDlYVnJaJ2eZCeMI2Kl46ncbSmqrMut8fzzrCJJOn9+SLnGF9mt11h4aXWsGv61TzSdxC5DXX0Wv4Vi/OzWo07ZKzk8QPbz7nnzcR1i7AqDhaNm4WPWughdBXz/S7lI99DlBSOIzhyLTdX9mdN9YZ2x+fVVVHcYASgryGE5IDGZMq6/VD0AoQ8SFTswyQaQgEoMdWSW1vZ6dfRVYzmVjR4spH3u3zu6+OHu74nAcpMtaysHwDAKHkLAIMCIrmt7+gut03QGuGMuJEGuw1v9amdkRMias/s+pn/O7wJb7W2lYhadaOwDzh7s/w2cTwbi47xzz3L2VOW20JEDWBWVH+mhifyxdEd/HvvCmyKnU9HXYJDUZi8bkmnLy/0ZLZMvQIvlZo7dq4js9bY7rhXBo9l+cQ5SMDlW37hwT2bXPuqLGbmbFzGf46k8F1eRrvnaI97d28go66Ge+L7Mz0s6lwuQ3Ae6NU+/BS5Ed/Cv+DrXcpnHpfxSH7bnWpPJIwDJDRrPUDaTGcjvNCHAOjTrKdU82N6OhISQ7iSGorJYHuXzq2SZX6TOI57+090OXtHlGQUBYZr0/ht4jjuGzCpW2orXYxIitL9Y4JGoxGDwUB1dTV6/YWhEgrg+cMH9PExsH/Wte42BYC/HdjB80f2ckN0b74e07rni8DJptJCJq1bTIiHJ/lzbzllJn6JqZ4xa34is76GgYYANk+dz83b17KsKAeHotDX18ChWdcjS03N/k7Vu2RVUR4zNy4l3tuX43PaL3cWdA3rjJt403obwQFZFBeM47PQFejVTaX6x6pLeGn/agDGhMS5hPko+xKyHwKVD/T9mU/y6tjamFD5yMBLSPQL7fJr6SyqKOAxIunDZP7EOrfZYbJZabBb8TsY68wnGVbqNlsuJs70/i0iI27EqjgwaLpPiP3fA0eRpPfnm9zjLMzLPP0BFykTgsN5asAwis0NzNu84pRjQ3ReHJt9AzdE9+ZAdQVBiz5jSWE2dsVZVJhWU82igizX+FP1Lqm1Wbhiyy9oJJmNUy7v3IsUnBFT9BP4yv8IpfnTCAnfyl01A/ipaqlrf7RPALrGpdjdZblNUcygm2HgPlD7o6SOxbvsv0g48FCpib3AKjv8iCCMfhxjExbcJx+gU2vw9/BC8hwItnJnU0JBt0E4I27ErigEeHSv9u4bps7HQ5a5cftqKoTuSLv8I2kk4wJDWV6UyxtH959yrCzLfD1mOo/2HYzlpNJNGYl/HNzNiQDlqXqXTFm3hHq7jY9GTibCq31tGkHXopO1/Bi1mojiZ/HUGVnkdS2/z7sfAA+VmjEh8QBYHXbeTF1LhrHM+f+tjSIr+ifK8Oda9We8o72dv+reQFf6JtTuAuXCuVleyhMo2FnRxYmsbWKYCSjOjryCboNwRtxErc1Z6hbs0b3KaQO0Or4ePR2zw8HktYtPf8BFzJpJc/HTaHkkZSv7q8pPObagoY4Pso60+oNzoLCvupxfik8txf/GsYPsrixjfkQst5yij5HAffw9/Akesq+jsjoaR9S7zC8YRYmljDkxSfg1Vr/l1VXxwr6V/G3nIv62YxHP79/C8+a/oSigkhxE2LZA7qNwaCTsNsCRS6HwRajdDo62hQ57AmO4BS1ebOT/3G0KBDYub1b84F47BC0QzoibyKpz6oSEeni52ZLWXBnVixuie5NqrORvB9zfd6W7olOrWT9lPgCT1y3GZGv7SdbqsHPN1lUYrRbaSg0+ER1JKcvls/TWSX5lFhuvHT1EsFbHD2NnduQlCDqYkT5D+D7wIBW5cwkN3cuDDYNYXPMzfxx4CUG6plySCnM95WZn2XcdBnZIM1Fc/bwbPyWOejCuhNzH4dAYONAPun+KX7s4E1lLyGBbh5wvvbqEtw+u49HtC7ln41dn1FsrraqY5w4epMARyc6So2wpbp1AvrYgnb/tWMT9m77h+ZRfyKwp6xB7BadGOCNuIqfO2YU2wrP7OSMAX46aRrjOi/8c2cvOihJ3m9NtGeQXyOtDxlFltTBtw5I2xywuyGZreTHt3UYcKGyrKOGpfWtdnUZd+xwOllY2oACfjRgv5N57AGpZzYLoJSSWvYJabWGt/lYeL3+QZ4bN4bY+o+nlG4hOpUGn0tDLN5Bb+4xm2IAXkNr8hCi4nBP9TGiW6NzT6GhFVovdRpS3Pzf2HnFG48tMtbx9cB2JfqH46Qz0lw/wefp2DlYWuMbsLM3m+4w9XBaTzBNDZxPl7cebqWsxiiXrTkd8s7mJ3MaOvVGe3XPtX5Zl1k+Zh4TEzA1LsYhkr3Z5sM9A5oRFs7W8hKdTW/fhmBcRyxejpvFQQjITAsPwaqYto2p2c1lT2YCiKAR7+DAyOJaB/hGsrDJjVmCUj5ZfclKoMte3Or+ge/Ln0Id4StpGeWVvPKI/45rSEUT6aXlsyCzeGHctb4y7lseGzGJCWG80PkPAdxLQVpmpCvSXQOybXXwFHYszkbV/hyWyJgdEcEXcYIYGRZ/R+PWFRwnS+XBt/DC89CPxoZLRAQZW56e5xqzOP8KEsN6MD+tNhLeBmxNGoZXVbCk+ft72Ck6NcEbcRGFjl8gYr1N37HUnfXz9eGXwGKqsFi7beOqqkYudJeMvJUznyXOH97ChtKDFPq2s4ubYPrw6ZBwbp11OzZV3kX7pDXwz5hIe6TOQaA8NAA0KHLd58vjQ2fy233h6BfQix2IjVufBEB8P6m0W1hVeOHLhFwP9vBL4IWgftbnXERJ0iMetw3m35KO2B4c+DNhbb1cZIOEHkDWdamtXMIcnUHCwjH92+dwZxjL6+YU53/hfBcAI9V4yjM5lGJvDTk5NBf1PjAFkSaKfX5hrjKDzEM6Imyhq7Ngb5+3rZktOzR/6DmJ8YCirS/L5X0bXNYDraciyzLZpV6CSJGZvXE61pX2ZcFmS6ONr4ProBG6PiWW2v467Q324ISyErVWVjF37E3sqSnlg7yZ6e+vZPO0qlw7J5qLjF5Rc+MWAWlbzRfS3jKx8D5DYE3AvN+Ve07oDsP980IQ32yA7X/YKOH4zXABihKO4GS1ebOJ/XT630WpCf6L/lmEOAEHmzZjsVix2G7VWMw4Ul6DkCfRaHdVWsUzT2QhnxE2Ump0fbv8e0Jxu5aTL8FFr+P2eTeTUt92gTwCx3no+GTmFeruNcWsXndEx+XXVgFOm/6G+g9lxyZWYbDZG//oTJWYTqyZfRqS3nj76EMD5hVprPXU/FEHX8rcdi7hn41etXl8da7lkd0/wXbzgsYeSsiT00T9wTeFY7t78If/YvZQDFfkgqRsVWeXGTBGZtx3/5Bf7fKheSv3+QWDr+ct0Q7maWkrJYKv7jJDVoArEy3LQfTYIWiCcETdRbjYh0zOS0bzUGpZPmI1NUZi4drGQiz8FN8f25daYPhwyVnLf7vZ7lpxAaZa0KEkSyYYANk+7glCdJ7/t1Y9e3k7FQlWLxEURGelOPD5kFi+OvtL1+kPyNACGB8W0GhujjeQ1r5UU7buXgJBU6of8lXLvA/z30Eby66og+LcgqZCAz+0PMKHPbSQN+oQ1qrvRmo/g2BcNpuyuvcAO5kQi648dlMh6pug1upaJqJ5JeNqL0KnUaFVqfDQeyEjUnJSsarSYMGi6/0NjT0c4I26iympB04MqIyYEh/NQQhI59bX8bs/pb7IXM5+MnEK8t573Mg6zKP/USrZhnk3yyHsbSxODdZ7kzLmJN4aOB6DGYiK92lnR5K3W4qPpXkJ5Fzu+Wh0Grafrtb8in2CdD30NIW2OX5OfxnT19cwwfoHVpqWh75PkB//ImvzDoAlCiX6F7xz3Eh79O4YERhHl7c+4wW/ztu0xHDYjHOgL1eu69iI7EANhhDOA42zuUkXWeP1JHc0NM9BIFoZ6VQGgllXE+AZwuKrYNcShKBypKiJeH9Rldl6s9Jy74QWG0WrBowc5IwBvDJ1AHx89H2am8UvR6Wv6L1ac+SOX4yGruG7bagrq69odm+wfgb7xqSulPI8dJVmuc4CzfPGLYztcqqxjQ+ORpZ71ubmYsDnsbC/JYlxob6R2ynAzapyJlDcGXs273qmUFA0nPPE7FurvYUfNHsoMd7LaOrFFIqWnWovNZwq/+P4PUCBtGhR3fSfcjmI2T6LgYCnPnvM5THYrubWVri7HZeY6cmsrqWgsDliYmcLHaVtc4yeH96HMVMsPmXspqq9mk30SANM99rjGTI/sx6aiY2wtzqCwvpqvju3E4rAxLjT+nO0UnBniW81N1NqteJ2mY293ZMPUy9FIMldu+QWjxeJuc7otwTovfho3E4vDwdi1P7W7tKWSZWZFD3C9/zBtCy/uW8mynFS+z9jDEzsXk1KeB4CHrGZqhFBf7c6klOfRYLMwLrRXu2OMFpPLAQ1SB7AoYjvmow9i8M/gLfU0/lP8MkBTsmUjeq2OfCkBklNB5QvZ90LWg513MZ3IKG5Eizeb+eCcz5FdU8Fze5fz3N7lAHyXsYfn9i5ncbazPUO1pYGKZqXwQTofHkiawuHKIv65ZznLi6uox5coW1NH7ZHBsVwTP5TF2ft5bs9ycusqeShpKvpGBV1B53FOd8N33nmHl156iaKiIgYPHsxbb73FqFGj2h1fVVXFE088wY8//khFRQWxsbG8/vrrzJkz55wN7+k02O2E6XreBzxM58XHIydzy461TNuwhF3Tr3a3Sd2WS8Nj+EOfgbx+9AA3bF/DgrEz2hx3SUQihfXVbCpyahkcN5Zx/KRSQo2s4p4BE1qoeAq6H5uLjpMUEI7fWSor3+79AJ+nJFLb9wVqYp+l0HIF9Y5ZGGjjO8KzLwzOhYNDoeRtaDgIiauhh0Vah3EN2/iUo2yiDxPO+vhEv1Den9h+5+o7Ese2ecyTw2Y3bdgXCqaWKqxTIxKZGpF41vYIzo+z/vR+++23PPLIIzzzzDPs2bOHwYMHM2vWLEpK2lbptFgszJgxg6ysLL7//nvS0tL43//+R2Rk5Hkb35OxOOzo1d2nY+/ZcHNsX+ZHxLK7sox/Hd7tbnO6Na8NGccQv0C+y8vg48wjbY6RJIlbEkZxW5/RRHgZWuyTkRgaGM1fB88kyT+iK0wWnCPlpjoOVxUzISzhlOP0Wh3Gk0pFjVYTcZpefOR7iJK8iUT0+YkH6kaxuropP8toMWE4ES1R62HgUacYWs1a2J8ANmOHX1NnciX/AWARj7vPCJ/RoDSARahMu5uzjoy8+uqr3H333dx5550AvPfeeyxdupSPPvqIxx57rNX4jz76iIqKCrZs2YJG4xTtiYuLOz+rLwCsDgf+2p6biPjD2JmEL/mcp1J3cXlEHMmGQHeb1G3ZOHU+4Ys/5+7dGxgdEEJRbSm7y7KptVrQqlTE+gQwMawP48N6My40npzaSsrNdaglmRgf/7N+yha4hy3Fx/HVeDAw4NROY7yvM5FyemQ/17bDlUXE+wahV/uwMGodN+x7DJ9+/+VzLmNZ/n38K/RfZNaUMTm8maMjy9BvNWQ/DMVvQko0JO0Az57xVO9MZE3iOFuw0IC2rShQZ+N/JZR/CRVfQ9jDXT+/wMVZRUYsFgu7d+9m+vTpTSeQZaZPn87WrW3XjC9evJixY8dy//33ExoaSnJyMv/+97+x29tQGmzEbDZjNBpbvC4kHA4HChDYg50RtSyzdspcJGDquiXYRLlvu/iotayePBeHojBi9fd8fWwnx4xlFDUYyamtZGPRcf6dsoIljWvdsb4BDAuKZlBgpHBEeggORWFLcQZjQ+NRnZRg/HHaFhZmprjeXxKZyMHKQlblHaaovpol2fvJrq1gSmM+kCRJ3Bl4O5qUF6mpDaMu4mWuz70Mb62KIW1Jn8e+AbHvg6MGDiRD5bLOvNQOZS5Pn3ci63nhN8/5b9Vy98wvcHFWzkhZWRl2u53Q0NAW20NDQykqKmrzmIyMDL7//nvsdjvLli3jqaee4pVXXuG5555rd57nn38eg8HgekVHn1nvgZ5CSWMde4hHz8sZaU6yIZBnk0dSZjFz9daV7janWxOolhnp40GDQ2FZVdvljD/npPJT1r4utkzQERypKqLCXM/4NqouKsz1VFsaXO9764P5beJ4NhYd4597lrOnLJf7Bkwk0tvPNWZWVH/mh40j7ui/KUy/irDYNWT2+RM/V7fTliH0d9BvHUgyHJ0Lha908BV2DsO57rwTWc8LWQsqf6gXf3fuRlKUM9eWLigoIDIyki1btjB2bFNy0KOPPsr69evZvr11+/O+fftiMpnIzMxEpXI2gXr11Vd56aWXKCwsbHMes9mM2dykMmk0GomOjqa6uhq9Xt/mMT2JbeXFjP31J55LGskTA4a525zzZsTqH9hdWcYXo6Zyc6yo9jgZRVH4++6lFDUYWVxeR5HVwV/7JPH84PFUmuv5tSCd1fmHXVJmTw2bTZS3v1ttFnQv/l74L44ZXkajNuNRcjvvRf237YHmbEgd5pSQD7oD4j/uUjvPhU+5k618wp/YeE6JrOfNoQlQuwVG2HpcEnBPwGg0YjAYTnv/PqvffFBQECqViuLi4hbbi4uLCQsLa/OY8PBw+vbt63JEAPr3709RURGWdkpDPTw80Ov1LV4XEjn1tQBEeF4YIfh1U+bhpVJx5871FJl6vlx1R/Nx2laKGpxLjXMDvIjXqVlRcJQCUz0BOm+uiR/KvNhBrvHrC46yuzSHp3f9zP2bvmmSC2+GoigsztrPX7b9yAObv+W1A2sobriwljMFTfw9/An+4FhLZXU0RL3H5YUjKbG00bzNI9ZZaaPrD2WfwMEx0A07bleY6siprSCntoKRtY+BAj/ROuewS9BPBxSo3eie+QXAWTojWq2W4cOHs2bNGtc2h8PBmjVrWkRKmjN+/HiOHTvWQmchPT2d8PBwtNqeWU1yrpz4A0ytcmZue0iKS6CnJ+Oj1rJw3CysioOJZ9iT5WKipKGpn8/NCSNZNeUqqhUNczYuo7jReZsWkYhGdjrse8ty+eDIZsaHxfPksNkMCYxqkgtv5Je8w/xakMbNfUbx2JCZeMhq3kxdi9XRfi6WoGczwmcI3wcepDJvLiEhKTzQMIjPyr5tPVDt5dQi8ZsPddthXxxYu0/X2QpTHU/tWsK/9q7gX3tX8Mbe3VAfRYayFQtueJgJvLHRsAVdP7fAxVnHpB555BH+97//8emnn3L48GHuu+8+6urqXNU1t912G48/3lSqdd9991FRUcHDDz9Meno6S5cu5d///jf3339/x11FD6D5H+CinMMALMrczVO7llwQDsnMsGh+0yuRY7VGHtq76fQHXERYlSYHoa8hhHhffz4aOZX91RU8dsC5tOmp1hDk4Q1Anc1CUkA4s6IGEO5l4PK4wcT4+LOuIB1wRkXW5B9hTkyySy78zsSxVJkbSCkTyrgXMmpZzbdRS+hX9ioatYV1htu5I/e21gNlGfougvDHwZrvdEjqukdeRK3N7FIUPoGScyWK5OBn/tH1BnkmgqSBGvG95U7O2hm5/vrrefnll3n66acZMmQIKSkprFixwpXUmpOT0yIXJDo6ml9++YWdO3cyaNAgHnroIR5++OE2y4AvZJr/ATY4nNkBPjLYFAe1tgujC+v/DZtEjJcPbx07yIbSAneb0204EfEAePXAGj48spmwxqjgFRFOpc4Gm4Uys9MpVYB+fi2XPQf4h5NR43y6LTPVYbSaWsmF9/INco0RXNj8KfRBnpK2UV6RgC76c+YXDeZ4Ww30ov8N8V+AowEODoeKH7re2DOhbAwaxZvNfOie+bXRYD7mnrkFwDnKwT/wwANkZ2djNpvZvn07o0ePdu1bt24dn3zySYvxY8eOZdu2bZhMJo4fP87f/va3FjkkFxumxpxh9QWWLCXLMhunzkctSVy2cTn1Nqu7TeoWDAmMcv2sU2koNdXy4ZGNaCQI9HCWd6/JT2u2xKK45MJPoNfoqG6swjJanZUZbcmFV1u6rvGYwL3080rgh+AUanOvIzjoCE9aR/JOSRtVKUE3w4BtIGnh2DWQ76YyWgBbNZK9ps1d/W2XU0c56bihEaf3KHDUg62i6+cWAKI3jVswOxTabqHV84nx8uW/wyZSa7cxc8NSd5vTLTix3AJQanImL9fbLMTrNCgOG98e382SnAOu8e01WBMITkYtq/ki+ltGV76PgsTewN9zY+412E5OWvUZCYMzQB0K+c/Aseu63lhFQTk8maBjk/Boo1vvNPPfAfjJHYqsflc4/y3/puvnFgDCGekyCuuqXT9bHC1/8bYLLOnwt/H9mRESyebyYl5L7x7r1O5EkiRu6zPatVyTWVPOwToTxxqsvHlgLb8WpLnGzo5OwqD1bFMu/IQUuF7j1KcxnhQFaSEXLrio+F3wHbzksZfS0iQM0T9wddkgDtQfbjlIGwZDcsBrKFR8BweGgKPrml3WlHyD1LAPD1suN6k/arV/S14poY4BZCrbOFab56q2OVVOXfOqnDMZ3y4Blzv/rRIPUO5COCNdwMq8w3yU3qRQa1UU1M0efr84uoOaCyy8/vPES/HTaPnzvu0cralytzluJ14fxB+Sp+Kn9cShKOyqtWAHsi1OR1QlyVweO4jLYwe55MKbc0IuHCBI541eo2sxpsFmJbOmzDVGcPERrY1gUdhebHl3EuifyX+UCfyn6NWWg2QtJO+BgBugYZ9TQt7S+fldlaZa6rMfxaFIyJLCGNVmxsgtl2O2l2ZRfHgmiuTgpcp7XdU27SX5n1yVc7rxp0TWgcoP6lPO/SIF54VwRjqZrcUZ/JC51/Vep1LjQELbLF8kv76atw+tx34BSaprZTWrJs1FQWHSusUtSrsvNr7P2EN6VTF+Hl78JnEchXY19Y1JzBlmB5FeBiaFJTAnJhlJks5ILvySyH4sy01lX3ke+XVVfJy+FT8Pz7blwgUXFR9EfcRM45dYbTqOhzzKtXlzWi/bJHwNkc+BrQT29Yaa1oKVHcmu9NcIJQ9Zcn7uFeB27Sc83DuMsSG9XMvWSsVIFJsOwta7jm0vyb+tqpxTjT8tun5gLYKL+LvKnQhnpBOxOxwsbCbvPTs6iZdGX4VWpSbB15+/DJqOn9YZcs+qKWdP+YVVljkiIJjH+g2lyNTATdt/dbc5bqPSXM8HaVt4ZtfPvH1oE79WNImTlVtt5FvsmOxNyb5nKhc+NTyRL47u4N97V2C2W3koaWqLyh3BxcsNgVfxrvcBSopGEBi1nGsr+rO9Zk/LQZFPQMKPoFjh8Dgo/axTbKky1TCo/l0cSlM4WAJkxcaAsvu5o88Qruo1pOmA0tFImlowHHJtMnVFMrx+GuCAum2dP5egFcIZ6UT2VeS5elIMDIjgirjBaFVq/DVaZoRGkWAI4fa+Y1zjNxQedZepnca/B44iWe/Pt3nH+TEvw93muIW7+0/gxdFX8s6EG3DoQrE068CgliQK7VruSGwpGjg8OIZnR8zjnQk38MzwyxgYENlivyRJzI8bxEtjruKdCTfwx4GXEOp1YSkVC86PIHUAiyK2oc5/EINvAW+rp/FkwUk6HgFXQnIKyJ6QeTvk/LXD7SjK/5BQucgVFWnCDqZ06o7dxy+5TY4HWTegKEBck6DbF0d3UmvtZAmEwJuc/1Y0zqs4oOEQWNpuWyLoWIQz0olk1pS7fp4Y5mz9bbYp5NTVszarhpVH62io88dX5QtAhrFtjYgGu40jxkpqe2ip7Pqp8/GQVdy0fQ0VF1huzNlwoLqcd48fxN7MGbEpCj8XZpNV13a5o0Bwvrwd+SbX1C+kwWSgJPwfXJk3jXpHM6VTr2RnYqs2CopehLTLOm6pQrETXfVai6hISxx4V33KEEezrrk2PT6WBCTf48gqZ4JtscnIJ+ltd4bvMLQRgAzl32I9NBXHLj0cSKLh6K0XhDBld0ftbgMuZJpXyXirnXoSxfUNOFDYac5g1uZSSBsNJIKHCbVnPQsObMLT24za04RNU4dRqae6cf3z5pgEvhh9iTsu5bwI0Or4dswlXLFlJZPWLiZ1lhvKCjuZ9OoSVuYdIqe2kmpLA/f1n9gif0NRFB7YswlZklo4Iye4adMiXh4yjnEndX1dW5DOqrzDVFsaiPLx54bew+klklQFZ8lc/5lMsh3ktoI5hEau49bKJO6RP2Gm32TnAHUADMqEI5OhehmkDoABe5zS8ueBbdPbKG/mYBkGqtEyKh8J2ZUh4kDBgQTcqvmI+Y7vOaIMoEIJZlh+PFnKMSIC/o692gMPpRbP2nocu2zIQbdD3NvnZZeL2u1Q8h7UbATzcQAUWzGqmmJkCRyKxMZqHYt2LeGfI+YRoPPumHkFrRDOSCfi79H0wT1UWUiCIZgYvRffJN7IDYuPcsnIarbJKdR5lIOsYAPKFECRQFHgpEDIjzs0JG7KJcZPRd9ALYPCtYyO9mBgqAaVqnsHuS6P7MWN0Ql8nXuMx/dv5/lBo09/UA/CYrcR5e3P+NDevHe4dcOtH/Iz2VBW1MaRzmS+/XUmPk7bhkGrI8k/AoCdpdl8n7GHmxJG0ss3iDUFR3gzdS3/GD6vleCZQHA69GofforcwKMFf6Mh4G2+ZC7L83/Ha5GvOAfIahiwGTJ+C2Ufwr4oSNoDurhzntO2pxrz92D+HhSVQsNgAwGX9kE3LRpVLz2HKgtQWXLopzqMQTYymm3O7tVlMsGATLYzwaTJfwGVcznSceYN59un7EtnQ8FmSMAJqR9ZUkhT+ruSYgMQzkhn0b3vYD2ckcGxrqeAXwvSKKp3Ji5eN8iHyaFh5B3szQvDQunj1Szp0JnZRStVNAUMDWHkVdtYc8zEu9uN3PtTGUPfykf9ZBYeT2YQ/M8skl7LZc7Hhfzx5zI+3WUkrdTSbSpZvhg1lXCdFy+kpbCzvMTd5nQIJ3QO9Fodw4KiCWznyenx/c5qhfaC1XV2Oza1L6vzmzRHVucfYUJYb8aH9SbC28DNCaPQymq2FB/v6MsQXES8GPFvfmP5hZq6EBoiX+Xy/PFU2Zp0kIj/AGJeB3sVHEiE6nXnPJdq2FTXz5JdQbe3iobnd1I1/QcqL1lL3staFm+9nMeOv8zP2+c4GwwrIOFo8+bkQILQ35NpLOP9Npz+E6RXFbe7rwXRz4FHAtB24rdDkTjmSDyzcwnOCxEZ6UT8PbwYERzDjtJsGuxW/p2ygglhvUk0hHLb2AZ+85XMM4v1XDHeiyidlbVVDe2ea2JwGBuu6+t6n19tY1uOiT0FZg6XWsmssFFUayejwsahEivL01uey0MNfjoVYT4q4vzV9A/RMCRCy9gYT2L8uuZjcEIuPnHFt8zYuJSS+beilXvuR/CEzkFb5YU1JyXb/bHvIPZWlVFpMVNmMbGhtBC1JOGhUlNns6IA9YrKlTdkc9jJqalgdtQA1zlkSaKfX1i7uUUCwQkqTHWtylt91B6uZYbJ+rGMdhzm5rzLCI34lbuNydzo+C9XBcx1Dg572FnqenQepE2D2Hcg9L6ztkOVnNzivdwsmuHIymJ4VhYjvlni2lY5UUfAi6Y2vXaHIpGpmQwmD147sOaUHaq/y9yLv4c3w4NjTmOgHvoudfbtcdThjFM2kafEYOL8lqoEZ0bPvRP0EG5MGElBfTV5dVWY7TbW5KexpvHpVyWPpLzGhwXrB/POVd5cG1/L7/e03TlyY1kREUs+58aYBJ7oP5RIg46rB/pw9UCfVmMdDgeZlTa25ZhJKTRzuMRKdpWN4lo7h0st7CuysKiZOKME6DQS/jqZcL2KXv5qkkK1DIvwYEyMByE+Hfcx6e1j4JXBY/hDylbmbFzB6slzO+zcXU17OgdAi1JdgN8nJAFNN4neK75jrJ+BhRPm4ufhRbXVQk5NKe8e2oDFbqPeZsGBgm8b/WeKGowIBO3RnpOsluQWeQ86WcsPUav4Z+F/qDe8wBL1dazMu533ov7rPMBvFiQfhEMjIfv30JAKce+ckQ0OiwXbmjVYV60CjQas7Sff29Uqtlw5g9w7b+J3M25AqvgUsu7GXgCqiKZxsqQQY9vOliP3YHdcAaiJ9DIwOqQXYV56yk11bC/JIqvWWTjw6dFt9PMLw1ujPbWxnn0h4TtIn9PSLkXFYUdyOwcJOhrhjHQyXmotfx40ne8y9rK9JLPFF0Sofw0F5QZqGnTc/qWdRyaG8Z/kMTyW2rLOXSPJzAiNZF1pIa+m7+fV9P309tbzm16J/LHPIHTqlv+NsizTO1BL70AtNw/1bWWTw+HgULGV7Xlm9hVaSCuzkFNlp6TWzv5CC7vzLXyf2pRtL0ngpZEI8JSJ1KuJD1CTHKpleKQHY2J06HVnt9r3cJ9BfJ+byZqSfP7v+CF+13vA6Q+6ADhxkzDZbdgUqLE435+4QeSJnjSC88Rst7Ey/3C7YmA1VlOrJMynwh9jT+1lPFt9DWFR7zG/cCfvBS4lQhsKnn1gcA4cHAYl7zpLXRPXQDPRRtuhQ1iXLsW6eTP2gwdxFBRAff3J07dCAXKHJ/PFk/dRG+iHXqOjsMFIXMhvsR/8lqorV+PzHHjMcKaK1Cm+eEp2JrOQCdpFZMojiB3wNRrPpqTvKRF9+eDIZnaX5WC229haksH0yH5tTK44Bc40ISCpwO9SiP4P5DaVNqskO2nKxfHd1B0QzkgX4KnWclvf0VzVazB7y/KosjSgVakoy/VlYbkzRK8Ar22qJibVn7vHD+V/BU7VVpUkcUVkHAvGzgBgZVEuzx9JYXNZEX9L3ckTqTsZaAjgwYRk7opLRD6DTsCyLJMc7kFyuEeb+602BymFFrbnmjlQbOFomZXcahtldQ525pnZlmsGmkrdZAl8tBKBXiqiDCoSAjUkh2oZFe3BiAgPdNrWNq2adBkhSz7j93s3MSssmljv1k7ThcaJSEpt433CS5ZaJMYZLSZ0Kg1alRpZclYdnNwmwGgxYdCI5FVBa4yWBt5IXUteXVW7Y1bkHebufuOQpZZ/k8N8BvK910FuzruK0PDl/LF2KHOML3N70E2g1sPAdBx7p+LYtQ7r+wbMm3rjyMxFqapqWQbs5YUcGYkqKQnNhAlo5szB/NlnmF55pSk6IsugKHg9+yyDHnuM8IPrOGoswWg18XzKLyTogwmL+Afzh6+m4XPQTnd+xxzyeYRD6pkoZZ8zV/UjvZUdSAcSIfg3EHAdGKYhSxLzYweyuywHgD1lOU5nRLFD/QGo3QQ1m8C4DmzFEP0ihP/FaVfYX6BuD0rFAiQUHIrEcUdfBF2DcEa6EB+NjonhCa73K/RlqGUr1sa/ZYcCOVU2/vdzEMlDE0iVjmFXFOaHN5WIzgyLZmZYNA6Hg69yj/H60QPsrSzn7t0buG/PRkYHhPBovyHMj4g7Zzs1apmR0TpGRrd906u3ONiVZ2ZnvpnUIgvHyq3kGe2U1dvJrrKxMavlWrVaBh+tTLC3TLRBTZ8gDYPCtLzSdzq/O7SciWsXkzXnxjNypC4Eau3O/3DfkyqgDlcVEa93lu2qZRUxvgEcrip2lQg7FIUjVUVMjRBfkIKW2BUH7xxc38IRifHxx1/rRd7/s3eW4VGdWxu+Z49PJhN3d0gCCe5OhQJtqSvVc+re01Ondr66+6m3p17aUqO0QHHXEOLuLpNx2fP9mBASkmAFEtq5e3EVtr5je6+93rWex9hGs9X98LCjqYIfyr05Ozaj1zFkgowvI3/ghbpXKWl5mMb8K1j87YPMXO1ArK8H2z5TPQOSoN2gDkSWNgnZmDHITz0V2YwZCIreUyLO4cP3ByJSKZKAALy/+gr5NHdb8fWpU3gl+w/KDS0AFOkbKdI3kj5tKNEv5OLYAbax4J0yBn2elRxxCpvFKbyQkY5X+1fQ+A40vg2yYPA5jVDvKSRIm5GKejJt5ZD3LBg2gGiis0MA6Kw3UcZ2jVNvt/K55SrOFlcRItRjwLtHvcjOpiqitf5H8/F4OAw8wcgA4qeWcmBzWqdlCdk7Y5BGWlGHVLOucidnhEb1SK8KgsBlMclcFpOMTXTwWuFe/luSy4bmes5avwyVIGVGcDgPpY5kQkDoMR23RiEwNV7N1Hh1n+vbTA42V1nZVm0jp95GcYuDGr2DGr2TomYHK0u6Pe37pVMZl436tTUkOBKI9pWREuQOVsZHqxgaJDspg5Q2m5lKQyteMgX+Ki8+KdxMdovbkMzY+SSpEdzTMjsaKynRN7G9sYKb06d1HWN2xBA+zN9IrLc/sd4BrKjOxyY6emmRePCwp7mass6buZ9Cw01p04jS+gFujZvNjWV8lL8JERfLq/M4JWIIXnIlzqoqbD/+iGPNGhx79iBWVHBFx34BPrNvKQXxaiL949Glj0I2fTrKcS0I5nuBNki6F/zO6GNE+5EOH971d/nMmWg//RQhKKhrmVau5O7hs1lTV8TqmgIaLAYA3jrzXp765grM/4PlZ0GB7DH8hOe69muUROAV9QSE3gk1T7hl7Q0bcTV/yj0ysfO1Az1KrFx0BSIA2ikAdNgsPJv1Ow3mDkq5nycVt2Fx9cwc/1KZjVom59TIoQd9vR6ODk8wMoD4qYWu4ONAJEiQ1ScwJ86MCyvtNnO/gjsKQcadKRncmZKB3mbjqfxd/K+8gKV1lSytq0QnkzM3LIZFqSNJ0fkdx1fkxlcj47RkGacl9z3e+g4HGyus7k6gBg0/GuuwhhRSVOhHXqM3ywoP6ASSgo9KIEQrJcZPxtAgRWcnkJI4/0MUpx0nLE47a2uL+l2/vDqP5dV5TAiOY1xwHBvqShA7Q0+T0/3/fcntpVV70cgUXJ48rktjBNyt4Qa7hR/Ks9DbLERq/bg1bQY6Rd9BoIe/L2vr9n8XL00a0xWIgNs6YKxvBB25dZh+X0ZkXikddTdhaW0DZ7cbs1KJEBqKdOJEZBMmIDv9NG4PexFF+PeYzM1MMk/l5uBr3dvqx0P+qVA4D6Ke5f7KxK7sS3emhSVxcXImsmnTUMyZg+pf/0LS+XCxvbGCJeVZNFsMBKu9OScuk0dHz6fFasTitOMlVVB/7isEvbidypxMyoKzSfFSQKew9YrqPK4ZMgnk/hCz3514ackGNHWLmCpdgaSXBH03FFGgcD+ofVG8jQazOwhzyCOpVszAhzYujBrFzuZKCtrdUgSLS3cy1De0x/vr4dggcbmOhXLM8UWv1+Pj40N7ezs63eDy32i1mvi2dBd7W2uwiU6CVFquSB5PrHdAv/vkt9XzdckOVhXIWLE74YC1LiQSGBZby8jEahRy98UiysuXezJORSE9/PixxmTksdztLK4qpamz9iBYqeL8yAQeSh1JiGpwtKw1WExE/fwpUomEunkLaTVK2FhhYWeNjbxGO2WtDuo6HLRbRayO3vurZBL81AJh3u625dRgBSPClUyMVhKqO/bxdofNwkvZK6kytlFnc1BgtpOklhMqlyLpLEJN0AVye/pM2m0WHt/5C1ane+AqqYwsE6xqbeWGcH+c4v4ug2tTJjImOPaYj9fDX59/bfoWvd2Cl0zJc+PPQZBIsC5Zgumee5DI5Tjz8roCD1GQYNfp0CQlIxs1CvmMGchPPx2hn2vru40fsVz1b7SaFow18/gk4itkggysFZA9ApwtmP2uxBbzRtc+NcZ2XspeyZ3DZpHiG9LrmMX6Rp7bvZyz4zIY7h/BloYyllXl8sCI07sMIX+tzGFFyTbuO/cKnCOUPPS7FWXRLbjqJ2HtbOudHpbEGdHp+CjUGO02VtXm82N5Ni5cREnKuE/zKlJHIz2yId0RvHEoh/BrRxTrnVOxyiJ4YMQcAtredRezjtKDoOD7st0srdwLwKSQBBYm/7VEG48nh3v/9gQjfwKj3cZ/di4l2TeEaWGJeMtVNJg7CFJpCVL3XZDZZDHw6PafmRqWhKUjioVf7EuJunDPZ7o4e3Q1IcFV+Cu9ejxtjAmK4dohk45qrHvbW3g0Zzu/1lXS0elxE6PRckVsMvekZOAlG5gMwz4+Ly/iki0rGOkbyPZTzu1abhOd7GprZqx/MODuBMpvdLC50sLuOnewUtHZtqy3itgPuOZIALVcgr9GINxbSnyAnLQgBaMiFUyIUuKrObJgxeVy8VzWcor0jQBsN1jZbnDPpfvLZCSrpSSrZagEgbFBsXjJFfxRUwC4zRKvHTKJRdnbeaZgN9ZzrmV5dR5Lyt3OzmEaHxaNPKMroPHg4XC5e9NiOuxWfBVqnh63AADT009jfvBBEEWk48ZhmTmdV4YG0BwdxrjgWK5OmXjYx6+01XBz8zzCwnZS2zCUJ7SLGaYZCg4T5IwGSy54jYOh60CQ8WXxdva0VPP46Pl9fp//m7sOm+jg5rTpXcue2rWMKC8/Lk0ai8vl4p7N33FK5FAm3j4F6w/NvJejpiQwjkmNH7CuWyZIggQ/pZp2mwVnty6i06NSWRAeCgVzwbSL/bnITjSjwVGHy1aDBBGXC0SJEqluGnhPg+oHEIduRPAej8Vp59+bv8PidKCUynh5wvme3+lhcrj3b880zZ9gWVUOfkoNV3Zz3g1U9db96M7q2kICVVrOjx/JhnIL4A5GtGorp6Q38MO2aPLr1JyfkcQliWMoaKvnlew/sLtEtjaWc05cJv7KI5ckTvPx7+rIWdNYw39yd7K6sYbHcnbweM4Ohnr7cX1CKjckpCIbgBqNi2MS+bKqiCU15TyRs50HU0dRZGjn/I2/s6utmT2nnk+6jz+CIDA0RMHQkL6DJ4dDJKvexpZKG1l1Vgqa7FS2O2k0OtlRY2NLlY0DO4G8FBL81e5OoAR/OemhCsZEKhkbqURzQCdQXlt9VyDiq1BzbkwyO/ZuxwW0OBxs7nCwpcNKrFJGtbWIWJV73lkuSLkqeQIqqRx/pQo/uRKFVMoZ0Wlkt1ZTrG+i1tROsb6JRJ8gPHg4EgJVWjrsVtpsZioMLURr/dH8+9+ob7wR86uvYnn2WYRt27hW50Vp5lBCIqIx+n4JUqn7j0yGpPPvEn9/VNdfj0S5v2YiShHOkrAdXFt5DQGhn/GUbTLpdfdzX+hdkJ4NRedA2xLYHYMjdSebG8qYHTGk3xt2SUdTr5bbVL8wdjdXAdBkMaK3WxjqG4rqiW+x/jyNSx9y8PjnORj0OVyUMJGvSrYjuly4cNFi7dlKfGrkUM6KyXDrEqSug5IroeWrnoNI/BxUiXxfsoPS6m8YJ93AaHUFUtMu0P8GwKa8eUwc04RKKida609BewNWpwOr6EAllf+5D81DDzzByJ8gq7mKVL8w3s5dS2F7A74KDdPCknp0zBxIib6JIb7uecrkQDmhPjaiQ+sYFlvLHRnTODPaixWt2zAYRrq38Q3h1KhUfq7IBmBDXQnzYob9qXFPDQpnapC7NmFxVQnP5e9ma2sjt+5azx27NzDKN5A7UzI4PyLuhBaPLp5wKmE/fsLDe7chSCQ8kbsDW2exZ1Z7M+k+h65kl8kERkaoGBnRdyeQxSayvWZfJ5CdwiabuxPI6KSq3cH6qg4o1oPJGxxKpBLQKiUEaqRE+chwyppxykMI8jGwcMxw6pyuHkXI+9q0S60OSqwOVBIzQXIpkwICebesgHqLiZ9rK7rqRwBGB8ZQ3KmqWmNq9wQjHo6YiSHxXS7hnxdt47b0GahkciTe3mjuv5/WKy6lesF8ErbuIWPFRpBswiKV7jdh2YfTCS4XygsvRBLau/D93aj3+LJlHoulN1MS/G/Oq1zOFxE/Ikv+HiofgNr/w7p7KHLH40wMmcPqmkJW1xbSbHUXpYZpfJgXPQy9zYLugBZ1nVxFu83C9sYKvi7ZAcA7ees4P34ksZNUSH62oGmTU+j1KREdI/GSKTA6bMgkAnJBipdcSapvGNPCkgj38tl/YEENCV+AKhVqHnEvkwWC0j1FrpQpyCedfGc6rrBxTA5N4MvKl6gvv4PfHc1cUPsJl4VeRmtnwCPB/XDh4djiCUb+BI0WA6trC5kdOYQ5UWmUdbTwZcl2ZILAhH46HvR2S5fJWaCXlCtm5nV9yRO8gwhPt7Fxq4MnVpg4LcZOjJ+c0YExXcFIram9z+MeLedGxnNuZDwOUeSdklzeKN7L1tZGLtq0nIWCwJTAMB4YMoIZIRHH9Lx9IRUEfpx8OuNXfs8D2Vu7lsskEnL0rcfkHCqFwKRYNZNi+y4CfThrO4/nuzVelC4FapsvLqOOar03JVXeuOxeQBwASzaKSHUt0EfsuS/UsLig0ubki9p6ljQ0E6JU48JFqHL/+aXdNB9cvfqrPHg4NGODY/mpIpt2m5mSjiYe2vYjE0PiCVRpKdI3sq2xHMfz93LJAy+StnYbEpcLHH0UYMlkKM47D6GPQGQfF/ovYJZjGtfUnUFY1K+c3zSUfyk/Y2LUf0Cdiqv4Bh5U3Ie3MRhf5XgWxGUQrPYGF2xsKOWNnDX9fs+dLpF389YzJSyR1bWFpPmF8WbOWh6860mU8+7gwue8+WDRRlYUZHNV8lQCVV78UJZFtamNh0ee0X+QIJFA5CJQD4WSy0E3uysQS/YJ7tpsdW0h44NiuLv8eYZp5xCqCOXa3GvBrqPR4s6oJuiCevxmPRwbPO/on8AFRGv9WRCbSbTWn6lhiUwOTWB1beGRHaQTt1uk+wciii4mvFnNjmorgqTPzY8pMkHghsQ09px2AYYFV/No6mgiVF6saKhm5pqf8P72Pc7b8BvZ7c3HaQSwpaWBCzYt72VL4XS52Nt+bIKRQzExeH9Wwiqx0a5swBBQjCV2J65ha1CPWoF6xEpUaRtQx5Tg1B7k/XABooC0PgafwvFMa5/DOZzK42Fn8uPoc7oMDHc0V3TtEqoePDVRHk4eVFI5N6VOQ9NZ+6W3W/i1Kof/FW1hUzfl581P3o8QH++emukLUUTz6KOHPF+gzJ8l4ZuQV9+Kj3cNb8pm80DtIpq1Z/OE7f/cN+ui88kwv8cw/whC1DpCNDrOjs1AKZWhksrR2w8Q9LNbcLlcpPmHcUqEu312YkgC0Vo//kiciGyUlMQPWxEkRiKTN5EZEEmklx9XpUygzWpmV1Plod+ogAtgeAHEvNa1KEEXRLjGnUmpMLSwYNs/qbJWcWHwhbyR8gZDVcNZWHgOWxxf43Q5mBaWdOjzeDhiPMHIn8BHoSJM49NjWZjapyvT0Rc6uQp9N1XNUM3+m09JRzNauRIBCR9d6Eukj5zJb9fw4sbq/cfXHP+blUYm5+G0UZTMvYSG+Zdza2I6WrmcxdWlDPvtGwKXfMg/tq2mymQ4Zud8tTCbiSu/p9ps7BVwuXBP05wIpgaGIeuWunbhDob2YXaJmCVOrEojCzJEvji794Vp395eZj+CKsagaIzFYNTwa4GZF9bpWfh1I8kvVCF9oAzlg8U88E0Ei9cOY9XOoXy4ScY3ewxUtffx1OrBw0GI8fbn3oxTGREQ1eUWvg+1VM4pEUO4dfw8dIsX956e6UQSHd3n9Ex/vBrxMheYlmC2+NIY+jhX1Z6HTRaMMmMvyELd0yKF5wMgukS2NpRhczqI0waQ11bX41i5rXU4XS6G+IYSqPJCJ1eR11ZHql8YJR1NCNdcCdUu5nzgR5XPF/tfm0xBnHcgJR2HaSCpjAH5/m5HiUTChQmjut6z3wxfIkNJcZUfD279hSG2SwCRXeL3fOa4mV8MH1FvPUxXYA+Hjaeb5k/wbt56Wq0m/pVxSteyr4q3U9rRzL8zT+1zn8WlO8luqWHRqLkAbGss55289QCEqHXcMWwmb+WuJVYbwNkxI7noyyp+2GtHpbCTGNbM7WOGcFqiD5E+J36GrdjQzqN7t/NDbTntdncHSYTai0ujE7lvSCa+iqOXKR+9fDHbW/u/mAhIqDrjIuyunjfp7k6kxwJRFBn++zfsPci0kL9Mwnx/L6I03twxbBbBP33aFbBIAJ1UYLJOSYRSxg2pU3gndz0Ol4goguDwReGIpqpFRm6jjYYOCWabAptdiuiS0N2udF8n0L625Th/OWnBCkZFKBgfpSTwGBoYevhr0Wo1UdhZbOmtUJHqG9pDFsD8yiuYbrut752lUhSXXorXm28iaA6v/d8oGrm05gxCItbS1JzAdbJ3OVU3AXImgmk7fzhO4UvnQlRSJdcMmYhGpuC5rOWcE5vJMP9wtjaWs7QyB5fLxaVJY6k2trGxvgSz0463TIlddJLiF8q5l5wGLieLdtu5hV9J4zQAnt+9nEpjK3bRiZ9SwxnR6b3EAf+oKeD3qlzabWYitX5clDCKOO/ArvU7myr5194nWeF4k2HCHCbILuta95ntNgy4r08CAoJE4JKQS7gt6jZG6kYe1nv0d8XT2nsCKOto5undvzE/ejijg6Ip62jmk8LNXJY0lnHB7rqC70p30WYzcVVnG92+1t7p4clMCoknp7WWLzuLtcBdGBWj9adE30SYRkeVsZ0vVmfQYVKzv/0XQrVSpsapmBSjYmKMiowwBXLpiWs129Jcz+O5O1jRUI25U78gSevDP+KGcFtyOgrhyG6UFqeDt4pzeCxnB+1264FNeABcGKjFR9bzNR7oRHo07Glr5o3iHH6rr6LM2NGjuLQ7EuCs8FiGKR3Um921O3JBysf1HXQ4nUglEkZ6KRjuJUcqkTDMP5yb06azq6mSd/LW9+vwC3BKxBAWxGSwt8HB5korWbU2CppslLc7aTQ46bCKXbYB+xC6Gxj6yEj0l5MaImdMhJJxUSq0R2hg6OHvg8vlomP+fOy//uouWpVKUf7zn8jnzsV0ww2IlZUgk6G89lo0L7/cp8z7geS01vJQySt4pb2BROLEv+k6Xox4HmfRJUiav6SCZPYEvMGqxhbuGj6bWlM7S8p302wxdomevZmzlmitHxang4sTRrOjqYJ1dcU4XCKJuiDO/e5JfB79g5+XQvXpo7mPrTRZDDy09UcCVVpuTJtKXlsdXxXv4Ob0aV0iglsby/kwfyOXJI4hzjuQFTV57Giq4NFR87tq+AAi10ZRZ6vjX9rP6XA4kQsC8d5BbHJ+whdNHyJ2uzLJJDIcLgcTdBO4I/oOFgQtcOuveOiBJxg5QWQ1V/Nd2S4azB0EqrTMjhjSo5vmw/yNNFuN3DV8dteyfaJntaZ2fJUapoYmdlac91YwBKht8ebHTWm9lkslnWUJLlDKJCy+NIS5Q068kNnPNeU8nb+Ljc31OFwuBCDDN4DbkoZxeXTSEXXkGBx2Xi7cw1N5OzE5nD0Cg1k+KhLUvdvp7hl+CglH0IHSYrPwdnEO31aXkt3eiqVTQEklSEn38WOcfwivF+/ttd9NCWm8PGIibVYzL+xZTlNnQduKNjM20cUknQqdzP1ao7V+3J4+q8u+vKyjmZ8rstnTUt0j1Iny8uPUyKGMCYo5pG6BzSGys8bGliore+q6GRianBisLpwH/JKlnW3LgZ0GhkmBCtJD5IyJVDImUolC5glW/s6Izc20paXhqq8HhQK/0lKEcPfN2/r11xhvvRVXXR0oFKhuugn1M88gyA59s12t38jL9ssIDiihtnoiH4X8gm/DG1B1P0hUvCN/E7VXKpclje217783f0e7zcxNadMY5u8umv+hPIvfqnKZHTGEif4RCMNCsceJPLoKXqCNpaXFrKopYHJoAhcmjAbgndx1mJx2bkufAcCTu5YRq/Xn4sQx7tfucnHflu+ZEZ7M6VHua+uq1lXM2DGDC4Mv5IthX/QY1+KGxZy357w+X6+AgIjIwtCFfJT20WG8838vPMHISYbeZmFp5d6u1OQ+ApReTA1N4t/febOnzt5vAatSCltuimB4P068JwJRFPm4vICXi7LJamtGBOQSgQkBwdw7ZARzwqIP+1itNivP5u/ihYIsrJ2FnkkqGTN8e3fBRHn5cufw2V3FewfiEEW+qSrh4/ICNjc30GJ3G/kJQJyXjlNCIrkxIZVhvu55ZNHlImDJh7TZbV3HeHrYOP6VktEVMHTYLPxUsYdNDaVYnPunjrQyJVPCEjk9KrVPHYJWq4lKQyuiSyRQrSVC43vMxJNMNpEtVVa2VVnJrncbGFa3O2k2OzHaXL2sB2QCeCsFgrykRPlISQ6UMyxUwbgoJcNDFMgGYbDSYjFicPQ0YjzWU3V/J+yrV6OfORPVbbfh9cILvdZbPvoI091342pqApUK9d13o3r00UM+YFhEG5fWzCcgfDmt+nAuFN/gPEQoOheDS80f6seYP/yOXvu9uXcNu1qquD19JkP93LUrT+/6jSaLgVCNjjuHzWLDvyYy5IVNfLAHItNupnzXfEo7mrimm4Lx+rpivirZwcsTz8chOrll/VdcN3Ryl+kkwAf5GzE7bNyY5vaDGr5pONnGbBqmNBCoCOwxrnprPaHr+q6lkSJFJVXxw/AfmOk/86Dvy98RTzBykmJ1OijvaMbidOAtVxLj7Y8gEfh8l4FLvmzod78vLg7mwuEHF1w7kdhEBy8VZPNuaS6FBrdTlVoqZVZwBA+njmKMf/AhjuDm6ayVvF9eSoHFgRRYlBBNmEZHo9lAmWF/UWu6Xxi3dD4FAWxraeStkr0sr6+mwmToCuICFSomBYZwZUwKZ4bH9HtRvXDj73xVVYJUIuHDMdO5LKZvp1yLw05JRxNmhx0vuYIEXdCg1SBoNTnYVGllR7WNvQ02ipvt1HQ4aTWJmOy9my3lUtAp3Z5A0b4yhgTJyQxVMDZKRcoAGBi2WIw8tO3HXtNdx2KqbrCztHIvO5sqqTPrUQhS4nVBnBOb2aMAvi/68n/Zl3EA93TN8pU/sFxpxShxkaAL5JLEMYQc0NVlfuMNTPffD+3t4OWF+sEHUd1zzyG/AzfmPY4++kXkMguS6oWc55jLkOY7iJWUIIT9iw/MZ+Gr0LAgLhNwy8Q/s/t3AlVarkgaR15bHb9U5gAugtXePDZ6Pr9nr2Dk1FNoO1XCK5/6I256HZkg4Zlx53T99va0VPPa3tW8OvECTA4b/97yPfdknEKCbn8GdXHpTgraG7gv8zQKTYUkb0xmmu80Vo1a1edrSdiQQIm5pMcyAYEIZQS/Zv5Kqjb1oO/F3xVPMPIXw+50EfN0BbUdvT0W7pqs47m5gX3sNThos1l4Mm8Xn1YUUW12T234yhXMD4thUdooErQ+fe5XaWjliZ1LAai2iixtNXLvkBH8Z5g7vVvW0cwr2aswOqyYHCL+PtGsaW4gV9/alU3RSGVk+PhzXmQ818YNRXcYc98A31WXcvXWVXw14RROCYn8s2/BSUGt3sGmLgNDG6WtDmo7nLSaRSyO3peJfQaGod4yYn2lDAlWMDLc7bYc43fs1SkrDC38Z+evfa57YMTpf2l795ez/2BMUAyxWn+cLhffl+2mxtTGI6PmoezHr+pw/V9+rdzLlSkTemh2PDJqXq+gWhRFrM8/j+mxx8BgAB8fNI8/jvqWW/od98cFm9jalkdV1KuEhO2gpmIq/5Y9xaSGC8FWyWrOp1R3O1cO2S9N/0d1PovLdmHvnD4NVnsTqw2gwtDCo6Pn4XK5KL80Bu9vK3mxDFprnmO6zwzOT9hfSNpXMDIqMJrSjiY67FaivPwIUmupN3dwX+ZpzNoxi5WtK8kZl8NQrbutuPt0up9SQ5bwKUvbv8XRrYhegsA1mpdQOIP6LIr14AlG/pI8t6aNe5a2dD3Bup1sQKuAjddHkD6AUzSHS4Wpg8dytvNddRktNne6PVSl5oLIBB4aOpJA1f5pmM+LtrKqU7PlooTRbGo38kD2FpZPm8e0oDDWNNZyz+4NZLW3YOt8U6QSCQleOuaERnFDQuqfcikWXS4Ej/9EF2WtdreBYbWNvEYbZW0O6juctFtErH14AqnkEnxVbk+gWH+3geGoCCUTopUEH0Un0N85GDmQDpuFuzd/y13DZ/cQ7erOkfi/nBrpvgGbHTbu3vQtVyaP79e0URRFLI89hvmZZ8BsRhIQgOaZZ1BdfXW/43WIDi6tPhfv8F/oMAZyhuUZrmj6LxjWgSoFUneArGe9m9XpwOK046NQ89/cdVidDm5Jd78Wx+5faB87l8qb4P17ZzOp4ykuTBjVte+B0zQ3rf8SP4WGq4dMxFehZnNDKb9U7iXFJ4SFKZkErg0k1SuV7PFuccnuHmKTQxPIa6vjiYKXWel8s+scE7TT2WHYhlbwZuOobWyqr+yzKPbvjseb5i/IP8bqWLS8FZPdhVSABH85N4/35vafW8h8tZqPLwjiksy+DfoGC9Eab94dPZ13R0NWWzOP5mxnWV0lrxRl80pRNnEab66MTeHulOFUG/erzY4NimVqmIwfasqYu3YpaqmU1s6aDrUgIU4hZVqAP+9NOOuYTR8cTiDyY3kWP3Wq4+4jRK3jsdHz+t3ncFLnP5bvYW1dEWanvd/U+Ykm1k9OrJ+cizN6rxNFkbxGB5sq3AaGBY12ytscNBidZNXZ2F5jYzH79XckdHYCaQTCdTIS/GWkhigYHaFgXOSRGxj+3dhXV3Ywg8sj8X/ZR3fNjv6CEUEQ0DzyCKoHH8R8//1YXnkF4zXXYLr/frxefhnlhRf22kcmyPgyagkvNrzOVs0jrPG/lpXW8/lINQSa3oXdkZC2HVRxXfsopTKUUhlGu42c1lrOiRux/3gZZyCfoCDqQxvCo6vJqSoH9gcjuW11xOvcGQqx83k7UuvbFbjNjR7G0sq9OF0itxTcggsXLye93LV/dw8xcMvYb2qewcoGdzDyVMJTOFszGOm/i9db7mNu9nRyxuWS3VLDhvrirqJYD4eP5xd/nDnWc73/HOvNS+v1eMkl3Dm7jSLzVi6bCT9tTuHSLxvYWmXlxXknR5pwuG8Aiye69VhW1lfxf3m7WNtUy6KcbTySs41ghZxEpYShajlSQYJUIvDmyClM/mMJF0YlcmlMIiN9A7lj49cAxHpp/nQgIrpEfizfw+aGMvR2Cz4KNRND4jgjKr3fQtNwjQ/zY4bxY/ke6s0dOEQnG+pL+tQ5+KUiG73d4jZYTJlAjbGNN3PW9kidL6vKZWVNfo/U+SvZf/SZOh8sCIJAaoiC1IMYGO6q298JVNDo7gRqNIpsr7ayudJKXwaGARopkTopiYFyQnRWakzeBPt0cBhNHX9ZRJeLr0q2k6AL6vrO9MXB/F8A9Haze9kBT/E6xf5tDoYgk+H1zDOon3gC0x13YH3nHQwXXYTp7rvRvPEGyvnze+1zR/BNFFrO4O7mMwmL+pSz6obxdtgjhNY+CnuGQPJS9opDcLncgpAN5g4Wl+4kVKNjUufvaZ9cwqV3PIx9wYOc9Z6dr+asYHFpHJNC4slrq2d7YwU3p0/rer8Aclrr2FhfQqx3ACuq83G5wOqw8XXb10QoIpgVMKtrnN09xPYxJXAEI5rnsSjtWuYGzOOWyq+4buil2FQlvFPzDmfvOYtzfR+gRH+Y4mseevA3/kmfGAraG5gentxjrvfl7JWHnOt9N299j7nefTesOyb7sqLYzMVjjeQa87puWMMD9/Dmai9eWi9ha5WVVdeGDcpuiP6YGRLJzJBIRFHk6+oSns/PYntrI/U22NBhY9Pvi3k0fRznRMbRseDqrsBga0NZ1zGCVX8+K/RrZS6ra4u4KmU8YRofyjta+KhwE2qpgpkRKX3uI7pEPsjfyNSwJP45dDJ5bXV8UrAZH4Wqh87BNyU7iPDyJUTjTYhax2dFW3h01Hxy2+pYVVPQlTpfUZ3HGdHpZAa4a1WuSpnA3Zu+ZVdTZb9Pq4MdmUxgdKSK0ZH9Gxhuq7GytdLKnno7Rc02qtqdNJucVLQ5WFe+r4MmDXAhkYBc6kSlsOOlslFZ2sgZiVLGRSkZETY4O4GOFZ8XbaXG2N5DbHEgERQKtK+/jub55zHecAO2Tz7BcOaZmOLi8HrnHRSzZvXYPkkVxxLVHi6vvITAsMXcYXmNM8XbuLjhdcifjdT/eT5pTaDNakIjUzAyMIqzYzOQdj5otNvMtFhNKM56AFnmwwx7WeT7678kN2ceK6vz8VVquDx5XNdvTyWTE+8dSIfdwvdluzHYrfgqNYi42GRejt1l59H4nhL43T3E9uGjVDNGejFz/OdisFsRceGtUPHfof8l25DNz80/E+CbxhCpp6PmaPAEI8eZ27p1eABcmTyeuzd/S7mhpd+53hXV+aT5h3FapLs6+6zYjB43rN23RnLP5u84I2r/DevG9PEUd3xLftEIVhZA1DOVbL85gnDdyfURC4LAhVGJXBiVSF5rPdds/oUck4PsjnbO3fgbSkHK9KAwHhw6kiHe3nxbtqtr38mhCX/6/CUdjWQGRHRNmwSqtGxtLO9yRO2LBrMBJLCruRK9zcyC2EyK2htZXp3fdUFcXp3H5NAEdrdUMzt4CDPDU7pSuscidX6yo1IITI5VM7kPA8NdTZW8krWe+jYtje1aWg1q9CYVRosCk1WB3qSitkXC0tz9n5G8s205WCsl2tfdtpwYYmJWdCipIfIT3gl0rPi8aCt7Wmq4O2M2fsqDawrpFKo+/V98Om+yOrn7vdbb3BnArm1sFqK0vkc8NkGlwvuDDxBffhnjP/+J7euv6Zg9GyElBe0HHyCfMKHH9p9EfcZ7jR/zu/IeVkS+zirXTN5q2siQljv5T/CNEPt6n+e5MmX/cZRXnI/j9i+ZtqSZpAtdDOOiPve5OmUCHxVsplDfgIAErUxBfFAs99U8iE6q45qIa4749XZnzag1xKyP4X9tL3C1NgQ6lWE9HD4n153qL8DxnOuN1wUybWoHkyPjeWxlG/HPVPDr1WFMj+/boXawk+IbzNlhkaTrG7GJInuMdspsLpbVV7Gsvgq5BKKUMkZqFYzyC+43uDsS4r2DWFdXRL1JT4hGR6WhlSJ9I+fHj+hz+zjvQILV3kRr/RgfEsdP5dk8m/U7p0Wm8l3ZbgAcopOKjhbmRKaytq4YnVyFIJEwxDeUEn0TqX5hxyx1/lfD5nTwceEW5HKRyCA984bomBudRJSXH/VmPb9V5bK+vgSzVUZTmzcZ3qMobnZR0mKnVu+kzNBMnvJ7fhM/B0MBvLsMTIko9nUCdbYtDw2WkxmmZHy0kji/E9+2fChcLhdfFG9jV3MVdw6fRaDq0G388d6B5LXV9biW5LbWEd/Z7dHd/yVK6y70NjvslHY0Ma2bcOORIuh0eH/xBeIbb2C46irsP/6IfuJEpMOGof34Y2SZmV3bXhO0kFNts7mpYT7hscs4X53CBzV+eDe8AeYcSFkBB/ksFDf9D8trXzLxeXj/wocYxhl9bhek9ubujNk9imKv3/4Uja5SHox6sNf2B3qIgTtIU0nlKKQyBIkEAQkdndvIBBk7x+0kZV0Gnxoe5ZaO2Qz3Hn4U797fF08wcgI5UXO9j57iz5hIJef8r56Z79Ty7Bn+3DWl//MNViQSCdcNncwLWSuoNesZ5a1kFGByKNhhtFFitVNicVBicfCHvpYy51oeHjqKcM3R602cHpWKxWln0fafkEgkuFwuzorN6JL3P5B0/3C+LNlOuJcvaX7hxHkHct+WJdSbO7A47dicDkwOW1dKtzs6hYo6s/6ox/p3YHtTBcZOkbNh/uFcP3RK1xRdqMaHhcnjESQCa+uKiAppZUpMA/+JSmVV6yrerXmXbxq+QeJydFnWXzvGm8ZGDWWtDuo6nBQ2O9hTb+fnfHOP86pkEnzVAmFaKbF+7mBlZISKCdHKAck2fl68jS0NZdyYOhWVVE67zT1edefNEeCD/A09NDtmRaTwXNZyfq/K7fJ/KTe0dCmfSiQSZkUM4ZfKbILV3gSqtCwpz8JXqe4hDna0CP7+6JYsQayrw3DFFdh//532ESOQjhqF9pNPkA11d/BEKcL5IWw7/6i6Fu/gT7neS8XtpWmM6VgFWQmQvhNkvn2fQyZDcdZInM/vIHj1DkzT2tDQ97bQsyj21/av0Uh0LIpb1Gu7eF0g2S01PZZ1L4qVCVKivf3Jbavveq8C5UFcoHqED813MHHbRComVeCv+Pt0eP1ZPMHICeREzvXOG+pF/l2RjH6thrt/aWFThYUvLw4edE98h0KnUHNP5qn8XJHNhvpiTA47GpnAZB8Vs6XexPiEsbHdyG/11bxdksvbJblEqb24PCaZe4dk4i0/PF2RfWxvLGdLQxnXpEwk3MuXSkMrX5Vsx1ehZsIBBal9oZEpCFF7096Pc/OJTp2f7GS17HesPi0yFYlEgtVp5cPaDzk14FTCleGcHpXK2roijK4WXq56jhsq/qDCWtHlHdKdZ2YNwU/es91bFEUKm92eQLtqreQ32ilvdVBvcLK3wcbOWhvf5QC4u7u6GxiG66TE+8tJDXZ3Ao2PVuJ/HDqBVne2uD+/Z0WP5Vckj+8qlG6xmpB0M1pM0AVxbcoklpTv5vuy3QSrvbkhdUqPB6HTIodiczr4X+EWTA4biT5B3Jo245gWSguhoeiWLcNZUYFh4UIcq1fTnpqKbNIkvD75BFmcO9B/J/JdvmqZxzfSm3gnLZetBSncoM9HsisaUjeDZmifx1c9sRrLp97Mfg6+n3Y/l/AGLouBpsW3UTMthYzIe3i3/AtC5RGM9x9Bg7mDVwu+pdy1k4WhC5EJsl4eYtPCklhVU8Di0p19FsUCzI4Ywof5G4n19u8qitVI/Hk9+U3+UXAlmVsyKZtYdtJdcwcKTzByghiIud44fwXV90Yz8e0avsk2kfZSNVtvjDjpDNQ0MgXnx4/krJjhFOkbMTpsaGRyEnRBPSTXNzTV8UTuDv5oqOH/8nbyZN5OkrU+XBefys1JaYd1gV1cuovTolK7ajMivHxpthpZWpnTbzDSPaVrcdpp7OyA6iul2z11rrdZ8JGrTkjq/GTF5NgvyR/p5X4/lrYs5fr867uW+8n80DuMOLHBfieFXoGIXCLHt48nbEEQSAlSkBKkYCG9i6AdDpHsBjtbKq3utuUmG5VtThqMTnbW2NhaZePATiCNXEKARiBCJyMhQE56iJzRkSrGRSrxUh757+/tKZcccpvu/lf7GBUUzaig/m0YJBIJZ8YO58zY4z+lII2OxmfVKhyFhRguvxzH+vW0x8cjmzUL748/RggP5wL/sznFMZ0r6+aQNWQT91eF83hNHbLs4ZC0BPx6T8MIKi2K2RF4f16Nec271Py6BuVbexFawXY/2P5zCzcWL8TushMrGcUE5TnsdP6AgIRXU14B9hfF7iNQpeXmtOl8XbKjz6JYgDFBMRjsFn4oz0JvsxCp9ePWtBnE6QLJs+zh+YrnmblzZr+Krh564glGjjMDPderUgjsuCWSq79p5IPtHUQ8Vc6GGyJI66cFczCjkMpI9Qvrd/3EwFB+meK+WH1fVcqzBbvZ0tLAnVkbuTtrEyP8ArgjaRgXRyX2+7RiEx0I9GzhFSQSeoulu/mmZAd+Cg17W2so1kfzY/keBCQ4RCfxusCu1Pm+lO6+1PlvlTnktNYSrvE5oanzkw2VVEqFuItgSSJVxlaSfIJZ2bISf5k/n6R9QoOtgWJjOa9XvEsrVQc9lt1lR7ZShlJQopVq8ZX5EqQIIkwRRrQqmnh1PCmaFNK80ghVhHZ9R2QygcxwJZnhfYsK2hwi22tsbK20sKfOTmFnJ1CTyUlVu5UNFT29dKQS0CrdbctRPlKSAhSkh8oZG6ViVLjiL29gKEtKwnfTJhxZWRiuuALHihW0RkYinzMH7Ucf4RcYyJLwjdxWfTu1Qe9yj7eGhwvs+BbOg8hnIPzuHscTXS701/0T5ZeLOHumHcS9XQbnolyCHBVSiRS7y04Vu/ncsh2ATG0mWqn7ety9KHYfKb4hPDhyzkFfy4zwFGaE9+6yey7pObIMWfze8ju35N/CqymvHuW79ffBo8B6nPmsaGvXXG9IN22Rg831FusbeS5rOefEZnbN9S6tzOkl47ysai9XJk/oumFVG1sPqkXx3816bljShAT49MIgLswY3AJpxwJRFHmvLJ/XirLZ0+5Wr5VLBCYFhnL/kBGcEtpT6v3D/I3kttVxWdJYwjQ+VBpa+V/hFiaGxnNup+hS95TuO7nryG+vp8NuRSnISNQFEa8L5OeKbG5On8avlTkEKL1I8w/nw/yNXJY0FqPdxk8VezA77YSovTk/fmS/omf7UueXJIzp8f35u/Bh2Q9cVXwWEqQMU07kocRbuSLnCq4Mv5LXh7i7LT4p3My6umLaXXXkyr4gy7wVCb0DSD+ZH8O1w2mwNdDqaKXD2YHFacFJb4sFcFvEqwU13lJv/OX+BCuCiVBGEKOKIVGdyBCvIaR5paGVHfwBw2AR2VJtZVuVhb31dreBod7dtmyyH9zA0N0JpCAjVMHYKCXDQ0/eTqD+sG/ZguGqqxBzckAQkC9YgPb99xF0On5pXcH7XE2EtoLrsrUMtRuQBCyEBLc77qplVxHz4ifofuv8DLu/lxIoeFrJhH9Z8F3lS7uzvde541Xx/Dv23ywMXYhKemxVU0VRJGljEiWWEt4Z8g7XRlx7TI9/suCRgx8kXLf2sz6Xd5/rfT5rOQFKrx7RuVv0bDfNFuMhVTqP5Ia1pcLCjHdrMdld3DFZxwuD2NPmWGNxOHihMIv3S/MpNroLR72kMk4JiWRR6kgy/YKwOOwsKc9iV3MlHXYrPgo1Y4JimBedjqwzyPswfyPNVmOPtHh3HwtfpYa50el9iJ7l81tVbldK96L4UcTp/j7v/9FQaCwmeZM72ydBwIXbc2iu/1xuifgXNS1yNjWWAW7DvP8bcxY/tizm1oJb0Tv0PQKNMwPPZEnGkl7nEEWRSmsle417KTAVUGIuodJSSa2tliZ7E22ONoxOIzbRhojYa38JEhQSBRqpBh+ZDwHyAEIVoUQqI4lTx5GkSSJVk0qiJhGZ0DsZ3WJyewJtq7aR22CjuMVOjd7tCWTuw8BQcaCBYbCcjFB3J1BSwODrBDpcbKtXY7z2WsSiIpBKUVx0EV7//S8WFVxaO4eQsDWcm6/llA4DeI2ldcskxKtfdNtv9/5YAMh/zY+JN7UQuiaUent9r/X7gtZR3qPYNnbbMX9NeoeeyHWRGJ1G1o1exwSf3hmYvzqeYMRDvzQbHYx8rZqKNidTYpWsvGZgBNKOpxPpoeTUW2wW/pO7k88riqi1uOeK/eRKzoqI4ZHUUcR4eb5nA02LxUiLrYOkrb2n5vYFJj6EMUJ6FsnSKVySOIZpYUnufe0t3FN4D+/VvocUdxB5bcS1vDXkrT81JovDQoG5gBxjDoWmQsosZVRbq6m31dNsb0bv0GMSTdhd9j73FxBQCSr3NJHclyD5/mmiBE0CKeoU0rRphCr3t+3X6B1srLCyo9pCXqOd0hYHtQYnbf0ZGMrcnkCh3lJi97UthyuYEK0m2nfwz8zbli7FeP31iBUVIJOhvOoqNK+9xv2Nj1Pj/xKnN9u4uMbGtrp4ou6uQF7koJ9ZVPI/iGbileXEro+l3FLea72A+7r3Wspr3BB5w3F5PTmGHDK2ZCCTyCieUEy4KvzQO/2F8AQjHg6KKIqc8WE9ywrNhHlL2TYAAmmDwYkUoMyg59Gc7SypKafV7p7fD1NpuDg6kQeGjsDfY3p1wmmxGHlo2484XCIf2a7DiqHfbUMkSXw99Bem9FHgu7Z1LdfmXUuBqYBFcYt4JP6R4zfoA2iyNZFjzCHPlEexqZgKSwU1thoabA20OdrocHRgEQ89TaST6npOE6ljSFInMUQzhCHqITR0KNlU4e4EyuvsBKozuA0Mbf0YGPqpBMJ0UuI7DQxHhrsNDIOOwsDweGFdvBjjLbfgqq0FhQLljTey6+HzecG5kNnSYq4slJKrD0XztIHg5b2nYACKvhzOuAt2M3TjUPJMeT3WySQyvAQvFg9fzCz/WX3uf6xY0rCEs/ecTYgihIpJFSiEk69m72jxBCMeDouHf2/h8ZVtKGXw61UDK5A2kE6k+9jR2shjOdv5vb4ak9PdjZHgpeOauBTuSBqO6u9sinIC6e7Q+439PlpcFb22kSAQq0xk5YiVxHpF9Fq/D5to47O6zzjF/xQiVP1vN1CIoki5pZy9pr0UGAsotZTunyayNdHuaMcoGrGK1j4LqfdNE3lJvdDJdATKA93TRKpIYpVxKK0JmFqTqGkMobDJSUWbkwaDkw6riP2A6Q1JZyeQv3pfJ5CMtGAFoyOVjItSoRuATjzLxx9juvtuXI2NoFJRettNXHNRCecmfs9N+QImq4a9nwQz5u1i9w7d3qJ174+kXvs+/9FdTIUst2u5xCUQ6ozlDsvrnJUxluTY468H8ljJYywqXXTcpoQGKx7XXg+HxWOn+DM6Qsm5n7oF0p47w587B0ggbSCdSPcx0i+I7yedDsBvdZU8mbeL9U113J+9lQeytzLMx59bEtO5OjblpJ2bP9nwJogWegYjAgLjdONYOmIpPjKfg+6vEBRcGX7lcRzhn0MQBOI0ccRp4uAQJURmh5k8cx65hlyKzEW9pola7C1UW6vZ5urjZucFUi8pyjh3N1G83I9AWSAqZxQuYyxWfSzGtmjaWqNo69CytcrKpj4MDLX7DAx9pCQGyEkPcRfXjg5XolIc+9+EauFCVAsXYn7rLUoXPUnc08/z/NcxvPGP83j4ut+4p0rP5CstfBE9hgVPbAULXTUkFsEHg8mO1EvR4243zDyDi1oXIXWp2bCr5oQEIw/HP8xuw26+bfyWK/ZewUdpHx33c55MeIIRD5yZ6kXenZGMfb2Gu35pYUullc8uCjqhN9vB4kTanVNDozg1NApRFPmssoiXCvews7WZf2xfww071jLOP5h7hmRyZnjsER3Xw5GhlQQgce0vXhUQmOU/i++Hf49GenDNnr8aapmaEd4jGOHdtz1BdxpsDeQYc8g35lNs7pwmstbQaG+k1dFKlaWKIrEIJ+vdO+g6/3TKksglcjSCGqXoj9weCpYInMYobB1R1HZEUlYXxtryYHDt1/qRCaBVCAR5CUT5yEgOkjOsM1jJDP1zBoaq667jjIBwovf8wb1f/cA7933N5o/jeHVRIJePKOaqWVt5LWwylz68HkmlOz3iVHmjFeSYpJ3TOC5YYL6N0yxXYsKBC7DZ+54mOx58nf41w7YM4+O6j8nUZnJHzB0n7NyDHU8w4gGAhAC3QNqEt2r4co+R3XW2EyqQNticSLsjCAKXxSRzWUwyNtHBa4V7+W9JLhua6zlr/TJUgpQZweE8lDqSCQGhhz6gh0OyT+4cwEvi3xWISJCwIGgBn6V/9readz8aghXBBCuCme43/aDbiaJIqaWUvYa9FJoLKTGXUGWtotZaS7O9mTZHGy3UYpNtxqV1QUjP/SUuGVJRi2D3R2ILwWgOp8MUQaEpkpUFYZAdBNYgcOiQCwI6lUCwl7sTKCVITkaYgnFRKoYGHbwTyCaKVImNlA8bwtq0FGbtzOH+r5Zw30WlbB8TguG+em5LXcfid9KZfms2FEBQYDmXzMrgzlWN4ISfMn5ibtBcAP779W4Mpr4LjY8XgiCwdfRWotZHcVfRXaRr0zklYPBd8wYCTzDioQuVQmDnrZFc9U0DH243EPFUOZtuiGDocRZIG8xOpAeiEGTcmZLBnSkZ6G02nsrfxf/KC1haV8nSukp0Mjlzw2JYlDqSFJ3foQ/ogVariW9Ld7G3tQab6EQuCJgc+28SGpdv198nqOfwadpnlOpbu1qp/ZQazuizlbqA36tyabeZ3a3UCaOI8/a0Uh+IIAgkaBJI0Bza9drkMJFrzCXX1G2ayOKeJmpxtNDh2IvZZxvOvrqJXAJ2hzcttgCaraHkmsNZVhcKFUGwJghs/sidAfhIwgjT6IjxkzE0SNHZCaQkzl9BaNl0qm16UBtYERnDigcmMWfvWu775juGnAPZM6XMuyKb0k+80T3QwZA38skel43RaeTphKe7ApGBRCPTsH3MdlI2pTB391zyx+e7p+j+5ngKWD30yVub9Nz0g1sg7bOLgrlg+KGVY4+UA9Vpu7fe9kdfBaxP7/qNSC/fHgWsp0YO5ZSuAlY7d29afFgFrEdLjcnIY7nbWVxVSlPndFCwUsX5kQk8lDqSENXfazrhcDHabfxn51KSfUOYFBLP4tJdlHY09dhmh+N7tolfE04qc+X3M9Q3lJKOJqaGJTE5NIG8tjq+Kt7BzenTuuS6tzaW82H+Ri5JHEOcdyAravLY0VTBo6Pm95rC83B8qLPWuaeJTPmUmEsot5RTa611TxPZWzE4DVhEG6LLwQGix+DQgC0IrMGd/w8Emx/YQrstCwK7P7hkSKRmrij4kn8vf4Wg1nakM8BwE6gvgpf+mMqHlFAysQS5sH9KaV9mRKuR88/zM07smwOsaF7BKbtOwVfmS9WkKjSyv+Y1wlPA6uFPcf14HSPCFcx4t5YLP29gc6WF54+xQNrJ6ETaH+EaL94aNZW3Rk1lb3sLj+Zs59e6Sl4v3svrxXuJ0Wi5IjaZe1IyDlqg+3djWVUOfkoNVyaPZ2nl3q5ARCnImBwaT7wuiEcqvsO3PYD50vtxSSTktdfjo1BzfvxIAMI0PhS1N7K8Or8rGFlencfk0AQmhbqf9i9NHEt2Sw0b6os5PSptYF7s34xQZSihylBm+s886HYO0UGppZQcQw4F5gJKzfu7ierMLbTaqrCKFpwSC0h7uivjkoDNH5ctiA+HB/LJGdP5x6oC7liRCy+CGrjk5TX4Pvdcj0BkMDArYBYvJL3AHYV3MHrraLLHZf+ti+I9wYiHfhkXraLinihGvVbNC+v0bKuysuIYCqSdzE6kByPNx5+vJrjngdc01vCf3J2sbqzhsZwdPJ6zg6HeflyfkMoNCanI/sYXH4Cs5ipS/cJ4K2ctu5oru5bfNmwGCbogjE4jq/f+yr9i/8W5fjN4JXsVAHbRicvlQiJxfzdS/cL4qmQHAA7RSUVHC3MiU7uOJ0gkDPENpUTfM+viYeCRCTKSNEkkaZL6XO8QRSpNBr4rbOaunxtA1QDqelA2uP/Im0HRBKpWnNoc3rqklbcuCeDGP9p5bIeD4G9g6OVREHOCX9hhcHv07ew27ObD2g85b895fJvx7UAPacDwBCMeDkqgVkbpPVHM+aCO34osRD9TyY6bIwg9BgJpfwUn0kMxNSicqUHup/XFVSU8l7+bra2N3LprPXfs3sAo30DuTMng/Ii4v+VTUaPFwOraQkYFRnfJQ0iABnMHCbogvqr/CoPTwOVhlxOnDidBF0SxvhGTw0aNqb0rCNUpVFicdmxOByaHDREX3n10VNWZ9Sf09XnoiU10UGrooMTYQZmxgyqzkRqLkQaLmSabhTabDb3DhsnhwCI6sYtiT2WV7p50zmBwRIBVhswGXnInMQFqvBxS6rMcvCX3I++R77ms9WeWXCGSuKKJ5JGDr2bog9QPyDZk813TdzxW8hgPxz880EMaEDzBiIdDIggCy64J58FlLfxnVRtxz1ay7KpQpg6gQNrJyLmR8ZwbGY9DFHmnJJc3iveytbWRizYtZ6EgMCUwjAeGjGBGyOAT5jpeuIAYrT+ZgVFs7vSYifMOZHVtIRNC4rmr8C78Zf7EqmIBSNAFUqxvBMBgt/Z9UA8nBJPDTolRT4mxg/LOwKLWbKLB6g4s2u02Oux2jE4HVqcTh0vsT7UdAJlEglKQopHKCFSq8JErCFCoCFaqCVVr2J2rYEWBDBxyFHYZGUYbKQ16LDtrsekdOEwSbAYLzRE6Si7OQCOT8N9rXiRE+iK/fvwDN41ZyrMrTiFz+uDreFs/ej0x62NYVLqIYdphLAheMNBDOuF4ghEPh80Tp/kzJkrJeZ/WM/2dWl6Y68/tk30HelgnHTJB4IbENG5ITMPksPNcfhYfluWzoqGaFQ3VaKUyTguN4pG0UaT7BAz0cI8rPgoVYRofVN3k/yUSaOn0C3og9gHuLrqbxQ2LOS/kPJrM+2Xhu1sG6G0WVJ21RoJEgoCEjgN0ZfQ2Cz5yT/FqX+htNoqM7ZQa9ZQbDVRbTNSaTTRazTR3CyxMTgdW0YnjIH0PEtymhUqpFC+pjFCVGt9ugUWYWkOkWkuMl5Z4Lx0JXjrUh6Fs/NSaQvZubiK0qIWg8jZwuKh19hxHbVoQuWck4qsW2HFrBHH+7vqsp5bN4vqRP/PvU5bz6uY5JI8cXL8rhaBg59idxG2I4/w957N73G7StH+v2iZPMOLhiDgr1YvcOyIZ+0YNd/zcwuZKK59fHHLoHT30iUYm5+G0UTycNooGi4n/5O7kq6piFleXsri6lACFkgURcSxKHUWk5th3NA00Cbog6s164rwDUAhSbKKTso5mIr3cbdF3xdzFipYVXJFzBUnKNHa3VAMgIOlRJ5TbVkd8pwOyTJAS7e1Pblt9V9Gy6HKR11bHjPDkE/sCB4Bmq4UiQzulxg4qTAaqzQZqLWaarBZabBba7DYMDjtmpxOr6MR5iMBCLgioBCkamYwIhRd+CiUBCiUhKjVhKi+i1F7EeHmT4KUjVqtF0Ycz8bHg9mvi2PnUblpqzYgHDNkFlE6OonRyNPFq2H1PTA+NpLh0P57/41TunPYbt038lXf2zD8uY/wzhCpDWTlyJZO3TWbCtglUTKzAV+E70MM6YRxVa+/rr7/Os88+S11dHRkZGbz66quMHTv2kPt98cUXXHzxxZx11ll8//33h30+T2vv4MNsE5nwZg2762ykBsvZfMOJE0j7O1BsaOfRvdv5obacdrsNgAi1F5dGJ3LfkEx8/yLtqWUdzTy9+zfmRw+n2tjKtia37LufQsM1QyaSqAvijfyfuK36XPyFcBbI/g8AaWfX1KSQePLa6vmyeHufrb2XJY0l1juAFdX5bG8q59FR89ApTo7pRVEUqbdaKDa0U2pyBxY1ZiP1FjONVjMtNivtdjtGhx2z6MAmigcNLARALkhRdWYsdHIF/golgUoVIUo14WoNUWotMV7eJHrpiNRoB12B9eqvy3n8gjU9lolSCblzEqlLD2aMycSmF1P7rb/a/EsVD877A6VGxuznExFVkgFr7e2P96rf49q8a4lVxVI8ofikryU7bkZ5X375JQsXLuStt95i3LhxvPTSS3z99dfk5+cTHNy3uRlAWVkZkydPJj4+Hn9/f08w8hfhiq8b+HiHAR+VhI3XH3+BtL8jm5vreTx3BysbqjE73dLVSVof/hE3hNuS04/bk+iJIqu5mu/KdtFg7kB0ueheWaCTqzA5bGyyf80O8VumSv/BZK95nB83kp8q9lBrasdXqWFun6Jn+fxWlYveZnGLnsWPIk43MAWMoihSaTZQbNBTZjJQaTJQazFRZzHRZLXQarPR7rBhdNixOJ3YRJGDVVgISFAIAmqpFC+ZHB+5Aj+5kiCVihClhgi1hiiNltjOjEW4SnPS39QA9C0WLo//HmO7W1TNrpKRde4Q9GHepG8s44abAxGkB4qW9KR8TQubX6tCphGY/mwC/kHqQRWMANxWcBuvVL7CbL/Z/D7y94Eezp/iuAUj48aNY8yYMbz22muA+0cWFRXFLbfcwr333tvnPk6nk6lTp3L11Vezdu1a2traPMHIX4g3NrVz8w/NCMAXFwdz3rC/3nTCYOGnmnKeyd/FxuZ6HC4XApDhG8BtScO4PDrpqG44LRYjBsf+YlCtTIm/yusYjvrwqTPpeW3vKhothh7LHaKdjx3/BFyUjKsmShs0IONzj0WkzKSn2NBBuamjK7Co75wKabVZ0TvsGB0OrKIDuygiHuR4Usm+wEKGtjOw8JcrCVKpCVWqidB4Ea12BxaJWh2BCtVfIrA4EkRR5N17d7L4xVycDvcty+SnYtf5qThUMoZ/m8u86wLRRR1exrDs9xZyPq1H6SNlwX/TufaCge+8O5AZ22ewqm0Vd0bdyfPJzw/0cI6a4xKM2Gw2NBoN33zzDWeffXbX8iuuuIK2tjaWLFnS536LFi0iKyuL7777jiuvvPKQwYjVasVq3X9x1Ov1REVFeYKRQczGCguz3q3FbHfxryk+PHPG4CoQ+6shiiIflRfwSlE2WW3NiIBcIjAhIJh7h4xgTlj/rc/7cLpE1tUV83nR1h7P4IJEwsMjzyBM078bbr3FxJaWBuYfB5NAu+hke1MF6+uKqTO5W3EjvHzpUOzh4arbmRswl58yfzom57I4HJSY9JR0BhZVJiO1ls6OEKuFNruVjq7Aoo9W0wOQSSQoOjtCtDI5vgoF/nIVwSoVoSoNEWovojVa4joDC7+/yHTb8WTN4nJe+McmDK02fIKU3PvxJF78qpqvdT4ojHYyv8lh3Ol+DDmn/8x8X+z9uo69XzcQEKXm05Jzjpl+0rFCFEXiNsRRYa3go9SPWBi2cKCHdFQcl2CkpqaGiIgINmzYwIQJE7qW33PPPaxevZrNmzf32mfdunVcdNFF7Nq1i8DAwMMKRh555BEeffTRXss9wcjgpsngYORr1VS2O5kWp2T51cdOIM1D/9hEBy8VZPNuaS6FBvfNWy2VMis4gkWpoxnt3zuL0GY18XrOaioMrX0e00eu4pb0GURpe/rrOESR14v38sCeLRidDqrnXUa4+sRlUUZsHsEuwy7WjlzLZL/JPdYZHTaKDO7AosK8P7BotFhotrs1LDo6NSysonjQVtOujhBBQCOT4S1T4KtQECBXEaRSEabSEKnxIkbtTZzWmwStDq1HWfeYUl2k55FzVlO6pw2ZXOCSB9JZuCiDG75v5K1Nenyr9Az/JpfEBC1v7ZyLXHHkooav3bqF71/NJ364L2/tnDvoMk4tthaiN0RjdprZNHoTY3zGDPSQjphBEYx0dHQwfPhw3njjDebMmQPgyYz8xRFFkdM+qGN5kYVwbynbj5FAmofDo81m4f9yd/JZRRHVne2xvnIF88NiWJQ2igStD2aHnad3/0atqb1rP7VUjlQi9Jiu8ZIpuS/zNILU7mm3tY21XLd9DbkdbV3b7DrlPDJ8j30WrM1modCg79YRYqTOYqLSVM965z8RxFD8LA9idorYDqPVVC4IKAUpXjIZ3jI5vnJ34WawUr0/sNB4E6/1Jl6jQ3UYraYejg82i4MHr1nNniX1uEQXiWcGMnReEMFBXrxZKOePakgKkPG4wsQHd2/nlY2nkzzq6L+D/3fpWlZ+VsbwqcG8sPq0XuvbDVbeW7yHy+anEux/4v1jsjqyGLllJApBQdmkMoIVR5YBGmiOizdNYGAgUqmU+vr6Hsvr6+sJDe0tJFNcXExZWRnz5+9voxJF9+ypTCYjPz+fhITeTpFKpRKlUnkkQ/MwSBAEgd+vCef+Zc08uaqduGcr+f2aUCbHnhwdDCc7vgoVz2RM4JmMCVSYOngsZzvfVZfxSUUhn1QUEqpSM8bHFz+XHpUgEKD04pLEMaT6hSFIJJR1NPN50VbKDC0YHVaWlO9mbkwmd2dt4rOKIqSSnsWBzQdoeRyIKIo02SwUGfSUGvVUmIzUmI3UWc00Wsy02K20d7WaHl5HiKC8GNHrPSyy1UQpTsdvX0eISk24yqsrsEjQehOj8T5hNgAe/jxfP5/D+w/sxG4ViRznwz2vjydqiC8N7Tbmf1xHbjucHmbnxxtjkMmkzLsyHi/dn8tI3f/pFPTNVrYtq+XhBat47Lvpx+bFHCOGew/ni/QvOD/7fDI3Z1IxqQLZSV603hdHVcA6duxYXn31VcB9sYmOjubmm2/uVcBqsVgoKirqsezBBx+ko6ODl19+meTkZBSKQ3+RPAWsJyffZRu54PN6nCK8OM+f2yb5DvSQ/rZktTXzaM52ltVVYnQ6APAWJNySNIxH0sf2uGGbHDYe3PojHXYLOWYHu4x2rP0ECbODI/CWy2m0WGjtDCyMnRoWB+sIEQCVIEElSJBKBBQyJT4yBX4KBYFKd31FmEqDVLRRpa/F4bQRqfHm3PgRDPOPIGxtGA22BkomlrC7vp21dUWYnXYSdIFckjjmsBygPQwestbW85+L1tJcY0btLeP0RclEjvDhrJmJFDbaGP16NXqrixtHKkkw1XLKhBiGJQdhsTlYs62K4oo2nKJISIAX08dEEdSZwdiwq5riijYyUoLZlFWDxeokPtKHUybGoFS4b+gul4tNWbV88O9dlCxrZuTV4dzw2GjiItw1Uy98tK3HWCNDtFxw+pAT+wYBDxU/xBNlTzBeN56NYzae8PMfLce1tfeKK67g7bffZuzYsbz00kt89dVX5OXlERISwsKFC4mIiODJJ5/sc//DmaY52hfjYfBR2Ghj7Bs1tFlELs7w4rOLPAJpA0mdqZ1rNyxhp9FGvc2JEwiQK5kZEkGK1hc/pZJmq4U/6krZ1NZ20GLN7nR1hAiyzlZTOf4KJUFKtTtjofYiRKEkSuNFnJeOIIWSOnMHL2Wv5M5hs0jx7f29KNY38tzu5Zwdl8Fw/wi2NJSxrCqXB0acTpUjn/HbxpOuHM8s4U6uTJlAoMqLH8qyqDa18cioeZ6MyElAa4OZR89dTfa6RgRBwrzrk7j51TH8tqEcq82JKjKM+R/V4xDhrbMD+ec4HZ/8sBcvjZxzZifzzW/5yKQC4zPCUSqkZOU3sre4masWpKNWytiwq5rte+sJDfRi2pgobDYnv20oIzTQizOmulvBt++tY+PuWmaNi+LZs9dTsVfPyJsiuO8/E/HTqahrMvLZz7mcd2oyAb5qBEGCWjkwmYn5u+bzU/NPXBN2De+mvjsgYzhSjss0DcCFF15IY2MjDz/8MHV1dWRmZvLrr78SEuK+mFRUVAy6IiAPA0dSkILq+6KZ8GYNn+82klVbyZabItAoPN+RgcDidBChlBGhlDE5OJ7EwFi+qy7jjaK9fO0sQSuTE6hQ4XI5DnksqUTCv5IzeHL4uKMay2/VeQSptCT79D0HvqI6nzT/ME7rdN89KzaD3LY6VtUUcGnSOM4KPJslTUs4M7SWzIBIAK5KmcDdm75lV1MlY4Jjj2pcA8VgarE+3oiiyGu3bOWntwoRRRdpk4JY9M1U/EP312RsqBV59vd65FJY+Y8wpnd6Yfn7qGhsNVNd30Fdk4nrL8xAJnVfT6aNiaKoso3C8laGJ7sLtx1OkdMnx+Ht5c7CzxgXzfcrCpk2JgovtZxte+sZkx7K0IRA3to+lysSl7DzzWre993FXY+PR61y3yZVShleavmJfJt6sWT4ElI3p/Je7Xtkemdyc9TNAzqeY8lRhXc333wzN9/c95uwatWqg+774YcfHs0pPZzEaBQCu2+LZOGXDXyyy0DEkxVsujGclKCeU3R/p4vxQKHr5s1SZmzhsuRxTAgI5YEhI2iz24jx8gbg3bz1bGkoo97uxCH357eGmk5Bsv0ISDCLhw5a+sIhOtncUMbsiCFIJH2LVJV0NDE7omc6PNUvjN3NVQC8lvgO65t38VL9AzyU8k9UMhVqmYI470BKOppOqmCkxWLkoW0/4nDtf4dlEoHHR8//y/0Glv+vhJdv3Iy5w0FAuJr7P5tMxrSeNYdf5Dv4pEiKj0pgxy3hXR4z4JZ+lwCNrWbsDidvfrGrx74Op0hbx/7riM5L0RWIAIQHeeFyQUu7BZlUwGi2Ex7sLtJWKGS8lzOfKzN+YNnTRQyJDmDyxYdukz9RCILAtjHbiFofxa0Ft5LmlcYM/xkDPaxjwl+vCsbDoOXjC4MZF63klh+aSX+pis8vcgukuVwutjaW837+hl56F4tGnkHoQfQuPBwZ/iovYr0DKOtopsrYxo6mSkYFReOjUOKjcBeNVxpa2d5UgUQiIVHjxVPj5tBmt/FhWT6vFe2lwmRAKpHgcIk0W4/OOXdXcxVmh42JIXH9bqO3WXoET+AOpto7i2atThdTpNfyneNBzs8+nx8zf3Rvo9i/zcmCwWHtEYgAOFwiBocVf/4awUjZ3lYeOWcNVQV65EqBfz47kgvu7mkGJ4oiM9+tZXWplExfB2tvi+tlM9HSbkHnrcRmd+KllnP+aSm9zqU6ijbffWi0Cq56ZyTvXrOdF6/bhMxrcGVxtTIt28ZsY+imoZy+63QKJxYSreodMB34cOfed/A+4HmCEQ8nlJsm+DAiXMHsd+s4/7MG7phsIjo6m9y2ul7bii4Xz2ct56a06cR6e0TUjhUzw5N5P99dAPdu/nqK9I2MC45FLkjZ1VzFb1W5iJ2lZJPDEpALUoKUav6VksldyRksr6/i9eK9/FhTjtN1MG3R/llfV0yafxi+yj/XKhkkxJHpNZKfmn9ifet6JvlN+lPH83DsMRlsPHnJejb+WAUSmHZ+DP/+eCIKVc/bj94ikvFKFWWtDk4Pd3JdqqRXIFJRq6ep1czIoSF4e8kxmu0IggQfbf/dl3qjDYPJhlbjzo7UNhqRSNzTPUqFFC+1nJoGA1Gh3l37tJgsLHw9k/+et5XnF25kyv/FcxQ2bseNBE0CS4YvYe7uuYzcMpKqiVWoZPsD974ybTC4s22DK+Tz8LdgYoyasn9HEaGT8uI6A8/86kdnxzdSJCi7ta3p7VZe2rOyhyaGhz/HmKBYxgbFAO6Ab2VNPk/uWsZjO37hh/IsLE6370ecdwBzo9J77CtIJJwaGsWSSadTM/9yXh855YjP32wxkttWz+TQxINup1Oo0Nt7Zjj0dgs+naqlOrm7huDd5E8REDhnzzmIooje5t7GJtooMhX1Oq6HE8cnj2VxTsDXbPyxith0Hz7MP4uHvpraKxApaLQR9VQ5Za0Obp2o47YRMkSXC6PZTofRRn2zkc1ZtSxZWUR8pA+pCQFEh+kID9Lyw8oiyqrbaTdYqWkwsG5HFXVNxq5jy6QCv64rpbHFRFV9B39sqSA5xr+r/mNMeihbs+vIL22hpd3C2u1VNLaamTo5ite3zkEQJGx+ppxNa6oxmu1YbUc3NXmsmRM4h6cTn6bZ3szYbT2NavvKtMH+bNtgxBOMeBgQgrUy/rfQTnhAO7UtPny+aiRWqxwnLqyddQj7KgnMTjuLS3cO3GD/YggSCVemTODUyKHIJL0vARJgTFAMtw+biULaf/I0VKXBT3HkekAb6ovxlisZ5h9+0O3ivQPJOyBjlttaR7y32+wuUOWFTq6ixeTinph7aLA3cHfhPZR2NNEulJC+KZ2hm4bSZm874jGeaEwO20AP4ZiybVkN5wV/xUeLdqPSSHn4m6m8u+dMIpN6d1MsKzCS/lIVHVYXb58dyMvz3Z9vWbWet7/azXuL9/Dt8kIq6/TMGBvNWTMTEQQJEomEBbOTiAjxZtn6Mj74Lpuf15SgN9p6FJr6eitJivbj2+WFLP69gEA/DbPG75/WGDE0mFGpIazeVsnHP+ylrLqds2Ym4qdTEZvmx4trT8VpEnn/hp289t52lqwcPAHuv2L+xSUhl7DHuIcL91w40MP5Uxxxa+9A4Gnt/evhcrl4YudSqoxtbM6LYndJOCq5gwWT9+Ct3n9h1sqUGBxWJMATY84kUOUx4TuWGOwWNjWUUWVoRcRFkMqbCSFxx+19Fl0uHti6hDFBsZwTl9lj3Qf5G/BVaFjQubxY38hzWcs5JzaTYf7hbG0sZ2llDg+MOJ0IL18Afq3MYVnVXq5MnsCcvRNosbeSJBtNtmM1EiS4cLEuczNRyp5ZmMEydy66XPxYnsWyyhycfTRSx2kDuDFtGrqTxMOmscrIogWrKdjWjCCVcO4dQ/jH0yP77bB8dUMbt/3YglwKy67e3zFzrNinM3L5mWmH3vggbFtWw31zVqBQS/kw/yyCIgf+u9OdkZtHstOwk/+L/z/ui7uPCkML/9n5a5/bPjDidKK1/idsbMettdeDh2OBwW6lytgGwPmjDdw9Tsv13zWzeO1wRiVVMSzO/UQ8IjCKtXVFuIC8tnomh3qCkWOJVq7q1bFyPMlrq6PFamJSSHyvdS1WExL2d9Yk6IK4NmUSS8p3833ZboLV3tyQOqUrEAE4LXIoNqeDTwo2Ey/OpJaPyXasBsDVeXN/eu8SwiQ9b0aDYe7c5XLxedFW1tT1/6RdamjmuazfuSfjVLTywatK7XCIvPjPTfz2UTEuEUbMCuWhr6ag8+8/iLr+u0be3tKBn1pg+809O2YGG6NPC+f+zyfzn4vWcW36j3xScvZBX9uJZtOYTUSui+T+kvtJ16aToT75aqc8wYiHAWFfXQKARqqgjj2cO7mFxeuGsTkvmrSYegTBhbTbzan7Ph5OTlL9wnh7yiV9rrtr+Oxey0YFRTMqqP/WSolEwtBgNS82v8Z606o+tzGIrXBAc8WJ6FSxiTYsogWdrO+nwezWmq5ARIKE8cGxDPULRSXIKepoZENdCQaHlXpzB9+W7mRh8vjjNtY/w0//LeDNO7ZhNTkJifHioa+nMGRMb3PGfezvmLGSFChnx00RvQpVByMzLoyjo8XGKzdu4ZrUH/mkZAEqzeC4hSoEBTvG7iBxQyLnZJ3DddrXAO8+t22xGE9oZuRwGfzfAA9/Sbo/5eW111PY3oBK4SA6qBWdlwVBcD/Vrq4r7HMfDx4AdnbsJG1TGmva1vS5XooUE20ndlCd3JR/E36r/ZixfQavVb5GpaWyx/o/agq6/n5Z0hiuTJnAuOA4MgIjOTduBPePOB1VZ83O5oYyDPbBVXhYsK2Zy+K+5aXrNoMLbnl9LJ+WnXPQQERvEUl4rorVpVZOTVKRd8fxDUQmZkb86Sma7px5QwpXPp5Ba72Fa9J+wOE4um6y40GkKpIPU77GgZP/Gu7AJpr73O6jgs3UDcKGgMER1nn426GWKYj28qPCuN/CXidXopLo8JLLUEvlmJ32rll0mURgmN/BCx49uFlauZedTZXUmfUoBCnxuiDOic0kVHPweqvtjRUsKc+i2WIgWO3NOXGZDPOP6Frvcrn4sXzPoPKBiVRGMtJ7JJv1m/tcL0gETK62EzuoTnQyHS5crGlbw+q21dxScAsZ2gzOCz6POf5z2dtSAxIJAUovJnZOWzVZm2hxtJDslUyAyouJIQmsrMnH4RLZ01LNhD6mt040hjYbj1+whu2/1yKRwCkL47njnXEoFAe/neQ32hjb6TFz20QdL3UWqp5sXPbgcPTNVr59KY/rR/zEf3fPOyGq4w7RQbG5mCRNEkIfhec2p4PtlXYmS69infN9ljgf4p3InwjSeFNn0rO1sRy93YLJaePt3HU8NPIMhH4EBwcCTzDiYcA4UKNiVGAMX7R7YbLB3Oh0vi/b3dWe5qvU4OXJjBwWBe0NTA9PJlbrj9Pl4vuy3bycvZJHRs1D2U93TLG+kXfz1vfwgXkzZ22PYtFlVbmsrMnv4QPzSvYfA+oDE6QIYsPoDXxY+yF3Ft6JwWHA7bjjxuFyYpYMzFNgqlcqrs7/9rHbsJtsQzYPlTyECm+8CGCodBgXZX9KjjGHXGMuIiL+Mn+0Ui1mpxWXQ423JAhDzShqJLMZrxtPhCriIGc+PoiiyPv37+Lr53NwOlwkjfLnkW+nERJ96DquZQXGLo+Ztzs9Zk5mbnxxDPpmG8s/KeGOqb/x8rrTj/s5lzYv5cysMwmRh3BhyIWcF3wek3wndQUm25oq0NstpEpn4ZQ1stH6Iyvs7/JG2BsAzIsZxjO7f6fW1E6NqZ38tnqG+oUe7JQnFE8w4mFAqDfrqT4gVfhHbQG1HWMA+OaAVt5WqxGj3eoJSA6D29J7ykNfmTyeuzd/S7mh5Sh9YMbicrlYUZ3HGdHpg84HRpAIXB1+NWcFncW/C//Ne7XvIUWKEycuRAxi84CMa6hmaJ/L9wVLFjqw0MEmczWTlZOY5juNc4LOQUREI9WwvHk52/Q7MNJEk6uM0patfNbyFuCuMVEJKvxkfoQqQolVxzJEM4QR3iMY7zOeSFXkMX0t67+v4NmrN2JoteETqOSejycxbs7hBUTdO2a6e8ycaI613cS9H0+io8XK5p+reXD+Sp74ceaxGGa/+Mn9AKi31/NG9Ru8UvUKQfIgLgi5gAuCL2Bb/f7X9r/h7/N09QO8Wf0ms/1nsyBoARqZgvnRw/hv3joANjeWeYIRDx5qjPsDkQRdIOUdLVS3aHCKUsCF3qREp7Hiq1DTZjPjdLmoM+tJkPc/H+2hb8ydhb9esv67FQ7lA9NkMaK3Wxjqu//iNdh8YALkAbyb+i7XRFzDP3L/wV7jXgBaqOxz+3V1xVyc4NevN86RUGoq5beW39jQvoG9xr2UW8ppsbf0u/2+rqEM4UzGSM/j7oRTSD7AufiuqHtYtP0nWq0mRNHBhalxlNhy2WPYQ4GpgApLBY22RvYY97DDsKPX8VWCCl+ZL2GKMGLUMQzRDCHTO5PxPuP7lA/vi+piPY8sWE3pnjakcgmXLxrGwkUZh/2ede+Y2XFzOLED1DFzvLx//vPTTG6b9Cubfqrm6SvW8++Pjl8XS5I6qevvjk4jy0Z7I29Xv83rVa+jwgsfIgkR4ni7fjeNtkZ0Uh3n7jmX5SOWM8t/FkO6/X7brKbjNtajwROMeBgQuisqpPqGcf2QKYx/s7prTWtDKs+eE8qa2iJW1xb2eQwPh0Z0ufiqZDsJuqAeLbEHcigfGL3dXQx3oN7FYPSBmeAzgZejvuLBgv9jk/gpNkzYXSYCFf502K2Ind+x1bWFaGVKzowdfljHFUWRHGMOv7X8xhb9FnKMOVRZq2h3tCN2sxCUS+T4y/0ZoxvDro5dWF09C08FBOLUcdwf9jybq9xKoW/lruOihFGMDIxCJkgp62jm65IdtHbeMIYFRDE7aArQt+KtQ3SQbcxmi34Lewx7KDQVUmGpoMHeQLYx+6DBSqgilFhVLCleKWRq3cFKmBDBM1duYPWX5bhcMG5uBA98MRmN9vCCCVEUmfFOLWvKBkfHzPH0/nlx7an8M+Mnfv+4BF2gkhueH/2njtcfQfIgVIIKi9jz97YvMLFgxEI+9WI+rfU5JGuSuCD4AmpsNaR6uTOe+37HALITUOdyJHiCEQ8DQoh6f9vZzuZKnMY4cuv3/zj+yFeicGm7nswlSAjyCJ4dMZ8XbaXG2M6/Mk4Z6KGcMEwOG9+X7WG47AwCnbH86nwGRdAOnhn6Bka7jT9q8vmpYg8u4JfKvUwKTSCg29OxKIps6djCipYVbNVvJd+UT7W1GoPT0KP+QylREqgIJN0rnUzvTKb4TmG232z8FH5d20zfPp3VbW7dk30ibFeFXcXLKS+jlKho1q+kSN+I0WHlvfwN/K9QhkIqpaNb54xKKue8uBEHfc0yQUamdyaZ3pl9rneIDnKMOWzRbyHLkLU/s2JvZK9xLzsNO6Fp//ZSkwr19GDkk1WEp2jICYrl8brfu4KVGHVMv2Pp7jFzapKKpVeGnpACz4FCEATe2jmPKxK/Z/ELuXj7K7jsgcMLcPuiwlLBqtZVbG7fTI4xhzJLGY22Rkyiqcf3ry+CSGCm9Caujj2dUyN7TxOurd2vaZOo63vKdqDwBCMeBoQIL98u99iKjjbe/K0OQSIgdv7W7E64+dd8/ELckfzwgAh0ioGZaz5Z+bxoK3taarg7YzZ+hzCkO1wfGLfvy/7PQW+zEKX1PbYD/5Nsqi/FJrrrMs4Ln8dMVQB3Fd7FNRFXMUY3hnkxw7CLTn6qyKKOPK7buwKjUE2BqYA6Wx0msWf6Wi2oCVYEM043jhHeI5juN53pvtPRyA5t8jdMO4x1betAAhpBw/tD3+e8kPO61t+cNo23c9d1GUVaRUeXHQK4s1M3pk4l/CBZrcNBJsgY7j2c4d593yRFUWTJmnW8+MRvtDpbMSVV4Tq9hI7AOgodZext2tUjWAG6MishihB3ZkWTQrBrOI98NQSD0ZfbJ/nw4rzj2zFze/7tyAQZj8U/hkba9+fhcrmoMrQd13HIZALv5ZzJZXHf8eGDu/EJUDL/+t5uwvuos9axunU1m/Wb2WPYQ6mllAZbQ6+AV4IErVRLmDKMOHUc5eZyCs2FPbaRIUMhKPhP3HPkVOiQSCQsKduNt1zJ2OBYpBIBu+hkdW0hK2vyAZBKhK4OrsGCJxjxMGDMiUzlzdy15FcFU9ve88nJBfyQpeDSmRLkUjg1ou9iQA+9cblcfFG8jV3NVdw5fNZhSbvv84HpXjfSlw9MXlsdUVr3k7/ZYae0o4lpYQc3vDvRdPezmRmeQphmNB/WfsgFey7gitAr2NKxhT9a/9if7m5z/89L6kWEMoIkTRJjdGOY4TeDiT4TkQvy3ic5TNK80nDiZKJuIp+nf96rVkMtU3Bb+gzy2+tZU1tEuaEZhygSoNIyMSSOMUGx/XZAHStaG8w8dt4a9qxtQCmkcM0/k7jltbFIpft/k6IokmvKZUv7FrKMWeSb8qmwVFBvqyfXmMtuw+79B5wAuKS8JZXz+VofQhWhxKhiSNGkkKHNYLzPeOJUccckW/Je7XsYnAa+bfiWj9M+ZrLv5B7r221m3sldT6G+oc/9fyjfw3VDJx+TbjCVRsb7ufO5PP57Xr5hCy4/M84ZpWxq38Qe4x5KzCXUWevocHb0mNaTIEEjaAhWBDPaezRp2jTG6MYw3W96r+/Lw8UP81T5U9hd+wUgx/qM5dO0T4lVx/KxbTPr64txuEQ+LNjEt6W7CFHrqDa19fA/mhOVOugsBjzBiIfjxqH0LjIDozgtPIOPf5fhDj96FsVZ7VIKqoO4aZwviT77C1cHo97FYOLz4m1saSjjxtSpqKRy2m3u7JJaKu8yvjvQB2ZWRArPZS3n96rcLh+YckMLlyW53UAlEgmzIobwS2U2wWpvAlValpRn4atUkxkYNSCvsz8szv2ZhSCVFpkg49G4R1mwZwEvVr7IEK8hJGuSMZhUBBJPhmYcb4259bhMJSwMW0iQIoizg85GKun7hieRSBjiG9qjuPBEIIoib9y+jR/eKEB0ukibGMSixVPxD+2dYRAEgTRtGmnavgXEXl7Xyu2/FSDVlrNg2mZMyryuYCXPmNczWOlEJajwkfl0ZVaSNclkaDMY5zOOBFXCIT+PNnsbBqcBgHJLOVO3T+XWqFv5v4T/QyPVYLBbeT5rOfXmjn6Psaelmrdz13Jj6tQ+tTsOhcFhYE3bGja2byTLkEWRuYiaxXWYmkVW+LXDnv0ZDLWgJlAeyDDtMNK80hitG800v2kkaZIOcoaeJGmSsLvsSJEikUj4v4T/487oO7u+W5ckjsYuOtjSWA64s5sHZjxnRaQwL3rYEb/W440nGPFw3DgcvYuc8nCs9tZ+jiBhR0Esq6K3MSUscVDrXQwm9hX8Pr9nRY/lVySP70rN/hkfmP8VbsHksJHoE8StaTMG3Xve/YmvuKORNL9wzgw6k+1jtjNSNxKAKmMrj+9YCkCyOvi41TRopBrODT73uBz7z7Dis1JevmEzJr0d/zA19382mczpRxcM7e+YCWHnP0YS43dBr21EUSTflM8W/RZ2G3Z31azU2+rJN+aTZcjqtY9SouwKVmJUMQzxGtIjWCmzlO0/fmem4dXKV1nSuIRP0j6hoknZFYj4KtTMDE8h1tsfu+gWkFtfV4zdJbKnpYaN9aVMCk3o8/VZHBY26Dewvn09uzp2UWgqpMZWQ7ujvat4dB8qQUWAIoCEoCiMryajqQjn4ZfOYP7EScfkOzbUy50hTtIk8UX6F2R4Z/RYLxOkXJ0ykfEhcayqKSSntRaHS0QuSMkMiGR6WHKPB7vBhMe118MJo8Nm4e7N33LX8Nkk+wRjtosEPl6Oye5CAv2WZo2MbefOmfYuvYt7Nn/HKZFDuwq0zA4bd2/6liuTxw+KFlMPA8uOpgreznVrKSToArlz2Cxk3QIm0eXirdy1XcXRFyeMZnp48oCM9URTntPGI+espjJfj1wpcMVjGVx0T/pRHetYdsyIokihuZDN+s3s7tjdYxqo3dHeqyMJ3LUSDhy9lgsIuHAxXHo6o4Tz0Ug1LBo1t9d0ZXZLDa/uXQVAmNqb2Ql+bGjfwM6OnV1Fy62O1h5TIgAKiQJ/uT+RykhSvFIYqR3JFN8pjPAegUzY/3yft7WRWycsQ5BKeGvnXGJTfY/qvemOy+ViZetKJvlMQiU99DSLy+XCLjqRC9Jj0sJ+NHhcez0MOg7Uu5AJEm6b5ENVuwOz3YXJLpLV1EhVsxfdp2x2lPnwxa46Lk06OfQuPAwsGf6R+Cs1tFhNFOubeGb375wWmUq01p8aUxvLq/MoaHfXEKilcsYFxx2Xcdy/ZQnNVmOv5dPCkrgkcUyf+xwvSX6LycF/LlnLxiVVIIEp50Zz3/8moVAd3S2g3ewk45VqytscnJak5pcrQ/7Uk78gCKR4pZDilQJhvdeLokixpZjN7ZvZbdhNnjGP7R3bqbXV9t62M0uy27mULOevjJOfwgf1FcSqYtFKtdhddupt9XxW9xnb7LsxuToQbQ4e7db9LJfI8ZX5kuaVRoomhUzvTCb7TGasz1gUwuG1Nw8ZE8RTy2by71NXcNPoX3g/78zDUqs9GBKJhFn+s45oe8Vxrjk6VngyIx5OCKLLxRs5qzE57NxzkDbTi5Z+z5dr+q74/+C8IKYkWXhm9+88M25Bj66O/3Y+Cf9z6OQ+9/Xw96JY38iLe1ZiF539biMg4frUKWQEHFu10n102CxdmibgFvp7KXsldw6bRcoBAmf7xvzc7uU9JPmXVeX2kOT/tTKHXyv39piirDa1HXSK8n//2cP/HsvCYROJSfPhkcXTiErxOerX1d1j5vZJuuPeMdMftxfczhtVb/TKXHRHQEq4PIo2samrvsS9XEAlqBCQIxd1+EhCOCd8NmcEzWaiz0TUsmPXubfmm3Ieu2ANXt5yPi45G5+AwVU4erzxZEY8DCoOV++i1dD/ReDqbxp58ay/1w/Zw9GRoAvizmGz+LBgY58FjH5KDZcljiXd//iZL3of0K3wa2UOQSrtCZPk3/Z7DU9fvp7WegtePnLu/WQS0y+I5c+wrMDIvI/qcYrwzoJArh07cA+HpebSHjUbMokMh8tBojqR2bqzaGuJQCcJYWZ4MhfEj6LV0covTb/gL/dnlv8slIKSp3f9RkmHu2f5vtgzD6vz7EiZel4Md7w1jhev28zVQ3/gk5KzD1s8rjuDKdN2PPAEIx6OGz+WZ/FTRXaPZS/uWcljo+f1u0+H0QuJxIXL1Xt+0wXc+YOFsydqeGz7L1hFR9ePZzDqXXgYWOJ1gTwyah55bXXsaq7CaLeililI8wtjeEAE0qPonjhaHKKTzQ1lzI4Y0u/c/bGS5G+sMvLouavJ29KMIJVw7p1Due7ZkX+6gPKV9W3c/pPbY2bFP8KYOkAeM/soMhd16W0Ey4O5POxyLg29lExtJkaHlX9v/h6HS2RjfSlzotLxV/hzWdhl+/dvb+wKRMLUOgKUf06J9WDM/Wcy+hYr7923i2vTfuLDwjMP6XJ8IPdlntZnpm1UYN/S/ieb+aUnGPFw3HC5QCNTIJMIXJc6mSCVN9KDFFEV6xtp0Ct6VbK6dSslKKUwIsqJWmlnuH8ksyKH8ENZFi/v+YM2q2nQ6V14GHgEiYRUvzBS/fooRDiB7GquwuywMTGk//qUPyvJ73CIvHz9Zn79oAiXCJkzQnj4m6no/P98NrG7x8zOWyKI8Tt67ZVjxfyA+UzQTeCysMuY4julR+u0Vq5iTFAMGxtKMTvtPJe1nPPiRpDuH4ZDFNnSWMa3pbu6tp8WnnTcCzwvvncY+mYbXz+Xw/WZP/Nu9vwjChAHOtN2vPEEIx6OG9mtNZgdNu4cNosglVv+3elyYXM6+tS7WFGdT4cxABcSpBIXTpe7x8bHy8yDs7TMTdHy3/zVhGp82NFc5dYpiUrl2d2/o5UrB53ehQcP+1hfV0yafxi+h1DCPVoq1nRw9pgvsBidBEd78dBXUxg67s+3cA42j5nuPJX01EHX77v5ttnM1Jv1vJ6zGqlEQHS5eiiYJuqCmBx6Yh5krnt2FPpmK8s+KOa2Sct4deOcozrOicy0nSg8wYiH40a5we1aerh6FyUdTWhkoQRrIS60mbDARvKrAyhv8CXPtoECtwkrxXorEuDjgs1YnHZUUjlpfmGDTu/CgweAZouR3LZ6rk/t2+RuH0cjyV+wo5llt1fQvtaJQi3l5lfHcPbNPW9AR0ubyUHmqzXHrGPmROOn1HD38Nm8nrOGWpPbJdx5gFleul8Y1w6ZdEKvHf96fyL6Fisbl1Rx3xkrePKXw++O2ceJyLSdaDzBiIfjxi1p07E6HYRovGm3mfmpPJs2m4mRAfszGHcNn931d73NwucLpYwLjkUicQcr1/+ym7crFRTXBpAU0dy1rQu4bdgMorX+/Dd3HXax50XGw1+Xk62Qb0N9Md5yJcMOUSx7JJL8fg4vnrhoDduW1SL4wKhrg3n89VlHXIfQH/mNNsa8Xk2H1cUdk3W8MHdgOmb+LEFqbx4eOYfsllrW1xfTZDEgQUKU1o+poYnEegcMiP7G49/P4I6py9i6tIYnL1vHff87si7A451pGwg8wYiH40b3ToVILz/ivAO5b8sStjVVMLkftUNBIulxcZiS6OCDjQ5yK0J6BCMe/r6cTIV8osvFhvoSJoTE9yqYPRpJ/pnhyXz64S6ee2o7TqOLoDkKIu9Q8sSs2cfs6X4wdcwcCwSJwPCACIYHRBx64xPI86tO4foRP7Pi01J0AQpuennsYe13PDNt+/49EM0AJ0/OzcNJj0amIETtTWM/XhEH/ngK2urZ2FBEeEA7je29W+42N5Thcrk6f0yelt+/C94KFT4KddefrJbqwy7kC9P4cFZsBtFaP1bVFAD0KuSL9PLjqpQJtFnN7Gqq/FNjzWuro8VqYlIfDqktVlOXbxDsl+RfW1fE4zuWsqOpsock/8YfKvnviL1UPeRAOQRiPpYx9ulA7p4085gFIi+vb2POB/UIElj1j7CTPhAZzAiCwBvb5xIar+W7V/L5+NHe/j19caSZtu70l2nbxz7zy33bnEg8mREPJwyL006jxcB4Rd8tgd3T1MX6Rl7O/gOHSyQisJ2y+gCqm7REBO4XLlpenYeA5IQ6x7ZYjBgcPaWptTIl/qrj1xbooX8GeyFfql8Yb0+5pM913aco9zEqKJpRQT0zPLWlHTyyYDXFu1uRyiVc9lA6Cx/JOOb1G//8tpF3tg6ujpm/OjKZwHvZ87ks/js+fiQLXYDyoDU/xzrTNpjMLz3BiIfjxjclOxjuH4G/yot2m5kfy/cgIGFMUAzQ/4/nt8ocVtUW4ugsNpuaKLJ+LyiMYzkts5YV1fld636rzsVXcWJ+PC0WIw9t+7Hr3PuQSQQeHz3fE5AMAH/FQr592GwOnr1yI6u+KMPlgrFzwnngiyl46Y5cMOtgiKLI9HdqWVtmJTlQzs5bItAoBn/SvC8doxC17qA6RoNRBEyplvFB7llcFvcdr92yFW8/BbMu7Z1Jg0Nn2k5m80tPMOLhuNFqNfFu/gaMditauZJEXRD3Zp7a1S/f34/n65IdtNpMAASrtDwyajbLt9dQ2eZgQWwmMomU5dV5WEW3+mKST3CPH0+b2cnvRWZ+yTOxrNDM46f4cc2YP38xMTisvQIRAIdLxOCw4o8nGDnR/BUL+QC+fTmXd+/dic3iJDzRm4e/nkJiZsAxP8/J3jETrvHh9mEzu/59KB2jwSoCpvVV8O7e+VyZvISnLl+P1l/JuDm9a1yORaatOxKJhDNjh3NmbN8WHCcSTzDi4bjxj0P4xPT34ynSN7KyJh+AM2MzkAoC14/T8Y9vmyhucXBm7HBOiRzC3Zu+xeESKWpvJKvWyi/5Zn7MNbKp0oroApkADhFM9kFvv+ThKPgrFvJlr2/giYvW0lRlQuUl4+73J3D6VcdnCvKv0DEjSCQ9PrODMdhFwALDNby1cy7/GPYjD83/gxfXnEraxL7roP6KeIIRD4MOk8PW9ffIzieWaXFqRBckPVdJnJ+MjDAF+W3J1OvlGK1KnrZXI0jcqq/7Qg9HZxIjI+zYprU9DA6OR8tslNYP2F/Id6JqkdqaLDx27mqy1jQgEWDuPxO55fVxyGTHJ0uxNN/ImR/X43Sd3B0zDeYO7tn8HXJBIN47kAWxmf1Ol54MImCRSTpe3nA6t4xbyp3Tf+OtHXOJS/c77ucdDJw8+TgPfxs0sv2Fc1XGNgBi/WR8cn4Q758byDnpXrRbnOTW6GgxeGG1u2Nq0dVLSR6A4aF/PhhxiiKb6kv7Xa8fwNqCvyOHKuT7rpvU96yIFPa21vJ7VS51pnZ+LM+i3NDC9PBkoGch3+7mKqqNbXxQsPGEFPKJosjrt23lgtBvyFrTwNDxgXxeeS53vD3huAUiL61rY+6HnR0z1568HTNx3oFcmTyBW9Onc0niGJosRp7N+h2Lo28X35Oldih5ZABPLZuN6HRx05il1JUbDr3TXwBPZsTDoGO4fyQrO9sul1flMjIgCqkgcNlI765tfirfQ0xxNn9kJVJef/C59MxXqkkNljM5VsWZQzSkhymPaDx20clbOWvIbq3td5sP8jdy1/DZhHsdvTW7h8Pnr1DIt/LzUl66fjMmvR3/UBX3/m8SI2cdPxdh+Gt1zByNjtHJwoiZoSz6ZiqPnLuGfw77kY9LFuAb+NeWL/AEIx4GHSm+IYSoddSb9ZQZWng5+w/mxQwjURdEi9XIypp8VlTno5DDaaMKSZNH8++fTdhFF84D6ku9FRJazE6WFjhYWmDmgd9aESTgpxZI8JcxJlLFqUlqTk1Uo+qng+Drkh09ApE4bQBRWj/abRZy2mqxi04MDiuv7V3FI6PmdvnueDh+nMyFfOW57Tx6zioq8vTIFALXPJnJxfcOO67nPFk7Zo6EI9UxgsFbOwQweUEMd70znuev3cQ1Q3/gk9Kz0Wj/ulPOnqumh0GHIJGwMGkcL+5ZgcMlkt9eT35WfZ/bzolK4+zYEE6Jt7Hgk3oKm+2InXM1MgHumOzDo6f443CIrC618GuhiU2VVgqbHGyvtrGlysbrm/QAaOQSIn1kDAuVMz1OzZmpXvhq7KyrKwZALki5JW06Kb4hXefX2yy8kv0HlcZWmq1GtjSWn/RPZR6ODxaTgycvXcf6791CapMXRHHv/yaj0hzfy7C7Y6aa8jYnpyer+fmKk6tj5nA5Eh2jfQy22qEDmXNNEvoWG+/cs4Orh/7Ix8Vn9ZD8L97dgtXkJHXCnzdFHGg8wYiHQUmiTxC3pc/gnbz1vZ5mwB2wzIsexhlRaQAMDVaw/ZYIblrSxEc73HOsDhEyw91TMjKZwKwkDbOSeraAFjfb+DHXxJpSC3vqbVS2OyhosrM428QtPzYjlbhQKjLRaSxMiFHgTPTF5XJ1CWzpFCouTRrDU7t+A2BdXZEnGPHQi8+e3MPHj2ThsIlED9WxaPF0YoYe/ym9vAYbY99wd8zcOVnH8ydhx0x/HK2O0ckiAraPC/+VRkeLlS+e2ss/h/3M+7nzEQSBLUurWbRgFV4+Cr6uOw+JRHJSizJKXC7XoO971Ov1+Pj40N7ejk53chZbeTg67KKT7U0VbGssp8NuRSnISPENZnJoYr8tfR9s6+CG7xuxOqH4X1HE+/c/L+4UXeyotuKrlhLpI0UtFzDZRJYWmFleZGJZcQs17XQWyboDEI1cgkomYdEsP26d5L6h3Lfle1qsJtRSOS9NPP+Yvw8eTk52rKjhycvW01pnwctHzu1vj2PGhf0LtB1LunfM/Pfsk7djpj/eyV1Hob6xh47R2bEZBKndtWXPZy0nQOnFlSkTuvZxi57tptliPKTo2b7aoUsSxhCiGfj37oV/buSXd4pIHh3A+XcN5cnL1iM63bfvN3fMJWCoclCKMh7u/duTGfEwqJELUsYHxzE+2H0B3xf5t9vMXb4eB0b+V432ZkykkpXFZuL8Dv4VX1NqYea7++tBfFUCkT5S4vzkRPnKGB1jpdFei8GswF8Sx9oSEZPdhUomYZ++ksvlYl9IPwAGoB4GIU01Jh45ZzV5m5sQpBLOuX0I1z8/6oRNj7y0ro07f25BLoUV14QxNf7wtDhOJo5Wx2iw1A4dKXf+dwL6Zivrvq3kPxev61ouSCVs/qmKqUmRJ7UooycY8XDScCRy7OmhCtIPo6V3dKQSpRSsTve/2ywibRaR7Ho7Ugk4XV5AEgA6lZ27pgRw+QgtyUH7j13S0dSlGBum8f1zL9LDSY3DIfLKjZtZ+l4RLhEypofw0NdTT2gnxF+pY8ZDT4aOD2Ldtz3NG0Wni/XfVzL1jsgBGtWxwROMeDhpOB5y7N5KgXPTvfhqj7FLJG0f7gyoBHAR4tvBggl5XJA+hWR//65tWq0m/le4pevfUzz1In9blr5XyOu3bcNidBAUpeHBL6eSdgILC0VRZNo7taz7C3fM/F1xuVy8/8AuPn8yu8/1hTtbaG+w9rnuZMETjHgYcH6t3Mt3ZbuZGZ7ChQmj+t0ut7Wu33Vw9CZXFw7X8tluY5/rJMCkRBtDk3IQJfDa3tUk6IJI0gXRbDWys6myK0AKVmkZFdh/CtjDX5OiXc08dt4aaooNKFRSbnplNAtuGXpCx/B36Zj5u/L18zn9BiIAuGDPbw2QduLGdKzxBCMeBpSyjmbW1BZ1yb73R7G+ke/Kdh90myMxuRJFkf/tMvLCunZ219r6PJ4ggXlDNHx1cQwfFDaxs7myayzF+sYe2/orNdycPt2jMfI3wqi38cSFa9n6aw0SCcy8JJa7P5jQo/XyRJBbb2Pcm3/NjhkPbuKH+xGZoqMqX49UJsHp6Nl3IpHA1p9q+g1GToI+FY8cvIeBw+K0817+Bi5PGodGdvD6jhXV+STo/r+98w6Pqkr/+Gf6pPdeSCOhBAgtSAdBUeyunbWwlp+ruLu67ooVyyrquruufe29i2BBUHoLPQFCCgnpZdInkzKTKff+/pgwIZAgIKmcz/PkycyZc++ce3Jz7/e+5y3dX2SPLXIV6eHHwqTJGNvMZNR2rLHuKLFwwbuVuD1WxM1f1XDAYGVChJZLh7ujOuq/QaWAmbF6vrwhBJ1GxR3Dp7IgYSJh7p3DMd3VGuaEJ/FgyrweLTMu6D9IksS7j6RzZeCX7FpVQXyKHx8evpyHPpne60Lkp9wWRr9URrNV5u0rAoUQGaRMOD+c97Iv5bXd87nkzkQ8fJx+QEqV02NeluHA6lrkboqCLivMoM1h77Xxng7iMU7QZ3yWv5tRfuEM9wtlZekJTJBAXmM1yhOEqtSam7stcrWvppa3tnjwdWYLDWbnksoQXzW3p3rx16k+6LVKMg1Wvst2OqGqFDA+Qsf3N4eiUzu/U6lQMiNsKNNDE6hobcRktaBVqYjy8BPWkLOItB/K+OctWzHVWfHy1/L396Yw+dK+yUFxNkTMCDpQKBQkjg8gcXwA//ev8excWc6q9w6z/YcyZAmwg/FLiYAFagL1HjTZ2jA7nHV6chqreDtnK3eNmOHKkdTfEFdRQZ+wq7qIkuZ6Hhp7wa/2PdhQ0WXis6NZUbIf6ChyZbVL/HtLI29nBFFY44EkNeGrV7JwvBdPnudHpE/nUz85VEtyiIbMKhvDgjSs/kMoHl04/ykUCiI8fIno31FygjOMobiZJZdv4HBGAyq1ghseSuaWp8b0mV+GiJg5u9FoVUy9PJpzLovk76uXU/x5C8aPoPkzJc/cdz4JiQE4ZIk9NSV8kr8Ti8PO/vpysoyVjPTr2fpHp4sQI4Jep76thS8K9vKXUb9eiKzRauZ/2R0x9QE6d0b7R+Kp0bG3toTy1kYAqtrrUfyU08p/Ntexu9yKJIOnXsc58Y08f+4Ipsac+MnxoVl+vJzWyPIbQ/F167kCaYKBg9Vq519/2M66TwuRZZh4QTiPfDEdD+++qREiSRIz36xkS7GImBHAgbpymj0sBNyqYuJNQRy8o5kn52/mxS3z8A91IzU4BoB3crcBsLEyX4gRgeAIJU31NNksPL13latNQiavsZoNFYd4ddq1KNvLwm+qzHetdYa7+/Dw2AtQtwsYCRlbtURBrcz2vBBMLW68aWpEASSHaPjLVB/qNDuI9vL7VSECcH2KJ9eneJ75AxYMSJa/ksObf9+L1ewgLM6TR7+aQeK4E1eI7kmMrXbGvFxOidHBhYlu/CAiZs56DjVWu17PGzOcm37x4c9TVnHXxJU8/eNs4kf7Mz4omi8O76HZ3kZeY9c1vvoDQowIep1hvqE8Nm5+p7YPDm0n1N2beZEjXEIEYHt1geu1t1aPWqlClmXa7DJbystZlRHJgVKn42h0sJHLEmr5+JIJeOqVmO027t9ex6zwoSccT0NbK8sKMzjYUIFVchCk9+TmxHOI8er+xpNrrOKrgr1Utjbip3NnfnQyU44pZ7++4hC/lGXTaDUT6enHdfHjifUSDob9nYNpNfzj2k3UlLai91Bz71vncNFtJz6HTobfUjdERMwIusImObM1SpLEgU9qWL7pMK1Ndiwtdr75dzZ/f38qKoUSH60bzfY2rA5HH4+4e4QYEfQ6erWGCLVvpzadSo2HWkdEe4jve7nb8NG6UWdx5v8I1ntxqLGaX8qyWZHhzo7qIsbEG7Fa45k/XINn0C58PdtQK5QcbgnH3+7BRzkHMTUFsL/Ejx/311PXKrFkjh+BHh1LMC02K//c9wuJviHckzwLL42eanMTHieI7qm1NPPKwQ3MCBvKrcOmkGM08NGhHfho9S4T6K6a/Mc5/AAAUy9JREFUYr4u2MsNCROJ9QpkbUUOL2Wu54nxl7j8WgT9i8Y6C09etYl9G6pQKGH+bQn86fVJqNW/3fpwMtmD1x028/xGI59eF4y/e8c5enSNmbevDOTWiSJqS+DEfEii4kkH5r1QaM9E76Hm6r+OYNJF4QxLdSbcM1nNVJqdy9n9+dojxIigX1Lf1gooUCqUOGQJGZlbk6bwXfF+7D4tJGn0rM9IpKBKjVphp7oyHi+3NlSyO5+sb6LJbEGSncLgY+pQKJzhb3ekencSI6vLsvDTuXNL4jmutkD9iZdqNlbmEaj35Oq4cQCEufuQ31jDmvJclxhZU57DtNB4prZnZF2QkEpmfQXbqg5zQdQAzkw0CJEkiTf+upflL+cgOWSGTQrk8WUzCQx3//WNT5KTyR788Op6tpe2cdmHBtbeFo5WrXBFzGhVsP72MKadxHKjYHDTYrLy4eP7WfNxAY01TkubOhRCrtLwn+cuwd+9w9ImyzIrivcjtecZmRgU0xdDPimEGBH0C44tanXkfbW5iYKmWmoszfhq3XhywiWuPk2zJL7PbuWhX0qpMXpTY5Q5Uln3WGQZ4vzVJId0jjrYX1fGCL8w/pe9mbzGany17swMG8r0sIRux1pgqmXYUSHEACP8wviyYC8AdslBSVM9F0aOcH2uVCgY5htKgan21ydD0Gts+LKI/9yxnZZGG34heh78ZCrj5vS+g19GRRvbS503lm0lbdy2rAatEt7Z0ywiZgQArPuskM+WZlKYaQQZ9B5qzr0hBm40U+xRC0g8d+Bn5kYMI9EnhIa2FjZU5pFtdGauVimUzDjBda2vEWJE0K+ZHpZAQZPzBv7eoe3cNWKGaynHXQMBgSXMOyeDvXlh7M4b0u1+VAq4cazncTH2NZZmNlbmMTdyGBdGjaSoqZ4vCvagViqZfIwPyBFMNstx5k5vrR6Lw4bVYafVbkVCxquLPgaz6VSnQNADlOY28viVGynOakStVbLwHykseHhUn43nlbRG1EqwSyDJ8FF6MwBJgRr2ioiZs5bS3EbefjCdXT9VYLU4UCghaUIAv39klCu/TX1bC89n/EKDtRWj1czXheld7mtBwsRftfr2JUKMCPo1E4OGsKYsh/JWI7WWZp7cu5IE7yB8tG7km2potJoBGDe0kinhkby0seuQXIcM5SY7jWYHPkeF7crAEE9/rohJASDa05+KViMbK/O6FSOCgYul1c6zN25hy7elIMOUy6N46JNp6N377lJoNEt8nN58XKFGgEfP9RFC5CzDarHz6TOZ/PROPnUVzutbQLgbF96awA0PJaPVdz5X/XUe/D3lPD46tIMs4/H1u/y07lwTP45x/bxu1mn9B7766qv885//xGAwMGbMGF5++WVSU1O77PvWW2/x4YcfkpnpzLA5fvx4nnnmmW77CwRHo1GquCd5Fv89sI7KdqtC/jF1YQDmR43k0iEJxHg2ct+P9cd9rgDe3tXM27uaifdXs3CCM/uqj1Z/XIr3MDcf0mtLj9vHEbw1ekzWzknYTFYLepUGrUqNUqFAiYKmLvr4aPqvA9lg57PnMvlwyT5sbRLRw7xZsmwWQ4b7/PqGPcyX+6zYuhAiALd8XUuMn5apMeK8Geyk/VDGx0/u59CeOmQJtHoVU6+I4g9Pj/3V89Rf58GfR51LZWsju2uKMVktaFQqEn1CGOUfjkrR/wXtKYuRL774gvvuu4833niDSZMm8eKLLzJv3jxyc3MJDg4+rv+GDRu4/vrrmTJlCnq9nueee47zzz+fgwcPEhERcUYOQjC48dO5szhlHpsM+WyqzKPG4jRhK1AwJiCCc8OTSPINAeDeab7YHPDAqg5BolTAM/P8GRGs4YVNRtJK2njk5wYe/bmB4RExlMc2ckOc5IqaqDKb8Nd1H24Z5x1IZn1Fp7Zso4G49to5aqWKaC9/so1VpAQ6TamSLJNjNDA7PPHMTYzgpEhfZ2Dpgs3UGyy4e2v423tTOPf62F77fkmWuq04Lcnw3q42pG7qmDkkuPgDAwf+Enlc1mDBwKeqpJl3H8pg64pSLM12UEDsKF+uf2Aks6+PPeXU7WHuPlwyZHQPjbZnUcinWM5v0qRJTJw4kVdeeQVweqJHRUVxzz33sHjx4l/d3uFw4OfnxyuvvMJNN910Ut9pMpnw8fGhsbERb28R1nY2I8syjVYzNsmBl0aPXt21U9/T6xt45OcG1/vCv0cR0+4AKEkSn+1r4cWtjWQYLNgdSnRqB8mhaq5MsVMh7+XGxFQmBTtvWN8WZmC0trIwaQrgDO19Ys+PzApPZGpIHDnGKr44vIdFyTM7hfa+n5vG74emEuMVwNryXPbUFvPE+Ivx1oqIiN6g3tDK41duJCutFqVKwWV3J/HH/4zv1URhFoeN/2Vt7tJ8DlBS7cuq3cOOa1cpnEJFBgLclay7LYzRYboeHq2gN7DbJb75Tzbfv5aLociZusAnSMfc38dx0+Oj+yy7b09xsvfvU5LaVquVPXv28OCDD7ralEolc+fOJS0t7aT20drais1mw9/fv9s+bW1ttLV1JAcymYTTn8CJQqHAV/frIZcPz/ajzS7z1DojEyN1LiECznN2wVgvFoz1wm6X+MeWIr7KMnKwyps9P2hw04xjX6aWv81o4dIRHjRaze2hxk4C9Z4sGjmLrwr2sq48F1+dOzcmTuqUZnli0BCabRa+K96PyWoh0tOPP42cLYRIL2C3S7y8aCcr38pDlmD0jGAe+2YmvoG9u9QhyzJv52ztJER8tXp8te4YzCYsDjubDsTilBxOS58M+LkpmRPvxuw4PbPi3BgerOm3xc0EJ8++TQY+eHQfmVtrkBwyao2SCfPC+MM/xpI4oe8y+/YXTkmM1NbW4nA4CAkJ6dQeEhJCTk7OSe3jgQceIDw8nLlz53bbZ+nSpTzxxBOnMjSB4DiemOtHtK+aEcHdP2mo1UoenxXH47PisFgl/rOtkfd2N7GluI0tH1WhVyuYGRvDg7N8O22X5BvCI+MuPOH3zw5PYnZ40pk4FMFJsvqDfF5ZtAtzs53ASHce+Xw6yVOPXz7uDQ41VnOgfTnPTaVhYdJkRvtHoFAoaLPbuPnbAlrbNCiQiQ1t4E8T4zgv3lOIj0FEQ42Z9x/JYMOXxbQYnRV0I5O8uereYcy/feivWukkWeL74gPsqC7CZLPgo3VjSkgs86OST3iODMQM0b26CPnss8/y+eefs2HDBvT67p9SHnzwQe677z7Xe5PJRFRU35TpFgxcFAoFt51Ctkq9VsmDs/x4cJYfJovEsxsb+CS9mdV5ZlbnmfHUKjgvwY1H5/gxNlyYzPsTBfsbePx3G6nIb0KrV3Hnf8Zz1V9G/PqGPcjGyjzX6+viJzAmIBIAi01i4df1fLFfwxUpTQSEHkSphHGxvowI6d5iLBgYSJLEyrfy+Po/OZTlOq36nr4aLrojgVueSsEv+OSto6tKs9lYmc/CpHMIc/ehuKmeD/K246bScm5E1w86AzVD9CmJkcDAQFQqFVVVnYvtVFVVERoa2s1WTl544QWeffZZ1qxZw+jRJ3aw0el06HTiYn828NDOFdS1tRzXPjNsKDckTOxymz01Jawo3k+dpZlgNy+ujE1hlH+HM7Qsy3xffIDNhnzMDhvx3oHckDCRELeTFybeeiXPzAvgmXkBVDXZ+cd6I18faOHbrFa+zWrFV6/k4mHuPHauL0ODBtca70CixWTl6eu3sHNlOQoFzL4+hr+9O/m48Me+4EiCO71KzYSgaCw2iZW5rfzlhzqqmx18vSCYMVFe/HP/QQAON9WeMNmeoH9zaG8d7z6UTsb6KuxWCaVKwegZwdz85BjGzDzx/bE7CppqSAmIcF3fAvWe7KopprCprtttBmqG6FP6j9VqtYwfP561a9dy+eWXA04VuHbtWhYtWtTtds8//zxPP/00q1evZsKECb9pwIKBT4utjbXluWQ1VKJWKonx9CfeO4gJQdG0ORy8mLmO8d3ExB821fB2zlYujx3DaP8IdlYX8XrWZh4ee4ErGdrqsmzWVeRyS9JkAvUefFe0n5cy1/P4+IvRKLvOQ3IiQrzUvHxpIC9fGkhhvZUn1xn5LquVjzOa+TijmSAPJb9L9uDRc/0I9+77m+DZgCRJfPj4fj57NhOHTSZutC9Lls0kIr7/OLhbHQ7yygMoNoTwxfoyGswOrA5ndNf3N4Uwf5gHVa0dMb12qf8WMRN0TYvJyodP7GfNRx2p2UNjPLjkriR+d+/w31zXKM4riC2GfKpaTYS4e1Pa3EC+qYar48Z2u81AzRB9ylfO++67j5tvvpkJEyaQmprKiy++SEtLCwsXLgTgpptuIiIigqVLlwLw3HPP8dhjj/Hpp58SExODweB05vL09MTTs/9mgxP0DBsr8/iqYK+r2uQRiprr2VSZx3C/MIL0niT6dL3Ov7Y8l5H+Ycxr/0e6LGYM2UYDGyoOsWBoKrIss7Y8h/nRyaS0m8UXJk3m/u3LyKgtZWJwzG8af6y/lveuco7tQGUbT65rYHWemTd2NPHGjiYivFVcP8aDh2b54teHibQGMztWlvHczdsw1bbh5a/l/nenMPWy/rGMu6HAzNu7mthYaKasMQVnhhuZAHeJxbN8uSrZkxhfFV56pyg+2rnV7yQcswX9g3WfFfLZs5kUHjCCDG6eauYsiOUPz6QQEn3m7msXRI3A4rCxZM8PKBQKZFnmspgxrki/rhioGaJP+Wp57bXXUlNTw2OPPYbBYCAlJYVVq1a5nFpLSko6OeW8/vrrWK1Wrrrqqk77WbJkCY8//vhvG71gQLG+4hCfH97d7ec2WWJ/fTnnBMd065xV0FTL3IjOoZAj/MLYV1cGQK2lBZPNwvCjngzc1FpivQIpaKr9zWLkaEaF6fhqgfN7thVbeHp9A+sLLLyw2cQLm03E+au5eZwX908XWTTPBIbiZh6/ciP5e+tRqRVct3gkf3g6pVdDdY8lp9rKGztMrDpk5nC9zZVF1UunYFSYjJdfEYmRNYwPDuWPw2egOmqsxrZWVpdmud5POoPnpuDM01Vq9mETA1jw6GgmXxzZI9+5p6aYndVF3Jo0hXAPX0qbG/iyYA++WrdBlyH6tB7dFi1a1O2yzIYNGzq9LyoqOp2vEAwyjG2tfNVuJgSYEhLHeRHDCXX3oqipnpWlma7Ig8z6SuySA3UXSyomqwXvY7KYemv0NLZnOzXZnOmTu3oyaDwmI+qZZMoQPT/eEgY4S74/v7GRbSUWlqxp4PE1DQwL0vB/k7y4e5L3GSlJfzZhtdr5923bWftxIbIM488P49EvZuDp2/u+OrXNdv63q4kVWS1kGmyY7c6wXJ0KRoZouWSYO/83yZtIHzUttjYe3pWO2SFxoL6Cf6T/xKywRILcPMk31bCxIo9mu9O0n+QTQqSHX68fj+DEdJua/bYEbnjw+NTsZ5pvCjOYFzXC9RAV4eFLXVsLP5VmdStGBmqGaGFHFpwRZFnG0mrHzaPrJGRbDIdxtJdQP9Y5Nc47kLtGzOT+7d/QYrfSbG9jb20pqQP0SfHCJA8uTPJAkiS+OtDCf7Y2srvMyl9+qOe+H+tJCdNyz2Rvbhrn2adP9QOBFa/l8ub9e2gzOwiN8+SxL2b0ak4Gi1Xik33NfL6/md1lVowW5zmsVECMn5rzEty4I9WLcRHHX8Q9NDruGD6NVw9uxC5LVLQ28unhXcf1C9B5sDBpco8fi+Dk6S41+21LxxKV1HslBKySHeUxlciVCgUy3ecqHagZooUYEZwRvv53Nv+7fw/hCV6MmhbMiClBDD8nkCEjfFCplOyvL3f1vaDd38NU38aOlWVMvSwKs8ZGq93q6rO/vrxLMeKt1WOyHaPobRZ82i0h3hpn2JzJ6ozJd/WxWojy9D1Th3tSKJVKrh3jxbVjvHA4JN7Z3cyr201kVFpZ+E0tt39bS2qkjvun+3JFcvfp589GsnfU8NQ1m6kuaUHvoeLe/03iojt6/kIpSRKr88y8t6eZLUUWKps6fJtCPVX8LtmdW8Z5MT/J7aSE5Ai/MO4bPYcvDu+huLlzzSQFCsYGRHJdwoRO56qgb6gqaeadB9PZtqIMS4szNXvcKF+uW5zcq+UDjma0fwQrSzPx17sT5u5DaXMDa8pymBLaYRU5NkP0zLChbKg4xDeF6a4M0XtqSliUPNO1zdyIYbyfm0aMl78rQ7RVsh+Xi6Q3EWLkLKTe0uIyDx/BU63DX3/6N0T/UKcYqMhvoqqomdUfHAYZdG4qklIDqI014YhzoHfXsHprIfs2VLFvgwFbm/NJM+AKFS15Duz1oA4FR2IVkefnM2p6MOHxXi4fkjivQHKMhk5+I9kNBuLak/UE6j3w1ujJMRqI8nSavc12G4VNtczsw7BJlUrJHZO8uWOSN202iZfSTLy9q4m0kjau/KQKnRqmx+h5cJYf58afvTcmU72Fp67eTPo6AwolzFsYz71vntOjS1v7K9t4Y4eJX/LNFNbbcbQ/dProFZwbp+fa0Z7cNNYT/Wn6/cR7B/HQ2Asoaqojx2jA4rDjrdGTEhh5whpIgp6nu9TsF//fUG5c0vep2a+Ln8CK4v18mr+LJlsbPlo3poclcHF0sqvPYMkQfcq1afoCUZvmzFFvaeHR3d9jlzuXCVUrlDw14ZLTFiS15a1cF/nNSfXVeagYPT2EkVOCCIhwQ6lSsMy+h9rXJUxZdmQLHG2FVOhAq1LhHaDDN1FL4wQTYyMjmJ4aS1WQkdXl2Z1Ce1eVZrG67CC3JE4mUO/JiuL9lLc0nHZob0/SbJF4bpORj9KbKTbaAfDQKJiT4Maj5/oyIfLsqNYqSRJv/m0vy/6bg+SQSZoYwOPLZhIUeeZv1hUmO//bYeK77Faya6y0OacdvVrByGANl47w4I6JXoSKMO1BS1ep2cfOCWHhP8aSOF6kZj+TnOz9W4iRs4yS5nqeTl/V5WcPj72AaM/TzwC5IHYZVUXHJzBzoQTfG+CKh4axYHiHz0hWQyX/zVxPgncQ+aYaAK7wGosmS883OelYDstIu9U0VJkxN9uRHB2nrEILajclXu46AiPciRjqRVyKH6ZkE3nelZixkeATxA3xEwlx79/nTnWznWfWG/nyQItrecBHr2B+kjtL5viRNEiTq236uph/3Z5Gi9GGb7CexR9OZcK88F/f8CRptUq8v6eJLw+0kF7RhqnNef6oFBAfoOH8oW78X6oXyaEi0eJAQ5blk06d31Bt5r1HMtj41emlZhecHkKMCI7DbLfx/qE0MtrDYI/l+vgJzDoFBya7XWLbilLWfVpIVlot9ZXmLvspVQp8gnR4PWtD074kOT00gfMihxGs96K0pYEfSjJd4bleGj1LUy/r1ophqreQuaWGnB21FGYaqTzcRL3BTEujDYe98+ms1ijx8NUQEOZGWLwXcaN9GT4pkJFTg/vcBHsiio02nlprZHlWC3XtibEC3ZVcMdKDx+b4DYpy8mV5Jh6/YgNFBxtRa5X8/tFR/P6R317+XJIkvss288HeJrYVW6hucc6fAgj3VjEjVs+t472YHa8XN6B+xKksH1ta7Tx88Toih3pz7//O6XafkiTxw//yWPZiDmWHOlKzz7w2hlueHHNKqdkFp4cQI4JOmO1W/rV/LaUtDSfsd1vSlG5zcUiSxI4fylnzcSGZ26qprzBz5Ozx8NEQEO5OSXZjp22UKgUxI3155qdzyZBLOoX3wpGUUEe/V/DHEdNddTxOFUurney0GrK211Kwv4HyvCbqKlppbrBis3ZemlKqFLh7a/AL0RMW50nMSF+SJgYyakYQ/iH9JwHVwSorT61r4KfcVtdTfbiXiuvGePDwbF/8B1hyNavFzrM3bmXTNyUgw+TLInn40+nof8Nx7Cy18ObOJtYeNlNitCO1n1R+bkpSI3XckOLJdaM90J5h3xOL3caK4v1k1JXSZGsjysOPa+PHE+PVval/IBYx62lOZfnYbpN45OJ17P65EpVawVdVV+Pt39mqdWhPHe8+nE7GuirsNmdq9uSpQdz81BjGzDi91OyC00OIEUEn3s9NI626EACtUsWYgEhiPQNosrWRXlfqyrynVih5YsLFBOo9kSSJ3asr+eWjAjK3VFNb3sqRa4W7t4a40b5MvTyKeQvj8fbXU28wc03Y167vVCggdX4Ej3wx3RXyu74il68L0o+76AC4qzXcNPQcxgb2TDZNu10if28dmdtqOJzeQNkhEzWlLZjqrVjNnTPCKpTg5qHGJ1hP6BBPokf4MHS8P6OmB/dpyvEdJRb+sb6BdYcttNqc/7oxfs7kan+b7oOHrn8/6X/xz4O8/2gGtjaJyCRvHv9mBjEjTz2/RnGDjTd2mPgxp5XcWhvW9j+fu0bBqFANV4704LaJXj0u1N7M3kJFayM3JEzEV+vGjupC1pTn8vj4i7rMqFpraeaJPT8yI2wo00LjyTEa+PLwXhYlz+xUxOz93LRORcz21pb0aRGznuZkl48lSWbpgi1s+KIIWXZeYxa9nMpldyfRYrLywZL9rP24gMbajtTsl96dxJV/+e2p2QWnhxAjAheNVjOLdy5HkmX0Kg2LU84nzL0jVl6SZT44tJ1thsNY9oLXZm8a99qpLm1xiQ83TzWxo3yZfGkkF/whoVvz5k1Dl1OR3wTA5fck8cf/TECl6nwRaLJa2FpVQFZDJWaHDU+1lrGBUaQGx6BXdZ2npKeRJInSHBOZW6rJ21tPSU4j1cUtGGvbaGuxI3c236BzU+ETqCMoyoPoYT7Ej/UneWogcaP9es30/0teK89uMLKl2ILV4bQyJQVpuH2iF4sme59xK8BvYd8mA89ct4W6SjPuXmr+/Pok5iw4+TBCk0Xi3d0mvs5sIaPSSovV+QdRK2FogIYLk9y4M9W7V4sWWh12/rztK+4aOaNTocan039ipF84l8eMOW6bbwrTyayvYMn4i1xtb2VvodVh48/JswFYmrGaGE9/rm/PxSPJMg/uXM7s8MQ+K2LWk0iyxPfFB1hZerDLz/86ag6JviHIsswr9+xixau5rs8UCgiKdMfDV0thptGVmn3KZVFnPDW74PQ42fv3wLLvCk6L3TXFSO1301nhQ11CxNJqx1htYefKctb+24ChUAYJKmlE76EiaUIA51wSyYW3JhAQdnLLFqkXhrPilVzuenECV/xpeJd9vLR6LogawQVRfVvi/WiUSiVDRvgyZIRvl59XlTSTubma3N31FGcZMRQ2Y6y2UFtWy8GtNZ36avRKvPx0BEU6HWrjx/gxYkoQSakBaLVn7l/uvKHunDfUHUmSWHawlX9vaWRXWRt/XVnP336qZ3SolkWTvVk4vm+Sq5UY7ZRXtPL57ds4uK0GpUrBZYuSuPu/E351PHa7xDcHW/govZntpW0uvxkFEOmj4ncj3bh1ghcz4vpuzV+SZSRk1IrOvk0apZrDppoutxmoRcx6Crvk4K2crd36sQF8eGgH94+Zy3fP5nUSIgCyDNWlrVDW2uOp2QU9ixAjZwENR8Wgj/B1pixvqDZzXcQ3LodPd28NXsPUqFIdeF8Eb/3uOlSKU7+B3fJkCvNvH0rcqMGV2jok2pOQBZ5dPs031nU41BYdNFLR7lCbn15P7q461n1a5OrrcqgNdyc83pPYUX5Oh9ppQXh4nd5TvVKp5KpRnlw1yrm09t7uZl7ZbmK/wcpty2q5c3ktEyN03DfdhytHup+2MDnWwfBEuWk2FrQy780KFCYrU7fVMGp6MI99PeOEDoNbisy8tbOJ9QVmyhodLl+iAHclFyW5ceNYT3430qPfmNv1ag1xXoGsLM0kzN0bb62enTXFFJhqCXbr+ol8oBYx6ym+KtjbSYiEufsQ6e5Lg7WF/HbxVdPWzINLVpH3XNeRegoFXHp3Ive8PKlXxizoGYQYOQs4usZLs60NWZb57x93olQruOfVVGZePQRPXy2P7v6eGkszShTHpSA+WTx9tX1SM6Qv8QnQM/WyqC4rx1pa7WSlVZOVVkvhfiPl+SbqKsyUZDdSsK+BLctKXX2PONT6h+oJjfUiJtmHYRMDGTUj+KS9/pVKJbemenNrqjdWu8QraSbe2tXE9tI2rv60Gq0Kpg3R8+AsX+YOdeeVP+2k+GAjf31nMqEx3Zu0sxsMvJS5Hukod+PuctM88sphnimRkZUK8NHz19VzufD8sOP2mVdj5Y2dJn7KNZNX11FkzkOrYMoQHVcle/CHCd546/uH+OiKPyRN5oNDO3hg53KUKIj29GNi0BBKjsm2KjieRquZTYZ8wHku3TlieqflLkOriZcy15P7oonGz7pPGSDLsPbjIu781wQ02v6VR0hw8ggxchYQe5Rn/xZDPkWftLBlWQlPfDuTqZdHA04P/xpLs7O/d8BJx+4fzaHGan4uy6KkuYFGq5k/Dp/uqn3QHYM9skDvrmbcnHDGzTk+b4bdLpG3p46DW2s4vK+B0lwTtWUtGIpaKMk2sXNlRwp9hRLcPDX4BukJifFgyHAfhk5wOtSGx3W9DqtVK7lvui/3Tfel2SLxwhYjH+5tZl2BhXUFBtw1CoZkWfDfVc+tI79j0cupXLAwvtPfvtVu5f3cNPYdlc7fNX5Z4ouCPdw2bCoapYrCzAau+ftBdo8OcxZvUShQAKW+TrFS32rn7V1NLDvYygGD1eWAq1XB8CANFw1z585J3gzx6xu/odMhyM2L+8fMpc1hx+Kw4aN1483sLQTquxZ2A7WIWU+QVlXgWj6eGzGskxBpbrSy+3MDhjdlGo8KwFOqFCgUHBfC32y0suPHcqZdEd0rYxeceYQYOQtI9g/HT+dOQ1srW18tp/6tci7/c5JLiBw21fBebpqr/4ywoaf1PVaHnUgPP6aGxPNG9uZf7V9raeaVgxuYETaUW4dNIcdo4KNDO/DR6jtFFnxdsLdTZMFLmesHRWSBWq1k+KQghk8KOu4zSZIoyW50OtSmN1Ca3UhVSQv1BjOVBU2krzV0dFaA3k2Fd6Ce4Gh3opJ8SBjnT/LUIGJH+aJUKvHUK3l8rj+Pz/WnttnO0o1GPt/XTO7YcKSJkfiUNnL4lUK+X1bKP94+B/9QNywOG/85sJaS5u7DwTPqynh1z0aqnpD5xKKjdGJn0aVQwGO/1LN4VT0N5o4ic9G+aubEu3H7RC8mRQ/svyOATqVGp1LTYrOS1VDJlbFju+w3UIuY9QRlLUbX64nBQwDIz6jnscs20GAw47DLTLggjLY7W5GDHegtOmboEqmrMFNb0Up1SQv1FWaaGpw1rXJ31QkxMoARYuQsQKVQMtYQy4cP7qctC1BB7hVFvHigmUarmYrWjtwg0Z7+TAg8vX/oZP9wkv1PPnPmxso8AvWeXB03DnCuF+c31rCmPNclRtaU5zAtNJ6pofEALEhIJbO+gm1VhwdlZMERlEolMSP9ug17NRQ7HWoP7amj+GAjhiKnQ23WtlYyt9TAOx19tXoVXv5aZ4baRC/ix/izcHIgf/6dLzeNWUnNUH+qhgdx6Lw4DgFf3JvNjBGeXHBZq0uIeKh1zAofSoxnAA5Z4mBDJWlVBVS9Y2fFZxUcvDCRmuTjc2tIMlQ1SwS5K7h8hDs3jfXishEnV2RuIHCwoQJZhlB3b6rNTXxTmE6ouzdT2617g6WIWU9wdCCnUobvXs/l7cXptJntXLAwgRuXjCYgzI37ty+j2d6Gr1bDLZNSjtuPzeqgocpCQLhIYDaQEWJkkJOxwcAHj+3jwOZqV5v7ZLAq7WQbDZ36Rnn4cc/ImZ18THoSEVlw+oQO8SR0iCdzf3/8DcpYayFzcxW5u+opPGCksuAYh9pPilx91UBYZg1hmTVY3dRUJwVSNSKQ5S0qVnzsiZtuLPGRDXx65TCSgzpKBXgUu/HV5QXUtWnY84dkLN56pxmkG1b9IZxxEYMv3brZbuPbon0Y21pxV2sZFxjF5TFjULWLrcFSxKwnCHFzLi+a0yVuv+Qn2hodzFsYz53/Go+Xn/NcyWusdjlNB7t5dbkfjVZFcJQoODjQEWJkECLLMhnrDbz/2D4ObnWGVB7NqDnBmJRGrJIzU1S0px8zw4YyKTi2VwvJiciCnsE3UM+0K4Yw7Yohx33W2mwlK62WnB21bFlWQn56xxKM1mwnMsNAZIYBi6eW6uGBGEYEcsAeyuh/NzDHv5ELYrTkbqtmw/YG/DVa0q8bjtVLR+c8up1RKmBNvnlQipEJQUOYEHT8PB/hlqTJx7Ul+YbwyLgLT7jf2eFJzA5P+s3j689M9IvhnRv30bIFUDq46slh3PloR82qJquFzw/vdr0/Yh0VDE6EGBlkHNxWzf/u30NWWq1LhBxdWA5gwbxxDDsnALPdhkapQqsSp8HZgrunlgnnhTPhvHBaGm0UZTZitx2fDVffbCV6VwXRGRXYx/hTGOJPWogna+o9QO+D32wvJo8ZyRivKnIaSjFbtfgSx/4Kmapmp8hVK8EhOZdqVue18veZvr18tIL+StoPZTxz/WbMzaCNh7AXFOwLyOd/WRbivAOpsTSzo7oIi8NZ0C5Q78n401w+FgwMxF1okPHaX3aTu6sOOF6EAKDA6dSoUOKh6dsnVRFZ0LeU55mw2zuEiEIJsgRDx/sz/DI/9g0vRB2iYGZYMNfHT8BYbeGpj0oJC9Nz/w1RKBQK/nvgIHg5l8yWjBtLuIcPhiY7u8ra2FXWxo6SNnaUtWE0Hy94BGcfllY7j122nr1rDKg1Su58aTwFM8o4bKpFQmZvXSl760o7beOt0bNo5MxetdoKeh8hRgYZj309kyev2sih3XV0leg/ZIgHbp79I3RSRBb0LWWHmlyrK3Fj/JizIJaZVw8hNMaTFpuVB3aWYpMc7Kgu5OLoZPxC3Pj3/R3zXt5idPkd+encCXV3rumHeqm5ZLiaS4Y71/FlWe7yXBScXaz7rJAXbk3DanYw/JxAnll5Ll5+OqyORFaVZbGpMp8mW8eDh0apIjVoCJcMGd1lnR/B4EKIkUFGSLQHL26Zx9sP7OWbF3M6faZUKkgc33010d+KxWGjxtzsel/b1kJpcwMeai3+eg8RWdDPuOJPw2hqaGPWNTGEx3d2DvTQaEkNimFr1WEsDjv/PrCOa+LGMcw3FBmZjNoyvizY4/IUmRE6FGU3GXsVCsWJfFsFg5xmo5WH5q8lK60WrV7F4o+mdnK81qrUXDpkNPOjRpJvqqHJanFlt+1r662g9xBiZBCwsSKPjZV51LU5hUCYuw9eQ5z1Z5RKBSjal2wUkDDWGRGxp6aEFcX7qbM0E+zmxZWxKZ2SDsmyzPfFB9hsyMfssBHvHcgNCRNdHvBdUdxUz78PrHW9/6o9KmZycCy3JE0WkQX9jEvuPLF16dIhozjYUIHRaqaytZH/Zq5Hr1LjkGVsUkeV40gPX86NEJYqwfF893our/1lN3arxNg5oTy5YpargvexqJWq46LrBGcPomrvIGBfXRlKhcIZ+ibDj7uy+OLKPPRqNS9tvJBnrttCwf4GZBn+8f1sgmboeGHfGi6PHcNo/wh2Vhexuiybh8deQISHLwCrSrNYVXqQW5ImE6j34Lui/ZS3Gnl8/MVi7fYs4EgdmjpLC18W7KW+ret03PHegdw5fMaAT0AnOLPUG1pZPG8tBfuN6D3UPPzpNCZfeuJszILBiajaexYxJqCjSqXVaue7y4tBATd9M5Ihw3x5eceFvHHfbn7+sICkiQF8Vb6Hkf5hzGvP33FZzBiyjQY2VBxiwdBUZFlmbXkO86OTSWnf98Kkydy/fRkZtaVMDI7pi8MU9BL1lhYe3f09drnD6VSlUBDnHYSxrRWFQkGkuy/TwxIY5huKUqzBCI7is2cP8P6j+3DYZSZfFsmjX04/o9WqBYMTcYYMMh44by3NRisR/1Eyeawz/4FWp+JPr07i7pcmolIpKSiuZW7EsE7bjfALY1979cxaSwsmm4XhR5lM3dRaYr0CKWiqFWJkkNNsb+skRAAcssw1ceOI9vTvZivB2Y6huJkHzltDeV4Tnr4alnwzi7HndlxDVpUe5NuifZwbnsS18eO73U9PLCEL+j+DIyezgPIWI7f861MObK4mYKGS+2+aRbiHT6c+KpXzz22yWvA+JjTWW6OnsT2E1mQzO9u6SDbWeEyYrUAgELzzUDo3xn1LeV4TcxbEsqzumk5CpKipjk2V+US2LwN3x2FTDW/nbGVqaByPjLuQlIBIXs/aTPlRdWxWl2WzriKXBUNTWZxyPjqlmpcy13fyYxIMPIQYGSQ0Ztsof8CBV5iGax4azvu526loafz1DQUCgeA0KTrYwPXR3/DZ0kx8AnW8svMCHvx4WqfaQxaHjXdyt3Hj0Em4q7Un3N/a8lzXEnKYuw+XxYwh2tOPDRWHAI5bQo708GNh0mSMbWYyaktPuG9B/0Ys0wwCrBY7i+esRSEreHHNhQxJ8KHE3MC6ilx+PzT1uP7eWj0m2zGJxGwWfNotId4aZ6SKyWrB56ioFZPVQpSnb88diKBX+an0IOm1pRjMJrRKFXHeQVw+ZDS5xqou+x/xdRdmdIEkSbxyzy6+f90pEi69K5FFL0/ssgDiZ/m7GeUXznC/UFaWZp5wvwVNYgn5bEVYRgYBf539C60mG4tensiQ4c6lGVl2FprrijivQHKOKZKX3WAgzsuZbCxQ74G3Rt+pj9luo7Cp1tVHMPA51FjNrPBEFo85nz8nn4vZbuUf6T/xdWF6l/0/P7yHzPoKYUY/y8nZVcM1Yd/w3WuHCIx0560DF/OnVyd1KUR2VRdR0lzPFbEpJ7VvsYR89iLEyADng8f3kb29llFXBDLlDxGUtxj5tjCDQ41VpLY/JbyXu41vCzNc28yJSOJgQyW/lGVjaG3k++L9FDfXM6s9q6lCoWBOxDBWlmayr66M8hYj7x1Kw1fn5sqEKhj4/Dl5NlNC4gj38MVbq6fK3ITjqEh/FQqOjpMpaKrlndxtDPcLFWb0sxBJklj6+y0sSl1FY62F6xaP5LOS3xEz0q/L/vVtLXxRsJdbh00R6QAEv4pYphnAHEyr4aMn9+OZrEL39zaW7P4BN7WGCA9f/pQ8mxF+YQDUt7V2uq3EewdxW9JUVhTvY3nRPoLdvPjjiOmuHCMA8yKHY3XY+ThvJ612Kwk+Qfxp5GxxURmkrCjaT6PV+dQZoPPg+oQJjPQLxyFL7Kkt4euCdJpsFlrtVlTHZFoVZvTBT/o6A0/8bgPNRhsRQ714dvUcwmK9TrhNSVM9TTYLT+9d5WqTkMlrrGZDxSFenXbtcVl7xRLy2YsQIwOU1mYri89fg1Kp4NVvLyYiofv1+L+Onntc2/igaMYHdV8FU6FQcGnMaC6NGX1Gxivov7TYrOyoLgRAATyQcr7rQq9UqDgnOJYwNx+eyXDeVAqbapFk2ZVfxEuto/pwKyvSctn4YyG1Pg68PxBm9MGA1WrnqWs2k7aiDKVKwa1LU7h+8aiT2naYbyiPjZvfqe2DQ9sJdfdmXuSILssHHFlCPtpvpLsl5ChPp0XmyBLyzLCE0z1MQT9AiJEByl9n/oK52c5f3z7nhEJEIPg18kzVrrwik4Jj8NG6IUkyG74owt1LTer8SIZ4+ZPkE0JuYxVNtjYKyusoT2thz88VbP6hmCaDjRzFTmQZ9GP6+IAEZ4S070p5ZsEWzM124kb78uzqOfiHnnzBOr1aQ4Tat1ObTqXGQ61zWWHfy92Gr9bd5VMyJyKJF/av4ZeybEb5h7Orppji5nqXI/7RS8jBbl4E6j1ZUbxfLCEPAoQYGYC8/eBe8vbWM/XyKC68dWhfD0cwwFlfnotkk2jZBDvT6thR8wNVxS001VsBcPfSkDDOH3NAK5XVDqzFcGfZTyCDSq3AYXf6mcjt7/UjhBl9IGNptfPopetJX2tArVXyp9dSufSPST3yXWIJWXAEUZtmgLFvo4G/zvqFgHA3Piu9sksPdoHg12gxWVnzcQHfb86i6lAr5nSZIyV4AyPcuPC2ocSP8UOlVlB0sJFDu+vY9lMJjtYT7xcg5ikd194yivMihwNOM/r927/hlsRzhM9IP2ftJwX867btWC0Ohk8OZOnKOXj6njg3iEBwIkRtmkFIi8nKQ/PXoVIr+O+2C4QQEZw0xhoLP39wmO3fl3F4fwMtRhsACjfwDNDgOdmOfir4nKvg0elziPRwrse/l7sN32R3rv6/RMoPlFH/joTxI1zCpSssqxR8ZE+naZKdidMi+L40U5jR+zlNDW08NH8d2dtr0epVPPjxVOYsiOvrYQnOIoRlZABx++jvKTxgZPHHU5krLhSCE1BV0syqdw+za1U5xQcbMTfbnR8owD/UjaTUAEovrkAbDwp150J3epWaK2PHMjYgkteyNmGXJKrMJqzteUKGloWz5q4y7E0yHJs6RAEKBRwpbaP0BH20knA/H8akhjL50khGzwgWQrofseK1XF7/y27sNolxc0N5csVs9O7iOVVwZjjZ+7cQIwOE1+7dzbIXs5l17RAe+XxGXw9H0M8ozm5k9Xv57PmlkrJcE21mp0pQKCEo0p0Rk4OYfX0sky6KQK0+XgiY7Vae3/cLFa0nLiGQ7BfGXSNnYjRYeOKqTWSn1XD0FWTMrBD+tf58irKMbPmmhH0bqyjOasRYbUFytHdUgJeflshEb0ZOCWLK5VEkTw0SAqWXqTe08sD5ayk8YMTNU81Dn0xj8qXCeiU4swgxMojY/UsFi89fS1CUO58UXSEu2gJyd9Xy8weHSV9fRWV+Ezar0xShUisIGeJB8vQQ5v4+hpTZoSd9vjTbLLyTs42sY7LzgjPk95zgWBYMTXU5CtptEm89sJdv/pMNClCpFFz11xHc/uy4LvdflNnApmWlHNhYRVGWkcbqNiTpKIHiryUq0ZuRU4OYenk0IyYHinO9h/hs6QHee3QfkkNmyuVRPPLFNLRaYQ0RnHmEGBkkmOotXBexDMkh83HhFQRGnHxonWBwIEkS+zZUs+bjAg5srqaqqNkVwaLWKgmP92TM7FDOvymO4ZOCfvP3lTTXs9VQQLWlCSUKIj18mRYaT5Bb10muNnxZxPM3b8NqcfDolzOYefWQk/6ugv0NbF5WzIFN1U4LSo3FtcSjUICXv46oJG9GTnMKlOGTAoRA+Q1UFjaxeN5ayvOa8PTT8viymaTMCv31DQWC00SIkUHCwuErKM0xnfJFXjBwkSSJ7T+Us/6zIg5uq6GmrMV1g9a6qYhK9GbceaHMuyW+21TcvU1xdiPLXszm9ufH4enz26Iv8jPq2LKslP2bqinJbqSxtrNA8Q7QEZnkzajpwUy7IorECYNToNRbWmi2t3Vq81Tr8Nd7nNb+3n5wL188fxBZgrk3xvL396cMynkT9C+EGBkE/PeP2/n+jTzOvzmOv78/ta+HM6A50xf2M4nVamfzVyVs/LqE3B211BvMLj8MvaeamBE+TLggnAv+kEDoEM++HWwfcWhvHVuWlZC5uZri7EZMdW2dBUqg04IyanoI066IYuh4/wF9o623tPDo7u9dyeiOoFYoeWrCJad03hYdbODBC9dRU9qKb7Cef/wwi2ETf7sFTSA4GURo7wBn+49lfP9GHqFxntz/7uS+Hs6A5kxe2M8Erc1W1n1SyJZvS8nbW09jTYdI8vDRkDwtmEkXR3D+zXH4h4hlOYDEcQEkjgtwvZckibw99Wz5tpTMLdWU5DRycGsNmVtq+GxpJgol+AToiB7uQ/L0YKZdGd1p+/5Os73tuPMVwC5LNNvb8KfjnH31z7sozTXxzMpzUSo7IqMkSeLlRTv54Y08AC67O5G7X5o4oEWaYPAixEgfU29podFmRoECpUKBp1qHsknFE7/biEan5OU0kU/kt3IqF/aewFhrYc2HBaR9X8bhfQ00N1hdn3kH6Bg3N5Qpl0dz3o2xeHj3TIKph3auoK6t5bj2mWFDuSFhYpfb7KkpYUXxfuoszQS7eXFlbAqj/CNcn8uyzPfFB9hsyMfssBHvHcgNCRMJcet566VSqSRpYiBJEwNdbZIkkburjq3LSzmwuZqyXBMHNlezf1M1nz7dLlAC9UQP92b0jBCmXRlFQsrAEShdkb2jhm9fygHgu9dyuXyRs6ZLzs4aHrlkPcbqNoKj3Xlm5bn9ZklPIOgKIUb6iEarmdWlWaytyO3UrlQoaLxZi61N4qkVs/ALdut6B4IeJWO9gdf+souHP5/BkOE+p7RtTVkLq949zM6fyik6aMTc1JHjwy9EzzkXRzLjqmhmXTsErb53/gUfTJmHdFSmsoqWRl7MXMf4wK6LJR421fB2zlYujx3DaP8IdlYX8XrWZh4ee4ErNffqsmzWVeRyS9JkAvUefFe0n5cy1/P4+Iv7JDW3Uqlk+KSgTk68kiSRvaOObcudFpTSXBMHNlWzf2M1Hz91AIUSfIP0RA/3YfTMYKb/bghxowbGTVuSZP77x50oVQokh8ybf9vLhAvC+fDxfaz7pAiFEq5/KJlbnx7b10MVCH4VIUb6gOwGA29kb8bisB33mWGpnaYCO3NuHdJtzL+1zcH+jVWkzA5FrRFWk1/jVN2iVr6dx4t37kByyGxdXsKQ4SeuUlqa28jq9w+ze3UFpbkm2lo7cnwERriTekEEM68dwpTLorrM8dEbeGk7V9FdVZpFkN6TRJ/gLvuvLc9lpH8Y8yJHAHBZzBiyjQY2VBxiwdBUZFlmbXkO86OTSQmIBGBh0mTu376MjNrSfpP2XalUMnJyECMndxYoWWm1bF1ewsGtNZTmmti3sYp9G6r46IkDKJUKfIJ1xIzwZfRM5xJPbHL/Eyg/f3CY/PR613u7TeIPw79DsstEJnrz7M9zzlofI8HAQ4iRXqakuZ5XszZikzpSV4a6eWOXJYpWm2haCZooaP6/BlpsbXhodK5+5hYbP/4vj8+fO4ix2sLTP57LpPkRXX2NoJ3sBgOf5u/s9nOro+Pv4HBIvP3AXr76VzbgdIzct6GKGx7sLEYO7a3j5/cPk77OQEV+E7Y25xKQUqUgeIgHo6YFM+f3sYybc/I5PnoTu+RgR3URcyOGoVAouuxT0FTbqYw7wAi/MPbVlQFQa2nBZLMw3LcjLNRNrSXWK5CCptp+I0a6QqlUkjw1mOSpHUJMkiQObKkmbUUZB7fVUHbIRPp6A+nrDHywZD9KlQLfID1DRvowemYIM34XzZARvn12DM2NVv53/55ObUeSys24KprHvprZF8MSCE4bIUZ6meVF+1xCZJR/ODckTMRf50GLycqVU79EoYXw1xXUWlpYV3GIS4aMotloZfkrOXz1QhatJpsr0kJyHO8HIehgV00x7+Zs67Q8cSyfHd7F38ach2yGp6/fzPYfy12fyTJkbq5m77oK1n9azP5NVRiKmnHYOnJ8hMV5MmZWCHN/H9fp5tafyagrw2y3MiUktts+JqsFb01na4q3Rk+j1eL83GZ2th1jcfHWdvQZSCiVSsbMCGXMjA5xJUkS+zdVk/ZdGQe3VlOW10T6OgPpaw188Ng+lCoFfsFOgTJmVigzroomKunUlvS6I6+xutvPWu1WfnxyPy1Ga5ef71pdQV1lKwFhwvlZMHAQYqQXqTE3c7ChEoAAnQf/N3w6GqUKWZb5zx3bQYbF30zha++dSMisyzqE4XUry1/OxWpxcKwPpkos0XRLjbmZ93PTXEIk3N2H0f4ReKp1FDbXsa+uDLssUdZi5P1tO9hzVwPF2Y3HFYBrMzv4+5y1AGj1KqKH+zB+bhjzFsb3S9P9ybDVcJiR/mH46sTN6kQolUpSZoV2Sgp2JAHdthWlZKXVUJ7fxN41BvauMfDeIxlOgRKiJybZl5RZIcy4eggRCSfv0CvLMsuKMvi5LLvbPq+v3kr2S61I3TyLtLU6ePHOHTy5fFa3li+BoL8hxEgvcripxvV6ckisy8nv37dvZ8MXxVx4awLWagnNFg/yvm7EVtTKATmr2wqp+9ZX0WqyodGp0OlVqHVKtHoVWr0SjU6Nzu3IezVaNyVqjbJfLhv0BBsrD7kiaM4JjuXmxHNQHnVhLm8x8lzGzxj3tbHsb4VIZrqd53FzQ/nzG5OIiB/4OW7qLC1kG6u4c8T0E/bz1uox2TpbOEw2Cz7tlhBvjdOx2mS14KPtcLI2WS1Eefqe2UH3I5RKJWPPDWXsuR0CxW6X2L/RwLYVZWSl1VKeb2LPz5Xs+bmSdx7KQKV2CpTYUb6MnhXKzKujCY/r+lxaX3GokxDx1eqJ9gygxdZGQVMtkixzaHEr0rEFCttRqRVIkkzad2XkZzQwdKz/GT1+gaCnEGKkF7EfdQU5cgGXJJkNXxShVMLq9w7z0zv5J72/L54/+NsGpHDWHHFWWlWgUIBC2fm3UqlAoVSgVCpQqpztStWR9wpUqvb3aqXztVqBSq1E1f5b3f5bqVGgVjsFkVqjRKVRoNZ2vFdrlWi0KtRahfO3rqNNq1Oi0anQ6JRodSrna71TaGl0SnRuajR6Zz+duxqNXsk2QwHgzCVyddxYlxCx2yQO7anjwKZq6r9RYejenQQApRJ0bupBIUQAtlUdxkujY5R/+An7xXkFkmM0dPIbyW4wEOflDKUN1HvgrdGTYzQQ5em0EJntNgqbapkZltBzB9APUauVjJsTzrg5HXNqt0tkrDWQ9kMZWWk1VOQ3sWtVJbtWVfLO4nSnQAl1I3aULymznUs8gUPcWVma6drHtXHjmRWe6Dp3y+sbuffKldiKOptENDolAWFuhMZ6EhLjSXCUB+EJXsQm+/bK8QsEZwIhRnoRX22HWTzHWMWMsKEolQq+qbkGcC4D2B0OHt7+HaXrm2l4D2wFzqiMLtJkcOOS0YTGemCzOLBZJexWCatFwm5zYLfK2Noc2G0SdpuErU3CYXe+tlslHHYZu03CYTvqtV1Gsks4HDIOu4Rkl52vHTKSw/mZJDkd5Ww2CUmSkSW5/TfO13L7a1kG2el3cfTr3sfBFYqv8PDVINllzM12ZBn0Hmqix3lSF9OKbAe5RoGjTXYJsSPOgJIE+zZWIUlyp4RSAxFJltlWVcDkkDhUis4Wsvdyt+GrdeeK2BQA5kQk8cL+NfxSls0o/3B21RRT3FzP74emAk7xOidiGCtLMwl28yJQ78mK4v346txICRSVX9VqJRPmhTNhXmeBsveXStJ+KCN7ey2Vh5vY9VMFu36q4K2/70WpVqD0l9HEQeJ0P1L+Gu0SIge2VPOvW9MwFtjRjQSfayAqwZeH5p2Pt79WLMcIBjxCjPQiSb4heGn0NNks7K0tJb+xhgSfILT6jpwMGw15GCUzXjNVpF4WysSCoby9eC+lOSYUis439NQLw89IYbS+wm6XsFrsWC0Sba12bG0StjYHbeajXzt/dwguB1aL5BJfLsFlbW+zOftsLStAdoBO1jA6OJy4MX5Ul7RQXdzCTY+PIWGsP+nGUt7O2QrAhWEjSW6Oas/iWc3+TVXUVTidNFtNNsrzTGfMObGvyDEaqG9rZWpI3HGf1be1oqDjhhbvHcRtSVNZUbyP5UX7CHbz4o8jprtyjADMixyO1WHn47ydtNqtJPgE8aeRs/skx8hAQK1WknphBKkXdkTA2WwOp0D5voztm0qpK7Jg3w77tjdwzT+/JjzBC4UCyvOaGDE5iCeWX8p7rVuobG2kkSa8hBARDBJEbZpe5vvi/fxQ4jTFqhVKpoUmkBIQiVWys72qkL11pa6+94ycRbJ/OA6HxIYvinn34XSqijqyaL62ez6J4wd2BsmeYmn6KoqanTkY/jb6PBJ8Oos2WZb5b+Z6so0GABaNnNkpuyhAbXkrmVurqSxo5nd/Gd5JNAoEZ5qvC9L5pTwbySpxXvVo3E16CjON/PzBYaZfGc1f35mMSqXkmfRVFLef269Nu+44K5dA0J8QtWn6KRdGjeSwqZZsowG7LLGh8hAbKg8d1+/8yOEkt6/rq1RK5twQy8yrh7D6/cO8/1gGDQYLbp7iz9cdM8KGUpS3A4B3c7dxx/BpxHg5hZvVYef7kgMuIRKg82CkX9hx+wiMcGfWNTG9NmbB2U2QmzNBmVKrREq1cnH8aADu/u9E1xJhvaWFkuYGwHneCiEiGCwIy0gfYJMcLCvMYLMhv1PyMwAvjY6LopOZFZbYrfnVanGQt7eOkVMGRl6LvsAmOXg2YzVlLUZXW5SHHz5aPYdNtZiPyn57a9IUUvtxki7B2UGLzcoDO7/FJjlQK5TcO+pcEo7KkGuTHLyRtZnMhgoALokexcVDTpwdWCDoa072/n1aYuTVV1/ln//8JwaDgTFjxvDyyy+Tmprabf+vvvqKRx99lKKiIoYOHcpzzz3H/PnzT/r7BpsYOUKLzcru2mJqLc0oURDl6ceYgEix5n6GMLa18lLmBspbjV1+rgCujhvHnGMyjQoEfcUXh/ewrr1elQIFYwMjGeYTSqPNzLaqAhraWgHQqzQ8OeHiTmHVAkF/pMfEyBdffMFNN93EG2+8waRJk3jxxRf56quvyM3NJTj4+Cf1bdu2MWPGDJYuXcrFF1/Mp59+ynPPPcfevXtJTk4+owcjEByL1WEnraqQjZV5LlGiUaqYGDSE2eGJRHuKPAyC/oNNcvDawY1ktS8hdoVGqeLuETMZ7hfabR+BoL/QY2Jk0qRJTJw4kVdeeQVwZiSMiorinnvuYfHixcf1v/baa2lpaeGHH35wtZ1zzjmkpKTwxhtvnNGDEQhOhNluwyY58FBrUZ0lyd8EAw+75GBVaRYbK/M6JZ5TACP9wrksZrQQ0YIBQ484sFqtVvbs2cODDz7oalMqlcydO5e0tLQut0lLS+O+++7r1DZv3jyWL1/e7fe0tbXR1tbmem8ymU5lmAJBl7ipNbih6ethCAQnRK1UcfGQUVwQNYIcYxVGqxmtUkWcdyCBelGFVzA4OSUxUltbi8PhICQkpFN7SEgIOTk5XW5jMBi67G8wdG+GXLp0KU888cSpDK3f8FPpQdJrSzGYTe0XkCCujEkh1P3EFp09NSWsKN5PnaWZYDcvroxN6RRqKssy3xcfYLMhH7PDRrx3IDckTCTETViKBILBiFqpckXUCQSDnX5pq37wwQdpbGx0/ZSWlv76Rv2EQ43VzApPZPGY8/lz8rk4JIn/Zq6jzWHvdpvDphreztnK1NA4Hhl3ISkBkbyetZnyoyJBVpdls64ilwVDU1mccj46pZqXMtcfF40jEAgEAsFA45QsI4GBgahUKqqqqjq1V1VVERratTNVaGjoKfUH0Ol06HS6Uxlav+HPybM7vb8l8Rzu37GM4uZ6En26DsVdW57LSP8w5kWOAOCymDFkGw1sqDjEgqGpyLLM2vIc5kcnkxIQCcDCpMncv30ZGbWlTDxLw1Ib2lpZVpjBwYYKrJKDIL0nNyee48on0hW5xiq+KthLZWsjfjp35kcnM+WYjKTrKw7xS1k2jVYzkZ5+XBc/ntj2miwCgUAgOPOckhjRarWMHz+etWvXcvnllwNOB9a1a9eyaNGiLreZPHkya9eu5S9/+Yur7ZdffmHy5MmnPeiBxJF8Fh5qbbd9CppqOxUkAxjhF8a+ujIAai0tmGwWhvt2CDg3tZZYr0AKmmrPSjHSYrPyz32/kOgbwj3Js/DS6Kk2N51wnmstzbxycAMzwoZy67Ap5BgNfHRoBz5aPSP9nObwXTXFfF2wlxsSJhLrFcjaihxeylzPE+Mvwbu9Yq1AcDpIssT3xQfYUV3UXgHZjSkhscyPSj5hSnchoAVnA6ecwvO+++7j5ptvZsKECaSmpvLiiy/S0tLCwoULAbjpppuIiIhg6dKlAPz5z39m5syZ/Otf/+Kiiy7i888/Z/fu3bz55ptn9kj6IZIs82XBHuK9gzrV9DgWk9WCt6bzjc5bo6fR6vSkN9mcNVKOvRl6azv6nG2sLsvCT+fOLYnnuNp+zblvY2UegXpPro4bB0CYuw/5jTWsKc91iZE15TlMC41namg8AAsSUsmsr2Bb1WEuiBrZQ0cjOBtYVZrNxsp8FiadQ5i7D8VN9XyQtx03lZZzI5K63EYIaMHZwimLkWuvvZaamhoee+wxDAYDKSkprFq1yuWkWlJSgvKosMkpU6bw6aef8sgjj/DQQw8xdOhQli9fftI5RgYyn+XvoqKlkb+NOa+vhzLo2F9Xxgi/MP6XvZm8xmp8te7MDBvK9BOUry8w1TLMt/Py4Ai/ML4s2As4QypLmuq5sH25DECpUDDMN5QCU23PHIjgrKGgqYaUgAiXY3qg3pNdNcUUNtV1u40Q0IKzhdMqbrJo0aJul2U2bNhwXNvVV1/N1VdffTpfNWD5LH8XB+oruH/MXPx07ifs663Vd8onALSbcZ1PNd4aZ5ZFk9XSKeOiyWohytP3zA58gFBjaWZjZR5zI4dxYdRIiprq+aJgD2qlksldVKUF55x2ZV2yOGxYHXZa7VYkZLy66GMwi/BywW8jziuILYZ8qlpNhLh7U9rcQL6phqvjxna7jRDQgrMFUWntDCPLMp8f3k1GXRn3jZ5zUnkB4rwCyTEaOvmNZDcYiGtf8w3Ue+Ct0ZNjNBDl6Qc4E3gVNtUy8wSWgMGMDAzx9OeKmBQAoj39qWg1srEyr1sxIhD0JRdEjcDisLFkzw8oFApkWeaymDFMCo7tdhshoAVnC0KMnGE+O7ybndVF3DViBnqVhkar09/DTaVBq3JO93u52/DVunNFbAoAcyKSeGH/Gn4py2aUfzi7aoopbq7n90Od9X4UCgVzIoaxsjSTYDcvAvWerCjej6/OjZTAqD45zr7GR6snzN2nU1uYmw/ptd2HgXtr9JiO8bExWS3o2/82SoUCJQqauujjoxFr74Lfxp6aYnZWF3Fr0hTCPXwpbW7gy4I9+GrdhIAWnPUIMXKG2ViZB8C/Dqzt1H5z4jkuD/j6tlYUdHjPx3sHcVvSVFYU72N50T6C3bz444jpnZxe50UOx+qw83HeTlrtVhJ8gvjTyNlnbVG9eO8gqo558qsym/DXeXS7TZx3IJn1FZ3aso0G4rydFii1UkW0lz/ZxiqXyJNkmRyjgdnhiWf4CARnG98UZjAvaoQr+i3Cw5e6thZ+Ks3qVowIAS04WxBi5Azzv+k3/Gqfv46ee1zb+KBoxgdFd7uNQqHg0pjRXBoz+jeNb7AwN2IYz+37mZUlB5kQFE1RUx2bDfkuaxLAt4UZGK2tLEyaAsDMsKFsqDjEN4XpTA2JI8dYxZ6aEhYlz+y03/dz04jx8ifGK4C15blYJftxoZQCwalilewo6RzCq1QokOm+PJgQ0IKzBSFGBAOSGK8A/jh8Bt8WZfBjyQEC9Z5cEze+0/p7o9VMfXvJdXBGLywaOYuvCvayrjwXX507NyZOckUlAEwMGkKzzcJ3xfsxWS1Eevrxp5Gz8Ral2gW/kdH+EawszcRf706Yuw+lzQ2sKcthSmiH0BUCWnC2cspVe/sCUbVXIBAMdCx2GyuK95NRV0qTrQ0frRsTg4ZwcXQy6vbl1vdz06hra+lkPT066Zmvzp2Lukx6lsvPZdkuAX1d3HhivUXSM0Hfc7L3byFGBAKBQCAQ9Agne//ul4XyBAKBQCAQnD0IMSIQCAQCgaBPGRAOrEdWkkwmkcRHIBAIBIKBwpH79q95hAwIMdLU1ARAVNTZmeBLIBAIBIKBTFNTEz4+Pt1+PiAcWCVJoqKiAi8vrxOW2j5VTCYTUVFRlJaWCsfYHkTMc+8h5rp3EPPcO4h57h16cp5lWaapqYnw8PBORXSPZUBYRpRKJZGRkT22f29vb3Gi9wJinnsPMde9g5jn3kHMc+/QU/N8IovIEYQDq0AgEAgEgj5FiBGBQCAQCAR9ylktRnQ6HUuWLEGn0/X1UAY1Yp57DzHXvYOY595BzHPv0B/meUA4sAoEAoFAIBi8nNWWEYFAIBAIBH2PECMCgUAgEAj6FCFGBAKBQCAQ9ClCjAgEAoFAIOhTBr0YefXVV4mJiUGv1zNp0iR27tx5wv5fffUVw4YNQ6/XM2rUKFauXNlLIx3YnMo8v/XWW0yfPh0/Pz/8/PyYO3fur/5dBB2c6jl9hM8//xyFQsHll1/eswMcJJzqPBuNRu6++27CwsLQ6XQkJiaK68dJcKrz/OKLL5KUlISbmxtRUVHce++9WCyWXhrtwGTTpk1ccsklhIeHo1AoWL58+a9us2HDBsaNG4dOpyMhIYH333+/ZwcpD2I+//xzWavVyu+++6588OBB+fbbb5d9fX3lqqqqLvtv3bpVVqlU8vPPPy9nZWXJjzzyiKzRaOQDBw708sgHFqc6zzfccIP86quvyunp6XJ2drZ8yy23yD4+PnJZWVkvj3zgcapzfYTCwkI5IiJCnj59unzZZZf1zmAHMKc6z21tbfKECRPk+fPny1u2bJELCwvlDRs2yBkZGb088oHFqc7zJ598Iut0OvmTTz6RCwsL5dWrV8thYWHyvffe28sjH1isXLlSfvjhh+Vly5bJgPztt9+esH9BQYHs7u4u33fffXJWVpb88ssvyyqVSl61alWPjXFQi5HU1FT57rvvdr13OBxyeHi4vHTp0i77X3PNNfJFF13UqW3SpEny//3f//XoOAc6pzrPx2K322UvLy/5gw8+6KkhDhpOZ67tdrs8ZcoU+e2335ZvvvlmIUZOglOd59dff12Oi4uTrVZrbw1xUHCq83z33XfL5557bqe2++67T546dWqPjnMwcTJi5O9//7s8cuTITm3XXnutPG/evB4b16BdprFarezZs4e5c+e62pRKJXPnziUtLa3LbdLS0jr1B5g3b163/QWnN8/H0trais1mw9/fv6eGOSg43bl+8sknCQ4O5tZbb+2NYQ54Tmeev/vuOyZPnszdd99NSEgIycnJPPPMMzgcjt4a9oDjdOZ5ypQp7Nmzx7WUU1BQwMqVK5k/f36vjPlsoS/uhQOiUN7pUFtbi8PhICQkpFN7SEgIOTk5XW5jMBi67G8wGHpsnAOd05nnY3nggQcIDw8/7uQXdOZ05nrLli288847ZGRk9MIIBwenM88FBQWsW7eOBQsWsHLlSvLz87nrrruw2WwsWbKkN4Y94Dideb7hhhuora1l2rRpyLKM3W7nzjvv5KGHHuqNIZ81dHcvNJlMmM1m3Nzczvh3DlrLiGBg8Oyzz/L555/z7bffotfr+3o4g4qmpiZuvPFG3nrrLQIDA/t6OIMaSZIIDg7mzTffZPz48Vx77bU8/PDDvPHGG309tEHFhg0beOaZZ3jttdfYu3cvy5Yt48cff+Spp57q66EJfiOD1jISGBiISqWiqqqqU3tVVRWhoaFdbhMaGnpK/QWnN89HeOGFF3j22WdZs2YNo0eP7slhDgpOda4PHz5MUVERl1xyiatNkiQA1Go1ubm5xMfH9+ygByCnc06HhYWh0WhQqVSutuHDh2MwGLBarWi12h4d80DkdOb50Ucf5cYbb+S2224DYNSoUbS0tHDHHXfw8MMPo1SK5+szQXf3Qm9v7x6xisAgtoxotVrGjx/P2rVrXW2SJLF27VomT57c5TaTJ0/u1B/gl19+6ba/4PTmGeD555/nqaeeYtWqVUyYMKE3hjrgOdW5HjZsGAcOHCAjI8P1c+mllzJ79mwyMjKIiorqzeEPGE7nnJ46dSr5+fkusQdw6NAhwsLChBDphtOZ59bW1uMExxEBKIsya2eMPrkX9phrbD/g888/l3U6nfz+++/LWVlZ8h133CH7+vrKBoNBlmVZvvHGG+XFixe7+m/dulVWq9XyCy+8IGdnZ8tLliwRob0nwanO87PPPitrtVr566+/lisrK10/TU1NfXUIA4ZTnetjEdE0J8epznNJSYns5eUlL1q0SM7NzZV/+OEHOTg4WP7HP/7RV4cwIDjVeV6yZIns5eUlf/bZZ3JBQYH8888/y/Hx8fI111zTV4cwIGhqapLT09Pl9PR0GZD//e9/y+np6XJxcbEsy7K8ePFi+cYbb3T1PxLa+7e//U3Ozs6WX331VRHa+1t5+eWX5ejoaFmr1cqpqany9u3bXZ/NnDlTvvnmmzv1//LLL+XExERZq9XKI0eOlH/88cdeHvHA5FTmeciQITJw3M+SJUt6f+ADkFM9p49GiJGT51Tnedu2bfKkSZNknU4nx8XFyU8//bRst9t7edQDj1OZZ5vNJj/++ONyfHy8rNfr5aioKPmuu+6SGxoaen/gA4j169d3ec09Mrc333yzPHPmzOO2SUlJkbVarRwXFye/9957PTpGhSwL25ZAIBAIBIK+Y9D6jAgEAoFAIBgYCDEiEAgEAoGgTxFiRCAQCAQCQZ8ixIhAIBAIBII+RYgRgUAgEAgEfYoQIwKBQCAQCPoUIUYEAoFAIBD0KUKMCAQCgUAg6FOEGBEIBAKBQNCnCDEiEAgEAoGgTxFiRCAQCAQCQZ8ixIhAIBAIBII+5f8B2ff3WcMq0lcAAAAASUVORK5CYII=",
"text/plain": [
""
]
@@ -788,7 +778,7 @@
},
{
"data": {
- "image/png": "iVBORw0KGgoAAAANSUhEUgAAAiMAAAGdCAYAAADAAnMpAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjcuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/bCgiHAAAACXBIWXMAAA9hAAAPYQGoP6dpAAEAAElEQVR4nOyddXgUZ9eH753V2MbdBQIEd/fiXn0pFeou1F2+trx96+4t1KHF3d2CBY27u26yPt8fGxbSJFgJCTD3de2V7MzzzDyzuzNz5jzn/I5MFEURCQkJCQkJCYlWQmjtAUhISEhISEhc20jGiISEhISEhESrIhkjEhISEhISEq2KZIxISEhISEhItCqSMSIhISEhISHRqkjGiISEhISEhESrIhkjEhISEhISEq2KZIxISEhISEhItCqK1h7A+WC1WsnLy8PFxQWZTNbaw5GQkJCQkJA4D0RRpLq6moCAAAShef/HFWGM5OXlERwc3NrDkJCQkJCQkLgIsrOzCQoKanb9FWGMuLi4ALaD0Wq1rTwaCQkJCQkJifOhqqqK4OBg+328Oa4IY+TU1IxWq5WMEQkJCQkJiSuMc4VYSAGsEhISEhISEq2KZIxISEhISEhItCqSMSIhISEhISHRqkjGiISEhISEhESrIhkjEhISEhISEq2KZIxISEhISEhItCqSMSIhISEhISHRqkjGiISEhISEhESrIhkjEhISEhISEq3KBRsj27dvZ/LkyQQEBCCTyVi6dOk5+2zdupWePXuiVquJiopi3rx5FzFUCQkJCQkJiauRCzZGdDod3bp144svvjiv9unp6UycOJERI0YQFxfHE088wT333MO6desueLASEhISEhISVx8XXJtm/PjxjB8//rzbf/3114SHh/PBBx8A0LFjR3bu3MlHH33E2LFjL3T3EhISElc1ZXodNWZDg2XOCjUeGqdWGpGERMvT4oXy9uzZw+jRoxssGzt2LE888USzfQwGAwbD6ZOxqqqqpYYnISEh0WYo0+t45cAKzKK1wXKFTOD/ek+WDBKJq5YWD2AtKCjA19e3wTJfX1+qqqqoq6trss/cuXNxdXW1v4KDg1t6mBISEhKtTrmhtpEhAmAWrY28JRISVxNtMpvmhRdeoLKy0v7Kzs5u7SFJSEhItCjb8pP59MSWZteXG2ov42gkJC4vLT5N4+fnR2FhYYNlhYWFaLVaHBwcmuyjVqtRq9UtPTQJCQmJNsHa7JMsyYg7a5tfk/cR7OQuTdVIXJW0uGdkwIABbNq0qcGyDRs2MGDAgJbetYSEhESbJ1dXwdIzDJGuHoHMiurLAx2HMD4oBlelBoAqk4HfUmJbaZQSEi3LBXtGampqSElJsb9PT08nLi4ODw8PQkJCeOGFF8jNzeXnn38G4IEHHuDzzz/n2Wef5a677mLz5s0sXLiQVatWXbqjkJCQkLhC2ZqXhFj///jgGKaFdbOv6+EVzKjAaN46vIYKYx3Hy/MprKvC10HbOoOVkGghLtgzcuDAAXr06EGPHj0AmDNnDj169ODVV18FID8/n6ysLHv78PBwVq1axYYNG+jWrRsffPAB33//vZTWKyEhIQEcLLFdL9WCgnFBnQDQVRlJO1oOgItKw8iAaHv7QyVSDJ3E1ccFe0aGDx+OKIrNrm9KXXX48OEcPnz4QnclISEhcVVjEa3ozEYAApxc0SiUAPzvzt3sWpJN73EBzHyhMxFdvex9qo16+/+iKFJbbaK8QE95YR1Gg5Xuw32RK9pkboKERLO0eACrhITE1cU/RbkkQa6LR0CGUpBjsloo1euwilYEmcC9/+1J6uEyDqzN48DaPNyCVejkFlRhsEGRzZbyAsry66gsMWA2NkwF/vboJCK6uJ9z35K4mkRbQjJGJCQkzpumRLkkQa6LRyaTEe3qy/HyPKpMeg4WZ9HHJ4yg9lp+ODmFZ0Zt4OSeEnS1JkylYMqAdKqb3Z5noANhMW7n3K8kribR1pB8eRISEudNjdnQ6AYmCXL9O4YHtLP//0tKLLsKUjFZLagdFDy9oj+OQQpMpSKKkLNvRxBkTLqvPYIgO+c+m/oeQfouJVoPyTMiISFxXsSXF7Aw7WCT67bnp/CfqN7IZdLzzYXS2T2Abh6BHCnLxWAx83PyPhakHcRJoaLMUIvvz1Zy7wNjCrgFqqnIbdpYsFpFhtxwDotFQqKNIl05JCQkzklsUQafHN9CXm1lk+t3FKTw9ckdWKyNn7Ylzo5MJuOeDoPo6Xm67IXBYqasXnFVUAhE/KQkaogbFbkGnNyUzW7r3s4reKDXKnYtaz7jxmS1sD0/pdn1ktKrRGsgE8+WGtNGqKqqwtXVlcrKSrRaKb9eQuJyUlBbyZuH1mCpd+v7aFzo4hGAg0JFalUx8RUF9rYTgmOYeoZOhsT5I4oiKVXFbMtPJqWqGJPFgpvagb7eYQz0jcBFpeH/btnOtgWZqDQCJqOVM2dabnmhM4fW55F8qAxRBAdnBUNuCOWeud3x8HMEwGgx89mJrSRVFjU7DieFiqe6jibQya2Fj1jiWuB879+SMSIhIXFWfkuOZXuB7Ul6kG8Es9r1Q5CdjkuILy/g0+NbsCLiqFDxbt9pqOTSDHBL8dmjsSz7PBG5XIZVFBGt4OKhYmH+DShVcmprjPz82lHWz0+jqtQ2pRPcQcvNz8aQP6CIvcUZ9m21d/Uh2MmdCmMdJ8rz0FvMALirHXmj1yTU0vco8S853/u39EuTkJBoFotoZV/9zUstKLgxoheCTIbVanuGEQQZHd396OsTyt6iDGrNRo6W5dLbO7QVR3118+hnfXH31TDvlSOcsgnH3x2FUiUHwNFZxQMf9OaBD3pzfFcRP754mOO7inn/rj3IVODQHwIeVvLcuNGEa0/rl+hMBj45voXMmjLKDbXsL85gsF9UaxyixDWIFDMiISHRLDqTAUP903KEiyd5J6pZ9mUiD/ZcxXSPBWTG22JIungE2vuU6HWtMtZriVkvd+WJr/siiiAToNd1fk226zzIhw+3jWVl7S0MfMoPQQu12yHlZhP/G7GXuC0FWCy2uR4npZqZUX3sfXcWpF6WY5GQAMkzIiEhcRZy4qsp/thCXSyk5uex0pKHIIfQTm7IFQL3dV3BzJe6EDr7dAVuuezcqaXXEtvyktmWn0ypoQYAf0dXJoV0obNHQLN9DhZnsSzzKKX6GnwcXJgR3r2BwSeKItaxBtr9pCHtKT0vzdrMi38OZuiI8Ca3p1IpiLjXmcKpcgzpVjz/9Cb3aDVPj9yASiNwy3Mx3P56d8JcPHFXO1JuqKWornk9EwmJS41kjEhItDBXkmJpRYmeld8ksXtJNhknKjHqLbYVSlBFwNSZHbjtqe44uigx6i389vYxfn/7GMKnoOws4jxMhr4vZOsq8QxwxNGl+cyPawU3tQPTw7vh4+ACIuwpSufLk9t5ucc4ApoIEk2tKub7hF1MC+9GV49AYosy+OrkDl7qMc4eVLouJ57NeYncP3kAJUF63r9lD2/fsBPZTzKGTAlrchyyeiNRHS7wyIJehDl7Ers2l0/u38fPbxyjMKuWhz7ubc+IkiEZlRfClXSet0UkY0RCogVp64qlRqOZzb9lsPn3DBIPlKCrMAE2179fmDO9xvjjPlXObqdkAIqdSqhVGnBEiUojZ9YbXTANqmPh5BRMO6B2h8gnHLBvX+0gx91Xg3ewEz4hTgy5PoTB068tLYxunkEN3k8L68a2/GTSqkubNEY25SYS4+HP2PqieVPDuhFfUcDWvCRubdcXURTZlJvAhJDOdPcMgtHgv86FZ25cz5s37GDOVybG392u0XbPzI7ZX5RJuIsX/cYH8VtmIOvmpfLFY/uJ3ZADEwxoxwsEhLte0s/haqatn+dXApIxIiHRgpxNsdSDy3+RslqtHNpUwNofUzi2rYjSgjpO1a9399XQ83o/xtwZRb8JAQiCLaRMZzISfziXckMt2bpyXt6/gg5uvjgqVCRWFFLjZCDgS8i7r/H+DHUWCjJ0FGTY4khkAtecMXImVtHKweIsjBYzES5eTbZJqy5hdGCHBss6uftzpDQHsMXkVJn0dHQ7HScS08uXgT94s3d2KR/cs5eKYj3/eb5Lg2309wljSXocZtHK1vxkolx96OkVjEwmY9zsKAL7OfPMkA2Yv4Xyb63kORSS2G4FIZ1cCW7vSlB7FwLbaQlqr8XZTdXsMV5rNW9qTHpWZR1v8jw/UZ7PEH8pCPh8kIwRCYmrnIwT5az8JpkD6/LIS63BarFZH45aJd2G+TLillBG3xaJxrHpy4GTUsXjnUfwybEtlBtrEREbaIsAOHaQ02u2J4fmF9GEyjhg85Lc9XaPS3psVwq5ugrejVtvk3mXK3ig0xACnJr2PFQZ9WiVmgbLtEoNlfXVeqtMdbZlqoZtfPycGfeXA1smFvLDC3FUFht44IPe9vXOSg0jAqLZkBuPRbTyTfwOQpzdidJ6U6rXcawsj4DvIesGwAqmOitpRyvIOF6BTJBhMZ9WgfCPdOan+KkolA1zIK61mjcFtZV8XH9eNMWvKbHozAbGBcdc5pFdeUjGiIREG8NssmK1iqjU8ovqX1GiZ9U3yexamk3G8Qp73IdSLRDRxY0BU4OYeF97vAIcz3ub/o6uvNxzPFvzkthRkEKF0XZDlMsEenoFMyogGu8Ptdy+fClVZQa7t+VM7vlvD3yCr66b0fni6+DCyz3HU2c2cagki3mJe3mq6+hmDZKLReUs57eMGdzdaTl/fxhPRbGe538ebF8/Pbwb5QYdB0qyAMiqKSerpty+XuklJ+QhJVlf6O3fodUKWM/4QmXg4eeAXNE4puRcNW9awxvYUtSajXxy/LQhIgPCXbxwkCvJrCmze4eWZBzBTeVIf9+mg4slbEjGiIREGyIzvpLnrttA12G+vPjbkPPqcyruY8sfGSTuL6HmzLiPcGd6XefPpPvbEdXd81+NzVmpZlJoFyaEdKbCWIvFakWrcmggjPXgR7159/ZdjfrKBHD3dWi0/FpBIchtAaxAqIsHGTWlbM5LZFa7vo3aalUaqkz6BsuqTHpc6z0hWqXtc6wy6nFVnf5Mq4x6gp3d0DgqmJ8yjQd7rmLjL+lUFOl5Z/VIBEFALhO4u8MgOhcFsDkvsYEholVqGOwXyZC32/HA36soK9Q3aVSqHeS88Otge0DstcrOglS7ZH+QkxsPdhqKl8YZAIvVyprsE6zIOgbA8syj9PUJRZBqNzWLZIxISLQgJovlvNse21nESxM3U1tlYs/yHCwWK3J544tXg7iP7UWU5jeM+xg8w4+xsxvGfVxKBJkMD3XTT7ijZ4Wz4qtEEmNLsdRPB8lkIJfLeOuWHSz+JJ63Vo5A66Fpsv+1giiC2dr0byPCxYuEioIGcSPx5QX2GBMvjRNapYaEigKCnd0BqDObSK8uYVh9fIJCIfBN3ESeHrmBA+vyeaTfWj7fNw5BEBBkMgb4RtDfJ5wSfQ1VJj1quQJ/B1fk9b+Xu+f25L3Zu5sc3+Nf9cMvzPmSfRZXIqIosiM/2f7+3g6D7IYIgFwQmBTahZT6cgmlBh0nywvOms59rSOZaRISLYDZamFpxhE+PbGlyfUplcUN3m9flMkzIzegr7F5NepqzCQdKLWvz4yv5PPHYrkzehnjVL/z/JhNbP0zk7oaM92G+fL4V31ZqfsPfxXcyOuLhjNgUlCLGCLnQiaT8cQ3/bHWV5mQCXDzszEsLruJHqP8OLmnhBt9/2bBeycu+9haiyXpcSRVFlGiryFXV1H/vpC+PmEA/JS4myXpcfb2owKjOVGez4aceApqK1mReZTMmjKGB7QHbJ/xqMAOrM4+zpHSHHJ1FfyUtAc3tQPdvU4X2xMEgQ+3jmXwjGCSDpQyu8NyjHqzfb1MJsPbwYVIrTdBTu52QwRg9G3hhHR0pamf0PzX4ijIrLm0H9IVhsFipkhfg7nUivNhZw7+VsiaH5L53+xdPD54LUaDzdA8c2rmTC+URGOk2jQSEpcYs9XCFye3c7I8/6zt7mzfnwG+ESz+JJ4vn6xPh60/GwVBRveRvtRUmMg4UYGx7nTcR0hHVwZOCWLi/RcW93E5+erJ/Sz6OAHfUCd+jJ+C2sHmhI1dk8vb/9mBrtJEQKQL76wZSVC7q/uc/jlpLwkVhVQa63BQKAl0cmNsUCc6ufsD8MHRjXiqnbgzeoC9j0307Ailel2zomcrMo+xoyCFWrORKFdvZkb2wdex6c/yk4f2suKrZDz8Hfjx5JSzZsOcYt/qXF6auBmwGZVaTzV9xwey4ec0BLmM+9/vxfVPdGzQJ6umjLcPr21yey/1GEeIs0ez+zPUme2/k7ZATYWRpIMlpB2pICuhkoL0Gkpya6ksMVBbZcJkaBwbo1AJKFUCy6tuQSaTcbgkm6/jdwAwOaQLk0K7NOpztSMVypO4IrkahIOWpMexNuckAAIyunkGEuLsQZ3FxNHSHArqlS1lIkT9Fcraz9Oa3dYpvY+e1/kz8b52tO/57+I+mqIlFEJrKg08MX0NyptNyDtbidR6MTOqD74OWsxmKx/cvYcNv6QhAyY90I5HP+/bKp6ca4n5r8fxyxvHcHZT8t2xyXgHnf28EkWRp4av5+iOIhBh7tpR9BkbwPFdtulEXaWJ9r09eG/TdThpVZisFpZnHmV9TnyT23ux+1hCXRr/fqvLDXz91EE2/JzG98cnE9Kh5fVN9LVmUg6XkXqknKz4SvJTqynOqaWyWI+u0oRRb+Gfd0aZDJQaOU5aJa5eakqcqxH8rKjDBJ65cQQyo8AzIzfw+uJh9vT1+Ul72V1oO79nRw+gv8+1F8QqGSMSVxxXg3CQwWLmuX1LqLOYEGQy5nQZRTtXH/t6qyjyR8p+tmQkUvAM6I80vy1BkLGk4iacXM79FPtvOFKagyCTNVAIXZ8Tf1aF0PePbGygELouJ76BQuja7JOszT7BndED8NI4sTzjKLm1FbzeaxJKwZYllHa0nJcmbaY4uxatp5rXFg+l29Cma6xInJsVmUdZmXW8wTJfBy1v9p5kf7/08wQ+f3Q/akc5Xx6YSIlX5VmNyoT9JTzSdw1eMxR4zRHsRqW73JE3Zmxn36pclBqBOfP6cTA6lfTqUpqjm0cQ93cajPyMIM5dS7P48N69VJUZEK3w6t9DGXr9vyuyaDZbSTtaTurhMjJPVpKbWk1xdi0VhXXUVJgw1JmbTD9XqgUcXZRovdR4BTjiF+5MULSWyK7uRPXywM2rYZzTwrSDbMpNBKCPdyjJj9dRmlfHt0cmIQgyEisK+fj4ZqyiiINcybv9pl+TVZClqr0SVxxtTSDsYjhSmkOdxRb30c8n3G6I6PRGTNVWDm8uIHe9iYyfAfNZNgRYrSIndhXTd1zg2Rv+S1pcIRTbU+HTexcTV5JNn/pYiYiu7vyRdT3zX4/jt7eO89SwDfSbGMhrfw9FpZEuTRdDgKMrT3QZaX//zzpB0x7pgKu3mndm7uT+PisImidwY//uzcrOZ/gV0e53FfeMHICvswvLM47y6fEtvN5rEm+vHMm2vzL57207efeWPTgOBN+3ZAgKgUBHNzzUjuTVVlJqsAneHSnLYXF6HDdG9KS8sI5PH45lx6IsZDLsBf+Ks5vW6ziF1WolO7GalEOlZJyoJDe5iqIsHWWFemrKjeh1ZruOzpkolAIaZwUe/g54+jvgG+ZEUHst4V3cad/L45xeoqYY4R/N9vwUTFYLa99No2I9TPoinF2FqZysyOdwSbY9GWlYQLtr0hC5EKRPR0LiElJSV02J0UyByUJuQTFbKjZTpjewOjsL13iBHu+oCe/kht9QDeXFerCCLEOOXmeLCZErZVhMp7NQDm8saHFj5ExaSiHUQaEi3MWLtOoSuzFyijte787kB9rz4oTN7FuVy3SPhTz5bX9Gz4q4tAd3DSDIZA3SfZtixM3huHqpeeHGTWTfa8HtNy3+E1ybNSqnD+lKL1/btMM/jcphN4bi3FvGK+O2UbsbsqaIPL2kD9cNscnRi6LIgeJMfkrai0W0sjk3EdU2R358Mo66GnN9G9u45HIZGScq2L4ok4zjFeQkVVGYqaMsv47qMgN1OrP93DgTuUKGxkmB1kNFaCdXfEKdCGrnQlhnN9r19CQg0rlFpgC9HZyZ3W4A/3t5BxXzbMtORGcQn5LVoF0XjwCmhHS95Pu/2pCMEYkrHlEUEbFdiC8XKdWVbC3OY39ZMSerysmsrabEqKfuzFTe6jxcFSr6enjjW64mv4uBvC8ULJw9hu8TtpNWbfOgvN/3eiqzDCTuLyXpQCkn9xSTEleGSW8lJa7sshzP5VAI1apOt/knHn6OfH1oEuvmp/DJA7H897ZdLPo4nndWj8Td59rVJ7lQiuqqeXbfEpSCQISLF9PDujc5xdlzVAAd5zmSOLuOlydt4Zl5Axlze+RFGZUH9JkEfy+n/E8r5d+IvD9+H8I8OSNnhiOTyejjE0aWrpzlW45T/C58lrS/ybGbTSJrvk9hzfcp9mWCXIbaQY6zu4qASBe8Q5wIjHIhNMaVdj08CenkikLROrFGlaUG/rotidL1p725MuH0NUir1DA8oD3jgjs1mJqSaBrJGJFoMxTrLzxdcHNRLrft28ytoe34X9f+l3Q8ebU6thTnEltWzPGqMjJ01RTp69BZzA20oARkuCiVhDo646vWUFlbhq9KTj93H17vNc4mDjUMXvtuN4t+S2TEgj/wf1pGqFaJt4MLzioVLu3UBLXTMmqmLcDNYraSGV+Ji3vLxouc4nIphJ6LsXdEMezGMN64YRv71+Rxc8Aibn+9K7Nelp4sz0W4ixd3th+Ar6MLlcY6VmYe572jG3it50Q0isbVk40eJh7f2Isvhsbxvzt2U1msx/s/F25UZtenrPrOVPLZ8xP5Zs5B5s7axfzXjuIf6Ux5gZ7C7Bp055HZ6uaj4c43uxLZ3YPIbu5tdroufl8xr8/YRnlhQ+P61oi+yFTgrnako5sfCuHiVJSvRdrmNy1xTaE3m5iftJdDpdlNrv877TAPdhqKwxkXVL3FzAvHYvk42aZwuKP47Gm0zVFu1LOtOJ89pYUcqywjtaaKQn0d1WYjZ0avyAAnhRJfjSPhTi50dvWgv6cPw7wD8NOcTq8VRZE3Dq4iv66Kgrpy/ko7xLSwbqjkCt64dyDmIwbmGVM5VmdBqDPQ002J6uRB+nr40MfDGy+1zQsgVwhEdHG/qGO6GC6nQui50DgqmLt6FIc3F/DmjduY98oR1nyfwturRhAWc/k+kyuNM7OfgpzcCXfx4oXYZRwoyWKwX2STfTwCHfg5dRp3d1rON08fYnCFP0y8sP2e0pRRCHJ8gpx49a9h/PzmEf545zj+EU7EDPKmr78/K/edxJAA5gwQLdhjRc5EJoNJ90df2AAuI6IosuyLRFsqvkij+JT+PuFtKj35SkL61CRaFaPFzKcntpBaVdJsm8TKQj47sYUnOo9EJVdwpKKUm/duILm60t4m6Yz//0mt2cSukkJ2leZzpKKM5JpK8utqqTQbsfzjaugoV+Cl1tDVzYMYrTt9PHwY7h1AhPP5ZXHJZDKmhXXjq3ptgU15iewpSqOdqy86k4HSm4vp+LeCPNGCVQYHKso5XHnIPo5gBycGevnR18OHsb5BxLg2r8vQkrS0Quj50GOkH4uKb+STh2JZ/W0y93RZydg7I3nq+/5SGvB54KhQ4evgQnF9Kvk/OWVUugc68GvGdO7utIKdb+cTUqeG/udvVHppnCk16Kg1G0mtKiHK1ZvbX+3GrS91sSsIb85NxHe4zUsw1LkdrvtdWfdjKvH7ShDkMvtNvaJYj8VsRd5KUy9no7baxPt37Wb731nNtmkqeFbi/JCMEYlWZVNeot0QcVQoGREQbb+pxVcUsLMgBb3FTGpVCetyEoivM/PS8VhEaOC5KDMZWFeQTVxFKYfLS0iqqSCnTkeF0YjpHxk6akGOp0pNexdvOri40cvdm+E+/nRycb8kN7nuXsHcGtWH31MOICJSazbZ5+EBIm9QkXbSQrqbGQQaGETZdTr+zkljQXYq72kcyJ98+78ez7lYkh5HjEcAHmpHDBYzsUUZJFUW8ljnEYBNIdRN5cj08O6ATSH0/aMb2ZATTxePAPYXZ5JZU2b3opypEOrj4IKXxpllmUcbKYSeD4Ig8OTX/ZnxeEdemrSZdT+lsmtJFi8vHErv6yRp7bOht5go1tfQv5mA1jONSkdnFfNTpnLr5L/I+sDASwmbeWvFiPMyKgf4hpNYWQjY0l2f7DISB4XKbogU11WzOvu04u7w9u0I7OHGpPvak5dazcZf01j7YwpFWbWIVigv0rdJMb9PHtx3VkMEbBlwEheHpDMi0WpYRCsv7V9OuaEWGfB897GE/UMUKbO6jLlxa6kyW9leZSDXeI582HqUMgF3lYogByfau7jR082LId7+9Hb3RnGZnqqzasrYnJvIgZIsTPVeBk+1E0P92+Hm6MGAzcvO2v/nviO4LbR9i4+zLSiEni9/zD3GvFePYDGL9LrOnzeWDkfjKD1TAfyddoiuHoF4aJyoNNaxIvMY2TXlvN5rIi4qTSOjMrWqmPePbmRGWHe7Ubk66wSy11xI2lJOh35eTFwYzPrceO5sP8BuVObqyhvoxZisFl49sMJeNM5FqWGQbwQ+Di5kVJeytygdY/3vP8bd327knokoipzYXUzK4TKmPhzdJorwrck+weGSbArqqlAJcjxyXcn/1ET89hLkChkWc+Nb59Lym0k0FZxVu+XMc6POYmogCHg1IomeSbR5MqpLmRu3DoDO7gE82nk4AIfLiyk3GsnV60iqruT3jJOk1TWdhXEmNwSG80BkJwZ5+qFRtJ0blMlqodqkRyETcFFq7BfasdtXsakwF8s/SqPKgIejYvisx+AmtiZRUaLn5YmbSYgtRakWePSLvky4u11rD6vV+S5+J8lVxehMBpyVaqK03kwL64Z3fSzQhRiVr0zbwp5lOQRFuzBlZRh7StLOalTm6Mr58OhmdGeoJ/8Tf0dXnu46CmfllVEk8ZPjW+jjHUqYswcWUWRpxhHyaiu42difb588SNKBMtvJesbp+0H6SL7O3v6vBQGvJiRjRKLNc7wsj89ObAVgYkhnpoTaMia8l82npD5a31etwVEQyK6rtWuE/eP8B0Ahk/FKp1682qnXZRn7pWBbcR7Dt65otNxRriBv0ixcVepWGNWVw5YF6bx/1x4MtRbCu7oxd82oNunev1L58N49rP4+Bc9AWz0bJ+3ZM7uK66pZnB5HXGkO1jPOULWgoL9vOFNDu+GkvDzZYS1BtVHP0/sW81TX0bzdZze5KdX0HuPPgXX59ovSlJ0hCG4ij8QMt/f7b9w6gp3c7dotz+5bwnVBHRkTZKvrU2c28vTexdzZvn8jDZ6rgfO9f7e9KCGJa4Yzs2MKaqvs///SbwS3h7bDRa6g0KCnymxiiKuG23yceKtTD0b6BCJg8y6c+gFbRUiqrriMo//3DPWyTRudOhYsIK+DWpOZkFW/cbSieWltCZt415Lymxg4LZj0oxXMDFnMjy8dbu1hXTXM+W4AM1/sTGluHbPCl1BWcHZ1VG8HF+7vNIR3+k5ldvQAZkb24b4Og3m33zRmRvW5og0RwK6snHuwmtzkavpPDOK/a0fz7ZFJDJkRgmeAA9mWMjq4NSxp0Mndn7RqW1zcubRbrmUkY0Si1Qhx9sBZYXv6jyvNoag+6n+cXwjz+44kd/JtTPYLpsxkYkulnoXFtdRaYe2QCRRNuZ0feg9jtG8QCpkMKyLJNVVn212bQyaT8VLHHvanSLlCxtAvtfR6VYWu1kSPDYv4Pq3pomMSNlQqBW8uGc7HO8fi4qHi93eOc3PQ36TESYbcpeCut3vw0Me9qS4zcnvUMnKSz32Ouasd6e8TzrCAdvTyDsFBcWUbIWBLX16YdpBIrTe/PHoCmQye+sGmaxTR1Z3X/h7Ggtwb0AmGSy4IeK0gGSMSrYZSkNv1DyyilY+ObeJQSRYW0YpFtJJcWUhntYnZPk50cVQik8l4J+EwTkt+4LHDu5jiH8q6oRMpmnIH8/oM5/XLMEVjFa0syzjCi7HLeGTXAl7av5xVWcc412xnYkUhbx1aw8M7/+Tl/cvtlTynBIQRVZ82/HhEe/p8oCE4TMmARx1wKpdx78HtzNq3qcWP60qn8yAf/iq4gemPdaAsr44HeqzmnVt3YDY3URFN4oKY8XhHXvh1EIZaM/d0XkHC/uLWHtJl54+U/eTpKhlR24Gsk5X0HOMvKQNfYiRjRKJVGRvcCb/6KPIyQy3fxO/ksV0LeWzXQr6J30GpQYdCEJjm60PJlDv4ptcQvFUafs9OwWfFzwzZvIzs2hruCItmvH9Ii493bXY82/JT+E9Ub17vNZEZYd1ZlxPPlrykZvuU6Gv4/MRWot18ebnneEYFRvNL0j5OlOchyGTM6zOCp6I6oK8tYEpkVz79ayIhfTT0fkhNUJKK37JS6LD2T6qMxhY/visZQRB4+JM+zEueSlB7LZt/z2CG50L2rMw5d2eJszLq1gjmrhmF1SLy2IB1HFiX19pDumz8kbKfY2V5zOk6iu8eiAMZPP3DgCbbXoggYIM2xtNtrlUkY0SiVXFUqJjTdVSDlF6zaG1QvTfM2YM5XUbipFRxX0QncibfxpZhk+nm5snO0gK6bfib9mv+YHFOeouPN626mO6egXTxCMRL40wv7xA6ufmftXT6tvxkvDTO3BjRE39HV0YERNPTK5iN9eXHB3n54SnTM9gvkkF+kQRr3Zm/+np8b1cQ/bKCbuucSKyuJGDlL+wvLWrxY7zSCYzUMi9xKg981AtjnYVXJm9hzvB16KokY+5i0ZtNpEbl0+lvB+SBIi/euIkFvxw9a5/mvIFnsiUviRdjl/Hwzj+ZG7eO9DYUNyGKIn+k7CeuNIcnu46kKslE2tEKug/3xTuw6Sq/p7RbzqQ5QcBTnNJuaa4w5bWCZIxItDquKgee6zaGxzuPoKdXMP6Orvg7utLTM5jHOg/nue5jcVM3zJIY7hPA4etuIGPCf5jgF0xaTTXX71mP17J5vBN/CKu1ZdzzES7eJFQUUlgfcJtdU05KVTGdPfyb7ZNWVdJ0UFu92JvZaiGruqxBUJtCLmfMc+FEPOyE1w8iw77SordY6Ld5CZ/VS+BLnJ0bnujE30U30nmwN0e3FXG9918s/TyhtYd1RfJz8j7iKwp4aMQQ/rtqFEpnge/vP8Jvnxxpsv3ZvIGn2F+cyd9ph5gY0pmXeownyMmNT49vaeQ1aC3+SD3AvqIM7o4eiEau5H/37QIZPPFDP3ubnxJ3syQ9zv5+VGA0J8rz2ZATT0FtJSsyj5JZU8bwAJte0JmCgEdKc8jVVfBT0p6LEgS82mg7YgwS1zSCTEYnd3+70Nb5EuqkZdWQCdSaTTxzdC8/ZSTy0vH9vHnyIP8JieKTboPQqi5dAN244E7oLSZeO7gSmUyGKIpMDetGP5/wZvtUmfRNBqzpLSaMFjO1ZiNWRFyaaBN+jxPdlcEs/jiBMdku7P6vnsfidrO1OJ+/+o+WZNHPgbObio93jGPnkkzevX03nz+6n+VfJPLO2lH4hTq39vCuCIwWM4dLsnkoZijtXX3AFeYfmM7ssYv56amjGIqs3PV2jwZ9zvQGgk1jJKWymI25icS425RzN+Ym2L2BALdG9eV4WR67C1MZFxxzeQ+yCbblJwPwwbFNWCpEMo9YcZslI8uxlCBsBSTLDLXIOC3QFqn15p7oQSzLPMLSjCP4OLjwYKchdo0RgLFBHTFazPyaHGvXbnksZsRVqTFyIUjGiMRVgaNCyRc9h/BZ90F8mnKc/ybEMS8jiZ8zkhjuHcCXPQcTrf33RdYOFmcSW/+0FODkRnZNOQvTDuKmcmCAb8QlOJLGPPRRH1y9Nfz0UhyD7lGTM9+JxbnptFv7J7GjpuOplgLpzsXg6aH0Lw9m7qydbFuQyW0RS7j+iY7c915PyaA7B1ZRxIqIQnb6ZukV4MjA772JfayE3985TkWxnjnfno6jaM4buDDtEHDaGzg+qJN9vSCT0cHNz+4xbG2+GTLT/v9jA9cg6kv46KXJBPuermT9VNfRjfr18g6hl3fz8WsymYwpYV2ZEiZVoj4T6SyUuKoQBIEn2nelYMrtrBk8ng5adzYX59Fh3UI6rV3Amvyz15Y4F4vS4xgb3Ik+PmEEOrnR3zecUYEdWJN9stk+WqWmyYA1jVyJSq7AWalGQEZ1U0Ft9WmCt77YhSe/64+h0kLgzWZuc4okTVdN8Krf2HmRFYuvNRQKgVf+HMqX+yfg7uvA3x/Gc3PAIuL3XXvZIReCRqEkwsWL1dnHqTDUYhWt7C1KJ9NYRswnLgRFa1n9XQqvTNti73Mub2CNydCsN7DS1DamaU6Rm1rFyT0lRPfxJDja9dwdJC4KyRiRaHHKDbX8kLCbOXv+5pFdC3jj4CoyzhLwCZcm+G2cfwgnxt5EwtibGOUTSGJ1BRN2rsF3+Xw+TDxyUXElRqv5tEhZPYJMhthIE/Y0EdomgtoqCojQ2gLWFIKcEBcP4isK7eutokjCGW0AJt7TjjeXDsdstFA4tYD3HHtjsloZunU5/0uIu+BjuVZp39uThXk3cPOzMVQU63m0/1reuGEbxvOse3Qtclf0AEQRnotdysM7F7AlN5E+3qHIFQI/npxMh35e7FmWw+OD17ZYvFZr8cFdewB4+semM2gkLg2SMSLRouhMRt47sgG5IPBo5+G83msiN0b0xOksQkiXOvgtWuvOxmGTKJ86m7vCoqk0mXjq6F6cl/7Igwe3U2M+/yyLrh6BrM4+zrGyXEr0NRwuyWZjTgLdPYPsbZakx/FT4m77+2H+7SjR17Ao/TAFtZVszUviYHEWowOj7W1GB3ZgZ0EKewrTyK+t5PeU/RitZgb+Y+pn4JRgPtw2FmSwbspJfrEOxkOl5rlj+5iwY/VVdyNoSe59tye/pk8nNMaVHYuymOHxF9sXZbb2sNok3g4uPN1tNJ8OvIn/9pvGCz3GYRGteGmcEQSBz/eOp++EQE7sKubeLitxEdT/2hvYFijMquHo9iKiursT3vnfT/NKNI9kjEi0KOtyTuKuduTO9v0Jd/HCS+NMJ3d/e/GupjhXKiw0DH4LcHLl1qi+qAQFuwtTm92uVqXihz7DqZ1+F3O79MVJruTrtHhcl8xj/I7VpJ+Hgustkb3p6RXC7yn7ef3gKv5OP8wQ/yimhp6e/6001tkrmAJ4aZx5JGY48eUF/N+hNWzITeC29v3sgXwAfbxDuSGiB8szj/LWoTVk68p5LGYE2ibKv3ce7MM3hyaiVMv5/paDfJvXjwGePqwpyCZ09e8U6M8u2y1xGt8QZ344PoXHvuyLxWzlzRu289jANVSVta2pgraCWq7AVeWAzmTkZHk+3c4wwt9ZNZIxd0aSebKS2HvKOFHUcPrwYryBrc0Hd9u8InOa0RWRuHRIhfIkWpTXD6ykk7s/5cZakiuLcFM5Msy/HUP8o5rt896RDYQ4e3Bz5GlF1V0FqSxMO8QnA2/EbLXw6K6F3N9xcIN0uJ8S91BnNvJQzLDzHt/SnHSeO7aPpJpKALq6evBRtwGM9A06R8/Wpyhbx71dVqCrNHHHG105NrWW95KOohYEVg4az2i/tn8MbYnaGiOvTd3G4c0FyJUy7n6nBzc93fpZHW2BE+V5iCL4OWopqqtmUfphlIKcZ7peh1wQWJIeR4WxltnRA/nuuUMs+N8JHHrBzd91YHR0exIqClmQepBHOg+zG+H7izOZl7iHWe36EubiyabcRA6WZPJGr0lNGuGXm7KCWm4OWERojCvfH5vS2sO5YpEK5Um0CYr1NWzLT8bHwYXHOo9gqH87FqQdZE8TMSCnuJzBb9OCwkkcfwvHxtzAEC8/jlWWMWr7KgJX/MJXKSfa9LSHT7ATv6ZPx91Pw/zXjhL8ncCyQWOxinDdjlW8fmJ/aw/xisLRWcV7m67jndUj0Tgq+PaZQ9zRbul51WO52qkzm/gj9QCvHVjJT4l7iNJ683jnEcjrM5HO9Abe+25P7n+/J3WH4Y+bE3lt6+p/7Q1sDd6/ey+iCE9+K3lFLgdSaq9EiyICoc4eTA/rDtiK4+XVVrAtP7nFUmEvhs6unmwfMZUyo57HDu/ir5w0Hjq8k2eO7uXeiI7M7dwXjaLtnS4u7mp+S5/OPZ1XsOyLJIYWGUiZdwt9Ny7hjZOH2F5cwPqhE1FI6avnTd/xgSwquYkP7t7Dhl/SmB29jMkPtueRz/pcs2nAvb1D6e0d2uz6O6Mb3rBvfCoGrZea92fvIWuGlad2D6K9r2ejfiMCohkREN1oeWtTUaJn/5pcgqK1xAzwbu3hXBNcm2eWxGXDVaXB37FhOpy/gyvlhubjGi5FKuzF4qHS8Gu/Ueim381rnXqiFAQ+Tj6G89IfmbZrLTm1Nf9q+y2BSqPgx4SptOvlwfa/Mvl4wm6yJsxkhHcAW4rzCF71K1m11a09zCsKhULgufmD+DZuEl5Bjiz/MokbfP/m6I6Cc3eWAGDsHVG8tXIEFrPIo/3WcGjTlVPP5qN7bV6RJ77ud+7GEpcEyRiRaFEitd4U1jV0cxfWVeGhbrq2A1y6VNh/g0IQeD2mD+XTZvNHv1GEODqzLC+T4FW/0XvjIvaUtq2bkkIh8EXseHqN9efotiIe7rmG9YMn8lqnnhTo64ha/Scr8qRMkQsloqs7f2Rdz6xXu1BTbmTO0A28PHkzRr2UBnw+9JsQxEc7xiITZDw3ZhNbF2a09pDOSU2Fkd3Ls/GPdKb7cL9zd5C4JEjGiESLMjqwA2nVJazOOkFRXTWxRRnsKEhheEA7e5uWTIW9FNwSEkXahJnsHzWD/h4+HCovYeDmZYSu+o35GYnn3sBlQhAE3l07mlGzwkk/VsEdUUt5Lqw764dMRJDBlF1refbIntYe5hXJnW9058+cGUT1cGfvylymeyxk42/Nxz1JnCZmgDffxE1CpZHz1s072nx9oI8e2Itohcc+79vaQ7mmkLJpJFqco6W5LMmIo6iuGi+NM6MDOzTIppmXuIdSg66BtHJiRSF/pR0iv7YSN7UjE0M6NzI0tuQlsj4nniqjniBnd26J6EX4ZUgLLNDX8ujhXSzNTccsimgVSh6MjOHNzr1QCZcurqRMr6PGbLC/d1ao8dA071E6k6+fOsDfH8bj6qXmh5NT0LtY6bNxMTl1OgZ4+rB1+ORLOtZriXXzU/jkgViMegvtennwzuqRuPu0jaDLtkxxji37q6bCxG2vdeGO17vb18VtLeC/s3bxxtLhRPduHFtyuaitMTLNbSFeQY78njGj1cZxNXG+92/JGJGQuEiMVjOvHD/A16knqTKbUMoEpgWG8VmPQfhqHM/aVxRFjFYrannTxbHK9DpeObACs3g6m0chE/i/3pPP2yD5893jfP/8YRxcFHx7ZBK+oU5M3rWW1QXZeKrU7Bs1nUhnSd76YtDXmnnj+m3sX5uHIJdx+xtdmfWSVGvkXNRUGLmr03LK8uuY/GA7Hv+yP0kHS3ly6DoMtRbG3hnJMz8NbLXxvXvHLjb8nMYbS4czaOq1XUX3UiEZIxISl5Gf0hN47cQBsut0yIB+Hj580XMwPd2bjsR/J/4QHyYdbdYgyKop4+3Daxstf6nHOEKcPc57XGt/SuGDu/egUAl8umcc7Xp48t+Ew7x4LBa5TMZv/UZxU3DkeW9PoiGHNxfw5o3bqC4z4hvqxNurRhAWIyl1ng2j3sy9XVeSm1xNrzH+JO4vpbbKhNUiotLIWVR8Iw7OylYZ12SXP3Hz1bAg54bLvv+rFUlnRELiMjI7vANZk2axY/gUerp7sbesiF4bFxO5+ncWZKc0aFtrNvG/xCOUGg1M2LGGKtP5y9FfKONmR/HmcltGwyN913B4Uz7Pd+jBtuGTUQoCN+/dyMOHdrTY/q92eoz0Y1HxjUy8rx1FWTru6bKS9+/e3ab1aVoblUbBTwlTCO/iysH1+dSUG7FabM/ERr2FHYv+XTHLi+Xzx/ZjMYs88EGvczeWuORIxoiExCVksLc/B0ZfT9bEW5kSEEpmbQ237N2Ex9KfeP3EAcxWKz9nJtsNkFRdFTP3bsLagg7KAZOC+Gj7GGQyGc+O2cjWhRkM8Q4ga8KthDu68GXqSXpt+Bu9WcoQuRgEQeDJb/rz/Ykp+IU7s/bHVGZ4/sXBjVdOKuvlprrMiKHOwj9qTiIIsPr7ZPv7Mr2OrJoy+6tMr2uR8RiNZtbPS8PdV8OIm8NbZB8SZ0eappGQaEH0ZjPPH9vH9+kJ6CxmlDIZakFOjaXhjf+FDt15p8tpTYNDJdl8E9/YY3Gh0zRnkhlfyUO9V2GotfDI532Z9nA0VquVm/ZuZFFuOm5KFTtHTCXG9eK2L2Hj97nHmP/qESxmkV5j/HljyXA0jlKw8Clqq03MGbaetKPldo/IP/k5dRqaAOFfx02dL58/GsvSzxN5Zt5Axt4hTVteSqRpGgmJNoBGoeDjHoOomjabL3oMxkWhbGSIAMxNiOOPrBSMFjM/JOxu0hAB+CPlQJOVic+H0I6uzEucirObks8fiWX+63EIgsDfA8fwSfeBVJqMdNvwd5tKV74SmflCFxbk30CHvp4cXJ/PdI8FrP4h+dwdrxG+evIAKYfLmjVEBEHG2nkp7C5Ma2CIAJhFa4MilJcCs9nKqu+ScfVSS4ZIKyIZIxISlwFBEHgoKoZOWo9mT7o792/hxUPriS3OaHY7adUlfHh0I7qLjDPxDnLi1/QZePg78Msbx/j4wb0APNauC/tGTkcjyLlz/1bu2r/1orYvYcPNS8Pn+ybw4u+DEeQyPrxnL/d2W0FxbstMM1xJjJwZRr+JgSg1tjNBrmg4V2O1ivz1xQmWZxxtsv+3CTvI1VVcsvH88MIhTAYrs9/qdsm2KXHhXJQx8sUXXxAWFoZGo6Ffv37Exsaetf3HH39MdHQ0Dg4OBAcH8+STT6LXSyW6Ja4tDpYXs7O0gOZCG41WK59kZlNjMqOWK5gR3p3/9ZvOh/2v57Z2/XCtLyCWX1fFyqxjFz0OZzcVv6ZNI7CdCyu/Tub1GVsB6OPpQ96k24h2duWnjEQ6r1tIjbnlgmuvBUb+J5wlpTcxcFow6UcruDV0CT++fLi1h9Wq9Bjpz9srR7Ks/Bbmrh3FlIei8Qmpn3apt0tMZSJVK21nirNCjfaMMg+VRj0fHdt8SeJHrFYry75IwtldxaT7216NnGuJCzZGFixYwJw5c3jttdc4dOgQ3bp1Y+zYsRQVFTXZ/vfff+f555/ntddeIz4+nh9++IEFCxbw4osv/uvBS0hcSXyY1PhJTwbIZTL7iWgW4c/SOvzdwhjuH42rygEnpZrBfpE803U0Cpmt5e7CNAxNTPecL6cyGqL7eLJzSTZPDl2H1WpFq1KRMP4Wbg2J4kRVOQErfiWuvPii9yNh+6zfXDKcj3eOxcVDxe9vH+eWoL9JiStt7aG1KiqNnD5jA3j4kz78njmDeYlTGfiSH6p6bcOyL+BO7UDe7z+D9/rP4IXuY+3xUtUm/b8yyE8x/7UjGOsszHq1y7/elsS/44IDWPv160efPn34/PPPAZtlGRwczKOPPsrzzz/fqP0jjzxCfHw8mzZtsi976qmn2LdvHzt37jyvfUoBrBJXAw8c3M7agmw0ghwnhQJnhQI3pRp3lQYBkT2F6VRbrJhlAoVGM75qB2aHRXNzcCTd3W3KsvOS9rKn0CZD/kjMMLp4BP7rcb04YROxa/IIi3Hlq8MTUSptQmzfpZ3kgYO2c/TLnoO5P7LTv97XtY7VauXLJw+w7LNERNE2ZfHs/EEoFNKMuclq4bl9S9GZDViyRfSvOmDUWfnv+lFEdLFpt9SY9Ly0fwV6iwmlIOfdvtNxUqouan9Wq5Up2j8R5AJLy2+6ZisytzQtEsBqNBo5ePAgo0eflu0WBIHRo0ezZ0/TNS8GDhzIwYMH7VM5aWlprF69mgkTJjS7H4PBQFVVVYOXhMSVzjsxvZjoKmeYs5XeGiMdFLUEUcmHXfvyn+AwEvRmHOUC73XqQvzYm5joH8K7iXEM2LyUU88Moc6nBbUuNm6k0bhWj+K62yPIOFHJHVFLqa2xbffeiE4cvu56nBUKHji0g1v2bpT0M/4lgiDwyCd9mZc8laD2Wjb/nsEMz4XsWZnT2kNrdXJ1Fejqyx/06RHCZ7vG4+6n4fFBa1n2ha2ejbNSQ1/vUMBmvKRXl1z0/v6YewK9zsJ/no+RDJE2wAV9AyUlJVgsFnx9fRss9/X1paCg6SqmM2fO5M0332Tw4MEolUoiIyMZPnz4Wadp5s6di6urq/0VHCzJ8kpc+dSYDU1mB9SYDewqtU2FJOvNvJWUgJ/GkUJ9LQ5yBd/0GopMZptMz9NV2vs6KC6dSuVz8wdx07MxFGXVMitsKeVFdQB0dfMkd/Isurh6sCA7lQ7rFlBxkdk8EqcJjNQyL3EqD3zUC2OdhVcmb2HO8PXoqq7dGB3jGdOOnmpn3H0d+GDrGFRqOV8+cYDsJNtv3/OMtF6j9eKmKq1WK3++exyNk4Kbn4v5dwOXuCS0uDm4detW3nnnHb788ksOHTrE4sWLWbVqFf/3f//XbJ8XXniByspK+ys7O7ulhykh0aqcMkYAkmvr8F3xM6sKslk8cAy3h7UHoMJQy776TBuVIKedq88lHcN97/bk/vd7UlVq4PbIpeSm2jySzgoVR8fcyL3hHUiuqSJw5W/sLS28pPu+VrnhiU78XXQjnQd7c3RbIdd7/9Xmq9q2FFrV6SDVlCpbDKKzq4pvj07CL8yZlydtprJMT0rV6XNFq7y4AoWLPoqnrtrMjU93lLwibYQL+ha8vLyQy+UUFja8EBUWFuLn59dkn1deeYXbbruNe+65hy5dujB9+nTeeecd5s6d26zLV61Wo9VqG7wkJK5W9BYL20vy7e9FbJk1DoKcYAcnLKKVuNIcPji60R602tcnDEfFxc2Vn40bn4rhmXkD0evM3BOzgqSDp4Msv+09jF/7jsBgtTBw81I+Smw69VLiwnB2U/HxjnG8vngoSpXA54/u566OyyjIrGntoV1WfB20BDm5AZBeXUpcqW3qytPfkbdXjSQ/Tccd0Us5UmBb7qF2JEJ7cRV+f33rGGoHObe9KhU3bCtckDGiUqno1atXg2BUq9XKpk2bGDBgQJN9amtrG1me8vpKpVeA+KuERItzoLwEYxOGud5qoeeGv7hpy+98dXI7RXrbzclT7cTU0Ja7iI69I5K3Vtrq2Tzaf00DWfNbQ9tzfMyNuClVzDm6h2m71kpxJJeIwdNDWVJ+M8NuCiUroYrbIpbw9VMHrpnPVyaTMSLgdHrtt/E7WZB6kLSqEsz+Jno/6UNNiYm8R2z3jWH+7RFkF+7VWPZlIroKE9Me7SB5RdoQF/xNzJkzh++++4758+cTHx/Pgw8+iE6nY/bs2QDcfvvtvPDCC/b2kydP5quvvuLPP/8kPT2dDRs28MorrzB58mS7USIhcS2zo6QQhUzWaLkIGERYVqqjxGQBIMjJjTldR6FVXZx7+nzpNyGIj3eORSbIeH7MJjb/kW5f10HrTt6k2+jt7sWyvEwi1vxBib6uRcdzraBQCLyyYCifx47D3UfD3x/Gc3PAIuL3XRvp1QN9I+jlFQKARbSyOS+Rd4+sZ27cOkqnlOA4GAwJYPpEzejApnVB/lnP5p81bea/GodSLTD77e6X45AkzpMLLphw8803U1xczKuvvkpBQQHdu3dn7dq19qDWrKysBtbmyy+/jEwm4+WXXyY3Nxdvb28mT57M22+/femOQkLiCsBstTS5fHNxPuYmvIQCYAWc5HI6uvpxS3gMndz9EZowXFqCTv29+fbIJB7stYp3Zu6kskTP9Ec7AjaZ+/2jr+fxw7v4NOU4wat+Y82QCQz3CbgsY7va6dDHm4X5N/Ldc4dY+P4JHu2/liHXh/DC74NQqa7eOjeCTMbdHQbike7IlrykRgHfAW/LKbxdIGtRLet+TGPiPe0arC/T6xrVs4HTNW1i/8inqtTI9Mc7SOnUbQypUJ6ExGVgR34Ki9IPU2cxNVheZ7HyS3FDJUkB20V5akAY90d2YpRP4GUzQJqiJK+WezqvoKbcyMyXOnPXWz0arF+Uk8YtezdiEUX+r3MfXurYs5VGenVSmFXDixM2k3miEo2TgmfnD2To9aGtPawWp8ZkYF9ROnm1lYgi+Dq60N8nHIVezi1Bi9DrzHy2dxwd+njb+2TVlPH24bVNbu+lHuOYE7mJmgojy6tvvqqNurbE+d6/JWNEQqKFWZt9giUZR5pcd7haz37daQMl3NGFB6M6cUdoND6alp2KuRB0lUbu6rSc0rw6JtwbxZxvG8aIpddU0W/TEoqNesb4BrFm8HhpPv4Ss/yrRL564gAmo5VOA7x4a+UItB6ac3e8Ckk/Xs793VehVAv8njUDV0/b57A7NpO5j27H63EBVXBDA35Uche+vTuOSfe344mv+7fGsK9JJGNEQqINkFldxjtxp5/UYtz86eIZgKNcxfGKQh48dgSTCIFKgZnBobzb8zq7pkhbw2g0c1/XVeQkVjFwahBvLh3RcL3VzKitq9hZWkCAxpH9o2YQ4HhpS71f6+iqjbw+bRuHNxcgV8q4+50e3PT0tamTsfmPdN6ZuROfECd+TZ/G3pW5vHXLdox1VjzukeF+e0NjuPQmBdUlRlZU34JKI3lFLheSMSIh0QaYl7iHPUW24E8HubLRNI3FaqVOBGe5gFwmMLfvVHtBPICDxVksyzxKqb4GHwcXZoR3byABL4oiKzKPsaMghTqLiUitFzOj+uDr0DLnidVq5fFB64jfW0LMQG8+2jGmkQfkhWP7+G9CHCpBYOnAsYz3D2mRsVzLxK7J4e1bdqKrMhEQ6cw7a0YR1O7auzZ+NecAiz6KJyDKhbzUavtyh94Q8MHpBImarVYKXxUZc2ckz/40sDWGes0iGSMSEq2MVbTy2O6/MFktOMiVvNJzPApBjlUUue/Adg6U5jHGXUMfr1D2l2QCMDOyD8MCbEF5qVXFvH9kI9PCu9HVI5DYogzW5cTzUo9xBNbrMazNPsna7BPcGT0AL40TyzOOkltbweu9JqEUWi5b7eXJm9m7MpeQjlq+jpvYaP59dV4m0/esx2i18mKHHrzdpW+LjeVaxWy28sHde9jwSxoyYPKD7Xnksz5tenpsW14y2/KTKTXY0tT9HV2ZFNKFzh7NBz6fzSA31JmZGbqYymJDgz4yBwhfIyATbF7GzBssWEtlLK+6BY2j5BW5nLRIbRoJCYnzR28xY6rPoLEKjryfdIIn4/YStXYhf+dlck9IGN4aZ/r5hNn7VBpPp8huyk0kxsOfsUGd8Hd0ZWpYN0Kc3dmalwTYvCKbchOYENKZ7p5BBDm5Mzt6ABWGOuJKWla1+K0VIxk7O5Ks+Cpuj1yGrrqhjPmEgFBSx/8Hf40j7yQcZtiWZZivEb2My4VCIfDc/EF8GzcJryBHln+ZxA0+f3Nke9OlOdoCbmoHpod348Ue43ix+zg6uPnx5cnt5OkqmmyfWlXM9wm7GOQXwcs9x9PdM4ivTu4gV1dBSW4tjw1cS1WpoVE/sQ5MNvse3R4r5iLoM8NfMkTaMJIxIiFxibFarWwqzOGBgzv5o6iG7wqq+Sw7h/8mxrG3rIipAWE8FhlDaV0ZA30jKTfW2vuq5KcvlmnVJXRwa6hs3Mndn7T64mAleh1VJj0dz2jjoFAR7uJlb9OSPPPjQG55PoaSnFpmhS+hrKC2wfogR2eyJt7KaJ9AtpcUELjyFzJ1UtHLS01EV3f+yLqeWa90oabCyFPDNvDy5M0Y9RdXt6Ul6eYZRBePQHwdtPg6apkW1g21XEFadWmT7ZszyJftPM79PVaSfqwCsRkbV3/M5vQv+UQEAW79SKo63ZaRjBEJiX+J1WplZV4mM/duInTVbygXfc/o7av4JSsZvQgeCoHuTkrWDBzFyXE382Of4dwWHEyd2UR/nzC25Sfbt9X+jHozVUY9WmXDbAmtUkNlfaG6KpPNi3JmTY9T7ysvUzG7e+b25IEPe1FdauT2qGXkJDc0NhSCwIZhk3ijU2+KDXrarVnAkpz0ZrYm8W+4883u/JE9g8ju7uxdmct0j4Vs/C2ttYfVLFbRyv6iDIwWMxEuXk22ac4gT04uQVdhal7FWw51x0VqD1ox54HjEFhedJS0quIGAmgSbQfJZyUhcYGYrVaW5qbzZ3Yqe0sLydPXcuqS6CRX0NvDiwl+IcwOjyavuoSfkvYAsDH7CH4aDV09AtlVkEp7Vx/+Sj9ETr2LOtjJnXCXi6u10Zrc8GQn3Hw0vHvbLu7tvIKPd44luk/Dm8urMb0Y7OXLxJ1rmbFnPU+268KH3aVAwkuNp78j3xyexNp5KXz6YCz/nbWLRR/F887qkbj7NJ0qXqbXUWM+PdXhrFDjoWm5LKhcXQXvxq3HZLWglit4oNMQApxcm2zbnEEu723lj5wZzP84jtWfp2CtBmRgPxEtYIiTYTguggy8n5GRXlPKu0c2IJcJvNV7coseo8SFIxkjEhLnwGg1szA7jb9y0ogtK6JQX2e/5mkVSgZ6+jLRP4TZ4R3w0zg26BuocWJ7QQqpVcVUmwx8dXI7zgp1g4s/2ETOboro2SCtV6vSUGVq6OGoMulxrfeEnKpYWmXUN8jAqTLqCXZ2u0RHf36MvjUCV081L03awqMD1vLOqpH0HtswKHGkbxCZE2fSZ9MSPko+xq7SArYNm4JGIV2GLjXj7oxi+E1hvHH9NvavzePmgEXc/kZXZr10uqaRxWplR0EKf6Ye4Ez/giCT8UrPCQQ4Nm0g/Ft8HVx4ued46swmDpVkMS9xL091Hd2sQdIc7j4OTH4+ihMj06jZIFLxh4gpG7tRYiqwHZXjQFBoT08CWEQra7NP8p+o3m02jf5aRJqmkZD4B7VmE9+nxTN+x2p8ls1HvegHbovdwvK8TPQWC8O8/fmga39Kp95B5fS72DlyGi907NnIEAGQCwIPdxrWYPrln4aIWlDwQMchtHfzbbA8wsWLhIqGwYjx5QV2l7aXxgmtUtOgTZ3ZRHp1SbNu75akz7hAPt0zFkEu44Xxm9jUxBSBj8aR9PH/YZJ/CLFlxQSu/JXk6orLPtZrAY2jgrlrRvHextE4uSqZ9/IRbg1bTMaJcsoNtbwTt5Y//mGIAFhFkY+ObiS7przZbR/bUcg7t+4gL6262TbNoRDk+Di4EOriwfTw7gQ5u7E5L7HJtudjkAtqGdpJAsG/Ctz1Z2f8+59xHiog5A0lzgp1g21sK0hmTfbJCx67RMshPZJIXPNUGY38nJnE0rwMDleUUGY8bSx4qtRc5xPItMAwZoW0R6tSXfD2nZQqnuwykmNleWzNSyK+ogAZMrwcnOnvE8ZgvyhcVQ78lLgbN5Uj08O7AzAqMJr3j25kQ048XTwC2F+cSWZNGbPa2dJkZTIZowI7sDr7OD4OLnhpnFmWeRQ3tQPdvYIvyWdzoXTo4833xyfzQI9VzJ21i/JiPTc80TBwUBAEVgwezweJR3jm6F46rlvIL31G8p/QqFYZ89VOj1H+LCq+kY8f2Mea71O4p8tKvCercJ5jsqcBOylUCDKBatOpeCQDHx3bzAvdx+Lt4GzfVtLBUn544TAHN+QDNgM0IMLlX41PFJuv23TKIB8d2MG+7J8GuYAMKyJquYLhE8PZFhBPYALkPwvUwjOh41AHCrx2cGWDba/KOsYQv0hcVNemim1bQzJGJK45SvR1zM9MYnleJkcrS6kwnU5L9VFrmOAXzIzAcP4TEoWjQnlJ9inIBLp5BqEU5JysKOCNXhPxdWyYc19mqEXGabdxpNabe6IHsSzzCEszjuDj4MKDnYbYNUYAxgZ1xGgx82tyLLVmI1Gu3jwWM6JFNUbORVA7LT+nTOXumBV8/eRBKgr13DO3cb2ap6K70d/TlzHbVzEzdhPbSvL4utfQVhjx1Y8gCMz5dgDXP9mJJ8eupXi5kdLN0H6umodvHUQHN19kMhlZNWX8nrKf9OpSdGYDyzKPcE+HQWTGV/LTy3HsXJyFoDj9GzWbLixde0l6HDEeAXioHTFYzMQWZZBUWchjnW1qvhdjkGsUSmrNRkRgTY7N26EKFhBrrXh4OfDmtO28seX078pT40SpXodZtLK7MI2xwVKWTVtAEj2TuOop0NfyQ3oCq/OzOFZZRrXZpoIqA/w0jvT18OHGoHBuDI5AJUj2+aVCV2Xk7pgVlOTUMu6uSJ7+oemA1TKjnr4bl5Cqq6Kbqye7R069ZEagREMsopUXY5eR/oOOsh9FsMDkB9rx8Kd9UShtXpJas5GX9y9HZzZiLZQRuiyQbb9lIshlWMwNbxdPfN2PSfe3P+/9/5y0l4SKQiqNdTgolAQ6uTE2qBOd3P0B+ODoRtyVjtwc2BtDrRlDnYXDxTlsKUikwlCHKw70UUTgb3HFqLdg0FtYnxZPsbwKwQlAhqVKxJglovtboFN/LxL2leIapsLpPT1yV4EBPuF2VeQuHgE8EjP8Uny0Es0gKbBKXLNk6qr4MSORNfnZnKwqR2ex6S3IgEAHJ/p7+nJLcCRTA8JQtGG1yqsBo9HMA91XkRVfRf9Jgby1YmST7axWK7fs28RfOWm4KlTsHDmFzq5XXmZRWydPV8kbh1YB0A5vCt+AuC0F+IU7c91tEfiGOmM2WdmTkcaBn4sw55x9e24+GhxdFFjMIhaLiNUiYrVY6/+C1SoiWsX6v/XvRdv/oiiCWJ8AcxnuQr5zZTgPEniu6xjePboegGhXX+Z0HdXyO7+GOd/7t/QYKHHFk1xdwQ/pCawvzCGhuoI6i23+WUBGsKMTUz39uDUkinF+wS0ila03m1iWeZS40myqTQaCndy5ObIXYWdJ002sKOSvtEPk11birnZkQkhnBvpGNGizJS+JDTnxVBrrCHJ255bIXoS3QmDqv0GlUvD98ck8OWQ9e1fm8uiANXyya2yj70EQBBYOuI4vU47z6OFddFu/iG97DeHuiI6tNPKrE6P1tBBagL8bT2/sQ/LhMp67biM/v370dEM50HQYRwNqKowY68zI5DIEQYYgt71USgFBLiAoZMjlMuQKGXKFgFwpoFDIbH/rX3KFDLlKQKkUUKgEFCo5SrWAUiXU/5WjUMtRqmQoNXJUajkqzamXgFwt8EfWfiqpBSUIGpCpwW+/F7HvFROxVIZVkCF3ldHFI8CuzwM2RViJtoFkjEhccRyvLOXH9EQ2FuaSVFOJoT74TS6TEerowlBvP24Lacdw74DLUqfj5+R95NVWMjt6IG4qB/YVpfPRsc283msi7urGGTYl+ho+P7GVof7tuLvDQBIqCvglaR+uKg0x7rZ02P3FmfyddoiZUX0Id/FiU14Cnx7fwhu9JjcSOWvrCILAJ7vG8crULexZnsPdnVbwzdHG9WwAHorqTF8PX0ZsXc49B7ezvSSf+X2b9qZIXDguZ2h2pFYVI4oi7Xp48FvGdCqK9fgEOyHIZXyXsIt9JzOpWGBFt1zAarJ5N85EkMuY/VZ3bn6m9asGh9e68uGxTQ3KKaQai0GE7CdFgn+SEezkzszIvnxxcqu9TV/vsMs/WIkmkYwRiQb8UwAJWl4E6VzsLytiXkYim4vySNNVYayvcaKUCYQ7uTDCJ4DbQ9sz0MvvHFu69BgtZg6XZPNQzFB7+u7k0K4cLctlW34y08K6NeqzLT8ZL40zN0bYgjr9HV1JqSxmY26i3RjZmJvAYL9IBvlFAnBrVF+Ol+WxuzCVccGtf/G/GP5v2Qg+vG8Pq79L4bbwpfwYPwUnbePspN4e3uROuo3+m5fwc2YysWXF7Bs5/aIymSQa4qlxIszFk4zqUnJ0FRwsyaK3dygOzkocnG1xOpnVZRwuyUbhIyN8jiPPfz6OlZ8ns+jjePQ6s11+XSYDywUGsLYUfo5aXug+lsXph4ktthWlsdZnBJvSQPO7ln4vh/HR8U0U1dnSkX0dtPZYFYnWRzJGJOyU6XW8cmAF5n8Ue1DIBP7vMikWiqLIzpICfs5MYltxHum6asz1YU0qQSDKyZVRvgHcGRZNT3fvFh/PubCKIlZEFLKG2StKQUFqVXGTfdKqmpa4Xph2CLClOWZVlzE+6HSUvyCT0cHNj7Sqlq8505LM+XYAbt4afn/nOLeGLeH745PxCmjsPdKqVJwcdzN3xm5hfmYSgSt/YcvwKfT2aP3v/EpnREB7fkq0qQL/kLiblKpi+nmHoRDkxJVmsyE3AWt9EMdQv3Z4+Thx55vdufHpTqz8OpkF/ztBVZkBi1m84GyalsRd7cjdHQbRyyuUbxN2Yow/Pc908psKil0Oop1i85Q6yJXc13EQgiR61maQjBEJOzVmQyNDBMAsWqkxG/CgsTEiiiLzM5Po4eZFN7cLDzi0Wq1sKsrj16wkdhQXkFVXg6Xe+NAIcjpp3RnjG8SdYdHEuHpc+EG1MBqFkggXL1ZnH8ffUYtWpSG2OJO0qhJ8ztBnOJMqk77JejJ6iwmjxUyt2YgVsZH+gValoaDuyi80d9fbPXDz0fDlEwe4s91Svjo0keDoptU35/UdwTBvf+45sJ1+mxbzSfdBPNKu82Ue8dVFX+8wTpbns68oA6sosiUviS31laDPJFLrzbgz0l6dtCpufjaGaY9Gs/anVJZ+lkBwdNtLKOjuFcTTXUfzyIm1nBkZW/yBiNxbpOtYb2ZF9btgxVeJlkUyRiQuGoPFwl0HtvJ7VgrTA8JYPGjsOftYrVZWFmTxR1YKu0oKya3T2Z/CHOUKurt5MtY3mLvCo4l0vjIuFndFD2B+0j6ei12KgIwQZ3f6eIeSVVPW2kNrs8x4vCNuPhrm3rqTe7uu5KPtY+jYr2mvx+zwDvTx8Gbw5uU8GreLbSX5LOg36rLEA12NCDIZd7bvj5vKkc15iZj+ITgmQ0Y/nzBmRvVpUEX6FGoHBVMfimbqQ9GXa8gXjHudE8aSxik6pa/BtFG9JEOkDSIZIxKAzcORXFHU7HrrPzwmJYY6puxax77SQgC2FOchimKjWg9mq5XFueksqC8ql39GUTlnuYI+Ht71ReXaE+z475QcWwtvBxee7jYag8WM3mLCVeXAt/E78dI07RnRKjVU/aOqbpVRj0auRCVXIMhkCMiobqKNq/LKCl49GyP/E47WS82L4zfz+KB1vLViOH3HBzXZtrOrJ3mTZzFoyzL+zkmjXXkJ+0dPx+MKC+ZtKwgygRnh3Rkb1JG9Renk6iqwiiI+Di709w3HQ31lF5FL3F/aeKEIFpPI82M38eWBCfiFNX1+SrQOkjEigVW08nNyLHsKmy83/nd6HI/FDEclV5BQVc7YHavrvRo2KkxGTlaVE+mkZWFOGn/XF5UrMjQsKjfI049JAaHMDmuPTxO1XK5k1HIFarkCncnIyfJ8ZoT3aLJdhNaL42V5DZbFVxQQobWl7SoEOSEuHsRXFNpl3a2iSEJFASMCzl9g6kqg93UBfL53PI8PXstLE7fw7PyBXHdbZJNtHRVKDl93Aw8e3M7XafEErfyVDUMnMagVApevFpyUakadIbXeVrnQ9PmE2BIEhQzrP0TarBaRmgojz163kS8PTGC/LuOKT5+/WpBEzyT4K+0QG3MT7O9dlRp8HbWU6nWUGnT25T29gonyCGfa7nXUWSz22I5TOMkVdoExAHelim5unkwNCOP2sPZX7VPsifI8RNEW0V9UV82i9MMoBTnPdL0OuSCwJD2OCmMts6NtCqQl+hreOLiK4QHtGeQbQUJFIQtSD/JI52ENUnvnJe5hVru+hLl4sik3kYMlmbzRaxJa1dWnjZCbWsX93VehrzFz//u9uPGps0t0L8hOYda+zVhEkXe79OOZDt0vz0AlWoVv43eSV1vJzKg+9vT5jbmJzabPPzl6Lcc2NQ4gP2WgKJQyHlrfg3WKYw3S5w+VZF2R6fNtGUmBVeK8qDDU8kLsMqyICDIZt7frRz+fcASZDFEUOV6ex/cJu9BbzMTXGtlVZUCkacFElUxguI8/0wMjmBUahbPi2kjFPFCcyZKMI1QYanFUqOjpFcy0sG441B//vMQ9lBp0PNV1tL3PmaJnbmpHJjYpepbI+px4qox621NbRC/CtVfvU1t5YR13x6ygqtTATc924r53e521fXJ1Bf03L6XMaGCifwjLBzYWU5O48jFazDy++y8eihlKF49AkiqLWJ9zkpPl+VhEkQc7DmlQGFIURSZof8dUY0WuOC1hL/cA51Ey/AY4cMOULuytTifM2YP/RPUBYHNuIgvTDiEDQlw8JC/JJUJSYJU4L3YVptoDSMcEdWTAGTdEmUxGpNaHMLdQ3og/QqX17HarVqli7ZCJjeJGrnZ6e4fS2zu02fV3Rg9otCzazZeXe44/63ZHBEQzIqDtBgleatx9Hfg1Yxp3d1rBwv+dpKJIz7M/DWq2fTsXN/Inz2LolhWsys8ibPUfHBg9/aqb/rtQ1mSf4HBJNgV1VagEORFab2aEdcfP8ewPcgeLs1iWeZRSfQ0+Di7MCO9OF49A+3pRFFmReYwdBSnUWUxEar2YGdUHX4eWfUD8Z/q80WImyMmdoroaCpvILjMZrVitIk5+CoZODKPdUHe+/r/9aLzkBDyuYEZ4ZxamHkREtKfP7y/OZFH6YcJdPFEKAt4OLlesyOCVivQYcY2TXn060OvUk/nxylL6b1pC342LcVs6jzkn4hoYIgLQlLlRYtSTXFPZwiOWuJpxdFYxP2UqoZ1cWT8vjRcnbjpre5WgYO+o6cxp35XsuhpCVv3OpsJzFFS5ykmqLGJ4QHue7zaGxzuPxGK18snxzRjOmEL9J6lVxXyfsItBfhG83HM83T2D+OrkDnJ1FfY263Li2ZyXyK3t+vJ89zGoBQWfHt/SKBvnUnNm+nyFoZZO7n72KdGmUKnl9Nmk5YHYrjz1/QBMQ+rQ9lRQfciCwWJikG8knT0CEMGePn9KZDDK1RuD1cKtUX1RCQp2F6a26LFJnEYyRq5xzoz7cJTbphVkyNhXVoRZtPJR9wEcve4GHvJ3ZbaPM7f7efF/nfsw1jcYlzMqq8rrvSHbivMv7wFIXHWoVAq+OzaJLkN8iF2dxyP9VmO1nl1c64NuA1g6cAxWUeS67at488TByzTatsfjnUcw0DeCACc3gp3dubN9f8oMtWSeJdV8U24iMR7+jA3qhL+jK1PDuhHi7M7Wev0RURTZlJvAhJDOdPcMIsjJndnRA6gw1BFXkt3ix3RX9ABEEZ6LXcrDOxewJTeRPmfxRsoUpx+X0qpKiO7rgWgEY32M/im1ZDgtMtjxDCHCq0Vk8EpCMkaucTzOCP46UW4zJGJcPZjoF4JGruDhqM6oMWMWrSgFGT3dPXixY0/WDJ1AxbTZnBx7E9/3Hsbtoe3p6OKGu0rdWocicRUhCAIfbR/LoOnBJMSWclfH5Rj1zT/ZA0wNDCd5/M14qzW8dvIAo7etxHwOI+ZaoM5iAsDpLDFcadVNqwKnVdtuxiV6HVUmfYMbtoNCRbiLl71NS3Iqff7TgTfx337TeKHHOCxNCDSe4sz0+SqTnh7j/UAAQyyo5Aq869Puy/U6akwGu8jgmenzWpWGSpO+2X1IXFokY+QaZ4BPuP3/FVlHqaovNDU9MIw9pYVsKshmUfrhJtsLMhkdte7cHd6BH/sM5+S4m7khqGEQpoTEv+GNxcOZdH87cpKquS1iKTUVxrO2D3XSkjvpNoZ5+bOpKJfgVb+SU1tzmUbb9rCKIgvTDhKp9SbQya3ZdlVGPdp/aNholRoq7Td023WhKeXgSuPlu2Gr5QpcVQ729PnmiNB6kVBRcLqfiwLHKIHa3bb38vpA54TK09pKoggJZ6TYS1xeJGPkGidS623P1S/R63j94CqWpMcRprE9Rd0Vu4GMeveuh9qRHmdErUtIXA6e+Lo/s17pQml+HbPCF1Ocoztre4UgsHXEFF7u2IMCfR2Ra/5gVV7mZRpt2+KPlP3k6Sq5t0PzgcBXAifK8zhelkeJvoaT5fl8eGxjg4DcJelx/JS42/5+mH87SvQ1LEo/jINcycnyfDTDRHTHrehrzVQZ9SgFOXsK0zhenocMGSuzjmG0mu2xc1ebyGBbRzJGrnFkMhn3dRhsz9XXmY2szTnJwtR9aAUZOQYTVqsVR4WKBzsNRSnIz7FFCYlLz51vdueRz/pQU2HizuhlZMafO1D6/zr3Ze2QCQBM2rWW54/ua+lhtin+SNnPsbI85nQd1aQWx5loVRqq/jElUWXS41rvCdEqbdo2TSkHu16GbJM6s4k/Ug/w2oGV/JS4hyitN493HmFfX2mso8xQa3/vpXHmkZjhxJcXkFVTRmpVCcP7RYIFNvycSnxFAe1cfbghogerso4jIpKjq+CxmBFoVQ52kUHJS3L5kFJ7JfDUOPF8tzH8nX6YgyVZWOuDWjs4KomtMVIrd+L/uo06Z2qghERLMu2RDrh6q3ln5k7u77aSD7aNIWbA2av4jvULJn38TPpuWsy7iXHsKMlny/BJqISr99IniiJ/ph4grjSHOV1HNVuW4EwiXGzTGqPPUGONLy8gol5nw0vjhFapIaGigGBnd8BmIKRXlzDMP6plDuQMzkyf11tMFNfVUKK3echKDDpGBXawx8ScKTL4cs/xdpFBzyEqEGDlmgSEmFq7yOCIgGi7yGBBXRUahZJNuYkNvCQSLc/Ve0ZKXBBuakfu6TCIG409OVaWS43JyA2CnHG7t3K81iwZIhJtghE3h+PqpeGFcZt4csg63lg6nAGTmq5nc4oARyeyJt7KhJ1rWFeYQ+CK34gdNZ1w56vzN/1H6gFiizJ4qNNQNHIllfVxYA71tY8AfkrcjZvKkenh3QEYFRjN+0c3siEnni4eAewvziSzpoxZ7foCNg/qqMAOrM4+jo+DC14aZ5ZlHsVN7dBAcOxykFldxofHTqd8/5V2CLDFs90ZPaBZL8lfaYdwHAC5qdW82H6gXe0YoI93KDUmPcszj9pFBk95SSQuD5ICq8RZ6b1xEYfKS6iZfheOZ6TySki0JkmHSnl84FrMRitP/TiAcXee39P53PhDvHR8P3KZjD/6jeKG4Kbr4FzJ3L/j9yaX39G+v/1J/4OjG/FUOzUQ5LOJnh2hVK87p+hZrdlIlKs3MyP74HsFPai8ceM2dvydxV+FN+DuIxkalwNJDl7ikrAgO4Vb9m7itU69eD2md2sPR0LCTl5aNfd3X0ldtZl73+3Bzc92Pq9+24rzGLd9NXqrhUejYvi0x+AWHqlEW2HPyhxembyFO9/qxqyXurb2cK4Jzvf+LQWwSpyVGwMjUAsCP2UktvZQJCQaEBDhws8p03D1UvPdc4f5+ukD59VvmHcA2RNvJczRmc9STtB74yL05rNrmEhcHfSbEIBMgD3Lrm2V3raIFDNylbMi8ygrs443WObroOXN3pOa7fPPGhWDPLzYXFJEbq2OQEenVqtRISHxT9x9HPglfRr3dF7J3x/EU1Gk5/mfz+3p8NI4kDr+P1y/ZwNL8zIIWPkLu0ZOo6PW/TKMWqK1EAQB31BnMo5XtPZQJP6B5Bm5BghwdOV//abbX892G91s26ZqVPgLtmCw10/anjxbq0aFhERTODqr+DllGuFd3Nj4SzrPj9t4Tvl4sN2Ylgway0fdBlBhMtJl/V/8mpl0Xvss0+vIqimzv8r0Z9c+kWg79Bjph6HOQk5y4yJ7Eq2HZIxcAwgyGa4qB/vL+SxCPk3VqOjs6oW3UsHinPRWr1EBjW8EWTVlpFUWs7f0GJG72vFl5o/SzeEaQ6EQ+CZuIl2H+XBgXT6P9F2DxXJ+UvBPtO/KnpHTUAtybovdwj0Htp21fZlexysHVvD24bX21ysHVki/uSuEiffZgp1Xfn1+hqfE5UGaprkGKKqr5tl9S1AKAhEuXkwP646HxqnJtmnVJQ20BsBWo6JrSQmbymvYWph11hoVfXzCWvJQ7DcCcxN1KU5aNpJmSeHhlLv5NX0jK/p9i6fDuTUWJK4OBEHgw61jeeOGbexYlMXs6OV8f3wSKs25L3P9PH3JnXQrfTct5Yf0BGJLi9g9airOTdRzqTEbGv3+zKKVGrMBD5o+ryTaDh36eqNQCuxfm8cDH7T2aCROIXlGrnLCXby4s/0AHus8nJlRfSjR63jv6Ab0ZlOT7ZurURHtYLso/y/xiG1ZK9WoaOpGcIpc6wlk9T/pPZY/mHjwZiqN0tPqtcZrfw9j8oPtyEut5tbwJVSXG86rn5tKQ8LYm/hPcBTHqsoIXPErRytKW3i0Eq1BYHsXaZqmjSEZI1c5nT0C6OUdQpCTOzHuATzaeTi1ZhMHSrIuaDsOcjmBDk7sKLUVltKZTfyelcwdsZtJ17X+SS2KVnLF44icNlT2GVbTZ89wSgzlrTgyidbg8S/7c/vrXSkv0DMrfAlF2edXLE8QBH7vP4pveg2hxmymx4ZFfJt2skGbUmk65oqn7/hALCaRE3uKW3soEvVIxsg1hqNCha+DC8V11U2uP1uNilkh7dBZLKwtqyVizQJu3beZnzOTOVZZdtlqVDRHmZiDkdpGy1PMB+kd2498Q/MVPiWuTm5/rRuPfdkXXZWJ2dHLyThx/kbpfRGdODh6Ok4KBfcf3MGtezdRoa/lixPb+Dp+R5N9DhVfmIEv0XpMeqAdAKu/S27lkUicQjJGrjH0FhPF+hpcm5E5PlWj4hSiKLIxP5M9VXq+T48HIMtowXBGtoKvWkN6dYm9jkVrkCueQGji5ywikmVMpVdsbzLqMgCwiBb2VO7hpdSX6LSnE71ie13m0UpcLqY8GM2rC4diNFi4v8cqju8sPO++3d29yZs8i85ad37PTiFyze/EniVIe03OSVZnnbgUw5ZoYQIjtagd5RzZUnDuxhKXBckYucr5O+0QSRWFlOhrSK0q5uuTOxCQ0ae+6NRPibtZkh5nbz8qMJoT5flsyImnoLaS4ZsX8Vl2HutLSig1Nj33viMvvlVqVJxJrtVWebNpRAqNhXyb+y23nbgNr+1eDDwwkP9l/o/42nhqzA1d+FLa5tXF0BtCeW/jdSDCnGEb2L38/LO+nBUqjo29iUHubpSZLfxerKPaKjAuuBN3Rw9kZmSfBsHcyzKPkFEtxZlcCYR3dqMwS3deaeASLY+UTXOVU26o5fvE3ehMBpyVaqK03jzffQwu9VMqZYZaZMjs7SO13twTPYhlmUdYmnEEF8G2ztJM1QAFIIgWHosZgVKQt+ixVBrrWJ99stFyq2ghXzzZpDEiIEeFIwZqmJs5F4VMgVm0qW2aRTNy5PR06Wlv31S2jkIm8H+9JzebgSTR9uk+wo8v9o/nsQFreXXaVp76rj/j7253Xn0rDLV00VhRuqrZVmngz6JKbojU0rc+c2xYQLsG4oJb85Ia1HyRaJsMnBZMQmwpe1fmMnBK6z1ISdiQjJGrnHs7nl2N8qmujQXQenmH0Ms7xP7+27STPHBwR5N+hwhnV+Y0sY1LTWFtFR8d20y5sXFcSLE1FTNGAGTIEBHxVHhSbdZhRI+e0/ExpwyRM+ni0sX+v5S2efUS1d2TH+OncF/XlXxwz14qivT854Uu5+x3uDQHqyjS3kHFjOBoPkhL48Y9G3g9pjcvdeiBIAiMDerEptxE6iy24PDb2/dHkMnOuW2J1mPCve348cU41s9PlYyRNoA0TSNxTu6L6MTPfUcgNPCh2Ii8DGXYjRYzn53YajdE5MhQyE7/dNdZPqhfrmKi9laSBiSRNiCbBxzmM0i4EzmKJkZuw4KFt9Lfouvertx6/FZ+K5xPjbWsxY9JonXwC3Ph57TpuHqr+eHFOL588tz1bKqMdfb/R/iGkjL+Pzwc1ZlXTxxg4JZliKKISq4g1MUDAJPVgsHSdOq8RNvBzUuDk6uSE7uljJq2gOQZkTgvZoW2x1Gu4Oa9G7GItgkRAfBQKsmsLkUmk+GsULfIVMb+4kyK9ba4jgBHVx7vPIK9RRksyYgj3rIZPTW4E8h05Vuo9WoqdSp+y9qM3mImRnEd0z2n8EfN2xyqPtTkVI6bwo3E2kSO6Y4BtvLrMgQ0uKDFB29ZBBvKRG7VXI9G0XoZQxKXBjcvDb9lzOCemOUs/jieiqI6XvxtSLPt1fLTl8kygw6FIPBpj0EYrBa+TYtnzpE9fNC1P2WG0167lp6ylLg0tO/tyeFNBRj15vMSx5NoOSTPiMR5MyMoguWDxqEUbD8bK5BcnsM7cet4+/BaXjqwnFxdxSXf767CVPv/s9r1xU3tyIiA9tSpUthp+YkYYQw3KN9FIVNhQeS7hF3k11YC4KZy4O7IsezpvYenQp4CaOAlcRKcyB2ci2GkgfIh5XwU8Q0dZCPxJAwrFopI4bi4jnuSZ+GwzQHHLY5E7opkYtxE3k5/m0NVh6QAuCsQjaOCecnTiOjqxubfM3j2ug3Nfo/tXH3s/2/PT8FSP433Ta+hfNFjMB8nH+OeA5sprLXp7URqvVFIxsgVwfCbbIH8G39Lb+WRSMhEsZnIxDZEVVUVrq6uVFZWotVKlWFbk/zaSp4+sI4/CssRgf7Oaro6n5bMdlaoebzLCEKcPS7ZPp/Y/Rd1FhPuakde7D6S2JpYFhYu5Me8H2mv7MMgHkaQNbar/Ry0PBwzDB8HF/uy1SWrmXliJjqLDrNopq+2L/v67EMURdbWp2YarQ3jSiqs+Vgd0rFo8onXnSTHkEON5XQGjgwZWrmWUE0o3Vy6MdRtKJO8JuGn9uNqo0yvo8bcMKuqpTxilwOr1cqzozcRt6WAqB4efB47HoWi4W9JFEXePryWbJ1Np6SHZzA3RPTAS+OMVbTy3JGdvJ8cj1IG/Z1VvNxlEGMC27fG4UhcIEa9mQkOf9BztD//29DysW/XIud7/5aMEYnzptJYxzuH11JhrCO51siWKgN9XRwZ7elKif70zdlBrmJ2dH/c1Y72ZRd7w0rUJTLrwHNkmI9QST4mbDdCV7krakHNwb4Hqa5TsDbnBAkVNg0Jd7UjN0X0optHIHKhsZGSo8/h5uM3s7tyN/cH3s9X0V/xe8p+theknHUs0a6+PNp5OEpBjtlqZmflTtaVriO2Kpak2iSKjEUYRaO9vUKmwEvpRZRDFL21vbnO4zpGuo28Yqd6mqsLdDVkG/3fLdvZtiAT/whnvjs2GY1jQ5d9UkUhHx/fYveKyAAfBy21ZgPVJgO/FFZTV38lVchkjPENYmZIO6YEhOKibFzfRqLtcKPfX5gMFpaW39LaQ7kqkYwRiUvOgtSDbM5LBCDYyZ2NlUbMIuwcOZU8XSW/JO8jrbqkyb7ne8PaU7mHX/J/YWv5VlLrUu03dxkCTnhynedw3oh8hRjnmAbekL/TDrMh1ybKdkN4D64L6njW/ZitZr7P+57h7sOprXPim3pVTRm2J98Obn4oZAKJlYUcLMmy34AnhXRhcmjzGRhlxjLWlK5ha8VWDlcfJr0unQpzBdYzZOodBAcC1AF0dOzIQNeBTPCaQBenLghNGE5tiayaMt4+vLbJdS/1GHdJvWGtwWePxrLs80TcfTX8cHIyWo+GRuOR0hx+SNiNwdo4IyupzsTWytPKxXKZDIsoohIEJvmHMjMkign+ITjIpbiEtsZr07eya2k2i0tvbPSdS/x7JGNE4pJitJh5dt8S6iwmlIKct/tMYWV+DrNiN5M6/j9EOGupNul5ft/SBk/OVtFCDSVoZb6NblhWq5WVJStZULSA3ZW7ydZnY8ECgEqmItIhkmHuw+iqHEFcnu0GEOzkzmOdRzQo1BdfXsDnJ7ZiFq0oZAJz+05rVMjvbHxwdCNJlbaaO7e168dgv8gG61OrinnvyEZERLRKDXP7Tr3gmIAEXQKrSlaxq2IXJ2pPkKvPRWc9LaYmQ4arwtU21ePcjeFuw5noPREflc9Ztnp5udqNEYBf3zrKvFeO4KhV8t2xSfiGNKz6XGWsY2dBGvuK0ik31KIQBCK0XvTwCmPYjvVN6vGcMkxcFEoOX3c9kc6ul+twrnnOZ1px55JMXp+xnXve7cEtz3a+3EO86jnf+7dkpkucF7m6Curq0xW7ewbhqnJgnF8QakHg1RMH+L7XEL5P2NXAEMm2HmG3+WeqKGKW8nN2FyaypSqJxcWL2V+1nwJjgT27xVFwpLtLd67zuI47/O+gg1MH+3aMFjOvl66i1KAjW1fOy/uX08s7BA+1E6lVxcSfIV8/2C/qggyRSmOd3RDxc9AyyDcCgCpTFTqrDn+1P5Fab3p4BXGoJJsqk57EykJi3AMu6PPr4NSBDk4deCr0Kfsys9XMtvJtrC9bT2xVLMm1yZzUneRIzRF+LvgZEkApU+Kl9KKdYzv6aPsw2mM0I91HohIk139LMOvlrrj5aPj4gX3Mjl7O57Hjiejibl+vVTkwISSGCSExjfqO8A5gc1Ee1n9kbFlEEQEZwY7O+KibLsMgcek532nFgVODkQmwa0m2ZIy0IpIxInFeGK02j0Wx0czPufl8mLGAzNoaDFYr6wqy+TZhpz1mo8yaxR7Lr+SKp+t0/Gl6il8yTus1uCncGOw6mIleE7nD/45GwZ5rsk9wuCSbgroqVIKcAEc3DFYzNSYDBquZ3YVpjcbYxSOASK0Xrx5YSam+Bh8HF2aEd6eLR6C9jSiKrMg8xo6CFOosJgId3ezrTmVNLC9ezt3xd2OwGqgYWoEgCLR39eVQfV2SSmPDQoIXi0JQMMpzFKM8RzVYXmosZXXparaUb+FI9REy9BnsqNjB9ortfJBl01RxFBwJUAcQ4xRjm+rxnEBnl5a9kFrbvhP1kjDpvva4eql588btPNhrFe9tuo6uQ3zP2e+m4Eg2FuU2Wi6XyeikdWfLsMlS/MhlpCkBQ2gsYigIAt7BTqQdlap7tyYXZYx88cUXvPfeexQUFNCtWzc+++wz+vbt22z7iooKXnrpJRYvXkxZWRmhoaF8/PHHTJgw4aIHLnF5MFrNzM9I4pu0Y8SVV9dPotThoVLzcscejPAOwElm5vOT2ymypLLT8iMlZDTajgyBYFk32iv681f/d3FXnd1VnVRZxPCA9oQ5e2ARRZZmHEEhExjkE8GBkqwG8/beGmeGB7QnxNmDj45uYlp4N7p6BBJblMFXJ3fwcJf+1MqKkSNnb1EGuwvSmRHeEy+1M2uzE6gWy7BarawrP857sfdytOYoAI8GPYqsXkWz/AwNCVULp216qjy5zf82bvO/rcHyEzUnWF26ml0VuzipO0muIZeUuhSWlSzjudTnkCHDTeFGmCaM7i7dGe4+nAmeE/BS/fsChhnVpfa4mqY4Wpp7VUzTnGLIjFDe33Idz47ayFPD1/Pa30MZPD30rH2mBoRx/8HtjZRstAol24ZPwV2lbrkBS/wruo/wZf28NPLTq/EPdzl3B4lLzgXHjCxYsIDbb7+dr7/+mn79+vHxxx/z119/kZiYiI9P4/lto9HIoEGD8PHx4cUXXyQwMJDMzEzc3Nzo1q3bee1Tihm5vGTqqvgw6Rgr8zNJ11UjataBw3Lklig8xS50V3Xn7c6zQF3MzwU/81f+cgot2Yg0r7fxhOdH1Fbbfh+z2w+gv2/4BY2p2qjn6X2LearraIKd3MmsKcVosaBVaQhx9kCQyfg2fidGq5lHYobb+/03bh1/6t7giH7Pee1nkMsQTtQdI1wTzv6++5HL5BgsZl7ev5wqkx4ZMub2ndogU6g1MVqNbCnfwsayjeyv2k9ybTLFpmJM4mkFUKVMibfSm/aO7emj7cMYjzEMcx+GUlCe1z4yqkv58OimJgM3z2RWVF+G+Ef9q+NpLcoNtSxOj+NEeR5GqwVvjTN3tO+PNUPgkb5rMBosPPl1PybedzplN7GikL/SDpFfW4m72pEJIZ157sQxdpUWIGLziKhkMuqsVoZqNYzz9eOWyF6Et2J162uJC4lxOr6zkCeGrOfmZ2O4992eTfaRuDhaLGbkww8/5N5772X27NkAfP3116xatYoff/yR559/vlH7H3/8kbKyMnbv3o1Sabv4hYWFXehuJVoQq9XKqoJsvk49wa7SQipNtgwWjSCnv6cPQW7R/FVuwaJIoohE1ot/s/7Yy2dsQQbNVsy1EenqxrH6EjGpVcUXbIycildxUqhwUCjp4NZYwyOtuoTRgR0aLOvk7k9IXS+OcG5jpINsBPm1FVRYKngj/A3kMjkFtVX8nrKfKpNtaqabZ2CbMUQAVIKKsZ5jGes5tsHyImMRa0rWsKXCNtWTqc9kW8U2tlZs5b2s9wCb4NupqZ7BboOZ4DmBjs4Ns5Csosi8xD12QyTA0ZX+PhEEObtRrtexvziThErb9NyfqQfo7BHQpj6f80FnMvLekQ20d7OlbrsoNRTVVeOkUOHdxYUfE2z1bD66fx/lxQZmvdSFEn0Nn5/YylD/dtzdYSAJFQX8krSPwZ7B7CotQC6T0dFFSz+NlX21sL2qGq26hqLjW3ij1+QLimuSaHk6D/ZFrpARuyZXMkZaiQsyRoxGIwcPHuSFF16wLxMEgdGjR7NnT9MX++XLlzNgwAAefvhhli1bhre3NzNnzuS5555DLm/a3W0wGDAYTkdAV1VVXcgwJc6DCqOez1NOsDAnjfiqcsz1DjIftYZbgiN5ILI9OeYdLCr6hS0Vp9zz/zQ4Thkhp8Thm/eMiIIRsM2Xm5qYxz0bVlFkYdpBIrXeBDq5NduuyqhHq2x4kdcqNUQwGB/lQopMRU32kyGjozCcCGEQK81v4UU4ezOtHMxeZVdyBdDIlUwNPT9vXmvjo/LhjoA7uCPgDvsyq9XKcd1xVpeuZk/lHk7oTpBjyCG5LpmlJUt5OuVpBATcFG6EO4TT3bk77dU9SNcp0QjOBDu581z3MQ2kzgf5RfJbyn52FKRgFq3sKEhhSmjX1jjki2Zdzknc1Y7c2b6/fZmX5nQWjV+oM7+kTePuTiuY93IcFUV1+D+hxEvjzI0RthuXv6MrKZXF5OlrkQEDPHwZ5aYiWuvF1xG96Lr+L1YWlzDa3YndhamMC24cACvRugRGuZCdKN1rWosLMkZKSkqwWCz4+jYM5vL19SUhIaHJPmlpaWzevJlbb72V1atXk5KSwkMPPYTJZOK1115rss/cuXN54403LmRobZq2olq5v6yIT5KPsbEwl0KDLZjU9gTnxqQAH9yc49hUsYiN1Yf58+hpvRAXobk51DONEysKNMhlYBKNDXQ1AOIrswHbU7cM22dyvsf/R8p+8nSVPNPtuvM80oYoZEoeDX6UV9JeabwOBb6KEO5yf45XS25ChsA4xdOU6HUN2jkr1DwUM5QApys3LVMQBLq6dKWrS0NjwWAxsLl8MxvKNnCg6gApdSkcqTnCweqDp/six8vqTV7SdMZ4jsFZ7sxI95EIMoGJIZ3ZWZCCCBwuyb7ijJGjpTl0cvfnm/gdJFcW4aZyZJh/uwZTTq6eGn5Nn849XVaw9NNEQi0axjwZ0WA7ndz9OZ52iKNjbiTE0Yln9y5mWkhnFILA0TE3ErNuIRvLK3FKPSkZIy2MKIokVzb98HFq/T/pPS6AxR8nkHSglPa9PVtyeBJN0OLZNFarFR8fH7799lvkcjm9evUiNzeX9957r1lj5IUXXmDOnDn291VVVQQHX5klnltTtdJoNTMvI4mfM5I4WF6Cvj4jRqtQMtzbCT+3Y2SYdnBSd4L/FlVB/bnrqfCkp3NPnOXOVFuqSdenn8XpIUOGjAHCbcTIr6OjpzuHxT/5pfAXZMgQEZEh41BZGt3kNmNkd2Ea+4oyeKv++K2ilRWZx9hXlEGVSY+ryoGBvuFMCO7Mn6kHOFaWx9PdRjdy//9zzl4jV9inU06xu/gk2/V/ciRtdZMj18g13ObyOvsNa6kVq7jN6wE6iZHk6CoQRRFvBxcG+UYw0DcCJ+XVGYColqsZ7zWe8V7jGywvMBTw7LGP2Vu1i1IxC4NYxS/5v/BV7lcA9Nf2Z1m3ZfiofXBTO1JuqKXGZGhqF22aYn0N2/KTGR3UgfHBMWRUl7Eg7SAKQWCA72mDQ+OoYF7iVB7pu5qUL8rZmJfNjX/3sIvVaVUa9BYT7Zy11JqNWBFxqZ+OUQgCx8feSMfVv7K8uIynjuzhg24DWuV4r3bMVgvzkvayvziz2TYbchO4K3pAA+HESfe3Z/HHCaz8Nok5vaXv5nJzQcaIl5cXcrmcwsLCBssLCwvx82u6Doe/vz9KpbLBlEzHjh0pKCjAaDSiUjVOdVOr1ajVV8eF/3zTy85EFEWy62oIcbzwqO5Twacr8jLJqK1GxOaJ8Hesw0d7HL38AJmGJLZa6qDU1sdD4UGYJgxRFCk3l1NqLqW0xrZSjhxflS8apYZCU2GDqrdy5PiofPi1458sTSzAYDWTUFZBtPNM5gYP4r95L1BpKUdERGctgzNm5SyilXlJe3iw01C25CWzLT+F2dH98Xd0JbO6jHlJezhZXkCJvoY5XUc1cJsDTc7Z/5l6kP3FmYwO7EBqbSq3HX2Ag7rdmDHQ0aEzAUJHNugWcMqjIyLyY4f5rE+uYLHxK/xUfvzc7asL/syvVvzUfozWTsOhzubpeLzzCDq6+ZFnyOOznM/4NvdbOu3txPuRH1JlsMWDaRTnFxTblhCBUGcPpod1ByDE2YO82gq25Sc3MEYAFAqBLw9MYNZdC0ifX82DPVfzxYEJjerZNIVSkPN2x868dPIoHyYdRSUTmNu1Xwsc0bXN7ykHGhgiLgoNnhonivXV6My2eLj9xZm4qx25PryHvV1IB1dUGjmHNxU02qZEy3NB+tMqlYpevXqxadMm+zKr1cqmTZsYMKBpS3LQoEGkpKQ0qIiZlJSEv79/k4bItY5VFHns8A5CN93JZxmLz93eamV5XgYTd6zGbclPhK3+g09TjpFrTMXLdTPe3h+h8HyUPM2TxBl/IKnuGAqZAjeFGw6CTYCpzFxGhj6DXGMuWoWWcR7jmBs5l6QBSZhHmckdksuzYc82qHYLMMx9GEf7HWWk11Du6jAQoT4NNqumjPRCF6YKcwmQdQIgQzzIP0msLOLj41tIqSqiu2cgXTwC8dI408s7BK1SQ3p1CXdHD0QjV1JprKPSWIfRYguk3JafjFwmoJAJ+Du6MiIgmg6uvsRXpdF710ja7WlHrG4b0cJQ1nTewvGBcfzV6xtU2J5UZch4yP9xisu82Gv5HRMGFnc99+d9rdHR3d/+/6Zc21RsoCaQ/0b9l4QBCYx2H83shDv41ngn600fkSRbw6/5v7KtfBvpdekYrcbmNt1mcFVp8HdsOP3m7+DaIJ37TARBoMeTXnS4X0vqkXLubLcUfa2ZKqMejVyJSq7AWalGQEb1PzRpas1GHg0PJ8jBif8mxvHq8f0tdlzXIvm1lfYq30pBzl3RA/hf/2m80GMs7/Wbwa1Rfe3XqY05CY2+47AYVwozdFIl7lbggqdp5syZwx133EHv3r3p27cvH3/8MTqdzp5dc/vttxMYGMjcuXMBePDBB/n88895/PHHefTRR0lOTuadd97hscceu7RHchVgtlq5bf8q/ix7HhxP8kFWDo+GzWjUzh58mp1GfHU5ZtEC8lzUmuM4upxAL8vAiJliQLAIKGVKFDIFZtGMFSvVlmpUMhX+an+6OHVhhPsIrve5nlCH5nUUerr0xIrVPvXyStgrvBbxGnKZzd3R3TOIJzqPZEHqQXJrKwDQyFyYpHyJ1cZ3yeME93TuQifn9hwozmJZ5hF0ZiMZ1aV0dPMjoaKQwtoqfB21ZNeUU2KwxWx8cGxTg3Hc0b4/A30jSKsqQS1XUGm0xb4cqDzA/OpXOW46gMwko5swkS7yCVwfMpAxvragU1ellgkut7K0+nsChGispX04otnPccsmJnlOYoCr5Jr9Jz08g9AqNVSZ9Bwvz+fHxD1MCe2Ct4ML/8/eWYdHcXVx+F3JZuPu7kICIcHdrWhLSx1KlRbqX6lQhXpLjTrUaaFFiru7JIQQiLu7J+v7/bGwISRBE5LQfZ9nW7Jz7507s7szZ84953fMBFY8YPUa50qrOaPZQqb2JFmV0fxd2ehdEiDA3sgeT6kn3c27syRoCaaizpVt42fpQFFD08DFooZqbI1bX0L1tbSn/tF8Qk2CWfN5Ivd7r2H4Jmd8LXVpu2KhCE8LWxIqi4iw1y0xa7RaEisLGe4aSNK4gQRsWcHChBgkQiELQqPa7wBvIYpqVOzLkBHpaoyfnVivA3SB/QWNxS4neYbT17Exa08kFDLExZ8yWS1bc8+hQcvBwrQmtab6T/YgObqcE9sK6DveDQM3j2s2RmbMmEFJSQlvvPEGhYWFREREsHXrVn1Qa3Z2dpOCXx4eHmzbto3nnnuO7t274+bmxjPPPMP8+fPb7ig6KUqNmsOFaa1ul6sadRtkahUTDy9nV8PLYKQL3shWnEatVSMSiDhRVsznKWfYVZxHkbwGxFkgTkBkeRaEWSDQIIdm3osLgaSexp70MO/BCNsR3O5wO67S5nLmyVXFbM89R3ZtBVWKBuaEDNZfSCMsIhAgwEJkwV9hfzHBXidYd2ncxniPbtgbm7Hk3H4UGhUCYJHHN+wsOsWP8bH4WORzt18Uz4aP4L1TW9Gie5rp4+jNm9EbEQgEaLVapnr3YPxlgvyqlTKGuQZiYV5Bt6PdOFd3DiEiIoRTWN77fZyN3Jl//F/CbF159fg6ys4bN9bavvQQFhIuGs8AZ1+eyH0MqVDK32F/Nxk/uiSbdVlxV63k6mdpz73+vXEyubV0cMRCEff49+aHhANogeMlmRwvycTCSEqdUo4GLf3F91OhyCOXuCbLeKBbCitRllCiLCG5PpkvA7/smAO5DKPcgvnw9HY2Z5+ll4MnmTVlHChM5f6ARiHHtRmxVCrqeShoAABDXQLYm59M2NOu3OUYzN+vJ7Jldhbz/xrYZNxfko7gbWGLt4Udu/KSUGhUDHDyxVRsRNL4GfhvXsHrZ09iJBQyP7hns7kZaMqfp2t5flM5ANZSIQO8jBngJaWfh5Q+HsakV5fo2w5y9kem1LAtpYHFByrZMNMZS6mIwS7+bM09B9CkPcBtj/nz65un2f5zmsEYuckYCuW1Ew0qJV+d3UNadctVbEFXC+XF7qNAIGTwgc84rX4HBDIQNLoIgzUfkVFtjFyYBkapYHQGRLkgaPljkwqleBh7EGERwSjbUdzucPtVK3DGl+eTWl2Cl7kt3yUcaGKMAGwp3UKoWajeg1Iqq+Xt6E0McQlgkLMfiZWF/J0Ww+0+EazKOAWAt7kduXUVeNjL+DBvAS84fEpZnZC3oybxa/JR4ivyAbAwkjLDNxJXM2tyaiv4Oz2aO30jm63ZX+Cxo0vYq/yJFMUpBAgYbTua+S4fsDIlga8G3EW9SsH84//yUo/ROEot9PVCNmXHk1hZSFFDDfmm/7Kx8h9+DP6RR9we0Y+dVl3CJ6d3NlFy3ZabwGs9x+lTi7fmnGNrzllmBfXHXmrG+sw48uoreStqYpPU11uF48WZ/JZyDOX5IOhLiXC04tm82/VVllvi55CfmeU6q51meGPEleWxNjOW4oYa7KXmjHILbpJN80vSEcrkdbzQfZT+vYsNceLFJD/dgJFIxFdHx+HXQyeotSc/ie25CVQrZLib23C3bxQ+lo2/x2qFAv+tf1Eil/Fp9348H9Q1Usc7iv0ZDQz9oUD/t0CgizVQa3WxcbbmcsRiOUZiNf4WLhzJkSNX6X77zw2yYvFtdshUSp458g8AgVaOTT5TgMlWKzAxE7Myf/rNOqxbGkOhvA7ml+QjTQwRXwt7nEwtKJXVkVpVjBYobKhmcfw+fi7bSJbgG52BcbGRoYVE7TtgVdso6XGR48NEaIKX1ItIi0jG2I5hiv0UrCXW1z3nMFtXwmxbLwB3abbFvoKUFrUWjhVn6ttUKuoZ5OyHjU0ZtflFfFE5j9nG33O4KA0Pcxu9MRJl70FvR28A3MysKZPXsSXnXDNjZF3xOp5JeYYsWTYSTJhiP4UfQn7AUeLIocI0/Zq9UCDQr9n7WTro+8vVKtQaDWKjOjZW/kOoWWgTQwRgV14S3WxdGOuui3eZ4t2DhMpC9uYnc19AH7RaLbvyEpngGUaEnTsADwX158Wja4gtzdEfx61EH0dvQqydOVSUTkxpNjVKXXxEsLUTQ10CcDa1osjoFRZmLGyW1i1EyAibEcx0mdnK6B1Pdzs3utu1/iQ8K6j5El6QtRMLIs//JgbBIZcc3rp9L0/22syHO0YRMcyZ4a5BDHcNanVcS4mE5HEz8N+yghfijmIkFDIvILzV9v91+npIkYhAcd4m1mrhgnmsBcpqjQFjQEugtZIPxtoyzFfKrzE1fHu0iqf6WVClbUzAaEmgz7+nDXH7i1EoVEgkhlvkzcJwptuBvLpKYstyATAVS3gmbDjeFo156/l1VXwev5uc2ip+qv4clXRrM0MDzv8tqgVAKpDia+pLb6vejLUdyyT7SZiLzelI0qtLmymhhtq4EFfeWCysXF7DT+XvsTPrX/pb9ueHkB84kVdDenVpE4e+sajpV1EoEDRx+f9V+BcvprxIviIfESLGmt9LL9HtLOrRGFOTUFl4xTX7hIoCGtRKNqoWI0DAph6bmh9XK0qup89/pqWyOqqVMkIuOnYTsQQfC3vSa0pvSWMEwEIiZZxHKOM8Qlvc/pLXS/yQ90OTasygWypUaBTI1XKk4ltXeXTgFA8W7xvDiyN28L+RO3h95RCGTL98PRsAa4mU5PF347/5L56OPYxEKOJxv5bP8X8dtUaLl7WYlLLWSxOYSeVM7HeWCCcL5oSPxFgkxt/OiB+P19D/23zmjG0s4Nm3hd/q0Lu8idtXzN4VWYx50K89DsNACxiMkXbg4EVxIpM8w5sYIg0qJcsLtrO8bjH56nMgPR84d6khcgGNCcWDC3GQdtzy1L78FPYVpFAm1xlGLqZWTPQMp1opayZrbSmRotCokQhEFKtz2av+lpKaDB6yf5al3T9FKBCSJDlFdm05+Repm+7KS8Jeak6ojQs5tRXszE1kgLMvy/KW8WraqxQrizHFmpkuM1kSuASZCt6O3sTqjFMMdPIlsbKI6JJs5oYN1Y/Z0pp9g1pJmiqabFUiT7o9ibeJd7PjbU3J9UK13mplg/5YLz32tqro2xUxFZnyeeDnzIif0eR9L2Mv9lftx+6AHb+E/sKdTnd20Azbn/BBTnwXcxtz+2zhnbv28/TXfZg8p3XPyAVsJVISx80gcMtKnog5gFgg4GHfkCv2u9WpV2j4M7aWVfF1nMyTU1bfepaLABgdICU0KJ56jYKMmjLeidnEMJdA3MysmdRdwYpoI9ZEWzOgWxUuplaEWLs0G2f0gz589dRxdv+VaTBGbiIGY6QduFhCvJeD7sloWfZ6Hk16EK2gunEpRiho9Iho0f3j0lgQYQP/FJzkSZ8RN2PqLWJtbMI0nx44mliAFo4UZ/DNuf1YXaa+xjnVAfapf8AUGyaK52NcHU5ObQWuZtbk11U2OUcDHH1Jririr9STiIRCrCQmKE2TeSz7McpV5UgEEqaYz6G/8WTmh44DwFwMc7sN45/0GHbnJWFtbMoDgX3pZtO4zNTbwYtapYz1WXH6NXtbEwk/VfyIrdiWrwK/ar+T9h/lTsc7+crqK45UHUEgENDXsi/7o/bze8HvPJ74OHfF38XgnMFsjNiIpbhrxH9dKz5hNvp6Nl8+eZzKYhkPvnnlWBBHqSmJ42cQuGUFj0Tvx0go4kHvwCv2u5WQKTT8FVfLP2fqOJErp/Qi48PeVMj4QBMiXCS8v6+qWd8n+lrw5SR78uoHsfjMLmRqJaWyOn38mqUTmBr3JD7Lmb4BZTwRNUif5nsxpuYSrByMSTreeryfgbbHYIy0Axe7qC981e3EjoASVD4g74+1oBuOAjt6mpngaqEk1FXA5pI9HK7aT5HqvGCPVggCDXsr9neoMdLjfFzEBaZ692BfQQpigYjqSzwB2fUF7FV9T7JmP1YCR6aKFmEsNEODlvditzUb28PMhhn+UWi1Wl44shqJVRJLSj+luroaqVDK8x7P84H/By1WmG2yZt8KF6/Zl8nqGHXkHhqo4t+wbU2yvi7GUiJtpuSqU4bVGV+WRjp9lmqFTi1W30Yhw8Pc+rLz6WxcnGl0MUNdArjXv3eLfS6XaSQQCFgStISex3si0IrwbpjOF/F7uNd/GiVDbmfi6Ynsr9yP435Hvg36lofcHmrX4+sonDzP17PptoHf3oqjsljG019fWeDMWWpKwtgZBG9dwawTezASCLnHq2tWQr4aFCoNK+Lq+DuuluO5ckrqGo0PO1MhYwNMmB5mxr0R5phKdL9XuUrL4oNVyNWN19dPb7Pl2YFWCAQCvCxsmd9jNH+lnST5Ekn4sb2SWHsonAOxPXAe2Xpph9B+DhzZkEttpQJza4Me1s3AYIy0A84mliRW6oKkYkpzGOoawFTXfmhc6yiS1fNVSjxfpJwhWa0iWVaPRaWIGYIAPgu5Ay8zS0oVpRyuOsyhqkMcrDjMo14Dr7DHm4dGqyG6JBuFWoW/nTuJlY1qhSsLV/JI8pPItHXcYfUIS8M+543oTa2Wnvc0t+GZsOFIBCLezHyTv5W/UlaUg5nQjAXeC3jb5+1WDYbr4eu0Pzmt2cRQ62GMtmu9zo2vhT2JlYVN4kYSKgrxPV/63V5qhqWRlMTKQjzMbQDd8ltGTSlDXbrWjeOViLH6TCNojGeKsvdssX1adQlLEw81yTT69tyBJplGBZVGDBM/zHj3XtzjfBfrM+P4Mn4Pb0VNZF/UPlYVrWLmuZnMTpzNN3nfsCViy1VnfHUlLG2lLM+YxiNhG1j/TTIVxTLe/GfoFfu5mZpxdtxdhGz9m/uO70IiEnCH+62xXKBQaVgVX8fK07UczZFTfJHxYWsiZLS/lOlh5tzfs9H4uBRjsYABXlL2pMuQiGDFPU5M7dZUE8bVzJoXuo8iv66S+IoCGlQKzIyM6W7rhqiqjlXx9Xx/rJrH+7bsnRt5nzdHNuSy9adUpj9viN+5GRhSe9uBnNoKFp3aAugKrD3ffWSTarMlDTV8emYXKTXVnKpTUqKC2vPKok7GJkxz8+a1kEjcTW9ugKpMraSkQRcXsujUFu70jSTIygkzsYQGtZJ3Y7agRouJyIiHgwfgYmqlS+119ueP6g/YUL4aW4Eno8RzeT54On0cvTlRnMnPyUexkZhQJq/DTGxMvVqBRqvl3V4TeT/nbb7J+waZRoa90JMJ5g/yc1TbGiEACrUSj30h1FFG/pCsJksEPycdxlpiyjSfCOB8am/cTm73jiDc1pUTJVlsyTnXLLV3W+5ZZgX2x15qzrqsOPLqKrp8au/KtGjOlOexsNekZoJSAD8kHEShUTG32zD9ex/EbsPDzEafafTSsbWMdg9hjLsu5qFBpeDFo2uYFdhPH9wrU8mYdmYaW8u3YiQw4lP/T5nnOe9mHOJNR6XSMK/fFlKiy+k+1JFPdo++qu93Rm013bb/jUyt5t+BY5ns6t3+k21jVCoNq8/WsSKujqPZcopq1XrT18ZESKSrhNu7mfFgTwvMpVf/m//+WDXv7K5g3QPO9HK/ttIhCpUG23eyUGm0lL3ujZlx8/2qVBrGS5YTOsCBLw6Ou6bxDTTFkNrbgXiY2xBm40p8RT61KjmLYrbQ3c4NL3Nb8uurOFWag0qrwV4i5jE7J+b3GMPJihLeTzzFzqI8vktP4Lv0BJylptzh5s2rwZG4mrZ/hd+smnIWX6R4+k96DAD9HX24P6AP3e3cKJPVEWrjwi9JR3mh+ygm+nnxSMIscjXxhIlG8VnAYtZkNEar93b0plYlZ33WGbSAvYk5fRzceTflG9yPPIxcK8NWbMsHfh9gUqdToWxrQwTggbjHKNamsdDro2axCuXy+iZicX6WDjwSNJB1Waf5N/M0jiYWzAkd3MSgHOsegkKt4o+U49SrFPhbOfB0t+Fd2hBRadQcK85klFtwi4YItF2mkVQsZUvPLWwp3cKM+Bk8nfI0P+T/wLaIbS0K8nVlxGIhXx8fzysTdhO9rYDHIzbxbcxtV6xn42NuyenR0+m+fRXTDm1jw8BxTHC9cnbO1aDVakmqKmJ3XhJ55+O37I3NGODkS29H7xZjKa4GlUrDuoR6/jxdy5FsOYU1jcaHtVTIMF8p07qZMjPSEstrMD4u5bE+FjzWx6LV7+nlkIiFLLvDnrtXlHD78kK2zW7+fROLhdi7m5J2uuK652jg2jB4RtqJOqWCz+N3kV3b+pfZycSSF7qPbBJ3AHC0rIj3E0+xqyiPuvMeE1epKdPdfXktpCeO0o6X0/7szC4SlYdZWvEWWrQs8FnAO77vAPDy8X8Z5Rbc5Ka1PiuOEyXp5Jqu48/Cv1Bo5TiJXXnH/00ec3sMgE9O78TD3JoZfr3adK4JtQl0O9YNH6kPaQNbV8T9r3OyJItliYd5v88UrFvQXwB48uAKZgX2o89FKZF785PZmB3PJ/1uJ626hI9O7+CjvtOafK9/SDgIwGMhg5qNqdKouDv+blaXrEaEiLd93+Y1n9fa9uA6Ce/ff5BdyzNw9DJjafxETM2vHI+QUF1Bzx2rUGq0bB08gdHO7lfsczlqFDK+SzhA6iXqoxfwNLdhTuiQy8rhX0Cj0bA+oYHlsTUczpZTUN1ofFhJBUS4SJgaasasSHOsTTvXs2/vJbmczFOw6xEXRviZNNt+4bNanjUNJ8+OlVHoyhg8Ix2MmZGEF7qPYntOAgcKU5sERJqJJQxw8mO8RzfMjJpfjPrZObFuoM41eLCkgA8SY9lTks+XqfF8mRqPu4kZd3n48UpQBPbS5j+i9qZB1cDyisVEKzdjI7ZhZ8+dRFpG6rdfGnNRqajk85xPOSJfi6yqBleJK8OE85jlNYXRbhdc+e0XczHx9EQA1vdY3+Zj30ocKkyjm61Lq4ZIeyEWilnVfRX7K/YzNW4qC9IX8EvBL2yP2I6Pqc+VB+hCvPLHIGycpKxanMADPv+y7NxkrB0ur70SYmnDyVG3E7VzDeMPbGbHkNsY7nR9UuUylZLPzuzW148CEJ73C14wI7JrK1gct4uXI8ZgfkmKu0ajYVNSA8tP1XIoS0beRcaHpbGAQd7GTAk146Eoc2zbwfjQaDVsyDrDseLM80HlJgxw8mGCR9hlvSSXlq2Y4BnGplmeuL6XzZ3LiyhZ4Mm+wlR25CZQpWjA3dyGng96s2t5Bpu+T2H2uwap/vbGYIy0I1KREZO9uzPBsxsZNWXUqxSYiIzwtrBDIrq6Uz/IwYWNDrpc+H0l+XyQGMu+knwWJ+vKkHuYmHOPhx/zQyKwvUyq7Y2wNiOWbrau2BqbcrD8MA8nzaJCU0Rfo+n0Et3Bsrhk1hrn8VS3oTibWjLSLYhP4nayOvMoP5d/yI6KbSiR4WXsx3POX1NaaUNJQw2rM07RoFIS5eDJuqw4rI1N6GHnzvrMuDar+bI4azHpsnQedH6Qbuat17r5r1MmqyOhsognQgdftl17ZhoNsRlC6eBSZifO5teCX/E/4s9LXi/xvv/713FEnZcnPu2FtZOUpfNP8YDfWn44PREXH4vL9gmzsuPYiKn02fUvow9sYu/QSQxyaK6RcSV25CXoDRFriQnTfSOJtPMAAZwpy+OfjBhKZXWUyGrZlH2WO316si25gd9jazmYqTM+NOetDwtjAQO8jJkcasrsSAvszdv/drI1J4F9Bak8FNQPF1MrsmrK+TXlKCYiCSPcWtZzKZXVsuTsXoa4BPBw8AASKwv5PfkYc8OkvD7Chrd2VTDz31QsHWO41783Phb27MpPZKv5aYRGAo5tyjMYIzcBwzJNF2VXUS4fJZ5mf2kBsvP1QrxMzbnXM4CXgrpj3YaGyW/JR0msLOJEw272qX7ECGPuMHuRJ3zuwdvcll+Sj1ClkCEUCHgraiIlykIejHuCwzV7USAjQNSX/3k/x3DbofqaL+E2rixPPUFqdQkiBARYO3KvX29OleW2Wc2XalU1DvsdMBYaUz6kHLHQYHu3xoasOPYXpPJB36mIBK2v5bcUwPph7HbczaybBLCOcQ9htHuj1+vFo6ubBLBeiZNVJ5kYN5EiRREexh5sjdhKqPmtldWw9edUPnn4CEYSIV8eGUdAT7sr9jlZXkL/3WsB2D98Mv3tnK/QoxG1RsMrJ9ZRpWhAgIA3IifgatY0vbWkvoaHtx0gIdeOogpL6mTGeuPDXCIg3FnCpGBTHu5tgeNNMD4uZcnZvVgaSXkwsJ/+ve/OHcBIKOLh4AEt9lmdcYr48nzejLpN/96PCQepVyt5Jmw4nh9kUVwv5+M7qpjXQ5fOrtFqeeX4v2Q/o6QyVskW2X3te2C3MFd7/277SEEDN4WRTu5sG3obDXc8wuZB4xnp6EaRrIH3E09hs+5XfDf9yRvxJ6hWtF647GqZ4O3PGvV8dqq+xNnYnnMDYvmt32sMcPLF1cyaV3uOZ0HP8eTLihl1chyehzzZU7MJPzMv9kfuJWnYIR7xnt6k5ourmTX/6zEaHws7Bjr78Vz4SBxNLJrUfHE3s+GhoP5UyhuILc255nlPi5uGQqvg19BfDYbIZdBotRwuSqe/k28zQ+TnpMOszYjV/z3SLYizFQXsyE2gsL6KDVlxZNWWM8xVJ84lEAgY6RbM5px4TpflkldXyc/JR7A2NmlSdPFK9LLqRf7AfOa6zyVXnkvYsTCeSnwKjaZ1Bc6uxriH/Fm4fjhqpZa5fbZwalfBFfv0snVg//DJAAzZs56T5S3HfbREXn0lVQqdenC4raveEDmSJeP17eXct6IY9/dK2HA8mNR8exoUYsKcBSwabUPBK57UvO3D4TluvDLcpkMMEQBfCwcSK4soqtcpV+fUVpBaXUKYbeteotbKVqSfrx225n4HtFr4ek+jYSYUCAi2dsZ2uASlXEPa6fJ2OBoDF2MwRm4Bxrt4snPoRBrueIT1A8cyzMGVPFkdCxNisFr3M/6b/+LtsyepVV27YbKqaBVuB91Iqk9ipstMMgdk6qv2XuBc7TlGnxrFX8pnOFi7mx7mPTje6zhn+51lkE1jwGJ6TSsXhRrdReFKmRjXwo6yHeyu2E1fy75Mc5x2rYf9nyKxspByeT0DW6iQXC6v19/AoDHT6EBhKgtjthBTmtNiptFwlyD+SDnOe6e2IlcrryvTSCgU8lXQV5zpewZ3Y3e+yfsG14OunKw6ed3H2tnoP9GdxfvHIBAIeGnMTvb+nXnlPnbO7Bk6CS0wYPe/xFZcnUHSoFLq/+1saklcgZyZfxcz8Lt8Fu2pJLlUyeQQU+7vreTe4THMHnuCn+8V89oIG5wtO4cxP84jlF4OXrwZvZE5B//i3VNbGOkWRF/H1mOLWitbIVMrdXpJDtAnKJukIjFLDlc1aWM3VCe2uPH75PY5IAN6Osc3rAtSIa9nTUYsZyvyUWjUOEjNmRnYr0kdmktpKYhqwCU3gD35yU2CqO72i8LH4uoFoSa5ejPpvB7BurwMFifHcbS8mLfORfP2uWj8za2Y6R3IcwHhmIqbq5peQKPRcPfZu/mn+B+kQikbum9gov3EJm1OVZ/ikYRHiKmNQYSEcKPh/N7zE8Iswloc82bVfNFoNNwdfzcigYgNPTZcdb//KqE2Lnw/+N4Wt11aXh0gysGTKIeWRdFA5x2Z7N2dyd7d22R+3cy7kT0om1dSX+GjrI/ofbI3Dzo/yM8hP7dLGvjNJmygI9+fnsiTvTaxaMYBKkvkTH3q8vVsBjm4sGPIbYzev4m+u/8letTthFnZ8diaEg5lyTCXCDGXCDA3FmJqJMBMIkQjUBFd6kFZtRnrD0oprM7Dw0rEq8OteLyPFR7WutvB9+dSiCnTGS7m4s6lPhpdksXx4kweDhqAq5k1ObUV/J0ejbXEpFmF72shxLOYuDRvXthcxoORFvq0YxNnMUbGQmJ2Fl5hBAM3isEYuQ7qlAo+Pr2DQGsn5oUNw8JISnFDDWaX+eG2FkRlJZHq66mcKMliVXrTIKov4/fwdtSkZjfoq2GKmw9T3HzQaDSszc/gs+QzHC8vYUH8CV6PP0GguRWzfIJ41j8cqbjxq5BSn8KQ6CEUKgoJNwtnf+R+rCXW+u2HKw/zeOLjxNfFA9BHOp6+ohm83fPOFkty32yeSXmGclU5b/q8iYPEoaOnY6CNeN//fR5zfYwxsWP4rfA3NpZuZG33tQyxGdLRU7thLHzEvBszlDf67mfJ3OMU5lfzxLsty/FfYLijG1sGTWDcgc302rmGU6OnU1Cj4lyxskk7oUD3UmtBq3UFBAgFahZPljK3jwtGosYslIsrjlsYSfGx7FzKuKszYhnrEaqPPXIzs6ZMXseWnHOtGiOWRtJmZSuqFTKkIiMkIjFCgQCRQMA744U8uxZu/6OQnY+46oKwjaR4hliRcaYSjUZzSxi/nRXDmb0OtuWew8bYlFmB/fCxsNdXm3UwaT0ifl9BCvZSc+70jcTF1IrhrkFE2nuwMy9J32ZnXiKDnP0Y6OyHq5kV9/n3QSIUc7joxrQxhEIhd7j7cXDEVGS3P8yHPV3xsj1Jal0Vr5w5junaZYRuXcmnSadZnPU5IUdCKFIU8arXq8T1i9MbIrvKdhF0JIiB0QM5W3eW0baj+cZtK8PFj/FGxB1XNESuJROjSRuF7LJF+S4mqyGLb3K/wU3ixlu+b11VHwNdBx9TH1IGpLDIdxFVqiqGxgxletx0VK2UHOgKlMvqeP3kBr4t3ofDn2pEdrDqvUQ+ePTgFfuOdnZn46CxKDUaInesZkav5kthGi2oNHAhVUEiVnHv8FNkag+xuyCBivNLcbvzkvg0bpe+PMBgZ79OJ+Kn0KgQXlLiXCgQNKkHdim+lvZNylYAJFQW4nve0BILRXha2OJoW04/D2N2pcnYmlRL4vk2/Se5o1Frid1j8I60JwZj5DqIK8vFy9yW7xMO8OLR1SyK2cKBgtTL9rlSEJVKoya7prxJvMSFIKoLbdoEAfxe+iqZLGXpAGN+7zOc3rYOJNWW82LKa7yQ8jxatRPPOq7gTd+3AdhQsgGfQz6Mih1Fan0qE+0mkjcwj4cs3iWzqp7nuo/AXnplUaAL+iMX01rNlwtc0B/xbWGpKqU+hXJl08CyCacnoEHDv93/vdYzY6AL8ZrPa2QPzCbMLIzVJaux3W/LltItHT2t66JWJUel1QXmii2EeK4QYOQOO5dm8Nbte6/Yf7yLF2sHjEWuUfNY4npCXLS0prhhLBYwd1QhplIVMrWSNRmxvHz8X146tpaV6dHUqeQAeJrbMtaj82Uvdbd1Y3NOPGfK8yiV1XKqNIeduYlEXFTMc21GLD8nHdb/PdQlgFJZLaszTlFYX8Xe/GSiS7IZdVEq8Ci3YA4WpvLmBBlGIi0z12YhV6kY4ORLxD2+nJkSxEurmhbdM9C2GIyR66BEVsu+ghQcTSx4Omw4Q1wCWJkezZGi9Fb7XCmIqlYpR4MWi5biJZRXHy9RLqsju7a8yatc1liVdU3xGv3yypykOfRxgC96uWJu/zJIN2GhHgbVr/NZYgXG/76B0fZAJp+eTI4sh+kO0ykZXMKGiA3syc3l2Pm1W6nIiCpFA1WKBhTqxifU9s7EGHxyML6Hffk5/2e0Wi3L8pZxru4c0xym0cuqbVVcDXQ+XKWunOl3hi8DvkSmkTHh9ATGnxqPTHX1v5fOiNBYiPsfAnyirDi4Nofnhmy7YhbRZDdv/uk3mga1hgTrI2hFyhbbLZ/hyHuDBtCrlUKIoMu0eS58BFJR6zFlHcXdfr2ItPfkz9QTvBW9iVUZpxjs4s8Ur8b4pCpFA+Xyev3f9lJz5nYbRkJFIQtjtrAjL5EHAvvql8cBejt4Md23J/uKzzAmMoniKhNK83vx8wkFA/4qozjEnmiNIaqhPTGc3etAC3iZ2zLNOwLQPUXk11eyryDlhoKobpQL7t4LT1kXEAuELOw1CStjKa+mvYoQIRo0KLVKBp0cRImyBBEivgn+hjnuc1iWt4znkt6gRpuPSm0L9fejkfcjVePEP2aFPOxjzb6CFAA+vaiWDcDMwH76oNz2rPmi0CgoUuoqI89OmM2PeT8SXRONidCEFWEr2uycGuj8zPOcxz3O9zA+djxby7did8COX0N/ZbrT9I6e2nUjFAp5be8gvrvrFMe35PNo9418GzMBiaT5JVul0vDmrgqWHBGAsC8EnAT/GEiJgotuoK+PsOaOMJ0H89GQQUyqr+ZgYRoF9ZVo0ZWnGOTs1+T32NmQio2Y4RfFDL+oVtvMCurf7L0gaycWRI6/7NjDXYMY7hoEfcAlIZPlMRqWx5Tpt9cbi1GpNFesKWTg+jAYI9eBlUSKi2lTsSAXEytOXUYL42qCqIQIqGkpXsLo6uIlLnb3XoxKq6FWJWdTxRpSGlL076u1akqUJZgJzTjT9wybyjZhv8+eMlUZEoGEx10f5xP/xfyelcH36QnEVZbzRMwBnjp1kB5Wtszx68Zs76BWg7raMxOjWNHUZXq0+ihatEyynYRaq75sXwO3HvYSe070OcHPeT8zJ2kOd8bfyZDcIWzqsQlzcdetK/Le5pF8OPMQO35LZ6b/Opadm6SvZ1Ner2Le+jL+ia9DqdYpor7U252gICkPn9ivM0hSIxFpxdwWbMpbI22ajO1sasl0X4Oy6MXUyjW8vqOcotrm11GFiRF7/85k1L0d98B5K2Mw8a4DP0sHihqqm7xX1FB92cJSVxtElVBZpN+u0Wr1QVQ3ilKjZEHagiaeigvUaeoIOxbGvOR51GnqeNbjWWqG1fBdyHeYG5kyx78bsWOmI7/jEb6KGEiopQ2xlWU8Gr0fyZql9N65ml8zk26qIFWRoqjJ3xcC2DaVbSL4SDDbyrbdtLkY6Dw85PYQxUOKGWI9hP2V+7Hfb8+v+b929LRaJa26hL9SW9ZNSajQXS/m/zqQu/4XSklOPfd7/8uRc9UM+yEP+4XZ/Hm6DkczET9Ms6f6LR8+HG/HbN8glvQcCCa14HcKb3v4Y4YjQuH1VeL9r3AwU0bgpzl8ebi65XBYoYCNK7Nv9rT+MxiMketglFsw6TWlbM4+S3FDDceLMzlQmMow1wB9mxsJojpSlE5BfRV/pp5AoVE10yJpiTJZXZP4jEtZXvQ72fLsVqPO6zX1zHOfR83QGj4L/AyJsHmaslgoZG5AGHFj7qThjof5rEd/gi2sia4oZdaJvRivWUq/XWtZnpXc5obJpbEwcVUpLbbToCFHnsO42HH8VvBbm87BQNfAUmzJvqh9rAxbiVAgZFbCLPoc70O5onOpaB4vzuST0ztbFfRbkxnL+sw4AB77KIp+b/fkWB93Bv5SzL50GeHOEvY86kLuK1482qepzPZTgaFMMO4NpjWUeB9ArpW3+/F0dTYk1FFQ01h7pyXOJNTcvAn9xzDUprlO4sryWJsZS3FDDfZSc0a5BTP4ooqzvyQdoUxe12Sp4mLRM2tjU25rUfQsie25CVQrZDrRM9+oK+b659dVsfjMLmpaCXRVaRWsUD1Dvba6xe0XeMD5AX7rdu03cJlKxZK0syzLSCSpRrf+LBYI6G3rwDMB4dzp5ntD+fktxcIkqveyX/1jq326m3dndfhq/E3bvgqwga6DTCVj6pmpbCvfhpHAiMUBi5nrMbejp0V2bTnvx25Dc/7yay0xIcTaGbFQRHJlEUUy3U1PowFLWT+WnxRRVKtGqNHgdSgX7/givts5isBeTUUWk6uK2Z57juzaCirlDdiZe/JB2llsJcakjb+7xZpVN0OMsSug1Wr541Qtz2wso1qmQd3CnTFixVkOnRmrXyozcGWu9v5tMEa6OEqNmreiN1EqqwXARGREd1s3bI3NKGioIr48n62Kz0nXHmuxv4nAhG7m3ehh0YN7ne5lhO2IG5pPg0rFF6ln+DkjiZTaKrSAkUBIX1tHng0MZ5qr9zUbJtm15bx7amuT906p13FSvQotjQaKCBHGQmM+8P+AJ92fRCToXBoJBjqOzaWbuTv+bmrUNYSbhbM1YiuuUtcrd2wnliUe5nhJJgADnfy4L6C3vi6QVqtlc1YiL28tJzHXEZVahLEI7o2w4POJdiTszuf1yXsBeG/LCHqNbjyO+PJ8UqtL8DK35buEA8wJGcye8nKeP30UB4mU1PH3YClpvJGWymp5O3oTQ1wCGOTsR2JlIX+nxTA3bGgTMcZfko40EWOMKc2+bjHGzk5Fg5rXtpXz3bEavVjcBUI3JjN5KgTeb4mlxIRe9p54XUZ128DV378NAaxdnFOlOXpDxN3MmufDR2JmZAzoAlRfTHqF9LxGQ8RYYMxE+4k84vYI3cy64W7sjkDQdmvJJmIxLwf35OXgntSrlCxOjuO3rGQOlRVy8EghEqGQfraOvBDUg8nnZeuvRJW8odl7DdoqvSFyITtomuM0vgj8AlfjjrvJGOicTLCfQOmQUu6Jv4c1JWvwPOTJQt+FvOLzyk2fS4NKQUypLvbATGzM3X5RiARCtFotNXINS0/U8PJWY5QaF4yNVET4ZbPy9m74WunUhPtOcOeLQ2N5bsh2Xhm7i1eWD2LEPbraLGG2roTZNv3+PxfYA6VGy/wzxwjcuoLUCXfrZd4vFmMEcDG1IrWqhJ15SXpj5GIxRoD7/PsQX57P4aI0xnl0a/8TdpOxMRHxzVQHHoqy4LG1pcQWXKjppUVmLuHMhjzKx+iW/LbnJhBp78mDAX0xuUx5DQNXxhAz0sU5fJG2yV2+UXpDJK0+jZAjIXye9zEAJlgxTDSH37wPsar7KsbZjcND6tGmhsilmIqNWBAaRfL4e6ie9hBvhUbhYWLO/tJCphzahnT1j4zYu4HN+VmtjnGoMI1vzu1v9n6xpvG43Yzd2RqxlX/C/zEYIgZaRSKUsLr7avZE7sFSbMmr6a8SeDiQjPqMmzqPUlmdfskx3NYViUj3THj7H0U4LMpi/tZyersb8+poJTNHnyTSP5/i8w8cFwjp68CPcRORmIh4796DrP0q4bL7fCk4gkVhvSiSNxC4ZSX154vmdRoxxk5Ibw8pJ+e68dwwDUKBBhBQHmCD/JJwtZjSbBaf2dmkEKGBa8dgjHRxLnhFpCIjAq0cAViSs4SAIwGkNKTQz7Ifv4f8xQOSbwgUDaK0ofZyw7Ub5mIJb3brReqEe6ia8hALQnriKjVjT0k+tx3aisnqpYzat5FthY3p0SdKsvgt5ZhenloA2BqbIRYIKEFnjPQQTOJV+18YYzumIw7LQBdkmM0wSgeX8qDzg6Q0pOB/xJ9XU1+9afu/2P7XXLRKbm0iRKWBXm7GrHvQmcEB6hb7XMAjyIpfU6ZibiPh66dP8tOCU5fd72shUbwREkmBrJ6grSuRqVQ3TYyxq1LYUEW96QnuHXEKYyMlGqEATT1MNOtBP0dvjM/rH2XXVrAqI6aDZ9u1MRgjXRzh+auUWqvRX9gGWw/Gz8SPI72OcKT3EUZZN4r9tKcn5GqxlEhYGNaH9NvupWLKTF4OisBJasKu4jzGHdiM6ZqljNm3kU/OHtH3Gezsz4d9p/F+nymEelWgRc1Q8SP0NbqbUyUFrWYkGDDQEkKhkF+7/crxXsexN7Ln/az38TzoSULt5T0MbYG91Fwv4hdXnofs/BP1z9Md2feYK2nlSvp+k8em1Hx9H1dT65bHcjVleeY07FxN+PPdeBY/dqTFdhd4O6w3LwdHkNtQR/C2lWgulzpigD35yWjRYmqsZMmMOkwsJAiA8vVKHgoawMsR4zA+79k6WpRBrdKQtXS9GIyRLo67mU7ISKlR69ehe1j0IGVACv2s+gFwtDhT397T3KbZGB2JtUTK+937knnbfZRNmcn/ArtjLzFhR3Eef5dU8VNhDQdq1HhYuWElMaFQXshr6a8y22U27wS+pB/ngiKsAQPXQm+r3hQMKuBJtyfJlefS7Vg35iXNa1fNHKnIiD4OXgDI1Ep+TTmqL6MwyFvK0SddqFPKWbLdhz/3RJCaGUBigTE18pbnZGYp4feMqbgHWbL5x1Ren7rnsvt/P7wvLwR2J6u+lr+Ly6i4SDodmooxmhsZ37AYY1dFo9Xqg4yNRWLuDwrn3QfdkFlI2LRBZyi6mlkx6HwsjUqrIeYywpcGLo/BGOniDLkonfjv9BgyLvIQaLVaTpXmsCNX97QnRMAAJ7+bPserxVYi5aMe/cmeeB/fhIURbmqERCggoa6eYfs2Yr5mGcPjHsdEbMlHAR/R38lX/1SSVFnU4pj1VJJFNA1U3cxDMdCFEAqFfB38NWf6nsHd2J0luUtwO+RGTHX7ud1Hu4fovSMxpTm8fHwdv6ccY2XaSZambmVEVCwAtQ3G7D5nx5ifCrF+O5Pwz3OYt76UlXG15FY11oGSSMT8dG4SIf3sObIul2cGbuVyiZKf9OjP0/5hpDYoeDsxHtVFxtfNFGPszMjUSuTnjUQfCzukYiNm97KkztOSrJwGamS6ZbSL42kqFfUtjmXgyhiyabo4QVZOBFo5klxVTLVSxgex2/G3dMDJxJLMmjLy6iv1bYe4+GNjbNpxk70GpEIB/S2l9LeEp7qNYFlWKqtKd5GSPRq1ZgL+exZiaRZHOP1xM3KnwSSDo9RSQirFpFJIIqWk6Y2QoTzJPXzdwUdloDPTzbwb2YOymZ8yn0+yPyHqRBSzXGaxLHjZDenktISLqRWPhwzi+4SDKDVq6lRyDham6bdbmEI3r0LOZjXe6DRaiC9SklSiZMkRnWZQgJ2YE3PdsZIKEQqFfHxwFAvu3E3s2mIsPxFQ+GUNOdIKzMQSbKVmrM2IpVJRz0NBA/ii50DqlHKWZaUQvnU5O4dMIqW6mOiSbOaGDdXvd5RbML8kHcHbwhZvCzt25SVdtRhjV+bielgXSnkIBAJEQTZYnC2lJLUKizDbJmU+Lq2hZeDqMRgjXRyBQMATIYP58uxeMmt0RZ1Sq0tIrS5p0i7K3pO7fFsvLtXZsDAy0f+7WlHL9J4JyHkLv9r72ZpiS2xFAdkNBxg2ZA8CCSiAXwARRmjQoKVpfRpfBtzU+RvounwY8CFPuD3BmNgx/FLwC+tL1rOu+zoG2Qxq0/2E27rxSsRYtuacI6Y0u4moXzcbF+4c58OYH2Rc6uBQnm8mACQiAaZGjXFgWTXl1DxXhkOQgJKPtHxbE43TAiED3H2ZFdS/WUXbpX1GUK9W8FduFmP2rWGKg12LFW1rlTLWZ8XpxRif7jYcS0njb/RWxEgowtPchuzaCvLrq0itKsHR2JZz7tYMADb/kMqTX/TmQGGqvo+fpUPHTbiLYxA9u0VQatTsK0hhX0EKxQ2NksU+FnYMdw2kt4O3Pti1K5BZU8b7sbr6Mhbuh6j1/gZPQS9e5hhCdJoMr535lWj7V/BxLbzsWCKM+JQypFjcjKkbuIV4N+Nd3kx/EzVqpjtM56+wvxAL2/4Zrk4pp6C+Gi1a7KXmeg/mtN8L2ZBYj/qScBGhAKylQk497Y6ndcvzWfpKDCs+OIuFrYRlZydh69y6V3Tm8d38lpVChLUd0SNvb3NPUFflYGEqv6ccB8BGYkpZQSRLj6kY8dUx3N2kjNzgyqEinUfLxdSKNyMndIokgc6EQYH1P4pWq6VMXodMrcRcbIx1F1mWaYkPYreRIdoDYR8iUJswveQAoZZ+lMnr2J2fzLmKAgCE7pvQ+vzZ4hhaLdjJo3hP2nIxMgMGrkSuLJdxseM4W3cWS5Elf4f/zVi7sTdl3wczZQz+Pr/Z+0IBHHjclQFelw8iXbX4HN+9EI3UTMx3p27DPaD16+c9R3eyIieNXjb2HBsxzWCQoHvI++j0drJrKwBYsbcHdTJjJv5znNp0NX57dMsyAgTM7Ta0meCcgau/fxu+bbcYAoEAe6k57mY2XdoQAZgQZI2g28egFaM99S7/pCbxdsxmlpzdpzdEAB40Xcg0PmxxDIEASo2jmVwmZXBqECuLV9+s6Ru4RXCXuhPfL57PAz6nQdPAuNhxTIidgEzV/jobA72MiXCRcGnBXY0W3tpZfsWsn+nPh/LyHwOR16t4JGwDiSdKWm37V79R3OHmw8mKUgbtXXdTq3B3VoyEIuZ1G4anuS0qDVTXS7GzrEPcRwNqaIjVIBIIeSion8EQuUEMxoiBTkk1xSw1GYFAAK5pH4DMqVkba4kJj4cMor+TL2N5iam836yNQCsmKd0fBBDil8wu++lMLDNhSGoIa0s23IxDMXCL8IznM+QPyifKIootZVuwO2DH6nY2bgUCAS8OttJXkhUAzw+0ZKiPlB2pMnw/zqG8XnXZMUbd58t7m0egUWt5uv82Tm5r7mm5wKoBY5js6sWRsmKG7zP8PgAsJSa81GM0jsp+gIBAtxIsJuu2me225O2o2+jr6NOhc7wVMCzTGOh0KJDxGl7UUMxs/qQP95BVU87J0ixqFDKMRWKCrJ3oYeuO6BJX8hbeYx2vASBERHcm8wRrAPij+E9+qHkTa5scXGzkaLRQUG5CTYUPL9l9ym224276sRromizLW8ZTSU8h18oZaj2UjT02Yi42129/9fg6yuR1zfoNdQngXv/eLY4ZXZLNuqw4ymS1OJpYcLtPBOG2bihUWjw+yKK4TkOUh4qhPeORa5TkFniwLtoJMyMhB59wJcLV+LJzTjxRwrODtqNWapj/+0BG3dd6NsyEA5vZUpjDSEc3dg6deJVn5dZm0Hd5HM6SU/+OFyIRTLP8GwtbCX9l39HRU+vUGGJGbhE2ZMWxMTu+yXtOJpa806v1C0RrF7ULaLVaNmSd4UBhKg1qJX6W9tzr3xsnk44/txo0vEM3CklkMouYcN6wuBY28y7rWQDAI6ykF3c1a/NT0S/8UrsQG9tcnK0VaLSQX25CbYUfr9p9wdgbrF5s4NanWlXNxNiJHKg6gFQo5bug75jpOhOAGoVMX8YAIL+uis/jd/N8+EiCrJt7+dKqS/jk9E6m+vSgu60bx4sz2ZabwGs9x+FmZs2yE9V8fqSIQT3ieDysL/ZSM9ZnxnEkW8ZfBwLQAr/e6cD9PS8fpJ2bUs0TPTchq1PxxGdRTH82tNW2o/Zt1KkiO3uwZfCE6ztJtxAmr2fgaiEi7SVPAJ4euIWEI6VsUdyHWGxYZGgNQ8zILYSrqRUf9Z2mf73UY1SrbdOqS1iaeIiBzr4siBxPhJ073547QF5dpb7NttwEducncV9AH16OGIOxUMyX8XtQatStjnuz+IpxFJJIfx66LkMEYAKvMZmF2ONDOLe12Ga20yz2+6WxzkZOROG3JGb6YCRWExIQzyrrkUwoMWNYSnf2VBy4kcMxcAtjKbZkf6/9rAxbiQABsxJm0fdEX8oV5VhIpFhJTPSvuPI8HKTm+vpRl7IrL4luti6MdQ/FxdSKKd498DS3YW9+MgCze1kwrs8ZpvmFEmHnjruZDQ8F9cfSooLf7wcTsYAH/i7huY2XL4vgHmDJb6lTsLCV8N1z0Sx9pXVht51DJzLE3pmthTlMObT1+k/ULcCRbBkylZbJoY1xeIOmeaLVwuF/DaqrbYHBGOkCCAWCJhc288vIMF/poqbVatmVl8gEz7AmF7VKeQOxHSxlvJzHSWAHgQxjJj/d0FgTWMBC0jDG7Ipt57g8wQHfdP61lhNasITETG+MjZQEB5xhueUQxhebMTwlgkNVR29oTgZuTe5yuovyweWMtR3L8erjOB905uucRoE9lUbNseJMBjj5tZr2mV7TSvXc84rKpbI6qpWyJmqfJmIJPhb2CI3LyX7ZA28bMZ8fqmbo93moVK0Hn9o6m/JHxjTs3U1Z8cFZPp59uNW2e4ZOYoCdE+vzs7jj8ParOh9dieSqYpac3ctLx9by+IE/W70GfnlIJ5743CBrkiqLWBSzhT094xAYweo1Z5q135OfzKvH1/HUwRW8H7utiTK2gZYxGCNdgOKGGl46tpbXTqxjWeIhymXN16IvcCMXtY4sNvdF8Tvs1yzDpLoXz7Kr1XbRJdm8cXIjTx1cwdvRmzhTntdku1arZX1mHP87uoZ5h/7mszO7KGqovup5PO3yFAd8M1hrrcA/fzFJWZ6YGCsJCjjNz+b9GVdszojkKI5XR1/3sRq49ZCKpWztuZVNPTYhFUqZmzyX7ke7UygvJLYslwaVggFOrQc5VitkWF7ykGFpJKXqvLpntbJB915L1XMVMmxNxaS96M6YACn7M+V4f5xDcW3rga1mlhJ+S5uCZ4gl235OY8Gk3S22EwqFHBg2md42DqzJy+Duozuv6nx0FRRqFe5mNtzj1+uy7XalNmBjIsRUKmPJ2b0EWTvxRv8JmLqKyMio4GxFY1DwiZIsVqXHcJtnGK/1HI+7mTVfxu9potRqoDkGY6ST42Nhz6zA/jwdNox7/XtTKqvj47gd+kqfl3KjF7WOYEvd7yTYvYewJpDeJV8ibOVrebOXoF50fY4DvlmssVLglfs+SdkemBnLCQyM4XuzXowrsmBkSm9OVZ++3kM3cIsxwX4CpUNKmeYwjTN1Z3A/6M7n6UvpZuvS7qn2QqGQbbNdeXmoFXnVarw/yuFYduu/aYlEzNL4SXQb4MDRjXnM67+lxXReoVDI0RFTibC2Y2VOGg8ca9lw6YqE2boy1bsHPe09Wm1TXKuipF7DEG8p+wpSsJeac6dvJC6mVgQHOdIQA9vSG6s978xLZJCzHwOd/XA1s+I+/z5IhGIOF6W1ug8DBmOk0xNm60qUgyfuZjZ0s3FlXtgw6lVKTp6v0NvVSVQfZp3RPMRaKd457yFC0mrbjlyCesX9ZQ74ZLPaSolLztskZ7tjbiIjIOAkS0wjGFtkwaiUvpytTbyh/Rjo+kiEEtZ0X8OeyD1YiWxYXruIryqeJqshq9U+lhIp1cpLKuMqZVidf2iwPF8e4dKn62pFY5sLvD/Ojr/vcUSh0jLgu3yWHm/dMygUCvni0Dj6T3Yn4Wgps0M3oFA096gIhUKiR95OuKUtf2Sn8PCJvZc9B7cSX5xfopnX35L06qae5+H3eKNVwNljxYBuSS67pryJ51koEBBs7Ux6tWGp5nIYjJEuhqlYgpOJBSUXSb5fTFte1NqbMrL4QjUFBBpeFu9HrDG/bPvOsgT1pscbHPDJYZWlErvs10jOccPSVIZ/wHE+lYYwptCSMSkDSK5PvfJgBm5ZhtkM4yevnQwzmk2y/Ay+h315LbXloGxfC3sSK5uWNUioKMTXQlcZ115qhqWRtEmbBpWSjJpSfZuLubO7OaefccdMIuDRtaU8sbZ1sTOAheuGM+FRf3KTqnnA51/qqhXN2giFQmJH30GIhTU/ZSbxRPT+K52CW4LV8fVIRDAywJRqpayJV3nEvd4IxFAdrUahVlGrlKNBi0VLnmelYZnmchiMkS6GTK2kRFaLVStFqtr6otZe1FPN24p+aEV1PC76E3e6X7FPZ1yCetdzEQd8cvnHQoll1v9IzXXF2rwe34AjvC8JYHSBJeOSB5NRf2t4sgxcPRqtlqMlGczzmMfxXsexN7Lnvaz38DroxUfxa1mbEatvO9ItiLMVBezITaCwvooNWXFk1ZYzzDUQ0ImfjXQLZnNOPKfLcsmrq+Tn5CNYG5sQ0coSQzcnCbkve+FvJ+b74zX0++byga3P/9Cfe18Noyy/gfu811KaX9+sjVAoJG7MnQSaW/F9egLzYg7e2Enq5KhUGlLKlIQ7t+yxlUjEWHlJaIju9AoZnR6DMdLJWZUeQ3JlEaWyWtKqS/ju3AGECOjt4AXAz0mH2/2i1taoUPG2OgK5uJSxyvfpKbw1RJU+8vqI/d55/G2uwiTrGdLynLG1rMc78CDvGHkxqsCK8SnDyJHldvRUDdwEEisLKZfXM9DJl95WvSkYVMActznkyHN4veh+/ihepo/R8LN04JGggRwoTGVhzBZiSnOYEzoYNzNr/Xhj3UMY7hLEHynHee/UVuRqJU93G37ZsvWWUiFJz7szKdiEYzlyPD7MIb+69cDW2e/25MnPe1FboWBWwL/kJFU1ayMWCjk79i78zCxZknaWF04fuf6T1MlZcaYOjRYe6Knz2loaSZt5lT0HWiA7C3VlSsyNjBEioKYlz/NlsiANQNuXnzTQplTI61madJg6pRxzI2P8LR14OWKM3g1YLq9HQGO64IWL2rqs0/ybeRpHE4sWL2oKtYo/Uo5Tr1Lgb+VwxYtaW/IJg6gSZkDi02wvdWQ7fwGgQUtKVTF785P5etAMhIKmtvK1LEFd7DmqVsjwMLduxyNqzmdenwOfo9KoeC7zec4J/sHVvhhrl328rvQgN98K47oolnr8iYu0uQiWga5PqI0L3w++V/+3UCjkm+BveNLtScafHs+a2iW4HVrFph6biLSMJMrBkygHz1bHEwgETPbuzmTvK3sRL0YoFLJ+pgtv76zgrV0V+H2cw46HnRnk3bJ39fZnQrB2lPL+fQd5tPtGPts/hpC+Dk3aiIVCzo27k6AtK1mcHIdEIOT97n2vaV5dgaUnqhEAj/bWiXX5WtoTX95UTt92ghH8Bpt+SOH+Bd3xtLAlobJI/3Cn0WpJrCxk+PkHQgMtY1BgNXBT+YG7iOEfwtTTmCZrqiXya/JRnE0tGese2sR40vdNOIhCo2Jut2H69z6M3Y67mTX3BfRBq9Xy0rG1jHEPYbR7CKBbgnrx6GpmBfajt6N3Ox7ZlVGoFDyb8wxnhWtwdSjFylRDgwJyS6wwa+jDUo8/cTS+eUtlBjqWl1Je4tPsT9GgYZbLLJYFL2v3Srnrz9Vxx/Ii1Br4cpIdcwdYtdr25I58Xh2vy5xZuH4YfSe4N2sjU6kI3LqCnIY6Xg+J5J2wlqXuOysytZKShloAFp3awp2+kQRZOWEmlmArNcN6YSK25grSn9MZgKWyWt6O3sQw10AGOvmSWFnEitSTpI9R4x9uxzcnJnCiJItfko5wf0AfvC3s2JWXRHRpFm9HTcSyleX1WxmDHLyBTscaXmY7H+JJJK/SXKfj07iduJvZMMMvCtAtQVlLTJnmEwGcl8yO28nt3hGE27pyoiSLLTnn9JLZAFtzzrEt9yyzAvtjLzVnXVYceXUVvBU18aZ5fq4GhUrBU9lzSBZvxM2+FEu9YWKNRX0/fvb+Cxsj646epoF2Jq0+jbGxY0lrSMNWbMu67usYZDOoXfeZXKKgzzd5VMm0zIo05+c7W1aFBUg+WcYzg7aiUmj43y8DGPOgX7M29SolAVtWkC+rZ2G3XiwIjWrP6bcpSZVFLD7TXNeov6MP3c17ErUkn9t6FrLxrgFN+vyTHkNBfRXWxqbc5hnGN/1PU1HYwKZ6nSdsT34S23MTqFbIcDe34W7fKHws/5sPGgZjxECn4gA/sJzHscadRWQgbmGF8FJj5NO4ndgZmzErqL++ja7uzmnKZHVXrLtzYQnqXr/eOJl23u+NQqXgiaxHSDfagptDGRYmWurlAnJLrLFuGMhPPr9jLbbu6GkaaEfeSX+HdzLeQY2aOx3v5M9ufyIWtt8qep1cQ++v80goURLpKuHIHFckrdRXyUur5omITTTUqnj8k0jufKFbsza1KgX+m1dQJG/g/fA+vBzcs93mfrN4cGUxv8fWkvqiO352rUsOACx+9Aibl6byS9Jk3ANb9zb9FzEYIwY6DWfZxleMR4oF75GFKdYdPaVOi0Kl4OHsWeQY7cDdvgxzEy11cgG5JTY4yIbyk/cfmIvbVzyrs1Auq6NWJW/ynrnYGFvplSX+uyK5slzGxo7lXN05LEWW/B3+N2Ptxrbb/jQaDTP+KmZVfD32pkKi57njad2yAVRR3MDDoRuoLpNz1/9Ceeyj5t6PaoUC/61/USKX8Wn3fjwf1KPd5n4zcHk3i3qlhqq3WlfOvUDiiRLm9tnKHc+HMOfTy6u5/tcwGCMGOgX5nGUREQgQ8hbncKC5m9dAy9Sr6nkkayYFkj24OZRjLtVSJxOQW2qLk2wYS71/u2UNk3JZHa+f3IBK2zQVVSwQsrDXpFvWIAH4PPtz/pf6P1RaFRPsJrA6bDVScftlYnywt4JXtlUgEcHmmc6MDGj5O1Vfq+Dh0A2U5NQzZqYvL/0ysFmbSoUM/y0rKFPI+TJiAPMCwttt3u1Jeb0Ku4XZTAgyYdMsl6vqM06yHFd/c346N6WdZ9e1MFTtNdDhVFPMB/RFi4Zn2WUwRK4RU7Epf/r9wx6PUr4T11KROo3cUhvcHcqx9l/NE0pzhuU4cF/q3ShUzUWqujK1KnkzQwRApdU085bcajzr+SwFgwqIsohic9lm7A7Ysbp4dbvt7+VhNmyZ5YQWGP1TIZ8eqGyxnam5hF9Tp+AVasX2X9N5dULzWAtriZTk8XdjYyTh6djDfJd6tt3m3ZZc+kz+1WGdqOScvlf/8OseaEFeastilAaujMEYMdAuKJCxkHAU1PEQfxBA+wbl3eqYi01Z6b+GPe5lfC2qpDR1Evll1ng6lmHhv5KHlFKGZjsyK+3BW84w+S9iL7HnZJ+TLA1eikqrYvqZ6QyPHk6tqrZd9jcuyIyk592xNRXy4uZy7llR1GI7iUTMj2cmEj7YkeNb8nmqz+Zm9WxsJVKSxt2NlVjCnFMHWXZR3ZbOStSSPPw/zuZ/m8vYn9HA33E1iIUwIejqs196j3dDrdRy9sjl1W4NtIzBGDHQ5mjQ8B6R1FDMZBbRh3s6ekq3FJZiS1b5r2e3ezlfisopSh1PYbkV3s4lSP1+Z5bChKHZjjyc/nCXNEzy66r4K/Vkq9vrlLe2Z+RiHnZ7mJIhJQyyGsTeyr04HHDgt4Lf2mVfPrYScud70sNFworTdXT/PId6RcuF8z7bP5aB0zxIOlHG7JD1KGRNhdQcpCYkjp+BpdiIR6L381tmcrvMuS0ol9VRLVeRVq7is0NVDP2hgHMlKswlAlbG1VPRcHVFNic+EQDA5h9T2nO6tyzXZYx8/fXXeHt7I5VK6du3L8ePH7+qfitWrEAgEDB16tTr2a2BLsJXjKeQBPrzEBNouRaHgbbBWmzNWv/N7HKr4GNtCfmpYyiqtMTbuQQj35+YqTBhaJYzT6Q/0SUMk8yaMj48vf2ytYR+TzlGlaLhJs6qY7EUW3Kg1wFWdFuBAAEzz82k74m+lCvK23xfUomQ2KfduS/CnDNFStw/yCatrOXvzdtrhjHx8QByk2u43/dfaiubtnOWmpIwdgbmYjGzTuzhr6zOV6vpQmwSkmIEaFFfZHtVy7Xcu7IY+4VZDP4uj7SyliulX8DNzxJjUxGxewov285Ay1yzMbJy5Uqef/553nzzTWJiYujRowdjx46luLj4sv0yMzN58cUXGTx48HVP1kDnZzmPk8B2AhnGTH66cof/GOWyOrJry/Wvclldm43taGzPev9t7HKt4ENNAXkpIyiptMDHtQh8v+dBuc4weSpjbqc0TBRqFd+e249MrbvoW0mkDHX253bvCPo4eCM5n+paJq9nWeLhjpxqhzDDeQalg0sZYzuG49XHcT7ozDe537TLvv6Y4chnt9lS2aAhZHEumxNb/p4++10/HngjnPKCBu73WUNJbtN2rqZmnB17F6YiMfcd38Xq3LR2me/1ciE2yc6yeR0ejbbx/0dz5NTIW6/rcwGfMGuKs+uaLV0ZuDLXnE3Tt29fevfuzZIlSwBdepiHhwfz5s3j5ZdfbrGPWq1myJAhzJ49mwMHDlBZWcm///571fs0ZNN0DbbxEWuZjyOBvEUCQsMqYBNayhC5GdkhubI8Hsu5D4X5KTzsqzE2gopaEQWlDkRxD595L263fV8LhwrT+C3lGAB+lvY8EzYCY1Fjqmm5vI4PY7dTed4rsqDneDzMbTpkrh3NxtKN3BN/D7XqWrqbdWdbz204GztfueM1sietgfE/FyBXw6LRNrw2ouXz/e+SRJbMO4GxqYhvTt6GV0hTrY3MumpCt/2NTK1m7YAxTHG7crrszSC7tpx3T20lu9iarSeDW2wjAP6+15Hp4ZevKg7w1/tnWPZqLG//O4yBU25Ora/OTrtk0ygUCqKjoxk1alTjAEIho0aN4siR1oslvfPOOzg6OvLwww9f1X7kcjnV1dVNXgY6N9H8zVrmY449CzhlMERaoKUMkZuRHeIudWNzwF52ulTxpjqDzJRBlNeY4edeSIP3Z9xVK2ZIpisvZbb8MHGzOFKUof/3nb6ROkNEqwWNzlNia2zGBI+wi9qn3/Q5dhYm2k+kbEgZU+2nElcXh8chDz7K/KjN9zPcz4TU/3niYCZkwY4Kbv+9sMWn/qlzg1mwYjAKmZrHe2xsFsTpbWZJ3Og7MRaKuP3wdjbnZ7X5XG8EW4vmnpELLL3D/qoMEYDxj+riRnb81rk8QF2Ba7pjlJaWolarcXJqWtjLycmJwsKW18kOHjzIsmXL+PHHH696P++//z5WVlb6l4eHwcLszKRzjKXcgxEmvM4ZJNya2hc3Qq1SzuHClm+eCvXVBci1Bd5Sb7YGHGCHSxWvyJPJSOlPZa0p/u4FVHt/yJ01RgzOcOO17Ddu2pwuUCbXZYqYiSX4WJyXzi75CU6aQvaLoCggzNb1ovaXWeLq/PJJN4xEKGFtj7XsjtyNucic+WnzCToSRFZD297o3a3E5L7sSS83CWvP1RP6WR61suYGybAZ3ny4fRRarZbnBm/jyMam1an9Law4NfoOjIRCJh3axo7CzlO92kyqQCxq/jv87DY7Zve6em+8tb0UM2sjzh42ZNRcK+36+FpTU8MDDzzAjz/+iL391evyv/LKK1RVVelfOTk57ThLAzdCGVksZigChMznKFa0vau4q5NWXcKbJzeyp6DljIKlSYcorL/53r9AswC2BRxmu3M1L8jOkpbSl+o6KYEe+ZR5LmR6tRGDMzx4K3vhTZmP+HyVZoVGjVJz/sZQsQaEJlD0NZz2xCR9BpOFK+kjPEh35RrIfQMy50DKdDg3EE77Q7QNnDSB6n03Zd4dzXCb4ZQNLuM+5/tIrk/G97AvC1IXtOk+JGIhJ+a683AvC5JKlbh/mEVSSfO4o8iRLnx1bDwisYA3Ju9h689Ng1aDLW04Oep2xEIB4w5sZndR5zBIBILm3pE3Rljz7KBrl3YPjLKjolDWLMPIwOW5JmPE3t4ekUhEUVHTHPSioiKcnZvfhNLS0sjMzGTSpEmIxWLEYjG//fYb69evRywWk5bWsivL2NgYS0vLJi8DnY96qllEBCoUzGEd7lxbafP/AoX1VXwZv7fJUoyj1Bw748YYkQp5PZ/H76ZaIeuIKQLQzTyUHQFH2eZcwzxZHKkpvahpkBLomUuh5xvcUW3E4HRP3s19v93m4GVhB4BSoya6JBvkGVC1FdwXQc8C8PwMdV0Mtxmt52Gjbxkg/wLy34fipTqjpfYwyNNAXQlaOUiaV5m9VREKhfzR7Q+O9TqGnZEd72a9i/chb5Lqktp0P0vvcOCbKXZUy7SEfZ7L2vjm3qnASDt+SpiM1FzMJ7OPsOKj+Cbbw6zsODZiKiKBgDEHNnOwpKBN53i1ZNeW8096jP5vG/N6QAtomRqu4q1R1xePNOwuLwB2/JFxhZYGLuaajBGJREJUVBS7djUq72k0Gnbt2kX//v2btQ8ODubMmTPExsbqX5MnT2b48OHExsYall+6MCpULCKcBiq5myWEM6Gjp9QpWZ91Rp8dEmjlyMJek1jYezLv9ZmiqzZsag3oDJIdeZ1DHCrCPJydASfY5lTDk3XRpKRGUiczJsgrhxz3V7m9SsLgdC8+ymvbwNchzv76f/+dHk190nS0aMHhITQiSw5qx/OS7GMS1SFotbrAQlCdf128LCMCixEg/e8p/vax6kPhoEKecH2CbFk2IUdDeCb5mTbN7pjTz4oDj7sgFgq4fXkRb+xonmLs4mPBb6lTsbI3Zun8U3z3QlPdmAgbBw6PmIoAGL5vA0fKbm467OmyXD6M3U5yVWMWqFwpBgS42Fbj4H6SDVlnrmvs0Q/6ArBvZWYbzPS/wzUv0zz//PP8+OOP/PrrryQkJDBnzhzq6up46KGHAHjwwQd55ZVXAJBKpYSFhTV5WVtbY2FhQVhYGBLJ5SshGui8fMIgyslmFC8wjCc7ejqdkipFA6fKdEuMFkbGPNVtKI4mFvrtnua2zA0biuj88sShwvTG5YlOQpRlJLv8o9nqWMvsumMkpUTQIDciyCubdLcXmFYpYXC6D5/nL7nhfQVYOdLNRlcHRKAqwaQhhgL8+D4pltdOrOf3lGNoEPC56lUKjIfR+uVLDU7/3e+kUCjk25BviesTh6uxK1/mfInbITdia2LbbB8DvU3I+J8HLhYiFu6u5LZfCpoZPDaOJvyROQ0nLzNWLU7g/QcONtney9aBA8MnAzBkz3pOlt+cOIuC+ip+TDykDyY3FxvT294LNwsTxCI143slIBDAppx4jhVfu3dDIhVj4yQl+WRZW0/9luaajZEZM2bwySef8MYbbxAREUFsbCxbt27VB7VmZ2dTUNAxbjcDN4cfuYtMjtGDqUznk46eTqclo7oUzflAyr6OPkhFRgBs4C0OnddgsTU2I/x8UGadSt4hsSNXywDLPuwJOMUWxzrur9lPUko4cqURwd6ZJLrOY2qlMYPTfPmm4IfrGl8gEPBo8CACrRyZIf4dgD/k9xJTlkO5vHE9f6BzAM7hm8CsNyBqebCsZ6HgU9D8d9ftwyzCyB2Uy4ueL1KsKCbyeCSzz81uMy+Js6WY7Jc8GOhlzOakBgI+zaXqErVSEzMjfk2dik+4Nbv+yODlcTub7L+fnTN7hk5CCwzY/S+xFe1vkOzMS9Qb/b0dvPig71QeDh5Afpklj/ay5u6Anvq2W7LPNqtbczWEDnCgtlJJVVnHLb12Na4rgHXu3LlkZWUhl8s5duwYffv21W/bu3cvv/zyS6t9f/nll2vSGDHQuVjLK0TzDx5EMoe1HT2dTo3iIi+HtURX46KSfLawiJXMo4aSJtuATucZaY1h1oPZExDHZoc67qraTWJKN5RKEcE+GZx2fpypFcYMTvNjaeEv1zSuidiIZ0OH0Et0khqBHWkEAbolmW42LsztNpT7/fsgFJlC4CYw9gYuLnsvBONAUBVDzosQbQpJt0F951gC6wg+DviY5P7J+Eh9+LngZxwPOHKo4lCbjC0WCzn4hBtP9rMkvVyF+wfZnCmQN2vzfextdB/qxMltBcztswX1RVKngxxc2DHkNjRo6bv7X+Kr2s+joFCrOFacCYBUJOZ+/z4YCUUkFCvJqFAxOcSM0e4h+Fs6AFDQUH1ZNeDWGP2ATkdly9LOpzrbWTGIQRi4ag7yI9v4AGvcmc+xjp5Op+diIyOpShf0/TfPYIIVRpiylBmoteom69ZWkqsvzNVZGG0znL0B8WxyqOf2ii0kpoWgUgsJ9knnhNNDTC6XMjgtgF+Kll/VeKLC9xGixNJrEYv7Tef93lP4fMCdPB02nHBbNwQCXbQIRnYQvAPEVjR6SLQQvBWiGsDzSzByg6rNEB8KsV5Q8Dn8B9Ux/Uz9SBuYxts+b1OpqmRQzCDuOnMXqjbyHH09xZ6f7rCnXqml51d5rDjdtHqtUChk8d4xDJ7uSXJ0OQ8FNa1nM9zRjS2DJqDSaOm1cw0J1RVtMq9LKZfX6Q3+bjauSMU6b+Vr28sRC2GYrxSAKHtPfZ+C6/BWDpjigUAIB9caMkGvFoMxYuCqOMd2/uBxpFjyBmcQN3kaNdASflYO2Eh0mivx5flsrv2NGFZxN0uYze8ksYdFimHk11fp2lvaY9eOSqw3g/F249jnf46N9g1MLF9PQlowWq2AEJ9UDjvez+QyKYPTAllR/E/rgxR9CUIzcHgMMyMJtlIz/RJXM4x9IGg7CM/Hn1mO1L0nFILzPIjIgPAksJ4MygLIeQ6ipZA0CRraNtOkK/CG7xtkDswk1DSUf4r/wW6/HTvKdrTJ2A/1suToHFeMxQLuWVHCS5ubezje/Gcok58MJD+thvt81lJT0ehFGe3szsZB41BqNETuWE1KTeUNzafl0guCFtsW1apxMBMhNdLdErXcmE6NUCjE0cOMjDPtY1TdihiMEQNXJJ+zLOE2RBjxGjGYYt3RU+oSiARChrkGAqC1iWa96Sws63tgUTkcbXl3zOvDKZAcBNetAIxwDerI6bY5U+wnsd8/gQ12DYwqW0ViWiBaBIT4prDb/i4mlZkwJDWYNSXrGjuVrwF1OdjP0hkUV4NZJPiv1emROD/ffLtJIASugygZeHwGRi5QtRHOBEOsNxR+9Z/ylrhL3Tnb/yyLAxZTr6lnTOwYJsZORK6+cSXg3h5Ssl7ywMNKxMcHqhi1NL9ZjMrTX/flwbe6U1Eo436ftRRl1+q3jXfxZO3Ascg1anrsWEVG7fXFUF0ovfDuqa361+snNwBajM/XOIqvyKdBdV7d10REb3djff+TJdn6f7uYXp+0RI/hTsjr1RRk1Fy5sQGDMWLg8lRTzAf0RYuGZ9mFA/+9dMkboZ+bHTZhvyMIWwxCLVV5PfnszG6+OruXmugX0KpNwfcPojwETVzDtxp3OdzBfv8kNtg1MKRkOYkZ/ggEWoL9kthiN5WJpaYMTQ2lOPNZQAju1yhtbj0WIivBenzrbYRCcHkWIrIg7BxY3QbKfMh+GqJNIHkqyP47Mt7PeT5H/qB8Ii0i2VS2Cbv9dqwtvvE4MHtzMZkveTDcV8quNBk+H+VQXt90OejBN3vw9Dd9qKtWMjt4PZlnGz0Ik129WdV/NDK1mrDt/5BVd+0GSWulFxQaNX0cvQGQq1X8lnIUhVrFyTw55fVqtFotW3PO6eNEXE2t8LW4esHOi5nwiE4afuN3KdfV/7/GNRfK6wgMhfI6BgUyXsOLGoqZzZ/04Z6OnlKXQYOa/XzPWl5Goa1DK9BdGLUnP4EGF307qWUe8u7zMcWGjwQFiLl10903ZMWxMbupAJZCmkuq7Q/Y2uYQYKbg/dPwp7WYnwjkFbsvcVAHsC4rjjJZLY4mFtzuE0G4rZu+v1arZUPWGQ4UptKgVuJnac+9/r1xMrnK64RGA0WfQdEXoDi/vi/xAZcXweGJq/fOdHF+zPuRuUlzUWgVDLcezvoe6zEXX109lsvxwqZSFh+sxtRIwP7HXYhykzbZvn9VFgtn7EcoEvDp7tGEDWosNbIyJ5V7ju7CVCQmcdwM3E2vfj4XCuBdyms9xyERill0aos+dsTCyJjP10fgY6/m3iHJFDY0Gj+PBA2g93nj5XoYa/QHHsGWLD0z+brH6Oq0S6E8A/8dNGh4jyhqKGYyiwyGyDWQzlHeJZIVPIWcGr0hAnCn20hGugYxyi2YWYH9+DjsOW4XfEi9oJyvuMxT/S2Cq6kVH/Wdpn99FfE0B/xSWWcjZ3ZiKBot7LAREBJwjtXWo3hDG8Y+84WM9Lclws6db88dIK+uUj/ettwEducncV9AH16OGIOxUMyX8XuuPitJKASXFyAiG8LiwWq8zijJekqXiZN8O8hufSXNR90epWRICQOtBrKncg8OBxz4o+CPGx7309vs+eMuB+QqLX2+zufXk029HEOme/HxztGgheeH7uDQusaAzxke/vzWZzh1ahWh2/6mUNZ6MbtrwdnUksdDBmEk1AU91yjlqLUgp6aJITLZK/yGDBEAN38LcpMNyzRXg8EYMdAiSxhPIefoz0NM4LWOnk6XoIYSfmU2H9GfAs422y7BjFEuEdzlF8WdvpH0d/JFIhIzhv8RwFCS2M1O2lbVtLMhFAiwkpjoX+ZG55+UVdWEyhIxlobyh72CbgVfk5wahkSiICT4OJsdxvKd6QDOWX/Hr5m6J16tVsuuvEQmeIYRYeeOu5kNDwX1p1LeQGzpdWQxmHaDoM3QqwHcPwSxA1SuhThfOO0HRd/f0rEllmJLDvY6yJ/d/kSAgAfOPUC/E/2oVFTe0Lj39bTg5Fw3TIwEzFpdyjMbmqbKRgx35puTExBLBLw5bS+blzUua9zvFciyXkOpUSkJ3rKS4jYySMJt3ZjfYwy97D1Rq0WAAFOJLn4kwNKRp0KHcptn+A3vp9c4N1QKjUEA7SowGCMGmrGcJzjHdgIZxszz4lwGLo8GNYuI4Ag/6/++lMsVEXyG7Zhiw2r+Ry5x7TbPjqa4oYaXjq3ltRPrWJZ46HyGAzpNEDTg8TEA81yepH/lQp6qiyUgbzFJWV6YGCsJDttHevA9jCs2Y2RKHwoVhYRYN55Xk/MVf69HG0KPUAyuL0HPHOgWB5ZjQZ4NWU/ovCUp00HWtpVxOxP3ON9D6eBSRtuO5lj1MZwOOvFt7rc3NGaEqzG58z3wthHz5eFqBn+fh0rVaNj59bDlp4TJmFqIWfzIUf58v1GKfbZPMN9HDqZKpSB460pKZQ03NJcLeJjb8GjIIB721Xkkh3m6sqjXJF7sMYrudm5X6H11THz8fNzIDy0XyTTQiMEYMdCEbXzEAb7HkQCeZdeVOxgAQIiI0byICCOEraiC2tB6gKoYCS+gqzK7mKGoaF4RtavjY2HPrMD+PB02jHv9e1Mqq+PjuB3IFHIo/UPnibBprHFUrZBhaSTlBbfnOOCbyRorBdKERaSkhWFmrCQw8CSSgU/xaJ0nI1N6E1N9GgBLiZSqtio6aBau0y3p1QDu74HYDipWQ5w3nA7QFem7Bb0lpmJTtvfczvru65EIJTyZ9CQRxyIolF9/DRlrUzFpL7ozNsCEg5lyvD7Kobi2MbDV2duC39KmYeVgzE+vxvLNcyf02x7zC+WriIFUKBUEbVtJ5RU+35pr+PwLq3W/10gnaxwuKtfQFngGWyExEXFq182tvdMVMRgjBvRE8w9rmY859iwgFqHh63FNqHLGoDrxARYNzasXCxFhi64wZHRJNm+c3MhTB1fwdvQmzpTnAeBGOHfwMfXaSl6vnML/jq5h7qGVfHZmF0UN15fi2JkIs3UlysETdzMbutm4Mi9sGPUqJSkZn4G2AZyfu+IYU63upHf526y2UmCd9japaWGYm8gICDjJ12YRjC2yYIX6TUpVRVcc65oQisH1FeiZB91OgeVokGdC5qMQbQapd+m8J7cYkxwmUTakjKn2UzldexqPQx58lHmNmU4XIRQK2TrbhVeGWZFfo8brwxyOZDcaDtb2UpZn3o6ztxlrPk/k3XsP6LfNDQhjcY9+lCvkBG5ZSbWiucEuV6v4JfkoX53d2+L+Dxak6ks0XCCrUrc842vbPtpJ3qFWFGXWtmmxwlsRw93GAADpHGMpd2OECa9zBgmmHT2lLkVmTRn7C1JxFwUTULQAAAFCvZdEgBArXEmrLmFp4iEGOvuyIHJ8s6DMUTyPffUEyq22ERqacH1BmV0EU7EEJxML7Kp+BoExOM9vst1SIqVa2fQJt1opw0qiizN5wfV5gote4TNhMfbZC0jOdsPSVEZg2G5SQ6YzptCSMSn9SahrY3EzswgI3q7zlrgtArENlP8Dp73gdCCU/HxLeUskQglre6xlV89dmIvMmZ82n+AjwWTLrt/4em+sHf/c64hSrWXQd/n8cKzR2JaaivklZSq+PazZ81cmL43eob+RPxfYgw/D+1KikBG4dQW1qkaDRKFW8UX8Ho4UpbcqWbavMJUVaSeb1JvJqdJ5ZwLsWxHWu0H6T/ZAo4ETW/PbZfxbBYMxYoAysljMUAQImc/Ry8Y2GGiOTK1kWdJhHgjoi6lYQpz96wgQ8BKH6cntAKhRYo0bu/KS6Gbrwlj3UFxMrZji3QNPcxv25uvWlLVaLbKEWUjkHhy3fB2tWdaNBWV2YmRqJdqGJFy0yWB7V7M0Wl8LexIrm7q3EyoK9boP9lIzLI2kJFYWsshzIQd8cvnNpJ6Coy+Smu2FlVk9vgFH+cg4mNEFloxNHkhafWbbHYBQDG6vQc986BYNFiNBng4ZsyHaHFLvAUVu2+2vgxlhO4KSwSXc53wfSfVJ+Bzy4Y20N657vOnh5px5xh1ziYDH/y3l8TWNRfLEYiHfxdxGzxHOxOws5MleW/QxJi8FR7AorDdF8gYCt6yk/rxw2aaceNKqdWOIBAKkIjEigQBzsTHOF6V67ytI4fR5byRAfrXOyK/XlrIoZgtPHVzBghPrOVyU3mzOe/KTefX4Op46uIL3Y7eRcRWxSbc95g/A9l+aj2egEYMx8h+nnmoWEYEKBXNYhzvNlxgMXJ6/Uk8SbuNKiI0zpZZbUZifYyhz8aEvj/I3T7ERb/oQwGDSa0oJtm5q7IXauOgDLktlddQolcxS/wMIWMwwRGLNjQdldgJWpceQXFlEqayWtOoSvjt3gCGCjWgFQvD6nJ+TDrM2I1bffqRbEGcrCtiRm0BhfRUbsuLIqi3Xq9oKBAJGugWzOSee02W55NVV8nPyEcJEg9jlncY/FipMs54lLdcFW4t6fAIPs8jIh9EFVoxPGUrWDTzZN8MsEkJ2Qq96cHsbRFZQvgJiPSAuGEp+a7t9dSBioZg/uv3B0V5HsTOyY2HmQrwPeZN0nd6nECcJuS97EWAn5ocTNfT7JhfFeaNDKBTy8a7RDJvhReqpcmYFrUN2XjzttZBI3gyNpEBWT9DWlVTLZRwo0BWlEwASoZhHggfyTq9J3OvfmwpFPb0cvPT73Z3XON/iWjUigZZvEvYTZO3EgsjxjHQL4vfkY5ytaPRmnCjJYlV6DLd5hvFaz/G4m1nzZfweqq8Qn2LrbIqppRHxB4sv2+6/jsEY+Q+jQsUiutNAJXezhHAmXLnTRVxa+6Gx/sN/hxPFmWTXljPNJ4IKcqlw/RGjOn/u4nN9m3Bu42WO4U4PfVDmxVgaNQZcVit1mQL+RuHcyWc0UMUXjGrboMwOokJez9Kkw7x5ciM/JBzEWljHQNEuhOYDQGxLubyeKkVjpoSfpQOPBA3kQGEqC2O2EFOaw5zQwbiZWevbjHUPYbhLEH+kHOe9U1uRq5U83W24XkNisddn7PfO5y8zBZLMp0nLd8bOshavgP28KfJiVL41t6WMJF9W0DYHKZSA2xsQWQChJ8BiOMhSIWMmnDCFtPtA0fXd9X2t+lI4qJDHXR8nW5ZNyNEQnkt+7rriIiykQhKfd2dKiCnHchR4fphNXlVjYOuCFUOYMjeIwvRaHvBdS3W57nfwVrfevBLck9yGOoK3/63/fVhKTIi09yDc1g2NSoq7iSuh1i4IAcfzAapJVUV6I6KsQYOJsQp7qTl3+kbiYmrFcNcgIu092HmR0bIzL5FBzn4MdPbD1cyK+/z7IBGKOVx0ZdXegEhbygobUCjapjDhrYih2tl/mE8ZRDlZjOIFhvHkNfW9UPvhUsllsUDIwl6TsO3iBd+uhnJ5HSvTY3g2XHfz+4oJIGogvOAdhGY3bueP4GnOsJEEduBithWXunFtMOuO49GQQU3fSJoMaMHrKwBe6D6qWZ8oB0+iHFrPQhIIBEz27s5k78t79IQCIV96fwF8gUKl4NmMZ0gXrsXNoQQr1928qnAlJ98K0/reLPP4C0fj65MAb4J5LwjZDRoF5L8Lxd9D2Z+6lzQYXBeA/X03vp8OQigU8l3Idzzl/hTjT4/n85zPWVm0ks0Rm4mwiLjmsf590Jl3dlXw5s4K/D7OZttsF4b66qpYz/uqDzZOUn55/TT3+/zLD3ETcfYy573wPig1aj5JjuMfhYA77U3xNrcjsbKI/NpK/D+qIMi5gZGRxdzpG4mRUERxg06ErFrZgKVESmWDBlNjRYsey7/TYwBQadRk15Qz3j20cc4CAcHWzqRXX9ljOeROL07vLWLPX1mMnWkoqdESBs/If5QfuYsMjtGDqUznk2vu31LtB9DVf6hV3XjBra5Adk05NUoZ78Zs5YnYt8nTxqPNnEFMtpY5B/5C08L5uVJQpqWR7uJ74antKTZjjj0Frp+ByS2UHqiRQdVmkPjqAkJvIhKxhG98vmW/VyG/ShrQpD9MRqEjTtY1uPnv5H8CB0bm2TA1ZRxlijaouiqUgPvbEFkIIUfBfCjIkiH9fjhpBmkPgqLrfrbhFuHkDsrlBc8XKFIUEXk8kkfOPXJdXpI3Rtqw4UEn1FoY/mMBXx6q1G+7f0F3nv2+L/U1uno26ecr4n7coz8z3Dyp0WhZVVaPg9ScXg5evHNqM/ePOkrvsFjqqz3o6+hDubxRNO1CwbxahQZTYyWWkks8lhIpMrUShVpFrVKOBi0WLbSpUl7ZYzn6QR8A9vx166v5Xi8GY+Q/yFpeIZp/8CCSOVx7YawqRQNbcporjF5A3cJN+FYk2NqZNyIn8FLkEETdP0KiscSzegZ9HL1ZEDkeoaD5z+tagjIBxIiZp9qLVm3MGde5KOjaSzV6chcAanB/p0OnIRFL+MF3Kfs8i/hF0oAifSZZhQ442VbjHLCN57R2jMi15faUiVSqKm98hxZ9IXQv9KoDl1dBaA5lv0OsC5zpBqUrb3wfHcQnAZ+Q1D8JH6kPywqW4XjQkcOVh695nIkhZpx71h0rqZBnNpYz8+/GWIuJjwXy5qohKBVq5kRt4vR+3e/km8ghhJgYUa3W8mx8DEeL0nk4aADzQsaw/4wfG+NFTFx+Vv+7sjE2xe6897ZeqUUqad9MNVNzCVYOxiSdMCixtobBGPmPcYAf2MYHWOPOfI5dc//C+mreO7WVmMtkdqzJiL3l0lBbQio2ws3Mmn/NHkQtrGeW6AekIilmYmN9XENbBGVuSi7DLP1ZlEZFfMbwDjjSdqD4B12QZydappCIJfzk+wt7PYv5xaiB+vR7yC62w9WuEseATcxT2zIi1447U6dSq7pBWXKhFDzehcgiCDkM5oOhIRHS74aT5pA+CxRdL+DR39SftIFpvOXzFpXKSgZGD+SeM/eg0lxbrESAg4S8VzwJdTTit1O19PwyF5lC95Az+HYvPtkzGoAXh+/g4NosbKVmzPXxI0hqRL5Czd/FlbiaWhHuYMdwN1/kCjGb46UcT9Ipqw5xDtA/LChUWswkNAtErVbIkIqMkIjEmBsZI0TQTEytWiHD6pIYsNYI7edATbmC2spbT9CwLTAYI/8hzrKN5TyBFEve4AziawwZUqhVLDm7l8rzQYZGAiHhNq4MdvbD29xW3y65qph/zq+13urEs4UkduNDP6K4q9n2tgrKnO/1LN0E48ngKBt4+2YcWvtR8itoanRVcTspErGE33z/ZK9HCT8Y1VKVeie5xba42ldg57+OOSpzhufaMyN1+o0bJhb9IXT/eW/JyyA0hdJfIdYJzoRD+aq2OaibyJu+b5I5MJMQ0xBWFK/Afr89O8p2XNMYphIhZ5/zYEa4GbEFCtw/zCarQpfG22OIM9/F3IaRRMRbd+xn4w/JTPWOYKydBYMsjcmSK+mxYxULjq9DbX6C4ipzjMQqTqW5s2pfBG9tsGLKb4U8sroEtRaqas34K7aBjQl1HMuWodZoSagsxNdS57EUC0V4WtiSUNkopqfRakm8qM2VGHm/bqlm60+p13Qe/isItFpta/ownYarLUFsoHXyOcsiIhAg5C3O4cC1B1EdLkrn1+SjALiZWvNM+HCsJCb67QkVhXx9bh9KjRqRQMgHfaZgedH2Ww0VKl7EDiUNfEgh5theudMN7u9lXKmllJc4gi9923V/7UasNyjydDdfoaSjZ3NN1KrqeTjrfoqN9+HuUIGZsZZamYDcElvc5KP42fs3JOI2OKaag5DzMtQeATS65RzbO8HjIzBqg+Dam8jirMXMT5uPSqtiot1EVndfjeQaP/eP9lXw8tYKjESwcaYzowN0ooxFWbU81n0jddVKZi3sQf+nXVgct4tTtTKO1MhxNhIyztKMX3b0A0CAFi2C86NqEQsFqDS6dOCLb4TPDFUjNzvJ3LChdLNxBXSpvb8kHeH+gD54W9ixKy+J6NIs3o6aeFXXOZVKw3jJckL7O/DFoa4djH4tXO392+AZ+Q9QTTEf0BctGp5l13UZIgAHCxtT2O4L6N3EEAEIsXFm+PnlBrVWw9HizOuec1fgdx5CRjVTeb/dDRHQxY/8j0MIEPIFo1HQNhVM25XKzVCxHrTnl+1qT4IiC6wndTlDBMBcbMpKvzXscS/jG1E1pamTyC+1xtOxHAv/lTyklDIs24GZaQ+gUN2AO95iEIQehMgacH4JhMZQ+jOccoAz3aH82mO9OornvZ4nb1AekeaRbCzbiO0+W9YVr7umMV4aasPWh5wAGPtTIR/tqwTAycuc3zOm6jNttryWwTu9JnG7ixv9LIwpVGo4VqvggqlxsSECOkMEmhoiIqEajWkKDwT21RsiAL0dvJju25P1WXEsitlCTl0FT3cbftUPXGKxEHt3U9JOt0FQ9C2IwTNyi6NAxmt4UUMxs1lOH+697rGeP7KKOpUCa4kJH/SZikAg4AA/sp4FvMIJbPEkq6ac92J1Jd4HOPkyM7BfWx1KpyKHWN6lJ44E8A43tyLnAX5gOY/jRW9e4fhN3fc1czoA5Kkg8QLn56F0OdQfh4gckLh39OzajEpVJbMz76PS5AgeDhWYSKC6XkheqR3+qol86/ndjXtMqvfrvCV1x9B5SyzAdgZ4fgji9jeG24If8n5gXtI8FFoFI2xGsKH7BkzFV196IqtCSdSSPMrqNdwVbsbKe3UGiqxexaPhGyhIr2XoDC9eXzEEgKmHtrIuPwsKfKBAp4R6qRfkYgTAxxNseWGw9fUf5GV4/4GD7Pojg+VZ03DyNG+XfXQ2DJ4RA2jQ8B6R1FDMZBbdkCHSGgf5kRqKMcUOAO1FP3NBa51uAb5mIgIEzGPLTd/3YB4jnIlkcYL1XL8c901BeP5Go8iC7Gd1hojYAbS3lviTtdiaNf6b2O1WzsfaEgpSxlBUYYm3cwlGvj8zU2HC0GwnHk9/7Po9JpZDoNthiKwG5xdAYASlSyHGHs5E6DxQnZzH3B6jaFARA6wGsLtiN3YH7FhesPyq+3vZGJE735MIFwl/n6kj7LMc6hUapKZifk6agn9PG/atzOLFEdvRaDT8O3AcQ6w9wSUDnHVy7K0ZIkKBrj7N0wOs2uBIW2b8wzqDaNP3Ke22j66KwRi5hVnCeApJoD8PMYHXbng8F1Pdj7RS0UBadSmFJJGFrsy3BJ2r8mRJdrP2txr/8hqV5DGUude95HWjzGEdljixmUWkcqhD5nBViC5+Ejp/G1CVwWlfSLkDao92yLTaE0dje9YFbGOXWwUfaQvJSxlJSaUFPi7FCHx/5EG5CUOynHkqY+71GSZiM/D8BKLKIGgXmPWBhjhImQInrSDjCVCVt/2BtRHWEmsO9TrEn93+RICA+8/dT/8T/alUVF5Vf6lEyKmn3XkgwpyzxUrcP8gmrUyBWCzkm5MTiBzlQuyeIp6I3IxKpeGLbiMg3w9c08CpdZ0PjRa+n2aPkaj9HqMihjkjEgs4tinvyo3/YxiWaW5RlvMEB/ieQIbxPHvaZMwjRen8cj6A1dXUCteIlZwRrUZBA9+h4VxFAV+f3YdKqzkfwDq1mZBQV6eCXF7FCzPs+IhChB1oz5eQxpsEYYSUDylESudw+5bL6vTCdw7Z92BSu731xgIjiKwA0a2v2JsvK+DRnHuRm8Xg4VCNsRFU1IooKHUgkhl87v359Q+uqoW813VZOOoKQACmEeD2DthMbKMjaPrZXsBcbHzdisv1qnqmxE1hZ8VOJAIJXwR+wRPuLWdZyVRK1mXFEVuWQ41SjoeZDYrKUN7cpkAshDX3OzExRDeP9+47wO4/M7EPkWLxqR1L93uDSxq4pENuABR7XzK6Fj+XMmYOKuX+gD74WLRfkPCsoHUUZdWyRdZ50trbk6u9fxuMkVuQbXzEWubjSABvkdhmN0ylRs070ZsoltWC024EAcswlnshN84i4MwOkqsadRGGuQRyj3+vNtlvZ+Idwsknnpc4jC/9O3o6HGIZv/MInkTxKic7ejrNygQ8LF5ClPAoIsGllxmh7uXzHTg8fNPn2dFkybJ5POc+1OZxuDtUYyyG8loRBaWO9OMBPvb+8PoHr9oBua9B3UlAq/NO2d4HHu+B2Pq6h23PEhDri9dz37n7qFXX0sO8B9t7bsdR4tikzQ8JB8mvr+Je/95YS0w4VpzBzrwkxtqP4vbfKpCr4Z1RNrw+0gaAxS8cZvOXaTT0s+HwoFBAq/OOOGdATiCUeHEhkBW0RPjm8dhASK4q4u2oSe32IPXVvOOsW5LEd6cm4B9h1y776EwYYkb+o0TzN2uZjzn2LCC2TZ/cjYQinuo2FFOPPRCwDAQgk4vRQhNDpLutG3f69myz/XYW9vMD+cQTwbROYYgADORhejCVbKJZy6sdPZ1mZQLkSNE2+w6KdTfI4F3/SUMEwEvqydaAA+xwqeI1RRoZKQOoqDUlwL2AGu+PuLNGzJBMN17NuY7lVavR0O04RFaC09OAEEq+hRhbiO8FFZuvecg6pYI/U4+3WgIitiz32ud5EZMdJ1M2pIzJ9pM5XXsat4NufJz1sX67Qq3iVGkOd/hEEGjliKOJBZO8uuNoYo5Ckk3q/zxxNBPyxs4Kpv5WiEajwWuuCQEfmFCnr4EoQFDgC0Ve4JGMdWCsfnwjkZrYdDfyC12vuvjd9TLx8QAANv1giBu5GIMxcguRzjGWcg9GmPA6Z5Bw9VHqV4OcOjaZzqHBeymCC8uqAv1/cDSxYIZvFE+EDkZ8vmrqrUIDNfzN00gw4xFWdPR0mvA4q7HChW18QDL7O3o6TZBppQiaJk6C1A/CYnQBmQbwN/VlW8AhdjhX8z95Imkp/aiuMyHAPZ9yj/eYXmPE4Ax33si+RrE7sSV4fQFRFRC4FUwjoT4GUm6DaGvInAeq6isOU6dU8EncDs5UtF7ZeGV6NMdvMJVfIpSwrsc6dkbsxFxkzkupLxF8JJhsWTYarRYNWsSCptcVI6GYtOoS3K3E5LzsSR93CesS6gn5LI+k8lKGTfVhwrwgfXsP8xpGOmqgyINK8xKMnTMRCjTMGBqLWKRh0Q4BarnNVRW/u158wmwwkgqJ2dl16xG1BwZj5BahjCwWMxQBAuZzFCucr9zpGigmlffpzUma1s5wMjVBiIDXeo7j7aiJjHALQtRCTZauzndMQYWcmfyCmM6ljyFEyEscQYiIJUxARm2HzaVW2TSeQIYJQnRP01oAq7G6p3Zjn5s/uS5AiFkQOwKOsM25hudkZ0lN6U1NvZRAzzyKPd/ijmojBqd7sjDn/Wsb2HoshJ2EyHJwfEr3XvESiLGG+N5Qua3Vrn+lnSC/vgrQFZfr7+jD3X5R3OYRhutFQeq/Jh+lVHbj372RdiMpGVzCvU73klSfhM8hH97LXoivhT2bc+KplNej0Wo4WpxBenWpXuFYIhZy7Cl3Hu1tQXKpki92OlFbL+HZh32Z6Sak70+nCHw3Hk9tBbbV7lDihtw1FdewODytpUztfwaBQMu3u53Jrmq4wixvDK8QKwrSa6+rmOCtyq131/gPUk81i4hAhYI5rMOdy5dTv1bi2MC79KSYZLQ0/fGIxFoEAiGe5rYIBbdmMu8ZNpPEHnzpTxTTO3o6LWKHFw+wFAV1fMLgDpnDocI0lsTvbfKeEQq9Fy3ZZCbagHWXZNgYaI0w81B2Bhxnm1MNT9XFkJISSV2DMYFeOeR5vMrtVRIGp3vxUe41VN0WW4P3EoiqhIBNYNoT6qMheRxE20DWM7pg2PNUyOuJPp8hZyo2YkHkeGYF9We4axCTvbvzeuQE+jvqDEuVVsP+graROhcLxSwPW87RXkexM7JjYcZCvqt9igpVKfOP/8tTB1eyJy+J3g5eCC4REfjhdge+m2pPdZ0xc/8x5kCmjMWPOBD0hgwEkPekhuetRZAbRIDEmFyjEkoEVozwsWdsVBIKlYif97tSLWs/Q6HfRHc0ai2ndhu8IxcwGCNdHBUqFhFOA5XczRLCua3NxtagZh0L+IbJyKlDQ/Pid2oUzS4GtxIqVCzjHkQY8SQbO3o6l6U/M+nJHeQSy2peuqn7PlqUwW8px1BftCQjFYnxFqSh1cJq5QwWV45he97NFYi7VYi07MmugGi2OtXycN0xklMiaJAbEeSVTbr7/5hWKWFwujef5X919YPaTICwaJ23xOEJQANFX0KMJZztC1W7OFmSheb8ZzrcNQhHEwsANKW6ZQyhQMDtPhF6b+ix4tZTZ6+HvlZ9KRxUyGOuj5ElT+O9insxcTzBe70n80rPcai1GuylzbPIHu9ryVOj85CINUxfXsRTG3KRdhfg/qMAkS3seSqG0Q31DLEywkVsyo8ZiUTXqfFyrGZkRAql1ab0+DK33TwXtz2mixvZ+lP7xaZ0NQzGSBfnEwZRTjYjeZ5hPNmmYx9iGVt49/xfLSddaVAhuIW/Rr8xCxnVTOODmyL5fqM8yt9Y48YOPiaJvTdlnzK1kr/SGjN5Bjr58m7vyXzRbyqBknIyjSewXTMZgH+zTlMh7wIy9p2YAZZ92B1wii2OdcysOUhSSnfkSiOCvbNIcn2aaZXGDE7zZUnB91c3oNgafL6FqCoIWAemPaDuBCSNYkhBP6aL/kCCjFBr3dKvurCQCmdnKqOiUB45goWRFPfzhR4rFQ38n73zDovietvwvX2XskvvIFUQCyiW2GNJNLaYnpj+JfmlN9N77733nhiNMbbE2HuJHUVFFBGQ3lna9vn+WFxEAelF576uvYSZMzNnxmXmnXPe93lsDSS5tgWpVMpXfb4icWgi/kp/Psr6kL47o9heuotDpbnEeTas5Ds8yJ17Lk7D31XG3D1ylu2IRh4gZdg3njjrFFg/2k/+OhVTNSFEOGv5Lv0I+6qt9PItY0jvE6SXWhjzdeN5Mm3BO8gZjaucpI35Z298nnDuPkXOA77matLZThwzuYr32ry/DTlHeXn3Mh7c+gcPbv2DjUnu9DPcjAwFEhpOSK0xSrBU+XDv5rm8tPsfkkrqi/kIgsCS9P089t9f3LdlHh8krSG/5uxJc92BEySyg9/wIYqJzO7q7jQLe/7IVqTI+YypVNPx13pHQToGq91NdbBXCDdGDbO/rZbMQ2rNJyz6HSYE2JMIbYLApjzRtbS9GO02knVR+1jmXcXV5Ws5fLQfJrOMmLDjJPndxcxSFaOPRfBN3vfN26H7DOi3FwYVgfedSAUrF8n/5SPl7filT4by9Uh0OuQXXoh1zx70I0ZQ4ubGsFc+RFlZjVwi7bCRUpnFixV9d3JfwGwKTEWM3jOGw8JqhnuHArDweCI/pGx1tB/rH0WltYIPrymmj7+BrCJ31u+PoE9gML8evwx3XzXVr9ZQtTmL7wcOIdTJmf/0VRyrMTMksoAp0Rq2ZBi5aV5BIz1qG5HxHhTn1GCxiHkjIAYjPZaFPMke5hPMIO6mfUyz3FQaLguL4+mBk3k6fjJ9XXtzaNdkHqxOYgIPNrhNZY0amdzEs4MuId4ziC8ObSK7qsyxfkVWMmtzUrg+aihPxl+MSirn4wPrMNvOnPLpbnSl5Htb8CCEW/gRE9W8y6gOP97BU6osJgbFIJFIwGaB7BdBexFoYrkoqI+jzaEmqjJEWs9F7uNYH5XEP97VXFG2gsPHYrFYZcSEpbHL9zYuLVUx+lgkP+b/fPadyT0g7EsOsKlIlwAAfLNJREFURhzmc/NDZAvBOBv3Qso4pIeC0H4Xj/JOe1m2zWolfuEKnp/6P+5++E2sSUkdcn41FvsInK14CHc6fUWIPJoVhq8J2OrPtvJtlJtqKDll1M1L7cJ9fS/kSHk+YwftZ2z/VI7lenHTzxqOG2DO8csIDHOh4DUbX7+2i4u1UoKVMtaUG0gxSlh6ky/9fBX8kljJy2va39xu9BUhCAJsnJ/R7vvuiYjBSDdGaGRqZBNfs4K3cCOIJ9jebseL8wyiv0cgvhotvk5aZobGoZLJKdDLMVIFwGCuRYObYxu5ogaFqgZ/Jx2XhsYR4uLO+hx7XoAgCKzJPsyUkH7EewYR5OzOrdHDKTPWkFh0ot363REs5GnKyOZC7u8yyfe2MJTrSeAackhi/imjOgYq+I272cJ37XasGovZ8bO/pra6omwxGNPAeQgA7ionVDK5vQ+ntBfpGCZ7XMyGyIP87VXNtJIlHD4Wg9UmpU/YMbb63MyMEjVjUnszp2Bek/vp7xFApnwsr5rfYLbxC9JUMxEEE5L893D5vx/QvO+BxFhFXq8ASvx98Nu1j/K4OEojIjD83IygpwUM9u7Fa0Nm8Nmoa/ls+K2kjt3LC2EvUGouZcSuEawwfcyD/S6st020my/PDrqEj0dcTUJYBWP6HcNkkTDwkyzmJVfzQ8qlRCV4kPeZmfwHBSZolThJJawqKeW1w3vZeU8gvi4yXlhdyu/7Ktr1fCbdar+vrPmtffNseipiMNKNWccnPEcUuSQ7lh1kJb9xF2q0PE8ScuQdcmybYGNnQTomq4VQVze28gOu+HA7v/MmWVzNR0irQpHLBKSnTOHEuvuTVmFPbisyVKE3G+jjVldmrJErCXP1crTpjpSSxUrewhUfruKDru5Oq7mNObgTzBo+IJk1ZLGPV4hjE1+ykS/b7TguCpXj5/TKYvsPHlfYA5EKu+5JXnU5RqvdHM/5lPYiHc+lXtPZEJnM3541XFy8gMPHeiMIEmIijrLe61qmF2sYkxrDgsJFZ2wrk0i5PCwegGq0vKW/igdN37FY/jz5BKMZUYJEAX4ZOXjl5CONjEDapw+2jAyqbr6ZYq2WygcfxFbdMXlCL4a/SNrINGKcYphbMBevjV6sKV5zRjuFVMaM0AFEBxcxc2QSUomNm/4o5OLf9uH3pYBmKFTutZF3u4RHggPxVWl4/uAuPji2j/0PBuKkkHDDvEK2ZRrare/OWiVaTyXJ/3Xfe2FnIgYj3Zjt/EIhqbzFBRxlEzkc5DOmIkPBM+zB6ZQRivYiu6qMB7b8wb2b5/Fb6k7uih3NTud3sGJiBq8AoMKZ8TwAe99AhgzpKQGRVqGm3GT/g9Wb7bX6p8sqa5V1bbojn3AJAjbuZlGXes+0lVPzRz7lEt5gCKXYyzRzONBgdVRrGHhKAuGyzIN1CYz+T0DlZoTSv/k780Bde6/gdjmuSMu50vtyNkamsNSzhrGFv3M4LRKJRCAmIoUVnpcxrVjD2NQ+LC2qm5oc6hPKtREJjkwQo9XCsqpoXjC+zqOmzymZFuBoK6Qew3Y4GaxWpKGhYLVi/PhjSl1dKb/4YizJybQ3IeoQkocn827ku1TZqpiYOJHpidMx2eqbEI71j2JGr/5466qZNX4vzmoTa5N1fL0uEL+3ZbhcDOY0OHqVgcTRl+OtUvP0gR38kn2Q7XcHIJXAuK9zyChtv5G9mGFe6IuNVFe20sn5HKLn3mnPcWooJ5M9ABip5EMm8DoJCNh4iDUdNnXgq3Hl2UGX8GT8JMb6R/FDyjbWWr9Ag47R/O+M9jaJtd7ISE9nI1/VSr5f3m0k39uCBjdCGYYVM1bMjgDEjIFCjlFiqCKzsqTep8RQ1aJjDPQKRqe0uzanlOfzYdI6DpXmUuUyGQEZ5al3s7PQPi9uF80Kb9+TFGkV1/tcy8bIoyzxMDCi4CeSj0cgk9qIiTjMEo8pTC1yYmxqX5aXrGRcQDTPDZrCaL9I1LK6lw9v13CqrjtN56R2dtmWmQ7V1aBQgKsrllWrKI+NpbR3b4x//NHu5/NIr0fIHpVNvEs8fxf/jcdGDxYXLK7XZmpIfx6Pu4jRgYHcOG4fAZ7l5JTo+GNDAv/3+XAunx1DYWY19/ZexvaES/FUqnh0/3+sqzzCwht8MVkh/uNsKttJg2TCLLtGy4ofxBJfMRjpBpz+QCgxVJHCeofAmIANK2YsGBnCLKI6MClRLpXho3Gll6sHl4XF4+S7D7NMz8U8cUZbrVKNTbDVC0b0ZgO62pEQrcL+gNKfNgqiN9W16U5Uo+cPHkSFM7fze1d3p81kk8RrxHOc/xpcf9i0ned2LeW1vcvrfZ7btbRFAYlcKuPW3sMdoncp5fl8dGAds7cv5qA1Fp0tC2/sSas3RA3FWdG9FGxF4Bbfm9gUkcpidyOD8r/l8PFwFDIrMRGHWOA2iSmFzlyfM5oALwMfDr+Kj4Zfxecjr+XJ+EnETb8KXF3P3OnJ57XZjERZg3bHrygmTcKWlkblNddQ7OZG1RNPYDMaz9y2lfgofdg7bC9fxXyF2WZmZtJMJu6ZSLWlbpooQuvN7TEj+WTUVRx6IIaHRrqgr1Fw3U8yhj7cn9vfGkh5kZEH+vzLxpipuCtUPJC4lSxFOh9N96DMYGs3DZKx14SCBDb9mdnmffV0xGCkiznphHn6wyDR8m+96Y+T7OBX/uAhbHROOViJ91ykBj8mNRCMhLt6YbHK6/UzuTSP8Fr7bS+1M1qFmsNldSqDNRYzxyuKHG26E18xs1by/aduJ/neUrLYzxsMoYg0hAamY6TIySCxUeOz023iz0Yfdz8e6DsOt9oRkpPMs9wMwPWKX7kjZiRDfUJbtF+RzudOv9vYFHGMRe5G+uV+Tkp6KCqFhZioA8zRjmVqkQuXHB/CVv02ACRyOcrp00HeQP6aTIrUX4HuaxMK4Qa0r+/FPeUx1A/dD4KA4e23KXV2Rj91Kpbj7ZfI+b/A/5E/Kp8RuhGsKV2D5yZPfsv9rV4buVSGTqnhg2k+zLnWG6NFYNjnORjGh/Do98MxVFp4JG4ly/wvQqdQcvfezTj55XL/cC1ppRYu/KbtVWFyuRTPAA2pe0vavK+ejhiMdDGnu5yC/WFwWLoSG5YGt1nLR3zHde3el4XHEzlSXkCRoZLsqjI+yXkfm2sqcZZZSJHyQ8pWFh5PdLSfEBiN1SLDWOVOXnU5SzP2k1FZwoUBvQGQSCRMCIxh2YkD7CvOIruqjB+ObMNNpSG+m+UN7OfvWsn3EQziiq7uTptxxYdgBiIgNDiNZsNKvrR9SzD7uPvx+pBL+V/MKIZ69yLW3Z9gr2EYFL2IkSYx2NO3XY8n0vHcH3A3G8OPs9DNSO+cD0nJ6IVKYSY6ah8/uY5icoEL448OJOOivmA5834lDQ5BtzsD2ZQc8LwRbJVIi9/E+brP8dw2EJcfX0IaGop52TLKw8MpjY3FuGRJu/TdTenGlsFb+K2vPQi54dANjNg5gjJT2Rltr4tzZc/99kTVWxcU8Y+HGy8vGYfVIvDCqHX8oRmLVq7g9t0bGTyghMm9NWxKN3LL/LZrkPQf7UN1hYWinPNbDFAiCELD9aPdCL1ej06no7y8HK323PK1yKgo5vXE00yqlMVIhj3QYHspMmxY8SGKFziIDEW79eXnI/9xuCyfclMNGrmCmj4vIrgc52NZGXLkvLd/NZ4qZ26JrsuluM/siVDWD1LuxkfjyuVh8fT3CHSsFwSBpRlJbMpLpdpiIlLnzayIIfg6dZ//RwsWHsUTMzW8TT7OuHd1l9oFAYEU1rKE50ljq+O7cxInmzdVWz5scNtnBk4mxKWdFGeL5kDa9eD3OIS81T77FGkX/j1xkL1FJ8ir0aOUygjXenN5aDx+Z/n7fPzIa2xnLl6+R/DWmZCVwAs+IDv59ZJKsSFQHOjLd1++QkBwGLMih+Cr0ULRr5DzGhgO29vKfbFUXk7Vi8lYNmwEmw2Jhwfqe+9F/fzzSBsacWkh1ZZqZuyfwZrSNSglSj7u/TF3Bt15RruyagsJn+WQVmJhZC8Vn/WT8cT4NVitNu6aM4RblFuoslj4Zcg4Xl+o4VCBmVcvdueZca2/Z+xamcOTk9Zw4wv9ufnF+DacZfekuc9vMRjpIgRBYFvBcf7OSKLYeNr8vM9GJNH1pZztCqg2+nIJY7mHvkzu0MTRvSzkKy5nBLdxE9822u5+NHgTxfPs77C+dDTfcT07mcOVvNdjlFZbgoDAEdazhOc4xhYQJCCx/9kL274Cy5neHvf1HVsvqGwzu7Qgkdnt7EW6DR8dWMcQ716EunhgFQQWpe8jp7qMFxOmOXRhTueYvpB3961mZlgcAzwCefn4ByQrFvDa7QeI3mz/eh0dJOO7Bwfz2m27wcmZxf/8QqbCxosJ01BIa+9bphw48RiULAShBpBhU4yg+ltfjD/9C1VVIJejmDYN548/Rhbc+GjqhpyjbMg9SrHRbvLn76RjWkh/+nkE1Gu3pGAJsw7OospWRZzmAiYpHqbSaKv3ImWz2Zj2Uz7/Hqkm2MPI1OjDZD5WhekETH+7N08HHKDaauGXIROY/aucgiobc6/15pq4BvJmmoHNZmOycg7hce58ubv9vMW6C819fovTNF2AIAjMT9vDT0f+OzMQAfBdjyDgyEp3wZtLeJrXSOc+/qE/Uzu8guVPHkGKjGv4qMl2ArZ2HZ3pbDLZw07m9CjJ95YiQUI043iMzTwsrMW15hRXZ+9NDW7z3eGt5JyipNtmvG8FaxmULGi/fYq0mQf7jWOEbzgBzm4Eu7hzS+8LKDFWk1HZeA7DmuwU+nr4MykoFn8nHV/0fZHJ1e8ijJ2NRID9I1R8slSC4obtfLrZgtlaTvztV1NUnlVf7FAZABG/QUIlhP0I6gik5k243Pwnnhtdcf7sUqSBAZgXLaIsJISyuDhMK1Y02KfT1aNj3Pz4/NDGM77DM3xmUDK2hEvcZnKgZg8f62/D1y+znnq0VCpl2a3+3DaihtxyBb/s6c+sH8aiCZGydPYRnt8fi1om48ada3jzagtOCgmz5hWyvZUaJFKpFL8wFzIPlbdq+3MFMRjpArbmp7EmJ8Xxey8XDyYERDPWLwp312rQ1a4rj+Gy6h95i2xm8DIehHRK/46wgWKOE8dMVDg32VZAQN6Dg5HPmN4jJd9bi1DeB/3uxxEOPgQ2GZqQdbw6bBJfjLqWB/uNo1ft1EyN1cxvqTsBWJqxnzs3zan3eX5X0w7GuwszeX7X33WeRU4PAFLIetbejx7sWXQuU1PrMeQsbzyBO62iiJhThAzBLna4afJInL/+mgFLs9Ee/Qn1sSfZ6B3AZ39JCckwcOP79/F89UAmHRlJanVa3cZSKXjfDANSIP4EeFwL1jLUgxfj/kc2un+GIB87EGtSEhWTJ1Pi40P1a69hOyVHpTH16LSK4jP6r5Qqmen0CA97fIpKJuOFjCd4MvdaPDWyeurR7t5HeHGKEaNZxo1/Wxj72USchsHKl1OZvTYKlVTG7fvW8ObVViTA2G9yyCxrOM/vbAya6IfJYCX94Pk7cigGI52MIAiszKoT/rkhcihPD5zM1REJzIyKQhP3IQqLOyQ9iZD0HBkZEZ0+8vA79yBBwvXNUOnsySMjC3mKcnJ6rOR7a1ifc9T+Q8kQphQvxqos4V/l40glUmLd/XlkwES8ay3ZU/WFDp+hACcdbw+7zPF5PG5io8c4pi/k28NbGOkXXudZlLITvdMEe56AIa1Hexadq9gEgT/SdhOh9Saw1oW3IfQmA1rFaUKGCjXFMlDfcQd6qT0h/6Xg59kYms2bE60sff5CIlfDw7PLiQjfymuKCC7K1TH56BgyDKeUtSqDIPJ3SKiCsO9AFY7caye6t/fivtkH9f8GI1RWUvPss5Q6O1Nx7bXY8vLq9eVU9ejGqvbSKoqY5DOaojFFXOd7HYerD/N22S0sKPwTqFOPvmlAIPsfCMJVKeHR1VUY7wrHc4SS/z7L5I4/Q1BIZTyUvIbnL7VhskD8x1mt0iCZckcUAH9/dbTF254riMFIJ5NWUURe7RtglNaH0f6RAJgx8iWXUS7J4UnZJlyr7Z4ee4tPUGXuPHW+EySSyyFiuAgXzl5+KyAg64FlsCVkspK3e7zke0sQBMHhquyqUDHV8xKu43O28j1/8yIAKpmccbXVUAD7a9tLJRJ0So3j46JoXCfm9GH8k55Fq2R32/uR8WCP9Sw6l/k9dSc5VeXcETOy3ff9vyfWsePZRxm4GG4c7knaCV88tZWERm3iRVkvJubomJo6jhxDbbmsVAre/wdxRyAuAzyuQqoox/m2XbivM+LyQTRSfzdM8+ZR6u9P2eDBnFj97xnq0QHOugb7czKgkkvlzOk3h62Dt+Iu82ZhzTuEbQkjqcL+wqhVqunjqyT7yV709lKw4oA/R26IInKoJ4fm5nPtN77IJVJeylzL3RNslNbYiPuk5RokvQd5olBK2bXy/DWRFIORTqawptLxc5ynPUFQQOAlYkllE/ewhCBpX0filU0QKGkor6SD+LVWZfUGvm5We/s0Tc8LRj5hyjkh+d4SzDaro4zcT6NDJpUyglsIYRB/8xIV2D0ygpzrKgOqLfZAuKCmgse3L+SZnYv57vCWJkXRGhvGP1SjAmU4tvKVVJire5xn0bnM76k7SSrJYfaACbirnJpsq1Wq0ZtPEzI8RexQsNmT3VLK8usJOR65dBIHZt9F713FLL7cjx8VVciO30Naji9eukqCI9fztDSACTluTE+dSIGx9rugCoHIP+yjJaFfI1WHoRqRgvsfBej+8kJ+YTDWPXvQXDSFp697hCd3ZDLGL4IfU/4jp6p5eRjDdcOZE7WCCYr/kWHI4OKkEaTZ6kxIXdRSkh8OZFyfEhIzdCycHkvs1CCyVpQx7X0PZBIJX5WtZeZgC2klFsZ/2/KgIjhGS+6x9jXj60mcH3fhbsRJlUrA8WCopJhiMhjGjUTWqqtaThmuPnWbjqSQ42SwkzCG40mvZm4lIKNnGZ9t4AtyOXjOSL43F4VUhlxi/5PPqynHWvv2dhUf2pdxCICsqrp5a6faIOGW3sN5oN+FzIocQpGhinf2r2rUfbexYfxykwECn0eGif7SvT3Os+hcRBAEfk/dSWJxFg8PGI+X+szKqtMJd/WqJ2QIdWKHJYYq3k+yG9V9l7LVIeT47M4lHK8owuWxx1Fefz3Wffswjp/IZ2GfsaFXHj+rahDSbud4ng++bhUERq7hMYk3E7LdufToZIpMJfbREp87IC4VBhwH9yuQB1Wge+sE7uukaO7wR1FUgMujTzI2dgRj5/7D+pTdDZ5DQwFVpcXIWJdLSRyaiK/Sn9WWj+n7Xx/2V9grBaVSKVPiyvi/keUUVNn4Or4XUTdHUb6tmotf0SIR4G9hPUMjTWw4buT//ixs0f/FsKlBWC0C+zbknb3xOYgYjHQyQafMxe4oSMcmCGznV0DgMuwaDNUWk2N4XCWVN+sG0R78yu0A3NjMUZGTKHrQyIhd8v2hc0byvSVIJBIG1JbrVpiNbMm3+2FEMAI1WrbxE0arhXW1SXwAAzwC6ecRQIJ3CEHO7vR1D+D+fhdSbTGzq6gVEtbeN2OQuDNOtrJdzkmkbfx+bBfbC9K5LXoEapmCclMN5aYaTNa6RMyGxA4PluayKiv5DLHDSosRK2eqRVgRcFGoiPcKxvXXX1FMm4Zlyxb0l1wCgFKu5Kvwb9gQks+PyhrMaTeTnueNr4ce/6gVzBa8GJ/tweWpUymzlIE6FKL+hIRq6PUFUrdeON+ei/s6Ey7vapEGKBnxyQ9cOGoqZRdcgPm/+pYITQVUA1wHcGJkOpOVD5BvziN+Rzz/S/4fVSYjxyuKuGuoB3/f7ItNgK/8ffB9YACG/SYufNYFBNij20ion5EfdlfwxrrmJ6ROvdOeN/Lvd+enT40YjHQyAc5uRGjtuRg51eXMT9vNUuF5PAlFiw/VFhPfp2x12K0P8wlttN6/PdFTQArrCKA/AfRr1jZC7U2nJ+WMfMmlWDGdE5LvreHCU/JBfj+2iyXp+yk3GnESPNghzOXd/aspNNinEqO0Pg0mMjrJlfhqXCmsaXhI+WzD+Cb364iVHqC6uH5FTnf1LDqX2ZB7lBqrmfeS1vD49oWOz6mBZomxmnJTjeP3CK03t0ePZFNeKq/s+Zc9RSe4O3Z0k0mvANdGDHZojGiXLkU+Zgzm5cupuPbaeu2UciXfhf/IhpACflTUUHPsejLzPfH3KMMnchn3Wz0Yl+XBlakzqbQZwPcuFmoXkBq2k2rd5UhHW3CfW4Ftvieysa5Yd2ynbMQIDsXHUvPpp9hstiYDKrCPgjwYeie3qj8lTBnNNznf0HvLAGzyMuK9gpka40zy7CDcNFLmOLliezIB4YiVEU86IdggO3Az7loDT68s5Y/9lWdci4bw6+WC2lnOvvXn58hIxz/lRM5gWkh/Pj6wDgFYW/MHEkkFHiVT+bZgC/uLszHa7IGISibnoqA+ndKn37gTEJjFF83exoI9n0BOz3iA7OdvjrD+nJF8bw29dT6M8otgc94xbILAPycO8M+JAxAVDL7pZJoPAz5oZApmRQ5ucB8Gq5lCQyUXnOZDc5KTb50TA2Mcy071LHLt9SYVxb9iyXkP/K8C6jyLxtYmdIt0Dl+NnnXWNo8MOLNyKsE7hATvlkkNeKrrywS4rluHfvBgTPPmUenmhsuXZ1bvKeVKfor4FQCTxcStqTeRrVpNkHcJLurF3G1wISvPA5eKi+mTfxlVlqvQyK9jiOIwk0J/w+2lw9geh8wl/rj+nkX1/fdT/fjj+Myaxe1PP8zivFQWpe/DR+N6RkA1KagPJqsFXd5rHLRtZZ3la76qugf9oU38FPsTEZ5Ksp4MYehn2awrgKinhhH81naGP65m21sGKqO2oDo0kuvmFhDmLmdI8Nnvk+FxbiRvK8JisSGXn19jBefX2XYTYt39uSFqKBIkELwIQYCc5PHsLMxwBCJqmZx7Ysfgo2mdql9LMFDJfpbgRQSRND+T3og9iVHRA3JGLFj4nuuRoeA+/unq7nQZEomE6yOHMDEwhnqZSHnjkUgA/1V4qZ15ZMBEAmpvzH+m7eFIWT5FhkqO6Qv58tAmpEgY4m3PK2rJMD6AROFKvmI4PpZEkvJ2d2vPoo6kIbfunozZZmVvC6qhpFIp2l27kPbujfGrr6h64kwzzlNRypX8FjmX9cFFfCmvpPTY5WQVeRDkVULggN/Jib+Gg73uI8drPpfFPY5bQjL0P4I08FJCZxURtKgC13elyIKsmL77jtDI/jzy8Nt85NSbFxKmnqE4LJFImBE6gHcuuJxlY98lZeQBop2imZM/B6+NXqwpXoOTUsqBh4O5pr8zRwU5ex8fjqxQwbDHVFgtNmx9toLcyJivc5ulQTL68hAEAbYuOv+qykQ5+C7kmD6Pd1wDodofYc/bgD1HZJhPKBcF9emUQATgR27hP37iHpYygGnN3q6ETJ6mFxOYzVW814E9bDt1ku8fMJGHuro73YIiQyWb845xTF+I2WYlY8A0dLZQXpOlIJPUvad8k7yZo/pCqsxGXBQqIrXezAyNw7v2+9mQZ9HuwkwWZ+yj2FDVsGdR5V6EgwkstV3HSuv0bulZ1JGcdOs+1SRTLpHyyuDpeKibFhrsjuhNBj45uJ7MJpRbpwT35dLQuDOW20wmyiMjsZ04gebVV3F65pkWHbvSUs2t6bMoVm8k0LsMZ5VARY2E7CJPQkyT+LbX9yilcij4FPLeB1MGlgyo+UaBaY0ZbCDt1Qv1c8+hue22sx7v3Yx3eerYU1gECzO8ZjC//3yUUiXvbizj8X9LUCAw+Md92OQV7HjHgEwmx7xvBB5KDSeeDMFJ2fgYQGWZiZnu8xh+aRCvLBrXouvQXRG9aXoAq3iPBTzKlZbPiDZch0QC3mrXTskROYkFEw/iggvevEV2i7bNJZmXiGUST3EZr3dQD9tOBrt5g8H40JuXSTn7BucpLzOAPJL5nIarZNqdxFAw59iTEKVt+86XGKqotBgdv7vIVd36oZ5ZWcJre5efsbxdDQo7CavNxtv7V5F+itqpt9oFF4Wa3OoyDKckw97S+wKG+4afsQ9bdTVlYWEIBQU4ffYZmnvuaVVfyixl/F/6DZRpthLkVYaTSkBfIyWn0JNwy1S+DPkKpfk4ZD4K+hXYKswYFkgw/AqCXgBnZ1Q334zTW28hdWm8cKDAVMCkvZNIrEzERebCb7G/McNnBquPVjP1pzzMFoGBS4+gqChg51sGpFIFlqQRRLo5kTI7CKm08YBkpsc8ZHIJCwqubtU16G6I3jQ9gA18gQwF4+V3EeziTpCze6cGIgB/8QRWzMxsRTBhwm55rezmOSOfMwMJUu7nzJu/SB0DmI4NCyms7ZwD+j8Ngtnu4NoGTo4ynCwjfW3vcp7btbTHT3v0FHYXZToCETelhscGXMSrQ2bwZPzFvDPsci4J7utouyh9n6Ok/FSkTk64JScjcXOj+t57Mf76a6v64iZ346/Iv1kbWML7kkLyjk4iv0RLL79ClOE/crNJw9iCMfxP4YcpTo+0z/s43RGM23IBl3dAFlyD8fPPKdXpKB8/HsuBAw0ex0fpw95he/ky+ktMNhOXJl3KxD0TGREGRx4JxsNZxp7pvSkNDyXhSTU2qxl5v/9ILath4ndNJ6hGD/GkvNCIobp10vI9lVYFI5999hmhoaGo1WqGDRvGjh07Gm37zTffMHr0aNzd3XF3d2fixIlNtj9f0FNAEceIZHSXiW7ZsLGJL3HGg+Hc3OLtTdgz7BU0nMjYHfiLJyknh3E8gDdhXd2dbs1Y7Aqpm/imcw7ofTtInezD563kRGUpPx/dXm+6A+waPvtKstraQ5FmsCG3TsL8lt7DidR5O35XyuTMDI2jf62IY5mphn0lDY/ASj08cDt4EJydqbzpJoyLF7epX15KTxZFLWdNYCnvCIVkp06goMyVMP8CpOHfcpPZmTGmt7hHNwVLv32opk/B7WcZut9BOdmGZeM6yvv3pzQyEuNvvzV4jDuD7iR/VD7DtcNZU7oGr01ebDX+SdYTIQwMVHFkeDAnhsYy8Fk1NpsRWex21qVXcseCxjVIxl0XCsDKn86vEt8WPwXnzZvH7NmzeeGFF9izZw9xcXFMmjSJgoKCBtuvX7+e6667jnXr1rFt2zaCg4O5+OKLyc5u2ZTAucZSngdgGi91WR/+5VXMGLiEZ1u1vcmRwNo9g5ESMlnFO7jiw5XdPKelvWiLqd2zmzcjqQjnkGl7vfUdZmonlYLn9WApgrKWGxXuK87izcQVJJc1/KY599huVmQdamsvO4RSY3VXd6FdEATBMSriqXImxs3XvqLkL0iZAjZ7ifco3zrvp+NNqOxKAwLQJSWBSkXl5ZdjWts+o3Q+Ki+WRq5mTUAZr9tyOHH0QorKXYkIyMcW9iU3SgYxRrWHh7zuRD7mHVxfC8LtX9DcB0LJMSpvuIFinZaq2bOxGeqXrbsp3dg6ZCu/xv6KgMCsg7OYsH80a+904aZBLuRFenBkQgJxrzgjUIM0Zgff7inh7Q0Na5CMnxUKwMb5Ge1y7j2FFueMDBs2jCFDhvDpp/a3GZvNRnBwMPfffz9PPvnkWbe3Wq24u7vz6aefctNNNzXrmD0tZ2Rpxn7+zqw/vOer0fLy4Lrk0Nl4ImDlA8qAkwl/+yk2VDac8CcILM1IYlNeKjVWMxFaL2ZFDsFX0/rr8RA6BGx8QHmrRmf2spCvuJwb+IZRtYJp3YmX6EcuB3mc/whnWFd3p1NYmrGfPUUneKj/eMcymUTSqJfMMX0h7+5bzcywOAZ4BPKJcRbFrut52phGL2f7g2X5iUMsP3GQW6KH46V2Zkn6frKry3gxYZpDN6LVWMphjzto+kP/fc3eLKeqnNcTlzuM9ZzlSqLdfJFLZBwtz6f0FF2Mu/uM7pwqHaseTjwFnjeAa8PKvkarhd9Sd7C9IL3B9QM9g7gtZmTbr2snYRME7tn8OwIQ4uLOMwPtImYcmQFlSyFmPWjHklpewDv7VwMwPiCaayISmtyv5cABygcNAkFAu3UriiFDOqT/GYZM7jpxAxaXfQR56VEpoLRSRm6RDxMtk3jemo+tZCXmTVYMv4DlACCXophwEU4ff4y8d+96+6uyVDFj/wzWlq5FKVHySfQnGDOu5sGlJShqzPTetIdDs/XYrK6QMpg/rwvkin51uU3rjtVwuNDMustXYqy2sLjsWno6HZIzYjKZ2L17NxMn1tWdS6VSJk6cyLZt25q1j+rqasxmMx4ejSdpGY1G9Hp9vU9PoymX03R2Uk0J8VwGNOJyemiTwzEVaHeX03V8igE943mw1dNE5tppGmU3HBk5Kfk+kCvOm0DkJG0xtbvE/VIk8mrml/wM2IPgDjW1k+vAZQTU7AdTTrM3W52d7PjuD/YK4c2hM7mzz2huixnB60NnMi2kTrjvnxMH6JQ8/cqdUPA5JI+AI5dBzZF6q802Kx8fWNdoIAKwtziLr5I3YRVa7vzaFUglEtyUdi+brKqyOnE0QzrIPCDzcRAEDpbWebV4nMX7BkDerx/aTZtAENCPGoXl4MGO6D691CH8G7WRVf7lPGM+xvGjIyipcCIyKJecyB+5KmAl4/x8WDBtArqfA9H+AqrJNsyrV1AeE01pdDTGBQsc+3OWO7Nm0BoW9V+EQqLgzsN38oNsPAtvlSNxVXBo/BDCv/VCIquAyD1c9XsOu7IMVJabmHD5ViZ8m8N9S4qIHO1DVbmZ0oKaJnp/btGip1BRURFWqxVfX996y319fcnLa55q3BNPPEFAQEC9gOZ03njjDXQ6neMTHNzztAeaeiAs4TkAZvAK0LjL6fpaWe6OeCD8w8vIUTG11q21NZgdOSNnv7l0JqdKvt/GnK7uTqfTFlO7YdwENgWZsq1AnZV6h5rahdS6Jmc82KzmBquZHYX2IWyNTMGNvYehPCXxWyqRMC2kPyEudsO/zMpSTlQ1X5a71dhOeXCU/Q1JfSD9HjDnA7Ay6xCpenuugFom56LAGO7sM4r/xYxkhG+4wzcoqSSHzbk9J19gmG8oYB8lmZ+2B5sxEwxJ4HsPVO+g8viDDouBU/VpzoZi2DBcV6wAi4XywYOxpKd30BnYiXQKZ0XUFlb563nMeJi0oxdQXuVERHAuG2PXcFVkPtcM9yXpld64/S3F6S4Qio5QeeWVlHjqqHrqKWwmuxDkpT6XUjK2hOle09lbuZcrsyJ4/PqFeLspSB0WT8CCQCSqcoSIvYz88gSj79nP2mg/BCTYBHCfGgrAP18fbaLH5xadWrrx5ptvMnfuXNavX49a3fjb2lNPPcXs2bMdv+v1+h4XkJx8ICikUsJdvbgsNB4PtTM2bKSwDg964U4QYH8gnKpWCXZhtH3F9gS8sz0QhviEtqhvO5lHJYWM4R7kbfgKmBwjI90rGDkp+X4bc847yfeTpna+Tq6Um2r4O+MA7+xfxQuDpqKWK85of7qpnRI1amMvDC72aUa92f5/3KGmdi5DQBkEZYvBZjlrmW+xocoxKtLfIxC1rPa8UmdB9R5wHobEnMd9wgkKFRbMghKX49+DxsueMCt1AZkryFxApgWp1j5CI3Ozf+RuIPMEmRO0xKRSOPUttrYSouBrKPoRm98T/Jdr9x6RIOGh/uMJq1WkBUjw7sUQ7158dGAdAOtyUhjjH4mkk0wy28JYvyjWZKdgtlnZWZhBhP4rLgQOKq8mUvIZmsLPEawDACcGe/fCrRkjIydRTpiAy59/UnnFFZT374/70aNI/fzOvmEb6eMczcoo+2j/gcpDPJR7CzJtMkGh+fwky+f9chnhoR7ce6MVnzXlGOfpMbz5JoYP30Yx8RKcPv4EZVgYS+KWsLp4NVcmXckr2Y8SPe5b/PfPJVESi8caFdIh+ygKlZJoi+ekpY8MyHLXIJHC1sVZ3PDsgA4/3+5Ai55EXl5eyGQy8vPz6y3Pz8/H7yxfkHfffZc333yT1atXM2BA0xdXpVKhUnV/Vc/GaOqBkCj/HSsmRnGHo32TLqe0/wPhLx5DirzNSZ3mblhNc1LyPYKR56Xke7/aqgWAIGd3wly9eGrHYnYVZTLKL6KJLevwMQ4jQ/c7pWRBZ6nr+j8JGfdB7lsQ2LTolXCKEVu9Z7U5D4yZIPcCYxquliJcJFYkEgFJzUFo9Yi3BJCCRAbI7P9KFLUfJUiVIFGBraERKCvYapDkvMizKNkjH0KW0w2EyfLBoAdrJSh8QOlHrLs/EVpvjukLya3Rk1td7lDB7c54qJ35v+jhfJO8BR1FjBV+xYaUT1KSGCC5lXsU73OL/Cv+Ub3cqMVAU6guuwzhhx+ouuUWymJjcUtLQ+rm1v4n0gj9XGJZHWWvAN2r38ej+beh0B6mKKqE12Vg7i1n9KUarthRBQtsmP79h/Kof5D26Y3TG+8xcdo0isYUcePBG5lbMBdZVAIJfi/ju7CEn+9+j7vuu40/4ySQFgeCFCuw8qiBhFAXMg6Wddp5djUtCkaUSiUJCQmsWbOGmTNnAvYE1jVr1nDfffc1ut3bb7/Na6+9xooVKxg8uOVfxp5GUw+EdX7vIUHKxTzWJX07yApKOcEQZrVZH8SMPRDqLiMjdsn3WchQcC9NV5CcL7TG1M6v6hIy3X5jA18wUvEUcNLEri7o1JsMBLu4tV9Hve+GzMcg/+OzBiOeKhfkEikWwUZSSQ4mq8U+TeN5HVRsgJi1IFXyduIKjtdWejwVP4lQV097dYelBCylYC2zJ9Bay+zJp1Y9WCvAVmkPEmxVYKs+5WMAwQA2IwhGsJnty616wAI2U6N9lgAqiYnhsi1g3AKn5rfL3GHAYVD4EO7qxbHaqZwKs7HBfXVHBnmFMDu2Aq9jE5EIAhIEpFjYLySQLwQQL9tNTHQkGnnrRirVN9+MoNdT/cADlMXE2AMSp86/7wzUxrFGuwuA//Q7eTr/f6h0R9gcW8H2fhAwWcbkgzJi55sw/nWEyunTqfJ3Rn3HbH577hfuD76fS/dfym7XZ1i+wz4Y8vHnP5L+oie7wqSQ1h+QcrjQTEKkGmNaJe99tB3XgMbv1UqFjBHxAfQO7VlieafT4jH62bNnc/PNNzN48GCGDh3Khx9+SFVVFbfeeisAN910E4GBgbzxxhsAvPXWWzz//PPMmTOH0NBQR26Ji4sLLk0o3J1LnHwg5NYUkk0SvRhcb/rgbC6nWoX9IdAeD4R5PIAEKdfxWSvPpo6TwYiK7qF0+RM3YaCCq/gQJ9y6ujvdgtaY2hUUeoGPliTFUi5Vv4pWoeZwWR7BtTkYHWJqJ5WC5zVQ9COUrwXd+EabauQKBnuH8F9BOtUWE7+l7uTGqKHI1VGADcFwjJUlgiMQCXJ2o9dJVVOpGpQB9k97k/ehXdmT05PKZYCVTFsIO63DUXlMZVpQpD2QqT4Aua/AwQsgagGFhrqg0TH91BOwVhCVeyMCBY7Rqmv9nZG5xKHVLESSMgxN+g3Qd3vT+2kCzf33I5SXU/Pcc5THxqI7cgSpsuumYS/QDmGtdi8Am8q28FzhPaTrUsmYUI3nhRA/W8LE+aCYV0XNy69g+PBV+l00mdz3dzNyzpUMPrwTABlW5rz5BRPe1HEiTALH+wFSqod4w8oikv8tIvY638Y7gpmtiTk9PhhpcRnFNddcw7vvvsvzzz9PfHw8iYmJLF++3JHUmpmZSW5uXeb0F198gclk4sorr8Tf39/xeffdd9vvLLo5Jx8I2dqFgMBknqq3/uQD4VROdTn1Ujs7HggnOflACD9l3vlspLOTAo7Ql0va5WHdnYKRdHaxk9/xoTcTaF4i5LlIe5jaZVaW4kUIeRxGIpEwITCGZScOsK84q2NN7ULeAyRw4uyjhhcF9XEkfP5XcJxndy7l73z7SMKiA9/w1ynnODm4b+fkXthqoJ79oMz+u/vlGGL+413rO6y0zWBlqYpyVTzoJoD/g9B3F1jLEQ4m4FRmF9dyVagIcNZ1fJ/bA5vRXspbvR8JdVVAY92qGeUXiZNuKLiMhaodULGlTYdyevZZ1I8+ii0jg/K4OGwNqLl2BaPdRrI+ah//+lRxnX4d2zP684uXhmeeEfh1M2T9BvJhAuZF/1IW1YsvP92LpfbpK7OB1lDBvFc/w0WZAaEHwGalUOeCRAbFB6pwcVI0+Dn5tTaZW1dV2Z1oVfbifffd1+i0zPr16+v9nt7BGdDdkT/T9jDAIxAPtTPlphqWZiQhRUK2+xwUaEhM8SVdmchlYfGA/YHw7v7VrMpKpr9HADsLM8ioLOGGqKEA9R4IPhpXvNQuLM7Y3+IHwm/cCUi4ga/b5Twtjmmarg9GvhAl3wG7mNa3KVvrmdo9GX8xrrWjbCXGartbdC0RWm9ujx7J4ox99azUDysuZg0HSGMbk4IuwGS18OvRHVRbTETqvHmg77j218KQe4DzUKjaDqY8UDaehxbk7M7/RY/g25Qt2ASBUlM16/NymKqECXzHchIAe1VNc6s32oytGnviqtSeS+J9B/g/DKow1MBQHwmb8lIxWi18mLSWayMG01vng6DsRWrgYkIyL+Im2dd4UIjV74WeoTUiWOHYdVCxEU4JRJAooHofcKP998i5kBgIx26A+ONtOqTzO+9gKyvD9O236IcORbtjR5NeL53NBPcLmeC+H4DlJSt5o/hh/r34OH0vr2F8Egz+AEJ+ry/1LrdBeFEO3733Idc98zi2MClJ2X25MkbHiSN6/nfVmQaDAF/P30dldSd5SXUwnWuEcp7Q0APh9vgoPpJmEc9lzX4gBJ6SvDYpqE+bHgj5pHCCvUQxBjfaZ4jagv1NtKuDkb94gnJyGc9D573k+x19RjW5/pEBZ5bUJ3iHkOAdUm+ZH/ewhvfZyFeES4YzI3QAM0I7Ias/5D1IHgWZD0Pk7002TfAOwUPlxLITB0kqyWag1D6Xr5XoucxpB369Hu0csbOTKINB4Q++94LP3fbg6hSmhfQjqSSbMlMNOdXlvJ+0Bhe5ChsC1RYTTnzEi8rHmSZfiMXsDPzSeX1vDYIA6XdB6SLgNB0XwQxVe+t+V/rZc3qKf4Oi38Dr+jYd2vWbb9CXl2OeP5+KCRPQrVvXpv11FJM9Lmayh10jZXHxMt5wf4Qbgo8wU2pDetqgjtwG4w6k8/KvL/LsLQ9RjgTtxYFYD5ZzcGsBfUf4dMEZdB6ia28n8Q3Xspt5PM8BAuh79g3amXcZQyqbeIkj+BLVLvv8gZvYzi98jrXL/HVKyOQZwmpdh3O6rB/nIg/ggjMevEFm5x54byBYimvdfJv3/1lqrEZxZCLONdvsYb5EDf32gab32TbtVPJr9Hx6cAMFjSQUh2iceELxNHJjMrheCNFrmn0NOpJSYzV/HU/kYGkOJpsVb7ULD7qtx6248el2q1THG5I55NbocVc5MSUoihFZ8fby6oHFIJWyLucIq7KSKTfVEOTizrURCfVKns+GfvJkzCtWoJgxA20bvWw6A8FkItXHCY/ypqdV3rlFxlszr0FaOIUL77Ax8/5o7v946BntTo6MuDgpGh096WpE195uRhJ/44pPlwQipWSRymaCGdRugQjUTdN0ZQDwCZcgYONuFouBSDsTTDylZGHBcvbG7YnfY/Zqlbzml567S6twqfmvbrxRsNinD4Tu5Xzqq9HywqAp3BY9gmidL25KDe5KJ/q6+3NXn9E8mTADef8DoL0IKtbDgViHv0tXUWU28c6+VcikUu7vdyEvJkzlqvBBaEz7a1tIqZ8rY0dmKydOJ+PZQZcwITCaX1ITydA9Yq9eynmFnYUZ/Jm2h6kh/Xhm4CUEObvx8YF16FsgV6Bdvhz58OGYlyyhopn2Il3JsV+/qBeIWKRglts/Nlnd+NJjP1qZ6zkHL78v2PVMNUX554aXUVOI0zSdwAH+xUQVo7mzS47/K3cCAtfzZbvu10zjpYydwXo+J5dD56Xke2cwiKs4xhZ28TsXnJz77wx8H4CsJyHvfQhoZgn8GVMFFqjeCzmvQeALHdDJ1iOXyhjqE8rQxsQKJUDMSki7A4q+hcRe0C8JlF0zTL8i6xDuKidu6X2BY5mX2gXcloPhCJQvsxvjVW6uXSvnpOjbdC8BnHT4O+lILS9kkcGHB2WfQ+4brJENZpRfBCNr9W+ujxzKgZIctuYfY3Jw81/aXDdvpjw+HtMvv1Cp0+HyySftdertzp+2eVzSByqcoMQZSjRQrIJyDVQ4Q42LgmBPgdEqK+NcBb7fu4vB87ZQ2kdKas42IgPOHB05VxCDkU5gGa8CEqbWysB3JtWUcYjl+BJNKO1rNmXFRENvRJ1BNXrm8/B5K/neGYzkNubzEDv4tXODEakUPK605xfoN4F29Nm3KZmH/Q391Il4AbJfBt0l4NIDb+Lh34AqFLKfhf3hELsTnPp0ejf2F2cR6+7PV8mbOFpegJvSibH+UYz2jwRNtP1jrbAHI/7PgKWAysI/caHULkRXS6y7P3+k7YGoj+H4zQTVLKRPSF2gKJVIiHHzI03fMpsBqVSKbs8eymNiMH76KVKtFqfXXmu3829PUqY4k3472Gx2wT6JBBBAqPZCXRiLf2V/JvUbgw0rc2rmE3JwEfJi8F5q46/xzxP50LmboC8GIx2MBQvH2Y4fMV2ifTGHuxGwcQ3t/7ZgxVQvEbcz+YIZ563ke2ehxgVXfEhnR6cfe6XsHkYLC9h68A3+lRQQrvXm8tB4/JwamHM2F4N+HfUDETsCEiSp10L/JJA5d4j7dYcS+AyoekHazXAwDnovb1KDpSMoNFSyIfcoE4NiuCS4L+kVJcxL241cKmW4b7i9UcmfgBwCXwaplLeKpjHBS8mFnhMc+9Eq1RisZkwesyDrRaYJCyiR1h/50irV5NW03BhVKpejO3CAsshIal5/HYmbG5rHukZYsileDfiAV+hfPw1IAhLnIoxOG8llI9/WakD51/gy6k05VJvZ/foU7njon67pdCchBiMdzDo+QsDKeB7q9GObMLCHP3EnmFguavf9W7ooGNnHEo6y4byVfO9MIhhJIguppAgXmp9Y2FaSK430VQ5mnHkF0b0/YWHWCT46sJYXE6ahkp122ypbTEOBCIAEK5iOQ/YrEPKmw/36lujheKmdWZK+n48PrOPFhGltLqV9esdiio1nSsKP9Y9iVmTDo5K7CzNZnLGfYkMlPhpXLg+Lp79HoGO9IAgsrRzAAdvH3MaruByegSHoIzwDb2tTX1uCAPRy8eCy0HgAQlw8yKkuY0PuUXswYrNBTTJoYuqSbSUSauTBIG1YuM0Q8g3OqZOxZd8PHivbpZ9StRq3Q4coi4ig+vHHQadD87//tcu+24sA+qLDn3Jyz1xZO0oiQcplhbczJOF7bCcsuP7xGhdf9XSn97WzETP+OpgNfIEMBaO4vdOP/ScPY8PCFbzTIfu3j4x07lfILvl+gyj53kmM4P8A2NjO+UZn48F+4wiMeA0pNoKKX+KW3hdQYqwmo7LkzMbF8wCwIcNG/VfOCjzIkw8GlyEd4n59Kk/FT+LtYZc5Pg/1s49gJHiFNNj+mL6Qbw9vYaRfOM8OuoR4zyC+OLSJ7KoyR5uTwdOUqEuxRv1NBR64ZN2D5cTLbe5vc9Ep1fg71Rdg89foKDXWJlXqVwAWcK97MdAq1GckoupNBtQyBUqZHCf3C9lgvQhd9RqoTqrXRneaT1dLkGq1uCUng1ZL9Z13Ypw3r9X7am8KOc4fPISBygbXO5kkjMxX8m5iPy6Y+TW2AgtOL92G8jwIREAMRjoUPQUUcYxIRnd6pYcFC1v5ARe8Gcw1HXIMK2Y6O2fkR27ESAWX844o+d4J9GMKEqTsZWHnH1w7BuR+UDKfmlqfFueGvE3UkeAyil2M45j2YZD7gMQJBlezzncd3/ASeFxxVvfrtuKqVKNTahyf/SXZeKtd6K1rOPF0TXYKfT38mRQUi7+TjktD4whxcWd9zhGAM4KnAM8EdAO2k2LriyznBUjrnNGRCK03+adNneTX6PFQ1eoLFdQGqr51Qpjh2gZUpcvyCNfaR9fkUhlJ6puwoIDUawGwCQKHT2nTWqReXrgdPAhOTlRedx2mZcvatL/WYsPGHhbwCZfwEDqeI5x1fOyoQgRwssDwQrj/MLyTKHD9URPWe/dj3g0ub3igef7bLul7VyAGIx3IUp4HYBovdcmxLRiZ3oHHtmLu1CArnV3sYi6+RJ/Xku+diRQpXoSTy8Gu6YDfwyAY2JzyERFa73pCgA5CP4PYTfxouo1Sj/tA0xeEGpCqO9T9uiksNivbC9IZ4RvRqBR9WkURMW71VWZj3f0dgVGDwZPGn1Wa1zkmGwZF30PyBPs0SQcyMTCGtIoilmUepKCmgh0F6WzKS+XCgFqZgIrN5BHOD2lHHNuM9Y+iyFDJguN7yasuZ33OEXYXZjIxMNrRZlTwcP6xXoFQc4jCvAXMSd2JyWZhxMk8lDYgCwpCl5gISiUV06dj2rz5rNu0B3oKWMJzvERf7kXJ11zJQZajxImhXM+T7OADyhhSLOO+FHhnD9x0HGL0IDVB5VNg3gWub4Pqhrc7pc/dBTFnpAPZzXw06IiiaVXM9saGjXV8jBotY7m7w45jxYyEzpOs/rxW8v0+/u20Y4pAXyaznk85QSLBxHfuwf0epfzEW/Q2LWLcwEebt42mH1SsA0N6h3atKRKLs6ixmBjh27gisN5kQHvalERzgidXlQtrle8QKXkJKtbAgX7Qb4/dBLADCHX15O4+Y1iYnsg/mUl4qV24OjyBYT5hYMoFawnpssmUGOu0MLzULtzX90Lmp+1hbXYKbionbuw9jL7uderPQ7x7UWV8lNLsFeQef40Tmjd4oO84tI2YOrYUeVQUuv/+o3zIECrGjUO3fTvyQYPaZd+nksJ61vMpR9lAJfZAUoaCQPqTwNWM5V6cOCVB2lLOrcesSKgbV5aaoOIpMO8E13dAPkzKTxsjMdr2NXnsqppzQwoexGCkw0hnJ9WUMJxbOv3Ya/gAE1XM4JUOPY4VS6fljCzgcfTkMoGHz3vJ985mDHexnk/ZwOft5mvUXH5P241amM5MyU9ITPtANbzRtg73a5dhUPAJVKxHbx7UIe7XZ2NL3jH6evjjpuogm3uJBPqshrT/g6IfIDEU+h8ARcckGQ/wDGSAZ+CZK/I/BuCCyP/jAt2Eequi3Xx5dtAlTe73wqCBYLkOj4JPGeB3BLST7CsEAaoT7aNc0tZXy8nj49GuW4f+wgspHzEC3b59yKOjz75hExioZBNfsZPfySapVuIAnPAgjpmM4S76MqmJTulIjriFPsd+tP9ugoqnwbyjLhDJqk6guNIZaF6woVT0AB+jsyBO03QQS2qnaDo6IGiIf3kdBRom07GJT/Zpmo7/Iygmg9W8hyu+XMH54/bcXQigLwo0JLO6044pCAK/p+4ksTiLkbHP2fUYMmc3uY3D/Vp7oX1B5Y4Ocb8+G8WGKpLL8hnlF9lkO0fwdAp6s6HB4KleG1NdG8K/h8CXwJIP+8Kg5nA7nUUzKV1kN8U7LRBpESEf2CXis54CmwUqd0LyaDg4CErmt7mLilGjcP37bzCZKB80CGtmy+0NTpDIT9zKEwTyEK4s4FFOsBcvwpjEk7xJNu9TzN0sbDoQqSXC82MORtyIYJbYR0S226dmlBeABBvphsmNOvWe/vHQqRkR3z5+Y12JODLSAdiwcYS1eNALd4I69dhb+IFqSpjAwx2ez2HD2inByCdMESXfu5hA+pPBLmzYOuX/4Pdju9hRkM49sWNQqbUY1QkoqnZgMRaiVHkD8EPKVtyUTme6Xxf4Mh45qaXHyahuf/frs7E1/xiuChX9PZp+QJwMniYGxjiWNRY8Bbu4A3XB01j/UwKdwOdBGQrHb4EDAyB6FWjHttv5NIrNBoaj4NRGA0WpHIJeh8yHICkWjEcBGSCxexS1A8rJk3GZO5fKa6+lrH9/3FNTkXp7N9regon/+IX/+IkMdmHGPmWmwoUYJjKS20jg6lb/Lahxpa/sbSoe/hVLIri8DcraQT+JRMqYiQ8wpoNGuborYjDSAezgVyyYGMUdnX7sxTyDDAWX8WaHH8uGpcODkXV8Rh6HGMSVouR7FzKQK0hnBzv4DTVakllFCmuZzkskcFW7H29D7lEA3ktaA4A3s3hZuYfMo08R2c9eYdCU+3WYLQKTqajd3a/Phk0Q2JqfxnDfcGSS+g+qRoOnrGT6ewSwszCDjMpWBk/eN4EyCI5MhsPjIfznNjvjnpWyhYAVPNpYrWcpAWOG/Wfj0dqFVkAOtvbzZFFdfTU2vZ7qO+6grE8f3NLSkJ5i3FbIcdbyIUn8TRHHsSusSPAghH5MYQIP4kvzp3iWbz7OoWP2YEoqkaBWyfBy1xAT5kkfLzOVE4KwHBBweqEvqhHJ2LVypOA6tt2n28orjXy3IIkbpsfi49FBU4dtRAxGOoBVvIcEKRfTuQqA+1iCnlyGc0unqJLasCKjYVGj9qAaPX8yGxUu/B+/ddhxRBrHioUMdlJNGQA/YjcjkyLDhpUKCjvkuF+NnnXmwj1vElkzB2xfg1TKIwMmntEkwTuEBO8Q2PcomA+BR/08B4lEwozQAcwIbePbfCMcLsujxFjNyAYqQpoKnhal78NH49q24Ek3Hvrug0NDIO0GMKbbFVw7ioLaslOfVibJCzbI+xCyX2w46JBI2jUYAdDcfjuUl1P96KOUxcSQnvYem9U/k8ZWDNjLlxWoCecChnEjw7kVJa1PDA4N1DJpZBg2m0C1wUx6tp5NWw/j8+VUZAdsaJ4ai+aZ9XYF29RrABt4Xts+J9vDEIORdsZAJdkk0YvBnS5TPp+HkSDrEOn3hrBhQdGGP9Sz8QXTsWLiduaKku9dwCKeYR0fY6TyjBEwG3bn0V4M7rwO+T4A2c9B4Zfge0/TbVXhYDxin0qQdt7UXqy7f8OBFDQdPDVCi4Mnpz4wIA0O9Ld72hgzILyDko6rttp1YOStlNI3HIYTjzTdpp2DET0FrH+kjEp3LybemUvJ/2aR/AO4yvwYwHTG82C7enjJpFKcNfYXNldnJd7KGqJun4iQaKTysel4vrQEg8nCxsODEYrfYqDuO7YlDmDE4Gq8a0cwtiZmcyyzjLhoH/7bn4PBaCU8SMdFI3qhUtof4YIg8N/+XJKOFFJjsOChUzMqIYiwQLtY3XcL7MJyvy49BECQrwtXT445vbtdijgB3878y+uAwGSe6tTjHmUzRaQRxwzUuHTKMQVsHTYyYpd830gkoxjIZR1yDJGmqaYEY61a5Mng41SkyAiiY0YYGsT/SXuyZG4zpiBP5jEYDnVsn7ojSh+IzwB1NBR9A4cvbn8tEsNxsOrblriqiYXI+SBzg4amewXaJRhJYT1fcSWP4MXj+LKMV9nyf+VsfseL+F/g1YExvGnL5v/4td3NRE/FVlFExThfhL1G0h65gd3j7Mn4f68/RnWNmbjhd6OI34ubeyDzVx6hxmhxbFtWYSQlvYSZE6K4fGIUBSXVrPmvLhF3z6F8dh/MZ8zgYG6c0ZdegToWr02lVG9Pfp411W6weOXFvbnz6jimj2s6uborEIORduY/fkKBptMfoL9zNyBhVifKdtsTWNt/cK1O8l3JPSxt9/2LNI+r+YjejGs0L8iXmA4dGTsDqRzcZoDpBFTuarqtS63dfcXGju9Xd0Sqhn6HwPVC0K+Cg/3BZmq//deW9OJzX9PtzobHldD/EOga8s6ygvVMr5+zYaCSVbzH6wzmXlR8wDj2sgABgThmcj/L+QwTlz9UiOrmmyHpMPrhw7F1oHjcyUDEss+G5olRFEx+EX2liez8CvKKqpl2YQR+Xs64a9WMHRKMSinjaEapY3uL1cbkUWH4eDgR5OfKuGEhpKSXOHRGdh3MZ0g/P2LCPPDQqRmTEIS3u4Y9h/IB0Kjt92m1So6zRoFG1f0mRbpfj3owBaRSTg7xzOzQ45QYqqi0GB2/V8iPkqM+QAwT0NKw9HRHYM8Zaf+v0EnJ92v4WJR870LkKLmbRbzDSPI4jI26NzUpcsJpXPOjw+j1IZQugMyHIXZT4+1OVpNUnSVoOZeRSqHPOki7BYp+gn29oN8BUHi2fd9lS0GiAtcL2r4vpT/0XgaF30LGAyCYASsCNjLKT/DT7n+wCQJuKg3DfcIY6hOK9LTk4BMkspaPOMRKyskB7IZzPkQRz2WM437cOLO6yfXHH9GXl2NetIiKyZPRrWybaZ9l505kcXFIlHXTyvUCkcdH4fTqJoQNx5AAhaU1mC1WvpibWH8/VhtlFXX3eK2zElfnun0GeDsjCFBSbkAuk1JVYybAp/6IeKCPC4WlNW06n85EDEbakcU8C8AMXu2wY5QYqnhu11IsQl0UL4l7AVRwveSbDjtuQ3TENE2d5HsM47i/Xfct0nI0aHmQlbzBUPTkOqZrbIIVV2MfMi0luMhVeKidO6dDyiDQ9IfKLWDRN56vIPcAZHY32fOd8B/tpb85L9m1SPruBk1U6/dns4AxDZyHtlcP7cmqPneAdjy2Y9cjqdqOBJCZUskxlwOQV6PncFk+K7KSuT12GMc1i/iPnxspvb2dBK5qVumtduFCysePx7JqFforr0T755+tOgXLzp2UDx2KYsoUXP/6CwCpqYKK8dG1gcgInF6zB9Al5Qa0ripMZivOGgVXTTqzSket7PlCZi1BnKZpR5L4G1d8CKBvh+zfYDWzIfdovUAEZSGCayp+1kGdrkwqILR7MHJS8v0BlrfrfkVajw5/HmI1Klzs8/gAEoF/k2t4be9yntu1lBJDy4fTW03wW4AAJx5vup1MB6aWC1ydkwS9CGE/gK3SLh9f0cCoks0IxjPdi0sMVWRWljg+lXk/AAJ4Npyo2xZsqjA+t73KYsuVCAL4SXJwfOlUBRD+Ezmxt/KK2odfuYNUNuOKD2O4m5c4zEdU8BCrGMI1LdIAcV29GtngwZgXLKDi//6vVX03zp8PUinm5cupuOwypJWlDH11PJa9NjSPDsfptS0AZObqKSqtISrEHV9PJ6pqzEilEty16nofjbru3qqvMlFZXTfNlltYhUQCHjo1KqUMZ42CnIL6bsDZBZV46OzTqDKpvYpLEAS6K+LISDtxgH8xUcVo7uyQ/edUlfHpwQ0UG0+76fe2l9fpD15PdmRZw0ZiHYR9ZKT9qlzqJN9n40mvdtuvSNvxI5qbjX/xlfJiBKwIggSq7IJ+FsFGcmkeI/0jOqczbpeAzBOKf4HQL+xv1Q2h9AfDsc7pU0/A+xZQBkPKZEi+EMJ/Ba/r7OtsRjh8EVTvgYE5ILOPODU0Ejtb/iG9ZSDxur3du7i9IJ2ksgKSuAwBOaM1cxnc/z0Oao7ZS28lIFgVCPpIQqqn85j/a20qvT2JVCpFu3075f36YfrhB6rc3HB+//1mby8IAqbff3ckCptXrGDQtlVI9Bbkj43E+uxa8ourSM/WsyMpl/AgHbERnkgkEODtwpK1qYxOCMJdp6aq2kxaVhmRIe74edlHHOUyKcs3H2fs4GCMZivrdmTSu5eHo1JnSD8/tibm4OaqwtvDiYOpRRSW1jBljL3E3EmtQC6Tkp5djouTErlM4qjE6S50r970YJbxKiBhKs+1+75LjdV8kLS2nnS0u8oJQa6nzO0gVAdRpffjg6S1PD1wUp21dwfTntM0JyXftfhxBe+0yz5F2o80fRE/HSzBpn0AYj8AmwyEuv/7n1O3Y7RZGB/YNt+PZuN7L+S8DIXfg89tDbdRRULNQfu0glS81QH26pd+iXBoKKTNAlMG+D8Ox260T30hQPEc8LkLgEqLsf5ILNBLegyrPAC5vP3Fs1YX7ISQ+eC1g5VOeayQgMK6Fw2+DJBM5wLznXy7q4Aqi5EsiYQaTwFlO70PSaVSdPv2Ud67N4YPPkCi0+H0wgvN2ta6eze2rKy6BTYbkjIblWEBLIx4CxYkoVLJ8HbXMG5oCH0jPR1uzpdNjGLznmxWbEmnxmjBWaMg0NfFEWgAuLmqiApx56/VRzGYLIQHuTHhgrqS8IF9fDCarGzYdYJqgwVPnZpLx0firlXXnpuEcUOD+W9/LlsTcwj06X6lveJfaDtgwcJxtuNHTIckXP574qAjEAlxcefGqGGEuHjwAzeyXRDwyX6QfKDCbGBZ5kGHgmPHI7Sb/scnXIKAjXtYIkq+dzNKjdV8enA91RYTlAxGoo9C4pxDX48AjuuLHcnU89J246Fyaldp9UYJeBZyXoecVxoPRpzioWwxVO0GV1G914FTXxhwzC4dn/UUFM0BQ1LtSgnkfwbedzY44uRLNiqMVLmMazcBgZOutynCeqr6FdsPa5MRyACGG0YyJukzFP732AXcFDJG+u1lZVYyNkHgUGkuwxsQmGstUoUC3cGDlEVEUPPii0h0OjQPPXTW7Yx//glyOVgs9Za7ZOTxf3++jOvixUjUDY/gKBUyxg8LYfywxvVmAOJifIiLabhAQSKRMDw+gOFNeNT07+1N/96NS+B3NeJdvx1Yx0cIWBnPQ+2+b4PVzH8FxwFQSmXc3/dCQlw8sGDiMGuIloznsdD7UMnsceWOgnRqLJ1jKy1Au0zTrONT8khmEFd1aJ2/SOtYm5NClcU+X91b58P/Ob2NIK/iyr5+vD3sMiYHxTraLs1M6px5aakC3Kba3+yr9jfcxmWE/d/KJqpuzleUfhCXATKvUwIRAAFqDtgDuAaYIFuBRAJ6j/+1+tCNl97aoDgBIekJBh/ZwLOSvUxQf4pC1RtyXoDdrpAYxpTSK7ld/gljpKuwGLLOfsDmcOIZyHwUbEakTk64JScj8fCg+uGHMfzwg6NZiaGKjIpi0vSFZFQUk1lZQnFNpX2K5rRABACbDfOqVVRceilCB5YOnwuIIyPtwAa+QIaCUbT/HOqJylKMVvuXfJBXCFqlBgGBpbxAObk8yCpclWoGe4WwJT8No81CZmUJ0W6+7d6XMxGQo2rTHuyS74+Iku/dFKvNxpa8NADkEim3x4xErbBPzx1iJeOlMcwMjeNwWR7plSVkVZWRXlFMmLYTTL5CPrKPfGQ+aC9hPR2XUfZ/q/Z0fF96ImVLwFrUwAo5FH4FLmeq6/aTJmIUlFjU/Vp0qOaU3sotnjySvACALKcyBEGwT2VELoDqJDDnQskfKKv2MliaxhDZf5D/I+TLQeEL6hhwGQ5u08B5SPOVdwUBCj61i7jp10DUX0jdwnBLTqY0MpKq225DotVy+MJhfHFoEwL1g+2gIxnc05gTcO1oiSUxEaGyEom2lWq15wFiMNJG9BRQxDGiGd/q6QUDFRioQI0rSpzr7cdkq4u2dSoF2/mVNXxIJrvR4uuo3HFXOTW4TUfT1mmak5LvdzAPeQf63Ii0jlJTNVW10zB93P3QKe229r5Es55PGcXtKCVODPMJI72yBIATVaWdE4yoe9lVPCs2gqUS5KdNHMid7IqthpSO70tPQ7/e7l/TIBYo+hVC6idwSrHgISnmqBB91pRRu+vtz02U3jbgequwOxmnVRSRW13OvpJs4j2DwKmf/QPoPe/mhd3/YLOU0V+6n5t8K1EaEsF4HCrWQsUayLXn7yHTgSoMnBJANxF0U8/8jgCYs+2BCED1AUiKg4hfkPpcii4pifI+fai46ipWvvMEwtD+Z2zeb83m+gtOTte4uKC84gpU11yDYsKEetojLWFEfCAj4gPP3rCHIwYjLWQXf+CCF725EClSlvI8ANN4qdX7fJ0ECjjpVilBiQYlzqhxRaZ1hrgqUBeySmZGwEAsk7iXvwmjTnDoSHmB4+eTD4yOxIZ9yLEtIyOJLHZIvne0UJxI6zh1ykUhqdM98CaC/SzlRfowlReQSUc51tk6s3ww8A1IvRSynoTQT89cL3MDUzsN5Z9LpN0EQhMvLYKBjPRP+b607uE7UroBiQT+s4wivKKEEBePepsUcpw1fMAB/mm16+2FAVGkpdhHa749vIVpIf0Z4RuGWqZgf0k2i9P32XOXcELieQ3KyJF1G9tsULUdypZB5VZ7EFqdBNV7oajW1E+iBmWAXavGdTS4XWr3yHFgsZc/H50Jvg8jD36LpH/m0efiy7nl8bf58tPnKBwQi7fGhTJjDTUGPWP+Wla3uYsLyssuswcgF13U6gDkfEQMRlqAgMCP3IQFI1r8GcGt7GQuGnREMersO2iECEZRQCr2P14BE9WYqKaSQpCBpHZkz1bjybXGfxjnNr7e9kkl2Y5gxFfjSrCze6v70lxM2D0jWisHbsHCD9woSr53c3RKDQqpDLPNSnJZHkarBZVMzt0sIp+j/MED/MJtSL1doOQOKBmMt6ZzvJEA8JgBMne7wmhDwYgy0F5RI1Kf8F+gZB6U/VOrxSLBnkJoF7UTAE3hh+SZP3BscoFsM4IA22xj2Jq6A6lUgto3kc18Qxrb2sX1doh3L3YXnWBfcRZmm5WF6YksTE88o5270okrwgbWXyiVgutw++dUTFlQuhQq1kP1frudgDHNPsV34tHacz+V2mA6/0OsFRtZq7yVDZ+/wN13v8BdD7yGy949aPr1x2o2YPzeHYMGaoKdmHf73Vx+22xCvRpPIhVpHDGBtQVIkOCCPRtZTy4reBMD5UiRs57PqaS4VfudwENAE2+TAgjlvWHXB/xxIJ85qTs5UpbP0fICfk/dxReH6hL0xgX0dpSMdSQnDdRaOzLyAzdgpIIreVeUfO/GKGVyhnjbNV9qrGb+SNuNrbbU05co7udfBlXNxiqtgdgPkA16Bm83Y1O7bH987rS/zRb+fOY6dbRdXtxmOHPd+Yx2LIR+bjfUi0uD0C/BfSZIXQH749lHWsAY6UoCnHSM8YskVJpBscQLW8hChEGP8bNPb77mSg6xAiVODOV6nmQHn1DD42xlLHe3WANEKpFyR8zIJitkgp3deTRuIm6qZpYWK4PA926InAcDkmFwJQyugail4HN/rVFfQwhIq3fzvPxBhsTuYPcP7yGVSDBcdjnWgjyqZ/VB6W7A/MloXv7+G1JGDGJjiSiy11okQneWZKtFr9ej0+koLy9H28UJQG8zgjS2nbbU/vCXImMgl3MzP6KkZVMlbzGc42zn9KBEigwvIRz/Ix+TWFDS5D7iPYO4s8+oM3wbOoJCjvEckVzEY1zB2y3aNp2dvMlQfInhJUS57u5OVlUpr+1d7ph+8dVoucAn1DF0nlyWB9Jq6PMpEvd9IJEwjBu5kW/arfS7SWwm2OUEql4Qd5rIWc5b9imc6NVtc5g9TxBsFr7b+ylhxuWMla0GiZyMmNdY77SWKYeW8UcIJLuBYJNBdRCB1ZN51OdtnGj/+3J+tZ5NecfIqCzGKgh4qZ0Z7hNOjJtv+75wJYaBKb3BVfaJppM/S7Bm90J/Ww4IVoRyKy5fPwC3vsfsbX9iEWz4alx5efD09uvbOUBzn9/iNE0L8SSM4+xAqGepbr9J27BwhHX2ErVmcoSN/MlsMjmzlE6CFBUu3C/5F4/eYSxW7mddTgomW307d4VUxoX+vbksNK5TAhEAI3Yl2JZO09iwiZLvPYwgZ3du7T2cH1K2YUMgv0bP4ozTymltTows+oqx7nK+4Sq28zN7+ZOr+IDRtL4MtFlIlaCbBOXLoPqgXUfjJK6106eVW8RgpBlkVunZadCy08+TpX690MiPU6p6FKkAFb1A4zKFe2z38dP2aiotRnIlEgR3NR2Re+7rpOXK8IFnb9gWrJX28vB6yAELSBSckMaxyxhBkc2b68NjcfY5hPOL/1L50DHUdw1HdftHAKhlCiotRsyn3ZtFmo8YjDSTk065MqUnEoUUQVL/SydFho4AZrMeFU0roNqwsYHPWM4blJMLSAhlGCVkoCfvlJYS7mYx3kSABC4Pi2dycCw7CzLIqS4HBPycdAz1DsVZ0bmJUqba7HhFC0eA/uIJ9OSJku89jKE+oeiUGpZmJHFUX1BvnZfahYsCYxjrH4VEIuFV0tjAF/zJI/zGnazgLe5kAcHEd1wHe30M+5dB5kMQs6puuXOt2FlVYscd+xzgZOntPqd/YUQ+EgkYBCk6orghT8ngrAOo5b0g/h8A+nv+x7b8NGyCQLGxEmeFx1mO0E2pTqLeaLQyyJ7U6jYFXC9k8/GDbMi1Fxf0l13A8NC7UT0A8mlJyMLs+jpZVaUO4T83Zfur0p4viMFIM6jnz+CvhwhLvZQnKTK8iGA26xq0qT5JNXr+4lG28ytmapChZCjXczUf4oIXa/mYP07JH7meL+nN2Hr7cJIrGRvQBsfNdsLsGBlpfjBSTAZreF+UfO+hRLv5Eu3mS251OZmVJdgEAU+1C5Fab6SnDZuP5W5Gchu/cBvb+Y3XGEg/pnI7c1G3m3bnKagj7Pkh+rVgqbaX9YJdBl6iAmNq+x+zB1NXevsTGex2lN7KJc5Q1g8hbywzXO5kanB/8BWgZIxdXr8W26mu4WckgPYgVL3AY5ZdU0U3BdS96ynPDvUOdQQjyzIPMMAjEGeFClm4vcrIarOx4Hiio/0wn9DO7P05hRiMNIN6/gwmDySSukhagoxA+vMgq3ChYW2FHA4yj/s5wgYEbLjgzRSeYxJP1KuzH8GtLOJpTFQxgYc6REStvTA6qmman8D6CZNFyfdzAH8nHf5OurO2k6PkVn5hGi/zJTM5wD88ggdTeZ4pPNv+HQt6DVKvhOxnoFddFQhyDzBlt//xehgnS2+T+Jti0mmo9NZS48vLB+ylqrurTzAlqJ89PyO2LkneYDWzv9h+PRVSGd7q5geXR8oLWJl1iMzKUspNNdzdZ/RZ7QNSyvKZn7aH3Opy3FVOTAnpx4jTElzX5RxhVVYy5aYaglzcuTYigTDXZmjdKAMgsnGxxQitF6EuHqRXllBgqOTlPcsYHxBNmKsn+TUVrM89QlZVGQDOciXDfDrXOf1cQgxGmkGpobruF6Nn3c+ChHDJcO7jHzQNJHDtZB5LeJZC7G9l/vTlct6mP1MaPI4aV2bwMlns4wrebddzaG/MtcGIkuYNS67jE/I4TIIo+X7e4U0Yz7GPPSzgF25nCc+xjk+5jd+IoR3zODyusAtdFX5fPxhRBp+XKqw2bCSysJHS2+EM44YzS2+dIczVk+MVxWRXl/FXeiIzQ+OQ1eaiGa0Wfj6ynRqr3XJiiHcv1PLmJ4yYrBaCnN0Z6RvBl8lnl+kvMlTy6cH1jPGP4raYERwuy+OXI9vRKdX0dbePQu8szODPtD3MihxCmKsXa3IO8/GBdbyUMB2tsm2OvhKJhNtjRvL2vlXozQbKTDX81UCpsVwi5Y6YUWhacC1E6iMGI01gFWzMT9vDupwjdQuNdXOjivKBXKX4A41zXSBiwcRSXmQjX1BDGRJk9OUSruUTe+5HA2zIOcqG3KMUGyuBIPyd+nIoJJ9+Ho1P+ewuzGRxxn6KDZX4aFy5PCye/h51Kn2CILA0I4lNeanUWM1EaL2YFTkEX037ZL2bsZdKNqdqqJoy/uRRVLhwK3Pa5fgiPY9BXEE8l7GAR1nLx3zIRMIZwV38hZZ2si/wvgPy3oWieeB1jX2ZJgaqdoClDORu7XOcboqeAtbzCXtYQD5HHIn2WvwYwAzG88BZXwamhvTj04MbAFiZlcyuwgwGeARhEazsLTrh8ClSSGVcFNinRf3r5xHQ5H3tdDbkHsVL7cJV4YMA+6hcankhq7NTHMHI6uzDjPKLYKSf/f56feRQDpTksDX/GJOD+za67+birXHlifiLmZO6k4OluWesD3Z257rIwURou68JXU9ADEYaQRAEfj6y3WFSV7fCbmWA0QPTgQf5WLaFJ+IuRumkZy73k8Tf2LCgwpXxPMRMXj/rA9tNpeGysDh8NK4gwLaC43x+aCPPDpxMgLPbGe2P6Qv59vAWZobFMcAjkB0F6XxxaBPPDJxMYG37FVnJrM1J4Zbo4XipnVmSvp+PD6zjxYRpKKSyM/bZUuoSWM8+MvI5M2ol3/9ALn7luh31g2H7DX9aSP8OC4av4n0u4Wm+4gqOspEnCGAs93A1H7V9+i7oFcj7ALKfqwtGnAYDP9tl491ntG3/3ZAU1rKezznCeqpqtY5kKAikPwlczVjubVHpbX+PQK6NSGDuMXuFX4mxmvW5R+q1UUhl3NlnFAHOZ5+uawtp+iJi3PzqLYt19+ePNPtIl8VmJbOihEtOMWuUSiTEuPmRpm/Id6d1eKldeKDfOPKr9ewtzqLSbEQjl9PHzZ8wV89O0XY61xGfDI1wsDTXEYjIJFKmBPdltH8ke+TfMw8Jfkc+IVeAKudEXpc8hbF2KsaDXkzlBUZya7OPFecZVO/3maFxbMg9SlpFcYPByJrsFPp6+DOp9g/w0tA4ksvyWJ9zhOujhiIIAmuyDzMlpJ/d2wG4NXo4j/73F4lFJxjSDklWza2mSWQxqWwiktHEc2mbjyvS/nRFMOyCF4+wgSNs5DuuZT2f8h8/cyPfkMDVrT8ZqRq0E0C/EmqOgKY3uI6xr6vcdk4EIwYq2cgX7GIe2SRhxT5S4YQHccxkLPcQy0VtOsa4gGgCndxYmZ3MgZIcR72JXCIlwTuESUGxjv/rjkRvNpwx1aJVqjFYzZisFqotJmwIuDbQJq9G3+798XXSMtkp9uwNRVqMGIw0wqlvAjdEDXUkTG3nZ/oxhZi+pSywPotNUYYBCLEO43rZp4RyptNlS7AJNnYXZmKyWghvJAErraKIiYEx9ZbFuvuzr9juwVFkqEJvNtDnlDcKjVxJWK0JVXsEI3XGV42PjNgl32+olXxf0uZjinQMXRkM92YMb5HDct5kKS/wDdfwDy9zJwvxpZVVY70+hqQYyHgQYv61+5CAXQq8h3KCRNbwEclNuN42VcnXGnq7+dLbzZdyUw2FNZVIJOCn0XW6jIDI+YEYjDSA1WbjYIl9btBNqeGC2pvnCfaRzg486MUB2T9IpUrIHwXHb2RYyBhCTwsQWkJ2VRlvJa7EbLOiksm5K3Z0o0OgepMBreK0NwGFmnKTPY9Db7YHCg29UZxs01Ys2OvqlU1oqvzA9Rip5Bo+ESXfewhdFQxP5knG8wDfMov9LOYFohnMNdzCTy1XcdVE28tQ9avsMvDGDECGUL6cotw51LhOBsBFrsJD3bQmUFfRWOmtCtda19vbSeCqTqlK0yk1nWK+2RBahRr9afcsvcmAWqZAKZMjlUiQIqGigTY6RduSV0U6FzEYaQCD1YKtdmAywEnnUDWdx30A+BPLDXyDpbQPnx3dCEC12dSmY/pqXHl20CXUWMzsKcrkx5T/eGTAxA6fk20uZgykshkpMmQoKSINgHJyUOKEDAUadI6gI52d7OYP/IhhXO11E+m+dIdgWIkT97CIbA7wFZezi7nsYxGX8zbjuL9lJxTwAhy/EfZHgynTIeu9LG0DW2ur9OUSKa8Mnt5tApKzl94+hC+9u7iXnUu41osDJTn1liWX5RGutQfKcqmMEFcPksvyHSXCNkHgcFke4wLOfq3+PXGQvUUnyKvRo5TKCNd6c3loPH5OTefYdHUBwbmIGIw0gFomR4oEGwI51eXYBBtSiZRb+IkM9pDAlQCsqDrk2MapjUOXcqnMPmcP9HL1IL2ymLU5KdwQNfSMtlqlGr35tDcBswFd7c1fq7C/xehNhnpvNHqTgWAXt1b1bxs/MYe7zlj+CZc4fpYi53Uy0OLnkHy/X5R87xF0p2A4kH68zBG28APzuJ95PMAq3uN/zD97WbilDIp+gDy7TLfdkbbOX6TmlGlFi2Cj0mLE4yyKyR1Fq0pvezgGq5nCmkrH70XGKk5UluIsV+Khdmbh8UTKTNXcGj0CgLH+UazPOcKC43sZ6RvO4bJ8dhdmcl+/OjHIiYEx/JiyjVBXD0JdPVmTnYLJZjlDi6QhjpQXcGFAb0JdPLAKAovS9/HRgbW8mDANlazhx2N3KCA4FxGDkQaQSaXEuvtzoDSHMlMN2wvSGe4bjhf2D4DBYq6XV9LPvX3nawXBnineEOGuXhwuy6s3VJ5cmucYVvdSO6NVqDlclkewizsANRYzxyuKGOsf2eA+z8YApjOX+7BhaaSFBB8i0eLLXzyOnjwm8qgo+d5D6I7B8EhuZRg3Moe72Mb3vMlQ+nARd/BHg9N+R0ruJ+LYl8gEK426YAvN943qCPQUsI6P2ctfZ5TexnEp47i/w3V4bIKNpRlJbC9Ir/1/0zDCN4wpwf2arAppD/GxjIoS3k9a4/h9fm1VzHCfMG6JHk65qYYSY52uk5fahfv6Xsj8tD2szU7BTeXEjb2HOcp6wa51Umk2sCRjP3qTgSAXdx7oOw5tM6aWHuw3rt7vt/S+gEe3/0VGZQm9dT4NbtMdCgjORcRgpBEuDIjiQKl9ePDXozsoMVYz2i8SZ4WS5NI8FqXvc/zR9HHzO+uwXlMsPJ5IX48APFROGK0WdhSkc6Q8nwdq/1B+SNmKm9KJy8LiAZgQGM27+1ezKiuZ/h4B7CzMIKOyxPHgkEgkTAiMYdmJA/hoXPFSu7A4Yz9uKs1Z1Q4bw40ARnArW4XvsUkaCpIELuMtSsliDR+gxY/LeatVxxLperpLMCxHzk18yzSe50suJ5lVPIo3k3mSabzkyJkoJoOV0i+5GwtCEwLlPpK8RuOUjqKp0tvBXMMY7ukQ19vGWH4imQ25qdwafQH+TjoyKkr46eh/aGRKxgdGN7hNe4mPRbv58tXoWY327Zbo4Wcsi3bz5dlBlzTQuo5xAdGMC2i47y3hpJibs7zxke7uUEBwLiIGI43Qzz2AYT6hbC9IxyLYWJKxnyWnO5Vi94q5NqJtFTQVZgM/pmyj3FSDRq4g0NmNB/qNI9bdH7DX+Z96e43QenN79EgWZ+xjUfo+fDSu3B07ul6p3aSgPpisFn49uoNqi4lInTcP9B3XpiHCSTzBZr49Y7lgkxIgxDNANp2XiK2VfF8qSr73EHpCMOxBCE+zi/38zU/czDJeZSNfcgs/049L+JNHOOQGH8RIuPcIqK0yJJwZTPlI8s7ceTvTGaW3bSGtopB4z0BHjoOX2oWdhRkcryhudJvuID7W0dgEgT/SdhOh9W6ybLk7FBCci4jBSCNIJBJujroAtUzhMEo6HW+1C3fFjm7TqAjATb0vaHL9IwMmnrEswTuEBO+QRreRSCTMCB3AjNABberbqXgTQR/LpRySLUEiPcUoS2pjfPWLrHf6tFby/Zo2lziLdB49JRgGGMA03qGQxTzDKt7lU6bgSzT5pACQ6gqv95XweIoLrsZKOC0g8ZHkt+n4jWEvvf2QZFY1WHo7ngfQ4d8hx24p4a7ebM5LJb9aj6+TlhOVpaTqC7kqfGCj23QX8bGO5PfUneRUlfNYXNcFiuczYjDSBDKplFmRQ5gYGMOmvFTS9EVYBBvuSicu8A2jv0eAw7PhfGGE+WGSFYscvws2KZTH4qvoy0dciQpXbuXXruugSIvpKcHwSaRIuYw3uIjH+IYrSWFdvfWFaoEX+pbz2tGBaCoSOXVexl1S0i596E6lty1lcnAsBquZF3b/jUQiQRAELg2Na9LkrbuJj7U3v6fuJKkkh0fjJuKualpVuisKCM4HxGCkGfhoXLkirPG3hvMJX1s/hJIB4L4ficQ+KiIcv5Y/4q7Hion/MV+UfBfpFFzwIJ7LzghGAAxyGW9FV/Jc+i3Iin4A7HkwrpKKeu1OVJYS4uJxxvYNUUgaa/iwidLbh1sv1NaJ7C7MYEdBOrdFjyDA2Y0TlaX8kbYbN6WG4c2oQDmXEASBucd2kVicxewBE/BqhgNxVxQQnA+ITw2RZlNuqrGbBtZcisRjv92jp2goqIrJkv5HFGOIo+fLbYv0DCooZBHPNLjOhpU8SSpv68YQmTeLK2V2g0YV9d9ofzm6HbVM0eAoz9lKby/gJkZwa8tF2bqYBccTmRQc60ikDHR2o9hYxb8nDjUajJyr4mO/H9vFjoJ07okdg1qmoNxkH+HS1J4XdI+cqfMBMRgRaRbH9UV8cnADVRYjEINgUYPMABmXQ/yLIMgZXfw5NCzaKSLS7izheYxUNN5AIpDu8R3pqpcJMo1kuGwLABd7KdleLqXcbEAAvk/Zir+TlgBnN/QUsJaPSGRhI6W3D/T4fCiTzYL0tHojqUSC0ESZUUeLj3UVJ/MB3zul3Bjg5t4XOMqWu1PO1LmMGIzUsvzEQRam72N8QDTXRCQ02u58VN4rNlTxycH1DutwCeCkH4LBNRFbr0UgNyCk3sxPeUl4D/AlTCtGJCIdjwZX3AmihnIMVNJQza5EAsLAF8kp/Q7SD4K1jCsCPZkZPZafj9pduS3aJD61fYWRpG5RetvRDPAIZNmJA3ionfB30nGispTVWYcZ4Vc3KtLZ4mNdRVNlxifpbjlT5ypiMAKkVxSzMTeVoLO4UJ6vynsrsw45ApHeOh/+L3oEq1Q7OEA+BV7/oTb2oib3YizYWJqZ5CgJFRHpSC7nbS7nbcA+pVJDOdWUUk0pKZXHWHBiM7gdQOmewirPWwmvimZgXhnWmkOkaM3k9X4eSdRukFooEcBJ8CBeMpMxXVx629FcGzGYxRn7mZO6kwqzEZ1Sw2j/SKaF9HO06WzxMRGR8z4YMVjNfJeylRujhrHsxIEm256Pynsmq4X/Co4DoJTKuLPPKFwUaswY0ZOHRqLjGcVG3lftpdhYxcHSXIoMlc1KBBMRaS+kSHHGHWfsCYPpFVooskDRBVwRORiN/07+8ZtNfB6klN7Px74CMokSlSkAQ0EcZE3mifgbevQIZnNRyxVcE5HQ5AhwV4uPiZx/dL+6s07m99Rd9HcPoI+731nbplU0XGufVmGvoz+b8l5PJL+mAoPVLgEf5xmES20yWgFHMKDnJr7HSxrCsFMCrYyK9imfFBFpLafO8dtsAsO4nkeVqWQ7uyCownmGvXyKgehjv0D6tWBxOyOPQkREpPNoVTDy2WefERoailqtZtiwYezYsaPJ9vPnzycmJga1Wk3//v1ZtmxZqzrb3uwsSCezssSRJX02zkflPYtQJxqlkSkcPxuoQEcAA7ncvu4U+WRrF/t/iIicOuW6ozAdQRBQ40pQ3wr6hqUSTDxVZiOHSnMB+3f7bPoSIiIiHUeLg5F58+Yxe/ZsXnjhBfbs2UNcXByTJk2ioKCgwfZbt27luuuu47bbbmPv3r3MnDmTmTNncuBA01MiHU2JsYp5aXu4LWZEj83l6Aw8VHWOpgdLc7HVBhpPsYPXSXesOzXT3rObWLKLnL+EuXoS6OQGwPGKYpZmJjm+uwDVFhPfp2zDXOu/M8I3HLl4HxAR6TJaHIy8//773HHHHdx6663Exsby5Zdf4uTkxPfff99g+48++ojJkyfz2GOP0adPH1555RUGDRrEp59+2ubOt4XMihIqzAZe27Ocuzf9zt2bfudIeQHrclK4e9Pv9W5cJ2mJ8l69Nqa6Nj0NnVLjkAUvNlax/ESyY50M+0jJrsIMUsrtMts+Gtd6Lp0iIl2BRCJhWq+6hMx/Mg/w7M6lzEndyQ8pW3lqxyIO1o6KqGWKRg3iREREOocWJbCaTCZ2797NU0895VgmlUqZOHEi27Zta3Cbbdu2MXv27HrLJk2axKJFixo9jtFoxGg0On7X69tfTjjGzY/nB02pt+ynI//h56RlUlAs0gZk3s9X5b2LAmMcw9mLM/aRXJbLUO9Q5FIpicVZJNa6VQJMDIhB2oQNuYhIZzHIK4Qrwgay4PhewB5Mn+4zpZbJuTd2jJhwLSLSxbQoGCkqKsJqteLr61tvua+vL4cPH25wm7y8vAbb5+U17p75xhtv8NJLL7Wkay1GLVcQKHert0wlk+MsVznKdEXlPTux7v5c2msAi2tdi4+UF3Ck/MxpuRG+4YzpwUGXyLnHxUF9CHFxZ1XWYQ6W5jiUSJRSGUN9Qrk4qM95UUEjItLd6ZalvU899VS90RS9Xk9wcOc/zEXlvTqmhPTDU+3M35kHKKipr3qpU2q4KDCGCYExSMRREZFuRoybHzFufpSbaig2VCGVSPDTaFHLFWffWEREpFNoUTDi5eWFTCYjP7++DXd+fj5+fg2Xxvr5+bWoPYBKpUKlUrWka+3C6Up7ovJefYb5hDHEO5Sj5QWcqCpFEAR8NVr6uvsjk573VeIi3RydUlPPRVVERKT70KIniFKpJCEhgTVr6nT8bTYba9asYfjwM0VyAIYPH16vPcCqVasabS/SvZFKJES7+TIxMIaLgvowwDNQDERERERERNpEi6dpZs+ezc0338zgwYMZOnQoH374IVVVVdx6660A3HTTTQQGBvLGG28A8OCDDzJ27Fjee+89pk6dyty5c9m1axdff/11+56JiIiIiIiISI+kxcHINddcQ2FhIc8//zx5eXnEx8ezfPlyR5JqZmYm0lPelEeMGMGcOXN49tlnefrpp4mKimLRokX069evsUOIiIiInBWDxczijP0kFp+gwmwk2NmdayISCHX1bHSblLJ85qftIbe6HHeVE1NC+p1h5LYu5wirspIpN9UQ5OLOtREJYrm6iEgHIxEEoXHf6G6CXq9Hp9NRXl6OVitmvrc3T+9YTLGx6ozlY/2jmBU5pMFtzkf3YpHuxdfJm8mpLmdW5BDclBq2FxxndXYKLyZMbVBNtchQyUu7/2GMfxSj/CI4XJbHH8f2cF+/sQ7Dt52FGfyYso1ZkUMIc/ViTc5h9hRl8lLC9DOUlUVERM5Oc5/f3bKaRqRzeSp+ErZT7Ndzqsr58MBaErwaTtQ9X92LRboPJquFvUUnuKfvGHrrfACY3msA+0uy2ZB7lJmhcWdssyH3KF5qF64KHwSAv5OO1PJCVmenOIKR1dmHGeUXwUi/CACujxzKgZIctuYfY3Jw3046OxGR8w8x81AEV6XaUWmgU2rYX5KNt9rFcZM/nVPdi/2ddFwaGkeIizvrc44AnOFeHOTszq3Rwykz1pBYdKIzT03kHMUmCNgQkEvqB7YKqZxj+sIGt0nTN2J0qbebWFpsVjIrSuoZXUolEmLc/BxtREREOgYxGBGph8VmZXtBOiN8IxrVDDkf3YtFuhdquYJwVy+WnThAmbEam2Djv4LjpOmLKDfVNLiN3mxo0MTSYDVjslqoNBuxIeDakNGluWcaXYqI9BTEaRqReiQWZ1FjMTHCN6zRNueje7FI9+P/oofz05HtPLFjEVIkhLi4M8S7F5mVJV3dNRERkRYiBiMi9diSd4y+Hv64iXbqIt0cb40rj8ZNxGi1YLCa0Sk1fJ28uVGfGa1C3aCJpVqmQCmTI5VIkCKhoiGjS4WYvCoi0pGI0zQiDooNVSSX5TPKr2l/mfPRvVik+6KSydEpNVSZTRwqzSXOM6jBduFau9HlqSSX5RGutZftyqUyQlw9SC6rU4y2CQKHT2kjIiLSMYjBiIiDrfnHcFWo6O8R0GS7k+7Fp9KYe/FJTroXh4t6DSLtxMHSHA6U5FBkqORQaS7vJ63Gz0nLyFrdkIXHE/khZauj/Vj/KIoMlSw4vpe86nLW5xxhd2EmEwOjHW0mBsawOS+Vbflp5FaXMyd1Jyab5QwtEhERkfZFnKYRAexvgFvz0xjuG45MUj9GFd2LRbojNRYzC9P3UWasxkmuZJBXMDND4xz2BOWmGkqM1Y72XmoX7ut7IfPT9rA2OwU3lRM39h7mKOsFGOLdi0qzgSUZ+9GbDAS5uPNA33FoRU8bEZEORRQ9EwHgUGkuHx1Yx8sJ0/B1qn+N39u/Gk+VM7dE1/kJ2UXP9lFsqDqr6NlJ9+JZEUPO2LeIiIiIyLlLc5/fPSIYKS8vx83NjRMnTojBiIiIiIiISA9Br9cTHBxMWVkZOp2u0XY9YpqmoqICgOBgcYhfRERERESkp1FRUdFkMNIjRkZsNhs5OTm4uro2KsTVGk5GbOKIS8ciXufOQ7zWnYN4nTsH8Tp3Dh15nQVBoKKigoCAgHomuqfTI0ZGpFIpQUENl+u1B1qtVvyidwLide48xGvdOYjXuXMQr3Pn0FHXuakRkZOIpb0iIiIiIiIiXYoYjIiIiIiIiIh0Ked1MKJSqXjhhRdQqVRd3ZVzGvE6dx7ite4cxOvcOYjXuXPoDte5RySwioiIiIiIiJy7nNcjIyIiIiIiIiJdjxiMiIiIiIiIiHQpYjAiIiIiIiIi0qWIwYiIiIiIiIhIl3LOByOfffYZoaGhqNVqhg0bxo4dO5psP3/+fGJiYlCr1fTv359ly5Z1Uk97Ni25zt988w2jR4/G3d0dd3d3Jk6ceNb/F5E6WvqdPsncuXORSCTMnDmzYzt4jtDS61xWVsa9996Lv78/KpWK3r17i/ePZtDS6/zhhx8SHR2NRqMhODiYhx9+GIPB0Em97Zls3LiR6dOnExAQgEQiYdGiRWfdZv369QwaNAiVSkVkZCQ//vhjx3ZSOIeZO3euoFQqhe+//144ePCgcMcddwhubm5Cfn5+g+23bNkiyGQy4e233xYOHTokPPvss4JCoRCSkpI6uec9i5Ze51mzZgmfffaZsHfvXiE5OVm45ZZbBJ1OJ2RlZXVyz3seLb3WJzl+/LgQGBgojB49Wrj00ks7p7M9mJZeZ6PRKAwePFiYMmWKsHnzZuH48ePC+vXrhcTExE7uec+ipdf5t99+E1QqlfDbb78Jx48fF1asWCH4+/sLDz/8cCf3vGexbNky4ZlnnhH++usvARAWLlzYZPu0tDTByclJmD17tnDo0CHhk08+EWQymbB8+fIO6+M5HYwMHTpUuPfeex2/W61WISAgQHjjjTcabH/11VcLU6dOrbds2LBhwp133tmh/ezptPQ6n47FYhFcXV2Fn376qaO6eM7QmmttsViEESNGCN9++61w8803i8FIM2jpdf7iiy+E8PBwwWQydVYXzwlaep3vvfdeYfz48fWWzZ49Wxg5cmSH9vNcojnByOOPPy707du33rJrrrlGmDRpUof165ydpjGZTOzevZuJEyc6lkmlUiZOnMi2bdsa3Gbbtm312gNMmjSp0fYirbvOp1NdXY3ZbMbDw6OjunlO0Npr/fLLL+Pj48Ntt93WGd3s8bTmOi9ZsoThw4dz77334uvrS79+/Xj99dexWq2d1e0eR2uu84gRI9i9e7djKictLY1ly5YxZcqUTunz+UJXPAt7hFFeaygqKsJqteLr61tvua+vL4cPH25wm7y8vAbb5+XldVg/ezqtuc6n88QTTxAQEHDGl1+kPq251ps3b+a7774jMTGxE3p4btCa65yWlsbatWu5/vrrWbZsGampqdxzzz2YzWZeeOGFzuh2j6M113nWrFkUFRUxatQoBEHAYrFw11138fTTT3dGl88bGnsW6vV6ampq0Gg07X7Mc3ZkRKRn8OabbzJ37lwWLlyIWq3u6u6cU1RUVHDjjTfyzTff4OXl1dXdOaex2Wz4+Pjw9ddfk5CQwDXXXMMzzzzDl19+2dVdO6dYv349r7/+Op9//jl79uzhr7/+4p9//uGVV17p6q6JtJFzdmTEy8sLmUxGfn5+veX5+fn4+fk1uI2fn1+L2ou07jqf5N133+XNN99k9erVDBgwoCO7eU7Q0mt97Ngx0tPTmT59umOZzWYDQC6Xk5KSQkRERMd2ugfSmu+0v78/CoUCmUzmWNanTx/y8vIwmUwolcoO7XNPpDXX+bnnnuPGG2/k9ttvB6B///5UVVXxv//9j2eeeQapVHy/bg8aexZqtdoOGRWBc3hkRKlUkpCQwJo1axzLbDYba9asYfjw4Q1uM3z48HrtAVatWtVoe5HWXWeAt99+m1deeYXly5czePDgzuhqj6el1zomJoakpCQSExMdnxkzZjBu3DgSExMJDg7uzO73GFrznR45ciSpqamOYA/g/9u7Y9fEwTiM4zkor10EJ8HBFhJwcXFqx/wXbpKtg3QVsqWDQgfpIp11U6RjXVw6Wbpla7BDoV3arUOgi4XnpsrdeQfN3dX3cnw/kMlX+L0Pog+Sl9zd3TmVSoUi8gu/k/Pr6+tG4XgvgOIxa3+Nld/CT7s19h8wmUxUKBQ0Go10e3uro6MjlUolPT8/S5JarZbCMFyvXywW2tnZUb/fV5IkiqKIo70fkDXn09NTGWN0cXGhp6en9ZWmqa0t5EbWrH/EaZqPyZrz4+OjisWijo+PtVwudXl5qXK5rG63a2sLuZA15yiKVCwWNR6PdX9/r/l8Ls/z1Gw2bW0hF9I0VRzHiuNYjuPo7OxMcRzr4eFBkhSGoVqt1nr9+9HeTqejJEl0fn7O0d4/NRgMtLe3J2OMDg4OdHNzs37N930FQfDd+ul0qlqtJmOM6vW6ZrPZlifOpyw57+/vy3GcjSuKou0PnkNZP9Pfoox8XNacr6+vdXh4qEKhINd11ev19Pb2tuWp8ydLzqvVSicnJ/I8T7u7u6pWq2q323p5edn+4DlydXX10+/c92yDIJDv+xvvaTQaMsbIdV0Nh8NPnfGLxH9bAADAnv/2nhEAAJAPlBEAAGAVZQQAAFhFGQEAAFZRRgAAgFWUEQAAYBVlBAAAWEUZAQAAVlFGAACAVZQRAABgFWUEAABYRRkBAABWfQV9GgEUbeyipwAAAABJRU5ErkJggg==",
+ "image/png": "iVBORw0KGgoAAAANSUhEUgAAAiMAAAGdCAYAAADAAnMpAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjcuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/bCgiHAAAACXBIWXMAAA9hAAAPYQGoP6dpAAEAAElEQVR4nOyddXgU59qH75n1ze7GXYgSJEBwL9DSAm2p99T1tD319tS+usup99Tt1N1bpLS4FHePEHfPJlnfme+PhU1CEjQQoHNfFxfJzjuz72x2Zn7vo4IsyzIKCgoKCgoKCj2E2NMTUFBQUFBQUPh7o4gRBQUFBQUFhR5FESMKCgoKCgoKPYoiRhQUFBQUFBR6FEWMKCgoKCgoKPQoihhRUFBQUFBQ6FEUMaKgoKCgoKDQoyhiREFBQUFBQaFHUff0BA4ESZIoKyvDbDYjCEJPT0dBQUFBQUHhAJBlmaamJmJiYhDFru0fx4UYKSsrIz4+vqenoaCgoKCgoHAIFBcXExcX1+X240KMmM1mwHcyFoulh2ejoKCgoKCgcCBYrVbi4+P9z/GuOC7EyB7XjMViUcSIgoKCgoLCccb+QiyUAFYFBQUFBQWFHkURIwoKCgoKCgo9iiJGFBQUFBQUFHoURYwoKCgoKCgo9CiKGFFQUFBQUFDoURQxoqCgoKCgoNCjKGJEQUFBQUFBoUdRxIiCgoKCgoJCj6KIEQUFBQUFBYUe5aDFyJIlS5g+fToxMTEIgsAvv/yy330WLVrEkCFD0Ol0pKam8sknnxzCVBUUFBQUFBRORA5ajLS0tDBo0CDeeuutAxqfn5/PGWecwaRJk9i4cSN33nkn1113HX/88cdBT1ZBQUFBQUHhxOOge9NMmzaNadOmHfD4d999l6SkJF5++WUA+vbty7Jly3j11VeZMmXKwb69goKCgoKCwgnGEY8ZWbFiBZMnT2732pQpU1ixYkWX+zidTqxWa7t/CgoKCgoKCicmR1yMVFRUEBkZ2e61yMhIrFYrdru9032ee+45AgMD/f/i4+OP9DQVFBQUFBQUeohjMpvmgQceoLGx0f+vuLi4p6ekoKCgoKCgcIQ46JiRgyUqKorKysp2r1VWVmKxWDAYDJ3uo9Pp0Ol0R3pqCgoKCgoKCscAR9wyMnr0aObPn9/utblz5zJ69Ogj/dYKCgoKCgoKxwEHLUaam5vZuHEjGzduBHypuxs3bqSoqAjwuViuvPJK//gbb7yRvLw87rvvPnbu3Mnbb7/Nd999x7///e/uOQMFBQUFBQWF45qDFiNr165l8ODBDB48GIC77rqLwYMH8+ijjwJQXl7uFyYASUlJzJo1i7lz5zJo0CBefvllPvzwQyWtV0FBQUFBQQEAQZZluacnsT+sViuBgYE0NjZisVh6ejoKCgoKCgoKB8CBPr+PyWwaBQUFBQUFhb8PihhRUFBQUFBQ6FGOeGqvgoKCjzpHC80ep/93k1pHiD6gB2ekoKCgcGygiBEFhaNAnrWaFzfNQ6I1REstiDw1bLoiSBQUFP72KG4aBYUjiMvr4ZPslTy/aW47IQLgkSW+y1uHW/L20OwUFBQUjg0UMaKgcIRwS17e3LaYFZV5XY7ZUFvCezuW4pWlozgzBQUFhWMLxU2joHCEmF+6k6xGXysEnahmXFQKKZYwZGBbfTmrqwrwyBJb6spYUp7DpJj0np2wgoKCQg+hiBEFhSOAV5ZYVJ4DgADcMWASKZZw//Zh4b0YEZ7Ia1sXALCwLIeJ0b0RBKEnpqugoKDQoyhuGgWFI0BBUy31ThsAGSExfiHicDhwOn0ZNX2Do0izRABQabdSamvokbkqKCgo9DSKGFFQOAI0uRz+n5PMYYCvr9P27dvZuXOnf1uKJazNPq1pvwoKCgp/JxQ3jYLCEUCn0vh/rrE3U1ZWRnl5OQDx8fH+bdWOZv/PepVyOSooKPw9Ue5+CgrdjNfrJUplpLcmkGgMJFlFypt9QiQqKoqQkBAAahzNbKotASBArSPOFNxjc1ZQUFDoSRQxoqBwiEiSRGNjoz8OxOFw4HA48Hp9dUMmaqIAkGUZCRlREImOjkaWZXY2VPLVrjV4dqf0jo1KRiOqeuxcFBR6GqVC8d8bRYwoKBwidXV1FBYW7nOMLMs4ZS86VMxwFPL16nwkGVra3HTD9CamxPU70tNVUDhmqXO08MjaGX5xDkqF4r8bSgCrgsIhEhwcjFar3ecYQSWiF9VkeRopl+w0uZ3thEiMMZC7BpyCSaM70tNVUDhmafY42wkR8FUobmspUTixUSwjCgqHiEqlIikpiaysrK4HSTIajYa02CQqq6DCbgV8ImR8VCqZoXGoRGVNoPD3Rpbl/Q9SOKFRxIiCwmFgMpkwmUw0Nzd3OaZ3797o9XpGRCUfxZkpKBwfrKzM59fCTZ1u21xbSoIp5CjPSKEnUMSIgsIh4vF4yM7Oxm63dzkmLi4OvV5/FGeloHD88GvBJmYXb+ty+4yiLXhkiXMSBx3FWSn0BIoYUVA4BGpqaigqKkKWZYKCgoiKiiIrK6ududloNBIZGdmDs1RQOHbZWFPcTogkmUPpHeirSLyjoYKi5noAfi/eRi9TCIPD4js9jsKJgSJGFBQOAkmSyM3NpampCTte1lBPfuUutNUqRhujSXT7AlEFQSAtLa3TY6yrLuLXws3UOpqJMJg5LymTASGx/u2yLDOjcAtLK3Kxe92kWMK4NHU4kQbLUTlHBYXu4IVP6qmqkzhzvJGxmXo0mvZ9l/4s3eH/+cLkIUyO7dNu+7zSnXyftx6AuaU7FDFygqNEzikoHCCNjY1s2rSJpqYmAgICWK9pZmRcGvcPOo07Mk6mTHDRLLmRkUlOTkat7qj1d1mr+XDnX4yNSubhIdPIDI3jne1LKW1p8I/5o2QHC8qyuCxtBPdnnoZOVPP61oW4Je9RPFsFhcPj85nNvPxZI5OuLyfkpAIuuq+SL2Y1UVPvpdJmZZe1BoBYYxCn7O5Y7fXKfuviKTHpxBqDANhlraHSZu2R81A4OiiWEQWF/SBJEgUFBdTX1yMIAgkJCYSHh9OH9iu50wMTaXDVIgXoCAoK6vRY80uz6B8S7a8rcnbiIHY0VLCoLJvL0kYgyzLzS3dyekIGmaFxAFyTPpp7Vv7ExppihkckHslTVVDoNob00bEj343XC812mR/nt/Ddny0IAgzoI6BLjSE6pZGkqHg++LGJLbkufpzXQqBJZMsPcajVAgNCY/wNJGuczUQaFevgiYoiRhQU9oHNZiMnJwePx4NeryctLa3T2iI2m4366hqKvC0Mj03q8nh5TTUdzNH9gqP9ZeFrHC1Y3Q76BkX5txvUWpLMYeQ11ShiROG4YUCaFnl26++7CxMjy7B5hww74oEEfgNEsYbevTTER6lZt93JuXdV8u3zETg8Hv/+omLIP6FRxIiCQhcUFxdTVVUFQHR0NDExMZ2OkySJ7OxsXLJEgcbJeeauUxGtLgcWTfvsGotGT+PuLr9Wty8zx6Lda4y2dYyCwrGKJElszXUze5mNXxa2IEn7Gi1gCnEw7aoiPrjgZAIDfCJ/zl82zr6zgpjTCjn/ngrUISAKArEBQUfjFBR6CEWMKCjshcvlIisrC5fLhUaj8dcJ6Yr8/Hy8Xi+rvbVcM2DCUZypgkLPUVPvYdYSG4vWOdiY5aKw3ENDk8T+6pepVCAKcOGVDQRk7kQQ4OvCVVzZeyRGtZapY428/XAw1z1exydP9mH6nds4fVhoB4Gu4ONE6emjiBEFhTZUVlZSUuJzmYSFhREfH4+4jwqp9fX11NXXk+O1cvmg8QTrjPs8vkWrx+pub+Gwuh0E7r7RWjQG32suB4FaQ+sYl4N4U9ChnJKCwmHhckksXudg7ko7q7c6ySlyU13vxd3qQUGjhvBgFQPT9AzP0HLaKCMnDdEReUoxjc2t5hGVCL2i1fz4UiRh8cH8Z2MObsnLhtpitq8qp29wFAIC28PKmXZTAHPe7cNvr2Rw5jMm6NsDJ3+McyL19FHEiIIC7QuYqVQqUlJSMJvN+9zH7XazZVc2blliUr/BhOlN+32fZHMYOxsq2sWN7KivINkcBkCYPgCLRs/OhgriTcEA2D1u8ptqmBCdehhnqKCwf3bkuZi9zMayDQ627XJTVu2hxd5q6hAECDKL9E/RkpmuZeJQPdPGG4kI6fxRMqi3liXrW8X3P6YE8N7D4ZgDREDHv/qO4/0dy3BJXpySh427Y6cA4vs2cuG92/jl1QxueLAFd3MjN/0j8Iid+/GGV5JYU13YaU+fOqdNESMKCscbdXV1FBQUIMsygYGBJCcn79Masoe5W9YQhobAqHCMOj2NLl+8h0GlQavyXVofZy0nSGvk3KRMAE6JTeelzfOYW7KDASExrKkupLC5jsvTRgC++iSnxPZhdvFWIgxmwvQmfi3cTJDOQKZSZ0Ghm2iwepi1zM6iNQ42ZDnJL/XQYJWQ2rhYDDqBmHAV/VI0jBmk5/RxRjJSNQd0bewhM90nRnQaeOehcK4+24QgtNYbGRASy8NDpjG/NIuVVfk4vT5zi06lZlREEqcMTeeFkwwMuqiEm5+tpaTKwzO3hnbb53C8Uu+08da2xRS31He6/f0dS7ktY5J/QXM8IMjHQYciq9VKYGAgjY2NWCxKapdC99C2gJkgCCQlJREcfGAXb0VFBaWlpaxwVbHF0/6GcFXvUYyJ9PWheXnzPEJ1AVydPtq/3Vf0bBO1jpb9Fj2zeVykBoZzacpwJa1R4aDxeCT+2ujkj+U2Vm9zklXgpqrOi8vdOkatgrAgFakJaob103HqKAMnDzeg1x9+9sritXaefL+e1+8Lo3/qvjtcuyUvDU4bMhCsM6IRVf5tDVYP/c8vpazay1XTTXzyVMRhz+1YxdnixtnswRJp6HS73ePiPxv/9DfdBDCqNahQ0eRptUIFqHU8kDmFcMP+LbZHkgN9fitiROFvidVqZdeuXUiSREBAAKmpqZ0WKesMh8PBtm3bUKlUDBw48KBWigoKR4pdxS5mLrGxbKODrTluSqo8NNvau1gsAQIJ0WoGpek4aaieM8YbiYnoOQP5wQRfulwSgy8uZXuem8kj9fzxTtQJee399O+VLPrvNnpPimb09ekMPKcXGn3r32hm4RZmFG0BfG7dy1JH0DcoCkEQKGyq46vc1RQ01wEwPLwX1/UZ2yPnsYcDfX4rbhqFvxWSJFFYWEhdne9ijY+PJyLiwFdZe9J4AdLS0k7Im6HCsU1Ti8Scv2wsWGNn/Q4neSUe6qxSuzRavU4gOkzF+MEaRg/SM22sgSF9tcfU9/Vggy+1WpEtP8Qy+V8VzFvlIPOiUtZ+GYtW2/6cdua7SI7ToG1Tfn5v0QPHbtaJSisiADmLK8heUI7OrGHYZSmM/mdvYoaEsLQiFwABgdv6TyTK2BpH08scwh0DTubhNTNo8ThZX1PsKydwHGQiKWJE4W9D2wJmOp2O3r17d1rAbF8UFhbidruJjIwkIODYu5EpnDhIksTKzU7mLLezaouDnQVuKmu8ONu4WFQqCA0UGZmhY2g/HZNHGjh1lAGj4dgRHV3R7HF2GnzZ7HESQufXliiKLPgghsseqOSr31tImV7Mth/jsZh85/vzghYuuLuS/7smiGdv99X76Uz0wLGbdRIYYwQBZK/PquVscrPiwyz+encnob3NNJ3mgNNU9O0VRUCzlpLsWrIXlCF7ZU65dyBGtZZREYnML8vCK0vkWqsZchzEmyliROFvQWlpKRUVFQBERUURGxu7nz060tjYSF1dHTqdjri4uO6eosLfmKJyDzOXtrB0nYPNuS6KKzw0tbT3oFsCBFITNAxI1TJ+qJ4zxhnpFaPpoRnvnxmFm5lZtLXda5EGC08OO3Of+727fSmNLvs+46lizs5lSkwAcz9JIWl6Ppu+6UVeiZuL7qtEkuGDn6w8eXMwarXQqeiB/QufnsIUYWDv6Uoe33ehNrsJVTao3nSzS8jnITnfP0ZnUnPKvQMB2mX2ubwejgcUMaJw1OiJ4jwul4vs7GycTidqtZrevXtjMHQeGLYvJEkiLy8PQRDo3bv3EZipwt8Bm13iz5V25q+0s26Hk10lbmobJX+pdACdFiJDVYweqGHUQD1TxxgZOeDYcrEcKDHGQO4ccLL/d5Ug7GO0j0GhcZwUncrqqgLe2b6UhwZP9Vdf3dNE8ur00YQNCOAxy3Y+fyec1OlFqEQB7+6HeE2DxOxlNs6aeOwIDUmSqM6xUralnqqsRmp2WakvbqGpwk5LrQOH1Y3b4fVbRLpCAGQDGC4xctn00QTGBPDltUtIHNXqbs61Vvt/Nmt1R+qUuhVFjCgcFXqiOE/bAmahoaEkJCQc8g09OzsbSZLo1avXQbt2FP5+SJLE+h0ufv/LzopNPhdLebUXh6v1QSOKEBIoMrSvliF9dZw83MCUMUa/y+FEQBSEdsX79lBha2Rm4ZZO94kLCCLaGHhATSTfvGw4lY55zHonvd0xVCp4/8emoyJGJEmiZlcT5VvqqdzZQE1eE/VFzVgr7NhqnTisLtx2L1JnIkMAtU6FzqQmMMaIOUKPPkjL9lklHYaKKgG1XoX+dhPVUxy4RBl3H5G4kFCqshsZ/A9fT6yi5jo21BQDYNbo6B0YeUTPv7tQxIjCUeFQ/MOHisfjIScnB5vNhiiKpKam7reA2b6orKykpaUFs9lMWFhYN85U4USgosbDzCU2Fq11sDnHSVG5B2uzTNtHj8kokBijJiNNw/jBviyWlPgTX9RW2Zu4b9XPaESRZHMY5yZmUmG38s72Jbgkb6f7fJazCq8scVJ02n6bSLY0qVjxQwqiSLsAXq8XZi+zUVrp4VBvL5IkUZvfTNmWOqp27rZkFLVg3WPJaDwAkRGgxhJlxBShJzA2gNAkE+G9A4nqF0TMgGD0po7fAZfdwz3GT9sdCxkyzkrgwjdHs1NdxUdZKwD4MOsvMstikNwyVreDGYVbmFe6A2n3t29cVGq7FOljGUWMKJxQtC1gZrFYSElJOSzztsvloqSkxC9qFP6+OBwSC9bYmbvCztodTnKLPNQ0ePG0eaZqNRARomJYfw0jM3ScNtrI2EwdavWJY+04UJLMYVzdezSRRjONLjszC7fyn01/Yne7cMm+D00nqukdGI5KVLWrvvpV7hrC9KZ9NpFssUtMubmchlo1ktTR/SMI8OmMJi6/eK8NkgQVIORJrF6UzfJiD/XFzVjL7TTX7HaX2D3+OI32BwW1VkRn0mCONGCKMBAUayQk0UR4WiDR/YOIHhCCwXLoQlNrUKMzqXE2exBEAVO4noveG8vAs3sBMFxOZGtdOaurC5BkmY3zCtAACyJ2QVGr8EixhHF6fP9DnsfRRhEjCkeFakfzET2+JEns2rULq9XqL2AWEtJ199wDJSsrC4DU1NTj0mevcPDs6Tw7a6mN5Zsc7MhzU1btxe5s42IRINgiMihdy+B0HZOG+9JngwOVW+oeMkJau1zHBQSTZA7jnpU/4d1tIR0UGsc1vUdjUPuCcG9e9g19giLZVl+ODMws2sqI8F5dHv/jX5tYv8NFV2EokgQvvV1F3cur0dS6EVpkcAJen7EBYAnbfD/sFhnaAA2mcD3m3ZYMn8iwEN0/mOiMYIxBRyf+IjA2gKrsRsbf3JcznhnaTtyIgsA16aMI0hlYWJaNvNPps4P0E3afisCIiF5cmjrcXwn6eOD4manCcYnV5eDT7JVsrS9r97oBFVEqA2tK84jvHdyuRPTB0tTURG5uLpIkYTQaSUtLO+ACZvuisLAQl8tFWFjYYbl5FI5dDqTzbIBBID5KTf8UDWMzfWXR+yaf+C6W7kYUBKTdQkSvUrcTIuCzePQLiqLOaaPc1sguazWxxkDMah11Rc1UbqpH2OXlh29X4M5301Bm58xmEzsMZoqEYNyiGkHe7R7bfT+plzTsKjcSJzUgBwkQBHKYgBwlIsdBbP8QbjvrZALDjp1AV4ArPpuAqBaIH9K5W1gURM5PGsyUuH48W/EjLToHo+JSiDCYGB2RfMylKx8IihhROGI0ux28tHkulfYmdIjEqIzEiEZiVQEEib6b+c6GBn7M38gFyYMP+viSJFFUVERtbS0AcXFxREZ2T7BWU1MTNTU1aLVaevXqenWmcHzQvvOsg5wiT5edZwf11jO8v47TRhuYMFSPRqNYxLqD0uYGfxzNwJA49Co19SXN3P5QKVUFLYwcKTG3ejPqNRKaagdCi8zKgK1QL/O4+1sAtMAmfOmsKq1IP3MTCUklhHoDcOmiyNMFsanZQE6N4H+vPwb055/PbSIjJBqLxkBxSz15TTUAFNPErIbtXBo2/Oh+GPuh14jwAxpn0ujwVHkIjDByTZuWE8cjihhROGL8lrORZI+ek/ShBIsdzZuyLFMnOdla6msalx504ELCbreTk5OD2+0+5AJmXbGnZw2gpPEehxx059lhek4fbyQ8WLkddheN5S18u2INgUU6nHluasqsFDsbUDe5ETdIbLbt4BZhJyq3TDAQDDQsATkABK2AIMhIKSL0FUn3RBAbG0R4WiBFvRpZE1DMtYPG+JtIlrbU88jQM9sFas7KzuXV33NZ9UsCzfV66n4/iX8+HoVmd1XWrIZK3ti2CLfkZVnFLs5MGHBcVCntDGeTm9hBx3/zQOXqUzgiWF0OVE12Bmi6jtsQBIFKyRectrAs+4DFSNsCZpGRkd1egGyPyycuLg6d7vjI0f870q7z7E4n+WWddJ7V+zrP9k/2lUU/Y7yRjFTtYbkF/840Vdoo3VxHxfYGanKt1BU101hqo6XGib3RhavFg9fdscCYbADBJCB6ZDwGkb+iUtlujGZ0YiEXJIfx5SYtHrOed94R+XzXSty7M20uTB7M5Ni+rceRZSyFAXyRs9rfRPL2/pM6ZIxsse0iZUgdKUPq6Fs1iXufs9PQWMG3L0RgMqpID4pkUkxv/izZgVeWWFmVz2lxfTneqMm3IksQO+j46c7bFYoYUTgibK7zdbSNEg0EiBq6uvU7RAkk2FRbglvytrupyLKMy+XCbrej1WpRq9XtCpilpaVhNBq7dd41NTU0NTUREBDQbS4fhcPD45FYttHJn8ttrNrqJLuw686zYzJ1DO/vK4veXZ1n/w40Vdko29JAxfZ6n8go9ImM5hoH9gYXLpsHr6ujyABQaUQ0RhWGIC1hKWYs0buzS1ItRPYJInpAMEExvhiGf36wjk/ft+B1iyQlefjpfxMID1YzbruTEZeX8r9vXAhDfUIkxhjIKTF92r2XIAiclTiQsxIH7vN8Kmy+jrahugDuPD+aftE2zr6zgtjTitj2YxxxkRqGhiXwZ8kOACrbdMDtaRaX5bC4PIdapy/oP9oYyJkJA9oFBO8ha64vFk8eqebRtTOpdTTvtxO43esmxRLGpanDiTQcO41nFTGicERocjuw4+V3ZwkXGpOhk+bQjZILm8f3RNEhUtNQh+iWsNvt2Gw2HA4He5pKa7VaXC4XACEhIfTq1avbs1tcLhdFRUWIoqi4Z3qIA+082ydRy6DeWk4a6gso7cnOs8cyzTUOSjfXUbm9gepdVuoKmtqLjJYDEBmBWkKTzQRGGwnutUdkBBIzKMQvMvZHTb2HabdUsHZ7MCqNl4lX7KL3iBre2JXD8PBeaM0qMoa5+OATM+lZSYz7RwFT4vsdsgVrz26SLCPLMqeNMfK/x8O58uFq7nm5jq+fj0A6RhvWB+kMnJs0iAiDGWRYUZXP29uX8PDgqcTsrkS7h4KVVQAsiMjlnKhMBobE7r9yrT6A3wo28/rWhTy+l3urJ1GuYIUjgk70fbXqZRfWQC2WhvYdM5FlAp1erjGkIiAgCAJl+UVdHs/lciGKIikpKftsQ304ZGdnI8vyYdcmUdg/1mZf59mFa/ffefakIRpGD9Qz9RjsPNtTtNQ5KNtcR+WORqpy9oiMFpprnNjrnTj3uEs6ed6KagGtUY0+UEtoognLHpGRYiGybyAxA0MIjDF22+f8/Ef1PPxWPR4vTB1j4J77bHxfXIOMzyIxs8hXiTV+pJnNq/uTtSKS+rww/vFYJBx4Q+12RBuD2GWtpt5lI6+phhRLOJeebkatErjo/6owB1Qz+fJi//iYNp1ve5pBoe3dzuckDmJxeQ55TbUdxEjFtnoIFugfE8OUuH4AB1S59pr00dyz8ic21hQzPCLxaJzWflHEiMIRoU+b+I8F9fnc2mskJUWtFz+CQOBTT9Ew9TQYPwFZlve5CjIajaSnpx+xB1FJSQlOp5OQkBACA4+dG9PxjiRJrNjk5I8VuzvP5ruprO288+yoDB1D++s4ZcTx03m2u7E1OCnbXEfFjgaqs3eLjDIbTVUO7A1OXC0ePK79iAyLluBePpERkmAiNMVMVN8gYgaGEBTXfSJjf+QUuph2awW7ij0EmUW+eyGCU0f73KoxgQHMKtpKjrXKPz4k2u7/uapSxZSbKzh7opHX7g0lMfbgGgKOj0ph1+7+LJ/nrOb2jImE6AL4xxQT7/9o5cOfm9kqNzHwFF9bipERSd1wxt2PJEusqy7C5fWQbO6Y5ltX2IKcJNKnTVVaYL+Vaw1qLUnmMPKaahQxonB8cKjN7WICgkizRJBjraLK3sQ3FVuZEtKLlroG/xj11i1E//kntmnTsD7xhO/FLgTJkSw61tLSQmVlJRqNRknjPQyKyj3MXNLC0vUH0Hk2TctJQ/ScMT6AhOgT/zZkt7p8ImN7A9U5jdTmN9NYZqO5yo6t3oWrxb1PkaExqNFbNATHm7BEGwhOMBGWYvbFZAwMJiTBdMxYjCRJ4s4X63jzGyuyDFdNN/HRE2Ht5tc3OIq+wVFU2KyUtNQjyTLhehPfqK3t0q1nLbXx+182HroumHuvCsRwgDFAw8J7Mbt4G1X2JsptjTyyZgaZoXGE6AOYdEM1y7b1YuUv8YT3auKKCbGYNMdWoHppSwPPb/wTt+RFp1JzY7/xxAR0XCTZ6pxI4wUsmvaZQPuqXOsfo20dcyxw4t8FFA6Zw21ud0HyYF7aPA+35GV7QwXbGyo4WRtNqtqCJMt88MTN3HT9Ixh//x3BZqPx+ed93cPa3lRlGQSBzZs3o9FosFgsREREdFvgqiRJ5OTkAL403mPlhn4sY7NL/LHCzoJV++48GxWqYsxALaMG6phyHHee3ReOZhdlW+qp2NZAdXYjtfl7LBl27PUunC0ePE7vPkSGCr1FS1BcwG6REUBYsoXIvr7eJSGJx47IOBBWbHJwzr8rqKqTiI1QMfP1KDL7dP2gjzJaiDK2ul2jQlsormz9Inm8gBcef7eeD36y8vaDYUyfsP97j0ZUcVv/iby6ZT51ThseWWJtTasb+Jy7rXz3dCZz3u7LB2cn+F9vsHp59n8N/OsCCynxB2eN6U4iDWYeHjINu8fN+poiPslayd0DJ7cTJHary+eK69Vz8+xOFDGi0CWH29wu0RzK7f0n8s72Jdi8Prv8IlcFiSoTMjI16clkjR1C+l/r0S9ejPvzz7FdfbVfgAA+d86XXyLfdBPNzc3U1tZSW1uLKIoEBAQQFhZGUFDQId+w8/Ly8Hq9xMbGotcfn3UGjhR7Os/OXmZn5WYHO/LdVNS07zyr2qvz7CkjfJ1nzQHHzwO0M1w2D2Vb6ijfWk9VdiN1Bc00lLbQXOXAVufct8hQtYqMwBgj5mgjwfEBhKWYiUgPJGZgKGHJx5fI2B8ul8RlD1Xxw1wbogj3XxPIc3ccfO2LhGh1OzGyB1mGkkov/7ivirrFvQ7IQhJhMPNA5lT+KNnO8so8bB6Xf1vfXgaeuB8efVZk5GUV5M2KY2e+hzNvryC/1INWI/D0rYffTuJQUYsqXwAr0MscQkFzLQvKsrg8bYR/TO6icgB0CTqs7vYWDqvbQeBuS4hF4+uabHU52nVQtrocxJuCjuRpHBSKGFE4ovQOiuSMXgP4Pm89ABIyaz21jNCEcXZCBt7bbkLeeg+NDzyAc/JktMuX4xo0CPR6XzCBy0X0xIkEpKUBvmJnVVVVNDY20tTURFNTEwB6vZ7g4GAiIiIOuBR8XV0djY2NGAwGoqKi9r/DCUx5ta/z7OJ1++k8G6tmQKqW8YN1nHGSkeS446ssusvmoWxbPRVtRUZJC02Vdmz1TlzNPpHRWaKFsEdkmDWER1uwRBkIig8gLMWXXRKdEUxYqgWV6sQRGQfCrwtbuPyhKpptMv2SNfz+VvQhu956RWtYudmJd68EH1GA+Cg1Hz8ZfsCuGvC5Ii5MHsLZvQZS2tKAU/Jg0RiINloQhgrUFtTw36+sjLqijK25bly7m+Mt3+R7uO/tpoYDd1V3J7IMnr26HO9aWglAYkYYOxsqmBzbmga9o77CH2MSpg/AotGzs6GCeJOvHond4ya/qYYJ0cdO809FjCh0SaPTvv9B+0GWZf6q2OX//c6Mk0nUB7J9+3bGBSfiOiWGoh8SQRAI+r//Qz9/Pu7UVOrefRc5KAhjYyMBZ53l399gMPjjOjweD9XV1dTX12O32ykvL6e8vBy1Wk1gYKDfnSNJkr9S6x48Hg8FBQUIgvC3SuN1OCTmr7Yzb+W+O89G7uk8O0DHlNFGxgw6tjvPuhweKrbWU76tnqqsRmrbiAx7vQtnsxuPYx8iQ69Cb9EQmmLGEmXcLTLMRKYHEZ0RRFha4DF9/j2BtVli+u3lLFnvRKuGN+4P5daLA6l32vjfztVsqy/DJXkJ15u4qvcoEs1dW0qyGir5Pm89290WZCESaP9Z331VIJPOqmVuzZ/8sMxOnCmYi1OGktRJUGdnaFVqkiwdx75yTyjf/dnMmm2udq+v3uqkxtbMY+tndrAOH4yr+lD4OX8j/UNiCNEZcXo9rK4qILuxktszJgHwcdZygrRGSjfWggDThmTwytYFzC3xVbJeU11IYXOd34oiCAKnxPZhdvFWIgxmf+XaIJ2BzLD4I3IOh4IiRhQ60Ox28lXuGtbVdJ5qu62ujATTgZkwaxzNlNkaAUgyh9I3OApZllGpVJSUlGC329E1NWG54QZUNb5+EZrcXEKvuYaG558nbHTX/RbUajXR0dFER0cjSRKNjY3U1NR0cOdoNBqcTicRERHExsYiiqI/jTc5OblbmuodKkdq5eXvPLvExvLN++88O6RPa+fZIMuxc1twOTxUbm/wu0tq8/eIDBu2ehfOJrfPktFJqQy/yDBrCE0y+y0ZoclmItMDic4IITxdERmHwrvfN3LHC7W43DBusI4Z/40kyKKmxe3ixU1z6R0UyW0ZEzFr9FTZmwhQd21Bq3E08+a2RZwUncZ5GTFsmt/i3xZkFmlokpAsdcwsW8+lqcNJMocxv2wnr29dyBNDpx9yGfcGq5dL7q+ivKbjl6fFLrMpz95BiMDBuaoPhSa3g0+yVtDosmNQa4gNCOL2jEn0C44GoM5pQ0CgZpcVXYCatKBIrksfy6+Fm/ilYBMRBjM39RvvrzECMCWuLy6vZ7+Va3uSY+euo3BM0OJ28tLmeZTvFhCd8UvhZgxqLRNj9m9RaHa3Pmh7mXwrI0EQEEURu91OfHw8YRkZFLe56GWVCnVZGWGXXopLELD/+SeGyZPbHdf25ZdILS2YbrgBAFEUCQ4OJjh4txmyjTvH6fTNoaqqiurqagwGA3a7naCgIP/4nqCzAGE4+JXXns6zC9c62JTtoqDMQ2PzvjvPnjHeSJ+knnOxeFweKrY3Ura13hf4mddEfUkLzZV2Wuqc+xYZok9k6MwaQpLMmCMNBMcHEJpk9rtLItIDUWuOnRvtiUJJpYdpt5SzNddNgEHgq+ciOH9y6/f0j5LtBOuMXN17lP+1ML1pn8dcXJ5DmN7EhclD+Cm/BVm2oVLJTDu/gR/uziRqcjHvfubi1ddSGBuVAsBlqSPYWlfG8spdTI3vf9DnUVjmZtL15RSVe7ocs3G7B6IP+tCHzZVtPrvOuHug7154T2U2gbG+QP6h4QkMDU/ocp8DrVzbkyhiRKEd3+xa6xciAWotoyKSiDUG0exxsaGmiPzm2t3j1lHW0sDiitx2+0caLDw57Ez/721bhFfYG1lXXcSvhZupdTQTpjVygTqKCJ2OoisvIvG1d0EQcAda+OyTF+jzwyzGffYLtaeeiumBBwh69lkAHH/+Sf0VV4BajeHss1F1Ura9rTtn27ZtOBw+H7Asy9hsNgCsVisFBQXdmp1zMHQWIAxdr7z2dJ79c6WNNVudXXaejQhRkZmuZ0SGjtNGGZgwTH/UVv8el4fKnY2Ub6mnKme3yChuoanSF/jpaNrtLpE6+ksEUUCtV6E3qwlJNGOO1PtFRkS6T2RE9glErVVuWz3Bw2/W8txHjUgSnHeKka+fi0Crbf+92lxbQr/gaN7bsZScxiqCtEYmRKcxfh+xCXnWGn+djJOH6/n35YEMn9jASlceOt1Qvn0xnNNvK+ed1wK5/pM9e8kEqHXMKtrKzKKtBGoNjIlM4vT4jH3WK9rjDlqxSqCgLK3LsaJK4qMlBYy76GA+oaOHJEm4bB7C046dcu6Hi3JVK/hpcNr86W9GtYYHMqcSbmhd1ZwW14fv89YzvywLGZmC5jpijIHcOeBk/xjVXhd3hMFCmD6AGkcLOxsqyWqo4tykQe3KFt+RMYkZpw7lljdVIMO3L9zHOWOmEnby+SxPS2PU4y/T/NxzuBYvJuiTT6i78ELfwb1eWt58E8tTT3V5TrIs+y0jeyNJUrdn53QXuQUevl/fsN/OsxmpvrLok4YbOH2cgbAj1HnW45Go2rnbXZLVSM1ukeG3ZFjduLsUGaDW7bZkJARgijQQHOdzl4T3DiQmI5ioforIOFbZkuPk9FsrKKn0Eh4s8vMrkYwdbOh0bLWjmcXlOUyO68O0+P4UNNXxbd461KLI6MjkTvexuh1+V0uQRcUr94Sypc7Bom1uXF4PIwYLDD29mNW/JvDpr1auOtvCnOIdVDmaCNYZuSNjEoVNdXyasxKDSsvJsemdvk9bd9A/r0ph/vAKnvukjpyVkXgl2lX/lbwijpIIIP+wPrsjRfE636IwbsiBxcwcDyhXv4Kf9TXF/n4NE6J7twoRRyXowhEEkem9BrC0IheX5KW0pYEoo6VdutjeiILASdFp/JS/0f97oNZAmN7E9F4DWFdTxDvbl2A3GfjloZtwBVkYOuVsf9ni6fc/zdMp0dxw9f/hXr6c6j59fE9iWQZZpvmNNzDdfz9iQOcuDbfb7e9v0xkqlQqTyYTNZjvs7JxDwWETKd4WTFlOILUlRppqdTjtat6Xm/1jDHqB2HAV/XZ3nj1zvJGMtO4p0uTxSFRnNVK+tc4vMhqKW7BW2rHV+iwZbocX2bsPkWHSEBQfgDnSQFCc0WfJ6L3bktEvCK1euc0cj0iSxHWP1/DJb80gwC0XWXj9/0L2KdRloJcphHMTMwFIMIVQZmtgcXlOl2LkQBg4qZzt8+O58Zlazj/VRF5TNRF6ExqVmjC9iTC9iTXVheQ31XZ5jLbuIIDLhwViD1hG5SXFODcO4PWvGrHa9hSeE8grAI9LRK3taL2ssFkPOG7uSJCz0NcgL/WkE6eZp3KXUPDT4GrNnkkP3P0ldzfB7BjQBEHIKAySk3869KyVe7FZN5gqu8B9q35GI4okm8M4NzGzQ6zDpOjerKsuorC5Dq8s8XHWCj7NXomI0M5NUTJ1IlaXg4v3Klsc3G8Aq5fNYsyoqe2XL4DUaGXebU9RMO2STs/JrJfo3bHZpR+v14teryc1NRWPx0NNTQ11dXUdsnMsFguRkZGH7M7prPNsZa0Xt2c47O5pLIgSepOHqOQmzhwaxnknBXPycAM63cFbaTweiZqcRsq3NVC5s4GaXT6R0VRpp6XWgcO6D5EhtFoyAmONPpERG0BosomI3oFE9QsmOiMYrUG5fZyozF9l48J7q6i3SiTHqpn9VhTpifuPMQrU6oneq89LtCGQDTXFXezhqxZq3asSqNXlQK/SoFWpEQUBtUrgiftE7n5U5px/V3DXQ+FkNVSRbPYJguLmenKt1VyYPLjL92nrDtpDv+Bottav57+3hHD3VWbOeHUp2+bH09igAgRyVofSd1x1h2N9mr2SIJ2R3oGH2DznMCla4wv2Tx5/4pQkOKS7yVtvvcWLL75IRUUFgwYN4o033mDEiBFdjn/ttdd45513KCoqIiwsjAsuuIDnnntOKTJ1jNE2srrB5YurQB0AkdOgcjY4KpCtm8mUPWQCcjM4BSOyNoRmfTIrm/vxRfUybhh2NXpDq2LXqtTckTGJu1b+6H9NkmWkNlUsYna3yX5/57IO0fGhKi9D3rmjgxDxIZP0y8dsG3cOsqrj19mi31NDrdV9tKcPjk6nIy4uzt+LRq1WExUVRVRUVIfsnLq6Ourq6g7InePvPLvBwdbcrjvPpiaKuIMriU61ktC/noDA1uCPhwZPJcHU0dojSRI1uVbKttRTubORml1WvyWjpcbhi8mwe5G6EBkqnQqdSe0rxhVhILCNJSOqfxDR/YPRBZwYFR0VDh6HQ+K8uyv5/S87ahU8e2swD1x34EHeKZZwKu3Wdq9V2q2E6LoOxk62hLG1rqzdazsaKkjenYqrFlUkmEOIjq5j1MBo5q9ycGd+AoJ6Gzsbq7hp2dfIsszZiYP22WOmrTtoDxatHofX5w5C4yZjYgX9xleyZXEEq35JJGtRL64+x0ylo4Hzk4cws3ALWY2VeGSJz7JX8uSw6YiH2Fn4cKjMakStE08oq+NBn8m3337LXXfdxbvvvsvIkSN57bXXmDJlCllZWUREdFSJX331Fffffz8fffQRY8aMITs7m6uvvhpBEHjllVe65SQUuoe0wHD/z0vKcxkZkYQoiDD6F1g2GZqyyBm9jg93LKa/ezNDKGKAuhZsBRisfzFdXgKA/Pv9IGhAGwoBSRCYSUDYBHS4OSV+MDWOJkpaGpBlGVEUfVklQ6Z1aWLt/efX6D/O6nSbABjrq0jdsoTyMVM6bA8M8NK2TKYsy7g8UF4vct7U/l0HsO2VneNwOKisrGxXbE0GGlt0rMvS8+syLdmFUqedZ2PadJ49fbyBzHRfWfTCplqe3bjcN1CSoATEPAkKZeZ8uB5PhQdruY2WWicOqwt3FyKDPZYMk5rAaCOmcD1BcQGEJJpaRUZGMHrT8VWgTOHo8uXsJq5/oga7U2ZoPy2z34wiIuTgHhGTY/vw/KY/mV20jWHhCRQ01bK0Irdd5dCf8zfS4LJxTfoYACZEp7GoLJsf8zcwNjKZnQ2VrKsu4taMCe2O+0nWCp54LJjpl8K1LxZy7r0eLus9nBRLOMXN9XyXt44greGw3EEAokpm0MmVXHRSOA8/YGbpKi+9Bwn0DozgjgGTeHHTXPKbaql2NLO9vpyMkH2YXo8QDSUtBISdWIv5gxYjr7zyCtdffz3XXHMNAO+++y6zZs3io48+4v777+8wfvny5YwdO5ZLL70UgMTERC655BJWrVp1mFNX6G7SAyOJNFiotFvJa6rh85xVnJuYiUWrRx7+NZ65A4hecRLqoMdYbphEn/TR0HYlYivhk/WfM1DKYYh7E9gLoX411K2A/Hd4DQF7rYkATQAEJENQJouEASzXRiIKYpdliyM+/9P3gwroWCkagBHzvyDilXs7iIutW7f6A1hFUaSwGvIrvAQYxH1G3bdFkiTW7ZD5Y4WZVVs07Cp2ER/uYFgfN+MGuTlliJOxGbCjQE1BpQ6NxsiIAUYmDA9Br4O6gmafJWNHFVmvWllZ1EJtaTM1lVa0LTI4fefVdjZbKfSJDK2IzqTBHGXwWTJijYQm+gI/o/r5+pfozYrIUDh0auo9nH5rBWu2udBrBT55MpyrzjIf0rESzaHc1Pckfi7YyKyiLYTpTfwjeWg7i0Wjy06d0+b/PUxv4tb+E/k+bz0LSrMI0hm5ovdI+ge3PuSHh/ei2e3gz5ItTP2Xht9e70vh/H6cNMFXmTk2IIhaZwu/F2/vUowciDtoD6IgcP24dGKfcPPOlhyMxSKeATJqtchpcf14b8dSADbXlfaIGHE0uonqF3TU3/dIclBixOVysW7dOh544AH/a6IoMnnyZFasWNHpPmPGjOGLL75g9erVjBgxgry8PGbPns0VV1zR5fs4nc52GRBWq7XLsQrdhyAIXJg8mLe2LUFGZnllHquqCogLCMLqdjBGcxJneX7mmfq72GA5k0HGMe32d+gi2aRKIyHpPGgb0W4rgoo5LC1aSaCzkEz3JqhbCXXLmQichADFasK0YVyoGkbD5uXEJ0yAiNOwi0Ya7ksgdn0l7mwJ505w5wGeVnuHAHi2bKHlo48w/fOf/rf1eDz+71FkZCTR0dGs+WkrstyFomGvzrM5LoorO+88q9cFUFAMRqsTT3AjpiAHvaNEMlPdCKKvaNOa+dlseK+CvJn1e33QgBpkA8hBAgSDHCYgR4nIcSAliZAscN6AIUyJ63fgf0AFhYPkhU8aeOiNOjxemDLawE+vRGI0HF4m2cDQWAaGxna5/er0joUM04MieXjItH0ed1JMOpNi0mEE9F29irmzQll1oYORA3wWAlEQkDtrFrSbA3EHiQhIyITojJg0Oi44TcufNPHXvAi293ExsLeO+IBWt1XbfjdHi/qSZmRJJmZAzwXQHgkOSozU1NTg9XqJ3KuuQ2RkJDt37ux0n0svvZSamhrGjRuHLMt4PB5uvPFGHnzwwS7f57nnnuOJPS3lFY4qA0JiuSZ9FJ9lr8IjS3hlicLmOgAWGqdylv1nBGCwdRbyn7/TGH0R3vT7qVdHMaNwCyICw8N99T32lC0+NykTkm8gLuxcXto8j/MSMxkQEsOGkrVsLVnGdcY8glu2INgKGeeah95mh4q3kAG7Kpj++haMoyXYfQ+TPeAqEHBny1TuSES/sggkicbrr0edkYF+5EhkWaaoqAhBEEhLS8Nsbr/Sc7ng5wUtXXeelWUMgkSY6KKvYCPG1UR0UyPGxiY8Ng/S7h4W9cDiPQcVwBSpZeJLSYSk6wmI0jL+8V6MfSQBt1UmQGMmqX8875T8RV6TLwAtQm9mTGQSCaYQrC4H62oK2VLva4D1c/5GBoXEErVXQKCCwuGyq9jF1JsryC32EGgS+O6FSE4bc/Rr7RwqN14r8cA2D+fcV8ymHyMptTUyr2QnY6JarSKH4g4yabRY3U5qHTbyrNUsr8xHq5fIXhlO///4LJAlLa2LC4Pq6MdXZc/3CaqksSdOJg0chWyaRYsW8eyzz/L2228zcuRIcnNzueOOO3jqqad45JFHOt3ngQce4K677vL/brVaiY8/dmron+iMjEgixRLO4vIcVlcV0OCyoxZE4oNTcDVFoHVVISAj4MVU/g1C+ddk6cZSZzybZnUM96z6iUiDhUCtHqGN8yHFEu4vW/xT/kbfSkbbm9c1wzhv8LMMCIlFJ8vMzpnPrtK/CHYXI6jmcUlje8uCoAZdqowuFQKmFSBrw6l+NhDPylxqR43C8sYbuC65hPr6ehITE9lZpGH20lr+WmNj41YtTQ49DtQg+BpN6T0uQpw2MuxNhLc0Ee5oJthpQ9UmJVilFdEFqDGE6jH11RMYYyQk0Ux4qoXo/kFEDwgmIMS3QsvLy6O+vnXOokpAFyzgoYWcwp2MkSzEa9SUqBzcNvjUdoXhRkcl81P+Rv4o2Y4MLCrP4eKUYUfiz6zwN0SSJP79Uh1vfG1FluHKM0189ETYcdfc719DhrH2oi188WEQl723khHjHIyPTuXMhAz/mENxBw0LT2TB7jpKL26aR4I5hMC8YYgeGZVKwCtLzC3d4R8/IKRrC9CRIn95FQB9Jh9999CRRJD3VYRhL1wuF0ajkR9++IFzzjnH//pVV11FQ0MDv/76a4d9xo8fz6hRo3jxxRf9r33xxRfccMMNNDc3H1BxKavVSmBgII2NjVgsJ07FueMFSZYR2J2RsuIcKP+NvXunexERkXFHn4djwGuIujBMms4DrHZZq3lp0zzOaVP87I+SHTw0eKq/n8Kc4u3MKd5GbMwK7l3/apdzk2mNtaj/BGwzQDKZqPnyS4qI4NOvNIT11iNJIEgSeqcbg9uJwenC6HFhxo1BK6PWq9AGqNGZNegDNQSE6ggI12OO1PuzSwRB8P/b8zvg/w7v+b22tha7vesmg20/T7VaTUhICBaLBZPJhEqlosXt4r5VP+GRJYK0Bp4feW6Xx1JQOFBWbXFw1h0VVNVJxEaomPl6FJl9uqdeTU8RP6WQ0iovWb/Ekdbr8GOnKmxWHl830393OyUmndeejmDNZjc7F5qZWbiF7Q0VgK8b7lPDpvuC/I8ir4yZQeHqav7rufaovu+hcqDP74OyjGi1WoYOHcr8+fP9YkSSJObPn8+tt97a6T42m62D4FCpfCmkB6GDFHqQdqlrQUOgYibsFXehwpdCoi3/EW3SdWCa2uXx5pdm0T8k2h8PcXbiIHY0VLCoLJvL0kYgyzLzS3dyekIGcVJuh/3dgAZoEmFmEMyzwDqTgWuesjNtJBieFwi99lpUD9zPhSelEtsnGrVaRKX2FeoSRI3vn7DvnhkyDqw2B9j2Oeygaft5ejweqqqqqKqqIiQkhKSkJAI0WqKMFkpaGtr19lFQOBQ8HolLH6jm+7ktiCLcf00gz93RdQfd44nZb0Yx6MJSpt5cwa5ZXfdmOVCijBbOSBjAzKItAMwvyyKrSossGHhh01z/OJUgcmXaqKMuRADqCpowBJ546fcH7aa56667uOqqqxg2bBgjRozgtddeo6WlxZ9dc+WVVxIbG8tzzz0HwPTp03nllVcYPHiw303zyCOPMH36dL8oUTiOCBrcQYiAzzLiFTT8EHIH9gYz5wa1dNnoLa+phsmxfdq91i84mk21JQDUOFqwuh30DYrCUDQLaLWAuHRQEw2VEVARDAYBzhfgH9gJU4G1zzBqUrX0uno5wffeS1qkheBaB99lnMGStFupIBa3W0YQRKLCzXg8su+fBJYAkW+fj8Bi8okFaXeO7p7/ZVnu8l/bceXl5bS0tNAVjZKLXI+VIXHJ9A6MRJIk7Ha7f9XglrzUOnz763vAJ61w4vDbwhYuf6iKJptMv2QNv78VTUL0iVObYkCajqvPNvPxr00880E9D11/+I0vz0zIQC2K/Fa4GUmWcTtUiKrWfH2TWsc/+4whPahnYjZaap1E9jnx4sgO+lt50UUXUV1dzaOPPkpFRQWZmZnMmTPHH9RaVFTUzhLy8MMPIwgCDz/8MKWlpYSHhzN9+nSeeeaZ7jsLhQOm3mnjp/yNbKsvwyV5CdebuKr3KBLNXa+U9jSXKrc10ktl4769tstAiyaSd0MeokAOQV1bys6GCp4adhZ6dceHqdXlwLKXC8ei0VPlruWdpnf407qEnaGV9K2/kXvkJu4JAmsENESB3YzfL9O2qo2AnnTVXwSohrA88Sai/7ecud9Bxq9WclPCmZ41l4s3z+D7/mfwtv4WCp0pbN3V3pVi1AuIouD//h5qf5rq6o4VGwHMZjNOs5Zvc321RRrqBIbEpSAKIkFBQf5xyyvzsHvdAPQNPnEqLCocPazNEmfdUcHidQ40anjj/lBuvfjEe4ABfPhYKL8ubOGxd+v557lmosIOT2wJgsC0+P6MiUxmWUUuX3vUaLWQERzN0PBeDAtLQNtJgcWjgcvmweuSiOwb1CPvfyQ5qJiRnkKJGekeWtwuntnwO72DIpkQnYpZo6fK3kS43kS4ofO6AjWOZp5YN4uTotMYF5XCzvpyRq4eilFu9V14UFMthlMw9Dd6haTxR8l2Vlblc0HSEE6N69PhmDct+5rRKRZyDCtZ7lpOljuLWk8jDnF3PxYZQl29CNJrGaDrxw2m2YSJbsROyoLIMqiFUPprtqIRfA/uTcsuYVDVN4y03cjThe/S9xHIiUrhl+jTuCbnG4JbGvml32m8GXAruY6+AKhEuPfqIJ67/fDT5XJyctqlo1ssFmJiYggICECSZR5bO4Mqh+9cM0PjODdxEFHGQBweN0srcvmlYJO/TP69AyeT2kMlpxWOT9773srtL9TgcsO4wTpm/DeSIMuJYw3pjEVr7Uy6rpzMdC0bvo3r1mMHjcsnyKyi4PfDdwMdLjvmlPDOtD8456URnHz3gJ6ezgFxRGJGFI5v/ijZTrDOyNW9R/lfC9PvO25i7+ZS0cZASg19MdrWgaiFzHf4qKKFa8ruInrbhXDaLq7qPYo11QVsri1hdEwcs+2zmeucy3rXevI8edjiXLzrsUETCAgECUGkewcT2dSP65JOYbgwnufWLeDhwdOINwXzSfN0wsWZHebm65WnIU3zh1+IAPxcl8sgoE6O4W7hKl794VPSrt7FxTtn8o/ELxlnWsRN2R9zXuN0ZvWdxBuWW9jlyeTfl3fPynGPRSUwMJCYmJh2/WxEQeDS1BG8vm0hkiyzsbaEjbUlmDU6bB433ja9ekZHJitCROGAKan0cPot5WzJdRNgEPjquQjOn9x1GfYTiYnDDJw1wcBvi+18+JOV687rvkWryw0m49Ev+d4ZuUt8af9pk6J7eCbdz/GVz6VwWGyuLaGXKYT3dizlnpU/8vT631la3jFAtC2dNZdyRp5OmToeJq7Gk3AVG9xhlMbeALYCVqwZzrnV5zIv9G2eMV+FudTMRXUX8WHLh2xxbyFACGCoazIXNd/HyoiVeGI91MXVcYn1Ya7UXcuFARfSyxCJRaNnR30eBe5rSFHPobNiqYIABeufIEAc6n/NLblZ3FAEgME7iy3xl3GvfTCFiyE8tJSfsi5hR20m43ot4v4RDzOwcgd/rjyf962X8frD7x7+hwzEx8fTv39/UlNTO22s1zc4ihv7jkffxtTb5Ha2EyLjolK4IrXrfk8KCm159K06EqcVsSXXzbknG6lb3OtvI0T28N0LkRj1Arc+V0OzrbM+VoeG2yNjCTg2HpUlG3wtM2IzT6yCZ6BYRv5WVDuaWVyew+S4PkyL709BUx3f5q1DLYpdllDurLmUNf46HnIEEyN9zsrKNZRENPORfgevuuCfZespN2+iQduLSHcKp1nGE1IzmBHaEVydPAnYndq7eR5Ws4WqkCbWVBdS2Fzn71/hlHM5Le1j9Lql1MqNCFI0MxzlnG4A1W5RIstQvOMKSnJP5f3STf65rXD9SY3Xl4FikHeAnM9mx7Pc57mU11bWo5vm4evNV/JQ3BN8FXo138Zdxjmp33Nb/vuc8s6tfDf3f6wbdylPv38HGs2hBY9qtftPMRwUGsezw89mRVU+a6oLsbrsaEU1vQMjOCk6jXjT4QfiKZz4bM1xcvptFRRXeAkLEvn51UjGDTbsf8cTEJ1O5NOnwrnw3iqm317Bwg871uF4cPWv1Do7BpdPiE7j0tThnR5XFiSIL+CWZUuJMJg5LymzXX0RWZaZUbiFpRW52L1uUixhXJo6nEhD94cUVOdY0QaoDzme7VhGESPHAHWOFpo9rSmcJrWuy0yUw0EGeplCODcxE4AEUwhltgYWl+d0KUZcsp1lnvl8Xfs8G9wbKPQU0iy1IMdJ0AIqWUUM/enbfDIzjPFMU//GvOwWfk97nTy3mgfCpvBy2TwQWgVN2+JnvxRsIsJg5qZ+4zEb1rPNdScOthBigrqWESzIuYSqligiwmpQJd2FL7FXRXP1KPI33wIyNNt8wZ6SLDHT8zmBu4NLDIIAnm+QNA+wad3bPBF5OU8tbyH71GReWPEQ6Y5snol7kJDT/8Xwu+7iucseZ8KaH7j9k3uZtehT/hp1Ec98et8BiYtDIUCjY3Jsnw6ZRQoK+0OSJK57opZPfm0CAW7+h4U37g85IR9SB8MFp5oYm9nIorUOflvYwlmT2t9HH8ic0q5beFlLI69tXcDQsM7jQXIaKpG8AiGqIB4eksHqqgLe2b60XU2kP0p2sKAsi6vTRxOmD+C3gs28vnUhjw89s10n9O7AWmnHHHliik1FjPQwdY4WHlk7wx+wCKAWRJ4aNr3bBUmgVk/0XqXFow2BbKgpBmCzazMz7DNY5lrGdvd2KrwVuCLdIMhgAx06olRRDPeejLG6L88NuIw+6r7c9td3/KvvODLD4qHXZbDkJEbn30Nt4tsA3D1wcoe5DA1PYGi47wZQ7X2Pcu/15HjKAQGTMJEE9dsYQvpyahtrZIF7E7Xyh+hIxOT9ghBLMy53a5rxOvdiajxlaHffawyCBNJmZLJxGHuz7PfHeff8R7hxUR4/n3Y6Vy3+gjRHLoMnfITRFM5Tv76Ay/U0z17+NCNWfMed3zzC/L8+Z96wC3ns04exmE+sLpkKxycLVtu54J5K6q0SybFqZr8VRXqi0ixxDzNfjyTy5CIue6iK2kW90GpbBZp5LyvvnOLthOtN9O4iNmtGTg6yHEOSMZJoY+A+ayJlhvoCZ69JH809K39iY00xwyMSu+28JEnC1ewhfMyJmcTx95bRxwBltsZ2QgTAI0vtLCXdRYolnEq7FYfk4Df7b9xWdxt32W7k89AHUBWrGFQ5iIetDzPHMYcGqYF0TTpnuq7mytr/UBtTiyPeQUFMAZfY72Wy7jQytBmoRRUJ5hB2NPhKqxM2Din9YRJcOzml+vUu5yJJLoo9d7PBZabIeyMeagkRLmOQuoZ0zUIMYt8O+0Sr78csTCZVM4v0XolcfU4GN1w4iBsuHMT1Fwxkhe4HREQcu3N/DciACO6vkEVoNo7k+znnM8sOQ2f/zjMT72WIbSPmUzOw//EH4HOxPP7dk0wt3M5HVz6DU9Ry18/PsDq9H3edeR9Vtc3d/ndRUDgQHA6JM24t55QbyrG2SDxzazC7ZiUoQmQvgixqXr03lGabzKUPVnU5ziN5WVVVwJjIlC47eGdXNwIQHtxq4egXHO3vLdW2JtIeDGotSeYw/5juonyrr8XEiRgvAoplpMdweNx8tWsNq6sKOt2+sjKf+IDgA25z3xWlnlJ+tf/KIuciNgfsoFbdwv+VFPr8oECAKpRAwcI47ThGakcSWpdJqDuB6/qMA1pTexcWFTI2UtVpc6nJsX34JGsFieYQEs2hzNeeSZRxA6fU/wK5r0Pq7f6xLqmCYu+tNMi/Ah5UBBElPkK0+Ch/Li/m5115QB6iIKDXqQgLNtAnKZT+qaHohBR6a+bSGb+XzGNL/XYA7PIeNw2ABHIWSFuQVQNplG/g5dVbiBqVzRUzXiB01Qs4T3+QumnTMD/zDJbdHambbG4CTj6NMa/eyccPvUvi3C+5e9aL7Oz3Nc8PPo9b33+MpITObwoOj5tfCzezsbaYJreT+IBgLkoZesC1XIJ1Rk5PyGDMXq6zhWXZzC3ZQaPLTpwpmItThpJkDuvymAonDl/ObuL6J2qwO2WG9NUy+80oIkOV23dX3HxRIG9/Z+XHeTb+2mBnbCdxNBtrS7B7XIyJTOryOPXNPhdwZEirGLFo9DS6HABY3b5aRXvH1Vm0rWO6i+z5vkya1AknZu0h5dvcAzi9Hl7duoCCptoux8wvy0IURC5IHnxAx5QkiVXuVcyyz2KFawU73Tupkqrw4PGPMWAgVpNM36ZLCLIlkib25ZyYkYyPTvWP+aRqBbWu1gCvA2kuNTy8F81uB78VbsbqchBnCmbsyHcRlvaHzf+G8Im0mL0Ue26hhZWAjIZexKqeJlR1ebvzSIy1MGVsEpIkY3O4KSi1snB1EdmFdZxzchpiJ8VGZFnmifUvohJEvLLEnluAQdjjGxbA/RXIGaASaC55gfvLz+fDGC/i6PvJzF6Edfi5ND34IO61awn+/vt2x/+/d+4C7uK/97xL6G+fcNcfr1M05DveyTyXK996jIz09pUYP8tZRZmtkWvSxxCkNbCqKp9Xtyzg8aFnEKzrmF1T42jmzW2LOCk6jX/2GcPOhgo+z15FoFbv/5zXVBfyQ956Lk0dTpI5jPllO3l960KeGDq9w41Q4cShpt7D6bdWsGabC71W4JMnwrjq7BPTTN/dzHk7msRpRZzz70oqFyR0iKf5q2IX/UOiCerkmtyD0+4TIdFhPV8tvHC1r5hi2sQTq0HeHhQx0gP8WrDJL0T0KjVjIpJJMIfg8nrZXFfC1t0t5OeW7qBfcBT9gtvnlDdLzcyyz/LX7sj35NMoNyLvDszaU7tjkGYQQ7VDOVV3KlMNUzGJ+64pAnB1+ugOr6UHRfLwkGn73G9STDqTYtLbvzhhCfKCTOyrB7NznAQqMDCUBPUbmMSO7wOgEkUCDL4sFnOAlsjQAKLDA/jhz2y25dYwoHc4DpeHJWtL2FXUgFeSaDYXsbp6PaIgohbUeGQJhwwGBECFzzpSQEZNDpf3mcjOK9cgjnmMO996lE/CPPwl3kLl+7MZ88Ld8NNPVPXvzzf3fARqDV/M8Flb4iJN3PHSjfDSjbz/+Keov/2Q2xa8S+Wo77l/0NmMfeYOBg2KRSeq2VBTzM39T/L7oaf3GsjmulIWl+dwTuKgDufcWS2X3MZq5pVm+cXIvNKdjItKYWxUCgCXpY5ga10Zyyt3MTW+/z7/NgrHJy9+0sCDb9Th8cJpo/T8/GoURoPiWT9Q4iLVPHhdEE+938Atz9XyzkPh/m21jhZ2NFRyY7/x+zyGbPdZVGIiWsWI1e0gcPcCwKLxbbe6HARqW60vVpeDeFNQd50KAJU7GlBpRbTGE/OxfWKe1TGMw+vmr8pdgC9Q9b5Bp/mjsgEmxKSxoDSLb/PWAfBN+TwCVVUscS5hq3srZd4yHLSa/zRoiBAjGKYdxhjdGM7Un8lQzdAejaqXJIlK6XkqDS9jGCXTe4VM6sZgDCM3ohUPvophQrSF8GADOUX1DOgdzsxFu1CrRM6dnIZOq2LRVpFJdeeRnhxErVvi+8I87PIvhIuJjDKexkqXg4FNBh4ZMp4LJvXno1Mq2fi9l8EX/Jt7przK2+Gb0I+8nRk3vc6Ffd7H+/EHnHv/Ocx47EvOOn8EoUGGdhaZGx6/Ch6/io9e+Br3Zx9w09KPaZj2I+8MOpOCK07G0leHWmi/ktKIanZZOy8T31ktl37B0XyXtx7w+baLmuqYtruxIPiKp/UJiiLP2r1+aYWeZ1exi2m3VJBT5CHQJPDN8xFMHfv3qhnSXTx5cwif/tbEez80cfslgfRN9sXXLK/chVmjY0DIvq0MYrPPChUX2fqo3FFfQfJu92iYPgCLRs/Ohgp/Or7d4ya/qYYJbSzO3UFDSQsBIcd3l+V9oYiRo8y2unIcXp/rZGREkl+IeCQP2d5strq28oHmA5bHr8EuNvliO3wxVAQIASSqE8nUZjJRN5Hp+unEqI8dk51HaqbU+29q5S+QcSBgwBB2M3JENoHl82DnR9Dv8UM6dkignup6O6WVTVTU2LjxokGoVT7Bde6YTOoqbmN4ZBQDe4fz7PyfsNf/wnlBAo+e8TLGbxbgNGsoLnbRYndz5RcnsX1lOan3DGbtyHieFot5InQFaUPeYWfao4wcPpiG227j1CeuQhXyOgGXnt/pnCbfPIVnRsusnjeVzJ/nc8OKb7Bt+JVvRp3L+9dreeyc07Fo9ayuLiTPWkOEoXPLVGe1XCxaPQ6vG5fXg83jQkLukAlg0eqpsFtRODGQJIm7X6rjv19bkWW44gwTHz0RhlqtWEMOh9lvRTPgghKm3VJBwe8JSLLM8so8Rkcmo9qr6+7HWcsJ0ho5NykTAKE+HEGU2GTLBltsh5pIgiBwSmwfZhdvJcJgJkxv4tfCzQTpDL7swm7E3uAiYfiJGyOmiJGjTKOrtTlbWmCr2TCgNAAXLgC0aNEKBsKdyUQ4U3gg7nousExHKx5e1Pze9Uyge2qaOKR8irw30iTPAyTURBAlPkO4eKfPQjPGA7/Hws4nIWIyhI076PfY07W3ut6O2+PlnW82ttvu8Uo0NPnOLUitwy4LaPD1z+lrCWBzQxOSrKeu0UFEiJHQq+MofyqXR594n1seP5s4XFyf9hFlWxMw3fQYjt4ZNFzzT+TL/0HjtvsJ3EdjR/XkOLZOvopNy06j/3cLuHrJN7j/+oH/jjmHnMtPoX9mDMPDe1HUXHfQ561wYuD1yuQUuemT1Pk1vHqLg7PurKSy1ktMuIqZr0cyuK8SC9Qd9E/Rct25Zj74qYnH36njHxc7qXPaGNtJbaU6pw2BViuorV6PKLbwV9Uufiva7K+J1NaaPSWuLy6vhy9yVmPzuEgNDOf2/pO6tcaItdKG5JWJzjhxiyEqYuQo07bbY72ztdlcqjqVCFUE34Z+S4Qqghc2zfWb9U9Pm9YtQmTveiZweDVNmqRFFHvuwM5mAHSkE6d+iSDxzPYDRTVMWA5z+8BfU2BaOWgPLgivrtGBxazD5fYSYNBw4ZT0DmP0Wt/Fr0aFXRbQST5xcnpMKOvrm6ij9dx1KQGEDQxi2zelzHzgD6Y1TyJBEJnc92mqvbFoR17Bgoc+5Oxnr6L52Wdxr19PyKxZ+3R/qcZFs3PcZaTU3E3OM69z8V8/o1r2Iz8Omsqmay8ibVzn/SQsGj3WvSLvrS4HepUGrUqNKAiICDR1MiZQozywjgcef7eepz9oYN570ZwysjW2wOORuOzBar77swVRhPuuDuT5O7vOulI4NN59OJSf5rfw9AcN3HB+Au+Nv7TTcXvXRGpslhBkkSeHTe/y2IIgcFbiQM5KHNitc25L9vwyABJHnbi9qhT731GmrTVkWcUu3JKvaNcQ7RA8socIVQTFzfV+IRKhN7ULjDpUmj3ODkIEDq2mSbX3Qza74sj2TMLOFkycRF/1FjK0OzsKkT2YUmDI/8BrgyUHZxkpKrdSU28nLSGYyFAjLXY3oigQbNG3+2fQ+wJfNaIGOyB5fQG916XGggy5goeQQD06rYoAg4YxLwwCAVadW8Vj5sd5wiax3SZT6LkBh7ASj96IdvUmtOPH45wzh6qUFKSGBv+8yloaO51v5qmZ3L32F5zzV/FT5nTO3DafO2+7Cte1L/GfFzs2/Eu2hLGzoaLdazsaKki2+EyyHWq5AJIss7PNGIWeo87RQlFznf9fnaN9ufHcIjf/+agBgH8+Xo3N7rsOf1vUQshJhXz3Zwt9kzTkzYhXhMgRQhRFfnk1Eq8EU28uP+D9rM0SGnXPN8nL+8tXLyV9cux+Rh6/KGLkKBNpsPgL5NQ6W3h7+xKq7E3Eq+Ip9hazo76Cd7Yv8Y8/KTrtsGuNdAeS5KLE839scFko8l6PhyqChUsYpK4iXbsYo5ix/4P0uhLiLgbrFth4W6dDvJJEi91NU4uLytoWVm0u59cFuSTHBdIvJZSEaAsx4SZ+W5BLQWkjjc1OyqqaWba+hIoa30NALWiwywLNrhCq62yoWjxEo2K7xuvP1BmeEcXO2ib6XZVEbV4TSe9NZdSuS/m33Uu1E0rUU9DpmymqbMb4x3y0t96Ot6CAirg46tas5JXN8/k4e0Wn5/BVzlo21ZYQMzSJM+e8zjc//o/PJl/OqTuWccn9Z/PG0Cnc8OxH/vETotOocTTzY/4GKmyNLCrLZl11EZNjW60/k2P7sKwilxWVeZTbGvkqdw0uydOhFonC0WWPxfGZDXP8/x5ZO6OdILn9+dYg4+IKDw++Ucek68o4+85KHC6Z1+8LYfvP8fSKPbReSAoHxrghBs492ciWXDfvfndgsVYtdhmtpufvv2Vb6hBECOm1/4zI4xVBlmV5/8N6FqvVSmBgII2NjVgsx3+OfVFzHS9smuu3igBsDvuBlQE/c3Xhh2jxWUJijUH8X+Zp6FSH700raq7jmQ1zOt320OCpJJg6L+Dlkqp2Fyn7GfAgYiFCvJVo8QlE8RDmJUnwZzLYCmH0DIhutaTMWZbP9l2+lGdRENDpVIS3KXq2R5S53F6WrS8lp7Aeu9NDgEFDbKSJ8UPiMAdo+Wb5CoKLJ5CgjmKJdwYOl4cfNA5WeOy4LjkZURSRZZmVm8rZnFVF7kM7kJo9XL90GkNJJlzXxJfhoHImsmXe9zTbIDbCxBlVq2m45hok4NcH/8WW07q28GhFFZIsY1RrGRIWzzmJg2gsrOKjax5m6qaZhDXVMydjPDmnXs2LL1/druhZkM7IGZ0WPcviz5Id/louFycPJUmxjPQoXV1Xe66pGYtbOOuOyk72hLGZOma+HkmQRfGWHy1cLomQCYW4PTJVC3oRaN53XEfEpAJUokD5/F5HaYad80j817iaPTxff0WPzuNQONDntyJGeoishkre3bEEm8dX4e+nqIeo0ReQ3jSRCbXXk2AK5tb+E7vFRZNvreGrXWsoaq7vdPt9A08lpY37CMAmbabIczMtLMdXpCyeGNVThKmuOuz54KiAOb0AAaYWgb57/aA/rlyLqmAMQ7U64s9rAuDxzbt4Yks+f04azKkx7U3h677dxacXL6LfGfFM+yWdxMJkhgrwTqyEQehDP/U2f6zIb79+zoCLr0fjcLLh4jPRPP8fEswheCSJLXWlLK/M87vDrkwb6a8L0hZreQ2vX/YAp26cQVx9JX/2G8PGk67g5TeuQ61WHkzHE9kNlby8ZX6H1x8aPJVwdRDpZxdTWuVF2usuGx+lYteMBDTHwKr778bPC1o4765Kxg/RseSjfbs9LGPziQhWkTvz4EsSdCd36T8mLNXCg1s7z+w7ljnQ57fipukh0oMieWrYWZyXmEmEwUCD1heglG1azITeIdw/aEq3CJGtdWW8tHlel0IE4Nu8dbh2pxvXe39lq6s3OzyDaOEvDGTSW72Ugdqi7hEiAPooGPkjSE5YNNJnLelGNPjcNCKtlqfrUn03nc/yO/qLh16UQmxmCNtnFSNvMPJp+CesU0k8VaTGyU52eX3Ba3aPm3nhOl774XUao8IY8s1MRjz0H/oGRjIwNJbL0ka0K6K0qDybtlpfliRcq1fDe29yQ8M6ks8/i0+n3ExaVSH3vXsT32WM5pZrXsPl9nSYo8KxhVeS+DF/A69vXdTp9uUVu3jhkwZKOhEiACUVXl79ovOYI4Ujy7knB3DSEB1L1zv5cV77+J6PfrHyn48aeOc7K1/NbsbulBEE2JrroqTSQ1OLxNFev3tcHjxOicj0wP0PPo5RxEgPYtLomBLfj6H9BDyiL60XAV6Q7/f3jjkcGpw23t+xzL9SD9UFMCm6N9MTBjAgJBZxdwpbYXMN82ruZKMrnDzvOTjZhUU4nQx1Af206zGLB5+Ku1+iz4Tkm8FWAGu71/SoEdXYEVC1yZ6JM+oJUIksrWrodJ/rfz0VQYT/nTuPKy1XcJ7mfGboPXxZrKFRmk2J5z6yGipwej04LCbWL/oNw6WXYv/iC2pPPx1PhS8ANSM4hvgAX/pdUXM9deXF2L7+mrrLL6c8LIzqkSNpevpp3Bs2INZU8+CctxhRmM3n0/9NVEMND37yb37rO4ybLn0Oa4urWz8Xhe7BK0u8t2Mpf5bswC17Ox3z65Yinvqgnq6eWzLwyNt15Ba5j9xEFbpkxuvRaDVw1SNVuFyt94n7XqvjgdfruOXZGi57sAqPB3KLPQy4oIT4KUVYxhbw1PsNR3Wuu5b5glfjh4XvZ+TxjWITPgb41PYpKlR48SIjs8m9mUdrn+Ee0z2HVQNkSUUuTsm3ys4MjeOGPuNQtUlNzW8qYnnjtaSGLkGtciOhJ0y4kVjVi6gPoHT8YZP5FlQvhpKvIGoaJFy+/30OgNEDY/kyF9R7ZQ/1DzKxttaKJEkdUnRDEkyMu6kvS9/awR/PbOTHh34gelcsr6nK6F2rZXjYizjFMMDXJryXJYyQL7/EfuGF1J1/PpXR0ahSUtBkZnKKWYtn0yZM9Y3YC8twyDKo1eDZbfHwekGtRjPY13dIazRy/2+vIHle4OVLH2HgXz/w8NcPsnjF58wedhFPfPh/RAQqKbzHCgtKs9hUVwqAShAZFp5Aijkcryyxrb6MLXXlzHi9L15vqwtGEECtAkn2/fkBXG6Yu9JOaoISuHq0sZhE3rg/jH89VcM/7qvil9d8SQX/PMfMy5814t3HWjAz/eh2Sd612GfN7X1y56UBThQUy0gPU+etY6Z9Jl7arrBknrc9zW0b3++QJngwrKzMB0BE4OKUYX4h4pZqqfC+QL2uN30i5uOW9KwovITGmvX00rxzdITIHiYsB5UR1l0DzfndckiD2oBdbm8ZAZgeG4YE/FHeefGx818fhSFIy5wnNmBrcLItcQuiV82dzW6qbBp0AfcTEZANQLnNF41vOOccQr79FstLL6GfPh2pro6YL74necN2IgpKEfYsjT17uV48HjSD2vepEdVq7v3uOU4tzuL7K59A8MDDPzzOhowMbjr7QfIrmg//w1E4LCRZYmFZtv/3W/tP4Nr0MUyISePk2HRODxzH2g9H0VKvB2SMAV4G99Fy9kQjN15o4ZlbQ/j8mXAWfBBN1q9x3HihuedO5m/ODedbGJim4ddFNpas8xWjvPkflk7dagAqFZw8Qs/0CV031jsSFK/3BfXHDT2xg9WVANYjwOKyHBaX51Dr9D08oo2BnJkwgIxO+iC80/wOt9Tf4m9ytwdBFolwprAyajmJ5jBkWWZG4RaWVuRi97pJsYRxaepwIg2dfx6SLHHTsm8ASDCF8NDgqQAUum+iRn4fATUWYQoO+3m8scmn9CfH9vE3azuq1CyDJSeBLgKmlfiKpB0GkiTxzNcm7tA7sZzfKvLKbQ5ifl7GJb0i+WrcgE733TqziPenzyVtUjS3LTidRY5FTKqYRHC9mll9JERBxTcbXwY5iieHTu9Qon2XtZoX1s9h2mufMuzX+ewrPFGMjUWTmYl23Dj006ej7d++4Z0kSbx3yytEzPmCUQWbyI5K4MchF3Djmw+RkdR59pPCkSW3sYoXN88DoH9wNLdnTAKgrsHLhz9befy9BiKCVYw+Pw9TWhmiCM8MP4sw/Ymbknk8U1blIWFqEYFmkeqFvs6+Z99ZweylNjx7eeBEETZ/F0f/1KNrGXkq/Xsailt42Xb1UX3f7kIJYO1BgnQGzk0axIODp/Jg5lT6BEXx9vYllLU0dBj7ccvHnR5DFiQq9Tl86foEgD9KdrCgLIvL0kZwf+Zp6EQ1r29d2C49uC0Cgj8mxOlt9UubxYmARLT4KKma3/C6WysOij1VzyRsHPR5GJyVsOKswz6cKIo4ZFDvJfCijXpMahXLqhu63DfjzAQSR4WTs7Cc7IVlTNRP5G7z3dSHebhikxZRcHP+gIdweFp4ect8ttaVIckybsnL8so83tq2BFQqfr/7Woq//wwxPNy3pNobQUBqaMA5axZNDzxAdUYGpSoVZeHhVI0aRcNtt+GcNYt/vXor5+dv5M973qDSGMEDs1+hceQAbp9yOyu2VHQ8rsIRpb5NO4c9zQ0lSSL1rGL+77/1XHOWma0/xnHOJBN7PIFtW0AoHFvERKh59F/B1DVK/OspnwXizssCOwgRleizmhxtIQJgLbdjjjz8ZIZjHUWMHAEGhcYxICSWSIOFSKOFcxIHoVOpyWuqbTcux53DGteaDlYRPzI8bXsUl+RifulOTk/IIDM0jriAYK5JH02D087GmuJOdxUEgYTdXSQr7U3+iq4hqosIFf9JpfQqHrmB5ZV5/n0STT1Y/bHfkxA8Cip/h9zXD/twDlnoIEYABgSZKLU5kfaRwXP9r5MRVQKfXLQQSZJ4KfQlMuSB7Ip2cP8GM3p1E+cNeIRyWz1vbFvEbX99y+1/fcen2Stp2V3NNtkcxrDzLiVi61a0J53U4T20Y8YQ29xMtNtN6J9/YrrrLrSjRyOIIu61a2l5803qzjqLcoOBsoAApv32BqcOSWTb9GsoNMfwf3++gWriQO465Ub+WN497i2F/aNt02+kweVr5yCKIrdcZMFkFJi70sbOfBcNbQRId/YoUeh+Hv1XMIkxav73cxNbc5xMHKYnrVf7v5nRIPDETUe/L4wsyzib3YSlnPjuPEWMHGEkWWJNVQEur8ffdnoPM+wzOu4gg9kdQaw9gz7NExla+w+WledhdTv8lVsBDGotSeYw8pq6biF/UnSa/+dPslb4LTMxqieRsbOi4d9srC0BfP1RBoX2cKnh8QtBHQib/w2Nmw/rUA46j87eEzcyq6y2k60+zBFGJt0zgOZqBzMfWgfAmrhVGLxGFoQ181VOOCHGEk5Lew3wldSX2giffkFR3JYxEY2oQhURQdjcuZifeMIXxSiKvuDVIT53mKhWoz/1VAJffpnwZcuIrqwk1uMhMjcXy8svoz/nHMSYGLzFxTh++IH+Mz5mQt5aXGotGqeHfy94n7hTB/LMyAv5bs72w/rMFPZPkjnUb0FcXVWAY7fV8albQlj3dSwNTRLDLyvjf5/7vg9GtZZo44mdknkiMOftKBDg9NsqqHfaiBmdC/5rWibz9HzQOfZ1iCNCZVYjyBA76MRvE6CIkSNEaUsDt//1Hbcs+5Yvc9dwY7/xxAS0vymFNQzipJrrmFp5LxeUPseptstAgNulJ7mg5lFOqr2e/k2n8UPeBoBO28w3urq+QEZEJPpvhFWOZp5YP5sXN83l0515FNQPwmD8hDG9PgEkzuw1AHVPr+DUepiwuxT+kgngOfSL3yELiALgsbV7/doUX9zOlwX77k8x/dmhmML1LHhxC01VNvSintVxq0AFr3rr2VkTTWLwOs5Im020MZBYYxCjIhK5d+Cp3J4xCaO61ZwrqFRYHn2UsHnzEIODfcGrmZn7fH91Sgrmu+4i9OeficrJIdZmI7qlhZAffsD4r38RMGgAkToBWRAJsjVz9eofGD2tP2st4axJy6Tuqqto+fRTpDqlU3B3YtEaGBzqaw3f5Hby9rYlVNt9hfV699Iy839mAiwe1syO5fd30hkdnqxYRo4D0hO13HShheIKL5c+l03ysGpElU+MmEKcpI+tIKuh80q6R5I9DfKSx0Ue9fc+2igBrEcIj+SlzmnD7nGzvqaIZRW7uHvgZL8gcUte7l/1i79J3amxfYmLdTK6ajSzQ2eja0jmx7wN7ZrbvTDy3HaF0N7fsQyAG/p2XQekztHCa1sXUmlv34shOWQ5k9PeAsDpHMJQ04/ohMRuOffDJue/sOVOCBkDE/86pENc8ZmZz03NMLUYjHHttlm+XYhFo6bkvPFd7O0je2EZb578O4mjI7hrua/w2RvWN7i94XaEAh0LB5sw6WpJVH1OqOrA0pK9FRU0v/Ya5vvuQww5/CBUSZLwbNzIjpfepmbeQtJqfC4bQZZbVxpaLaqoKNT9+qEdOxb99OloBg48JnoeHY9U2Bp5buOffquIAMQFBOOVJcpsjUgemPFGPyrzLMRHiaz/Oo6wYKWKwrHOpppiRp1jw9mi5pLHNzDn/XTqSgM49fqdJA1sAOCKtJGM66SqcndRuLqavL8qiewTSGSfIGY9upa1X+Txn4bLMQbqjtj7HkmUANYeRi2qiDCY6WUO4dykTOJMQSwoy/Jv31JX6hciWlFFkM7AAI0vw6NOrqPZ7STCYG63qqp3tl/lW10OArX7rj8Rog/ggcwpnJeUSVibmiU2V6vZT6fbyHZ3f2q8/zvq1QU7Je0OiJgKdcth++OHdAjHnjwWd0OHbQODTJTZnXj3U/m196QYUidGUbCiim2zigC4zXIbp2lOQ05yMm2pC0kyUuC9imZp1QHNSxUVReB//tMtQgR88QraIUMY9NWHnFK1C+sfy/l14Ok4NDocai3LkzLZFdvXFyw7Zw5NjzxCdWYmZSoVZaGhVA0fTv1NN2H/+Wckm23/b6hAlDGQ2zMmEqD2PRxkoLilnjKbr6KqqIZr7y/kun/oKK6QSJhWzKotR9/Er3DglLU08kHWcqZcvxNZhjnv9GHMGCeCIJMxpPW6+CJnNTvqj1zg+PL3d/LzXat49/Q/eSL5O9Z+6Yvp+/Zff/H7E+tZ/20eDaWHXu7hWEYRI0cJWfZZS/ZQbW+tGREbEMTOhgoCxAA0aPje9j076itItYSTHtjat2XL7kJL4CtNnt9U0yEOpTMMag1T4vrx9LCzeH7EOTw9bDp3ZpzRZoSEhI1C73Xkes7ALR94i+0jxpgZvlTfnU/6Un8PEofctRg5Kz4cGfittOt4mz1c9/NkRI3AZ5cv9ge9/h75O6HeMOx9m7h0QSDIAtmeibiksoOeZ3eTceoobts4E/WS1cwcdDoZ5dnElmzni/QJvP7UL4QuXIjpvvvQjh+PoNXi3rgR27vvUnfeeZQHBFBqNFLRuze1551H82uv4cnv+eDYOkcLRc11/n+HU3unu0ixhPPksDM4NzGTiN1puwK+5pbTEwZwTe/RPHK7gTeeMOByyYy+soy3v1XKvx+r/FmyHbfkJTK5hSEj7NRVGAmwxhEerOaFkecyMbo3ADIys4u3HrF5xJ28V5XV3WvDjd/n88fTG/nk4oW8f9bcI/b+PYnipjkC/Jy/kf4hMYTojDi9HlZXFfBHyXZuz5hEv+BoPs5aTr3TTlajzwc5Na4ff5bu4LzETG52X0ym/TTC64by0OCpfLNrLdmNvnLABpWGa9JHE6Y38WvhZkpb6nl86JmH5JN2yNlsc6d3skWFiIleqvcJUf3jcD6Gw6d5F8ztA6IOppWB9sD/9pM/CWaepaFDZ2CAGoeL8B+XcEFCON+PH9Rh33qnjZ/yN7KtvgyX5MW4XMBxXxPjb+3LhW+MAaDIU0RScTKSDS6pz+TfwzdQ1dSH33c+SJDOzOmddt3NZm7JDhpddl/X3ZShJB2AmDwcKrfm8uU/H+LUbXMwO1r4JfNU8qdey3+fvtA/xlNYiOO333AuXox7yxakkhLktlYSlQoxLAx1WhraUaPQTZ2KdsIExKPQ1K/W3swj62bibeOuVAsiTw2bfljVibsbSZYAgQanjUfWzmjnXm2qMDLrv4OwNstccYaJz57p3saQCoeH3ePinpU/4ZEljGoNTw05ixEXV1Je4yU0SEXujAQkWebxdTOp3B0f9OTQM4k0dv+zKLeiiv/Gz0DYR3uqq7+ZxJCLkrsecIyhuGl6kCa3g0+yVvDY2pm8umU+Bc21fiECUOe0oWrjr89rquG69LEsrchlUum9GJsSuKnfeHQqNTmNvpTcII2BSTG9+SJnNc9umIPT6+b2/pMOOThOpKsiTF4kGsn3XkSp57FDOna3YUqBIf8DbwssObj+OI49n6+742o0TK/FolaxvLrjtha3ixc3zUUlityWMZHHh57B1deNx5RoYNnbO6gr9lm0EtQJfBfxLZi8fK3ayuebLiTSvINrhrzMKbHpfJ69im31rZaSNdWF/JC3njMSMnho8DTiAoJ4fetCrPsIQO4OIjNSuWvVt/Taso0fR17ExOxV3P3sxbw9+BT+ddfneDwe1L16YbrtNkJ/+IGorCxiWlqIttsJ+fVXAm6+Gc3QocgeD67ly2l+6SVqJ0+mXKOhzGKhMiODussuo+V//8NTVdVt85ZlmaXlubyyZX47IQK+7KWC5o6BuXtbUI6mFUUURERBoNnjbCdEAMxRNlb9YiYjVcPns5oZcH4xNnv3NodUOHQq7U3+v9mg0HhMOh0/vhyFtUWmxeZbq4uCwPDwXv59SjqpGdUdaE1qpBEicidPZkElMPyKlONKiBwMSlTVEeDK3qP2uf3ugZORZJnH1s6gytFMdmMVvQMjeWzoGTzf9B9esL7Aa8ZreW/nMn8NkpNiUjkjYQBnJ3ZcyR8KKva1qlQhYsAoZnTLex0Wva6EyjlQ8jVsvA0y3zig3Rx7rmaPtdPtg4LNLKtuwCNJqNv0qfmjZDvBOiNXt/kbhulN3PDNZF4ZNYMPzprL/204F4DzA87nn45/8r+4//H2tjmc23IKFtM8EsIfYkjjncwrzaJ/sC97Z17pTsZFpTB2d/DbZakj2FpXxvLKXUyNb1959UhgSYrj7r++xFZRxbsX/x/jN85i+qar+GTeBywfdwVvv3YNem3r7UDU6zGcdRaGs9oXoXNt3YpjxgxcS5fi2b4dT24unm3bsH/1lW+ARuMLlu3TB+2YMejPOAP10KEdegHtC0mW+Sx7JSuqunYRfZK1AotGR+puN2ado6WDRQKOHSuKUS+y5Yd4rniwii9mNxNzaiErPoulb/LRL6Kl0J62zgG14Pue9k3WMnGYnooaL7IsIwhCu2zDLmtDdQPSBBXi8vbfY0EFQbFGLnhzzBF7355GsYz0EKIgML3XQP/vM4u28ODqXymq8tIoN3LzhvfJ310kzaLRM6FNzZC21Dtt/G/ncu5a8QO3/vUtT6ybRUFT1zU0ALIaKvnPhqVdzYxw8RYaa+fx4lottyz7huc2/kH+PuqZHHGGfQHGXpD3JpTPPKBd/AGsnqZOt58T54sb+aW4ut3rm2tL6GUK4b0dS7ln5Y88vf53lpbnkjgygn6nx1G6sY713+7yj/8w9EPSWkbh7dvIaQs3oPIOokH+kbTw38mz+j4zj+SlqKmuXZ0YURDoExTlH3O0MEZFcNeijxlUkM2Pk6+nX2kuT71zA98NHsfV175Bs30f9mFAm5GB5YEHCJs9m6iCAmIdDqLr6wn6/HMMV1+Nul8/JKsV59y5ND3xBNUjRlCuVlMWEkLl0KHU33ADtu++Q2ruus/OnOLt7YRIL1MI46NSGRqWgF7layrnlDy8tX2Jv7ppB4uEJBGzfRcqa5M/UPxQmFO8jX8t/Ypvd63b57h11UU8unYm/9n4Z6fbZVnmt4LNRJ21jHPu3I5DcjPwomK+ndP591Ph6BGmNyHsvl9sqSv1B7bPey+abT/F+7PONrQpMBlhOHJFyKSxqo5PZhmu/vZkDJYTV7wqYqQHGRGRyHmJmf7fG1x2Vtt9N70FYW8DPiFye8YkTJqOWTOduRQuTB5CgLrrL2yNo5k3ty2id1AMyL6VsNTGJqijL5X1d/H9rvyj7lLoElGEiStB1MKqC8Cxf3eAnd2rGHfnN/urk30us68K2kfGVzuaWVyeQ4TBzO0ZkzgpOo1v89axojKPa78/BbVO5Ovrl+HxtD74zmu6mwBvMJ6MeqbPdKAmigDzfwjQ5eDyemh2O5GQO/SxsWj1NLp75jPVBgVx55/vMao0j5/OvI3E6jKe+fh2ZmWO4KrLXqSq8cDnJQYFEXD55YR8/DGRGzcS09BAtNdL2LJlmB58EO3EiQgGA57Nm7F98AH1F11EudlMqcFARUoKNWefTdNLL+HOzsbl9TCvdAfgCwi9oc84Hhw8lcvTRnBD33E8P+Icv6izeVwsKc9tN5eIXUWc8s7X/Pv827juxkcZ/vOhB/sVNNWypDyXuICgfY7bZa3mw51/MTYqmev6dL5yXVGV72/n8MaFY7n3yUos4XYuvr+Kf7/Qg0JfAbO2teBjg8vOj/kbkHZbQ/Ywr3Qnhbtdg/EBwcQHHMFqrBYBeaDYpuQajHmwL0mjTuxYI0WM9DBT4vtx94BTGBQah4BAg7ocZKjS5xIcX8XDQ6YRb+r8i9/WpZBkDiNMb6JfcDTh+1Dti8tzCNObuDB5CKLg6z7pcKWyufg1zMLJONnGsso5fpdCTEAgl6WOQCuqWV65q8vjHnH0UTDyR5CcsGgk7Cct1ynvFiOezlfgIXotgRoVK2rax43I+BoLnpuYSYIphJOiUxkXlcLi8hy0RjVn/Wc4ziYP31zfmuGjEXQ8rXoX9BIlyXk8tXQMXm8gU9JfokVaf1infaQR9Xpum/E648rymHHhPYQ2NvLsV/exfMgwrv7HM+RXHVq6ryiK6MaOJfCZZwhfsIDo0lJi3W4ii4sJfPtt9BddhCoxEamyEudvv2G9916q0tOp0uq48fR/cvXNj3PFh7+SkV+B7G3NQtOrNVyZNtK/kv2rYhfuwkKcL77EzZffw43XPMCo72Zjrm0AwG45tAZ1Dq+b/2Ut54q0ke0K2HXG/NIs+odEMyWuX5cN8VZXFbZr5/DgxJGcf892kpI9vPaVlbFXlbYTuApHl9Pi+vqbWs4vy+KJdbOYWbiFOcXbeW7DHL7Pa72Op8T3OyI1eryy5E8b9k703b9kQO4nMPCOpG5/v2MNRYwcA/QOiuTmfifx3MgzqTRtZc9V8Z76CVpU9V3u15VLYV/kWWv8Db7iVC+QpPoasWUmGytjSFZ9C7KKuNCPjgmXQgeiz4Tkm8FWAGuv3OdQu7BbjHhbQJbA0wKuOl+O9W4yg81UOlx42gibQK2+Q/nuaEOgv8bLxDszCE0ysfrTHKpyfELGotET7UnhsaDHIMLNj/zO7B3XIwD58kS0qgZEBJr2sixZXQ4CO7F49QSiWs2N373IyWU5/H7lI+gdbp75/mF2Dh/Mtec9wtbizmNvDhZ1XBymm24i9JtviNqxg5jmZqKdTkJmzybg9ttpyRwAyMRtzyXxs++oGTmScovFVxNl3DisDz+M7vOvGL96B6e9/hnnXnMPVYmJ6J/6D6FFvpR0lbf179kYeWjZSl/nrmVAcAx9g6P2OzavyXdN2T0uVlcVdjqmxePs0M6hd2gIzzzfxOnjDCzf5CT2tCKKK/btJlM4MqRYwrk0dYRfkFTYrcwo2sLPBRvbBUufHt+/XSBrd2F12Xlh45/8VLARAGm8yjcXAdyPaXkv+y9yG7svQPxYRBEjxxCrvH9ho3Ul2iQ3cXnt5bvTBjuyL5dCV1jdDn9Z+XDVvwhRXYxFa8ThdSPJQRjlq0kOXY2o/bXdfj3pUmhH5ltg7g8lX0LRF62vSy5Yeir8kQqz48g2lfp0R8GH8LMKfjPBzFDY9V//LufGRyADPxS1lnlOsYR3qFZbabcSomsNgLz+18kgwwe78/2TLWHsbKjg8cDHGa0ZDWl2niv6iOX5tyFjJ0caQoLJwo425aQlWWZnQwXJliOb2nuwiKLIdZ8+yWnFO1h487O4ZC1P/fw0laMGcd30/2P5zu4XpKJWi2HaNIL++1+yf/qMl397l6cXfUH18gWE/P475qeeQgwKQq6txfbppzTceCMT73mKUT/8QdwOn7VOlGU6W6t6VAd/i1tTVUBRcx3nJmX6XpBl8Hq7HG91OXB63DyydiZzd7uYOkPaq4qCRaunyeNg1pvRPHFTMFV1EqnTi5i7Qik+1xOcFJ3K7RmTSLWEd9gWHxDMdeljui2BoC0ur4f/bl3YTvQYI33WOGm0CNEidq+L17ctovQIZfEcCyhi5BjiZ/vPqNskOHnxstC5kFeaXul0/L5cCodKJC9T09ILu+bRfXa27VEmLAeVEdZdA817Ah1FaNoOLbvAUUqoKOGzpO4V9R401P/jVcm+leo3Ba0iYXJsH/KaaphdtI0qexOrqwpYWpHLxJjWAOJVpmICrw+kcmcjKz/KZkJ0GjWOZn7M38A3pt8I8UTjGVjP09s+Jlh+AA+VjEt5hmUVuayozKPc1shXuWtwSZ4OtUiOFURR5PK3HuDsoi2svO816rVBPDHzBbwTM7nx9LuYs/bIFHiLMQb5f14dpMEwdSrmu+4iatcuInfsIKq4GE19DR+89yQlfXyf3b7yGq6853lEcyilBgPlUVFUDhxIzZln0njXXbR8/DGurVvbfc/rnC18m7eef/YZ40+b7//eF4waMonGBx7AW95ZQUCZ34u309RGrBtUmg7i6MOdy7B73J3O89F/BTPn7UiQYcpNFTzzYdcWUYUjR7/gaO4ddCqPDz2D6/uM5br0MTw0eCoPDZ7K8IjEI/KeSypy/anCwTojt/WfyEOxUwG45J7RpAf6+tI4vR5+yt9wROZwLKCIkWMESZb4yf4THjqaaR9ofID1ro6xB/tzKXSGRaPvEIhqdTnQqzRoVWosWhOriy5FraqnVLqn3ZhjxaWA1gJj/wDZC4tHg+T11eDu/9w+dhJ9QiS0tV5JkFZLkEbNytpWS0iiOZSb+p7EmuoCnlg3i1lFW/lH8lBGRrT6bBtddiw3WtAYVHx/63KCRD239p/IjvoKnt84j0vrnkGtUtHSr5zTZ84jSLgQo34F5/WdwW+Fm3l6/e8Ut9Rze/9JWNr0GjpWOf/5O7ggfwObn/6QElMMj/z+KkFTh3DrlFv5dlHXVrhDYWBoLGaNr8z6upoi/qrY1S71ssXt5NP8tZT3TeGj959izfsv0xwSiCR2tIu4tRpWnX8auSMHYU+IBUnCk52Nc9Ysml99lYZrr6V6wADKVSpKtVqfK2jMWDI//Jrfnn2QZ998lP/74XVsFeWobDasL7xARUIC9ddei3tHqwVEFETcss9ykmoJ59Ehp3NybDoxxiDuzDiZ4N1/4ypHMwvLsv377d3OYcqYAHJmJBAeIvLwm/WceVv5sbsgOMGJNgYyLLwXwyMSSTCFHLE+TrIst1s83tzvJDJCYqjO8rmA+w6O5db+EwjW+eL7ttWXt6vefSKh1Bk5Sswp3sbPBZs4OSadi1KGdti+yrWKGqlzE7iMzIU1F7I5ajNGwciMwi0srcilye1kfU0RU+L7EmnwVbbb26WwN8mWMLbWtV/V7mjjLlCLKtTyBBpsP4DxDaKlxxEFMzsbKpgU0/tQT7/7CRsHfR6GnU/BirNg7CxIuAyyX4CmHcDeN3EJ0h+AvW4qQ0LMLKisx+WR0Kp92nxgaCwDd0fXd8bV6aMBWPFGFl9ft4zPLl/Ctd+dzMNDpvnHZDS7uFG8kayILTz513D+b0wmmL/itiHpxKgf7Y5P4Kgz7aF/wkP/ZNHrX1P85hvcN/cdqld/zb+Hnk+f2+7kX2f3O+z30IgqpsT144fdK8DPclaxsCybvsFR/u+70+sT7Ca1lqUZvZj/5Uuc+vZXDJ2xEEkUECWfeKmLjeSPO64CQETg6eFnEaoPQJIkpPx8nKtX49m8GU9WFp7CQqSKCkxZuUzYtBWxjVtGFgAZRFkCScL28cfYPv4YVXo64rVXIw8KB6MBi0bPbRkT0as0fJGzmhRLGH2Do7it/ySe3DAbgKUVOUyN74vT6yW/qYYJ0antzj8hWk3xnAQmXlfOrKV2Us4sYd1XMYQEKbfqE5EGl52q3VVdUyzhJJh8PatyFpej0ogEJ5gQRYGxkSnMLNqCDGQ3VhJuOLTA7GMZxTLy/+yddXgUVxeH35n1jbuHJCQEgiW4FCtQoE6NusJXN6q0VKhQdzdK3WiRFisuxSVYnLi7Z3Xm+2NDICQBAjFg3+fZluzcuXN3M5l77rnn/E4HcCopggvrFqKgeTVVCYlUayofVH/Ayuz4hhTBOyOHU2c183rsv+TUlDe7pbAwLZZvE7c0/HzslkJ+bQXrc5PYXZTJhICj0vATAnqyNmUGsmzhoOHWrrulEPUSuA+HgmWQ8qFNGajfOzQ1RATQh4D/lU26mBpk2x/+PbP15cGH3xWJT08XYv9II/dgY0XQux3v5kr9lRBi4Puq79me9ihKfMiTXqDUuqDV1+pKjH3oBm5J2kLBtwvZ79uHR9Z9w7BbRvLEuDt4+5czdyNPCOjZSFcnq6aMf7Pj2VqQ2mCIOCjVjPOPpNpixOSgZ+kT0/nh3VlUu7siiQIyUBbgw1CvEAAkZDbm21agoiii7N4dhxtuwOW11/D46y98du/GLyeHwOpqgiwWfAoKcF+8GKc5c8gZ1J/mAlKsiYmYn5rFM5On89Tku7jziv+RPWAAv73xLBnlhQzdfgiAAEdXvOqzbEqNtRwszePbpK24anREewY16VetFtnyfQAP3eBMeq6FoMlZ7DzYBeK17LQ5JutRT7jHMYvI+OXZSJKMuV7359gipybp3AxyttemaWcMVjOv7l3Bjd0HsyzrIIEObs16RsJyw0izpCEiIglHJ1MPqz8hRDDJdSR3ONzBF7v3MzGwFxcF9gJgZ2EGXyf+h4iAt86JCQE9GXXMamt+4lZKjDU81m9Cw3uJ5QX8kbqHvNoKXDV6Lmm2jkoiBfI9BLvt4L+Ub7gmZAKhXSzYEgCLAZb52sTNxu8F576w6UIsRetRNkwggi3wNezeJqdXmiy4/LGeS/09+XtcdKsvX5hcwSuRC/AIdeKFw41r+UiSRHBuMDnmHITtbuybtBizwyRkTPRS7kIvtv56XZG4RWvY8uxrXJi0kTq1hp8HXYHi5gd4acaJlYhPhCzL7CzKYE1uYiMRP7WoYKh3KJODolicvo8dRY2zV3Sl5Uyb/T7BB5OJHzmQ0OjBxKXHozKYcLbI9FA7IRsMyHV1yEYjstEIRiOy2Qxms+3/FguyxWILWpUkzAoRpcncbIDssWT0iyRu3FDSY6KY8Pkv9Ko043PIZpB8l7iNLYW2LS2FIBLh4sWN3QeftL7JT8uquG12EbIMH8/y4N7rXE7Y3k7zbMhNZkNeMiVG2xaHn96FS4P70sfdv8VzdhdlsjhjPyWGarx1TlwVGk1f96MeU1mWG7zUdVYz3Z09uTF8cIOX+lSotZh4dKttceKhceCVwZchCiIl6VW81P0Prv5gGKMfiOL7pO38Vy+t8L+eFzDQK/h0voZO4VTnb7sx0s58m7gVB6Wa67oP5J39q1s0Rh4se5C1hQcY6hDDZe6jubP0TtSo+cq6in0l2Tw34GKK6qqZvWsJs2Maa4+8vW81QY6uTOs+qE3HXisdJN7SFx0xRKm7sF5GxX5YEwMqZ7g4HyoPwbpjvmOVK1ycC4rm4zM8/liPUhAouGbMaV3+xzs2sGN+Cle9P5SxDzeW0M+15NItJwRLrYTz7kDSrvuJNEYjoqW3Mg21eO4IGaWu+Y9Vj77M+IT1WBUivwy8lKqr7uadmePPqN+C2krKTLUoBQWBDq5olTYV1o8OrudgWeMtx+C98dz+8CtN+jjykBMEwSaiJ4qgUCAoFKBSgVKJoFIhqNWgViNotQhqNYJOh7WoCGtiYovjq3ZzZtfl4xFvuJ7reo8AnQ7UtmwIhZMTsizzwjFF1t4cOhWXVsQKHTpsYsRtOVRWy9x6qSPfvXLu3DMdxb6SbETBtmBDtonQ/Zsdz+yYyfg347E+XFnE2/tWc2Vof/q5B9QXO43n2ZjJBNS3X5EVx4qsQ9weORxPrQNL0veTU1ve6uKlHxxcR1yZLTD6xvDBDV7BTy5aTvrWQh7MvIw3Dv2LRZbQKpS8MXRqgxLx2YC9UF4XoEmK4An4yO0jxhTdwz3qh5mqn0qoMpQyuQxnlZaK+oDTSrNN+tq5OSXPdlBH1Yt9cBImUsdeKqQ1bd5/m+HSD/q+C+Zy5E0XkiQGssDshCzbJqGNDpewKi+9kUv0WAa4O1NoNGOwnJ778/qvRqFxVLLkqZ2Yahv34a/0Z4HXH+BgpTI8j4nLniNU8TMStSRYopGk5rMrzkbCxo/k7v0rcNq8nbU9J3D9rqXc9/TFzB0xlXteOjUZ/+bw0TvT09WXcBevBkMEbNodxzNg8Rok4NP5r/P2ks/48J+veGXVt7y88Se+27OcAEkiwGIhwGQioK4O/+pq/MvK8C8qwi83F9/0dHyTkvDZvx/vXbvw2rQJp5kzmw5KEBC9vXH84nO+XPwlG++6ho0OVnJc9Sg8PFA4OaFwsokPbi1MazBEerh4t8oQAejdXU3Ov92IClPx/T/V9LvGXmivtfT3CKSvewA+Omd89M5cGdIfjUJJagulM44VsvPTu3BFSH+CHd1YXx+ALMsya3ISGgnZ3RE5nHJjHbHHyMafChceE4v3S8pOvkvaRlJFIaFX+WKstvD2g0sbSh2M8Ol+VhkircFujLQTzaUItoYoVRRmzNTKnas5EKb4BVCQYbmtU8dxUiIexuo1CaF0C4lb7mGO0aNhNbxIMYoFaXt5btffZFQ1rfZ6TbBtpfnbacSNACiVItd/fQEWo8S869Y2OX6F/grudbwXAkzs0e5gzvZ9+IrPYSaPRMu5V/jKZ0h/7t27BL89sazofwlXxK7hqZem8vbQS7h91p9YTtPoO5ZiQ3Wj7RudQsVtdXr6rtuKgE1crdbVmXJnPZLG5qWI9gg8rWsJumOMB4UCQa/H+ZVX8ElLw+V/d3NBoC3eSpJl3t6/miXp+8moKiWlopAfkrfzfdL2htPH+Uce3/0p4agXOfRXEDdMduBAipmAizJJTDedVl/nO5IssbPQtjgJc2p+6/mIkN2xRLn5kVpfo6vYUEOl2dBEyC7UybOhzanSx82/ITlABrYUpPLO/tUs7h2PrAd5oe33HOzozhUh/U7Q09mN3RhpJzKrSqkyG3h1zwru3fQL9276haSKQtblJnLvpl+aFTJzVmuprNcqGKa27bfvNO5sSP9zVtkeis2l5rqo2yftVil64ClMx0wOhdZP2+UabYFVknjf6REqBWcurVuIFplFJjUVgis1om2FWm6q470Da8irbSwBf1M32wPlt/TTVzgcOK07AdHuxC3NIn1nUZPjn7p/SpQyCnrV8GH2p+zIGoqLMJVadpFmvvm0r9uVcYmK4P6dfxEWf5DlQ65iYtwW5rx5HZ8Ou5gbH/kJg+n0jZJNeSmN9EUUBYV433gXyLZY01tLBTTi0QwUhSBwQX3F5NYiaOv/tpRKHO6/H5+MDJyeeQZRb0u3vCS4T8OkZrRaWJp1kLmxK3hr/2o25x9uqPB6gW93Yk7TIDrCz6/78NHTHlRUS/S5OpvfV56baZ7tQU5NOQ/99zv3b/6Nn1J2ck/UKPwdmo/BqTQZcD5OyqC9vNSCIDAtbCBXdOuPVtE4a8p6pRKhFsI2ODOz74XnrFcE7MZIu9HT1ZfnB1zM7AFTGl7dHN0Z4h3C7AFTEIWmX32Yk03JE2CCxhZwuqf2YMODzlPrgLNK29AGoM5iJq2quEULvy0IUnyMgI4c65NdVvdga2EaSVWlvOH6IhIiv+iyedbgiIt7P57qf1HD91NnNbMgtXHGh6NaiYdaya7SM5M8n7F4IoII30xd3fwYfbaiF/UQU8m1m+5AYXgPLX0plX8iz3IijZSzG123YO7b8hu9kuNZMPk2RqTs5Y0Pb2H+sIlc+eSXHC5t6q06niNVce/f/Ctzdi9lS73KsABoTGZueOptNGXlCIBVIbLz798xHpN1EOni0+rtkSNoJkzAafZsfBITcf3gAxSejf/W1AolD/cdxzDvUMRmwlw1opJLg/tyU/iQNtGreOB6F/6b749KKTDtqUIee8deaO9U8NE5MXvAFJ6OnsQYvwjmJ24jt6bi5Cd2AIIgcHFwb94YMpWbwocwyjeckT5hTJkTg6gUqPmyGt1JaiSd7diNkXZCq1QR4ODa6KVRKHFQahoCoL5N3MLCtNiGc8YHRHKoLI9V2fG4WvxQShpy5BzG1rvwBEFgfEBPlmUdZF9JNjk15SdMEWwrRFFJgPgqEjVkWx9tt+ucCRvybHu5xUofCnp9gISMIxKCVEeYsycP9x2Hm/qIcFBuE+Ggge7OFBnN1J7BFoJ7sCMX3NuLipxaVr4a2+S4s+jMv17/ggasfcsZuvgiIsQtKPEiV3qGMuvC07722YDa1xflG7dg3L2WJZPuJCYtnk/eupuNYy/jurs+pbiq+W2HY6vizh4whWiPwAYPorfGkZkfLsAnJQOx3lAWrRLdYhvLsp+uIQIgurnh/PLLKMNaTm3XKlTcETmcuUOuYGpIfy7w7c5o33BuDB/MG0Onclm3vohtKJw1vL+WzBVBBPsqePeHSkbdYS+0dzKUogJvnRPdnNyZGhpNoKMra3ObD0w+1kt9hEqzod291FqlitF+4dwcMYRbewzjsvB+9JsaQnlWDYc355+8g7MYuzHSiZQaa6kw1TX83N3Zi+mRI9mUn8LLe5bjbg6g2PlAg/ECMCmwF+P8IvkxeQdz967AaDXzUO9xpxWX0hp8lDadjCL5EyxSebteq7VUm41kVtvkswMdXPHv9QAPSZEYkcFgi1LXKlSM8rO56WVo5F0CuLabTXL5l/TTixs5wtUfDkPnqmbFnL3UljcNsBypHcnLLi+Bh5ki/ywmr7yZXspYBLSkWq+lVjp4Rtfv6jzcZxwju/fl/uVfMzgnlWWX30t4fhbvzbuff4eO4Lqb3yW9uPED/kgw4ZiDmQjRg7lEckJRP7H3+fx7VEv+QTwmKVAAAhJSUZiPCpdpFB0jGuam0TM5qDe3RAzlpoghjPGLQKdsH9e6p5uStGVBTB6hY/NeI0GTssguODc1KNoDWQaL1HzNoWO91EeIL8vvFC/1tR8PAwH+fHhbm/bb1bAbIx3IY/0mNErrfazfhAY1zyMM9ArmpUGX8ckF1+PuoKZAzGx0XBAELg/px1vDruKTC67n0b7jT6pV0FaEKOcBVtKsXSvGwWA9mpFyJMe/UOVDrSyCIR/qM1a8tU7NngNwY4jNGPkj88wqY4qiyC0/jMFqlvjmquYzkGa7zGa0ZjSE17HOuJa5e3+gh3I9IJNoGYalBSXecw1Rr+eKX9/gp9/nsvz6R/ErLuG9nx5jz/AhXH/Da+zLtGWgpFYV09PFh4rHH8eanEzJlVfiL2rpvXoLI7/9s9m+FWYLQSlH/3YijwtGPFcQRZHln/rxwt2u5JdYCb80kzXb7IX2jmdhWixJFYUUG6rJqSmv/7mAIfX1Zk7kpc6vreDvjP1kVJd2ipfayVtPyDBvsveUUJp57sYI2TWGuzCRykgSLAmYJBNqsfP3C13Ei9HSh0p5KQYpEa14epkBbY2jUtPw7/SqEiRZRikqyUEFF+4G0bYyTas+mn3hqNI06kOvVOKpUbGr5Mz3kPtcGkzIMC+S1+WRtC6XHuOaCiut8lqFX64fpdFlzPnvdUb5DiPa9zvSrbcQZ4mmjzIdUTy3/zwlWeb31N2Eufkw/Zd3kSxvsmD687iu/IN3fn2Gvdu+580B0+CuKLyTtmCpFxCzHDrE5S9+iOu6Tcg0K46KJAj47osjvVcozioN/U8g738u8OK97gzpo+HKRwuYeE8+rz7gxqzpbic/8TyhymxgfuJWKkx16Oq30B/qM44oNz/A5qUWjrmTjnipF2fsY1H6Prx1TtwbNaqJl9pktfBj8g5qLSbCXbxa9FIbLGYWZ+wntiSLKrORoHq9qRAnjxbHfKw4pdPTauQr4Y/7t3D33xc1tFmXm8Sq7HgqTHUEOrpxffeBhLZj/GB7Yhc968K8UvEKz1U+x3qv9YzRnp4gV1tTJ8UTZ4lCR3+i1LGdPZwGPjiwlrh6l+mtEUN5YscD7Czai/ku23ulxhrm7F6GwWpGKYi8MfRKHI+Llr947V6W55VQM20seuWZGQJVhbU85/8rencNr+TfgCg2dUImmhKJyu+NVAnqXd5kXbcPs/o98qXX0DOMXuqtZzSGrs5PyTs4VJbHE/0nNhQCA5ty7d8PvYpy0S9E58QTFxCKc20dARWFCMcEUBsc9WirbV4Aq0KB4ph6MpIokDRiAL/Pnck1ITFMDOp12uM804nETaPn4mZVjtt+IsnIMTP45hyKyiQuH6Nj4Xs+zd57djqWL+M3k1tbwY3hg3FV69hemMbqnEReHHhJo3v/CMWGaubsXspovwgu8O1OQnk+C+7cinKDxFslt6LWK9lZlMH8xK3cGD6YUCdP1uQmsKc4kzkDL2uS5dOZ2EXPzgHGacYBsM64rpNHchSd2AtnYTJ17KNCWtnZw2lg7DHCQT8m76DMWIeMRKmhhg15ybwR+2/D1sxgr25NDBGAa+v1Rn5IO/NAMSdvPeMe70t1kYF/nt3dbJtIdSRfun8BzlZM4aUMWTIRP/EVXITLqWUb6ebbz3gcXZVfUnZyoDSXmf3GN3kYi6LIFR8/x5Ssgyx5fi4yKgLL8hsZIjKgMprY/dW7/DX7PmIvHk1pgE/DcUGS6bYvAWSZ3Nqm3q51uUk8s2Mx92/+lddiV5J2Am2I75O3E1+ezx2RI3h+wMVEufny3oG1LVbHLjZU8/Gh9US6+jB7wBTGB0TyQ9J2Dh2jFruzKIMFqXu4JLgPz8ZMIdDBlQ8PrmsSENlaugWoyF4ZzNC+GpZsqCPismzKKuxxJJ2JyWphb3EWV4dG08PFG2+dE5d164e3zrFRxd5j2ZCXjKfWkWvDBuCnd2GcfyQhN/ogG2QWP7UDgNU5CVzg252Rvt3xd3DhpvAhqEUlW+pl48827MZIF2aoeigAu03NT2adRajiZ2xCaHd09lAa6OcewEgfW4CqhEyFyYAky8zauZifU3ZSXh8o7K115OrQmGb7uKE+buTPM4wbOcJlcwfi6KVlzVsHqCpsfuK6y/EurtFfA92MZDgc5uo1txOmWIiWKErk78i3vNUmY+kqyLLMLyk7iS3J5tF+F+Kpbbn66IqseJIn98DLW4V0XCaKAAhWiSGvfIDnFVNZ+sR0ljw1w3YNwKxRc2jsEBAEthSm8mfa0XTu1hgCbTWRDPAMYnXO0cyN9pxI1GqRbT8E8MA0Z1JzbIX2dh2yF9rrLCRZRkJGKTTevlGJSg5XNtUkAkitbCq6NuKiHkgxItvmJWOymMmsKm0kuiYKAj1dfUmtPDtjzuzGSBdGKSrRoSPJktTZQ2mEUnTDU7gbM3kUWD/q7OEAtoCymyMGMykwCqUgIgoKjt9/jHTx4fH+E3FqwYWpVSrx0qjYfYZ6I0cQRZHbfxuHbJX56sqW5fR/c/+NYEUw9K1mUfESPor7il7K3SjwIEd6knLp7zYZT1fgl8O72F6Yzl2RI9AqVFSY6qgw1TWS6j8STJhaVcTYtCK89x5qlC1zBFGSMGdk4nD70yDL9Ny4C0m07fwrzRYcyyptKRPAv9nxDYqtrTEE2moiiXLza5gkLJK1QyaSj2Z58sMrXhiMMkNvzuXLP9vmvrbTOrRKFWFOnizLOki5sRZJlthWmEZqZXGjbMpjqTQbmhVUs9yoxFxrYe1nB5GQmzzLnNVaKsxnp+FpN0a6OD4KH/KseZ09jCYEKT5ARE+u9WmkLlLSWhRErgqN5rUhV+KvdwVk+nsEcqF/JM/GTGZmv/En1ZsY4uFCqclC1Rmogx5Lj3H+hI/1JX1rIYeWZjbbRhRFtntvR61Qw4AqHtn5LLtL4ohSxiKg4bDlKuqkQ20yns5mQ14ydVYz7xxYw5PbFza8dhUf/W6OpLyHOXnh9cEXJ+xPRGbgod30eORHeq7agSjZjA9Rkui5eTfXbo5raLsqO77VhkBbTiQGqxmT1UK12dhhE8nNlzoR+1sAjnqBu18u5s4Xmjeg7LQvd0YOR5bhqR2LuH/zb6zLSWSwV7dGQbOngjxERKER2fBG3Mkbn2WcljHyySefEBISglarZejQoezYseOE7cvLy7n//vvx8/NDo9HQo0cPli1bdloDPt8IV4ZTLVd3OeVTUVTir3gdiVqyrQ939nAa4azW4qd3BeC+qNFM6z6QYEf3Uzr3+nq9kR/S2s4AnL5wAqJS4PubN7T4e/RV+vKn55+gk6BPFWOXXoHB4kyEcg0gkWAZhkUqa7MxdRZfjLqx2dexwZ1HUt4nB0XhrNVT7eZClYcrFV7umAL9UYSFoezRAzkykmJfbyo0jngZS3GtaKrk2uvld/HLtU3Au4szKayrarUh0FYTSWfRJ0JDzqpu9AxV8e3iKqKvy7YX2utgvHROPN5/Ah+OuI7Xh17JrJjJWGWpxW1KZ5W2WUE1rVLNwOvDqMkxIGbJVDUnutZMPNzZQKuNkd9++42ZM2fywgsvsGfPHvr378+kSZMoLGx+n91kMjFx4kTS09NZsGABiYmJfPXVVwQEnNupdm1FjCoGGZk4S9ezhH0UD6LCjyL5iy43USqF0xOaui64Pm4kq23iRgD0rhomvxBDXbnphMJFl+ou5UGnB8HXRK1fKUOXTMJJHEk3xTdIVBNn6d9lvFAdwbaCVL6Y+zBfLP2ajxZ9xs9Lv+X9394nbcsqfBITydu0kk9/f48PVn1Bz/5hWJspsSCbzVwz5xNEiwUZKDHWAPB53KZTCl6FNpxIFCrUCiWOKg0iQodOJI56kbi/Arl+kgP7kkwETsokOcNeaK+j0SiUuKh11JhNxJXl0b+FWkVhzs2IrpXnE+bsyVXvD0MQQPO9RHz5UZFGSZZJqG9zNtJqY+Tdd99lxowZ3HHHHURFRfH555+j1+uZN29es+3nzZtHaWkpixYtYuTIkYSEhDBmzBj69+9/xoM/H7hAewEAv1csJrO6tOFVaqjp5JHZ6Kb8FpsQ2o2dPZRGqE5To0OtFPHRqtlbVtWm45k8OwaXAD2bP42nNKtl4aIP3T6kn6of9KolQY7jtvX346m4HW/xccxkkWQZ26bj6sr8fHgXGoWSe6JG88LASxjqHYJFsrI006ZS2+CXkGU8N29C0UzxScFqxTU+mVHz/gJsBSwBBngGNQpeLTHUnNQQaIuJBGyy5MFO7h0+kQiCwC9v+PD+E+6UV0lEXZXNn6u7xnPkXOdQWS4HS3MpNlQTV5bHuwdW46t3ZmS9R3BhWizfJm5paD/GL4JiQzV/pu0lv7aC9blJ7C7KZEJAJHpXDeFj/ZBWmdicmMzWglTyaiv4OWUnJsnSJIX8bKFVT2yTycTu3buZNWtWw3uiKDJhwgS2bm1eE2HJkiUMHz6c+++/n8WLF+Pl5cWNN97IU089hULRvIS50WjEaDwqpV1Zef4GXkXLQ0GGn4uXUlAc2vC+UhB5edBluGsdOnF04CJOQkc/KuUV1Enx6MTT13M4EUkVhfybHUdmdRkVpjru7TXqhEqHynr571f2LG+11sNQD2eW5BRTabLgrG474bG7/hzPu8P+5qvLV/HU3qkttvvP+z/8cv2oHlDF95t/YWziSO6IfAuD+RCV8nLSzdMJUX3dZuPqipisFsySlRE+YfRwsaVcX9atH5vyU6ix2Fb0/npbxVWv9Bw0WTlN+pAEEasgoJKsDPltBTN7PoLfRdk4qTSA0BC8eqAkh0NleUwJimp2LIfKcpFl8NU7U1hXxZ9pe5tMJOWmWu6IHAHYJpL1uUn8mbaXkT5hJJQXsLsokwf6HNUKmhDQk/mJWwlxcifEyYM1OYkdNpE8fJMrg6I0TLgnn2seL+DxW515a+bZuZo+W6izmFmYvo9yYy16pZoBnkFcGdIfRb0GTIWpjtJjUsU9tY480Hssf6TuYW1OIq4aPbf0GEpvN5uA4rWfDGdu1F/4fK1midd+Kk0GAh3deKj3OJzPoA5TZ9KqJ21xcTFWqxUfH59G7/v4+JCQkNDsOampqaxdu5abbrqJZcuWkZKSwn333YfZbOaFF15o9pzXXnuNOXPmtGZo5y6SChEFZarGD1uLLFFtMeJO5xojAGHK3zlk6UmqZRq91fvb5Romq4VABzdG+nTn8/hNJz9Btm3ThDt7clfPESSU5/ND0nZc1NqGP+gjKZ7HigZ9eHAdUwOHsCSnmO9Sc3mwZ3CbfYaQod5EXRxI3LJs9vx2mAHTmi9p7yg6stprNcMLhiPHVDN988MM8R5AL5d/iLNEUSJ/g87SBx/lI202tq6GVJ8Fs7sok77u/vjpXciqLqPKbMSlvkiZv4MrLmotYTsPNDrXqlRgCg5C27cfe900bFEE85dXNAUhFl7erqOX5ERV/5QGQ0CjUFFtMbZoCLT1RAI2rZtqs4ElGZ0zkYyM0ZGxPIhBN+Tw9veV7DhoZM2XfiiV9pyG9mCQVzcGeXVr8fjxZUGABp2a5vDt5YZPL1cKl5Tz+ne3oHPufIXuM6Xd9aYlScLb25svv/wShULBwIEDycnJ4a233mrRGJk1axYzZ85s+LmyspKgoParStvV0VqdqFGWnLxhJ6EVI3EWLqZSXkaFtBwXsfk/oDOhj7s/fdybyqq3RK3F5nW7NLgXjmpH/PQupFQUsTonsWFSODbFE+Cm8CEcLM3FU1WFAPyVVdSmxgjAnX+M52n3H/hlxmb6XR3a4sN/qGYoc13nMotZSN1ruODvS8i78RBRyj3stwSRLc1EK0W2y3fdFdAqVYQ4ulNuquPH5B3UWExoFUokWUZ1jKKon96FhFGDkBQKygK8qQnrhm+P3iRXl1BtOepdnYRARrI3a81lHPI2cOiQD+v3pzGqz07cdCq8dU4tGgJtPZEcYZx/JOP8O6+kgre7kvTlQUy5P59/txoInpzFrp8D8Pc+t8sQnCtMfWcIn1/8L389so2b5o3u7OGcMa0ygz09PVEoFBQUNK5sWlBQgK9v84Wo/Pz86NGjR6MtmV69epGfn4/J1HwAlUajwdnZudHrfMbR4oVJbD6NsKsQqvgJUJBuubOzhwKASbLdbwbp6IR0qloPmdUl9XEjbb89qNYrufz1wRirLPw6Y/MJ2z7t/DTjtOMgrI5yp0JG/XMpoqinl3IPAmpSLJdjkJovgX4uML3nSLy0TpSb6rBKEh4aB4Z4hSAeE6j6aN/xTB45mZ1XX0TKsGjyvN3YW57byBABuCNyOD/dFM6tg3K4ReGHWKUiyV3mm0RvFmzxxmxsn8q6XR1RFFn5mT/P/c+VvGIrYZdksnZH137W2LERNSUIR28tu38+3OWyLU+HVhkjarWagQMHsmbNUQEnSZJYs2YNw4c3XR0AjBw5kpSUlEZfVlJSEn5+fqjVZ79rqb2ptZhwNwUhCxI1YtfKWDkWpeiKl3AfFvIpsLzf2cNBkmy3tuGYSak1Wg/DPV2oMFspb8FgPhPGPtIH91BHdnyXTGHyiQvz/ev5L54KT4ipYVf1bh7d+iwasRsRyn8BK/GWwVik8jYfY1fgVLNYLgyI5NG+F6JXNn6eiIJAN0d3NKKSwd4hDVksMyc4Y33qAp50jkRRpibdy8Dcgyp8XtvF/uzzM6Dzpfvc+ftDHyQZJvwvjze/7brPGjtHmTirPxajxOo32md7vCNp9QbhzJkz+eqrr/juu++Ij4/n3nvvpaamhjvusEmD33rrrY0CXO+9915KS0t5+OGHSUpKYunSpcydO5f777+/7T7FOYgsy6zMjuOjg+vxNdrqrmTrGu+N5zVTc6MzCVS8j4gDOdIznZ6CqqivnGm0Gk/Ssnmur5eGn5fSPoJzMxZNABm+unzVCdspRSVbvLegUIgIg6p5P+5zFqYtxUkcTbDiSySqiLdEnxMro5Y4lSyWnq6+XODbHR+dEzP7juexfhN4c8hUvHVOdHfxAppmsbxxWRCmp0dwpd6IrkxFYUA5/Vdsx33uDjYfPv+C5i8d7UDi4kDcXUWe+qCMqY/mn9P31bnAmIeiUOkUrHvnYGcP5YxptTEybdo03n77bZ5//nmio6OJjY1lxYoVDUGtmZmZ5OUdfYAHBQWxcuVKdu7cSb9+/XjooYd4+OGHefrpp9vuU5yD/JN5gL/SYrHIEoF1fQEo0DSWhf8peQfZNV1nBSOKIgGKN5GpI8v6QKeORVOf2nvsNk1rtB6uCvJGABbntI9iZUA/D6KvCaEgoYJt804s9x+hiuAbt2+Q9RaE3rVMWzedjKosvBTT8RYfxUQGyZZx7TLOzuR00iHLjLUcLMvFWaVhd3FmQzrkESYE9GRzfkqjdMgQ/1ryHx3EZ6F90RToKAuoZNSGnTi9up1/9nedv6+OIDRATe6/wQzurWbRulp6XJ5NeeX5o21ztiGKIkPviKCmxEjsn2mdPZwz4rRCpx944AEyMjIwGo1s376doUOHNhxbv3498+fPb9R++PDhbNu2DYPBwOHDh3nmmWdaTOu1A9k1ZfyTedTSHevRHxEFetdqrg2NwVfnBIBRsvJ90nbkZup2dBbeivtQ4U+x/DUWqakiZkfhXL8FaDxmm6Y1Wg9KUcRXpya2jfVGjuXWn8ag0in444EtWE4iP3+b421c73A9coABs081Q5dchEWyEKR8FyfhIqrZSIb5nnYba2dQZzHzy+FdvLDrH75N3Eq4sxcP9xl30iyW+LJ8Xt6znFU5Cc1msVwTFsOSjP28smc5WTVlDVks94zywfDscH7pE40+z4Fq/2ou27MH/avb+HnH2Vl87HRQq0V2/BTIPdc6cTjbQuCkLPbEn531Ts4HrnxrKIJC4O+nd3X2UM4Ie9h0F2RD7tFqoJcG9+Wybn35vCAGV8GFCd69GO0Xwat7V5BfV0lGdSnp1SWEOnUdnYBuyu9JsUwg1XoDPcSVbdKnwWqmqO6oWFixsYas6jIclGrctQ5NtB6CHGwpz2tzU/B3CDktrYcRni78mVVEscGEp7bt45uUaiXXfDScX6Zv5vubN3Dn7+NP2P4nt5/YZtxGet90Cv7LY9KKa1lz8ULCFcuJs/SkWP4CrbU3PooH23ysnUFnZbFcP9CT6wd6siq+gmv+SqTSr4qb4mO5Y7UD744M4/4xPi2eey7x2bNeDO+n5Y4Xihh8Uy5fzPZk+lXndzJBV0StV9JrUgBxy7LJ3ldCYH+Pzh7SaWFPKu+CxJZkA6ASFUwI6AnAcPVwUiwpAKgVyob3j23fVXARx6Mjmir5X+qkttnLzKgq5ZW9y3ll73IA/kjdwyt7l7Mkwxa4dfwq+UihsvSq0tNaJQPcGOIHwLepuW3yGZpj+F2R+PR0IfaPdHIPntiTdKSgnkbQIAyuZm3BBubseRNRFOmp3IMCV7KtD1MhnTgO5WxiQ24yL+1exsNbfufhLb/zeuxKDpae+PexuyiT53f9w/2bf2XO7qUcKG2s0SPLMkvS9/PEtr944L/feO/AGgrqmsaITOzlQsWzQ9gydiju2S6YvOt4IPMAqte28Mq/TUXWzkVuvcyJvb8G4KAVmPFSMdNftBfa64pc+6ltEfbH/VtO0rLrIshdycffApWVlbi4uFBRUXFepPnet/lXrLJEoIMrzw24GIDri6/nt7rfWOa5jCm6KWRWl/Lq3hUAjPIN5+aIIZ055CYYpBQOWXqgpRe91R1fcfajg1/y0LZnWD7pNyYHndjj0BIWSUL9y1pGeLqwedLgNh7hUQqTK3glcgEeoU68cPi6k7ZfXreci4svRizRIO1yYPWUvxgfMAaDlEacpScgE6U8hFaMaLcxdxT7SrIRBQFvnRPIsLUwjX+z45kdMxl/B9cm7Q9XFvH2vtVcGdqffu4B7ChMZ2V2PM/GTCagvv2KrDhWZB3i9sjheGodWJK+n5zacl4ceCkqseXt40N5tUyYH0e+exU4WFFk63i4ZxDvXNm2WjRdkcpqicE35ZCUYSY6Us3W7/zRau1r2a7EGzELydlXyqsFN+Lk1XVUWE91/rbfTV0QncKmeVBsqMZktcUSvO76OsPUw7iq+Co2GDaQe0wmjU7Z9TQStGI4LsKlGIijXPq7w6+vVtTHjEinl00DoBRF/HUa9pe3XEumLfCOcGHIreGUpFax/oOTe5Km6KYw03EmkocRIdTIpf/eSGFtEVoxlAjlCmQs9Sm/Z39GSH+PQPq6B+Cjc8ZH78yVIf3RKJSkVjUvArgmJ5He7n5MCozCT+/CFSH9CXZ0Y32uLUhYlmXW5CRwcXAfoj0CCXRw447I4ZQb64gtzjrhWHr76cmbNYj0q4fTLccDq4uJd2uSULy5mTt/SW3zz96VcHYUiV8YwLUTHYhNNOF/kb3QXlfj6g+GgQx/PnS0GGddpYkDf2ciWbt+VpTdGOmC9HG3bQ8YrBY25x8GIEQZwjrvdYzSjOKS4kv4pmBBQ/vebn6dMs6TEaL4EVCSYZne4dfW1BsjBsvpGyMAI7xcqLJYKTS074P3+q9HoXFUsuSpnZhqT5698I7bO7aKzhE1GByrGbJkIpIk4SSOI1jxKRIVxFtizqnUTEmW2FmYjslqIayFGKnUqmJ6ujYWYIxy8yO1vjJvsaGGSrOhkdidTqkm1Mmzoc3J6OapJf2pGIpuHklknheSg4VvpVTEtzdxzfzkk3dwliKKIr+/5cN7jx8ttLdw7fmpy9IVCR/th2ugA/v+TKcotZKFj23nOf9f+OryVaRv6/rba3ZjpAsyxq9Hw7//SNvD0swDVJsNaAUtH2rn4WB252uXJ1ngN4tS130EOTl14mhbRik64y0+gIVC8i1vd+i11aLNGDHL5jPq5+ZQ26Q173D7xggolSLXf30BFqPEvOvWntI5m7034yQ6IQyuJsOYydVrbgfAS3EPXsIDmEglxTqxHUfdMeTUlPPQf79z/+bf+CllJ/dEjcLfwaXZtpUmA87HVd91VmmpqE/hrjTb1EWdmxO7M7UuY8TTSU3C4/2puvMCYop8kNUSf6oyEN7dyITPE7BYzs2U2EdudmXjN34oFQJXzSzgqfe7bqmK840ht4djNUu8HP4HGz44hKnGdg+KSuEkZ3Y+dmOkCxLm7MkYP9t+vyTLLMk4wGPb/uLB/37jvX0bGVnwPxCgVJ3JAtc38cz15MbiG/m77m9MctdynQaI7yDiSK70PJJ0ZoZBa9AoNAAYrWd2zUv9PRGAJdntn9o5cFp3AqLdiVuaRfqOwpO214t61nqtBYWMYkgNizKW8sHBLwAIVn2Ek3AhVfJaMs1nd3aNj86J2QOm8HT0JMb4RTA/cRu5NV1H8M9Rp2TPI30x3zeSC8r8QIQ1TtmoPvmP4R8dwnCStO2zkQsG6MhYEUSAt4I351dw4YxcLJZzxwt3NiFJMgeWZPDeBX/z7yv7bG/KIFmPhoOqHbp+4qzdGOmiXN99IOMDGqcfmiQrAF7mMNzNgVBv7Bow8EfdH1xefDmeOZ5ML53OGsMarLK1o4fdBFEUCVS8Uy+Edl+HXVcj2owRk/XMjDNRFAnUazjQznEjR5ixeCKCCN9ctebkjYFBmkG84fIGVgcTil5GHt02m51FewAIV6xCTRhF8scUWj9rz2G3K0pRgbfOiW5O7kwNjSbQ0ZW1uc3X5HFWa6k0HydkZzbgUu8Jca6v+FvZnNjdcd6SVo9TqWTTA70xPzCCKbWBYBHZ5p6H7ovN9Ht3P9V155ZR4u2uJHNFEOOHalm300C3KVnkF59bn/FsYNFj2/nqitWkb215AaNx6HpxhcdjN0a6KKIgcl3YQF4adCkTAnrSzdEdP50zkS4+3Bw+hIfd70Y85tdnwfYQqJKr+K7mOyYUTeDGkhs7a/iN8FL8DxWBFMvzsEgdIx6lqQ8CNkln7im6wMuVaouV/Nr2F35yD3Zk5D29qMipZeWrsad0zhPOTzBBOwFrcA14mxi3dCqVpkpEUaSXci8iLmRZ76dSOrXtn66OLNsKHTZHmJMnCeX5jd6LL8tviDHx1DrgrNI2alNnMZNWVdxiHEprUSqVLJvRE/mxUVxnCUEwKDjgU4jTt5uJeCuW/Iqu5b08E0RRZPUX/sy604XcIishF2eyfpe90F5HEjMtDJ2bGkFoeStGpbd7RuycIT46Z64NG8AzMZN5cdClzOw3nlF+4VzncA0SzbtFrVgREblOf/I00Y4iVPk9IJFqvb5Drndkm8Z0hts0ADeH2gKEvz7cfnojx3LNR8PQuapZMWcvteWnFoC73HM53qI3cv8qapSVDFsyGbDF7fRS7kRASYplCgbp7JKMXpgWS1JFIcWGanJqyut/LmCIdwgA3yZuYWFabEP78QGRHCrLY1V2PPm1FfydsZ+M6lLG+tvisARBYHxAT5ZlHWRfSTY5NeV8m7QVV42OaM+gNh//b7eFIz0xintU4YhVSlL8i/H75T+C39hDanHtyTs4S5j7kAeL3vPBKsGFM/J4a355Zw/pvCF0mDdP7b0S754uCGLzBkmhXEVmdSmZ1aWUGrpm0LFdZ+QsJiI3ghRrSpP3lSj53eN3puqndsKoWibONIg6dtNLuQ+92K9dr7W9YDfD/p7EKwOf4dmYmWfUlyRJqH5Zy2APZ7ZN7hg9l4P/ZPLlZauIGOfHg2svPqVz0ixp9MjrgWwUsG5w4rbwG5g/5mMAKqRVpFgmocCFPsoslKLjSXrrGnyftI2E8gIqTHXolCoCHFyZFBhFVH0G2Tv7V+OhcWikxrq7KJPFGfsoMdTgrXPiqtBo+roHNByXZZm/Mw6wKT+FWouJcBcvbuw+GB99+z9bnvo7i3cOZmINrIM6Ea9iZ1bf2ot+gQ7tfu2O4HCWiSE351JaIXHVeD1/vOWNKNrXvB2BscbMD7dsYP/CjKbH1muh3lBRCiIvD7oMd23H3HOnOn/bjZGzmGfLn+WNqjew0thl/bLzy8x2md1Jo2oZg5TKIUs4WiLprY5v12vFlhwgZuE4Xoh5ghcHPnXG/XVbuIkSk5nqaRe2wehOjXeHLyF9WxEPrJ1Cj3H+Jz8B+LHmR24pvQV1sQOm3Vrmj/6I23rcAECB9WOyrQ+iIZwoZaJ9kuhE3lqTx7Pb0zAH1oJJxK3AkSXX9+SC7mf/881gkLjgzlx2x5mICFay6+dAnB3t91pHIEkyK1+JZfkLexrek5VgWttYBO3ZmMkEO7p3yJjsomddmGd2LObuTT83ef2csrPFc5qTuL5Kf1WDISIgoJAV6C2uvF76Pk8enNesxHVnohXDcBGuwEACZdZF7XqthgDWNogZARjl7UaNRSK7A+JGjjBj8QREhcD8aetOWS/kZoebuUl/EybPGpTBFu7a9AjxZTbBLx/FA3gK92AkhRTr5PYcup2T8MR4P0zPjOCL7v3QFugoCzx3KgVrtSK7fg7k7qudSM60EHBRBrEJZ6b3Y+fUEEWBKc/HcPPvo0EFMtT/pzGL0mIbBDW7CnZjpBOYFT2JN4dObXg90se22h7o2bys9OHKIr5O+I+RvmHMHjCFaI9APovbhI8pDH/RtmJWouLyolnM0/+GWVHDJ46P8eKhXzG3EOjXWYQofgCUZFr/1+j9UkNNw55mW+xtautjRsxS2/zB3VKvN/JNSsfEjQA4eesZ93hfqosM/PPs7lM+73u37wlThGHpWYHV0cTIv6dgsNiMqG6qz3BkNFXyKjLNj7TTyO2cKv8b6U3ds8P5tZlKwT+d5ZWCP3/Oi/lzPKk1yAy8MYdvF3WtxdG5isFiZmX3ZExfamwzvBWwNLZIDpXn80nchhYDwTsDuzHSCTiptbiodQ2v/aU5eGkd6eHi3Wz7liSuN+Qlc4vDLegEHVcVzeYenxuZ5nMR633WYlLU8LP78ywoPLUU0Y5CKTriLT6ChSLyLK8DNkPkuV1/8+reFY1ez+36+7QNkiMKrG0RwAow0dcdEfgnp2MniMvmDsTRS8uatw5QVXhqAY9HCuppBS2KoVWUWcsY/c9lDccjlOtQE0KR/AFF1q/aa+h2WsG0gZ7UPDuMf4cNwjnHiTrfWm6Oj0UzdyufbCjo7OGdNrdd4czunwPQawXufLGY/73U9ZVAz3aWZh0ku6YcubuI4n09AnBJak8e7D2WcX49UNfXX0ooL2BjXtOYw87Cbox0MhbJyvbCdEb4dG8xNetEEtcvu7zMHrc4XGq6N0hcD9cMZ43XasxiHTMM13PAdKDdP0drCBDfQMSJPGkOkmSi2mLEIjfdhrDIEtWnKefe4Bk5QwXWI4iiSLCDlriKjtEbOfa6t/06Dtkq89WVp25Yeio9WeK5BKvCinaYiZ3Fe3h067MNffZSxiLiTKb1bqqkje01fDut5Eil4K3jhuBxXKXgl1ecnZWCo3tqyPm3GxHBKr76q4pBN2RjMJzdAmnHe3K7SoaKyWrhv/oSIgpB5Km7LqbHhX4kfZFNbzc/rg8fxIN9xjW0X5+XRFcJG7UbI51MbEk2dRYTI3xCW2xzIolrlaBCZbVFRR8rcT1aO5pHat/DgonBBYOJN7VvwGhrEEWRIMV7yBjItN7TLtfQKm3fhbmNPCMAo71dqbVKZNZ0XNwIQOSF/oSP9SV9ayGHlmae8nkTdRN5wvEJDI41aHvKvH/oCxamLQVAKbrQS7kDUJBsmYhRahqBb6fzGBbmSPGzgzl4yTB8s92wuBt5vjge5ev/MXPhqd8DXQVnR5GERQFcPUHP7ngTAZMyOZx1duqtNOfJPRUvblFKJeU57Wu0HK4spsZi+14HeAbhp3dh7Mw+ZO4sZt/CdAB6uHgT7uwFQEFdFfldJLbQbox0Mv/lH6a3ux+uGn2b9x0i9ODhuncwY2ZAwQBSzF3HJeepuAsVwZTI3yHR9q7bo7Vp2i5I67YwW3zO1ykdv0KdvnAColLg+5s3tKr43ZtubzJQNRBDcBkKT4lp66aTUWWrTqsVIwlX/o2Mub6o3rmje3GuYKsUPJCsa0fSLddWKfi9Wlul4DvOskrBoiiy4G1f3p7pTlmlRM+p2Sxe1zU8CqdKVnUZP6fsaOLJtcgSGdWlzZ5jNUssn7OHV3ou4I8HtrTLuEozqtn962E2PHcQ5dNGVLcbSLgghVlePzL/unUA/PXI9ob23ZyOZtLUmLtGcHHXl2U7hykx1BBfXsA9UaNO2K41Etcu6qMpXJUmAwMcB/KXx19MLZlKv/x+xPnFEaIMadsPcpqEKn8gyTKGSsV04N427Vsp2m5tcxvWwxnr7YpCgGU5xbzUv3ub9Xsq6F01TH4hhmXP7eHPh7dx7UcjTvncjd4b8cv1oyqmAusGF4YuuYjsGw6gFJW4iJMJVLxLtvVR4iwDiFLG2VN+uyCB7mrSn4yhuMrEBV/Ek+hQxnwple/ezmGqhw9/3BZ+1vzeHrvVlYFRGqbcl8+VjxYw604X5j7k0dnDOik7C9P5Nmkb1ma2lAHmJWzh3t6jGzRwAHIPlPL9TevJPVgGMuTHlZ/WtWvLjaRtKSBrVzF5ceWUHK6iIq+W2lIjZoO1UcaMCKACyVnGv587fS4NRrJKhI7waWiTV3vUG6JTqk9rTG2N3RjpRLYUHMZJpaGv+4k1JI5IXE8I6NnwXksS10GObsBRiesxfuEM1g/iN/k3ppVOo09+H+J94wlStr3aZGtxEkejZzA14mbcdVMorQtp82u0VTYN2FZ23Ry0xFV2zmpu8uwY/vs8gc2fxjP+yX64B52acJle1LPOex2DCwajGWmkYF0hk1Zcy5qLFwLgo3gEgxRHsfwVh62XEiEua8+PYecMOFIpuLrOwugv4tmrLuUvdSaKD/IZr/NmxfRwlMqu/1gfO0hH2rIgBt6Qw2vzKth+0Mi/n/miUHRNgyqlooh5SVuR6uMrdAoVYU6eSMikVBZhlqyYZCufxW3kmZjJeKudWPPmfpa9sMdmKNQbC2WZNciy3CQ+0GSwkLWrmIwdReQeKKM4pZLy7BpqSoyYaizIUuO4DlEpoHVW4d7NEbdgR7wjnQno74H/YDfeqVyLUZZAVHDzoLG4Hed1z6ouI74sDwA3jR7fDhD7OxW6/l17jiLJMlsKUhnuE4ZCaPwH+G3iFlzVeqaGRgM2ieu3969mVXY8fd392VmUQUZ1KTdH2NRAj5W49tY54al1ZHHG/kYS19c6XIsJE7eU3kLv/N4k+ibip/SjM5FkiQPZswkLuILxER/zx/63m7TZkJvMTRFDEE9Qd+FEWNrQGAEY4+3Gt6l5pFXVEurU9ltrJ+OuP8fz7rC/+eryVTy199QVdgeoB/COyzs8WvEozgP1rN29iTl73uSFAU8C0E31JXWmOCrl5WRZniBI+VZ7fQQ7bcCRSsEWi4ULv0xik1BcXym4gKGiJ+vvjkSr7tqPd19PJRnLg5h0Xz5rd9gK7e36OQBfz6437qWZBxoMkZE+YVzffRBqhW2cdRYT85O2EVuSjUmysmjdXipnl5Gzr7SJxofFYOXn6Zsoz6yhLLOaqiIDxioz0nGpt4IooHZU4uipxTXaAa8IJ/z6utNtiBfBgzxQnuB3OyylOxvykjFJVt7Zv5prwwbQ190fSZbZXZzJgtS9DcMa7RvRZP7pLLreb/08IaE8n1JjLSN9wpocKzXWInB08u3u7MX0yJEsztjHovR9eOucuDdqFAEOrg1tJgX2wmS18GPyjgaJ64d6j0NVn8YFcJPDTVhkC7eX3U6v/F4k+SbhrWw+nRhsgVrHZ7M4KjVtJiP8Z1osa3KqEXSDCXXfSYTHbqprx1FirMVUb0RsLjiMi0bH5d2al4+XZRkrpSiF5t28bblNA3B7mD/fpubxVUoOc2Mi2rTvUyFkqDdRFwcStyybPb8dZsC0U98uesT5EVYaV7LCcwX6IC/m7HmTUb7DudDftk3YQ7meg5YwCqW30Vmj8FTc0V4fw04boVQq2XhfFBaLhcu/TWGFpZDtvnnoviiij9md/+7uhXMXrtiqVIqs+dKfWR+U8Pq3FYRenMXKz3wZPVB38pM7iGJDNXH1hRU9tQ7cFDGk0QSuU6q5I3I4T/77J9b36ohbfdj29G4hSWX7vGQQQK1TonNX4xXhjGeYM359XAke6EW34V7oXTSnPd5Lg/tysDSXEmMNRYZqPo3biFIQkZAbDCqAIAe3JpXhOxO7HPx5yBfVX3BP2T24CW6k+KXgrmgqC3wkYvz4QK22qmtQVFfNc7uWIANqhZHbBv4PleBJf3UeJquF9XnJ/JVms+BFQeD1IVc2iocxyVmUSD9QYp2HkcP0UaWhEUIaXUP82otJgReyfPJvZzTW41H+vJp+ro7suXhYm/Z7qphqLTzt/gMKtchrpbegVJ76ykaSJALyAsi35qP4zwOVQUPGtFi89bboeotUzgFLEBK19FBuxEkc2V4fw047cf13h/m9MBfZ3wgVSrrXuLL5f1H4unSN2ICWWLi2huueKMAqwdsz3Zl5i2tnDwmA2OIsPovfBMCUoN5cGdIfgK+uXEVZdg3IUJpWRW3ZqWUHXf3xcMbcH9Vu4wXb8/uTuA1k15Q3e7yHizd397oAx+OyNNsDuxy8nRa52/FuPnT5kDK5jB75PSiXypu0aQ/tj2PZlJ/SsHC4KGAgQcq3sJBPhbQStULJRYG9GF8fIyPJMpvzD2OVayix/kCieRwHzN3ItT6HEVtOvUDzq7+23qYBCHHQEV/ZeZknar2Sy18fjLHKwq8zNrfqXFEU2eazDaWgRDG8GoNsYMiSixoydJSiKz2V2wGRZMt4TNLZl0Z6vvPrbd0bVQo+XF8pOOj1PaQUdd2MqakXOpCwKBA3J5HH3inl2ifyW5U51l5Ix7g41Md4mnNiSylLryZ4oCcXPtGP7m8GYrlMgdRbQBABof51DKJCwFjZtt7a5nDXOvBszGQe6D2GaI9A/PUuBOhdGeLVjcf6jmdm3/EdYoi0Brsxcp7yoPODvO3yNiVSCZF5kVRLHSvmlVJZ2PDvMX498BYfxkEYRoblTsqsC6mV9jDKzxWw4ud8CEE3k31mT9Ktt1Itb8TmAz3yoBJR4dvkGoIgYGnD1N4jjPNxw2CVOFzVeQ/2sY/0wT3UkR3fJVOYXNGqc7spu/G9+/eYFEbcRohkVGdxzZqjWzI6MYruyoXIGImzDGiU8ivJteRYZlMnx7XZZ7HTPnx2XQjWpy7gSedIFGVqsgNKiVi4De+5u9if3TVTarsHqcn5N5iYnmoWrKql19QcKqs71yDx0jo1/HtfSXbDv2OmhaJxUnH9lxcw4em+FIwxYH1CjeUzLU9mXMW1Hw8nZKjN4yjUV8yVZZnStKoOGbcoiPR1D+DeqNG8MPASnh94MXf1HEkPV58WBTY7E7sxch7zmPNjzHWZS6FUSI+8HtR2oM6EyWqriSAi4KTSIAgCHuJ0zOSSar2KeMtAchTdmTHkVi7rNRdv51XIHElvPm7rCE8EQcHxCAjtUnvh9jBb4O+XnaA3ciwzFk0AGb66fFWrz73B4QZu099GmUMxnr10LMxYygcHv2g47ipeSoD4FlZKiLcMQpIkzHI+iZZR5EuvUmT9uKFtV1WjtGPjjcuCsMwayZv+vVEVaykKLKf/iu24vbqDzYe7huDVsWi1Int+DeSuK51IyjATcFEG+5M6Twsj0MGVIAdblmJ6dSnrcm2FJ3VuGkrTq6kpN7Ak4wAlRtt939vNj4BAN0bdF8XMrZfzYvp1XPbaIPz6uCFLUFPSNXQ9uhr2mBE7vFjxInMq5xCoCCTZNxmtqCWzupRX965otn1blJ/+6OB6DpbZis493m8CEfV1ecxSMQhmTHI2KVX7SDN+QIDLIQRkTmzMKxDRo8AVJd6ohUAe2bQOL00wHw3/Gj39EcW2c0uqfl5DbxcHYi/pnLiRI8y7dg2xC9K58ZtRDLuzR6vP75HXg2RzMvrdvtSVWNhxxSoGeUU3HE8330GJPB9HRmPkMGbyASsaIuijTmo2tqit4orstA9f/lfIw+sPYwisBSs45jnyy2U9uLSfW2cPrQnfLKzkfy/b6kHNe8GT267onOf/zsJ0vk48KlgW7uyF61IlB55NxfktN4qGHtWBmtl3PJGuPs11Q0FiOVonFS7+58/fxqnO33ZjxA4Az5Q/w2tVr9FN0Y0k3yRya6p4LXZls23bwhjZVpjGt4lbAdsf9iN9L2yU+WOyWnhr/2oyq0vRq0q5ue8iUK3Btgnb+JZVEYiaYMzkY6UMiWpkmtuXFRHRocAFJV6ohAA0hKERI9EL/dARjVI8tfurx5L/yKoxUnfDhaf3BbQRFpOFp1x/BOCN8ptPmPLXHKXWUgJyA7DIFqzrXHCQHci58QDO6qPfw0FTL4wkcPx3309VQF6NslmjtS3uETvty4I9xdy+PIUa/xoQQJfjwJcTw7l5iGdnD60Re+INjL4zj5o6mXuudeKzZ706ZRx/pcWyMvuY7clMCc3NRizTlFjvt8WsXRs2oJEeVHuwITeZDXnJlBhtW+t+ehcuDe5LnxPoVe0uymRxxn5KDNV465y4KjSavu4BDcdlWebvjANsyk+hzmqmu7MnN4YPxkd35vOtPYDVTquY6zqXxxwfI8OaQY/cSD6LX9di29ji7BaPnSoDPYMbsmNSKouYu3cFm/NTSKssZkNeMq/sXUFmvbyyXhFMf91KQhW/ocANOHZLRoWbeA091f/RV32YaHUpA9QmYpRWpvzhzaub++AnzsFduAVHLkCFPxJGDCRQKS+jSP6YbOuDJFnGsM/iwm6TyB6Tnn0mPw6Z+pJknkSG+R4KLO9SIa3CItlWaRf6uGOQJOI7uHDe8SjVSq7+aDjmOivf37yh1ee7K9xZ6rUUi2DBZZRMtaWaYUsmNxwvsn6BkaT6nxobgdVy669np+twzQBPqo+rFHxLfCyauVv4eH3XqRQ8oJeW7JVBdA9U8vkfVQy+MRuTqePjSK4Kjeb2HsPwOzJBB4vIAggpEsGObtwbNbrdDREAV42OqaH9eSZmMs9ET6anqy+fxm0kt4XMmcOVRXyd8B8jfcOYPWAK0R6BfBa3iZxj2q/MjmdtbiI3RQzh6eiL0IhKPjy4DnM7bHO3hN0zYqcRtxVO53vDN7iY/bg293XEFqRobuw+mDH+Z6azcbiyiPcPrMV0ghteq1DyWL8JDatsi1xCluVRSuUfOGJLByrexEfxWJNzdd8GEOEcxv6rN7XYv0nKppZY6qSDGOUkTGRglnOxUIKVKmSMNBUMELBY9Wwr7E2Q3kwfVzfUdEMj9EAn9kHPANTiiVV125pXey2gIKGCp/ZPJaBv6z0SRzxjgSWhZO+q5LaIabw8Ukeh9E4LZyjxEu8Gw0t2z8g5ws70aqb8HE+JVxVoJZTZOp6LDuH5KQEnP7kDkCSJax4vZOHaWjxcRHb+7E9oQMenK8uyTGpVMQV1VSzovhEHLw0vpV7fqUGhj25dwNWhMVzg21R36Mv4zZgkCw/0Htvw3uuxKwlycOOmiCHIssyT2xcyMbAXFwX2AmxCbo9v+4vbewxjsHfIGY3tVOdvu+iZnQZkWSYsayo9takkOK1jScDzzFctJdjRnXJjLTuLMoivF//5NXUXfd39zyguoLuzF4/1m8CPyTvIqilrcjzUyYObI4YQ6HB0L1speBCq+h536SYyLHdhJgcVgc32LyJikU9s2avFQNQE4ipe2mIbi1RMDXsxSAcwyEkYScOsyEUhSKiUeVTJsYDcOMEHENAg4ogSd1T4oRa6oRHC0Qm90QkDUNOtzeqJzFgykVciF/D1Fat5IfW6Vp8/13Uua4xr2OGxA+/gMFbn/cyDUjnNbYvZsFAprcKZl85w5Ha6CoNDHCl+ZjAJebVcOD+ePPdKXiiJ56XX03koMoh3pwZ36vhEUeSvd31589synv6gjMgrsvnrXR8uHd2x8ReCINDd2Yvuzl6s9ttFZV5dpxkikiyxuygTk9XSUB7keFKript4bKLc/Boyg4oNNVSaDfRyPZqRqFOqCXXyJLWq+IyNkVPFbozYaSCpopDc2gpG105HqxaJ1a7ha+3zLHBdgCAIjPTtzs8pO9mQl4wky2zMT2kQADpdQpw8eDZmMmlVJRwozaHOakavVNPfPbBRZcnjcREn0VuVQJn0G67i5c22EQQRaxu4GZWiJy5MxEWc2Oj9q2O3kF5Th+GG8VikSuqIpVbej1FKxEgqZjkHC0WYybXpocgbm8zrAipEHFHgjgof1EIwGiECnRCFTohGQ49TMli8I1wYcms4O75LYf2HBxn7UJ9Wf84NXhvwzfWluGc6mv98uGu5wPyJw7Eqj8QONf4ujSSxq3hPs31JXd/haqcFevrpyZ01kOxSExd8dYgMl3Leq03i/TczuTXIn/k3NFWN7kievMONQb21XHx/Hpc9VMDsGa68fH/neOE8w50pTqlCkqQOLVSYU1POG7H/YpasaBRK7okahb+DS7NtK00GnI/TFHFWaakw2YJuK811tvfUx7VRH23TEdiNETsN7CnOavj3Fy5fs0wznzmVc5heNp2v3b5GEAQuCe7DxrwUZGT2FmedsTECtpVGmLMnYc6tC5xTCI54Ku5q8bgoCFhP4hk5E8b7uvFpci2Hyqvp7eqME6NxYnTjkJZjkKRaajlAnbwPg5yAUU7FJGdjoRALhZhIp0be0owjQomIA0rcUOKDWghCK4SjEXqhF6LREoUoKrn+61Hs+zOdJU/uZMT0nqj1rfvz1opaNnpvJKYgBsWIKvat1nDhggQybkimSvyBIuvHWCjiWG9JUs0SoGlG0W+Hd/NA77E4qLq26qedlgl0V5P+VAwl9ZWCE/RlfCel8v3bOVzh7sMft4Z1WlG+C4foSF0azKAbc3jlq3K2HzCw4lPfDq9cHNjfnYQVOeQdLCOgX8dVHvbROTF7wBTqLGb2FGcyP3Ebj/Wb0KJBcjZgN0bsNFBtPmoFhzp58qLuRQDmVM4h2ZzMcq/luKgdcNfoKTHWUG3u2vnyImKL5b7bgru6B/Bpcg5fp+Tw3qCT13gQRT2ODMWRoS22kSQTBuKolfdhkOMwyocxyVlYKMBCGSayqZW3N2Ow2FKbr07wIOnHCJYv+pMB10WiFXqhF/qjo+8ppTb3U/fjfZf3eajiIYJHeZG5sYLxS//HjitX4Ss+Tbm0kCzz21jEXQAMDvydtNJhOKu0mCQLBqtNZC61qphP4tYzs+94lGIL1pmdswIPJzXx9ZWCx3yRwB51CYs0mag+yudCnRcrp0d0ilHi760kc0UQE+7OY9U2W6G93b8E4O3e+rEszzrE3uIs8usqUYsKwpy9uCok+qQVbaUhtnv71fUr8DG7dliWilJU4K2zibF1c3InvbqEtbmJDcVTj8VZraXS3NjDUWk24FLvCXFW2RIJKk2GRiU3Kk0Gghxdz2icrcFujNhpQKs8KqleUFeJl86RF11epFKq5PPqzxlSMIQfXH+mwlTXpH1XRBTEdvWMDPBwRiUIrMovbbM+RVGNnmj0RLfYRpIkjCRSJ8dSJ8dhlFMwyZmYyUfwKiPsxh2onGoplJYe33t9arNro9RmrdgTXUNqsyMPOj/ISuNKlrKUiN592XloLzO3zebdYa/grpjGt4c8KDHvYFKPt3DRFvDUQJEw/VVYZYnY4mx+ObyTKrORw5XFbCtMbzaozs7Zh6NOye5H+jSqFLzWKQfVJ4UMET3YcHfPDq8UrFSKrP8mgCffK+Gt7yroNiWLVZ/5csGA1hXaS6ooZKx/D0Ic3bHKMovS9/HBwbW8OPBSNIrmP9PhyiJWuiaiFKDfHm/8Lvfms7hNPBszuaGI6ZEsldsjh+OpdWBJ+n4+PLiOFwde2kjK4EyRZVoUeAxz8iShPL9R3Eh8WX5DjImn1gFnlZaE8nyCHG3xeXUWM2lVxYzxC2+zMZ4MuzFip4EoVz8259tqvazOSaC3mx+CIPCu27vMcJzBtcXXMrR4MF7eEQysmMpA17Et9iXJEn9nHGB7YXq9Fa5jhE8oFwf1OWGwV2J5AX+k7iGvtgI3jZ6Lg/sw4rjKxutyk1iVHU+FqY5ARzeu7z6Q0GaCt0RBRGpHzwhAdycdyR0sCy+KIjp6oaNXs8dL5WrmePyKZ5SFB2K9qJMP1RssGZjJw0IpBuKpk2NtJzR6homIaHnVxZkxGiWJ+gOM0LiyKfcj/s7WE+N2A0kVhUAIqxLmcVv0d1QI06mVItGLMQz0CsZJpeGdA2sA2JCXZDdGzjGOrRR8xfzDLLcUsMM3H90XxfQxu7Ppfz1xdWx5e84sSZSbLHhp224L781HPRjaV8v1TxUw+q483nvcnYdvcj3l8x/uM67Rz7f3GMbj2/8io7qUHi7NVzZfk5NIbx9/DivTqDpYwz0h/Ykvz2d9blJDlsqanAQuDu5DtIctyP6OyOE8vu0vYouzTjswdGFaLL3d/XHX6DFaLewoTCepooCH6j/Dt4lbcFXrmRoaDcD4gEje3r+aVdnx9HX3Z2dRBhnVpQ1eFEEQGB/Qk2VZB/HWOeGpdWRxxn5cNTqiPYNOa4yng90YsdNAtEcgrmod5aY64svz+SZxC5d164uPzplgwphjnsftlovJ08Xxjy6Of3iVF3P8GKAeQIw6hv6q/kSroglThrEiK54NeSncETkMP70LGVWlfJe8DZ1CzYUtlK0uNlTz8aH1jPaL4K6eI0goz+eHpO24qLX0drOlyu4symBB6h5uDB9MqJMna3IT+PDgOuYMvKxJAJainT0jABN93fkoKZv9ZVX0c3M6+QkdgHuwIyPviWLzp/HseD2MSc9e3WLbE6U2j9UoGKS24NynHPoAPEsBzzJjCFglFSJOSESjwIUky4WEKRfgLI6nh6sPgQ6uZNeUk1ldRp3FhE5pjx0511AqlSydHglEcsP3h/nNkMtB/0Lcvi89YaXgu7fHsyCzkL0XD6W7k77NxnP1BAfi/gpk6C25PPJWKVv3Gfn5da/TiiOps9pEEx1OcN8eyVLJdcuhLMsmBd8RWSpVZgPzE7dSYapDp1QR4ODKQ33GEeVmK1NRaqxFOKZCX3dnL6ZHjmRxxj4Wpe/DW+fEvVGjGrw3AJMCe2GyWvgxeQe1FhPhLl481Htcm3pvTobdGLHTgEIUuTF8MJ/FbUTGNvHvLMrAUamh1mJCQuZK8WV+CrofWbAFLeRJeSwzLGOlYSUWbPECOkFHP/MY7vN4oWH/1FPryM6iDNKqSlq8/oa8ZDy1jlwbNgCwKQumVBSxOiexwRhZnZPABb7dGVm/2r4pfAgHS3PZUnCYyUG9G/XXEZ6RO7sH8FFSNl+n5PDh4PYXPDpVrvloGLt/PszyOXsZdX8UeldNs+1Oltr8e83vTCmaxgDBE2usiV4eCi4PC8BJU4671oBJTkHGhJVyci3P46weD9h+30fKlxusFrsxco7zy63d+YXu3Pt7Ol9WZXM40FYpOLDcmXV39SLcy2Z0pFfX8V1qHhJwxYZ97Jw8BJ2y6YRXaqhpVB3cUak5JRmBiG5qcv8NZvhtufz2bw37kkzs/DkAR/2pGySSLPN76m66O3s1mrCP50iWiluQAzn7bVu1HZGlcmuPE5egeKzfhCbvDfQKZqBXy6nZgiBweUg/Lg/pd9rjOlPsCqx2GtHfI5DpPUc2KpVdbTE2lNHWSy5cLN2IeMytIyM3GCIAdXIdOpWChPICCmpthbiyqstIqSyij7tfi9dOrSym5zGrCLCtNFIrbaqnFslKZlVpo5WGKAj0dPVtaHMsCkHRrgGsANHuTqhFgdVtGDfSFoiiyC0/jEEyy3xz1ZrT7uc6h+u42eEutsrFGEN78N0hkQfXOLHgwBsczl1BX3UG/dVF9FamEK5cBoBVkhp+HyLCCVeXds4tjlQKntVQKbisoVJwbHY1rx9Kb9imja+o4b4dCU36OFLv6NW9Kxpez+36+5QLMGq1Int/C+SOK5xISDfjPzGDg8mnHmz/S8pOcmsqmNFz5Cm19+nlimSWqas0nfI17DTFbozYacIgr268NuQKrgqNJsTRHQ+NA/56Fy7078GcgZfwddDbKFtwqilQEKoIZWHATwzy6sYLu//h3s2/8Ore5YwPiGSod2iL1600G5pdRRisZkxWC9Vmm1Hk1NxKw9x0pdERnhGAcCc9KVV17X6d1tLn0mBChnmRvC6PpHW5p93P1+5f01PZk33Ou4gMDSG3NondxSv4L/8wxQabHL5W7I5StKUVbshLboje7+cRgLqFAEA75y5zm6kUHLNiO18k52Ct16CRgPlpeXxzXPXr3NqKRoUXASyy1MhTcirMm+PFV897UlMrEz0thx//qTrpOb+k7ORAaS4z+43HTXPiLaQjWSrdhthq5aSsz2sxS+VYbFkrbVe081zBbozYaRZHlZZJgVHMipnM3CFX8MLAS5jWfRC+ehd8Fb7c63gvimYENQQE/vL8i+SSMnYUpnNX5Ahmx0zh9h7DWZUdz9aC1A77DApB0SHGyEW+7phlmT0lXa8c+4zFExAVAvOnrUOSTv+72OqzFR06DvfYh6Pegd0lyzhceYjXY/9lVXY8ebUVHK4s4vukbfyWurvhvHH+ra8kbOfc4YnxfpieGcFX4f1QmJqPP7h3RwJ7SiupMRv5Kn4zHx9a32y7g6WtN6inX+XM9h/90WoEbpldxP1zm3pQwZaC+0vKTmJLsnm034V4ah1P2veRLJWIcTZvb+p/BS1mqRzhSJZKS2qp5zN2Y8TOafGU81PNGiMWLPxY8yN/psUyKSiKwd4hBDi4MswnlPEBPVmeFddMbzacVdpmVxFahQq1QomjSoOIQFVzKw1V05WGQhCRaH9jZHq4LS7mm8On731oL5y89Yx7rA/VRQb+eXb3yU9oAVfRlRVeK7BiRTuqDgGBFTlfUFBXxIK0vby4eylv7lvFf8cYmxMCejbZdrNzfnLFAFdUbhI0k0hnlWUuXx/Ly3tXs6s4s9niAwCLM/azLjex1dce1NtWaC8sQMmnv1cy9OamhfZ+ObyL7fWLJ61CRYWpjgpTHSbr0e3nbxO3sDAttuHn8QGRHCrL44BzHoiwNz2TjOpSxtYb4MdmqewrySanppxvk7Z2eJbK2YLdGLFzWvgp/Ljb8e4Gg0RE5ArtFQSIAbxT/Q7/OH1Mndw45VUUBOQWHzUQ5uzZaBUBEF+e36DMqhQVBDu5E19+tKKoJMskHNPmWGyekfaXJe/t6ohGFFjTxeJGjnDZa4Nw9NKy5q0DVBWefhryaO1oZjvPppgi+o0LxipbWJTxThOPi0ahZGpINNeExpzp0O2cI7yfkImpBS+lBOTUmvgiQYksg16p5kL/HtwaPoSrQmIape3/dnhPo2qzp4qrs5LkvwO5YqyeHQdNBFyUSUaOueH4hrxkKqolJj2cyS0/rebJ7Qt5cvtCdhVnNrQpNdY2aCzB0SyV/wpTkXoIlBXXNJulMs4vkh+TdzB37wqMVnOHZ6mcLdir9p5HtLX2R641l5DcEMyY8SeYG/LfoNYok+C+nPWOP+NuDuRdx4+42GUcWdVl/Ji8gxG+YVxdP0ktTIul3FTLHZEjAFtq75zdSxnr34ORPmEklBfYZMX7jGmU2js/cSs3RwwhxMmDNTmJ7C7OYM7AS3FWNxY6ilowgozqLGpuz6K96ffPVhIqazHdOL7dr3U6JK7N5ZPxywkZ7s3MLZedUV8jCkaw1bSVUYUT2LR3L0O9RjIj8imUokiIkwdDvUK6vCCenY7DYLXiuWAjNRYrCoFGaacAFql+ChJASNbx1tAQHpvSWMV0QdpeVufYgl1H+4ZzUzNKowAl5VYcdAJaTcvr7NfnlfHMh2UolbDoPR8uHuWAJMlc/nA+SzfVMaSPhu0/tq5S8Zzuv1NdWMdbVbe16rzzAXvVXjtNaA/tj3sd7+Xz6i8YlfsAU7sd0f4Iw7Mgkn+83mSGYRrjsu9hoDSWUX7hXBp8tIBbhamOUuPRlbqn1pEHeo/lj9Q9rM1JxFWj55YeQxsMEYDBXt2oNhtYkrGfSpOBQEc3Huo9rokhAqDsIM8IwEX+HhyoqGFnSQWDPbpefYjIC/0JH+tLyvp8Di3NpPclp1+Bda3XWvxy/fjPey09fQexPf8/buh+gIf73N2GI7ZzrqAQBG4P86PMZEEhgFIQUAgCStH2/7zaCg4WFZKW64Q53pHH/6vkg9RcXhrUjesHeaBVKLg0uC+b8lNsIl9F6dwYPhhBEMgusLBpj4GNe+pYs91AcqaZmy524Me5Pi2O5+k73RgcpeGSB/O55MECnr/bFasVlm6yeT12HDSydZ+B4f2Pbv2eLNXYM8yJkrSOL5h3LmH3jJxHfHxoPc4qbaM89c/jNqESFdzVc0Sz5/yZtpeDpbm8MPCShve+it9MrdXMw33GYZWtPLf/d/o6hHND+GDAtnUya8ci+vq58aTiRvKkPAaqBrLReyN6se1Ejk5GzF9jiS9PwnBn+8dyJFTU0OufrdwdHsDnQ5tXRu1sasuNPOP1ExpHFa+V3HRGD82DpoP0L+iPI46w3p0qYzU7rljFIK/othuwnfOCRen7WJ51CIBbgkcxd00NK4RcZLWEOl3PHXIEI6O1xGl2k1pRSn6qE8GVfVm/00h2gU3UUKkAi9UWkvLUna689tDJq/jmFloYeEMO+SWNhRGVCrhsjJ6/3rXFOx1JNT42w0cpiLw86LIGg2Th49tZ985Bnom7Ct9ebm3xtZwznOr8bTfhziPCnLzaXPtDlqGskma1PyqrBLL9srlSeyW7zbvxyfVhq3FrO3yy5lGIihPGqLQlPV0c0IgCawvKOuR6p4PeVcPkF2KoKzfx58PbzqivPuo+fOz6MZVUEjTWEVEQGLf0CipNXS+jyE7XRiUqkCSIrdRx5Y4UlmuycdAL+Nc6MsjixcY9Bm6dXcTrTwTz+yvRbPw5jJ/+qW0wRMBmiICtfuTI6OYF/o7H31vJ3x96c/wOtcUKi9bVcjjLFlNSbTGeNNU4bKTNE5O0Lq+Vn97OEezbNOcRk4OiMFjNvLD7HwRBQJZlrgjpf0baH0eUWZvT/sivq0QURRZ6LWRe9Tz+V/Y/RhaO5Hnn53nR5cX2+IiNUArKDtumAYh0diCu4tSEmTqLybNj+O/zBDZ/Gs/4J/vhHtQ4hbE1cUX3Ot3LSsNKFhsWM2HYlazduoVhi2/mqpDpZ1RTyM75Q3pVHe8n1bK2wAsJAaVgYUZ4AO8M6IGT6uj0tDUjj3s/SWb/6gBkqZmi1ccwov+paXgUlVq58tFCRAGsx3UoivDuj+V8MsvrlPo6kt6buaMI7julU+wch90zch6xuyij07Q/7nS8k0TfRLxFb+ZUzmFYwTAM0ulLIp8KSlHZYZ4RgMn+Hlhkmf8Ku653BOCuP8cjS/DV5auaHDsSV3RD+CBeHHgJV4VEszI7nnW5Sc329ZfHXwTSjQ2OKxnWfTTxFVuIK1/FD0nbOVR2dHvsSE2hS4L78GzMFAIdXPnw4Lomqdx2zg9+Tsuj55IthC75j9UFlTgpZUa4VnF7QBEjXCuQZZtXQpZlDpXl8lfeVoZels0NL+wlLETgRDuMARMz6X1VFve9WsTmPXXN6utYLDJXPZZPXrEVazNJPlYrzFtYzZ6sQv5M29vsdUqOUYTVu2oQlQL5ceWt+h7sHMVujJxHdLb2R3dVd3L8crhEewnbTdvxyfVhl3FX233A41AKHbdNAzC9uy3Qdn5q13bVhgz1JuriQHJiS9nz2+FGx1Krioj2CKCvewCeWkcGegUT5erXYk0hURR50TwPreTInvB/CHfrxsKMX1CKxazOOaoJcWxNIX8HF24KH4JaVLKl4HCz/do59yg3mbhnezxOv63jpi2HSKmuZbyPG/suHsrmiX3o62xAFGFrYRpP71jMq3tX8OzOJXx4cH2Dom/fbk7s/SmYK8Y2jT1TiNCjm5JgPyUpWWY++6OKUXfmoRqUTtCkDK5+LJ8f/6nCYJAoLLWy65AJSQKFgiZbNQAGk8Q9X8STcIyUwLHMS9xCfNlRKQKdq5qyzK7tGe3K2I2R8wiTZEE8Lq2uw7U/RAX/eP3Dp66fUi1XM6RwCHMr557Jx2oRpag8sT+3jYlwdkCrEFnXheNGjnDH7xei1Ij8MmMzFsvRpeHpxBWVVll50PoyBgxYh5WhV+r4MvENDpbaPG6trSlk59xiY0EZw1bswP2PjXyRkoNaFHg6qhvV141l9YSB9HNzoo+7P3dGDkcp2KYkqyyRWV1KifHo5B7m5MkDvcfg7KBkwds+PPc/10bXsUrwzF1uJC4OwrgzjIRFgTwz3YVBUWoqqiX+WlPLLbOL0A1Lp8812QzopeaOKxx55EYXJg7T4aQ/3iIR2LU0EEONiKNSQ3/3AHq7+jbU7TJJVj6L30hBne1vxTXQgdrS1knW2zmKPWbkPKKfewDLsg7irtXjp3chq7qM1dkJjPA9urd/vPbHGL8I1ucm8Wfa3gbtj91FmTzQZ0zDORMCejI/cSshTu4N2h8mydIkZuBY7nW6l3GacYwqGsWzFc+yvG45a7zWoBbbrqhaR2/TAPR01nOgvLpDr3k6aBxUXP76YP56dDu/ztjMzd+OBk4/rugCzQXc43APn9d8zuTxF7Pq390sz/6GSuM0JMQTxhXZOfcwWSRei0vnk6QsioxmBCDGzYm50d2Z5N98nNAQ7xDCnD3ZmJfC9sI0yk11KAWRMGdPRvtFMMAjCEX9/owoCrx0nzt9uqu5dXYhJostmH5k9NF7LDJEzasPePDqA7afyyst/LKihr831LI3wcTW/Ua27LMZD1qNQPdAJf17qOnmp2T14Sxit+sxGxSs/yyGrd+E4u9pezbVWUzMS9zK/tIcjFYLq7ITuDliCD49XcmJLcVUa0Gtt0+trcX+jZ1HXN99EIsz9vNzyk6qzEZc1LoO1/44lp7qnuT55XFJ8SX8a/wXn1wf1nmvI1od3Saft6O3aQCm+HkQW1bNpoIyRvl07RS/sY/0Yf2Hh9jxXTIXPRuNd7hzo7gifwdXsqrL+D11N65qHcNPYFwCfOb+GRuNG1lhWcZVMXewcM8/TFx+NSunLOygT2Sns0msqOHR3Umsyi/FIsvoFCK3h/rx1oAIPLUnX2h4ah25KjSaq0KjkWQZAU4oyHjdJEe6B6m45MF8kKF7UMtTmquzknuvc+He62w6QJIksXJLHb+trGHLPgNJGWYOHbbFqgiCE3pXE/7djJTnOjL0plwWv+/HgF4adEo1d0YO56kdizBaLWwvTOPasAEED/Zkz6+ppGzII2qKXe69tdiNkfMIrVLFtO4DmdZ9YIttbo8c3uS9SFcfZg+YcsK+x/lHMs6/eeG0E6EUlaz0XsmHlR/yaMWjDCwYyJsub/KY82Ot7ut4VGLHq4DOCA/gtbgMvk3N6/LGCMCMRRN4o/8ivrp8Fc/GXd0orgggwMGVEmMNy7PiWjRGjo0r2uqzFb9cP5Z6/MYg36nsyF/BnD1zEel9yjWF7JxdSJLEt6l5zD2URmq17Xcc5qjjmd4h3BHmd9p6NuIJjJBjGRil4dCfgZRVSic0XJr0L4pMucCBKRccFS+LO2zijd+zWba1hooCHRmJakCmqkZm8E05zLjKic9ne6FTqunnHsDOogxMkpXCuioixtYXzNtcYDdGTgO7MWKnS/CQ80NcqL2QMYVjeLzicZYalrLCc8UZbdsohY6/vUOd9OgUIhsKu2admuMJ6OdB9DUhxC5IZ9u8JEy9Ti+u6EhFVWfRmZWeK7mwYAK5PfcQWOXP+4c+Z0bk87xY9QJl1sOs916PDCSU59ur+p7FFBtMPL4nmd8zC6izSigFgYv9PXh3QA8iXRxO3kEb4uGqwMP1zOu9RHVXc+9dAtoLDgIw2SsGp/JubNtv5PMFlaRlH61noz6mvoyMTGC0TWgtO7b5YG87J8ZujNjpMvRR9yHPP49JxZNYZ1yHX64fG7030lvd+7T6U4mdc3tHOTsQW372SEPf+tMYDi3N4o8HttBnZ8QZxxVZyr2ZUPQQy33eYuzYsRSuKeRrlyeQlSYwwfbq/aTkG08aV2Sna7Iyt5hZsSnEllUjA94aFU9HhTCrdwgqRfP3+4bcZDbkJVNitMVT+elduDS4L33c/ZttD7C7KJPFGfspMVTjrXPiqtBo+ro3rlnzd8YBNuWnUGc1093ZkxvDB+OjOzOVbh+tU8O/U4zZPDGsFxOG6Xl2hmvD+xbJyoF6A1xEwEPjgCiKqPRKilLscVCnw2k9KT/55BNCQkLQarUMHTqUHTt2nNJ5v/76K4IgcOWVV57OZe2cB6hFNeu81/Gmy5uUyWX0K+jHh5Ufnl5fCptXxSJZTtKybZni74FVhvWF5R163dNFqVZy9UfDMddZsb5UxwDPYH5O2cmLu5eyIG0vo/zCuaJbv4b2LcUVxZfl8/Ke5azKSWB20D1coL6A9Zb1iKMrkF1MDe1fTJ5PVk3ZKcUV2ekaGCwWZu1NxuOP9UxeF0tsWTVDPJzZMGEgBdeM4fl+YS0aIgCuGh1TQ/vzTMxknomeTE9XXz6N20huCxV4D1cW8XXCf4z0DWP2gClEewTyWdymRhV7V2bHszY3kZsihvB09EVoRCUfHlyHWbI22+epEuLkgZ/eFleSUlnExrxkwBa7IggCkizzZ9rehnTjaM9AHFQ21Vcnby1V+XXNd2znhLR66fjbb78xc+ZMPv/8c4YOHcr777/PpEmTSExMxNvbu8Xz0tPTefzxxxk1atQZDdjO+cETzk8wUTuRsYVjebjiYZYalrLUc6ktXfcUUdVv05gkU6vOO1OmRwTwyqF0vkvN5ULfk9fI6AqMuCuSdW8f4MDvGTw1ewDThpxZXJEsy1xedTmbTZsxCAaO7PwIssCAMB2zXCe1+Wew0/bsL6ti5u4k1heWYZXBUangnogAXovujqv61LdQ+3sENvr5ypD+bMhLJrWqBH8H1ybt1+Qk0tvdj0mBUQBcEdKf+PJ81ucmcVPEEGRZZk1OAhcH9yG6vu87Iofz+La/iC3Oaoh5Oh0EQWBSYC/mJ9lKJvyUspNthenEeARikqzsLEwnrz4LTEDgooCjtag8Qp0ozej62XRdkVZ7Rt59911mzJjBHXfcQVRUFJ9//jl6vZ558+a1eI7VauWmm25izpw5hIXZ3bJ2To1odTT5/vmMVI/kX+O/+OX5kWhKPPmJ9agUtgBWg6VjVT67OejQK0Q2niWekSPMWDIRBPj6itVn1E+lVMk1JdfwZMWTTY7JyPxWsoBSQw2Z1aWNXqUGu2BUV0CSJD5KyCR44Sb6L9vOmoIywh31/DSiN1XTxvHZkF6tMkSa9C9L7CxMx2S1ENZCOYDUqhZqYlXZdGmKDTVUmg2NtGt0SjWhTp4Nbc6EYd6hTAzo2fDz4coiFqTtZUnG/mMMEbg5YjChx+gp+fd3BxmKDtu3alpLq5aLJpOJ3bt3M2vWrIb3RFFkwoQJbN3acgG0l156CW9vb+666y42bdp00usYjUaMxqPiMZWV9l/s+YpW1LLZZzNzK+cyu2I2vQt685HrR9zrdO9Jz1UJ9caIteOFiKJcHNlTWnnWxI0AeEe4MOTWcHZ8l8L6Dw8y9qE+Jz/pOGRZZmzhWPaam5fQRoBUIYXbN7yFn75x8OrxlVDtdCy5tQZm7kliUVYRRklGJQhMDfTivYE96OZ45ttpOTXlvBH7L2bJikah5J6oUfg7uDTbttJkwPm4TCtnlZaK+oysSrNtK6S5ulkVbVBiQBAErg6NIcDBlZXZ8eTVVjQ6Hu7sxSXBfYhyaywGGDbcmw3vHyJpTS5e3e0V5ltDq4yR4uJirFYrPj4+jd738fEhISGh2XM2b97MN998Q2xs7Clf57XXXmPOnDmtGZqdc5xnnJ9homYiE4omcF/5fSw1LGWJx5ITTvTqes+I0WpqsU17cUmAJ7tKK1mTX8ZEf48Ov/7pcv3Xo9j3ZzpLntzJiOk9Wy3eJAgCN+hvILEyEYNsQKKZwh8qmaVFn3BzwKtolUcL9R2phOqO3RjpSBZmFfL8vsMcrC/y6K9T80jPYB7rGdymhrSPzonZA6ZQZzGzpziT+YnbeKzfhBYNks5GEASG+4QxzDuU9KoSCgxViAgEOri1OOaIC20BuRk7ihj5v57NtrHTPO26ZKuqquKWW27hq6++wtPz1Ktzzpo1i4qKioZXVlZWO47SztnCYM1g8v3zGaoeylLDUvzz/Dlsbrm2yZFsms7wjEwPtz2Uvkvr2nVqjkepFLn+6wuwGCXmXbf2tPp4wvkJsv2zedH5RZwFZwSaaj9ITkb+yni7SREzuQOrLJ/PVJssPLIrEdff13HVxv3EVdQwysuVHZMHk3PVaJ6ICmlzj55SVOCtc6KbkztTQ6MJdHRlbW7z267Oam1DgOgRbFWkbZ4QZ5XNU9Nc3SwXddtq1wiCQKizJ8O8QxniHXJC48nRU4uoEMg/1PVLQnQ1WnW3eXp6olAoKChoXDiooKAAX1/fJu0PHz5Meno6l112GUqlEqVSyffff8+SJUtQKpUcPtz8RKLRaHB2dm70smMHQCfq2Oazjeedn6dQKiQyP5Jvqr9ptu0RjRKjZDNGjo9TaM8YhUC9FgelyOazLG4EYOC07gT0dyduaRbpOwpPqw830Y3nXJ4j2z+bN1zewF10P2qUyODh60O1pZQ1ed82Ou+vtFiM1o7NfuoMOvJePJadJRWM/ncXLn+s54NE2yLvkcggKq4dy8aLBjHYo+O8FLJsS5FtjjCnZmpileU3xJh4ah1wVmkbtamzmEmrKm4xDqWj0Lqq7UGsp0GrjBG1Ws3AgQNZs2ZNw3uSJLFmzRqGD28aYd+zZ08OHDhAbGxsw+vyyy9n3LhxxMbGEhRkV6mzc3rMcZnDf97/oRN0TC+bztSiqU1W2UcUWI0WE6WGGp7b9Tev7l3R8Hpu19/tOgn0dnEkq9bQbAnzrs6MJRMRRPjmqjUnb3wCnEQnm6fEL5un1HNQW/UgQIVvFh6aQNKq95FQfjSOLKGigK8SNp/THpKOvhclSeLNQ2n4/7WRISt2sqmonCgXBxaN7kf5deN4b1Akjur2zTZbmBZLUkUhxYZqcmrK638uYEh91su3iVtYmBbb0H58QCSHyvJYlR1Pfm0Ff2fsJ6O6lLH1InmCIDA+oCfLsg6yrySbnJpyvk3aiqtGR7Rn584rrgF6akrsBfNaS6vvwJkzZ3LbbbcxaNAghgwZwvvvv09NTQ133HEHALfeeisBAQG89tpraLVa+vRpHATn6uoK0OR9O3Zay3DNcPL88xhTOIZFhkUE5QWxxWcL3ZTdgMaekWqLEYvc2Cho7xiFywI82VFSycq8UqYEdO5qrbW4Bzsy8p5ebP40npWvxjLp2egz6k8jaBEz+3OL4VNWeX9Apn4vj0+5hTeWfcLmggXc3uNSYktqMVjNHCjN5WBZbiOBq3OJjroXM6rreGR3EktzijHLMhpR4PpuPrwzIAJ/fcfK8FeZDcxP3EqFqQ6dUkWAgysP9RnXEABaaqxttJ3X3dmL6ZEjWZyxj0Xp+/DWOXFv1CgCjkkDnhTYC5PVwo/JO6i1mAh38eKh3uNQiSdXYv07Yz//ZB5s9J6PzpmXBl3a4jmnKsKWO6YWOU7inT2rubnXkDMWYTtfaLUxMm3aNIqKinj++efJz88nOjqaFStWNAS1ZmZmnjXZA3bOfhxFR3b77mZW+Sxer3qd8Lxw5rnP4xaHW44JYO2cVcpd3f15bn8qP6TlnXXGCMA1Hw1j98+HWTFnL6Pu74XeVXPafcWV5VFsqEaBigcNb5LmtZAXap7hh8k/ccPf9/HQ1vtYMnEZv6buA2BDXvI5a4y0N7+k5THnQBqJVTZhumC9hieiunFfRGCnPZtv7THshMcf6zehyXsDvYIZ6BXc4jmCIHB5SD8uD+nXYpsT4a934ZG+Fzb8rDhBXZsjImxXhvann3sAOwrT+SxuE8/GTG4wkI6IsA0K6sYuSxLWNAsfWtfx4sBLT8lAOt85rTvzgQceICMjA6PRyPbt2xk6dGjDsfXr1zN//vwWz50/fz6LFi06ncvasdMir7m+xgavDagFNbeW3sp1xdc11KapNtexrySn2fNa2rNuC/z0WhyVCjYXlbfbNdoTURS55YcxWM3SGW/XJFUcjT0Z5RvG486P013ZnftN9zJrxANUW2p4YOv/GtI5k8pPL1blXEOWZR7Zlcjz+1oO1AYoN5m4Z3s8Tr+t48Yth0iprmWCrzv7Lh5KxtRRPBDZtpkx5wKiIOCi1jW8HE9QtPFYETY/vQtXhPQn2NGN9blJAI1E2EaPthUMjTzgTrmxjthiewLGqWCvTWPnnGG0djR5/nmMKhzFH3V/sFq3FhQSP6Zsx1Nb3uw53yRs5ZG+4/DSOTV7/Ezp6+LI9pKKs0pv5Fj6XBpMt6FeJK/LI2ldLj3GtVxL5AgGycAu0y52m3ZzyHKIw5bDxIkplAWVYBYNfGmywjFJRilecdwSfi0/pPyBRvEjgz2vwSRZkGW5VVVYz0Ve2J/KB4lZKAWBhyKD8NQ2FhvbWFDGk3uT2VFSiQy4q5U8HdWNF/qGolXaH+8norCuiie3L0QlioQ5eTI1JLpFjZvUqmImBDRO1Y1y82NfSTbQWITNz9cWBFywt5zQqTYRtjNRhD1fsN+tds4pnEVn9vnu47Gyx3i36l0YLpJYsAtPbKsVR6Vtq6HaYtu6KTZW8+6BNcyKntxEQKktuCzQk60lFfyTW8zlgS2XS+jK/G/JBGb7/8r8aet4Jf8Gqqlmu3E7e817OWQ+RKollVxrLsVSMTVyDVYae5sEBNSCFoWkxcnkTU9NBHe53cAA9QA0goZIVSSMhW2Fe9hbshEXVTCDPEef94bI/MO5vHwwDQBJlpl3OJcne4dgski8FpfOp0lZFBrNCECMmxNzo7szyf/s2w7sDEKdPLm9x3B89E5UmOr4J+Mgb+1fxQsDLkGrVDVp3xoRNqVSRKVTUJRUiZfat01E2M4H7MaInXOSd9ze4XByDYsdvuZQ6DIUxjr+9PqV7i5egK0A1k/JO8irq6TUWMuK7ENcF9ZyPZbT5a7wAJ7Zd5if0/PPGmMk35LPdtN2Ys2xJFgSSJVTyd1YjKUQ3jp8JxZtYxE5EREHwQF30Z3eit6EKkOJUkYRo45hiGoInkpPCmoreX73PwC4qnVc5TO5UZE8WZZ5qt+b3PPfDWzI/4nLgsd06GfuKGRZJqOq9KTt1uSXMn17XMPPEvBeQibr8ktZXVCGRZbRKURuD/PjrZiIJh4TOyfm2GrBgQ5uhDp5MmvHYnYVZ3KBb/cz7t/RS0tFXi1eZ9zT+YPdGDmGUkNNw4r5CI5KjV2e+izEYDFjLvWAgy7oh8F+p3XcZbyWpfJSHEVHIly8eajvOJ7b+TcWWWJrQSpXduuPWtG2fxLeWjVOSgWbCytO3rgDkCSJDCmDbcZt7DfvJ9GSSIYlgzxrHuVSOQYMyDROq1WixDHYEfekEPrPG0/UfT70d+nDAPUABqsH4yg6tnC1o/jonenj5sfBsjzKTXXM3buSiYE9iXT1odxYx4a8ZPaX5nBJ0AMsznyPl2Mf576oKWiVHZv10Z6UGWv5In4TaVUlzR5fkr6f//W6gKQqA1ds2Mfx2c35BhMr8ksJc9TxbO8Qbg/zOyu3/roieqUaH50TRXVVzR5vjQibi1qHe4gTqZvzqTQZCHJ0bdexnyvYjZF6juT+H59yZ6+XcXaSXl2CJAsgCVxVcDeRATper3yd3vm9ed/1fabqp+KucSDGM4idRRnUWsxk1ZTR3bnt1zL9XB3ZUlyBVZJQtPPkIUkScZY4dpp2st+8nyRLElnWLAqsBVRIFRhpmlmkQoWz6Ew3ZTcCFYFEKCPoo+rDQPVAYlQxDSnSicG5fHLHckI2eDNzy2WtHtvNEUN5Y9+/lBlrKTPV8nvqniZtfHQh3NvzAT5L+IgxSy9n+xX/tv5L6IJUmw28u381hYaWxbAOlOXy2r4NfJmuwmC1NiekzygvFzZeNLj9BnqeYrCaKTJUM0zdfA2eIyJsx8aNtCTCFuTohn8/Nw5vzCctr4gxA8I75DOc7diNkXqay/0He72Ms5ViQzUKwZZOJ8lWblXcx2jXCUwoH819ZfcxVT8VAI9jjMz2Uv68PNCL/4orWJJTzNSgM9uqMUkm9pr3stu0m4PmgyRbksm2ZlMkFVElVWGiaR0eDRpcRBd6qHoQpAiih7IH/VT9GKweTJQy6pRX15EX+hM+1peU9fkcWppJ70taTrtsDjeNnif7T+S7pG0klBc0Oe6s0nJ1WAzDvG8kuyaJv7NWMnPbbN4d9kqrrtMVWZy+v8EQcdfouTKkP9EeQZglK9sK0/g7Yz9VZivvJJmpsrYs+La5qIK06jpC26Bw3fnMgtQ99HMPwF3rQIWpjr8zDiAiMNjLplH0beIWXNV6poZGAzYRtrf3r2ZVdjx93f3ZWZRBRnUpN0cMARqLsHnrnHAZ6ggfgz5DSfRFdnHPU8FujNg55yg11PBzyi4U9VV7kysLeHXvCg64/IPVzcpfnn81tE2pKGr4t7Nayz7TPnooe6AT2+5hf2d3f56KTeHntPyTGiPVUvXRTJT64NBsazYlUgnVcjUWGhtMAgJatLiKrvRW9SZEGUKkMpJ+qn4M0wyjm9itTV350xdO4Bmvn/j+5g28VnJTq/t21zjwaN/x5NaUs6MogwpTHWpRQbiLNzEegSjr9RgWTfyBkN9ieO/g54z1u4DLu01us8/Q0dRZTGwrtAWiakQlT/Sb2OBp1SiUjPXrQWKVyKO70zEjAjI0U8/nCF8kZ/N6TEQHjPzcpcxYy9eJW6gxG3FUaQh39uLp6Itwqt92OWMRNm8jCqDXPk+7xsgpYjdG7JxTSLLMfwWpWGUJRb3OiCRbqRMr2eWyiOtVtzJcYytdcKgsl5RKmzHirIcn6+7nl9JfeNf1XR51erTNxuSpVeOsUrCluJxiSzE7zDvYa9pLnCWONEsaudZcSqVSauSaJlVuRUT0gh430Y0eih6EKkLpqepJjCqGoeqh+Cqb1oRqT/SuGia/EMOy5/bw58PbuPajEafVj7+DK1ce8yA/HlEU2XXFaoJ/jeaaNXeQct1Ogh0DT3PUnUtieQGmej2bod4hDYbIhoJS/s0r4fu0fLJrjbgoBQTMuKisBDp6U2GyUmoyU26yUGu13Rcy8G9eKa/HdNanOTeY0euCEx5vCxG2h8V5VOy316g5VezGiJ1zBkmW+DZxKzuKMgAQ640Rq2ziH59XkbDgkjmKPcpMUitLWFdfMTRdv4tt3t9SU1eFiEiyOfm0x5BpyWSHcQf7zPtIsCSQZkkj35pPdYyVSkUtXnmVjdorUOAgOOAletFf0Z8wZRi9VL0YqBrIYM1gXEXX0x5LezF5dgz/fZ7A5k/jGf9kP9yDTh7Aejp46734+6IfuWjFtQxdfBFZN+xHKZ59j6way9Gts0AHt4Z/T14bi1mWuLN7APdGBBBXksDG/BQAno0ZQbCje0NbsyRRajRTarLgpWmaemqn66F1UVGabjdGTpWz7y/bjp0WWJyxv8EQAfDVuYLeSlzvpZg01TibfLAatXwRvxkAg1jFfx7zOey4DQGhIYsk3ZrebP+SJJFsSWaHeQf7Tbbg0AxrBgXWAsqlcowYm2SiqFDhKDjiLgRQnDOACYEqLvXoy0D1QAaoB6AX9e3yXbQ3d/05nneH/c1Xl6/iqb1T2+06EwPH8VzMY7y89x2mrJjGqov/bLdrtRd65dG025zacgDy6owYJIkvh/ZkRrjN4/NvZnmz5wCoRBEfnQYf3elL8tvpWFz89RSnNJ+dY6cpdmMEqDDVsSIrrsXj1mYCW+10LWotJtbk2DwdIgJ3Rg5njfJXCCzHVL8NH1J7NAshVb+DTR7fYBZt9TuONSJ2m3bzYOmDJFuSybJmUSQVUSFVNBscqkaNi+hCmDKMIEUQEaoI+qr6Mkg9iH7Kfg0r+TKjCfftG3GSvHg4tH87fhMdQ8hQb6IuDiRuWTZ7fjvMgGmNtRlWZB1iYfo+LvSPZFr3lvVbTqX42CCPSxjocZDVuf9yw5o5vD/i0bOq+FgPFx9UoqIhWPXioN78lGaTu7+yXnsmuaKQ1KpiAPz0Lnho7AHzZzs+kS7kHyrHYrKgbOeqyOcC5/03lF9byXsH1lBuqmuxzcK0WB7qM64huM5O12NHYTrm+n35nn4OPMHtbKjZAPW/MhGRXg7dyK9LZLP7fEo1mS32VSgV8nHNxwgIaNDgKrrSS9WLboputkwUdT+GqIYQoYw45QBON40aF5WCrcVdQ2+kLbjj9wuZ5fEjv8zYTL+rQ1Eqbd9FelUJG/NSCDxBTAi0rvjYFxe8yiUrY/kz40uc1D58MnLGWRMY6KBSM9Q7hM35hzFaLby1fzXzMp1xVCpwUgqsz01icca+hvZj/CLOe/XZc4HAAZ7s+yuD9G1FhI/26+zhdHnOa8Uck9XCx4fWNxgiSkGkr5s/F/h2p9sx+7WJFYX8kbq3s4Zp5xTIqSlHRibBcT2zNNfzn/G/RsclJH5XfcoSv5dOaIgcYUbhQ0hBEnVBdeQF5BHrG8tir8W85fYWtzjcQqQ6stWZJNFuThQYTFikc8PTpnFQcfnrgzFWWfh1Rv3Wl9XMN4lbuCViaJOthuNpTfGxgV4hbL18GSDxZ9onbMg71N4fr025olu/Bm9Hfm01+QYzDmIdD2/9g18O76LWYgagh4s3o9pAAdRO5xM+xhZcnrIxv5NHcnZwXhsju4ozKarP/ffXuzB3yBU80Gcst0QM5ZmYyTzS50KUgu0r2pyfQmULNQbyawtYlb0ei9Q+OhV2Tk4VFazwfouNnl9RR12TFFgA5yJPvPdHoc/2QVlTH6vRgl0gtEOM4NQgb2RgQca5U5F27CN9cA91ZMf/2Tvr+Lau8/+/r8iSLDAzQ5w45DBzmobK7VKGrd3arqOu323l7bd1HXS8dlDuypSmaZjbMMdxYmZmSSZZcO/vD9lyHNtBx3aS+37VjXXvuVfnSpbu55zzPJ/n7Vxq8mx8kHeQ0f4RjPA/e5ZPQVMdw/26t0v1D/cuV5xafAwg3hTL+3P/g9VZy/d2PoZ4GYk6k0bHE2MWEmPwJ7/VBxBI0nc3oEsLjOL7I+fIM7BXCLFTPUtwZYd7d9yV6c5VLUZ2VnWV5b47eTLm09z3RviHMS/CU2DNJYns6/AKaHe3s7Xia36+/1eM+nQG4e+PZNH6Wzne0HfcicylJU93gFL9MejbL4qRzrHUVFbTesKFa6cOdvpBoQ7aOj4Gp9zbkkNj+72P9yV4bqofFl9ZI6WHvlgIEvz9zrWUNDd4jaLOxvkUH+vk1oTruS76bgqaTnLblm/3zwUMEAFaX55MW0y74KmLck2YjnhjILPDknh63GIeSZ2NVilnylwpqFQKVFolNdlXztLspeSqjhmpbPX8kfhpdF5b35dPvM4LR/9MpG844bpQ2txOqlpFVAo1uda1vHDUxt6aQ7SL7agEJS6pq0JpgiluMC7jqmV1cTpflWQAIBHDfN/vs9f/fVqVFhB6qpIUwzxi429kdelfaXY1QosS8vSQpwOzCyLaIdwBaomNVbkU5X1EoimIO5Mm9UvApJ9Gg59axd5629kbX0ZEjgkkdUU0Jz4uZcnRFNQTLu3Ifkn0jRQ05fB58Vf8I+O/id2HcgAAhyJJREFU/GDUdy/p8/UnCkHghNVOhE7D8xN6elnIXFn4BvlgrWgd7G5cFlzVYqQ3HKLDY7ldn87Bs2TRnCpENAoN92x7hEjfMGIM0SSZ4kkxJzLMnHRFFfsaakTozfx49HwAVhYmElc+kQzTeg6bVyIKLkSh6z2sb3EQpvHnzsSn2FPzNicaT3aYjAlgVXt+siRU/koa1cUkxLagEkL4e8Y2fjlheb8ETI4PMLK1uhGHS0SjunImJif+JYWMw2Ws/f0RVidmglJARCLXWsP2ihxenrkChdD9es+3+Ji3jcPOE6N/wQ/23M2P9z7DtNDJTAxOA+DTwi95fO+zrF70HmMDR13CK74wipvbaHK5uT4qaLC7IjMABMYaKdxz5SzLXkquajESrjeTb6vF4mijoKmORFMwPxn9CD8Z/QiSJFHUXMI/jn/OK5l/o106s3mNQ3SwunRDr/sEBDQKNTqVDpPaSICPHyG6IML1YcT4RpJgjCPZnECq3zD8tf69nkOmdxSC4L1R3ZU8GavTjqrxelKa5nDQ7zOyjFs9KzeChFrUohQUPJl2I36aW1m+8U6+qdrb3RtEEghqi+RQwwEOVu9HgYIk00Rq7Qf5fxMeI0wfelH9vTk6hK3VjXxcUs3dCVdOhP2o4AiW/mwc6x46zKj/BnDjq1N5O2cvYXoT10al9hAicP7FxwDaXE4Km+qYEz6Vncu/YuwXc5m35gaKbz/Ci8f+zkvH/wnA+rKtQ1KM/DOnDICHky9PN1mZ8yN8tD8Fu6qxVLTgFyGna5+Jq1qMzAxLJL/DDvy93AP8aPQ8741NEATsLh/axXDuTX6BbOtudtd8hiiJPSy7T8WkMhCqCyHCN4wQbTAapYrqtjpq7XU0tFuwOW1UtdVwrOFED4OsTtQKFVqlFoPKF38fM0HaQMJ1oUQZIogzxJBsTmC4eRjRvhFXfQnxmrYmfrZvJWqFggRjEHcmTuRwXSnbKnOY1fBtRjVdy17/9yjXncAsBXBt1AjvjW3D4k+YufoWDtXvpzPYRCmo+Hr5OmJ9A3gt53+8lfMhWdY8Xs3ez6vZ/yLIJ5CFkbP58ciHmRLat39GX9wTH85jB7P56AoTI1qVmqUPjuPIn/LJ/qAc4SkRH6UKX5WPN033YouPBWkNrCpOx89HR1pQNGqFkv/O/AsPfvMjoj8YS5vbM8uiQMH+2p4VgS8ldpeTVcXpHK0vpcnZTrSvPysSJxBnDOzW7qvyWjQKgZkh/mRbqvmk4DCVrVb8ffQsjRnF9NCEbu23VeSwqSwTq6ONKIM/tydOIN4oz6pcLsRNDWbXv7PI2VrJ5Lvl6r1nQpAk6Qwhf0MDm82G2WzGarViMvWf2ZHD7eL/HV7rzahRK5RMCIom0MdArq2GHGvX9Nrc8GEkmRXcuOleqttqcZ+yRANwf/IdVLRWcaIxi+q2WlxSVzaHUWUgzhjDxOCxXBs5n+Uxi/BV+9LqaiXbkkeONZ88WyElLWWUt1RS01ZHfXsjVoeNVlcr7aIDsY8lI6WgxEepwVelx09jJsDHnzBdCJG+YcQaokk0xZNiTmKYKRHNWVItLzcyGipod7sI1RuxOtr4qjgDi6OV58cvQ61UUmCrw+awo1EqCTcYeG7/Ou4fNpXJIXHec2wuO8n3dz9Oru0gIBDtO5L0W9Z1Wxb4b+ZOipryOGnZwo6q3VgcnlgjnVLLxOA0vjPsLu5Kuu2crcoDP9mOShCovnVOf74cgKdIYLOre5aGQeXjrYdyqanJtfKblE8JjDdiWBlAVMdNGeBP6ZsJ9PHl/pRp3vYe07Nj1Ntb+jQ9W118nG+q8mh1OUgyB3Nn4iRC9Z7vgYO1R5j91XVeIdJJuC6UirsGLv33v5k7qWi1cmfSJPw0OvbVFLK5PJtfTliGv48nc0sURTQfbmW0n4FN80fxq0NrmB2ezMywRLIsVXycf5jHRs1hpL8nwPVAbTFvZe/hzqRJxBuD2FKRxeG6En414bpuQb0yQ5fGsmaej/6ImY+O4FsvX1gdp8udc71/X9UzIxqlisdGzvWannkcEot6tBsdEMFtCeNQKZSk3/w1d277HhvLt3Vr88cpvyRI2zUKKrQVs7J4DdsqdnK8MZNsax7HG0/yZs4HAOhVOmJ8oxgfOJprouby6IgHzrhE4xJdFDWVkGXJI89WQHFzKaUtFVS11VBvr8fisFHZWk1hU0k3IXQqnuUiDXqVDpOmc7komAjvclEsyeZERvqnYNIMfYfLUQER3t+jfP2JNwbx5P5VHKwrYWZYIsnmM1fIBVApVCyLfpAm1whey/4fccbRvbaLMybx28n3A1DcVMqfjr/MlyUb2Fm1l2+q9vLtr39EsjmBW+Ou48ejH+72t3A64wNMbK5qwO5yoVX130ewwd7CswdX4zpNuKoEBb+eeN2ACJKQZDOT701i/9t5zNmeytwfdi2V9EfxsVN5I/s9Ht71BOJpAwOAyrZqqltrCNWf/W/gYnG4XRypK+XRkbMZ1vE3d13sGNIbytlRmcuNcR7H3bUV9bglz1LdjspcgrQGbksYD3iWjPOstWwuz/aKkc3lWcwMS2RGh+/IXUmTyWioYHd1PoujR17y65K5ePyjDAgKqDzeMNhdGfJc1WIEIExv4qlxi1lbcoK9NYXY3U7vvhCdkXnhw5gTkYyyY807UBvAusUf8cLRP/P8od8jIRGuC+1x84k3xfL46Ed5fPSj3m1VrdV8UbSWLRVfc7Qhg6LmUrKsubxf4Clpr1X6EKmPIC1wJPMjZnNT3FLC9Z50UJVCRZI5gSRz92ncvqhurSHTkkOurYDCpmJKWsqpbK2mtq2eRocFS7uVytYqjtZnnGG5SI1OqcWoNuCnMROsCyRMF0K0byTxxliSTfEM9xtGhD7sopeLTh/RX8hoXq/SEKozUtvWez2IvgIm/X30/Gnqn1katYS1pTW9BkxGG/y8j2ON0fx9+u/4+/Tf0eZq4z9Zb/Nu7iekN57khWN/4YVjfyFEG8Q1kXN5fNQjjA/ubv9+a0wIm6sa+KikmvsSIukvml3tPYQIeNLSm13tBDAwsyO3vzaLY58V8eXPDjD9weFo9P3/NfPyydd5bPfPz9jmQN0Rlsdc2+/PfTqiJCEioRK6BzirFSrvMjDA6/kVADySHMWb2fm9eqx8XOBZXnKJbkqaGlgSlerdrxAEhvuFUWCru1SXInMJ8DFqqJcL5p2Vq16MAJg1Ou5ImshN8WMpbW6k3e3CpNES5euPohdbZoWg4NlxTzA1eCLf2vpt5oSf2/RbmD6Uh1Mf4OHUB7zbLHYLq0rWs6l8O4fr0yluLiO/qJDPir7i+7t/hkahJlwfxmj/EcwNn8EtcdcRZ+p7JNlJqD6EUH0IcyPOXCoboNnRTJY1jxxrHgW2YoqbS6loraLaXuuJc3HYyG9qJNOS02e8jFJQolX64KvSY9aYCdIGEKoLJso3nDhDjHe5KNmc0GM5o7cR/YWM5u1uJ7X2Zqae5hfTyZkCJgVB4Ma4a9hdvbKPgMne13t1Kh0/HvUwPx71MADrSjfz8snX2Vm1l/fyP+W9/E/Rq3RMDh7Pgyl3c0fCLdwVG8bD+7P4qKimX8XIUEGlUnD7azN5+/btvPGtrTz81aJ+f47xgWNINiWQaytAISh6LGMqBSUHao8wPWQmje2tuCURjVKFSa3t9xkirUpNgjGItaUZhOtNmDRa9tcWU2CrI0TXVdH4m1oLARoVQVoNNqe9x1KLSaPF7nbicLtodTkQkTD20qaq7cpKDb/SMUfoaSiUC+adDVmMnIJWqT6nqf1OromaS8ntxy6qjoSf1o/7ht3OfcNu925rdbWypmQT68u2crDuCIVNJXxVupGvSjfyxP7nUQkqQnXBjPRPYXbYdG6MW8pI/+FneJYzY9AYmBic5k2PPBMu0UW+rZBsax55tkKKmkooa6mkuq2WOns9VoeNitZKCpqKesTVdKJAgUapRq/SY1IbMaiNWNpFfFVmDOoATOpAzJpgqtoavDeOdaUnOFJXSlWbDY1CSYIpGF+lmmmhCQRofbE62lhdfBwFApOCPYZlb2bvxu5yUdlmo97ejJ+Pnnp7c7eAyaKmeiJ9/fi/vZ/T5nbip9HxVcnxXgMmz4Ul0QtZEu1ZjsizFvDnjH/xVclGtlfuYnvlLu7d8X1SzEnoWMq+uklnOdvly4QViWx+MZ2Ta0opOlBL3KTgfj3/tNBJZN22l9Ul6/n1kT9xqO4YSkHp/ZtzS25Wl+ygqrW7cFcg8JPR8xnmd3FZUafz7ZRpvJ2zj5/v/wIFAjEGfyYFx1LS7Jmeb7A7qG93cl2kHHx6tREyzER1pgWXS/TWb5LpyVUdwHo54XA52FS+nbVlm9hXc5j8piJvICWAUlAQpA1kuDmZmaFTuCFuKRMCxw5qto0oilS1VZNpySXPVkBhUwmlLWVUttZQa6+nsd1Ck7OZNrcdp+js9RwCnuUisyYMrVKNWaMnwCcAH0UoSsGMUWVCrTQQrA0i1S+am+LTCNYZAfjN4XWUtjRyc3yatxDb+tKT+PvosDrshOiMxBoCOFpfxv0p0wjS+rKqKJ1caw0qQUGb29kjYPJCaXY086/Mt3g//1MyGrM64no0hOr8WBw1n8dHPcyYi0xFLWlu4IUj63vd9/S4xcScUm9pIGgoaeZX8R9hCtfz67I7LtnzSJLEjspdvHD0L2yu2IGAgISEQlDxneQ/9RgsKBF4IGUak04JZO4v2t0u7G4nZo2O/2bupN3t4gej5vLbjEKePpbPF7PHcEN0CH88tokYQ0C3isa7qvL5uOAwf5t+Gy7RzQ92fcz3RszsJoTfzN5Dm8vBoyP7P/hZ5tKw7leHWffLI/x493ISpvWvCL4ckANYrzA0Kg3LYhexLLZrytstuvm6ajdflWxkT80BcqwFfF21hx1Vu3nh2F8QEAj08WeYOZFpIZNYHrOI2WHTB0ygKBQKInzDifANZ0Hk7D7bdd5EHe42LI5qLI4ampz1JJp8sTkbqWmrpaG9EZujgVp7OQ63Zwq7N76/R4mP0geD2hc/TRQGlR919o1E+UYQZ4xGECBUZ+L/TVyOUlDys30rWRozirRAj+/Dt1Om8cTez7lr2KR+vVkZNAb+b+xj/N9YT02VH+7/lJezvsHqWM/buR/ydu6H+Kr0TA2ZyMPD7+fmuOXe96nN1UZxcxnD/ZLP+BziEBtXBMQYmPHwCHa+ksmGF45y7dNpl+R5BEFgbsRM5kbMZE/1Ib799dNkWQ8iSi7KWk4yMWgqWpWa8hYLLknEjcQb2XswqLXnVEPnfPBRqvBRqmhxOjjZWMnN8eMA+KykBqWAd2YkwRRERkNFt2MzLVUkmDz7VQolMcYAMi3VXjEiShJZlirmRQzr1z7LXFoSZnn+xvJ3VF2VYuRcuaJnRkRJZHXxcfbVFHU4O+qYHhrP0uhRZ1xauZzz/0VR5GDdUVYVr2Vn9T6yLXnUttd719QFwKwxk2iKY0rwBJZFX8PCiDmDmvbb14j+TKP58uYGnjzwCfMigqhvr6KoqYTy1kqq22qoszdgddgQJS1NznraxbZez6EUlPhpwlAIToxqHQE+/oTogpDEMMJ9g1gYMYIUcxLD/ZPRq/T9es2tLhe+H23n2vBA/jrewJ+Pv8La0s2Ut1Z6+5bqN4wVCTd5jNoO/oY7Em/hL1N+3WuGSJ61htez99DQ3tLr892fPJVpYecW/NyfiKLIk4Hv4Whx8ULNnej9fC7p820oPcnnRUepbitifdm/CNeFcPSWbZg1Jlqc7XxScJg9HTWm4gwBPDlucb8874nGCiTJExBf09bEZ4VHUCuU/N+Ya1AqFBg/3EiEDrJv8Awm6uzN/OrQGuZGDGNGaAJZlmo+yj/Ua2rv3cmTiTMGsqU8m0N1xfxqwnJMfcRFyQw9XA4Xj/u8TdqtcXz7kwWD3Z0B51zv31e0GFlbcoLN5Vk8kDKVcL2Z4qYG3s7dy42xY5kfmdLrMZ1fElda/v/x+hN8UbyOr6v2cNKSTU1bbTc7e6PaQLwxlklBaSyOWsDSmIX9fgPui/MVI6Ik8crJHbS6nPxs7DV9nvfRnR9y/7CpTAyKoby1kixLDlsqjpNeX47Zp4Gyljoa2iUsjgKanU20udtw9lF5WUDwZBeptJjUBvw1fgTrgojQh3qzi4aZExnhN4xg3bmJ0uBPdyBJEnW3zfVuszlsvHzyDT7I/5yTluxucTcCAjqllpem/IrvDr8PZYc9fbalmr9nbOs1k6YTlaDgJ6Pnk3QeMVH9RcZXJfz3uk0kzwvnB1uXXrLnkSSJZw6upq7DN+je5FSWbriJeREz+Xzh2x2BrhIvHFlHWYsFgKfSFhNrvPjlq4O1xawsOoalvRW9SsP4oGhujBuLTqVhX62VqRsPcEOYky8WLPEec+qgx89Hz7JeBz3ZbCzLxOawewY9CROINw3+oEfm/Hhc+ybBw8w8mX7zYHdlwJGXaYCCplrSAiO9JkpBWgMHaospbOq7pPOVmv8/OnAkowO79y3fWsjK4rVsr9zJ8YZMMi05pDec4PWc9wDwVemJMUQxPmgMiyLmcn3MYvy0fv3aL1GS+kxV7Esnf5B3gIoWK/93BiFyKgqFgmhDJNGGSNSKSFxiBi9NvZl8Wy1/OLaJP0y5qVsq798zNlFvryPBJFDQVERJczmVrVVUt9XR6LBgczRR01bP8cbMPtOiVYIKrXe5yOOiG6YL8S4XJZkSGGmU2FEr0Opyoe/wGzFpTDyZ9mOeTPsxoiiysngN39/9c6rbapCQaHW38ejun/HzA/+PX477GY+OeJBXs3Z5hUiU3szEkDhCtEaq22zsrS6k2t6ESxJ5NWsXL0y6fsBL1I9aHkPslGByt1WSs62CYfMizn7QBdDktHuFSJIpmBlhabw7919cv+lubtp0L6sWvYtCEJgemuBNoS1oqu0XMTIxOJaJwb1Xen4ltxSAv0zuHueR4hfKM+OX9HaIl3kRKd7K4TKXL76BWqzlcsG8M3FFi5EEYzA7q/KobrURqjdR2txInq2W2xLG9XlMga3uqsn/TzTH88SY7/PEmO97t5W3VPJF8Rq2lH9DesMJCpqKybTk8F7epwBolVqifSMYGzCKhZGzuSl2GSH6C8uUaGhv4V8nv/FmHJzOJ4VHeDR1NvpTlpA+yDvA8YYKnhi70Ots2RcXWojN4RZI9U9mReLEs15Du6udXGt+R3ZREcUtpZS3eJaLOl10S1rKyLUV9JFdpMTwlgKtUomvyhezxkigNoAQbRCRvuHEGqIJ9PGnuq17sa0mZzM/3f8cT+x/Hj9NGMmmSdwQcws/T1uC8pSYoEVRI/jL8a3kddRgOlpf1udN81Ly3S8X8kzEh7y1Yhu/qbrjksQtucSumSGD2rMcFGuIRqfUsbl8B82OZgwaA0a1ttdjLhVbqhoxqJTEGwdmplFm6OEfa6Bkf+3ZG17FXNFiZHF0Kna3k+cPfYUgCEiSxA1xY5kSEt/nMVd7/n+kbzjfT32Q76c+6N1Wb29gVfE6NpVv50j9cUqby8m1FfBp0Zc8vOsJNAoNEfowxgSMYF74TG6Ov44Yw5kLgTU57PwpfYt3JNsbudYa/p6xjcdHL0CtUPJh/kGO1pfx+JgFBGkNfR7XycUVYju3OhI+Kh9GBaYyKjD1rG1FUaS0pdxrRpdnLeHvOa2YVSVEaMtpbLdSY6+jpKWsz+Wi05GQaHRUsr/uS/bXfcknRaO5N/lb3BZ/A1GGCFQKJctjRvPXjK0AHKwtGRQxYgzRM/+no9jyh+N89fQhrn+x/9OajRotKkGBSxLJtdaysmgt9+/4PsP9kli96D0MGs/fzMnGSu8xZxO0F4vd5aK8rZ25oXIBzKuZ8JF+FO2poammFWOILEp744oWI4dqi9lfU8R3UqYT4etHaXMjHxccwk+jY1rowAfzXa4EagP4dspdfDvlLu+2ZkczX5VsZEP5Vg7VHaOwqYQvSzbwZckGfrLvWVSCijB9CCP9hzMnbDo3xy0j5ZRskNUlx71CJEjryy3x4xgbEIVbEjlQW8znhUdpdrVT2FTP9spc6uzN7K8p4tHU2WiVaqwOT1CqTqlGo/T8Gfd3Ibb+RqFQEGuMJtYYzWI8gWwfVOzALUmcuHVuj/b19gYyLTlcu/42Wl29B+GeztGG4xzdd5zH9z3Lu3P+xV3Jt3ktygFsznM7z6Xguhcnsu/NXLb+8TjzfjKy37+U1Qol44Oi2V9bTEbjfv564g2Mal82L/mcgI5SCwW2OvbVFgGev50xAZfWdO7twioA7o7r36wdmcuL2Ckh7Hkth5xtlUxYkTjY3RmSXNFi5LPCo1wbnepN0Yz09aO+vYV1pSf7FCMmtRab47SpfYcdbcdNTyEIKBBo6qWNWT00g1cvBQaNgduTbub2pK6ArHZXOxvKt7GudBP7a4+QbytiQ9lWNpRt5amDv0EpKAnWBpFiTqLVZSbadxThuhh+OmYhAT4eczMlCmaEJRLp68eLRzcAnjieTuHyp+NbuvXjvmFTvUF/De2tCHRlSSWagnkwZQario/xRdExQnRGHkmd5a0iC3Bt1Agcbhfv5u73FmL74ch5qAcormJyoJk1FXU0OVwYNd0/joHaAKaFTKLNZe9xnKKjPEGKKY0Yw0Qi9cN4Yswc2sVmMhtz2VKxg2uj5wNQ1941+6Q5x2J+lwKFQsF9H87j5QXrePXGLTy++7p+f475kSl8VPAlmypeRymo+f6IF8ixWdC1tHTEdRV4U6BnhSd5heyl4r3CKgTgnrgrp0KzzPkzbIHn/S/aXSOLkT64osWIQ3ShoHsKr0IQ+gw6BDn//2LwUflwfexiro/tSpd0iS52VO7q8EI5SK6tgK+rdiMhcaBuLQIC68pf4o7EmwnTBTMpaDxTQj2l11PMoWRbq6mzN/PLCcsI15vP+Pz9XYhtIFgRG8qaijr+V1jJoyk9Z2Pq7PXev1eVoMQluYn2jeThEfdzf/LtHKytZU1pBgAnLRZuiR9HWuBo7jhFJG6ryPH+ntLPzqPnS8r8CJLmhpG3vYoTa0oYuezspQ3Oh6N1+9hc8QZKQc0tcT+nvl3gzew9PfthDuX62Ev/nh9utBGl90EjO29e1QTFmxAEKE+XC+b1xRUtRsYERLK2NIMArZ5wvZnS5kY2l2Ux/RS/hZWFR7E4WnkgxVNfZk54Mtsrcvis8Ig3//9QbQmPjeqKhF8YOZy3svcQZwzw5v87RFePtDwZT4G/BZFzWBDZ9frtrSrgd+nvU9yUgYtaBBy8kfMela3V+GnMFN9+FJPGSKSvmWxrNeCJ5bgSWRETyr17TvBZaU2vYsTm9NS0UAlKbo5bzkPD72V+xCzvzMgslZl1pScQkdhUlolOqWZeRAo6lZpWl4Mt5VleMaIUFMwIHfxR2YMrF/JU8Hu8c/cOXqy/q9+CWb8oWsstW+7HR+nDu3Pe43C9tUdMko9CxczwRG6KS7vks185thZaXCLfium7grPM1YOPUU1DoVwwry+uaDFye+JEVhWn837eAZqc7Zg1OmaFJ7E8pst22+poo6G9K+UqSGvgsZFz+aTgMFvLs/Hz0XPPsCnetF6AScGxNDvtfFmc7s3//+HIebIR0Tli0GgJ1SUQqktgWkg896dMA2BHxS6u23QXK7Y+yOpF71HS3Og9Rj+IpmyXEo1KQahWw5HG3gtpJZkSWHvth0wKHtejMjR4AjCXxIxkTUkGErCqOJ21pScI8vGl1t7czXtkeczoIeGDo/fzYfHz41j77GE++9FebvvHuRWaPBNfFK3l5s334aP04dhN2xnml8RN8Z4Zy6KmelySSKCPL+ODYtCp1P1wFWfnn9melN7vDztzMLfM1YEpTEdjWe+mhDJXuOmZzNCk3e3iZ/tWYnc7UQkKnp+wjJCOejJbyr9m8fpvcVv8LRhU0xEEgVCdiV9NWHZRBQmHMjdsP8qX5XVYb5uLSXP+4wNJklhZdIwNZSf7bLMsZhTXxYweUq/hs1EfYKts5fmiFQREnz07qi++LF7HjZvuxUep4ehN27sFSg8myat2UdbaTtsd8we7KzJDgP8s38iJNaX81f3AoNYMG2jO9f599bwiMkMGH6WKGR1LWi5J5KX0zeyqyqfV5WBS8GR+NPIJPij4iHfzn6GsJZs5YUlD6iba39we64njeKug4iwte0cQBG6OT+PZ8UuYHZaEv0aPj1KFv4+eueHJPD9+KdfHjhlyr+F3PluAJMKr12+64HMMVSEiiiIFzW2M9rtwkSVzZRE5zjOzWXa4b9PNq5kreplGZuiyPHY0Jy1VVLZasTraeCd3H+/k7uvYG4FK8KHN3cTaspfJtq7lR6O+y33Jt2PSGAe135eCW2NCuWv3CVaW1vLD4Rce0Bnl689dHWnLlwNxU0IYsSSKzHVlHP4on/HnmWXwZfH6ISlEAD4vrUUEbosdePt9maFJ4kzPoCNvRxUxEy/MKPJKRl6mkRk0bI42Xs3aRY61pse+fTWrONbYlcYrIKBV+nBf8h08NvI7jPQf3uOYy5nwz76mzS1i+dbcwe7KgGJvdvBU0HsoNQpebLgH1VmyTtaVnuBIXSkZjVmsLP4rPgota6/9iOlhY8943KHaElYVp1NvbyZEZ+Tm+DRvmQjwLHWtLj7ON1V5tLmdJJqCuDNpEqG6C/u+Wbr1COsq6y946U3mysPR6uIJ37cZvyKe+z+8epbu5GUamSGPSaPj8dEL+MXYRcwMS2SYOYQUcygLIlL4xdh7urWVkGhz23k1+x1GfTaT2auXs750Sx9nvvyYGmTG6nRhcTgGuysDitag4brfTaK9ycWHD+08a/scaw16lYWPC19EQOQno37D6pJC2t19O9bm22p5LWsXM8ISeGb8EtICo/jXyW8o7yiWB7ChLJOtFdnclTyZX6Qtwkeh4u8Z23CKvVn4n5299VaCfdSyEJHxotGrUGoUVGdbB7srQxL5kyIzqAiCQLwpqEcl0hZnC0pB2aOeS+fjb6r3cu+O71N9V+aQi4W4EO6IC+WLslreyKvk8dQuu3ZRElldfJx9NUUddXV0TA+NZ2n0qDNe96kVYf199CzttSJsDpvKMrE62jwVYRMnEG8c+Iqw8348ih1/P8H+t3NZ9HQaIUl9j54SjU5u2PRD1Ao1h27cTJRvDE/s+5zi5oZuTrOnsqU8m5EB4VzbUU/qhrixZFqq2F6Rw13Jk5EkiS3lWSyNGUVaoCfz5YGUaTyx93OO1pV6TRPPlapWO40OF7dEy1PxMt3RB/hgkTNqekWeGZEZkviqfZkQ1PvUu0pQEqQNZN3iD68IIQJwc3QIArCqvHsxrfWlmeyozOOOpIn8csIybo5LY0NZZjcjs9OpszfzzxPbvVVhF0Sm8L+cfZxo7AqQPVBbzKcFh1kWM4qnxy0hytePv2ds6+E+PFA89MVCkM4czLqmeCM3bLobtULNkZu2McJ/GG1uj/+M7xlSvwuaei9+WdDkKWxZZ2/B5rQz4pQ2OpWGeGOQt8358EpuOQDfTZJTemW6ExDjS5vl6pr9PFdkMSIzZLkmci4qoacxVbIpgUM3bmFCUNrAd+oSoVIoCNdpOHqa30hBUy1pgZGMDogkSGtgQnAMqX7hFDb1HZG/ozKXIK2B2xLGE643My8ihfFB0Wwuz/a22VyexcywRGaEJRLha+aupMloFCp2V+dfsms8E5FjAhl7axzVmRb2vtFTaK0t2cT1HULk0E1bGOE/DFGS+LjgEImm4G4W/6djc9gxnVaqwaTWYu0QXp31enorkGm9AHH2RVkNKkFgYZhcHE+mO6Gp/oguiZaGwRH9QxlZjMhcEuwuJx/lH+LJ/V/w2K6P+P3RjRSd4QYKnqWF3xxex/d3fsgzB74kWJuAS+q5Zu+rSuD3R3fy4tENFF7AyHWoMi3IjM3pps7eNXJKMAaTZammutVTEbq0uZE8Wy2jAvqudVJg62MmwOZ5rVyim5Kmhm4zAQpBYLhfmLfNYHDvu3NQ65R88thuXI6uGJC1JZu4buNdqBUqDt20xRu8/EHeASparDw0fMZgdblXsqytDDPpryovCZlzI26yZ+kud1vlWVpefcifFplLwju5+8i0VPFAynSeG7+UVP8w/nJ8K42nuN2eSm9LC8fr21GeMjNyU+zNjAu4hoP1G0DIGPSlhf7mzo5iam+e4jeyODqVicGxPH/oKx7Z+QEvHFnHgsgUpoTE93kem9Pe6yjf7nbicLtodrYjImHsbSbAOXivpdpHxS1/n4azzc07d38NwLrSzacIka3dhMjxhgoeH7MAf58zV/81abTYTrsuT/yN5/pNao9zcm8FMs3n6Vi7vaoBpyRxQ+TAx97IDH2S53s+44W7e2YQXu3IYkSm33G4XRypK+WW+DSGmUMI0Rm5LnYMIToDOypzez2mt6WFKSGJRPsmIiDw0uRfMTHoZn46+ifEGqJ5JfPf2N3Zg7q00N9cHxXkiRsp64obOVRbzP6aIr6TMp1nxi3h/mHT2FSWyZ7qgsHr6CVk+oMphA43c/STQt7/+kuWb7izmxCRJIkP8g5wtL6Mn4yZT5D27KZiCcYgsixV3bZlNlaR0BGsG6T1xaTWdmvT5nJS2FTnbXOu/CfPEy/SW50hmSuXBnsLJc0N3X4a7D0DVUNT/ECA8mOy8dnpyNk0Mv2OKEmISD3iPdQKFfm22l6P6WtpYXrIbbw9ZwrTQ6fwg10fszR6JEdv3EbsR+P43s6f8lzaXwd1aaE/USkUROh8SG/sKqb1WeFRro1O9WZ0RPr6Ud/ewrrSk0zrozCjSa3tdZSvVarRKFUoBAEFAk29zQSoB792zUNfXsPjc1/m20d+idqo4uCNpyzN5B9kf00Rj6bORqtUY3V44j10HdcG8Gb2bvw0em6KTwNgQWQKL6VvZlNZJqMDIjhQW0xxcwN3dxjECYLAgsjhrC3NIERnJEhrYFVxOn4+Om9l7nNle3UjZrWSKP3gv44yA0ODvYVnD67uVgcKQCUo+PXE6wjQ+nbb7mNQUV/Qey2qqxlZjMj0O1qVmgRjEGtLMwjXmzBptOyvLabAVkeIrveRbF9LCwZ1KFNDJndbWvDT+rH/ho2M/nwWL2U8x49SXxyIyxoQpgeb+aSkhhq7gxCtBofoQkH3jCGFICDRt1dhgimIjIbu1vKZlioSOtKnVQolMcYAMi3V3putKHmKys2LGNbPV3T+HNYe5OOn/omx3o8/S39kVMAI777OmbU/He/uMXPfsKne1OWG9laEU16zRFMwD6bMYFXxMb4oOkaIzsgjqbO6Bb1eGzUCh9vFu7n7aXU5SDIH88OR886rsm+zw0WV3cGisIALuWyZy5RmV3sPIQKeUhfNrnYC6C5GjKE6bJVtA9W9ywZZjMhcEr6dMo23c/bx8/1foEAgxuDPpOBYSpob+uX8KX7JrFn0AUs33MUbuX/kybSlGDSXfx2Qu+PD+KSkhtfzynlyVDxjAiJZW5pBgFZPuN5MaXMjm8uymB7WNSuysvAoFkcrD6R4qt/OCU9me0UOnxUeYUZoAlmWag7VlvDYqDneYxZGDuet7D3EGQOIMwaypTwbh+jq4UUy0Gwo28qyjXeg0qm49T/f41h9DY7vutDoPV9V/5l151nP8dMxC3tsmxAcw4Tgvq32BUHg+rgxXB835oL7/lq+Z4nmvoS+g4tlZIKTTNTlNSGKohzkfAqyGJG5JATrjDwxdiHtbhd2txOzRsd/M3f2ucZ/IUsL10TN4zvDHue/2X9g/Bfzybp172X/4V4e4YkbWV1ex5Oj4rk9cSKritN5P+8ATc52zBods8KTWB4zynuM1dFGwymBwUFaA4+NnMsnBYfZWp6Nn4+ee4ZNYaR/hLfNpOBYmp12vixOx+awE2Xw54cj52HS6AbycruxsWwrSzfcjkpQceiGzbT7+vD27dt581tb+d5XiwatX+fKR8U1CMC3Ogofysj0RmRaIJnry6nMaCRyTOBgd2fIIIsRmUuKj1KFj1JFi9PBycZKbo4f12u7C11aMGsSuS3+Hj4ufJvFG77FxiWfXtoLusQoFAqi9D4ct3jiRrQqNSsSJ7AicUKfx9yfMq3Hts6spDMxLyKFeREpF9fhfmJT2TaWbLgdlaDkwA0bGRWYCitg84vpnFhTStGBWuImDW1H02OWJuJ8taguc0Esc+5IkkRmY3Wf+91iz+WbhBkesZq7rVIWI6cgf2pkLgknGivIaKigzt7MycZK/nx8M2F6EzM6lgFWFh7lzezd3vZzwpOpszfzWeERqlqtbK/I4VBtCQsju26WCyOHs7Mqjz3VBVS2Wnk/7wAO0cWrs37DvPCZbCrfzg93/2LAr7W/mRHsR7PLTVXrlZGyfDY2lW1j8YYVHUJkE2MCu2Z9HvryGgQFvH7T5kHs4dnJaGyizS2yOEK+uVwtuCWRN7J383nRkT7bfFxwGHuHS3AnSXM9gfolB66MwPv+QhYjMpeENpeTD/IP8vzBr3gzew9JpmB+NGoeyo5RY19LC5mNVfz68Do2lWf1urRwa8I4vixO5zeH11Ha0uhdWti85HMSjLH84+Rr/OvkmwN+vf3JPfGemIPX8698Y6TN5du9QmT/aUIEICDGwIyHR2Atb2XDb48OTifPgX/mlAHw/WFySu/VwqcFR9hfW+x97KfRMcIvjJBTlqILmup4I3sPktQVcK41aFCqFVRlWgayu0MeQTr1VRqinGsJYpmrG5vDRswHadicTWxa8ikLIuec/aAhiCiKqD/YyqRAE3sXTx7s7lwytpTvYNH621AJSvbdsJG0wNG9thNFkScD38PR4uKFmjvR+/kMcE/PTtwXO6m1O2i5/eopDX8109jeylP7VyEioRQU3D9sKhODYz2ZbpJEpqWK/2bu9NZO+kXaom5FKJ8KfQ8k+G3NXYN1CQPGud6/5ZmRy5zTzXZ6M9q5WjBpTBy6cQsqhYolG24n31o42F26IDrjRjKszWdvfJlyrkIEPK/HPf+bg9sp8vrNW/psN1i4RJGSFjtp/sbB7orMALGzKh+xI71+UdQIJofEoego2ikIAqn+4d3i476uzOt2vH+0L62N7QPX4cuACxIjL7/8MnFxcWi1WqZMmcL+/fv7bPvqq68ya9Ys/P398ff3Z+HChWdsL3PudJrtvHBkvffn2YOrr2pBkmiOZ/3ij3GJLiZ8MR+bwzbYXbogZoX40+ISKbsC40a2lH/NtetvQ3kOQqSTUctjiJ0STO62SnK3V5y1/UDyQVE1EnC7nEVz1VDc3OWg2pkOX3mykd+N+ZyaXCsAU08RKMVN3S0NwlL9EF0SbTa5gm8n5y1GPvroIx5//HGef/55Dh8+zNixY7n22mupqenda3/79u3ccccdbNu2jT179hAdHc2iRYsoLy+/6M5f7fRmttNptHM1Mz9iFi9P/wNWZxPjVs5D7CWifahzb7wnyO31vKF1471YtlZ8w7Xrb0UhKNl/jkKkk+9+uRBBKfDmt7YNqff0nUJPbM93kiLO0lLmSsF9SnRD0cZq/nP9Rl4c+TkVxxvJ3uS5t6kVSlSCoqN997/XmI7MsLztV35c2Lly3mLkz3/+Mw899BAPPPAAqamp/Pvf/0av1/PGG2/02v69997j0UcfJS0tjeHDh/Paa68hiiJbtgy96VaZK4dHUh/gsdQHKWgqZuG6m3vsH+rLWwvDAlAAa8qvnIj7rRXfsGjdLSgEJXuvW39eQgTAGKJn/k9H0Vxr56unD12iXp4/++uthGs16FWyU8LVQpCPL4o1LjQ3tfHujTs4uaYUlUbBo5sWM+vRVACyrdU4RE/V8cDTLOGT53mC1At29Z0WfLVxXp8eh8PBoUOHePLJJ73bFAoFCxcuZM+ePed0jtbWVpxOJwEBfVsmt7e3097eNbq32S7PqXaZweUf039HliWXzRU7eGTnT/nXzD8BvdeS6KuOxGChUCiI8dVy4gqJG9lW8Q2L1t3qFSLjg8de0Hmue3Ei+97MZesfjzPvJyMxhpy5Yu+lpqTFjs3pZrlcpfeqQBRFtv/lBEd/k4Xa4kRSAGpQqAV+sGUZ8VNDAGhzOfissCvl9/Q6UmGpfgCUH+sfR+orgfOaGamrq8PtdhMa2n1tNDQ0lKqqqj6O6s7Pf/5zIiIiWLiwp2VzJy+++CJms9n7Ex0tp8vJXBgbFn9CkjGef2e9zT8y/gtcPstbs0P8aHV7giMvZ7ZX7OSadbeiEBQXJUTAI9Lu+3Aeolvi1RsHf3b15ZxSAB5OihrknshcSlwukdVPHeBnpv/xxRP7cTS5QA2CCJIT3L/WciCklAM1RXxZlM5zB7+ipLkR8FSFHhfY/e9DoVCg8VVRlycPtDsZ0Gya3/3ud3z44YesXLkSrbbvqpZPPvkkVqvV+1NaWjqAvZS5klAoFBy5aRt+GjM/2vs0a0o2c7SurNe2zc6hJUbuS/DEILyWd/nGV22v2MnCdbegEBTsvm7dRQmRTlLmR5A0N4yiPTWcWFvSD728cFaX1aJWCMwK9R/UfshcGhx2F+8/9A1P6N5i04vpOFpcnh2SBB1eZlKsQPsk2FKezWvZu1lTmoHN6RlA+Kp8eCR1NqpeCi4aQ3U0VcsF8zo5LzESFBSEUqmkurr7Old1dTVhYWF9HOXhpZde4ne/+x0bN25kzJgzF6Py8fHBZDJ1+5Hpjt3lZF9NUa/7GodY/MNA4BJdrCxaQ5OjZ2lug8bA4Ru3olKouH7TXbyX1/uI+t8nvyGz8dxm+AaCuSF+KAVYe5nGjeyo2NUhRAR2X7eOicFp/XbuB1cuRKESeOfuHYMWzCqKIjlNraSahsbSnkz/0Wpp583bt/KE/m32vpaD6JK63S1PnViN/U6YN1C1EwGBsYFR/CJtEVG+vQvVoEQj7S2uIRWMPZiclxjRaDRMmDChW/BpZzDqtGk962N08oc//IFf//rXrF+/nokTJ154b2UAqGlr4jdH1rG5PKvX/f/J3Mmh2sEdMQ4031Tt4ebN9xH1wRh+feQlLO3WbvvD9BHcHv84oiSysuQl7K5W/DS6bm6J7aKLl0/u6LfKwheLQqEg1lfLSdvlJy6/rtzNgnU3dwiR9f0qRAD0fj4sfn4cbY0OPvvR3n4997myoaoBtwQ3RYcMyvPL9D+Wihb+vWwDTwa+y5GPClEoha6dvWgGQSnw6PcX8LvJN3L/sKncljCee5On8NtJ1/No6mxCdH17z0SODQAJarKtfba5mjjvZZrHH3+cV199lbfffpvMzEweeeQRWlpaeOCBBwC49957uwW4/v73v+fZZ5/ljTfeIC4ujqqqKqqqqmhuvjIC8waaVpeDv2Vspdbe9fqF6UzEGgK60siQeC17F9mWqydSuzN1zuZs4peH/kDUB6N5+sAL1LZ5ZhV2VOagU0UyK3QFTrGdrZX/5MVJN/DrSdfzwqTrGdVhO+8U3XxeeHSwLqMHc0L8aXOLFDa1nr3xEOGbqj3MX3sTCkFg13Vr+12IdLL4mXGYI/TsfCWThtKB/z55NdezfPbIMDle5HKnJtfK3+as4bmoDzm5tozgJBOPbriW/1d6O4EJRhQqoccxCqXA8EWR+Ab4YNRomRaawMLI4cwISzynQPj46Z7Yy5xtcnovXIAYWbFiBS+99BLPPfccaWlpHD16lPXr13uDWktKSqis7Hpx//Wvf+FwOLj11lsJDw/3/rz00kv9dxVXETsqc6nrWIaJ0Jt5bvxSfjVxOU+NW8wfptzE1JA4wFPR9ouiY4PY04FFeco0qYhIi6uV36X/jZgPx/KTPc+wtuQgAKl+0/ne8Acpay3jl0d+D3jq4jycOotAH88XSKalipq2nss9g8H9nXEj+ZeH38jOqr3MW3MjAh4hMil4/CV9vu98vgBJhFev33RJn6c3dtZaCNCoCNFqBvy5ZfqHkoO1/GHCF/xm2Kfkf11FVFoAj++/nmeyb2P4oihMYXp+9PUyfIN6xjiKbomJdyVe8HN3pvcW76u94HNcSVxQYvxjjz3GY4891uu+7du3d3tcVFR0IU8h0wuiJPF1ZS4AAvDwiFmE6rviaXzVPtw3bCrFzY1UtlopaKqjtLmRaEP3NUuX6OJ4w0lq7HVcGzXwtTQkScIlunCIDhxuBw7RSbvowOl24hCdOEUHDtGFU3R6fzzbPdtcogun5MTp7mqTZc3t8TyiJGJ3t/O3E/9BAvw1ocwOW8QNcROptS/n10f+RL29gZdn/BG1QsmMsAS+LD4OQJ6t9oxTrAPFrI64kXUVdbyQljTY3TkjO6v2MnfNDQgI7L7+0gsRgLgpIYxYEkXmujIOf5TP+BUXfnM4HywOB7XtTjml9zIle0sFn3x/FzXZNhAgYVYod7w6k9AUvx5ta3OtNNd4Ak0FpYDk9hieqXwUjLkh9oL7oPfzQaESqJYL5gEXKEZkBgfbKZVuk80hXiHyp/SX2VG5m1hjNFZHE4fqTlBrb0KSJLZVvoxKIdHsbKHV1UqLqxW7uytrJEofAYLnxt35IyF1/C4h0fmv5H0sdTz2/ouEJOH9nY7foevfwaSzD42OKlaVvMOqkne8+97M+YC/TXsRlUKFn6bLs8Lhdg14P3tDEATifHVk2ob2Ms2pQmTn8jUDIkQ6eeDjeTwV9B4fPLSTMbfEo1Jd+iTBf3cs0Xw7UXZdvZw48mkhX/x0H40lLQgKSF0axYr/zMA/ytCjbWN7K299tZOC75UihQuYnjcjPtuGvc5j4T7q+hh8DOpux2Rbqvmk4DCVrVb8ffQsjRnltYvvZFtFDpvKMrE62lCOVFBXMzRmYQcbWYxcRpzqjWFQd1Uu/apkI9urdgGeKO5TBUDdGbJVBQSaXS0oEBAEBQpBQCEoUKJEoVCgEDw/SkGBgo7Hio79HduVQsfvCiVKQendphSUKBVKVJ2/C0pUChVKQYFaoUIpqFAJSlQKz3aVoDrl365taoUatcKzT61QoRbUXb8r1GiUatSCmjxbAT/a+3SPa1SgQEQkQBPO+MDFpAVM5reTb0SlUOGSXLS57KgUno9BtrUrxsZPo7vg96m/mRfqz2v5FeQ3tZJoHFyTr97wLM10CZEpoRMG9Pm1Bg3X/W4SK3+yj4++u5O73ph9yZ/z05IaFMAN8szIZcHO/2Sy9rnDNNfYUagExt+ewG2vTMfXv/cK0C1OB7/9dC3tj1hRigq+s24ByiQ1ymkSb8/fRnOtnYl3dp+Fq7M3888T25kdnsx3hk8ny1LF/3L2YdZoGdkRk3agtphPCw5zZ9Ik4o1B/C10DS11dmwOOyZN33YXVwOyGLmMMKm1KAUFbkkk11qDU3SjVijZtnwVzc5mdlXvZ2vFN7yZ/Qm17WdOUVUJKu5NXsHrs/82QL2/tByoPdztcacoG+E/jBcnPkOhzYcTlkpsLidfV+WzIHI4akGNWuMZ2RQ3NXCgthgAvUpDqn/4gF9DX9yfEM5r+RX8N6+c349LHuzudGNX1T7mrbkBBkmIdDLvx6PY8fcT7Hsrl2ueSiMk6dLaAWRYmkk06lEo5MLnQxVRFNn0Yjpb/piO3epE5aNg+vdSuPnPU9Hoz3zre/fTXdgfsaJ2KHji4A1EjOpwDPeHH32zjH1v5pK6tLsZ547KXIK0Bm5L8MwKhuvN5Flr2Vye7RUjm8uzmBmWyIwwj5AZERjGoapCvi7OYXnymS0vrnTkT9JlhEap8jr5NTnbWVOS4d1nUBu4Nmo+D6U8yi1xTzMt+GYEekaAd+KSXCSZ4i51lwcMpeAxFeq85kRTHB/Pf530m7/mutjFLIwa7m37ccFhXs3cyfGGcnKtNXxWeISX0jchdhS/mh2WhEY5dHT6jBB/VILAhor6szceQHZV7WPumusBga+Xrx40IdLJQ18sBOnSB7MeqLfSLkosiwi8pM8j0xNJkvjyyQMc/7K4zzYul8gX/7eP/zO8w5pnDiG6JK75xRj+0Hwft/975lmFyKGP8sn4bgEKXwWx62L5c/M2fnN4Hd9U5gEQmuLH9b+bhErT3ciswFbHcL/uflup/uEU2DwZfS7RTUlTAyNOaRMzMRjBDSeOXL7Ghv3F0PnGlTknFkQO52Cdx0NkXekJCmx1TA9LQKdUk95Qzp7qQkQkRgfMZVnMLP6Q/hwtrlbckrvHuZ46+AK/PPxHUsyJXBs1n+8Ov5dk88AEAPY3JrUn2DTaN5LfTHyKOxNvQXmK62GqfzjXRqWyoewkAAfrSryv46kkmYJZHnt+BdwGgniDluwhFDeyp/oAcztmRL5evpppoZMGu0tEjglk7C1xHPusiL1v5DD128MuyfO8nO1x8H0sRS5TMdBs/VMGm3+XjjFMx4jFUd0EgaPVxac/3MOB/+Xhdojo/DUs+eV45j8x6pxnsPa/k8u793+NNEzA9WctMfEB3BSURlFTAx8VHEKlUPSoM9OJzdlzqcWk0WJ3O3G4XbS6HIhIGE9pkzzXMwPbmCNbXchi5DIjwRTErfHj+LSjCFO2tbpbrEMnI/zCeGzkHG6Nn8qidbdR3lrZTZBE6SO4MW4pm8u3k2XJ5XhjJi8dfxmtUssIv2SWRV/DQ8PvJcZweXgoJJkTOHLTNkb6D0etUPfa5qa4sZg1WtaUnKDltDo0KkHB1NB4ViRMQN2LdfNgMz80gP/klZNlbWa4uWew3UCyp/oAs7+6DmDICJFO7nl3DifXlvLJY7uZeHcCKk3/f8VtqW7AoFIOyfidy5UGe0u32lAGlU8Pr46cbRV8+bP9ADRVtXHg3XymfXsYzfV2Pn54F+krixHdEsYwHct+M4Hp30k5rz7sfi2bDx/aicagovWvamLDArkpLg2AGEMAFa0WdlTm9ilGLoTItAAkNTgLnf12zssVWYxchlwTNQKzRseq4nTq7N0VtVapYlZYMjfEjUGlUJLil8zBGzezbMMdHKo/hiiJqAQVy2MW8Y/pv/Met7f6IG/kvMfWip2kN5zkSP1xfnP0z/iq9Iz0H871MdfyYMo9hOqHrtvk2UrSC4LAgsjhzA5P5nBdCSXNjYiSSJDWwKTguCEdQPZAQgT/ySvn9fwK/jj+0oz4z4UuISKxfdmXQ0qIAGi0Km75+zQ+fGgn79z9Nd/+uH9T1+0uF+Wt7cwO8evX817NnEsV7cayFt64ZYvH00ACBFj3y8Mc/jCfnM0VSBIExBm46c9TGHtT3Hn34etXTvLp9/egNal58sTN/KFiM+F6c7c24TozR+r6rpNmUmuxOboXtbQ57GiVajRKlSdBAIGmU9ooFAoUoQqk/J4z11cbshi5TJkcEsfE4FgyLZUUNzXilsSO6pDRaFXdZwaCdUHsWP4ld29/hM+LvsIluZgfMatbm6mhE5ka6rHqF0WRHVW7eSvnA3ZU7eZg7VH21x7mmUMvYlQbGBswihtjl/DAsDsI0AYM2DX3F2qFkikh8UwJiR/srpwzU4LN3riRPw5c1mw39lUf6iZEZoRNGZyOnIXpD6aw7U/HOfpJIRUZDV3Bh/3AO4VVSMDd8UMnwPlypsXZzrrSE71W0c5srGRGeBLOdjev37wZu83ZVRNGAktpC5bSFsJS/bjt5Wkkz72wNOttf81g5U/2ofPT8HTmLZjC9CQ2B1Pd1r2ibnWbjQCfvp1VE0xBZDR0NyfMtFSRYPJkXKkUSmKMAWRaqkkL8izxiZKEmCygyJXFiCxGLmMUgsBI/whvpPaZ0Kl0fLLgDX6+///xeva7zIuY2fd5FQrmRcz0thFFkfVlW3gn9yN2Vu9jV/U+dlbv5Yn9z+OnMTEucAy3xl/HvUkrMGgGdwnhSibRoCNnkGzh91UfYuZXyxjqQqSTh768ht+kfMqrN2zm+fxv9dt53y+qQgDujZPFyMVS3Wbjb8e3Ud/ee+2ld/L20+RyYHuxkdJDdUi91IYJSjLyZMbNCELfwfpnYvMfjvHlzw+iD/DhmexbMXQ4rS6MHM7vj21kbckJJgbHUNRUzzdVedydPNl77MrCo1gcrTyQMh2AOeHJbK/I4bPCI8wITSDLUs2h2hIeGzXHe8zCyOG8lb2HOGMAccZAtpRnI8UqcO+Ql2kESZIG35XqLNhsNsxmM1arVa7g2w+4RXe34M7zxSW6+KJoLe/nf8aemgNUtdV49wX6+DMxeBzfir+BOxNvQasauksflxvf35/JK7nlZCybyki/gRN9nUJEQmL7slXMDJs6YM99Mbx73w72v5PHzX+bwtwfjuqXcxo+2oa/RkXpTbPO3limT9pcTn5zZK23tAVAnCEQvUpNcXMDLS6PsZhivQv1b898o3547SJSl5x/MPH6Xx9h7XOHMQRreSbnVvR+3T1H0uvLWVl0lJq2JoK0BhZGDmdWeJcL8lvZe6hvb+GnYxZ6t51qeubno2dZr6Zn2Wwsy8TmsBNl8Cf0XQ1H/1TAs3m3EZx45d3fzvX+LYsRmYvG4XLwUeFKPixYyYHaI9Tau1JQQ7RBTA2ZwO0JN3Nbwg1eg7FLzfrSE6wsOsb8iBRWJPadcnqotoRVxenU25sJ0Rm5OT6N0QGR3v2SJLG6+DjfVOXR5naSaArizqRJhOoG/u/wUL2ViesP8OOUaP4y8fyC8y6UA7WHmf7l0stOiIAnxfNJ///hdor8ruGes6Z0no1cWwvDVu/h/oRw3pw2sp96eXWyuTyLTwo83kARejOPnFLh1iW6WVd6krV/PYzqr64zGBSAIEDs1BAe333deT3/V88cZOMLxzCG6Xgm+1Z0psGrL3Tk4wLeXLGNFf+ZwYzvDj/7AZcZ53r/lpdphhiiJLK6+Dj7aoqwOe2YNTqmh8azNHrUGaciz9eGOMrgz+2JE4g3XryDpEal4Z7kFdyTvAKAVlcr7+Z+yieFqzhUd4wvSzbwZckG7tr+MGG6EGaETubu5Nu4LnrxJTGNKmqq5+vKPKJ8/c7YLt9Wy2tZu7gxfixjAiLZX1PEv05+w9PjFhPZceyGsky2VmRzf8o0grS+fFmUzt8ztvHLCcsHPOtmQqAZtSCwqaphQJ7vchYiACqVgttfm8nbt2/nzW9t5XtfLbqo8/2zI6X3UblK70XT6dkB8ODwGV4hIkkSRTtrKP1tOeoNrrMWk5AkKDlQS3uzs4c1e1988X/72PpSBuZIPc9k34qP77kdd6lInu9ZZi/eV3tFipFzRRYjQ4z1pZnsqMzjgZSphOvNFDc18HbuXnRKDfMjex8NX4gN8ZaKLP6esY1fTbiu37NI9Co93x1xL98dcS8ANoeNt3I+5POirzhaf5xPi1bzadFqBASifCOYFTaV+5JXsDBi7kWLE7vbyevZu7kneQprSzPO2HZLeTYjAzz+IwA3xI0l01LF9ooc7kqejCRJbCnPYmnMKNI6zOYeSJnGE3s/52hdKZM6KiQPJIlGHbkDEDdyuQuRTiasSGTzi+mcWFNK0YFa4iYFX/C51lXU4aMQmBRoPntjmT5xuF1UdQSHxhgCCFEaKNpXw8H380n/vBhLWQsRo/2Z8a9UtqYUgBKWR47m2vBU3E6xx4+PQX3OQuSzH+1hx99P4h/jy9PZt6LRDv4t0BCkRaEUqDrZONhdGVQG/52Q6UZBUy1pgZHepYIgrYEDtcUUNvXtvnkhNsR3JU0mo6GC3dX5LI6+tFPOJo2JH476Lj8c9V0A6uz1vJH9HquK15HecJL38z/j/fzPUAgKYg1RzA2fybeH3XlBN8AP8g4y2j+CEf5hZxUjBU11LIzsPhJJ9Q/nWH1ZRz9bsDnt3RwTdSoN8cYgCprqBkWMLAwL4J85ZaQ3NjHG/9JUFT5Ye5QZqz1CZNuyLy5bIdLJQ19ew6/iP+L1mzbz67I7LugcoiiS39zGuIDBr+R8OeNyuDj6RRHKtxwoTorUVFfwU/vbAChUAmqdiodWLWTUdTGkN5Sz9WSh50AVF73M9tEju9j17ywCE4w8dfJm1D5D5/an9dPQUHx1G58NnXdDBoAEYzA7q/KobrURqjdR2txInq2W2xLG9XlMXzbEH3esyXbaEC/pmAEATybOcL8wr1XxQBKkDeRnY3/Iz8b+EICKlkpezf4fX5Vs5ERjNm/mvM+bOe+jEpTEG+NYEDGLB1PuYULw2DOe90BNESXNDTw1bvE59cPmsGNSn+aYqNZi7fABsDk9ZcN7c1W0nuYnMFB8JzGSf+aU8VpeOX+f1P9TugdrjzJ99WJESWLr0pXMCpvW788x0ATEGJjx8Ah2vpLJht8e5dqn0s77HCtL6xCB22KGrs/OUEMURXK3V3H8iyIKd9dQm2vDbvMEo6oASQ1iiMC4ufEs+NEowkcFoNYqvcvR6Q1dFulB2osL2H73ga/Z/1YuwcNMPHn8pktihncx+EX6Up1lGexuDCpD6x2RYXF0Kna3k+cPfYUgCEiSxA1xY8/oiXEhNsSdbapOy6UfDCJ8w3l+/M94fvzPACi0FfPfrHdYV7aFbGsu/856i39nvYVaoSbZFM+iyHk8OPweRvp33Ywb2lv4qOAwPx49b0g6qPYXaQFGNAqBzZcgbuRUIbJ5yWfMDp/e788xWNz6j6kcej+f9b88wqxHR/TInDgbbxZ4/CO+lxx5lpZXL+Xp9Rz5pIi87ZVUZ1poaWinM+hDoRIwhetJnBVGyjURlE1u5htXAQBisA9RKUEoha4l2hxrDXuqPbMiWqWKcYEXbr3/9l3bOfR+PmGpfvzs2E2oVEOvJFtIipmK9AYcdteQWDoaDK7Oqx7CHKotZn9NEd9JmU6Erx+lzY18XHAIP42uX22IhzLxplhenPwsL05+FoDMxhxezX6HDWXbyLMVcNKSw19P/AcfhQ8pfkksiVrA7LDFNDntvHB4vfc8IhK51hq2V+Tw8swVKITuX0ImjRab8zTHRKcdc4doM6l1nm0OTyCxt43DTrTB71Jc+jmRZNST2891ajxCZIlXiMw9gw/N5YhCoeDud+bw6vWbeP2WLfxgy9LzOn53nYVgHzV+msHLuhhKNJQ0c/ijAnK2VFB5vBFbdRuS26M8BAF8g7UkzQ1n2Nww0m6LJ2yEf7fja9ua2Xu4GKfo5kBtMSXNjcwITcCg9uFkYyWH6kqROpTM7PDkHkaO58rrt27h2GdFRKYF8H+HbhiyVZZjJgZy9JNCCnfVkLLgwszbLndkMTLE+KzwKNdGp3rjESJ9/ahvb2Fd6ck+xciF2BB3tjGrh74PyAj/Yfx56m+8jw/XHuO1nHfZUv41JxuzSW84we/T/46vykCKeRgLIuZye8ItrC8rJExv4tqo1B5CBCDBGESWpapb3EhmYxUJHRlGQVpfTGotWZYqog2eL9M2l5PCpjrmnOI3MNAsCgvgpLWFw/U2xgdefIrx4dpjHUJEvCKFSCejr4shdkowuVsryd1ecc6OnTV2B40OFzdHX3jw6+VMq6Wdo58WkbmulNIj9VjLW3E7uhzIdH4aYiYEkjAzjLG3xhE3JfisN/1gnYHvpEznv1k7ESWJ6jYbnxcd7dFupH84N8SOuaB+//eGjWR8WUrMxCAe33fdkBUiAEkdBfPyv66UxYjM0MAhulCcllmvEATvKKE3LtSGOMtSxbyIwatzcqGMDx7LK6fEj+yq2scbOe+zvXInxxqOcrj+MH88/mcCfSKIMyRS0zaXB4ffzeribPw0em6KTwNgQWQKL6VvZlNZJqMDIjhQW0xxc4PXZbGzls3a0gxCdEaCtAZWFafj56Pzvo6DwXcSI/hrdimv51dctBg5XHuMqasXI0oiG5d8esUKkU6+++VCnon4kDe/tY3fVN3R6w0qy9qCzeliQoAJpULglRxPQPODSVf+Eo3D7uLEV6Wc+KqE4n21NBQ342zrsirX+KoITTETNzWEUdfHMHxx1AUve4wLiubx0Qv4ougYebbabvsMKh/mRCSzLHoUyo736FyK6XXyyuL1ZG0oJ356CD/6ZtmQFiIA0RM839VlR/pOVLjSkcXIEGNMQCRrSzMI0OoJ15spbW5kc1kW08O6ZkX6y4bYIbp6eJFcjswIm+K1JxdFkS0VO3g77yN2V2WR3niAQ/Xf8OTBXxOsjSbekExx83weGHYHiaZgHkyZwariY3xRdIwQnZFHUmd5PUYAro0agcPt4t3c/bS6HCSZg/nhyMGNSxnlb8RHIbCl+uLiRrqEiJuNSz7rUa/oSsQYomf+T0ex5Q/H+erpQ1z/Ys9Cf9/dn8k3NRZMaiVLwoPYVWtBCVwbdvnVYToTnQGm6Ss9AaZ1eV0BpgAqHwX+MQaiJwSRuiyaMTfGoDX07zJVsjmE/xt7DRUtFgqa6nCKIgE+elL9w7t9xs6lmF7nNf1z4XrytlWSNDeMx7YsGfJCBECpVKDWKanNHfwYvsFCdmAdYthdTlYVp3O0vpQmZztmjY5JwbEsjxmFquPD2V82xLcnTCDedPGmZ0MZURT5qnQj/8v9mN01+6lsrfbOMvlrzEwISuPW+Ou4J/lb6FWXT0n40V/tIdvWStXNU7uNFuHMI8ZOjtYfZ/KqRVeVEOlEFEWeCfuA1oZ2fl1xO8aQ7u/7g3tP8mZ+BSKgFATcHV+RI0y+LI8M4tqIQOaE+KG6DG5yp1J2tJ6jnxSSu6OSmixrrwGmkWMDGL4oknG3xWMKGzqfh5LmBl44sr7H9qfHLSbG4BGJoijyt9lrKNxVw/BFETy6YclAd/OieD72Q9qsDv5guXewu9KvyHbwMjK94BJdfFa4mg/yP2dPzQFq7F2pzUE+gUwKTuP2hJu4PeFmNKqhG6z400M5/DmrhFvCGgnUdK/d0TliNGo0/PPEa9yVdCshuq54h1OFyIbFn7Agcs7pp7/iyd5awcsL1hE3raeV+MvZpfzgYHavC6MqQcAlSbw0PpmfjogdmM5eAPXFTRz5qICcLZVUHG+gqdqOJHYEmCrAN0hL2Eh/hs0PZ9xt8YSm+A1uh8/C2cSIKIr8eepqSg7UMXJ5NN9bfXFuu4PB3+auoeCbKv7m/s5gd6Vfke3gZWR6QaVQsSLxJlYk3gSA3WXnw/yVfFT4BQdqj7CubAvryrZw39ePEaoLZlrIJO5IvJmb45YPWF2dc+GhpEj+nFXCyWYfZgV0FyMuSaTZ1c6Oqu08vu9Z/pP1Nl8vX02ILpij9ceZsmoRbsnNxqtUiACkzI8gaW4YedurOLG2hJFLYwDPckCEru8ILQmJMK2Gb8WEDlxnz0JLg90TYLq+jLLOAFPnKQGm/hpiJgWROCuUsbfEETv57AGmQ412t6vPfaIo8scJqyg/2sDYW+L4zqcLBrBn/UfEaH/yd1TRUNxEQOzVZ64nz4zIyJxCs6OZ/+V9wqdFX3K4Lh2LwwqAgECEPowZoVO4J+lbLI1eOOhf6D4fbEGncLIiomfsyNPjFvPz/T/nk8JVgECiKY5/Tf8jSzaswHWVC5FOWi3tPBX8Hj5GNS/W3YXF0cazB1fT5hZ5sywYTg8kBwxqJXuunUSqeeCqJp+Kw+7ixJclZKwppWR/7wGmQYlG4qaFMPr6GFIWXXiA6cWwoyKXHZW51Ld7XEXD9WaWx4xmVEDfmSK9Fa0c6R/ButITrC89gUN09zhmuCGE1rutVJ+0MP6OBO5/f94lu6ZLzcH38njn7h3c8fpMpn17YAphDgTyzIiMzAVg0Bh4JPUBHkl9AACL3cIbue/zRfFajtZn8HHhF3xc+AUKFEQbIpgdNo37ku9gXvjMARcniQYtWTax1312l51VxetwdwT85duKWLDuZgQENiz++KoXIgB6Px8WPzeOtc8d5rMf7WXKi8NxSSJqBZhUbmyurq9HAVArBNbNGzdgQkQURXK3VXHs8yKK9lRTm9dEe9MpAaZaJf7RvkRPDGLksmhG39D/AaYXip+Pjpvix3oK4Emwp6aQV05+zTPjFhPRSwHLvopWpgVEcqi+tPcncYvk/aIMxUk3k+5L4t63Lu+/6WELugrmXUli5FyRxYiMzBnw0/rx+OhHeXz0owBUtVbzevZ7rC7ZQEZjJv/L+4T/5X2CUlASZ4hmXvhMvp1yF9NCe2Zp9DezQ4xk2tqotqsI1Xafxt5R9Q1t7i5fGbfkGVVG6MMYE3BpaxFdTix+dhy7/p3FzlcyGfH9GO/2EI0Lm0tJ5+yIAHwyawzTg/26HS9JEt+8nInOT8Okuy/Oe6b0cB1HPy0kb0cV1VlWWhu7B5iaI/Qkzwtj+DVRpN0Whyl06ASYns7YwO6VjW+MG8uOylwKmup7FSO9Fa08WFvSTYioBAWjAyIYHRBJVm0lR5blIJRLuO9V4v+ryz/TyRSmBwWUHqoje0sFNdkWarKtxEwOZtJdg+drNFDIYkRG5jwI04fy9LjHeXrc4wCUNJfxWvb/WFOyiUxLDq/lvMtrOe+iElQkmuJYEDGbh4bfQ1rg6H7vyx2xQfwnr4bsFh2h2qZu+74qWYdKUOKSuk9tV7XVMOur5Xy9fDVh+qET9zCYfOfzBfx56mpWrtgL//RsC9I4yWvtsoz/fVos10V1Nz1rszl4994dHF9VQmCC8bzESF2hjSMfFZKztYLKjMYeAaaGYB3J88IZNj+Ccd+KJyT58q0ULEoih2pLcLhdXkPB0+mtaKXzlGWZm+LGsrLoGMtiRhOhNbNzSTqKUgnnT9WIN6j4ujKXJdGp3oxDgJaGdrI2lHFiTSmiW+L+D4beEk7Z0XqOryqmOttK5fFGEKH0UD0vL1znUcASpCyPkMWIjIzMmYkxRPH/JjzJ/5vwJAC51nxezfof68u2kmPN45XMN3gl8w00CjXDzIksipzPd4ffQ4pf8kU/d7xBixKJivbuVtku0cmm8s09hAh4ZkhybQXM+ep6Tt66G+UVXMfnXImbEkLsNSEUb6pBsVWNOF9FkMZF56zIJHMz0wK7L8FVZVr473UbqS/yxETUFzTRamnvteZNS4OdI58Ukrm+jPIjDVgregaYxk4OInGWx8E0ZmLQoMcj9QflLRZ+f3QjTtGNj1LFw6mziPDtXVSdXrSysb2VRoen5EG4zkSSySME1e0K3n5gGxXHG7juxYlsnleAxdGGzWkn21KNX5mWE2tKyVhdQvHeGjojIk1huh7PORRY+/xhMr4sQVAIXjHqRfJMjGWOrqPB3nLWdP3LHVmMyMj0I8nmRP4w5Zf8YcovAcioP8mr2e+ysWIb2dZ8Mhqz+HPGK2iVPgw3J7M0+hq+O/xeYo3n5+jqFN3sri7AT+2iwdn9Y1zWktltiaYTBQpERJSCklT/FFySCyWyGMlsrKLgiSYU20H1ByeO2Qp0Co+QC1A5STO18n7eAUJ0RpLNIRxbWcQ7d23H7RC99VjAM6KNnxbC8dXFnFxTSsmBOhqKmnHau0Shj0FFWKqfN8B02DWRQ7JwW38QqjPyzPgltLmcHK4r4a3svfx0zMI+BcmpnFreItkc4q3k+59lG6nfZyMs1Yy1vBXKRRRbnCjyRN4+sgV7rcNzY5ck7xIXAkSNH5p+Ste9OJHM9WXd7PW7oQDndAXNrnYCkMWIjIzMBTIqMJW/Tf+t9/GB2sO8nv0eW8q/5nhjJkcbMvjtsb+gV+kY6Tec5TGLeDDlbiJ8w/s8p93t5B8Z28mz1RKt1VPvVFNpVxHeETeSadntbavAU0pAISiZFz6TOxJv5sbYpQRo/fs6/VWFw+3i9exduHSg+J4K9T9dJP7bhOPpBD6pquKBWDdNTk+69KsndjJjdRRbfnfcO4V+Kv9euqHbTUWlVeIf40vMxGBGLotizI1xaPRXz1euSqH0BLACscYAiprr2VqR7S23cCqnF63UKE9xX21v9RatnPyTYdSvs+Cyu8neXE5TYzPq99xIgB0HQI8ZBoVSIGrc0IwpCU/156Y/TeHTH+zpsU8SQBqrALPQy5FXHlfPJ0NGZggwKXg8k4LHA55sia+rdvNW7ofsqNzNofpjHKg7wvOHf49B5cuYgJHcGLuU76TcSYC268v0nZx93loew412jjb50ugOZrbZzdHaHEpbTwKedOR5EbO8AiRQOzS/kAeTg3UlNDk9DrYp342meXMD1asbqHg4jnH+Rn43eR5/Ob6VvNIaWv/PwpasRs+BvRgiKJQCqTfEkLIoknG3xvVwdr3akSRw9ZKeCz2LVobojCgFBW5J5GRjJaIkYlJrUc3QcPcKT9aMpb2Vn+9dCY0SyrV9zCwAokti/zt5NBQ3kzw3nFHXRQ+p92bW90eQsbqEnC0ViKfMtCGBe97VM3Mp+4zIyAwRRFHk9ZyNfHffVtTSEZyuE9Ax2jOrTYwLGs2CiAXkW3zRqHTolGp+OGoe49YfJ9Xky6o58cxcfR35tkJS/WcyPuBanhx3PcP9wgb3woYw/8jYRkZjJQA/G3sNwa2+/Hr4p/z7LxGsMAVwW5aCk7vLKFhbzdnGp8ZQHS9U3XnpO30ZsLLwKCMDIgjw0dPudrG/pogNZSf54ah5pPqH82b27m5FK/NttbyUvpmb49K8RSvXlJzwlm4I1ZlIMYdwsLaY+1OmARJv5+yjxeX5fKSUBtHwRB3NNfbuN/QOFGoB0dm1XalWYAjREtJR9C91SRTx00MGLVbHVtXKCyM+o83q8ApdCXCs1EKg0M32/nJDtoOXkbkMybW1Mmx1xzKLJIJURoDyKC7XXmyOQjq/qXwUekb6j+S3k37GuqpQPinOx1/6PfXtDfxj2itsKvdUcZ4UHMuDw2cM0tUMfZ7Yt4699W3UtGswa4PRqRSkl1uxqmHhv2oZn+EiemIQmdWVCA0SijrAAYJS6BYv0smvK+7AHD50Rt2DxTs5e8myVGN1tKFTqYn09ePaqFRS/T3Lj39K30ygj2+HsPDgMT07Rr29hRCdkaXRo1hVfIxae7O3jU6ppt3tQjxlakqrVPNk2iKMdi3/u2c7J9eWdeuLykfBSy330WZ1cGJtGblbKyg7Uk9DUXO3mz+A1qTGP8ZA5NgAkuaFM3oAZ1GOry7h1es3AZ4uSSMFnP/yBPXKYmSIIIsRmasFh1tE9+FWTp107hyRS5JIqCYbh2MbLY5jOESPO6xS0OKWwKTWse+GtSSZEvjB7o8RJYlIvR/PTVg64Ncx1ChsamVdRT2766ycsDRT0mrH4nCd8jpLqAUFM4LNjNbrObG7ir8sHMmosSHU2pt47tBXAIwwhHJD+2hyNpeTuaGcor01iC7Jmw3x0KqFjL5+6Nasudyoszfzj4ztVLX1Xs3WoPLh0ZGzSezItpEkiW1/zmDVzw94slFEichxAfz88E29Hi+KIqWH6jm5rpTC3TVUZ1poqm7D1d71l+GdRRlmJm5qMKlLoomf0f+zKLVtzbx833rqP/F8rt2PqXF/yxNJ8ZPR8xju13cc2VBGdmCVkbkM0SgVhOt8KG/rqsTrHS0ICqqdI0AYAT6A6ESgCF/hCDb7Bh4d+SLD/ZJxSyJCR4Rl31VWrkzym1pZX1HP7joLJywtlLTasXYTHR4n1SAfNdOCzZhVDtodlUTqHFwXPYJbE8Z5Gs1I9bbfWpHt/X14UBjx0SHETw3h2mfG0d7ipGBnNdmbKyjcXT2kKt1eCQRpDTwzfgkHa4v5ujKPspZGREkiRGdkemgC00MT8VV3uc4KgsD8n44mfnoIr9+yBVtlGzET+s6kUSgUxE4KJnZSdw+ZVks7J9eUkrO1krIjddQXNpO7vZLcbZVsejEdOG0WZW7HLMoFGtEdqy/j1axdOB90oVkFggPcs7vEzquZu/nx6PlEG67cwHN5ZkRGZhAQRZF0Swu7ay0ctTSRbWulpMVOXbuTZlfvQX6dKJBINbTy85GJrEhIRa1QIEmSN/3xcF0p/8n8BoDxQdF8b8SsS349A02urYX1lfXsqbVywtpCaS+iQ9MhOhINetL8DcwJ8eea8EBMmq4xWGN7K0/tX4WIhAAsjxnNgsgUdCoNLU4Hm8szWVt6AvA4gL44+UZMGi0yQ5+WhnbWPHOQCXcmkjjz4uOmRFGk7EgDJ9eUULinhqpMC01VvcyiBGsJTjETNyWY1CVRJMwMPeMsSqGtjpfSN+PqKN2g/o8LxXtOAr8OpYKuGSGjWssz4xbj53N5CV55mUZGZpCxOVzsrrOwv87GcWsz+U2tVLY5aHQ4aT89/RDwVSkJ1mpoc7mpsju6zWl0ZpLeEOmPmRy0SglflQ+Pj5lPlG/XaKnO3syf07dQ394CwA9HzWWkf9/FyYY6WdZmNlQ2sKfOyklLM6Wt7Vidrm6vjUYhEOyjIdGoI83PyNwwfxaEBnQTHWdidfFxvio57n2sEhQEan2pt7d4bxAAN8elcW10am+nkLmKabW0c3JtxyzK4Xrqi5pos3SPRfExqvGP8SVybCBJc8IYfX2Mdxbtr8e3kmmpAmBCUAyzLfG8Mn09Txy4Ht1IHa9n76KwqR6AayKHc2vC+AG/xotBFiMyMgNAYVMrO2utHG6wcdLaQlGLnRq7gyaXi9PjG9WCgFmjIlyrIcGgI9Xsy6QgMzOC/QjRdk01//5EEU8fy/MerxTAqFLx6tQR3BoTyj9PbOd4gydAVYHAmMBIYg2BVLZaOVxX4r2BxhgCeDLtWhTC0PcpOGlpZmNlvUd0WFsobW3Hdpro8DlFdIzzNzI31CM6DOcoOvpCkiRWFaezrmMG5HQ6Z0yWxYzyzj7JyJwJURQpP9rAiTWlFO6upjrTiq2qtdssikIloA/2wRrqQBqpwDhTz//79k2IdpGfm//HPe/OYdJdSVgdbTy1fxUuScRXpeH3U25CfRk5J8tiREamH3C4RA412thTa+WYpZncplbKWu3Utztpc4s9Zi90SgUBPmqidFqGmXSM8TMyNcjEpAAzmnN02vy0pJrbvukaqS+PDOK1KSMI1XmsxltdDv56fCvFzQ19niNEZ+Tx0QvwH0JTuqIoctLWysaKevbWe0RHWasdm9PdQ3SEaDUkGvSMDzAyJ9SPBaEB+KovbYhbRYuF7ZW5ZDRU0OpyoFdpGBsYyZzwZML0l29tmKHK6uJ0virJ6LYtVGfi/01c3ucxnoybdOrtzYTojNwcn8bogEjvfkmSWF18nG+q8mhzO0k0BXFn0iRCdUPjvtFqaefkulJytlRSdqSemnwr7TYXwikFEWMnB1N2tIFR10XzwIfzAfjXya85Wu/JEnp+/NJeiw0OVeQAVhmZc6Te7mBnrYX99TZOWJspaG6jqs2BxenCedpySucsRZReS6yvlhEmXyYEGpkR7EeisX9u/IkGj9ukr0rJy5NSuDc+vNuIXK/S8NMxC9lQdpJvKvO6OVfqVWqmhyayNHokvuqedVIGAlEUybC2sLGynr11VjKtLZS1tdPUQ3QoCNGqGR9gYkKAkTkh/swP80evGpyvpQhfP+5MuvTVlmW6iNCb+fHo+d7HyjPMPOXbanktaxc3xo9lTEAk+2uK+NfJb3h63GIiO27OG8oy2VqRzf0p0wjS+vJlUTp/z9jGLycsHxKzCXo/HybekcTEOzyF7/ZUF/BW1m7Ig7HZoQTbfWmtd1CR3kB9flfxS19V12f51KXDKwlZjMhc8YiiSFZTK7tqLBxpbCKrI1i01u6g2eXm9I+2j0LAT6NmlNmXRKOOUWYjk4NMzAjyO+c4hIthrL+RlyelsDwymBjf3oMlfZQqro8dw9LokRQ21dPibEen0hBvDESjHJiPdWcQ7saqevZ1iI7y1naaXN1Fh7ZDdEwMMDEhwMS8UH/mhfqhHSTRITN0UAgCZs25FbHbUp7NyIBwro3yxO3cEDeWTEsV2ytyuCt5MpIksaU8i6Uxo0gLjALggZRpPLH3c47WlTIpJO5SXcYFE+DjCwoFDAP3FBW3jZru3de5aCFKIpkWjzGfAPhrhs5sZ38ifxvIXBG0ulzsrbOxr95KemMzeU1tVLTZaWh3YRe7yw3vcopGxXCTlgSDljR/I9eEhzDW34BykCumKgSBR4edW+E8lUJJsjnkkvZHFEWONjazqaqefXU2Mm0e0dF8uuhQKgj10TApyMyEACPzQv2ZGyKLDpm+qWlr4mf7VqJWKEgwBnFTXFqf1WkLmuq8dvGdpPqHc6xj+aLO3oLNaWfEKY7DHoEeREFT3ZAUI8nmYAJ89DS0t5LRWEl6fTljAj3LTp2zoRvKMmlo91QwHukfgfEKzeaSvyVkLhvKW+3srLFwsCNYtLC5jWq7A5vTjeu00CeVIGBSK0kw6ojz1TLSbGBioJERRg3/Prmxx1RniUVBXNJ1gy5EBhNRFDnU2MTmygb21dvIsrZQ0eaZ6TgVnVJBiFbD1A7RMT80gFkh5iErOhrbW/m88CgnGitwiG6CtQbuGzaVOGNgn8dkW6r5pOAwla1W/H30LI0ZxfTQhG5ttlXksKksE6ujjSiDP7cnTiDeODSrww5F4o1B3D9sGqF6I1ZHG18VZ/DH9E08P34ZWpW6R3ubw45J3f1GbFJrsXZU+LU52zzbTrtZmzRdbYYaCkHBgsjhfFJwGIBXTu5gYnAsaYFROEU3+2qKvJk2QA8xdiUxNL89ZK5K3KLI0cYmdtdaOdbYTHZTK6UtduocTlpPG4WDZyQeoFGRaNCTbNQx2t/A1EAzU4JM6Pq4MZY0N/S65uqSxKuiTDd4RMfBhiY2VTawv95Klq2Virb2Hv4mOqWCUK2GaR2iY0FYALOC/c85EHco0OJ08MdjmxjmF8oPRs3FqNZS09aEr0rT5zF19mb+eWI7s8OT+c7w6WRZqvhfzj7MGq03TfpAbTGfFhzmzqRJxBuD2FKRxd8ztvGrCdfJPiTnyKiArpTzKF9/4o1BPLl/FQfrSpgZljiIPRtY5kekUGir42BdCRKev60DtcU92l0fO4YR/ldunSlZjMgMKDaHi121FvbV28iwNJHf3EZlmwNLH94bBrWSMK2GWF8tw02+jAswMiPYTIpRP2hFrS41dpeTVcXpHK0vpcnZTrSvPysSJ5z3SH5qcBz76m1sqfLMdORY62lwOLE6FTilrtdOp1QQptUwI9jMxAAT88MCmBnkd1mJjr7YUHYSfx899w+b6t0WpDWc8ZgdlbkEaQ3c1uHnEK43k2etZXN5tleMbC7PYmZYIjM6bpp3JU0mo6GC3dX5LI4eeYmu5spGr9IQqjNS29bU636TRtstWBvA5rRj7hB/JrUn9sTmsHeLQ7E57EQb/C5Np/sBhSDwneHTiSz1Y0t5Ns2u9m77g7S+LI8ZzbTTZuauNGQxItOvSJJEQXMbO2sbOVzfzElbC8Ud3hvNvXhvaBQCZrWKYSY9iQY9o8y+TAo0MT3YjyBt36PXK5l3cvdR0WrlgZTp+Gl07Ksp5C/Ht/LLCct6TdWtabXxwrGvUalCqWwPJL++if8WZVPnyO/wFQUBiUC1C7PGh3EBvoRqWlGIDfxlyhICtFdmQBxAen0Zqf7h/CfzG3KtNfhp9MwJT2ZWeFKfxxTY6npUOk71D+fjjql0l+impKmBJVFdBmgKQWC4XxgFtrpLcyFXAXa3k1p7M1P7CGhNMAaRZanqtlSR2VhFQsfSWJDWF5NaS5alymub3uZyUthUx5wzvN9DAYWgYGnMKK6JGkF6fTm19iYEBKIN/gz3C7ssvIIuFlmMyJw3DpfI/gYr++psHLM0kWtrpayt3eu9cSqdwaKBPmpGmn0ZZtQz1t/AtCA/xgcYUSsv/9F3f+JwuzhSV8qjI2czrCMw9brYMaQ3lLO1IodQ31i2VDWyv95Kjq2VyrZ27G43bvwBB+BAr1QQqVUwzOBmYWQy80MD+KZ8PwmmIO7oSF0VJYkn93/B/trCK3okX2tvZkdlLgujhrMkeiRFTQ18VHAIlULR50jT5rT3GndgdztxuF20uhyISD0CCU0abZ8F3WR68mnBYcYERBKg9cXqaGN18XEUCEwK9hQafDN7N34aPTfFpwGwIDKFl9I3s6ksk9EBERyoLaa4uYG7kycDnoDPBZHDWVuaQYjOSJDWwKridPx8dKQFnVtA+GCjViiZEBwz2N0YFGQxItMrNXYHO2ssHOgwpypobqPK7sDqcOGUenpv+KqUROo0JBp9GWH2ZYK/kZnBfsQZzy1tT8aDKEm4JYnjljY+Kc3nYL2N7KZWLO0KrK5a3FLXyNu3o6heqMZGslHPd4aNYWqQGZVCwa6qfD4uOMwvxyTiEt18kNPAspirbyQvAbGGAG6KSwM8rrQVrRZ2VOZe8dPeQ53G9lZey95Ni7Mdg9qHJFMwv0hb5BV5De2tHQUfPSSagnkwZQario/xRdExQnRGHkmd5fUYAbg2agQOt4t3c/fT6nKQZA7mhyPnDQmPEZkzI4uRi6TB3tJjjc+g8ukzPW2oIIoiJ60t7KqzcqSho1Bbaxu1dictfXhv+GvUjPYzkGjUkWzQkF6XQZDGgaZjckMlKPj1xOuG/LVfCF+W1fKXzBI+mTW635aPXKLIzhoLW6oaONjQRE5TC1VtDtrdwbxaWuRtZ1ZBqI+D4UaBayNTWRgewORAE6qOmJlnD65memgQM0O6atTII3kPZo2W8NPcU8N1Zo7UlfZ5jEmtxXZa9oXNYUerVKNRqlAIAgoEmnppY1bLwavnykMjZp5x/0/HLOyxbUJwzBlnDgRB4Pq4MVwfN+ai+yczsMhi5CJosLfw7MHVPbIzhspNucXpYm+dlb11No5bmzzeG63tNDp6em8oAL1KSbCPmnEBRoab9KT5G5ke7Mdos2+PYNHipnp+2+zotm2oZ6SIksTh2r5vQk3O9h7b7G43TxzO5eUcj5fBrloLN0Sfn6+HwyWys84jOg41NJFja6HK7uixpGVQKYnUa0k2qjEI9agkC0alRKzRnxBdICXNDTw3Rh7Nnw+JpmCqTxNc1W02j9lUHySYgsjoqP3TSaaligSTJzZBpVASYwwg01Ltnf4XJYksSxXzIob18xXIXO70V0D6lZ5aLouRC6SxvZVXs3b1mSa6t6aQpTGj+jxekiScooTmImMmSlrs7Kxp5FBDU0ehNo/3RlMv3htqQcCkUZFo1BFv0DHS7MvEABMzg82E6c9tRCdJEvtqi1hbnNHr/uo2GzGGgDMe3+oW8VUN7LSpWxJ5PWs3h+pK+mzzVvZuHh+z0DuSPmlt5tav08m2eQyHlAKctLZwQx/Lzw6XyNe1jWztFB1NrVT3ITqi9VpGmPRMCjSzKCKACf7GHoKv3e3C7nZi1uj4b+bOPrNA5JF83yyMHM7vj21kbckJJgbHUNRUzzdVed44A4CVhUexOFp5IMXjfjknPJntFTl8VniEGaEJZFmqOVRbwmOj5nQ771vZe4gzBhBnDGRLeTYO0dXjhiEjc74B6VdrarksRi4AS3srfzy2yVumvTdWFafjq/JhTkRyt+2SJLG1upHnjuVzpLGJ6ltmYzxDATCXKHLE673RRI6tldJWO/UOJ60usYf3hsdZVE2yUU9yR7Do1CAzkwKMF21KJUkSHxUcYltFTp9t3srei16l6bVs/a4aCz87ksuhhiaqbpmFn6ansdGlYlVRejchEuXrR7TBnyaHnSxLNS5JxOZs5x8Z23lu/FLeKazmhwezcUl0W7I6YW3B4RLZVtPA9upGDjY0kdshOuyniQ6jSklMR/2ayYEmrgkPYHwvoqMvfJQqfJQqWpwOTjZWcnP8uF7bySP5vokzBvLIiNmsLDrKmpLjBGkNfCthAlNC4r1trI42r8MleFJ/Hxs5l08KDrO1PBs/Hz33DJvS7W96UnAszU47XxanY3PYiTL488OR8zCdo7W5zNXBmQLSd1TmcmPc2B7HXK2p5bIYuQDezdvvFSJGtQ+Tg+OINQbQ7GjnUF0J+U2eoMAP8w+S4hdKmN6EJElsqmrg2WP57K+3IeAJrmtxuXGJIrtqreyvt5FhbaagqY3KtnYsTheOXgq1GVRKIrQ+nhud2Zfx/p5CbUlG3SX13themdtNiET5+hFvDMLucnLSUkmLy4FLEvnPyZ08O34pwTrPSP5oQxO/OJrLhsoG73VbHK4BEyMtTgdbK7IBT+DmwyNmMbajdgV4bkZ/z9hGWYuFirZWFm05wDd1rT3O45bg/aIq3ivqckQU8LwfcR2iY0qQiWvCAknzN1zwe3GisQJJgjC9iZq2Jj4rPEKY3sSMjlG3PJI/P8YERnottnvj/pRpPbal+IXyzPglZzzvvIgU5kWkXHT/ZK5cRElCREIldJ8JVitU5Ntqez3mak0tl8XIeVLb1sTxjlGoSa3lmfFLuhnszI9M4eOCQ2ytyEFEYntFDkZtDL84mk+GtcUbG94pMSI//6ZHsKhGIeCnVjHC5EuCUcdos4FJgSZmhpjx0wyO94YoiWwoO+l9fG/yFK8qB88I4PXs3RytL6NddLGtIptxwSN45lgeH5fUeKtxdl736dVwLyX7a4twih530dlhSd2ECIBe5cP0sLH85OBBTjTpEWkB+s7rvykqiKnBfiwKC2SMX894moulzeVkZdExLO2t6FUaxgdFc2PcWK9VvTySl5G5PNCq1CQYg1hbmkG43oRJo2V/bTEFtjpCdL0vu16tqeWyGDlPDp4y1b8gMsUrROwuF2WtDvKaW1lT7cOGKn+sTiX/LWkELN5jTr8FTwwwMdLPQJq/gWnBZsb5G71ZEkOJk41VNHbcAEcHRHQTIgAapYp7kqdworGSRofEr09UcbKp0WvW4z4tfsXudtHscNEqirS53LS63bS6RNrcbtpcIm2imza3iN3txu6WaHOJtIue39vdbtpFiXZRpN0t4hBFHKLU8buEUxRxShIOUcQpStS0NWNz+iNKAhvr23i7+DBGtYo9dVbUCoHytvYOcdQZ1Ni3UJKAP4wfRpLx0hmFTQyOZWKH10JvyCN5GZnLh2+nTOPtnH38fP8XKBCIMfgzKTiWkuaGwe7akEIWI+eJzdHm/b2zWqpLFNF9tP20lp1LEGeeAdjfYGN/Q5ea7W083us24dT9Qq9tO9t024ZAx3/d9gmn/E/oZbtbFHGKnhgEnwqRVwr2EKX34YS1GbNaTbBWjUOUyLQEYnV1XbMo9X79Y9bu73V7f9DZf0HovBoJSVIhCBIOuwtfZTuhOo+YSfM388SIWFLNvnxZsJOiVjtldi0tUhCZttYeM1ngCWK9lGJERkbmyiFYZ+SJsQvlgPSzcEFi5OWXX+aPf/wjVVVVjB07ln/84x9Mnjy5z/affPIJzz77LEVFRSQnJ/P73/+epUuXXnCnBxONousla2hvJRFQKRQ8mBiBUa0kyEeDn1rFm7npnGhS0SYqvXESvbEkPAClQoEkgYTU8a/nJi51HCdJEiJ0ten4vXsbzz6x43gJzy/iKe07t3f97jl39/2eB51LR53t21xOml0uAPRKAT+NCj+NCp1SiUmtJEavRaNUYLFbaWoG8QzLHABLIwKJ0PmgUSjQKhX4KAR8lEp8lAI6pRKtUoFWKaBVKNGpFOg6/tUqFeiUSgwqJTqVEr1CgV6lOONSydbybD4qOATAgogUvpU4oUebkuYGWt3NhPjAxEA1T4+bTkFTK1+W1/F5SQ27ai3e1+SEpZnro4LPeH0yMjIypyIHpJ+Z8xYjH330EY8//jj//ve/mTJlCn/961+59tpryc7OJiSkp//C7t27ueOOO3jxxRdZvnw577//PjfeeCOHDx9m1Ki+U1+HKsP8QljfETuxvSKHiUExCILAq1O7gokO15VwrMbKeDP4asJIbzazpaoRpUCP2izvzRiNv8/AZZVcKJmNVfw1YysAI/zC+PHoST3a2BxtPLk/nVn+IrVOXyqd4eyrt6EUhB7LNE+Pimd6sN9AdJ3JIXF8XnQUp+hmR2UuowIiSPUP9+5vdtp5N7drpmZmqKeORYJRz4+Hx/Dj4TE0tDtZU17H+sp6pgaZezyHjIyMTG/IAennhiBJfcyj98GUKVOYNGkS//znPwGPk2d0dDQ/+MEP+MUvftGj/YoVK2hpaeGrr77ybps6dSppaWn8+9//PqfntNlsmM1mrFYrJpPpfLrb74iSxHMHV1NrbwZgWkg8N8WnYdbocEsih+tKeT9vP60uJwCPps5mbGAUu2osPJOez/bq7qKk8bY5A5rieqGIksSzB7+kzu7JIvpWwnjmR6QgdKwFtbmcvJq1kxONlQAsihrBLfHj+KamkV8fL2RTVQMqQfB6n2xbOJ65oX37kfQ3HxccYkt5tvdxijmUYeYQGh2tHKwtxu72zPr4a/T8csIytKqh/57IyMgMfQ7WFvcakK5TeZIR3sreQ317SzfH2VNNz/x89Czr1fQsm41lmd6A9NsTJhBvGnqmZ+d6/z4vMeJwONDr9Xz66afceOON3u333XcfFouFVatW9TgmJiaGxx9/nB//+Mfebc8//zxffPEFx44d6/V52tvbaW/vcsO02WxER0cPCTECkF5fzisnd3iXXhQIhOlN2Bz2btbwI/3DeWzk3G4VF7+ubuSZY/l8U2sBwPqtuZjO4DMylNhZlc//cvd5H4frzYzyD6fN7eRwXYlXgGmVap6fsLSby+XhBhu/zSji89IaJGDT/HEsDO/bgbC/cYsi/8n8hmMN5X22Maq1/GT0/G61LmRkZGRkLpxzFSPndResq6vD7XYTGhrabXtoaChZWVm9HlNVVdVr+6qqql7bA7z44ov86le/Op+uDShjAiP5dsp03s7Zi0sSEZGoaLV2azPKP4KHRszoUfp5dqg/Xy+ayPbqBo40NGEcYCfSi2FGaAJ19mbWlZ4AoLLVSuVp161Vqvh+6uwedtvjA0x8OnsM2bYWPiupYdoALdF0olQo+F7qLHZU5LKtIpuajpktAI1CyeSQOJZFjxp0C38ZGRmZq5EhOSR/8sknefzxx72PO2dGhhKTQ+JIMgfzdWUeB2qLsLS3oVGqSDYFMzs8mVT/8B5C5FTmhgYM6DJFfyAIAjfGjSXOGMimskzyTjHtUSuUTAyOZUlUKqH6vtVvismXp0bF97n/UqIUFMyPTGFuxDBKmhuwOtrQKFTEGQO8U6YyMjIyMgPPeYmRoKAglEol1dXV3bZXV1cTFhbW6zFhYWHn1R7Ax8cHHx+f8+naoBDg48uNcWN7tfS9kkkLjCItMIratmYa2ltQCgIRvn7oL5MbukIQzlikSkZGRkZmYDkvdy2NRsOECRPYsmWLd5soimzZsoVp03oaMQFMmzatW3uATZs29dle5vIhWGcgxS+UJHPIZSNEZGRkZGSGHue9TPP4449z3333MXHiRCZPnsxf//pXWlpaeOCBBwC49957iYyM5MUXXwTgRz/6EXPmzOFPf/oTy5Yt48MPP+TgwYP897//7d8rkZGRkZGRkbksOW8xsmLFCmpra3nuueeoqqoiLS2N9evXe4NUS0pKuhlQTZ8+nffff59nnnmGp556iuTkZL744osh6zGyrvQER+pKqWqzoVEoSTAFc3NcGmFniIMAOFRbwqridOrtzYTojNwcn8bogK7iXJIksbr4ON9U5dHmdpJoCuLOpEmE6gY/O+hKwO5ysqo4naP1pTQ524n29WdF4oQzLsecmj7n76Nnaa/pczlsKsvE6mjzpM8lTiDeOPTS52RkZGQuZ87bZ2QwGEifkb9lbGNScCxxhgDcksQXRceoaLXwywnL8VH2rt3ybbW8dGwzN8aPZUxAJPtrithQlsnT4xZ700TXl55kfekJ7k+ZRpDWly+L0invOK9aMfQyataXnmBl0THmR6SwohfH0k6Gigj7b+ZOKlqt3Jk0CT+Njn01hWwuz+aXE5bh79PTur3O3syvDq1hdngyM8MSybJU8XH+YR4bNcdbYO5AbTFvZe/hzqRJxBuD2FKRxeG6En414boehaxkZGRkZHpyrvfvoVeRbZD50ah5TA9NIMLXj2iDP/cPm0pDeyvFZyhqtKU8m5EB4VwblUq43swNcWOJMfizvSIH8NyQt5RnsTRmFGmBUUT5+vNAyjQs7W0crSsdqEs7Z4qa6vm6Mo+os/ht5NtqeS1rFzPCEnhm/BLSAqP418lvKG+xeNtsKMtka0U2dyVP5hdpi/BRqPh7xjZvFd3+wOF2caSulFvi0xhmDiFEZ+S62DGE6AzsqMzt9ZgdlbkEaQ3cljCecL2ZeREpjA+KZvMpxmiby7OYGZbIjLBEInzN3JU0GY1Cxe7q/H7ru4yMjIyMLEbOSpvbY+Tle4YAzYKmOob7dc8OSvUPp6CpDoA6ews2p50Rp7TRqTTEG4O8bYYKdreT17N3c0/ylLMGpQ4VESZKEiISKqH7DJNaoSL/lPTjUymw9fGe2Tzvh0t0U9LU0O09UwgCw/3CvG1kZGRkZPoHWYycAVGS+LjgEImm4DO6ctocdkynVUs0qbVYO6oq2pyeSr+nT+2bNF1thgof5B1ktH8EI/z7Tr3uZKiIMK1KTYIxiLWlGVjaWxElkb01hRTY6rCeUmX5VGxOe6/vh93txOF20exsR0TC2Nt75hxa75mMjIzM5Y4sRs7AB3kHqGix8tDwGYPdlQHhQE0RJc0N3BSfdk7th5II+3bKNCQJfr7/C76/8yO2lWczKTgW4SzVg2VkZGRkBp8h6cA6FPgg7wDHGyp4YuzCXgMgT8Wk0WI7bbRsc9oxd9yETWqdZ5vDjlmj62rjsBNt8Ovfjl8gDe0tfFRwmB+PnjckA2rPRrDOyBNjF9LudmF3OzFrdPw3cydBWkOv7U1qLbbTBJHNYUerVKNRqlAIAgoEmnppY1bLwasyMjIy/Yk8M3IakiTxQd4BjtaX8ZMx8/u8mZ1KgjGILEv3WjuZjVUkdKSABml9Mam13dq0uZwUNtV52ww2JU0NNDntvHB4PY988wGPfPMBOdYatlVk88g3HyBKYo9jzkeEdWvj6GrT3/goVZg1OlqcDk42VjI2MKrXdgmmXt4zSxUJHVUvVQolMcYAMi1d7sGiJJF1ShsZGRkZmf5Bnhk5jQ/yD7K/pohHU2ejVaq9MQe6jhEzwJvZu/HT6L3LGQsiU3gpfTObyjIZHRDBgdpiipsbuDt5MuCp6bIgcjhrSzMI0RkJ0hpYVZyOn4+OtKChUXNnuF8Yz41f2m3b2zl7CdObuDYqFYXQU7d2irCFkcO92/oSYdEGf6BLhM0JT+rX/p9orECSIExvoqatic8KjxCmNzGjwzdkZeFRLI5WHkiZDsCc8GS2V+TwWeERZoQmkGWp5lBtCY+NmuM958LI4byVvYc4YwBxxkC2lGfjEF09vEhkZGRkZC4OWYycRmcq6J+Od7ewv2/YVO9NqKG9tVssQqIpmAdTZrCq+BhfFB0jRGfkkdRZ3YJer40agcPt4t3c/bS6HCSZg/nhyKGzJKJVqYlU+XXb5qNU4avy8V7HUBZhbS4nK4uOYWlvRa/SMD4omhvjxqLsMOCzOtpoaG/1tg/SGnhs5Fw+KTjM1vJs/Hz03DNsitdjBGBScCzNTjtfFqdjc9iJMvjzw5HzMJ2y1CYjIyMjc/HIpmcyffKn9M1EdTiZdj4O9PHl/pSuukIe07Nj1Ntbzmp61inC7kycdMbKvjIyMjIyVwbnev++LMSI1WrFz8+P0tJSWYzIyMjIyMhcJthsNqKjo7FYLJjN5j7bXRbLNE1NTQBERw+N+AoZGRkZGRmZc6epqemMYuSymBkRRZGKigqMRiOC0H++EZ2KTZ5xubTIr/PAIb/WA4P8Og8M8us8MFzK11mSJJqamoiIiOhWRPd0LouZEYVCQVRU7yma/YHp/7d3tyFN9WEYwG+dnjMDTUOmM6zQMMOMSFHURApBMKw+KRhjQWXh+qJQSRaLLBORCMSK7MU+SKNCI3LYiyWhGYFtIGmGzYqgCUKRZKXT+/nknsfS8qx2znNO1w/2wb//g9cuD+72bNOwMJzoMkDP8kHX8kDP8kDP8vBXzz+7IjIDf2cEAAAAFIVhBAAAABT1Vw8joiiS1WolURSVjqJp6Fk+6Foe6Fke6Fke/4eeVfECVgAAANCuv/rKCAAAACgPwwgAAAAoCsMIAAAAKArDCAAAAChK88NIQ0MDrVixgvR6PaWnp9PTp09/uv/69euUmJhIer2ekpOTyW63y5RU3aT03NjYSNnZ2RQREUERERGUm5v7y+8L/EvqOT3DZrNRQEAAbdu2zb8BNUJqzx8/fiSLxUJGo5FEUaSEhAT8/FgAqT2fPn2aVq1aRSEhIRQbG0tlZWX09etXmdKq06NHj6igoIBiYmIoICCAbt68+ctjOjs7af369SSKIq1cuZKampr8G5I1zGazsSAIfOnSJX7+/Dnv3r2bw8PDeWRkZM793d3drNPpuLa2lvv7+/nw4cMcHBzMfX19MidXF6k9FxcXc0NDAzscDh4YGOAdO3bw4sWL+d27dzInVx+pXc8YHh7mpUuXcnZ2Nm/dulWesComtedv375xamoq5+fnc1dXFw8PD3NnZyc7nU6Zk6uL1J6bm5tZFEVubm7m4eFhvnPnDhuNRi4rK5M5ubrY7XaurKzklpYWJiJubW396X6Xy8WLFi3i8vJy7u/v5/r6etbpdNze3u63jJoeRtLS0thisXg/npqa4piYGD558uSc+wsLC3nz5s2z1tLT03nPnj1+zal2Unv+nsfj4dDQUL5y5Yq/ImqGL117PB7OzMzkCxcusNlsxjCyAFJ7Pnv2LMfFxfHExIRcETVBas8Wi4U3bdo0a628vJyzsrL8mlNLFjKMHDhwgJOSkmatFRUVcV5ent9yafZpmomJCert7aXc3FzvWmBgIOXm5lJPT8+cx/T09MzaT0SUl5c3737wrefvjY+P0+TkJC1ZssRfMTXB166PHTtGBoOBdu7cKUdM1fOl51u3blFGRgZZLBaKioqiNWvWUHV1NU1NTckVW3V86TkzM5N6e3u9T+W4XC6y2+2Un58vS+a/hRKPhar4R3m+GB0dpampKYqKipq1HhUVRS9evJjzGLfbPed+t9vtt5xq50vP3zt48CDFxMT8cPLDbL503dXVRRcvXiSn0ylDQm3wpWeXy0UPHjyg7du3k91up6GhISotLaXJyUmyWq1yxFYdX3ouLi6m0dFR2rBhAzEzeTwe2rt3Lx06dEiOyH+N+R4LP336RF++fKGQkJA//jU1e2UE1KGmpoZsNhu1traSXq9XOo6mjI2NkclkosbGRoqMjFQ6jqZNT0+TwWCg8+fPU0pKChUVFVFlZSWdO3dO6Wia0tnZSdXV1XTmzBl69uwZtbS0UFtbG1VVVSkdDX6TZq+MREZGkk6no5GRkVnrIyMjFB0dPecx0dHRkvaDbz3PqKuro5qaGrp//z6tXbvWnzE1QWrXr169otevX1NBQYF3bXp6moiIgoKCaHBwkOLj4/0bWoV8OaeNRiMFBweTTqfzrq1evZrcbjdNTEyQIAh+zaxGvvR85MgRMplMtGvXLiIiSk5Ops+fP1NJSQlVVlZSYCB+v/4T5nssDAsL88tVESINXxkRBIFSUlKoo6PDuzY9PU0dHR2UkZEx5zEZGRmz9hMR3bt3b9794FvPRES1tbVUVVVF7e3tlJqaKkdU1ZPadWJiIvX19ZHT6fTetmzZQhs3biSn00mxsbFyxlcNX87prKwsGhoa8g57REQvX74ko9GIQWQevvQ8Pj7+w8AxMwAy/s3aH6PIY6HfXhr7P2Cz2VgURW5qauL+/n4uKSnh8PBwdrvdzMxsMpm4oqLCu7+7u5uDgoK4rq6OBwYG2Gq14q29CyC155qaGhYEgW/cuMHv37/33sbGxpS6C6ohtevv4d00CyO157dv33JoaCjv27ePBwcH+fbt22wwGPj48eNK3QVVkNqz1Wrl0NBQvnr1KrtcLr579y7Hx8dzYWGhUndBFcbGxtjhcLDD4WAi4lOnTrHD4eA3b94wM3NFRQWbTCbv/pm39u7fv58HBga4oaEBb+39XfX19bxs2TIWBIHT0tL4yZMn3s/l5OSw2Wyetf/atWuckJDAgiBwUlISt7W1yZxYnaT0vHz5ciaiH25Wq1X+4Cok9Zz+LwwjCye158ePH3N6ejqLoshxcXF84sQJ9ng8MqdWHyk9T05O8tGjRzk+Pp71ej3HxsZyaWkpf/jwQf7gKvLw4cM5f+bOdGs2mzknJ+eHY9atW8eCIHBcXBxfvnzZrxkDmHFtCwAAAJSj2deMAAAAgDpgGAEAAABFYRgBAAAARWEYAQAAAEVhGAEAAABFYRgBAAAARWEYAQAAAEVhGAEAAABFYRgBAAAARWEYAQAAAEVhGAEAAABFYRgBAAAARf0D5/VuV9IHY8oAAAAASUVORK5CYII=",
"text/plain": [
""
]
@@ -798,7 +788,7 @@
},
{
"data": {
- "image/png": "iVBORw0KGgoAAAANSUhEUgAAAiMAAAGdCAYAAADAAnMpAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjcuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/bCgiHAAAACXBIWXMAAA9hAAAPYQGoP6dpAAEAAElEQVR4nOydd3wUdfrH3zPbN8luyqYnJCFA6FVEigqCIioqYu/9bGe7s5ztPL3T33lnOdvZ+9kRBUURUDqCdAiQBALpvWzJ9p35/bHJkkACCUlIgHm/XlGy+52Z7252Zz7zfJ/n8wiyLMsoKCgoKCgoKPQQYk9PQEFBQUFBQeHERhEjCgoKCgoKCj2KIkYUFBQUFBQUehRFjCgoKCgoKCj0KIoYUVBQUFBQUOhRFDGioKCgoKCg0KMoYkRBQUFBQUGhR1HEiIKCgoKCgkKPou7pCbQHSZIoLS0lIiICQRB6ejoKCgoKCgoK7UCWZex2O0lJSYhi2/GPY0KMlJaWkpqa2tPTUFBQUFBQUDgCioqKSElJafP5Y0KMREREAMEXYzKZeng2CgoKCgoKCu3BZrORmpoauo63xTEhRpqWZkwmkyJGFBQUFBQUjjEOl2KhJLAqKCgoKCgo9CiKGFFQUFBQUFDoURQxoqCgoKCgoNCjKGJEQUFBQUFBoUdRxIiCgoKCgoJCj6KIEQUFBQUFBYUeRREjCgoKCgoKCj2KIkYUFBQUFBQUehRFjCgoKCgoKCj0KB0WI8uXL2fmzJkkJSUhCALffvvtYbdZunQpo0ePRqfT0a9fPz744IMjmKqCgoKCgoLC8UiHxUhDQwMjRozgtddea9f4vXv3cu655zJlyhQ2b97Mvffey80338zChQs7PFkFBQUFBQWF448O96aZMWMGM2bMaPf4N954g4yMDJ5//nkABg0axMqVK3nxxReZPn16Rw+voKCgoKCgcJzR7Tkja9asYdq0aS0emz59OmvWrGlzG4/Hg81ma/GjoKCgoKCgcHzS7WKkvLyc+Pj4Fo/Fx8djs9lwuVytbvPss89iNptDP6mpqd09TQUFBQUFBYUeoldW0/zlL3/BarWGfoqKinp6SgoKCgoKCgrdRIdzRjpKQkICFRUVLR6rqKjAZDJhMBha3Uan06HT6bp7agoKCgoKCgq9gG6PjIwfP54lS5a0eGzRokWMHz++uw+toKCgoKCgcAzQYTHicDjYvHkzmzdvBoKlu5s3b6awsBAILrFce+21ofG33XYb+fn5PPjgg+zatYvXX3+dL7/8kvvuu69rXoGCgoKCgoLCMU2Hxcj69esZNWoUo0aNAuD+++9n1KhRPPHEEwCUlZWFhAlARkYGP/zwA4sWLWLEiBE8//zzvPPOO0pZr4KCgoKCggIAgizLck9P4nDYbDbMZjNWqxWTydTT01FQUFBQUFBoB+29fvfKahoFBQUFBQWFEwdFjCgoKCgoKCj0KIoYUVBQUFBQUOhRFDGioKCgoKCg0KMoYkRBQUFBQUGhR1HEiIKCgoKCgkKPoogRBQUFBQUFhR5FESMKCgoKCgoKPUq3N8pTUFBQONbI3VfL6s2leH2BDm+r1aiYMDKJAenR3TAzhe5ge20p6yr3Yfe5UYsqUsKiODkujUSjuaendsKgiBEFBQWFA1i9uZRaq/sIt/axenOpIkaOAWo9Dby1cyV77TUtHt9aW8KCou3M7DOM89KG9dDsTiwUMaKgoKBwAE0REUGAMIOm3ds1uHzIMkcUUVE4utR5nDy3ZRF1HmebY+YXbkMUBM7pM/QozuzERBEjCgoKCm0QZtBw6yUj2j3+ra+24HD6unFGCl3Fp7t/DwkRs1bP+Li+pEfE0ODzsLG6iOz6MgC+K9jK0Ogk+oQrka7uRBEjCgoKCgonFFUuB9tqSwAwafQ8NmoGJq0h9PykxH7ML9jK94XbAVhamsu1A07pkbmeKCjVNAoKCgpHAdmnREx6C5tqimhqVz8lKSskRFwuF36/H4CzUgajVwXv1zdUF3IMNLg/plHEiIKCgkI3IDc0IP34I/777sPbvz8+gwE5L6+np6UA2LzB5GQRSJX1FBYWsmvXLnbs2EF+fj4AOpWalLAoANwBP35Z6qnpnhAoyzQKCgrHLbXuBmy+xguPIBCu1hGtDws9X1FRQU1NDUajEYPBEPrx+yXqq7xUO718+0UBVeVurA4fUqKeBO/7jDIlkWxIJWrKaQiRkQDIkkT0vl30X7+KvttX47tyC/j9oFYH/w9gVkpFexJJkrBarSQ0yFxtyMSACm91PdWCgNlsxmw2Y7Vaqa+vx2Q2U+NuAIKfHZWg3Lt3J4oYUVBQOK6QZZnSKjtzNmTzy/a9uGvAUwueOvDZBNKFONx2GYfdx5nnG5g+KwK73YkogigKAAxKCKAJiOTVwtdlVaz36MlVaXk1spohaRfhBVRXXIEvLw8yMqCuDhoaON/nQxIEBBloWghoEiLx8QhxcT3xlpzQ2O12ampqsNls+BqXygyAG4HiQAN16gBXjzgNjUqNLMvs2bOHffv2EYiPpM4bTHAdaI5HFIQefBXHP4oY6YXUuhtw+D0tHjvwjk5B4XjF75coK3FSVuyivMRJRbmbmgoPNdVu6mq81Nd5cVh9OOx+nA1+XK4AXk8An1fC75dpubR/4N2sTDFVqFQCKqOKX7ermT4L1OqWFxqTScWoCBWjCJb3Nvg9PFjzEgUZv3DuinCqh79F3XujELep0G0/Dd54B6RgGF9sLbdAEBDGjevKt6lXceA5qyfPV263m6qqKmw2Gx6PJ5TrIYoiYWFhREZGEhMTw/9tW0Sxqx684MpZzeyMkcQbTKT0SWX79u34S6pIEPSUy25OT+zfI6/lREKQj4GsHJvNFgqfmUymnp5Ot1LrbuDx9fMPWp9UCyJPnzRTESQKvR5rvZeyYielRU4qy91UlruoqfJQW+2lvtaDtd6Hw+ajwREUEx63hNcbwO+TCQQOfzoSRFCrBDRaEZ1ehd6gwhimJjxCgy5CoJQaVCYJrRl0URAZH0atKZwSjZ46wYjDa8AdUCPJIipklpxST3gbt2WyHDzenx1/5/F+39JPhjn3TmJW6ljyrp3MyLgLMQhmtPwF7lwJc+cfYuICJCYiDB6McPrpiLNnIw4adITvcu+htXPW0Txf+f1+qqqqqK+vx+VyhcSHIAjodDrMZjMWiwW9Xt9iu1xrJS9t+4VAs3lH64w0+L30I5yJuvjg6xP8nDJgCBHh4d3+Wo5H2nv9ViIjvQyH39NqopRflnD4PUSjiBGF7sPvl6godVFS5KSizE1FmZOaSg/VVW7qa7zU1/mwW3047L5gVMJ5qKhE66hUAmqNgFarQm8QiYrREhauJsKkwRSpJTJaS7RFiyVOT2y8nvgkPYnJRhJTjJgjtW3ut97t58HVm9hdZqTGFYbLZ8TlV+OTAH/wR0BGq/ITpXdxerzIlYkawlQCoSWVZsiyjN3v5Wbvn3m5/xoGBURmffEm/6z5CK2qlKhAEuNFA5ukerw8BK8IOLMSMT9XDjIIB74ZmZlQXY28eDHy4sVIjz8OKhXExgYFymmnBQXK0GPLYKu1c9bhzldutxtZljEYDK0+fygkSaKmpoa6ujqcTieBwH6DOa1WS0REBBaLhfDDiIcB5jhuH3wq7+xahTsQXEqrbfQdycHKBDkOQRCIltXk5uQQHh5OUlIS4eHhCMqSTZejiBEFheMIm81LaaGLspIGKkrdVFW4qa4MLm/U1XixWb3YrT4aGvy4Gvy43RJeTweiEkJwSUOjFdHqVBgMKmJidYSHq4mI1GKO1BBl0RJj0WOJ1xGfYCA+yUByqpH4JANqdeeTAK3uAIsKXSwrcbOp2kO+1U+1KxAUHcQE54lMlE7FkGg1wyxaJiTqmJ5mQOWqYVvhbiyiHrUgAq1bvssy2Pxurvb/kVcGbOYkv4pZyz5inX8s2xJeY/TylQgPPEC6dzzLNEs4XQZBkDHcVYb3ZAHtLTJyPQjNjFg1K1cixMcj+f2wbBmB+fOR16yBvDzkX39F/uUXpCefBFGEuDiEgQMRTj0V8aKLEEeO7PT71luor68nPz8frVbL0HYIL0mSsNls1NTU4HA4QqW3AGq1OrTsYjKZEMWOfb6GRSfzj7EXsLoin7WVe6n3uNCIKjJNFkSvGtm//w/ocDjIzc3FaDSSlJSEyWRSREkXoogRBYVegt8vUVXupqQoKCQqylxUV7oblziCyxu2eh8NjuASh9sVwOMO4PPJ+P0S7ak8bB6V0OlFoqK1GJuiEmYNUTE6omK0WOJ0WOIMJCTpSUwxkpR66KhEd2DzSPxc4GRZiZvN1R72tBAdQUQBInUiQ6K1JEX4sPr3kBpRz+zMTC7uOwqA4uJiHI5a6vY4kWWZeJUBryThk/0YxNZPgYIAb6je57n0zUz2i1y8/F3WVJ9CuNfODm0DupISavw2zms4j9djljDZv387xsn4FoP6D8DvIMggxwCxQVt5Ua2GqVMRp04NHU+SJFi+HGn+fKTVqyE3F3nZMuSlS5GefjooUCwWGDgQcdIkxFmzYPToDl98uxpZlimw17Z7fFVVFYWFhQB4PB68Xi9a7cGfq4aGBqqrq7HZbHi93tDjoigSERFBVFQUMTExXfL6wzU6zkoZxFkpLZfM8vPzqaurO2i80+lk9+7d6PV6MjMzD1r+UTgyFDGioNBFOBw+SgqclJe6KC91UlURTLysrfE0RiV82K1eHI7g8obbFcDnCYqJgCS3tlLQgqaohFqzP1ciOkZHeISacLOGyKjgEoclVk9MnI74RD3xSQaSUo3EJ+rRanvn172jomOoRcvExkhHhnn/hWxd5T7ezakEgvbeTVRXV7cI5QsI6ETVYed1u34sKXUWPig5lVRtX2bFe/BFZpPgH4FjhIFV9p2coR7Fk1FhVMoNxDW/SY4D/1egehZUbwAnJYEQ1eaxRFGEyZMRJ08OPSZJEqxejfTdd0GBkpMDK1YgLV+O9MwzQYESExMUKBMnIl54IYwde9QESp3HyZs7VxzUZK6JH4t2cGPWeDSiClmWKSkpoaKiosUYu91OTEwMHo+H6upq6uvrWySdCoKA0WgM5X20Jly6i7CwsFbFSBNutxufz6eIkS5CSWDtZRQ6avnHpp9afe7RUWcr/RG6CUmSqCh1U1ripLzYRWWFm6pyF7XV3saohBdbfVMFhw+XM4DHLeHzSQT8UlMhxSERVQIatYBGJ6LXqzAY1YSFqwlvjEpERmuJidURbdERl2AgLlFPUoqhMVdC0+N3wZ2lSXQsL3WzqSooOmpcAbwHig6tSJ8INUMbl1fOPkB0tEVufQXPb1sCwLDoJO4aMhkI/m0FQUCSJPx+P69t+5XUgJ40VTiqQ4TZtao8il1JBKQIwtUyYSoZsY3hMgFUQgOi6EAlOBBFB6LgQBQaoEKDbJyEGBOHSqVCrVaHfjQaDRqNBq1Wi1qtPuzfWJIkWLs2KFBWroTcXKiuJpSsIwhBgZKVFRQo558P48d3+WfH5nXzzy0LqW704WiLYdFJ3DZwEoUFha1e2FWqoFCRmn2B9Ho9JpOJ2NjYHr3Q2+12cnNzW31OrVaTmZl52LwUBSWB9Zil2FHf5nPSYeLwO7bWozeo6Ns/ootn1ftxOHyUFjmpKHVRVuLaX8FR5aG+zou1zofd5qPB7gtFJbzeoJiQAodPvBQEUKkFNBoRnU6F3qgiKlpLuElDhEmDOUpLVLSW6FgdljgdcYkGEpMNJCQbSUzuvVGJ7qAjomNwtJYhMVomJrVfdLRFpjmWKJ2ROo+TbbWl7KovZ2BkQuhCrFKpWFO1jxxXLTnA4Ig4LojsR01NDQFZOsjU6v3SWl7MOzn0u6BZiDHiG279zcZjP9cw7ZlJvJR+M2vD1rDb8BuP+MKRpHAkOfgTkMJxSnHURWdiCujBZmv3axEEAUEQEEURQRBQqVSIoohKpUIVF4f69ttR//GPQVGjUqHZvRvNTz8h/vorwq5dsGYN0qpVSM89F/zwRkfDgAGIEyYEBcqkSZ0SKN/u2xwSIjG6MC5IH87w6BS8kp81FXv5oXAbXilATm05m3ZkI3r9re4nEAiE8j4sFgsREV137sq1VvJz8Q4KHXVYvS5uH3QqIy2ph9wmp76Cr/I3Uua0EqsLY6aYdNAYnwjfewqp3LyTlPAoLs8cQ0aEpcvmfaJy4pwhezmyLDO/YBs/FG1vc8wXezZyz9Ap6NUtW5pXlLn4x8Nb+OqjfZw2LZ4vFk3p7ul2KZIkUVnupqzERXlxsBy0qqIxV6LGQ31tMOnSbgsmXTqdfrweCa/3CKISWhG9QYUpUkN4hIawCDXmSC3mKC0xFh3RsTriEvTEJuhJSjGSmGIgKlp7zEclugObR2pMJHWxqWp/Iml3i462UAkiUxIH8M2+zQC8vH0pkxIyGRWTil8OsK6ygHVV+0LjJyUPoAI7d254jTsTZjBc3xcZCaHRm+SLwjOb7d2LbPyeBsmD01GDbm8+m1xJrHBvIUOfzIOmb7jIC+Pk4EnVBziAFADVUIyxGxBFbSg64/P5Wvz4/X4CgUDo/4FAAEmSkCQp9Pghg9gaDcycGfxpRPD7UTkcqOvqUFdWBn/q6lB9+CHCm28iqNUIJhNiWhrq0aPRjBmDVqdDqz30593h87CuqgAAvUrNAyPOJEpnBMCAhrNTB5NkNDFv13qm6pIQvD6g7QhUVlZWt0RAvAE/KWFRTIzP5I2dKw47vtrt4NXspZyW2J+bBk5gV305tpJaTOL+z6ofGX8gwBkJ/cmMSWRJ6S5e3v4rfxszE5NWWa7pDIoY6SX8UprTQojoVWoSDGasXid1XhcA+fZq3tq1kj8OmYwgCLjdAd5+KYcXnsrG13gFqK5svTqgO3E6/ZQWOSkrDpaDVpa5qG4RlfCGohLOhgBudwCvp4NRCVVTBYeI3qAmMlpLeERwecMUqSE6RkeURUdsvI7Y+GBUIj45+H+9XvmYd4aOiI5B0VqGdrPoOBTTUgaSZ6tkW20pAVliWVkey8qC/WASKuPJcgwIDhRk3i1czvuBjwiYrdzU/0NebZjGhPr7CEixADia97XTLQPBDkJjQmrjwyvsOzjbeCNx/jjeV1Uy0Q8BwIGIM2YBsc5P8Ls+wVWZiSEuG1E0odVqcXll3vtuJ1fPHExSrLFDr7FJpHi93oMETXMxEwgEkMLCCMTG4uvXL7gU4vdDIICsUgXLipuze/f+f/v9QfmgViM0RmdEUUQURdxSgDPViXgJEG2MwG9rwK4PiiePx4PT6QSbjRn6YBRCluVDaRFsNlu3iJGh0UkMjT44stEWy8rysOjDuaTvaAASjWYWVa6FQDCnJyMjg7fz1zJRjsJQ4yIuKYyr+p3M9tpSVlfs4ezUIV3+Gk4klLN0L8Ad8DGvYFvo9wvTRzAteWAo8Wt7XSnv5azB6feSXVfGzrpyCpYHePyejZQWOVtczK11HesMKkkS1ZWeoK9EqYuKUhfVlR6qK93U13qpC0Ul9vtKeNxNvhLtjEqIoNaIaBtNqkxmDWHhasIiNI1RCQ3RFl3QVyJOR1ySgYQkA8l9jEpU4ijSXHRsrtqfSNobRUdbqASR2wadyrf7trCsLA+vFGjxvNvoZMgIM//Z/QG/Vm0gJgHsI7bxZ08k1+p+hiQftsAn/L61ArsH0ACSB/TzWuxHbry4rq7Nwx/vZ5JrEt+Hf4sDCQG4TBPGSs2ZiFHT8YjJ+Br+ibMiHWPsVkR1SqdeY5MoUKs7d/r2+/14vV68OTn4V64ksHs3Uk0NstcLGg2B8HD8ZjP++Pjgj8WC32QCnZZkVVBACV4hVB3ThMFgICoqinXWUnZYy4gUtZwRk4nk8baojGnCZrMR1wts8vNt1QyMTGjxWLjZRGl1DWcNHYtKoya/oZbTUtKQahvIzc1l8ODBDIxMIN9W3UOzPn5QxEgv4PfKAtyBoIg4JS6dGc0UtiAIDItO5orMk3g3ZzW2fLjpT2vY97sXUeSgqEJ1lYenHtxMXbWHulovtvpgFUfI7dIVwOOR8PskAh2ISgQrOIKJl+YoPWHhakxmLaZIDVExWqJjdMTG64lLNBCfqCcx1ahEJXopTaJjeWOkoy3RYW4mOpp8OjKPcnnvkaAWVVzcdzTn9BnK+qoCKl12BEHA6VHjDri4adNj1HisJA/1UpK2lvu8Jp5Q1VLnnExy38Xg9nPTR4UwOoKpVTUsNW8mINpBFhEREOWgGFELKpySjy2arUxyTmKHaSfWyPtZHtjGGu/LXLH7TqZuuQ2X+xL6JWVwatZdOCsHYLCs5d05Qev0T+bvACAlPpxLzx54dN+nxiRa46hRMGpUi+eknTuRvvkmWF6cnQ2VlaEeOzLgCjNQnRyPf/wpZMy+EmnyZBo8HvR6fSip86PqbIolJ8WSk2vSUonUGfH7/TidThoaGkI/UnvuaI4CNp/7oKWWcLOJD4o3MV19Cg6fBwkZS0wMSBrq6+spLCzEpNVT7mp/PpBC6yhXil7AXvt+VX1qQj8Aykqc3HvDWjKzIgj4wVrn4eclIu5qGQjeXbT2Hfa4A/z3X7tCvzdFJTTaoJCIMGuID2tZwREVo8MSq8MSryc+Ud8YlQgj2qJEJY5ljnfRcTiMai2nNesp8rdd3/LvqrdooIHBk3zsMK/l/oCJJ7GRXzGD3TUvktpP5MY/r6NmdAKDfD6+enAYX/7u5bFNE6nTazg/K4IE/6cATNFPIjXORL6vigu8Z5C6bSpZpw8nC3h93wa+NX/ARSfN5uLoSWzfHc/cdWZmjbsWV/Vorpi+gM8WRnHxWQOIiTSEGvT1FsRBgxAffRQefTT0mJSXhzRnDr5fluDdvJHkPYWocvfBh5+jgmClRN+++MaNo/TUUyhOEEGrJiUsErM26LSqVqsxmUwtqiqOgYLOg8jIyCA7O5uqqipEY+8QU8c6ihjpBfiahZLLcry8+8HvfP1JAQ67n51b64lPCpZ2avTgbt25ugVLtkwnvV8ERqPy5z0RsHskFhU15nRUnnii43BIksQVK/7G11XLiBUsZEyvYJtqIw9JiTzqL0NUpVNoexGbw8fGLZUs8BsQvRJL7+1PlFHNH6ZORG01MXZoAsMHxPL5WwuREfjf9AeINZmwWq3s3r2bhhovDS4fYQYN1234J49OPIfbzJdQFVHFaWNSKCobzpaS+YxKmUlYYAYxER+i1w0mzKA5/IvoBYj9+yM+/DDqhx/m012rWVe1j+jSSk5dtZVxO/YRkZsXjKJs3kzim2/yEuAx6gmkp+GfMBdxxgyEc85BPCA/pLe4mJo0emzeljl3Nq8bvUqDVqVGFAREBOxeN6IokpWVxfbt27E0SETqdD006+MH5WrVC4jWhVGzBba+IDBv70pUaoHb/zSQW+4dQFxC8I6i3Gnlrxt+IOAB9yojZXN17NhSj0otEPC3VCfRFr0iRI5D2iU6ALMuKDqGxGiYmKg/YURHa5Q7azjlx9spaChnrG4k3hHb2KLayN/kQdzv2wliIobYnbCrBAEfNz65k4bJqcySbXwxd2toP/6ARL09uLQiICMLEG4MvqdN5ajREVBrdaNWiUgOHX+RnuRx+X6ucFzBV6avSI4Lp7wuHeOoLdgrTmHmSX/A76kA7j/q70tnuShjJLnWCmqT4vjukml8R9BMTkYmqqyKkcvX0X/jTtL2lmDKy0fekUPgnXeCG4eHQ0YGwkknIZ5zTlCgGDuWxNsd9DVZ2F5b2uKxnfXl9DUFy3bVooo+EdHsrK9gpCUVrVZLRt++5OzOY6DPgCRJSiS5EyhXrB5m4bxi/nFPASX7BBAgYazARx9PZVjW/rr1gCTx9d5NAKh0cN1NA5j2xEA2/FbDOy/n8v1XRcgySFJQlNisXhKSOt6ASqF34PAGl1eWNoqOfKufKkV0AB3zjvi+aBUXL3sCr+RneuLp5KctZk/U7zzpnsb9wmIQLBjjdiGKegqrreQV1JPdL5You5snbogjLaKlwaBe21h9coBZriiK6HR6YiJcyM3WTq8Tb+ZL8X2+9n3NEu8SVASXjETNIOSIbVQUXEZKzJ/xWIvQmV/s0vepu4nSGfnT8Gn8d8dySp1WAOTGd6UuMZZfLzuXujv+wJCs8WhVGqTiYuQ5c5B++QV5yxbIyUHeto3A++8HdxgWBunpQYEyYwbCzJmdFijugI8qlyP0e7WngSJHHWFqLdH6MObu3Uy918kNWRMAOD2xP0tLc5mzdxMT4/uyq76CDVWF3DX09NA+piUP5IOcNaRHRJMeEcOSqlwqfFVM1iaQn59Pv379OjXnExlFjHQxDQ4fKnUwP+NQfP5+Ps8+upXKMjeiSqD/VB0Zd7vRRwV4v3Ypp+3rTz9TLNVuB8vK8kJfeINKw4T4vgiCwEnjLZw03kL58y4+fnM377+WR12N96BIiULvpEl0LCtxsfEwomNgtJahMRomJOo5+wQQHW3RXu+Ie9b9h5d3zUEnarkw7TyWZb2ETazmb3tv4w+J7+MU4rAkBkttF+3Mw2UP8MUyEf8ZYVyhr+eTPWt54pQZrXpHCHIwMuJw+jCYgs/LqjB0GjdqwYNOaybMoKG00sHPQ38mtS6Vi+wX8WrlKpIswSiKWpPAws0vcM2UGxEaXkIKlGCI/rJ73rRuIs4QweOjZ5BdV8bq8nyq3A5UgkCf8GhOTezXwi1aTEmBe+5Bdc89ocek0lLkb75BWrIkKFB270bOzibw4YfBAUYjpKUFBcr06QgXXIDYAcfTAnstLzQ68gJ8lb8RgPFxGVyfNR6r1xXq0gtg0Ydz15DJfJW/kV9KcojUGblmwDiGRO0vDx4bm4bD52ZewVZsXnfQ9GzIONwlVVitViorKw+qDKp1N+Dwe1o8Fq7WEa1XOrA3R7GDbwft/TDVVHs4c+RPDBkZycffn86BSJLEmy/m8vI/dlBf50WjEbjoqnT+/spoAlo/z21ZRLXbcdB2TagFkTuHnM7gqMRWn/d4AuzcWs+Ik6J7zTqsQkvR0bS80pboSI1Qh0TH9D4G+kWdmKKjPfxhxacHRUYcXicTF97J1ro9pIXFc+PwmTwf/iB2bSWvFjzC5ZaXsErRLKh9lYvTprKvxMbKLcVs3mDjU0sKUSK8OkqmwFpL5sBwzuyXRYPTR35xPf36RJFgCePLi6Yw9ccV/Dx3M9NO7ovHF2Dx6r0MTvERaY5gwIABbNxRwerNpZw5Po3vTf/jz9zNBTvu5f0RzxJl0iNJMq9+uomTh8UyKG42Kvl3RM0k9DHLTuhQv1RZGYygLF6MvHkzlJSAp9m512iEPn0QRo8OCpQLL0TsBS1CJEliy5YtSJLEoEGDMDZGdWrdDTy+fj7+A9yz1YLI0yfNPCEEiWIH30W098MUCEjcdtkqykqCduTbN9cxdGSwMZbfL/HcE9t49+VcnA0B9AYVt943gEf/b3gzm3AND404ky/2bGBjdRHSAVmq6eHRXJo5hkxTbJtz1elUjBwb03UvvhdxLNxdOLwSi5strxxKdAyM1jI0WsP4xkiHIjo6z9qqbKYtuh+H38UlaVO44uSRXGW7HlmQWaZ7hsExz2BzJfHD+jfw+CP4Ji8PS6SBkrAKvi2OQkpVseDKFEZaNLz9y3oKd7h5f9t2wgwakuPDWySaykDf1Ei+WZyH2+unb0okWq2DhoagRfqoQXF4vAGWrS9C5Z7AhBEXMm/Qy6zTn810piOKAlNOTuW3rWWs2fIakwa9xaDkd3BVDcYQuxlRPDHdPMW4OLj9dlS33x56TKquDkZQFi0KCpR9+5B37SLwabCqCYMBUlODAuWssxBmzUKMjDy6825MaN25cye5ubkMHz4cURRx+D0HXTsA/LKEw+8hmt5z/uppFDFyGNr7YfrXE9tZ+WuwY6hKLfDyMzt4+aNx/PW+zXz+fj5ej0SEScODTw/mnkcGtXr3Y9IauGXQJOo8TjbXFGH3etCp1GRFxpMecXyKjPbQ2+4umkRH0/JKe0XH9DQD/RXR0S08u+0THt30NqIg8M74h/CmFDLbOZvIQCIv+R5ilP9+0KiITJrL6bGRvJq9jFcmXIrT7+W5O7NxjI9ndJiKkxODIiBhgJZcayV/GTn9oGMJjT4jw7IsjBuy38CsoKCA6upqnE4nRqOR8SOTGD8yGOK/WnqbpLofuNh+MTVRNWhFLcMGxDJsQNPNxVjc9TJ+57s4K/tijNuOKCpNMQFEiwVuvRXVrbeGHpNqa5Hnzg0KlI0bobAQOTeXwOefw403gl4fFCgjRwYFykUXIUZ37/tpNBpJSUmhuLiYnJwcBg0a1K3HO95QxMhhCBymOR3Awnkl/OeZHfu38cvM/6qIH74pQgpATKyOPz05lBvu6H+IvewnSmdkSlLWEc/5eKOn7i46KjqGRDcuryii46jhlwOcsfAefq3YhEVnZtXZr/Gh5k2ecT6DGTN/rHiIsy2PAQJ6yypUmiFASWj7Vb9Usl3og8ovsfDa9HYeVQ45sDYnLi6O6upqKisrSU9vuS+LaOE/xv9wh/MOLnJcxPem7w/aXh/5TtCt1fEUzoqMRrfWtPa+FV3K/IKtfF/Ysk9WvMHEUyed1+Y2G6oK+a5gKzVuB3GGCC7KGMmw6OTQ8039t1aU78YV8JFpsnBlv7HEGzq+zCJGR8NNN6G66abQY1J9PfJ33yEtXLhfoOTlEfjqK7jllqBASU5GGDUKcdo0hNmzg0KnC4mPj8dms2Gz2SgpKQGzUkjQXhQxcgh+ryrg893r23ze7vOQn2fnjitXIwgHu6Hq9Sqef/dkLrysZ04oxwuyLFNsM2MxNqBXt979szN0RHRkRWkafToU0dHTuAMuzv3lPio9NUyOH8XP0/7NLc5b+ND1IUlCEtvD52KLPh8BCX3MEtTak4D93hFqQeTWp/JwX57J5Rk+LM3K4W1eN2ZN60slQhtZdgaDAVEUsbXRnfd2w+2863mXH3w/MM8zj/N15x80Rmf6G4IqGa/1NpyVWegtq1FrR3fwnekakoxm7h12Ruh31SHy0PbYqnhn1youzBjB8Ohk1lXu4787VvDoqLNJDosEYGHxTn4pzeH6rPFY9GHM27eVl7f/ypNjzkMjHjrhvz2IkZFw3XWorrsu9JhksyHPm4f000/IGzYEBcqePQS+/hpuuw10uqBAGTEiKFAuuggxIaHtg7SDzMxMtm/fTnl5OQTMbY6Ten+65lFFESNtsLwsj//t/v2QY97dsoa1t2nxuKVWbdU9HomTJ7ad43GiIcsyu+or+LU0h3Jn8IRt0YcHO6taUltNuq33BLjzVycL9g5iZHwJJycXHfHxHV6JJUUulhY3Ex3uAN5m7UtEwNRMdDTldCiio3fx/u4fmFMyB7fk4h+jbuHhIVcx3T6dxf7FDBYHsyFsHv7qYYSrZP5X9Rx3p54W2rbJO+KZx7dReWoiZl8DMwftN7uSZJld9eVMSRrQ6rHD3LXIbXR+CwsLw2634/f7W+0d87PpZxLrErnScSXVmmr0reSGaMNuRRQTcNddhLv6ZPTR81HrZ3T0Leo0oiCEnFMPx5KSHIZEJzI9ZTAAF6SPYGd9OUtLc7mq/8nIssySkl2c02coI2OCS1s3ZI3nz799w+bqIsbGpXfPazCZ4OqrUV19degxyeFAnj8/KFDWr4eCAuS5cwnMnQt33glaLSQlBQXK1KnBCEpS+xvuiaLIwIED2bptG4HKOrSIeDk4sjtn7ybuGjIZnUq5DIMiRlqlwmXjs2YRkf7mOEZGJxOh0bPPUcvayr04fF4WP+ihKufgxk8hZHjj37t48sWRzC/YxtrKfdh8bsxaAxPiMzgndeghq15y6iv4Kn8jZU4rUToj5/QZyoT4vi3G/Fqay6LinVi9rmCZWeYYMiK6NvTYFVi9Lv67Yzl77TUtHi9z2cmuL6OfKZbbBp1KRLNSyjVlbi5dUEFpQwCQqXW1z3egQ6Ijskl06Dg7zaiIjl6O0+fhqpV/59uiZcTp4vj38Hs5M3kEI+pGs50tTHCeyy0Nd+E3jwLcBML/R16BeJB3xHWpE5m+eg/+C9P40/gAqyqyyTDFBL0jSnLwSv6DvmtNCG0s0wDExsZit9upqqoiMfHgqrdoMZrXja9zs/NmLnBcwELTwlb3ozacj161Cnf1abhrz0VnfhdN2A1H+rYdEZUuOw+unYtGFOkbYWFW+sg287Py7dVMS27ZW2dwVCJbaooBqHY3YPO5GdSsEZ1BrSUjwkK+vbrbxEhriOHhcMUVqK64IvSY5HQif/890o8/BgXK3r3I331H4Lvv4O67gwIlMRFh+HDEM84ICpTU1v1tANbXFbPMXcKZuiRm6dOY4ykgzhCBzesOJeLnWit5e9dK7hx8ulL9iCJGWmVZaV6ommVy4gAuzxwT+rCMi88gy53KlbN+oS4PQAZBQKVq/DDJwQiAJEEgIPPRm7sZfrOa1fbd3JB1ColGMwX2Wj7M+w2DSssZya3nhlS7HbyavZTTEvtz08AJ7Kov5+PctZi1+lDd++9VBXydv5Er+40lI8LCktJdvLz9V/42Zmar/gg9RYPPywtbl7TaTGp+7mBkWeDMvrm8tP0XHhh+JhpRzT/X1/P4b3UIQNDLTaDmADHiC4gsKvCyvbo61Hul0tW26BgSskE3MkARHccc5c4axv94F/saShhiGsop0eNZX1PGc/rH2Ruxlat0V3Fm9Q2crLsdZDs683uEh13BXUMqDvKOePqaPdinJZGExOMn9+fXUqmFd8TdQ6ZgaisqIAWraVpzRTCbg2H52traVsUIwE2Gm3jH8w4/+35mjmcOs3WzWx2n1o7DGLcDZ9UoPNYbkQKl6EyPtjq2q8mIsHD9gPHEGyOwel18X7Cdf21dxF9Hn4tefbB9vc3rxnTAspZJo8faaK9u87mCjx1wXjJp94/pSUSjES69FNWll4Yek9xu5B9+CAqUdeuCAmX+fALz58N994FGExQow4YhTJmCePHFiGlp+KQA3+zdhF3ysNNvZbAmkvuSTqZf375IssTmmmI+yl2LK+BjW20pu+orGBTVuaWh4wFFjLTC71UFQLBa4/y0YQiCgCzLrPy1gv+9lc/8r4rQR4iEpQYIT4UBfaJIN0fj90n4fDJ+n4TXK+HzSYSFqyl0VTMyJjmUzGXRh/N7VcFBUYLmLCvLw6IP55K+wfXiRKOZ3dYqFpfkhMTI4pJdTErIZGJCJgBX9TuZ7bWlrK7Yw9nNOv/2ND8VZ4eESJTOyCUZoxkZk4LDF+DtjUXIyHy9czhn9c3lc+Mu3t8ew/KSg09QDT4t3+0ajMOnw+XXIMkC7xM0LRJozOloJjrOSjOSpYiO44Lvi1Yxe9kTeCUff8yazcvj7qEwUMgI6wjq5Xoe1j/MPwyP4jRnglSJ1vRyKJKQFRnPY6P3L3OsXVnJUqMOWa9i3uXBJYMpSVntThpvMj1rDVEU0ev1uN3uQ9qDLzQtJK4ujmsc1zBDMwOj2HrUT1RnYozLx1k1BJ/jMWSpBH3k6+2aZ2cYGr1/WSIlLIqMCAt/Wfcd66sLmdR4vjneEfV6mD0b1ez9YlFyu5F/+glpwYKgQMnPR/7hh6Bo+fOfQa3GGxfLValx5I0ajOeC8zGmJWGtq6OhoYGwsDBGW/rgkwK8l7MGCJ7rFTGiiJGDkGQZmy94IUwJiyRME2yAdNsVq5n3RRHxSQaeeW0MYy8K508v/sLm/xNJifXx3Gdj29zngsJsVpbvpsJpI95ooshRx25bFZf0HdXmNvm2agZGtvyADo5K5MtGF0G/FKDQXsuMxjVaCK7xDoxMIN9WTW/BG/CzqnwPEBR3fxo2lVhD0IVye423Mf4k4A2omZ83mB92y0hyW3dKAhXOCLSqAGadi2iDi3HxGh4bO5hB0UqjquOVJjdVrahh/pRnOS91Ilv8WzjFegoePLxifIU7dLfiqgwKEU3439GG/7HN/V19x0ac1/Xj1AQdY+I7HkEUoE0xAhAVFUVZWRlWq5WoqKhWx5hEE2+FvcV1Ddcx0z6TJeYlrY4DEFUWjHF7cVUNx+/8L65AKYaYbzs8785gVGuJN0RQ5bK3+rxJqw+dN5sILkkH31+TJhhlsnndLfJQbF43qeGR3TPpbkDU6+HCC1FdeGHoMcnrhYULCSxYgLx2LeTlMnhtGUPWboE3PkOKjSX/vffIczoZIEkYTz+dkyxpfL5nA06/l922qp57Qb0IRYwcgCgIaEQVPilAndeFJEuIgshdDw1i4281NDj8jB4Xzfdf57P5/4JnpG0/N+By+TEYWn87z04djDvg468bvg9FWS5IH8G4uIw252HzuVsNaboDPrwBP06/Fwm5RY5F05jWlkN6in32Ghr8wbyaUZbUkBCZt8fBBzsdNDUhbkoIlA51lgcuyaog2VyK078/VyfHJjIoekS3zF+h5zjQTfW3GW+QYIxhkXcR59jPQUJiTvgcLtDMxFU1CFkqRhP28CGXMl5+Npuik2MRJZlvZ7e+jHJ45DYTWCFY4ltWVkZ1dXWbYgTgWv21vO15m1/8v/CF5wsu013W5lhRNGKIzcVdM5GA5zucVePQx6w5am6t7oCPKreDU9pYuuobYWFXfXmLvJGddeX0bcxfs+jDMGn07KovJzU8+J64/D722qs5PfHY7uciarUwcybizJkAfJr7G2tLcslav53r99Rh9Mvoc3JwTZ5MZW4u6YBKFInQ6HD6vfikrq8QPBY5cX2HD8EAc7C3gNXrYnNN0JNg2Khoft44nagYHWeN/pkX79wdGu91ySxZUNbm/jZUFbCuch83ZU3gsVEzuH7AeBYV72RNRX73vpBegDPgC/07ybi/zO2GRdXM3ePk0MVtLZ/ViNA3PIt/j7uIyzNPQmi8IPxcvBOb19WFs1boadZWZZPw9Sy21u3hkrQp5M/6ggRjDB+5P2K6fToiIstNy7lAcwHu6tHIgd2ojXeiMz/b5j4dDh9PfVaEZ1gUd50USbT+yO7FmkzP2kKtVqNWq3E42m7t0MSPET+iR8/1jutxSIceL4oixtg1qHQXIPnW4aoagCQ5D7nNkfJ1/kZy6yuodjvYY6vijR0rEBEYGxu0KXg/ZzVz924OjZ+anEV2XRmLindS7rQyv2ArBY5aJjdWJAmCwNTkgSwo2s6WmmJKGup5P3cNkTpDm40Oj1UitQYktZqdp4xk42N/oupvf6Nu8mTiv/ySPo1LPrXuBiobo0xmbc93LO4NKGKkFU5P3G9O9nHeb6yvKkCSJaKidVx3b1M0Q4bGi6FKJTD304I29zdn72ampw5mbFw6yWGRnBKfwdTkgfxYtKPNbUwaPbYDErua/BG0KjXhGh0iAvZWxrTlj9AThKv352wUOupC/144K4FYw6E+fnKLf4sC+CTYXuNDJYpMSRrAGcnBE11Allh1Agi7E4Vnt33M+B/vwB3w8M74h/jy9L8hiiLPOp/luobrCCOMbeZtjFeNx10zHsm/DbXhWvSRrx5yv7dcsZr6c1Iw+iVePL0TjsaNOSOHautlMpmQJAm3+9DJmeFiOO+Fv4cbN+faz23X4Q0x36I23oEc2IOzMh3J3/Vh/jqPk3dyVvPX9d/z1s6VhKm1PDzyrFAkttbjxNrsBiDTFMvNWRNZUb6bpzf+yMbqIm4ffGrIYwRgesogpiRm8UneOp7Z9BOegI+7h0zpEo+R3kSTYFMj4Cirory8nIQXXyRxzBhErRZJlvlm3+bQGe7kWMWHCpRlmlYZFp3M4KhEdtSV4fT7eHvXKiI0empWq1j4QNOdyP5bo0BAZtH3pdhtPiJMmoP6qLgDPsQDwrqiIIRabrdGX5OF7bWlLR5r8kcAUIsq+kREs7O+InRncTh/hJ4gPSKGCI0eu88duiNKDoukf6SWKtfh3G2F0P81IngDsKLERV6dl/5RWk5N6MeSkhyAXpUno3Bk+CU/Zy36U8hNdfXZr9PfHPxs3+m4k9c9rxMrxLI9cjtxYhyu6qlIvnWodLPQR314yH1v3VDLD9YAgUQjb5wV26nljaalxUMRHx9PbW0tFRUVpKUd+mJzhe4K3nK/xVL/Uv7n+R9X6a467Bz0ka/hUSXjsz+Ks6ovxtiNiOr2OTy3h1sGTTrk838aPu2gx8bE9mFMbJ82txEEgfPTh3N++vBOz6+3IkkSYT6YFZaBRdIgCAJR775N2LKl7H35X1RX7mVZaR759uD5SiOqOPUYX6bqKhQx0gqiIPCHgZN4a9dKsuuCyy/5a9z89qBA0JX84Bitzyvx03fFTL0k7qA+KgLwfeE2ovVGEo1mihx1LC7exYSE/T4Gc/dupt7r5IasCUAwOrO0NPcgf4S7hu7vBjwteSAf5KwhPSK6Xf4IPYFaVHFaQj9+KNqOhMwLW5cwM20YDnd8i3ECEjIiIDMqVodRV4pZV0mkzs+FadNYX+nhi1wHBfYAdl/wvY3Q7E9a9UsBFI5dcqyFTPzpTmo8VqbEj+LnM59HLQZPTxfYLmCebx6ZYiZbzVsxikZcNRcQ8P6CSnsmhphvDrv/a65eg+Oa/qQbBK4ZFNG5ybbDONNoNCKKIlartV27/CHiByx1Fm5y3MRMzUxM4uEt0nURjyCKSXisN+KsHIresgy19pR2HU+h65AkCbvdTm1tLfX19UiSRCza4Inf7yfpvQ/IG9yXV7N/bbGdgMANA8a321jueEcRI22gV2u4a8hksutKWVaWx3c7KpAD8n4dcsAJSRDgs4/2UDGq4KA+KjKQFh7Np7t/x+7zYNYaODWxH+f1GRoaY/W6qPXsX/+16MO5a8jkg/wRmsp6IRgOdPjc7fdH6CGmpw5mW10phY5aHH4Pn+1Zz/bKeCC45BWu8ZBiquekBIl/TxhLvFHLS9ty2VkfTMQdneDizLRo3tpu548jTIyOC4aKd9SVh44RpVO6Xx6rvL/7B25Z8y8kWeaZUbfwl2HXAMFIyQTbBH4P/M4pqlNYZVqFKIq4664m4JmHqBmPwfLzYff/zis57B4YhawXmTur/U6abREs7T28SZXRaMThcByyxDc0VjTyUfhHXOK4hBn2Gawyr2rXXDRh1yOoEnDXnoe7ehL6qG9QGw62mVfoepxOJ5WVldTV1SFJrUR5JQnTr78ieDzsPLllgn28IYLLMse0OJ+f6AjyoRY+ewk2mw2z2YzVasVk6nhTpa6iIN/Bj3OLmfdlIZvW1SIIQRES+hwKcPY8CW0r7Qg0gsjtQ047YT98DT4v7+WsYntjpMnp01BsM5MQbsek8zAyJoXrB4zH0GiotKYinw9yfwOC69GL9gzml2IPJTf1ISFMjcPn4bktP1PRmAT2p2FTGRAZ3/rBFXolkiRx+Yq/8VXBr4SpDSw58wXGxQb9cZySk2HWYeRL+VyouZC5prkAuOtvx+98A1E9Ar1l42Ev8m63n4yBCyi/ewhnphn4eXbnv3+/TB5Ixpa9xFbUEX6I5MOamhr27dtHSkoK8fHt+2yeaT2Txf7FfBD2Adfprzv8Bo34vRtxV08EPGjN/0Ub9od2b6twZOzatYuGhoZDjunz0EOYfvmF3Y/8iewbLkerUpNljmdgZPwJ47ra3uu3IkaOkPJSFwu/K2b+V0WsXlZJUzAk8XSJU59R0zfCggzstlbhk4NLCFpRxV9Gnk1SWNvNk453ihx1rCzfQ7nLioBAotHMpITMFoluEPQneWz9fKxeF/VuPV/uGEFWlMycmUYK7LUsLcsLJdClhkXx6KizT5gv9/FAubOGU368jYKGCoZHZbJq+muhC3uFVMHQ+qFUy9X8UfdHXg5/GQCP9QF8Df9GUA3AEJuNKB4+sHvLJSv5KMpIIMtE9Z3pRB5hBU1zfpk8kPSte4ktryVC23ZETpIkNm3ahMFgYPDgwW2Oa45bchNTF4MfPxVRFUSKke2el+QvwFk1HGQbmvDH0Zmeave2Ch2nwlpHyd59yIHWc98Er5dBU6ei8npRPfssqgceOMoz7B209/qtLNMcIQlJBq67vT/X3d6f51YtYcncCrJfEyhfITKt4hRmTggmcjn9Xj7M/Y3NNcV4pQALi3dwQ9b4Hp59z5EaHsUV/U467DitSs1tg07lpe2/8Ou+oOPjiMStvLy9ZXWCSaPn1kGTFCFyDNGam2oTOf4cxljH0EAD/zT8kweNDwLgsT3VKET6YIjd1i4hkrvDypwddry3JvGnUaYuESJw+NLeJkRRRKfTHbaipjl6Uc+n4Z9yoeNCptumszZybbu3FdVpGOP34awcgs/xNHKgBH3Uu+3eXqH91LobeGrbQgyoOF/XB6OgankO8vuJWLUKlcsFanWz8LlCWyilvcBPRdn8YcWnfLFnwyHHbagq5In133Pnys/524Yf2FZbQo27gXypgvQL4MrFOs77ZzhfCyu5ffnnvLhtCXafmxuyxmNsLHFdX1VAg+8QzfUUQvQ1WTgvZQpVznDiw+xE6vef1AVgWHQSD408izhDJxMSFY4a96z7DzN//QsA86c820KIrPSuZJh1GE6cfBz+8X4h4ngJn+OvICZgiN2JKLbP4v+62SuxXdCHCAGemxTddS9CPrTpWXOioqKQZbndiawAF+gu4GzN2awLrOMt11sdmpooRmGM24ugHojf9R6u6hmt5zModAqH34NflrDLPpyVJUEh0vx9VqsxL168//fevwDR45zwkZF99hqWl+0m5YBlggPZY6vinV2ruDBjBMOjk1lXuY//7ljBxRmjQrms8eEmvBPqUP0Qxy9fVCE+5eBl9688OeY8RsWksqpiD35ZotxlJVMT2+2v7XjgoRUeQOCbc1NwBHS4/F7CNDpGxqRg0Yf39PQU2klbbqpNfO35mssclyEisihiEVO1UwHwNbyDz3YfCDEY43YhttHD5UA+fz+f7FgjgTg9b3aylPdADmcH35z4+HjKy8upqqoKNdFrD3PD52Kps3CX8y5m62YTI7bfF0UUdRgs2bhrJhPw/oS7egx6y+/tiiYptI8mD6jB6khiE+KR1q1Bm9YXf0xMMBLi9xOxcuX+DSTpuOrC3h2c0JERd8DHuzmruab/uFDkoi2WlOQwJDqR6SmDSTSauSB9BH3Co9hWWxIaU9BQyzl9hvLqU2cQKYWz6tEA9R4Xm6uL0Kn2G/tIx5lKzrVW8mr2Uh5cO5c/rPiUzdVFh90mp76Cv2/8kTtXfs5jv89jdSumZe/s2MnWGjdjEotZVrGB/uZYLkgfwbTkgYoQOYZo7qZ6aTM31Sb+4/oPlzguQYeODeYN+4WI8zM81ltAMGGM24kotu9i7vdLPPjQFhznJDMgUsMVA7s4cnaIRnkH0hE31uboRT1fRnyJDx9n2c7q8BSDbq3LUekvRfJvxlXVD+kwDq8K7aPB5+WjvN8YqY5mkjaeioCLd4ZGs8C2B9kerAAMX7sWVbPk1gafh1ezl4aaNk5NzuLj3LVk1+33kmrqwn5un6E8OmoGKWGRvLz914PML49XTmgx8tnu9QyLSmpXx8R8e+uN66o9+z9wnoCfQZEJqFQif3lmOBX7vCRpo9hjq2ZLzX7RcrxdSL0BPylhUVyRefhcEIBqt6NdX8wXN9UjAG9PHnrCfTGPFw50U/2i0U21iQcbHuRe571ECVHkRuYyXB00xPK7vsdTfxUIRoyx2Yiq9kcS779pHTWnxiPrVMw5t+srrITGe4lDmRY2JyIigkAggMfjOfzgZpyjPYfzNOexMbCRV12HdpdtC0P0F2jC7kcOFOCsSEfylx5+I4VDsrB4BwNFM2M1FmoDbr7zFAKwLzmG37evwLhpE5ZffwVRDEZJAgH22apDXdgTjWamJGUx2pLK4kbTRmjZhT0pzMxV/U5GK6pZXbGnp17qUeWIxMhrr71Geno6er2ecePGsW7dukOOf+mll8jKysJgMJCamsp9993XoaSu7uD3yn0UOmqZlTGyXeNtXjemA2zWTRo9Lr+XPuH7m2E1RUqmnpOEIMC2OR52WcupaRQtg6MSidIdX70IhkYncWH6CEa1s8fEsrK8w34x/5ebx87qOM7sE8aouOgT7ot5rOOX/ExZeDePbHqbGJ2Jned/zE39W9qdX2m/kn+5/0WqmMq+yH2kqFKC27p/wV13AaDDGLsVUZ3S7uPuy7fz2eIKnJPimZFhZGhs13dzFtopQpqIiwv2uqqoqOjwseaEzyGCCO5z3kelVNnh7QF05ufRmP4Ncg3Oqv5IvrbbUCgcnqqqKoYLZvYGHHztadkG5ILn3qDvbX8g6sMP0eTmIlx7LYgiZTqx1ZvZJufopi7sg5qN6Y1d2LuTDi8ifvHFF9x///288cYbjBs3jpdeeonp06eTk5MT+tI159NPP+Xhhx/mvffeY8KECeTm5nL99dcjCAIvvPBCl7yIjlLraeCL/I3cO6wr+iIInJUymHd2BU2KvivYSnZdGWMsfQiPUrF5rhPzefsTm85KHtTJ4x375NuCUSa338d3BVvZXFOE1etCkoM5PClhkfyYH45KkPnwrOAdcdMXc2tNCeurCpV1117ModxUIVjyeob9DJb5lzFcNZwNpg2h5/3etbhrzwJUGCy/I6ozO3TsGy9cie38PqgF+HxGN/nOyLTL9KyJ8PBwBEHoUBJrE1pRy9cRXzPdPp0zbWeyJXJLh/cBoAv/U9Cttf5qnFUj0ccsQa079Yj2dSJTUFDAGDGK3ICNZd7yFs+lb80hpqwK96wL0ZlMYDKhefdd5BdfZNWOXxh/HHRh7046HBl54YUXuOWWW7jhhhsYPHgwb7zxBkajkffee6/V8atXr2bixIlceeWVpKenc9ZZZ3HFFVccNprSnRTaa7H73Pxj40/cvuIzbl/xGbnWSn4tzeH2FZ8hyQdnn5u0emy+A5rS+dyYtXrGxqZxasL+/gK7bVV8kb8B02gf1j0yrsY+VrMzRrVrSeh4x+ZzY9Lq+ShvLTvry7khawJXZI5FRubFbb/w9e5K8mpjOStNJM64/yKmFkXy7dXKumsv5v3dPzBk3rXUemw8M+oWfpn+nxZCxCt5GWIdwjL/Ms7SnMUm06bQ8wHvVtzVwQuk3rISlXZoq8doi3lfFrDJD96BZu4/KRKTrrtWodu7QLMfo9GI1+s9osqWs7RnMUszi62BrbzkeqnD2zehMV6BPnoRIOOumYzP9dUR7+tEpLCwkOrqavICNpYfIEQApn65AFkU+OLPN+EN+EOPCyYTsvr4agbYHXTo2+r1etmwYQPTpu1vkiSKItOmTWPNmjWtbjNhwgQ2bNgQEh/5+fksWLCAc845p83jeDwebDZbi5+uZGBkAk+MPofHRs8I/aSFR3NyXDqPjZ6BKBz8tvSNsLCrvuUHcGddOX0b77iv6jcWg0pDhHp/WLjfFYAkUDZPw22DTuWsFCUq0kRAkthUXcTsjJEMMMcRqQta2Mfqw3lsTQ0GjY+nJ7Q0lCp21KMWVcq6ay9EkiQuXfZXblz9T/QqHWtmvB6ydW+iTqojvT6dXdIubtDewELTwlD+iOTPw1V9MhBAH/0zau3JHT7+/X/4HfvsNCI1As9OiDr8RkdIe31GmhMTE0zYra4+spD7l+FfYsbMA84HKJcOvhC2F7X+DAyWTYAOT92leB3/OeJ9nUgUFRVRVVWFoFaxzFveQoyGq3Wk78xn2MqNbJ00hg0BG+/krG7R1fl46cLenXRIjFRXVxMIBA6yNm4qX2uNK6+8kqeeeopJkyah0WjIzMxk8uTJPPLII20e59lnn8VsNod+UlPbl4vQXvRqDclhkS1+dCo1YWpdyAn0/ZzVzN27ObTN1OQssuvKWFS8k3KnlfkFWylw1DK5sUOuIAicnTqEgCwxK20EM/sMY+jIKCIHQNViTbvzKU4ETBo9Vq8bCRm1ELxjaPpiljfo2FNvYFRCCaLQ0o+lxuM46IuprLv2POXOGvrOvYyvCn5leFQm5RfPDdm6N1HgLyC9Lp0yuYzHDY/zXsT+SKrkL8ZZNRLwoo/6DrX+jA7P4ZE/bqRyeAyBGB1vTevaUt6DaBQjHYmONImRmpqaIzqkWlTzbcS3+PEzzXpwx9yOoNIOxRiXC0IUXtu9eKwPdWp/xzvFxcVUVlai1Wr5wV8a+rsPi07ib2PO5fnxs7ng8wW4w418/ZfbAdhSU8y2Zl3X+5pauZltowt7E01d2JvGHO90ezXN0qVLeeaZZ3j99dfZuHEj33zzDT/88ANPP/10m9v85S9/wWq1hn6Kig5fKtrV1HqcIbtxCPZHuTlrIivKd/P0xh/ZWF3E7YNPbWFjPj1lEFOSslhSmsOPRdmEabQMG2ChosRNXW3HMumPZ/qaLOy2VdI3wsKCou3Ue5zsqCsjWmfkx/wIjBofZ6UFDvpiNvi8BxmcNV93dfg8ba67Wn3KMk138H3RKtK+uZSChgr+mDWbLTPfP6hfy3rferKsWdix86bxTZ4y7rcpl/yVOKuGgOxCF/UZasN5HZ5DWYmTDz4pwHFuCoOitVwyoHur1YQOmJ410eTG6nK5Dj+4DSZrJ3OZ9jKypWyecz53xPsBENUpGOP3IYgp+Bqew117daf2d7xSUlJCRUUFGo0GXUosxc760HMZETGIgsja7HUsPmsCxXfczCVjpoae/9/u/akIpyf2p9rtYM7eTZQ7rSwtzWVDVSHTkrNCY6YlD2Rl+W7WVORT5rTy6e7fe10X9u6kQwmsFosFlUp1UFZ4RUUFCQmt50I8/vjjXHPNNdx8880ADBs2jIaGBm699VYeffTRVu9gdDodOl3XZ8Efij8Nn3bI3wHGxPZhTGyfNvchCALnpw/n/PThoceG3V7Kiu+X89aLOTz09PA2tz2WcQd8VLn2exhUexooctQRptYSrQ9j7t7N1Hud3JA1AQh+MZeW5nJyXDpFjjoeWvctAF6vhfz6GM5IK2FGnyw+yFlDekQ06RExLCnJQUYmLbwLnTQVOsXda//DKzlz0Ioa5k95lvNSJx40ZoF3Aefbg11kvw3/lvN1+zvKSlI9zqpBINvQmd9GY7jsiOZx46yV2KYnIWtFvuqGUt4D6YjpWXPMZjOVlZXY7XYiIo7M++STsE/42fczj7ge4UrdlaEKpCNBFE0Y4vJxV4/B7/4frupSdNGLuzeqdAxRUlJCeXk5Go2GoUOH8kPR9tBzZyQOYH1VIQsKs4mpqmXK1lyGvvM5skHP11oD9V4X9V4XsiwjCMJx1YW9u+iQGNFqtYwZM4YlS5Zw4YUXAsG12iVLlnDXXXe1uo3T6Tzow61qNAA7Bnr0dZpp5ySh0YrM+6LwuBUjBfZaXti2JPT7V/kbARgfl8H1WeOxel3Uepyh55t/McucVmJ0YZyRnMU1CwwYNS7Oywi0+sVMDovEIwVaHLv5uqsoCCf8uuvRwOF1MuGnO9hWn09aWAK/zfhvCxOzJt51vcstzlvQomWFaQVjNWNDz0mSE2flIJBr0ZheRBN28xHNZdEPJfxe5MJ1ZSbn9TUyJKZ9VvGdQeiA6Vlz4uPjqayspLKy8ojFiFpUMy98HqfaT+VM25nsjNp5RPtpQhQ16C2b8dSeRcC7BHf1CPSWDe223D9eKS0tbSFERFHE0ywpdZQllcv6nURgxQoCF12BcO65CEYjAhCjD6e+MaoekKXQUnRT4v2hmJKUxZSkrEOOOV7pcGnv/fffz3XXXcdJJ53EySefzEsvvURDQwM33HADANdeey3Jyck8++yzAMycOZMXXniBUaNGMW7cOHbv3s3jjz/OzJkzQ6Kkt7OsNI9lZXnUeIJ3/4lGM+f1GcbQ6LbbkW+oKuS7gq3UuB1knC+yZ54Dr9ePVht8y2VZZn7BNlaU78YV8JFpsnBlv7HEG3pHV+KOkBUZz5unXtnm89e30hjwwC/mxzvtlDurOCO9mDFx6cDBX8w5ezexvbalaVNb664jG3N0mtZdpzTm9ih0jrVV2UxddD8NfheXpZ3Bp6c+0eqd9FPOp/ir669EEMEW8xYy1Bmh5yTJi6tqEEjlaMKfQhd+7xHNRZIk/njtWmxX9UUtCnx2dvdHRZo4ktsorVaLSqXCbrd36tiTtJO4SnsV//P+j384/8Gjxkc7tT9RFDFYFuOuuxa/62OclX0xxmW32/H2eKO0tJSysjLUajWDBw8Ofb7Dm93Q5Ntr6G+IRLr9dhg6FNUnnwBB48uShjoA9CoN6k5bR5w4dFiMXHbZZVRVVfHEE09QXl7OyJEj+emnn0JJrYWFhS1OTo899hiCIPDYY49RUlJCbGwsM2fO5B//+EfXvYpuJlJnYFbGiGC+ggxrKvfy+o7lPDbqbJJa6WlzYB+bV6duIvfrct54ewd33xmMjiws3skvpTlcnzUeiz6Mefu28vL2YB+bznufHBtk15Uiy5BgNPHAynJMWh9npAaY2LhG2tbyzpy9m5gY35dd9RVsqCrkrqGnh/Y5LXngQcs7J9K6a3fy7LaPeXTTO4iCwHsTHuKGfue2Ou4W+y28432HBCGB7MhsosX9S2uS5MdVNRQ5UIgm7EF0psePeD5/f2grFYlGfJkmHjnJTLj2KC0vNEZGOl7gG3Rjra+vx+v1otUeefTho7CP+NH3I0+4nuBq7dWkqdOOeF9N6KM+wiMm42v4P5wV6Y2GcydW4n15eXlIiAwZMgS1ev8lcpQlhbn7NgPwa2kOp73yPurcXNQbNiBGRgKwqHgn7sYIyhilaKFDCPIxsFZis9kwm81YrVZMpt4RObhvzdfMzhjFpISDTZne2rkSr+TnriGTgWCvjMyYL8mYoGXpjxchyzIPrp3LmSmDQuW+Lr+XP//2DdcPOIWxjZGB4xFZlnljm51pqQas/lLm7tvCjmqRb3MHc8mAej48cyiGxj5BH+SsocbT0CJ/p3mzqUidkXNbNT3L4efinaHlncv7jiHjBMlI7w78kp8zF93P0orNWHRmVp/9Ov3NB59oJUniPMd5/Oj7kSwxi83mzehFfYvn3dWjkPxbURtvQx/53yOeU021m+HJ8yh/ZDiR8Xqqbu1z1HIdVp+cQVhJBWl7K4jUdmy5xWazkZeXR3x8PCkpR57vAbDWt5ZTbKfQX+xPblRup/bVHK/jFby2uwEDBstvqLTH5/LygZSXl1NSUtKqEGnile2/kl1TwsUvvM+p836h+OH7Mf/1b1i9LpaX5fFb5b7Q2EdHnU0fJcet3ddvpY1jB5FkiQ1VhXgD/pDHyIHk26uZljww9LtaLZI8TEvhxqDpUY3Hic3nblGCalBryYiwkG+vPq7FSE6djzt+rUYU4LpB4TwxbgajN5SgV8l8On0k6mYXlPYs77TGibzu2tUczk21Cb/k52TbyWwKbGKSehLLIpYdJA7cNZOCQsRwVaeECMBNF63CNiEOyazh7andXMp7AIJMh6tpmjCZTAiCQH19fafFyDjNOK7XXs8H3g940vkkTxqf7NT+mtCG/xFBlYSn7lJc1WPQR/+EWj/18Bsew1RUVFBSUoJKpWpTiABcU+7DdtujJOwpRAb+feYIpN/nHTRuZp9hihDpIEradDspaajn7lVfcufKL/jf7t+5bfCpJIW1vqbaWh+bCTOicVXCz/NLsfmCyU2m1kpQj3OnUH+jAaUkw8c7HWS+X0SdR+LGweEthIhCz/PeYdxUm3BIDvpZ+7EpsIlLtZeywrziIHHgqj4TybcGle4C9FGfdGpeq36tYM3GOhznpjDEouWi/mGH36gLOdIE1iYMBgMej+eI3FgP5N2wd4kVYnna9TR7/Xs7vb8mNIbZ6GOWAQLu2jPxOf/XZfvubVRUVFBcXIxKpWLo0KGtChE5Px/f7NkYz5xO/J5gYzyrJQpJ03KsXqXm0r6jObdPx9yDFRQx0m7iDRE8NnoGD4+czumJ/fkg5zdKG9rfa+KMS+NQ6WXeezWvG2fZ+wk0WxX0y9B0On472849y6opb/C3vqHCUaPJTfWm1f/E0IabahOlUilp9WkUSAXcr7+fLyK+OGiMq2YWAe9iVNozMMR82+n53X7FGuwXpIJG6JauvO2hM2IkOjp4x1xbW9vpeYiiyIKIBUhITLV3bfRCrZuEMXYrCEY89VfjsXfO26Q3UllZeUghIlut+B94AF9WFvK8YASk6U+vP2ksU5OyGGPpwylx6VzVbyz/HDeLqckDETrQu0ghiCJG2olaVBFniCAtIppZGSNJCY/kl9KcVse21sfGr/UTN1pk/epqTJpg3Xhr9sBm7fFdgiq1kaHkk+C1LTbS3y/kqzxH64MUup3mbqojojIpa8VNtYlsfzb96/pTK9fyvPF5ng97/qAx7rprCXi+RdSMQxe9qNPz+/eT2ykVBVxjLVzQN4ysqKNfgho0PTtya4LY2GDzxyN1Yz2QkzQncYvuFvZKe/lLw1+6ZJ9NiJqBGGN3gxCDz/4Qbut9Xbr/nqSqqoqioiJEUWTw4MEthIgcCBB44w18GRlIL7wAfn/wpwmNBuOAgVyaOYZbB03ihqwJnJbYH71K0wOv5PhAESNHiCwH7cdbo60+NkMmhuNyBijaFlzGaT7G5fex117dZh7K8ULgMOfvgAw6lXJX0RM0d1O9e+BsNrfiptrEr95fGWUdhRs3n4d/zv2G+w8a466/E7/rY0T1MPQxqzud12G1ennpmWzsV2SgUQn8b/rBXcKPCh3s2nsgoiii1WppaGjosim9YXyDeCGe59zPkevvumRWAFGdEHRrVaXjb3gJV+0lXbr/nqC6ujpU+TlkyJCDKpukr74icPvtUFcHrS2nBQIIfZUKva5EESPtYO7ezeRaK6l2OyhpqG/8vYKTGxNN29vH5p6bRgHw5gs5TE0eyIKi7WypKaakoZ73c9cQqTOE/DGOVwJt3E2qBEiLULPusmTO73t0cwAUgm6qM38N3lXPn/Is/zn5njbHfub5jGn2YIXTrxG/cpnuYOdUj/Vh/M7XEVT90Fs2dkmC6R8uXYVjoBlvn3AeGRtJ2NEq5T0Agc7ljEDQjVWW5S4TJKIostC0EBmZM+1ndsk+W+4/HENsHqJ6NAH31zirJnVJzktPUFNTQ0FBQZtCBEA8/3zEP/yh8ZdWPmeShJCRcfDjCkeMUk3TDuw+Nx/krMHqdWFobLJ399ApDI5KBIJ9bIRm2fVNfWy+K9jCt/u2EGeI4PbBpzIsOonIaC3LF1XwRsoEvAE/n+Stw+n30s8cy91DphyXHiO17gYc/mBvntI2ckKuyArnv1MsR88rQgFov5tqE8+7nufPzj9jxMh683oGqQ/uRO2x/QNfwz8RxFQMsdmIrSS9dpT1v1WzdEkl9r+NJEYv8sTJkZ3e55ESrKbpHHFxcVRVVVFRUUHfLrrDHqEewR26O3jN8xp/avhTq8tmnUEU1Rhi1+OuPY+AZwGuqkEYYrcgisfO0nJtbS379u1rU4i4/T6+K9jK5poi7NdMYeLINC7864uoKqsO3lmjGGluNxClM3JOq3YDuSwq3onV6wraDWSOIeM4j4J3FMVn5Chz66WrmP9VEev2nUdqWvc29OoNbK8t5dXsZSGDqHJHBPNygzkIIqBVCbw51cK1g47MHlvhyGmvm2oT9znu4yXPS8QIMWyP3E6CeHA/Kq/jP3ht94IYjzFuD6LYNVGuManfkTcoEvs5KXw3M4HzM3suevb7yD5I9bUMyCklSnfk56NNmzYhiiIjRozosrlJkkRqfSplchnbzNsYom4936ezuOtvwe98B8SERrfW3l/GWltby969e0M5Iq31P3tr50pKnVau7DeWSK2BtZV7ibztj5z80/Lg7aYohpZtNHY7NWr424YfOC2xP5MSMtlVX86XezZy19DTQ31nfq8q4IOcNVzZbywZERaWlO5iY3Uhfxsz86CKyuOR9l6/ldvQo8wf/hT0v/jvv3b18Ey6F0mW+Tp/E69kL23hVOlvFtlNjvCz+cpkRYj0AM9u+5jxP96BO+DhvQkP8fnpTx5SiFxsu5iXPC+RLqazL3Jfq0LE1/B+UIgIURjjdnWZEPnv87soqvdhPzuZYRZtjwqRIMHPc2dv4yIiIvD7/fj9XVdB1rRcAzDdNr3bllL0kW+jCf8rSOU4KzKQurCsuDuoq6tj7969CILAoEGDWhUi3oCfTdVFzM4YyQBzHHGGCGZ8/iPjflpO9s1XoV6wACyN0YyoKITwcJaV5WHRh3NJ39EkGs1MScpitCWVxSX7ixsWl+xiUkImExMySQozc1W/k9GKalZX7DlaL/+YQBEjR5kx4ywYjCoWzivp6al0K/MKtrKoZH8TL7UgEqMLo8QWCUBSeD1nZW6gwKl8IY8mfsnPlIV388imt4nRmdh5/sdt2rpD8E57onUic3xzGKMaQ545j3Dx4Iiez/UlHutNIERgjN2FKEZ2yXydTj//9+hWHJekI6jEHivlbU5nTM+a01RVc2AX9M4yVD2Ue/T3UCKXcJ+z+6pfdKYn0ZnfAtmOs3IQfu/6bjtWZ6irqyM/Px9BEBg8eDB6fevRCEmWkZBDje2k4mKkRx+lcHA/frnjGsQZM9Ds2oVw/fWIlwXzpPJt1QyMbCnMB0clkm+rBoJFDoX22hYGl6IgMDAyITRGIYgiRnqAMeMtlBa5sNm8PT2VbqHG3cBPRTsAEBCYlT6C50+ZzVMnnY/Tm8bwGD/nDdiFSpT5bt8WHL7j2+itt5BjLSThq1ksrdjMlPhRlF0yt1Vb9ybckpuB1oGs9q/mXM25rI9c37r7qmsBnrrLQTBgjN2OqO66Kpc7rlyDw6LHNTyKizKN9O+BUt4D6YoEVghGRprcWLuaF8NeJEVM4RXPK2z1b+3y/TehCbsFfdQ8wI+7+hT8rgXddqwjwWq1tkuIAOjVGvpGWFhQtJ16jxP/1KkEgPf+ehe2QPBcLURFoXn/fdT/DToI23zuVs0r3QEf3oAfh8+DhExEawaXynmvBYoY6QFuvLMfAO+81LUleL2F5eV5oaWZ6amDODt1CHq1hk92Ocir9/P+WWmcntgfAL8ssaoivyene0Lwbl773FSbqJaqSa9PJ0/K4w+6P/C96ftWx/k9S3HXzQS0GC2bENV9umzOO7bW8dN3JTiuy0SrEvjorB4q5T0QuXOmZ02Iooher8ftdnfLcsriiMVA9y7XAKgN56G3rALUuOvOw9fwXrcdqyNYrVZ2794dWpo5lBBp4sas8cgyfPjyk5Cby+K7riVz+NgWBQoK3YMiRnqA6Rcko1YLfPt5YU9PpVvIra8M/fuMxh4xNa4AD6yo4dx0A6PjdExJGtBsfNeGqRX20+SmevOaw7upNrHHv4eMugwq5AqeNjzNG+FvtDrO7/0dd82ZgAqDZR2iZkCr446UGy9aiWdUNN44A4+fHIWxt1RadUE1TRNNbqzdER3JUmfxgP4ByuVy7nLe1eX7b45aOw5jXDYI4XisN+Gx/b1bj3c4mguRgQMHYjAY2rVdrCGC+02Z3PaXF/DHx3HuC+8QkCUs+taLDUwafavmlXqVBq1KTbhGh4iAvTWDS83xn7zaEXrJt/vEQhRFBo+IZE+ODb//2KzVPxReKZiQpxZEzNrgSeCdbBvVbonbhgWzqWN0+5MQPYHWzeMUOkdH3FSbWOtby2DrYBpo4N2wd3nM+Fir4wK+7birJwEy+phlXd7Z9cM38thX4MR2WQaxBpHHxkV16f47Q3CZpmvulC2NCZHV1d2TP/DPsH+SJqbxhucNNvo3dssxmhDVmRjj8kGMw+d4HHf97d16vLaw2WwthIjR2LpxX1v4p01DCATQz/8eV8DPjroyRsS03tSwr6kVg8v6cvo2dglXiyr6RESzs9kNlyTL7Go2RiGIIkZ6iMuuz0CS4IsPencW+pEQ0aj4/bLEPnvQ8rreIxNrEDk3I3hi2G3bX7d/IpS3HW064qbaxHee75hom0iAAAsiFnCj/sZWx0n+PbiqxgJ+9NELUesO7q7cGbxeP0/evxnnjBQkvcgHZ8Z26f47i9C4TCN3QXxErVaj0Wi61I31QBZFLEJAYIZtRrcblYkqC8a4AgRVf/zON3DVXNCtxzsQu91OXl7eEQuRvU/8BfLzabjlJnb1S+GFbYtJMJqY2OgbMnfvZt7PWR0af3pif6rdDubs3US508rS0lw2VBUyLXl/1/BpyQNZWb6bNRX5lDmtfLr7d7yS/yAvkhMdRYz0EFff2hdBgE/fPf7yJU6KTQv9+7t9WwjIEl/lOhgZq0UQBHxSgPkF21odr9B5mrupfj/l/w7pptrEG643mOWYhQYN68zrOFt7dqvjJH8xzqoRgAdd1NxuaS1/z3XraNCI2KckMNKi45yMni7lPQC5K2TIfsxmM5Ik4XQ6u3Cv++mv7s/DhoeplCv5Q8MfuuUYzRFFPYbYXYia8QQ883BWnYzURuuMrsRut5ObG8zDy8rK6rAQkfLyiHvuBXLGDuOxa6byfs4a+pliuWfoFFSNZe9Wr4taz/6/k0Ufzl1DJrOzrpynN/7IopJdXDNgXMhjBGBsbBoX9x3FvIKt/H3jjxQ11HH3kCmYtO1bOjpRUEzPepAJA76nuMBJoefSnp5Kl+IN+PnLuu9CrqvxulieXpPJeRkaHj3Fz6LinRQ31AMQrTPy97HnoxIUXdxZOuqm2sSjzkd5xvUMZsxsMW8hTd26OJQC1Tgr+4FsRRf5CRrjVV39EsjPszEpawG2O7Jw9jez+7oU+kb2fAVNczYNScLmdTB0WxExenOn9+d2u8nOziYmJob09PTOT7ANMusyyZfyWWdax1jN2G47TnNcNbMIeL5FUPXFELsNUeyYQGgvDoeDnJygt0dWVhbh4R03lPSmp0NhIer16xFHj+7iGZ64KKZnxwDnX9IHn1diyY+lPT2VLkWrUnPzwIkhgbGoMPh/l5zN+zlrQkJEK6q4ZeAkRYh0AWurskn4ehbb6vO5LO0M8md93i4hcr39ep5xPUOSkMS+qH1tCxHJhrNyIMhWtOY3u0WIAFx/wUq8qUYa+pm4pH9YrxMiEOza25Xo9XpEUcRms3Xpfg9kccRiRETOsZ9z1PrKGGLmojbehRzIx1mZjuSvPPxGHaShoaHTQsT/wANQUIBw222KEOkhlKtAD9LkxvreK3k9PJOuZ1BUAvcOnUKcIYJCazQgkxZZG3o+yWjmT8OnKUlcXUBH3VQhWGVzpvVMPvR+yGBxMHsj9xLZhlGZJDlxVmaBXIPG9G+0Ybd2w6uArz/ZR+5OG46bBqBTC3x4Vu/KFWlOV5ieNSc8PByfz9elbqwHkqHO4AnDE1TL1dzQcEO3HedA9JGvoIl4BqQqnFWZSP6uO981FyIDBgw4IiEi7diB9PzzkJiI6tVXu2xuCh1DWabpYUYmfYvD7me3/eKenkq3IMky0W/sRUbiP1OrMao1jIxOob85DqGLKhJOVPySnzMX3c/Sis1YdGZWn/36IU3MmvBKXk6yncS2wDbOUJ/BoohFbYoXSfLiqhqAHChAE/5XdKYnu/hVBPH7JQZGfUPtsEjqLuvLsxOieHhs76mgac6WQYnUBpwM21qARR/ZJftscglNTEwkKSnp8Bt0ggF1A8iT8lhlWsUEzYRuPVZzfA0f4rHeAGjQxyztdOKz0+lk165dyLLMgAEDiIjoeFsJSZLw9+kDpaWot25FHDq0U3NSOBhlmeYYYdp5STQ4/GzfXNfTU+kWPH4ZqxcmJoZx/YBTuLTvGAZExitCpJO0cFNNGH1YN9UmbJKNzPpMtgW2cZX2KpaYlxxCiEi4qoYHhUjY/d0mRAAeuu13HJ4A1tnpxBvEXitEAAS6xvSsOWZzMPekrq77zwOLTYtRoWKmfeZRW64B0IRdhz76R0DCXTMJn+u7I95XcyHSr1+/IxIiAIF774WSEoR77lGESA+jiJEe5o4HBgLw338fn43zvsh1AHBhjzc3O344yE31rJcO6abaRGGgkLT6NIrlYh7WP8wnEZ+0OVaSJNzVY5ADOaiNt6Azd207+uYUFzTw2Xt78V6SjqQW+Wh6L3FabYsurqaB7ndjbU4fVR+eNjxNrVzLNQ2HNsDratT66egtawEtnrpZeB3/7fA+XC5XCyHSJOQ6irR1K/Krr0JqKpoXXzyifSh0HYoY6WH69jdhitSw7OdyJElm07oannlkC9ddsByXq/vWj48Wc/YE/ROuzOr4Wq5CS4Juqk90yE21ia3+rQysH4hVtvKK8RWeDXv2kOPdNach+Tej1l+OPvKtrph+m9xw4Qr8Jg11Yy2MidVyVlr3VFx0JV0dGQGIigpGg6xWa9fv/AD+YvwLg8RBfOr9lOXe5d1+vOaotaMxxu0CwYTXdgce2+Pt3tbtdrNz587OCxFJwj99enA+ixYd0T4UupbD304pdCteb4D+g0xsWFPD0Li51NXsb57X4PBjMPS+P9GPRdlsqi6i3GVDK6roa4rlovSRJBgPXg9cX+ElUicSrhXZUFXIdwVbqXE7iDNEcFHGSIZFJ4fGyrLM/IJtrCjfjSvgI9Nk4cp+Y4k3HF95QkdCubOGcT/eRmFDBSOiMlk5/bXDmpg1sci7KFhBgcSc8DnM0s065HhX9XQk3ypUuvPQR3/WFdNvkwXfFLF9cz2eB4ciCAJzzuv5rryHQ5BlZLHr1UhcXBxlZWVUV1eHhEl3sti8mD51fbjAcQFVkVXtiq51FaI6DWP8PpyVQ/A5/o4cKEEfdeieNm63mx07diDLMpmZmUcsRAACd9wB5eWIDz6ImJV1+A26gFp3Q8juoIlwtY5ovRI1BkWM9Bg/fVfM3E8LWPxDKc6GoCFQcyFiitRgie2dzqS51komJw0gPTyagCzz7b4t/Gf7Lzw55jx0qv0fKb8kUeEMcFqyjj22Kt7ZtYoLM0YwPDqZdZX7+O+OFTw66mySwyIBWFi8k19Kc7g+azwWfRjz9m3l5e2/8uSY89CIqh56tT3P90WrmL3sCbySj7sHzm6XiVkTH7k/4vqG69GgYalpKRM1Ew853lV7MQHvz6i0kzHEzO/s1A+JJEncd+M6Av0jsCUZuTIrjDSTpluP2SU09qbp6sWaJjdWh8PRpfttiyQxif8z/h8POB/gCscVfGX66qgctwlRjMQYtxdX9Qj8rvdxBUrQRf/Yag5TcyHSt29fIiMjj/i40vr1yG+9BenpqP/5z068gvZT627g8fXz8cstl+DUgsjTJ81UBAnKMk2PYK33ctNFK5n3ZVFIiBxI+sAwCh21FDpqqXV3n1X0kXDP0ClMiO9LUlgkqeFRXD/gFGo9TgoctS3Gzc93IQPnZYSxpCSHIdGJTE8ZTKLRzAXpI+gTHsXS0qBjoizLLCnZxTl9hjIyJoWUsChuyBpPvcfF5uqiHniVvYMmN1UB+OGMf3ZIiDzrfJbrGq7DiJGt5q2HFSLuuhsIuOcgak5CF72kkzM/PH+9bzNWqw/7Tf3RqwTendZ7S3mb0x0JrE1EREQE83XcR6e9/J8Nf2aoOJSvfV+zxNv9f/MDEUUtBks2ouY0At6fcVePQZJaLk97PJ7Q0kxGRkanokaSJOE/5xwQBNSLF3d2+u3G4fccJEQg2DLjwGjJiYoiRnoAc6SWf799cpvPCyoZa3wd/9j0E//Y9BOPr5/f6wRJc1wBHwBh6pYGVV/mBe/wrhsUTr69moGRCS2eHxyVSL492CCs2t2AzedmULMxBrWWjAhLaMyJhMPrZPi863klZw5pYQnsu+hLzklpfynknY47ecT1CLFCLPlR+WSpDx2Kdtf/Eb/rAwT1YPQxaw/rU9JZKstdvPdqLkxPxK1X8/T4KPTqY+N01NWmZ82Jjw8uU1VUHL1O1ovMi1Cj5iL7Rfilo5+nJooixthlqPWXI/k346rqhyQFzx1er5cdO3YgSRIZGRmhLsdHSuCmm6CqCvHRRxEzM7ti+u3C043+MccLx8a3/zjkihv78syrY1p9TpYgIn3/Ca83q2dJlvkyfwOZptjQcksTq8vchGsEYo1qbF43pgNaZps0eqyNrbVtPlfwsQOa5pm0+8ecKPxWeWRuqk1caLuQ1z2vkylmsi9yH3HioatTPNZH8DtfDVp2W7Z0uxABuGHWSgIqkarpKSQYVfx5TGS3H7NL6abIiNFoRBTFo5LE2kSCmMDzxuexYeMSxyVH7bgHoo/+DE3Y/ciBApwVabidBWRnZyNJEunp6Z0WItKaNcgffAD9+qF+6qmumXQ7WF9VwCvZS9t8fre1qs3nTiQUMdKD3HBnf57418iDn5AFIo6R3nGf7f6d0gYrtwxsuQQgSRLFjgCDoo+BHIBexLPbPmbCTx1zU21CkiTG1Y/jO993nKI6hVxzLsbD9ALx2J/F1/AsiMkYYrMRj0IS468LS9n4Ww3c3A9JFPhk+rGxPNOEIHe9A2tzjEYjPp/vqHqA3G24m5GqkXzr+5aF3oVH7bgHojM/j8b0PAG/h915K5EkP2lpacTEtF+Mt4YkSfjPOw9UqqO6PLO+qoC3d63Cc4iI0xf5G1hbefx1b+8oSgJrD3P7nwfibPDz7ye3t3g8Ir1n5tMRPtv9O9tqS/nziGlE6Vpe9JaXepBkOLuxTNOk1WPztYxw2HxuzI2REJMm2MHS5nVjbtbN0uZ1kxoe2Y2vondwpG6qTTglJ8Osw8iX8rlQcyFzTXMPu43X8So++yMgxmKM24Uodn/CtCRJ3HX1b8gWLRUDzIyN1zK1T+8v5W2JjCxAd63WWCwWHA4HVVVVoWWbo8Ei0yKS6pK42H4xNVE1aMWe6QskaO9ib81YJEkmNfp2IiNeAE7r1D4D11wDtbWIf/87YtrRudNz+318nLcu9PvomFTOTh1CSngkJQ31/FS0gw3VhQD8b/fvDI9OxqDufb2YjhZKZKQXcP8TQ7j9gf1r+qJGRte5G4FuRZZlPtv9O5trirlv+BlY9Ad7iPxvV3DN94bBwef6RljYVV/eYszOunL6RgR701j0YZg0+hZjXH4fe+3VoTHHK83dVM/ogJtqE5VSJen16eRL+dylu6tdQsTX8CFe2x9BiGwUIkfHB+afj2+jttqL/+7BwVLecxIOv1Fvo7GaprtoStCsqanpxqMcjEW08B/jf3Dg4CLHRUf12E34/X527NhBIGAkOVHCqNuCu2YKPteXR7xPafly5E8/hYEDUT/6KLXuhlBxQHcWCKyt2oe7MZ9utCWVWwdNIi0iGpUg0ic8mlsGTmRsbFAYeQJ+1lSc2NERRYz0Ahw+D+rLy0m7IHiKE9RwoFv69tre09n3sz3rWVu5j5uyJqBXabB6XVi9LryB/aHI5WWlRGh9ZJiDSn9qchbZdWUsKt5JudPK/IKtFDhqmZw0AABBEJiaPJAFRdvZUlNMSUM97+euIVJnYKSl/RfmY42Wbqq3sqSdbqpN5Phz6FvXlyq5imcNz/JK+CuH3cbnmhPsESKEY4zdiSh2bi2+vdTVenjtuV2oR0dTY9Jy9cBwUk3HZnC2u6ppIJjQqdPpjlpFTXNuN9zOGNUYfvD9wPee74/qsf1+P9u3bycQCJCamkp84mQMlk2ADk/dZXgd/+nwPiW/H/8FFwSXZ5YsCZXYNhUHdGeBwNaa4tC/Z6QOQRAEZFnG1/AOkiQhCAIzUofsH19b0uVzOJY4Ns8ExxF+KcCr2UspaKhj+H1QthLwCvQJj6SswYZPDpb+flewlXiDiTGxfXp2wsCysmDXzee3tSwFvG7AKUyI7wtAqUNLmmn/yTTTFMvNWRP5rmAL3+7bQpwhgtsHn9oi6XV6yiC8AT+f5K3D6ffSzxzL3UOmHJceI5IkcfmKJ/mqYCnhagOLz3yBcbFDDr9hM1b5VnGG7Qx8+Pg4/GOu1l192G387p/w1F0C6DHGbkdUH73IxM2zV+EPyNiu7oteJfDO1GMz4iXIMnI391aKioqivLwcq9XaKXOvI+Fn088k1iVyueNyqjXV6I/C8l1zIZKSkkJcXDDpWqUdijEuD2fVMLy2e5EDJejMz7V7v4HLL4f6esR//xsxKQmHo/agEtumAoFoutbro8G/3zcqpfE852t4Ba/tHkTnm+gi3yfJOCRYKg44m40/EVHESA+zvrqQfY3+HFF6A4+/2J/Hr93OVaZJxA/TM69gK7+UBltkz9m7iVGWFEShZwNab5565SGf31rlweHVMS2lZWLimNg+hxRTgiBwfvpwzk8f3iXz7K10xk21iTmeOVzquBQRkUURi5iqnXrYbfyeFbhrzwO0GGM3IaqPXpb02pWVrF5aifHKdCpEkRcnRqE9Rkp5D0To5mUaCJb4lpeXU1VVddTFSLQYzWvG17jFeQsXOi7kJ9NP3Xq8A4XIgXkyojoZY/w+XJVD8TX8CzlQjD7608M6mkpLliDPmQPDhqH+05+69TW0hrFZ/kdJg5XU8Cj87m8QVH2RAnW4qkbg1V6HSTUKayAag/rETvZXxEgPs7wxygBwQ9Z4+gy18I9bd/LTdyXcdv9ALu07mpKGenKsFdR4GsiuK2thod4b+WCnHYDrBh1ZJ83jmc64qTbxsutl7nHegwEDv5l/Y7j68OLN792Au+YMQMBgWYOoOToW2E384dLVYFBRcHIcSWEq7h0VeVSP39UEE1i7T5Ko1WrUavVRc2M9kJsNN/OO5x0W+hYy1zP3sC0EjhS/3092djaBQIDk5OQ2E3ZF0YQhLh939Rj87s+wVhbzeO5t+A/4EzQ5mkaKGvyzZoFajfrnnw87jzJnsJS6K+3Zh0UnkV1XBsDC4h1cm7obybsMfdS3qPQz8DW8jt/6EI+nvQ+AhB5HuQlBCEcQIkA0IwiRCGIEghiPNuIJBPHoCtOjybF5a3KcIMky+bZgklqsPpwsczzGMDWjT4nmg9d34/EEEASBUxP7hbbJt/V+A7AlRW40IoyK0/X0VHoVnXFTbeLBhge5x3kPZsz8qllLpDulxXq3r+ENAr7sFttIvp24qycAMvqYpai0ozr3QjrIS//IpqLMjf7+wUjA/87u5V15D0N3mp41JyIigkAggMfTMx5DP5l+QoeOqx1X45ScXb7/JiHi9/tJSkoiIeHQS4aiqEZv2YRKexYq/wruTX4IkZYls01LLoFLLgG7HdULLyA27jfPWsmnu9e3uu/3ctZ0ef7IKXEZofYYv1cVYK/7IzIGVPrzKXe5+F/JOF4o+htS42VYJbhBqkQO5CP5tyB5lxPwzMPv+hRfw0vIUn2XzKu3ooiRHkSSpVB/iwiNHqFxHdrnlSne14DXG1zbbG4W5juK3gNHSm6dj/RjNDGxO+ism2oTV9qv5F/ufxHmi2bWrn/z3pZtLU6gkj8Pj/V2XNUTCHiDJYWSfy/OqtGAH330j6h1h7aE72ocDh8v/G07uvQw9sUaOCVBx+QUw+E37OV0ZwJrE015E0fTjbU5kWIkb4a9iRMnM+0zu3TfkiSxY8cO/H4/iYmJJCYmtms7URQxWBbiUV9OgraYR9PuRS+2FA/ahT8jz5sHo0ah+uMfAVhTkc/zW5fA6lUMW9G6IIGuNZg0qLVcmTkWgFNMi9GJdpbWTeGOlZ/z5IYf+K1yLxW+PnxYfs9BBQstEVEbbuzQsurRqhjqSpQrRg+iFlVEaPTYfW4KHbU4fB4cVRKbf6/lkWeHExERXEPcUV8W2iZK17tP5AU2H+6AzKlJvXueR4vfKrOZtvh+GvwuLks7g09PfaLDDqeSJDHVPpWl/qUMEoYwMe9BxGZf3aYTaLh/HiCC7MBVMwWd+WM81usAD7qoOaj1Z3bti2sHt122Gp9PRv7jIERgzrm9vyvv4RBkuVtNz5oIDw9HEISj6sZ6INfpr+Ntz9v84v+FLzxfcJnusk7vU5Iktm/fjs/nIyEhgaSkpA7vo8H4Gsv3OZkWNY9H+9zLv4uexRqwoPZ4ibzuLtBoQssze+3VfJTzG6d+s5DZL3+MT69jzobFOCU/W7q5guWU+AxkZPp6b8MnqVlQexlSs4wjjahiTPKdqHWV+F2fA631KtOiNf293cdsrSnfsdCQT4mM9DDj4tKB4AXlm72buef63wCZq28N9k0od9pYWhrMKxEFgZNie7c16/s7gvkiV2UdHd+K3swzW/e7qf5r9F08N+Zuip31HbpL8UpehlqHstS/lLM0Z7FAvbSFEGmO3zWHYGqlBLIbT/1skB3oIj9CY+ieNf9DsWV9DUsWlBF1diIVKpHrBoWTFH583P8cjcgIBN1YvV7vUXVjPZAfI35Ej57rHdfjkDqXw3KgEElO7nj+W0CWWFOxl5/qLuOb6uswiE4e7vNnErX7uPmxlxAaGlC9+iqiJVittXjPFi7/51tc8p+PEGUZncvNdXIU56UN69RraS8nhS8lTGWnWric/uZkUsOiyDLHc3HGKP558oVMTMhEZ34FQYyhtT4DghgLcusNVVujtaZ8vbmlSBPHx5nhGGZyYn9+Lc0lIEss2bGH5YtE+g43UiRVs2tvBcvL8nA3+necHJvWwp20N/LTPheiAJNTTtx8keZuqjFaE9PjziOvzs8/6oJVCe29S6mX6hlcP5gyuYwbtDfwXsR7FB7QGbkJQapB8gWFbJCmk5GIIPSMMLz54lUgwr4ZqRhUAm9NOzZLeVtDhtASa3disVhoaGiguro6tGxztIkQI3g3/F2uclzFufZzWWZedkT7aS5E4uPjj0iI+KUAb+xcwbZG36XVtrOwBSK5Lv5l/lT/GNq1MkWDMtFeeTF9AEfRPiZf+QdSd+W32E/pkoV8OLH1JO7Fxbu4Pms8YheVb3vsfwG0ZCa+y/3JrTusCmIUusgPcNee0/xRQIMsFeKsTEVtuBqt+W3EHnLG7W6UyEgPE2uI4Nr+4xCAbS8ByCTd5uDl7Uv5uXhnSIikhEVyeeZJPTjT9pFd6yU5XHVUmq31Rg50U113znuEa0wtxrTnLqXAX0BaXRplchmPGx7nvYj3Djle4/+Z1gtOZdx1s/E5P+vgK+kcb7+cQ3GBk/h7BuKS4bmJ0aiPk8+EIB+9yEhTc7ij7cZ6IFfqruR09eks9y/nf57/dXh7SZLIzs7G5/MRFxdHSkrKEc1jzt7NISECQWfnWNNVLKl6Hs29MvSFZW+cxqvZy3D9tgbVSSeTkrsXsVnSsSyKGB5/gsuvvKvVY6yt2sf7OauRuiBR2ef8FKRK1MYbDysi1PoZqA03sv+yLKOL+hB9zGoEVSp+10c4y814HP/q9Lx6I8fH2eEYZMfWehb/UEogIHFKfAa39D+V8pUihniIHrp/nFoQGR/flz8Pn9br+xZUO/04fDLjE7rfJKk30txN9dkjcFNtYqN/IwOtA7Fj503jmzxlPHyHUa1/AdCaOVxw2cZTfxUBz8oOz+VIcLv9/OOhLehjtGxLM5ESruKukcdTSWL3m5410eTG6nK5jsrxDsUPET9gwMBNjpuwSbZ2b9eUrOr1eomNjSU19cgclR0+T8gKQS2I3DfsDB4aeRaX9xvLzH+uQ9gFnn+quTTzfc5f8hzCaachVlWjCrRcshAkCYPdSVrOXh6482nOiM0g84CWE+uqClhUvPOI5tkcj+3PgAat6cV2jdeZX0QQg9U/omYsav1lqHXjCYvfh878NghqfLYHcZQn4Hf/eND2sixTaG89etqdpehdgbJM00M8/7ftLPimmNT0MO58cCB5u2zIAbjvb4Ppm6bCJwWI0hoZZUnFpD02Lu4fNfajubT/iZUvcig31Y66Kv7o/TFUufBt+Lecrzs/9FyFy8aPRdkHbaMWvKj9Szg4+U0kKEZUqHTnIqj7dmguR8pdV/+Gxy0R+Y9hSMBnx3gp74EcDdOz5pjNZiorK7Hb7URE9Jx3T5gYxofhH3Kp41Jm2GewyrzqsNs0CRGPx0NsbCx9+hy5g/S6yn2hXIjTE/szMDJ40Za2bEH6+mvEiy/GVzMKw7WPcfIvvyHTWgZGEJUUTCPts20XfU6/kIXXzaLwzHH49PuXlxeX7GJa8kBU7Yzo/VSUzdx9WzgjKYvLMsfgc30FUhlqw00tmlBuqCrku4Kt1LgdxBkiuChjZMg7ShBN6CI/wl4zmw+LLmJ37pdkmixc2W8s8WE3ozLciNd+H/6G13DXnoOoHoE++itEdX8cPjdv7lxJrrWy1fl9snsdfxwyGVMvXepXIiM9hFYrIghQXNDAw3du4N2X89DqRC6/MItz+wzlwvQRnJ7U/5gRIgDz850IwAWZvfPD3h2UO2vImHsZXxUsZURUJmUXz2Vc7BB8UoDP96znle1LW91uVfmeg+5U3nW9y7n2c1GjZo1pTQshsq22hKc3/sjG6qKD9tXfsB2R5ss+wa+1qBmPzvwmYQmVGGK+RVR1vGqho+RkW/lhTjEJ42LYpVIxIVHHpOTj7PNwFJdpgJARWGVlJbIs43A4KCkpoby8/DBbdj2X6C5hqnoqq/2r+dD94SHHNhciFoulU0IEoMJlD/17VGO/KqmuDv+pp4IsI3/9NRG3P4bvdwOyjpDNuqRqvZ2EfOP1wf9XVnLWv97k7xfdxZWfL2ScKhjFs/ncbK9rX0+wffYalpftDtm+A3it9wNqtOaXQ4/tsVXxzq5VTEzoy2OjZzAyJoX/7lhBSUN9aMziqkSeKniTyWlX8/DIs9CJal7e/is+KYAoiujN/8GYUI1KezaSfwvOyiwaqi/glW3ftylEAAoddbywdUmvtZ1XxEgPYQxTI6qEYBvyxmuSzysxOuU77rtxLTnZPVfOd6RsqfYSZ1QdN7kBh+P7olWkfXMphQ0V3D1wNptnvk+41ohfCvB69jJ+Lc09KKu9iaVleXy6+/eQIHnK+RQ3O28mnHCyzdmM1YwNjS101PLGjhX4pGDkQyuoGGCOo785DrUgMtvyfmhsQOyLNuLvGOP2YYxdiSbsFgQxqhvfhZbcOGsFggAV1/ZDFI6PUt6DkRv/e3TiIypVMAervr6eLVu2kJOTQ3l5eY/lkcyPmI8RI7c23Ep9G0ZckiSxc+dOPB4PMTExpKV1vgqw+cpYKJ9DECAqCvHmm1H//DOaujr+teQz7l30IQXLUwm8CIHZUdTF7m8GGVAFz0+F9rrgLhp/jA4np7zxCVdOnc2sVz4msqKGKvfhq4fcAR/v5qzmmv7jQhbwPte3yFIxasOViOL+Vg9LSnIYEp3I9JTBJBrNXJA+gj7hUSwtzQWCSylLSnYxo89wRsakkBIWxQ1Z46n3uNjc7EZEFCMxWH7EYNmGoB6I5JnH7fGXMyPqc8xaHTcMGM+rEy/jtYmXcXPWBKIa202UtRFd7Q0oyzQ9hMGoOsjoRpbB75f54oO9fPHBXlblnktGv2PDUt3plajzSJybfpzdBbfB3Wv/wys5c9CJGn44458tTMx+Lt7JjvrgXataEBkXm06GycJK4RfEmnjya4OlvcvLdzMwMoE3DX/nbc/bJAgJZEdmE31AF90FhdkhUTPaktripOew/gMaaqn0JvBJxV0kmydzU8LRNTZr4rP38snPc9D/5kxW+GRuHhJBQtjxd4o5GgmskiRRVVVFfX19C0v4QGD/UpysUVHoqO1SC/PD0dQP5iX1G9zqv5bJ9VP5xbi8xfGbhIjb7SY6Opr09PQuOXaSMTL07/VVBWRFxiNGRqItKAg9vs/eJCDUfBX+Fvdd8yrSpT+gJoO/r3qEtM276bd5JwM2ZrMlSk+qSoWq2XsqSBKC28Ppc35m8pyfqbx8NvJHnyG0EV0B+Gz3eoZFJTEoKoEFRdsB8NruAVRoza+1GJtvr2Za8sAWjw2OSmRLY4ffancDNp+bQZH73WgNai0ZERby7dWMbbSCaEKlHYresp0Ptj3EedH/ZVr0fM6IXo4x6gfUYgYAY+PS6RMRzd82LCAgS6wqz+f8tOG9rgHp8Xem6IXUeZx8s3cz2XWleKUAsfpwvOqYNtczZRnOvjKBj2tXULHSRpTOyDl9hoY64jbxa2kui4p3YvW6SAmP4vLMMWRE9Ez55Gd5wRPmrH6911SnK3B4nUz46Q621eeTFpbAbzP+S4IxJvR8QJJY2phkJwD3DjuD/uY4Nvs384j1D4xMHslzMR/ydd52JCSu9lzCLnEdWWIWm82bD+qQavW6Qicqk0bPjVkTQicRb8Nr/D97Zx0fxfX14WdmXZJs3IMTJLhTKFCgSFsK1Evdvf3VnVLjrbu7u2AFCrQ4FHcnECNu6zrz/rHJkhAhQBTy9LMluzsz906yO3Puke/B9iSC4XHeTeuDzesmtyCDyzwujKrGLa32eHw8cfdGNHoFG3qFoxcEPjgn/Pg7tkCERvCJlJSUkJmZWeP7kiyzvPAwW3M3NZqgVWUxLQUJiT3ZatzE1AP38XvHNwnTGpAkiT179gQMkXbt2tXb+AMi2/Br6iZckpeVOQfpYoqp1Hiz2GXn633/BZ4Pj+mILnwuzpJbwf4xD5z1Ms/Gv8C68cMD2/RZ+h9J+w5XGas8pyRiyTJwuUBffSPL9XmHSbcW8Xif8YHX9PIWZF86Su0ViGLl/Dmz21lJURv83+tSt7/DudnjT1Q+NjwfrD66zbGk24pYZ+7DOvOHXB33D731v+AsGIZCexEq/Z0otaOI1gXTOzyBjQXp2LwuDlkK6RzSvHK5zgx/ehNi87h5ZesiFKLItZ0Gc0uXsxgR2wnUEtIxVzRR9D8efbU7httz6BoRw5N9JzA6Pplv9v3Hzgrxy/X5afyauonzklJ4os8EEgwm3t7xL+YaPrANze8H/Kv9K5px8uqxEsknKpO8Nm8nMb9OYXtJKpe1OYfUKT9WMkQA9pXmUer2X1B6hSfQqewL/7bjbRQo2O7bzku6+4nQqfij3VPs0a1jsDiEXSG7qm3VnmkrDig2DohsEzBEnMXX4y69C6X+LvTBz9Mvwn9R9soSRyrEnxuL+29cj8Puo80zPXH44LXhp08pbxVkGryaJjQ0tNZuvaIgUCT584QaS9DqWDGtczP+h1LWsCL6CzLd2UiSxN69e3E4HISGhtarIQKgU6oCXgUJmY/3rOSFzQv4NXUTH+9eyZPrZ5NlLwEgQmtkYJkXQWv6CJVxBgryeKrNfYQq/XkVcfoQwkeOAVXVbrmSIJDVowvazVsQajBEilw2fkrdxI1dhlbyMnRUvguIqE0f1t/J14LD6yn7SaRAcS+GmCLUIe/ic87BWXxRYLv4CvksjmaYN9LqGWlgFmbuIlSjZ1JSj0oSvQcs4JPKo5WgUAjoDAo+/30Yee2zKSkK4pL2fQGI1YdwoDSfxVl76R7qT0JcnLWHYTEdOCvGr9Q6reNAdhQdYXXuQcYndm/089yY5yZUI6JXN88bUHUSyVBZgEySJUb//T8GRHTh5X63V9ruxW3f8OSWTxEFgS+GPsp1HSdyLEVOGwct+YHn5V9+q8/KF+6jeR3/eP9hRZtVuAUn7UsH8X3k7Bp1WXwVLFat4uhF0+deDYDX/h2yL51o5UWUf519jVzCd+ighd++PUxcl2BWqlUkBSm4refpVMpblYb+DQuCQPv27Tlw4AAWi6XabYrkxlXUPDbxUYmaMRn3sCDpFaa5L+bnvT9gt9sxmUy0b98wlVvnt0mh0GVlbd5hgMCioiKhaj13dx8ZaFIHoAl+GlERj1x6M48mPszbWU+TZW/Pn5Eqpnk8ge3KK3BWTB5DxLsfINbSMyfdUoTF4+SFTQuOjq3MJj58K3/mX82VsVUXZsFqLWZP5QWj2eMkpMwTEqzyh7nNbmclgUuz20mi0VTtPPQVJB8yrMUIggq14U587v+QPJsrvVeOoRnKRLQaIw3MtsJMuoXG8sXeNZVuhAotAZFMUYS2HY18O+9s2nYI4pWt2wNla+V0C43l59RNgF+FMN1SxISEboH3RUGgiymmSbr6eiWJPLuPkQnNt/KnOolkOLqqDMPA3MzVLM3dzNLczfQO7ciV7cfi8XkYu/gBluVuIUITwurx79MppKpOQnXGzvz0nQyL7sD93sriSjIybsFJuLMNo7PuRh1d89cwQnv0gratKIsL2vRAEAT0UbuRvKl4bG/htb/HIPVskpPCWFIyiQj1+SfzKzppbpi8ElkG3/1dkewyP44/HZNWj1KeM9LQBokoinTo0IH9+/djs1X24HlkCZvsrWHP+md93mG+2re2yutJtt4kmftwtm8IdrudkJAQOnTo0GDzEAWR6zoPoYsphiVZe8mwHb3B6pVqhka3Z1xC12rLV1WGGxHEGBzFF3JfwnQ+y36AQ12OGk2y4P/bAnQMi6FtaO3VZ11MMTzdt/KiJDN7Ii5Jx8j2MxCFqguM9kER7CnJqZQ3srs4h/Zl4fUIrYFglZY9JTkkGv2J5w6vh0OWAkZU6N5ekURjKKFqPcVuOzuLj5BuLSLJGIaoiEdyrwAgy1ZSKdzbNqj5hVCb5zL2NCLfaWVp9r5KK2agzCHiLz7rPsrI/HVjadvBn6xq9jirjRk6fR7cPi9WjwsJmaDq4oqexg/TzDpoRwbOb1e9O7MlIMsyz2z9ArHsK3Hj6peYm7Ga2F+nsKxMTTX7kj+qNUSgemNHQmaHcx/fuL5BODZDSIBCXRp7IxcSras5STnOEEJboz+hNcNWzLLyfBRBRKHqiNb0DuulpWy1DiJIWcrFkV+iM8fiLLkF6QSEqU6WP39KY8+OUvpclsRWu8zwOA1D4pqvUVpfNFZpr0KhoGPHjmi1lX+nhVL9eUWcTmetvW82FWTw2d7VeCp8vrUVvA7vFLzBDeYb+CDkA4LbB1d3iHpFEASGRLfniT7jebbf+TzQYzSP9R7HSwMnc0n7vrXqaCh156GLWIMgqLgp9lU6pRzEVaYt4tTrAwZm/Off4undG2nz5hqPpVWqiDeYAo9o5Ta66taS6jmPhKC2AHyxdzV/HNoS2Gd0fDI7i7NZlLmbHHspc9K2kWYtYmRc58C5jY7vwl8ZO9hamEmWrYQv9q3BpNHRO6L6a49CEDk7thPgN5Df3P4P/x7Zh0cOQZYKWZ69nze2LwmEe4fHdETZzJJXodUz0uBIslypS2M5nrL7RNxoaPuUmVWlBxgf3K3Kds2RBYftpFu8nB2vJTlUxU/7/au2a7o033yR47Eoez2bi/YHnrslDxf8+ygAM/vcwqM9rqp1/+qko714uchxAZK65gv98shv+N4zhms019S4zdiErnyyxy8w9cPBDWwuzKBfRBKy7M8d2m/OA+5BzPPyWKfthMlf4rV/gtf+GaJqOJqQt1Goe9Y6/5NBkiQeunk9ao3IlnPiEJ0Sv56WpbyV8SewNp7QiFKppHPnzuzavRuPxw0yFEqVFx2+GkrIj0e5TLsoioSFhREZGYm+Qo6ER/L5S9DLng+IbMMFST2I1gdjdjvZvnsXWq/MNuEQn5k+Y03Jf+wM236yp3pCCIJAtD6YaH0wxS473+xfV6lI4NrOg6v1ACjVAzBE7aYoZwDnR3zGodGdURSoUJw3kfZPv+jfSJbh4EE8Awaw5NYr+evS8cSHhNdaJOAqvRWnpCdduoNBZa8VueyVFiIdgiO5KfksZqVt5c/DW4nSBXF7t+GV8jnGJXTF7fPy7f512L1uOoZEck/3UbVWv4yJT2ZbUSaHLIXYvG5+PLgBT8TfDA2xMOfQfCySf86JhlDOTex6Yr/oRqLVGGlAvJKvUt59r/AEzk9KIdVcwJfnbcSzVUv36XYAZh3eyoDINoSXuemOTUQ1u51oFSrUCiWiICAiYKlmmxBVw69Kn19XzKps/8osVCPi8EqoRUiz+DBpFSjFRlSEqidmbP0ShSAGLurlBuTomL48kjKt1n1X56Yy6/CWSq/l6PaxMPE1XErr0UD0scgiCBJvON6o1RjpH9mGNGsRf5fJU+8pyWVPSW6V7SYk9SYp5hrgFbyOv3BbHkHyLMNR0AtB0Q618RlUhprHOVEeu3MjVouX4S/24heHxG09gojSnwGXlEYWPQPYby3gJ+sBJqkTUQkiHiobH9/vX889KaOqeEuPh1CWiCtJEgUFBRQUFKDT6YiMjCQsLIzNhRlYyrytPcLiuDF5aGAfS34hWq+MUymw1uymraU/u4I38KbjTe7T3XfqJ11HyosEOpuiuTtlJEEqLXkOS615EUXeSF5If4M7456n3Uc7Oei7ldWfmamU6eLzIQCj3/+GIet3MfeFh3jT/g8P9BhDUlDl8nuvazWydw9B+olckjgy8PoDPcdUGbtfZFKlKqBjEQSBSW17Mqlt3RcQaoWSe1NG8fneNWwrygKgo85/vbgw8lu+yb2PbqGx3JQ8tFLuWXOiNUzTgGwuyAiYIt1MMdzWdThJxjA27snBdkTmlVeGVsoOX57jX5m3D/bHFSuyuySH9sF+61YpKkgKCmN3hRuSJMvsqbBNQzIoRoui7GJc7JJw+sAtQf8fswj54DDn/nGEFVlN30ujIrX1ZVibv4PV+TuqXV0uydnEu3t+r3HfOWnb+GrfWkrKDEO7ooR/495ndrsZuBRl+hDlNy4ZhAp3sSQhie+N37MkeMlx5z+1bW+u6TSISG1V71O0LpjrOw9hUpujFy+lbiL6qO3oow6j0ExC9mXgKr0Wa3YwztL/IUn2445ZG9mZdr79+CAxiTrmBGkxqATeGdn84tD1gefCC3Hr9bgNBtxGIzF5Fi5al09YTDvcwcG4Q0Lw3nNPg41/yFzAezuXUehzMt+ZiSzLaBWqSjfbdFsx7+xcGhDGqyuCIKA4RkPD4XCQnp7O1q1bKc3OI1r0hz1GxyXj8/lwOBwcPnyYnJwcYmJi6NWtGyICYzLvRiPpecj+EDlS46nDlhcJXNd5MO2CIojQGukWGktkLeHPZdn7MWnCaJ+0FVHZmY7KjxgUvanabQVAu3EzkyddQ9zmnXy042ssOW1wmR9H9vlz9FyltwACmpDPGuAM64ZOqebO7iN4ss8ExscFE6ny/w16GdbzVI8Y7k0ZhaGRS/5PhDNgGdN0bK9QimtS6ylwWjlsKWSPlIlvs5HBt0Vi9gSxOGsPADuKjjClbW9GxHZi6ZF9/HZoM2dFt2dPSS4b89O5K2VE4Hhj4rvw5d41tA0Ko21QOEuy9uKWvFW0SBqCXpHgq+HebvfKLEp3MrGtm+HNRAZ8V3E23+xfV+P7r+76HhERiepd3fdveJeBEV0ZFFk5jLaj6Ahz0/0iRxJecuJWsSjkazyUZedXWD0LskisPZme7qFcZpzMS5qH2CPtQYGiishZdQiCwFkxHRgS3Z79pXnk2P1xvlhDCJ2CIwOr1WMRlW3Qhc9Cktx4LNPx2D/Ea3sTr+0dFOrRaEzvIio7HXf8Y7l+ygokCeKf7c2WUh+fjow4fUt5w8KgQqM6ERBlwFJBnbOG8s/64JdDmwP5SJGhoWhFPYNUJq7oMLLss/0fJW4HadYi1uSmBvIH6oIkSSiVykpiauXIskyoV+RCbRKSLGNPPcJWjl7TQkNDiY/391QxqjSYPTJTjjzKjwlPM6Z0DDtCd5zwuVanyVRTuKWc9XmH8cg+blvxvX9ear8u0/AKCZ/HajJ5JR9dTDGIohZd5G6chcPpELK6xjGEsv8rPR5ClPkIUjoe6//hsb6BQnsxsncnCvW5iMqYGo/RWCQaQ4mS1uOxioCEIIiEeR5GltchVJNU21xoNUYakIqlcKmWAmZsnIfWo2HbWwLjOyUiCAIhah1KQcQrS4F68Qitkbu6j+SX1E38k7UXk0bP1Z0HBcp6wR+7tXqczE7bhtntJMEYyj3dRzV4E6Qip41/c/4F+lb7vkKAiW313NO74RPZ6sKWggw+2r2y2rwdgFxnLusLd1V5XURAEAR8soRX9rEqf3sVY6TciMwy7GBz4vdki+lV5bBkGJ1xD/18w3ix70WBpluTpWHEFsdylfUqhqmGESfWrW+MKAgkm6JJNp1YboYoqtGEzEQTMhOP4xfc5ifxuf/GntcZQZGMOvgFVLqLjn8g4O85WWzdUMyACTHMLfXRNljJjSnN4+/dECifeALP119DTUmeOh2KBx9skLGzbCUcNPuT36N1wdze9WwK8vPJysoCWSYlLI5bug7j5a2LAP+Kf1h0B9xuNw6HA5fLhdvtxu124/F48Pl8eL1eJEmqcxdXWZYpllxEREbSzhSJSqXC5/NhNPq9dEVlqqEA3Xz9uFR9KT+7f+Zlx8s8rHu4zud6MuGWAqeVIre/J9ZZMR3QK9UsytzNtwfW8UvqJiRkjEo1Zo+TaR0H0i4ogiVH9rAq5yA9wvzfOVEUyVD9TrbnaoayqPK5A5JCZPnUc1l49WRspiA6sKvCu058zm/9TxVJSL5sREXN5cCNgSx78No/IFCuiYTk2YjX/gUqw41NObVaOSlj5L333uOVV14hJyeHXr168c477zBw4MAaty8pKeGJJ57g999/p6ioiDZt2vDmm28ycWJVrYbTCYPyqEvs0g596R4ax9XnL0faUcLjv/YA/CuB8lVPxXrxZFM0T/adUOvxR8UlMyouuQFmXjNWrwu10o1R7cTqrhyfVgqQHKbi+/FRiI3UYr02zG4nn+9dEzBEEg0mekckEqrWk2ErZm1uKvNz5lXZL14fwcDwrvQLT6ZPWCf6hHUiVl85/FXisrOr5Aj/xL3PQdMaRMRqdTkjvPF0sA6iBA+HrYV0CI4EwCSamB00m3Mt5zKkdAiHQg7VqDVS36h0l6DSXYLk2Yur9G587iW4ii/GVWJCpb8dVdAziGL1NwBJkrj3uv9QqgSOXNkBudDDzxOal5JjfSN07IgwbRryDz+At3I5rSyKKO67DyGiYcKjeyuEYofHdEAhioSEhJCZmUl6ejoKhQKn2cx1+k6IMoiSwOZaKkBEUUShUKBSqVAqlahUKhwOB05n9VV4okbNjyX7KJXdtCu18mCbDpUqMWRZZl7GUQ9In/BEHjN8x9+ev3nc/jhXqq8kQZFQp3OtGG4pJ6KasGRFyqvL2gVFcHWnQdg87kCfl3Ctnju7j+TtHf/SP6RNJU2m1TmppFn8+iQFTivv7lzKCO1UKDNGZAUIPr9HZOG0Scy/6ZKj51xD8rLP8QV2x1co9begCXoGQdE0atg+5xxkKb/K6y7zAyh1UxDq4IltCk7YGPnpp5+4//77+fDDDxk0aBBvvvkm48aNY+/evURFVb0oud1uxo4dS1RUFL/++ivx8fGkpaVhMpnqY/7Nml7h8azNOwTAgoxdHFjkYfG8I7z33WA0GmXg9XJ6hsc3yTxPhjijmf1FauTyDrECmDQi8y+MxdhMhM9W5R7EJflvHv0ikripy9BA7X+6NZfX9nyMW3ZjVBjpFtSd+1LOY1x8X8I0x1/lF7nsSIKPAt0hkEESql81J4pHG4QVOW0BYwRgrHos92ju4W3X21xtu5rvgr47ldM9YURVMrqIv5EkO27LY3jtn+OxzcRjewWF5jw0IW8jKisn2j338FZKitxc+HR3Pir0MDJBy4CY07+UV/nUU7i//bbKbcijVmK78zYa6vLurpADEl4m915e5ltUVIRSqQyU5ZolD058dAqNwajTodFo0Gg0aLVa1OqavQuZmZm4XK5KnhKFQkFiYiKmUBO/bTwMTjeHLIW8vn0JExK70y4ogjyHhcVZe9hYkA74BQSHxXRAKSqZY5zDcMtwxprHsjt0d53OtVyT6aPdK9hfmodJrWdEbKdK4ZZjSTUXoFEoidX7RfYWZu7CVKa5Yfd6MKl15DusTG3b++hOy5bx9FX/Y+v5Y5Bf6MUyczoRWiPto44aPr4hAkceisN0o5nRP89n/g0X+QWhIHDNq4oP8OG1v4eoiEcd9FidzrsuPL5uFoWuqmrRI2I7cWXHAZVec9veAxRl8zmKLFtwmR9HW6YMK8syc9K2syLnAA6fhw7BEVzZcQDRuqbxcp6wMfL6669z8803c/311wPw4YcfMm/ePD7//HMeffTRKtt//vnnFBUVsXr1alRlsrv11TipudMrLAGTWkeJ28G+0jzev70QlVrg/EsSyLKVsDhrD6tzUwG/+314TM1fuuZGjNHCvqLyG6uMQhD468IYEoOaT+RvXZlKI8CUtr0Dhsivh5dy23+vYVBq+WDAE2wu8Hc/VQshdTJEwB+CU8gqLkqdycbI39gWPg9REPFVuAAoURLmO2qg5zosPL9pPtn20kC/obei32KxZwk/uH5EPNgLozUxoKaVZAzj8o41lxLuLcnll9RNlY53Mv2LRFGPNuQtCHkLj+0r3NZn8LlmYc+bhajsgTr4ZZTa8RTmO/nkzX1ERmuYnRiMwu7jl9PcK1KO0KkTzksuQv3b7yh8ZRVXosA/l06kd4ixwYyRkArVMftL8+hbJvvfo0ePgIHhlXw8um4WFo8TURB4u8PQE2qCplKpKhki4eHhJCQkoFT6v8vXdx7Cmzv+wSP5OGgu4N2dy6o9zuUd+mPS+HNnhqmHMU09je/c3/GC/QWe0D9x3HnkO60sy97PmIQuTEjszmFLET+lbkQpigypIRfO7HESoTWS6/DnUG0rzCRWH0ye00Kp28ELmxZU0WSSDx0iPCuXkR9/j+fLX0m68Fw0t9zAlsgQ5MsvRJp0Aas67+LyqE+Q3pLQTHPRfc0Wdp7lD03LxymlUupvQWX833HP90R4rPe4SqHmI7ZS3tzxT6ANRDmS9wCS+59qjyEg4bF/jEp/Mwp1PxZm7uafI3u5LnkIEVoDsw9v4+0d//JMv/ObpIneCS1h3W43GzduZMyYo+VKoigyZswY1qxZU+0+s2fPZsiQIdx5551ER0eTkpLCiy++WG3CVDkulwuz2Vzp0RJRiCLXdh6MKAikzwN7kUz8+T7uXvszz276K2CIAFzSri+hmuYtGibJEvtL/X0dog0WjmZoCrxxtq7ZrZDLe8REaA1E6vyrnvvXv8sly5+ma3ASm877lMltjnbbLXHVrQLI5nHz3YF1KAQBpaxmWP40vpHn0FlIPkbcTMBpPRqqW5C5KxB+q9hvaIblM0JdCfwe+wIe0c7wmI4oRNF/Y6mh31C5a7m645VzMv2LVIZrMUQfQhexGVF1NpJ3B86iCVhzovj4lceRJB9nv9aXbJuP23sEE3EmlPKWYX3kQYQK8vxutYp/LmvYUHPPsITAjWFVTiq5ZYnLFT0dS7L2Bspv+4QnnvCNpHyRqNVqSU5Opm3btgFDBKBjSCT3pYwiXFN9Iz6dQsV1nQdX8WB8bfiaMCGMpx1Pk+ZNq3bfisj4DfApbXuTZAzj7NiODIvpEAjF1ETH4EhSLQX8lb6TfKeV7WWlreclpjAo2t8f59fUzXyxtyxBtSzZWJRlcLlI+W0eY8dOoeedDxFyzfXM7hDBbns/3sl6BsdZeoruMFGQEBPIGao+TKMAtGhM36A1fYQg1O+1MEitJUStCzy2FWURqTVWaXbnsX1cwxEEfLICARm3ZTqyLLMkaw8Tk1LoHZ5AgiGU65OHUOJysKUgo17nXldOyBgpKCjA5/MRHV05eS46OpqcnOpLuVJTU/n111/x+Xz89ddfPPXUU7z22ms8//zzNY4zc+ZMQkJCAo/ExOqV51oC3UJjuav7CHZ/JCKoZFLuqPy+SlRwZYcBnBPfuLkfJ0qR08aLmxcGJOlNWidCmaXeLzYDi7wNaxOov9ZG+UXZ6nEFSh7v7XoRsbpw0u15uCRPwGABUNfSJrwiCzN3EaYxBDxZHlki+4iGf/WrmKmfiRo1ChR4ZQ+i028ERWiNRGqNXNK+L7H6EEbFJdM3IpHFWXvJsTi4y/4sbtHFkjZvcnmHfqSExhGuMaAWlazOPVhlDsuy9xNRw/HKqdi/KM4QwrSOA2s83rEo1L3RRy5DH1OMUn8TToeDu+97g9Vb7kQd/gExOitvjWieseeGwCdJ7IgMYtM5g/1JjcDCS8fiCDLUORH0ZDCo1AyO8t9QXZKX/9v6N/PSt5NmKWJ3cQ6f7lnF7xU0bkaVKXmeCCaTiQ4dOtCtW7dAUuqxdAyJ4rkBF3B7t7MZFNWW7qGx9ItI4qqOA3lp0JRqPReiKDIvaB4SEmMtY487jxC1NhBuKSdWF0Kxq+Yy9GCVFoUgcnvXs1mffxivLCEIAipRwQVtezImPhkBOGIroajsOIKhslGl8EkIMvRYs4WkiZO58bI7GfX9XAqdkezLept3L3qS3DZxhJb4PajHGiMyIoKiPfrIjaj0tYsj1gdeycd/eYcZGt2hShWdz7MRAEkW8Mgh+I0kJQrtFHKkyfxnvRSV8X4KypKOu1ZoO6JTqmkXFEGqpfFbikAjVNNIkkRUVBQff/wxCoWCfv36kZWVxSuvvML06dOr3eexxx7j/vvvDzw3m80t2iDZ+rsDVwlMvDGGPrEKrB4XOoWSrqGxDIlqj0HV/JoWVcTsdvLa9sUUVOhwqxQERCRUCh99Y7I4ZIE3t//LQ73GVmpQ1ZR0ColifX4aTp+XdXmHOSumA22Msayb+BF95t5Ilz+v4vHuR/vGdKyQz1Eb5bHtXMfRBmb7zXk8s34+nUL685DqUz43vki2fg/B7miUgohOoQp08C2nvN/QuIRuZGWXMNJ2K4sT3+bi4mm0N1/CJe37oBDFavsNpZoLGqV/kSiGoDV9woDkCXTqvJnHPprF9B6v8HTKqzgLeqMOeQOlZvjxD9SCybGbeX/XMnIdFqKvnUK/JWvwiQILLx6DAvjx4Ebu6j6iwTQcLmrXm0OWAjJtJdi9bmanbWd2WlWV0wmJ3at8xuqCKIp1yuFTCCK9wxPoHV63hFSAwarBXKe+ji/dX/KM/Rme0T9T47YdgiMD4ZZych1mwjQGf15McTEUFEBRERQVIZeU0L84gwyHmW4FPrqazczSudDYnZisDtwPvw12O9fEBCN4PPTbdRi3243scFTr2xDKvPVxh7OY+uEPhOcUMOLPRZylVPDA319w0Vvf8Nkz91YxRoo5j8TI7xHExlGg3lKYicPrZmh01a7IuvC/QHZw1+q/uLbzULozAdmXji7sN7Kd+5hftIPRnc/BXFahVV3bkdIm6vx+QneNiIgIFAoFubmV1R9zc3OJiam+vjo2NhaVSlVJWKdr167k5OTgdrurTawqT7w6XXjh0W2o1SIfvD8ctbp53KhPhHnp2wOGSPnqPl4fzQebMni8vwIH/k6UGbZilmTtZWJS43cNro6zYzuxPt/vHv4pdSNqUUG/yCQSDFF8NOghLlr+JM9sf4srEqcRqjZWib/WRMXYdv/IJH44sAGX5EVCZm9pLqDg/IInKNSmEePuwG3dhvNz6qYa+w2dE9eZEredouxBdC8ayyzTrzwRP5xBUe3ItJWQ46gapjxe/yK7111j/6Lqjlcbr0zfTkGem7HXTGXQousZEXOYeec8huRZj7PwbBBjURkfRqW/p9EqghqLIpeN17cvCXjQctvGcyjawLyewTiMeoz4y/bf2vEvD/Ycg7oBDHGdUs39Pcbw3YF1bCrIqFK1ZVCqOT+px0l5ReoDSZLAbIbCQr+hUFCAXFICJSXIJSV8XBqFKUxLnjyDgg1rCDGDbLP5tVscDnC5wOnkEkEmKzyY/LwiDGYrPmCMSoHOasfrqz5B/KzyOZT9e4Eg4NaqUXglv6S7QkFScQSloUGU6FRoNWqKYiKI27m32uPJgoAkCGwb1o+lV1/IoUsvIF12Y5DM7H6+OyahCIPo//5IssBv+TfQLuohkhrJEAFYlXOQ7mGxgfycigiCBgRNIMlWEMKQ5drDXM2FE/rmqNVq+vXrx5IlS5g8eTLg/yAuWbKEu+66q9p9zjrrLL7//nskSQpcqPbt20dsbGytGd6nC99+cpCiAhc33dO5RRoiTq+HNWUVQSpRwQM9xxCq0TMn1W+cXN81EaUilBc2z0cGlufsZ1xiVxTNQFynU3AkfcIT2VyYgcvn5dO9q/k5dRPhWgNZthKGhA1lTdFqfs38hdkjX6vzjUQG2pTFtsHvkXh/5zIybMX4ylz2BqWGMWHjGRWXTKTOGPBYVMfmgvRAnPbt4NeZLI/gTeUz9MvpCzStUV5a4ubtF3dhClOzrE8Ecr6HV0cORR/5H5I3D7flfryOX/GY/4fH/BhK3eWoQ15DbKblgyfKrMNbA4ZInD6ES9v3Y/mIjjx4XjCzO/Rn2ZHDWDxO0qxFLMvez9iEhun7YVCpuaXrMAqcVtblHabQZUMpiLQNCqdfRFKNn11JksBu9xsK+flQXIxcXOz/t7QUSkuRzWawWMBqBZvNbyjY7eB0HjUW3G7/w+v1P3w+/6OOIaqXyv51qf9G9gj+yhSFApRK/0OtRqdWEyEJpPbqQmmQAaVCSZJHpo2sBqMRjEaWRuooNmq5yBAPJhNCaCgH9UpmufPIEH1oDUZKPU4mtelF/8gkDlsK+Wb/f/SNSGRfaR5mt5P2h7O5++r7K83PpxARJRn3VVfy3mXncCjYb8SX+xDVgossVRv6G/IxCPmYvSF8l3sHB5wpHPTsZXhMp4CGUENS6LSxuySX27rV7o0MVvsXiII2kvKqGrPHGUiIDlb59ajMbichFbSpzG4niUZTg8z9eJzw3fH+++/n2muvpX///gwcOJA333wTm80WqK655ppriI+PZ+bMmQDcfvvtvPvuu9x7773cfffd7N+/nxdffJF7GlA+uTnx4mNbUWtEnn61V1NP5aQ4YM7H5fOXxw6MbBNIsp2daiNKL9I2WIkghNI1NJZdxdkUu+zk2M2VGj81FYIgcEPyED7dKwfaZ5s9zoBAU4+Qnlg9FrZbtvPY1jdZG/9hnY57bGw7RK1jaHQH5mXs4Mk+E5CRMao0lQyy2voNzUrbzrmJ3fgtdTNhihBmB//GmNJzuc9+J0+5366231Bj9S+65ZJVeL0y177bj8fyPIxO1NIv2r+/qIxCG/otUsjXeGyv4rG9htfxJV7HV4iqIahD3kKp7l/nsZobVo+TDfn+slW9UsUDPUdjVGlZUXb/7ROeQI/QNszcshCA5dn7GR3f5YQ0diS7/WjoobDQbyiUeRQqGQoWC9hsBNvtjLHZ/IZC+aNM1AyP56ihIEk1i7TVglujxhoShMrnI8juApXK/1CrwWAAjQZ0OnIiQ9kdF0qpUYdGoaKnrCVRGwTBwQgmE3JICEu1XtYqnFjUChLCY9nUaRZfCp/xmPZRXjS8WO34UWWPmqgu86QTUFFyblthFn8c3sK89O1EaI1c2r5fpeTaXx2/HN1YFEGScJ09nB9vvZTt8WHolCrwHO2KrBRErk8eTaRjMFmuWL7OuYelJX0p8fqr0vKdVrYUZtbab6a+WJ17kCCVJiDYVhPtg/wtRYbF+/M7JamE3cU5tC+rpIso64G2pySHRGMoAA6vh0OWAkbUUkrdkJywMXLZZZeRn5/P008/TU5ODr1792bBggWBpNb09PRKrtrExEQWLlzI//73P3r27El8fDz33nsvjzzySP2dRROx7Mh+lmXvp9Dll4WO1YdwflIPUso+KN9+fIDiQjc339cZlcofptqYn86stG0UOq1E6YKY2q43PcKO6os0t9pvh88T+Ln8BizLMj/us6ESBTwSqBX+VeOu4mz/PhWUZ5satULJ7V2Hs6P4CMuy97OnJBeP5MOg1NA/MonpfSdyx7qXmZWxkkuWPc0vI5497jFrim2HawxVQifltA+OYEfRkUqvlfcbSrMUohKO9hu6ImIkVzrv4hvjG3xp/5jHg6uqWNZ2PKjcv6i89Xh5/6K6uvM3rMln+eJcevUP402rX13354lVbxWiKKIJehhN0MN4nUtwmx9E8qzGWTAAQZGEyvgkKv1NNUrWN1f2luQFBAkHR7XHWGbEiS7/jUqYNYeEbfu5a/NaPOZS1E4XTuWzKF3uSoYCxxoK5cbCiSII/kdFj0K5oRASEjAU0OkQ9Hq/N8FgAKMRISQEgoL8/5Z5FAgLg9BQiIyEsDDSHaV8vHslOqWKziHRXNahX7XTOGjO59Wti5ncrhfDw+JZl3eYVzJ380Sf8YFFyIKMXSzI2Ml1yWMDZaOxqecT3WEuLzlf4nrN9XQ6iTYEdaFneHytmk0XpQwjcFXr1g3lG29gGjOG28pekmWZGZvmkV1WueSVJT7as5JHEmW66zfxQrsbeSH9LSK0Rgqc/mv/ytyDDW6MSLLM6txUhkS3r+J5/mLvakxqPVPa9QZgdHwyr25bzFZjBN1V8HfaUtKsTq7q5BcnFQSB0fFd+CtjB1G6ICK0RmalbcOk0QWuF43NScUN7rrrrhrDMkuXLq3y2pAhQ1i7du3JDNWsMWl0TGnXiyhdEMiwJu8Q7+9azpN9xhNnMPHi49v8XpFXegP+L/Gne1YxuV0vepZ9iT/YtaLSl7i51X4bK6jIpln9ioWCIDDngmjG/pHDc+uKeW5IGIcthYHtmlszJkEQ6BEWHzD6JFkKaI4A/DnqRfrPvYlf05by8Ib3ebn/HTUdCvD3BXpp69/8lb4z4ApekXMg8EUH+OPQFkrcdq5PHgpQa7+h9Xlp/JWxg0FRbVmStRcBCM8bQkrMVlZFfE+6biR/HPLU+XgV53kq/YtuuXQ1ogh9X+zFwl027usdTJi29kuGUjsapXYzkjcTV+m9+FxzcJfegtv8P5S6a1AHv4zYiPH1U8FZwRCPqbAY0BaWApGob7oVyeGj3LSTRQFBoQDFMYZCUJDfUNBqQa/3GwrlxkJQEEKQ36OAyXTUWAgP9xsLYWEQHo7YwDl0Tp+Hz/au5upOg/irgqJqdSzJ2kv3sFjGlSVHX9i2F7tLclh6ZB/TOg2sUjYKcH3yEB5c+ztveL9hmnIcYy1jORx6uEHPqUaiohBuuglx+HDEq65COCa8IggCkdqggDFSjs1nJEoNsizS3RTDJZ3G8cT62Th9HvIqJLM3FHtKcihy2Tmrmu9vkcteSVagQ3AkNyWfxX9Zh+keBQdLD3J7t8sreazHJXTF7fPy7f512L1uOoZEck/3UU1yn4HW3jSnRK9jssont+3Fsuz9pFoKWfxtAcWFbm75X2eUSv+H/VS+xFsKMhgQ1bZRzw/8GgMGpRqb182mggyy7aXE6kMYmajnkf4mnl9XglbpIN15tH9GTBN5ceqKWE0+y9qJH9L+98t5ZdePtDXGckeXKTXu3zYonNu7nl3FFTwo6mh2e6nbESglhNr7DXUIimRW2jbW56chIbMsez8ycHHpvbwWtIk7XbfwiucPfC5tnY5Xzqn0L3r/ld1kZzqYdlsHXt9rI1gt8NrwuueBiMoEdOG/IUlePNZn8djew2v/AK/9IxTqkahD3kahah6JzjVhVFU0xAvxBwRg9wM3gGU5zoN7CQ9P5MUdS8iwFQMwc8CFhGmr1+OoDkmWmJO2nf/yDpfF9HUMjW7HxMSUWj1J9SV4V84PBzbQIzSOrqExxzVGUi0FgW7j5XQLjQ2EQmsrGxWtJm6Pvp33Xe/zkO0hXjG8UutYDYGgUKD65JNat6noeTg3vivFbjsxGn8GiUr0cVnEdNTiaKQyz1ljZMh1C43lo+FXVvveAz3HVHmtX2QSvYKH4CyEmzpKaIyVvUWCIDCpbU8mte1ZZd+moNUYqSckWWJjfjpun5f2QRHc/PgSNBqRp17uHdjmVL7EqZaCJjFGVKKCYTEdWZi5C58s8dq2xZyf1IO+EYnc1UvNa5tknl7j4KoeSrRKLyNjO7U4dzyAUlSyY9KXtPntUu5a9wZJhihkKSjQlbecaF0wz/Y/v0ZX8LFhuO1FWQGPTLIpmif6jA+E4b4/sJ7/8g5xZccBXNahX7Vu8VHuWYy0jOTliFvINGVWeq+h+hfZ7V5eenI7xmAl6ecn4jpg59PRESdVKSOKSjTBz6IJfhavYzYuy6P43P/gyE9BUHRAHfQcKv0VJ3zcxiDZFI1WofSXhuenMS6xG9G6YBwJMbAbCApipzU/YIgkGcNOWLhwQcZulmUf4PrkwcTqQ0izFPHV/rXoFOoatYfKBe/Oju3EjV2Gsqckh2/2/UeIWhswRssF767sOCDQHO7tHf8yo98FVUKJ6/MOk24t4vE+4+s0Z7PbSfAxeUfBqqMloWaPP+G3prLRd/Tv8If7D15zvsYNmhvoqmyYpN9TId5gYnOhP6lcpVBwQ6dO2HNLAL+SqeTdQ2HeefikWwEl8YbQpptsLYgKf/6H7Ms8zpZNT9OXPLRwsmwl3LPqZ+5c+RPfHVjPbd2G8/dXeZQUubn+zk4Brwic+pe4qZiQ2J2EMveexePih4MbeOi/P5i+aTYj2+5BkgXm7utKckg0Zzdi8pMkS8w6vJXH183irlU/8cT62cxL335cEaq9Jbk8v2k+d678kSfXzw4o4QarjWy54DPUooqLl03nj8MbAEgwhHJX9xG8PGgKD/equgIppzwMd1ZMe57sO4He4Ql8sGsFWbaSwDblYbhpnQbyaO9z0YhK3t7xb0CU7VjOVp/NI9pHyJazucR6SbXb1De3X7Eat1vi4ff68esBO51MSq7qGnTKx1XqJmGI2oU+6gAKzURk32FcJVdizQ7BVfoQktS8RPO0ClXA2+CRfLyydTH/HtkXCN8sytrFR7tXBrY/GUM81ZJP73B/CDFCa6RfZBLdTLEcqhD2PJb6FLwrctn4KXUTN3Y5MQn5U0EURf4O/huAc83nNqho3MlyVkz7QNjj78zdHCpacMwWPnTSGi6N+hiQG/W6d0KUdwP3VS9K2pxoNUZOkWhdEE/2ncCjvccxIrYTX+5dy0vPbkWjFXnipZZZQXMsOqWK+3uMpnto1dbYSSGltDMVUuQ04HD0rtTRs6EpX1Ve0bE/z/Q7j6lte7Mwczf/lnXtrI7jyai3McbyyaCnUQoqfj/yB8EqFW2Dwvh872oEhEASY3VUDMPF6kO4sG0vkoyhgS6iJyvBPNMwkz6KPvzu+Z0vnF+c5G+rbuzYUszfs4/QtUcI7wsqZOCXidHH3e9EEJUd0IXPQx9jRWXw10F4bK9izzHiKJiI5D2+QmxjMalNT+LKErctHic/HtzAyhz//JYc2RswInuFJzCkGhGq49E+KJI9JbkBmfcMazEHzPmkhNXchr4mwbtyMbtywbuKHtaaBO/SLUVYPE5e2LSA21f8wO0rfmBfaR7/HtnL7St+CIQhKlJeNlqRmspGK23jPrpNijKFezX3kiln8j9b/fZxqQ/CNAaGlXX59Ug+tuTOQpIrX9tEQaZ/0CquiJlb5e/RXPB7M8Vqu/g2N1qNkVNEKSqI0gXRJiiMKe16Y92koSTXy/V3VfaKQP18iZsKg0rDPSmjeLLPBEbGdqabKYbuobGcm9CVFRd1Jkwj8vR/pRwqbbxKmoZaVWbanNyTfA1Wr5Xv039nc0E6Tq+Xt3b8Q5GzaufMo/Op4SZRJq98KhLMy4OXY8DALbZbOOQ9VOu2p8JNF61EEODqDwewpcDNuCQdvSIbJnlSFLVoQl7BGFuKxvQ9gqIdPvd87HkdseV1w+uY3SDjngg6pZoHelZviAMICJwd05FbupxVbS7S8Rif2I3+kW2YvnEut6/8gRc2z2d0fHKl/KNjOZ7gndXjqlHwrvSY608XUwxP953Ik30nBB5tjGEMjGrLk30nVHtO5WWjFampbLSc8rLR9hVyVt4wvkGCmMDbrrfZ7q2qKNsYLMjYya0rvuengxurvHdZh370LAuxJmkOclRarTL9DT/itX3I7MPbeGjt79y16ife2L6kSsVd06FClmq+JjYXWo2RembV+zYMsfDEzKpekfr6EjclicZQrujYn3t7nMM9KaO4qF0f4o0m/rowBkmG0b83njuwIVeVl7YdxqPdryPbeYQ/j/xOp+BIilx2Xtm2CKfXU92hGzQMZxSNLAhagA8fQ81DA23j65Mv399PWqqNi69uyyM7rCgF+HFC3STyTxWV/goM0fvRRe5AoT4H2bsXZ/GFWLPDcZmfRpK8jTKP6jCqtNyTMoqn+k5gdFwyEVp/NdA5ccm8OGAS0zoNPGmP4Mb8NNblHebG5KE82WcC13UewqLM3ayp0ESzIdEqVcQbTJUeGoUSg1ITqLz4Yu9q/ji0JbDP6PhkdhZnsyhzNzn2UuakbSPNWsTIspLximWjWwszybKV8MW+NdWWjS4KWgTAOPO4BvlM18ZhSyHLsw8EQtDHohIV3NZtOOMSupCkPYAo1BxOcpT+j6VHdtU5/NqoCDpkubSpZ3FcWo2RU+CPQ1vYV5pHgdNKlq2Eh9/5h8JdMhdem4BSKTbol7i5MShWy209gjhk9vLA8sZptNTQq8rn+17L3V2mcsiWxffpfxKuNWD3ethQkN7Qp1Ytw9TDeEz3GDlyDhdZL6rXY7vdXmY8sAW9QUH4bZ3Id0jc2zsY03FKeesbhao7uogl6GNKUervAFx4rM9hz9HjKJyK5G26RLwEQyiXduhHnwh/pdvY+K4nVDlTHb8d2sK4xG4MiGpLvMHE4Oh2jI7vwvyMXTXuczzBO6NKUy+Cd+UUueyVGkqWl42uyDnAc5vms6kgg9u7Da9SNjoqNplv96/jxc0LcPk81ZaNdlF24UHtg2TL2dxtv/uE53ayVCxl1itrVgJXCCJ21yEMiqMeUbms7kOWRUTVAFTGJ/ks5znGJ/VqNh1wKyEYkKWGLz0+VVqraU4Bi8fJl3vXUOp2oFOqmP++F51J5KXn/FoQNdV+z0rbyp+HtxKlC6r2S9ycar9PhPdGhjMn1c4bm81c2zWIng3k3i+n4qoyzmAiw1rMz6kbMal11XYRPRneGngvh605zM5cRZAyhLExw8mvQVPgRMJwJyvB/IL+BRa6F/Kn508+c3zGjbobT+KsqnLPNetwOn3M/GQAt24oJUQt8PKwppN0F0UjWtN7YHoPj+1T3Nbn8Ln+wJ73B6KyF+rg11BqRzfZ/OoLt+RFPKbxmigIVfrPVKShBe+OLROtqWy0NpGvEykbfdnwMj+7f+YD1wfcqL2Rvsq+x93nVDmRUmab6+j7gqI9Ku1ENpZ2ZEVhHI/0uYR8h5W99tlc0oyqICsiiCHI3qImnUNdaDVGToFrOg8O/PzJW3v5bs9m7nwkOZAr0tBf4vri8XWzKHRVzYUYEduJKzsOqHafmpRkF02JJeXbTMb+kc1HY0tZlXuwwZRkK64qwV+OV+iyMT9jV43GyMnIqM86Zya9Zt3G0vwV6EQ9g6MurvbY5WG4iuXbDSHBvDx4OdHF0dxqv5WRqpF0UHao877VcWCvmdk/p9OhcxBzYw24D9j56pyTK+VtCFSGm1AZbsLr3oC79F4kzxqcRWNAjEJluB+V4aEmmWttBkNd6RkWz18ZOwjT6onVh5BhLWZx5h6Gxhz9/J6IgF45pyp419gsClpEl9IuTDBPINuU3aB/zxMtZd5pbUd69Md0iRyPqPAbd27bPvLLjJTmWgVZjiCEIlN9Y8DmRKsxUk+8+swOtDoFj7/YPARkToTHeo9DqnBhPWIr5c0d/9TYxbY2Jdmu4SYeH2Di+fUlvLW1kDeGD2wwJdmGXlUeMOfTMyyeUI2e0ZGjsXgc/J23mPGlXTgnPrlGCeZFmbvpERbH+vw00qxF9S7BrBf1LAxeyDDzMIaZh5Flyjqli/f1k1ciA9O/G8y4VaUkm1Rcnnzqpbz1jVLdH2XkKiSpCHfpA3gdP+KxPIrHMh2l9iLUIW8hKk4st2pO2rYatWRqotTlzxl6buNCEo0Rp9TS4fIO/ZmVto3vD6zH4nERotYxPLYj5yelHB3vBAT0yjkVwbumoJOyE4/qHuVFx4vcaruVT4JqFyU7WcpLme/rUXdvs1dWYxXPDhgiLQ1BPNosrznTaozUAx+/uQdziYe7H+3abFaTJ8KxWfcLMnYRqTXSOaT6llXHU5J9dkgov6QeYHl6EmZHOL3DdQ2iJNvQq8oEYyhr8g5hK2uadVfnaTy38y3u2/AWHYPjmjQMN1Q1lCd1T/Kc4zkutF7InOA5J/Mr5OevD3Fgj5nzL07gwb0OZODXavrPNCdEMQxt6BdIIZ/hsb+Nx/oyXuf3eJ0/IKoGoA5+E6VmSJ2PF6cP4b4e5wSeK2rRCjlozifd4u9Hclv3s8iy2k6ppYNWqapR8K6c65KrnktDCd41JS/oX+BH14986v6UWzy3MEBVvVf2VCgvZX5u0/xKr+8rzeOfI3s5O6Yj0yq0dYCj4deK3mCtQoWmrFNyefi11OVg2ZH9ASNUKYj0qqVHTmMhKPzhI8lXcMLGemPSaozUA689sxOtTsGjL/Ro6qmcMl7Jx395hxkT36VGAae6KMkOSThEanEYF8zJIf/mNg0SQ23oVeXfmbtxej20CQrn8vb9aBccwZR2KXSddTWT/n2MDRM/pnd45Rh8Y4bhntU/ywL3AuZ65vKx42Nu0d1yQvt7vRKP3bERjVZk/HM9+XRhARPb6khp4Fyf+kIURTTG+9AY78PrWo679H4kzzqchUNBjEdtfBSl/o7jLhBEQaiUw1MbS7L2YlSpAIjUGukf0bHZt3RoSSwOWkzH0o5MtEwk15Rb74u78lJmm8cV8J/+nLoRo1LDntJc+ke2qbJP+6AINhWkc8hcGPAGv7n9H4pcNrJsJcTpQwhWaZmVto2D5nyuSx5CkErNK1sXs7M4G4/ka9KcP0Es68nlO9hqjJzOfPTGHsylHu59vFuL9Iocy5bCTBxeN0NrEXCqSwmrWuHj+SHBPLLKykV/5TJnUmy9x1CbYlXZLiiOZePeZuiCOxm64E72Tf6OBEPTeRKWBi8lpjiGO+x3MEo16oQ6oT50y3rsNi/PvtWHW5cVoRThh/H1K3DWWCg1Z6OM2oDkzcFtvg+v8w/c5rtxmx9GqbsSdchriGJItfvmOSw8/N8fqESR9kERTGnbu8YqmVRLQcAYKae5t3RoSbRTtuMp3VPMcMzgBtsNfBn0Zb0eX6tUEa80VXpNr1Rj9boD3uDqwq8vb11EjC6YXmHxrM9Pw+JxEacPCRiho+OT+ePwVoZEtSeyLPwapjFQ4rI3uRFaHl6SvYdAPajJ5nE8Wv7dswmRJInXZvi9Ig8/l3L8HVoAq3IO0j0sFtMJ9tiojlt7BtEvSs3cQw7+OFCzWFhLY1Bkd34++xkcPhe95tyA1W0//k4NhF7Usyh4ERISw8zD8NZRjyMjzcpPXx4ioY2erIGRFDolHugTQrCmZV8SRGUM2rAf0cfYUBmfB9GI1/EZ9pxQ7Pln43NvqbR9u6AIrus8hHtSRnJlxwEUOG3H1ZJRiuUeQ//auiW0dGhJPKN/hk5iJ75yf8Uaz5oGH0+WZXLsZoZGd0AQhGpLmQ1KNVavq1Ipc++IxIBYYd9wvzd0W1FmoJT53pRRtA+OPK6gYUMjKP0LS8nXNJIEdaVlX3mamI/e2Iel1MNtDySfFl6RQqeN3SW5DIupvbLjREpYF0+JQaOAaQvzKHQ6mlxJtr64qM1IXut/J0VuM73m3tDogk0VGaQaxHTddPLkPC60Xlinfa6fvBJZhnd/PosX15dg0oi8OLR5Nvs6GfwN+p7AGJOHNuwvRGUKkmcFjoI+2HLb4bF9CUBKWBz9IpNIMITSPTSOu1NGHldLpuW1gWx5LApehAIF51vOb/Dv1si4zkiyFPAGP9BzTBWPqtPn5bL2/Xhv2OVM73cePcLiKxmhFq//3+n9zuO9YZfzvx6jidYHNwsjNNAsT2rezfJa/h20iZAkiTee3YlOr+ChGaeHV2R17kGCVBp6hMXVut2JKMmatEo+GxOJwyvxyz5tJSXZQoeP9Tktd7V4f7fLuDv5IlKtRxi+8K4mnct0/XQGKQbxl+cvPnJ8VOu2c3/LYOeWEkZPjOX/cj14JPikGZXy1jdK7QT0UdvQR6Wh0FyI7MvEVXo91uwgnKX3IElHPVt6pZpoXVCtWjJeqXK1Vktp6dCSaKNow7O6ZymSi7jadnWDjlWf3uBmiegPGcq+7CaeSO2cnlefRuDD1/ZiMZ8+XhFJllmdm8qQ6PYojulHcapKsiMTfQyJK2ZLThybcvxx+7mpNpK/zmDoL0dwepvOq3CqvD3oXs5PGMrq/B1cvvyZJp3LP8H/EEQQd9rvZK+3el0BSZK4/8Z1qNQiD3zYn1mpdrqGqri4s7GRZ9v4iMokdOF/+kM4hscAJV7bO9hzgnAUnIvk2Y3T5yHfaa0xobV9UAQWT+UQTktr6dBSeFz/OF3ELnzv/p7l7uUNMkZDeIMrbdMMjNBAszxf826W1/Lvok2AJEm88bzfK/LgM6eHV2RPSQ5FLjtnVSOKVB9y0FM6lWJUwV1Li5k2P5cL5uRS5JTwSnDY3HR9R+qDWSNfpHdoR346/A+PbazdK9GQ6EU9S4KXICEx3Dy82vyRp+7bjKXUw4PPdOeaZUX+Ut7zWmbS6skiimo0IS9ijC1mheNDLHJ3vK5FWPO6s+Pw2cSqUhlQVlVRnSFuLTNG8p3W06qlQ3NkScgSFCi40HphnfOhToSG8AaX07yMUDXIzVuFtbWa5iR4/9U9WM1eHpje/bTwioC/IuCj4VdW+159KcnK3mIeWVXM9/v8yazlzu4DJR66hNXcH6K5I4oi68/7mHa/X8b/7fyOtsYYbk2uW+5GfTNANYAZuhk87XiaC6wXMD/4qJ5CXo6DL9/bT3ScjsRL2rJjXi4XtNPRLbzl/u5PlUx3d/4tmIHsy2O4aTGDghZwR9xaKJyJS38bRc4RVbRkkoKMkAcf7FxFkjHytGrp0NyIE+OYqZ/Jw/aHudJ2JT8H/Vxvxz6eN7gpBA0bDEHb7JvlCbIsn7qmcQNjNpsJCQmhtLSU4OD6kxM/GSRJItn0O5Iks9980WljjDQkTq/EE6uLeGOzuYo2qijAa8PDua9P9WWXLYkSt4U2v12KxWNn3jkvMSFh8PF3aiCGlg5ljXcN7+nf4w7dHQCcN3gRm/4r5Pflozh/pwOLR6Lo1rYY1a2f4XIkyY7b8gRe+2cgWwAlCs14NCHvIir93pKHNrzHq7t+4tDUH2lrrH1F3Ur90KO4BzukHSwJWsI56nOOv0Md2FWczVs7/uXZfucTra98X3lt22LCNYZKiax+0bOtFDptlVpglFNRebfcCL2yw4Aqx24KbDmJyLIdY2xho49d1/t3qzFygrzzf7t48bFtPPhMCg9MPz1CNA1JqUti0E9Z7C/2UF1miEqEW1KCeXaIDqvXFXjdqNScckfUpuCQ5QhdZ12NT5bYeP4n9Ayte8+Z+sQpOYkujsaKlR0hO8heFMK0ics5a1QUXZ/vzfPrS3hiQAjPDw1vkvm1BDy2r3Fbn0H2HQJAVKagDnqJx3YeajVGGpkcKYfE4kT06CkMLUQptjr1TwRbXgqyNxVjXOPLELQaIw2AJEl0DvkdWW71itSVAoePgT9mcdjsrbFjzKgENV2jV+KVj5orSkHkuf4XtEiDZG3eTs5acCcahYoDU34gTt80MeMNng0MNA8kTAgjMvlDLCU+1mZeSPufjxCkFsm/Oan1M1wHfO4tuErvQ/IsB2SyXCHcvSuBj4fPp21wM3DBnyG85XiL++z3MVk1mT+C/2jq6bQo7PlnI3lWY4xr/Py8ut6/W69EJ8C7L+3GZvVy58MtswdNUxChU7DnmkTeHBFOiFpErEakYV+xp5IhAuCVpUqekpbE4Kju/DTCL4rWc/Z12L1NU77cX9WfF3QvUCgVkjntV+56uCu3/1eMR4JPR0e2fobriELdG33kUvQxJSj1N6MTXfzeZyehlg44ii5F8uYc/yCtnDL36u6ll6IXf3r+ZKF7YVNPp0XhIRQZH+nWItKtRRQ5m58IZevVqI5IksTbL+5Gb1By35Pdmno6LQq1QuCe3iEcviGRB/uGoBJBWcEoOWKTkOSqVkpNWg8tgYvbjOTVfndQ6DbTY/Z1TSaKdpvzfgwfnIf1iZ8puedf5h5y0D1cxZSOLc/j1NSIYjBa08e8k/8K567viVeIxOf8BXteLPa8fnhdS5t6iqc9i4IXoULFJZZLcEvupp5Oi6DIaeO/AgcC8MbWn3lh8wKe2jCn2RkkrcZIHXl7pt8rcvdjrV6Rk8WkUfDSsHD2X5vIpZ3Lb4YyMgJmZ9WKjs/2rGZTLUqYzZ0Hul/OnclTSLUe4ewmEkW7cepKjDMux+gM5SXf06DJ57czrJS3/hFZUxqCOWg92vDViKpBSN7NOAtHYc2JxWV9vUkVeU9nIsVI3tS/iQULU61Tm3o6LQKr10WJ1wRAhMrvxWuOnufWu2o1rFiSw0tPbSM/1+9elySJd2buxmBUcs9jXZt4di2fNsEqXhmu5dKuOzGo/KubXQVxdDFF09UUg7osOc2HzKd7VnPI3LS9HU6Fdwf9j/Pih7AqfwdXLn+2UcdeuzyPNcvy6T8wmqecc0FWohp/FR1CWr/29YVSMwR95Fr00XkodVeDVIzH/AD2HAPO4muRpOat7dASuUN3B/0U/Zjnmcdc19ymnk6zJstWwuy07RR7/Hlr4cqjwmfFrqbrqVUdrVelavj9uzTefH4X/dvM5pkHNvPCY9uw27zc83irV6S+WJi5E5POwpUpm0mJcHCoOJrJSWdzX49zeGXwFAaVdbn0yRLzMnY07WRPkdmjZtIrtAM/HF7M45saTxTt1stXIyoEPv/9LGYuiUVc+xIe4wHGW8Y32hzOFERFBNrQr9HH2FEFvwxiCF7H19hzIrDnD8XrXt/UUzyt+Dv4b1SouNx6OU6p5baUaEjW5x3mhc0L2F6URZE3EoBQ1dHS3s/2rGZfSW5TTa8KrXfWapBlUCgE3C6JT97ax/sv70GpErj8+nZNPbXTApvHzYZ8f/jFoFKzZGpHIvVKrv07H58ko1WouKbTIELV/l4RO4qOUORqXvHNE0EURdZN+Ih4XQQzd3zHx/tmN/iYbzy/k7xsJzfe3Yk3DjoocUk8FT+V4arhLPEu4U3Hmw0+hzMRURTRGB/CGJODNmwxorI3kmcNzoKB2HKScNs+ag3h1ANhYhjv69/Hho3J1slNPZ1mx4HSPD7ftwZfWWGA2efXQ0nSOVCWCby5JC/v7VpGXjPJzWs1Ro6D5PMXpPq8MgPbzWXGg5spyGu1xE+FHEdpoHqmb0QiUToNX46NZMURJxf/5bfUlaKCAVF+kSkZyLSWNNFs6we1Us2OC78iWGXgtrWvsfDIugYby2x288azOwgxqbj/xZ68uqmUCK3I9EGhLA5ajEkw8YD9AXZ4W7bHqamoa9depXY0+qhN6KOyUGgvQpZycJfehj03CGfJ7UiStUHnebpzk+4mBikGsdCzkD9craW+FZmTvh2pTLVjaHR7nu5/HSDQJzyWlwZNpntoLODvRvx35u6mm2gFWo2RaqhOekWWweWU+Oj1vQxqP4eC/FaD5GTxVfj9lueHjEjQ0dmkZH3u0aQqTQVhI0lu+atJkzqITed9ikpUcv6SR9hWfKBBxrntsjV4PDJvfDGIKxfm45XgszGRCIKAWlSzLHgZACPMI1orEk6Buio0ico4dGG/+kM4xumADq/9Q+w5ITgKRuFztxqFJ8uC4AWoUXOV9SrsUvPKgWgq8hwW9pSFXyK1Rq7qNBCdSo0gxiEoojGqtNzU5Sw0Cv/19b+8Qzh9ntoO2Si0GiMniCzD+AsTCAvXNPVUWiwRFYTMthdlBSz4rmFqekf4f6+yLLO1KDOwXaQuqHEn2UB0CI5n6blvIckSg/+6nSP2+k3O3bK+kH8XZJPSx0TiWZHMT3PQM1zFpA5Hf+c9lT35P/3/USQXteaPNCKiqEQT/AzG2AK0obMQlF3wuZfiKOiBLbcDHvu3TT3FFodJNPGx4WPs2JlkmdTU02kWZFiLAz8PjGpbqe+O5PF7ZPVKNb3CEgBwS75mEappNUaqoboVj0IhoNaIvP7ZQN79djBidepdrdSJMI2BrqYYwN/5dH5ZgmpqqZcsq18hcGn2PtLLvlRJxjDi9C2/d005Q6JS+OHs6X5RtDnX16so2s0Xr0IQ4Ms/h3PxX3kIwG/nVy3lfUj3ECOVI/nX+y+vOV6rt/FbqRtK3SQMUTvRR6Wi0JyH7EvDVXI11uxgXKX3I7UmZdaZa7XXMlQ5lCXeJfzsqr9Gei2Vil7kcu+Hx/41spSFLJkD72kVRz3PvmbgeW41RsoodFjZW5LLnpJsrB4XknTUIhFFSGpnYOGGc7nihvYIQqshcqqcm3C0RHp22nZmbllIusVFhtXFq1sX8+PBjZW2Pd1+55e2PYeX+95OoauUnnOur5ekxk/e3ENmup0rb2zPcrvE3hIPUzvq6WiqvivvwqCFhAqhPGx/mG3ebac8fisnjqhshy58LvoYKyrDQ4CIx/YG9hwjjoIJSN79TT3FFsH8oPlo0HCd9TqsZ3guToTOGPh5W2EWXuccXCU3oNTfhC5iJeA3PrYXHwH8OVDhmqYXQTzjjRGbx83vhzbz+IbZvL59CW9s/5dthUcq5Y1MvbINizaPo0uKqekmeprRLTSWKW17B54fthTi9Hlx+tzsN+cFXh+X0I0BkW2aYIYNz0MpV3B75ws5aMlixMK7T+lYTqeXFx7dhsGo5MX3+nL7vwWoRfh6bFSN+6hFNcuDlwMw0jyyNX/kBJFr7LZ04oiiFk3IyxhjS9CYfkBQtMPnXoA9rzO23K54HK0JmrURLAbzmfEzHDg433J+U0+nSWlrDCdWF4yARHvxA+xFF6HQXogm5EMEQQh0Fy7XGUkJiyNYrWviWZ/hxsgRWwnPbfqLhcdkE5sPAAgIosx9b3fknW+GYDCqmmSOpzPjE7txS5dhxOtNAMgICIL/Ah+tC+a6zoOZ2q53002wEXh/8ANMiBvEyvztTFtx8qJod05bi8sl8dKH/XlibQmlbpmnB4WiV9f+FU9RpvCK/hWK5WLOtZx70uOfSTS0l06lvxxD9H50kTtQqEcj+/bhKp6KNTsMl/kppFajsVqmaaZxtvJslnmX8Z3ru6aeTpMh+9K5Kn4xM9rezrjwP3D7RD7Jupnl2aksztrD/21ZyPyMnYHtx8Y3DyHPM9YYMbudvLXjX4rdRzOwEwwm2hjCcOQIIMqc/ZnM4T772V+aV8uRWjkV+kUm8VTfCTza61xUgoJglYaHeo5hRr/zGBLdvqmn1yjMPeclepo68P2hxTy5+ZNK7y3N2czd/72JT/LVuP+eHSX89XsmnbsFM/qiBN7cYiZSJ/LEwNA6jX+/7n7OUZ7DMu8yXna8fErn0kr9oVB1RxexGH1MKUr9HYAbj/V57DkGHIVTkLyZxz3Gmca8oHno0HGT9SbMFfIjTndkyY7H/i32glHY89oRI7+DQeEPV80vuoSdJUV8f3A9v6Ru4rD1qCrwJe37kmxqHu0hzlhj5J8jeylxOwBIMobybP/zearvRPpl9sBrh+s/iyKkA0iyzOy01nh6QyIIAu2CIxAEEYNKTceQqNMuR6Q2RFFk/cSPiNNF8ML2b/h03xwAfji0mLGL7ufdvb+zucifO1DktAU6b5Y/rp28AkGAL/4cxmXz8/DK8NW5kSc0h/lB8wkTwnjU/ihbvFvq+xRbOQVE0YjW9B7GWCuakE8RFPH4XH9iz0vEntcLr3NRU0+x2WAUjXxp/BInTiZaJjb1dBoUWZbxudfgLL4ZW24UrpKrkdzL8SszHc1By/COrbJvgsHEbV2HMya+S+NN+Dgoj7/J6YdPlliVcxAAURC4vevZhGkNyLLMq8/sYMiISJ67dhQzNs4j12FhX2ke2fZSYk+jio7miCSD4syxQSqhVqrZfsGXtP39Um5e+wr/Fe7m0/3+vhsKQWRR9gbaGxN5asOcgGAcwOE5kH5Q5LzL4jCbNPydXkDvCDUT2p5YQlp5/kjP0p6MMo8i25SNVtTW6zm2cuqoDDeiMtyI170Bd+l9SJ7VOIvOBTESleF/qAyPnPEtKy7VXMrHzo9Z4l3CV86vuFZ7bVNPqUHwuf/BWTgGv0+h/JpQORFeVPbm0b5Xs780j1yHBVGAeIOJtsbwZrfgOyM/tUVOG2aPv3SumymGsDLdi3f+bxc7Nhfz4DMpKASxUpjgkKWw2mO1Un/IgOKM/ET6CdMGs+G8TxARAoYI+L1zC7L+w+p1VTJEJDfsfFtA1Mg8+n43Lv0rFwH4/fyak1Zro7uyO6/rX6dELmnNH6mVpr+IK9X90UeuRB9ThFJ3PUgWPJbHsefocBZdieQ9s0PLs4Nmo0fPrbZbKZFKmno6DYJCNRhRPaq2LVBoJyEKAsmmaM6O7ciwmI60C4podoYInKHGiKdCGaVBdVS8bPG8bAQBgstKIQ3Ko+95W/tJnDQLMnZy64rv+alCuW51iIIXQczmzpU/MmPjPLYXZVV6X5ZlZh/exkNrf+euVT/xxvYl5DpOn7iw0+fisc0fIR1TpSEjszp/B45jWn5vfhl8LoGUu2TmpXvYX+Ll0k4G2oVUX8pbF+7V3csY5RhWeFcw0z7zpI9zJlCf1TQniyia0IZ+jj7Ghjr4TRDD8Tp/wJ4Xgz1/AF7XqqaeYpOgF/V8a/wWFy7Gm09PYT9BNKALn49CO5nqDWQfSm3LCVWdkcaISaNDLPvj7SnJxVdmaPz6zyi6pIRw55WrcTq97CyrwwYI0+ibZK4tncOWQpZnHyDBYKp1u4PmfFQKFwqMPNl3Ar3DE/hg1wqybCWBbRZm7uafI3uZ1mkgj/Y+F42o5O0d/+KpJbmzpVDssjD67//xZ/qKat/3yj7WFe4KPLdmQtYiAX2cTNIF8ORqBxoFfHmCuSLVMT9oPuFCOE84nmCTd9MpH6+VhkcURdTGezHGHEEbvgJR1Q/JsxFn4TCsOfG4re8cV8vG6/wLr3Nurdscm7NU5Gy+DSynaKYwTjWO/3z/8Ynjk+Pv0AIRBA3qkG+Bau5PgglR1b/R53SynJHGiF6ppme4v4thqdvBX2UKoGq1gne+Gcy+3RbOH/E3Wwv92erBKm1AMbSVuuP0efhs72qu7jQIvbL21fqSrL14fUo0YjCx+hAubNuLJGMoS4/sA/xekSVZe5iYlELv8AQSDKFcnzyEEpeDLQUZjXE6DcrnB+axOn9HjattpaBgRd6WwPP1Twggw4DnZdZmJWH1wIzBoWiVp/6VVopKVgSvQEDgnNJzWlu0tzCUmmHoI9ejj8pGqb0cpALc5nuw5xhxFt+AVE3YQpYdOIuvxFl0IV7X4mqPW+S08dSGObyweUHg8dSGOc3aIPnT+CcGDNxpv5Miqej4O7QwJEniQOYIJNlGtmdghXeUKLTnIQiKwCsb89N5esPcZut5PiONEYDRFbKI56bv4PVtS1idm4ozzkLHoRp2rivlcNki4Zz4ZBRneFLYyfDDgQ30CI2ja+jxDblUSwFeSURZQWa/W2gsqRZ/75aCsjyfikahTqmmXVBEYJuWzB3JU/h48EP0DO0I+I2PinhlH3+XdfrNXAyWQxAzTEbTVmRnfiwRWoFH+tetlLcudFV25S39W5RSymjL6Ho7biuNh6iMRhv2A/oYGyrjCyAa8Tq+wJ4Thj1/OF73Ua+X1/49yKWAjLNoKpJ3b5XjHZuzBOCVJazHhA+bE1pRy0/Gn/Dg4Vzz6ZcHlZszmnjVehaX3sgm7/uog8tbO3hRas4LbHfQnM+ne1ZxVkz7Zut5PmPvsJ1DophaQQF0b2kuX+1by8d7VtJ5hgOFFra9LtBZjK0kXd5K3Vifd5h0axFT6ihaZnY7kWShUjVNsEpLqdu/Kjd7/GXYwerKFR7B6qPbtGR0Sg03d76ALRd8zobzPuH6jhPRKTSVIsFptmysHjtbXxUQVdD3aVicmowMnN8pHYe3fsWw7tLdxTjVOFZ7V/OC/YV6PfbpQHXdvZsj/gZ9j2OMyUMbtgBR2QPJsxJnQT9suW1xWz/FbXsNf96BDLIdR+F4ZKly0n5LOd9jOU9zHuerzmejbyPvO95v6unUG5aCKQSxlEImcch7OQBq4/1oTF8iKnuh1B7NlVmStZfuYbGMS+jWbD3PZ6wxAjAusRs3Jg8lUmus9LpSA2c9p0D2Csy/y1Wp62Erx6fIZeOn1E3c2GUoKlFx/B3KkBEqeUbOVPqFJ/PxkIfIvXQWHw5+kHaG+MB7fy/eiM8uMOweA7IygiPWYCJ0NtSqLD7avTLQAbm+mGucS4QQwVOOp1jvWV+vx26ptORPqFI7Dn3UVvRRaSg0FyL7snCbb0b27oZAiNCH7MvAUTQFWfYbuJsK0vl875pqj5lqbv6eyd+MvxFEEPfZ7yNPavmVRs6S2xDcf3LAdQ5t4mZVek+lvxZ91BYE8ainNNVSQJdjUg2am+f5jNQZqcjAqLb0j2zD3pJc0q1F+GSZSJ2RXkPjuWXlGhbOyuKjN/Zw6/+ajzhMcyfdUoTF4+SFTQsCr0nI7C/NY+mRfbw37DLEYwy8YLUWGRlVhZfNHichZZ6QYJW/d4LZ7SSkQh8Fs9tJotHUcCfThASp9FzdfgI78p2k2TJZmL0A96I4otrL/PTqJFK+yUDAw4WdDgGwuySHvSW5dQqL1RWlqGRl8Eq6lXZjjHkMuaG5rfojpwGiMgld+J9IkhtHfgqy79iGfD4k90pcJXewxHIPs9N21HisHw5uQBAERsR2athJnwJqUc0vQb8w3jKec83nssW0pamndNK4zE/hsX3EdvtZ9Gu34Pg74L9OBquO8So3M89z65Ifv/BZ19AYxiV2Y2JSdwZEtkGtUPLpr2cRHKLiuYe2knPEfvwDtQJAF1MMT/edyJN9JwQebYxhDIxqy5N9J1QxRADaB0UgQCXPyO7iHNoHRQAQoTUQrNKypyQn8L7D6+GQpSCwzenIurzDuCQvMboYur16C7qt7cj535/8evAgO4s8PDbAxK3dewW2X5Zd/11ek5XJvKt/FzNmRplr0zVopcUhZSH7DtTwpozX8RklJUdbBMTpQxgR04nhMR2JqNDp9YcD65t924xx6nFMVk1mq28rbzneaurpnBRu6zu4Lc+z296XxJhf0ShPn55pZ7xnpDaUSpGvZg9nyoh/uGT0v6zYfd7xd2oFrVJFvNJU6TWNQolBqSG+rMT3i72rMan1gZyS0fHJQAluuYgcu571+WmkWYu4qpM/Q1wQBEbHd+GvjB1E6YKI0BqZlbYNk0ZH74jExju5RuZQmYs0eyVk7/AydFwk2+IUXLryTtqHTufZwe0AE9oD63H6PIHt65vbdbczxzOH+Z75PGt/lqf1TzfIOC0BoUUHairjtr2Df01ac5LipPDviFJl4TO+zfjEHoHXJVnmt0ObWZy1Bxn4O3M3nUJOTnCvsfjF+AvhxeE8aH+QyzSXESO2nCpJj+Mn3OZ7sMmxfJV7N1LOv4H36uJ5Lhf6LKe5eZ5bPSPHYfDZUUyd1oYDeyy8/mzNrspWTowil53Sst5AAB2CI/FKIi6pmOc2zWdTQQa3dxseMF4AxiV0ZVRsMt/uX8eLmxfg8nm4p/uoE8pLaWl4ZQlJgi0zBZQqgS9/HsWzPR5BxkGh4kMEQUYhiugU/hWST244cb7ZxtlECpE843iG/zz/Ndg4rTQeXse31GaIlKcgDQlZynD1BbitryJLxYDfozy1XW9C1X6Ni+1FWZW+080Rpajk96Df8eJlbGnVni3NFa9zEa7iK0DQExyxlsf7TD5hz3NFrzI0P8/zaesZ2Veax9+Zu0i3FlPqdnB71+HHXUHvLcnll9RNZNtLCdXomZiUwtDo9rzz9SCWLszhtRk7SJggsUU+RKnbQYIxlMs79KPdaRwmqC8e6Dmm1ufgT2CN03bivWHDqj2GIAhMatuTSW17NsgcmyPhGgO73gePReCiB6IJDlZzZXAv5qY9wQ9Zz3P7mvd5utdVge7TYZoT60lzIihFJauCV9G1tCtjzWPJCc1BL565YoDNQYH1VNGavkSWchGEYBCCEcRg/89iCFuLzHy4ZyMgcEWSgsG6ebjNj+M2P4ao7InG9DEKdT96hcezNHs/MpDvsFZaWTdHRqtHc4nqEn7x/MIrjld4SPdQU0+pVrzuTTiLJgIq9BEbEFVJVSTO6uJ5fnXbYhZl7qZHWFyz9Dyftp4Rt89LgiGUKzrUTYGuwGnl3Z1LSTZF82TfCYyOT+abff+xs/gIoijy/fyzQQEvP76T85JSeKLPBBIMJt7e8S/m06C0tLnQWk1TmU7EkvqrgCZMRndxEYVlAlMfnT0GlW8wHx/4mbv/O1quODiqXcPOR9mJ9/TvYcHSmj9yGqDUTkSlvx6l7iKU2rEo1IMQVV0RFXEIopHy2qESuQva0K/RR6ejUI9E8qXiKOiPNTuc3qrHCVH4w4PNsOVJtXxv/B6TYOIx+2Nk+jKbejo1InkP4iwYCshoI5YjquomM1Gd5/mm5LNYkXOg2XqeT1vPSEpYHClhcXXefln2fiK0Ri5p3xeAWH0IB0rzWZy1l+6hcfTqH87g+9WsfsnN4lfNTH+1A9M6DmRH0RFW5x5kfGL3hjqVM4Ly3j+q09Y8Pjkev3o7SAL9pkuYPU6e2/QXw2I60jE4gisSruXrzGz+yFjCJQlTSdBHMyS6YY0RgFt1tzLHM4d5nnlMt09nhn5Gg4/ZSuMTX6FL+Yb8NCa16YGoiEEXsQhZ9uJ1zsFVehcJysU81WYxBd4YInkaSbq12XcOVopKZhtnc7blbMaax7I7dHdTT6kKkjcPe35vwI02dC5K9aAat62L57lfZBL9IpNqPEZTe56b9yemEUk111CHXVZD75V8RE50Ed1JxUev72XPjlJEQaCLKaZF1Nk3d9xe/78qRQtZWjUCK5bksH5VAf2HhdNtaBAADp+HRVm7+WD3CpzsAet9IGv5I3MpN3YejO44svv1xSzjLKKFaJ5zPMcaT/X6E620bCJ1QXQxRQOQ77Ty48GNeMvUOAVBiaS+gB9LfuaNzOfY7+hOuDIPrHdgz9HjKLoYyXuoKad/XIarh3Ol+kr2SHuaXVNISbJiz+8GshVNyBcodS2n4d3J0mqMlGH2OKutsXb6PLh9XqweF7Ig8/oPfs/JZef+iyRJ/jpsT2uY5lRxlntGWoqftxG448o1KBQCX/4xnEd6jWVwVNtKAnwapQ/kULDdipc8zvnrW0pcjSPdrBAVrApehYjIueZzsUutpe+nIxMTUwLVQ8uy9/PYull8s/8/vtq3lkfX/cn6/DSy3O35LOdJzMFHUBmfBzEcn/M37HntseV2wG1997hN+pqKbwzfECaE8ZTjKdJ96U09HQC/9kted5ALUQW/jMpwbVNPqVFoNUZOkDadjNz2YBfysp08esfGpp7OaYOzzDOiPn0LY06Il5/eRkGei1sfSCY8QotRpeX65KH838DJXN1pIBe26cWUtmX6It4UcJ5HnrSAdl8v5L+cxjGOOyg78KH+Q6xYGWEe0ShjNidafvrq8Uk2RXNN50GBLudmj5OVOQdZnZuKvaz9gFIQuaXrMBKCotEEP4ExJgtdxDYU6vHIvnTc5rux5+hwFF6I5Kna86YpEUWRuUFz8eFjjLlqaKOxkSQJZ0E/ZCkdleEhNMbmnVxbn7QaI2UEq7RVElHNbidahQq1QolRpUFEwOJ28vTLvUlsa+Cbjw6yf28pIapWRcpTxeXzr5xaE1ihtMTNOzN3YwpT88TMyvHbYLWWYTEdmZjUnRFxHY++4ZwC3o6UqD5i6C97eWVjSb1Lw1fHTbqbmKSaxAbfBp6yP9Xg47XS+AyNbs/DvcbSNyIxYJSA3wgZHNWWx/uMp1d4QqV9FOoe6CLmo49xoAp+FUGMweeajT2/C7bcNrisryFJ3sY+lWoZohrCtepr2S/tZ4a9afOfnIUjkbw7UOquRRPy8vF3OI04KWPkvffeo23btmi1WgYNGsS6devqtN+PP/6IIAhMnjz5ZIZtUNoHV1OHXZJD+2B/2a5SVJAUFMbuklwAfvlnFKII3z+RQ1tjeKPP93Sj1TNylJsvXoXXK/PON4NrTQSsbLcpwHYb4EXSf8LDKwuY8GcO+faGD9v8YfyDGCGGFxwvsMqzqsHHa6XxaRccwa1dh/PK4Ck82vtcHus9jlcGT+X65KGVKjKORRSVaIwPYIhJQx+5G4XmAmRfDh7zg/7ckoIJ+NxNr9/0ueFzIoQInnU8y6EmynVxFE5F8qxAoZ6ANvTLJplDU3LCxshPP/3E/fffz/Tp09m0aRO9evVi3Lhx5OXVLgV8+PBhHnzwQYYPH37Skz0RnD4PGdZiMqx+gZ4Cl40MazFFZaWRfxzawhd7Vwe2HxHbiQKnld8ObSbHXsrSI/vYmJ/OmPjkwDZj4ruwMucAa3JTUUf7mPRCKPmbYNaTJY1yTqczLsm/iled4Z6R9avzWbEkl94DwhgzsfZqMPFYJVA5DGw3g2obaBbwd7qDu5c1fHK1KIqsDl6NiMg48ziskrXBx2xKzuS0JqNKS7ugCNoGhaM/wWRpUdUFXfhs9DEO1MFvIygS8LkX4CjogTUnAZf5hSbzloiiyF9BfyEhMcbS+OEaZ8nt+Fx/IKoGoIv4q9HHbw6ccGnv66+/zs0338z1118PwIcffsi8efP4/PPPefTRR6vdx+fzMW3aNGbMmMGKFSsoKSk5pUnXhTRLEa9vXxJ4/kvqJgCGRLXjuuQhlLodFLmOJt1FaI3c1X0kv6Ru4p+svZg0eq7uPIjuoUdvCAMi22D1OJmdtg2z20nS+FA6/KRn9reZXHtjLkNHRjf4eZ2uuLx+Y0R9hhkjj6+bRaHLFni+/mkBTThMeT+oxn025qczK20bOTY7cIyOjrcnOCeA7lfidTEo1Ure2B7ElR0HEK0LbqCzgHbKdnxi+IQbbDcw0jySDaYNDTZWKy0bURRRG+9GbbwbyXsQV+nD+Fzz8FifxGN9BoV6BKrgl1Gq+zbqvAaoBnCT+iY+dX/KE/YneEH/QqOM6zI/g9f+IYKiM9rwtY0yZnNEkOW6B5bdbjd6vZ5ff/21Uqjl2muvpaSkhFmzZlW73/Tp09m2bRt//PEH1113HSUlJfz55581juNyuXC5XIHnZrOZxMRESktLCQ5uuAvqyZBzxE7/NnPQ65XsKpyCUtmahnMyLM90MOK3bF4ZFsaD/UxNPZ1Gw+J2IpWlQn725j5eeWQ3fZ+SeP3+0SSbqhq3B835vLp1MZPb9aJjcBwdvygKvCfgT6rsFOqkUDUDi7eAf8a+w7bCfLLsJTzT7/wGFzCaYp7Cn54/eUz7GC8aXmzQsZqKxzd9xMwd37Hnwm9JDqlZt6GVuiNJEj7HZ7itrxztICzGoNLfisr4OKLYOCXrkiQRWxJLgVzAnpA9dFI2bCdit/Vd3Oa7QYxFH5WKeBp2xDabzYSEhBz3/n1Cd86CggJ8Ph/R0ZUvktHR0eTk5FS7z8qVK/nss8/45JNP6jzOzJkzCQkJCTwSE5tvI7SYOD3TX+2Nxezhpotb4+Uni8tX5hk5w3JGgtRaQtQ6FG4lbz61F1Nbgd7nG+hcQ8OxJVl76R4Wy7iEbsTry7/Y/t/dmEQtCgHckpPnet+IV/Zy0fLHuLbTIEpcDrYUZDT4+fxm/I1YIZb/c/4fK9wrGny8puQE1nHNljlp27h1xfeVHk9vmFvrPhvz03l6w1zuXPkjMzbOY3tRVqX3ZVlm9uFtPLT2d+5a9RNvbF9CrsNc6zFFUURluBlD9D70UWkotZeDVIrHOgN7jh57/ki8robXsxFFkQXBC5CRGWtp2N41/sZ3d4NgQh+167Q0RE6EBl3GWywWrr76aj755BMiIurev+Wxxx6jtLQ08MjIaPiL6Klw873JpPQxsXBWFn/PzTr+Dq1U4UzPGbnjijV43BIDpwucFdMRoYbEhFTLUXE+lSgQa1DQM9LHzb0O8/fUOK7qoiat1ITsTuGpnteS5yzm8pXP0C4ogtQG6uhbkfL8EQUKJlgmnPb5I6cDcfoQXh40JfB4uFfNORMHzfl8umcVZ8W058m+E+gdnsAHu1aQZSsJbLMwczf/HNnLtE4DebT3uWhEJW/v+BePVLdkalGZhDbsB/QxVjQhXyEoOyF5luEsHIo1JwpX6WNIDahr00fZh9s1t5MmpfGQrWFKa73OJbiKrwRBjz5yO6JoapBxWhInZIxERESgUCjIzc2t9Hpubi4xMVVbMR88eJDDhw9zwQUXoFQqUSqVfP3118yePRulUsnBgwerHUej0RAcHFzp0dz5efEoVGqR2y5bjdPZPErWWhKuQDXNmWeM7NhSzKK5R+g8VIe+g4+htUi6m91OgstKyRWiwJGb2vDWSAjWlgDwcH8VIRoHz61zMqP3DQwI78LczNUctKZS2kg9lNoq2/Kp4VNs2BhubpyE9VZOHlEQCFHrAg9jLVIFFT1zsfoQLmzbiyRjKEuP7AP8XpElWXuYmJRC7/AEEgyhXJ885KQ8c35vyTUYonajjzqCUncNyHY8tv/DnhOEPf8svK7lp3TuNfGO/h1ihVhec77Gbm/9SsX7G9+NB5T+xnfKhOPucyZwQsaIWq2mX79+LFlyNDFUkiSWLFnCkCFDqmzfpUsXtm/fzpYtWwKPSZMmMWrUKLZs2dKswy8nSmiYhpc+6I/D7uOa809v93RD4ClTaNScgZ6RG6euRBDg3Bf1dA+LxaQ5+U64GqVIv9hMcu3w2U4zS8e9jVGp46vDv1HsLq3HWdfOtdpruUh1EVt8W3jE9kijjdvKiZPnsPDwf3/wxPpZfLZnVaDisDoqeubK6RYaG/C6FThtmD1OulbYRqdUn7JnTlTGog39CmOsFU3oj4jKbkie1TgLR2DNDsdV+gBSPXrhRFHk7+C/ATjXcm69HVfyHjra+C58aZ0b350JnHCY5v777+eTTz7hq6++Yvfu3dx+++3YbLZAdc0111zDY489BoBWqyUlJaXSw2QyERQUREpKCmp14yQlNRZX3NCeAUMjWLEklz9/Smvq6bQoylXMzzTPyOfv7SP9kI3J1yWQIRYwLKZjrdsHq7WYj2k/YPY4CSlrZRCs0tE+tBCtUuKRlUXolVoWjnkNr+Tl3X1fN6os98/Gn4kX4nnZ+TJL3UsbbdzGouVnjEC7oAiu6zyEe1JGcmXHARQ4bbyybRFOr6fa7St65soJVmkDXjezx98ptrrWGvXlmVPpLkMftR19dB5K/Y2AB4/tdew5wdjzB+F1/l0v46QoU7hHcw+ZUib/s/7vlI/nb3zXC3/juz9Raqou4M9kTtgYueyyy3j11Vd5+umn6d27N1u2bGHBggWBpNb09HSys7PrfaIthe8WnI1GK3Lfdf9hNrubejotBndZAqvmDDJGXC4vzz64Bb1BwblPBhGk0tDjOJ2m2wdVI85XnEP7IH9OVoTWgEmt5eLOTgqdEh9sK6VPWDKjo0aT6cjmomVPNtj5HIsoiqwOWY0SJedZzsMs1Z7E2FIQjtV3acGkhMXRLzKJBEMo3UPjuDtlJHavhw0FzaNPS22Iiki0pk8xxprRhP6JqOyF5FmPs2gc1uxQnCV3IUklpzTGG4Y3SBATeMv1Fju8Jy/O5m981x1kS1nju/NPaV6nIyeVwHrXXXeRlpaGy+Xiv//+Y9Cgo62Nly5dypdfflnjvl9++WWtZb0tnaAgNW9/NQiXU2LahGVNPZ0Wg0c686pp7rnmP1xOiRff7ct/BYcYEt2+UiM8gC/2ruaPQ1sCz0fHJ7OzOJtFmbvJsZcyJ20badYiRsZ1BvxtwEfHdyFMvxuDyseTa/L5Yt8a+oZ1p29oZ/7MWMkXB+Y12jkmKZL4wvgFduynT/7Iaax6pleqidYFke+wVPt+XTxzQLWtNULUDVctotJdiD5qM/qYIpT62wEZr/097Dlh2PP64nXMOanjCoLA30Fl4RrzuSflWZQkL4787iAXnFGN706UVlGMBmDSpW04e0w0G1YX8t2n1SfptlIZd5kxoqlF/vx0Yt/uUmb/kkGH5CB6XKinyGXnrOj2VbYrctkpdTsCzzsER3JT8lmsyDnAc5vms6kgg9u7Da8kyT0uoSuj45MZkZRGkVNk7RGBe7qP4o+RM9ErNNy85hVW5e6uNTegPrlKcxWXqC9hm29bg1UntFI/OH0e8p1WQtS6at+vi2cuWKWttI3D6+GQpSCwTUMiiia0pvcxxpagDfsLUdUPybsFZ/EkrNkhOEtuQfIVHvc4sizjdc5Hll10VXblAe0DZMvZ3G2/u9J2RU4b6daiwOPY75S/8V1fZN+Z1/juRDkh0bOmoq6iKc0Jp9NL94g/8LglNh+5kPCIM7uG/Hi8vKGYR1YVs/KSWM6Kq/5CeDoxvOs8Duy1sGznBDp3DWmQMSRJwvhBGioRDl4bwfRN88iwZzInZzZ6hZ5rEq/hhYEXEqY1NMj4x86lTWkbMqVMlgQt4Rz1OQ0+ZkPxxOZPeHH7N+ya9A1dTW2aejqnxK+pm+gZFk+Y1kCp28GctO1kWIt5pt95BKm1fLF3NSa1nintegNlonvbFjO1bW96hMWxPj+N+Rm7eKLP+IBBvCBjFwszd3Jd5yFEaI3MSttGlq24UUT3qkOSzLgt0/HavwbZLxIoKnugCnoale7iavfxOmfjLLoQhfZitKE/IQgibYrbkCFlsClkE72VvSly2nhqwxy88lFviVIQea7/BYHvlD1/BJJnOUrdNWhDv2r4k22GNIjoWSt1R6tV8tHPZ+HxyFw2dmlTT6fZ4y5LYD0TckZ++iqVA3ssXHBxYoMZIuDP2Xiobwhmt8zrmy14ZYlYXRy9Q3pj99lZmLcQq9d1/APV01xWBa9CiZLzLeefNvkjLZ1il51P965m+oa5fLx7JQalmkd7n0tQWUjlZD1zo2KT+Xb/Ol7cvACXz8M93Uc1iSECIIrBaEPewBhbiDZsCaJqCJJ3J67iS7BmG3EWX4fkrezt8dg+AgR8zt9wlf4PWZZZHLQYAYHx5vFIkoTV66pkiAB4ZSnwnXIUXoTkWY5CPf6MNUROhBPuTdNK3RkzMY7xk+NZ8GcWH72xh1v/16Wpp9RsKQ/TaE/z0l6vV+LxOzei0Yq8/fWg4+9wikwfZOK1zaW8udnBtB4gijAwbDAZjgwO2Q/xy+ElPJBySYPPA/z5I18Zv2KadRrDSoexLXRbo4zbUMinQT3NzV2H1fr+Az2rCqD1i0yiX2TNMviCIDCpbU8mte15yvOrb5Tac1BqVyNJdjyWGXjsn+N1fIXX8RWCsitq4+MoNCPxueZTXi/ltb+NqEygk/EhHtE+wkznTG6z38aD3udrHMdZcgc+1++IqgFow5tX47sip63KIsSo1DSKh7Q2Wj0jDcwnv5xFUIiK5x7aSs6RhlMNbOmUJ7BqlKe3MfLgzeux23w8/WpvtNqGXwsUux0MisvF4RPYnBMfeP2C2AtRCkoe3vQuWwsar2X6lZoruVx9Odul7dxvu7/Rxm2llYqIoh5NyEsYY/PRhq9EVA1H9u7FVXI19tyqooNu88N47N/wouFF2gpt+cT5CU8c+KzaY5uLn8Br/wBB0Qlt+Noa1ZSbgvLQ0gubF1R6PLVhTqPlkNVEqzHSwCiVIl/PHo7PJ3PJ6H+bejrNFnegN03z+eLWN2mHrPz81SES2xq44c7ODT6e1ePk9e1LaB+aikr0sjUvDhVKNKIStahmfPREJGSG/30nZlfjGcrfGb4jUUzkDecbLHEvOf4OrbTSgCg1Z6GPXI4+xobS8DggUZ2KjKvkepz2+VyWNQMBgbmJM5GoHKYZGryINuKHuOVIdJHbEGtIyC+WipHkxtP8Kae60BJUDi81Fa3GSCMw+Owopk5rw4E9Fl5/9uRr1U9nPGXfD+1p7Bm5YfIKZBk+/e2sRhlvfsYuCpxWRBHOTizAKymIUo/hzaGXcG/KKHqHJdMzuBcWr5Xxix9tlDnB0f41KlRcYLmAklPUgjjTybGXsqkgg80FGaSa85t8hdtSEUUtSs0woCYjwYereDJ6ewZ98ifjVFpYHnu0AWwPw1qmRnyJQ9Lz3OEXyHdW1pnyyl7+cP3BqNJRhBWHMddTe0PCM41WY6SReOfrQYSGq3ltxg4OHay+hv9MxnOa54zM+TWDXdtKGXNeHD37hjX4eG6fl9W5qYA/w//HcT3pGKLkx73+G1W30FjuSzmHYRFnEaYOY03hFr46sKDB51VOgiKBb4zf4MDBsNLa8xaaK01diHjEVsInu1cyfeM8Ptq9gg93r+ClrYt4Yv1s9pfkNencWioe24dAzYm2Im7uS3iKO11RJEht2G9agVVZQLgyh2ui38Ujq3kl/f+wSwaWZvv79eRKuTxvf57E4kSmWqey3Ovvp+OVG7eHWb7Dyp+Httb4vreOjQwbilZjpJEQRZEfFoxAkuGyMUubejrNjtPZMyJJEg/cuA6VWuSDHxtHAjrdWoTd61+Z9Y1IJEJn5LOxkewu9vDGZn+PmnCtgT4RiUyKnYxSUHLTmpfItDXeTewyzWVcqb6SndJO7rXe22jjnirN4RO6MT+dFzYvqFYpVULm7Z3/srs4p5o9W6kJ2ZePzzUXv2dERXVGiSCAgMylUR+xxObiNo+WzLh3uDXu/zB7TbyW8QJmKRwZmV/Nf3G5+XISihOY7phOjuz/e5SHdkLF0HqZt0/2cYXlCl51vIpVrr4/T7q1iJlbFrCzpGZ19F9SN+P2NV2T11ZjpBHp1T+ca27tQMZhGzMe3NzU02lWeMpyRlSn4SfyyXs2YTF7eGhGCkajqlHGdPiO9haJ0gUB/puoUoCZ60sqvacW1YyLHo9X9jF0/h2N2r/mG8M3tBHb8LbrbRa5FzXauKdCU8vBHzTn8+neVYHYv0ZU0tUUQ3JINMoyBV+35OODXcvJsTdec8QWj6BGob0Cpe4aVIb7UAf/HxrT12jDFqCL3MRK9988fPArHkr9ho+OPE6euw0vSk7mqA6gUBUwSTTxbez3zGozg8+7XM+vSdP52fMzXrxVcksAwoT68ZCaZTM/un/kIftDJBQn8KL9RUqlo393p9fDezuXYStbnOgUKgZEJDE6LpnOIVGB7VItBfyUurFe5nQytJb2NjIz3+vHwtlZfPT6Xi67rj1dUhpOZ6IlUR6mqSnhq6WSc8TOVx8cICZOx92Pdmu0cYMqNDNLtRTyy34rVy3MY0C0hj/Ojw68d8js76Qar0vgho4X8PmBOVy18nm+P/vpRplnef+atsVtmWSZRFZoFmFiw4exWjLz0ncglYWIBke144qO/dEq/EauzePii31r2F50BJfkZUHmbq7rPLgpp9tiEMQQdGHf1vi+T9yBj3wA9jm6s8/RnYERBjqE3sAWdTdSVO1JdWax2XcYn+ABGWSh5lBe79LeKFCgRo1W0KJHT5AQRIgQQqgYSqQQSbQYTYwYQ4KYQIKYQDtFO2KIqXSdFCv4FErlUp5yPMX/Of6P+3X3c6/2Xrbm5VNSphXTLiice1JGoVcebVJ70JzPm9v/wS35WJ2byqQ2PWtU4G1IWo2RRkYURX76exSjesznsnP/ZXPmpNPuBnwyeKWWr9lQHTdMWYkkwUc/D23UcZOMoYRrDBw2e3j5vxCOWPO4MtnI52MiA+XTB0rz2VUm2x2uMfD8gAdYV7CDHw4v5sLEs7is3ehGmWucGMf3xu+5xHoJw0qHsSt0V6OM2xIpcFrZWex3tYdrDFzTaRCKCtcPg0rDTcln8ei6P3H4PGzIT+Oy9n3RKU+vDulNQbug8ErPkwyhXNdlHAqhkJFlrx2mkJlbFlKkyWBlzJfkGPYgIFSrSTNeOR4zZkqlUixYsMk2iqVi3Ljx+Xy16tgICKhQBQyZikhIWLAwwzGDmY6ZdPIOop1uBBGOdkzrOLCSIQJ+Ibtz4pJZkLkLSZZZm3eIcQmNt3Aqp9UYaQKSu4dw24Nd+OCVPTx6x0Ze/nBAU0+pyfE0fpVbg7P4ryNsXlfEsHOiGHhWZKOMWez08W+mk7/T7fxxoDt5Dv+NKtpg4fKuNordWnDDxoI0FmbsDuw3Mq4zoiCyYvy7xP0ylatXvsCw6J7E6xtn3hdrLuZq99V84/6Gu613847xnUYZt6WRaSsJ/Dwgsk3AELnYfDEePNymvY0RqhH0jkhkTW4qHslHjt1Mu+CG7wtzutPFFINeqQ7kYhlVWnyShEIh8ojtESI88aw6ksahyH24FTaC3VEIQIkhDQeOSscSEBARCRFCMCqMSLKEDx8SFf6VfDhw4JSduMr+88gePHjw4sWHDxcu7HLNZflu3Ow0rGBnuxUAfOm6EbVLjQoVSkFJuimdYDGYPhGJLMj0LwLyamiS2NC0GiNNxNMv92buLxl889FBrrixPX0GhB9/p9MYb/NvkXRCSJLE3VevRakU+PS3hqsWcXllVmc7WZzhYP5hO1vy3cj4c0O8sv9GJSAzoeMe5qb7mJu+vcoxkkOiOaes669JHcSsUS9y7uIHGDr/Dg5N+anRPHdfGr5khXcF77reZaJ6IhPUExpl3JOlKT6xFbUpNIqjl+/tvu3sk/Yx2zMbAFWYmiB9NJGOjnT32hng7k4RRRTKhRRIBYF/Oys684DugUY/j5aIKAh0DI5kW1EWALtKsnn4vz9IMBl4Oeplf1JWdO3HKEdG5i/vX5Xyj8p/Fsr+q/hzdc+VKAOvW6k+cbVsMADUPj3RqnCMGPEJPty40eL3qngr5Ik1VU5UqzHShPzyzyiGdpzLtAnL2JE3+YwO13il5lGlUF+8+Ng2Sorc3PdkN0JMDeciP/vXI6zLdZUZH0dfL/9ZAIYnONAofFVungIwKKod0zoOQFmhb8jYuAHc0+Ui3t7zG9eseoFvhz/VYPOviCiKrAlZQ5viNky1TG3NH6mGCK0x8PO2oiwmJqUAsDd0L2neNP7P+X987foau2CnSJtBkS6De+V/ocJiV0BAgQIvXnoperUaIydAx5Cjxgj4E8X3F5ZwqflVNkX+xgHTGqKd7eiXO4UIezLBYjBvD7kMQRBI9aVyn+0+5njm0EHswIHQA/UyJ4/sQV1U9RqjQIEKFYMtk0jKPgetL4gHe46hU4Wk1XLW5R8O/BxvaJo8xjP37tcMaNPOyIMzelBc6Oauq/9r6uk0KV5JPm2MkaJCFx++tpfwSA0PzUhp0LGuTPbfnLw1LNNl4PVhnXh+wCTOS0qhb0QifSMSOS8phecHTOL65CGoFVXXJG8NvJeuIW347tAifjnceMrBMWIM3xu/x4mToaWNm2fTEkg0hJJQ1pTukKWQ5dn7A++1UbbhfcP7fGddQXLx2TUeQ0bGi7+Es1gq5mHbw2z11qw/0cpR+oYnBa5TKlERqF4yeWK5ovhx3nR9h0Il8Veb1/m666180PlqYopj6Frcleus16FGzXmq8xigHMCbjjcplopPeU6KY0qQy5Ni79bczeHQw8zU/x9an7+i7pv96yhwHvWiyLLMhvw0VmQfCJzToKiqcviNgSA3tXJPHahrC+KWyvCuf3Fgj5nf/h3F0JF19POdZoz69QjLjzjx3dO+qadyykwZsYS1y/P58e+RjBgb0+Dj/W9ZAW9uqdoFVwB6RqjZMi3hpI5b5DQT/9tUfLLE4ak/E6dvvLyD6y3X86X7S27T3MYHxg8abdy68NTmT3l++9dsv+ArUkIb/8L9X94hPt+7JvA8OSSaPhGJSLLEuvw0DlsKAdgRtoDVMd/UeiwFCnz4xa6UKIkX4xmoHMhk9WSmqqaiFbW17n8m8u7OpWwvOgJAmEbPiNhOdAmJwS15WZFzgDX5B/m28524FNYq7t7y8Ep5bshvxt+Yqpl6SvORZRmxyG8UKVFyi+YWntA/QZwYB4BH8vH8pvnkOPzXCFEQ6BEWT7hGz/7SfDJsRw2i8YndmNK29ynN51jqev9uNUaaATlH7PRvMwe9XsmuwikolWee1ugItQAAcGlJREFUw2r4L1msyXbhbeHGyOqluVw06l/6D41gzqqqHU8bAkmW6fltJjuLPFXe+3h0BDennPx3ZkHWf0xY8hBtDTEcnPJjo4USJUmiU2knUqVU5gXNY6J6YqOMWxeOGiNfkhLa+J9XWZb57dBmFmXtqXW7qe16s8D0CW+53qq2MiNaiOa3oN9Qo+YH9w8s9Sxln28fNo7KyZsEE90U3RirGss09TQ6KTvV+/m0NIpddl7a+jfFtfRzKlZn8luHx5GE6lVNFSjorOjMtpBtKIVTz5YYUzqGdop2PKV7iiRF1Y7KBU4rb2z/p5JX5FgGRbXlus6DEYX6/Y7X9f595t31miExcXqmv9obi9nDTRevaurpNAleya9u2NK5/Yo1iAqBL/5oPInzW5cUsLPIg1KAin0G9UqBKzoba96xDoyPH8SdyVM4bMvhhtX/d4ozrTvl+SNq1Ey1TKVAKmi0sY9HU3dhFQSBi9r14ZpOgwKCdhVJMJi4teswxiV04zXDa0xWTa6kRVFOrpzLMPMwzrecT7AQzNrgtVjDrRSFFvGe/j0mqiaiQ8da71pmOGbQubQzmkINnYs7c43lGma5ZuGVmk6xs6kI1eh5uNfYSoJhFdEpVNyeOJnp+qdrTAb14eNDw4f1YogALA5ZzCfGT6o1RMCfa/R473FMSOxOkEpT6b02xjCu7zyE6zsPqXdD5ERo9Yw0I8b2XcCOzSV8NWc4554ff/wdTiMG/JDJtgI3rrtbrmfk9Wd38Mr0HdxyX2dmvNG3wceTJIlz/8xhSYaT5DAnA+K3szi1L/l2fwz55pQgPjincmnuxvx0ZqVto9BpJUoXxNR2vekRdvSzJssyc9K2syLnAA6fhw7BEVzZcQAjFt7BXnM6v454lovajGzwcyvn/9s77+goqrcBP9t3Uza9F0qA0Am9SUcRkKYoiAqiqJ9i7x17bz+7YsGCgCJNRBQQkN47KYQEEtL7ZpNsn++PJZvEJEAgFe9zTs4hM3fuvHeYzLzz1uXm5VxrvJb28vYk+CQ02nnPxfMHv+blw981mWWkMg5JItGQQ1apAZlMRpibF609/aooTGVSGSOKRrDXvhc7duTI6anoyWr9ap4oeYJfLL9QRhkKFIxUjuQd93foruxecQ6Hg39s/7DEsoSt1q2cdJyskqrqL/Onm6IbV6uuZoZmBuGKi3MLtkRSjPnszj5NoaUUlVxBlD6AvgGt0CiUWCQL3Qu7k+hIdLnCygmThZHgnYCb3K3RZbY57GSUGrA4bOhVOgJ0l/bBcj6EZaQF8vP6EajUcu6evh2T6b/1xWGXWrZlxGCw8MErx/DyVjHv3ZgGP5/J5qDLj2lsSDUxNAymdDhBB29PnulvxEcjxy7B/3Wr+od/0pDDV3HbGBzclmd7jSXGL5zPjm8hrVLtij/PxPJ3ejw3te/HkzFXoZEr+fDoRjZf9RFauZoZW14iszSvwddXzhTNFG5X384JxwnuNN7ZaOdtKchlMjp4BTIkpB1XBEfRRu9fzXKjk+n4Xf87kfJIFChw4OBe7b0Ey4P5zvM7jD5GFrgvoK28Lets6+hR1IPIgkjeK3sPh8OBXC5nuHo4n3l8xhGfI5T6lZLuk847bu8wSjkKGTI22TbxRNkTRBRGoMvT0aWgC3ca72SDZUOjtheoT9amHuOuLT+x5GTtJdIjPXxp4+lHirGA3dmn2JAWR0JRFgBqmZpvPb6tVgpeJslJc6ThW+DLB2UfNOQSakQpVxDh4UOUPqDBFZG6IJSRZoSPr4Y3Pu1DaYmdmddsaWpxGhVnNk3L1UbuumE7VqvEB9/1b/C4iuxSG62+SSGuwMqtndwY2voYMzv0x02pJsDNweapoXw6wp8eAVXNsRvS4uniG8KY8M6EuHkxqXUPIj182JTutDhIksSGtDjGRXYlxi+ccHcfZkcPpNBcRoqxiF+Hv4zFYWPw2rmN2rH2K8+viJJHMd88n1XmVY123ssJP7kf6/Tr0Mv0eOLJNM001z65XM4s7SwSfBJI8kriWtW1ZDmyeKT0EXQFOqYYppBkS6oyX4g8hEd0j7Deaz3ZvtlYfCys9lzNrepbiZRHkuhIZL55PqOLR6MsUBKSH8JYw1g+KvuIPEfjKbMXy6niPP7JSHRlLtXG+RT8gaqBTLDeiEyqeLZNLr6Lm8+8iRo1D5U+RKuCVuyx7mnA1bQMhDLSzJhxe1v6DvJny4YsViw5XWXfrq05pKWW1HJky8YugbyF6iIH9uSx6c9MuvXy4eqJDWuiPpZnoe23qWSXOXhloA9DWyXTzSeUTj4VWTud/dTc3b26OTSpOJeO3lWzezr7hJBU7IzHyDWVYLCa6FRpjE6ppo2nP0nFuYwLH8hd7SeSZExnzva3GmiFNbPdazsaNNxgvIFsR+N1Fr6ciFJEsctrF3/p/0Inq7n3SBtlG37V/0qZTxkfuH1AsDyYFdYVRBVF0a6gHV+XfV2jpUMpVzJePZ5vPb8l3ices5+Zk14neVH3IoOVgzFjZq11LfeX3o9/gT8eeR7EFMbwgPEBdlmbV1kDk93K1/HbuaV9/2ql0//NhSj4rU+PwwdnJlp7eXsWhL+N3hjJn/YDzFHPIdWRSj9DP8YZxmF0nKN42WWOKHrWDFm4dijdAlfw4K27GDk2BMkBz963j6U/nmbG7W1596t+TS1ivWNvwQGsd1y3DZmcBg9aXXe6lHGrMnE44McxAXTwzWNNaj5P97z6go43WEzoVVVTNfUqLUUWk3O/1RkHoFf/a4y6YsznAx/l78z9fHPydyZGDGJS5JBLXdYFESgP5GePn5lknMTgosGc8Dlx/oNaKAlF2fx15jgpxgKKLGXc3WkIMf4R5zwmvjCLX5L2k1FahI/GjXGRXRkUVDWeZWN6AuvOxFJkKWOjRxHTo3rTxrPmdG25XM4Dugd4QPcAR21HebT0UTZYNzCndA73ld7Hteprecf9HYLltaeut1W25Xnl8zyPs+mi2WFmhXUFKywr2GXbxTH7MQ7ZD/Gh+UPkyAmVh9Jb0ZsJqglM00zDQ940LoRFiXtdCv6PJ3aRUORUfqdF9a42Nqk4l9FhHavEYumUKgxn/15yTSWYLDLeU33MndaZ9Ey5iaeNq1HJFcQVZDE/cD7P2Z9jUvEk/rD+gW+BLy/qXuQpt6cuWN7fTh9mdcrRKtuCdHpe6nNNrcdcbOxYkK7hYjaFZaQZ4ump5sPv+mM2Obhm4DqGdFzDskUpACTGG8g3lZBizK/yk29q2RYTuyS1yJvxi/fjSEstZcbtbQmLdG+w83x91MCYFZnIgc1TQxjbRs6SpP3c3nEQKrnivMfXJ9vHfopGrmLaPy+QXXbpRZsulImaidyhuYNERyJziuc02nlr41yNzC4Fi91GuLsPN0b1uaDxuSYjHx/bRLR3EM/2GsuosGh+SNjFsYJ015g9OadZmrSf8ZFdeabnWMLdvfnw6EbXS/NcdFV2Za1+LSU+JbyoexEvmRcLLQsJKQiha0FXfjX/ekFyauQapmmmschzEUk+SVj9rBzxOsKT2ifpo+iDwWFgpXUlc0rn4FngiVeeF/0K+/FkyZMcsVVvY9AQ7Mk+RYoxnyltYjhVnEehpQwPpabW8QaLiTKbpYqrJtLDlzxzCWklhS4F36sgmjtOfM1T4bfzZMxVqBVK9uemYnXYiVREcsD7AEs9luKGG0+XPU1YfhjbrBeeWRnq5sVb/ae4fh7vUXtZgUuJHbM6ak5Vrg9a4vP/P8GocaEEh+k4cbyY3GwTDrvzwXcywcBze3/j1QNrq/w8t/e3Fq2QtEQ3TWmpjdeeOoyHp5I3Pr2wF8fF8Mz2POZsyMVDJePYzeFcEaYjpTifYquJV/ev5e4ti7h7yyISirLZmB7P3VsWVelhUo5ercVgrfryMVhNeJ21hOhVTtP9v19QBkvFGAB/rTe/DHsJs8PK4LX31Pdyz8mXHl/SXt6ery1fs9K8slHP3Vh09Q1lcuse9DyPNaSczRkn8Nd6cH3bXoS4eTEiNJpe/hGsT4t3jVmfFscVwVEMDo4i1N2Lm9r1Qy1Xsj3r5AXLpZared7teTJ8M9iu384Q5RBiHbFMNU5Fn6fnbuPdFDoK67ZWZVded3+dXd67KPIrotinmG/cv2GyajJ6uZ799v28aXqT7kXdUeWpaFPQhunF01liXoLJcX5Fqi7km0tcCr5dcvB1/HaC3PQozxMDdqwgo4qrprtvGHKZzOWqAdiamcjEiF6uWKw2Hn5YHXYO5qa6xlynuY58n3zu1dxLppTJFYYrGF00+oKuqVwmw0utc/14qGovVncpsWOV5a1vhDLSDNm5JZthXf4gO8OpVVeOFczPsWA2VX/R2CQHRpu5sUSsd+yShLyF+Wnm3rQDi9nBW1/0bbBCdTf+kcVre4oIdVdw6rYI2vk4fdgdvYN5vtc4nu011vXTysOXfoGtebbX2BrrBbT19CeuMLPKttiCTNqeNdX7a93Rq7RVxpTZrCQX57rGlDMhYjBz2o8nsTiNO3e8Xd/LPieV40eyHFmNeu7mSJKhllgggzMWyOawk1KcXyUWSC6T0dE72DWmrgxUDeQfr38o9inmUe2jqGQqPjd/jm+BL30K+7DOsu6i5vWQezBbO5vl+uWk+qRi87OxU7+TBzQP0FXRlRxHDkssS5hunI6uQIdvvi9DiobwUulL1YJs60plBf+B7b+QXVZMWkkhhZYy/k6Pr1XBzyw1VLn+BqsJd6WapOJcl4JfbDVXuf4lNgteap0rXqscuVzORx4fkeqTSl9FXzbYNhBQEMALpS+cU/bssmIe37WcZ/as5Ou4bef8ML3U2LGGQigjzYwfv0zk2mF/k3GmlJoy4iQJSjOrb2/pOFqYZSTuaCFrV6TRobOeKTe2qvf57Q4Hg5aksTihhB7+apJvjcBXWxHipVWqCHP3rvKjUShxV2oIO5sB8G38dpYnH3QdMyosmmMFGaw7E0tmaRG/nT7MaWM+w8927JXJZIwK68ia1KMcyjtDWkkh3ybswFujqzFmYf7AJ4jyDGP+id9Yndp4xfr85f4s81yGBQuDiga12NTR+sJgNdUY52OyW7HYbRitZhxIeNYUC2S9NOuCm9yNt93fJs83j7Wea+ml6MV++36uKr4Kv3w/Hit5jFJH7ZVKL4T+qv584PEBB7wPYPQzkuuTy0duHzFWNRYNGrbZtjGvbB5RRVGuomy3Ft/Kb+bf6lSUrVzBn9y6B4Fni4S18vDFU6Whf0DrWhV8k91aJRYrtiCTIJ2eIosJf607bgrnB0T5/1G5gu+jcXPFYv2bUHkou71385vHb3jKPHmx7EWC84PZaKneJ6qNpz+3dhjI/V2HM6NdX3JNJbx9eB0mW/WKzFA/sWMNgVBGmhnefho0WsU5qzyWpte6q8XS0tw0s6dsRSaDBSvrP2jVaHHQ7rsz7Mg0M6GNjv03hqK+CMtLvrmUIktFcaoofQBzogezJTORl/f/wf7cVO7uPMSlvACMCe/EiJBofjyxm9cOrMVst3J/lxG1xqVsv/pT1HIVUzc/T66psM4yXizj1OP4P83/keRI4vaS2xvtvFDRYr2hYkZaKmPUY9jrvZd8n3zu0tyFVbLyjukdPAs8GVo0tN6yZvzkftyru5c1+jVk+GZg87Gx3nM9d2nuop28HamOVL6zfMdE40TUBWoC8wMZVTSKt8veJt1R+8NTq1ShU6pYlxbHXZ2H0MrTD41CiUImx/1s1dKaFHwJOJKfVkXBL++MK5PJ6BPg/Fg5lp9eRcH3Vp+/4Nk1mmvI9c7lYe3D5Eq5jCweydCioVUqEnf1DaV3QCTh7j508Qnlvq7DKbVZ2ZubchFXt+kQ2TTNjGuui6D/FQG89fwRFs4/iVwhw16pJatMBiWXoTLikEDRQtw0P36ZyKlEI9fe1Io27eo3ujzFYCPmpzMUmB3c30PP/4ZfeHO6R7qPPufvAL0DIukdUHPJaHA+PCe27s7E1t1rHVOZQJ0PPw99gcmbnmHw2rnET154wfJeKp95fMZG60YWWBZwjfkartNc1yjnbW53qV6lrTHOR6tQoVYokctkyJFRXFMs0DliCy4Wb7k3n3t8zucen/OL+RdeLH2RLbYtDDAMIFgWzN3au3la+zRKef28fuRyOaPUoxilHuXaluZIY6F5IWstazliP8Lftr/52/Y3j5c+jhYtUfIorlBdwQ3qGxiuHO6qDVTZVQPgOKtwbkyPZ1N6AlF6/yr1kKL0AbgrNRwvzGR/biqBOk/u7jyE5OI8V5zVleEd+SfzBEuTD2C222jnFcD9XUbww4ndRHh4X9D63nV/lyd0TzCleApbbFsILgjmMe1jvKp7tVpdIzelmiCdJzllxTXOV5fYMS91RQq4wWK6IHkvFmEZaYYEBGl5+4u+bDwylitGOrv4llsIJQlK02t+HFrtDRfp3NA4HFKLsIxYLDaee/AAOjcF73/Tt17n3ptlIvr7VArNDj4Y6lsnRaQpmRQ5hNlRY0kwpHL3zncb9dzbvbajRcsM4wwyHZeh//ICaKuvIRaoMJO2euf9o5QriPT0JbawIr7GIUnEVRrTUFyvuZ6jPkdJ80ljhnoGhVIh88rmoSvQcbXhao7ZjjXIecPkYTyue5y/vf4mxzcHq4+VlR4rmameSYQ8ghOOE3xh/oJRxaNcRdnGGcbxj24lD8QMcsVhPd9rXJVYrEd7XMmt0QOrnKujdxBtPP345IrpzOs9nm6+YVVisQK0HuhVWsZGdOGTK6bzULdR6NW6GmOxzkWgPJBtXtv4y/MvfGW+vGF6g8DCQP60/FllnMluJcdkrKJIVKY+Y8fqE6GMNGOiu3ix+M/hLP5rOFHRFQ2xsnbWPP6nxN2UWC2NJF39Yqdqk7fmyoOz92Aqs/PSBz1Rq+vPsLjiZAkDlqRjdUgsvyaIB3p619vcjcFXA5+grUconyes5I8ztdygDYCv3NcVPzKwaOBlET9isltJNRaQanSmTeeaS0g1FriCEpcnH+Tb+O2u8cNC2pNrMvJr8gEyS4vYlJ7AvpwURodFu8aMDuvI1sxEdmQlkVFaxE+Je7A4bNVqkTQUofJQFnoupMSnhPlu82klb8Wf1j/pWtSVVgWt+F/Z/xr0/04pVzJRM5HvPL8jwScBs5+ZRK9EXtC9wCDlIEyY+MP6Bw+Y7qOLpQ3RpnAmWEfyjvQiRaqsRo3FOh9Xqq8k0zuTp7VPUyQVMdYwjv7ZQ4krTeakIYfPj29Bjoy+Z91DTS3vhSIa5bUQvo3dweJvkjn8rvONPWudB21Cvck1GUkxVtR66OgdxINdRzZ5Z9G64vP5KbzUck7dVrsLoalJOmHgiug1tIryYMeJ2gsK1ZUPDhTy0D/5aBUytlwfQp+g+jedNwaZpXm0WnY9cuSkTV2Gr7bx/lbvNd7LJ+ZPmKmeyXee3zXouV44+A0vHl7AoQnf0N2nXb3PH1+YxXtHNlTbPjCwDbdGD2RB/A7yzCVV3HCVi555a9wYX2PRs3j+OhOLwWIi3MOH6W1706aBLSPn4qTtJI+UPsIa6xqsWFGj5hrVNbzn9h6tlPUfFH4+TA4Ty63LWWFZwW7bbs44zmDDGQCrsbsTqPKlj6IPvmf601fRn7uih7uOdRYRO0SeqeS8RcRKbRbaeQUwI6ovQW6X9jeS78hnbMpM9rr/ic6uZ0juTUxRXM+U1jEEnO3o/O7h9fhp3KtYdBpT3gt9fwtlpAWQU2bkub2rkABTqpyt/yfn6okRfPKj8+Y6VZzHx8c2U3zWD/hI99G1trdurnh9loy/TsHJW5uvMjKsyxoSjhvYeORqOnb1rpc5H9iUy4eHDPho5By+KZxwz5YdxvXr6U1M3fw8HfWRxE7+sVHP3amgE3GOOH7x+IWpmqkNdp6GVkb+azgcDj4wf8D7pvc54zgDOMumP6N7hlnaWQ167nxTSbWSCB5KDb5aZwHDw7bDLDQvZKN1I3H2OIqpiMPQo6ejoiOjVKO4SXMTXZRdGlTWc7HZspnpxulkSpn4yHxY4L6AiZqJTSZPZUTX3suIbVknXXH7067oypuf9mPZwtOs/tVZgKa1px9T2/R0jd+SkdgEUl4azT2A9deFp0g4bmDslLB6UUQcDgcTVmXw4SEDbfRKUm6LbPGKCMB1rYYzs+0Y4gwp3Lfrg0Y99zavba74kXNlTdQXLeA7rkUgl8t5WPcwqT6pHPI6xGjlaJIcSdxacivuee7MKp7VIP2I8k0l5y0g2V3ZnTfd32S3924MfgaKfIr4yu0rJqkm4SnzZK99L6+bXqdrUVdUeSqiCqKYUTyDn80/Y3E0nst8mHoYGb4ZvKB7AaNkZJJxEn0K+3DGfqbWtacY8zmSl8au7GSO5Kc1eSVvoYy0AM6UVLhh+gW25rqbWjFqXAhzb9pB7JFCwJklUV40rPL4loIkNd+YEZvNwRP/txe1Rs4nCwee/4DzYLE56L0ondXJZQwM1pA4KxwP9eXzp/jtoKdo7R7Mx/HL+DN9t2u7JEmsSNnC4YILr/pZF3zlvqzwXIEVq6g/0kLpruzOOq91lPqU8rzueTxkHnxv+Z6ggiC6F3av16q7RpsZWw2FzM5VQFIv13O77nZW6FdwxvcMVh8r2/XbuV9zP10UXch0ZLLIsohpxmloCjT45vsytGgor5S+winbqXqTvTbmuc0j1yeXK5VXss++j1aFrbjbeHeVv4XKStjHxzfzTfwOPj62uckreV8+T8DLGEelLzCV3FmD5Jk3euCwSzwwaxc2mwOFTI7ibMpNS/xicwANVMT0knnynr2UGG08/Xp3dLpLs17km2y0WZDKwVwL0zu4s31aWLXUvJaOXC5n29hPUcmVTN74NIWWYozWUm7a8jJTNj3DswfmA1TrsVQfD8Ex6jHcp7mP047TzCyZecnzCZoGtVzNi24vkuWbxVb9VgYpB3HMfozJxsl45Xkx1zgXg8PQ1GIil8sZqBrI/zz+x0Hvg5T4lZDjk8OHbh8yRjUGNWq22rbyXNlztClqgzZPS3RBNLOLZ7PGsqZORdkuFL1cz19ef7Fdv50QWQifmz/Hp8CHX8y/AM403pqUMHAqYl/GbbugnkX1zeX1FLxMCdBWZNIczHOa3Tp18+aXDSM4dqiAuTft4HhBhquJUXngUktCaqZumrSUEn76OomwSDfueqjjJc11osBC629SSS+x83RfLxaNDaonKZsfoW7+/HjFs5jsFnqvvoMev93Gz6f/BmB/fkKNJvL6+ir70ONDOss7s9CykCXmJZc8X3Wa3316OTNYNZhtXtso8iniQe2DyGVyPjV/ineBN/0L+/O35e+mFrEK/nJ/7tPdx1r9WjJ9M7H52PjL8y/u0NxBW3lbUhwpLLAsYHzxeFdRtiuLruTdsncvKT092Z7M/xn/z9UiYaBqIGd8z/CG7g1MmLjBeAM9CnvwU3r14Ogq8xTn8s7hdRitjdteRCgjLYDBwRVR8atPHyGrzPlFMGBoINNva8uqn1N55IEdFeMbKV2vPnFIUrN008yeshXJAfOXDr6kef45U0bXH89gtErMH+XPq4P86knC5sv1rUbQz68TScZ0ko0Z2M9+jaWV5pJell/t66w++ytt89qGDh23GG+p1W9+qbREC2RLxkPuwfvu71PgW8Dvnr8To4hhj30Po4pH4Z/vz1MlT9V787z6QC6Xc6X6Sr70+JLjPscp8ysj1TuV13WvM1w5HAcO1tvW82jpo4QUhOCW50a3gm7cY7yHzZbNF+xu/MH8A1+YvyCmMIb9tv2u7U+4PUGeTx7jVeM5bD/MM37T2RzyJQ6qWmX6B7R2dSjOKitmWfKB+rsIF4BQRloAkR6+rqZFBquJl/atYUHCTjamJ9DrMQldABz+0ULWTghx86KbX9h5Zmx+SICimd2Na1ee4cj+AoaPCaZn34tXHhbGFTPi1wwcwJ+Tg5nT9fLPCDNYSpj+zwvszosFqpdOjzc0bKlqb7k3v3n+5owfMdRv/Egz1Jn/c4xTj2O/935yfXKZo56DWTLzhukN3AvcGVE0gr3Wveedw96EMUXhinCedHuSv73+Jtc3F6uPlRUeK7hFfQth8jASHAl8Zv6M4cXDURWoCM0P5RrDNXxW9lmtXXy32bYhQ0aOlMOgokFVrIIecg+We6xkduo7eFj9iPfZzILoO0lxP+Qa01bvz1M9x6BVOF3Ru7JPNap1pJk9/gW1cXv0IELdvADnF+SOrCQWn9zLP1knGfKFA5kS9jwj5wa/fq7YkZaEJIGyGblpHA4HD966C5VKxhc/D7roeV7eVcDNf+agU8o4OCOcK1udvx9FSye1JIuY1bfxa8rmGvfLkBFXdKrB5RilHsWD2gdJdaRyU8lNDX4+QePjK/dlvud8iv2K+cnjJ6Ll0WyybaKvoS+h+aG8Xvp6jXEZsQWZfHys5vuzfH9jopQrmaSZxPee33PC5wRmPzNxXnE8p3uOAcoBlFHG79bfuaf0HnwKfPDM86R3YW8eKXmEvda9OCQH263bkZCwY8eMmenG6TxV8hQOyYHVYed/R/5GVRzCjMT/MTDjFgDWRr7F5pD5FKjOsOjkXpIMuQwKigKc75kj+WmNdg1a3lvrP4qnWstjPa5kVGg0WoWq6r5ABTM/DsRhhVnDd7TILAKJ5hXA+uIjBykqtPLQ813R69XV9v87+LKmAMzb/srm+Z0FBOrkJM2OoItf9XkuR1JLskkrrb3VuFImJ67odKPI8r77+3SVd2WxZTGLzIsa5ZyCpuFGzY0c9zlOqncq09XTKZAKeLrsaXQFOsYZxhFrc1rpYgsy+ejYpnO6BJedOsie7FONJHnNRCujecntJbZ5baPAt4AynzJ+9PiRqaqp+Mn9OGw/zHum9+hr6IsqX4URY7U53jS9yYTiCSxM3soJQ45r+5CSKSw372K2+VESvP/hl3ZPYsXEgoSd+J2tsQJQ3IiWkZZf2OA/hJtSzQ1RvZnYujsJhdmU2MzoFCraewXiPliDOm4/8z9I4M4btvPV0vrvJtuQOJWR5mEZyckq46uPThAYrOWhZ6sXMso3lfDs3t9cMRDlKGVyXu4zAW+1jlHLM9l0xkRHHxUHZoShbU6aVgMzKLAbp6/7mTeP/sSn8cuxS44q18oq2TlckMgAn9aNIs9Wr62EFIQw0ziTK5RXEKFouJLWgqYnXBHOIs9FOBwO5pvn86bpTf6w/sEfRX/QSt6K9plX0Voaihw5bTz96B/YmhA3PTllJezMTibx7Ev7hxO76ewTiruqeXxEaOVabtLcxE2aCivfQdtBfjL/xM/mnzktVVfwJST+sP7BFrfdjFM9hZfV6e73UGnoFxbCU0VrkRwOBpvGokKLXXKwL6fChVrusmkM/jtPyMsIrUJFd78wBga1JcY/wtXe+qX3e9G1pze//3qG779oWYXPnG6appbCyW3XbsVhl/h8cfWaImklhXxyfHM1RQTKzZpZdPohjU1nTIyO0HLs5v+WIlJOsM6P9/vex6lrf+be6OtQy5VV3IfHipJrDADdkBbnygqrL7zkXqz2XI0NW73HjwiaF/H2eCYYJvBy6cvsc+xjjnYOST5JxHnFcY3qGtLsaawPnM83HWezs/UXzOjamRGh0XT0DmFISDse7T7a1dPF7LCxIzupiVd0bmKUMbzl/hYjVSNR1mJbkJAoVueypN0jrI94n0O+v/Oj/k3CCyI46jiKGjV/+C9DJVcAzmyacqK9Gy/j77/3lLzMWbl1NB56JU/ds5e4o4VNLU6daA6Wkc3rMtm7PY8BQwMYOKzqH2KKMZ+3Dq3jTElhjceWWpRcvdxKQqGVOV08WXdt6GVXQ6SuhLj580E/p1IyN/paFDLnA88u2cm35FUbvzP7FJ8c24ytnhWSkeqRPKp9lDOOM9xYcmO9zClyaZofKfYUVltXM69sHv2K+uFX4Mf04unssO3gC48v+F/OOvplTUdr9+Sw2z9EFbVljnEOq82rMUkmZDIZ10R2dc13IDe1CVdz4fxj+8fVR6ecysqJyq5FY/Mgxz2RXUE/keDzD1YsIMF41Xg8NVpXTGL5fd3ZO5ggXeMF2/+3n5SXIW5uSpZvHoUETBqyAZOp/ovqNAQSoGriu9HhcDD3ph0oFDK+XlY1ldcuOfgidismuxUAP407Y8I7MbN9f8aGd8Zh82Xx8Z6YbEqGRKTz2UjfplhCsyXEzZ+HO93MjeEzCNOGAxBbfJjxEV25tnVPYvzCkZ/NU4ktzOS3lCP1LsPb7m/TXdGdny0/86O5cfvmCBqHnkpnW4zy7K0iqYillqXMLplNWEEYL/rMJEebRNuiAdyinEm4LJxvzN8wwTiBT0yfABDs5oXmrHuipJFrbVwM+Y58TjpOIquU59VO3o45mjks8ljEZ6Ur6ZI/BpvCQonM8K90MBkZ6Roe27mM08Z811aNXMHUtr0abxGImJFmwdO7V5Jnrl7saVhIe2a061vjMc6ui4fJMxmrdV3sGuPDix/05PkH9nPVrKV0v19GlN6fGe36NqqmW1ea2jLy9ryj5OWYmftER3z9qnbOPZKfTq7JGSAW6eHLo91Hux5YsXlmbjiqx+6QGNn6BO188zmQG07fwNaNvYRmzd/pcbgp3Rkfcg1Wsvk2eRk2WQETI4YBnUgsyuHdI+txSBL/ZCQyPqIr6nr2WW/RbyGkIITZxtkMVQ4lUtF8GzMK6o6/3J8QWQgZUoZrm50KK1u2KhW8nNaOfFs4/VR9mKWYhUPmYJba2ZSvwFyK2e78iNMqqyYLNEe0Mi1Xq64mSh7FMNUwhqqGEiR3WnV/MP/AQ27TMetMSLIabHkyCa+yMAzWivoscmQ80G0kYe7ejbQCJ0IZaQY8FTMGRyWjb3pJER8c/Zve/jU/KE8acvgqbhuT2/Sgu28Yu7NP8dnxLTzT82rXDRQx2U6XYzKOfQGD27ZCc7OZD49u5IXe17h8g80NVRMqI0WFFj56IxYfPzVPv9a92v7dlSLrJ7Xq7lJE/jxVyoy1Wfhq5bw/VMWmbOfXxa6cU0IZqYTVYWfv2cA4N6WaN/rOpciey23b3yTGpx1t9WG08wqgX0BrdmYnU2qzcCQ/nd4B9ass6OV6fvf8nRHFIxhUNIgU75Q6u9KaUQa64CwGh4HfrL/xl+UvjFL1rBIXEmjs7oxIu4drdROZ03Ewsn/9h65Li3X9u7NPSEOJXG+4ydz4Q/9HjftO209jouycx7eyt0eOzPUOmtImhih9QL3LeT6Em6YZ4KnW4qXWuX4O56cRoPWgg1dgjeM3pMXTxTeEMeGdCXHzYlLrHkR6+LApPQFwVobckBbHo093IzhMx4I3ThGV0oZCcxkHm7EPtCktI7dftxW7TeLjHwbU+HIqtFT8QZcHdX1zzMDVKzOJ8FRx/JYIpncIdZlKiyznfgD81yiu1A+jvVcgGqWKrwc9gVwmo/vq2VjP1oLoUunhn1+DtbA+GK4ezuPax0mT0phmnHbR84iYkaYh15HLV2VfMb14OtEF0bjlueFV4MXNxpv53vI9pZTWeuwk1WRuTf6EyJIY9uam8MOJ3S6LZ5GljKVJ+9mQFg84LQRDgts1ypoaimfdnuUHjx/QoEEmVX+uqR1apDIPlyISqPNkaEjTrFkoI80Mm8POruxTDAqKqqaxl5NUnEvHsxVZy+nsE0LS2SjoXFMJBquJLr6hrNl5JSq1nLum7CRU7usa05ywnc1uaKqYkd1bs9n2dzY9+/kycmxojWPUlaxJRZYyThusPLk1n9aeSv6ZGoKvVkGx1eTyVavkwuhYGWWlTJpyP7y32pO72k+kzGZ2FaaqXPGxIYv3ven+JjGKGJZal/Kd6bs6Hi1MI43FGfsZPir7iCmGKUQVRKHN0xJQEMAdpXewxLKEVEcqEfIIblDfwJduX5Ltk81Kz6qdfeXIUaDgfbf3Wa5fxqw2Q1z7tmWd5Jk9q3h4x1Ie37WcdWlxrn2TWvfAR9PyixTerLmZQz6HiJTaglT13vU2hbk+oAJ1njzQdUS1OlaNhXhiNjMO5p2hzGZhUFCbWscYLCb0qqoxDXqVlqKznRYNVudXuV6txStcx5c/D2L25K2seKSIOV/rGk74i8RyNsZW1UTNae6atgO5HL5ZXnttlih9ALGFzqqMa1NP8M7uANzVcnZPC0OvcSoqmzNOuMa3awIzZ3PGU6XFT+NOnrmEk4YcMkuLCHbzYkqrIbxxbCFHCpLo49+J7VkVqZRt9f4NKtMW/RaCC4KZUzKH4crhtFK2atDzCc7NCdsJlluWs8m2iaP2o2Q6MrFide13x5128nb0VvbmKvVVTFBNQC+vHgPXS1kReKlAgZ/Mj2WeyxiscgalDwxqi11ysChxr8taV2KzuI6RI2Ni6+6MCe/UUEttdKIV0cT6H2ZO4T385FgAEsiQ429qQ4DWg2Eh7RkS3K5JY2SEMtLM2JZ5ki6+IXjXo0Z+9aRwbruvPd98dII/Pszjrs/rbep6wVRuGWkCZ/xHbxwnM72M2fe2Jzi09mt+RXAUa1KOklOq4Y4/3XBIZnZODyXATYHVYWdb5knWpB4DnN/NLd28W9/IZDKGhrRn+amDSMAXsVu5o+Ngunk7S09/mrCCUYXFpJYUABDp4UMrj4bNSPKQe/CH5x8MKx7GQMNAznif+c+nYjcWh22HWW5ZzhbrFo7bj5MtZVcJNNWjp4uiC32VfRmrGstY1Vi0cu05ZqwgRB6Cn8yPPCmPK5RX8LPnzwTKq7q8rwhuR3ffMLZmJnEoLxWjzYJOoaKrbyhDg9vhW6kKaUvij9RjHMhNJbPMgFquoK0+gGtbxxDspkcn07HQ51smmccy2zibUkq5I3QCD7SbwP7cVF47+GeNCRHgdP3/dvoIWzITKbNbGyQhQigjzYg8UwmxhVn8X+ch5xynV2urRD+Ds4Gel9r5x6pXOa0fBosJL7Xz369+2JvNJ5PYPb+MhX1OctOcqAZYwcVhcllGGve8RqOVt+cdxdNLxSv/61nrOEmS2J0JO1J7cyjH+ScT5ZPD94n7+SvNi6wyQ5Uvq5Gh0QToPBpc/pbGsJB2bMlMJNdkJL20iBf3r6GNpx9KmYJVKbvQOFoDzt41U1rH1OqmrE+GqIfwhPYJ3jC9wVTjVJbplzX4Of9LOBwOdtl3scqyim22bcTb48mVcnHg/ACRIcNb5k0vRS8GKAcwXj2eUcpRKC/Rzfmk9knKKONp3dOu2jb/Rq/WMS6yC+Miq1dZbqkkFGUzPLQDrT18sUsSK04d4n9H/+aF3te4gu5v0NxAb2VvXi19lRt0U0kqzj1vQsSfZ2L5Oz2eW6MH4q91Z9Wpw/WeECGUkWbE9qyTeKo0dPOtOW6hnLae/sQVZjI6rKNrW2xBJm09nWZtf607epWWuMJMIjx8ACizWen2qJ2cfQoev2sPfQb6E93Fq+EWUwfM9nLLSOOe9+7pO7BaHHyycGCNX8RlNgc/xBp5d38RCYVWZJX+XPqGnqHUZq0WgzM0uB1T29au2PyX0SnVPNB1BP87utEVNJhcnIdO4U6xrRgAuUzGrA4DGjWL4XX31/nL+hfLrcv51vQts7WzG+3clxM2h43Nts2stqxmh20HJxwnKJAKXHFUMmT4y/wZqBzIIOUgJqomMkg5qEGsUY+6PVrvc7YEHug6osrvt3YYwKO7nDVEKidERCmi+MbzGwC+TNvqSogAZ6xMbGEmm9ITuKl9P1dCxLjIrsT4OWsEzY4eyKM7l3EwN7XesgaFMtJMcEgS27OSGBjUtlrg3rfx2/FWuzGlTQwAo8KieefwetadiaWbbyh7ck5z2pjPze37AU6T+KiwjqxJPUqgzhN/rQcrTx/G10PHwt8GMbH/BiYNWc/B9ElotU1/C5iaIGbk8P581v+eTuce3kyYWrVXSbrRxieHDXxyyECRxeEKVyzPnvDVwujwEA7nn8Fkt6FRKOnqE8qI0A60ryUDSuAkUOfJsz3HsjUzkX8yE8kuK8ZP7cupUgP9A1oxNrIrIW6NryRv1m8muCCYO0ruYLhyOG2UVWO2JElqFEtNS8HisLDWupY/rH+w27abk/aTFFHk2q9AQYAsgOHK4VyhuoLJ6snEyGOEG6yRKTtbpNFdWXt/naTi3CoftuBMiDiUdwaoSIjoVClpQqdU08bTn6TiXKGMXG7EFWaSby5lcFDbavvyzaVVqutF6QOYEz2YlacPseLUIQJ1ntzdeUiVIjVjwjthsdv48cRuSm0W2nkFcH+XEQS56XnhvRjmPXSQ60Zs5PcdVzbG8s6JxeF8zasbURmZc902ZDJYsLJq0OqGlDLGrHAWTLKf1T4qp3AqZDAq3J3bOw46O8bRoFkflyM6pYorwzsxOqwjJruVj2NlPH7gM7x01iZRRMAZP/Kn/k+GGIYwyDCINO805HI56Y50ZhTPQIaMjV4byTeVuNK2M0qLSNHk46HUtNgYgwvB6DDyu/V31lrWss+2j2RHcpUOsUqUBMuDGaAYwDDlMCarJ9NJ2TTBnw7JwW+nj7Ar+9RZ17WOQUFtGBfR9ZzKZHxhFr8k7SejtAgfjRvjIrsy6F/P4o3pCaw7E0uRpYxwDx+mR/WmjWfDBllfKAXmUpYlH+RYQToWh50ArQcz2/fn99SjROkDaixgVr7mAnMpa1OP46ZUu9ZcnhCxMT2BNSlHAfguYSc3te/rWrNeXZE0UR9clDLyySef8Pbbb5OZmUmPHj346KOP6NevX41j58+fz/fff8/Ro84F9e7dm9dee63W8f9VOvuE8MWQGTXue6T76GrbegdEnrMglEzmjAif2Lp6Aa87H+zIP+uy2LAmg9eePsTTr/W4eMHrAbOtPB22cZSRrz6KJ/VUCdNubUNEq6qxHe29VYR5KEgz1twbxSHBFWEVgXRCEbl4ZDIZOqWaG9uO4vEDn/Fn+m6uazW8yeQZrBrMM7pneKXsFa41Xstc7VymGadRIBWgRElmWQEv7/uTXfnOJpRfx20nQHvC1a35clBI8h35rLSsZJ11HQdsB0hxpFSp26FGTag8lJGKkYxQjWCKakqzykJamxrL5oxEZkcPIMTNi9PF+Xx3Yic6hZqRYdE1HpNrMvLxsU0MDWnP7R0HEVeYyQ8Ju/BSa+ni43SZ78k5zdKk/cxo53wZb0iP48OjG3mx9wT06gsLrG0oSqwW3j60jg7eQdzXdTieKi3ZZcVsSIsnvaSIx3pU/+CsvOa0kkK6+oRUW7PVYWdp0n6uDO/IH6nHCXHzatA11/lJumTJEh5++GHmzZvH/v376dGjB2PGjCE7O7vG8Zs2beLGG29k48aN7Nixg4iICK666irS0tIuWXjBxfP9b0MICtXy0euxbF6X2aSymMstI42gjJhMNl55/BBu7gremV+91H6kXsm+G8MZGKKpsZqEBFwR2rQPn8uNcPdAVDIFe3Ljzj+4gXnZ7WV6yXux0rqSq4qvokhyuh5s2DhoPeJKBa2MTXJgtDX/Hib/Jt2Rzqdln3Kd4TraFbRDl6fDr8CP20puY5FlEaccpwiVhzJVNZXP3T4nwycDs5+ZZJ9kVupX8qDuwWaliAAkFecQ4xdGN98w/LUe9A6IpLN3CMnF1ZsylrM54wT+Wg+ub9uLEDcvRoRG08s/gvVni58BrE+L44rgKAYHRxHq7sVN7fqhlivZnnWyMZZ1Tv48cxwfjRu3dhhAG09//LUeHMo7Q6Ihh4e7j6qxVkrlNXtpdIR7+FRZs8Fqwi45nGsOcmYGXhnWscqanQkS9fcsrLNl5L333uOOO+5g9mxnkNfnn3/O77//zjfffMOTTz5ZbfzChQur/P7VV1/x66+/smHDBmbOnHmRYgsuFblczpqdVzEg6jdmTfyHvacn4h/YNC9Zs73cTdPw57rvlp2YTQ4+WNAPpbJCF/93Stz1nQI4URBO1r8KqeqUMrr7V/hfz9UjCBonJe5yIFjnR5Ix4/wDG5gMR4YzhfSszlGe9QEQJx0DKruRWk4N1mRbMsusy9ho3chR+1EyHBlYqMgAc8edNvI29FL24irVVUxUT8Rb7t10Al8kbT0D2JqZSFapgSA3PanGAhINOVx/jqDyJEPNRSR/TtoPOAtRphTnM/ZsgCc4A607egeTZGj6IpKH8844LeuxWzhRlI0kOd3HT/Ucg7+25qy+ymsuT4jo6RfhWvPx/AysDjudvINdCRHxRVmuNZfZrCQX5zKsHqu11kkZsVgs7Nu3j6eeesq1TS6XM3r0aHbs2HFBc5SWlmK1WvH1rb2GgNlsxmyu+NIwGAx1EVNwgYRGuPHFkkHcdu02xg9Yx47E8U0SYGaxN07MSMLxIlb/eoZ2HT2ZNquqP/jfKXH3bY4jqww6eCs4UWhHhvPVMzBY4ypbfyE9ghojJa65cCn++nBdGzLL9vPM7pWMb9WtSfz1G6wbmFY8jUKpsNo+FSqOS8eQMajZ1189ZjvGcsty/rH+w3H7cbKkrCrt5T3xpKOiI30VfblafTXjVONwk7f8SqMAV0d0xmS3Mm/famQyGZIkMal1D/oHnqOIpNVUze2gV2sx2a1Y7DZKbRYcSHjWMCazrOnfTTkmI5szTjA63BmEeiQvHQmJo/npaAOcRcx0CpWr6eS38dtJLy2i69mszfKECL3KueYVyQddHXw91doqCREdvILIMRn5NmEH3hodMf4RNUh0cdRJGcnNzcVutxMUFFRle1BQEHFxF2ZifeKJJwgNDWX06OpxEOW8/vrrvPjii3URTXCRjJ0Swa33tGPBp4ncM2Mnny8e1OgymM+GZzS0MnLblK3IgG+WV6/jUjkl7vvYYlYmBtLOJ4dVE1px2qDnut+zMFolhoZVVLCt3CMImi4lrrlwKf76Ll6t2ZG3iwB3RZP467McWVxluKqKJaQyVqwccxymK43/91EbDoeDffZ9rLCuYJt1G3H2OHKknCpr8JZ500PRg/7K/oxXj2e0cjRqee2ZFS2dfTmn2Z19itujBxHq7k2qsYCfk/bhrdYxsIbkgMsBCWjl4cuU1jHcteUn1/afk/a7LB2zOgxwKfj55lIcldyN5QkRPyftA5xVwGd26M+ChJ2uMeUJEevSYrE47OjVWu7vMqJeP6gaNZvmjTfeYPHixWzatAmttvaHyFNPPcXDDz/s+t1gMBARUX8amKAqr3/Sh11bcli5JIWhVwYx4/bGLYhmOVuBVdOAMSOLv03iZEIxE2+IoH3H2l0k+7JMzF6Xg4cKhrZKwkMdzVWt3NgzPYxHt+QxPboiSLG5pMQ1Fyr76wH8tR7syTl9Qf76G6IG8FXSEpJLTtLLvzfr0+Jdykhlfz3ATe36cTQ/ne1ZJ7k6on4KVgXKAvnQ/UNeLH2RXCnXVRujMsekI3RpIteMw+HgH9s//Gb9jR22HSTYE8iX8qvU8PCV+dJf2Z+ByoFMUE1gqHLofy6V9tfkg4yJ6Oz62wpz9ybPXMIfqcdrVUb0Ki2Gf2WFGCwmtGetCXKZDDkyimsY46Vq+vgxL7XWlYVWngSxOf0Ea1KP8mb/KdXGP9J9NG8fWldlzb0DIjHZrfyctJ8X+lyDzWHn+4RdrjWXJ0TkmUsos1m4p8uwel9Hne5Uf39/FAoFWVlZVbZnZWURHBxcy1FO3nnnHd544w3++usvunevnuFRGY1Gg16vr/IjaFhWbR+Nu4eSx+7aS0Js0fkPqEca2jJiszl45r59aLVyPvy+f63j8k02hi7NQAY81CeNaG9/l7ulo6+a1ZNCiPap+KqsS4+gKmPqOSWuudDWM4C4wiyySp2m63J/fVff2guYlfuuO3m3QiGTsys31tn08awvvtxfX1mhawh/vUwmY652Lik+KfzP7X8EyAKqpNMDFFFImbKw3s5ZGxaHhTWWNcw1zqVPYR988n1QFCgYUTyC90zvscu2CyVKhiqH8rTuaXbrd2PzsZHrm8t2r+286/4uw9XD/3OKCIDFYUP+r/83uUxWo3JZTlu9M2aiMrGFma7eSEq5gkhPX2ILK957DkkirtKYpiRKH0DWv9xFWWUGfDW1Z3c1xzXX6W5Vq9X07t2bDRs2uLY5HA42bNjAwIEDaz3urbfe4uWXX2bt2rX06dPn4qUVNBgeHip++XsEkkNi0uANWCy28x9UT5THjGgaSBl5ZM5uSkvszHu3JxpNzcZAh8NBz5/SKLVJPNg7DxsF3NFxcIPIc7lydURn+gS0Yt6+1dy9dRGvHviDUWHR5/XXq2RyUoz5+Kr1xBelYLbbXP56o9Vcq7++yFr/Cp1WpuU+3X2k+KTwoduHBMrOFrE7+y7L0STXeNzWjJNIUt2tJqWOUpaalzKneA49Cnugz9OjKdAwvng8n5o/5ZD9EO64c6XySl7WvcwRryPY/exk+mayyWsTr7q9Sl9V3/+k4lET3X3DWJN6lCP5aeSajBzITWX9mTiXmxRgefJBvo3f7vp9WEh7ck1Gfk0+QGZpEZvSE9iXk8LoSq7F0WEd2ZqZyI6sJDJKi/gpcQ8Wh61abFNTMDqsI0nFuaxJOUZ2WTG7s0+xJTOR4aHtXWNawprr7KZ5+OGHmTVrFn369KFfv3588MEHlJSUuLJrZs6cSVhYGK+//joAb775Js8//zw//fQTrVu3JjPTqY15eHjg4SH6dzQnevb147m3Y3jp0YNcN2ITv22rPa6nPrE0YDbN6WQjv3x/isg27tx6T/tax125IpOUYjvTOhagVKbxcPfR520ffjE9gsp/j/DwvsgVNV8uxl9vdzhYlxbHn2mxKGVu5FjTWZS4B7lcToG51NVPo7HRyrTcq7uXOdo5zEl5hiW6T7ApzOwN+JXo9OsBUCsqbtjNmSfw1bqd021U6ChklWUVf1n/Yr9tPymOFEooce1XoyZEHsJQxVBXDY+2yqZ/2bUkpkf1YeXpw/yUuIdiqxkvtY4hIe24JrKra0yRpYx8c0XtFH+tB/d2Gc4vSfv5Oy0eb40bt3To73ITAvQNaIXRamLV6cMYLCbCPXy4v8sI9Oqm74Le2tOPuzsNZfmpg/yecsTp9mzbu8pHQEtYc53/0qdNm0ZOTg7PP/88mZmZxMTEsHbtWldQa0pKShUt/bPPPsNisTB16tQq88ybN48XXnjh0qQX1Dt3P9KRLeuz2Lg2gzeeOcyTr57bpVYflFdg1TTA193sSVuQJPh62RW1jnlsSx5/p5oYGGqglXcKD3UfVWtKXGUutkdQfafENRcuxl/vplSTZ3a+kIO1wWSY0imwFuCn8cPssOGndW9Sf32WsRT3lN7MlH3O6lavkqM7SZ923mzfDU/1GEtmqYVlpw4CsDrlKEOC2+OuUpPlyGK5eTkbrBs4ZD9EqiMVExVr0KIlTB5GD0UPRqlGMVkzmVD5uXtSCc6PVqliWlRvpkX1rnXMrdHVrfjR3kE822vsOeceERrNiNCaA7Gbmu5+YXT3C6t1f0tY80V9dtx7773ce++9Ne7btGlTld9PnTp1MacQNCE//j6EnmGr+N9rxxk8MpAho84dD3SpNJRlZNXPp4k9UsSV14TSNcanxjGL4op5Z38Rrb1K6Rt6gtujh6JVqFwlv/+dElcfPYLqOyWuuXAx/vpwd29SSwoAaKVrxYHC/eRYsvHT+AFVfdfl16zcdz0itEMDraSCfzJPOOWQ1CxUrOBF1f+x0P8DUEbhr/Oih18AsZYTLDH9QobbcZYWPkKBPKdKDQ833Ggtb01PZU+uVF3JJPUkfOW1lzYQCP6LiN40gmrI5XLW7LqSAe1Wc8s1/7AvdSJ+/g33FWo5G8CqUdZfzIjD4eDRO/agVsv5fEnN6ZiHc8zc8lcObkoZI9scxeRw8O6RDVXG/Dslrr56BF1uNUagwl/vq3UjxM2LVGMB68/EMSi4wiqyPPkghZZSZkc7/0+i9P7syHbGYfirA1DKlBitxVXmHR3WkQXxO2jt6UtrTz82pMU3mr/+ZFEO4Cz7f0VQBxaxiI75nWHwIe4038Ze026yvc9Wn5ZAI+mIlkfTW9mbq9VXM141Hg+5cEcLBOdDKCOCGgmLdOezRYO4Y+o2xvdfx/YTDVcQrcJNU3/KyNP37afYYOOZN7vj5lb9Ni802Rj8SzoSsHlqCH2Cpp93zvruEXS5UVd//eaMEyxK3OPaJ5fLCdAEklyaTB/ffvyZepzbogc1qb/eKjk1ZY1CiVahIpxwRpRMZLXHQuItJ5jkPgnJISM10YOwkh709I3k3i7DG1wugeByQygjglq55roIZv5fFN9/fpK5N+/ks58apuCTtVwZqSfLSGZ6KT98nkhwmI57H+9cbb/D4aDnonSMVokFo/3pE9T0tQIuB+rir9+ZlcxPlRQRGeCjccch2Sm0FgKwNzcFrVLFLe37N5m/3lvtRq6phFKbhVRjAREePiyPXEC3P2x0co/iy+GvsjM7mW9LnBWofdSXRyVTgaCxEflggnPy5md96djVixWLUlj8bVKDnMN6NmZEW0+pvbMnb8XhgC9/rll5Gr8qi1MGG/f10DOri6hh09hYHXZXZUiA4SHteav/tbzebxLT2gxBQqLI6owj2Zp5ktPF+U0lKv0qFab7NfkANocdpVzJ/e2msyp1OwlFZ1wt1v89XiAQXDhCGRGcl1XbR+HuoeTRO/aQGF//vRisZysT10edkfVr0jm4J58ho4LoOyig2v5ntuex9nQZQ0I1fDi86QsW/RfZl5NCydkutzF+4UyP6uMqDDcxwlnbxV1d0Ztqc8aJxhfyLP0DWuOu1ADOolCvHljLPxkn6OcXgwI516x/jqwyZ4xLpIcP7fTV7zmBQHB+hDIiOC+enmp+3jACh0NiwqD19V4QrTxmRHuJMZ0Oh4P7btmJUilj/tLqBcuWJhh5bU8RYe4K/r6u9qqggoYlvqiiquPI0GhkMhmlNhN37XiHCDengphSesYV5Ft5fGOjVaq4q9MVLlnSS4tYmLiHL2O3I5PJOVFykiNFh9CrtNzR8YpzNgQUCAS1I5QRwQXRq58fz77Zg8J8C9eP3FSvc5dbRrTKS7sdX3nyMIX5Fu57qhNe3lWbgR3LszB9bTY6pYz9M8JQioqVTYbZXqHM+mmdJasTilL58sQqhv/1AB5KHXGG03ioNNXGNwXR3kE80m0UkR5V08PdFE7Zd+TvoJQU/LW1l98WCATnRjyRBRfMPY91YthVwezelstbzx+ut3nLY0bUl3A35uWa+PK9ePwDNTz+UtXMFYPZwcAlaUgSbLw2hMAasmsEjUflXj2JZ1NnY/za09WrDWV2C0ZbGWmlOeSVGZ3jm0EzsjZ6f56OuZonY65iYqtuXBXeCe9K2TyfJizj+s3PU2Yzn2MWgUBQG0IZEdSJH38fSkCwlvdfPs62jfVjPred7elxKanDt1+7Dbtd4tOfqlYadDgc9F50hmKrxBej/Okf0vQvtv86ffwrUqHXph7DZLMCcE3EINQyFYEabyTgx9TvKbIU0eccqdONiUwmo42nP+Mju3Fdm56YHVUVjxUpWxjx1/3kmgqbRkCBoAUjlBFBnVAq5fy+czRKpYybx/1Dft6lfwmWW0Yulm0bs9i1JYe+g/yrVYudtDqLxCIb/9fNkzldReZMcyBKH0CEu9PlkVFm4LWDa9mamUiMTyeyzQUM8O0LgMlh4ue0xRwzHD3XdE1GoaVqcTYHEnvz4un7+50kGs40kVQCQctEKCOCOhPRyoNPFw3CZLIzvv86HA7HJc1nuzRdhLtv3IFcIeOb5VX7z7ywM5/VyWUMCNbw2UiR5dBckMlk3BY9CDelM64nq6yYH07sZu1pZ+r439nOmh1BmiDclFoe3/8pI/98AIvNUuucjY3VYaPUXl0Rt0sOUkuz6fv7nezMOdYEkgkELROhjAguiglTI7j5rracOmnkvpm7quw7mWBg2U+nLniu8qJnF8O7Lx4lJ8vEHQ90wD+wwgWz8mQJL+4qJNhNwZbrReZMcyPU3YvHe1xJa4+KHi3FNmfauNFuRIYMpdxB7g2rGBrYg41ZBwj8ZRJ7cmLrXRaTzcqSk/t4avcK7t22hDcP/sWp4rxzHrM7+2St+xySRKHVyPMHvufp3SuZu3Uxrx/8k+Ti3PoWXSC4bBDKiOCiefvzfnTorGfZwtMs+c75Vbv611Su7Pknc2/aSW626TwzOLE54GISIg0GCx+8egwvHzXPv93DtT2+wMLU37PQKmTsv1FkzjRXQty8eDJmDE/GXMWVYZ3w1FRY2CQkskz5aJUaNl/9ER/0uY9iWxn9//g/njvwVb3K8f2JXcQWZjI7ehDP9xpHZ59g3j/yNwWVWq5XJtdk5NPYv2udr7dfB+Z1v4s22m6Mj+zKMz3HEu7uzYdHN2KwXNjfhEDwX0M8pQWXxG87RuPmruDh23bz0O27uGPqNspKnf08Du8vuKA5bA7popSRO6/fjs0q8b8F/VzBr0aLg/6L07BLsP7aYEI8ROZMc6Y8KHRq256olFbksopHkk2yszjZ2bjwgc7XEzvxewK13rxy5HtifpuNwWK85PNb7DYO5KZyXZsYOngFEqjzZEKr7gTqPGottrY54wQaRYWcMmTIzz5K53W/lT3j56PBn+Gh0QwOjiLU3Yub2vVDLVeyPat2i4pA8F9GKCOCS0KvV/PFkoE4HLD4m2TXdoVCxqG9zjLe+aYSUoz5rp98U0mVOWwO6mwa2bcrl81/ZdK9tw9jJoYDzsyZPovTKLJIfDLCj8GhDd9ITVB/bM85ikOqGn80c+ur7MuLB6CDVyTpU5dzXeQwDhWcJPiXKfxxZuclndMhSTiQUMqqVtxTyZWcNOTUeEySIddVc6SdZxj/63s/K4e9j4fCgx+T/8LmsJNSnE8n74pgarlMRkfvYJIMwlUjENSE+GwUXBK7tubw4Ow9yORQ+T0iSRKH9joVj+f2/oat0k6lTM7LfSbge7ZIlE2qu2Xkzuu3IZfDghVDXNumrskmvsDK7V08ubu716UsS9DIlNpMxBaerrbdJtkYs/5R9oz7gjaeocjlcpYOf5klyRuYue1Vxv39OHPaj+eL/o9dVGq4Vqmirac/a1KPEuKmR6/WsjvnNEmGXAJ1HjUeY7CaGBDYiYTJC2nnGY5MJuNIfhqd9V3YXbCLw/nJOJDwVFdNI9ertWSW1X87BYHgckAoI4KL5vsvEnlq7j6QJP71QYvDAQd25WG0masoIgA2yYHRZsaXs8qIA+pSRfuzd+NITy3j5rvaEhLu7JL66u4Clp8spU+gmq9Gi8yZpuS304dZnVI1HTdIp+elPtfUeszipK04qJ6VJQFFFiNXrnuYF7s9wMG8DMrsVqL0/uwb9y1TNj/JVyd+Z336PraN/ZRQt7r3G7oteiDfJeziid0rkCMj0sOHvgGtSDHW3qBPLpPTXh9RZVu0Z0d2F+ziuYPzCdf0qOVIgUBQE0IZEVw0P32VhOMcNUKyM00U5Jw/HbMuMSOlpTbeeOYwHp5K3vy0DwBrkkt4dkcBgTo5264PvcCZBA1JqJsXD3Yb6fpdcQ5t86Qhh68T1iNDhkT1+0lC4qQxnc8TVvHRgLn4a91Zdeowi04e5PikH3lw9//4NGEFrX69nq8HPsHMdlfXSdYAnSeP9hiN2W7DZLfipdbxZexW/LU1W0b0Km21QFSDxYSPWk9r92DWZezhtlY9KK5hjFczqCYrEDRHRMyI4KJZsWUUb3zam+AwZ2xGTe+b/XvP7yO3SyC/QG3knhk7sJgdvP1lX+RyOScLLUxenYVGAftuDEd9if1tBPWDXCbDS61z/Xic4yW8IS0es1RRQEwhq/p/eFPrK7kmeCyPd51OjF844e4+zI4eSKG5jIO5qXwy4GE2XPkBarmKWdtfY9LfT2Fz1L2fjUahxEuto8Rq4XhBBj38wmsc11bvT1xhZpVtsYWZtNX783jXGVglGwX2TGILKyoUOySJuLNjBAJBdcSTW3DRaLUKZt3dnt3JE/jfd/1pFeX8kqyslHz/V809bA7npbn+bXdIyC7ANnL8cAF/rkwjuoueydNbUWpx0HdxOjYHrJ0cQrinMPQ1F7LLinl813Ke2bOSr+O2VQtarkxScS5FtiIkJLxU7lwbOZRAjR9uCqcLbmhQT0J1rYjxqygLr1OqaePpT9LZ2h0jQ3qRdf0KevtGs+rMNkJ/mcKxguQaz/dvjhWkczQ/nVyTkeMFGbx3ZD3BbnoGB7UFYHnyQb6N3+4aPyykPbkmI78mHyCztIhN6Qnsy0lhdFg0d7WfiFauZlvuDrZmJrIjK4mM0iJ+StyDxWFj0Nk5BQJBVYQyIrhkVCo5N8xsw9a4ccxfOpgOXSrKrp9aVbOS8VvKEdadcRawskkXFjNy+7Vbkcng25XOoNV+S9IoMDt4f6gvw8NF5kxzoY2nP7d2GMj9XYczo11fck0lvH14nasHzb8xWEy80uNu9o//ivzpv/PzsJcYEdSPUruzzsf6jP1A1QZ75b8XVXKFeKjd2HvNfF7scRu5ZgPdf7uVt48uOq+8ZTYri07uZd7e1Xwbv4N2+gAe6DoCxdmA2CJLGfmVao74az24t8twYgsyeXn/H6xLi+OWDv3p4uMMsJ0SOZS0six6+Pux6vRhXtn/B6klBdzfZQR6tbhPBYKaEJ+SgnpDoZBzzXUR5HVNY/mqQvY+J8OULaNdbgSDBgRTardyMC+VxLPpjUuTDxDtHeR005xn7u+/SOTUyRKuu7kVbaI8mbYmi2P5VmZ29OCBnt4NvjbBhdPVtyJuJ9zdhzae/jy1eyV7c1O4IjiqxmPaeITR06+16/cxIQNYkvIHMmQcK0xioO+FWxSe73ErE8MHMXLdQzy+/zNWpG5h3ZXv4aas2VXUJ6AVfQJa1TrfrdEDq22L9g7i2V5jaxz/Tp97WHRqPT+eWsk/V398wXILBP9lhGVEUK8YrSZ255wiaABMWiunS28vfn4on07qCK4M78RjPa7i6ojOrvF/pydgd0jnjBmxWGzMe+gAOjcF733dl7f2FvDziRJ6Bqj5bkxgI6xKcCm4KdUE6TzJKSuucb9ercVgrRrs6af1w0vphUIm53RpBkCNQaNe6poVjBi/DmTfsJKrQvqyPecoQT9PYmvWoXpYzfkJdfOnq3cbtmUfodQmKq4KBBeCUEYE9cqB3DOuVN7hke1ZsGwoJUYb/zd9OyUlTjP9+Iiu6BQqAPbmnMYunVsZeeDW3ZjK7LzyYS82ZVh4clsBflo5228QmTMtAZPdSo7JiFctLoq2njUEhBZkEukeil2yY7CW4KFUVxlTZrOSXJxLW8/aA0KVciV/XvkuXwx4lDK7mSF/3scjez+pn0Wdh5d63I4DiWfruXS9QHC5IpQRQb1SaClz/TvaK4jwSHf+t6A/W9ZnccfUbQBsOm1m84Zwln8cys4TAeSZ7JjtEm/szeCjg7l8H1vMwRxnR9SkEwZWLk6hTXsPBl0fwTWrMlHJYf+N4WhF5kyzZGnSfhIKs8g1GTlpyOHz41uQI6PvWVfIt/HbWZ580DV+VFg0xwoyWHcmlszSIn47fZjTxnxGh/RwJfoGuitYk3qUQ3lnSCsp5NuEHXhrdMT4R1QX4F/c2WEiJ6csItwtgPeOL6HzylvINzVs8bEprYaiV7nzbeKaBj2PQHC5IGJGBPWKWl5RVrvQ4gz6u/KaMK4YGcje7bn88EUi9x4zYogKgv4SOYWAzPnKeWpbGeBUZvoGqdk9PZxbJ21FkuDTnwfRZ5Ezc+bPycFE6sWt21wpMJfyVfx2SqxmPFQa2ukDeDLmKldF0nxzaZXsqSh9AHOiB7Py9CFWnDpEoM6TuzsPwUut5P24xQCcKjlJF303ntr3HellmQzw78aLPaejkitqlOHftPII4fS1vzBz26ssTF5H6NIpLBn6ApMih5z/4ItkZtsxfBy/jNWp27gmYnCDnUcguByQSZJ08f3bGwmDwYCXlxdFRUXo9frzHyBoMpIMubx56C8AItx9eLrnGGTI+HXhKe6fuQtJAnNnLwrujD7nPN+MDsDzYB733byTcVPC2Xddaw7lWnjnCl8e6e3dCCsRNBUWu5WjhUnszz/BPTvfxSrZqxVEmxs9hY/7P3RR869M2cK0f17A7LAyo81ofhj87EWVkj8fBosR78Xj6ebTlkMTvq33+QWClsCFvr/F56WgXmnj6UeEuw+pJQWklhTwwqJN7PnQysFdFR181ceLUKaXYgvW1VDtTCLSU8GN7d3oOuBPNBo5pbe341BiKTd2cBeKyH+ACX8/yV8Ze6ps+3dl1tEhfS56/kmRQ0ifupwhf97LT8nr2Zx1iG1Xf0wrj5CLnrMm9GoPBvh3ZkfuMbLLCgjU+dTr/ALB5YRwugvqFZlMxtS2PZEjI+MfmH9TNgd3V+3xIQM81qbVUnZVxmO9tTw7dx8lRhv9X+zO4sRSuvmp+GlsUKOsQdC0XNtq6Dn3K2RyRgb3uqRz+Gr1HJv0PY92nkZ6aQ5Ry2/ky4RVlzRnTbzd5x4AHm2kwFmBoKUilBFBvdPRO5g7Og0msJsc704SNbQbQXOkAEV2GVTyEsqQ8NGW0kdl46evk/CK8eYXrRpfjZzd08MacQWCpuTO9hOZ0WY08hoeTzKgp08HCi3mc1Z1vVDe7jOXLVd/gptCy1073+GqdQ9jsZ2/n9KFMjiwG4FaH5ambMbhqN4IUCAQOBHKiKBB6OUfyVtjJvDKqk7E3KFyBqlWuttkEnj8lV6l9KqEjL6hqTwx4xB2jYKkWe1RymHvjaEic+Y/hEwm48sBj9FeH4ZC9u8AVRkySc+rB9by3N7f6kUhGRzYjewbVjI4oCvrMvYSvHQKB/MSLnnecuZGT6HMbuabxN/rbU6B4HJDPOEFDYavxp3r2sXwx5dTWbVtNGHhbsgVFcqH7kAeGpsZp+lEwl9nRHW4gPjDxRQ/2gWbTMbKCUG08VI32RoETYO7SsfKEa+jllcNa5OQiNA503ltkgOjzVwv59MqNWwd+ynv9L6HIouRXr/fwUuHFtTL3E93uxmlTMHrRxfWy3wCweWIUEYEjULfgQFsOjqWqTdXKrtth9a5aTiN7zL6hqZw6A0ZxVNbU+an4bVBPoxt7d5UIguamGivSBYMfqrKNrVcg5+64TrfPtJlOkcnfo+/xot5h76hz+o5GC2l5z/wHCjlSq4M6UOSMZ0TRan1JKlAcHkhlBFBo+HhqeKDb/tz0wcByJTOWBHl5hxAQimzU7DAgKFLAKWDAxkVKefJviL74L/O1FYjmBg6zPV7pC4C2YV0VbwEOnm3Iv36ZUwKv4J9+QkE/TKZDel7L2nOd/vcC8BDe0WvGoGgJkRqr6DOFJhLWZZ8kGMF6VgcdgK0HszqMIDWnn61HhNfmMUvSftJKynE0Uti5E+w8SYwJ8sJcbMTriwjMVZP8e2t6eiXRVv/ZPblyOl9jgZmgssbk93KF7FbCVB3ADYD4K2qqqAeyUsj0sO33s+tlCtZMfI1fkz6i9u2vc7o9Q/zfx0m8dmARy5qvk7erWjjEcKf6buxOWwo5eLRKxBURlhGBHWixGrh7UPrUMjl3Nd1OC/0Hs/1bXvhrqw9riPXZOTjY5vo4BWIu8o5zj0YHl4WiTFTQmNR4tiVQ/70dngoLAyKOIVMBt/E76jWHE3w38AhScyP3crxggwUMgUhGmcfIj+1J0pZxWNrVcoRdmefajA5bm57Faeu+4U2HiF8nrCSdsunk1mad1FzPdFlBjbJzptHF9WzlAJBy0coI4I68eeZ4/ho3Li1wwDaePrjr/Wgs08IATrPWo/ZnHECf60HnXyCKbY6Aw691TqUrS2MuDqEjCwTYeOKifbPZ9vNrXA7mzljkxxszUxslHUJmhfHCzI4WuDs1uumVDGv+yznDoWRt/pPYWRoB9fYpckHsDdg2myomz9J1y7hjvYTOFmcTuSy61mUtL7O89zRfgJahZqP435tACkFgpaNUEYEdeJw3hlaefjyRewWHt35K6/s/4MtGedWGJIMuXT0DiarUgv5zj4hJBlyeeyVrlg9FQR6l/HK6CC6+bnT0TvYNS6hKLvB1iJovmzOOOH6903t+nFnx6tRy1WcKE7FXaXhhra96erjtJYUWco4lH+mwWX6cuBjrB39DkqZghlbX+Lajc/UqXaIXC7n2sihZJry2ZF9tAElFQhaHkIZEdSJHJORzRknCNR5cn/XEQwNac+SpH3syEqq9RiD1YRerUVeqTmaWq7EZLfSrosH/mYTchn0CHL2LbA57K5xRmv9pG4KWhaJBqcS6qnS0NPfGbTaQR9OakkO4KxFMiykvWv8iaKcRpFrTGg/Mq9fToxPO5anbiF06RTii1Iu+Ph3e88F4LF9nzaUiAJBi0QoI4I6IQGRHr5MaR1DpIcvQ0PacUVwVJUv2doIc/d2/TuhKAsAjUpB/GMVL5VCcynxZ60hKpkCRQNnTgiaJxa7UyH1VGlRnI0RGR4Ug1WykV7qVDy8NbqK8Q5bo8mmV3twYMI3PNd9FtmmQjqvnMkHx3++oGOD3fzo5t2WHTnHLjllWCC4nBDKiKBOeKm1hLh5VdkWovOiwFz7g1Wv0mKwmGjvFUjQ2diS9NIilDI5SrkcD5UGOTJyyor5Jn4Hdslp+g7QeeCl1tU6r+DypVzRyCw1UGQpA+CNXv+H+ab1hLoFABBXmFUxvgnuk5dibmf3+C/wVOl4aO/HDF17L6YLKML2csztOJB45uD8RpBSIGgZCGVEUCei9AFklRmqbMsqM+Crqb04WVu9P3GFmchlMq6J7ObabpMcPLvnN5ac3IdOqeK7hF3En7WYuClUGK1m2uobrsCVoPnSN6A1AA4klicfRJIk3FU61ApnNlahuZT1aXHVxjc2ffw6kn39SkYG92JL9mGCfpnErpxjNY61OmwUWYxMihyCl8qd706ubWRpBYLmi1BGBHVidFhHkopzWZNyjOyyYnZnn2JLZiLDQytcLcuTD/Jt/HbX78NC2pNrMvJr8gEiPXzo7lvR9C7PXMI/mYmU2Cw4znbU0yqUtPcKxCbZGRTUtvEWJ2g2DA1p50rh3ZGdzDuH17Mn+xQnDTn8kXqMVw+sdVlMuviEEOymbzJZ1Uo1G676gE/6PUSJzcTAP+7mqX1fVBljd9gZ/ddD9PhtNha7lVlRV1NkLWFlypYmklogaF7IJEmqoadq88JgMODl5UVRURF6fdM9dARODuelsfzUQbLLivHXejA6rCNDQtq59i+I30GeuYRHuo92bSsvepZRWoS3xo2efuGklxZx7Gz6JoBSJkchl2NzOIjw8GF62960EZaR/yy7s0/xTfz2mpo+u/DTuPN4jyvx1rg1mlzn4qQhjSF/3ktGWR5dvduw5eqP8VZ78vLh73j+4NcAfNr/YW5pcxVei8fSxbsNhycuaFqhBYIG5ELf30IZETQpRZYy8k0lKORygnR6NApRmVJQweG8NH5O2keOyVhluwzo5hvGze37Nbu4IofDwU1bX2bxqQ1oFWpe6H4rTx2Yj3RWrQrU+nDq2p+5ct1DbMs5SsbU5ajl2ipN/zyUGny1oi+ToOUjlBGBQHBZ4JAkYgszSCjKxmK34aXW0ds/8pyF9poDS09vYsY/L2GVqmb6yJDxbp+5DPDvzKC193B95AgClJ2wSRU1S5QyOS/3mSAUEkGL50Lf3+IzVCAQNGvkMhldfELpcrbIWUvhushhjAzpxZ/pu6tsl5B4+fB3pFz3C8FaX347s42bI9ojl1eE8NkkB0abGV+EMiL4byACWAUCgaAB+Cx+RTVFpJxCi5GP4pZxR/uJmBwW4o1x1cY0ZIl7gaC5ISwjgnrFZLOy8vRhDualUmw1E+Huw7So3hfU0TejtAgfjRvjIrtWy6LZmJ7AujOxFFnKCPfwYXpUb9p4iuBWQfPkWGEyD+79qNb9EhKvHvmBmeG3IEPGwaIDdNJ3rjLm+xO7eLDbyGYXEyMQNARCGRHUK9+f2EV6aRGzowfhrdaxKzuZ94/8zQu9x+NTQ8ZDeUffoSHtub3jIOIKM/khYRdeaq3LLL8n5zRLk/Yzo11f2nj6syE9jg+PbuTF3hPQq7WNvURBPfDb6cOsTqnanyVIp+elPtfUesy+nBRWnj5MnslIoM6Ta9vE0K1SmrgkSfx2+ghbMhMps1uJ0vszo11fgnSNH2eWUpJVpf2BUqbAIUk4qLB2lNjK2JS3lXBdBKllKdilMvQqL0psFsBZGPCDI3/zRMxVaBWqRl+DQNCYCGVEUG9Y7DYO5KZyT5ehdPAKBGBCq+4czk9jc8YJJrfuUe2Y8o6+17ftBUCImxeJRTmsT4t3KSPr0+K4IjiKwcFRgLNx2tH8dLZnneTqiC6NtDpBfRPq5sWD3Ua6fj9X6f+Thhy+itvG5DY96O4bxu7sU3x2fAvP9Lza1WbgzzOx/J0ez63RA/HXurPq1GE+PLqRF3pfg0quaOjlVGFs2ABKZvzFSWM6xwqTOVaYzNGCZA4WnOBkcTo2yVnuPrb4ONeFjSc1LYUCRzLzB7xMbGEmP5zYRb65lPTSIjZnnGBMeOfznFEgaNmImBFBveH88pNQyqo++FVyJScNNTcyK+/oW5nyjr7gbJqXUpxPp0pj5DIZHb2DXWMELRO5TIaXWuf68VDVbuXakBZPF98QxoR3JsTNi0mtexDp4cOm9ATAaRXZkBbHuMiuxPiFE+7uw+zogRSayziYm9pYS6qCQq6ggz6CKZFDebb7LBYPe4G4yQtJuW45N4TdQH/fAegVnvya9jut3YPZkxuHhERnnxDmdhnmmuefjEQczT/pUSC4JIQyIqg3tEoVbT39WZN6lEJzKQ7Jwc7sZJIMua5qmf+mvKNvZfRqLSa7FYvdhtFqxoGEZw1jiqymBluLoOHJLivm8V3LeWbPSr6O20a+qaTWsUnFtSitxU6FNNdUgsFqqqK06pRq2nj6u8Y0F04V5+Ot9qWHVwzfDX6Vt3rdTWpJNqml2SxI/AOAcHcf2uud1sVck/GcvZ8EgssBoYwI6pXbogciSfDE7hXM3bqEjWnx9A1ohQzRfVdQQRtPf27tMJD7uw5nRru+5JpKePvwOkw2a43jDRYT+n9ZTvQqLUUWp0JqsDqV3ZoU2/IxzQWLw+76d4DWk8e63si2sZ+glit5P7ai+6+f1q3SMY3XlVggaApEzIigXgnQefJoj9GY7TZMditeah1fxm7FX+tR4/jyjr6VMVhMaBUq1AolcpkMOTKKaxjjdQ6zvqB509W3omZIuLsPbTz9eWr3SvbmpnDF2digy5XKSlWiIYfBwVH0D+jC8Yk/EKT1AZwuz8RKbkhPca8LLnOEZUTQIGgUSrzUOkqsFo4XZNDDL7zGceUdfSsTW5jp6tarlCuI9PQltlK7eIckEVdpjKDl46ZUE6TzJKesuMb9erUWw7/ccgarCa+zlhC9ypn+WpNi69XMMq46+4SgO5sdszv7FGklhQBE6cPwUDutIduzTpJ7tgR+J+9gPFSaJpFVIGgsLkoZ+eSTT2jdujVarZb+/fuze3fNhX3K+eWXX+jYsSNarZZu3bqxZs2aixJW0Pw5VpDO0fx0ck1Gjhdk8N6R9QS76Rl8tm7IuTr6ZpYWsSk9gX05KYwOi3aNGR3Wka2ZiezISiKjtIifEvdgcdhER9/LCJPdSo7JWGtNjbaeNSitBZm0PVtrxl/rjl6lrTKmzGYluTjXNaa5oFEoXdYfm+TgrUPr+O30EVKM+ZwoyuaHE7v48UTFM3VEaIemElUgaDTq7KZZsmQJDz/8MJ9//jn9+/fngw8+YMyYMcTHxxMYGFht/Pbt27nxxht5/fXXueaaa/jpp5+YPHky+/fvp2vXrvWyCEHzocxmZfmpQxSaS3FTqunlH8Hk1j1QnC11XWQpI79SMJ6/1oN7uwznl6T9/J0Wj7fGjVs69K9S+rtvQCuMVhOrTh/GYDER7uHD/V1GoBfFoFosS5P20903DF+tO0WWMn47fQQ5MvoGtALg2/jteKvdmNImBoBRYdG8c3g9687E0s03lD05pzltzOfm9v0AkMlkjArryJrUowTqPPHXerDy9GG8NTpi/COaapm1MqFVd04UZXPKmI/JbmV1yhFWpxypNm5YSHu6V6qlIhBcrtS5UV7//v3p27cvH3/8MeDsUBkREcF9993Hk08+WW38tGnTKCkpYfXq1a5tAwYMICYmhs8///yCzika5QkElxfzY7dywpBDidWMh0pDO30Ak1v3cDW/e/fwevw07twaPdB1jLPo2SHyTCXnLXpWarPQziuAGVF9CXJrns8Mk83KwsTd7MlJcXX0LUejUDImvDPjIrogO0f9FYGgudMgXXstFgtubm4sXbqUyZMnu7bPmjWLwsJCVq5cWe2YyMhIHn74YR588EHXtnnz5rFixQoOHTpU43nMZjNmc0U7bYPBQEREhFBGBALBZUe+qYSd2cnkmozIZXIiPXzoF9AarVJUXRW0fBqka29ubi52u52goKAq24OCgoiLq97oCSAzM7PG8ZmZmTWOB3j99dd58cUX6yKaQCAQtEh8te6MixQua8F/m2aZTfPUU09RVFTk+klNbZoKigKBQCAQCBqeOllG/P39USgUZGVlVdmelZVFcHBwjccEBwfXaTyARqNBoxGpbAKBQCAQ/Beok2VErVbTu3dvNmzY4NrmcDjYsGEDAwcOrPGYgQMHVhkPsG7dulrHCwQCweXE2tRj3LXlJ5ac3HfOcftyUnh+72rmbl3Mi/t+50h+WpX9kiSx6tRhHtu5jHu3LeH9IxvIKjM0pOgCQaNRZzfNww8/zPz58/nuu++IjY3l7rvvpqSkhNmzZwMwc+ZMnnrqKdf4Bx54gLVr1/Luu+8SFxfHCy+8wN69e7n33nvrbxUCgUDQDDlVnMc/GYmEn+0sXBvlXYkHB7fl2V5jifEL57PjW1wF0aCiK/FN7fvxZMxVaORKPjy6EWul8vICQUulzsrItGnTeOedd3j++eeJiYnh4MGDrF271hWkmpKSQkZGhmv8oEGD+Omnn/jyyy/p0aMHS5cuZcWKFaLGiEAguKwx2a18Hb+dW9r3x02pPufYltiVWCCoTy6qN829995bq2Vj06ZN1bZdf/31XH/99RdzKoFAIGiRLErcSzefUDr5BLMm9eg5xyYV5zI6rGOVbZ19QjiUdwY4f1fivoGt611+gaAxaZbZNAKBQNCS2ZN9ihRjvquC7Pm4nLoSCwQXg1BGBAKBoB7JN5ewJGk/t3cchEquaGpxBIIWwUW5aQQCgUBQMynF+RRbTby6f61rmwOJE0XZbEpP4JMrpiGXVf0OrEtX4srNBA0WExEe3g20EoGg8RDKiEAgENQjHb2Deb7XuCrbvkvYSbCbnjHhnaspIlDRlbhy3EhtXYkjPHyAiq7Ew0LaNeBqBILGQSgjAoFAUI9olSrClN5VtmkUStyVGsLOpvhe7l2JBYK6IpQRgUAgaGTyzaXIqOjGG6UPYE70YFaePsSKU4cI1Hlyd+chLuUFYEx4Jyx2Gz+e2O3qSnx/lxEiLkVwWVCnrr1NxYV2/RMIBAKBQNB8uND3t8imEQgEAoFA0KQIZUQgEAgEAkGT0iJiRso9SQaDaAolEAgEAkFLofy9fb6IkBahjBQXFwMQESGixgUCgUAgaGkUFxfj5eVV6/4WEcDqcDhIT0/H09MTmUx2/gMuEIPBQEREBKmpqSIwtgER17nxENe6cRDXuXEQ17lxaMjrLEkSxcXFhIaGIpfXHhnSIiwjcrmc8PDwBptfr9eLG70RENe58RDXunEQ17lxENe5cWio63wui0g5IoBVIBAIBAJBkyKUEYFAIBAIBE3Kf1oZ0Wg0zJs3D41G09SiXNaI69x4iGvdOIjr3DiI69w4NIfr3CICWAUCgUAgEFy+/KctIwKBQCAQCJoeoYwIBAKBQCBoUoQyIhAIBAKBoEkRyohAIBAIBIIm5bJXRj755BNat26NVqulf//+7N69+5zjf/nlFzp27IhWq6Vbt26sWbOmkSRt2dTlOs+fP58hQ4bg4+ODj48Po0ePPu//i6CCut7T5SxevBiZTMbkyZMbVsDLhLpe58LCQubOnUtISAgajYYOHTqI58cFUNfr/MEHHxAdHY1OpyMiIoKHHnoIk8nUSNK2TP755x8mTJhAaGgoMpmMFStWnPeYTZs20atXLzQaDe3atWPBggUNK6R0GbN48WJJrVZL33zzjXTs2DHpjjvukLy9vaWsrKwax2/btk1SKBTSW2+9JR0/flx69tlnJZVKJR05cqSRJW9Z1PU6z5gxQ/rkk0+kAwcOSLGxsdKtt94qeXl5SWfOnGlkyVsedb3W5SQnJ0thYWHSkCFDpEmTJjWOsC2Yul5ns9ks9enTRxo3bpy0detWKTk5Wdq0aZN08ODBRpa8ZVHX67xw4UJJo9FICxculJKTk6U///xTCgkJkR566KFGlrxlsWbNGumZZ56Rli1bJgHS8uXLzzk+KSlJcnNzkx5++GHp+PHj0kcffSQpFApp7dq1DSbjZa2M9OvXT5o7d67rd7vdLoWGhkqvv/56jeNvuOEGafz48VW29e/fX7rrrrsaVM6WTl2v87+x2WySp6en9N133zWUiJcNF3OtbTabNGjQIOmrr76SZs2aJZSRC6Cu1/mzzz6T2rZtK1kslsYS8bKgrtd57ty50siRI6tse/jhh6XBgwc3qJyXExeijDz++ONSly5dqmybNm2aNGbMmAaT67J101gsFvbt28fo0aNd2+RyOaNHj2bHjh01HrNjx44q4wHGjBlT63jBxV3nf1NaWorVasXX17ehxLwsuNhr/dJLLxEYGMjtt9/eGGK2eC7mOq9atYqBAwcyd+5cgoKC6Nq1K6+99hp2u72xxG5xXMx1HjRoEPv27XO5cpKSklizZg3jxo1rFJn/KzTFu7BFNMq7GHJzc7Hb7QQFBVXZHhQURFxcXI3HZGZm1jg+MzOzweRs6VzMdf43TzzxBKGhodVufkFVLuZab926la+//pqDBw82goSXBxdznZOSkvj777+56aabWLNmDYmJidxzzz1YrVbmzZvXGGK3OC7mOs+YMYPc3FyuuOIKJEnCZrPxf//3fzz99NONIfJ/htrehQaDgbKyMnQ6Xb2f87K1jAhaBm+88QaLFy9m+fLlaLXaphbnsqK4uJhbbrmF+fPn4+/v39TiXNY4HA4CAwP58ssv6d27N9OmTeOZZ57h888/b2rRLis2bdrEa6+9xqeffsr+/ftZtmwZv//+Oy+//HJTiya4RC5by4i/vz8KhYKsrKwq27OysggODq7xmODg4DqNF1zcdS7nnXfe4Y033mD9+vV07969IcW8LKjrtT558iSnTp1iwoQJrm0OhwMApVJJfHw8UVFRDSt0C+Ri7umQkBBUKhUKhcK1rVOnTmRmZmKxWFCr1Q0qc0vkYq7zc889xy233MKcOXMA6NatGyUlJdx5550888wzyOXi+7o+qO1dqNfrG8QqApexZUStVtO7d282bNjg2uZwONiwYQMDBw6s8ZiBAwdWGQ+wbt26WscLLu46A7z11lu8/PLLrF27lj59+jSGqC2eul7rjh07cuTIEQ4ePOj6mThxIiNGjODgwYNEREQ0pvgthou5pwcPHkxiYqJL2QNISEggJCREKCK1cDHXubS0tJrCUa4ASqLNWr3RJO/CBguNbQYsXrxY0mg00oIFC6Tjx49Ld955p+Tt7S1lZmZKkiRJt9xyi/Tkk0+6xm/btk1SKpXSO++8I8XGxkrz5s0Tqb0XQF2v8xtvvCGp1Wpp6dKlUkZGhuunuLi4qZbQYqjrtf43IpvmwqjrdU5JSZE8PT2le++9V4qPj5dWr14tBQYGSq+88kpTLaFFUNfrPG/ePMnT01NatGiRlJSUJP31119SVFSUdMMNNzTVEloExcXF0oEDB6QDBw5IgPTee+9JBw4ckE6fPi1JkiQ9+eST0i233OIaX57a+9hjj0mxsbHSJ598IlJ7L5WPPvpIioyMlNRqtdSvXz9p586drn3Dhg2TZs2aVWX8zz//LHXo0EFSq9VSly5dpN9//72RJW6Z1OU6t2rVSgKq/cybN6/xBW+B1PWeroxQRi6cul7n7du3S/3795c0Go3Utm1b6dVXX5VsNlsjS93yqMt1tlqt0gsvvCBFRUVJWq1WioiIkO655x6poKCg8QVvQWzcuLHGZ275tZ01a5Y0bNiwasfExMRIarVaatu2rfTtt982qIwySRK2LYFAIBAIBE3HZRszIhAIBAKBoGUglBGBQCAQCARNilBGBAKBQCAQNClCGREIBAKBQNCkCGVEIBAIBAJBkyKUEYFAIBAIBE2KUEYEAoFAIBA0KUIZEQgEAoFA0KQIZUQgEAgEAkGTIpQRgUAgEAgETYpQRgQCgUAgEDQpQhkRCAQCgUDQpPw/t5DkBrUzNBgAAAAASUVORK5CYII=",
+ "image/png": "iVBORw0KGgoAAAANSUhEUgAAAiMAAAGdCAYAAADAAnMpAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjcuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/bCgiHAAAACXBIWXMAAA9hAAAPYQGoP6dpAAEAAElEQVR4nOydd3wT9f/Hn7mMpmm696QtlL333oKiuAfu7VdxgaKCioqKuMXxU9x89asyBEGUvafsMlta6N67aZukGXe/P1JCS1ugQJfck0cfNHefu/tcmty97j0VkiRJyMjIyMjIyMg0E0JzT0BGRkZGRkbmykYWIzIyMjIyMjLNiixGZGRkZGRkZJoVWYzIyMjIyMjINCuyGJGRkZGRkZFpVmQxIiMjIyMjI9OsyGJERkZGRkZGplmRxYiMjIyMjIxMs6Jq7glcCKIokpWVhbu7OwqFormnIyMjIyMjI3MBSJJEWVkZISEhCEL99o9WIUaysrIIDw9v7mnIyMjIyMjIXATp6emEhYXVu75ViBF3d3fAcTIeHh7NPBsZGRkZGRmZC8FgMBAeHu68j9dHqxAjp10zHh4eshiRkZGRkZFpZZwvxEIOYJWRkZGRkZFpVmQxIiMjIyMjI9OsyGJERkZGRkZGplmRxYiMjIyMjIxMsyKLERkZGRkZGZlmpVVk08jIyMi0JorMFZTbKp2v9SoXfLRuzTgjGZmWjSxGZGRkZC4jReYKZu5bgU0SnctUCoG3+k6UBYmMTD3IbhoZGRmZy0i5rbKGEAGwSWINS4mMjExNZDEiIyMjIyMj06w0WIxs3bqViRMnEhISgkKhYNmyZefdZvPmzfTu3RsXFxfatWvH/PnzL2KqMjIyMjIyMv9GGixGKioq6NGjB//3f/93QeOTk5O59tprGTVqFLGxsUyZMoVHHnmENWvWNHiyMjIyMjIyMv8+GhzAes0113DNNddc8Ph58+YRFRXFRx99BECnTp3Yvn07n3zyCePHj2/o4WVkZGRkZGT+ZTR6zMiuXbsYO3ZsjWXjx49n165d9W5TWVmJwWCo8SMjIyPT0skzlbE6/Vid64rMFU08GxmZ1kOji5GcnBwCAwNrLAsMDMRgMGAymercZs6cOXh6ejp/wsPDG3uaMjIyMpfE0aIs3jqwkv0F6XWu/y5+B0eLspp4VjIyrYMWmU0zY8YMSktLnT/p6XV/uWVkZGRaApkVJcyL24ZFtAOgVgi09wygvWcAKoXjMmuVRObFbSOjorjW9kXmCtLKi2r8yJYUmSuJRi96FhQURG5ubo1lubm5eHh44OrqWuc2Li4uuLi4NPbUZGRkZC4LK9OOYq0SIj19w7i//UB0Kg0ARpuFnxJ2c7AwnUxbAn+lBvF45xHObesqkgZyoTSZK4tGt4wMGjSIDRs21Fi2bt06Bg0a1NiHlpGRkWl0yixmDhQ6rLfuahce7jDYKUQAdCoND3UYRBq7WGZ7jR/zvsJgMTvX11UkDeRCaTJXFg0WI+Xl5cTGxhIbGws4UndjY2NJS0sDHC6W++67zzn+8ccfJykpiRdffJH4+Hi+/PJLFi1axNSpUy/PGcjIyMg0I5nGEkRJAqCPXwQapYpyWzn3H7ufR+IeASClMokN1m8BOGj/k3hDWrPNV0amJdJgN82+ffsYNWqU8/Vzzz0HwP3338/8+fPJzs52ChOAqKgo/v77b6ZOncqnn35KWFgY3333nZzWKyMj02pYXbiaDHMGXiovvNReeKm88FR54qXywmw/Y70oFrOZmjCVH7N/pNRWCoDZbia2PBa7ZAPAipn5uV/T3++jZjkXGZmWiEKSqiR9C8ZgMODp6UlpaSkeHh7NPR0ZGZkrjMgdkaSaU+tdr0BAQgIkfFQ+PBr6KE+EPsGWki08dPwh7NhrjHcVdKQPTcNX7UtaeRGzD66uc7+v9LqaCL3P5TwVGZkm5ULv3y0ym0ZGRkamJXFv0L0I57hcSoiARISiNz9Fb+Dddu/SxrUNPmqfWkIEoFI080HqB404YxmZ1oUsRmRkZGTOw39C/3PeMT0V13O1+nn+TDnOR4fX83vqNu48chegqDVWROTT9E/JMmdzqDCzEWYsI9O6kMWIjIyMzHkI0ATQXte+znUCArcF3MbMqDecyxJK85hyajLlYhlQtye8Uqzkjv1P8lfakXqPuyUrkVbgSZeRuWQavc6IzIVRUmlkfWY8CaV5WEU7erULXbyD6effBl+tvrmnJyNzRZJsTObphKdZU7QGW1UAanWUKOnt3pv/dv4vrkpXgnWerEw/Rp6pDB1eaHDDgqN4mQIFSoXSuR8Jie3mPwhVDsVTGYSfVo+XxpVsYykVNgsA23NP4eeq55rwLk130jIyzYAcwNrMSJLEirQjrEo/5kwPrI5WqeKZrqNo6+HfDLOTkbkyWZK3hFdPvUq8MR6AaG00r0a+ykfpH3G84jgSEkqUBLsEs6/fPgJdzrS8ECWJk6V5ZJsMIIFGXYlRmUdcxXGOVhzlUNkhDpcfwSg6RIoWPX933cyogN4oFArsosiW7EQWJe1HAlwEFe8NuAlXlbo53goZmUviQu/fshhpZn5POsi6zLhzjtEISqZ1v4o27nJUvYxMY2G2mZmZPJNvM7+l1F6KgMAo71HMbT+XrvquAHyf9T2PxD2CAgU6Qcfufrvpom+41WLesa1sLzzCMfs60hW7EBVWfuj8Azf63+gc83PibrbnnALgzrZ9GRlSt5tIRqYlI2fTtAJSy4qcQkQBXBXaidn9rufLoZOY0nU00e5+AFhEOz8n7pZ9xzIyjUBceRzjDo5Dv0XPh2kfIiExJXwKZSPKWN97vVOIANwVeBceSg8UKFjafelFCRGAlPIi3BTeDHe5m7hBxxjpPZKbDt9E3z19OVFxAoAhgW2d45PLCi/pHGVkWjpyzEgzsiU7wfn7TZE9GR/e2fm6k3cQ7Tz9eefgarKMpaRXFJNUViC7a2RkLhP/y/4fbyS/wSmTw/rQXteeWVGzmBQ0qd5tXJWu/NzlZxQoGOc77qKPfbr8u6tSjb+LH0u6LeHJE08yL3Menf7pxGDPwfTTD8YmdkYlaLDXUS5eRubfhCxGmpHDRY6UPhelymmCLc+pIG1zNp3uaItaUDI2tCM/Je52jC/MlMWIjMwlUG4rZ8apGczPnk+5vRwlSq7xvYZP239KjC7mnNuabVaWpx4mtlCkzFrJ8cy13NG2D5HuvvVuc6Ikl8VJB8g2luLtomNCRFcGB0bj66KjzGqm2GJkWUose/JSUViGM8v7Wtw9c3k/61V2lO5AgYJAOhApzQCGXOZ3Q0am5SC7aZqR0xHzAVp3XJQqLBVWFlz1N3/euYGSlDIAwvXezvHGqvEyMjIN41DZIUbuH4nnFk++yPgCtULN9DbTMY4ysrLnyvMKEYCfEncTV5LDgx0G81rvCXT2DuKTIxsprjTWOb7AXM4XxzbTwSuQV3tfw5jQDvycsJtjxVkMCIhyjludfpyrwzvzSq9riHT3IzXPnV09jzJB8yyeBJNDPC9n3U/g1kBeO/UalXa5eZ7Mvw9ZjDQjOqWjs2eeuYzs44X8NOAPCuNK8O/mg3eUI9Ano6LkzPhqnUBlZGTOjSiKfJP5DZE7Ium5pydbSrbQ0a0jy7oto2hEEXPazUEjXNh3ymK3cbAgnVuietLeM4AAV3cmtulOgKueLdmJdW6zJTsRP62e26J7E6zzZFRIB3r7hbM+8wSDAqNwU7kAjiok6zLiOFqcRRevYOyixPuH1hJGf27XfMAs30XcE3QP5fZy3kp5C7fNbozcP5K9pXsv11slI9PsyGKkCcnYmUPO/nzn626+oQAodpn5b48lFCWUIqgEutzjeEqzinY2ZMafGe8T0rQTlpFphZRYSng07lHct7jzn/j/kFmZyQ1+N5AyOIVjA49xQ8ANDd6nKEmISKgUyhrL1YKKU4b8OrdJMhTQ0SuoxrLO3sEkGQpwVWl4tOMZt0ueuZwlyQf5On47laLNGVMS4OrOlM7X8XOXn6kYVcHPnX8mRhfDlpIt9N/Xn6BtQbyR9AYWUbaayrRuZDHSRNgtdpZcv5r/DV3uFCQjg2PQL7cQ9IIJSSHh80II9ko7UVeHc6Ikl7lHNjotI2FuXnK8iIzMOdhTuoche4fgs82H77K+Q6fU8UbUG5hGmljWYxltXNtc9L61KjXR7n6sTD9KSaURURL5Jy+ZJEMBpRZTndsYrGY8NNoayzw0Wsx2Kxa7jWCdw/oZpvOua3MGBkTyYver8NC4OpfdE3wPcYPiyBiSwV2Bd2GwGZiVPAvdJh2j949mX+m+iz5HGZnmRA5gvYwUmSsot53x5+pVLvho3QBIXJ6CqbAShQALx//N/XtvJnleIv4fVWJ3g6xvddgnZ6BUwGslq6H0TD8LtaDknpj+KBS1e1zIyFzJiKLI5xmf80HqB2RaHAHhPfQ9eK/de4z3HX9Zj/VQh0H8N2E3L+1ZhoCCCL03/fzbkFZedEn7vSumL65KNfEluVSKNhJKcymzVPJgh8H1bhOqDeWXrr8gSRI/Zf/EnNQ5bCrZRL99/QjSBPFE6BNMj5x+wW4oGZnmRhYjl4kicwUz961wmlcBVAqBt/pOxEfrxoEvj6FQKpDsEuZSC993W4y1woZ7uBsBKzpS8cZhVCVVXSzsOP8yXhpXHu04lKiqmiMyMjJQYCngucTnWJy3GLNoRqPQcHvA7XwS8wkh2sZxZ/q7ujOtx1gq7TbMdiueGle+iduOXz3tGjzUWgwWc41lBosZrVKNRqlCUCgQUFBmMdPWz58QNy8AcowG1Ge5g+pDoVBwf8j93B9yPxnmDF5IfIFlBct4Pfl13kx+k5HeI3m/3fv09uh9KacuI9PoyG6ay0S5rbKGEAFHLYFyWyVFCSWkbc5GsjuKlkk2CWuFDbWbikeP307QH+CxzAo4ip+1KXCnu08oD3cYzNv9rqedp+yekZEB2Fq8lX57+hGwLYCfc37GS+XFe23fwzTSxMJuCxtNiFTHRanCU+NKhdXC8eJseviG1Tku2sOP+JKcGsviSnKI9nA8WKgEJRHuPsSV5DrXi5JEfLUxDSFMG8Zv3X6jYkQFP3T8gba6tmwo3kCfvX0I2RbC28lvYxWtDd6vjExTIIuRJiD2mzgUytouFpvJxv+G/cmOWftrLL++siNPdhlB/4BI1MKFPSHJyPxbEUWRd1PeJXhbMCMOjGB/2X76uPdhS+8tZA/L5sXIFxGExr+UHSvO4mhRFgXmco4XZ/PxkfUE6TwYEhgNwB/Jsfx4Yqdz/IjgGAqqAlNzjKVszkpgf34aY0M7OMeMDe3I9pyT7MpNIttYyq8n92IRbQyu2ufFIAgCD4Y+yIlBJ0gdksodAXdQbCtmZtJMXDe7ctWBq4gti73o/cvINAaym+YyYRPtdS63m+0c+i7eaRWpjiRCXmzNMs+CWiD3YCFd72mUacrItBqyzFlMSZzC8vzlWCQLWkHLvUH38nHMx/hpmt5tabJZ+SPlECWVRnQqDb39wrkxsgfKKiFUajFRVFVzRJREduScQqtUsy4jjrUZcehUGu6J6U8X7zPWm37+bSi3mvkz9TAGixlfrR53tZYZe5bXKJJWnU1ZCazLiKPUYiJM782ktn3qdeNGaCNY0G0BoijyY/aPvJf6HuuL19NrTy9CNCFMDpvMS21eQiXItwKZ5kVulHcZ2JqdyNLkWEz22ibQmB06bDNy69iqfsJHBHP35usv1/RkZFoVawrX8NLJlzhUfgiAUJdQXop4iSfDnmwSC8jlYGXaMdZnxvNgh4EE6zxJLSviv4n/cGObHoyuZhmpToG5nFn7/2Z4cAxDg9oSX5LDolMHeKrrCKeA2ZufyvwTu7irXT+i3P3YkBXPgYI0ZvWZWCtzpz5STam8kPgCfxb+SaVYiUqhYrT3aD5o9wHd3btftvdARgYu/P4ty+FLZGXaUZanHq53vfHrPNQ4YkFQgEJQ1GklqU7avhye3PYb3lq3S34ykpFpDdhEG7NTZvNFxhcUWAtQoGCw52A+jvmYAZ4Dmnt6DSapLJ+evqF083HUEvLT6tmbn3rOhnfVi6QBBOs8OVmaz/rME04xsj4znqFBbRkS5Giid3e7/hwtymJn7imuDr+wpn1tXNuwqPsiRFHku+zveD/1fdYWrWXtnrWEakJ5KvwppkVMk60lMk1K63jMaKEkGwpqCJGu3sHcEd2HB9sPYkRQO9zXWtGkSCgASQneg3wY9mZfAntXCYd6MnUVFRJTAkbUKB99mr35qfyedIBrI7rySq9rCHPz4rOjm2pF7cvItAZSTanceOhGXDe78kbyGxjtRh4JeYSiYUXs6LujVQoRgGh3f+JLcsk1GgBILy/mpCGfrj7B9W5zriJp4HAFp5UV0anaGEGhoKNXkHNMQxAEgcdCH+Pk4JMkDUriFv9bKLAWMOPUDFw3u3L1was5Wna0wfuVkbkYZOl7CWzMOuH8/fo23bg2opvztetflaTNNmP3U1DwtAumQSpGdu/DoMBoutwTQ/yiJE7+lUrGjhwkWx2WkhMWRl3foVGejGRkmpvlect5OelljlccB6CNtg2vRL7Cw8EPtxpXzLm4OrwzZruV1/f/hUKhQJIkbojsUaMnzdmcr0ia0WZBRMK9jjE5JsMlzTdKF8Xv3X9HFEW+zfqW91PfZ03RGtbsWUOYSxhPhz/Nc+HPydYSmUaj9X/rmwm7KHKgIB0AN5WGcWGdAbCarGx9bQ+rHtlCr8c7E7OjD8ZRaiStgmSDw0TrGeHOgGk9uHvz9dy+6hoA/Lv5gP+ZzJmCY8VA4z4Zycg0JRbRwoyTM/DZ4sONR24kviKeEV4jONj/IClDUng09NF/hRAB2J+fyp68FB7uMJhXe13DA+0HsS4jjl25Sc09tXMiCAL/CfsPp4ac4uSgk9zkdxN5ljxeOvkSus06JsRO4Fj5seaepsy/EFnmXiQmu8VZVyTK3deZgvv7xNWkbshixJz+DHypJ4eLMtmQ67CgGOvotnnkxwQAblkxno/yNtPbEExEvCvR48OBpnsykpFpLBKNiTxz4hnWFa3Djh29Us9TYU8xp+0c9Kq6C4a1dpYkxzI+vDP9AiIBCHXzorCyglXpxxlUT9puQ4qknT3GU31hwasNoa2uLUt7LEUUReZlzePD1A9ZVbiKVYWrCHcJ59nwZ3k2/FnZWiJzWfh3PIY0A+pqX8Ciai3Etd4ueLXzYND0XigUihrrzm6yBZC6MRONhxqvNh6gUKBtr6PPk13xbufZuCcgI9PILMxZSPud7Wm/qz2ri1YT6RrJz51/pmxkGZ93+PxfK0QALKIN4aygMEGhQKL+4PWmLpJ2oQiCwOSwySQNSeLkoJPc6HcjuZZcpp2chm6zjmtjryWuPK7Rji9zZSCLkYvERakiQu8DQJaxlITSPABKk8sI7u+omGqXRLZWay8eoqspMCzlFipyTIQMCADO/2SkV7s06ZORjExDMdqMTE2YiudmTyYdm0SSKYlxPuM4PuA4Jwef5J7gK6OATnefUFamH+VIUSYF5nIOFqSzPiOentWqtbaUImkNoa2uLX/0+APTSBOfxXxGqEsoKwtX0nl3Z9psb8PHqR8jiuL5dyQjcxayGLkERgTHOH//Nm47R4oyyTlQgLXMRpG5gm/jdpBlLHWOCXB1r7H9wa8dTxPdHuwItNwnIxmZ83Gs/BhjD4zFfYs7c9PnokDBtIhplI8oZ02vNXTSd2ruKTYpk9r2pbdfBL+e3Msb+//m9+SDDAtuxw1tztTxqF4kDRzpv091GUlccQ5vHVjFusx47m0/oFaRtFuje/Fn6mHePrCK9IpinukyqkZn36ZAEASejnia5CHJJAxK4Hq/68mx5PD8yefRbtYyMXYiJypOnH9HMjJVyEXPLgGbaOfDw+udtQNUaXbC7zFiu0tPxuOC0yQroEBE4rbo3nTwDMRNpcFH68YH1/yCdXsF00sfQRAEZ9GjkSHtGRIYTXxJLgtP7a+z6NE9Mf2JdPdlQ+YJ9hekMqvPdU1+QZKR+THzR95KeYtkczIAHXUdeSv6LW4NvLWZZybT1JzuoPxJ+iekmlMBR5bU1PCpPB329L8mOFmmYVzo/VsWI5dIubWSL49v5ZQhH/dlFvw+riT3TS3Gkep6txkUEMUDHQYxO/hb7B3UvLb5Aee6EyW5LE46QLaxFC8XHdfWWfTsBGsz4jBYzI6iZ9F9iJItIzJNhMFm4KXEl/g552cqxApUChXjfcbzaftPaatr29zTk2kBnKg4wbTEaawpWoNVsqJRaLja92o+jPmQGF3M+Xcg869BFiNNiF0SOVSYyfpHtyEuKyPjL3e8A/QMDIxiaFA7POuwWGTuzuXngcvoO6UbYz8Z3AyzlpFpGAcMB5iSMIXtpduRkPBR+TA5bDIzo2aiETTNPT2ZFogoinyW8RmfpH1CWmUaAJHaSJ4Lf65VlfeXuXhkMdIM/DTwD7L35fOS7bHzjl1x30aO/ZzIf05OwrutnDkj0zI5ndb5bsq7pFc66up0c+vGu+3eZYLfhGaenUxrIq48jmknp7GuaJ3TWjLBdwIfxnwoW9T+xVzo/VuWpZeR0rRyXDwv7AkxdX0mGne1LERkWiRFliIePP4g+i16njzxJDmWHG72v5n0IekcHnhYFiIyDaaTvhN/9/wb40gjH7b7kEBNIMsKltFuVzuid0TzZcaXcibOFYwsRi4j5iIz7qFu5x1nKbdQnm0kuH9AE8xKRubC2VG8g4F7B+K3zY/52fNxV7rzdvTbGEcaWdJ9CWHasPPvREbmHKgEFc+3eZ60oWkcHXCUa3yvIb0ynSdPPIlus46bD91MsjG5uacp08TIpfPOQ3GlkaXJsRwrzsIi2vHX6rm//UAi3X1rjLNZbNgrRbzbe9YIQvV20dXqvBv7XTwAR+6sYPv2BXLnXZlmRRRFPkn/hI/SPiLbkg1Ab31v3m/3PmN8xzTz7GT+zXTRd2Flz5XYRBsfp33M5xmf80fBH/xR8AfR2mimtZnGf0L+I8eWXAHIf+FzUGG18MGhdSgFgae7juSNPtdyW3Rv3FS1XTGZOxy1P9z7ePDFsc108Ark1d7X1Nl5d/eKOOxeCiZc3UfuvCvTbORZ8rj76N3oNuuYdnIaRdYi7gy8k+yh2ewfsF8WIjJNhkpQ8WLki6QPTedI/yOM9xlPWmUak09MRrdZx62HbyXVlNrc05RpRGQxcg7WZBzH20XHA+0HEuXuh59WT2fvYPzPKl4GkL7NUawsu4cVP62e26J7E6zzZFRIB3r7hbM+80wBoJJEA0IHF4aGtiPEzZO72/VHI6jYmXuqyc5N5splY9FG+uzuQ+C2QH7N/RUftQ8ftvsQ40gjv3b9lSCXoPPvREamkejq3pXVvVZjGmliTts5+Kn9WJK/hMidkbTb2Y5vMr+RY0v+hchi5BwcLsygjd6Hr+O2Me2fJbx9YBXbsk/WOTb3oKNrbk6wiY5eNS/m1TvvZuzNRZ0uEj5E7rwr03TYRBuzk2cTuDWQMQfHcLD8IAM8BrC993ayhmXxfJvnZVO4TItCJaiYHjmdjGEZHOp/iHE+40g1p/Kf+P/gtsWN2w7fJltL/kXIV59zkG8uZ0t2IgGu7jzTdRTDg2NYmLS/zjbgxQmlKLVKyuyVeNTRVfd0593dXx1GEqDr/e1rjSm1XpybpshcQVp5kfOnyFxxUfuR+feRYc7g1sO3otus49WkVymzl/FA8AMUDCvgn37/MMR7SHNPUUbmvHR3786aXmswjTTxTvQ7+Kh8+D3/dyJ3RtJ+Z3u+z/xetpa0cuQA1nMgAW30PtwU2ROACL0PWcYStmQn1moDXp5dgauvC4bz7DNzQzaVnQTcIy9Px9IicwUz963AJp35IqoUAm/1nYiP9vyZPTL/TlYWrGT6yekcqTgCQLhLONMjp/N4yOOyBUSm1aISVMyImsGMqBnElsXyQuILbCrexCPxj/BUwlPc4HcD78e8T4Q2ormnKtNA5KvSOfDUaAk+q9NusKsnxdWaW52mstSKZxv3c3bepVLCmG7C1F912TrvltsqawgRAJskUm6rbPC+ZFo3FtHCzFMz8d3iy7WHruVoxVGGeQ5jb9+9pA1NY3LYZFmIyPxr6Onek3W912EcZeSt6LfwVnmzMG8hbXa0of3O9vyY+aNsLWlFyFemc9DWw59cU01bR67JgI9LTYtDeY4RSZTw6+JDtIcfx4qzarhN9hekEe7mzeHv40EC/SBPufOuzGUj2ZjMxNiJuG124+2Ut6kUK3k85HFKRpSwte9W+nr2be4pysg0GhpBw6tRr5I1LIv9/fYzxnsMSaYkHop/CP0WPXceuZMMc0ZzT1PmPMhumnMwNrQj7x1ay8q0Y/T1jyClrJBtOSe5J6a/c8wfybFkbHHUZggZ4I+bjy9rM+KYfXB1jX0JKPD5XykoYPx1vfjvqd1Euvs4O+9aRFuthngyMudiSd4SXj31KvFGR92aKG0UMyNn8mDog808MxmZ5qG3R2/W916PRbQwJ2UO8zLnsSBvAQvyFtBB14EZbWZwb9C9soWwBSKLkXMQ6e7LE52G80dKLH+nHcFPq+f26D4MCIhyjim1mChNLEMFtBkdikFpq3NfIhKFh4vwjHSnf3AUFZKFP1MPOzvvPtNlFB51NNQ7F3ZJJL44t851FVbZTfNvxGwzMzN5Jt9mfkupvRQBgdHeo/k05lO6undt7unJyLQINIKG16Nf5/Xo19lXuo8XT77I1pKtPBD3AE+ceIKb/G/ig3YfEKINae6pylQhN8q7DPw6agVpW7KYLv6HtPKiWlYRAHWCjbBHTPSa3Jnx/zfsko9ZbjXz5fGtnKonHdhFUPF452F09g6+5GPJND8nKk7wTMIzbCjagB07HkoPHgp5iNnRs9GpdM09PRmZFo9FtPBOyjvMy5xHrsXxENdR15FXIl/hnuB7mnl2/17kRnlNSEmyAY27+pxjPJZaAej7zKU/vVpFO58f3VxDiLipNDViWSpFG18e30qyXLukVfNL9i+029mOjv90ZG3RWqJdo/m1y6+Ujizlk/afyEJERuYC0Qga3oh+g5xhOfzT9x9Geo0k0ZjIvcfvxW2TG/ccu4csc9Z59yPTOMhumsuAMf/8DfJc99pRuSnx7eB9ycfblZtMSnkRAB5qLffGDKCrTwiCQkG+qYyFSfs5UpSFVbSzOPkgL/a46pKPKdN0lNvKmXFqBv/N/i9l9jKUKLna52o+6/AZMbqY5p7eFU+RuaJWtppe5SKn0rcgiswVlFnN2EQRpSAgKBQ1/kYDPAewqc8mzDYzs1Nn803mN/yS8wu/5PxCJ10nZkbN5M6gO5v5LK4sZDFyiYiiiM1ow7udw/xUbK6d9kuliCpfwnvopQsRgC3ZCc7f/9NpGO08/Z2v/V3debzTMN48sIpck4FThnwyK0oIdfO6LMeWaTwOlx3m2YRn2VqyFRERL5UXL0W8xKzoWbgoXZp7ejLUXdcH5No+LYnYgnTmxW3j7PgDpULBW30m4ut6psaTVqXlrbZv8Vbbt9hVuovpJ6ezvWQ7dx27i0fiHuHWgFt5r917couEJkB201wi+YcLAQjo4cvfaUf5Mm5rrTHuK60oAPVEz1rrGorJZiGjogSAcDdvpxBZl2Hktb0Oa4lKUDIsqK1zmxMldQe5yjQ/oijybea3RO6IpMeeHmwu2UxHt44s67aM4hHFvBvzrixEWhB11fUBubZPS0CSJP5IjuWrOoQIgF2S+N/JPVhFe53bD/IcxJY+W6gYUcHLbV7GTenGTzk/Ebw9mC7/dGFhzsLGPYErHFmMXCKpmx1pvdkxlfyZerjGutPdffXrbEgK2NEnp97eNhdKpf1Mts7ppzCLTeSWtbnMOVhCucVxofSt9oRmEevO8JFpPkosJTwW9xjuW9x5LP4xMiszucHvBlIGp3Bs4DFuCLihuacoI9OqWJMRx+qM487XWqWKCL03etUZMX+8JIefEv455360Ki2z280mb3ge23tvZ5jnMOIr4pl0bBL6TXoePP4geZa8RjuPKxXZTXOJ5OzLB2BraDqgAGB8WGfGhnbEQ6OluNLI1yf/hzVQARqBxUkH6OsfgWuVUGkobmoXBIUCUZJIMhRgE+3csT6PMqvEZ4N90Gsc+jKx9MyXpaEpwzKNx97SvUxJnMKu0l1ISPiqfXmhzQu8GvkqKkH+OsrIXAwVVgt/pR1xvr45siejQtqjUaoQJZH9+Wn8lLgbi2hnT34qY0I7Eunue979DvEewta+WzHbzMxKmcX3Wd8zP3s+87Pn09WtK69Hvc6tgbc25qldMciWkUukML4EVApEnUOIjAntwM1RPZ3N8iwnTGCWcB/pBTiyXP7JS77o46kFJT19wwAos5qZvjuBZakmYjxUPN3NcYxck4EdOUnO8T18Qi/6eDKXjiiKfJb2GWHbw+i/rz87S3fSXd+dlT1WUjC8gDei35CFSCvBZLM29xRk6uCfvCSn+2V4UDvGh3dGo3R8pwSFQL+ASG6J6uUcv/UsC3W5rZzVhat5MfFFBu4dyJ/5f9ZYr1VpmdNuDnnD89jWextDPIdwvOI4tx29DffN7jx0/CEKLHLm4qUgi5FLpCy9HNwVztdXhXYCIC/PxiuvFLL1/aMAjH7uTNXW48U5l3TM0SEdACgwavnosAaQ+GKokrTyIlamHeW92LVUVrlmBgRE4qaWYw6agwJLAfcduw+3LW48m/gs+ZZ8bgu4jcwhmcQOiOUav2uae4oyDeCfvGS+OLq53vVxxdlNNxmZGlQvczAsuB0AJruJcQfHsTxvOaW2UgYFRqNSOG55J0oz2VS0iZmnZjJg7wC8tnhxTew1fJz2MbsNu8mszKz3WEO9h7K973bKRpTxYsSLuAgu/Jj9I/7b/On+T3eW5C1p3JP9lyI/jl0i5mILYrQScFghvF0cdR/mzSvjnXdKecs/G1edig69w2Bn1Tb2S3u68tf6kl3RmxWpakCBj6acJSm7IaXmuFCdV42nAZmmYWvxVp5PfJ79ZfuRkAjUBPJ6+Ou8GPGiXIa6lbInL4UfT+yqsUwBNQIll6Ycwk2tZWi14HGZpqF6UKpHVcPRfYZ9rCtax7qidYCjwFm+pYIKqYRKSwXvHBRRKVTYpDMxdXYc+xngMeC8x9SpdLwX8x7vxbzH1uKtzDg1g39K/+HWI7eiV+q5I+AO3m33Ln4auefYhSBfGS8BS7kF0SqijHbEf1hFO5lVmS4rVlSgUoioCkoJ7ONHctkZ5a6/SEuFTZSYd9xA1K/prEjVcDpGpX9gzSZQCqC3bzjPdx+L7iJjU2QahiiKvJfyHsHbghlxYAT7y/bTx70Pm3pvImdYDtMjp8tCpJVitln55eQe5+t+/m14vfcE5g27i1l9rmVQtfYQC07tk1sxNAOnHwIB4kocludh3sP4odMPADwU/BD99IMplrIxU4aEI9C/uhA5jUahoZu+W4OOP9x7ODv67qBsRBnTIqahUWj4Pvt7ArYF0GN3D5bnLb/YU7tgiswVNRq0FpkrGv2YlxPZMnIJpG91mGXD+gaRhCNgdEXqER7rNJRDhyx08qqAYuh0Tzv+Tjvq3K63b3iDj7Ux08RT2wuIK6ltVbk7piOCohCbKOKr1TEgIAo/rb6OvchcbrLN2UxJnMKy/GVYJAtaQcu9QffycczH8hNRKyGVVH7kR/rRj2EMw4OaJat356Vgrspi6+MXwcMdBqNQOB4EgnSePNBhEAC78pKxinZ25iZxVVinpj2JK5z+/pFsyU4EYGXaUbr5hKJXu/BA8AN8k/kNP2b/yFNec3lQ/T3bbN+RIG2rd18iIhNiJ3CVz1VMCppEhDbiguehU+n4IOYDPoj5gM3Fm5lxcga7Dbu58ciNuCvdmRQ4iXfbvouPxueSz7k6ddW/aW21b+RHtUsgY4ejfseQiV3QVgVLHSxM54XFO7Bawd9uAAWs75VBQlV2i5fGlV5+Fy5GTpVauWF1DmP+yiahtG73zo2RkdzVrh/3tR/AtRHdZCHSBKwtXEuv3b0I2RHCorxF+Kv9mRszl4oRFfzU5SdZiLQitrOdWcziOq7DG2/60IfpTGcNa6iggiPFZ+IHrg7vjEKhwISJL/gCE6aq5V2cY44UySXFm5q2Hn5E6h03+DxzOW8dWMnq9GOcKM3l2YA5gIJ5JS8hSSLXuj7Ll+3noVKoEM66BSpQoELF+uL1vHTqJdrsaIPLRhdidsZw19G7+C3nN0w20wXNaaT3SHb124VhhIGp4VNRK9R8m/Utftv86Lm7J3/m/XnefZzGLtVdG+U0ddW/aW21b2TLyCWQF+twvUT0CeT+ooF8E7cDCYlvnnF8KdqWZ2ANUJBhdhRGUykEHuwwCJWgvOBjXL0ym5MGx1OZvY5KPp4aAb1a1pRNgU20MTtlNl9kfEGBtQAFCgZ5DOKT9p8wwPP8PmaZlklf+jp/FxE5wAEOc5j3eA8lSkIi2+Hi54fW4sH7bjvZwx4OcAA7dr7jO+Yzn566ns6Ue6PN0oxnc2WiUCh4pOMQ3j+0DoPVTInFxB8ph5zrByvvY4d9PmvED9nQaQMdvALp5dGD6w9dT5GtyHmzl5D4b5f/crP/zawtWssf+X+wq3QXSaYkTuae5Lfc3wDwUHoQo4thmNcwbvW/lUGeg+p1w+pVej5u/zEft/+YDYUbeDnpZfYa9nLDkRvwUHpwV+BdzG47u15riUW00GlXJyb4TeCz9p85rXL/Ni7qLvZ///d/REZGotVqGTBgAHv27Dnn+Llz59KhQwdcXV0JDw9n6tSpmM3mi5pwS6LopAGVqxJBEOjtF8ETnYeRtTmI8lxHAJVVVGPq79B7Pi46nuk6io5eDSsr/NUwP4J1SpT1fP7a6GU92dikmlO58dCN6DbreCP5DYx2Iw8HP0zRsCJ29tspC5FWTgwxuONeY5mNqgcA7KTrTnAycAdHw1fxt7SKjnTkUz7lcz6nkkp60YsO9o4Uah2xW3KcVvPg7+rOSz3H0bWOTuVdlFcRqexGpniMzeXLABjoOZBDAw7R171vDQvJAI8BqAQVE/wm8G2nbzk68CjGUUYKhxXyZYcvud7vejxVnsSWxTI3fS5DDwxFvUlN8LZgxh0cxwepH5Bhzqg1B4AxvmPY3W83hhEGpoRPQalQMi9rHn7b/Oi9uzd/FfxVa5tl+ctIMifxRcYXzEmdc3nerBaIQpKkuirn1svChQu57777mDdvHgMGDGDu3LksXryYEydOEBAQUGv8r7/+ykMPPcQPP/zA4MGDSUhI4IEHHmDSpEl8/PHHF3TMC21B3NR87PkDWm8XJqfcDcC2bSZGj87GZgOQGEMSd6xQ0W9QDN18QlAqLlz7FVcaWZocy7HiLMqtEvvzozlQULO3jQK4MVLH0vEOgXOiJJfFSQfINpbi7aJjQkRXBgdG19hmU1YC6zLiKLWYCNN7M6ltH6LcZZdCXfyZ9yczkmZwvMJR1bGNtg0vR77MI8GPyMGo/xIsWFjBCp7mabKpJzVXArXdlTFxT3G98joe7zTM+XRqxcrj0uP8gCNQsk1hbz6v/IaJoX2a6hRk6iDXZCC2MINyayWuSjWdvIMIdtUTsD0Ak2ji1OBTzlgQi2jh6RNP803WN/iqfckfln/B1oejZUdZmLeQTcWbiKuIo8hW5FznonAhQhtBP49+TPSbyI1+N6JVaWvtY13hOl459Qr7yvYhIeGp9OSuoLt4J/odvDRejNo/im0l25yZPvM7z+f+4Ptr7COtvIjZB1fX2vcrva4mQn9541MayoXevxssRgYMGEC/fv344osvAEcWQXh4OE8//TTTp0+vNf6pp54iLi6ODRs2OJc9//zz7N69m+3bt1/Wk2lq3hW+Jnx4MHdvvp4TJywMGJCJwSDheEcl2gtFnLD3a/B+K6wWZh9cRXuvQEYEt8NdreX/jubxxn4JUCAoQJRALcDTXT35aJAvBeZyZu3/m+HBMQwNakt8SQ6LTh3gqa4j6OIdAsDe/FTmn9jFXe36EeXux4aseA4UpDGrz0RnkbYrHYto4fWk1/k682uKbcUICAzzGsbc9nPp6d6zuacnc4kc5Si/8Rub2UwccRRTfM7xChSMkEbScd+9iGZHFlxP3zCuCe9CuN6bzIoS1qQfZ335btZ1nkuxLgM1al5RvMLrvN4UpyTTALYWb2XEgRG00bYhZUhKjXW/5PyCTbLVutE3BJtoY3XRapblLWOXYRfJpmRM4pkYk9PuneFew7kt8DYGuA9wPtgYbAZmJs3kp+yfKLGVoEBBZ7fOHKs4VuMYSpSs7LmScb7jAMeD6/LUQ+zKrV1M89muo+hch6WoKWkUMWKxWNDpdPz+++/ceOONzuX3338/JSUlLF9eO33p119/ZfLkyaxdu5b+/fuTlJTEtddey7333svLL79c53EqKyuprDwTeGMwGAgPD29RYqQk1cC8yN/o/VQXes4cRL9+GWRm2rFXizNyVdqpsLZrsI9vaXIspwz5vNDjKgBsNhua79OQgI3XBbHwVAVfx5UB8OlgX57p5smS5IMcLcri9T7XOvfzbdx2jHYrz3YdBcCc2DVE6n24s51DIImSxIw9yxgV0r5GAN6VSKIxkWcTnmVt4Vrs2NEr9dwXdB/vtXsPvUoOCG6NGDCwmMWsZCX72U8mmU73i4BAIIH0oAfjGU8AAdzN3bX2MY1pzGEOh/Kz+DZ+e50N2KoT2a2E971eoYQS/PFnPvOZwIRGODuZi+XJ+Cf5MvNLHg95nK86fdXoxyuwFLAobxGrClYRWx5LdmW208ohIBCgCaC7vjvjfMZxR+AdhGnDWFO4hldPvcq+sn219qdAgVbQsr3PdtzEUL48vrXe2lWuSg3PdB1JtEfzWb8vVIw0KOCgoKAAu91OYGBgjeWBgYHEx8fXuc1dd91FQUEBQ4cORZIkbDYbjz/+eL1CBGDOnDnMmjWrIVNrctI2OiLmfXoFcO212bWECIDJruTUKRvt2qkbtO/DhRl09g7m67htJJbmsSw5EglvxodpGRWqY1Sojtui9by2r4hRIY6+M0mGglrxKJ29g1mUdAAAm2gnrayIa8I6O9cLCgUdvYJIMly5ZYwX5izkteTXSDAmANDWtS2vRb3GfcH3NfPMZBqCiMhOdrKIRWxnO4kkUk65c70ePd3oxjCGcTu3M4hBNeIEijhjXldW/fuRH7mLuwDo4x8BDOV/J3djrKMkvFap4s52/RjoFcVLPM7LvMxHfMS1XEsvevEHf9CGNo33BshcMP/X8f9YXbiaeVnzuC3wNkb7jG7U4/lp/JgcNpnJYZOdyw6XHWZh7kI2l2wmriKOtUVrWVu0lmknpzndO73de3Os4lgNywo4gmwrxUquOjiOicIbuOBwwyiACL0PoiSRUVGMBJjsFj4/tomXe16Nv2vNuKiWRqNHP27evJl33nmHL7/8kgEDBnDy5EmeffZZ3nrrLWbOnFnnNjNmzOC5555zvj5tGWkuRElkReoRduelYLCa8dS4EnLYUTbnjUVuHDhQiVi7qzgAMxbsJmBkRoNiOPLN5WzJTmRsWEdKzFGcMlTiqTHx+pmgf8aEuTIm7EzPGYPVXMvV4qHRYrZbsdhtGG0WRCTc6xiTYzJc0vvT2jDajLyS9Ao/ZP2AwW5AiZKrfK7i05hP6aSX60O0BnLIYQELWM1qDnGIPPIQqwpZqVARSijjGMd1XMct3FKrdsjZ+OBDNNEkkUQggaxgBb3pXWNMH/8IuvgEsycvlcNFGRhtFlyVGrr6hDAwIApXleOhQ0DgXd5lOtOZxCTWsIYooriTO/mRH9EgB7g2lFXpxzhYkE6OyYBGUBLt4c/NkT0J0p3777o/P43lqYcpNJcT4OrOzVE96eYTypY+W4jaGcX1h67nxzYb2ZOXgclupa2HH3e160ega+Na4Lu7d6e7e3fna5toY2XBSpYVLOOf0n9IMaeQaEqsd3sRkSJbIb/yIrco5zDYrzv3tR+IZ1VT1KLKCn48sYuE0jyMNiurM45zb0zLDrRvkBjx8/NDqVSSm5tbY3lubi5BQXVnicycOZN7772XRx55BIBu3bpRUVHBY489xiuvvFJnIKCLiwsuLi2nn8rq9Di2ZJ/kwQ4DCdZ5klpWxO/5G8jQBPD3mkrq88IISpHyRF8+e64b8SU5/JywG0+NtkYMx+9JB2rEcHx2dBMSEm30vkwM64pmTRqg4OVeJrZkZzDoLDEjc+EcKz/GswnPsql4EyIinkpPngt/jtnRs+sMLJNpGdiwsZKVLGMZu9hFCimYOZON5403AxnIaEYziUl04eJcjvdzP7vYxU/8hD/+dY7RKtUMD27H8Kr+J+fCCy9Ws5oDHOB2budXfmUpS5nDHKYw5aLmeKWSUJrHyJD2ROp9sEsSy1IO8enRjbzR5zpclHXfxk4Z8vkufgc3RvWgu08oe/JS+Or4Nl7pdTVhbmHM6zCPR+If5d202Xzf7f/w07rxZ8phPju6iTf6XIe6ASUYLhWVoOL6gOu5PuB657JBewfxj+Gfc25nxcQC+1Q8hMfIs4XhqYkBwMfFjcc7Deflvcsw223syUvh1qjeTsHcEmlQSoBGo6FPnz41glFFUWTDhg0MGjSozm2MRmMtwaFUOv7IDYydbTaSyvLp6RtKN59Q/LR6+vhH4HYC2kUU8/XXftx2mxve3qfPUYKqJzTRLpB31J1gnSejQjrQ2y+c9ZknnPtdnxnP0KC2DAlqS4ibJ3e3649GUKERVATrPOmwKAsJGBuqZUCAJ8WVxnrn6KHWYrDUTJc2WMxolWo0ShV6tQsCCsrqGOOp/nffiOdnzSd6RzRdd3dlQ/EG2uvas7jrYkpGlvBR+49kIdLCSCSRWcxiOMPxxRc1am7gBn7kR5JJJoII7uM+lrKUSiopoogd7OAt3rpoIQLwGq+xilX1CpGLpTe9OclJfuAHVKiYylTCCGM7FxbAL+MIxBwcGE2Imxfhem8eaD+QokojqeVF9W6zIfMEXXyCGR/WmWCdJzdE9iBC783mLIdL9qGQh+inupkD9j/ZVvEHYW7ePNhhECWVJmIL0pvq1OolqzILJUr81H501HVkpNdIxvuMp497H4LUwSidFjaJb7K/pv2u9oRsC+Glky8B4KbW0MvvdMbQmVYlLZUGu2mee+457r//fvr27Uv//v2ZO3cuFRUVPPjggwDcd999hIaGMmeOIx964sSJfPzxx/Tq1cvpppk5cyYTJ050ipKWTrS7P9tzTpJrNBCo8yC9vBixwIZHoI7HHvPgscc8kCQJtToZ0Q4dKCBJ64fFLBAfb0WSJBQKxQXHcMSX5LAp00RSmQ21AtZdF8KiU/vxcam/rG+0hx9Hz6r8GFeS4wxcUglKItx9iCvJpWdVBVhRkogvyWFUSPvL/ZY1O2W2Ml48+SI/Z/9MhViBSqHiWt9r+bT9p7TVyY3MWgpGjCxlKX/yJ/vYRwYZWHHEZChQEEAAYxnLOMZxJ3cSRli9+yoyV9SoOKlXubSoUtgP8iD3ci9P8zTf8A3DGMYQhvA7vxNEw+oPXemYqgI23c5R0yWprICxoR1rLOvsHcyhQkcNkAJzBT0UN5Ko3MzUxKlc53cdUboootz9SCoroF9AZGNN/4I4NfgUSoWyzgSI2MIMvjq+FZtoI9ivGKW2iG0l29hj2MPy/OW81+49wPEdOI1dqieWoIXQYDFyxx13kJ+fz2uvvUZOTg49e/Zk9erVzqDWtLS0GpaQV199FYVCwauvvkpmZib+/v5MnDiR2bNnX76zaGSuDu+M2W7l9f1/oVAokOwibdJFwnv4OsfY7Y4AVj+MPOx6lOJNgQTkt6W7W5Tzw3ShMRwuCjW/nQoGJJZf7cWevBS25Zzknpj+znF/JMdSYjHyYIfBAIwIjmFzVgJLkg8yJDCa+JJc9uen8VTXEc5txoZ2ZP6JXUS6+xDp7suGzBNYRFutOJbWzAHDAaYkTmFHyQ5ERHxUPjwb/iyvR7+ORpB99c3NXvaygAVsYQsJJFBGmXOdG250ohNDGcpt3MZwhtcq110fl9qbo3pdH4tox1+r5/72A4l09613m4ut6/OV+1e8zuvcyq3sYAehhPIYj/E5n6OSi2KfF1GSWJS0n7Ye/oS6edU7zmAxOzv4nsZDraW0yjpssJoQFAKLuyxl3OGRDDswjLTBaXhozoxpTlRC/Z8Fn6rGgCpBhYetEy+2HedcZ7E7KgBLksTx4uxa27RULuqT/9RTT/HUU0/VuW7z5s01D6BS8frrr/P66603535/fip78lJ4uMNgQty8OLwriUP2vVT2PfP2vfOOIwi0OzkE9vKjVAnte0iMCndt8PEWJAVTaVfTzz+Xv9L24qfVc3t0HwZU6w5aajFRVM1t46fV81SXkSxOOsDGzBN4uei4t/0AZ3wKOLqNllvN/Jl6GIPFTJjem2e6jMJD0/A5tiREUeTrrK+ZkzKH9EqHebWrW1fmtJvDdX7XNfPsrlwKKGABC1jFKmKJJYccZ5CpEiUhhDCa0UxgArdzO154XfSxztWbw4dzi5EKq4UPDq2jvVcgT3cdibtaS56p7JxP3QXmcr44tpnhwTE83HFwg2LCZvWZSJAmiO1sZytbuYu7mMc8/sf/+IzPeJAHL/p9uBL47eResipKnaUPLpV+nv2YGj6Vj9M/5uH4hxmkePiy7LcxCXfzJkTnSZaxlFOGAvbkpdC/ypKjUTo+t1tzTpJpLAEg2t1Pzqb5N7AkOZbx4Z2dZru0fQ5LR3yHUueY778vAyQGkk7nO/uTo84+ZwyHoFDUGcOxObOSxFJ/1ArYc/MgoO5YnNOdQqvTwSuQV3tfc85zGRXSgVEhHc5zxq2DIksR005OY0HuAkyiCbVCzc3+N/NJ+08a1GlT5tIREVnHOpawhJ3sJIkkZxM5AE886Uc/RjGKO7iDnvS8bMcut5rZnn2yznWllSY4T5mYNRnH8XbR8UD7gc5l52s2uSU7ET+tntuiHRk3wTpPTpbmsz7zhFOMVI8JA7i7XX+OFmWxM/eUs67PcIaTQQZzmcsMZvAQDzGb2SxiUa1sHhmHEDlSlMW0HmPxPs+TvodGi8F61jXYasazyhrtoXY8hBksZj5q/xErClYwP3s+Hp79Gezd8GKVTYlCoWBsaEd+StwNwPcndnKwIJ3e/hFIksTe/FQOF51p8Hi2u6olIouRC8Ai2hA447fLOVCAJABhZyKTMzLsKBFxx0qPRzqSkm1tcAyHxWrl2zhHyfeN1zVv1byWzK7SXTyX8By7DbuRkPBX+/Ny5MtMbzP9nKZNmctHMsn8yq+sZz1HOUohhUhVJcE0aIgggv705wZu4HquR0vjBAmnlRfx+dHNtW46p/kmbjv/6TyMrj4hda6H2nV9vDQ6RgTHMOwcGTOXu67PFKYwmck8xEP8yq/0oQ/jGMdCFl6SxejfgiRJLDi1j9jCDJ7rPuaCOpNHu/sRX5JT40YcV5xDdFX7Cz+tGx5qLfElOYTrvdnaZysRO9rwq+F9bgld2WjncrkYHBhNUlkB23NOAXCgMJ0DhbUDb8eEOpInWjpyg40LoLtPKCvTj3KkKJMCcznpGQXYQgV6Bjn+wGazDVGUCNGUoQ91Q6VVMSI4hgJzOUuSD5JjLGVzVgL789MYG3rGKjE2tCPbc06yKzeJbGMp3X6Po1JUMyxIzdCQ1u06udyIosjHqR8Tsi2EwfsG84/hH3rqe7K+53ryhufxatSrshBpJMyYWchC7uIu2tEOF1yIJppXeZUtbEGBgpGM5B3eIZlkKqkkkUR+4Rdu5/ZGEyLFlUY+O7qphhAJc/MiQu/tfHiwSHbmxW0j7RxZF6fr+gS4uvNM11EMD45hYdJ+duUm1bvN+er6lFsr640JK61HOGnQ8D/+RzLJ9KY3a1mLP/68xEtO99aVym+n9rG7ylWuVaoptZgotZiw2G3OMT+e2MkfybHO12NCO3CsOJt1GXHkGEtZkXqY1PIiRlYF7CsUCsaEdmRl+lEOFWZgt2l5xOMdCqU0Xsx4qKlPscEoFAruadefW6N61YqNAfDSuDKpbV9ui+rdKjr9ylfvC2BS274sTz3Mryf3UmatxN9kxMVDxQ1tHEVrXnqpGFDQ3ZJD5FWOQmQNjeFIKBFIMHRBI4hsvUF2MZwmz5LH1ISpLMlbQqVUiYvChUkBk/ik/ScEucgZCI1BLLHO/i0nOEEpZ9yRrrjSnvYMYQi3cAtjGHPBQaYNxWbdiihmolJfgyB41Vq/NiOOMqsjeybK3ZeHOwzB39XxxGywmPnl5B5iCzOwinZWpB7hyS4jau0DHMn4bfQ+3BTZE3BUscwylrAlO7FZ6vq0oQ372c9KVnI/9/M+7/Nt1b9buKXJ59MS2JLtKAD20ZENNZbf336gM2i4qNKIopoFu62HP490GMLy1EMsSzlEgKs7T3QeViPodXxYJyx2G/9L3IPRZiHGsydXeV3D2pK/+SD1A15o80Ljn9wloFAouCqsE6NC2nO4KIvcqgKWITpPujawOWtzI4uRC0CrUnNH2z7c0dbRifO9I98Q1McbVVVRnIULKwCJvmTS56kbndtdaAzHsIC2aL5PA2DdtbJ7BmBT8SamJU7jQJnD7B2sCeb5iOeZGj5V7ph7GSmhhIUsZCUrOcABsqnZNyOYYIYy1Blk6kfT9bgwmV7DbtsCKFGqhqLR3IxKfT1KZSQWu81puVALSiZ3Hl4jENtDo+WRjkOYuXcFxRYjR4oyKTJX1JlZ46nREqzzrLEs2NWTg+eoNXG+uj71xYQ1pK7PBCaQTz6zmMVsZnMrt9KFLixhCR34d8R9XShfD7vrvGOe7z621rI+/hFVpfzrRqFQcH1kd66PPFMN9WlxBAHbAph+cjo3+t9IjC7m4ibdhKgEZatwxZwL+areQIxFZiS7hG9nb+eyvDwRDXb0WgXBfRpeMKnr79lIwNBAF4aHtOz0q8bEJtp4J/kdArcGMvrAaA6WHaS/R3+29d5G1rAsnm/zvCxELgERkY1sZDKT6UEP9OjxxpvHeZw/+RMDBnrRi2lMYw97sGMngwz+4i8mM7lJhQiAUtkeUAJ27LatmIxTKCuNwlDSheKyGfioEwCJ7j6h6FVmbNbtGCueoqLiP0iSiFpQMqAq6FwCUsoL6zxOWw9/5xPlaXJNhvPW9YkvyamxrL6YsNOcruvT0KZlr/M6RRRxPddzjGN0ohO3cAtG6i+CKHPxqAQVa3uuRUJixP4RiPX1+pC5rMiWkQaStskRlBrSPwCAggIbkiQRRikBPeuvSVAfPycYOFFqRaWAbTeGnn+DfyEZ5gymJEzhz4I/sUpWtIKW+4Pv5+N2H+Oj8Wnu6bVa0khjAQtYy1qOcIR88p1BpmrUhBNOP/oxkYncxE3oaFlCWKnsAs4+uWeqNYvicTTE8UxbCVFSYJN0GEoqqtYqAIky2040LlPQq89kyNjquamMDe3Ie4fWsjLtGH39I0gpK2xxdX306FnOco5xjFu5laUs5S/+4nVe52Xqbzoqc3H09ezLS21e4t3Ud7n3+L380vWX5p7Svx5ZjDSQzF2OJ52IkY7Yj+eeKwQU9CSbTpMaVtnTZrNx/yZHZP2aCVde/MOqglW8dPIljlQcASDMJYwZkTN4PORx2QLSQCxYWMEKlrOc3ewmlVQqOVON1BdfhjGMMYzhTu4khpZtehbtadjtKVBP4KYCidPdJE6V96J38JOolF0RlO2x2w9gqpiB2fgIPbUuFPlNZGPBDfUWfYp09+WJTsP5IyWWv9OOtOi6Pl3oQhxx/MZvPMETvMIrfMZn/MzPXMXlqbsh42BOuzksz1/Or7m/cmfQnU1es+jlPcsprKyotXxEcAx3tas79bi+xoCnkSSJFalH2JZzskkbA14ICqkVNIgxGAx4enpSWlqKh0fzvmkLxv1FyvpMXrQ9iiAI+PqmUFRkZxYbmV7xABrdhTci6rwwnbgSK4MDNey4sf4y1/8mLKKFt5Pf5suMLym0FaJAwRDPIXwS8wl9PfuefwcyABzlqDPINI44iil2rtOiJYooBjOYm7iJ8YxvsZU9RTEDq2UVNtt2RPtRRDEVSSqmPhFSnSxzL75PeZRyuye3RfeuVUvhVOEs3MR30SrNVNpd8XB7B1fdlMY5kWZAROQFXuBTPsWOnb70ZQlLiEAOgL9cFFgKCN0eiqAQyB2Wi4eq6e4/ZRYzYjWLYFZFKXOPbuS5bmPo4BVYa/wpQz4fHlpfozHgmow4Xul1tTNod3X6cVanH+OBDoOcjQEzjSWN2hjwQu/fLfMK1YIpOVWG2k3lfHIvLhZxxYpPiLZBQmRBQhlxJVaUCq4IIZJsTObZxGdZVbgKm2TDTXDjPyH/4f2Y95v0C94aMWBgMYtZyUr2s59MMrHhSGkUEAgkkKur/t3BHS2yz4koZlWJjh2I9sPVRIe92ig1CoUvSuVAlKqeKJXDMBkfBcqrjXFcMLWuc7AziXL7NgAWJx0grjiHAQGRKBUCsYXp7M2PQeJbxvgtY2zA31Sap2KpfAut6/u4aFt+lc3zISDwER/xCq9wO7ezgQ1EEsl93Mc3fIMGuf3BpeKn8eOnzj8x6dgkRu0fxf4B+5vs2Genha9OP46/Vk97z4A6x1dvDAhwQ2QP4kpy2JyVwN0x/ZEkiQ2Z8UyI6EpPX8c958EOg5j2z1JiC9KbvRePLEYaSEWeEbcAh7k3JcWCJElEUkLk2AuP97DZbNy1KR+AVdfUVrj/JpbmLeWVU68Qb4wHIFIbyauRr/JwaOu/GTQGIiI72cliFrONbSSSSHm1m7EePd3pznCGcxu3MZCBjZZaezGIYg5W62ps1m1VoiOlDtGhqhId/VGqeqBUDUetHo8g1I4PslR+it1+uo26EoUQhpt+MSpVP7q5wjXhXViVfgyAo8VZHC3OOmsPAgbFVDy8FmKpfBmL+VNMxkcwm15Bq/sUF5c7GuNtaFJ88GE969nLXm7ndv7Lf1nEIj7kQyYzubmn1+q5I+gOfsv9jeUFy5mdPJtXol5p8jnYRDu781IYG9qx3pohF9IY0GA106lasT5XlabFNAaUxUgDEEURa4UNr7aOGv9Tp56JF+n91JAL3k/PpY7smYH+Gq4KbzldRS8XZpuZmckz+S7rO0psJQgIjPYezScxn9Ddvfv5d3AFkUMOv/Eba1jDIQ6RR56zwJUKFaGEMp7xXMd13MItuNMy+kuIYh5W62rs1m3Y7YeqREcRtUWHD0plX5TKnijVw6pEx4VnkyhVPZxiRK25HZ3bPBSKM5a0G9p0x9fFjb/TjlJsqZld4qbSMCa0I9eEd0ZQCKh076HVvoXZNBVL5beYKiZhNk3DVfc1Gs2ES3k7WgT96EcyyXzN1zzHczzJk7zLuyxkIYPqaSshc2H83u13grYH8VrSa9zofyNd9F2a9PixhRmYbBYGB0bVO+ZCGgMCdRbraxGNAZt7Aq2JohOlIIF/VbfejRvNgERXdSEh/eo2nZ3N76fKOFbscM/suvnf5Z45UXGCZxOeZX3ReuzYcVe680z4M8yJnoNO1bIyNZoDGzZWspJlLGMXu0ghBTNnLgLeeDOIQYxmNJOYRGc6n2NvTYMoFmC1rsFu3VolOpKrRIet2igVCoU3SmUflMoe1UTHhX0nzoVKNQxL5c/o3L5Erbmv1lOhQqFgWHA7BgdFc6wom4yKEiQkAlzd6ekbVssPLggadG7/h9b1A0zGyVgt/8NYfi0mIRqd2/eo1SMvec7NzX/4Dw/zME/wBD/wA4MZzAhG8Du/N3l69r8FlaBiY6+N9NzTk1EHRpEzNKdJg+x35Jyii08wXi288+6lIIuRBnA6rTd0oMO1YjBIuFNJaK8LSz+12Wzcsd7hnvlr/L/HPfNL9i+8kfwGJ02OZmUxrjHMip7FnUF3NvPMmpdEEvmVX9nABo5xjCLOlCR3wYVIIhnIQG7kRiYwoVl9/KJY5LB02LZht8VWiY5CaooOZZWloyeCsgcqp+hovBgVteYuPDV3oFCc+1KlVAh09w2lu++FuUsFQYebfj6i+BmmioexWpdSUTYKQeiETv9fVKqW3SjtfKhQ8S3fMotZ3MItbGELQQQxmcnMZW6Lcu21Frq7d+e1qNeYlTyLO47eweLui5vkuIXmCuJKcnm887BzjmtIY0DPahldBouZcL3X5Z30RSCLkQaQtTcPgIhRIRw+7LCKRFFMp0n1N9SqTu8/shGBfv4arm7Tut0zRpuR6aemMz97PmX2MpQoudrnaua2n0sHtyurOiSAESNLWcqf/Mk+9pFBBlasAChQEEAAV3EV4xjHJCYRRvNYxUSxxGHpsG2tEh1JVaLDWm2UssrS0QNB2R2VaihqzdUIQv3N5hoLhyWk8S5TguCBm/tiRLEAY/n92GyrKDf0R6nshavbT6hUXRvt2E1BCCHsYhcb2cg93MPnfM585vMlX3IP9zT39Fodb0S/wR/5f/B7/u8syVvCLQGNX55/Z+4p3NUudDtHs0doeGNAAJPNSnJZASPO0RSyqZDFSAMoPF6MQqVA56PluduzcMSL5NDz0fM/RS1NKuNIkcM9s6cVu2cOlx1mSsIUtpRsQUTES+XFixEvMitqFlpV4zREa4nsZS8LWMAWtpBAAmWUOde54UZnOjOUodzKrQxneJM/iYpiKTbrWmy2LdhtB6ssHQXUFh1eKJXdEJTdqomO1vv5vFgEwQ+9x9+IYgbG8vuw2TZRbuiGUjkIndv/UKqavkfN5WQ0o8kii/d5n9d4jXu5lzd5k9/5ne7IcVwNYXOvzQRvD+buo3czauioRi3MKEoSO3OTGBQYXavPzI8nduKl0XFTVE/A0Rjww8PrWZcRRzefEPbmp5JaXuQs3le9MWCAqzt+Wj3LUw/j5eLq7BzfnMhipAEY0srRejpM6f/8Y0aBRO8AIxr9uc3rNpuN29Y53DPLxl26H72pkSSJH7J+4O2Ut0kxpwDQSdeJ2W1nc1PATc07uSaggAIWsIBVrCKWWHLIcQaZKlESQgijGc21XMtt3NakLd9F0YDNuq6a6DhVh+gQqkRH1yrRMQS1ajyCqk2TzfNSWZ1+jD9SDjE6pIOzR1RdXGrRJ0EIQ++xEbvtFMaKe7Dbd1FmaItKNRqd/icEoXVXSX6RF3mGZ3iAB1jEInrQgwlM4Dd+wwM5xf5C8NZ481vX37j5yM2MPDCSwwMPN9qx4ktyKKo0MqSOqr2XozFgO09/nukyqtFqjDQEuehZA/jA5Vt8Onrx8KHbUChO4Y2J/96dy8T/jTnndj1/T+dQoZXefhr239J6njoNNgPTEqfxS84vGEUjKoWKCb4TmBszlyhd/VHdrRkRkXWsYwlL2MlOkkjChMm53gsvOtKRkYxkEpPoQY+mmZdYjs26HpttM3bbgWqiw1JtlEN0KIQIlMquqJRDUKmvRqmKbJI5NhYpZYV8E7cdV5Wa9p6B9YqRxij6ZLMdxVRxH3b7QUCBSjUBnX5+gzKCWiqnOMXN3MxhDqNGzUu8xCxmyfEkF8jtR25ncd5iZkbN5M3oN5t7Oi0WuejZZcZmtmG3iPh28GLzZkcKYTTF9H7q3D7l5cnlHCp0uGdaixDZW7qXqYlT2Vm6EwkJX7Uv09pM49XIV1ELF17YrTWQTDK/8ivrWc9RjlJIobN/iwYNbWhDf/pzfdU/LY3rihJFIzZbleiwHkAUTyJJ+dQWHZ4Iyo4oha6oVENQqcejVDWsHUFrwGy38v2JndwbM4CV6UfPObYxij6pVF1x9zyAzbobY8WD2Gx/YygJRK2+BVe37xCE1mtNaEtbDnGI5SznIR7ibd7mK77iB37geq5v7um1eBZ0WcCW4i28nfw2N/vfTE/3ns09pVaNLEYukIwdjg6dgb39mDq9CFDQW5lD6MBzRzjfvM4R9LrkqpbtnhFFkf/L+D/eT3ufjEpHkZzu+u682/ZdrvG7pplnd3kwY2Z51b897CGddCxVN3kFCvzwYyQjuYqruIu7aEPjuTEcomMjNttmRNt+7OJJJDEfqvWTAYVDdAgdUCq7oFINRqm+GpWqZfeVuZz8dnIf3bxD6OQddF4x0phFn1TqAXh4Hcdq2YjR+ChW62KsJUtRa+7FVfcVgtB646Vu4AbyyWcmM3mf97mBG+hOd5aylLb8+wTu5UIQBDb13kS33d0Ye2AsOcNyUAmOW+pew17+KviL16JeQ6lofhdIa0AWIxdIxnaHGAkfEcyhN4wIiAzudW5zZp8lGYgS9PJVc0OUvimm2WAKLAU8n/g8i/IWYRbNaBQabvW/lbnt5xKqbd3+8Vhinf1bTnCCUkqd63ToaE97hjCEW7iFMYxpFPO0KJqx2TZhs22sJjryOFt0gAeCEFMlOgZViY4rLyupOnvzUkgrL+LlXldf0PimKPqk1ozGU3MKi+UvTMYnsFrmY7X8gsblUbSunyIIrfOSKiAwm9m8xEvcyZ2sZCUxxHA7tzOf+Y1uEWytdNZ35q3ot3gl6RVuOXILS7sv5YPUD3j11KvYsTMpcBKBygjKbZU1ttOrXPDRtu6MystN6/zmNAM5Bx3ddUP6BWCuTMYPIx3vqD8d6q+Ucg4UWBCAPTcGN9EsL5ztxdt5LvE59pXtcxSJUgfwWuRrvNDmBae6b02UUMJCFrKSlRzgANlkY6+qBqpESRBBDGUoE5jA7dx+2Ys/iaIFu20TVqfoSKwSHdVvcqdFRzuUys4oVYNQqcejUjV/cbOWRlFlBQuTDjClW8sIrjsbjeY6NJrrqKxciNn4DJbKL7FUfo9G+yxa7ZxW23XaAw/+5m8Oc5hbuZWFLGQZy3iLt3iBF5p7ei2Sl6NeZmn+Uv4s+JOu/3R1tr4A2FNykD3Jh7BJNRs/qhQCb/WdKAuSarS+u04zUZxoQKlVsnRZBaCgLUX0fGxwveNvXOtwzyy+yh+VqmW8zaIo8lH6R3yc9jE5lhwUKOjt3psPYz5kpPfI5p7eBSMispnN/M7vbGc7SSRRwZlW2x540JvejGAEt3M7/bh8BawcomMrNtsG7LZ9VaIjl9qiwx1BiK4SHQNRqccjCJ1b7U2qqUkrK6LMamb2gdXOZSISiaV5bM5K4P+G3oFQLdWxyFyBm0pDWnkRQTpHHIde5dLoRZ9cXO7AxeUOKs3fYTa9hMX8PhbzF7hoZ+CifbnV/r27050EEviJn3iKp3iRF/mET/iVXxnJyOaeXotjasRU7jl2Tw0holKoOFp+DJtUu3S8TRIpt1XigyxGTtMy7pItkCJzRQ3TWllWOTo/LW++WQLAQM9CtB51p/T2XZKBXYLuPmpujm7+XiI5lTlMSZjCH/l/YJEsuChcuDvobj6O+ZgATcuOZQFII40FLGAtaznCEfLJdwaZqlETTjj96MdEJnITN6Hj0ksmi6IVu21bNdGRUCU6TNVGKQA9ghBZTXSMQxC6tdqbUEuho1cQr/Wu2S/mvwn/EKTzYHxY51pC5NV9K7BLIusy41mX6bghqBQCITrPJin65KJ9BBftI5hNczGbXqPSPJNK8we4ur6Ji+uzl7Tv5uQ+7uMe7uFZnuUrvmIUoxjIQJawhBCavgheS6PCXsHUhKl8m/VtrXWSJHHSlEAATdvHprUii5E6KDJXMHPfihqmtUiDFe/OXpzYY0GJyOgJXnVuuzq1gv1V7pn9NzWve2Zd4TpePPkiseWxAIRoQnihzQs8E/ZMi71ZWrCwghUsZzm72U0qqVRWxVcoUOCDD8MYxhjGcCd3EsOlBXOKog27fTs262nRcQJJzKGm6ACHpSMCpbJTNdHRo8W+j60drUpNqMqrxjIXpQo3lYszTffHEzvRCCqSywqxn2UGB8fTZ0ZFCQ90cDSJa4qiT1rXKWhcnqHS/DaV5ncxmaZgNr+J1vV9XLSts1O1gMDnfM5MZnI7t7OFLYQTzkM8xFd8heoKvY3YJTsD9w7kaEXdgdV27MQbjxPAv78W0+XgyvwUnYdyW2UNISIUiChEcO/gjmUnBGGk1+S6/fzXrckFYOHY5nHP2EQb76S8wxcZX5BvzUeBgkEeg/io/UcM8mx5nTuPctQZZBpHHMUUO9e54ko00QxmMDdzM+MYd9EXPofo2FUlOvZUEx3Gs0bqEYRwBGUnlKoBqNVXIQi9ZdHRAskxGsioKKnlj6+OiESuyeAUME1R9EkQBFx1r+GifRWzeToW82eYjI9gNr2CVvcpLi53XLZjNSUBBLCZzexkJ5OYxHd8x2/8xsd8zGM81tzTa3IEBIZ7DedYxTEEBGeMWnWSzacYphJRKOTrx/mQi57VQVp5EbMPnvFVu621EvC2mYI7BvDRQg8GK1LZIY6qtV3/pRnszbfQ1VvNkdubtrxumjmNKSem8FfhX1glK66CK3cF3sWH7T7ES+PVpHOpDwMGFrOYlaxkP/vJJBNbVSM2AYFAAulBD67mau7gDoJoeAM2URQR7buwWtdjt+1BFE8gitnUFh1uCEIIgtDRITo0VyEIfWXR0UqQJIl3D60lpawQAC+NK/0DIglz86Kk0sSe/BQyKkoA0AhKZve7oVYWTVMhihbMpilYKr8FbCiEcFx189BoJpx325bMF3zBi7yICRORRLKIReeMz7JjR0ndou9stzi0noyTuIo4Xjn1Cn/k/4ESZS1Rcqd6Lu4K/1rbvdLraiL0jVdKvqUgFz27jLgcd3y4luzUAxJXtSuvNWZdegV78x3umYM3N517ZkX+CmacmsGximMARLhE8HLkyzwa8miz3lhFRHayk0UsYjvbSSSRcs68b+64053uDGc4t3M7AxjQoNRah+jYg9W6rkp0xFeJjoqzRlYXHf0clg7lAFl0tHJSygqdQiRAq2d6z6txU5+J4boqrBPfx+9gX0EaFtHOztxTXB3ePL57QdCgc/sSreuHVenAv2AsvxaT0Bad23eo1SObZV6XylM8xWM8xqM8ys/8TH/6M4YxLGIRPtS8yZ7kJAMZyFzm1mrQV5dbHFpPxkknt04s7b6UfYZ9vHTyJTYWb0SBwhnXViJl1SlGDBeYTn6lIIuRC0CTJCIpIDMT1Ihc/XDtSqrXrHK4Z34Z1fjuGYto4Y2kN5iXOY9iW7HTXDi3/Vx6ufdq1GPXRw45/MZvrGENhzhEHnnO/i0qVIQSynjGM5GJ3MIt6LmwuiuiKCKK+7Fa1laJjrgq0XG2INShEIJRCh2qRMdYBOXAVlv3Qebc7M1Pdf5+dXiXM0KkIgtc/REENTdG9mRfQZpzfHOJkdMIgg43/X8Rxc8xVTyM1bqUirJRCEJndPr5qFSXL+urqdCg4b/8l7d4i1u4hQ1sIIAAnuVZPuAD5wPGczxHIYVMZjKjGV0j+PVst/hpWlvGSV+PvmzovYFNRZt4+sQUjhkdPWsS7NsIF2q3jfgp4R+m9xzf4sVWUyFfqc+i1GJia/bJGstU2SI2F7CaFYRSRs8nal7UBi11ZM909lIzqX3jZc+cMp7imYRnWFu0FptkQ6/UMzl0Mu+1ew+9qumKqtmwsZKVLGMZu9hFCimYq6W2euPNIAYxmtHcyZ10otN59+kQHQeqLB27Ee1xiGIWdYuOIJTCMJSqfqjUY1EqB8mi4wqj1HImwLi9Z1VGWN4+WNYPom+D0b/h76rHx0VHUaWxxvjmRhA8cHNfjCgWYCy/H5ttFeWG/iiVvXF1+wmVqvVlX0QQwV72soY13Md9fMzHfM/3fM3X+ODDClYAYMTIYzzGClbUaPL2b6K/+xDGSq8QKGxnk/h/ZEiHGRkSRYjOj8zyYvYVpFFhs1BqNfP9iZ280OOq5p5yi0C+glcjtjCD7+N3YBFr+vyUJRIHXILArCBabaiR0rsxw8g/+RYUwKFbGsc9szh3Ma8mvUqCMQGAaG00r0e/zn3B9zXK8c4mkUR+5Vc2sIFjHKOIIuc6F1yIJJKBDOQmbuIarkFD/V2MHaLjEDbrOuy2f7Db4xDFTKDsrJGuVaJjSJXoGINSOVQWHTIAaJRnPgdFlUb8Xd3BrxcIakj6HcyFWEb+RJnVEYegaYGfG0HwQ+/xN6KYgbH8Pmy2TZQbuqJUDkLn9gtKVetrRjme8eSSy9u8zVu8xSQmoUGDgICIiB07f/M3v/Ird3N3c0+3UdiVl4TJbqOdaiBDPPrxcfETrK/8ju/bfg/AdW268W7sWgorKzhpyCe1rIg27v/+2JHz0fK+oc1EQkkuX8dtQ6wWz+un1WO2VKKohD1iGCDRr28ONtGOqir6ftxKR5n4/43yu6zuGaPNyKtJr/J91vcY7AYEBMZ6j2Vu+7l00Tfek5MRI0tZyp/8yT72kUEG1qp29AoUBBDAVVzFeMZzB3cQRt3N/xyi4yg265o6REf1mGltlegYhFLVF5VqNErVMAShfkEjI9PeM4CduUkAbMlOpINXIAhK8IgBfRsoPIC0uBvX6wey0fcaYvwjm3fC50AQwtB7bMRuO4Wx4h7s9l2UGaJRqUaj0/+MILS+eh6v8irP8RyDGcwhDtVYp0DBkzzJGMYQRBA2sXYWSmtmd16K8/fJMdcTVWLjobiHGO87ntsDb8dD48rV4Z355eRex/j8ZFmMIIsRwBGZvyjpAEkmI+Z8K/5rYXNeFEqFinb+rmj7GsnyLEfwMlE2wsSe/FQGB0YzZJnDPdPBU81d7S9Pls+x8mNMSZjCxuKNiIh4Kj2ZGj6Vt6PfRqe69GJeZ7OXvSxgAVvYQgIJlFWzULjhRmc6M4xh3MZtDGVorSBTSZKw249VEx3HEcUM6hYdgSiF/giqvqhVo1GqRsiiQ+ai6OMXweKkA1TYLOwvSGNx0gEmhHfBzWZEKtjH3uHL6bp+LOOKVzGueBX2VA842Qf8+josKH69wTMGWlDKpVLVFnfPXdhsRzFV3IfNthFDSRgq1QR0+vkIwuVtYdDYmDCRTHKt5RIS5ZTzBE/wRuHnzE/4p959nCjJbXUZJyWVjsw9L40rQTpPHnB9gB+yfuCOo3cQ4xpDL49edPIKrja+5bgQmxNZjOCIzE+vKGZLaRGVahGuBYgFIA+qXjssIPPzIyl9JJGi2T7szHW4Z47eeunumZ+yf2JW0iySzI6nvQ66DrwZ/Sa3B95+yfs+TQEFLGABq1hFLLHkkOMMMlWiJIQQxjCGa7mWW7kVL7xqbG+zxWGxrsFu21lNdBioLToCUAp9q0THKJSqka26q6lMy0OjVHFzVC9+TtwNwPrMeDZnJfCyqCHInM736cmEtJnJa8kzUABKqwGyNkHOdhAdlj6UWvDpDjH3Qtenmu9kzkKl6oq75wFs1t0YKx7EZvsbQ0kgavUtuLp9hyA0fnmDy8HrvF6jTUN17NhZxjLK8yKItg2odx+/Jx/EV6un92UqStcUnK5ZY7RZsIp21IKSiX4T2VW6i05ujvi5000bHeNbjiBuTmQxAiSUOvrIdNK5cbiijPpLKIFVFcWi8X4sWlsIegXzR1+8e6bcVs6LJ1/kp5yfqLBXoFKomOA7gc/af0Zb3aW17hYRWcc6lrCEnewkiSRM1aqKeuFFf/ozilFMYhLd6e5cZ7OdwG79iQrbTuz2Y0hSBpJUSk3R4VIlOnojqPqgUo1GpRoliw6ZJmNoUFsq7VYWJx1EQsImiaSr/AkhAY1oJksbQZL/GKLzN6I4/dk9LUQA7GbI3wOu/i1KjJxGpR6Ah9dxrJaNGI2PYrUuxlqyFLXmXlx1X7Xo71o22XzFV0hIzniRWkiwoeMXeO4PYqCmHwP82xDg6kGeqYxduUmcKnM0J/0p4R86ewehVaqb+CwujmgPPwrzK7CIdvbkpTAkqC0ZlRlEaiPRKh1/s23VkiTaetRO+70SkcUIOANWu+ncOWasQKyroqOkAGsgSH6gBtQKXIDBga61x56Hg4aDTEmcwvaS7YiI+Kh8eKbNM7wR/Qaai3RbJJPMr/zKetZzlKMUUujMc9egoQ1t6E9/buRGruM6tGix2U5it67GZnsXg/0okpRej+jwR6XsiaDqjUo1EpVqDIJw+V1GMjINZUxoR7p6h7AlO5H9BWlkaCMZaNjBeHUJMZ3vJtreHcWSbnVvrBBA4w3Da/cVaUmoNaPx1JzCYlmByTgZq2U+VssvaFweQ+s6t0UGdXvhxRu8QQYZlFJKMcUUUkgJJRgwUCKVYlVYkBD5s9csxgqfMlgxCiVKOngFMjSoLfPithFbmIHJbmVPXgrDgy+t9UNTMSI4xpl6vihpP64qNcvyl2GX7FjsNtZnxrMrz+G+0ipV9G/B8UxNiVyBFdianegMJkqzw7r8DOyc9bZIgGEc2D2di5QKUCngvYG+PN3VA0FRf6qaKIp8m/Ut76S8Q1qlo/ZBV7euzGk3h+v8rmvQfM2YWV71bw97SCcdCxbAERzmhx/d6MZVXMWd3EmYTcRmXYXNtgO7eAxJTKsSHdVFlwaFwh9BaItS1RuVelSV6JBz4GVaEbm7YPlg6DML+rzmWLb2ZkhdAZLtrMEKuG4jhIxs6lleEpWVCzAbn0WS8gAXNNopaLXvtKpCfl8c28yh4jRKtXnYe+xlqXoRPejBszzLgzwIQGpZEe/EOiphd/YO5tmutatet0QkSXIKqdP8YHkAX2UIkzQfYLKfsc7dFt2bsaEdm2OaTYZcgbUB9PQNZ8Gp/dglkaC6vs92BdjCaggRALvk+Jmys5C0cisfDaodYFZiKeH5k8/zW+5vmEQTaoWam/xuYm6HuURoIy5ofrHEOvu3nOAEpZQ61+nQ0YEODGEIt9uGMNBqQLT/g91+BEn8AEl6hbJaosMPpbIrSlUvh6VDfRWC0HR1SmRkGg3/qsJhRYfPLOv9GqT8UXusQgBb6wsedHGZhIvLJCrN32A2Tcdifg+L+XNctDNw0b5crygRxRxEMb1FFFcrt1YiSCq8TSF8pVrAXp7joap/P/AD3/ItHfQdUOB4DqywVp5vly0GhULBwx0G8038do4UZSGKIjasaESvGkLk2oiujAnp0IwzbVlc8WIkIaWInbFZeOrcKXItRaOAti46TpoqEE9/pxWAqWu9+4hyV3FLVM2b+a7SXTyf8Dz/GP5BQsJf7c/0NtN5OfJlVOcwq5ZQwkIWspKVHOAA2WQ7ex0oURJEENfY+3K7NYChNhGtPQFRTEWSvgHmceYrq64SHYPOEh2tI/hNRuaiEFQgaMBQrXChX08IvxYyVoNkB4USfHtC4WFYPQG6PgODP22uGV80LtrHcNE+htn0MWbTG1SaZ1Jp/gBX1zdxcX22xlhJkqgovxW7bQ96jz2oVD2bZ9JVuFaL/8gxGhjgNoBDHGIGM/id3+lMZ9qLHemiuwc/YySuqtYRL3IajVLF5M4jOFyYweL0TVAEXooQNIKSPn4RjAxpT6S7b3NPs0Vxxbtp5i87SlGpGbtgJy0kHYvGQrHNyuL8HJyy/Eg0hPaGam4YBRJq4Ca9lZ8mdUCjVCCKIp9lfMYHqR+QZckCoKe+J++3e5+rfGtX2RMR2cxmfud3trOdU5zCWK2hW5io51qbH+OtbvSx2fAUC5CkEqjRiEmNQuGLIERXiY7hVe3tvS7r+yQj05SsSj/GwYJ0ckwGNIKSaA9/bo7sSZDu3N///flpuK29DhsCSzrO5uaonnTzCYW8vbCsPxIKzC4BzGn7HuWixGOZn9Gx7KAjq+b67aBpvArKjYkoilSa36bS/C5gQqHwQev6Pi7ahwGwWtdRUTYOUCAI0bh7HkKhaD4X7PrMeBYnHQBgcGA097cf6FxXSSWP8zjzpfkABJV25CPjV9zVytxpp/kp+yfuP34/P3acz/0h96E4hzv/34jsprlALFbHjV0lKelUHEWqZza4GNALAuWnA1kTO0Co49fTUfkDlJVcrTIRrFFRYs/nufjnWJK3BLNoRqPQMClgEp+0/4QglzOdZ9NIYwELWMtajnCEfPKRkHCToJdNyXM2HUNs3nS02fCUjCgo50w5dBUo/FAq+6NU9UCpGoFaPQ5BaF05+DIyF0JCaZ7j6VHvg12SWJZyiE+PbuSNPtfhoqz7snXKkM938Tt4SetJWPE+evqG8dXxbbzS62pCA/pB6FikrM18GTaFmzuNwU/rxp8+kSQkz2di9n9R/C8Yrl0LgYOb+GwvHUEQcNW9hov2Vczm6VjMn2EyPoLZ9AournOxVH4AKAE7opiMseJp3PQ/NNt8BwVEsyzlEFbRzs7cJFQKgfHhnfHT6ik327gqYzLmoh5s6PgFOZ7x3OM5mhXcwfd8j47WFTx/sOwgAMO9h11xQqQhXPGWkW8WH6LcaEWvU/PYbY5mRoeLc+i5/r9nQlhT+4N7GwCGB2v5bIgvuzfGE2vbxUrvz0lTxyEhEagO5MGQB5kdPRubYGMFK1jOcnazm1RSUYmVtBehqw0G2ZT0sgtE2G3oagTLqqosHVEolT1QqoejVo9HEGSTnsyVS5nFzLTdS3m++9gzvWjO4pu47VhEG09lz4OkhfCQiXePbiHczZu7Y/ojmfKZ+89/6RJzLePCHPUeTDYL0/5ZypO6IjrvfwYkEfrOgt4zm/L0LjuiaMFsmoKl8lvg7MBdBzq339C4THK+TizJ5XBxFmabFVeVmnYeAYS5eTVaI7et2Sf55eSeGstcleoacRUA3Toqmev/Cqc4hRo1U5nKHOY0qMt3c3LNwWtYXbQacbR4RYoR2TJyCXx+6iACCkdGjQiExoEhgsVj/Lkpyo33095njteHlCkcPVp66XvRzrsdK60reVf1Lj9JXxJoNdBehE42uM0OnezgV0P2KVAovBGUkVWiYxhq9dUIgpxzLiNzNqdvUG6q+lPfk8oKHJkJlh4OMZL3D529gzlUldVQgCvxqhBu9TpjrXRVaYhy9+OIvh2db4uHPwfDvtcgfS1cuwHOcbyWjCBo0Ll9iYv2fcpKw6Ba0LsDBcaKh1Gq+lNQ6cfPJ/eQWFVv6TRriEMBTOs+lnb1CMBLYXhwO0RJZHHSAWfX3upCRKkQuDWqF6P9O/AUd7CIRUxmMu/zPl/xFe/zPo/z+GWf1/kQJZEVqUfYnZeCwWrGU+PK4MAoJoR3rVNspJhTcBVcSSjNY3HSAbKNpXi76JgQ0ZXBgdE1xm7KSmBdRhylFhNhem8mte1DlHvrqrx7schi5CwSy4r4IfkI4mlrhQAIZTzVO52FxuncveVPLFgQfJQE+vgQ6VFGpOYgHZUHudkOHW0QUWpwanYRJUqFD4IQiVLZvZroCGyuU5SRaVWIksSipP209fAn1M2r3nEGixkPtfaMmyV3Fx6Bt1BqcXSUPl310kNTs1iYh0brGOPVDu7JglXXQuZa+CUIJm4Dn9bXRfc0dttKagsRcATDVVJiuJkP4qdTZqu71KMEfHV8Gy/2vIpA18sf/D4ypD29/MLZkXOKQ0WZGG0WdCoN3bxDGBbcDk/NmTpOt1f9e5d3eZM3eYIneJM3+Z7vuYZrLvvc6mN1ehxbsk/yYIeBBOs8SS0r4r+J/+Cq1DA6tHZ2TJ4lDx+VH18c28zw4Bge7jiY+JIcfk7YjadGSxdvR++hvfmp/J50gLva9SPK3Y8NWfF8dnQTs/pMrPWZ/Tcii5GzePXoNkecanUrhuYYm/Qv09lT5JUIiBGgg2gnUixyiA4rZJgg3gwrKmBK+ANo1MOrREfjdPKVkblS+O3kXrIqSi+81XpAVXnxwkMQeEvDDiao4No1cPhj+OcFWNIdBn8OXSY3bD8tAEmyYTa9jOOJqi6xYUcQD3GV/zyWZj+Gp1pLT99wAlz15JjKOFDV6r7cVsm849uY2XvCOWspXSyeGlcmRHRlQkT9GYvVmc50pjGNZ3iGb/iGCUygM51ZwAK6UU+Bu8tIUlk+PX1DHYHROBqq7s1PJbmssM7xZfYyIpTd8NPquS26NwDBOk9OluazPvOEU4ysz4xnaFBbhgQ5qm/f3a4/R4uy2Jl7iqvDW68gvlCuCDFyLrNadWJLclmUEV9r+3GhJ/jDKCJVQr4LJChhiwhzTRBnhhNmKKv6rqsVaqbFfImLquGVWWVkZGry28m9HCnKYlqPsXi7nDtw0UOjxWA1g0oLghpKE6u+746nSg+14ztpsJhrPHEbLGbC9V41d9b9OQgZBX+NhB1PQvoqGLccWlFhMZttC6J4quqVotqPA0kSAYkBPlvw0oh0C/4dnfqMO+amyB58cGgd2SYDWcZS4kty6OzdMh6uVKj4ki95h3e4l3v5m7/pTndGMpLf+I0ggs6/k4sk2t2f7TknyTUaCNR5kF5ezElDPrdF96o11iJasEpWfGhDR6+ac+rsHcyiqowim2gnrayIa8I6O9cLCgUdvYJIMhQ02rm0JK4IMXIus1p1ph/eglKhwH5WTG/HTT1JTwnDv2QNoV0qiPSDqwC7QkOBxoU8jQuFGheKXLQUq1W8tUJPgSRSqIQCpUChSkmhWo1FpcVFcMFVcMVV6Yqb0g29Uo+70h0PlQdeKi+81d54q7zxVfvip/YjQBNAgCaAQE3gRZeKl5FpbUiSxIJT+4gtzOC57mPw056/KF+0ux/xJTmOuBGNFxgziSvOIbrK5+6ndcNDrSW+JIdwvTcAJpuV5LICRgS3q71Dv15wTy6sGAlpf8GvYXDDLmcwe0tHpRqMzu1/SJIRRxCrHQmbo9YKNv7JO0lZZTod3A8Ro9+Dpbw9gvZ5NC6PIwj+uKlduD6yO1/HbQdgV25yixEjp/HCixWsIIkkJjGJzWwmlFAmMYnv+R4tl9+9cXV4Z8x2K6/v/wuFQoEkSdwQ2YMBAVG1xu4v2w+AhyK4Tveg2W7FYrdhtFkQkXCvY0yOyXDZz6ElckWIkXOb1RyR4hmUsSY3GQEFKoWAKIlIkqPddX5YNwwj+lEuzABRRBLtoFKhqNZ+3KPqJxK4Kn0OEflLqp5BxKofK2aMFCuhQAl5SshRQrYSslSO/49WLc9TQqESxDosogoUKBVKVAoVaoUajUKDVtCiVWrRCTqHwFE5BI6nytMhcFTe+Kh98FX74q/2x1/jT6AmEH+1P8qqDpMyMi2J307tY09eCpM7D0erVFNqccR7uCrVaKpSe388sRMvjY6bonoCMCa0Ax8eXs+6jDgG6yIQDadILS/inpj+gKMy5pjQjqxMP0qAqzt+Wj3LUw/j5eJKz/q6wqq0cNM/sOcViH0HFrSDUT9Du0l1j29BKBSuaFzurnf99sJVpFcU83eugi8Gj8Rifg+z6U3MptfRuS1G43ILXatcCABFlXV34K2Ll/csp7CO8SOCY7irXd0VYPfnp7E89TCF5nICXN3P1IipQpIkVqQeYVvOSUx2K209/LirXT8CXT2IJpo97GEHO7iP+/iVX/md33mO55jN7MuaebM/P5U9eSk83GEwIW5epJcXsyhpP14aVwadFZC6u9TRVdpXCKlrVzLVuCLEyLnMaodwqE4vXHi+fT/KbBasokhsQRqqrDR8cksoGmglz2MBvhXvoVZqUSjrv4GLiCxv/wDPXPc/KD0JpSfAcArKU9Easwg25hBcWQiVpWCucHQOley19iMBVoUCkyBQrlRRqlJRqFSRr1aSoxLIVClIU0GaUiJVZSTPbsAqWbFJNuyS3dkk70IQEGoIHBfBxWnB0SkdAsdd6e4QOOozAsdX7esQOBp//NX+BGmC8FZ5t6oeGTItky3ZiQB8dGRDjeX3tx/ozEAoqjSiqOZ2aOvhzyMdhrA89RDF6i7cbIvliQ4DawS9jg/rhMVu43+JezDaLLTz9OeZLqOcbd/rpf9sCLsKVk2AjXc63DYjfmxVbpuzUVXNXUKiUvTFzW0uLi5PUF42BLPpNdSaayi3nbmOnPc9qsaMnuPPJAEAWRWlzD26kT5+dbfAOF0j5saoHnT3CWVPXsqZGjFVf781GXFszDrBAx0GOWrEpBzms6ObeKPPdc65DWEIpzjFb/zGUzzFu7zLl3zJh3zIozza0LeoTpYkxzI+vDP9AiIBCHXzorCyglXpx2uJkcPljrYEUa5RGKoCqU9jsJjRVolrQaFAQEFZHWM81f/+4FW4QsTIucxqhzgEgB4NH/YY7dxm5p4/uP7AV/i8dYywkm2YjIOx2m4hLWMBkqSvcRE8jWS3kZWyGU2xiNhxAoJvV/C9gKAsUQRzHpTEQWkilKWgKM9AY8xCY87Hs7KYUGsZmE0gWqA+oaFQgdIF1HrQeGF38abCxZNSrSeFWg9yXHRkal1J0wgU2csotZVisBkw2AxU2CuoECsw2U2YRBNGu5ESWwlW0YoNm8NSdBECR61QOwWOVtDiqnRFJ+jQK/XoVXo8lB5OC46P2gcftQ9+aj/81f4EuAQQpAlCL+hlgXOF8fWwu8475vnuY2st6+MfQR//CFAchFw73cRsHPZKBwqFgusju3N9ZPeGTypkJNyd5Uj/TfwJcnfAjf+AtnWmXka5+zqDLnfknmJcWCeUqg7o3bdQZuhDuWE020u+cY5vSPnys90Nq9OP46/V11sjZkPmCbr4BDO+KmbihsgexJXksDkrwVEjRpLYkBnPhIiu9PQNA+DBDoOY9s9SYgvSncLgNHdW/ZvDHN7kTR7jMWYxix/4gXGMu+DzqAuLaEM46/ovKBR1Xh8TjYkICHT0DONoUVaNdXElOUR7OD47KkFJhLsPcSW5TiudKEnEl+QwKqT9Jc23tXBFiJFzmdXqI6Z0P1FbD1NaCaVTf0I7pwMq5QlCAp8jK2cejmqGNVEoVYR9toCuO2JJfnImmq5dcX/4YTz+8x8EzTniPQQBdEGOn5AL6ExpMztES+kJMCRBeSpUZIIpF05bXSoyUBpO4iHZ8QBqG6EVjh4eKh1oPMDFG7QhoAsGfQS4R4JHDPh0rnGxrbBVkG/NJ8eSQ74ln0JrIYXWQoqsRZTYSiixlWCwGSizl1FuL8doN2ISTZhFMwa7gUJrIVbJil2yI3LhAkeBoqbAEdQO95SgdVpwqsffeKo88VZ54632xlfli5/Gz+GeUgcSqAlEp2pdVRxlGkjgIMf/OTvP/H450HrB7cdh6+MQ/zX8EuYIbA0ff/mO0UQMC4phY1YCAH+mHsbHRUdvvwiUqi6oNQ9jtXyJi/U54CEUKBgWVEdczQVgE+3szkthbGjHeot+OWvEVKNGjRhzBQarmU511IhJKiuoJUZOM4MZTGMaT/EU3/M94xlPV7ryG7/RlQvL3jmb7j6hrEw/io9WR7DOk/TyYtZnxDM46IxV5I/kWEosRjIqM9Ar9YwIjmFzVgJLkg8yJDCa+JJc9uen8VTXEc5txoZ2ZP6JXUS6+xDp7suGzBNYRFutWiT/Vq4IMXIus1pYHbdpgNH5f2DJdPxe9vXXuNw6GXom4Op6ED/fDygonF5jvISEAgX2T79mn/kwAZ98ScQfhyh85hkKn30WdceOuN97L57PPougu8QboUoLvt0cP+dDFB0ipSTO0TysLAXK08GYDeZ8qCwGSykYc0A8xPmsLm5qd9w0nkRqfcE1ENzCQN8GPPqCT3uHgGlAoShJkiizl5FTmUOeJY8CawH51nyKrEUUW4udAqfMXkaZrUrgiEZMdofAKbYVkyfm1RA4F8ppgaNSqFALjvib0xYcnVLnsOBUWW+cAkftjY/Kxxlg7K/2J9AlUA4wbmkEVAmQwoONs//h8yD8athwB6y6GrpNhUEfN86xGokQN08GB0azMzcJq2jn2/gd+GljCdZ5klExhkcjfqe/9waOGXoT4nk7vhdZiTW2MAOTzcLgwNoBnqdx1oiphodae+E1Ys6BGjVf8zXv8R73cA9/8zfd6MZoRvMbvxFAwwq6TWrbl+Wph/n15F7KrJV4alwZFtyO6yK68mnap5hEE6klVjSiN/mWfALUAfhp9TzVZSSLkw6wMfMEXi467m0/wJnWC9DPvw3lVjN/ph7GYDETpvfmmS6j8DjHQ/O/iSuiHPxzu37nhjY9GBES41y2Kv0YO3OTCE+OoNxoRaEAN1dHZ8gA22FuKLmP5CkgWRzjLZ6eBO4uRfAHSYL8gpmUlU+EaoFROo9fSS+7Fh/JMcdklyRyklcx4e2DcOAY2GygUKCKjkZ/5514Pv88Ki+vi31bGgebGUoTHD/1WV1s9ce6OKiyuqh1oD5tdfEHXQjow+u1ulwuRFGk2FZMriWXPGteDQvOaYFjsBucFhyj3UiFvQKTaKJSrKRSrKwRf9NQgXPeAOMqC87p+BsvlRc+Kh/8NH5nMqjUAfhr/M/Z4VnmPHyrdmTE3LTn/GMvloosWDYQKtIdnYAn/j97Zx1eR5318c/MdY27S5vUvaUUilux4tJdfHF4sUUWW2QpLLLYLu4LS/FSnBarAXVN0zbunlzXmfePSW6TRpq2sZZ88twnuXN/M3Pm5t6ZM+d3zvcsBe2eK3+GCn4pyOvbVrC2oazTa0axhbtzbkQQBKzh5WhU+6bC+symH1CJItePObLbMdcue59LRh7C9HYRjp8qt/NF6WaeOORMCmx1/HPD9/xzxhkdyrJfbq30uXLUYb22Zyc7OZ/zWcMaRETmMY+XeXm/K29kWSbilwhaAh1F5kREcow5jDCOINOQyZVJVzLKNGq/9nUgMSwH346ewmr2chXgpza8joA6QEJdAsf5XsBdKCD7dvlparudxku1RC30IaggJvpRfL5svL4cQETUlJAnTmGpt4GbMnIoqtlBhjeTzMTryX+lhp+jfuaMFQaSn1mMd9Uqmh9+mOaHH0admorp7LMJv/121HFDQJVVrYeo8cpjT0gSuKuheVtr1KWoNepSvQ9RF31rrksY6KNap62SWqMumRCeC5asXkVdRFEkShtFlDaK0Yze4/jeEJACNPgbFAenNYJT769XIjgBxcFpCbRgD9hxBp2hCI4n6MEje7D5+jfB2KzalX8Tpg4L5d+0JRjHapTy8Eh15B8n/0YbBs7y/t2HKREuKIYfzofCD+G/CXDy9xB3yB5XHQpoRBV/GXUY6xvK+alyO9tbapBR1EgywnJpEl4gRvgLbvtsNOGdNZj2RIPHSV5zDVePPrzHcSGNmHbss0bMHsgmm9WsZhnL+DN/5h3eYQEL+Ct/5UEe3OfKG0EQODPmTN6peodAu35AEhJ5rjzyXHkAJOuS/1DOSG/5Q0RGPAE/C0s2sr6hLBRWmxaTximpYyksbWHF+kq2G0vxqnwcWuvlLPv5NHwGzd/SQbhQBvQ3g/ke5XkgEE1ZxXtIUiRfmBai9czi/MwpZLQmJTmdTtYXrkfr0yIi4hAd/Bj5IzFJMVz0dQr2p5/Bs3IlslsJQaoSEjCedhrhd92FNu3A0DLYKzpEXQrAXgKuSiXq4mlQHJd9irrEtua6tEZdwnIgInfIJxb6JJ/i3HhrqfPXhRycpkDTrghOW/5NwNEhwdgrefHJvn5LMDapTFjUltAUVVv+TVuCcVvkJl4bj0VlGZoOzofjFCf5cvfA7G/b67D0ytZmew/B5LsHZr99iC8YwBMMYFBrQhUqTsel+H1votVdg9H0n73a3qKSjfxStZNHZ8xFJXT/GQk1OWwXPXls/Xckm8JDCay3//YpxyeP4rhQk0M/t/36MZeMPKTbnJHe8C7vcgM30EQTVqw8xVNczuXdjnfhUrqt03na6pPqLzhry6ldrqdCRYYhg40zNmJQ/TGmXqD31+8/hDOyV3x3BpR8QdmDAXzd3FRZ/gfa4wEEPN5cyh0XkJNxExa1pcvxXq+XLQVb8Lv9qFHjF/wsty6nNLGUh4wPof5hNc1PPonn55+RnUptvhgdjXHOHCLuvBPtqD+gF90+6tKyExxdRF38dgi4QPKz71GXbAgf2euoy1DHFXBR66+l1ldLja+mU4JxS6BFieAElQhO2/SUR/IoDk6rYmRfJBiHHBxxl8CfWWUORW/aRP6i1dFKBEenJBjHa+P7JsH427lQshCuCA5cCW7zDvh8lvIZjZ8Nc74/4D9XkiRht2UjS0WYzF+h0fauD4wky9y9aiHTYtI5s1ULpo3dNWIKbHU8sXExZ6ZPZFxkIqvqSvi6bGuH0t5vyrbybfkWLhk5M6QRU+Fs6lDau8/HiMQjPMI/+AcePCSTzJu8yTEc02GcjMyhHEoDDaxnPUY6fk6L7HWM+j0TL45O+xAQWDl1JTPCZuyXrQca/eqM/Pvf/+bxxx+nurqaCRMm8NxzzzF9+vRuxzc3N3P33XfzySef0NjYSFpaGk8//TRz5szp04MB+GZZEVsLlHI1URDQ61RERxjIzYhiTHZUzy2cG7fAR2MJ2KDkr92MEUAwQ9gvIpr0bETVJAL+BahUkzFZVnW4Q2xxeHnt40386dTRxEYakSSJgsIC6m31aGUtEhIbTRv5MfFHbrfeznjG4/n9d5r/+U9cixcjtyhzj2J4OIbjjiP8jjvQT5nSq/fsD0co6pIPLQXgKO0i6uKAoLfnqItKB2pD11EXa6aS63IARF36ClmWcQQdVPuqqfHWUO+vp8HfEJqiagm0dEgwDpWIS248QQ9e2atEb+QAATmwzwnGalGNTtB1TjBWmbGoLSEHp03gL1ITyaQdXzFu2wIqTv6S6Phj0Kl0/fhOtUMKwFcnQeVi0EXCacsg4sC+oZCkamzNaYCINbwCUYzc4zpbm6p4ZvOPPDjlFOKMHc/bT25cTJTOxCU5uyqdFNGzDTR4nHsUPWvTiLkwa1qnbe8PPnxcy7W8yZsECTKe8bzP+4xC+f99zMeczdkICFzHdTzHcx3WL3U0MmfVBWyVFiO3+6wLCNyRdgfzs+f3ma0HCv3mjCxYsICLLrqIF198kRkzZvD000/z4Ycfkp+fT2xs5wQnn8/HrFmziI2N5W9/+xtJSUmUlJQQHh7OhAkT+vRgQHFGXB4/J8zKQJJkXB4/xRU2ft9URVKcmblHj0AUu3FIllwAhR9h/zVA7evd7KC155TuvHAS39uBKEbjtJ+L3/8hKtXhWMJ+CQ3d3RlpQ5IkKisrKa8tRyMrSbPFumI+i/uM46KO4yLxIgC8mzfT/OijuL75BqlBcbAEiwXDEUcQfvvtGA7veR52mG4IRV3yWqMuxbtVGDWD3wYB915GXaLBGNc56mLNBpVmAA9waNM+wbjOX0edr65D/k2Tv6lTgnH7EvHeJhjn+iCvDGYnwtLWqHhXCcY6UReanjKqjCGBP6tGmZ5qSzCO1EQSq40N5eDEamN7TjDe8AT8djsIAhz6PIy5ph/ezYHD5/0Yl/NsRDEXa3jeYJvTrzTSyDzm8Q3fAHAsx/I2bzOLWRRTHIoYfsd3HMeuBo6ljkZuXPMcCwN/Dy0TEMnUZ7Fl5iZ04gA5xEOIfnNGZsyYwbRp03j++ecB5cSSkpLCDTfcwJ133tlp/Isvvsjjjz/Otm3b0Gj27YS8t86I1xfk9KM71sSXVtn46LvtHDczjXEjY/D4AvyyupyC0maCkkRShMzcsukISNS8Do7fUBwPmdC1SB0FmkkjUR8eTtgFL6LNnsivG6vYtL2OzMRXmTrqeRzuM0lO+hiAp95a3cGG5Dgz557YsZa+oaGBwrJChKCAgECjupFPoj/BGGfkYfXDGFDOor6iIprnz8e1aBHB6moABIMB/axZhN1yC6aTBq6F9h+OgFuJujS36bqUgqsCXDXgbQRfc2uuS09RFxFU2nZRl8jWCqNWXRdrxh8u6tKXtCUYt01P1fvraXGWceWS2/kqcTQfZ84IifztnmDslTtXUPVVgnG2X+bZwiIy/EEWRSfwxcgTCdO26t+0Khi35eDE6+L7PMF4e0st35VvpdTRRIvPzTWjDu9e+r6V/OYaPixcS5WrhQidkTmpY0NaF07Hxfh9b1PouY6Pyo+jxecm2RzB+VlTyLAcfJ/b7WznfM5nHesQ6ChsJiISTTR55BGJEikqdTTy8Nqvedd/Ay6aAMUZWTR2MSfH9UJD6iCkX5wRn8+H0Wjko48+Yu7cuaHlF198Mc3NzSxcuLDTOnPmzCEyMhKj0cjChQuJiYnhwgsv5I477kDVjay61+vF6/V2OJiUlJT9ckYA3vl8CyajhjOPHclH3+WjVokcMiERnVbFxm01ePIXcNQEMy2PfUjLL1uwJNfhzMxF3OIiuL2S4tceIxh/DMcfpUR01mypZuWGKo6dmUZspJGa2nkkRH2CXzqfmOj/UV3v5L0v8zj7+JFEhRsQRQGDrus7KbvdTmFRIT6/DxERj+Dhy8gvyU/I51Hdo4xgV1lyoLKS5scew/HJJwTLWxNbdDr006djvf56TGefPTQTCv8ISBK4q6CpXYWRs7yjrovfvpdRl/DWXJc4MCYrjdosWcNRl97wihpipsPcFXu9qk/yKc6Nt6bLBOP2+TeOoEPJv+kiwViQ/MxvkLipBT4xwaUxYNtDikN7B6ctetMWwTGJplCLBqvaGmqy2b6Cqi1y0+iEaqebdEsUL+Yt3aMzUu9x8MCaL5mdMILD4rPY1lzNBwVruX7sEYyJSESSJErrx2AQiikJvEGy9SSWVG5jbX0pD0w5tZMOyMHCV3zFqZzaKQqnQsVZnMUCFuAO+FlUspEllfn8FnifDdIiACaLZ/L6uKeZsAcn8GClX0p76+vrCQaDxO1WghoXF8e2bV2XfRUWFvLDDz8wb948vvrqK3bu3Mm1116L3+/n/vvv73Kd+fPn88ADD+yNab0iMkxPXZObiho71fUurj5vAmqVctE+Ynoar5WfxDZ9POPfvZYd6yvI+D2NsLTJOL6OoWXDM6SnHMXnhX5muf2YDBpWb6lh2th4cjMUrzjc8iHrNp9LVvL7OB16DPoXAdDr1CENk+6wWCxMGD8Bn89HQUEBkkvirIazCDYE+cL6BV8lfMV15uuYy1zUiYlEP/MM0c88Q6CxkZbHH8fxwQd4li7Fs3QpqNXoJk/GetVVmC+5ZNgxGUhEEUxJymO35LcuCbigeTddF1dla9SlNdfFWQq2HXsfdTElgimlXdRllOLU/JHQWBUNkH1AK2pJ1ieTrE/uG1t+v4sz1j/K6W4122fcT0HCROp99V0mGDuCjl0OTuv0lCPooNHfuM8JxkYieGejD1GQu0wwNqlMiL5oBMlKwPcT6yqVCI5oFHil4FPOGzGZWE0sH1bcz5+SrmGk7lKshirmZU9nc2MlK2oKODFlTN+8V0OMX/m1y+VBgnzABxzlO4GyDVHUe5QChCzxEDZIi9CgZ7LqdF7KW8blubOUVgXDdEm/64xIkkRsbCwvv/wyKpWKKVOmUFFRweOPP96tM3LXXXdxyy23hJ63RUb2l7b6+bomN/5AkBfeX9/h9UBQotnubTdeRC96CZ58Mi3PPIPl52+Qk4+jscWDWiXidPtJjN0lcCSKIjbPk5TWOEmNe5OgHAb8aa9s1Gq1jBo1CkmSKCoqorG5kdm22RxuO5w8Qx4nJJzA9LDp3C/ejxo16shIoubPJ2r+fCSHg+ann8bx3//iXbWKut9/p+7KK3svSz/MwKM2QvRE5bEnuoq6OMqU/Bd3HfialCkjV9U+RF3iFQfK3BZ1yYGwbDjQRdeMcUoJ+VBg+nyEpONQfXMKo1bey6iRl8CRb+zXJtsnGLcvEW/0N3ZwcGxBG9VNOiRdNW6hMZRg3BJooU6qCyUYi2gI4OPHis6fnWfazTq/64bFI+GFgghuLdNhIpq3dxoQip2hEnGTaAolGLdFb9ryb6K0uxSMY7WxxGni0KuHZlSlkkoe5/Huk69luEF1DedKT2BGcfYz9KnggEniaYiCmiAyr+Yvx6LVd9uf54/OXp1poqOjUalU1NTUdFheU1NDfHx8l+skJCSg0Wg6TMmMGjWK6upqfD4f2i4ujjqdDp2u7xN9Gls8WC06fP4gJoOGc07I6TRGr91lp4wIsoThaGWuz7t8GZx3XKd12iMgkF/6JGkJ2xGDz5AalwL7ILwliiJZWVlkSBlUVVVRXVPNaPdoHil8hCpNFefHnw/R8LT4NMkod26i2UzkPfcQec89SB4PthdfxPb66/g2bVJk6W+6CU1OTt/J0g8zsOxX1KVdhdE+RV2MoLEoURdDa4VRW9QlbASEjwb9nissBhxLplIeLklDo8Nu0tEwrwIWHgrb34Tq5coUUg95Qo0eJ47Arpsks1pHZKs0uyAIWNQWLGoLI4wjutsEAFctfY9rRvY8TXPv6kXMjEnnkIQkpf+Uv44NjcUsKS9iWoqGOl8TG6sdhOmb+bTlF+ZFVVEdsPBBXQJ+ScIhtyj9p3x9p2DcXuCvfQ+q9grGUeooIjWRSnJxq4LxHhOMe8nzPI8HD+rWy6Xc+hM6LgECKh8fTrmDmza/yk0j5lAR3MGTq+CpCTezrVbi97piJFnms+IN3D6h52vIH5W9+k9ptVqmTJnCkiVLQjkjkiSxZMkSrr/++i7XmTVrFu+99x6SJIWmC7Zv305CQkKXjkh/UVplo77JzeRRcVhMGpxuP6IoEGbu3umRUeENgE6tRrBacWwvQBCU6R6dVoXJoKGy1kFK/C59kYpaB/HRJizWLTQ1juKoKXfh9/uAu/bJblEUSUpKIikpifr6esrKyoj3x3NX2V04Khw8EvMIG+I28KDmwQ418aJeT/hNNxF+001IgQD211/H9sor+Navp/Fvf6Px7ruHtiz9MPvP3kZdXJWtSbo7WqMu5Uokxl3fMerSsJ59jrpYs5WoizVrYKIukWOh7CulcipyiEwh6CPgvDz45UrY9gq8mwInfA7JnS9SjR4n965eREDedUFXCyIPTT015JD0NYIoEqmNJFKrOJeRcjZbKn/m9rRzcQV83FH3GbdnH0eGOQq7LYNb40o5RP8kG1viuGti1w0D2ycY1/qUCE6bBk5b/6lQ/k1AmaJyS27cQTde2Yvdb+/g4OxLgrFKUKEVtGhFbWh6yqAyYBaVDuIWlaWD/k1b/k2GPoO/6P+CSq0CEdyCGzduXLhwyA62Oktp1FfgV7l5YcLVRAp/I7lGuUEcY8llZoSVUkcj1W4bBbY6KpzNIe2UYXax12eDW265hYsvvpipU6cyffp0nn76aZxOJ5deeikAF110EUlJScyfr9RTX3PNNTz//PP83//9HzfccAM7duzgkUce4cYbb+zbI2lHUJJwuv2dSnszk8MYnRWFIEBijJnPf9jJ4VOSiQjT43T5KSxvJjs1gvho5UsuI5LfGEVCowt/zhgCRSWMTIsM5X9MGxvPivWVhFt0xEQa2bKznromN3NmZyKKesLCN5K380SSou+lpcWM3nANOu2+n4Cjo6OJjo7G4XBQVFSEyWfisprLCNYE+SbyG/4a91fON57PbdzWQdJYVKsJu/JKwq68EkmScC5YQMu//z20ZemHGVhEEczJymNvoi7N+WAv7KeoS6YyVbQ/UZfYVv2j6mVDxxlpY/bLSrffJRfAV8fDuNtg5uMdhjgC3g6OCEBAlnAEvER2oQC6v1g1emy7NZ6z+TzoVRq0KjWiICAiYPd5EEURi3U5tuZMRhtvp9T1VrfbVYtqpaGkru/OLW0Jxm2PNg2cxkBjlwnG7UvEXUEXzYFm/JKfIMH9qqAKSqBGh0llRhsjcvfou1FFqlCNVmHVWBEROTQ+k0+K1gNQaKsfdka6YK+vjOeddx51dXXcd999VFdXM3HiRL755ptQUmtpaWmHhMmUlBS+/fZbbr75ZsaPH09SUhL/93//xx133NF3R7EbxRU2XvpgA6IgoNOpiIkwcNT01A6iZ2ccO4Jlayv4dnkxbm8Ak0FDUpy5U6JpjL6FTxbvIGri8Uxa9QBHpO6axpk0KhavL8jPq8tweQJEhek5/ehsIqzK3KdabUEW36Gu+SwirXeycoOFE2dfst/HZzabGTduHF6vl6KiIhxOB6c0nsLJjSez2rKamXEzGRE2gqd5mmg6hn9FUcRywQVYLrgAAOfnn9P8zDN4V66k5amnaHnqqYNfln6Y/Wefoi7boGVHq67LPkZd1HpQm0EXDrr2UZd0Jdqye9QlrlWLp37N/h1vX1P0qfIeZpwF5xcq0zabnoDKJXDaUtCYkGSJ7c01Xa7uD3bn4O0fmdZoNjdWdliW11xNZmuLC7WoItUSSV5zDROjUxDFZPTGt7E4/swREfcDXUdG+oM+TzBGUTCu89eFmmw2+HYJ/HWVYGwLOKh0NxDEh1/yoW7Qkrk+k4KRBcjxMlvZyljGYmnXkTjQrXP+x2ZYDr4bVqyvYPLvo9EnzYCTv8Px8cfUnH02Uc8+S/gNN+zVthT1wpGAA6PpfbS6c/vU1kAgQElJCc3NzaFlxbpiXkp4CXuEnafFp5nBniWIXT/80L0s/V13oc3N3cMWhhmmDwi4lIhL8/Z2UZf2ui4te6HrYlTWUZsg/rBdui6WtlyXUYOT6/JOvKIOnD4XDn1WEcpbci4UfQwaC47jv+T5OhdF9oYuVw/T6Llh7FGkmCN63I0n6KfOrUiTP7zua87JnExOWBwmtZZIvYlPi9bT7HNxac6hwK7S3iMTRzIrLpNtzTUsKFgTKu0FWFVXwpv5K/nTiOmkW6JYUpEP/hc5Jf4NtLqbMJr+1Xfv0xDHE/Rz88qPkGQZq0bP/OmnoxZVePEynvFEEMEKVvD6tpWsqlMSqa8ZPZuJUX3nQA11hnvT7Ccr1lcw6fcxGBKnwClLkDweigwGjGecQcInn+z19qRgKbaWUYAbo/lztNpT+txmSZKoqqqipqaGtn9rk6qJN+PfZFXUKm7S3MRVXNWrrpQ9ytLfeSf6yZP73P5hhtlrJElxVEI9jIqVqIurCjytUZdQ516B3kddWtV0TclKrktYltKAsS9yXWQZXtWB7Ff2K6ph2sMw9kbIfwt52dUgS3wacw7fRp8OgF6lRi2oOiSymtRa7px4ArGGrntigSJg9tSmJZ2Wz4zN4JKcmbyZv5IGr5Nbxx/bYZ020bNwnZGT24metfFjZT7fledh83lINkdwXsYkouSpyFIZJvNiNNpeTPUdJLyUt5S19Ur5+MkpYzktXel4vpSlzGY2J/vmkvzbucjImNU6Hp0xd7976RxIDDsj+8mK9RVM/H0cxvjxcNpPABSazaji4kgrKNinbQYC23HYxgN+TJYlaDRH9pm9u1NfX095eTmBoNLK2if4+DT6Uz6O/Zjj9cfzT/6Jld69l93K0h95JOF//euwLP0wQ5sFOYpDcpkT/M5WNd3WqIu9RHFm3LWtuS62vYu6tPUwMsSCMbG1c3Rbrks3URdvM7y1e0RDgPBcmP0KS5uambjifMxBB4WmsTiOX8i46HREQaTY3sD/ClZT3BoxmRydwlWjhsb3T5LKsTVnAmqs4dWI4sCcqwebAlsd/9zwfeh5bngcM+My0as0nGw+nEptMXPXP0CsI5uTU8dyWtr4QbR24Bl2RvqCV9QQN1OZwwVKR48mUFhIpsezhxW7JxDYiMM2FZAxW5ah1vRvB0ebzUZJSQlen3JHJSPzS9gvvJHwBjGmGJ7jOcYyttfb8xUWKo7J558TbC3xHpalH2ZI89WJUP7t3nfvlSRwlStTRh16GLV2jvY1915NV21Qpop04aAyQUMXOSyCCuQgqyOP4f2IM7i86j/kurYihOUo5yBDDADugI97Vy/C7vciCgKPTp9LmHZotKT3ev+H23khojgOa/jGwTZnwPiuPI+Pi9Z1Wm7X1vH+9JvR+6w8suNjbhh9FKqhUGI+gAw7I33BKxolG//05QDU/OlPON59l7SGBtSR+z7PHPD/hsM+CxAxW9eiVvfeGdhXPB4PxcXFOJ1OZGQEBLYZtvFS4ktUWit5QHyAeczbq20Oy9IPc0Cw8lbY9BScux3Ce9bi2C/8zlbHZUc7XZcuoi4BD/SgvdF2Qq4wjyE5LB6qVyjl0lMfgLFKvtrHRev4rlxpVndF7iymxQydRHOn/Xz8/gVo9bdgND452OYMGL/VFvF5ycaQCmsbqzL/x7qkL7hFuoUnxT/O+9HGsDPSF7yigegpcIYiBWx76y3qLrmEmNdfx9payryv+H0/4HQcB2gwWzehVvfjSbIdXSW71qnreCXhFZZFLeNPqj/xD/6Bnr1TQ2wvSx8oLFQWajToJk0alqUfZnDZuQB+OB9mvwq5lw+2NVD4MSw+u8uX2lSig4jYDKlEaHWKwq6vBVQGuMwBgsgvVTt4d+cqAP48YgaHxWcNnP17QJIk7LY0ZKkck3kJGu3Rg23SgCHJMnnNVZTYm5BkiWi9mfHRiWSp0qmllkIKSWPoOI4DQW+v38NXh54QhA7zxsbTlWQy1+LF+71pjfZojObPAB8O20SkYOl+b7M3qNVqsrKymDRpErGxsQiCQEwghrvK7uKTDZ/gKfeQ7ktnDnMooPe5MW2y9GkFBWTY7UQ89BCazExFlv7yyynSaimbNInm555D8vn68QiHGWY3ElpzKuqGSHmvpxbF5WhDUB6iBn/6OTyZejfX5r7NM6OfRz43Dy5phksdcMbvICin7AJbfWhti2ZotaUXRRGLZTmgxuk4FUmyDbZJA4YoCIyJSGRO6hhOSRvHIXEZGFU6PudzJCROYngauzuGnZEeEWgfTlWHhyPo9fjWru2TrWu1p2Iw/Q9wY2sZiyTV9sl2e4MoiqSkpDB58mRSUlJQq9ToZT2X1lzK55s+Z1bhLE50nchoRvM5n+/dtltl6VO3bSPD5SLqqafQjB6Nb+NGGm68kSKDgdLRo2maPx/J5eqnIxxmmFZMiYCoqLAOBdyt33OhtSonbATMfAr+VIX2+A8IJswGQaDK1cLq1nJQNCZFTRaodDaHlhvVGkaFd92KYzARVakYTG8ALhz2oZFgO5hMYxrncA555PE8zw+2OUOS4WmannhVr3Q6PWtXYlJJdjbBqioync4eVtw7vJ7XcLuuQBAisYQVIIrhfbbtvaGlpYXS0lJ8Pl8or2SDcQMvJ73MDvMObhBv4B7uCfVo2FtCsvQvv4xvwwYIBEAQhmXph+l/3rAq/V8uKBxsS2DdfFj7AGSeB6OuUpLkhV2RklW1xbyavwJQ7rSPTBjJzLgMtKKK9Q3lfFu+FVfAD8BxSbmcnTl0y+yd9nPw+z9Cq/8rRuM/B9ucQSVAgAgi8OGjjroO1YxNNBFOOEKHiNnBwXDOSF/wmkG5azl7V1Z41Vln4frkEzKczj5tNOd1P4PbfROCENvqkJj3vFI/4XK5KCkpweVyhZySKk0VLye+zA8RP3Ci6kSe5VkSSdznfewuS0/r1M2wLP0w/cL72Ypo2mX2wbZE0RmR/Ep5cJcvy7y5fSW/1hb3uJlUcyS3jj8GvUrT47jBRJIk7C2pyHIFJsuP/Spn0F/87feFNHg733wekTCCC7OndbnOmrpSFpZspMHjINZg4cyMiYyLTOIzPuMMzuBweTa3lTzH4roN/JD8FlsSlvCB9zPO0Z3e34cz4Aw7I33Ba0alP8Y5m0OLmp9/noYbbiD2ww+xnN11Etq+4nY9jNdzL4KYjMVagCgOXCPBrvD5fJSWltLSKnoG4BJdvBX7Fh/HfkyGJoOneIojOXK/9xWSpV+xArm1dFqVkIDp9NMJu/POYVn6YfaPL46Fyh/gyt53kB1MJFnis+KNLKnY1qk3jQBMik7hohEzMKgH9xzRGxTBxyxA16o/Mng3WvuC3edBale2Xels4enNP3DLuGPICe98w1Rgq+OJDYuZmzGB8ZFJ/F5bzLfledw96USSTOEczuEsl5dzWNGf2ZL+Fc1CIxISx5VewZcpLx50gmjDzkhf8LpJUV88d2toUaCykpKkJCxXXEHsK6/0+S5drrvweR5FELOwWLchDkRn0z0gSRLl5eXU19cjy7vaZ38R+QVvx7+N1+DlNm7jZm7ulbrrnhiWpR+mz1l+I2x5Di4oBsuB49g6/B5W1hRR7mxCkmVi9BZmxmUQ04Pq6lDE630bt/NiRNVErGGd9TgOJBYUrGFTYwUPTT011OusPS/nLcMnBbh+zJGhZY+u/5YUUwTzRkxni7yFidIUAiovAgIyMhpZw9jyk3hS/CdZYTGh9cxqXb91Zx4oenv9Hvwr3ZBGgN3uStSJiaDRKFML/YDROB9kBz7v8zhsEzFbNw56SawoiqSmppKcnExdXR1VVVUEg0FOazyN0xtPZ7V5Na8kvsLdprs5TzyPf/EvItl3HRbj0UdjPFopB/T89htN//wn7iVLcLz9No633x6WpR9m74mZqvyuWnpAOSNmjZ7jkkcNthn7jU53EQHfQvz+T3C57lLOcwcgASnIb7XFHJuU26UjAlBor+fYpI43TKMjEljXUMoLvMBt3EZQVKal2zoFS4IEJicLtqzpIJ2nFkQemnrqAe+Q9Ibhapoe6eyMAKjj4/EXFfXbXo2m59BoL0aStuC0z0CS+je03OhxUupoDD0aPV0n54qiSFxcHBMnTiQzMxOdVikpnOKYwkvbX+KDLR9Q21BLnBTHoRzKKvbfYdPPmEHCxx+T2dxM8qZNmOfNA5UK54cfUjFlCoVWK1WnnYZ72bL93tcwBzHxbd17++cmYpg9YzB9iCAk4PM8ht9/YH5f1zeU4w74ODQuo9sxNp8Hq6ajTpNJo+HVrDu4lmtxCS5koeOERJAgNm1dJw3fgCx16Ed0MDPsjPTEbjojbWjGjkW22ZACgX7btcn8JhrNmQSDq3E5+q/pVKPHyb2rF/GPdd+EHveuXtStQ9JGREQE48aNIzc3F6NBSeRN8iXxcPHDLN6wmJyqHI7xH0MqqbzMy0g9KE622bEnh0g3dixx//0vGfX1pOzcieWKKxCNRlyLFlF5+OEUmkxUHn88zq+/3vc3ZJiDE2sGIEDj1j0OHaZ/EEURs2UloMJpPxFJcgy2SXvN8uoCxkQmEK7bu+IFAQGVrCQaC3LXEZVmTd1+23cgM+yM9IQg0pVss+GIIwBwL+ncDbMvMVk+Rq0+nkDgJxy2vu/yC+AIeDslyO2NN24ymRg9ejTjxo0jLCwMALNk5rrK6/h+4/dcVHQRD3ofxIqVa7kWB51PQPviEGmzsoh95RXSq6tJq6gg7MYbESMjcX//PdVz5lCg11Mxezb2Dz/s98jSMAcIaqPSX2YI8U3ZFq5a+h4LCnoWZFtTV8p9q7/gumXv88CaL9nUWNHhdVmW+bx4I3/99ROuX76Af21aQo176ImNqdRpGEwvA06c9iMG25y9osHjJK+5hsPis3scZ9Xqsfk79i9z+H1cVvgP3ud9ooju0iGxqRv71N4DjWFnpEcEpQxvN0xnnAGA66uv+t0Cs/VbVKpZBAJf4rSf3+/721e0Wi3Z2dlMmDCB6OhoREFEjZq5jXP5bPNnPJH/BMsdywkjjGM4hi1sAZSQ5ldlW7p0iKp7eTJVJyYS/cwzpJeVkdbQQPidd6JOTMSzdCm1555LkV5P+YwZ2F5/fdgx+SOjj9klODYEKLY38EvVTpJN4T2OK7DV8eq25cyKz+SeyScxMSqZF7YupcLZHBrzbXkeP1TmM2/EdO6ceDw6Uc2zm3/EL3XXeXjw0OkuRaM5g2BwLW7X3wbbnF6zoqYAi0bHuMieJQ0yLdFsa67usCyvqZosSwzncR4F7GRK1amIsoiKXZUzfpUXn8rdaXsHQI1JnzDsjPSEIHaZM6IdORJUKry//jogZpgsv6BSTcTvX4DL8ZcB2ee+olarSUtLY+LEiSQkJKASVQgITHNM4/X81/l408eoGlVMkCaQHszk/KK7WFq9s8ttvZy3jALb3oUuQ7L0hYXDsvTDdMScBv6hMTXgCfp5LX8Ffx4xA+MeynOXVOQzJjKBE5JHk2AM4/T0CaSaI/ipcjugXKyWVGxjTupYJkYlk2yK4NKcmTR73ayvLxuIw9lrDKaPEIQEvJ5HCfiXD7Y5e0SSZVbUFDIzLhOV0PGy+Ub+Cj4tWh96fkxSDluaqvi+PI9qVwuLSjZS4mjkyMSRAFgFKw8F5zNvwxNM8LcmVrf6Gy5tU6d9Lyhcg9N/8J+rhp2RHuk6gRVAFRODf2fXF9G+RhRFTJY1iGIuPt+ruJw3D8h+9wdRFElMTGTSpEmkp6ej0SjzpSm+FOYXzWfJhiUcWTubn7Nf5s2ZV/Br+v+INxk73CW6g36e2/zTPoebO8nSP/nksCz9H5mIUYAEruo9Du1v/rdzNeMiEhkVsWcp90J7Pbm7Sb6Pjkig0K70p6n3OLH5PR1k4Q1qLRmW6NCYoYaSP7IcEHHYTxjy+SPbmqtp9LqYFZfZ6bVGr4sW366IRpY1hityZrG0eicPrf2atfVlXDP6cJLandtOSB7F2eHHcMSa2zh62/WoJaUYoCD6V9SCiNhOibXAVs9zW4ZmlKsvGXZGeqKbnBEAzahRSE1NAxb2F0URs3UDgpiOz/s0bte9A7LfviAqKorx48czcuRIDAYDACbJxPUV17Nk/RJuL7+VmrhV/GPy2fw2+T9cPW08OWGKmJA76Ofr0i37bYOo1xN+yy2kbtxIhtdL9EsvoZ00Cf+OHTT+7W8Umc2UZGfTcN99BNuJvA1zEBE9Rfld9cugmrGqtphSRyNnZEzs1fiuqjOsGj0tPiUvweZXLoRW7W5jtLvGDEVU6gwMxpdQ8keOHGxzemR0RAIvHX4hccbOOhm3jj+WS3Jmdlg2JSaVB6eeyr8PO5/7p5zMuMikDq8LgsBp6eMZH5lMdt1MLvjtGUy+MOpS1vLErLk8O+tcLh05M9QEscjewM9VO/rvAIcAw85Ij3SdMwKgP+wwkGW8v/02YNaIohaLNQ9BSMTreRiPe/97PXiD/VcRtDsWi4XRo0eTmZNDZVA5gaplNXMb5vLFpi/4z/b/UOQoYrJ+HK+Ou5GaqE0ArKorwenvu/I2Ua0m7MorSVm9mgyvl9h330U3cyaBsjKaH3qI4vBwStLSqL/1VgI1NX2232EGmYTZyu/awSvvbfQ6WVC4lstzDz3olDb3BZ3+ctSa0wkG1xxQN1h9gcPvZVWr5H8kkXwvLKZSVcZjwqNoRBWHxGVw3ZhdSb4/V25HOojzR4adkZ7oJmcEwHTaaQC4Pt+7jrb7iyjqsYRtQxCi8bjvwOv+zz5tR5Zlvi/P49nNP3VYbmhNqHp/52ps/XRXVRtw8qW3jLfcO2nRyIiiiIDAFPsU3s5/m882f0ZiUwKLRv2Tt2ZcxW/JH1Hk7J+yN1EUsVx4IcnLl5Pl9RK/cCH6o48mWFtLy1NPURIfT3FiInXXXIOvpKRfbBhmgLC2VkE0bRo0E0rtjdj9Hv6x9huuWfo/rln6P7a31PJjZT7XLP0fUhfnm66qM2x+D2GtkRCrRok27v59tfl2jRnKGE2fIAjxeD3/IOBfOdjmDBjbW2pDifuHxGUwUzOVO7iDf/APFrEIgAxLNCOssQDUehw0eIb2dNb+MOyM9IQg0N00jXbyZBAEPCtWDKxNgChasITlIwjhuN3X4fW+vdfbWFiykY+K1uGTdkVGMlRm/mzMJltlpcBezxMbv8fh73uHJNCq3eJDwm7VkJKSEsopEUWRVH8qjxU9xpINP3B+w9lsSfmSSWGZnMu5VNO/8/2m004jackSMt1uEpYswTBnDpLNhu3FFylLT6coNpaaiy/Gt21bv9oxTD8gikp5r73/BAv3RG54PPdNnsM9k08KPdLMkUyPTeeeySchCp1Pyd1VZ2RaogGI1puwavQdxrgDfors9aExQxklf2QZSv7I8UjSHyN/yx3YlZSaYFBkEdq6ot/MrrzAhHZTQ+6gf+AMHGCG5eB7ROx2mkYURcTIyEG7KIliJJawLdiac3A7L0HAhFZ3Vq/W3dlSy9dlu/IwJkWlMM4Si77OgSzDdG00BW4bNW47Hxau5dKcQ/favuLiYux2uxL1EAQEQQj9LUtBjtcmEiXq0Tf6KGksISwsjPj4eIxGI6IoUldXR35pEddXXMfVlVfzbdQ3PJf4HAnaBKYwhad4itnM3mu79oZeydIffzzhd9wxLEt/oKCPBvfgTb3p1RqS1OEdlulUakxqXSjB8Y38FYRrjaGckmOScnhi42K+L89jXGQiq+pKKHE08qcR0wEl/+CYpFy+KttMrMFCtN7MwpKNhOsMTIxOGcCj23dU6iwMxhdxu/6C034klrDfB9ukfsfcmg8CUOJoAEagR8/hHB6SiQcoduzSHzGpdRysDEdGeqKHBFYAzciRSPWDl60uiolYrJsBPS7nOfh93/RqvR9aSwIBzkyfyJW5swi3BUBWOoKaBQ25mnAAVtWV7tN0TSAQwOfz4fF4cLvduFwuHA4Hdrsdr9NFmtqMRdTglyT8cVays7Mxm82hPjyFsoN3XDv53FuKC5lTGk7hm03f8Nr213A6nRzBESSSyNM8vUd1176gW1n6Dz4YlqU/kDClgt8+2Fb0yL5WZxyVkMN/d/zOI+u+wRv0c+OYow6ovBSd/grU6lMIBlfhdv19sM3pd3LC49CrlHjA73Ul1LqVz2USSexASVbd3FhJaaszkmKKIHIvlV8PJIa79vbEe+nga4FLOtd+A9TfeistTz1F8qZN6MaOHTi7diMQ2IbDNhEIYLL8iEZzePdjpSA3rviQoCxh0eh4dPpcykvLaGho6DDOL8KbjnxkYF72dGYndFQdlGWZQCBAIBBAr9d3ahrlcDjIz8/v1g4ZsEs+PvQUE0RmSnQqU2NSAYE1dSWsri8Njb145CFMjUimtLSUltZKlypdFc8kPcPi8MXoBT3ncz7/4l+EE96Ld6zv8BUU0Pzoo7gWLSLYmuwqGI3oDzuMsJtuwnTSSQNqT1cU2erZ1FiJJ+hHr9KQFRZDgsH6h2i+1Ylf/gLbXoWL6pQoyTBDCkmSsLckIMt1mC0rUWtmDLZJ/cqCgtWhm0OrRs+paeP4R+yNfC9+y6KyDXxdtjVU0nvRiBnMis8aTHP3ieGuvX1BDwmsAMaTT6blqadwfvbZoDojanUuZuuvOGzTcNqPxmxdiVo9tcux7oCfYOsxpZmjaGlq7uSIAGgkyFBZKAzacXrclNfX4HC5CPr8BLw+gj4/cmtZ89ixY9HpOoYPzWYzZrMZh6PrhCuVKFJnVhH0KL7wmvpS1rRzQNo4LD6LmbEZCIJAdnY2kiRRXl6O2CDyaOGjuFQu/hv/X96MfZO3xLc4lEN5lmeZzMBMm7TJ0gMEKitpfuwxHJ98gvu773B/9x3odOinT8d6ww2YzjprQDswN3qcvLdzFZuaKju+UKZEwG6fcByZ1pgu1z1oiWr9XFQthYwzBteWYTqhaCotw2EbhcN+HNbwakTx4I0GnJo2nrzmGqpcLdj8Ht7duYoy2Y+cKLOgYhkGScklGReZyMwemvMdDAxP0/SEIEKnPoq70B95JACepUsHxp4eUKsnYrb8BMg4bLMIBLrW5tCqdvmfXq+Hkm4qRGTgGG0CVxhGEtvoo6akHEdtA85mGwGPN+SIqFQqtNrOCpINDQ243Z2ljdvIysrinJHTOCtjUqiWvj1mtY4z0yfyp+zpHaIuoiiSmprKhAkTSE5OxipYubLiSpauW8o/iv/BVt9WpjCFdNJ5jde63X9/0GtZ+jfe6Hd9mhq3jUc3fNfZEWlFBl7Y+gt17qE9ZdHntHXvrTv4cxIOVNTqERiM/wbsOO1HD7Y5/YpRreXWccd0EKwLcyt/15tLEIBZcZlcNerwLpObDyaGp2l6YsFIcFbBZd2fsIvCwxHMZtLLywfOrh7w+xbjdJwAaLFYN6NSdw7rzV//LSX2Bs7RpxMu9pwQJctypymYNiRZxhhmYcyIHOW5JFFbW0t1dTXBoBJaVKlUob/bSExMJCEhYZfNUpCNDRVUuVqQgURjGOOjkno9393S0kJ5eTkejwcZmTxLHv9I/gf5xnxMmLiUS3mMxzAyOHdYksNB89NP4/jvf/Fv364kRatUaMeNw3LZZVivugqxC4dun/cnyzy09isqXcqUllGlZUJUEnEGCzVuO+sayvG0ZuUnGcNbqzi6/h8fdEgSvKqC1JPhxC8G25phesBhO5lA4Ct0+r9jMN4/2Ob0O6WORpZXF7JU9QMvZNzBJY238rjx70TrzYNt2n7R2+v3sDPSEwtywVkOl3Vf2102ZQq+jRvJ8g+dkiufdyEu5xmAEWv4NkQxucPrK2sKeWf7b5ysSyZWNHR7IZJlJadbgG4dkl/8NVw47jD8TTbq6uqQJAlBEIiOjiY5OZnm5maKinaVUoaFhZGVldXt9vYHj8dDaWkpdrviPNbr6nk66Wm+Cf8GURA5mqN5lmcZxag+33dvkTwebP/5D7Y338S/ZYtycRRFNLm5WP70J8L+7/8QjfvnNG1urOS5LT8BEG+w8tcJx2Jup+Bp93l4fOPikMz+/409itERCV1t6uDkNSNY0uHcrcpzXwsggtYymFYNsxuSFMDekogs12O2/oZaPW2wTRoQ6qgjlliu5mpe4IXBNme/GXZG+oIPxiiaBJd3X/ded8012F58kZTiYrRpaQNn2x7wet/F7fwTYMUaXoAo7krWC0oST21awk5bHQIQLmhJ1JiJEfWYZRXRog6tsCsqEZCDqAQVXbkPsqyU4AgopbtxcXHEx8eHciNkWWbz5s34fD50Oh2jRo1Cpdq1bZvPzeKKfMocjchAhM7IIbEZ5ITH7fOxBwIBKioqaGhoQJZlvKKX9xPe54WYFwioAoxgBI/wCGdz9j7voy+QAgHsr7+O7eWX8W3YAIEACALqzEzMF15I+K23ogoL2+vtvpK3LJQAfM2ow0Plne2jXGvrS3kpT6n8mRaTxhW5s/roqIYonkaw7YSWHbDsGuSAB1/EGDT2IkR/C0HrCFTnb9/zdoYZUAKB7ThsowET1vAaRHHoi7j1BSIiJ3ACX/P1YJuy3ww7I33Bh+OUE9jl3ec+OBcupHruXKL+9S/Cb7pp4GzrBV7Py7hdVyEIUVjCChHFXe+dK+Djxa1LyW/pWnPBLGiIFrVMU8cQodIp+iC7fVTaLm7tL3IajYawsDDi4uLQ65UTR0NDA2VlZeTk5IR60wRliY8L1/Fj5XakLvJyxkYkcEXuLAxddDRtmw5qbGxkxIgRIcG07sbV1NQQCASQkFgWtYyHkx6mUdNIOOFczdU8wANo6btpkn1BkiSc//sfLf/5D97Vq6G1o7A6NRXT2WcTfscdiNHRoQomv9+P3+8nEAgQDAZDy4PBIGX2RqRgELUgEqkzodVokCQJj8dDZmYmERER+KUg1y9fACiiWndMPH4wD79/WXUvrHs49LTt09bmXEsIrLPOIGPu4j9mhdEQx+t+Abf7WlSqmVjCBl5kcjDQo2ckI9nIxsE2Zb8ZrqbpC3qRMGQ44QQA3D/9NOScEZ3+SmTZjsd9G/aWHCxhBaHMdKNay03jjmZrUxW/VO+kyFZPQJaI1BmZGJXCF6WbcAT9BPVars+cSVFRUSdnRBIFvneXUyo5uSRlMlE+EafTSX19PXV1ddTJXoqCdsqCTsKMZtTuWMYaDEiyzGvbVnRZPdPG5qYqHln3DXdPPgm9SnE2JEli8Y6N6O1eTILy0a1qaSQ1uusoiiiKxMfHEx8fT1NTExUVFcxumM23Dd9SaCnkwZQHedTwKE/wBHOYw7M8Sxp9H92SJAmfz9fBgWjvPIQekyYhvfQSkiQh2WzIzc3g99Og1VKydSuYTIqK6B6wokYSVQSRkWVFbt/tdqNWq0MOoiewa1px95boBx2xHctDd4/wicisshxCTMBLJMPOyFBDZ7gGv/9zAoFvcLsexmC8Z7BN6jV/+30hDV5np+VHJIzgwuyup53W1JUSrc3C7tfyQMmXnJkxsUOjPVmWWVSyiaXVO3EH/WRZo7kwexpxhgG8Ue8Hhp2RnhC6V2BtQ9TrEcxmfBuHpgerN9yKLDvwev6O3TYKi3UHoqhEAURBYGxkImMjEzusU+O28UWp0r8j3mglPDyc0aNHk5eX1yEZVU4Ip3SnoiXi0sDM9JEAOJ1ONpYWEO6G6YKOGZoYXMEAy/M3ocuQaJC9IUdELYjMjMskXKvni9LNZFqiKXM245MC1HocvF+wmktGzsTlcrFhZz5RfgmEXR/bhUXruTry2D0mu0ZERBAREYHL5aKsrIwsexZvbX0Lm87GM8nPsNC6kM/FzxnHOB7ncY6TjgtFINr/bh+JaHMiJEnq8Ghz2vY26NimVCsIAqLVihgerqjW1tUhr12LvHEjYlUVOJ2IRiO6SZOwzJuHacQI1Go1arXyvnxQsIYlrdoF58RMILbFi06nIycnJzRmeU1haL9plsi9svOAI+0UGHkZ7HgL5M5t2H2Chs3mCcwZBNOG6R1G8yLsLYl4Pfeh0Z7YrXTBUOOuiSd0iPxWOlt4evMPTIlO7XJ8ga2OV7ctxzRZR5V5JxMdybywdSl3TzoxJHL3bXkeP1Tmc0nOTKL1Jj4v3sizm3/k71NOOaBE7nZn2BnpCUFFT6W9bajT0vDv3Nn/9uwjBuP9yDjweZ7AYRuL2boVUez+X29uJzlc6mhEluVQvofH46GyshK1Ws1aV3NonKldea7JZGLmqPEAeL1eampqaG5uZgIitooaVMjM1aWSH7BxePYYpsSm8XLeMsZGJnL9mCOpcDbzj3XfEJQlNteWU6gppKmxCbUst/YL2oUv4Gd9fRnTYtMBOk1j+P3+Ds5DIKD04tHr9fh8PqxeK/cW3Mvd3I1T5cQtutFJOtYE1yD2svK9vdy9Wq1WWgWIIiqVCpVKhVqtDv1Wq9VoNJoOv3ulPXKE0r3T89tv1M5/BP+PPxH87juaH3uMlvBwjMcfT/idd6KfNInDE7L5qXI7o1XhWOtc+FViyBGRZZkNDeUhZxPg8Pjs7vZ68HDov6DiO3BVdtAOCiKy3jIVvzi403TD9IwoqjFZfsFhG4PDdswBkz9i2a1R4TdlW4nRmxkZFtvl+CUV+YyJTGCLycxO7JyePoG85mp+qtzOvBHTkWWZJRXbmJM6lolRSmHCpTkzue3XTzqcBw9Ehp2RntiDzkgbuilT8G/ZQnHxDsToqNBys1o3ZOagjcbHQXbg876IwzYZs3V9txdBk0bHCGssO2y11LjtrK4vZVpMGjqdDp1Oh9VqpcnrYsXa9YAS3RgbkdjltnQ6HckpydToJd7d/huXJkygpaGRGFFPrM4AZfUUOSV2ttRydPxIPB4P4Wg4IiwN0eUhTWWhqVFRwO2q6meGOgZfaS1ryjoLt/VEmwOhUqmUCIYElqAFc9BMpb6Sd2PfpVRfiiRITJOmcYVwBTGamJAD0RZhGGhcE8by2G0XELj1PKIKyzjkv5+T+ftG5A8+wPHBB0gzZhC89FIunTwJsfUu6QtXKZ9vqiLZFE6ZszlURQMwMy6TeOOBHd7tFVorHP0uLDqyw2IVEquthwyOTcPsFWp1LgbDc7jd1+G0H4MlbPlgm7RXBKQgv9UWc2xSbrfVhIX2eo5NyiWVVJayFA8eRkcksKFBkY6o9zix+T0ddEkMai0ZlmgK7fXDzshBi6Da4zQNgHTEbHj7bb74z2NsOnWXSI9aEHlo6qmD4pB4An4WlmxkfUMZdr+XFFME52U9TIzGjt//Lk77oZgsKzo4JPnNNXxYuJYqVwvGdomjb+avpNLZzKFxmayuK+X7ijyc7TpOTotN79D0qY0KZzOPrf8OvxREp1Jz5ejDsGoMvFS5FoBTI7LJ0UXgdDqx+z201NSxpcELQDZaZJVmjyXAPlHGhp/Rltj9jkI0NjZSUVFBkieJq6uuptpczd9T/858w3we5VGmMIWneZpZDF7liSPgDbUdb8hM4cv7rsMkqLnClIWv2UbQaoVAIOSISI0NaDf8SvGMCVS3c0IAJkQlM6+beeuDkoTZMP4W5I1PIbTeZPgELVtM4wfZsGF6i85wLX7/QgKB73C7HsFg/Ntgm9Rr1jeU4w74OLQHJVWbz4NVoycbJVq5mc1YNVZaWvuD2fxKMYV1t4iLVasPjTlQGXZGeqKXkRHviccgA2lrt3ZwRgKyhGOQkuLe3vEbla4WLs05lHCtgd9qi/jXph/4+5SX0eAg4F+Iy3E8ZutiAOo9Dp7f8hOzE0Zwee6h5DVVs6BwTeg4virbwldlnVVdBeD4pNwubYgzWLhn8km4A37W1pfyZv6vXDxy113oTtnBKa2hR2H5JiIiIshJzEYURb4pz2NDbSk5mjBydutyGtq3IOBUQa0W5o4cuX9vGBAZGUlkZCROp5OysjLiHfG8uPVFPDoPLyS/wHvh73EYh5FIIndyJ9dxXa+ncvqDRNHIJE0kiaIRtwS0Zaq3RW2CQfSLvuDc554joFFTNTqLNWeegHTqHI5MymFKTNofR+ysjakP4y38DJ2jAIB1lqkEhqdoDiiM5i+xt8Tj9dzTmj9yYHTMXl5dwJjIBMJ70eyuTQtpE5vIGMSbn4HkIE+j30+E3iUDiVYrAZ2GuO3F/WtPL/EFA6yrL+OsjImMDIsl1mDh1LTxxBrM/Fy1A7PlM9TqYwgEluCwzwXg56odROvNnJM5mQRjGEcn5TAlOpUInRGhS4URyLJEY9Ho2dhY0eXralFFrMFCmiWSMzImkmwOZ0NjOVE6xTnb1lxNhbMZQRCwag2IJj1msxlZo2JpQxHVsoeffTVkjsohLCYatxzosH1ZlgkGg4Rp+3bu2GQykZuby7hx4wgPD0fv1XNzwc38vu53Hq5+mEapkRu5ETNmruAKmmnu0/33lgmaSJJUpu6jRyoVKXfcQfidd6JNSiZlQz5z73+WM2ecSsJp5+N4881+l6UfSrgDfl7duYYnYi4DFEd6jXVXpc0vVTuQhr7SwR8eJX9kKSDgsB2NJA39iECDx0lecw2H7SE/y6rVY/N7mMAEAPLIw+b3hM5xVo0ijbB7J3Wbz9Pn58GBZtgZ6YleJrAC2GOisNbuXd5CfyHJMhIy6t2cKY2opsBWB4DR/B0q1SEE/Atx2v9Eoa2e3HbzkABjIhJwB/w8Mv005qSMBiDZFMHs+GzunHA8f51wHKMjEii01ffKLllWBNcOb+0ALAPPbf6J9Q3lZFqi2NZUzc6WOv616QdcrdNAMXozEUYzWSmpLApU4LBqMbZTKHX7vWRa+qf7qlarJSsri0mTJhEfH48KFSdWnMiydct4r+Q9YgIxvMZrRBLJbGaznvX9YkcbASnIlqaq0PMfvVU0SJ5uL6CiKBKWmEjU/PlkFBWRYbcT8dBDaDIz8f7+O3WXXUaRVkvZpEk0P/ccks/X5XYOBrzBAE9v/oFVdSWU6dMp0I9ABvKMo0NjllYX8N7OVXtdBTXMwKNWj8JgeBpowWk/brDN2SMragqwaHSMi+w6t66NTEs025qrGYkS6S2kkLym6tA5LlpvwqrRs625OrSOO+CnyF7fb+fBgWLYGekJQbVHXyQgBVlXX0Ztdipqrw+1q6PHOhgnNr1aQ6Ylmq/KNtPsdSHJEr/WFlFoq6fFp8w5Kt0xlyOqxuP3v0uS9pMu5yE9QT9mtY4jEpQvx4XZU5k3YjoZ1ujWiIaeFn/nO5NPi9azvaWWeo+DCmdz6/Mapsemc1TiSAyt2iFNPhcvbP2FTY2VbGqq5PGN31PmbApt54IspYRPEASOSsrls/pt+GItRKYlUSf6aRYDIYXR/kIURZKSkpg0aRJpaWloNBpG1o/kkw2f8GP+jxzpPpKlLGUSk8ggg7d4q89tKHc2cf+aL/iseENomYcgn3vKqJXcyF18UMPCwjo2GTSbibznHlK3bSPD5SLqySfRjB6Nb+NGGm68kSKDgdIxY2h69FEkV/eqwwcii0o2UWxXbhb0Kg3lo25GAC5JzmBS1K52CUurd7K+YWj0mRqmZ3SGG1CrjyUYXIbH/dhgm9MtkiyzoqaQmXGZnTR93shfwadF60PPj0nKYUtTFUvK89FIOopbmihxNHJkonL+FQSBY5Jy+apsMxsayqlwNvPG9pWE6wz9fh7sb4adkZ7YQ2TEFfDxr00/8FXZFkqmjEEAsleu7TBmccW2QQn9XpYzE1mGO37/jOuWLeDHinymxaR1mHIRRRGzZQ2iOIITY18ivA+73Nr9Ht7MX8n9q7/gX5uWUOxo4MbWHih6lYYEY1iHEmKf1FH/QSUIXJA1lTHt7iROSB7FUQk5/HfH7zyx7Sfy1E7OHHPIgNbWR0dHM378eEaOHInRaMTisPD41sdZtXkV17ZcSznlXMIlWLDwf/wfLvb/ol7jsvHUxiXUe3aJJ6lbT2p+JLxyEAGhk0MS1oOUvKjXE37LLaRu3EiG10v0Sy+hnTQJ//btNN51F0VmMyXZ2TTcdx/Blpb9PobBxBsMsKxaKb1XCyJ/nXAsR+YqqiJTdH6uHj2bi0bsmq75sXJYFv5AwWj+GkGIxOO+i0BgPQCyHMDtupuWpigkqarnDQwA25qrafS6mBWX2em1Rq8rdIMIkGWN4YqcWSyt3kmUPZ2WgJNrRh8e0hiBjufBR9Z9gzfo58YxRx3QGiMwLAffM1/PgbJv4MrO8+qyLPPM5h/Jaw2XGRuaue6M6yg9/Xi+vvMqbO2iBSenjuW0tMHJ2PcGA3iCfsK0Bl7OW4Y3GOCGsUd2GCNJPtaUH0qWaR0Gw32hDpnLqwv4oHAtzxx6DgEpyA3LP+CqUYd18MDfyF+JO+Dj2jFH7LVtkiyxpamKX6p2UuZsQpZlYg0WDo3LZGpM2gHx5fL5fJSWltLSesEWVSIrElZwb8y9NIlNqFBxDMfwPM8zghH7tI/nt/zEpsZKAFLNEZydMRkB+KZ8K6LDw0xNLMUBOwFkstTWkLs5YcKEDiXI7aulInRG5qSO5dDdTpA/lm9jzbefkfjjSnKXrCSsWpnWU6emYjrnHMJvvx11bNcaCf1Bo8eJI+DtsGxvS+bXN5TzwtZfAJgZm8ElOTNBCsJrBjjkSRh3A5Isc/+aL6h1K00WH59xZqdI4TBDk0BgCw7beATBismyDrfrTwQDKwAZo/lTHNJx+/0ZGgzSSMOGjSaa9jx4CDMsB98X9FBNs625JuSImNU6rjryLET9rYysd3LkjLksry7k3Z2rkJH5rjyPYxJzOgiDDRQ6lRqdSo3T72NrUxVnZkwC4OuyLayrL6PabUMrqjCq/sapcQ8yQvg7gmBGb7iVvOZqMq3KPKRaVJFqieSXqp18UryBBo+DGL0Zm9/D8cm7uuDujVSxKIiMi0zqIHV8oKHVasnOzkaSJMrLy2loaOCQ8kNYXLGYmsga/pryV75TfcdIRpJDDvOZzxmc0evt13scbG51RMK1Bm4ZdywGtYbNjZXEqo2kqU1s8Tex3F8LgE6tJQU9RqOxgyOye7XUtuZq3tn+G2FaPWNaNWJW1ZXwUfF6Ljz5HDLOv4Ylldso/HUZF739NcFly2l58klannwSVUICptNPJ/yuu9Ckdq0k2Rc0epzcu3pRqJS5jb0tmW+f7JcdFqP8IaqUx7aXYdwNiIJAljUm5IzY/Z5hZ+QAQa0eg97wJB73zThsI1DO2TKgxuFdzb0bPPv9GRoMYoihisGP7AwUw9M0PSF076v9Ur0j9Pd5WVMYGR6H8bTTQJIQBZHDE7I5ojVR0y8FWVlb1O/mtmdLUyWbGyup9zjY2lTFU5sWE2+0hkKFS6t3ohJE7pxwPP839mjCtFbeKL2ZWm8mLtdf+a3iKdbUlXJsUk5om+MiEtnSrIhnXTXqMNSiCmfAR0a7xKk2qeJ5I6Zz58Tj0Ylqnt38I36pswz3wYQoiqSmpjJhwgRSUlJQq9XENsTy1vq3+H3775zpOZMd7OBMziSSSO7mbnzsOWF0a1NVyB0+PD4bg1rJtYnxqxjp0hAbEcVyfy3hWiXL/mtXCfFJiSQnJ3fYzu7VUkcl5jA5OoXFFfmhMYsrtnFYfBaz4rNINIUxL3s6rpGZ5L/+DJluNwmLF2M46SQkmw3biy9SmpZGUWwsNZdcgi8/n71F9np7fL29pkp72krme4uuXZfo0FSXFFCk4VNOCL3W4HG0W2f4Pu1AQZYDyHJt67MA0HaukQgGNvTJZ2gwSCYZP34k/hgVb8POSE/0ME1QYm8ElJNWW58BdUoK3tWrkTzKndis+Kx24we20sYd8PO/gtXcv/oL3shfSbY1hv8bexSqVtGvkdZY1KJIoimcFHMEV446jKCs4b2K+ZS4RpKuvZvLsltCd80Ala4WEoxhFNnreSlvGSpRJMFoZXVdCUAnqeJkUwSX5syk2etmfX3ZgB7/YCGKIrGxsYwfP54RI0ag1+sR7SJ/2/I31m5ey/22+/Hh4xEewYSJMziDcrpPmHS3a2iXYFRyQFpaWigvL0ej0ZCZqTiXEe20CwwRViwWS4ftdFUt1b4SKiAFKbU3dlB2FAWB3PD40BjjMceQ+NVXZDocJP36K8Yzz0T2+XC89RZlubkURURQfd55eNat2+P7JHu9lKSlUTNvHnIgsMfx+8OIsNhQrtSKmkK8wQA0bQXJD2mnAYpA3/YW5YIWrTcRqRu6d8zD7EKSKnDYj8DrebSrV1HJ6wfapD4jA0UcrYSSQbZkYBh2/3uke2ck2Opt60R16AKvio0Fvx/fxo3op08PVYwo4wc2NWdqTBpTY7rvQHtJzswOz91B5aL3l1HHk2A4DFvzSEaorsXnjUOrU6YV2qSKj20ncvZ5ycZOUsVGtZbnt/xEqaOJFp+bBKN1j1LFvcpnqNzO9+V5tPjcJJsjOD9rSoeozFDDarUyZswYPB4PZWVl2Gw2Tt1xKnNVc9meuJ3bo2/nM/EzPuMzxjOeJ3iC4+hYpth+aq/U0cgIXTgFBQWYTCays7ND1TL17l139e3Vc9uwdTHt0FYt5QsGcAV8SMidemlYtfpOyq0A+hkzSPj4YwC8mzfTNH8+7m+/xfnBBzg/+ADBYsFw1FGE//WvGA47rNP6rsWLCdbU4HjvPWSfj7j33kPQaDqN6wsidSbGRyWxoaGcFp+bZzf/yDWNCzADUvgY8poqeXfHqtD42fEj/nhicAcoTvvZBIO/dvu6QAVa0YNPOvCm3HJRzrPrWR9yTA5mhiMjPdFDZCSqda7R5vdQ6lCiJKbTlLssubUssi3psP34oYgky3xQuIYsawxJpnBEMRGLdROgw+U8G7/ve2CXVHF7rBp9J6lijSCSbIoIleUaVdoepYrb8hlywuO4Z/JJHJOUwzvbf2NL0673b1VdCR8VruXk1LHcPekkkk3hPLv5x07iP0MRvV7PiBEjmDBhAtHR0UiSRFZZFp+s/4TlJcs5IngEm9jE8RxPHHE8yqOh0OzYiITQhbGspoodO3ZgsVgYOXJkh5wQe2vIeVR4PHpV/1zUu0M3dizx775LRn09KTt3YrniCkSjEdfnn1N5+OEUmkxUnnACzm++Ca3j+OijkFKs8+OPqTnvPGS/v8N27f6+C6OfkT4h9L7stNXRULaEICpu3/Azz27+KdTmPdEYxhGJ+5ZoPMzAYzA+jko1pfVZ5/O1gEyc7sAs1R7LWAC2snWQLRkYhp2RnuhBgfWQ2F137QsK1uALBlCnKZEIf0kJ9R4HX7eTTz8kduh6tv/buYpKZwt/yd0lO6xSZ2C2rgbUOB0nEfD3vilVbkQ8c9MnMKmXde/7ms+gFdWsqCnotV2DjVqtJi0tjYkTJ5KcnIxKpUJXr+PJ9U+ycftGrvFegw0bd3EXRozMYx5uuYU51gz+pM9iliYWhxygwarCHfRT53Z00B0BQnoEu2PV6LtUbdSrNGhVaswaHSIC9q6UHTW9v6vUZmUR+8orpFdXk1ZRgfWGGxAjI3F/9x3VJ51EgV5P+eGH41ywANqmZ2QZ58KFVJ99NnKr8NrPlTv49+afut3PxoauVX+7I8EYxk1jj8LSeizRvlpsaiv2dlVvqeYIbhp39IA7c8PsO2rNYZitqzCZv0almti6dNd5W5YhQV/a5bpDXW23TYV1J0O3I3xfMuyM9ERbAmsXktnTY9NCUYKdtjruX/MF39QVIIWHs2Hljzy09qtQee/oiIQOdeJDif/tXMWmxkpuGX9Mh7wDULLUzdblgIDDfiSJenuHkmWgV1LFrqCvR6nivshnOJAQRZG4uDgmTJhAdnY2er0er93L5ZsvZ9WWVbxZ/ybXVl7LGZvPoHJLJfF+FYbWKN33nnLe2P4rt/z6Mfes/ryDwzsjNp0JXVQmNXqcxOjNbGqsoNTRSGNrEmdX1VJ5zTWh9SRZZlu7MXuLOjGRmGefJb2sjLSGBsLvvBN1YiLeZcuQ3e6OgyUJ1xdfUHXGGfxSvIX3ClYRbFfJphM7zigvKt3ET3upB5JhjeahqadyfsYkjJKLWl0SJrWOUeHxXJl7GHdOOIGw1kTgYQ4cBEFAoz0x5JSIKuUi3uZrZBk799QC+LBwbYecrKGGGTMi4h8mZ2TYGemJtmkaqXPVg16l4drRs9G3Zt03el0sLN4ALS3EvPk/PH5lnTiDhUtHzuy0/mAjyzL/27mK9Q3l3Dz+aKL15i7HqdVTMVl+BGT+nHIXRS0bO7y+J6ligFq3vUep4j3lMzj83m7zGbpSfz2QCAsLY8yYMYwYMQKtVovX42VsyVjmVc0j3ZsOEGrGV6It5af4Lzpk12sQiRX1ZFtjODoxhyavMkX4adF63shfESqPXVlbRJ3HwT/WfcM9qz7ny9LNnaqljk3KZVn1TlbWFFLlauG9navwSYFOuTv7gjoykqj580krLMRy+eXQVfdkScL99df4z7kAlVf5/syOz+Yf007j2Vnn8si00zkiYdcUykdF63Ds5VSOQa3hKHUjApCTcxZPzTyLm8YdzZSY1FDu1zAHJm1OicW6msrgG9R6ExEEGGtdhRqZeIO1g9DiTlsdL+UtHdIREh26P0x57/C3ryfapmmkrr3nDGs0t084ntGtd+xx24sRZRmN18fUTxdzaFwmt084fkjqFfyvYDW/1RZzec6h6FUaWnxuWnxufMFdlQ1tUsUazWGYzF9gVrcwK+yvLCn7mWpXC4tKNu5RqhjAqNYd8FLF/U19fT2+3XrDtFfLlZH5Ouorlme/yduzrmBz9scEBT+ztLGcrkvF53Axf/23fF6iOIstPjeNXleX5bFBZH6p2sGfR87oUC01LSaNszMn8XnJRh5e+zVlziZuHHMU1j6MFsjBIM7PPusy2qgMkElfvYnrT7+Gk3bUcmH6pJCjHKU3cWH2NGbFKVVqfinI8n2Zpiv9QvndWkkzzMGFhMzbReE8VfBPfqk/EZUQZP6k7Tww9RQeP+RMrhl1OKbWJO+85mo2ddPocyhgxUojjYNtxoAwXE3TE6Fpmu71IJJM4fzfuKOpddupeudGZJRuoEe/+D6pN9yLZhCEznrDz1WKTsqTm5Z0WH7xyENCd8KNXlfogqjRnojF/D6yfD54L+Gx9fcRrovtUqrYFwzw3x2/h5rdnZIypkc11T3lM4iC0Cf5DEOZpKQkHA4Hfn/Xjq+IyK22W8mMyuRJ3ZOsSPiEnVHLuHLTIgQE5hhTyc3NxWBQHIe2aqm25OrduW7MEaSaIzstPyoxh6MSc7pYo2/wrFiB1NCuzF0QlETWdsctCQIaj5dxl99M8V8fwnjqqahTU4n4298Q9XqOTx4VckK2NlVxQvLo3XfTM9UrAAGiJu7/AQ0z5NjUWNkaIRQo8v6V4wzT8Xoexu8/Co3mSCZGpyABL+UtBZRuzROiknvc5mARRRSFFA62GQPCsDPSE23z1N1ERtoTozXi/PSLXQH0YJDaSy8l8aefEIZg+Pelwy/c45hbxx/b4blWdxYWXkMtXszfR92CJawAUex4QRMEgdPSx3NauiJ/f9XS9wjfLRdldzKt0SGV0Ta6y2doi7C05TMc1U3C5oGGTqcjJyeH/Pz8Lh0SQRBwOp0cv/l4TjecTnFqMb+1/BZ63S/5Wb9zPdNGTetQZTPU8K1fr/whiqhTU9GOHo1m1Ci0OTlocnJ40V/JNo0iWvW0KRfnRx9hf/FFpOZm1ImJhF19NXEGCwKKxmbbnL8n4GdhyUbWN5Rh93tJMUVwXtYU0i1RnY1oyQddJPm2uoOunHwY2NlSG/p7dsII9IYjCAaW4rSfjsmyCI1mNhOjkpSbIL+HHa2dzIciiSSSR95gmzEgDL2r5FBC6D5nZHfcP/yAVN8umTIQwLN0KbYXX+wn4wYHne4iDIZ/I8vN2FtykKTOGhSeoJ8yRxNlDqWnQr3XSZmjKZQ42ZbP0MYRCSOo9zj4uGgd1a4WfqrcPqD5DEMFnU5HeHh4l68lJCQwatQoTCYTbrebuPw4Tqs+DVVr5YAKFaJP5I2CN7hVvhUPHrzBAGvquq4k2Ntci77Ceu21pBYUkOnxkFZURMKXXxL9xBNY//IXDLNno4mPV6IlgkBlfATelSuRbDYiHnwQ65VXAlDqaAqltrbpsLy94zfymqu5NOdQ7ps8h9ER8fxr0w+hHJoOeOpxWXMO6nLyPzLtm26G6wwIggqD6TXAhs/7BqC0omhLVvYFh646dBppyMjY6HyePdgYurdQQ4G2aZrgnhUi7e+8o4Sbd1OTbLj1Voxz5qBJT+8HAwcHneFaZBx43HdgbxnVGiHZNV1SYm/kqXbTPx8WKp2M25qUteUztBGtN3P9mCP5sHAtP1TkE64zdpnP4PB7+LxkIzafh2RzRJ/nMwwWTV4XnxStp6m5kdnqOOplL/EaE3JwV15FREQEer2e3NxcAoEA6/K2IHj9IdEzADVqJjomsq1sG+YUMzn1s5lSfS4GOvcFeilvKdeNOZKRYQPX9A5AUKnQZHbvQE6MSmZTYyXm2gb8J08Au4O4BQswn3suoCRef1m2OTR+UlQyvmCAdfVlXDtmduh4Tk0bz8bGCn6u2sHc9Am7dtC8A+QgmyxTQuXkoJT+7mypY3FFfuhz176cHGBe9nQ2N1ayoqaAE1PG9On7MkzfEd7unJDfXNsayVIiaFrdRYAyxVvpauk0fqjR1lxzPeuZzexBtqZ/GXZGesCBiBm4d8OPNKlWEaM3c/HIQzqFfiWXC+dHH3VyRAAkv1+Zrvnhh9CF42AI/eoNtyPLDryeh7DbRmGx5iOKSlJYTnhcj9NAu6u/tq1zz+STetxnf+czDAZOv4/HN3zPBF0UE9TxCGoVKckJRGkM1BWXEwgEMBgM6PW7nL0mvxunx41Z7KyHISJyYd2F1Al23k16g7yYn4lypnJE0WVEt2SFIgqeYIDnt/zEHROOH1Jl59Ni0vlh8eece8VdqL0+Nt11A4HjjyAl4KPc0cS35VvZ3KRUFxhUGqbHpiPJMhIy6t10gTSimoLdQ/AlnwKwyZDbZTn5B62Oc1s5+Unt8lEO5HLyPxJTY9JY2JrIvaRiGzNi0zGxHgBRTEeWZRaWbAipaE+L7V6perAZjfL528jGg94Z2adpmn//+9+kp6ej1+uZMWMGv//+e6/We//99xEEgblz5+7LbgcUp9/HJy1K+O6KjFH8fcrJnJM5OZSF3R7XokWddRNaEYJBPD/9hP3VV4GDK/RrMD6IVn8zslSMwzYBqbsKiWG65dvyrWSozGQHDGi1WiaMHce46GQSw6LIyclBq9USExPTYZ1VpTuwiBp6Eiy/seZK7l39JumOsTSaS/l4/H0sGv8wnpHrGRmuOL7eYCB00h4qSEuXceGld6Dy+Vn44I18fdIhPLVpCTev/IgnNy0JOSICSrK1XqVBr9aQaYnmq7LNNHtdSLLEr7VFFNrqafHt9r2s+gWAUk3SH7ac/GAn1mBhfKvejs3v4R/rvqG4+R1kYF2jl6c2LWFZtZIArRLEDuXiQ41JKF3Wt7N3mjoHInvtjCxYsIBbbrmF+++/n7Vr1zJhwgROOOEEamtre1yvuLiY2267jcMPP3yfjR1Ivi3firE1ETBNrydab2Z0RAIxBkunsfZ33gn9Lak6V43IgoC/uBg4OJRE22M0PoVWewWStA2HfcqwQ7KXVNXVMlEOo0728o5rB49u/J6lVYriol6vZ+zYsZ2cEY1DyfdoP0Wzu1KCIAicJI7ky9oPqXZVcw3X4NY283bc49w19hR+HP0cTk0TGxsqaGyVQh9s7AsWUHnMMQiCgGfhB1Qdd0SX48xqHVePnt1B4feynJnIMtzx+2dct2wBP1bkMy0mrUN5NACNm0FjQR6CSeXD9B1/GjE9VBJu93tw+rYjyyKvbFsbaogoAH9uN24okoxS5VPEwHZ9Hwz2eprmqaee4i9/+QuXXnopAC+++CJffvklr7/+OnfeeWeX6wSDQebNm8cDDzzA0qVLaW5u3i+jB4KNDeUcrVHenofyfkcoq+GIhBEcnpDdebBGgzotjcrYCIT0NGK/WgyiSMKiRWwwwgJ3Jf+afcFBG/o1ml9Bttvx+xfgtM/GErZssE06IKioqGCaGElJ0IEqJowbYo+i2N7IgsI1qEWRmXGZHRyONopkJ3qjgQxrNCqVClEUqXLb+L5yG6dnTOT9wjXIyKTrw5js1lO6rZTrDdczLXAeP+mW82POi+yI/JUdM34lypnGRJfA1brzB+Ed2EXz00/TcPPNCEYjSb//jm7MGOZLQdbWl7KxoQJXwIdBrWV8ZBJTYlI7lYrHGCzcNuFYvMEAnqCfMK2Bl/OWdb7QuKogbORwOflBTpjWwO0TjuPdHb+zsbGCME0TPmmXzEK03sQ5mVOYOERLetujRUsFQ1cLpa/YK2fE5/OxZs0a7rrrrtAyURQ59thjWblyZbfrPfjgg8TGxnL55ZezdOnSPe7H6/Xi9e7K9rfZBj6TuM7jYIM7yGzgspRMCvSZHS4S7Un4VJmHfnX1Ig6NyyRxWyH+7dsxHHEEpsYKXFsq9qkz6oGEyfI+DpuDQOBLHLYTMFu/HWyThjQVFRVUV1dTEnRQpPVxe6YSjk01R1Lpaubnqh2dPmdtlOEmxaIhOXnXibS2McDOMjuiUU+FpCQHJ2ujMJvN2Gw23G43br+bXGkKb1HKf2o/5AH93dRad3ANF/B3buLW1h9xgIvs6m+/nZbHH0eMjCRl0ybUiUoCqUZUMSM2gxl70ddJp1KjU6lx+n1sbarizIxJu1701CuVcdGTh8vJ/wCEaQ1cO+YI6twOBNeV+KRwTkwezYiwWEa3a0A51DFhoo6hW37cV+zVWae+vp5gMEhcXFyH5XFxcVRXV3e5zrJly3jttdd45ZVXer2f+fPnExYWFnqkpAy8eqcMRGuU/JAknZbZCdkcFp8VEgvrCU1qKni9f7gpC7P1C9TqIwkEvsNpP3OwzRmylJeXU11djUajYZ3QTLwprMPrCYawrktSW+nprj5KZ2SiKoLjtIlM8BppbGzEbDYzcuRI9OGW0F290BDH3I1/56JfX+J03zk008zt3I4RIxdxEQ00dLHnvqfmootoefxx1CkppBUVhRyRvWVLUyWbGyup9zjY2lTFU5sWE2+0MqvVofu0aD2L1ihlnSQdN1xO/gcixmBGLXiwaDM5I2MiYyMTDxhHBCCCCFpoGWwz+p1+vQWy2+38+c9/5pVXXiE6uvfVInfddRctLS2hR1lZWT9a2TVhWj2RmtZqhVbRs95eJDQjlTunQEFBv3RGHcoYzUtQqabh93+K03HxYJsz5CgvL6empgaNRsPYsWPJtMZQs1tUrMZtI1Jn6nYbmdboTv1/ttdXcZg2lsIt25iuiyVC1LHe34gz1kxWVhYms5n8lloyrdFsb6llQ4PSVj1OjOFjzfu4cPEETxBBBO/wDjHEMJOZrGJV378JgCRJVB57LI533kEzbhwphYWI1s4lyL3FHfDzv4LV3L/6C97IX0m2NYb/G3tUqN9Mi8+Nvqm1YVrqKaFy8rymah5a+zXfV2wbFHn8YfofSXIBQUTVgelExhOPi+6vOwcLezVNEx2tzFHX1NR0WF5TU0N8fHyn8QUFBRQXF3PqqaeGlrVFC9RqNfn5+WRlZXVaT6fTodMNrox6ljWGBmdrWqCklOz25iKxubGS2aOUu6vKX35gzYyRJBrDaPQ4idSbDvrQryiKmCy/4rBNwO97G5fTjNH078E2a0iwuyMiiiLHJuXy2Ibv+Kp0C1NjUim2N7C0eid/GjE9tN6nRetp9rm4NOdQQBGJ+6lyOx8VrGGUaKWhqYlxkh4Z5bvjM+v4oExxIlYV17OhpQoZGXfAT43LzqKSTaGE1yMTRoQu2G3TND/wA7dxG7/yK9OZTgop3M3d/IW/9MkUToPTxoYzTiFtyVKWX3YWRddcwsXulq7VUlvJb67pUS11akwadr83VDJf7Gik2m0LlcxfkjMTNlwOKj3ow4E/bjn5H41gcDUAomrUIFuybySTzApWECCA+iBW49irI9NqtUyZMoUlS5aEynMlSWLJkiVcf/31ncbn5uayadOmDsvuuece7HY7zzzzzKBMv/SWY5Ny+bDkewAaPE4Kaot7dZH4sXI7T4V5uRr4bt0vbBmpVN/cu3oRD009lWOTcnkzfyXplkjSLVEsqcg/6EK/oihitq7DYRuFz/sfEMwYjY8NtlmDSllZGbW1tR0cEYB0SxTXjJrNp8Xr+bJ0E9F6M+dmTumQJ7G7SJzGG2SeNYdgkw+PYMMj+ZFNRmZmj0Gr1SLLMkcHW/ihUikH3NxOVXRF7a4+F2MiErrs63I0R7OWtVRSyY3cyOd8ztVczS3cwkVcxOM8jpl9q0CwN9azZu4cMpetxnfJn5nz7/9Q67Z3WTLfRr3HwfNbfmJ2wgguzz2Ubc3VvLP9N8K0+lAko61k/sLsaWRYollSuY1nN//IA1NO3VXC6ygF475NAw0ztPjb7wtp6KIK7IiEEVyYPa3DsmBAcUbybVl8suULGjwOYg0WzsyYyLjWEmBQBPUWlWxiafVO3EE/WdZoLsyeRpxh3yN2fUEWyg37NrYxlrGDakt/stdu1i233MLFF1/M1KlTmT59Ok8//TROpzNUXXPRRReRlJTE/PnzQ6WJ7WmTu959+VAj3RLF3NgYKIEXSwvw2fR7vEhE682clzmZ/wZ+w6/TovbvkhkOyBKOgPegVhJtjyiqMVu3YLdl4/P8EwELBuM9g23WoNCdI9LG+KgkxkcldbO2clcfCAQoKSmhsbERSZLQAFajmfj4eKZEdu4PdG7mFCJ1Jr4u24Iz0LGdgUZUMTs+mzMyJoaiIl2RSCIf8REBAjzMwzzHc7zIi7zMyxzBETzHc4yh90qkgcpKth9xKOnF5YTfdhvR//wnwB5LK3+u2rH/aqkBDwScEDmu1/YOM3S5a+IJSO0K2iudLTy9+QemRKd2GhsMbgXgtR1uTkkfy/jIJH6vLeaFrUu5e9KJIdG/b8vz+KEyn0tyZhKtN/F58Uae3fwjf59ySo+NPvubUSgRnQ1sGHZG2nPeeedRV1fHfffdR3V1NRMnTuSbb74JJbWWlpZ2OtkeqIwwKifJu9PTIfuUTq93pSRq0ehBFBGDQXJ//JXf/tS5TfkfJfQrilos1jzsLVl4PfciChZ0hv8bbLMGlDZHRKvVMmbMmL3+bjQ1NVFVVYW7VVRPpVIRHR1NUlJSjw3xBEHguORRHJEwgvUN5ZQ5m5BlmRiDhanRaZg03UcidkeNmr+3/nzO59zJnfzIj4xlLFlk8RAPcQEX9LgNX14e5VOnYpQl8h//O5UnHMGOXz8mXGvsvmS+lUJb/f6rpZZ/p/xOPLLXxz3M0GX3isRvyrYSozd32d5AlgpwB43kRKSFIoGnp08gr7manyq3M2/EdGRZZknFNuakjg2V+16aM5Pbfv2E9fVlTItN7/dj6o7xKE1Ht7J10GwYCPZpAur666/vcloG4Keffupx3TfffHNfdjk4tHXtlffcmwaUu7O2PixeowFjY8cM6B8rtvPnkdMRhYPDWesNomjCErYNe0sWbvdNIJjQ6a8YbLMGhNLSUurq6vbaEfH5fFRUVNDc3BzKsTIajSQmJhIWFraHtTuiVamZHpvOdNL31vwuOa31p4ACbuAGvuM7LuRCruZqruRKHuIh9HS8ULiXLaPy6KMhGGTBKw9TNzKDYw0WTkoZ00lXpStsfk+Paqm9Kpkv+0b5nX5Gn7wPwwwdAlKQ32qLOTYpt0tdHkkqp9EX16VD25bIXe9xYvN7GNVujEGtJcMSTaG9flCdkTZJ+EIK9zDywOaPc1XcF8SO1TQ98XPVjpAjAuAOt6B3uFC3czxW1BbycdH6vrZyyCOK4VjC8gArbteVeL0LBtukfabR46TU0Rh6tHUi3p02R0Sj0fTKEZEkifr6ejZv3symTZtobGxEFEXi4uKYNGkSo0aN2mtHpD/JIouv+AoHDm7hFgCe4AnMmDmZk0OKkfaPPqLyiCNAlklcsoTakRmkmiM5I30iqebIvSqZ3y/qflcaX1qGbh+SYfaN9Q3luAM+Do3rWo9Glutp8MVi3a1i0arR09Ja2WjzK5HHrpzelkFu1aFBgwoVZQx8VelAcvCm5vYFIWek58iIO+Dn46J1oefHJeWSMGocvvLFPDnzLH6p2smnReuRkFlcsY3Z8dnEGQc3KWqgEcVYrOGbsTXn4nZegCAY0WpP3fOKQ4hGj5N7Vy8iIO/Sj1ELIg9NPZVI/a4qqzZHRBRF/H4/DocDazdlqx6Ph4qKClpaWpBlZQ7cbDaTlJSE2Tx0Zarb0KPnydafd3mX+7iPr/iKTDL502fx3Ht+NWqdQVFVHTuWsN8/I8HYWVdlXX33J9o+UUu1F4Kho6z+MAcHy6sLGBOZQLjO2OXrsuygyR9NwgDb1ZcYMFBDzZ4HHsAMOyM90TZNs4fIyG+1RXiDisNySGwGZ2dOxnbuedR9+x1at5fjk0fhlwJ8XqJUFv1cvYNzM6f0q+lDEVFMwWzdgMM2FpdjLoL5ezTaowfbrF7jCHg7OCKwKzE5EsUZaXNEVCoVwaCSwFxXV9fBGZEkibq6Ompra/H5lORSjUZDdHQ08fHxvZrOafK6+KRoPVuaKvFJwW47SrdnT+WxsH8dpee1/mxmM+/952Tm3VrK77Phno/0XBr5MXeTS9Y+6qrsl1qqJIG3GRKP6tVxDHPg0OBxktdcw9Wju+55Jkk+IIBHisa2W4NDm99DWGskxKpRCghsPg9h7YoJbD4PKebwfrF9bwgjjEYaB9uMfmV4mqYnhN7ljOQ37/JY2/RCNCOUTpD+nUrTsyMSRoZadrUf/0dDrc7GbF0NqHA6jifg776NwIFGSUkJdXV1qNXqkCMC0NzcjN/vx+VysWPHDtavX095eTl+vx+r1cqoUaMYP348iYmJvXJEnH4fj2/4HpUocsPYI3vsKN1GW3lsm7bGMUk5vLP9N7a0K/vtq47SMZc+yeXXlaKPTmDlZxdTF+nl7/wdI0a+SH+Wba4yvirdQq3bzu+tJfNHJu7qnPpp0XreyF8Rer7faql1vwEyxM3aq+MYZuizoqYAi0bHuMiuS7YlaQMABnVCJ6HAvKZqMlsd7Wi9CatG32GMO+CnyF4fGjOYxBCDA8dgm9GvDEdGekJsPbnvYZrG2+716NZwvdzaW6fu6qtJ+vlnzDodepUGd2vS3R8ZtXosZutyHLZDcdiPwGxdjVo9frDN6pEiWz3vF6zp8rUV1QVIahsNDQ2o1WoCgc7/382bN4eSUbVaLbGxscTExOxT5dm35VuJ0Bm5ZOQhoWUDUh67ByRJovqkk3B/9x2a0aNJXreOf2u1PMfrvMRLPMIjLNR/gDjjY1bVHcX4zSeTJWT3qmT++jFH8mHhWn6oyCdcZ+xSLbXbkvmSL5RBaQfWtOAwPSPJMitqCpkZl4lqt6KAN/JXEK41MideEf8bEzmBr7dW8X15HuMiE1lVV0KJozGkGyUIAsck5fJV2WZiDRai9WYWlmwkXGcIRdsGkySSWM/6wTajXxl2RnqiLWdkD5GR9olRO231TIxKxnD00cR9/DG18+ZRNXcu8juv4w4q0z27Z/3/EVGrp2GyfI/TfgwO23TM1o2o1UNThXZjQwUv5S3tNEXThr/eRr1GQKvR4vd3PaUnSRJhYWEkJyej1+/f/39jQzmjIxJ4KW8pO1pqB648tgekQICKadPwrV+P/sgjSViyJORoiYhc0/rzK79yk3gTv8ctYVPcYuKJJ4y/MoubQuquXZXM75Va6vrHoPq/EJgC0ZOgYokyIPqPNzV6MLOtuZpGryvUf6g9jV4XAgJBaTMAGeFHckWOj4UlG/iseAOxBgvXjD48pDECcELyKHzBAP/d8TuugI/ssBhuHHPUoGqMtJHeWg1XSSWJHJzCfcPOSE+EckZ6dkamxKSyslapHviydDOjw+OVXjRnnon4xRdUn3oqLbMOI/Luq2jMSGZq9HBGP4BGcyRG8yJcjlNw2CZhDctDVHUWLRpMGjxOXtm2LOSIROiMjItIxKDWUGRvINYlMEodhl3yY/IL9HTaio+P329HBJSO0j9X7eDY5NyBLY/tBsnhoGzsWAIlJZjOP5/4//2v27GHcAi/8iv11HMzN/MhH3Irt3I3d3Me5/EUTxFJZLfr94q6NVD6JZR92/FG4osjIWYqRE2ClBPA0FmTYpgDh9ERCbx0+IVdvnbr+GMBcNjuAwREMZ4pMcq5ujsEQeC09PGclj70orQ5KFOS61l/0DojwzkjPdHLapoxEQnEtobJSx2NPLbhO36tKaLa1cL2CSP5+dkHsWwv5IqL7+CSy+9m7Luf4i88uGvGe4tWOwej6X3Aja1lLJLUdffnweLHyu34JCX/Y3J0Cv+YehrzRkznzIxJnBeZy2hNOA45gElQI8pyj9uqq+ubNuAyDE55bBcEqqspSU8nUFJC2M039+iItCeaaN7hHVy4eIzHsGLlLd4immhmMYvVrN53o1JbIyi7RzSrl8Lm5+Cni2D5Dfu+/WEOGCSpHDjwI9FtSsdb2DLIlvQfw85IT/RymkYURK7IPQydSomklDubeWP7Su5f8yUv5C3l15xEarNSkIGYHcXY77qb0qwsSseOpfHBB/Fu3hwq6/wjotWdi8H0GmDH3jIaSRoaWeOyLLOyRnEa1YLIhVnTQvLpdXV11NTUIIoiFlGDiNCl4FL7ZU1NTR0SW/eVMK2+y/LY3nSUbs/+dpT25edTmp2N1NBA5BNPEP3UU3t9LCIit3M7NdSwmMWMZzwrWME0ppFGGq/y6l5vk5QTu39NDijf64l37v12hzngkOU6BCF8sM3YbyYxCYAdDPwNx0Ax7Iz0RC8jIwBplkhuG38sScbwLl/ffPn5CKBU1LQmMvq3bKHpwQcpHzeO0sxMGu+9F7mbnIODHZ3uUgyGZ5HlJuwto5Ckwc8c9wQDOAJKInKmNTo0hVFcXExpaSkABoMBIdrKW+6dvOcuoC5MTVZWFmlpaSQmJhIdHU14eDgmkwmj0dgnTue+lsd2qibopjy2jbby2LYx7XEvX07Z+PHILhex//0vEbfeuj+HBMAxHMN61lNGGWdwBpVU8hf+ghkz13Fd76sJjAkQ0bkBYIhZ/1ZySYY56JFlG6J4ICuMKEQQgYBAMcWDbUq/MeyM9EQvIyNtpJojuXfySdw6/liOScxhRmw6RyaM4NrRs7nsxvsQDF00w2u9Uw4UF9P0z38SbGjoK+sPOHSGG9AZHkGWa7G35CJJg6t8KLaLarRN1YDigBiNRkaPHk1ubi4BgwYfEg45QFCrIjw8nOjoaBISEkhNTSUrK4vc3Fxyc3N77CfTW45NyqXQXj+w5bHtcC5cSOXs2SBJJHz/PZZ58/b7mNqTTDKf8AlOnNzDPWjR8h/+QxhhHMux5JG3542knbarNL8NQYTseZD7x2hH8EdHqV7zI4oHR46eDh1VVA22Gf3GcAJrT4QiI70PrQuCwMiw2C4bNpnOOAPHBx/A7qWfggAqFQkLF6KOj++03h8Jg+EukO14PfOx28ZgseYjioPzMdWKKmL1Zmo9DortDVS7Wog3hhEXFxdqDAmK6F0bqeaIfrcr3RLFNaNm82nxer4s3US03tz/5bFt233pJeqvuQZBpyNx5Ur0Eyf223Fq0fJQ68+nfMrf+BtLWMJoRjOCETzMw5zLuV2vnHwirH9013NBBdZsOPwl5fs2zIDS6HFi93sIyhKiICIKAma1roNycV8jSUpjOUF1cDQltWChnj1Xth2oCPIBkKxgs9kICwujpaWlW1ntfsFRDu+lwNj/g0Of3u/NOb/8kupTOnf/RRSJ/+wzTKcO6yC04XLeiM/7HKI4GrN106B1gv62fCuftPYTSjFFcO3o2aETqCRLfFeex6fFirBSpM7IP6addtA2Qmz4+99pfuABhLAwUjZuRJM68JVPO9jBjdzI93xPkCBhhHEVV/EQD6FF0QVq9DipdjaQ81kuqqBbaTSv0iOcuRYiRg24zX90NjdW8vyWn5HpeKlRCQIPTjmFaIOlX/br9byG23UFBtP76HTn9cs+BpJccimjDCdd98MaqvT2+n1wnjX7il6KnvUW43HHIXT1zxBFVElJfbKPgwWj6Vk02kuRpK047dNDgmEDzeHx2US09rwoczZx9+rPeX7LT7y5/Vf+turzkCMCcErquIPWEan9y19ofuABVAkJpBYXD4ojAjCCEXzN19ixcxM3ISHxT/6JCROnyqfyfvWP/G3VQp7Zuowt+pHIKHlar8dfQbXu4CyJHMp8W7aV57b81MkRAQjKMm9s/xVPoH/y5IJBRWNErZreL9sfaBJIwMPgTl33JwfnmbOvCOWMdJym+aZsC1ctfY8F3ShytrGmrpT7Vn/Bdcve54E1X7LZUYf5vPOgLW9AEKi47TrsYRY2nzaH/3zxVqfExD8yJvPraDRnEwyuwWkfnL4iRrWWG8ccRXjrVIUky2xqrGRlTWGH6pVTUseFlEsPNipPPhn7q6+iyc0ltbgYdXj4YJuEAQP/4l/YsPEWb5EsJ/MFX3BB3NF8MPkOSsPXY1OHIwB5xtH8bp3JS3nLOlULDdN/LK3aySfF60PPNaKKZFP4biKRdbyybRlSPwTopeB2AISDJGcklVQkJFx0XzV3IDPsjPREFwmsxfYGfqnaSXI75b6uKLDV8eq25cyKz+SeyScxMSqZF7YuxXPGaUrOiCBQ/a/5fHLGEcjvvYm1vonDLrmJ1756F/9e5Kgc7JgsH6JWn0gw+AsO25xBsSHRFMbdk07ipJQxWNqdSAVgXGQiN409mlPTxg2KbX2BHAwSrO88Fy0FApRNnYr7q6/QH3YYyVu2IGq7738zWFzERTxZ/Clnrv0H8S25NBkr+Gbc49x01K9UGuDFxGsBqHS18ELeL0jdKOkO03f4ggE+beeInJQyhicOOZN7J8/hsRlncO3o2RjVyvl1c1NVp0qvvkCSSgH9oE3x9jXZKArLm9g0yJb0DwfHf6m/CE3TKM6BJ+jntfwV/HnEDIw9NCUDWFKRz5jIBE5IHk2CMYzT0yeQao5gaUYUxrlziXnzTT6bMYI5qWOZdPxppPz4E0abk5OuvZd13y7s7yM7oDBbv0alOpxA4Guc9m4SFvsZq1bP3PQJPDZ9Lg9OOYX7Js/hiUPO4voxRzIq4sBOOm68/35KUlLw/PpraJnkclGWk4NvzRpMZ51F0tKlQ/ak7vB7WFKxjWhXOnM338f3deu4XL6cBmOApD/DC0fdzM+j/oNL3UyBrZ4tTQdvRcJQYW19Gc6A0pF6cnQKc9MnoFcpzocoCEyISuaCrGmh8f0h2CfLtQjCAOYY9jOjUcrVN7IRgCBBaqjpcgrsQGRonl2GCmLHrr3/27macRGJvbr4FNq77gVS6Goi4dNP8Z5zJja/h1GtYwwzZ5K8YgUIAqbzLsL57bd9eywHOCbLT6hUk/H7P8TpuGzQ7FCJInFGK0mmcMwa3aDZ0VfIfj+2F15A9nioPPFEfHl5BGprFVXVwkKsN9xA/EcfDbaZPbKypigk139UwkiOjZ3Aq8KrFCyeymdrphErxJIftZz/HnIdn0y8hzeaPxlkiw9+Cmy71IZnxysl58FgBQ77XAIBRV13Skxq6Kau/fi+QpZbEIS4PQ8cwqxjHf/lvzzGYyxEuUm9h3uIIw4tWuKJ52VeHmQr+4ZhZ6Qn2u4EpSCraospdTRyRsbEXq1q83k6zI2CooLZ0jpnbfO7lWXteoHop05l3Tv/xm80UD1nDs7PP9//YzhIEEURk2UVojgav+8NXM7/G2yTDgpcX36J1Kgo3soOBxWzZ1OSkYFUV0fk/PnEPPvsIFu4Z0odTaG/D4lrLW/2uxHrVnN68DjKKWcpS4lzZFFvLuJfGTeSSCLP8AwSw1M2/YG/1TnUCB6ihMexNY/F3pJMwL8Qn/dtAFSCGHLo+3pqWkl49yKKQ6vX1d5gx84UpvBn/szd3M37vA9AbetP22d3IhMH0cq+Y9gZ6QXOYJAFhWu5PPfQfu/gGEhOZO17LyBotVTPnYvj44/7dX8HEqIoYrZuQBAz8Xmfxe26e7BNOiBo9DgpdTR2eDR6lPJA2yuvgKr1Mx0MItXXg8tF1L//TcSdB4ZkevswtVZUgyzBj/OU30Yl8niYcBh/3vJP/vTrf8htOJwGGriJmzBh4jIuo5nmQbL+4EGWg8hSC1KwjLGmBdyWfSsPjbocrfQUkrQFURyFybIco0lxcOs9DurcdgAitMa+tUVStH9E9YGrMWLBwqVcigoVQYL42a3qSIZ0KYPpHBzVQsOiZ72gSQK738M/1n4TWiYhs6Ollp8qt/Pvw87rVNJp1eqx+Xfr8+H3ENYaCbFqlOoMm89DWDtRKZvPQ0paOskbN1I+YQI155yD/O67WC64oL8O74BCFNVYrFuwt2Tj9TwCglkRSttHFpVs5IvSzR2WxRmsPDi1Cz2YVtbUlbKwZCMNHgexBgtnZkxkXOSu0mxZlllUsoml1TtxB/1kWaO5MHsacYaBn79u9Di5d/Wi0DRGG2pB5IHEqbi+/hp2r2QQRRxvvon14osRTf0nStVXRLUTztrYWEH8ljuh5HM49gPIPAeAIns9Nr8HI2FcWnEvt0Ufw2M8xr/4F2/wBm/yJrOYxTM8w2QmD9ahHDDIsoTTcSpScBuybEeWHYA79Hp2O7Fpv6RGY/gAq+mM0DJJlvikaH3IjZwem96n9gWCSv6TSjX0OvDuDU/wBAtZSCONnXJDBATiS2fQFO/qV/G4gWLYGekFcYKP+yZ3rOR4a/uvxButnJA8ukttiUyL0gvk2KTc0LK8pmoyLUqfj2i9CatGz7bmalJaVTvdAT9F9nqOSMhGG5tO8pYtlI8bR+28ecg+H9aLL+7HozxwEEU9lrBt2Fsy8br/hogFneH6fd5eojGMm8YdHXqu6kGhs61Kam7GBMZHJvF7bTEvbF3K3ZNOJKm1wurb8jx+qMznkpyZROtNfF68kWc3/8jfp5zS75G13XEEvJ0cEYCALGF/+y1FjXR3Z0SS8K5dS/WZZ5LwxRcIGs0AWbtvzIzN5JsyRW0zYdnFYFsFo64KOSLugL9DGf6hcZmIiNzV+vMt3/JX/soyljGFKaSRxv3cz6VcOijHc2AgIAXzkKSibkfIMgRlFf/c/gSyKHFkwiayw2Jo8Dj5uWoHJQ5lelArqjisj8vig0ElyVOlmtqn2x1oIojgRV7kHM7p9JqMTGbNoTiivURy4Dsjw9M0vUBDkCRTeIeHTqXGpNaFLkBv5K/g01alToBjknLY0lTF9+V5VLtaWFSykRJHI0cmjgQU2fhjknL5qmwzGxrKqWjt9BuuMzAxOgUAbUYGKVu3IphM1F1yCS0vHxyJSn2BKJqxhG1DECJwu2/A631j37clCIRpDaGHuZsutdB9ldRPlYqmgSzLLKnYxpzUsUyMSibZFMGlOTNp9rpZX1+2zzbuC7Iss7mxsrsXCb7xVqhpYyeCQdzffYf9rbf6z8A+It5oZUJUMudUv8NY2yqK9Fm8HXcpy6oL+LRoPfetXkSRXen5FK41MC2mo+7ECZzARjZSQgmnczoVVHAZl2HBwo3ceNDqOuwrkiTh8723x6aPggBf1NyKLRiD3e9lUekm/rXpB97e8VvIEREFgctzDu3QcqBPbAzmK9sXD3zF3bM4i1M5FZW860ZGkAWSmsdg9kUNomV9y3BkpDf0QoG10etCYNcddZY1hityZrGwZAOfFW8g1mDhmtGHh5wXgBOSR+ELBvjvjt9xBXxkh8Vw45ijOtw9a1JTSc3Pp3TUKOqvugrZ5yP8+n2PAhxMiGIklrCt2JpH4nZejoAFre7svd5OrdvO7b99ikYUybRE/z975x1eRZ318c/M7TWF9AKBAKH3IkUBQVHsrr27lnXturr2ir2tay+svWBFRXlRQFCa9A4JJSE9If32OvP+cZNLAkkgkArzyXMfkpnfzJwZ7r1z5vzO+R7OSxvWZNgz217eINoFoSqpTRUFAJR7nA2qpAAMai09LTFk28sZ3crh6KaQZIlPdq5i5b7Gn1xTN2Ui5B3gHKnVIQ0ctRr9xImYzjgD80UdU0rdUq7zrUFbNZ8KTSwv9HgUqXQPy0v3NBhjVGu5ZeAkdKrGv/a6050f+AEfPp7gCd7iLV7ndd7kTaYyldd5nQy6bg7C0RIIbMHjeohA4DfAS+hZ1gI44KDyUhUazXmc1+dx3LvXsKmi4KARScYILk4feVDVYWsgSbmAttOWo7cEAYG3eZu+9A07xrIgk1E6uWMNa2UUZ+SQCKFEuAP415Bpzf4NodK1kbFNZ3MLgsDZaUM4O635eU11UhLdd+0iv18/Km67DXw+Iu+++zDtP7YRxQSs1i3YbP1xOS8C4We02sMXR+tpieGavuOIN1qo8bn5OXcrL25ewGMjzkCvPnh64kiqpOr+rmlH9c+fcrc0cERi9GZSTZHYfB722MuZ8fTbAGG5dFVKCqazz8Z42mkYpkxBNJvbzdajJmcOutX3IGujWDLuO7QVJXiC+5P9REK6Fuf1HHpYeTtatDxd+/Mt3/IQD7GABfSjH33pyzM8w9/4W1ueUadBkmx4PE/i936KLO8DQBBT0GqvR6U+DbfzImTZfsBWAoJgxWB6C1E08M8BJ1HucbChPB+b34NOVNM3Mp4+1liENmpaKEulCELb9LzpCJJJ5i7nIzxtDuXHqYJa0iq69hTUgSjOyOEgt05vmqNBHRdH6u7d5PftS8W//oXs9RL1wJEnbh5LiOoemK0bcNiG4nKchWD5HY1m0mFtOyh6f7+SFFMUPS0xPLD6R9aW57X6PHZ74fT7WFiYCYRuxNdmjGN0bA8EQUCWZfL/dRf+0grcZiPLrz2fUZf9nRFjJ7fZjaFNKV0FCy8INcK7YDMXmFM4M+hne1UJDr8HnUpN34j4cH+hlnJB7U8WWdzO7SxkIRdwAZFE8k/+yeM8Hm7Qd6wgSRJ+/2d43S8hSVsJuawmNJpL0BueQhC74XJcjNfzOCHHIx1Z3gvUlefKGEzvI4qx4X3G6M2cktJ+UyayXI0oprXb8doSXzDAl3vWsq80BcuoOOyGfcTb+qCWQu+7OTkb+ceAE8Oicl2Vrh/DanMaj4x0BOroaFJ370aMi6PywQepePzxjjap06BWZ2C2/gWocNqnEQisOaL9GNVa4g2WcMnhgbSkSqrBGN/+MW3N6rKcsG7DSYm9GROXFnJEAgHKrrsO/3/+S+DpJ3h93vusv/B0/jBKXdMRse2FuZMAAc5eDuYUAPQqDSNiUjkpsQ9j43oesSNSnwwy+JVfsWPnNm4jQIBneRYTJs7lXPLIO+pjdDSBwEYctjOxVRtxO69GkrahUo3BaP6JyGgHBtPneH1vYquOIRD4qDQbSAAAe7VJREFUDZVqBBbrHiwRK4G697YKjeZCtNqOjhx5EMXUDrbh6AlKEm9v/5MVpdkIiIzffSUACTX7pwu3V5fw2tYlXb6NiOKMHAqBsBx8Z0AdGUmPPXtQJSZS/cQTVDz4YEeb1GlQq4dhtvwByDhsEwgEth5ymwPxBP2UeRwNyq3rU1clVZ+mqqTqqKuSqhvT1hQ4q8O/j4lLQ/b5cPzwA3np6dg/+YS4zz6j7wOPhKebCpxVTeypE+Ophu+HgeSD6T9BbPuU4xox8hqvYcfOB3xAMsn8yI/0oAdDGMICFrSLHa2FJFXjct5FTVUcDttwAoFfEMR4dPqZWCOdWCL+Qqs9C6/3U2zVUfg8/0EQYjCZ52OJWIdK3RNRjEVveAIAQYjAYHqrg8+pAJARVb071I7WYEnxTrbXfpdoRRVXGS9ElEXO6DaGKYl90NWqhO+xlfFbwY6ONPWoUaZpDonA/vBj50A0m+m+ezd5GRlUP/ssstdLzMsvd7RZnQK1Zhwm8684HafisI3GbN2CWt30l9K32esZEp1MtN5Ejc/N3NwtiAjhiosPs1YQqTWGlXenJmfw0uaFLCjYweDoJNaU5ZLrqOSKPiHhofpVUnEGCzF6Mz/mbm5QJdXWSLKMuayS0V/+DKvuJ6esDNnjAZ2OqMcew3L55QDhROku19tCCsB3g8FXAxPfhu4d00Dx2tqf9aznDu5gOcs5lVOJJZa7uIv7uA+xEz7vhaZhPsbrfhlJ2k5oGsaMRnMZesPTqNRp4bGBwHqcjouQpT2ADr3hWfSGkBjezpp9/FawnTxHFQ5/LA/1n0Gc+XZEsWmnO6u6lG+y11PsqiFKZ2RG90GMj+/VYMziop0sKNhBjc9NijmKS9JH0rMFjnzAvwro+hojkiyzpF7PnlsHTiYjMp57iEe0uLnEMpoT4nvx3MbfkJH5s3gXp6UMQNVFk3YVZ+SQdJ5pmvqIRmMoqbV/f2peeQXZ4yH2zTc72qxOgUY7FaN5Di7HuThsQ7FGZiGKKY2OrfK6mJW1Aqffi1mjo7c1lvuHnYqldkqlraqk2gLv1q1Uv/ACJ/zyMxMqq0JBPb0O698uIPK++9AMGIBYq7aa76iiwhtSYY3Vd/5Ev/CNz17J9Pz3ONlZgDDsfhhwU5PbtMeND2AEI1jKUqqp5m7u5ku+5EEe5HEe52/8jVd5lTjijui8W5NAYB0e1yMEAosAHyCiUp2A3vAIGu3pDcZKUiUux8UEAgsBAY3mUgymDxDF/VONvmCAFFMUE+LTeWfHUsrkd0jWNu1wl3scvLFtCScl9uG6fuPJrC7h052riNDqGRgVyt1aU5bLt9nruaz3aHpaYlhUlMlrWxfzxMizDkoKb4pgcBMAKvXIFl2fzkaRq5p9tdPFGRHxZESG+uwkksguQk5KmqUbQ6KT2FRZSLXPTY69nN4RHf9eOxIUZ+Rw6ETTNPUR9XpSs7LIHzAA21tvIft8xL3/fkeb1SnQas9GNn2O23k5tuqBWCN3IYoHf0hv6D+x2f20ZZVUa+BavJia//wH9x9/INtsAKgjItg5cRRrLj6d8hGD+Nfgaegs0eFt3AEfX+zen1MzIb7zJ+rW3fjO2/tfkqt+JT/tclLHPNvk+Pa68dUnkkg+4ANmMYs3eIPneI4v+ZLZzGYUo3iVVxnP+CO+BkeCJFXjcT+G3/cFslwOgCD2QKv7BzrdvxBF7QHjJTzuu/B53wSCqFQjMZq+Q6XucdC+B0UnNUgAPxR/FO8iRm/mwl6hKbVEYwS7a8pYWJgV/j9ZWJjJxIR0JtQmj1/eewxbK4tYUbqH01IHHt45B0PTFaI47LBt64zYfd7w7z0t+/VEiigin/1l+WmWGDZVFgLg8O/fpqvRNeM57YkggNw5nREAUaslNTMTTUYG9lmzKFVUWsPodJdiML4H2LDX9EeSqjvapKNGkiTss2dTeNJJZBsMFJ98Mq65cxENBizXXkvq9u2kV1dTMus1Cof2wxsM8NzGX3lvxzJ+L8zi2+z1PLxmLtn20I0pQmtgbDtpnxwNg6KTOLfgPZILf2Bet3OoGNG0IwINb3yJxgimJGUwIiaVhYVZ4TH1b3xJpggu7z0GrahmxQH6JC1FROR2bqeIIpaylJGMZA1rmMAEUkjhDd5o0wZ9kiTh9czCVj0wlOfhfQ1Z9qLRXok1IpeIyL0YDA8c5Ih4vR9jq47E530NQYjFZP4NS8TaRh2RIyHb1kQnc1vovRiQguTZKxto9IiCQL/IhPCYw0GS9gJqRLFrP2sb6kkLlNZLqJ/BjAZTq/vctvDvui5cUaM4I4dEgE7e2VNUq0nZuhXNoEE4PvmEkksu6WiTOg06/fXoDf9Bliux1/RDkrqemqbk9VL92mvkDx9OjlbLvksvxbN0KaqEBCLuuYcexcWklZQQ98EHaPuHyicv6z2adGuotFJCZl15Hl9lr2NBYSaOQOjpyajWcuvASY3qqXQ6Nr0I298Cazo/xh4sjX0g7XXjOxQTmcga1lBMMRdzMWWUcRu3YcbMDdyADduhd3KYBAJrcNhOw1atx+26AUnKQqUaj8k8n8hoGybzJ4iqgyN6gcBaaqrTcTuvAfzoDS8QEVWMRntKq9kGoaqzxvR3PEE/vmAAh9+LhByeIq0/psZ/+Bo9klxyTGiMJJsisdR2Nd5UWRCesjmN0yinnH3so8rrYm15qJJLr1LT09p1FVkVZ+SQdM6ckQMR1WpSNm1CO3w4zq++ovi88w690XGC3nAnOv1MZLkUu60fkuTraJMOSaCqiopHHyW3b19yDAYq7rgD3+bNaPr1I/rZZ+lpt9MjJ4eYF19EnXCwgqVOpebOQVOYkTow/IVWhygIjIzpzgPDptPdHH3Qtp2OPV/Dqn+DrhtcsDkUrTwE7XXjO1wSSGA2s3HiZCYzMWFiFrOIJJJJTGIzm49ov5JUict5GzVVMThsYwgEfkUQk9Ebnsca6cISsRyNdnoT25bjsE3FYRuNLOWg0V6ONbIGveHeoznVDkeWqhCE9qlca0s0oio8XSXJMq9u+Z1NFQUkyaEpreddr/GfLb+HS3pPiOvVpbVGunYcqz3o5NM09RFFkeS1aykaPx7XDz9QdMYZJP3yS0eb1SkwGB9Gxo7P8wIO20DM1h2dLozry82l5vnncf70E8HC0BwwGg26MWOw3nAD5quvRlQfvs1alZpz0oYyo/sgdtaUYvOFRMDSrbFNli53OkqWw++XgtoIF24N/duFUaPm4dqfeczjPu7jT/5kKEPpSU8e53Gu4qpm9yFJEn7f+3g9ryJJmbVLrWi0V2MwPtVksnb97T3uO/B53yaUFzIGk/mbRqMmrYlVo29Uf0ev0qBVqREFAREBe2MaPc30izoY1yGvQVdhesoANpQXUOq2UeF18tb2P9GogHHwrXsep7kHANBNZ+KM7oM61tijRImMHJKuERmpQxRFklasQD9xIu558yg6pXVDrV0Zo/F5tLqbkaTdOGzDkZpqEteOeNavp+TSS8mJiSE/LQ3b228jVVdjOPVUEubOJd3nI+Wvv7Bed12LHJH6aEQVA6OSGBffixEx3buOI1KzB34+GRDhnFVgPPweJoe68Zk1ula68R05p8tT2Rj4nL3s5UzOJJ98ruZqrFi5i7vw0NC2gH8VDtuptdMwNyFJu1CpJmIyLyQyugaT+aND3oS9nv9hq47A530DQYjHZF6IJWJVmzsiAL2sjWj0VJfQyxqKYqhFFd0t0eyoLg2vl2SZzHpjDoUkVQIyotj5k7IPB6Nay12DT6Z7bWd3AH8Q1EEdVcZQP6xEYwR3D5l6REnXnQnFGTkUQtdyRqA2QrJ0KfqTT8a9cCGFkyZ1ihtvZ8BoehON9iokaStO+7gOuS7O+fMpOv10ss1mCkeOxDl7NsgypgsvJHn1ano5HCT9+iumM89sd9s6DZ5K+H44SH44fR50a9lTX3vc+I4GWfbjdJyH3TaUlKCbuczFiZN/829ERF7lVcyYOVc6mXznZdRUdcNhP4FAYAGCmIre8BLWSA+WiKVotFMPebyAfzU11T1xu64HAugNLxMRVXhY2zaFJ+gn31FFviMkmlfudZLvqKLSEyoZn5OzkQ+zVoTHT0rsQ7nHwXc5Gyhx1bCkaCfryvKYlrxfTXRacj+WlexmZWk2xa4avti9Bp8UOKgku8nzDPwFgErVtaME9YnSGXlg2HRuHnASQ6KTidGbiPDH4tZV84/+J/LI8NOJ0XehXlJN0Lni1J2SrjNNcyDJixZRdPrpuOfPp2jCBJKWLz8mulgeLSbzxzjtdvz+Obgc0zBbf2/T40mShOPTT7G99x7etWvBF8pZUSUlYbziCiL//W+0vQ7vy/a4IOCDbweB3w4nzYKUU0LKuG5HeEjdjc+k1hKtNzEnZyPVPhfXZoRKZycl9mFJ0U6+y9nAhPheZFaXsq4sj1sH7e9ZNC25Hx9lrSTNEk2apRuLCrNadOM7UmRZwuW8ioB/PiDi836MwfgsWrQ8z/M8Kz3LEu8NVAc+ZbR/MRYgUxRRa09muOFTRPHwy2klqQyn40KCgT8AAY32KgzG9w+qpDkScu2VvLJlUfjvb7LXAzAurifXZIyjxuem0rs/YTxGb+bWgZP5Jns9vxdmEakzcmXfseGyXoDRsT1w+D38lLsZm89DijmK2wdOwXqY0bxgYAMAYhfXGDkQURAZ2i2Fod1Cka9sZjOb2fSOiUB1jMQUBFmWO738os1mIyIigpqaGqzWQ3fdbFU+tIAhES7Z2b7HbUWKzz0X148/oh05kuTVqxWHpBaH7VQCgQWo1Wdits5t1X1LLhc1b76J/dNP8W/fDsEgCALq9HTMF15IxN13o45pnSfw+fnbmLN3EycnZXBxetNfwuvK8vgxdzMVHgdxBgvn9xzG4Ojk8HpZlpmbu4WlJbtxB/2kW2O4rPfow+p022pIEnw3FKq2wvBHYPSTQEjArP6Nr466G99HWSup8Dob6MLUFz2L1Bk5o1HRsyx+K9gRvvFd0mskPY8wMuLwe1lStJMiVw0CEKs3MyYujaR6gniyLON23YrPu18yXRDisEYWEQysxuN+hEDgT8APqHCohvGIUeYTzUYkJKKI4lZu5VEeRd3Ms6QkBfC4b8PnfZ9QXsgJmCzfHDO5FE3hdFyB3/c51kh3A4G2Y433eI9/8A++4Asu5dKONqdZDvf+rTgjh+JDK+hj4dKj0x7oaEouugjnN9+gGTyYlA0bwkqcXZ1KjzNcqlqHWa0jWm86rO3tNRMIBleg0VyCyfLlUdkSKCuj+qWXcH77LYGcHJBlUKnQDhqE5eqrsf7zn4j61v2C3Guv4L0dyzCoNfSNiG/SGdljK+OlTQs5t+dQhkQns3rfXn4t2MFDw08Lq8fOz9/O/PxtXJMxjhi9iZ/2bqbQVc3jI89sc/XYML9Mh8LfoM+VMOWT9jnmURKQgnyfs5E/incRaGRKd3JiHy5OH4koiLhdD+P1PN3IXsxAKPIjiOnodLei1d0aTrJ24OA+7uNjPsaJEzVqzuIsXuM1UmjoYHg9s3C77gScCEIyRvNnaDSTW/WcOyv2mvEEg6uJjO74TuttSQklJJLIdVzHLGZ1tDnNcrj3b2Wa5lAIIp1dZ+RwSPj6a0qvvBLHZ59RMGgQKVu2HHFCZGeh0uPkkbVzD7oBqAWRmaPOOiyHxGRZisM+Er9/Ni6HBaP5vRbZ4Nu1i+rnn8f1yy8ES0I5CoJOh37CBKw33YTp0kvbLBLlCfr5X9YKruwzlnn5zTcFXFSYxcDoRKanhLLvz0kbyo7qEpYU7eTyPmOQZZlFhZnM6D6IYbWh4GszxnHPX9+zsTyf0e0hjPbnDSFHJHFSl3FEgrLEOzuWsqWyqMkxS4p34Qr4uazHyiYcEQAvWu116I0zEcXEg9aaMfNm7c8sZjGTmcyp/RnKUF7mZSb5zTidFyNLuYABg+FVdIY7WudEuwiSXAQc3oNIZ+DB1T+G2zLUZ1JiHy7rPbrRbeoinNaB8ay25bJFU9j5IpxHQNe+G7ULXS+BtSniP/0UQafD/r//kd+/P6nbtiFqj37uuKNwBLyNPokGZAlHwEv0YXwpiaKI2bIOh20APt/74DJjNL7S7DbulSupefll3IsWIVVXAyBYLBhmzCDizjsxtVMF05e71zI4Kon+UQmHdEay7eVMS+7XYNmAqEQ2VYQy8ss9Tmx+TwMRMINaS09LDNn28rZ3RtY/DZmzICIDzmjbHJ7W5PfCrLAjohZExsSmkW6NQUJme1UxGysKkAHJ/zFed3OOroDe+BKiGHnIY15f+7OWtdzBHWyWVrDQM41BntB+TNqrMRrfa5W8kK6GLFUiiLEdbcZh88Cw6Uj11FSLnDW8uvV3RsY0Xt20x1bGrMzlnNtzKB9qDJRYs3h73dIGEc5fC3bwe1FWgwjna1sXt2+E8whQkgcOhSCGwu3HCHGzZmH95z8J7N5NfkYGkqf1BZ46M3IggPOXX5CD+5OSRVHEbN2MIPbA5/kPbtdjDbaRJAnnjz9SNG0a2SYTRePH4/zuO1CrMV9+OSmbNtHLZiPpl1/azRFZs28veY7KcDfhQ2HzebAeULJq1eipqS1ttfndoWWNiYD52vg9svMzWPsw6OPgbxuhi+Q0SbLE4qL9uWS3DpzM1RknMDGxNycl9uGmASdxY7/hXJz0BhckHSri5sfv+7pFxx8hDWOBYzB51SL3eOBjnUDvKJkY82yuEv9OOa2nJNt1cCIKh5/g29FYtHoitIbwa3NlIbF6M32baHZXP8KZoU6n3FBAqjmSJbXvwwMjnCmmKK7NGEe1183G8vxG99lZ6Bqf+g7l2ImM1BH71ltE3Hkngb17ye/bF8nV9STSjwTZ56P0oosoOfNMHN9802CdKGqxWDMRhES8nidxOZ6l5r33KBgzhhy9npJzz8W9aBFit25Yb7uN7rm59CwrI/6zz9ANad9W5ZVeJ19lr+e6fuM79ZPOYVG0BJZcBWoTXLAF1F0n6TDHXhEOsQ+ISqR/VCiqJEkBfL6fcTmupZdqNCOiVjaxBxWgIdRyQsbnPfy5f6/n3VAfGd+7iGISVsuf3GMK8KTwClFE8TmfE0ccJ3ACq1h1VOfZVZAkByAhqrpmZVpACrJq317Gx6cjNKEynG3f3+ZgHOOQkTHGOMm2l+PFyzLvWqoCjiYjnJ0ZZZrmUBwjOSMHEvOf/4BWS80LL5DXuzfdd+5ENHf9WvWmkDweSv72N9zz54Mo4pwzB8uBPXxcAQJvXYdrzbP4Vz6IvA8QBDR9+2K+9FKsd9yBOjKyI8xvQJ69Ervfw9Pr54eXScjsqtnHkqKdvDnxYkSh4XOGVavHdoDMuc3vIaI2EmLVhEonbT5PA1E0m89DqjmybU6kOgvmnQqiGs5bA8au1fq8fsSob0QcklSEz/sRHvdTgBtR7IXecB8LS0cwN78GjeDlzoH96WH2IEuFSPVesrQXUTx0Q7qAfzlO56XIUj5gxGB4HZ3h1vD6u2p//uAP7uZuVrGKEziBFFJ4kAf5B/9APEafQYOB1QCoVIfX3bezsbGiAHfAx/j4nk2OqYtw7mMfsYSmo96IfYyKblU8QSlBfZDxiVdh1Tbs39QuEc6jRHFGDsmxFxmpI+b55xF0OqpnziQ3PZ0eu3Yh1st2PrBSpSVVKm2NLMtsbSZpsH4rbcnlouTss3EvXhwqHQVcP/+M7PUSrKig+sUXcc6ZQyA3N7SBRoXuIhHtxRKWybMwWP7epufSUvpFJvDoiBkNln288y8SjFampww4yBEB6GUJiYDVzxvZUVVCL0uojDVGb8Kq0ZNZXUJqrdqjO+Anx17OpMTerX8S7jL4fiRIAThjIUT1b/1jtDFaUYUaH5Njf2S44XZs1RWAHrV6Ahrt39DqbkIQBIrdy4Aa/LIOlbo3Gk3LS4clqQSn/QKCweWAiEZ7HQbjO022NJjEJNaxjiKKuIM7+JEfuZmbuYd7uJIreZEXsdD1m8nVJxgMaYyoVMM72JIjY3nJHgZGJxKpa7zlgYzMwr5v8GXMLVRTGV6+W7sdhP2pBNHOtlfTbQsUZ+RQCOIx64wAdHvySUSdjsqHHyY3PZ3UrCzU0dFUuB08su5ngvXOvSVVKm2JJMt8vns1y0qaLrf+MGsF/xoyjThJRfGMGXiWLw87IgCyy0VOXByyLdQ1VTAY0E+ZgvXmmzGdfz5Qgq06A6//elTeSLS689v6tA4bvVpDsjqywTKdSo1JrQsnsX2YtYJIrTGcUzI1OYOXNi9kQcEOBkcnsaYsl1xHJVf0GQOAIAhMTe7HvPytxBksxOjN/Ji7mUidgWExqa17AgEPfDMYAk6Y/DEkn9y6+28H/P5lpIj3MXPASkRBxi9pEdRXYDG/3iAJtcrrYmNtkrBRrSHZGNn4DptAkgK4XTfh930ISKhUEzBZvkUUD08aP4kkvuEbAgR4mqd5ndd5l3d5n/c5iZN4ndcZxLGhVhoMbgNApR7TwZa0nAqPkx3Vpdw04MQmxwgIVJsLqBYqD1ix3xExykYSbH3aN8LZShyb8brWRBA4Fqdp6hP10ENEv/ACUnk5+b17s2XnZl7Z+nsDRwRCVSrf52zEF+zYGv7/y9/WwBGJ05sZHdOD/pEJqAjNtdr8Xt7+6xcKTj4Zz4oVDRyROmS3G+O555L0xx/0crlI/v13LBdcgCiKiGISFusWQI/LeSF+36/tdXqtQqXXRY3PHf473RrL9RkTWFqym5nr/4/15fn8c8CJYecFYHpKf6YkZvDZrtU8s2E+3qCf2wdOad28FEmC74aDpxRGzYS+zTeF60xIkgOX625qqrrhtJ8I0gocwR58mX8zD+/4kLezr6B4/yVnr72CN7YtCVd8jYvvhVZ1+M9/Xvcb2Koj8Pv+hyAmY7YswxKx7LAdkfqoUfMYj1FOOT/xE/3oxxKWMJjBpJPO53ze4n12NqTgHkBEFCM62pQWs6J0DxaNjsHRzSff3lb8DBpZh8DBOSUqVJzGaUSqzQ1aIdRFOOuioJ0VRfTsUHyWAkE3XF3RvsdtI5oTCat+7TXK77gDr8nIrE9fwBUT1eg++ljjuH3Q5BZ9sbYW3mCAf6+agyfoRwCuyRjH2Ni0cMJXldfFG9uWUF6Yx1U3PkJESXkjH9sQYnQ0afv2ITQjABcI7MBhGwYEMVmWoNFMbO1TOr6YezIUL4aM62BS5xZrqsPnm4fX/SjB4HpABixotBdgMD5Hpc/IMxt+xVnvMxVvsCLJEmWe/fL1UVojDw6ffliy5n7/UlzOy5ClAkJ5IS+hM/yz1c8rm2xu53bmM58gQaxYuZ7reZqn0dN1EonrqKnujSyVEhlt72hTWoQkyzy05kdGx6Zx/gHVcQdGOPfYyripaCYL+71+8I5keNH7GunFJ/JnyS6u6TsuHOEsdFZ1WGnv4d6/lcjIoTiGSnvrRMKe3jC/weuRtXOp9DhxX381C/71d3ROFzdccQ99HAFOTxnI+WnDGd4tJRx12GXbx5y9mzrkHNaV5+EJ+gE4Ib4XJ8T1DDsicjCIftVarvjgZ24992YiS5rPHpcqK/H89VezY9Tq/pitKwEBp30KgcDaVjmP45LF14QckeRpnd4RkaRyXI4bqa6MwOU4g2BwPSrVMIymH4iMtmEyf4AoxhGjN3Pn4CkNQuKlblsDRyRGb+LOwScf0hGRpCLsNRNw2k9ClorQam/AGlnTJo4IQC968TM/48DBPdwDwCu8ghkzM5jBHrqW6rQslyOI0R1tRovJrC6h0utiQiM9kRqLcD7X7R5G7jsN5AMeswTYtFFkQcEOTojr2bYRzjZAiYw0Q6XHifXb/gh+G4UXZneqBM4jIc9RydMb5je67qHhp7G0eDd/luxm4C9/MOP591BFRtI9JwdVbQXJXnsFL25aQECW0Ilqnh97LgZ1+wkrSR4Pvyz8np3r/iKqsJQJfh0xSanITifOn38mWFaGbLOhSkykMD4KfyCApFHTq6SKYHHx/h1pNBAIgCwTcc89xLz44iGPHfAvx2GfBKgwWzegVg9ouxM9Fln7OKx/AiIHhEp4O6mWiNf7FV7300jSFgAEIQqN9gr0hpnNhv/dAR8rS3NYXrqHEpcNQRBIMkYwMaE3Y+PS0DUTRQzlhdyI3/cxobyQEzFZvj6i6Zij5Qu+4FEeDTsi/enPczzH2Zzd7ra0lOpKDSrVSCwRzT9gHAt48DCGMWyXtxMUQppJ0Y5ULtjwHBD6Pu9u7hyOmSIHf5TURREe93swB308vWF+p0ngPBJkWSbH1vRUkyRLrC7bC8Dus6YSNXQyNTfeSNHUqST+8gvqhATSLN0YH9+LP0t245UCbKgoOOoOp5LNhm/HDnxZWfizswnk5hIsKiJYVoZUWYlks4V0UHw+kGUGAPXdgGqtFnVqKlJ5OYapU4m67z50o0fzyYb5FLqqERB4e+IlyE4n/qys0LF27MC3fTu+LVsQTYf3f6nWTMBk/j+cjtNw2EZisW5Dpe6aegbtTtaHIUfEmAjnb+h0jogkFeB23Y/fNwdwASIq1Tj0hplotFMPax8GtZaTkzM4OTmjRcf2ul/H7b4PcCOIPTCZvkStGdfic2gtLqv92cpWbud2/uAPzuEcutGNW7mVh3m42QZ9HYUkeYAAoth0WeyxhB49c5jDYIbglkM6UT0qu3an4s73ruok1EmNy7WCRNAymfHOhDcYYFbmcjZXFjY5Jqu6FE9tYmovawzRl0xB43ZTdvPN5PXsSY/yclQmEwOjk/izZDcQctgaI7BvH/7t2/Ht3EkgJ4dAfj6B4uL9Dobdjux2g9/fuDGCABoNgsGAaLGgSUlBHReHKimJoigTyw1BKlMS6D/mJC4cM+2gzUtdNgpd1QDEGSwIgoBgNqMbORLdyCP/wGq0p2A0fYvL+TfstiFYI3e2qJ37cUnBIvjjOtBY4IKt0I6RtOaQJAm/7wO8nheQpF1AqHuuVncHOv3DiGLj5ZWthd+/BJfjCmS5EDBhML6LTn9jmx6zJQxiEL/zOw4c3Mu9fMInPMETPMMznM3ZvMZrJNF53vtSbVmvqOp6JeJHQlCSWL+3hhM9N/LbgFcB6F45LLz+//K38feMriWKqDgjh0BCROjEM1mBggLK77gD03nnYb7wQgSdrsF6SZZ5P3MZWyqLmPj+1wxcsBxPhAVfVCQ2ixGP1YTbamav9VcGWMzIskTPokryV9+Of9s21GlpaAYPJlhcjGf3bqR1K5m8ZQ2WfZX0cAbIszmRqquRHA5kjyc0/dEYgoCg1SKYTKiiohB790YVF4c6ORl19+5o0tPR9O2Ltn//ZsXXLAEf/1s1B78UpMRXzqCqkrDyJYQyxz/dtTr898SE9KO7wAeg1Z2HzCe4nVdiqx6ANXI3oti5s9Q7jIqt8H+ngaiB89aBvuPDxsHAHjzue/H75wFeQIVafTJ643Oo1Y03JmtNJKmgVi9kFSCi1d2E3vB6k3ohHY0ZM2/zNm/yJu/zPk/zNN/V/gxnOK/wCpOZ3NFmEgysA0ClHtaxhrQDkiwxK3M56yvySWM0VlcCNkMJMfb9UaH15fl4g39yy4BJqDpZJLIpOucnoBNQ4grpT8hCwyKqA8tdDySQn4/7zz8xX3ZZk5K+rYlv+3ac33+P8/vvKb/zTiJuuQXrTTehTgx1/txaWRRu5KX3BYgoKSeiLrFTFJEEQJYRJDl8njLg12oRdLpQVGPvXvLnzgUgAhhTOwZRJKDThRyM+HhU3bqhSkhAnZQUcmJ690aTkYGmb99Wa8hnVGuZlNiHhYWZBGWJV7f+zsCoRDIi4qn2uVm1b2+4ssGi0TWaFHa06HRXgOzE7boJe00/LBHZiGLn7ojZ7rhK4MexIY2eMxdDZJ8OM0WSJHzeV/F6X6vtaAuCkIxW9090+nubbSi3s2YfvxVsJ89RRY3PzT/7n3hI3ZWs6lK+yV5PsauGKJ2RGd0HcUJsCm7XDfh9nwIyhd5T+argGiq8AinmRVySPpKenbj0UkTkH7U/q1nNndzJX/zFFKaQQAL3cA93cVeHqbsGpVCjSLX6hA45fnuyrGQP6ytCfWZUgsiNFffzUuqdTO+fgqNCz9qyPAKyxLaqYn4vyuKUlK4RLVISWA/AFwzwya5VrCkLfWk9tudeuvnLub3fhwDE6EzcOmgyicaGyWxyIEDNa69R+dBDyB4P3XNy0KSltamtAJ5Vqyg8od4HsNYL1gwciKZXL3Iqi5HKytHb7EQ4vIi1Il+NUfdGCKhV+K0WjN1i0MXGoUpMREhOZLtFyxqzQEVaMoZe6Tw++qx2cbgOJCAFeXfHsmannQwqDXcMmkJPa9t9wXvcL+Nx34MgJGCJ2NPmof0uQ8AFX/QATzmcPBt6X9wxZgQ243HdRyCwCPADGtTqU9AbX0CtPjzJ8K2VRey2ldHDHM07O5Ye0hkp9zh4Yt0vnJTYh4kJ6WRWl7Cm+FOu6vEGerEGQUxjj/dN/rfLxmW9R9PTEsOiokzWl+fxxMizDmpU2Jkpp5y7uZuv+RovXvTouYiL+A//IZq2jYJ5Pe/i8nyGn+5IQnfUwe9RsRNZv40oQx8EQdOmx+8oZFnmifXzKHbVAHDrwEnER2uIJ55v+IYLuICs6lJe2bIICFVyzRx1VqOqzO1Fmyawvvnmm7z44ouUlJQwdOhQXn/9dcaMaVz17v333+eTTz5h69aQ5zpy5EieeeaZJsd3JJIs8e6OZWyt2i8zLgsiQr0Wz+VeJy9vXsT9w04lRh+aTvD89Rf7rr8e//bt4TLgYElJqzgjks2Gd9s2/Dt3hhI88/JCCZ779iFVVhKsqjpgg1Dkxr9lC/4tW4gjFN0JaNWoLRFIej000alXABY8cisbTtmfQNfDHI1Zo2OPrSycUwJwWa/hHeKIAKhFFTcNOJFFhVksKdoZblYGoSeFETGpnNV9MPHGtnVc9YZ/Ict2vJ4nsNsGYLHuPC7btjdAkuDboSFHZMzz7e6ISJIPr+dZfN53keVQBZUg9kSvuwuN7hbEFoasB0UnMegQQlT1+aN4FzF6Mxf2GoHf9zsjDFcwvGcx+7ypREW9hE5/Pb9u/JWJCelMqJ1CvLz3GLZWFrGidA+npXadvioxxPAJn/ARH/EKr/ASL/EJn/ApnzKOcbzKq4ymbaa+XL5tCNIyVLKICgFVbUWJ4BlItUdAFOLRaM/DaHqrTY7fURS7asKOSLo1hsHRyQDEE88a1nABF5ARGc+AqES2VxVT7nGy115JrzZ8KGstWuyMfPXVV9x999288847jB07lldffZXp06eTlZVFXNzBja6WLFnCpZdeyvjx49Hr9Tz//POceuqpbNu2jeTk5FY5idZidVlu2BHRqdSc22MoiaUxCIFybhs4me9zNlLoqsbu9/Bt9gZuSBhIxf33Y581KxSRqBdkCpaWNnmcQGlpKMFz1y4COTn48/II1iV4VlUdOsETQkmeolirENvMMECQZbReP5K3ed2NZdf+Df3llxFvr6DUHYqg5DoaSg8LCFzWe3TrS4S3EJUgcmpKf6YlZ5BtK6fa50YjquhpiWnXp0uD8XFk7Pg8r+CwDcZs3dZp5//bhbmTwLYb+t8Ew/7dbocN+Ffidj1AMLgMCAJ6NJoL0BteQKVuvwqLbFs5gyI12GvGEAyuAVTkeW/mfzmT+G/iRQSkIHn2Sk5P2V8TJgoC/SITyLZ17q6qTSEick/tzyIWcQ/3sIIVjGEMqaTyCI9wPdc3qhp6pDg5FzOvoxIOnjYXkJHlEmRpX6sdr7NQv9ldb2vofuvDR4AAH/ABz/EcAgK9rbFsrwo54wc2yOystPhb85VXXuGGG27g2muvBeCdd97hl19+4YMPPuD+++8/aPznnzeUGZ41axbfffcdixYt4qqrOpcU9JKineHfb+g3IeR1xo4Gv41B0Un0tMTw2Lqfsfvc+L74kty3Zod6m8gyBIMN9lXx+ONUPvlkyMGw2fY7F601KybLoVdzT3qCALJMefck1lxxDleeczWGiEgKTzoJad/+D6osCGw7dQIrrjmPcwxWLuk9ihUl2fxZvIviWqdEJ6oZHdeDKUl9STE1rszaEYiCSO+Iju32ajS+DJITn+9dHPZRmC3rW/wEfkyw6DIoXQapM+DEt9v8cJLkwuN5HL/3Q2Q5dCMXxX7oDPej0VzZ7v8HkuSjh+5LToz4gmDQi1o9BaP5a4RqL57gH/iCAVwBHxIylgMcZqtWT4m76SnUrsJUprKBDRRQwB3cwVzmciM3chd3cRVX8QIvYObou4NLwlAqvHFEa/cd9DwmIyBgwWBqRKW0i1Nfr6bS60RG5gZuwIaNl3gp7PBV1osWa7tIRU2LnBGfz8e6det44IEHwstEUWTatGmsXLnysPbhcrnw+/1ERzc9p+j1evF698sr25rJc2gtnH4fOfaQDkeiMYJBUaHQrCerCveflQTX/gt/VhbXbt2MNq8AUZaRoElf379xY/MHrI1sCFotgl6PYDQimkwIZjOi1YoYFYUqOhoxJgZVbCzqhIRQcmhyMurU1LA+hizLZGu1jVaxaAcPZuMDt/FzciiX4bcYDRf2yiDyjjuofOSRUEhdpaJ4SD/m//sGEARGxXZHr9KENRPcAR8BScKo0aLqwHnHzo7R/A6y3Y7f/wVO+0QsESs62qT2ZfWDsOdLiB4K0+eGF7ek87Pb9RSyXI7R9Gqzh/L7FuBxP1wbeZABExrt1RiMz3WIUBjU5Q89zKlxHkq8Q+kdOwu1elTt2qZzm45VUkjhO74jQICZzOQN3uBt3uZd3mUyk3mN1xjIUUxJCQLrak5iWuz3CAf0DhOQMZreRBQTj/IsOh8ppkiMag2ugJ8N5flMDp7Mn6olfMEXXMqlANh9nnDOo1ZU0dPSrQMtPnxa5IyUl5cTDAaJj49vsDw+Pp7MzMzD2sd9991HUlIS06YdrA9Rx7PPPssTTzzREtOOGnfQF/49yRgRzocof3Ee3t0u4BUAdI1tfCCCgDojA9NZZ6GKiwtVmiQmok5KQpOaimhpvdbdgiAgms1I1dWhBaKIGBVFtxdewHLNNWg8dn5ZNy/UfrowkzKPg5POPwPDo48iAzXJ8Xzz1B1IGjWDopKIMzS0rT0VVrs6JsvnOOwOAv6fcNhOwWxd0NEmtQ873oONz4IxGc5dHY7W1QkHBg6j87PH/QpezyOAgF5/F6KqR4P1klSNx/0gPu8XQA0gIKqGoNc/glb3tzY+wabx+xbgcl6FLJcAFuaUPI5RN41+6v16NjafB71Kg1alRhQERATsvoahc5vPQ4Sm6ySvHi5q1DxR+/MjP/IAD/A7vzOIQfSmN0/xFBdzZHlFG6rHc2rctw2WBWURSZyKRnt5a5jf6dCq1IyL78WiwiwW9H6LXaqlTPZP4xL1JSCEVLI/27Uab21+35i4tC7zHd6uk9vPPfccs2fPZsmSJej1TX/wHnjgAe6+++7w3zabjdTUts1RMNb7DytwViHLMoIgEPPuLKSfr0Yz8XrE01/mh5JMfsvfTvKWnZz/xxYMP/6yP7ej3hSMbtAgYl54oU1trkO0WELOiFpNxF13Ef3ww4i1WcsJxggu6jWCr7JDdfibKgrYRAEzpp5Ar1WbmP3iv/FaTETpjOF28h3Ng6t/bJCUWsekxD5c1rvxhLh1ZXn8mLuZCo+DOIOF83sOCyd3QSiCNDd3C0tLduMO+km3xnBZ79HEG1o3ydVs+RGHbSqBwEIc9vMwW+a06v47HXn/B0tvAo31IFGzOuHA+jQmHOjzfoHH/a/av0S83g8wGJ+oXfcdHs+TSMEtgIwgRKLR/hO94SnEDuxDEgzk4nL+jWBwHaBCq7sNveFVrDWb2FpZ1GDsjuqScAKhWlTR3RLNjurScN6VJMtkVpcwJalve59Gu3JO7c9udnM7t/Mbv3EJl/AP/sGN3MhTPIWWw79xVvrjyXf1IsWQXTcjjV/S4tf+p8OS69uD01IG8obmFXbFLyXKmULv9VfzgPZHREFo8L1p1eg5o/ugDrS0ZbQo7h4TE4NKpaL0gOTM0tJSEhKaD4++9NJLPPfcc/z2228MGTKk2bE6nQ6r1drg1dYY1Vr61CYElbrtrC8P1XHrT74U4yX3oqn6CJenkOUle0AQKBnan9TPPiettJSYN95AM7A25KhWgywTKGy/0KzhtNMwnnsu3XfsIOaFF8KOSB0nJ2dwTd8TsNR78pp/342899Wr2BJj6RcZz31DTyVK1zlKUx8YNp0Xxp4Xft056GQARsZ0b3T8HlsZszKXMyGhFw+POJ1h3VJ4e/tSCp3V4TG/Fuzg96IsLu8zhvuHnYpOVPPa1sX4pWCj+zwajOYFqFRjCfh/wOm4stX332ko3wi/ng2iFv62EfSR4VVOv5e/SnMa3Uyq56D4/QtwOa+utzaIz/sODvuVVFeacTkvQApuQaUajcn8GxFRVRhNb7WbI+IJ+sl3VJHvCFWtlXkqKai8nJqadILBdex2nckP++ZjNL2GKIpMSuxDucfBdzkbKHHVsKRoJ+vK8phWTyZ+WnI/lpXsZmVpNsWuGr7YvQafFDjq1gpdhd70Zh7zcODgLu5CQuJFXsSIkTM5k73sPex9ras5Mfy7IMCPxdcgC8fe9Ex95ml/YGnKF5gCEZy3fiYiIlU+VwNHpJvOxF2DTyZa13XUwlvkjGi1WkaOHMmiRYvCyyRJYtGiRYwb13Q/hRdeeIGZM2cyf/58Ro0a1eS4jqb+k8kHWSv4JW8LVV4XnkF34Rc0VP88A6c/NP89IiaVCK0BVWQkETffTOrmzaSsXYvl739HMLbvTT3uvfdInDMHTe/eTY4ZF9+LyUl9iNGbUAkColZLZLc4bh5wEncNntqsI7KuLI9H1/7MLctm88S6X9hygL6HLMv8tHcz9/71Pbcu/4r/bFkUrsY5EixaPRFaQ/i1ubKQWL2Zvk0kqi4qzGJgdCLTUwaQaIzgnLShdDdHhROSZVlmUWEmM7oPYli3FFJMUVybMY5qr5uNtU5nayKKIibLCkRxMH7fZ7icbdN1tUNxFMCP4wEJzvoDrPsrVnZWl/Lw2rksKspqdNPPd6/F4fcQCKzHaT8ntI96yPI+Av7PEAQDWv29WCMdWCJWodGe0oYn1Di59kqe2vB/PLXh/+ht2kqKeCZmviDPPQyzdR1bnQ9SsX+Glxi9mVsHTmZHVQkz1/8fCwozubLvWAZG7S8PHh3bgwt6Deen3M08tf7/yHdWcfvAKYfs6nusoUfPK7yCDRuf8ik96MEv/EJPejKIQcxjXqPb+YIB/iwOSfhvrglpLMkyZNqHsr5mIq56OUrHGitZyeVcjlEwkqXawfV9TyLdGoNRrcGg0tDT0o0r+4zhsZFnkGSK7GhzW0SLRc+++uorrr76at59913GjBnDq6++ytdff01mZibx8fFcddVVJCcn8+yzzwLw/PPP8+ijj/LFF18wYcKE8H7MZjPmZmS/69NeomeSLDMrcznryvMOWndvzuP09uwiV9eDz9If5ZbRlxDZxA1ccjpBklo1N6Q1+O/WxYyO7UGaOZqgLPPD3k0Uuap5fOSZTXYV3WMr46VNCzm351CGRCezet9efi3YwUPDTyO59s0+P3878/O3cU3GOGL0Jn7au5nC2v0ebW+EgBTk36t+YFpyP2Z0bzzh7f7VofXTkvuFl/2Uu5lNFQU8MmIGZW4HD6/9iYeHn06qeX8l0EubFpJqjuTi9LZxkCUpgMM2AEnahVZ/L0Zj+0zbtTk+B3zZA7yVcMq30HN/zkaeo5IXNi1oEHGK1BrwSQFcgf2l6kMiPVyeci/I1RzojACoVCdiifizLc/isPH7fsXlvBpZLgUsGExvoNN1nkrAA5OEoflE4c7MZjZzO7fzJ38iI9ONbtzO7TzIg6hR4w74eHXrYvba9zf9fKLfdehED8/sfB1bIJponZF7h5zSJc+/OXLJJYMMggRZz3oGM7ijTTos2kz07OKLL6asrIxHH32UkpIShg0bxvz588NJrXl5eQ1K6t5++218Ph8XXHBBg/089thjPP744y09fJsiCgJ/zxiHSa1laclu6ntpayNOoLdnF929uTyw627EpAjo1Xji3OF2gm1v7hg0pcHf1/Q9gXtWfU+uo/Kwog4A56QNZUd1CUuKdnJ5nzEHRR0Ars0Yxz1/fc/G8nxGx6Udlc0bKwpwB3yMj29aK8Lm82A9IPnPqtGHa/JtfndoWSPllDW+tqvBF0U1ZutW7LY++DwvImDGYHy0zY7XLkhB+HZwyBE54eUGjgjAt9kbwo7IgMgELk4fRYLRiiTLbKks5PPdawgEizgv/j5kydmkTE4wuAJJKmlxdUxr3piDgRxczgsIBtcTygu5E73h5U5Vtt1YkjA0nSjc2RnCEJawBBs27uEePuMzHuMxnuZpzuEcRuy+lL320OdZAPpExOEMZmAL+HAFYwCJSq+Lt7b/yYPDp3eo8mhrYsfOMIbhw8fP/NxlHJGWcEQJrLfeeiu33npro+uWLFnS4O+9e/ceySE6DLWo4vI+Yzg1ZQDLSnaT66gkKEskS2lQWisi5q+BhRdA78th4pugjTjUbjsl7mDoSdXUTLZ1tr28QcQBYEBUIpsqCgAo9zix+T30j9x/0zCotfS0xJBtLz9qZ2R5yR4GRic2GYXq7IiiFot1B/aadLyexxAEC3rDXR1t1pHz00Rw7IVBt8OQuxusKnHVkFUTyieL0Zu5eeCkcGRMFAQGR2m5I2MjusBTqEXpEJI7QXzej9Eb7jts01rrxixJHtzOa/D7vwZk1OpTMJpnd2jCbFM0liQMXbfDeB1WrLzHe7xT+/Msz/KN/A3fZHxDTHIak3Ov4ZW020k1R2Gr8aNWT+PJUWfxypZFlHsc5Dur2FZV3CCJvasiITGEIVRTzeu8zgxmdLRJbcKx4Ta2AbEGM+f1HMadg0/mX0OmcWJqI0m3e2bD1/2h8Pf2N7AJ5udv4x9Lv+CrPeuaHbd2Xy4z1/8fALMylzeZB1LldfF9zoYGeSDtFXWo8DjZUV3KxISmc2HqjnWgyqDN7yGi1iarJjQXb2usnLId1FpF0YglIhNB6IbHfTdez3ttfsw2YcGFsO8v6HEOjP/vQauzavYL6Z2Y0BuNqEKWZdyup3HYpmOrTsYkPU+5vzdZ9sGsrpoCqjNRqUYjCClAw/8Lv///WmTeoW7Mh4Pb/Sy26kj8/q8Qxd6YrRswW3/rlI6IzedhYUHTkgrNzcBLUgFu1yNIUklbmNZqiIjczM3kk89ThR8Qa0+n3LyXbwc+zgzzSfwhL0EK7kUU0+imN3FRrxHhbZeV7OlAy1uH+fnbGJV3PnvZy+3czq00HgRo77y+tkBxRg4XdSPJZXIQ3KXwy1RYcScE3O1uVn322iv4s3g3KYdIXNpjK+P9rOWoRYG7Bp/cbPWJiMDZPYa0afVJU6wo3YNFo2PwIXqD9LLEkFnd8Et1R1UJvWq7oMboTVg1+gZj3AE/Ofby8Ji2RhQjsERkAlbcrn/g9X7RLsdtNVbeCznfQsxImP5Do0N89XoXddObkGUnbtfNeD0PEwiux2B8GWtkEUuqZvFB3v18X3w9Qd1sLBGriYjKJzLaTUSUA0vEHsyWFZjMn7XTyYHPN4+aqni87gcBHQbTZ1gjd6LupC3pS102ntk4n1Vle5scMz9/O9IBDokse/C4n8FW3Qev5yn8vp/b2NIjQ5J8BAM5+P1L8Ho/w+N+gcnB/+PL8gT+yB/IXHsMlzlzyHdMAVxsZCMAg6OTwtG4us7rXZW99gpeCLzChu4/Mrn8b/yXgx8AoPNVEx4px3ETjRaibmKaoO5JbOt/wZjUrv046uMJ+vlf1gqu7DOWeflbmx37YdZKNKLIQ8NPJ0Zvpl9kQpN5IL8XZaEWVQ3yQJqKOkTUqwaw+TykmiOP+HwkWWZFaTbj4nsdpPz6YdYKIrVGzus5DICpyRm8tHkhCwp2MDg6iTVlueQ6KsO6KYIgMDW5H/PytxJnsBCjN/Nj7mYidYZ27bEjijFYI7dhq+6H23kFgmBGqz273Y5/xGx9A7a8BObucO5fTQ6rL3Hucb9PTdV/gQB6w3NodfciiiJBWSLHHpJuFxAwaxrKCAqCCZWqF6jap8w1GNiD03kBUnAjoEar/xd6/QudKi/kQHzBAK9vW0KV1wWACoE+kXFY1HryHJWUeuwArK/I5+e8LZzdYwiyLBPwz8Xlug1ZyiekXKtClquaPtBRIkkuJCkHWcpDkoqQpGJkuRRZKkOWK5HlKmTZhiw7ABey7CXUXflgNWmAgZZ6Uk4BNSdKaVSJaoqFLN5QzSWJPJLllHBEqCsrjXiCfu4qfpHFfT5gYPkk/lFzHzTx3NTReX2txXHljMzN3czPeQ1v1PEGK0+OOrPJberEtCyVG7m3kfWyoAZZYmX0KfxQ043ELYvaREzrUHy5ey2Do5LoH5XQpDMiyzKz96yl3ONkemr/cNdhaDoPZK+9gszqEqYl9wvngey1VzYadairVKmLOkxKbH56pTkyq0uo9LqY0Ij2QqXX1aDpVro1luszJvBj7iZ+2LuJOIOFfw44MVztAzA9pT++YIDPdq3GFfDROyKW2wdOOepqn5YiiilYrJuw2wbhcpyHYP4VjbZpNeIOJ/cnWHE7aCPhgi3QTBPAwVHJGEQ/V3d/hjTjTmRMWKyrUav3J9v9UbSLal8ogjgkOqnJKq4jwR1oprHkAUiSC7fzavz+7wjlhZyG0fwlohjZava0Fav27aXM4wAg2RjJbYMmh0vzZVlmbVku/8taGVZdnpYAkvduAoFFhILhdXd0EVmubvI4kiQBlUhSHlIwH1kqRJKLa52JkEMhydXIsh1kJ7LsAuocioOnyxoiELr9aBEEPQgWRCEJQYhAEKIQxG4IYiyikIAgJiGKyfxW4ODngkok1JyfNozpqQOIAIooYgUTOYVTeKPyy/BUXaKpa+byATyQ/yY/9X6ZeCGeq4ruRzA17Rx3dF5fa3FcOSMQknq/c/DJ4b9VzSj11YW/zu05lBGJ0bD3kYPGlEWPYVb0RcwY8jdury1rfW3r4lYpaz1c1uzbS56jkgeHn9bsuC/3rGX1vr0IQJTWSE3tTcGg0oTzQD7MWhH+qrJq9Q2iDlpRxY6qEvZ5HG0edRgQlci7J17W6Lp/DTn45j0ytjsjYxsXRauz8+y0IZyd1rzgXnugUqdjtq7FYRuB03EaZssfqDUTDr1he1O2Fn47H1Q6uGATaJt3sDXyfB7u9w9UeNntHMhXhQ8yNUVkUFQV7qCfFaXZrCzNDo+fkpTRzN5axqaKAv6XubzJ9b8V7ODavuNQiSJu11N4PTMBH6LYF6P5G9Tqjn9fHC5LS3aHf7+q79gGGkGCIDA6Lo3MmlLW7tvCtJhv8ToW1FMkre8kBPB5P8Dvm4uMDWQXsuwGfISiE4dyKERAQ8ihMIQcCCwhh0KMRhBiEMW4eg5Faq3Mf9wRRZ5Gxdv4qSA0rTQvfyu9I2JJt8aSRBILWMAJ8jjOijiJSdE30qNyJCceItess/JR+VzeSX4Ug6BjC1v4hE3Nju+s1YQt5bhzRkRBaDCd0BwNwl+2UDKUTG34L2ogctU2dshWRvU5tcPCX5VeJ19lr+fOwYd+yv+jVigIQo7Jl3vWAnB13xPq7c/VoMtj/ajDPrcdnUrTaaMOXQm1eiBm63IctnE47FMwW1d3rvwERx78VKtuefbS0BRNE0hSAJfzQgL+H1ALWn7d9y9+LwslEv6wNxStOpBTkvvRP6p1mtrtqCrhnR1LG+RHGNUa3AF/2LFeU5ZLiu4vxkU+jyyXAREYTB+h013aKja0J0WuGgDi9GbSapugeTxv4fU8hyj0BWo4vVsZZ0bnNlk6HUIOTZvI1YAOQTAiiokIgrU2QhGNIMYiCHGh5WIyoti99hXZtifZCPFGK6Nje7CmLBdPMMALmxaQERFPT0s3il01jAn+nXlDnue3gf8hyhtPT+0dRHAVyXSdipqN3u3cafwHQZWPtcI6YontaJPajePOGdnntvPvVXPQiCK9LDGclzasyZK/BuEvbSQIKty6eOYlXc0FU5/G9fOpjC9ZSJkvF+gPtH/4K89eid3v4en188PLJGR21exjSdFO3px4cbjWvi7S0JRIWIRWz7+GTAuLhNXlgdRFHepEwg4sl+tMUYeuhFo9CpNlEU77yThsJ2C2bkSt7nfoDdsanw2+HQpBbyhZNbZpUbiAfyVOxwxkuRpRNQyzZRFnWsxUSavYWJHPgfUcepWaGamDODWlf6uYKskyX+xeHXZEhnVL4by0oSQYI3AH/Cwr2c2fhfO5NOVVEvV5SLIKnf5e9PrnOnVeSHPU5UTUfa79/sV4XPcAWgSNBVFMxydpqXD9Qry+AK3oJ/QIdXB1jVp9Cmbrr+1n/FFyZZ+x1Pjc7Kyt3MqqKQ2Xk6cwBIM3AreuhiptKQ8LD/MQDzGNaVzHdZzDOehp++q5I8WGjaniyXhEJ+evf4o33JuBzU1+n9fRkmrC1szra22OK2ekpyWGa/qOI95oocbn5ufcrby4eQGPjTgDvVpz0PgG4S99N7hwO2scPv4q2MkFgkDp2DeI/vkEYv66BXrtLyNrz/BXv8gEHh3RsO78451/kWC0Mj1lQKOiP3XVJ/WdkaaqT1ozD0ThYDSakzCZ5+J0nIHDNgKLdQcqdY9Db9hWSIGQqJmvGsa/Dj0aT7CVJAmP6yZ8vvcBFXrDi+gN9wBgEuGmASdS5nbw174cKrxO1IJImiWaUbE90KsO/qwdKTuqi9lXmz+Rbo3lH/0nht/zehVMiHqTUYa3AJksx1Cy3M9zdb/prXb8jiDOYKHIVUOJ20ZZ9f1opJdQq0/GZJmDIIQerOaWrOP3onEISNzQ20aG6VsCgcWACthfQSHL5R1zEkeITqXm9kFTWFK0kyXFuyiv/b+H0NTEDPffmKP9CEmQkGqnmX7ndxawAAsWLuMybuVWBtG5GsgFCDCEIVSqS3ne8xqX99/f0+p4+T4/rpyRQfVKRFNMUfS0xPDA6h9ZW57HxIT0Q+8gsi+ya2f4T1kfzU8xF3BVySzY+Qn0bX+JaL1aQ7I6ssEynUqNSa0LT6V01eqT4wWN9nSMpm9wOS/EbhuENXJXi5VHW40fTghN0Qy5BwY1rmkQCGThtJ+MLBchiD0xmxc36kDFGsyc1aNtlSK3V+0v156alIEoiEiSH6/3efzej5CkPYiqwbyx+2ry3IlYNI5m9tY1mJCQzjfZ6zkn4UPUwYUgpmKyzEUQQpVJWdWl4d4talFDRsx1mDU3Ewxm4vW8ic/7AeAGZCS5suNO5AjRiCpOSenP1OR+FDqrcfi9GNQaUkyR/CXG8R0fNBgfrHW+7Nh5l3dZxSo2sKEjTG+SkziJXHK5W7ibfxtua7DuePk+P66ckQMxqrXEGyyUue2Nrj+c8NfKyJO4tOwLNCvugN5XgCh2uvBXV64+OV7Q6v6GzIe4nddgr+mPJWJP+wtt/XoOlK+DnhfACS82OsTterw2+VNGq78bo/Hl9rXxADzB/RU0cYZQLyhZLsPrfgRRzMBi3YhKPZSgMA+oblHFTWdlfHwv9P4bGGhZRoUvjrf3Pseo2C1E64zsrClla1VxeOyJCenh8mmVqh9G0+sYjM/g836K1/NfBKFz9c9qCaIgNOg1BXACJ2DBgp2Dv9NVqLBi5YMDnJWO5nIuZyUrOZuzeZlDf56O1e/z49oZ8QT9lHkcnNBEQuvhhL/MWhNb+9zJ8MxnYP2TuIc91OHhrwOrTbp69cnxgk53NUhO3O5bsNf0q3VI2ulmsfz2UBlv3AlwyjcHrZakEhy2KUhSJoIQi8nyW6dIuK2vU5JjryDVHIVKlQTEotZcjEo9FKffF1abPFDXpCsiuc5hkHUZJZ4e/HfPk0jAkuKdB40bFJXE33oOP2i5IFjQ6W9Gqzv2ukmrUTODGXzHdwTq6ZUICMQTz2IW05e+zeyhfXmcx/mCLxjCEOYwp9Exx8v3+XHljHybvZ4h0clE603U+NzMzd2CiMDo2FCI+UjDX5/kBeijS0C36UU+0p/Y6cJfCl0HneFmZBx43PfVc0jaOOlu8yuw7XWw9ISzlx202ut+G7f7diCARns5BuMniKLI/PxtzNm7iZOTMrg4fWSTu6/T6qnwOIgzWDi/57AGSdCyLDM3dwtLS3bjDvpJt8YctlbP8G6pzM/fDsCCwh2Mie2BXq1BpUoDQpLY8wu2hbUnRnThz6UkSTjtEwgG/0KlOoluET8xKnYb68vzGsjgR+uMTE7qy7SkfqiaSdIVmi+16bKcyZl8xVcNlsnITGVqp3JEPuVTnuAJEklkDWsQj3NB9OPKGanyupiVtQKn34tZo6O3NZb7h50aVo48mvDX/zy3cceeh+id+wXnT/lPpwp/KXQt9IZ/I8t2vJ6nsNsGYLHuRGxGbOyoyPkO/voX6KLhb5uh3vtWkhw47acQDP4FWDCZ56DRTgVa1nqgTqtnSHQyq/ft5e3tS3lo+Gnhz1GdVPU1GeOIaaFWT5qlGz0t3cixV7DPbef5Tb9xeupA+uoScfuy+apgBX/t2wuEno4nJfY50ivVoUhSAIdtKJK0HbX6bMzWH7EA1/Ubz8X+EeTYK/AFg0Ro9fSyxnTZbrWegJ8fczezsSIfu99LqimKi9NHhkuYGyOrupRvstdT7KohSmdkfI9+CHECMjIqVAxmMDaXn88Mn1O+PY4T/adwSfpIerZTK4jGWMYyruEaTJjYzGa0NN2s9HhBkJvrptRJsNlsREREUFNTg9XavsqmLeKLNHDmw+XFYIzraGsUujgu5134vK8iiv0wW7cdXSlqzS6w9qaB8ETpylAXXlEHl+wG0/4Eb5/3O1zOKwAPavWpGM0/IYqhKQ5P0M/TG+ZzWfpo5uVvJaX2htEY7+1Yhk8KcOvAyeFlz238lVRTVFiq+t+r5nBKSv9wua874OOev77nmr4nHFZ5fLGrhhc2LcAV8IWX3Z1+DzG6Uh7Z8SFBOeTInd9zWFgyuyshSS7stgHIUi4a7dWYzB91tEltxns7llHkquGy3qOJ1BpYtS+HhYVZPD7yjAbibnWUexw8se4XTkrsw8SEdDKrS/h6z3qWjXuBreqNTGISj5e/yVeZG5k76jEKddncVPAU+oI+PDHyrIOEwNqDbLLpT38kJDazmf60Tpl7Z+Vw799d033urEz+JNSr5veuJ6Sk0Pkwmv6DVnsdkpSJ0z6qVp67aSo9TvIcleFXpccZWlG2Fr7qC0uugmDtDduWA3OnAGKo30ytIyJJPhy2M3E5LwBkDKYvMVt/DTsi0LD1wKHItpfTL7LhuAFRiWTX9qc5lFT14ZBojODeIdNIMobkvwUkorVlqASJyTFz0avUXJo+qos6ItXYa3ohS7lodXce046ILxhgQ3k+f+s5jL4RccQZLJzVYwhxBnMDwcb6/FG8ixi9mQt7jSDRGMGUpAxGxKQypvB8buEW5jOflQUFnJTQl636tUQJkbyT8hD7zNmsKG3/rr42bIxgBH78zGPeMe+ItITjapqmzUk6KdTVtOh3qNgK3TpXLbtC18NonoVsd+D3f4XTPglLxNJGx1V6nDyydm6D3AG1IDJz1FlE580DRNj1BbJjF97x49H99D8EyQen/QLdQkltfv+fOO1nAzWoVKMwWRYcpLR5uK0H6mgvqeokUySPjpjBzpp9ZFd9j0YMJS+eEjuHM3s+glHXeXIFDhdJKsJeMxBZrkanfxKD8eB2FMcSkiwjIaMWGk7NaUQ1e2xljW6TbWvc2d2a3Y//9niEgBQkz17J6SkDiCSSrWylr9CXb/s/QVJONKcxsM3O50ACBBjMYGqo4V3e5RROabdjdwWUyEhrM/UrQIDfL+loSxSOEUyW2ajVMwgGl+GwNe4EOALeBo4IQECWcAS8kD+fUJ8RCUpWof3xP+C3wYnvQPfTQ4mRjmtx2icBDgyGV7FErDnIEalrPXBdv/GdMidKEAQyIuM5KXYVdV9tgiAT9NyILDcfVepsBAN7sFX3RZar2eJ8jjvXpfPVnnXNbrOuLI9H1/7MLctm88S6X9hSWdhgvSzL/LR3M/f+9T23Lv+K/2xZFK4y6gzo1Rp6WWKYl7+Vaq8LSZb4a18O2bbycB+tA7H5PY06sp6gH18wgMPvRUIO5wUmkcQ61qGR9LzV49+sYU2bn1cdE5lIHnncwz3cyI3tdtyuguKMtDYR6dB9BlRtg7z/62hrFI4RzNZfUKkmEQj8itN+wWFvJ/jtULZ6/98yCAGQtRCMSyYQ2Ia9Jhm/7yNEsTfWyL3oDHc0uq/6rQf+ufRL/rn0S3bW7GNxURb/XPolUiM3/JZIVTcY49s/piXIshO/72v2N3mTCAZX4fO+1eJ9dRSBwEbstoGAi2rhf/xfcb/DThSekNCLh0eczrBuKby9fSmFzurwmLpE4cv7jOH+YaeiE9W8tnUxfinY9I7bmb9njEOW4b7VP3DLsq9YXJjF6NgeDQoLjpYMMniy5D0g5CBkkdVq+26KS7iEVaziXM7lRRrX8DneUZyRtmDyZyCo4M/rOtoShWMIk+V3VKpR+P3f4XRce1jb6EuXg9zwZiMAgh+En87CnTMIWS5Fp7+/Vvk1pcl91bUeeHjE6eFXD3M0Y+LSeHjE6c1KVdenKanqOuqkqnsdQbWD3zeHkLpoQ9yufyMFc1u8v/bG7/8Th2004Edt/IH/7Ynlyj5jMaqbr7ao39Qz0RjBOWlD6W6OYklRSH9ElmUWFWYyo/sghnVLIcUUxbUZ46j2utlYnt8OZ3Z4xBos3DN0Gq+Nv4jnxp7LA8NPIyhLxOjNjY63avSNOrJ6lQatSo1Zo0NEwH7AmCh3MjfnvoAfPyMYQRFFbXZOj/AIX/EVwxjWpJaIguKMtA36SOh3I7iKYVvXeSJT6NyIoojJsgpRHIjf9xEu522H3EZfshiEg1PDBBkEv4z5DzD7v8FgfPbQ+1JrSDZFNng1JlU9J2djeJupyRlsqypmQcEOSlw1zM3dTK6jkslJoRyO+lLVmyoKKHRW8+HOlQ20eqq8Lv6XuYK7V37Lrcu/4ol1v7DXXtGojSGp84O/1mTZh8t5A/WLBxcX7eTB1T9yy7LZPLvxV3IOM2G2rfD5fsJpnwIImCx/8E1ubKdKFG5PdCo1EVoDTr+P7VXFDO3WuJPcy9qIs1tdQi9ryJFViyq6W6LZUV0aXi/JMpnVJUzVj+dzPseFi0EMoprqI7ZXRqaSg6X1P+ZjnuIpkkhiFauOeP/HA4oz0lZMeA1UBlh1HxxQBdFk1YOCwiEQRRGzdSOCmI7P+wZu1wMA+IKNh9r1RQtBDhy0XBZCERLJBKgPXn+kVHpdDeb367R6lpbsZub6/2N9eX6jWj1TEjP4bNdqntkwH2/QH5aqdvp9vLhpASpR5LZBk3l85Blc2GsEpkYiBVIwn0BgCfunaPYjCEECgQX4fZ8DsKYsl2+z13NG90E8NPx0UkyRvLZ18UFP2e2F1/spLse5gAazdQ0bq1LIc1SGBRgPRXslCrc126qK2FpZRLnHwfaqYl7ZspAEo5UJ8b0AmJOzkQ+zVoTHT0rsQ7nHwXc5Gyhx1bCkaCfryvKYlpwRHjMtuR/LSnazsjSbYlcNX+xeg08KMD6+F5dyKa/xGlVUMYABeDiya/EN3xBLLO/ybnjZH/zBtVyLGTNb2KJoiRwCpZqmrRDVMGomrLoHVv0bxr0EHKLqQW/qKGsVuhCiqMZi3Yrd1gev5zn22Ny8u2f8QeOi/BVoHHvDf4djAiL4uoOvFwSjRETVA1jkM8MdX1tCW0tV/1qwnSidkWv6nhBe1lTI3uf7jHpnWQ8NshxAEGS8nv+i1V3BwsJMJiakM6G2QeblvcewtbKIFaV7OC21/SosALzu12sVbk1YrJuoCSbwVfav3Dm4c/UOaQ/cAT9z9m6i2uvCqNYyIiaVc9OGhpVka3xuKr2u8PgYvZlbB07mm+z1/F6YRaTOyJV9xzIwar9mzujYHjj8Hn7K3YzN5yHFHMXtA6dgrW0Dchu3UUYZM5nJYAaTSSYqWnbdf+InJCRu4iZyyOHv/J1TORU1alazmmjauc9UF0RxRtqSof+CTc/Dttdg5OOgNTdb9RCN4owoHB6iqMdi3UF5ZQ+SNf9lVGQlKyobVtpMqlwAhG7PAiBZwZseckTQ1I2SkKQcPO4XMBifaMczODw2VxQwICqRd3csZVfNPiK1RiYl9uHERno/BQOhTqySrMIrxWBQ2QEPOv1d7HXoWVLi4h+D7mhQ7lmHKAj0i0wg29a+UxZu1xN4PY8jCFFYIrYjignkVeeHE4XrkJDZVbOPJUU7eXPixQfl57QkUTiiXi+uztbUc1RsD0bFHtwBuo5rMsYdtCwjMp6HR5ze7H6nJGUwJSmjyfVP8iTllPM2bzOWsaxm9WHLs8vI/MZv4b+f53le5mUCBFjIQkVL5DBRnJG25sR3YcH58Me1jTYgU1A4UnIcbl7Leo77+tzF2QmfkmBMxKi/AaNaS0HFbk7O/A0Z8KeCpw9IUSII9R1hM6KqNyrVANSaKR11Gs1S5nHwR/EupqX04/TUgey1V/JV9jrUosi42tB9HUbzp8jymzy2fiXj49M5MeJuAoEFGIzPE/AUsrHmDwJyAq5Aw3LPOqxaPSXtWOrqct6Bz/sagpCAJWJHuJS6LlG4Ph/v/IsEo5XpKQOaTRRurqlnXaJwXafbukThjmzq2Zl4i7coo4xv+ZbTOK2Bg1FHpccZKpevxazWUarPo4yGOigBAvSmNyMY0eZ2Hysozkhb0/M8iOgT6gHiyAMaDzErKLSUxUU78UgmXtz1Ig/1u5exES9hsV6GimRGLD8XWROg5jTwqnRkOoYxVDsVo7Y/oqoPotgbUWy630dnQQZ6mKM5L20YAN3N0RS5qvmjeNdBzogg6BCEWKgtAxXFnoCMJDWe7NqROB1X4fd9iiCmYbFuQxT3S53r1RqS1ZENxjeWKHwkTT3n5W8lzmAhRm/mx9zNSlPPA/iGb5jCFBawgMu4jC/4IryuqSn27mMLETShXjj1ySGHEziB3/iNHjQd7VEIoTgj7cHJX8Cc0bDoUpg6t6OtUTgGCMoSG2pLMgUxDktEJl7HaThqpmJeEYlYsQfX5CTW+Z7m69zaxDn96C7XKC5CqyexVua9jkRDRPjcG6Ou3FNUhSp2goEN2Hw9w+WeoiA0Wu5p83mI0LRc26SlOGxnEQj8jCgOwmzdcERNEI+mqednu1bjCvjoHREbThRW2M8iFjGCEXzJl8QSy3/5L9C0sOAiYRECBzsjQYLsYhejGMU2thGH0q+sORRnpD2IHQXxE6B0OZqK5lUUFRQOB3fAH/pilCRODOxBt+pPtO4MyNsOgQq8J03F1OsH4qpqgD+Ag4XFugLp1tiDVEJL3TaidU3nV/WyxrC1sojzUwcDEAxuYUe1odFyz7qoQF2555SktpONlyQJp/0kgsHlqFTjMVmWHnbzw7ZOFFbYj4jIWtbSl768xmvEEsvDPNyoqJ+ExArVUqRGKrjUqAkQoDtN/58o7EdxRtqLqbORv+iO8Y+/Q8/nD1rt8Hsb2UhB4QAkCQp+w7DrE57J/Y2oQCVi7TOZ0G0YUu8LCaoK0Wf8BoJIuWe/JLhe1fU+7tOS+/H8pt+Yl7eNUbHd2WuvYGnJ7vD0A4TKPat9Lq7NCFUUTUrsw5KincwtSOTkSNhelcW6sgRuHTSpwX4/ylpJmiWaNEs3FhVmhcs92wJJCuCwjUCStqBWn47ZOq9NjqPQOqhRs5Wt9KIXj/AINTYJYfvBvcbKzTk4BUeDZQICWrRczuXczM2MpPGO1goN6XrfTl2UbX4Rr2Usw+1/Mdy2mg3WMQ3Wv7djOXcMnkzPI1CdVDiGkSQomA+7PoPS5eAoACRUgEXUs1ffiy3mYfQf+yB9k0cgsl88KChJ/FG8O7yrjMj4DjiBoyPN0o1/9j+JOXs38kveFmL0Zi7qNZKxcT3DY5or9zzBbCLfWdHics/WRJI82G0DkaVsNJrLMVk+a/VjKLQ+RoxsZzupUg9esjzGNOvt9KoY22DMjoTFoV9qS9b60pdbuZUruZJIItvd5q6MINeXJOyk2Gw2IiIiqKmpwWq1drQ5LSbfUcXzm35DDjj5b9aNuFVG3hjxDRIS+Y6q8EyjSa3lweGnNa6jIMuw7y8wpYBZSTg7ZpEkyP8Fdn8BJcvBWUhYxEtthuhB0P1MyLiWv5xePsxaCYBJrePS3qMYEZOKShApddn4Jmc9WypDMtc9Ld24f9j0DjqpjqO60lDbc2dLhxxfkmqw1/RHlovR6m7FaHq9Q+xQODJ21uzjiczZfDXqXoKinxuzn+MczQy0oooNzt3c1+c8ZCFIauUw/um/nfsTrmnVPjrHAod7/1YiI+3Az3lbQs2oRD1bki9keOFsHtDnQf8bqPQ4+SBrJbts+3AGfPxWsIPLeo/ev7EjH3Z+DJmzwJELGdfBpFkddzIKrYskQd7PsPtzKF1R63zUuqcaC8SNDTkf/f4OxoZy36ONEstL9rCzZh/OgJdZmcsxqrUY1RrK66n6qgWRi3odn6FiQbAgyx0jdy5JJdhrBiLLlej0j3ZKHReF5llUmInZF8N5G2byw8iH+Cj9ER7jCqKI4jGuJ0KyctLG20lw9KVCoyMQJykJwUeI4oy0MVVeF5sqQvP2EVoDg6Z/At9vgG1vQL/riNabuGnAiTy4+ke8UoC/9uVwfmoG+vxfQg5I0WIQBJAlEETQRXbsCSkcHVIAcueGIh+lK8FVRAPnI34cdD8LMv4Oxuaz71WCyM0DTuLdHcvYUdufwxXw4Qr4wmMMKg039p8YTt483hCEbkhS+zfICwZysNuGAA70hv+gN9zZ7jYoHB3ugJ/Ntd/dPYN9WC6v4EzhDE7lVNJJZwMbWCwuZpPezzpHHna/t9k+OgrNozgjbUyeozJc8jUmNg2NWgMnfQA/TYDfr4AeZ2E2JnGSQSJv31ZG2lajzfw7BJyhzr/IoSkaAAQwJjV5LIUQjQkTdZjUvhSA3B9h95e1zkcx+50PK8SPhx5nQ99rDul8NIZBreX2QVPIrC7hj+JdZNvKCcgS0TojJ8T1ZFx8L8waXaueUldCFJOQpLZvEV+fQGAzDttYwIvB9BE63dXtenyF1qHG50aq/axmRMQxRhzNn/zJCEawjW18x3eMZSz+qD2sK88DQg+fCkeG4oy0MYF6TfLMmlq9h4TxYEyGnG9hz5cAXFA7pk66O/THAc3P5CB4q8FTCXql10FjdHjvHykAOd9D9le1zkcJDZyPhIkh5yPjGtC3TrRCFAQGRCUyICqxVfZ3LCGIaYSEz2yIYtvnmwX8y3HYpwBBjKY5aHXntPkxFdoGdb2ya3tttWM/+vEu77KYxZzP+QA46snwq5UpmiNGcUbamGj9fmXFrZXF+5twXZoNKi347MjOIj5f+yknF35Ikq+ooUNyIBtmhl4IIGpBYwJtFBhiwZQM5p4Q2QeiBkL0YNB2vYTfo+GIev+UroT8/4ORT4SmxFqCFIDs7yB7NpT+Be5Sws6HNgISToS0c0KRD8WBbHdUqgz8QDC4EVE8qU2P5fPNw+U4GxAwWRah0Uxu0+MptC3ROiORWgPVPjeZ1aWUue3EGixcWfsDIfHBFaXZ4W16KdWQR4zijLQxaeZuxBuslLpt7LLtY21ZbqgRlKo2SqK18HuZzFL9AJamv8jJQjEX578F9hwa7UA69F7w2kLJrO5icJeDZ1/o731/NWKBACodaMy1TktcqCLH2hMi+kLUIIgeCGpjI9seB+z+EhZfBXIA0i+FqEM0tQr4QhGt7K9h36oDnI9ISDgJ0s6FvlcpzkcnQFSFtCGkwGbQtJ0z4vV+idt5OaDFbF2BWq30JOnqiILIxITe/Jy3BRmZt7cv5bp+48Oqtg6/h9l71lHqtgPQxxpHkimimT0qNIfijLQxgiAwLbkfn+9eDcD7mctZV57HiG6pBJFZs28vW6uKw+P79b8YTrgFNj4DG54llDNSb7pmxKMhx6IxJAns2VC5BaozwbYn1A/HVQLe8lCypD374OkfAMRap8UCuigwxIdKiC29Qk5L9CCIHABqbetdnFam1G1jXt7WRtftc9vpbq7nHMgyrJ8J6x6rXSBA8ZKDnZGAL+R4ZH8NZatrnY9atJGQODkU+ehzNegjW+9kAEmWmJu7hVX79tZ2YDUwPr4nM1IHITQTwcmqLuWb7PUUu2qI0hmZ0X3QQWJei4t2sqBgBzU+NynmKC5JH3lMatyo1cMACLZh3ojX/RZu9y2AEbN1I2p115LcV2iaKUl9WVmaTYXXSaGrmifXz6O7ORq9Sh3Oz4JQMvm5aUM72NqujeKMtAMnJqSTYy8Ph/PWl+ezvpHeGqelDtifiT3qSUi/BP64bn/EQ21q2hEBEEWI6B16NYcUgOosqNwKNVlgywZnfq3TUhn63bYLSg6WOEYQQaUP5T/oosEYD6ZUsKZDZAZEDYbIvnAE/TaOhu1Vxby9/U98UmOOFnyQuQIBISSXHfSGruvuz/cPEEQoXAx9r93vfOxbE4o61aGNgqSTIe28UOSjjafA5ufv4I/i3VybcQKJxghy7ZV8vOsvDCotJyc33g693OPgjW1LOCmxD9f1G09mdQmf7lxFhFYfFv1aU5bLt9nruaz3aHpaYlhUlMlrWxfzxMizsGrbvjdLeyKKoXOWgtmHGHlkuF1P4/U8DERgjdyGKCa3yXEUOgazRscdg6bw2rbF4XL5PEdlgzEaUcX1GePpHRHbESYeMyjOSDsgCAJX9hlLgtHKgoJM7P6GPUKidUZmpA5iYkJ6ww2jBsA5y2HHe/DXPWBppc6Pojo0NRM9sPlxAR9Ub9/vtNhzQgqg7tKQ02LPCUVgGunLgKAKOS1aK+hiQhoZ5u5g7QWR/SBqSOj3w+zN0RxFzpoGjohWUJEeEYsA7LGV45UCBJGZlbWcbnhIW/H3UJ5IfeRgaPol55v9y3TRkDQVep4Pfa5o9/ybbHsZw7olMzg6dIOL0ZtZU5ZLjr3pLrR/FO8iRm/mwl6haYJEYwS7a8pYWJgVdkYWFmYyMSGdCbXvt8t7j2FrZRErSvfsz2k6ptAhyYWHHtZCXK5/4fO8giDEYYnYgSgq03LHIvFGKw8Pn8Hy0j0sLd5NSW2vJLNax7j4XkxO6tO4UKVCi1CckXZCFASmpwxgalIGWyqLKHXbEBBINkUyICoBUWjipiyIMOCm0A0x4G5fo9VaiBkWejVHwAWV26BqK9TsBFsOOAvAvQ98VaEoS9VWGs2BEdSgNoQiLYYYMCSCuQdEpENk/1ASrim1Wafl14JtYUdkaLcUrul7Asba6SRvMMCXu9ewcl8OMd5ioudNAu8+GnWgkCFuPPS9EnpfAdqO/YLpZYllWcluSl024o1W8h1V7LaVcWGv4U1uk20rp19kQ3G0AVGJfJ29HoCAFCTPXsnpKQPC60VBoF9kAtm2jhEHa2sEwYwslbXqPp2Oa/H7PkIQu2Ox7kAUj9Ocq+MEg1rDtOR+TEvuhy8YICjL6FXqZqdLFVqG4oy0M2pRxfCYI5BzN3Ti9tNqI8SNDr2aw2cL5bNUbYPqXeDICSmOesrAWwVVmVCxmcadFg1oDKE8DV0MmEJOi9fUE0dJBRZ9KkF9HH/PGIdepQlvphNkroyQGbj5A0ZVLTrEiQghR2TATS29Am3CaakD8AT9PLbuZwRBQJZlzkkb2qAvy4HY/J6DplqsWj2eoB9fMIAr4ENCxtLImJIDuuMeK4SEz1ovMuKwn0fA/wOiOACzdQOi2HnzqBRaH20XbDjZFVCuqkL7obVCwoTQqzk8lVC5Gaq2Q80ucOwNOS3uMvBVh3JbKkJP+jrgttrNZEDItEDsqFAUyVcNjnxUASfDBC0SIqq6iIigrk3kref4CGJI8baTOCPrynJZvW8v12WMJ8kUSb6jiq+z1xGpNTCujbrLHosIQiKw+5DjDoUkSTgdJxMM/IFKNRaTZQViK0wzKigoKM6IQmdEHw1Jk0Ov5nAVU5C3lOWZc4n1lZKh8pBsNIf0PUqWh8aMeBSSJrHApeHH/EyMQSe3xOjp7dkNJctCycEBF1AruV/4e6jSphOEX7/L2cj01AGMjksDINkUSYXXyf/lb2/SGbFq9Nh8DXOSbD4PepUGrUqNKAiICNgbGROhObaSV+sQVT0IBv9AklxHPJ0iSQGc9jEEgxtQq6djts5vZSsVOgPz87cxZ+8mTk7K4OL0pvs5rSvL48fczVR4HMQZLJzfc1g4twtAlmXm5m5haclu3EE/6dYYLus9mnjD8aX71BIUZ6QVUEowOwhjIqaeZ/J7WQAIJXjOHHUWYiPXfMOG0M3DpTKh73k6mKJCK6RgKEm3dCWUrACCncIRAfBJAcQD5O9EQQi3F2iMXtYYttZ26q1jR3VJuDeNWlTR3RLNjupShtVOF0qyTGZ1CVOS+rbyGXQORDFUaisFtyCKYw8x+mAkyYPDNgRJ2oVGczEmy+zWNlGhE7DXXsGfxbtJqdURaYo9tjJmZS7n3J5DGRKdzOp9e3l7+1IeGn5aWIPk14Id/F6UxTUZ44jRm/hp72Ze27qYx0eeqTTSawIlxtgK1JVgXtp7FI+PPIPz04bxa8EOFhftbHKbuhLMjMh4Hh5xOlOTM/h05yq2Ve2/kdSVYJ7RfRAPDT+dFFMkr21dfNCT7/FMlM7IgNqEzXKPg1/ytiDLDW/Wi4uywuV43c3RJBsj968UVaEk2f43wpSPYMqn7WT5oRkSncy8/K1sqSyk3ONgQ3k+CwsyGVavEdecnI18mLUi/PekxD6Uexx8l7OBElcNS4p2sq4sj2n1SoGnJfdjWcluVpZmU+yq4Yvda/BJgYMc4WMFlSpUIRQMbmrxtpJkw17TG0nahVZ3k+KIHKN4gn7+l7WCK/uMDSe/N8WiwiwGRicyPWUAicYIzkkbSndzFEtqv+9lWWZRYSYzug9iWLcUUkxRXJsxjmqvm42NSDoohFAiI62AUoLZsZyaMoDttV1rf87bytbKIkbF9kAliKwvz2eXbV+9sf27TAb8Jemj+DF3M1/sXoPd7yVCa+DExN6c2X1QeEyNz01lveZcMXoztw6czDfZ6/m9MItInZEr+44Nv6cARsf2wOH38FPuZmw+DynmKG4fOAWr1tCu59deqFShz1hQymx0vSy78fvnodGch1Cvqk2S9mGvGYAsV6DTP4jB+HS72KvQ/ny5ey2Do5LoH5XAvPzGhRPryLaXMy25X4NlA6IS2VRRAEC5x4nN76F/vao2g1pLT0sM2fby8LSrQkMUZ6QVUEowO5b+UQmc33MY3+dsBGCvo5K9BwgTAUxPGcDo2FbSamkH9GoNF6ePbHbu+pqMcQctq4u2NceUpAymJDUunHasIYi101FNCJ95PW/icd+LVvdPDMY3EQSBYCAXu20wYEdveAm94V/taLFCe7Jm317yHJU8OPy0wxpv83mwHpBfZdXoqamNWNv8IQmGxqraapSodpMozkgroJRgdjzTUwYQqzfzS95WCpzVDdbFG6ycnjpAqUA5ThFFERkNHv9eKmudVLNaR7TehCzL+Lz/A8DnfRtBiESjvRyHbTTgwWCchU5/XQdar9CWVHqdfJW9njsHT1FyOToYxRlpBZQSzM7BiJjuDO+WSq6jksJahyTeYCHdGttlpmYUWp9KjxNPQItPyufZbaFEZrUgMnPUWVjVO5HqTd94Pc/i9TwPgNH0LVrd+R1is0L7kGevxO738PT6/dVREjK7avaxpGgnb068+CBBSqtWj+0AFe1Q4ULowdGqCU132nyhYobwGJ+HVHNkG51J10dxRloBpQSz8yAIAmmWbqRZunW0KQqdBEfAiy9owqzeH1EMyBKOgBd98CNCX4OBeltIaHV3Ko7IcUC/yAQeHTGjwbKPd/5FgtHK9JQBjSpj97LEkFld0iBvZEdVCb1qqxxj9CasGj2Z1SWkmkNVe+6Anxx7OZMSD9E37DhGqaZpBY60BDOzNumyjqZKMOuoK8GsG6OgoHB42AORaEVfw4WyH7/vUxo6IiF83v/i837ZPsYpdBh6tYZkU2SDl06lxqTWhct0P8xawZzafDSAqckZbKsqZkHBDkpcNczN3Uyuo5LJtaXxgiAwNbkf8/K3sqmigEJnNR/uXEmkzhAup1c4GCUy0grUlWBG640kGiPId1SxsCCT8Qn7oyJzcjZS7XNxbcZ4IFSCuaRoJ9/lbGBCfC8yq0tZV5bHrYMmhbeZltyPj7JWkmaJJs3SjUWFWcd0CaaCQltR7e9GGjsRCSDVfu2p5UXIclUTW8i4nFciCBFotDOaGKNwPFDpdSHUe9hMt8ZyfcYEfszdxA97NxFnsPDPASeGnReA6Sn98QUDfLZrNa6Aj94Rsdw+UMlLaQ5BPlCUoRNis9mIiIigpqYGq7XzKdh5An5+zN3Mxor8cAnm6NgenNl9EOraN99HWSup8Dr515Bp4e3qi55F6oyc0ajoWRa/FewIl2Be0mskPY+zyMjc3M38nNew3C7eYOXJUWc2uY2ikKgAsLmikDl7NzLANItT4n7g1d1PUewNJZbfn/ERUepFNN40UQUE0Wivw2Se1Z4mKygcUxzu/VtxRhQ6PXNzN7O+PJ87B58cXqYSBMxN5M7ssZXx0qaFDRQSfy3Y0UAhcX7+dubnb2ugkFjoqlYUEo8hFhZm8k1tqfwQ6wouT32TrwtvZF31JAwqB49m3IQo1H39iYT6FMmIqkFoNOei0Z6JSjW6gfaIgoJCyzjc+7fyKVPoEoiCQITWEH415YiAopCoANuqisKOCIBXCgnFjYx2EaM3c0nyW2FHREaNWn0qBuNbWCPysEZswWCciVo9VnFEFBTaCSVnRKFLsM9t59+r5qARRXpZYjgvbRjRelOjYxWFRIVf83eEf5+ROpAzUwdhr7mFAVEJDIzOxePehN1v5fuivyOop3L74Kan/BQUFNqeI3L733zzTdLS0tDr9YwdO5bVq1c3O/6bb76hX79+6PV6Bg8ezLx5847IWIXjk56WGK7pO47bB03mst6jKfc4eXHzAjwBf6PjFYXE45tyj4OsmlAVWpzBwlk9hqBSqRDFXgQCf+Fx345Wdzfv5X/KdsdotlXbKPc4OthqBYXjmxY7I1999RV33303jz32GOvXr2fo0KFMnz6dffv2NTp+xYoVXHrppVx33XVs2LCBc889l3PPPZetW5vX/1dQqGNQdBIjY7uTYopiYFQStw2ajCvgZ215XkebptAJKa2nUDysW0q4i7OMl2BgGXrDUxiMLzGs2/4yy31ue7vbqaCgsJ8WOyOvvPIKN9xwA9deey0DBgzgnXfewWg08sEHHzQ6/r///S+nnXYa9957L/3792fmzJmMGDGCN95446iNVzg+Maq1xBsslDVxA2mJQmKDMb79YxS6LvXLMIPS/koZtWokGs156A0PhfrP1FsnoCj0Kih0JC1yRnw+H+vWrWPatP3lqaIoMm3aNFauXNnoNitXrmwwHmD69OlNjgfwer3YbLYGLwWFOjxBP2UeRwOp5frUKSTWpymFxDrqFBLrxih0XZKMEWHnYn15ftjpMFnmYLJ8D4QaUa6rjawJCCQalSo9BYWOpEXOSHl5OcFgkPj4+AbL4+PjKSkpaXSbkpKSFo0HePbZZ4mIiAi/UlMV1brjmW+z17OzupRyj4M9tjLe2b4UESHcgVdRSFSoT6TOyODoJACqfC4+370avxQMr/dLQb7YvYZqXyh3aEh0EpE6Y4fYqqCgEKJTVtM88MAD3H333eG/bTab4pAcx1R5XczKWoHT78Ws0dHbGsv9w04NdzRWFBIVDmRG6kC2VhUhyTLLS7PZXFnI0G4pAGyqKMDu9wKhkvHTUwd2pKkKCgq00BmJiYlBpVJRWlraYHlpaSkJCQmNbpOQkNCi8QA6nQ6dTtcS0xSOYW7oP7HZ9fVVbesYGdudkbHdm9xGEATOThvC2WlDjto+hc5HT2sMf+87jg92rkSSZex+L8tK9jQYoxJEru17wnGnaKyg0Blp0TSNVqtl5MiRLFq0KLxMkiQWLVrEuHHjGt1m3LhxDcYDLFiwoMnxCgoKCq3B6Lg07h86nVEx3cMVNRCKhoyK6c59Q09VNGUUFDoJLZ6mufvuu7n66qsZNWoUY8aM4dVXX8XpdHLttdcCcNVVV5GcnMyzzz4LwB133MGkSZN4+eWXOeOMM5g9ezZr167lvffea90zUVBQUDiAHpZobug/Eaffyz5PqPoqTm/BpFEirwoKnYkWOyMXX3wxZWVlPProo5SUlDBs2DDmz58fTlLNy8tDFPcHXMaPH88XX3zBww8/zIMPPkifPn344YcfGDRoUOudhYKCgkIzmDQ6eioOiIJCp0VplKegoKCgoKDQJiiN8hQUFBQUFBS6BJ2ytFdBQUHhUFR5XXyfs5FtVUX4pCCxejNX9z2BNEu3JrfJqi7lm+z1FLtqiNIZmdF9EOPjezUYs7hoJwsKdlDjc5NijuKS9JH0VMTwFBTaFMUZUVBQ6HI4/T5e3LSAvpHx3DZoMhaNnn1uOya1tsltyj0O3ti2hJMS+3Bdv/FkVpfw6c5VRGj1DIwKiaStKcvl2+z1XNZ7ND0tMSwqyuS1rYt5YuRZBzVWVFBQaD0UZ0RBQaHL8WvBdqJ0Rq7pe0J4WYze3Ow2fxTvIkZv5sJeIwBINEawu6aMhYVZYWdkYWEmExPSmZCQDsDlvcewtbKIFaV7OE0RR1NQaDMUZ0RBQaHLsbmigAFRiby7Yym7avYRqTUyKbEPJyb2bnKbbFs5/SIbii0OiErk6+z1QKhfTZ69ktNTBoTXi4JAv8gEsm3lbXMiCgoKgOKMKCgodEHKPA7+KN7FtJR+nJ46kL32Sr7KXodaFBl3QA5IHTa/56CpFqtWjyfoxxcM4Ar4kJDDbQbqjylxK806FRTaEsUZUVBQ6HLIQA9zNOelDQOguzmaIlc1fxTvatIZUVBQ6Lwopb0KCgpdjgitnkRjRINliYYIqryuJrexavTYfJ4Gy2w+D3qVBq1KjVmjQ0TA3siYCI2SvKqg0JYozoiCgkKXI90aS+kBUyelbhvROlOT2/SyxpBZXdJg2Y7qEnrVNspTiyq6W6LZUb2/sacky2TWG6OgoNA2dIlpmjqRWJtNmbdVUFCAcZGpvLFrOXN2rWNoZBL5rmr+LNnNBSmDw98T84p3UOP3cGn34QCMNCeyuGgnX2T+xZjo7ux2lLOuLI+/9xwd3mZCVA++yt9IvNpAqjGSpWU5eIMBBhvjlO8fBYUjoO5zcyix9y4hB19QUEBqampHm6GgoNCJ6D5uOGP+cTHW5HjsJWVs+er/yPx5cXj9pAf+gSUhhp/veDq8LHFYf8bdegVRack4yypZ//EP7Jz/Z4P9Djz/FIZccibG6Agqduey/L+fULZjT7udl4LCsUh+fj4pKSlNru8SzogkSRQVFWGxWBDqtQI/Wmw2G6mpqeTn5ys9b9oQ5Tq3H8q1bh+U69w+KNe5fWjL6yzLMna7naSkpAZNdA+kS0zTiKLYrEd1tFitVuWN3g4o17n9UK51+6Bc5/ZBuc7tQ1td54iIiEOOURJYFRQUFBQUFDoUxRlRUFBQUFBQ6FCOa2dEp9Px2GOPodPpOtqUYxrlOrcfyrVuH5Tr3D4o17l96AzXuUsksCooKCgoKCgcuxzXkREFBQUFBQWFjkdxRhQUFBQUFBQ6FMUZUVBQUFBQUOhQFGdEQUFBQUFBoUM55p2RN998k7S0NPR6PWPHjmX16tXNjv/mm2/o168fer2ewYMHM2/evHaytGvTkuv8/vvvc+KJJxIVFUVUVBTTpk075P+Lwn5a+p6uY/bs2QiCwLnnntu2Bh4jtPQ6V1dXc8stt5CYmIhOp6Nv377K98dh0NLr/Oqrr5KRkYHBYCA1NZW77roLj8fT7DbHO3/++SdnnXUWSUlJCILADz/8cMhtlixZwogRI9DpdPTu3ZuPPvqobY2Uj2Fmz54ta7Va+YMPPpC3bdsm33DDDXJkZKRcWlra6Pjly5fLKpVKfuGFF+Tt27fLDz/8sKzRaOQtW7a0s+Vdi5Ze58suu0x+88035Q0bNsg7duyQr7nmGjkiIkIuKChoZ8u7Hi291nXk5OTIycnJ8oknniifc8457WNsF6al19nr9cqjRo2SZ8yYIS9btkzOycmRlyxZIm/cuLGdLe9atPQ6f/7557JOp5M///xzOScnR/7111/lxMRE+a677mpny7sW8+bNkx966CH5+++/lwF5zpw5zY7Pzs6WjUajfPfdd8vbt2+XX3/9dVmlUsnz589vMxuPaWdkzJgx8i233BL+OxgMyklJSfKzzz7b6PiLLrpIPuOMMxosGzt2rPyPf/yjTe3s6rT0Oh9IIBCQLRaL/PHHH7eViccMR3KtA4GAPH78eHnWrFny1VdfrTgjh0FLr/Pbb78t9+rVS/b5fO1l4jFBS6/zLbfcIp988skNlt19993yhAkT2tTOY4nDcUb+/e9/ywMHDmyw7OKLL5anT5/eZnYds9M0Pp+PdevWMW3atPAyURSZNm0aK1eubHSblStXNhgPMH369CbHKxzZdT4Ql8uF3+8nOjq6rcw8JjjSa/3kk08SFxfHdddd1x5mdnmO5Dr/9NNPjBs3jltuuYX4+HgGDRrEM888QzAYbC+zuxxHcp3Hjx/PunXrwlM52dnZzJs3jxkzZrSLzccLHXEv7BKN8o6E8vJygsEg8fHxDZbHx8eTmZnZ6DYlJSWNji8pKWkzO7s6R3KdD+S+++4jKSnpoDe/QkOO5FovW7aM//3vf2zcuLEdLDw2OJLrnJ2dze+//87ll1/OvHnz2L17NzfffDN+v5/HHnusPczuchzJdb7ssssoLy9n4sSJyLJMIBDgpptu4sEHH2wPk48bmroX2mw23G43BoOh1Y95zEZGFLoGzz33HLNnz2bOnDno9fqONueYwm63c+WVV/L+++8TExPT0eYc00iSRFxcHO+99x4jR47k4osv5qGHHuKdd97paNOOKZYsWcIzzzzDW2+9xfr16/n+++/55ZdfmDlzZkebpnCUHLORkZiYGFQqFaWlpQ2Wl5aWkpCQ0Og2CQkJLRqvcGTXuY6XXnqJ5557joULFzJkyJC2NPOYoKXXes+ePezdu5ezzjorvEySJADUajVZWVmkp6e3rdFdkCN5TycmJqLRaFCpVOFl/fv3p6SkBJ/Ph1arbVObuyJHcp0feeQRrrzySq6//noABg8ejNPp5MYbb+Shhx5CFJXn69agqXuh1Wptk6gIHMOREa1Wy8iRI1m0aFF4mSRJLFq0iHHjxjW6zbhx4xqMB1iwYEGT4xWO7DoDvPDCC8ycOZP58+czatSo9jC1y9PSa92vXz+2bNnCxo0bw6+zzz6bKVOmsHHjRlJTU9vT/C7DkbynJ0yYwO7du8POHsDOnTtJTExUHJEmOJLr7HK5DnI46hxAWWmz1mp0yL2wzVJjOwGzZ8+WdTqd/NFHH8nbt2+Xb7zxRjkyMlIuKSmRZVmWr7zySvn+++8Pj1++fLmsVqvll156Sd6xY4f82GOPKaW9h0FLr/Nzzz0na7Va+dtvv5WLi4vDL7vd3lGn0GVo6bU+EKWa5vBo6XXOy8uTLRaLfOutt8pZWVnyzz//LMfFxclPPfVUR51Cl6Cl1/mxxx6TLRaL/OWXX8rZ2dnyb7/9Jqenp8sXXfT/7duhi8JgHMbxXXn1n5jCBMvK0oz7L67Jun1g07JqGct2u3lNbG80+xcYjArPJeUOL9w4bj92fD+wtHfw7McYD2Pvu9Ut9ML1epX3Xt57BUGgzWYj773O57Mkablcaj6fP9c/tvYWRaHT6aS6rtna+1tVVWk0Gsk5pzRNdTwen+eyLFOe51/W73Y7TadTOecUx7H2+33HifupzZzH47GCIHg5VqtV98F7qO0z/Rll5OfazvlwOGg2m2kwGCiKIpVlqfv93nHq/mkz59vtpvV6rclkouFwqDAMtVgsdLlcug/eI03TfPvOfcw2z3NlWfZyTZIkcs4piiJtt9s/zfgm8W0LAADY+bf/jAAAgH6gjAAAAFOUEQAAYIoyAgAATFFGAACAKcoIAAAwRRkBAACmKCMAAMAUZQQAAJiijAAAAFOUEQAAYIoyAgAATH0AsHwTcUzg5bMAAAAASUVORK5CYII=",
"text/plain": [
""
]
@@ -809,7 +799,7 @@
],
"source": [
"# Greedy rollouts over trained model (same states as previous plot, with 20 nodes)\n",
- "model = lit_module.model.to(device)\n",
+ "model = model.to(device)\n",
"init_states = next(iter(dataloader))[:3]\n",
"td_init_generalization = env.reset(init_states).to(device)\n",
"\n",
@@ -839,25 +829,205 @@
},
{
"cell_type": "code",
- "execution_count": 15,
+ "execution_count": 4,
"metadata": {},
"outputs": [
+ {
+ "name": "stderr",
+ "output_type": "stream",
+ "text": [
+ "Using 16bit Automatic Mixed Precision (AMP)\n",
+ "GPU available: True (cuda), used: True\n",
+ "TPU available: False, using: 0 TPU cores\n",
+ "IPU available: False, using: 0 IPUs\n",
+ "HPU available: False, using: 0 HPUs\n"
+ ]
+ },
+ {
+ "name": "stderr",
+ "output_type": "stream",
+ "text": [
+ "val_file not set. Generating dataset instead\n",
+ "test_file not set. Generating dataset instead\n",
+ "LOCAL_RANK: 0 - CUDA_VISIBLE_DEVICES: [0]\n",
+ "\n",
+ " | Name | Type | Params\n",
+ "--------------------------------------------------\n",
+ "0 | env | TSPEnv | 0 \n",
+ "1 | policy | AttentionModelPolicy | 710 K \n",
+ "2 | baseline | WarmupBaseline | 710 K \n",
+ "--------------------------------------------------\n",
+ "1.4 M Trainable params\n",
+ "0 Non-trainable params\n",
+ "1.4 M Total params\n",
+ "5.681 Total estimated model params size (MB)\n"
+ ]
+ },
+ {
+ "data": {
+ "application/vnd.jupyter.widget-view+json": {
+ "model_id": "f6e57a262e0c4959acd3a38641a33c0d",
+ "version_major": 2,
+ "version_minor": 0
+ },
+ "text/plain": [
+ "Sanity Checking: 0it [00:00, ?it/s]"
+ ]
+ },
+ "metadata": {},
+ "output_type": "display_data"
+ },
+ {
+ "data": {
+ "application/vnd.jupyter.widget-view+json": {
+ "model_id": "67b8bcc2ef9449eda8a4f20d4186ff0a",
+ "version_major": 2,
+ "version_minor": 0
+ },
+ "text/plain": [
+ "Training: 0it [00:00, ?it/s]"
+ ]
+ },
+ "metadata": {},
+ "output_type": "display_data"
+ },
+ {
+ "data": {
+ "application/vnd.jupyter.widget-view+json": {
+ "model_id": "cccfeeb08428404580d763f893b2a5a0",
+ "version_major": 2,
+ "version_minor": 0
+ },
+ "text/plain": [
+ "Validation: 0it [00:00, ?it/s]"
+ ]
+ },
+ "metadata": {},
+ "output_type": "display_data"
+ },
+ {
+ "data": {
+ "application/vnd.jupyter.widget-view+json": {
+ "model_id": "c49d70e39bba4768af6293099b5ddeb1",
+ "version_major": 2,
+ "version_minor": 0
+ },
+ "text/plain": [
+ "Validation: 0it [00:00, ?it/s]"
+ ]
+ },
+ "metadata": {},
+ "output_type": "display_data"
+ },
+ {
+ "data": {
+ "application/vnd.jupyter.widget-view+json": {
+ "model_id": "d4e9277c7eea4e5c9b8c6002ac69ca00",
+ "version_major": 2,
+ "version_minor": 0
+ },
+ "text/plain": [
+ "Validation: 0it [00:00, ?it/s]"
+ ]
+ },
+ "metadata": {},
+ "output_type": "display_data"
+ },
+ {
+ "name": "stderr",
+ "output_type": "stream",
+ "text": [
+ "`Trainer.fit` stopped: `max_epochs=3` reached.\n",
+ "val_file not set. Generating dataset instead\n",
+ "test_file not set. Generating dataset instead\n",
+ "LOCAL_RANK: 0 - CUDA_VISIBLE_DEVICES: [0]\n"
+ ]
+ },
+ {
+ "data": {
+ "application/vnd.jupyter.widget-view+json": {
+ "model_id": "d3d8fd8232224b4e9a5fac7fefeed7f6",
+ "version_major": 2,
+ "version_minor": 0
+ },
+ "text/plain": [
+ "Testing: 0it [00:00, ?it/s]"
+ ]
+ },
+ "metadata": {},
+ "output_type": "display_data"
+ },
{
"name": "stdout",
"output_type": "stream",
"text": [
- "The autoreload extension is already loaded. To reload it, use:\n",
- " %reload_ext autoreload\n"
+ "┏━━━━━━━━━━━━━━━━━━━━━━━━━━━┳━━━━━━━━━━━━━━━━━━━━━━━━━━━┓\n",
+ "┃\u001b[1m \u001b[0m\u001b[1m Test metric \u001b[0m\u001b[1m \u001b[0m┃\u001b[1m \u001b[0m\u001b[1m DataLoader 0 \u001b[0m\u001b[1m \u001b[0m┃\n",
+ "┡━━━━━━━━━━━━━━━━━━━━━━━━━━━╇━━━━━━━━━━━━━━━━━━━━━━━━━━━┩\n",
+ "│\u001b[36m \u001b[0m\u001b[36m test/reward \u001b[0m\u001b[36m \u001b[0m│\u001b[35m \u001b[0m\u001b[35m -4.025482177734375 \u001b[0m\u001b[35m \u001b[0m│\n",
+ "└───────────────────────────┴───────────────────────────┘\n"
]
},
+ {
+ "data": {
+ "text/plain": [
+ "[{'test/reward': -4.025482177734375}]"
+ ]
+ },
+ "execution_count": 4,
+ "metadata": {},
+ "output_type": "execute_result"
+ }
+ ],
+ "source": [
+ "from rl4co.envs import TSPEnv\n",
+ "from rl4co.models import AttentionModel\n",
+ "from rl4co.utils import RL4COTrainer\n",
+ "\n",
+ "# Environment, Model, and Lightning Module\n",
+ "env = TSPEnv(num_loc=20)\n",
+ "model = AttentionModel(env,\n",
+ " baseline=\"rollout\",\n",
+ " train_data_size=100_000,\n",
+ " test_data_size=10_000,\n",
+ " optimizer_kwargs={'lr': 1e-4}\n",
+ " )\n",
+ "\n",
+ "# Trainer\n",
+ "trainer = RL4COTrainer(max_epochs=3)\n",
+ "\n",
+ "# Fit the model\n",
+ "trainer.fit(model)\n",
+ "\n",
+ "# Test the model\n",
+ "trainer.test(model)"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 14,
+ "metadata": {},
+ "outputs": [
{
"name": "stderr",
"output_type": "stream",
"text": [
"/home/botu/miniconda3/envs/rl4co/lib/python3.10/site-packages/lightning/pytorch/utilities/parsing.py:196: UserWarning: Attribute 'env' is an instance of `nn.Module` and is already saved during checkpointing. It is recommended to ignore them using `self.save_hyperparameters(ignore=['env'])`.\n",
" rank_zero_warn(\n",
- "/home/botu/miniconda3/envs/rl4co/lib/python3.10/site-packages/lightning/pytorch/utilities/parsing.py:196: UserWarning: Attribute 'model' is an instance of `nn.Module` and is already saved during checkpointing. It is recommended to ignore them using `self.save_hyperparameters(ignore=['model'])`.\n",
- " rank_zero_warn(\n"
+ "/home/botu/miniconda3/envs/rl4co/lib/python3.10/site-packages/lightning/pytorch/utilities/parsing.py:196: UserWarning: Attribute 'policy' is an instance of `nn.Module` and is already saved during checkpointing. It is recommended to ignore them using `self.save_hyperparameters(ignore=['policy'])`.\n",
+ " rank_zero_warn(\n",
+ "/home/botu/miniconda3/envs/rl4co/lib/python3.10/site-packages/lightning/pytorch/core/saving.py:164: UserWarning: Found keys that are not in the model state dict but in the checkpoint: ['baseline.baseline.model.encoder.init_embedding.init_embed.weight', 'baseline.baseline.model.encoder.init_embedding.init_embed.bias', 'baseline.baseline.model.encoder.init_embedding.init_embed_depot.weight', 'baseline.baseline.model.encoder.init_embedding.init_embed_depot.bias', 'baseline.baseline.model.encoder.net.layers.0.0.module.Wqkv.weight', 'baseline.baseline.model.encoder.net.layers.0.0.module.Wqkv.bias', 'baseline.baseline.model.encoder.net.layers.0.0.module.out_proj.weight', 'baseline.baseline.model.encoder.net.layers.0.0.module.out_proj.bias', 'baseline.baseline.model.encoder.net.layers.0.1.normalizer.weight', 'baseline.baseline.model.encoder.net.layers.0.1.normalizer.bias', 'baseline.baseline.model.encoder.net.layers.0.1.normalizer.running_mean', 'baseline.baseline.model.encoder.net.layers.0.1.normalizer.running_var', 'baseline.baseline.model.encoder.net.layers.0.1.normalizer.num_batches_tracked', 'baseline.baseline.model.encoder.net.layers.0.2.module.0.weight', 'baseline.baseline.model.encoder.net.layers.0.2.module.0.bias', 'baseline.baseline.model.encoder.net.layers.0.2.module.2.weight', 'baseline.baseline.model.encoder.net.layers.0.2.module.2.bias', 'baseline.baseline.model.encoder.net.layers.0.3.normalizer.weight', 'baseline.baseline.model.encoder.net.layers.0.3.normalizer.bias', 'baseline.baseline.model.encoder.net.layers.0.3.normalizer.running_mean', 'baseline.baseline.model.encoder.net.layers.0.3.normalizer.running_var', 'baseline.baseline.model.encoder.net.layers.0.3.normalizer.num_batches_tracked', 'baseline.baseline.model.encoder.net.layers.1.0.module.Wqkv.weight', 'baseline.baseline.model.encoder.net.layers.1.0.module.Wqkv.bias', 'baseline.baseline.model.encoder.net.layers.1.0.module.out_proj.weight', 'baseline.baseline.model.encoder.net.layers.1.0.module.out_proj.bias', 'baseline.baseline.model.encoder.net.layers.1.1.normalizer.weight', 'baseline.baseline.model.encoder.net.layers.1.1.normalizer.bias', 'baseline.baseline.model.encoder.net.layers.1.1.normalizer.running_mean', 'baseline.baseline.model.encoder.net.layers.1.1.normalizer.running_var', 'baseline.baseline.model.encoder.net.layers.1.1.normalizer.num_batches_tracked', 'baseline.baseline.model.encoder.net.layers.1.2.module.0.weight', 'baseline.baseline.model.encoder.net.layers.1.2.module.0.bias', 'baseline.baseline.model.encoder.net.layers.1.2.module.2.weight', 'baseline.baseline.model.encoder.net.layers.1.2.module.2.bias', 'baseline.baseline.model.encoder.net.layers.1.3.normalizer.weight', 'baseline.baseline.model.encoder.net.layers.1.3.normalizer.bias', 'baseline.baseline.model.encoder.net.layers.1.3.normalizer.running_mean', 'baseline.baseline.model.encoder.net.layers.1.3.normalizer.running_var', 'baseline.baseline.model.encoder.net.layers.1.3.normalizer.num_batches_tracked', 'baseline.baseline.model.encoder.net.layers.2.0.module.Wqkv.weight', 'baseline.baseline.model.encoder.net.layers.2.0.module.Wqkv.bias', 'baseline.baseline.model.encoder.net.layers.2.0.module.out_proj.weight', 'baseline.baseline.model.encoder.net.layers.2.0.module.out_proj.bias', 'baseline.baseline.model.encoder.net.layers.2.1.normalizer.weight', 'baseline.baseline.model.encoder.net.layers.2.1.normalizer.bias', 'baseline.baseline.model.encoder.net.layers.2.1.normalizer.running_mean', 'baseline.baseline.model.encoder.net.layers.2.1.normalizer.running_var', 'baseline.baseline.model.encoder.net.layers.2.1.normalizer.num_batches_tracked', 'baseline.baseline.model.encoder.net.layers.2.2.module.0.weight', 'baseline.baseline.model.encoder.net.layers.2.2.module.0.bias', 'baseline.baseline.model.encoder.net.layers.2.2.module.2.weight', 'baseline.baseline.model.encoder.net.layers.2.2.module.2.bias', 'baseline.baseline.model.encoder.net.layers.2.3.normalizer.weight', 'baseline.baseline.model.encoder.net.layers.2.3.normalizer.bias', 'baseline.baseline.model.encoder.net.layers.2.3.normalizer.running_mean', 'baseline.baseline.model.encoder.net.layers.2.3.normalizer.running_var', 'baseline.baseline.model.encoder.net.layers.2.3.normalizer.num_batches_tracked', 'baseline.baseline.model.decoder.context_embedding.project_context.weight', 'baseline.baseline.model.decoder.dynamic_embedding.projection.weight', 'baseline.baseline.model.decoder.project_node_embeddings.weight', 'baseline.baseline.model.decoder.project_fixed_context.weight', 'baseline.baseline.model.decoder.logit_attention.project_out.weight']\n",
+ " rank_zero_warn(\n",
+ "val_file not set. Generating dataset instead\n",
+ "test_file not set. Generating dataset instead\n"
+ ]
+ },
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "The autoreload extension is already loaded. To reload it, use:\n",
+ " %reload_ext autoreload\n"
]
}
],
@@ -865,12 +1035,11 @@
"%load_ext autoreload\n",
"%autoreload 2\n",
"\n",
- "from rl4co.tasks.rl4co import RL4COLitModule\n",
- "# device = \"cuda:0\"\n",
+ "from rl4co.models.zoo.am import AttentionModel\n",
"\n",
"# Note that by default, Lightning will call checkpoints from newer runs with \"-v{version}\" suffix\n",
"# unless you specify the checkpoint path explicitly\n",
- "new_model_checkpoint = RL4COLitModule.load_from_checkpoint(\"checkpoints/last.ckpt\")"
+ "new_model_checkpoint = AttentionModel.load_from_checkpoint(\"checkpoints/last.ckpt\", strict=False)"
]
},
{
@@ -882,19 +1051,19 @@
},
{
"cell_type": "code",
- "execution_count": 16,
+ "execution_count": 15,
"metadata": {},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
- "Tour lengths: ['6.99', '6.68', '7.79']\n"
+ "Tour lengths: ['8.22', '9.06', '8.23']\n"
]
},
{
"data": {
- "image/png": "iVBORw0KGgoAAAANSUhEUgAAAiMAAAGdCAYAAADAAnMpAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjcuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/bCgiHAAAACXBIWXMAAA9hAAAPYQGoP6dpAADGfUlEQVR4nOzdd3wb9fnA8c+dTsPykPe2YzvDiTOcSRYjIWEECLNsKNAWWn4UWmhL2VBoaUsLpZRVyipl770SQgKB7OkkHnHseO8ly7Ysne5+f5yjxIkdMmzLdr7v10uv2NJJes52pEff8TySrus6giAIgiAIASIHOgBBEARBEI5tIhkRBEEQBCGgRDIiCIIgCEJAiWREEARBEISAEsmIIAiCIAgBJZIRQRAEQRACSiQjgiAIgiAElEhGBEEQBEEIKCXQARwKTdOorKwkNDQUSZICHY4gCIIgCIdA13VaW1tJTExElnsf/xgSyUhlZSUpKSmBDkMQBEEQhCNQVlZGcnJyr7cPiWQkNDQUME4mLCwswNEIgiAIgnAonE4nKSkp/vfx3gyJZGTP1ExYWJhIRgRBEARhiPmhJRZiAasgCIIgCAElkhFBEARBEAJKJCOCIAiCIASUSEYEQRAEQQioIbGAVRCEw9fobsOldvq/D1GsRNqCAxiRIAhCz0QyIgjDUKO7jbvXf4Sqa/7rFEnmgemLRUIiCMKgI6ZpBGEYcqmd3RIRAFXXuo2UCIIgDBYiGREEQRAEIaBEMiIIgiAIQkAddjLyzTffsHjxYhITE5Ekiffff/8H77N8+XKmTp2K1Wpl1KhRvPjii0cQqiAIgiAIw9FhJyNtbW1kZ2fzxBNPHNLxxcXFnHnmmcyfP5/Nmzfz61//mp/97Gd88cUXhx2sIAiCIAjDz2Hvplm0aBGLFi065OOffvpp0tPTefjhhwEYN24cK1eu5B//+AennXba4T69IAiCIAjDTL+vGVm1ahULFy7sdt1pp53GqlWrer1PZ2cnTqez20UQBEEQhOGp35OR6upq4uLiul0XFxeH0+mko6Ojx/v8+c9/xuFw+C8pKSn9HaYgDCtNne2BDkEQBOGQDcrdNLfffjstLS3+S1lZWaBDEoQhweV189SOb3hyxzc93r61oWKAIxIEQfhh/V6BNT4+npqamm7X1dTUEBYWRlBQUI/3sVqtWK3W/g5NEIYVl7eTv21ZSnVH79OaH5XmYFPMLEwaO4CRCYIgHFy/JyOzZ8/m008/7XbdkiVLmD17dn8/tSAcU97Ytd6fiAQrVubEpZMUHE6718PGhjIKnXUAvF20kUxHHCkhEYEMVxAEwe+wkxGXy0VhYaH/++LiYjZv3kxkZCSpqancfvvtVFRU8NJLLwHwi1/8gscff5xbb72Vn/zkJyxbtow333yTTz75pO/OQhCOcc2d7ayvLwXArpi5Y8ppRNtC/LcvSB7Lu8Wb+aJ8BzqwvKqAK0fPDFC0giAI3R32mpH169czZcoUpkyZAsAtt9zClClTuOeeewCoqqqitLTUf3x6ejqffPIJS5YsITs7m4cffphnn31WbOsVhD60qaEMTdcBOClhjD8R8WiV+LQ2AM5IHY/NZHz+WFdXgt51vCAMV43uNkpdjf5Lo7st0CEJvTjskZF58+Yd9EWsp+qq8+bNY9OmTYf7VIIgHKIWj9v/9ShHG3Xqszj1z2nW3yVYmsUY6WtsJisjQqLIb6mh06fS6VOxKeYARi0I/Ud0rh5a+n3NiCAI/UvTNEJs33L6mGeJDy3AbeqgVAO7NA2HtJgW/TMK1Pmkm96iqdP4ZCgBZtkU2MAFoR8drHN1JCIZGWxEMiIIQ5CqOanTnqRJe50OthMRqRKuQ4fXQV3rHBZEP0qwaQIAbdoadqnns80zmTjHqTR0nkJaaBImeVDu7BcE4RgkkhFBGCI6tO3U+B7BqX+Ol8qua03YGEu4fBEv5oym1GVModY2tXBBejsRVjtB0nForo9wW09idtqrzBrxKviyKFVPJliaRbA8EysjkSQpcCcnCMIxTSQjgjBIaZpGs/4W9dp/aNNXo2FMsciEECqdQrR8HeHS+chdIxznp1Xz2Lav0dBZV1fChrpSEuwOXGonLZ4OIoLu4EcT70CSAGUHddpO6ngcfGDCQbA0mxB5Dg7pbOxydgDPXBCEY41IRgRhEFG1Rmq1x2jS3sJNPuADwEwSkdKlxJp+TZA8vsf7jouI52dj5/JCwSq8mg8NnYr2Zv/tTR0jqGs9ntiw7wAd8Ppv89GCU/8Cp+9zGnmD8ZZt/XeSgiAI+xHJiCAEWJu2nlrfozj1pajsqVasEMREIuVLiZb/D0UOOehj7DEtJpWMsGi+rSpkdW0xzZ4OFFkmIzSakxJGMypiJAW+Wb3cWwdkUpR/9sVpCYIgHDKRjAjCANM0lUb9FRp8z9PGOnSMhpEyDsKkM4g13UAop/unXw5XhNXO2WmTODttUg+3phCinYBL/549oy77SjY9TJi84IieVxAE4UiJZEQQBoBHq6ZO+ydN2rt0UghogISZVMKls4g13YxNHjkgscSbbqNQPfOA62XCiebaAYlBEARhXyIZEYR+0qqtpNb3GK361/ioB0DCgp1pRJquJEa6Flm2DXhcYdIibIztWpOiAwoywWg0k+NLJlP6niB53IDHJQh9Rdd1ilsbAh2GcBhEMiIIfUTTPDToL9Dg+y/tbESnEwATkTik84gx3YDjKKZA3KqXD0q2srmhjFZvJynBEVw8chppoVG93ie/uYa3ijZS1d5ChNXOGakTmBOXQbzpNnb7rgYkNC2YT3P/ji6XsGD0P8jRJjPK/CKRpkuPOFZBCJR6t4und3xLWVtTj7cvKc/l6jGzRZ2dQUYkI4JwFDxaKTXaP2jWPsRDMcZIg4SVDBzyOcTJv8Yip/TJc720cw2V7S1ckzmHcEsQa2qL+UfOMu6bdiYRVvsBx9e7XTy+fTknJozmp2PnkNdczf8K1uCw2BgXfinlvt/j1ev4PP8mTk6YT3poNMurxhMVeRtF0mW4tJWkmp/ok9gFYSA0dbbzty1LaPZ09HrM2roSfLrOz8bORRa1dQYNkYwIwmFq0ZZS53scl/4NPoxPXxI2gplNlOkqoqSrkWVLnz6nx6eyqb6M/xt/ImMcsQAsHjGJrY0VrKjayblpB9YFWVG1k2hbCBdmTAUgwe6gsKWOpRX5jI9IJEN5k9eLVjAq+HTmxhvrVS7JuJg71+mcMuYvSPYnafOsIVNZGZDpJEE4XG8XbfQnIrG2EM5Oy2ZiZCIdqpfva3bxael2VF1jQ30p0xtSmRqdGuCIhT1EMjLAGt1tuNTObteFKFbRuOkI7P+z/KGfo09vQcONWYo7rOfRtHbqtGdo1F6mgxx0PAAoxBAuXUys6SZC5TlHdhKHGoOuo6GjSN37yZhlhV3Ouh7vU+SsZ2x4fLfrsiISeLNoIwBBzGVjVQU/H7f3GFmSGONII7fin5w25jFa9PfYqiYxVlmNTR7dx2clCH2nxdPBxoYyAIIVK7/LPpUwi5FE20xmzkydSFxQGP/J+w6ArysLRDIyiIhkZAD11EUSRCfJI3G4HTnd+k4KvPMx4WC8ZfsPPr5bK6TG9wgt+id4KWNPDQ4ro4mQLyBGvgmLfHhJzdGwKWYyQqP5tGwbCfYwwiw21taVUOSsJzao5xokTq/b/2K8R5jFhtvnxeNTaVc9aOiE9nBMdYeTUeZ3qVYfpkL7HdvVLNJNrxFp+lG/naMgHI1tjZVoXR3lT4gf6f/bX7KknhEjghgzJphp0al8YNtCrdtFQUstHaqXING5elAQycgA6qmLJIhOkkficDpytmtbKVBPxkcjXiro1IuxSundjtE0DScfU+d7Gpf+HRpOAGTshEgnEi3/lAjpUmQ5cP9lfpI5m/8WrOH3a99HRiI1JIIZMSModTX223PGK78hWJvJTvVUin0X4tJ+Tar5H/32fIJwpNpUj//rlJAIALxejTPO2MTIkUHk5s5FkiRSQiKpdbsAaFc9IhkZJEQyIgw51e0tfLh7a4+3FbbUkRoS6f/epa1mp3oqGu3sGd1o0T4m1nTjAZ1vQQVAIZ5w6RxiTb8mWJ7a/yd0iGKCQvlt9kI6fSpunxeHJYhnclcSbet5ZCTMbMPpcXe7zulxYzOZsZgUZElCRqK1h2Mc5r2jJaHy8UxSStmhTqdOf5R2z2rGKCv6fF2MIBwN+z5JRWVbC8SA2SwTFCSTn9/Oyy9XccUVCVS0NfuPE4nI4CGSEWFIyW2q5qkd39CpqT3e/kbRBjp8Xs5MnYBTW0qhurhrjceeURSdKt9fqPb95YDOtxHyRcTKv0SRI3t87MHCalKwmhTavB52NFVxfvqUHo/LCItmW2Nlt+tym6vJCIsGQJFNpIZGkttcw+RoY8ePpuvkNVczP3FMt/spcjQTlCJ2+c7BqX/ctY5kLTa5+wiTIARKVngCEhI6Ot9WF7IgaSzBZgudnRqTJ4dwzTXb8Ea0Uu0wRj0zQqOxKyKhHizERmthyKjrcPFU7t5ExGYykx2ZzIzoEd22tn5YspW1Tc+wU13UVetj3+kcHZVKVFoIlU4h3fQWUxQP4y3bSFTuGdSJyPamSrY1VlLvdrGjqYpHcpYSbw9jblwGAO8Vb+aF/O/9x5+UMJp6t4t3ijdR3d7C8soCNtSVsjAp03/MwqSxrKwuZFVNEVXtLbxauA6PpjKn6zH3Jcsyo80fkSg/iI8GtqtjaPJ90P8nLgiHINIWTHZUEmCsl3p461LWV5bh8ehccZWxvusXF+9mz2zO/gm3EFhiZEQYMr6qzKPTZyQiEyMT+VnmXGxdw6yarvNl+Q7e272FcTFLkO0vHvSx0pWXiJDP7++Q+1SH6uW93Vto7mzHrliYGp3CuWnZ/uJNLZ4OGjvb/cdH20L45fh5vFW0kWUV+YRb7Vw5ZibjIxL9x8yIGYHL6+bDkq04PW6SQyK4afx8wixBvcaRoNxOiDaLneoZFPnOJU6/lWTlr/134oJwiC7MmMouZz2tXjcV7c38+bPvgEhe37aVmTdqfP9oCF/cHsZtL4QwPUbspBlMRDIiDAmq5mNVTTEAZtnENWNm+xMRAJVKpiV+hzXsr4QFFf3Aoym0+D4acsnI9JgRTI8Z0evtV2fOPuC6zPA47pq66KCPOz8xk/mJmQc9Zn+h8nwmKMXkqdOp0R6izbOK0cqygC7wFYRoWwi/mbSAp3Z8Q01HK+ueMxaz7/7OwvnPtLBrqY2KdRaC149EHi8mBgYT8cohDHqa1k515yYSHN8SZq1lRJibOmkJzWoMLv073Ho+KrWAjF3JorkjHq/PSrTdhSTv6U8hASaMRaoqzfqH6LqGJIkXpCNlkeOZoJRS6DuDVv0LctQkxinrsMjiE6cQOAl2B/dOO5N3VxbxzCrjg0lDgcIUy0huWTqSqRmb+fm1eZx1RhwxMWLNyGAhkhFhwGmaiodi3OTTqe/Co5fg0ctR9VpU6vHRjI9WdNzoeAEdTHDKPjW3GjQJC8YogUwI6aZ/ECafzncNDbxZuA6Ay0bNYG58FB36Njr0HDr0HNr1Tbj1bWi0otGKCUcAfgLDhyzLjJE/p1K9nyrtXrapoxmpvIdDPiPQoQnHMBmJJ+9pQpZB0wBdon5JDJl3RfPWW9mceeYm5s9fx7ZtcwMdqtBFJCMDxKdpbKgr7fV2VfP1elu7tolK373EmW4mVJ7fH+EdFU3TUKnBTR6deiEefTcevRwvVah6HSpNXW/+7fvtbNmfjIQVGTsKkZiIxCzFYiYBE4m8u6uBho4YOrwp3D/16h635W2s3+T/Oj4oDEWKJFQ6kVBO9F+v6zo6bmSp93URwuFJVO4hWJvNLvUsCtUziZfvIkl5INBhCceoDz+sY/nyvY3ydB0ee6yE3/8+jTPOiOHii+N4440a7ruvkPvuGxXASIU9JF3vKlk3iDmdThwOBy0tLYSFhQU6nMPm8ak8ueMbcpurez0mLSSKmyee3G0dhE93UuG7mzrtX4BOvHwbScqfByBiUDUnneTj1gvo1Ivx6mV4qcSr1+KjER8taLSh0Qn0lkhJSJiRCUImFBMRKFI0ZuKxSElYpDSs0khsjMVMKvIPdNF8eedavq0uBIyFl1eNmYVZ3lse/ZuqnbzSNSoSYwvh/umLRSOsAebRKslTp+OlilDpZEaZvhDrSIQB1dmpkZm5krIytzEqso/XXpvIJZckoGka8fEraGjwkpMzh6ysnmv1CEfvUN+/xavEAHhp55puiUii3UFcUCh1bhflXQV4drsaeL5gFf+XdSK6rtOkvUmZ70ZUGjCKdSl4qT3iGDTNQyeFuPUCPPouOvVSvFTg1Wvw0dA1NeLaZ2qkNwoyNmRCMJOCQhSKFIeFJCxSKlYpA6uUiY1Rfd5cbWFSJqtri/FqPtbVlbCzpZYZMWnYTApbGyso2acS6ekpWSIRCQCLnMgEpZSdvlNp1ZexTU1lrLIei5z4w3cWhB/gVr18ULKVzQ1ltHo7SQmO4OKR00gLjfIf89hjJZSWutn/Y7Yk69xy/xZS53cwJy6Dr76aTnb2KhYsWM8r6+JZWplPi6eD5JAILhk5jfTQ6AE+u2ObGBnpZ5VtLfxh4ycA2EwK12ed2K15WWFLLU/sWEG7aiQAv58yGtV6G636MoxFl3t/PWHSmYw2fwzsmRopp8O/7sKYGlGpQtXr95ka6eiaGunt12xCxoqEHRNhKESiSLFYSMQspWCR0rBJo7GROShqcGxuKOc/uSt7LKu/x8KksfwofQqSSEYCqkK9k2rtQSSsjFQ+wiGfEuiQhCHumdyVVLa3cNmoGYRbglhTW8zSinzum3YmEVY7NTWdZGR8S3t7768P5z3dwgMXzWV8RCJ33rmTBx8s5sTfunjwN9mkh0bzVWUeG+tL+cO0xQf0dhIOnxgZGST2TCuA0fJ9/y6qoxyxnDtiMm8Ufce0pLdpNH+G5M8buicQTv1zNnrsXcnFwaZGLMjYkQnDwoiuqZEELFIyFikNizSKIDJRSPzBqZHBZnJUMr/LPoVPSreR01jR7SeUEhzBqcnjmBEzQiQig0CS8idCtLnsUs+lUD2VBPkPJCr3BDosYYjy+FQ21Zfxf+NPZIwjFjBeU7c2VrCiaifnpmXzl78UHzQRkSSo/DiSpXPzGR+RyJ/+NJp31xWw8tFg2k91kHiKg8tHHce2xkq+r9nF6SnjB+r0jnkiGeln5W17F1HNik0DoEPLYZd6ATLBgERktJOfRO3ih98/dayk+6dGzCRjlUZ0TY2MwUrGMdEvJC00ihvGn0RTZzvlbU34dJ0oazDJweEiCRlkHPIZTFAKyVVnUKXdS5v3e0aaPh1ySbAQeJquo6GjSKZu15tlhV3OOgDmzYukqspDc7OXxkYvm7e1oHZCkM1Ee7uGrkNVrkyRsx4wNg7M/Y2T3auiOO+8zdTWzsNuVxgbHu8/RhgYIhnpZ9o+s2BK12JLD1V4qEBnT7VMGa/PiiTpmE0ejCr9B2b3EhbGW7b3f9BDRITV3q0MvDA4WeRUJioVFKjzcepfsE0d0bWOJC7QoQlDiE0xkxEazadl20iwhxFmsbG2roQiZz2xQcYC1HPOieWcc2L998k4/hPaqszU7FqIpum0tqoUuKp5tqgKj0+lXfVgsus88I8UfndtGYsWbWTFiuMIs9io7nAG6lSPSeLjST+LDQr1f725oRwAh3wqUy1tZJsbGWF6EdSxyJLWlYjssedXs/eTvo4bn97W/0ELQh+TZYWxlm+Jk3+Hl3K2qWm0assDHZYwxPwkcza6Dr9f+z43rHyDryvyjWlZeh4R7WyDPZ9XZFnC4TBjCzrwbe+8i6KZPz+Cb75p5plnyvrzFIReiJGRfjYnLoPva4wqgO/v3sKYsFgibUaJYkWKwKReyHvbI6hzuwizVnFF1i4Uy0o6Kehq8tZ93YhL+xaH6fSBPg1B6BPJykME+2ZT5LuIAvVkEuUHSVBuC3RYwhARExTKb7MX0ulTcfu8OCxBPJO7kmhbz1tzO1tlImO7X+f0uLGZzFhMCrIkISPR6nHz6adTiIlZwQ035PHwyiAcIWLx6kASyUg/GxUWQ0ZoNEWt9TR1tnPvho+ZGZtOSnAE5W1NrKnb7W/+5lCymBh8i39Laoe2nXrtOVq0j+mkCPBR6FuE5LNgZQxh8qlEyz8jSB4XwDPsOysqd7KiaicNnS7AKOt8VupEJkT2vi10Q10pH5RspcHtIjYolPPTJzMxMsl/u67rfFSSw7fVhXT4vIwMi+ayUTOICxpau7KGkwjTeYyXCshTj6NSux2XdyUjTR+KdSTCIbOaFKwmhTavhx1NVZyfPqXH49wtMrbxnm7X5TZXkxFmbNtVZBOpoZHkNtcwOTqFDz6YzIIFG3jinmb++Wx6v5+HsJf439/PJEni5+OOJ7Yrc/doPr6tLuTVXev4prrQn4hEWYO5PuvEbrUxguTxpCiPMMFSwDSLyjhlCzHSjVjJoJN8arVH2KFmsdFjY4cnm3L197i1XQE5z74Qbg3ivPRs7phyOndMPp2x4fE8ueMbKrtqsexvl7OOZ/O+Y258BndNXcTkqGSe2vEtFfsc/0V5Lssq87l89HHcNvlUrLLCY9u+xnuQirdC/7PJ6UxSKghmFk79E7arGaiaWDAoHNz2pkq2NVZS73axo6mKR3KWEm8PY25cBgDvFW/mhfzv/ce7WyQsET7eKd5EdXsLyysL2FBXysKkvY0hFyaNZWV1Iatqihg3S+HMG2UKvrTw5eMDfnrHNDEyMgDCrXZ+P/lUPti9lTW1u+nUVP9tZtnEzNg0zhkx6aBt2wHs8iRS5cf837dp66n3PU+r/hUd7KBD20qN9hASNmyMwyEvIlq+Dqvce6fXwSQ7Krnb9+emZbOiaidFrQ0kBocfcPxXFfmMj0zgtOQsAM5Jyya3uZrllQVcPvo4dF3nq4o8zkidwOSux74mcza/Xf0um+vLmNG1u0kIDFm2MNayilLvzdTpj7JVTWW0soRQWfQLEXrWoXp5b/cWmjvbsSsWpkancG5aNqauUbUWTweNne3+431eiGmPIbepmmUV+YRb7Vw5ZibjI/aOts6IGYHL6+bDkq04PW7mXB3Bpo8VHv1bBT++NIXJk8Uo6kAQycgACTHbuHz0cZyfPpn85hrafV6CTGbGOOIINh/ZdtxgeTrB8nT/9y5tFQ2+F2jVv6aDrXRom7qKTgURRBYO+Syi5Z9hkZMP8qiDg6YbvXw8PpWMXiohFrXWszBpbLfrsiIS2NK1ULje3YbT62bcPrVdghQL6V3TZiIZGRxSzf8gxDebYt/lFKgnkCz/nTjllkCHJQxC02NGMD2m9w9XV2fO9n/t8Rg7EuPsodw1dc5BH3d+YibzE/eOllzwmYusrO9ZuHADtbUniSnEASCSkQEWpFiYHJ3SL48dIs8mRN77n7FV+6YrOfmGdjbTrm2gSvsDMsHYGI9DXtyVnMQf5FEHVkVbM3/d/CVezYfVpPCLrBNIDO65s67T4ybM3H2RWZjZRovHbdzu7TCu26+KYphl7zHC4BBpugi7NIU8dSbl2m9o9a4kw/S2eBMQjlhlpfF/PCrqwIaaPyQzM4T77x/FXXcVcvHFObz1VnZfhyfsR/xPH8ZC5RNJM7/ARMsupigeRilLiZSuRCGadtZTpd1NjprAJk8oeZ45VKl/Cfi8fVxQKHdNXcRtk0/jpITRvJi/msq2loDGJAwMmzyaSUoldqbRor/HdnU0qtb4w3cUhB5UVHQCEB19ZCPPd96ZwcSJIbz9dg0ffXTkfcGEQyOSkWOELMs45AWkm19iomU3UxQvo5RPiZAuxUQEbaymUrudLWoMmzwO8jwnUK0+POBvBopsIjYolBGhkZyXPpnkkHCWVeb3eGyYxYbT232Ew+l14+gaCQkzG2twnPuNgjg9e48RBhdZtjHOsp5o6Xo8FJGjpuDS1gQ6LGEIqqoykpHY2COvSr1s2XQsFomLL96Ky6X+8B2EIyamafrAoXSS3F9+cw1vFW2kqr2FCKudM1InMKdrRfgeX1cWsKQ8t186ScqyjINFOORFgNF4z8nHNPhepk3/nja+o01bSYX2W2Qc2KXJhMvnESVdgyIP3IIuXTdKNvckIzSavObqbutGcpuq/WtMom3BhJlt5DVXkxISARgL4Ipb6zkpYVT/By8csRHmJwnxzWW37yry1dkkmx4jzvTLQIclDCE1NcaW3vj4I09GoqMtPP/8BK64IodTTtnAqlUz+yo8YT9iZKQPvLRzDbnN1VyTOYd7pp5BVkQ8/8hZRtM+q7r3Ve928fj25WSGx3HX1EUsSMrkfwVr2N5U6T9mXV0Jbxdt5MzUCdw5ZRHJweE8tu3rAz7l9xVZlgmXz2ak+U0mWcqZonjIML1NuHQ+Juy49G8o9/2aLaqDzZ5ICrwLqfU9iaq5+iyG94o3U9BSS73bRUVbc9f3NRzXtdD0hfzvea94s//4BUmZbG+qYkl5LtXtLXxUspUSVyPzEscAxrbqBUlj+bRsG1sayqloa+aFglWEW4P6bd2O0HeiTJeTpeRgwkG570Z2eS9B03pvgiYI+6qrM5KRhATrUT3O5ZcncPrpUaxe3cJjj5X0RWhCD8TIyFE6lE6S+1tRtZNoWwgXZkwFjOJehS11LK3I9285W1qRx/HxI5kbPxJgwDtJyrJCBBcQYboAAE1TadbfoVF7jTZ9Na36V7T6vqKMGzARiV2aToR8AVHSFcjykfWLafW6eTF/FS2eDoIUM0nB4dw0YT5ZEQkANHa2dyv7PDIshp9lzuWDki28v3sLsUGhXJ91Akn7bAM+LXkcHp/KyzvX0q56GOWI4abx8zHLpv2fXhiEguRxTFIqyFPn0Ky/wQ51E2OVdQM6OicMTXV1XgCSk49+SvaDD6YQG7ucW27J55xzYhgxQvTE6msiGTlKh9JJcn9FznrGhnffwZIVkcCbRRsBY1qitLWRRV31MwBkSQpoJ0lZVojkYiJNFwOgaR6a9Ddp1F6nXV9Lq/4lrb4vKeXnmIgmWJpBhHwxkdLFyPKhvRj8eMysg97+m0kLD7huWkwq02JSe72PJEmcnTaJs9MmHVIMwuAjy3ayLJvZ7f0ZDfpz5KhJjFFWECxPDXRowiDW2GgkI9HRh7+bZn8Wi8wnn0zh+OPXMW/eeoqLTzzqxxS6E9M0R2nfTpLNne1ousbq2mKKnPW0eDp6vI/T6+5xu6nb58XjU3F5O9HQCe1pS6p3cGxJlWULUaYrGG3+mGxLLVOUDkaYnidMOh3QceqfUeK7mk1qEFs8cRR6F9PgewVN8/zgYwtCT9LMzzLC9AIa7eSpM6jzPRPokIRBrLnZiyTRZ9vD586N4Prrk9m9282NN+b2yWMKe4lkpA8cbifJ4UiWbUSbrmG0+TMmW+qZorSRavo3odIp6Ki06B+z23cFm1QbWzwJFHrPo9H3JpomVqgLhy7adDXjlM3IhFDq+znF3h8HOiRhkGppUTGZ+vY1+PHHx5KaauPxx8tYvbq5Tx/7WCemafrA4XaSDDPbetxu2lMnyf2PcZiHxpZUWbYTw3XEmK4DQNWcNOov06y9Q7u+kRb9fVp87wMSZuIJluYQKV+OQzobWaznEA7CLk9kolJBvjqLRv1/tHs2kKmsQZF7/v8mHJtaW30oSt8mI7Iss3z5dEaPXsmiRRupq5uHoojP9H1B/BT7kNWk4LAE+TtJ7t9rZY+MMGNL6r566yS5h6br5O1zzFCjyGHEmv6PMeavmGxpIltpItn0KCGciI92mvV3KPKdzybVzFZPMru8l9CsfSx2Twg9UuQQxlu2ESldiZsd5KiJtGtbAx2WMIi0tfmwWPp+dDo93c5f/zqG5maV887b3OePf6wSyUgfONxOkicljKbe7TrkTpJV7S28WrgOj6YeUItkqFLkcOJMvyLTspwplmaylQaS5L8RzFx8OGnW32CXurgrOUmlyHs5LdoXIjkRukk3v0Sq6d9otJGrTqHe90KgQxIGifZ2HzZb/7zF/eY3aUybFsbHH9fz5pvVP3wH4QdJuq7rgQ7ihzidThwOBy0tLYSFDb4tfevrSnrsJBmkGMV2XsxfRUNnW7fdIPsWPQu32jmzx6Jn+XxZnovT4zaKnmVMI32IjowcLo9WS4P2HC3aR3SQg8aeeiYyFlIIkU4iynQVIcwT/UsE2rSNFKgnoeEiSvoJaebnAh2SEGDh4cuIiFD6beeL06kSF7ccXdeprj6J8PAjL642nB3q+7dIRoQhwaNVUq89S4v2CW62o9HWdYsJCyMIlU4iyvQTQuXjAxqnEDiq5iRPnUEnBQQxibHKqiOueSMMfXb7UjIygti2bW6/Pcc771Tzox9tZcqUUDZunP3DdzgGHer7t/hIKQwJFjmRROUexlnWMMXiYqJSQrx8N0FMxksVDfoLFKgnsMFjZptnDCXe60RPk2OMIoeRpeQSIV1CB1vZoibSoe0IdFhCgHi9OqGh/btH44IL4jn33Bg2bWrlr38t7tfnGu7EyIgwLLi1Yhq0/9CifYabPHT27ERSsDKSMGkBUaafikJZx4ga3+OU+24CZNJM/yXKdHmgQxIGmCx/yamnRvH559P69XlUVSMubjnNzSr5+cczapQYjduXGBkRjik2OZ0k5UGyLJuYaulgvFJAnPw7bIzDw27q9CfJU6ex0WNhuyeLUu+vaNdyAh220E/iTL9krLIaGSu7fVdQ4r0+0CEJA0jTNHQdwsP7v3qFosh88cU0dB3mzVsnFtkfIZGMCMOSTR5NsvIQ4y1bmWpxk6VsI1a+GStj6GQXdfpj5KqT2Oixst0zkTL1N3RooqricBIsH8dEpQIrI6nXn2aHZzqaNjgqGAv9q7HRKKYYGXn0peAPxfTpDm6+OZWKik5+8QvxOnIkRDIiHBOC5PGkKI8w3rKNqZZOxilbiJFuxEoGneRTqz3CDjWLjR4bOzzZlKu/x63tDHTYfa7R3Uapq9F/aXS3/fCdhjBFDidLKSBcuoAONrBVTcStFQQ6LKGfVVZ2AhAdPXA7XB5+eCwjRwbxn/9UsGJF44A973AhKrAKxyS7PIlU+TH/923aeup9z9Oqf0UHO+jQtlKjPYSEDRvjcMiLiJKvxSanBS7oo9TobuPu9R+h6nuHkRVJ5oHpi4m0BQcwsv4lyzIj5bepUR+lXLuF7ep40k2vEGm6KNChCf2kosIYAYuJGZiRkT2WL59Bevq3LF68ibq6eVitopr0oRIjI4IABMvTGWF+kgmWfKZZvGQq3xMtXYuFZDrYSrX2INvVdDZ67OR6plOp3otHKwt02IfFpXZ2S0QAVF3DpXYGKKKBFaf8mjHKt0iYKfZdTKn3V4EOSegn1dVGQ864OOuAPm9yso1//jOT1lYfZ521aUCfe6gTyYgg9CBEns0I8zNMsOxkmkVljLKCKOkazCTQzmaqtPvJUVPZ5Akh1zOTSvWPeLSqQIct/IBQeS6TlFIspBnrhjyzRCfpYaiuzvidJiYObDIC8H//l8qcOQ6WLm3kpZcqBvz5h6ojSkaeeOIJ0tLSsNlszJw5k7Vr1x70+EcffZTMzEyCgoJISUnh5ptvxu0WC8mEoSNUPpE08/NMtOxiiuJhlLKUSOlKFKJpZz1V2t3kqIls8oSS55lDlfoXvFpdoMMWeqDI0YxXduGQFtPOmq51JEWBDkvoQ3uSkYSEgU9GAL74Yhp2u8zPfraD2tpjY+TxaB12MvLGG29wyy23cO+997Jx40ays7M57bTTqK2t7fH4V199ldtuu417772X3NxcnnvuOd544w3uuOOOow5eEAJBlmUc8gLSzS8x0bKbKYqXUcqnREiXYiKCNlZTqd3OVjWWTR4HeZ4TqFYfRtXEorbBQpZlRpk/JEn+Kz4a2a5m0uR7L9BhCX2kvt4LQFJSYEq0h4QovPVWNl6vzsknrw9IDEPNYScjjzzyCNdeey3XXHMNWVlZPP3009jtdp5//vkej//++++ZO3cul112GWlpaZx66qlceumlPziaIghDhZGcLCLD/CqTLKVMUVRGKh8QLl2IiVDa+I4K7bdsUaPY5Akn3zOPGt8/UbWWQId+zItXbmWMsgwJhSLf+ZSpvwt0SEIfaG42khGbLXB7NM44I4ZLLoln+/Y27ruvMGBxDBWHlYx4PB42bNjAwoV7G77JsszChQtZtWpVj/eZM2cOGzZs8CcfRUVFfPrpp5xxxhm9Pk9nZydOp7PbRRCGClmWCZfPZqT5TSZZypmieMgwvU24dD4m7Lj4hnLfr9mihrPZE0GBdwG1vidRNdcPP3gvWrRP8eni/8mRCJXnMUEpwUwKtdrfyfMcj6apgQ5LOArNzSqDoX/mK69MICbGzP33F7F9e2ugwxnUDuvXVV9fj8/nIy4urtv1cXFxVFf33Eb5sssu4/777+f444/HbDYzcuRI5s2bd9Bpmj//+c84HA7/JSUl5XDCFIRBRZYVIkwXMNL8DpMslUxRPKSbXschnYOElVZ9GWW+G9iihrLZE0WB9zTqfM+gae2H9Pjt2lYK1TPJ887Eo5f289kMTxY5lgnKbsKk02njO3LUJDq1kkCHJRwhp1NFUaRAh4EsyyxbNh2ABQs2iOqsB9HvuePy5ct58MEHefLJJ9m4cSPvvvsun3zyCQ888ECv97n99ttpaWnxX8rKhtYWSkE4GFlWiDRdzCjz+2RbqpmidJJm+h9h0plImGjVv6TU93M2qcFs9sSw03sG9b4Xe60e2qovA2Tc7CTXO402bcMBx3h8Kpvry3u8/xBoTzUgZFlmtPkzEuQHUKljuzqaZu3jQIclHAGXy4fZPAiGRoAJE0K5/fZ0amo8XHXV9kCHM2gdVqM8j8eD3W7n7bff5txzz/Vff9VVV9Hc3MwHH3xwwH1OOOEEZs2axd/+9jf/dS+//DLXXXcdLpcL+RDG0kSjPOFYomluGvVXadLeok1fh48G/20KMQRLM4mQLyFCuhBZtlDoXUyL/imgASYkzGQobxAunw1AqauRJ7avoNnT0ePzjQ6L4YbxJxGkBGax32DUon3FLvVMdDqJl+8gSflToEMSDkNy8go6OjQaGuYHOhS/ceO+Iy+vjS++mMqpp0YHOpwB0y+N8iwWC9OmTeOrr77yX6dpGl999RWzZ8/u8T7t7e0HJBwmk1GVTnwiE4QDybKNaNNPGG3+jMmWeqYobaSa/k2odAo6Plr0j9ntu4JNqpXNnjha9M8wEhEAHzqd7FLPpdb3GNXtTv6R81W3RMRmUlCkvf8ndzrreHz7ClTNN7AnOog55AVMUIowk0C19iD53vliHckQ0tGhERQ0OEZG9lixYjpms8T552+mvV38Le3vsH9bt9xyC//5z3/473//S25uLtdffz1tbW1cc801APz4xz/m9ttv9x+/ePFinnrqKV5//XWKi4tZsmQJd999N4sXL/YnJYIg9E6W7cSYrmOM+UsmWxrIVlpIMT1OqDQfnXZg/yRCB3TKfL9ivetqOroqrKaHRvH77FN5dPaF/HPOhfwkczbBilGHodBZx6qa4gE9r8HOIicyQSklVFqAS19OjpqCR+t5qksYXDo7NYKDB9f7S2yslX//O4u2No3TT98Y6HAGncPe93TxxRdTV1fHPffcQ3V1NZMnT+bzzz/3L2otLS3tNhJy1113IUkSd911FxUVFcTExLB48WL+9Ccx7CkIR0KRw4jlBmJNN1Dje5hy363sHRnpLt7xHpdN/prviu7gV+N/5J+KUSQTM2PTibDYeTjHGOlcUbWTExJGDdRpDAmyrDBGXkqFejfV2h/Zpo5kpPIhDvm0QIcmHITXqxESMriSEYBrrkni5ZcrWbasiWeeKeO668TmjD0Oa81IoIg1I4LQs53eM3DqX9BTMqLrIEl7/1WII0Q6CauURqi8AId8KgB/2vQZpa4mAP4+83xCLbaBPIUho0X7jF3queh4SJDvI1G5N9AhCb0wmb7kxBMj+PrrGYEO5QBut0pMzArcbo2SkhNITBze/9/6Zc2IIAiDh66ruPQVGImIAhhbGSVshEgn4u64ji/yb+G1zY/gc/2XaPknePQSarSHKFd/63+cWFuo/2u3T8xl98YhL2KCshOFOKq0+yjwniq2ag5Smgbh4YOzKb3NpvDBB5NRVZ1580R11j1EMiIIQ5SGGwkLVkYSJV1BqulpxilbmGJ2kWlegeK5jZLmabg8cRQ3jSdJeZBxltXEyjfjpQJdV9F0nd2uvbt1QsxiR83BWORUJirlhHAirfoStqmpeLSeaywJgeF2Gwl1eLg5wJH07uSTo7j66kR27mzn1lvzAx3OoCCSEUEYokxSCNnmRiZYCkkzv0CM6Trs8iQkyZgrnxCRiFk2vv6+ZhcN7jYAIuVL8dFIo/Y6a2qLqe+6flx4vNjeewhkWSHTsoI4+fd4qWCbmoZTWxbosIQuFRVGk7zo6MGbjAA891wWCQlW/v73EjZuFK0hRDIiCEOYJPVeZTLEbOW4mBGAMf3y1y1f8nVlAR2ecaCbyO+4j5cK1viPn5c4pt/jHU6Slb8w0vQBoLFTXUiV+udAhyQAVVXG7rGYmMGdWMuyzNdfT0OS4NRTN6Kqx/aUn0hGBGEYOz99CnFBxpqQFk8Hr+9az53rPqSuLQWLuQgNo6HYnLgMsiOTAhnqkBRuOpvxSgEK0VRqd7DTe6ZYRxJglZVDIxkByMwM4f77R9HQ4OWSS7YGOpyAEsmIIAxjIWYrv520kHHh8d2uz6udhyTpTIhdzqnJ47hy9HEHHWURemeV05iolBPMbJz6p2xT0/FqdYEO65hVU2MkI/Hxgz8ZAbjzzgwmTQrhnXdq+fDD2kCHEzAiGRGEYS7MEsSvJ57MXVMWsSApk8lRydj1q9B1mfnpG7kgfQqyJF4KjoYsWxhr+b5rcXApOeoIWrWVgQ7rmFRXZ4z2JSUNnS2zX389HYtF4pJLttLaemzuaBOvQIJwjEgJieCijGlcn3Ui142bR5CURSfbxLRCH0pRHiHd9BY6XgrUE6lWHw50SMec+npjAWtiojXAkRy6yEgLL744gY4OjVNOOTa3+4pkRBCOUVHy1YCPRv2lQIcyrESafsR4JRcTEVRov6XQe55I+AZQY6MxMhIZOTjrjPTm0ksTWLQoijVrnDz66O5AhzPgRDIiCMeoWPkGQKLO93SgQxl2bPIoJikV2JlOi/4+29XRqFpjoMM6JjQ3q0gSh9QRfrB5//0pOBwKv/1tASUl7YEOZ0ANrdRREAQ/Tdf4qCSHNbW7cXrdOCxBzIlL54yUCQddjJrfXMNbRRupam9h3sjjSXFsRFO0bi/eX1cWsKQ8lxZPB8khEVwychrpocdO2/O+IMs2xlnWUer9JXX6E+SoKYxWviJEnhXo0Ia1lhYVk2loLsa2WGQ++2wKc+asY9689RQXnxjokAbM0EsdBUEA4POyXFZUFXLpqOncN+1Mzk+bzBfluXxdWdDrferdLh7fvpzM8DjumrqICNM8zEobm1r2TtWsqyvh7aKNnJk6gTunLCI5OJzHtn2N0+MeiNMadlLNj5NuehWNTvLVOdT4/hXokIa11lYVs3loJiMAs2dH8H//l8Lu3W5uvDH3oMc2utsodTX6L41dBQyHIpGMCMIQVdRax+SoJCZGJhFtC2FaTCpZ4QkUtzb0ep8VVTuJtoVwYcZUEuwO5kXfitdnpbjjbf8xSyvyOD5+JHPjR5IY7ODyUcdhkRW+r9k1EKc1LEWaLiVL2YYJB+W+m9jlvUisI+knbW0+LJah/db2xBPjGDHCxuOPl7FqVdMBt2uaTqO7jbvXf8SfNn3uv9y9/qMhm5AM7d+YIBzDMkJjyGuuoabdCUCZq4lCZx0TIhN6vU+Rs56x+9QcUeQQPN5RhAdvAkDVfJS2NnarSyJLEmPD4yly1vfTmRwbguSxTFIqCWIyzfpb7FDHomrNgQ5r2Glv92GzDf23tq+/no7JBGecsclfnXXr1lbGj/+O88/fjEvtRNW7J7SqruFSOwMR7lETa0YEYYg6PSULt8/LvRs+RpIkdF3nnLRsZsam93ofp9dNmKV7/QWrdibB9oeo836EWVuAhk7ofseEWWxUdzj75TyOJbIcRJZlEyXe66jX/0OOmswYZTnB8vRAhzZsuN0akZGDuy/NoUhPt/PQQ2P4zW8KOOecTSxYEMXvf78TVdWpqfEAIwIdYp8a+umjIByjNtSVsLZ2Nz/NnMNdUxZx9ZjZLCnPZVVN0WE9js13NV6flXr9sX6KVNjfCPMzjDD9Fw03eepMan1PBTqkYcPj0QkJGR6fs2+5JY1Jk0L49NMGfvObAlRVB6ChwUur0xfg6PqWSEYEYYh6p3gzp6VkMSM2jaTgcGbFpbMgaSyfle3o9T5hZtsBC1FdXgvlLdl08B0hZisyEq37HeP0uHGYh05Fy6Eg2vRjximbkQmhzPd/FHmvCHRIw4Kq6oSGmgIdRp94881qioo6erytuHB4LSgXyYggDFEeTUWm+64BWZLQ0Xu9T0ZYNHnN1d2uy22upr1jFjoddPAtqaGR5DbX+G/XdJ285moywsTW3r5mlycwUanAxkSa9FfY7slC1VyBDmtI8/l0HI6hPTLS1qZyxRVbufjirbS19TwCUiSSEUEQBoNJkUl8WraNnMYK6t0uNtWXsbQ8j8lRyf5j3ivezAv53/u/PylhNPVuF+8Ub6K6vYXllQVsqCtlsuNnAFT7/s7CpLGsrC5kVU0RVe0tvFq4Do+mMicuY8DP8VigyCGMt2wlUroKN7nkqIm0a5sDHdaQpGkaug4REUN7zcjXXzfxyivGhwa9h88WiiJRtHN4JSNDO30UhGPYJSOn80HJVl4tXEertxOHJYgTEkZxVuoE/zEtng4aO/dWcoy2hfDL8fN4q2gjyyryCbfauXLMTCZFZrDVk4BLX86MmBG4vG4+LNmK0+MmOSSCm8bPJ8wSFIjTPGakm18kxHc8pb6fk6tOY4TpGaJNPw10WENKfb1RCn6oJyNnnhnNu+9m87vfFbBr14HTNJqmU7TTTe/75oYeSdd7yrsGF6fTicPhoKWlhbCwsECHIwjDUon3eur1pxmrrCVYnhHocI5Z7dpm8tUT0HARJV1Dmvn5QIc0ZGzc2MK0aWu4994M7rtvVKDDOWqqqvHCC5XceedO6uu93UZJUseYOP3ZmgPuc1v2qaQPoinVQ33/FtM0giAAEG+6DYBq318CHMmxzS5P7lpHMpYG/QW2eyahacdWn5IjVVVl1NiIjbUEOJK+oSgy116bzO7dJ/LHP44iONjEnk4PZYVqj1M4LxasprFz6BU+E8mIIAgAWOURKMTg1JcGOpRjniKHMd6SS4R0GW5y2KIm0qFtD3RYg151tQcYPsnIHna7iTvuyGBT3jSmXOQBdHRNomabiRDFSpBp77RUdYeTR3OW0a56AhfwERDJiCAIfg7pTDSctGs5gQ5FADLMr5BiegKNVnao2TT4Xg50SINaba3xBpyQYA1wJP3ju7Zcpt/g5Jynm7HYdcr+m8hfpp/LP2b/iF9NmE+0LQSAmo5WlpbnBTjawyOSEUEQ/OJNtwNiqmYwiTX9H2OV1cjY2O27khLvLwId0qBVX28kI8nJwy8ZcXk7WVdXAkDaRJmPP53ClvUdPPRQCZIkkRWRwE0T5vm3+39bXYhvCPU/EsmIIAh+NnkMJiJw6p8HOhRhH8HyDCYq5VgZRb3+b3Z4pqJpw2trZ19oaDB20yQkDL8CfUXOen8vmpmxaZxyUix33JHBvfcW8tprVQDEBYUxITIRMFo/VHW0BCzewyWSEUEQugmTTsNHI25tZ6BDEfahyOFkKfmESxfSwSa2qom4tfxAhzWoNDWpAEO+a29POn1e/9d7pmOysoLRNPj973cecJtxH3XgAjxKw+83JgjCUdk7VfPnAEci7E+WZUaa3yTZ9Cg+mtmujqfR90agwxo0mpu9yMP0XW3f5pU7m2u55JItXHZZDuecE8u2bbP9txU66/beZwi1cBimvzZBEI6UXZ6ETBgt+ieBDkXoRZzpV2Qq3yFhodh3CaXemwId0qDQ2upDUaQfPnAIGhUWQ5jZhqcdbj+9jTfeqOGii+J4991swsKM3TSbG8opdTUCkBIcQcw+oySDnUhGBEE4QKh0Miq1eLSyQIci9CJEns0kpRwL6dTp/yLXcxyaNrS2c/Y1l0sdllM0AIpsYrQnnVcviMRZYWLCuW6ueEimsr2FUlcjbxdt5Jnclf7j5yeOQZKGTmImysELgnCAeNOttKjvU+X7CyPkJwIdjtALRY5kvFJIke98WvQP2KomMlZZg00eGejQAqKtTcNqHZ7JyJIl9fzyzHq8qsycX7Uy4YJOPi7N4ePSA7fhT41OYfYQ6yU1PH9rgiAclRB5NjLBtOjvBzoU4QfIsswo8/skyX/FRyPb1bE0+d4JdFgB4Xb7CAoafm9r//pXCaedthGATz+fzM+uT0DiwFEPRZJZkJTJz8bORR5CoyIgRkYEQehFiHQiTv0zPFotFjk20OEIPyBeuZVgbRY71dMo8v2IWP0WUpSHAx3WgOrs1IiJGV7VV6+7bjv/+U8F4eEKGzfOIj3dDsRyzohsVtUWUdvRCkgkBYczOza920LXoUQkI4Ig9CjO9Fuc6mfUaA+RIv890OEIhyBUPpEJSgl56nRqtUdo86xmjPI1sjy83qB74/HohIQMj7c1VdWYP389K1c2M3q0nY0bZ3U7t0hbMGemTgxghH1r+I1nCYLQJ8Lkk5Gw0aS9FehQhMNgkWOZoOwmTFpEG9+ToybTqZUEOqwB4fPphIWZAh3GUWtu9pCRsZKVK5s5/fQo8vLmDJskqzciGREEoVch0hy8lKJqzYEORTgMsiwz2vwpCfIfUalnuzqaZu2jQIfV7zQNwsPNP3zgILZ9eyspKd9SVubmlltS+eyzacjDtXjKPoZ3qiUIwlGJNf2KVnUZNdrDJMkPBDqcY0Kjuw2X2un/PkSxEmkLPqLHSlTuJFibxS71THapZxMv30aSMjyL2bW3G9VGIyOH7tvaBx/WcMmVm0HROf/pVmxTC/ik1MsZKRMOuk03v7mGt4o2UtXeQoTVzhmpE5iz326arysLWFKeS4ung+SQCC4ZOY300Oh+PqNDN3R/a4Ig9Ltw+WwkLDRqr5GESEb6W6O7jbvXf+TvQQLGDokHpi8+4oTEIS9gglJMnjqdau0vuDyrGK0sRZaH18t/RYWRwEVGDs2Rkb/8pZi77ikgLMnH48+O4tS5iZS0NvLfnasJMlk4OSmzx/vVu108vn05JyaM5qdj55DXXM3/CtbgsNgYH2H0qVlXV8LbRRu5bNQM0kOj+aoyj8e2fc0fpi0mbJAseB3+Yz+CIBwVO8fhoQif1hboUIY9l9rZLREBUHWt20jJkbDICUxQygiVFuJiBTlqCh6t/Kgec7DZk4wMxd00V1yRw+237yQuU+MPr4dz2YIxRNtCmBaTSlZ4AsWtDb3ed0XVTqJtIVyYMZUEu4P5iZlMjU5hacXevkVLK/I4Pn4kc+NHkhjs4PJRx2GRFb6v2TUQp3dIRDIiCMJBxZp+CejUav8MdCjCUZBlmTHmJSTI96JSzTZ1JC3a8OnOXF1tJCNxcUMnGfF4NKZPX80rr1QxcWIIT76XRJVUR027E4AyVxOFzjomRCb0+hhFznrGhsd3uy4rIoEiZz0AquajtLWRcfscI0sSY8Pj/ccMBsNrnE4QhD4XLl0IXEGj9j8SuCPQ4QhHKVG5j2BtJrvUcylUF5Eg30uicl+gwzpqNTVGKfy4OGuAIzk0tbWdZGevorrawwUXxPL225PRdB2fSePeDR8jSRK6rnNOWjYzY9N7fRyn133AVEuYxYbb58XjU2lXPWjoB9QfCbPYqO5w9su5HQkxMiIIwkHJsoydKbjJP+Z7nwwXDnkRE5RdKMRTpf2BAu9CNM0X6LCOSm2t8beZlDT4k5H161tIS/uW6moP99yTwdtvTwZgQ10Ja2t389PMOdw1ZRFXj5nNkvJcVtUUBTbgASCSEUEQflCM6eeATp32ZKBDEfqIRU5molJGiHQSrfpXbFNT8WhVgQ7riDU0eAFITh7cycgbb1Qxc+YaPB6NN96YxB/+MMp/2zvFmzktJYsZsWkkBYczKy6dBUlj+axsR6+PF2a24fS4u13n9LixmcxYTAohZisyEq09HOMwD47FqyCSEUEQDkGkdBVgol57PtChCH1IlhUyzcuJl2/DSyXb1HSc2rJAh3VEGhuNZCQsbPCuPrj77p1cckkONpvMunWzuOii7ms9PJqKvF/PGVmS0NF7fcyMsGjymqu7XZfbXE1GmLFtV5FNpIZGkttc479d03Xy9jlmMBDJiCAIP0iWFYKYgJvtaJoa6HCEPpak/JmRygeAxk51IZXqnwId0mFrbvYiSQzKAmGapnHeeZv44x+LSUiwUFx8AlOmhB1w3KTIJD4t20ZOYwX1bheb6stYWp7H5Khk/zHvFW/mhfzv/d+flDCaereLd4o3Ud3ewvLKAjbUlbJwn63AC5PGsrK6kFU1RVS1t/Bq4To8mnpALZJAGrwppCAIg0qU6WeU+26kQX+eGK4LdDjDzi5nHW/s2tDjbd9V7yJpZDgmqf/eaMPlsxmv7CRPnUGVdhdt3u8Yafp4UL6596SlRcVkGnydat1ulRkz1rJtm4sZM8L4/vvjUJSef6aXjJzOByVbebVwHa3eThyWIE5IGMVZqRP8x7R4OmjsbPd/H20L4Zfj5/FW0UaWVeQTbrVz5ZiZ/hojADNiRuDyuvmwZCtOj5vkkAhuGj+fMEtQ/534YZJ0Xe99/GeQcDqdOBwOWlpaCAs7MJsUBKH/aZqHTWoQQUwhy7I+0OEMK5sbynkmdyW+/WqM7Cs7MomfjzsBUz8nB5rmoUA9mTa+w0wKY5X1Q6Jr8/jx31Fc3EF7+8JAh+JXXu5m8uRVNDR4ufLKBF56afg0tjtUh/r+PTRSXkEQAk6WLdgYSweb0bTe3zSFw1PX4eLZvO/8iUiU1c5J8aNYlJzFGMfeJGBLYwUfleb0ezyybGGsZSWx8i14KWObOoJW7Zt+f96j1dbmw2odPG9p333XxKhRK2lo8PLXv44+JhORwzF4fnOCIAx6UfJVgI8m/dVAhzJsLK8qwNu1rXZ6dCoPzDiby0Yfx7npk/nNpIX8esLJ/kWNyysL6PQNzJqdFOVhMkzvoKNSoM6jWv3bgDzvkWpv92GzDY63tOeeK+eEE9bh8+l89NFkbr219zohgmFw/OYEQRgSYuVfAhJ1PrHFty9ous6qmmLA6EFz6agZmCS528jTuIh4ZsYZb2YdPi+bG8oGLL4I0/mMV/IwEUmFdiuF3nMH7ahYZ6eG3W4KdBjcckseP/vZDkJCTGzZMpuzzhr8U1yDgUhGBEE4ZLJsx8oo2lk/aN+UhhK3z0tbV9+ZkWExhJiNGhk/XZNL+Jtfc8PaPJo9HrIjk/z3qXe7BjRGmzySSUoldo6jRf+A7epIVK1xQGM4FB6PTnBw4JIRTdM47bT1/OMfpaSm2igtPYGsrJCAxTPUiN00giAclkj5Mqq0P9Cif0AE5wU6nCFt35oSnn22TGeG2ZGQeHJnOU/uLCdckUiwBJNs9/J5VQcbW4qodXuoc3uocnuo6uikvtOos7HjrNnEB/Vt4S9ZtjDOsoZS703U6f9iq5rMGOUrQuTZffo8R8Pr1QgLC0wy4nKpTJmyisLCDk48MZyvv54+ZHYhDRYiGREE4bDEyrdQpf2BWu0xIkwiGTkaVpNCrC2EWreL4tYGqttbiLc7uG18OreNT+eLynquW5NHabubZjWY3HZYUu/EhBNZkvDpOvuOTznMCuGW/ntZTzU/RohvLsW+y8lX55Js+gdxpl/12/MdDk0Dh2Pg39J27Wpn2rTVtLSo/OIXyTz1VNaAxzAciNRNEITDoshhWEijTV8V6FCGPEmSOD5hbznwZ/O+p8Hd5v9+YUIkT00L55KEWkxo0FWJ0wd490tETJLET0YmYjP17+hApOlixivbMRFOue/X7PJeGPApO03T0HUIDzcP6PMuXVrPuHHf4XSq/OtfY0UichTEyIggCIctQr6IGu0hWrQvccinBjqcIe2E+FF8XVlAU2c7ZW1N3LX+Q7LCEwgxW8lrrqbZ00GYGa5IbmBZYyLl7d4ei4P7dJ3rRiX1cEvfs8mZTFIqyVPn0qy/zQ41k7HKOhQ5fECef3/V1UaTvKiogUtGHn+8lJtuykNRJJYsmcaCBVED9tzDkRgZEQThsMXLvwOgxvdIgCMZ+uyKhV9NmE+ExQ4YO2y2NVWyuraYZk+H/7iL0ifx3akzibVZ6K3Q6JRPV/PbDQUDETaybCPLsoFo6ed0UkiOmkybtm5Annt/lZXGIuDo6IFJRn7xi+3ceGMeDodCXt5ckYj0gSNKRp544gnS0tKw2WzMnDmTtWvXHvT45uZmbrjhBhISErBarYwZM4ZPP/30iAIWBCHwFDkaM0m06d8GOpRhIcHu4M4pp3NGynjC9umkKiGRHZXMLRMXcEbqeFKCbSw5eSo2k+mAF2+bLOHWdB7OK0V6ZSmjP/iO7c39v/NmhPlp0kwvoeEmT51FbQC2fe9JRmJiLP36PJqmceKJa/n3vysYPdpOWdmJZGTY+/U5jxWHPU3zxhtvcMstt/D0008zc+ZMHn30UU477TTy8/OJjT1wP7XH4+GUU04hNjaWt99+m6SkJEpKSggPD++L+AVBCJBw6Xzq9H/Rqq0kVD4+0OEMeaEWG+ekZXPWiIk0uNtQNR8Oi51gc/c32IkRIXx0UjanLtuE1tXNI0wxUX3BibSpXs5cvpV1DU4KXR1M+GQ1Vlni56OS+OeMsf0We5TpSuzSVPLUuZT5bsClrSTDPHCF8aqrjWQkPr5vdxHtq7nZQ3b2akpL3Zx+ehSffDJF7JjpQ4f9k3zkkUe49tprueaaa8jKyuLpp5/Gbrfz/PM9txZ//vnnaWxs5P3332fu3LmkpaVx0kknkZ2dfdTBC4IQOPGm2wCo8Q3uypxDjUmSiQ0KJTE4/IBEZI/58ZG8PGe8//urRyYSpJiIttlYc/pxaJcv5PHpYwhTTHRqOo8VlCO9spSRH6xka6OzX+IOkseTrVRiYyJN+mts84xD1frnufZXV2dsa05I6J9kZPv2VlJSvqW01M0tt6Ty2WfTRCLSxw7rp+nxeNiwYQMLF+5tRCTLMgsXLmTVqp5X1n/44YfMnj2bG264gbi4OCZMmMCDDz6Iz+fr9Xk6OztxOp3dLoIgDC4WORGFeFr1rwMdyjHp4rR4/jFtDDaTzC9GJx9w+w2ZqbRcPJ+mC05gdnQYElDkcpP92Vqsr33F9Wty+zwmWbYz3rKVKOkaOskjR02iXdvc58+zv/p6YwFrYmLfJyOvvFNK9uRVtLX7+NuTI7jzTyl9/hzCYSYj9fX1+Hw+4uLiul0fFxdHdXV1j/cpKiri7bffxufz8emnn3L33Xfz8MMP88c//rHX5/nzn/+Mw+HwX1JSxC9fEAajcGkxGq20aRsCHcox6ddjU2n80UmMcwT3eky4zcr3pxmjJU/PyCRMMeHRdJ4urEB6ZSnp769kY31zn8aVZn6eEaZn0WgnV51Gne/ZPn38/TU0GCMjfZ2M3PunfK74US5IOov/1czOCRu4e/1HNO6z/VroG/2+tVfTNGJjY3nmmWcwmUxMmzaNiooK/va3v3Hvvff2eJ/bb7+dW265xf+90+kUCYkgDEJxptupV/9Dte+vjJTfDHQ4g5Kma3xUksOa2t04vW4cliDmxKVzRsoEJKmXbTFAfnMNbxVtpKq9hQirnTNSJzAnLqPbMV9XFrCkPJcWTwfJIRFcMnIa6aHRvT7mz8ek8PMxKTS7O1m8Iofv6pvZ3eZm2hfrMUsSP86I5+npmSjK0b81RJt+il2aQb56PKW+a3FpK0k3v3jUj9uTpiYjGVGUvps6ufLKHF5+uQqbQ+f855oJiTVqqai6hkvtJJLeE0Dh8B3WX1x0dDQmk4mamppu19fU1BAfH9/jfRISEjCbzZj2KcQzbtw4qqur8Xg8WCwHzolarVas1v5biHS0Gt1tuLr6SewRoliJtIk/TuHYYpPTMRFFq74EAF334dK/xaWvIlb+JSYpNMARBt7nZbmsqCrkmsxZJNgdlLQ28t+dqwkyWTg5KbPH+9S7XTy+fTknJozmp2PnkNdczf8K1uCw2BgfkQjAuroS3i7ayGWjZpAeGs1XlXk8tu1r/jBtMWEWW4+Pu0e4zcq3p00H4MVdFdy8YSfNXpXndlXx3K4qUuxW3jh+IrNjwo/q3O3yJCYqleSrM2nU/0u7ZwOZyioUuW97trS0qPRVrTePR2Pu3LWsX+8kM8vG3H+Wowzet6Nh47CSEYvFwrRp0/jqq68499xzAWPk46uvvuKXv/xlj/eZO3cur776Kpqm+Rf8FBQUkJCQ0GMiMtg1utu4e/1HqHr3ioOKJPPA9MUiIRGOOWGcThOvsMt7Ea36V/gwmqiFSicSIs0NcHSBV9Rax+SoJCZ2NbuLtoWwrq6E4taGXu+zomon0bYQLsyYChhbfwtb6lhake9PRpZW5HF8/Ejmxo8E4PJRx7GtsZLva3Zxesr4Xh97f1ePTOLqkUm4OlXO+mYL39Y2UdbeyZwvjdGSy9LiePa4sUc8WqLIIYy3bKfYewWN+ivkqElkKt9hlycc0eP1xOlUUZTeR5kOVW1tJ9nZq6iu9rD43CjO+0snq2sPPG53awOpIZFH/XzCXoc9pnXLLbfwn//8h//+97/k5uZy/fXX09bWxjXXXAPAj3/8Y26//Xb/8ddffz2NjY386le/oqCggE8++YQHH3yQG264oe/OYgC51M4DEhHYO3QnCMcCTXfTrH1EsfcqWngfgGb9bX8iAmCVRgYousElIzSGvOYaatqNhfhlriYKnXVMiEzo9T5FznrGhncfbc6KSKDIWQ+AqvkobW1k3D7HyJLE2PB4/zGHK8SqsPyUafguX8jLs7OItCh4dZ3/FldjfmM5ye9+w8rapiN6bIB088ukmp5Cw0WuOpl630tH/Fj7a2vzYbEc3RTNxo0tpKV9S3W1h5t+n0Dm70tYXbu7x2NfKVzH52Xbj+r5hO4OO9W9+OKLqaur45577qG6uprJkyfz+eef+xe1lpaWdtvylJKSwhdffMHNN9/MpEmTSEpK4le/+hW///3v++4sBEEYUDu82XRSgPESsqfb7N4i5TLBKMT1dNdjzukpWbh9Xu7d8DGSJKHrOuekZTMzNr3X+zi97gOmWsIsNtw+Lx6fSrvqQUMntIdjqjuOfvfh5RmJXJ6RiKtT5bxvt7CspomKDg8nLNmAIklcmBrLS7PGHfZoSYzpF9ilGRSoJ1Hiu4o2bSUjzM8cdbxtbRpW65EnI2+8UcVll+UgSfDfV8aybeQGWjxuAExIZIRFY1Ms7HY20Koa17+3ewsRVvtBf4/CoTuicbdf/vKXvU7LLF++/IDrZs+ezerVq4/kqQRBGIQi5Iuo1v7I3kSkO6s06qCLM48lG+pKWFu7m59mziExOJwyVxNvFm0g3BLE7P0WpA42IVaFJQunAfB6cTU3rM+j0aPyWkkNr5XUkBhk4eXZE5ifcOhTFsHyNCYqFeSpM6jX/0ObZx1jle+Q5SOvZOp2+wgJObJppHvuKeSBB4qw22W+/XYGVdGltJQYZfjTQqO4ftwJhFuN2Hy6xmel2/moNAeAj0pymBGThiz+1o+aqNpymDpUb6BDEISASzTdT1xXf5oD6CY0dTSlrkZKXY3H/DbId4o3c1pKFjNi00gKDmdWXDoLksbyWdmOXu8TZrbh7PpkvofT48ZmMmMxKYSYrchItPZwjMN88MWrR+qS9HgaLpxHx8XzOD0hEhmo7PBw8rKNmF9dykXfbEVVe05O96fIDrKUPMKli+hgM1vVJDq0I6970tmpERx8eCtYNU3j/PM388ADRSQkWCguPoEpU8L4tmoXYJTiv3bsXH8iAkZBurNGTCTTYYz61bld5DfX9Pj4wuERychh2FRfxuPbl/d6+zdVhf7yzIIwnEmSRJLpr8TKNx9wm6brrKyEP236nD9t+vyYr8vg0VRkun9yliUJvcfeu4aMsGjymrvXbsptriYjzNi2q8gmUkMjyd3njVDTdfL2Oaa/2BSFz06eiu/yhbxz/ESiLWZUHd4qq8X8xnIS3vmGJZU/vG5FlmVGmt8g2fQYPlrYoU6k0ffaEcXk9eqEhByYjFRXd5Kff+Dfntutkp29mvfeq2XGjDBKS08kNtZKm+qhydMOwKiwGKJtIbhVNzfm38jsdbP9958Zm+b/uqztyNfRCHuJZOQQ5TRW8O/clXi0vZVjbabuw4LfVhfybvGmgQ5NEAJCkiSSTQ8TI9/U7XpZ1mhx711Yeawv7p4UmcSnZdvIaayg3u1iU30ZS8vzmBy1t2rqe8WbeSH/e//3JyWMpt7t4p3iTVS3t7C8soANdaUs3Gcr8MKksaysLmRVTRFV7S28WrgOj6YeUIukP50/Io66C0+i4+J5nJUYjUmCareHU7/ejPLqUs5fseUHR0viTDeSqaxCxkqx7zJKvTcedhyqquNwHDhNc9FFW5gyZRWbNu1dR1NW1kFyxlK2bXdy5ZUJrF07y1+fZN8Pk63UM2fdHEJWhPB4+eMUdhTSrhqJimWf137xAbRv9HvRs+HAp2u8snOd/5PM1KgUzk6bRILdgcvr5uvKAj4t3Y6GzpKKPGbHZZAUHN79QRpq4Mu34JtP4cY/QtbUgT8RQehjkiSRYnoUUKnT9nZrbXH3vlPkWHPJyOl8ULKVVwvX0ertxGEJ4oSEUZyVundra4ung8bOdv/30bYQfjl+Hm8VbWRZRT7hVjtXjpnp39YLMCNmBC6vmw9LtuL0uEkOieCm8fMJswQN6PmBMVry0fzJAHxcXstPVudS1+nlvfI6zG8sJ9Zq5vnZ4zgz6cBmqgAh8kwmKmXkqjOo0x+nzbOaTOVbZPnQppx0HcLDu7+d5eS08u23zUgSLFq0kbXrZ1C6u5OT3r0K7X8fA/C6ZOadr81YZSsW2YJVstLgcdFOE3q98Xofb47nkTGPcGn8pf7H3tJQ7v86xta3NVOOVSIZOQRbGyr8Q3eZjjiuHXe8f8FSiNnG4hGTUGQT7+/eAsDyygIuH30cuJzw1Xvw8f9g3degdW0JXnylSEaEYUOSJCobf8OuznzGxn0F0G1kBGBzQ/kxW5fBppi5eOQ0Lh45rddjrs6cfcB1meFx3DV10UEfe35iJvMTey6cFihnJcdS+6NYVFXlwpXb+KiyntpOL2ct34pJgkUJ0bx1wgRs++3EUeRIxis7KfL9iBb9Pb5pG4Wl8zPmRE886PO5XMbIS0SEudv1//pXKYoioao69Z2NjFwxFvX76cg1e6t5e3UvXt1Lu9bOgSSujbiXp6bcjUnaO4mQ01jB+roSwCh2OSkq6XB+PEIvxDTNIdjRVOX/emHSWCMR0XV46n4o2Aod7cxLGI0iySheDyx7D26+AE6Kgbuv7p6IACSJrWDC8LG2djcv5K/mm91X43RHo+tgkrrP339Suo2vKvIOvLOuw7efwVUnwCkpxvfCsKAoCu/Nm4x62UI+m5dNvM2CT4ePK+sJemM5MW+t4IOy7hXFZFlmlPldovk7PpzUm05lZcPrB32esjJjEW909N5kpKnJy0svVaGqOsg+fL9/EDW+HM7+iA/uvA6H4jjoY9oJ52rzM0hto7l3/cd8UprD15UFPL59OY9vX+Ff7XNy0hjMch+Vfj3GiZGRQ9Dh27uDJsEeZnyRvwWeute4AEGRsfzV00Gwq9VYqrYnYYHuiQhAUlq/xywIA6HTp/LarnVd38lU1P2LcSmX8odZYWieU/myfAfLq3YCxq6S6TEjcFiCQFXhizfhP3+Coh2AZPyfEVskh6XTk2KouiAGVVW59PvtvFdeR73Hy7nfbEUGTk2I5L0TJ/lHS1aUX8ptW+L4+5z7iAy9mmVV31G65ud4vAd2e8/LMdYjFVbU88xbxpbcJR+34fF0ve5e9RJM72rkKOncv+5Jbpx/I38s7blZq12287/R77F0dzU+XaPO7eLDkpwDjpsWncqiw6h0KxycSEYOQfA+jQmKWxuICQqFMZPgr6/BfT+DoBDcJ5+Da8UHBLta0QHpYJ/wfn0+pI6CURMgaxpMmgl2Me8oDD1ra3fT3rXdfWpUCpdnHE+u+iDN2juk287j0lEz0DHKm/t0je9357Bow1p4/q9QUw7+4W8dlKHXHmKo2L+fVqB6aSmKwlsnZgOwrKqBK77fTpXbw+dVjQS9sZxIi8K/jxvL0zsrqGmP5ydfP8o90x/mtNTHiZu2ktzlT4DW/e+kpsb4+zMH6bjavWiaztKP243PgsevhMv3GVkxaaxLfZ51RXqv736vTXiNs2PmMSm0jg9LtpLf0n3rboTVzsmJmSxMykSWxORCXxHJyCGYEp3M8qoCAL4sz2VKdIoxNLfoEhiZBZdMx/Luc7x13a9pDQvnxpefJbSqtOchZ0mCbWth66ru18smCAqG8CiIS4aUkUayMn4GZE0H+5EXBBKE/rKtqdL/9anJ45AkCUfH6ehvP0pb9hzkoCjmmxtobVhH9tfbmbI6B73DGFaXAPZtrWDuPucv9I2e+mkNhl5aJydEUXnBiaiqypWrcnm7rJZGj8pzpf+ktGMcGol0+mzcueYOcptGc9OkZ5l59mJ2fvs/PB1712l4OjwAxMWZCbGbydnYSXOjBqklcNtDRmHgfQfczD7oNBNvSaBWq0Jj78/lnrR7ODvmbABGOWK4ZdICatqdFLsa8GkakdZgxoTHdltDIvQNkYwcgkxHHAl2B1XtLZS1NfH3LUtYlDqBUWEx1CUksuX+Jznznuv55dMP88ZFV9H55gZCX/i78elPkmGf7cDMPgWe/gLaXbB9HWzfAIXboKwQaiuguR6qSmDjt92DMJkgKAQioo1kJXU0jO5KVsZNg0Hc5VgYvvYtApgQbMzDO9aZCXnUC9yAKxsqn4NrfgGWuoM/lt7hwnOahK6w30UCk/GvrkjoJhkUGV3Z868JFAXdrIBiBosFzBYw25AsQWANAkswkiUEyRqKZHMg28PBFoVsj0a2x6LY45DtScjDcGdET/209my3jiTwjT0VReG1EybyGvBt5Q7sFOOb/BzvlM3m2R1X0NgZwcsFF7GzOYOH5tzPxFPOJUN5iwjTOQDs3rQTcHHtJVlkZYUw7S+rILgN/nQPmL3Qw8xfmNnB1zOWMn6NMc1iwsTpUadzb8a9BxwbZw8jbs/0vNBvRDJyCCRJ4uoxs3h461I8mo/drkae2vHN3gMcdtbc83fu+vMdXPzmf5EsEXDrP+Dk8+D2K6Bsl/EJ0KRAUlcNAHsIzJhvXHrickLOGtixHgp3QPkuI1lpqIHyYli/ovvxJsV4zMgYiEuBEaNh9CQjWRk7WXzqFPpFsHnvkHmpq4kxjliCjr8NdcyrSEEO5N/9mtgdm/j+wm/J/rCAiPI2dAmkHgYNdYtEx0Q7qBqSzweqjqRqSKpuXNw6sqohqT4klW4X2QtS10U+iiLJugk0M+h7LvsmRXu+N0n+JMlIlLr+VUz7JEgKKAqYFXTznuTIimSxgsWOZLEbCZItBKwOJFsYUlAkpqAoJHs0JnsccnACclA88hF2ywXoUD2srS3p8TZVO3D9RaClK1BT9jtMVTfzI8eXnHPy/bxUms3L+ReypnY6ly15mmfm3QpB5xKn30qy8lcaGoyRkeRkGy+8UM7GTS3wyF0QX91jIgLglOv53vk9F8VexOu1rzPCNoJXJrwipl0CSNL1wb983el04nA4aGlpISwscBlqcWs9z+V9T53bdcBtNpPChXFjOP6G86ByN8w7Gx59D7weePJeePFvxrTNr/8KP7n16INpbuxKVjZA0XYjQamrhJZGcLcfOEWkmCE4FCJiID7VSFbGZMPE44zpoKN4wROOXatri3kh35hyzAqP58YJ843dZu+/APf8BP3l1bxg9bGmq/vpz9o1Zrz0uPG3K8vdF3cnjoDPdx91TJqqorlr0dqq0Npq0Nrr8Lkb0Dua0DtaoLMFvdMFnS50Tzt4O6DTje7tNP6/ql4krxe8Kqi+ruRH6/paB5++N0FSQfLpexMjL92/7kqOpKN43983OdL2T5D2HT3akyCZJHRFRjdJeE06mknGZ5KNfxUTPpMJVVHAbCEiJAKT1d41ghSMZN1n9CgoHKyRyPYoZHsssj0OxZ5kjCr1k093fkecc09tERVQ0O2b6Ah/m6fLRvLWrjNRJB9/mf1H5iasxSGdzat//jv337+bF18cz49feRj9ypcgrp5uBW57SEpGBo3kw0kf8tPcn/J81vOMCx7Xb+d1LDvU92+RjBwmTdfY3lTF+rpSWr1urCaFseHxzIxJw6aYjV0C15wIW1ZB5mR4ZY0xbLx1DTx+N9zykDFS0d8aamHrasjbCLt2GMlKfRU4m6Czo+dkJSQMImMhYQSMGGMs0p0401gXI4tPDMKBvJqP29d+QKvXWAeSFZHAopTxjMCM5YQoakeN5Z6b7wLALJv4y3HnEqJYYPlH8I9bYXf+3p1nI8bAR/mBPJ1+o7ldaB1VqG01aB216O216B1NaB1N6O4WdE+rkRx1tqF7OsDTAZ5O8HaC6gFvV4Kk+vwJEqrWNXKkgY99EiT9gJGjA5Ijb8+jU4dCl/dJjMz7jRrtkxztGUViz/TaPlNsxiiSAmaT8dpjNqObLayNO4GYcfs1YdV9IJmASjzmt3mj0sTrpQs4eex3XDP+FWqqxnPPQ9kUn/U6RDUDECQHcXLEydRW+ujQ3GgmD9GxCh2+Dtyamw6tgzhLHN9O+5Yvynfw3u4tnJyYedBaMBvqSvmgZCsNbhexQaGcnz6ZiZF7167ous5HJTl8W11Ih8/LyLBoLhs1g7igY3uKRyQjgXbrpfD56xCTCO/kQPggK/hUU24kSHmboCjXGM2prwJnM3S6Yf++GWYLhDggKg4SUiFtLGRmG8nKiNEiWTmGbWus5IntK9D2+5u58893kFxeys1/fwZ3kJ2rx8zq3qXW5zMKAj52B9RVGcnv21sGOPrh6akd37C5q0ro6LBYLhs1ncTgcHRdJ7+lhv/lf09rew1hnmZOiYhkRkgoWkcDuBu7EiQnemcruqcNPG1GcuQfPeo0kiO1++gRXSNIRnK0NzFiv9Ejo9GzFUx2NNmObrKjmezoZjtt6VlUnX99zye1561K10h6459YC7ey63dPIllsSD4vx7ecyFkJ5/PE2CeIscQA8MxbW3C1ewmxm7nuwuwDHnJ3awPP5K4kSDEzxhHXazKyy1nH37cs5dz0bCZFJrG2djdflOdy55TT/dW2Py/bwedl27k6czbRtmA+3L2VivZm7pt21jFdi0QkI4PBY3fCsw8a0yOvbzDetIeKihLIWQ15m6E4Fyp2G+tVWpthv06hAFisRrISHQ+JaZCWaYwMZc826qqI+hHDWk5jBf8tWE2rd+/20fHbNnPTU3/jm3mnYb3rKWbG9lLsr9MN7/wHwqPhjEt7PkY4ZE2d7dy+9gN0dMLMNh6YsRibqfuasar2Fv6w4RN0jK2qD844u9f1EqqqoqoqXq/X/7XP5/P/u+eiaZr/X03T0HUdrWsaTtd1+uStRtcB3fhXkpBUD0GlO2nvyGPSFQ9g3u88D5aMuH1e/rTpcy4bOYNPy7aRHBzRazLyTO5KPJrKL8fP81/3l81fkBIcweWjj0PXdW5d8x6nJI/j1GRjuqdD9fDb1e9y9ZhZzNinsd6x5lDfv8VCgf50058gOQP+cC2cNx7+/SXMmBfoqA5N0gjjcvrFB96maVBRDFtWQ/5m2J0HlSVGslKcb1Sl3Z/VBqHhEBVvJCcZ4/YmK/EpBx4vDCkTI5P483HnsqG+lC315bjUTpSTzsL70r85Yf0qpN4SETD+Ni47/OZoQs8KW2r9fbTmxGf4E5HKyko0TcNsNtPW2sol9pF4fT4USWLL1q1I+t6k4UgTB0mSul0URUGWZf/FZDIhyzKKomAymTCZTCiK4r+0+lZTWRhxwOPq6EhI6BKYZIXQ0FCirQqOK2ciZU2DJz457A88rxWuZ2JEIuMi4vm0bNtBjy1qrWdh0thu12VFJPh71NS723B63YwL39sGIUixkB4aTVFr/TGdjBwqkYwAH5Vs5ePS7n+McUFh3D/9rF7vc8jzh4kRBN/7ML969I+EXbcQ0x+eh7N/3G/nMiBk2aiDkjISzrr8wNs1zVgLkLO2K1nJh6pSI1kp2mFct+z9fe4gGW9IYREQk2CUy88YB2OnGMlKdPyBzyEMOmbZxKzYdGbtm3icew288k9Y9gGcfE7ggjuGdO6zSybSunfrbk1NDZqmIcsyuq4TjAmfLKNhJB8m2XRYiYPZbO6WbBwtTdOore2pu7OO6oOKep2mDhM/u2AKNDXAxVONEZIHXjzsRGRd7W5KXY3cMeX0Qzre6XETZu7etC/MbKOla5TY6TUqv4ZZ9jvGsvcY4eBEMtIl0e7g1xNP9n9vOsgf9y5nHc/mfddt/vCpHd92mz/8ojyXZZX5xvzhxPm8F53Mwr/+npS7rkIqL4L/u6+fzyiAZNlIJjLGAVcdeLumGbVVctYaoyi786G6FJrqjO93bOh+vCQZtSIckV3JSgZkZBnNBifNMmqvCIPTjX+EV/8FT94jkpEB4tjnDbGwpY6TEozp4eDgYKP3y6hR6LrOvRs+pqajFYCHZp5nlOkfYK2trdTV1dHa2oqqqsCeDx5GpTJ7sJ20EWn87+MCXO1eHOZOeP4h+Ned4FPh6t9BVM+dgHvT2NnGG0Ub+fXE+cf0Wo7BRiQjXWRJOuT/jF9V5DM+MoHTkrMAOCctm9zman+3Xl3X+aoijzNSJzA5KhmAS+ecw+2/aefev/+BiKf/YBQ5+/PL/XY+g5osG4sVx0zq+XZVNZKSnDWwMwdKdxojK011xoLbbeu6Hy/JYOtKVmKTjKmxkVlGMbhJsyAsvN9PSeiFPcT4HWz53tjhteeNw9lkJKXhUYGNbxjKdMQRrFhoUz2sry/hFNdYUkMiMZvNeDxGTY5VtcX+RGSMI3bAEhGPx0NdXR3Nzc243XtHDGRZJjQ0lIiICMoryrCYbaSkpPjXGMg+L9mb32LOqmegvQX/AvvLbjrsGEpbG2n1uvnTxs/912no7GypZXllAU8cf/EB62fCLDac3u4jHE6v25/4hZmNn5/T4+72s3R63KSEhB92jMcikYx0qe1o5dY172GWZTJCozkvbXKvpZKPdP4wOSqJJf94lYtuvxY+ecXYwfLCN2Inyv4UxRj1yJra8+0ej5GUbF9nJC2lhcbuoKY62L7e2NK8L1kGW7CxoykmaW+pfdEX6AetqNzJiqqdNHQatXUS7A7OSp3IhMjEXu+z/xTmxb+4g7HXnwWP/A4u/Dn6G0+if/4GxRmjeeTme0gOjuCC9MmMCY8bqNMa1iwmhRMSRvF52Q40XefvW5eyIDGTUVoQnZ1u/rdzDd9VF/mPn584pt9i0TSNpqYmGhoaaGtr8y9oBbDZbISHhxMTE4PFsrd4XmRkJLIsI0mSsePqk1e45F+3EtzavUcMtiCIS+JwjQ2P556pZ3S77r8Fq4m3h3FaclaPC3kzQqPJa67u9rqf21RNRqgxKhttCybMbCOvuZqUEGPNS4fqpbi1npMSRh12jMcikYwA6aHRXD1mNnH2UFo8HXxcso2/bV3CvVPPNGqH7Odo5g+bNdXYvvjLxbDyUzhrtPG9eEM8dBaLkURMmtnz7W63Ubl2+3oozIGSQqgtN0rtV5cbn9L31VNfoNETjZ5Ax3hfoHBrEOelZxMbFAq68Yn6yR3fcNeU00nsmpLcV09TmM/s3MBfQxyYP/4ffPQSumxC1nx4McqS73Y18HDOV9w/7SxRdruPnJkygZ0ttexy1tPpU/m0bDvnW0cQJVtZ3VLkX+B6QvwopkT17QLy9vZ26urqcDqd/pEYMMq+h4WFERMTc9BdFSaTyVgL8tV78OhtUFJAMNIBdcvqwkfw3ts9LJbfR1vHgeV4bYqZJCW823VWk0KwYvVPs7+Q/z3hFjvnpU8GYEFSJn/fupQl5blMjExkXV0JJa5Grhh9HGAs3F2QNJZPy7YRGxRKtC2ED0q2Em4NYnK0WKB/KEQyAt0+5SUHR5AeGs3taz9gfX0px8eP7PsnlGV48hN48EZ4/XE4bQS8tVnsKukrNhtMPd649KTdZTQr3L4Bdm03RlYOuS9QitFxefQEmHCcMRW0z6e64Sa7a5pxj3PTsllRtZOi1oYek5FuU5h5mznnjSc548P/onj3vinJmg9NkmgNc3S778aGMhbZRUv2vmAxKdw0YT6vF65nTe1udHTCZQuSJDHFHMVWrZlTk8ZxRuoEYwTiKKiqSn19PU1NTXR0dPh34siyTHBwMBEREURFRaEcTpXnvM1w8/n+b6X9atj4JBO1USNxtR9a7X+L+fDWhjR2tndLf0aGxfCzzLl8ULKF93dvITYolOuzTvAnLwCnJY/D41N5eeda2lUPoxwx3DRerEs5VCIZ6YFdsRAXFEpd15zq/vps/vCOfxmfwv92M5w1Bv77LYyf3rcnIxzIHgLHnWxcerKnL9D29UayUl4ENfv2BVre/XiT0lVqvytZGTHGGFkZPwPGTRk2pfY1XWNDXSken+ofnt6ffwpzdwFcNAUkCXMP20Q1SaYtuPtoYEVbc3+EfcyymcxcnTmbc9Ky2VS2C6XFSAgnm6P40dg5hAcf2Wispmn+hadtbW1dC08NFosFh8NBTEwMQUFHsQ4lMxuuvw+e/oOxgH3ftgEYyYkrfhQh9h/uuWUxm5gzufdpRYDfTFp40O8BpsWkMi0mtdfHkCSJs9MmcXZaL2vhhIMaHq+Sfczt81LndjGrl0VdfTp/eOWvja2st1wAl8+Ch9+CBef1y3kJhygkzOiuPPuUnm9vbjQKwu3YuDdZqa+C2kpjlGXtsu7H+/sCxRqjXyNGGy+2E44zFvEO8jVDFW3N/HXzl3g1H1aTwi+yTiAx2NHjsf4pzPgUOOca+OCFnh9UAldwaLerXN6etnUKRyvCaidZs9KKkYxIQG1FJY7Row95VMTtdlNXV0dLSwudnXt/TyaTibCwMKKioggPDz/kLb6fryxmx64GwNg8YLOaiI4IYmx6FONHRSHJMlx/L8xcAL+7yKjQuw9Z15h57kJmnnRgVdXD1eLq5Ll3crhicRaxkcfulGygiWQEeLtoI5Mik4i0BdPi6eCjkhxkJGbEjAAGYP7w5HPgldVw9QnG0OTvHoErbx6o0xcOV3gknHCGcelJfU1XX6BNRl2V8iKorza2L5fkw+ol3Y9XLBASCpFdpfZHjDH6F004ztgeHeBkJS4olLumLqJD9bKxvpQX81fzm0kLe01IAGNq6/7njOZ3T913wM2ypuEKCT3wfkKfc7vdtLZ2H+VtbW2lpaWF8PDwHu+jaRoNDQ00NjbS3t7uX3gqSRJBQUH+hafmo+gGnpYUxmlz09E0nXa3l90VTr5eW0pBSSPnnjwaWZaMqdbkkQckI0BX6QBhuBDJCEb55Gfzv6fN20mI2cqosBhum3wqoV3TLgMyfzh+Ony8E36UDX+7Bcp2wR2P9+dpC/0lOs5IMHurq1FTblSvzdsExXlGNdv6auPfoh3w3efdjzdbjdGaqDjjzX1EpjGykj3bmObr52RFkU3GAlZgRGgku10NLKvM9yff++o2hSlJcP29bLKayH7sXmQd0I03NVnXce03TRBitvbreRyr6uvre7y+tLSUsLAw/2iGy+Xy1/zweveuxTCbzYSHhxMdHU1oaN8lkCZZJjjISGZCgy3ERQWTEBPM218WsL2wnoljYuh87Sksm75j/cyrcUamMm/JX5BVD5LZAolpfL+5gl2lzWRnxrJ6ayXuTh8ZyQ5OmTMCq8V4e9N1ndVbq8gpqKPDrRLpsHH8tGTSk4xk+rl3cgB4+aMdACTHhXDR6WN7iFjoTyIZAa4d18tCxy4DNn8YlwxflBgJyetPGJ+oH/844J+MhT4Wlwyn/si49GRPX6DcjUZBuIrd0FBtTAEVbgM+6X68xdpVaj/O6AuUPrZ7X6A+puug7lPlc189TWF+OfU4Gu96lAUP3Ybe2YHUtYZk/5GRpB4WxAo9O9Qt15qmUVdX1+NjeL1edu7cic/nw+12+8vA1+udlPva0CwKizOnkXCwEbA+lpoQRkxEEDtLm5gY3I762N24YkaR8oeHsYbY2XD8fDL+eR0RiXHGrhugubWT/N2NnLtgNB6Pjy+/381Xq0s540SjKePGHTVs2F7DwtkjiI20s62wng+WFXLVOeOJCLNx2ZnjePWTXH506hiiwoOMERlhwIlkZLCxhxgjJD85CVZ+1pWYbBjWOzaE/fxQX6CyXcYC27zNRl+gqlIjWdnTF2j5h93vs6cvUHSCkaz4S+3PMhKjg3iveDPjIxOJtNrp9Kmsrd1NQUsNN02YDxzGFOaiK9EnnIDn2gVYWhqROHDNSF2HE03Xem3YJux1qFuum5qautX22J/LZSQzVquVcsnNspYSLsucyYSurrOP71g+4F1nIx026hrbab/2bBSvG8dDz6MkGl3Pj1s8j+c8bzMjK4Y9H/NUn8bpx6cTGmy8Rs6fmcr7X+3kpBkpBAeZWb+9hhkT4hmbbjzGidOSKatysnFHDQtmjSDIZrwN2qyKf6RGGHgiGRmMZBle/Bbu+LHRYv30EfBOjih7Lhh/GyNGG5ezrjjwdk0zpn5y1hiJSXG+sV25sdZYbJu3CZa9t/d4qasvUOj+fYGmQvYsWr1uXsxfRYungyDFTFJwODdNmE9WRAJw6FOYiXYHryletv7uPu574HfYOjtps3cvKvhdTTEeTeMnmXOQRZfngzrULdfV1dW9Poau60iSRGxsLMnJyfx3zXuckprlrxp9TeZsfrv6XTbXlw1oozcdGL3qVezl+Xxy1p8oyrND3kb/7apPo7l978hcWLDFn4gAJMYEo+vQ2OJGMcm0dXhJjO0+JZgUG0JdU0e/n4tw6EQyMpg9+JKxJuCp++D0NHht3WEt2mp0t+FS9658D1GsvVaVFYYJWTZK4Y/M6vl2VTXWpWxdDQU5UFLQVWq/tse+QD+WJKPSZdg+fYFGZhnVayfOOuQpzHV1Jayo2gkRUfzp1ge470+3cc3uckpnnEZecw05TZX+40aFxTCvH6uCDjf7brlOC46gpqbGX/Njz6iIT9fQJQkFCZPJRExMDPnOWkram7g8buKg6jrrzdvKzCWPUDd6FhVTzuSK0zIPOMZmEbU7hhuRjAx2199rfFq9+2pjyubJz2DWgu7HdLqhrtLoydKl0d3G3es/QtX3DtEqkswD0xeLhORYpig/3Bcof7NRFK6gqy9QdZlRaj+3t75A9q6+QIlG8pzRlaxMmgWhxnqDryry/Hc57YTzMZ2xlTFL3mPMrx5iYfI4NjeU89SOb4xjK/M5MWG0GB35AXu2XAfpMiOUEK4IHkVNQbH/dovF4q94+tuNH3L1mFnIFU0oikJSUhI7pTa2txRjsVhwOluAwHedLS2qZvbbd+KzBNHxwCu0rW9EliUcIb0vbna2eXC1ewixG6MjVXVtSJIx3WO1mAgOMlNZ6yIlfu+0YEWti/ho43XQ1LVGRO+hHo4wcEQyMhSc/WNjy+fPT4WfnwL3/gfO/6lxm9cDN5wBm76DL8v8jchcame3RASM0tsutZNIRDIi9EJRjJ1dvRXf6+w0hsy3rd/bxLCmHJrrYHtFj32BNJudn9lsNIdH0hafzKRT2uGkxfDxy7BqCcw9jclRyYxxxFLQUkttRyslrgbSeymsdqzb02yuqbmJK20ZyEhouk6d101CaDipsQlERET0WPNDlmV8vp4XHw80n6bR1uHttrVXefR3TKktgD++QMq4dBJLPHy4rJATpiUT4bDR1u6lqLyZUakR/mRCMcl8vrKYk6an0On18fXaUsaMiPSv/5gxIZ7vN1cSHmolJtLO9sJ66po6/Atc7TYziklmd0ULIXYLikny78QRBo74iQ8VM+bBe9vhkmlw38+MnTY3/hHu/SmsW2Ec88GL8JNbAxmlMNxZrcYunezZPd/e3g65G4wmhoXboLQQtbqE4MY6IpoakYsKkL7fpyjc3VfDMqOGRFZEAgUttQA0dXaQLsqQAMaOmMbGRhobGw9oNme37a358UT+tzQq7UyJOrAT8p4t13Gy7K+YGuius7srnPz7zS3IkoTVamL87hXMXP8K+olnIi2+EoDzFo5m5cYKvvhuNx2dKsFBZpLiQrotNA0PtTI6NYJ3l+7E7VHJSA5nway904RTxsXS6fGxYn0Z7W6VKIeNc04eRUSYce6yLDH/uBRWb63i+82VJMWKrb2BIJKRoWTEaPhsN1wwEZ59EJa9b8z/7/HGk3D1b8VWYCFw7HaYdoJx6VLhrOcvW74EYE5oLFeFJhpFrL5+H/aZFnB69i4oNB/jf8NtbW3+ZnP71vxQFAWHw0F0dPQBzeYOZct1oinW/3iB7Dp7+vHpnH58+t4rinLhwVvAEYX06Pv+qy1mEyfPTOXkmb2XUQDIHhtL9tjYHm+TJInZkxOZfZCS8BPHxDBxTMxhnYPQt0QyMtSER8JnxXDmyO6JCBi7JtZ81XsZc0EIgMTgcGwmBbdPZX1bA+dnHU/oyKxua5/cPi9ra0sAMEkyI0IO/HQ/nKmqSl1dHc3Nzb02m4uJifFPvbxXvJnx+uFvuR4basehy3xUsnXwdJ3VNPjJPECHZ78aNr2chMMjfutD0eolxoLV/ZlM8OZTIhkRBhWrSWFWbDrLq3bi0Xw8sWMF12TOJi7I+GTf4G7jfzvX+Hd+TY1OOWAh5XCjaRpOp5P6+npcLle3dRxWq9W/8LS3ZnNHuuV6U3EB2XI4G+vLBk/X2d9eZGw9/8W9RmVh4Zgk6UNgCbHT6cThcNDS0nLA0OQxZ/t6uOoE8HYa47L7k2X4soySICsPbv7igJvvnHI6qSGRAxCoIOzV2NnGg5s+p3WfZnipIZGYJIndrY3oXS3ibSaF2yefRrx94Kp+DpSDNZsLDg4mOjoah8NxyM3mjkRpaSl1dXVMnDgRy2AopPjl2/DbC2FMNry9OdDRCP3gUN+/xcjIUHPvT+FgW+10qHzlEZ47/qQeb97RVCWSEWHARVqDuWnCfP61bbm/d02pq7HbMXbFwg1ZJw6bRORQms3FxsaiDOC0xJ7Gdp2dnYFPRprq4fYrjHVDzy8PbCxCwIlkZKi5+9/w2WtGqfjSncZ1JgV8xgp5dA3HG09TO3VyjwtZ39u9BZ+ucWbqxIGLWRAwRkLum3YmK6t38W11IXVuoxR5hNXO8XEjOTFhFGGWnqclhorW1lbq6+t7bTYXExNDSEjIQR6hf+1JQDweT8Bi8LvmJGOE97EPICw80NEIASaSkaEme5Zx4Z9QW2ksWF291Oj02mhsiwxub+NH77zMqqtuJLOromJuczWV7UZhow9LckgKjvCXfRaEgRJstnJaShanpWTh7dr5MZB9T/qax+Ohvr6e5uZmf7M5MBaehoSEEBkZSVRUVL9OvRyOQZOMPHq7sQD/jMtg3tmBjUUYFMSakeFC13nhixcI/+ZzzvjiA8yqivzHF6Frvz7AF2U7eHf3ZsBY0HZrtljoKgiHQ9M0mpubaWhooK2t7YCFpw6Hg9jYWKzW3iuGBpLH4yEnJ4eYmBhSUw++Xbbf5KyDK2ZCVDwsLRelCIY5sWbkGFPf2cbqYBssOpctZ1/GvZ9+CHf+2Og7cu0dIEmcmjyO1bXFVLa3sMtZR027kzi7SO4E4WA6Ojqora3F6XR2G1FQFIXw8HCio6MJDQ0dNKMfB7Nnfcq+U0gDyuOBX5xqNGh8YYVIRAQ/kYwME3UdLv/XE2JHIP3hOUgYAY/fBZ+/Ae9uRZIkJkUl+adr6twukYwIfeKOtR/Q0Nl2wPUnJYzmslEzerzPhrpSPijZSoPbRWxQKOenT2ZiZJL/dl3X+agkh2+rC+nweRkZFs1lo2b4twT3F1VVaWhooKmpifb2dv/UiyRJ2O12IiIiiI6OHtCFp31lT8IUsJLwNy6G1mb47SNGEUdB6DL0/jcJPdq3qZhX8xmfPE5aDE//AUbsraDo3edFSDQiE/rK7ZNPQ2PvjG9lWwuPblvGtOiepwJ2Oet4Nu87zk3PZlJkEmtrd/PUjm+5c8rp/toXX5Tnsqwyn6szZxNtC+bD3Vt5bNvX3DftrD5dZ6Jpmn/hqcvl8pdLh+7N5ux2e589ZyBJktTtHAfMu8/Bqi8hew78+OaBf35hUBPJyDCRYHcgS0bDrI31pfwoeTzmWy+GkePhoTcAI0nZUF8KgIRE4jDZQikEXuh+Rco+L9tBjC2EMY6eS3R/VZHP+MgETkvOAuCctGxym6tZXlnA5aOPQ9d1vqrI44zUCf6F1tdkzua3q99lc33ZUbe093g81NbW0tLSgtu9d6u8LMuEhoYSFRXVa7O5oU6SpIEfGakphwd+AUHB8O8lA/vcwpAgkpFhIsxiY3JUMhvry3B63ZTduIj00kKkf34AZjOdPpVXCtfS3NX/IzsqiXDr8PikJwwuquZjTe1uFiaNRepl9K2otZ6FSd2bkWVFJLCloRyAencbTq+bcV27wQCCFAvpodEUtdYfdjLSW7M5SZKw2Wz+bbcBr70xAGRZ7tZsb0BcfaJRfuDxJUb/IkHYj0hGhpFFKePZ2lBB4u5C0tesoDohmU8SopDyviensYIOn7FoTZFkFqWMD3C0wnC1snoX7aqHEaER/sJmIYqVSFuw/xinx02YuftoSpjZRktXQT+n10ia9y8LH2bZe8wP6a3ZnNlsxuFwEBMTQ2josdca2GQyDewC1geuh4piuOh6o/u4IPRAJCPDSGpIJNeNO57UO/4PXZJ47Prf0lhX0u0YRZL56di5pIUeW43IhIHR6G7j9V3r0YHHti33X69IMg9MX9wtIelre5rNNTU1HVDzo6dmc8cqk8k0cHVG1i6Dt56GpAy468mBeU5hSBLJyDCT/foz0NxE7qILaY2Jh30KS02PGcEpSWO7NccShL5U0d5MT4WLVF3DpXYSiZGMhFls/rLwmqZRXV1Nm7sDR9dISJjZqMTq9Lhx7FOV1elxkxIS7r/fDzWbi42NxWYb3k33DpfJZGJAyku1t8ONZxsVol9c0f/PJwxpIhkZThpq4dkHITyKcX9+nb/rPhrcxnbLKGswNsUc4ACF4W7Pmo8fkhEaTV5zNfPiRlFYWEhbWxudUgcZodEARNuCCTPbyGuuJiUkAoAO1UtFayMzrbFs27btgGZzDoeDqKiofm82N9Tt6U+jaVr//px+fgp0tMH9z0OcqPYsHJxIRoaT/2/vvsOjKrMHjn+nZGYS0pn0QgoQCFVAEBBRQUFsWHZRXESsu5ZdxbJ2LKuo67rsKoq6tt+qi2XXjqCgiCKK0iEFQkghIb2XybT7++MmEwYSSCCZSTmf58ljcuedmzPXkDl57/uec9sF4HDAs++DVosJrcyCCI9xKgrbywvaffzbwkwWDp0MwIyYFF7atZ6tu3eic6h/pQc7dEyKHgqoC0tnxAzjy7zdBNo06BtsVDfWMd+UhLbehtWLzeZ6u5ZrZbVau2/W6P+egx0/wpRZMHdR93wP0afIv+C+Ys37sPsXOO0cmHi2t6MR/dBnuTuptbW/uDS7pgxFUdBoNET7+HOlXzJOu1OtiQMEaQ2E+fhRW1tLaWkpUbU25hkS0FfU06Q4aFQchAWHkhgV49Vmc71dy46hpqam7klGcvfBc3dDQDD889OuP7/okyQZ6Qvsdnj4WvAxwrL/eTsa0Q/tKD/Il/lpbscMWj1WZ2txraLGWj7O3cE55sHs27cPnMpRhfd27drl+lyr1RISGERoaCihoaFy66WLtNym6ZYdNU4nLDoDFAVe+Rr6wVZp0TUkGelF2iu5fd3a1UxsrIf7l4Of+1+MPbXktug7HE4n72T9gtK8dHWcOY6LBo0myi+IGquFbwozWZ2/BwVIL8wjvrz9gltarZawsDDCwsJ6bLO53q7lunbLjpr7fgdlRXD9fTBiQtefX/RZkoz0Im2V3H594/8Y/8m7MGgoXHGz2/ieVHJb9F3byw9S3VxMb3hwJDcMO9014xFoMDE3YQw+ClhKqhikG4CCgob2WxHExMS0WyxNnLyWZKTLZ0a++QS+/I9a9fmPT3btuUWfJ/OevUiAwUSQwdf1sbOigAXvvYlWccKLq44af3jJ7Si/IC5OGEO8fwjrC/cCHFVyO3ZACItSJlPV1Mj2snxPvzzRS+2pLHR9fk7sMLQaDYqiUFRURH5+PmlpaURW2EnQ+6PRaI6ZiDidThoaGjwRdr/VsoC1S/vT1FTBPVeot4rf2NB15xX9xgklI8uXLychIQGTycSkSZPYvHlzh563cuVKNBoNc+fOPZFvKw5jdzqoWvsBo3f8guayGyEu+agx2bVlDDusnDaoJbeza8uA45fcFqIjGu2tf2FH+ar9jurr6ykoKKC0tBSTyURCQgKfOgr4T2M2P9hLiYyMJCAgAJ3u6Nm36upqj8Xen3VpMnLtdLBa4Kl3IDi0684r+o1O36Z57733WLx4MStWrGDSpEksW7aMWbNmkZmZSXh4202xAHJycrjrrruYNm3aSQUsVDsP7OGyla9jCx6ITzuVDT1RclsIf5/WtR05dRWEmgbg7+9PXFwcBQUFNDY24m8OpbipDgWo0juIiVHXLSmKgs1mo6GhwfXh6+vbzncSXaVLO/cufxj27oRzLodzLuuac4p+p9MzI8899xw33HADixYtIjU1lRUrVuDn58frr7/e7nMcDgdXXXUVjz76KElJSScVsFA5/vFnQior8Fn6DsguA+FFYwa2FrRak78He3PV3/DwcIYOHYrFYiF3XxZmrZq0jD1svEajwWAwEBwcTHR0NIMHDyYkJMSzL6Af6rLOvRnb4ZW/QGg4/PW9kz+f6Lc69S5mtVrZsmULM2fObD2BVsvMmTPZtGlTu8977LHHCA8P57rrruvQ92lqaqKmpsbtQ7Sq+vpDxm34mpLJZ8PUWe2OO7zkdosam6XNkttuY6ytY4Q4ntSQKMJ91YZzOXUV/G3nOnZVFFBvs1LqtLDfaAUFLjYOIkkXwLSowV6OWOh0upPv3Gu3ww0z1Doxr6+XP4rESenUbZqysjIcDgcRERFuxyMiIsjIyGjzOT/88AOvvfYa27dv7/D3Wbp0KY8++mhnQus/7Hacz/yJ8lAz4c+8f8yhLSW3D2/Vnl5ZdNyS2wdqy5gubxiig7QaDYuGTua5XeuwOR1k15bxwh73XiShGgNzTYOYYYzGVlUHEd3XME8cn1arPfmZkT/NheoKuP1pSBreJXGJ/qtbU9na2loWLFjAq6++itls7vDz7rvvPqqrq10f+fmys6OFc8l1hBYXkrHgVnQBwW6PvZH5Ix8d2O76ekZMCnsqD/H1wXSKGqr5LHcnuXUVnHlEye1V+bvZUX6Qgvoq3ti7iWCjL2PNcR58VaK3Swo0c/vIsxlobDvJqNc6sUUGodfpOHjwIAcPdqyHjegeJz0z8tm/4fsvYOREuPaergtM9Fudmhkxm83odDqKi4vdjhcXFxMZGXnU+P3795OTk8OFF17oOtbyD0Cv15OZmUly8tG7QIxGoxQ8akvWHpRV7/DjpGmkzPvjUQ9XNDW4bZtMDgzj+pSpfJK7g49zdhDuG8AfUqe59auZFTscq8PO2/s202C3MjgojD+OOEtqjIhOGxwUxuOnXsiu8gK2lOVTZ7Ng1PkwPCSSSWEJmPQ+2CPtpKWlUVxcjNVqlTVkXnJSvXzKimDJdWDyg3+t67qgRL+mUTrZS3rSpElMnDiR559/HlCTi/j4eG699Vbuvfdet7EWi4WsrCy3Yw8++CC1tbX84x//YOjQoa4+CcdSU1NDUFAQ1dXVBAb248qg5yVBYQ58nA6JKd6ORogT4nQ6ycjIUHfZ+PszZMgQKfXuYQcOHKCiooJTTjml89f+gqGQtw9e/gomn9M9AYo+o6Pv351OjxcvXszChQuZMGECEydOZNmyZdTX17NokdqZ8eqrryYmJoalS5diMpkYOXKk2/ODg4MBjjoujuONv0LBAbUDpiQiohfTarUMGzaM/fv3U1NTQ1paGqmpqZKQeFBLf5qmpqbObaV+6k9qInLJdZKIiC7V6WRk3rx5lJaW8vDDD1NUVMTYsWNZvXq1a1FrXl6e/FLpajVV8PwD4B8Ej/zL29EIcdK0Wi1DhgwhJyeH8vJydu3axYgRI07u9oHosJZkxGq1djwZ2foDvPtPiIyHJa90Y3SiP+r0bRpv6Pe3aa6ZDls3wPOfwfQLvB2N6OdW5+/ho5wdnB2dwrzk8e2O62iTxn1FB5mqD6NOsTNsyBBigzu+2F2cmMrKSrKzs4mPjycsLOz4T7BY4KxwsDTCqv0QFd/9QYo+oaPv3zKF0dN9v0pNRE45XRIR4XU5teVsOJRF7GGLoNvS0qRxamQSD447j7EDY3kp7XsK6qtcY1qaNM4YMpqgyDAGaHTs3bePKqkr1O063bn397Ogvhbuf0ESEdEtJBnpyZxO+PN80OvhH594OxrRz1kcNl7L/JEFQybhpz/2wvPONmkcHptAUlIyWjRk7s2ksrLSEy+p32rZONChkvD/eUH9g2ji2fCbm7o5MtFfSTLSkz12E9RVwy2PS/Mp4XX/yfqVUSHRDA85ehv/kU6kSWNE6EB26Gtpwkl2dvZRJQRE12lZm2Oz2Y498OABePp28A+EF7/s/sBEvyXJSE91IBM+eg2iB8F19x5/vBDd6JeSHPLqKrgkcWyHxp9ok0Zfky97fa3opDiaRxxzZsTphGumqf99aTV0oAyDECdKkpGe6rYLQQGe/9zbkYh+rqKpnveyt3LdsCkeKYbn1GoYOXIkPj4+FBcXk52d3e3fsz86brO8h6+FkgJYcAeMmey5wES/JPvoeqJ3/qHu5T//Khgi9ViEd+XVVlBrs/DE1tWuY04U9lWXsL5wL8tPn4dW4/53TWeaNAYZWreW1lgtxPkHo9frGTlyJBkZGVRWVpKRkcHQoUOlbEAXOmZ/mu9XwadvQUIK3P03zwYm+iVJRnqauhp47h4YEACPv+ntaIRgWHAkD4+b43bsrb0/EekXyKzY1KMSEeiaJo1SHK17abXatvvT1NXA4svBxwBvbPB8YKJfkn/VPc0dl4LNCo+9oe6iEcLLTHofYgYEu30YdXoG6I2uPkfd1aSxpTia2WymqamJXbt2dWwHiDiudpvlXX82NDWqfwwNDPd4XKJ/kne7nmTTWvh5HYyaBOdc5u1ohOiw7m7SOGjQIHx8fDh06BC7du1i+PDhmEymo8aJjtPpdBxV8/Llv0DaFjjrYphzpXcCE/2SVGDtKZxOmB6mTpF+cwhCpAqlEEcqKysjNzcXjUbDkCFDCAgI8HZIvVZWVhbV1dWMH99cRXffbrh8NAQNVH8Hycys6AJSgbW3efI2qK6Amx6SRESIdpjNZgYPHoyiKOzdu1eKo52Ellojdrsd7Ha47iz1gde+lUREeJwkIz3BwQPwwUsQEQu/f9jb0QjRowUFBTF8+HA0Go0URzsJhzfL487fQFUZ3PyY7OATXiHJSE9wyxxQFCn5LkQH+fn5MXLkSFdxtPz8fG+H1Ou4kpENX8K3H8PwcXDTg94NSvRbkox42/sr4EAGnPsbSB3n7WiE6DUMBoOrOFpJSYkUR+uklmZ5mn//DYy+6u0ZIbxEkhFvamiAZ24H3wHw5NvejkaIXqelOJqvr6+rOFqb21XFUVqa5TkNJnjuQ7X/jBBeIsmIN915GVib4JF/Sd8HIU5QS3G0wMBA6uvrSUtLk4SkA4wvLQGgftqFMG3OcUYL0b0kGfGWXzfAxtWQOh7Ou8Lb0QjRq0lxtE7a+TPaN59F09RI47QLvB2NEJKMeIXTqc6KaHXwgjTCE6KrDBo0iKioKOx2O7t27cJisRz/Sf2N1Qq/nwVaLRiMx26WJ4SHSDLiDc/eCZVlcO2fwRzp7WiE6FOio6MZNGgQTqeTtLQ0amtrvR1Sz3LLHKirhj8vQ6PTywyS6BEkGfG0Q3nwzj/BHAV/fMLb0QjRJx1ZHK2iosLbIfUMH76itpwYNw2uvBWNRiPra0SPIMmIp916AShOWPaRtyMRok87vDjagQMHpDjaoTx44hbwC4AVXwHH6NwrhIdJMuJJH78B+3bBWXNh9CRvRyNEnyfF0Zo5nXDNNHDY4cVV0NxksN3OvUJ4mCQjnmKxqH+VGH3h6f94Oxoh+o0ji6Pt37/f2yF53mM3qTMjV94G4053Hdbr9Ud37hXCCyQZ8ZR75kFTIzy0wvVXiRDCMw4vjlZVVdW/iqNtWgv/+xfEDYb7/un2kE6n81JQQriTZMQTdmyC9Z/C0NFw0dXejkaIfkmr1TJ8+HCCgoL6T3G0hjr408Wg94E3Nxz1cEt/GtlRI7xNkpGu9t3nsOOn1q+dTrj9EnVP//IvvBeXEAKNRsPgwYPdiqPZbDZvh9V9rp8Blga1ynNY1FEPtyQjTU1Nno5MCDeSjHS1+34HCybDozdCTSX84z4oL4YFiyEi1tvRCSFQi6NFR0djt9vZvXt33yyO9vozsHuzWuq9nRlZSUZET6FResHqpZqaGoKCgqiuriYwsAc3c7I2wYTm9SBaHQwIUIsLBZvh2yJ1dkQI0WOUlZWRm5uLRqNhyJAhBAQEeDukrpGdDpeOhIBg+LYY9Po2h1VXV5OVlUVsbCwRERGejVH0Cx19/5Z3x65UUdL6udMBtVWgKBAZBwelvbkQPU2fLI7mdMJ1Z6m/e15d124iAmA0GgGwWq2eik6INkky0pXKito+vncHzE2FV/4CNvlHL0RP0ueKo91zhXpr+IYHYdjYYw41NHcLlwWswtskGelK7SUjDgfYbfDCQ/DeS56NSQhxXH2mONrX/4WvPoAho+DWx447XNt861iSEeFtkox0pfaSEW3zXv6Lr5GtvUL0UC3F0QwGQ+8sjlZVAfdeBQYjvHH0Nt72aDQaSUaE17V/M1EcV4WlnhJLDfU2Gz5aHfGF2QTpdGjcWnJrIH4wLHkVxk/zWqxCiOPT6/WMGDGCjIwMV3G0oUOHumYQerRrp4OtCZZ9DIHBHX6aRqPB4fY7SwjPk2TkBCiKwg9FWbyT9QuHb0W6cu+vTG/5R63VqYWGbnkMfnc7NG+hE0L0bFqtltTUVLKysqiuriYtLY3U1NSenZD8837I2g2zr4CzL+7UU6VZnugJevC/rp7JqSi8nbWZt49IRABSMvegaf7cdvps+CwTFt0tiYgQvdCRxdF67I6TPb/Ca0+BORKeeqfTT9dqtTIzIrxOkpFO+jxvFz8Utd5LDjH4MiokmiS9L+ElxTg1GpbfeAfPXn8bjkgpciZEb3Z4cbQ9e/b0vOJoVivceA5oNPDa+hOqZaTT6aRZnvA6uU3TCQ12K18dTAdAg4arh07itPBEtBoN/O1unDo9f3voWbLMA6G2nF3lBYw1x3k5aiHEyYiKisJgMJCTk0NaWlrPKo72x4vUekZ3/Q0SU07oFJKMiJ5AZkY64eeSA9ic6nTmGVGDmRKRpCYimTvg7b+j/cMSZk+/1DV+Q1GWt0IVQnShgQMHMmTIkJ5VHO3jN+DHNTBmMly9+IRPo28uiibrRoQ3STLSCfl1la7PTwtPVD+x2eCmcyFqEFxzFyNCovHXq1UN8w4bL4To3QIDA3tOcbSSQnjsRvAdAC+vPalTSede0RNIMtIJjsOmMo265jtc+3ap/WcO5cGrT6K12zDo1LoiTkX+0hCiLzmyOFpeXp53ArlmGtjt8Pyn4Od3UqdqmRmRZnnCmyQZ6QSzyd/1+Y7yAvWT1HHwQyVcfx+8/BjOyUEM+W4NAGGHjRdC9A2HF0crLS31fHG0v9yi9rr6zU0w8eyTPl1LSXibzXbS5xLiREky0gmTIxJdW3e/LkijsL5K/cLkC7c8hvXZ93CgsOjfK/jzX5dwhu9Ab4UqhOhGLcXR/Pz8XMXRPLLm4pf18P6LEJ0AD63oklNKszzRE0gy0glmkz/jzPEANNhtPLFtNW/u/Ykfivbzcc4OHgzUc/vTL5I2fBSJOVlMmT9VetEI0UdptVqGDx9OUFAQ9fX1pKWldW9C0tAAt14AOj289X2XnVaSEdETaJResKerpqaGoKAgqqurCQwM9GosjXYrz+36hry69lfT++p8uLfGRuQjN0FDHQwdAy+vgYERHoxUCOEpeXl5lJaWotfrGT58uOvWx/FUWOqps7uv1fDXGwk1DTh68NWnw/aNsORfcNl1XRE2oO6i2bZtGyEhISQlJXXZeYWAjr9/S52RTvLVG7hz9Aw+zd3JxqJsLI7W+6waNIweGMMlCWOI9AuCsy+Hu+fBtx/DzFj445NqRVYhRJ8SHx+Pj48PhYWF7Nmzh2HDhuHr6+s2xmazoSiKK1GpsNTz0K+fYT9iobteo+XxCRe6JyT/XqYmIqed06WJCEjnXtEzyMzISbA4bKRXFlFjs2DU6RkaGN72XzSbv4E7LlOLEyWkwMtfQVS8x+MVQnSv8vJycnJy0Gg0bsXRmpqayMjIQK/Xk5qaikajIa+ugie2rW7zPA+cMpt4/1D1i/z9cOFQGBAI3xZDB2ddOmPr1q2YTCZSU1O7/Nyif+vo+7esGTkJJp0Pp5jjmB41hNPCE9tOREBd8f5dKcyZDzmZcF4ivPiIR2MVQnS/toqj2Ww29u7di91ux2Kx0NDQ0PETOp3qNl5FgRVfdUsiAmrnXil6JrxJkhFP0evVJlZvb4KgUFjxKJyXBLn7vB2ZEKILBQYGurr8HjhwgPT0dLfFoaWlpR0/2f0LoPQQLLoHRp3aDdGqpFme8DZJRjxt9GnqVOulN0BBDlyUAn+909tRCSG6kK+vr+uWx5H1OyoqKjr2xr/+U1j1LiSlwu1PdUeYLjqdTmZGhFfJAtYj7K0u4auDaeTVVVJtbeQPw6cdt9ldZlUxH2Rv5VBDNSFGP+bEj2RKhPuq9G8L9/L1wXSqrY3E+odwxZ1PknjlLXDzefDv52DNe/DiKhg6ujtfnhDCAxRFobCwsN3HKisrwXSMvwVrq+CueeBjhDe+654gD6PVaqVZnvAqmRk5gtVhJ3ZACFcmT+jQ+DJLHS/sWU9KcAQPjjuPGTEp/Hvvz+ypbP1F9EtpLh9mb+X8+JE8cMp5xA4I5p+7v6UmMQW+PggL7oDSQvjNWHj89+p9YiFEr1VQUHDMZnrHu1UTcevFYLXA0rchxNzV4R1Fr9dLMiK8SpKRI4wMjWZuwhhOOc5sSIvvDu3DbPLnN0njiPIL4qzoFMaZ41hbkOkas7Ygg9Mjk5kamUz0gCCuGjwRg1bPj8X7QauFu5+Dj9PVHTYfvAxnRcKuzd31EoUQ3aipqem4TfQaGhr4+WDbXb0v+OK/GPfthpmXwbmXd0eIR5HOvcLbJBk5Sdk1ZQwLjnQ7lhoSRXZNGQB2p4O82gqGHzZGq9EwLDjSNQaAxBRYnQM3PAjV5XDVJLjvdzJLIkQvYzQaGTx4MGFhYe0WP1NQaKqqPep4TH4O53/5EbUBgRx89OXuDtWlJRmRWiPCWyQZOUk1NguBBpPbsUCDCYvDhtVhp87WhBOFgDbGVNssR5/wtsfhi2wYNBS+eAfOMKv9KIQQvUZQUBDx8fGMGjWKkSNHEh8fT1BQkKvAmAYNw/RB+KEjJSiCmTHDmBAczeLnlwLw1z89yAvp39Pk8Exy0JI0Sede4S2SjPREMYPgs0z401Kor4HrzoLbLwXpHSFEr2M0GgkLC2Pw4MEMGj6UTy15ZNtrUYDfBQzllpTT+U3SOG748G386+v47rKFFEfFUNnUwC+lOR6JUZIR4W2SjJykQB8TNVb3GY4aqwWTzgeDTo+/jxEtGmrbGBPk4z5bcpTr7lUXuA4ZBd98BNPN8P2qrn4JQoiusncXnB6q9pF54SH4aS001Lse/qkkhyJnI2uthZSE+mDU+5CRkUH9ri3w6Vsw5yoS73jWNf6Hov0eCbslGZFmecJbTigZWb58OQkJCZhMJiZNmsTmze0vtnz11VeZNm0aISEhhISEMHPmzGOO722SAs1kVBW5HUuvKiIpUF0Br9fqiA8IJb2qdUGbU1HIOGzMMZkj4b874b7nockCt5wPfzgPLG3c4hFCeJfBCDWVah+Z156CG8+BKUFw5amw7F58Nq7G1KhWYB1jCiSlMh+fihIyGh0ULLgH5bHXSAgYSIjBD4CSxqPXlXRL2M3JiKwZEd7S6Toj7733HosXL2bFihVMmjSJZcuWMWvWLDIzMwkPDz9q/Pr167nyyiuZMmUKJpOJp59+mnPPPZc9e/YQExPTJS+iK1kcNkob61xflzXVk19XyQC9gVDTAD46sJ0qawOLUqYAMD1qCOsL9/LfA9uYGpFERlUxW0rzuHXkdNc5ZsYM483MTSQEhJIQMJB1BZlYnfajapEc05W3wnnz4ebZsHE1nDEQ/vKWx1bbCyE6YNAQ8A+CumpoWe/hdMCeXyF9G+c4HcwEnBoNuuattMnxKWTevoyi6ZdSdyCH6OhoV/M8DRqPhN2ygPXIAm1CeEqnG+VNmjSJU089lRdeeAFQt4LFxcVx2223ce+99x73+Q6Hg5CQEF544QWuvvrqDn1PTzbKy6wq5rld6446Pjk8kWtSJvNm5ibKm+q5c/RMt+e0FD0LNvpxfptFzzL56mA6NVaLWvQsaTyJHZkZacsnb8FjN4GtCcafAcu/AD//EzuXEKJr3XoBfP8lKO3vhGs0mth5/V1MOm8hxCWDRkN1dTXZ2dk4nU7y7XV8ZS1gcFAEi0fP8EjYW7Zswd/fn5SUFI98P9E/dPT9u1PJiNVqxc/Pjw8//JC5c+e6ji9cuJCqqio++eST456jtraW8PBwPvjgAy644II2xzQ1NbktpKqpqSEuLq7Hde31qroauPVC2LpBnRp+6GW4eKG3oxKif8rYru5+++Vbdd2Ivf21F9+cNZsPLpkPej03DDudUwbGotGoMyCFtZXsycwgBB8cKGhDAzg1aZhHXoJ07hXdoaPJSKdu05SVleFwOIiIiHA7HhERQUZGRofO8ec//5no6GhmzpzZ7pilS5fy6KOPdia0/sc/EN78Dta8Dw9do368txxeXA3Bod6OToi+y2qFbz+Gtf+DXT9D8cHWWzI6HQSbofyIomdaLWi08NAKKsaOw1mQDorCy+nfE+8fQnJgGOWWenZXFOJEIUkbwJmmSLSV9ezZs4fBgwdjNBq79WVpNBpplie8xqO9aZ566ilWrlzJ+vXrMZna30ly3333sXjxYtfXLTMjog2zfgvTL4Lb58KPa+DsSLhnGVxxs7cjE6JvKD4In/0bNq6BrF1QfViZd98B6m63U8+EOfNhxASwNMLkQPcExT8I/vkpnDKVSxQnVdYGfinNBSCvrpK8ukq3b1lnhOThw6g+VEJVVRW7d+8mLCyM2NhYV62SribN8oQ3dSoZMZvN6HS6o0odFxcXExkZ2c6zVM8++yxPPfUUa9euZfToYzeDMxqN3f5XQJ9iMsGK1eq237vnwZO3wIcvw4o16m4cIUTHOJ2wZQOsfk+9BZqfrfaIAdBoICQMJp8LZ1wAc65su2+MyRdSxkDaFnVGJHG4uq4rKh4AnUbLtSlTGBESxTeFe8mra01uAn1MTIsczIyYYQzwMWBODqC+vp79+/dTWlpKRUUFycnJBAQEdPlL12q1soBVeE2nkhGDwcD48eNZt26da82I0+lk3bp13Hrrre0+75lnnuGJJ55gzZo1TJjQsQZ04gRMmwMbyuGeK9S6JOfEwW1PwLX3eDsyIXqmuhq1Y/b6z9TkoayodeGpjwGiB8HYqXDub2DqbDW56IjxZ6jnO2suPPF/4DfA7WGtRsPkiCROC0+kzFJPja0Rk86HSN9AdEd8jwEDBjB69GgKCgooKipi7969BAYGkpyc3KWzJDqdTuqMCK/p9G6a9957j4ULF/Lyyy8zceJEli1bxvvvv09GRgYRERFcffXVxMTEsHSpWtb46aef5uGHH+bdd99l6tSprvP4+/vj79+xHSCe3E3TZ/yyHm6/RG1FnpACL3/l+stMiH5rfxp88Tb8tA4OZKgVjlv4B0FyKpw2Ey5YoG7TPVGlh2Dzt+rsiabrtudarVaysrJobGxEo9EQFxdHWFhYl5x737591NTUMH78+C45nxDQTQtYAebNm0dpaSkPP/wwRUVFjB07ltWrV7sWtebl5bll6y+99BJWq5XLL3evh7FkyRIeeeSRzn570VGnngnfl8MDV6ur/M9LhBsegFse83ZkQniG3Q4bvoC1H8KOTXAoD+zNtyG0WgiLhkkz4KyL4ZzfgJ9f133vsCg4f37Xna+ZwWAgNTWV8vJy8vLyyMvLo6SkhCFDhrTblK+jDu/c213rUoRoT6dnRrxBZkZO0s6f4bYLobIUohPgpdVql2Ah+pLyYvj8bfjhS9i7EyrLgOZfb0ZfiB8M46ersxWjT+v4LZceyul0cuDAAaqqqgAIDw8nJibmhBOJ/Px8SkpKGDFixDE3GAjRGd02MyJ6odGT4Nsi+MvN8OErMHc4/O52uPPZXv8LWfRjO36CVe/Clu8gLwssDa2PBZth4llw+hy44CqPLeS+f/MnlDfVH3V8etQQ5g8+tc3nbCnN45PcnZRb6gj3DeDSxLGMCm2tTq0oCp/l7uL7oiwaHTaSA83MH3wqEb7qupG6ujqys7MpKSmhoqKCpKSkdhe4NjQ0YDKZ2kxYDm+WJ8mI8DSZGelv9u5Ue9uUFqpTyS+thqHH3t0khNc1NKi3W779WC2tXlKollkH0PtAZDyMOQ1mXgbTLwS9d/7OqrVacNL6K7Wwvpplu79h8agZpARHHDV+f00pz+5Yy9zEMYwOjWFzSQ5rDqbzwCmziRkQDMDq/DRW5+/hmpTJmE0D+DRnJwUNVTwy/gJ8tDrXuVoWuAJtLnCtr68nIyOD0NBQEhMTj4olv/gQJQcL8Y8YiG+w+nvWX28k1DTgqLFCdJTMjIi2DR0N6wrgr3fC23+Hy8fCZdfDQytklkT0HPn71doem76G7D1QW9362IAASB2nrvc4/3cweIT34jxCgMF9RmF1fhphJn+GBh3dtwtgXUEmI0KjmBWrVj29OGEM6VVFrC/cy1VDJqIoCusKMpgTP5KxA2MBWJQymbt++h/by/I5NTzBda6YmBjCwsLIysqipqaG7du3Ex8fj9lsRlEUcnPVuiYVFRWYzWa32ZMKSz2v7tvExb6DWJ+fydYD5QDoNVoen3ChJCSi20ky0l/d/Tf47e/h97Pgv6+qW4Gf/0y9ly6EJzmdakGxrz+AbRuhMAdszVtMNVowR8C4aeqMx+wr1OrDvYDd6eDnkhxmxgxzlXs/UnZtGTNj3Mu9p4ZEsaP8IEDztl8Lw4NbbzP56g0kBpjJri1zS0agdYFrWVkZeXl55ObmUlxcTEhICI2Nja5xubm5pKamumZO6uxNVCrqNffTtL4t2BUndfYmQpFkRHQvSUb6s0FD4MtsWP4wvPoE/G6yWkXyL295bZpb9ANVFbDqHXWnS+Z2qCiBlrvFBhPEDVaTj9nzYML0Xjtjt738II12K1Mijr4l0qLGaiHQx302JdDHRHVzobUam5pABB4x4xJoaB3TFrPZTGhoKNnZ2VRXV3Po0CG3x5uamigpKXErVmnFiaIo+Gp65/UWvZu84wh1u+8l16mzJKveVSu5/v2/MPFsb0cm+oL0beoul1/XQ04mNB62wDMoVE08ps6G86/qU7VwNhbtZ0RoFMHGLtwy3AlarZbk5GQyMzOprz96UW1hYSGhoaEYDAYszVueFcCokbcF4XnyUydU0YPg0wx4/Rl4/gG4foZaPfKv78FJ1i8Q/UhTk7rIdF1LE7mCw3q06CEiVi2lPuMSOPuSPvuzVW6pJ72qmN+nTjvmuECDiRqb+wxHjc1CUPNMSKCPr3rMaiHI4Ns6xmohzj/4uHFUVVW1mYiAuksnLy+PAyYbn+TsBMCJggn3mZHKpgbi/aX5puhekowId9feAxddDb+frb6pnDEQnv4PTL/A25GJnuhQnjrrsXENZO2GmiOayA0dDaeepd7+Sx3nvTg97Mfi/QT4GBkVGn3McUkBZjKqitzWjaRXFpEUoPa8MZsGEOhjIqOqiDj/EAAa7TYO1JYxPWrwMc/tcDjIy8s75pjq6mp+Lj6ITVF3JjlQ8NHo3Mb8e9/PxA4IYaAsYhXdSJIRcTRzJHy4HVa+CM/crhZMm3wu/P2jrq1SKXoXp1O91bL6fdj6PRw8oolcaLh6u+WM8+G8+RDcP/+adioKPxZnMzkiCd0R6y/eyPyRYIMflySOBWBGTArP7lzL1wfTGRUazS+lueTWVfC7IRMB0Gg0zIgZxqr83YT7BmA2+fNJ7k6Cjb6MNR+7k3lDQwN2u93tmEaj4fBqDoqicK4xhncb9zPCHIPBoscInB83ko3F+6myNlJra+LdrF+4beSZJ31thGiPJCOifVfcrO5euPk82PQVTDfD42+oCwtF31dXA1+uhO8+g/QtUFbs3kQuJhFOmaqWUp9ybq9daNrVMqqKqGhqYGpE0lGPVTQ1oKF1Z01yYBjXp0zlk9wdfJyzg3DfAP6QOs1VYwRgVuxwrA47b+/bTIPdyuCgMP444iy3GiNtCQgIYNSoUVitVmw221EfxbVVGBTQomG+32CGRCZRUVFBY2MjFyWM5OyYoTy+9UuqrI3sriykpLGWcN+u7xYsBEjRM9FRn7wFj98E1iZ1weELn7e/xdLplDem3ihrj3rLZXNLE7na1scCgtUmcpPPhQsXQOzRb7Si91AUhT/9+AFNTjtmnS8Lw0ZQW1OL0WjE6XQyerRaCHF1/h4+ytkBwKWJY131UIToKCl6JrrWxQvhnMvg1gvg1+9gejg8+CJccq37uIztcMNMePL/YNocr4QqOsBuV2c81v5XLatedHgTOR2ER8Np56hN5GZeLrfn+hib00GTU72FEzIggCGDh1BVVUVOTg5OpxOHw4FOpyOxee0KQJ2tyVvhin5AkhHRcX7+8Pp6+OpDeHAhLLkO3n8JXlqjrg+w2eD+BVBdrvbB+SwTDEZvRy0Ayorcm8hVlbU+ZvKDpOEw4Ux1oenoSV4LU3iGXqtDq9HgVBRKLbUoKISEhGA0GqmqqkKnU28BlTS2zo6ZdPJ2IbqP/HSJzjv3cnV75h2XwsYv4exIuPs5dY3B/j3qmKI8+Pff4bp7vRtrf+R0wo5N6nqPliZyTS3VNzUQYobTZqhN5M6/CgYe3TNF9G1ajYbhwZHsqTxElbWRLWX5nBo2CD8/P/yaZ8EcTifrD+11PWd4cJS3whX9gKwZESfn+y/hnnnu6wtaGE3wxX51yl90n4YG+Op9WP+J2kSutFBNSEBtIhc1CMZMhnMuV2+dSXVdAewoP8iLaRsAMGr1XJ50CqeFJ2LQ6Smor+J/B7axu1Kt3BrvH8L9Y2e3W9ZeiPZ09P1bkhFx8hobYWY01Fa5H9fp1N04S992HcqpLaewvhqtRkOocQBm0wBpwtVZufvg83/DT2thfxrUHd5ELlC95TJpBlzwO/VzIdqgKAor0r9ne3MfHFAb4/nqDdQeVohNr9GyePQMkgPDvBGm6OVkAavwnA9eOjoRAXA44It34IpbyRyUyOd5u9hbXeI2RIOGO0ad3WZ7dUFzE7nV8NUHsH0jFOYe0UQuUu3fMv0imP1btaOtEB2g0Wi4fthU3szcxK9lanE0u+J0S0T89AZuHHa6JCKi28nMiDg5eVlwyUhob6W9RkNN0jDuuf1+lHa2+xq0Om4ZMZ1hh3Um7bcqy9T+QC1N5CpLW5vIGU0Qmwzjp8HsK2Hc6bKFWpw0RVHIqS3nu0P72F9Tis3pJNjoy6TwBE4LT8RX3zdL9gvPkJkR4Rnv/lNNRHQ6tQrnERUfURQC96dz7tefsWbWxQQZTCQHhmFzOMisLsHqtGN1OngxbQMPnXIeYf2tqNKeX9Xk45dv1dsvbk3kBsL4M9Sqphf8Tu3rIkQX02g0JAaaSQw0H3+wEN1EkhFxcm58CEZOVHuUFOWptxEOZkPxQbA0uIZd8un7xA4bz4T5d6JtrhzZaLfxWuZGdlUU0uSws7YggysHn+qtV9L9LBb45iO1idzuX6DkoHorC9QmcpFxMGoSzLwUzry4zzaRE0KII8ltGtFtcg8d4M3v3mNwViZnbd5IdM4+OHsuPPAihKnbBOttVu7d/BFWpwOTTs+zp1123DLXvUZBrrrQdNNXzU3kKlsf8/OHhBS1idz5V8GwsV4LUwghuovcphFed1DjpDAmnsKYeMKvuYfo9DR44mY4LxEuWggPv8wAHwMjQ6LZWp6PxWGn3FJHpF+Qt0PvPKcTNn8La95Tm8gVHFBL50NzE7kIOP08tT7LeVdCUIh34xX9Tktp97OjU5iXPL7dcVtK8/gkdyflljrCfQO4NHEso0JjXI8risJnubv4viiLRoeN5EAz8wefSoSv/KEoTpwkI6LbHD7lptNo1XLyp54Jc5Igp7WYku6wRZjOHj9P16ymCr78D2z4HNK3QXlR60JTH6PaRG7cVDj3t3DaTFloKrwqp7acDYeyiD2sAV9b9teU8q+MjcxNHMPo0Bg2l+TwUtr3PHDKbFfzvjUH0/mmMJNrUiZjNg3g05yd/HP3tzwy/oK+M6spPE6SEdFtIg5bjLq9/CBnx6RA8EAw+sLEswCwOuzsqSwE1HoGoaZj90CpsNRTZ3ffueOvN3Z/rZJ9u9VbLj+vg5xMaKhrfSwgGMZOUZvIXbAAYhO7NxYhOsHisPFa5o8sGDKJVfm7jzl2XUEmI0KjXA3xLk4YQ3pVEesL93LVkIkoisK6ggzmxI9k7EB1QfWilMnc9dP/2F6Wz6nhCd39ckQfJcmI6DbJgWGE+wZQ0lhLZnUxGw5lcUZEElSUQEMdDsXJyv2/0tDcoG1C2CBMOp92z1dhqeehXz/D3tLGvpleo+XxCRd2XUJitcL6z2Ddf2Hnz+rCXEfzLiGtDsJjYMosmHEJzLgMTKau+b5CdIP/ZP3KqJBohodEHjcZya4tY2bMMLdjqSFR7GgujFZmqafGZmH4YdvwffUGEgPMZNeWSTIiTpgkI6LbaDUaZsem8n/7fgbgnazNbN23ldsVhQPFOfzr188os6hbWXUa7VG/BA/XaLfxRf7uoxIRUAs1VVkbTjwZKSlUm8ht/BL27YKq8tbHTH6QPKL59tJ8GDXxxL6HEF7wS0kOeXUV3H/K7A6Nr7FaCPRxT64DfUxUW9VCaDU2tcdRoOGIMYbWMUKcCElGRLeaEpFEYUM1awsyAKjPU9eK7NI4XYmIVqNh0dDTiPNve1FnjbWRv+/6hsKG6jYfB1i5fwuLR8845swKoC403f4jrPoPbN0A+fvdm8iFmuG0c9QeLnPmw8Dwzr1gIXqIiqZ63sveyu2jzpK1HKLHk2REdCuNRsPliacQ5x/CV/nphFSqsw7VQcEADA+O5IL4kQwOavtNv6V/RksiogGGBIUz0DSAQ/U15NSp58utq+D/9v7MjcNPdz9BQx2sfg+++0wtMFZ2yL2JXHSC2kTu3N+oxcWkiZzoI/JqK6i1WXhi62rXMScK+6pLWF+4l+Wnz0OrcV9YHWgwUWNzn+GosVkIap4JCfTxVY9ZLQQZfFvHWC3E+Qd30ysR/YH85hXdTqPRcFp4IpPCEqjYuQuA00ZNY/aEC49bcTWjqpj9NWUABBt8uX3U2UQdtvU3u6aMf+7+lkaHjS1leRSn/0rE2o/VhabZaVBX03oy/0C1QNukmWpF08SULn+tQvQUw4IjeXjcHLdjb+39iUi/QGbFph6ViAAkBZjJqCpyu2WaXllEUoBandVsGkCgj4mMqiLXTGaj3caB2jKmRw3uxlcj+jpJRoTHaDQaBtaqycGQlPHQgdLvPxRluT6/PGmcWyKC00nSwVzuef8ddLt+ZmBFKfqWiqZaLZij1KJiZ14Es36rFhoTop8w6X2I0Qe7HTPq9AzQG13bdN/I/JFggx+XJI4FYEZMCs/uXMvXB9MZFRrNL6W55NZV8Lsh6lopjUbDjJhhrMrfTbhvAGaTP5/k7iTY6MtYc5wHX53oayQZEZ5V0dy1NyahQ8Nbbs/oNFrGDWz+Zffj13DfVWr32rpqogCbjw/F4VGUjxjP6N/dpW61ldoeQhxTRVMDGjSur5MDw7g+ZSqf5O7g45wdhPsG8IfUaa7kBWBW7HCsDjtv79tMg93K4KAw/jhC1qWIkyPJiPCsSvWWywnNUmhQC4u98jjUVcOCO+C0mdQkDOWefT8A6jbE0SNPP/Z5hOin7hw985hfA4wPi2d8WHy759BoNFyUMJqLEkZ3eXyi/5JkRJyUvdUlfHUwjby6Sqqtjfxh+LRjT9dWV2DzMfD01i851FBNiNGPOfEjmRKR5Dbs28K9fH0wnYomdceNQ3Gys7yAU77/Wi23/sLncMb5AGwpyHQ9L1JKUgshRK8j89jipFgddmIHhHBl8oQOjW9srKXUHEZKcAQPjjuPGTEp/Hvvz64qrAC/lObyYfZWzo8fyfzk1i6+X/6yGufTt8PF17gSkfy6Sj7P2+Uac3pkcpe8LiGEEJ4jMyPipIwMjWZkaHSHx5fgBIOJ3ySNAyDKL4is6lLWFmQyIkQ9z9qCDE6PTGZqZDJORWHDoX2EbvyKG994Aaei8M7cKxiYt4fcunJ2lhfgbO6CMzo0xu3ethBCiN5BkhHhUXa7DZPO/ccuNSSK97O3qo87HeTVVnBec28MbeYO/vzPJ/HZthGAvNhB/NBQDrnlbudI8A9lUcpkD7wCIYQQXU2SEeFR+iYLygD3Lb2BBhMWhw2rw06D3YoTheDaanj+Efj4DXya6yEowJ5TJrk/18fEGVGDOTc2FaNOfpyFEKI3kt/ewqN8G+upDzvGbZ0mC7PXfEL8muvAblN3zyhq7RANcM6ps0kaNYNGhw1/vYGEgIHoZUuhEEL0apKMCI/ya6inODDI7ViN1YJJ54Nh6w/43L+AucUFaJrXgRxJHzeYlOAIT4QqhBDCQ2Q3jfAo38YGDga7N8RLryoiKdAMa/+Lpvhgu4kIADGJ3RyhEEIIT5NkRJwUi8NGfl0l+XWVAJQ11ZNfV0lFc0fejw5s543MH9XBVRXonE5KAvz574FtFDVUs75wL1tK85gZkwL3LIO7n8Op98HRRvVURaeHsChPvTQhhBAeIrdpxEnJra3guV3rXF9/0LwrZnJ4ItekTKba2khFU4P6YGEOADP8zLxZWcQ3BZkYdHpCjH68nP4DBq2OpPHj+c07mwi48Vx01RVu30sTHgM6dX3IltI8PsndSbmljnDfAC5NHMuo0BjXWEVR+Cx3F98XZdHosJEcaGb+4FOJkKJoQgjR40gyIk5KSnAEL0+b3+7j1xy+3bYoH4DYsFgeHHceAP/Y/S2nhg0iwT8Uh6Lwcc4O3ty/ibuqK2BgBFRXgOIEhwPi1a6g+2tK+VfGRuYmjmF0aAybS3J4Ke17HjhltqvOyJqD6XxTmMk1KZMxmwbwac5O/rn7Wx4Zf4H00BBCiB5GbtMIzykpUP8b3jqD8aeRZzElIonoAcHE+YdwTfIELn5rOTajCT7YDh/ugKFj1MGxasn4dQWZjAiNYlZsKlF+QVycMIZ4/xDWF+4F1FmRdQUZzIkfydiBscQOCGFRymSqmhrZXpbvyVcshBCiAyQZEZ5Tekj9b1T7Tbh46BqGZmVQfdvjYI6EpOHwzs/w6GtqYzwgu7aMYcGRbk9LDYkiu1ZtwldmqafGZmH4YWN89QYSA8yuMUIIIXoOuU0juo/NBnn7wD8IAkOgvEg9Hp3Q5nDnprWYvvmELaedyfir72p9QK+HS651fVljtRDoY3J7bqCPiWqrRX3c1qgeMxwxxtA6RgghRM8hyYjoPq8+ASsebf1ao1H/O28cBA2EEDMkDoPFfwW7nbJHFqELDCbp0Te9Eq4QQgjvkNs0ovtMPMv9a6W5fkj+fti9Gb5fBZ+/DRoNW5cswFxUgO6GBwmJGnTM0wYaTNTY3Gc4amwWgppnQgJ9fNVjR8yC1FhbxwghhOg5JBkR3Wf8GZCQ0joj0gblzmf5/Ms3GLXmIxpTxxF81Z+Oe9qkADMZVUVux9Iri0gKMANgNg0g0MfkNqbRbuNAbZlrjBBCiJ5DkhHRfTQauOpPtFlQVaeDkRNZmZzEiBVPouj12P/xMdXWRqqtjVgddtfQNzJ/5KMD211fz4hJYU/lIb4+mE5RQzWf5e4kt66CM6OHNn9bDTNihrEqfzc7yg9SUF/FG3s3EWz0Zaw5rptftBBCiM6SNSOie124AOVvd6GxNLgdVhxONA++iM97zzEoN5tn73iI/ZkbXI8vHHoaUyLUrbwVTQ1oaJ1dSQ4M4/qUqXySu4OPc3YQ7hvAH1KnuWqMAMyKHY7VYeftfZtpsFsZHBTGH0ecJTVGhBCiB9IoinKMRiA9Q01NDUFBQVRXVxMYKBU0e5MKSz07776Mad9/jc7pBMCh0fLT5OmMuvwWAhdfDqnjYeWvXo5UCCFEV+vo+7fcphHdqs7exDdnzHQlIgA2gw+fzp6L//1Xg94HVnzlxQiFEEJ4myQjoltVWOopjowmY2gqCurykY8v/C0LVr6u3rq5fzkEh3o7TCGEEF4kyYjoFkpzn5mX0r8H4JszZ6EBLEYjFSGhjEjbQc3QUXD5Dd4NVAghhNdJMiK6xSe5O/kyf4/r6/SUEQBsHj+Z695agUOn5+EbbuPX0lxvhSiEEKKHOKFkZPny5SQkJGAymZg0aRKbN28+5vgPPviAYcOGYTKZGDVqFKtWrTqhYEXvUNxYw+rmREQDzIkbwdIRZwMwpbwKg7WJd65YhMVvAO9m/YrN6fBitEIIIbyt08nIe++9x+LFi1myZAlbt25lzJgxzJo1i5KSkjbH//jjj1x55ZVcd911bNu2jblz5zJ37lx279590sGLnmnDoSxXaZE58SO5OGEM/o1qvxifvTvhtHOov+AqAOrtTWwpzfNSpEIIIXqCTicjzz33HDfccAOLFi0iNTWVFStW4Ofnx+uvv97m+H/84x/Mnj2bu+++m+HDh/P4448zbtw4XnjhhZMOXvRMaZVqd14NGs6OTlEPVpSq/41NQvPCZ8yIGeYav6d5vBBCiP6pU8mI1Wply5YtzJw5s/UEWi0zZ85k06ZNbT5n06ZNbuMBZs2a1e54gKamJmpqatw+RO/R6LAB4O9jxN/HqB78cY363/ueB4ORSL/W/eZNzeOFEEL0T51KRsrKynA4HERERLgdj4iIoKioqM3nFBUVdWo8wNKlSwkKCnJ9xMVJCe/exF+vJiC1Ngtlljr14B+WwKvrYPI5AByoLXeNH9CSsAghhOiXeuRumvvuu4/q6mrXR35+vrdDEp1wymH9X1bl7UZRFDAYYdLZoNNhdzpcC1wBxkm/GCGE6Nc61ZvGbDaj0+koLi52O15cXExkZGSbz4mMjOzUeACj0YjRKH8t91anRyazKm83dsXJxuJsGuw2ZsakEO4bwIHacr7M3+OaGTGb/BkREuXliIUQQnhTp2ZGDAYD48ePZ926da5jTqeTdevWMXny5DafM3nyZLfxAF9//XW740XvF2TwZf7gU11fbyvP568713L3zx/xYtoGVyLio9VxbcpktJoeOUEnhBDCQzrdtXfx4sUsXLiQCRMmMHHiRJYtW0Z9fT2LFi0C4OqrryYmJoalS5cC8Kc//Ynp06fzt7/9jfPPP5+VK1fy66+/8sorr3TtKxE9ytTIZHy0Ov6z/1ca7NajHjebBnBtyhSSA8O8EJ0QQoiepNPJyLx58ygtLeXhhx+mqKiIsWPHsnr1atci1by8PLTa1r90p0yZwrvvvsuDDz7I/fffz5AhQ/j4448ZOXJk170K0SNNDE9g7MBYfinNJb2qCIvDhr/eyCnmOEaFRsuMiBBCCAA0iqIoxx/mXR1tQSyEEEKInqOj79/yp6kQQgghvEqSESGEEEJ4VafXjAjxXeE+vju0j/ImtaBZlF8QF8SPYmRodLvP2VKaxye5Oym31BHuG8CliWMZFRrjelxRFD7L3cX3RVk0OmwkB5qZP/hUInzltpwQQvR1MjMiOi3Y6MsliWO4/5TZ3D92NsOCI3kxbQOF9VVtjt9fU8q/MjYyNTKJB8edx9iBsbyU9j0Fh41fczCdbwozuWrIRO4dey5GrZ5/7v5WOvoKIUQ/IMmI6LQxA2MZFRpDhG8gEX6BzE0Yg1GnJ/uwEu+HW1eQyYjQKGbFphLlF8TFCWOI9w9hfeFeQJ0VWVeQwZz4kYwdGEvsgBAWpUymqqmR7WVSfVcIIfo6SUbESXEqTn4pycHqsJMUYG5zTHZtGcOC3SvupoZEkV1bBkCZpZ4am4Xhh43x1RtIDDC7xgghhOi7ZM2IOCEF9VU8vf0rbE4HRp2e36dOI3pAUJtja6wWAn1MbscCfUxUWy3q47ZG9ZjhiDGG1jFCCCH6LklGxAmJ8A3gwXHn0Wi3sbUsjzczf+LO0TPbTUiEEEKI9shtGnFC9Fod4b4BDAoI5ZLEscT6B/NNYWabYwMNJmps7jMcNTYLQc0zIYE+vuqxI2ZBaqytY4QQQvRdvWJmpKVIbE1NjZcjEe2x2e00NFna/H8Ubwpid9lBJga0bv3dXVZArG8gNTU1GBSFAL2R7UU5BIXrALA4bByoLWNicIz8fxdCiF6q5ff3cYu9K71Afn6+AshHD/k49cZ5SuSYYYp/pFkJSYpTTr1xnnLD+n8rMRNGKoBy5v2/V069cZ5rfMTIIcr137yljJo3RwmKj1LGL7pUuW7dW0pIYqxrzJj5FygLv3hFGTR1nBKSFKec+8QdyhUr/67oDD5ef73yIR/yIR/ycXIf+fn5x3yf7xW9aZxOJ4WFhQQEBKDRaLrsvDU1NcTFxZGfny89bzrh/fwdZNWWUWNvwqTTE2UK5KzwZIYGqB14X8r6kRCDH1fEjwXU63zGgsuYt/Requ1NmI0DOD9qGMMDI1znVBSFr4r38lN5HhaHjYQBoVwaO5Iwo783XmKvJT/TniHX2TPkOntGd15nRVGora0lOjrarYnukXpFMtJdpAGfZ8h19hy51p4h19kz5Dp7Rk+4zrKAVQghhBBeJcmIEEIIIbyqXycjRqORJUuWYDQavR1KnybX2XPkWnuGXGfPkOvsGT3hOvfrNSNCCCGE8L5+PTMihBBCCO+TZEQIIYQQXiXJiBBCCCG8SpIRIYQQQnhVn09Gli9fTkJCAiaTiUmTJrF58+Zjjv/ggw8YNmwYJpOJUaNGsWrVKg9F2rt15jq/+uqrTJs2jZCQEEJCQpg5c+Zx/7+IVp39mW6xcuVKNBoNc+fO7d4A+4jOXueqqipuueUWoqKiMBqNDB06VH5/dEBnr/OyZctISUnB19eXuLg47rjjDiwWyzGf099t2LCBCy+8kOjoaDQaDR9//PFxn7N+/XrGjRuH0Whk8ODBvPnmm90bZDe3lfGqlStXKgaDQXn99deVPXv2KDfccIMSHBysFBcXtzl+48aNik6nU5555hklLS1NefDBBxUfHx9l165dHo68d+nsdZ4/f76yfPlyZdu2bUp6erpyzTXXKEFBQcrBgwc9HHnv09lr3eLAgQNKTEyMMm3aNOXiiy/2TLC9WGevc1NTkzJhwgRlzpw5yg8//KAcOHBAWb9+vbJ9+3YPR967dPY6v/POO4rRaFTeeecd5cCBA8qaNWuUqKgo5Y477vBw5L3LqlWrlAceeED53//+pwDKRx99dMzx2dnZip+fn7J48WIlLS1Nef755xWdTqesXr2622Ls08nIxIkTlVtuucX1tcPhUKKjo5WlS5e2Of63v/2tcv7557sdmzRpknLTTTd1a5y9XWev85HsdrsSEBCgvPXWW90VYp9xItfabrcrU6ZMUf71r38pCxculGSkAzp7nV966SUlKSlJsVqtngqxT+jsdb7llluUs88+2+3Y4sWLlalTp3ZrnH1JR5KRe+65RxkxYoTbsXnz5imzZs3qtrj67G0aq9XKli1bmDlzpuuYVqtl5syZbNq0qc3nbNq0yW08wKxZs9odL07sOh+poaEBm81GaGhod4XZJ5zotX7ssccIDw/nuuuu80SYvd6JXOdPP/2UyZMnc8sttxAREcHIkSN58skncTgcngq71zmR6zxlyhS2bNniupWTnZ3NqlWrmDNnjkdi7i+88V6o77Yze1lZWRkOh4OIiAi34xEREWRkZLT5nKKiojbHFxUVdVucvd2JXOcj/fnPfyY6OvqoH37h7kSu9Q8//MBrr73G9u3bPRBh33Ai1zk7O5tvvvmGq666ilWrVpGVlcXNN9+MzWZjyZIlngi71zmR6zx//nzKyso4/fTTURQFu93O73//e+6//35PhNxvtPdeWFNTQ2NjI76+vl3+PfvszIjoHZ566ilWrlzJRx99hMlk8nY4fUptbS0LFizg1VdfxWw2ezucPs3pdBIeHs4rr7zC+PHjmTdvHg888AArVqzwdmh9yvr163nyySd58cUX2bp1K//73//44osvePzxx70dmjhJfXZmxGw2o9PpKC4udjteXFxMZGRkm8+JjIzs1HhxYte5xbPPPstTTz3F2rVrGT16dHeG2Sd09lrv37+fnJwcLrzwQtcxp9MJgF6vJzMzk+Tk5O4Nuhc6kZ/pqKgofHx80Ol0rmPDhw+nqKgIq9WKwWDo1ph7oxO5zg899BALFizg+uuvB2DUqFHU19dz44038sADD6DVyt/XXaG998LAwMBumRWBPjwzYjAYGD9+POvWrXMdczqdrFu3jsmTJ7f5nMmTJ7uNB/j666/bHS9O7DoDPPPMMzz++OOsXr2aCRMmeCLUXq+z13rYsGHs2rWL7du3uz4uuugizjrrLLZv305cXJwnw+81TuRneurUqWRlZbmSPYC9e/cSFRUliUg7TuQ6NzQ0HJVwtCSAirRZ6zJeeS/stqWxPcDKlSsVo9GovPnmm0paWppy4403KsHBwUpRUZGiKIqyYMEC5d5773WN37hxo6LX65Vnn31WSU9PV5YsWSJbezugs9f5qaeeUgwGg/Lhhx8qhw4dcn3U1tZ66yX0Gp291keS3TQd09nrnJeXpwQEBCi33nqrkpmZqXz++edKeHi48pe//MVbL6FX6Ox1XrJkiRIQEKD85z//UbKzs5WvvvpKSU5OVn7729966yX0CrW1tcq2bduUbdu2KYDy3HPPKdu2bVNyc3MVRVGUe++9V1mwYIFrfMvW3rvvvltJT09Xli9fLlt7T9bzzz+vxMfHKwaDQZk4caLy008/uR6bPn26snDhQrfx77//vjJ06FDFYDAoI0aMUL744gsPR9w7deY6Dxo0SAGO+liyZInnA++FOvszfThJRjqus9f5xx9/VCZNmqQYjUYlKSlJeeKJJxS73e7hqHufzlxnm82mPPLII0pycrJiMpmUuLg45eabb1YqKys9H3gv8u2337b5O7fl2i5cuFCZPn36Uc8ZO3asYjAYlKSkJOWNN97o1hg1iiJzW0IIIYTwnj67ZkQIIYQQvYMkI0IIIYTwKklGhBBCCOFVkowIIYQQwqskGRFCCCGEV0kyIoQQQgivkmRECCGEEF4lyYgQQgghvEqSESGEEEJ4lSQjQgghhPAqSUaEEEII4VWSjAghhBDCq/4fpXrkWtXdqScAAAAASUVORK5CYII=",
+ "image/png": "iVBORw0KGgoAAAANSUhEUgAAAiMAAAGdCAYAAADAAnMpAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjcuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/bCgiHAAAACXBIWXMAAA9hAAAPYQGoP6dpAADZKUlEQVR4nOzdd3hUZdrA4d+ZlkmZSe89lEAooSsdhBVh7a6iYu/u2j5WXex9ce1lVey9rg070rv00BNIIb0nk8kkM5lyzvfH4EAgAQJJJuW9ryuX5Mx7znkmTmaevO2RFEVREARBEARB8BKVtwMQBEEQBKF3E8mIIAiCIAheJZIRQRAEQRC8SiQjgiAIgiB4lUhGBEEQBEHwKpGMCIIgCILgVSIZEQRBEATBq0QyIgiCIAiCV2m8HcCJkGWZkpISDAYDkiR5OxxBEARBEE6AoijU19cTExODStV6/0e3SEZKSkqIj4/3dhiCIAiCIJyEwsJC4uLiWn28WyQjBoMBcD8Zo9Ho5WgEQRAEQTgRZrOZ+Ph4z+d4a7pFMvLn0IzRaBTJiCAIgiB0M8ebYiEmsAqCIAiC4FUiGREEQRAEwatEMiIIgiAIgleJZEQQBEEQBK8SyYggCIIgCF4lkhFBEARBELxKJCOCIAiCIHiVSEYEQRAEQfAqkYwIgiAIguBVbU5GVq1axTnnnENMTAySJPH9998f95wVK1YwYsQIfHx86Nu3Lx988MFJhCoIgiAIQk/U5mSkoaGB9PR0XnvttRNqn5eXx1//+lemTp1KRkYGd911FzfccAOLFi1qc7CCIAiCIPQ8ba5NM3PmTGbOnHnC7RcsWEBycjLPP/88AAMHDmTNmjW8+OKLzJgxo623FwRBEAShh+nwOSPr169n+vTpzY7NmDGD9evXt3pOU1MTZrO52ZcgCIIgCD1ThycjZWVlREZGNjsWGRmJ2WzGarW2eM78+fMJDAz0fMXHx3d0mIIgCIIgeEmXXE1z3333UVdX5/kqLCz0dkiCIAiCIHSQNs8ZaauoqCjKy8ubHSsvL8doNOLr69viOT4+Pvj4+HR0aIIgCIIgdAEd3jMyduxYli5d2uzY4sWLGTt2bEffWhAEQRCEbqDNyYjFYiEjI4OMjAzAvXQ3IyODgoICwD3EctVVV3na33LLLeTm5nLvvfeSmZnJ66+/zldffcX//d//tc8zEARBEAShW2tzMrJ582aGDx/O8OHDAZg7dy7Dhw/n4YcfBqC0tNSTmAAkJyfz888/s3jxYtLT03n++ed55513xLJeQRAEQRAAkBRFUbwdxPGYzWYCAwOpq6vDaDR6OxxBEARBEE7AiX5+d8nVNIIgCIIg9B4iGREEQRAEwatEMiIIgiAIgleJZEQQBEEQBK8SyYggCIIgCF4lkhFBEARBELxKJCOCIAiCIHiVSEYEQRAEQfAqkYwIgiAIguBVIhkRBEEQBMGrRDIiCIIgCIJXiWREEARBEASvEsmIIAiCIAhepfF2AD1Vja0Bi7Op2bEAjQ8hen8vRSQIgiAIXZNIRjpAja2Bhzb/iFORmx3XSCqeGHWOSEgEQRAE4TBimKYDWJxNRyUiAE5FPqq3RBAEQRB6O5GMCIIgCILgVSIZEQRBEATBq0QyIgiCIAiCV4lkRBAEQRAErxLJiCAIgiAIXiWSEUEQBEEQvEokI4IgCIIgeJVIRtqZ2W7lu7yMVh8vbjB1WiyCIAiC0B2IHVjbUZ3dyjPbF1Nls7Ta5pP9Gwnx8Sc1KLITIxMEQRCErkskI+3o/az1nkTEV61leFg8cX5B1NqtbK0qoLqpAacis2Dvau4eOh3XYbu0iro1giAIQm8lkpF2UtRQy15TGQBBOl/mDZtBsI+f5/Hzk4by2p5V7KktpdFp58ltvyIriudxUbdGEARB6K3EnJF2sqHigOffZ8WneRIRl92MIrvQqNRcnDzc0+bwRARE3RpBEASh9xLJSDupbWr0/DstKBoAS/VOMnZkUrr7ZbCXEuMfRLDOr7VLCIIgCEKvJJKRdqKRDv0o/+zh8DPEoZKaKG0aT+P2M5EP3I7OVXawlYKEjISMCidqnCDbQLa6vwRBEAShlxBzRtpJsiGM9RV5AKwty6GPMRyVLpgoQylVdRr2qf5LasWVPKb+L1JrP/XMw/6d8jGEXdHhcQuCIAiCt4mekXYyJiIJH7U7y1hbnsvvRXtxyi5CY8fjkCLxkbPJkL6iilEndkHfQR0YrSAIgiB0HSIZaSe+Gi1/TRjs+f6bvG3M2/g9C/L24cdeHFIUOpWWAs0Cdqs+oIYzUFAfdR0FDQSdDf7Dj3pMEARBEHoikYy0ozNjBzIjLs3zfb2jid21pVQ6S3FIUSiKCwArg8hTP8NO1U+USVfjxOg5R8KJI+qBTo9dEARBELxFUpQj1ph2QWazmcDAQOrq6jAajcc/wcuy6ypYVrKPjOoiXIqMDjs3+MYgo8JFEJIkHWqsyEg4CVF+JkL+Al9yaFDHENDnbQie5b0nIQiCIAin6EQ/v0Uy0oFcsozVZUen0pC37WUaGIsLHarDk5E/KU6QNGidnzOYF5EkGUmXAImvQvC5nR+8IAiCIJyiE/38FsM0HUitUhGg1QOwzq6gSD4tJyIHSTTxtXM8/2d/kxq/c8FeDPvPg4x4qPmms8IWBEEQhE4lkpFOUO9o4g9XDL5KJhxWj8ZDcaKlCl1wFeWyFRt+bA16GkaYIPQqsJdB9t9gWyxUfdnp8QuCIAhCRxLJSCfQqtyrZhpcuSCpgOYjY746GwNDV1Kq6+c5plNpQBMAfT6EEXUQdi04KiD3UtgaDVUfd+ZTEARB6BFqbA0UWGo8XzW2Bm+HJCDmjLSJzelgYf4OMqoLqXc0Ee8fzOw+I0kyhLZ6TpapnP/lbqWwoRZfmrjKdwCKpOHPPFCSJPJ1DjY2llJz2JbyD42YSZx/cPOLyTbIvwuq3gPFAZpwiHsaIq7rgGcrCILQs9TYGnho8484D+uhFkVKO5aYM9IBPtq/gb2mMq5NHcfDI2aRFhzFizuXNatLc7gqm4X/7l5BalAkM+IGYsUHh5zDnz/2mJgYKnwVfq/NxaDx8ZynQsKo9T36gio9JC+AkRaI+Du46uDA9bA1DMrf7IinLAiC0GNYnE3NEhEQRUq7CpGMnCC7y8m2qkIuSh5G/8AIInwNnJM4lAjfAFaW7m/xnJWl+wnTB3BxyghmJQwm2tfIHkcVADbnVl4v3syimhyu9u1LH7t7oqsaCT+NjnXlOa0Ho9JB0mswsh4i7wKXBfJvgS0hUP7f9n7qgiAIgtChRDJygmRFQUZBIzXfNVWr0pBjrmzxnFxzFQOCogDQq7XcOeQMMtXxaJQDhKihwlqPSgGtpKKv1ki6NoSb0yYyOCSGXHPV8YNS6SDxRXdPSdTd7gJ7+bfDlmAofQHkFibLCoIgCEIXI5KRE6TXaEkxhPFL4S5MTY3IiswfFXnkmquos7dcZdfssGHU6T3fB/v4cVnfMZS4DtDIUPpSjb+k9Tx+mjac8CYVRq0PdQ7biQen0kDCs+6ekuh5IDdB4T9hWzCUPCOSEkEQBKFLE8lIG1yXOhZFgX9t/J5/rPmS5cVZjA5PRKL1vUOOpFapWGkPRELmwgAHAUeU8C0tLSW4UTlywc2JUWkgfr67pyT6IfdGakX/gq2BUPykSEoEQRCELqm1YvZCC8J9DdydPp0mlxOby0Ggzpe39q4hTB/QYnujVo/Z3ryHw2y3YVUHEsAOGl0pRyUjAIFNMEwViKIozbeOP1EqFcQ/DrGPQulTUPoMFD8EpU+7h3NiHna3EQRBEIQuQHwinQQftYZAnS8NDjt7aktJD41rsV2KMYxMU1mzY3tNZaQYwwgyarFL8aRqXMgtdIOEy1pyc3ORT6U3Q6WC2Ifc+5TE/RtQQcljsCUACu8XPSWCIAhClyB6Rtpgd20JigJRfkYqrPV8k7eNKD8j4yNTAPg8exM7a0qwuRzYZRfBOj9q7Y18k7eN8ZEpZJrK2VJZwG2DJxNmGE9ZxmKCJR9kBY4c6ZEAk8lETk4ORX4yi4szqbNbiQsI5tI+I0k2hJ144CoVxNwHUf+C8heh5AkonQ9lL0Lk7e5ERSVeCoIg9FwH6qv5KmdLi49tqswnzj/4mOU6hI4lNj1rg82V+Xx3YDumpkb8NDpGhMVzflI6vhodDQ479238Hh+1hr8PmoRBq6fCWk+93cbi4kxKG+sI8vHjrwmDGXcwedm/9UXM8oSDu7K2TFGr+Miyj9l9R5FsCGNpSSZbqwp4bOQ5zSbHtlnZy1D8GLhqQdJD5K0Q94xISgRB6HF21hSzYM/qo/YYOdxpEUlc03+sSEjamaja28m+zcsgx1zJPel/OeFzftn9DZHWRDjixS+jEBYSSmhoKK/lrCfJEMJlfUe7H1MU7tv4PVNj+nNW/KBTD7z8dSh6GFzVIPlA+I2Q8Lx72bAgCEI3V2Wz8NiWn7HLLgACdXoGBcfgq9aSY67igKXa0/aCpPT2eV8VPE7081v8GdxOdlQXkRYczZt7V7O/roIgnR+To/sxMbpvq+fscRiJPOz7gIAATPVm8lz1jE4ehVN2UWCpYWZ8mqeNSpIYEBR1YvuQnIjIv7u/Kt6Gogeg4r9Q+RaEXefew0R1Cr0vgiAIXra8ZJ8nERkRGs91A8Z56oUBbKsq5M29q1GAJcWZTIsd0OxxoXOICaztpNJmYWXpfiJ8DdwxeCqTovvxZe4W1pfntnpOndOGLLknuCaGVZKamorsoyFRHUBjkw2LowkZBcMRwzFGnb5t+5CciIgbYUQFJH8A6mCoXABbjJB7Azhb3u5eEAShK5MV2fMerJFUzOk32pNo/Lk4YHhYPCPCEgB3hfWdNcXeCbaXE8lIO1GAhIAQLkgaRkJACJOi+zIhqk+rW8X/qTokArVSh7kqCwBdsBGdpKa8rOyY53WY8KthRBmkfAqaMKh6171PSe414LR4JyZBEIST0OCw0+C0A9AvMIIArZ69lr3E/jIdzaJIGhzuDSuHh8V7zqmw1nsl1t5OJCPtJFCnJ9ovsNmxaN/AVovogXsfkjpZjUHahVkZjNNWh00D5S4rZlMdAVofVEjUt7BXSaC2g4dPwi6H4SXQ50vQRkLVh7A1CHLmgNPcsfdGlPkWBOHU/TkZ1Sab+bzuecJWRpD2RxoluqUo9kD2VbqHb5wHh3GANm1iKbQfMWeknfQxhlNubf4hXW41E+LTelnqFGMYu2pKmBGRjKkiiMqcT9irHoaf2kWk04nd1kSCIYS9pnKGHczcZUUh01TG1Jj+Hfp8PEIvcX/VfAcFd0H1Z1D9JYRcBElvgiao3W8pynwLgtAefqz+jm+d91ElF4ATqB0FldcSlfoNDTu+41tfO8NjYGPFAc85sf5B3gq3VxM9I+1keuwAcuur+KVgNxXWejZWHGB1WTZTYvp52nyXl8H7Wes830+O7keVzcJSZxx6JZtqqx9bKgsYFJcMQElJCdNjB7CmLJv15bmUNtbxWfYm7LLTszy404RcAMPyod+PoIuHmq9gayjsvwicNe16K1HmWxCEk1VkK2LOrjn4L/fnst2XUS0Xoq+dBmuXQPFs1Alf8evor5k9KIqPt1n4tXAPew5uThnq409acJSXn0HvJHpG2kmSIZRbB07iuwMZ/FywkzB9AJekjOS0iGRPmzq7lZrDhm3C9AHcNmgK/8vdio+ziGjNRK6OqSI9MoEd5SbMZjOj+47A4rDxQ/4OzHYbcQHB3DFoKkadrzeeJgSf7f4y/Qb5t0Htt1D7PQSdDcnvgrYNm7EJgiC0A1mWeaf0HZ7Lf479Vvc8vQhtBNdH3Ml3P11DkXo10qg5KD7lpKjGs7HIQmRYIfmbgnjw90pGHexo/mvCYFTH2PdJ6DgnlYy89tprPPvss5SVlZGens6rr77KmDFjWm3/0ksv8cYbb1BQUEBYWBh/+9vfmD9/Pnp9z1o2OjQ0lqGhsa0+fk3q2KOOpQZF8uCImdgtA9idWUyUOQuYRWhoKGVlZdTU1DA1JpWpMakdGPlJCDoLgrKhbikcuBVMP8C2CAic6U5KdOKvC0EQOtb+xv3cu/9efq3+lSalCTVqzgg+g6f7PE1hwUBm//YNzv4XgXGXp+jGcOkCtlQVYLVrgFFszY4jMtjCLSPjGR/Vx5tPp1drcwr45ZdfMnfuXB555BG2bt1Keno6M2bMoKKiosX2n332GfPmzeORRx5h7969vPvuu3z55Zfcf//9pxx8T6ILSCZA2onZ1R/ZaSc6OhqAMm+tqjlRgdMgfR8MWAn6VKj7BTJiIPMssJd4OzpBEHoYp+zk+fznSVqbRP/1/fm+6nvCdGH8O+Xf2KbaWDpiKY+sKOSifRNxDrsGlXGP51wtOiK17lpiDU2HNnb8ffNAHPWdPPQtNNPmZOSFF17gxhtv5NprryUtLY0FCxbg5+fHe++912L7devWMX78eC6//HKSkpI488wzueyyy9i4ceMpB9/TBAcG4JCiqM77FJVKha+vL1ar9dSK5XUW4yQYuhcGrgHfgWBeBBlxkDkdmgq8HZ0gCN1cRn0GZ207C98VvtydfTelTaX8NfSv7DptF0UTirgv+T5+KVuN78Ix/BpwEQTuBEDm0PvnEMNgnjv9Ih4cPpOZ0acdPCrhUuDiTyv4cItY1ustbUpG7HY7W7ZsYfr06YcuoFIxffp01q9f3+I548aNY8uWLZ7kIzc3l19++YVZs2a1ep+mpibMZnOzr94gJOkydEoxtXXuiZpRUe6hji7fO3I4w3gYshvSNoDvEDAvhe1JsHcq2A54OzpBELoRu2zn0dxHiVkdw/CNw1lUs4gEnwRe7f8q1ilWfhr2E4MC3Nu3P799GeftPQOb/2b3yZKr2bU0koZhAcPQqTXEBwTjsPs3W8SrANd8Xcmr6+o658kJzbRpzkhVVRUul4vIyMhmxyMjI8nMzGzxnMsvv5yqqiomTJiAoig4nU5uueWWYw7TzJ8/n8cee6wtofUIKo0GozqHatdp2Mz7CQrqgyRJVFVVERMT4+3w2iZgDAzZDg3bIO86qF8BO5IhYAIkvw++rW+TLwhC77a2di33597PWtNaXLjQq/RcHHExz/R5hiS/pKPa/2NhFa9vjEZKOxcl6ocWrykrMkMChni+L6xzolGB44iO5zt+rKbOJvPA1CAkUTSv03T4tOEVK1bw73//m9dff52tW7fy7bff8vPPP/PEE0+0es59991HXV2d56uwsLCjw+wywuMno6CmMu8nVCoVBoMBh8NBU1M3XdbqPxwGb4NB28FvFFjWwM5+sHscWLOOal7cYOK7vIwWL5VVW97BwQqC4C0Wp4V79t9D2KowJmydwCrTKvr59eODgR/QMLmBr4Z8dVQiYmp0kvZCIa//YSYp0J/is7/m/YHv46PyOer6MkckIyYncitlYh9aXMu9v7bvlgXCsbWpZyQsLAy1Wk15efMPhfLycs+QwpEeeughrrzySm644QYAhgwZQkNDAzfddBMPPPAAKtXR+ZCPjw8+Pke/mHoDv7ARBBx4F7PDPckqJiYGs9lMSUkJycnJxzm7C/MfCoM3QeNuyLseGtbDzgHgPwaS3wO/QeypLeWNPas8Ra2O9PWBbTS47JyflN7JwQuC0FF+q/qNh3MfZnP9ZhQUAtQBXBN9DfP7zCfKp/VVeUv3N3LOR+VYnQpnD7UwOCWPp3atJ1AXQpruNLbZViEhoXAo4xjsP9jz7z2VjbhaSUYk4L/rzUxJq2ZtxV7q7FbiAoK5tM9Ikg1i+4KO0KaeEZ1Ox8iRI1m6dKnnmCzLLF26lLFjj162CtDY2HhUwqFWuwsVKUorr4ReLtDfgU1KoSb/G/z9/VGr1ZhMJm+H1T78BsGgP2BIJgSMg4aNsGswjh3DWbjnE08i4qfWMSIsnrERyYTpAzyn/1q4+5jFBwVB8I56Z/0Jv6fX2Gu4de+tBK0IYub2mWyu30x6QDrfDvmW+in1vJ/2/jETkX/+XMX098pwygoPz2qgX9J+Lu83ikdH/hVVwH4ybKsZ4zuNm2Jv8pwTrAkm0sc9xaDKZmFftbXFa/cJ0fDkmcF8dY3EL0Vb+WvCYB4YPpM4/yBe2bUcs72di5QKwEnsMzJ37lyuvvpqRo0axZgxY3jppZdoaGjg2muvBeCqq64iNjaW+fPnA3DOOefwwgsvMHz4cE477TSys7N56KGHOOecczxJidBcRL+rKM9YQ01VCSGJEBISQmVlJWazGaPR6O3w2odvKqStBVsO5F6HxrKKeZoMCpUE/vB7kPMHXYJO7X55KorC0pIs/pe7FYBfCndzWkSyp+6EIAjtr8bWcNSuxwEanxZLMmwyb2Lqlqk8mvIodyfe3eo1vy7/msfzHmdXwy4UFII0QdwWdxtPJD9BkC7ouDGZbTIT3yxhR5mduEA162+N5fuiNfTRxjIkJJZ9jfuYX/IvwlSJXBf8IDcPmMK04Glcu+daRhlHea6zomQ/jU1GJNwTV40+EvV2F30jLWTdkY4kSczP2MiEqD6evUfm9B3DrpoS1pXncFb8oBP5EQpt0OZkZPbs2VRWVvLwww9TVlbGsGHD+O233zyTWgsKCpr1hDz44INIksSDDz5IcXEx4eHhnHPOOTz11FPt9yx6GJXGD4NqL2Y5HaetgpiYGCorKyktLe05ycif9H1wDljGk3+8yWzpNQao9hBvuwkpbxnEPwM+8UiSxPTYAWyvLmJfXQUV1nr211WQGhR5/OsLgtBmLdWHgpZrRO1v3M+MbTNokBt4ufBl5ibMbbaLaYmthHk58/i24lsa5AZUqDjNeBpPpjzJtNBpJxzTqlwrsz4oo8GhcPEQf764NByVSkVKXThryrIpbTAxcctEFOB83TyGhSYCcHHkxUwOntysAF5OXRUJIf6kRxi5ZqSBWal+jFqQRXalniaHgkYjU1Bfw8y4NM85KkliQFAUueaqtv44hRNwUjuw3nbbbdx2220tPrZixYrmN9BoeOSRR3jkkUdO5la9VljUQGpLDVRkf0nM4Nvx8fHBYrEgy3KL82y6M5PdSqkriJd4gLFBOq7RfwWmRVDzP9D3h8E7QaVmVHgi++rcm+uVNtaJZEQQOkhL9aHgUI2oENzJSFlTGdO2TsN8sJJ3UVMRS2uWMi14Gu+Xvs8zBc+wr3EfAOHacG6Pv52Hkh7CT+PXpnjuX1TN0yvqUKvgw4vDuWqEwfPYWfFp2FwOLtx0GxWuCs7S3M0FCROaleKI0EU0f34uG6/PdjAz/tBQ0BUjfPjXjwrPrK7ljgm+yCgYdM13CTfq9JRZe8dWE52tZ32q9SDGmDPxUzKpswUCEB4eDriXV/dkjeoI6PcVDM+HkIvBthfKngVEaW9B6Ax2l5N1ZTmtPu5wued1mZ1mztx2JiX2Ely4j6lRc82ea/Bb4ccNmTeQ05jD1KCp/DHqDyomVTC/7/w2JSKNdplR/y1i/oo6Ig1q9v0zrlkiArClMp+vS37hD9dnjPA/jUcG/J3FRXvbPLdsRn8tQQGNvLfZ0qbzhPYhCuV1YUafasrs46kvXU545GSKioqoqKggIiLi+Cd3I0E6X/RqDTaXk721pTQ67fhpDND3cyjqB0X3gb4fW6qCPOdE+wV6L2BB6KEanXZe3rmMA5bWl7V+kbOZfwyeyAU7z2NPwx5PIgLgwkWJvYQobRS3xd/GPYn3oFPpWr3WsWwosDH93VIsdoXzBvrx7RURLfYKf5K7mu9s/8Zf5cfKUUsI0ARQ3dTAr4V7GNtKdXOjVn/URFSLs4n+MTVs3OeHqVGNCon6I9qY7TYCtT2rplpXIXpGurDIvpegUixUlW5HpVIREBBAU1MTTqfT26G1K41KzekHu1TtsouP9m3A7jr4HGMfQwmZjSv7MqLNHwIQoQ+gX2DPSsgEwdsUReHtzLXNEpFkQxinhSeRFBDqOZZvqWbaxnNZaVrZLBH5k4TE3Yl380DyAyediDy+tJaxb5RgdSi8eX4Y318V1WIiIssyP1pfxU4TPw37iQCNe+WdSmq+pPdIKcYwMk3Nd7beayrjjP7KwfubSTCEsNd0aBsLWVHINJWRYhRLezuC6BnpwjS+URikb6iXByA7bURFRZGdnU1JSQkJCQneDq9dTYsdwLryXOyyi23Vhdy/qZJR4Qno1Vr21s3mbuVrLtV+zGR5KeaQu1EpDpBO7o1OEISjHbBUs6e2FHCvmrlzyFQSAkI8j+fVV/HSzqV8aX2Ucva3eh0FhTeK32Buwtw272Bqs8uc8W4p6wuaCPdXsfbmGPqFt/57fvXeq8mTN3GW7g5ClX5U2SwUWmpZUpTJuKhDvSLf5WVgsjdybeo4ACZH92NFyT6+ydvG+MgUMk3lbKks4LbBk3lzqZ3vdjfw++QBfJC1niRDCEmGUJYWZ2GXnYxrpbdFODUiGeniQkLCqasJpzL7YyIH3IhKpaK2trbHJSMRvgZuHjiRBXtX45Bd1DtsLC/Z53l8tfoMztAsJkpVQnT1XKj7N0TeBuE3g671/QgEQTgxaw6bJ3JBcnqzRKTAVsCHle/xSdPr1FDpOS4hoZE0KCg4lUM9tjnWHNbWrWVC0IQTvv/WYhtnvFNKnU3hrP6+/HhlJBpN653331R8wydlnzDQbxDXRFzFZ9mbqHc0EajzZWJ0X85OOLTBWZ3dSk1To+f7MH0Atw2awv9yt7KsOIsgHz+u7H8ag4Jj+NvgSt7eVI+9IZq/pQznh/wdmO024gKCuWPQVIw63xN+TsKJk5RusPOY2WwmMDCQurq6nre09Thkp5M9GT+gpZrUUTeSm5tLbW0tAwcOxM+vbTPSu4NCSy2/Fu5mW3Uh8mEvzUn+Jcxx3nNEa5X7K3Q2RN7hrocjCMJJeTpjEXn11QC8Mu4SfNQa1pvWc96O86h0VBKgDuDiiEvIL/fHVzIS7CdxenQU5fZyyu3llNnLKGkqocxehslp4uNBH3N++PkndO9nVtYy77daJAleOjuE28cFHbN9hb2C+DXxqCQVxeOLCdGFHLN9W5SZnUTPL2B6Xz2Lr+9mNcG6oBP9/BY9I12cSqPBoMmn2jkWa+1OYmL6UVtbS0lJCX379rxic/EBwdw0cAJmu5WiBhOyohCq9yda7wNb7gfFcVhr2f1V/SVUfwr+p8OAxaAOaO3ygiC04vC/Sv/cUPD14tepcdTwfN/nuTH2RrToubP6fwD09QnnH/F/OaV72p0yZ75Xysq8JkJ8Vay6OYZBkccffp2weQJ2xc7PQ39u10QEIMqoISVYw8o8W4/cSqGrEj/lbiAy6SxAoTJ/CXq9Hq1Wi9ncs9e6G3W+pAVHMzgkxr1yRqV317FpkROQwFkNksivBeFkRPkeWjK7raqQVbWr+KTsE17s/yJzE+di0BjYUlXgaRPpe2q91LtKm4j6dwEr85o4I0VP6f0JJ5SI/D3z7+y37uf66OuZFTbrlGJozc2nGXC44IMtYplvZxHJSDegDxpIADsxO5OQnU5CQ0NRFIWaml5WVdI4lZY78yQwTIVBG91JiyAIbTY+so/n31/nbGZWxiyCNEHcGnsrAOWNZhbm7/C0mRDV56hrnKiX15pIf7WYOpvMszNDWHpjDLpjzA/50+LqxbxR/AbJ+mTeGvDWSd//eO4aH4hKghfX1nXYPYTmxJ+R3USQUUVhfQK1Bf8jOmk2ZWVllJWVERLSvl2UXZphMvDk0ceNM6D/D6DSdnpIgtBT9AuMoI8xjBxzFQutr9KgNHCZ4f9YWryPooZatlYVenZl7R8YQbIh9DhXPJrTKTPrwzIWZ9sI0qtYfmM0w2JOrEJ7naOO83ach1bSsnbk2g4dPtFpVIyK1bGpyE69TcagF3+3dzSRjHQTYSlXUZaxhJraGkJTVPj6+mK1WrvNmKasyPyYv5MNFQcwO2wE6nwZF5nMrPjBx1z+l2Uq53+5WyltrCNCp+JhVEjI4NmNVYXVvIrnN31KqUMvynwLwkmSJImbB07koYxP2WdfTQDhGKyj+PZARrN2MX6B3DhgQpuX7WZV2pmwoISqRpkJiT4svi4ave7E37smbZmEVbbyxaAviNZHt+neJ2Pe5GAu/LScp1bU8vRZbU+8hLbp+p9iAgAqjQ6Dah8WZSj2hiJPYcKysrLjnNk1/Fa4l5Wl2VzW113m+8KkYSwq2tts+e6RqmwW/rt7BalBkTw4YiaT4tLJlxPdE+1Ueuj/I9ujvsWhaLhdmscDQyeIMt+CcAoCdb4sk18GFM7TN1+95q/RcWbcQO5N/wtGXduGQ9/4o45BLxZR3Sjz5F+CWX1LbJsSkXnZ89jRsIOLIy5mdtTsNt37ZF0w2B9frcRHW8W8kc4geka6kfDY0dQU6qjI+YaYwbeTn59PVVUVMTFdf/lZbn0lw0LdZb7Bvc5/U2W+ZylhS1aW7idMH8DFKSMA9xbwGyrPIsT+Lca038FvKL8cWMRI/wc5s/FeAnMnMWfIflHmWxBO0pdlX7K7YRfnhp3Le4P/jxxz1cHyDDr6GMPQqdv2kSHLMud+VM7PWVYMPhJLr49mdHzbEpm1tWt5Jv8ZYnQxfDHoizade6rO6ufLd3sa2V9pP+bma8KpEz0j3UhA5Hj82IPZ7q7RYDAYcDgcNDU1eTu040oxhJNpKqe80b0KqNBSS7a5ksEhrXe35pqrGBDUfEMzZ8RcHnK8An5DccouCupriIi6FCJuA3seqv1niTLfgnASZFnmxswb8ZF8+HzQ5+jUGgYGRzEyPIGBwVFtTkTyauzEzi/k5ywrY+J0lN2f2OZEpNHZyFnbz0KFqsPnibTkiTPdc/IeWlzbqfftjUTPSDcTqK+ntGksdUW/EhMzCbPZTElJCcnJycc/2Yv+LPP9yJafkCQJRVE4Lym9WZnvI5kdtqO6g40+vthcTuwuJ41O+6Ey30mvgnUXmJcw0CeN5UrHLPkThJ7q1qxbqXfV81zf59pUWbcl7282c+O3VcgKPDQ1iMfPPLmJ9tO2TcPisvD2gLdJ8ks6pZhOxqBIHRH+Kn7Kajx+Y+GUiJ6Rbiai7xzUSh3V5fvw9/dHrVZjMpm8HdZxbanMZ2PFAa5PHceDw2dyTf+xJ1Xm+5hSl4IukdG214hxbm2/6wpCD1dgK+CdkneI94nnn4n/POnryLLMRZ+Ucd03Veg1Eqtvjj7pROSpvKf4w/wHM0NnckPsDScd06maMzyABrvCb/savBZDbyB6RroZjT4Yg7SbemUQssNCSEgIlZWVmM3mLr1V/jd5GcyIT2N0RBIAsf5BJ1Xm22y3oVdr0ak1qCSpeZlvlQoGZ1C1dQgXu56C+klgGN+RT0sQuo2VJftZWbqf6ib3hMxov0DOThjC4JAYzt9+PjIy3wz5ptk5WyoLWJi/g2qbhQhfAxcmD/PM+wJ3pd8f83eyuiybWqvMkm39yK80MDxax6qbYgg4ySWxGfUZPJT7EKHaUH4Y+sPJP+l28PDUIF5cY+bJZSbO6u/v1Vh6MtEz0g2FhifglIKp2P+xZ/JqaWmpl6M6NrvsREXzpYAnW+b7zxLeGpX66DLf6kDeVB4DJMicDvai9nsSgtCNBfn4ckFyOvcPP4v7h7nnVr2+ZxXvF37BNss2zgo5i9GBoz3tc8yVvJO5lvFRKTw4YibDQuN4Y89qihtMnjaLivayrCSLSHkYHy8dTnGNH7NGHmDDbdEnnYjYZTtnbD0DCYmVI1aiUXn3b+YgPw0DwrX8UdCE0yl7NZaeTCQj3VBQwnnolRxMjT5oNBp8fHywWCzIctf9RRkaEssvhbvYWVNMlc3CtqpClhRlMiw0ztPmu7wM3s9a5/l+crS7JPg3edsoa6xjRck+tlQWMD021dNmeuwA1pRls748l9LGOj7L3kStbEBO+RAUG+waAbJY5isI6aFxDAmJJdLXSKSfkfOT0tGp1NyTPRetpOV/Q/7XrP3S4iwGhUQzIy6NaL9AzktKJyEgmBUHl+MrisKSokyyD6Rxz4+gVqn48apIkqIqyKgqPOk4Z2bMpNZZy7N9n2VQQNdYEXfHOCMuBf67oWeX4fAmMUzTTRm1xVQ4xtNQtYnw8ASKioqoqqoiIiLC26G16NI+o1iYv6Pdynz/aXR4IhaH7agy3wHGMHD8G4ruh92nw5CMzny6gtClyYrMlsoCdjlWUS2X8u+UfxOgaV5gMre+iumxA5odSwuOZnu1u7dxd2Ud32+KI6fUl0GRWtbcFE2Qn4Zd1jBy66s8Q7Jt8WrBqyyrXcakoEnMTZx70s+vvd08xsAdP1bz+nozd40P8nY4PZJIRrqpyJTzqMwqpbJwIwnpd1JUVERFRUWXTUb0Gi2z+4xkdp+Rrba5JnXsUcf+3PDsWKbGpDI1JvXoB2Lug8YdUPMFZF8KfTt3jwJB6GqKG0z8J+N3HLILVHZWOd8iRhfDfcn3HdXWbLdh1B6xmk2rp85u45tdDcz5sgpZCeaW031547xDS/SNOnebtspqyOKu/XcRqA5kUfqitj+5DqRSqRif6MPKvCaqLE7CAsRHZ3sTwzTdlM6QQgA7qHf1BdmJv78/TU1NOJ1Ob4fWtfT9HPyGQc2XUPyUt6MRBK+K9DXw4IiZzBs2g43Kh8goLOj34QmfryiwNTeYv31ajloFF4zfydMzg045LlmWmbRlEgoKS4YvQa/pegUvH57mXhX06FKTdwPpoUQy0o2FBPlhl2KozvuM6Gj3XyYlJSVejqoLStsAmnAofhBqFno7GkHwGo1KTYSvgV1N69natJzRulnU1be8Cs+o02N2HOrhqLA4uel/DpbvTKR/mJaMO8MJCrC1uOItsI3bxV+480IqHBU8nPwwowJHtf2JdYIz+vhi8JH4cofYHr4jiGSkGwtJmoNOKcZUZyMwMBCVSkVtrdgp8CgqHQzOAEkP2X+Dxt3ejkgQvEaWZa7afRUaScO5hhtxyq4W26UYDq1m+2lvAwlPF5BX6cO5w01k/TOevsFGjFp9sxVvVqeDvPoqUtpQqPLDkg9ZWLWQkYaRPJry6Kk8tQ537kB/qhplMkq6/q7X3Y1IRroxlUaDUZ1DPUNpqs8mMDAQp9NJY6PYLfAouhgYsAyQYc/p4DR5OyJB6FTf5WWwr66CO7PuocZZw5VB95BfX8eYgxNN389ax3d5GZ7202JT2V1byuyvd3PuR2VoNA4uGr+L1//q3hdIkiSmxQ7gl8JdbK8uorjBxPv71hPk48uwsPgTiqnAVsANmTfgr/JnxYgV7fyM298TfwkC4KHFNd4NpAcSs3C6ufD4SVQdcFKR+xMxqbdQW1tLSUkJffv29XZoXY9hLCS/A3nXwa5hMDTXvVGaIPQC9Q4bCzKX8r7lA+JV6QzRTmPG4DTSgt1DvDVNjUiH7QUUrAlmxeaRZJZr6BtTyd9GV3N5/9HE+gd52syIG4jd5eST/RtpdNrpGxjOHYOmolWpjxuPLMtM2DwBp+JkyfAlR63m6YqSQ3TEBapZki22C2hvIhnp5vzCRhJw4D3Mjhji9Xq0Wi1ms1gL36rwa8G6E8pehKzpMHDZMZvX2BqwOA91yQZofAjRi10Yhe7nqv6n8+bmf9JADT8N+4YpwVOaPf7PodM9/160r4HzP67A5tRw1fAA3v9bUotF6iRJ4tykoZybNLTt8ey9isKmQubGz2Vy8OQ2n+8t14408MQyE1/tsHDJ0K6fQHUXIhnpAYx+TZRY06kt+I7Q0DGUlZVRU1NDSMjJ1YTo8RJegMadYF4CB+6ApFdabFZja+ChzT/iVA5tJqeRVDwx6hyRkAjdzuLqxayrW8ekoElHJSKH+7+fqnhprRmtCv53eQR/G9L+H7jfVHzDp2WfkuafxvP9n2/363ekeZODeHKZiWdWmUQy0o5EH3UPENnvSjRKDTWVRZ5VNeXl5cc5q5frvwh0KVDxKpS/1WITi7OpWSIC4FTkZj0lgtAdyLLM5bsvR42ab4d822Ibs01m6EuFvLTWTEKgmrx7EzokEamwV3D5rsvRq/SsHrG63a/f0fx0KtKjdWwrsWOzd91dr7sbkYz0ACptAAbVHuqVwcj2Gnx9fWlsbOzS28N7nUoFg7eB2gj5t0D9Gm9HJAgd5sHcB6lyVHFP4j2E6kKPenxFrpXof+ezs9zB7KH+5N0bT2xgx3ScT9g8Abti55sh3xCi6569t3dPDERW4NnVdd4OpccQyUgPERY5AJdkpCL7cyIjIwEoKys7zlm9nMYIaRsBtbuoXlOBtyMShHZXY6/h2YJnCdOG8VTK0Rv/zfu1mqlvl2J3KXx8SThfXBbZ4vyQ9nBr5q3st+7n+pjrmRU2q0Pu0RkuS/fHRw3vbBbz89qLSEZ6CGPsDHyVLOpsRoKDg5EkiaqqKm+H1fX5pkK/haA0wW5RVE/oeS7ceSFOxcmngz5tlmRYbDIjXy3iP6vqiDaoyb47niuGGzosjt+rf2dB8QKS9cm8PeDtDrtPZ1CpVJzRx5cCk4vCOrHrdXsQyUgPEuhTSaM0mIaKNRgMBhwOB3a73dthdX3BsyDuP+Csht1jvB2NILSbFbUrWGlayVjjWM4MPdNzfH2Bjaj5+WwtsXNBmh9F8+JJDNZ2WBwmu4nzd5yPVtKyduRaJEk6/kld3GPTgwF4+Hex50h7EMlIDxKecjEqpYGqkq3ExLgr2xYXF3s5qm4i5l4IneNe9rv/YgAsDjFRVejeLtt1GWrUfJ/+vefYo0tqGP9GCTaHwjsXhvHtlVEdNizzp0lbJ2GVrXyc9jHR+ujjn9ANjI7XE+Kr4rs9Dd4OpUcQyUgPovOPwSDtpF5OxddHjVqtxmQyeTus7qPPJ+A3EqX2a7Ztv4lXd61osdnOGpHgCV3fY7mPUWYv4474O4jQRWCzy5z+ejGPLTUR7q8i659xXD+65bo07elf+//FzoadXBJxCbOjZnf4/TrTxUP8qbMprDlg9XYo3Z5IRnqY4OBQHFIElTkfExwcjCzL1NfXezusbsOWupIGghlme5shqo0ttvkhfydLijM7OTJBOHEmu4knDzxJsCaY5/o+x+YiG5H/zmdDYROzUn0pnpdAn1Bdh8expnYNzxY8S4wuhs8Hfd7h9+tsj05zD9U8ukTUBDtVIhnpYYIT/oaPUkBdvUJsbCwgKvm2xbf5e3i06UkcaLlZ8wpnh8GcvqO5MGkYyYcV//o6dysFFjFWLHRNF++6GKfi5KNBH/GflXWMea0Ei13htXND+fmaaDSajn/rb3Q2MnP7TFSoWDtybYcPBXlDlFFDSoiGVXk2sZXCKep5r45eTqXRYNQcwMJQnJYsfHx8sFgs4hflBDQ47Kwrz6WeIF52PoJKgnOsc5kUGceM+DTmDTuTs+LSAFCAZSX7vBuwILRgbe1altQuYWTAKJ75Zjj3/15LiJ+KXXfG8fexgZ0WxxnbzsDisrBgwAKS/JI67b6d7ZbTjDhkeG+zxduhdGsiGemBIpLcs+YrDvxOeHg4gFjmewIyqgtxHCynHh81Ayn1V3DVYd9/CRw8/teEwfhp3KsONlfm41JEkid0LbN3zUalaNi/+G1WH2hiel89ZfclMDCy44dl/vRU3lNsMG9gVugsboi9odPu6w13jjOiluCltWIDtFMhkpEeSB80CH92YnYmEhrsHtOsqKjwclRdn8l+aBLagMBICDwTV8Ir6Op+YvVGI8trlqNVqUk5OFzjkF00OsTSaaHrePrA0xTbi5H3PIWl0cjzs0JYfH1MpwzL/CmjPoOHch8iTBvGwqELO+2+3qLTqBgd58OeCgdmm/jj5GSJQnk9VJABiiyJ1BV9i7//MBoaGnA6nWg04n95a3SHlT2vc9jAXgZlz1Ejw6tOP/637QxGGEYQ7TwNjSsSRZJZXbcCFw4a5UasLitW2UqjqxGrbOWM4DMYFzTOi89I6E1MNjP3730OGkYTWPs3Vt0ey9Bon06NwS7bmbp1KhISK0esRKPqHe83900J4ryPy3lqeS3/mXn0dvvC8fWOV0ovFN7nSsozllNbW01032iys7MpKSkhISHB26F1WX2M4Z5/bynZzKTKJ3E6axjZAF+M+onrnSaeyJ3Pz9Y3PO1+2NH8GhISKlS4cJEbnSuSEaFT7C23k/7LvShxJgbW30vGA0noOrE35E8zM2Zicpp4vu/zpAWkdfr9veXcNH/8tBIfbbOIZOQkiWGaHkql0WNQZVGvDMFX04BKpaK2Viw/O5ZkQyjpfg1cov6Qu5xzsNsOcJ/uLxwAUn1TSVYPY6JyF2nSX1q9hoKCC/f8kptib+qcwIVe7fX1dQx6cwOO2I+Idp3Onmv/5pVE5NWCV1lWu4xJQZOYmzi30+/vbTP7+1JW7yKrUgzdngzRM9KDhcUMp6bYn8rc/xEYeA61tbU0Njbi5+fn7dC6lqYDUP0lUvWn/N210/Nb8aPjXD61bEJCxfPbV1Fhc8+Wn6C9BiO+bLD/iIJy1OXUqBltHM3pgad34pMQehunU+bcj8v5dZ8VadjDSCo7f0z6zCuxZDVkcdf+uwhUB/L7sN+9EoO3Pf6XEL7Z3chDv9fy1ZxIb4fT7YiekR7MEDUZP2UXdU3hnu3hxZ4jB9mLoexF2DUKtidD0f3ureAPalJ0LJVnYlYq8MHfk4gAxPsH89OYT5gUNAk16qMu7cLFYP/BYjm10O6qHdWcs/0cXsv+HzFP5/PrPisJqb+ihK3ghtjrSNB3/jCsLMtM2jIJBYUlw5fgo+7ceSpdRVqkjsgANb9kNXo7lG5JJCM9XKDejFVKxV69Eq1Wi9ksSl5T9ChkxEPB3dC49eDBwxMHNUrIJUyPG4KdBgIIQ0Ii2RDKNf1P51/DziTUx8DXQ74m2ie6xYTkndJ3MK408n/7/o8ml6hxI7SPreat/FT1E7flX0Jl/yu46YxiyhP+iUFt4PXU170S0wU7L6DCUcHDyQ8zKnCUV2LoKuYM86fBofBLpqhX01YiGenhIvpehloxU1WeSWhoKIqiUFPTy3cO9R1w8B8ytDDMAi704ZcxOTYeGRdnR03m9QmXMm/YDMZGpqA9uOomTBfGT+k/oVVpkThUhfSN1Dd4LPkxtCotLxW+RMDKAC7ecTEVdrG8Wjh5sixz/7Jcz/fq0A28rZpMk9LEq/1f9crKlQ9LPuSHqh8YaRjJoymPdvr9u5qHpgYhAU8tN3k7lG5HJCM9nEYfhkHaRb2cRmSYAYDy8nIvR+VloZdCygdAK2XMVf5gnMai6kUATAiagKqVkufphnQ+TPvQM3ckRBPCNdHX8HDKw9ROruXjtI+J0cXwdeXXRK2OYuLmieyq39UBT0royfJrHcQ9XcjminJQ3K9FFy7P625ezjy+Kv8KRWkpue4YBbYCbsi8AX+VPytGrOi0+3ZlQX4aBoRr2VDYhNMphmnbQiQjvUBIeBxOKYTKnE/x9fWlsbFRzGcIuwoSXmnhAQ0EnQcqH1abVgNwVuhZx7zUJZGXMC9xHgB3JdyFXq33PHZF9BXkT8hn9YjVpAeks6ZuDUM2DmHg+oH8WvVruz0doef6ZFs9fZ8rpLTexcR+VjSqo4cFy+3lzN41mzO2noHZ2fFDsbIsM37zeJyKk5+H/UyAJqDD79ld3Dk+EJcCr6wXQ+JtIZKRXiA44QL0Sg7mRh8iI92zvMvKyrwclXfcv3EhN6/+jDtWv8f+A//FrmiRFemwwRonhF4MwHbLdtSoKat38fDmn/jHmi94bMvP7KwpbnZNRVEYo76Es33mUlScyIs7l1Jubf5GNCF4AttO20b22GzODDmTfY37mLV9FtGro3m96HWRHApHkWWZCz4p5sqvKtGq4Ms5/vSLrW02JPgnBQUVKjaaN1Ju7/iezyv3XElRUxFz4+cyOXhyh9+vO7lxdAAaFbyxQSQjbSGSkV7CqC3BwiB8XHlIktRra9XcN2wGz4yYwAu+d9NXtY/iiBd523k7nl8FSQ+BMwDIs+URoonkncy1jI9K4cERMxkWGscbe1ZT3GDyXHNR0V5WlmbzxMD/46Hh5+Cj0vDKruWeOjeH6+PXh0XDF1E7uZZroq+hxlHDP7L+QeCqQO7Zfw92WexRIEBRnZOE/xTw/e4mQgwNzJ66kaW1S1lVsQun0vx19WdycmbImewdu5d+fv06NLZvKr7hs/LPSPNP4/n+z3fovbojlUrFxCQ92dVOKixOb4fTbYhkpJeISDkbCRfVxasxGAw4HA7s9t73wWeQLARmpqORa5ES32CjfDqFumnQ50tADUHngMoXcC+jjFGlMigkmhlxaUT7BXJeUjoJAcGsOFixV1EUlhZnMithMMNC44jzD+ba1LGYmqxkVBW2GodRY+T9tPdpmNLAw8kPo0bNcwXP4b/Cn0t3XkqVvXcmiwJ8tcNCyjMFFJtlhiSV8LeJO9Fp3T1nNqUe5bCVX2rUBGmC+HzQ5/wy7JcOX9pbYa/g8l2Xo1fpWT1idYfeqzt7eJq7JtijS8RGkydKJCO9hI+hLwZ2YHb1ISoiAoDi4uLjnNXDOGtgRyq4TJD4Gs7wG9hQcYBxkX2QQv8Gg7dB0msAVNurcSpOQunDgKCoZpdJC44mt96dLFTZGjA7bAw8rI2vRkeyIczT5lg0Kg2PpTyGaYqJ9we+T7Qumi8rviRidQSTt0xmr2Vv+z1/oUuTZZmrv6pg9ucVqFVw5/QqxqYVNGtjUZq/puZEzWH/uP1cGnUpUiuTrNvT+M3jsSt2vhnyDSG6kA6/X3c1JcUXo4/EVzvFEt8TJZKRXiQoUI9diqWp8nvUajUmk8nbIXUepwm29wdXDSS8DJF/J6O6CKvTzrjIZHcbvyGgdden+b3GvYtkoBKHUatvdimjVk+d3QaA2eGu9GvUHdFGd6jNibom5hoKJhSwfMRyhgQMYZVpFWkb0hj0xyAWVy9u6zMWupEKi5N+zxXx0TYL/cM03D4rC6su+6h2dbjnevkRxBcDv+PDQR8Squ2cWii37r2VbGs218dcz6ywWZ1yz+7s/DR/qhtlthS17X2gtxLJSC8SmnwFOqWEWlMjwcHByLJMfX29t8PqeE4z7OgPrmqIfx6i7gBgbVkOg0KiCfI5env8VaZVAARLcZ0aKsCU4ClsP207+8buY1rwNPY27OXMjDOJWR3DW0VvdXo8Qsf6YU8D8U8XkFvr5JbTDPz9zGzqnO7ufY2kIj0kjplxaYQY3UM0wcQxW/s8u0rUuDpp4vOi6kUsKFlAij6Ftwe83Sn37O4eP9M9VPOIGKo5ISIZ6UVUGg0GdTb1DCXM4J5Y1eO3h3eaYUc/cFZC3H8g2l3Aq9rWwF5TOROi+rZ42vZ690qacJ9QzI7mf9mYHTYCD/aEGLXu+SXmI3pBzPZDbU5WP79+LBmxhJqJNVwZdSXVjmpuzroZ4woj8/bPwyE7Tun6gvfd9G0l531cjgT8eFUk901Xs8fk7v0wavU8MvKv/H3QJM5JGsLvTW8xLGA4twe+hlbSU2GtJ6O6qMNjNNlNXLDjArSSlrWj1nbKcFBPkBikJT5QzZIcq1gtdwJOKhl57bXXSEpKQq/Xc9ppp7Fx48ZjtjeZTPzjH/8gOjoaHx8f+vfvzy+//HJSAQunJjx+Agpaagp/xMfHB4vF0nN/UZwW9xwRZwXE/Rti7vU8tK48B4PWhyEhMS2emmfLI0gTRIohjExT82XQe2vLSDGEARCm98eo1TdrY3U6yKuv8rQ5VUG6ID4a9BENUxq4P/F+JCT+U/Af/Ff4M2fXHGrsvXxH3W6optFJ6vOFvL2pnj6hGgrmJXD2QH/Wlx/aYfXsxCFE+Lo3Knyr6C221m/l9QGvcWmfMZ426w5r31EmbZ2EVbbycdrHRPlEHf8EweO6UQaanIi5IyegzcnIl19+ydy5c3nkkUfYunUr6enpzJgxg4qKlre6ttvt/OUvf+HAgQN8/fXXZGVl8fbbbxMbG3vKwQtt5x82Gn92YXZEEx7unh/RI5f5OhthZ39wlkHsYxBzn+chWVFYV57L2MgU1FLzX4H3s9bxXV4G1Y5qEvWJTItNZXdtKYuL9lLWWMeP+TvIt9QwJaY/AJIkMS12AL8U7mJ7dRHFDSbe37eeIB9fhoXFt+tT0qg0PNX3Keqm1PH2gLeJ0EbwWflnhK0O44wtZ5DVkNWu9xM6xq9ZDcTOL2RflYNrRxrIvjuBiAD3Vu6VhxVkTA9xv0duMW/h9n23c3bo2YwNHMuAoEh8VH+279hh1n/t/xc7G3ZyScQlzI6a3aH36onunRSEJMGzq+q8HUqX1+ZiBi+88AI33ngj1157LQALFizg559/5r333mPevHlHtX/vvfeoqalh3bp1aLVaAJKSkk4tauGUBPk1UWxNR2v9A4ijsrKSiIMrbHoE2eZORBylEP0QxD7c7OFMUxk1TY2Mj0w56tSapkasshWH4mBwwGD6GMO5IXU8C/O38/2B7UT4Grg1bSKx/kGec2bEDcTucvLJ/o00Ou30DQznjkFTPTVsOsINsTdwQ+wNLK1eyl3772K5aTkD/hjAYP/BvNz/Zc4IOaPD7i2cvDt+qOLV9WZ0avh6TiQXDfZv9rjqsA3NHLKLXGsu5+04D3+1P0/2eRIApyLjUuSj2re3NbVreLbgWWJ0MXw+6PMOu09P5qdTMSxKx7ZSOza7jF4nZka0RlLaUMzAbrfj5+fH119/zfnnn+85fvXVV2MymVi4cOFR58yaNYuQkBD8/PxYuHAh4eHhXH755fzrX/9CrW75zbqpqYmmpkOVTs1mM/Hx8dTV1WE0Gtvw9ISWyA4LO7f/QYC0B4f/mTQ0NJCeno5G0/mFttqdbHNPVrUXQvR9EP/vNl/iy7IvuXT3pbw54E1uir2pA4Jsf1kNWdyaeSsrTCtQUIjVxfJYymNcH3u9t0MTAFOjkwlvlrK7wkFikIZ1t8YQYzz69+2HAzv4udBduygpzMYTZbcRqY1kzag1xOrdPSV/VOTxftZ6AMaEJ3L9gPHtHm+js5HINZFYXVZyxuWQ6JvY7vfoLT7fXs/lX1Ty6LRgHpke7O1wOp3ZbCYwMPC4n99tStOqqqpwuVyeLcX/FBkZ2er24rm5uXz99de4XC5++eUXHnroIZ5//nmefPLJVu8zf/58AgMDPV/x8e3b3d3bqbQBGKTd1CuDiQh1/2VWWlrq5ajagWyHHQPciUjUvSeViMChlTQzQme0Z3QdKtU/lWUjl1E1sYrLIi+jwlHBDZk3ELgikAeyH8Api50gvWVZjpWYpwvZXeHg8nR/cu+JazERARgf1QcJiRJ5Lw+U3IhDdvDzsJ89iUhefRVf5271tJ/YygTsU3XGtjOwuCwsGLBAJCKnaPYQf3w08O5msT38sXR4n5Esy0RERPDWW28xcuRIZs+ezQMPPMCCBQtaPee+++6jrq7O81VY2PpOlsLJCYvqj0sKxFa+EJVKRU1NN58EKdthx0Cw50PUXEj4z0lfKsOSgQoVifru9yYcogvhs8GfYZli4d6Ee5GR+Xf+v/Ff4c9Vu6/CZDd5O8Re5d5fqpn2TikOl8Jnl4bz6aWRqFStv+2G6v0JCzLzs/PfSEico3mEb/fl8/H+DTy7fTFPZ/xOvcPdazwgKJJ+ge0/vPpU3lNsMG9gVugsboi9od2v39uoVCqm9fGlsM5Ffq1YAdeaNiUjYWFhqNXqo0rQl5eXExXV8izr6Oho+vfv32xIZuDAgZSVlbW6HbmPjw9Go7HZl9C+jLEz8VX2YbYZCAwMxOl00tjY6O2wTo7shJ2DwJ4LkXdAwqnVy8i15hKs6d7dqTqVjv/0+w/1U+pZkLqAUG0oH5d9TOjqUKZvnU5OY463Q+zRLDaZ4a8U8ezqOmKNanLuSeCydMNxz1tdu5qnK/6BColzNY8QrkqhsKGWNWU5ZJsrPe2SDaHcNGBiuy+z3WreykO5DxGmDWPh0KOH3YWT88Rf3O8nDy8We460pk3JiE6nY+TIkSxdutRzTJZlli5dytixY1s8Z/z48WRnZzdbPrpv3z6io6PR6XQnGbbQHoy6ChpII1jn3qugW+45Ijth1yBoyoaIv0Piy6d8yWpHdYfX+OhMN8fdTMnEEn4b9hupfqksrV1K3/V9Sd+QzqraVd4Or8dZc8BK1L/zySi1c9FgPwr+FU9C0PHnY62pXcPUrVORJIm1I9dy74A5JAQ033I9wtfAxSkj+OfQ6fhr2/f90y7bmbZtGhISK0esRKPqAXPIuogRsXpC/VR8v0cs8W2V0kZffPGF4uPjo3zwwQfKnj17lJtuukkJCgpSysrKFEVRlCuvvFKZN2+ep31BQYFiMBiU2267TcnKylJ++uknJSIiQnnyySdP+J51dXUKoNTV1bU1XOEYmiyFytZNq5TcrS8o27dvV7Zs2eLtkNrG5VCU7QMUZQOKkntzu1yytqlWYQnKlbuubJfrdUW76ncpkzZPUqQlksISlPjV8cqHJR96O6we4cFF1Yo0L0dR35ejvLfpxN+vVtesVtRL1IpmqUbZaNrY7LFqm0UpqK9RKhrrFZcst3fIHmdsOUNhCcoL+S902D16s1u/q1CYl6Msz2n0diid6kQ/v9s8Z2T27Nk899xzPPzwwwwbNoyMjAx+++03z6TWgoKCZpMh4+PjWbRoEZs2bWLo0KHccccd3HnnnS0uAxY6l84/jgBpJ/WuVIKDAlEUpfvMHZFl2D0MbJkQdj0ktz4HqS1+r3XXpBkf2P4rFLqKQQGDWDlyJRUTK5gdMZtSeylX77maoBVBPJr7qJjsehIa7TJjXiviyeUmIgLU7L87jmtHndjw8praNUzZOgVJklg3ch2jA0c3ezzEx5/4gGDCfQNQddDup68UvMKy2mVMCprE/yX8X4fco7d79OBKmseXiqGalrRpaa+3nOjSIKHtqnM/50Btf2L9MyhuGIafnx8DBw70dljHJsuwezhYd0DY1ZDyQbtd+rbM23it+DUOjDvQa1YR2GU79+fcz4KiBTTIDfhIPlwWdRkv938Zo0b8vh3PpkIb094tpb5J4ewBviy88tiTVA+3pnYNU7ZNQUJizcg1nBZ4WgdHe7SshizS/kjDoDZQPrEcH7VPp8fQW/R7roADtU6ankg64ddId9chS3uFnic44WJ8lALMFie+vr40NjZ27e3hZRn2jHInIqFz2jURgcNW0vSSRATck12f6/cc5slm/tv/vwRrg/mg9AOCVwYzY9sM8hrzvB1il/Xk0lpOe72ERrvCgvPD+PHq6BP+kFlbu5ap26Z6NRGRZZlJWyahoLBk+BKRiHSwW04z4pTh7U2W4zfuZUTPiEBBxotUOU8nJtKX4goX0dHRxMS0XLPFq2QZ9oyBxi0QMhv6ftHut4hZHUOT3ET15Op2v3Z38kvVL8zdP5esRvcW88MChvHf/v9lfHDPHb5qC5tdZvp7pazNbyLMT8WaW2JIDT/+hNKVJftZWbqfHGsu3zY9hoLMu/0/Y3Z863vabKksYGH+DqptFiJ8DVyYPIwhIYfKaSiKwo/5O1ldlo3V5aCPMYzL+44m0vf475XnbT+PH6p+4NHkR3kk5ZETe/LCSXM6ZfQPH6B/mJY9c3vH/lmiZ0Q4YeGJ0wGJpqrlSJLUNWvVyDLsHedORIL/1iGJCECVo6pHraQ5WbPCZpE5NpMdY3YwPnA82y3bmbB1AolrEvm09FNvh+dVGSVNRM3PZ21+E2f201N6X8IJJSIAQT6+9A1T+LzpnzRJ9Tweu4CV+bWUNJhabJ9jruSdzLWMj0rhwREzGRYaxxt7VlN8WPtFRXtZVpLFnH5jmDfsTHxUGl7ZtRyH7DpmLO8Xv88PVT8wyjBKJCKdRKNRMSbeh8xKB2ZbF+6B9gKRjAj4Bg/Bn53UuxLx9/PD4XC0ugeMV8gyZE6Ehg0QdD70+1+H3KbOUeepSSO4DTEMYc2oNZROKOWi8IsosZdwxZ4rCFkZwuO5j3ftIb0O8PxqEyP/W0x9k8JLZ4ew6LoYNJoTfxu1qPK5Oud8FElm5cjlzB1wMT5qDbn1LffELS3OYlBINDPi0oj2C+S8pHQSAoJZUbIPcPeKLC3OZFbCYIaFxhHnH8y1qWMxNVnJqGp9s8gCWwE3Zd2Ev8qf5SOWt+2HIJyS+6cEoQBPLOsmiwU6iUhGBACCAqBJSsQo7QaguLjYyxEdJnMqWNZB4NnQ/7sOu83imsUAjAsc12H36K4ifSL5eujX1E+q5674u2iSm3gk7xH8Vvhxw54bsDh79hi43Slzxtsl3P1LDUF6Fdtvj+XO8UFtusb6uvVM2TYFgFUjV3Ga8TQ2VRzA7nKSYghr8Zzc+ioGBDXfUDItOJrcenfvZZWtAbPDxsDD2vhqdCQbwjxtjiTLMuM3j8epOPll2C8EaALa9DyEU3P2QH/8tRKfbBN7jhxOJCMCAOF9r0SrVNJgKUOtVmMymbwdktveM8CyCoxnQeqPHXqrlaaVAJwVclaH3qc702v0vNj/Reon1/NivxcJ1ATybum7BK4MZFbGLPKt+d4Osd3tLrcT/e8ClufamJKsp/T+BAZHt22i5/q69UzaMgmA79J+4/NdhfxjzZd8mr2JW9ImEuMf2OJ5ZrsNo1bf7JhRq6fObnM/7rC6j+mOaKM71OZIV+65kqKmIubGz2VS8KQ2PQ+hfcxM9aXM4mJveRfqgfYykYwIAKg0egyqTOqVwQQGaJFlmfr6eu8GlXkm1C8H419gwK8dfruMevdKmmS/5A6/V3enUqm4K+EuyieVs3DIQvr49uHX6l9JWpfEqI2j2FC3oUPuW2NroMBS0+yrxtZxf2G+us7E0JeLqLXJ/OesYJbfFIOuDcMy0DwRWTF8BWdFTOHBETOZN2wGk6P78UHWH5Q01HVE+Ef5uvxrPiv/jDT/NJ7vf2plE4ST9+SZ7p11H1oihmr+JPb7FTzCotOpKQlA07gcGEtJSQmpqaneCSZrFpgXg2EqDPi9U26Za80lSBPUKffqSc6NOJdzI84loz6Dv2f+nT/Mf3D65tNJ0ifxdJ+nmR01u13uU2Nr4KHNP+JUms9T0Ugqnhh1DiF6/3a5D7hXPZz9UTmL9lsJ1EssuyGaEbH64594hD/q/miWiPy5GinC112nJtEQwgFLNctKsrii35ijzjfq9JgdzXs4zA4bgQd7QoxaX/cxu41Ane+hNnYb8QFBzc6rsFcwZ/cc9Co9a0asafNzEdpPariOKIOaX7Os3g6lyxA9I4KHIXoqfspuLPZgfHx8sFgs3pmgmHUO1P0KAZNg4LJOu22Vo4p4fe9YbtcRhhmGsW70OorGF3FB2AUU2gq5dPelhK4MZX7e/FN+LVmcTUclIgBORcbibDqlax9uf6WdmKcLWLTfyrgEH8ruSzypRGRD3QYmbpkINE9EjqQo4Gxl5UuKIYxMU1mzY3tryzxzTML0/hi1+mZtrE4HefVVR81DGb95PHbFzjdDviFY170LQfYEVw4LoNGh8IOoVwOIZEQ4QqC+jkZpAEaduzJzdXUn77ex7wKo+wn8x8GAzpvlb3aasSt2BvuLlTSnKkYfw7fp32KZbOG2uNuwylbuz70f/5X+3LL3FhqdXbc69FsbzAx8sYiqBpnHpgez9tZY9Lq2v01uqNvAhC0TAFg+fLknEfkuL4N9dRVU2SwUN5gOfl/OmIgkAN7PWsd3eRme60yLTWV3bSmLi/ZS1ljHj/k7yLfUMCWmPwCSJDEtdgC/FO5ie3URxQ0m3t+3niAfX4aFHUqsb917K9nWbG6IuYFZYbNO8qcjtKcHzwhGAuavMHk7lC5BDNMIzUT0nU3Frj046ncBE6ioqCA8PLxzbr7/YjB9D/6nwcDV0InbJXtW0gSJlTTtRa/R82rqq7zc72VeLHyR/+T/hzdL3uSdknc4K/QsFgxYQJw+ztthAu4VJhd8XM4PmVYMPhKLr4vmtAR3b0iNraFZz0uAxocQvT+KonDtnmsZHzSeG2Nv9Dz+ZyKiKAorRqxgQvAEz2P1DhsfZK2nzm7FV6Ml1j+IOwZPJS042n2vpkYkDtWf6WMM54bU8SzM3873B7YT4Wvg1rSJxPoHedrMiBuI3eXkk/0baXTa6RsYzh2DpqJVqQFYVL2IBSULSNGn8PbAtzvk5ye0nVGvIi1Cy6aiJuxOGYvT2uLrrLcQO7AKR8ne8ioNSio6vxgarU2kp6ej0XRw3pp9GdR8AX4jIW1jpyYiAHdm3ckrRa+QPTabPn59OvXevcl3Fd9xT/Y95FhzABhtGM1rqa8dVRyuJQWWGp7a9luLjz0w/CwSAkJOKqa8GjvjFpRSVu9iVKyOlTfF4HewN6SleSp/zlEpceYxZMMQAF7t/yq3xd/GprpNjNsyrsVExBtMdhPRa6NxKS4KxhcQ5RN1/JOETvP2RjM3fVfFo9P9qfBZ3uLrrLsnJGIHVuGkhYTF4JRC8XNtAWhWhblD5FxxMBEZ5pVEBGBb/TZUqEQi0sEuiLiA7HHZbBq1yb3PRv0mxmweQ5+1ffi6/Otjnmt1Oto9ng+31NP/+SLK613cPyWQTbfFeRIRaHmeyp9zVP5X8T/UuHsfbt93O/fsv6dLJSIAk7ZOwibb+DjtY5GIdEHXjwpAq4L3Nje2+jrrLUQyIhwlJPEi9EoutiYnKpWKmpoOXH6Wew1Ufwq+QyFti1cSEYAcaw6Bmpb3ehDa36jAUfwx+g8Kxxdybti55NvyuXjXxYStCuPZ/GePmuy6rDiLV3a1PoeosL5tZdllWebiT8u45utKfNQSq26O5qkZoW26xmdln+Hi0MTT5wqew6W4ukwicu/+e9nZsJPZEbPbbUWT0L5UKhUTk/QUmBQabb171oRIRoQWGbVFWBiMwacJp9NJY2MHTDrMvQGqPgTfQTBom9cSERArabwlTh/HwvSFmCebuTX2VhpcDdybfS8BKwP4R+Y/aHQ28nvRXr7M3dLiSpo/fZaziRxz5Qnds9DkJPGZQr7e1Uh6lI7S+xOZkOR7/BMPs68xk2xr9lHHFRS2Wra26VodYU3tGp4reI5YXSyfDfrM2+EIx/DodPfKpi37e/f7j0hGhBaFJ5+NhAt10yYASkpK2vcGebdA1bugHwCDMryaiNQ768VKGi/z0/jx+oDXaZjcwNN9nsZP5cfrxa9jXGnkpn1X0iC7ez5GhSVw44Dx3DP0L1zWZxRxBydyOhWZD/f9gdzKFLg8ax7fVnzLFxlm+jxbQFGdi7kTjGTcGYdB3/bX3s81Cz1DNEe6c9+dvFL4Spuv2V4anY3M3D4TFSrWjlqLyou/W8LxjUv0wU+nkFt29Jynjhia7KrEq1Rokd7YjwB2YHElolarMZvN7XfxA/+AyjdB3x8G7wSVd7snl9QsAWBs4FivxiG4u63/lfQvqiZX8dXgrwjVRJGvbOFT520sk+YzMSGMUeGJ9A0MZ0pMf+4bNoPEgxNXy631zfbb2Ne4j/kH5pO+IZ2UdSlctPMiLvthCxqVxJLronj+ry3Xgzlcg6PlMfuF1d80G6I50p377mR93fo2Pvv2MXXbVCwuC28OeJNE30SvxCCcmDq7lae3LyI2vJImh4ZKk1+zx9/Ys5rsuhPr8evuRDIitCo40Ae7FItBfQBFUaitbdu4fIvy74SK18GnLwze7fVEBA7VpJkROsPLkQiHuzjyYm7yf4PzNI8RLiWT3bSLwX8MZs6uOfxa9StO2YlGpebMuIGec34qXcXjuY8zaP0gUten8mDOg+yw7HA/qEgMMMZRcl880/r5tXJXN5vTwUf7NvDqrhVHPVYjF5FnyznquFpy95Qk6hO5P+l+0gPST/7Jn6Qn855ko3kjs0JncX3s9Z1+f+HE2VwOXtq5jAJLLaP7FQGwLTuR4MN20rW67LyyeznFDSYvRdl5vP9JIHRZoclzKM1YjMteBsRTVlZGcPAp7NxY8E8ofwV0KTCkayQicGglTT+/ft4ORThCg8NOpKovN/q9yD3DJvNOyTvMPzCfz8o/Q42avn59SfJJ4Q97Bo3U4ii1oUKFjHt+yZ//BfBXItl71/H/H9ucDl7YuZR8S8sTt3e5Di0vVqPGhYsEfQKXR17OJZGXMCxgGJIktXhuR9pq3srDuQ8Trg1n4dCFnX5/oW1WlWZT0uiuSZQQrCHaoKKiNoj5Y86nzGrm8+zNZNWV0+Ry8m1eBrcPnuLdgDtY1/g0ELoklUaHUb2PWtdofHTQ2NiILMsnNwZd8C8oewF0iTB0L6h07R/wScqx5mDUiP1ruiJfjZYGZxOmJis6yY+7E+/myqgr+ajsIwxqA/sa97HJtJ06Di0/PzwBOVx8QBC5jbmk+KUc857f5G3zJCI+ag2jw5KIDwjC6rSzojKDTNMKAPQYuS7mWq6PvYrhhuFeSUD+ZJftTNs2DQmJlSNWoukiib7QMkVRWFW63/P9PwZNJt1Hy2VfVLCtxM6I2EBuGzSZhzf/RK29kd21JVTZLITpA7wYdccSr1jhmMLjx1F9QMLXtZ0m0ikrKyMmJqZtFym8H8qeAV08DM3sUokIQKW9klQ/LxUEFI5pcHA0K0r341RklhVncXbiECJ9Irkn8R4AZEXmhR3L6Gu7jNXO98lR1rV6rczGTPqs74OERIA6gAhdBH18+zAkYAinG09nSvAU9JKB9RV5APioNPwr/UzPbqclTSXcWfQ4AZKRkapL6a+ayOmavowwjujoH8NxnbXtLExOEy/2e5GBAQOPf4LgVbVNjVTaLAD0M0YQ5x/M3wYr3O6n4pEltfx4dRQ6tYbxUSn8VLALBdhfVyGSEaH38g87Df8D72Nz+SGpJKqqqtqWjBQ+DKXzQRsLQ/eBqu0FxzqSxWnBrtgZ5D/I26EILZgc3Y8VB/+C/KlgJ3bZxbTYVAJ1vhRaalmYv5395gp0kh+XBNyLoqnn6cq/g6oRVIcmmEpIXBV1FUHaIHZZdpFnzaPMXkauNZffaw5VhVahQosvfgTTx7cvv9c1MFGaiE6l4y/b/oJVtrJhzB+8uWMHNpeTTRX5zOk7GpXkvel3Lxe8zHLTciYHTeauhLu8Fodw4ppkp+ffoXo/LE0yTy03UWOVWZxtxeWSUatVhPgc2n21yeVs6VI9hkhGhOMK9LVSYhuKn9pEoyMQu92OTncCvRvFj0PpE6CNhiFdLxEBWFqzFIBxgaImTVcU4x/EWfFp/Fa4BwVYVLSHRUV70KrUOA6rdKtCIu/AML7Y5kLru4iBUx9gh/3QJmkKCpdGXcpZoWc1u74sy+y37mdF7Qo2mTexpnYzhbYCzJSz2VrEdXtXeNoGqgPZMmYLffz6kGwoYa+pjCbZidXpwF/r09E/ihZlNWQxd/9cAtWB/D789+OfIHQJBo0Pdocaa5OGj/NlHvy2kJpGmXsmBXLf5CDUandym33Y3jlGXdv2wuluRDIiHFd4nzmU79qExpkDjKKkpISkpKRjn1T8FBQ/ApoodyKiOfbqBW9ZcXD8f0aYWEnTVZ2fmI4aFb8U7kbBvY9Is0RE9mHRxuHk1bhICtaw/pbRRBqW8lrRa/xz/z9xKA4UFPr79T/q2iqVilT/VFL9U7mZm/mtcDffHdgOwGV9RpIcrGe/dT/vFr/L3yL+5ikXYLbbPNf4syBdZ3PKTiZtmYSCwpLhS9B1seHP3m5bSRNvbjBTa5WpbnRR1SBTY3VRZ5Ox2BVk5VA9pkl9nHx0UQKJwVrPseIGExsrDgDgq9Yy6GAxxZ5KJCPCcWn0gRil3ZiVwahUUFtbe+xkpOQZKH4QNBEwNAs0XXecc1v9NiSkFj+ohK5BkiTOTRrKhKg+rCrLJtNURpPLiUGrR7Em8OBPamxOuHJYAB9cHOaZYH1b/G1MC5nG7F2zKbAWkOCTcNx79TEeqlC9vuIAk6LPJNE3kekh0z3Hc81VFDeaAIj3D0an9s7b6AU7LqDCUcGjyY8yKnCUV2IQWrcqz8abG+uRgGNVo40MMjMwdQ8rKisZKyXjo9ayo6aIJcVZnl2Hx0f1wcdLr7PO0rOfndBuQiP7UVseRIAqF4srhfr6egwGw9ENS5+Hon+BJhyG7ocuvkpF1KTpPkL0/pyflA649+/4589VvLDGjFYFX1wazuz0o1+PA/0HsmX0FkxO0wmtMOlrDCfGL5CSxjoO1Ffzyf6NXJg8jACtD4qikGOu5N2sQ5NkJ0V7Zzn4+8Xv81P1T4wyjOKRlEe8EkNPVWNraFagLkDjc1KVc28cbeCZlSZK61vfHC/IV2bmmEwUYF15LuvKc49qkxQQwrmJQ9t8/+5GJCPCCQmMm4Vv2efITgdI7kq+RyUjZS9D4d2gDnVPVu3iiQi4V9KIXpHuxWyTmfBmMTvLHMQFqll/ayxxga2/lWlVWsJ14a0+fjhJkrgoeTj/3b0SBYW15TlsrDxAYkAIFkcTZdZDOxHH+QdxekTSqT6dNiuwFXBT1k34q/xZPqL14oFC29XYGnho84/N6iBpJBVPjDqnzQmJn07Fy+eEcvFnFa22+eLSaFz6ISwq2o3tiAmqEhKjwxOZ03d0j+8VAZGMCG1g1JVTbh+PTm3DYpGa7zlS/hoU3AXqYEjfB5ogb4Z6QhqcDTQpTaT5p3k7FOEErcq1MvODMhodCpcM8efzS8PbvfbK4JAYrk09nQ/3bcClyDhkV7OJhOAenrl98JROH6KRZZlxm8fhVJwsHb6UgC48BNodWZxNRxVkdCoyFmcTIbS9dyQyQIVODfYjOkfUElwxPIAZ/f2BQZwR05+NlfkUWmqQUQj1CeD0yKRmq2l6OpGMCCcsIuVCKjPz0blysDOE6upqwsPDofxNyL8N1EEHe0SOLvjUFf25kkbUpPGu2qZGvs3LYHdtCXbZRbg+gKv7n06SIbRZu/sXVfP0ijrUKnjuXA1Wn63cvq6OYB8/ZiUMZlxk883MlpfsY3HRXursVuICgrm0z0iSDcevRwNwWkQyyYYwVpTu44/yAzQc7LZPCghhUnQ/xkQkeWXi6hV7rqC4qZi58XOZFDyp0+8vnJgqi5OLPi1n1YEmjtwKTwKCfVW8ePah17deo2VSdN9OjbGrEcmIcMJ0AQkESD9hVRJBgoqKCsKVHyD/FlAHwpAs0J7Ym31X4KlJEyJW0nhLg8POs9sX0z8oktsHT8Gg1VNhrcdfc2hlSKNdZtKbJWwpsRNtUPPLdUbezfmdSUH9uH7AODJNZXy8bwOBOj2Dgt174GyqzOfr3K1c3nc0yYYwlpZk8squ5Tw28hyMuhNbYh7ha+CSlJFckjISu8uJWqVC7cX9RL4u/5rPyz9nkP8gnu//vNfiEFonyzJ3/1rDK2vNuBQYl+DDN3MieXK5iQUb3McU4K0Lwwn29c4qrK5KJCNCmwQHBWI2RaFXVWCzheI68A/UKiMMyQRdhLfDa5Ot9VuRkBgQMMDbofRai4r2EOzjxzX9T/ccO3yXyQ0FNqa/W4rFrnDeQD++vSKC7/K3E6YP4OIU986n0X6BZNdVsqQ4y5OMLCnOZEJUH8ZHuZfizuk7hl01Jawrz+Gs+LZvcOetFTN/qrBXMGf3HPQqPWtGrPFqLELLvtlp4fpvK6mzKUQFqPn00gjO6OPeG+TxvwTzSYaFOpvMhYP8uGBQ7xl+OVEiGRHaJCRxNmW1P6F21YAUQa3qbMKGvgK6KG+H1mbZ1myM6q4/ybYn21FdRFpwNG/uXc3+ugqCdH5Mju7HxOi+PL60lkeX1KKS4O0LwrhhjPv/Va65igFBzV9vacHRfJW7FQCn7KKgvoaZcYfmAqkkiQFBUeSaqzrvybWj8ZvHY1fs/Dz0Z4J0Qd4ORzhMTrWdCz4uZ2e5A50anvxLMA+cEcyP+Tu4efUuT7vh/cPIyEng9fNaX2K+pbKAhfk7qLZZiPA1cGHyMIaExHoeVxSFH/N3srosG6vLQR9jGJf3HU2kb/d/HxPJiNAmKo0Go2oHVfJ09Eo2xZp5hOnaWKumi6i0V4pKvV5WabOwsnQ/0+MGMDN+EAfqa/g8ewv/XOhkU76OcH8Va2+OoV/4oWEbs8N21FCLUafH5nJgdzlpdNqRUTC00KbMaj7hOSqHyzKV87/crZQ2dswclWO5Ze8tZFuzuTHmRmaFzTrl6wntw+6UuebrSr7Y3oACnDPAl89mRxKgPzSUF+MXyF1DznB/cxqoAIOu5Y/dHHMl72Su5fzkdIaGxLKx4gBv7FnNA8PP8tRHWlS0l2UlWVyTOpYwvT8/HNjBK7uW8+jIs722+V57EcmI0DbVXxHlfJlK1QxUkoLTJWG1WvH17V5bFTc6G8VKmi5AARIDQrggaRgAVXV+/G+1nep6LTP7+/LDlZFoNO03T0OW5ePOUTlSlc3Cf3evYFJ0x85RacmvVb/yZsmbpOhTeGvgWyd9HeH4dteW8GP+rhYfsziamn3/6joT9/5ai82p0C9Uw9dzIhkafXRJAJUkEXiC27gvLc5iUEg0Mw726J2XlM5eUxkrSvYxp98YFEVhaXEmsxIGMyw0DoBrU8dy9x/fklFVyGgvLDNvTyIZEU5czbeQcyk6SU8AO3AoYYBCcXExfft2r5ngy0zLALGSxtsCdXqi/dybzv1nZS33/VaLRq3lorHZ/O/clicWG7X6Ztuxg3t7dr1ai06tQSVJqJCob6GN1eU45hyVlqws3d/pc1QATHYTF+68EJ2kY+2otSd1DeH4FEVhYf4Ofi3c3Wqb97PW8X9DplNY7cMln5VTUOfCXyfx7kVhXDeq9SGSCms99274Dq1KRYohjAuShrW6X0lufRXTY5vPX0sLjmZ7dREAVbYGzA4bAw8bovTV6Eg2hJFbXyWSEaGXqP0Bsv8Gkh6G7CTowFKKGhLQYMFs9t4Kg5O1onYFAGeGnOndQHq5PsZwShrMTHmrmJV5TYT6qXj47Fqs0pELIg9JMYaxq6ak2bG9pjJSjO4hEY1KTYIhhL2mcoaFxQMgKwqZpjJcsszQkNgW56i0xltzVCZtnYRNtvHl4C+J8ul+c7K6i9VlOc0SkSCdL4kBoTQ6m8gxVyGjUNHgYPybBzhQaUAlwfWjDCw4L/SYvXbJhjCu6T+WSD8DdXYrP+Xv4tkdi3lkxF/Ra7RHtTfbbRi1RwwtavXUHUyqzQ6r+1gLw491RyTe3ZFIRoTjq/0Z9l8Akg8M3g76PoT3jaYsYzVaqRqnkkptbS3BwcHejvSEbTW7V9KkBYhhGm9K1PXhkZ9KKam2MSVFw5Nnu/giN5sr+o3xtPkuLwOTvZFrU92VlSdH92NFyT6+ydvG+MgUMk3lbKks4LbBkz3nTI8dwAdZ60kyhJBkCGVpcRZ22UmT03nUHJUvc7egUakYe8QckD+d6hyVk3HP/nvY2bCT2RGzuSTykpO6hnB8Llnm54Kdnu//ljycabGpqA4u4a6y1nPhl5ms2ReMokj0j5BZcm0S8UHH/+gcHHJoLl2cfzDJhjDu27iQzVUFTDjYgyYcIpIR4dhMv8L+c0HSwqCt4Oue8KnS+GFU7cUkDwdJoaysrFslI2Iljfe9tMbEP39pRCUZuGRsPmEhFfxeHMAlKSM5LSLZ067ObqWmqdHzfZg+gNsGTeF/uVtZVpxFkI8fV/Y/zTNkAjA6PBGLw8YP+Tsw223EBQRzx6CpPLtjCQmHzVFJCAihpNHEytL9rSYjnW1N7RqeK3iOWF0snw36zNvh9Gg7a0sw2d09DkNDYvlL3EDPY3sr7FzymYld5aHotQ6mpGczOlEhPujkhqT9NDoifQ1UWutbfNyo02N2HDG06LAReDDJNWrdc0/MdluzeShmu434gKCTiqkrEclIL3JkASg4ThGousWw7+yDicgW8BvY7OHQ6HRqSgLwoYzGxqjm28N3cRX2Cvr6da95Lj2F0ykz68MyFmfbCNKrWHlTLEOPMUxyTerR83pSgyJ5cMTMY95nakwqU2NSmx07fI7Kn6J9A9lWVdjqdU5ljkqgtm2TVxudjczcPhONpGHtqLXd5vepuyq01Hr+ffrBBNjmkBm/oITtpXbiA9U8c1YwtoANFDXWUW4Fh+w6qZUrNpeDSpuF01uZ0JpiCCPTVNZs3sje2jJSDq7ICtP7Y9TqyTSVER/g/sPP6nSQV1/F5B6we6tIRnqJlgpAwTGKQNUtg6yzQNJA2ibwO3oSnjF6Kn7FH+PCFyQoKysjJqbrL/O1Oq1iJY2XZFXambCghKpGmQmJPiy5Phofbed94PYxhlN+xNBJudV8zBogpzJHZWpM24owTt02FYvLwjsD3iHRN7FN5wptpyiK59+ag4mfCthWYufcgX58eXkkPhqJZ7cfSj7kw845lq9ztzI0JJYQvT91dis/5u9EdbD4HbgnxQbp/LggeRgA02JTeW7HEhYX7WVISAybKvPJt9R4hiwlSWJa7AB+KdxFhK+BMH0AC/N3EOTj63nddWciGeklWioABa0UgTKvgqwzQVJD2gbwH9LqdY36Wsqa0gAH1dXV3SIZWW5yVzo93Xj6cVoK7emNP+q4/YdqZAWePDOYB6Z2/rDe9NgB/Gf77/xSsJtR4QkcqK9mdVnHzVE5ci+SY3ki9wk2mjcyK3QW18de335PWmhVuO+hlVTbq4tJD42jqN6FAtx6uhEfjUSd3UpuvXsislGrR3eCvSK1TY28k7WOBkcTAVof+hrDmTfsTM/copqmRqTDKtf0MYZzQ+p4FuZv5/sD24nwNXBr2kTPHiMAM+IGYnc5+WT/RhqddvoGhnPHoKndfo8REMmIcKT6tZB5BkgqGLgO/Icds3lk30up2LUHnVSDzZ6I3W5Hp2t9z4auYHmtOxmZESpq0nQGWZY596Nyfs6yYvSRWHJ9NKPjT37vjVORZAjl1oGT+O5ABj8X7CRM37FzVIwnuMfEVvNWHsl7hHBtOAuHLmy/Jywc0/CweL7I2YzN5WR9RS6jwxMpqnbPJesbqsUhu/gse5OnN2RcVArSMVZ6He7GgROO+fg/h04/6tjI8ARGhre+Q6skSZybNJRzk4aeUAzdiUhGhEPq18PeKYAEA9dCwKjjnqLRR2CQvqJBSQUUSkpKSEpK6uBAT82fNWkGHjEHRmh/OdV2xi8opdziYkycjuU3xuCn8+48iKGhsQwNjW318faco3Ii7LKdadumISGxcsRKNCrxttxZ9GotU2L681vhHmRF4aVdyygr6Y9EMDvMe3knJ9eTmPqoNUyOFjs2dxQxO0pws2yCvQdLkg9cBQGjT/jUkLAonFIIaslCbW3t8U/wsuxG90oaMTmwY72/2Uzq80VUWFw8dEYQG/4R5/VEpCs6a9tZmJwmnu/3PAMDRILc2c5NGEr6wfovigK/7DSiAL8U7PYkIlqVmpsGTDjm3CLh1Ih3hl7AIbtYVpzV6uM11ath73hAgYHLwdC2XUmD4y9Er+ShUWqQZZn6+paXrnUVFY4KYvWt/2UsnBpZlrnokzKu+6YKvVZi9c3RPP6XEG+H1SW9XPAyy03LmRw0mbsS7vJ2OL2SWqXi5rSJXJCUTk5hPE6XBpAorjYiAYOCo7l76PRm+4YI7U/0B/ZwdpeTV3evYF9dRYuPx3KAwWUPo0ggpS4Bw7HHOVsiqVQYtIVUOsYBCqWlpRgMhlOMvGPYnDZsso00P7GSpiMUmJyMe6OYYrOL4dE6Vt0U06xwmHDIXste5u6fS5AmiN+H/+7tcHo1taQiQdeP1XuKPMdUDQN5clbEccsFCO1DJCM93Dd5GZ5ERIXEoOBokgyhNDjtlFWv5R/KI6iQedVxP1f4jOZk/36NSDqbqv2VaKjFYlF12T1HPCtpAsVKmvb26bZ6rvm6EqcM90wM5JlZrVfB7e2cspPJWyejoLB0+FJ0qq496bunc7gULv+yAvmwVbsrsyWMGjEs01lEMtKDNTiaWFueA7jHPP85dNqhkuaOCpSaeSi4eNn+LzKVNFaW7veseW8rfWA/AliGVUlEQaG6uprw8PB2eibtR9SkaX+yLHPFV5V8vr0BX63E79dFMbVP96ri3Nku2HEBlY5KHkt+jBHGEd4Op9d7anktO0rtHL6DiMWusDjbyl8H+Hktrt6k6/3pKrSbLVUFOGQXABOj+hxKROzlkDkdSaWlMWUh+0kHYF157indL8ioxSmFAw4qKloeFvK2LfVbkJAY5H9ylVSF5krMTpKfLeTz7Q0MjtRSMi9eJCLH8X7x+/xU/ROjDKN4OOVhb4fT620qtPHEMhNHbmWmUcEX2y1eiak3Ej0jPViVrcHz7yEHZ4vjNMH25INbvK8nwDeNxIDfya2vwuywnfRWxwBhKVdQlrEYCRmbTYvT6USj6Vovsf2N+zGoDV1yCKm7+WZXA5d9UY7DBXeMM/LyOWHeDqnLy7fmc1PWTfir/Vk+Yrm3w+kV7t+4kOqmhqOOT47uxwWJI7nsiwpa2jnEKcMXO+tITN7M7L7ph95Dce/c+mP+TlaXZWN1OehjDOPyvqOJ9BX1rk5W1/qkENqV+rDNeaxOh/sftT+BYoXk98DXPYnT5nJ42qlOcEOflqg0OozqfdS43LtZlpaWEh/ftbYprnBUkKxPPn5DoVWyLHP9t1V8sMWCXiPx47URzOgvxtaPR5Zlxm8Zj1Nxsix9GQEaMTGyM9w3bAbyYf0eJQ11vLRrGSPDEnh0SS05Nc5Wz3W61CiNCbyxZzUPDD/LsxvqoqK9LCvJ4prUsYTp/fnhwA5e2bWcR0ee3SN2Q/UG8edhD5ZoODSBcH1FLihOKH0Cgs6GsEsBOFBfTUljHQDx/sGopVN7SYTFnoaCDhUWampqTula7c2zkkbUpDlpFRYn/Z8v4oMtFlLDtBTfFy8SkRN0xZ4rKG4q5u6Eu5kYPNHb4fQaBp2eQJ2v52tHTTHh+gD6B0YQ4a8mOViDptnbnoJaUjy9JXll4SQEBLOiZJ/7UUVhaXEmsxIGMyw0jjj/YK5NHYupyUrGMQouCscmkpEebEhIDEEHt6PeWVNCxr5nwLYPYh8F3H8hvJe1ztN+UjtUfgyIGIc/u1ErjTidTqxW6ylfs72srFsJwGmBp3k5ku7pp70NJDxdQE6Nk5vHGMj8ZzwhfqJz9UR8Xf41n5d/ziD/QTzb71lvh9NrOWUXGyoOMC6yD5Ik8c9JQeTem4DtiWTy7o1Hp4bIoAYuHCZzXpofA8K1BOpVpAVHe+rTVNkaMDtsDAyK8lzXV6Mj2RDmaSO0nXgn6cHUkopzE4fy0f4NpEhZDDU9TiVRfFdgpc6+mGxzpadtpK/RU0L7VAX6NlBiiwBFobi4mL59u0Z562U1ywCYESJq0rTVrd9XsmBDPTo1LLwyknPTRG/IiSprKmPO7jnoVXrWjFjj7XB6tYzqIqxOO+Mim7/XqVUSCYFq7C5IjKjh7ilJjIk4lGysKKmlzm4DwOxw/4Fl1DWvr2TU6T1thLYTyUgPNz4yhaDadxho/g8qCQpc8WypKmjWJsLXwB2Dp6BTt8/LIbzPFZTv2oyEjNncdTrf/qxJM9h/sLdD6TZqGp2Me6OUrCoHKcEa1v89hogA8bbRFhO2TMCu2Pll6C8E6YK8HU6vtrYsh0Eh0QT5HL1cd3+1e+5IoL9IKLxBvKv0ZM5ayL2WQfULQQIFKFUOVYQM9fFncnQ/JkX3w1ejbbfbavSBGKTdmJVhKIpCbW0twcGdXy7+SPutYiVNWyza18D5H1dgcypcPSKA9y4KEz+7Nrpl7y3kWHO4MeZGZoYdu9Ce0LGqbQ3sNZVzS1rL83VW57mTkEijgtnRPCExO2wEHuwJMWrdQ99mu43Aw6oym+024gOCOiDy3uGk3llee+01kpKS0Ov1nHbaaWzcuPGEzvviiy+QJInzzz//ZG4rtIVlI+waCqafPIck1MyIH8STo87lP2PO56nR5zIjPq1dE5E/hUakIEv+oDgoKytr9+ufjHJ7OTE+or7Eifi/n6o46/1yXLLC/y6P4IOLI0Qi0ka/Vv3KmyVvkqJP4a2Bb3k7nF5vXXkOBq0PQ1qpMbO1pAmA4VEGMk3N37P21paRcnCfpjC9P0atvlkbq9NBXn2Vp43Qdm1+d/nyyy+ZO3cujzzyCFu3biU9PZ0ZM2Ycd5OrAwcOcPfddzNxophF3qEUBUpfgD3jwF4KuA57UEKrUhPuG0CQjx/SKSzjPZ6g+LPxVfajwUxjYyOyLHfYvU6EXbaLlTQnwGyTGfJSIS+tNZMQqObAvxL42xCxBLWtTHYTF+68EJ2kY+2otd4Op9eTFYV15bmMjUw5asXg+1nr+C4vg70VDlQSnJeSyu7aUhYX7aWssY4f83eQb6lhSkx/ACRJYlrsAH4p3MX26iKKG0y8v289QT6+DAvrWlsZdCdtHqZ54YUXuPHGG7n22msBWLBgAT///DPvvfce8+bNa/Ecl8vFnDlzeOyxx1i9ejUmk+mUghaOVmNroMFeS2jR9fhZWim6JUnQ4vY+HcOgK6PC3geA8vJyoqOjO+3eR1pZe3AljVGspGnNilwrf/2gjEaHwqVD/fl0drjoDTlCja0Bi7PJ832AxocQ/dGTeSdunYhNtvHV4K+I8ok66nGhc2WayqhpamR8ZMpRj9U0NSIhkW9y4q+T6GMM54bU8SzM3873B7YT4Wvg1rSJnj1GAGbEDcTucvLJ/o00Ou30DQznjkFTxR4jp6BNyYjdbmfLli3cd999nmMqlYrp06ezfv36Vs97/PHHiYiI4Prrr2f16tXHvU9TUxNNTYd+4c1mc1vC7HVqbA08tPlHosnlAe3vyEiopCM3NwaO2vC4Y0WmnEdVZjEoUFVV5dVkZFmteyXNX0L+4rUYurJ//VrNM6vq0Kjgk0vCmTO8a1Zd9qY/f8+cyqFePo2k4olR5zRLSO7Zfw+7GnZxacSlXBx5sTdCFY6QFhzNmxMvb/Gxfw6dDsDtDXlEBLiTiZHhCYwMT2ixPbh7R85NGsq5SUPbP9heqk3JSFVVFS6Xi8jIyGbHIyMjyczMbPGcNWvW8O6775KRkXHC95k/fz6PPfZYW0LrtX7M38FPBbsAKCSJxxz/4Wz1t4xUbQBJQjoqAZHYUlnAwvwdVNssRPgauDB5WIdsdawLSCZA+pUGJQ17UxN2ux2dzjvVSf+sSZMekO6V+3dVFpvMpLdK2FZqJ8agZt3fY0gMav85RD2BxdnULBEBcCoyFmcTIbiTkdW1q3mu4DlidbF8OuhTb4QpnKQGu0JikFjT4S0d2gdbX1/PlVdeydtvv01Y2IlP7Lnvvvuoq6vzfBUWil3tjiVcf2hMv1SJ423nHTzleJxDPSEHf8EUqG5q4J3MtYyPSuHBETMZFhrHG3tWU9xg8lzjz62O5/Qbw7xhZ+Kj0vDKruWeonttERxkwCW5/8ouKSk5yWd46vY17iNAHSCGHQ6zvsBG1Px8tpXauSDNj8J58SIROQWNzkZmbp+JRtKwdtRa8VrrRorqnCjAwAjv/LEktDEZCQsLQ61WU15e3ux4eXk5UVFHj4vm5ORw4MABzjnnHDQaDRqNho8++ogffvgBjUZDTk5Oi/fx8fHBaDQ2+xJa19JE1DNUv7tnh8S/AMHnHjzqJNdczaCQaGbEpRHtF8h5SekdutVxSOJl6JQi1NRTW1t78k/yFFXYK4j1iT1+w17i0SU1jH+jBJtD4d2Lwvj2yijx4XmKpmydQoOrgTdT3yTRN9Hb4QhtsPqAeyOzkTEiGfGWNr376HQ6Ro4cydKlSz3HZFlm6dKljB079qj2AwYMYOfOnWRkZHi+zj33XKZOnUpGRkaXK6LWXdXYmlek1GLjNPU6nJoYiP4/6PcNDN4O4Teywd6PAUHNE8eO3OpYpdFg1OTiwg9Zlqmvrz+JZ3hq7LIdq2xlgN+ATr93V2O1y5z+ehGPLTUR7q8i659xXDdKJPun6vHcx9lUv4m/hv6V62Kv83Y4QhttKnLPUZyYpD9OS6GjtHmAbO7cuVx99dWMGjWKMWPG8NJLL9HQ0OBZXXPVVVcRGxvL/Pnz0ev1DB7cfLfLoKAggKOOC23X4Ggiy1R+1Dj2eNVKVMhs8b+HUX8e9BsKyW+xp/gLxmiP2MZYq+/QrY7D46dQlecAxUVpaSkGQ+dOjlxd65403dtr0mwusjHtnVLMTQqzUn1ZeEUkGo3oDTlVuxq282jeo4Rrw/l+6PfeDkc4CXvK3ZXL+4SKOSPe0uaf/OzZs6msrOThhx+mrKyMYcOG8dtvv3kmtRYUFIju3k7Q4LDz3I4lnoq7f9Ji40zNz+QrSbxdEUG9IYupMaleitLNL3Q4AXnv0kgfLBYNsix36mtkaa27J683r6SZv7yWB36vRZLg9fNCufX0QG+H1K0UN5j4MX/nUcedspNL95yPhMTKESvRqMSHWXeUV+vETyuJzy4vOqnfnNtuu43bbrutxcdWrFhxzHM/+OCDk7mlcIQvczd7EhE/jY6xEUnE+gWRXPl/hFhreMf5D3e7nK30D4z0rJE36vRe2eo40N+JpdEAikJ1dTXh4eEnfa222lK/BYDhAcM77Z5dhd0pM+3dUtYcaCLUT8Xqm2IYGCnGxdtiS2UB72WtO6oHEuBX19PUK2b+FfsYAwMGeiE6oT2UW1yE+olExJvET78bqrNb2VSZD4CvWsv9w2ZwSZ9RjI+MJ9y+npXyX9AY3TvdKiieyakAKYYwr2x1HNHvSjRKNZLSdNzdetvbvsZ9vbImzY7SJiKfKmDNgSam99VTdl+CSETaKNdcxTtZaz2JiI9Kw8CgKAYERrLbtYhSZS/R0kAaqlMpPaKXUug+LE0y8YGiV8ubete7cw+xtaoAWXEv2430NVDb1EiVzUJO/tu8ZruRH7mOq/qdjs/BLuO15bkoB9tPi/XOVscqjR9G1R4AbDYrTqfzVH4EbdIba9K8sNrE8FeLMTfJvPjXEBZfHyPmh5yEnwt2en7XTo9I5tnTL+SuIWcwJ3UI612f4CsFMFM9D7vsYlHhHi9HK5yMmkYnLgVSw0Wi7k0iFeyGTHar5986tYZ3stbR4GgiQIG+Wi3z0mcR7htAoiGEfXUVuBSZJtmJXq316lbHoVGDqSn1AaC0tLRTVlP1tpU0TqfMjA/KWJZjI0ivYtVN0QyJ9vF2WN1Sta2B3bWlAIT4+HFVv9NQq1TIiszVe67GV+XLsmHL+Twzj0ang81VBVzSZyR+GvGh1p2sOeBeSTNCLOv1KpGMdEO6w5KCcZEpjI1MgZrvIPt26PsN+BpQFKVZ0nJ4IuGtrY6NMdPxK/kEG0nU1NR0SjKyxrQG6B01afaW25n4VgnVjTKTknxYfH00OtEbckxP5D2BS3HR368/qX6p9Pfrj0HjXu1V1FDr2TZwdHgSapWK/Y37uXPfnfxW8xu/pP/CmOBRZIY6WVuei0N2UdZoJsUoKrf+f3v3Hd9WdT5+/HO1JVvyiPce8cjemwxIaEKgFCijhbLK+EKhtNCyCoVOAgVaStnQlv6AFgplEwIZJGTvndiO4z3kbcu2tu79/SHHibOdxJZkn/fr5Vfiq6Oro2tbenTOeZ4TSjZW+tfQzRBpvQElgpEQNNQS1/3/VbUHmBKXiarhdQibDNFXAFDQWke9w1/TI8scc8xOlYFi0Tdjdw9D9nhwOBwYjcZT3+ksLG/2Z9LMi57Xp48TaC+tb+OnnzWhKLBofhQPzYkKdJeCnqzIPFX+FJ2+nnV6YrQx5JvyiVOnUe0FDy5am7/ht/Wb2NWxCzVqJlsmc1HMRYB/dPLIcwqhZU9XWu+YBFF9OJBEMBKCciPiSDRaqHXYKG1v4sOCj/h++xKkzL+jKAp7W2r5V9GG7vazE3MC2Nue4odeTf3eImSMVFdXM3To0D59vEOZNBPME/r0cQLF65W59K06vixyYNFLrLgtkQnJ4hPe6VBJKi6NuZT369/Hqxxew9ToaWRN25oebXe0qvlB/DU8nvk486PnY1D7r7GsKOxuru5uN+SIrRmE0FDS7EGvYdAtcA82IhgJQZIkcWXWeF7Yuwo1bua13YUiKTxdGUVL6Sc0u+zdbbPMMUyKDZ7S1BpjAmbpA2zKeNra+j77YCDvSXOgwc15r9ZQ3ykzLU3PilsSMegG3vPsS1fFXcV/6v5z0jbhxHC5+nf8OHouc+Jyu48risIXFbtp7KqAPDwygSi9qU/7K5x7te0+oo1ntx5OOHsiGAlRI6OTuG3oCCLLryRS1YpPUXGw096jTbYlhp8Mn406yN6Io4fE0dbkX1TZ0tJCVFTfTSlY3VZSDQNv24E3Ntm44+NGZAV+MzeKx+eJaZnecstuSh2l+Pe2Pnp3a1ChYkLYNEa5b0Uj6fjPwS1sbaxgfEwqPkVhc0M5Ze1N3e0vTBF1RkJRm1NmbKJYvBpoIhgJVa4KJjRcjaIq7jrg3yxPI6nIssQwOzGHcTGpQbNW5EiRKVegb/wUF8lYrdY+C0a8snfAZdLIsswVb9fzyX474TqJr29JZFqamJY5XU6vk+ernudf1n9R0FmAzPHXeKhQMTd6Lp+M+oTFlQV8XbUfgKK2eorajq2Tc0XmWIZHJfZp34Vzz+6W8cqQGyPWiwSaCEZCUecOKPwOeJuRuj7RqSUfL0/7HpLadNxdfIOJf/O8chq8qdjtHX1WHv7QvP9ky+Rzfu5AKG/xMO3lGmrbfUxI1rHqtiTC9MEXbAabDm8Hz1Y8yzvWdyh2FKOgoEbNOPM4bk++nTBVGD/a96Pu9ipUzI+ez0djPkKv0nNFxlgSTREsqdxLnaPnRo8pYZFcnDaS8TEnzk4Tgtf6Cn9a7xgxMhJwIhgJNa1fQfHlILsBX4+bVL5m0IQFpl+9FJexgMbiNhS01NXVkZh47j9VHsqkGQh70ry9vZ2bP2jAK8NDsyNYtGBIoLsU1JrdzTxd8TTv1b1HqbMUAK2kZaplKj9J+QnXxl/bHQC3e9vRSlo8igcVKi6OuZj3R72PXuWfSpQkyZ9CH5dJsa2BOocNCYmksAgywocEffAvnNiGrrTe6elidDHQRDASShr+AaW3AUrX11G8jaAPjfURhshhhPMq7coYGurr+yQY2WLbAsBE88RTtAxesizzw3cb+O/uTkxaiWW3JDA7q2/ToUOV1WXlqfKn+F/9/6h0VQKgl/TMjpzNT1N/yuUxlx93BM6sMTN/yHw+b/ycS2Mv5b2R76FTHftJWZIkciLiyImIO+Y2ITTtrHUDMDlFFAYMNBGMBKnPynfxecWe7u8nqtZzm/aFk96nqGkfb++vpsnZQZzRzBWZYxkVndx9u6IofFa+m9XWYhw+D9mWGK4dOol4o6XPnsfJRFrUtLdr8XjcuN1udLpzO1Qa6pk0VW1epr9cTWWbj9EJWlb/XzIWQ2g+l75S4axgUekiPm78GKvbv5+SUWXkwugLuTf13u5aIKfyeObjjA0fy2OZj6FVifUDg0VxkwetGlEcMAiIYCSIJZki+PmoCwBQObLxVaxH7diK/8d27N4uqys3MCP9TkZHJ7OpvoyX963mkXELuku9f1W1nxU1hdyUN40YQxiflu3i+T3f8JsJl5x1qfczEZN1A7U7VuAlhpqaGjIyMs7p+a1uK8n65FM3DEL/3dXBj96rxyPDvedZ+PPFoqrnIQfsB3ii7Am+aPyCBk8DAOHqcC4ecjEPpD/ArKhZvT7nRMtEJlpCdwRNODM1Nh+RIsAPCiIYCWIqSSJC1zUkr5sCo7b4F6/WvwINr3a1kvDvzSuREyYxK2U4AN/LGMP+Visra4q4LmcyiqKwvLqAhWkjGTskBYCb86bxyw0fsqOxkklxGf399FBpdFjU+2n2zaClufGcBiNe2YtdtpMfFlqZNLIsc9MHjby1vQODRuKLm+K5MEfUrtjVvotFZYv4qvkrWrwtAESoI/h+7Pd5MP1BJkVMOuNzt7jsfFi6g70tNbhlH7GGcG7MnUqG+cTrcgpb63i/ZBu19jai9CYWpo1kenxWjzbf1BSxtGo/bW4HKeFR/CB7AplnsfO1cO61OHzkiw3ygoIIRoJYvaOdBzZ+hFalIsscw+UZY4kOGwvmmf5gxDIf3JXg3IeEQoq+54LW4VGJ7GyqAqDR2YnN42RYZEL37UaNjkxzDCXtjQEJRgBikyfTXCEhKxLt7e2YzeZzct51beuA0MqkqWv3Mu3lGkpbvOTHall7RyLRpsH7J7qxbSNPlT3F8pbl2Hw2AKI10Vwbfy0Ppz/MSPPIs36MTo+bp3cuJTcynp+OnINZa6De0U7YSTa7a3R28MLelcxKzOGW/OkUtFp5q2gjEToDI6L8u0Nvbijng5JtXDt0EpnmGJbXFPD8nm/47YTvYtGJxZLBwOuVcftg6JDB+zcWTMRPIUhlmmO4KXca8SYzbW4Hn5fv4eldS3l8/MUYav4AqCH3Y5D00LmRVbsfIzbs/B7nsGgNtLn9q8VtHv+meUe/EFp0h9sEQnjcDEwVb2FX8qmtrT1nwciylmVA6OxJ88m+Tq7+dx1uH9w5xcxLl8UGuksBsbJlJU+XP82q1lXde8bEaeP4ftz3eTjjYXJM53Zrg6+q9hGlN3FT7tTuYzGnKOm+qvYAMYZwrsoaD0CiKYLitgaWVRd2ByPLqgs4LyGbGQnZAFw3dDJ7mmtYV3eQBakjzulzEM7M1hr/4tVRCWLxajAQwUiQGhmd1P3/lLAoMs0xPLzpE7ZbtzDNWQDm80HVFViET+U934+5yRCac94RRht2p4r29uZzVnPkUCbNZHPwj4zc/mEDr29uR6+Gz2+I5+JhoZGefa4sblzMXyr+wtq2tThkf9CcqEvkhoQbeCjjIdIMfVfDY1dTFcOjEnl1/2oOtNUTqTMxOzGHmYkn3jOpxNZI/hEjjOAfhfxvyTYAvLKPivZmLuqaMgX/lGt+ZAIltsa+eSJCr60r938Im5IqpmmCgQhGQoRJoyPeaMbY8KL/QOqfetxu0RmweXqOcNg8TiK6RkIsWv/aE5vbeXgdStf3qeGRfdfx0xCXfS11e3YjS2E0NTURG3v2owKFnYWEqcKCOpOmqdPL9FdqKWr0MHSIhnV3JBEbPvD/JGVZ5sOGD/lb1d/Y2LYRl+IvPJWqT+XKuCt5IP0BEvQJpzjLudHg7GBV7QHmpeRzUeoIytqbea9kKxqVimlHrQE5xOZxHneE0enz4PZ5sXvdyCiYj9PG6rD12XMRemdHV1rvjHSRKh8MBv4r3wDh9HlocLYzVP0FaJMgvOcoSJY5hoJWK/OSDy/Y3N9iJatrwVyMIQyL1kBBq5XUcH/5dYfXQ2l7I7NP8imwP2gMUViknbQqU7Faq89JMBLsmTRfFnZyxdv1OL0KN08w848rB/a0jCzLvF33Ni9VvcS29m14FP+27VmGLK6Jv4Zfpv2SaF10v/dLAdLDo7k8YywAaeHR1NhbWVV74ITBiDAwFDZ6UEuIdPkgIYKRIPVByTZGRycTbQijze3gs/LdZCn7CKcV4h/kn4XriNSZuDxzLABzk/N4ZtcyllbtZ1R0EpsbyinvaOZHOf5pCkmSmJucz+LKPcQZzcQYwvmkfBeReiNjYwJfKG1IbDqtDSrcLhderxeN5sx/NQ9l0uSZ8s5hD8+dn37ayAvrbejU8L/r4rli5MCclvHKXv5e83deq36NnR078eFDQiLHlMP1Cdfz89SfE645+fqMvhahM5BoiuhxLNEYwfbGyhPex6I1YDtqnZXN7cSg1qJTa1BJEiok2o/TJkIrFq8Gi6o2rwhEgogIRoJUi8vOG4Xr6PS4CNfqGWqJ5Xrj2+DRQMIvaW5cicThMtTZllhuzZvBJ+U7+bhsJ3FGM3cOn9ldYwRgfsow3D4vbx/YhN3rZmhELPeMOD8gNUaOFpl2Kfr6D3FJ6dTW1pKaeuYB0oa2DQBMspx5umdfaLV7mfFqLfvqPaRHalh/ZxKJloH1J+j0Onmp+iXerH2TvZ17kZFRoWJ42HBuSryJu5LvwqAJnjfkbEssdUdNndQ5bETrTxwgZlli2NNc0+PY/lYrWRb/KKRGpSbNHM3+1rruQF9WFAparZyflHuOn4FwpprtMhlRA+vvL5SJn0SQum3YeT0POAphdzFELASVhl+MPjZLZEJsGhNiT7zYT5IkLs0YzaUZo891d8+JCF0F9e40mhuqzioYCcZMmhUHHVzyLysOj8K1Y8J46+rYoF7P0ht2r52/VP6Ft61vU2gv7N6Ibkz4GG5NvpVbk249bnn1YDAvOZ+ndn7N4oq9TIxNo6y9idXW4u4RRYCPSnfQ6rZzc950AGYn5rCypoj/lW5nRnwWBa11bG2o4O6Rs3uc983C9WSYo8kwD2F5dSFu2XtMLRIhMGRZxuFVyIwWb4HBQvwkQkXFL/3/pj0b2H70ofis79FQUIdX1uBwODAaz2xh2WbbZgCmWqaeomX/uH9xE8+sbkOrgn//IJYfjjk36cuB1Opu5dnKZ/lP3X8ocZSgoKCRNEyyTOKOpDu4MfHGkAi2MsxDuHPYLD4q28EXFbuJMYRzddYEpsRldrdpcztodtm7v48xhHP3iDm8X7KNFdWFROpNXJ87pTutF2BSbDodHieflu/C5naSEh7FPSPOx6ITiyWDwb56/5qlkfHBGSQPRiIYCQWyF2xfgS4DjKFVUbQ3dOGZhLOMdsZRVVlBTu6ZrfkotAdHJk2HU2bmazXsqHWTbFGz7s5k0iJD90+u3l3P0+VP8379+5Q7ywHQSTpmRMzg7pS7uSruqoBf8zMxekgyo4eceLHzTXnTjjmWFxnPo+NPvu/N+Ul5nJ8UnOuWBru15f4Mrklig7ygEbqvjIOJ9VlQPJB4f6B70ueiIw20t0l0tDcAZ/ZCbnVZSdSf+12Ae2NNmYMF/7DS6VH4/kgT//1hXEi+UVc5q3iq/Ck+rP+QGrd/nYRBZeCCqAv4WcrPuDTu0gD3UBB6b1uNPxiZlRk865cGOxGMhIK65/2VVmPvCHRP+lx0xg+p3rECrzSElpYWoqKienV/r+ylU+4MaCbNo1838cQ3bahU8M/vx3DTxMDsinymDtoPsqhsEZ81fka9px6AMFUYC6IX8Mu0XzJ3yNwA91AQzk5BvRuVBHGDoK5PqBA/iWDXuQ08NRB9FYTgJ+veUmk0RKj30eQ7j9qqEqKiJvTq/hvbNgKByaSxu2XmvF7D5io3CeFq1t2ZSGZ0aMxJ7+3Yy6LyRSxpXEKTtwkAs9rMZTGX8UDGA0yLOHaqQhBCVUWrj3CddOqGQr8RwUiwq+iamkl9JrD96EdxqbNoKvPhdHl6XR7+UCbN3Kj+/fS+udLJ3L/X0u5SuCTfyCfXxwf9tMw22zYWlS1iWcsyWr2tAERqIrkm7hoeyniIseaxAe2fIPSVBruPRHPgSxoIh4lgJJjJTmhfBYY80Pfd/hzBxhQzHmPZuzikHOrq6khMPP31H92ZNBH9l0nzh+UtPLasBZUEr14Ww+1TgndaZm3LWv5U8Se+afmGdl87ADHaGP8+MOkPMSx8WIB7KAh9z+5WSA/hxeQDkfhpBLPqPwA+SHo00D3pd1GmVhwOaKgt6lUwUmgvxKQyoVH1/a+20y0z7x+1rC13EWtSsfqOJPJig29aZmnTUp6teJbVrauxy/4U1QRdAj+I/wEPpz9MpinzFGcQhIGjvMWDAgyPC76/1cFMBCPBrOE1UJkg5keB7km/i8+9AeuOrXgUI263G53u9F44al21/ZJJs6PGxZzXa2hzKnwnx8AXNySg0QTHtIwsy3zW+Bl/rfwr623rccr+suTJ+mRuib2Fh9IfIsmQdIqzCMLAtLrM//cwUaT1BhURjAQr27fgbYCYmwLdk4BQaUyES3uxKROpqigma+jwU95HluV+yaR55ttWHljSjAT89ZJo7pkR2aePdzpkWea9+vd4oeoFtti24Fb8O5KmG9K5Ou5qHkh/gBhdTIB7KQiBt6Xan9Y7M0MEI8FEBCPBqvIh/78pTwW2HwEUn5CFzSpha6sDTh2MbGzv20wat1dmwT+tfFPiJNqoYtXtSYxMCNxQr1f28mbtm7xa/So7OnbgVbxISGQbs7ku4TruS7sPiyZ4168IQiDsrXMjQchkug0WIhgJRt4O6NwAxjGgiwt0bwLGkvwddLWf45YSaW9vx2w+eRn1pU1Lgb7JpNlb52bWqzU0O2TmZBr46scJ6AIwLeOW3bxa9Sp/r/07ezr2dO+Em2/K54bEG7gn5R5MGlO/90sQQkV5ixeTVqT1BhsRjASj6kcBBZJ/F+ieBFyErpwGTyJVZTsYNmrmSdseyqQ51zUx/raulZ9/3owCPLUgmgdmR57T85+K0+vk+arn+Zf1XxR0FnTvhDsyfCQ/Tvwxd6bcGbQb0QlCsKnr8BETFhzru4TDRDASjBr/BeoIiBalthOyL6dhfyUOl3TKmiPnOpPG65W55P/V8dUBBxEGiW9uTWRccv+Uj7Z5bfyl4i+8Y32HYkdx90Z048zjuD35dn6c+ON+yRgShIGmw60wJlH87QQb8RMJNi2LwdcKcXcHuidBQReWhElagZ1hNNTXEp9w4g3Natw1JOgSzsnjHmhwM+PVGho6Zaan6Vl+SyIGXd9+mmp2N/N0xdO8W/cuZc4yALSSlqmWqfwk5SdcG39t0BdSE4Rg1tDhRVYgL0aMJAYbEYwEm+pHAAlS/hjongSN2EgN5a3QULPnhMGILMt0+jrJizz7TJrXNtr4ySeNyAr8bl4Uv57bu/1xesPqsvJU+VN8UP8BVa4qAPSSntmRs/lZ6s/4Xsz3RAAiCOfI6jJ/Js34ZBGMBBsRjAQTTxPYd0LYZBBZEN2i06+kquVbXEokXq8XjebYX9vN7f71IhMtE8/4cWRZ5vK36vi0wIFZL7H0x4lMSTv30zLljnIWlS3ik8ZPsLqtABhVRi6MvpB7U+/lopiTb00vCMKZ2VzlrzFyXrrYrTfYiGAkmFQ+CCiQ8mSgexJUVBoNZvVBWuXxVJXuICPn2IBjafPZZdKUNruZ/kot1nYfE5N1rLo9CdM5nJYp7CxkUfkiFjcupsHTAEC4OpxLhlzC/en3Mytq1jl7LEEQjm9Pnb/+zoh4bYB7IhxNBCPBpPld0MRAxJxA9yToJGfOoLW4kzZbGwBLS17A1NJOmBRBbVomq1pWATAjYkavz/2vre3c+mEDPhkeOT+CP3xnyDnp8672XSwqW8RXzV/R4m0BIEIdwfdjv8+D6Q8yKaL/dxYWhMGspNmLQSOJqc8gJIKRYNH4H5A7If6nge5JUDJEDkfLJ3iUZPZs/YRopoGiICtOFu48nPI7afMkxpjHMCJsBAuHLGRE+IgTnlOWZa75Tz0f7LETppVYclsC52UYz6qfG9s28lTZUyxvWY7NZwMgWhPNtfHX8nD6w4w0jzyr8wuCcOas7T6iTSIQCUYiGAkWNb8HVJD8eKB7ElQUWaajfi2N9eV4yAFJwqUkgwRIEpLS0qP9jo4d7O7YjQ8fnzV8xk/1i7ko10S4vucLUEWrlxkvV1Nl8zEmUcea25MIN5zZi9TKlpU8Xf40q1pW0Sl3AhCnjeP7cd/n4YyHyTHlnNF5BUE4t2wumaFDxOLVYCSCkWDgrgLnfjDPAZVYWHWIz91Owe5vcJIMSg5IXb+u0uHqiR6l/tj74UOFinnSY1z973q+PzKM96+NQ+q633s727n+vw14ZPjFTAvPLOz9ni2LGxfzl4q/sLZtLQ7ZAUCiLpEbYm/goYyHSDOkncEzFgShr3Q4ZbyySOsNViIYCQYV9/v/TX06sP0IMiqNCY3KCT7lcCByJMWH4zjBCMBvM3/L2x/lIeHhf3s6eWmDjTunmLnh/Qbe2dGJUSPx5c3xzB16eqXTZVnmw4YPeb7yeTbZNuFS/CmCqfpUroq7igczHiRuEJfuF4Rgt67C/6FhTJIIRoKRCEYCTZah5WPQJkL4maelDkSSSk3OqEso2fMRbd5ckHpOo0jI2JSmHsfUqJkeMZ2cjp9S2Hj4tp991sQfVrRi7fAxPE7L2v9LJNJ08l9/WZZ5y/oWL1e/zLb2bXgUDwBZhix+EP8D7k+7n0hd5Ll5soIg9KkNFf5MmukirTcoiWAk0BreAMUpKq6egEpjwme5EE3dp3h143rcpiDRJB8RjCgSOsXIwrJH+fneeiRUKPinZnwKWDt83DrRzOvfjz3h43llL6/XvM4b1W+ws2Nn90Z0uaZcfpTwI36e+nPCNeF98lwFQeg7u+r8o5mTxMhIUBLBSKDVPgVoIPGBQPckaK3fVU9z2xjOy9iC+sjRI0lDh9cLCl0LWhV+0PQbChrisTrVx5xHJfk3yVIUpXv9CPg3onup+iX+WftP9nXu696IbnjYcG5KvIm7ku/CoBGfpgQhlB1s8qJTgyYAu20LpyaCkUByHAB3CUQsBLHp2Qm5PT5AYm35BKalbUcbPtZ/gySh9nSt01BgjusaJkvz+F2TCQmle1TkEFmBzwrsPLe2jdunanmu8jnesr5Fkb0IBQU1asaEj+HW5Fu5Pel2sRGdIAwg1TYvkWeYMSf0PfFqG0gVv/D/m/pMYPsRIsKMWqbOuZXmii8orY8HYHbmDCj5M2GqML5c8CZLCnzUbq87/glULohew31lX3Kf8xOQZDSShkmWSdyRdAc3Jt4oiiEJwgDV5pQZHiemaIKVCEYCRfaBbQno0sE0LNC9CSnRaRfT2f4W9Y5h+NrCAHgs8zH0Kj23/K/8iJYKksqOErMa4r6EmBWgsaNyxzPFfB4/z7iLK2OvFAGIIAxwbq+M2wdDh4i3vGAlfjKBYv0zKB5I/GWgexKSUkdcT/3WTbh9EQBcEn053/t/VpodMqjbMSQtxRv3P7wRW0DlRY+ZGZHTuDf951wSc0mAey8IQn/aXOVfvDomQR/gngRGs7OTDq+rx7FwjZ5oQ1iAenQsEYwESt1fQdJD7E8C3ZOQFWlsodURw1zNGK5+q5P9YX/AOGsNDm0JTgl0ipF852QWeG7gL5f/X6C7KwhCgKyv8L8RT0kbfMFIs7OTX2/5DK8i9ziukVT8fuJ3gyYgEcFIIHTuAE81RF0JYorgjKVmTKR1Xym/NtzGnNyJIPnQaizMj7qMBzIeYPfXJjrsHsJNYodOQRjMdtT6a4xMSx18WXEdXtcxgQiAV5Hp8LqIRgQjg1dl19RMmli4esYUH7qmZ9AzBUkVD0WPQfU1tCtaVhlVlEVqMLg6SddJTNQoge6tIAgBVNToRqPijPefEvreGf1kXnzxRTIyMjAYDEyZMoVNmzadsO3rr7/OzJkziYqKIioqinnz5p20/YAnu8G2Egy5oE8PdG9Ck7MEdqRD7VPkxBYwetzlFF3zMH+8MI5ZmXqMGom9dW42NGt4zxrO/XvC0T5SQtIT5cx6tZr7vmhkcUEnTvexnxYEQRh4qtt8WPQiEAlmvR4Zee+997jvvvt45ZVXmDJlCs899xzz58+nsLCQuLhj9+ZYuXIlP/zhD5k+fToGg4GnnnqK73znO+zdu5fk5ORz8iRCSvUfAB8kPhronoSm5v9B8Q8AH6S/hD7+DgByYtT86vwofnV+VHfTZ/+9ky0NEuUeHU5dOOWtXtaWu1hd5uIva2wAGLUSiWY1w2K1TE83sDDPxOgErciwEYQBpNkhkx0tJgKCmaQoSq/GsKdMmcKkSZN44YUXAP/+Hampqfz0pz/loYceOuX9fT4fUVFRvPDCC9xwww2n9Zg2m42IiAja2tqwWCy96W7w2RYHcidM7Ax0T0LGa+/vpMPuYV7Sc4yOeAckA+R9BZZZp3W/cJOW268a0318X52bxYV21pY72VfvobrNS6fn8J+BBEQYVKRFahiToGNWpoFL8k0kWMSLmSCEGlmWUT9SxnfzjXx6Y2Kgu9PvKjqa+eP2Jce97ZFxC0gLj+7Txz/d9+9evbq63W62bt3Kww8/3H1MpVIxb9481q9ff1rnsNvteDweoqNPfAFcLhcu1+E0JJvN1ptuBq/2NeBtgCGnF4QJfirc/CD9ZpJMe0GXBsM3w1nskDs8XsfweB1HJlV7vTKrSp18Xexgc5WLokYPBQ1udlndvLWjAwCNCmJMarKHaJiQrGdutpHvDDVi0IlRFEEIVrut/g0uRyaIgmfBrFfBSGNjIz6fj/j4+B7H4+PjKSgoOK1zPPjggyQlJTFv3rwTtlm0aBG//e1ve9O10FDxoP/f1KcD249Q4jzIdSkXYlC1UWafRcbEb/okA0mjUTE3x8TcHFOP4812L18WOvimxMmOWhdlLV7WV7hYW+7i+XX+INmg8U/15MdqmZZmYEGukQnJOjHVIwhBYG25E4ApgzCTBqDD4zrhbb2cGOlT/Tru/OSTT/Luu++ycuVKDIYT/2I8/PDD3Hfffd3f22w2UlNT+6OLfcfbAZ0bwDj6rD7VDyrNH0DxDzGofKyuv5utLTcS9r/dp333TofnrLsQbdJw3Tgz140z9zhe1ODmi0I7a8uc7KnzUG3zUtri5csiB48ta0ECLAaJtAgNoxJ0zMo0cnG+iZQIMdUjCP1pW40/rXdmxuCrMbK1oYJ/FK474e1fVOzhtmHnoVUdu7Fof+vVK2NMTAxqtZq6up57f9TV1ZGQkHDS+z7zzDM8+eSTLFu2jNGjR5+0rV6vR68fYL841b8GZEgegCM+faH8Xqh7DiQDXza8TkHzSAA67L0PMHTac/+HlhurIzdWx73nHT7m9cqsqXDx9QE7myr9Uz2FjR5213n4907/GiG1BENMKrKHaJmQpOeCbCPzc42YxFSPIPSJggY3Ksn/wWIw2d1czesFa1E4PPoRoTXQ6XV31x3Z2VzNv4o2cEve9B47mQdCr346Op2OCRMmsHz5ci677DLAvzho+fLl3H333Se835/+9Cf++Mc/8tVXXzFx4sQTthvQGt8ElQWiLwt0T4Kb7Ib9M6Fzk3/fnhFbGFqton5HTdfuvb2j06qZPjapDzp6LI1GxZwsI3OyjD2Ot9q9fHXAP9WzrcZFabOXjZUu1le4eGHD4ame+HA1w+K0TEnVc1GuiUkpYqpHEM5WZasXsz6wb7T9TVZk3j24pTsQmRSbzmUZY4gxhOP2edlQX8p/S7bhkX1sbihnZsJQ8iLjT3HWvtXrUPG+++7jxhtvZOLEiUyePJnnnnuOzs5Obr75ZgBuuOEGkpOTWbRoEQBPPfUUjz32GP/+97/JyMjAarUCEB4eTnh4+Dl8KkGsZTH4WiFOlH4/KedB2DsFfE0QeSkM/QhUKnIzIDejb1d896VIk4Zrxpi5ZkzPqZ6DTW6+KLCzptzJHquHyjYvS4q8LCly8NvlrQBY9BKpXVM9MzMMXJxvIj1KVJQVhNPVaJdJHmTTo3tbaml0+kdjcyxx/DhvOqqukQ+dWsOsxBzUkor/d2AjACtri0IvGLnmmmtoaGjgsccew2q1MnbsWJYsWdK9qLWioqLHp7mXX34Zt9vNlVde2eM8jz/+OL/5zW/OrvehovrXgAQpiwLdk6CwZE0p+w42AaCSJAx6NdlRBcy23IZW1YmU8idIur9f+tLW4eLv/9vNj747nLho06nvcA5lD9Fxzwwd98w4fEyWZdZVuPiqyMHGSieFDR6Kmzzsrffw7q5O7vq0CbUE0SYVWdFaxifpuCDbyIIck6guKQjH4fAoZEYFfk1EfypoPbyU4vyk3O5A5N7PG7lxvJmxSXqmxGXwQel27F53j/aBckbh4t13333CaZmVK1f2+L6srOxMHmLg8DaDfTuETQJNiNdIOYcyki3Mn5GJLCv4Kh7GbHueZlcmW93P8Z2Ei86sNPAAoFKpOC/DyHkZPad62p0yXx2ws+Kgg201LkqavWypcrGx0sXLG9sB0KshPlxNXqyWqWkG5ucYmZamF1M9wqB1sMmNAgyPG1xpvS6ft/v/sUb/DMSuWhfPrbXR5pT5x5VxaFRqovUm7F437iPaB8rgGrsKhIoHAQVSngh0T4KKWqUiTO+D/bOgczPo03EmLWXfigaSixsZlRuL0+3l2y1VHKxoxSfLxA8JY86kVGK7RjDW7ajmYEUrY/Li2LCrBqfLR1ZKBBdOT0ev8/9qK4rChl217C5qwOH0Eh1h4LwJKWQmRwDw967snLc/2wdASnw4Vy/ID8AVOTmzQcWVo8K5clTPqc2yZjdfFDpYXeZkt9VNZZuXpcVOlhY7+f2KVv999RIpFg0jE3TMzNBzSb6JzOjB9eIsDE6rS/1pvROTB1hCxCmYtYef70FbA2nh0fzxm1YAbpvs/1Dc4XFhtfvXrIVrA399RDDS15rfBfUQiJgb6J4EFa1SD9ungK+5e31IqkpFbFQHBypaGJUby+crD6JRq7h8Xg56nZpdhQ28/3URN18+EqPe/6vb2u6isKyZy+bm4Hb7+HpdGcs3VLBwVhYA2/bVsXVvHfOmpRMXbWJPcSOfrCjmxu+NIMpi4NqLh/HvL/Zz5XdyGRJpRKUKrYVuGdE67pqm465pEd3HZFlmY5Wbr4rsbKhwUdDgobTFy/4GD+/v7uSez5r92QVGFZnRGsYn6Tk/y8BFeWFYxFSPMIBsre5K6800nqLlwDIhNo3FlXsBWFpVQLIulQ/2+NeQjEv0fxBZXLmnO6tmQmxaYDp6BBGM9KXG90DugIS7At2ToGL2bWCs8afga4HUZyDxF923RUcYaGhxUF3XjrXRzh3XjEGj9r9Bzp6USnFlKwfKWxidGwuA1yez4LxMzGH+P7Dzp6Tx8fIDzJ6USphRy5a9dUwamUB+pn8B7KwJKVTW2ti2r465U9MxGvx/Aga9hjDjwFgYqlKpmJZmYFpaz1o+HU6ZpcUOVhx0sLXGxcEmD9uq3WyucvPqpnagAV3XVE9ujD+rZ36OielpejQaEaQIoWdfvRsJSIscXG91KWFR5FjiOGCrp8nVyXf/XYisWEixSJR3NrCypohtTZUAqJCYnZgT4B6LYKRv1fwOUEHy44HuSfAou4ephldo9ybAsI/BfF6PmxX8e8M0tDjweH28/O6OHrd7fTKt7YcrClrCdN2BCEBSbBiKAs1tTjRqFZ0OD0lxPac2kuPCaWhxnOMnFvzCDSouHxnG5SPDehyvbPXyRUEnq8uc7LK6qWj1suKgk+UHnTyxss1/X51ESoSGEfFazks3cHGeiZxYMdUjBLfyVi9hutAa7TxXbsydwlM7l9LicnLA6s/ka3C4+fPuDT3aXZU1nnhj4NczimCkr7hrwLkPwmeBenANER6X7IR9M8G+hTr3NLa5X+IS89hjmjW3ObGY9bg9PsKMWq6an3dMG4NucK2M72upkRrumBrBHVN7TvVsrXbzZZGDDRVOCho8lLV4KWjw8L89du79wj/VE2VUkRGlYVyinjlZBi7OMxI5yIpLCcGrvtNHTNjgfL2INZp5YMyFXPN+IYriH9l0ezUoCkgShGn0XJk1junxWQHuqZ941egrFV3bsKU9E9h+BAPHAdg3tWt9yPfYVf9nfJJ8TLOKWhuNLQ7GD4vHHKal0+FBpZKICD/x4ipbp5sOu5twk/9Tem1DJ5Lkn+7R69SEGbXU1HeQmnC4xkd1fQcJMf7RAXXXGpFg2qMhGKhUKialGph01H4edrfMsmIHyw862Frt4mCTl521brZWu3ljiz+rR6eG2DD/VM/kVD3fyTExK11M9Qj9r9OtMD5pcAYjAHFGM5uLh0BX8TNFUZGkzmX+0GgmxqYHRRn4Q0Qw0hdkGVo+Am0ChE8KdG8Cq+k9OPgjwHd4fUh9KT5ZptPhQZYV7E4PZdU2Nu2uJSslguHZQ5AkSIoN59MVxcyckEJUhIFOu4eSqlaGpkV1BxMatYola0qZPTEVl8fHN5sqyE2P7l7/MWlkAut21BBp1hMbbWJvcSMNLY7uBa4mgxaNWkVZdRvhJh0atdSdiSMcy6RTcenwMC4d3nOqp8bmZXGBnVWlTnZaXVS0ellZ4uSbEidPrfJP9YRpJZIjNIyI0zIjw8DCXBPD4sVUj9A3rDYvsgLDBlla75FeWNdKp+fwBy2VBDiymBYffEUkxatuX2j8OyhOiDtxifxBoeynUP8CSEbIXwnmw9W9yqptvPrfnagkCb1eTWyUkfMnpzFi6JDuPRIun5fDmm3VfLW2DIfLS5hRS3J8eI+FppFmPTlpUXy47ABOt5eslEjmTj28MnzcsDhcbh+rtlRid3oZEmHgexcMJcri/8SvUkmcPzmVDbtqWbejhuS44EztDXZJFg23TrZw6+TDc8+yLLOj1j/Vs77cyf4Gf5XZokYPH+2z88vF/qmeSIN/qmdM11TPwlwjMeHipUk4O6u7dusdnxT4tNVAcHkVfrG4uccxWYGP99r5zbzgC0YkJQTGp202GxEREbS1tWGxBH6hzSntzAZXBUx0gGoQvqjKTth3Hti3gi4TRm4Bzbn/5T9UZ+T6S0ec83MLfcfplllR4mDZQQdbqlwUN3lp6PThPWLmTquC2HA1uUO0TErRc2GOkdmZBnRiqkc4TfcvbuSZ1Tb2/TxlUI7A/ejdOt7p2qDzaDUPp5Fo6Z/3ptN9/x6E75R9zHkQXCVgWTA4AxFHUdf6kBaIvAyG/g9EBVDhCAadioX5YSzM7znVY7V5+aLQzrelTnZa3ZS3eFlV6mRlqZOnV/unekxaiWSLmuFxOqan61mYa2Jk4uD85Cuc3N46/w7febED83X4V5s+ocl1bLAxOzEHk2v4CQMRULj285XMyXNxReZYRkUnH75FUfisfDerrcU4fB6yLTFcO3RSv2TbDMyfUj9qdnbS4T2cahpf+TP0AGnPBqxPAdP4HpRcB8iQ+iwk3hfoHgkhJMGi4ZZJFm6Z1HOqZ0+dh8WFdtaXO9nX4KHa5uNAk51P9tt5cEkLEhBpVJEeqWFMoo7Zmf4NBePEVM+gVtrixaiVBux2CA+PnY/M4YmNms42ntuzgjRDCgv+34n3mlFJoHflMXZIMy/vW80j4xaQHBYJwFdV+1lRU8hNedOIMYTxadkunt/zDb+ZcEmfL3YVf61nodnZya+3fNZdxQ5kXtQtwadLRW0aHtC+9buyu6D+pa71IUt7rA/pK9PHJjN9bPKpGwohS6VSMTpRz+ijRj/cXplvShwsK3awucrFgUYve+vc7Kh1869tHQBoVP6snpwhGiam6Jk31MjcbKOY6hkk6jp8DDEN3J+1Wdcz021J5T5iDeEkm4agU1f3WLjq56/iJCsSq0q8fHL9aPa3WllZU8R1OZNRFIXl1QUsTBvJ2CEpANycN41fbviQHY2VTIrL6NPnI4KRM6QoCvtbrUcEIjBP9SUayUdT1J0MCWDf+lU/rQ8RhCPpNCrm54YxP7fnVE9Dh5fFhf6snh21bspavKwud/FtmYs/r/Hvw2HUSiSZ1QyL0zI9zcBFeSZGJ2gH7CfowcrmlMmPHRxTeF7Zx8b6MuYl55MeqcHl82/3sPzWRH7xRRMrSpykDunE1hlGm1PC6VU40OhheFQiO5uqAGh0dmLzOBkWmdB9XqNGR6Y5hpL2RhGMBKNOj5vXC9awv9Xa4/hc9RI8ioa/1Y/kpwmdDDGEneAMA4SjEPZN868PiboCst8X60OEgIoN13DjBAs3Tug5x723zs3iQjvryp3srfdQ0+blYLOXzwsc/Opr/1RPhEFFWqSGMQk6ZmUauCTfREI/LfITzi2bU8anQG7MwNji4VR2NFXh8LqZHp/Ja5vasXsUHpgVydgkPe1uGbUEl0zdx025U8kKS6W23ceIeC2NtQba3P6sI5vHX5XactSIi0V3uE1fEn9pveT2eXl+7zeUtTf1OJ5MOVFSM9vkSdR623l21zIeGjv/mB/sgNH4Hyi5Hv/6kL9A4s8D3SNBOKER8TpGHJVR4fXKrCp18nXXVE9Ro4eCBje7rG7e2nF4qifGpCZ7iIZJKXrmZhuZl23EoBNBdzBbU+Z/Yx2XNDiyaNZaDzIiOpFIvYk/rixHq4ZH5vgrKpc2e3tUoY0JUwdlVVoRjPTSN7VF3YGIWavnisxxTIpNR33gu9AGK9S3gReaXJ18Vr6L63ImB7jHfaDH+pDlYJ4W6B4JQq9pNCrm5piYm2PqcbzZ7uXLQgfflDjZUeuirNnL+goXa8tdPLe2a6pHI5FoVpMfp2VaqoEFeUbGJ+nEVE+Q2FjpTyqYnjZAPwweocnZyf7WOu4YPpP1FU6q2nxcNSqsu+Jxs0Nmaqoei86AzdNzhMPmcRLR9YHZovVvW2JzO4nQHd7CxOZ2khoe2efPQwQjvSArCt/WHuj+/qcjzifdHA2KDzq3g/kCbs26jse3fI5L9rKxvowrMsdi1AyQ6Fx2wr4ZYN8G+iwYsVmsDxEGnGiThuvGmblunLnH8cIGN18U2Flb7mRvnYcqm5eSQi+LCx38epl/qsdikEiL0DAqQcesTCMX55tIiRAvs/1tl9UNwLjEAfLaexydbpnzXqkhKbqDhAQLo6KTmP5uDQDPX+JftXigwY2swMQUPVnmGAparcxLPlzUcX+LlSxzDAAxhjAsWgMFrVZSw6MAcHg9lLY3MjtxaJ8/H/FX0gt1DhuNTn/udn5kvD8QAah/DbxWSP2UKL2JSXHprLEexCV7KbY19MjjDln2/bB/OvhaxfoQYVDKi9WRF6vjvpmHj3m9MmsqXHx9wM6mSv9UT2Gjh911Hv7dVedBLfmHxrOjNUxI1jN3qJELhxoxiamePnOw2YNezYDeD8nm9Fc43lGrhb3DKC21sqnKzfgkLQkWDf8sXMfWMhNg4cKhRoYl5/HMrmUsrdrPqOgkNjeUU97RzI+6Ru8lSWJucj6LK/cQZzQTYwjnk/JdROqNjI1J7fPnI4KRXrB73d3/TzQd3uGUmif8/1Y9CnG3k2zM7b7J4fUX3kF2g7cBPPX+L289qM0QdVk/9PwsNb4DJTcCMqQ9Bwk/C3SPBCEoaDQq5mQZmZPVc2fuVruXJQf8Uz3ba1yUNnvZUOliXYWLv633T/UYNBIJZjX5sVqmphpYkGtkUoqY6jkXam0+oozBty7iXDLrD/2e+LfPWFnin4Jp6JR5bZONJo2Dgnr/FIx/nVMYt+bN4JPynXxctpM4o5k7h8/srjECMD9lGG6fl7cPbMLudTM0IpZ7RpzfLxvqiXLwvVBnt/HY1s8ByLbE8sCYC/03uOuh4Q1o+xw61uPChEeRsCkRxOjU6OQWkDuOPaFkhImd/v2cg1XpndDwCqhMkLcczFMD3SNBCFkHm9x8XmBnTZmTPXUeqtq8dLgPvwRLgFkvkdo11TMzw8Alw8JIixSfG3tD90gJoxN0bPlpSqC70mcURUH9q1KOfgOX8FcUseglDBqJdreC/XeZAeihnygH3wfijGYSjBasDhsHbQ0UtdaRGxkPujhI/hUk/4qmlvXYC39IqqqccKkTvCc6mxqirwzeQER2wr7pYN8O+mwYsUmsDxGEs5Q9RMfPZuj42RE1AWVZZl2Fi6+KHGysdFLY4KG4ycPeeg/v7urkrk+bUEsQbVKRHa1lfLKeC7KNzB9qJNwgRlGO5nTLeGQYOsDTeiVJwqSVjiludug7m0uh062QERUab/Oh0csgIUkSc5JyeffgFgBe3LeKhWkjmRqXiVpSsb2xkk/La7F5/si16n8wS7OCE4caPoj7v/7q+vG5SkF/nIi5x/qQKyH7PbE+RBD6iEql4rwMI+dl9JzqsTllvjpgZ8VBB9uq/VM9m6tcbKh08dIG/1SPXgMJ4WryYrVMSTUwP8fItDT9oJ7q2Vjlz6QZkzAwF68euQWJUQednuO3u3ViOG9s6WBYXGgEZSIY6aVZCUPZ0VRJQWsdTp+XD0t38GHpjqNaSazU/ZwZlig0rR8B8rEnUkeAIYAl45v+CwevgYxXegZFPdaH/BUS7glYFwVhMLMYVFw1KpyrRoX3OF7a7OaLAgdrypzsrnNT2ebl6wNOvj7g5PcrWgH/VE+KRcPIBB0zM/Rckm8iM3pgvjkfbX2Ff+3EtPSBl9Z79BYkbmUMcDiIPfTh96/fHUJ+jIY3tnQwPUSugwhGekmtUnHX8Nm8dWAjmxrKj9smPzKeW/NmoNF8BwouhI51gK9nI18bbB8CprGQ/FuI+m6f972bokDNH/z/L7sbjKPAPB1K74CGV7vWh6wA85T+65MgCKclM1rH3dN13D398CJ6WZbZWOXmqyI7GypcFDS4KWnxsL/Bw/u7O7nns2ZUkr9EeFa0hvHJes7PMrIg14RlgE317Kz1JxpMTRl4peA7vK4eW5DoNIffV9QSGLQSH1wbz4I8Ew8s9tfD+m6e6ZjzBCMRjJwBnVrDLfkzuDhtFGusxVR1tqKgEGcwMyMhmwzzETvT5H7mL5nuPED3AhJJC1lvQ+3T/j1dDlwKKgsM+QGkLjonazOO3k04XKMn+lB5etsycOzuukWGoktBmwDOvaAf2lU/JPKs+yAIQv9QqVRMSzMw7agiXx1Oma+LHSzvmuopafawtdrNpio3r2xsB0CvhriuqZ7JKXrm55iYnqYP2bTYA00etCoGXJXcdreT5dUFPY6pVIcCE4V4s4pltyQzLM4/ArapyokEjEwMjaBMZNP0B3c17J0MnjpAguirYeg7/tu8Nqh+DBr/n3+PFyT/SEXyYxD9/TN6uGN3EwaNpOL3E7/rD0j2XwDt33LMaI2oHyIIg0JFq5cvCjpZXeZkt9VNRauXdpfSIzMjXCeREqFhRLyW89INXJxnIic2+Kd6Ep8ox+tTaPh1RqC7cs40ONr5y+4VNLk6exx/a9l4HG4dQ8wd3L+gjfvHzUAl+V+/k58ox+FVaH4sIwA9Pkxk0wQTXTLkL4O9U0G29VyjobFA+nP+r7blUPUIdG6C4itBFQ7RV0HKk/6MndN09FAegFeR6fC6iO4shPZvjnMvCTRDRCAiCINAWqSGO6dGcOfUnlM9W6vdfFnkYEOFk/0NHspavBQ0ePjfHjv3fuGf6okyqsiM0jAuSc/52QYuyjESaQqet5IWh4/cIaGxaPN0eGQff9u7sjsQUSORExlHmNrIm7IKo87NZTP2UtKp8EnZLi7PHAtAQ6ePkfHBHzweEjy/QQOdcRjkfw0tn4B55vHbRMz1f3k7oOa30PBPaOz6Mo6AxF9DzDWnfKgOj+vEN9Y+hf/HfnTOsQINr0PYRIi7/XSflSAIA4RKpWJSqoFJqT2neuxumaXFDpYXO9ha7eJgs5cdtW62VLt5fbN/qkfXNdWTO0TL5FQ9F+aYmJXe/1M9Pp+MywvZAygY2dxQTp3Df50TTRHcM2IO0YYwPtjdgdtbzzs/0rC6BWQFltcUMj91OB1OFR4ZxiaFxhQNiGDkGF9W7mV7YyVWhw2dSk2WJZYrMsaSYDr59NDWhgo+Kd9Fk7ODOKOZKzLH9igDrygKnzUaWW2diKPiv2RbYrh26CTijcc5ryYc0p72f9m+hapfQcd6KPkBlN3in05JfQp0iT3uJisyH5ftYlnV/uP28fOiT7jT+z7SMWVyjlB2F5jnwBFVZAVBGLxMOhXfGx7G94aH9The1eZlcYGdb8uc7LK6qGj18k2JkxUlTp5c1QZAmFYiOULDiDgtMzIMLMw1MawPP63v6Fq8OiqERgROZY21uPv/1+dM7l7799zaNmZlGrh2RBJScR0raw/gkX1srC+jrCYBgAuyQyOTBkQwcoyitnrmJOWSER6NT1H4uGwnf92zgt9MuAS9+viX66CtgTcK1nJZ5hhGRyezqb6Ml/et5pFxC7pL7X5VtZ8VNYXclDeNGEMYn5bt4vk93/CbCZecvNSuZRYMXwM+B9T8Dhr+Dk1v+b8M+ZD0CMT8CEVRePvAZtbWHTzhqSa6Xgf1UYGIpAGla5REE+sftVGH4LocQRD6VUqEhtunWLh9yuHXC1n275fyZZGD9eX+qZ7KVi9FjR4+2mfnl4v9Uz2RBhUZURrGJvqnehbmGYk+i6meQwv2PyvyjwoPiw/6pZCnrbqzFQC9Es7eKiPrnO0sP+hgbbmL/13nn76fFJvByq5NXGs6W1lZEgnAwjzj8U4ZlEQwcpSfjTy/x/c35U7llxs/pLyjmdyI46/bWF5dyIjoROan+OuGfC9jDPtbraysKeK6nMkoisLy6gIWpo1k7BB/eeKb86bxyw0fsqOxkklxGafumNroz7RJXQTt66DyYehYCyXXQ+nttJq+w57mucAQVEhMi89keFQierWG4rYGrHUfM0laf7gIm2TwT8mYp0PYZAifArqBWzpZEIS+p1KpGJ9sYHxyz0/kTrfMsoP+rJ4tVS6Km73ssrrZVuPmH1v9UxBaNcSFqckZomVSip4Lc4zMzjSgO8VUz5EL9lfuywJiWda0nPnOiw9nEIaQqjYvXxXZWVvuYrfVxd6GMTg9ahRFxd+oByA2TEW0UcXcbH+woT6ikreCf4RIp+asArz+Fjo9DRCHz1/eLkxz4mG/kvbGHtsyAwyPSmRnUxUAjc5ObB4nwyITum83anRkmmMoaW88vWDkSObpMHyVv2R79RPQ8BqRnZ/wlO4T6pQEbDE/Jzf7B92l5kfJy1EansChmFjpmct2ZvCzSXcRrgs/xQMJgiCcPYNOxSXDwrhkWM/gwGrz8kWhnW9Lney0uilv8bKq1MnKUidPr/ZP9Zi0EskWNcPjdExP17Mw19QjXfXIBfttnUYkQKP1+hfsE7zBSGmzmyVFDtaXu9hT56aizUurQ8Z3xKCORgV6rUSMxU602c6d4zL48YS4IzbJ89vWVNn9/3ijmYpWL3HhobVRoAhGTkJWFP5bspVsS2yPnQ2PZnM7sWh7fhKwaA20uf2VAG0eh/+Y7qg2usNtzojKAKm/w5n4a55d/yRXaN4jV72fhOaHoPOfEH8nOPZBw2tIMTezWLmVpTVlAOxuqWdavAhGBEEInASLhlsmWbhlUs+pnj11Hr4osLO+wsm+eg9VNh8Hmux8st/Og0takIBIo4r0SA1DYxUalBjS41vpcOrQanwnfsAjHKpqIfXx/mD769x8XewvRre33k1Vm482p4x8RNChVcGQMDWTU/WMSdRxXrqBC3OMxIVrWFVzgH8f3AOA3dSGSjUHOByMFbXV801NEeAv4TApJp02p5XxSaGzXgREMHJS/yneTE1nG/cf2p03SHV4XVSQzXPeXzHJksCtMQegbQlU3AsokPY3iL+L9IZyoMx/n5Nl3AiCIASISqVidKKe0UcV63J7ZZYfdLCs2D/Vc6DJy946NztqAYbC7q7gAoVP1w9HbrJzxTA9c7ONx0z1fF1k54b3G7jvvAgemB151n2WZZnddR6WHvBvdriv3kO1zYvN2bN2i04NsWFqRsbrGZuoZ1amgXnZhpOmRk+Jy2Bx5R5a3Q7K2pt4dMunTIrNIFofxoG2eva21HQ/xoyEbIobVSjAlLTQyaQBEYyc0H+KN7O7uYZfjplHlP7k5XQtOgM2T88RDpvHSUTXSIhF65/Xs7mdROgOLyiyuZ2khkeedV8N6sNpbLUuJ8T/n/+rczu0r4KEuwGod7Yf9z6CIAjBTqdRcVFeGBfl+adeFEVheU0h7xcVUFhrorrJQnFNLEhgbTHzxkY3b2ysA8ColUgyq8mL1WBzKqwp938YW1ni6FUwcqgWy7JiBxsrXRQ0eKhp99JxVME4g0YiNkzF+CQt45J0zM40ckHWme2ybNBouXvEHJ7bvYIOrwu718OqrsWqRxoemcBVWeN56hv/JooLckKjDPwhIhg5iqIovHtwCzuaqrhv9FxiDKeeysgyx1DQau2xbmR/i5UscwwAMYYwLFoDBa1WUsOjAHB4PZS2NzI7cehZ9zlcqyctPIqKjhaqOlspaLWSH5kAYeP8X4DT52F1rT/TRgL/7YIgCCHI/zq9lZW1RaCBvFQ78VEdFNfEMTKjlmnDKmiyGZEcWbjt8eyv928oeLC5Z32lJUUOxvy1irGJOmZl+qvMJlg0eL0yG6pcLC92srnKSVGjh5p2H53unlk6Rq1EfLiaKakaJibrmZNlYHaG8ZyXok8Nj+LhcfP5rHw3WxrKexS1jNKbmJOYy4XJ+ahVKtZ1bRQ4XYyMhLb/HNzCpvoyfjJ8Fga1lja3f72HUa1F15Xa+8/CdUTqTN2V7uYm5/HMrmUsrdrPqOgkNjeUU97RzI9yJgP+Ocm5yfksrtxDnNFMjCGcT8p3Eak3MjYm9Zz0e3ZiLm8d2AjAa/vXcFXWeCbGpqORVJS0N/JByXZa3HYARkQlEWsU60UEQQhNWxor/IFIl5GRiZTY/XWXxif5X6eHWBxg2cu12WGU1sZz58eNqFUKviOKUyvAHqubXVY3/297xwkfz6SVSDSryY3RMjFFzwXZRqan6U+Z6XMuxRjCuTlvGldnjaekvRG3z0eEzkCmJQa1dLgf+xs8hOukkNtbSAQjRzk0/PXs7uU9jt+YO5Xp8VkANLvsSIeTZMm2xHJr3gw+Kd/Jx2U7iTOauXP4zB6LXuenDMPt8/L2gU3YvW6GRsRyz4jzT15jpBemxWWyoa6UA7Z6Or1u3izawDvFm9Gq1Ni97u52RrWWK7PGnZPHFARBCIQjN4y7PmcK5yVk83JnG9DEs+dPosyexGsFa3B71Pzko3b2VZ34jfnIjTM0Kv/ut7ICniNusHsUamw+FMWfpKhTSYTrJMYn6VD18xYaYVp9j4KaR7O2+8iMCr239tDrcR97dea1p2zzi9Hzjjk2ITaNCbFpJ7yPJElcmjGaSzNGn1X/TkStUnHXiNm8UbCGPS21gH9PA498eGV5pM7IT4bPJtEUcaLTCIIgBLV6Rzul7U0ApIRFMqPrQ2J9h0x8uJradh8H66PZvj+fLaURJ6s3DcA1o008MCuSsYnHBhb769wsLrKztszJ3noP1W1eSlq8LC508Otl/qwei0EiLULD6EQ9szIMXDLMRJLl3Ly13vDfejKjNPz6gig06hNn/TQ7O6l12Gi1u3B6FbKGKDQ7O0OqzooIRgYQY9dCp2JbA9/WHqCsoxmfLDPEEMa0+CwmxqR1TzUJgiCEohaXvfv/wyITulNz39reTl2Hj1F/9dd3CtMeCkRO/CauVUFWtO6YIm3d54/XMSxexy+O2E7M65X5ttzF0gN2NlW6KGryUNjoYXedh3d2dMDH/hGWISY12dEaJiTrmTvUyIVDjZh6sZak3SXzVtfU0fKDDt77YTzJET1fv2VFZnl1IR+Ubgeg1BoF5NGiOsAjW9byuwmXEGs0n/ZjBpJ4ZxpgJEkiJyKOnBNUixUEQQhlmiNGL44sUXDVqDAaO2VuGB/OsDgdy6zbWVFdREuHkQRlAmsOqthR60bCP9UiK+CVYW+d+ziPcpLH16i4INvIBdk9S6232r18ecDBNwedbK9xUdriZUOli3UVLv623p/hYtBIJJjV5MdqmZpqYEGuEbu6gtXWYppc/sAj0RTBJWmjaG+P7j73hkoXI5+r4p1r4liYb+raC20n9Y72HiM/1Y3+Ue+0uGZkReHxrZ+jkiSyLbEn3gstSIhgRBAEQQgZyaZI9CoNLtnLtqZKrvSMJ1yrZ9GCId1tnD4Pm+vLkSSItbj44+Q4LBcbqGrz8um+Tj7c28nKEic+BfbX9y4YOZFIk4YfjjHzwzE9RyIONLj5otDOmnIne+s8VLV5WdLiZUmRg98sb0ElqYgw5pBo1jA8Xo06ppm/tKwlTzMTCf8iW58MbU6Zi/9l5ZbJWlTR68iwRPYIRKJ1Rjo7I5EkBYvJXzncpyjkWOLQqzSntxdaAEnKoTJ0QcxmsxEREUFbWxsWS/BGdoIgCELfe+fAJr7t2s12qCWWm/OmdZdhaHHZ+X9FG9jXagVgUmw6t+bPOOYcbU6ZLwvtGLXSMTsS9zWvV2ZdhYuvDtjZVOWisMFDfYcP1xHFY1WSjKwcb1pHISXazczR+zCbXOhUaqL0JnIj4nnsowTcPoWr5mzG7fN2pwD/YvRc/rr7G27Kndr77UfO0um+f4tgJESsqjnAqtoDxwzljYxOOuF9/EN5u2hydhBnNHNF5tgeq7AVReGz8t2sthbj8HnItsQE/VCeIAhCo7ODJ7Z/RafXP00jARnmIagkFaW2RuSuMQODWsNDY+eHzKL9VoeXN3aWsbislM37s+k44aCNggTkptTz8PkRRJm87Gyu4rWvR/CDsSpsYau5KGUEX1btBWBmwlCsdhup4ZFckz2xv54OcPrv36GViDyIReqNXJ45hl+NW8Cvxi4gPzKBl/Z9S03X9tJHO2hr4I2CtcxIyOLR8RcxdkgKL+9b3b0dNcBXVftZUVPIdTmTeWjsd7qH8o7MwBEEQQg2MYZw7hk5B3PXnmAKUNrexEFbQ3cgYtJouWvEnJAIRKo7W7ln7X95eMv7VMnbee7CYahOsWeOgkRhVTw3vWXgt0s7KW3tpKrNR2SYv7DbtITM7rYVHc1nvxdaHxNrRkLEmCEpPb6/LGMMq2oPUNLeRNJxNvFbXl3IiOhE5qcMB+B7GWPY32plZU0R1+VM9pdSri5gYdpIxnad++a8afxyw4fsaKzs96E8QRCE3sgwD+E3Exbybe1B1liLaXJ1Av4SBjMSspmdmNNj+41gFm808+j4i3B4PWxrrODFXVuxuUb1aKNW+deO6LVe8hM7iImuJyLczrUZ89jSaKNBBr0Gki0aKmygU6lRISGjIAf/BIgIRkKRrMhsbajA7fN2l5w/Wkl7Y4/y9ADDoxLZ2eRPe2t0dmLzOBl2RFl4o0ZHpjmGkvZGEYwIghD0wrUGFqaN4KLU4bhlHwoKepWmz3fiPdc0KjVxXSm46eZolhTZe9w+Ik7LZSPCuCTfxIe1S4jWGSntaAYgObYJbbiKnU1hOH+fRYOjg/VbYFtjZfcoUYwh/JzthdZXRDASQqo7W3lqx9d4ZB96tYY7hs8kKez4Q5A2txOLtmfuvEV7eJjO5vGXubfojmoT5EN5giAIR5MkCf0AqqEUa/YwLcvB9aNSuTjfRFrk4ee2qzOmR62VT8t2EabV99gLzazV82XF3u42E2PS+GfR+nOyF1pfGTg/vUHg6KG8Nws38IvR804YkAiCIAjB7aPSHYyITiJab8Ll87KpvoxGXzVvXJnL8CiLfy+0lmP3QovWm2h22WlyddLk6iTeaGat9SA19jacPm/32r9YQzibGsrO6V5ofUEEIyHk6KG8so4mVtQUdm/IdySLzoDN03OEw+ZxEtE1EmLR+udSbW5nj3nVYB/KEwRhcFlSuZePynZyQVIe12RPOGG7UM0ebPc4ebNwPW1uB0aNluSwSO4ZeT7Do/wb/51oL7QPy3b0OM/mhnI2N5T3OCbhT3UeYgg7p3uh9QURjIQwRQHvCTJfsswxFLRae6wb2d9i7TGUZ9EaKGi1khoeBYDD66G0vTGoh/IEQRg8ytqb+La2mJTjLNI/0qHswcsyxzA6OplN9WW8vG81j4xb0L1h6aHswZvyphFjCOPTsl1BUQjshtypJ739ZHuh2dxOPi7bwaaG8h5ZkBpJxfiYNK7IHEuU3nTO+9wXRDASIo43lFfUVsc9I88H8A/l6Y4dyltatZ9R0UlsbiinvKO5exRFkiTmJuezuHIPcUYzMYZwPinfFfRDeYIgDA5On4e/F67j+pwpLK7cc9K2gzV70KIzcEPuVK7IHMf+Vit2rxujWkt+ZMIx6wGDnQhGQsSZDuV9Ur6Tj8t2Emc0c+fwmd2fEgDmpwzD7fPy9oFN2L1uhkbEBv1QniAIg8N/ircwKiqJYVEJpwxGBnv2YLhWz6TY9EB346yIYCREnM1Q3olIksSlGaO5NGP0WfdPEAThXNlcX0ZFRzO/GrfgtNqL7MHQJyqwCoIgCEGj2dXJeyXbuCV/uhilHUTEyIggCIIQNCram2n3OPnjtiXdx2QUDrTVs7KmiBfPuwaV1PNz9EDMHixqq+frqn1UdLTQ5nZw57CZp1zPV9hax/sl26i1txGlN7EwbSTT47N6tPmmpoilVftpcztICY/iB9kTyDxB8cz+dEYjIy+++CIZGRkYDAamTJnCpk2bTtr+/fffJz8/H4PBwKhRo1i8ePEZdVYQBEEY2PIjE3hs/EIeHX9R91d6eDST4zJ4dPxFxwQicDh78Egnyh485FD24ImqWAea2+clJSyKH57mxnaNzg5e2LuSvMh4Hh1/EXOT83iraCN7W2q622xuKOeDkm1cnDaSR8ZdREpYJM/v+QZbEExV9ToYee+997jvvvt4/PHH2bZtG2PGjGH+/PnU19cft/26dev44Q9/yC233ML27du57LLLuOyyy9iz5+QLkgRBEITBx9C1QP/IL71aQ5hG370A/5+F6/iodEf3feYm57G3pZalVfux2tv4rHwX5R3NzEnKBXpmD+5sqqK6s5V/Fq0P6uzBkdFJXJYxhnGn2b9VtQeIMYRzVdZ4Ek0RnJ+Ux/iYVJZVF3a3WVZdwHkJ2cxIyCYpLILrhk5Gp9Kwru5gXz2N09brYOTPf/4zt912GzfffDPDhw/nlVdewWQy8Y9//OO47f/617+yYMEC7r//foYNG8bvf/97xo8fzwsvvHDWnRcEQRAGn2aXnTa3o/v7Q9mDq63F/H7bl2xrrDxu9uD5iXm8fWATT2xfgsvnGVDZgyW2RvKPyBYCf0ZRia0R8Nekqmhv7pFRpJIk8iMTutsEUq/WjLjdbrZu3crDDz/cfUylUjFv3jzWr19/3PusX7+e++67r8ex+fPn8/HHH5/wcVwuFy6Xq/t7m83Wm24KgiAIA8jR2YIie/BYNo/zuNlCTp8Ht8+L3etGRsF8nDZWR+DfY3s1MtLY2IjP5yM+Pr7H8fj4eKxW63HvY7Vae9UeYNGiRURERHR/paYG5zCaIAiCIAhnLyhTex9++GHa2tq6vyorKwPdJUEQBEEIWhat4ZiFqDa3E4Nai06tIVyrR4VE+3HaRGgDX621V8FITEwMarWaurq6Hsfr6upISEg47n0SEhJ61R5Ar9djsVh6fAmCIAiCcHxZluNkFLVaybL4s4U0KjVp5mj2tx5+P5YVhYIj2gRSr4IRnU7HhAkTWL58efcxWZZZvnw506ZNO+59pk2b1qM9wNKlS0/YXhAEQRAGO6fPQ2VHC5UdLQA0ujqp7Gih2dkJ+Pcr+2fhuu72sxNzaHR28L/S7VjtbaysKWJrQwXzkvO628xLzmeNtZj1dSXU2tv4d/Fm3LL3mFokgdDromf33XcfN954IxMnTmTy5Mk899xzdHZ2cvPNNwNwww03kJyczKJFiwD42c9+xuzZs3n22We5+OKLeffdd9myZQuvvfbauX0mgiAIgjBAlLc38+fdhz/Iv1+yDYBpcZnclDeNNreDZpe9+/YYQzh3j5jD+yXbWFFdSKTexPW5UxgRldTdZlJsOh0eJ5+W78LmdpISHsU9I87HckQhuECRFEVRenunF154gaeffhqr1crYsWN5/vnnmTJlCgBz5swhIyODN998s7v9+++/z6OPPkpZWRk5OTn86U9/YuHChaf9eDabjYiICNra2sSUjSAIgiCEiNN9/z6jYKS/iWBEEARBEELP6b5/B2U2jSAIgiAIg4cIRgRBEARBCCgRjAiCIAiCEFAiGBEEQRAEIaBEMCIIgiAIQkCJYEQQBEEQhIASwYggCIIgCAElghFBEARBEAJKBCOCIAiCIARUr/emCYRDRWJtNluAeyIIgiAIwuk69L59qmLvIRGMtLe3A5CamhrgngiCIAiC0Fvt7e1ERESc8PaQ2JtGlmVqamowm81IknTOzmuz2UhNTaWyslLsedOHxHXuP+Ja9w9xnfuHuM79oy+vs6IotLe3k5SUhEp14pUhITEyolKpSElJ6bPzWywW8YveD8R17j/iWvcPcZ37h7jO/aOvrvPJRkQOEQtYBUEQBEEIKBGMCIIgCIIQUIM6GNHr9Tz++OPo9fpAd2VAE9e5/4hr3T/Ede4f4jr3j2C4ziGxgFUQBEEQhIFrUI+MCIIgCIIQeCIYEQRBEAQhoEQwIgiCIAhCQIlgRBAEQRCEgBrwwciLL75IRkYGBoOBKVOmsGnTppO2f//998nPz8dgMDBq1CgWL17cTz0Nbb25zq+//jozZ84kKiqKqKgo5s2bd8qfi3BYb3+nD3n33XeRJInLLrusbzs4QPT2Ore2tnLXXXeRmJiIXq8nNzdXvH6cht5e5+eee468vDyMRiOpqance++9OJ3OfuptaPr222/57ne/S1JSEpIk8fHHH5/yPitXrmT8+PHo9XqGDh3Km2++2bedVAawd999V9HpdMo//vEPZe/evcptt92mREZGKnV1dcdtv3btWkWtVit/+tOflH379imPPvqootVqld27d/dzz0NLb6/ztddeq7z44ovK9u3blf379ys33XSTEhERoVRVVfVzz0NPb6/1IaWlpUpycrIyc+ZM5Xvf+17/dDaE9fY6u1wuZeLEicrChQuVNWvWKKWlpcrKlSuVHTt29HPPQ0tvr/M777yj6PV65Z133lFKS0uVr776SklMTFTuvffefu55aFm8eLHyyCOPKB9++KECKB999NFJ25eUlCgmk0m57777lH379il/+9vfFLVarSxZsqTP+jigg5HJkycrd911V/f3Pp9PSUpKUhYtWnTc9ldffbVy8cUX9zg2ZcoU5f/+7//6tJ+hrrfX+Wher1cxm83Kv/71r77q4oBxJtfa6/Uq06dPV9544w3lxhtvFMHIaejtdX755ZeVrKwsxe1291cXB4TeXue77rpLueCCC3ocu++++5QZM2b0aT8HktMJRh544AFlxIgRPY5dc801yvz58/usXwN2msbtdrN161bmzZvXfUylUjFv3jzWr19/3PusX7++R3uA+fPnn7C9cGbX+Wh2ux2Px0N0dHRfdXNAONNr/bvf/Y64uDhuueWW/uhmyDuT6/zpp58ybdo07rrrLuLj4xk5ciRPPPEEPp+vv7odcs7kOk+fPp2tW7d2T+WUlJSwePFiFi5c2C99HiwC8V4YEhvlnYnGxkZ8Ph/x8fE9jsfHx1NQUHDc+1it1uO2t1qtfdbPUHcm1/loDz74IElJScf88gs9ncm1XrNmDX//+9/ZsWNHP/RwYDiT61xSUsKKFSu47rrrWLx4McXFxfzkJz/B4/Hw+OOP90e3Q86ZXOdrr72WxsZGzjvvPBRFwev1cscdd/CrX/2qP7o8aJzovdBms+FwODAajef8MQfsyIgQGp588kneffddPvroIwwGQ6C7M6C0t7dz/fXX8/rrrxMTExPo7gxosiwTFxfHa6+9xoQJE7jmmmt45JFHeOWVVwLdtQFl5cqVPPHEE7z00kts27aNDz/8kC+++ILf//73ge6acJYG7MhITEwMarWaurq6Hsfr6upISEg47n0SEhJ61V44s+t8yDPPPMOTTz7JsmXLGD16dF92c0Do7bU+ePAgZWVlfPe73+0+JssyABqNhsLCQrKzs/u20yHoTH6nExMT0Wq1qNXq7mPDhg3DarXidrvR6XR92udQdCbX+de//jXXX389t956KwCjRo2is7OT22+/nUceeQSVSny+PhdO9F5osVj6ZFQEBvDIiE6nY8KECSxfvrz7mCzLLF++nGnTph33PtOmTevRHmDp0qUnbC+c2XUG+NOf/sTvf/97lixZwsSJE/ujqyGvt9c6Pz+f3bt3s2PHju6vSy+9lPPPP58dO3aQmpran90PGWfyOz1jxgyKi4u7gz2AoqIiEhMTRSByAmdyne12+zEBx6EAUBHbrJ0zAXkv7LOlsUHg3XffVfR6vfLmm28q+/btU26//XYlMjJSsVqtiqIoyvXXX6889NBD3e3Xrl2raDQa5ZlnnlH279+vPP744yK19zT09jo/+eSTik6nUz744AOltra2+6u9vT1QTyFk9PZaH01k05ye3l7niooKxWw2K3fffbdSWFiofP7550pcXJzyhz/8IVBPIST09jo//vjjitlsVv7zn/8oJSUlytdff61kZ2crV199daCeQkhob29Xtm/frmzfvl0BlD//+c/K9u3blfLyckVRFOWhhx5Srr/++u72h1J777//fmX//v3Kiy++KFJ7z9bf/vY3JS0tTdHpdMrkyZOVDRs2dN82e/Zs5cYbb+zR/r///a+Sm5ur6HQ6ZcSIEcoXX3zRzz0OTb25zunp6QpwzNfjjz/e/x0PQb39nT6SCEZOX2+v87p165QpU6Yoer1eycrKUv74xz8qXq+3n3sdenpznT0ej/Kb3/xGyc7OVgwGg5Kamqr85Cc/UVpaWvq/4yHkm2++Oe5r7qFre+ONNyqzZ88+5j5jx45VdDqdkpWVpfzzn//s0z5KiiLGtgRBEARBCJwBu2ZEEARBEITQIIIRQRAEQRACSgQjgiAIgiAElAhGBEEQBEEIKBGMCIIgCIIQUCIYEQRBEAQhoEQwIgiCIAhCQIlgRBAEQRCEgBLBiCAIgiAIASWCEUEQBEEQAkoEI4IgCIIgBJQIRgRBEARBCKj/D7D1gE5U+35FAAAAAElFTkSuQmCC",
"text/plain": [
""
]
@@ -904,7 +1073,7 @@
},
{
"data": {
- "image/png": "iVBORw0KGgoAAAANSUhEUgAAAiMAAAGdCAYAAADAAnMpAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjcuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/bCgiHAAAACXBIWXMAAA9hAAAPYQGoP6dpAADGyUlEQVR4nOzddXiT19vA8W+kSWqpu1ChFClQKDIchsvGmI9tyMbc5Td3f6fM2cYGG1MYA4a7O5SipULdvanF8/4RVigUaKFt2nI+u3qNPjnP89wpIbl75D4Si8ViQRAEQRAEwUaktg5AEARBEISrm0hGBEEQBEGwKZGMCIIgCIJgUyIZEQRBEATBpkQyIgiCIAiCTYlkRBAEQRAEmxLJiCAIgiAINiWSEUEQBEEQbEpu6wAawmw2k5OTg7OzMxKJxNbhCIIgCILQABaLhYqKCvz9/ZFKL9z/0SaSkZycHIKCgmwdhiAIgiAIlyEzM5PAwMALPt4mkhFnZ2fA+mTUarWNoxEEQRAEoSE0Gg1BQUG1n+MX0iaSkf+GZtRqtUhGBEEQBKGNudQUCzGBVRAEQRAEmxLJiCAIgiAINiWSEUEQBEEQbEokI4IgCIIg2JRIRgRBEARBsCmRjAiCIAiCYFNtYmmv0LJKtFVUGnW13zvJlbirHG0YkSAIgtCeiWREqKNEW8WrB5ZjtJhrj8klUt7uc51ISARBEIRmIYZphDoqjbo6iQiA0WKu01MiCIIgCE2p0cnItm3buO666/D390cikbB06dJLnrNlyxZ69+6NUqmkY8eOzJ8//zJCFQRBEAShPWp0MlJVVUXPnj35+uuvG9Q+NTWViRMnMmLECOLi4njyySeZNWsWa9eubXSwgiAIgiC0P42eMzJ+/HjGjx/f4PZz5swhNDSUTz75BIAuXbqwY8cOPvvsM8aOHdvY2wvNrKCmot7jJrO53uOCIAiCcKWafc7I7t27GTVqVJ1jY8eOZffu3Rc8R6fTodFo6nwJzctgNvFTwi5+OLmz3se/O7mD7Kqylg1KEARBuCo0ezKSl5eHj49PnWM+Pj5oNBpqamrqPef999/HxcWl9isoKKi5w7yqmS0Wfji5k70FaXWOn73HYqmumk+ObCC/RiSGgiAIQtNqlatpXnzxRcrLy2u/MjMzbR1SuxZblMHh4iwAFFIZt4T1ZvaAm/lm8B08ETWCIEc3AKqMehaeirVlqIIgCEI71Ox1Rnx9fcnPz69zLD8/H7Vajb29fb3nKJVKlEplc4cmnLYlJ6n2z/dEDqSX55meqK5ufoQ6e/LGwRWU6Ws4XppDYU0lXvZOtghVEARBaIeavWdkwIABbNy4sc6x9evXM2DAgOa+tdAAWpOBJE0BAN72zkR7BAKwrziHJVkJWCwW7OV2DPXrCIAFOF6aU3t+hUHHjqIsvkw6yD37VzFh+yIqDKImiSAIgtBwje4ZqaysJDk5ufb71NRU4uLicHd3Jzg4mBdffJHs7Gx++eUXAB588EG++uornnvuOe655x42bdrEwoULWblyZdM9C+GyaY2G2j/7ObggkVhnijx8aD0HS/NwlttxU0Ak3ZzdKDPoqTCbmJ8Rz9fpJzhQkkt6tQYLdeeXGCxi5Y0gCILQcI1ORg4cOMCIESNqv3/66acBmD59OvPnzyc3N5eMjIzax0NDQ1m5ciVPPfUUn3/+OYGBgcydO1cs620lHOQKJFh7PLIqSzFbLEglEjYMvZWn4jbxS/oxfk4/huXsk0qLas/5z39/7uPmi7ui/uE3QRAEQaiPxGKxWC7dzLY0Gg0uLi6Ul5ejVqttHU67M/voJuLL8gCYGTmAa7xDax87VVnKwE2/UqCrvuR1ZBIJr3UdxGtdBzVbrIIgCELb0dDP71a5mkZoWSP8O9X+eUHiXv5NO0KJtgqt0UBpjYb7fIOJdnCuMxRTH5PFwr/ZScxLPYJRFEkTBEEQGkj0jAhYLBZ+StjNvsK0i7aTS+3YU1VJbHlBvY+fPXQjAYId1Iz3DePRjr3p5uLVlCELgiAIbUBDP79FMiIAYLKYWZQSy5acJCyc/5IIcnTjgS6D8bJ3ZklWInfs/Red2VT7uFwi4ZbAzsztM475acf4LeMEh8ryqTEZAXCQyent6sPU4K7MDOmBSt7sq8oFQRAEGxPJiHBZirVV7MhLJrWiGJPFjLvSkQE+oUS6+NSutAEwm82M2PoH24qyao/91Gc8M0N71LnesfJCvkg6yLr8VDLOWnkTYO/MKJ8OPNYxht5uvi307ARBEISWJJIRoUV8d+oQD8auA8BeJufb3mOYHtK93rZ6s5EFacf5NeM4+0vyqDJZlxWrpDJ6unpze1AXZoX1xEmuaLH4BUEQhOYjkhGhxewtzuGr5IP8nZWI1mykm9qTFYNvJsTR5aLnJVWU8EXSQVblpZBaVVY7OOSrcuRarw483LEXgzwDm/8JCIIgCM1CJCNCi9Majdyx91+W5iQhAe4P68k3vcYglV560ZbRbOavzHh+TjvG3pIcNEY9YN0rJ0rtyS1BkTwY1gtXhaqZn4UgCILQVEQyItRann6EFRnH6hzzsVfzVp9JFzznYGEGy9KPUKytxNvemRtDo+nuHlD7uMViYXn6UbbnJVNjMhCu9mRqx7742Ks5WJrHlJ3/kFlTgaudkgX9JjHJv2OjYk6vKuer5IP8m5NMcmUZ5tP9Jl5KB4Z5BfFgWDQjfUIadU1BEAShZYlkRKi1PP0IsUWZPNn92tpjMokEJ7v6exlOaQr5+PAGbgjtSQ/3APYVpLE2K56Xe40jwNEVgDWZJ1iTeZwZkQPwVDnyb9oRsqvLeCNmEnZSGQDvxe/ijeM7MVjMDPDw59+BN+Gpcmh0/GazmaU5SfyYeoRdxdmUnd77xk4ipbPagxsDOvFoeO/LurYgCILQfEQyItRann6EuOIsXu09oUHtv4/fgd5s5NFuw2uPfRC3liBHN+6M6IfFYuG5vUsYHdiFMYFdAKgx6nl2zz/M6HQNfb1Das8r02uZsusfthRmIpNIeLHzNbwdNfSKnk9OdQVfn4plaU4yCRXFmE6/hN0VKgZ7BnJfaE8m+IY1aHhIEARBaD4N/fwWxR6uEgU1FTy3dwl2Uilhzp5MCYnGXeVYb9uUiiJGBXSuc6yrmx+Hi63LeIu0VWgMWrq4nlmSay9XEOrsSUpFUZ1kxFWhYvPwqWzIS+X2vf/yTvxu5qYe4Z+BUxjgEcDl8Hdw5t3uw3i3+zDMZjNr81P5PuUw24uy+DcnmX9zkpFJJHRycmeyf0ce6xiDv4PzZd1LEARBaH4iGbkKhDp7MqPTAHwcnCnX17Ai/RgfHVnP670nopLbnddeo9eiPmcIR22nolyvtT5uqLEeO2cyqVpxps25RvmGUnDdYzxzZDNfJB1k4KZfGe8bxt8DJuNwBUt5pVIp4/3CGe8XDkCRtppvTsXyT3YSJzRFfJCwlw8S9uJqp2SAhz/3hPTgxoBOotdEEAShFRHJyFUgyt2/9s+Bjm6EOnvy4r5lHCjKYLBveIvFIZVK+Sx6JM906sv1OxezOi8F92Vf8FGPETwWEdMk9/BUOfBat8G81m0wAJvy0/kuJY4thRmszktldV4qUiSEO7kyyS+cxyP6XHIJsiAIgtC8RDJyFXKQK/Cxd6awpqLex9UKFRpD3R4OjUGLy+meELWdvfWYXouLwv5MG72WICfXS94/0EFN7OiZ/JV5glkH1vB43AY+TzrA8sE300XtcZnPqn7X+nTgWp8OtfHNSYljYdZJjpUX8VnSAT5LOoCzXEE/dz+md4jijuCuyEWviSAIQosS77pXIa3JQKG2sk4icbYwZ09OluXVORZfmkeYsycAnipH1HaqOm1qjAZSK4pq2zTEbUFdKZ38JHd36EZKVRnd1s7lzj3Lm23HX7VCxXOdr+HAqBlob3qWXdfexV3BXXGWK9hYkM60/StRLP6IsJVzeOTgOk5qipslDkEQBKEusZrmKvB3Siw93ANwVzlSrq9hefpRMitLeSNmIs4KFfMSduGqcGBKaDRwemnvkQ3cGBJNd3d/9hemszrzxHlLe9dmHWdGpwF4qpxYln6E7KrSOkt7GyNeU8z1O/8mubIMR5kdP8SM444OXZvwp3Bx1UY9c1OP8EdGPIfLC2o3+HOU2RHj5sNdHboxPSQKhVR0Jgq2V6KtotKoq3PMSa684KR0QbAVsbRXqPVD/A6SNIVUGXQ42SnpqPbihpCeeNlbV5h8cmQDHkpHZkQOqD3HWvTsMMXaqksWPas26uno4sXU8L74OFzZ38/XSQd55shmdGYT0S7eLB98E4FXeM3LEVeaz1enYlmXl0pWTUXtBn+B9s6M8Q3l8Y696eHq0+JxCUKJtopXDyzHaKnbgyiXSHm7z3UiIRFaFZGMCG1WtVHPrXuWsTI3BSkSHu3Ym896XmuzFTA6k5Gf04/xa/pxYkvzazf4s5fJiXb15o6grtwb2v2KVgXZyrm/YYvfrlu/jMoS3j20pt7HXu41jmAn9xaOSBAuTCQjQpu3pziHG3ctIVdbibtCxZ/9r2e0b6itwyJeU8yXSQdYk5dKWnV57QZ//ionRnoH80jHGPp7+F/0Gq1Bfb9hi9+uWz+RjAhtiSh6JrR513j4k3PdI7x+bDvvndzNmO0LGeoZyLJBN9l0w7wuag++iRkLWDf4+z3jOL+kH2dfSS4LMk6wIOMESqmMKBdPbgvswgNhPc+rydIaVBp153X1Gy1mKo063BHJiCAILUckI0Kr92bUEB7rGMPkXf+wrSgLr3+/5I1ug3i5y0Bbh4ZcKmVaSHemhXQHILWyjC+TD7Ii9xSHSgs4WJrPc0e34KN0YLhXMA+G92K4d7BtgxbatBqjwdYhCEKTE8M0QpuyKjeZO/euoMygI8DeiaUDb6SPu5+tw6qX2WxmcXYiP6UdYU9xTp0N/rqqPbkxIIJHI3rjrrDNBn8X6u4XXf2t19GSbH6I34nObKz38V4egdzbedBlrWgThOYg5owI7ZbZbOaxQxuYk3IIMzDZvyN/9p+MSt66O/qyqjV8nRzLspxkEitLajf481DYM8QzkPvDejLWJ7TFJuqKZKRtSSjLZ/axTZjPest2lCvQGg2YOHOsj2cwszoPQiKR2CJMQahDJCNCu5deVc51O/7mqKYIlVTO571Gcn9YtK3DahCz2cyqvBR+SD3MjqIsSk7v6SOXSIh09rBu8BcRg6/KqdliEMlI22GxWHjj4EryajQA9HQP4MbQaHwdXNCZjOzKT2Fx6iEMZhMAT0ZdSxc334tdUhBahEhGhKvGgrRjPBi7lmqTkUgnd5YPvokI57b1YVqgreKbU4f4JzuReE1x7cRSNzsVAzz8mRXak8n+HZu010QkI21HQlk+nx7dCECIkzvPRY9BJqn7WtiVn8LPiXsAiPYI5KGuQ1s8TkE4V0M/v0U5eKHNuzskitIbnuC2wM4kVJYQueYH7tm/qtnKyjcHb5Ujb3QbzJEx92C4+X9sGHobNwdGIpdKWJWXwo27l2C3+GMiV3/P/w5vIr2q3NYhCy3oRFlu7Z9H+EfWJiIvv1xMQoIegP5eITjJlQDEn7OdQ3m5mZ07tcyZo+HRR4v455+qFopcEBpG9IwI7cqRsnwm71xCWnU5armCn/pO4KbASFuHdUXK9FrmpBxiUWYCxzRF6E93xavlCvq7+zM9JIrbgro0aoO/Ul01y9IOs7sg9bzHHus2vM5Oz4Lt/ZF8gC25iQC80HMMoWpPDhzQ0rdvDgAxMQomTXIgL+QwBaZyytLs6avvw5EjeuLi9OTlWV8zEglYLDBzphM//eRts+cjXD3EMI1wVfskYR8vHduK3mymj5svywff1KzzL1rSjsJMvj0Vx+bCdHK11t9wpUgIcXRhgm8Yj0fEXHSYKrEsn29ObKPGVP8SUZVMzqPdhhPhIj6sWosV6UdZnnEUgFvDejMyoDMTJ+Zy4oSBN95wY82aalavrqa8/MzbuVRqTTzqe4dftMibm29uH/8ehNZNJCPCVa/CoOPm3UtZl5+GTCLh6Yi+fNB9mM3KyjeHSqOeuSmH+TMznsNlBWhP95o4yuzo6+7LXcHduDukW+0Gf7nV5bwftxbd6Y0ApUgIcnIDrHNI/nszUMnseDF6LL422BdIOF9OVRlvxq4CwEPpiMu2wbzwv3L+/tubm26yJhWLkw7z1msajvzlj/Uvsv7VNHI5FBeHoFa3n38HQuslkhFBOG1bYQa37F5Gga4aL6U9C6+5od0WHjtYmsdXyQfZkJ9O9lkb/AU7qBnjE0qATEpOZREAXd38mNHpGlwU9gCU6ar5OXEPJ07PN7jGO5SZZ22eKNjWJ0c2kFhegFEPP0/oh0opJT3fmzJDDdtyk9hTkAZA/lEnNjwXRU0N1DdtysVFwmefeXD33U7I5SIhEZqXSEYE4Sxms5mXjm3j48R9mCwWRnl3YPGAG1plmfamojUamZd2hN8zThBblk/16d4QGeCtUPFG1FDuCe1ZZ65JjdHAS/uXUm00IJdI+bD/FBztlDZ6BsLZCmsq+L/D6/n3jQCS1nox7MVkIscXndducoee+Jd05Nprc9FozJhM9V9PKoXwcDtuvNGBJ590wde3ddfpEdomkYwIQj3ytVVcv3Mx+0pyUUilvBc1jGci+9k6rBaxPDOe5w9vJFOnpfL0cI6LnZLOzu4M9gzkox4jkEgk/Jq0j+15yQA83X0kka4+tgxbOMvhlFJ6dSzB0VfH1L/i6jymksm5ISSaEf6dAEhI0DN8eC5FRSaMZxVsPXEigI0btSxYUEFcnB69dTEOnp5SRoyw54kn1AwaZN9Cz0ho70QyIggXsSQrkRn7V6Ix6ungoObfQTfSo51/6B4tyear41sBGBXQBR9nD7YUZvJl0kGK9DWM9w3jy16jOFKYzpqsEwA8ETWCrm6ts9z+1WjQoGx27dKxaL09hpAsyvQ1KKRyIly86OcdgkpmV6d9erqB4cNzycw0YjJBRIQdiYlBddps2lTDV1+Vs2WLltJS67iOSiWhd28F06c7M2OGEwqFGM4RLo9IRgThEsxmM/fHruWn1CNYgFsCO/Nr/4m1kz3bm7MnQXZwcuelXuMAa3XPJdmJPHV4E/naKro6OuMnl+Mit+OdmAmEOXvaMmzhtN27tQwcmMOgQUp27Aho8Hl5eUZGjrSuvHn+eRc++MDjgm0zMozMnl3GsmXVpKYasVisy4HDwuRMmeLAE0+4EhjYPv99CM1DJCOC0EDJFaVct/NvTlaU4CCT803vMUw/vQtve2KxWHj30Boyq0oBmBbRn0G+4bWPVxn1PHRgFQsyE+qcp5TKcFeo8FQ64KtyxFvpgJfSganBXenbSjcpbI9CQzPIyDCSmRmMv3/jEoLSUhOvvlrKs8+6EBJid+kTAL3ezLx5lcyfX8GhQzp01n0ecXeXMny4iieecGHoUDGcI1ycSEYEoZHmpsTx2KGNaM1GotSerBh8Mx0cXWwdVpPaU5DKvITdtd/39Aikj2cwFiwcKMzgSEk2W8uKSdBWX/AaUiSYsfBi52t4r/uwlgj7qjdvnoZ77ili2jQnfv7ZNvVftm2r4csvy9m8WUtxsXU4R6mE6Ggl06Y5MWuWsxjOEc4jkhFBuAxao5E79v7L0pwkJMADYdF83Wt0u6lNYrFY+PPUAbbkJl2wjdliYW15KVnaKi705uAiV5A84QE8lQ7NE+hVZnn6EVZkHKtzzMdezVt9JmE2m3F1TcdggPLyDrUf+AcLM1iWfoRibSXe9s7cGBpNd/czwzcWi4Xl6UfZnpdMjclAuNqTqR374mN/5e+hOTlGZs8uZ8mSKk6dOjOcExIiZ/JkB556ypXgYDGcI4hkRBCuyMHSPKbs/IfMmgpc7ZQs6DeJSf4dbR1Wk7BYLGzOSWRt1gnK9DV1HnNV2DMuqCtOSmf6b1pwwWTk+5ix3NdGdkhuC5anHyG2KJMnu19be0wmkeBkp+KZZ4r49FMN//d/bjz3nLVA3SlNIR8f3sANoT3p4R7AvoI01mbF83KvcQQ4ugKwJvMEazKPMyNyAJ4qR/5NO0J2dRlvxEzCTiprstiNRjM//1zJvHkVHDyoR6u1vmrc3KQMHariscfUjBwpktarlUhGBKEJvBe/izeO78RgMTPAw59/B96Ep6p9vLGazGaOleaQW61BAvg6qIly96/dhO2puI18kXQQ8zkpiZ1EyvbhU+nv2fBJlMLFLU8/QlxxFq/2nlDnuEZjxsMjDXd3Kfn5IbXHv4/fgd5s5NFuw2uPfRC3liBHN+6M6IfFYuG5vUsYHdiFMYFdAKgx6nl2zz/M6HQNfb1DaC67d2v5/PNyNm2qobDQOpyjUECPHgqmTXPivvvUqFTto6dRuDSxa68gNIGXugyk4PrHGOYVxO7iHPxWfMVrx7bbOqwmIZNK6ekRyLigrowN6kpPj8A629K/HTUEX5Uj0nPKihstZq7Z/CuTti+i2qhv6bDbrYKaCp7bu4SX9y/jx5M7KdFWMXVqPkYj/PijV522KRVFdHb1rXOsq5sfKRXWImhF2io0Bi1dzmpjL1cQ6uxZ26a5DBig4s8/fSgoCCEvL5gXX7ROmo2N1fP44yU4OKQREpLBY48VkZoqXj+ClUhGBOESXBUqtgyfyvoht+Jip+Tt+F34L/+K3cXZtg6tWTnJFXzfZ1xtz4hMIuGh8F6kTniQni7erMxLwX3ZF3yedKDJ712irSKjsqT2q0Tbvre8D3X2ZEanATweNZypHftSpK3itU2bWLWqmu7d7Zg0ybFOe41ei9qubvVgtZ2Kcr3W+rjBOvx2boVhteJMm5bg4yPnvfc8SEgIQqcLYf58T4YMUVJQYOKrrzSEhWXh6prKddflsnp1+/47Fi5OJCOC0ECjfEMpuO4xnozoQ762moGbfmVCO+8dmOgXzs2BkQCo5UrejRpKB0cX4sbM5M9rrsNOKuXJuI2ErpzDkbL8JrlnibaKVw8s591Da2q/Xj2wvF0nJFHu/sR4BRPo6EY3N38eixrO5u+9kMgt/PVX+yjGJ5dLmT5dzdatAVRXh7Jvnz9TpzqiVEpYsaKGCRPyUShSiInJ4tNPy6iurmdjHaHdEtOdBaERpFIpn0WP5JlOfbl+52JWn+4d+LjHCB6NiLF1eJgtZpanH2VvQRoagxYXhT0DfUKZEBSFRFL/Lq4ACWX5LEqJJbe6HDelAxOCoxjoEwbAl71GEVeazx0BEXwUt5ZyfQ2BTm7cHh5D6eQnue/gan5OO0bP9fOZEhDB7/2uRyW//LeWSqMOo6XuB5HRYqbSqMMdxwuc1b5sWmMgfrkXw+6opEsXxXmPqxUqNIa6PRzWv29rT4jazlr/Q6PX1m6E+N/3QU6uzRd4I/Ttq+K336zxFhUZ+eILDYsWVREXpyc2toRnnikhKEjGxIkOPP20CxER5/8chPZD9IwIwmUIdFATO/p074BEymNxG+i46jviNcU2jWtNZjxbc5O5o2Mf3oiZyI0h0azNimdzTuIFzynSVvLV8S1EuvrwSu/xjAyIZEHiXo6X5gDgq3Litz5jKa4oYGJwFC/3Gk+goytfHNtMtVHPvL4TSRp/P12dPViSnYTbss/57tShlnrK7dK9swpw9NbzzGv1b1IY5uzJydO7K/8nvjSvtlqup8oRtZ2qTpsao4HUiqJWWVHX01POW2+5Ex8fhMEQwq+/ejFihIriYjNz5lTQqVMWLi6pTJiQy/LlVZjr245YaNNEMiIIV+C2oK6U3vAkdwV3JaWqjG5r53LX3uUYbfRmmVJRSLRHAN3dA/BUORHjFUxXVz9SKy6cJG3NTcJT5cQtYb3xc3BhhH8kvT2D2JB9phLrxpwEBvuGM8g3HH9HF+7s2A+FVM6u/FMAhDu5cXzcLOb3nYBUAg/GrqPT6u9tnpy1FX+nxJJYlk+RtpKX/i+dgnwLgx7MZlhICADzEnaxJDWutv3IgEiOl+ayPiuevOpylqcfIb2yhOGnN8mTSCSMDOjMqsxjHC7OIruqjHmJu3FV2hPtGVRPBK2HVCrlzjud2bTJn6qqUA4dCmDaNCccHKSsXl3D9dfno1Sm0atXFh9+WEplpUhM2gORjAjCFZJLpSzofx3Hx84i3MmV3zJO4LZ0Nn9mnGjxWMKcvThZlk9+tQaAzMpSkjWFRF2kbHuK5gIrMzTWVRdGs4mMipI6KzOkEgmdXX1r2/xnekh3Sm94gjuCupBcWUq3tXO5Y8+/6M1GhAsr1VUzN2EXr+5dwZxvK/EMq+HnZ/vifHrYpURXTflZNWHC1V7MihzE9rxk3o5dTWxRJg91HVJbYwRgbGAXRvhF8mvSPt47tAadycDj3UY0aY2RlhAdreTnn73Jze1AcXEwb7zhRmSkHUeP6nn++VKcndMIDEzn/vsLiY9vv/O32jtRZ0QQmtjXSQd55shmdGYT0a7eLB90E4EOLfO6NVssLE07zLqsE0gkEiwWC5NDejI+qNsFz3n1wHIG+oTVafPfDr9fDryVaqOe5/ct5bmeowlXn1liujj1EInlBbwYPbbe68Zripm8czFJlaWN2vMno7KEdw+tOe/4y73GEezkfsnz27Lp0wv45ZdKfvrJk5kzxXvdxZjNZv7+u5rvv9ewZ4+OqirrR5mzs4QBA5Q8+KALkyfbt5vqyW2VqDMiCDbySEQMJZMfZ6JfGHFlBXRYOYcn4za0yDj3wcJ09hWkcW/kQF7pNZ4ZnQawPiue3fkpzX7vc3VRe5A4/n7m9B6D2QIz9q+i65q5nKosbfFY2oKcHCO//lpJSIhcJCINIJVKufVWJzZs8KeyMpSjRwOYOdMZJycp69ZpufFG63BOjx6ZvPtuKRqNGM5pzUQyIgjNwEGuYMXgW9h97d34qBz4POkg3su/ZH1earPed3FqHGODutLXO4QAR1eu8QllZEBnVmdeeMhIbadCc07tCY1ei0pmh0Imx8lOiRQJFfW0cTmn1kV9HgjvRenkJ7gxoBPxFcVErP6emftW2mxeTWt16635mM3w+++22QivrYuKUvLTT17k5HSgvDyEd95xo0sXO06cMPDKK6W4uKQREJDOPfcUcuyYztbhCucQyYggNKNrPPzJue5RXusykHKDjjHbFzJ88++UNVPhKb3ZeF7FVKlEguWCu8xAmLqelRlleYSprasu5FIZwc7uxJ9VR8RssXDyrDaXopLLWTxwCnGjZxDi4ML89GO4LZvNX+ckSTlVZaw8Z8O4/5Tpauo93h7s2aNl504dAwcqGTDg0gmecHFqtZSXX3bjyJEg9PoQFi/2YcwYFRUVZubNq6B792ycnFIZNSqHhQsrxeqcVkAkI4LQAt6MGkLupEcZ6BHA1qJMvP79knfjdzX5fXq4B7Aq8xhHS7Ip0lZyqCiTDVknifYIrG2zJDWOeQln7j3ML4IibSWLUw+RV13OlpxEDhZmMCogsrbNqIDO7MhLZnd+CrnV5fyevB+92Vhbi6Sherr6kDLxQWZHj8RgNnP7nuX0XPcT6VXlHCzM4N1Da4grzqr33Lknd5JYXtDIn0jbcMcdBUilsGhR+yhw1ppIpVJuvNGRtWv90WhCOXEikPvuc8bVVcrGjVpuu60AhSKNqKhM3nqrlLIyMdnaFsQEVkFoYStzkrlr3wrKDDoC7Z1ZMnAKfS6y2qUxtEYDy9KPEFecSYVBh4vCnr5eHZgUHIX89CqK+Qm7KdZV8UyPUbXnnV30zFXpwMSzip79Z3NOAuuy4tHotdaiZ2ExhDawZ6Q+1UY9t+5ZxsrcFCRAZ3snBjm7IJVKUUrlhDp7YLSYSdUUYTrds6OS2fFKr3F42Ttf9n1bm/nzNcycWcTddzvxyy9iiKYlVVaa+eabcv74o4pjx/QYT+chvr4yxoyx56mnXIiOrr/Wi9AwYtdeQWjFzGYzjx5az3cpcZiBG/wj+KP/lVUubav2F+cwZtuflBkNKCQS7g/uwkcx41DJ7ACo0Gv5KWEXJ04PJQ317cidEf1sGXKTMZvNuLmlo9dDeXkHFArRWW0rZrOZlStr+PZbDTt3atForB+NDg4S+vVTMmuWM3fc4ShW5zSSWE0jCK2YVCrlm5ixpEx4kCi1J0tzrJVLv0+Js3VoLS7EQc2tnr70dXLBaLHwVfoJnji0kQqDdZKhs0LFrM6DUcqsidregjS0JoMtQ24yzz1XgkZj4fXXXUUiYmNSqZTrrnNk1So/ystDSUwM5MEHnfHwkLJli5a77irEzi6NLl0yee21EoqKxHBOUxI9I4LQCvycdpSHY9dRbTLS2dmdFYNvJtzJzdZhtYjYogy+i98BwHC/SNaV5PFnZjwmrYzo4kj2PT4BgB9P7mJfYRoAL0WPo4Nz2645otGY8fBIw81NSkFBiK3DES6iutrMnDkafvutkqNH9RhO58Le3lJGjbIO5/TpIyYe10f0jAhCG/Jf5dJbAztzsqKEiNXfc+/+VZiugln+prN+H3JX2jOv30SOjb4HU7WM/Z7H+GBeJgD2crvadmZL2/+53HlnPkYjzJ3rdenGgk05OEh5+mlXDh4MRK8PY9UqHyZNskens/D771X07ZuDg0Mqw4Zl8/PPGozGtv/6bGkiGRGEVkIhlfPXgMkcHj2DDg4u/JR2FPdln7Mk68Kb3LUHnqozO/EeKckGIFztTvJ1s6DEgRfjtvH3sjKOnn5MArir2vbuvQkJelasqCEqyo7rr2/bz+VqNH68I8uX+1FWFsqpU4E8+qgab28p27frmDGjCKUyjcjITF56qZiCAjGc0xCXlYx8/fXXhISEoFKp6N+/P/v27bto+9mzZxMZGYm9vT1BQUE89dRTaLXNU2dBENq6Hq4+pE58kI97jEBrNnLj7iX02/AzedpKW4fWLEKcPPCzt3bfJmsKa6vFhvo68FP36+C7vtzy2ClWfuqJ2Sihm5s/Lgp7W4Z8xW65xVqzZeFCsZS3rQsLU/Dll56kpXWgujqEzz93p3dvBWlpBt5/vxwfnwy8vdO4/fZ8du8Wn3sX0ug5I3/99RfTpk1jzpw59O/fn9mzZ7No0SISEhLw9j5/Wdrvv//OPffcw08//cTAgQNJTExkxowZ3H777Xz66acNuqeYMyJcrSoMOm7atZT1BWnIJBKe6dSP96OGtrsZ/TvzTvFL0t7a77u6+dHLIwij2cTtz6dReH0cnHJDOq8XNw/y5pGZ3gwerEIqlVz4oq3UqlVVTJyYz4QJ9qxc2TRLuoXWacOGar76SsO2bVpKS61DNyqVhJgYBTNnOjN9uhNyefv6t3yuZlva279/f/r27ctXX30FWJdDBQUF8dhjj/HCCy+c1/7RRx8lPj6ejRs31h575pln2Lt3Lzt27GjSJyMI7dW2wgxu2b2MAl013koHFg2YzFCvYFuH1WQsFgt/njrAltyk8x7TGkz8UpRj/UYC7PeHhd3w1Xlw991OTJ3qRM+eCiSStpGY+PikUVJiprAwGFfXq28p99UqPd3A7NnlLFtWTVqaEYsFJBIID5czZYojTz7pgr9/+3s9NMsEVr1ez8GDBxk16kyxJKlUyqhRo9i9e3e95wwcOJCDBw/WDuWkpKSwatUqJkyYcMH76HQ6NBpNnS9BuJoN9Qomd9IjPB/Zn2J9DcO2/MHorX+et6dMWyWRSLg9vA9Tw/vioaw7h0JlJ8MJBbVV7nvnwkfrybtzG5/+nU6vXtlERmbyzjul1NS07omDH35YSkGBmcceU4tE5CrToYMdn33mSUpKMFptCF9/7UG/fkoyM4189FE5AQEZeHqmccsteezY0X63PriQRvWM5OTkEBAQwK5duxgwYEDt8eeee46tW7eyd+/ees/74osvePbZZ7FYLBiNRh588EG+/fbbC97njTfe4M033zzvuOgZEQTI01Zy/Y7F7C/NQyGV8l7UMJ6JbB9FwMC6UiahrICCmgokEghwdOWl47tYmHGy7q9PJgnILLA3ABZ2g0wXli/3YdKk1jkhVK834+KSjp0dlJV1aHdDbcLl27Klhi+/LGfLFi0lJdaEWqmEXr2UTJ/uzD33ODVbHZoSbRWVxjMbBzrJlU06QbxZhmkuJxnZsmULt99+O++88w79+/cnOTmZJ554gvvuu49XX3213vvodDp0ujM/HI1GQ1BQkEhGBOEsS7ISmbF/JRqjnhAHF5YNmkIP1/onRJYbdNhJpDictTy2LXkvfjevHt2OWVLP29XppOS6UyNY9nzfVjtcM2NGAT//XMncuZ7ce694HxPql5VlZPbsMpYurSYl5cxwTmionMmTHXjqKVeCgpqmV61EW8WrB5ZjPGupvFwi5e0+1zVZQtIswzSenp7IZDLy8/PrHM/Pz8fX17fec1599VXuvvtuZs2aRffu3ZkyZQrvvfce77///gV3SlQqlajV6jpfgiDUNSWwEyWTn+CekO6kV5fTc/18bt29DL257lJCrclIr/XzGLL5N0xttD5HDxev+hOR09R6Rz56OLzVJiI5OUYWLKikQwe5SESEiwoMlPPxx54kJ1uHc777zpMBA5Tk5Jj47DMNwcEZuLunMWVKHps2XdlwTqVRVycRATBazHV6SlpKo5IRhUJBTExMncmoZrOZjRs31ukpOVt1dfV53ZEymXXDrjZQ/FUQWjWZVMqPfSeQMO4+Oju7syjrJG5LP+eXtKO1bT44uYe0qnJiy/KZcyruvGuUaKvIqCyp81WirWrBZ3FpPVwvsoHcAX+WRdxNpNqj5QJqpNtuy8dsht9/FxvhCQ2nUEi5/341O3cGUFMTyvbtftxyiyMyGSxdWs3IkbkolSn065fFV1+Vo9U2/JeNKoOOHbnJ9T6WV93y8zQva2nv9OnT+e677+jXrx+zZ89m4cKFnDx5Eh8fH6ZNm0ZAQADvv/8+YJ3/8emnn/L999/XDtM89NBDxMTE8NdffzXonmI1jSA0zA8pcTx+aCNas5EotSdf9hrF6G0La3/7cZDJSRp/P/6nd72tr5sWmr6r1mwxszz9KHsL0tAYtLgo7BnoE8qEoKiL9mb8t5twTlUZc/MzMfz3dmUGJCBJ9ED+wVDsXYzc+E08nTo4cXt4DKHOl7+bcFPbu1fLNdfkMHCgkp07A2wdjtBO5OUZmT27nH/+qebUKQNms3U4p0MHOddd58Azz7jQoUP9w7J51eXMPraZUl11vY9LgLsi+jPYN/yK42zWXXu/+uorPvroI/Ly8oiOjuaLL76gf//+AAwfPpyQkBDmz58PgNFo5N1332XBggVkZ2fj5eXFddddx7vvvourq2uTPhlBEEBrNHLH3n9ZmmNdJisB/vtHLpNIuME/gr8HTgEgo7KEdw+tqfc6L/caR7BT0+z/sirjOBuyTzIz8hr8HFxIryjh56Q93NChJ9cGRNZ7TpG2kjcPrmSoXwSDfcMZtW0hJypKrHNEiu1xyvChsk8qnY5GkPpxd2RSCe+uKibTLoM3Y65DrWgde4WEhWWQlmYkMzOYgACxgkZoekajmQULKvnppwoOHtRTU2P9F+/qKmXoUCUPP6xm7FjrLxZVBh1vH1pdJxEJdnJDKZWTUVmK7vQwrwR4pNswurtfWQLdrMlISxPJiCA03vvxu3np2LZ6H1sx+GYm+oWTXlHMe3Fr623TlMnIV8e3oLZTMa3TNbXH5pzYjp1Uxr2dB9Z7zuLUQxwryeH1mIkAPHZoPV8lx+KW7ssHPpO45w4X1J/Np8ZTw705E/npVTtUKrh3yTEmdg1nXFC3Jon9Svz8s4YZM4q46y4nFiwQQzRCy9i3T8vs2eVs2FBDYaG119PODnr0UNB7QiWmIXHIVWYCHV15oMsQvE/3lOpMRv5JjWNLrnULikBHV17pNf6K5mKJjfIE4SqmMej4LOkA9b2FSIEHDq7hRGke35/cecFrJJblX/Cxxgpz9uJkWT75p8eiMytLSdYUEuV+4QqkKZoiOruemRj/Qudr+L+uA7lrgD333+0BUgk3dncAvYwf7bbwzVwXtFr47f6OHM4obrLYL5fZbObxx4tRKiXMndt6ho2E9k2vt9C9u4Lff/ehoCCE/PxgXn7ZlfBwOw4d0vPD2wp+GtOX32/pReZP0chrHGrPVcrk3B4eU/tLSFZVGakVLfNvSSQjgtAOvXpsO8W6Gurr9jQD2TWV3L17CUUX2e9mUeohDhZmNEk844K60serA68fXMFDO/7g3UOrGRkQSX/v0AueozFo6wy1BNg7M94vDJ3ZiN5kpNKgw9ERZqh7Q1A5T57YwIIFXmjyFHxyrxv5+S23QVllpZmgoHTuvbeA3FzrfZ9/vgSNxsLrr7uiVIq3WqFljB2bi5NTGp07ZzJtWgG//17F6NH27NkTQEGFD8NfTsIvWoOu3I4fvtbi6ZlOZGQmkyblYrFYkEgkDPQJq71eemXLJCNiAFMQ2hmzxcI3p2IxY0GKBJlEggXOm6QaW6XBVS5niLs//X1C8Ld3oVhXxd6CNNJOvwH9nLiHSFcfnOyUVxTTwcJ09hWkcW/kQPwdXcmsLGVhykFcFfYMOOuN73K8MrEzG74oIKt/Mp8dPsjjX7jw5RNORHbOZNthZ1zdrYlAUxdzOrtYVNopE1lZJubNq+T336t49lkXPvtMg5eXlBdfdGuyewqtX3MXEbuU0FA5W7dCQoKBU6cM/PZbJf9V0QgMkiLr4I6dvZleo6upSHYlPt5IYqKhTvJ+dj0i4wVKcDQ1kYwIQjsjlUg4OGoGJzRFFOiqKdBVU6irJl9bTW5NJZnV5eTpqrEAm8tLGB0UxaiAzthJrUvuh/t3Yu7JnRwsykBnNrI7P4XRgV2uKKbFqXGMDepKX+8QwFpVtVhXxerMExdMRtR2qvPK3Wv0WlQyOxQyOVKJBCkSKvRaUl68AdVHP3Ew7BDRDj2Y+mElvzzhT/8exdz+xyEUTuYmXSF07iqkokQHoAcWC2i1Ft55pwyAu+5ywmy2tMkN/YTGa4kiYpcybpwD8+ZZezyN53QOZmWaIdMdkJApM3PH7QpeftmN0aMd8PKS1s4NOVaSU3uORwvFLZIRQWiHerh6X7A2x/zEPezOT6HGZMKkdOblY9v5NeMEt/a05zXfqUglEq7v0IODRdYhmoNFGVecjOjNRqTnzGCRSiRY6h1IsgpTe9Z5UwSIL8sjTG2dfyGXygh2die+LJ9ozyB23DaFget/Y37GKe6OcqH/Q0b2fhvMX3dFc8efcaAys6cglQnBUVf0XOD8YlGGGlm97T77TMPmzVq++MKDIUPsr/i+Qut2sSJi7rTMh/qoUfZIJHCxpSnu4VVc98VxxkV25LawmDoTVBPK8tl/enjWUa684tU0DSUGMgXhKlNxurfBXibj25hxHBw9nSrPo7zucycdioZgtpjxdVDjKFdY2xuufDO+Hu4BrMo8xtGSbIq0lRwqymRD1kmiPQJr2yxJjWNewq7a74f5RVCkrWRx6iHyqsvZkpPIwcIMRp21FHhUQGd25CWzOz+FIC8Zw+R+mILL+HW9iZ535BIzM4uaEjv+urMnRh0sSz/Cuqz4K34+5zJU15+MABw5omfo0Fx+/bWiye8rCGCdLL14cRUTJ+bSsWPmRRORm+5QcOMPx1E6m9mck8j7cWvZkpPIvoI0fjy5i8+Obqr9JWG4f0Rtj2lzEz0jgnCVUcrO/LMv0lYS7erD4N4lZJnsyfDcQVDWeLa5LaDaaLC2l175fja3h/dhWfoRfk/eT4VBh4vCniF+HZl0Vi9Fub6GkrNqH3iqnHi023AWpcSyKTsBV6UDd3fqTzc3/9o2fb06UGnQ8m/6Ecp0NURGWIjb4kv5wEzW/hPFd29684PKwOJvFSyaFs0tC+JYnHqIMGdPOrp4XfHz+o+h5sK/11ks0LmzHQMGtI66J0L7kJys58svNaxeXc2pU8baeSFeXlK6dLEjIcHAudM9nn/ehfffd2dnfh9+TdqHBUivLCG9suS863d392di0JX3IjaUSEYE4SrT2dW3dghmU04ChepT/Cb5ldny2aQXW/j0SDYdXZ5liIM/nau70/kCm+81hkpux23hMdwWHnPBNjMiz99SItLVh1d6j7/otUf4RzLEtyMv7FtGhUHLrUNl/LjHjXSvbHL29+Pvb7x4wq6IL74oZ/HMHtzy8xE25pxs2mSknp4RmQzMZusHwBtvuKNUinkjwuXT683Mn1/J779XcOCAnqoqa++FdXdfBbfe6sj99zvj6ipnzx4tAwbUHeL87DMPnnzSBYDBvh1R29mzNO0w2dVlddo5yhUM9+/ExKAoZC24s7RIRgThKtPPuwOLUw+hNRnYX5jOq2EvILGTcJ/kPnCRkRv0I39EfMN2VRW7DfYUSiZQwiiGMYzOdEZSb/US2zpRmlc7nNTHuwOPTo2i55iT3Fuax5gBaj7/3JPqGjNzf4DFs7oj/ekYNREG7C9zF2Oj2VTne0ONDCQWsFh/NlIphITI+e03b/r3Fz0iV4ucqvJ6j19ubdEDB7R8/bWGDRtqyM421e7gGxAg45Zb7Hn4YTV9+57/+urbV4mzs4SKCgtyOfz8szdTpzrVadPDI4Du7v6kVBSRXlGCyWLGXelId3d/FLKWTw1EMiIIVxmVzI5bw3rzS9JecpzjybPLpENxDG+nrKNcX4OzxYXwvCGcClmD0a6GpZZ/WMY/WLDghhsjGMGw0/91pzvSVjD1rER3ZmO/rm5+9PB15d03vHh5uonwmw5QvXMgP3zvzbG8AvYsd+Sf+7vxxsEq7J1cG3Ufi8XCuqx4VmUer3NcVyE7XXPfWqfhiSfUvPuuO/b2tv/ZCM2vyqBj7smdnCjLq/fxhSmxPNR16CWXyGs0ZubMKWfRoiqOHtWjO71C2NFRwpAhSu6805lp05xQqS7+upLJJFx3nQNLllSzdKkPY8Y41NtOIpEQrvYiXN10vYSXS/xLEYSr0CDfcO4I78P2Tj8CEoYlzaJYV1W7EmBo9i0ozKffOCWW2gltpZSyjGU8yZNEE81HfGSjZ1CX/KxJdlUG6zv4S7eFE35PFrrdfkQ8tAW92cTt7xYQOryIokQnbhjTuJ1JLRYLvyXv59eDx9nwUQAlKWdWx6TtsC6XVDobeX5BMR9/4iESkauEzmRk9rFNF0xEAJI1hcw+ugmtyVDnuNlsZu3aKm6+OQ9v7zRcXNJ4/vlSYmP1BAXJefxxNYmJgVRWhrJ1awD336++ZCLyn2++8SI5OeiCiUhrI3pGBOEqZedfSLkll5iaIYTYBVIl0aGU2dHV1Zfh/p1wlh7ma8vXmCR1hyRMmJAgwQEHJjLRRtHXFersUfvnXfkpjA7sjFQiJfmba/HfdYKUeQH07r6M/lE1jH5LwoYX7di304VRo3LYsMH/Ilc+Y19hGtvzksmJ9eDEUl/i//Vh0t1mbnvQyM+5cuw9dNz+22FKHMzsyHNjqF/H5nq6QiuyLiuejMpSAJztlEzu0JM+Xh0A67L4pWmHqTBoyawqZV1WPH3suvLVV+UsW1ZNYqKhthaIm5uUCRPsmTnTmRtvdEB6hfM1XFykuLi0nYRYJCOCcJW6n/uRSCSscvgb7z7n1yR5jMf4UvLlBc9fzGKiaLnZ9hcT4OhKuNqLU5pC8mo0zE/cw21hfXC0U3BkQyf8w1I4nqXhuFc+oSoVt33pye6X3di4WsukSbmsWHHhPXLA2iuyIfskAPoqOUjAYpaw6lcZa/+QYTbDX5vsWKWz9ixtyj7JEN/wK9pgTGj9TGYz2/OSAZAg4cnu1xLoeKbi7mDfcILt3bjn0/0krPFi/gl79JXWyeN2dtClix033ODIww+r8fVtmo/jrTlJbM1NolhnLXzm5+DCpODuRLlfOOk+WJjBsvQjFGsr8bZ35sbQ6Dr1RSwWC8vTj7I9L5kak4FwtSdTO/bFx77pNq4VyYggXIX2spcTnGAc4/Cm/uJoHenIGMawgQ2YqNs7cmvVfYxzHNcSoTbYDSE9+ezoRswWC3sL0ogtyqSj2gutycDIV4ys2esJvfNJ1Wn5IPkQ0plxOI/1YOUWX0bdF8K677sivUDykF9TUfvbr73BCbnMWt3SZLJ+ATx3t4yhTwYjjcogt0ZDZlVpk+16LLROGZUllOtrAOjh7l+biBw9qmPjxhpiY/X88UclRmMEYMHe3cCEKUqeedSLa69tniJ4rkp7poT2tO7Ea4HdBal8c2Ibr/Qah7+j63ntT2kKmXtyJzeE9qSHewD7CtL49sR2Xu41joDT7ddmxbMpJ4EZkQPwVDnyb9oRvji2mTdiJjVZHZK204cjCEKTmcUsJEj4kR8v2u4pnqqbiFgAgx1/yX5jRu57zRtkI3Vy8WZW5CDkEuvbmsFsIr4sj9SKYoIHlBOJC+jOvOWZsVDpXwS3H2fjmBU4/P45M/at5FBp3d2KS7RVJJy1g7Fca61wea7kZANzH/Zn9XORGLVSSs+qmSK0T1VGfe2f/0tEEhP19OuXw1NPlXD0qJ7Jkx249xUdM9bs5+6lsXwwV9ZsiQhAT49AursH4GOvxsdBzQ0hPVHK5KRcYPfdjdkJdHP3Y2xgV/wcXJgc0pNgJze25CQC1l6RjdknmRAcRbRHIIGObsyMHECZroa4oswmi1v0jAhCO3OpbtoDHOAYxxjNaPyxHrtQN+1oRhNGGCmWFKRICSrvTv8Ts1jc+SN+9n6dw5nxHApaYLPneq4Yr2CCnNzYnJPInoKU2sJtXionPv/cg1u/CEHTOxVk1gm5FgCp9c86hY6f04/hJFfwldtooP69RtIKqjBZHDj3dzmzGSQSC7lxamrK5C1WuVKwHYfTVYoBsqrL2L9fy4QJefj7y1i40IeYGOsk8DknkjhUbD7vnOZmtpg5WJiB3mQkzNmz3jYpFUWMCuhc51hXNz8OF2cBUKStQmPQ0sXVt/Zxe7mCUGdPUiqKavebulIiGRGEduZS3bT/9Yr8xE/Apbtpn+IpHpM8hku1L7+a/yCkpy/RKWG8W/MKcUG/4p6VToH/JuTS1vF24m3vzG3hMdwS1otqowGZRIJKZodEImHRQ86MPZBS/4kmCaS7YNnTDXpbD9W314i+SobFXP9wTlCfCgY/l4yrr1EM0VwFOji5o7ZTUabV8vPnJp5ZkEN0TyUrVvji4WFNRnOryzlcYv1gd7ZTtcjrIruqjP+LW4fBbEIpk/Ng1yH4O7rU21aj16K2q1urRG2novz0thEag3UYSq04p43iTJum0DrePQRBaDI9z9rvBaxzKbbmJpFSUUyBYxqHOcy1XEsg1nZnd9MCTA7pSXxZHltyErkzoh/TLdOZn7uOJySPM9jPumHek11GkbG7jEXGHyjusAX7/O6kum0jUGH7egX/kUqk59V1GB0SSMBBV7LNZZxdu00ChDirMS4YwTfHtagVxbz/vgf10VfUTUZkMlCpJEz8XwEuI04hkUCMV8gla0oIbVturpF162rY83c3dq2RYTZKcfLW8fZvFpxdLehNRg4WZfBPahzm00XPBvuGt0iPmY+9M6/0Hk+N0UBsUQbzE/bwTI9RF0xIWgORjAhCO3ZuN+0kbgGo7RWBS3fTarUSYk7dzvBeZ0q528sVhKu9+dr4Ee9lfsoR/0UEaaJZpVvMeOdrWuCZXR6JRMLTPXrxTNzmOsctQIijmlUHOhIRkckHH5SjVEmImZF93jWqS+zOOktCeP8q+j1zEgcv65CQvcyuRff0EFqGXm9h924ta9bUsGJFFceOWf++JRK72o3pxn10kkXZNSzK3nve+YGOrow7nfA3N7lUZu0ZBTo4u5NWWcymnATuiuh3Xlu1QoXmnM0wNQYtLqd7QtR21vktGr0WF8WZuS4avZagRhYNvBgxgVUQ2qHsqjIe37mQR3b8xW/J+3mw6xCKHNM5xCGGMYwOdKhte6XdtIeDfufuglfBoYwJ0vG8UTivmZ/dlbm7QxRy6emeDTOosKOnizebCzMZsmMBJ+ID8PGV8uYbpbz7f0XnnV+Wbn1DlinNDH8pmWHvH61NRBzlSh6LGo6PQ9MteRRs79VXS3BzS2P48Fw+/risNhEBahOR0N41uIfW1Ht+Jxdvnoy6FtVlbj9wpSyW87cw+E+YsycnzynYFl+aVzvHxFPliNpOVadNjdFAakXRBeehXA7RMyII7VB93bRb+nwEdjCPpk8WfvF7jf4l3XnU7n7edHmIfdlHWRXwaZPeY3XmcQ4VZZJXo0EhlRGm9uLGkGh8L/HBX9/k3Ov8O7IkOwlMUgxvD+bpX5T8YNnHjtI8YrbM4eUVvXhupCd7vw1GpjAz6q4aghzdSE0zYNJLUbrouWXeURw8rR9KHkpHBvmGM8S343lJm9D2VVWZqa62Zh3/FSk711tPBTOgpzc7806RU23do8bPwYXBvuGEOXu2WM2ZJalxdHP3x13pgM5kZF9BGonl+TweNQKAeQm7cFU4MCU0GoCRAZF8fGQD67Pi6e7uz/7CdNIrS2p7USQSCSMDOrMq8xje9s54qpxYln4EV6U90Z5BTRa3SEYEoR06t5s2tuYkcbKDDGYwoYTWadtU3bSPuE+hT3VnBlSMZ7Xf54RmJpEatLzJnlNieQHD/TsR4uSOyWJhadphPj+2iTdiJqG8wMZeF5qce3twd9bmpfK8w1jeTFDx1rOlLPxrLN+kHuWn9GP8X9Z+rl/gxdKpfdn1eSiPD/DmttucuOW1fHz9apj+50lKJdZEZFpEfwb5hjfZ8xRanw8/9ODUKSMrVlRjNp//uJOThJtucsTe3tnm+7xUGLTMT9hNub4Ge7kdAY6uPB41gq5u1sJ+JbrqOptdhqu9mBU5iGXph1madhhve2ce6jqktsYIwNjALuhNRn5N2ke1UU9HFy8e7zaiSee/iGREEK4CKz3n1VlBc7b/umnPnjdyoW7aICdrLYX/ummHnVPyvL9DF0oUx/DNH0xa0AoccmIo8N2Ok/TK98d44vRvdv+Z0ekant37D+mVJXRyqb9w24Um5xp0VZTd8CRyiZRdL25i7duhfPqUil9/nYjZbGBBViIrJTm8sjqPb24JZtasQjQaM3//XcWCBV7069mXT45sAGB3fqpIRto5uVzCX395M2RIDgcO6M95DO6+26nV7EU0rdPF52w902PUecdivIKJ8Qq+4DkSiYTrQ3pwfUiPK47vQlrHT08QhCazJDWOxPICirSVZFeVMSd9NUc9thKjG0AEEcxL2MWS1Lja9iMDIjlemsv6rHjyqstZnn6E9MoShvt3Aup20x4uziK7qox5ibsv2E3rKndC6xeHf+ZYavwOoS6O4oj2Astpr0CN6b95Gheu25BSUUTns+ojgHVybkpFEXZSGUXaKjqMzqdrL/jtt0r++quCER5+jHX1RGex8E7+Xn7fZ0eXLgoeeqiI7t3tmDrViQi1F66ne4myq0ub/LkJrc+JE3qOHrUmImdvG2M0wqxZYo7QlRI9I4LQzpzbTbs5bC4mqYFf7L8HWq6bNjtoDcOzH2Gr94/0rBnAjzXzuMdtQpM8R7PFwsKUg4SrverEea6GTs5dtcabLiGFTJtewMPLCwlQqZji7s3K0iLG7v2dr76+nudGK3joITXS05NfZacrvRrNZt6JXU1udTluSgcmBEcx0Ceszj035ySyPiuecn0NgU5u3B4eQ2gTTv4Tmtc/q0u4685CZM4Wrv8omS3vRFBVbIfZDN262dG79/nLuBPK8lmUEiteFw0kkhFBaGfO7qZNJplPWEM/+hFJJNCy3bRbAr7mfwXd+NjpRe5V3Mbe3Nf4zu9/jbpGff5I3k9OVTn/6zn6iq8F4Ooq4+9l7kyeXMDiF4MY+8lx3OwUPBPanY9Sj/Jg2lLmHhrPPaHW+TYZlSUU66oAa9n5SFcf7u08kJNleSxI3IuLQkU3N2t12/2F6fydEsvUjn0JdfZkY85Jvji2mTdjrhOTXduAH38u4ZHHC7FTWfj1bxcG9R3O/gHlTB2jp6zUwoMPnt8rUqSt5KvjWxjqFyFeFw0khmkEoR2byUyAeueKtJSPvB9mkeFf0DrxvdfL9M2ceUXX+yN5P0dLcni6x0jclBefi9KYybnajqlMeDafzIPOHP799GS/mjJWDpyCk1zBvQdW8378bqoMen5L2nfWPey5Jaw3fg4ujPCPpLdnEBuyE2of35B9ksG+4QzyDcff0YU7O/ZDIZWzK//UFf0chOb3wQel3H9fCc5eBmJ3hDF5iB+eKifG9wlgw3p/br7ZkTvvdDrvvK25SXiqnMTrohFEMiII7VQqqexgBzHE0I1uNo3lZpdhJDkcQFbSgQNB8/HMGo7RfIE1khdgsVj4I3k/ccVZPNXjWjxV538InKsxNRSOFGdx53R7uo4u5+C8IPJPOGIwm1iYvJdXwqJwkSt46dg2Bq7/kbTKEgDkEinR51S87ermR4rGWp/EaDaRUVFSZ18PqURCZ1ff2jZC6/T440W8+GIpft0r+WCRlk3GvTy7ZzHvxK5me24yMTFKFi3ywdX1/KHKFM0F5iqJ18UFiWREENqp/3pF5jPftoGc1lERQKXncdTZ11AcuBWHgp7kGUsafP4fpw6wtyCNeyMHopLZUa6voVxfg950Jqm5ksm5BdoKtuQmcd1rWbgGa1nzvy7oKmRYsC4RvsndC2epjCNVGtaXFuEkV6JWqM7rnVErVGhNBvQmI5UGHWYsONdXMM7QdPt6CE3r5pvz+PJLDWFhciZ9kkBsVTLe9s48HjWCoX4R/JVykN35F56UrTFo6y0SKF4XFyaSEUFoh9JJZytb6UUvomg9pclVUgXlAbvpknULBq8E/DQ9WV9xsEHnbs1NosZk4JOjG3lu75LarwNFGbVtSnTVlOvPVMH8b3Lu9rxk3o5dTWxRZr2Tc0f4RWKyWDBZzPi4ODD3Wx90FXI2vNQF6enJvnKplNs8ffG2U5Cqq2FHVSUy8RbarpjNZgYPzmbx4mr69FGQkBCIVG4h2MmdKSHRBDu5M9SvI4N9w9mam2TrcNsVMYFVENqhe7gHsO1ckYs5EbiQ23JeY6HHx4wxjObdoi94yfOui57z3ZCpl7zulUzO3V2QQhdXP6Z16g/d4dlnJXz8MRxf5M/ctzqjMWhRSOV8pvbk9r3/sjI3BY2uii5udbvjNXotKpkdCpkcqUSCFAkV5+xuqtFrcbG7+iYptmZarZno6GwSEgxMnGjPihXWeUMuChV+DnU3mPOzd+FQUeYFr6W2U6Gp5+9cvC4uTKT1gtDOZJHFZjbTgx5EE23rcC7oL/+3+LhyHiDhZfV93JD9gk3jCVd7kV+jqf3+o4886X5tJTu/DWDfCgf6eHWgh0cATnZKVgy+hftCe3CyuoKX4vdQdtaHSnxZHmFq65wUuVRGsLM78WX5tY+bLRZOntVGsL2SEiNhYZkkJBi47z7n2kQEzn9dAOTXaHBXOl7wemHqeuYqidfFRYlkRBDamXu4BwsWfuRHW4dySc943MZ2yRYklV4s8/uYiMwbbRbLqIDOpFQUsSrjOAU1FewrSGPwKydxcjMzc2YhGRlGlqTGMS9hFwDf9xnP8536kq3TErFqDrHF2WzJSeRgYQajAiLrXHdHXjK781PIrS7n9+T96M3G82pOCLaRnm4gNDST3FwTr7/uyvff1y3nXt/rYnteMsP9I2rbnP26ABjmF0GRtpLFqYfIqy4Xr4sGkFgs/+052HppNBpcXFwoLy9HrRaV7gThQnLIIZBAutGNoxy1dTgNVmQsI6BwCHq/Yzhm96HIbycq6YUrqzaXI8XZLEmLo6CmAk+VE6MCOmNKCGDEiFwCAmS8tSGHUn1VneGg945t442Te3CWybnDJ5ip4b3rKW6VwLqseDR6rbW4VVgMoVfpb8CtSWyslkGDctHpLMyZ48n999f/+VLf62LIWVshzE/YTbGu7uvi7KJnrkoHJtZb9Kz9vy4a+vktkhFBaEfGM541rGEPe+hPf1uH0yhGs5HA7HHkB25CWhTGEef1dFOFXvrEK7Qm8zhL0g5zrX8kt4XH1Nvm+eeL+fDDcoY+nEPUHVm1u/92dw8AYGl2IjftWopSKuF27yAcpBLC1Z5M7dgXH3vxntUarV1bxaRJ+Vgs8M8/Plx//YWHXYTL19DPbzFMIwjtRB55rGUtXejS5hIRALlUTl7QBgZl34fZLZMo3QB+L1vfrPdMqyhmW24ygRcpKQ9w/8tmom7KZfscP7qeGk60RyDfnthOdlUZADcEdOLzqEEoJFIW5GfQzTscpVTOF8c2YzCbmvU5CI33yy8VjB+fj1QKO3f6i0SkFRDJiCC0E7OYhQULP/CDrUO5IjsCv+Pxkg9BUc2dypt4LH92s9xHazLwY8Iu7o7oj8NFNtsD6+6/M18y4GAv5clZ1URLuhLs5MaWnETAWpAtvTyfz7sPRSmV83DcRiqkCsp0NcRdZNWF0PI++KCU6dMLcXSUcOxYIP37X52rV1obkYwIQjtQRBGrWEUkkQxikK3DuWKfez/B77oloHfgK4/nGZR1f5Pf44/kA3R38z9vaW59UiqK6OHjy6pVvphMMGBADl1crLv/AhRpq9AYtFzr15HkCffjoVDxwrFtZBuNtW0E2/uvqqqXl5RTp4KIiGj5eUlC/UQyIgjtwH+9It/zva1DaTJ3uI4kXrkPaWkQuwLm4pM5stEl5C9kf0EaGZUlTAmNblD7/3b/HTrUnuefdyE318S3r8vP2/1XrVDhq3IibeJDBDuoWVaYzU/pJ5okZuHKnF1VNS0tGG9vUWarNRHJiCC0cSWUsJzlRBDBUIbaOpwm1VkVTJXHCZxy+lAQtAnH/F4UGcuu6Joluir+Sonl3s4DsZOev6/Ipbz/vge9eytY96uSzMP29bZxkis4Nf4BopxcWFecy7Vb/sBsNl9R3MLlqa+qqoOD+OhrbcTfiCC0cfdxH2bMzGGOrUNpFiqpgoqAfURkTkHvE4+3pgfbKg9f9vUyKkqoMGh5N3YND23/g4e2/0FieQGbcxJ4aPsfmC3nJw3n7v67das/rv4GVr4SSmqqvs7uv/+RS6VM8wtjkKsXmwsziF4/H30T9ewIDaPVmunaNZudO3VMnGjP/v2ByOXiY681En8rgtCGlVHGUpYSRhjXcq2tw2lWiUH/cEPe/7A4FTGMa/mk+K/Luk5nV19e6z2BV3qPr/3q4OROP+8QXuk9Hqnk/LfFc3f/dXKSMuOrbHSVMgYOzMVdYV+7++9/aowG0ipL+KzntdzdoRtHNYV0XPX9eWXCheZxsaqqQusjkhFBaMPu537MmPmGb2wdSotY4v8+72t+ACw86zSTW3JeafQ1VHI7Ahxd63wpZXIc5craDfQasvuv1rOQx/9nT16eiZtuKqzd/fdwcRbZVWXMS9yNq9KeaM8gfuk3iecj+5NZU0Hoqu/Iqa5omh+IUK9LVVUVWh9R9EwQ2igNGtxxJ4ggUkm1dTgtalNlLKP0k7G45NI550bigxZe0fU+ObKBQEe32qJnnxzZgIfSkRmRA2rbHCzMYFn6YYq1VXWKnvXpk8XBg3rmzvXAa2Q62/OSqTbq6ejixdTwvvg4nHnP+jzpAE/GbcRBJmf/yOl0dWlf1TZbg0OHtAwceOmqqkLLEBVYBaGdm8pU/uAPVrKSCUywdTgtLs9YQnDREAy+J3DO7k+B3zablJCvrjbj45NOTY2FhIRAwsMvHsNfmfFM3bMcmUTCxmG3M8QrqIUibf/Wratm4sQ8UVW1FREVWAWhHaukkoUsJJjgqzIRAfCVu1PtfRjPrOFU+O/DqSiKJF1Wi8fh4CBl3To/zGYYNCj3kqtmbgvqwsZht2MBhm/5g8WZJ1sm0Hbul18qGDcuT1RVbaNEMiIIbdDDPIwJE1/ypa1DsSm5VE5h4Gb6Zc/E5J5Gp5q+/F2+tcXjGDBAxSuvuJKfb2Ly5PxLth/uHcyh0TNQymTcvGcZXycdbIEo26//+z9RVbWtE8mIILQx1VTzB38QSCDXc72tw2kV9gb+yINF74GqklvsrufZ/K9bPIa33nKnb18FK1bU8P33mku2j3LxInHcfbjaKXk0bgMvH235JKo9eOKJIl54QVRVbetEMiIIbcwjPIIRI7OZbetQWpVvfZ9lXs1CMCr5xP1phmc/0uIxbNnij7OzhIcfLiIpSX/J9oEOalInPIi/yon3Tu7hnv2rWiDK9uPmm/P44gsNoaGiqmpbJyawCkIbUk01Lrjggw9ZtPz8iLbgiDaFXhWjMHum4Z81mvSAlcilLfchtXevlgEDcvDykpKdHdygIlt6s5Fe6+ZzoqKYcb6hrBx0M1Kp+F3xQsxmM0OH5rJzp46YGAV79viLYmatlJjAKgjt0OM8jhEjn/KprUNptXqowij3OIZDbm9ygtbhlB9DmbGyxe7fv7+K1193o6DA3KD5IwAKqZyjY+5hqGcga/JS6bvxF4yifHy9zq6qOmGCPQcOiKqq7YH4GxSENkKLll/4BT/8uJVbbR1Oq+YkdaDK/wBhmdej8zmGe3kUu6tbbsO61193o39/JatW1TBnTnmDzpFKpWwdcSe3BnYmtiyfTqu/p9p46aGeq0lp6ZmqqrNmObNypaiq2l6IZEQQ2ogneRIDBj7iI1uH0macClrGhLynsDjnM9A0lC9LFrfYvbds8cPZWcKjjxaTkNDwpOKvAZN5MiKG1OpyOqycQ4G2qhmjbDvOrar6ww+iqmp7IpIRQWgD9Oj5iZ/wwYc7udPW4bQpK/0/5o3yb0Fq4nHHadyV+1aL3FelkrJxo7X+yJAhORiNDR92+Sx6FP/XfRhF+hrCV31HUkVJM0ba+h06pKVz5yw0GmtV1TfecLd1SEITE8mIILQBT/EUBgx8yIe2DqVNet1rBqvNa6Dajd+836Z75tQWuW/fvireesuNwkIz113XsPkj/3mu8zX83HcCVSYDUet+Ym9xTjNF2bqtW1dNv345GAwWli714YEHxCKG9kisphGEVk6PHmecccGFAgpsHU6blqUvJLR0KEafk7hkDaTIf2uLrLQZODCb3bt1fP21Bw8/7NKoc9fmpTBxx98ALB14I5P8OzZHiK3SggUVTJ9eiJ0dbN3qzzXXiGJmbU2zrqb5+uuvCQkJQaVS0b9/f/bt23fR9mVlZTzyyCP4+fmhVCrp1KkTq1aJ9fSC0BD/43/o0fM+79s6lDYvUOFFjddR3LOGUB64C1VhFGn6vGa/76ZNfqjVEh57rJj4+MZNSh3rG8a+kdOQS6Rcv3Mxc1PimifIVubDD0uZNq0QBwdrVVWRiLRvjU5G/vrrL55++mlef/11YmNj6dmzJ2PHjqWgoP7f2PR6PaNHjyYtLY2///6bhIQEfvjhBwICAq44eEFo74wY+Y7v8MCDe7nX1uG0C3KpnOLAbfTKvBuT5ylCq3qzTLOjWe/53/wRiwWGDm3c/BGA3m6+nBx3H85yBfcdXMtbx5s3Xlt74okinn/eWlU1JUVUVb0qWBqpX79+lkceeaT2e5PJZPH397e8//779bb/9ttvLWFhYRa9Xt/YW9UqLy+3AJby8vLLvoYgtEVPW562YMEyxzLH1qG0SzNy3rNQ42ihysXyYv53zX6/994rscApy5gx2Zd1frGuyuKz7AsLCz+wPHRgTRNH1zrcfHOuBU5ZQkPTLVVVJluHI1yhhn5+N2rOiF6vx8HBgb///psbbrih9vj06dMpKytj2bJl550zYcIE3N3dcXBwYNmyZXh5eTF16lSef/55ZDJZvffR6XTodLra7zUaDUFBQWLOiHBVMWLEGWcccKCYYluH0259V7qcB2X3gH0FowoeYH3A5816v8GDrQW7vvjCnccec230+VqjkR7rfyKpspTJ/h1ZOuimpg/SBkRV1fapWeaMFBUVYTKZ8PHxqXPcx8eHvLz6x11TUlL4+++/MZlMrFq1ildffZVPPvmEd95554L3ef/993Fxcan9CgoKakyYgtAuvMzLaNHyJm/aOpR27QG36zgo34mk3I8Nfl8RnDmxWe+3YYMfLi4SnnyyhOPHG1/UTCWXc3LsLPq7+7EsJ5lrNv6C+TKqtZZoq8ioLKn9KrFhPRNRVVVoVM9ITk4OAQEB7Nq1iwEDBtQef+6559i6dSt79+4975xOnTqh1WpJTU2t7Qn59NNP+eijj8jNza33PqJnRLjamTHjhBNKlJRSautwrgqV5mq88gah9Y9DlRNNgc9OnGUOzXKv2Fgtffrk4O4uJS+vYfvX1OeGnYtZlpNMhJMbR0bfg0resJVBJdoqXj2wHKPlTBIjl0h5u891uKscLyuWy1VaaqRbt2xyc03MmuUsipm1M83SM+Lp6YlMJiM/v+56+fz8fHx9fes9x8/Pj06dOtUZkunSpQt5eXno9fX/VqBUKlGr1XW+BOFq8iqvUkMNr/O6rUO5ajhJHajxP0Rw5gS0vkdwKe3GwerEZrlX794q3nvPjeJiM+PHX/5qnqWDbuLBsGiSKksJXT2HEn11g86rNOrqJCIARouZSqPuAmc0j7Orqr76qqiqejVrVDKiUCiIiYlh48aNtcfMZjMbN26s01NytkGDBpGcnFynGzExMRE/Pz8UCjFDWhDOZcbMbGbjggtP8qStw7nqpAetZFTuo1hcculjHMx3pcub5T4vvODGkCFKNmzQMnt22WVf59uYsbzZdRB52ipCV35HelXD9sJpTg0ZAoqL09WpqvrWW6Kq6tWs0X2DTz/9ND/88AM///wz8fHxPPTQQ1RVVTFz5kwApk2bxosvvljb/qGHHqKkpIQnnniCxMREVq5cyXvvvccjjzzSdM9CENqRt3iLaqp5mZdtHcpVa33A57xY+gXI9Dxofwczc5unxsuGDX64ukp55pkSjh27/F6J17oN5oeYsVQY9XRe8wOxpc1fO+VC/hsCevfQmtqvVw8sr5OQrF9fTd++2ej1FpYsEVVVhctIRm677TY+/vhjXnvtNaKjo4mLi2PNmjW1k1ozMjLqzAUJCgpi7dq17N+/nx49evD444/zxBNP8MILLzTdsxCEdsKMmY/5GGeceYZnbB3OVe097/tZaloBNWrme79G78xpTX4PhULK5s3WnWeHDctFr2/8RNT/zAqLZtmgGzFYzPTf+Atr81KaKsxGKdFVX3QIaMGCCsaOzUMqhR07/Jk8uWXnqAitkygHLwityDu8w6u8ynu8x4u8eOkThGaXps+jY+lwTD4JuGUNocB/U5OXkP/oozKee66Ea69VsXGj/xVda29xDkO3/IbBbOaXfpO4q0O389pkVJbw7qE15x1/udc4gp0ub7jEYrGwNiueVRnH0JmN5z3eyyOQkmVRvPxSGY6OEmJjA+jUSQzVt3fNWg5eEISmZ8bM//F/OOHE8zxv63CE00IUvmi9juGaNZDSwO3YF3YnS1/YpPf43/9cGTZMyaZNWj79tOyKrtXfw59jY+7FQWbH3ftW8OHJPU0T5EVYLBb+PHWQJWlx9SYiAF+/LuXll0rx9LRWVRWJiHA2kYwIQivxIR9SSSXP8zxS8U+zVZFL5ZQG7qR75h0YPZMJqurFmorzSxlciXXr/HBzk/K//5Vw9OiVrWqJcHYnZcIDeCrsef7oVp6K29BEUdbvcEk2W3KtK48kQC+PIKaG92Vax/5c4x3ChtciOPa3H85+Or7eqsHbu/k3JxTaFvGOJwitgBkz7/EejjjyEi/ZOhzhAo4E/c6dBa+CQynjpeN4s3B+k11boZCyZUvTzB8B8FY5kj7xQUIcXJiddJBbd5+pkK0z1t97cbk2ZSfU/nlqx3482HUIw/wjGOgbxoqXwkjZ4oFnpypu+y2OfZokDGZTk95faPtEMiIIrcBnfEYFFTzLs6JXpJX71e81vqz6Fcxy3nB5iInZzzbZtXv0UPLRR+6UlpoZO/bKV8Q4yBUkjb+fXq7eLMo6ydDNv7Ei7QifH99cb/t/UuOoMTauKqxGX0NCubX2lLe9M4N9wwGoqDBx//1F/PNPNXff7cS7SzVI5VBh0JFQln+xSwpXIfGuJwitwNu8jQMOvMZrtg5FaIBH3aewS7YVSYUPq/w+Iyzz+ia79tNPuzJihIotW7R8/HHZFV9PLpVyYOR0xvqEsr0oi7tj11NjNNTbNr4sj0+PbkJrqv/x+pTrtbV/jlB7I5VIABg4MIe5cyuYN8+LX37xJtLlzDYiZfqay3w2QnslkhFBsLHP+ZxyynmSJ0WvSBsywKErJS7HUOZHkRq0HIecPlSaG1YB9VLWrPHF3V3K88+XcOTIlVdFlUqlfBQ1iAiVA2UmI38W5dLV1Z+7O/bj3siBDPXtiPL0CqGMyhKWpR1p8LUV0jPVtUvPqgBrZydh6FAlM2Y4n/fY2ecIAohkRBBs7g3ewB573uZtW4ciNJKr3Ika3zj8M8dS4xeLS3EUR7RXXt9DoZCydat1iW9TzB8B2JSTyAhXD6Idnak2m/kw7Tg9PIPo5x3CnRH9eCF6DHKJ9SNhV/6pBveOeNk74aqwByC+NI/8Gg1ms4WkJAMTJ1priOhNRnbnW38uEiR0VIuy70JdIhkRBBv6iq8oo4zHeEz0irRREomE7KA1DMt5CLNrNj311zC/dPUVXzcqSsEnn7hTVmZm9Oj6NxVtqGqjnhOl1muM9wzgh5hxlBt0DN/yO/HlxQD4O7rS3zsUAK3JyPGSht1TKpEy2LcjABYsfH18KxsPFVBZaaFXLwX5NRq+PrG1dmimu7t/i2/GJ7R+4t1PEGzodV5HhYp3edfWoQhXaEvA1zxT+hnIdcxU3cpDeR9f8TWffNKVkSNVbNum44MPLn/35oqz5nWEq72YFdaTXdfeRWJFKb03zMN4eu+wCJczPRYaQ8PndYwMiMRb5QRAfk0FT7x7CoB1km28dmAFJ09PWFXK5NwQ0vOyn4fQfolkRBBs5Du+o4QSHuZh5Ii6C+3Bx94Ps8jwL+icmOP5Ev2yZl7xNdes8cXDQ8pLL5USG6u99An1UMjOvL6KddY9Ynq4evNW1BC0ZhPFp3stis7aP0bRiCqzDnIFT3S/Fj97NVWFdpxcdnp7kPwz80Qc5Qoe7zacAEfXy3oOQvsmkhFBsJGXeRklSv6P/7N1KEITutllGEkOB5CVhLA/4Ge8skZgvEBV0oaQy63zRyQSuPbaXLTaxs8fcVXY421vnUh6SlNIRmUJAHcGdwVgfX4aepORnfnWHg0J0Oms1S8N4aly4rnu44h7Lwbr1jQWsve54Wuv5sbQaN7qcx0dXbwbHbtwdRDJiCDYwI/8SDHFPMADolekHeqoCKDS8xjqnP4UBW7BoaAnecaSy75et24KZs92p7zcclnzRyQSCcP8Imq//+b4No6V5OCldCDa1ZslWQl8dXwrpTprT0Y3Nz+87J0afZ9XXyrjRCxY0xkJjic782afSYwN7IqTnbLR1xOuHmKjPEGwAW+8KaecCipQIPboaM+6Zt1KvN8/UO7HBsUyRjr1vuxrjR2bw7p1Wt57z40XX3Rr1Ll6k5H/O7yOrKqy2mNqOxVLCnM4pa3iLk9fHOR2KGVynu85ptHDKf/8U8VNN9UtZqZUQmlpCPb24vfeq5XYKE8QWqlf+IVCCpnFLJGIXAVOBC7k5vwXwLGYUYzig6LfLvtaK1f64ukp5eWXSzlwoHHzRxQyOU9EjSDkrF15NQYtVaeX8C4rLUQptePxbiManYgkJRmYNq2A0/XOaul0sH375c1zEa4uomdEEFqYL76UUEIllSIZuYp8UvwXzyofBkU1NxQ+wZKADy7rOvHxeqKisnBykpCf3wGVqnG/U5osZg4XZ7MtN4mMyhJ+z88i32AtrDbWJ4QVg29BLq17zdWZxzlUlElejQaFVEaY2osbQ6LxdVBTU2OmT59sEhIMmM7ZckYmh763FtP7oVN42ztzY2g03d0Dah+3WCwsTz/K9rxkakwGwtWeTO3YFx978T7fXoieEUFohf7gD/LJ5x7uEYnIVeYZj9vYyiYklV4s9fuYiMwbL+s6Xboo+PJLDzQaCyNHNn7+iEwipbdnEE92v5aPr7mJirM2rVuXn8YDB9dw7u+oieUFDPfvxAs9x/BE1LWYzGY+P7YJncnII48UER9/fiICYDJC5m43Xuk9nmiPQL49sZ3ss4aJ1mbFsyknobbomlIq54tjm8VGelchkYwIQgt6hmeww47ZzLZ1KIINDHXqSYH6CIr8LiQHLcEpux9ac+M2pgN4+GEXxo2zZ9cuHe+8c/n1R5IrS6k2nVnpYwF+SjvKa8e312n3RNQIBvqE4e/oSpCTGzM6XUOJrppUTTH//luNxQISCcjrmYudnSrFWOzI5JCeBDu5sSUn0Xovi4WN2SeZEBxFtEcggY5uzIwcQJmuhriizMt+TkLbJJIRQWghC1lILrlMYxoqVLYOR7ART7krVT6H8MkcSZX/ARyLu3JSm9Ho6yxf7oOXl5TXXitl//7Lm5dxsLT+nYHfid/Nt6cOXfC8mtPzTJwVStLTg9m5058vvvDg+usdAM6bO7Jxo7WOSVc3P1IqigBrTRONQUsXV9/advZyBaHOnrVthKuHWFMoCC3kaZ5Gjpwv+MLWoQg2JpfKyQvawKCs+9nl+zNdqvrxm3YBU11HN/wacinbt/vTrVsWo0blkp/fAeQmlqUfIa44kwqDjiBHN24LjyHE2aPea8SW5iOXSDDWM3Xwkdh1+CgduDEwks05iazPiqdcX0OAoytyqZRwtVftRNeBA1UMHKiistLMP/9Us3y5D/PzNxJZ3p2aLDXXXGNd1qu2U9Xu8vtfhVe1om5irlao6uwELFwdRM+IILSAJSwhm2zu5E4ccLB1OEIrsTPwex4t/j9QVHOn8iYeL/i8UedHRp6ZPzJiRC6/JO0lviyPmZEDea33BLq6+fLZ0U219UPOu39RVr2JCFiHbO7Yu5z12Yn8nRLLxOAoXu41Hp3JSIqmiNvDYs47Z+tWaxIxdqw9Xp2quf5OCZ984kHnzmJ+lHBxIhkRhBbwBE8gQ8ZXfGXrUIRW5kufJ/lNtxj0Dnzp/hxDsh5o1PkPPeTChAn27NmjY+lyDTeFRtPJxRtve2eu69ADb3sntuYmnXeexWLhUFl+PVe0lizr5+7HW90Gs68ghcG+4QzyDWdrbiI6kxEnOyUnys6fPHv8uB61WoJcLkWtUKEx1O3h0Bi0uJzuCVHbWXf61ZzTC6LRn2kjXD1EMiIIzexf/iWTTG7ndpxofFVLof2b6jqaY8rdSEuD2BHwA76ZoxpVQn7ZMh+8fSRsei+chKN1ezrspHJOaQrPOye1qhztWatWfJXWnXT7u3pzv18H9o6cxjOd+pJVWUpnFx/+SN5PXHEWT/W4lm5u/qRozp/XkZdnIjTUDoAwZ09OltWdkxJfmkeYsycAnipH1HaqOm1qjAZSK4pq2whXD5GMCEIze5zHkSFjDnNsHYrQinVThVLlcQLHnD7kB23EMb8XRcayBp0rl0vZsT0AqczCQ7PKyCmrxGwxs6cglRRNEeX683fg9VU5EuPsxkMhUSSOu4+c6x7BSWZHjrYai8WM3mSk0qDDjIU9hWnsLUjj3siBqGTWKq3Fumr0Z63E+WLvbgwG6NPHOj9kZEAkx0tzWZ8VT151OcvTj5BeWcJw/06AtUT9yIDOrMo8xuHiLLKrypiXuBtXpT3RnkFX/gMV2hQxgVUQmtEqVpFOuugVERpEJVVQGbCPiMwbSQ5YhndpD7YpVzDYqcclz42IUPDu+64881AV4x+OY+BDmQQ7udHXq0Ptxnhnc5DbMd7Tj4E+IUQ4W6uy9nLzYWdRFmaLa522ccVZAHxydGOd4weKMhjoEwZA7AHrCpsxY6zDL+FqL2ZFDmJZ+mGWph3G296Zh7oOqVPddWxgF/QmI78m7aPaqKejixePdxuBnVTWsB+Y0G6IZEQQmtGjPIoUKd/xna1DEdqQpKB/mJL9Aku9PmeIfgQfF3/DMx63XfK8p+73ZdPyXFb84c+EiI68+KYv38fvwFNVfyKstlPVmbMxNbgr24uyKDOZUMjkSCUSpEh4oMvgOr0V8xJ2U2PU1yYiAJWbOwHVTJp0ZoJ2jFcwMV7BF4xXIpFwfUgPrg+5dLIltG9imEYQmsk61pFKKjdyI2pEeWuhcZYEfMA7mu8BC886zeSWnFcadN6yZT74+Mj4v7er2byjghOlufT0CKy3bZi67ryO6R2ikCMhU28tDy+Xygh2dif+rImuZouFk2V5hKnrzus4fFiPg4MEBwfxsSI0nnjVCEIzeZiHkSLlB36wdShCG/Wy591sYANUu/O3zwd0zbr1ou2Pl+ZwoiyPFZvV2KnM3HpPOp5yNYNO92AsSY1jXsKu2vbD/CIo0layOPUQedXl7C1IJVCpIqG6srbNqIDO7MhLZnd+CrnV5fyevB+92VinVwQgK8tEUJDobBcuj3jlCEIz2MQmTnGKKUzBFVdbhyO0YSOdepNrPEJw4RDiAxehzr6GAr9tqKTn1+6oMRpYknaYMl01N3zqwqJHOrH0sS68stf6e2e5voaSs2qOeKqceLTbcBalxLIpOwFXpQM9XH34Nz+NjGoNwQ5q+np1oNKg5d/0I2j0WgKd3Hi82wjUCvva62g0ZrRaC716iXoiwuURu/YKQjPoRCdOcYpCCnHH/dInCMIlGM1G/HJGURS4FVlBR066bqGjIuCi59xwQx7LllXz8ssuvPNO/VVYz7WtMINhW/7ghcj+vN9jeIPO+fXXCu6+u5AffvBk1izxHi2cIXbtFQQb2cY2kkhiEpNEIiI0GblUTmHgFvpmzcDknk5EdR/+Lt960XP++ccbX18Z771Xzs6d5y/vrc9Qr2DsJFL+zU1ucGzr11uvfcMNorqwcHlEMiIITewBHkCChB/50dahCO3QvsB53Ff0DqgqucXuep4t+OaCbaVSKbt2+SGVwtixeVRWmht0j87OHiRWNHw34IMHdSgU4OkpRv6FyyOSEUFoQjvZyUlOMp7xeCKqSArN43vf55hXsxCMSj5xe4rh2Y9csG1oqIIffvCkqsrCsGE5Dbr+9QEdMVrMbMpPb1D79HQj/v4iEREun0hGBKEJ3c/9oldEaBEz3MZzWLEHSXkAW/2/JSBzHBeaAjhzppopUxyIjdXz0kvFl7z2Q2G9APg+Je6SbfV6M5WVFrp3t2tU/IJwNpGMCEIT2cteTnCCMYzBF19bhyNcBXqowtC4H8M+txc5QWuxz4umzFhZb9u///bGz0/GBx+Us337xeePBDg44yJXsrUo85IxrF1rvdbw4faXaCkIFyaSEUFoIvdxHxIk/MRPtg5FuIo4SR2o9j9ISOYkdD7HcC+LYnf1ifPaSaVSdu/2RyaD8eMvPX+kr7svedoqqo36i7Zbvdq6VHjKFDF5Vbh8IhkRhCZwgAMc5SgjGYk//rYOR7gKpQYtZ3zuE1jUeQw0DeOrkiXntenQwY65c72oqrIwZMjF54/c3aEbAD+lHr1ou337dMjl1rkpgnC5RDIiCE1gFrOQIGEe82wdinAVWxXwKa+VfwNSI4853M1duW+d12b6dGduusmBuDg9zz9/4fkjdwR3RQL8mRl/0XueOmXE21tsbCdcGZGMCMIViiOOwxxmOMMJpP49QAShpbzpdQ+rzWugxoXfvN+mZ+bU89osXOhNQICMDz8sZ8uW+ueP2EllBDmoiSsruOC9zGYz5eVmunQRk1eFKyOSEUG4QvdyL4DoFRFajXHO/cl0jENeFM6RoD9wyxqE0WysfdxafyQAuRwmTsxDo6l//sgo7w5UmQwkVtTfg7Jzpw6LBQYPVjXL8xCuHiIZEYQrcIxjxBLLUIbSgQ62DkcQagUqvKjxOoZb1mDKAnehKooiTX9mh97gYDnz5nlRXX3h+SMPhVuX+H6dfKjex5cvt05eveEGxyaOXrjaiGREEK7ATGYCMJ/5tg1EEOohl8opCdxOr6y7MHmcIrSqN8s0O2ofv+suZ265xZEjR/T8739F553fx90PpVTG6ryUeq+/e7cWqRSio5XN9hyEq4NIRgThMh3nOAc4wCAGEUqorcMRhAuKDVzA9II3wF7DDfJJvFw4t/axP//0IjBQxscfa9i06fz5I93UnpyqLMNsPn8oJyHBgLu7+BgRrpx4FQnCZRJzRYS2ZL7fy3xb/RuY7HjP9VHGZj8JWOeP7NxpnT8yadL580cmuHXCjIUVeafOu2ZxsZlOncTkVeHKiWREEC5DAgnsZS8DGEAEEbYORxAa5EH3yeyTbUdS7ss6vy/pkDkRsM4f+flnL2pqLAwenF3bftGiSj4Z5QVGyXn1Ro4c0WE2w4ABYohGuHJiZyNBuAz3cA8gekWEtqevQ2dKFMfwyx9MRtAq7HN6Uei7k6lTnVm+vJo//6xi8P9tIsU9g9wHhoBFhizFg50OWXWus3SpdfLqpEli8qpw5UTPiCA00ilOsYtd9KMfkUTaOhxBaDRXuRM1fnEEZY5H63sEdUk3YqsT+e03L1wnZLEzbD+5rvnQOxcA834/ivQ1lOm1tdfYscM6v2ToUNEzIlw5kYwIQiPNYAaA2INGaPMyglYxKvcRLC65xBgHc+PyPym7aw9YAJMEJiYCYIn1A+ru4nvihAEXFwlSqfgYEa6ceBUJQiOkksoOdhBDDN3oZutwBOGKrQ/4gucKPwepkWVjHgDPDJAAMgtEFUKABjLVSPQy/s5KqD0vP99EeLiYvCo0DTFnRBAa4b+6IqJXRGhPeu67BQpLYMocuPY72HsbZHe39o6MS0I2vzeKTHfiFAV8v+gwxYVgNDrj6F7J94sO17mWwk7GwGh/OoW42+jZCG2R6BkRhAbKIIOtbKUXvehBD1uHIwhNwmg285PrOqQuMth6H2R3g4G/QefNIDPDiDRMSj2Kw/4YMJNQXcKeHdaPjvCuOiqrDXW+Ssq17Iq7+I7AgnAukYwIQgP91ysyl7mXaCkIbcdLR7eysTAds8QCZjvYezscHwnd10LfRaDQw4h09Futm0Duc8ghPUkBWIjpB04OdrVfEon1mnqDyXZPSGiTxDCNIDRAFllsZjM96EFvets6HEFoMhKJBJVUhtZsQooEkGA+MRoqvKzJiGMJVEmoWRWBCjuyHCqQFNvj6Gji0Tt71rnW94sOU1ltsM0TEdo0kYwIQgPcwz1YsIheEaHd+b8ew3knagixpflsLcxkS2EGG/PS0WdGQ7UbDPwFbv4UtvjimuVDemAWdrkGOoYpbB260I6IZEQQLiGHHDawgSii6EtfW4cjCE3OTiqjv4c//T38ea5zf+YsiiOxppSs4s6cPBTE0a6z4buHyftrOhCG3k7HkCFqW4cttCNizoggXMK93IsFC9/zva1DEYQWIUVCoMWZUYRwZMCLHHXYiZ1ECXd/D0EHYEQas2aJZERoOiIZEYSLKKCAtaylC10YwABbhyMINhFl1xGNvJCOWZN4wuFvdt01hYjIaluHJbQjl5WMfP3114SEhKBSqejfvz/79u1r0Hl//vknEomEG2644XJuKwgt7r+5IqJXRLjaqaQKEgKX0TfFkwGlemRLgqFgr63DEtqJRicjf/31F08//TSvv/46sbGx9OzZk7Fjx1JQUHDR89LS0nj22WcZMmTIZQcrCC2piCJWsYpIIhnMYFuHIwg2J5VImTq5gL2duuOorcSy9BpY0g+0JbYOTWjjGp2MfPrpp9x3333MnDmTrl27MmfOHBwcHPjppwtXpDSZTNx55528+eabhIWFXVHAgtBSZjELCxbmMMfWoQhCqyGRSOg7LJY9oQEUKsFcuB9+9YN40XsoXL5GJSN6vZ6DBw8yatSoMxeQShk1ahS7d+++4HlvvfUW3t7e3HvvvQ26j06nQ6PR1PkShJZUQgnLWU4EEQxnuK3DEYRWRSqREz3iCCUq64dItUSPZfsDTC6/DZW5zNbhCW1Qo5KRoqIiTCYTPj4+dY77+PiQl5dX7zk7duzgxx9/5Icffmjwfd5//31cXFxqv4KCghoTpiBcsfu4DzNmvuVbW4ciCK2SvdydjDDrpG57k3VvPW9zAtPNYwg3fmXb4IQ2p1lX01RUVHD33Xfzww8/4Onp2eDzXnzxRcrLy2u/MjMzmzFKQairjDKWspQwwhjJSFuHIwitVkj4M4A1Efnv/w4mC9dWzCXndwXHMz7FYjHbLD6h7WhU0TNPT09kMhn5+fl1jufn5+Pr63te+1OnTpGWlsZ1111Xe8xstr4w5XI5CQkJhIeHn3eeUqlEqVQ2JjRBaDL3cz9mzHzDN7YORRBsqqrGcN6uvGczW0LwtgPXsyrA/5eY+FUa8F/zDBnOz2N/Qxxe9t2aN1ihTWtUz4hCoSAmJoaNGzfWHjObzWzcuJEBA86vwdC5c2eOHj1KXFxc7df111/PiBEjiIuLE8MvQqujQcM//EMIIYxlrK3DEQSbUNjJALBYOG9X3rO/qmssHHDzxCg5/xoSwAIEVxhxWjEFqusfyhcEuIxy8E8//TTTp0+nT58+9OvXj9mzZ1NVVcXMmdYdTadNm0ZAQADvv/8+KpWKqKioOue7uroCnHdcEFqDB3kQEya+5mtbhyIINjMw2p9dcTkN2n03UxWNxLLhvONGCaS6KvFWD8AlfQv8FgT9PoCezzRDxEJb1+hk5LbbbqOwsJDXXnuNvLw8oqOjWbNmTe2k1oyMDKRSUdhVaHsqqWQhCwkmmAlMsHU4gmAznULc6RTi3qC2SSUPI8uom4xYgOOeSsImpuCs8IfsTbD+Rtj7LCT+BBPWg6N/M0QutFUSi8VisXUQl6LRaHBxcaG8vBy1WuyHIDSPaUxjAQtYylImM9nW4QhCk1qzI5UTp4oBkEokqJQyPN3s6RzqQbeOHkgk9Yy1NIDZYkTzsx2u+jPH8lUgsUDW2K/o7fvI6YZG2HQXpPyFWaLgH/mnDJ08E293hyt9akIr1tDPb5GMCAJQTTUuuOCLL5mI1VtC+7NmRyrVWgNjB4ViNluo1hpIy9aw72guAT5O3HBtBFLp5SUke9YF0D8tBwuwfcAU/AJmoFwzGb0UVJN2EeR01pzCnG0Y192MXF9IjXNP7K9bDk5i/mB71dDP70YP0whCe/QIj2DEyGxm2zoUQWg2MqkUR3s7AJwdFfh4OOLn5cjf6xI5nlxE905eaPVGth3I4lRGGSazGR8PR4b3DcLrdA/GrrhsTmWU0TPSmz1HctDqTHgGDqGH/C+OXvsiw0Lew2KxsDDsfcacfJHj68axQb6O4TGdCQ1wAf+hfMFKusuXMKzicyp+78Mh1xcYeutTtvzRCDYmJncIV70aaviVX/HHn5u4ydbhCEKLCvZT4+VmT1JGKQArtpyiusbAlFER3DmpK97uDixal0iNzlh7TlmFjoS0Em4YGcGNoyKoKX6RjeFx9A95D4DYE/kUpoxlTZc76VeiwUs2kaUbEynVaAGYOqkrR2U3UjhwJQ4KGFr2NPzVCSrSW/4HILQKIhkRrnqP8zhGjHzKp7YORRBswt1FhaZST3Z+BXlF1UwaHo6vpyNuahXD+gahVMhISi+tbW80mRk3OBRvdwcCfZ259poQktMNVNVYC44cOJ5P3yhf7uj/K//26MSk7GI8vB4k9oS1RpW9ytopb+ffD9m0XIiYBuVJ8GcYHHijxZ+/YHtimEa4qmnR8jM/44svt3GbrcMRBJuwYK0LUlhag8Fo4ts/4+o8bjSZKavQ1X6vdlTg7Kio/d7fyxGLBUrKtchlUqpqDPh7OwFwc78EllW5MC0plu9lTzKSJXVvLpXCiJ+h68OwdhLEvgnJv1pX3KhDm+kZC62NSEaEq9pTPIUBAx/zsa1DEQSbKSnXonZWojeYcLS345axkee1USlkl33964YVs67Sk7szl7ImaRoD/OrZq8ynP9yVD9vvg4Sf4K+O0PMF6PfuZd9XaDvEMI1w1dKj5yd+whtv7uROW4cjCDaRkauhqLSGiGA3fDwcqKoxIJVKcFOr6nzZq+xqz9FU6amsPrOWN7ewConEOtyjVMhwtLcjp6Cy9nGpVE6udCUnXBT03r2AY0XfA3DeYk6pFIb9CFP2g9IT4t6D30OhLKl5fwiCzYlkRLhqPcMz6NHzIR/aOhRBaBEms5mqGgMVVXryi6vYeySXZZuSCQt0oWu4B8F+avy9nPh3UzJp2eWUV+rIKahkR2wWeUVVtdeRy6Ss2ZFKYUk1WfkVbN6XQacO7rUrdfpG+bL/WB4JqSWUlGvZfjCL0hIVsgFLqJaDz57HQZlLWnY5VTUGdHpj3UC9+sBdudD5fqhMh4WdYe/zLfmjElqYqDMiXJX06HHGGRdcKKDA1uEIQrM7t+iZUinDq56iZ3qDiR2x2SSll1KjM+Job0eAjxNDegfi7KioXdrbo5MXe47kotUbCQt0ZfSADqiU1pF/i8XCnsO5HE0qpFprxMNFxeCYQEIDXNiV9S5dNrxColrBIdNmamoUBHg7ceu4zvUHXhQHq8dDTR44BcOEdeB6/jCS0DqJomeCcBFP8RSzmc1c5nIv99o6HEFoM/5LRu6+/vJ34V158mZG71jMlgA7Ro2tRiq9xPRFsxl2PQYnvrV+3/0pGPDJZd9faDkN/fwWwzTCVceIkW/5Fg88RCIiCDYwsfPf/NuzK2MyDSzd4XvpE6RSGPw13BQHDn5w9FPrxnslx5s9VqFliGREuOq8yIvo0PEuYpa+INjKzX2PszTChRtPFrP4YO+GneTRA6ZmQtQTUJUNf3eHXU9Ye06ENk0M0whXFSNGnHHGAQeKKbZ1OIJwVTObjWxao2JwroktQ+9kXMSvDT+55DisHgdVWeDgD+PXgEf35gtWuCximEYQ6vEqr6JFy5u8aetQBOGqJ5XK6TcqjRNu0GfXb+zPnd3wk927wZ2Z0P1pqM6FxT1hxyOil6SNEj0jwlXDjBknnFCipJTSS58gCEKLSClbj2T1GMyA3cStBKuHNu4CZQmwagxUZoC9L4xfDZ7RzRGq0EiiZ0QQzvE6r1NDDa/zuq1DEQThLGGuoykY9gFuOsjfOJxKfV7jLuAaCVPToedzUFMA//SGbQ+KXpI2RPSMCFcFM2acccYOO8oos3U4giDUY1XCrYzcvohtAXJGjq259JLf+pQlweqxUJEKKm8Yv9JaRE2wCdEzIghneZu3qaaal3nZ1qEIgnABEyIXsjw6itGZRpZt97m8i7hGwB0pEP0S6IpgSV/Yeo/oJWnlRM+I0O6ZMaNGjRQpZZQhFTm4ILRqS7a4MSWxjMW9u3NTnyOXfyFNKqwaDZpToPKEsSusG/IJLUb0jAjCae/zPlVU8SIvikREENqAyUML2RAoZ1LcUVYl3HH5F1KHwu3J0Pt10JXAsmtg83TRS9IKiZ4RoV0zY8YFFwDKKRfJiCC0EZX6PBJW+BFSAcmjP6S///+u7IIV6dZekvIkULrD2OXgO7BpghUuSPSMCALwMR9TSSX/438iERGENsRJ4YvHyI2UK8Br63OklW+6sgs6d4DbEqHP26Avh38HwcY7RS9JKyF6RoR2y4wZN9wwYUKDRiQjgtAG7cv5hLD1z5LuDBGTMlErAq/8opUZsHIs/H97dx4XVbk/cPwzC8Ow7/sigoqiKIpLbrnhkmZp2Wpp3qxbWd2yX6XXzEorK2/ZYtm+3FuZmph7Ku6KK+LKIrLJDrKvw8yc3x/oKAIqODCAz5vXvIJznnPO9zzhzJfnPEtRLKgcYMxa8KxnbhNdFeQeBbdBcGlV48vyK8so1VbV2matNMdRbXXr8bUjN/v53YRxU4LQNixlKcUUM5/5IhERhDaqv+crbLrjKCP3rWDf9o6MHNfEIb9Xs/aFh2Lg+GI4+gZsGAb+D8LIX+Hqcx/8PzjzBYzbAL4TDJvzK8uYf3Q9Wql2q4pSJmdh34kiIWkC8Q4ttFvv8A4WWPAWb5k6FEEQbsH4wN/ZGNKTsDQtf+1xMd6Je8+BR1PBPggSV8IvzpB+6XFQ5p6aRARg/4ug0xgOK9VW1UlEALSSvk5riXBzRDIitEuf8ilFFPESL4lWEUFoB+4PPUF4oCOT4wtZfbSH8U5s5QkPnoEBS6C6DDaOgr8nwc7HQaaoKVOSBGeWGe+aQh3iXVpol97mbdSoWcQiU4ciCIKR3Ds0m20+SiZGn2FT7APGPXmvV2oW3nMMhpS/avqVSLpLOyU4+iZU5Br3moKBSEaEdudLvqSAAl7kRdEqIgjtiFyuZOCoC5x0knHHwdUczFhs3AtYusOQr+rfp6uAI28Y93qCgXinFtqd+cxHjZp3edfUoQiCYGTWKnfcRu0iXw1uu+aSWLjNeCfXVsDOaVcez1xN0kHst5RmHSE8KbrBU6SVFhovntuISEaEduUbviGffJ7jOZRisJggtEu+tndSMOwTrKuhcMcYijVpxjnx0TehJPGqxzO1SUBexHTOFmQ2eIr/nTt03f1C/UQyIrQr85iHOeZ8wAemDkUQhGbUz+Mljg2aSlABHNnmh16vvfWTFpy9ZoMM5GZc/qiUIeFXFsPE3FWoFWYMcvPnQf8+jPHuhrPaGgAdEt/E7KOsWoyqaQzxp6PQbvzIj+SRx4u8KFpFBOE2MK7z//iz+Cz3HzvO2t3OTBpReGsnvGsjaEqgNKXmVZJcM418aQqawjikgljMpSomXPyLkR36YNlpsmFekkkdevFVzB5O5WdQoavmQHYio7273fI93i7EDKxCu+GGG4UUUkIJKlSmDkcQhBayZo8z98VeZHVIIFP6xzbLNcKTo9ly4SwW2jJerj5Ah5RfwLkPDP0GnEJAJiOrvJgFxzYA4G1lz/w+45sllrZErE0j3FZ+4RdyyGEmM0UiIgi3mUlDsvjb14x7TsaxIea+ZrlGQVU5ABVKK1RDlsK9B6CqENb0qelrArhb2uJkblWrvHBzRDIitAuv8zpmmPEJn5g6FEEQWphcrmRoWAbRTjIGHwrnQNpCo19DedUIm9LqKnAdAPefBEsPyNoLgE6vp+LSTK1KeT0jcoQGiWREaPN+53eyyGIGM0SriCDcpiyVzriH7SFPDZ573iShcItRz+9v62T4fl/W+ZpvzCzgjiWQuRuyIonKS6VcWw1ARxun+k4jNEAkI0Kb9wqvYIYZn/KpqUMRBMGEfG2GUDTsMyy1UBJxF4WVyUY7d1+XDqgVZgAczEliy4UzVOt14P8AktyMqohH+f38UUP5YR6djXbt24FIRoQ2bTWrySSTaUxDjdrU4QiCYGJ9PV7g+MDpdC2E4xGd0OorjXJetcKMiR2CDT+HJ5/g9UNr+fTsPuKte6EqS8ahJB6AIHt3utq7G+W6twuRjAht2ku8hBIln/GZqUMxmvzKMlJL8w2v/MoyU4ckCG3K2M4/salPX0ak69i4281o5x3lGch4n+6Gn8u0VZwtyOQHl8cBeCT7J7rYufJ0t6HIZTKjXfd2ICZjENqscMJJJ53pTMcSS1OHYxT5lWXMP7q+1vLkSpmchX0n4qi2MmFkgtC23N/7CH+WunJ/TC6rrQKZ0j/uls8pk8m4168XPRw92ZkRz/G8C2glPYUqZ7ItAwgoT+ClgB4olGZGuIPbi0hGhDbrX/wLBQq+4AtTh2I0pdqqWokIgFbSU6qtwhGRjAhCY0wenMGWMkvuORnPept7mdjtL6OcN8DWhQBbF3SSnkptNSqFErNOvrB+KIoDL8LolUa5zu1EPKYR2qR1rOMCF3iYh7HG2tThCILQCsnlSu4My+C4s4yhh9axP+1to55fIZNjZWaOmVwBHkPAygeSw0GrMep1bgciGRHapBd5EQUKlrPc1KEIgtCKWSqd8QzbT44afHa/xbmCDc13sb5vg6SFY/Ob7xrtlEhGhDZnM5tJIYUHeKDdtYrkVpaaOgRBaHd8rAdSOuIr1Dooj5ho1CG/tQTOADNbOCv+SGossTaN0OYEEEAyyRRQgC3t4/ehXKvhp/iDnLhY/1LoIU7ezOw6uKY5WBCEJtmWMJPBu7/nkJuCoeNLUcqvTAewPuUkG1JP1yrvZmHLO33vbvB8x3JT+SvlJBcrS3G1sOG+jiEEJ3wB0Yth2PdIXWawPuUUe7MSqNBVE2DrzKOd+uFm0T7et26GWJtGaJe2sY1EErmP+9pNIlKpq+aTUzsaTEQAoi+m8XXMXnTXdG4VBOHmje70HVv69GdYho6Nu1zq7Pe0tOPDAZMNr9d6hTV4rvPFuXwXu5/B7v680ecuQpy8+ersXtIDXwa5GRxdwN9pMezIiGNq5/7MCRmDuVzJZ6d31kyWJtQikhGh1bh2fo365th4jueQI+dbvjVRlMa3KfUMqaX5AFgpVUzw7cFzQXfyTLehDHUPQCmr+Wd6Kj+D/VmJpgxVENq8+3ofIrybK/cmlLL6UO1ZUuUyGXYqC8PL2qzhiRQj0uPo7ujBWO8gPCztuNevF77WDuzKSQa/yUhlaUQl7mS8bw9CnLzxtnJgRuBACqsqiM670Mx32faIob1Cq1Df/BpQe46NHewggQQmMxl77E0TaBM8yZNISNzFXYQRhgMOhn0anZZ9WQlATc/8V3qG4WVlb9jf29mH3s4+fHZ6FwC7MuIZ6h6ATEyoJAhNNnlwOpvLrbj3ZALrbSYwMWgjADkVJbx2KBwzuRx/G2cm+4U0OL9PYkkeYV5da20LcvCoaeEc9DlS4mr6524gMPRRw34LpYqONs4kluTRz9Wv2e6vLRItI0KrcO38GoUWGewN+IEsy0RKtVUAPMuzyJHzHd+ZKswm2cxmfuRHHuRBnHCiP/15h3c4zGHiirMouzQMsI+zjyEROcMZUkgBoLuDp2HRrfTyQtHJVRBukVyuZMSobI66yhh6aBN7L8yno40zT3QZyIs9hvNop37kVZbx0cltVF5a+O5axZpKbK9pObE1U1OkqQRLV4pchzCkcBe2VTm1y6gulRFqEcmI0Cql258mxjOCNX3m8Q/1o3zP98QTz93cjSOOpg6vUfrRD/mlf2oSEkc4wju8wwAGMMguiM1BH7Gjy5fs91jJwzxMF7rQ49JXOOFISPhdtQJoaXWVqW5FENoNtdIe31GHyLaEDnsWoZQOEurii7eVA90dPHmhx3DKtdUczUtt0vmL+ixEIWlRHXrFyJG3TyIZEVopGVwa57VLsZ2ZzARgFrNMGFPT9KEPMmo/VtFR04GtVF7CBadoEtz28z+br0gjjbGMZRGLCCGE+7gPL7z4W3llbgS1QjxdFQRj8LLuR8WIrzHXgWbn/eRXJhj2WSpVuFnYkFtRUu+xtio1xdW1WziKqyuxU9W0lli59OGI7SDM0reCtvxKGc2VMsIVIhkRWqWrP7x1Mp1h29hLXwc5aKrQbooGDZvYxAu8wP/4nyH5qEMCJBlB6aN55uDPbNJs43M+Zx7z2Mte/st/yZPy+Mn3bVb2eRW93UXcLdvHKCJBaA1CXJ/m1JBnCCiGU9sDDav8Vuqqya0sxU5lUe9x/jbOxBZm1doWU5CFv40zAM5qKyJdJ6KUquHgqwBUaKtJKskzlBGuEMmI0DrVM/uNdGnjdrYzkIH8zd8tHFT9iinmV37lCZ4gmGBssMEccyYwgS/4gkTqHwGjQIGnzJM3L3zHkMQn0OgkPj61g5iCLCRJQifpCcq7k1lHf6bDxVAKLTP4LvhF7pPdRymi34ggGEuY/1f8GDSaoRl61u9043xxLsvP7kWOjH4uHQD4Me4A4UnRhmNGeQVypiCTbWkxZJUXsT7lJCml+Qz37ALULKrXvdN4Yq26Ux7/G+kl+fwYH4m9uQUhzj6muM1WTbT3Cq1Uw6NF9OgZwQgGMKAF46mRQQZrWcsOdnCSk1zgApVcaapVocIDD4Zd+prMZAIIwBFHCimsda5RjOI3fkPhZsH7mX9TqKkgs7yIpad3oFYo0UmSYT6CsTGzMXcoYXv3z/iLv3DEkX/zb97kTUN/FEEQms7c7k2Wdcnlhfho/mN2L7YuHzInZAw2lx6p5FeV12qxDbB1YWbgYP5KOcHa5BO4WtjwbNDQWqPhxnp346Dv/XSNeYdvDnyM5DmCF7uPEJMX1kPMwCq0Cqml+bx7fIvh5xj3Hezt/H2tMnLkSEgsYAFv8AYKmvcfdAwxrGUte9jDGc6QRRbVXOlZb4kl3njTm96MZCSTmIQrrvWeK4wwIogw3MNCFjKXuYZEIruimGVn9pBdUVzv8f42zjwbdCe2KjV/8idP8RQFFOCEEz/xE3fT8CyRQvuQW1HC2YIsSqorMZMr8LKyx9PSrsGhp0Lj6fVa/t5mzejUKjYOGsu93bfc+KAbnxR+tAQzO5iWfevna2Nu9vNbtIwIrZJMqt0yokSJLbasZCWjGGXUa+nRE0kkG9jAAQ4QRxx55NXq52GLLUEE0Ze+jGEME5iAFTf/IRBKKBFEYIcdq1hV5x7cLGxZ0Gc80RfT2Jd9npyKEuSAl5UDQz0C6GbvgfzS3CL3cz+Tmcw85rGEJUxkIj3pyRrWEECAUepEaD20eh1rk0+wLT22zj4Z8K8eI+nm4N7ygbVDNUN+sziy0ZHhh/9mr82/Ger73q2eFDpNhbgfIHUT+I43TrDtTJNaRpYtW8ZHH31EVlYWvXr14vPPP6d///71lv3222/55ZdfOH26Zs7/0NBQ3nvvvQbL10e0jLRvOknP5tQzrE89ZdgW67aLPV1qZlmVSTIGyQaxkpV44nlL19KgYStb2cxmDnOY85ynkEJDfxQZMhxxpDOduYM7GM94RjAC5S3m7Sc5ycd8zLu8ixdet3SuqxVTzMM8zGY2I0PGFKbwC7+gRvTWbw+q9Tq+PLuHswWZDZYxlyt4sccIOtnV3yonNF5mWRRFG0Kx0kLZuFV0dZpyayfUFMNPDmDfBR6MMU6QbUSzrU3zxx9/MHv2bBYsWEBUVBS9evVi7Nix5OTk1Ft+165dPPLII+zcuZPIyEh8fHwYM2YM6enpjb200A5Vaqv59NTOWokIQJnqouH7u/IfY4e0s9GJyOWOpdOZXqtj6UQm8iVfcpzjqFEzghHMZz5HOIIWLXnkEUkkn/AJoxl9y4kIQE968hM/GTURgZoWm01s4gQn6ExnVrEKe+xZzGKjXkcwjTVJx2slIl3sXBnt1Y2Brh2xUqoAqLqUsJRWi4m0jMXDqg+akT+i1EP1jgfIq4y7tROqbMFzJBTGQsHtlYzcrEa3jAwYMIB+/frxxRdfAKDX6/Hx8eGFF15gzpw5Nzxep9Ph4ODAF198wbRp027qmqJlpH2SJIllZ3dzKj/DsM3Z3AoHtRWf+czmgv0phsU9TWDuMCb49uCeDj0bPFcGGYQTzk52coITpJFWb8fSYIIZznAmMaldPtL4lV95jucophg33Pgv/2U0o00dltAEpdVVzDm8lmq9DqVMzr+CR9LlqtaPKp2WZWd2E1dU0w9hsl8I43yCTBVuuxSR+BwDdn1FlIucQRPKaq3y22iF52BlF/AYDhN3Gi3G1q5Z+oxoNBqOHTvG3LlzDdvkcjlhYWFERkbe1DnKy8uprq7G0bHhWTSrqqqoqroyy2Rxcf2d+oS2LaE415CIWCrNeKrrELrZu5Mjy+FNKYHppbNQ5w5GQuLvC2cZ6RmItZk5ZznLWtayl70NdiztQAd605tRjGISk3DGdOP6jbY0ueOVVhVJkupdmnyqxVQe4RFe4RU+53PGMIZQQlnDGnzxbbZ7FIzvSG6KYTTVnR6dDYmIhIQMGeYKJY917s/8o+sBOJB9XiQjRjbK/0vCS05xz+F9bNzhzD1htzCk3r4zOPSAzN1QWQBqhxsfcxtp1GOavLw8dDodbm5utba7ubmRlZXVwFG1vf7663h6ehIW1vDSzO+//z52dnaGl4+PGJPdHu3JPGf4/gH/UIIcPJDJZCxhCUqZkv/YvI27XzmH/H5nTfDb+Mi9UKCgO92Zxzy2sIUiiggiiCd5klWsouzSVyyx/M7vzGSmSRORy4yyNHlZoaHM9ZYmlyPnEz4hhxxGMYpjHMMPPx7jMTRoWuBuBWO4eubPECdvAEoowQEHZjCDCipwtbDB+9JQ0pyKUtrA4Mg2Z3KvvYQHeXJPYhmrI/1u7WQDPwEkiPyXMUJrV1p0goLFixezYsUKwsPDUasbbu6aO3cuRUVFhteFC2K55fYouaSmX4iZXGGYWOgAB1jKUpxwwhdf3vaZyQmfDWTZxlEtaelPf17iJbaxjWqqKaKIaKL5ju+YwhQssTTlLTXIKEuTZ8QDNa0iEemxN1ya3BFHtrOdIxyhIx35lV+xw46lLG3u2xWMQH7Vysxa6crILgmJX/gFP/x4kicpoyZpEQs5N58pg9PZ6Kdm0ukU/jp9C489vcPAwh3O/wF6rfECbAcalYw4OzujUCjIzq49Vjo7Oxt39+sPLVuyZAmLFy9m69at9OzZ8LN/AHNzc2xtbWu9hPbn8iq95nKlYRKgSCKRkOhOd17gBV6vnsfkqEXM3PcLH8WvM3QsDSPMKB1LW8rlpcnnHfmL72P3k19Z1mDZxJI8utrX/vcU5OBBYkkeAHmVZRRXV9LtqjJXL01+rb705Tzn+Y7vUKLkZV7GG2/2sMdIdyc0h6snzzqUkwyADTY8wiP44ksQQfwg/cCHIY+yp9N3uFtZIRMZSbMZPTKXQ64yRhzZzq6UV5t+ot5vgF4Dx981XnDtQKOSEZVKRWhoKBEREYZter2eiIgIBg4c2OBxH374IQsXLmTLli307du36dEK7Yqjec08HaXaKkMrySu8QgUVbGADi1nM+LzpuJR1RI7cUL6tMerS5EBxdUXNtmsW27rR0uRP8iQFFPAMz5BJJsMYxiAGkUFGg8cIphPq7Iul0gyoSUb2ZSUgSRKjGEUyyXxauZyHzs/DotqWWI+dvBsyhVd5FT16E0fePqmU1nQaHU26FXTeu4SzeSuadqKgZ0FpBac+NW6AbVyjH9PMnj2bb7/9lp9//pmYmBieffZZysrKmDFjBgDTpk2r1cH1gw8+YP78+fzwww/4+fmRlZVFVlYWpaVibY3b3UC3jobvVyVGodHVNFuaUfMGXFBVzqbUM/WWb0t6OHoadWnyW6FEyVd8RSaZDGUokUTigw8zmYkW0WzcmqgUSsZ6dzf8/N9zh3nr2EYunrcDYOrFf2GXGcRjh5cxMfFFbLBlCUuwwYZ3eVckJc3AzbIn2pE/IwP0Ox8hp/zMDY+pQy6Hrk+CpgAS/jB6jG1Vo5ORhx56iCVLlvDmm28SEhJCdHQ0W7ZsMXRqTU1NJTPzyrj4r776Co1Gw5QpU/Dw8DC8lixZYry7ENqkfi5+hhaAhOJc3jq2kS0XzhKVd4E/k47zTtQmCjQ1S293sXPF17rhEVhtya0uTW5rVrOKaPE1rSCNWZrcFVf2sId97MMLL77ne+yw4yu+auztCM1orHc3hnt0NvycVVHMscwskOC051YKLTJwMrfiO49FXJTl8QmfoEDBG7yBAw4sY5kJo2+fgp2nETf4RfxKIG57TzTaJvxh3f8DkCngyNwbl71NNKkD6/PPP09KSgpVVVUcOnSIAQOuLFi2a9cufvrpJ8PPycnJSJJU5/XWW2/dauxCG2euUPJc0J2YK2r6flysKiM8OZqvY/ayNS2Gcm3NyA9ntRVPBg4yZahGZYylyW3N1LXKNHVp8sEMJpVUw4fWczxHBzoQyc0N1Real0wm4+GAvvyz21A629YM7c23TLu0jqRERMgSZvYOwdXCBoCXeIlCCnmLt6immud5Hldc+ZVfTXcT7dCIjp+yve+dDMrW8/euJsx8q1SD791QkgQ5R4wfYBsklvsUTKqjrTOv9xpDV3u3OvsUMjn9XTrweq8x2Ju3zlEyN2N1YhTxhdnkVZYabWnyUV5d2XThNCcuppFeVnjLS5M/x3MUUcQMZpBGGoMYxHCGk0fdDrFCy5LJZPRx9uH/eoWxuP8kQoPMQQJkUKDM5X6zSZRxpUO0HDkLWEAxxbzMyxRRxGM8hg8+bGSj6W6knZnUczfh3b2YmFjB6sgmzOEzuGbiUPa/YNzA2iixaq/QamSVFxNTmEWVrhprM3N6Onph20DrQVvybcw+zhXnUlZdhbWZOZ1sXZjk1wuXS3/N/ufkdpzMrXgi8Eon8JpJz05wsbLshpOelWs1dLJz4dGAfrhZ3vq/j3TSmcIUDnIQBQr+yT/5nM8NKwwLpvUP/sF/+a+hj48CBWMZy1/8Ve8Is0oqmcUsfuZndOjoRCd+5EeGMKSlQ2+XNmyz4K7kStbfMYJJwTsad/CafpB3FB7LBMv2udjhzX5+i2REEIR67WQnj/EYGWRgjTVf8AXTmW7qsG57XelKHLXXSpEh45/8ky/5Ehn1D+8tppgneZI1rEGPnmCC+YVfCCGkBaJuvzTaUg5vsqVXnsTRkf9ihN/Smz84+yD8NRA63gej/2y2GE2p2RbKEwTh9jCCEaSTzn/4D1q0PMETBBBAFFGmDu22VUIJ8cTX2S4hsZzlfMRHDR5riy2rWEUmmYxjHKc5TW96cwd3kEBCc4bdrqmU1nQOiybVGgL3fcrpvN9u/mC3O8C6AySvA+3tPTuyaBkRBOGGNGiYwQx+53ckJEYzmpWsxB57U4fWpsUX5bA17SyppQUUaSp4ttvQ6/b72c1uhjP8uudcy1psM7qxLS2GIk0F3tYOPBwQSsdrOjenkMJjPMY+9gEwkpH8l/82enVsocbpvN9w3DKVQhU43X0CN8vrT+5pEP8/2PU4BM+Ggf9p3iBNQLSMCK1CpbaaP84fY+7htTy//w8+iN5qmOCsIXGF2SyK2sysfSt448g6DmQn1imzMyOefx/+i1n7VvB+9N8k1TPzqGA8KlT8yq8kkUQooWxjGy648AqviPksboFGp8XbyoFHAm5uMsid1XuRSdc8hpFALtW8lVtjTXRxIqsTo5jg24N5ve/C28qez07vrDMUvAMd2MteTnOaPvRhBzvwxpt7uZd88o1yf7eTHs6PEj9kNj6lcG57yM0P+e3yGKjsIOab5g2wlRPJiNCsfjl3iJjCLGYEDuLNPuMJcnDnk1M7KKgqr7d8XmUpX5zZRaC9G2/0uYtRXoH8N/4QZwquzBJ6JDflpt5sBePrQAeOcpTNbMYRRz7mYxxx5A/E5E1N0cPRk0l+veh9k6Ogtmh2ISHV6qhqplNzV/Y/OMQhCihAlRjEEPcABrsH4Gllx9RO/VHJlRzIPl/vObvTnWMc4xCHCCSQdazDBRemMpVy6v93KtRvuN9/iOg3goHZElt3NmLIb/cXQFsKZ79uvuBaOZGMCM1Go9NyPO8C93cMoYudK64WNkzs0BNXC2t2X7Vi79V2Z57DWW3NA/598LC0Y4RnIH2cfdiefqXD3vb02Ea92QrGN45xZJPNIhZRQQUP8zBd6cppTps6tHZNWW5Dx6quvMqrbGc74xiHVqGhQ9Jw+tMf9DJSS/JrrVskl8noau9OYvH1Ww/7058YYtjGNnzw4Td+ww47nuVZsdpzI0wK3kF4D1/uTqpg9X7vmzsodAHIVRD1TvMG14qJZERoNnpJQo+EUqaotd1MruR8cW69xyQWN7BI3KU3Uq1e1+Q3W8H45jGPAgq4n/uJJ55ggrmbuylFLPfQHEak/INluat5j/cYxSimMQ1JpifVKgaNTktpdRV6JGzqW7eo+uZaDsMII5lkVrMaZ5xZznJssWUuc8UjuZs0ZWAK6/0tmHw2nbUnh934ALkSOk6B8gxIb+Tw4HZCJCNCs1ErzfC3cWbThdMUVpWjl/QczEkisTiPIk1FvccUV1fWuwBcpa7aaG+2gnFZYslqVhNHHMEEs5GNOOLIPOaJD69m9gAPoNArSbdvwhopN3A/95NJJt/xHVZYsZjF2GLLYhYb7f9rfmUZqaX5tV7XW9G6LRk7PIcDbnLCju5hZ9K/bnzA4M8AGUS+3OyxtUYiGRGa1T8CByJJ8Prhtcza9wc70+Po59KhwbkQhLarM505ycma0RzY8h7v4YIL4YSbOrR2w9ZMXatvlBIlnpqOpNufQqVQYm1mjhwZJfWtW2R2c+sWXetJnuQiF1nCEmTImMtcnHDia26tf0N+ZRnzj67n3eNbar3mH13fLhISldKawLCTpNhA132fcTL35+sfoHYC9yGQfxKKk1omyFZEJCNCs3KxsOH/eoXx2aAHWTxgEnN7j0Mn6XFWW9db/to3W6h5I1UrzJrtzVYwrnu5lxxymM98SijhPu4jmOA6E3UJjedvW3fdom6FA8m1SSSNNJRyBb42jsQUZhv26yWJ2MIs/G0bt27RtV7hFYooYj7zqaSSZ3gGN9yu23k5l1zmM7/ex3al2iq0Ut0WFq2kp1RbdUuxthault2RjfgdvQzMdj5BdvnJ6x8w+Mua/+57tvmDa2VEMiK0CHOFEjuVBWXVGs4WZNLLqf6OXfW92cZc9UbanG+2gvHIkfMO75BPPhOZyGlO041u3Md9YoTGVSp11VwoLeBCaQEAeVVlXCgtMLQMhCdF82PcAUP5YR6dyass5c+k42SVF7ErIx7HC72QZBLfUDM0NMyrK/uyEojMTiSzvIjfEo6g0WsZ5OZ/y/Fe/v9aQgkv8iIFFPAwD+OLL5vZXKf8fOaziEW8yIu3fO22Ksj5Yc4N/T+8yiBh2w2G/Dr1ALsukL4NNLdXvyuRjAjN6kxBBqfzM8irLOVsQSYfn9qOu6Utgy+9Md7Mm+2x3FTCvAINZZrzzVYwLmusWcc6TnOaQAIJJxwHHFjIQlOH1iqklOSz6PhmFh2v+SBflRjFouObWZdS8xd0kaaC/KuGwTurrXm++3BiCrJYGLWZbemxzPK9BwUKNrABgH4uHZji35t1KSdZFLWZC2UFvNh9hFHXeVKi5FM+pZhipjOdDDIYz3i60IX97AfgPOf5ju8A+JEfWclKo12/rRne4SN29gtjQI7Eth0u1y98x0cg6eHg7JYJrpUQM7AKzepobgrhyScorCrHUqmij7MPk/x6YaFUAfBTXCQXq8p4pWeY4Zi4wmxWJUaRWV6EvbklE3x71Ek0dmbEsTUthmJNZc0Mk/6hdBQtI63eSlbyT/5JIYW44MLP/Mxd3GXqsNq8znQmjTQqqL9jeHMrpJB/8A/WshYJiV70wgsvtrIVLVpkyLDCilOcwg8/AFJL83n3+JZ6zzev9zh8rR1b8A5axupIP6acSmF1d0+mDE5vuOAvrlBdAjPKQN622wzEQnmCILRKevTMYQ6f8AlatPSmN3/yJx3paOrQ2qxneZblLOc0p+lOd5PFkUUW05jGNrbV2adAQV/6so99KFGSUnKR96L/rvc87TUZAVi/3YoJieX8NWAwk3vtq7/QiY/g0Gsw4APo9VrLBmhkYjp4QRBaJTlyPuRDcsllLGM5znECCOARHqESMTy7KZ7iKYBbHuFyq9xxZytbCSOszj4dOg5zmLd5m5yKEn6Mi2zwPIdykmkDfyc3yV0jL7LPQ86YY/uJSHyu/kLBr4BCDSeWtGxwJiSSEUEQTMIee7awxZCMrGAF9thfd+VZoX596IMKFVvZaupQOMIRtrO93n0SEu9K7/Ji4lIyK4obPMf29Fg2pLbP2XyVcjVBo8+SaAPd93/FiZzv6xaSy6Hz41CZCynrWj5IExDJiCAIJhVCCOc4x8/8jAoVr/EaHngQQYSpQ2tTAgnkPKZfEmEOc647j5CExOquCylT5eFkbslE32Ce7z6MJ7rcQU9HL0O5DamnSC1tnwv2OasDMRu5Cq0MzHfOJLMsqm6hOz4GmRwOvtryAZqASEYEQWgVpjGNQgp5gRfIJZcwwhjAANJIM3VobcIEJqBFyx72mCyGKqrYxz4krvOIRQY6RTV/9H2Nzn2KGd+hO8GOXgx082dW92FM9A02FN2VUf8aVu1BV6cpJA59HY9ySN7el0ptYe0CKmvwGg1F8XCxfbYSXU0kI4IgtBpy5HzGZ2SRxQhGcJjDdKADT/CEWKztBp7hGQC+p55m/xZijjkZZBBPPGc5ywlOcJSjHOQge9nL+9k/MP7UHPok30ewpg//UE6nN735gR/QoQMgzLsr5oqaVYmPX0w12b20hDs7LGZX/7H0y5HYGeGOXq+tXWDIVzX/3d9A35J2RIymEQSh1TrCER7kQZJJxgILPuRDnud5U4fValljjRNOpJBi6lDqtfL8MSIyambifbXnaHLtEpjLXHazG3PM6U9/FCiozrHHIas77kVdWT7kURSy9v1386qD/jxwMok/g9y5f0hm7Z2re0H+KZiWWzNlfBsjRtMIgtDm9aMfSSTxDd8gR84LvIAPPuyjgSGRt7lggrnAhVa7QKFaaWb4PqeyhIEMZDvb+YAP+D/+D1ts2SftY7/rWjb0fJfvhjyOG64MYQhzmctRjpow+ubzwB2JrAuwYvLZLMKjB9XeOehTQIL97XsWW5GMCILQ6j3FUxRSyFM8RQYZDL30lUXWjQ++jUxmMhJSq12cMMje3fD9jvQ4dJIeJUpe4zUWsYgNbGBvbjz3H1tMn+TJdC4LQSFTcIADLGYx/eiHAgXuuDOKUbzDO8QQY8I7Mp7xI/LY6ylnTFQk284/fWWH53Cw9IKkVXD1YxxtOVS3nynjRTIiCEKboETJN3xDOukMZjD72IcXXjzDM2jR3vgEt4GZzATgf/zPxJHUL8DWBS9LewAulBXw1dk9ZJQVAlCl07IrI55fzx3GqdyHvhemEF69kWyy0aLlIAd5jdcYwACqqWYnO1nAAoIIQokSb7y5i7v4D/8hlbbX10QpVxMcFsd5W+i5/1uic765srPPfNBXw7G3oTQNDr0Ov7jB3/eYLmAjE31GBEFok/axj0d4hDTSsMKKpSw1fBjfzhxwQIWKbLJvXNgEEopy+OTUjlor9tqYqanQampt6+Psw9NdhyCT1T9MWI+eXexiLWs5wAESSKCIIsN+M8zwwosQQhjDGO7nflxxbb4bM5LYi2uw3HI/FUqwnnAYL+t+NTu+t7zUMnKpjiQdVU6hZI+9MreMtdIcR7VVywd9HWI6eEEQbguf8zmv8zoVVOCHHytZST/6mToskxnDGLaxjQoqUKM2dTj1OlOQwbcx+6nQVde7v79LB6Z1uQMzuaJR59WgYQtbWM96DnGIRBIpo8ywX40aH3wIJZRxjGMyk7Gl9X2m7E2dR3DEe8Q5yAjp+Svmp5dDVt0h22etevCp71zDz0qZnIV9J7aqhEQkI4Ig3DY0aHiap/mFX5CQGMEIVrISZ26/xRO/53tmMpOv+ZqnefrGB5hIuVbDwewkDucmU1hVgZlCQSdbF4Z5dMbPxnijRsop5y/+YjObOcIRUkiptaCgJZb44Ud/+jOBCdzN3a0iidt0cix3HdyKDJCQI7umU7IERFv3ZbnPy7W2t7Z1fUQyIgjCbSeNNO7jPo5wBAUKnuM5lrIU+W3UPa6SSiywYBSjGpyW/XaXTz5rWMPf/E0UUaSTThVVhv022BBAAHdwB/dwD6MZjRJlywapryb/V2scK+qfX0eHnCO2A/nRq/YcJG01Gbl9/oUKgtDueePNYQ6zne244MLnfI499q22Q2dzUKPGHXeOcczUobRajjgyk5msYhXnOU8llaSTzmd8xt3cjQMOnOY0y1nOeMZjhhkOONCf/sxmNvvY1/zDp+VmOD5SRKp1/UmQhAyN3Lx5Y2hBIhkRBKHdGcUoMsnkQz5Eg4bHeZwudOEkJ00dWosYxCAKKSSPPFOH0mZ44skLvMB61pNCCtVUk0AC7/M+YxiDBRZEEcUnfMJQhqJEiQsuDGUo85hHFPWsL9ME29h2ZV0mpRrPh4pJsJUhQZ1J9ttTMiIe0wiC0K5VUskMZvAHfyAhMZaxhhWC26u/+ItJTOJ93mcOc1r02gVV5axJiuZMQQYavQ4XtTXTu9xx3X4gcYXZrEqMIrO8CAdzS8b79mCQm3+tMjsz4tmWFkORpgJvawceDgilo03L9wk6yUlWs5o97OEsZ8kjz7AWjxw5rrjSne4MZzgP8ACBBDbq/L74coELvMEbvMVbKFCQX5lAQXhnOpaADBkyJPTI2Ox0L+tcH6h1fFt9TCOSEUEQbgtJJHE/93Oc4yhR8jIvs5jF7bI/iR49ZpjRj34c5GCLXbesWsO7xzfTxd6NYR6dsDFTk1NRgovaGhcLm3qPyass5e1jG7nTozND3AOILcxi5fkonu8xjO4OngAcyU3hp7hIHu3Uj442zkRkxBKVl8rboROxVZm2s6kePYc4xBrWsI99xBNPPldWG1aixB13etKTUYziQR7EG+96z3WRi7U6XY9mNCtYgSOOnCvYgNXGiThXgNmlT+2/nKew2WVyrXP8s9tQ+jj7GP9Gm0j0GREEQbhKRzoSRRQb2YgDDnzERzjhxEpWNnhMAQXsZW8LRmkccuT44MMpTrXodf9OO4uDuSVPdLmDjjbOOKutCXLwaDARAdideQ5ntTUP+PfBw9KOEZ6B9HH2YXt6nKHM9vRYhrgHMNg9AE8rO6Z26o9KruRA9vmWuK3rkiNnIAP5iI+IJJKLXESLlq1s5Xmepyc9KaaYTWziFV7BBx/MMccff+7jPr7ma8PjtGv7+exgByGEEE00nR3uJnrga1QooVQJMqBzeWydeH6OP0j6pYnk2hKRjAiCcFsZz3hyyOFt3qacch7iIbrRrd5pxZ/gCYYxrE2uhTOCEZRTThJJLXbNkxfT6GDtyNcxe/m/g3+yKGozezMTrntMYnEeXa+aJh4gyMGDxOKaD2itXkdqST7driojl8noau9uKNPaKFAwmtF8zucc4xhFFFFFFWtZy5M8SSCB5JBDOOE8wzO44IIFFjzKo8i4MsmbDh0ZZDCAAfws/cz+/MF80ak3ah1csAQPqZRH/EMZ6RmInVlNC1GlrprlZ/egl1rn+kQNEcmIIAi3pTd5kwIKmMxk4ogjiCDu5V5KqVnvI4II1rEOgGlMo5zyOufIrywjtTTf8MqvLKtTxlQuz0a7nOUtds3cylJ2Z57D1cKGF3uM4E6PzvyReIzI7MQGjymurqzzqMVWpaZSV41Gp6W0ugo9Ejb1lCmqrmyW+2gOKlTcy718x3ec5CSllFJCCf/jf0xlKh3oQAEFhv4nl+nQoUHDE7InWOP1KUmyl/gh0BOfcki1SGa4IpeHAkJ5p+9EfKwcAMipLOVUfoYpbrPJWnjgtCAIQuthiSVrWEMccUxhCutYhyOOvMZr/MmfKFCgQ0cKKbzBG3zMx4Zj8yvLmH90fa0pzFvTDJiDGYwSJZvZzAd80CLXlIAO1o5M9gsBwNfakYzyQnZnnmPgNR1SBbDGmqmXvgDccCOHnAbLx3ruIN5tD5rqGZibr2PqiWwuRj6B0+QE1Eoz7vXryRdndgNwMCeJXk71901pjUTLiCAIt71AAjnFKdawBmuseZd3iSUWHTqgppPiUpZygAOGY0q1VbUSEQCtpKdUW0Vr0YlOxBF344JGYqdS42FpV2ubh4UdBVV1W5UuszVTU6yp3cJRrKlErTBDpVBibWaOHBkl9ZS5/GiiPcgks95E5OrJ1pRaNRbVduw3j2BG/2yiXMAx9zy7k2cDEGTvYShbWFVR51ytmUhGBEEQLpnMZM5xDnPqzt8gR840plFBBRVaDQcaePSQ14oe1YxjHBo0HOVoi1wvwNaF7IriWtuyK4pxNG+4pcjf1pnYwqxa22IKs/C3rRlVopQr8LVxJKbwysJ/ekki9qoy7cHl/0dy5IZ+I+648ziP8xu/Mf/MH/wj8numHvmM49WnyZPlUXDX75xwt6Or08MAlFz12Eopb1sf720rWkEQhGa2kIVo0dbZrkNHEkn8X/UcFkZtZmdGfL3Hfxuzj8M5yc0c5c25vDbNF9qvWqRvS5hXVxJL8tiUeoacihIO5ySzNyuB4Z6dDWXCk6L5Me5KC9Mwj87kVZbyZ9JxssqL2JURz7HcVMK8Amudd19WApHZiWSWF/FbwhE0em2duUjaMgUKnHHmbu7mcz4njjgyyOAHfuARHqGX5ZU63JuVgBNOjFM/TMg9hbjZ9AdgT9aVzsJtLVET84wIgiBcEkssPehheDxTLwkmnXgb15JOAHha2mEuV3KhrMDw2EaOjH8Fj6gzSsQULCQLVJV2PHz0Sn+X5uzbcvJiOuHJ0eRUlOCstibMqytDPToZ9v8UF8nFqjJe6Rlm2Hb1pGf25pZMqHfSszi2psVQrKmsmfTMP5SObewD91bkVpTwxtH1AChkcqZ26scdbh1RyOToJD2R2Un8lnAEnaRHBizqdw/OamvTBo2Y9EwQBKHRFrGI+cyvtU2BAjly9OjRSTqQgUwvZ9bZr/i3/0OGPhLlWg2rEqMMj2862jgxJ2Rsi9/DtYJ1IZyRn+LJfT/XmuCttc3UKdzY7wlH2ZV5pUXOTmWBh6UtGWVFFF/1iGakZyAPBYSaIsQ6bvbzW4ymEQRBuOQ1XmMUoyi69FVMseH7QqmQnXmnSbU+S6l5Hsu7z0Ili2M+87HHHkulisc7DyC55CIZ5UUklVzkQmkBPtYOzRKrFi0SEmaYXbdcmHYcp81PkG5/Gp/Cns0Si9AyHgzoQ5WumsicmrljijQVFGlqd1Qd5ObPFP/epgjvlohkRBAE4RIVKgYysN59BZpy5sSuZTDgb2+PNvg47/M+3/M9IxnJAzyAh8wDF69K0s5pkaMksSSv2ZKR+cxnOctZxjIe4ZFak2VdVqGtplvGCPD7gHi3PbWSkZyKEtEy0sYoZHKmd7mD/q5+7MyI53RBBnpJQi6TEezoxXCPznSzd0cmq/u70NqJZEQQBOEmaPVXhvHaK234J/OYwQwmMIF1rCOc8Jqd7oAbyCQ5v2KFGy544UVHOtKVroQQQj/61VqDpCmiiKKQQqYyld/5na/5Gk88DftzK0pYenoneZWlmPmoybSrPXX4d7H7qdJpGewecEtxCC1LJpMR5OBBkIMHeklPlU6HuUKBXNa2x6OIZEQQBOEm2KnUhs6C8YU5VOt1eMo9Oc5xqqiikkpOcIIPc38kRoqlRJ2LwqqSHHJIJrnOGjcyZFhggR12uOOOL750pjPBBBNKKN3odt1F/K6e5n0zm+lKVz7jM6YznUqtlk8vJSIATqV+ZNnF0sHGjsyyUjR6HRLw33OHsFWpCXb0apY6E5qXXCbHQtm2k5DLRDIiCIJwE1QKJX2cfTiSm0Kptor1KaeY7NcLmUyG+aUv98JAvGPH4MVorJXmLB4wCTMUAJRRxjGOcZzjnOUs5zlPOunkkssZznCc43WuaYYZNtjgjDNeeOGPP0EEEUIIaaQZyunQUUIJM5jBr/zK9Nw55F5KRDws7XhJ/RRzZK8wIETNYO0Y1iRHszvzHBKwNvkEPRw822TTvtB+iNE0giAINympOI8PTmw1rB7S2daVgW4dsVCacTI/g0M5SegvvaVO8O3BPR1uvsOoHj3nOMdRjnKKU8QTTyqpZJFFIYVUUIGeGy9+JpNkyCUFvVMmE5I2kXdC78HJ0gJ77Hmbt3mVV5EkicXRf5NcWrPU/Wu9RhNg69Lo+hCMq6CqnDVJ0ZwpyECj1+GitmZ6lzvws3Fq8Jirh0U7mFsyvt5h0fFsS4uhSFNRMyw6IJSONi0zLFoM7RUEQWgGEemxrEyMum6ZHg4ePBc0DIWRZ8HMJ59jHGMjG/mUT29YXqaX003elQ504BSnsMKKWGr6juzOPMdvCUcAeMC/D2FeXY0aq9A4ZdUa3j2+mS72bgzz6ISNmZqcihJc1Na4WNjUe0xeZSlvH9vInR6dGeIeQGxhFivPR/F8j2F0d6jpP3QkN4Wf4iJ5tFM/Oto4E5ERS1ReKm+HTqyzQGFzEEN7BUEQmsEor67YqSz4K+UkORUltfZZKMwY5tGZezr0NHoiAuCII6MZTQUV9SYjSpRo0aLUmWNX7kGvyv50d3EjlVT06EkjDQkJGTKslCrDcVd3zhVM4++0sziYW/JElzsM2240adnuzHM4q615wL8PUPNILqEol+3pcYZkZHt6LEPcAwwdlad26s/p/AwOZJ9nnE/3ZrqbxhPJiCAIQiP1delAH2df4ouySSnJRyfpcVZb08vJG3NF87+tppBi+P7yysJq1ExhCo/qp7L+YD46PagVZnzoOBlzhdKQhFx2uiDT8L2TuWWzxyxc38mLaQQ5ePB1zF7OFeVgr7JkmEfnWrPXXiuxOK/OLL9BDh6GljutXkdqST53eQcZ9stlMrrau5NYnNc8N9JEIhkRBEFogstv6qaY8j2DDKBmRM5IRjKd6UxiElZYgRxyXQ6yPzuRSl014cnRPOQfWquDakJRLocuTZxloTCjZxtaar69yq0sZXfmOcK8u3KXT3eSS/L5I/EYSrmcgQ2swVNcXVnnUYutSk2lrhqNTku5VoMeCZt6ymRds6ChqYlkRBAEoY2ZxjT88ONe7sWdusnQSK9ADmQnISGxMyOe5JKLDHILwEqp4nRBBodykg0dbe/06NwirTnC9UlAB2tHJvuFAOBr7UhGeSG7M881mIy0J+I3UBAEoY3pdumrId5WDkzt1I//JRwGIKnkIkklF+uex96dezoEN1ucws2zU6kN6xxd5mFhx/G8Cw0eY2umplhTWWtbsaYStcIMlUKJXCZDjoySesrYmTV/59XGEMmIIAjCJbszzrE78xwXq67M0XG3bzA9HD0bPOZYbip/pZzkYmUprhY23NcxpNYkYpIksT7lFHuzEqjQVRNg68yjnfrhZtG8IwOHenTCVqUmPPkEmeVFtfapFWbc6dGJezr0RClXNGscws0JsHUh+5pHJ9kVxTiaN7yysr+tM6fzM2ptiynMwv/SasZKuQJfG0diCrMJcfYBQC9JxBZmMcKzi5Hv4NaIZEQQBOESe3MLJnfshauFDUgQmZPEl2f38EbvcXha2dcpf744l+9i9zOpYy96OnpxOCeZr87uZV7vcXhdKv93Wgw7MuJ4InAgzmor1iWf5LPTO3kr9G7MmjkR6OXkTU9HL84X55JUchGtpMfJ3KrFOtoKNy/MqysfnNjKptQz9HXxJbnkInuzEnisc39DmfCkaAo15cwIHATAMI/O7MqI58+k4wx28ye2MJtjuak832NYrfP+FBeJn40jfjZORKTHodFr68xFYmpNGnu2bNky/Pz8UKvVDBgwgMOHD1+3/KpVq+jatStqtZrg4GA2bdrUpGAFQRCaUy8nb4IdvXCzsMXN0pZJfr0wVyhJrOcRB0BEehzdHT0Y6x2Eh6Ud9/r1wtfagV0ZNcu8S5JERHos4317EOLkjbeVAzMCB1JYVUH0dZrfjUkmk9HJzpXR3t24y6c7/V39RCLSCvnZOPFstzs5kpvM28c2sjH1NA/6hzLAtaOhTJGmgvyqcsPPzmprnu8+nJiCLBZGbWZbeiyPdxlgGNYL0M+lA1P8e7Mu5SSLojZzoayAF7uPwFZl0aL3dyON/o38448/mD17NsuXL2fAgAEsXbqUsWPHEhcXh6ura53yBw4c4JFHHuH999/n7rvv5rfffmPSpElERUXRo0cPo9yEIAiCseklPcdyU9HotPg3MFtlYklencnCghw8OHGxZqr2vMoyiqsr6XbViBsLpYqONs4kluTRz9Wv2eIX2p6eTl70dGp4naAnAuuuKB1o78Ybfe667nlHeAYywjPwluNrTo1uGfn444956qmnmDFjBkFBQSxfvhxLS0t++OGHest/+umnjBs3jldffZVu3bqxcOFC+vTpwxdffHHLwQuCIBhbelkhL+5fyax9f/BrwhGeCRqKp5VdvWWLNZXYXtMR0NZMTdGlDoPF1RU12+oZWll0TadCQbidNaplRKPRcOzYMebOnWvYJpfLCQsLIzIyst5jIiMjmT17dq1tY8eOZe3atQ1ep6qqiqqqKsPPxcWtazy0IAjtl5uFDW/0uYsKbTVRean8FHeQV3qGNZiQtAZbLpwhPPkEIz0DeSggtMFyrbWzrSA0qmUkLy8PnU6Hm5tbre1ubm5kZWXVe0xWVlajygO8//772NnZGV4+Pj6NCVMQBKHJlHIFrhY2dLBxZHLHELyt7dmREVdvWVuVmuLqa4ZNVldid6klxNas5rl8fcMv7Yy0LkhyyUX2ZCbgXU8H26td7mw72N2fN/rcRYiTN1+d3Ut6WaGhzOXOtlM792dOyBjM5Uo+O72Tar3OKLEKQkOMv3iCEcydO5eioiLD68KFlunoJQiCcC1JqplWuz7+Ns7EFtb+wyqmIMvQx8RZbYWtmbpWmQptNUkleQ32Q2mMSl0138cd4PHOA7C8aq2Z+rSFzrbC7atRyYizszMKhYLs7Oxa27Ozs3F3r39KZHd390aVBzA3N8fW1rbWSxAEobmFJ0UTX5RDXmUp6WWFl37Opv+ljqY/xh0gPCnaUH6UVyBnCjLZlhZDVnkR61NOklKaz/BLczjIZDJGeXVl04XTnLiYRnpZIT/GR2JvbmGY9+FW/J5wlGAHT7o53HhK+sSS+tcxSSypWaPkRp1tBaE5NarPiEqlIjQ0lIiICCZNmgSAXq8nIiKC559/vt5jBg4cSEREBC+99JJh27Zt2xg4sG6vYEEQBFMqqa7kp7hIijQVWCjN8LKy58UeIwhy8AAgv6q81mJzAbYuzAwczF8pJ1ibfAJXCxueDRpqmGMEYKx3NzQ6Lf87d5hyrYZOdi682H3ELc8xciQnmdTSfP7de9xNlRedbYXWrNFDe2fPns306dPp27cv/fv3Z+nSpZSVlTFjxgwApk2bhpeXF++//z4A//rXvxg2bBj/+c9/mDBhAitWrODo0aN88803xr0TQRCEWzTtquXb6/NKz7A620JdfAl18W3wGJlMxj1+PbnHr+ctx3dZflUZfyRG8VLwrSc1gtAaNDoZeeihh8jNzeXNN98kKyuLkJAQtmzZYuikmpqailx+5enPoEGD+O2333jjjTf497//TefOnVm7dq2YY0QQBKGJUkvyKamu5N2oLYZteiTOFeWwKyOeZUMeQi6r/RS+MZ1t7a6aEKtYU4mPtX0z3Ykg1JBJ0qWlG1ux4uJi7OzsKCoqEv1HBEG47VVqq7lYVVZr28/xB3G3tGWsd1Ctx0SXfROzD41ey/Pdhxu2fRC9FW8re6Z27o8kSbx2KJwx3t0Y7V2zCF+Ftpr/O/gnT3S5Q0zQJjTJzX5+izmBBUEQ2hi10gwvpX2tbeYKJVZKc0Mi8mPcAexVlkzuGALUdLZdcnI729JiCHb05EhuCiml+Ya1T67ubOtqYYOz2pq/Uk4arbOtIFyPSEYEQRDaodbU2VYQbkQ8phEEQRAEoVnc7Od3q5z0TBAEQRCE24dIRgRBEARBMCmRjAiCIAiCYFIiGREEQRAEwaREMiIIgiAIgkmJZEQQBEEQBJNqE/OMXB59XFxcbOJIBEEQBEG4WZc/t280i0ibSEZKSkoA8PERswAKgiAIQltTUlKCnZ1dg/vbxKRner2ejIwMbGxskMlkNz7gJhUXF+Pj48OFCxfEZGrNSNRzyxF13TJEPbcMUc8toznrWZIkSkpK8PT0rLWI7rXaRMuIXC7H29u72c5va2srftFbgKjnliPqumWIem4Zop5bRnPV8/VaRC4THVgFQRAEQTApkYwIgiAIgmBSt3UyYm5uzoIFCzA3Nzd1KO2aqOeWI+q6ZYh6bhminltGa6jnNtGBVRAEQRCE9uu2bhkRBEEQBMH0RDIiCIIgCIJJiWREEARBEASTEsmIIAiCIAgm1e6TkWXLluHn54darWbAgAEcPnz4uuVXrVpF165dUavVBAcHs2nTphaKtG1rTD1/++23DB06FAcHBxwcHAgLC7vh/xfhisb+Tl+2YsUKZDIZkyZNat4A24nG1nNhYSGzZs3Cw8MDc3NzunTpIt4/bkJj63np0qUEBgZiYWGBj48PL7/8MpWVlS0Ubdu0Z88eJk6ciKenJzKZjLVr197wmF27dtGnTx/Mzc3p1KkTP/30U/MGKbVjK1askFQqlfTDDz9IZ86ckZ566inJ3t5eys7Orrf8/v37JYVCIX344YfS2bNnpTfeeEMyMzOTTp061cKRty2NredHH31UWrZsmXT8+HEpJiZGeuKJJyQ7OzspLS2thSNvexpb15clJSVJXl5e0tChQ6V77723ZYJtwxpbz1VVVVLfvn2l8ePHS/v27ZOSkpKkXbt2SdHR0S0cedvS2Hr+9ddfJXNzc+nXX3+VkpKSpL///lvy8PCQXn755RaOvG3ZtGmTNG/ePGnNmjUSIIWHh1+3fGJiomRpaSnNnj1bOnv2rPT5559LCoVC2rJlS7PF2K6Tkf79+0uzZs0y/KzT6SRPT0/p/fffr7f8gw8+KE2YMKHWtgEDBkj//Oc/mzXOtq6x9XwtrVYr2djYSD///HNzhdhuNKWutVqtNGjQIOm7776Tpk+fLpKRm9DYev7qq68kf39/SaPRtFSI7UJj63nWrFnSyJEja22bPXu2NHjw4GaNsz25mWTktddek7p3715r20MPPSSNHTu22eJqt49pNBoNx44dIywszLBNLpcTFhZGZGRkvcdERkbWKg8wduzYBssLTavna5WXl1NdXY2jo2NzhdkuNLWu33nnHVxdXXnyySdbIsw2ryn1vG7dOgYOHMisWbNwc3OjR48evPfee+h0upYKu81pSj0PGjSIY8eOGR7lJCYmsmnTJsaPH98iMd8uTPFZ2CYWymuKvLw8dDodbm5utba7ubkRGxtb7zFZWVn1ls/Kymq2ONu6ptTztV5//XU8PT3r/PILtTWlrvft28f3339PdHR0C0TYPjSlnhMTE9mxYwdTp05l06ZNJCQk8Nxzz1FdXc2CBQtaIuw2pyn1/Oijj5KXl8eQIUOQJAmtVsszzzzDv//975YI+bbR0GdhcXExFRUVWFhYGP2a7bZlRGgbFi9ezIoVKwgPD0etVps6nHalpKSExx9/nG+//RZnZ2dTh9Ou6fV6XF1d+eabbwgNDeWhhx5i3rx5LF++3NShtSu7du3ivffe48svvyQqKoo1a9awceNGFi5caOrQhFvUbltGnJ2dUSgUZGdn19qenZ2Nu7t7vce4u7s3qrzQtHq+bMmSJSxevJjt27fTs2fP5gyzXWhsXZ8/f57k5GQmTpxo2KbX6wFQKpXExcUREBDQvEG3QU35nfbw8MDMzAyFQmHY1q1bN7KystBoNKhUqmaNuS1qSj3Pnz+fxx9/nJkzZwIQHBxMWVkZTz/9NPPmzUMuF39fG0NDn4W2trbN0ioC7bhlRKVSERoaSkREhGGbXq8nIiKCgQMH1nvMwIEDa5UH2LZtW4PlhabVM8CHH37IwoUL2bJlC3379m2JUNu8xtZ1165dOXXqFNHR0YbXPffcw4gRI4iOjsbHx6clw28zmvI7PXjwYBISEgzJHkB8fDweHh4iEWlAU+q5vLy8TsJxOQGUxDJrRmOSz8Jm6xrbCqxYsUIyNzeXfvrpJ+ns2bPS008/Ldnb20tZWVmSJEnS448/Ls2ZM8dQfv/+/ZJSqZSWLFkixcTESAsWLBBDe29CY+t58eLFkkqlklavXi1lZmYaXiUlJaa6hTajsXV9LTGa5uY0tp5TU1MlGxsb6fnnn5fi4uKkDRs2SK6urtKiRYtMdQttQmPrecGCBZKNjY30+++/S4mJidLWrVulgIAA6cEHHzTVLbQJJSUl0vHjx6Xjx49LgPTxxx9Lx48fl1JSUiRJkqQ5c+ZIjz/+uKH85aG9r776qhQTEyMtW7ZMDO29VZ9//rnk6+srqVQqqX///tLBgwcN+4YNGyZNnz69VvmVK1dKXbp0kVQqldS9e3dp48aNLRxx29SYeu7QoYME1HktWLCg5QNvgxr7O301kYzcvMbW84EDB6QBAwZI5ubmkr+/v/Tuu+9KWq22haNuexpTz9XV1dJbb70lBQQESGq1WvLx8ZGee+45qaCgoOUDb0N27txZ73vu5bqdPn26NGzYsDrHhISESCqVSvL395d+/PHHZo1RJkmibUsQBEEQBNNpt31GBEEQBEFoG0QyIgiCIAiCSYlkRBAEQRAEkxLJiCAIgiAIJiWSEUEQBEEQTEokI4IgCIIgmJRIRgRBEARBMCmRjAiCIAiCYFIiGREEQRAEwaREMiIIgiAIgkmJZEQQBEEQBJMSyYggCIIgCCb1/08mOEydZ8xNAAAAAElFTkSuQmCC",
+ "image/png": "iVBORw0KGgoAAAANSUhEUgAAAiMAAAGdCAYAAADAAnMpAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjcuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/bCgiHAAAACXBIWXMAAA9hAAAPYQGoP6dpAADE40lEQVR4nOzdeXhU1fnA8e+dfbLMZN8TskEgG2EX3EBR3PetWqvWpbXa2trWutvWX7Wt1lqr1lr3WhU3RAVRBFEEZIckkASyh+z7ZJLMeu/vjwmBSFgCSW6W83meeUJmzp37jiaZd859z3skRVEUBEEQBEEQVKJROwBBEARBEMY3kYwIgiAIgqAqkYwIgiAIgqAqkYwIgiAIgqAqkYwIgiAIgqAqkYwIgiAIgqAqkYwIgiAIgqAqkYwIgiAIgqAqndoBHAtZlqmpqSEwMBBJktQORxAEQRCEY6AoCh0dHcTExKDRHH7+Y1QkIzU1NcTHx6sdhiAIgiAIx6Gqqoq4uLjDPj4qkpHAwEDA92IsFovK0QiCIAiCcCxsNhvx8fG97+OHMyqSkf2XZiwWi0hGBEEQBGGUOVqJhShgFQRBEARBVSIZEQRBEARBVSIZEQRBEARBVSIZEQRBEARBVSIZEQRBEARBVSIZEQRBEARBVSIZEQRBEARBVSIZEQRBEARBVSIZEQRBEARBVQNORr755hsuvPBCYmJikCSJjz766KjHrFmzhunTp2M0GklNTeW11147jlAFQRAEQRiLBpyMdHZ2MnXqVJ577rljGl9WVsb555/PggUL2LFjB7/85S+55ZZb+PzzzwccrCAIgiAIY8+A96Y599xzOffcc495/AsvvEBSUhJ/+9vfAJgyZQrffvstf//731m0aNFATy8IgiAIwhgz5DUjGzZsYOHChX3uW7RoERs2bDjsMU6nE5vN1ucmCIIgCMLYNOTJSF1dHZGRkX3ui4yMxGaz0d3d3e8xjz/+OFartfcWHx8/1GEKgiAIgqCSEbma5r777qO9vb33VlVVpXZIgiAIgiAMkQHXjAxUVFQU9fX1fe6rr6/HYrFgNpv7PcZoNGI0Goc6NEEQBEEQRoAhnxmZO3cuq1at6nPfypUrmTt37lCfWhAEQRCEUWDAMyN2u53i4uLe78vKytixYwchISEkJCRw3333UV1dzRtvvAHAT3/6U5599lnuuecefvzjH7N69Wreffddli1bNnivQhAEQRhULY5O7B5n7/cBOiMhJn8VIxLGsgEnI1u2bGHBggW93999990A3HDDDbz22mvU1tZSWVnZ+3hSUhLLli3jV7/6Ff/4xz+Ii4vjpZdeEst6BUEQRqgWRycPbfkEjyL33qeTNDw680KRkAhDYsDJyPz581EU5bCP99dddf78+Wzfvn2gpxIEQRBUYPc4+yQiAB5Fxu5xEoJIRoTBNyJX0wiCIAjqqO1q5+Pynf0+tre9YZijEcaLIV9NIwiCIIwOBa11/Gv3NzhlT7+Pv1u6DYfXw/kJmcMcmTDWiZkRQRAEgcZuO/8qOJCImLR6ckLjmBU+gWCjX++4jyty2dRQrlKUwlglZkYEQRAEVtUU4vT6EpHskFhunjwPk1YPgKwofL5vNx/1XL5ZXpnPrPAJSJKkWrzC2CJmRgRBEMY5t+xlQ30ZAHqNlhsnndSbiABoJIlz4zNIsYQDUNtto8TWqEqswtgkkhFBEIRxrs3ZhcPrBiAjOBp/va8D9u2FtzNt4zQ8PZduZoUn9B5T09U+/IEKY5a4TCMIgjDOHdysQcJ36aXL08VLNS8RoY9Ap/G9VWgO+vx6+AYPgjBwYmZEEARhnAs2+mHQaAHY3VZLt8fNLQW34FE8PDPpmd5xW5sONLSMMluGPU5h7BLJiCAIwjin12iZE5EEgNPr4d9FX/J2w9tYtVYuj7wcgK9r9lLU7tv0NMIUwERrhGrxCmOPuEwjCIIgsDA2je8aynB53dxXdzUAl1pv49OKPHa2VFNpb+kduyg+A41YSSMMIpGMCIIgCET5WbkiNZ3r8q/BQQcABnsOn9jz+ow7K3YKJ0cmqxGiMIaJZEQQBEFgfdt6frDncuqoA0CHsc/j8f7BnB03hdkRiSpEJ4x1IhkRBEEYx2RF5omKJ7i/5H6Ug9bIhOqDuTPjdLyKQpjJn1i/INHkTBgyIhkRBEEYpxpdjfxw1w/5ouWLQx7TSBJZIbEqRCWMRyIZEQRBGIe+bfuWK/KuoMnV1O/j+/uNCMJwEMmIIAjCOHRrwa3Uu+rVDkMQAJGMCIIgjAtf1+zl69q9NDvtAJxn/DVJxk9Z0foxEhIyct8DJNjaWMnSilyaHXYizIFclpTT59KNoih8UpHH2rpiur1uUixhXJs6i0jREE0YINH0TBAEYRwIMpq5NGkq9087h/tzzuHU0Fkkdl3DV1M3YJAMQN9LM15Z4aXCdZwclcyD088lJzSOf+1eS3VnW++Yz/cVsLqmiOsmzubenLMxanQ8k/8Vbtk73C9PGOVEMiIIgjAOTA2NIysklkizhUg/C5ckTsWo1dHQ6cKhONCi5cqIK3sTEqfXQ0ZINIvi0on2s3Jx4lQSAoJZU7MH8M2KrKou5LyETHJC44jzD+amtLm0ObvZ0VSl5ksVRiGRjAhCP1ocnVTaW3pvLY5OtUMShEEjKzKbG8pxeT3cVXEdAI+lPsbirMXkzcnjqoiriNNkMjkoqs9x6cHRlHb4Cl6bHJ3Y3A6mHDTGrDOQFBjWO0YQjpWoGRGE72lxdPLQlk/wKAeuoeskDY/OvJAQk7+KkQnCianubOMvO77ALXsxanWcl5TA84VV6CQd90y4B4CMgAwWZy3mZ9++g0Vv6nO8RW+i3eUAwObu9t1n+N4Yw4ExgnCsRDIiCN9j9zj7JCIAHkXG7nESgkhGhNEr0hzIg9PPpdvjZltTJT/bcyMAf0n5i7qBCeOeSEYEQRDGCZ1GS4Q5EIBO6qgs3Yk/wdw94e5DxloMJmzuvjMcNrcDa89MiEVv9t3ncmA1mA+McTmIDwgaolcgjFWiZkQQDtLi6OSLqoJ+H6vpbB/maARh6CzYvgCA64J+3e/jyYFhFLbV9bmvoLWO5MAwAMJM/lj0pj5juj1uyjqaescIwrESMyOC0KPE1sizu76my+Pq9/FX92zAo8icEpUyzJEJwolbUraDjJAYQox+5Nl20eBuwEo0dyX/GIBXi9YTZPDj0qQcAM6MTePJ3C9Zua+ArJAYNjdWUGFv4YcTZwMgSRJnxk5meVU+EeZAwkwBLK3IJchoJicsXq2XKYxSIhkRBHwzIs/uWkOXxw34ClaTLWHoJQ2lHc10e333v7l3IyFGP9KDo9UMVxAGrMPt4LWiDbS7uvnY/RgAv4r7be/Pcouzq0+fkRRLOLeknczSip18VL6TCHMgt6efSqx/UO+YRXFTcHk9vLl3E10eF6nWcH6RsQC9Rjusr00Y/SRFUZSjD1OXzWbDarXS3t6OxSI6+wmD792SrayqKQIgzRrJrZNPJrDn2rhb9vJB2Xa+6umvkBwYxu9yzlYtVkE4ETtsO5i2eRoGyYDzDKfa4bCnvIX1O2pwuQfWKM2g1zIvJ4ZJiSFDFJkwGI71/VvMjAjjnlv2sr6+FAC9RtsnEdl/31XJMyhqq6emq53Sjib2dbYS5x+sVsiCcNwWbl8IwD8n/VPlSHzW76ihpf14lgK7Wb+jRiQjY4RIRoRxr9nR2XsZJjM45kAiUnk3dOVBwj/R+E3mpIgkPizfAUCV/aBkRFHAXQ/OYnAUg+KE8NtAErueCiPLlvYtNHuaMUgGbou7Te1wAHpnRCQJ/M36Yzqms9uNojDg2RRh5BLJiDDuyQf1FDFoD7rW3fwuuOsgfwqYs5moPZ3TNe14MBDX+jXYmqC7EJyloBz8yU4DodeD1m/4XoQgHINFOxYB8Hza8ypHcih/s57brpx6TGNffG8n9i73EEckDCeRjAjjXrDRH40kISsKu1trccte9N07wF0Nqe+BpIPmd5nQ8jzJei+KAtj2z3p8v+RKA4Gni0REGHE2tm6kxdOCUTJyc+zNaocjCH2IPiPCuGfW6Zke6luK2OF28mHZDpSyW0DjD8GXQPAlbLI8xm+d/6RZDgUJJBQOTUQAZAi9ZjjDF4Rjcm7uuQD8O+3fKkciCIcSyYggAAvjJvcua9xasx66dtCiS2dNbSn/yFvNy0Xr6cTKI+4naDPM5oi/Onqx7FcYWda3rqfV04pJMnFD7A1qhyMIhxDJiCAASYFhXJs6Cwm4XPc2KPBCxwW8XbKF3Qd1mJwTlU5Q5moIPJXD/vrsvQi2BEDRhdCxbljiF4QjOW/neQC8OPlFlSM5duuLvmTr5rf4qnyj2qEIw0DUjAhCj9OiUwnRm0grvQmbYqWC1N7Hwkz+LIydwvzoiUiSBJOWw55zoeNbYH8BrATxT4CzAlrfh/ZPfTdNAFjOgOj7IXCOKq9NGL++af2Gdm87JsnE9THXqx3OUcleF3t2LcPoigfJSkfDd5Aofm/GOpGMCMJBMpVVgAvCf8mP/OagoBBuCmSiNQLNwUt1tX6+hKToXLCvB7yABGE3gj4UEp8BVw3UPAatH0Dbx76bJhAsZ0LM/RAwS50XKYwrF+28CIBXpryiciSH48VfZyPM1EVZXgEtzhjMSjcG9nJPzUssCPqAi9QOURhyIhkRhIPVPgZosSY+yskaw5HHav0h7bOehGStb/ZDH3rgcUMMJD7ru7mqoPoxaF0CbR/5bhoLWM/yJSb+04fwRQnj1VfNX9HubcesMfOD6B+oFociu2ksW4rT4cDjBbdXh1v2w0MAM5ICQLICVlpcoKWZIPkJJth3EFy6khqNnXtOD1ItdmF4iJoRQdjPWQmOPRB4GhwtEdlvf0ISdhPEPHD4cYZ4SPoXTK+D7HJfUzSNyTdrsmsGbLVC8VXQuXNQXoogAFycdzEAr6W/pmocXmcrVa3xNHSn0eKaRIc8EQexeLCC1NPbR1GQFCetrivJqHXj9VhIMExiV33/G1cKY4tIRgRhv6p7fF/j/zqw47T+kPwKWOYf23jTBEj6N0yvh+wyCLsZJCO0vAe7cmBrEBRfA135A4tDEA7yRfMXdHg78NP4cVXkVarGojNHEG727e3Um3x8nyTR4bmfm6p+RFvAboLrf8LpiX54FcitVX8PHWFoics0wrizomoXS8p3ckZMGlenzPDdKcvQuhR0URAwE4CtjZUsrcil2WEnwhzIZUk5ZIXE9j6Poih8UpHH2rpiur1uUiy+FTmR5gFs5mhKhOSXfP92lEDNn6DtE2hZ7Ltpg8B6rm/WxS9jcP4DCOPCFXlXAPBG+hsqR+KzNUgisbsZWQkF6XufgxUPWmUdZ3RsRO5MBKuFCwN+wmUZ/jz1rY338jrJjjaqErcwPEQyIowr5R3NfFNbTNxB26AD0PSqr6V75O0AlNgaealwHZckTSU7JJZNDeX8a/daHph2Tu8W6p/vK2B1TRE3ps0lzOTPx+W5PJP/Fb+fccHxbaFuSvHNsAB074Xa/4PWZdDytu+mDYag8yDmQTBPPv7/CMKY91njZ72zIpdHXq52OAAsCr2EjdWvYNGefMhjEh5usj2BXHMhxHwE1Veyp8VDnnsPEgG8s6mJ+Paq3vGd3aIV/FgjLtMI44bD6+blovVcP3EOfrrv1YTU/gXQQvS9AKyqLiIjJJpFcelE+1m5OHEqCQHBrKnxTTUrisKq6kLOS8gkJzSOOP9gbkqbS5uzmx1NVZww80RIfh1mNEFWoW+vGyRo/h/kTYGtoVBygy9pEYTvuSrfd1nmrYy3VI7Ep75iDUX5m32JiOIC5aAN7hSFTa7n2EEdOCNBZ4Pqa+lwKXQ53PhrFWocGuxd7t6b0tP82KA/jqRfGJFEMiKMG28XbyErOIYpwVF9H3BUgHMvWBb0Fq6WdjQxOajvuPTgaEo7mgBocnRiczuYctAYs85AUmBY75hBY06DlDdgRjNk5kPotYACzW9A3iTYFgalN/ku8wjj3icNn2CX7fhr/Lk44mJVY3HYm8jfuoR9jQHI+GPRFdNhWopETzKieEHZy11d74ItAyK+hKYzoHsCDkVDgJ+eWLNMl1fCz6QnwO/ALcRqYl5OjKqvTxg84jKNMC5sbiin0t7C/dPOOfTBqt/4vh5UuGpzObDoTX2GWfQm2l2+3Xlt7m7ffYbvjTEcGDMk/DIg5X++f3fl+2pM2j+Dptd8N104BF3ou5RjShq6OIQR6we7fEt438l4R9U4SvPeo9UZD8RjkGpJTp3K+voXyWl5GZumiTbt7YDEY12P4sILzSdD0ouw9z4AjP5mbrtyEnWrWnnky1YmzZzEGSlmVV+TMHTEzIgw5rU4O1lcuo2bJ887tJZDln0Fo/po8J+mToDHyy8TUt+GGW2QsQNCrvRNgTe9ArnJsC0CSm/zzfwI48JH9R/RKXcSoAnggogLVIlh1dffsG3Tl7S6kpFwU9NQS1HzJJbsupN5rS9To4CcdBGSt5QS92t86C4Arxn8yqAzBVp8NSVtDl9n46uz/X2vbVfngGNptzt56vUtNLR0Dd4LFIaEmBkRxrzKjhY63A7+tG1F730yCnvbG6io/ZR7DE6IuKPPMRaDCZu77wyHze3A2jMTYtH7PqHZXA6shgOf1mwuB/EBQUP0So7Afyqkvuv7d+c2X+fX9pXQ9B/fTRfp24E45gEwxg9raC2OTuyeA0szA3RGQkz+wxrDeHHd7usAeDfr3WE/t8fVxZ685QT5J6Jgxo8SolPPIzZJ4otd87lWu4Wv3RYyczYSETAZT7CXt3M7oQtoOAeiPoY9D0HPhpU2py8ZSQs3oNPAuoohnHEUVCeSEWHMmxwUxcPTz+tz3+t7viPKz8LVXY+CWwfRv+vzeHJgGIVtdSyMPbBqpaC1juTAMMC3V41Fb6KwrY74gGAAuj1uyjqaOD06FVX5T4eJ7/v+bd8MNY+D7Uto/LfvpouCkMt8nV8NsUd+rhPU4ujkoS2f4FHk3vt0koZHZ14oEpJB9m7du3TJXQRoAzg37NxhPXdlwUc0dUagSElo5EZqOwI578yrkD0ePtkSyvUmG5+6LRSVfEZ4RCgRk8AjK5zlmI/U+gb/lVZTJ5swNFyKG1AAu1Ph9aW7mDY5gin+Llpa3Xy6poSz5k3AaPC9dSmKwne5teTtaaTb4SHEauKUGXEkxVoBePmDPADe/GQ3AHGRAVx1jliJNhKJyzTCmGfS6Yn1D+pzM2p1BNGOv7sQLGfw6t5NLCnb0XvMmbFp7GqtZeW+Auq62vmkIpcKewvzYyYBIEkSZ8ZOZnlVPjub91Hd2carezYQZDSTEza8Mw9HFDALJn0IM20w5TsIuhhkOzQ8DzviYHsMlP8cXLVDcnq7x9knEQHwKHKfmRJhcNxYcCMAH2Z+OGzntDUVkLvlMxo74wAI86uk3pWGW4qky9nEqs1mLtbY+JAwzpvTTESwlb2VrQB8uqaErm4318xaQF3oUkJaF/HYJJknzw0mOUSHSQetHU6KyluYEBlARbeOmuYuVn1X2Xv+bbvr2bqrntNmxnP9RRlMiLWydHUxrTbfLMq1508B4IqzJ/GTq6Zy4QKVPygIhyWSEWHcSuzqaQYV/wQtzi7aXd29j6VYwrkl7WTW1hXz6LbP2NZUxe3pp/b2GAFYFDeFBdFpvLl3E49tX4HT6+YXGQuOr8fIcAicA5M+gpkdMGUdWC8Erw0anoUdMbA9FiruAle92pEKA/RW7Vt0y91YtBbOCjtryM/ncbko2vYue8vtuAnHLJWTnZ3NhCmXAtAtV5K7LYLTNR7e12Vw2exGNDodIVYTNruL6voO6pq6uGB+CtdufxIMrdw9+ccEmbUsjPKw99fxLL3IgCLLnHNKEoumBKIgIYVHUFTe0ttnZMuuemZlRjE5KYQQq4nTZsQRHmxm227fz7DZ5JtBMRl1+Jv1mI3iYsBIJf7PCOPSrzPPgK0XgD4W/LP5dfahY2aEJzAjPOGwzyFJEhclZnNRYj8Hj3SB8yDtY9+/O76Fmj9Dxxqof8Z308dC6FUQdS8YItSMVDgGtxTeAsAHWR8M+blqildQ3+aPLKWgo5W4aAuhsVf0Pt7q2UC2343EaRS+CDifKzI+7X1MwVcR0tjajdvj5bm3t1MasAq/tpOx1EVj8zpp63Ci0Uj46yUs/gYC/Q1cla3h5580s7ZWIUeBlnYHOq2Gzm43MREBfeKLjQigsbUbYXQRyYgwPjW+AIoTIu9UOxL1BZ4CaT1vGO1roO6v0PE11P3ddzPEQ8jVvroafZiqoQqHeqP2DbrlbqxaKwtDFw7ZebpsVZTs3Y5LiQG8BOlLScm+ss+Ybyse5mTT/6EDtoffzQXJf+vzeEu7A0ugEZfbi79Zz9qQzbjJ5+TuP/HDs9IBMBkOnVmMCNBh0klsqXaRE3rIw8IYIC7TCONT7d8AHUT9Ru1IRhbrfEhbDjM7IW0VWBaBuwnqnoTt4bBjAlT+DjwtR32qgtY6/rt3Y7+P7W1vGOTAx6+fFPwEgCVZS4bk+RVFYe/OxRTsqcWlxGCUqsiYnHxIIrK88Goy6h6lW9GwsuNl5n8vEamstdHU2s3EhGAiQ/3o7HazuOW/0B3DZ2f/hmCLiWCLCbNJ33uMrdOFvcu3a298kI59bW4kCUKsJowGLf5mPTUN9j7nqW6wE2L1rXrTaqTe1yCMbGJmRBh/HCXgKgXLOaARvwKHZT3DdwPfMuHaJ6BjrW/mpO6vYJjg6wYbfQ/ogvoc+k1tMW8Vb+JwbwHvlm7DqyicHTdlSF/CWPdK9Ss4FAdB2iAWhC4Y9OdvqFhDTaOCV0pFQwfRYQpRiZceMu6DHbM437mFfFmi3PkpgVIynd1uZNnX0r282samvFqS46ykp4QiSWALsOEO3EB86w04XQotbXZK97WRmhBMVJhvpZVOq2HFt2WcPjOeGeGwuAniYoPxN/sSllmZUazfUUNQoJHwED92FTfR2NrNeaclA+Bn0qPTaiivbifAz4BOK/WuxBFGFvF/RRh/KntmQxKeVDeO0cR6lu8G0PaZb2bJvg5qH/fdDEkQeh1E/5a9nY4+iUiY0Z+0oEgkSaKwrZ4mh++T7Adl24n2s/TZCVkYmJ8V/QyApVlLB/V5HZ0tFBeuwakkADKB2mKS0y9FZzAcMvb9TTFcptTytaxlxrRymra42V3RzL/f3YlGkjAatYQHm1kwO4GM1FAkyTdb8bTn36DouNVzPa8uycffrCc2MqA30QAICjQyMSGYD7/cS4xDQcFCoym49/FpUyJwurx8vaWKLoeHUKuJi89IJdjimxnRaCQWzI7nu9xa1u+oITZCLO0dqSRlFMxf2Ww2rFYr7e3tWCwD2J5dEL5PlmGrGfSRkFN59PHCkbV+CnVPgX29rwYHaJei+cZ9El94L+DU2KlckTQdjXRguvyTyjyWVeYDkGoJ57dTh371x1j0733/5qdFPyVIF0Tr6a2D9ryl+e/T6ogDdL427ilZ+AclHjLO43Hw2eYQLtR287Hsz3kzm9DpTIeM60+d3Ub0NykYOnNwXrmy3zHrd1RTUtnG9RdlANDlkvF/pJxL0/348Pqofo8RRp5jff8WMyPC+NLwnK9lesTP1Y5kbAi+wHcDaFmKp/ZJ/OzfcaFuCRfoloB9ClLbE2BZCFojkiRxYUIW25qqqO1qp9jWSF2XjSg/8SFjoH6x5xcALMteNijP11K7larqFjxSEhLdRFibiZt4Yb9j2x2VbNuezPkaL+9LsVxx0r4Bnevs1f8H/k38Kvynx3yMn0FDgEFiW41rQOcSRgeRjAjjS91TIOkh6ldqRzL2hFxMqXYuf8v9gqmarVxh/poIVzHsvQAkE/hlQfoGJEnLtNA4arvaAajvFsnIQD1X9RwuxUWwLph5wfNO6Lk8ri725C+jW04CgvCXSkjNugidof9Zjsq2b2gsOJ2TNPCRcTZX5PRfpHwkefKnSLZs/nzm5QM6LiVUz+56kYyMRce1mua5554jMTERk8nEnDlz2LRp0xHHP/3006SlpWE2m4mPj+dXv/oVDofYZ0AYZt17wVUOlrNE4eoQ8V2M0bBTnsWXln/DjHbI3AmBp0HnFth7OXg7kQ+6Oiz1HCUcu7v33g3A8qnLT+h5KguXkpu7nW4lGR1NpMabmDz9qsMmIjtqX8RZeDpJGlhj/QGXHUci8rP1b0JgAbMMFx1x3Lyc2N5LNPvNTTDilqGsRSQkY82Ak5HFixdz991388gjj7Bt2zamTp3KokWLaGjof6neW2+9xb333ssjjzxCQUEBL7/8MosXL+b+++8/4eAFYUCqegpX40Xh6lCJNFvQ9CQX25uqcCsy+GXD5M9h0idgW4VScCp7Grf3HhPtZ1Ur3FHp6YqncSkuQnQhnBR00nE9R0dzEblbltNojwU0hJkrmTrzHKyRWYc95quSXxJV8ROMQGHUHzh38lvHde7/VL8Mjkg+P+O+AR97SbofAItzB76DrzCyDTgZeeqpp7j11lu56aabSE9P54UXXsDPz49XXnml3/Hr16/n5JNP5tprryUxMZGzzz6bH/zgB0edTRGEQSXL0L4CDAngJ5aTDhWLwUROqG+fEpvbwf+KN+OWvb4Hg87HO/kbnF3F3KP8mN/pH+bqgI2EKxUw8uvoR4x7Su4BYFnOwGtFfG3cF7OnzIabCExSOdnZWUxIP3S57sE+3nUeM5r+QbMCXcnvMW/Cw8cV+/KKfDzW9YR1n0mQ2W/Ax5+Z7Nshe1WJ6LA61gxortrlcrF161buu+9ARqvRaFi4cCEbNmzo95h58+bx5ptvsmnTJmbPnk1paSnLly/n+uuvP+x5nE4nTueBjbRsNttAwhSEQ9U/4ytcjRS1IkNtUXw6O1uq8SoyG+pL2dVSQ05oHBpJYkfzPiJcd3C34c8kSSUkuZ+B/GdAGwSWBRA4HyyngzkLJNGT8fueKn8Kt+ImVBfKSdaBzYrUFq+grs0PWUpFSxvxUX6Exl1x1OPe35rOxZ4CtsgSSRnbiLLkHGf08KPNj4MF3pz9wHEdr9NpCDFryK93H3cMwsg0oGSkqakJr9dLZGRkn/sjIyMpLCzs95hrr72WpqYmTjnlFBRFwePx8NOf/vSIl2kef/xx/vCHPwwkNEE4svq/+wpXI3+hdiRjXmJgKD9Om8srRRvwKjI2t4Nv6op7H28ji91yJuna/APVIt42aF0KrR8BCmgCIfgySH4VJFFTst+9pfcCsCJnxTEf4+ioZu+erQe1cS8hJfuqox4nezx8tDWSK6QWvpD1nDK9Bj/j8W8H0NbdRbN5Ffr2eSxKSD/u50kL17OxyomiKL09S4TRb8g/eqxZs4bHHnuM559/nm3btvHhhx+ybNkyHn300cMec99999He3t57q6qqGuowhbGsqxBclb7W5hrxaXs4zAyfwD1Tz2JGWEJvjxHwFatODY0jOPHhfspWZdjfKk3ugO5ckYgc5M9lf8atuAnXhzPTOvOYjineuZhdRdU9bdz3kTE56ZgSEafbxueb/blMauEjxcrCWV0nlIgAnL3qMTDVc1vcLSf0PKcnmZAV2LLPefTBwqgxoJmRsLAwtFot9fV9txivr68nKqr/JjQPPfQQ119/Pbfc4vsBzMrKorOzk9tuu40HHngATT9vDkajEaPROJDQBOHwqkTHVTUkBoZy25RT6HA5qO/uABTCzYFYDWZfjUhDKjiL+zlSC7pQmPTxcIc8oj1U9hAAn0397KhjGyq/oabB09PG3U50qIeopEuO6TyNXYUU7czgLI3M+9oUrpjR3/+jgdvi/gQ8U3j2zOtO6Hkuz/Tnz1+3835+J7Pij63JmjDyDehjosFgYMaMGaxatar3PlmWWbVqFXPnzu33mK6urkMSDq3WtyvjKGj+Kox2sgy2L3z7qJjT1I5mXAo0mEi1hpNqjfAlIuCb8Yj6JfS3rFfSQtpnYIgbzjBHtP8r/T88iocIfQQzrDMOO87R2cKurR9S1eCHlwACtcVkZc8lKunMYzrP3uZPqd05hRyNzKd+CwYtEfntpvdRLLlM1V5wws81M86ERoK15aI9xFgy4GYLd999NzfccAMzZ85k9uzZPP3003R2dnLTTTcB8KMf/YjY2Fgef/xxAC688EKeeuoppk2bxpw5cyguLuahhx7iwgsv7E1KBGHI1P8dFDdE/VrtSITvC/sRVN0Dclff+xUX2LeA/3R14hqB/lDmq6H7fOrnhx1T1tPGXSEBA3UkpWQQEDz7mM+xsepJIqp/S5QE34XcxiUT/33Cce/3TMW/wT+ML888vlU43xcRoKWwURSxjiUDTkauvvpqGhsbefjhh6mrqyMnJ4cVK1b0FrVWVlb2mQl58MEHkSSJBx98kOrqasLDw7nwwgv505/+NHivQhAOp/4fIBkg4g61IxG+TxsIYT+Ghn8BPct/o37n+77iJ9CdD4nPqBriSPD7kt/jwUOkIZIca84hj7fWb6Oyqqm3jXukpYm4SQObgfii6MdMa30VO1AR/zQLY+8anOCBb2r34rKuI6j9QsL8AgblObMi9awsduDxyOh0og5sLBAb5QljV9cuyM+EoIth0kdqRzNmfFKRy6c9G93tF2m28MeZh38D3NpYydKKXJoddiLMgVyWlOPbrbd7D+T5Lp+Vmy7nua4f4PZ28RPdM0yRtkDgGZC2clwXHutW6fDiZeesnWRbsnvv97i62Ju/jC45CVDw15SRmnn4Nu6HsyT3NM7uXkuxDP6TPiM19JxBjT/q/Ruot77NBynfcVny4Mx2/XlNK/d93sryGyM5N81/UJ5TGBpiozxBqPqt72vC39SNYwyK8bPyy6wzer/XHmHVS4mtkZcK13FJ0lSyQ2LZ1FDOv3av5YFp5xDrPwlCrqShs4Fn7Jfzo7Q5hJn8+bgsnmr7MyzsWAK5qZC5A3Tj74PIA8UP4MVLlCGqTyJSVfQxjR2hKJKvjfuE+GiCIo++Sub73tuSxGXectbLGjKmFhHilzqY4WN3Oag3fYm2/aRBS0QArs72577PW1m6u0skI2OESEaEsUn2QPtKMCSBKUXtaMYcjSQdKEY9ilXVRWSERLMoztdb4uLEqRS01bGmZg/XTZyNkvwOT2z6iHMSpvR2b71p8jx+810dSaGxpHQ8CzviIWPTuCpClmWZv1T8BYAvpn4BgL25mNKyPbiJQcJNqLmCxPTLBv7cHg8fbwnlSo2N5bKRhbOaMOgG5xLKwc5b9QSYa/ihdXD7RiWFGNBrYEOlWN47VohkRBib6p4CPBD9G7UjGZMauju4Z+MS9BoNyYFhXJqYQ4ip/0+opR1NLIyd3Oe+9OBodjb7tp1vcnZhczuYEnSgPYBZZyApMIwthhtImZAFFT+FvEyYuBSCzxu6FzaC3FdyH168xBhimGJKY8/2xXR4k4EIzFIFkzLPRmfsfxXjkXQ6G1m/LYZLtB4+IIxLZ9Wi0Q3NW8G33UvANZFXL7p50J871qqjtEUUsY4V4/dCrDC21T8DkhHCf6p2JGNOUmAYN06ayy8y53Nt6iyaHJ08kbsSh6f/Nwaby4FF37eOwaI30e7yLc20uX37jFi+V+tgMfSMibwNJq/xLfndewHUjv3LbrIs87dK3+v8LPxJ8nK/o0NORYuNxCgn6TMuR2cMHPDz1ti2kr8tktM1Ht7XZXL57MYhS0Qe3fYJinU7U5Tzh6RT6rQYA3aXgt0hD/pzC8NPJCPC2NOVB+5qCDpvXBc+DpXMkBhmhCcQ5x9MRnAMP8+cT5fHzZamyqE7qeU0yN4D2mBfE7vSG4fuXCPAb4p/Qwh+fG15Hbd9IjJGrPoScmaeSWjcycf1nLsa3qZ910wmaxQ+D7iIK6bnDXLUfT1W8jy4gvli4SND8vznTPRttLe0QOzgOxaIv9TC2FPZU7gaP/Y/QY8EfjoDkeZAGrs7+n3cYjBhc/dtUGVzO7D2zIRY9L7aE5vre2NcB8YAYEyAqVVgmgJNr8Ouk3y1QWOMLMskNHXzmXUl/lI6RqmajMkJpB5DG/fDWVv+MNbSa7FKsD38N1yYsXQQIz7U1oZKHJa1BNrnExcQNCTnuCLLl4wsK+o6ykhhNBDJiDC2yB6wrQJjMpiS1I5mXHB43TQ67IctaE0ODKOwra7PfQWtdSQH+vY6CTP5Y9Gb+ozp9rgp62jqHdNL5weZ+RB0EXRuhJ0TwN00uC9IRU2V69i+bTWnGm8BuogNaSNzxsWYAqKP+zmXF1xJZv2jdAJNia8yP/mJQYv3cC5e+yhoHDwzdehqtkL8dJj1ktijZowQyYgwttQ9AXgg6h61Ixmz3i/dxp62epocdkpsjbywey0aJGaFTwDg1aL1LCnb0Tv+zNg0drXWsnJfAXVd7XxSkUuFvYX5MZMAkCSJM2Mns7wqn53N+6jubOPVPRsIMprJCYs/NACNBiYthej7wV3jS0g6dxw6bhTxOG3s2vohFQ1GwMIW11sYkkKISl54Qs/7wY4ZnGF7n2JZwjx5LdlRNw5KvEfidLmpNnyBxjaLGyfNG9JzJQbpqGwfe7Nj45FYTSOMLfXP9hSu3qp2JGNWq7OLl4rW0+l2EqA3kmoJ596cswnsuaTS4uxCOmjPmRRLOLeknczSip18VL6TCHMgt6efSqx/UO+YRXFTcHk9vLl3E10eF6nWcH6RsQC95ghbRsT/CczpUPoj2DUTUt6C0OO/lKGW8l0f0NIdg0ICilLFlbafIBvNVISe2GXG9zdFc5lSxxpZy8xp5VhMw7PXz0Vr/g5+lVzm/9shP9fseCMFjW7qbB6iLOLtbDQTHViFsaNzB+yaBsFXwMT31I5GGC72LVBwGijdEPMIxP1e7YiOSWv9DiqrGvBIoUiKg7CAZhKrL0FBoXBOIWkBx9dTxeNxsGJzCBdou/lY9ue8mU3odMO3u63mg1ko+hbc5xWhG6KVOvt9kGfnircaeObCEH4+L2hIzyUcn2N9/xaXaYSxY3/H1fgn1Y1DGF4BM2FqKeiioOYPsPcKtSM6Io/LQcG29yit8uAhBD+plOzsGfxJWYaCQqIp8bgTkbbuctZuDuA8TTfvS3FcdJJ9WBORp/O/RLFuJdl7zpAnIgDnp/mKWL/Y2z3k5xKGlkhGhLFB9oDtKzCmgmmC2tEIw80QBTkV4DcDWj+AvGyQR94W8/uKPiY3dytdSjI6mkmO1zFl+pVIOj3/qfkPAF9M++K4nrui9WtKdiRxksbLR8bZXDGrajBDPyYP7P4HeAJZPn9wduc9GpNBg8UosbPWNSznE4aOSEaEsaH2z4AXon+ndiSCWjQGyNwCoddBd56vhbxrn9pRAWBvLSF3yzLqO2IADaGmMqbOXERwZA4AtxXehoJCkimJiX4TB/z822tewF00nyQNfG29lstyNg7uCzgGu1vq6LJ8jV/H6aQFRw7beSeG6qnt8A7b+YShIZIRYWxoeB4kk29LemF8S3kT4h4HTxPsTIWOdaqF4nG52LN9MUUlLbiJxCRVkJ2VQWLGgUtJHtnDq7WvArBy2soBn+OrkruIrrwdA1AY9UfOmfy/wQp/QM7/+o+gs/PXjF8O63lPTjThkaGgXsyOjGYiGRFGv85t4K6F4ItFx1XBJ+Ze3z42itdX3Nrw8rCHUFe6krzcDT1t3DuYEOEkY8bl6Ix9i/huLrgZBYUUUwopfgPb1HFp/jnMaHqGZgW6kj9g3oSHBvMlHDOPx0O5dgWa9pnckX7G0Q8YRJdm+PZEejdPdGIdzcRfbmH06+24+ld14xBGluCLIHMHaPyg/Bao/PWwnNZhryV/61KqW4KRMWHVlZAz8wzCEg5t4+6W3fy37r/AwGdF3t+aznmdn7NLlgjL3MnkiIHv3jtYrvz6efAv4xzL1cN+7tMSjUjAmlJRxDqaiYXZwugmu6DjazBO8rULF4SD+WVAThXkT/Xt5NyVD5M+G7IZtOLcd2l3TQBiMUjVTJw0C1PgnMOOv2HXDSgoTDRPJMnv2DoGyx4PH22N5Aqphc9lPadOr8HPGHb0A4fQx61vg3ECS8+9a9jPrdFoCPXTsKtBXKYZzcTMiDC61TwOeH3T8oLQH10QZJdBwGlg+wLy0sBjH9RTNO9bx44tq2h3p6DBSWxwC1kzLsYUGHPYY1yyi3ca3gHg85zPj+k8Dlcbn2/25zKphY/kIM6a1aV6IvJy0bfI1s3Eu84eluW8/ZkSoaepU0aWxQ6+o5VIRoTRreEFkMwQeoPakQgjmUYD6V9D+E/BWQw748BRcsJP63Ha2L31A8rrjHixEKgpJiv7JKJSzj7qsdfnX4+CwiTzpGOaFWno3MWWrSGcpXHxvjaVS05qRaPSm//Bfpn7FMgmPhmm5bz9mZ9sRgHWV4p9akYrkYwIo5d9M3jqIPgSUbgqHJukf8GE58Brg7wp0D7w1Sv7le/+kNy8XXQrE9BTT1pSMJOmXY3OYDjqsQ6Pg/cafV2Cj6WvSFHTUupzM8nRKHzqfwZXzNh73HEPpnJbM/aArzDZTmNq6PC0m+/PVZm+ItYPd4ki1tFK/AUXRq+qns3wEkThqjAAkT+DtC8BCYoWQd0/BnR4W30uO7d8TnP3BEAmIrCG7JnnExCaeszPcd3u61BQmOw3mQnmIzfp21j5BMbiS4iU4LvQn3JJ5qoBxTuUFq1+FAxtPDzx56rGkRltRCvB2rKR1+hOODbqz/EJwvGQndCxFkxpYFDvE5kwSlnPgKxC2DUdKn/pK2xN/s8RD/G4HOzN/5guOQkIxU8qZWLW+egMfgM6tcPj4MPGDwFYkbPiiGM/L7qRGa2v0w5Uxj/Dwlh13/QP5vF42CMtR2qfzn1nnqt2OEQFatnb7FY7DOE4iZkRYXSq/hO+jqv3qx2JMFqZkmDqPjBNgqaXYPcpvm0F+rFvz6fk5m6hS0lBRyvJcRqmTL9ywIkIwDW7rgEg3S/9iLMiS3JP5dS219mngJT2BTNHUCICcOO3r0DAXk7zU29J8cGyowy0OxRcHlHEOhqJZEQYnRr/7StcDf+R2pEIo5nOHzILwHoe2NdBbhJ4WnoftreVkbdlGfW2KEBHiLGMqTPPJjhq+nGdrsvTxdKmpQB8Nu2zw457f3MiF3V/yxZZQ8LUvSQHn3Vc5xtK7zT9F7pjWXHGb9UOBYCzJ5oB+GyP6DcyGolkRBh9OjaCpwFCRsYnMmGU02ggbRlE/da3l82OBDxt29izYzFFxY24iMQkVZKRnkZS5ontCHx1vq8pWKZ/JgmmQ/viyB4PS7+zcIVSwQrZxEmz2gnxO/ZalOGyuHgLXutGohwLMR1Dwe5wuCo7AIClu7tUjkQ4HqJmRBh99heuio6rwmBK+CuYM2kve4Gy4la8Uipa2omJ0BGRcGyJb4ujE7vHt7z0w8bF7HUU8EDyvcQYY7B77Hza/CkAy3KWHXKs3VHHd9vjuVjr4QPCuXRWzYhYutufn2z/C1h1vH+qest5vy/GosOohU1Vooh1NBqZP+mCcDiyA+zfgmkKGA7fUEoQBsphb6C40oJT8wzgJdL7EnGxcRD7wDEd3+Lo5KEtn+BRfDULy93/Yp+Sx39q/83P4m4ntyMXDZDhn3XIrEi1bTP7ds3hNI3CB7osLp+eO8ivbvDU2W20+3+Fof0UTo5MVjucPuKsOspa+6/7EUY2kYwIo0v1o4AMMQ+qHYkwhpTkvkubawIQh0GqYWJSHKbyD6G6AbrzIfXtoz5HdWdbbyICoPR8dSsunq16FhNeKvxBFzarz3H5DW+hLbmONA18HnARl2csHcRXNvjOXv0o+Dfzm/Db1Q7lEDNjjSzO66Sty0OQn3h7G01EzYgwujT+x7fxWdi1akcijAHN+zawY8sq2nrauMcEN5M14yJMIdN9e9r45UDLO5A/zbcP0mG0ODr51+5vvnev0vsvL16u0UOcBqJaXuGjvIU0uZpYW/4AQaXXYZVgZ/g9XDjCExGAPHkZki2bP826VO1QDnHuJF8R6we7RN3IaCOSEWH06FgHnkYIPrEiQkHwuOzs2voB5XV6vFgIkHxt3KNTFh0YpDFA5nYIuRK6dsCOeHDV9vt8do8T70HJB4Dyve/v0IO3566Lulbx3MYosuofoxNoSnyV05P/MoivcGjcvv4NCCxgtuEitUPp16WZviLWFXtEMjLaiGREGD2qejbDix/5f7SFkati94fk5ubhUCagp4FJSRbSph+hjXvquxD7qG8F185k6Nh0jGc6kIxM18A0LWilA48+bPBSK4Nf+nqyo2487tcznF6qfhUckaw8a2T297GYNPjrJbZVix18RxuRjAijg7cb7OvBnA6GKLWjEUah9vo8dm5ZQVNPG/fwgGqyZ55HYGja0Q+OfRBSPwDFDQVzoenNox5y8MzIT/TgPmiiRNOTlEzWBxKvDxngK1HHpxX5eKzrCeteSKDBrHY4h5UcomOfTRSxjjYiGRFGh5o/4CtcHTlLCYXRweNyULjtXYqrHHgIw08qJTt7GgmTLx7YE4VcBhnbQGOG0uuh8t4jDt+fjAQC1+tBL/V9XJJAkrugaCG46gYWiwpu2PwnQOKtOce2ukgtc+JNuLxQ2SYSktFEJCPC6ND4Mmj8IfRqtSMRRpF9e5eRm7uFTiUFHW0kxUrH3cYdAP9syKn07YdU9xcougBkmWbHobvFyorvzfBaPRgP+4ReX6O1kuuOL55h0tbdRYv5K/Tt8zgrfora4RzRxem+/7fv5tpVjkQYCJGMCCNfx7fgafIVEgrCMbC3lZG39VPq2yNR0BFsLGPqzLMIiZ5x4k+uC4HsMvCfB+3LcOycxGuFh+6k28o+AH6hB+mQR/cvO9WA/0wI/cGJxzWEzlr1GJjq+Wn8zWqHclTn9LSF/7JYtIUfTcRCbGHkq/yd72ucKFwVjszjclG6ewkdniQgCqNUSerk+Zj8TxrcE2l0kLEO+57r8W99k8f0d/J/rj/RQjgAbsWBGwfnaCFdC4riK2eVAIzJvr1wrAsh8HTQBQ1ubENgi/tj8KTzzJkjewYHQKfTEGTSkFcnilhHE5GMCCObpws6vwNzFhgi1I5GGMHqylZT26xBllLRYiM6XCJywtDuX/Sa62bCPBJX6/7Lo4Zf85TrfkqYzEaPr0naDA24FMiXE+jw/yGnp/0UjPFDGtNg+82md8GSR07X79QO5ZhNCtOxVayoGVVEMiKMbDWPADLEPqJ2JMII5bA3Ulz0LU4lHpCx6opJnTr0tUWtzk7yWmuAc6hzx3CH/m/cZXyCD/SPsrz1S/yAz7wS1Y77MWjS0do0TJfCCRzyyAbXPyteBP9wVp45eroen5ZkYtM+FztqnOTEHL5iRxg5RM2IMLI1vgqaAAi5XO1IhBGoJPc9dhWW4lTiMUi1TJkUPSyJCMC6utIDcUjTqJ20G2PgbK50/ZYGBa7T65ijfQ6DJh0AryJT09U+LLENljU1e3BZ1xPcuYAwvwC1wzlml/U0P3svTxSxHqzF0UmlvaXPraWf4ms1iJkRYeRqXwPeZggb+UVzwvBqrt7IvtoOPFIyGrqIDLITk3rhsMaQ11Ld+++skBgSgieCdSUVm8y8aZI5c2Y1n1WW801dce8470F714wGV2/4E1g8vDTzyMuYR5o5cQY0EnxdJnbw3e/7Gznup5M0PDrzQkJM/ipF5iNmRoSRa999vq/xf1Y3DmHE8Ljs7N76PuW1WjxYCZBKyMqeQ0zqucMeS6PjwKfuuq4OFEXh2/ZNTO6U2R3+ICHGCOZGJPU5Jtw0emYX7C4HDcYv0badxGVJ09QOZ0A0Gg1hfhoKG91qhzJidLgdhyQiAB5Fxu5xqhBRXyIZEUYmjx06N4I5G/RhakcjjAAVBUvIzc2lW0lETyMTEwNIm37V4du4DzHpoAW71V1trK4p4pGyRwAtP51wJwDbmqt6xwTqjYSbR0/FyLmr/grmGn4UdYPaoRyXzEgDLV0ysjy6ZqOGQqW9hZcL1x/28YqOlmGMpn/iMo0wMtU8AigQ+3u1IxFU1t64i4qKKtzEI+Ei3H8fCVMuUTsswkz+2O0HPlE+X/whX3m+4q7Ih9jd3MYbjbkU2xp7H0+zRqoR5nFb170EXJN45eLReZl0QbKZ1aUOvipxcObE42xyNwaUdzTzVN4qnN7Dd6R9u3gzoSZ/0oOjhzGyvsTMiDAyNb4GmkAIGXnblAvDw+Ny+dq4V3ThJgyzVEZ2ds6ISEQA5kYm9/l+k/cdLERhb0nhnZKtfRIRgEsSpw5neCfkj1s/RrHuYArnqx3Kcbs621cDsWT3+N3B16vI/KdwXW8iEmEK5IKELG6ZPI9LJmQT7Wf1jUPhpcL1R0xYhpqYGRFGnvZV4G2B8FvVjkRQyb69y2lsD0SWUtDRQlxMMKExI6sD70kRSSyrzKfd1c0az7/Zp+Rxlu6XaKRD/6xOC40fVZdoHi99HgJC+OLM0bsX1MRwAzoNrK8Yv0WseS01NPXUNiUGhPDr7IUYtAd+Ps+OT+fZXV+zu7WWTo+TzY3lnBKVqkqsYmZEGHn23Q9IonB1HOpsqyBv6yfUt0cgoyfYUMrUmWcRGjNT7dAOYdLp+cGkTFZ7n2GvshaAROnQOOP8g7h+4pzhDu+4bW6owGFZi8U+n7iAILXDOSExgVqKW8ZvEeuWxoref18wIQuDVocsK5S3+v6baCUNF0/I7h2z+aDxw00kI8LI4rFD52bwm+rbA0QYFzwuF3t3LqawuB6XEo1JqiJjcirJWSNrNuRgXzR/wTn5p1AqbwZAix5JOlDUatTqmB89id9kn4W/Xp0i2+Nx6dpHQePkn1N/o3YoJywnxkiHU6HbNT6LWG2uA7NCEy2+DtYfF3SR9Ncq/ra2DYDEwFD0Gu0h44ebuEwjjCzVD+IrXP2j2pEIw6S+Yg01jQqylIoGGzHhEpETRm6tUJe3i3uK7+G5fc+hQYOCAoBVZ+GGSSfh9Hqw6E1kBEdj0ulVjnZgHC4X1YYv0LbP5keT5qodzglbNNHMxwVdfFzYydXZo+cy2WAxaLW9/25xdhKsWLjr0yYAzu7ZUNDmcuCWvb7xGu2hTzJMRDIijCxNr4PGAsHD28BKGH4OexPFRWt727hbdMUkTblUtaW6x2KrbSvX5F9Dabev+6rMgU/cfloz875X1DraXPjV38GvissCRs8+NEdyRZY/d3zczLKC7nGZjEyyRpLXUgPAmtq9vPRVLNXtvsQjKdiXKH9du+fA+CD1VnyJZERQj7sRtIGgMfm+b/8CvG0Q/lNVwxKGXmnee7Q64wFfG/fk1Kn4W2erHdYh7t+0lGanr112rncZG73vAKBw6LS/WeP7pLm1sZKlFbk0O+xEmAO5LCmHrJDY3nGKovBJRR5r64rp9rpJsYRxbeosIs2WYXhFR7bK/j7ok3nrvJ+oHcqgiAjQYdJJbNqnflMvNcyLTGZp+U48iswz6zrYWOogPUJHjU1Gr5NZua+I5ZW7AN+O0qepVLwKIhkR1JSXBYoDwm+G8Nug6gF8hauPqx2ZMESaazZTVdOGt6eNe7i1hbiJI3cW7L6cRcgoKIpCzpYHULyHrz3w0/pRYmvkpcJ1XJI0leyQWDY1lPOv3Wt5YNo5xPoHAfD5vgJW1xRxY9pcwkz+fFyeyzP5X/H7GRf0XrtXw1N5K1GsW0mx/wydbuy8NSQE6ahoU2/JqpoC9EYuSszm9V272VQ4AYPOQ0O3nW6Pid9+9yFO+cB/l4WxU1Rd8TV2fuKEUUgGbzvU/QPqnvLdZUiEnk+YwtjhcXWxJ2853UoiEIS/VEJq1iUj+pLMwbMiAAuUB9ih+ZQ8eRkKcp9LNAB+Gj/eL92OTqPl4/Jcvqsv47KkHBICgllTs4frJs5GlmWWV+YD8FLhOlIsYVyWmMNfd65kR1MVsyISh/Ml9vFgwTNgsbBiwdjaIXtWnJE9TW6a7B7CAsbfW97ZsVO48b8GFOCUrBJWb58EQIdLxtDzn2NBzCQuS8pRLUYQyYigJl04eBoB74H7XOWwPQrCb4GIn4BJvWlDYXBUFnxEU2cEipSEngYmTEjAGn6V2mEd1f5Zkf2qOlr5524/bgi9mUcafojNa0OLFm/Pz6+EntKOJrJDYrgsaVrvrMjJkcmUdviKBpeU78Qpe7gyeTqTgyL5uDyXFwu/JTEwlNKOJtWSkV0ttXRbvsa/Yz6p1nBVYhgqF0w2878ddt7L7+T2k6xqhzPsfvdZC3U2DT+YamB77YGaprrGSK7OMTM/eiKJgaEqRugjlvYKw27/NtYOzWF+AbxtUPek7zKOd2Rsby0MnK2pgNwtn9HYGQdAmF8l2TPPxRqeoXJkxybQYMJqMPfeVtcWARBm7cLmtXF28NmcE3pO73i704sEzApPJNrPysWJU0kICKamq512l8O3kV5dCQCzwicQ5x/MTWlzaXN241Vk2lVcVnnB138EXSd/zbhbtRiGykVTfJ1YP9/TrXIkwy+31smTa9uJDtRyRnIghXV6fNUhEl2tadw46aQRkYiAmBkRhtnB21jfrPMwUyOhkZT+B8c+CFp1t7UWBs7jclGS/xF2OQkIxyyVMynrHHSG0bNj7fd5ZC+FbXVEmi3cXfJjdJKOD7I/IEAXwNrWtdxfcj/a7iQ4aPM8gPTgaNb1JCBNjk66vK4+j5t1BpICw2h3dRFiVOdn3ePxUK5dgaZ9Jj9bOF+VGIaSn0FDoEFiR+34KmKVZZmzXq4FCd65OpwL3qjv8/g35Q4qWt1MCB4Zy8/FzIgwrOweZ+821h2KBfmQH0EJ0ELSqxDzwLDHJ5yY6uLPyMvdiF1JQUc7idEy6TOuGNWJCMDaumK8ikK3KY9GdyM/j/s5ATrfazo1+FTWzlxLunQefjo9NveBGQ6L3kSXx4XVYMLmPvDJ/ODmUhaDiS6PG6vBNHwv6CCXf/0s+JdzrvVqVc4/HFJC9dTYvEcfOIbc9H4TDZ0yD8wP4un1Nro8fT/0aSR4c4ddpegOdVzJyHPPPUdiYiImk4k5c+awadOmI45va2vjjjvuIDo6GqPRyKRJk1i+fPlxBSyMHXYCkTj4F0TrW+Y7aRmE36hWWMJx6LJVkbf1Y+rawpExEKQvZerMhYTGjrzlusfjy32FaJH4V+Of8Nf482Tqk/2OizAHUthW1+c+jyKTHBjW+32g3thnjFeW6fQ4+4wZTp+2vQNdE/ho/i9UOf9wmJdgxC1DSbPr6INHkc+qdvHY9hX8Yv27/Oa7D3h+9zfUddlYU9rNG9vtTArTMy3GyJLdXXx/IZiswF/W1vL7LcvIa6nu85iiKHxcnstvv/uQO9ct5u95q6jvtg3paxlwMrJ48WLuvvtuHnnkEbZt28bUqVNZtGgRDQ0N/Y53uVycddZZlJeX8/7771NUVMR//vMfYmNj+x0vjG0u74FPJx2KBU3PigQFDeiCYcq3ELRIrfCEAVIUhb07F1OwpxaXEoNRqiJjcjIp2SO3jftANXbbaXJ2UqffQKfcyZ9S/oRG4/vT+WrRepaU7QB8MxyJgaHsaq1l5b4C6rra2dJYgawozI+ZhEXvWyU2K3wCy6vy2dm8j+rONvbaGjBq9eSExQ/7a3ux8Ftk62YS3GePqeW833dJhu8S2OLcsVWDtqe9gfkxk7h36tnclXkGXlnm73mrufiNOnQa+OC6CH6ypPF7Fw8P6Og24edN4F+711Ld2dZ7//7l59dNnM29OWdj1Oh4Jv+r3k6tQ2HAP31PPfUUt956KzfddBMAL7zwAsuWLeOVV17h3nvvPWT8K6+8QktLC+vXr0ev912bSkxMPLGohVHHI3v5pCKP1TUHuv3ZsSBJoCjQpYvFP+MbMCaqF6QwIA09bdy9UioaOogOU4hKHLlt3I/XJxU78SoePu18kQh9BHcl3NX7WIuzC6nnT31yYBhNDju3pJ3M0oqdfFS+E0mSyAyOJtY/CEVRsOhNBBv8WBCdxpt7N9HlceFVZK5ImqZKj5Ff5/4NrH58cvrYWs77fWemmJCA1SXd3L8gWO1wBs1dmQv6fH/jpJNY+NYGbE6ZZy4M453cTpq65MMmI1oJSmuiSEyq6V1+rigKq6oLOS8hk5xQX/H5TWlz+c13Hw7p8vMBzYy4XC62bt3KwoULDzyBRsPChQvZsGFDv8d8/PHHzJ07lzvuuIPIyEgyMzN57LHH8HoPn2E5nU5sNlufmzB6eWWZFwrWsmLfblwHNdkJpBUAGxYe6nqAFQ1daoUoDICjs4X8rR9S1RiAF38CtcVkZc8jKnHB0Q8eZWRFYa+tkUrDCtw4eWHyC72PvVq0nuTAMG5M8+3hcmZsGrtaa2lxdvKz9NM4Jz4dWVG4LGkaAJIkcWbsZD7bt4sJgSH8MusMMkJiCDX5c3rMpGF/baW2JuyBazDbTiU7dGzPVGs0GoLNGvLrx/YOvu/n29iyN54ZcRI/n2flsgx/fnmyhcsz/ZgZa0CnAQ66NO5VYOnuLtKDo3uXnzc5OrG5HUwJiuodt7/Qev+YoTCgmZGmpia8Xi+RkX3710dGRlJYWNjvMaWlpaxevZrrrruO5cuXU1xczM9+9jPcbjePPNJ/Nv7444/zhz/8YSChCSPYin27evdH0EgS00LjSQoIJaX1U9wOA793/ZUuAllSvoNUSxip1giVIxYOpzT/fVodcUCCr417Shb+QWOjLqQ/hW111DmaWOV+l4nmiVwacWDm5+BZEYAUS3ifWZEIcyC3p5/a23kVYFHcFFxeT++sSKo1nF9kLFBlVuSc1X+EwDYemTR2a0UONjlcz3dVTmRZ7r3MNpa0dXv51bJmAk0KX97kS26nxxqZHmvsHRP7eAXom3nh0mDC9dHsa/dgNWnQ6529S8v3F1pbvldQbTGYhnT5+ZBfJJRlmYiICF588UW0Wi0zZsygurqaJ5544rDJyH333cfddx9Y726z2YiPH/7rqSeioqOFbU2V2D1O9JKG+IAQJlsjCTWP7lUFA+WWvXxVsxcACYlfZp5BWlAkyN3QsAKi7uIMZS6f9nSlXFVdJJKREailditV1S14pCQkuomwNo/oNu6DJT04mr1+ryG3e/lfxv/6PPbr7IWHjJ8RnsCM8ITDPp8kSVyUmM1FidmDHutAeDwe9kqfIbVP53dnnnP0A8aA05NNrK90snmfizkJ6qxcGkpnvpFPR7c/L19hJciv/7f2dodMrMVFZKDE7IgD/w3W1AxXlIc3oGQkLCwMrVZLfX3f9cr19fVERUX1e0x0dDR6vR7tQVsZT5kyhbq6OlwuF4Z+2kEbjUaMRuMh948GnW4Xb+7dyLbmqn4f//GkecyJTOz/YE8b1DwGWouvx8YYUNBaR0fPUsfpYfG+RASg5X3wtkLEbZxrSOKb2mJsbgc7mvfR7XFjHmVbr49VHlcXe/KX0S0ncaCN+0XoVFqGOty22baxrn0dcy1zmWWdpXY4g+aGb1+GgGLmu/+kdijD5sqsAB5f084H+Z1jLhm584utbCsPYuFEHTdOP3wH3W63QqBJ7rP8HMDmdvQuLd9faG1zObAaDmzNYXM5iA8IGvzgewwoGTEYDMyYMYNVq1ZxySWXAL6Zj1WrVnHnnXf2e8zJJ5/MW2+91WdqbM+ePURHR/ebiIxmnW4XT+aupKar/bBjXt2zHr1Ww/Swgz49KV5o/A9U3e97gzYkjvxkRJZBbgNnNbirwV3vu3mawNMMnlbwtpHoaOT3+maMOAnsVGCHFbR+4Cj2vU5TKjpgclAkmxorkFFod3WLZGQEqCxcSpM9DEVKRkcjifGxWCNHfhv3wXTdruuQkHgn6x21QxlUi5veBFMsy8/+jdqhDJtpMUY0kq/Z11ihKAr/3rWF178LwGKCZT86/BWELpeMrECYWU9hWx0LYyf3PlbQWte7tDzM5I9Fb6KwrY74AF+xb7fHTVlHE6dHD932HAO+THP33Xdzww03MHPmTGbPns3TTz9NZ2dn7+qaH/3oR8TGxvL4476dV2+//XaeffZZ7rrrLn7+85+zd+9eHnvsMX7xi7F3nfKt4k29iYhRo2NaWBwJASF0uJxsb66irtuGArxStIHEwFBfx0Xbaii/ExwFB57IO8QFu7IDXDXgrgF3LbjqepKIJvC0+GZovO0gd/jasctdvt11ZRcobnx7yRyma2ofGgLQYpQ0uNHhxQ+9IQH8p4ExBQJO7h3Z4T7QHVE3Bq/njiYdzUWUlZXgJhYJN2HmSiakj71VMkfzadOnFHYVcknYJSSYDn/pZbR5q3gzXut3RNt+iGmMfSA8msgALXuaxk4R69slW/jH1zKdDgMf3xBKt+yk2wVmrR6D1vf2/mrReoIMfsRofclHVmgEu1rXs3JfAVkhMWxurKDC3sIPJ/pqv/YXWi+vyifCHEiYKYClFbkEGc1Duvx8wMnI1VdfTWNjIw8//DB1dXXk5OSwYsWK3qLWysrKPsVB8fHxfP755/zqV78iOzub2NhY7rrrLn73u98N3qsYAVocnWxt8l2a8dMZuDfnbCLNlt7HL0rM4tWiDWxqrMAte9latZqz5Jeg7WPge8Vr8mHWwsuyb2M5dzW4asFdB56GvrMRnnaQbeC1+5IIuRsUpy+JUDzA4bdAP6CnC6qkA40BJBNog8HgD5pA0FpBF+S7TxcG+nDQRYIhCgyxoIsBnR8AdZ1t/GGbr8FdpNnCI1POQyv1TTYau+0Utvku/QUZzIQY/Y4hRmGw+dq4L8EuJwMRmKRy0rLOQWeYq3Zoqri14FZ0ko7XM15XO5RBdfv2v4JFzwenjO3lvP3JitLzxV4HHo+MTjf6P/T8d2cjhfsmc2pmKZ80bOSTnnZfN0w6iXmRvk3x9hdaN7b5Gr7NjQ1jQuTIK7SWFEU5lo+4qrLZbFitVtrb27FYLEc/QAWfV+3mw/IdAFyQkMWFE7IOPKgooLhp767j+W1vcJ7uA7K0O3vWVR/mP782vCeJ2D8bIR9+bB8aXxIhGUAygsbsuyyiCfDVomitoAvpuYWDPgJ0UWCIBn0s6EJhkGcmnti5kmJbIwCzwydwdcpMAvS+mqDarnZeKlzHvp6GO4f8txOGRW3xCura/JAlf7RKG/FRfoTGjc8kBOD5fc9zR9Ed3Bl3J/9M+6fa4QyaOruN6G+SMXZOx3HlF2qHM+ye+KaNez5rYdkNkZw3eXTve1XU6CL97/sI9dNQd3/CUVcI/erTJp5eZ6P8nvhh3Y/mWN+/x27LvWHW4jzQIyM9uKeY1+uArf74Zj7cWIH7jrkuV/LNOmh7ZiN0VtAG+ZIFXagvidBHgj7Kl0QYYnyzGCPQpYlT+VveKmRFYVNjBduaqkixhOOUPZR3NPeOCzb6sUCFfgvjmaOjmr17tuJSYgAvQfoSUrLHV13I98myzO+Kf4efxo+/T/y72uEMqrNW/RECmvltxM/UDkUVV2X5c89nLXy0u2tUJyOyLHPmS7UoCnzx4+hjWqpc2uLr8RRvHf5l5MdCJCODRH/QD4N9f/2D1uSbkQg4CUKvRdEG8r+965kif0O6Jh+z1I2v71w/l04yNoApeVhiH2qp1ghunXwKLxeuw6PIeBSZova+K7JCjf78InN+74yJMPSKdy6m3Z0ExGCU9pGaNg9TwBy1w1LdvSX3Yvfa+WvqX9FpxtafyHxlOVL7VB498xK1Q1HFhGA9Bi18VzW6i1jv+LiZapuXu0+xkBNzbH8z97V7MGgZsT1WxtZvmoqSLWHQs9fQ2rpipva00cUvB7QBEH4Du1pqWOtysJbpTLGE8MvYFqj7G3Rtw/e/4kB30iEvYh1m08PiiZ9xPl/V7mFDfRldHt/1ywhTAKdFT+SUqBTMupE5szPWNFR+Q02Dp6eNu53oUA9RSZeoHdaI0OXp4umqpwnVh/LbCb9VO5xB9ZN1r0NgAXOcD6sdiqpiLTpKmz1HHzhCbax08MLGDhKDdfzt/GPfXLGh04u/YWQmIiCSkUEzNSQOi96Eze0gr6WGJeU7OC8+E6NsR2nfxt62et7Yu7F3/Kkx6RCWAGHXgn0j1D0NLe/RWxviPfzy4NEq3BzIVckzuCJpOt0eN1pJwiSW8A4bR2cLJYVrcCgJgEygtpjk9EvRjbMVFUdyc8HNuBU3z6c9r3Yog+6VmlfBL4qVZ92ndiiqmh5r4IP8LuwOmQDTyH1z7o/HI3Pua3VoJVhza/SAjm3rlokMGJmXaOA4du0V+qfVaLgsKaf3+xVVu7ln4xLKHDqQ7fwtbyXtLl+b3eTAMHLC4g4cHDAHUt+GnEqIeRDMmWCIY6zSSBL+eoNIRIZRWf777C7Yg0NJwCDVkZYSzqScq0UicpA6Zx3vNrxLsimZq8ZYP5VPKvLwWDcQ1r2QgHHSsO5wzpnoW6334e7Rt4Pv1e800Not89ii4AEXoXa7FaICRTIyLsyNTOaKpGm9u1U4vG6KXBFIQHTPNZykwFDuyDjtkOWtgK8INe6PkJUHppRhi1sYu1rrt7Fzyxe0OJMAD5GWOrJmXEBAcJLaoY04P8j/ATIyb2a+qXYog+7GzY8BEm+f9IDaoajuikxfMrK8aHRtzLm8sJMPd3WRHWXgntMHtvOwyyPjVSAhaOReDBm5kY1SZ8VNIS0okq9q9rClsYJSxdex7iRzJZb4K5kdPgGdCptiCeOLx9XF3vxldMlJQPC4a+M+ULkduaxpW8OswFnMtY6tJc1t3V20+K1G334yC+MmH/2AMS7IT4dZL7G12nn0wSNEl0vmyrcaMGhh1c39b71yJPn1vhq9SWEjdzZaJCNDICEghBsmncT1E2fT7Tgd8p7mnJBuiBwbq2OOZEXVLpaU7+SMmDSuTplx2HFbGytZWpFLs8NOhDmQy5JyyAo5sI25oih8UpHH2rpiur1uUixhXJs6q08jOaF/VUUf09gR2tPGvYkJ8dEEjbHLDoPt2l3XIiGxOHOx2qEMuoWr/gTmBn4WeovaoYwYScE6SppHTyfW816rpcut8NrlYYQFDPxte0eNLxlJjxi5l2XFZZohpJE0+JujAC10F6odzpAr72jmm9pi4g7q5NefElsjLxWu4+SoZB6cfi45oXH8a/daqnsanwF8vq+A1TVFXDdxNvfmnI1Ro+OZ/K9wy96hfRGjmL25mNwty2noiAE0hJormDpzEUGR6u4QO9KtaFrBrs5dnBd6Hkl+Y+/y1Vb3x9CRztNzfqB2KCPG7HgjTi/U2Eb+qprXt9j4uszJ6UlGbph5fB/GChp9yci0aJGMjG9aC7gq1Y5iSDm8bl4uWs/1E+fgd5Qluquqi8gIiWZRXDrRflYuTpxKQkAwa2r2AL5ZkVXVhZyXkElOaBxx/sHclDaXNmc3O5r63w15PPO4XOzZtpiislbcRGCWKsjOyiQx/TK1QxsVbi64GS1a3kwfe7Uiv964GCz5TNNepHYoI8pFPQ3P3s21qxzJkTXZPdz2URN+eonlNw5s9czBSnoanqWEjtyLISIZGQ76KN/eMWPY28VbyAqOYUrw0a9nlnY0MTmo77j04GhKO5oAaHJ0YnM7mHLQGLPOQFJgWO8Ywaeu5Avycr+jQ0lFi43EKCfpMy5HZwxUO7RR4cXqF6lx1XBLzC0EGYLUDmfQ/bPyP+AM54szReHqwc6fbAZgZXG3ypEc2cKX63B54b1rI/A7gR4hVW0e9JqR2/AMRM3IgOxpb+CLfbuptLfS7urm9imnHnUXw6K2eiod2ZymlPLopqWcNyGrdwOj/b6q2cPKfQW0u7qJCwjmmpQZJAUeezMbtW1uKKfS3sL90845pvE2lwOLvm8hpUVvot3l64poc/v+QFi+V2xpMRwYM945OmrYu2czLiUW8GLVl5A6ztu4D5Qsy/x2728xaUw8m/as2uEMutX7inBb1xFsu5gwvwC1wxlRDDoNVpNEbq1L7VAO669ft7KzzsVlGX4n3Lq+wT6yG56BmBkZEJfXQ5x/MD9ImXlM45scdp7dtQY/UzxGycm54Tr+u2cju1presdsbqzg/dJtnJ+QyQPTziXOP4hn8r/CNkredFucnSwu3cbNk+cN6Y6OwgHFO99lV1EVLiUWo1RNxuQEkYgch4dKH8LmtfFg4oNjru07wDXf/QkkL6/OvF/tUEak1FA9tR0jswatotXN/Z+3EmzWsPiaiBN+vjaHTLB5ZL/dj73fwCGUGRJDZkjMMY//unYvYaYATo4/FfY+ycnmYnaHzeDL6iIygn3P82V1IadEpXBylK+vyHWps8lvqWF9fQnnxGcMyesYTJUdLXS4Hfxp24re+2QU9rY3sKZmD8+dcjWa7/VUsRh8nWoPZnM7sPbMhFj0vilUm8uB1WA+MMblID4gaIheycjXVLmOfQ1OvFKKr417iJuo5IvVDmtUcngcPFn5JMG6YO6bMPY6ktpdDhpNX6JrP4mLE0UBc39OTTSxtdrFrnoXGZEjq7Bz/n9q8Srw2Y1R6HQnnkR0uRUyRnD3VRDJyJAqtfXURgT2NDDr3EZ68AW8W7oNAI/spbKjhXPj0nuP0UgSk4OiKLWNjtqIyUFRPDz9vD73vb7nO6L8LCyKSz8kEQFfB9rCtjoWxh7oeVDQWkdyz6WpMJM/Fr2JwrY64gN8zX26PW7KOpo4PTp1CF/NyORx2ijK/7KnjbuBQE0xyRmijfuJuK3oNlyKi1cmvTKir6Mfr3O+/AuYa7kh6P/UDmXEujTdn6fX2Xgvz05GZIja4fT69bImyls9/HROIHMSTrwvkMcj45FHdsMzEMnIkLK5Hb66B10QoAVHEZZgEw6vG5fXQ5fHhYxCYD+1EXXdo2OjPJNOT6wuqM99Rq0Of52R2J4lvq8WrSfI4MelPe3yz4xN48ncL1m5r4CskBg2N1ZQYW/hhxNnAyBJEmfGTmZ5VT4R5kDCTAEsrcglyGg+ao3OWFO+6wNaumNQSEBPPckpkwkInqV2WKNag6uB/9X9jwmmCVwXfZ3a4QyJ9Y6PwJ3GS2f+WO1QRqxTEo1IwFel3fxe7WB67Khx8vdvbcRatDx3UeigPGdho6+fykheSQMiGRk+Wiu4xuey1BZnF1Jvk3xIsYRzS9rJLK3YyUflO4kwB3J7+qm9yQvAorgpuLwe3ty7iS6Pi1RrOL/IWDBu6lJa63dQWdWAR0pEwkFkYC1xaReqHdaYcF3+dcjIvJH+htqhDIlHtn6MYt1Buv1Xaocyomk0GsL8NBTUj4zmZ7Isc/YrtUgSrLoletBm7LbXjvyGZyCSkSFl0ZsOFKIaosFRgs3lwKTVY9Dq0EgSGiQ6vlesanM5sOpHb9vuX2cvPOL3ADPCE5gRnnDY55AkiYsSs7lonF3v9rgc7M3/mC45GQjBTyplYtaFoo37ICmwF/Bl65dMC5jGacGnqR3OkPhL6fMQEMLKMx9RO5QRLz1SzzdlTmRZVv1y3Y/ea6KxU+aRM4NICx+8xGF3gy8ZyYkxDtpzDoWxd7F0BEm2+GojADCmguKgoLWaZIuvNkKn0ZIQGEJBW33vMbKiUNhW1ztGGD/2FX1Mbu5WupQUdDSTHK9jyvQrRSIyiK7ZdQ0Ai7PGXtt3gM0NFTgta7HYFxATYFU7nBFvfrIZBfi2XN19alaXdPO/HXYmh+v5/cLBrV8p7ml7nzbCL9OIZGQAHF43VfZWquytADQ5O6myt9Li8G1FvaRsB68Wre8df3r0RJocdj4o206rPhOAkqadLIxN6x2zMHYy39YVs6G+lNqudt4q3oxL9hzSi0QYu+ytJeRuWUb9/jbupjKmzlxEcGSO2qGNKataVpFrz2VRyCIm+k1UO5whcck3fwSNi+en/VbtUEaFK7N8/Vc+3NWpWgwuj8wl/61Dp4Gvbjn+LquHU9XuRadhUFblDKWRnSqNMBUdLTyVt6r3+/d6VsXMjUjixrS5tLu6aXEe2JY6zBTAnRnzea90G/ldwTxigOsi7b3LegFmhU/A7nbwcUUuNpeDuIBgfpGxAMtBS1qFscnjclG6awkd3mQgEpNUQVrmWeiMY2vX2JHipt03oUHDWxlvqR3KkHC4XNSYVqJtn811qXPUDmdUyIg0oNXAtxXq9XW66I16OpwKz10cSpRl8N+S6+1e/PTS0QeqTCQjA5AWFMm/T732sI/fmHbom0haUCQPTj8XPKfCtt+Qqd11yJgFMWksiEk75H5h7KorXUltiwFZSkVLO3ERRsISLlc7rDHr9ZrXqXJWcVP0TYQYRs4yzsF0wVd/A3MVV/jfq3Yoo0p0oJa9TeoUsS7O7eDzvd3MiTfys5OG5rJaa7eXYPPIL/wf2fM2Y4kuANBBd5HakQgqcthryd+6lOqWYGRMWHUl5Mw8g7CEk9UObcySZZlf7v0lRsnIC5NfUDucIbPa/gF0pvDmqbepHcqoMjXKgM2p4HTLQ3YOr6xww7sNvLGtA0VRALA5ZG54rwmTTuKLHw/+5Zn9Ol0KkQEj/61+5Ec4lmit4NqndhSCSopz32VXYSVOJRaDVE1GWjypU0Ub96H2aPmjtHnauDfxXgyakb288Xg9mfs5inUbqfK56HRiwnsgzprouyS+rGjoNs2rbPPwxnY7N7zXyGVv1tNo97Lw5RqcHoX/XhWOxTT4b8Utjk7KbU14ZAgNUHprG0cqkYwMJ0MMeFvVjkIYZs371rFjyyra3SlocBIb3ELWjIsxBR771gLC8XHJLh4vfxyr1srDiQ+rHc6Qebjon+Cx8NmCsfsah8pVPUWsnxQO3Zv1/hUtAJ8UdJH010o273Nx7iQzV2QN/iaGLY5OHtryCfd8+w0ANa5yHtryyYhOSEQKPZyMqdCdB7IHxuDGXEJfHqeNPfkr6VYmINq4q+OnhT/FqTj518R/qd5HYqjkN9fQHfgN/h0LSLWGqx3OqBNt0WHUwqaqwVve2+LoxO458Hw767xIgAJ4Feh0+y7VRAZo6XDKBBoH72ezvKOZj8p34lFkmm1+AAT5d+NRZPZ1thFiOrEdgIeKeEccTn5ToW0JdG6CwHlqRyMMofLdH9LSFY3CBF8b96Q0AkKvVjusMa3F0UmzsxOvImPS6vDQzRu1bxBvjOem2JvUDm/IXPD1H8HSyZMZd6sdyqgVH6SjrNUzKM+1f1bCoxyoQdlYMAGdJprvl6W8sd3OqpJu3romklMST7yf0Ld1xby5dzMKvmSn1e5LRkItvhmRl4vW8fOMkZm0imRkOO1PQDrWiWRkjGqrz6WiqhaPNAEJBxGBNcSnXaR2WGOay+vhi30FfFKZ1+f+z9x/xYuXV6e8qlJkQ8/j8VCh/xxN+0x+uvB0tcMZtWbGGilu7qSty0OQ34m9Ldo9zj6JCECr3Yinn/pYWfH1AZn/Yg01908g4gR21s1vqeHNvZt60hDw1xmQPEGAQpjFN0vj8Hp4bvcaHpx2HqEjbIZkbM5bjlT+PSsmurarG4cw6DwuBwXb3qWkyomHUPykUrKzp4lEZIi1Ort4bMfnhyQibXItVcpOQohH75qgUnRD77I1/wS/cs63XqN2KKPaeWm+GYT387uOMvL4tHWae5OEg2kksBol/n5BKOH+J/Z2/GllXu85zoiZxF/mXEqcOQKjVuJvcy9hSlAUAF0eN19WF57QuYaCSEaGk84PJD049qgdiTCI9u35lNzcLT1t3FtJjtP0tHH3Uzu0Mc3l9fCP/K+o7WrvvS/KHEhiQCirvc8CcIbuTv5XvIntTWNzk8pl7YuhawIfzv+52qGMapem+2YJVuw58WSkw9239kRWoKO7774wWg3oNXD3KVbKf5fAz+dZkaTjb0y2r7OVso5mAGL9grgqeQZ6jZYgs4aZcUYC9CZumTyvd6PRDfWluGXvcZ9vKIjLNMNNGySW944R9rYyyop34yIKCQ8hxjKSMq9QO6xxY0N9WW8iEmYK4LbJpzAhMIQCewH3bywn0zSLEDkOgCXlO8gJjTuhP/gjzQu7v0G2bibBdotYznuCAkwa/A0S22pcx/0cLq+Hd0q2sr6+pM/9XQ4DiuL73L+/iPXqLH8eWxTChGD9CUR9wP4tSgDmRCT2/px/W+Egwt+XgAToTWQGx7C9uYpur5tmh50ov5Gzf5GYGRluerG8d7TzuFwUbV9MUXEjLiIxSZVkpKeJRGSYfVO3t/fft04+mQmBvs6qj5Y9SrAumDWzPiPV4ivUq+/uoKi9vt/nGa1+s+sp8PjxyeliOe9gSA7Rsc92fEWsbtnLP/K/Yl19ySGXYyrqg3r/nRblZssdMfzvmshBS0TAt8HqfgbtgbqTlq6+hSoHP3bwMSOBSKeHm2kidO8E2QVjtAHTWFZX9iW1zfreNu4xEToiEi5TO6xxx+X1sK+zDYA4/yASA0MB+G/tf3m74W1enPwioYZQTo5KodjWCECprZnJPdfNR7vi9kY6A9dg7jiN7NBYtcMZE+YmmMirc1PR6h5worCsMr/358yo0XFSZBKJAaG4ZC8/XO8BFE7PKmFSXBNasz8QN6ixh5sO9CrZ2Vzdu71IjEXLnHjfJSK37GVXSy0AWklDsHFkXUYWMyPDzS/H99X+naphCAPjsDeQv/UjqpuDkDFj1RWTM/MMIhJOUzu0ceng1Qr+ugPX4z9p+gSABcELAAg46DGPMrKukZ+Ic1f/EfTt/DHtF2qHMmZcPMX35rw4d2CNwdyyl29qiwHQSBJ3Z5/JtamzmBeVzI7SCKrbjDx9mUJafBOSBKurB39LkFRrBGE9CUlBWx3fNZT5YvOCXishKwoflG3v7X0yPSwes25kfRgWychwC+hZUWNfp24cwjEryX2XXYVlOJU4DFINGWmxpE4VPUPUZNLqMWt9n17LOpro9viu9b+a/irB2mCe3/c8ALtaa3uPCTGOrKWMx8vj8VCsWYHUPoPfZC9SO5wx4+xUX1v4VSUDK2ItbKujs+dNfkZYQu8s3brybn63opm75ln4+cwUIsyBABS112NzDW7reY0kcXbslN7vXy3awN/zVtHS7aLE1syj25bzVY1v4YSExMLYyYN6/sEgkpHhFniS76tY3jviNe/bwI4tq2jraeMeE9xM1oyLMAWKaXG1aSSJ2RGJALhkLx+W7UBRFPy1/twefzsv1bxEfls563qKCfUaLdNC41WMePBc/+1LEFDMGf5il+fBpNNpCDZryKsb2A6+7S5H778nWiMA6HbJnP1KHX56DY+fE4JGkphoiej3mMFyWnQqp0Wl9n6/o6GJ5i74vNBLTU+htwT8cOKs3oRpJBHJyHDTmHqW9+49+lhBFR6XnV1bP6C8To8XCwFSMVnZJxGdIj6FjiQLYiah6Vk18E1dMX/Z+QXf1hVzuv+l2L2dXLz9qt7li/Mik/HXj6xp6eP1XtOb0B3Hpwt+rXYoY05amJ56+8Au5xk0B4pCW52+WZUHV7bi9io8d3EoZr2m57EDl3+M2sEv15QkiWtTZ3Ft6izCTQHsLI0BJLqcBuzdBpIDw/h55nxOOShhGUlEAasatMHgqlY7CqEfFbs/pLm3jXsDSUkpBIo27iNStJ+V6yfO4Y0936EAZR3Nvb0WNOgolTezxfM+VwX/hCuSpqkb7CB5q3gTXutGYmzXYxJ7HA26UxNNfFflZFu1g+mxx9aePdUajoSEgsL6+lIKyuN46tt2/n5+KNfm+C7N1HXZKGirAyDY4EfYEHU/lSSJ06MnkuqXyBNL9/fWkTDaT+J3Zw9u0exgEzMjajDEgrdN7SiEg7TX57FzywqauicAMuEB1WTPPI/A0DS1QxOOYF5kMj9LP53o7/VL8CMIgG3yEjZKL+Jm8DZBU9Pt2/8Ksp4PTxHLeYfCFZm+JOH9/GMvYg0x+pMd4tuBu7QJHvi8jXB/ibtOtqAoCnvaG3hu15reJb+nRqeikYb2rfexNW14D1rV+9Y2Fw0DnPEZbmJmRA2mSb6aEdnhu2wjqMbjclCc/zGdchIQhp9UysSs80X31FEkOzSWrJAY9toaKbM14VG8rKgIoMPVAMDSpo+Yu3kun+Z8SoIpQeVoj1+NvR1bwFcYbacyJzJR7XDGpJlxBjQSfF02sJqOSxJzKGit59ON6SjA6dO38/utu3DJHlqcBwpiI82BnBEzaZCj7qusxc2LmzrwHtRGxC3DP9a186dFIUN67hMhZkbUsH95b8d6VcMY7/btXUZu7hY6lRR0tJEUK4k27qOUJElMskawKD6d8xOykKUDnTRlZAo6C5i2cRrr20bv79zZq/4IhhbuSf6Z2qGMWRqNhnB/LYUNAytijfG3kl84B6dbx+y0SkICHdR12/okIjF+Vn6ZecaQL6l95MvWQxqvyQr8Y3077Y5+dusbIcTMiBoCT/F9ta8H6xnqxjIO2dvKKCvZhUuJAjwEG8tIFt1Tx5ROb99pdg8e2jxtnL7tdP4z+T/cGHOjOoGdgF3KcqT2bP545sVqhzKmZUbqWV3iQJZlNJpj+7z++hYba0q8zIw18H8Lo1hf30Wjw44GibiAYE6LSmVGeELv3jDH47OqXWxvqqKu24ZBoyXZEs5liTlE+Vl6x+yqd/Hmdnu/m/J1umQu/2ATfz83nqyQAysCFUXhk4o81tYV0+11k2IJ49rUWUSaLf08y9ARyYga/Gf7vnbtUDWM8cbjclG6ewkdniQgCqNUSerk+Zj8T1I7NGGQdcuH9nGQkZEVmZsKbmKfcx8PJj2oQmTH59ZvX4PAQuY6H1E7lDHvjBQzq0ocrCpxcNbEo8+SVrd7uGVJE/56iTW3xuJv1HBW3JSjHjdQe9obmB8zicSAELyKwkflO/lH/mp+P+OC3tU5D37RglYDnn4nQCQ27g3nmbh1/H7m2cT6BwHw+b4CVtcUcWPaXMJM/nxcnssz+V/x+xkXnFDyNFDiMo0aNAaQDGJ57yDyeDy43YefWq0rW01e7no6vKlo6SQu3E7mjMsw+Y/ca6jj3Z72Bp7dtYZ7Ni7hJ2vfYscx7Lxb1FbPH7cuwyH3f81fJ/n+aC+t2sgd377D4zs+p6yjaVDjHgqv1b4Kjmg+X3iv2qGMeVdn+4pYl+w6tiLWU/9dg0eGj2+Iwt84dG+pd2UuYF5kMjH+QcQHBHPjpJNocXZRYW8BoL7Dw0e7u/DIvn4imp49ISUU9BrQSmB3SrS1xLGmpwGaoiisqi7kvIRMckLjiPMP5qa0ubQ5u4/p920wiZkRtWhDwF2jdhRjgizLFBYWIssyGRkZaA/aDMphb6S46FucSjwgY9UVi+6po4TL6yHOP5iTI1N4oWDtUcc3Oew8u2sNsyPjoO3Qxw2SgQuCr8TYMZ07Jl1MUmAYq2oKeSb/K/4w40IshpFZTL60PBdP0AbC268mYITGOJakhBrQa2BD5dFXYP10SSNlrR5+NsfCGSnmYYjugG6v78OXf08NSri/lg+ui6Sx04vbq9DU5eUPq9qYGufhkrQI3LKCrMCE6E5KO3yJRpOjE5vbwZSD9mwy6wwkBYZR2tHErJ7GgsNBJCNqMcRC1061oxgT6uvrcTp9fzhqa2uJi/Otpy/JfY82VwIQj0GqJWViDn6W2SpGKgxEZkgMmT1LJo/F17V7CTMFsChhIlTQ2/vBLAXSrXRwetDpzJSuJzEmhJOjUgC4LnU2+S01rK8v4Zz4jKF6KSfkps2PgVXLOyeNnstKo12MRUtxc/8zrSuqdrGkfCdxujT+vSmYlBAdz10Sdsi4rY2VLK3IpdlhJ8IcyGVJOYNWqyErCu+WbiXFEt57uUWjkbgs80D/kr2NLv6wqo2Z8RKPLAzuvX9NTRN7K30zhza373Lm9xNxi8E0JF1ij0RcplGLOQ3wgGdg+yCMNy2OTirtLX1uLY4D06dOp5Pa2gP7j9TX11NbvpGdW76kzZ2MBhfRQY1kzbgQP8vYaAcu9K/U1sTkoCh0kg6dpGOK3xQeiH2Cm4wvkGJOYXXraspsDX0+BWokiclBUZTaRualmqYuO63+q9G3z+OMONHzZrhMizFidyl0ufoWX5R3NPNNbTERpiCe+tIfvQa++cmhCXOJrZGXCtdxclQyD04/l5zQOP61ey3VPTtNw4FajesmzubenLMxanQ8k/9Vb9fgI3m7eDM1ne3cOvnkw47p9vjKWPXDV/ZxQkQyohZzT0dI+9Gnn8erFkcnD235hD9tX9Hn9tCWT2hxdKIoChUVFSjKwbXjMjVNWjxYCZBKyMqeQ0zquaq9BmH42NwOLAYTIfoQGk9tJP+kfK6O+AEeGf4v6U948VIibyKwv0+B7uH9FHisFq16DIyN3Jlwm9qhjCtnT/RdcllacOCDj8Pr5uWi9Vw/cQ6fbougvVvPK1eEE2M59ALDquoiMkKiWRSXTrSflYsTp5IQEDwotRpvF28mr6WGu7PPJNh4+AJbh7vn76LUd4bH5nZg7fkdsOh9r9P2vVkQm+vAmOEikhG1BO7fvXeDunGMYM2Ozj5bxe/nUWTsHietra10dHR871ENSBKRYUbSpl+FTrTMHpeC9EFIPfvWAFwWcTkhujDy5OUocn8LH0embZ5PwJbBU3NEndNwurLncseywgOrst4u3kJWcAwf7TCyozyE+Wkd/HBaYL/Hl3b4ZukOlh4cTWlPsfTRajX6oygKbxdvZkfzPn6VfQZhpoAjvgZHz8yIXW7vc39Bax3Jgb7LSmEmfyx6E4U9reoBuj1uyjqaescMF5GMqMV/lu+rqBvp1/r6Up7Z9dVhHy9vb6KysvKwjze1yXg8nqEITRihLHpTv5/wTFo9Bq2On8fdSaNSyn/r3jxkjFU/8gpD7964GCz5TNddpHYo405YgA6TTmLzPl8t2uaGcirtLUw0T+HBla3EhNi5Zd7h/77YXA4s3/uZsugP1GEcT63G2yVb2NhQzs1p8zBp9bS7uml3dePyHojj1aL1LCnbAUB3z/reNm8LK/cVUNfVzicVuVTYW5jf0wVWkiTOjJ3M8qp8djbvo7qzjVf3bCDIaCYnbHgva4sCVrVodCAZwVmidiQjztraYt4s3nTEMZVVlUzRB+FbxHYor9dLdXU1EyZMGPwAhREp2RJGfkvfFWoFbXUkW3yf8B5MeoC/lz/Pq3Uv8YfJdwO+QsDCtjoWDHGL7uPxbOWL4B/OyjMfUDuUcSkxWEd5q4cWZyeLS7dxZ/rpzPqHb4uBG05uQquxHuUZBtfXtb5WEH/LW9Xn/hsmncS8yGQAWpxdSD1/Ex09Ocr0oMmsrSvgo/KdRJgDuT391N6iV4BFcVNweT28uXcTXR4XqdZwfpGxYFh7jIBIRtSlCwGXWN57sHZXN++UbOn9PjsklhlhCYQY/ajpaufbuhJmuhoI1wcfdJQCSEiS1Kd+pLm5mYSEhD7T9cLo4fC6aey2937f5Oykyt6Kv85AiMmfJWU7aHN1cVPaPABOj57Impo9fFC2nZMjkylsq2drYyV3Zp4OgE6j48ygc1jS9l9eKHmfi6PPYlV1ES7Z0/vHfKRYva8It3U9Ie2XEOI3NDu8Ckc2K9ZIYaObnQ1NdLgd/GBJLk1dEzhvViHN3ja+qqljTc0enjvl6kM2vrMYTNi+V4d0uFoNq+HAkmCby0F8QFC/8fz71GuPGvOvsxf2/nt/zUiSfwQ3zEw97DGSJHFRYjYXJWYf9fmHkkhG1GSIg87takcxvOyboOFFCDwVrGeBoW8l+tra4t46kVOjUvnhxANLcRONRuJqv6BdNwcUBRk3GqMfFpMfer0enU7X56vRaBSJyChW0dHCUwd9CnyvdBsAcyOSuDFtLu2u7j57f4SZArgzYz7vlW5jdXURQUY/rp80h4zgAz9jL2X9nU/WvsOzVS+QV+shLiCYX2QswGIY3h4RR3PNd/8HVi+vzLpP7VDGrQum+PHfHXZyKwPINi7gxcIuZsTDi4vm8fqe74jys7AoLr3fHXiTA8MobKtjYezk3vsOV6sRH+D7YLW/VuP06MMnDgPh7Nkpz6QfHX8DRTKiJtNk6NwMHjvojlyMdDxaHJ3YPQca9wTojISYVP6UZd8ATS/7buDbwdh6ri8xCTydHc37eoee19P3QfY4qSlZQb09mgBZj0XzHf/uCqADI3Mtydw4caoar0QYYmlBkUf8NHhj2tx+j3lw+uFXT4UYQpgbNIe1bav4ZPZ/SPJLGpRYB5Pd5aDRvApd+1wuVvnT6nh20WTfSpVlhU7WlDrw02tY8+MJBJg0GLU6/HXG3ssdrxatJ8jgx6VJOQCcGZvGk7lfsnJfAVkhMWxurKDC3tL74ergWo0IcyBhpgCWVuQOaq3G/pkRk350lIaKZERNftOh+b/Q8Q0EnzeoT71/WezBq1F0koZHZ16obkLiP6Pv94494CiF+n8AOq4nhRptOB2aSELqN0HnFmo6Z1Gv+SE6OohJWYASEE/HxiUAdLqP3iVREA723KTnyN6UzR177mB5znK1wznEoi//DKZabrQ+pnYo45rJoCHQKLG6xIFXgeU3RhJg6v+N/eBaDYAUSzi3pJ3M0oqdqtVqOL2+v/2mUfIuP0rCHKN6d+/dMOjJiN3jPGRZ7P4lsSGomIz4TcO3iOvg2Dy9XxMoYoKuCABvawragFnEWGLRdBYTlXwhGr0fRW31vUeadfrhilwYI7ICs5honsjnzZ/T5enCT3f0zdCG0wbHR+BK4z9n3qh2KOOeQQsdCvxkdiALD9o07+DajP6+B5gRnsCM8ITDPvdQ12o4e/6sGnWjY2bkuKJ87rnnSExMxGQyMWfOHDZtOvLKh/3eeecdJEnikksuOZ7Tjj1+031fu3PVjWM4yDJ0fAvVj/g2CTyCVjmIx52/52Pr+5D6Npq43xCTdjUavR+KovDFvoLesRnB0UMduTAG/Tn1z8jI/Lb4t2qH0sdDW5aiWHeSoblA7VDGvdUl3TR3+S513H3K8K6cGQzOnj4jZt3oqBkZcDKyePFi7r77bh555BG2bdvG1KlTWbRoEQ0NDUc8rry8nN/85jeceuqpxx3smKPRgGQCZ7HakQwuRQH7Fqi6H3afCtvCYYsOCk6Fur+Bcvhul47gH/GQ+2nKmciKfbt5v3Q7bT1FirVd7bxUuI78Vt8KpEC9kelhh//kIQiHc1nEZYTqQnm19lVkud/91lXxRNnz4ArhyzMeVjuUcc3ukLno9Tq0Pe/j7+Ye2w6+I8n+AlbzKClgHXAy8tRTT3Hrrbdy0003kZ6ezgsvvICfnx+vvPLKYY/xer1cd911/OEPfyA5eWQtoVOdLgRctUcfN0BNjmH85enKh32/h4IFsC0KNutg9yyofRzs6wANBJwGMY9Axk6Y8Cx9+4NoQdJB4n8wT3ydcydM731kZXUBv9v0Eb9Y/y6/37qMLU2+RmcScG3q7GFfCy+MHb9K+BXdcjfP7XtO7VAA2FBfjtOyFot9AVEBR98sTRg6C1+ppdOt8J/LQpGA1aXdRz1mpBnTMyMul4utW7eycOGB62MajYaFCxeyYcPh25r/8Y9/JCIigptvvvmYzuN0OrHZbH1uY5YhHryD9/rsbifP7/qafx9my/W1tcXf28tlgLr3QM1jUHgWbI+BTTrIz4KaP0DH14AHAuZC9L2QvglmemB6PaSvgbjfg382+M/E1xsEQAv6SJiyHiJuAeC8+EwumpDdpyDMeVCXQaNGx82TT2b6MHcIFMaW+ybch1Ey8ljFyCgUvfzbP4LGzb+m3aN2KOPan9e0srHKyXlpZm6aaSXET8OuepfaYQ2Ya//MiGF01IwMqIC1qakJr9dLZGRkn/sjIyMpLCzs95hvv/2Wl19+mR07dhzzeR5//HH+8Ic/DCS00cs8GTo3gqcNdEEn9FSdbhd/y/2Smq72w475pq4YjaThmpQZR+/B4aiA1vfBtgq688BVx4FiU0Ab7EssAk+G4EvBf57v0tPR+GUDWsALgadB6rugP7APgiRJnJ+QydyIJL6pK6agtRaH10OA3si0sHjmRiTjrxd7zggnRqPRcE3UNbxe+zorm1dyVuhZqsXicLmoNa5E2z6ba1NnH/0AYUjsqnfxwBethJg1LP2h731uSrie9ZVOZFlGcyx/30YIV8/MiGmUTB4P6Wqajo4Orr/+ev7zn/8QFnbsm+7cd9993H333b3f22w24uPH6KdgvxnA6z3Le09sD4ol5Tt6E5FAvZFTo1KJCwjG6fGQ27KP7T09PNbU7iErJIbMkIMajrlqfYlH+5e+/XLcNaActNuj1gp+U32zHsEXQ+B8X0v746ExQ8RPQBcKsY+A1P9vS4jJn0sSp3JJougjIgyNp1Of5o3aN/j13l+TG6peIfn5q/8G5n1cFSBav6vF45FZ8GINigJf3RqNrmcVymlJJr6tcLJxn4u5CSNvD6PDcXl9X/3G4sxIWFgYWq2W+vr6PvfX19cTFRV1yPiSkhLKy8u58MILe+/bXyym0+koKioiJSXlkOOMRiNGo3EgoY1egT0FvfbvTigZ6XS7+K6hDPBdxvjd1LMJNx/YUXJeVDJf1+7lreLN+GGjofJv0FwBXdvBVQ3KQf06NIFgSoeAkyDoArCeDZpBnolIHBnX6YXxLcgQxOlBp7OmbQ0lXSWk+B3692g4fNX1AWhTeeP8W1Q5vwBXvt1AY5fMHxYGkx194P3nyqwAHlvTzgf59lGWjPTMjIySBh4DCtNgMDBjxgxWrVrVuzxXlmVWrVrFnXfeecj4yZMnk5eX1+e+Bx98kI6ODv7xj3+M3dmOgTD3rDHvOrFPZXmt1bhlXyo8NzL5QCLiKAV3PXRu5bTGF5hn3INOcSO5QHGBpPEH00TfLsJB5/tumtHzCycIJ+rZtGfJ3JjJHUV3sGLaimE//xM7V6BYtjGx4050ulHyzjHG/G97Bx/t7mJGjIGHzwzu81hOjBGtBGvLDr8KcCTan4yMlktLA/7Jv/vuu7nhhhuYOXMms2fP5umnn6azs5ObbroJgB/96EfExsby+OOPYzKZyMzM7HN8UFAQwCH3j1saDUjmE969t+OgbadTenYpxV0PuZMAL6BF0gZil6Ip8sSTr0zlkqkPERZw6IzWUPqsahfbm6qo67Zh0GhJtoRzWWIOUX5HXj2wtbGSpRW5NDvsRJgDuSwph6yQ2N7HFUXhk4o81tYV0+11k2IJ49rUWUSaxaoE4cgyAjJI80tjZctK7B47AUOwNcORPLLnnxBoYfkZDw3reQWfOpuHmz5oxKyXWH1rTL9jIgO07Gny9PvYSLU/GRktBpwyXX311Tz55JM8/PDD5OTksGPHDlasWNFb1FpZWUlt7eAvVR3T9KHgrjuhpzBqD3QibXJ0grcT9lwAWgtM/Bhm2mFGK8/r/s2r3p+xWT4ZkzHoBAMfuD3tDcyPmcS9U8/mrswz8Moy/8hf3We1zPeV2Bp5qXAdJ0cl8+D0c8kJjeNfu9dS3dnWO+bzfQWsriniuomzuTfnbIwaHc/kf9U7WyQIR/KXlL/4mqDtHd4maLnN1XQHfkNAx3xSreHDem7B57QXa3B7YckPI7Acpt17VpSBNoeM2zNyetIcjXusJyMAd955JxUVFTidTjZu3MicOXN6H1uzZg2vvfbaYY997bXX+Oijj47ntGOXPgG8HSf0FGlBEb3/XldXhFx8DXQXwuRVEHwhaEyU2BqptLcAEOsXRIB++C/H3JW5gHmRycT4BxEfEMyNk06ixdlFRU9c/VlVXURGSDSL4v6/vfuOj7q+Hzj+un0Zl0X2IswEEoZMAREQFJHiaGutWsVdR20rtu6Kq2qtWmvl556tihsFEQdD9t6QhJHFyF6XdfP7/f1xcCQkgQSSXMb7+XjkAfne5/vN+74cufd9xvszmBj/YC5LGkZiYCgrju4DPL0iS49kcEliGsN7xRMfEMqNyeOosNexveRQRz010YVdFnkZ4YZw3i94v0OLoM36+QnQ1/LPIfd22M8UJ9z9dQn7S13cMsrC9IHNb5Nx4QDPrs5L9nedeiNOpWE1p86uawwmdXd+gwA3OEvO+BJRfkEMCo6inyad+9UboHIRJfHvQMA5uFWFrSV5vLb3RO2RSTEDzj7uNlDn9qzYCdA3P0E2q6qElJCGw0mDQ2PIqvLcrxJbDVanjUH12vjpjfSxhHvbCHE69ybeS51Sx8uHX+6Qn+dyucgz/IC2cjS3p0hl6o62IquOV9Zb6R2i5/Urep2y7ZVDPEN33+yt7YjQ2oTTrXK66g2dicyW6gwCRkDJ256iYWG/av357ioo+R93KS9hMHp6C44qcTy+30lo7gLsipNa14llun0svRgf7ftKuIqq8mnWFvoFRTTYzfJkVoeNoJN6cYIMZiqPzZOxOj2fVoKMJ7UxnmgjxOncl3gfj2U9xrO5z/LnxD+3+8+7YsV/wD+HWf5/avefJRqqdSj84v0C9FpYfXvsaSd5JoboMepg/aGu8/vE6ValZ0S0kuV8z5/VG1p3Xu0uyL4DtkVB7l0YHPu8D33l/i0A5Y7aBonIgKBI7k6d3CnKqH98YBNHayq5NWWCr0MRAq1WyzXR11DoKOT70u/b/ectrpwPtUl8PqnxSkTRvqa9nU+NQ+W1y8OJD27ZZ/L4ID3ZZV1nEqtToUv1jEgy0hmYB3v+rNt9+raqCqXzYc942D0Uit8CpY4T5dVBRcOQ3lfTOzCMQL2JYKMfw8LiuDt1MnOGTiXA4PsaLh8f2MSusqPMGTqVUNOpt3APMpqxOht+IrE6bQQf6wkJMnjGc60n9YJYHSfaCNESLw18CS1a7t3fvnM4Xtv7M0rwZno7p8ty3g72z5UVrMuzc/FAP24e3fLVdiPijNQ4Vay2rjGJ1aV0rZ4R+V/QGbRmeW/dLjh4db0DjTN1jf85nB8/kvPj2y7EtqKqKvMPbmZ76WHmDJ1KuPn0yyj7WsLJqChgWlyK91h6eQF9LZ4lzOHmAIIMZjIqCkgI9NQIqHM5ya4qYVJM//Z5IqJbCtIHMTl0MsvKl7G/dj8D/NtnbtVf9rwIFn8WTZbdeTtSeqGDB5aUEeanZeF1Uac/oZ4ZA/35fHctX+2uZvaozl8ywOUGbRfKRqRnpLMwhKM4CsirLvN+lTW1867fEIh/6hQX0nsqpnZSHx/czIaiHG5OHo9ZZ6DSUUelow5HvaW972au5avs7d7vp8Yls6c8nx8Pp1NQW8nC3J3kVpcxOXYg4NnLZmpcCosP7WZH6WGO1FTw7r51hJj8GC6b6YlWemXgKwDclXlXu1z/QGUxNZaf8aua1HBLBtGuFEVh8puecu9LbzlR7r2lfpXmWW2zeF/XWFHjUtTT7z/WiUjPSCfh1Mejsx/i3e1vEKUpJFJTgJ/Gztjh7xDmF3KioUYDsQ+DMQmyZuMpaFafC4Iu6LjAW+nn/P0AvLBraYPjsweey/goz6TaMnttgx17+wVFcEvyBL7O3cGCnB1E+lm4Y/DEBpNep8cPwuF28b/9G6l1OegfHMEfU6d0irkxomsZFDiIFP8UlpYtxeqyEqRv20/BFy97HCxWnkz5Y5teV5zalR8VUVSj8NjUUIbHtn6oOthPh79Bw5Yj9tM37gScStfqGdGoZ7WffMewWq0EBwdTWVlJUFDn7x5rEVclFL8NtkywZaBUb0SrnpjzcPxf5UjKAeKDPftlLMzdyaI8z7wSDQr36J9moDYdjUYLHBvH1OhhRCXoPPMwpHKpEK23sHghl+68lFtjb+WNQW+02XVdLheGxSlonCEov9rcZtcVp/bJjip+O7+Yc2KMbP3jmY9fp/3rEPtLndif8v1qxNMZ+Hwe+VVuqh7v49M4Wvr+LcM0vmJdCofu9UxArVrZIBEBzyTUg+pAFF3DfRJi/YN5buwV/DvkFQZq07GH3QyGWOBYD0DAud5ERCqXCnFmZkXMIsIQwX8L/tumRdCuXfUGBBxkauAZLOEXZ6So2sX1nxXjp9ew4razGxYbm2DG4YYjlZ1/VY2ri/WMSDLiK6GXQeB4TvVPsNl9bqNjWo2G4LybMNVtQBN6OeYBb0HqJvAf4mkQfKG3rVQuFeLM/aX3X7ApNv516F9tds0vSj+EungWTpGKqx1l4uv5ONzwxSnKvbfUpYM9H/Q+3VXdFqG1K7eioutC2YgkI76i0UG/D0HbdOVRDSpblTGNjkfULUMp/YQ1yjTeVv7imeRqjIZBqyHuCYi41dtWKpcKceb+kvAXzFozz+U+1ybX++++DbiDNxJrvwizsfmKw6Lt/GlhCftKnNw40sKM5ObLvbfUjIGeMgI/doGy8G5VekZES5mSoPe8RocVVUOW2p9KGg7RDFLXc6v+X9j1CYQMeIsSWw3/3PkjNpcTdAEQ9zcwxnjbS+VSIc6cVqvl2qhrKXIWsbhk8Vlf7w87ngPFyIKJspy3I6zMquPltVYSg3W89ctTl3tvKaNeS7BZw84CR5tcrz3Y3S5+OpJBtdOBU3Gx9EgGJXVnt/dZR5BkxNfCZ0PIpag0XPWxSRnXsF3VGvoX3YFO54ff0C2k9urN3WmTqXU52VyS14EBC9FzvDjwRbRo+cv+vzQ4XmarabAMv9ml+Mccrq7AGrgCk3UioyN7t3fYPV6tQ2HmsXLvq26PO22599YYGG6goKrzzalzKwoLcnbw1/Vf8lnWVuxuBZfq4tOsrTy8eSHfH9rr6xBPSZb2+ppGA33eQtmZjNZVjkYDWo3KNne9IRpbLmRMBbQweAMYPMW+/PVGovwsFDeT9bamcmmw0e9EG4eNhMCQtnuOQnRRQfogpoROYWn5UjJrMkkOSKbMVsPfNi/EpTac2KrXaHly1CzCzI2HA6YvfQICy3iw750dFXqPdtE7+VQ7VN68IpzEkLZ9mzsvycymww5259tJi/F9NWsAt6rwevoqdpQd8R5TVdBoTyyW/TJnOy5VYWZimi9CPC3pGekE7NpQNgTM9e4jkKskUUEYAJW1hbBnOKgOGPgN+Kd6z7O5nRTbqhskEvUdr1xaX3OVS487Xrn0eBsherp5yZ6h1ONF0Kpd9kaJCIBLVah2NV2DYi+L0ViHMXfkpe0XqADgxVUVrMm1c9EAM7eMafsSBb9M9SSbn+5uvieso/1wON2biGg1GkaGJ6LX6AkwGBr8Lv8mdyeZFYW+CvOUJBnxsRJbNX/ftoT3iyPYpyQDcEQ9vg5eITprEqq7AhL/zedlUeyrKKTEVs1BazGv7V2FFg2jIzzdvlK5VIi2lxyQzOCAwSwvX47VZW31+TetehsCMxlvuqIdohP1ZRY7+Ot3ZYT6aVl4ffTpTzgD4xNNaIAVWZ1jEqtbUVh+bIWkBvhj6hRuG3QesRYDQyL9uX/4RVyeNMzb/qcjGT6K9NQkGfEhm8vJy7uXU1jn+QX3rvP3AJTrh6JDw72GvxOhLWaF6yLSTVdSbq/lrcy1zN28iDfSVxOgN/LA8IuwHBt2KbPXUuk48R/keOXSVQUHeHLrd2wtOdRk5dIpMcn8b/9Gnt62BLvbKZVLhTjJ8/2fR0Fhzr45rT73vwUfgC2GJdPub4fIxHGKojDpjXxUFX66ORpjK8u9t5RWqyU8QEt6kfP0jTtARmWB9/f+sF7xDAr1JGEhfjr6hBkAuCh+EKFGz7LkXWVHqHF2viqyMmfEh1YVHKDw2HyPKD8LNydfDPueYmZ0DBfalmEszWCPewjz3bPpnbOdh865+JTXu3fotEbHRkYkMjIisdlzNBoNlyYN5dKkoWf3ZIToxmaEzyDSEMmHhR/ySPyzLT5vQfZ2XCHriKz8LYGyg3S7uurjIgqr3fztghBGxLXvvU6NNPJztg1FUdp0cuyZKLfXev8+OPTEasr0IgdOt2fOiE6jJSUkinVF2ahAhaOuU+zeXp/0jPiIqqrefVoAfj9oIr0tYWAeAFUrMZa+g+p/Dl8angYgt7qMnKpSX4UrRI93X+/7sCk23ij4T4vPuWnzs6Dq+GT8I+0YmfhsVzWf765lWIyRJy4Ma/efN6WvHyqwMsf3PQx6zYle7OpjPR478+1UO1QuST4xn7CqXm+I3scJVFM6X0Q9RLXTTrHNU8WvX1D4iaETfThYl0HwRWhSNzIh5sQW5llWKUQmhK/ck3APZq2Z1/Mb1wZqSkltNeUByzBUjvfO0xJtr7jaxe8+KcKs17DilvaZJ3Ky3wz1TGL9ao/vJ7H2sZyoobK2MAu3ovCfdVbig3U8Ns2TmJXaathbkQ+AxWAm3Bzok1hPRZIRH3GqJ9apB9YvTKbUgcYI/T8FjR5Lva60pmbwCyE6hlar5fro6ylzlZKrbDlt+4uW/h1Mxdzd+/cdEF3Pdf4bx8q9XxtJiH/HzDxIiTSi18KaHN8Xh4zyDyI5OArwLIj49451/G9bFXeeG4RBpyG/tpJX965EObb76nnR/dBpOt9bf+eLqIewGMzoj70gDlQW4XAf23gp5ScYUQQ6CwDp9ZbdhjazhFcI0TFeGPACWrSsd3182rbbXAvBmsYLY37TAZH1TPd+W0JGsZPZIwK5JOXsy723RoxFx/7SzjGJ9fKkYeg1WhQFHl8Ugs2l4gzYxjPblvDYlm85VFMOQKjRn6mxyT6OtmmSjPiIQatjRLhnYmmNy8G3ebtRVdVTBE3n6ULLriphfVEOAGadgaG9znzrayHE2XO4NfQzDKeSfMqVI40ez6sqA+DP6z+GoD2MNEhdkfayJqeOf622khCs451fdXxdpGExRqx2FZvD9z3WfYPC+W2fCXy3aRDWWs+H1iO2AnKqy7xtQk3+/GnIFO/qy85GVtP40NS4ZDYW5wCw5PBesqtKmRDdF3+9kV1lR1lTcBD3saGZidH9MOnkn0sIXymxVfPPHT8yQr2W/Wxltfs9ZmkfbtDmwwObCDH583+H3oSASH6a+nAzVxNnw+ZQmPFeAVoNrPp9rE9WtFw0wI9FGXUsyqzl10N8Owcjq8zJzR+rHC0NBjz1Ro6L9LMwMbo/50X3w1/feTdolHc3H0qy9OLKviP4LGsrAJmVhWRWNq6ONzA4ksvqFa0RQnS8dzLXUeGoI1gbTS9NAgVqOpclJeNyG9hcnEuhrQoFlUc2fYMzeC1h1isI8fP3ddjd0vR386myq7x2eTi9Qw0+ieHKtED+uLCMRRm+TUZWZddx6QeFVDsUjhd/V9Hw7Khf4WfUYtLq0Wg6//a9MkzjY9PiUrgleTzhTexnYdTquCB2IH9MkyJkQvhSTlUpB63FAPQyBfBO6uuoqGSznkuThjJ31EyGhsUB8H3pT6BReH/0Q74Mudv695oKVubYmdbfzO/Htn2595aKDtJj0sOGQ75b3vvB1ioueCsfq13BddJokcOlw6wzdIlEBKRnpFMYHZnEyIjepFfkk1NViktR6GUOZER4QqfuVhOipzg+nAowIyGViVH9mVUwi3mH53F73O3otDp+1eccNhblYgteg7b8XH7Re4jvAu6m9hc7uPfbMkLMWr6d3THLeE8lMcRAboWrw3+uoqg88mMZz6yobLaN1a4SZenAoM6S9Ix0ElqNhtTQWGYmDuGypGGdfnxPiJ6kwn5im4WUEM8yymujryW9Np3ncp8DINo/iB+LNoG5gDT9BT6JsztTFIVJb+ajqPDDTe1X7r01RsUZqXOqlNV2bELy/KrKUyYiAJU230+sbQ3pGRFCiNOoP0xa6bAR4Wfhyogrucd4D0vLl/JgnwdxKm7yDSuhKoWZ8ef4MNru6dpPismvcvPg5GBGJ3SOFSEzk/35eEcNn++q5bZ2HDLaV1nED4f3klddTqWjjunR53HRAD9+2F+HTgvuJvKO3SWlLCnaQX5tJaEmfy5JTGN8VN8GbZYf3cePh9OpdNQRHxjKb/uNpI+Pdmz3fWophBCdXL+gCO/fVxV4tnHQarU81e8plpUv42DtQW5a+T4E7yS0dkKD9uLsfbG7hvk7axgSZeDp6b1Of0IHuSLVM9dvyb7a07Q8Ow63i/iAUK7uNwqAvr00fH9TDJlz4rl1VNNjMZ8e2EVySBSPjJjB1Lhk/rtvA3vKj3of31Scy+dZW5mZmMbD58wgPiCEl3cvx+rwTSE36RlpR4qqsDB3FxuKcrA6bQQb/Rgf1YdLEtJOOakos6KQz7K2dpmMVojubkxkb77I3orN7WJ9UQ7hZgsXxQ/i6qirue/AfTy6/xnmF+ZAUBgzos4jJTiKvGM1HgL1JsKamKAuWqak2sW18ws95d5vizn9CR3I36gl0KhhW76jXX9OWlgsaWGxjY4PjDBi1HveS24caWHZwTrvHBajJoAr+44AIMY/mAOVxfx0JJPUUM91fjqSwXnR/ZgQ3Q+Aa/uPYXfZUdYWHuTihNR2fT5NkWSkHS05lM7P+Qe4MflcYvyDya0q4/396/HTGbkgrukqeCW2al7Zs4LzYwZwc8p4MioK+O++DQQbzd4X0fGM9pr+o+ljCWfp0Qxe3r2cx0fOIqiTFrQRoisz6wxc1nsYn2R5ysAvytvFT0fSiQ8IJcjdm4+K34YQI4ayiwmMN/LBgQ3ec/UaLU+OmiUJyRma9GY+djd8fV0kYR1U7r01+oYZSC9q32TkVN7dUkWon5Z3fh2Boqh8t6+Ov63Yz3m9G77eBofG8OmxMhIuxU1eVRkz4gd7H9dqNKSERPtsDzQZpmlHWVXFDO8Vx5CwOMLNgYyMSGRwSAzZp9h99+f8/YSbA7my7whi/IOZEpvMiPAEfjqS6W1TP6ONDQjm2v5jMGr1rC082BFPS4geaUrsQC6tt0LG5nZxwFpMIFGeKlM6BwNCGs8bcKkK1S7f7+7aFd23uJS9RU6uHR7IpYM7ZzI3vrcJpwLZZR2fkHywtYoqu8rtYz1DNVqthpkp/swclUdqVMMFEEFGMza3E4fbRbXTjoLaqBprkNFMpdM3wzSSjLSjvpYIMioKKay1AnCoupwD1mLSwprvasyylpAS0nDJ2uDQGG+2ejyjHVSvja8zWiF6Ao1Gw8zEITx8zsVMiOqL+VhFZJMawPFqU3uN/2Oz6wvP1g7irKzLs/H8qkrignR8cGXnHYK+dJCnsN0nOzt+B9/Hl5aj18JjU0M7/Ge3tc7X59WNXJwwGJvbydwti9BoNKiqymVJwxgb2afZc6xOW6OhlvoZba3L0WxGW1BnbZfnIYQ4ITEwjOsHnsv1A8/Fqbjp99OrUK8m4VblSyrVfCbpb0OvkeX5Z8LmULj4nfxj5d5jfFLuvaUu7OfZC2bZwToemNxxScGufDtZZS5+keLXaJlzkMHcaCKq1WHDrDNg1OnRajRo0VDVRJtgg2+G+iUZaUdbinPZWJTDzcnjiQ0I4VB1OZ9mbSHE6Me4kyakCiG6HoNWxyFXhqePud6c9IPqeqyuIi7W34ufJthn8XVVM94rwGpXmXdpL/qEde6ETq/XEuqnZVdhx+7g+6dFnuH+l2c1Xl3UNyic3WVHGxxLryigb5Cnh0mv1ZFoCSO9opDh4QkAKKpKRkUBU2IHtnPkTeu86WY38EX2dqYnDGZ0ZBJxASGcG9WHqXEpfHdob7PnnC6jDTSYOl1GK0RP9eyO78DU1PCoSomazZfORyhXD7OpOFeGblrolbWVrMi2MaWvmTvHdY1ELiXCQFG1u92ub3M7OVRdzqHqcgAOVVWzMqeOwVEa+oQZ+Sp7O+9mrvW2nxQzgBJbNV9kb6OgtpIVR/expTiPafUWTkyLS2F1wQHWFWaRX1vJRwc24VBcjVZudhTpGWlHDsWFloZLeLUaDSrN/1LqihmtEN2BzeXk69ydbC89RJXTTkJAKFf1G0mSpfm6Fk/t+z8I0YO2cQVOFYUayvja+TiWQ5H8dCSDxMAwWYZ/CgdLHfx5USnBZg1LbvR9ufeWmphkZl2enc2HbYyKb/sPhblVZby4a6n3+5c25OFWBjBrRBHQh0pHHWX2E7VOws2B/CF1Mp9lbWXZkUxCTP5cN3Csd0UmwOiI3lQ7bXyTuxOrw0Z8YCh/TJ1CkNGvzeNvCUlG2tHQsDgWH9pNmNmfGP9gDlWX89PhDMZHn8g8v8reToWjlhuTxwOejHbF0X18kb2NCVF9yagoZEtxHn9Im+Q9Z1pcCu9lriPJEkaSpRdLj2T6NKMVojv4YP8GjtZWcmPyeEKMfmwoyuZfu5bx2MiZhJoa77678ugBaoJWoFUsKNryBo9p0aKgEKQNI1VzCToM6NAQ4xcky/CboSgK57/uKff+/Y0xnaLce0tdOSSA51ZW8sXumnZJRpJDonh94jXe7wPnZhPmp+HZ88cCcEPyuCbPeWTEjFNed0psMlNimy4z0dEkGWlHv+03iq9zd/LRgU1UOe0EG/2YGNOfXySmedt0h4xWiK7O4XaxreQQd6aez8DgSABm9R7KzrIj/Jy/n8uThjU6Z/a6f0FwLUY1lOODpseTkCRzEv/o/w8yjvrjdCsU1FlxqgoJAaGkVxT4rLBUZ3bdp8UcrXJz3/nBjE3sWonaqHgzWg38nN3+y2Lf3mSlxqEy54KuMYTVUpKMtCOz3sBV/UZyVb+RzbbpDhmtEF2doqooqOg1ugbHDVo9B63Fjdq7XC7yjEswVo6HkB0AGDVGpgVfiql6COuV15gRNpOl+xbwyz7D+Tx7GwD7rcWyDL8JX++t4aMdNaRGGvjHjM5T7r01IgN1ZBa3/yTWp5ZVoNfCo1NC2v1ndaSu0w8mhBDtxKw30NcSzuJDu6mw16KoCuuLssmyllDpqGvU/rLl/0bxz2KQdgpp2osZr7+GI+cd4dk+LxGh7U+Ro4TvS5ahoBLjf6IQmkNx+bSwVGdUVuviqo8LMelg5e87V7n31kiLMlBWp+Bytd9uuduO2smpcPGLFH/0XWgYqyW617MRQogzdFPyOFQV7t+4gLtWf8LyI5mMjuiNhsb7SC2xfoq2tj8XRZ/DCP3lpGlnYnfqqXZVA3Bd1HVcEDYFgLzqCu95MpTa2KQ38rG74OPfRnXKcu8tNfVYvZGlWY2T17by54WeHrV/z+p+E6C77r+8EEK0oQg/C38ZNg2724XN7STY6Mcb6asJNwc2aDdv73KU4M30s95FVICFykrPm8+CnB3sd63DoYbzzIC/e5fhry444D13dEQiG4tyZRn+MQ8uKWV3oZOrhwVwRVrnLPfeUlcNDeDB78tZsLeW6QPb/rlYbQqrcu0MiTKQGNL93rqlZ0QIIeox6fQEG/2ocTrYW57PsF7xDR6/f8+/wBXAPQN/SZXDhr/eAMA3xQuZX/IeBoMDt8vM+qIcdBoNpXZPmfAovyCSg6PJqLdUvyfbkGfjHz9XEmPR8b/fRPg6nLPWJ8yIQQvr8tpnH6L7vitFVeEfM8La5fq+1v3SKyGEOAN7yo+iqhDtH0RRXRVfZG8j2j+ICceWzH+VvZ0D1mJqLCvxqzqfq/qP4vEt3zI4JJr5xf9lpfsdQKXWofDE1sUNrm3Q6LgiaRjzD26WZfiAw6Uw/d2uUe69NWKD9BwsbftJrIqi8N9t1YT7a5mR3LV7kJojyYgQQgB1Lidf5eygwl6Lv97IiPAELk8ahu7YG2Wlo443Dy6GICt/H/Qnws2BXDMwjRv33kSme6P3OiZNw2GdUKM/CgpvZayRZfjHzHi3gEqbysuzwujXq3OXe2+NEbFGvtpbS41dIcDUdgnWW5uqqXWq3D8ppM2u2dlIMiKEEMCoiN6Miujd7OO/6zeaGzN/h6ZyBPdMu5DFJYu5Pv16KlwVDdpdGJeKw60QYDAyolcCSZZeaDSNJ8H2VK+ur2RZlo1JfUzcPT7E1+G0qekD/flqby0L9tZw7TmWNrvu35eXY9DCQ5O6V22R+iQZEUKIFrh65esQkMUF7ie4M+NOXj3yqrfI2XEGjYHf9hvtwyg7t+wyB3d/U0qQScOSG7ruMt7mXDnEn9sXwOLM2jZLRjYdtpFX6eZXad1vOW99kowIIUQLfFX2IfhFkRPyPsuPZAM0SETAU/hMNE1RFCYeK/e+5KYYzMbu98Ya5q/HT69h0xFHm13znmO78770i+496bn7vRqEEKKNvb9vHe7gjRj0Lg7aDjZKQo4zaiUZac4Nn5VwxOrm3olBjOti5d5bo3eonryKxhsnnomKWhdrc+0MizESH9y9+w6697MTQoizsDB3J4vydvN10fcQaOYi/Rz2679mn2sjOnS4abhtvElrYktxHl/n7qTUVk2kn4Vf9hnOkLA4bxtVVVmYu4tVBQeoczvpFxTONf1HE+UXdPKP7za+2VvDf7dXMyjCwD8v6d6f8MfEm8godlJY5SLKcnZvsfcuLkcFnu+my3nrk54RIYQ4hWCDP4X+izBbz+fDifewZfzPrBm5hjCD5w2ifoVWHQbeyljDhOi+PDJiBsN7xfPq3lUcqanwtvn+cDrLjmZy7YAxPDD8IkxaPS/vXo5TcZ/8o7uFiloXV31c5Cn3flv3mydyslmDPDs8f7qr+qyuoygKH++oJjJAy7QBjXeN7m4kGRFCiFNYmL8GjGU82O92go1+BBrMpPinUOospZe+FwP9B3rbutwaUsNimB4/mBj/YC5LGkZiYCgrju4DPL0iS49kcEliGsN7xRMfEMqNyeOosNexveSQr55iuzr/zXxsLpUPfxtFeGD374z/RbIncfhh/9mVhX91QxV1LpU/T+i+K2jqk2RECCFO4YD2O4zWsdjdKm9nrKHMVsP1e69HQeHjtI/Zc+4e3h30LjHGGPwIJSUkusH5g0NjyKry7ClSYqvB6rQxqF4bP72RPpZwb5vu5OHvS9lV4OSqIQH8qouXe28ps1FLkEnDjvyzm8T6zIoKjDq4vxsv561PkhEhhGjGfw+uxhW4h5HGGVzTfzQlthoe3/4Fi0sXkxqQyoW9LkSn0XFD7A3kTsjlIt1fCDpp35kgg5lKh2eXXqvT82k5yHhSG+OJNt3F5sM2nllRSbRFx0e/7frl3lujfy8D+VVnPuy2Ls/GEaubKwYHdJvqtKdzRs9y3rx5JCUlYTabGTt2LBs3bmy27ZtvvsnEiRMJDQ0lNDSUadOmnbK9EEJ0Fl+WzgdbDD9ceD+pobHcnTaZn22fAho+Sv2oQVuD1oBO0/2HIVrC4VK48O0CNBpYeWv3KffeUhN6m3EpkFF0Zr0jc7zLeXu1ZVidWqtfIZ988glz5sxh7ty5bN26lWHDhjF9+nSKioqabL9ixQquvvpqli9fzrp160hISOCiiy7iyJEjZx28EEK0ly+ytuIOWU+U7UICj/Vk7KnZwS7394w2X8hQy9BG5wQZzVidDXs4rE4bwcfODzJ4ysBbT+oFsTpOtOkOZr5fQIVN4YVLwhgQ0fOWO1+R6hmS+nRXTavPLa1xseGQnRGxRqKDek5y2+pk5MUXX+TWW2/lxhtvZPDgwbz22mv4+/vzzjvvNNn+ww8/5M4772T48OGkpKTw1ltvoSgKS5cuPevghRCivdyy5R+g6vhk3MPeY7/bcz0GTPw17m9NntPXEk5GRUGDY+nlBfS1eJazhpsDCDKYG7SpcznJrirxtunqXt9g5acDNs5LMvHn80J8HY5PTOpjQgMsz2r9JNY5i8tQgRdm9pxeEWhlMuJwONiyZQvTpk07cQGtlmnTprFu3boWXaO2than00lYWPPrpu12O1artcGXEEJ0lJLaaioClhNgnUKMfzAltmreyf2UfXWZjNJfwfTYkQC8m7mWr7K3e8+bGpfMnvJ8fjycTkFtJQtzd5JbXcbkWM+KG41Gw9S4FBYf2s2O0sMcqang3X3rCDH5MTw8wRdPtU3llju56+sSLCYNP97Y/ZfxNker1dLLX8vewtYN0yiKwqc7a4gO1DG5b8/aTLFVfUAlJSW43W6ioqIaHI+KiiIjI6NF17j//vuJjY1tkNCc7JlnnuHxxx9vTWhCCNFmpi19EvyLmWG6jLcy11LjtPOt8x/4EcT7I/6B5diQSpm9tkGdkX5BEdySPIGvc3ewIGcHkX4W7hg8kbiAEG+b6fGDcLhd/G//RmpdDvoHR/DH1CkYtLqOfpptSlEUznv9KG4VFt8Q3S3LvbfGoEgDq3PtKIrS4jkzL6+1YnOpzJnYM1bQ1NehA1LPPvss8+fPZ8WKFZjNzY+PPvjgg8yZM8f7vdVqJSGh639qEEJ0DTvci8CaxmdX/B6A1w+/zv9lbueOuDvoZ4n1trt3aOMPVSMjEhkZkdjstTUaDZcmDeXSpMZzTrqym74o4XClm3vOC+K8pJ71qb4pk/v6sSrHzro8OxNaeD+eW1mJSQf3ntd9q/E2p1Wpa3h4ODqdjsLCwgbHCwsLiY6ObuYsj+eff55nn32WH374gaFDT/2f0GQyERQU1OBLCCE6wt3rPgTLXkYZLgM8n/jvO3AfZq2Zlwe+7OPoOqdv02t4f2s1yeEGXpzZPea+nK0rj9VV+XJPyyaxrs6pI7/Kza/Ses5y3vpa9YyNRiMjR45sMPn0+GTUcePGNXvec889x5NPPsmSJUsYNWrUmUcrhBDt7PXDb4M9kh+nPgTAY9mPYXVbeSTpEfTanrO6oaUqal38+qMijDpY9fueO0/kZENiTOg0sCqnZfVj5nxbigb4Vw9azltfq/9nzZkzh9mzZzNq1CjGjBnDSy+9RE1NDTfeeCMA119/PXFxcTzzzDMA/OMf/+DRRx/lo48+IikpiYICzyzywMBAAgMD2/CpCCHE2fnxUDrO4LWEWa8gxM8fh+LgudznCNGH8GDvB30dXqc05a0CbC6VT66OJKIHlHtvjWiLjn0lztO2K6p2sfmwg5FxRiJ76D1s9bO+6qqrKC4u5tFHH6WgoIDhw4ezZMkS76TWvLy8Bl1Mr776Kg6Hg1//+tcNrjN37lwee+yxs4teCCHa0DUbnoIglf+O8SznvTPjTuyqndcHvN4ju85P59Efytie7+DXaf78Zqh8uDzZ0Ggj3+2rw+FSMOqbf/3cs6gUlZ7bKwKgUVVV9XUQp2O1WgkODqayslLmjwgh2kVFXS2hy/qir03BeeUKyhxlRK6KJMYUw6Hzuucmdmdj6xEbo145SmSglqMPJkqy1oQXV1Vw7+Iyvr4uiksHN703j6Io+D+aQ5i/jqMP9e7gCNtfS9+/e2Z/kBBCnOTiZc+AuZBbQv8JwPV7r8eNm3cGNV3QsSdzuBSmvuUp9/7zbbGSiDTjN0MDuXdxGZ/sqiA8uI4dR13szHczJkHPZYMCCTMH8MJqK3Y33Hd+z1vOW58kI0IIAWx0fAPOQbw69Tpy6nIabIYnGrr0g0IqbArPXxJGcg8s9346JTVuNh22s+mwHQ3w8XYbH223ex9fmneYzTXZPDlqFi+uqsSs1/DH8T2711+SESFEj/fQpi9Rg3YytOavAFy9+2pU1Eab4Ql4a6OV7/fXMT7RxL0TQ3wdTqdz54JiXt1QBYBOC555EJp6LVRiw6y4VIUfD1RTUO3m+nMCe3zvUs9+9kIIAbyQ8xrYe/H9BY+wqXIT663rOS/4vCY3w+vJ8ipc3PF1CYFGDT/eLMt4mzIk2uT9u1tpqoWGuPBKAJ5aakMDvHBJ89uj9BSSjAgherTVBQdxBK8muGYK0YFBXLf3OjRo+DjtY1+H1qkoisLE147gUuDb2dH49/By7825fayF3w0PRKtp+nGLn41APwe1Nj27C9yMSTAR3kOX89YnryYhRI925eonQePkjRH3s6hkEZm1mVwWfhnx5nhfh+YzO/PtVNS5Gxy79atS8ird/HF8EOf3sE3cWkOj0fDGL8NJjTKi0578mEL8sV6RtelJQM9ezlufJCNCiB7L5nBQYP4JXeW5/KbfKG5Lvw29Rs/7qe/7OjSfsbtURs87Quq/DrPmWPXQ7zJreGdzFQPCDfx7lpR7Px0/g5Zvro8i0KhtOFtE1RIXXomiQE5BGNEWDeMSm9+nrSeRviEhRI918bJ/gt8RrrE8yuuHXyffkc8dcXcQpO8ZKxvKbDVUu+wNjuWWanG4Ib/KzcQ3jvLgpBBeXFWBUQerpdx7iyWFGvj82kguerug3lGV2F6V7MiKRVG13DlOEpHjJBkRQvRYK2u/BF1/3ppxAxFrI3rUZnhlthr+tnkhLrXhLMvs/HCgv2cViApPr6gA4D+XhvXYUuVnalp/f+6aqOGVVZ41NSEBdZiNbnblRKPTurlupMHHEXYeMkwjhOiR/r79W9TgrQxUL+GpQ0/1uM3wql32RokIQEmVmZMrl2uAR74vZ0ELd6AVoKoqC3N3YQ9cR2SwFQA/k5PDxUHYHEb6x5Sy9GgmShP/Bj2RJCNCiB7pqf3zwBHCwikPyGZ49ZRX+eE+aZMQFbDaVa74XyF/+LqELrCLiM/9cCSdRXm70Gjg4tEZgEqkxc2GjCRAZeygHDYW5/JZ1jYfR9o5SDIihOhxthYfwha0ksDqyTx35G/YVTsvDXipxxeeAii1BtBUrnH80Pyd1dQ6JRk5lWqnnYW5u7zf/7p/Kuf3MZPoF0dZlT+p0Sr+Js89XHY0k8Jaq69C7TTkf54Qose5bOUToLXxdNrtvJf/HvGmeGbHzvZ1WD7ndmuorjM1Oq7TgFmv4YFJwey7N4EAqTFySusKs3AqnqXR50f3Z1bvIZybYGZVjg2NBr66JpFfJA7xtv+5YL+vQu00esbgqBBCHONyuThs/AFt5Wh+iHilR26Gp6gKW4sb70RcWWNGrbcYVacBjQbuPDeIhyaHEGWRt4yW2FdZ5P375NiBAIyMM1JhU7lskD8DIozEOAfwTe5OAPbXa99TyStLCNGjXLr8JfDPY6rfTXxb+niP2wzPrSi8mbGGbaWNk5H8suNLmlW0Gg03jrTw6NRQEkLkraI1jveKAISa/D1/+ukAmNrfUzAu0GDCpNVjV1w43O7GF+lh5BUmhOhRvrd+CoYkKqO/Q63qeZvhfZG9rUEiEusfTEJAKBX2Oj7KjuF4LYxfjS7hxYlT0Wt1vgu2iwoynqgfsr+yiGG94pnW34+8+xOID/a87eZWlWFXXAAEG6WirSQjQoge4z+7l6IEbyam6io2Vs3vcZvhVTls/JzvmZ+g12j5/aCJDO0VB8AHW6uoritmalo+/RJzsQPbSg4xOjLJdwF3UaMjerOhKAeAhbm7SAmJxqTTkxDiqSviVhQW5O5o0L6nk1lIQoge44H0f4MrEHP4lh65Gd76omxvbZEpsQO9ici+Ygd3fl3CDSMDmTezv7f9qoKDPomzq0sNjSHSzwLAoZpynt62hJX5B8irLmN9UTbP7viBveX5AAToTYyRhE96RoQQPUNmeSG1lp8x1gwj27CaK8Kv6HGb4R2prfT+fWBgIquz61h/yM7TKyoI89Pyn1nhBBg1BBnMWJ02jtZW+C7YLkyr0XJrygRe2LkUm9tJQZ2VDw9sbNROf6ydSSdvxXIHhBDdxsl7rQTqTYSZAwC4ZMUTYKnCHHIARaPnvdT3fBRlx6u2KXy5t4bXNlnIKBpGtc3EG4utgBWzXoNRBw9NDiXQpEVVPZNXARQpJ3LGEgPDuG/YhXywbz051WWNHo/xD+Z3/UfTPzjSB9F1PpKMCCG6hfp7raiqgoqCUWvkyVGzCNKbyNItgZoBWAP3cUds990Mz+FS+DajjoUZtWw8bCOnzEWNt0iZGZ1WIdDPxvBYA09MTmRcb0/5d82xBCS7qpQKRx0A0f4WHz2L7iEuIIQHz7mYnKpStpcepsZpx6w3kBYay8DgSO89F5KMCCG6ifp7rSxzvcohdTuDtdPIrBnMCzt+hoAsdO5gDN1oMzxFUVh+0MaCvbWszbNxoNSJ1X6iO8Oog/ggPefEGbl4gD9TBmh5fvdCFFSMWh1x4WEYdCdWclQ5bHx0YJP3+wlR/Tr0+XRXSZZeJFl6+TqMTk2SESFEt+PCjoNadiiLmLB9IaojBAjCbazksaQnu+RmeIqisOmwgy/31LAqx0ZmsZPyOsVbpl2vhWiLjolJRqb19+PXQwK9y0jrGxfVlzWFB3Eobv6540fSwmLpHxRJia2aTcU52Nye5aa9TAGyykN0mK73P1IIIU7DpAlAo2pRObYjqqEcNKBFS7g+nBp3DQG6AN8GeRrphQ4+3VXDz9l17Cl0UFKreOdwaDUQGaDjgn5mpvT149dDAkiOMLbour/tN5ISWzWZlYWowK6yo+wqO9qgTZDBzB9SJ2OUiZWig8grTQjR7RjxR4PG22twvMK5gsKd++7k/oP3s3XMVvr5d45hiLwKF5/tquanA3XsKnBQUOX27pyrAcL8tYxLNHF+HzO/TgtgRJz5lNc7FaNOz91pk/npSAY/H91PuaPW+5hBq2NMRBK/6J1GmKlzJ2u+9NDGrym11zQ6PilmANf0H93kOVuK8/g6dyeltmoi/Sz8ss9whoTFeR9XVZWFubtYVXCAOreTfkHhXNN/NFF+3XNu08kkGRFCdDsmjT/NLQTRoCHRnEi4MbxDYzqupNrF57tr+WF/LdvyHRyxunDWqwYebNZwTqyR8b3NXJEawPlJpjbfTdig1TEjIZWL4geRbS3B6rRh0unpYwnHX9+yHpae7MHh01HqvcKO1lTy0u5ljAxPbLL9QWsxb2Ws4fI+wxgaFsfGohxe3buKh8+5mLiAEAC+P5zOsqOZ3JA8jnBzAN/k7OTl3ct5bOQvMPSAKriSjAghuh0jAXB8iKYeDRpm9JrB/LT5BOoD2z2OapvCgvQavsusZfMRB3kVLmyuE29iAUYNKREGzk0wM2uQP9MH+GHUd1wtSp1GK0tLz4DF2LBnasmhvUSYAxnYzL1ceiST1LAYpscPBuCypGGkVxSw4ug+rh0wBlVVWXokg0sS0xjey1P75sbkcfxl/Zds7yFVcCUZEUJ0O0b8UJvoG/lTwp94fsDz6DSeT5olNW5WZtu4ItX/rJdZOlwK3+2rY2F6LRsO2chusKQW/PQaeofoGRVvYmaKH5emBBBgkiLYXZ1LcbOhKIdpcSnNvoayqkqYFpfS4Njg0Bh2lB4GoMRWg9VpY1BItPdxP72RPpZwsqpKJBkRQoiuwlVvp1STpt58B9VTQ2Ne8jzuiL/De3jzYTuXfVDA0So3e/4cz+Colg9PKIrCimw7C/bUsDbXxv7mltTGGrlogD+/HuJPmL/8uu2Otpceps7lYHxUn2bbWB02ggwNe1OCDGYqHTbP405PXZegk3pcgown2nR38r9DCNGlKarC94fT+fFwuveYEc+27ccTke+Gf8f0XtO9j7+z2crtX5V4V6dsPmJvNhlRFIUtRx18sbuGVdk2MppZUnvesSW1VzazpLYjLMzdyaK83Q2ORfkF8cSoXzR7jkysPDtrCg6SGhZDiMnf16F0aZKMCCG6LEVVeDN9DVtLDzU4Xlqjgsnz9xm6+wlyDQDA7lL54zclvLGpytvWoIVNh+1cP8JTbTSz2MEnO2tYkVXH3iInxTXuBktqIwJ0TOl7YkltSmTnmvAZ6x/Mn4dc4P1ed4rhJ5lYeXZKbTWkVxRy++CJp2wXZPTs9VOf1Wkj+FhPSJDBU3jO6rARbDxRhM7qsJEQGNK2QXdSkowIIbqsJYf2ehMRDZAaEkNvSy8+/ikDkiBSGUq8bggf7N+AXgnhji9q2XbU0eAaTgU+2FrFgj01FFS7cR2b93p8Se25iSbOTzLzq7QARsaZOn0Jb61G0+AN7VRkYuXZWVt4EIvBxJCw2FO262sJJ6OioMG8kfTyAvpaPCu6ws0BBBnMZFQUkBAYCkCdy0l2VQmTYvo3ec3uRpIRIUSX5FTcLDuaCXgShz+kTiYtLJZqh50qv23gDOOpvv9ic1EBh0ssTP6xDJtT2+Tmb575Hm6GxRiZ0NvMZYMDmNyn7ZfUdoSiuiru2/AVBq2WvpZwrkga7t0s8GQysfLMKarK2sIsxkX1Radp+Dp5N3MtIUZ/rugzHICpcck8v/MnfjyczpCwWDYV55JbXcbvBowBPEOJU+NSWHxoN5F+FsLNgXydu5MQkx/DwxM6+qn5hCQjQoguaU/ZUaqcnh16R4Ynknbs0+mNW56E6EVc6fcI9rJz+HL1IUqspy/gteK2OM6JNbVrzO2tjyWcGwaOI8rfQqWjjkW5u/nnzh+ZO2ImZr2hUXuZWHnmMioKKLPXMiGqb6PHyuy1aDjRg9YvKIJbkifwde4OFuTsINLPwh2DJ3qHwgCmxw/C4Xbxv/0bqXU56B8cwR9Tp/SYoTBJRoQQXVJJvQqYQ3p5Jlyqqsrn1n8D/ny2cDZfassJMJrRalQU1fPpVa/FOxRznAbPvJGunoyk1RsuiA8IpY8lnAc3fs3mkjzOi+4c1Wa7i8GhMbw+8ZomH7t36LRGx0ZGJDIyoumiaODpHbk0aSiXJg1tsxi7EklGhBBdkrbeJ0+bywlAnctOL8co+msn8OLt8QyPMfJaxnIyKwuptRuYFDKVNTkulmTWUVDtRgNoNKCqnmTktjE+ejLtxF9vJMrPQnFdVZOPy8RK0VlIMiKE6JJ6W8K8f19XlM2kmAH4G8yUzFruPV5iq2ZfZREAsRY9N40M5ZZRGlRVZV+Jk58O1PHD/jqWHqyjxtG4YmtXZ3M7KbZVc24zE1plYqXoLCQZEUJ0SX0t4cT6B3O0tpKcqlI+y97KFUnDvWPspbYa3khf7a3Eel50f7THVsJoNBqSI4wkRxi5a1wwbkVF27kXybTI51lbGRoWR5g5gEpHHQtzd6FFw+iI3oBMrBSdlyQjQoguSaPRcFnSMF7duxLwLFNdX5hDSkgUdS4HGRWF3s3Mgo1+TI4Z0Oy1dN0hEwHK7bW8lbmWGqedQIOJ/kERPDD8Iu9eKjKxUnRWGlVVm9vcstOwWq0EBwdTWVlJUJBU/RNCnPDz0f18fHBTs7v0Bhv9+FPalAZvsEKIjtHS92/pGRFCdGmTYgfQ2xLG0iOZbC3Jw6V65n4EGcxMjO7P5NiBjZamCiE6F+kZEUJ0G3a3i0pHHXqNlhCTH1pN1ytaJkR3Ij0jQogex6TTE+ln8XUYQohWko8NQgghhPApSUaEEEII4VMyTCOE6LRsLidf5+5ke+khqpx2EgJCuarfSJIsvZo9J7OikM+ytpJfW0moyZ9LEtMYf9L+IcuP7uPHw+lUOuqIDwzlt/1G0udYoS8hRMeTnhEhRKf1wf4NpFcUcGPyeB4dcQmDQ6P5165llNtrm2xfYqvmlT0rSA6J4pERM5gal8x/921gT/lRb5tNxbl8nrWVmYlpPHzODOIDQnh593KsPXzjNyF8SZIRIUSn5HC72FZyiF/1Gc7A4Egi/SzM6j2USL9Afs7f3+Q5P+fvJ9wcyJV9RxDjH8yU2GRGhCfw05FMb5ufjmRwXnQ/JkT3IzYgmGv7j8Go1bO28GBHPTUhxEkkGRFCdEqKqqKgotc0rPRp0Oo5aC1u8pwsawkpIdENjg0OjSHLWgKAS3GTV1XGoHpttBoNKSHR3jZCiI4nyYgQolMy6w30tYSz+NBuKuy1KKrC+qJssqwlVDrqmjzH6rQ1KnAWZDRjcztxuF1UO+0oqN7y6PXbVDplmEYIX5EJrEKITuum5HG8v28D929cgBYNiYGhjI7oTV51ma9DE0K0IUlGhBCdVoSfhb8Mm4bd7cLmdhJs9OON9NWEmwObbB9kMDeaiGp12DDrDBh1erQaDVo0VDXRJtggJeOF8BUZphFCdHomnZ5gox81Tgd7y/MZ1iu+yXZ9g8LJqChocCy9ooC+QZ5lu3qtjkRLGOkVhd7HFVUlo14bIUTHk2RECNFp7Sk/yu6yo5TYqtlbns+Lu34i2j+ICcfqhnyVvZ13M9d620+KGUCJrZovsrdRUFvJiqP72FKcx7S4ZG+baXEprC44wLrCLPJrK/nowCYciqtRLRIhRMeRYRohRKdV53LyVc4OKuy1+OuNjAhP4PKkYei0ns9RlY46yurVHAk3B/KH1Ml8lrWVZUcyCTH5c93AsaSGxnrbjI7oTbXTxje5O7E6bMQHhvLH1CkEGf06/PkJITxk114hhBBCtIuWvn+f0TDNvHnzSEpKwmw2M3bsWDZu3HjK9p999hkpKSmYzWaGDBnC4sWLz+THCiGEEKIbanUy8sknnzBnzhzmzp3L1q1bGTZsGNOnT6eoqKjJ9mvXruXqq6/m5ptvZtu2bVx++eVcfvnl7N69+6yDF0IIIUTX1+phmrFjxzJ69GheeeUVABRFISEhgbvvvpsHHnigUfurrrqKmpoaFi1a5D127rnnMnz4cF577bUW/UwZphFCCCG6nnYZpnE4HGzZsoVp06aduIBWy7Rp01i3bl2T56xbt65Be4Dp06c32x7AbrdjtVobfAkhhBCie2pVMlJSUoLb7SYqKqrB8aioKAoKCpo8p6CgoFXtAZ555hmCg4O9XwkJCa0JUwghhBBdSKesM/Lggw9SWVnp/Tp06JCvQxJCCCFEO2lVnZHw8HB0Oh2FhYUNjhcWFhIdHd3kOdHR0a1qD2AymTCZTK0JTQghhBBdVKt6RoxGIyNHjmTp0qXeY4qisHTpUsaNG9fkOePGjWvQHuDHH39str0QQgghepZWV2CdM2cOs2fPZtSoUYwZM4aXXnqJmpoabrzxRgCuv/564uLieOaZZwD405/+xKRJk3jhhReYOXMm8+fPZ/Pmzbzxxhtt+0yEEEII0SW1Ohm56qqrKC4u5tFHH6WgoIDhw4ezZMkS7yTVvLw8tNoTHS7jx4/no48+4pFHHuGhhx5iwIABLFiwgLS0tLZ7FkIIIYTosqQcvBBCCCHaRbuWgxdCCCGEaCuSjAghhBDCpyQZEUIIIYRPSTIihBBCCJ+SZEQIIYQQPiXJiBBCCCF8SpIRIYQQQviUJCNCCCGE8ClJRoQQQgjhU60uB+8Lx4vEWq1WH0cihBBCiJY6/r59umLvXSIZqaqqAiAhIcHHkQghhBCitaqqqggODm728S6xN42iKBw9ehSLxYJGo2mz61qtVhISEjh06JDsedOO5D53HLnXHUPuc8eQ+9wx2vM+q6pKVVUVsbGxDTbRPVmX6BnRarXEx8e32/WDgoLkhd4B5D53HLnXHUPuc8eQ+9wx2us+n6pH5DiZwCqEEEIIn5JkRAghhBA+1aOTEZPJxNy5czGZTL4OpVuT+9xx5F53DLnPHUPuc8foDPe5S0xgFUIIIUT31aN7RoQQQgjhe5KMCCGEEMKnJBkRQgghhE9JMiKEEEIIn+r2yci8efNISkrCbDYzduxYNm7ceMr2n332GSkpKZjNZoYMGcLixYs7KNKurTX3+c0332TixImEhoYSGhrKtGnTTvvvIk5o7Wv6uPnz56PRaLj88svbN8BuorX3uaKigrvuuouYmBhMJhMDBw6U3x8t0Nr7/NJLL5GcnIyfnx8JCQncc8892Gy2Doq2a1q5ciWzZs0iNjYWjUbDggULTnvOihUrGDFiBCaTif79+/Pee++1b5BqNzZ//nzVaDSq77zzjrpnzx711ltvVUNCQtTCwsIm269Zs0bV6XTqc889p+7du1d95JFHVIPBoO7atauDI+9aWnufr7nmGnXevHnqtm3b1PT0dPWGG25Qg4OD1cOHD3dw5F1Pa+/1cdnZ2WpcXJw6ceJE9bLLLuuYYLuw1t5nu92ujho1Sr3kkkvU1atXq9nZ2eqKFSvU7du3d3DkXUtr7/OHH36omkwm9cMPP1Szs7PV77//Xo2JiVHvueeeDo68a1m8eLH68MMPq19++aUKqF999dUp22dlZan+/v7qnDlz1L1796r/+c9/VJ1Opy5ZsqTdYuzWyciYMWPUu+66y/u92+1WY2Nj1WeeeabJ9r/5zW/UmTNnNjg2duxY9fe//327xtnVtfY+n8zlcqkWi0V9//332yvEbuNM7rXL5VLHjx+vvvXWW+rs2bMlGWmB1t7nV199Ve3bt6/qcDg6KsRuobX3+a677lIvuOCCBsfmzJmjTpgwoV3j7E5akozcd999ampqaoNjV111lTp9+vR2i6vbDtM4HA62bNnCtGnTvMe0Wi3Tpk1j3bp1TZ6zbt26Bu0Bpk+f3mx7cWb3+WS1tbU4nU7CwsLaK8xu4Uzv9RNPPEFkZCQ333xzR4TZ5Z3Jff7mm28YN24cd911F1FRUaSlpfH000/jdrs7Kuwu50zu8/jx49myZYt3KCcrK4vFixdzySWXdEjMPYUv3gu7xEZ5Z6KkpAS3201UVFSD41FRUWRkZDR5TkFBQZPtCwoK2i3Oru5M7vPJ7r//fmJjYxu9+EVDZ3KvV69ezdtvv8327ds7IMLu4Uzuc1ZWFsuWLePaa69l8eLFHDhwgDvvvBOn08ncuXM7Iuwu50zu8zXXXENJSQnnnXceqqricrm4/fbbeeihhzoi5B6jufdCq9VKXV0dfn5+bf4zu23PiOgann32WebPn89XX32F2Wz2dTjdSlVVFddddx1vvvkm4eHhvg6nW1MUhcjISN544w1GjhzJVVddxcMPP8xrr73m69C6lRUrVvD000/zf//3f2zdupUvv/ySb7/9lieffNLXoYmz1G17RsLDw9HpdBQWFjY4XlhYSHR0dJPnREdHt6q9OLP7fNzzzz/Ps88+y08//cTQoUPbM8xuobX3+uDBg+Tk5DBr1izvMUVRANDr9WRmZtKvX7/2DboLOpPXdExMDAaDAZ1O5z02aNAgCgoKcDgcGI3Gdo25KzqT+/y3v/2N6667jltuuQWAIUOGUFNTw2233cbDDz+MViufr9tCc++FQUFB7dIrAt24Z8RoNDJy5EiWLl3qPaYoCkuXLmXcuHFNnjNu3LgG7QF+/PHHZtuLM7vPAM899xxPPvkkS5YsYdSoUR0RapfX2nudkpLCrl272L59u/fr0ksvZcqUKWzfvp2EhISODL/LOJPX9IQJEzhw4IA32QPYt28fMTExkog040zuc21tbaOE43gCqMo2a23GJ++F7TY1thOYP3++ajKZ1Pfee0/du3evetttt6khISFqQUGBqqqqet1116kPPPCAt/2aNWtUvV6vPv/882p6ero6d+5cWdrbAq29z88++6xqNBrVzz//XM3Pz/d+VVVV+eopdBmtvdcnk9U0LdPa+5yXl6daLBb1D3/4g5qZmakuWrRIjYyMVJ966ilfPYUuobX3ee7cuarFYlE//vhjNSsrS/3hhx/Ufv36qb/5zW989RS6hKqqKnXbtm3qtm3bVEB98cUX1W3btqm5ubmqqqrqAw88oF533XXe9seX9v71r39V09PT1Xnz5snS3rP1n//8R01MTFSNRqM6ZswYdf369d7HJk2apM6ePbtB+08//VQdOHCgajQa1dTUVPXbb7/t4Ii7ptbc5969e6tAo6+5c+d2fOBdUGtf0/VJMtJyrb3Pa9euVceOHauaTCa1b9++6t///nfV5XJ1cNRdT2vus9PpVB977DG1X79+qtlsVhMSEtQ777xTLS8v7/jAu5Dly5c3+Tv3+L2dPXu2OmnSpEbnDB8+XDUajWrfvn3Vd999t11j1Kiq9G0JIYQQwne67ZwRIYQQQnQNkowIIYQQwqckGRFCCCGET0kyIoQQQgifkmRECCGEED4lyYgQQgghfEqSESGEEEL4lCQjQgghhPApSUaEEEII4VOSjAghhBDCpyQZEUIIIYRPSTIihBBCCJ/6f9DVESgjl0f0AAAAAElFTkSuQmCC",
"text/plain": [
""
]
@@ -914,7 +1083,7 @@
},
{
"data": {
- "image/png": "iVBORw0KGgoAAAANSUhEUgAAAiMAAAGdCAYAAADAAnMpAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjcuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/bCgiHAAAACXBIWXMAAA9hAAAPYQGoP6dpAADjOklEQVR4nOydd1gUZ9eH75mtlF16B0VsqNhb7DUxmpiemJhm2pveTDWJ6YlppvcvxfRiEk0z9t4rKiqiUqXDAktbtsx8fwyCKFiBRZj7uvaSnXnmmTMD7pw9zzm/I8iyLKOioqKioqKi4iZEdxugoqKioqKi0rZRnREVFRUVFRUVt6I6IyoqKioqKipuRXVGVFRUVFRUVNyK6oyoqKioqKiouBXVGVFRUVFRUVFxK6ozoqKioqKiouJWVGdERUVFRUVFxa1o3W3AqSBJEllZWZhMJgRBcLc5KioqKioqKqeALMuUlpYSHh6OKDYc/zgnnJGsrCyioqLcbYaKioqKiorKGZCRkUFkZGSD+88JZ8RkMgHKxZjNZjdbo6KioqKionIqWK1WoqKiap7jDXFOOCNHlmbMZrPqjKicNRZbOWXOqpr33loD/kYvN1qkoqKi0ro5WYrFOeGMqKg0FhZbOTO3/o1Tlmq2aQWRlwZMVh0SFRUVFTehVtOotCnKnFV1HBEApyzViZSoqKioqDQvqjOioqKioqKi4lZUZ0RFRUVFRUXFrajOiIqKioqKiopbUZ0RFRUVFRUVFbeiOiMqKioqKioqbkV1RlTaFDan090mqKioqKgcg6ozotImcEkS89N2siIrqd79m/PSiPLyU3sfqaioqLiB046MrF69msmTJxMeHo4gCMyfP/+kx6xcuZJ+/fphMBjo1KkTc+bMOQNTVVTODJcs8em+NSw+vA+H5Kp3zJLMffyeEt+8hqmoqKioAGfgjJSXl9O7d28++uijUxqfkpLCRRddxJgxY4iPj+ehhx7i9ttvZ9GiRadtrIrKmbDkcCK7LJkAaASRQUHtmRLTn6ui+xLrE1I7LnMfuwoz3WWmioqKSpvltJdpJk6cyMSJE095/KeffkqHDh2YPXs2AN26dWPt2rW88847TJgw4XRPr6JyWrhkiRVZ+2ve399jNN38Qmvenx/VjRVZ+/n50DYAlmUl0isgotntVFFRUWnLNHkC64YNGxg/fnydbRMmTGDDhg0NHlNVVYXVaq3zUlE5Ew6U5FFsrwSgl39ErSNSVFAzZlRYF4KN3gAkFudSUj1eRUVFRaV5aHJnJCcnh5CQkDrbQkJCsFqtVFbW/6E/a9YsfHx8al5RUVFNbaZKK6WoqqLm526+tRERJneBceGw6FdEp5PYo/YVV6nOiIqKikpz0iKraWbMmMH06dNr3lutVtUhUTkjdKKm5ucSR7WTcXAPWIugQyw8NgWCI4jrdx6yr5kqgwc+KVlQZYfS4tqXtQiKC6HfcHjyfXdcioqKikqrpcmdkdDQUHJzc+tsy83NxWw24+HhUe8xBoMBg8HQ1KaptAFiTIEIgAxszE3h4nY90X3yPPgHw287ISUR2/fv0HP+HHpXHyMDaLQgCCDLILmUfwFCVadYRUVFpbFp8mWaIUOGsGzZsjrblixZwpAhQ5r61Coq+Bu96OmvJKQW2yv5YeWvyEt+g7iBoNOTGdGOty67hvfveQxJEJEBAcDlBKdD+feIIwIw9QF3XIaKiopKq+a0nZGysjLi4+OJj48HlNLd+Ph40tPTAWWJ5aabbqoZf9ddd5GcnMzjjz9OYmIiH3/8Mb/++isPP/xw41yBispJuKR9L/TVyzV9vnwLgC8vuIiXti/gxe0LyCgvYl+PPsx54GklGtIQ7bvA4LHNYbKKiopKm+K0nZGtW7fSt29f+vbtC8D06dPp27cvzz77LADZ2dk1jglAhw4d+Pfff1myZAm9e/dm9uzZfPHFF2pZr0qzEeXtx709RuEpC/TcE0+hfxCb/Xw4XF5cM8bf4MnE6x5BmPFhwxMV5cMvn4AkNb3RKioqKm0IQZaPjkG3TKxWKz4+PpSUlGA2m91tjso5iu29JzF++Tq/TruPZQOVZcJwTx9GhHZiSEgMHlqdMvD1B+GHD6jOHlHQaABBWbYxeMCFU+CR2eDr3+zXoaKionKucKrPb9UZUWk7jAgAexVsKsMhuRAR0Ij1BAddLrh/MqxfrCSvajRw3X0w/S34+nX44X2w5ClLOj0GwmNvQ99hzX89KioqLRaLrZwyZ1XNe2+tAX+jlxstcg+qM6KicjQr/4YHLoFr7oZnPj75+PJSuGEIHNoLyPDPAWjXqXb/5uUw+zHYt115HxgGNz0CNz0M9Tk4KioqbQaLrZyZW//GKdcu6WoFkZcGTG5zDsmpPr/VT02VtsF7M0AQYfobpzbeywSf/Ad+gTBiUl1HBGDQWPhlG6zIhUlTocQCbz8KAz3h8eugIKfxr0FFReWcoMxZVccRAXDKUp1IiUpdWqTomYrK6SDJEn+n7WZTXipWhw0fvQdDQzowKSoOQRAgKw0O7YH+o8DTu+a4/cW5zE3eTnZFCX4GTya1i2NoSEztxKFRrP7iP5blHKRg7c9Eevtxbcf+dDAF1o4JCIbXfoBXv4Mf3oM5b8HCn5VXbF+Y/iacN64Z74aKiorKuYcaGVE551mYsY9V2Qe5rtMAnu9/EVdE92HR4X2syEpSBrz+oPLvE+/WHFNgK+PDPSvp6hvCM/0mMi6iK98lbWJPUVbNmC35afySe4ALOg/g6b4TifTy5f2EFVjttuONEEW48WFYlgnfrYde58H+ePjfeBgVDJ++CE5n090EFRUVlXMY1RlROedJLs2nT0AEPf0jCDR60z+oHd19w0gpLQS7HVb/C+HtIbZPzTGrsg8QaPTm6ph+hHn6MCa8K/0Co1iaWdvhd2lmIsNDOzIstCPhXj5c32kQelHL+txDJzao9xD4fgOsKoDLb4WKMvj4ORjkCQ9dAdnpJz5eRUVFpY2hOiMq5zwxpiASi3PJrVC6O2eUFXHQmk+cfxj838tKOe7/ZtY5JtlaUKc5HkB3vzCSrUo3X6fkIr3UUqe5nigIxPqG1ow5Kb7+8MKXsKkMZn6qJLkunwcT2sPlcbDyr7O4ahUVFZXWg5ozonLOc2FUd2wuB89t+wdBEJBlmUujezM4uAP8/DF4eCkRiqOwOmyY9cY628x6IzaXA7vLSYXTjoSMqZ4xOZXW0zNQFOHqO5XXvh3wxkOwfS08cCmY/eCau+Cu50GvP4OrV1FRUTn3USMjKuc82/LT2JyXym1dh/JM34lM6zKEJYf3sWPRD1BSCBffeGKZ9+akW1/4ehVsKIFr7lH633wxCwZ7wj2TIO2Auy1UUVFRaXZUZ0TlnOf3lHgmRHVnYHA0EV6+nBfSgXERsdjnfak4IQ+/ftwxZp3xuERUq92GUaNDr9HirTMgIlBazxgfXd1oyRnh6Q3PfAQbS+HlbyAsGtb+B5O7wOSusOjXsz+HioqKW3C4XO424ZxDdUZUznnskhORupEPfVEhfbasg74jwPt4oZ0YcyCJxXW1QPYV5xBjVsp2taKGdiZ/9hXn1uyXZJnEo8Y0GpfcBAsOwrw9cN54yDgEj02BoT7wxsNQUdG451NRUWkSnJKL+ak7eX/Pinr3Jx31eaJSF9UZUTnn6eUfwYKMBHZbMimwlbGjIIPyeV+gczrg8XcAmJcSz9f719ccMyqsMwW2Mn5P2UFORQkrs5LYlp/O+IiuNWPGR8SyNucgG3KTya4o4ceDW7BLzrpaJI1Jx+7w+RLYWAY3TgcE+P5dGGqCO8bDwT1Nc14VFZWzxim5+GTvav7L2IPNVX8Z/9yUHazOPtjMlp0bqHLwKuc8NqeDP9N2EV+YQamjCl+tnicfnoanyQ9xUSoAc/ZvoLCqnEd6ja857mjRM1+DJxcdK3oGrMjaz+LD+7DabYroWUx/OjR2ZORELJ4LH86E1OqS44gOcOdMuOyW5rNBRUXlpMxP3cl/GcoXBlEQ6OMfSTuTP1VOBzstmWRVlAAgIPB03wuJ8vZzp7nNhtqbRqXt8snz8MkL8OxncNX/3G1N45BxSBFvW7dIKVX28FIScx9+vd5lKBUVlebD7nLyxOb5VDjtiAg83HMsXXxDavbLssyvydtYXi3EODQkhpu7nOcuc5sVtTeNStvlpw/B6AlX3O5uSxqPqI7w4T+wqRzueBr0Bpj7KQzzhZtHwJ6t7rZQRaXNstuSRYXTDsCg4PZ1HBFJciIIApdF98FDowMUdWeHpCa5Ho3qjKi0Ltb8B8WFcPENrbN7rl4P978MawoV56RTHOxYC9cNhAvaKboqknTyeVRUVE4LSbYhy/X/37JUlVMhlZDkWssa+ys8nzKEP4qCWF8p8FNROAAGjZYuPsEAOCQXZQ61ad7RqKJnKq2Ld59Qynmnv+luS5qekRcpr5wMpepm5V/w6r0w+1GYMAUena2owKqoqJwVTtnCLkcEMnaQTVS4DBTYIdtWhdVZiVa0M6o7tPcAfz0cLId2npBvF0ks9YYAZZ7y6ugJgEZohV+WzgL1bqi0HnIy4MBu6DusbeVRhEbB27/B5golauJlgr/mwKhAmDoYdqxzt4UqKucUTsnJ2qK1vJj8IpfuvJSeG4eQV1UFSCCU4KnNo51nHoP8Sjg/2M7oAOhjVhwRu0vkPK/76KXPYHH2A/ycpQEgp8LKIWs+AAEGL0w6gxuvsOWhRkZUWg9HuvM+/q5bzXAbWq2ST3LH07BpGbz9OCRshpuHK31xbpquvFrj8pWKyhlQ6ixluWU5q4tXE18Wz6HKQ+TZ86iUKgHQAF29YWSgiEsGWa4r5nzkZ0FQ9lltgczd9RrDQ3txRYcQ+pr68m7GuxywHuanA7s4Ui0yMqwTQktRhW4hqNU0Kq0Dp1PpihsYBovT3G1Ny6EgF96aDkt+B0cV6Aww7nJFfyUw9OTHq6i0Ag7bDrO4cDEbrBvYXbabNFsahY5CHLKjZoyAQIDWi7GBnozwl+hqKsdXV4lY7TOImJFoqC+VBlwdmbPjMewuTwCMGi0eHiW8bvkfI8Tb6aYdAyhRkaf7TsRL1zZ6UZ3q81uNjKi0Dr54VenzcsdT7rakZREYAq/9AK9+Bz+8B3PegoU/K6/YvvDwGzBk/MnnUVFp4UiSxK7yXSyzLGOzdTP7yvdxuOowJc4SJGoTTzVo8NX5EucVR19TB8YG2uliykSrOVTtbJQBoCUIT2EkZi5FopQC+RPs9TojGnSEEGtcwbUxlXx/YDMSMjaXk9SSwwBslH6gszyMEKMfD8aNaTOOyOmgRkZUWgcjg8BWofR6UZchTkz8enjrEdi9SYkt+wXBdffB7U8pSz0qKi0Yu2RnTdEaVhavZFvpNg5UHCDHnkOZq6zOOL2gJ1AXSAePDvTy7sUwn2GM9o8Bzd+USIupYh8SR1otCOgIx1MYhL94Nb7CldhJ4bDrUazyYmTsCOgw0otKth11FhERb2J1G/EQugGQWV7M8qz9bM5LZaPjN7a6fgNggvlK/uj7I57atuWIqKJnKm2HtQvhnomKrsjz/+dua84dii3wzmOw4CeoqgStDkZeDE+8C2Ht3G2dShvHYrewtGgpa4vXsrNsJ8mVyeTb86mS65bEeolehOhD6OTZiX6mfoz0Hcko31F4aj0pl7ZS6PqWUnk5VRxE5sixGvS0w1sYhr/mOkxciCiKSJKTPOk98qT3cJABgI72hIgPESQ+gCBI7HJE4SQHZWFHRxftCrzFocfZ75IkBm8ZzLayWg2gb7p/w01hNzXVLWuRqM6IStvhqt5KFc0aC5h93W3NuYckwW+fwxezICdd2daxBzz4Koy+xL22qbR6kiuSWWJZwgbrBhLKEki3pVPkLMIp1/Z3ERExa81EGCKI9YxlgHkA4/zG0d/UH7E6EipJEqWsoMj1A2XyGqpIBZQ5BPToicEkjMZfcwMmcVgdGyqkBDJdj2GVlwJOBPSYhYlEal7HKHatMzbL+RzZ0ouAQEftPHzFS+u9riJHEQGrA5CpfcQaBANbB20lzjvubG/bOYPqjKi0DXIPw/lR0GcYfLvW3dac++zbAW88BNvXgiyB2Q+uvhPufkERXFNROQMkSWJL6RaWFy1nq3UriRWJZNoysbqsdR7WWkGLv9afdsZ2xHnHMcRnCOf7nU8Hzw71zOmkRP4Ti/Qr5fIGHGRCdW6IgAdGumASzydAvBlP8fiHvyQ5yZXeJF/6qPpY0BNDiOYRAoW7apycY7HLGexz9Cdc8zJBmobbTfya+ytTEqbU2aZBQ7RHNDsG7cCkNZ30vrUGVGdEpW0w/SpY+jv8tAV6DHC3Na2H8lJ450n451uoKAONBoZcAE+8B+07u9s6lRZKhbOClcUrWVW0iviyeA5WHCTHnkOFVFFnnFE0EqQLIsYjht6m3ozwGcE4v3H46RtuHidJFVjkXyiSfqdC3oqTPKh2ZERMGOmOjziRAHEaBrF9g/OUS9vJdD1BqbwSJQpiwEe4mAjNmxjF452e+pBlCeEkomW37L2F73O+rxPhAcUhuTL4Sn6O+7lNlPeqzohK66emnDcUFqe725rWy1/fwqcvwuFDyvv2XeDeF+HCKSc+TqXVkmfPY3HhYtYVr2NX+S5SK1MpcBRgl+11xnlrvAnTh9HZszP9zf0Z7Tua4b7D0Ysnj7I5JQuF8neUSH9RIcfjwlKzT4MfHkJvfIXJBIg3oRVP3ElbkuzkSLPIlz6tzvcAA50J0TxOgHBrg1GQozm2O3iUlx9TOvYn2hRw3FhZlglZE0K+I7/B+T7s8iH3Rt3LiqwklhzeR4m9UukM3rE/HUzN2Bm8iVGdEZXWz2cvw0cz4emPYcrd7ram9XNoryIst3kFSC7wMsPlt8J9r4Cnp7utU2kC9pXtY6llKRutG9lbvpcMWwbFzmJc1DZ5ExHx1foSaYikm1c3BpkHMd5/PHFecaf0kD+CXTpMgTQHq7SAShKQKK3ZpyUYT6E/vuIV+AnXohW9T2nOMmkTma4nKZPXAC4EPPAVLiVS8zp68fSStD/ft5asihKmdhqIr96DTXkpLM3cz/P9L8LPUPfvf2fpTvps7lPvPFq0OHHSwdiBX7qsYM7+DUztNJAOpkCWZSWyvSCdF/pPxqw3npZ9LRXVGTlFLLZyypx1s7O9tQb8jV6Neh6VJmBUsLKEsKlMLedtTiorFSfwjy+grES59wPHKMq3ndtOYl5rwSk52ViykeVFy9lWuo39FfvJqsqizFVWJ59DJ+gI0AUQbYwmzjuOoeahnB9wPpHGyDM6b6W0j0JpDlZpCTYSkams3iOiIxwv4Tz8xKvxFS5DPIVIyhEkyUa29BIF0hfVSzlgIJZQzQz8hRtOy0E6gt3l5MH1c7mnx0h6+kfUbH9lx3/08Avnsujedca/kfYGTxx8AgER+SiNk1j9ACK0nbkj5lKG+wzn28QEor39ua7TQMV2WWbG5vmMCe/ChVE9TtvOlogqenYKWGzlzNz6N85jOjFqBZGXBkxWHZKWzIYlUJQPl9+mOiLNjYcHPPqW8lo8Fz6cqcjPX9kTIjrAnTPhslvcbaXKMVidVpZZlrG2eG290udH8BA9CNYHM8g8iL6mvgz3Gc4Y/zGYtWf3RbBM2kSh61vK5BVUcUhpOgeAtrrMdgT+musxMe6MHIZSaS2ZzhmUsx6QEPHEX7iRCM1r6MXws7JdkmUkZLSCps52nait6TdzNP1M/eilH0U3z+7c1P5iVhet5vX017k/7HH258GUkKtxSi7SS1czMbJ7zXGiIBDrG0qyteCs7D0XadPOSFJJ3nGOCIBTliiqqlCdkZbM7MeUhhCPvOVuS9o2F1ytvDIOKUs46xbBs7fCrPvh4hvh4dfbVtPCFsBh22EWFS5iQ8kGEsoTGpQ+N2lMtDe2p6tnVwaYBzDGdwyDfQajFc/+saCU2S7B4vqRMnktdtKpLbM1YKAjJmEM/pqb8BYHn8V5KsiSnqdA+goXhQAY6UGY5mn8Nded9XUcwajVEWMKZEFGAmGeZsx6I5vz00i2FhDscfyS0Xj/8VziUcnQ4BgmBvagvbE9r6e/zo6K9YiugdhdTiqcdiRkTMcsx5j1RnIqG5Kdb720WWdkyeF9/Jayo8H9c5I28kivcfga1LXwFkdeFiTthN5DVV2RlkJUR/jwH7Db4bMX4ddPYO6n8NtnStn14++o1U6NyNHS55usm0gsTzyp9Hl37+6cZz6P8/3Pp6tX1xPMfib2OCiW51Ek/Uq5vAkHWRwpsxXxxIOemMXzCRCn4SF2O+vzWaXlZDmfppzNKFEQbwKEWwjXvIZeDD7r+evj1q5D+CZpE09sno+IQDtvPwYGtSe9zHLSY3t490BEZHdFPL0Z2CT2neu0SWdkQ25yHUfEqNES6eVLmcNe45Hm2Ur5YM9KnuwzAZ2oaWgqFXfQ1rvztmT0erj/ZeW1+l94bwbsWAvXDYTQKLj1SbjmLnVp7RSpT/o8255Nuau8zjiDYCBQF0h3n+410ufnB5xPsL5pHswuqRyL/BPF0h9UyNtwkk9tma0ZL87DLE4kUJyGXjyznJJjcUplZLlmYpG/wUURippIT8I0z+KnubJRznEigjxMPNp7PFUuJzaXAx+9B5/vW0ugsf5kWrPOiNVuq3kfoAsgrSqZwTodeo0WURAQESg9agyA1W7DR9c6kldPhzbnjLhkiT9Td9W8nxjVg0lRPdBrlFuRVmrhs31rKKwq53B5MVvz0xgSEuMuc1WOxemEFX9CSCT0VL9htGhGXqS8cjLgjYdh5V/w6r0w+1GYMAUenQ2+/u62skVwutLnnX0609fUt470eVPilAoolL6lWP6bSnlntTOgoMEfkzAWH3EyAcKNaMXG/Z2WSIvIcj5DBdsAGREzgcKdRGhebfRznQoGjRaDRku5w87eomyu6NC33nEx5kASLFk177t4dmFrSTwxAUrZrlbU0M7kz77iXPoERgFKbkpicQ5jwrs0/YW0MNqcM5JgyaLIrgjwxPmFHZcF3d7kzy1dh/DWrqUArMo+oDojLYmvX1e68976pLstUTlVQqPg7d8UR/Lr1+GH9+GvOfD3N9BjIDz2NvQddtJpWgOHKg6xxLKEjdaNJ5U+7+TZiVjPWAaZBzHGb0wd6fOmpkpKo1D6mhJpITb2IHGkCZ2AlhB8hIvxFa/EX7gGUWx8R8gpFZPleppC+QckSlCiIH0J1z6Przi50c93KuwpykKWIdTTTF5lKb+n7CDU08yw6ufDvJR4iu0V3NJV6VMzKqwzK7OS+D1lB8NCYuikGcw61hHtW/s7HB8Ry5z9G4g2+RNtCmBZ5n7skpOhbfCZ0+ackZTSwpqfh4V2rPl53LitjBrlx+23R9ApLIhgDxN5laWkllqQZBmxDSjlnRP88B4YPFRdkXMRrRbueFp5bVoGbz8OCZvh5uGKcN2N0+HmR9y6hHNsqf+ZlPnXSJ9blrOldAv7K/afUPq8j3efk0qfNzUVUgKF0teUSsuwkXRMmW0EZuEi/MUp+AiTERshwbUhiqW/yHI+TyXxgIwGX4KE+wjXvIRW9G2y854KlU4H81J3UlxVgadWT7/AKC6L7o2m+u+1xF6JpapWaTbQ6M19PUYzN3k7yzP3o9cqDsZuxxouZRQAA4PaU+aw8VfaLqx2G5HefjzQYwxmvUfzX6CbaXM6I78l72BJ5j4ApvccR1ffEOx2CaNxKUfuhNEo4hXkIrCnjU4XVDHv3ivQqa3V3c+GpXDn+UrZ6ItfudsalcagIBfemq5I+turQGeAcZcrCa+Boc1qSn2l/icq8z9a+nxH2Q4OVhwk1557StLn4/3G46v3bepLapBSaR0W13eUyiuxk1KnzNZAdHWZ7Q14M7rJozFOyUKm60ks8s/VQmcCngwgXPsSPuKEJj13c+KSXGhXaLnA/wIW9V3kbnOaDVVnpAECjLUhxYSiLLr6hqDXi2g0Ai+/3ImoKCNvvJlMwr4yChcY2b/AA+P05URGGhkyxIcpU0KZPDkIrVZNwGt23qku552ulvO2GgJD4LUfQPpOiXrNeQsW/qy8YvvAw2/CkPHNYkqZs+q4Un+nLJFSkcGCoq010ucplSkUOgrrSJ8LCHhpvIgwRJyR9HlTopTZLqwus12HnQyoVlBVymy7YBLGEKC5CS+x+Sqeily/k+V6ARsJKFEQf4LFhwkTXzxlhdVzCY2owUfjw97yve42pUXS5pyR/oHt+S15B05ZYlXWAQYHRxPh6YvTKePvr+Pa60Ko7JfM5vxCSrNFXOsiSdukZc+ecn75JZdffslFECAkRM/AgWauvDKEKVNCMBrb3K1sXvKzITEeeg9Rkx5bI6IINz6svOLXw1uPwO5NSiTMLwiuuw9uf0pZ6mkCJEniQMV+ElwLyZUOUSxnUkYhdir4fEetg3JE+jzWK5Zunmcufd6USJKdInludUO5TTjIprbSxQtP+mAWJxAgTsMoNm/TQ7uUR5brCYrkuUiUV1t0HuHalzGLY5vVFnfQwaMDe8r3uNuMFkmbW6YB+DZpE+tylaZfOlHDeYEduDG2mEdn+2Mencfh8uKafS/0v5iA6hBtfr6db7/N5O+/C9i5s5Ti4tqks4AAHX36mLj00mBuvDEUX1+13Xqj8tgUWPQrfL8Rep25SJLKOUSxRYmGLfgJqipBq1Oqc554D8JOr6/IEZySk/Ul61lZtPKE0uciGgx4YyKIcUFDuSBwDOP9x5+x9HlT4pSsWOQfKJH+pELeXl1mqyDigwc98REnESBOQy+GucVGi+snsl0vY0OJCmgIJFC8lXDxuSZJgG2p3L7vdr7M+pLMYZmEG89OFfZcQe1NcwJsLgfv7F5OanUyqyVZ5Ldp/oT3t3PxO4rOiCgI3BE7jH6BDX/olZU5+fHHbObNy2PbNiv5+bUKh2azhp49vZk0KYhp08IJD297deONhtMJg72Ub8hLD7vbGpXmRpLgt8/hi1mQU92duWMPePBVGH1JvYcckT5fU7yG+NJ4km3JJ5Q+7+TRiRhDLOkFBsLogV6s/f/6dN8LaefdcqJxdikPizSHEukfKtmNi+KafRoC8BT64Stehr9wPVrRx412ZpHpepxieR4SFYCIN8MI176KSRzuNrvcydzcuVyTcA0fdf2IeyLvcbc5zYLqjJwEm8vBvJSdbMhN5p9njKSsNKIxSExbYKGDnz9XdehLV9+Q05rTbpf4449c5s7NZdOmErKyqmqSYj09Rbp18+KCCwK55ZZwOndWpeZPmS9mwftPwZPvw9T73W2NijvZtwPeeAi2rwVZwu7jw5bJw5hzYRC7qvaRZkvD4rDUK30ebgg/ofR5epmFV3YsPO6U7nZGbFIKhdJXWKWF2NhXvbwBIKAjFE9hEH7iVfgJVyGK7v3SI0kSFvk7clyzqGI/oHTcDRT/R5j4tNvtczcVzgq8VnlxZdCV/NbrN3eb0yyozsgpsmN3Ef17b6lxGmZ90J4n72scqWRJkli0qJAff8xh7doiMjJsuKo7bxsMIp06eTB2rD833xxO//7u+wbT4hkdAuVW2FSuKne2QeqTPs8rS2fS5hLu2ABD0iDVD74eDHNH+OIRHEM3726nLX3eUpyRCimeAtc3lMrLqOIAMkcUOkX0ROElDMVfcy1mJjVpme3pYJfSyXA9Ton8V3VZsAZvYSSRmtfxElVxwqPxXOFJpCGSpKFJ7jalWVCraU6Rl59PQxSpcRI+fSuXR+/q3CjVMqIoMnFiEBMnBtVsW7euiO++y2LlyiKSkirYs6ecDz7IQKsViI42MnKkH9dfH8bo0X4tJiHOrWxaBpY8uGSa6oi0cuySnVVFq1hdvPrk0ueGQA5c0JPvr+hFxQ6JEd8v5IWFqbywsBjal8G9k+HCKU1us0POo0RaQIB4E4Jw+n+fkiRRzhosru8plVdhJxUZJaojoENPB0zCKPw1N+DF8Bb1mSBJEoXyF+S63qSKgwDoCCNQfJJQ8UlEN1cRtVSijFFk2DLcbUaLo01HRnbssNKv38bjtv/wQ0+mTm2eRK+EhFK+/jqTZcss7N9fgc1W3VxKRC0nBrimH+yPh1UFahVNK8Fit7DEsoS1JWvZVbbr5NLnnp3pZ+rHKL9RjPAZ0bD0+aG9St+izStAcoGXGS6/Fe57BTxPniR5upGRSimBA84LcZBJrHYjXqfQfVaSnJTI/1Ik/UyZvAEHGRxpKCdgxEBnzOI4AsRpeIq9TzyZm7BJKWS6HqVE/heZKkCLSRhNpOYNPMX6pdFVarlm1zXMzZ9L6ahSvLWtr4T5WNRlmlPgwgu3sXSpBZer9hYIAnTp4snevcMQxeZXXU1Lq+Drr7P4778C9u4tp6zMVWNXmysnLsiBsWHQ6zz4foO7rVE5TQ5VHGKxZTEbSzayp3zPCaXPIwwRNdLnY/3G0s/U78yjADYbfPgM/PEFlJUonv3A0fD4e9A5rt5Dyhw2/kzdxeqcg8ftu6f7SHoH1K2iKZEWkOy8GokqQCZC8zqhmkePO1aSbFjkXymWfqdC3oKDHGrLbL0x0g2zeGF1mW3LlQCXJIl8+WPyXG9jJwUAHREEifcSIj7WYpaLzgU+OfwJ9+y/h5/jfmZKSNNH79xNm3VG/svYw46CDHIqrehFDTHmIK6I7kOoZ93j1q8vZtiwzQ3O8953UTxwQ22ra1mW+TttN2tyDlLpctDRHMjUTgMJ8WjcHJZjycur4rvvsvj773x27iw7rpy4b18Tl1zSSsuJH7sWFv0C361X9EVUWhx1pM+tW0isSCSrKqtB6fN2xnbNK32+eC58+CykJirvIzrAnTMVFd9q0sssfJCwEqvDVu8UWkHkf92G0zsgElmWyZPe57Dr4eq9MiBiFibSWfcPTqmYQvn76jLbHbiobT+hwRcPeuEjXoy/eHOTtbpvTGzSfg67HscqL0TGjoAOkzCeCM0beIr1O3YqJybblk34unBuC7uNL7p/4W5zmpw264y8l7CCgUHtifb2xyXLzE/dSVZFMc/3vxhDdWdeWZYZOXILGzYU1+SKHI0gQkAnJzu2DSHS2w+AhRl7WZixh2ldhxBo9OKv1F1kVs+rEzWNfs0NcSrlxBddFMTNN5/j5cSSBAM91HLeFsLpSp939OhIL1OvFiF9DkDGIXj9IVi3EFxO8PCCi2+g6J7neeXAekqPckQivXzRChoyyiy4qh0qrSDySO9RaDxeoED6rJ4TiAh4IVNas0VLEJ5Cf3zFy/ATpqIVTU18kY2DJEnkS++SK72HA6WUWkc7QsQHCBIfVKMgjYB+uZ7uXt2JHxzvblOanDbrjBxLqd3Go5v+4JFe4+nio3wTOZIrIoqg0Qi4JBnJBRoNiKKAyyUjSfDsT968cO1QZFnm8U3zOD+yGxdEKtGSSqedRzf+wbQu5zEwOLqxL/mUOVJO/OuvSjlxdnYrKSf+6nV490l44l24/kF3W9NmyKnKYbFlMRuKN5xU+jxMH0YXzy4MMA9gpO/IFiF9flLsdvjsRfj1EyixIAsCB2M68+uVN6KJG8jtscMINCrr+GWOKn48uIVtBenoNeVc1v0jfD13AfV/ZGoJwlsYjp94Nb7CledcAmeltIfDrscolZci40BAj1m4kEjNGxjFxqkwVFFot7YdJc4SSkaXuNuUJketpqmm0qVEDry0tR8MnTp58tZbXSgrc+F0yszbsZ89/+oYPdqf2FgvnE6Z9PJCyn2KASiwlWN12OjmW9u4y0Orp4MpkOTSArc6I3q9yLXXhnHttUrCrSRJLFyolBOvW1dEfHwp27aVMmtWyrlVTvzdO6A3wnWqrkhjI0kS+yr2sdSylE3WTewr30eGLYNiZzEuakOFR0ufd/fszmCfwYz3G093r+4tqqrjtNDr4f6X4f6Xcaz8i/zX7qfToSSeemMmUmgUmpfmwKAxIAh46wzc2KUdWsOXxIV/hyjUE0atQSBM8xzBmnub60oaBUlykiu9Rb70IQ4yAdDTgWDNwwQJ9567v+cWTnev7iyyLMIpOeto3bRlWvVdkGSZX5O30dEcRISXb812k0nLI49E17xP/HI7e/715aabwrjppggAVmYl8U+6IqtsdSiqjWZ93WUPs95Iib3+dWZ3IYoikyYFMWlSbTnx2rVFfP/9OVROvGUlFObC5JvUct6z4Ij0+YqiFWy1biWpMonsquzjpM/1gh5/nT8DzQPp6d2TYT7DON///FYvV50zcDjvvjCd8MoDXPX3EiK2psId43BEmijvayTjORN2kukdCbKsJJEr/2qAYx0TkVJp1TnjjFRI8Rx2PU6pvAJwImDAV7iCCM0bGMWO7jav1TPCdwSLLItYXbyasf6tvyfPqdCqnZGfDm4hq7yEx3qff8Jx0lFCZK2R4cP9GD7cr+b97t2lzJmTydKlFpKSKvjqqyy++iqrppx46FBfrrkmxH3lxLMfVT75H53d/Oc+BzlW+vxQ5SHyHHnYpLqOsofoQYg+hEHmQfQ19WWEzwjG+o9tNeWFTqkAGweokpOxy+nY5Qwc5OCU83FhwUUJEuVIVCpaHlqJqdWVqAVDocAFnR4An02leJWX4Stci7dmFNtzQvj1UCp+Hllc0dFBkPd+SuWV1WW5ADrAQam8AlmWEYTmr8I7FSTJTo70GgXSp9XN88BAJ0I0jxEg3N4yvoi0ES4NvJRnkp/h34J/VWekmlbrjPx0cAu7LVk82ns8foYTawzoXMoSjtFYm4hqddjwqY6EmHUeyja7DR+9R+0Yu40ob99Gtrzp6dnTxOzZsTXvjy0n/vnnHH7+OaemnHjQIB+uvDKYa65phnLighzYuw3iBoFfYNOe6xwj3ZbOksIlbCjZwO7y3SeUPo82RhPrGcsA8wBG+44+Tvq8pSNJFdg4SJV8CLuchp0MHHIWTvJwyoW4KMZFGRIVyNg5PlJxNBoE9Ih4osEHPe3RCgHIBLAuuwy7xUSn7cWM/mMbmiIH8rNvortkGlE65XMhwbICECmqjMRXGEcHndImwiFnUyavp0xaR5m8CpdcjqIZ0nwJ7adCubSFw64nKJNXAy4EjPgKU4jUvI5BbO9u89okcaY4REQ2Wo/XuWqrnDufTqeILMv8fGgr8YWHmd5rXE0y2okwu0yAC72+9hvNvqIcYkzKwzDQ6IVZZySxOIeo6uqaSqeDlNICRoV1apLraE7at/fk+ec78fzzyrXk5VXx7bdZ/POPUk7811/5/PVXPjffvKemnPjSS4O54YYmKCd+c7ry72NvN+685wiSJBFfFs+yomVsKVFKZQ9XHabEWYJEbSt7DRr8dH709OpJD+8enOdzHuP8xp2y9HlzIklO7KRRxUHscip2OR2HnFUdtSiodiys1Y5FVY0Caf2ICOgQ8UDECx0haPBHKwShIxS9EIVeaIdBiMFIZ7RCABzYDTkZkJcJuYeVV3Y6ZG2nY04GWoeSnJs7YAQhX/8MwbXLUzsLD7O3SIkiBBi86ORTu/ypE8LwE67ET7yySe7b2SBJNrKlVyiQPsdJHgAGuhKqeRJ/4SY1CtICCNAFcKDigLvNaDG0Omfkp0Nb2ZyXyj3dR2LU6CixK/keHhod+urS3q/3r8dX78nlHfoAEGYPAbLY70qnb4WeLflppJVZuKHzIAAEQWBcRCwLMhII9jARaPTmz7Rd+Bo86BMY5Y7LbFKCgw08+mgHHn1U0YAoK3Pyww/ZzJ+vlBMvXWph6VIL99+f2LjlxJIES/+AoHDoO6yRrqZlYnPaWFOyhpVFK9leup0DlQfIsefUL32uC6SHTw96efdiuO9wxvuPJ0gf1MDMTYskSTjJo4qDNcshDjmz2rHIq14OseKiHBlbddSioYI9AQEtAoZqxyIMDX5ohUB0hKATItAL7dELHTDSCR1Rp/8QnfcVPHdb7XutTkn8cCl6Pdpq6/IDg3l22p10y01ksGxDJ2qILzzM1vy0mkPHRnRFPAPJ9+akVFpHlnMGZawDJEQ88ReuJ0LzOnoxwt3mqRxFZ8/ObCxRIyNHaHXOyKpsxdOcvXtZne03dzmPoSGKwqGlqgKB2iiIh10peU2yZ/LS9gMEe5i4u/uIOkmvEyK7YXc5+f7AZiqcdjr5BPFAjzHNqjHiLry9tdx5ZxR33qk4Xna7xO+/13YnXr++hHXrSnjqqYN4eYnExnpzwQUBp19O/M1scFSxrMd0frt7L7Nnd8XTU0NSqoX18VnYHScKxdePXqdhaJ9wukS7R0r+aOnznaU7SbGlNCh9HqoPpZNPpxrp81E+ozBqm1YrximVUUVStWORhl0+jIPs6uWQguo8i7LqPIuTL4eIGBDwQItftWMRgJZgdEI4eiESAx0wCB0x0LF5OrgOuxA8vaGirPqCj4+6yBot794/AwSBfcU57CvOOW7MwKD2jA1veVEnUJa0sqQXKJS+xomSdG+kO6GapwjQXO9m61QaYojPENaXrCehNIE4kyog1+p1Rk6FF188yHPPJbNly2AGDGjB5a4tlGPLiY/tTty5sydjx/px883h9Ot3gvs7JgxKixnIcrZuK6V3b28WLOjH4s0HsZScedWSv4+RaZfF4ZScvJTyEttLt/NX778aNdHwYMVBlliWnJL0eaQhkljPWAaaB5699PlRKMshKVRxgCo5FYecgV3OwkkuTrkAJ0VIlCJRUS1j7jzBbGJ1noUREW80+KAloHo5JAydEIFBiMYgxGCgE1qxBfcN+u3/4MX/1b9PEOCu59hwxY38k76bAlvdyJS31sC4iK5cGNW9xUVFSqWVZDqfopxNKFEQL3yFq4nQzEIvhp70eBX3styynHE7xvFSzEs80+EZd5vTZDSpzshHH33Em2++SU5ODr179+aDDz5g0KBBDY5/9913+eSTT0hPTycwMJCrrrqKWbNmYTS2DIVQh0Pxx4zGlvVhc65QXznx0d2J9+8vJyGhjPffV8qJO3Q4Uk4czqhRvsqDeOsqKMyhasKN7HhHUbFMSCinX7+N3P6wN/6hynPDy0N3ynaVVzqQZbA7XKRUpnBtwhS8dVu4vR1k2OfTznD5aV2nJElsLt3Mcstytlq3nlT6vK9331rpc//zifaIPq1zOcmpdiyOXg7JxSnnVzsWJUcthzg48XKI7qjlkIjqqEUQekKrl0Oiah0LIlpXTsGVt8N3b0NKYt3tgqjkh9zyOEOMHgwOjiaxOJeMsiJkZIKMJnoFRKATNVhs5ZQ560azvLUG/I3NKyTolMrIlp6lUPoGFxYAjPQkTPMs/pqrmtUWlbNjpO9IANYWr3WzJS2D03ZGfvnlF6ZPn86nn37K4MGDeffdd5kwYQL79+8nOPj4Xgs//vgjTz75JF999RVDhw4lKSmJadOmIQgCb7/dMpIUq6qUxMDWWtrrDoYN82PYsNpy4l27Svnmm9py4i+/zOLLL2vLib8PmMkQNKwd8iyut5IBcLlkCgrsvD7Twg13eTNkhBf/u/rUO5l+PncnZRUONun/5e34l3kwppJB1SYdtv/XoDNS4axgefFy1hStYXvZdg5VHDqh9HlfU1/6mPow3Gc44/zG1St97pSKKZe2VjsWqbXLIXI+Tiy4KD5mOUQ6bo5atIjoEfFCSyAafKvzLJTlEJ0QpUQt6IiBGETRcMr3rNVhLYZ7Jx3viADIEsz4AIxKhZwoiHT3C6O7X92O3RZbOTO3/o1Trvs70QoiLw2Y3CwOSYm0hCzn01SwFZARMREo3EGE5lW0olp1di6iFbWYNWb2lu91tyktgtN2Rt5++23uuOMObrlFaTT16aef8u+///LVV1/x5JNPHjd+/fr1DBs2jKlTpwIQHR3Nddddx6ZNm87S9MbjSGREdUaajl69Gi4nTt+XR5z3dt62XMETVybXOc7lAlww54MySgrhjqtOXcehkjLmBrxA39glfHNU01WHBBZnco30+fri9ewu392g9Lm3xpsIQ0SN9Pkov6H0N4UiienVyyFHqkM+I0t+lQx7cfVySDkSdk5tOcQDEW90RKKtqQ4JRy9EoK+zHOJ7SteuAvzwAcx+RMkTGTwOBoyCj54DZNBolU6+Yy496TRlzqrjHBEApyxR5qzCn6ZxRpySlSzX01jk73FRDAh40Icw7fP4iZc0yTlVmpcYjxj2lO9xtxktgtNyRux2O9u2bWPGjBk120RRZPz48WzYUH+L96FDh/L999+zefNmBg0aRHJyMgsWLODGG29s8DxVVVVUVdWGRK1W6+mYedrY7Yoz4unZ+pNRWwp1yomfvB7533KCrr8Ony80lJTUnyQ578cybmA3X38dh15/YsdxQ8l6lnS8iGc7lxCoB/Eo/0UAtpUuY/I25RuwlwaC9AJdvT3o5OVLV08vOnh6EGnU4KW14aIUiRxkUpFZAMgckKgneHFkOcSIBi90RB3lWNRWh9Quh4S2ruWQlkJOBtx1ISTvBS8TvPMHjLoYnE5Y8hsk7VLGzfhQWftrYRRL/5DlfI5KdqBEQXwIEu4hXPOK6oy2Mvqb+hNfFk+WLavVKx6fjNNyRgoKCnC5XISEhNTZHhISQmJiPWFQYOrUqRQUFDB8+HBkWcbpdHLXXXfx1FNPNXieWbNm8cILL5yOaWeFw6E8VdScETcgSbDkd4SgMK5/9VLu/nDZCYf/+GMOf/yRyyOPRDNypB9DhvjiZZRAqyXNlsa+8nj+L+txJocd5IU4kOS6jgiAVoSxgTA+EAzikeeRDFRUv2pG4sCAiCdagtDgh04IREsI+jrLIZ3QE33ONUZrlXzwDHw5S/m7uuBqeO1HbMj8eWgb8YUZmK+ayhOvJVA65W58OjRcHbO/OJe5ydvJrijBpGs4t+3DPSspd9iJ9Pbj2o796WA6syUTp2Qh0/UUFvknJKyAgCf9Cde+iI848YzmVGn5nO9/Pl9mf8mfBX9yd+Td7jbHrTR5ae/KlSt59dVX+fjjjxk8eDAHDx7kwQcf5KWXXmLmzJn1HjNjxgymT59e895qtRIV1XR6HmoCqxv59h1wVMG0R9m2zUpVVd0kTFFU3ARZUvINfX20mM1aPvvsMK+8ksI7TzzE/Uv3sf0VqBoJIWZ4zAsM1UGuYx2RI9gliNSPVspOUcpO60QtxMav2lJpQg4kKLkhORngFwTv/wm9hwDw7b61ZFWUcEvXofj2HMeyzv34t9LCc1UV9aozF9jK+HDPSkaGdea22KGsz01m8eF99Z52RGgn+ge2Z1lWIu8nrOCF/pOP62F1Iopc88h2PU8luwEZDX4ECQ8SrnlR/RtsA1wUeBGgVNaozshpEBgYiEajITc3t8723NxcQkPrLyWbOXMmN954I7fffjsAPXv2pLy8nP/97388/fTT9YapDQYDBkPzJd0dcUbc0oelrfPtW6A3wA0PsXZ2Wp1dPj5aRozwRe9jIzxaILabB/1i2vPSS8msWlXEII993L0oCdkA/Z+A9JviqLrjJkIM5WS65iMIuxAE5Xd7rFNikyBc+AuT1tRcV6rSFEgSvHQX/PGF8n7KPUpSavXnit3lZEdBBvf0GEkXHyXB/vz+57N5x3+syj7AZdHHJ0Svyj5AoNGbq2P6AYrGSEPOSO+ASMK9fLi+0yASLFmszz3EhVE9TmiyXcojy/UkRfJcJMoAES8GE659GbM47gxvhMq5iLfWGw/Rg51lO91tits5raevXq+nf//+LFtWG0qXJIlly5YxZMiQeo+pqKg4zuHQaJSvrS1F4sTpPFHlgkqTsXW10ovm/KtAFBk+3I8774zkyy97kJg4jKKiMfz9dz96DTCwZomNR+/IZ+jQLfz3XyFdTfn8Gj2LTd1H0eOx2/j3YQj7K4HOE18icu8FDPaIZ/fClSTveJjKCsVRdh3152bWQmJF/UuLKucI29fC6GD4/f8grD3M2wNPf1Sn07Mky0jIaIW6+WA6Ucsha3690yZbC4j1PT2dDlEQiPUNJdla0OAYi+sX9tjj2O0MoVD+GgEDweKj9NFaidVvUB2RNkqkIZLDVYfdbYbbOe1lmunTp3PzzTczYMAABg0axLvvvkt5eXlNdc1NN91EREQEs2bNAmDy5Mm8/fbb9O3bt2aZZubMmUyePLnGKXE3RyIjKs3M7EcAAR5VSryHDPFlyBBfALKybNx9915+/z2PggJFNbOrXz7PXHCAKUWfoSvKwXX5rXTsch2eTg0zuy4g/JVses4sRXfzMIQp9+HqfDuZ+6dSknET111ZQr7rE4qk30Bw4amBKE3bThg7Z7Hb4fFrYfk8EDVw9/Nw93P1DjVqdcSYAlmQkUCYpxmz3sjm/DSSrQUEe9Tft8rqsNVZaqlynqgaqhaz3khOZd1ke7uURabrSYrlP5AoR4mCDCdCOwuTOPyU5lVp3fT27s2BygNUOCvw1J64qWtr5rSdkSlTppCfn8+zzz5LTk4Offr0YeHChTVJrenp6XUiIc888wyCIPDMM8+QmZlJUFAQkydP5pVXXmm8qzhLVGfEDRTmwZ5t0KM/BCjh8+JiO7NmpfLDD9lkZlahExxcEJjIlH5bmWDcQHBpGhyp/DX5Mv/WV3CtTSDQoKUg5yOmhV3J5z/LdH9OwOfnD7nW5w9+vuYz8IzCJI7CJI7CIedRKH2NTUoiSBvWsH0qLZPlf8KM66GyHDr3hE8W1mlsVx+3dh3CN0mbeGLzfEQE2nn7MTCoPelllpOeblNeCj8c2NLg/pTSQtp511WflSQJi/w9Oa5ZVKFE37QEEyw+SJg4s3lk8FXOGcb4j+G3/N/4p/Afrgm5xt3muA1VDh6YOHEbixYVIkkXNPrcKg0w4wb49weqPlvJO6va8dVXhzlwoBItTu4IWcqN7bYzSNqMxl6JJGoQpWPKfd/6las9uvBbej4Bei2FdifT4jaxw/4Mn/WE8LlGIt+0IQsa1k14nBFvvOqe61RpHMqscP9k2LYadHp48n24+s7TmqLK5cTmcuCj9+DzfWupcjm5P270cePe3LmEdt7+tDf58/X++iULjiAA/+s2gn6BUcxJ+hejx690CZmLTCWgwVsYQYTmNbzFwadlq0rbIcuWRcS6CG4Lu40vun/hbnManSaVg29tOJ0t3h9rVUhOJxUL/iTR3o3Bw6uQpAPodAIjRvjy1iVJDPr2HagSlO6qcLwj4m2G0Zew4Z/NeGtESqob6P2ZNIygiJ48tGc3H1xjo6CXH91vq2L4wlmQswo+XQKebTcMes7y2+cw6wGl6qrfCPjwH+Vv4DQxaLQYNFrKHXb2FmVzRYe+9Y6LMQeyqzCTdTmHarb5GTzx03vySK9xZJQV8f6eFVQ4HchIrLe8gta8nG5RaWhEBxpCCBIfJ1R8Si33Vjkp4cZwdIKObaXb3G2KW1HLR1CckRaofdTqmDcvl2HDNnFxwBt4y2U8k3UDffqYmDOnBzbbOFavHsSg6VMVfQjq/4VIgoaEbpP4dN5esiqr8HaBs9ppKbY7kdJmsblIw4v7tbhii9j8rz+ZHQZB/HoYEwzrFzfjFaucFQU5cFUfePFO0Gph9m8wZ/VpOyJ7irJIsGRRYCtjb1E2b+9eSqinmWHVXbznpcTz9f71NeNHhXUm31ZGlaTkirT39qekqpKL28ehFTV0MAcyJSaauJBF3NjvXoZEf0apI4fdOZOJZD299dmEa59XHRGVUyZEH0JKZYq7zXAramQE1RlpSlavtvDKK8msXl2MzSYhCLC+84+UCib+ynscvfGYP0FRhFnfQ3EhbF2plG4evVt2sSP2YrbaKpG1oJeUsl1JUPRIDkoG4oqe42+epbM2hKmdDpP6hRfh675CfPFOuGsCXHwjvDynTtWFSgvj/16Bj59T+gGMuRTe/BX0Z/Zwr3Q6mJe6k+KqCjy1evoFRnFZdG801b//EnsllqpasbtAozfhnj5klBcBYLXbuLHLYLr7hpHv+pwyeR06vx8Z4usivbgPe3LHU1jWnwfjxhFqUPvEqJw+3b26s9iyGKfkRCu2zcdy27zqY1CcEdUbaSzWbs3j1VdSWb3USnmZ4ky0a2fkxhvDePLCbLzv2QMTp8KxjsgRdHqY9hhsXl5ns4yAJbgjldFx7HZYQYYiUT5OlX2PfQhh9oG8nbWFXoY+xEXFkzTpS2KHp8Oto+Gf72DjUvhyBZxAhVPFDaQmwd0TITMZfPzhnXkwYORZTTkgqD0Dgto3uH9a1+NlCY50YdYIIq8NvgynXMQB53hK5eXoiCRcfB4Tl/N/SfEAdDL708GsOiIqZ8YI3xEstixmdfFqxvqPdbc5bkH9aogaGWkM0tMruf32BPwDljNi4A7+m1+ES+ek+2WVTJtvYcf+/rz8cme8P34MEOCxdxqebMnvcN9FSjOz4AioLgEXBAi47UH+d3Vvcj0EjBqBUo7P9xEFEGyvYhA9uCs9EQ8uoJx1HPC5Ff5KhFseh8IcuLw7/J+a2NoikCSYdT9cGguZKXD5bbAq/6wdkTPFU6tEYVyyRFrln+x19KRc3kqI+BRx2lTCtE9TWFmrReKh1bnFTpXWwaWBSsPG/wr/c7Ml7kONjKC0qlcj9qePxWLnlVeS+fnnXLKylMaGZh8Nnc6vot+0CkYXbqJv/BbWFo6hzHE+/pWVkLAFuvdj4b5y9h7aCiiCUUaDhkA/D/qlrqDDh/cgGIzw42YlP+D6wUr+gEYDk6YiSRIZFTbCPAzk2KrqiJmBIm6Wa4P+8gdslm/njp1lfNl7OFb5P5Id1xLz8M8wYQrceQF88DRVS+fz6QXvcN3lfQn2VxNcm53dm5VKGUsehETCR/9Cl17NboYsy7goxCYfpH/4VnxNa+kavIoCTRkmYSzR2jnohaiasYsO17Z+7+kX0ez2qrQeepp6IiKyoeTE1VutGdUZQV2mOR1sNiezZ6fz1VeZJCdXAuDpKTJ5chAzZ8YQ0s3FKzsWAhC7fg/nbVnHeVvWYZ8/F8x+gAyPvAVVEB1hZsKwDkiSTIXNQfFX79Pux+cpCOlKwJyFiBHVofUvlsONQ2H4heDjz8ocCxLgkuXjHJEjyDJszmnPgJiLWG/9l9X5nzI8qIwi+RfSHL607/4prMiBR65Gv2I+1+ffjBD0GlxyVdPfRBUFpxOeuhEW/qzk79w+Ax5ovkhVqbSSUmklNvkANvZSJR+slmcHkxl6m5RoXLa1K3ssL+ET5UOIB2SVl/BfRgLbCtIBMGp0DA6Obja7VVonAboAkiqS3G2G21CdEdRlmpPhdEr83/8d5uOPD7NnTxmyDHq9wOjRfjz5ZAcmTKhdKz9aSKrS0xOnRoPW5UKXlqR4CIIA6xZijLmYKu9QvDyU8LZp9gOE/PYZFaEd+XHKF4wt96QnYLM7WZ3jweHb52MXtQQs2s8/BiUKk2Oz19TcHPFJdDJ0NBgYGRVAvwAz17b/lch1ITy6dwYvF/1Dx16vIUf/H8VFgfQOfhnem8d3b/3MpAXP4PPcVFYsXU/+hbdzzaTuzXBn2zBr/oMnrlX0QzrEKuJl4Q3ndTQFqc6bsZMOaABXvWMqHSb+TXwKSU5lXW4qGkHEJdfNUpraaQBGdZlG5Szp7NmZjSUb3W2G21CdEY4s06jeyNFIksRvv+Xx9tupbN1qxeVSVkn69zfz8MPtufbakHqbHB5NpdETobrs9si/yDLMeYtR8hvk9BgHvb9XSjdX/Antu+A5dyf+iw9xIL2Inl2C+GflIbQakUmTB2DQa9i1P589+3PwEAVGhfojVjrRF9vpZvJiVmkB4/x9uNpmJNRuZFLnSADeMf/IPZarmRP8GItD/yOxZAyy+XUOWr3oZJ7BBdMm84NfFLcseYIxK9/BFf89RC+E7v2a9B63SSoq4KHLYOMS0OrgiXfh+gfdYkqk9i2SndfQkCMiCCDYXkQjGJBkZczRjohe1HB9p0EMDu7QHOaqtHLOM5/H+pL1JJQlEOcd525zmh01UwI1Z+Roli8vZPz4rXh6LmPKlF1s3myla1cv3n+/KzbbeLZsOY+pU8NO6ogAVHp4Ikr1NCGUXCDLhCYshdvGKI5Ir/Pgz31gNOLvY8RaZiczt5ScggouHt2R0EAv/MxGRg2M4hBO4owe/De2L09HhDPSZWDGuO54azUkOaoYM7gd+1MtlFcqPW1ch9oxWXcDO1zr+aL4Y4YEraa0sA9FumfJc32Eh1GLS2vA9vFieOBVNCWFcN0AePfJxr69bZu/voVRAYoj0nMwLM9xmyMC4Cdejb8wFSUyciwaPIS+DPV/gNcGXcoVHfrQxSeYKC8/uvqEcHVMP14bdDnnhaiOiErjMClgEgB/5v/pZkvcgxoZQY2MxMdbeeGFZJYsKaC8XHEeoqON3HxzOI89Fo2X15n9mVR6eNQvXSZqkASRwtBYgpN3w+hL4P3a/4AyiuRZflElDqeLT36Or9lXKLsoFmQGGj1qtpm99Ji89ER4GEivsBEe5IUsg6XEhlYjUl7pYHaXN1lx4A+ePvQ014Vch5D9DRW6q8nwu48g2Qx0Uya7fQaMu0Jxkr56HZbPh69WQuDpdXFVOYqiAqVcd+9WMHgoOjIXXe9uqwAIFO/G4vq5nj0uojRvIwgi3jojEyK7MyFSXbpTaTpG+Y0CYE3xGjdb4h7UeACKrlJbi4ykpFQwbdpu/P2X07fvRubPz8Nk0vLgg+3Izx9NSspInn++0xk7IqAs0xyHRgNmP4qDOhKYtQeuvKOOIwKKE2E2GbA7XHh56LhhcveaV1Z7xQm5c2DMcVN39/Gi0iVhryerVSNq+a/Pf0hIjN0+FkH2Jm/3HES8ydPfgqe5VvqbDl1h6WGYfBOk7ocL2sH8OWd8H9o0c2bD2DDFERl2IawubDGOyGHn4yS5RsJx5eFazMIkTOJoN1il0lbRilrMGjN7y/eefHArpI09gutHktpGZKSgwM5DDyUSFraSmJi1fPNNNgA33xxGcvJwsrNH8+67sQQGNo6MdaXHMc6IqIF2ncFpxzfvIJuveRWe+7zOkPRsKwVFlXRu50dIgCfllQ5EUcDPbMTPbGRVkRWDKNAryKfmGGu5nbIKO0Oqt/19IBtBAH8fIwa9Bi8PHVl5ZQz2Gcwd4XeQbEvm+7zv8fcOppt2F4JspNeY+yiX1x5lqwivfAOfLgKdDp69Bf53vtK+XuXkZKbC5K7w9qPg4QWfLYZP/gMPj5Me2tTYpXQS7J3Ild5ERyjdtXsIFh+m9uPQRaTmDXeaqNJG6eDRgRx7jrvNcAvqMg3KMo2mvmXjVkBFhZM330xlzpxsUlOVUlwvLw2XXRbMs892oG9fn5PMcOoU2MpYcjix9txHNaWTAaHfCNi9CapsbLn9E7K6j6G80lFT2puaaWXz7mxiIn3o3jEAQYDwIG/+Wn6QEf0j8fMxkl5WSZzOQE5BOaGBXgBoNSIL16YwpKvSyn3Z3myuaB9UU6kzMC6U9fFZ+JoMvBr6LssPb+Rn/Zvc1n4iRrEvsdqNbHdeRJ7xakwVCzFpB2LQV//XGHoBrMiHuy5QVFtHBSk6GP2GN9p9a3W8/Th8MxtkSYmCvDRH6S3TAsh1vcdh1yMgu8gpvoN1aZOwOnbhZxjKxd3nodWmEiDciofYo97j9xfnMjd5O9kVJfgZPJnULo6hIXWjdCuyklhyeB8l9koivf24tmN/OphUdVaVk9PP1I+dZTvJqcoh1NC2loZbxieEm1GckdYTGXE6JT75JINPPz3Mvn3lNaW448b5M2NGB8aNC2j0c+62ZPL5vrXYj+qwW2mo/Ra8fcBQ+u1YiyBL8NavFHv2J/VQIZ/9uhNREDAYNAT5eTBmUDt6dAqo0X25fHxn1m7PZNG6VHKq7NhEmb46jxpHA8DXZKBzOz82bMzESxbI0LgYd167mv19uwVTZXexamsGFTYn9/u8x6OeF3LFwUlkhmTipY3Dq+QbbNop7HNeR+7OOVw1bnTtxXl6wrdr4acP4Y2HYNoIuOZueObjRr+P5zSJ8XDvRZCfpeTYfPA39BjgbqsAcEpWDjjHU8EWRMxkF3zBsnSRW7oOJMzTh7RSC3/tv5uJnf8i3OvFeucosJXx4Z6VjAzrzG2xQ0kszuG7pE346I308AsHYEt+Gr8lb2dqp4F0MAWyLCuR9xNW8EL/yZj1xua8ZJVzkAn+E/g6+2vm58/nrsi73G1Os6I6IyhK1Hr9ue2MSJLEzz/n8s47aezYUVuKO2iQmUceiebKK4NPqQLmTEgrtfDp3jU4q8seNQhEefsTlZYGQFJMF/pu24AkipR/vADz0AlcCFw4/OSVCHqdhrGD2zF2cDse3LIfkkq4f1QXTF51l5J6xwbTOzaYGb+uZJ/WhdFQ+6ctCAJD+oQzpE94zbacg9N5Le01/pf4P77o/gX9Oo7GKv3IAecFxIyYiE3ai1E8xr7r7lOSbW8ZBb9+AmsWwFerIKJ59TFaHJIEM2+Bv79V6mFvfFgRtmshiVgW12+kum5ExoZZmERHzTzWFa+nT4CRnv6Kcmqg0Zst+UPYc3g458WG1zvPquwDBBq9uTpGKfkO8/ThYEk+SzP31zgjSzMTGR7akWGhHQG4vtMgEixZrM89xIVR9UdbVFSOcFHgRQAsL1re5pyRlvFp4WYk6dyNjCxaVMCYMVvw8FjG9dfvZts2K926efPxx7HYbOPZuPE8rr46tMkcEYC/03fVOCL9AqJ447zLmdF3Ajds34YzIJjOyUk4tTpeeuIVFoSceVRmWa4FnSDQy8/U4JgoLwN5tpPndczqNIuOHh35MvtL1hWtA8AsjiNG8zsyVexz9sIuZR9/YFg7WJgCU+6F7DS4uCP88MEZX9M5z6ZlMCJAcUSiOsE/B+Cxt1uEIyJJdg44LiLFdTUAHTRz6az7F1HUE2MKIrE4l9wKKwAZZUUctOYT5x/W4HzJ1gJifeuGzrv7hZFsLQDAKblIL7XQ7agxoiAQ6xtaM0ZF5UR4a73xED3YWbbT3aY0O2pkBOWL3bnkjGzZUsJLLyWzbFkhFRWKExAT48Gtt0YwfXo7PDya79daaCsnwZIFgJ/Bk9tih6IVNZCdDsv+QIuAZPbjxSdeIt/Xj6LcFK6I7oNec/o2HiytoKPpxAmQPX292V1cjtXuxKw/8TmW9VtGx3UduXjXxeSPyEcravHTXEZ75pDmupm9zu7EaVPQir7HH/z0hzDpOrh3Erz+APz3I3y+BDy9T/u6zklsNnj0Klj9r9LQ8MFZcFvL0WUpldZy0HkRElY8GUhn7VK0orlm/4VR3bG5HDy37R8EQUCWZS6N7n1CATOrw3bcUotZb8TmcmB3Oalw2pGQMdUzJqfS2rgXqNJqiTREkmHLcLcZzY77v760AJTIiLutODEHD5Zzww278fVdzqBBm/j773x8fXVMn96OwsLRHDo0gqefjmlWRwQgraywpjBycHC04ogAvHKvorY6chLisizad+oNgM3lOKMP5n0lZVRJMmNC/OpsH9onghsvqQ1/Dw/yBWBxduFJ52xvbM+sTrModhYzJWFKzfZAzU1Eaj7ARTF7nF2RpIr6J+g7DFbmw5ALYNdGGB2iyJy3dhb9CiMDFEekWz9YmtliHBFJkkh13E6ScwQS5URq3qObfnMdRwRgW34am/NSua3rUJ7pO5FpXYaw5PA+NuQmu8lyFRWFXt69qJQqqXA28LnTSlGdEVruMk1Ojo17791HSMgKOndexw8/ZKPVCtx2WzhpaSPIzBzF7Nmx+Ps3TinumeA8SmHVS2tQfpBl2LMFOvaAd+aBwYiXzlAzzlWfKutJ+PpQdRlyh/rX848wKVypWliRW3RK8z7W/jF6effij/w/WFCwoGZ7iOY+wsSXcZJHgjMWSWpg6Uevh88WwcvfgNOhREqevF4Jt7U2rMVw4zB4bIqiovviV/DLNggIdrdlAFRK+0hwRlIof4mBTvTUphKieaDesb+nxDMhqjsDg6OJ8PLlvJAOjIuI5b+MhjUezDojVrutzjar3YZRo0Ov0eKtMyAiUFrPGB+dmryqcmqM8RsDwILCBScZ2bpQnRFa1jJNWZmTZ545QPv2qwkLW83HH2dQUSFx1VUh7N49hIKCMXzxRRzt2rlfrwEgwOhV8/OeImW5BkGARWnw6w7QapFkmT1FtfkXfoZ6xNBOwuLsQrSCwOCgE5cit/f2QCPAjqLSU557Wd9l6AQd1+y+Bpuz9kESrn2aEPExHGSw19kTSaq/hwkAl9wESw5DTDdY8COMi4DkfadsQ4vnpw9hdDDsXA+DxsLqArjsFndbVUOm81n2OnvgIIcQ8XHi9AfQi5ENjrdLTsRj9IFFQUA+TgCtlhhzIInFdTUg9hXnEGNWHGCtqKGdyZ99xbk1+yVZJvGoMSoqJ+OyoMsAWGRZ5F5DmhnVGUH5Iu9OZ8Rul3j77VRiY9diNi/nlVdSyMuzc8EF/qxaNYDS0nHMndubuLiGEzfdRQdTIEFGJU8isTiX7QXVa516gyIWhlJhUGBTWrN38w3F9wyckf2lFUR7ndq3Sz+9juSyylOeO1AfyCddP6FcKueiXRfV2RepfYNA4X9UkUSicwDSiSIeAcEwf68iKW/Jhcvj4LOXT9mOFknuYbi8B8y6HwxGRS33i2UtJjfGLuWwx96NHOkltATRTRtPpPb1kx7Xyz+CBRkJ7LZkUmArY0dBBksPJ9InoNaBmZcSz9f719e8HxXWmQJbGb+n7CCnooSVWUlsy09nfETXmjHjI2JZm3OQDbnJZFeU8OPBLdgl53FaJCoqDRFhjEAn6Nhq3epuU5qVNp3AarGVU+asQpJkJNFFepkFb60B/6O+7TcVkiTx3XfZvP9+OvHxpUgSaLUCQ4b48Oij0Vx+eUiT29AYiILAuIhYfj6k/Mf5bN8a+ge2o29AJE5ZYnNeKnuP+jY5PiL2tM+RUlqBzSUxMtjv5IOBaC8P4k8jMgJwW8RtfJ39NcuLlvND9g9cH1YrWd5e9xlORwnF8i8ccI6hq37ViSd74FWYMAXuGAcfzYQlc+GLFeDrf1o2uZ2PnoX/e1VZkjn/Knj9pxYjXgaQ7/qMdNd9gBN/4Xraa7495aqxazsO4M+0Xfx4cAuljip89B6MCOvExe1qu6WW2CuxVNWu2wcavbmvx2jmJm9neeZ+fA2e3NhlcE1ZL8DAoPaUOWz8lbYLq91GpLcfD/QYg1nfMiKZKucGIfoQUipT3G1GsyLIstxwXLKFYLVa8fHxoaSkBLPZfPIDTgGLrZyZW//GKUt8MTaAgE5OLv+8BK0g8tKAyU3mkPzzTx5vvJHKxo0lOBxKt+C4OG/uv78dt94a3qQluE2FJMt8k7SBjXmpJxx3Ubs4Lmnf67Tnnxl/kJf3pLJiXD9Gh578gX7Hxr18cSiL7MuHE+p56mv1Zc4ygtcEI8kSOcNz8NX71tl/wDEJq/wfZuEiOuv+OfmETqeSX7HsD9AZ4NVvYcI1p2yP2zi4B+6ZBDnp4BekREN6D3G3VTU4pTIOOidQznpEvInRzsdHHOdus1RUGo0JOyaw2LIY1xjXOflMOJpTfX6f21d5FpQ5q2q0MWQZhOoiEKcsUeasatRzbdpUzEUXbcfTcymTJ8ezZk0x0dFGZs3qTHn5WHbuHMrtt0ees390oiBwc5chXB7dB1M9iXoBBi9u6jz4jBwRgIXZhWgEGBnse0rjR1VHUP7LOnlFzdF4a735vsf3VMlVnB9//nH7O+sW4MVQrPK/JDtOodmbVgvv/A7v/KHk0Tw2BR64VHFSWiKSBC/eBVf2hNwMRWV2RU6LckSKpb/Y5QymnPWYhPH01uarjohKq2OYzzAAVpesdrMlzUfLibm6E1np4XYyvv02iwUL8vnpp141cuUNkZhYxgsvJLNgQT5Wq5L4GBlpYOrUMGbMiMbX130VME2BKAhcGNWdcRFd2W3JIq+yFEGASC9fuvmGIgpn7mjtLSknytN4ys7aheGKsNrq/GJu6RRxWue6IvgKJgVMYkHhAj5I/4D7291fZ38X7RoSnf0okn8kzWGmve6Tk0867nLloX7HOFj5F4wJURrwtRCpdAB2rIMHL4XiQghvDx//pyTjthAkyUmy62pK5PkI6InWfE+ApmV0/1VRaWwuDbqU51Ke49+CfxntN9rd5jQLqjMCIIOgOfFq1XffZTFtWgKyDA8+WMKQIb7HjcnKsvHii4f444888vMdAAQG6rjzzlCeeaYjkZGtv7xPJ2roFxjVaPNlVdiocEkMq9YPORUCjXp0gsCuorIzOue8XvMIWh3E9IPTuTL4SsKNtTkBoigSq93KXmc3CuRP0Tp9idDOOvmkJh/4eSt89Tq8/xRMHQQ3PQKPvHlGNjYadjs8cS0sm6d45Hc9B/c8716bjqFM2sRB50RcFOFBH7pol6EVz7H8GxWV06C3qTciIhtLNrrblGbj3FwXaGRkThwZ+eWXHG6+WXFEtFqBH3+sLVO1Wp3MmJFEVNQqIiJW89lnmVRVSUyZEsLevUPJzx/Dp5/2aBOOSFPw1SGlXPj6DqfXwTLQoCO1/NQrao5GL+qZ12seTtnJuB3HLwGIopbu2gR0RJIjvUa287VTn/zWJ+DPRAgMg2/egsldoKCeluGyDEt+B+up6aWcEcv/VMTLls2Dzj1hcXqLckQkSSLNcS/7nefhwkqE+Drd9TtUR0SlTeCv8yepIsndZjQbbdIZcUkS63OOUlo8Zpmm6KgM+nnzcpk6dRdH0nydTpkff8xm1qxkunRZi4/Pcl57LZWCAgcTJwawbt1ASkrG8fPPvenWrWWUP57LLMgsRAQmnELi6tF0NHlSbD/z3Iyx/mOZGjKVxIpEXkh+4bj9omigu3YfWoLIkmaQ5zqNDr7tO8OSDLh0GqQdgAui4I8v64756xt45Cp4c/oZX0ODVJTBrWPgocvAYYenP4bfd0HwiQXlmhObdIgEZzQF8sfoaU8P7QFCtY+72ywVlWajs0dnChxtp6dRm6umcUguPt6zqk656ecjA2g/zM6EWUo5qKdGz/Re49i1yslll8XjcsnUd5eOlOI+/ng0F1/cMlQomwKb08GfabuIL8yg1FFFlJcfUzr2J9rUcNO7/cW5zE3eTnZFCX4GTya1iztOa2FFVhJLDu+jxF5JpLcf13bsTwdTXXEo8y8r8NFrybh8xGnZ/OCW/byflEHS5CF0Np9ZZZQkSYSsDcHisJA4JJHOnp2PG+OULCQ4Y3BRcmZ5DBuWKk5BZTkMGgMfLoD8TLiiJ1RVKomvfyRAx+5ndA3H8fsX8Op94KiCvsPhg7/B7Ns4czcSWc5XyJaeBWSChPtpp3vP3SapqDQ7Dyc9zLsZ75IwOIEe3udux2e1mqYB5iZvr+OIdDIHAgL+nh4Yq5u3VbjsPPLVGi6/vGFHZPhwX6qqxrF69aBW7YgAfHtgE/uKc7il61Ce7TeJ7n6hvLN7eZ0I0tEU2Mr4cM9KuvqG8Ey/iYyL6Mp3SZtqFVqBLflp/Ja8nYvaxfF034lEevnyfsKKOnLbBTY7pU4XQwJPrLpaH2NDlYqahadZUXM0oijyX+//kJEZt73+ig2t6E937V5EvEh13Uix9NfpnWTIeFiRB/1GwOYVMDoI7r1IkZYHJWT3biP0fSnIgav7wgt3KFU+b82Fb9a0KEfEKRWwx96LbOkZNPgSq92sOiIqbZaLAhQBxr/yT/Mz5RylTTkjVruNtTmHACXR8pFe43ms9wUIAoztFcWrAy+jgymAPfMMzH3IgMNRvyMCsGNHKXZ7iw8qnTV2l5MdBRlc2aEPXXyCCfYwMbl9L4I9vFmVfaDeY1ZlHyDQ6M3VMf0I8/RhTHhX+gVGsTRzf82YpZmJDA/tyLDQjoR7+XB9p0HoRS3rcw/VjJmTrOTmXBd9evkiAONClGWddQXFp33s0QzwGcC9kfeSUZXBg/sfrHeMXgynm3YnAgYOOS+nVFp5eifx9IQ5q5XlkspySN0PruolJpcTVv0N8bVKoBZbOellljovi6284fn/7xU4PxL2x8PoS2CNBS646vRsbGIKXN+wyxmOjd34ClfRS5uLl9iCqo1UVJqZI1U0q4vbRnlvm6qm2ZSXgqtaW2RMeBe6+AQjy4rDERZm4OvPcvjtO2+2bT5StisjikK9Pc/Ky13891/BOaOUeqZIsoyEjFaom+GrE7UcsubXe0yytYBY37oORHe/MH5N3g6AU3KRXmphYmTt0oMoCMT6hpJsrV0j/etwPgIwOeL0+3p467UYRIGE4hM8pE+R9zq/x/z8+Xxw+ANuDruZfuZ+x40xih2J1W4m0dmfJOf5xGo3nP7DNLZP/ds1Gpj9GHy7FktVRY1Y39HUK9aXdgDuuhAyk8Hsr2ieDBx9ejY1MZJUwQHXRZTJKxHxpKN2Pj7iJHebpaLidrSiFrPGzJ7yPe42pVloU5GRvMpaifB+AUr5aUGBEg5/7LEkHn54P6FBHoy+x87Ix60Mu8/G3XdHMWlSIJ07e2Iw1NUW+e+/1p9cZNTqiDEFsiAjgeKqCiRZYmNeCsnWAkrs9VerWB02zPq61UNmvRGby4Hd5aTMUYWEjKmeMSWO2mWaXcWlhBr1aM9QDC7EqCejwnbygSdBFEWW9l2KgMCF8Rc22J/GU+xJF+0qQGa/cxiV0ml8iJRZFVG0+vRYXC7YuR7Hqr/5K23XcY4IKGJ9mRXFyhtJgtcehEu6QmaK0tBudX6Lc0RKpEXsdAZTJq/Em5HVAmaqI6KicoRoYzQ59nqq7VohbSoycjSu6vUXX18N7dsbueqqEGbM6IC/v46ntqRjqbJj1Ei8N7RW+EmWZfLy7KSmVpKSUkn//o0jTd/SubXrEL5J2sQTm+cjItDO24+BQe1JL7M02TlL7A5KHC7GhJx5GWcXsxfLcixIknTW6rZdvboys8NMXkh5gWn7pvFtj2/rHectDqGT9j8OOi9kn3MgPbT7MIjtT36C92ZATkaDu2Wg5NV72fj0LGjgWubs38gMnR+Bj02FwlwIjoCPF0CXM1O+bSokSSLFNZVi+RcEdLTXfEGg5jZ3m6Wi0uLob+7PrvJd5FTlEGo4/eXqc4k2FRmJ8PKt+XlLfioAOp2G1NSRvPVWVwIC9CSXFtQ0xwr39K1zvCAIhIQYGDzYl2uvDaNz56ZvqNcSCPIw8Wjv8bw/9BpeG3wZM/peiEuWCDTWX7ps1hnrJKKCkq9j1OjQa7R46wyICJTWM8anWk7+2+p8kWvanXly8EB/EzIQf4biZ8fyfMzzdPXsync537GyaGWD43zE84nRzEXGxl5nHHbpFL7ZtO8MHbqB7ihlXkEErdL5WAACcw5zxfyfEIDuvqGcHxFLv8Ao9KIW0elkyv/NJuDWcchF+YqeydLDLc4RKZe2s8sZQrH8C0Z6EKc9rDoiKioNcL6/0pbiz/w/3WxJ09OmnJFBwdHoqgVFVmcfZHtBep39Fls53yVtqnk/IqxTs9rX0jFotPjoPSh32NlblE3vo9qtH02MOZDE4roP4H3FOcSYldwPraihncmffcW5NfslWSbxqDF/HlbyUa6MOvOcnPFhSunxouwzr6g5luV9l6MVtFy681Lskr3BcX6aK2iv+QqJMvY6u+OUik888Q0PwZ97YUsl/JcCnyyEx9+BK26nqu9wKo1K19fxyxYwKyWLB+PGcFVMP+7sNoLXXF688+TdDNq6gZyQMHZ+uwoeOg0htmYiwzmdROcAXFgIE1+ghz4Bvdi6K9FUVM6GiwMvBmB50XI3W9L0tKllGk+tnnHhXVl4eC8SMp/tW0s7b386+wRRZKtgpyWzJsE1xMPEgMB2bra4ZbCnKAtZhlBPM3mVpfyesoNQTzPDqnVD5qXEU2yv4JauQwEYFdaZlVlJ/J6yg2EhMSQW57ItP5374kbVzDk+IpY5+zcQbfIn2hTAssz92CVnjRbJjqJSgg069Noz95ePNNbbWFByxnMcS7gxnLc6vcVDBx7iil1X8E+fhrv3Bmqm4aKEw66H2OPsRk/tIUTR88QnEEWIiFZewyYAsCA1noUZezEVF/HAqhW0e+sx2LwSZn4Kf32L10czkQWRX6+YyrJxFxErVNGnsS64EaiS0khyjsFOCjoi6KJdjlHs4m6zVFRaPCatCaNoJL4s3t2mNDltyhkBuDS6F5aqcjbnpwHUlEYeTYDBi/t7jEavaXO3p14qnQ7mpe6kuKoCT62efoFRXBbdG0117kKJvbJmaQsg0OjNfT1GMzd5O8sz9+Nr8OTGLoPp4Ver8DkwqD1lDht/pe3CarcR6e3HAz3GYNZ7UOF0YrE7mRTesKjaqaAVRTw1IvtKzr6i5mgebPcg3+V8x7+F/zI/bz6XBV/W4NgQzYO4ZCvZ0rMkOLsTp01CFE+vSWJehZJ4Xerrh/Glr+Him2HmNLiwgyIbf+N0uOs5Nu5aCE57nURtd5PjnE2m9ATgIlC4kyjNx+dsd2oVFXcQaYjksO2wu81octrc01YURG7pOpRufmEsz9xPRnlt7w8vrYFhoTFcENHtuEqPtsyAoPYMCGo4CXNa1+NbzB8RPDsRY8K7Mia863Hbf0xVlm+ujDr7EH64h4GsyqqznudYlvZZSsjaEKbumUqefx7e2oal/8O1M3E5S8iTZrPX2Zvu2j2n9UA+ukO0U5Jg9GT4ZTtMGwnPfAwjL0KWpZqonsCJO0o3B06pmCTnOCrZjgZfOmkX4C0e/3eioqJyYnp59+Jg5UEqnBV4ak8SWT2HaXPOCCiaFkNDYhgS3IE8WylWuw29qCXcy6cmp0TFffyengfAtdFnr+HSzceLg2WVOCXpjEuE68NX78uX3b7kxr03Mil+EqsHnFiYKEr7Fi5HMYXylyQ6BxGr3XzKDkmkly/bqvObNuencplXbwhvD4vTasbsKszEVi2UFnlUorY7sLh+ItV1CzJV+AiXEqP5DVFskx81KipnzWjf0fyR/wf/Wf7jyuAr3W1Ok9Gm46WCIBDiYaazTzDtTf6qI9JC2GaxEqDX4qk9+wfYedVS8mvzis96rmO5IewGRvuOZk3JGr7O/Pqk46N1X+ArXEUl2zjgql9evj6GhsQgVkc7lhzex25LZp39WeXF/Jy8rea9uxKvJclOkmMCKa6pgECM5g866earjoiKyllwefDlACwqXORmS5qWNu2MqLQ87E6J/CoH/fwbR8NlQpiiU7Ikp2k0Uf7t/S+eoid37b8Li/3k5+iom4tJuIAyeSUHHZee0jl8DZ41DoZTlvhwzypm7VjITwe38n7CCl7cvqCmT1C0KYAefmFnfkFnSKm0kp3OQErlxXgxhF7afPw0lze7HSoqrY1IYyQ6QcdW61Z3m9KkqM6ISovi13QlX+SyyKBGma+vnwkB2FxobZT5jsVT68kvPX/BLtsZt+PUoh1ddIvwYggl8l+kOG48pWOuielHn6NKqVPLLKzMTmJPUTZHOiSFe/pwT/eRiPWpuDYRkiSR4riZJOcYJCqJ0nxErH49WrHhHBoVFZXTI1gfTHJlsrvNaFJaVfz077Rd/JOeUGdbiIeZFwdc3OAx2/LT+TNtF4W2MoI9TFzRoQ89/SNq9suyzN9pu1mTc5BKl4OO5kCmdhpIiEfbUF9tbuZWOyM3dGicb/eiKGLSaUiy1t9huDG4OPBiLg28lD8L/mR22mweaf9Izb7sqmxcsotIY11Nli7atexz9sEif4/G4Us73QcnPIdW1HBnt+Gsz01hRdZ+DpcX1+zz0yuRk3HhXTFWi6Q1BxVSAgec43GSi4EudNGuQC+Gn/xAFRWV06KbVzeWWpY2ipp0S6VVOSOgfDt8qOfYmvcaoeHKgkPWfL5IXMdlHXrTyz+CzXmpfLJ3DU/3vbBGrXXR4X0sz9rPtK5DCDR68VfqLt5PWMHz/S9Wc0yagM2FVnx1Wsz6xvvTjPQ0cqi06ZwRgN96/kbg6kCeOPgEV4dcTZQhii+yvuDBpAfpa+rLugHr6owXRZFu2u3sccaSL3+IxmkmQvvKCc8hCqLS6TgkhgJbGaWOKowaLSGeZjTNGA0ByHTOIEd6HYBQ8amT2q6ionLmjPAZwVLLUtaWrGWk30h3m9MktDoXSxQEfPQeNS9vXcMlussy99PDP4wJkd0J8/Th0ujetPP2Y2VWEqBERZZlJjKpXRx9AiKJ9PLjlq5DKK6qJL6g4T4iKmeGU5LItdnp7de4If44Hy+qJJlyh7NR5z0arajln97/4MLFqG2jmBQ/if8l/o9KqZK95XvrPUYUtfTQJqAjghzpVXKcb5zSuQRBIMjDRIw5kHAv32Z1ROxSJgn2LuRIr6ElhO7a3aojoqLSxFwSdAkA/xQ0LLJ4rtPqnJG8ylIe3zSPp7f8yZeJ67DYGha8Si6tv9V9cqnSjbfAVo7VYaPbUWM8tHo6mAJrxqg0HvMz8pGBSyIaJ1/kCMOCfAFY1kRJrEcY7jecUb6jSLWlsshSm/le7CzG6rRisZXXiOyll1mw2MoRRSPdtXvREEim9AT5rs+a1MazIc/1Ebud0VRxgABhGj21mXiIPdxtlopKq6e3d29ERDaUbHC3KU1Gq1qm6WAKZFqXIYR4miixV/JPWgJv7lrCc/0uqnct3Wq3YT4mcmLWGSmpbuBmdVQq2+prdW8/+9b0KnX5JV3pZzMtpnGrQS6s7lGzPLeISxpBSK0+LA4LdyfezariVQDINWmlCtuLE5ibmI6zWpgMQCuIvDRgMv5GM3Hafex2diLddRcazPhrrmsSO88Ep2TlgPMCKtiEiJlO2j8xiaPdbZaKSptBEAT8df4kVSS525Qmo1U5I3H+tclzkV5+dDAFMmPzn2wtSGd4aEc3WqZyKmzIt2LWavA3np5c+sno4uOFCGyzNI1MekJZAmO3j8XiaDjysq98P07ZUGebU5Yoc1axKSOVHQUZFFa9wwVdX8BuuI0gWU8nrxMLHDVH8nWRax4prqnI2DALF9JR8+dpy9mrqKicPZ09OrPJuunkA89RWt0yzdF4avWEeJjIb6BXh1lvxOo4po29w4ZPdSTErFM6pVrra3WvysU3KpIkkVVZRZxv05SE+uq1TZbEmm/Px+psuHRYg4a0qpQG9yeV5DE6vAuP9Lyczto/qHKZyJZvp9CxosFjjiRfDwuN4Zl+E+kTEMkne9eQeVSVzZHk6+s7D+LJPhdgELW8n7ACh+Q66TVJkpODjskku64AZDpofqaz7j/VEVFRcRODfQYjIbGvbJ+7TWkSWrUzYnM5yLeV4aP3qHd/jKmeVvdFOcSYlDb2gUYvzDpjnTGVTgcppQU1Y1QahwVZhcjAxRFNc1/bexkpqHI0ydxj/MdwaOghbgq7CQEBjXB8lVWaLbXB4x+MG8PQkBjCvXyJMfWju+EfHJKBQ65JlEv1Cx01ZfJ1qbSOXc5ASuR/8KA/vbQ5+GumnPoNUVFRaXQmBii9vubnz3evIU1Eq3JGfkveTlJxLgW2Mg5Z8/l07xpEBAZWN3n7ev965qXE14wfF9GVPUXZLDm8j5yKEv5O20VamYXR4Up7c0EQGBcRy4KMBHYWHiazvJivkzbga/CgT2CUOy6x1fJTmuLw3dLI+SJH6O1rwiHLFNjsTTJ/hDGCr7p/RfygeEb5jgJArP7v5cLF5uL4eo+rctZT4eOK5d99MxBwsd85jEqp7jehIuk3NMav6iRfW2zlRHj5klicS3qZhUMl+aedfC1JEmmO/5HkHI6LMiLF2XTXb0Ur+p7GnVBRUWkKxvopkhVrSta42ZKmoVXljBRVVfDF/vWUO6rw1hnoZA7iyT4X1HTgtVRV1Olo2tEcxO1dh/Fn2k7mp+4k2MPE3d1H1GiMAEyI7Ibd5eT7A5upcNrp5BPEAz3GqBojjcy6vBK8tBpCPZtm+WtEsC9zUrJZlFXI9U3k8AD0MvViWb9lLCpcxENJD5FYkQhAmiMR6lnh+DppA9N7jSPQqCxPSbLMr8nbCDF2p4v+bw46J7LP2Z84bSJ6sR15ro/JcN1Lr3ARueQhQHFEZm79uyY59pUdC9FU/52favK1TdpPknMsDrLQE0NX7Qr0YrvGui0qKipniVbUYtaY2VO2x92mNAmtyhm5o9vwE+5/pNf447b1D2pH/6CGP3QFQeCS6F5cEt3rrO1TqR9JksiosNG/kfrR1MfEcKWiZlV+UZM6I0eYEDCBbzou4LG9s1jj+hIXDirJo6e5B5VOB5kVxQAUVpXzfsIKnup7IUaNjp8ObiGrvITHep+Pj+hJB82vpLiuYY8zjmDxQXKklwEQBQlJtxroRZmzqk6VDoDrmGqeE5HlfJFs6QVAJlicTpR2diPdBRUVlcakvbE9+yv2u9uMJqFVOSMq5yYr8oqRgEkRAU12jjBPI1pBIN5S1mTnOBqpupIlVjOaSHqyQH6BA8Zf+KrnGrSilszyYj7bt4bcylJyK0vZkJtMToWV3ZYsHu09Hj+DJwD+mqtwyZ+TLt1R44go84s4NIuA+05oh5Js7VHnfZS3LwB2KY8DzjHY2IuWIDprF+Mp9mnsW6GiotJI9Df3Z3f5bnKrcgkxhLjbnEbljHJGPvroI6KjozEajQwePJjNmzefcHxxcTH33nsvYWFhGAwGunTpwoIFC87IYJXWx/cp2QDc0rFp+5oEGHSklFc26TmOsL84lzyb4vj08+/G333ms9m6mTfT3wQgwsuX22OH1Yz/K2038YWHebjX2JolGwBZlqhk13Hzi4KERrccWW5YVdZLa2gw+Trf9SUJzkhs7MVPuI6e2hzVEVFRaeGc738+AH8W/OlmSxqf03ZGfvnlF6ZPn85zzz3H9u3b6d27NxMmTCAvL6/e8Xa7nfPPP5/U1FR+++039u/fz//93/8RERFR73iVtsfqvGI8NCLtveqvemosYrw8KLI3TUXNsaSUFtb8PDQkhuF+w3ms/WM8c+gZ3kl7h0pXJe28/Yny8gOgwmnnps6DMWp0lNgrKbFXUuWsIs15G/lS/U30tJoKVub9SIGt/mjPoOD2xyVf++l1ePveRLrrdgT0dNIuJkb3Y6ttvqWi0pq4OFBp+rrcstzNljQ+p71M8/bbb3PHHXdwyy23APDpp5/y77//8tVXX/Hkk08eN/6rr77CYrGwfv16dDpFBTU6OvrsrFZpVaSVV9KrifRFjqavvzcbCktIK69scsfHdVQOh6dWyVydGT2T9zPeZ/rB6cxMnkmkMZIwuRcx8kS0goH396ysM8etPfei9ZzT4DlkWUOe8w/mHqi/U++Q4A54avQ1yddxgRYu7fUkFZRiEsbSSfMvoqjq5aionCuYtWaMopH4snh3m9LonNbXIbvdzrZt2xg/vjYRVBRFxo8fz4YN9Wvm//XXXwwZMoR7772XkJAQ4uLiePXVV3G5GhZeqqqqwmq11nmptE7W5RXhkmFCWNPlixxhdIg/AP9lFp5k5NnjX53zAbCnSFmG8tJ6UTSqiMTzEnkg6gHSbemsrJzLV45b+dHxAF4h23h58Pl8NmIqn42YSl+fOwkU70DEVD1T3QouQXDRKWAbkUdVfx1NcVUFl0T34vVBlzB98G8MirkXjVhFe803dNEtUx0RFZVzkAhDBBm21teo9bSckYKCAlwuFyEhdRNnQkJCyMnJqfeY5ORkfvvtN1wuFwsWLGDmzJnMnj2bl19+ud7xALNmzcLHx6fmFRWlanq0Vr5LOaIv0rT5IgAXhCnOyNr84iY/V7/AKPTV5d/rcg6RYlW0PQyiga5eXXm54yt8GrGCSdoniRDisFPGOxlvE7wmmKi1UTyc9DDFDgPttZ/TW5dHjHYuPsJEFIektjwd8TDFzvpL/b7cv4HEksXscoZQLP+OB73opc0kUHNTE1+9iopKU9HLuxcVUgUVzqZRlHYXTb5QLEkSwcHBfP755/Tv358pU6bw9NNP8+mnnzZ4zIwZMygpKal5ZWS0Pi9QRWFFbhEGUaCLj1eTn8tHr0MvCuwubvqKGg+tnuGhnQClB81bu5bybdImtuansTIriVnxC1mXe4hIsSeX6J8m7bw8lvZZygT/CRQ6Cnk3411C1oQQuSaSh5OeoMoxnE66v+mtyyFK8wGSs7Zb7uiYTwgweDEwsB09/cJrnKD+kV9SZpyASy4mXJxFd/1OtKKqHKyici4zxncMAP9Z/nOzJY3LaeWMBAYGotFoyM3NrbM9NzeX0NDQeo8JCwtDp9Oh0dSGmLt160ZOTg52ux29/nglKIPBgMFgOG67SusjpaySWLPnyQc2EsFGPenlzdNx+YoOfThcXkRSSR5OWWJd7iHW5R6qM0ZA4OYugwn1NBPqOY5xAeMAWFG0gjfT3mRV0SreP/w+7x9+nzB9GFcGX8kT7Z7kzz1R2NnPhC5vE2JK5uH++QRpLgWgyJ7EXscIjLo8SqsCsFq+pn/7yc1yzSoqKk3LZcGX8cCBB1hcuJgrg0/cTPNc4rQiI3q9nv79+7Ns2bKabZIksWzZMoYMGVLvMcOGDePgwYNIUm1CX1JSEmFhYfU6IiqtG1muFeOKt5TikGXGNUO+yBE6eXtS4nDWsaOp0IkaHogbw/kRsRg1xyeZRnn5cX/cKAYHdzhu3xi/MSzos4DyMeWs6reKiwIuwuq08uHhD4laH8k71pv5t3Qxqw69TZB4N+mu/2Fx/YJVWkIqgzDq8tmTcwE/xb/Pqiw70jGiaCoqKucmUcYotIKWrdb6+1adq5x2Nc306dO5+eabGTBgAIMGDeLdd9+lvLy8prrmpptuIiIiglmzZgFw99138+GHH/Lggw9y//33c+DAAV599VUeeOCBxr0SlRbPy7uTeWtfGiOC/RgT4sfmghKg6frR1MeAABMr84rYU1xGnJ/p5AecJTpRw1Ux/bi4fU92FWZSVFWBVhSJMQUSbQpAEISTzjHSbyQj/UYCsK5oHY/uf4at5RvYKy9lb9FS/m9DCNMiO3JhyLV4a8GbMbTXfs5aawaQTZmzCqvdhq+h+SJQKioqTUeIPoRkW7K7zWhUTtsZmTJlCvn5+Tz77LPk5OTQp08fFi5cWJPUmp6eXkezICoqikWLFvHwww/Tq1cvIiIiePDBB3niiSca7ypUzgkEQaDE4WJBZgELMgs48l398R0HGBPiz6gQP/r7m9A1oebFuFB/3tqXzsJsS7M4I0cwanQMCo4+63mG+Q3jpahPmJu8nVwpCYvHOnZUbOS15FzeSoEe3kYGmTrydLQOzVGOTtPHgVRUVJqLbp7dWFa0DEmSWo1GkCA3R7z6LLFarfj4+FBSUoLZ3HT9S1SalhU5FsYu237cdgEQBJBkuCoqmLkjm64PUJXThfGXFVweFcQfI3s32XmakgRLFh9Ua5L08o/g3h6j2FSyiddSZ7GsaDmlrlIAPDDTXujHefqr+WLoXWhayYeWikpb5/nk53kh5QVW91vNCL8R7jbnhJzq81v9dFJpNgYGmOv9g5NRHBGAa9o3bb8Fg1aDh0Zkb3F5k56nKenmF4qfXlly2WXJZGNuCoN9BjOv93yso61s6L+JvoZROHGQKK9kTtW9hK0N5da9t3Ko4tBJZldRUWnpXBqoJKv/U/CPmy1pPNTIiEqz0uvfjQ2W1r7cuyNPxx2fzNnYxMxfS36Vg9IpY85qnr/TdvFPekKdbSEeZl4ccHGDx2zLT+fPtF0U2soI9jBxRYc+9PSvbY0gVzfYW5NzkEqXg47mQKZ2GkiIR92/++WZ+/kleVvN+47mQOL8Iqh02dmcl0qxXenBU0waFd6bWFOykhKXkqMTqAvkosCLeDr6aTp7dj6re6CiotL8SJKEdoWW4T7DWT1gtbvNOSGn+vxWu/aqNBsWWzn9/DzYV1KG8ygXWASmRofyVI/oZrEj1uxFSnZho6y3hnv68FDPsTXvNSdISD1kzeeLxHVc1qE3vfwj2JyXyid71/B03wuJqFZRXXR4H8uz9jOt6xACjV78lbqL9xNW8Hz/i9GJteXxY8K7kF1Rwuqcg9VzF3CoWljtCFpB5OluN9ErYAYA8aXxvJr6KosLF/NN9jd8k/0NAdoALgq8iKein6KrV9ezuhcqKirNgyiK+Ov8SapIcrcpjYa6TKPSLFhs5czc+jcZ1oN1HBGNAOcF+vDFed1PqbKkMRgc6APAxoKzbzMgCgI+eo+al7euYYn1ZZn76eEfxoTI7oR5+nBpdG/aefuxMkv5QJFlmWWZiUxqF0efgEgivfy4pesQiqsqiS+oK/wnCAJTOw3kps6DCff0qbsPgd7+ETze+wJ6BdRGXfqY+vBrz18pHl3MzkE7uTb4Wly4+DbnW2I3xhKwKoAb9tzAvrJ9Z31fVFRUmpbOHp0pcBScfOA5ghoZUWkWypxVOGWJEMPRXXNlQo0G/hzVG4Om+fziC8L8eX53MotzChka7HtWc+VVlvL4pnnoqst1L4/ug7+xfjXZ5NICxkfE1tnW3S+MnYWHASiwlWN12OjmWysg6KHV08EUSHJpAQOPqcYRBIFhoR0ZGhJDelkRhVVlaASRKG8//A0nVrTtZerFTz1/AiChNIFX015lYeFCfsj5gR9yfsBP68fEgIk8Ff0UPbx7nHAuFRWV5mewz2A2WjeSWJZIrHfsyQ9o4aiREZUm52BJHj8e2AKAt0ZCKyhFvRoBXujhS6CxecXvBgco65abzjIy0sEUyLQuQ3ggbjRTOw2kwFbOm7uWYHM66h1vtdswHxM5MeuMlNgVRVirQ8nzMOuPGaOvHVMfgiDQ3uRPv8B29A6IPKkjcixxpjh+jPsRyygLewfv5frQ6xEQ+DH3R+I2xeG3yo/rdl9HQmnCySdTUVFpFiYGTARgfsF89xrSSKjOiEqTsikvhdm7lpFSpnTKFYQjvWdlJgQUszkvgX/SdjerTaIo4q3VsN96dhU1cf7h9A9qR6SXHz38wrk/bjQVTgdbC9IbydLmp5t3N77v8T2FowpJPC+Rm0JvQoOGn/N+pufmnvit8uOa3dewq3SXu01VUWnTjPNTWkesKV7jZksaB9UZUWky0kotzEnaiFQtueWr92BISAf89CIRBheRnkoE4e/03WzLb94HeKSngRybvVHn9NTqCfEwkV9ZWu9+s96I1VE3wmF12PCpjoSYdR7KtmOiIFZ77Zj/b+++w6MqsweOf6dkMumF9EZICElIaKF3kChi7+ja19Vdy+rKz13Fxtpd2+7ad3Et66qoqNgQlSolUhJCTQHSe6+TyWRm7u+PwEAggSQkmZTzeZ55JHfeO/fMNcmcvOW8fSnaJZoP4j6gYm4FmdMzuSXwFrQqLZ+Xfc64HePw3OjJ1XuvJrU+tc9jE2Ko06q1uGncONDY/q7dA43MGRG95ufCNKxHV47PCojkNyMnYzBbuW3XRt6aHM9wpzq+zE4F4If8AyT4hPbZJNbRHi6k1xkwms3otT3zY2C0tFBubGCazqnd5yPcfEivKWkzbyStuoQIt9addH30Lrg76EmvKcHVwZEvs1PZX1WIwdJChbGeqX4jCHfreB+fjJpSPs9KodhQi5ejMxeExTPDP6JNmw1FmfxckEatqYkQVy+ujZzICLcz7+Qb5RzFe6PfA+CI4QjP5DzDdxXfsbJ8JSvLV+KucSfRO5Glw5cyyWPSGV9PCHH2wvXhZBgy7B1Gj5CeEdErGltMpBxdAeLm4Mi1kZPQqNRsLa/BqsA8fy8Whowm3NUbgPzGavIbq/ssvhk+ngBsKKvp9muszEohs6aUCmMDR+rKefvgZtSomOw7HID3Mrbx1dFkC2BBcDQHqov5uSCNEkMt3+buJbehinlBo4DWuR8LgmP4Pm8/z6T8gNFiJtjFEy9HZ34zcjIu2o7n1lQYG3j9wEaiPf15NGERC4Kj+TBzOweqi2xtdpbnsjIrhQvD4nlkwiJCXDx5df+GU3piziTSOZJ3R79L2ZwysqZn8bug36FX6/my/Esm75qM+0Z3Lt9zOTtrd3bpdYUQXZPgnoBJMVFmKrN3KGdNkhHRKyqbG7Ac3Sl2jHewrUbGCwdycdKoiXJrrSCa4BNmO6fEcPZLbTvr/KDWHob1JVXdfo3qZgPvZGxj2a7v+HfaFly0Oh4afx5uR4dUqpoN1B4tPgYQ6e7L76JnsrnkME+l/EBKRT53jp5tqzECsDAklkBnDwwWEweri9Co1dwffw5jh4Xg69TxXjqbig/ho3fl6ogEAp09mB8UTYJPKGsLj//VtLYwnVkBkcwMiCTIxYPrR05Bp9ayrbT7VVlHOI9geexySueUkjMjh9uDbsdZ48yqilVM2TUFt41uXLbnMrbXbu/2NYQQ7TvX61wAvi7/2s6RnD0ZphG9znpCkV9fvQNGi5X0OgOxHi5YTniubwZoWsV5uqICdlW2P7+jM26PnXXa5/9vbOIpxyb6hjHRN6yd1q1UKhVNZhPzAkdRbTJwqLaM5elbmRsYxezAkR2el1VXQcwJS4KhddnwZ1mtewGZrRby6qtYFDLa9rxapSLGM4Csup6pVTDcaTj/jv03/+bf5BnzeC77OVZVrOLriq/5uuJrXDQuzPecz0PDH2Km18weuaYQQ9nFvhcDsL5qPbcH327naM6O9IyIXuGrd0Orav322ltVQLPFDMB/Z8QT5uzI/ckZKIrCzvIc2zlBJ/QQ9AUPBy2H6g19es3OKDc2sKn4EH5ObtwbP585gVF8mpVMUmnHW4bXtRjbXRJstLRgsphpaGnGimLrtTmxTW1L14ZpOiNMH8ZbsW9RPLuY/Jn53Bl8J+4ad76r/I5ZKbNw3eDKRakXsaV6S49fW4ihwl3rjl6tJ7Uh1d6hnDVJRkSvcNI62OZOGMwt/DfzV0wWM44aNbdGBvNjcRX3bP+VIkPrfikj3Ia1Ga7oC2Euesqbe3ZFTU9QgDBXby4PH0+YqzdzAkcyKyCSTcWH7B1at4ToQ3gz5k2KZhdROLOQe0LuwV3rzveV3zM7ZTYuG1y4IPUCNlZv7PRrflD8Af8r/l/vBS3EABHsGEyeceCWEzhGkhHRa84LibXNFdlVkcfSHV/zv0M7iHSqQKNSeCerHmvrtBIuDIvv8/jGeLpisirUmPpXQuKh0xN4Uon3QCcPqps77sVxd9C3uyRYr3FAp9Hi6uCIGhX17S0bPk0J+54WpA/itejXKJpdRPGsYu4NvRcvrRc/VP7A/JT5OG9w5vzd57O+an2Hr9FsbeaejHu48eCNvJb/WoftqoyN5DVUtXlUGQfubs1CtGeMyxgMVgNGc8/3cPYlSUZErwly8eT2mJm2hKTB3MzmksNsLjnMWNdGTIqaPfVOLI6Y2Gbn2r4y+2gp+J+Kuz+JtTdEuvtS2tR2Mm9pU91pK6tGuLcuGz5RWk0JEe6ty3a1ag1hbt6k1ZTanrcqCukntOlrAY4B/HPUPymYXUDxrGL+FPonhjkM48eqH1mwewHOG5xZuHshP1f+3Oa8dVXraLC07vx8b+a9vJr/6imvfWwvpGd2r2nzeGzXt5KQiEFlvlfr7uM/VP1g50jOjiQjoleNGxbCQ+PPY7LvcDSq499ukzwMOKphX707cwLts439oqDWD+GNpX23pLgzEoNjyKqvYHXeAcqa6tlRlsPmksPMCzp+n77KTuW9jG22r+cGRlFhbOCL7N2UGGrZWJRJcnkeicHRbV53S8lhkkqzKDbU8vHhnZis5lNqkdhDgGMAfx/1d/Jn5VM6u5QloUvwcfDhp6qfOC/1PJw2OHFuyrmsqVzDZ6WfoVUdn3t/X+Z9/DPvn7avW6wWVucfwHx0NdeJzIq1T5eQC9HbLvO7DIAfK3+0byBnSaUoJyxn6Kfq6urw8PCgtrYWd3d3e4cjuqmhpZkSQx0KCj56Vz7KqeCPuzL5U3Qof59kn+3rtR+vZbK3B0nnT7bL9Tuyt7KQr3JSKWuqx0fvSmJwTJvVNO9nJFHZ3Nhmxc6JRc88HZ25sN2iZxn8VJBGncnYWvQsYiIj7NQz0hkVpgpeyH2BT0s/Ja/59OPif4/6O3cF38Or+zdyqK7jugsuWh3/Nzaxz+coCdFbHNY7MNZ1LMlTku0dyik6+/ktyYiwK7+Vm6gxmam5Zi7OPVQJtavXV6mg9Mq5fX5t0TVVpip+n/57Vpav7LDNtZ734m6Yavs62sOfEBdPakxNHKguwnh0VZeXozNPTLwIR41UNxADX/DmYAxWA9Vz+1+vX2c/v2WYRtjV65OjaVEUfr8j3S7XD3dxoqrZbJdri67x1nnjqnVtM0RzshU1r7Kx5d84arQ8NP48loxdwDWRE7kjdhbPTr6U4Ucr/lY3G9osKxdiIIt1iaXWXIvVeurQ5EAhyYiwq2uGBzDcRc/H2SVU9vDGdZ0x3tsVs6JQZBjYM9GHghZrC1+WfYlZOX3ymKls4lPT/bxf/hr7GvbZfkG7ODjym5HHh+O2lHS/8qwQ/cksz1koKGyr3Xbmxv2U9FGKbttUdIhNxYeobG5d2RDo7MFFYWOI9w7q8Jzk8jy+zt1LpbEBPyc3rhgxnnenjWbBuhRuSjrAd/PG823uPjaXHKbJ0kKkuw+/GTkZf6feGZ6b6+fF8sNF/FBUyW0j+35Fj+i8LTVbqLO0XWWkRk2wYzAxzjFYTR7UN2lppJpoT0/+mf9Pnsx+Er1az2Phj/HwiIcJdxuGl86ZapOBsg52VxZioLnE5xKeyH6itaig1+krQ/dXkoyIbvN0dOLyEePwc3IDBZLKsnnz4C88OuH8dqupHqkr5530rVw2YhxjvYPZUZbDWwc388iE84n3cOGHoko+OrKXXWWZzAlO4D9Z1WSW1FJh3MBfJ15kWyLckxYFtu5Rs7msRpKRfi7GJYYHwh4g0DGQKKcoopyjiHCKQKdu3UDwg8xf2Xa0Su1DkecR5OLGN+XfsOTQEh7NehQFhYeGP2TbM0nVpxsQCNF7xruOR4WKpNoke4fSbTJMI7pt3LAQxngH4+/kjr+zO5eFj8NRoyWrvrLd9usKM4jzDmRhyGgCnT24NHwcYa5ebCzK5H8z41GA5w7kk2YI5qot2awuqqHQqKe6uYm1hem9UrjKW6/DQaVib438ldzfBToG8mLUiywJW8LFvhcT4xJjS0SANqtjdpbl4qh25Gr/q8mdmcvjIx7n0axHCdoSQlFz4SnthRjI1Go13lpvMgwZZ27cT0kyInqEVbGysywHk8VMhFv7S0Wz6tvfzC2rvoJgJ0cC9VoONjiyttTAsSVeRYZ6LIqVVTl7eq1wlY/egdxGmTMy0E3zG2HbD2lj8SF2V+QDoFap+WvEX1kS8iBlLSWsMC8hz5p62o0HhRhoRjqPpMLUM5te2oMM04izUthYw99Sf6LFasFRo+UPo2cT5OLRbts6kxH3k0qPO6h0rCmx8nzmFowWK6DixPngFuXUrnSzYqXB3Iw3HVck7YqRrs5sLa/pkdcS9uPq4Mj8oGh+LkzDolh5O20zYa5ejHT3pcLYiKFqHOdr/8xP5r+zxvwi42o0TPZ9zt5hC9EjprpPZXvddjINmYxyHmXvcLpMekbEWfF3cuPRhEU8NH4hcwOjeD/jV4oaazt9/r27S9lWrcdgsdLeorS+WKg20dsNK5BRK2XCB7rLR4xjkk+Y7eu8hmrWF2Wyt6oQKwph6vH80W05AbpA/pb3PHN2zcFslaXdYuBb5LMIgFVlq+wbSDdJMiLOilatwc/JjeFu3lw+Yjwhrp6sL2p/3NJdp6fupO3qLwjUo1EpaDqYS9hez0hPmx/gBcCXeUWyqdoAp1GpuS1mJreMmkaoi1eb59wd9FwQGsczE35D4cwCzvM+j821mwnaEkROU459AhaihyR6tVZj3lSzyc6RdI8M04gepShgtlrafS7CrXUzt8TgGNuxIF0tz8a78WEeHKht5ORywNY+qA+cGNBaCOs/hzPJqTneq6NVqXlq0sV463tmOEj0DbVKxXT/CKb5jaDC2EBdixFHjZZAJw806uN/f/044UeeyX6Gx7IeIyopis/iP+Nyv8vtGLkQ3adVa3HTuHGg8YC9Q+kW6RkR3fZVdiqZtWVUGBsobKw5+nUpU/zCAXgvYxtfZafa2i8IjuZAdTE/F6RRYqjl29y95DZUcX1kLLsWTWVJbGv3uuqElMTaB8svnbVaHNUqKk1tfxyOzU0RA5NKpcLXyY1Id19CXLzaJCLHPDLiEdYnrEer0nLFviu4P/N+O0QqRM8Yrh9OcXOxvcPoFukZEd1W32Lk/Ywkak1NOGkdCHbx5N74+Yz2CgSgqtnQppZDpLsvv4ueyde5e1iVswc/JzfuHD3btsTypYRRLAwcxtWbU6ltaZ3MaumgZ6Sj3pfu8nHUUmbs2dcUA8M8r3nkzsxlys4p/CP/H2yr2camhE3otfoznitEf5LglsD+xv1UmCrw0fXfDTDbI8mI6LabRk077fMn7ih7zETfMCb6hrXTutW5gcPYfO5YLtu4iyyDAwpgtcLJf9R+lpXCkjEL0PXQRmcRrnoKm0ztXksMfn46P7KmZ3HFviv4uuJrgrcGs23SNqJd7LObtBDdca73ufy35L98Xf41twXfZu9wukSSEdGvNFvMfHRoKwuGGVAp7hxp0uPgEMQ8fzfyG6vJrG3dGj67vpIVR3adMSHqrHGezmwur6eyRYuvo6yu6I9+yD/A7op8Sprq0Kk1RLj7ckX4eAKcT79VQHtbEIzxPl5tV1EU2xYEIZbruNF1PB81PE3cr3H8d/R/+U3gb3r7rQnRIy72uRiAddXrBlwyIn8Din5lR1kO1c0GVCq4NVzLHD8PNlc5cuWIBP5vbCIPjjsPR3VrDp1Umk11s6FHrjvbt/UDLd+oO0NLYS+ZtWXMCxrFQ+PO4774c7BYrfxz/3qaLR0nj8e2IJgZEMGjCYsYPyyEtw5uprCxxtbmx4I01hdlcH3UFB4afx7TXOdzh8vrOKr1XH/wev6Q9oc+eHdCnD0PBw/0aj2763fbO5Quk2RE9CtbS4/vpHpD1BRemDCK/bWNfJxTAkCEuw8Lglu7zq0o/FqW3SPXnTTMBVAoa5bOwv7qvvj5zPCPIMjFk1BXL24ZNY2qZgO5DVUdnnO6LQigtVdkXWE6F4TFM35YCCEuXtwaPR212ZPvYpIY6TSSfxX9i/Hbx2Mw90ziK0RvCtIFkW/Mt3cYXSbJiOhXSo/upOrl6MxwN2+m+ngww9eD27cfpLGl9S/gCT6hp7Q/W1q1Gq1KocYsychA0WRpAcBF23Fv1um2IACoMDZS12Ik9oQ2TlodI9x8KDM0kzEtg2v9rmVPwx6CtgSxv35/L7wTIXrOWNexNFobMZoH1hYXkoyIfuXY6huL1YqitC6luT86jGarwk/FrRvwHdt1FXruG7jZbMZZY8VgkR+JgcCqKHyWlUyku+9pN7xrbwsCdwc9tabWX9R1LU2tx3QntdG1tlGr1Xwy5hPejH6Teks943aM4z+F/+nZNyNED5rnNQ+AH6t+tGscXSW/eUW/Enx0X5u6FqNtsuqVYX6McHXi+6LWZGRHWa6tfdBZ7ryqKApr8g/w6oENeGnNmBUV1hNq0H+ZnYrBbDqra4ie98nhnRQ11nJ7zMw+ud6dIXeyc/JOnDXO/C79d9x04KY+ua4QXXWZ32UArKlcY99AukiSEdGvzA44vpPq/w7voLypAZVKRbyHC+8dKSKpJJeNxa3j/Q5qDdP8RnT7Woqi8HlWCl/l7MFkteDnaAZUFDc72Nqk1ZTwyt51NJlbun0d0bM+ObyTfVVFLBm7AC9H59O2bW8LgroWIx5He0LcHZxaj5lOamM63uaYBPcEimcVM9plNB+WfEhsUix15rqzfTtC9Kjh+uFoVVp21u+0dyhdIsmI6FcSfEIJcm7tHSlrqufx5G958+AvhOkNWIH7klOwHh2+mRc4ClcHx25f62BNMeuO7qOjAs47Whbe12UEcwNGoj9awyS/sZpVOandvo7oGYqi8MnhnaRWFnD/2HPw0bue8ZxjWxCcKK26hAi31oJQPnoX3B30bdo0mVvIrq+wtTmRq9aVA9MOcEvgLaQb0gneEsyu2l1n+c6E6Fl+Dn4caTpy5ob9iCQjol/RqjXcEzcPv6MfNFZFYU9lAc3NOahQyGxo/Ut2kk8Yl48Yd1bXWl+Yafv34shJPJkwCyeNGn9nD34TNYWHxi/EQa0BWpcRS++IfX1yZBfby3K4LXoGeo0DtaYmak1NmE5Y2tvZLQjmBbVusa5SqVgQHMPq/P3sqSygsLGG9zKT8HR0YvwJE6VP9t7o93gv9j2aLE1M3TWVN/Lf6LX3LURXxbjEUGuuxWrti33Pe4YsHRD9zjC9Cw+NX8jPhelsKTlCfYsRtRp8dS2UmRxYHDGFeUGRqFXd37emydzCgeoioHXlztzAkahVahK83ThU37qEM9DZg2l+I9hccphmq5n9VYVMPrrvjuh7m4oPAfDyvnVtjt88ahoz/COArm9BALAwJBaTxcz/Du3AYDYx0sOXe+Pm2xLRjtwSdAuT3Sczc9dM7sm8h43VG/k0/lPUUsJX2NlMz5msr15PUm0SM736Zl7V2ZJkRPRLLg6OXBY+jovC4ik21NFsMTPer4G7dh1hR42Gc4LPbgO9hpZm23Z8kW4+qFWtHyD1LWZ2VNSxtayGmX6ejPTwZXPJYYBT5h6IvvWv2WeuhNqdLQhUKhWXhI/lkvCxXY4pzjWOollFzEqexcrylUQlRbFz8k68dd5dfi0hesolwy7hqeyn+K7yuwGTjEgKL/o1rVpDqKsXIz18+X3UcLQqFe8fOftdKXWa43/1VjY32v79zLiRjHRzYs7aXTy1L4vypgbbc449tA+OGFyctc6kTE3hzuA7yTJmEbI1hK3VW+0dlhjCEtwSUKEiqTbJ3qF0miQjYsBQq9VM8nYns96AwXx2+8e4O+gJdGotAZ9dX0lOfeuy4YtCfNl74TQejR/BX/dlcX1SMck1zlSYtIS6DqxdMEXfejPmTVbEraBFaWF2ymxezn3Z3iGJIUqtVuOt9SbDkGHvUDpNkhExoNwbHYIC/DP97Modq1Qq5gRG2b5+6+Av7KsqxKooaNVq7hzpwx/Cod6iIrnOlS9LvIn4ehcjVm3hsk2pPJJ6mI+zS9hTXY/RYjm7NyUGjcUBizk47SDeWm8eOPwAF6VeNKAmEYrBI9I5knJTub3D6DSVcqzMZT9WV1eHh4cHtbW1uLuffodO0f9VNxv4MjuVA9VFmKwWfPWu3DxqGuFuwzo8J6OmlM+zUihqrOV/hV4EOjmQcek5bdpsKMrk54I0ak1NhLh6cW3kREa0szzzGJPFzAt7fia/sdp2zM1Bj16jpdzYOjyTVOXCvgaXNuepAK1KRcvRHx018OnsMVwV5t/FOyEGK5PVxNzkufxa9yuhjqHsmrILP52fvcMSQ8i9GffyWsFrZE7PJMo56swn9JLOfn5Lz4joU40tJl7c8zMatZo/xs/jrxMv5OqIhNPuL1JhbOD1AxuJ9vTnsYmLiHF3JNdgZld5ga3NzvJcVmalcGFYPI9MWESIiyev7t9wSjGrE+k0Wu6Nn8+IE5Kg+hajLREBmOvTgqdD21UVCtgSEQCNSkW0W9uERQxtOrWOpMlJLAldQn5zPsO3Dmd91Xp7hyWGkEXDFgGwqnyVfQPpJElGRJ/6seAgXo7O3DJqGiPcfPDRuzLaKxBfJ7cOz9lUfAgfvStXRyQQ6OzB/42Oodmq5pWDB2xt1hamMysgkpkBkQS5eHD9yCno1Fq2lZ6+8I+7Ts+fx53LH2JnM9ozABetI3qNAyEunlwdkcDzUy7hibGRnG7tzisTRzHG68wFuMTQ8/Kol1k1ZhUWxULi7kSezHrS3iGJIWKB9wIANlVvsnMknSPLA0Sf2ltZwGivQP6VtplDtWV46pyZGxjF7MCRHZ6TVdd259Wrw/y4JUkhubq1CJnZaiGvvopFIaNtbdQqFTGeAWTVVZwxJo1KzQSf0Da7AZ/o91EhPH8ghxKjiZPHNOf7e3H3qJAzXkMMXZf6Xcqh6YeYsnMKy7KXsblmMz+M/wGtWn79it6jU+tw1biyv3Fg7DQtPSOiT5UbG9hUfAg/JzfujZ/PnMAoPs1KJqk0q8Nz6lqMbXZVVavVjPPUk9uko6bZSENLM1YU3NrbebUHaoM4atQ8OS6yTSJyrKdkU2k1/z5ceNbXEIPbcKfhFM4qZK7nXNZWryVsaxgFxoIznyjEWQjXh1PcfPalEPqCJCOiTylAmKs3l4ePJ8zVmzmBI5kVEGmrrtlZ14YNo9mq5tWMvkkEbo4IZLiLvs1wzasTR+Gi1fCHHekkrkvBZJZVE6JjWrWWjRM38sjwRyg2FRO5LZLVFavtHZYYxBLcEjApJipMZ+4htjdJRkSf8tDpCTy6Ed4xgU4eVDcbOjzH3UF/ykTUSd463LVm/pdTiquDI2pU1Lez86qrVsenR5JZumMV92z9lL+l/mSrKdKRjJpSnk75gbu3rODRnd+wrTQLB7WaZ472jqiA64e7U1y3m+uDSpnkYWJdSSV+X/7CzsraLt0PMfQ8PfJpfhj/AwAX7rmQhw8/bOeIxGB1bN7I1+Vf2zmSM5NkRPSpSHdfSpvabrte2lSHt2PHq1Ei3E/deTW9tpQoFzhcb6DZohDm5k1aTanteauikF5TQnWzgbSaEm6NnsHjCRcw2iuAv+9b32Hyc+LKnUcTFrEgOJoPM7dzoLqIa4cHEO/hQpyHI65KFheGxfNYwiLujR7GZf71NJjNTF2zk0dSD5/FHRJDwfnDzid7RjZBuiCey32O2btmY7Ka7B2WGGQuGXYJAOur+/9KLklGRJ9KDI4hq76C1XkHKGuqZ0dZDptLDjMv6Pg6+K+yU3kvY5vt67mBUVQYG/giezclhlo2FmWSXJ7HTRFhKMAr6XkkBsewpeQwSaVZFBtq+fjwTpotLRQb6rhyxHhGefjh5+TGxcPH4ufk2uGw0Mkrd+YHRZPgE8rawgw0ahW/nj+FxcEG5gS2Xbkzyk3FO5N88NfrePZADmO/T6LGJB8uomNB+iDyZ+az0HshW2q3ELIlhGxDtr3DEoOIp84TvVrP7vrd9g7ljCQZEX0q3G0Yd8bOYWd5Dk8kf8/3efu5JmIiU/1G2NrUmpqoOqHnwkfvyj1x80irLuGplB/4uTCdG0dN5Z6YGBxUKj7MKmay73CuipjAN7l7eTrlB/Ibq/lD7BysKGhVbeuEOKi1HKlrvzLhySt3AEZ7BdpW5TiqobChitgT2hxbuWNoqaXw8llcHebHvppGAr/YwncFA6cCouh7arWaNRPW8EzEM1S0VDDq11F8UfaFvcMSg0iQLog8Y569wzijbq0te+ONN3jxxRcpKSlh3LhxvPbaa0yZMuWM561YsYLrrruOSy+9lFWrVnXn0mIQGDssmLHDgjt8/pbo6accOzZscrIpw9zZVlFLg8nM/KBo5gdFt3k+ws2H1fn7CXR2x12nZ0d5Lll1Ffg5tV8X5OSVO9C6KsdoacFkMWMwmzpcuVPSVIdareaz2WP5PLeUG7bt5+JNe7hpRADvTRstW8uLDj084mFmeM5gUeoirtp3FX8K/RN/H/V3e4clBoExrmPIqsjCaDai1+rPfIKddPm346effsqSJUtYtmwZKSkpjBs3joULF1JWVnba83JycnjggQeYPXt2t4MV4mR/ijk+VNOe30ZPR1HgwR2ruHvLp2wozGCy73BUpy1jdvauHu5P/uWziXZz5r/ZJQz/eiu5DU29ek0xsM3zmkfezDyG64fzj/x/MGXHFIzms1+aLoa2eV7zAPip6ie7xnEmXU5GXnnlFW6//XZuvfVWRo8ezdtvv42zszPvvvtuh+dYLBauv/56nnjiCSIiIs4qYCFOdEWoLzq1ig+z219L7+vkxgPjEnl1xjU8P/Uylk44H4tixUfffs9Ieyt36kxG9BoHdBrtaVfueDi0/avDT68j/ZIZ/CkmjAJDM5HfbOXfh6S2hOiYr86XrOlZXOpzKTvrdxK0NYiMxoGz86rofy73vRyANVVr7BzJ6XUpGTGZTCQnJ5OYmHj8BdRqEhMTSUpK6vC8J598Ej8/P2677bZOXae5uZm6uro2DyHao1armTLMgyMNTTSYzB22c9Ro8dA50dhi4mB1MeOGtV81tb2VO2k1JUS4t264p1VrOly5c6zNyf4+cRSbz52Is0bD73ekc67UJBGnoVarWTVuFa9EvUKNuYa4X+P4qPgje4clBqjhTsPRqrTsqNth71BOq0vJSEVFBRaLBX//truT+vv7U1JS0u45W7Zs4T//+Q/Lly/v9HWee+45PDw8bI/Q0PbLdAsB8Kfo1qGal9sZqjlQXcT+qiIqjA0crC7mlX1rCXB2Z6Z/aw9dZ1fuJAYfn4vS3sodk9XMDP+Oe/1m+XlRduVsZvl6srakCv8vf2GX1CQRp3F/2P1sm7QNR7UjNxy8gTvS7rB3SGKA8nXwJaup4yrX/UGvzqirr6/nxhtvZPny5fj4dLyV+8mWLl1KbW2t7ZGfn9+LUYqB7vJQnw6HaprMLXxyZBfLdn3HexlJjHT35b74+WiOTibt7MqdOK8gW5v2Vu7cGzcfd53TaePUa7VsPm8SL0+Ioq7FzJQ1O3lcapKI05jmMY3CmYVEOUWxvGg547aPw2DuuECgEO2JdYmlxlxDTl0FeQ1VtkeVsdHeodmoFEU5ee+vDplMJpydnVm5ciWXXXaZ7fjNN99MTU0NX3/dtspbamoqEyZMQKM5vrTSam3tnlar1WRkZBAZGXnG69bV1eHh4UFtbS3u7u6dDVcMIXN+2sXm8hrqr56Hq67/b0CWUdvI3LXJlBpNjPN0ZeO5CXjqdPYOS/RTVquV6w9cz4qyFbhr3Nk6cSvxbvH2DksMEH/OWMpLBc9zqXYZ/upRtuNalZqnJl2Mt77jopNnq7Of313qGdHpdEycOJF169bZjlmtVtatW8f06acux4yJiWHfvn2kpqbaHpdccgnz588nNTVVhl9Ej7k/NgyAl9Jz7RxJ50R7uFB0+SyuDPVlT00DgV9uYXVh/98/QtiHWq3mkzGf8Fb0WzRYGhi3YxzvFL5j77DEADHH/RwAcq1ti5+ZFSsN5mZ7hHSKLg/TLFmyhOXLl/PBBx+QlpbGnXfeSWNjI7feeisAN910E0uXLgVAr9cTHx/f5uHp6Ymbmxvx8fHo5C9B0UMuDW4dqvlfdvtzl/ojtVrNyjnj+HRWPFZF4cKNqdyadMDWeyjEyf4Q8gd2Td6Fi8aF29Nv56YDN9k7JDEAjHGZAKgoVTLtHUqHupyMLF68mJdeeonHH3+c8ePHk5qaypo1a2yTWvPy8iguHhhbFovBQ61WM82ndVVN3WlW1fRH1wwPsNUkeT+rmHCpSSJOY4L7BIpmFTHaZTQflnxIbFIsdWZZcSg6plarccSZGqX/fjZ3ac6IvcicEdEZq/LLuPyXvTweP4Inxp15LlJ/dP+uDP6RkY9WpeLNKTHcPrLjSrVC/Pbgb3mv+D1cNC5snLCRSR6T7B2S6IfyGqqYtH0KFWRzu+7DNs89MuF8wly9e+3avTJnRIj+7NKQ1gJo/8sZOEM1J/v7pGg2nzsRvUbNHdvTWCg1ScRpvDv6Xd6LfQ+jxcjUXVN5Pf91e4ck+iGz1YKvKgIFKzXW/tk7IsmIGDRUKhXTfTzIGoBDNSea5edF6ZWzmeHjwU8lVQR89QspldINL9p3S9At7Jm6BzeNG3/M/CNX7b1K5h0Jm72Vhbx2YBNhmvEA5FqT2zyfXl3azll9T5IRMajcH3N0VU3awFhV0xFnrZatCyfz0oQoak1mJq3ZwbI9R+wdluin4lzjKJ5VzATXCXxR/gVRSVFUmarsHZawsz2VBbx58BcMZhNBtC4FL1bS27T5Imc3yeX239VXkhExqFwa6oejWsVHOf2zK7Kr/m/0cA5eNB1fvQNP7s9mwve/DuheH9F7nLROpExN4a7gu8gyZhGyNYSt1VvtHZawE5PFzAeZ21FonRYa6xWEk8oZxaGKG0dOYeQJ21f899B2jOYWe4UKSDIiBqFpPh5kNRgHzYd2tIcLxZfP5spQX1JrGgj48hd+kJokogNvxLzBirgVtCgtzE6ZzYu5L9o7JGEHO8tzaTxaQ2SMdxBLxixgkc/5aNVqZgWO5IGx5zJhWGutL6Olhe1lOXaMVpIRMQgtOTpU8+LBHPsG0oOO1SRZMTMei6JwwcZUfis1SUQHFgcsJm1aGt5ab/5y+C9clHqRfK8MMamVx3cIvyA0HrVKxfnDzifXmEuTpQmVSsWFYcer+O6utO+2K5KMiEHnEttQzcBdVdORxeGtNUmi3Jx5L6uYEV9vJa/RaO+wRD800nkkRbOLmOY+je8rvyd8WzhlpjJ7hyX6SEPL8cqqw91al+4WNxdjxcr7xe8DEOLiiRoVgK0XxV4kGRGD0nQfT7IbjdSYTPYOpcf56XVkXjKDP44KIc/QTOTXW/nP4UJ7hyX6IZ1aR9LkJP4v7P/Ib84nbEsY6yrXnflEMeA5aR1s/y4x1LG+aj1PZT/Fed7ncYP/DQCUGeuxHp1T4qSxb0V0SUbEoHR/bOtY6IsH7T9LvLe8OjmGTYmtNUl+tz2N89enYJaueNGOl6JeYtWYVVixcm7quTyZ9aS9QxK9LM4r0Pbvd7O/44p9V3CO9zl8N+473BzcAPipIM3WZvQJ7e1BkhExKF0S0jpU8/EgHKo50Rz/4zVJfiyuwu+LX9hdJTVJxKku9buUQ9MP4evgy7LsZSSmJGK2Do5J3uJU0/0jsKga2Wr+L4+X3oiD4sTbUe/hoHag0tjIx4d3sqWktVyAVqVmVkCEXeOVcvBi0DpnbTIbSqupvnoOnkNgU8YXD+bw0O7DKMDjY0bw17EDsyS+6F1mq5nE3YlsqtlEoC6QHZN3EKIPsXdYoocoisLW2q28WfAmn5V+hgULAPM1dxGlmYle44DR0nYZ77WRk5gfNKpX4pFy8GLIO76qZvAO1Zzoz6PD2X/RNHwdHXhiXzYJq7cPmuXNoudo1Vo2TtzIY+GPUWwqJnJbJKsrVts7LHGW6sx1vJH/BqN/Hc3s5Nl8Xva5LRHR4ECkejpAm0REo1KzOGJiryUiXSE9I2JQ03+yjkAnR7Ivm2XvUPqM1Wrlqs37+KqgHCeNmi/njOX8IJ8znyiGnB8rf+SSPZdgUkw8NPwhnhv5nL1DEl2Ub8znqeyn+LDkQ5qtrStijhU6A1ChYpH3hdw97Hn2VhVgMJtw1uoY4x3ErICReOicejW+zn5+SzIiBrUFa5NZX1pN1VVz8HIc/EM1J/oku5ibkw7Soij8NiKI5VNjUKulM1S0VWQsYvLOyRSZipjpMZP1CevRqYfWz8pA9tiRx3g65+kOn1eh4tVRr3JP6D19GNVxMkwjBPB/scMBeOHgwN6rpjuuGxFI3mUziXJz5t2sIiK+3kZ+N2uSVBkbyWuosj2qjI09HK2wlyB9EPkz81novZCttVsJ2RJCtiHb3mGJTnok/BGu9L2yw+cVFBZ4L+jDiLpHekbEoOf0yXr8nXTkDKGhmpP9cWc6r2cWoFWp+NeUGH47MrjT51YZG3ls17eYlePLhrUqNU9NuhhvvUtvhCvs5NnsZ3k061E0Kg0r4ldwpV/HH3Ki/7AqVv5y+C+8nPfyKc/5OvhSOrsUlUplh8g6//mt7cOYhLCLGb4erUM1RhPe+qHZ/fza5BiuDPXjok17uG17Givzyvhm3ji0nRi2aTA3t0lEAMyKlQZzM95IMjKYPDziYWZ6zuT81PO5at9V3Bt6L/8c9U97hyU6UN1s4MvsVA5UF1HY4ocaLVbMqFChoKBVaTnX+9w2iUhGTSmfZ6VQbKjFy9GZC8LimeHfdlnvhqJMfi5Io9bURIirF9dGTmSEW+/OO5NhGjHoPXB0qObFtKE3VHOieQHelF05m2nDPPihuBL/L34htare3mGJfmau11zyZ+YTrg/n1fxXmbxjMkazbDnQ3zS2mHhxz89o1GrOCffhy5ZHcVI58/fIN9CpdKhRY1bMJHon2s6pMDbw+oGNRHv682jCIhYER/Nh5nYOVBfZ2uwsz2VlVgoXhsXzyIRFhLh48ur+DdSZevd7QJIRMegtCvZBr1bzSU6pvUOxO2etlqTzJ/O38ZHUmMwk/LCdJ/dm2Tss0c/46Hw4Mv0Il/pcyq76XQRtDSKjMcPeYYkT/FhwEC9HZ84LC+Pq9EUoWNk4cR1/Cr+LXyb+gofWA6DNfJFNxYfw0btydUQCgc4ezA+KJsEnlLWFx//fri1MZ1ZAJDMDIgly8eD6kVPQqbVsKz3Sq+9HkhExJMz09SDXYKTKOPj2qumOv8SNYP9F0/BxdGDZviwmSk0ScRK1Ws2qcat4JeoVasw1xP0ax0fFH9k7LHHU3soCAp1dmZQ0D4sVbnV9kSaDJwBTPKaQPCWZj+M+JkwfZjsnq66CGM+ANq8z2iuQrLoKAMxWC3n1VcSe0EatUhHjGWBr01skGRFDwgOjW4dq/jbEh2pOFOvhSskVs7ksxJeU6noCvvyFH4t69xeOGHjuD7ufpElJOKodueHgDdyRdoe9QxJAWVM9TxcspcR6mKWhj3Nj2MV8mpVMUmlrT+cIpxFcF3Bdm3PqWoy46/Rtjrnr9BgtLZgsZhpamrGi4NZOm9oWGaYR4qydH9Q6VLNikO9V01VqtZqv5o7jfzPiMFsVzt+Qyh2/HsR6dMO9/IZqvsnZ2+659b08hiz6j6keUymcWUiUUxTLi5Yz9texGMwGe4c1pO20fEmGdRO/C/odT4xaypzAkcwKiGRT8SF7h9YtkoyIIWOWnyd5hmYZqmnH9Udrkox0dWL5kSIiv9nGqtxMnt29hn0nTG470Tvp28ipr+zjSIW9eOo8SZ+WzrV+17KvcR+BWwLZW99+oip61x1pd7DLspLp+ov5d+y/bccDnTyobu44SXR30J8yEbXOZESvcUCn0eLq4Iga1Sl/aNSZjHg4tO0t6WmSjIgh44HY1rHT54dgAbTOCHDWc+jSmdwVFUJOo5ErtuSS1tC6FFqvcSDWM4CR7j6oaV0maLCYeHX/xtP+8hODi1qt5pMxn/BW9Fs0WBqYsGMC7xS+Y++whpQXc19kedFyRmmncJlL26qqpU11eDt2vNw+wt2H9Jq2vcNpNSVEuLcu29WqNYS5eZNWc3yyv1VRSD+hTW+RZEQMGQuDfNBr1HyaK0M1p/PGlBhuD7egUSlsqnJne20gz02+lD+NOYc/jzuP56Zcykh3XwAazc2sK5RVFkPNH0L+wK7Ju3DRuHB7+u3ccOAGe4c0JHxV9hV/OfwXhmmHsWrsF2Q3VLI67wBlTfXsKMthc8lh5gVFHW+fncp7GdtsX88NjKLC2MAX2bspMdSysSiT5PI8EoOjbW0Sg2PYUnKYpNIsig21fHx4Jyar+ZRaJD1NkhExpMz2bR2qqZShmg4VNFajslZyU3AFwXqFPbUWzlmXSklT6yZcno7O3BE7C62q9dfHttIjmK0We4Ys7GCC+wSKZhUR5xLHRyUfEZsUS525zt5hDVq7andx9b6r0av1pE5NJdYrhDtj57CzPIcnkr/n+7z9XBMxkal+I2zn1JqaqDqh59JH78o9cfNIqy7hqZQf+LkwnRtHTSXOK8jWZrLvcK6KmMA3uXt5OuUH8huruTduPu69vKGelIMXQ8rPRZWct2E3D8QO58WEqDOfMARtLTnCfw9tB+CK8PHUW4dxz850Gi1WlsSE8cS4SADePLCJPVWFADw58SL8neVnc6j67cHf8l7xe7hoXNgwYQOTPSbbO6RBpchYRGRSJC3WFn6d9CuTPCbZO6ROk43yhGjHuUHDcJKhmtOynvD3iV7jwFXD/VmfOBGD2cLW8hrbc44aB9u/Lf3/bxrRi94d/S7vx76P0WJk6q6pvJb3mr1DGjQMZgNjd4zFaDXy2ZjPBlQi0hWSjIghZ7avJ/mGZipkqKZdPnpX27/3Hu35WJlfhk6t4pNZ8QC0WC2k1RQDrUWRvByd+z5Q0a/cHHQze6buwV3jzr2H7uWqvVfZloiL7rFarUzYOYHKlkpeHPkiV/hdYe+Qeo0kI2LI+cuxAmgHc+wbSD8V7emH99HkYn91EUmlObyRWcCtkcH46h1RFIVVOXuob2mdQ5IwLBQnrcPpXlIMEXGucRTPKmaC6wS+KP+CqKQoqkxV9g5rwDo39VwyDZncEXQHDwx/wN7h9CpJRsSQsyDw2FCN7FXTHrVKTWJwjO3rG7bto8xoYraPwrrCdJ5NXcPawnQAVNCmrRBOWidSpqZwV/BdZBmzCNkawpbqLfYOa8C5Pe121lev5xyvc/hX7L/sHU6vk2REDElzZKjmtOYHRTPVN5yd1c5kGZxQobCxcDefZaWQ11Bta3fdyMmM6OX6A2JgeiPmDVbEraBFaWFOyhxeyHnB3iENGC/mvsg7Re8wynkUP4//2d7h9AlJRsSQ9Oe4cACeO5Bj1zj6K4PZwrelLuyub50/4qBqO0E11MWLu0fPZW6grEgSHVscsJj0ael4a7158MiDXJh6ocwjOYMvyr6w1RLZPXk3avXQ+JiWpb1iyHJesZ5hjg7kXz7b3qH0KzkNTVy4MZWMukYsR387eDioWTUrBLVKTZirF8NdvVGpVPYNVAwYJquJecnzSKpLItQxlJ2Td+Lv6G/vsPqdXbW7mLZrGg5qBw5PP0ywPtjeIZ01WdorxBnM8fOiwNBMmQzV2GwqrWbC6u1k1hlsiQiAyQrzgkYxJ3Ak4W7DJBERXaJT69g2eRsPhD1AfnM+w7cOZ13lOnuH1a8UGAuYndL6h9GWiVsGRSLSFZKMiCHr2Kqa52WoBoC3MwtYsC6ZuhYz5pM6TI0WKwOgE1X0cy9GvcjXY77GipVzU8/liawn7B1Sv2AwGxi/fbytlshE94n2DqnPSTIihqxzArxx1qj5XFbV8PS+LO7cmY5FgfZG9BWgWcb6RQ+4xO8SDs04hJ+DH3/N/isLUhZgtprtHZbdWK1Wxu8YT6V58NcSOR2tvQMQwp7m+HmxpriSMqMJP73O3uH0qepmA19mp3KguojkGi1alQtWRdVuMgLQaLaQW1/B51kpFBtq8XJ05oKw+FM20NpQlMnPBWnUmpoIcfXi2siJjHCTFTfiuOH64RTMKuDc3eeyvno9oVtb55GE6EPsHVqfOzf1XA41HRoStUROR3pGxJD24NGhmuf2Z9s5kr7V2GLixT0/o1Gr+WP8PL6Yn8gvibE8HBeKj2P7BczyG+t5/cBGoj39eTRhEQuCo/kwczsHqotsbXaW57IyK4ULw+J5ZMIiQlw8eXX/BupMxr56a2KA0Kq1bJi4gcfCH6PEVELktkhWV6y2d1h9aqjVEjkdSUbEkDbv2FBNXpm9Q+lTPxYcxMvRmVtGTWOEmw8+elem+4Xw1PhoZvt6ADDCRQ+0FjYD2FSchY/elasjEgh09mB+UDQJPqGsLcywve7awnRmBUQyMyCSIBcPrh85BZ1ay7bSI339FsUA8WTkk/w4/kdUqLhwz4UsPbzU3iH1iaFYS+R0JBkRQ95cPy8Km5opbWq2dyh9Zm9lAcNdvflX2mYe+PULnk75gc3FhzGZrXxbWMlwZz1HLp3J2gUJnBfojYNKRVlTDTGeAW1eZ7RXIFl1FQCYrRby6quIPaGNWqUixjPA1kaI9pw37DyyZ2QT7BjM87nPM2vXLEzWwbvKzVZLxGFo1RI5HbkDYsh7aAgWQCs3NrCp+BB+Tm7cGz+fOYFRfJqVzB927MSsKDw1LhKVSsWCAG/WnJOA8bpzUGPEXadv8zruOj1GSwsmi5mGlmasKLi106a2RYZpxOkF6gPJm5HH+d7ns7V2K8Fbgsk2DL7h0121u1i8bzFOaif2TtmLs1Y2mQRJRoRgjr8Xzho1K4fQUI0ChLl6c3n4eMJcvZkTOJJZAZF8W1iNh4OGGyMC27RXS10R0QfUajU/TPiBZyOepbKlklG/jmJl6Up7h9VjTq4lEqQPsnNE/YckI0IA8/xbh2pKDEPjL3gPnZ5AZ482x/bVQoVJy92jQts9x91Bf8pE1DqTEb3GAZ1Gi6uDI2pU1LfTxsOhbW+JEKezdMRSNiRsQKvScvX+q7kv8z57h3TWTqwl8vmYz0lwT7B3SP2KJCNCAA+ODgfguQO59g2kj0S6+1LaVNfm2P9yqnHTWHhibES750S4+5BeU9LmWFpNCRFHN8rTqjWEuXmTVnO8botVUUg/oY0QnTXXay75M/MJ14fzav6rTNoxCaN5YP6xcGItkZdGvsTlfpfbO6R+R5IRIWgdqnHRqFmZPzQKoCUGx5BVX8HqvAOUNdXzTuYB8ptgvr8b2qOT6b7KTuW9jG22c+YGRlFhbOCL7N2UGGrZWJRJcnkeicHRbV53S8lhkkqzKDbU8vHhnZis5lNqkQjRGT46H45MP8JlPpeRXJ9M0NYgMhozznxiP3Oslsjvg37P/w3/P3uH0y9J0TMhjprn78X3RZWUGIwEOA/uYYVwt2HcGTuHr3JS+T5vH79UuaFW6fjP9Em2NrWmJqqaDbavffSu3BM3j8+zUlhfmIGnozM3jppKnNfxce/JvsNpaDHyTe5e6kxGQly9uDduPu46pz59f2LwUKvVfDXuK/6R9w+WHFpC3K9xfDD6A64PvN7eoXXKsVoiC7wW8Hbs2/YOp9+SXXuFOGpLWTWzf07mnlEhvDY5xt7h9JnsegMR32xjtq8nv5w36cwnCGEn22u3c07KORisBm4Pup1/x/7b3iGd1gu5L/Dg4QcZ5TyKtKlpQ3IJr+zaK0QXzfLzwkWr5sv8obOqBuCuna3d3m9Ojj5DSyHsa6rHVApnFhLlFMXyouWM/XUsBrPhzCfawRelX/Dg4QfxcfCRWiKdIHdHiBPM8/OmqMlE0RBZVdNgMvNTcSWj3JyJ93KzdzhCnJGnzpP0aelc63ct+xr3EbglkL31e+0dVhs7a3eyeH9rLZE9U/ZILZFOkGREiBMsjTu6V80QKYD2wO5DWIEXJoy0dyhCdJpareaTMZ/wr5h/0WBpYMKOCbxT+I69wwJaa4nMSZkDSC2RrpBkRIgTzPTzwkWr4YshMFRjtVr5ILsYH0cHLg31s3c4QnTZHcF3kDwlGReNC7en384NB26wazwGs4Fx28dhtBpZOWal1BLpAklGhDjJfH8viofAUM0r6fkYLVb+HBtm71CE6LbxbuMpmlVEvEs8H5V8RExSDHXmujOf2MOO1RKpMlfx0siXuMzvsj6PYSCTZESIkzw0unWo5tlBPlTzwsEc9Go1D8QOt3coQpwVV60r+6bt47eBvyXDkEHQliB21u7s0xgSdydKLZGzIMmIECc5NlTz5SDeq+bbgnLKm1u4MSJAZvmLQeM/o//D+7HvY7QYmbprKq/lvdYn17097XY21Gwg0StRaol0k/wWEqIdC/y9KDaaKBikQzUPpBxCDbwyYZS9QxGiR90cdDN7p+7FQ+vBvYfu5cq9V2K1Wnvtei/kvMA7Re8Q7RzNj+N/7LXrDHbdSkbeeOMNwsPD0ev1TJ06lR07dnTYdvny5cyePRsvLy+8vLxITEw8bXsh+oOH4sIBeG5/jl3j6A37q+vJrDdwbuAwXHVShFkMPqNdR1M8s5gEtwS+LP+SqKQoKk2VPX6dlaUrefBIay2RlMkp0st4Frp85z799FOWLFnCsmXLSElJYdy4cSxcuJCysva7tDdu3Mh1113Hhg0bSEpKIjQ0lPPOO4/CwsKzDl6I3jLd1xNXrWZQFkA7VuTsLSlyJgYxvVZP8pRk7gq+iyxjFqFbQ9lSvaXHXl9qifSsLpeDnzp1KpMnT+b1118HWmcQh4aG8sc//pGHHnrojOdbLBa8vLx4/fXXuemmmzp1TSkHL+zh0o2pfFNYQf7lswgZJHvVVBlN+HzxC2M8Xdlz4TR7hyNEn/is9DOuP3A9FsXC85HP85fwv3TqvMqmBiqaGzArCk4aLZ46Z7z1LhQYC4hKiqLF2sKOyTtkCe9pdPbzu0t9tCaTieTkZJYuXWo7plarSUxMJCkpqVOvYTAYaGlpwdvbu8M2zc3NNDc3276uq+v7ZVpCLI0bwTeFFTy7P5s3p8TaO5we8cfkDBTg7xNlrogYOq7xv4aJbhOZunMqDx55kE01m/h27LcdDqs0mVv4qeAgq/MPtDmuQsVvYyez6MBUjFYjq8askkSkh3RpmKaiogKLxYK/v3+b4/7+/pSUlHTqNR588EGCgoJITEzssM1zzz2Hh4eH7REaGtqVMIXoEdN8PXDVavgqv9zeofQIs9XK57llBDnpOCeg4z8GhBiMIp0jKZpdxAyPGayuXE34tnBKmk/93KowNvDs7h9OSUQALFYL5+6ZbaslcqnfpX0R+pDQp7Ntnn/+eVasWMFXX32FXt9xt/fSpUupra21PfLz8/swSiGOW+DvRckgWVXz5L5sWhSFx8dE2DsUIexCp9axddJWHgh7gPzmfMK3hrOucp3teaOlhX/u30CZscF2LMjZg5HuPjiqtXxveY46SohVLeAcl2vs8RYGrS4lIz4+Pmg0GkpLS9scLy0tJSAg4LTnvvTSSzz//PP89NNPjB079rRtHR0dcXd3b/MQwh6Wxo0A4Jn92XaO5Oy9mpGPq1bD76NC7B2KEHb1YtSLfD3ma6xYSUxN5K9ZfwVga8kRyprqAfB3cufxhAtYNvFC/jzuPFq8N1KsHCRYFc9sh9/yVc4eujjlUpxGl5IRnU7HxIkTWbfueCZptVpZt24d06dP7/C8F154gaeeeoo1a9YwadKk7kcrRB+b6uuB2yAYqvkoq5jaFjN3jAy2dyhC9AuX+F3C4RmH8df580T2EyxIWcDGwnTb83fEziTYxROAtVVr+XfRv0hwS+Aer5cAKG2qI7N28K22s5cuD9MsWbKE5cuX88EHH5CWlsadd95JY2Mjt956KwA33XRTmwmuf/vb33jsscd49913CQ8Pp6SkhJKSEhoaGjq6hBD9yoIAb0qNJvIaB+5QzSN7jqBVqXhunOzOK8QxYfowCmYWMN9zPuur1/Ny/S00WCsZ7upNiIsXAB+XfMxFqReR6J3I9knbmR14/Gcou77na5cMVV1ORhYvXsxLL73E448/zvjx40lNTWXNmjW2Sa15eXkUFxfb2r/11luYTCauuuoqAgMDbY+XXnqp596FEL3o4fhwAJ4doEM1v5bXkmswckmIDzqtFGUS4kRatZb1E9fzUNjDNFHLCvP9ZFuSbc+vLFtJs9JMRmMGX5Z/ibPGwfacRbHYI+RBqct1RuxB6owIe3P/dAPOWg0lV86xdyhdNvmH7eyqqqfo8lkEDpJ6KUL0NKti5crNj/NNy9+wYmZJ6AO8POpFAFLrUnks+zG+q/iOAG0YbpYwQtVjOS94LBOHReKiccFF7dL63xMeapUk/71SZ0SIoSoxwJuvCsrJbWhiuKuTvcPptAKDkV1V9UwZ5i6JiBCnoVapuTroUlwLg/jS/Civ5L/Er7Xb2DBxA+Pdx/PtuG/5qGAVN2cspoQ8Dlm2sD4PyGv/9eJd4tk3bV+fvoeBTNI2ITph6bGhmgM5do2jq+7Z0Toh73Up/S7EGc0PGoWrxovfaF8lRDWObXXb8PslgG8KtvLfzO1szTGyWPMi6k78HR/vGt8HEQ8ekowI0QmTh7WuqllVMHBmzxvNZr4rqmCEi57JwzzsHY4Q/V6gswc3RU1Fo1ZzgcNfmKxeTK2lmssy5vBh0cdYFCuuGh9ucF962tdxUDnwfOTzfRT14CDJiBCdlBjoTZmxhdyGJnuH0ikPpR7BosBz42UFjRCdNd0/gnvi5hHi4skE7SVcpH0UNRrWWl5lu+VDzg2O5Z2Jy1jstxgNmlPOV6HivpD7GO403A7RD1wygVWITtpVWcvkNTu5fWQQ/5462t7hnJbVasX9843o1Gqqrp5n73CEGHAURSGrvoLs+koqTZXcn38txS0FTHSbyJaELRgUA7FJsVS0VGDF2uZcZ5Uzz498nj+G/dFO0fcfnf38lp4RITpp0jAP3LUavh4ABdDeOlRIo9nKfdFh9g5FiAFJpVIR6e5LYnAMi0fMpGBWLpf7XE5yfTJBW4MoM5XxQdwHpyQiV/peCSq499C9BG4O5MfKH9s8X2VsJK+hqs2jytjYl2+tX5KeESG64Mpf9vBlfjk5l87s16tqAr/4hSpTC42L56PtYGdSIUTX/SPvHyw5tAQ1at4f/T6bazbzTtE7KCiE68PJmJ6BChV/OvQn3i54GwsWxriM4dP4T/HXhvHYrm8xK20TGK1KzVOTLsZb72Knd9V7pGdEiF6wNC4cgKf7cQG0n4sqKTGaWDzcXxIRIXrYn8L+xK+TfkWv1nPjwRtptjYT4hiCgsIro17BQe2AVq3l9ejXKZ5VzAXDLmBf4z5Gbx/NFfsvocFSd8prmhUrDeZmO7yb/kPqjAjRBZOGeeDuoOHrgnKW2zuYDixJyUQFvDpplL1DEaJfyawt46eCg+Q1VFNrauLO2NmM9wk97TkZNaV8npVCsaEWL0dnLgiLZ4b/FApmFjA1eSoflHxApEM8s3XX8lN6E2mFP3Jt5EQ+KH+dNwveJH16OuWmchbvX8ym2vWo2EiMaj4zNTehVstH8DHyZ5MQXXRugDflzS1k1xvsHcopDtU1sr+2kbl+XnjqdPYOR4h+xWQxE+LixXWRnduwtcLYwOsHNhLt6c+jCYtYEBzNh5nbOVBdhKfOk7SpaVzqeQPZLWnsN2/gqpgRhLh4cm/q33gi+wnKW8p5s+BNol2iSZ2ayofRn+OEO2nKOt4z385e8w+9/I4HDklGhOiih+NGAPDM/hz7BtKOu3ZmAPDmFClyJsTJ4r2DuCx8HBPO0BtyzKbiQ/joXbk6IoFAZw/mB0WT4BPK2sLWnzO1Ws1UzQ3cM+w5aq3lnLt3JtnqH1ljeg1QAfBy3ssYLK1/uMzxPIcbdG8wU3MLKlT8av0fH5ruIs+6u1fe70AiyYgQXZQwzB13Bw3fFPavVTV1JjPrS6qIcXcm1sPV3uEIMeBl1VUQ4xnQ5thor0Cy6ioAMFst5NVXcWvItSRPScZZ7cyynGVYMAGta0NqzbW8V/Rem9eI05zLLdp3iFctxEg9a8wvce7emRxoONAn76s/kmREiG44L3BYvxuquT85EyvwcoLMFRGiJ9S1GHHXtd3TyV2nx2hpwWQx09DSjBUFN52esa5jmePVupGmwvFFqgoKz+c+j9lqbvM6arWaGQ43cbP2X4SpJpDZlE789njO230eFaaK3n9z/YwkI0J0wyNHh2qe7idDNVarlY9yivHTO3BBsI+9wxFiyHk251lWV65u97mC5gI+L/u83ed0amfOd3iAjWN3MMF1Aj9X/UzA5gDuSLvjlARmMJNkRIhuGO/thoeDhm/7yVDN8wdzabYqLB0dbu9QhBg03B301JmMbY7VmYzoNQ7oNFpcHRxRo2Jd5Toez3q8w9dRoeLJrKf45NDOjtuYPUmZmsLaCWsJdAxkedFy3De583Luyz32fk4uuNafiq1JMiJENx0bqjnSD4ZqXknLxUmj5t7ozk3ME0KcWYS7D+k1JW2OpdWUEOHe2vuoVWsIc/Mmo74QT62nrY36pD1rFBTSm9LYULOuw2t9cngX+6oKWeC9gPxZ+bwd/TYalYYHDj+A/y/+fFP2zVm9lypjI4/t+pZndq+xPR7b9W2/SUgkGRGimx6NP7aqxr4F0L7ILaXSZOaWiEDUUuRMiA4ZLS3kN1ST31ANQEVzI/kN1bYP5K+yU3kvY5ut/dzAKCqMDXyRvZsSQy0bizJJLs8jMfj4arXE4BiMdcF8F72T7RP2cM+wZ5igvYCpbtPQq9vON1lr/SdOWpgfOIobRk7horAxBDi1ViW1ovBO+lYaWlqLn/0+5PfUzqllSegSqsxVXLrvUkYnjWZ//f5uvfcGc/MplV/7U7E1qbgiRDeN9To2VGPfyWYPpR5Go4KXEqLsGocQ/V1ufRWv7DveO/F5VgoA0/1GcEv0dGpNTVQ1H+/p9NG7ck/cPD7PSmF9YQaejs7cOGoqcV5BtjaTfYfT0GLk27x91JmMhLhO5PMJdzDC3Qez1cy68l95Nu2/7LP8QDWFbFC9wJ+CVxHuFA7ABWFx/CttC3sqCzBazGwrzeK8kFigdZLry6NeZlnEMm46cBPfVHzDmB1jWOC1gBXxK/DRDZ75YbI3jRBn4ZrNe/k8r4zDl8wg0s25z6+fWlXPhB+2c0HQML6fP6HPry+EOL3Ps1JYW5gOwLQQd54uvo+alho+HP0hF/heAECpoY7Hk78DINTFi0cTFrX7WtmGbK7efzXJ9cmoUXNr4K28GfMmOvWZCxzmNVTxzO41pxx/ZML5hLl6d/ftnZHsTSNEHzg2VGOvvWru3tn6S+7NyTF2ub4Q4vRqTuhpuTBgLjsn72SC2wQu3HshMUkxPHDoAd4rexMcalvbm5o6fK0RziPYNWUXGxI2EOwYzH+K/4PHJg9m7ZrFz5U/9/p76U0yTCPEWWgdqtHaZaimzGgiqaKWCV6u/XoHYSGGMgfN8Y/ZOlMTI538WDlmJbcevBW1Ss0HxR9Q0dL6+0ONFi9zAIb0tdwQcAMzPGe0+5rzvOaRNyuPdwrf4U+Zf2Jr7VbOSz2P2wJvY3nsclQqVV+8tR4lPSNCnKXzg7ypbG7hUF3fzkq/Z2c6CvDqJCn9LkR/NdL9+LyOTcWHAfB08OSrcV/xxdgvKJtdxmvhnxCjOgc3fKmxlvJW4VvMTJ6Jdp2W8K3hXLfvOr4q++qUuiO/C/4dL4x8wfb1f4r/g9cmL3bWtl1CvL+qiPcyktqNL626pN3jfU2SESHOkj32qjGZrazKLyfU2ZFZfl59dl0hRNdM9g3HSeMAwI7yHL7J3YvR0gKAVbGSXJFHZqmaOQ63sVj3EumTCkiblsZDwx9ivNt4KloqWFG2giv2XYFugw7/X/xZtHsR/yr4F3XmOrbWbkVzwlLiWkstU3ZNYdauWZSZythQlMlrBzZSZKhtN74vc1L5Nndf79+IM5AJrEL0AK/PNqJRqai4em6fXO+h3Yf428Fc3p0ay60jg/vkmkKI7tlQlMmKI7tsXztqtIS4eFJpbGwzRyRhWCh3xM46ZZilzFTGh8Uf8n3F9+xp2EOVucr2nApVm/LzJ1KhIko1i1ma36FVa/HTuxHr6Y9apSa9poTipjpb29/HziahkxsIdkVnP78lGRGiB1y3ZR8rckvJvHg6Ue4uvX49j083oAB1i+f3+rWEEGdvdd4Bvs7d0+Hz47yD+V3MTHSaM0/lNJqNfFb+GR8Vf8RP1T+dsb0GB67xup2PJrzeJtH5seAgX2anAhDuNoyl4xee+Y10kaymEaIPPRIXDvTNqpp3DxdSZ7Zw56iQXr+WEKJnXBAWx6MTFjErINI2bKNVqYn3CuSu0XP4w+g5nUpEAPRaPTcF3sTNQTd3qr0VM59Uv8nEHRPZU388ITovOJZQl9Zh3pz6Sgoba7r2pnqQrKYRogfEe7nh6aDl+z5YVfPXfVloVSqeGhPZ69cSQvScUFcvboyayo1RU7FYrahVqrNa+bKlZgtalRazcnxiqwYNVqwoKKhQo0WHu9qLSmsxuxt2M37HeMa4jGHvtL2oVCrGDwshv7G1Im1ZUz3BLp5n+za7RZIRIXrIoqBhfJJbSkZtI9EevTNUs6WsmnxDM1eH+aHTSsemEAOVpge2bthQvaFNIuLj4MM8r3nM8ZzDcG0c3x4qRK3SMCsgkktHxLKlZguv5r+KRnV8wmuLYrH9255LgiUZEaKHPBI/gk9yS3nmQDb/nRHfK9e4d1cGKuB1KXImxJB3sc/FzGiZwRyvOczymEWEU4QtoWhsaWbNka+wKFZSKwpYHDGRC3wu4AKfC2znWxQru8pzbV8HO3v29VuwkWREiB4S5+mKl673hmpyG5rYXd3ADB8P/PRnLv8shOh9VsXKt7n72F6WQ12LEQ+dEzP8R3BBaPxpexoyakr5PCuFYkMtXo7OXBAWzwz/iDZtNhRl8nNBGrWmJkJcvbg2ciIj3I7XLXkh6oWTX9bGxcGRBJ9Qdpbn0mBu5v3MX7l51DQcj85LabFa+OxIMhVHNwmM9QzA18n1bG7FWZFkRIgedH5g61BNem0DMR49+4N919HS729Ir4gQ/caa/DQ2FR/m1uhpBDp7kFtfxQeHfsVJo+Oc4PYLElYYG3j9wEbmBEZxW8wM0mtK+DBzOx46vW0Tvp3luazMSuE3Iyczws2HdUXpvLp/A09MvBh3nb7d1z3Z+aGj2V2Rj/loPZO0mhLGegejUanYW1VEfYsRADUqLgjrnd7czpJBZyF60CNH96p55kBOj76uwWzmx+JKRro6Md7brUdfWwjRfVn15YwfFswY72B89K5M9A1jtGcg2fWVHZ6zqfgQPnpXro5IINDZg/lB0ST4hLK2MMPWZm1hOrMCIpkZEEmQiwfXj5yCTq1lW+mRTscW4uLFHbGzcFC3zhExmE38WpbN1tKsNonIzaOmMcrDr5t3oGdIMiJEDzo2VLO6h4dq/pxyCIsCz40f2aOvK4Q4OxFuvqTXlFJqaC0glt9QzeG6cuK9Azs8J6uughjPgDbHRnsFklXX+nvDbLWQV19F7Alt1CoVMZ4BtjadNW5YCEvHL2S63wi0quMf+WqVikk+YTw4/jym+Y/o0mv2BhmmEaKHLQoaxsc5paTVNhDbA0M1VquV97KK8dZpuWq4fw9EKIToKeeHjsZoaWFZ8neoVCoUReHS8HFM9ev4A76uxXjKUIu7To/R0oLJYsZgNmFFwa2dNiUnVE3trGAXT26Jns7iyEmUG+tRFPDRu+Di4Njl1+ot0jMiRA97NL5n96p5NSOfJouVJTHDe+T1hBA9J7k8lx1lOdwWPYNHJyzillHT+bkgjaTSLHuHdgonrQNhrt4Md/PuV4kISM+IED0u1uPoUE1RzwzVPHcwB0e1iqVxkowI0d98kZ3KwtDRTPYLB1p7ISqbG/kh/yDTT1odc4y7g546k7HNsTqTEb3GAZ1Gi1qlQo2K+nbaeDh0bvLqQCM9I0L0gguCfKg2mTlY03BWr7O6sIIyYwu/CQ9E3QNFkoQQPctkNaOm7RJetarjzesAItx9SK8paXMsraaECPfWZbtatYYwN2/Sakptz1sVhfQT2gw20jMiRC94JD6cj3JKeOZANh/NHNPt1/m/lEzUwD8mjuq54IQQPWasdzCr8/fjrXcm0NmD/IZq1hakMyPgeK/IV9mp1JgM3Bo9A4C5gVFsLMrki+zdzPSPIL2mlOTyPO6JP77rd2JwDO9nJBHu5k242zDWFWZgsppPqUVS3Wzgy+xUDlQXYbJa8NW7cvOoaYS7Desw5p6ocdLTJBkRohfEerjirdPyQ1HHy/vOJK22gfQ6A4kB3rjr5EdViP7o2shJfJ27l48P76S+pRkPnROzA0dy0Ql1O2pNTVQ1G2xf++hduSduHp9npbC+MANPR2duHDXVVmMEYLLvcBpajHyTu5c6k5EQVy/ujZuPu87J1qaxxcSLe35mlKc/f4yfh5uDnrKmely0HRdF7KsaJ12lUhSl476kfqKzWxAL0Z/ctG0/H2aXsP/CacR5dn1Vzfyfk9lYVk3mxdOJcu+dvW6EEAPXl9mpHKkr58/jzu30OV9k72Z/VRHLJl5oO7Y8bQsGSwv3xc8H4LnUHwl39ea6kZOB1iGipTtWMT9oFOeHxnUpxs5+fssgtBC95JG4Y6tqsrt8bnWziU1l1cR5uEgiIoRo197KAoa7evOvtM088OsXPJ3yA5uLD5/2nL6scdIV0vcrRC+J9nDp9lDNfcmZKMDfE2SuiBCifeXGBjYVHyIxJIZFoXHk1FfxaVYyWrW6w5U8fV3jpLOkZ0SIXnRhsA81LWb2d2FVjdlq5dPcUgL0Os4N6ngSmhBiaFOAMFdvLg8fT5irN3MCRzIrIJJNxYfsHVqXSTIiRC/qzlDNM/tzMFkVHokP76WohBCDgYdOT6CzR5tjgU4eVJ8wWfZkZ6px4urgaJcaJ5KMCNGLoj1cGKbTsqYLQzX/zMjDRaPmrqiQXoxMCDHQRbr7UnrS0ElpUx3ejh3PM+uvNU4kGRGilx0bqtlXXW87Vt9ipslsOaXtpzklVJvM3BYZLEXOhBCnlRgcQ1Z9BavzDlDWVM+Oshw2lxxmXlCUrc1X2am8l7HN9vXcwCgqjA18kb2bEkMtG4sySS7PIzE4us3rbik5TFJpFsWGWj4+vLPdGic9SZb2CtHLDtU1MurbJK4I9eWKUD9W5JbyY1Eli4KG8fW88W3aRqzaQp7BSMM189BrZX65EOL09lYW8lVOKmVN9fjoXUkMjmF24PHdvd/PSKKyuZH/G5toO3Zi0TNPR2cubLfoWQY/FaTZapxcGzGREd3oGens57ckI0L0ovoWM98WVHBL0gFajv6oaVRgVeD68AA+nHm8MNLOylqmrNnJpcE+rDopSRFCiIGos5/f8qeXEL3gSL2BJcmZ/FBUSYuitNm5wqKAVqVipJtzm3Pu2ZkBwOtTYvowUiGEsD9JRoToBXtrGvim8HiBoJO7H82Kwki342WdiwxGdlTWMdHbjRDnwbkrpxBCdERmyAnRCy4P9ePZcZGnbXNiz8g9u1p7RV6bFN1RcyGEGLQkGRGilyyNH8Fz40d2+HzU0WTEZLbybUEFw531TPf17KPohBCi/5BkRIhe9FBcOM+3k5C4aTV4OzoAsHTPYcyKwtNn6EkRQojBSuaMCNHLHowLB+Ch1OMbWPno4POsFLx0TvzrUDEeDhpuiAi0U4RCCGFfkowI0QcejAunxFDHPzLLAIUWq4G1hcUcrNfTaHHnygAnrIoVtUo6K4UQQ4/85hOiD/xSfAiDcT9j3RoBFQZL649eSq0LahS8VLksT9+KVbHaN1AhhLCDbiUjb7zxBuHh4ej1eqZOncqOHTtO2/7zzz8nJiYGvV7PmDFjWL16dbeCFWIgyqmv5OPDuwCY5tWIj4MFL50jYe6jMFg1jHA2olZDSkU+Pxak2TlaIYToe11ORj799FOWLFnCsmXLSElJYdy4cSxcuJCysrJ222/bto3rrruO2267jd27d3PZZZdx2WWXsX///rMOXoiBYF1hBsrRSiMLgqL5W0I8WY1WtlSq0ajgvenjbEXR1hdmYLFK74gQYmjpcjLyyiuvcPvtt3PrrbcyevRo3n77bZydnXn33Xfbbf/Pf/6T888/nz//+c/Exsby1FNPkZCQwOuvv37WwQvR35ksZlIq8gBw0eq4fMR4Lg/1Q6OC9aXVPBw3gtkBYYwfFgpAXYuRgzXF9gxZCCH6XJeSEZPJRHJyMomJxzfcUavVJCYmkpSU1O45SUlJbdoDLFy4sMP2AM3NzdTV1bV5CDEQ1ZiaMB+dBxLjGYCDWoOXowMRrs60WBXuHhUCwBjvINs5FcYGu8QqhBD20qVkpKKiAovFgr+/f5vj/v7+lJSUtHtOSUlJl9oDPPfcc3h4eNgeoaGhXQlTiH5Dc8LqmCazyfbvG0YEcGGwD356XetzlpZ2zxFCiKGgX/7WW7p0KbW1tbZHfn6+vUMSolu8HJ1wd2jdaya9ppQqYyMAj42J4Nt541GpVFgVhaTSLNs54W7D7BKrEELYS5eSER8fHzQaDaWlpW2Ol5aWEhAQ0O45AQEBXWoP4OjoiLu7e5uHEAORWqVmVkBrZVUrCv9K30Ll0YQEoNliZsWRXRQ01gAw3NWbMFdve4QqhBB206VkRKfTMXHiRNatW2c7ZrVaWbduHdOnT2/3nOnTp7dpD/Dzzz932F6IwWZ+UDQeutYdenPqK3l05zf8fd863jr4Cw9u/4pNxYcAUAGXDB9rx0iFEMI+ujxMs2TJEpYvX84HH3xAWload955J42Njdx6660A3HTTTSxdutTW/r777mPNmjW8/PLLpKen89e//pVdu3Zxzz339Ny7EKIfc9fpuTd+ni0hsaKQXlNKamWBba6IGhU3jZpG/AkTWYUQYqjocjn4xYsXU15ezuOPP05JSQnjx49nzZo1tkmqeXl5qNXHc5wZM2bw8ccf8+ijj/Lwww8TFRXFqlWriI+P77l3IUQ/F+LixWMTFrGx+BCbSw5Ta2oCwEGtYbLvcBYERxPi4mXnKIUQwj5UiqIo9g7iTOrq6vDw8KC2tlbmj4gBz6oo1JqasCoK7jo9DmqNvUMSQohe0dnPb9koT4g+plap8HJ0tncYQgjRb/TLpb1CCCGEGDokGRFCCCGEXckwjRBnKbO2jJ8KDpLXUE2tqYk7Y2cz3uf0VYMzakr5PCuFYkMtXo7OXBAWzwz/iDZtNhRl8nNBGrWmJkJcvbg2ciIj3Hx6860IIYRdSM+IEGfJZDET4uLFdZGTOtW+wtjA6wc2Eu3pz6MJi1gQHM2Hmds5UF1ka7OzPJeVWSlcGBbPIxMWEeLiyav7N1BnMvbW2xBCCLuRnhEhzlK8d1CX6oNsKj6Ej96VqyMSAAh09uBwbTlrCzOI82p9nbWF6cwKiGTm0eqt14+cwv6qIraVHuH80LiefxNCCGFH0jMiRB/LqqsgxrPtdgijvQLJqqsAwGy1kFdfRewJbdQqFTGeAbY2QggxmEgyIkQfq2sx4q7TtznmrtNjtLRgsphpaGnGioJbO21qW2SYRggx+EgyIoQQQgi7GhBzRo4Via2rq7NzJEKcmaGp6bTfqy5qByoa6tq0KaurQa/WYmw0YLVaUaOitLYaXxxtbSob63FWaeXnQAgxYBz7fXXGYu/KAJCfn68A8pBHv3/c8ctHyvBZE0/bZsofrlWuev/5NsfOeexuZdGLf7F9fdnbTygz7rvpeBuVSvnNyteUcddfbPf3KA95yEMeXX3k5+ef9nN+QOxNY7VaKSoqws3NDZVK1WOvW1dXR2hoKPn5+bLnTS8a7Pe52WKmwtQIwD8yN3Nx0GgiXYfhrNHhpXNidXEatS1GrgubAEBVs4GXMjcxY9hwpniHcbihgq8LD/DbEZOJdvcDILW6iE/zU7kyZAyhzp5sLs9mb20xf46eh5uDY4exDPZ73V/Ife4bcp/7Rm/eZ0VRqK+vJygoqM0muicbEMM0arWakJCQXnt9d3d3+UbvA4P1PmfUlPKPzM22r78tOgjAdL8R3BI9HWOxlQZri+29u+POHx3m8XlWClsrcvB0dObGUVOZfELRsznu7lgcVPxUkEadyUiIqxf3xc8n2L1zRc8G673ub+Q+9w25z32jt+6zh4fHGdsMiJ6R3iK7AfcNuc99R+5135D73DfkPveN/nCfZTWNEEIIIexqSCcjjo6OLFu2DEfHjsfgxdmT+9x35F73DbnPfUPuc9/oD/d5SA/TCCGEEML+hnTPiBBCCCHsT5IRIYQQQtiVJCNCCCGEsCtJRoQQQghhV4M+GXnjjTcIDw9Hr9czdepUduzYcdr2n3/+OTExMej1esaMGcPq1av7KNKBrSv3efny5cyePRsvLy+8vLxITEw84/8XcVxXv6ePWbFiBSqVissuu6x3Axwkunqfa2pquPvuuwkMDMTR0ZFRo0bJ749O6Op9/sc//kF0dDROTk6EhoZy//33YzTKbtan88svv3DxxRcTFBSESqVi1apVZzxn48aNJCQk4OjoyMiRI3n//fd7N8je3lfGnlasWKHodDrl3XffVQ4cOKDcfvvtiqenp1JaWtpu+61btyoajUZ54YUXlIMHDyqPPvqo4uDgoOzbt6+PIx9Yunqff/Ob3yhvvPGGsnv3biUtLU255ZZbFA8PD6WgoKCPIx94unqvj8nOzlaCg4OV2bNnK5deemnfBDuAdfU+Nzc3K5MmTVIuuOACZcuWLUp2drayceNGJTU1tY8jH1i6ep8/+ugjxdHRUfnoo4+U7Oxs5ccff1QCAwOV+++/v48jH1hWr16tPPLII8qXX36pAMpXX3112vZZWVmKs7OzsmTJEuXgwYPKa6+9pmg0GmXNmjW9FuOgTkamTJmi3H333bavLRaLEhQUpDz33HPttr/mmmuUCy+8sM2xqVOnKr///e97Nc6Brqv3+WRms1lxc3NTPvjgg94KcdDozr02m83KjBkzlHfeeUe5+eabJRnphK7e57feekuJiIhQTCZTX4U4KHT1Pt99993KOeec0+bYkiVLlJkzZ/ZqnINJZ5KRv/zlL0pcXFybY4sXL1YWLlzYa3EN2mEak8lEcnIyiYmJtmNqtZrExESSkpLaPScpKalNe4CFCxd22F507z6fzGAw0NLSgre3d2+FOSh0914/+eST+Pn5cdttt/VFmANed+7zN998w/Tp07n77rvx9/cnPj6eZ599FovF0ldhDzjduc8zZswgOTnZNpSTlZXF6tWrueCCC/ok5qHCHp+FA2KjvO6oqKjAYrHg7+/f5ri/vz/p6entnlNSUtJu+5KSkl6Lc6Drzn0+2YMPPkhQUNAp3/yire7c6y1btvCf//yH1NTUPohwcOjOfc7KymL9+vVcf/31rF69msOHD3PXXXfR0tLCsmXL+iLsAac79/k3v/kNFRUVzJo1C0VRMJvN/OEPf+Dhhx/ui5CHjI4+C+vq6mhqasLJyanHrzloe0bEwPD888+zYsUKvvrqK/R6vb3DGVTq6+u58cYbWb58OT4+ndvtV3SP1WrFz8+Pf//730ycOJHFixfzyCOP8Pbbb9s7tEFl48aNPPvss7z55pukpKTw5Zdf8v333/PUU0/ZOzRxlgZtz4iPjw8ajYbS0tI2x0tLSwkICGj3nICAgC61F927z8e89NJLPP/886xdu5axY8f2ZpiDQlfv9ZEjR8jJyeHiiy+2HbNarQBotVoyMjKIjIzs3aAHoO58TwcGBuLg4IBGo7Edi42NpaSkBJPJhE6n69WYB6Lu3OfHHnuMG2+8kd/97ncAjBkzhsbGRu644w4eeeQR1Gr5+7ondPRZ6O7u3iu9IjCIe0Z0Oh0TJ05k3bp1tmNWq5V169Yxffr0ds+ZPn16m/YAP//8c4ftRffuM8ALL7zAU089xZo1a5g0aVJfhDrgdfVex8TEsG/fPlJTU22PSy65hPnz55OamkpoaGhfhj9gdOd7eubMmRw+fNiW7AFkZmYSGBgoiUgHunOfDQbDKQnHsQRQkW3WeoxdPgt7bWpsP7BixQrF0dFRef/995WDBw8qd9xxh+Lp6amUlJQoiqIoN954o/LQQw/Z2m/dulXRarXKSy+9pKSlpSnLli2Tpb2d0NX7/Pzzzys6nU5ZuXKlUlxcbHvU19fb6y0MGF291yeT1TSd09X7nJeXp7i5uSn33HOPkpGRoXz33XeKn5+f8vTTT9vrLQwIXb3Py5YtU9zc3JRPPvlEycrKUn766SclMjJSueaaa+z1FgaE+vp6Zffu3cru3bsVQHnllVeU3bt3K7m5uYqiKMpDDz2k3Hjjjbb2x5b2/vnPf1bS0tKUN954Q5b2nq3XXntNCQsLU3Q6nTJlyhTl119/tT03d+5c5eabb27T/rPPPlNGjRql6HQ6JS4uTvn+++/7OOKBqSv3efjw4QpwymPZsmV9H/gA1NXv6RNJMtJ5Xb3P27ZtU6ZOnao4OjoqERERyjPPPKOYzeY+jnrg6cp9bmlpUf76178qkZGRil6vV0JDQ5W77rpLqa6u7vvAB5ANGza0+zv32L29+eablblz555yzvjx4xWdTqdEREQo7733Xq/GqFIU6dsSQgghhP0M2jkjQgghhBgYJBkRQgghhF1JMiKEEEIIu5JkRAghhBB2JcmIEEIIIexKkhEhhBBC2JUkI0IIIYSwK0lGhBBCCGFXkowIIYQQwq4kGRFCCCGEXUkyIoQQQgi7kmRECCGEEHb1/3w21mifrx52AAAAAElFTkSuQmCC",
+ "image/png": "iVBORw0KGgoAAAANSUhEUgAAAiMAAAGdCAYAAADAAnMpAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjcuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/bCgiHAAAACXBIWXMAAA9hAAAPYQGoP6dpAADBCElEQVR4nOzddXgU5/bA8e9KNht3d4EETwlSvFipUXeX+6tSuW1v3Xtv21vvbam7Q6lADYpLcUKAQEIg7p7d7GY3KzO/P5YupAmQQJKNvJ/nyRMy887MWWzPzrzvOQpZlmUEQRAEQRBcROnqAARBEARBGNhEMiIIgiAIgkuJZEQQBEEQBJcSyYggCIIgCC4lkhFBEARBEFxKJCOCIAiCILiUSEYEQRAEQXApkYwIgiAIguBSalcH0BGSJFFeXo6Pjw8KhcLV4QiCIAiC0AGyLNPU1ERkZCRK5dHvf/SJZKS8vJyYmBhXhyEIgiAIwgkoKSkhOjr6qPv7RDLi4+MDOF6Mr6+vi6MRBEEQBKEj9Ho9MTExzvfxo+kTychfj2Z8fX1FMiIIgiAIfczxpliICayCIAiCILiUSEYEQRAEQXApkYwIgiAIguBSIhkRBEEQBMGlRDIiCIIgCIJLiWREEARBEASXEsmIIAiCIAguJZIRQRAEQRBcSiQjgiAIgiC4VKeTkXXr1jF37lwiIyNRKBT89NNPxz1mzZo1jB49Gnd3d5KTk/n0009PIFRBEARBEPqjTicjRqORUaNGMX/+/A6NLygo4Oyzz2b69OlkZmZyzz338I9//INly5Z1OlhBEARBEPqfTvemOfPMMznzzDM7PP7dd98lISGBV155BYAhQ4awYcMGXnvtNebMmdPZywuCIAiC0M90+5yRTZs2MWvWrFbb5syZw6ZNm456TEtLC3q9vtWXIAiCIAj9U7cnI5WVlYSFhbXaFhYWhl6vx2QytXvM888/j5+fn/MrJiamu8MUBEEQBMFFeuVqmocffhidTuf8KikpcXVIgiAIgiB0k07PGems8PBwqqqqWm2rqqrC19cXDw+Pdo9xd3fH3d29u0MTBEEQBKEX6PY7IxMmTGDlypWtti1fvpwJEyZ096UFQRAEQegDOp2MGAwGMjMzyczMBBxLdzMzMykuLgYcj1iuvfZa5/hbb72V/Px8HnjgAXJycnj77bdZuHAh//znP7vmFQiCIAiC0Kd1+jHN9u3bmT59uvPne++9F4DrrruOTz/9lIqKCmdiApCQkMCvv/7KP//5T9544w2io6P58MMP+/Wy3nqzEYOtpdU2b7U7gVovF0UkCIIgCL2XQpZl2dVBHI9er8fPzw+dToevr6+rwzmmerORx7f/jE2WWm1XK5Q8O2auSEgEQRCEAaOj79+9cjVNX2awtbRJRABsstTmbokgCIIgCCIZEQRBEATBxUQyIgiCIAiCS4lkRBAEQRAElxLJiCAIgiAILiWSEUEQBEEQXEokI13IKtnZUHHwqPt1lvYbAwqCIAjCQCaSkS5isdt4M2sNayuPnox8un8z5UZdD0YlCIIgCL2fSEa6yDd529mvO9wQcJBvCNMjBnNKUDQapQpw1CCZv28NFrvNVWEKgiAIQq/T7V17B4KGlmY2VRUA4K5Uc/eI6ST5hjj3N1nMvJG1mhJjA7VmI9tri5kYluiqcAVBEAShVxF3RrrApqoCZBxV9WdFp7ZKRAB8NFquSB7j/HlDZZ7z13bZzs6mnbxe/Drn7TqPwLWBvFb8Ws8ELgiCIAi9gLgz0gWqTHrnr08JigHAbDyAOWsw38tBbPSaSZRnCk1KLR7WCHY1ZfBy0S5WN6xmXeM6DHYDykN5oUTbUvKCIAiC0J+JZKQLKI749V93SKrsdQSj4AZFHUOaFjK5GmQcv+FedliTB97AIAV4q8ALCW8FeALTvAb1/IsQBEEQBBcRyUgXiPTyd/56a3URsd6BxPmeCvFvQtGdjAq+lP313xOvsOGmOPp5/vJh/h18WvsHU/2nMitgFv4a/+MeIwiCIAh9lUKWZdnVQRxPR1sQu4reYuahrT9hlyXUCiW3Dp3CiMAosDfDDj9s2qG80PIIt9lvJ0hZf8xzSTKkGOHgEX8qbgo3At0CidfGM8J7BBN9JzInaA6R2shufmWCIAiCcOI6+v4tkpEusiBvB6vK9zt/TvAJItk3hAn1NxJp38XjlpdpJJDH3J8mjGIUtP1tt8qwUnLjQrMak3S4QJoKFUqFEptscz4G+mu7v9qfGG0Mw7yHcarvqcwOnE2KV0r3vlhBEARB6ACRjPQwuyTxfs4GMutKW20Po4ynNQ+QIw3lK/Xz3JeSQsDBSci2BhTtTFbdEngb45PfprKlkq8qv2Jp3VJ2GXZRa611JiJq1PiofdAoNFhlK032Jqyy1XkOBQp8Vb5EaaNI9UxlvO94ZgTMYLTPaJRKsYBKEARB6BkiGXEBSZb4szKfVeX7KW8+XGn1Kc1DhCtKaR5RhpdHBDRtgpypyLLNOflVkh0TXJWAwj0Rov8NwVc4z2GTbCytX8qi6kVsbNxIkbkIi2wBHMlHqFsoUe5R+Lv5Y5EsFJmLqLHWYJbMrWL0UnkRoYlgsOdg0n3TmREwg4l+E9EoNd38uyMIgiAMNCIZcSFZlqk06WmymHFXuRFpy8DtwGwIvAKSv3YMqvkMCq5vddwDtgBeDJ4Kjb8AdlD5Q+idEPUEKNvONc5rzuPLyi9ZXr+cvca9NNoanfu8Vd4M9hjMZL/JDPEaQklLCRlNGeQ251JlqcIoGVudS6vUEqYJI8kjidE+o5niN4UZgTPwVnt37W+OIAiCMGCIZKS3yYwBSyWMMcJfdyGK7oOq1wAZiyqQbYnfMyngNJDMUPoIVL8PkhEUbhBwMcT9D9yCj3oJs83M9zXfs7hmMVubtlLWUoZNdpSeV6EiWhvNWJ+xnB9yPhcEXcAe0x5W1a9iq34rOc05lLeU02RvajUvRaPQEOQWRKJHIiO9RzLFfwqzA2cTrDl6HIIgCIIAIhnpff66ExJ+P8S+5Ngm22H/maBfDjH/hYgH2h5X9T6UPwPWMkAB3hMh7i3wSuvQZTP0GXxT9Q2rG1azv3k/BrvBuc9f7c9Qr6HMDpzN1eFXk+yZDEC2IZs/6v9gi34Le417KTWX0mhrbFWQTa1QE6AOIFYbywjvEUzwm8CcwDnEecSd4G+QIAiC0N+IZKQ32hEAshVG6+GviaS2Rqh+G8LuBJXP0Y/Vr4Pie6B5p+Nn9ySIfg6CLu1UCI2WRr6t/pZfan8hoymDKkuVM8nQKDTEaeOY4DeBi0Mv5sygM1Ef8Xio2FzM8rrl/Kn7kyxDFkXmIupt9c67LwBKlPip/Yh2j2ao11BO9TuVWQGzGOo1VEyeFQRBGGBEMtKFHtm6mLoWY5vt0yIGcWXy2HaP2VFTzOKi3dSZDYR6+HBhQhojmj+C8ich9n/IYfP4uWgP6ysPYrJbSfIN5srksYR5HOf1tRRD4R2g+x3HvJIACLsbIh9td17J8UiSxDrdOhZULmC9bj35pnznsmIFCoLdghnpPZIzg87kqvCrCHcPb3OOeks9y+uXs0G3gcymTApMBdRYa5wTbP86l7fKm0j3SFI9UxnjO4aZgTMZ7zNeJCmCIAj9lEhGulCTxYx0xDyKcqOO17NWce+ImaT4h7UZn6ev4eVdKzg/YRQjA6PYWl3IstJsHh11OlE5kaDyY2nIapaW7OX6lAkEa71YUribsuZGnko/Bzel6vhB2U1Q+hDUfHRoXokGAi9xzCtRB57U6y03l/NVlWNZ8W7Dbmqttc59HkoPkjySmOI/hcvDLmey3+SjJhPNtmZWNa5iXcM6djbt5IDpANWW6lY1VAA8lZ6Ea8JJ9kwm3SedaQHTmOY3Da1ae1KvQxAEQXAtkYx0owV5O9hTX8azY+aiULSt7/5+9gYsko15w05zbnshcxkxXgFcpf4Qaj7gZellRkafxenRQwAw2Szcv/kHrh98KmND4zsejCRBzXtQ/m+wluOYVzIJ4uaD18iTe6GH2CQbv9b+yvc137NZt7nVsmIlSsI14Yz2Gc3ckLlcHnY5vupj/xnZJBsbdRtZ1bCK7frt5DbnUmGpaDWfBcBd4U6oJpREj0RG+Yxiqv9UZgfOPu75BUEQhN5BJCPdxCbZeWDLT8yKSuWs2GHtjnloq2P/rKhU57YlRbvZVVfK4yOnYs8IYIt9IjEjfiLGO8A55uVdK4jx9ueypDEnFpxuFRTfC6Zdjp/dkyHmBQi86MTOdwz7jfv5quorVtStYJ9xHzr74boqPiofUjxTmB4wnavCr2KUz6gOnVOSJDINmaxsWMkW3RZymnMoaylDZ9O1WuHjpnAjyC3IWR5/kt8k5gTNafcRUnepNxsx2FqcP3ur3QnUevXY9QVBEPqCjr5/i0Z5nZRZV4rJZmFiWMJRx+gtZnzdWj9i8HXTorOYQe1Ng+dZjDP+SrM1G5h4eIzm0JgT5TcDRmSCuQiKbgfdMjh4MagCIfweiHgEOvIIqANSvFJ4JvEZnkl8BnA8kvmh5gd+qvmJbfpt7Gzayfam7bxU/BJqhZpo92jG+Y7jgpALOD/4/HYfwSiVSkb7jma07+g2+w40H2B5/XI26zaTZciiuKWYbfptbNZv5oPyD4BD5fHd/Il1j2W493BO9XOUxx/k2bVdkOvNRh7f/jM2+cjVRUqeHTNXJCSCIAgnQCQjnfRnZR7DAiPwd/c84XPow/+NV95y3Evvg4BNXRjdIdo4SPkVbM1Q+iDUfgxlTzge5QReBnGvn/S8kr/zVHtydcTVXB1xtXPbNt02vqn6hjUNa8htzmVh9UIWVi8EIEAdwDCvYcwOnM014deQ4Hn05A5gkOcgBnkO4vbo21ttr2yp5I/6P9jQuIE9hj0UmgvJMmax07CTLyq/AA6Xx4/WRjvK4/uNZ2bATNK8005o8qzB1tIqEQGwyRIGWwuBiGREEAShs0Qy0gl1ZiPZjVXcOnTKMcf5arTora3vcOitZvw0jrsBPl4JrLPPZLbpN7CUgCbGMcZiJsbbv+sCVntC/JsQ+wbUvA3lz0HdF1D3JXhPgfj54Dm86673N2P9xjLW7/Bqo3pLvXNZ8c6mnfyp+5MNug08WfAk7gp34j3imeg3kUtCL2FO4JwOJQrh7uFcG3Et10Zc22p7o6WRlY0r2dC4gZ1NO8k35ZNnymOvcS/f13zvHOet8naWxx/jO8ZZHl99AiuTBEEQhBMj/sfthI1Vefi4uTMiMPKY4xJ9gslprGw1ZyS7oZJEH0fV0mCtF1uVc5kt/woFt0HKL5hsVgqaapkWkdz1gSuVEDbP8aVb6ZhXYlgHWSNAOxii/wuB53f9df8mUBPI7dG3O+9uSJLE6obVLKxeyIbGDeSb89nfvJ9PKj5BgYIQtxBG+YzirKCzuDL8SkI1oR2+lr/Gn4tCL+Ki0NbzZcw2M+t161ndsJqMpgwONB+grKWMA6YD/Fr3K08XPA04Vg2FakJJ9khmtM9opgZMZYb/DDzVJ35HTBAEQWifmMDaQZIs8+i2xYwNiefChLRW+z7ZvxF/jScXHNqep6/h5d0ruDA+jRGBkWyrKeL3kn08esoZRHn5A7C0ZB8BpbdyimorNal5LC7No8zY0PGlvSfLnA9F8xzzSpBAHQTh90L4Q4cLsrlAibmEryq/YlndMvYY9lBnq3Pu81R6kuyRzNSAqVwRdgWn+p7aZTVKbJKNbU3bWFW/im36bexv3k9ZSxkGu6FNefwAdSBYfQlSxBKuTCFaMQKt0odHTzmDWO+uffwlCILQl4nVNF1sX0MFb2St5pn0cwjzbB3DK7tXEOTuxfUpE5zbHEXPdlFnNh4uehYY5dwvyzKrcz9hhu4mPrfdTJ3PpVyZNLbNubudzQilD0DNJyCbQOEOQVdA7Gug9u/ZWNphkSz8UvsLP9T8wGbdZorNxVhlK+BYVhzhHsEYnzHMDZ7LZWGXdXljP0mSyG7OZnn9crboHOXxi80l6O2tV/goUBKoDiTBw7HCZ6LfRE4POp1YbWyXxiMIgtCXiGSkr8gIA7sO0ptdekcCSYLqt6D8ebBVAgrwmebog+PZ/hJmV8k2ZPNl5ZesaljFPuM+9Ha9c5+vypdUr1RmBMzgqvCrGO7d9XNiig31/GfnUpqkGkrlPVRJB6iXS5HUevT2xnbL48doYxjqeag8fuAshngOEZVnBUHo90Qy0ldUvQVFd0LkUxD9pKujcWj8A0ruA1OW42dtCsS8CAHnujauozDYDCyqXsSSmiVsb9pOeUs5duyAo6FfrHss4/3Gc2HIhZwbci6av7omn4CqZj0/Fe0io7akzb55w6YxIjCKWkutozx+4wZ2GXZRYCqg1lrbpjy+j8qnVXn8WYGzGOszViQpgiD0GyIZ6SskCTJ8QaGG9EZXR9Oa6aBjXol+OY55JcEQfh+EP+DauzgdsEW3hW+qvmFtw1pym3Nplpqd+wLVgQz3Hs7pgadzdcTVxGk71ml4V10pH+T8iVWyt7vfXanmzuGnMciv/Ym2BpuB1Q2rWdfoKI9/0HTwmOXxB3kOIt0nndMCTmNawLSTSqIEQRBcQSQjfUnxA1D5EiR8DCE3uDqatmwGKLkfaj8/Yl7JlRD7OvSR0uy1llq+qfyGX+t+JdOQSbWl2jnnw13hToJHApP9J3Np6KXMDJjZ5u5EYVMdL+1a7qwv4qZQEu8ThCTLFDbVYT90Lq3KjUdPOYNQj2N0YP4bi2Rho24jqxtWs12/nQPNByi3lGO0t27OqFVqCXELIckjiTSfNKb6T2Vm4ExRHl8QhF5LJCN9iWSBHd6gDoVTSl0dzdFJElS9ARX/BVsVoASf0w7NKxni6ug6RZIkVjSsYGH1Qv5s/JMCUwEtsqO8uwIFoZpQ0rzTODvobK4Iv4JvD2Sxp74cgDHBsVw1aByeasedCr3FxMf7N5HdWAnA5PAkrhk0vkti3Nm0k5UNK9mq30p2czZl5jL0dn275fETtAmM9B7JRP+JnB54eo+WxxcEQWiPSEb6moNXQf3XkLIC/Ga6Oprja/zdcbfEtM/xszYVYl6CgHNcG9dJKDIV8WXll/xR/wdZhizqbfXOfWrc8SOceLcRvDfqadL9Wpesb7ZZeHjrT5jtNjRKFS+NvxCt2q3bYs015rK8fjmb9JvYa9hLibmERlujc64MOMrjB7gFEOseyzDvYUzwm8DpgaeT5JnUbXEJgiAcSSQjfY2tHjKCwWMojMhydTQdZ8qFojtAvwrHvJIQCP+XY25JL59XcjwWycLimsV8VPolGxs3YaAe+dCbfbR7NGGaMMb4jOGVwa/gpfLik/2b2FxdAMBDaaeTcKjIXU8qN5ezvH45f+r+ZLdhN4XmQuqt9c7l0OBY4eOr9iXa/XB5/FmBsxjpNVJMnhUEoUuJZKQvyp4JTatg+L4+99gDmx6K73eUm5fNoNBC0NUQ+0qfmVdyNDtqink/ZwMAp4R74u7VQE5zDp+Uf0KNtQZflS9Xhl9JjH0SBXXQQhOXDRqK1t1GtaWaKkuV83uVpYpBnoN4bfBrPfoaGi2NrGhYwXrdejKbMsk35VNjqXE+mvrLX+XxUzxTnOXxJ/hNEOXxBUE4ISIZ6YtMB2DPYPCeCkPXujqaEyNJUPkqVL4IthpACb4zIG4+eAx2dXQnpLCpjuczlwGQ5BvCA6NmO/cVmAr4qPwjPi7/mApLRbvHK1GiUqiQkbHJNsb6jmXr2K09EvvxmG1m1urWsqZhjbM8fpWlqtXqI3CUxw/ThDnL408LmMZp/qeJ8viCIByTSEb6qj2jwLQH0qpAE+LqaE5Ow69Q8i8wZzt+9hgKMS+D/5mujauTZFnmmYzfKG/WAXD94FOZEJbYasyvxbv5V969ZEsrj3u+D4d8yE2RN3VLrF3FJtnYotvC6sbVzvL45S3lbcrjuyvcCXYLJtEjkVE+o5jsN5nZgbMJ1Iiy+IIgiGSk72raANlTIOASGLTQ1dF0DVMOFN4BTWtwzCsJhYgHIOyffWZeyZ+VeXx+YIvz5+EBkYwOjsEuS2ytLuKAvhqAHPsa1tk/OOp5PJQeVE+p7vKy9T1FkiT2GveyvH45W/Vb2WfcR2lLKTqbDgnJOU6tUBOoDiROG+csjz8naA7R2mgXRi8IQk8TyUhflhkHlnIY0wRKrauj6To2naNjcN1XILc45pUEXwsxr0Avf3OWZZlv8raztuLAMcedGzeCnfbFPJ7/eLv7vZXe/CfpP8yLntfvJosWmgr5o+4PNuo3kmXIothcTIOtoU15fH+1v6M8vtdQTvU9ldmBsxni3cfmSAmC0CEiGenLar+C/Ksh7G6Ie93V0XQ9SXIUeat85Yh5JbMgfj5ok10d3VHJssyaigMsK91HQ0vrORVhHj6cHTuc8aEJyLLMbftv4/2y91s90gDHcls7djQKDbMDZ/NS8kv9/o242lLN8rrlbNBtYLdhNwWmAuqsde2Wx49yjyLVM5WxvmOZGTiTMT5jui1pk2THXZ4R3iOc23IL69mYWY7F2n6V3WPRuKmYmBbJ4HjxiEoQ/iKSkb5uR6Dj7sHopj7zKOOENCyBkgfBnOP42WOY406J/xzXxnUMkiyR3VhJVXMTCgVEefozyC8UhULhHGOX7Vy4+0J+qf0FCQkFCoZ5DWPn2J28Wfomb5S+QZG5CHAsE54XPY/7Yu8bUKtWDDYDq+pXsbZxLTubdpJnzqPaUo1ZMrca56X0Itw9nMGegx3l8f1PY0rAlJMuj7+oahGXZF3CFWFX8E7qO/ip/fj0pyzqdebjHwxYVVbsqtZJS5CXJ7ecO/ooRwjCwCOSkb6u/HkofcTxxhxxr6uj6X7N+xx9cJrWADKowyDiIQi7q88mYya7iRkZM9im34aExFspb3F79O3O/bnGXB44+AC/1/2ORbagVqg5zf80Xhz0Iqf4nOLCyF3LIlnY0LiBNQ1r2N60ndzmXCotle2Wxw91CyXJI4lTfE5hiv8UZgbOxEfdsVL8j+U9xvOFz6NAQaR7JAtHLGT3Hx4Ymq0oFODlcfSidRalhayQg8iK1v99KmQFz407l0CtV+dfuCD0QyIZ6eskCXZ4gcobRte4OpqeY2s8NK/k60PzSjwg+DpHdddePq+kPfXWek7ddirFLcVUTq7E382/zRhJkni//H1eLn6ZPFMeAOGacG6OuplH4x8VDfIOkSSJHU07nOXxc4w5lLeUt1seP9gtmASPBEZ6jWSy/2RmB80mVNO6geEFuy9gcc1iZGRUOJZen9N8G1Pqr8HXU8vNl4w6aizFhnr+s3Npu/sePeUMYr3FoxpBAJGM9A8Ft0PNO5D8HQRe7OpoepYkQeV/HTVLbLU45pWcfmheSeJxD+9N6qx1lJpLGeVz9De3vxSZinjw4IMsqV2CSTKhQsUk/0k8n/Q8E/0n9kC0fVOOMYfl9cvZrNvMPuM+is3F6Gy6dsvjx2njGOY1jN/qfqPWWtv6RDLEW0Zxi+m/PHTR0R8V7muo4I2s1e3uE8mIIBwmkpH+wNYMGb6giYO0PFdH4zr1P0Hpg2DOdfzsMQJiXwW/WV12iUe2Lqauxdhm+7SIQVyZPLbdY3bUFLO4aDd1ZgOhHj5cmJDGiMAo535Zlvm5aA/rKw9isltJ8g3myuSxhHkc/++wJEl8WfUlzxc+T06zYz5NsFswN0bcyJMJT4piYx1Uai5leZ2jPP4e4x6KzEXUWetarfD5O4WswA13vhj+GZeGX9pqnyzLrCjL4ceCTGen5tYD4LrB45kYLvr/CAKIZKT/yL0AGn+CIZvB5+Q7wfZpzVmH5pWsA2RwC4eIRyD0jpOeV9JkMSMd8eZSbtTxetYq7h0xkxT/sDbj8/Q1vLxrBecnjGJkYBRbqwtZVprNo6ecQZSXPwBLS/axtGQv16dMIFjrxZLC3ZQ1N/JU+jm4KVUdjq2ypZKH8h5iUfUijHYjSpSM8x3Hv5P+zczAPtBUsRfa1LCJiRnHv9MU6hbK3JC5DPUaSrzFk4ZKM1vl0GMeo0TBvOHTGBYQ2VXhCkKf1dH37745M3AgiX8HUDia0Q10nsNhyBoYXQdB1zqaCxbfBRk+jqJqtubjnuJofDRa/DQezq/d9WWEaL0Z7Nf+G8/Ksv0MC4xgTvRQIjz9OC9+FLHeAawpd9y9kWWZlWU5nBU7nLSgaKK9ArghZQKNLSYya0s6FVu4ezifDv0Uw2kGvhv+HcO9h7NFv4VZO2cRuDaQu/bfhd6mP+HXPhCVW8vb3a6UHUmiQlYS7BbMYM/B7GzayXt5rxDfmEKadhK7axydqk+LGMS/x5zLu5OvILUuAa9mx6RVCZkvcrdil6V2ryEIQlsiGentNOHgNQGad8ChpaADnjoAkj6D9GaI+rdjkmv1245HWvvPAnPBSZ3eJtnZUl3IxLCkVst1j5TfVEuqf3irbUMDIshvcsxBqDUb0VvNDDlijIdaQ4JPsHPMibg47GJ2jd9F7ZRabom8Bbts583SN/Ff60/6lnR+qf3lhM89kOwz7kOB489WrXAsp/ZWeTPGcjrX1f2X1xs2UDO1hvVj1rM+ZTHf+H6HjA+GlrfY7PcfftR9wDkxwwjx8EahUOBl9SSqMhLvFsfjswZLM7vqylz2+gShrxHJSF8Q/47je+Gtro2jt1GqIOpRSK+F5EXgngi632F3oqPHj27VCZ02s64Uk83CxLCEo47RW8z4urWujuvrpkVncdSo0FtNjm2av43RHB5zMgI1gbw75F10p+n4ddSvjPYZzU7DTubumovfGj9uzr6ZWsuJJz39XUVLBTIyYW5h3Bx5M8tPWU791HpuMj7PSNMMtDiSipqidWQfKEOW1aRIN5LRHAi73qZGuw6/ZWnct2orz+77CFl2FG4LNwY7r7GnXiQjgtBRIhnpC7xGgjYF9H+AuB3fvsCLYFQuDNsN3lMczQb3z4SdkVD1tmN1Tgf9WZnHsMAI/N37xiTRs4LPYvu47TROa+SemHtQK9R8UP4BIetDGLF5BAuqFrg6xF7nqcSnyBiXQcWUCuanzmdW4CzclG4osJHgl0d6+Bb27PiV4lrHo5dE7ed4yXso1yaT7jMadnyJrG7gVdO5PLHEj7t2u/NesTcriwIorArAaHaj2WY5dhCCIDiJZKSviH0NkKD4bldH0rt5jYCh62B0LQRdDbY6x3ybDF8ovOu480rqzEayG6uYHH7ssvS+Gi16a+s7HHqrGb9Dd0J83Twc2/52F0RvOTymq/mqfXlt8GvUTatj1SmrmOg7kX3GfVyedTneq725du+1lJvbnysx0IRqQjnF5xQUCgU2cy31Rb9QsPtLxiQ0ERuTDB5pWGTHxOVgj1wCrD9gUXiwTyqlIPESGH09FN0E5mhIvxJLxEJym9Usr9Dyx44UvlqVzoMLI5n7WSV5dVbXvlhB6ANEMtJX+J8J6nBHMTDp6MsShUPUgZD0BaQbIeppULhD9ZuH5pWcc9T5Nxur8vBxc2dE4LFXQiT6BJPTWNlqW3ZDJYk+jtv0wVovfN20rcaYbFYKmmqdY7rT9MDp/Dn2T5qmNfFQ3EN4qjz5ovILov6MInVTKp+Wf4rUibtF/ZGhehM5Gd+xKyufgtoI6i2DkBSHqrcqVKBQoJAtRMZNxWap4F2Lld9sL1BPKSnaYXjXXQo7voDSKyD1SRj2LyTl4eSzqUXJLznN1Bo73+dGEAaaE0pG5s+fT3x8PFqtlvHjx7N169Zjjn/99ddJSUnBw8ODmJgY/vnPf2I2n/xz8wEn6imQLVD2lKsj6TuUaoh6AtLrIGkBuMeD7lfYHQ9Zp4B+nXOoJMtsrMpnQlgiKkXrfxqf7N/IjwWZzp9nRqWwt6GC5aXZVDbr+LloN0WGek6LHAyAQqFgZlQqv5VksauulDJjI5/kbsLf3YO04JgeeOEOnmpPnk9+nuqp1Wwas4lp/tM42HyQG7JvwGutF5fuuZQi08CcGG02VmGUEx2JB4Dib32BZBvNtj+5eHsiagV8a4EUxTSuVb/HNO7niqH1IGsg9wnIegXClsCUieC9z3mKJ2b4Mz62H3XeFoRu0uk6IwsWLODaa6/l3XffZfz48bz++ut899137N+/n9DQtssgv/76a2688UY+/vhjJk6cSG5uLtdffz2XX345r776aoeuOaDrjPzddl9AAWN0ro6k7zJmOuqVGDbiqFcSBZGPs099Dm/sW8sz6ecQ5tn679kru1cQ5O7F9SkTnNscRc92UWc2HrfoWbPNQrJfCFcmjW1z7p5mkSy8UPgC75a9S4WlAoBEbSL3xt7LbVG3dVuX3N5GliRKs7+m2pQKR1k19Y7xFqYrM7nQTWJ+zkYa/fTUBB2eGJyZF87W/XGAAiZOA89SkIGKC5lpe5E/rktEqWz/3IIwEHRb0bPx48czduxY3nrrLcBRKTImJoY777yThx56qM34efPmkZ2dzcqVK53b7rvvPrZs2cKGDRu69MUMCCWPQMXzEPcehN3s6mj6NmutYw5O/XcgW0HpBSH/BzHPg3JgfJrNbMrkwYMPsqphFTbZhkah4YygM3gx+UVSvFJcHV63kyU7hVnfUG9pm5Ao5Wq+LCnmxch56K0xfFfxIwBVnnWU+VQ5m+R9vToNg0kLSS87Vr4pcCQksoaXk5/njtjb0aoGxt8nQfi7bil6ZrFY2LFjB7NmHS7DrVQqmTVrFps2bWr3mIkTJ7Jjxw7no5z8/Hx+++03zjrrrKNep6WlBb1e3+pLOCTqGVBooPwpV0fS97kFQ9JXjnolkU+Awg2qXoft3pB7HrQUuzrCbpfmk8ayU5ZhOs3Ei8kvEqYJY0ntElI3pxK7IZaXil7C1o/nKDWZm6huccwP4cjPZbKdMO8GXpmRiEphIyDuCm6+ZBQ3XzKKx8+ewcsTLuDChDSG+Idz49QqxzGGFPgrn1EACgv3591H1PoY3i97H6skJrIKwtF06s5IeXk5UVFRbNy4kQkTDt+ufuCBB1i7di1btmxp97j//e9/3H///ciyjM1m49Zbb+Wdd9456nWeeuopnn766TbbxZ2RQ/Kug7rPYfBS8D96My/hBNR+C2WPQku+42fP0RD3BvhMdm1cPSjHmMMDBx5gWf0yLLIFtULNzICZvJj8IiN9Rro6vE5buqGAfXl1ACgVCrTuKpT+BhZrX+Mhz4vxVA6m0Z5BsModm5zqnEMyfJAP7pUPOtoxpFWCpm1bgL/M+aicPyp2wYR2PmTJgAJi3WN5Me51ylbFcPXcoYQG9o2l44JwMnpNOfg1a9bw3HPP8fbbb5ORkcEPP/zAr7/+yrPPPnvUYx5++GF0Op3zq6Skc+Wz+724NwAlFN/j6kj6n+DLYVQeDNsOXhOheSdkT4HMGKj+0NXR9YhUr1SWpC3BdJqJtwa/Rax7LMvqlzFq6ygi10fyTP4zWKS+VUMjPsqXWy4dReT0Et6MuJ77VLN5zPM6PBWDQN7HzHH/x/ARc/FQOgqVeSnycfcd7OiDpA46ZiIC8OSsQGiOB7md/1IP3S0pbinmfxUdmycnCANNp+6MWCwWPD09WbRoEeeff75z+3XXXUdjYyOLFy9uc8yUKVM49dRTeemll5zbvvzyS26++WYMBkOHJsuJOSPtyJnjKII2fI+jZ4vQPSzVjnklDd8fmlfiDaE3Q/R/Bsy8EoCC5gIeOPgAv9T9glkyo0LFFP8pvJD8AuP9uq6BY73ZiMHW0mqbt9qdQK1Xm7Emu4nSllIGeQ465jl/XX+Q35q/51vti9Tb6gnHj1/8FgH+GJuKCYiawojBIZgtNjZv30WgKoeKBhkjKVwQMB5F4AUw6Hs2ZpaRV9zIqJRQNu8ux9xiJzHaj9kT43DXqNlTaWH63hTqKDxqLKE1F3K3+X60CjcAosO8ufSM1E7/PglCX9HR92/1Ufe0Q6PRkJ6ezsqVK53JiCRJrFy5knnz5rV7THNzc5uEQ6Vy3AbtAw2De6/4dx1lzwtvhaEdmwgsnABNKCR/46jtUvY0VL8Fla9C5f/A/xyIfxM00a6OstsleCbw3cjvkCSJzyo+47/F/2VN4xpO3X4qIW4h3BR5E4/HP46n+sQfPdSbjTy+/Wdsf2swp1YoeXbM3FYJiVWyclbmWWzUbaR4UjFh7m3vXJSby7kr9y5WmNaiU9fiJXnxZPAdnGe9DAkP/Nzy2dc0jNriBkYMDuGLZVk0WM3U+HshaSUmW35FoZAx+9/OX2lnY1ML+wvrOX/mICwWOz+vP8hrv22iJLiMUA8fBqsHsclaDIpDr0EGBUpOV97GgUYl+UHv8rQhj1ej3+T64aeKlTaCcEinH9Pce++9fPDBB3z22WdkZ2dz2223YTQaueGGGwC49tprefjhh53j586dyzvvvMO3335LQUEBy5cv5/HHH2fu3LnOpEQ4AdoEx3wGw0awVB5/vHBylGqIeRbSGyDxS9DEOOYSZMZA1hho+tPVEfYIpVLJDVE3kDMhh7JJZVwTfg1Gu5EXil7AZ60Pk7ZNYk3DmhM6t8HW0iYRAbDJUqu7JbIsc2funaxtXItNtvFu2butxq9rWEf6lnSi/ozi+5rviZQTecT2IUWpaznXeiUSHgR5FpM86lIC/bToDRbKqppo1tuZMyWO+yfM4IFxszgl8FfqLLFsrTxcjddmlzhjcgKhgZ60eJo56FuMRufBfUNnkxYUjWdD9OEaNbICd3yRFRJJ9jjWznmaMy0vY3WvZF7t+Vy98R083Dv1eVAQ+q1OJyOXXXYZL7/8Mk888QRpaWlkZmaydOlSwsIcn0yKi4upqKhwjn/ssce47777eOyxxxg6dCg33XQTc+bM4b333uu6VzFQxb0FyFB4u6sjGViCr4K0fBi6DbxOheYMyJ4MmbFQ84mro+sxkdpIPh/2OcbpRr4d/i1DvYayUb+R6RnTCVobxD9z/0mTranLrzu/dD7vlb2HjIyExJulb2KymXij+A0i10cyLWMaOw07OdX3VDaP2cyrXt8yTR1LYZkVGTfCfKuIH3oh4JxbSk2DCckus+6Pahb+cJCFPx4guKWQgqZJlNUfXs3n66XBx0sDwMqy/cSH+wHgZtFwRuRwIizJ2HGsPlKVXY1q02pirCP5hGdplMr4ZNKN3Ff1BWpzHD9J9xK+6Dpstv67WkkQOqrTdUZcQcwZOYbMBLCUQHoTqDxcHc3AZKmE4rug4adD80p8IPRWiP43KDWujq5H1VpqeTjvYRZULaDJ3oQCBaN9RvNs4rOcGXzmUY+TZInlpTn8UJjZ7v5HTzmDWO9A/qj7gzMyz0Cm9X9bbgo3rLIVjULDJWGX8Pqg1wnWOMrur1v3G16ewYBMVJCR8IQZzuM+X7IXHy8NUaHeZOZUc8kcR20VZeMP+FVexXzT45w14h4SAgPZmFlGdl4dN13kWFH00NafmB6Wwt41Ri6Zk0JooCfPL1jOJ5H38+bI51A1TOSiL+sI9qqhYfTZeGjc2H9KEZ/9mI33cAv35v8XY+ASVA0T2X7aAtKC+//jPmHg6TWraYRuFvNfwA4l/3J1JAOXJhySF0K6ASIeBoUSKl+C7V5w4CKwDJzmdMGaYD4Y8gH60/QsHrGYNO80MpoyOGvXWfit8ePW7Fupt9S3OsZks/D6ntVHTUQAdteVkW3M5qI9F6Gg7TwLSZZ4LvE5TKeZ+HLYl85EpDhnMV6eIYCd+AhaJSLFFXpqG0wMig0gLMgTo8lKjbmJJ/csYU3pT5hlLdOGXkNCYKDzGL3RgqHZsZJIbzGDQYVCAYF+Wtw1KoLcQrjB/DrnhpxLarjMzFMOUN4YQVzRc9TZ6rgu9yoA7LKM4ZLFjDE9gt0nk1M2TebZjJ9P9LddEPo8kYz0dUGXgioIaj6GAd74zOWUGoh5DtIbIeEz0ERBww+QGQVZ46Bps6sj7FHnhp5LxvgMGqY2MC96HkqFkvfK3yN4fTCjtozi+6rvkWSZd7PXs19X5TzO101LtJc/6iP6A31XtJEZO2bTbG9Gou3fczt2JvtPbjVZPj9rETWGKBRYKG+wow0cTZPRQlWdkS27K1i86iCJ0X4MTQoiNsKXyBBvNm+u5sbIqcxWr6FGGsT3m4vJKjkcm1qlZOmGAmrqm9GatORnGxkcF4iXh2N1TFicBu96X/YX1NPUZCVNoeGsEBPZeWcS3jKTX3WLKdJkYdcpMZqsbDj9aZ4I/hqQeaLmCsb98ng3/EkIQu8nHtP0B+UvQekDEP0CRD7o6miEIzVtcTzCMR5qJqmJdVTRDbnOtXG5yIq6FTyW/xjb9NuQkPBQehItpzNedTkhmlCuHzyB4YGRKBUKTDYLvxRn8VvxThba/0UzDUc9rwoVc0Pm8uNIR8n2g7sWoLMmocRItdGbvYWO/+aUCgXu7ipCAjxITQhiWHIQikNl4C1WOxsyyigpOci1MbNYV/sQO+znEJSo5rrh45xLe0cODmHz7goMZgv+IWqumjEC7aGJqIsLd5Gd3UCgIYBms5VmtZmZ6XFc9L1EWVMz7jMm4i5reLjuW9wtPkSFOpb2ZtSUMHbtpUgBm/GqP4/Sc77G30MURRP6vm7rTeMKIhk5DkmCHd6g9HB0pxV6H0ulozlfw2LABipfCL3NkZgMsHklAM22Zp4qeIq3S97HKDuaPsa7J/PJ0A+YFjANhUJBg7WBD8s/5ImDT2PG2Op4FSqUh+6cyMjYZBsKFBRPKsaw70+MUhIqdKSmjkLrHdy54Apug5p3YVgmr+bVEujuyfUpE5zJyDXnDgPg/ewNWCQb84ad5jz0v5l/EO3lz1WDxiHLMg9s+ZHTo4cwzHcQCS8WI3nkoTj1XGI0ieRN2dvqsjabjcifbqTG/ysU+hEsSf+Sc+JEDSGhb+uWOiNCL6VUQsg/oPpNRznz4MtdHZHwd5pwGLQIJAuUPg7V70LFf6HiFQg4H+LedIwZIDzVnrw46EVaasZSaM1ih/QdpZYDTN85nSGeQwhxC2Gbfht27MzyO5u6Jk8ClBEM9g9gWHAwTbYm9Ha987ve5ljx0rB3IxaSUVPDsJFTUWs6fnfhx4JMhgVGEtvwB0qFL79Wy+Tqqrhr+HQAMmtLkSyHyxHMjErh5d0rWF6azYjASLbVFFFkqOfqQeMAUCgUzIxK5beSLEIH+/DJZV5ctyAen+JHyI99gluyb+G9IYdXFarVaqov/pzzVoxmicczzM2axU3Fz/HhlBu74rdcEHo1cWekv5DMsN3HMU8hrdDV0QgdUfMplD0JlmJAAV7jHEmJ91hXR9Zjbt/wLXZZIsrTn0dOOZ2l9Ut5Kv8pMpoyeCTuEe6MuROTRc3zmcsAmBqezFWH3uyPZLNYyN7zOxai0VDGkBFnoNZ07o7T57mbyW0s42H5OjZKs8jyvpM50UMZGhABwCvLNqDWu3P3JYf/fHbUFLO4aBd1ZiOhHj5cmJDGiMAo535Zlvm5aA/rKw/SbLNQXRPNoq2ReIy/CpPPZpalLeP0oNPbxPJp7kZuyL4RPPNJMPyDg+e91aFq1YLQ24jHNAPRgYsdZcuHbACfSa6ORuiopk2OkvPGbY6fNfEQ/SwEX+3SsHrCI1sXU9diRKlQ8MK48/HTeGCTbOjtegLdHKtYlpbs48dDK23OjRvB2bEjWp3DZjGzb/cqrIowtBQxLP3CEw+o6m0ougPiP4TQm078PMcw9b0y1pfUoZw6GXc3G9VTqvFWe7cZV2poJOn3S7EELsetfjo5cxaS6NvJR06C4GJiae9AFPc2oHDMTRD6Dp8JMGwrpJVBwAVgKYX8a2CHP5Q8Cv249fy40HgAJFnmh4JMJFlGrVQ7E5H6FiMrynKc48eGxLc63mysJ2v3BqyE4qnIO7lEBKD2C0ABwd03wXjlTRGEaH2RdnyOyW7itIzT2h0X7e1PyyV/MLjpLqx+G0laPZH5+1Z3W1yC4EoiGelPNKHgPRmaM8Gc5+pohM7SRMKgH2CMAcLvB1mCiudghxccvMzRtK+fmRqR7FzCu7m6gJd2LWdzVQG5jVX8XLSH/2QspclqBmBkYBShHj7OY81NZWRn78aOPz7qPIaMvvTkA2rOBE2Co/x/N3FTK9lyeyRqw0iUBf9kR9MOnsl/5qjj95//BvN8PgK1gXnFFzDnjxe7LTZBcBXxmKa/ad4LWcPBdxakLnd1NMLJqv4Iyp92VNlFAV7jD80rGePqyLrMtupCPtq/qU1V1SOFaL15YNRsfDWOKsNNdfs5WFCDhJYA9wISR1xy8oE0bYbsCRB2N8S9fvLnO47v9xi4+OsqlOMuRvbdxc5xOxnlM+qo41eV7mfW1iuRfXcS2HgZZed+hraT82IEoaeJxzQDlecw8BgK+pVga3R1NMLJCr0J0ophyHpHY0TjZtg3FjITofZrV0fXJcaGxjNv2DTCjrjr8RcFCkYHxfDAqNOdiUh9+XYOFNQjoSXEq6RrEhFwrEYDCPtn15zvOC4a4c2dE/yQdr6HbPdgRsYMbNLR+9TMiE5Bf86f+DZcSH3At3j9PIWNlfk9EqsgdDdxZ6Q/0i2H/adD0FWQ9KWroxG6kqUUCudB4y+AHVT+EDoPop7s1kcLPUGWZXIaqzigq8Yi2fDTeJAeHEug1ss5pqpoDaU1HoCCML9aoged1XUBZISDbHZU0O1BY94qZYdpFZxyHWcGn8lvab8d95ipvz/DesVLYPPjgbA3+O/Yi3ogUkHoPLGaZqDbGQ22akg3gtLN1dEIXU0yQ+mjUP0+SAZQuEHARRD7P9CEuDq6blF24DcqdY6Gd9EhJsLiTuu6k9saISMA/M6ElOMnA13JbJGIeL6Yxph/Q+xHfDjkQ26KOv5Knpd2LeWBojtAW8EI8zx2nyvmkgi9j3hMM9BFPe3oIFsmel30S0otxL4CY5og7j1Qh0H9t5AZBnsngTHD1RF2qeLsH6nUhaDATkKkqmsTEYCq+Y7vITd37Xk7QKtR8uetkSjz7gdDCrfm3Eaxufi4x/1r1BnkTNmISj+GPV4v4bHwbGqbDT0QsSB0PZGM9FehNzlKjlfNh95/80s4GWE3wyklMGQdeKaBcSPsTYddSVC7wNXRnbS83QupMcagpIVBCYEERnbD5N36hYAK/M/t+nN3wNAwDR9fGAm73sVmVzF1x1SkDjS+TAkIw3z+KqIab8Ic8Achy05lYd72HohYELqWSEb6s9C7Hbfwq99xdSRCT/CZAsMzYFQR+M+FliLIvxx2BELpU3CMyZE9ZWnJXm5Z/zUL8nYcc9yOmmKe2P4Lv27+nEZLIkoMDElJwCcoBXDML1lSuJt/bf6BeX8u4LU9K6ky6U8sKEkC0z7wSHW0VnCR69J9uX7YUNj3AkXmIm7O6dhdGrVaTelFH3K52//AvYrL9p/JFWvEv3mhbxHJSH8W9QQoNFD2rKsjEXqSeywMXuKoVxJ2N8gWx/LgHV6QdxVYa10SVmFTHesqDhLt5X/McXn6Gj7M+ZO5soFw9VAUNPC5uYQ65eGJrMtKs1lVvp+rBo3jobTTcVeq+V/WaqySvfOB6ZYCNgi4uPPHdrFPLg5lqHwhlF/ER+Wf8Hvt7x0+9pvTbuO71KXQEsa31ruIWnQTNpvrE1BB6AiRjPRnSrVjRY2tEhp+dXU0Qk9Tah31MkbrIe4dUAdD3dewMxT2TQHj7h4LxWy38tH+jVwzaDye6mPXxlhZtp/rtGqUykG4UcPIkZMI8w5lTXku4LgrsrIsh7Nih5MWFE20VwA3pEygscVEZm1J54P7685hWO+oXLz5tig8858EUwwX7LrU2QSwIy5OTKdmzmY8GudQHvAx2p9msLe+ohujFYSuIZKR/i72dUAJJfe6OhLBVZRKCLsVTimDlFXgOQoMG2DvKNg1COoXdXsI3xzczoiASIYEHLszsc1iYZShFjdlIu6UMnTkTNQaT4YGRJDf5LijU2s2oreaGeJ/+Fweag0JPsHOMZ1i2ADqEHDrHX1ffLRK1t00CLLeoEUyM3X7aZ06PtjTm+ZLfmFk87+w+25n+IZJvLRrafcEKwhdRCQj/Z3aF/zmgDkXjJmujkZwNb/pMHwnjCwEv7OhpQAOXgI7gqD0mW6ZV7KtupBiQz0XJKQdc5zN0sy+3atQK2NQyvkMTz/P2XnX102LzuIoC6+3mhzbNNpWx/tqDo/psJYSsDeC7/TOHdfN0qO1vHXaaXDgIXYZd/JU/lOdPseuuS/yQMAXoLTyQMUlTPn96CXnBcHVRDIyEMS/6/heeJtr4xB6D20cpPzieIQTOs9R7Kv8yUPzSq4BW32XXKa+xciC/AxuSp2Im1J11HFmYx1ZuzdiJZh6Ww7W2LFdcv3jqvqf43vYnT1zvU64Y4IfF/reDjUzeDrvBTL0nV+u/d+xF7Fx7HqUxqFs0DyJ33cXYehswiYIPUAkIwOBeyx4jnGUEreUuzoaoTdRe0L8mzC6CeLeAnUQ1H0JGcGwbyo07zmp0xc31dNkNfOfjKXctv4bblv/Dbm6alaX7+e29d8gyRJGXTHZ2VnY8cfXLY+VCi/01tZvmHqrGb9Dd0J83Rxl4fV/e1PVWw6P6bCGxaBwB5/JJ/4iu9F3V4YRVfYcWH2ZuuVsLJKl0+eYEBaPce56AhuuQB/wE76/TGJ5ac7xDxSEHiSSkYEi/m3Hd3F3RGiPUglhd8Ap5ZCyAjxGgGE9ZI2EXYOh/ocTOm2qfzhPjD6Lx0af6fyK8w5kXGg8j40+k6babPYfKEHCiwBtAYNGXUaiTzA5jZWtzpPdUEmij2NOR7DWC183basxJpuVgqZa55gOkWzQkgeeI0/otfUEpVLJrlvTUe9/DqOiipnbzjuh82g1Guou/po50vPInnmcvmsGt28UrSKE3kMkIwOF91hwT4LGX8HW7OpohN7MbyaM2AUj8x3l0Vvy4OBFsCMYyv7jqMvRQVq1G1Fe/q2+3FVqvNTuaBv3k1ekR0aDTpVL4nBHw7uZUSnsbahgeWk2lc06fi7aTZGhntMiBwOgUCiYGZXKbyVZ7KorpczYyCe5m/B39yAtOKbjr7PuG0CCwCs787vT44K81Kw6/yoo+gcbmv7gneIPTvhcS09/gHdiF4PNm3cM/2DwT3d1YaSCcOJEb5qBpP5HOHghhNwCCe+6Ohqhr7A1Q+m/oOYTkE2OxxpBl0HsG6D27/TpXtm9giFSI2G2GEDBQTkXk28S16dMcI7ZUVPM4qJd1JmNhHr4cGFCGiMCo5z7ZVnm56I9rK88SLPNQrJfCFcmjSXMsxP/P2RPh6Y1MNroeFzVyz2zqpwnG84BrwIKp2US5xF3wucq1NcxeNmlWANXoamfRd6Z3xHt7d91wQrCIaJRntC+jFCwNx1qoCdujAmdIElQPR/Kn3PUrkEBPlMhbj54DuvwaUpzf6VKHwpIxIZaCImd0m0hH9N2b1AHQNoJ1CZxkVM/W8GWsAvxkWNonLMH5Un+G0768Q7yvT+A5kQ+TP2Qm1J659wZoe8SjfKE9kU84lg5UfG8qyMR+hqlEsLvhNEVkPIHeAyHprWQNRx2p0D94uOeomjfD1Tpw1BgJTHGzXWJSPNekIzge4Zrrn+CNl4zA6/iB2nS7GPOxltO+nx5F8znJo/3QN3IP/LPZe6K17ogSkHoPJGMDDRhd4HSCypfcXUkQl/mNxtG7IaRB8F3DpgPwsHzISMEyp9vd17Jwd0LqG2ORYmJwQmhBISN7vm4/1L5uuN7+D2ui+EEKJVKci9/ECrnsqL5Sz4tXHLS5/xw8g38PHwFClMsv3A/oYuuEWXkhR4nkpGBRqmE0JvB3gC1Yja9cJK0SZC6FEbrIORWsBuh9BHY4Qn5N4CtEYDcnQvQWZJQ0sSQ1GS8g5JdG7d+qSMp78Tjpd4i0lfNt2nzwRzJDVl3Umc++Zow58QNR3/OZrwbzqUm4EvcF09mW3VRF0QrCB0jkpGBKPoFQO140xCErqD2hoR3IN0AMa+Byh9qP4WMQHK3vUWTPQk19YwYkY7WO8K1sdqawVIKXj1UWK0bXDYshgvcngNNJfG/X9ol5/TWaGm65EfGmR9D8s5i3JapPLHj+I/eBKEriGRkIFJqIPAisJSAfq2roxH6E6USIu6B0ZXY4n8hR/EBTcoJeHCA4cq7UTf3gr9vtYeWxgbf4No4TtIPZ15GcP0NGHxXMn3Z01123i1nP8szId8ACp6tvZL0n8WHFqH7idU0A5W11tG91WO449m/IHQhm8VC9p4/sBCBliJS3N9G3bwakBxN6cLvd3x1YDVIvdmIwdbSapu32p1ArdeJBbd3HBh3wJgWR2frPqzFYsNjySRk71zei/2Nm4dOOP5BHbS7rozRqy/FHrARz/q5lJ3zLf4evX8JtNC7iKW9wvH9VWdhRA54pLg6GqGfsFkM7Nv9J1ZFMB4UMDT94kM7mqDkfqj93LGiS6GFoKsg9lVHQ8d27KkvY/7edci0/m9KpVDy7zFzTywh2aYFTSyMyu38sb3QqrJsZu6aBuYoymb9SaRv1yUMNpuNmJ/+QaXflygMQ/nxlC85L773VqwVeh+xtFc4PtFAT+hiZkM1Wbu3YiUIb8XBw4kIgNoHEt5z1LiJeRlUvlD7EWQEQPYsMO13DpVlmR8LM3lr79o2iQiAXZb4qWgXktzxarAANG0AuQUCzj3Rl9jrzIgawg3+j4LvLpKW3I7UiQq5x6NWq6m4+FMuUL6KrC3j/H2zuHbtiVeAFYSjEcnIQOaR4uhB0rQGrHWujkbo4wyNBWTn5GDHFz+3PFJGX9b+QKUSIu6D0VUw6FfQpkLTStiTCruHQsNv/F6yl6Ul+5yHuClUhHv44H7EY5Ut1YV8X5DZuSCr3nJ8D7+7k6+ud/t44t1Ems/CHPYl6Qs/6vLz/zDzLj5L+hUswXxhuYO4H24Wy3+FLiUe0wx0ujWwfzoEXg7J37g6GqGP0lXtJq+kCRl3Aj2KSBh2UedOYNoPRXeA3jGvRC/7ssx2DiulMzk37hRmRA1Gq3LDYrexoTKP7woykGQZBfDsmLmEePh07DoZoSBbIb2hsy+x1zPbzHj9PgxJYeZJ3z94amrXL1uuNOiJ//1SWgKXoa6fRvbp35HsF9Ll1xH6D/GYRugYv9NAEwP1i+AE2pMLQl3pnxwsaUZGQ6hPeecTEXDcpUtdAaMbKPG4EC0mLnH7mrfcb+Is5bdoFY7PTBqVmhlRKZwV43ijlYF1lQc7dg1rLdhqwLt/ljzXqrUsn/AZuOl4uuwethZ1fUPMcG9fzJcsZUjTPdj8tjBo7QTezFrZ5dcRBh6RjAgQ9W/ABqUPuzoSoY+pzF9OYaUboCQqsJGYlJOci6H25SfFPO60fMwi6xUoVH5Q/m/YFQu5FzjnlZwWMdh5yAFddcfO/dcjmtD+O0dqRvBkrg+9HUJXMGnpf9Cbu27+yJH2nf8ad/t9AkoTd5VeyIylz3XLdYSBQyQjAoRc6yhSVf1ep9rDCwNb6f4llNX7AxJx4VbCE2d3yXktkh1Qslw6B3taOYzYC95TofEnRy8cwNvNHbXC8d+XxW7v2IkbFgFq8Otb/Wg665NTXiRCGo0t4VWGfXzy5eKP5vXxl7M2fQ0K4yBWqx8j4LtLMVvE3VXhxIhkRHAI/6ejcVj1m66OROgDCvd+T1VTJAosJMV4Ehw9qcvO7afxcP56v64KPIZC3BuODZooAPKbarEdWknjp9Ee/6SSBKYcx7kGQLfq3dOWoZQ8KY18iMsWHui260yNGETz3I34N1xMY8AiPH+eyLqK7rue0H/1/3+VQsdEPAYKd0d7eEE4hoO7FlBnikNJM4OTI/EP69q6E2ND4py/XlK0B4vdBqpDE1TtemySncWFhwv1jQuNP/5JG38G7BB4SZfG2lsFa4JZNPpD8MpjoekpPtmu77ZraTUaGi5ZyDTbs8heuUzbMZ37tixod2yxuRiT3dRme73ZSLGh3vlVbzZ2W7xC7ySSEcFBqYTga8FW3aFW8MLAtD9jATprEir0DElNxds/ocuvMSIwkmCtNwDFhnr+s3Mp66oqkIG8hnxeyPzDcccE8HHTkh4ce/yT1rzn+B42r8vj7a0uCL2Ai0IvhuivuWnDZ+yt6t5HKGvOeJTXon8AScuruusZtvjeVvuzDFmkbErhH9n/aLW93mzk8e0/85+dS51fj2//WSQkA4xIRoTDYl4FVI4qmYLwN/t2LMIgJ6OmjuEjx6H1Du2W6ygVSm4ZMhmtylFTpNKkZ0HenyCDuvYDSoyOZbluShU3p05Co+pASXfDRlCHgdq/W2LurRaO+IpgZSxy6mOM/2QjZkv3zgm7Z/gscqb8iVo3nn3er+Hx3RlUGvTobDrO3XUuZsnMt1Xfkm/Kdx5jsLU4H7n9xSZLbVoACP2bSEaEw9Te4HcmtBwEw3ZXRyP0EjaLhawdP2EiAQ0VDBs5DbXGu1uvGesdyL9GzSbeOxCAccpNKBQQoyjGnzqiPP25d8RMBvuHHf9k5kKw68B3ZrfG3BsplUo2j1+FQmXBmPwAE94r7vZrpgSEYbpgBbG6/8Psv4qIFeOZvvUcis2OaysUCl4serHb4xD6FpGMCK0lvOP4XnS7a+MQegWbxcy+3ctpIQYtxQwZcTrqjkwY7QLRXgE8fMoZPDzqdC7QrkQGFAqZR4PX8vjoM0n0De7YiaoOTX4Nu7PbYu3NkjyT+F/qS+C/nUz3N5i3uLbbr6lWqym68H2ucnsLPIrZadqAHceqJ7ts5+Pyj6lsqez2OIS+QyQjQmuaaPAaD8Zt0NL9n6KE3svWomfv7nVYCcNTkc+w9AtQazQ9Hkc8e/G156EAFIBv0/cojJ24c9e4xNGUz+fU7gqx15sXM49pAVMh8Q3m5/zBoj2GHrnutSPiQd22+JokS7xa/GqPxCD0DSIZEdqKf9vxXTTQG7DMhgqy9uzARiA+qjyGjHbhKpTKV4Ej54WooOgu6EgnC8kGLQXgmdZNwfUdS0ctxUflByPu4fJFOeTVde+E1kJTIZfuuRQFijb77Nh5q/QtGqwNNJjbrxRr72wTRKFPE8mI0JbXaHAfBLqlYOuZT1BC72GozyM75yB2fPBzy2fwKUdpeNcTzPmHluUe2ZTNDsbNUP/d8Y+v/QyQIfiabgqw79CqtSwfvRQ09diHPMj4t8uw2LrvDf+KrCvQ2XXtdl0GMEtmbtn9CG9nr2t3//vZGyg19r8eQkL7RDIitC/2VUCC4ntcHYnQgxqqdpKbX4WEB0GexSSPurRbrpOrq+atvWt4YMuP3LL+azJrS9ofWPUm7f03JaGgpfAukMyttq8uz+WRrYu5Y8O3PJ+5jIaqrwAFhNzY9S+iDxrvN54H4++HkFXUBXzBzA8rjnvM32uAdLQOyLSAaSR5JDnvjChRokLl3C8js6j+Y6yyud3j61uaeWX3SiqbdR18dUJfJrr2CkeXEQ72Rkg3gLIDyyeFPq2meAPF1WpARZhvFdGDz+m2a2XVl3NQX0OcdyDvZq/ntiFTSAuOaT3I3gQ7IxyVgdshywqqgx8kLOl5ALbVFPHp/k1cmTyWBJ9gVpbncFrdZYS7K3A7paDbXktfNHzzcPY25cCWn3lozDiePyOo3XF/1QD5+9JbtULJs2PmEqj1Ou619DY9O5t2sl2/na36rWzWbab4iPloqtrZfJP+IqfHpuDt5k52QyU/Fe5yLuFO9Q/jnyMG3kqo/kJ07RVOXtRjILc4GpUJ/VpF3jKKqzWAkqggXbcmIgDDAyM5P34Up/w9ATlS7eetEhHnxyaF26EvGf+6/zn3ryjLYXJ4EpPCk4j08uOqCA0xyiL2qfp3L5oTsW70OtxVakj7P15YX8Hv+9tP+NqrAQKdqwPiq/ZlWsA07ou7jwUjFlA0uYgXQ5cwR/Egbo2nYi+4gWt//5PKZj0qhZLhgZHcP3IWQe6ORCensUrcHRkARDIiHF3I7aD0hqrXXR2J0I2KcxZT3hCIAjvx4RLhCbNcHZKD0hPck8FzNEWKNHSKSMf20Nsg4gGK/B/gc/sdANgkO8VN9QzxDz98ePX/kGXYoRCfqv8uUBPIguELQFsGQ57g/C+qKNfb2ozTtbQt3X6yJFkiX2cgzm0k90Q/wB3jQzCHf83QjaO5bbOjUq5W7ca0yEHOY/bUl3d5HELvIpIR4eiUSsd//HYd1Hzi6miEbpCftYgaQ5Sj4V2cL0HRvWj5a8gNMOoADN/Bh4pnKHU/lFTEvAbR/6Yp+C6229Kw2G0YrC1IyPgcWQNF9wf1igiq7D6uib+XOy/0PK4KvwoifsQS9Atj3ypDOqJrd73ZyDv72p9cejJa7DakQ7e5Ij39eODUwVyXkoakqeJdw20UGWoAiPEKcB5jtIluwP2dSEaEY4v+t+OWeOnjro5E6GIHdy2gwRyPEiMpydH4hQxzdUjHZFP+1SyvvgODDWAtp1Kd3r1B9XGfD/2cKE0UDL+fcksJZ31a5dxnsLVgP7QSpkmuIce+5qiTTf9itpvJNmYfc4y7Sg2yzD77Cp6ouYy4jXEsrPuEMVyP9/75xHmHADjnjAB4qXu+vo3Qs0QyIhybUuPodGotA91KV0cjdJEcZ8M7HUNSh+HlH3f8g1zI101Lk3woGbE4btnrLWa0Kjc0KjXebu4oUdBkOfRmeagx3kH1bPzceqZibF+kVCpZn74elVJCNeYalh3U8/zqtstpc6X1rLN/wNfWu9lt/xWb3Ha+iF22c+HuCxmxeQQFpvYnDOusOm7NuZVPrDexwf4JRrmBaT5zKJtcxhzpRYIMZwNgtllZW37AedyIwMguesVCbyWSEeH44t4EFFB8t6sjEbrA3h2LMMrJqKll+MgJaL07WFbdhRJ9g8kzH0oqrI7lqNmNlc6S8GqlilifQLIbD32yr/sGGSUbTdEdLxs/QCV4JvBmypvYtYWoU//Do380sC6/9VwRWZZQoKQFA5vt3/CV9S4+rHgHk/3wuPsP3M/S+qXIyMwvnd/q+Ax9BlO2TyFgXQAflH+At8qLdOVF3Kj+mKGW69lQXkqTxYpGBXvqy3h59wrqWhyTalP9wwj39Ov+3wjBpU4oGZk/fz7x8fFotVrGjx/P1q1bjzm+sbGRO+64g4iICNzd3Rk8eDC//fbbCQUsuIA6EHxmgGkvNO9zdTTCCXI0vFuMmQQ0lDFs5AzUGk+XxGK2WykxNFBicHwKr20xUmJocNav+LEgk0/2b3SOnxYxiCqru2NscxlrynPZUVPMrKgU55hZUalsqDzIpqp8bM37OKgYg0WyMzEssQdfWd90W/RtzAicgS3yCxRB6znjk0rqm1uvojlcSVWmBQP/Ln6c2D9jeaP4Dd4sfpPXS15HRkZC4v2y92myNvF+2fvEbYgjfVs6G3QbGOE1gt9G/UbdtFrmRd2PUqnGLkv8UryHL3ZXk1ffwlt71zof0XiqNVyRNLaHfzcEV+h08YgFCxZw77338u677zJ+/Hhef/115syZw/79+wkNbdtS3GKxMHv2bEJDQ1m0aBFRUVEUFRXh7+/fFfELPSX+XdgzyFEifuhaV0cjdJKj4d0qrIpotBQxLP1Cl8ZT1FTPq3sOP/b7Lj8DgAmhCVyfMgGdxUR9y+Ey4cFaby6JHwpl8GVBHjWaYK4ZPJ5hAYdv348NicNgNbOh8DcmKEzsYjJ3DZuOr8aj515YH/Z72u+ErgtFn3YzpnV/MvdjOGOCYx57e2Rkaq213HPgnjb7muxNBK0PwipbcVO4cUHIBbwx+A1itIeXcl8zaBxalZo15bmYLGoamjwBBdWNXoT6GwnRenPr0CmEe4raUgNBp4uejR8/nrFjx/LWW28BIEkSMTEx3HnnnTz00ENtxr/77ru89NJL5OTk4ObmdkJBiqJnvcSeNDDthrRK0LRNPIXeydaiJ2vPFuwE4KnMZ8jo7qmq2u2a90LWcIh4GGKeO/q4AxdDw/eQVg6aiJ6Lrx/YptvG+O3j0bYMwrT+NxLC6pmdfoBttu/YJf2MdKjzbkcoUfJY/GM8nvA46mMUTaw1G7jxhxJ+3uOYpDoq2synl/sxIjASlULMJOjruqXomcViYceOHcyadbgOgVKpZNasWWzatKndY5YsWcKECRO44447CAsLY/jw4Tz33HPY7Uf/S93S0oJer2/1JfQC8W8BMhTd4epIhA4yN5WxZ08GdgLwUef13UQEQBPl+G47Tr+SpjWgChSJyAkY6zeWB+MexOSeiyb1BQqqAskqDIOj9Jc5FgmJqQFTj5mIAJjMWpbudYdDfZl3lXrgbg8VicgA06k/7draWux2O2FhYa22h4WFUVlZ2e4x+fn5LFq0CLvdzm+//cbjjz/OK6+8wr//ffSqns8//zx+fn7Or5iYY1RpFHqOz2TQxEHDT216ggi9T1PdfrL35yPhjb8mn8FpLmx41xWUhz5V2Y+RjFiqwVYHPlN7JqZ+6HTPGwgkBkvUh6gDdrBxXzzGltYJhaIDbx0qVLxe8vpxxz21op4jZ6eolfDi2sbOBS30ed2eekqSRGhoKO+//z7p6elcdtllPProo7z77rtHPebhhx9Gp9M5v0pKjtJES+h50c8DNih50NWRCMdQX7GDAwX1SHgQ7FVC0sg+fEfkL0oloADbMUqDV73h+B52e4+E1N9IssQPBZmco34clcINafS1oDKSVx56xARW2u3Eq0SJWqHGTeGGWqHGjp1fa3+l2FzcZuxfcqotfJJhwH5ENmKT4IudBkoa21aEFfqvTk1gDQ4ORqVSUVVV1Wp7VVUV4eHh7R4TERGBm5sbKtXhbo1DhgyhsrISi8WCRtO2mI27uzvu7u6dCU3oKcFXQNE8qP7QUQnzaLPbBJepLlpDSY0HoCbMr5roQRe4OqQupAL7MR7bNvzgKNLnN7vnQupH9tSXY5FsaJVenK6+m99tL5M87SEOloYCjuRAgZJBTCFClYqPIojBAQGMDAlBZ9M5v/Q2PTWWeooNdfwn4w/cZB9CtN5cN/hU4n0ON+V7ZFk9KgXY/pbbSLLMRYsyeH1ucJvVUKvLc1lemo3OYiLaO4DLk9JJ8BHLt/u6TiUjGo2G9PR0Vq5cyfnnnw847nysXLmSefPmtXvMpEmT+Prrr5EkCeWhN67c3FwiIiLaTUSEPiDifih9BKpeg4j7XB2NcITyg79T0RgEyESHGAmLO8vVIXUthRqkpvb3SRKYD4DniJ6NqR/ZVHW4WNlIj0lMDgng0fxHUUT6IQNxult5f8ItfH/w8BL/UzySuTpiXKvzGK0W/rPzd84LCWNaRDI+blqqTU2tKqluKzHz475m2iOjILMwiA+yduCn0TpXTW2rKWJRfkarzsz/y1rN0+lz8dWI4nZ9Wac/1t5777188MEHfPbZZ2RnZ3PbbbdhNBq54YYbALj22mt5+OGHneNvu+026uvrufvuu8nNzeXXX3/lueee4447xCTIPiv8QVBooeIFV0ciHKE4+0cqGoNRYCchUkVY3GmuDqnrKdxAav8NjMYfADsEXt6jIfUntWaD89eNLSZuDr+Ls4LOQlbr8DvwKkXb/kVBSetqvYHubWvVLCvdR4C7J9cPPpUEn2CCtd4MDYggxONwn6BH/zj2RGSrXUFt9WBWlO13bmvTmTl5HBqlmo1VeSf6koVeotN1Ri677DJqamp44oknqKysJC0tjaVLlzontRYXFzvvgADExMSwbNky/vnPfzJy5EiioqK4++67efBBMeegz1IqIfgGqHkH6hdB4MWujmjAy9/zHQ0tCSgwkxwfhG/wEFeH1D2U2qMnI9UfOL6H3tZz8fQzSkXreSHfFWTwTOKzHDQd5IfLzufU1+H2nxq4cLKWQB/HJPZxofFtzrO7rpShARG8l72eA7pq/DWeTIsYxJSIZOeYkeEadGaJFptMi10mt7YFpQICPdRY7GCVZLQKb/L1ucDhzsxnRg9tFW+qfzj5+tru+Q0RekynkxGAefPmHfWxzJo1a9psmzBhAps3bz6RSwm9VczLUPM+FD8okhEXy81cQJMtCSUGUgYn4enbj1efKbVgN7S/z7AJ3CJALWoRnag470CKDIcbEWbWlVJt8uOd2CVYJTceObOGRxb7smTTcK6esZ0oHx+Ctd5tzlNjNrC24gCzolM5M2YYhU31LMjfgVqpZMKhOSAvnx3U6pig/2QR7qtg752HE5Y99WW8tdeKxW6j2WZp25kZ8NVoqTSJ8g993QklI4KA2hP850LjT9C0BXzGuzqiASknYyFGKQk1jaQMGY3WK9DVIXUvpSfY2unaazrgmEsS0J8m6/a8KRHJrKs82GpbebOOBfk7nD9PHBrGxn3xLNk8nG3zoto9j4wjsbkgPg2AWO9AypsbWVtxwJmM/KXebHR0CJYVKBUSxYZ6vNXuBGq9uvS1Cb2bWAohnLj4dwCFKILmInt3fI9RTsKNGoaNnNj/ExEApTfI1rbbnUt67+rZePqZWO9A0oKijzlmeHwV8WH11Oq9eWVV+8XQ/DRaIv7W3C7Cw4+GltaP2OrNRh7f/jP/2bkUm12JSTLxn51LeXz7z9SbjcfuzHyI3mIWnZn7AZGMCCdOEw5eE6B5B5iLXB3NgOFoeLcEM/G4U8rQkTNd1vCux6m8QW6n/kTjr6DwAO/0no+pn7khZQKp/mHHHHPfzGbiA1S8tVnPoj1tH5sl+YZQ9bdHJ1UmPYHure92GGwt2GRHkRGbXYmHu8Xxa1nCYGs5dmdmHEuAc44YI/RdIhkRTk78O47vhbe4No4BwmZpZt/uVbQQhZZChqefh3ogLZFX+QGtu8kiWcBSBF6jXRJSf6NVuXHXsOlcM2gc0V7+rfYl+ARxw+AJ3D58Cttuj0KrVnDFt9UU1FtajZsVlUp+Uy2/Fe+l2tTE1upC1lce5LTIQc4xPxZksqRwt/Nnq02Fxu1wm5DtNcXH7Mxc0azj64PbsEg20Zm5HxBzRoST4zUStKmgXw42vZg82I3MxnpysjOwE4yXIo/Uvtxn5kSp/B3fJRv81fOk5hNAhqBrXRVVv6NSKpkcnsyksCT0VjPNNgteak2rDsjB3kqW3hDO9A8qGD+/nNKHY9GoHZ9v432CuG3IVH4szOTX4j0Ea725NDGd8aEJzuN1FhM6q8n5syQr0BkOP27ZUl1w1M7MS4p2o7eYifYOEJ2Z+wmRjAgnL/ZVyD0Liu+CxE9dHU2/1KwvYX9uPhL++LrlMWhUH+8zc6LUAY7v9Qscq7iU7lD7OaCAkOtdGVm/pFAo8NN44HeUN/tpiR78+/QAHv2jgZkfVbD+lsMTWkcGRTEyqP0JrgDXp0yg2FDPf3YudW6zS4crdd8xbBqx3m3nQU2PTGF6ZEqb7ULfJpIR4eT5n+lYUln3DcR/ePgTq9AldDV7yStqQMaLAG0BicMHaCICjm68APlXQ8E/HGXfjVvBLQqUA+hx1UmQZImfi/awpboQvdWMn8aDiWEJnBUzHMURdUb+bn9jFd/lZ1DRrCPA3ZOzYoczMSyRR6YHsLbAxB8HzPzj532Ehh3ocKn2yubW80qUysOP4GS5852Chb5LzBkRukbkkyBboOxJV0fSr9SVbSWvSI+MOyFeZSQOv8TVIbmW2xFvbLLZMXEVG1hLYfdwKHkUDKKm0bEsLclmbcVBrkgew1PpZ3NhfBrLSrNZXZ571GNqzQbe2ruGFP8wHht9JjOjUvgidwt7G8oB+P36cKIDrHy+xY1w5RAePeVMor38+V/WavSWth2+ZVnm56I9fLR/I+Co5A8KVEckI7+X7MMuSW2OFfonkYwIXSPsFlD6QNVbro6k36gsWEVhhYyMikj/OmKHnOfqkFzP7a9VHn/913XEm5V5r6NFwb4JYNjS05H1CY9sXcziol0YbS28tXctj25bwvs5G/Bxc6egqa7dY3bUFPOfnUuxSHb2NVRQazYwPTKF0cExrCjbjyzL/FKcxenjMvHUWnjsNzu1RvmYpdpXlOXwS/Ee588KyQ0AjerwnZmddSV8nbeti38HhN5KJCNC1wmbB5Ieqt53dSR9XumBXymrc/TxiAk1E5F8hosj6iWcycgxbuH7nQmeYmVNex5Om8MZ0UMJ0Hjyr5GzuGf4DACabRaGB0a0GZ+nr+HDnD/xULkxPjSetKBo3tm3njJjI0MDIsjX17KsNJuVZTm4qew8NhtMLWrO+yofq93Wbqn2ZpuFJUWHV9GcEzuCJ9PnOn4dn8Q1g8ahVjjemjZU5lFqPHYPG6F/EMmI0HWingGFBsqfcnUkfVrRvh+o0oWhwEpijBuhsVNdHVLv4RZ+6BftJSMq8D4VkheB0q0no+ozfDRazosfxbjQeF7evYI3slYBcHrUkFYrXf6ysmw/wwIjUCmVRHj6cV78KGK9A1hTnouvRovZbmVFaTYzolKRgQuGhPLPyX4UVvtz5hf5+Gq06KytH9NsrirAIjmW8E4OT2Ju3Ai0Ksef17gYLZPDkzk/fpRz/LqK1hVhhf5JJCNC11GqHR1TrRXQuMzV0fRJebsXUtscixITgxNCCQgTn/BbUbf99O6gAo8hMPg3UA2QAnAnaEdNEVurC7l+8AS0KjdGB8WwvCyHTVX5bcbmN9WS6h/eatvQgAjymw7f7WiytTDIL8T584tnhjImsZbVuWqWZbe9/gF9tfPX0yIcdUfMVsfjNkOLI8mcHJ6MEscjmwO6aoT+TyQjQteKewNQQvE9ro6kz8nduYBGSyJKmhiSmox3UPLxDxpg6m2OeyISR975UIEmFlJXgNrvaIcKh3xfkMmcmKGolUpa7DYuS0pnZlQqv5fsazNWbzHj66bF103rnIjq66ZFZzGjt5jRHFo5F+bh26pU+40TWogIMPHpRm/0htbJoVU6XNjM/9CS4a2lLQDUNDv2eajd0Kodf8aWI8YL/ZdIRoSupfYH31lgzoHmLFdH02dkZyykyZ6EmgZGjEhH6320OwAD1/7GKh7dtgRZVtAsaZBlkGWQ1EEwZPUR80mEY7FINpQo+LMyj2GBEfi7e6JUKJCPMQ8n0TeYnMbKVtuyGyuJ8nIkf2qlslWpdpVKwV0zGnDX2Ji/KpRaw+ES/kfWLMk9dNfjz+IWwrxV3DPJcb4SQwPNNkdVV39R0GxAEMmI0PXi33V8L7zVtXH0AY4+Mz/QLCfhRhXDRk5B7S6q2B7JKtn5dP8mXt2zEgkZCSUoQKEAG2o+5BkaCTn+iQQARgZG8UvxHvY1VjIyMJqdtSWsKM1p1SDvx4JMPtm/EV+NFr3VzLSIQdSaDXxfsJPyZh0qhYIdNcVMDXc8ZtFbzK1KtdeaDLQo9JwzNo8mk5rxb5cjHVqmOzYkznmdX4qzaLZaWLTHyIXDvFApFdgliZ8KM51jjhwv9F8iGRG6njbBsZrBsBEslccfP0DZLBay9yyjhTjcKWHoyNmoNaL76JHsssR72evZVF3g3CahQoUdWYb51nvZYfThld0rMFjb1rMQ2ro8aQxBWi8UwML8HSwq2MmUiGTOixvpHKOzmKhvaSbRx3FHJFjrzbxhp5HdUMnaigOY7VauGTyeCWEJ+LppyWmsZGxIHBcnnsLiwt0UGeuxSnaem3Qqd5zqR36DjUu/cdwFSfELI8rTH4CKZh3/98daihptTEqysakqnxd2LSOroQIAT7Wm3Ym1Qv8jSmUK3SPuLcieCIW3w+AfXB1Nr2OzGNi3+0+sikg8KGBo+sWuDqlX2lxVwJ56R2EtjVLF2bHDUVd54Ca30Og2mUrFBGhpptps4KfC3Vw9aJyLI+79NCo1OouJ06OHcmFCWqt9n+zfiL/Gk+tTJgCOpb0v717B8tJsRgRGMiooivJmHQ+MOp2oQ030Zkal8ltJFqEePgz2CyO7sQqVUcGT6WfjplTx1nmwsdjM91nNvLVRx7yJfvzfkEm8tGs5DSY7CzfGAzKr61axrvFwLGqFkv9LnYSHWqyMGgjEnRGhe/hMAE0CNC4BW7Oro+lVzIZqsnZvxUoQ3oqDIhE5ClmWW1UFvWXIFM6IGYbSczgK2UxAxGU8MHI27ocmUW6pLnDOMxCOLqexkvqWZia10+m2vqUZneVw87ok3xD+kTKJ9ZUHeTbjdzJqS7ht6BRnIgIwJ3oI0yNS+PLAVp7buZQWu5W7hk3HTXm4z8yGWyLx0yq4+5c6tpeaifD047bUWazYPgKbpAIUtNgOJx2Rnn78c8QMhgaIuVMDhULuAw0A9Ho9fn5+6HQ6fH3F8/Q+o24h5F0GobdD/HxXR9MrGBoLOHCwBAlP/NzySB6oDe86oKGlmYe2/gRAjFcAj40+07Fj31QwrIeReaBN5KsDW1lX6ahFccuQyYwOjnVRxMKxZFW2kPa/MjzcFOTcG8NFX1WxrbQF6dA70ONn6Rkdo2CofziD/EKP2SdH6Ds6+v4t7owI3SfoUlAHQc3HfzWfGNB0VXvIPViOhCeBHkUiETkOo63F+etW3VttNaBwB21im33izkjvNTzcnQ8uDMZgkRn0cjHbj0hEAGK1iZwfP4rB/mEiERmARDIidK/wBx0NzSpfdHUkLlVX+icHS4zIaAj1KSdh2EWuDqnX81Ad7sJb3tx4eEfiJ5DwSbv7jjxG6H0uGeFNiJcSkw3sRyQibkrIrbW6LjDB5UQyInSv8PtA4QEVL7k6EpepzF9BYaUboCQqsJGYlHNdHVKfEOjuSaSno+5EQVPd4Uqc3qdC8BUA6C0mNlU5VtqoFUpS/ENdEqtwfEaLxJmfVFDX3PYuqU2C/TUiGRnIxGoaoXsplRDyD6h+E2q/cb6JDBSl+3+mqikcsBMXaic4drarQ+ozFAoF0yIG8U3edgDe3reWC+LTODU0AbVSyZ76cr4vyMRkd7yJjQmJw9tNLI3uDRpamvmhIJO9DeVYJDshWm9WZ4xgQ5Gt3fEysLPCxL8zfqeiWUeAuydnxQ5n4t8m2a4uz2V5aTY6i4lo7wAuT0onwSe4B16R0N1EMiJ0v9gXofodKH14QCUjhXu/p84Uh4IWEmN88A8befyDhFYmhyexvaaYA/pqmm1Wvjq4ja8ObkOJAumIiqH+Go9WzdUE1zFaLby0azmD/cO4c/hp+LhpqTY1kX1AQq20YZNApWj9mAagVCeR7BvGTakTyWms5IvcLfhptAwLiARgW00Ri/IzuDJ5LAk+wawsz+F/Wat5On0uvqI+T58nHtMI3U+phYDzwFIETRtcHU2POLhrAXWmOJQ0Mzg5UiQiJ0itVDFv2DRGBUa12n5kIhLp6cf9I2cR4C4a5PUGy0r3EeDuyfWDTyXBJ5hgrTdDAyL49vIo6h6P56vLQhkb7d7mOFlWMDZgBBGefkyPTGF0cAwryvY7968oy2FyeBKTwpOI9PLjquRxaJRqNlbl9eTLE7qJuDMi9Iy4t6HhByi8E0bsdHU03Wp/xkIMUhIq9KSmDkfrLeYxnAyt2o3bh02jsKmO9ZUHKTY0IMkSIVofJoUnMiwgAqVCfK7qLXbXlTI0IIL3stdzQFeNv8aTaRGDmBKRjK9WyZVp3ny6Qw/ARxcG8fjyRsqbHM3wqgx2koIc9UaGBkSwMD8DAJtkp7ipnjOjhzqvo1QoSPUPJ19fi9D3iWRE6BmaUPCe7KgPYc4DbZKrI+oW+3Z8h0lORE0dw0ZOQq3xdnVI/Ua8TxDxPkGuDkM4jhqzgbUVB5gVncqZMcMobKpnQf4O1EolEw7NAdlQ1EKMn4obx/pxfboPyW/upLDSj5JGK8Q5Hrn4arSY7VYsdhvNNgsSMj5/exzjq9FSadL3+GsUup74OCH0nPh3HN/7YQM9R8O7HzGRiIZKho2cJhIRYUCScdR+uSA+jVjvQKZGJDM5PIm1FQcAWJNvwmSVuXiEFwBKpZJLxlXgrbVz9cIaCupFrZiBSCQjQs/xHAYeQ0G/EmyNro6my9gsZvbtXk4LsWgpZsjI00XDO2HA8tNoiTi0JPsvER5+NLQ42kK8dKgBzQNT/J37gz3deegMA3YJxr9djs0mobeY0arc0KjUeLu5o0RBk6V1M0S9xYyfWEHVL4jHNELPin0D9s+GonmQ9KWrozlptpYm9u7ZhI0wPBX5DBl9iatD6lNyddX8UbqPYkMDOouJ24ZMIS045pjH7G+s4rv8DLEEtJdK8g2h6m+PTqpMegLdHXdC1uabifRREe57+O0n0TeYLFs5z85O5LHlDcz4qIJrp1WS6Ov4M1MrVcT6BJLdWOX8+yHJMjmNlUyPHNxDr0zoTuLOiNCz/GaBWxTULwSpb9+ONRsqydqzHRuB+KjyRCJyAix2G9FeAVyRNKZD42vNBt7au4YU/zAeG30mM6NS+CJ3C3sbyp1j/loCenbscB495Uyivfz5X9Zq9H/7VC10j1lRqeQ31fJb8V6qTU1srS5kfeVBToscxMYiM0arzMTBjXyyf6PzmGkRg6g1G0hNKGRmspL1hS0sytIzKyql1Xk3VB5kU1U+Fc06vj64DYtka5OICn2TuDMi9Lyop6HwH1D6OMT+19XRnBBDQx4H8sqR8MHPLV/0mTlBwwMjGR4Y2eHxaysOEKz15pLE0QBEePpxUFfDirL9znoURy4BBbgqeRxZ9eVsrMrjjJhhXf8ihFbifYK4bchUfizM5NfiPQRrvbk0MZ3xoQmc/3klAJOTm6lvOdzNO1jrzbxhp/FdfgaDB+/noH4wyzMGUTzCj2EBjjFjQ+IwWM0sKdqN3mIm2juAu4ZNx1fj4YqXKXQxkYwIPS/0Jii5D6rfhujnHVVa+5CGqkwKSpqR8SDIs5j4oZe6OqQBI19fS6p/eKttYglo7zMyKIqRQVFttq/KNxHmreLutAlt9v11twugdKSNpJeKOf+LKgoeiCXy0COd6ZEpTI9MaXOs0Pf1rXcBof8IvQskA9S86+pIOqWmeAP5JWZk3AjzrSR+6IWuDmlA0VvNbaptHrkE1GBtOeoSUJ1VPKZxpe2lZppaZM4dcvzidNF+an68OgyLHcbNL0MSXb/7PZGMCK4R9YSjDXzZM66OpMMq8pZRXK0BlEQF6YgefI6rQxKEPuO/axsBePg0v2MPPOSsVC8enOZHmd7O2Z9VdWNkQm8gkhHBNZRqCLoSbFXQ8Iurozmukv1LKG8IRIGd+HA74QmzXB3SgOTrpm0zEVUsAe0blh80EeypJCFQ0+FjXjgjiImx7izNNfHCmoZujE5wNZGMCK4T+zqgdMwf6cXysxZR3RSJAgtJcb4ERbd93i30jETfYHIaK1tty25sfwnoX/5aAvrXGKHnZVW0oDPLnJ3a+f5Bq/8vgmBPJY8sa2BDoakbohN6A5GMCK6j9gW/OWDOBWPv7FdzcNcCGszxKDGSkhyNX4hYjdGVzHYrJYYGSgyOT721LUZKDA3Um40A/FiQ2e4S0O8LdlLZrGNNeS47aorFEtBe7nnnIxr/Th+rUSvZfHskKiWc/nEl9c22rg1O6BXEahrBteLfhV1xUHg7DNvk6mhaOdzwTkdq6ii03uKTdVcraqrn1T0rnT9/d2hVzITQBK5PmYDOYjrqEtBVZfvxd/fkmsHjnct6QSwB7Y2W5poI9FCSEtLxRzRHSgrS8NVloVz2TTVj3yrnwP3RKPvYKjzh2BSyLMvHH+Zaer0ePz8/dDodvr6+rg5H6GpZY6F5O6SVgabjNSe6074dizCRgFquYdjIqag1oj29IJyI/TUWUl8t5cpRXnx1edhJneuOn2p4e0sTFw/35Lurwo9/gOByHX3/Fqml4Hrxbzu+F97m2jj4q+HdYkwkoKGcYSNniEREEE7C82saAXh4mv9Jn2v++SGkRWhYlNXM/E26kz6f0HuIZERwPe+x4J4Ejb+Crfn447uJo+HdClqIRksRI9Lnotac2G1lQRAcfs1pxk+rYHiEe5ec789bI/HTKrjr5zoyykTtmP5CJCNC7xDzEmCHkntdcnlbi569u9djJRRPRR7D0kUxM0E4WQX1FmqbJWYnd918HU+Nkg03Ox7nTnu/AoNZFETrD0QyIvQOgReAOgRqP4MerrZobipjz54d2AjAR32QIaNFeXdB6ArPr3E8SjmRVTTHMjzCnQ8uCMZgkRn/TlmXnltwDZGMCL1HxCMgm6HiuR67ZFPdfrL35yPhg78mn8Fpl/fYtQWhv1uS3YyPu4LRUV1fcO7Gsb5cc4o3+6qt3LiousvPL/QskYwIvUfYXaD0hMpXeuRy9ZU7OFBQh4QHwV4lJI0Ud0QEoauU6mxUGezMSOy+JdWfXxpKaogbn+ww8HlGU7ddR+h+IhkReg+lEkJvAXsj1H7h2CbboG4BxtKXKTbUO7/+Kop1oqqL1lBQanM0vPOrJm7IBScfvyAITi8cWkXzYBc/ovm7LbdH4aVRcOOiGvZVWbr1WkL3EXVGhN5FssB2L3ALg4gHoeJFsJZildXMs3zmHKZWKHl2zFwCtV6dvkT5wd+paAwCZKJDTITFndZ18QuCAEDUc0XozBKGZxK6/VrbSsyMf6ccP3clFQ/HotWIz9m9hagzIvRN9kbQDgZrGRTfBdZSAGx/KxZskyUMtpZOn744+0cqGoNRYCchUiUSEUHoBpV6G+VNdqYl9kxzwrExWl47O5BGs8Tk98t75JpC1xLJiNA7mPOg4FbIjAFzTpvdNtxO+hL5e76jxhiDghaS4/0JjBxz0ucUBKGtF9c3AnD/FP8eu+bdk/w5f6gnO8os3P1zbY9dV+gaIhkReof9c6DmPZAtQNulvdaTTEYOZC6goSUBJQZSB8fhGzzkpM4nCMLRLdpjxMNNwfSknu0H9P1VocT5q/nfRj3fZ53cvDKhZ4lkROgd4uaD0gdQtbvbKp94JdScjIXobUmoaWTIkJF4+sac8LkEQTi2+mYbJTo7k+O6puJqZyiVSrbfEYlWreDyb6oorBcTWvsKkYwIvYP/HBieAdpk2ktILJxYMrJ3x/cY5STcqGHYyIlovQJPMlBBEI7lpXWOQmf3TfFzyfWDvdX8fkM4dgnGvV2OzSYqtPYFIhkReg9tMgzbBv5z2+yydjIZsVks7NmxBDPxaChl6MiZouGdIPSAb3cbcVfDnMGdX+nWVU5L9OCZWQHUGCVmflThsjiEjhPJiNC7qHxg0PcQ9Syg4K915y3tJCOS3P4nHpulmX27V2IhCg8KGJF+nmh4Jwg9QG+WKGywMSGmZ1bRHMtjMwOYlaxlXWELj/1R5+pwhOMQyYjQ+yiUEPUY+eEfY5MdS3qDqGkz7Nu8HRitrZ8Jm431ZO3eiJUQvBR5DE2/uEdCFgQBXjm0iuaeya55RPN3S68PJ8JHxX9W61iWKya09mYnlIzMnz+f+Ph4tFot48ePZ+vWrR067ttvv0WhUHD++eefyGWFAWR/YxUvFbvzrPV57LICX4WeYHcvvNSH73AUNNXx9r612A811mvWl5CdvRs7/vi65ZEqGt4JQo/6epcBjQrmpvbsKpqjUamUbL0jCo0Kzvu8inK9zdUhCUfR6WRkwYIF3HvvvTz55JNkZGQwatQo5syZQ3X1sRsVFRYWcv/99zNlypQTDlYYGGRZZmH+DiRZpkqOZJnHf9EqWvhPqj8vn3oRtw2dio+bY6b+QX0N22qK0NfsIye3CAlvAtwLGDTqMhe/CkEYWAxmibw6G2Oj3VEqe89N92g/NT9cHUaLHcbNL0Pq4a7gQsd0+m/Mq6++yv/93/9xww03MHToUN599108PT35+OOPj3qM3W7nqquu4umnnyYxMfGkAhb6v/ymWkqNjQDEegdwxvB7wWMEVLyEUqEgLSiam1ImOceXlfzJwSIdMu6EeJWROOISF0UuCAPXG5t0yMCdE3rHI5ojnZ3qxQNT/SjT2znnsypXhyO0o1PJiMViYceOHcyaNevwCZRKZs2axaZNm4563DPPPENoaCg33XRTh67T0tKCXq9v9SUMHLm6w3fZpoYPQqlUQcS/QPcrNC4DINU/jDAPH2aomohnEDIqIv3riB1ynqvCFoQB7YsMA25KuGRE71y19t8zg5gY687vuSZeWNPg6nCEv+lUMlJbW4vdbicsLKzV9rCwMCorK9s9ZsOGDXz00Ud88MEHHb7O888/j5+fn/MrJkYUqRpIrHa789cB7of+Y/M+9Hiv6g0AFAoFMxV1JGtGAxARZCQi+YwejVMQBAezRSK31sroqN71iObvVv9fBEGeSh5Z1sCGQpOrwxGO0K1/a5qamrjmmmv44IMPCA4O7vBxDz/8MDqdzvlVUlLSjVEKvY2P5vCywAP6Q3dJqt92VGhN/haA/Kzv8ZaHo8DK9pY9hMef5oJIBUEAmL9Fjwzcfmrv7qquUSvZcnskKiWc/nEl9c1iQmtv0alkJDg4GJVKRVVV62duVVVVhIeHtxmfl5dHYWEhc+fORa1Wo1ar+fzzz1myZAlqtZq8vLx2r+Pu7o6vr2+rL2HgGB0cg1KhAGBdxQHq9dlQ+SoEXQUqX/J2L6TBHIcSE3+Y9qENGe4cLwhCz/tkexMqBVyd5rpCZx2VFKThq8tCMVllxs4vFxNae4lOJSMajYb09HRWrlzp3CZJEitXrmTChAltxqemprJnzx4yMzOdX+eeey7Tp08nMzNTPH4R2uWn8WBMcBwAzTYrlfuuQsZOmdel7Mv4hkZLIkqa+N50gAI8mR452MURC8LAZbFJZNdYSYvU9OpHNEe6dKQ3t433Ib/exuXftq1hJPQ8dWcPuPfee7nuuusYM2YM48aN4/XXX8doNHLDDTcAcO211xIVFcXzzz+PVqtl+PDhrY739/cHaLNdEI50WVI6xYZ6Gk2VpCoyqZLCqSmqwK4YjIoGPjGVYEbLBfFpxHqLfjOC4CrvbdUjyXDLuL51B/vt80PYVNzCd3uMvL1Jx+29cBXQQNLpZOSyyy6jpqaGJ554gsrKStLS0li6dKlzUmtxcXGfyY6F3svbzZ1/jZpFyZ4LwSZTo3wVu3IwarmSd011eLn5cUl8GpPDk1wdqiAMaB9tM6BUwA2jvV0dSqf9eWskkc8XcefPdZwa687oKNeXsR+oFLIsy8cf5lp6vR4/Pz90Op2YPzKQSDbs2z3Zr/wMk2IwbnIJ+7wiSQwK5ZTgGNyUbbv7CoLQc2w2CfcnChkRriHzrmhXh3NCsipaGPVmGV4aBeUPxeGt7V0fpuvNRgy2FufP3mp3ArW9f27OXzr6/t3pOyOC0FNshU+So/yWFkUcHhQwdMzFjHR1UIIgOH28w4Akw01jfFwdygkbHuHO+xcE848fajn1nTKy/tk75jLaZYk/K/P4+uA2jrxjoFQoePyUs4j06l+PlXpXCigIh5gNNeytn0ILsXiLhneC0Cu9v02PUgG3jOu7yQjATWN9uTrNm73VVm5c5PoJrTqLif9m/sFXf0tEACRZ5pXdKyhoqnVJbN1FJCNCr2NoLCA7Zx82gglQrCdFNLwThF5HkiQyyy0MCXFDo+77byVfXBZKSogbn+xo4vOMJpfFYbZbeWPPaooM9c5tnmo3fN0Oz2cx2Fp4Y89qKpt1rgixW4jHNIJLPLJ1MXUtbVt6nx7gR4LZHxkvIqU3iRjzkXPfjppiFhftps5sINTDhwsT0hgRGOXcL8syPxftYX3lQUx2K0m+wVyZPJYwDzHPSBC62peZRuwy3NCHH9H83dbbo4h8rogbF9UwNsqdIWGa4x/UxdZWHKCsuRFwVKC+KnkswwIiUSoUlBga+DZvOwf1NZjsVn4o3MXtQ6f2eIzdoe+ns0Kf9HDaHF4cf4Hz657hM0hQtJBgDkJGQ7z0GBHBClA68uU8fQ0f5vzJpPBEHht9JmlB0byzbz1lhxrqASwrzWZV+X6uGjSOh9JOx12p5n9Zq7FK9qNEIQjCiXp7sx4FcMf4/pPs+2qVrPpHBJIMk94rx2zp2YJokiyzruKg8+c7hk5jRGCUs6hjjHcAdw4/DT+NBwC768qob+dDXV8kkhHBJXw0Wvw0Hs6vwqJ1zNYOQ0ZJvOK/BLEcYv/nHL+ybD/DAiOYEz2UCE8/zosfRax3AGvKcwHHXZGVZTmcFTuctKBoor0CuCFlAo0tJjJrRTsBQehKkiSxo6yFwSFuaDX9621kXKyW184JpMEkMeX98h69dn2LkVqzAYDBfqFEe/lTobfx4TY9T69wNPfTqtyYGJYIgIzMgSMai/Zl4jGN4HLFOT8TaksA7MQFlBJU9z34ngHqw5+48ptqmRWV2uq4oQER7KorBaDWbERvNTPE/3BbAg+1hgSfYPKbahkbGt8TL0UQBoTvsozYJLj2lL5XW6Qj7p7kz5p8Mz/ta+aen2t5fW7He6udCJtNYmNxC4v361manYLOqMVscefBbwuwH5rB6qaEJ2b6o1AoCD5iaW+LvX/01xHJiOBShXsXUWeKB1oIi3AnuPFVx474d1uN01vMrSZwAfi6adFZzI79VkcHTl/N38ZoDo8RBKFrvLnR8Yjmnkn9a3npkb6/KpTEl0p5Y6OeaQkeXDD85Gt7GFskVuWbWFdgZmd5CwfrbFQb7JhsR66Z8UetlPDW2jgt3p9rT/GmymDntsV15NXZSA5246Du8Iqfv/+/2FeJZERwmYO7FqKzJqKgmQyVjn+EpEPZJvBMB22cq8MTBKEdkiSxrbSFpCA1nv3sEc2RlEol2+6IJPa/JVz2TRUH7o8hLsCtQ8fWGmwsO2DizyIzuystFNTbqG22Yzli+poC8HFXEBugJjXYjTFR7sxI1rK+4U/ymxyPXq4ffCoTwsJpapG48+c6lh804eFhZFtNEQAeKjeGBER09Ut3CZGMCC6Rm7GAJikJJXo+N5Vy3dAZUHibY2f8O23G+2q06K2t73DorWb8Dt0J8XVzTOjSW8zOyV1//Rzj7d89L0IQBqCfc0xY7HDlqP75iOZIId5qfrs+nJkfVjBufhllD8WiPmIZc0G9hT8OmNlUbCarykJxg40G8/+3d9/xVdX348df5+7sQfYeQMLeYBBEJEodKGqrdaKtWiu2/WqHtlqxtRVXrT931aq1Dpw4UQsoKkNA9ghhZO+9bnJz1/n9ccNNAgkk4SY3Ce/n4xFN7v2ccz73kNzzvp/z/rw/Tuwd8l41CgSbNKSHGxgboWdWgpFzR/oyJlzX5dIpJr80/pXlCkb+c3AzOQ1VZESmMDlaw7+3l5Ht3IVddR1gTlQqRu3wuIwPj1chhpT929+lxZmKjmoKgkPR2f2ZEBQERz4DYyr4zzhum5SAMA7UlXXKG8mqLSMlwHUvN8zkR6DexIG6MuL9QwBosdvIbaxiXvTIgXlhQpwGnljvqm3x27nB3u3IAJmXbOSXswJ4dnMj0csLiArQUlTvoKHVibPD3RWdBkJ9NEyJMTAh0sjsRCPnjvIlIbh3l9kpI+KYE5XK+rIjqKh8W3aYb8sOk9swnupGP+Ji9USG2kj0D+WixAkefrXeI8GIGDB2q5UDez6jlRQMlJI2YQErdn1JRmQK2sLfAQ6IfxSAV7I3Emzw5dLkyQAsiE3jsd1rWF2UxYTQGLZW5pPfVMO1o2YCoCgKC2LTWVW4lwifAMJM/nyUv5tgow+TwwZHeWchhoNNha0khegIHGRruJyqo0mkX+W08ENRKwer7ZQ22GmytkccVc1OalucRAdomRBlZHK0kTlJJjJHmgj19czlVFEUrhk5kyCDD6uLsrAeLU2guP7z2dZx/PWSKv5vwnRM2p7dNhoKJBgRA8JutbB/91psSgImCkibeCEHzdXUtDZzZkQS7P8P6CIg9FIAalqbUVx/fQCkBoZzU9qZfJS/iw/zdhHhE8Avx84l1i/Y3WZh3BisDjuvH9pCs93KyKBwfj1uviyoJ4QH1FjMfJLdRKtd5fx0DQVNNUNu0TaAJosrifS7vBZ2lFi7SSIFX71CpL+W2Yk6psYYmZNo5OfvV1JuVnn5x+GcO8q33/qoURQuTpxIZmw6mytyKWyq5W2b6/az3aHl3+tiuWWsBp9hdAWXVXtFv7Nbm9i3eyN2QvHV5DJm6k86Nyj+KxQvc9UVifqVdzophOhWjcXMn3/4hI++H01xdRDXZ27FZHCiUzQ8MH3RoAxIKprsrG5LIt1VaiW31k51N0mkMYE60sL0zIgzcs5IH2bEGDrlhhxVVG8n9dECFCDvDwlEBQ5MNFDZ5CDi7/nun7UKTI8z8vXN0fjoB/cIlazaKwYFS1MFBw7sw0EoAdojjJ5y5fGNyh4HjR9ELB34DgohTqrJ3opddVJWG4CfyYrJ4EqgtKtOmuythNJ1MFLT7OBItY0Z8f03/fRoEunGfAv7yq0U1J04iXRcpJ5Z8UYyT5BE2p24IB3vXxPJotfKmf5MMQV3xfdq+77aVtza6WeHCluLWrnqrQrevzYSrUbpZsuhQ4IR0W+aao9w6EgxTgII0ucwclIXgUjlK+Coh6jfwwD8UQsheq/R1kpxdQAOp5aUqPIebfP1kRauWlFBldlB3bIk/I19//t2Op3sKrWy5oiFLYUWDlTauk0iHeGrZWqMgQlRRjIS+pZEeiIXjfHjD2cF8ci39Sx6rZzPbuj/qbU/FLei1YCjQ4DlVOHjrGZ+80k1T108AkUZ2gGJBCOiX9SW7yS3sBkVX0b45pM0tpuVd4v+DIoe4v42sB0UQvTI2uIDvJezg905owGVSSmdS6Rn1ZaR4B/q/tnmULlvdQ0Pf+OadaMC2VU2psUaT3osu93J+oJW1h1NIq2yUdro6JRECmDUQbiflolRRiZFGzkr2URmqolgDyWRnszD549gfZ6FVdktPPJNLX+YF9LjbQ/WV/C/ov0UNNVSb23hl2PmnjTJfm1OA06nCnQOOFTgme8bSAjWMWNUBauLsqi3thDnH8JPU6eRHNC/lWM9SYIR4XFVBRvIr9ACeiIDy4gbfXnXDevXgq0YRlwNmoFfHVMIcWJfFWfzTs52AEprAvE1WgnyVbF1+IT+Qd5OAg0mMiJTOFJt44o3y9lRYqVj+LC/3NopGDmaRPptXgs7iq0cqbFR0eTsMok0qi2JdFqskXnJJuYl+QyK9XC+vjmamOUF3P1FLbMTTcxJ8jn5RoDVYSfOL4QzI1N5Puu7k7avsjSxudCCyvEzZxRcAcm9q2v4mbKD60ZPJzkgjLUlB3hy79f8Zdqi46pSD1YSjAiPKjvyJcW1rk8JsSPqiUq+qPvGBb8GFEh8amA6J4TosQZrC+/n7gCgrNYfu0PLkqn+PH3mlVS0NLKqYC+bKnIBWHHkB7IKQ7n941qsDrVTIKJV4J8b6nl+c8MJk0gTQ3Skh+uZHmfknNTuk0gHC4NOw/e/jGHMP4s47+Uyiu6O79H03vGhMYwPjenxcVYePkyLtT3x82gAolFUzkryYeFoX8qUHcyKSeHMqFQArhk5k701JWwsP8KP4sf19qV5hQQjwmMKsz+mojEaBTuJUTAiLrP7xs17oWU/BGaCLrT7dkIIr1hfdsRd6bO4eBQA9y8IByDCJ4Alo8/ArjrZUFLEF1tTeLKypsv9OFTYUWJ1J5GOiWirRBpv5LyRvoyJHLqjoiPDDLx+RQQ/XVHBzGdKOPjbOI8ntG4vbQRcwci4SD2z4oy8vK2JuePz+PrqBdidDn61oYwxwXPc22gUhfTgKHIaqjzal/4kwYjwiNy971FjSUKhldSEIIIixp94A3fp9+dP3E4I4RV7a0vd32eXmYj01xBoVFj+dS3+BoWsSjs7SuP5viCKY3MZjpUQrCX/ruG53tSVk/xZl9vC85sbuXpFJSuujvTo/kOC6vnbojBunjiaCH9XzaR39tZTUuOP1WGn2W7FiUpAF4uElrU0eLQv/UmCEXHKDu96m3pbKhrMjB6ZhF/wSd50rGXQtAF8p4ApdWA6KYToFYvdBkBNvT9NVpWrJvnyf59U88r2JnQaSA/XkxZuICqkmsYWE80WAyoKWgX3svdHFdU7sNpVDLqhPeOjO88tDuf7glbe3mNm3vf1/PIMz61mrNWoTI13ugMRgLQIyKoIwul0nmDLoUWCEXFKsre/Q5MzFS31pKdPwuTfg+zt/NsAFRKf6ff+CSH6xk/vun2y7UgUAHFBGpatqee3cwJ56Ecj0GkVDtVX8NjuLABGB8QTzRRW7jPz6YFmLHYVnQbsTtc01EPVNsYN4VsyJ7Ph1hiiH8zn9o+rmRVvZGqsZxJHA/UmGqydFwmdm+pgW6GBLw/ZuDDdhAaFxmPaNFgtBOmHRvIqwODNDhKD3v5t79GkpqKjivETz+hZIGJvhtqPwZAMARn930khRJ9MGhEHQHFVMAatk2Vr6rl0nC+PXuAKRJyqyueF+9ztZ0fHcvVkf969JpLa+xL5dEkUS6b6E+LjusxUmR1dHme48DVoWP8LV2Lq2S+W0mTxzKhFSqBrkdBOj0VXoVGcvLqtEZ1GS0JAKFl17fVfnKrKgboyUgKHztReCUZEr9mtVvZu+4gWkjFQwriJ56Az9LAcdNHvAQckPNKvfRRCnJqMiBSamvyx2rVYHQr+RgcPXKDQ6rCTXVfOU3u/Zl9bXom/zsj08Pbbsya9hgvTfXnp8ggq700k+8445iQNnU/pfTUh2sgLl4bR2KqS8Xxxl20sDhuFTbUUNtUCUNVqprCplhqLGYCVuTt5JXuju/286FFUWZp4P3cHZc31rCs5yP76QkJ9VTbku0ZDMmPTWV92mE3lOZQ21/Pm4a1YnXZmR6b08yv2HLlNI3rFteDdV9iUOEzkM27aZT3f2OmEypdBFwahP+6/TgohTpmf3sCRvPGAikZxcsmZO3hyn/24dhoUbkg7o9sFKbUahdHhw/f2zLF+PiOQr3MsvLGziZver+Sly8M7PZ/fWMPje9a6f363rY5LRkQyN6RlUG9toaa12f18mMmf28edzbs52/mqOJtgoy/XjZ5F3mEfvjjYQpPFyYzwRJpsFj7O302D1UKcfwi/HjefQEPPap8MBrJQnugxe2sD+/Zsxk4Ivpocxkztpqpqd0qWQ9GfIP4xiP5t/3RSCNFJjcVMk73z2iY9WW23qN5O/EMFAFx1VhYB/vXHtQnQm1gyehYTQmM91+FhQFVV0h8v4mCVjf9eEc61UwI8fow3djRy7TuVPLkolF/NDvb4/j2lp9dvCUZEj1gai8nKPoiTAAJ0Rxg9uYt1Zk5mWyiorTC1UdahEWIAHF1t92i9kKNOttpus9VJzPJ86i0qc5OMrLkpki2V+eytKaHFYcVPZ2TSiFimhiV0OyJyuqtvcRC7vACLXWXPb+I8Xk/Fbndi+HMeZyYa+e7WwRsMyqq9wmMaq7M5nFuBkwCCDTmkTuxDIFL1OjhqIfL/JBARYoAcXW33WCdabdfpdDLlqWLqLa7Pqc9eHIZBq2NOVCpzomQqfk8F+WhZe1M0Gc+VcOa/Sii5O8GjZex1Og1xQVp2lFo9tk9vkquCOKGasm0cyq3GiQ9hvgWkTuzlrZmjiv4E6CB+uUf7J4ToG6eqMu2pIn77WRWODkvfnvdyGQerbJh0EGRSGB998gXuRNdmJZh4/KJQalucnPViyck36KX5KT6YrSq5NUM/IJFgRHSrIn8duUV2VPREBlWQOLYXyaod1a8DayGEXg6a4Z9RL8RQsL/cwfYSK4+vb+Dy18tptjr55YeVrD1i4Yw4AxY7nDty6CRADlb/d2Ywl4z1ZWuRlTs+9Wx59ptnunJRnt/c6NH9eoPcphmG+pqw1lHJ4c8prRsBqMSFNRGZdEHfO+ReEO/pvu9DCOFR7+yrQsGIisLHWWbiH8mmxmxg1Ag946MMfF9k5Y9nB3faZltlAR/l76ba0kSETwCXJU/ulLyqqiqf5O/hu7LDtDhspAaGcfXIGUT6nN65fh9cE0HKo4U8saGBs5J8uHR8z9+LT2ROkg96DXx2oJmHzx/hkX16iwQjw0xfE9Y6KshaSaU5DgU7STE6QmPm971DLdnQsgcC5oN+6BTgEWK421diAEUBFVQUaswGtBqVZy/z5dq3zAQYlU5VRI80VPLSgQ0sTp7ExNBYtlTk8dz+77hnyo+I9QsG4MuiLL4qyeaGtAzCTH58nLebJ/d+zf3TLjqtE101Gg1bl8aS8HAhV75VzqHfxZMYovfIvkeH6TlYZfPIvrxJbtMMMydLWDuZnD3vUmmOR6GVkUnBhMbMOLUO5d3q+n/Sv05tP0IIj3E6FfaWaOg8l1LBqSpc8mo95U0OzkntfItmbXE240KjWRg3lmjfIC5JmkSCfwjrSg4CrlGRtcUHuCBhPJNHxBHnF8KNaRnUtbaws6pw4F7cIBXur2PVDVHYnTDzmWLsds9UaL0w3RebE9bntXhkf94iwchpyGw243AcX5r50M63qW1NRkMT6aMTCQwbc2oHslVB4zfgMxF8Rp3avoQQHlNR74fl+PplqKpCs821mN1Zx1RMzWmsIj04qtNjY0OiyWl05UFUWcw02CyM6dDGR2cgOSDM3eZ0Nz/Vh79khlBhdnLuy2Un36AHbjvDdQvsxS1DO29EgpHTjNVq5cCBAxw8eLBTQHJg+zs02FPRUceYMRPxDYw/9YO5F8R76tT3JYTwmJKqILQnWUC39ZildxusFgKPWXgtUG+ivm2Btgab65N5YBdL2dcfs4jb6ezPC0JYkGpiXa6F+1bXnPL+EkP0+BkUvs6RkRExhNTUuH75m5ubOXz4ME6nk33b3sespqKnknETZ2PyCz31AzktULMSDAkQeNap708I0SutDjvflB7q8rnCqiA6xhpKW2Ci1zoAlXnJJv54dkj/d/I09cUNUUQFaHngqzpWH2o++QYnMSXaQFG9w2O3frxBgpHTiKqqVFW1D5c2NTWxc8dGLCRhoIixExegM/h65mCFdwF2iHvQM/sTQvRYs93K47vXsL7syHHP2R0K5bWuKaFHB0emxhh49cfhLJxUCSgsW3B8IBJoMNFgO2aZepuFoLaRkEC9K8fk2OXuG6ztbYSLTqdhy9JY9FpY9J8yyhq6uGfWC1dM9EMF3t5j9kwHvUCCkdOI3dJKa2vnJFYVH7Q0Mn7qxegMHipX7HRCxYugDYWwazyzTyFEj72SvYm8JtcoqAKMDopgXtRIxgVHs/VAfNujKlOT69m6NIYfbo9jybQA9hX5EuzXyvzU4+uLpAQcv5R9Vm0ZKQGuWXJhJj8C9aZObVrsNnIbq9xtRLv4IB0fXBNJqwNmPluM09n3UY0bp7ryRl7f2eSp7g04mdp7GrHUd53g5CCAoqIi4uM9kCcCUPYPUFsg+j7P7E8I0WPF5jp217iWr/fTGblz4jnE+blGOr7NbSGroJTwwGZ+NGMfPkYHNn0gxeYRfF2US2G1P3NSXOMlr2RvJNjgy6XJkwFYEJvGY7vXsLooiwmhMWytzCe/qYZrR80EQFEUFsSms6pwLxE+AYSZ/PkofzfBRh8mh3novWWYuWiMH7+fG8Sj39Vz8WvlfHpDdJ/242/SEO6nYXPhyWdMDlYSjJwmtChYGrofwquoqECv1xMVFdVtmx4rfRgUH4j6w6nvSwjRKx1vzSxKHO8ORA5UWFn833LmJptYfrGOlw+6Etj/c3Az/nojeSVR2B1B3D0nEoCa1mYU2rNcUwPDuSntTD7K38WHebuI8Angl2PnumuMACyMG4PVYef1Q1totlsZGRTOr8fNP61rjJzMIxeMYH2ehc+yW3j02zp+f1Zwn/ZzZqKJD/c3U9NsJ9R36F3ah16PRbeqLE18kr+ny+eStP5wkgWay8rKiIyMRFFOkmZ/ItXvgKMaIm6XBfGE8IKylgb391PDEgA4WGll8lNFxATo+ODaSAJMCv85pMGhOon2DWLZtAtJfqQAo87OwtGuwoi/nZh53L6nhScwLTyh22MrisLFSRO5OGmih1/V8Lbulmhilhdw1+c1zE4wcmZS78vwXz8lgA/3N/PClkbuHoLJx3K1GCbyG2t4cMcX7uHZY03X+XUZjCiKQmBgIPHx8YwdO/bUAhFoS1zVQsKjp7YfIcQpU9v+5pevq8PugLd+Gk6wjxZUcLYVR7Q6HeyrqiKv1s6MWM9UBRW9Y9Bp2HRrDFoNnPtyGTXNvU9ovWSsDxoFPtg3NJNYJRgZBsw2K0/vW4fZ7lq50ajRMWVEHHOjUonzC2a+tpEgTaB7/p5erycsLIyRI0cyefJkRo0aRUREBIZTTWBt3ADWPAhZLAviCeElMb5B7u+3Vubz1ZEWXt3exKMXhDIrwfWJ++uSgxz9aFJlaeL6j/YBEBC2jxrL0LyYDXWjwg3894pwWmwqs54t6XVCq0ajISlYx96yoVkaXoKRYWBD+RH3lLvUwDCWz1zMrWPP4tpRs/jlCD3phlTAQYWtkI+shYwam05iYiJBQUFoPHkrJf92XAviPeu5fQohemVOVKr7+4/y9nLRf0oJNCr8KsMVpKwtzubd3O2dtjlcEoZGcRIbXsPeWs8vdS965qeTArh1VgCHq+1cvaKy19ufO8qHFrvK/nJrP/Suf0kwMgx0TFhbMuoM/PSuEY7Kws2UVpoxkU+lsYAPbc2U25vZ3h/rRLQcguad4D8HDBGe378QokeifYOY2jZ75YsdCbTY4NwJlXxSuIsHd3zBOznbOrW32jU0NJsID25Co4EVh38gu67cG10XwHOLw5kUbeDtPWb+tbnh5Bt0cMtMV/2Y53u53WAgwcgQ51SdlLclrMX5BRPp65pvXpr9JgXlWuxKGCljLyE+7kz3Nh0T3Dwm75eu/yc95/l9CyF6ZcnoMwhQozlSEkagbwsjIg7zReF+8pvay48bNFouT5pCSOtsQOGsNNfUfwcqL2dvxHEKdS/Eqdl4awyBRoXbPqpiZ0nPp+tOjTVh1MIXh4ZeaXgJRoaj8ufQ1H+CXqlmwthUDL5hJ5tIc2rsNdD4FfiMA99x/XggIURPmLR6Pt7iul1zRUbBcc9H+wTy8MxLOS9+DKW1RkJ9NLxxUQajg1yjmnXWFnZWFw1on0U7X4OG9b+IAeCsF0posvQ8MBwbYSCn2nZKRdS8QYKRIU6jaIj2cY2GFJtrMB+5HfJvIzIykolTM9H5uIro/FDV/oYU3SHBzSPybgdUSPh/nt2vEKJPnvu+nkPVdq6a5M+/Fizknik/6pTYeuvYufjqDdgdKl8eauHmmQHotTrOj2//MLG96vggRgycCdFGnl8cRmOryuznu54l2ZWLx/rhUGH14aE1OiLByFDnaODi4GKu1L7K04Yb8Kl+hta4xyHxCVBchYa2VRbwfXkuAD5aPdPCuq8T0GtOK9S8C4Y4CFrguf0KIfrEYnVy52c1+OoVXv1xOBpFQ4J/KI624VGjVkdUW2Dyq4+rqG1xMiHSlWeWHDDCvZ+js/OE99w8M5BrJvuzp9zGze/3LKH11ra8kX//MLRKw0vRs6HG0QiN66FxHdSvgeadTMWJqnXN3N3lmMy/82KZ1vQ9gQYT2XXl5DZWuzfPjE3HqPXgP3vRPYAdYv/muX0KIfrsqrcrsNhV/vOTcAy69s+bPm1/960OO3Wtzby+zcbzWxq5dJwvV01yFTorb2lfMsKj7xOiz177SRhbi1p56YdGzk4xcc2UgBO2jwrUEWRS+C7PcsJ2g438tg0VNe9DyYOuGSs4cf3TtRfGURRwqFpetd9GK3Y2lucct4szIpK5IGG85/rkdELFc6ANhvAlntuvEKJPthdb+HB/M+Mi9Fw/tfNFa0xItHvxvLvW5PDCel/unBPEYxeEoigKqqqypviAu/3YkL6tkyI8S6PRsPmX0cQ9VMiSdyuZHmckLfzENaGmxxpZe8SCxerEZBgaN0AkGBkqzNuhuWNtgGMr9GmxhV7HdCaxuSKPVmf783F+wZwTk8bsyJRTr7DaUcVT4DRD7F89t08hxElZ7DY+yt/NzupCGm2txPuFcGXqNC57vQkF+GRJ5HHbBGqCOFAYzq6caBrMPlwytZT7MqNQFIVqi5lVhXvZWpnvbr+h7AgJ/iEky4q7Xhfsq2PtTdFkPFdCxnMllNydcMIg46pJ/qw9YuG1HU3cMitwAHvad4qq9us8C49oaGggKCiI+vp6AgOHxon1OKcNshdC47eAo+s243eC7yRa7DaKzLXYnA6CDD7E+AZ5Ngg5ansEOBpgWrOsQyPEAHohaz0lzfVcPXIGwQYfNlfk8tKOYj7enMZN0wN48fJwAMxWJ59kNfPK9jrWHLLgVF3vAxpF5WcLt6DRQIDeSKOt8/TRSxInUt1qZntVAX+ZtohAg1RUHgz++V0dd66qYWacgc1L47ptZ7E68VmWx/wUE1/dHDOAPTxeT6/fMjLiRTUWM0329jcBf52RUJNf1401ehi1EvbNgNZDxz4JfrPAdxIAPjo9o4L6ufBYzftgr4TwX0ggIsQAsjrs7Kgq5LZxZ7mn4s6PHM81u/WM8G/lqUWJfJJl5s2dTXy4vxmLXUWjqDjVo3+nKunxFe4/246BiAJcPXImZ0WPxKmq7K0pYWP5EX4UL1P2B4M75gazLtfCx1nN3PlZFY9f2PWolcmgITpAy7bintco8TYJRrykxmLmzz98gl1tnwuuUzQ8MH1R9wGJagVHXRdPOCHqN/3Sz24V/gHQQvzjA3tcIU5zTlXFiYqubbYcwOVvltHUYuAXCwpJ/6cf+XV2dBqwO49u03FkVOHvZ6dT6LCyr7aEUKMfvjo9ReY6rhs1izPbyslrFIX04ChyGqoG8NWJk1l5bQTJjxbyz/UNzE304dLxXV8vzkoy8fYeMyUNdmICB/+lvk8faZ955hmSkpIwmUzMmjWLLVu2dNv2xRdfZO7cuYSEhBASEkJmZuYJ258umuytnQIRALvq7DRS0ol5F+xKco1GjPgZKAZcn2MAXRiEXNqv/e2kcTO05kDwRaDzHbjjCiEw6fSkBISxqnAvda3NrM9tZvXhFsYnlRIe3MiFaa7F8Ozd1LwKMmm4aHQIZ8eMQgXun3Yht487GxWI8u08jB5oMFFvG1qzMoY7jUbD1qWxmHQKV75VTn5t1wvj3TRjaJWG73Uw8vbbb3PnnXeybNkytm/fzqRJk1i4cCEVFRVdtl+3bh1XXXUVX3/9NZs2bSI+Pp7zzjuP4uKeF3E57dV8gLpvOs0OeFJ9iNvLzmOl9g9wdN3NiKWgOT67OruunL9t/5yl61dw79aPu5xh83XJQf605SOWrl/B8p1fktvYg09B+UsBBZJkQTwhvOFnaRmoKty15UOu/Wg/Jr2dn5+hQUHh6UvCuD2j63vzOg1cNs4XnbYfcsjEgInw1/HZDVHYnTDzmWLsXUSe56Sa0CrwcVazF3rYe70ORh5//HFuvvlmbrzxRsaOHcvzzz+Pr68vL7/8cpft33jjDW677TYmT55Meno6L730Ek6nk7Vr155y508LxX+Hw5dTrY7gec3/40fpN3Lf1AvQjfgJHzquw6kNgYhbjtusytLE0/vWkRYcyb1Tz2dBbBr/PbiZfR1W5Nxamc97Odu5MGE890w5nzi/YJ7c+zUN1hN8ErLkQfM28MsAg3cTo4Q4XYX7BPC7SZlEWM4jvzyUX8wYgY/BSZjJH0VReHLRCM5KMh63nd0Jl4/3B6DBasGk1WPQ6vDXG9Gg0HjM336D1UKQXpJXB6NzUn24PzOECrOTc18uO+55jUbDyBF6siqGRvG6XgUjVquVbdu2kZmZ2b4DjYbMzEw2bdrUo300Nzdjs9kIDQ3ttk1raysNDQ2dvk5LR66B4ntx6iL5m3U556aez+igCCJ8AliUOJF9pqv4JHR1l0HBN6WHCDP585OUqUT7BjE/Jo2pYfGsKc52t1lTfIA5UamcGZVKjF8Q14yciUGjY2P5keP255Z3q+v/siCeEF5V02znoXUNhPpo+Ot5/uyvLSXaN5Cn963jik/+x4aCZnz0nT8x++gVFqS6gousujJSAsPIrivnoZ3/w4nKKwe/d4+gOlWVA21t+jSCKvrdfQtCWJBqYl2uhWWrazo9Z7Y6mRxjwOqArUWD/1Zbr4KRqqoqHA4HkZGd57BHRkZSVnZ8ZNaVu+66i5iYmE4BzbGWL19OUFCQ+ys+Pr433Rz0Ssz1fJq/t8vnqi1mcNph7wyofhN8JmIdf5gWjJ0S1gD0Gh2HG2u73E9OQxXpwVGdHhsbEu1ORrM7HRQ01jCmQ5uTJqzZ66BhNZjSwW9iD1+tEMLT9tWWsOj1XOxOlUcu1vDE3q+I8g1kVFAEuWXBrNycSmRIE6tu0bFsQXDbViqT41upszWyruQg2yoLmBme6B5B/XHyFKxOO68d/J7vSg/x5uGtWJ12fHSG3o+gigHzxQ1RRPlr+etXdaw+5Lolc6Taxoyni3l7txmAFzY3nmgXg8KAzsl86KGHWLFiBStXrsRk6n7o749//CP19fXur8LCwgHsZf/aXlXI33d8zq6arlfEXHHgC2w74qD5Bwi5DCbswmTw75Sw5lSdfF+RS05DFfXWrhdDarBZjqsNEGgwYXHYsDrsNNlacaIS0EWbbhPW8n8DOCHhid6+bCGEB63Ps/B9nsKU1BIOWH5gZGA4vxk/n525gTy+JpAQfysLp2UTbNJyf2Yofz8vBFBIjKzkge2fs7r4ANeNnkVJc717BPXcuDFckTIVvUbLG4e3Umiu5dfj5rOxPKf3I6hiwOh0GjYvjUWvhUWvlfHG9kamPFnEwSpXYqtBC2uODP5F83o13ycsLAytVkt5eXmnx8vLy4mKiupmK5fHHnuMhx56iDVr1jBx4ok/VRuNRozG4+93DnW5jVX8+8AG9ywao0ZHSmAYqqpypKGKCDWHu/R/QWdvpSH8twSmPObe9mdpGfzn4Gbu2vIhGhQS/EOYEZ5IQVNNd4fzLKcdat4CfQwELxyYYwohjuN0OrnnUw0aBf730wzC/F1v42/tauTG96vwNyjsWjqav+za6d7mT/NDuGqSP0khyZ0KID66a3WnEdT5MWkYNDreydnOHycvdI+gnh831t1GpvwOPgnBOt69OoLF/63g2ncrUXBNb9BrYISvhoI6O06nE80grgnVq2DEYDAwbdo01q5dy+LFiwHcyai33357t9s98sgj/P3vf+fLL79k+vTpp9Thoeyzgr3uQGRmeBLXjJqBSasHwFK1EkPOvaCqvGRfitZ2GT/rsO3RhLVWhx2Lw0aQwYcXstYTZvLv8liBetNxw6gdE9Y0itK7hLXiP4Nqg9i/9P0ECCFO2e8/r6G62cm984Pdgcj7e5q4ZkUlvnqFfXfEd1lXIjlUf9xjJxtBbbZbux1BLWs5TXP5BqF6i5OXtrav0nu0rLrNCUatglOF13bWcM7o9mDkhEU2vaDXlVDuvPNOlixZwvTp05k5cyZPPPEEZrOZG2+8EYDrr7+e2NhYli9fDsDDDz/Mfffdx5tvvklSUpI7t8Tf3x9//64vpMNRTauZvTWumSwhBl+WjJ6FTtOWA1L/P0y5V6FqTPzT9meynQnoKgu4MmU6fvrOU3aNWh1GrQ6zzcr+2lIuS57S5fFSAsPcxzvqaMIagE6jJSEglKy6ciaHuXJyjiaszY8Z3XlnTieUPw3aQIi46VRPhRCiB1RV5cWtjcxLNrkXRitpsPPEhgYi/bU8cJ5rEsDH+8385M0KTDqFPf8XS0Lw4C9wJTxnf7mVRa+VkV977HplLuVNruVD/vJNPpvM7RMYTlpkc4D1eszmyiuv5LHHHuO+++5j8uTJ7Ny5ky+++MKd1FpQUEBpaam7/XPPPYfVauXHP/4x0dHR7q/HHnusu0MMS8XmOne0Oj08sT0QOXwVZJ8PgfNRppQRHjYfcBVAK22ud2+/r7aEvTUlVFma2F9byuN71hDlG8iZkSkArMzdySvZG93t50WPosrSxPu5OyhrrncnrGXGprnbZMams77sMJvKcyhtrncnrM1u26db5fPgbIKIAa7yKsRprLDewS9WVjH+iSL+9GU1zVYnl7xWhlOFd692lYH/8qCZS18vx6hT2PHrWJJDT7ya67FONoIqU34Hvzs+qyanxo6jm1XmWuwQYISy2s4f/k9YZNML+hRC33777d3ellm3bl2nn/Py8vpyiGHH0WE9QqO27bSrattKvE7Xqrzlz+LPGe52zg4VWlvsNlbm7aKutRlfnYGpYfEsTpqEtu0eYL21hZrW9uI2YSZ/bh93Nu/mbOer4myCjb5cN3oW40LapwHPCE+kyWbh4/zdNFgtxPmH8Otx8wk0+HTufPFfQTFC7H0ePCNCiBOpaPtEa3fCw9/U86/NjdS0OMkcaWJusg9fHWnhglfL0Wngh9tjT7qsfFc8OoIqvOLFy8J5+JtaXtraiN0Jzi6CkthADQcqdVhtGgz6bkrzepmM5w2Q8A65HbtrirkoYbwrkWzCfmg5DOX/QC2+j4tVOz8yGKhVQ4nID4J8G6itTFdtTNdYwWQF1Q7Oc0H3sXufN6RlHHfMowXPTmR+TBrzY9K6b1D7MdjLIeznoJFfFyEGSqW5fXVupwo1La6LiAK8t7uRn66oRKvA5ttiGRfpCkQsDhuVLe25A1WtZgqbavHTGQg1+bEydyd11mZuTJsNuEZQ15Uc5P3cHZwZmcKBunK2VRZw+/h57n1kxqbzavYmkgJCSQoYwdri7K5HUIVXJATreOaScJYtCOXJjfU8uaGeJqtKe0yi0qzWAYEcKIpgYnJ7GY7d1cUk+Hdf82sgydVlgMT4BpHgH0pBUw0FTTWsKz3k+mShaME3DZJfYC0/ZVL5TwnXVOKjlEBrSfc71IV7vpOtBXDoEgi5HCJvA10oFPwO0Mh0XiEGWMdgpKO1hy2sPmxBo8C6W6KZHNM+8zC/sYbH97RXt343ZzsAGRHJ3JCW0b8jqMKrIvy1/O28UO6aF8wLWxp45Js6KswOQKG01hdQyS0d0SkY+aRgDyoqixK9XzdKUVW1mztNg0dDQwNBQUHU19cTGNj1mgtDwQ+V+bx4YIP759FBEUwNi8epqmytzCe3sRoNdu7WLyNBk0f3q0coMOEA+Hh4mLThGzhwdtshTBC8GGpXQNCFkPapZ48lhDihf3xXxx8+r+ly2P2oz5ZEcUG6LFYpjvdtcQ5//uYI6/cm41QV/I0ObA4tK37WxL66Egqa2gtmLh07j4kjYvulHz29fg/eScfD0PTwRBZ2mK9/sL6CFUe28U7OdnIbqwFwouNw1KsounC6/ufRQPClng9EADQdEtJUiysQAdDooXm3548nhOhWpdlBd+vZGbTw+IWhLBwtoxPieKqq8k35AdLjK7nhvK2MiwTVqaPVrnBWpKuS7uUdZmKuLs7yYm9dJBgZYJclT+aG0WcQ6RNw3HMxvkHckj6HBUnzYNRHdP3P44T6z6HwHlchMk/SdPPGVvsp7J0EB86F5n2ePaYQAoAai5kDdWVsrypgX00JuXXNXc6QmBFn4OBv47ljTjBajay+K45XZK6jyFwHwKjgUNb8PBE/o+t6svqQqxrrubHpRPq4RioO1le4liLxIskZ8YKMyBTOiEjmcEMl5W2Fg2J8g0kOGNFeHTEgAxKfhPzbOmypBUM82Gug9EEo+weEXQ/xT4DOA0O1SndT9dqCnoY1UP1f8H3o1I8lhABcn2K/LTvEW4d/oGPs8X3JaJyqq4z7UXefFcSDPwrtVEVViGNVW9qTmCeExhAVoOPDa6OY/XwJD3xVy5WTXKs7jw+Jdl+Dqi1NjPBizREJRrxEURRGBUUwKiii+0YRt4J5C1S9BjgBB6T8GwLPgfJnofgvUPkiVL4MIZdA4nNgOMH+TkZzkroBEb+C2Af6vn8hRCdO1clrBzezqSL3uOfK6wLAXdhb4bWfhHPd1ONHVIU4lkZpH1VvsbvWqMlINHH9FH9CfNufszhs7u+1Xi4VL7dpBjNFgaRnwWeC62ffKRDgKopG5G0wtRxGvgeGBKj9AHZGQdY5YOndAlY1FjMFTTUUtXS1mJIWFD0kvwpJT7ryR4QQHrEyb1enQCTU6Mv4kGiCtKG02nQcLex97ewKrp1y+lSsFqcm3j8EpW1EbWtlPjana2bWf66I4ImLXDVkWuw2tle5FqHVa7RE+wZ5p7NtZGRksNP4wOiP4OAiiH/YFaB0FHq566txPeTdBo1fw+6R4DsVkp4H/xkn3H2Nxcyff/gEu+rESAtPdlqfUAv6cBj1CfifvmsKCdEfGqwW1ha7ynNrFIUbRp/BzPAkFEXhurfLATOgcvbEI/gGV3GgLokxISdekFQIgBCjLxNHxLKruog6awsvZ2/k2pGz3MuLNFgtvHpwEy1tIyMzwhPx1fW+aJ4nSTDiQZ/k7+bTgr2dHov0CeSv0y/qdpttlQV8lL+baksTET4BXJY8mQmh7VOsVFXlk9J6vjPfT8veGlID13L1yBnuxCO3gDkwYbcrwTTvVmjaAPtngnGUq0ZIyAXHHftAXRkf5e12L95no33UQwUU/1kw6gPQR/b+ZAghTmhTeQ6Otr+9BTFpzIpIBmDtoWZe32lGo8Bd5yhUG12r435bdkiCEdFjFyWMZ19NCXbVyfaqQvbWlDAmOApHWwXdo+/7Jq2u0yxPb5FgxMNifIP4vwnnuH/WniDR7EhDJS8d2MDi5ElMDI1lS0Uez+3/jnum/IhYv2AAvizK4quSbG5IyyDM5MfHebt5cu/X3D/tIvRH17fpyHccjP0OrCWQ+wuoXwWHLgR9NMT9HcJdCxp+VZzN2znbOm3qRIuqugZfvnWcR0jEv5gogYgQ/SK/qcb9fUZbNdMmi4PFr5ejUWDtTdHMTTJyx6YfaHXaO9WFEOJkEvxDuXXsXP6VtR6b04HV6WBXTXGnNiatntvGnkWUr/frd0nOiIdpFIUgg4/7y/8Ei0mtLc5mXGg0C+PGEu0bxCVJk0jwD2FdyUHANSqytvgAFySMZ/KIOOL8QrgxLYO61hZ2tt3r65YhBtI+gam1ELYE7FWQ+zPYFkrp4T/xds5Wd9Nggw/TwxJYGFyPosAPjpm8aV/CC9mbKTHXn+AgQoi+cnaxXtXOMiutDpWnLw7j7BQfNIriXlSz41pVQvTEhNBY7pt6AWdHj8akbR978NUZODc2nWVTLyAteHB84JSREQ+raGnkD5tXotdoSAkI49Kkyd0u0ZzTWEVmbHqnx8aGRLOrugiAKouZBpuFMcHtQ7M+OgPJAWHkNFYxIyLp5B3SBULKq5D0AhTdAxXPEl2znCcNBr51LKAp6n4uSZ7uyr4+9DiqM43t+kehugib08Hq4iyWjD7jpIcRQvROWMf1qqqLOSc2jTlJPjQuS8Kod31OzGmswty2suoIoySwit6L8AngqpHT+UnKFNcKzQoEGXzQKoNrLGJw9WaISw4I44bRGfx6/NlcPXIGVRYzj+5ejcVu67J9g9VC4DEjJ4F6E/Vty3U32FyzWwINx7QxtLfpMY0BEh6lKK2A920/xY6ec3Wfs7h6LpqKf4F5D9R+iBL9O65Py8BH68of2VqZ323/hRB9lxGZ7P7+88J9VLY0ArgDkRa7jXfa1pYBmB0lC9OJvtNptISa/Ag1+g26QARkZMSjxoe2Ly4V5xdCckAYf9zyET9UFTAnKtWLPWtX0tLI/5yL+J91EbdF5DLJ+h7kL3XN2tEGQNi1mDR6Jo6IZXNFHjang0pLE/H+Id7uuhDDSqxfMONCotlXW0qDzcJft6/ijIhkUgLDKG9pZEPZERpsrg8dIQZfpocleLnHQvSfwRceDSO+OgORPgHuTzzHCjSY3G82RzXYLAS1jYQE6l3l2RuOGQVpsLa36a2OC0uX+V0KE3bA+P1gSISAs92FzzoWzVEZ9GspCjEk/Swtw13fwep08G3ZYV49+D2fF+5zvzf46gzcNu4sDFr57CiGL/nt7kcWh41KSxNndLPUdkpAGAfqyjrljWTVlpES4CpKE2byI1Bv4kBdmXtkosVuI7exinnRI/vUp45TgndUFbqmdPmmw8T97sdtTgd7ql1Z11pF0+nethDCc/z1Jn4/8Vw+zNvJ9xW5WNuKUwEoKEwaEctlSZOJHASzHcTg8k3JIb4pPUR1q6v0e7RvEBclTOg0Qn+sHpWSyN/Dd2WHaXHYSA0M67qURD+QYMSD3svZzsTQWEJNftRbW/gkfw8aFGaEJwLwSvZGgg2+XJo8GYAFsWk8tnsNq4uymBAaw9bKfPKbarh21EzAVTJ+QWw6qwr3EuETQJjJn4/ydxNs9GFyWHyf+pjoH0qcXzBF5jpyG6tZXZRFZmy6e60Lh+pkxZEfaGpLmpsaFu/1YjhCDGd+egPXjJrJZcmT2VtbSpOtFZNWR1pwJKFG760VIga3YKMPlyZPIsInAFTYVJHLs/u/5d4pPyKmrTRER/1SSsKDJBjxoNrWZl7K3ojZ1oq/3sjIwHDunnweAW23VGpam90legFSA8O5Ke1MPsrfxYd5u4jwCeCXY+e6fzEAFsaNweqw8/qhLTTbrYwMCufX4+b3+RdDURR+FD+Olw5sAOC93B1srshj0og47E4HWyvzqW51rd6oURTOixvTx7MhhOgNH53B/cFFiJOZNCKu08+LkybxTekhchqruwxGOpaSALgkaRJZdWWsKznINaNmHldKAuDGtAx+9/0H7Kwq7NnszVMgwYgH3Txmzgmf/+3EzOMemxaewLTw7hPTFEXh4qSJXJw08ZT7d9SM8ERKm+v5rK1abKG5lkJz54JKGlzlqRP8Qz12XCGEEJ7nVJ1sqyzA6rC7b/Mfa0BKSZwCCUZOUxcnTiTOL5gvi7LIa6zu9NzYkGgujB/HyBOtKCyEEMKris11PLzzf9icDoxaHbeOnUuMX9cL3g1oKYk+kGDkNDY1LIGpYQkUm+uobGlEURRi/YIlYVUIDzlYX8H/ivZT0FRLvbWFX46Ze9J8r+y6ct7N2U5pcz0hRl8uSBjP7MjONUa+LjnI6qIs6q0txPmH8NPUaSR384lYDF+RPgHcO/X8thV4C3g1+3t+OzGz24BkMJOpvYJYv2Amh8UzaUScBCJCeJDVYSfOL4SrUnu26nWVpYmn960jLTiSe6eez4LYNP57cDP7akvcbbZW5vNeznYuTBjPPVPOJ84vmCf3fn1cCQAx/Ok0WiJ8AkgMCOXS5MnE+QfzVUl2l229UUqiNyQYEUKIfjI+NIbFSZOY0sPZb9+UHiLM5M9PUqYS7RvE/Jg0pobFs6a4/QKzpvgAc6JSOTMqlRi/IK4ZORODRsfG8iP99TLEEKGqYO8wPbyjo6UkOuqulMRRR0tJdJeH4kkSjAghxCCR01BFeocEQnDlcOU0VAGuC01BY02nJEONopAeHOVuI04PK3N3crC+gipLE8Xmurafy5nZlmj6SvZGVubudLdfEJvGvtpSVhdlUdZczyf5u8lvquHsmNFA51ISu6qLKDbX8crBTadUSqI3JGdkGPq8cB87qgopa2nAoNGSEhjOZUmTT7pM9GAuiCPE6aDBZukygdDisGF12Gm2W3GiussFdGxT1tIwkF0VXtZos/Bq9ibqrS346PTE+gXz6/HzGRsSDQyOUhK9IcHIMHSwvoKzY0aT5B+KQ1X5MG8X/2/vV9w/7SL3UuXHGuwFcYQQQrS7/iSrqQ+WUhI9JbdphqHfjJ/P7MgUYvyCifcP4YbRZ1DT2kx+U02323QsiBPtG8QlSZNI8A9hXclBgOMK4sT5hXBjWgZ1rS3srCocqJcmxLAWqDd1mUBo0uoxaHX4641oUGjsKslQ3/9JhkL0FwlGTgMtDhsAfico657T2M296kbXfeiTFcQRQpy6lMAukgzrykgJdCUQ6jRaEgJCyaordz/vVFUOdGgjxFAkwcgw51RV3snZRmpgeKd7g8ca7AVxhBiKLA4bhU21FDa5KhxXtZopbKqlxuJacmFl7k5eyd7obj8vehRVlibez91BWXM960oOsq2ygMzYNHebzNh01pcdZlN5DqXN9bx5eCtWp/24WiRCDCWSMzLMvXV4KyXmen4/6Vxvd0WI005+Yw2P71nr/vndnO0AZEQkc0NaBvXWFmpam93Ph5n8uX3c2bybs52virMJNvpy3ehZjAtpX4l1RngiTTYLH+fvpsFqIc4/hF+Pm09gN6uDCzEUSDAyjL11eCt7akr43aRMQoy+J2zbm4I4QR3e9BqsFuL9gz3bcSGGibTgSP419+pun78hLaPLbe6dev4J9zs/Jo35MWknbCPEUCK3aYYhVVV56/BWdlYXccfEc3pUVXWwF8QRQggxfEkwMgy9deQHNlfk8fO02Zi0euqtLdRbW7A67O42Q60gjhBCiOFLbtMMQ9+UHgLgHx3uVQMsGX2GO8ltqBXEEUIIMXwpqqqq3u7EyTQ0NBAUFER9fT2BgVLtUwghhBgKenr9lts0QgghhPAqCUaEEEII4VUSjAghhBDCqyQYEUIIIYRXSTAihBBCCK+SYEQIIYQQXiXBiBBCCCG8SoIRIYQQQniVBCNCCCGE8CoJRoQQQgjhVRKMCCGEEMKrJBgRQgghhFdJMCKEEEIIr5JgRAghhBBeJcGIEEIIIbxKghEhhBBCeJUEI0IIIYTwKglGhBBCCOFVEowIIYQQwqskGBFCCCGEV/UpGHnmmWdISkrCZDIxa9YstmzZcsL27777Lunp6ZhMJiZMmMCqVav61FkhhBBCDD+9Dkbefvtt7rzzTpYtW8b27duZNGkSCxcupKKiosv2Gzdu5KqrruLnP/85O3bsYPHixSxevJi9e/eecueFEEIIMfQpqqqqvdlg1qxZzJgxg6effhoAp9NJfHw8v/rVr7j77ruPa3/llVdiNpv59NNP3Y+dccYZTJ48meeff75Hx2xoaCAoKIj6+noCAwN7010hhBBCeElPr9+9GhmxWq1s27aNzMzM9h1oNGRmZrJp06Yut9m0aVOn9gALFy7stj1Aa2srDQ0Nnb6EEEIIMTz1KhipqqrC4XAQGRnZ6fHIyEjKysq63KasrKxX7QGWL19OUFCQ+ys+Pr433RRCCCHEEDIoZ9P88Y9/pL6+3v1VWFjo7S4JIYQQop/oetM4LCwMrVZLeXl5p8fLy8uJiorqcpuoqKhetQcwGo0YjcbedE0IIYQQQ1SvRkYMBgPTpk1j7dq17secTidr164lIyOjy20yMjI6tQdYvXp1t+2FEEIIcXrp1cgIwJ133smSJUuYPn06M2fO5IknnsBsNnPjjTcCcP311xMbG8vy5csB+M1vfsO8efP4xz/+wYUXXsiKFSv44YcfeOGFFzz7SoQQQggxJPU6GLnyyiuprKzkvvvuo6ysjMmTJ/PFF1+4k1QLCgrQaNoHXGbPns2bb77Jvffey5/+9CdGjRrFhx9+yPjx4z33KoQQQggxZPW6zog3SJ0RIYQQYujplzojQgghhBCeJsGIEEIIIbxKghEhhBBCeJUEI0IIIYTwKglGhBBCCOFVEowIIYQQwqskGBFCCCGEV0kwIoQQQgivkmBECCGEEF7V63Lw3nC0SGxDQ4OXeyKEEEKInjp63T5ZsfchEYw0NjYCEB8f7+WeCCGEEKK3GhsbCQoK6vb5IbE2jdPppKSkhICAABRF8dh+GxoaiI+Pp7CwUNa86UdyngeOnOuBIed5YMh5Hhj9eZ5VVaWxsZGYmJhOi+gea0iMjGg0GuLi4vpt/4GBgfKLPgDkPA8cOdcDQ87zwJDzPDD66zyfaETkKElgFUIIIYRXSTAihBBCCK86rYMRo9HIsmXLMBqN3u7KsCbneeDIuR4Ycp4HhpzngTEYzvOQSGAVQgghxPB1Wo+MCCGEEML7JBgRQgghhFdJMCKEEEIIr5JgRAghhBBeNeyDkWeeeYakpCRMJhOzZs1iy5YtJ2z/7rvvkp6ejslkYsKECaxatWqAejq09eY8v/jii8ydO5eQkBBCQkLIzMw86b+LaNfb3+mjVqxYgaIoLF68uH87OEz09jzX1dWxdOlSoqOjMRqNjB49Wt4/eqC35/mJJ54gLS0NHx8f4uPjueOOO7BYLAPU26Hp22+/ZdGiRcTExKAoCh9++OFJt1m3bh1Tp07FaDQycuRIXn311f7tpDqMrVixQjUYDOrLL7+s7tu3T7355pvV4OBgtby8vMv2GzZsULVarfrII4+o+/fvV++9915Vr9ere/bsGeCeDy29Pc9XX321+swzz6g7duxQs7Ky1BtuuEENCgpSi4qKBrjnQ09vz/VRubm5amxsrDp37lz1kksuGZjODmG9Pc+tra3q9OnT1QsuuEBdv369mpubq65bt07duXPnAPd8aOnteX7jjTdUo9GovvHGG2pubq765ZdfqtHR0eodd9wxwD0fWlatWqXec8896gcffKAC6sqVK0/YPicnR/X19VXvvPNOdf/+/epTTz2larVa9Ysvvui3Pg7rYGTmzJnq0qVL3T87HA41JiZGXb58eZftr7jiCvXCCy/s9NisWbPUX/ziF/3az6Gut+f5WHa7XQ0ICFD/85//9FcXh42+nGu73a7Onj1bfemll9QlS5ZIMNIDvT3Pzz33nJqSkqJardaB6uKw0NvzvHTpUvWcc87p9Nidd96pnnnmmf3az+GkJ8HIH/7wB3XcuHGdHrvyyivVhQsX9lu/hu1tGqvVyrZt28jMzHQ/ptFoyMzMZNOmTV1us2nTpk7tARYuXNhte9G383ys5uZmbDYboaGh/dXNYaGv5/qvf/0rERER/PznPx+Ibg55fTnPH3/8MRkZGSxdupTIyEjGjx/Pgw8+iMPhGKhuDzl9Oc+zZ89m27Zt7ls5OTk5rFq1igsuuGBA+ny68Ma1cEgslNcXVVVVOBwOIiMjOz0eGRnJgQMHutymrKysy/ZlZWX91s+hri/n+Vh33XUXMTExx/3yi876cq7Xr1/Pv//9b3bu3DkAPRwe+nKec3Jy+Oqrr7jmmmtYtWoVhw8f5rbbbsNms7Fs2bKB6PaQ05fzfPXVV1NVVcWcOXNQVRW73c6tt97Kn/70p4Ho8mmju2thQ0MDLS0t+Pj4ePyYw3ZkRAwNDz30ECtWrGDlypWYTCZvd2dYaWxs5LrrruPFF18kLCzM290Z1pxOJxEREbzwwgtMmzaNK6+8knvuuYfnn3/e210bVtatW8eDDz7Is88+y/bt2/nggw/47LPPeOCBB7zdNXGKhu3ISFhYGFqtlvLy8k6Pl5eXExUV1eU2UVFRvWov+naej3rsscd46KGHWLNmDRMnTuzPbg4LvT3XR44cIS8vj0WLFrkfczqdAOh0OrKzs0lNTe3fTg9Bffmdjo6ORq/Xo9Vq3Y+NGTOGsrIyrFYrBoOhX/s8FPXlPP/5z3/muuuu46abbgJgwoQJmM1mbrnlFu655x40Gvl87QndXQsDAwP7ZVQEhvHIiMFgYNq0aaxdu9b9mNPpZO3atWRkZHS5TUZGRqf2AKtXr+62vejbeQZ45JFHeOCBB/jiiy+YPn36QHR1yOvtuU5PT2fPnj3s3LnT/XXxxRczf/58du7cSXx8/EB2f8joy+/0mWeeyeHDh93BHsDBgweJjo6WQKQbfTnPzc3NxwUcRwNAVZZZ8xivXAv7LTV2EFixYoVqNBrVV199Vd2/f796yy23qMHBwWpZWZmqqqp63XXXqXfffbe7/YYNG1SdTqc+9thjalZWlrps2TKZ2tsDvT3PDz30kGowGNT33ntPLS0tdX81NjZ66yUMGb0918eS2TQ909vzXFBQoAYEBKi33367mp2drX766adqRESE+re//c1bL2FI6O15XrZsmRoQEKC+9dZbak5Ojvq///1PTU1NVa+44gpvvYQhobGxUd2xY4e6Y8cOFVAff/xxdceOHWp+fr6qqqp69913q9ddd527/dGpvb///e/VrKws9ZlnnpGpvafqqaeeUhMSElSDwaDOnDlT/f77793PzZs3T12yZEmn9u+88446evRo1WAwqOPGjVM/++yzAe7x0NSb85yYmKgCx30tW7Zs4Ds+BPX2d7ojCUZ6rrfneePGjeqsWbNUo9GopqSkqH//+99Vu90+wL0eenpznm02m3r//ferqampqslkUuPj49XbbrtNra2tHfiODyFff/11l++5R8/tkiVL1Hnz5h23zeTJk1WDwaCmpKSor7zySr/2UVFVGdsSQgghhPcM25wRIYQQQgwNEowIIYQQwqskGBFCCCGEV0kwIoQQQgivkmBECCGEEF4lwYgQQgghvEqCESGEEEJ4lQQjQgghhPAqCUaEEEII4VUSjAghhBDCqyQYEUIIIYRXSTAihBBCCK/6/zF3HoxB1JYoAAAAAElFTkSuQmCC",
"text/plain": [
""
]
@@ -925,7 +1094,7 @@
],
"source": [
"# Greedy rollouts over trained model (same states as previous plot, with 20 nodes)\n",
- "model = new_model_checkpoint.model.to(device)\n",
+ "model = new_model_checkpoint.to(device)\n",
"env = new_model_checkpoint.env.to(device)\n",
"\n",
"out = model(td_init, phase=\"test\", decode_type=\"greedy\", return_actions=True)\n",
diff --git a/pyproject.toml b/pyproject.toml
index c45b10ca..f11d1442 100644
--- a/pyproject.toml
+++ b/pyproject.toml
@@ -37,25 +37,22 @@ dependencies = [
"torch>=2.0.0",
"torchrl>=0.1.1",
"tensordict>=0.1.1",
- "lightning>=2.0.0",
+ "lightning>=2.0.5",
"hydra-core",
"hydra-colorlog",
"omegaconf",
"pyrootutils",
"rich",
- "numpy",
"einops",
"wandb",
- "pre-commit>=3.3.3",
"matplotlib",
"scipy",
- "pydantic<2.0.0" # Temporary bugfix https://github.com/Lightning-AI/lightning/pull/18022
]
[project.optional-dependencies]
graph = ["torch_geometric"]
-testing = ["pytest"]
-linting = ["black", "ruff"]
+testing = ["pytest", "pytest-cov"]
+dev = ["black", "ruff", "pre-commit>=3.3.3"]
[project.urls]
"Homepage" = "https://github.com/kaist-silab/rl4co"
@@ -128,3 +125,13 @@ exclude = '''
)
'''
+[tool.coverage]
+include = ["rl4co.*"]
+
+[tool.coverage.report]
+show_missing = true
+exclude_lines = [
+ # Lines to exclude from coverage report (e.g., comments, debug statements)
+ "pragma: no cover",
+ "if __name__ == .__main__.:",
+]
diff --git a/rl4co/__init__.py b/rl4co/__init__.py
index 034f46c3..3dc1f76b 100644
--- a/rl4co/__init__.py
+++ b/rl4co/__init__.py
@@ -1 +1 @@
-__version__ = "0.0.6"
+__version__ = "0.1.0"
diff --git a/rl4co/data/transforms.py b/rl4co/data/transforms.py
new file mode 100644
index 00000000..7e006c4f
--- /dev/null
+++ b/rl4co/data/transforms.py
@@ -0,0 +1,121 @@
+import math
+
+import torch
+
+from tensordict.tensordict import TensorDict
+from torch import Tensor
+
+from rl4co.utils.ops import batchify
+
+
+def dihedral_8_augmentation(xy: Tensor) -> Tensor:
+ """
+ Augmentation (x8) for grid-based data (x, y) as done in POMO.
+ This is a Dihedral group of order 8 (rotations and reflections)
+ https://en.wikipedia.org/wiki/Examples_of_groups#dihedral_group_of_order_8
+
+ Args:
+ xy: [batch, graph, 2] tensor of x and y coordinates
+ """
+ # [batch, graph, 2]
+ x, y = xy.split(1, dim=2)
+ # augmnetations [batch, graph, 2]
+ z0 = torch.cat((x, y), dim=2)
+ z1 = torch.cat((1 - x, y), dim=2)
+ z2 = torch.cat((x, 1 - y), dim=2)
+ z3 = torch.cat((1 - x, 1 - y), dim=2)
+ z4 = torch.cat((y, x), dim=2)
+ z5 = torch.cat((1 - y, x), dim=2)
+ z6 = torch.cat((y, 1 - x), dim=2)
+ z7 = torch.cat((1 - y, 1 - x), dim=2)
+ # [batch*8, graph, 2]
+ aug_xy = torch.cat((z0, z1, z2, z3, z4, z5, z6, z7), dim=0)
+ return aug_xy
+
+
+def symmetric_transform(x: Tensor, y: Tensor, phi: Tensor, offset: float = 0.5):
+ """SR group transform with rotation and reflection
+ Like the one in SymNCO, but a vectorized version
+
+ Args:
+ x: [batch, graph, 1] tensor of x coordinates
+ y: [batch, graph, 1] tensor of y coordinates
+ phi: [batch, 1] tensor of random rotation angles
+ offset: offset for x and y coordinates
+ """
+ x, y = x - offset, y - offset
+ # random rotation
+ x_prime = torch.cos(phi) * x - torch.sin(phi) * y
+ y_prime = torch.sin(phi) * x + torch.cos(phi) * y
+ # make random reflection if phi > 2*pi (i.e. 50% of the time)
+ mask = phi > 2 * math.pi
+ # vectorized random reflection: swap axes x and y if mask
+ xy = torch.cat((x_prime, y_prime), dim=-1)
+ xy = torch.where(mask, xy.flip(-1), xy)
+ return xy + offset
+
+
+def symmetric_augmentation(xy: Tensor, num_augment: int = 8):
+ """Augment xy data by `num_augment` times via symmetric rotation transform and concatenate to original data
+
+ Args:
+ xy: [batch, graph, 2] tensor of x and y coordinates
+ num_augment: number of augmentations
+ """
+ # create random rotation angles (4*pi for reflection, 2*pi for rotation)
+ phi = torch.rand(xy.shape[0], device=xy.device) * 4 * math.pi
+ # set phi to 0 for first , i.e. no augmnetation as in original paper
+ phi[: xy.shape[0] // num_augment] = 0.0
+ x, y = xy[..., [0]], xy[..., [1]]
+ return symmetric_transform(x, y, phi[:, None, None])
+
+
+def env_aug_feats(env_name: str = None):
+ """What features to augment for a given environment
+ Usually, locs already includes depot, so we don't need to augment depot
+ """
+ return ("locs",)
+
+
+def min_max_normalize(x):
+ return (x - x.min()) / (x.max() - x.min())
+
+
+class StateAugmentation(object):
+ """Augment state by N times via symmetric rotation/reflection transform
+
+ Args:
+ env_name: environment name
+ num_augment: number of augmentations
+ use_dihedral_8: whether to use dihedral_8_augmentation. If True, then num_augment must be 8
+ normalize: whether to normalize the augmented data
+ """
+
+ def __init__(
+ self,
+ env_name: str = None,
+ num_augment: int = 8,
+ use_dihedral_8: bool = False,
+ normalize: bool = False,
+ ):
+ assert not (
+ use_dihedral_8 and num_augment != 8
+ ), "If use_dihedral_8 is True, then num_augment must be 8"
+ if use_dihedral_8:
+ self.augmentation = dihedral_8_augmentation
+ else:
+ self.augmentation = symmetric_augmentation
+
+ self.feats = env_aug_feats(env_name)
+ self.num_augment = num_augment
+ self.normalize = normalize
+
+ def __call__(self, td: TensorDict) -> TensorDict:
+ td_aug = batchify(td, self.num_augment)
+ for feat in self.feats:
+ aug_feat = self.augmentation(td_aug[feat], self.num_augment)
+ td_aug[feat] = aug_feat
+ if self.normalize:
+ td_aug[feat] = min_max_normalize(td_aug[feat])
+
+ return td_aug
diff --git a/rl4co/envs/__init__.py b/rl4co/envs/__init__.py
index 455adde3..1926bd49 100644
--- a/rl4co/envs/__init__.py
+++ b/rl4co/envs/__init__.py
@@ -4,6 +4,7 @@
from rl4co.envs.common.base import RL4COEnvBase
from rl4co.envs.cvrp import CVRPEnv
from rl4co.envs.dpp import DPPEnv
+from rl4co.envs.ffsp import FFSPEnv
from rl4co.envs.mdpp import MDPPEnv
from rl4co.envs.mtsp import MTSPEnv
from rl4co.envs.op import OPEnv
@@ -12,3 +13,37 @@
from rl4co.envs.sdvrp import SDVRPEnv
from rl4co.envs.spctsp import SPCTSPEnv
from rl4co.envs.tsp import TSPEnv
+
+# Register environments
+ENV_REGISTRY = {
+ "atsp": ATSPEnv,
+ "cvrp": CVRPEnv,
+ "dpp": DPPEnv,
+ "mdpp": MDPPEnv,
+ "mtsp": MTSPEnv,
+ "op": OPEnv,
+ "pctsp": PCTSPEnv,
+ "pdp": PDPEnv,
+ "sdvrp": SDVRPEnv,
+ "spctsp": SPCTSPEnv,
+ "tsp": TSPEnv,
+}
+
+
+def get_env(env_name: str, *args, **kwargs) -> RL4COEnvBase:
+ """Get environment by name.
+
+ Args:
+ env_name: Environment name
+ *args: Positional arguments for environment
+ **kwargs: Keyword arguments for environment
+
+ Returns:
+ Environment
+ """
+ env_cls = ENV_REGISTRY.get(env_name, None)
+ if env_cls is None:
+ raise ValueError(
+ f"Unknown environment {env_name}. Available environments: {ENV_REGISTRY.keys()}"
+ )
+ return env_cls(*args, **kwargs)
diff --git a/rl4co/envs/atsp.py b/rl4co/envs/atsp.py
index 80e1ae5f..fe451db9 100644
--- a/rl4co/envs/atsp.py
+++ b/rl4co/envs/atsp.py
@@ -191,7 +191,8 @@ def generate_data(self, batch_size) -> TensorDict:
break
return TensorDict({"cost_matrix": dms}, batch_size=batch_size)
- def render(self, td):
+ @staticmethod
+ def render(td, actions=None, ax=None):
try:
import networkx as nx
except ImportError:
@@ -201,12 +202,16 @@ def render(self, td):
return
td = td.detach().cpu()
+ if actions is None:
+ actions = td.get("action", None)
+
# if batch_size greater than 0 , we need to select the first batch element
if td.batch_size != torch.Size([]):
td = td[0]
+ actions = actions[0]
- src_nodes = td["action"]
- tgt_nodes = torch.roll(td["action"], 1, dims=0)
+ src_nodes = actions
+ tgt_nodes = torch.roll(actions, 1, dims=0)
# Plot with networkx
G = nx.DiGraph(td["cost_matrix"].numpy())
diff --git a/rl4co/envs/common/base.py b/rl4co/envs/common/base.py
index c55a55de..f5c9f82c 100644
--- a/rl4co/envs/common/base.py
+++ b/rl4co/envs/common/base.py
@@ -103,10 +103,12 @@ def dataset(self, batch_size=[], phase="train", filename=None):
try:
td = self.load_data(f, batch_size)
except FileNotFoundError:
- raise Exception(
+ log.error(
f"Provided file name {f} not found. Make sure to provide a file in the right path first or "
f"unset {phase}_file to generate data automatically instead"
)
+ td = self.generate_data(batch_size)
+
return TensorDictDataset(td)
def generate_data(self, batch_size):
diff --git a/rl4co/envs/cvrp.py b/rl4co/envs/cvrp.py
index 0ce3f9f4..14b31553 100644
--- a/rl4co/envs/cvrp.py
+++ b/rl4co/envs/cvrp.py
@@ -314,17 +314,19 @@ def render(td: TensorDict, actions=None, ax=None):
_, ax = plt.subplots()
td = td.detach().cpu()
+
+ if actions is None:
+ actions = td.get("action", None)
+
# if batch_size greater than 0 , we need to select the first batch element
if td.batch_size != torch.Size([]):
td = td[0]
+ actions = actions[0]
locs = td["locs"]
scale = CAPACITIES.get(td["locs"].size(-2) - 1, 1)
demands = td["demand"] * scale
- if actions is None:
- actions = td.get("action", None)
-
# add the depot at the first action and the end action
actions = torch.cat([torch.tensor([0]), actions, torch.tensor([0])])
diff --git a/rl4co/envs/mpdp.py b/rl4co/envs/mpdp.py
new file mode 100644
index 00000000..77e6c7cc
--- /dev/null
+++ b/rl4co/envs/mpdp.py
@@ -0,0 +1,541 @@
+from typing import Optional
+
+import torch
+
+from tensordict.tensordict import TensorDict
+from torchrl.data import (
+ BoundedTensorSpec,
+ CompositeSpec,
+ UnboundedContinuousTensorSpec,
+ UnboundedDiscreteTensorSpec,
+)
+
+from rl4co.envs.common.base import RL4COEnvBase
+from rl4co.utils.ops import gather_by_index
+from rl4co.utils.pylogger import get_pylogger
+
+log = get_pylogger(__name__)
+
+
+class MPDPEnv(RL4COEnvBase):
+ """Multi-agent Pickup and Delivery Problem environment.
+ The goal is to pick up and deliver all the packages while satisfying the precedence constraints.
+ When an agent goes back to the depot, a new agent is spawned. In the min-max version, the goal is to minimize the
+ maximum tour length among all agents.
+ The reward is the -infinite unless the agent visits all the cities.
+ In that case, the reward is (-)length of the path: maximizing the reward is equivalent to minimizing the path length.
+
+ Args:
+ num_loc: number of locations (cities) in the TSP
+ min_loc: minimum location coordinate. Used for data generation
+ max_loc: maximum location coordinate. Used for data generation
+ min_num_agents: minimum number of agents. Used for data generation
+ max_num_agents: maximum number of agents. Used for data generation
+ objective: objective to optimize. Either 'minmax' or 'minsum'
+ check_solution: whether to check the validity of the solution
+ td_params: parameters of the environment
+ """
+
+ name = "mpdp"
+
+ def __init__(
+ self,
+ num_loc: int = 20,
+ min_loc: float = 0,
+ max_loc: float = 1,
+ min_num_agents: int = 2,
+ max_num_agents: int = 10,
+ objective: str = "minmax",
+ check_solution: bool = False,
+ td_params: TensorDict = None,
+ **kwargs,
+ ):
+ super().__init__(**kwargs)
+ self.num_loc = num_loc
+ self.min_loc = min_loc
+ self.max_loc = max_loc
+ self.min_num_agents = min_num_agents
+ self.max_num_agents = max_num_agents
+ self.objective = objective
+ self.check_solution = check_solution
+ self._make_spec(td_params)
+
+ def _step(self, td: TensorDict) -> TensorDict:
+ selected = td["action"][:, None] # Add dimension for step
+
+ agent_num = td["lengths"].size(1)
+ n_loc = td["to_delivery"].size(-1) - agent_num - 1
+
+ new_to_delivery = (selected + n_loc // 2) % (
+ n_loc + agent_num + 1
+ ) # the pair node of selected node
+
+ is_request = (selected > agent_num) & (selected <= agent_num + n_loc // 2)
+ td["left_request"][is_request] -= 1
+ depot_distance = td["depot_distance"].scatter(-1, selected, 0)
+
+ add_pd = td["add_pd_distance"][is_request.squeeze(-1), :].gather(
+ -1, selected[is_request.squeeze(-1), :] - agent_num - 1
+ )
+ td["longest_lengths"][is_request.squeeze(-1), :].scatter_add_(
+ -1, td["count_depot"][is_request.squeeze(-1), :], add_pd
+ )
+ td["add_pd_distance"][is_request.squeeze(-1), :].scatter_(
+ -1, selected[is_request.squeeze(-1), :] - agent_num - 1, 0
+ )
+ remain_sum_paired_distance = td["add_pd_distance"].sum(-1, keepdim=True)
+ remain_pickup_max_distance = depot_distance[:, : agent_num + 1 + n_loc // 2].max(
+ dim=-1, keepdim=True
+ )[0]
+ remain_delivery_max_distance = depot_distance[
+ :, agent_num + 1 + n_loc // 2 :
+ ].max(dim=-1, keepdim=True)[0]
+
+ # Calculate makespan
+ cur_coord = gather_by_index(td["locs"], selected)
+ path_lengths = (cur_coord - td["cur_coord"]).norm(p=2, dim=-1)
+
+ td["lengths"].scatter_add_(-1, td["count_depot"], path_lengths.unsqueeze(-1))
+
+ # If visit depot then plus one to count_depot\
+ td["count_depot"][
+ (selected == td["agent_idx"]) & (td["agent_idx"] < agent_num)
+ ] += 1 # torch.ones(td["count_depot"][(selected == 0) & (td["agent_idx"] < agent_num)].shape, dtype=torch.int64, device=td["count_depot"].device)
+
+ # `agent_idx` is added by 1 if the current agent comes back to depot
+ agent_idx = (td["count_depot"] + 1) * torch.ones(
+ selected.size(0), 1, dtype=torch.long, device=td["count_depot"].device
+ )
+ visited = td["visited"].scatter(-1, selected.unsqueeze(-1), 1)
+ to_delivery = td["to_delivery"].scatter(-1, new_to_delivery[:, :, None], 1)
+
+ # Get done and reward
+ done = visited.all(dim=-1, keepdim=True).squeeze(-1)
+ reward = torch.ones_like(done) * float(
+ "-inf"
+ ) # reward calculated via `get_reward` for now
+
+ td_step = TensorDict(
+ {
+ "next": {
+ "locs": td["locs"],
+ "visited": visited,
+ "lengths": td["lengths"],
+ "count_depot": td["count_depot"],
+ "agent_idx": agent_idx,
+ "cur_coord": cur_coord,
+ "to_delivery": to_delivery,
+ "left_request": td["left_request"],
+ "depot_distance": depot_distance,
+ "remain_sum_paired_distance": remain_sum_paired_distance,
+ "remain_pickup_max_distance": remain_pickup_max_distance,
+ "remain_delivery_max_distance": remain_delivery_max_distance,
+ "add_pd_distance": td["add_pd_distance"],
+ "longest_lengths": td["longest_lengths"],
+ "i": td["i"] + 1,
+ "done": done,
+ "reward": reward,
+ }
+ },
+ td.shape,
+ )
+ td_step["next"].set("action_mask", self.get_action_mask(td_step["next"]))
+ return td_step
+
+ def _reset(
+ self,
+ td: Optional[TensorDict] = None,
+ batch_size: Optional[list] = None,
+ agent_num: Optional[int] = None, # NOTE hardcoded from ET
+ ) -> TensorDict:
+ if batch_size is None:
+ batch_size = self.batch_size if td is None else td["locs"].shape[:-2]
+
+ if td is None or td.is_empty():
+ td = self.generate_data(batch_size=batch_size)
+
+ self.device = td.device
+
+ # NOTE: this is a hack to get the agent_num
+ # agent_num = td["agent_num"][0].item() if agent_num is None else agent_num
+ # agent_num = agent_num if agent_num is not None else td["agent_num"][0].item()
+
+ depot = td["depot"]
+ depot = depot.repeat(1, agent_num + 1, 1)
+ loc = td["locs"]
+ left_request = loc.size(1) // 2
+ whole_instance = torch.cat((depot, loc), dim=1)
+
+ # Distance from all nodes between each other
+ distance = torch.cdist(whole_instance, whole_instance, p=2)
+ index = torch.arange(left_request, 2 * left_request, device=depot.device)[
+ None, :, None
+ ]
+ index = index.repeat(distance.shape[0], 1, 1)
+ add_pd_distance = distance[
+ :, agent_num + 1 : agent_num + 1 + left_request, agent_num + 1 :
+ ].gather(-1, index)
+ add_pd_distance = add_pd_distance.squeeze(-1)
+
+ remain_pickup_max_distance = distance[:, 0, : agent_num + 1 + left_request].max(
+ dim=-1, keepdim=True
+ )[0]
+ remain_delivery_max_distance = distance[:, 0, agent_num + 1 + left_request :].max(
+ dim=-1, keepdim=True
+ )[0]
+ remain_sum_paired_distance = add_pd_distance.sum(dim=-1, keepdim=True)
+
+ # Distance from depot to all nodes
+ # Delivery nodes should consider the sum of distance from depot to paired pickup nodes and pickup nodes to delivery nodes
+ distance[:, 0, agent_num + 1 : agent_num + 1 + left_request] = (
+ distance[:, 0, agent_num + 1 : agent_num + 1 + left_request]
+ + distance[:, 0, agent_num + 1 + left_request :]
+ )
+
+ # Distance from depot to all nodes
+ depot_distance = distance[:, 0, :]
+ depot_distance[:, agent_num + 1 : agent_num + 1 + left_request] = depot_distance[
+ :, agent_num + 1 : agent_num + 1 + left_request
+ ] # + add_pd_distance
+
+ batch_size, n_loc, _ = loc.size()
+ to_delivery = torch.cat(
+ [
+ torch.ones(
+ batch_size,
+ 1,
+ n_loc // 2 + agent_num + 1,
+ dtype=torch.uint8,
+ device=loc.device,
+ ),
+ torch.zeros(
+ batch_size, 1, n_loc // 2, dtype=torch.uint8, device=loc.device
+ ),
+ ],
+ dim=-1,
+ )
+
+ # Create reset TensorDict
+ td_reset = TensorDict(
+ {
+ "locs": torch.cat((depot, loc), -2),
+ "visited": torch.zeros(
+ batch_size,
+ 1,
+ n_loc + agent_num + 1,
+ dtype=torch.uint8,
+ device=loc.device,
+ ),
+ "lengths": torch.zeros(batch_size, agent_num, device=loc.device),
+ "longest_lengths": torch.zeros(batch_size, agent_num, device=loc.device),
+ "cur_coord": td["depot"]
+ if len(td["depot"].shape) == 2
+ else td["depot"].squeeze(1),
+ "i": torch.zeros(
+ batch_size, dtype=torch.int64, device=loc.device
+ ), # Vector with length num_steps
+ "to_delivery": to_delivery,
+ "count_depot": torch.zeros(
+ batch_size, 1, dtype=torch.int64, device=loc.device
+ ),
+ "agent_idx": torch.ones(
+ batch_size, 1, dtype=torch.long, device=loc.device
+ ),
+ "left_request": left_request
+ * torch.ones(batch_size, 1, dtype=torch.long, device=loc.device),
+ "remain_pickup_max_distance": remain_pickup_max_distance,
+ "remain_delivery_max_distance": remain_delivery_max_distance,
+ "depot_distance": depot_distance,
+ "remain_sum_paired_distance": remain_sum_paired_distance,
+ "add_pd_distance": add_pd_distance,
+ },
+ batch_size=batch_size,
+ )
+ td_reset.set("action_mask", self.get_action_mask(td_reset))
+ return td_reset
+
+ @staticmethod
+ def get_action_mask(td: TensorDict) -> torch.Tensor:
+ """Get the action mask for the current state."""
+
+ visited_loc = td["visited"].clone()
+
+ agent_num = td["lengths"].size(1)
+ n_loc = visited_loc.size(-1) - agent_num - 1 # num of customers
+ batch_size = visited_loc.size(0)
+ agent_idx = td["agent_idx"][:, None, :]
+ mask_loc = visited_loc.to(td["to_delivery"].device) | (1 - td["to_delivery"])
+
+ # depot
+ if td["i"][0].item() != 0:
+ mask_loc[:, :, : agent_num + 1] = 1
+
+ # if deliver nodes which is assigned agent is complete, then agent can go to depot
+ no_item_to_delivery = (
+ visited_loc[:, :, n_loc // 2 + agent_num + 1 :]
+ == td["to_delivery"][:, :, n_loc // 2 + agent_num + 1 :]
+ ).all(dim=-1)
+ mask_loc[no_item_to_delivery.squeeze(-1), :, :] = mask_loc[
+ no_item_to_delivery.squeeze(-1), :, :
+ ].scatter_(-1, agent_idx[no_item_to_delivery.squeeze(-1), :, :], 0)
+
+ condition = (td["count_depot"] == agent_num - 1) & (
+ (visited_loc[:, :, agent_num + 1 :] == 0).sum(dim=-1) != 0
+ )
+
+ mask_loc[..., agent_num][condition] = 1
+
+ else:
+ return (
+ torch.cat(
+ [
+ torch.zeros(
+ batch_size, 1, 1, dtype=torch.uint8, device=mask_loc.device
+ ),
+ torch.ones(
+ batch_size,
+ 1,
+ n_loc + agent_num,
+ dtype=torch.uint8,
+ device=mask_loc.device,
+ ),
+ ],
+ dim=-1,
+ )
+ > 0
+ )
+ action_mask = mask_loc == 0 # action_mask gets feasible actions
+ return action_mask
+
+ def get_reward(self, td: TensorDict, actions: TensorDict) -> TensorDict:
+ # Check that the solution is valid
+ if self.check_solution:
+ self.check_solution_validity(td, actions)
+
+ # Calculate the reward (negative tour length)
+ if self.objective == "minmax":
+ return -td["lengths"].max(dim=-1, keepdim=True)[0].squeeze(-1)
+ elif self.objective == "minsum":
+ return -td["lengths"].sum(dim=-1, keepdim=True).squeeze(-1)
+ else:
+ raise ValueError(f"Unknown objective {self.objective}")
+
+ @staticmethod
+ def check_solution_validity(td: TensorDict, actions: torch.Tensor):
+ assert True, "Not implemented"
+
+ def generate_data(self, batch_size) -> TensorDict:
+ # Batch size input check
+ batch_size = [batch_size] if isinstance(batch_size, int) else batch_size
+
+ # Initialize the locations (including the depot which is always the first node)
+ locs_with_depot = (
+ torch.FloatTensor(*batch_size, self.num_loc + 1, 2)
+ .uniform_(self.min_loc, self.max_loc)
+ .to(self.device)
+ )
+
+ return TensorDict(
+ {
+ "locs": locs_with_depot[..., 1:, :],
+ "depot": locs_with_depot[..., 0, :],
+ },
+ batch_size=batch_size,
+ )
+
+ def _make_spec(self, td_params: TensorDict):
+ """Make the observation and action specs from the parameters."""
+ max_nodes = self.num_loc + self.max_num_agents + 1
+ self.observation_spec = CompositeSpec(
+ locs=BoundedTensorSpec(
+ minimum=self.min_loc,
+ maximum=self.max_loc,
+ shape=(max_nodes, 2),
+ dtype=torch.float32,
+ ),
+ current_node=UnboundedDiscreteTensorSpec(
+ shape=(1),
+ dtype=torch.int64,
+ ),
+ action_mask=UnboundedDiscreteTensorSpec(
+ shape=(max_nodes, 1),
+ dtype=torch.bool,
+ ),
+ visited=UnboundedDiscreteTensorSpec(
+ shape=(1, max_nodes),
+ dtype=torch.bool,
+ ),
+ lengths=UnboundedContinuousTensorSpec(
+ shape=(self.max_num_agents,),
+ dtype=torch.float32,
+ ),
+ longest_lengths=UnboundedContinuousTensorSpec(
+ shape=(self.max_num_agents,),
+ dtype=torch.float32,
+ ),
+ cur_coord=BoundedTensorSpec(
+ minimum=self.min_loc,
+ maximum=self.max_loc,
+ shape=(2,),
+ dtype=torch.float32,
+ ),
+ to_delivery=UnboundedDiscreteTensorSpec(
+ shape=(max_nodes, 1),
+ dtype=torch.bool,
+ ),
+ count_depot=UnboundedDiscreteTensorSpec(
+ shape=(1,),
+ dtype=torch.int64,
+ ),
+ agent_idx=UnboundedDiscreteTensorSpec(
+ shape=(1,),
+ dtype=torch.int64,
+ ),
+ left_request=UnboundedDiscreteTensorSpec(
+ shape=(1,),
+ dtype=torch.int64,
+ ),
+ remain_pickup_max_distance=UnboundedContinuousTensorSpec(
+ shape=(1,),
+ dtype=torch.float32,
+ ),
+ remain_delivery_max_distance=UnboundedContinuousTensorSpec(
+ shape=(1,),
+ dtype=torch.float32,
+ ),
+ depot_distance=UnboundedContinuousTensorSpec(
+ shape=(max_nodes,),
+ dtype=torch.float32,
+ ),
+ remain_sum_paired_distance=UnboundedContinuousTensorSpec(
+ shape=(1,),
+ dtype=torch.float32,
+ ),
+ add_pd_distance=UnboundedContinuousTensorSpec(
+ shape=(max_nodes,),
+ dtype=torch.float32,
+ ),
+ ## NOTE: we should have a vectorized implementation for agent_num
+ # agent_num=UnboundedDiscreteTensorSpec(
+ # shape=(1,),
+ # dtype=torch.int64,
+ # ),
+ i=UnboundedDiscreteTensorSpec(
+ shape=(1,),
+ dtype=torch.int64,
+ ),
+ )
+ self.input_spec = self.observation_spec.clone()
+ self.action_spec = BoundedTensorSpec(
+ shape=(1,),
+ dtype=torch.int64,
+ minimum=0,
+ maximum=max_nodes,
+ )
+ self.reward_spec = UnboundedContinuousTensorSpec(shape=(1,))
+ self.done_spec = UnboundedDiscreteTensorSpec(shape=(1,), dtype=torch.bool)
+
+ @staticmethod
+ def render(td: TensorDict, actions=None, ax=None):
+ # TODO: color switch with new agents; add pickup and delivery nodes as in `PDPEnv.render`
+
+ import matplotlib.pyplot as plt
+ import numpy as np
+
+ from matplotlib import cm, colormaps
+
+ num_routine = (actions == 0).sum().item() + 2
+ base = colormaps["nipy_spectral"]
+ color_list = base(np.linspace(0, 1, num_routine))
+ cmap_name = base.name + str(num_routine)
+ out = base.from_list(cmap_name, color_list, num_routine)
+
+ if ax is None:
+ # Create a plot of the nodes
+ _, ax = plt.subplots()
+
+ td = td.detach().cpu()
+
+ if actions is None:
+ actions = td.get("action", None)
+
+ # if batch_size greater than 0 , we need to select the first batch element
+ if td.batch_size != torch.Size([]):
+ td = td[0]
+ actions = actions[0]
+
+ locs = td["locs"]
+
+ # add the depot at the first action and the end action
+ actions = torch.cat([torch.tensor([0]), actions, torch.tensor([0])])
+
+ # gather locs in order of action if available
+ if actions is None:
+ log.warning("No action in TensorDict, rendering unsorted locs")
+ else:
+ locs = locs
+
+ # Cat the first node to the end to complete the tour
+ x, y = locs[:, 0], locs[:, 1]
+
+ # plot depot
+ ax.scatter(
+ locs[0, 0],
+ locs[0, 1],
+ edgecolors=cm.Set2(2),
+ facecolors="none",
+ s=100,
+ linewidths=2,
+ marker="s",
+ alpha=1,
+ )
+
+ # plot visited nodes
+ ax.scatter(
+ x[1:],
+ y[1:],
+ edgecolors=cm.Set2(0),
+ facecolors="none",
+ s=50,
+ linewidths=2,
+ marker="o",
+ alpha=1,
+ )
+
+ # text depot
+ ax.text(
+ locs[0, 0],
+ locs[0, 1] - 0.025,
+ "Depot",
+ horizontalalignment="center",
+ verticalalignment="top",
+ fontsize=10,
+ color=cm.Set2(2),
+ )
+
+ # plot actions
+ color_idx = 0
+ for action_idx in range(len(actions) - 1):
+ if actions[action_idx] == 0:
+ color_idx += 1
+ from_loc = locs[actions[action_idx]]
+ to_loc = locs[actions[action_idx + 1]]
+ ax.plot(
+ [from_loc[0], to_loc[0]],
+ [from_loc[1], to_loc[1]],
+ color=out(color_idx),
+ lw=1,
+ )
+ ax.annotate(
+ "",
+ xy=(to_loc[0], to_loc[1]),
+ xytext=(from_loc[0], from_loc[1]),
+ arrowprops=dict(arrowstyle="-|>", color=out(color_idx)),
+ size=15,
+ annotation_clip=False,
+ )
+
+ # Setup limits and show
+ ax.set_xlim(-0.05, 1.05)
+ ax.set_ylim(-0.05, 1.05)
+ plt.show()
diff --git a/rl4co/envs/mtsp.py b/rl4co/envs/mtsp.py
index 7495f964..e85fa624 100644
--- a/rl4co/envs/mtsp.py
+++ b/rl4co/envs/mtsp.py
@@ -271,7 +271,7 @@ def generate_data(self, batch_size) -> TensorDict:
)
@staticmethod
- def render(td):
+ def render(td, actions=None, ax=None):
import matplotlib.pyplot as plt
from matplotlib import colormaps
@@ -283,14 +283,15 @@ def discrete_cmap(num, base_cmap="nipy_spectral"):
cmap_name = base.name + str(num)
return base.from_list(cmap_name, color_list, num)
- td = td.detach().cpu()
+ if actions is None:
+ actions = td.get("action", None)
# if batch_size greater than 0 , we need to select the first batch element
if td.batch_size != torch.Size([]):
td = td[0]
+ actions = actions[0]
num_agents = td["num_agents"]
locs = td["locs"]
- actions = td["action"]
cmap = discrete_cmap(num_agents, "rainbow")
fig, ax = plt.subplots()
diff --git a/rl4co/envs/pdp.py b/rl4co/envs/pdp.py
index e263bcd0..7d6a309d 100644
--- a/rl4co/envs/pdp.py
+++ b/rl4co/envs/pdp.py
@@ -221,7 +221,7 @@ def generate_data(self, batch_size) -> TensorDict:
)
@staticmethod
- def render(td, actions=None):
+ def render(td: TensorDict, actions=None, ax=None):
import matplotlib.pyplot as plt
markersize = 8
@@ -291,14 +291,7 @@ def render(td, actions=None):
label="Delivery" if i == 0 else None,
)
- # Legend
- # plt.legend(['Actions', 'Depot', 'Delivery', 'Pickup'])
- # get handles
- handles, labels = ax.get_legend_handles_labels()
-
- # plot legend
- ax.legend(handles, labels)
- ax.set_title("Pickup and Delivery Problem Solution")
- ax.set_xlabel("x-coordinate")
- ax.set_ylabel("y-coordinate")
+ # Setup limits and show
+ ax.set_xlim(-0.05, 1.05)
+ ax.set_ylim(-0.05, 1.05)
plt.show()
diff --git a/rl4co/envs/tsp.py b/rl4co/envs/tsp.py
index bfff2c3a..bbb76864 100644
--- a/rl4co/envs/tsp.py
+++ b/rl4co/envs/tsp.py
@@ -87,6 +87,7 @@ def _reset(self, td: Optional[TensorDict] = None, batch_size=None) -> TensorDict
self.device = device = init_locs.device if init_locs is not None else self.device
if init_locs is None:
init_locs = self.generate_data(batch_size=batch_size).to(device)["locs"]
+ batch_size = [batch_size] if isinstance(batch_size, int) else batch_size
# We do not enforce loading from self for flexibility
num_loc = init_locs.shape[-2]
@@ -179,15 +180,16 @@ def render(td, actions=None, ax=None):
_, ax = plt.subplots()
td = td.detach().cpu()
+
+ if actions is None:
+ actions = td.get("action", None)
# if batch_size greater than 0 , we need to select the first batch element
if td.batch_size != torch.Size([]):
td = td[0]
+ actions = actions[0]
locs = td["locs"]
- if actions is None:
- actions = td.get("action", None)
-
# gather locs in order of action if available
if actions is None:
log.warning("No action in TensorDict, rendering unsorted locs")
diff --git a/rl4co/models/__init__.py b/rl4co/models/__init__.py
index 7c650a85..4d9b165a 100644
--- a/rl4co/models/__init__.py
+++ b/rl4co/models/__init__.py
@@ -1,9 +1,7 @@
from rl4co.models.zoo.am import AttentionModel, AttentionModelPolicy
-from rl4co.models.zoo.ham import (
- HeterogeneousAttentionModel,
- HeterogeneousAttentionModelPolicy,
-)
-from rl4co.models.zoo.mdam import MDAMPolicy
-from rl4co.models.zoo.pomo import POMO, POMOPolicy
+from rl4co.models.zoo.common.autoregressive import AutoregressivePolicy
+from rl4co.models.zoo.ppo import PPOModel, PPOPolicy
from rl4co.models.zoo.ptrnet import PointerNetwork, PointerNetworkPolicy
from rl4co.models.zoo.symnco import SymNCO, SymNCOPolicy
+from rl4co.models.zoo.ham import HeterogeneousAttentionModel, HeterogeneousAttentionModelPolicy
+from rl4co.models.zoo.mdam import MDAM, MDAMPolicy
\ No newline at end of file
diff --git a/rl4co/models/nn/attention.py b/rl4co/models/nn/attention.py
index 4ba29b56..80576682 100644
--- a/rl4co/models/nn/attention.py
+++ b/rl4co/models/nn/attention.py
@@ -24,7 +24,7 @@ def scaled_dot_product_attention(
):
"""Simple Scaled Dot-Product Attention in PyTorch without Flash Attention"""
if scale is None:
- scale = Q.size(-1) ** -0.5 # scale factor
+ scale = math.sqrt(Q.size(-1)) # scale factor
# compute the attention scores
attn_scores = torch.matmul(Q, K.transpose(-2, -1)) / scale
# apply causal masking if required
@@ -53,19 +53,35 @@ def flash_attn_wrapper(self, func, *args, **kwargs):
return func(*args, **kwargs)
-class NativeFlashMHA(nn.Module):
- """PyTorch native implementation of Flash Multi-Head Attention with automatic mixed precision support."""
+class MultiHeadAttention(nn.Module):
+ """PyTorch native implementation of Flash Multi-Head Attention with automatic mixed precision support.
+ Uses PyTorch's native `scaled_dot_product_attention` implementation, available from 2.0
+
+ Note:
+ If `scaled_dot_product_attention` is not available, use custom implementation of `scaled_dot_product_attention` without Flash Attention.
+ In case you want to use Flash Attention, you may have a look at the MHA module under `rl4co.models.nn.flash_attention.MHA`.
+
+ Args:
+ embed_dim: total dimension of the model
+ num_heads: number of heads
+ bias: whether to use bias
+ attention_dropout: dropout rate for attention weights
+ causal: whether to apply causal mask to attention scores
+ device: torch device
+ dtype: torch dtype
+ force_flash_attn: whether to force flash attention. If True, then we automatically cast to fp16
+ """
def __init__(
self,
- embed_dim,
- num_heads,
- bias=True,
- attention_dropout=0.0,
- causal=False,
+ embed_dim: int,
+ num_heads: int,
+ bias: bool = True,
+ attention_dropout: float = 0.0,
+ causal: bool = False,
device=None,
dtype=None,
- force_flash_attn=False,
+ force_flash_attn: bool = False,
) -> None:
factory_kwargs = {"device": device, "dtype": dtype}
super().__init__()
@@ -107,85 +123,6 @@ def forward(self, x, key_padding_mask=None):
flash_attn_wrapper = flash_attn_wrapper
-class MultiHeadAttention(nn.Module):
- """Multi-Head Attention module following Kool et al. (2019)"""
-
- def __init__(self, embed_dim, num_heads, **kwargs):
- super(MultiHeadAttention, self).__init__()
-
- self.num_heads = num_heads
- self.embed_dim = embed_dim
- self.hdim = embed_dim // num_heads
-
- self.norm_factor = 1 / math.sqrt(self.hdim) # See Attention is all you need
-
- self.Wq = nn.Parameter(torch.Tensor(num_heads, embed_dim, self.hdim))
- self.Wk = nn.Parameter(torch.Tensor(num_heads, embed_dim, self.hdim))
- self.Wv = nn.Parameter(torch.Tensor(num_heads, embed_dim, self.hdim))
-
- self.Wout = nn.Parameter(torch.Tensor(num_heads, self.hdim, embed_dim))
-
- self.init_parameters()
-
- def init_parameters(self):
- for param in self.parameters():
- stdv = 1.0 / math.sqrt(param.size(-1))
- param.data.uniform_(-stdv, stdv)
-
- def forward(self, q, h=None, mask=None):
- """q: queries (batch_size, n_query, input_dim)
- h: data (batch_size, graph_size, input_dim)
- mask: mask (batch_size, n_query, graph_size) or viewable as that (i.e. can be 2 dim if n_query == 1)
- Mask should contain 1 if attention is not possible (i.e. mask is negative adjacency)
- """
-
- if h is None:
- h = q # compute self-attention
-
- batch_size, graph_size, input_dim = h.size()
- n_query = q.size(1)
- assert q.size(0) == batch_size
- assert q.size(2) == input_dim
-
- hflat = h.contiguous().view(-1, input_dim)
- qflat = q.contiguous().view(-1, input_dim)
-
- # Last dimension can be different for keys and values
- shp = (self.num_heads, batch_size, graph_size, -1)
- shp_q = (self.num_heads, batch_size, n_query, -1)
-
- # Calculate queries, (num_heads, n_query, graph_size, key/val_size)
- Q = torch.matmul(qflat, self.Wq).view(shp_q)
- # Calculate keys and values (num_heads, batch_size, graph_size, key/val_size)
- K = torch.matmul(hflat, self.Wk).view(shp)
- V = torch.matmul(hflat, self.Wv).view(shp)
-
- # Calculate compatibility (num_heads, batch_size, n_query, graph_size)
- compatibility = self.norm_factor * torch.matmul(Q, K.transpose(2, 3))
-
- # Optionally apply mask to prevent attention
- if mask is not None:
- mask = mask.view(1, batch_size, n_query, graph_size).expand_as(compatibility)
- compatibility[mask] = float("-inf") # -np.inf
-
- attn = torch.softmax(compatibility, dim=-1)
-
- # If there are nodes with no neighbours then softmax returns nan so we fix them to 0
- if mask is not None:
- attnc = attn.clone()
- attnc[mask] = 0
- attn = attnc
-
- heads = torch.matmul(attn, V)
-
- out = torch.mm(
- heads.permute(1, 2, 0, 3).contiguous().view(-1, self.num_heads * self.hdim),
- self.Wout.view(-1, self.embed_dim),
- ).view(batch_size, n_query, self.embed_dim)
-
- return out
-
-
class LogitAttention(nn.Module):
"""Calculate logits given query, key and value and logit key
If we use Flash Attention, then we automatically move to fp16 for inner computations
@@ -196,18 +133,28 @@ class LogitAttention(nn.Module):
2. Project heads to get glimpse
3. Compute attention score between glimpse and logit key
4. Normalize and mask
+
+ Args:
+ embed_dim: total dimension of the model
+ num_heads: number of heads
+ tanh_clipping: tanh clipping value
+ mask_inner: whether to mask inner attention
+ mask_logits: whether to mask logits
+ normalize: whether to normalize logits
+ softmax_temp: softmax temperature
+ force_flash_attn: whether to force flash attention. If True, then we automatically cast to fp16
"""
def __init__(
self,
- embed_dim,
- num_heads,
- tanh_clipping=10.0,
- mask_inner=True,
- mask_logits=True,
- normalize=True,
- softmax_temp=1.0,
- force_flash_attn=False,
+ embed_dim: int,
+ num_heads: int,
+ tanh_clipping: float = 10.0,
+ mask_inner: bool = True,
+ mask_logits: bool = True,
+ normalize: bool = True,
+ softmax_temp: float = 1.0,
+ force_flash_attn: bool = False,
):
super(LogitAttention, self).__init__()
self.num_heads = num_heads
diff --git a/rl4co/models/nn/graph/attnnet.py b/rl4co/models/nn/graph/attnnet.py
new file mode 100644
index 00000000..0373e768
--- /dev/null
+++ b/rl4co/models/nn/graph/attnnet.py
@@ -0,0 +1,99 @@
+from typing import Optional
+
+import torch.nn as nn
+
+from torch import Tensor
+
+from rl4co.models.nn.attention import MultiHeadAttention
+from rl4co.models.nn.ops import Normalization, SkipConnection
+from rl4co.utils.pylogger import get_pylogger
+
+log = get_pylogger(__name__)
+
+
+class MultiHeadAttentionLayer(nn.Sequential):
+ """Multi-Head Attention Layer with normalization and feed-forward layer
+
+ Args:
+ num_heads: number of heads in the MHA
+ embed_dim: dimension of the embeddings
+ feed_forward_hidden: dimension of the hidden layer in the feed-forward layer
+ normalization: type of normalization to use (batch, layer, none)
+ force_flash_attn: whether to force FlashAttention (move to half precision)
+ """
+
+ def __init__(
+ self,
+ num_heads: int,
+ embed_dim: int,
+ feed_forward_hidden: int = 512,
+ normalization: Optional[str] = "batch",
+ force_flash_attn: bool = False,
+ ):
+ super(MultiHeadAttentionLayer, self).__init__(
+ SkipConnection(
+ MultiHeadAttention(
+ embed_dim, num_heads, force_flash_attn=force_flash_attn
+ )
+ ),
+ Normalization(embed_dim, normalization),
+ SkipConnection(
+ nn.Sequential(
+ nn.Linear(embed_dim, feed_forward_hidden),
+ nn.ReLU(),
+ nn.Linear(feed_forward_hidden, embed_dim),
+ )
+ if feed_forward_hidden > 0
+ else nn.Linear(embed_dim, embed_dim)
+ ),
+ Normalization(embed_dim, normalization),
+ )
+
+
+class GraphAttentionNetwork(nn.Module):
+ """Graph Attention Network to encode embeddings with a series of MHA layers consisting of a MHA layer,
+ normalization, feed-forward layer, and normalization. Similar to Transformer encoder, as used in Kool et al. (2019).
+
+ Args:
+ num_heads: number of heads in the MHA
+ embedding_dim: dimension of the embeddings
+ num_layers: number of MHA layers
+ normalization: type of normalization to use (batch, layer, none)
+ feed_forward_hidden: dimension of the hidden layer in the feed-forward layer
+ force_flash_attn: whether to force FlashAttention (move to half precision)
+ """
+
+ def __init__(
+ self,
+ num_heads: int,
+ embedding_dim: int,
+ num_layers: int,
+ normalization: str = "batch",
+ feed_forward_hidden: int = 512,
+ force_flash_attn: bool = False,
+ ):
+ super(GraphAttentionNetwork, self).__init__()
+
+ self.layers = nn.Sequential(
+ *(
+ MultiHeadAttentionLayer(
+ num_heads,
+ embedding_dim,
+ feed_forward_hidden=feed_forward_hidden,
+ normalization=normalization,
+ force_flash_attn=force_flash_attn,
+ )
+ for _ in range(num_layers)
+ )
+ )
+
+ def forward(self, x: Tensor, mask: Optional[Tensor] = None) -> Tensor:
+ """Forward pass of the encoder
+
+ Args:
+ x: [batch_size, graph_size, embed_dim] initial embeddings to process
+ mask: [batch_size, graph_size, graph_size] mask for the input embeddings. Unused for now.
+ """
+ assert mask is None, "Mask not yet supported!"
+ h = self.layers(x)
+ return h
diff --git a/rl4co/models/nn/graph/gat.py b/rl4co/models/nn/graph/gat.py
deleted file mode 100644
index 211a159e..00000000
--- a/rl4co/models/nn/graph/gat.py
+++ /dev/null
@@ -1,89 +0,0 @@
-import torch.nn as nn
-
-from rl4co.models.nn.attention import MultiHeadAttention, NativeFlashMHA
-from rl4co.models.nn.env_embeddings import env_init_embedding
-from rl4co.models.nn.ops import Normalization, SkipConnection
-from rl4co.utils.pylogger import get_pylogger
-
-log = get_pylogger(__name__)
-
-
-class MultiHeadAttentionLayer(nn.Sequential):
- def __init__(
- self,
- num_heads,
- embed_dim,
- feed_forward_hidden=512,
- normalization="batch",
- use_native_sdpa=False,
- force_flash_attn=False,
- ):
- MHA = NativeFlashMHA if use_native_sdpa else MultiHeadAttention
- super(MultiHeadAttentionLayer, self).__init__(
- SkipConnection(MHA(embed_dim, num_heads, force_flash_attn=force_flash_attn)),
- Normalization(embed_dim, normalization),
- SkipConnection(
- nn.Sequential(
- nn.Linear(embed_dim, feed_forward_hidden),
- nn.ReLU(),
- nn.Linear(feed_forward_hidden, embed_dim),
- )
- if feed_forward_hidden > 0
- else nn.Linear(embed_dim, embed_dim)
- ),
- Normalization(embed_dim, normalization),
- )
-
-
-class GraphAttentionEncoder(nn.Module):
- """Graph Attention Encoder with a series of MHA layers
- Multi-Head Attention Layer with normalization and feed-forward layer
- If use_native_sdpa is True, use NativeFlashMHA instead of MultiHeadAttention:
- native PyTorch `scaled_dot_product_attention` implementation, available from 2.0
- You may force FlashAttention by setting force_flash_attn to True (move to half precision)
- """
-
- def __init__(
- self,
- num_heads,
- embedding_dim,
- num_layers,
- env=None,
- normalization="batch",
- feed_forward_hidden=512,
- use_native_sdpa=False,
- force_flash_attn=False,
- disable_init_embedding=False,
- ):
- super(GraphAttentionEncoder, self).__init__()
-
- # To map input to embedding space
- if not disable_init_embedding:
- self.init_embedding = env_init_embedding(
- env.name, {"embedding_dim": embedding_dim}
- )
- else:
- log.warning("Disabling init embedding manually for GraphAttentionEncoder")
- self.init_embedding = nn.Identity() # do nothing
-
- self.layers = nn.Sequential(
- *(
- MultiHeadAttentionLayer(
- num_heads,
- embedding_dim,
- feed_forward_hidden=feed_forward_hidden,
- normalization=normalization,
- use_native_sdpa=use_native_sdpa,
- force_flash_attn=force_flash_attn,
- )
- for _ in range(num_layers)
- )
- )
-
- def forward(self, x, mask=None):
- assert mask is None, "Mask not yet supported!"
- # initial Embedding from features
- init_embeds = self.init_embedding(x)
- # layers (batch_size, graph_size, embed_dim)
- embeds = self.layers(init_embeds)
- return embeds, init_embeds
diff --git a/rl4co/models/nn/graph/gcn.py b/rl4co/models/nn/graph/gcn.py
index a01b0270..b62ac8b6 100644
--- a/rl4co/models/nn/graph/gcn.py
+++ b/rl4co/models/nn/graph/gcn.py
@@ -5,27 +5,31 @@
from torch_geometric.data import Batch, Data
from torch_geometric.nn import GCNConv
-from rl4co.models.nn.env_embeddings import env_init_embedding
from rl4co.utils.pylogger import get_pylogger
log = get_pylogger(__name__)
class GCNEncoder(nn.Module):
+ """Graph Convolutional Network to encode embeddings with a series of GCN layers
+
+ Args:
+ embedding_dim: dimension of the embeddings
+ num_nodes: number of nodes in the graph
+ num_gcn_layer: number of GCN layers
+ self_loop: whether to add self loop in the graph
+ residual: whether to use residual connection
+ """
+
def __init__(
self,
- env,
- embedding_dim,
- num_nodes,
- num_gcn_layer,
- self_loop=False,
- residual=True,
+ embedding_dim: int,
+ num_nodes: int,
+ num_gcn_layer: int,
+ self_loop: bool = False,
+ residual: bool = True,
):
super(GCNEncoder, self).__init__()
- # Define the init embedding
- self.init_embedding = env_init_embedding(
- env.name, {"embedding_dim": embedding_dim}
- )
# Generate edge index for a fully connected graph
adj_matrix = torch.ones(num_nodes, num_nodes)
@@ -42,10 +46,17 @@ def __init__(
self.residual = residual
self.self_loop = self_loop
- def forward(self, x, mask=None):
+ def forward(self, x, node_feature, mask=None):
+ """Forward pass of the GCN encoder
+
+ Args:
+ x: [batch_size, graph_size, embed_dim] initial embeddings to process
+ node_feature: [batch_size, graph_size, embed_dim] node features, i.e. raw ones
+ mask: [batch_size, graph_size] mask for valid nodes
+ """
+
assert mask is None, "Mask not yet supported!"
# initial Embedding from features
- node_feature = self.init_embedding(x)
# Check to update the edge index with different number of node
if node_feature.size(1) != self.edge_index.max().item() + 1:
diff --git a/rl4co/models/nn/utils.py b/rl4co/models/nn/utils.py
index 15d7b418..3c694556 100644
--- a/rl4co/models/nn/utils.py
+++ b/rl4co/models/nn/utils.py
@@ -64,4 +64,8 @@ def rollout(env, td, policy):
td = policy(td)
actions.append(td["action"])
td = env.step(td)["next"]
- return env.get_reward(td, torch.stack(actions, dim=1))
+ return (
+ env.get_reward(td, torch.stack(actions, dim=1)),
+ td,
+ torch.stack(actions, dim=1),
+ )
diff --git a/rl4co/models/rl/__init__.py b/rl4co/models/rl/__init__.py
new file mode 100644
index 00000000..d5578269
--- /dev/null
+++ b/rl4co/models/rl/__init__.py
@@ -0,0 +1,3 @@
+from rl4co.models.rl.common.base import RL4COLitModule
+from rl4co.models.rl.ppo.ppo import PPO
+from rl4co.models.rl.reinforce.reinforce import REINFORCE
diff --git a/rl4co/models/rl/common/base.py b/rl4co/models/rl/common/base.py
new file mode 100644
index 00000000..baf653ab
--- /dev/null
+++ b/rl4co/models/rl/common/base.py
@@ -0,0 +1,290 @@
+from functools import partial
+from typing import Any, Union
+
+import torch
+import torch.nn as nn
+
+from lightning import LightningModule
+from torch.utils.data import DataLoader
+
+from rl4co.data.dataset import tensordict_collate_fn
+from rl4co.data.generate_data import generate_default_datasets
+from rl4co.envs.common.base import RL4COEnvBase
+from rl4co.utils.optim_helpers import create_optimizer, create_scheduler
+from rl4co.utils.pylogger import get_pylogger
+
+log = get_pylogger(__name__)
+
+
+class RL4COLitModule(LightningModule):
+ """Base class for Lightning modules for RL4CO. This defines the general training loop in terms of
+ RL algorithms. Subclasses should implement mainly the `shared_step` to define the specific
+ loss functions and optimization routines.
+
+ Args:
+ env: RL4CO environment
+ policy: policy network (actor)
+ batch_size: batch size (general one, default used for training)
+ val_batch_size: specific batch size for validation
+ test_batch_size: specific batch size for testing
+ train_data_size: size of training dataset for one epoch
+ val_data_size: size of validation dataset for one epoch
+ test_data_size: size of testing dataset for one epoch
+ optimizer: optimizer or optimizer name
+ optimizer_kwargs: optimizer kwargs
+ lr_scheduler: learning rate scheduler or learning rate scheduler name
+ lr_scheduler_kwargs: learning rate scheduler kwargs
+ lr_scheduler_interval: learning rate scheduler interval
+ lr_scheduler_monitor: learning rate scheduler monitor
+ generate_data: whether to generate data
+ shuffle_train_dataloader: whether to shuffle training dataloader
+ dataloader_num_workers: number of workers for dataloader
+ data_dir: data directory
+ metrics: metrics
+ litmodule_kwargs: kwargs for `LightningModule`
+ """
+
+ def __init__(
+ self,
+ env: RL4COEnvBase,
+ policy: nn.Module,
+ batch_size: int = 512,
+ val_batch_size: int = None,
+ test_batch_size: int = None,
+ train_data_size: int = 1_280_000,
+ val_data_size: int = 10_000,
+ test_data_size: int = 10_000,
+ optimizer: Union[str, torch.optim.Optimizer, partial] = "Adam",
+ optimizer_kwargs: dict = {"lr": 1e-4},
+ lr_scheduler: Union[
+ str, torch.optim.lr_scheduler.LRScheduler, partial
+ ] = "MultiStepLR",
+ lr_scheduler_kwargs: dict = {
+ "milestones": [80, 95],
+ "gamma": 0.1,
+ },
+ lr_scheduler_interval: str = "epoch",
+ lr_scheduler_monitor: str = "val/reward",
+ generate_data: bool = True,
+ shuffle_train_dataloader: bool = True,
+ dataloader_num_workers: int = 0,
+ data_dir: str = "data/",
+ log_on_step: bool = True,
+ metrics: dict = {},
+ **litmodule_kwargs,
+ ):
+ super().__init__(**litmodule_kwargs)
+
+ # This line ensures params passed to LightningModule will be saved to ckpt
+ # it also allows to access params with 'self.hparams' attribute
+ # Note: we will send to logger with `self.logger.save_hyperparams` in `setup`
+ self.save_hyperparameters(logger=False)
+
+ self.env = env
+ self.policy = policy
+
+ self.instantiate_metrics(metrics)
+ self.log_on_step = log_on_step
+
+ self.data_cfg = {
+ "batch_size": batch_size,
+ "val_batch_size": val_batch_size,
+ "test_batch_size": test_batch_size,
+ "generate_data": generate_data,
+ "data_dir": data_dir,
+ "train_data_size": train_data_size,
+ "val_data_size": val_data_size,
+ "test_data_size": test_data_size,
+ }
+
+ self._optimizer_name_or_cls: Union[str, torch.optim.Optimizer] = optimizer
+ self.optimizer_kwargs: dict = optimizer_kwargs
+ self._lr_scheduler_name_or_cls: Union[
+ str, torch.optim.lr_scheduler.LRScheduler
+ ] = lr_scheduler
+ self.lr_scheduler_kwargs: dict = lr_scheduler_kwargs
+ self.lr_scheduler_interval: str = lr_scheduler_interval
+ self.lr_scheduler_monitor: str = lr_scheduler_monitor
+
+ self.shuffle_train_dataloader = shuffle_train_dataloader
+ self.dataloader_num_workers = dataloader_num_workers
+
+ def instantiate_metrics(self, metrics: dict):
+ """Dictionary of metrics to be logged at each phase"""
+
+ if not metrics:
+ log.info("No metrics specified, using default")
+ self.train_metrics = metrics.get("train", ["loss", "reward"])
+ self.val_metrics = metrics.get("val", ["reward"])
+ self.test_metrics = metrics.get("test", ["reward"])
+ self.log_on_step = metrics.get("log_on_step", True)
+
+ def setup(self, stage="fit"):
+ """Base LightningModule setup method. This will setup the datasets and dataloaders
+
+ Note:
+ We also send to the loggers all hyperparams that are not `nn.Module` (i.e. the policy).
+ Apparently PyTorch Lightning does not do this by default.
+ """
+
+ log.info("Setting up batch sizes for train/val/test")
+ train_bs, val_bs, test_bs = (
+ self.data_cfg["batch_size"],
+ self.data_cfg["val_batch_size"],
+ self.data_cfg["test_batch_size"],
+ )
+ self.train_batch_size = train_bs
+ self.val_batch_size = train_bs if val_bs is None else val_bs
+ self.test_batch_size = train_bs if test_bs is None else test_bs
+
+ log.info("Setting up datasets")
+
+ # Create datasets automatically. If found, this will skip
+ if self.data_cfg["generate_data"]:
+ generate_default_datasets(data_dir=self.data_cfg["data_dir"])
+
+ self.train_dataset = self.wrap_dataset(
+ self.env.dataset(self.data_cfg["train_data_size"], phase="train")
+ )
+ self.val_dataset = self.env.dataset(self.data_cfg["val_data_size"], phase="val")
+ self.test_dataset = self.env.dataset(
+ self.data_cfg["test_data_size"], phase="test"
+ )
+
+ # Log all hyperparameters except those in `nn.Module`
+ if self.loggers is not None:
+ hparams_save = {
+ k: v for k, v in self.hparams.items() if not isinstance(v, nn.Module)
+ }
+ for logger in self.loggers:
+ logger.log_hyperparams(hparams_save)
+ logger.log_graph(self)
+ logger.save()
+
+ self.post_setup_hook()
+
+ def post_setup_hook(self):
+ """Hook to be called after setup. Can be used to set up subclasses without overriding `setup`"""
+ pass
+
+ def configure_optimizers(self, parameters=None):
+ """
+ Args:
+ parameters: parameters to be optimized. If None, will use `self.policy.parameters()
+ """
+
+ if parameters is None:
+ parameters = self.policy.parameters()
+
+ log.info(f"Instantiating optimizer <{self._optimizer_name_or_cls}>")
+ if isinstance(self._optimizer_name_or_cls, str):
+ optimizer = create_optimizer(
+ parameters, self._optimizer_name_or_cls, **self.optimizer_kwargs
+ )
+ elif isinstance(self._optimizer_name_or_cls, partial):
+ optimizer = self._optimizer_name_or_cls(parameters, **self.optimizer_kwargs)
+ else: # User-defined optimizer
+ opt_cls = self._optimizer_name_or_cls
+ optimizer = opt_cls(parameters, **self.optimizer_kwargs)
+ assert isinstance(optimizer, torch.optim.Optimizer)
+
+ # instantiate lr scheduler
+ if self._lr_scheduler_name_or_cls is None:
+ return optimizer
+ else:
+ log.info(f"Instantiating LR scheduler <{self._lr_scheduler_name_or_cls}>")
+ if isinstance(self._lr_scheduler_name_or_cls, str):
+ scheduler = create_scheduler(
+ optimizer, self._lr_scheduler_name_or_cls, **self.lr_scheduler_kwargs
+ )
+ elif isinstance(self._lr_scheduler_name_or_cls, partial):
+ scheduler = self._lr_scheduler_name_or_cls(
+ optimizer, **self.lr_scheduler_kwargs
+ )
+ else: # User-defined scheduler
+ scheduler_cls = self._lr_scheduler_name_or_cls
+ scheduler = scheduler_cls(optimizer, **self.lr_scheduler_kwargs)
+ assert isinstance(scheduler, torch.optim.lr_scheduler.LRScheduler)
+ return [optimizer], {
+ "scheduler": scheduler,
+ "interval": self.lr_scheduler_interval,
+ "monitor": self.lr_scheduler_monitor,
+ }
+
+ def log_metrics(self, metric_dict: dict, phase: str):
+ """Log metrics to logger and progress bar"""
+ metrics = getattr(self, f"{phase}_metrics")
+ metrics = {
+ f"{phase}/{k}": v.mean() for k, v in metric_dict.items() if k in metrics
+ }
+
+ log_on_step = self.log_on_step if phase == "train" else False
+ on_epoch = False if phase == "train" else True
+ self.log_dict(
+ metrics,
+ on_step=log_on_step,
+ on_epoch=on_epoch,
+ prog_bar=True,
+ sync_dist=True,
+ add_dataloader_idx=False,
+ )
+ return metrics
+
+ def forward(self, td, **kwargs):
+ """Forward pass for the model. Simple wrapper around `policy`. Uses `env` from the module if not provided."""
+ if kwargs.get("env", None) is None:
+ env = self.env
+ else:
+ log.info("Using env from kwargs")
+ env = kwargs["env"]
+ return self.policy(td, env, **kwargs)
+
+ def shared_step(self, batch: Any, batch_idx: int, phase: str):
+ """Shared step between train/val/test. To be implemented in subclass"""
+ raise NotImplementedError("Shared step is required to implemented in subclass")
+
+ def training_step(self, batch: Any, batch_idx: int):
+ # To use new data every epoch, we need to call reload_dataloaders_every_epoch=True in Trainer
+ return self.shared_step(batch, batch_idx, phase="train")
+
+ def validation_step(self, batch: Any, batch_idx: int):
+ return self.shared_step(batch, batch_idx, phase="val")
+
+ def test_step(self, batch: Any, batch_idx: int):
+ return self.shared_step(batch, batch_idx, phase="test")
+
+ def train_dataloader(self):
+ return self._dataloader(
+ self.train_dataset, self.train_batch_size, self.shuffle_train_dataloader
+ )
+
+ def val_dataloader(self):
+ return self._dataloader(self.val_dataset, self.val_batch_size)
+
+ def test_dataloader(self):
+ return self._dataloader(self.test_dataset, self.test_batch_size)
+
+ def on_train_epoch_end(self):
+ """Called at the end of the training epoch. This can be used for instance to update the train dataset
+ with new data (which is the case in RL).
+ """
+ train_dataset = self.env.dataset(self.data_cfg["train_data_size"], "train")
+ self.train_dataset = self.wrap_dataset(train_dataset)
+
+ def wrap_dataset(self, dataset):
+ """Wrap dataset with policy-specific wrapper. This is useful i.e. in REINFORCE where we need to
+ collect the greedy rollout baseline outputs.
+ """
+ return dataset
+
+ def _dataloader(self, dataset, batch_size, shuffle=False):
+ """The dataloader used by the trainer. This is a wrapper around the dataset with a custom collate_fn
+ to efficiently handle TensorDicts.
+ """
+ return DataLoader(
+ dataset,
+ batch_size=batch_size,
+ shuffle=shuffle,
+ num_workers=self.dataloader_num_workers,
+ collate_fn=tensordict_collate_fn,
+ )
diff --git a/rl4co/models/rl/common/critic.py b/rl4co/models/rl/common/critic.py
new file mode 100644
index 00000000..105c229e
--- /dev/null
+++ b/rl4co/models/rl/common/critic.py
@@ -0,0 +1,77 @@
+from typing import Union
+
+from tensordict import TensorDict
+from torch import Tensor, nn
+
+from rl4co.models.nn.env_embeddings import env_init_embedding
+from rl4co.models.nn.graph.attnnet import GraphAttentionNetwork
+
+
+class CriticNetwork(nn.Module):
+ """We make the critic network compatible with any problem by using encoder for any environment
+ Refactored from Kool et al. (2019) which only worked for TSP. In our case, we make it
+ compatible with any problem by using the environment init embedding.
+
+ Args:
+ env_name: environment name to solve
+ encoder: Encoder to use for the critic
+ embedding_dim: Dimension of the embeddings
+ hidden_dim: Hidden dimension for the feed-forward network
+ num_layers: Number of layers for the encoder
+ num_heads: Number of heads for the attention
+ normalization: Normalization to use for the attention
+ force_flash_attn: Whether to force the use of flash attention. If True, cast to fp16
+ """
+
+ def __init__(
+ self,
+ env_name: str = None,
+ encoder: nn.Module = None,
+ embedding_dim: int = 128,
+ hidden_dim: int = 512,
+ num_layers: int = 3,
+ num_heads: int = 8,
+ normalization: str = "batch",
+ force_flash_attn: bool = False,
+ **unused_kwargs,
+ ):
+ super(CriticNetwork, self).__init__()
+
+ if env_name is None:
+ self.init_embedding = nn.Identity()
+ else:
+ self.init_embedding = env_init_embedding(
+ env_name, {"embedding_dim": embedding_dim}
+ )
+
+ self.encoder = (
+ GraphAttentionNetwork(
+ num_heads=num_heads,
+ embedding_dim=embedding_dim,
+ num_layers=num_layers,
+ normalization=normalization,
+ feed_forward_hidden=hidden_dim,
+ force_flash_attn=force_flash_attn,
+ )
+ if encoder is None
+ else encoder
+ )
+
+ self.value_head = nn.Sequential(
+ nn.Linear(embedding_dim, hidden_dim), nn.ReLU(), nn.Linear(hidden_dim, 1)
+ )
+
+ def forward(self, x: Union[Tensor, TensorDict]) -> Tensor:
+ """Forward pass of the critic network: encode the imput in embedding space and return the value
+
+ Args:
+ x: Input containing the environment state. Can be a Tensor or a TensorDict
+
+ Returns:
+ Value of the input state
+ """
+
+ # Initial embedding of x. This is the identity function if env_name is None.
+ x = self.init_embedding(x)
+ x = self.encoder(x)
+ return self.value_head(x).mean(1)
diff --git a/rl4co/models/rl/ppo/model.py b/rl4co/models/rl/ppo/model.py
deleted file mode 100644
index 4dee2c47..00000000
--- a/rl4co/models/rl/ppo/model.py
+++ /dev/null
@@ -1,141 +0,0 @@
-from math import log
-from typing import Union
-
-import torch
-import torch.nn as nn
-import torch.nn.functional as F
-
-from tensordict import TensorDict
-
-from rl4co.utils.pylogger import get_pylogger
-
-log = get_pylogger(__name__)
-
-
-class PPO(nn.Module):
- def __init__(
- self,
- env,
- policy: nn.Module,
- critic: nn.Module,
- clip_range: float = 0.2, # epsilon of PPO
- ppo_epochs: int = 2, # K
- mini_batch_size: Union[int, float] = 0.25, # 0.25,
- vf_lambda: float = 0.5, # lambda of Value function fitting
- entropy_lambda: float = 0.0, # lambda of entropy bonus
- normalize_adv: bool = False, # whether to normalize advantage
- max_grad_norm: float = 0.5, # max gradient norm
- **unused_kw,
- ):
- super().__init__()
- if len(unused_kw) > 0:
- log.warn(f"Unused kwargs: {unused_kw}")
- self.env = env
- self.policy = policy
- self.critic = critic
-
- # PPO hyper params
- self.clip_range = clip_range
- self.ppo_epochs = ppo_epochs
- self.mini_batch_size = mini_batch_size
- self.vf_lambda = vf_lambda
- self.entropy_lambda = entropy_lambda
- self.normalize_adv = normalize_adv
- self.max_grad_norm = max_grad_norm
-
- def forward(
- self,
- td: TensorDict,
- phase: str = "train",
- extra=None,
- policy_kwargs: dict = {},
- critic_kwargs: dict = {},
- optimizer=None,
- ):
- # Evaluate model, get costs and log probabilities
- with torch.no_grad():
- # compute a_old and logp_old
- out = self.policy(td.clone(), phase, return_action=True, **policy_kwargs)
- old_logp = out["log_likelihood"] # [batch, decoder steps]
- actions = out["actions"] # [batch, decoder steps]
- rewards = out["reward"] # [batch]
-
- iter_i = 0
- if phase == "train":
- batch_size = old_logp.shape[0]
-
- if isinstance(self.mini_batch_size, float):
- mini_batch_size = int(self.mini_batch_size * batch_size)
- if self.mini_batch_size >= batch_size:
- mini_batch_size = batch_size
-
- for _ in range(self.ppo_epochs): # loop K
- for mini_batch_idx in torch.randperm(batch_size).split(mini_batch_size):
- # compute a and logp
- mini_batched_out = self.policy(
- td[mini_batch_idx].clone(),
- phase,
- given_actions=actions[mini_batch_idx],
- return_entropy=True,
- calc_reward=False,
- **policy_kwargs,
- )
-
- # compute ratio
- ratio = torch.exp(
- mini_batched_out["selected_log_p"].sum(dim=-1)
- - old_logp[mini_batch_idx].sum(dim=-1)
- ) # [batch size]
-
- # compute advantage
-
- value_pred = self.critic(td[mini_batch_idx], **critic_kwargs)
- adv = rewards[mini_batch_idx] - value_pred.detach() # [batch size]
-
- if self.normalize_adv:
- adv = (adv - adv.mean()) / (adv.std() + 1e-6)
-
- # compute surrogate loss
- surrogate_loss = -torch.min(
- ratio * adv,
- torch.clamp(ratio, 1 - self.clip_range, 1 + self.clip_range)
- * adv,
- ).mean()
-
- # compute entropy bonus
- entropy_bonus = mini_batched_out["entropy"].mean()
-
- # compute value function loss
- value_loss = F.huber_loss(
- value_pred, rewards[mini_batch_idx].view(-1, 1)
- )
-
- # compute total loss
- loss = (
- surrogate_loss
- + self.vf_lambda * value_loss
- - self.entropy_lambda * entropy_bonus
- )
-
- # perform optimization
- if optimizer is not None:
- optimizer.zero_grad()
- loss.backward()
- if self.max_grad_norm is not None:
- nn.utils.clip_grad_norm_(
- self.parameters(), self.max_grad_norm
- )
- optimizer.step()
-
- iter_i += 1
-
- # log training results
- out.update(
- {
- "loss": loss,
- "surrogate_loss": surrogate_loss,
- "value_loss": value_loss,
- "entropy_bonus": entropy_bonus,
- }
- )
- return out
diff --git a/rl4co/models/rl/ppo/ppo.py b/rl4co/models/rl/ppo/ppo.py
new file mode 100644
index 00000000..4409d8e4
--- /dev/null
+++ b/rl4co/models/rl/ppo/ppo.py
@@ -0,0 +1,208 @@
+from typing import Any, Union
+
+import torch
+import torch.nn as nn
+import torch.nn.functional as F
+
+from torch.utils.data import DataLoader
+
+from rl4co.envs.common.base import RL4COEnvBase
+from rl4co.models.rl.common.base import RL4COLitModule
+from rl4co.utils.pylogger import get_pylogger
+
+log = get_pylogger(__name__)
+
+
+class PPO(RL4COLitModule):
+ """
+ An implementation of the Proximal Policy Optimization (PPO) algorithm (https://arxiv.org/abs/1707.06347)
+ is presented with modifications for autoregressive decoding schemes.
+
+ In contrast to the original PPO algorithm, this implementation does not consider autoregressive decoding steps
+ as part of the MDP transition. While many Neural Combinatorial Optimization (NCO) studies model decoding steps
+ as transitions in a solution-construction MDP, we treat autoregressive solution construction as an algorithmic
+ choice for tractable CO solution generation. This choice aligns with the Attention Model (AM)
+ (https://openreview.net/forum?id=ByxBFsRqYm), which treats decoding steps as a single-step MDP in Equation 9.
+
+ Modeling autoregressive decoding steps as a single-step MDP introduces significant changes to the PPO implementation,
+ including:
+ - Generalized Advantage Estimation (GAE) (https://arxiv.org/abs/1506.02438) is not applicable since we are dealing
+ with a single-step MDP.
+ - The definition of policy entropy can differ from the commonly implemented manner.
+
+ The commonly implemented definition of policy entropy is the entropy of the policy distribution, given by:
+ H(pi(a|x_t)) = - sum_a pi(a|x_t) log pi(a|x_t), where x_t represents the given state at step t.
+
+ If we interpret autoregressive decoding steps as transition steps of an MDP, the entropy for the entire decoding
+ process can be defined as the sum of entropies for each decoding step:
+ H(pi) = sum_t H(pi(a|x_t))
+
+ However, if we consider autoregressive decoding steps as an algorithmic choice, the entropy for the entire decoding
+ process is defined as:
+ H(pi) = sum_a in A pi(a|x) log pi(a|x),
+ where x represents the given CO problem instance, and A is the set of all feasible solutions.
+
+ Due to the intractability of computing the entropy of the policy distribution over all feasible solutions,
+ we approximate it by computing the entropy over solutions generated by the policy itself. This approximation serves
+ as a proxy for the second definition of entropy, utilizing Monte Carlo sampling.
+
+ It is worth noting that our modeling of decoding steps and the implementation of the PPO algorithm align with recent
+ work in the Natural Language Processing (NLP) community, specifically RL with Human Feedback (RLHF)
+ (e.g., https://github.com/lucidrains/PaLM-rlhf-pytorch).
+
+
+ """
+
+ def __init__(
+ self,
+ env: RL4COEnvBase,
+ policy: nn.Module,
+ critic: nn.Module,
+ clip_range: float = 0.2, # epsilon of PPO
+ ppo_epochs: int = 2, # inner epoch, K
+ mini_batch_size: Union[int, float] = 0.25, # 0.25,
+ vf_lambda: float = 0.5, # lambda of Value function fitting
+ entropy_lambda: float = 0.0, # lambda of entropy bonus
+ normalize_adv: bool = False, # whether to normalize advantage
+ max_grad_norm: float = 0.5, # max gradient norm
+ **kwargs,
+ ):
+ super().__init__(env, policy, **kwargs)
+ self.automatic_optimization = False # PPO uses custom optimization routine
+ self.critic = critic
+
+ if isinstance(mini_batch_size, float) and (
+ mini_batch_size <= 0 or mini_batch_size > 1
+ ):
+ default_mini_batch_fraction = 0.25
+ log.warning(
+ f"mini_batch_size must be an integer or a float in the range (0, 1], got {mini_batch_size}. Setting mini_batch_size to {default_mini_batch_fraction}."
+ )
+ mini_batch_size = default_mini_batch_fraction
+
+ if isinstance(mini_batch_size, int) and (mini_batch_size <= 0):
+ default_mini_batch_size = 128
+ log.warning(
+ f"mini_batch_size must be an integer or a float in the range (0, 1], got {mini_batch_size}. Setting mini_batch_size to {default_mini_batch_size}."
+ )
+ mini_batch_size = default_mini_batch_size
+
+ self.ppo_cfg = {
+ "clip_range": clip_range,
+ "ppo_epochs": ppo_epochs,
+ "mini_batch_size": mini_batch_size,
+ "vf_lambda": vf_lambda,
+ "entropy_lambda": entropy_lambda,
+ "normalize_adv": normalize_adv,
+ "max_grad_norm": max_grad_norm,
+ }
+
+ def configure_optimizers(self):
+ parameters = list(self.policy.parameters()) + list(self.critic.parameters())
+ return super().configure_optimizers(parameters)
+
+ def on_train_epoch_end(self):
+ """
+ ToDo: Add support for other schedulers.
+ """
+
+ sch = self.lr_schedulers()
+
+ # If the selected scheduler is a MultiStepLR scheduler.
+ if isinstance(sch, torch.optim.lr_scheduler.MultiStepLR):
+ sch.step()
+
+ def shared_step(self, batch: Any, batch_idx: int, phase: str):
+ # Evaluate old actions, log probabilities, and rewards
+ with torch.no_grad():
+ td = self.env.reset(batch)
+ out = self.policy(td, self.env, phase=phase, return_actions=True)
+
+ if phase == "train":
+ batch_size = out["actions"].shape[0]
+
+ # infer batch size
+ if isinstance(self.ppo_cfg["mini_batch_size"], float):
+ mini_batch_size = int(batch_size * self.ppo_cfg["mini_batch_size"])
+ elif isinstance(self.ppo_cfg["mini_batch_size"], int):
+ mini_batch_size = self.ppo_cfg["mini_batch_size"]
+ else:
+ raise ValueError("mini_batch_size must be an integer or a float.")
+
+ if mini_batch_size > batch_size:
+ mini_batch_size = batch_size
+
+ # Todo: Add support for multi dimensional batches
+ td.set("log_prob", out["log_likelihood"])
+ td.set("reward", out["reward"])
+ td.set("action", out["actions"])
+
+ dataloader = DataLoader(
+ td, batch_size=mini_batch_size, shuffle=True, collate_fn=lambda x: x
+ )
+
+ for _ in range(self.ppo_cfg["ppo_epochs"]): # PPO inner epoch, K
+ for sub_td in dataloader:
+ ll, entropy = self.policy.evaluate_action(
+ sub_td, action=sub_td["action"]
+ )
+
+ # Compute the ratio of probabilities of new and old actions
+ ratio = torch.exp(ll.sum(dim=-1) - sub_td["log_prob"]).view(
+ -1, 1
+ ) # [batch, 1]
+
+ # Compute the advantage
+ value_pred = self.critic(sub_td) # [batch, 1]
+ adv = sub_td["reward"].view(-1, 1) - value_pred.detach()
+
+ # Normalize advantage
+ if self.ppo_cfg["normalize_adv"]:
+ adv = (adv - adv.mean()) / (adv.std() + 1e-8)
+
+ # Compute the surrogate loss
+ surrogate_loss = -torch.min(
+ ratio * adv,
+ torch.clamp(
+ ratio,
+ 1 - self.ppo_cfg["clip_range"],
+ 1 + self.ppo_cfg["clip_range"],
+ )
+ * adv,
+ ).mean()
+
+ # compute value function loss
+ value_loss = F.huber_loss(value_pred, sub_td["reward"].view(-1, 1))
+
+ # compute total loss
+ loss = (
+ surrogate_loss
+ + self.ppo_cfg["vf_lambda"] * value_loss
+ - self.ppo_cfg["entropy_lambda"] * entropy.mean()
+ )
+
+ # perform manual optimization following the Lightning routine
+ # https://lightning.ai/docs/pytorch/stable/common/optimization.html
+
+ opt = self.optimizers()
+ opt.zero_grad()
+ self.manual_backward(loss)
+ if self.ppo_cfg["max_grad_norm"] is not None:
+ self.clip_gradients(
+ opt,
+ gradient_clip_val=self.ppo_cfg["max_grad_norm"],
+ gradient_clip_algorithm="norm",
+ )
+ opt.step()
+
+ out.update(
+ {
+ "loss": loss,
+ "surrogate_loss": surrogate_loss,
+ "value_loss": value_loss,
+ "entropy": entropy.mean(),
+ }
+ )
+
+ metrics = self.log_metrics(out, phase)
+ return {"loss": out.get("loss", None), **metrics}
diff --git a/rl4co/models/rl/ppo/task.py b/rl4co/models/rl/ppo/task.py
deleted file mode 100644
index f1be1ea1..00000000
--- a/rl4co/models/rl/ppo/task.py
+++ /dev/null
@@ -1,39 +0,0 @@
-from typing import Any
-
-import torch.nn as nn
-
-from omegaconf import DictConfig
-
-from rl4co.envs.base import EnvBase
-from rl4co.tasks.rl4co import RL4COLitModule
-
-
-class PPOTask(RL4COLitModule):
- def __init__(self, cfg: DictConfig, env: EnvBase = None, model: nn.Module = None):
- super().__init__(cfg=cfg, env=env, model=model)
- self.automatic_optimization = False
-
- def shared_step(self, batch: Any, batch_idx: int, phase: str):
- td = self.env.reset(batch)
- out = self.model(
- td,
- phase,
- td.get("extra", None),
- optimizer=self.optimizers() if phase == "train" else None,
- )
-
- # Log metrics
- metrics = getattr(self, f"{phase}_metrics")
- metrics = {f"{phase}/{k}": v.mean() for k, v in out.items() if k in metrics}
-
- log_on_step = self.log_on_step if phase == "train" else False
- on_epoch = False if phase == "train" else True
- self.log_dict(
- metrics,
- on_step=log_on_step,
- on_epoch=on_epoch,
- prog_bar=True,
- sync_dist=True,
- add_dataloader_idx=False,
- )
- return {"loss": out.get("loss", None), **metrics}
diff --git a/rl4co/models/rl/reinforce/base.py b/rl4co/models/rl/reinforce/base.py
deleted file mode 100644
index 511b61fb..00000000
--- a/rl4co/models/rl/reinforce/base.py
+++ /dev/null
@@ -1,71 +0,0 @@
-from tensordict import TensorDict
-from torch import nn
-
-from rl4co.utils.lightning import get_lightning_device
-
-
-class REINFORCE(nn.Module):
- """Base model for REINFORCE-based models
-
- Args:
- env: TorchRL Environment
- policy: Policy (set up in model)
- baseline: REINFORCE Baseline (set up in model)
- """
-
- def __init__(self, env, policy=None, baseline=None):
- super(REINFORCE, self).__init__()
- self.env = env
-
- def forward(self, td: TensorDict, phase: str = "train", extra=None, **policy_kwargs):
- # Evaluate model, get costs and log probabilities
- out = self.policy(td, phase, **policy_kwargs)
-
- if phase == "train":
- # REINFORCE loss: we consider the rewards instead of costs to be consistent with the literature
- bl_val, bl_neg_loss = (
- self.baseline.eval(td, out["reward"]) if extra is None else (extra, 0)
- )
- advantage = out["reward"] - bl_val # advantage = reward - baseline
- reinforce_loss = -(advantage * out["log_likelihood"]).mean()
- loss = reinforce_loss - bl_neg_loss
-
- out.update(
- {
- "loss": loss,
- "reinforce_loss": reinforce_loss,
- "bl_loss": -bl_neg_loss,
- "bl_val": bl_val,
- }
- )
-
- return out
-
- def setup(self, lit_module):
- # Make baseline taking model itself and train_dataloader from model as input
- self.baseline.setup(
- self.policy,
- self.env,
- batch_size=lit_module.val_batch_size,
- device=get_lightning_device(lit_module),
- dataset_size=lit_module.cfg.data.val_size,
- )
-
- def on_train_epoch_end(self, lit_module):
- self.baseline.epoch_callback(
- self.policy,
- env=self.env,
- batch_size=lit_module.val_batch_size,
- device=get_lightning_device(lit_module),
- epoch=lit_module.current_epoch,
- dataset_size=lit_module.cfg.data.val_size,
- )
-
- def wrap_dataset(self, lit_module, dataset):
- """Wrap dataset for baseline evaluation"""
- return self.baseline.wrap_dataset(
- dataset,
- self.env,
- batch_size=lit_module.val_batch_size,
- device=get_lightning_device(lit_module),
- )
diff --git a/rl4co/models/rl/reinforce/baselines.py b/rl4co/models/rl/reinforce/baselines.py
index 4f116347..242823e1 100644
--- a/rl4co/models/rl/reinforce/baselines.py
+++ b/rl4co/models/rl/reinforce/baselines.py
@@ -10,6 +10,7 @@
from rl4co import utils
from rl4co.data.dataset import ExtraKeyDataset, tensordict_collate_fn
+from rl4co.models.rl.common.critic import CriticNetwork
log = utils.get_pylogger(__name__)
@@ -25,7 +26,7 @@ def wrap_dataset(self, dataset, *args, **kw):
"""Wrap dataset with baseline-specific functionality"""
return dataset
- def eval(self, td, reward):
+ def eval(self, td, reward, env=None):
"""Evaluate baseline"""
pass
@@ -43,23 +44,33 @@ def setup(self, *args, **kw):
class NoBaseline(REINFORCEBaseline):
- def eval(self, td, reward):
+ """No baseline: return 0 for baseline and neg_los"""
+
+ def eval(self, td, reward, env=None):
return 0, 0 # No baseline, no neg_los
class SharedBaseline(REINFORCEBaseline):
- def eval(self, td, reward, on_dim=1): # e.g. [batch, pomo, ...]
+ """Shared baseline: return mean of reward as baseline"""
+
+ def eval(self, td, reward, env=None, on_dim=1): # e.g. [batch, pomo, ...]
return reward.mean(dim=on_dim, keepdims=True), 0
class ExponentialBaseline(REINFORCEBaseline):
- def __init__(self, beta=0.8):
+ """Exponential baseline: return exponential moving average of reward as baseline
+
+ Args:
+ beta: Beta value for the exponential moving average
+ """
+
+ def __init__(self, beta=0.8, **kw):
super(REINFORCEBaseline, self).__init__()
self.beta = beta
self.v = None
- def eval(self, td, reward):
+ def eval(self, td, reward, env=None):
if self.v is None:
v = reward.mean()
else:
@@ -69,12 +80,15 @@ def eval(self, td, reward):
class WarmupBaseline(REINFORCEBaseline):
- def __init__(
- self,
- baseline,
- n_epochs=1,
- warmup_exp_beta=0.8,
- ):
+ """Warmup baseline: return convex combination of baseline and exponential baseline
+
+ Args:
+ baseline: Baseline to use after warmup
+ n_epochs: Number of epochs to warmup
+ warmup_exp_beta: Beta value for the exponential baseline during warmup
+ """
+
+ def __init__(self, baseline, n_epochs=1, warmup_exp_beta=0.8, **kw):
super(REINFORCEBaseline, self).__init__()
self.baseline = baseline
@@ -91,13 +105,13 @@ def wrap_dataset(self, dataset, *args, **kw):
def setup(self, *args, **kw):
self.baseline.setup(*args, **kw)
- def eval(self, td, reward):
+ def eval(self, td, reward, env=None):
if self.alpha == 1:
- return self.baseline.eval(td, reward)
+ return self.baseline.eval(td, reward, env)
if self.alpha == 0:
- return self.warmup_baseline.eval(td, reward)
- v_b, l_b = self.baseline.eval(td, reward)
- v_wb, l_wb = self.warmup_baseline.eval(td, reward)
+ return self.warmup_baseline.eval(td, reward, env)
+ v_b, l_b = self.baseline.eval(td, reward, env)
+ v_wb, l_wb = self.warmup_baseline.eval(td, reward, env)
# Return convex combination of baseline and of loss
return self.alpha * v_b + (1 - self.alpha) * v_wb, self.alpha * l_b + (
1 - self.alpha * l_wb
@@ -112,18 +126,36 @@ def epoch_callback(self, *args, **kw):
class CriticBaseline(REINFORCEBaseline):
- def __init__(self, critic, **unused_kw):
+ """Critic baseline: use critic network as baseline
+
+ Args:
+ critic: Critic network to use as baseline. If None, create a new critic network based on the environment
+ """
+
+ def __init__(self, critic: nn.Module = None, **unused_kw):
super(CriticBaseline, self).__init__()
self.critic = critic
- def eval(self, x, c):
+ def setup(self, model, env, **kwargs):
+ if self.critic is None:
+ log.info("Creating critic network for {}".format(env.name))
+ self.critic = CriticNetwork(env.name, **kwargs)
+
+ def eval(self, x, c, env=None):
v = self.critic(x)
# detach v since actor should not backprop through baseline, only for neg_loss
return v.detach(), -F.mse_loss(v, c.detach())
class RolloutBaseline(REINFORCEBaseline):
- def __init__(self, bl_alpha=0.05, progress_bar=False):
+ """Rollout baseline: use greedy rollout as baseline
+
+ Args:
+ bl_alpha: Alpha value for the baseline T-test
+ progress_bar: Whether to show progress bar for rollout
+ """
+
+ def __init__(self, bl_alpha=0.05, progress_bar=False, **kw):
super(RolloutBaseline, self).__init__()
self.bl_alpha = bl_alpha
self.progress_bar = progress_bar
@@ -134,6 +166,7 @@ def setup(self, *args, **kw):
def _update_model(
self, model, env, batch_size=64, device="cpu", dataset_size=None, dataset=None
):
+ """Update model and rollout baseline values"""
self.model = copy.deepcopy(model).to(device)
if dataset is None:
log.info("Creating evaluation dataset for rollout baseline")
@@ -145,10 +178,15 @@ def _update_model(
)
self.mean = self.bl_vals.mean()
- def eval(self, td, reward):
- # Use volatile mode for efficient inference (single batch so we do not use rollout function)
+ def eval(self, td, reward, env):
+ """Evaluate rollout baseline
+
+ Warning:
+ This is not differentiable and should only be used for evaluation.
+ Also, it is recommended to use the `rollout` method directly instead of this method.
+ """
with torch.no_grad():
- reward = self.model(td)["reward"]
+ reward = self.model(td, env)["reward"]
return reward, 0
def epoch_callback(
@@ -175,8 +213,9 @@ def epoch_callback(
log.info("Updating baseline")
self._update_model(model, env, batch_size, device, dataset_size)
- def rollout(self, model, env=None, batch_size=64, device="cpu", dataset=None):
+ def rollout(self, model, env, batch_size=64, device="cpu", dataset=None):
"""Rollout the model on the given dataset"""
+
# if dataset is None, use the dataset of the baseline
dataset = self.dataset if dataset is None else dataset
@@ -186,7 +225,7 @@ def rollout(self, model, env=None, batch_size=64, device="cpu", dataset=None):
def eval_model(batch):
with torch.no_grad():
batch = env.reset(batch.to(device))
- return model(batch, decode_type="greedy")["reward"].data.cpu()
+ return model(batch, env, decode_type="greedy")["reward"].data.cpu()
dl = DataLoader(dataset, batch_size=batch_size, collate_fn=tensordict_collate_fn)
@@ -196,7 +235,13 @@ def eval_model(batch):
return retval
def wrap_dataset(self, dataset, env, batch_size=64, device="cpu", **kw):
- """Wrap the dataset in a baseline dataset"""
+ """Wrap the dataset in a baseline dataset
+
+ Note:
+ This is an alternative to `eval` that does not require the model to be passed
+ at every call but just once. Values are added to the dataset. This also allows for
+ larger batch sizes since we evauate the model without gradients.
+ """
rewards = (
self.rollout(self.model, env, batch_size, device, dataset=dataset)
.detach()
@@ -217,3 +262,39 @@ def __setstate__(self, state):
"""Restore datasets after unpickling. Will be restored in setup"""
self.__dict__.update(state)
self.dataset = None
+
+
+REINFORCE_BASELINES_REGISTRY = {
+ "no": NoBaseline,
+ "shared": SharedBaseline,
+ "exponential": ExponentialBaseline,
+ "critic": CriticBaseline,
+ "rollout_only": RolloutBaseline,
+ "warmup": WarmupBaseline,
+}
+
+
+def get_reinforce_baseline(name, **kw):
+ """Get a REINFORCE baseline by name
+ The rollout baseline default to warmup baseline with one epoch of
+ exponential baseline and the greedy rollout
+ """
+ if name == "warmup":
+ inner_baseline = kw.get("baseline", "rollout")
+ if not isinstance(inner_baseline, REINFORCEBaseline):
+ inner_baseline = get_reinforce_baseline(inner_baseline, **kw)
+ return WarmupBaseline(inner_baseline, **kw)
+ elif name == "rollout":
+ warmup_epochs = kw.get("n_epochs", 1)
+ warmup_exp_beta = kw.get("exp_beta", 0.8)
+ bl_alpha = kw.get("bl_alpha", 0.05)
+ return WarmupBaseline(
+ RolloutBaseline(bl_alpha=bl_alpha), warmup_epochs, warmup_exp_beta
+ )
+
+ baseline_cls = REINFORCE_BASELINES_REGISTRY.get(name, None)
+ if baseline_cls is None:
+ raise ValueError(
+ f"Unknown baseline {baseline_cls}. Available baselines: {REINFORCE_BASELINES_REGISTRY.keys()}"
+ )
+ return baseline_cls(**kw)
diff --git a/rl4co/models/rl/reinforce/critic.py b/rl4co/models/rl/reinforce/critic.py
deleted file mode 100644
index a2a59897..00000000
--- a/rl4co/models/rl/reinforce/critic.py
+++ /dev/null
@@ -1,60 +0,0 @@
-from torch import nn
-
-from rl4co.models.nn.graph.gat import GraphAttentionEncoder
-
-
-class CriticNetwork(nn.Module):
- """We make the critic network compatible with any problem by using encoder for any environment
- Refactored from Kool et al. (2019) which only worked for TSP
- Reference: https://github.com/wouterkool/attention-learn-to-route
-
- Args:
- env (EnvBase): environment
- encoder (nn.Module, optional): encoder. Defaults to None. Initialized with GraphAttentionEncoder.
- embedding_dim (int, optional): embedding dimension. Defaults to 128.
- hidden_dim (int, optional): hidden dimension. Defaults to 512.
- n_layers (int, optional): number of encoder layers. Defaults to 3.
- num_heads (int, optional): number of attention heads. Defaults to 8.
- encoder_normalization (str, optional): normalization. Defaults to "batch".
- """
-
- def __init__(
- self,
- env=None,
- encoder=None,
- embedding_dim=128,
- hidden_dim=512,
- num_layers=3,
- num_heads=8,
- encoder_normalization="batch",
- use_native_sdpa=False,
- force_flash_attn=False,
- ):
- super(CriticNetwork, self).__init__()
-
- self.encoder = (
- GraphAttentionEncoder(
- num_heads=num_heads,
- embedding_dim=embedding_dim,
- num_layers=num_layers,
- env=env,
- normalization=encoder_normalization,
- feed_forward_hidden=hidden_dim,
- use_native_sdpa=use_native_sdpa,
- force_flash_attn=force_flash_attn,
- )
- if encoder is None
- else encoder
- )
-
- self.value_head = nn.Sequential(
- nn.Linear(embedding_dim, hidden_dim), nn.ReLU(), nn.Linear(hidden_dim, 1)
- )
-
- def forward(self, td):
- graph_embeddings, _ = self.encoder(td)
- # graph_embedings: [batch_size, graph_size, input_dim]
- # return self.value_head(graph_embeddings.mean(1))
-
- # L2D style
- return self.value_head(graph_embeddings).mean(1)
diff --git a/rl4co/models/rl/reinforce/reinforce.py b/rl4co/models/rl/reinforce/reinforce.py
new file mode 100644
index 00000000..0b3e3f3a
--- /dev/null
+++ b/rl4co/models/rl/reinforce/reinforce.py
@@ -0,0 +1,156 @@
+from typing import IO, Any, Optional, Union, cast
+
+import torch
+import torch.nn as nn
+
+from lightning.fabric.utilities.types import _MAP_LOCATION_TYPE, _PATH
+from lightning.pytorch.core.saving import _load_from_checkpoint
+from typing_extensions import Self
+
+from rl4co.envs.common.base import RL4COEnvBase
+from rl4co.models.rl.common.base import RL4COLitModule
+from rl4co.models.rl.reinforce.baselines import REINFORCEBaseline, get_reinforce_baseline
+from rl4co.utils.lightning import get_lightning_device
+from rl4co.utils.pylogger import get_pylogger
+
+log = get_pylogger(__name__)
+
+
+class REINFORCE(RL4COLitModule):
+ """REINFORCE algorithm, also known as policy gradients.
+ See superclass `RL4COLitModule` for more details.
+
+ Args:
+ env: Environment to use for the algorithm
+ policy: Policy to use for the algorithm
+ baseline: REINFORCE baseline
+ baseline_kwargs: Keyword arguments for baseline. Ignored if baseline is not a string
+ **kwargs: Keyword arguments passed to the superclass
+ """
+
+ def __init__(
+ self,
+ env: RL4COEnvBase,
+ policy: nn.Module,
+ baseline: Union[REINFORCEBaseline, str] = "rollout",
+ baseline_kwargs={},
+ **kwargs,
+ ):
+ super().__init__(env, policy, **kwargs)
+
+ self.save_hyperparameters(logger=False)
+
+ if isinstance(baseline, str):
+ baseline = get_reinforce_baseline(baseline, **baseline_kwargs)
+ else:
+ if baseline_kwargs != {}:
+ log.warning("baseline_kwargs is ignored when baseline is not a string")
+ self.baseline = baseline
+
+ def shared_step(self, batch: Any, batch_idx: int, phase: str):
+ td = self.env.reset(batch)
+ # Perform forward pass (i.e., constructing solution and computing log-likelihoods)
+ out = self.policy(td, self.env, phase=phase)
+
+ # Compute loss
+ if phase == "train":
+ # Extra: this is used for additional loss terms, e.g., REINFORCE baseline
+ extra = td.get("extra", None)
+
+ bl_val, bl_neg_loss = (
+ self.baseline.eval(td, out["reward"], self.env)
+ if extra is None
+ else (extra, 0)
+ )
+
+ advantage = out["reward"] - bl_val # advantage = reward - baseline
+ reinforce_loss = -(advantage * out["log_likelihood"]).mean()
+ loss = reinforce_loss - bl_neg_loss
+ out.update(
+ {
+ "loss": loss,
+ "reinforce_loss": reinforce_loss,
+ "bl_loss": -bl_neg_loss,
+ "bl_val": bl_val,
+ }
+ )
+
+ metrics = self.log_metrics(out, phase)
+ return {"loss": out.get("loss", None), **metrics}
+
+ def post_setup_hook(self, stage="fit"):
+ # Make baseline taking model itself and train_dataloader from model as input
+ self.baseline.setup(
+ self.policy,
+ self.env,
+ batch_size=self.val_batch_size,
+ device=get_lightning_device(self),
+ dataset_size=self.data_cfg["val_data_size"],
+ )
+
+ def on_train_epoch_end(self):
+ """Callback for end of training epoch: we evaluate the baseline"""
+ self.baseline.epoch_callback(
+ self.policy,
+ env=self.env,
+ batch_size=self.val_batch_size,
+ device=get_lightning_device(self),
+ epoch=self.current_epoch,
+ dataset_size=self.data_cfg["val_data_size"],
+ )
+ # Need to call super() for the dataset to be reset
+ super().on_train_epoch_end()
+
+ def wrap_dataset(self, dataset):
+ """Wrap dataset from baseline evaluation. Used in greedy rollout baseline"""
+ return self.baseline.wrap_dataset(
+ dataset,
+ self.env,
+ batch_size=self.val_batch_size,
+ device=get_lightning_device(self),
+ )
+
+ @classmethod
+ def load_from_checkpoint(
+ cls,
+ checkpoint_path: Union[_PATH, IO],
+ map_location: _MAP_LOCATION_TYPE = None,
+ hparams_file: Optional[_PATH] = None,
+ strict: bool = False,
+ load_baseline: bool = True,
+ **kwargs: Any,
+ ) -> Self:
+ """Load model from checkpoint/
+
+ Note:
+ This is a modified version of `load_from_checkpoint` from `pytorch_lightning.core.saving`.
+ It deals with matching keys for the baseline by first running setup
+ """
+
+ if strict:
+ log.warning("Setting strict=False for loading model from checkpoint.")
+ strict = False
+
+ # Do not use strict
+ loaded = _load_from_checkpoint(
+ cls,
+ checkpoint_path,
+ map_location,
+ hparams_file,
+ strict,
+ **kwargs,
+ )
+
+ # Load baseline state dict
+ if load_baseline:
+ # setup baseline first
+ loaded.setup()
+ loaded.post_setup_hook()
+ # load baseline state dict
+ state_dict = torch.load(checkpoint_path)["state_dict"]
+ # get only baseline parameters
+ state_dict = {k: v for k, v in state_dict.items() if "baseline" in k}
+ state_dict = {k.replace("baseline.", "", 1): v for k, v in state_dict.items()}
+ loaded.baseline.load_state_dict(state_dict)
+
+ return cast(Self, loaded)
diff --git a/rl4co/models/zoo/am/decoder.py b/rl4co/models/zoo/am/decoder.py
deleted file mode 100644
index 44b97b75..00000000
--- a/rl4co/models/zoo/am/decoder.py
+++ /dev/null
@@ -1,176 +0,0 @@
-from dataclasses import dataclass
-
-import torch
-import torch.nn as nn
-
-from einops import rearrange
-
-from rl4co.models.nn.attention import LogitAttention
-from rl4co.models.nn.env_embeddings import env_context_embedding, env_dynamic_embedding
-from rl4co.models.nn.utils import decode_probs
-from rl4co.utils.ops import batchify, select_start_nodes, unbatchify
-
-
-@dataclass
-class PrecomputedCache:
- node_embeddings: torch.Tensor
- graph_context: torch.Tensor
- glimpse_key: torch.Tensor
- glimpse_val: torch.Tensor
- logit_key: torch.Tensor
-
-
-class Decoder(nn.Module):
- """Auto-regressive decoder for the Attention Model for constructing solutions
- We additionally include support for greedy multi-starts during inference (as in POMO)
-
- Args:
- env: Environment to solve
- embedding_dim: Dimension of the embeddings
- num_heads: Number of heads for the attention
- """
-
- def __init__(self, env, embedding_dim, num_heads, **logit_attn_kwargs):
- super(Decoder, self).__init__()
-
- self.env = env
- self.embedding_dim = embedding_dim
- self.num_heads = num_heads
-
- assert embedding_dim % num_heads == 0
-
- self.context = env_context_embedding(
- self.env.name, {"embedding_dim": embedding_dim}
- )
- self.dynamic_embedding = env_dynamic_embedding(
- self.env.name, {"embedding_dim": embedding_dim}
- )
-
- # For each node we compute (glimpse key, glimpse value, logit key) so 3 * embedding_dim
- self.project_node_embeddings = nn.Linear(
- embedding_dim, 3 * embedding_dim, bias=False
- )
- self.project_fixed_context = nn.Linear(embedding_dim, embedding_dim, bias=False)
-
- # MHA
- self.logit_attention = LogitAttention(
- embedding_dim, num_heads, **logit_attn_kwargs
- )
-
- def forward(
- self,
- td,
- embeddings,
- decode_type="sampling",
- softmax_temp=None,
- num_starts=None,
- calc_reward=True,
- ):
- # Greedy multi-start decoding if num_starts > 1
- num_starts = 0 if num_starts is None else num_starts
- assert not (
- "multistart" in decode_type and num_starts <= 1
- ), "Multi-start decoding requires `num_starts` > 1"
-
- # Compute keys, values for the glimpse and keys for the logits once as they can be reused in every step
- cached_embeds = self._precompute(embeddings, num_starts=num_starts)
-
- # Collect outputs
- outputs = []
- actions = []
-
- # Multi-start decoding: first action is chosen by ad-hoc node selection
- if num_starts > 1 or "multistart" in decode_type:
- action = select_start_nodes(td, num_starts, self.env)
-
- # Expand td to batch_size * num_starts
- td = batchify(td, num_starts)
-
- td.set("action", action)
- td = self.env.step(td)["next"]
- log_p = torch.zeros_like(
- td["action_mask"], device=td.device
- ) # first log_p is 0, so p = log_p.exp() = 1
-
- outputs.append(log_p)
- actions.append(action)
-
- # Main decoding
- while not td["done"].all():
- log_p, mask = self._get_log_p(cached_embeds, td, softmax_temp, num_starts)
-
- # Select the indices of the next nodes in the sequences, result (batch_size) long
- action = decode_probs(log_p.exp(), mask, decode_type=decode_type)
-
- td.set("action", action)
- td = self.env.step(td)["next"]
-
- # Collect output of step
- outputs.append(log_p)
- actions.append(action)
-
- outputs, actions = torch.stack(outputs, 1), torch.stack(actions, 1)
- if calc_reward:
- td.set("reward", self.env.get_reward(td, actions))
-
- return outputs, actions, td
-
- def _precompute(self, embeddings, num_starts=0):
- # The projection of the node embeddings for the attention is calculated once up front
- (
- glimpse_key_fixed,
- glimpse_val_fixed,
- logit_key_fixed,
- ) = self.project_node_embeddings(embeddings).chunk(3, dim=-1)
-
- # Batchify and unbatchify have no effect if num_starts = 0.
- # Otherwise, we need to batchify the embeddings to modify key value (i.e. for the lenght of queries)
- graph_context = unbatchify(
- batchify(self.project_fixed_context(embeddings.mean(1)), num_starts),
- num_starts,
- )
-
- # Organize in a dataclass for easy access
- cached_embeds = PrecomputedCache(
- node_embeddings=embeddings,
- graph_context=graph_context,
- glimpse_key=glimpse_key_fixed,
- glimpse_val=glimpse_val_fixed,
- logit_key=logit_key_fixed,
- )
-
- return cached_embeds
-
- def _get_log_p(self, cached, td, softmax_temp=None, num_starts=0):
- # Compute the query based on the context (computes automatically the first and last node context)
-
- # Unbatchify to [batch_size, num_starts, ...]. Has no effect if num_starts = 0
- td_unbatch = unbatchify(td, num_starts)
-
- step_context = self.context(cached.node_embeddings, td_unbatch)
- glimpse_q = step_context + cached.graph_context
- glimpse_q = glimpse_q.unsqueeze(1) if glimpse_q.ndim == 2 else glimpse_q
-
- # Compute keys and values for the nodes
- (
- glimpse_key_dynamic,
- glimpse_val_dynamic,
- logit_key_dynamic,
- ) = self.dynamic_embedding(td_unbatch)
- glimpse_k = cached.glimpse_key + glimpse_key_dynamic
- glimpse_v = cached.glimpse_val + glimpse_val_dynamic
- logit_k = cached.logit_key + logit_key_dynamic
-
- # Get the mask
- mask = ~td_unbatch["action_mask"]
-
- # Compute logits
- log_p = self.logit_attention(
- glimpse_q, glimpse_k, glimpse_v, logit_k, mask, softmax_temp
- )
-
- # Now we need to reshape the logits and log_p to [batch_size*num_starts, num_nodes]
- # Note that rearranging order is important here
- log_p = rearrange(log_p, "b s l -> (s b) l") if num_starts > 1 else log_p
- mask = rearrange(mask, "b s l -> (s b) l") if num_starts > 1 else mask
- return log_p, mask
diff --git a/rl4co/models/zoo/am/model.py b/rl4co/models/zoo/am/model.py
index d1f9d848..685e7206 100644
--- a/rl4co/models/zoo/am/model.py
+++ b/rl4co/models/zoo/am/model.py
@@ -1,25 +1,33 @@
-from rl4co.models.rl.reinforce.base import REINFORCE
-from rl4co.models.rl.reinforce.baselines import RolloutBaseline, WarmupBaseline
+from typing import Union
+
+from rl4co.envs.common.base import RL4COEnvBase
+from rl4co.models.rl import REINFORCE
+from rl4co.models.rl.reinforce.baselines import REINFORCEBaseline
from rl4co.models.zoo.am.policy import AttentionModelPolicy
class AttentionModel(REINFORCE):
- """
- Attention Model for neural combinatorial optimization based on REINFORCE
- Based on Wouter Kool et al. (2018) https://arxiv.org/abs/1803.08475
- Refactored from reference implementation: https://github.com/wouterkool/attention-learn-to-route
+ """Attention Model based on REINFORCE.
Args:
- env: TorchRL Environment
- policy: Policy
- baseline: REINFORCE Baseline
+ env: Environment to use for the algorithm
+ policy: Policy to use for the algorithm
+ baseline: REINFORCE baseline. Defaults to rollout (1 epoch of exponential, then greedy rollout baseline)
+ policy_kwargs: Keyword arguments for policy
+ baseline_kwargs: Keyword arguments for baseline
+ **kwargs: Keyword arguments passed to the superclass
"""
- def __init__(self, env, policy=None, baseline=None, **policy_kwargs):
- super(AttentionModel, self).__init__(env, policy, baseline)
- self.policy = (
- AttentionModelPolicy(self.env, **policy_kwargs) if policy is None else policy
- )
- self.baseline = (
- WarmupBaseline(RolloutBaseline()) if baseline is None else baseline
- )
+ def __init__(
+ self,
+ env: RL4COEnvBase,
+ policy: AttentionModelPolicy = None,
+ baseline: Union[REINFORCEBaseline, str] = "rollout",
+ policy_kwargs={},
+ baseline_kwargs={},
+ **kwargs,
+ ):
+ if policy is None:
+ policy = AttentionModelPolicy(env.name, **policy_kwargs)
+
+ super().__init__(env, policy, baseline, baseline_kwargs, **kwargs)
diff --git a/rl4co/models/zoo/am/policy.py b/rl4co/models/zoo/am/policy.py
index 6af4e9f6..4d917eb7 100644
--- a/rl4co/models/zoo/am/policy.py
+++ b/rl4co/models/zoo/am/policy.py
@@ -1,101 +1,34 @@
-import torch.nn as nn
+from rl4co.models.zoo.common.autoregressive import AutoregressivePolicy
-from tensordict.tensordict import TensorDict
-from torchrl.envs import EnvBase
-from rl4co.models.nn.graph.gat import GraphAttentionEncoder
-from rl4co.models.nn.utils import get_log_likelihood
-from rl4co.models.zoo.am.decoder import Decoder
-from rl4co.utils.pylogger import get_pylogger
+class AttentionModelPolicy(AutoregressivePolicy):
+ """Attention Model Policy based on Kool et al. (2019): https://arxiv.org/abs/1803.08475.
+ We re-declare the most important arguments here for convenience as in the paper.
+ See `AutoregressivePolicy` superclass for more details.
-log = get_pylogger(__name__)
+ Args:
+ env_name: Name of the environment used to initialize embeddings
+ embedding_dim: Dimension of the node embeddings
+ num_encoder_layers: Number of layers in the encoder
+ num_heads: Number of heads in the attention layers
+ normalization: Normalization type in the attention layers
+ **kwargs: keyword arguments passed to the `AutoregressivePolicy`
+ """
-
-class AttentionModelPolicy(nn.Module):
def __init__(
self,
- env: EnvBase,
- encoder: nn.Module = None,
- decoder: nn.Module = None,
+ env_name: str,
embedding_dim: int = 128,
num_encoder_layers: int = 3,
num_heads: int = 8,
normalization: str = "batch",
- mask_inner: bool = True,
- use_native_sdpa: bool = False,
- force_flash_attn: bool = False,
- train_decode_type: str = "sampling",
- val_decode_type: str = "greedy",
- test_decode_type: str = "greedy",
- **unused_kw,
+ **kwargs,
):
- super(AttentionModelPolicy, self).__init__()
- if len(unused_kw) > 0:
- log.warn(f"Unused kwargs: {unused_kw}")
-
- self.env = env
-
- self.encoder = (
- GraphAttentionEncoder(
- num_heads=num_heads,
- embedding_dim=embedding_dim,
- num_layers=num_encoder_layers,
- env=self.env,
- normalization=normalization,
- use_native_sdpa=use_native_sdpa,
- force_flash_attn=force_flash_attn,
- )
- if encoder is None
- else encoder
+ super(AttentionModelPolicy, self).__init__(
+ env_name=env_name,
+ embedding_dim=embedding_dim,
+ num_encoder_layers=num_encoder_layers,
+ num_heads=num_heads,
+ normalization=normalization,
+ **kwargs,
)
-
- self.decoder = (
- Decoder(
- env,
- embedding_dim,
- num_heads,
- mask_inner=mask_inner,
- force_flash_attn=force_flash_attn,
- )
- if decoder is None
- else decoder
- )
-
- self.train_decode_type = train_decode_type
- self.val_decode_type = val_decode_type
- self.test_decode_type = test_decode_type
-
- def forward(
- self,
- td: TensorDict,
- phase: str = "train",
- return_actions: bool = False,
- return_entropy: bool = False,
- **decoder_kwargs,
- ) -> dict:
- # Encode inputs
- embeddings, _ = self.encoder(td)
-
- # Get decode type depending on phase
- if decoder_kwargs.get("decode_type", None) is None:
- decoder_kwargs["decode_type"] = getattr(self, f"{phase}_decode_type")
-
- # Main rollout: autoregressive decoding
- log_p, actions, td_out = self.decoder(td, embeddings, **decoder_kwargs)
-
- # Log likelihood is calculated within the model since returning it per action does not work well with
- ll = get_log_likelihood(log_p, actions, td_out.get("mask", None))
-
- out = {
- "reward": td_out["reward"],
- "log_likelihood": ll,
- }
- if return_actions:
- out["actions"] = actions
-
- if return_entropy:
- entropy = -(log_p.exp() * log_p).nansum(dim=1) # [batch, decoder steps]
- entropy = entropy.sum(dim=1) # [batch]
- out["entropy"] = entropy
-
- return out
diff --git a/rl4co/models/zoo/amppo/decoder.py b/rl4co/models/zoo/amppo/decoder.py
deleted file mode 100644
index 37376132..00000000
--- a/rl4co/models/zoo/amppo/decoder.py
+++ /dev/null
@@ -1,60 +0,0 @@
-import torch
-
-from rl4co.models.nn.utils import decode_probs
-from rl4co.models.zoo.am.decoder import Decoder
-
-
-class PPODecoder(Decoder):
-
- """
- A slightly modified AM decoder to support PPO training.
- """
-
- def forward(
- self,
- td,
- embeddings,
- decode_type="sampling",
- softmax_temp=None,
- calc_reward: bool = True,
- given_actions: torch.Tensor = None, # [batch_size, graph_size]
- ):
- outputs = []
- actions = []
-
- # Compute keys, values for the glimpse and keys for the logits once as they can be reused in every step
- cached_embeds = self._precompute(embeddings)
-
- decode_step = 0
- while not td["done"].all():
- log_p, mask = self._get_log_p(cached_embeds, td, softmax_temp)
-
- # Select the indices of the next nodes in the sequences, result (batch_size) long
-
- if given_actions is not None:
- action = given_actions[..., decode_step]
- else:
- action = decode_probs(log_p.exp(), mask, decode_type=decode_type)
-
- td.set("action", action)
- td = self.env.step(td)["next"]
-
- outputs.append(log_p)
- actions.append(action)
-
- decode_step += 1
-
- if given_actions is not None:
- if len(outputs) != given_actions.shape[1]:
- # print(given_actions.shape, decode_step)
- # print(td["done"].all())
- raise ValueError(
- f"Given actions have {given_actions.shape[1]} steps, but we decoded {decode_step} steps."
- )
-
- # output: logprobs [batch, problem size, decoding steps]
- outputs, actions = torch.stack(outputs, 1), torch.stack(actions, 1)
- if calc_reward:
- td.set("reward", self.env.get_reward(td, actions))
-
- return outputs, actions, td
diff --git a/rl4co/models/zoo/amppo/model.py b/rl4co/models/zoo/amppo/model.py
deleted file mode 100644
index 3696fcfd..00000000
--- a/rl4co/models/zoo/amppo/model.py
+++ /dev/null
@@ -1,19 +0,0 @@
-from rl4co.models.rl.ppo.model import PPO
-from rl4co.models.rl.reinforce.critic import CriticNetwork
-from rl4co.models.zoo.amppo.policy import PPOAttentionModelPolicy
-
-
-class AttentionModel(PPO):
- def __init__(self, env, policy=None, critic=None, **policy_kwargs):
- policy = (
- PPOAttentionModelPolicy(env=env, **policy_kwargs)
- if policy is None
- else policy
- )
- critic = CriticNetwork(env=env) if critic is None else critic
- super(AttentionModel, self).__init__(
- env=env,
- policy=policy,
- critic=critic,
- **policy_kwargs,
- )
diff --git a/rl4co/models/zoo/amppo/policy.py b/rl4co/models/zoo/amppo/policy.py
deleted file mode 100644
index 89837919..00000000
--- a/rl4co/models/zoo/amppo/policy.py
+++ /dev/null
@@ -1,119 +0,0 @@
-
-import torch
-import torch.nn as nn
-
-from tensordict.tensordict import TensorDict
-from torchrl.envs import EnvBase
-
-from rl4co.models.nn.graph.gat import GraphAttentionEncoder
-from rl4co.models.nn.utils import get_log_likelihood
-from rl4co.models.zoo.amppo.decoder import PPODecoder
-from rl4co.utils.pylogger import get_pylogger
-
-log = get_pylogger(__name__)
-
-
-class PPOAttentionModelPolicy(nn.Module):
- def __init__(
- self,
- env: EnvBase,
- encoder: nn.Module = None,
- decoder: nn.Module = None,
- embedding_dim: int = 128,
- num_encoder_layers: int = 3,
- num_heads: int = 8,
- normalization: str = "batch",
- mask_inner: bool = True,
- use_native_sdpa: bool = False,
- force_flash_attn: bool = False,
- train_decode_type: str = "sampling",
- val_decode_type: str = "greedy",
- test_decode_type: str = "greedy",
- **unused_kw,
- ):
- super(PPOAttentionModelPolicy, self).__init__()
- if len(unused_kw) > 0:
- log.warn(f"Unused kwargs: {unused_kw}")
-
- self.env = env
-
- self.encoder = (
- GraphAttentionEncoder(
- num_heads=num_heads,
- embedding_dim=embedding_dim,
- num_layers=num_encoder_layers,
- env=self.env,
- normalization=normalization,
- use_native_sdpa=use_native_sdpa,
- force_flash_attn=force_flash_attn,
- )
- if encoder is None
- else encoder
- )
-
- self.decoder = (
- PPODecoder(
- env,
- embedding_dim,
- num_heads,
- mask_inner=mask_inner,
- force_flash_attn=force_flash_attn,
- )
- if decoder is None
- else decoder
- )
-
- self.train_decode_type = train_decode_type
- self.val_decode_type = val_decode_type
- self.test_decode_type = test_decode_type
-
- def forward(
- self,
- td: TensorDict,
- phase: str = "train",
- return_action: bool = False,
- return_entropy: bool = False,
- given_actions: torch.Tensor = None,
- **decoder_kwargs,
- ) -> dict:
- # Encode inputs
- embeddings, _ = self.encoder(td)
-
- # Get decode type depending on phase
- if decoder_kwargs.get("decode_type", None) is None:
- decoder_kwargs["decode_type"] = getattr(self, f"{phase}_decode_type")
-
- # Main rollout: autoregressive decoding
- log_p, actions, td_out = self.decoder(
- td, embeddings, given_actions=given_actions, **decoder_kwargs
- )
-
- # Log likelihood is calculated within the model since returning it per action does not work well with
- ll = get_log_likelihood(
- log_p, actions, td_out.get("mask", None), return_sum=False
- )
-
- out = {
- "reward": td_out["reward"],
- "log_likelihood": ll, # [batch, decoder steps]
- }
-
- if given_actions is not None:
- selected_log_p = get_log_likelihood(
- log_p, given_actions, td_out.get("mask", None), return_sum=False
- )
- assert selected_log_p.isfinite().all(), "Log p is not finite"
- out["selected_log_p"] = selected_log_p # [batch, decoder steps]
-
- if return_action:
- out["actions"] = actions # [batch, decoder steps]
-
- if return_entropy:
- # log_p [batch, decoder steps, num nodes]
- log_p = torch.nan_to_num(log_p, nan=0.0)
- entropy = -(log_p.exp() * log_p).sum(dim=-1) # [batch, decoder steps]
- entropy = entropy.sum(dim=1) # [batch] -- sum over decoding steps
- assert entropy.isfinite().all(), "Entropy is not finite"
- out["entropy"] = entropy
-
- return out
diff --git a/rl4co/models/zoo/common/autoregressive/__init__.py b/rl4co/models/zoo/common/autoregressive/__init__.py
new file mode 100644
index 00000000..3c5afd87
--- /dev/null
+++ b/rl4co/models/zoo/common/autoregressive/__init__.py
@@ -0,0 +1,3 @@
+from rl4co.models.zoo.common.autoregressive.decoder import AutoregressiveDecoder
+from rl4co.models.zoo.common.autoregressive.encoder import GraphAttentionEncoder
+from rl4co.models.zoo.common.autoregressive.policy import AutoregressivePolicy
diff --git a/rl4co/models/zoo/common/autoregressive/decoder.py b/rl4co/models/zoo/common/autoregressive/decoder.py
new file mode 100644
index 00000000..34744750
--- /dev/null
+++ b/rl4co/models/zoo/common/autoregressive/decoder.py
@@ -0,0 +1,253 @@
+from dataclasses import dataclass
+from typing import Tuple, Union
+
+import torch
+import torch.nn as nn
+
+from einops import rearrange
+from tensordict import TensorDict
+from torch import Tensor
+
+from rl4co.envs import RL4COEnvBase, get_env
+from rl4co.models.nn.attention import LogitAttention
+from rl4co.models.nn.env_embeddings import env_context_embedding, env_dynamic_embedding
+from rl4co.models.nn.utils import decode_probs
+from rl4co.utils.ops import batchify, select_start_nodes, unbatchify
+
+
+@dataclass
+class PrecomputedCache:
+ node_embeddings: Tensor
+ graph_context: Union[Tensor, float]
+ glimpse_key: Tensor
+ glimpse_val: Tensor
+ logit_key: Tensor
+
+
+class AutoregressiveDecoder(nn.Module):
+ """Auto-regressive decoder for constructing solutions for combinatorial optimization problems.
+ Given the environment state and the embeddings, compute the logits and sample actions autoregressively until
+ all the environments in the batch have reached a terminal state.
+ We additionally include support for multi-starts as it is more efficient to do so in the decoder as we can
+ natively perform the attention computation.
+
+ Note:
+ There are major differences between this decoding and most RL problems. The most important one is
+ that reward is not defined for partial solutions, hence we have to wait for the environment to reach a terminal
+ state before we can compute the reward with `env.get_reward()`.
+
+ Warning:
+ We suppose environments in the `done` state are still available for sampling. This is because in NCO we need to
+ wait for all the environments to reach a terminal state before we can stop the decoding process. This is in
+ contrast with the TorchRL framework (at the moment) where the `env.rollout` function automatically resets.
+ You may follow tighter integration with TorchRL here: https://github.com/kaist-silab/rl4co/issues/72.
+
+ Args:
+ env_name: environment name to solve
+ embedding_dim: Dimension of the embeddings
+ num_heads: Number of heads for the attention
+ use_graph_context: Whether to use the initial graph context to modify the query
+ """
+
+ def __init__(
+ self,
+ env_name: str,
+ embedding_dim: int,
+ num_heads: int,
+ use_graph_context: bool = True,
+ **logit_attn_kwargs,
+ ):
+ super().__init__()
+
+ self.env_name = env_name
+ self.embedding_dim = embedding_dim
+ self.num_heads = num_heads
+
+ assert embedding_dim % num_heads == 0
+
+ self.context_embedding = env_context_embedding(
+ self.env_name, {"embedding_dim": embedding_dim}
+ )
+ self.dynamic_embedding = env_dynamic_embedding(
+ self.env_name, {"embedding_dim": embedding_dim}
+ )
+ self.use_graph_context = use_graph_context
+
+ # For each node we compute (glimpse key, glimpse value, logit key) so 3 * embedding_dim
+ self.project_node_embeddings = nn.Linear(
+ embedding_dim, 3 * embedding_dim, bias=False
+ )
+ self.project_fixed_context = nn.Linear(embedding_dim, embedding_dim, bias=False)
+
+ # MHA
+ self.logit_attention = LogitAttention(
+ embedding_dim, num_heads, **logit_attn_kwargs
+ )
+
+ def forward(
+ self,
+ td: TensorDict,
+ embeddings: Tensor,
+ env: Union[str, RL4COEnvBase] = None,
+ decode_type: str = "sampling",
+ num_starts: int = None,
+ softmax_temp: float = None,
+ calc_reward: bool = True,
+ ) -> Tuple[Tensor, Tensor, TensorDict]:
+ """Forward pass of the decoder
+ Given the environment state and the pre-computed embeddings, compute the logits and sample actions
+
+ Args:
+ td: Input TensorDict containing the environment state
+ embeddings: Precomputed embeddings for the nodes
+ env: Environment to use for decoding. If None, the environment is instantiated from `env_name`. Note that
+ it is more efficient to pass an already instantiated environment each time for fine-grained control
+ decode_type: Type of decoding to use. Can be one of:
+ - "sampling": sample from the logits
+ - "greedy": take the argmax of the logits
+ - "multistart_sampling": sample as sampling, but with multi-start decoding
+ - "multistart_greedy": sample as greedy, but with multi-start decoding
+ num_starts: Number of multi-starts to use. If None, no multi-start decoding is used
+ softmax_temp: Temperature for the softmax. If None, default softmax is used from the `LogitAttention` module
+ calc_reward: Whether to calculate the reward for the decoded sequence
+
+ Returns:
+ outputs: Tensor of shape (batch_size, seq_len, num_nodes) containing the logits
+ actions: Tensor of shape (batch_size, seq_len) containing the sampled actions
+ td: TensorDict containing the environment state after decoding
+ """
+
+ # Greedy multi-start decoding if num_starts > 1
+ num_starts = 0 if num_starts is None else num_starts
+ assert not (
+ "multistart" in decode_type and num_starts <= 1
+ ), "Multi-start decoding requires `num_starts` > 1"
+
+ # Compute keys, values for the glimpse and keys for the logits once as they can be reused in every step
+ cached_embeds = self._precompute_cache(embeddings, num_starts=num_starts)
+
+ # Collect outputs
+ outputs = []
+ actions = []
+
+ # Instantiate environment if needed
+ if isinstance(env, str):
+ env_name = self.env_name if env is None else env
+ env = get_env(env_name)
+
+ # Multi-start decoding: first action is chosen by ad-hoc node selection
+ if num_starts > 1 or "multistart" in decode_type:
+ action = select_start_nodes(td, num_starts, env)
+
+ # Expand td to batch_size * num_starts
+ td = batchify(td, num_starts)
+
+ td.set("action", action)
+ td = env.step(td)["next"]
+ log_p = torch.zeros_like(
+ td["action_mask"], device=td.device
+ ) # first log_p is 0, so p = log_p.exp() = 1
+
+ outputs.append(log_p)
+ actions.append(action)
+
+ # Main decoding
+ while not td["done"].all():
+ log_p, mask = self._get_log_p(cached_embeds, td, softmax_temp, num_starts)
+
+ # Select the indices of the next nodes in the sequences, result (batch_size) long
+ action = decode_probs(log_p.exp(), mask, decode_type=decode_type)
+
+ td.set("action", action)
+ td = env.step(td)["next"]
+
+ # Collect output of step
+ outputs.append(log_p)
+ actions.append(action)
+
+ outputs, actions = torch.stack(outputs, 1), torch.stack(actions, 1)
+ if calc_reward:
+ td.set("reward", env.get_reward(td, actions))
+
+ return outputs, actions, td
+
+ def _precompute_cache(self, embeddings: Tensor, num_starts: int = 0):
+ """Compute the cached embeddings for the attention
+
+ Args:
+ embeddings: Precomputed embeddings for the nodes
+ num_starts: Number of multi-starts to use. If 0, no multi-start decoding is used
+ """
+
+ # The projection of the node embeddings for the attention is calculated once up front
+ (
+ glimpse_key_fixed,
+ glimpse_val_fixed,
+ logit_key_fixed,
+ ) = self.project_node_embeddings(embeddings).chunk(3, dim=-1)
+
+ # Optionally disable the graph context from the initial embedding as done in POMO
+ if self.use_graph_context:
+ graph_context = unbatchify(
+ batchify(self.project_fixed_context(embeddings.mean(1)), num_starts),
+ num_starts,
+ )
+ else:
+ graph_context = 0
+
+ # Organize in a dataclass for easy access
+ cached_embeds = PrecomputedCache(
+ node_embeddings=embeddings,
+ graph_context=graph_context,
+ glimpse_key=glimpse_key_fixed,
+ glimpse_val=glimpse_val_fixed,
+ logit_key=logit_key_fixed,
+ )
+
+ return cached_embeds
+
+ def _get_log_p(
+ self,
+ cached: PrecomputedCache,
+ td: TensorDict,
+ softmax_temp: float = None,
+ num_starts: int = 0,
+ ):
+ """Compute the log probabilities of the next actions given the current state
+
+ Args:
+ cache: Precomputed embeddings
+ td: TensorDict with the current environment state
+ softmax_temp: Temperature for the softmax
+ num_starts: Number of starts for the multi-start decoding
+ """
+
+ # Unbatchify to [batch_size, num_starts, ...]. Has no effect if num_starts = 0
+ td_unbatch = unbatchify(td, num_starts)
+ step_context = self.context_embedding(cached.node_embeddings, td_unbatch)
+ glimpse_q = step_context + cached.graph_context
+ glimpse_q = glimpse_q.unsqueeze(1) if glimpse_q.ndim == 2 else glimpse_q
+
+ # Compute keys and values for the nodes
+ (
+ glimpse_key_dynamic,
+ glimpse_val_dynamic,
+ logit_key_dynamic,
+ ) = self.dynamic_embedding(td_unbatch)
+ glimpse_k = cached.glimpse_key + glimpse_key_dynamic
+ glimpse_v = cached.glimpse_val + glimpse_val_dynamic
+ logit_k = cached.logit_key + logit_key_dynamic
+
+ # Get the mask
+ mask = ~td_unbatch["action_mask"]
+
+ # Compute logits
+ log_p = self.logit_attention(
+ glimpse_q, glimpse_k, glimpse_v, logit_k, mask, softmax_temp
+ )
+
+ # Now we need to reshape the logits and log_p to [batch_size*num_starts, num_nodes]
+ # Note that rearranging order is important here
+ log_p = rearrange(log_p, "b s l -> (s b) l") if num_starts > 1 else log_p
+ mask = rearrange(mask, "b s l -> (s b) l") if num_starts > 1 else mask
+ return log_p, mask
diff --git a/rl4co/models/zoo/common/autoregressive/encoder.py b/rl4co/models/zoo/common/autoregressive/encoder.py
new file mode 100644
index 00000000..1db65f22
--- /dev/null
+++ b/rl4co/models/zoo/common/autoregressive/encoder.py
@@ -0,0 +1,71 @@
+from typing import Tuple, Union
+
+import torch.nn as nn
+
+from tensordict import TensorDict
+from torch import Tensor
+
+from rl4co.models.nn.env_embeddings import env_init_embedding
+from rl4co.models.nn.graph.attnnet import GraphAttentionNetwork
+
+
+class GraphAttentionEncoder(nn.Module):
+ """Graph Attention Encoder as in Kool et al. (2019).
+
+ Args:
+ env_name: environment name to solve
+ num_heads: Number of heads for the attention
+ embedding_dim: Dimension of the embeddings
+ num_layers: Number of layers for the encoder
+ normalization: Normalization to use for the attention
+ feed_forward_hidden: Hidden dimension for the feed-forward network
+ force_flash_attn: Whether to force the use of flash attention. If True, cast to fp16
+ """
+
+ def __init__(
+ self,
+ env_name: str,
+ num_heads: int,
+ embedding_dim: int,
+ num_layers: int,
+ normalization: str = "batch",
+ feed_forward_hidden: int = 512,
+ force_flash_attn: bool = False,
+ ):
+ super(GraphAttentionEncoder, self).__init__()
+
+ self.env_name = env_name
+ self.init_embedding = env_init_embedding(
+ self.env_name, {"embedding_dim": embedding_dim}
+ )
+ self.net = GraphAttentionNetwork(
+ num_heads,
+ embedding_dim,
+ num_layers,
+ normalization,
+ feed_forward_hidden,
+ force_flash_attn,
+ )
+
+ def forward(
+ self, td: TensorDict, mask: Union[Tensor, None] = None
+ ) -> Tuple[Tensor, Tensor]:
+ """Forward pass of the encoder.
+ Transform the input TensorDict into a latent representation.
+
+ Args:
+ td: Input TensorDict containing the environment state
+ mask: Mask to apply to the attention
+
+ Returns:
+ h: Latent representation of the input
+ init_h: Initial embedding of the input
+ """
+ # Transfer to embedding space
+ init_h = self.init_embedding(td)
+
+ # Process embedding
+ h = self.net(init_h, mask)
+
+ # Return latent representation and initial embedding
+ return h, init_h
diff --git a/rl4co/models/zoo/common/autoregressive/policy.py b/rl4co/models/zoo/common/autoregressive/policy.py
new file mode 100644
index 00000000..f3df7036
--- /dev/null
+++ b/rl4co/models/zoo/common/autoregressive/policy.py
@@ -0,0 +1,158 @@
+from typing import Union
+
+import torch.nn as nn
+
+from tensordict import TensorDict
+
+from rl4co.envs import RL4COEnvBase, get_env
+from rl4co.models.nn.utils import get_log_likelihood
+from rl4co.models.zoo.common.autoregressive.decoder import AutoregressiveDecoder
+from rl4co.models.zoo.common.autoregressive.encoder import GraphAttentionEncoder
+from rl4co.utils.pylogger import get_pylogger
+
+log = get_pylogger(__name__)
+
+
+class AutoregressivePolicy(nn.Module):
+ """Base Auto-regressive policy for NCO construction methods.
+ The policy performs the following steps:
+ 1. Encode the environment initial state into node embeddings
+ 2. Decode (autoregressively) to construct the solution to the NCO problem
+ Based on the policy from Kool et al. (2019) and extended for common use on multiple models in RL4CO.
+
+ Note:
+ We recommend to provide the decoding method as a keyword argument to the
+ decoder during actual testing. The `{phase}_decode_type` arguments are only
+ meant to be used during the main training loop. You may have a look at the
+ evaluation scripts for examples.
+
+ Args:
+ env_name: Name of the environment used to initialize embeddings
+ encoder: Encoder module. Can be passed by sub-classes.
+ decoder: Decoder module. Can be passed by sub-classes.
+ embedding_dim: Dimension of the node embeddings
+ num_encoder_layers: Number of layers in the encoder
+ num_heads: Number of heads in the attention layers
+ normalization: Normalization type in the attention layers
+ mask_inner: Whether to mask the inner diagonal in the attention layers
+ use_graph_context: Whether to use the initial graph context to modify the query
+ force_flash_attn: Whether to force the use of flash attention in the attention layers
+ train_decode_type: Type of decoding during training
+ val_decode_type: Type of decoding during validation
+ test_decode_type: Type of decoding during testing
+ **unused_kw: Unused keyword arguments
+ """
+
+ def __init__(
+ self,
+ env_name: str,
+ encoder: nn.Module = None,
+ decoder: nn.Module = None,
+ embedding_dim: int = 128,
+ num_encoder_layers: int = 3,
+ num_heads: int = 8,
+ normalization: str = "batch",
+ mask_inner: bool = True,
+ use_graph_context: bool = True,
+ force_flash_attn: bool = False,
+ train_decode_type: str = "sampling",
+ val_decode_type: str = "greedy",
+ test_decode_type: str = "greedy",
+ **unused_kw,
+ ):
+ super(AutoregressivePolicy, self).__init__()
+
+ if len(unused_kw) > 0:
+ log.warn(f"Unused kwargs: {unused_kw}")
+
+ self.env_name = env_name
+
+ if encoder is None:
+ log.info("Initializing default GraphAttentionEncoder")
+ self.encoder = GraphAttentionEncoder(
+ env_name=self.env_name,
+ num_heads=num_heads,
+ embedding_dim=embedding_dim,
+ num_layers=num_encoder_layers,
+ normalization=normalization,
+ force_flash_attn=force_flash_attn,
+ )
+ else:
+ self.encoder = encoder
+
+ if decoder is None:
+ log.info("Initializing default AutoregressiveDecoder")
+ self.decoder = AutoregressiveDecoder(
+ env_name=self.env_name,
+ embedding_dim=embedding_dim,
+ num_heads=num_heads,
+ use_graph_context=use_graph_context,
+ mask_inner=mask_inner,
+ force_flash_attn=force_flash_attn,
+ )
+ else:
+ self.decoder = decoder
+
+ self.train_decode_type = train_decode_type
+ self.val_decode_type = val_decode_type
+ self.test_decode_type = test_decode_type
+
+ def forward(
+ self,
+ td: TensorDict,
+ env: Union[str, RL4COEnvBase] = None,
+ phase: str = "train",
+ return_actions: bool = False,
+ return_entropy: bool = False,
+ return_init_embeds: bool = False,
+ **decoder_kwargs,
+ ) -> dict:
+ """Forward pass of the policy.
+
+ Args:
+ td: TensorDict containing the environment state
+ env: Environment to use for decoding
+ phase: Phase of the algorithm (train, val, test)
+ return_actions: Whether to return the actions
+ return_entropy: Whether to return the entropy
+ decoder_kwargs: Keyword arguments for the decoder
+
+ Returns:
+ out: Dictionary containing the reward, log likelihood, and optionally the actions and entropy
+ """
+
+ # ENCODER: get embeddings from initial state
+ embeddings, init_embeds = self.encoder(td)
+
+ # Instantiate environment if needed
+ if isinstance(env, str) or env is None:
+ env_name = self.env_name if env is None else env
+ log.info(f"Instantiated environment not provided; instantiating {env_name}")
+ env = get_env(env_name)
+
+ # Get decode type depending on phase
+ if decoder_kwargs.get("decode_type", None) is None:
+ decoder_kwargs["decode_type"] = getattr(self, f"{phase}_decode_type")
+
+ # DECODER: main rollout with autoregressive decoding
+ log_p, actions, td_out = self.decoder(td, embeddings, env, **decoder_kwargs)
+
+ # Log likelihood is calculated within the model
+ log_likelihood = get_log_likelihood(log_p, actions, td_out.get("mask", None))
+
+ out = {
+ "reward": td_out["reward"],
+ "log_likelihood": log_likelihood,
+ }
+ if return_actions:
+ out["actions"] = actions
+
+ if return_entropy:
+ entropy = -(log_p.exp() * log_p).nansum(dim=1) # [batch, decoder steps]
+ entropy = entropy.sum(dim=1) # [batch]
+ out["entropy"] = entropy
+
+ if return_init_embeds:
+ out["init_embeds"] = init_embeds
+
+ return out
diff --git a/rl4co/models/zoo/et/model.py b/rl4co/models/zoo/et/model.py
new file mode 100644
index 00000000..a968ffcc
--- /dev/null
+++ b/rl4co/models/zoo/et/model.py
@@ -0,0 +1,29 @@
+from typing import Optional, Union
+
+from rl4co.envs.common.base import RL4COEnvBase
+from rl4co.models.rl import REINFORCE
+from rl4co.models.rl.reinforce.baselines import REINFORCEBaseline
+from rl4co.models.zoo.am.policy import AttentionModelPolicy
+
+
+class EquityTransformer(REINFORCE):
+ """Equity Transformer from Son et al., 2023.
+ Reference: https://arxiv.org/abs/2306.02689
+
+ Warning:
+ This implementation is under development and subject to change.
+ """
+
+ def __init__(
+ self,
+ env: RL4COEnvBase,
+ policy: Optional(AttentionModelPolicy) = None,
+ baseline: Union[REINFORCEBaseline, str] = "rollout",
+ policy_kwargs={},
+ baseline_kwargs={},
+ **kwargs,
+ ):
+ if policy is None:
+ policy = AttentionModelPolicy(env.name, **policy_kwargs)
+
+ super().__init__(env, policy, baseline, baseline_kwargs, **kwargs)
diff --git a/rl4co/models/zoo/et/policy.py b/rl4co/models/zoo/et/policy.py
new file mode 100644
index 00000000..11410e15
--- /dev/null
+++ b/rl4co/models/zoo/et/policy.py
@@ -0,0 +1,42 @@
+from rl4co.models.zoo.common.autoregressive import AutoregressivePolicy
+from rl4co.utils.pylogger import get_logger
+
+log = get_logger(__name__)
+
+
+class EquityTransformerPolicy(AutoregressivePolicy):
+ """Equity Transformer Policy from Son et al., 2023.
+ Reference: https://arxiv.org/abs/2306.02689
+
+ Warning:
+ This implementation is under development and subject to change.
+
+ Args:
+ env_name: Name of the environment used to initialize embeddings
+ embedding_dim: Dimension of the node embeddings
+ num_encoder_layers: Number of layers in the encoder
+ num_heads: Number of heads in the attention layers
+ normalization: Normalization type in the attention layers
+ **kwargs: keyword arguments passed to the `AutoregressivePolicy`
+ """
+
+ def __init__(
+ self,
+ env_name: str,
+ embedding_dim: int = 128,
+ num_encoder_layers: int = 3,
+ num_heads: int = 8,
+ normalization: str = "batch",
+ **kwargs,
+ ):
+ if env_name not in ["mtsp", "mpdp"]:
+ log.error(f"env_name {env_name} is not originally implemented in ET")
+
+ super(EquityTransformerPolicy, self).__init__(
+ env_name=env_name,
+ embedding_dim=embedding_dim,
+ num_encoder_layers=num_encoder_layers,
+ num_heads=num_heads,
+ normalization=normalization,
+ **kwargs,
+ )
diff --git a/rl4co/models/zoo/et/positional_encoding.py b/rl4co/models/zoo/et/positional_encoding.py
new file mode 100644
index 00000000..0f3ec9dd
--- /dev/null
+++ b/rl4co/models/zoo/et/positional_encoding.py
@@ -0,0 +1,36 @@
+import torch
+
+from torch import nn
+
+
+class PositionalEncoding(nn.Module):
+ """Compute sinusoid encoding.
+ Reference: https://arxiv.org/abs/2306.02689
+
+ Warning:
+ This implementation is under development and subject to change.
+
+ Args:
+ d_model: Dimension of model.
+ max_len: Max sequence length.
+ """
+
+ def __init__(self, d_model, max_len):
+ super(PositionalEncoding, self).__init__()
+
+ # Initialize encoding matrix
+ self.encoding = torch.zeros(max_len, d_model)
+ self.encoding.requires_grad = False # no need to compute gradient
+
+ # 'i' means index of d_model (e.g. embedding size = 50, 'i' = [0,50])
+ # "step=2" means 'i' multiplied with two (same with 2 * i)
+ _2i = torch.arange(0, d_model, step=2).float()
+
+ # Compute the positional encodings
+ pos = torch.arange(0, max_len).unsqueeze(1).float()
+ self.encoding[:, 0::2] = torch.sin(pos / (10000 ** (_2i / d_model)))
+ self.encoding[:, 1::2] = torch.cos(pos / (10000 ** (_2i / d_model)))
+
+ def forward(self, seq_len):
+ # Return encoding matrix for the current sequence length
+ return self.encoding[:seq_len, :]
diff --git a/rl4co/models/zoo/ham/encoder.py b/rl4co/models/zoo/ham/encoder.py
index 7f03f8ef..736ed9a6 100644
--- a/rl4co/models/zoo/ham/encoder.py
+++ b/rl4co/models/zoo/ham/encoder.py
@@ -1,7 +1,7 @@
import torch.nn as nn
from rl4co.models.nn.env_embeddings import env_init_embedding
-from rl4co.models.nn.graph.gat import Normalization, SkipConnection
+from rl4co.models.nn.graph.attnnet import Normalization, SkipConnection
from rl4co.models.zoo.ham.attention import HeterogenousMHA
@@ -34,8 +34,8 @@ def __init__(
self,
num_heads,
embedding_dim,
- num_layers,
- env=None,
+ num_encoder_layers,
+ env_name=None,
normalization="batch",
feed_forward_hidden=512,
force_flash_attn=False,
@@ -44,7 +44,7 @@ def __init__(
# Map input to embedding space
self.init_embedding = env_init_embedding(
- env.name, {"embedding_dim": embedding_dim}
+ env_name, {"embedding_dim": embedding_dim}
)
self.layers = nn.Sequential(
@@ -55,7 +55,7 @@ def __init__(
feed_forward_hidden,
normalization,
)
- for _ in range(num_layers)
+ for _ in range(num_encoder_layers)
)
)
diff --git a/rl4co/models/zoo/ham/model.py b/rl4co/models/zoo/ham/model.py
index d600d9b2..a95f558b 100644
--- a/rl4co/models/zoo/ham/model.py
+++ b/rl4co/models/zoo/ham/model.py
@@ -1,28 +1,37 @@
-from rl4co.models.rl.reinforce.base import REINFORCE
-from rl4co.models.rl.reinforce.baselines import RolloutBaseline, WarmupBaseline
+from typing import Union
+
+from rl4co.envs.common.base import RL4COEnvBase
+from rl4co.models.rl import REINFORCE
+from rl4co.models.rl.reinforce.baselines import REINFORCEBaseline
from rl4co.models.zoo.ham.policy import HeterogeneousAttentionModelPolicy
class HeterogeneousAttentionModel(REINFORCE):
- """Heterogenous Attention Model for solving the Pickup and Delivery Problem based on REINFORCE
- https://arxiv.org/abs/2110.02634
+ """Heterogenous Attention Model for solving the Pickup and Delivery Problem based on
+ REINFORCE: https://arxiv.org/abs/2110.02634.
Args:
- env: TorchRL Environment
- policy: Policy
- baseline: REINFORCE Baseline
+ env: Environment to use for the algorithm
+ policy: Policy to use for the algorithm
+ baseline: REINFORCE baseline. Defaults to rollout (1 epoch of exponential, then greedy rollout baseline)
+ policy_kwargs: Keyword arguments for policy
+ baseline_kwargs: Keyword arguments for baseline
+ **kwargs: Keyword arguments passed to the superclass
"""
- def __init__(self, env, policy=None, baseline=None, **policy_kwargs):
- super(HeterogeneousAttentionModel, self).__init__(env, policy, baseline)
+ def __init__(
+ self,
+ env: RL4COEnvBase,
+ policy: HeterogeneousAttentionModelPolicy = None,
+ baseline: Union[REINFORCEBaseline, str] = "rollout",
+ policy_kwargs={},
+ baseline_kwargs={},
+ **kwargs,
+ ):
assert (
- self.env.name == "pdp"
+ env.name == "pdp"
), "HeterogeneousAttentionModel only works for PDP (Pickup and Delivery Problem)"
- self.policy = (
- HeterogeneousAttentionModelPolicy(self.env, **policy_kwargs)
- if policy is None
- else policy
- )
- self.baseline = (
- WarmupBaseline(RolloutBaseline()) if baseline is None else baseline
- )
+ if policy is None:
+ policy = HeterogeneousAttentionModelPolicy(env.name, **policy_kwargs)
+
+ super().__init__(env, policy, baseline, baseline_kwargs, **kwargs)
diff --git a/rl4co/models/zoo/ham/policy.py b/rl4co/models/zoo/ham/policy.py
index 993d4d8b..d2ae43c8 100644
--- a/rl4co/models/zoo/ham/policy.py
+++ b/rl4co/models/zoo/ham/policy.py
@@ -1,91 +1,44 @@
import torch.nn as nn
-
-from tensordict.tensordict import TensorDict
-from torchrl.envs import EnvBase
-
-from rl4co.models.nn.utils import get_log_likelihood
-from rl4co.models.zoo.am.decoder import Decoder
+from rl4co.models.zoo.common.autoregressive import AutoregressivePolicy
from rl4co.models.zoo.ham.encoder import GraphHeterogeneousAttentionEncoder
-from rl4co.utils.pylogger import get_pylogger
-log = get_pylogger(__name__)
+class HeterogeneousAttentionModelPolicy(AutoregressivePolicy):
+ """Heterogeneous Attention Model Policy based on Kool et al. (2019): https://arxiv.org/abs/1803.08475.
+ We re-declare the most important arguments here for convenience as in the paper.
+ See `AutoregressivePolicy` superclass for more details.
+
+ Args:
+ env_name: Name of the environment used to initialize embeddings
+ encoder: Encoder to use for the policy
+ embedding_dim: Dimension of the node embeddings
+ num_encoder_layers: Number of layers in the encoder
+ num_heads: Number of heads in the attention layers
+ normalization: Normalization type in the attention layers
+ **kwargs: keyword arguments passed to the `AutoregressivePolicy`
+ """
-class HeterogeneousAttentionModelPolicy(nn.Module):
def __init__(
self,
- env: EnvBase,
- encoder: nn.Module = None,
- decoder: nn.Module = None,
+ env_name: str,
embedding_dim: int = 128,
num_encoder_layers: int = 3,
num_heads: int = 8,
normalization: str = "batch",
- mask_inner: bool = True,
- force_flash_attn: bool = False,
- train_decode_type: str = "sampling",
- val_decode_type: str = "greedy",
- test_decode_type: str = "greedy",
- **unused_kw,
+ **kwargs,
):
- super(HeterogeneousAttentionModelPolicy, self).__init__()
- if len(unused_kw) > 0:
- log.warn(f"Unused kwargs: {unused_kw}")
-
- self.env = env
-
- self.encoder = (
- GraphHeterogeneousAttentionEncoder(
+ super(HeterogeneousAttentionModelPolicy, self).__init__(
+ env_name=env_name,
+ encoder=GraphHeterogeneousAttentionEncoder(
num_heads=num_heads,
embedding_dim=embedding_dim,
- num_layers=num_encoder_layers,
- env=self.env,
+ num_encoder_layers=num_encoder_layers,
+ env_name=env_name,
normalization=normalization,
- )
- if encoder is None
- else encoder
- )
-
- self.decoder = (
- Decoder(
- self.env,
- embedding_dim,
- num_heads,
- mask_inner=mask_inner,
- force_flash_attn=force_flash_attn,
- )
- if decoder is None
- else decoder
- )
-
- self.train_decode_type = train_decode_type
- self.val_decode_type = val_decode_type
- self.test_decode_type = test_decode_type
-
- def forward(
- self,
- td: TensorDict,
- phase: str = "train",
- return_actions: bool = False,
- **decoder_kwargs,
- ) -> TensorDict:
- # Encode inputs
- embeddings, _ = self.encoder(td)
-
- # Get decode type depending on phase
- if decoder_kwargs.get("decode_type", None) is None:
- decoder_kwargs["decode_type"] = getattr(self, f"{phase}_decode_type")
-
- # Main rollout: autoregressive decoding
- log_p, actions, td_out = self.decoder(td, embeddings, **decoder_kwargs)
-
- # Log likelyhood is calculated within the model since returning it per action does not work well with
- ll = get_log_likelihood(log_p, actions, td_out.get("mask", None))
- out = {
- "reward": td_out["reward"],
- "log_likelihood": ll,
- }
- if return_actions:
- out["actions"] = actions
-
- return out
+ ),
+ embedding_dim=embedding_dim,
+ num_encoder_layers=num_encoder_layers,
+ num_heads=num_heads,
+ normalization=normalization,
+ **kwargs,
+ )
\ No newline at end of file
diff --git a/rl4co/models/zoo/mdam/__init__.py b/rl4co/models/zoo/mdam/__init__.py
index 121d5c46..0dcc6521 100644
--- a/rl4co/models/zoo/mdam/__init__.py
+++ b/rl4co/models/zoo/mdam/__init__.py
@@ -1 +1,2 @@
from .policy import MDAMPolicy
+from .model import MDAM
\ No newline at end of file
diff --git a/rl4co/models/zoo/mdam/decoder.py b/rl4co/models/zoo/mdam/decoder.py
index ac5d8e6a..87fd0dee 100644
--- a/rl4co/models/zoo/mdam/decoder.py
+++ b/rl4co/models/zoo/mdam/decoder.py
@@ -1,11 +1,15 @@
import math
+from typing import Union
from dataclasses import dataclass
+from tensordict import TensorDict
import torch
import torch.nn as nn
import torch.nn.functional as F
+from rl4co.envs import RL4COEnvBase
+
from rl4co.models.nn.attention import LogitAttention
from rl4co.models.nn.env_embeddings import env_context_embedding, env_dynamic_embedding
from rl4co.models.nn.utils import decode_probs, get_log_likelihood
@@ -23,7 +27,7 @@ class PrecomputedCache:
class Decoder(nn.Module):
def __init__(
self,
- env,
+ env_name,
embedding_dim,
num_heads,
num_paths: int = 5,
@@ -39,7 +43,7 @@ def __init__(
):
super(Decoder, self).__init__()
self.dynamic_embedding = env_dynamic_embedding(
- env, {"embedding_dim": embedding_dim}
+ env_name, {"embedding_dim": embedding_dim}
)
self.train_decode_type = train_decode_type
@@ -52,36 +56,36 @@ def __init__(
) # Placeholder should be in range of activations
self.context = [
- env_context_embedding(env.name, {"embedding_dim": embedding_dim})
+ env_context_embedding(env_name, {"embedding_dim": embedding_dim})
for _ in range(num_paths)
]
self.project_node_embeddings = [
- nn.Linear(embedding_dim, 3 * embedding_dim, device=env.device, bias=False)
+ nn.Linear(embedding_dim, 3 * embedding_dim, bias=False)
for _ in range(num_paths)
]
self.project_node_embeddings = nn.ModuleList(self.project_node_embeddings)
self.project_fixed_context = [
- nn.Linear(embedding_dim, embedding_dim, device=env.device, bias=False)
+ nn.Linear(embedding_dim, embedding_dim, bias=False)
for _ in range(num_paths)
]
self.project_fixed_context = nn.ModuleList(self.project_fixed_context)
self.project_step_context = [
- nn.Linear(2 * embedding_dim, embedding_dim, device=env.device, bias=False)
+ nn.Linear(2 * embedding_dim, embedding_dim, bias=False)
for _ in range(num_paths)
]
self.project_step_context = nn.ModuleList(self.project_step_context)
self.project_out = [
- nn.Linear(embedding_dim, embedding_dim, device=env.device, bias=False)
+ nn.Linear(embedding_dim, embedding_dim, bias=False)
for _ in range(num_paths)
]
self.project_out = nn.ModuleList(self.project_out)
self.dynamic_embedding = env_dynamic_embedding(
- env.name, {"embedding_dim": embedding_dim}
+ env_name, {"embedding_dim": embedding_dim}
)
self.logit_attention = [
@@ -94,7 +98,7 @@ def __init__(
for _ in range(num_paths)
]
- self.env = env
+ self.env_name = env_name
self.mask_inner = mask_inner
self.mask_logits = mask_logits
self.num_heads = num_heads
@@ -103,11 +107,20 @@ def __init__(
self.tanh_clipping = tanh_clipping
self.shrink_size = shrink_size
- def forward(self, td, encoded_inputs, attn, V, h_old, **decoder_kwargs):
+ def forward(
+ self,
+ td: TensorDict,
+ encoded_inputs: torch.Tensor,
+ env: Union[str, RL4COEnvBase],
+ attn,
+ V,
+ h_old,
+ **decoder_kwargs
+ ):
# SECTION: Decoder first step: calculate for the decoder divergence loss
# Cost list and log likelihood list along with path
output_list = []
- td_list = [self.env.reset(td) for i in range(self.num_paths)]
+ td_list = [env.reset(td) for i in range(self.num_paths)]
for i in range(self.num_paths):
# Clone the encoded features for this path
_encoded_inputs = encoded_inputs.clone()
@@ -147,7 +160,7 @@ def forward(self, td, encoded_inputs, attn, V, h_old, **decoder_kwargs):
output_list = []
action_list = []
ll_list = []
- td_list = [self.env.reset(td) for _ in range(self.num_paths)]
+ td_list = [env.reset(td) for _ in range(self.num_paths)]
for i in range(self.num_paths):
# Clone the encoded features for this path
_encoded_inputs = encoded_inputs.clone()
@@ -182,7 +195,7 @@ def forward(self, td, encoded_inputs, attn, V, h_old, **decoder_kwargs):
)
td_list[i].set("action", action)
- td_list[i] = self.env.step(td_list[i])["next"]
+ td_list[i] = env.step(td_list[i])["next"]
# Collect output of step
outputs.append(log_p[:, 0, :])
@@ -190,7 +203,7 @@ def forward(self, td, encoded_inputs, attn, V, h_old, **decoder_kwargs):
j += 1
outputs, actions = torch.stack(outputs, 1), torch.stack(actions, 1)
- reward = self.env.get_reward(td, actions)
+ reward = env.get_reward(td, actions)
ll = get_log_likelihood(outputs, actions, mask)
reward_list.append(reward)
@@ -248,7 +261,7 @@ def _get_log_p(self, fixed, td, path_index, normalize=True):
step_context = self.context[path_index](
fixed.node_embeddings, td
) # [batch, embed_dim]
- glimpse_q = fixed.graph_context + step_context.unsqueeze(1)
+ glimpse_q = fixed.graph_context + step_context.unsqueeze(1).to(fixed.graph_context.device)
# Compute keys and values for the nodes
(
diff --git a/rl4co/models/zoo/mdam/model.py b/rl4co/models/zoo/mdam/model.py
index 32cda9a0..b0696cf3 100644
--- a/rl4co/models/zoo/mdam/model.py
+++ b/rl4co/models/zoo/mdam/model.py
@@ -1,24 +1,38 @@
-from rl4co.models.rl.reinforce.base import REINFORCE
-from rl4co.models.rl.reinforce.baselines import RolloutBaseline, WarmupBaseline
+
+from typing import Union
+
+from rl4co.envs.common.base import RL4COEnvBase
+from rl4co.models.rl import REINFORCE
+from rl4co.models.rl.reinforce.baselines import REINFORCEBaseline
from rl4co.models.zoo.mdam.policy import MDAMPolicy
class MDAM(REINFORCE):
- """! FIX comment
- Attention Model for neural combinatorial optimization based on REINFORCE
- Based on Wouter Kool et al. (2018) https://arxiv.org/abs/1803.08475
- Refactored from reference implementation: https://github.com/wouterkool/attention-learn-to-route
+ """ Multi-Decoder Attention Model (MDAM) is a model
+ to train multiple diverse policies, which effectively increases the chance of finding
+ good solutions compared with existing methods that train only one policy.
+ Reference link: https://arxiv.org/abs/2012.10638;
+ Implementation reference: https://github.com/liangxinedu/MDAM.
Args:
- env: TorchRL Environment
- policy: Policy
- baseline: REINFORCE Baseline
+ env: Environment to use for the algorithm
+ policy: Policy to use for the algorithm
+ baseline: REINFORCE baseline. Defaults to rollout (1 epoch of exponential, then greedy rollout baseline)
+ policy_kwargs: Keyword arguments for policy
+ baseline_kwargs: Keyword arguments for baseline
+ **kwargs: Keyword arguments passed to the superclass
"""
- def __init__(self, env, policy=None, baseline=None, **policy_kwargs):
- super(MDAM, self).__init__(env, policy, baseline)
- self.policy = MDAMPolicy(self.env, **policy_kwargs) if policy is None else policy
+ def __init__(
+ self,
+ env: RL4COEnvBase,
+ policy: MDAMPolicy = None,
+ baseline: Union[REINFORCEBaseline, str] = "rollout",
+ policy_kwargs={},
+ baseline_kwargs={},
+ **kwargs
+ ):
+ if policy is None:
+ policy = MDAMPolicy(env.name, **policy_kwargs)
- self.baseline = (
- WarmupBaseline(RolloutBaseline()) if baseline is None else baseline
- )
+ super().__init__(env, policy, baseline, baseline_kwargs, **kwargs)
\ No newline at end of file
diff --git a/rl4co/models/zoo/mdam/policy.py b/rl4co/models/zoo/mdam/policy.py
index f98f08a4..7a8b7c04 100644
--- a/rl4co/models/zoo/mdam/policy.py
+++ b/rl4co/models/zoo/mdam/policy.py
@@ -1,103 +1,63 @@
import torch.nn as nn
+from typing import Union
from tensordict import TensorDict
-from torchrl.envs import EnvBase
+from rl4co.envs import RL4COEnvBase, get_env
from rl4co.models.nn.env_embeddings import env_init_embedding
from rl4co.models.zoo.mdam.decoder import Decoder
from rl4co.models.zoo.mdam.encoder import GraphAttentionEncoder
+from rl4co.models.zoo.common.autoregressive import AutoregressivePolicy
+from rl4co.utils.pylogger import get_pylogger
+log = get_pylogger(__name__)
-class MDAMPolicy(nn.Module):
- """
+
+class MDAMPolicy(AutoregressivePolicy):
+ """ Multi-Decoder Attention Model (MDAM) policy.
Args:
- env: environment to solve
- encoder: encoder module
- decoder: decoder module
- embedding_dim: embedding dimension/hidden dimension
- num_encode_layers: number of layers in encoder
- num_heads: number of heads in multi-head attention
- num_paths: number of paths to sample (specific feature for MDAM)
- eg_step_gap: number of steps between each path sampling (specific feature for MDAM)
- normalization: normalization type
- mask_inner: whether to mask the inner product in attention
- mask_logits: whether to mask the logits in attention
- tanh_clipping: tanh clipping value
- shrink_size: shrink size for the decoder
- use_native_sdpa: whether to use native sdpa (scaled dot product attention)
- force_flash_attn: whether to force use flash attention
- train_decode_type: decode type for training
- val_decode_type: decode type for validation
- test_decode_type: decode type for testing
- """
+ """
+
def __init__(
- self,
- env: EnvBase,
- encoder: nn.Module = None,
- decoder: nn.Module = None,
+ self,
+ env_name: str,
embedding_dim: int = 128,
- num_encode_layers: int = 3,
+ num_encoder_layers: int = 3,
num_heads: int = 8,
- num_paths: int = 5,
- eg_step_gap: int = 200,
normalization: str = "batch",
- mask_inner: bool = True,
- mask_logits: bool = True,
- tanh_clipping: float = 10.0,
- shrink_size=None,
- use_native_sdpa: bool = False,
- force_flash_attn: bool = False,
- train_decode_type: str = "sampling",
- val_decode_type: str = "greedy",
- test_decode_type: str = "greedy",
- **unused_kw,
+ **kwargs,
):
- super(MDAMPolicy, self).__init__()
- if len(unused_kw) > 0:
- print(f"Unused kwargs: {unused_kw}")
-
- self.env = env
- self.init_embedding = env_init_embedding(
- self.env.name, {"embedding_dim": embedding_dim}
- )
-
- self.encoder = (
- GraphAttentionEncoder(
+ super(MDAMPolicy, self).__init__(
+ env_name=env_name,
+ encoder=GraphAttentionEncoder(
num_heads=num_heads,
embed_dim=embedding_dim,
- num_layers=num_encode_layers,
+ num_layers=num_encoder_layers,
normalization=normalization,
- use_native_sdpa=use_native_sdpa,
- force_flash_attn=force_flash_attn,
- )
- if encoder is None
- else encoder
- )
-
- self.decoder = (
- Decoder(
- env=env,
+ **kwargs
+ ),
+ decoder=Decoder(
+ env_name=env_name,
embedding_dim=embedding_dim,
num_heads=num_heads,
- num_paths=num_paths,
- mask_inner=mask_inner,
- mask_logits=mask_logits,
- eg_step_gap=eg_step_gap,
- tanh_clipping=tanh_clipping,
- force_flash_attn=force_flash_attn,
- shrink_size=shrink_size,
- train_decode_type=train_decode_type,
- val_decode_type=val_decode_type,
- test_decode_type=test_decode_type,
- )
- if decoder is None
- else decoder
+ **kwargs
+ ),
+ embedding_dim=embedding_dim,
+ num_encoder_layers=num_encoder_layers,
+ num_heads=num_heads,
+ normalization=normalization,
+ **kwargs,
+ )
+
+ self.init_embedding = env_init_embedding(
+ env_name, {"embedding_dim": embedding_dim}
)
def forward(
self,
td: TensorDict,
+ env: Union[str, RL4COEnvBase] = None,
phase: str = "train",
return_actions: bool = False,
**decoder_kwargs,
@@ -105,17 +65,23 @@ def forward(
embedding = self.init_embedding(td)
encoded_inputs, _, attn, V, h_old = self.encoder(embedding)
+ # Instantiate environment if needed
+ if isinstance(env, str) or env is None:
+ env_name = self.env_name if env is None else env
+ log.info(f"Instantiated environment not provided; instantiating {env_name}")
+ env = get_env(env_name)
+
# Get decode type depending on phase
if decoder_kwargs.get("decode_type", None) is None:
decoder_kwargs["decode_type"] = getattr(self, f"{phase}_decode_type")
reward, log_likelihood, kl_divergence, actions = self.decoder(
- td, encoded_inputs, attn, V, h_old, **decoder_kwargs
+ td, encoded_inputs, env, attn, V, h_old, **decoder_kwargs
)
out = {
"reward": reward,
"log_likelihood": log_likelihood,
- "kl_divergence": kl_divergence,
+ "entropy": kl_divergence,
"actions": actions if return_actions else None,
}
- return out
+ return out
\ No newline at end of file
diff --git a/rl4co/models/zoo/pomo/model.py b/rl4co/models/zoo/pomo/model.py
index 57f2c752..2b2ed4b4 100644
--- a/rl4co/models/zoo/pomo/model.py
+++ b/rl4co/models/zoo/pomo/model.py
@@ -1,6 +1,6 @@
from tensordict import TensorDict
-from rl4co.models.rl.reinforce.base import REINFORCE
+from rl4co.models.rl.reinforce.reinforce import REINFORCE
from rl4co.models.rl.reinforce.baselines import SharedBaseline
from rl4co.models.zoo.pomo.augmentations import StateAugmentation
from rl4co.models.zoo.pomo.policy import POMOPolicy
diff --git a/rl4co/models/zoo/pomo/policy.py b/rl4co/models/zoo/pomo/policy.py
index f7a852a7..d115e24e 100644
--- a/rl4co/models/zoo/pomo/policy.py
+++ b/rl4co/models/zoo/pomo/policy.py
@@ -3,7 +3,7 @@
from tensordict.tensordict import TensorDict
from torchrl.envs import EnvBase
-from rl4co.models.nn.graph.gat import GraphAttentionEncoder
+from rl4co.models.nn.graph.attnnet import GraphAttentionEncoder
from rl4co.models.nn.utils import get_log_likelihood
from rl4co.models.zoo.pomo.decoder import Decoder
from rl4co.utils.pylogger import get_pylogger
diff --git a/rl4co/models/zoo/ppo/__init__.py b/rl4co/models/zoo/ppo/__init__.py
new file mode 100644
index 00000000..9643a595
--- /dev/null
+++ b/rl4co/models/zoo/ppo/__init__.py
@@ -0,0 +1,2 @@
+from .model import PPOModel
+from .policy import PPOPolicy
diff --git a/rl4co/models/zoo/ppo/decoder.py b/rl4co/models/zoo/ppo/decoder.py
new file mode 100644
index 00000000..2301fbe0
--- /dev/null
+++ b/rl4co/models/zoo/ppo/decoder.py
@@ -0,0 +1,70 @@
+from typing import Tuple, Union
+
+import torch
+from tensordict import TensorDict
+from torch import Tensor
+
+from rl4co.envs import RL4COEnvBase, get_env
+from rl4co.models.nn.utils import get_log_likelihood
+from rl4co.models.zoo.common.autoregressive import AutoregressiveDecoder
+
+
+class PPODecoder(AutoregressiveDecoder):
+ def evaluate_action(
+ self,
+ td: TensorDict,
+ embeddings: Tensor,
+ action: Tensor,
+ env: Union[str, RL4COEnvBase] = None,
+ ) -> Tuple[Tensor, Tensor]:
+ """Evaluate the (old) action to compute
+ log likelihood of the actions and corresponding entropy
+
+ Args:
+ td: Input TensorDict containing the environment state
+ embeddings: Precomputed embeddings for the nodes
+ action: Action to evaluate (batch_size, seq_len)
+ env: Environment to use for decoding. If None, the environment is instantiated from `env_name`. Note that
+ it is more efficient to pass an already instantiated environment each time for fine-grained control
+ Returns:
+ log_p: Tensor of shape (batch_size, seq_len, num_nodes) containing the log-likehood of the actions
+ entropy: Tensor of shape (batch_size, seq_len) containing the sampled actions
+ """
+
+ # Instantiate environment if needed
+ if isinstance(env, str) or env is None:
+ env_name = self.env_name if env is None else env
+ env = get_env(env_name)
+
+ # Compute keys, values for the glimpse and keys for the logits once as they can be reused in every step
+ cached_embeds = self._precompute_cache(embeddings)
+
+ log_p = []
+ decode_step = 0
+ while not td["done"].all():
+ log_p_, _ = self._get_log_p(cached_embeds, td)
+ action_ = action[..., decode_step]
+
+ td.set("action", action_)
+ td = env.step(td)["next"]
+ log_p.append(log_p_)
+
+ decode_step += 1
+
+ # Note that the decoding steps may not be equal to the decoding steps of actions
+ # due to the padded zeros in the actions
+
+ # Compute log likelihood of the actions
+ log_p = torch.stack(log_p, 1) # [batch_size, decoding steps, num_nodes]
+ ll = get_log_likelihood(
+ log_p, action[..., :decode_step], mask=None, return_sum=False
+ ) # [batch_size, decoding steps]
+ assert ll.isfinite().all(), "Log p is not finite"
+
+ # compute entropy
+ log_p = torch.nan_to_num(log_p, nan=0.0)
+ entropy = -(log_p.exp() * log_p).sum(dim=-1) # [batch, decoder steps]
+ entropy = entropy.sum(dim=1) # [batch] -- sum over decoding steps
+ assert entropy.isfinite().all(), "Entropy is not finite"
+
+ return ll, entropy
diff --git a/rl4co/models/zoo/ppo/model.py b/rl4co/models/zoo/ppo/model.py
new file mode 100644
index 00000000..63ca3ab2
--- /dev/null
+++ b/rl4co/models/zoo/ppo/model.py
@@ -0,0 +1,30 @@
+from rl4co.envs import RL4COEnvBase
+from rl4co.models.rl import PPO
+from rl4co.models.rl.common.critic import CriticNetwork
+from rl4co.models.zoo.ppo.policy import PPOPolicy
+
+
+class PPOModel(PPO):
+ """PPO Model based on Proximal Policy Optimization (PPO).
+
+ Args:
+ env: Environment to use for the algorithm
+
+ """
+
+ def __init__(
+ self,
+ env: RL4COEnvBase,
+ policy: PPOPolicy = None,
+ critic: CriticNetwork = None,
+ policy_kwargs={},
+ critic_kwargs={},
+ **kwargs,
+ ):
+ if policy is None:
+ policy = PPOPolicy(env.name, **policy_kwargs)
+
+ if critic is None:
+ critic = CriticNetwork(env.name, **critic_kwargs)
+
+ super().__init__(env, policy, critic, **kwargs)
diff --git a/rl4co/models/zoo/ppo/policy.py b/rl4co/models/zoo/ppo/policy.py
new file mode 100644
index 00000000..a37bf5d0
--- /dev/null
+++ b/rl4co/models/zoo/ppo/policy.py
@@ -0,0 +1,56 @@
+from typing import Tuple, Union
+
+from tensordict import TensorDict
+from torch import Tensor
+
+from rl4co.envs import RL4COEnvBase
+from rl4co.models.zoo.common.autoregressive import AutoregressivePolicy
+from rl4co.models.zoo.ppo.decoder import PPODecoder
+
+
+class PPOPolicy(AutoregressivePolicy):
+ """PPO Policy based on Kool et al. (2019): https://arxiv.org/abs/1803.08475.
+ PPOPolicy supports 'evaluate_action' method to evaluate the action probability
+
+ Args:
+ env_name: Name of the environment used to initialize embeddings
+ embedding_dim: Dimension of the node embeddings
+ num_encoder_layers: Number of layers in the encoder
+ num_heads: Number of heads in the attention layers
+ normalization: Normalization type in the attention layers
+ **kwargs: keyword arguments passed to the `AutoregressivePolicy`
+ """
+
+ def __init__(
+ self,
+ env_name: str,
+ embedding_dim: int = 128,
+ num_encoder_layers: int = 3,
+ num_heads: int = 8,
+ normalization: str = "batch",
+ **kwargs,
+ ):
+ super(PPOPolicy, self).__init__(
+ env_name=env_name,
+ decoder=PPODecoder(
+ env_name=env_name,
+ embedding_dim=embedding_dim,
+ num_heads=num_heads,
+ **kwargs,
+ ), # override decoder with PPODecoder to support 'evaluate_action"
+ embedding_dim=embedding_dim,
+ num_encoder_layers=num_encoder_layers,
+ num_heads=num_heads,
+ normalization=normalization,
+ **kwargs,
+ )
+
+ def evaluate_action(
+ self,
+ td: TensorDict,
+ action: Tensor,
+ env: Union[str, RL4COEnvBase] = None,
+ ) -> Tuple[Tensor, Tensor]:
+ embeddings, _ = self.encoder(td)
+ ll, entropy = self.decoder.evaluate_action(td, embeddings, action, env)
+ return ll, entropy
diff --git a/rl4co/models/zoo/ptrnet/model.py b/rl4co/models/zoo/ptrnet/model.py
index b421d193..6bc6bcee 100644
--- a/rl4co/models/zoo/ptrnet/model.py
+++ b/rl4co/models/zoo/ptrnet/model.py
@@ -1,5 +1,8 @@
-from rl4co.models.rl.reinforce.base import REINFORCE
-from rl4co.models.rl.reinforce.baselines import RolloutBaseline, WarmupBaseline
+from typing import Union
+
+from rl4co.envs.common.base import RL4COEnvBase
+from rl4co.models.rl import REINFORCE
+from rl4co.models.rl.reinforce.baselines import REINFORCEBaseline
from rl4co.models.zoo.ptrnet.policy import PointerNetworkPolicy
@@ -8,18 +11,25 @@ class PointerNetwork(REINFORCE):
Pointer Network for neural combinatorial optimization based on REINFORCE
Based on Vinyals et al. (2015) https://arxiv.org/abs/1506.03134
Refactored from reference implementation: https://github.com/wouterkool/attention-learn-to-route
-
Args:
- env: TorchRL Environment
- policy: Policy
- baseline: REINFORCE Baseline
+ env: Environment to use for the algorithm
+ policy: Policy to use for the algorithm
+ baseline: REINFORCE baseline. Defaults to rollout (1 epoch of exponential, then greedy rollout baseline)
+ policy_kwargs: Keyword arguments for policy
+ baseline_kwargs: Keyword arguments for baseline
+ **kwargs: Keyword arguments passed to the superclass
"""
- def __init__(self, env, policy=None, baseline=None, **policy_kwargs):
- super(PointerNetwork, self).__init__(env, policy, baseline)
+ def __init__(
+ self,
+ env: RL4COEnvBase,
+ policy: PointerNetworkPolicy = None,
+ baseline: Union[REINFORCEBaseline, str] = "rollout",
+ policy_kwargs={},
+ baseline_kwargs={},
+ **kwargs,
+ ):
self.policy = (
PointerNetworkPolicy(self.env, **policy_kwargs) if policy is None else policy
)
- self.baseline = (
- WarmupBaseline(RolloutBaseline()) if baseline is None else baseline
- )
+ super().__init__(env, policy, baseline, baseline_kwargs, **kwargs)
diff --git a/rl4co/models/zoo/ptrnet/policy.py b/rl4co/models/zoo/ptrnet/policy.py
index b8e5eceb..57a07679 100644
--- a/rl4co/models/zoo/ptrnet/policy.py
+++ b/rl4co/models/zoo/ptrnet/policy.py
@@ -14,7 +14,7 @@
class PointerNetworkPolicy(nn.Module):
def __init__(
self,
- env,
+ env_name,
embedding_dim: int = 128,
hidden_dim: int = 128,
tanh_clipping=10.0,
@@ -25,8 +25,8 @@ def __init__(
super(PointerNetworkPolicy, self).__init__()
# torch.backends.cudnn.enabled=False
- self.env = env
- assert self.env.name == "tsp", "Only the Euclidean TSP env supported"
+ assert env_name == "tsp", "Only the Euclidean TSP env supported"
+ self.env_name = env_name
self.input_dim = 2
@@ -53,6 +53,7 @@ def __init__(
def forward(
self,
td,
+ env,
phase: str = "train",
decode_type="sampling",
eval_tours=None,
@@ -79,7 +80,7 @@ def forward(
# making up the output, and the pointer attn
_log_p, actions = self._inner(embedded_inputs, decode_type, eval_tours)
- reward = self.env.get_reward(td, actions)
+ reward = env.get_reward(td, actions)
# Log likelyhood is calculated within the model since returning it per action does not work well with
# DataParallel since sequences can be of different lengths
diff --git a/rl4co/models/zoo/symnco/augmentations.py b/rl4co/models/zoo/symnco/augmentations.py
deleted file mode 100644
index 559f5032..00000000
--- a/rl4co/models/zoo/symnco/augmentations.py
+++ /dev/null
@@ -1,66 +0,0 @@
-import math
-
-import torch
-import torch.nn as nn
-
-from tensordict.tensordict import TensorDict
-
-from rl4co.utils.ops import batchify
-
-
-def rotation_reflection_transform(x, y, phi, offset=0.5):
- """SR group transform with rotation and reflection (~2x faster than original)"""
- x, y = x - offset, y - offset
- # random rotation
- x_prime = torch.cos(phi) * x - torch.sin(phi) * y
- y_prime = torch.sin(phi) * x + torch.cos(phi) * y
- # make random reflection if phi > 2*pi (i.e. 50% of the time)
- mask = phi > 2 * math.pi
- # vectorized random reflection: swap axes x and y if mask
- xy = torch.cat((x_prime, y_prime), dim=-1)
- xy = torch.where(mask, xy.flip(-1), xy)
- return xy + offset
-
-
-def augment_xy_data_by_n_fold(xy, num_augment: int = 8):
- """Augment xy data by N times via symmetric rotation transform and concatenate to original data"""
- # create random rotation angles (4*pi for reflection, 2*pi for rotation)
- phi = torch.rand(xy.shape[0], device=xy.device) * 4 * math.pi
- # set phi to 0 for first , i.e. no augmnetation as in original paper
- phi[: xy.shape[0] // num_augment] = 0.0
- x, y = xy[..., [0]], xy[..., [1]]
- return rotation_reflection_transform(x, y, phi[:, None, None])
-
-
-def env_aug_feats(env_name: str):
- return ("locs", "depot") if env_name == "op" else ("locs",)
-
-
-def min_max_normalize(x):
- return (x - x.min()) / (x.max() - x.min())
-
-
-class StateAugmentation(nn.Module):
- """Augment state by N times via symmetric rotation/reflection transform"""
-
- def __init__(self, env_name: str, num_augment: int = 8, normalize: bool = False):
- super(StateAugmentation, self).__init__()
- self.augmentation = augment_xy_data_by_n_fold
- self.feats = env_aug_feats(env_name)
- self.num_augment = num_augment
- self.normalize = normalize
-
- def forward(
- self, td: TensorDict, num_augment: int = None, normalize: bool = False
- ) -> TensorDict:
- num_augment = num_augment if num_augment is not None else self.num_augment
- normalize = normalize if normalize is not None else False
-
- td_aug = batchify(td, num_augment)
- for feat in self.feats:
- aug_feat = self.augmentation(td_aug[feat], num_augment)
- td_aug[feat] = aug_feat
- if normalize:
- td_aug[feat] = min_max_normalize(td_aug[feat])
-
- return td_aug
diff --git a/rl4co/models/zoo/symnco/decoder.py b/rl4co/models/zoo/symnco/decoder.py
deleted file mode 100644
index 1a424072..00000000
--- a/rl4co/models/zoo/symnco/decoder.py
+++ /dev/null
@@ -1,185 +0,0 @@
-from dataclasses import dataclass
-
-import torch
-import torch.nn as nn
-
-from einops import rearrange
-
-from rl4co.models.nn.attention import LogitAttention
-from rl4co.models.nn.env_embeddings import env_context_embedding, env_dynamic_embedding
-from rl4co.models.nn.utils import decode_probs
-from rl4co.utils import get_pylogger
-from rl4co.utils.ops import batchify, select_start_nodes, unbatchify
-
-log = get_pylogger(__name__)
-
-
-@dataclass
-class PrecomputedCache:
- node_embeddings: torch.Tensor
- graph_context: torch.Tensor
- glimpse_key: torch.Tensor
- glimpse_val: torch.Tensor
- logit_key: torch.Tensor
-
-
-class Decoder(nn.Module):
- def __init__(
- self,
- env,
- embedding_dim,
- num_heads,
- num_starts=20,
- use_graph_context=True,
- **logit_attn_kwargs,
- ):
- super(Decoder, self).__init__()
-
- self.env = env
- self.embedding_dim = embedding_dim
- self.num_heads = num_heads
-
- assert embedding_dim % num_heads == 0
-
- self.context = env_context_embedding(
- self.env.name, {"embedding_dim": embedding_dim}
- )
- self.dynamic_embedding = env_dynamic_embedding(
- self.env.name, {"embedding_dim": embedding_dim}
- )
-
- # For each node we compute (glimpse key, glimpse value, logit key) so 3 * embedding_dim
- self.project_node_embeddings = nn.Linear(
- embedding_dim, 3 * embedding_dim, bias=False
- )
- self.project_fixed_context = nn.Linear(embedding_dim, embedding_dim, bias=False)
-
- # MHA
- self.logit_attention = LogitAttention(
- embedding_dim, num_heads, **logit_attn_kwargs
- )
-
- # POMO
- self.num_starts = num_starts # POMO = 1 is just normal REINFORCE
- self.use_graph_context = use_graph_context # disabling makes it like in POMO
-
- def forward(
- self,
- td,
- embeddings,
- decode_type="sampling",
- softmax_temp=None,
- single_traj=False,
- num_starts=None,
- ):
- # Greedy multi-start decoding if num_starts > 1
- num_starts = (
- self.num_starts if num_starts is None else num_starts
- ) # substitute self.num_starts with num_starts
- assert not (
- "multistart" in decode_type and num_starts <= 1
- ), "Multi-start decoding requires `num_starts` > 1"
-
- # Compute keys, values for the glimpse and keys for the logits once as they can be reused in every step
- cached_embeds = self._precompute(embeddings, num_starts=num_starts)
-
- # Collect outputs
- outputs = []
- actions = []
-
- # Multi-start decoding: first action is chosen by ad-hoc node selection
- if num_starts > 1 and not single_traj or "multistart" in decode_type:
- action = select_start_nodes(td, num_starts, self.env)
-
- # Expand td to batch_size * num_starts
- td = batchify(td, num_starts)
-
- td.set("action", action)
- td = self.env.step(td)["next"]
- log_p = torch.zeros_like(
- td["action_mask"], device=td.device
- ) # first log_p is 0, so p = log_p.exp() = 1
-
- outputs.append(log_p)
- actions.append(action)
-
- # Main decoding
- while not td["done"].all():
- log_p, mask = self._get_log_p(cached_embeds, td, softmax_temp, num_starts)
-
- # Select the indices of the next nodes in the sequences, result (batch_size) long
- action = decode_probs(log_p.exp(), mask, decode_type=decode_type)
-
- td.set("action", action)
- td = self.env.step(td)["next"]
-
- # Collect output of step
- outputs.append(log_p)
- actions.append(action)
-
- outputs, actions = torch.stack(outputs, 1), torch.stack(actions, 1)
- td.set("reward", self.env.get_reward(td, actions))
- return outputs, actions, td
-
- def _precompute(self, embeddings, num_starts=0):
- # The projection of the node embeddings for the attention is calculated once up front
- (
- glimpse_key_fixed,
- glimpse_val_fixed,
- logit_key_fixed,
- ) = self.project_node_embeddings(embeddings).chunk(3, dim=-1)
-
- # By default, the query is modified with the graph context.
- # In POMO, the graph context is not used
- if self.use_graph_context:
- graph_context = unbatchify(
- batchify(self.project_fixed_context(embeddings.mean(1)), num_starts),
- num_starts,
- )
- else:
- graph_context = 0
-
- # Organize in a dataclass for easy access
- cached_embeds = PrecomputedCache(
- node_embeddings=embeddings,
- graph_context=graph_context,
- glimpse_key=glimpse_key_fixed,
- glimpse_val=glimpse_val_fixed,
- logit_key=logit_key_fixed,
- )
-
- return cached_embeds
-
- def _get_log_p(self, cached, td, softmax_temp=None, num_starts=0):
- # Compute the query based on the context (computes automatically the first and last node context)
-
- # Unbatchify to [batch_size, num_starts, ...]. Has no effect if num_starts = 0
- td_unbatch = unbatchify(td, num_starts)
-
- step_context = self.context(cached.node_embeddings, td_unbatch)
- glimpse_q = step_context + cached.graph_context
- glimpse_q = glimpse_q.unsqueeze(1) if glimpse_q.ndim == 2 else glimpse_q
-
- # Compute keys and values for the nodes
- (
- glimpse_key_dynamic,
- glimpse_val_dynamic,
- logit_key_dynamic,
- ) = self.dynamic_embedding(td_unbatch)
- glimpse_k = cached.glimpse_key + glimpse_key_dynamic
- glimpse_v = cached.glimpse_val + glimpse_val_dynamic
- logit_k = cached.logit_key + logit_key_dynamic
-
- # Get the mask
- mask = ~td_unbatch["action_mask"]
-
- # Compute logits
- log_p = self.logit_attention(
- glimpse_q, glimpse_k, glimpse_v, logit_k, mask, softmax_temp
- )
-
- # Now we need to reshape the logits and log_p to [batch_size*num_starts, num_nodes]
- # Note that rearranging order is important here
- log_p = rearrange(log_p, "b s l -> (s b) l") if num_starts > 1 else log_p
- mask = rearrange(mask, "b s l -> (s b) l") if num_starts > 1 else mask
- return log_p, mask
diff --git a/rl4co/models/zoo/symnco/model.py b/rl4co/models/zoo/symnco/model.py
index 9889376c..7ff50bf6 100644
--- a/rl4co/models/zoo/symnco/model.py
+++ b/rl4co/models/zoo/symnco/model.py
@@ -1,8 +1,8 @@
-from tensordict import TensorDict
+from typing import Any
-from rl4co.models.rl.reinforce.base import REINFORCE
-from rl4co.models.rl.reinforce.baselines import NoBaseline
-from rl4co.models.zoo.symnco.augmentations import StateAugmentation
+from rl4co.data.transforms import StateAugmentation
+from rl4co.envs.common.base import RL4COEnvBase
+from rl4co.models.rl.reinforce.reinforce import REINFORCE
from rl4co.models.zoo.symnco.losses import (
invariance_loss,
problem_symmetricity_loss,
@@ -16,90 +16,94 @@
class SymNCO(REINFORCE):
- """SymNCO Model for neural combinatorial optimization based on REINFORCE
- Based on Kim et al. (2022) https://arxiv.org/abs/2205.13209
+ """SymNCO Model for neural combinatorial optimization based on REINFORCE with shared baselines
+ based on Kim et al. (2022) https://arxiv.org/abs/2205.13209
+
Args:
- env: TorchRL Environment
- policy: Policy
- baseline: REINFORCE Baseline
- num_augment: Number of augmentations (default: 8)
+ env: Environment to use for the algorithm
+ policy: Policy to use for the algorithm
+ policy_kwargs: Keyword arguments for policy
+ num_starts: Number of starts
+ num_augment: Number of augmentations
alpha: weight for invariance loss
beta: weight for solution symmetricity loss
- augment_test: whether to augment data during testing as well
+ **kwargs: Keyword arguments passed to the superclass
"""
def __init__(
self,
- env,
- policy=None,
- baseline=None,
- num_starts=10,
- num_augment=4,
- alpha=0.2,
- beta=1,
- augment_test=True,
- **policy_kwargs,
+ env: RL4COEnvBase,
+ policy: SymNCOPolicy = None,
+ policy_kwargs={},
+ num_augment: int = 4,
+ num_starts: int = 1,
+ alpha: float = 0.2,
+ beta: float = 1,
+ **kwargs,
):
- super(SymNCO, self).__init__(env, policy, baseline)
-
- self.policy = (
- SymNCOPolicy(self.env, num_starts=num_starts, **policy_kwargs)
- if policy is None
- else policy
- )
- if baseline is not None:
- log.warn(
- "SymNCO uses shared baselines in the loss functions. Baseline argument will be ignored"
- )
- self.baseline = NoBaseline() # baseline is calculated in the loss function
+ self.save_hyperparameters(logger=False)
+
+ if policy is None:
+ policy = SymNCOPolicy(env.name, **policy_kwargs)
- # Multi-start parameters from policy, default to 1
+ # Pass no baseline to superclass since there are multiple custom baselines
+ super().__init__(env, policy, "no", **kwargs)
+
+ self.num_starts = num_starts
self.num_augment = num_augment
- self.augment = StateAugmentation(self.env.name)
- self.augment_test = augment_test
+ self.augment = StateAugmentation(self.env.name, num_augment=self.num_augment)
self.alpha = alpha # weight for invariance loss
self.beta = beta # weight for solution symmetricity loss
- def forward(self, td: TensorDict, phase: str = "train", extra=None, **policy_kwargs):
- """Evaluate model, get costs and log probabilities and compare with baseline"""
-
- # Get num_starts from policy. If single_traj, set num_starts and num_augment to 0
- num_starts = getattr(self.policy.decoder, "num_starts", 0)
- num_augment = self.num_augment
-
- if policy_kwargs.get("single_traj", False):
- num_starts, num_augment = 0, 0
-
- if num_augment > 1:
- td = self.augment(td, num_augment)
-
- # Evaluate model, get costs and log probabilities
- out = self.policy(td, phase, **policy_kwargs)
-
- # Unbatchify reward to [batch_size, num_starts, num_augment].
- reward = unbatchify(out["reward"], (num_starts, num_augment))
+ # Add `_multistart` to decode type for train, val and test in policy if num_starts > 1
+ if self.num_starts > 1:
+ for phase in ["train", "val", "test"]:
+ attribute = f"{phase}_decode_type"
+ attr_get = getattr(self.policy, attribute)
+ # If does not exist, log error
+ if attr_get is None:
+ log.error(
+ f"Decode type for {phase} is None. Cannot add `_multistart`."
+ )
+ continue
+ elif "multistart" in attr_get:
+ continue
+ else:
+ setattr(self.policy, attribute, f"{attr_get}_multistart")
+
+ def shared_step(self, batch: Any, batch_idx: int, phase: str):
+ n_aug, n_start = self.num_augment, self.num_starts
+ td = self.env.reset(batch)
+ out = self.policy(td, self.env, phase=phase, num_starts=n_start)
+
+ # Run augmentation
+ if n_aug > 1:
+ td = self.augment(td)
+
+ # Unbatchify reward to [batch_size, n_start, n_aug].
+ reward = unbatchify(out["reward"], (n_start, n_aug))
# Get multi-start (=POMO) rewards and best actions
- if num_starts > 1:
+ if n_start > 1:
# max multi-start reward
max_reward, max_idxs = reward.max(dim=1)
out.update({"max_reward": max_reward})
- # Reshape batch to [batch, num_starts, num_augment]
+ # Reshape batch to [batch, n_start, n_aug]
if out.get("actions", None) is not None:
# TODO: actions are not unbatchified correctly
- actions = unbatchify(out["actions"], (num_starts, num_augment))
+ actions = unbatchify(out["actions"], (n_start, n_aug))
out.update(
{"best_multistart_actions": gather_by_index(actions, max_idxs)}
)
out["actions"] = actions
# Get augmentation score only during inference
- if num_augment > 1:
+ if n_aug > 1:
# If multistart is enabled, we use the best multistart rewards
- reward_ = max_reward if num_starts > 1 else reward
- # [batch, num_augment]
+ reward_ = max_reward if n_start > 1 else reward
+ # [batch, n_aug]
max_aug_reward, max_idxs = reward_.max(dim=1)
out.update({"max_aug_reward": max_aug_reward})
if out.get("best_multistart_actions", None) is not None:
@@ -111,21 +115,15 @@ def forward(self, td: TensorDict, phase: str = "train", extra=None, **policy_kwa
}
)
- # Get best actions and rewards
# Main training loss
if phase == "train":
- # [batch_size, num_starts, num_augment]
- ll = unbatchify(out["log_likelihood"], (num_starts, num_augment))
+ # [batch_size, n_start, n_aug]
+ ll = unbatchify(out["log_likelihood"], (n_start, n_aug))
# Calculate losses: problem symmetricity, solution symmetricity, invariance
-
- loss_ps = problem_symmetricity_loss(reward, ll) if num_starts > 1 else 0
- loss_ss = solution_symmetricity_loss(reward, ll) if num_augment > 1 else 0
- loss_inv = (
- invariance_loss(out["proj_embeddings"], num_augment)
- if num_augment > 1
- else 0
- )
+ loss_ps = problem_symmetricity_loss(reward, ll) if n_start > 1 else 0
+ loss_ss = solution_symmetricity_loss(reward, ll) if n_aug > 1 else 0
+ loss_inv = invariance_loss(out["proj_embeddings"], n_aug) if n_aug > 1 else 0
loss = loss_ps + self.beta * loss_ss + self.alpha * loss_inv
out.update(
{
diff --git a/rl4co/models/zoo/symnco/policy.py b/rl4co/models/zoo/symnco/policy.py
index a8bbbb9b..60e8cbab 100644
--- a/rl4co/models/zoo/symnco/policy.py
+++ b/rl4co/models/zoo/symnco/policy.py
@@ -1,107 +1,81 @@
+from typing import Union
+
import torch.nn as nn
from tensordict.tensordict import TensorDict
-from torchrl.envs import EnvBase
from torchrl.modules.models import MLP
-from rl4co.models.nn.graph.gat import GraphAttentionEncoder
-from rl4co.models.nn.utils import get_log_likelihood
-from rl4co.models.zoo.symnco.decoder import Decoder
+from rl4co.envs import RL4COEnvBase
+from rl4co.models.zoo.common.autoregressive import AutoregressivePolicy
from rl4co.utils.pylogger import get_pylogger
log = get_pylogger(__name__)
-class SymNCOPolicy(nn.Module):
+class SymNCOPolicy(AutoregressivePolicy):
+ """Docstring for SymNCOPolicy.
+
+ TODO
+ """
+
def __init__(
self,
- env: EnvBase,
- encoder: nn.Module = None,
- decoder: nn.Module = None,
+ env_name: str,
embedding_dim: int = 128,
- projection_head: nn.Module = None,
- num_starts: int = 10,
- num_encoder_layers: int = 6,
- normalization: str = "instance",
+ num_encoder_layers: int = 3,
num_heads: int = 8,
- use_graph_context: bool = True,
- mask_inner: bool = True,
- use_native_sdpa: bool = False,
- force_flash_attn: bool = False,
- train_decode_type: str = "sampling",
- val_decode_type: str = "greedy",
- test_decode_type: str = "greedy",
- **unused_kw,
+ normalization: str = "batch",
+ projection_head: nn.Module = None,
+ use_projection_head: bool = True,
+ **kwargs,
):
- super(SymNCOPolicy, self).__init__()
- if len(unused_kw) > 0:
- log.warn(f"Unused kwargs: {unused_kw}")
-
- self.env = env
-
- self.encoder = (
- GraphAttentionEncoder(
- num_heads=num_heads,
- embedding_dim=embedding_dim,
- num_layers=num_encoder_layers,
- env=self.env,
- normalization=normalization,
- use_native_sdpa=use_native_sdpa,
- force_flash_attn=force_flash_attn,
- )
- if encoder is None
- else encoder
+ super(SymNCOPolicy, self).__init__(
+ env_name=env_name,
+ embedding_dim=embedding_dim,
+ num_encoder_layers=num_encoder_layers,
+ num_heads=num_heads,
+ normalization=normalization,
+ **kwargs,
)
- self.decoder = (
- Decoder(
- env,
- embedding_dim,
- num_heads,
- num_starts=num_starts,
- use_graph_context=use_graph_context,
- mask_inner=mask_inner,
- force_flash_attn=force_flash_attn,
+ self.use_projection_head = use_projection_head
+
+ if self.use_projection_head:
+ self.projection_head = (
+ MLP(embedding_dim, embedding_dim, 1, embedding_dim, nn.ReLU)
+ if projection_head is None
+ else projection_head
)
- if decoder is None
- else decoder
- )
- self.projection_head = (
- MLP(embedding_dim, embedding_dim, 1, embedding_dim, nn.ReLU)
- if projection_head is None
- else projection_head
- )
- self.train_decode_type = train_decode_type
- self.val_decode_type = val_decode_type
- self.test_decode_type = test_decode_type
def forward(
self,
td: TensorDict,
+ env: Union[str, RL4COEnvBase] = None,
phase: str = "train",
return_actions: bool = False,
+ return_entropy: bool = False,
+ return_init_embeds: bool = True,
**decoder_kwargs,
- ) -> TensorDict:
- """Given observation, precompute embeddings and rollout"""
-
- # Set decoding type for policy, can be also greedy
- embeddings, init_embeds = self.encoder(td)
+ ) -> dict:
+ super().forward.__doc__ # trick to get docs from parent class
- # Get decode type depending on phase
- if decoder_kwargs.get("decode_type", None) is None:
- decoder_kwargs["decode_type"] = getattr(self, f"{phase}_decode_type")
+ # Ensure that if use_projection_head is True, then return_init_embeds is True
+ assert not (
+ self.use_projection_head and not return_init_embeds
+ ), "If `use_projection_head` is True, then we must `return_init_embeds`"
- # Main rollout
- log_p, actions, td = self.decoder(td, embeddings, **decoder_kwargs)
+ out = super().forward(
+ td,
+ env,
+ phase,
+ return_actions,
+ return_entropy,
+ return_init_embeds,
+ **decoder_kwargs,
+ )
- # Log likelyhood is calculated within the model since returning it per action does not work well with
- ll = get_log_likelihood(log_p, actions, td.get("mask", None))
- out = {
- "reward": td["reward"],
- "log_likelihood": ll,
- "proj_embeddings": self.projection_head(init_embeds),
- }
- if return_actions:
- out["actions"] = actions
+ # Project initial embeddings
+ if self.use_projection_head:
+ out["proj_embeddings"] = self.projection_head(out["init_embeds"])
return out
diff --git a/rl4co/tasks/__init__.py b/rl4co/tasks/__init__.py
new file mode 100644
index 00000000..e69de29b
diff --git a/rl4co/tasks/rl4co.py b/rl4co/tasks/rl4co.py
deleted file mode 100644
index 7b2ea6d5..00000000
--- a/rl4co/tasks/rl4co.py
+++ /dev/null
@@ -1,217 +0,0 @@
-from typing import Any
-
-import torch
-import torch.nn as nn
-
-from hydra.utils import instantiate
-from lightning import LightningModule
-from omegaconf import DictConfig
-from torch.utils.data import DataLoader
-
-from rl4co.data.dataset import tensordict_collate_fn
-from rl4co.data.generate_data import generate_default_datasets
-from rl4co.envs.common.base import RL4COEnvBase
-from rl4co.utils.pylogger import get_pylogger
-
-log = get_pylogger(__name__)
-
-
-class RL4COLitModule(LightningModule):
- """
- Base LightningModule for Neural Combinatorial Optimization
- Args:
- cfg: Hydra config
- env: Environment to use overridding the config. If None, instantiate from config
- model: Model to use overridding the config. If None, instantiate from config
- """
-
- def __init__(
- self, cfg: DictConfig, env: RL4COEnvBase = None, model: nn.Module = None
- ):
- super().__init__()
-
- # this line ensures params passed to LightningModule will be saved to ckpt
- # it also allows to access params with 'self.hparams' attribute
- # self.save_hyperparameters("env", "model", logger=False)
- self.save_hyperparameters(logger=False)
-
- if cfg.get("train", {}).get("disable_profiling", True):
- # Disable profiling executor. This reduces memory and increases speed.
- # https://github.com/HazyResearch/safari/blob/111d2726e7e2b8d57726b7a8b932ad8a4b2ad660/train.py#LL124-L129C17
- try:
- torch._C._jit_set_profiling_executor(False)
- torch._C._jit_set_profiling_mode(False)
- except AttributeError:
- pass
-
- cfg = DictConfig(cfg) if not isinstance(cfg, DictConfig) else cfg
- self.cfg = cfg
-
- # Instantiate environment, model and metrics
- self.env = env if env is not None else self.instantiate_env()
- self.model = model if model is not None else self.instantiate_model()
- self.instantiate_metrics()
-
- if cfg.get("train", {}).get("manual_optimization", False):
- log.info("Manual optimization enabled")
- self.automatic_optimization = False
-
- def instantiate_env(self):
- log.info(f"Instantiating environment <{self.cfg.env._target_}>")
- return instantiate(self.cfg.env)
-
- def instantiate_model(self):
- log.info(f"Instantiating model <{self.cfg.model._target_}>")
- return instantiate(self.cfg.model, env=self.env)
-
- def instantiate_metrics(self):
- """Dictionary of metrics to be logged at each phase"""
- metrics = self.cfg.get("metrics", {})
- if not metrics:
- log.info("No metrics specified, using default")
- self.train_metrics = metrics.get("train", ["loss", "reward"])
- self.val_metrics = metrics.get("val", ["reward"])
- self.test_metrics = metrics.get("test", ["reward"])
- self.log_on_step = metrics.get("log_on_step", True)
-
- def setup(self, stage="fit"):
- log.info("Setting up batch sizes for train/val/test")
- # If any of the batch sizes are specified, use that. Otherwise, use the default batch size
-
- data_cfg = self.cfg.get("data", {})
- batch_size = data_cfg.get("batch_size", None)
- if data_cfg.get("train_batch_size", None) is not None:
- train_batch_size = data_cfg.train_batch_size
- if batch_size is not None:
- log.warning(
- f"`train_batch_size`={train_batch_size} specified, ignoring `batch_size`={batch_size}"
- )
- elif batch_size is not None:
- train_batch_size = batch_size
- else:
- train_batch_size = 64
- log.warning(f"No batch size specified, using default as {train_batch_size}")
- # default all batch sizes to train_batch_size if not specified
- self.train_batch_size = train_batch_size
- self.val_batch_size = data_cfg.get("val_batch_size", train_batch_size)
- self.test_batch_size = data_cfg.get("test_batch_size", train_batch_size)
-
- log.info("Setting up datasets")
-
- # Create datasets automatically. If found, this will skip
- if data_cfg.get("generate_data", True):
- generate_default_datasets(
- data_dir=self.cfg.get("paths", {}).get("data_dir", "data/")
- )
-
- # If any of the dataset sizes are specified, use that. Otherwise, use the default dataset size
- def _get_phase_size(phase):
- DEFAULT_SIZES = {
- "train": 100000,
- "val": 10000,
- "test": 10000,
- }
- size = data_cfg.get(f"{phase}_size", None)
- if size is None:
- size = DEFAULT_SIZES[phase]
- message = f"No {phase}_size specified, using default as {size}"
- log.warning(message) if phase == "train" else log.info(message)
- return size
-
- self.train_size = _get_phase_size("train")
- self.val_size = _get_phase_size("val")
- self.test_size = _get_phase_size("test")
- self.train_dataset = self.wrap_dataset(self.env.dataset(self.train_size, "train"))
- self.val_dataset = self.env.dataset(self.val_size, "val")
- self.test_dataset = self.env.dataset(self.test_size, "test")
-
- if hasattr(self.model, "setup") and not self.cfg.get(
- "disable_model_setup", False
- ):
- self.model.setup(self)
-
- def configure_optimizers(self):
- train_cfg = self.cfg.get("train", {})
- if train_cfg.get("optimizer", None) is None:
- log.warning("No optimizer specified, using default")
- opt_cfg = train_cfg.get(
- "optimizer", DictConfig({"_target_": "torch.optim.Adam", "lr": 1e-4})
- )
- if "_target_" not in opt_cfg:
- log.info("No _target_ specified for optimizer, using default Adam")
- opt_cfg["_target_"] = "torch.optim.Adam"
-
- log.info(f"Instantiating optimizer <{opt_cfg._target_}>")
- optimizer = instantiate(opt_cfg, self.parameters())
-
- if "scheduler" not in train_cfg:
- return optimizer
- else:
- log.info(f"Instantiating scheduler <{train_cfg.scheduler._target_}>")
- lr_scheduler = instantiate(train_cfg.scheduler, optimizer)
- return [optimizer], {
- "scheduler": lr_scheduler,
- "interval": train_cfg.get("scheduler_interval", "epoch"),
- "monitor": train_cfg.get("scheduler_monitor", "val/reward"),
- }
-
- def shared_step(self, batch: Any, batch_idx: int, phase: str):
- td = self.env.reset(batch)
- out = self.model(td, phase, td.get("extra", None))
-
- # Log metrics
- metrics = getattr(self, f"{phase}_metrics")
- metrics = {f"{phase}/{k}": v.mean() for k, v in out.items() if k in metrics}
-
- log_on_step = self.log_on_step if phase == "train" else False
- on_epoch = False if phase == "train" else True
- self.log_dict(
- metrics,
- on_step=log_on_step,
- on_epoch=on_epoch,
- prog_bar=True,
- sync_dist=True,
- add_dataloader_idx=False,
- )
- return {"loss": out.get("loss", None), **metrics}
-
- def training_step(self, batch: Any, batch_idx: int):
- # To use new data every epoch, we need to call reload_dataloaders_every_epoch=True in Trainer
- return self.shared_step(batch, batch_idx, phase="train")
-
- def validation_step(self, batch: Any, batch_idx: int):
- return self.shared_step(batch, batch_idx, phase="val")
-
- def test_step(self, batch: Any, batch_idx: int):
- return self.shared_step(batch, batch_idx, phase="test")
-
- def train_dataloader(self):
- return self._dataloader(self.train_dataset, self.train_batch_size)
-
- def val_dataloader(self):
- return self._dataloader(self.val_dataset, self.val_batch_size)
-
- def test_dataloader(self):
- return self._dataloader(self.test_dataset, self.test_batch_size)
-
- def on_train_epoch_end(self):
- if hasattr(self.model, "on_train_epoch_end"):
- self.model.on_train_epoch_end(self)
- train_dataset = self.env.dataset(self.train_size, "train")
- self.train_dataset = self.wrap_dataset(train_dataset)
-
- def wrap_dataset(self, dataset):
- if hasattr(self.model, "wrap_dataset") and not self.cfg.get(
- "disable_wrap_dataset", False
- ):
- dataset = self.model.wrap_dataset(self, dataset)
- return dataset
-
- def _dataloader(self, dataset, batch_size):
- return DataLoader(
- dataset,
- batch_size=batch_size,
- shuffle=False, # no need to shuffle, we're resampling every epoch
- num_workers=self.cfg.get("data", {}).get("num_workers", 0),
- collate_fn=tensordict_collate_fn,
- )
diff --git a/rl4co/tasks/train.py b/rl4co/tasks/train.py
new file mode 100644
index 00000000..8d04a01c
--- /dev/null
+++ b/rl4co/tasks/train.py
@@ -0,0 +1,117 @@
+from typing import List, Optional, Tuple
+
+import hydra
+import lightning as L
+import pyrootutils
+import torch
+
+from lightning import Callback, LightningModule
+from lightning.pytorch.loggers import Logger
+from omegaconf import DictConfig
+
+pyrootutils.setup_root(__file__, indicator=".gitignore", pythonpath=True)
+
+from rl4co import utils
+from rl4co.utils import RL4COTrainer
+
+log = utils.get_pylogger(__name__)
+
+
+@utils.task_wrapper
+def run(cfg: DictConfig) -> Tuple[dict, dict]:
+ """Trains the model. Can additionally evaluate on a testset, using best weights obtained during
+ training.
+ This method is wrapped in optional @task_wrapper decorator, that controls the behavior during
+ failure. Useful for multiruns, saving info about the crash, etc.
+
+ Args:
+ cfg (DictConfig): Configuration composed by Hydra.
+ Returns:
+ Tuple[dict, dict]: Dict with metrics and dict with all instantiated objects.
+ """
+
+ # set seed for random number generators in pytorch, numpy and python.random
+ if cfg.get("seed"):
+ L.seed_everything(cfg.seed, workers=True)
+
+ # We instantiate the environment separately and then pass it to the model
+ log.info(f"Instantiating environment <{cfg.env._target_}>")
+ env = hydra.utils.instantiate(cfg.env)
+
+ # Note that the RL environment is instantiated inside the model
+ log.info(f"Instantiating model <{cfg.model._target_}>")
+ model: LightningModule = hydra.utils.instantiate(cfg.model, env)
+
+ log.info("Instantiating callbacks...")
+ callbacks: List[Callback] = utils.instantiate_callbacks(cfg.get("callbacks"))
+
+ log.info("Instantiating loggers...")
+ logger: List[Logger] = utils.instantiate_loggers(cfg.get("logger"))
+
+ log.info("Instantiating trainer...")
+ trainer: RL4COTrainer = hydra.utils.instantiate(
+ cfg.trainer,
+ callbacks=callbacks,
+ logger=logger,
+ )
+
+ object_dict = {
+ "cfg": cfg,
+ "model": model,
+ "callbacks": callbacks,
+ "logger": logger,
+ "trainer": trainer,
+ }
+
+ if logger:
+ log.info("Logging hyperparameters!")
+ utils.log_hyperparameters(object_dict)
+
+ if cfg.get("compile", False):
+ log.info("Compiling model!")
+ model = torch.compile(model)
+
+ if cfg.get("train"):
+ log.info("Starting training!")
+ trainer.fit(model=model, ckpt_path=cfg.get("ckpt_path"))
+
+ train_metrics = trainer.callback_metrics
+
+ if cfg.get("test"):
+ log.info("Starting testing!")
+ ckpt_path = trainer.checkpoint_callback.best_model_path
+ if ckpt_path == "":
+ log.warning("Best ckpt not found! Using current weights for testing...")
+ ckpt_path = None
+ trainer.test(model=model, ckpt_path=ckpt_path)
+ log.info(f"Best ckpt path: {ckpt_path}")
+
+ test_metrics = trainer.callback_metrics
+
+ # merge train and test metrics
+ metric_dict = {**train_metrics, **test_metrics}
+
+ return metric_dict, object_dict
+
+
+@hydra.main(version_base="1.3", config_path="../../configs", config_name="main.yaml")
+# @hydra.main(version_base="1.3", config_path="configs", config_name="experiment/tsp/am-ppo.yaml")
+def train(cfg: DictConfig) -> Optional[float]:
+ # apply extra utilities
+ # (e.g. ask for tags if none are provided in cfg, print cfg tree, etc.)
+ utils.extras(cfg)
+
+ # train the model
+ metric_dict, _ = run(cfg)
+
+ # safely retrieve metric value for hydra-based hyperparameter optimization
+ metric_value = utils.get_metric_value(
+ metric_dict=metric_dict, metric_name=cfg.get("optimized_metric")
+ )
+
+ # return optimized metric
+ return metric_value
+
+
+if __name__ == "__main__":
+ train()
diff --git a/rl4co/utils/__init__.py b/rl4co/utils/__init__.py
index 902431e2..89789006 100644
--- a/rl4co/utils/__init__.py
+++ b/rl4co/utils/__init__.py
@@ -1,5 +1,5 @@
from rl4co.utils.instantiators import instantiate_callbacks, instantiate_loggers
-from rl4co.utils.logging_utils import log_hyperparameters
from rl4co.utils.pylogger import get_pylogger
from rl4co.utils.rich_utils import enforce_tags, print_config_tree
-from rl4co.utils.utils import extras, get_metric_value, task_wrapper
+from rl4co.utils.trainer import RL4COTrainer
+from rl4co.utils.utils import extras, get_metric_value, log_hyperparameters, task_wrapper
diff --git a/rl4co/utils/helpers.py b/rl4co/utils/helpers.py
deleted file mode 100644
index 829fb007..00000000
--- a/rl4co/utils/helpers.py
+++ /dev/null
@@ -1,90 +0,0 @@
-"""Basic utilities for common tasks in Python and PyTorch."""
-import re
-
-from pathlib import Path
-
-import torch
-
-
-def flatten_params(params):
- """Flatten an iterable of parameters."""
- flat_params = [p.contiguous().view(-1) for p in params]
- return torch.cat(flat_params) if len(flat_params) > 0 else torch.tensor([])
-
-
-def flatten_params_grad(params, params_ref):
- """Flatten an iterable of parameters and their gradients."""
- _params = [p for p in params]
- _params_ref = [p for p in params_ref]
- flat_params = [
- p.contiguous().view(-1) if p is not None else torch.zeros_like(q).view(-1)
- for p, q in zip(_params, _params_ref)
- ]
- return torch.cat(flat_params) if len(flat_params) > 0 else torch.tensor([])
-
-
-def parameter_count(model):
- "Returns parameter count of an nn.Module."
- return sum([p.numel() for p in model.parameters()])
-
-
-def strictly_increasing(L):
- return all(x < y for x, y in zip(L, L[1:]))
-
-
-def strictly_decreasing(L):
- return all(x > y for x, y in zip(L, L[1:]))
-
-
-def non_increasing(L):
- return all(x >= y for x, y in zip(L, L[1:]))
-
-
-def non_decreasing(L):
- return all(x <= y for x, y in zip(L, L[1:]))
-
-
-def monotonic(L):
- return non_increasing(L) or non_decreasing(L)
-
-
-def find(tensor, values):
- "Finds indices of elements in a tensor that are equal to values."
- return torch.nonzero(tensor[..., None] == values)
-
-
-def sum_except(x, num_dims=1):
- """
- Sums all dimensions except the first `num_dims`.
- Args:
- x: Tensor, shape (batch_size, ...)
- num_dims: int, number of batch dims (default=1)
- Returns:
- x_sum: Tensor, shape (batch_size,)
- """
- return x.reshape(*x.shape[:num_dims], -1).sum(-1)
-
-
-def load_checkpoint(path, device="cpu"):
- "Loads nn.Module from a path."
- path = Path(path).expanduser()
- is_deepspeed = False
- if path.is_dir(): # DeepSpeed checkpoint
- is_deepspeed = True
- latest_path = path / "latest"
- if latest_path.is_file():
- with open(latest_path, "r") as fd:
- tag = fd.read().strip()
- else:
- raise ValueError(f"Unable to find 'latest' file at {latest_path}")
- path /= f"{tag}/mp_rank_00_model_states.pt"
- state_dict = torch.load(path, map_location=device)
- if is_deepspeed:
- state_dict = state_dict["module"]
-
- # Replace the names of some of the submodules
- def key_mapping(key):
- return re.sub(r"^module.model.", "", key)
-
- state_dict = {key_mapping(k): v for k, v in state_dict.items()}
- return state_dict
diff --git a/rl4co/utils/lightning.py b/rl4co/utils/lightning.py
index a6b0e316..a3f29cb7 100644
--- a/rl4co/utils/lightning.py
+++ b/rl4co/utils/lightning.py
@@ -2,11 +2,10 @@
import lightning as L
import torch
-import yaml
from omegaconf import DictConfig
-from rl4co.tasks.rl4co import RL4COLitModule
+# from rl4co.
from rl4co.utils.pylogger import get_pylogger
log = get_pylogger(__name__)
@@ -16,9 +15,12 @@ def get_lightning_device(lit_module: L.LightningModule) -> torch.device:
"""Get the device of the Lightning module before setup is called
See device setting issue in setup https://github.com/Lightning-AI/lightning/issues/2638
"""
- if lit_module.trainer.strategy.root_device != lit_module.device:
- return lit_module.trainer.strategy.root_device
- return lit_module.device
+ try:
+ if lit_module.trainer.strategy.root_device != lit_module.device:
+ return lit_module.trainer.strategy.root_device
+ return lit_module.device
+ except Exception:
+ return lit_module.device
def remove_key(config, key="wandb"):
@@ -72,66 +74,3 @@ def replace_dir_recursive(d, search, replace):
replace_dir_recursive(cfg, root_dir, os.getcwd())
return cfg
-
-
-def load_model_from_checkpoint(
- config,
- checkpoint_path,
- device="cpu",
- only_policy=True,
- disable_model_setup=True,
- disable_wrap_dataset=True,
- validate_only=True,
- clean_cfg_path=True,
- phase="test",
-):
- """Load model from checkpoint
-
- Args:
- config: Hydra config or its path
- checkpoint_path: Path to checkpoint
- device: Device to load model on
- only_policy: If True, load only policy parameters
- disable_model_setup: If True, disable model setup during RL4COLitModule init
- disable_wrap_dataset: If True, disable dataset wrapping during RL4COLitModule init
- validate_only: If True, only load model for validation and make train size small
- """
- if only_policy and not (disable_model_setup or disable_wrap_dataset):
- log.warning(
- "only_policy is True, but disable_model_setup and disable_wrap_dataset are False. "
- "This may cause errors due to missing model setup and dataset wrapping. "
- )
-
- # Load config if path is given
- if not isinstance(config, DictConfig or dict):
- log.info(f"Loading config from {config}")
- with open(config, "r") as stream:
- config = yaml.safe_load(stream)
-
- # Clean hydra config
- config = clean_hydra_config(config, clean_cfg_path=clean_cfg_path)
-
- # Add to cfg disable_model_setup and disable_wrap_dataset
- config["disable_model_setup"] = disable_model_setup
- config["disable_wrap_dataset"] = disable_wrap_dataset
- if validate_only:
- config["train_size"] = 10 # dummy
-
- # Load model and checkpoint
- lit_module = RL4COLitModule(config)
- checkpoint_path = torch.load(checkpoint_path, map_location=device)
-
- # Load model from checkpoint: only policy parameters or full model
- if only_policy:
- state_dict = checkpoint_path["state_dict"]
- # get only policy parameters
- state_dict = {k: v for k, v in state_dict.items() if "policy" in k}
- # remove leading 'policy.' from keys
- state_dict = {k.replace("model.policy.", ""): v for k, v in state_dict.items()}
- # load policy state_dict
- lit_module.model.policy.load_state_dict(state_dict)
- else:
- lit_module = lit_module.load_from_checkpoint(checkpoint_path)
-
- lit_module.setup(stage=phase)
- return lit_module
diff --git a/rl4co/utils/logging_utils.py b/rl4co/utils/logging_utils.py
deleted file mode 100644
index 5d160136..00000000
--- a/rl4co/utils/logging_utils.py
+++ /dev/null
@@ -1,49 +0,0 @@
-from lightning.pytorch.utilities.rank_zero import rank_zero_only
-
-from rl4co.utils import pylogger
-
-log = pylogger.get_pylogger(__name__)
-
-
-@rank_zero_only
-def log_hyperparameters(object_dict: dict) -> None:
- """Controls which config parts are saved by lightning loggers.
- Additionally saves:
- - Number of model parameters
- """
-
- hparams = {}
-
- cfg = object_dict["cfg"]
- model = object_dict["model"]
- trainer = object_dict["trainer"]
-
- if not trainer.logger:
- log.warning("Logger not found! Skipping hyperparameter logging...")
- return
-
- hparams["model"] = cfg["model"]
-
- # save number of model parameters
- hparams["model/params/total"] = sum(p.numel() for p in model.parameters())
- hparams["model/params/trainable"] = sum(
- p.numel() for p in model.parameters() if p.requires_grad
- )
- hparams["model/params/non_trainable"] = sum(
- p.numel() for p in model.parameters() if not p.requires_grad
- )
-
- hparams["data"] = cfg["data"]
- hparams["trainer"] = cfg["trainer"]
-
- hparams["callbacks"] = cfg.get("callbacks")
- hparams["extras"] = cfg.get("extras")
-
- hparams["task_name"] = cfg.get("task_name")
- hparams["tags"] = cfg.get("tags")
- hparams["ckpt_path"] = cfg.get("ckpt_path")
- hparams["seed"] = cfg.get("seed")
-
- # send hparams to all loggers
- for logger in trainer.loggers:
- logger.log_hyperparams(hparams)
diff --git a/rl4co/utils/ops.py b/rl4co/utils/ops.py
index b06a0df3..82d68d20 100644
--- a/rl4co/utils/ops.py
+++ b/rl4co/utils/ops.py
@@ -94,7 +94,7 @@ def get_tour_length(ordered_locs):
return get_distance(ordered_locs_next, ordered_locs).sum(-1)
-def select_start_nodes(td, num_nodes, env=None):
+def select_start_nodes(td, num_nodes, env):
"""Node selection strategy as proposed in POMO (Kwon et al. 2020)
and extended in SymNCO (Kim et al. 2022).
Selects different start nodes for each batch element
@@ -104,7 +104,7 @@ def select_start_nodes(td, num_nodes, env=None):
num_nodes: Number of nodes to select
env: (TODO) Environment may determine the node selection strategy
"""
- if env.name != "pctsp":
+ if env.name not in ["pctsp", "spctsp", "mtsp"]:
selected = torch.arange(num_nodes, device=td.device).repeat_interleave(
td.shape[0]
)
diff --git a/rl4co/utils/optim_helpers.py b/rl4co/utils/optim_helpers.py
new file mode 100644
index 00000000..f784a62b
--- /dev/null
+++ b/rl4co/utils/optim_helpers.py
@@ -0,0 +1,39 @@
+import inspect
+
+import torch
+import torch.nn as nn
+from torch.optim import Optimizer
+
+
+def get_pytorch_lr_schedulers():
+ """Get all learning rate schedulers from `torch.optim.lr_scheduler`"""
+ return torch.optim.lr_scheduler.__all__
+
+
+def get_pytorch_optimizers():
+ """Get all optimizers from `torch.optim`"""
+ optimizers = []
+ for name, obj in inspect.getmembers(torch.optim):
+ if inspect.isclass(obj) and issubclass(obj, Optimizer):
+ optimizers.append(name)
+ return optimizers
+
+
+def create_optimizer(parameters, optimizer_name: str, **optimizer_kwargs) -> Optimizer:
+ """Create optimizer for model. If `optimizer_name` is not found, raise ValueError."""
+ if optimizer_name in get_pytorch_optimizers():
+ optimizer_cls = getattr(torch.optim, optimizer_name)
+ return optimizer_cls(parameters, **optimizer_kwargs)
+ else:
+ raise ValueError(f"Optimizer {optimizer_name} not found.")
+
+
+def create_scheduler(
+ optimizer: Optimizer, scheduler_name: str, **scheduler_kwargs
+) -> torch.optim.lr_scheduler.LRScheduler:
+ """Create scheduler for optimizer. If `scheduler_name` is not found, raise ValueError."""
+ if scheduler_name in get_pytorch_lr_schedulers():
+ scheduler_cls = getattr(torch.optim.lr_scheduler, scheduler_name)
+ return scheduler_cls(optimizer, **scheduler_kwargs)
+ else:
+ raise ValueError(f"Scheduler {scheduler_name} not found.")
diff --git a/rl4co/utils/rich_utils.py b/rl4co/utils/rich_utils.py
index a2f33065..652ba568 100644
--- a/rl4co/utils/rich_utils.py
+++ b/rl4co/utils/rich_utils.py
@@ -19,7 +19,7 @@
def print_config_tree(
cfg: DictConfig,
print_order: Sequence[str] = (
- "data",
+ # "data", # note: data is dealt with in model
"model",
"callbacks",
"logger",
diff --git a/rl4co/utils/trainer.py b/rl4co/utils/trainer.py
new file mode 100644
index 00000000..9062089a
--- /dev/null
+++ b/rl4co/utils/trainer.py
@@ -0,0 +1,106 @@
+from typing import Iterable, List, Optional, Sequence, Union
+
+import torch
+
+from lightning import Callback, Trainer
+from lightning.pytorch.accelerators import Accelerator
+from lightning.pytorch.loggers import Logger
+from lightning.pytorch.strategies import DDPStrategy, Strategy
+
+from rl4co import utils
+
+log = utils.get_pylogger(__name__)
+
+
+class RL4COTrainer(Trainer):
+ """Wrapper around Lightning Trainer, with some RL4CO magic for efficient training.
+
+ Note:
+ The most important hyperparameter to use is `reload_dataloaders_every_n_epochs`.
+ This allows for datasets to be re-created on the run and distributed by Lightning across
+ devices on each epoch. Setting to a value different than 1 may lead to overfitting to a
+ specific (such as the initial) data distribution.
+
+ Args:
+ accelerator: hardware accelerator to use.
+ callbacks: list of callbacks.
+ logger: logger (or iterable collection of loggers) for experiment tracking.
+ min_epochs: minimum number of training epochs.
+ max_epochs: maximum number of training epochs.
+ strategy: training strategy to use (if any), such as Distributed Data Parallel (DDP).
+ devices: number of devices to train on (int) or which GPUs to train on (list or str) applied per node.
+ gradient_clip_val: 0 means don't clip. Defaults to 1.0 for stability.
+ precision: allows for mixed precision training. Can be specified as a string (e.g., '16').
+ This also allows to use `FlashAttention` by default.
+ disable_profiling_executor: Disable JIT profiling executor. This reduces memory and increases speed.
+ auto_configure_ddp: Automatically configure DDP strategy if multiple GPUs are available.
+ reload_dataloaders_every_n_epochs: Set to a value different than 1 to reload dataloaders every n epochs.
+ matmul_precision: Set matmul precision for faster inference https://pytorch.org/docs/stable/generated/torch.set_float32_matmul_precision.html#torch.set_float32_matmul_precision
+ **kwargs: Additional keyword arguments passed to the Lightning Trainer. See :class:`~lightning.pytorch.trainer.Trainer` for details.
+ """
+
+ def __init__(
+ self,
+ accelerator: Union[str, Accelerator] = "auto",
+ callbacks: Optional[List[Callback]] = None,
+ logger: Optional[Union[Logger, Iterable[Logger]]] = None,
+ min_epochs: Optional[int] = None,
+ max_epochs: Optional[int] = None,
+ strategy: Union[str, Strategy] = "auto",
+ devices: Union[List[int], str, int] = "auto",
+ gradient_clip_val: Union[int, float] = 1.0,
+ precision: Union[str, int] = "16-mixed",
+ disable_profiling_executor: bool = True,
+ auto_configure_ddp: bool = True,
+ reload_dataloaders_every_n_epochs: int = 1,
+ matmul_precision: Union[str, int] = "medium",
+ **kwargs,
+ ):
+ # Disable JIT profiling executor. This reduces memory and increases speed.
+ # Reference: https://github.com/HazyResearch/safari/blob/111d2726e7e2b8d57726b7a8b932ad8a4b2ad660/train.py#LL124-L129C17
+ if disable_profiling_executor:
+ try:
+ torch._C._jit_set_profiling_executor(False)
+ torch._C._jit_set_profiling_mode(False)
+ except AttributeError:
+ pass
+
+ # Configure DDP automatically
+ if auto_configure_ddp and isinstance(devices, Sequence):
+ n_devices = len(devices)
+ if n_devices > 1 and strategy is None:
+ log.info("Configuring DDP strategy automatically")
+ strategy = DDPStrategy(
+ find_unused_parameters=True, # We set to True due to RL envs
+ gradient_as_bucket_view=True, # https://pytorch-lightning.readthedocs.io/en/stable/advanced/advanced_gpu.html#ddp-optimizations
+ )
+
+ # Set matmul precision for faster inference https://pytorch.org/docs/stable/generated/torch.set_float32_matmul_precision.html#torch.set_float32_matmul_precision
+ if matmul_precision is not None:
+ torch.set_float32_matmul_precision(matmul_precision)
+
+ # Check if gradient_clip_val is set to None
+ if gradient_clip_val is None:
+ log.warning(
+ "gradient_clip_val is set to None. This may lead to unstable training."
+ )
+
+ # We should reload dataloaders every epoch for RL training
+ if reload_dataloaders_every_n_epochs != 1:
+ log.warning(
+ "We reload dataloaders every epoch for RL training. Setting reload_dataloaders_every_n_epochs to a value different than 1 "
+ + "may lead to unexpected behavior since the initial conditions will be the same for `n_epochs` epochs."
+ )
+
+ # Main call to `Trainer` superclass
+ super().__init__(
+ accelerator=accelerator,
+ callbacks=callbacks,
+ logger=logger,
+ min_epochs=min_epochs,
+ max_epochs=max_epochs,
+ strategy=strategy,
+ devices=devices,
+ precision=precision,
+ **kwargs,
+ )
diff --git a/rl4co/utils/transfer.py b/rl4co/utils/transfer.py
index e932071a..f485036b 100644
--- a/rl4co/utils/transfer.py
+++ b/rl4co/utils/transfer.py
@@ -1,7 +1,8 @@
import torch.nn as nn
-def transplant_weights(
+# Work in progress on transfer learning between models
+def transfer_learning_weights(
source: nn.Module,
target: nn.Module,
load_encoder: bool = True,
diff --git a/rl4co/utils/utils.py b/rl4co/utils/utils.py
index 9fc26a24..227cf05b 100644
--- a/rl4co/utils/utils.py
+++ b/rl4co/utils/utils.py
@@ -154,7 +154,9 @@ def log_hyperparameters(object_dict: dict) -> None:
p.numel() for p in model.parameters() if not p.requires_grad
)
- hparams["data"] = cfg["data"]
+ ## Note: we do not use the data config, since it is dealt with in the model
+ ## which is a `LightningModule`
+ # hparams["data"] = cfg["data"]
hparams["trainer"] = cfg["trainer"]
hparams["callbacks"] = cfg.get("callbacks")
diff --git a/run.py b/run.py
index 82c3e76d..92dc7a4a 100644
--- a/run.py
+++ b/run.py
@@ -1,148 +1,5 @@
-from typing import List, Optional, Sequence, Tuple
-
-import hydra
-import lightning as L
-import pyrootutils
-import torch
-
-from lightning import Callback, LightningModule, Trainer
-from lightning.pytorch.loggers import Logger
-from omegaconf import DictConfig
-
-pyrootutils.setup_root(__file__, indicator=".gitignore", pythonpath=True)
-
-from rl4co import utils
-
-log = utils.get_pylogger(__name__)
-
-
-@utils.task_wrapper
-def run(cfg: DictConfig) -> Tuple[dict, dict]:
- """Trains the model. Can additionally evaluate on a testset, using best weights obtained during
- training.
- This method is wrapped in optional @task_wrapper decorator, that controls the behavior during
- failure. Useful for multiruns, saving info about the crash, etc.
- Args:
- cfg (DictConfig): Configuration composed by Hydra.
- Returns:
- Tuple[dict, dict]: Dict with metrics and dict with all instantiated objects.
- """
-
- # set seed for random number generators in pytorch, numpy and python.random
- if cfg.get("seed"):
- L.seed_everything(cfg.seed, workers=True)
-
- # Note that the RL environment is instantiated inside the model
- log.info(f"Instantiating task <{cfg.task._target_}>")
- model: LightningModule = hydra.utils.instantiate(cfg.task, cfg, _recursive_=False)
-
- if cfg.get("transfer"):
- from rl4co.utils.lightning import load_model_from_checkpoint
- from rl4co.utils.transfer import transplant_weights
-
- log.info("load pretrained model")
- device = model.device
- pretrained_model = load_model_from_checkpoint(
- cfg.transfer.source.config,
- cfg.transfer.source.checkpoint_path,
- device=device,
- )
-
- transplant_weights(pretrained_model, model, **cfg.transfer.transfer_config)
- del pretrained_model
-
- log.info("Instantiating callbacks...")
- callbacks: List[Callback] = utils.instantiate_callbacks(cfg.get("callbacks"))
-
- log.info("Instantiating loggers...")
- logger: List[Logger] = utils.instantiate_loggers(cfg.get("logger"))
-
- # Configure DDP automatically
- n_devices = cfg.trainer.get("devices", 1)
- if isinstance(n_devices, Sequence):
- n_devices = len(n_devices)
- if n_devices > 1 and cfg.trainer.get("strategy", None) is None:
- log.info("Configuring DDP strategy automatically")
- cfg.trainer.strategy = dict(
- _target_="lightning.pytorch.strategies.DDPStrategy",
- find_unused_parameters=True, # We set to True due to RL envs
- gradient_as_bucket_view=True, # https://pytorch-lightning.readthedocs.io/en/stable/advanced/advanced_gpu.html#ddp-optimizations
- )
-
- # Set matmul precision for faster inference https://pytorch.org/docs/stable/generated/torch.set_float32_matmul_precision.html#torch.set_float32_matmul_precision
- torch.set_float32_matmul_precision(cfg.get("matmul_precision", "medium"))
-
- log.info(f"Instantiating trainer <{cfg.trainer._target_}>")
- if cfg.trainer.get("reload_dataloaders_every_n_epochs", 1) != 1:
- log.warning(
- "We must reload dataloaders every epoch for RL training. Ignoring reload_dataloaders_every_n_epochs key in trainer."
- )
- reload_dataloaders_every_n_epochs = 1
-
- trainer: Trainer = hydra.utils.instantiate(
- cfg.trainer,
- callbacks=callbacks,
- logger=logger,
- reload_dataloaders_every_n_epochs=reload_dataloaders_every_n_epochs,
- )
-
- object_dict = {
- "cfg": cfg,
- "model": model,
- "callbacks": callbacks,
- "logger": logger,
- "trainer": trainer,
- }
-
- if logger:
- log.info("Logging hyperparameters!")
- utils.log_hyperparameters(object_dict)
-
- if cfg.get("compile", False):
- log.info("Compiling model!")
- model = torch.compile(model)
-
- if cfg.get("train"):
- log.info("Starting training!")
- trainer.fit(model=model, ckpt_path=cfg.get("ckpt_path"))
-
- train_metrics = trainer.callback_metrics
-
- if cfg.get("test"):
- log.info("Starting testing!")
- ckpt_path = trainer.checkpoint_callback.best_model_path
- if ckpt_path == "":
- log.warning("Best ckpt not found! Using current weights for testing...")
- ckpt_path = None
- trainer.test(model=model, ckpt_path=ckpt_path)
- log.info(f"Best ckpt path: {ckpt_path}")
-
- test_metrics = trainer.callback_metrics
-
- # merge train and test metrics
- metric_dict = {**train_metrics, **test_metrics}
-
- return metric_dict, object_dict
-
-
-@hydra.main(version_base="1.3", config_path="configs", config_name="main.yaml")
-# @hydra.main(version_base="1.3", config_path="configs", config_name="experiment/tsp/am-ppo.yaml")
-def main(cfg: DictConfig) -> Optional[float]:
- # apply extra utilities
- # (e.g. ask for tags if none are provided in cfg, print cfg tree, etc.)
- utils.extras(cfg)
-
- # train the model
- metric_dict, _ = run(cfg)
-
- # safely retrieve metric value for hydra-based hyperparameter optimization
- metric_value = utils.get_metric_value(
- metric_dict=metric_dict, metric_name=cfg.get("optimized_metric")
- )
-
- # return optimized metric
- return metric_value
-
+from rl4co.tasks.train import train
+# Call the train function directly from inside the package
if __name__ == "__main__":
- main()
+ train()
diff --git a/tests/test_envs.py b/tests/test_envs.py
index a5766d94..b98a5509 100644
--- a/tests/test_envs.py
+++ b/tests/test_envs.py
@@ -1,53 +1,58 @@
-import pytest
+import warnings
-from rl4co.envs import ATSPEnv, CVRPEnv, DPPEnv, MTSPEnv, PDPEnv, SDVRPEnv, TSPEnv
+import matplotlib.pyplot as plt
+import pytest
+import torch
+
+from rl4co.envs import (
+ ATSPEnv,
+ CVRPEnv,
+ DPPEnv,
+ FFSPEnv,
+ MDPPEnv,
+ MTSPEnv,
+ OPEnv,
+ PCTSPEnv,
+ PDPEnv,
+ SDVRPEnv,
+ SPCTSPEnv,
+ TSPEnv,
+)
from rl4co.models.nn.utils import random_policy, rollout
-
-@pytest.mark.parametrize("size, batch_size", [(20, 2)])
-def test_tsp(size, batch_size):
- env = TSPEnv(num_loc=size)
- reward = rollout(env, env.reset(batch_size=[batch_size]), random_policy)
- assert reward.shape == (batch_size,)
-
-
-@pytest.mark.parametrize("size, batch_size", [(20, 2)])
-def test_atsp(size, batch_size):
- env = ATSPEnv(num_loc=size)
- reward = rollout(env, env.reset(batch_size=[batch_size]), random_policy)
- assert reward.shape == (batch_size,)
-
-
-@pytest.mark.parametrize("size, batch_size", [(20, 2)])
-def test_dpp(size, batch_size):
- env = DPPEnv()
- reward = rollout(env, env.reset(batch_size=[batch_size]), random_policy)
- assert reward.shape == (batch_size,)
+# Switch to non-GUI backend for testing
+plt.switch_backend("Agg")
+warnings.filterwarnings("ignore", "Matplotlib is currently using agg")
-@pytest.mark.parametrize("size, batch_size", [(20, 2)])
-def test_cvrp(size, batch_size):
- env = CVRPEnv()
- reward = rollout(env, env.reset(batch_size=[batch_size]), random_policy)
+@pytest.mark.parametrize(
+ "env_cls",
+ [TSPEnv, CVRPEnv, SDVRPEnv, PCTSPEnv, SPCTSPEnv, OPEnv, PDPEnv, MTSPEnv, ATSPEnv],
+)
+def test_routing(env_cls, batch_size=2, size=20):
+ env = env_cls(num_loc=size)
+ reward, td, actions = rollout(env, env.reset(batch_size=[batch_size]), random_policy)
+ env.render(td, actions)
assert reward.shape == (batch_size,)
-@pytest.mark.parametrize("size, batch_size", [(20, 2)])
-def test_sdvrp(size, batch_size):
- env = SDVRPEnv()
- reward = rollout(env, env.reset(batch_size=[batch_size]), random_policy)
+@pytest.mark.parametrize("env_cls", [DPPEnv, MDPPEnv])
+def test_eda(env_cls, batch_size=2, size=20):
+ env = env_cls(num_loc=size)
+ reward, td, actions = rollout(env, env.reset(batch_size=[batch_size]), random_policy)
+ ## Note: we skip rendering for now because we need to collect extra data. TODO
+ # env.render(td, actions)
assert reward.shape == (batch_size,)
-@pytest.mark.parametrize("size, batch_size", [(20, 2)])
-def test_pdp(size, batch_size):
- env = PDPEnv(num_loc=size)
- reward = rollout(env, env.reset(batch_size=[batch_size]), random_policy)
- assert reward.shape == (batch_size,)
-
-
-@pytest.mark.parametrize("size, batch_size", [(20, 2)])
-def test_mtsp(size, batch_size):
- env = MTSPEnv(num_loc=size)
- reward = rollout(env, env.reset(batch_size=[batch_size]), random_policy)
- assert reward.shape == (batch_size,)
+@pytest.mark.parametrize("env_cls", [FFSPEnv])
+def test_scheduling(env_cls, batch_size=2):
+ env = env_cls(
+ num_stage=2,
+ num_machine=3,
+ num_job=4,
+ batch_size=[batch_size],
+ )
+ td = env.reset()
+ td["job_idx"] = torch.tensor([1, 1])
+ td = env._step(td)
diff --git a/tests/test_models.py b/tests/test_models.py
deleted file mode 100644
index a8fd752b..00000000
--- a/tests/test_models.py
+++ /dev/null
@@ -1,74 +0,0 @@
-import pytest
-
-from rl4co.models import (
- POMO,
- AttentionModel,
- HeterogeneousAttentionModel,
- MDAMPolicy,
- PointerNetwork,
- SymNCO,
- SymNCOPolicy,
-)
-from rl4co.utils.test_utils import generate_env_data
-
-
-@pytest.mark.parametrize("size", [20])
-@pytest.mark.parametrize(
- "env_name", ["tsp", "cvrp", "sdvrp", "mtsp", "op", "pctsp", "spctsp", "dpp", "mdpp"]
-) # todo: sdvrp
-def test_am(size, env_name, batch_size=2):
- env, x = generate_env_data(env_name, size, batch_size)
- td = env.reset(x)
- model = AttentionModel(env)
- out = model(td, decode_type="sampling")
- assert out["reward"].shape == (batch_size,)
-
-
-@pytest.mark.parametrize("size", [20])
-def test_ptrnet(size, batch_size=2):
- env, x = generate_env_data("tsp", size, batch_size)
- td = env.reset(x)
- model = PointerNetwork(env)
- out = model(td, decode_type="sampling")
- assert out["reward"].shape == (batch_size,)
-
-
-@pytest.mark.parametrize("size", [20])
-def test_pomo(size, batch_size=2):
- env, x = generate_env_data("tsp", size, batch_size)
- td = env.reset(x)
- model = POMO(env, num_starts=size)
- out = model(td, decode_type="sampling")
- assert out["reward"].shape == (batch_size * size,)
-
-
-@pytest.mark.parametrize("size", [20])
-def test_symnco(size, batch_size=2, num_augment=8, num_starts=20):
- env, x = generate_env_data("tsp", size, batch_size)
- td = env.reset(x)
- policy = SymNCOPolicy(env, num_starts=num_starts)
- model = SymNCO(env, policy, num_augment=num_augment)
- out = model(td, decode_type="sampling")
- assert out["reward"].shape == (batch_size * num_augment * num_starts,)
-
-
-@pytest.mark.parametrize("size", [20])
-def test_ham(size, batch_size=2):
- env, x = generate_env_data("pdp", size, batch_size)
- td = env.reset(x)
- model = HeterogeneousAttentionModel(env)
- out = model(td, decode_type="sampling")
- assert out["reward"].shape == (batch_size,)
-
-
-@pytest.mark.parametrize("size", [20])
-def test_mdam(size, batch_size=2, num_paths=5):
- env, x = generate_env_data("tsp", size, batch_size)
- td = env.reset(x)
- model = MDAMPolicy(env, num_paths=num_paths)
- out = model(td, decode_type="sampling")
- print(out["reward"].shape)
- assert out["reward"].shape == (
- num_paths,
- batch_size,
- )
diff --git a/tests/test_policy.py b/tests/test_policy.py
new file mode 100644
index 00000000..36fe9242
--- /dev/null
+++ b/tests/test_policy.py
@@ -0,0 +1,35 @@
+import pytest
+
+from rl4co.models import AutoregressivePolicy, PointerNetworkPolicy
+from rl4co.utils.test_utils import generate_env_data
+
+
+# Main autorergressive policy: rollout over multiple envs since it is the base
+@pytest.mark.parametrize(
+ "env_name", ["tsp", "cvrp", "sdvrp", "mtsp", "op", "pctsp", "spctsp", "dpp", "mdpp"]
+)
+def test_base_policy(env_name, size=20, batch_size=2):
+ env, x = generate_env_data(env_name, size, batch_size)
+ td = env.reset(x)
+ policy = AutoregressivePolicy(env.name)
+ out = policy(td, env, decode_type="greedy")
+ assert out["reward"].shape == (batch_size,)
+
+
+@pytest.mark.parametrize("env_name", ["tsp", "cvrp", "pctsp", "spctsp"])
+def test_base_policy_multistart(env_name, size=20, batch_size=2):
+ env, x = generate_env_data(env_name, size, batch_size)
+ td = env.reset(x)
+ policy = AutoregressivePolicy(env.name)
+ out = policy(td, env, decode_type="greedy_multistart", num_starts=size)
+ assert out["reward"].shape == (
+ batch_size * size,
+ ) # to evaluate, we could just unbatchify
+
+
+def test_pointer_network(size=20, batch_size=2):
+ env, x = generate_env_data("tsp", size, batch_size)
+ td = env.reset(x)
+ policy = PointerNetworkPolicy(env.name)
+ out = policy(td, env, decode_type="greedy")
+ assert out["reward"].shape == (batch_size,)
diff --git a/tests/test_tasks.py b/tests/test_tasks.py
new file mode 100644
index 00000000..d0f67061
--- /dev/null
+++ b/tests/test_tasks.py
@@ -0,0 +1,54 @@
+import pyrootutils
+import pytest
+
+from hydra import compose, initialize
+from hydra.core.global_hydra import GlobalHydra
+from hydra.core.hydra_config import HydraConfig
+from omegaconf import DictConfig, open_dict
+
+from rl4co.tasks.train import run
+
+
+@pytest.fixture(scope="package")
+def cfg_train_global() -> DictConfig:
+ with initialize(config_path="../configs"):
+ cfg = compose(config_name="main.yaml", return_hydra_config=True, overrides=[])
+
+ # set defaults for all tests
+ with open_dict(cfg):
+ cfg.paths.root_dir = str(pyrootutils.find_root(indicator=".gitignore"))
+ cfg.trainer.max_epochs = 1
+ cfg.model.train_data_size = 100
+ cfg.model.val_data_size = 100
+ cfg.model.test_data_size = 100
+ cfg.trainer.accelerator = "cpu"
+ cfg.trainer.devices = 1
+ cfg.extras.print_config = False
+ cfg.extras.enforce_tags = False
+ cfg.logger = None
+ cfg.callbacks.learning_rate_monitor = None
+
+ return cfg
+
+
+@pytest.fixture(scope="function")
+def cfg_train(cfg_train_global, tmp_path) -> DictConfig:
+ cfg = cfg_train_global.copy()
+
+ with open_dict(cfg):
+ cfg.paths.output_dir = str(tmp_path)
+ cfg.paths.log_dir = str(tmp_path)
+
+ yield cfg
+
+ GlobalHydra.instance().clear()
+
+
+def test_train_fast_dev_run(cfg_train):
+ """Run for 1 train, val and test step."""
+ HydraConfig().set_config(cfg_train)
+ with open_dict(cfg_train):
+ cfg_train.trainer.fast_dev_run = True
+ cfg_train.trainer.accelerator = "cpu"
+ print(cfg_train)
+ run(cfg_train)
diff --git a/tests/test_training.py b/tests/test_training.py
new file mode 100644
index 00000000..c3d2f591
--- /dev/null
+++ b/tests/test_training.py
@@ -0,0 +1,52 @@
+import pytest
+
+from rl4co.envs import PDPEnv, TSPEnv
+from rl4co.models import AttentionModel, HeterogeneousAttentionModel, PPOModel, SymNCO
+from rl4co.utils import RL4COTrainer
+
+
+# Test out simple training loop and test with multiple baselines
+@pytest.mark.parametrize("baseline", ["rollout", "exponential", "critic", "no"])
+def test_reinforce(baseline):
+ env = TSPEnv(num_loc=20)
+
+ model = AttentionModel(
+ env, baseline=baseline, train_data_size=10, val_data_size=10, test_data_size=10
+ )
+
+ trainer = RL4COTrainer(max_epochs=1)
+ trainer.fit(model)
+ trainer.test(model)
+
+
+def test_ppo():
+ env = TSPEnv(num_loc=20)
+ model = PPOModel(env, train_data_size=10, val_data_size=10, test_data_size=10)
+ trainer = RL4COTrainer(max_epochs=1)
+ trainer.fit(model)
+ trainer.test(model)
+
+
+def test_symnco():
+ env = TSPEnv(num_loc=20)
+ model = SymNCO(
+ env,
+ train_data_size=10,
+ val_data_size=10,
+ test_data_size=10,
+ num_augment=2,
+ num_starts=20,
+ )
+ trainer = RL4COTrainer(max_epochs=1)
+ trainer.fit(model)
+ trainer.test(model)
+
+
+def test_ham():
+ env = PDPEnv(num_loc=20)
+ model = HeterogeneousAttentionModel(
+ env, train_data_size=10, val_data_size=10, test_data_size=10
+ )
+ trainer = RL4COTrainer(max_epochs=1)
+ trainer.fit(model)
+ trainer.test(model)
diff --git a/tests/test_ops.py b/tests/test_utils.py
similarity index 100%
rename from tests/test_ops.py
rename to tests/test_utils.py