-
Notifications
You must be signed in to change notification settings - Fork 39
/
Copy pathcaptionme.py
177 lines (137 loc) · 5.79 KB
/
captionme.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
from __future__ import print_function
import matplotlib; matplotlib.use('Agg')
import os
import os.path as osp
import argparse
import numpy as np
import pickle
import time
import torch
import torch.nn as nn
import torch.nn.functional as F
import torch.optim as optim
from torch.optim import lr_scheduler
import torchvision.datasets as datasets
import torchvision.transforms as transforms
from torch.autograd import Variable
from torch.utils.data import DataLoader
from tqdm import tqdm
from torchvision import models
from convcap import convcap
from vggfeats import Vgg16Feats
from coco_loader import Scale
from PIL import Image
from test_beam import repeat_img
from beamsearch import beamsearch
parser = argparse.ArgumentParser(description='PyTorch Convolutional Image \
Captioning Model -- Caption Me')
parser.add_argument('model_dir', help='output directory to save models & results')
parser.add_argument('image_dir', help='directory containing input images \
supported formats .png, .jpg, .jpeg, .JPG')
parser.add_argument('-g', '--gpu', type=int, default=0,\
help='gpu device id')
parser.add_argument('--beam_size', type=int, default=1, \
help='beam size to use to generate captions')
parser.add_argument('--attention', dest='attention', action='store_true', \
help='set caption model with attention in use (by default set)')
parser.add_argument('--no-attention', dest='attention', action='store_false', \
help='set caption model without attention in use')
parser.set_defaults(attention=True)
args = parser.parse_args()
def load_images(image_dir):
"""Load images from image_dir"""
exts = ['.jpg', '.jpeg', '.png']
imgs = torch.FloatTensor(torch.zeros(0, 3, 224, 224))
imgs_fn = []
img_transforms = transforms.Compose([
Scale([224, 224]),
transforms.ToTensor(),
transforms.Normalize(mean = [ 0.485, 0.456, 0.406 ],
std = [ 0.229, 0.224, 0.225 ])
])
for fn in os.listdir(image_dir):
if(osp.splitext(fn)[-1].lower() in exts):
imgs_fn.append(os.path.join(image_dir, fn))
img = Image.open(os.path.join(image_dir, fn)).convert('RGB')
img = img_transforms(img)
imgs = torch.cat([imgs, img.unsqueeze(0)], 0)
return imgs, imgs_fn
def captionme(args, modelfn):
"""Caption images in args.image_dir using checkpoint modelfn"""
imgs, imgs_fn = load_images(args.image_dir)
#For trained model released with the code
batchsize = 1
max_tokens = 15
num_layers = 3
worddict_tmp = pickle.load(open('data/wordlist.p', 'rb'))
wordlist = [l for l in iter(worddict_tmp.keys()) if l != '</S>']
wordlist = ['EOS'] + sorted(wordlist)
numwords = len(wordlist)
model_imgcnn = Vgg16Feats()
model_imgcnn.cuda()
model_convcap = convcap(numwords, num_layers, is_attention = args.attention)
model_convcap.cuda()
print('[DEBUG] Loading checkpoint %s' % modelfn)
checkpoint = torch.load(modelfn)
model_convcap.load_state_dict(checkpoint['state_dict'])
model_imgcnn.load_state_dict(checkpoint['img_state_dict'])
model_imgcnn.train(False)
model_convcap.train(False)
pred_captions = []
for batch_idx, (img_fn) in \
tqdm(enumerate(imgs_fn), total=len(imgs_fn)):
img = imgs[batch_idx, ...].view(batchsize, 3, 224, 224)
img_v = Variable(img.cuda())
imgfeats, imgfc7 = model_imgcnn(img_v)
b, f_dim, f_h, f_w = imgfeats.size()
imgfeats = imgfeats.unsqueeze(1).expand(\
b, args.beam_size, f_dim, f_h, f_w)
imgfeats = imgfeats.contiguous().view(\
b*args.beam_size, f_dim, f_h, f_w)
b, f_dim = imgfc7.size()
imgfc7 = imgfc7.unsqueeze(1).expand(\
b, args.beam_size, f_dim)
imgfc7 = imgfc7.contiguous().view(\
b*args.beam_size, f_dim)
beam_searcher = beamsearch(args.beam_size, batchsize, max_tokens)
wordclass_feed = np.zeros((args.beam_size*batchsize, max_tokens), dtype='int64')
wordclass_feed[:,0] = wordlist.index('<S>')
outcaps = np.empty((batchsize, 0)).tolist()
for j in range(max_tokens-1):
wordclass = Variable(torch.from_numpy(wordclass_feed)).cuda()
wordact, attn = model_convcap(imgfeats, imgfc7, wordclass)
wordact = wordact[:,:,:-1]
wordact_j = wordact[..., j]
beam_indices, wordclass_indices = beam_searcher.expand_beam(wordact_j)
if len(beam_indices) == 0 or j == (max_tokens-2): # Beam search is over.
generated_captions = beam_searcher.get_results()
for k in range(batchsize):
g = generated_captions[:, k]
outcaps[k] = [wordlist[x] for x in g]
else:
wordclass_feed = wordclass_feed[beam_indices]
imgfc7 = imgfc7.index_select(0, Variable(torch.cuda.LongTensor(beam_indices)))
imgfeats = imgfeats.index_select(0, Variable(torch.cuda.LongTensor(beam_indices)))
for i, wordclass_idx in enumerate(wordclass_indices):
wordclass_feed[i, j+1] = wordclass_idx
for j in range(batchsize):
num_words = len(outcaps[j])
if 'EOS' in outcaps[j]:
num_words = outcaps[j].index('EOS')
outcap = ' '.join(outcaps[j][:num_words])
pred_captions.append({'img_fn': img_fn, 'caption': outcap})
return pred_captions
def main():
os.environ["CUDA_VISIBLE_DEVICES"] = str(args.gpu)
bestmodelfn = osp.join(args.model_dir, 'bestmodel.pth')
if(osp.exists(bestmodelfn)):
pred_captions = captionme(args, bestmodelfn)
resfile = osp.join(args.image_dir, 'captions.txt')
with open(resfile, 'w') as fp:
for item in pred_captions:
fp.write('image: %s, caption: %s\n' % (item['img_fn'], item['caption']))
print('[DEBUG] Captions written to file %s' % resfile)
else:
raise Exception('No checkpoint found %s' % bestmodelfn)
if __name__ == '__main__':
main()