forked from BelfrySCAD/BOSL2
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathlinalg.scad
854 lines (784 loc) · 33.7 KB
/
linalg.scad
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
//////////////////////////////////////////////////////////////////////
// LibFile: linalg.scad
// This file provides linear algebra, with support for matrix construction,
// solutions to linear systems of equations, QR and Cholesky factorizations, and
// matrix inverse.
// Includes:
// include <BOSL2/std.scad>
// FileGroup: Math
// FileSummary: Linear Algebra: solve linear systems, construct and modify matrices.
// FileFootnotes: STD=Included in std.scad
//////////////////////////////////////////////////////////////////////
// Section: Matrices
// The matrix, a rectangular array of numbers which represents a linear transformation,
// is the fundamental object in linear algebra. In OpenSCAD a matrix is a list of lists of numbers
// with a rectangular structure. Because OpenSCAD treats all data the same, most of the functions that
// index matrices or construct them will work on matrices (lists of lists) whose elements are not numbers but may be
// arbitrary data: strings, booleans, or even other lists. It may even be acceptable in some cases if the structure is non-rectangular.
// Of course, linear algebra computations and solutions require true matrices with rectangular structure, where all the entries are
// finite numbers.
// .
// Matrices in OpenSCAD are lists of row vectors. However, a potential source of confusion is that OpenSCAD
// treats vectors as either column vectors or row vectors as demanded by
// context. Thus both `v*M` and `M*v` are valid if `M` is square and `v` has the right length. If you want to multiply
// `M` on the left by `v` and `w` you can do this with `[v,w]*M` but if you want to multiply on the right side with `v` and `w` as
// column vectors, you now need to use {{transpose()}} because OpenSCAD doesn't adjust matrices
// contextually: `A=M*transpose([v,w])`. The solutions are now columns of A and you must extract
// them with {{column()}} or take the transpose of `A`.
// Section: Matrix testing and display
// Function: is_matrix()
// Synopsis: Check if input is a numeric matrix, optionally of specified size
// Topics: Matrices
// See Also: is_matrix_symmetric(), is_rotation()
// Usage:
// test = is_matrix(A, [m], [n], [square])
// Description:
// Returns true if A is a numeric matrix of height m and width n with finite entries. If m or n
// are omitted or set to undef then true is returned for any positive dimension.
// Arguments:
// A = The matrix to test.
// m = If given, requires the matrix to have this height.
// n = Is given, requires the matrix to have this width.
// square = If true, matrix must have height equal to width. Default: false
function is_matrix(A,m,n,square=false) =
is_list(A)
&& (( is_undef(m) && len(A) ) || len(A)==m)
&& (!square || len(A) == len(A[0]))
&& is_vector(A[0],n)
&& is_consistent(A);
// Function: is_matrix_symmetric()
// Synopsis: Checks if matrix is symmetric
// Topics: Matrices
// See Also: is_matrix(), is_rotation()
// Usage:
// b = is_matrix_symmetric(A, [eps])
// Description:
// Returns true if the input matrix is symmetric, meaning it approximately equals its transpose.
// The matrix can have arbitrary entries.
// Arguments:
// A = matrix to test
// eps = epsilon for comparing equality. Default: 1e-12
function is_matrix_symmetric(A,eps=1e-12) =
approx(A,transpose(A), eps);
// Function: is_rotation()
// Synopsis: Check if a transformation matrix represents a rotation.
// Topics: Affine, Matrices, Transforms
// See Also: is_matrix(), is_matrix_symmetric(), is_rotation()
// Usage:
// b = is_rotation(A, [dim], [centered])
// Description:
// Returns true if the input matrix is a square affine matrix that is a rotation around any point,
// or around the origin if `centered` is true.
// The matrix must be 3x3 (representing a 2d transformation) or 4x4 (representing a 3d transformation).
// You can set `dim` to 2 to require a 2d transform (3x3 matrix) or to 3 to require a 3d transform (4x4 matrix).
// Arguments:
// A = matrix to test
// dim = if set, specify dimension in which the transform operates (2 or 3)
// centered = if true then require rotation to be around the origin. Default: false
function is_rotation(A,dim,centered=false) =
let(n=len(A))
is_matrix(A,square=true)
&& ( n==3 || n==4 && (is_undef(dim) || dim==n-1))
&&
(
let(
rotpart = [for(i=[0:n-2]) [for(j=[0:n-2]) A[j][i]]]
)
approx(determinant(rotpart),1)
)
&&
(!centered || [for(row=[0:n-2]) if (!approx(A[row][n-1],0)) row]==[]);
// Function&Module: echo_matrix()
// Synopsis: Print a matrix neatly to the console.
// Topics: Matrices
// See Also: is_matrix(), is_matrix_symmetric(), is_rotation()
// Usage:
// echo_matrix(M, [description], [sig], [sep], [eps]);
// dummy = echo_matrix(M, [description], [sig], [sep], [eps]),
// Description:
// Display a numerical matrix in a readable columnar format with `sig` significant
// digits. Values smaller than eps display as zero. If you give a description
// it is displayed at the top. You can change the space between columns by
// setting `sep` to a number of spaces, which will use wide figure spaces the same
// width as digits, or you can set it to any string to separate the columns.
// Values that are NaN or INF will display as "nan" and "inf". Values which are
// otherwise non-numerica display as two dashes. Note that this includes lists, so
// a 3D array will display as a list of dashes.
// Arguments:
// M = matrix to display, which should be numerical
// description = optional text to print before the matrix
// sig = number of digits to display. Default: 4
// sep = number of spaces between columns or a text string to separate columns. Default: 1
// eps = numbers smaller than this display as zero. Default: 1e-9
function echo_matrix(M,description,sig=4,sep=1,eps=1e-9) =
let(
horiz_line = chr(8213),
matstr = _format_matrix(M,sig=sig,sep=sep,eps=eps),
separator = str_join(repeat(horiz_line,10)),
dummy=echo(str(separator,is_def(description) ? str(" ",description) : ""))
[for(row=matstr) echo(row)]
)
echo(separator);
module echo_matrix(M,description,sig=4,sep=1,eps=1e-9)
{
dummy = echo_matrix(M,description,sig,sep,eps);
}
// Section: Matrix indexing
// Function: column()
// Synopsis: Extract a column from a matrix.
// Topics: Matrices, List Handling, Arrays
// See Also: select(), slice()
// Usage:
// list = column(M, i);
// Description:
// Extracts entry `i` from each list in M, or equivalently column i from the matrix M, and returns it as a vector.
// This function will return `undef` at all entry positions indexed by i not found in M.
// Arguments:
// M = The given list of lists.
// i = The index to fetch
// Example:
// M = [[1,2,3,4],[5,6,7,8],[9,10,11,12],[13,14,15,16]];
// a = column(M,2); // Returns [3, 7, 11, 15]
// b = column(M,0); // Returns [1, 5, 9, 13]
// N = [ [1,2], [3], [4,5], [6,7,8] ];
// c = column(N,1); // Returns [1,undef,5,7]
// data = [[1,[3,4]], [3, [9,3]], [4, [3,1]]]; // Matrix with non-numeric entries
// d = column(data,0); // Returns [1,3,4]
// e = column(data,1); // Returns [[3,4],[9,3],[3,1]]
function column(M, i) =
assert( is_list(M), "The input is not a list." )
assert( is_int(i) && i>=0, "Invalid index")
[for(row=M) row[i]];
// Function: submatrix()
// Synopsis: Extract a submatrix from a matrix
// Topics: Matrices, Arrays
// See Also: column(), block_matrix(), submatrix_set()
// Usage:
// mat = submatrix(M, idx1, idx2);
// Description:
// The input must be a list of lists (a matrix or 2d array). Returns a submatrix by selecting the rows listed in idx1 and columns listed in idx2.
// Arguments:
// M = Given list of lists
// idx1 = rows index list or range
// idx2 = column index list or range
// Example:
// M = [[ 1, 2, 3, 4, 5],
// [ 6, 7, 8, 9,10],
// [11,12,13,14,15],
// [16,17,18,19,20],
// [21,22,23,24,25]];
// submatrix(M,[1:2],[3:4]); // Returns [[9, 10], [14, 15]]
// submatrix(M,[1], [3,4])); // Returns [[9,10]]
// submatrix(M,1, [3,4])); // Returns [[9,10]]
// submatrix(M,1,3)); // Returns [[9]]
// submatrix(M, [3,4],1); // Returns [[17],[22]]);
// submatrix(M, [1,3],[2,4]); // Returns [[8,10],[18,20]]);
// A = [[true, 17, "test"],
// [[4,2], 91, false],
// [6, [3,4], undef]];
// submatrix(A,[0,2],[1,2]); // Returns [[17, "test"], [[3, 4], undef]]
function submatrix(M,idx1,idx2) =
[for(i=idx1) [for(j=idx2) M[i][j] ] ];
// Section: Matrix construction and modification
// Function: ident()
// Synopsis: Return identity matrix.
// Topics: Affine, Matrices, Transforms
// See Also: IDENT, submatrix(), column()
// Usage:
// mat = ident(n);
// Description:
// Create an `n` by `n` square identity matrix.
// Arguments:
// n = The size of the identity matrix square, `n` by `n`.
// Example:
// mat = ident(3);
// // Returns:
// // [
// // [1, 0, 0],
// // [0, 1, 0],
// // [0, 0, 1]
// // ]
// Example:
// mat = ident(4);
// // Returns:
// // [
// // [1, 0, 0, 0],
// // [0, 1, 0, 0],
// // [0, 0, 1, 0],
// // [0, 0, 0, 1]
// // ]
function ident(n) = [
for (i = [0:1:n-1]) [
for (j = [0:1:n-1]) (i==j)? 1 : 0
]
];
// Function: diagonal_matrix()
// Synopsis: Make a diagonal matrix.
// Topics: Affine, Matrices
// See Also: column(), submatrix()
// Usage:
// mat = diagonal_matrix(diag, [offdiag]);
// Description:
// Creates a square matrix with the items in the list `diag` on
// its diagonal. The off diagonal entries are set to offdiag,
// which is zero by default.
// Arguments:
// diag = A list of items to put in the diagnal cells of the matrix.
// offdiag = Value to put in non-diagonal matrix cells.
function diagonal_matrix(diag, offdiag=0) =
assert(is_list(diag) && len(diag)>0)
[for(i=[0:1:len(diag)-1]) [for(j=[0:len(diag)-1]) i==j?diag[i] : offdiag]];
// Function: transpose()
// Synopsis: Transpose a matrix
// Topics: Linear Algebra, Matrices
// See Also: submatrix(), block_matrix(), hstack(), flatten()
// Usage:
// M = transpose(M, [reverse]);
// Description:
// Returns the transpose of the given input matrix. The input can be a matrix with arbitrary entries or
// a numerical vector. If you give a vector then transpose returns it unchanged.
// When reverse=true, the transpose is done across to the secondary diagonal. (See example below.)
// By default, reverse=false.
// Example:
// M = [
// [1, 2, 3],
// [4, 5, 6],
// [7, 8, 9]
// ];
// t = transpose(M);
// // Returns:
// // [
// // [1, 4, 7],
// // [2, 5, 8],
// // [3, 6, 9]
// // ]
// Example:
// M = [
// [1, 2, 3],
// [4, 5, 6]
// ];
// t = transpose(M);
// // Returns:
// // [
// // [1, 4],
// // [2, 5],
// // [3, 6],
// // ]
// Example:
// M = [
// [1, 2, 3],
// [4, 5, 6],
// [7, 8, 9]
// ];
// t = transpose(M, reverse=true);
// // Returns:
// // [
// // [9, 6, 3],
// // [8, 5, 2],
// // [7, 4, 1]
// // ]
// Example: Transpose on a list of numbers returns the list unchanged
// transpose([3,4,5]); // Returns: [3,4,5]
// Example: Transpose on non-numeric input
// arr = [
// [ "a", "b", "c"],
// [ "d", "e", "f"],
// [[1,2],[3,4],[5,6]]
// ];
// t = transpose(arr);
// // Returns:
// // [
// // ["a", "d", [1,2]],
// // ["b", "e", [3,4]],
// // ["c", "f", [5,6]],
// // ]
function transpose(M, reverse=false) =
assert( is_list(M) && len(M)>0, "Input to transpose must be a nonempty list.")
is_list(M[0])
? let( len0 = len(M[0]) )
assert([for(a=M) if(!is_list(a) || len(a)!=len0) 1 ]==[], "Input to transpose has inconsistent row lengths." )
reverse
? [for (i=[0:1:len0-1])
[ for (j=[0:1:len(M)-1]) M[len(M)-1-j][len0-1-i] ] ]
: [for (i=[0:1:len0-1])
[ for (j=[0:1:len(M)-1]) M[j][i] ] ]
: assert( is_vector(M), "Input to transpose must be a vector or list of lists.")
M;
// Function: outer_product()
// Synopsis: Compute the outer product of two vectors.
// Topics: Linear Algebra, Matrices
// See Also: submatrix(), determinant()
// Usage:
// x = outer_product(u,v);
// Description:
// Compute the outer product of two vectors, which is a matrix.
// Usage:
// M = outer_product(u,v);
function outer_product(u,v) =
assert(is_vector(u) && is_vector(v), "The inputs must be vectors.")
[for(ui=u) ui*v];
// Function: submatrix_set()
// Synopsis: Takes a matrix as input and change values in a submatrix.
// Topics: Matrices, Arrays
// See Also: column(), submatrix()
// Usage:
// mat = submatrix_set(M, A, [m], [n]);
// Description:
// Sets a submatrix of M equal to the matrix A. By default the top left corner of M is set to A, but
// you can specify offset coordinates m and n. If A (as adjusted by m and n) extends beyond the bounds
// of M then the extra entries are ignored. You can pass in `A=[[]]`, a null matrix, and M will be
// returned unchanged. This function works on arbitrary lists of lists and the input M need not be rectangular in shape.
// Arguments:
// M = Original matrix.
// A = Submatrix of new values to write into M
// m = Row number of upper-left corner to place A at. Default: 0
// n = Column number of upper-left corner to place A at. Default: 0
function submatrix_set(M,A,m=0,n=0) =
assert(is_list(M))
assert(is_list(A))
assert(is_int(m))
assert(is_int(n))
let( badrows = [for(i=idx(A)) if (!is_list(A[i])) i])
assert(badrows==[], str("Input submatrix malformed rows: ",badrows))
[for(i=[0:1:len(M)-1])
assert(is_list(M[i]), str("Row ",i," of input matrix is not a list"))
[for(j=[0:1:len(M[i])-1])
i>=m && i <len(A)+m && j>=n && j<len(A[0])+n ? A[i-m][j-n] : M[i][j]]];
// Function: hstack()
// Synopsis: Make a new matrix by stacking matrices horizontally.
// Topics: Matrices, Arrays
// See Also: column(), submatrix(), block_matrix()
// Usage:
// A = hstack(M1, M2)
// A = hstack(M1, M2, M3)
// A = hstack([M1, M2, M3, ...])
// Description:
// Constructs a matrix by horizontally "stacking" together compatible matrices or vectors. Vectors are treated as columsn in the stack.
// This command is the inverse of `column`. Note: strings given in vectors are broken apart into lists of characters. Strings given
// in matrices are preserved as strings. If you need to combine vectors of strings use {{list_to_matrix()}} as shown below to convert the
// vector into a column matrix. Also note that vertical stacking can be done directly with concat.
// Arguments:
// M1 = If given with other arguments, the first matrix (or vector) to stack. If given alone, a list of matrices/vectors to stack.
// M2 = Second matrix/vector to stack
// M3 = Third matrix/vector to stack.
// Example:
// M = ident(3);
// v1 = [2,3,4];
// v2 = [5,6,7];
// v3 = [8,9,10];
// a = hstack(v1,v2); // Returns [[2, 5], [3, 6], [4, 7]]
// b = hstack(v1,v2,v3); // Returns [[2, 5, 8],
// // [3, 6, 9],
// // [4, 7, 10]]
// c = hstack([M,v1,M]); // Returns [[1, 0, 0, 2, 1, 0, 0],
// // [0, 1, 0, 3, 0, 1, 0],
// // [0, 0, 1, 4, 0, 0, 1]]
// d = hstack(column(M,0), submatrix(M,idx(M),[1 2])); // Returns M
// strvec = ["one","two"];
// strmat = [["three","four"], ["five","six"]];
// e = hstack(strvec,strvec); // Returns [["o", "n", "e", "o", "n", "e"],
// // ["t", "w", "o", "t", "w", "o"]]
// f = hstack(list_to_matrix(strvec,1), list_to_matrix(strvec,1));
// // Returns [["one", "one"],
// // ["two", "two"]]
// g = hstack(strmat,strmat); // Returns: [["three", "four", "three", "four"],
// // [ "five", "six", "five", "six"]]
function hstack(M1, M2, M3) =
(M3!=undef)? hstack([M1,M2,M3]) :
(M2!=undef)? hstack([M1,M2]) :
assert(all([for(v=M1) is_list(v)]), "One of the inputs to hstack is not a list")
let(
minlen = min_length(M1),
maxlen = max_length(M1)
)
assert(minlen==maxlen, "Input vectors to hstack must have the same length")
[for(row=[0:1:minlen-1])
[for(matrix=M1)
each matrix[row]
]
];
// Function: block_matrix()
// Synopsis: Make a new matrix from a block of matrices.
// Topics: Matrices, Arrays
// See Also: column(), submatrix()
// Usage:
// bmat = block_matrix([[M11, M12,...],[M21, M22,...], ... ]);
// Description:
// Create a block matrix by supplying a matrix of matrices, which will
// be combined into one unified matrix. Every matrix in one row
// must have the same height, and the combined width of the matrices
// in each row must be equal. Strings will stay strings.
// Example:
// A = [[1,2],
// [3,4]];
// B = ident(2);
// C = block_matrix([[A,B],[B,A],[A,B]]);
// // Returns:
// // [[1, 2, 1, 0],
// // [3, 4, 0, 1],
// // [1, 0, 1, 2],
// // [0, 1, 3, 4],
// // [1, 2, 1, 0],
// // [3, 4, 0, 1]]);
// D = block_matrix([[A,B], ident(4)]);
// // Returns:
// // [[1, 2, 1, 0],
// // [3, 4, 0, 1],
// // [1, 0, 0, 0],
// // [0, 1, 0, 0],
// // [0, 0, 1, 0],
// // [0, 0, 0, 1]]);
// E = [["one", "two"], [3,4]];
// F = block_matrix([[E,E]]);
// // Returns:
// // [["one", "two", "one", "two"],
// // [ 3, 4, 3, 4]]
function block_matrix(M) =
let(
bigM = [for(bigrow = M) each hstack(bigrow)],
len0 = len(bigM[0]),
badrows = [for(row=bigM) if (len(row)!=len0) 1]
)
assert(badrows==[], "Inconsistent or invalid input")
bigM;
// Section: Solving Linear Equations and Matrix Factorizations
// Function: linear_solve()
// Synopsis: Solve Ax=b or, for overdetermined case, solve the least square problem.
// Topics: Matrices, Linear Algebra
// See Also: linear_solve3(), matrix_inverse(), rot_inverse(), back_substitute(), cholesky()
// Usage:
// solv = linear_solve(A,b,[pivot])
// Description:
// Solves the linear system Ax=b. If `A` is square and non-singular the unique solution is returned. If `A` is overdetermined
// the least squares solution is returned. If `A` is underdetermined, the minimal norm solution is returned.
// If `A` is rank deficient or singular then linear_solve returns `[]`. If `b` is a matrix that is compatible with `A`
// then the problem is solved for the matrix valued right hand side and a matrix is returned. Note that if you
// want to solve Ax=b1 and Ax=b2 that you need to form the matrix `transpose([b1,b2])` for the right hand side and then
// transpose the returned value. The solution is computed using QR factorization. If `pivot` is set to true (the default) then
// pivoting is used in the QR factorization, which is slower but expected to be more accurate.
// Arguments:
// A = Matrix describing the linear system, which need not be square
// b = right hand side for linear system, which can be a matrix to solve several cases simultaneously. Must be consistent with A.
// pivot = if true use pivoting when computing the QR factorization. Default: true
function linear_solve(A,b,pivot=true) =
assert(is_matrix(A), "Input should be a matrix.")
let(
m = len(A),
n = len(A[0])
)
assert(is_vector(b,m) || is_matrix(b,m),"Invalid right hand side or incompatible with the matrix")
let (
qr = m<n? qr_factor(transpose(A),pivot) : qr_factor(A,pivot),
maxdim = max(n,m),
mindim = min(n,m),
Q = submatrix(qr[0],[0:maxdim-1], [0:mindim-1]),
R = submatrix(qr[1],[0:mindim-1], [0:mindim-1]),
P = qr[2],
zeros = [for(i=[0:mindim-1]) if (approx(R[i][i],0)) i]
)
zeros != [] ? [] :
m<n ? Q*back_substitute(R,transpose(P)*b,transpose=true) // Too messy to avoid input checks here
: P*_back_substitute(R, transpose(Q)*b); // Calling internal version skips input checks
// Function: linear_solve3()
// Synopsis: Fast solution to Ax=b where A is 3x3.
// Topics: Matrices, Linear Algebra
// See Also: linear_solve(), matrix_inverse(), rot_inverse(), back_substitute(), cholesky()
// Usage:
// x = linear_solve3(A,b)
// Description:
// Fast solution to a 3x3 linear system using Cramer's rule (which appears to be the fastest
// method in OpenSCAD). The input `A` must be a 3x3 matrix. Returns undef if `A` is singular.
// The input `b` must be a 3-vector. Note that Cramer's rule is not a stable algorithm, so for
// the highest accuracy on ill-conditioned problems you may want to use the general solver, which is about ten times slower.
// Arguments:
// A = 3x3 matrix for linear system
// b = length 3 vector, right hand side of linear system
function linear_solve3(A,b) =
// Arg sanity checking adds 7% overhead
assert(b*0==[0,0,0], "Input b must be a 3-vector")
assert(A*0==[[0,0,0],[0,0,0],[0,0,0]],"Input A must be a 3x3 matrix")
let(
Az = [for(i=[0:2])[A[i][0], A[i][1], b[i]]],
Ay = [for(i=[0:2])[A[i][0], b[i], A[i][2]]],
Ax = [for(i=[0:2])[b[i], A[i][1], A[i][2]]],
detA = det3(A)
)
detA==0 ? undef : [det3(Ax), det3(Ay), det3(Az)] / detA;
// Function: matrix_inverse()
// Synopsis: General matrix inverse.
// Topics: Matrices, Linear Algebra
// See Also: linear_solve(), linear_solve3(), matrix_inverse(), rot_inverse(), back_substitute(), cholesky()
// Usage:
// mat = matrix_inverse(A)
// Description:
// Compute the matrix inverse of the square matrix `A`. If `A` is singular, returns `undef`.
// Note that if you just want to solve a linear system of equations you should NOT use this function.
// Instead use {{linear_solve()}}, or use {{qr_factor()}}. The computation
// will be faster and more accurate.
function matrix_inverse(A) =
assert(is_matrix(A) && len(A)==len(A[0]),"Input to matrix_inverse() must be a square matrix")
linear_solve(A,ident(len(A)));
// Function: rot_inverse()
// Synopsis: Invert 2d or 3d rotation transformations.
// Topics: Matrices, Linear Algebra, Affine
// See Also: linear_solve(), linear_solve3(), matrix_inverse(), rot_inverse(), back_substitute(), cholesky()
// Usage:
// B = rot_inverse(A)
// Description:
// Inverts a 2d (3x3) or 3d (4x4) rotation matrix. The matrix can be a rotation around any center,
// so it may include a translation. This is faster and likely to be more accurate than using `matrix_inverse()`.
function rot_inverse(T) =
assert(is_matrix(T,square=true),"Matrix must be square")
let( n = len(T))
assert(n==3 || n==4, "Matrix must be 3x3 or 4x4")
let(
rotpart = [for(i=[0:n-2]) [for(j=[0:n-2]) T[j][i]]],
transpart = [for(row=[0:n-2]) T[row][n-1]]
)
assert(approx(determinant(T),1),"Matrix is not a rotation")
concat(hstack(rotpart, -rotpart*transpart),[[for(i=[2:n]) 0, 1]]);
// Function: null_space()
// Synopsis: Return basis for the null space of A.
// Topics: Matrices, Linear Algebra
// See Also: linear_solve(), linear_solve3(), matrix_inverse(), rot_inverse(), back_substitute(), cholesky()
// Usage:
// x = null_space(A)
// Description:
// Returns an orthonormal basis for the null space of `A`, namely the vectors {x} such that Ax=0.
// If the null space is just the origin then returns an empty list.
function null_space(A,eps=1e-12) =
assert(is_matrix(A))
let(
Q_R = qr_factor(transpose(A),pivot=true),
R = Q_R[1],
zrows = [for(i=idx(R)) if (all_zero(R[i],eps)) i]
)
len(zrows)==0 ? [] :
select(transpose(Q_R[0]), zrows);
// Function: qr_factor()
// Synopsis: Compute QR factorization of a matrix.
// Topics: Matrices, Linear Algebra
// See Also: linear_solve(), linear_solve3(), matrix_inverse(), rot_inverse(), back_substitute(), cholesky()
// Usage:
// qr = qr_factor(A,[pivot]);
// Description:
// Calculates the QR factorization of the input matrix A and returns it as the list [Q,R,P]. This factorization can be
// used to solve linear systems of equations. The factorization is `A = Q*R*transpose(P)`. If pivot is false (the default)
// then P is the identity matrix and A = Q*R. If pivot is true then column pivoting results in an R matrix where the diagonal
// is non-decreasing. The use of pivoting is supposed to increase accuracy for poorly conditioned problems, and is necessary
// for rank estimation or computation of the null space, but it may be slower.
function qr_factor(A, pivot=false) =
assert(is_matrix(A), "Input must be a matrix." )
let(
m = len(A),
n = len(A[0])
)
let(
qr = _qr_factor(A, Q=ident(m),P=ident(n), pivot=pivot, col=0, m = m, n = n),
Rzero = let( R = qr[1]) [
for(i=[0:m-1]) [
let( ri = R[i] )
for(j=[0:n-1]) i>j ? 0 : ri[j]
]
]
) [qr[0], Rzero, qr[2]];
function _qr_factor(A,Q,P, pivot, col, m, n) =
col >= min(m-1,n) ? [Q,A,P] :
let(
swap = !pivot ? 1
: _swap_matrix(n,col,col+max_index([for(i=[col:n-1]) sqr([for(j=[col:m-1]) A[j][i]])])),
A = pivot ? A*swap : A,
x = [for(i=[col:1:m-1]) A[i][col]],
alpha = (x[0]<=0 ? 1 : -1) * norm(x),
u = x - concat([alpha],repeat(0,m-1)),
v = alpha==0 ? u : u / norm(u),
Qc = ident(len(x)) - 2*outer_product(v,v),
Qf = [for(i=[0:m-1]) [for(j=[0:m-1]) i<col || j<col ? (i==j ? 1 : 0) : Qc[i-col][j-col]]]
)
_qr_factor(Qf*A, Q*Qf, P*swap, pivot, col+1, m, n);
// Produces an n x n matrix that swaps column i and j (when multiplied on the right)
function _swap_matrix(n,i,j) =
assert(i<n && j<n && i>=0 && j>=0, "Swap indices out of bounds")
[for(y=[0:n-1]) [for (x=[0:n-1])
x==i ? (y==j ? 1 : 0)
: x==j ? (y==i ? 1 : 0)
: x==y ? 1 : 0]];
// Function: back_substitute()
// Synopsis: Solve an upper triangular system, Rx=b.
// Topics: Matrices, Linear Algebra
// See Also: linear_solve(), linear_solve3(), matrix_inverse(), rot_inverse(), back_substitute(), cholesky()
// Usage:
// x = back_substitute(R, b, [transpose]);
// Description:
// Solves the problem Rx=b where R is an upper triangular square matrix. The lower triangular entries of R are
// ignored. If transpose==true then instead solve transpose(R)*x=b.
// You can supply a compatible matrix b and it will produce the solution for every column of b. Note that if you want to
// solve Rx=b1 and Rx=b2 you must set b to transpose([b1,b2]) and then take the transpose of the result. If the matrix
// is singular (e.g. has a zero on the diagonal) then it returns [].
function back_substitute(R, b, transpose = false) =
assert(is_matrix(R, square=true))
let(n=len(R))
assert(is_vector(b,n) || is_matrix(b,n),str("R and b are not compatible in back_substitute ",n, len(b)))
transpose
? reverse(_back_substitute(transpose(R, reverse=true), reverse(b)))
: _back_substitute(R,b);
function _back_substitute(R, b, x=[]) =
let(n=len(R))
len(x) == n ? x
: let(ind = n - len(x) - 1)
R[ind][ind] == 0 ? []
: let(
newvalue = len(x)==0
? b[ind]/R[ind][ind]
: (b[ind]-list_tail(R[ind],ind+1) * x)/R[ind][ind]
)
_back_substitute(R, b, concat([newvalue],x));
// Function: cholesky()
// Synopsis: Compute the Cholesky factorization of a matrix.
// Topics: Matrices, Linear Algebra
// See Also: linear_solve(), linear_solve3(), matrix_inverse(), rot_inverse(), back_substitute(), cholesky()
// Usage:
// L = cholesky(A);
// Description:
// Compute the cholesky factor, L, of the symmetric positive definite matrix A.
// The matrix L is lower triangular and `L * transpose(L) = A`. If the A is
// not symmetric then an error is displayed. If the matrix is symmetric but
// not positive definite then undef is returned.
function cholesky(A) =
assert(is_matrix(A,square=true),"A must be a square matrix")
assert(is_matrix_symmetric(A),"Cholesky factorization requires a symmetric matrix")
_cholesky(A,ident(len(A)), len(A));
function _cholesky(A,L,n) =
A[0][0]<0 ? undef : // Matrix not positive definite
len(A) == 1 ? submatrix_set(L,[[sqrt(A[0][0])]], n-1,n-1):
let(
i = n+1-len(A)
)
let(
sqrtAii = sqrt(A[0][0]),
Lnext = [for(j=[0:n-1])
[for(k=[0:n-1])
j<i-1 || k<i-1 ? (j==k ? 1 : 0)
: j==i-1 && k==i-1 ? sqrtAii
: j==i-1 ? 0
: k==i-1 ? A[j-(i-1)][0]/sqrtAii
: j==k ? 1 : 0]],
Anext = submatrix(A,[1:n-1], [1:n-1]) - outer_product(list_tail(A[0]), list_tail(A[0]))/A[0][0]
)
_cholesky(Anext,L*Lnext,n);
// Section: Matrix Properties: Determinants, Norm, Trace
// Function: det2()
// Synopsis: Compute determinant of 2x2 matrix.
// Topics: Matrices, Linear Algebra
// See Also: det2(), det3(), det4(), determinant(), norm_fro(), matrix_trace()
// Usage:
// d = det2(M);
// Description:
// Rturns the determinant for the given 2x2 matrix.
// Arguments:
// M = The 2x2 matrix to get the determinant of.
// Example:
// M = [ [6,-2], [1,8] ];
// det = det2(M); // Returns: 50
function det2(M) =
assert(is_def(M) && M*0==[[0,0],[0,0]], "Expected square matrix (2x2)")
cross(M[0],M[1]);
// Function: det3()
// Synopsis: Compute determinant of 3x3 matrix.
// Topics: Matrices, Linear Algebra
// See Also: det2(), det3(), det4(), determinant(), norm_fro(), matrix_trace()
// Usage:
// d = det3(M);
// Description:
// Returns the determinant for the given 3x3 matrix.
// Arguments:
// M = The 3x3 square matrix to get the determinant of.
// Example:
// M = [ [6,4,-2], [1,-2,8], [1,5,7] ];
// det = det3(M); // Returns: -334
function det3(M) =
assert(is_def(M) && M*0==[[0,0,0],[0,0,0],[0,0,0]], "Expected square matrix (3x3).")
M[0][0] * (M[1][1]*M[2][2]-M[2][1]*M[1][2]) -
M[1][0] * (M[0][1]*M[2][2]-M[2][1]*M[0][2]) +
M[2][0] * (M[0][1]*M[1][2]-M[1][1]*M[0][2]);
// Function: det4()
// Synopsis: Compute determinant of 4x4 matrix.
// Topics: Matrices, Linear Algebra
// See Also: det2(), det3(), det4(), determinant(), norm_fro(), matrix_trace()
// Usage:
// d = det4(M);
// Description:
// Returns the determinant for the given 4x4 matrix.
// Arguments:
// M = The 4x4 square matrix to get the determinant of.
// Example:
// M = [ [6,4,-2,1], [1,-2,8,-3], [1,5,7,4], [2,3,4,7] ];
// det = det4(M); // Returns: -1773
function det4(M) =
assert(is_def(M) && M*0==[[0,0,0,0],[0,0,0,0],[0,0,0,0],[0,0,0,0]], "Expected square matrix (4x4).")
M[0][0]*M[1][1]*M[2][2]*M[3][3] + M[0][0]*M[1][2]*M[2][3]*M[3][1] + M[0][0]*M[1][3]*M[2][1]*M[3][2]
+ M[0][1]*M[1][0]*M[2][3]*M[3][2] + M[0][1]*M[1][2]*M[2][0]*M[3][3] + M[0][1]*M[1][3]*M[2][2]*M[3][0]
+ M[0][2]*M[1][0]*M[2][1]*M[3][3] + M[0][2]*M[1][1]*M[2][3]*M[3][0] + M[0][2]*M[1][3]*M[2][0]*M[3][1]
+ M[0][3]*M[1][0]*M[2][2]*M[3][1] + M[0][3]*M[1][1]*M[2][0]*M[3][2] + M[0][3]*M[1][2]*M[2][1]*M[3][0]
- M[0][0]*M[1][1]*M[2][3]*M[3][2] - M[0][0]*M[1][2]*M[2][1]*M[3][3] - M[0][0]*M[1][3]*M[2][2]*M[3][1]
- M[0][1]*M[1][0]*M[2][2]*M[3][3] - M[0][1]*M[1][2]*M[2][3]*M[3][0] - M[0][1]*M[1][3]*M[2][0]*M[3][2]
- M[0][2]*M[1][0]*M[2][3]*M[3][1] - M[0][2]*M[1][1]*M[2][0]*M[3][3] - M[0][2]*M[1][3]*M[2][1]*M[3][0]
- M[0][3]*M[1][0]*M[2][1]*M[3][2] - M[0][3]*M[1][1]*M[2][2]*M[3][0] - M[0][3]*M[1][2]*M[2][0]*M[3][1];
// Function: determinant()
// Synopsis: compute determinant of an arbitrary square matrix.
// Topics: Matrices, Linear Algebra
// See Also: det2(), det3(), det4(), determinant(), norm_fro(), matrix_trace()
// Usage:
// d = determinant(M);
// Description:
// Returns the determinant for the given square matrix.
// Arguments:
// M = The NxN square matrix to get the determinant of.
// Example:
// M = [ [6,4,-2,9], [1,-2,8,3], [1,5,7,6], [4,2,5,1] ];
// det = determinant(M); // Returns: 2267
function determinant(M) =
assert(is_list(M), "Input must be a square matrix." )
len(M)==1? M[0][0] :
len(M)==2? det2(M) :
len(M)==3? det3(M) :
len(M)==4? det4(M) :
assert(is_matrix(M, square=true), "Input must be a square matrix." )
sum(
[for (col=[0:1:len(M)-1])
((col%2==0)? 1 : -1) *
M[col][0] *
determinant(
[for (r=[1:1:len(M)-1])
[for (c=[0:1:len(M)-1])
if (c!=col) M[c][r]
]
]
)
]
);
// Function: norm_fro()
// Synopsis: Compute Frobenius norm of a matrix
// Topics: Matrices, Linear Algebra
// See Also: det2(), det3(), det4(), determinant(), norm_fro(), matrix_trace()
// Usage:
// norm_fro(A)
// Description:
// Computes frobenius norm of input matrix. The frobenius norm is the square root of the sum of the
// squares of all of the entries of the matrix. On vectors it is the same as the usual 2-norm.
// This is an easily computed norm that is convenient for comparing two matrices.
function norm_fro(A) =
assert(is_matrix(A) || is_vector(A))
norm(flatten(A));
// Function: matrix_trace()
// Synopsis: Compute the trace of a square matrix.
// Topics: Matrices, Linear Algebra
// See Also: det2(), det3(), det4(), determinant(), norm_fro(), matrix_trace()
// Usage:
// matrix_trace(M)
// Description:
// Computes the trace of a square matrix, the sum of the entries on the diagonal.
function matrix_trace(M) =
assert(is_matrix(M,square=true), "Input to trace must be a square matrix")
[for(i=[0:1:len(M)-1])1] * [for(i=[0:1:len(M)-1]) M[i][i]];
// vim: expandtab tabstop=4 shiftwidth=4 softtabstop=4 nowrap