From 01424632121b53651c0ff4ca01dbcd7adf56d9c6 Mon Sep 17 00:00:00 2001 From: mortberg Date: Tue, 5 Dec 2023 15:27:50 +0000 Subject: [PATCH] =?UTF-8?q?Deploying=20to=20gh-pages=20from=20@=20agda/cub?= =?UTF-8?q?ical@a35231df18dd277c18c6cb9a200fb1cc4cb31f56=20=F0=9F=9A=80?= MIME-Version: 1.0 Content-Type: text/plain; charset=UTF-8 Content-Transfer-Encoding: 8bit --- Cubical.HITs.Nullification.Properties.html | 358 +++++++++--------- ...HITs.Truncation.FromNegTwo.Properties.html | 6 +- Cubical.HITs.Truncation.Properties.html | 2 +- Cubical.Homotopy.Connected.html | 2 +- 4 files changed, 192 insertions(+), 176 deletions(-) diff --git a/Cubical.HITs.Nullification.Properties.html b/Cubical.HITs.Nullification.Properties.html index ddebb94834..a21cc5f44a 100644 --- a/Cubical.HITs.Nullification.Properties.html +++ b/Cubical.HITs.Nullification.Properties.html @@ -18,175 +18,191 @@ open import Cubical.Functions.FunExtEquiv open import Cubical.HITs.Localization renaming (rec to Localize-rec) open import Cubical.Data.Unit - -open import Cubical.HITs.Nullification.Base - -open Modality -open isPathSplitEquiv - -private - variable - ℓα ℓs ℓ' : Level - -isNull≡ : {A : Type ℓα} {S : A Type ℓs} {X : Type } (nX : isNull S X) {x y : X} isNull S (x y) -isNull≡ {A = A} {S = S} nX {x = x} {y = y} α = - fromIsEquiv p _ i p i) - (isEquiv[equivFunA≃B∘f]→isEquiv[f] p _ p) funExtEquiv (isEquivCong (const , toIsEquiv _ (nX α)))) - -isNullΠ : {A : Type ℓα} {S : A Type ℓs} {X : Type } {Y : X Type ℓ'} ((x : X) isNull S (Y x)) - isNull S ((x : X) Y x) -isNullΠ {S = S} {X = X} {Y = Y} nY α = fromIsEquiv _ (snd e) - where - flipIso : Iso ((x : X) S α Y x) (S α (x : X) Y x) - Iso.fun flipIso f = flip f - Iso.inv flipIso f = flip f - Iso.rightInv flipIso f = refl - Iso.leftInv flipIso f = refl - - e : ((x : X) Y x) (S α ((x : X) Y x)) - e = - ((x : X) Y x) - ≃⟨ equivΠCod x const , (toIsEquiv _ (nY x α))) - ((x : X) (S α Y x)) - ≃⟨ isoToEquiv flipIso - (S α ((x : X) Y x)) - - -rec : {ℓα ℓs ℓ'} {A : Type ℓα} {S : A Type ℓs} {X : Type } {Y : Type ℓ'} - (nB : isNull S Y) (X Y) Null S X Y -rec nB g x = g x -rec nB g (hub α f) = fst (sec (nB α)) s rec nB g (f s)) -rec nB g (spoke α f s i) = snd (sec (nB α)) s rec nB g (f s)) i s -rec nB g (≡hub {x} {y} {α} p i) = fst (secCong (nB α) (rec nB g x) (rec nB g y)) i s rec nB g (p s i)) i -rec nB g (≡spoke {x} {y} {α} p s i j) = snd (secCong (nB α) (rec nB g x) (rec nB g y)) i s rec nB g (p s i)) i j s - -toPathP⁻ : {} (A : I Type ) {x : A i0} {y : A i1} x transport⁻ i A i) y PathP A x y -toPathP⁻ A p i = toPathP {A = λ i A (~ i)} (sym p) (~ i) - -toPathP⁻-sq : {} {A : Type } (x : A) Square (toPathP⁻ _ A) _ transport refl x)) refl - (transportRefl x) refl -toPathP⁻-sq x j i = hcomp l λ { (i = i0) transportRefl x j - ; (i = i1) x ; (j = i1) x }) - (transportRefl x (i j)) - -module _ {ℓα ℓs ℓ'} {A : Type ℓα} {S : A Type ℓs} {X : Type } {Y : Null S X Type ℓ'} where - - private - secCongDep' : (nY : (x : Null S X) isNull S (Y x)) {x y : Null S X} {α} (p : x y) - (∀ (bx : Y x) (by : Y y) hasSection (cong₂ x (b : Y x) (_ : S α) b) p)) - secCongDep' nY {α = α} p = secCongDep _ const) p a secCong (nY a α)) - - elim : (nY : (x : Null S X) isNull S (Y x)) ((a : X) Y a ) (x : Null S X) Y x - elim nY g x = g x - elim nY g (hub α f) - = fst (sec (nY (hub α f) α)) - s transport i Y (spoke α f s (~ i))) (elim nY g (f s))) - - elim nY g (spoke α f s i) - = toPathP⁻ i Y (spoke α f s i)) - (funExt⁻ ( snd (sec (nY (hub α f) α)) - s transport i Y (spoke α f s (~ i))) (elim nY g (f s))) ) s) i - - elim nY g (≡hub {x} {y} p i) - = hcomp k λ { (i = i0) transportRefl (elim nY g x) k - ; (i = i1) transportRefl (elim nY g y) k }) - (fst (secCongDep' nY (≡hub p) (transport refl (elim nY g x)) (transport refl (elim nY g y))) - i s transport j Y (≡spoke p s (~ j) i)) (elim nY g (p s i))) i) - - elim nY g (≡spoke {x} {y} p s j i) - = hcomp k λ { (i = i0) toPathP⁻-sq (elim nY g x) k j - ; (i = i1) toPathP⁻-sq (elim nY g y) k j - ; (j = i1) elim nY g (p s i) }) - (q₂ j i) - - where q₁ : Path (PathP i Y (≡hub p i)) (transport refl (elim nY g x)) (transport refl (elim nY g y))) - (fst (secCongDep' nY (≡hub p) (transport refl (elim nY g x)) (transport refl (elim nY g y))) - i s transport j Y (≡spoke p s (~ j) i)) (elim nY g (p s i)))) - i transport j Y (≡spoke p s (~ j) i)) (elim nY g (p s i))) - q₁ j i = snd (secCongDep' nY (≡hub p) (transport refl (elim nY g x)) (transport refl (elim nY g y))) - i s transport j Y (≡spoke p s (~ j) i)) (elim nY g (p s i))) j i s - - q₂ : PathP j PathP i Y (≡spoke p s j i)) (toPathP⁻ _ Y x) _ transport refl (elim nY g x)) j) - (toPathP⁻ _ Y y) _ transport refl (elim nY g y)) j)) - (fst (secCongDep' nY (≡hub p) (transport refl (elim nY g x)) (transport refl (elim nY g y))) - i s transport j Y (≡spoke p s (~ j) i)) (elim nY g (p s i)))) - i elim nY g (p s i)) - q₂ j i = toPathP⁻ j Y (≡spoke p s j i)) j q₁ j i) j - -NullRecIsPathSplitEquiv : {ℓα ℓs ℓ'} {A : Type ℓα} {S : A Type ℓs} {X : Type } {Y : Type ℓ'} (isNull S Y) - isPathSplitEquiv {A = (Null S X) Y} f f ∣_∣) -sec (NullRecIsPathSplitEquiv nY) = rec nY , λ _ refl -secCong (NullRecIsPathSplitEquiv nY) f f' = p funExt (elim _ isNull≡ nY) (funExt⁻ p))) , λ _ refl - -NullRecIsEquiv : {ℓα ℓs ℓ'} {A : Type ℓα} {S : A Type ℓs} {X : Type } {Y : Type ℓ'} (isNull S Y) - isEquiv {A = (Null S X) Y} f f ∣_∣) -NullRecIsEquiv nY = toIsEquiv _ (NullRecIsPathSplitEquiv nY) - -NullRecEquiv : {ℓα ℓs ℓ'} {A : Type ℓα} {S : A Type ℓs} {X : Type } {Y : Type ℓ'} (isNull S Y) - ((Null S X) Y) (X Y) -NullRecEquiv nY = f f ∣_∣) , (NullRecIsEquiv nY) - - -NullPreservesProp : {ℓα ℓs } {A : Type ℓα} {S : A Type ℓs} {X : Type } - (isProp X) isProp (Null S X) - -NullPreservesProp {S = S} pX u = elim v' isNull≡ (isNull-Null S)) - y elim u' isNull≡ (isNull-Null S) {x = u'}) x cong ∣_∣ (pX x y)) u) - --- nullification is a modality - -NullModality : {ℓα ℓs } {A : Type ℓα} (S : A Type ℓs) Modality (ℓ-max (ℓ-max ℓα ℓs)) -isModal (NullModality S) = isNull S -isPropIsModal (NullModality S) = isPropΠ α isPropIsPathSplitEquiv _) - (NullModality S) = Null S -◯-isModal (NullModality S) = isNull-Null S -- isNull-Null -η (NullModality S) = ∣_∣ -◯-elim (NullModality S) = elim -◯-elim-β (NullModality S) = λ _ _ _ refl -◯-=-isModal (NullModality S) x y α = fromIsEquiv _ e - where e : isEquiv (p : x y) const {B = S α} p) - e = transport i isEquiv {B = funExtPath {A = S α} {f = const x} {g = const y} (~ i)} - p ua-gluePath funExtEquiv {x = const p} {y = cong const p} refl (~ i))) - (isEquivCong (_ , toIsEquiv _ (isNull-Null S α))) - -idemNull : {ℓa ℓs } {A : Type ℓa} (S : A Type ℓs) (X : Type (ℓ-max (ℓ-max ℓa ℓs))) isNull S X X Null S X -idemNull { = } S A nA = ∣_∣ , isModalToIsEquiv (NullModality { = } S) nA - --- nullification is localization at a family of maps (S α → 1) - -module Null-iso-Localize {ℓα ℓs } {A : Type ℓα} (S : A Type ℓs) (X : Type ) where - - to : Null S X Localize {A = A} α const {B = S α} tt) X - to x = x - to (hub α f) = ext α (to f) tt - to (spoke α f s i) = isExt α (to f) s i - to (≡hub {x} {y} {α} p i) = ≡ext α (const (to x)) (const (to y)) (cong to p) tt i - to (≡spoke {x} {y} {α} p s i j) = ≡isExt α (const (to x)) (const (to y)) (cong to p) s i j - - from : Localize {A = A} α const {B = S α} tt) X Null S X - from x = x - from (ext α f tt) = hub α (from f) - from (isExt α f s i) = spoke α (from f) s i - from (≡ext α g h p tt i) = ≡hub {x = from (g tt)} {from (h tt)} (cong from p) i - from (≡isExt α g h p s i j) = ≡spoke {x = from (g tt)} {from (h tt)} (cong from p) s i j - - to-from : (x : Localize {A = A} α const {B = S α} tt) X) to (from x) x - to-from x k = x - to-from (ext α f tt) k = ext α s to-from (f s) k) tt - to-from (isExt α f s i) k = isExt α s to-from (f s) k) s i - to-from (≡ext α g h p tt i) k = ≡ext α _ to-from (g tt) k) _ to-from (h tt) k) s j to-from (p s j) k) tt i - to-from (≡isExt α g h p s i j) k = ≡isExt α _ to-from (g tt) k) _ to-from (h tt) k) s j to-from (p s j) k) s i j - - from-to : (x : Null S X) from (to x) x - from-to x k = x - from-to (hub α f) k = hub α s from-to (f s) k) - from-to (spoke α f s i) k = spoke α s from-to (f s) k) s i - from-to (≡hub {x} {y} p i) k = ≡hub {x = from-to x k} {from-to y k} s j from-to (p s j) k) i - from-to (≡spoke {x} {y} p s i j) k = ≡spoke {x = from-to x k} {from-to y k} s j from-to (p s j) k) s i j - - isom : Iso (Null S X) (Localize {A = A} α const {B = S α} tt) X) - isom = iso to from to-from from-to - -Null≃Localize : {ℓα ℓs } {A : Type ℓα} (S : A Type ℓs) (X : Type ) Null S X Localize α const {B = S α} tt) X -Null≃Localize S X = isoToEquiv (Null-iso-Localize.isom S X) +open import Cubical.Data.Sigma + +open import Cubical.HITs.Nullification.Base + +open Modality +open isPathSplitEquiv + +private + variable + ℓα ℓs ℓ' : Level + +isNull≡ : {A : Type ℓα} {S : A Type ℓs} {X : Type } (nX : isNull S X) {x y : X} isNull S (x y) +isNull≡ {A = A} {S = S} nX {x = x} {y = y} α = + fromIsEquiv p _ i p i) + (isEquiv[equivFunA≃B∘f]→isEquiv[f] p _ p) funExtEquiv (isEquivCong (const , toIsEquiv _ (nX α)))) + +isNullΠ : {A : Type ℓα} {S : A Type ℓs} {X : Type } {Y : X Type ℓ'} ((x : X) isNull S (Y x)) + isNull S ((x : X) Y x) +isNullΠ {S = S} {X = X} {Y = Y} nY α = fromIsEquiv _ (snd e) + where + flipIso : Iso ((x : X) S α Y x) (S α (x : X) Y x) + Iso.fun flipIso f = flip f + Iso.inv flipIso f = flip f + Iso.rightInv flipIso f = refl + Iso.leftInv flipIso f = refl + + e : ((x : X) Y x) (S α ((x : X) Y x)) + e = + ((x : X) Y x) + ≃⟨ equivΠCod x const , (toIsEquiv _ (nY x α))) + ((x : X) (S α Y x)) + ≃⟨ isoToEquiv flipIso + (S α ((x : X) Y x)) + + +isNullΣ : {A : Type ℓα} {S : A Type ℓs} {X : Type } {Y : X Type ℓ'} (isNull S X) ((x : X) isNull S (Y x)) + isNull S (Σ X Y) +isNullΣ {S = S} {X = X} {Y = Y} nX nY α = fromIsEquiv _ (snd e) + where + e : Σ X Y (S α Σ X Y) + e = + Σ X Y + ≃⟨ Σ-cong-equiv-snd x pathSplitToEquiv (_ , (nY x α))) + Σ[ x X ] (S α Y x) + ≃⟨ Σ-cong-equiv-fst (pathSplitToEquiv (_ , (nX α))) + Σ[ f (S α X) ] ((z : S α) Y (f z)) + ≃⟨ isoToEquiv (invIso Σ-Π-Iso) + (S α Σ X Y) + + +rec : {ℓα ℓs ℓ'} {A : Type ℓα} {S : A Type ℓs} {X : Type } {Y : Type ℓ'} + (nB : isNull S Y) (X Y) Null S X Y +rec nB g x = g x +rec nB g (hub α f) = fst (sec (nB α)) s rec nB g (f s)) +rec nB g (spoke α f s i) = snd (sec (nB α)) s rec nB g (f s)) i s +rec nB g (≡hub {x} {y} {α} p i) = fst (secCong (nB α) (rec nB g x) (rec nB g y)) i s rec nB g (p s i)) i +rec nB g (≡spoke {x} {y} {α} p s i j) = snd (secCong (nB α) (rec nB g x) (rec nB g y)) i s rec nB g (p s i)) i j s + +toPathP⁻ : {} (A : I Type ) {x : A i0} {y : A i1} x transport⁻ i A i) y PathP A x y +toPathP⁻ A p i = toPathP {A = λ i A (~ i)} (sym p) (~ i) + +toPathP⁻-sq : {} {A : Type } (x : A) Square (toPathP⁻ _ A) _ transport refl x)) refl + (transportRefl x) refl +toPathP⁻-sq x j i = hcomp l λ { (i = i0) transportRefl x j + ; (i = i1) x ; (j = i1) x }) + (transportRefl x (i j)) + +module _ {ℓα ℓs ℓ'} {A : Type ℓα} {S : A Type ℓs} {X : Type } {Y : Null S X Type ℓ'} where + + private + secCongDep' : (nY : (x : Null S X) isNull S (Y x)) {x y : Null S X} {α} (p : x y) + (∀ (bx : Y x) (by : Y y) hasSection (cong₂ x (b : Y x) (_ : S α) b) p)) + secCongDep' nY {α = α} p = secCongDep _ const) p a secCong (nY a α)) + + elim : (nY : (x : Null S X) isNull S (Y x)) ((a : X) Y a ) (x : Null S X) Y x + elim nY g x = g x + elim nY g (hub α f) + = fst (sec (nY (hub α f) α)) + s transport i Y (spoke α f s (~ i))) (elim nY g (f s))) + + elim nY g (spoke α f s i) + = toPathP⁻ i Y (spoke α f s i)) + (funExt⁻ ( snd (sec (nY (hub α f) α)) + s transport i Y (spoke α f s (~ i))) (elim nY g (f s))) ) s) i + + elim nY g (≡hub {x} {y} p i) + = hcomp k λ { (i = i0) transportRefl (elim nY g x) k + ; (i = i1) transportRefl (elim nY g y) k }) + (fst (secCongDep' nY (≡hub p) (transport refl (elim nY g x)) (transport refl (elim nY g y))) + i s transport j Y (≡spoke p s (~ j) i)) (elim nY g (p s i))) i) + + elim nY g (≡spoke {x} {y} p s j i) + = hcomp k λ { (i = i0) toPathP⁻-sq (elim nY g x) k j + ; (i = i1) toPathP⁻-sq (elim nY g y) k j + ; (j = i1) elim nY g (p s i) }) + (q₂ j i) + + where q₁ : Path (PathP i Y (≡hub p i)) (transport refl (elim nY g x)) (transport refl (elim nY g y))) + (fst (secCongDep' nY (≡hub p) (transport refl (elim nY g x)) (transport refl (elim nY g y))) + i s transport j Y (≡spoke p s (~ j) i)) (elim nY g (p s i)))) + i transport j Y (≡spoke p s (~ j) i)) (elim nY g (p s i))) + q₁ j i = snd (secCongDep' nY (≡hub p) (transport refl (elim nY g x)) (transport refl (elim nY g y))) + i s transport j Y (≡spoke p s (~ j) i)) (elim nY g (p s i))) j i s + + q₂ : PathP j PathP i Y (≡spoke p s j i)) (toPathP⁻ _ Y x) _ transport refl (elim nY g x)) j) + (toPathP⁻ _ Y y) _ transport refl (elim nY g y)) j)) + (fst (secCongDep' nY (≡hub p) (transport refl (elim nY g x)) (transport refl (elim nY g y))) + i s transport j Y (≡spoke p s (~ j) i)) (elim nY g (p s i)))) + i elim nY g (p s i)) + q₂ j i = toPathP⁻ j Y (≡spoke p s j i)) j q₁ j i) j + +NullRecIsPathSplitEquiv : {ℓα ℓs ℓ'} {A : Type ℓα} {S : A Type ℓs} {X : Type } {Y : Type ℓ'} (isNull S Y) + isPathSplitEquiv {A = (Null S X) Y} f f ∣_∣) +sec (NullRecIsPathSplitEquiv nY) = rec nY , λ _ refl +secCong (NullRecIsPathSplitEquiv nY) f f' = p funExt (elim _ isNull≡ nY) (funExt⁻ p))) , λ _ refl + +NullRecIsEquiv : {ℓα ℓs ℓ'} {A : Type ℓα} {S : A Type ℓs} {X : Type } {Y : Type ℓ'} (isNull S Y) + isEquiv {A = (Null S X) Y} f f ∣_∣) +NullRecIsEquiv nY = toIsEquiv _ (NullRecIsPathSplitEquiv nY) + +NullRecEquiv : {ℓα ℓs ℓ'} {A : Type ℓα} {S : A Type ℓs} {X : Type } {Y : Type ℓ'} (isNull S Y) + ((Null S X) Y) (X Y) +NullRecEquiv nY = f f ∣_∣) , (NullRecIsEquiv nY) + + +NullPreservesProp : {ℓα ℓs } {A : Type ℓα} {S : A Type ℓs} {X : Type } + (isProp X) isProp (Null S X) + +NullPreservesProp {S = S} pX u = elim v' isNull≡ (isNull-Null S)) + y elim u' isNull≡ (isNull-Null S) {x = u'}) x cong ∣_∣ (pX x y)) u) + +-- nullification is a modality + +NullModality : {ℓα ℓs } {A : Type ℓα} (S : A Type ℓs) Modality (ℓ-max (ℓ-max ℓα ℓs)) +isModal (NullModality S) = isNull S +isPropIsModal (NullModality S) = isPropΠ α isPropIsPathSplitEquiv _) + (NullModality S) = Null S +◯-isModal (NullModality S) = isNull-Null S -- isNull-Null +η (NullModality S) = ∣_∣ +◯-elim (NullModality S) = elim +◯-elim-β (NullModality S) = λ _ _ _ refl +◯-=-isModal (NullModality S) x y α = fromIsEquiv _ e + where e : isEquiv (p : x y) const {B = S α} p) + e = transport i isEquiv {B = funExtPath {A = S α} {f = const x} {g = const y} (~ i)} + p ua-gluePath funExtEquiv {x = const p} {y = cong const p} refl (~ i))) + (isEquivCong (_ , toIsEquiv _ (isNull-Null S α))) + +idemNull : {ℓa ℓs } {A : Type ℓa} (S : A Type ℓs) (X : Type (ℓ-max (ℓ-max ℓa ℓs))) isNull S X X Null S X +idemNull { = } S A nA = ∣_∣ , isModalToIsEquiv (NullModality { = } S) nA + +-- nullification is localization at a family of maps (S α → 1) + +module Null-iso-Localize {ℓα ℓs } {A : Type ℓα} (S : A Type ℓs) (X : Type ) where + + to : Null S X Localize {A = A} α const {B = S α} tt) X + to x = x + to (hub α f) = ext α (to f) tt + to (spoke α f s i) = isExt α (to f) s i + to (≡hub {x} {y} {α} p i) = ≡ext α (const (to x)) (const (to y)) (cong to p) tt i + to (≡spoke {x} {y} {α} p s i j) = ≡isExt α (const (to x)) (const (to y)) (cong to p) s i j + + from : Localize {A = A} α const {B = S α} tt) X Null S X + from x = x + from (ext α f tt) = hub α (from f) + from (isExt α f s i) = spoke α (from f) s i + from (≡ext α g h p tt i) = ≡hub {x = from (g tt)} {from (h tt)} (cong from p) i + from (≡isExt α g h p s i j) = ≡spoke {x = from (g tt)} {from (h tt)} (cong from p) s i j + + to-from : (x : Localize {A = A} α const {B = S α} tt) X) to (from x) x + to-from x k = x + to-from (ext α f tt) k = ext α s to-from (f s) k) tt + to-from (isExt α f s i) k = isExt α s to-from (f s) k) s i + to-from (≡ext α g h p tt i) k = ≡ext α _ to-from (g tt) k) _ to-from (h tt) k) s j to-from (p s j) k) tt i + to-from (≡isExt α g h p s i j) k = ≡isExt α _ to-from (g tt) k) _ to-from (h tt) k) s j to-from (p s j) k) s i j + + from-to : (x : Null S X) from (to x) x + from-to x k = x + from-to (hub α f) k = hub α s from-to (f s) k) + from-to (spoke α f s i) k = spoke α s from-to (f s) k) s i + from-to (≡hub {x} {y} p i) k = ≡hub {x = from-to x k} {from-to y k} s j from-to (p s j) k) i + from-to (≡spoke {x} {y} p s i j) k = ≡spoke {x = from-to x k} {from-to y k} s j from-to (p s j) k) s i j + + isom : Iso (Null S X) (Localize {A = A} α const {B = S α} tt) X) + isom = iso to from to-from from-to + +Null≃Localize : {ℓα ℓs } {A : Type ℓα} (S : A Type ℓs) (X : Type ) Null S X Localize α const {B = S α} tt) X +Null≃Localize S X = isoToEquiv (Null-iso-Localize.isom S X) \ No newline at end of file diff --git a/Cubical.HITs.Truncation.FromNegTwo.Properties.html b/Cubical.HITs.Truncation.FromNegTwo.Properties.html index dad5466a44..94a93406ba 100644 --- a/Cubical.HITs.Truncation.FromNegTwo.Properties.html +++ b/Cubical.HITs.Truncation.FromNegTwo.Properties.html @@ -20,7 +20,7 @@ open import Cubical.Data.Sigma open import Cubical.HITs.Sn.Base open import Cubical.HITs.Susp.Base -open import Cubical.HITs.Nullification as Null hiding (rec; elim) +open import Cubical.HITs.Nullification as Null hiding (rec; elim) open import Cubical.HITs.Truncation.FromNegTwo.Base @@ -122,7 +122,7 @@ (A B) hLevelTrunc n A B -rec h = Null.rec (isOfHLevel→isSnNull h) +rec h = Null.rec (isOfHLevel→isSnNull h) elim : {n : HLevel} {B : hLevelTrunc n A Type ℓ'} @@ -130,7 +130,7 @@ (g : (a : A) B ( a )) (x : hLevelTrunc n A) B x -elim hB = Null.elim x isOfHLevel→isSnNull (hB x)) +elim hB = Null.elim x isOfHLevel→isSnNull (hB x)) elim2 : {n : HLevel} {B : hLevelTrunc n A hLevelTrunc n A Type ℓ'} diff --git a/Cubical.HITs.Truncation.Properties.html b/Cubical.HITs.Truncation.Properties.html index c6b3e161c2..ab7c69e13b 100644 --- a/Cubical.HITs.Truncation.Properties.html +++ b/Cubical.HITs.Truncation.Properties.html @@ -26,7 +26,7 @@ open import Cubical.HITs.Sn.Base open import Cubical.HITs.S1 hiding (rec ; elim) open import Cubical.HITs.Susp.Base -open import Cubical.HITs.Nullification as Null hiding (rec ; elim) +open import Cubical.HITs.Nullification as Null hiding (rec ; elim) open import Cubical.HITs.PropositionalTruncation as PropTrunc using (∥_∥₁ ; ∣_∣₁ ; squash₁) open import Cubical.HITs.SetTruncation as SetTrunc using (∥_∥₂; ∣_∣₂; squash₂) diff --git a/Cubical.Homotopy.Connected.html b/Cubical.Homotopy.Connected.html index 534ee77189..f614b5fa8e 100644 --- a/Cubical.Homotopy.Connected.html +++ b/Cubical.Homotopy.Connected.html @@ -26,7 +26,7 @@ open import Cubical.Data.Sigma open import Cubical.Data.Prod.Properties -open import Cubical.HITs.Nullification hiding (elim) +open import Cubical.HITs.Nullification hiding (elim) open import Cubical.HITs.Susp open import Cubical.HITs.SmashProduct open import Cubical.HITs.Pushout