-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathtest 2 .py
52 lines (47 loc) · 1.76 KB
/
test 2 .py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
import numpy as np
import matplotlib.pyplot as plt
from sklearn import svm, datasets
import pandas as pd
#Saving featureVectors to a csv file
header1 = ["f1","f2","f3","f4","f5","f6","f7","f8","f9","f10","f11","f12","f13","f14","f15","f16","f17","f18","f19","f20","f21","f22","f23","f24","f25","f26"]
header2 = ["MangaName"]
#Writing the SVM
def Build_Data_Set(features = header1, features1 = header2):
data_df = pd.DataFrame.from_csv("D:/semesters/graduation project - manga/features.csv")
#data_df = data_df[:250]
X = np.array(data_df[features].values)
data_df2 = pd.DataFrame.from_csv("D:/semesters/graduation project - manga/mangaNames.csv")
oldY = np.array(data_df2[features1].values)
y=[]
for name in oldY:
y.append(name[0])
return X,y
def Analysis():
X,y = Build_Data_Set()
print(X)
print(y)
C = 1.0 # SVM regularization parameter
clf = (svm.SVC(kernel='rbf', gamma=0.7, C=C))
clf = clf.fit(X, y)
#value = clf.predict([[2.,1,47,11]]);
#print(value)
"""
models = [(svm.SVC(kernel='rbf', gamma=0.7, C=C))]
models = (clf.fit(X, y) for clf in models)
xx = np.linspace(0,5)
yy = np.linspace(0,185)
# Set-up 2x2 grid for plotting.
fig, sub = plt.subplots(1, 1)
plt.subplots_adjust(wspace=0.4, hspace=0.4)
titles = ('SVC with RBF kernel')
for clf, title in zip(models, titles):
sub.scatter(X[:, 0], X[:, 1], c=y, cmap=plt.cm.coolwarm, s=20, edgecolors='k')
sub.set_xlim(xx.min(), xx.max())
sub.set_ylim(yy.min(), yy.max())
sub.set_xlabel('Sepal length')
sub.set_ylabel('Sepal width')
sub.set_xticks(())
sub.set_yticks(())
sub.set_title(title)
plt.show()"""
Analysis()