-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathmodel.py
244 lines (193 loc) · 10.3 KB
/
model.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
import torch
from torch import nn, Tensor
import math
import numpy as np
# from torchinfo import summary
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
class PositionalEncoding1D(nn.Module):
def __init__(self, model_dim: int, sequence_length: int):
super(PositionalEncoding1D, self).__init__()
self.model_dim = model_dim
self.position = torch.arange(sequence_length).unsqueeze(1)
self.angle_rads = self.get_angles(self.position, torch.arange(model_dim).unsqueeze(0), model_dim)
self.angle_rads[:, 0::2] = torch.sin(self.angle_rads[:, 0::2])
self.angle_rads[:, 1::2] = torch.cos(self.angle_rads[:, 1::2])
pe = self.angle_rads.unsqueeze(0)
self.register_buffer('pe', pe)
def get_angles(self, pos, i, d_model):
angle_rates = 1 / torch.pow(10000, (2 * (i//2)) / torch.tensor(d_model).float())
return pos * angle_rates
def forward(self, x: Tensor) -> Tensor:
return x + self.pe[:, :x.size(1), :]
class PositionalEncoding2D(nn.Module):
def __init__(self, model_dim: int, height: int, width:int):
super(PositionalEncoding2D, self).__init__()
assert model_dim % 2 == 0
self.model_dim = model_dim // 2
self.row_pos = torch.arange(height).unsqueeze(1).repeat(1, width).view(-1, 1)
self.col_pos = torch.arange(width).unsqueeze(0).repeat(height, 1).view(-1, 1)
self.angle_rads_row = self.get_angles(self.row_pos, torch.arange(self.model_dim).unsqueeze(0), self.model_dim)
self.angle_rads_col = self.get_angles(self.col_pos, torch.arange(self.model_dim).unsqueeze(0), self.model_dim)
self.angle_rads_row[:, 0::2] = torch.sin(self.angle_rads_row[:, 0::2])
self.angle_rads_row[:, 1::2] = torch.cos(self.angle_rads_row[:, 1::2])
self.angle_rads_col[:, 0::2] = torch.sin(self.angle_rads_col[:, 0::2])
self.angle_rads_col[:, 1::2] = torch.cos(self.angle_rads_col[:, 1::2])
pe = torch.cat([self.angle_rads_row, self.angle_rads_col], dim=1).unsqueeze(0)
self.register_buffer('pe', pe)
def get_angles(self, pos, i, d_model):
angle_rates = 1 / torch.pow(10000, (2 * (i//2)) / torch.tensor(d_model).float())
return pos * angle_rates
def forward(self, x: Tensor) -> Tensor:
return x + self.pe[:, :x.size(1), :]
class MultiHeadAttention(nn.Module):
def __init__(self, model_dim: int, num_heads: int):
super(MultiHeadAttention, self).__init__()
self.model_dim = model_dim
self.num_heads = num_heads
self.head_dim = model_dim // num_heads
self.query_linear = nn.Linear(model_dim, model_dim)
self.key_linear = nn.Linear(model_dim, model_dim)
self.value_linear = nn.Linear(model_dim, model_dim)
self.fc_out = nn.Linear(model_dim, model_dim)
def scaled_dot_product_attention(self, query: Tensor, key: Tensor, value: Tensor, mask: Tensor = None) -> Tensor:
attn_scores = torch.matmul(query, key.transpose(-2, -1))
dk = key.size(-1)
scaled_attention_logits = attn_scores / torch.sqrt(torch.tensor([dk]).to(device))
if mask is not None:
scaled_attention_logits += (mask * -1e9)
attn_weights = nn.functional.softmax(scaled_attention_logits, dim = -1)
output = torch.matmul(attn_weights, value)
return output
def forward(self, query: Tensor, key: Tensor, value: Tensor, mask: Tensor = None) -> Tensor:
N = query.shape[0]
query = self.query_linear(query).view(N, -1, self.num_heads, self.head_dim)
key = self.key_linear(key).view(N, -1, self.num_heads, self.head_dim)
value = self.value_linear(value).view(N, -1, self.num_heads, self.head_dim)
query = query.permute(0, 2, 1, 3)
key = key.permute(0, 2, 1, 3)
value = value.permute(0, 2, 1, 3)
attn_output = self.scaled_dot_product_attention(query, key, value, mask)
out = attn_output.permute(0, 2, 1, 3).contiguous().view(N, -1, self.model_dim)
out = self.fc_out(out)
return out
class EncoderBlock(nn.Module):
def __init__(self, model_dim: int, num_heads: int, feed_forward_dim: int = 2048, dropout: float = 0.1):
super(EncoderBlock, self).__init__()
self.mha = MultiHeadAttention(model_dim, num_heads)
self.feed_forward = nn.Sequential(
nn.Linear(model_dim, feed_forward_dim),
nn.ReLU(),
nn.Linear(feed_forward_dim, model_dim)
)
self.layer_norm1 = nn.LayerNorm(model_dim, eps = 1e-6)
self.layer_norm2 = nn.LayerNorm(model_dim, eps = 1e-6)
self.dropout1 = nn.Dropout(dropout)
self.dropout2 = nn.Dropout(dropout)
def forward(self, x: Tensor, mask = None) -> Tensor:
attention_output = self.mha(x, x, x, mask)
attention_output = self.dropout1(attention_output)
x = self.layer_norm1(x + attention_output)
feed_forward_output = self.feed_forward(x)
feed_forward_output = self.dropout2(feed_forward_output)
output = self.layer_norm2(x + feed_forward_output)
return output
class DecoderBlock(nn.Module):
def __init__(self, model_dim: int, num_heads: int, feed_forward_dim: int = 2048, dropout: float = 0.1):
super(DecoderBlock, self).__init__()
self.mha1 = MultiHeadAttention(model_dim, num_heads)
self.mha2 = MultiHeadAttention(model_dim, num_heads)
self.feed_forward = nn.Sequential(
nn.Linear(model_dim, feed_forward_dim),
nn.ReLU(),
nn.Linear(feed_forward_dim, model_dim)
)
self.layer_norm1 = nn.LayerNorm(model_dim, eps = 1e-6)
self.layer_norm2 = nn.LayerNorm(model_dim, eps = 1e-6)
self.layer_norm3 = nn.LayerNorm(model_dim, eps = 1e-6)
self.dropout1 = nn.Dropout(dropout)
self.dropout2 = nn.Dropout(dropout)
self.dropout3 = nn.Dropout(dropout)
def forward(self, x: Tensor, enc_output: Tensor, look_ahead_mask: Tensor = None, padding_mask: Tensor = None) -> Tensor:
attn_output1 = self.mha1(x, x, x, look_ahead_mask)
attn_output1 = self.dropout1(attn_output1)
x = self.layer_norm1(attn_output1 + x)
attn_output2 = self.mha2(x, enc_output, enc_output, padding_mask)
attn_output2 = self.dropout2(attn_output2)
x = self.layer_norm2(attn_output2 + x)
ffn_output = self.feed_forward(x)
ffn_output = self.dropout3(ffn_output)
output = self.layer_norm3(ffn_output + x)
return output
class Encoder(nn.Module):
def __init__(self, num_layers: int, model_dim: int, input_dim: int, num_heads: int, height: int, width: int, feed_forward_dim: int = 2048, dropout: float = 0.1):
super(Encoder, self).__init__()
self.model_dim = model_dim
self.num_layers = num_layers
self.embedding = nn.Sequential(
nn.Linear(input_dim, model_dim),
nn.ReLU(),
)
self.pos_enc = PositionalEncoding2D(model_dim, height, width)
self.layers = nn.ModuleList([
EncoderBlock(model_dim, num_heads, feed_forward_dim, dropout)
for _ in range(num_layers)
])
self.dropout = nn.Dropout(dropout)
def forward(self, x: Tensor, mask: Tensor = None) -> Tensor:
x = self.embedding(x)
x = self.pos_enc(x)
x = self.dropout(x)
for i in range(self.num_layers):
x = self.layers[i](x, mask)
return x
class Decoder(nn.Module):
def __init__(self, num_layers: int, model_dim: int, num_heads: int, feed_forward_dim: int, vocab_size: int, sequence_length: int, dropout: float = 0.1):
super(Decoder, self).__init__()
self.model_dim = model_dim
self.num_layers = num_layers
self.embedding = nn.Embedding(vocab_size, model_dim)
self.pos_enc = PositionalEncoding1D(model_dim, sequence_length)
self.layers = nn.ModuleList([
DecoderBlock(model_dim, num_heads, feed_forward_dim, dropout)
for _ in range(num_layers)
])
self.dropout = nn.Dropout(dropout)
def forward(self, x: Tensor, enc_output: Tensor, enc_mask: Tensor = None, look_ahead_mask: Tensor = None) -> Tensor:
x = self.embedding(x)
x *= torch.sqrt(torch.Tensor([self.model_dim]).to(device))
x = self.pos_enc(x)
x = self.dropout(x)
for i in range(self.num_layers):
x = self.layers[i](x, enc_output, enc_mask, look_ahead_mask)
return x
class TransformerModel(nn.Module):
def __init__(self, model_dim: int, input_dim: int, num_heads: int, num_layers: int, vocab_size:int, sequence_length: int = 34, height: int = 7, width: int = 7, feed_forward_dim: int = 2048, dropout: float = 0.1):
super(TransformerModel, self).__init__()
self.model_dim = model_dim
self.encoder = Encoder(num_layers, model_dim, input_dim, num_heads, height, width, feed_forward_dim, dropout)
self.decoder = Decoder(num_layers, model_dim, num_heads, feed_forward_dim, vocab_size, sequence_length, dropout)
self.final_layer = nn.Linear(model_dim, vocab_size)
def padding_mask(self, input):
input = (input == 0).float()
return input.unsqueeze(1).unsqueeze(2)
def look_ahead_mask(self, shape):
mask = 1 - torch.tril(torch.ones(shape, shape))
return mask
def create_masks_decoder(self, target):
target = target.to(device)
dec_look_ahead_mask = self.look_ahead_mask(target.size(1)).to(device)
dec_padding_mask = self.padding_mask(target).to(device)
combined_mask = torch.max(dec_padding_mask, dec_look_ahead_mask)
return combined_mask
def forward(self, input: Tensor, target: Tensor, enc_mask: Tensor = None, src_mask: Tensor = None, tgt_mask: Tensor = None, test: bool = True) -> Tensor:
dec_input_mask = self.create_masks_decoder(target)
enc_output = self.encoder(input, enc_mask)
dec_output = self.decoder(target, enc_output, dec_input_mask, tgt_mask) if test else self.decoder(target, enc_output, src_mask, tgt_mask)
output = self.final_layer(dec_output)
return output
if __name__ == '__main__':
inp = torch.randn(32, 49, 768)
tgt = torch.randint(0, 8357, (32, 34))
model = TransformerModel(512, 768, 8, 4, 8357, height = 7, width = 7)
# summary(model, input_data=[inp, tgt])
out = model(inp, tgt)