-
Notifications
You must be signed in to change notification settings - Fork 11
/
app.py
103 lines (71 loc) · 2.56 KB
/
app.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
import os
import sys
# Flask
from flask import Flask, redirect, url_for, request, render_template, Response, jsonify, redirect
from werkzeug.utils import secure_filename
from gevent.pywsgi import WSGIServer
# TensorFlow and tf.keras
import tensorflow as tf
from tensorflow import keras
from tensorflow.keras.applications.imagenet_utils import preprocess_input, decode_predictions
from tensorflow.keras.models import load_model
from tensorflow.keras.preprocessing import image
# Some utilites
import numpy as np
from util import base64_to_pil
# Declare a flask app
app = Flask(__name__)
# You can use pretrained model from Keras
# Check https://keras.io/applications/
#from keras.applications.mobilenet_v2 import MobileNetV2
#model = MobileNetV2(weights='imagenet')
#print('Model loaded. Check http://127.0.0.1:5000/')
# Model saved with Keras model.save()
MODEL_PATH = 'models/covid19.model'
# Load your own trained model
model = load_model(MODEL_PATH)
labels=['covid','normal']
model._make_predict_function() # Necessary
print('Model loaded. Start serving...')
def model_predict(img, model):
img = img.resize((224, 224))
# Preprocessing the image
x = image.img_to_array(img)
# x = np.true_divide(x, 255)
x = np.expand_dims(x, axis=0)
# Be careful how your trained model deals with the input
# otherwise, it won't make correct prediction!
x = preprocess_input(x, mode='tf')
preds = model.predict(x)
return preds
@app.route('/', methods=['GET'])
def index():
# Main page
return render_template('index.html')
@app.route('/ar', methods=['GET'])
def index_ar():
# Main page
return render_template('index_ar.html')
@app.route('/predict', methods=['GET', 'POST'])
def predict():
if request.method == 'POST':
# Get the image from post request
img = base64_to_pil(request.json).convert('RGB')
#print(request.files['file'])
# Save the image to ./uploads
#img.save("uploads/image.png")
# Make prediction
preds = model_predict(img, model)
# Process your result for human
if(preds[0][0]>=preds[0][1]):
pred_class="POSITIVE"
else:
pred_class="NEGATIVE"
pred_proba = "{:.3f}".format(np.amax(preds)) # Max probability
# Serialize the result, you can add additional fields
return jsonify(result=pred_class, probability=pred_proba)
return None
if __name__ == '__main__':
# Serve the app with gevent
http_server = WSGIServer(('0.0.0.0', 5000), app)
http_server.serve_forever()