-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathtraining_pipeline_tsm.py
126 lines (105 loc) · 3.58 KB
/
training_pipeline_tsm.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
# dataset settings
dataset_type = 'VideoDataset'
data_root = ''
data_root_val = ''
ann_file_train = ''
ann_file_val = ''
file_client_args = dict(io_backend='disk')
train_pipeline = [
dict(type='DecordInit', num_threads=4, **file_client_args),
dict(type='SampleFrames', clip_len=1, frame_interval=1, num_clips=8),
dict(type='DecordDecode'),
dict(type='Resize', scale=(224, 224)),
dict(
type='MultiScaleCrop',
input_size=224,
scales=(1, 0.9, 0.8, 0.7),
random_crop=False,
max_wh_scale_gap=1,
num_fixed_crops=13),
dict(type='ResizeSquarePadding', out_shape=(224, 224)),
dict(type='Flip', flip_ratio=0.5),
dict(type='FormatShape', input_format='NCHW'),
dict(type='PackActionInputs')
]
val_pipeline = [
dict(type='DecordInit', **file_client_args),
dict(
type='SampleFrames',
clip_len=1,
frame_interval=1,
num_clips=8,
test_mode=True),
dict(type='DecordDecode'),
dict(type='ResizeSquarePadding', out_shape=(224, 224)),
dict(type='FormatShape', input_format='NCHW'),
dict(type='PackActionInputs')
]
train_dataloader = dict(
batch_size=16,
num_workers=8,
persistent_workers=True,
sampler=dict(type='DefaultSampler', shuffle=True),
dataset=dict(
type=dataset_type,
ann_file=ann_file_train,
data_prefix=dict(video=data_root),
pipeline=train_pipeline))
val_dataloader = dict(
batch_size=16,
num_workers=8,
persistent_workers=True,
sampler=dict(type='DefaultSampler', shuffle=False),
dataset=dict(
type=dataset_type,
ann_file=ann_file_val,
data_prefix=dict(video=data_root),
pipeline=val_pipeline,
test_mode=True))
val_evaluator = dict(type='AccMetric', collect_device='gpu')
train_cfg = dict(
type='EpochBasedTrainLoop', max_epochs=100, val_begin=1, val_interval=1)
val_cfg = dict(type='ValLoop')
param_scheduler = [
dict(
type="LinearLR", start_factor=0.02, by_epoch=True, begin=0, end=20, convert_to_iter_based=True),
dict(
type="CosineAnnealingLR",
T_max=80,
eta_min_ratio=0.0016666666666666668,
by_epoch=True,
begin=20,
end=100,
convert_to_iter_based=True,
),
]
optim_wrapper = dict(
constructor='TSMOptimWrapperConstructor',
paramwise_cfg=dict(fc_lr5=True),
optimizer=dict(type='SGD', lr=0.02, momentum=0.9, weight_decay=2e-05),
clip_grad=dict(max_norm=20, norm_type=2))
default_scope = 'mmaction'
default_hooks = dict(
runtime_info=dict(type='RuntimeInfoHook'),
timer=dict(type='IterTimerHook'),
logger=dict(type='LoggerHook', interval=20, ignore_last=False),
param_scheduler=dict(type='ParamSchedulerHook'),
checkpoint=dict(type='CheckpointHook', interval=5, max_keep_ckpts=5, save_best='auto'),
sampler_seed=dict(type='DistSamplerSeedHook'),
sync_buffers=dict(type='SyncBuffersHook'))
env_cfg = dict(
cudnn_benchmark=False,
mp_cfg=dict(mp_start_method='fork', opencv_num_threads=1),
dist_cfg=dict(backend='nccl'))
log_processor = dict(type='LogProcessor', window_size=20, by_epoch=True)
vis_backends = [dict(type='LocalVisBackend')]
visualizer = dict(
type='ActionVisualizer', vis_backends=[dict(type='LocalVisBackend'),dict(type='TensorboardVisBackend')])
log_level = 'INFO'
load_from = None
resume = False
# Default setting for scaling LR automatically
# - `enable` means enable scaling LR automatically
# or not by default.
# - `base_batch_size` = (8 GPUs) x (16 samples per GPU).
auto_scale_lr = dict(enable=False, base_batch_size=32)