-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathSlicingWithFaceDetectionAndTextExtraction.py
384 lines (378 loc) · 19.1 KB
/
SlicingWithFaceDetectionAndTextExtraction.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
import cv2
import numpy as np
import glob
import os
import math
import connected_components as cc
import run_length_smoothing as rls
import clean_page as clean
import ocr
import segmentation as seg
import furigana
import arg
import defaults
from scipy.misc import imsave
import sys
import scipy.ndimage
AbsPath = 'D:/semesters/graduation project - manga/Manga109/Manga109/images'
#AbsPath = 'D:/semesters/graduation project - manga/TennenSenshiG'
cascPath = "D:/semesters/graduation project - manga/lbpcascade_animeface.xml"
faceCascade = cv2.CascadeClassifier(cascPath)
MangaCounter = -1
FeaturesFile = open('D:/semesters/graduation project - manga/features.csv', 'w+')
MangaFile = open('D:/semesters/graduation project - manga/mangaNames.csv', 'w+')
MangaFile.write(",MangaName\n")
FeaturesFile.write(",f1,f2,f3,f4,f5,f6,f7,f8,f9,f10,f11,f12,f13,f14,f15,f16,f17,f18,f19,f20,f21,f22,f23,f24,f25,f26,f27,f28,f29,f30\n")
for mangaName in os.listdir(AbsPath):
print(mangaName)
MangaCounter += 1
MangaFile.write(str(MangaCounter) + "," + mangaName+"\n")
FeaturesFileString = "";
path = AbsPath+"/"+mangaName
counter = 0
counterRatio = 0
counterRatioOnly=0
faceCounter = 0
mangaFacesFeatures = []
mangaScenesFeatures = []
facePixelsValuesCounter = 0
scenePixelsValuesCounter = 0
facePixelsValuesFreq = np.zeros((17,), dtype=int)
scenePixelsValuesFreq = np.zeros((17,), dtype=int)
for filename in glob.glob(os.path.join(path, '*.jpg')):
facesVector = []
pageVector = []
outLinesPixels = []
tonePixels = []
def Scene_Pixels_Values_Freq( Picture ):
for row in Picture:
for pixel in row:
if pixel>40 and pixel<=210 :
scenePixelsValuesFreq[int((pixel-41)/10)]+=1
def Face_Pixels_Values_Freq( Picture ):
for row in Picture:
for pixel in row:
if pixel>40 and pixel<=210 :
facePixelsValuesFreq[int((pixel-41)/10)]+=1
def Feature_Page_Average_Width( vectorWidth ):
if len(vectorWidth)!=0 :
averageWidth = 0;
for width in vectorWidth:
averageWidth += width
if len(vectorWidth)!=0 :
averageWidth /= len(vectorWidth)
pageVector.append(averageWidth)
def Feature_Page_Average_Height( vectorHeight ):
if len(vectorHeight)!=0 :
averageHeight = 0;
for Height in vectorHeight:
averageHeight += Height
if len(vectorHeight)!=0 :
averageHeight /= len(vectorHeight)
pageVector.append(averageHeight)
def Feature_Page_Average_Slope( vectorPoints ):
if len(vectorPoints)!=0 :
averageDivertSlope = 1;
counter = 0;
for points in vectorPoints:
Xs = []
Ys = []
for point in points:
Xs.append(point[0][0])
Ys.append(point[0][1])
for i in range(0, 4):
if not(abs(Xs[i]-Xs[(i+1)%4])<10 or abs(Ys[i]-Ys[(i+1)%4])<10) :
counter+=1
averageDivertSlope += ((abs(Ys[i]-Ys[(i+1)%4]))/(abs(Xs[i]-Xs[(i+1)%4])))
if counter != 0 :
averageDivertSlope /= counter
pageVector.append(averageDivertSlope)
def Feature_Page_Average_Area_To_Rectangle_Ratio( vectorArea ):
if len(vectorArea)!=0 :
averageArea = 0;
for Area in vectorArea:
averageArea+= Area
if len(vectorArea)!=0 :
averageArea /= len(vectorArea)
pageVector.append(averageArea)
def Feature_Page_Average_Canny_Lines(vectorCannyLines,CannyAreas):
if len(vectorCannyLines)!=0 :
averageCannyLines = 0;
counter = 0
CannyAreas[counter] +=1
for CannyLines in vectorCannyLines:
try:
averageCannyLines+= CannyLines/CannyAreas[counter]
except ZeroDivisionError:
averageCannyLines+= 0
counter +=1
if len(vectorCannyLines)!=0:
averageCannyLines /= len(vectorCannyLines)
pageVector.append(averageCannyLines)
def Feature_SceneCanny_Pixels(Picture,Area):
counter = 0
for row in Picture:
for pixel in row:
if pixel!=0 :
counter+=1
outLinesPixels.append(counter/Area)
def Feature_SceneTone_Pixels(Picture,Area):
counter = 0
for row in Picture:
for pixel in row:
if pixel<220 :
counter+=1
tonePixels.append(counter/Area)
def Feature_SceneCanny_Average_Pixels():
if len(outLinesPixels)!=0 :
average = 0
for Pixels in outLinesPixels:
average+=Pixels
if len(outLinesPixels)!=0:
average /= len(outLinesPixels)
pageVector.append(average)
def Feature_Tone_Average_Pixels():
if len(tonePixels)!=0 :
average = 0
for Pixels in tonePixels:
average+=Pixels
if len(tonePixels)!=0:
average /= len(tonePixels)
pageVector.append(average)
def Feature_Outlines_To_Tones_Pixels_Ratio():
if len(outLinesPixels)!=0 :
average = 0
counter = 0
if tonePixels[counter] == 0 :
tonePixels[counter] +=1
for Pixels in outLinesPixels:
try:
average+=Pixels/tonePixels[counter]
except ZeroDivisionError:
average+=0
counter += 1
if len(outLinesPixels) != 0 :
average /= len(outLinesPixels)
pageVector.append(average)
def Feature_FaceCanny_Pixels(Picture,Area):
counter = 0
for row in Picture:
for pixel in row:
if pixel!=0 :
counter+=1
return counter/Area
def Feature_FaceTone_Pixels(Picture,Area):
counter = 0
for row in Picture:
for pixel in row:
if pixel<220 :
counter+=1
return counter/Area
img = cv2.imread(filename)
source_gray = cv2.cvtColor(img,cv2.COLOR_BGR2GRAY)
row, col= source_gray.shape[:2]
bottom= source_gray[row-2:row, 0:col]
mean= cv2.mean(bottom)[0]
bordersize = 3
border = cv2.copyMakeBorder(source_gray, top=bordersize, bottom=bordersize, left=0, right=0, borderType= cv2.BORDER_CONSTANT, value=[0,0,0] )
bordersize = 2
borderWhite = cv2.copyMakeBorder(border, top=bordersize, bottom=bordersize, left=0, right=0, borderType= cv2.BORDER_CONSTANT, value=[255,255,255] )
ret,source_thresh = cv2.threshold(borderWhite,230,255,0)
kernel = cv2.getStructuringElement(cv2.MORPH_RECT,(2,2) ,(1, 1))
source_dilated = cv2.dilate(source_thresh, kernel, iterations=1)
kernel_size = 3
scale = 1
delta = 0
ddepth = cv2.CV_16S
gray_lap = cv2.Laplacian(source_dilated,ddepth,ksize = kernel_size,scale = scale,delta = delta)
dst = cv2.convertScaleAbs(gray_lap)
im2, contours, hierarchy = cv2.findContours(dst,cv2.RETR_EXTERNAL,cv2.CHAIN_APPROX_SIMPLE)
#cv2.drawContours(img, contours, -1, (0,255,0), 3)
# Find the index of the largest contour
pageFacesWidths = []
faces = faceCascade.detectMultiScale(
borderWhite,
scaleFactor=1.1,
minNeighbors=2,
minSize=(100, 100)
)
# Draw a rectangle around the faces
for (x, y, w, h) in faces:
faceFeatures = []
crop_face_img = borderWhite[y:y+h, x:x+w]
#cv2.imwrite(pathFaces+"/"+str(faceCounter)+".jpg", crop_face_img)
faceCounter += 1
faceFeatures.append(w*h)
edges = cv2.Canny(crop_face_img,500,500)
edgesOfFaces = cv2.findContours(edges,cv2.RETR_LIST,cv2.CHAIN_APPROX_SIMPLE)
faceFeatures.append(len(edgesOfFaces[1])/(w*h)) # density per unit area
faceFeatures.append(Feature_FaceCanny_Pixels(edges,w*h)) #faceCanny Pixels per unit area
FaceTonePicture = cv2.bitwise_or(crop_face_img, edges) # faceTone preprocessing
faceFeatures.append(Feature_FaceTone_Pixels(FaceTonePicture,w*h))
faceFeatures.append(Feature_FaceCanny_Pixels(edges,w*h)/Feature_FaceTone_Pixels(FaceTonePicture,w*h))
facesVector.append(faceFeatures)
Face_Pixels_Values_Freq(crop_face_img)
#Feature_Page_Average_Faces_Areas(pageFacesWidths)
width, height = borderWhite.shape
subRegions = []
areas = [cv2.contourArea(c) for c in contours]
widths= []
heights= []
AreaToRectangleRatio= []
Points= []
CannyLines = []
CannyAreas = []
for cnt in contours:
if cv2.contourArea(cnt) > 20000 :
epsilon = 0.01*cv2.arcLength(cnt,True)
approx = cv2.approxPolyDP(cnt,epsilon,True)
if len(approx) == 4 :
mask = np.zeros([width, height, 3], dtype = "uint8")
mask_gray = cv2.cvtColor(mask,cv2.COLOR_BGR2GRAY)
cv2.drawContours(mask_gray,[cnt],0,(255,255,255),cv2.FILLED)
mask_gray_white = cv2.bitwise_not(mask_gray)
masked_img = cv2.bitwise_and(borderWhite, mask_gray, mask)
masked_img = cv2.bitwise_or(mask_gray_white, masked_img)
x,y,w,h = cv2.boundingRect(cnt)
crop_img = masked_img[y:y+h, x:x+w]
binary_threshold=arg.integer_value('binary_threshold',default_value=defaults.BINARY_THRESHOLD)
if arg.boolean_value('verbose'):
print ('Binarizing with threshold value of ' + str(binary_threshold))
inv_binary = cv2.bitwise_not(clean.binarize(crop_img, threshold=binary_threshold))
binary = clean.binarize(crop_img, threshold=binary_threshold)
segmented_image = seg.segment_image(crop_img)
segmented_image = segmented_image[:,:,2]
mySceneImage = np.copy(segmented_image)
image, contours, hierarchy = cv2.findContours(mySceneImage,cv2.RETR_LIST,cv2.CHAIN_APPROX_SIMPLE)
for cnt in contours:
if cv2.contourArea(cnt) > 3000 :
cv2.drawContours(crop_img,[cnt],0,(255,255,255),cv2.FILLED)
#cv2.imshow('image',crop_img)
#cv2.waitKey(0)
#cv2.imwrite(pathSolved+"/"+str(counter)+".jpg", crop_img)
edges = cv2.Canny(crop_img,500,500)
edgesContours = cv2.findContours(edges,cv2.RETR_LIST,cv2.CHAIN_APPROX_SIMPLE)
CannyLines.append(len(edgesContours[1]))
widths.append(w)
heights.append(h)
AreaToRectangleRatio.append(cv2.contourArea(cnt)/(w*h))
Points.append(approx)
CannyAreas.append(cv2.contourArea(cnt))
Feature_SceneCanny_Pixels(edges,cv2.contourArea(cnt))
TonePicture = cv2.bitwise_or(crop_img, edges)
Feature_SceneTone_Pixels(TonePicture,cv2.contourArea(cnt))
Scene_Pixels_Values_Freq(crop_img)
counter+=1
Feature_Page_Average_Width(widths)
Feature_Page_Average_Height(heights)
Feature_Page_Average_Area_To_Rectangle_Ratio(AreaToRectangleRatio)
Feature_Page_Average_Slope(Points)
Feature_Page_Average_Canny_Lines(CannyLines,CannyAreas)
Feature_SceneCanny_Average_Pixels()
Feature_Tone_Average_Pixels()
Feature_Outlines_To_Tones_Pixels_Ratio()
#print("pv"+str(pageVector)+" fv"+str(facesVector))
mangaFacesFeatures.append(facesVector)
mangaScenesFeatures.append(pageVector)
MangaFaceFeaturesAverage = [0]*5
MangaFaceFeaturesdaviation = [0]*5
for FacesPerPage in mangaFacesFeatures:
for face in FacesPerPage:
if len(face)>0 :
MangaFaceFeaturesAverage[0] += face[0]
MangaFaceFeaturesAverage[1] += face[1]
MangaFaceFeaturesAverage[2] += face[2]
MangaFaceFeaturesAverage[3] += face[3]
MangaFaceFeaturesAverage[4] += face[4]
MangaFaceFeaturesAverage[0] /= faceCounter+1
MangaFaceFeaturesAverage[1] /= faceCounter+1
MangaFaceFeaturesAverage[2] /= faceCounter+1
MangaFaceFeaturesAverage[3] /= faceCounter+1
MangaFaceFeaturesAverage[4] /= faceCounter+1
for FacesPerPage in mangaFacesFeatures:
for face in FacesPerPage:
if len(face)>0 :
MangaFaceFeaturesdaviation[0] += (MangaFaceFeaturesAverage[0]-face[0])*(MangaFaceFeaturesAverage[0]-face[0])
MangaFaceFeaturesdaviation[1] += (MangaFaceFeaturesAverage[1]-face[1])*(MangaFaceFeaturesAverage[1]-face[1])
MangaFaceFeaturesdaviation[2] += (MangaFaceFeaturesAverage[2]-face[2])*(MangaFaceFeaturesAverage[2]-face[2])
MangaFaceFeaturesdaviation[3] += (MangaFaceFeaturesAverage[3]-face[3])*(MangaFaceFeaturesAverage[3]-face[3])
MangaFaceFeaturesdaviation[4] += (MangaFaceFeaturesAverage[4]-face[4])*(MangaFaceFeaturesAverage[4]-face[4])
MangaFaceFeaturesdaviation[0] = math.sqrt(MangaFaceFeaturesdaviation[0] / (faceCounter+1))/MangaFaceFeaturesAverage[0]
MangaFaceFeaturesdaviation[1] = math.sqrt(MangaFaceFeaturesdaviation[1] / (faceCounter+1))/MangaFaceFeaturesAverage[1]
MangaFaceFeaturesdaviation[2] = math.sqrt(MangaFaceFeaturesdaviation[2] / (faceCounter+1))/MangaFaceFeaturesAverage[2]
MangaFaceFeaturesdaviation[3] = math.sqrt(MangaFaceFeaturesdaviation[3] / (faceCounter+1))/MangaFaceFeaturesAverage[3]
MangaFaceFeaturesdaviation[4] = math.sqrt(MangaFaceFeaturesdaviation[4] / (faceCounter+1))/MangaFaceFeaturesAverage[4]
MangaSceneFeaturesAverage = [0]* 8
MangaSceneFeaturesdaviation = [0]* 8
for scene in mangaScenesFeatures:
if len(scene)>0 :
MangaSceneFeaturesAverage[0] += scene[0]
MangaSceneFeaturesAverage[1] += scene[1]
MangaSceneFeaturesAverage[2] += scene[2]
MangaSceneFeaturesAverage[3] += scene[3]
MangaSceneFeaturesAverage[4] += scene[4]
MangaSceneFeaturesAverage[5] += scene[5]
MangaSceneFeaturesAverage[6] += scene[6]
MangaSceneFeaturesAverage[7] += scene[7]
MangaSceneFeaturesAverage[0] /= counter+1
MangaSceneFeaturesAverage[1] /= counter+1
MangaSceneFeaturesAverage[2] /= counter+1
MangaSceneFeaturesAverage[3] /= counter+1
MangaSceneFeaturesAverage[4] /= counter+1
MangaSceneFeaturesAverage[5] /= counter+1
MangaSceneFeaturesAverage[6] /= counter+1
MangaSceneFeaturesAverage[7] /= counter+1
for scene in mangaScenesFeatures:
if len(scene)>0 :
MangaSceneFeaturesdaviation[0] += (MangaSceneFeaturesAverage[0]-scene[0])*(MangaSceneFeaturesAverage[0]-scene[0])
MangaSceneFeaturesdaviation[1] += (MangaSceneFeaturesAverage[1]-scene[1])*(MangaSceneFeaturesAverage[1]-scene[1])
MangaSceneFeaturesdaviation[2] += (MangaSceneFeaturesAverage[2]-scene[2])*(MangaSceneFeaturesAverage[2]-scene[2])
MangaSceneFeaturesdaviation[3] += (MangaSceneFeaturesAverage[3]-scene[3])*(MangaSceneFeaturesAverage[3]-scene[3])
MangaSceneFeaturesdaviation[4] += (MangaSceneFeaturesAverage[4]-scene[4])*(MangaSceneFeaturesAverage[4]-scene[4])
MangaSceneFeaturesdaviation[5] += (MangaSceneFeaturesAverage[5]-scene[5])*(MangaSceneFeaturesAverage[5]-scene[5])
MangaSceneFeaturesdaviation[6] += (MangaSceneFeaturesAverage[6]-scene[6])*(MangaSceneFeaturesAverage[6]-scene[6])
MangaSceneFeaturesdaviation[7] += (MangaSceneFeaturesAverage[7]-scene[7])*(MangaSceneFeaturesAverage[7]-scene[7])
MangaSceneFeaturesdaviation[0] = math.sqrt(MangaSceneFeaturesdaviation[0] / (counter+1))/MangaSceneFeaturesAverage[0]
MangaSceneFeaturesdaviation[1] = math.sqrt(MangaSceneFeaturesdaviation[1] / (counter+1))/MangaSceneFeaturesAverage[1]
MangaSceneFeaturesdaviation[2] = math.sqrt(MangaSceneFeaturesdaviation[2] / (counter+1))/MangaSceneFeaturesAverage[2]
MangaSceneFeaturesdaviation[3] = math.sqrt(MangaSceneFeaturesdaviation[3] / (counter+1))/MangaSceneFeaturesAverage[3]
MangaSceneFeaturesdaviation[4] = math.sqrt(MangaSceneFeaturesdaviation[4] / (counter+1))/MangaSceneFeaturesAverage[4]
MangaSceneFeaturesdaviation[5] = math.sqrt(MangaSceneFeaturesdaviation[5] / (counter+1))/MangaSceneFeaturesAverage[5]
MangaSceneFeaturesdaviation[6] = math.sqrt(MangaSceneFeaturesdaviation[6] / (counter+1))/MangaSceneFeaturesAverage[6]
MangaSceneFeaturesdaviation[7] = math.sqrt(MangaSceneFeaturesdaviation[7] / (counter+1))/MangaSceneFeaturesAverage[7]
numberOfGradientColorsInFaces = 0
numberOfGradientColorsInScenes = 0
mostGradientColorInFaces = -1
mostGradientColorInScene = -1
counterGradientFaces = 0
counterGradientScenes = 0
for feature in facePixelsValuesFreq:
facePixelsValuesCounter += feature
for feature in scenePixelsValuesFreq:
scenePixelsValuesCounter += feature
for feature in facePixelsValuesFreq:
if mostGradientColorInFaces < feature :
mostGradientColorInFaces = counterGradientFaces
compareValue = (feature/facePixelsValuesCounter)
if compareValue >= 0.07 :
numberOfGradientColorsInFaces +=1
counterGradientFaces += 1
for feature in scenePixelsValuesFreq:
if mostGradientColorInScene < feature :
mostGradientColorInScene = counterGradientScenes
compareValue = (feature/scenePixelsValuesCounter)
if compareValue >= 0.07 :
numberOfGradientColorsInScenes +=1
counterGradientScenes += 1
FeaturesFileString += str(MangaCounter)
for feature in MangaSceneFeaturesdaviation:
FeaturesFileString += "," + str(feature)
for feature in MangaSceneFeaturesAverage:
FeaturesFileString += "," + str(feature)
for feature in MangaFaceFeaturesdaviation:
FeaturesFileString += "," + str(feature)
for feature in MangaFaceFeaturesAverage:
FeaturesFileString += "," + str(feature)
FeaturesFileString += "," + str(numberOfGradientColorsInFaces) + "," + str(numberOfGradientColorsInScenes) + "," + str(mostGradientColorInFaces) + "," + str(mostGradientColorInScene)
FeaturesFileString +="\n"
FeaturesFile.write(FeaturesFileString)