Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

Vec.Properties: drop eq parameter when it is a property (v3.0 changes) #2431

Draft
wants to merge 5 commits into
base: master
Choose a base branch
from
Draft
Show file tree
Hide file tree
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
13 changes: 13 additions & 0 deletions CHANGELOG.md
Original file line number Diff line number Diff line change
Expand Up @@ -148,6 +148,19 @@ Deprecated names
toDec ↦ Relation.Nullary.Decidable.Core.fromSum
```

* In `Data.Vec.Properties`:
```agda
++-assoc-eqFree ↦ ++-assoc
++-identityʳ-eqFree ↦ ++-identityʳ
unfold-∷ʳ-eqFree ↦ unfold-∷ʳ
++-∷ʳ-eqFree ↦ ++-∷ʳ
∷ʳ-++-eqFree ↦ ∷ʳ-++
reverse-++-eqFree ↦ reverse-++
∷-ʳ++-eqFree ↦ ∷-ʳ++
++-ʳ++-eqFree ↦ ++-ʳ++
ʳ++-ʳ++-eqFree ↦ ʳ++-ʳ++
```

* In `IO.Base`:
```agda
untilRight ↦ untilInj₂
Expand Down
18 changes: 9 additions & 9 deletions doc/README/Data/Vec/Relation/Binary/Equality/Cast.agda
Original file line number Diff line number Diff line change
Expand Up @@ -92,7 +92,7 @@ example1a-fromList-∷ʳ x xs eq = begin
cast eq₂ (cast eq₁ (fromList (xs List.++ List.[ x ])))
≡⟨ cong (cast eq₂) (fromList-++ xs) ⟩
cast eq₂ (fromList xs ++ [ x ])
≡⟨ ≈-sym (unfold-∷ʳ (sym eq₂) x (fromList xs)) ⟩
≡⟨ ≈-sym (unfold-∷ʳ x (fromList xs)) ⟩
fromList xs ∷ʳ x
where
Expand All @@ -114,7 +114,7 @@ example1b-fromList-∷ʳ x xs eq = begin
fromList (xs List.++ List.[ x ])
≈⟨ fromList-++ xs ⟩
fromList xs ++ [ x ]
≈⟨ unfold-∷ʳ (+-comm 1 (List.length xs)) x (fromList xs) ⟨
≈⟨ unfold-∷ʳ x (fromList xs) ⟨
fromList xs ∷ʳ x
where open CastReasoning
Expand All @@ -138,8 +138,8 @@ example1b-fromList-∷ʳ x xs eq = begin
example2a : ∀ .(eq : suc m + n ≡ m + suc n) (xs : Vec A m) a ys →
cast eq ((reverse xs ∷ʳ a) ++ ys) ≡ reverse xs ++ (a ∷ ys)
example2a eq xs a ys = begin
(reverse xs ∷ʳ a) ++ ys ≈⟨ ∷ʳ-++ eq a (reverse xs) ⟩ -- index: suc m + n
reverse xs ++ (a ∷ ys) ∎ -- index: m + suc n
(reverse xs ∷ʳ a) ++ ys ≈⟨ ∷ʳ-++ a (reverse xs) ⟩ -- index: suc m + n
reverse xs ++ (a ∷ ys) ∎ -- index: m + suc n
where open CastReasoning

-- To interoperate with `_≡_`, this library provides `_≂⟨_⟩_` (\-~) for
Expand All @@ -158,7 +158,7 @@ example2b : ∀ .(eq : suc m + n ≡ m + suc n) (xs : Vec A m) a ys →
example2b eq xs a ys = begin
(a ∷ xs) ʳ++ ys ≂⟨ unfold-ʳ++ (a ∷ xs) ys ⟩ -- index: suc m + n
reverse (a ∷ xs) ++ ys ≂⟨ cong (_++ ys) (reverse-∷ a xs) ⟩ -- index: suc m + n
(reverse xs ∷ʳ a) ++ ys ≈⟨ ∷ʳ-++ eq a (reverse xs) ⟩ -- index: suc m + n
(reverse xs ∷ʳ a) ++ ys ≈⟨ ∷ʳ-++ a (reverse xs) ⟩ -- index: suc m + n
reverse xs ++ (a ∷ ys) ≂⟨ unfold-ʳ++ xs (a ∷ ys) ⟨ -- index: m + suc n
xs ʳ++ (a ∷ ys) ∎ -- index: m + suc n
where open CastReasoning
Expand Down Expand Up @@ -220,9 +220,9 @@ example4-cong² {m = m} {n} eq a xs ys = begin
reverse ((xs ++ [ a ]) ++ ys)
≈⟨ ≈-cong reverse (cast-reverse (cong (_+ n) (+-comm 1 m)) ((xs ∷ʳ a) ++ ys))
(≈-cong (_++ ys) (cast-++ˡ (+-comm 1 m) (xs ∷ʳ a))
(unfold-∷ʳ _ a xs)) ⟨
(unfold-∷ʳ a xs)) ⟨
reverse ((xs ∷ʳ a) ++ ys)
≈⟨ reverse-++ (+-comm (suc m) n) (xs ∷ʳ a) ys ⟩
≈⟨ reverse-++ (xs ∷ʳ a) ys ⟩
reverse ys ++ reverse (xs ∷ʳ a)
≂⟨ unfold-ʳ++ ys (reverse (xs ∷ʳ a)) ⟨
ys ʳ++ reverse (xs ∷ʳ a)
Expand Down Expand Up @@ -264,9 +264,9 @@ example6a-reverse-∷ʳ {n = n} x xs = begin-≡
reverse (xs ∷ʳ x)
≡⟨ ≈-reflexive refl ⟨
reverse (xs ∷ʳ x)
≈⟨ ≈-cong reverse (cast-reverse _ _) (unfold-∷ʳ (+-comm 1 n) x xs) ⟩
≈⟨ ≈-cong reverse (cast-reverse _ _) (unfold-∷ʳ x xs) ⟩
reverse (xs ++ [ x ])
≈⟨ reverse-++ (+-comm n 1) xs [ x ] ⟩
≈⟨ reverse-++ xs [ x ] ⟩
x ∷ reverse xs
where open CastReasoning
Expand Down
120 changes: 86 additions & 34 deletions src/Data/Vec/Properties.agda
Original file line number Diff line number Diff line change
Expand Up @@ -17,7 +17,7 @@ import Data.List.Properties as List
open import Data.Nat.Base using (ℕ; zero; suc; _+_; _≤_; _<_; s≤s; pred; s<s⁻¹; _≥_;
s≤s⁻¹; z≤n)
open import Data.Nat.Properties
using (+-assoc; m≤n⇒m≤1+n; m≤m+n; ≤-refl; ≤-trans; ≤-irrelevant; ≤⇒≤″; suc-injective; +-comm; +-suc)
using (+-assoc; m≤n⇒m≤1+n; m≤m+n; ≤-refl; ≤-trans; ≤-irrelevant; ≤⇒≤″; suc-injective; +-comm; +-suc; +-identityʳ)
open import Data.Product.Base as Product
using (_×_; _,_; proj₁; proj₂; <_,_>; uncurry)
open import Data.Sum.Base using ([_,_]′)
Expand All @@ -38,6 +38,10 @@ open import Relation.Nullary.Decidable.Core using (Dec; does; yes; _×-dec_; map
open import Relation.Nullary.Negation.Core using (contradiction)
import Data.Nat.GeneralisedArithmetic as ℕ

private
m+n+o≡n+[m+o] : ∀ m n o → m + n + o ≡ n + (m + o)
m+n+o≡n+[m+o] m n o = trans (cong (_+ o) (+-comm m n)) (+-assoc n m o)

private
variable
a b c d p : Level
Expand Down Expand Up @@ -464,14 +468,14 @@ toList-map f (x ∷ xs) = cong (f x List.∷_) (toList-map f xs)
++-injective ws xs eq =
(++-injectiveˡ ws xs eq , ++-injectiveʳ ws xs eq)

++-assoc : ∀ .(eq : (m + n) + o ≡ m + (n + o)) (xs : Vec A m) (ys : Vec A n) (zs : Vec A o) →
++-assoc : ∀ (xs : Vec A m) (ys : Vec A n) (zs : Vec A o) → let eq = +-assoc m n o in
cast eq ((xs ++ ys) ++ zs) ≡ xs ++ (ys ++ zs)
++-assoc eq [] ys zs = cast-is-id eq (ys ++ zs)
++-assoc eq (x ∷ xs) ys zs = cong (x ∷_) (++-assoc (cong pred eq) xs ys zs)
++-assoc [] ys zs = cast-is-id refl (ys ++ zs)
++-assoc (x ∷ xs) ys zs = cong (x ∷_) (++-assoc xs ys zs)

++-identityʳ : ∀ .(eq : n + zero ≡ n) (xs : Vec A n) → cast eq (xs ++ []) ≡ xs
++-identityʳ eq [] = refl
++-identityʳ eq (x ∷ xs) = cong (x ∷_) (++-identityʳ (cong pred eq) xs)
++-identityʳ : ∀ (xs : Vec A n) → cast (+-identityʳ n) (xs ++ []) ≡ xs
++-identityʳ [] = refl
++-identityʳ (x ∷ xs) = cong (x ∷_) (++-identityʳ xs)

cast-++ˡ : ∀ .(eq : m ≡ o) (xs : Vec A m) {ys : Vec A n} →
cast (cong (_+ n) eq) (xs ++ ys) ≡ cast eq xs ++ ys
Expand Down Expand Up @@ -865,9 +869,9 @@ map-is-foldr f = foldr-universal (Vec _) (λ x ys → f x ∷ ys) (map f) refl (

-- snoc is snoc

unfold-∷ʳ : ∀ .(eq : suc n ≡ n + 1) x (xs : Vec A n) → cast eq (xs ∷ʳ x) ≡ xs ++ [ x ]
unfold-∷ʳ eq x [] = refl
unfold-∷ʳ eq x (y ∷ xs) = cong (y ∷_) (unfold-∷ʳ (cong pred eq) x xs)
unfold-∷ʳ : ∀ x (xs : Vec A n) → cast (+-comm 1 n) (xs ∷ʳ x) ≡ xs ++ [ x ]
unfold-∷ʳ x [] = refl
unfold-∷ʳ x (y ∷ xs) = cong (y ∷_) (unfold-∷ʳ x xs)

∷ʳ-injective : ∀ (xs ys : Vec A n) → xs ∷ʳ x ≡ ys ∷ʳ y → xs ≡ ys × x ≡ y
∷ʳ-injective [] [] refl = (refl , refl)
Expand Down Expand Up @@ -915,16 +919,16 @@ cast-∷ʳ {m = suc m} eq x (y ∷ xs) = cong (y ∷_) (cast-∷ʳ (cong pred eq

-- _++_ and _∷ʳ_

++-∷ʳ : ∀ .(eq : suc (m + n) ≡ m + suc n) z (xs : Vec A m) (ys : Vec A n) →
++-∷ʳ : ∀ z (xs : Vec A m) (ys : Vec A n) → let eq = sym (+-suc m n) in
cast eq ((xs ++ ys) ∷ʳ z) ≡ xs ++ (ys ∷ʳ z)
++-∷ʳ {m = zero} eq z [] [] = refl
++-∷ʳ {m = zero} eq z [] (y ∷ ys) = cong (y ∷_) (++-∷ʳ refl z [] ys)
++-∷ʳ {m = suc m} eq z (x ∷ xs) ys = cong (x ∷_) (++-∷ʳ (cong pred eq) z xs ys)
++-∷ʳ {m = zero} z [] [] = refl
++-∷ʳ {m = zero} z [] (y ∷ ys) = cong (y ∷_) (++-∷ʳ z [] ys)
++-∷ʳ {m = suc m} z (x ∷ xs) ys = cong (x ∷_) (++-∷ʳ z xs ys)

∷ʳ-++ : ∀ .(eq : (suc n) + m ≡ n + suc m) a (xs : Vec A n) {ys} →
∷ʳ-++ : ∀ a (xs : Vec A n) {ys : Vec A m} → let eq = sym (+-suc n m) in
cast eq ((xs ∷ʳ a) ++ ys) ≡ xs ++ (a ∷ ys)
∷ʳ-++ eq a [] {ys} = cong (a ∷_) (cast-is-id (cong pred eq) ys)
∷ʳ-++ eq a (x ∷ xs) {ys} = cong (x ∷_) (∷ʳ-++ (cong pred eq) a xs)
∷ʳ-++ a [] {ys} = cong (a ∷_) (cast-is-id refl ys)
∷ʳ-++ a (x ∷ xs) {ys} = cong (x ∷_) (∷ʳ-++ a xs)

------------------------------------------------------------------------
-- reverse
Expand Down Expand Up @@ -1010,14 +1014,14 @@ map-reverse f (x ∷ xs) = begin

-- append and reverse

reverse-++ : ∀ .(eq : m + n ≡ n + m) (xs : Vec A m) (ys : Vec A n) →
reverse-++ : ∀ (xs : Vec A m) (ys : Vec A n) → let eq = +-comm m n in
cast eq (reverse (xs ++ ys)) ≡ reverse ys ++ reverse xs
reverse-++ {m = zero} {n = n} eq [] ys = ≈-sym (++-identityʳ (sym eq) (reverse ys))
reverse-++ {m = suc m} {n = n} eq (x ∷ xs) ys = begin
reverse-++ {m = zero} {n = n} [] ys = ≈-sym (++-identityʳ (reverse ys))
reverse-++ {m = suc m} {n = n} (x ∷ xs) ys = begin
reverse (x ∷ xs ++ ys) ≂⟨ reverse-∷ x (xs ++ ys) ⟩
reverse (xs ++ ys) ∷ʳ x ≈⟨ ≈-cong (_∷ʳ x) (cast-∷ʳ (cong suc (+-comm m n)) x (reverse (xs ++ ys)))
(reverse-++ _ xs ys) ⟩
(reverse ys ++ reverse xs) ∷ʳ x ≈⟨ ++-∷ʳ (sym (+-suc n m)) x (reverse ys) (reverse xs) ⟩
(reverse-++ xs ys) ⟩
(reverse ys ++ reverse xs) ∷ʳ x ≈⟨ ++-∷ʳ x (reverse ys) (reverse xs) ⟩
reverse ys ++ (reverse xs ∷ʳ x) ≂⟨ cong (reverse ys ++_) (reverse-∷ x xs) ⟨
reverse ys ++ (reverse (x ∷ xs)) ∎
where open CastReasoning
Expand Down Expand Up @@ -1061,37 +1065,37 @@ map-ʳ++ {ys = ys} f xs = begin
map f xs ʳ++ map f ys ∎
where open ≡-Reasoning

∷-ʳ++ : ∀ .(eq : (suc m) + n ≡ m + suc n) a (xs : Vec A m) {ys} →
∷-ʳ++ : ∀ a (xs : Vec A m) {ys : Vec A n} → let eq = sym (+-suc m n) in
cast eq ((a ∷ xs) ʳ++ ys) ≡ xs ʳ++ (a ∷ ys)
∷-ʳ++ eq a xs {ys} = begin
∷-ʳ++ a xs {ys} = begin
(a ∷ xs) ʳ++ ys ≂⟨ unfold-ʳ++ (a ∷ xs) ys ⟩
reverse (a ∷ xs) ++ ys ≂⟨ cong (_++ ys) (reverse-∷ a xs) ⟩
(reverse xs ∷ʳ a) ++ ys ≈⟨ ∷ʳ-++ eq a (reverse xs) ⟩
(reverse xs ∷ʳ a) ++ ys ≈⟨ ∷ʳ-++ a (reverse xs) ⟩
reverse xs ++ (a ∷ ys) ≂⟨ unfold-ʳ++ xs (a ∷ ys) ⟨
xs ʳ++ (a ∷ ys) ∎
where open CastReasoning

++-ʳ++ : ∀ .(eq : m + n + o ≡ n + (m + o)) (xs : Vec A m) {ys : Vec A n} {zs : Vec A o} →
++-ʳ++ : ∀ (xs : Vec A m) {ys : Vec A n} {zs : Vec A o} → let eq = m+n+o≡n+[m+o] m n o in
cast eq ((xs ++ ys) ʳ++ zs) ≡ ys ʳ++ (xs ʳ++ zs)
++-ʳ++ {m = m} {n} {o} eq xs {ys} {zs} = begin
++-ʳ++ {m = m} {n} {o} xs {ys} {zs} = begin
((xs ++ ys) ʳ++ zs) ≂⟨ unfold-ʳ++ (xs ++ ys) zs ⟩
reverse (xs ++ ys) ++ zs ≈⟨ ≈-cong (_++ zs) (cast-++ˡ (+-comm m n) (reverse (xs ++ ys)))
(reverse-++ (+-comm m n) xs ys) ⟩
(reverse ys ++ reverse xs) ++ zs ≈⟨ ++-assoc (trans (cong (_+ o) (+-comm n m)) eq) (reverse ys) (reverse xs) zs ⟩
(reverse-++ xs ys) ⟩
(reverse ys ++ reverse xs) ++ zs ≈⟨ ++-assoc (reverse ys) (reverse xs) zs ⟩
reverse ys ++ (reverse xs ++ zs) ≂⟨ cong (reverse ys ++_) (unfold-ʳ++ xs zs) ⟨
reverse ys ++ (xs ʳ++ zs) ≂⟨ unfold-ʳ++ ys (xs ʳ++ zs) ⟨
ys ʳ++ (xs ʳ++ zs) ∎
where open CastReasoning

ʳ++-ʳ++ : ∀ .(eq : (m + n) + o ≡ n + (m + o)) (xs : Vec A m) {ys : Vec A n} {zs} →
ʳ++-ʳ++ : ∀ (xs : Vec A m) {ys : Vec A n} {zs : Vec A o} → let eq = m+n+o≡n+[m+o] m n o in
cast eq ((xs ʳ++ ys) ʳ++ zs) ≡ ys ʳ++ (xs ++ zs)
ʳ++-ʳ++ {m = m} {n} {o} eq xs {ys} {zs} = begin
ʳ++-ʳ++ {m = m} {n} {o} xs {ys} {zs} = begin
(xs ʳ++ ys) ʳ++ zs ≂⟨ cong (_ʳ++ zs) (unfold-ʳ++ xs ys) ⟩
(reverse xs ++ ys) ʳ++ zs ≂⟨ unfold-ʳ++ (reverse xs ++ ys) zs ⟩
reverse (reverse xs ++ ys) ++ zs ≈⟨ ≈-cong (_++ zs) (cast-++ˡ (+-comm m n) (reverse (reverse xs ++ ys)))
(reverse-++ (+-comm m n) (reverse xs) ys) ⟩
(reverse-++ (reverse xs) ys) ⟩
(reverse ys ++ reverse (reverse xs)) ++ zs ≂⟨ cong ((_++ zs) ∘ (reverse ys ++_)) (reverse-involutive xs) ⟩
(reverse ys ++ xs) ++ zs ≈⟨ ++-assoc (+-assoc n m o) (reverse ys) xs zs ⟩
(reverse ys ++ xs) ++ zs ≈⟨ ++-assoc (reverse ys) xs zs ⟩
reverse ys ++ (xs ++ zs) ≂⟨ unfold-ʳ++ ys (xs ++ zs) ⟨
ys ʳ++ (xs ++ zs) ∎
where open CastReasoning
Expand Down Expand Up @@ -1318,7 +1322,7 @@ fromList-reverse List.[] = refl
fromList-reverse (x List.∷ xs) = begin
fromList (List.reverse (x List.∷ xs)) ≈⟨ cast-fromList (List.ʳ++-defn xs) ⟩
fromList (List.reverse xs List.++ List.[ x ]) ≈⟨ fromList-++ (List.reverse xs) ⟩
fromList (List.reverse xs) ++ [ x ] ≈⟨ unfold-∷ʳ (+-comm 1 _) x (fromList (List.reverse xs)) ⟨
fromList (List.reverse xs) ++ [ x ] ≈⟨ unfold-∷ʳ x (fromList (List.reverse xs)) ⟨
fromList (List.reverse xs) ∷ʳ x ≈⟨ ≈-cong (_∷ʳ x) (cast-∷ʳ (cong suc (List.length-reverse xs)) _ _)
(fromList-reverse xs) ⟩
reverse (fromList xs) ∷ʳ x ≂⟨ reverse-∷ x (fromList xs) ⟨
Expand Down Expand Up @@ -1451,3 +1455,51 @@ lookup-inject≤-take m m≤m+n i xs = sym (begin
"Warning: lookup-inject≤-take was deprecated in v2.0.
Please use lookup-take-inject≤ or lookup-truncate, take≡truncate instead."
#-}

-- Version 3.0

++-assoc-eqFree = ++-assoc
{-# WARNING_ON_USAGE ++-assoc-eqFree
"Warning: ++-assoc-eqFree was deprecated in v3.0.
Please use ++-assoc instead."
#-}
++-identityʳ-eqFree = ++-identityʳ
{-# WARNING_ON_USAGE ++-identityʳ-eqFree
"Warning: ++-identityʳ-eqFree was deprecated in v3.0.
Please use ++-identityʳ instead."
#-}
unfold-∷ʳ-eqFree = unfold-∷ʳ
{-# WARNING_ON_USAGE unfold-∷ʳ-eqFree
"Warning: unfold-∷ʳ-eqFree was deprecated in v3.0.
Please use unfold-∷ʳ instead."
#-}
++-∷ʳ-eqFree = ++-∷ʳ
{-# WARNING_ON_USAGE ++-∷ʳ-eqFree
"Warning: ++-∷ʳ-eqFree was deprecated in v3.0.
Please use ++-∷ʳ instead."
#-}
∷ʳ-++-eqFree = ∷ʳ-++
{-# WARNING_ON_USAGE ∷ʳ-++-eqFree
"Warning: ∷ʳ-++-eqFree was deprecated in v3.0.
Please use ∷ʳ-++ instead."
#-}
reverse-++-eqFree = reverse-++
{-# WARNING_ON_USAGE reverse-++-eqFree
"Warning: reverse-++-eqFree was deprecated in v3.0.
Please use reverse-++ instead."
#-}
∷-ʳ++-eqFree = ∷-ʳ++
{-# WARNING_ON_USAGE ∷-ʳ++-eqFree
"Warning: ∷-ʳ++-eqFree was deprecated in v3.0.
Please use ∷-ʳ++ instead."
#-}
++-ʳ++-eqFree = ++-ʳ++
{-# WARNING_ON_USAGE ++-ʳ++-eqFree
"Warning: ++-ʳ++-eqFree was deprecated in v3.0.
Please use ++-ʳ++ instead."
#-}
ʳ++-ʳ++-eqFree = ʳ++-ʳ++
{-# WARNING_ON_USAGE ʳ++-ʳ++-eqFree
"Warning: ʳ++-ʳ++-eqFree was deprecated in v3.0.
Please use ʳ++-ʳ++ instead."
#-}