-
Notifications
You must be signed in to change notification settings - Fork 39
/
Copy pathcoco_loader.py
105 lines (86 loc) · 3.39 KB
/
coco_loader.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
import glob
import math
import numpy as np
import os
import os.path as osp
import string
import pickle
import json
from PIL import Image
import torch
from torch.utils.data import Dataset
import torchvision.datasets as datasets
import torchvision.transforms as transforms
class Scale(object):
"""Scale transform with list as size params"""
def __init__(self, size, interpolation=Image.BILINEAR):
self.size = size
self.interpolation = interpolation
def __call__(self, img):
return img.resize((self.size[1], self.size[0]), self.interpolation)
class coco_loader(Dataset):
"""Loads train/val/test splits of coco dataset"""
def __init__(self, coco_root, split='train', max_tokens=15, ncap_per_img=5):
self.max_tokens = max_tokens
self.ncap_per_img = ncap_per_img
self.coco_root = coco_root
self.split = split
#Splits from http://cs.stanford.edu/people/karpathy/deepimagesent/caption_datasets.zip
self.get_split_info('data/dataset_coco.json')
worddict_tmp = pickle.load(open('data/wordlist.p', 'rb'))
wordlist = [l for l in iter(worddict_tmp.keys()) if l != '</S>']
self.wordlist = ['EOS'] + sorted(wordlist)
self.numwords = len(self.wordlist)
print('[DEBUG] #words in wordlist: %d' % (self.numwords))
self.img_transforms = transforms.Compose([
Scale([224, 224]),
transforms.ToTensor(),
transforms.Normalize(mean = [ 0.485, 0.456, 0.406 ],
std = [ 0.229, 0.224, 0.225 ])
])
def get_split_info(self, split_file):
print('Loading annotation file...')
with open(split_file) as fin:
split_info = json.load(fin)
annos = {}
for item in split_info['images']:
if self.split == 'train':
if item['split'] == 'train' or item['split'] == 'restval':
annos[item['cocoid']] = item
elif item['split'] == self.split:
annos[item['cocoid']] = item
self.annos = annos
self.ids = list(self.annos.keys())
print('Found %d images in split: %s'%(len(self.ids), self.split))
def __getitem__(self, idx):
img_id = self.ids[idx]
anno = self.annos[img_id]
captions = [caption['raw'] for caption in anno['sentences']]
imgpath = '%s/%s/%s'%(self.coco_root, anno['filepath'], anno['filename'])
img = Image.open(os.path.join(imgpath)).convert('RGB')
img = self.img_transforms(img)
if(self.split != 'train'):
r = np.random.randint(0, len(captions))
captions = [captions[r]]
if(self.split == 'train'):
if(len(captions) > self.ncap_per_img):
ids = np.random.permutation(len(captions))[:self.ncap_per_img]
captions_sel = [captions[l] for l in ids]
captions = captions_sel
assert(len(captions) == self.ncap_per_img)
wordclass = torch.LongTensor(len(captions), self.max_tokens).zero_()
sentence_mask = torch.ByteTensor(len(captions), self.max_tokens).zero_()
for i, caption in enumerate(captions):
words = str(caption).lower().translate(None, string.punctuation).strip().split()
words = ['<S>'] + words
num_words = min(len(words), self.max_tokens-1)
sentence_mask[i, :(num_words+1)] = 1
for word_i, word in enumerate(words):
if(word_i >= num_words):
break
if(word not in self.wordlist):
word = 'UNK'
wordclass[i, word_i] = self.wordlist.index(word)
return img, captions, wordclass, sentence_mask, img_id
def __len__(self):
return len(self.ids)