forked from datamllab/rlcard
-
Notifications
You must be signed in to change notification settings - Fork 1
/
run_cfr.py
107 lines (96 loc) · 2.41 KB
/
run_cfr.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
''' An example of solve Leduc Hold'em with CFR (chance sampling)
'''
import os
import argparse
import rlcard
from rlcard.agents import (
CFRAgent,
RandomAgent,
)
from rlcard.utils import (
set_seed,
tournament,
Logger,
plot_curve,
)
def train(args):
# Make environments, CFR only supports Leduc Holdem
env = rlcard.make(
'getaway',
config={
'seed': 0,
'allow_step_back': True,
}
)
eval_env = rlcard.make(
'getaway',
config={
'seed': 0,
}
)
# Seed numpy, torch, random
set_seed(args.seed)
# Initilize CFR Agent
agent = CFRAgent(
env,
os.path.join(
args.log_dir,
'cfr_model',
),
)
agent.load() # If we have saved model, we first load the model
# Evaluate CFR against random
eval_env.set_agents([
agent,
RandomAgent(num_actions=env.num_actions),
RandomAgent(num_actions=env.num_actions),
RandomAgent(num_actions=env.num_actions),
])
# Start training
with Logger(args.log_dir) as logger:
for episode in range(args.num_episodes):
agent.train()
print('\rIteration {}'.format(episode), end='')
# Evaluate the performance. Play with Random agents.
if episode % args.evaluate_every == 0:
agent.save() # Save model
logger.log_performance(
episode,
tournament(
eval_env,
args.num_eval_games
)[0]
)
# Get the paths
csv_path, fig_path = logger.csv_path, logger.fig_path
# Plot the learning curve
plot_curve(csv_path, fig_path, 'cfr')
if __name__ == '__main__':
parser = argparse.ArgumentParser("CFR example in RLCard")
parser.add_argument(
'--seed',
type=int,
default=42,
)
parser.add_argument(
'--num_episodes',
type=int,
default=5000,
)
parser.add_argument(
'--num_eval_games',
type=int,
default=2000,
)
parser.add_argument(
'--evaluate_every',
type=int,
default=100,
)
parser.add_argument(
'--log_dir',
type=str,
default='experiments/leduc_holdem_cfr_result/',
)
args = parser.parse_args()
train(args)