This repository has been archived by the owner on Jun 15, 2023. It is now read-only.
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathchatapp.py
76 lines (60 loc) · 2.29 KB
/
chatapp.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
# Creating Function for compiling and preprocessing Text
# and Using Model to Predict the result
# This is one of the project i've redesigned..
# You can find the original project in GeeksForGeeks site...
# if you have any problem running or understanding this project,
# feel free to contact me...
# imports
import nltk
from nltk.stem import WordNetLemmatizer
import pickle
import numpy as np
from keras.models import load_model
import json
import random
model = load_model('')
intents = json.loads(open('dataset/intents.json','r').read())
words = pickle.load(open('dataset/words.pkl','rb'))
classes = pickle.load(open('dataset/classes.pkl','rb'))
def clean_up_sentence(sentence):
# tokenize each sentence to words
sentence_words = nltk.word_tokenize(sentence)
# lemmatizer for array(sentence.words)
sentence_words = [WordNetLemmatizer.lemmatize(word) for word in sentence_words]
return sentence_words
def bow(sentence,words,show_details=True):
sentence_words = clean_up_sentence(sentence=sentence)
# bag of words
bag = [0] * len(words) ## in words ro nafahmidam chie!
for s in sentence_words:
for i,w in enumerate(words):
if w == s:
# assign 1 if the current word is in the vocabulary's position..
bag[i] = 1
if show_details:
print(f'found in bag {w}')
return np.array(bag)
def predict_class(sentence,model):
# filter out predictions below a threshold
pr = bow(sentence,words,show_details=True)
res = model.predict(np.array([p]))[0]
ERROR_THRESHOLD = 0.1
results = [[i,r] for i,r in enumerate(res) if r>ERROR_THRESHOLD] #inam khub nafahmidam
# sort by probability
results.sort(key=lambda x : x[1] , reverse=True)
return_list = []
for r in results:
return_list.append({"intent": classes[r[0]],"probability": str(r[1])})
return return_list
def get_response(ints,intents_json):
tag = ints[0]['intent']
list_of_intents = intents_json['intents']
for i in list_of_intents:
if i['tag'] == tag:
result = random.choice(i['response'])
break
return result
def chatBot_response(text):
ints = predict_class(text,model)
result = get_response(ints,intents)
return result