forked from datamllab/rlcard
-
Notifications
You must be signed in to change notification settings - Fork 1
/
run_rl.py
169 lines (148 loc) · 4.5 KB
/
run_rl.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
''' An example of training a reinforcement learning agent on the PettingZoo
environments that wrap RLCard
'''
import os
import argparse
import torch
from pettingzoo.classic import (
leduc_holdem_v4,
texas_holdem_v4,
dou_dizhu_v4,
mahjong_v4,
texas_holdem_no_limit_v6,
uno_v4,
gin_rummy_v4,
)
from rlcard.agents.pettingzoo_agents import RandomAgentPettingZoo
from rlcard.utils import (
get_device,
set_seed,
Logger,
plot_curve,
run_game_pettingzoo,
reorganize_pettingzoo,
tournament_pettingzoo,
)
env_name_to_env_func = {
"leduc-holdem": leduc_holdem_v4,
"limit-holdem": texas_holdem_v4,
"doudizhu": dou_dizhu_v4,
"mahjong": mahjong_v4,
"no-limit-holdem": texas_holdem_no_limit_v6,
"uno": uno_v4,
"gin-rummy": gin_rummy_v4,
}
def train(args):
# Check whether gpu is available
device = get_device()
# Seed numpy, torch, random
set_seed(args.seed)
# Make the environment with seed
env_func = env_name_to_env_func[args.env]
env = env_func.env()
env.seed(args.seed)
env.reset()
# Initialize the agent and use random agents as opponents
learning_agent_name = env.agents[0]
if args.algorithm == 'dqn':
from rlcard.agents.pettingzoo_agents import DQNAgentPettingZoo
agent = DQNAgentPettingZoo(
num_actions=env.action_space(learning_agent_name).n,
state_shape=env.observation_space(learning_agent_name)["observation"].shape,
mlp_layers=[64,64],
device=device
)
elif args.algorithm == 'nfsp':
from rlcard.agents.pettingzoo_agents import NFSPAgentPettingZoo
agent = NFSPAgentPettingZoo(
num_actions=env.action_space(learning_agent_name).n,
state_shape=env.observation_space(learning_agent_name)["observation"].shape,
hidden_layers_sizes=[64,64],
q_mlp_layers=[64,64],
device=device
)
agents = {learning_agent_name: agent}
for i in range(1, env.num_agents):
agents[env.agents[i]] = RandomAgentPettingZoo(num_actions=env.action_space(env.agents[i]).n)
# Start training
num_timesteps = 0
with Logger(args.log_dir) as logger:
for episode in range(args.num_episodes):
if args.algorithm == 'nfsp':
agent.sample_episode_policy()
# Generate data from the environment
trajectories = run_game_pettingzoo(env, agents, is_training=True)
trajectories = reorganize_pettingzoo(trajectories)
num_timesteps += sum([len(t) for t in trajectories.values()])
for ts in trajectories[learning_agent_name]:
agent.feed(ts)
# Evaluate the performance. Play with random agents.
if episode % args.evaluate_every == 0:
average_rewards = tournament_pettingzoo(env, agents, args.num_eval_games)
logger.log_performance(episode, average_rewards[learning_agent_name])
# Get the paths
csv_path, fig_path = logger.csv_path, logger.fig_path
# Plot the learning curve
plot_curve(csv_path, fig_path, args.algorithm)
# Save model
save_path = os.path.join(args.log_dir, 'model.pth')
torch.save(agent, save_path)
print('Model saved in', save_path)
if __name__ == '__main__':
parser = argparse.ArgumentParser("DQN/NFSP example in RLCard")
parser.add_argument(
'--env',
type=str,
default='leduc-holdem',
choices=[
'leduc-holdem',
'limit-holdem',
'doudizhu',
'mahjong',
'no-limit-holdem',
'uno',
'gin-rummy',
],
)
parser.add_argument(
'--algorithm',
type=str,
default='dqn',
choices=[
'dqn',
'nfsp',
],
)
parser.add_argument(
'--cuda',
type=str,
default='',
)
parser.add_argument(
'--seed',
type=int,
default=42,
)
parser.add_argument(
'--num_episodes',
type=int,
default=5000,
)
parser.add_argument(
'--num_eval_games',
type=int,
default=2000,
)
parser.add_argument(
'--evaluate_every',
type=int,
default=100,
)
parser.add_argument(
'--log_dir',
type=str,
default='experiments/leduc_holdem_dqn_result/',
)
args = parser.parse_args()
os.environ["CUDA_VISIBLE_DEVICES"] = args.cuda
train(args)