-
Notifications
You must be signed in to change notification settings - Fork 0
/
model2_10layers_15sigma.py
447 lines (378 loc) · 21.6 KB
/
model2_10layers_15sigma.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
# -*- coding: utf-8 -*-
"""
Created on Sat Nov 11 10:53:17 2017
@author: Aditi Panda
"""
import tensorflow as tf
import numpy as np
from glob import glob
from ops import *
from utils import *
from six.moves import xrange
import time
import os
import datetime
tf.reset_default_graph()
class DnCNN(object):
def __init__(self, sess, patch_size=40, batch_size=128,
output_size=40, input_c_dim=1, output_c_dim=1,
sigma=15, clip_b=0.025, lr=0.001, epoch=50,
ckpt_dir='./checkpoint-large-dataset', sample_dir='./sample-large-dataset',
test_save_dir='./test-large-dataset',
dataset='BSD400', testset='visual_gray', load_flag=True, initial_epoch=0): # test set changed on 12-11-17
# tf.reset_default_graph()
self.sess = sess
self.is_gray = (input_c_dim == 1)
self.batch_size = batch_size
self.patch_sioze = patch_size
self.output_size = output_size
self.input_c_dim = input_c_dim
self.output_c_dim = output_c_dim
self.sigma = sigma
self.clip_b = clip_b
self.lr = lr
self.numEpoch = epoch
self.ckpt_dir = ckpt_dir
self.trainset = dataset
self.testset = testset
self.sample_dir = sample_dir
self.test_save_dir = test_save_dir
self.epoch = epoch
self.save_every_epoch = 1
self.eval_every_epoch = 1
self.load_flag = load_flag
self.initial_epoch = initial_epoch
self.abs_epoch_num = self.initial_epoch
# Adam setting (default setting)
self.beta1 = 0.9
self.beta2 = 0.999
self.alpha = 0.01
self.epsilon = 1e-8
self.build_model()
def build_model(self):
# tf.reset_default_graph()
# input : [batchsize, patch_sioze, patch_sioze, channel]
# the network structure has to be created in all cases (training for the first time, incremental training, and testing)
self.create_variables()
# if load_flag = False, the model is being trained for the first time or tested. If the former is true,
# parameters like placeholders, learning algo and optimization functions need to be added to a collection,
# so that they could be easily extracted and used after restoration of the saved model.
if not self.load_flag:
print('block 1 of build_model')
# self.create_variables()
# self.sess.run(self.init)
print(self.initial_epoch)
################### commented on 11th Dec, 2017: no need when create_vars is there;
#### also, it increases run time of subsequent epochs because of large .meta files
# tf.add_to_collection('loss_op', self.loss)
## print(tf.get_collection('loss_op'))
# tf.add_to_collection('input', self.X)
# tf.add_to_collection('target', self.X_)
# tf.add_to_collection('output', self.Y_)
# tf.add_to_collection('training_step', self.train_step)
#########################
print("[*] Created model successfully...")
else: # this block is executed when incremental training is carried out. The value of the last executed epoch is found out,
# and the initial epoch is set accordingly. The training now starts from this value of epoch.
print('block 2 of build_model')
model_dir = "%s-%s-%s" % (self.trainset,
self.batch_size, self.patch_sioze)
checkpoint_dir = os.path.join(self.ckpt_dir, model_dir)
curr_path = os.getcwd()
os.chdir(checkpoint_dir)
# Find last executed epoch
history = list(map(lambda x: int(x.split('-')[1][:-5]), glob('DnCNN.model-*.meta')))
last_epoch = np.max(history)
# Instantiate saver object using previously saved meta-graph
# self.saver = tf.train.import_meta_graph('DnCNN.model-{}.meta'.format(last_epoch)) # commented on 11th Dec, 2017
# find out latest version amongst saved models
self.initial_epoch = last_epoch + 1
self.abs_epoch_num = self.initial_epoch
print(self.initial_epoch)
os.chdir(curr_path)
def create_variables(self):
# this function creates the network structure, i.e., the layers, the loss function, the optimization algos etc.
self.X = tf.placeholder(tf.float32, [None, self.patch_sioze, self.patch_sioze, self.input_c_dim],
name='noisy_image')
self.X_ = tf.placeholder(tf.float32, [None, self.patch_sioze, self.patch_sioze, self.input_c_dim],
name='clean_image')
# layer 1
with tf.variable_scope('conv1'):
layer_1_output = self.layer(self.X, [3, 3, self.input_c_dim, 64], useBN=False)
# layer 2 to 16
with tf.variable_scope('conv2'):
layer_2_output = self.layer(layer_1_output, [3, 3, 64, 64], d_rate=2)
# print('conv2')
with tf.variable_scope('conv3'):
layer_3_output = self.layer(layer_2_output, [3, 3, 64, 64], d_rate=2)
with tf.variable_scope('conv4'):
layer_4_output = self.layer(layer_3_output, [3, 3, 64, 64], d_rate=2)
with tf.variable_scope('conv5'):
layer_5_output = self.layer(layer_4_output, [3, 3, 64, 64], d_rate=2)
with tf.variable_scope('conv6'):
layer_6_output = self.layer(layer_5_output, [3, 3, 64, 64], d_rate=2)
with tf.variable_scope('conv7'):
layer_7_output = self.layer(layer_6_output, [3, 3, 64, 64], d_rate=2)
with tf.variable_scope('conv8'):
layer_8_output = self.layer(layer_7_output, [3, 3, 64, 64], d_rate=2)
with tf.variable_scope('conv9'):
layer_9_output = self.layer(layer_8_output, [3, 3, 64, 64], d_rate=2)
# with tf.variable_scope('conv10'):
# layer_10_output = self.layer(layer_9_output, [3, 3, 64, 64], d_rate=2)
# with tf.variable_scope('conv11'):
# layer_11_output = self.layer(layer_10_output, [3, 3, 64, 64], d_rate=2)
# with tf.variable_scope('conv12'):
# layer_12_output = self.layer(layer_11_output, [3, 3, 64, 64], d_rate=2)
# with tf.variable_scope('conv13'):
# layer_13_output = self.layer(layer_12_output, [3, 3, 64, 64], d_rate=2)
# with tf.variable_scope('conv14'):
# layer_14_output = self.layer(layer_13_output, [3, 3, 64, 64], d_rate=2)
# with tf.variable_scope('conv15'):
# layer_15_output = self.layer(layer_14_output, [3, 3, 64, 64], d_rate=2)
# with tf.variable_scope('conv16'):
# layer_16_output = self.layer(layer_15_output, [3, 3, 64, 64], d_rate=2)
# layer 17
with tf.variable_scope('conv10'):
self.Y = self.layer(layer_9_output, [3, 3, 64, self.output_c_dim], useBN=False, useELU=False)
# L2 loss
self.Y_ = self.X - self.X_ # noisy image - clean image
self.loss = (1.0 / self.batch_size) * tf.nn.l2_loss(self.Y_ - self.Y)
optimizer = tf.train.AdamOptimizer(self.lr, name='AdamOptimizer')
self.train_step = optimizer.minimize(self.loss)
tf.summary.scalar('loss', self.loss)
# create this init op after all variables specified, it helps in initializing all variables of the program (weights and biases)
self.init = tf.global_variables_initializer()
self.saver = tf.train.Saver(max_to_keep=51) # this will be used for saving and restoring trained models in binary files, i.e., checkpointing
# max_to_keep added on 11th Dec, 2017
print('variables created')
def conv_layer(self, inputdata, weightshape, b_init, stridemode, d_rate):
# weights
W = tf.get_variable('weights', weightshape,
initializer=tf.constant_initializer(get_conv_weights(weightshape, self.sess)))
# print(W.shape)
b = tf.get_variable('biases', [1, weightshape[-1]], initializer=tf.constant_initializer(b_init))
# convolutional layer
# print(d_rate)
if d_rate == 1:
return tf.add(tf.nn.conv2d(inputdata, W, strides=stridemode, padding="SAME"), b) # SAME with zero padding
else:
return tf.add(tf.nn.atrous_conv2d(inputdata, W, rate=d_rate, padding="SAME"), b) # SAME with zero padding
def bn_layer(self, logits, output_dim, b_init=0.0):
alpha = tf.get_variable('bn_alpha', [1, output_dim], initializer=\
tf.constant_initializer(get_bn_weights([1, output_dim], self.clip_b, self.sess)))
beta = tf.get_variable('bn_beta', [1, output_dim], initializer=\
tf.constant_initializer(b_init))
return batch_normalization(logits, alpha, beta, isCovNet=True)
def layer(self, inputdata, filter_shape, b_init=0.0, stridemode=[1, 1, 1, 1], useBN=True, useELU=True, d_rate=1):
# print(filter_shape)
logits = self.conv_layer(inputdata, filter_shape, b_init, stridemode, d_rate)
# # this if-else added on 12-11-17, the 4 lines commented after this were there before
# if useReLU == False:
# output = logits
# else:
# if useBN:
# output = tf.nn.relu(self.bn_layer(logits, filter_shape[-1]))
# else:
# output = tf.nn.relu(logits)
if useELU:
logits = tf.nn.elu(logits)
# logits = self.conv_layer(inputdata, [1, 1, 64, 64], b_init, stridemode, d_rate=1)
if useBN:
W_conv1 = tf.get_variable('weights_conv1', [1, 1, 64, 64],
initializer=tf.constant_initializer(get_conv_weights([1, 1, 64, 64], self.sess)))
logits = tf.nn.conv2d(logits, W_conv1, strides=stridemode, padding="SAME")
output = self.bn_layer(logits, filter_shape[-1])
else:
output = logits
return output
def train(self):
self.sess.run(self.init) # initialize the variables of the program, this has to be done in all cases i.e.,
# training for the first time, incremental training, and testing
if self.load_flag:
# load the latest trained model saved
if self.load(self.ckpt_dir):
print(" [*] Load SUCCESS (in train)")
else:
print(" [!] Load failed...(in train)")
# extract variables saved in collections earlier in build_model function
##########commented on 11th Dec, 2017
# self.train_step = tf.get_collection('training_step')[0]
# self.X = tf.get_collection('input')[0]
# self.X_ = tf.get_collection('target')[0]
# self.Y_ = tf.get_collection('output')[0]
# self.loss = tf.get_collection('loss_op')[0]
# get data
test_files = glob('./data/test/{}/*.png'.format(self.testset))
test_data = load_images(test_files) # list of array of different size, 4-D, pixel value range is 0-255
data = load_data(filepath='./data/img_clean_pats.npy')
numBatch = int(data.shape[0] / self.batch_size)
# create file name and an empty list
file_part1 = 'training-loss-'
ext = '.npy'
print("[*] Start training : ")
print(datetime.datetime.now())
start_time = time.time()
for epoch in range(self.initial_epoch, self.epoch):
# a list for storing loss values epoch wise
loss_list = []
for batch_id in xrange(numBatch):
batch_images = data[batch_id * self.batch_size:(batch_id + 1) * self.batch_size, :, :, :]
batch_images = np.array(batch_images / 255.0, dtype=np.float32) #normalize the data to 0-1, line added for 12-11-17
# print(batch_images.shape)
train_images = add_noise(batch_images, self.sigma, self.sess)
# print(train_images.shape)
# _, loss, summary = self.sess.run([self.train_step, self.loss, merged], \
# feed_dict={self.X: train_images, self.X_: batch_images})
_, loss = self.sess.run([self.train_step, self.loss],\
feed_dict={self.X: train_images, self.X_: batch_images})
loss_list.append(loss)
print("Epoch: [%2d] [%4d/%4d] time: %4.4f, loss: %.6f" \
% (epoch, batch_id + 1, numBatch,
time.time() - start_time, loss))
self.save(epoch)
file_name = file_part1 + str(epoch) + ext
np.save(file_name, loss_list)
# self.evaluate(epoch, test_data) # test_data value range is 0-255
print("[*] Finish training.")
print(datetime.datetime.now())
def save(self, epoch):
# create the name of the folder containing the checkpoints
model_name = "DnCNN.model"
model_dir = "%s-%s-%s" % (self.trainset,
self.batch_size, self.patch_sioze)
checkpoint_dir = os.path.join(self.ckpt_dir, model_dir)
# make the folder if it doesn't already exist
if not os.path.exists(checkpoint_dir):
os.makedirs(checkpoint_dir)
#save using the saver object created earlier
print("[*] Saving model...")
self.saver.save(self.sess, os.path.join(checkpoint_dir, model_name), global_step=epoch)
def sampler(self, image):
# set reuse flag to True
# tf.get_variable_scope().reuse_variables()
self.X_test = tf.placeholder(tf.float32, image.shape, name='noisy_image_test')
# layer 1 (adpat to the input image)
with tf.variable_scope('conv1', reuse=True):
layer_1_output = self.layer(self.X_test, [3, 3, self.input_c_dim, 64], useBN=False)
# layer 2 to 16
with tf.variable_scope('conv2', reuse=True):
layer_2_output = self.layer(layer_1_output, [3, 3, 64, 64], d_rate=2)
with tf.variable_scope('conv3', reuse=True):
layer_3_output = self.layer(layer_2_output, [3, 3, 64, 64], d_rate=2)
with tf.variable_scope('conv4', reuse=True):
layer_4_output = self.layer(layer_3_output, [3, 3, 64, 64], d_rate=2)
with tf.variable_scope('conv5', reuse=True):
layer_5_output = self.layer(layer_4_output, [3, 3, 64, 64], d_rate=2)
with tf.variable_scope('conv6', reuse=True):
layer_6_output = self.layer(layer_5_output, [3, 3, 64, 64], d_rate=2)
with tf.variable_scope('conv7', reuse=True):
layer_7_output = self.layer(layer_6_output, [3, 3, 64, 64], d_rate=2)
with tf.variable_scope('conv8', reuse=True):
layer_8_output = self.layer(layer_7_output, [3, 3, 64, 64], d_rate=2)
with tf.variable_scope('conv9', reuse=True):
layer_9_output = self.layer(layer_8_output, [3, 3, 64, 64], d_rate=2)
# with tf.variable_scope('conv10', reuse=True):
# layer_10_output = self.layer(layer_9_output, [3, 3, 64, 64], d_rate=2)
# with tf.variable_scope('conv11', reuse=True):
# layer_11_output = self.layer(layer_10_output, [3, 3, 64, 64], d_rate=2)
# with tf.variable_scope('conv12', reuse=True):
# layer_12_output = self.layer(layer_11_output, [3, 3, 64, 64], d_rate=2)
# with tf.variable_scope('conv13', reuse=True):
# layer_13_output = self.layer(layer_12_output, [3, 3, 64, 64], d_rate=2)
# with tf.variable_scope('conv14', reuse=True):
# layer_14_output = self.layer(layer_13_output, [3, 3, 64, 64], d_rate=2)
# with tf.variable_scope('conv15', reuse=True):
# layer_15_output = self.layer(layer_14_output, [3, 3, 64, 64], d_rate=2)
# with tf.variable_scope('conv16', reuse=True):
# layer_16_output = self.layer(layer_15_output, [3, 3, 64, 64], d_rate=2)
# layer 17
with tf.variable_scope('conv10', reuse=True):
self.Y_test = self.layer(layer_9_output, [3, 3, 64, self.output_c_dim], useBN=False, useELU=False)
def load(self, checkpoint_dir):
'''Load checkpoint file'''
print("[*] Reading checkpoint...")
# create the name of the folder containing the checkpoints
model_dir = "%s-%s-%s" % (self.trainset, self.batch_size, self.patch_sioze)
checkpoint_dir = os.path.join(checkpoint_dir, model_dir)
ckpt = tf.train.get_checkpoint_state(checkpoint_dir)
if ckpt and ckpt.model_checkpoint_path:
ckpt_name = os.path.basename(ckpt.model_checkpoint_path)
self.saver.restore(self.sess, os.path.join(checkpoint_dir, ckpt_name))
return True
else:
return False
def forward(self, noisy_image):
# assert noisy_image is range 0-1
self.sampler(noisy_image)
return self.sess.run(self.Y_test, feed_dict={self.X_test: noisy_image})
def test(self):
"""Test DnCNN"""
# init variables
self.sess.run(self.init)
print (self.test_save_dir)
test_files = glob('./data/test/{}/*.png'.format(self.testset))
print(len(test_files))
# three lines commented on 12-11-17
# # load testing input
# print("[*] Loading test images ...")
# test_data = load_images(test_files) # list of array of different size, range 0-255
if self.load(self.ckpt_dir):
print(" [*] Load SUCCESS (in test)")
else:
print(" [!] Load failed...(in test)")
psnr_sum = 0
print("[*] " + 'noise level: ' + str(self.sigma) + " start testing...") # added on 12-11-17
print(datetime.datetime.now())
for idx in xrange(len(test_files)):
print(idx)
# noisy_image = add_noise(test_data[idx] / 255.0, self.sigma, self.sess) # ndarray, commented on 12-11-17
# two lines added on 12-11-17
test_data = load_image(test_files[idx])
noisy_image = add_noise(test_data/ 255.0, self.sigma, self.sess) # ndarray
predicted_noise = self.forward(noisy_image)
# two lines commented on 12-11-17
# output_clean_image = noisy_image - predicted_noise
# groundtruth = np.clip(test_data[idx], 0, 255).astype('uint8')
# two lines added on 12-11-17
output_clean_image = noisy_image - predicted_noise
groundtruth = np.clip(test_data, 0, 255).astype('uint8')
noisyimage = np.clip(255 * noisy_image, 0, 255).astype('uint8')
outputimage = np.clip(255 * output_clean_image, 0, 255).astype('uint8')
# calculate PSNR
psnr = cal_psnr(groundtruth, outputimage)
print(psnr) # added on 12-11-17
psnr_sum += psnr
# save_images(groundtruth, noisyimage, outputimage, os.path.join(self.test_save_dir, 'test%d.png' % idx)) # commented on 12-11-17
# two lines added on 12-11-17
save_image(noisyimage, os.path.join(self.test_save_dir, 'noisy%d.png' % idx))
save_image(outputimage, os.path.join(self.test_save_dir, 'denoised%d.png' % idx))
avg_psnr = psnr_sum / len(test_files)
avg_psnr = psnr_sum / len(test_files)
print("--- Average PSNR %.2f ---" % avg_psnr)
print(datetime.datetime.now())
def evaluate(self, epoch, test_data):
print("[*] Evaluating...")
psnr_sum = 0
print(datetime.datetime.now())
for idx in xrange(len(test_data)):
# find out the max gray value in the current test image
print (np.max(test_data[idx]))
assert np.max(test_data[idx]) > 1
noisy_image = add_noise(test_data[idx] / 255.0, self.sigma, self.sess) # ndarray
predicted_noise = self.forward(noisy_image)
output_clean_image = noisy_image - predicted_noise
groundtruth = np.clip(test_data[idx], 0, 255).astype('uint8')
noisyimage = np.clip(255 * noisy_image, 0, 255).astype('uint8')
outputimage = np.clip(255 * output_clean_image, 0, 255).astype('uint8')
# calculate PSNR
psnr = cal_psnr(groundtruth, outputimage)
psnr_sum += psnr
save_images(groundtruth, noisyimage, outputimage,
os.path.join(self.sample_dir, 'test%d_%d.png' % (idx, epoch)))
avg_psnr = psnr_sum / len(test_data)
file_part1 = 'avg-psnr-eval-'
ext = '.npy'
file_name = file_part1 + str(epoch) + ext
np.save(file_name, avg_psnr)
print("--- Test ---- Average PSNR %.2f ---" % avg_psnr)
print(datetime.datetime.now())