forked from ma-gilles/recovar
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathplot_deconvolved_on_volumes.py
268 lines (224 loc) · 10.9 KB
/
plot_deconvolved_on_volumes.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
from recovar import output, synthetic_dataset, metrics, simulator, utils
import json
import os
import numpy as np
import recovar.latent_density as ld
import matplotlib.pyplot as plt
from scipy.stats import vonmises
import pickle
from recovar import parser_args
import argparse
import jax.scipy
## NOTE: the dataset folder has to matched up correctly with the recovar result directory!
#recovar_result_dir = '/mnt/home/levans/ceph/igg_lukes/recovar_finer_simulations_redux/output_dataset0'
#dataset_folder = '/mnt/home/levans/ceph/igg_lukes/finer_simulations_redux/dataset0'
#recovar_result_dir = '/mnt/home/levans/Projects/Model_bias_heterogeneity/Igg/output_simulated_mid_snr'
#dataset_folder = '/mnt/home/levans/ceph/igg_lukes/dataset4'
def zs_to_grid(zs, bounds, num_points):
_, z_to_grid = ld.get_grid_z_mappings(bounds, num_points = num_points)
zs_grid = z_to_grid(zs)
return zs_grid
def parse_args():
parser = argparse.ArgumentParser(description="Plot recovar conformational density on volumes")
parser.add_argument("--recovar_result_dir", type=str, help="Directory containing recovar results provided to pipeline.py")
parser.add_argument("--dataset_dir", type=str, default=None, help="Directory to save the figures and estimation results.")
parser.add_argument("--volume_dir", type=str, default=None, help="Directory to save the figures and estimation results.")
parser.add_argument("--zdim", type=int, default=None, help="Dimension of latent variable used in estimate_conformational_density")
return parser.parse_args()
def plot_deconvolved_on_volumes(recovar_result_dir, dataset_dir, volume_dir, zdim):
cmap="inferno"
## Pick dimension of whatever deconvolved embedding we are looking at
density_dir = recovar_result_dir + "/" + f'density_{zdim}'
## Gets embedding from ground truth volumes
# For now: making a custom projection that doesn't load in the whole PC matrix U, full matrix is too large
#zs_gt = metrics.get_gt_embedding_from_projection(volumes, pipeline_output.get('u'), pipeline_output.get('mean'))
zs_gt_fname = density_dir + "/" + f"embedded_gt_volumes_zdim{zdim}.npy"
if os.path.isfile(zs_gt_fname):
zs_gt = np.load(zs_gt_fname)
else:
#volumes_path_root = '/mnt/home/levans/ceph/igg_lukes/finer_simulations_redux/simulated_test_volumes'
pipeline_output = output.PipelineOutput(recovar_result_dir)
## load volumes
def make_file(k):
return volume_dir + "/" + format(k, '04d')+".mrc"
idx =0
files = []
while(os.path.isfile(make_file(idx))):
files.append(make_file(idx))
idx+=1
volumes, _ = simulator.generate_volumes_from_mrcs(files, None, padding= 0 )
## For simulated data: volumes need to be rescaled according to recovars simulator
file = open(dataset_dir + '/' + 'sim_info.pkl', 'rb')
scale_vol = pickle.load(file)['scale_vol']
volumes *= scale_vol
#mean = pipeline_output.get('mean')
### Old volume scaling here
#print(f"mean of mean vol pixels: {np.mean(mean)}")
#print(f"mean of gt vol pixels: {np.mean(volumes)}")
#print(np.mean(mean).real / np.mean(volumes))
#scale = np.mean(mean) / np.mean(volumes)
#volumes *= scale**(0.5)
zs_gt = (np.conj(pipeline_output.get('u'))[:zdim, :] @ (volumes - pipeline_output.get('mean')).T).T.real
np.save(density_dir + "/" + f"embedded_gt_volumes_zdim{zdim}.npy", zs_gt)
## grab some other embedded data to compare with
#zs = np.loadtxt(recovar_result_dir + '/' + 'analysis_4/kmeans_center_coords.txt')
figure_dir = density_dir + '/' + 'figures'
if not os.path.exists(figure_dir):
os.makedirs(figure_dir)
## Visually check that pc embeddings of volumes line up with some embedded kmeans clusters
#for i in range(zdim):
# for j in range(i+1,zdim):
# plt.figure()
# plt.scatter(zs[:, i], zs[:, j], s= 2, label="kmeans cluster centers")
# plt.scatter(zs_gt[:, i], zs_gt[:, j], s = 2, label="embedded volumes")
# plt.xlabel(f"PC{i}")
# plt.ylabel(f"PC{j}")
# plt.legend()
# plt.savefig(figure_dir + '/' + f"latent_vols_kmeans_plot_PC{i}{j}.png", dpi=300)
### define density that volumes were resampled from
def p(x):
means = [np.pi/2, np.pi, 3*np.pi/2]
kappas = [6.0, 6.0, 6.0]
weights = np.array([2.0, 1.0, 2.0])
weights /= sum(weights)
val = 0
for i in range(3):
val += weights[i]*vonmises.pdf(x, loc=means[i], kappa=kappas[i])
return val
x = np.linspace(0, 2*np.pi, 100)
y = p(x)
y /= (np.sum(y))
#def p(x):
# means = [np.pi/2, 3*np.pi/2]
# kappas = [1.0, 1.0]
# weights = np.array([2.0, 1.0])
# weights /= sum(weights)
# val = 0
# for i in range(2):
# val += weights[i]*vonmises.pdf(x, loc=means[i], kappa=kappas[i])
# return val
#x = np.linspace(0, 2*np.pi, 100)
#y = p(x)
#y /= (np.sum(y))
# Plot ground truth density against raw density
density_file = utils.pickle_load(density_dir + "/" + f'all_densities/raw_density.pkl')
computed_deconvolve_density = density_file['density']
density_bounds = density_file['latent_space_bounds']
raw_density_at_zs_gt = output.density_on_grid(zs_gt, computed_deconvolve_density, density_bounds)
raw_density_at_zs_gt = np.array(raw_density_at_zs_gt)
raw_density_at_zs_gt /= np.sum(raw_density_at_zs_gt)
density_interp_fname = density_dir + '/' + f'all_densities/interp_density_raw.npy'
np.save(density_interp_fname, raw_density_at_zs_gt)
zs_gt_grid = zs_to_grid(zs_gt, density_bounds, computed_deconvolve_density.shape[0])
plt.figure()
plt.plot(x, y, linewidth=1.0, label="ground truth density", color='k', linestyle="dashed")
plt.plot(x, raw_density_at_zs_gt, label="raw density", linewidth=1.0)
plt.xlabel(r"Dihedral Angle($\degree$)", fontsize=16)
plt.ylabel("Probability",fontsize=16)
plt.legend()
plt.savefig(figure_dir + "/" + f"raw_density_at_gt_vols.png", dpi=300)
fig = plt.subplots()
axs = plt.gca()
to_plot = computed_deconvolve_density
axs.set_xticklabels([])
axs.set_yticklabels([])
axs.xaxis.set_ticks_position('none')
axs.yaxis.set_ticks_position('none')
axs.imshow(to_plot.T, cmap=cmap)
axs.scatter(zs_gt_grid[::5, 0], zs_gt_grid[::5, 1], c="w", edgecolors='k', s=10)
axs.set_xlabel("PC 0")
axs.set_ylabel(f"PC {1}")
plt.savefig(figure_dir + "/" + f"raw_density_gt_vols_scatter.png", dpi=300)
fig = plt.subplots()
axs = plt.gca()
to_plot = computed_deconvolve_density
axs.set_xticklabels([])
axs.set_yticklabels([])
axs.xaxis.set_ticks_position('none')
axs.yaxis.set_ticks_position('none')
axs.imshow(to_plot.T, cmap=cmap)
axs.scatter(zs_gt_grid[:, 0], zs_gt_grid[:, 1], c="w", edgecolors='k', s=2, linewidths=0.5)
axs.set_xlabel("PC 0")
axs.set_ylabel(f"PC {1}")
plt.savefig(figure_dir + "/" + f"raw_density_gt_vols_scatter_all_vols.png", dpi=300)
## Plot ground truth density against deconvolved densities
for k in range(11):
# Load pre-computed density info
density_file = utils.pickle_load(density_dir + '/' + f'all_densities/deconv_density_{k}.pkl')
computed_deconvolve_density = density_file['density']
density_bounds = density_file['latent_space_bounds']
# Interpolate volumes to grid and return density there
density_at_zs_gt = output.density_on_grid(zs_gt, computed_deconvolve_density, density_bounds)
density_at_zs_gt = np.array(density_at_zs_gt)
density_at_zs_gt /= np.sum(density_at_zs_gt)
zs_gt_grid = zs_to_grid(zs_gt, density_bounds, computed_deconvolve_density.shape[0])
density_interp_fname = density_dir + '/' + f'all_densities/interp_density_{k}.npy'
np.save(density_interp_fname, density_at_zs_gt)
plt.figure()
plt.plot(x, y, linewidth=1.0, label="ground truth density", color='k', linestyle='dashed')
plt.plot(x, raw_density_at_zs_gt, label="raw density", linewidth=1.0)
plt.plot(x, density_at_zs_gt, label="deconvolved density", linewidth=1.0)
plt.xlabel(r"Dihedral Angle($\degree$)", fontsize=16)
plt.ylabel("Probability", fontsize=16)
plt.legend()
plt.savefig(figure_dir + "/" + f"deconv_density_at_gt_vols_{k}.png", dpi=300)
fig = plt.subplots()
axs = plt.gca()
to_plot = computed_deconvolve_density
axs.set_xticklabels([])
axs.set_yticklabels([])
axs.xaxis.set_ticks_position('none')
axs.yaxis.set_ticks_position('none')
axs.imshow(to_plot.T, cmap=cmap)
axs.scatter(zs_gt_grid[::5, 0], zs_gt_grid[::5, 1], c="w", edgecolors='k', s=10)
axs.set_xlabel("PC 0")
axs.set_ylabel(f"PC {1}")
plt.savefig(figure_dir + "/" + f"deconv_density_at_gt_vols_{k}.scatter.png", dpi=300)
fig = plt.subplots()
axs = plt.gca()
to_plot = computed_deconvolve_density
axs.set_xticklabels([])
axs.set_yticklabels([])
axs.xaxis.set_ticks_position('none')
axs.yaxis.set_ticks_position('none')
axs.imshow(to_plot.T, cmap=cmap)
axs.scatter(zs_gt_grid[:, 0], zs_gt_grid[:, 1], c="w", edgecolors='k', s=2, linewidths=0.5)
axs.set_xlabel("PC 0")
axs.set_ylabel(f"PC {1}")
plt.savefig(figure_dir + "/" + f"deconv_density_at_gt_vols_{k}.scatter_all_vols.png", dpi=300)
# replot for d
##### old code for loading in paths instead of ground truth volumes above
#output_dir = '/mnt/home/levans/Projects/Model_bias_heterogeneity/Igg/output_high_snr/analysis_10/path0/'
#path_json = json.load(open(output_dir + '/path.json', 'r'))
#density = path_json['density']
#path = path_json['path']
#zs_gt = np.array(path)
#old_grid = np.linspace(0, 2*np.pi, len(zs_gt))
#zs_gt_plot = np.interp(x, old_grid, zs_gt)
#output_dir = '/mnt/home/levans/Projects/Model_bias_heterogeneity/Igg/output_high_snr/analysis_10/path3/'
#path_json = json.load(open(output_dir + '/path.json', 'r'))
#density = path_json['density']
#path = path_json['path']
#zs_gt = np.concatenate([zs_gt, np.array(path)])
#
#print("trying to replace gt vols with a path")
#
#plt.figure()
#plt.scatter(zs[:, 0], zs[:, 1], s= 2, label="kmeans cluster centers")
#plt.scatter(zs_gt[:, 0], zs_gt[:, 1], s = 2, label="embedded path")
#plt.xlabel("PC1")
#plt.ylabel("PC2")
#plt.legend()
#plt.savefig("scaling_issue_plot_path.png")
#
def main():
args = parse_args()
print(args)
plot_deconvolved_on_volumes(
recovar_result_dir=args.recovar_result_dir,
dataset_dir=args.dataset_dir,
volume_dir=args.volume_dir,
zdim=args.zdim,
)
if __name__ == "__main__":
main()