-
Notifications
You must be signed in to change notification settings - Fork 239
Commit
This commit does not belong to any branch on this repository, and may belong to a fork outside of the repository.
Port two Endomorphism submodules over to new Function hierarchy (#2342)
* port over two modules * and add to CHANGELOG * fix whitespace * fix warning: it was pointing to a record that did not exist. * fix things as per Matthew's review - though this remains a breaking change. * take care of comments from James. * adjust CHANGELOG for what will be implemented shortly * Revert "take care of comments from James." This reverts commit 93e9e0f. * Revert "fix things as per Matthew's review - though this remains a breaking change." This reverts commit d1cae72. * Revert "fix whitespace" This reverts commit 81230ec. * Revert "port over two modules" This reverts commit 6619f11. * rename these * fix tiny merge issue * get deprecations right (remove where not needed, make more global where needed) * style guide - missing blank lines * fix a bad merge * fixed deprecations * fix #2394 * minor tweaks --------- Co-authored-by: James McKinna <[email protected]>
- Loading branch information
1 parent
c0fafe9
commit 08f24a6
Showing
6 changed files
with
266 additions
and
11 deletions.
There are no files selected for viewing
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,121 @@ | ||
------------------------------------------------------------------------ | ||
-- The Agda standard library | ||
-- | ||
-- Endomorphisms on a Set | ||
------------------------------------------------------------------------ | ||
|
||
{-# OPTIONS --cubical-compatible --safe #-} | ||
|
||
module Function.Endo.Propositional {a} (A : Set a) where | ||
|
||
open import Algebra using (Semigroup; Magma; RawMagma; Monoid; RawMonoid) | ||
open import Algebra.Core | ||
import Algebra.Definitions.RawMonoid as RawMonoidDefinitions | ||
import Algebra.Properties.Monoid.Mult as MonoidMultProperties | ||
open import Algebra.Structures using (IsMagma; IsSemigroup; IsMonoid) | ||
open import Algebra.Morphism | ||
using (module Definitions; IsMagmaHomomorphism; IsMonoidHomomorphism) | ||
open Definitions using (Homomorphic₂) | ||
|
||
open import Data.Nat.Base using (ℕ; zero; suc; _+_; +-rawMagma; +-0-rawMonoid) | ||
open import Data.Nat.Properties using (+-0-monoid; +-semigroup) | ||
open import Data.Product.Base using (_,_) | ||
|
||
open import Function.Base using (id; _∘′_; _∋_; flip) | ||
open import Function.Bundles using (Func; _⟶ₛ_; _⟨$⟩_) | ||
open import Relation.Binary.Core using (_Preserves_⟶_) | ||
open import Relation.Binary.PropositionalEquality.Core using (_≡_; refl; cong; cong₂) | ||
import Relation.Binary.PropositionalEquality.Properties as ≡ | ||
|
||
import Function.Endo.Setoid (≡.setoid A) as Setoid | ||
|
||
------------------------------------------------------------------------ | ||
-- Basic type and raw bundles | ||
|
||
Endo : Set a | ||
Endo = A → A | ||
|
||
private | ||
|
||
_∘_ : Op₂ Endo | ||
_∘_ = _∘′_ | ||
|
||
∘-id-rawMonoid : RawMonoid a a | ||
∘-id-rawMonoid = record { Carrier = Endo; _≈_ = _≡_ ; _∙_ = _∘_ ; ε = id } | ||
|
||
open RawMonoid ∘-id-rawMonoid | ||
using () | ||
renaming (rawMagma to ∘-rawMagma) | ||
|
||
|
||
------------------------------------------------------------------------ | ||
-- Conversion back and forth with the Setoid-based notion of Endomorphism | ||
|
||
fromSetoidEndo : Setoid.Endo → Endo | ||
fromSetoidEndo = _⟨$⟩_ | ||
|
||
toSetoidEndo : Endo → Setoid.Endo | ||
toSetoidEndo f = record | ||
{ to = f | ||
; cong = cong f | ||
} | ||
|
||
------------------------------------------------------------------------ | ||
-- Structures | ||
|
||
∘-isMagma : IsMagma _≡_ _∘_ | ||
∘-isMagma = record | ||
{ isEquivalence = ≡.isEquivalence | ||
; ∙-cong = cong₂ _∘_ | ||
} | ||
|
||
∘-magma : Magma _ _ | ||
∘-magma = record { isMagma = ∘-isMagma } | ||
|
||
∘-isSemigroup : IsSemigroup _≡_ _∘_ | ||
∘-isSemigroup = record | ||
{ isMagma = ∘-isMagma | ||
; assoc = λ _ _ _ → refl | ||
} | ||
|
||
∘-semigroup : Semigroup _ _ | ||
∘-semigroup = record { isSemigroup = ∘-isSemigroup } | ||
|
||
∘-id-isMonoid : IsMonoid _≡_ _∘_ id | ||
∘-id-isMonoid = record | ||
{ isSemigroup = ∘-isSemigroup | ||
; identity = (λ _ → refl) , (λ _ → refl) | ||
} | ||
|
||
∘-id-monoid : Monoid _ _ | ||
∘-id-monoid = record { isMonoid = ∘-id-isMonoid } | ||
|
||
------------------------------------------------------------------------ | ||
-- n-th iterated composition | ||
|
||
infixr 8 _^_ | ||
|
||
_^_ : Endo → ℕ → Endo | ||
_^_ = flip _×_ where open RawMonoidDefinitions ∘-id-rawMonoid using (_×_) | ||
|
||
------------------------------------------------------------------------ | ||
-- Homomorphism | ||
|
||
module _ (f : Endo) where | ||
|
||
open MonoidMultProperties ∘-id-monoid using (×-homo-+) | ||
|
||
^-homo : Homomorphic₂ ℕ Endo _≡_ (f ^_) _+_ _∘_ | ||
^-homo = ×-homo-+ f | ||
|
||
^-isMagmaHomomorphism : IsMagmaHomomorphism +-rawMagma ∘-rawMagma (f ^_) | ||
^-isMagmaHomomorphism = record | ||
{ isRelHomomorphism = record { cong = cong (f ^_) } | ||
; homo = ^-homo | ||
} | ||
|
||
^-isMonoidHomomorphism : IsMonoidHomomorphism +-0-rawMonoid ∘-id-rawMonoid (f ^_) | ||
^-isMonoidHomomorphism = record | ||
{ isMagmaHomomorphism = ^-isMagmaHomomorphism | ||
; ε-homo = refl | ||
} |
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,117 @@ | ||
------------------------------------------------------------------------ | ||
-- The Agda standard library | ||
-- | ||
-- Endomorphisms on a Setoid | ||
------------------------------------------------------------------------ | ||
|
||
{-# OPTIONS --cubical-compatible --safe #-} | ||
|
||
open import Relation.Binary.Bundles using (Setoid) | ||
|
||
module Function.Endo.Setoid {c e} (S : Setoid c e) where | ||
|
||
open import Agda.Builtin.Equality using (_≡_) | ||
|
||
open import Algebra using (Semigroup; Magma; RawMagma; Monoid; RawMonoid) | ||
import Algebra.Definitions.RawMonoid as RawMonoidDefinitions | ||
import Algebra.Properties.Monoid.Mult as MonoidMultProperties | ||
open import Algebra.Structures using (IsMagma; IsSemigroup; IsMonoid) | ||
open import Algebra.Morphism | ||
using (module Definitions; IsMagmaHomomorphism; IsMonoidHomomorphism) | ||
open Definitions using (Homomorphic₂) | ||
open import Data.Nat.Base using (ℕ; zero; suc; _+_; +-rawMagma; +-0-rawMonoid) | ||
open import Data.Nat.Properties using (+-semigroup; +-identityʳ) | ||
open import Data.Product.Base using (_,_) | ||
open import Function.Bundles using (Func; _⟶ₛ_; _⟨$⟩_) | ||
open import Function.Construct.Identity using () renaming (function to identity) | ||
open import Function.Construct.Composition using () renaming (function to _∘_) | ||
open import Function.Relation.Binary.Setoid.Equality as Eq using (_⇨_) | ||
open import Level using (Level; _⊔_) | ||
open import Relation.Binary.Core using (_Preserves_⟶_) | ||
|
||
private | ||
open module E = Setoid (S ⇨ S) hiding (refl) | ||
module S = Setoid S | ||
open Func using (cong) | ||
|
||
|
||
------------------------------------------------------------------------ | ||
-- Basic type and raw bundles | ||
|
||
Endo : Set _ | ||
Endo = S ⟶ₛ S | ||
|
||
private | ||
id : Endo | ||
id = identity S | ||
|
||
∘-id-rawMonoid : RawMonoid (c ⊔ e) (c ⊔ e) | ||
∘-id-rawMonoid = record { Carrier = Endo; _≈_ = _≈_ ; _∙_ = _∘_ ; ε = id } | ||
|
||
open RawMonoid ∘-id-rawMonoid | ||
using () | ||
renaming (rawMagma to ∘-rawMagma) | ||
|
||
-------------------------------------------------------------- | ||
-- Structures | ||
|
||
∘-isMagma : IsMagma _≈_ _∘_ | ||
∘-isMagma = record | ||
{ isEquivalence = isEquivalence | ||
; ∙-cong = λ {_} {_} {_} {v} x≈y u≈v → S.trans u≈v (cong v x≈y) | ||
} | ||
|
||
∘-magma : Magma (c ⊔ e) (c ⊔ e) | ||
∘-magma = record { isMagma = ∘-isMagma } | ||
|
||
∘-isSemigroup : IsSemigroup _≈_ _∘_ | ||
∘-isSemigroup = record | ||
{ isMagma = ∘-isMagma | ||
; assoc = λ _ _ _ → S.refl | ||
} | ||
|
||
∘-semigroup : Semigroup (c ⊔ e) (c ⊔ e) | ||
∘-semigroup = record { isSemigroup = ∘-isSemigroup } | ||
|
||
∘-id-isMonoid : IsMonoid _≈_ _∘_ id | ||
∘-id-isMonoid = record | ||
{ isSemigroup = ∘-isSemigroup | ||
; identity = (λ _ → S.refl) , (λ _ → S.refl) | ||
} | ||
|
||
∘-id-monoid : Monoid (c ⊔ e) (c ⊔ e) | ||
∘-id-monoid = record { isMonoid = ∘-id-isMonoid } | ||
|
||
------------------------------------------------------------------------ | ||
-- -- n-th iterated composition | ||
|
||
infixr 8 _^_ | ||
|
||
_^_ : Endo → ℕ → Endo | ||
f ^ n = n × f where open RawMonoidDefinitions ∘-id-rawMonoid using (_×_) | ||
|
||
------------------------------------------------------------------------ | ||
-- Homomorphism | ||
|
||
module _ (f : Endo) where | ||
|
||
open MonoidMultProperties ∘-id-monoid using (×-congˡ; ×-homo-+) | ||
|
||
^-cong₂ : (f ^_) Preserves _≡_ ⟶ _≈_ | ||
^-cong₂ = ×-congˡ {f} | ||
|
||
^-homo : Homomorphic₂ ℕ Endo _≈_ (f ^_) _+_ _∘_ | ||
^-homo = ×-homo-+ f | ||
|
||
^-isMagmaHomomorphism : IsMagmaHomomorphism +-rawMagma ∘-rawMagma (f ^_) | ||
^-isMagmaHomomorphism = record | ||
{ isRelHomomorphism = record { cong = ^-cong₂ } | ||
; homo = ^-homo | ||
} | ||
|
||
^-isMonoidHomomorphism : IsMonoidHomomorphism +-0-rawMonoid ∘-id-rawMonoid (f ^_) | ||
^-isMonoidHomomorphism = record | ||
{ isMagmaHomomorphism = ^-isMagmaHomomorphism | ||
; ε-homo = S.refl | ||
} | ||
|
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters