forked from mwdhont/SimCLRv1-keras-tensorflow
-
Notifications
You must be signed in to change notification settings - Fork 0
/
evaluate_features.py
182 lines (162 loc) · 5.48 KB
/
evaluate_features.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
import cv2 as cv
import matplotlib.pyplot as plt
import numpy as np
import random
from sklearn.metrics import classification_report
from sklearn.model_selection import train_test_split
from sklearn.linear_model import LogisticRegressionCV
from sklearn.manifold import TSNE
from tensorflow.keras.applications.vgg16 import preprocess_input
def get_features(base_model, df, class_labels, VGG=True):
"""Computes base_model features encoding from dataframe df
Args:
base_model: encoder
df: Dataframe
class_labels: labels (strings)
VGG: Boolean to confirm if model is VGG (important for preprocessing)
Returns:
features: base_model features encodings
y: labels (int)
feats: dictionary with features per class
Notes:
Not strictly necessary, but features are calculated seperately for each
class in feats variable.
"""
feats = {}
class_instances = {}
for i, label in enumerate(class_labels):
feats[label] = []
class_instances[label] = (df.class_label == label).sum()
# Calculate features for all classes
features = []
for label in class_labels:
for index in range(class_instances[label]):
filename = df.loc[df["class_label"] == label]["filename"].iloc[
index
]
img = cv.cvtColor(cv.imread(filename), cv.COLOR_BGR2RGB)
if VGG:
# VGG16 preprocessing
img_pr = preprocess_input(img)
else:
# PREPROCESSING TO BE IMPLEMENTED IN CORRESPONDENCE WITH MODEL
img_pr = img
# Feature prediction for each img + Normalization
feat_un_norm = base_model.predict(np.array([img_pr])).flatten()
feat_norm = feat_un_norm / np.max(np.abs(feat_un_norm), axis=0)
if len(feats[label]) == 0:
feats[label] = np.array(feat_norm)
else:
feats[label] = np.vstack((feats[label], feat_norm))
if len(features) == 0:
features = feats[label]
else:
features = np.vstack((features, feats[label]))
# Define labels for all classes
y = []
for i, label in enumerate(class_labels):
y = np.concatenate((y, np.array([i] * class_instances[label])))
return features, y, feats
def linear_classifier(
features_train,
y_train,
features_test,
y_test,
class_labels,
fraction=1.0,
test_size=0.2,
):
"""Evaluates the feature quality by the means of a logistic regression classifier
Args:
features: Training instances
y: labels (ints)
class_labels: labels (strings)
fraction: fraction of features used for training clf
test_size: fraction of features used for evaluation clf
Prints:
Top-1 accuracy and classification reports
Notes:
10-fold cross-validation is used to tune regularization hyperparameters of clf
"""
if fraction != 1.0:
features_train, feat_not_used, y_train, y_not_used = train_test_split(
features_train,
y_train,
test_size=1 - fraction / (1 - test_size),
random_state=42,
shuffle=True,
)
clf = LogisticRegressionCV(cv=5, max_iter=1000, verbose=0, n_jobs=8).fit(
features_train, y_train
)
# Evaluate on test
print(f"Accuracy on test: {round(clf.score(features_test, y_test),2)} \n")
y_pred_test = clf.predict(features_test)
classification_report_test = classification_report(
y_test,
y_pred_test,
labels=list(range(0, len(class_labels))),
target_names=class_labels,
)
print(classification_report_test)
def random_indexes(a, b, feats_in_plot):
"""Support function for tSNE_vis
Args:
a: start index
b: end index
feats_in_plot: # of featuers to be plotted per class
Returns:
Random list of feats_in_plot indexes between a and b
"""
randomList = []
# Set a length of the list to feats_in_plot
for i in range(feats_in_plot):
# any random numbers from a to b
randomList.append(random.randint(a, b - 1))
return randomList
def tSNE_vis(
df,
features,
class_labels,
save_tag="",
save_figure=False,
feats_in_plot=150,
):
"""Plots the feature quality by the means of t-SNE
Args:
df: Dataframe
features: Training instances
class_labels: labels (strings)
save_tag: title of plot to save
Prints & Saves:
t-SNE plot of 250 instances of each class
"""
class_colours = ["green", "gray", "brown", "blue", "red"]
class_instances = {}
for i, label in enumerate(class_labels):
class_instances[label] = (df.class_label == label).sum()
tsne_m = TSNE(n_jobs=8, random_state=42)
X_embedded = tsne_m.fit_transform(features)
fig = plt.figure(figsize=(6, 6))
lr = 150
p = 50
index = 0
# PLOT
for (label, colour, c_i) in zip(
class_labels, class_colours, class_instances
):
indexes = random_indexes(
index, index + class_instances[label], feats_in_plot
)
plt.scatter(X_embedded[indexes, 0], X_embedded[indexes, 1], c=colour)
index += class_instances[label]
fig.legend(
bbox_to_anchor=(0.075, 0.061),
loc="lower left",
ncol=1,
labels=class_labels,
)
if save_figure:
plt.savefig(
"figures/" + save_tag + ".svg", bbox_inches="tight",
)