-
Notifications
You must be signed in to change notification settings - Fork 5
/
Copy pathpreprocessing.py
78 lines (53 loc) · 2.2 KB
/
preprocessing.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
# -*- coding: utf-8 -*-
"""
Title: Pre Processing
Author: Tom-Morten Theiß
Created: 2019-12-7
Information: Functions for Image Preprocessing
"""
import cv2
import numpy as np
import constants as const
#function for transformation of an image from rgb (bgr) to grayscale
def rgb2gray(img):
return cv2.cvtColor(img,cv2.COLOR_BGR2GRAY)
#function to load the previously computed parameters for the calibration and bev transformation
def loadPPData(directory):
mtx = np.load(directory+'/calib_mtx.npy')
dist = np.load(directory+'/calib_dist.npy')
bev_matrix=np.load(directory+'/bev_matrix.npy')
ppData = (mtx,dist,bev_matrix)
camMat = ppData[0] / 2
camMat[2,2] = 1
maps = cv2.initUndistortRectifyMap(ppData[0],ppData[1],None,camMat,(640,360) ,cv2.CV_32FC1)
return (camMat,ppData[1],ppData[2]), maps
#function for image calibration (remove distortion)
def undis_img(img,ppDats, maps):
# return cv2.undistort(img, ppData[0], ppData[1])
return cv2.remap(img,maps[0],maps[1],cv2.INTER_LINEAR)
#function to execute the image preprocessing steps calibration and birds eye view (bev) transformation
def bev(img,ppData,maps):
## Undistortion
img = undis_img(img,ppData,maps)
## BEV
# Bildausgangsgröße hinten in Klammer
bev = cv2.warpPerspective(img,ppData[2],(const.IMAGE_WIDTH,const.IMAGE_HEIGHT),borderMode=cv2.BORDER_REPLICATE)
return bev
#function to extract a specific image section (for sas detection)
def shapeImage(img):
return img[const.X_START:const.X_STOP,const.Y_START:const.Y_STOP]
#function for sobel edge detection in different directions
def sobelEdgeDetection(img,direction=0):
if direction == 1:
#horizontal sobel-edge detection
sobelImg = cv2.Sobel(img,cv2.CV_8U,1,0,ksize=const.EDGE_SIZE)
# cv2.imshow("Camera",sobelImg)
# cv2.waitKey(1)
elif direction == 2:
#vertical sobel-edge detection
sobelImg = cv2.Sobel(img,cv2.CV_8U,0,1,ksize=const.EDGE_SIZE)
else:
#bidirectional sobel-edge detection
sobelImg = cv2.Sobel(img,cv2.CV_8U,1,1,ksize=const.EDGE_SIZE)
# sobelImg = (np.array(sobelImg)>const.SOBEL_THRESHOLD)
return sobelImg