forked from lageIBUSP/Rsampling-shiny
-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathui.R
311 lines (310 loc) · 30 KB
/
ui.R
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
# loads the required libraries.
# when adding libraries here, REMEMBER to include them as requirements on README.md
library(shiny)
# Translate input widgets
##Statistic
optionsStat <- c("smean","ssd","meandif","Fstatistic","meandifc","srow",
"scol","intercept","slope","corr","ancova1","ancova2","custom")
names(optionsStat) <- tr(optionsStat)
# Original/Randomized switch
OriRand <- c("Original", "Randomized")
names(OriRand) <- tr(OriRand)
sep=c(',',';','\t',' ')
names(sep) <- tr(c("Comma", "Semicolon", "Tab", "Space"))
dec = c('.', ',')
quote = c(None='',
'Double Quote'='"',
'Single Quote'="'")
names(dec) <- tr(c("Dot", "Comma"))
names(quote) <- tr(c("None", "Double Quote", "Single Quote"))
Alt <- c("Two sided", "Greater", "Lesser")
names(Alt) <- tr(Alt)
###
shinyUI(fluidPage(theme= "bootstrap.css",
tabsetPanel(type="tabs", id="tabEvent",
tabPanel("Rsampling",
h2(tr("Rsampling - resampling statistics in R")),
h4(tr("powered by "), a("Shiny", href="http://www.rstudio.com/shiny")),
if (language=="pt") { ## USES GLOBAL VARIABLE language
includeHTML("help_pt.html")
} else {
includeHTML("help.html")
},
h3(tr("Rsampling version")),
conditionalPanel("output.needinstall=='ok'",
p(tr("You already have the right version of Rsampling installed :)"))
),
conditionalPanel("output.needinstall=='incompatible'",
p(tr("Your version of the Rsampling library seems to be incompatible with this interface version. Please download the latest version of the library "),
a( tr("here"), href="https://github.com/lageIBUSP/Rsampling"), tr("then reload this interface"),
style="color:#f30")
)
),
navbarMenu("Tutorial",
tabPanel(tr("Mangrove Trees"),
column(4,
h4(tr("MangroveTitle")),
h6(tr("Question")),
p(tr("Do mangrove trees in more unstable soil allocate more biomass in supporting roots?")),
h6(tr("Hypothesis")),
p(tr("Trees located in less stable soils will have more biomass on roots")),
h6(tr("Statistic of interest")),
p(tr("Mean difference between soil types")),
plotOutput("distPlotMang", height=300),
h6(tr("distPlot_help")),
actionButton("clear1",tr("Clear histogram"))
),
column(8,
fluidRow(
h5(tr("About this data set (rhyzophora)")),
p(tr("Area covered by aerial roots in mangrove trees sampled in two soil types")),
radioButtons('dataset', label=tr('Data set:'), choices = OriRand,
selected = "Original", inline = TRUE)
),
fluidRow(
conditionalPanel("input.dataset == 'Original'", column(4, plotOutput("mangTable"))),
conditionalPanel("input.dataset == 'Randomized'", column(4, plotOutput("mangTableRandom"))),
conditionalPanel("input.dataset == 'Original'", column(8, plotOutput("mangPlot",height=300))),
conditionalPanel("input.dataset == 'Randomized'", column(8, plotOutput("mangPlotRandom",height=300),
h5(tr("Here the left column of the original data has been randomized. The mean difference between soil types has been calculated for this randomized data set and is shown in the plot above. Hit the button to generate a new randomized data set")),
actionButton("mangRand",tr("Do it again!"))))
),
fluidRow(
helpText(tr("Source:"), " Prado, A. et al. 2013. Variações na morfologia de sustentação em", em("Rhizophora mangle"), "(Rizophoraceae) em diferentes condições de inundação do solo. Curso de campo Ecologia da Mata Atlântica (G. Machado, P.I. Prado & A.M.Z. Martini eds.). Universidade de São Paulo, São Paulo.", tags$a(href="http://ecologia.ib.usp.br/curso/2013/pdf/PO4-2.pdf", "Download pdf!"))
)
)
),
tabPanel(tr("Balanced mangrove trees"),
column(4,
h4(tr("Mangrove trees and torque")),
h6(tr("Question")),
p(tr("Does the torque caused by canopy weight result in mangrove trees with more roots?")),
helpText(tags$small(tr("What is torque again? Review this concept in"), tags$a(href="https://en.wikipedia.org/wiki/Torque", "Wikipedia"))),
h6(tr("Hypothesis")),
p(tr("The higher the torque caused by the canopy, the more roots a tree will have.")),
h6(tr("Statistic of interest")),
p(tr("Slope of the regression between the number of roots and the ratio between canopy and trunk area")),
plotOutput("distPlotRhyz", height=300),
h6(tr("distPlot_help")),
actionButton("clear2",tr("Clear histogram"))
),
column(8,
fluidRow(
h5(tr("About this data set (rhyzophora)")),
p(tr("Ratio between canopy and trunk area, both in square meters, and number of aerial roots")),
radioButtons('dataset2', label='Data set:', choices = OriRand,
selected = 'Original', inline = TRUE)
),
fluidRow(
conditionalPanel("input.dataset2 == 'Original'" , column(4, plotOutput("rhyzTable"))),
conditionalPanel("input.dataset2 == 'Randomized'" , column(4, plotOutput("rhyzTableRandom"))),
conditionalPanel("input.dataset2 == 'Original'" , column(8, plotOutput("rhyzPlot",height=300))),
conditionalPanel("input.dataset2 == 'Randomized'" , column(8, plotOutput("rhyzPlotRandom",height=300),
h5(tr("Here the left column of the original data has been randomized. The slope of the linear regression has been calculated for this randomized data set and is shown in the plot above. Hit the button to generate a new randomized data set")),
actionButton("rhyzRand",tr("Do it again!"))))
),
fluidRow(
helpText(tr("Source:"), " Prado, A. et al. 2013. Variações na morfologia de sustentação em", em("Rhizophora mangle"),"(Rizophoraceae) em diferentes condições de inundação do solo. Curso de campo Ecologia da Mata Atlântica (G. Machado, P.I. Prado & A.M.Z. Martini eds.). Universidade de São Paulo, São Paulo.", tags$a(href="http://ecologia.ib.usp.br/curso/2013/pdf/PO4-2.pdf", "Download pdf!"))
)
)
),
tabPanel(tr("Protective ants"),
column(4,
h4(tr("Protective ants")),
h6(tr("Question")),
p(tr("Do ants respond more intensely to damage in younger leaves?")),
h6(tr("Hypothesis")),
p(tr("Damage on old leaves will lead to less recruited ants when compared to damage on young leaves")),
h6(tr("Statistic of interest")),
p(tr("Mean difference between treatments")),
plotOutput("distPlotAzt", height=300),
h6(tr("distPlot_help")),
actionButton("clear3",tr("Clear histogram"))
),
column(8,
fluidRow(
h5(tr("About this data set (azteca)")),
p(tr("The ant colonies live in the hollow trunk of"), em(tr("Cecropia")), tr(" and can detect and expel leaf-chewing insects. To test if this response is more intense in young leaves, drops of extract of smashed young and old leaves were poured in two neighbor leaves of the same plant. After 7 minutes the number of recruited"), em(tr("Azteca")),tr("ants in each leaf was recorded.")),
radioButtons('dataset3', label='Data set:', choices = OriRand,
selected = 'Original', inline = TRUE)
),
fluidRow(
conditionalPanel("input.dataset3 == 'Original'" , column(4, plotOutput("aztTable"))),
conditionalPanel("input.dataset3 == 'Randomized'" , column(4, plotOutput("aztTableRandom"))),
conditionalPanel("input.dataset3 == 'Original'" , column(8, plotOutput("aztPlot",height=300))),
conditionalPanel("input.dataset3 == 'Randomized'" , column(8, plotOutput("aztPlotRandom",height=300),
h5(tr("Here the second and third column of the original data have been randomized within each row. The mean difference between treatments is calculated and shown in the plot above. Hit the button to generate a new randomized data set")),
actionButton("aztRand",tr("Do it again!"))))
),
fluidRow(
helpText(tr("Source:")," Kondrat, H. 2012. Estímulos químicos de folhas novas promovem recrutamento eficiente de formigas associadas à embaúba Cecropia glaziovi (Urticaceae). Curso de campo Ecologia da Mata Atlântica (G. Machado; P.I. Prado & A.M.Z. Martini, eds.). Universidade de São Paulo, São Paulo", tags$a(href="http://ecologia.ib.usp.br/curso/2012/PDF/PI-Hebert.pdf", "Download pdf!"))
)
)
)
),
tabPanel(tr("data_input"),
helpText(tr("help1")),
selectInput("datasource",
tr("What is your input data?"),
choices = c("embauba", "azteca", "peucetia", "rhyzophora", "pielou", "upload file")
),
## the next panel only shows for the custom datasource
fluidRow(column(6,conditionalPanel(
fileInput("file", tr("Choose CSV file:"), accept='.csv'),
fluidRow(
column(3, checkboxInput("header", tr("Header?"))),
#bsTooltip("header", "First row as header"),
column(3,
radioButtons('sep', tr('Separator'),
sep,
',')),
column(3,
radioButtons('dec', tr('Decimal'),
dec,
'.')),
column(3,
radioButtons('quote', tr('Quote'),
quote,
'"'))
),
helpText(tr("Make sure that the data is correctly interpreted in the display below!"), style="color:#f30;"),
condition="input.datasource == 'upload file'"
))),
tableOutput("view")
),
tabPanel(tr("stat"),
helpText(tr("Next, we need to determine what is the function (i.e., the statistic) that will be applied to the data. Use one of the preset statistics or write your own.")),
selectInput("stat", tr("Statistic:"),
choices=optionsStat,
"meandif"),
### Panel for custom code:
conditionalPanel(
helpText(tr("custom_help")),
strong(tr("Sum of column 1:")), p(""), code("sum(dataframe[, 1])"), p(""),
strong(tr("Mean of row 3:")), p(""), code("mean(dataframe[3, ])"), p(""),
strong(tr("Correlation coefficient between columns 1 and 2:")), p(""),
code("cor(dataframe[,1], dataframe[,2])"), p(""),
strong(tr("Sum of the squared residuals of a linear model:")), p(""),
code("my.lm <- lm(dataframe[,5] ~ dataframe[,4])"), p(""),
code("my.r <- residuals(my.lm)"), p(""),
code("sum(my.r^2)"), p(""),
strong(tr("Differences in the slope of linear regressions applied to different levels of a factor:")),p(""),
code("m1 <- lm(n.roots ~ canopy.trunk, data=dataframe, subset=soil.instability==\"medium\")"),
p(""),
code("m2 <- lm(n.roots ~ canopy.trunk, data=dataframe, subset=soil.instability==\"high\")"),
p(""),
code("coef(m1)[[2]] - coef(m2)[[2]]"),p(""),
tags$textarea(id = "customstat", rows=5, cols=40, "return(pi)"),
actionButton("gocustomstat", tr("Go!")),
condition="input.stat == 'custom'"
),
### Panels with help text about the selected function
conditionalPanel("input.stat == 'intercept'",
helpText(tr("This function calculates intercept of a linear correlation analysis between two columns, y ~ ax + b. Here, x is the independent variable, and y is the dependent variable."))
),
conditionalPanel("input.stat == 'slope'",
helpText(tr("This function calculates the slope of a linear correlation analysis between two columns, y ~ ax + b. Here, x is the independent variable, and y is the dependent variable."))
),
conditionalPanel("input.stat == 'corr'",
helpText(tr("This function calculates the correlation coefficient between two columns"))
),
conditionalPanel("input.stat == 'smean'",
helpText(tr("This function calculates the mean of a single data column."))
),
conditionalPanel("input.stat == 'ssd'",
helpText(tr("This function calculates the standard deviation of a single data column."))
),
conditionalPanel("input.stat == 'srow'",
helpText(tr("This function calculates the sum of every value in a row. Then it takes the mean of these values."))
),
conditionalPanel("input.stat == 'scol'",
helpText(tr("This function calculates the sum of every value in a column. Then it takes the mean of these values."))
),
conditionalPanel("input.stat == 'meandif'",
helpText(tr("This function splits the data according to a categorical variable. Then it calculates the mean for each group, and subtracts one from another. Note that this is designed to work with only "),em(tr("TWO")),tr(" categories!"))
),
conditionalPanel("input.stat == 'Fstatistic'",
helpText(tr("The variance ratio function splits the data according to a categorical variable. Then it calculates the ratio of among-group to within-group variances (F). Large differences between means of at least two groups lead to large values of F."))
),
conditionalPanel("input.stat== 'meandifc'",
helpText(tr("This function calculates the pairwise difference between two columns in your dataset (i.e., before and after a treatment is applied). It then averages these differences."))
),
conditionalPanel("input.stat== 'ancova1'",
helpText(tr("help-ancova1"))
),
conditionalPanel("input.stat== 'ancova2'",
helpText(tr("help-ancova2"))
),
#### Panels for the inputs selectors
conditionalPanel("input.stat != 'custom' && input.stat != 'srow' && input.stat != 'scol'",
# all other stats have a "column 1"
selectInput("m1", "Column 1", choices=1) # label and choices will be overriden!
),
conditionalPanel("input.stat == 'slope' || input.stat == 'intercept' || input.stat == 'corr' || input.stat == 'meandif' || input.stat == 'Fstatistic' || input.stat == 'meandifc' || input.stat == 'ancova1' || input.stat == 'ancova2'",
# all the above stats have a "column 2"
selectInput("m2", "Column 2", choices=2) # label and choices will be overriden!
),
conditionalPanel("input.stat == 'ancova1' || input.stat == 'ancova2'",
# these stats have three columns
selectInput("m3", "Column 3", choices=2) # label and choices will be overriden!
),
helpText(tr("Below you see the result of this function applied to the original data:")),
h3(textOutput("stat")),
# displays a warning in case the statistic is not returning a single number
h4(textOutput("svaluewarning"), style="color:#f30")
),
tabPanel(tr("Resampling"),
sidebarLayout(
sidebarPanel(
helpText(tr("Here is where we do the randomization!")),
selectInput("type", tr("Randomization type:"),
choices=1
),
##Help for each randomization panel
conditionalPanel(
helpText(tr("In normal resampling the data is randomized over all cells of the selected columns. If you do not check the 'With replacement' box below the data is permuted over the cells. Otherwise the data from any cell are sampled with replacement and attributed to any other cell.")),
condition = "input.type == 'Normal'"),
conditionalPanel(
helpText(tr("within_row_help")),
condition = "input.type == 'Within rows'"),
conditionalPanel(
helpText(tr("The randomization is done within each column of the data. If you do not check the 'With replacement' box below the values of each column are permuted independently. Otherwise the values are sampled independently from each column and attributed only to cells of the column they were sampled from.")),
condition = "input.type == 'Within columns'"),
conditionalPanel(
helpText(tr("Randomizes the placement of rows in the data table. If you do not check the 'With replacement' box below the position of rows are permuted. Otherwise whole rows are sampled with replacement to assemble the randomized data table. In both cases the position of values within each row is kept.")),
condition = "input.type == 'Rows as units'"),
conditionalPanel(
helpText(tr("cols_units_help")),
condition = "input.type == 'Columns as units'"),
##bsTooltip("type", "See the help page for details on the different randomization types."),
checkboxInput("replace", tr("With replacement?")),
selectInput("pside", tr("Alternative:"), choices=Alt),
#bsTooltip("replace", tr("Check this option if you want all the draws to be made independently (that is, with replacement) from the original data")),
#bsTooltip("pside", tr("Use this to select if you want the p-value to be assigned from a two-sided hypothesis (that is, both positive and negative values can be considered extreme), or a one sided test."), "top"),
sliderInput("ntrials", tr("Number of trials:"), min=500,max=10000,value=1000,step=500),
checkboxInput("stratum", tr("Stratified resampling?")),
#bsTooltip("stratum", tr("Check this if you want the randomization to be restricted inside groups of rows defined by a categorical value.")),
conditionalPanel("input.stratum",
selectInput("stratumc", tr("Stratum variable:"), 1)
),
conditionalPanel("input.stat == 'custom'",
helpText(tr("Which columns of the data set should be randomized? This input will be parsed as R code, so 1:3 or c(1,4,5) are valid values")),
textInput("customcols", "Columns", "1")
),
#bsTooltip("ntrials", tr("How many iteractions of sampling should we do?")),
fluidRow(column(6, checkboxInput("extreme", tr("Show extremes?"), TRUE)),
column(6, checkboxInput("rejection", tr("Show acceptance region?"), TRUE))
),
fluidRow(column(6, actionButton("go", tr("Update Graph"))),
column(6, downloadButton('download', tr("Download data")))
)
),
mainPanel(
plotOutput("distPlot"),
helpText(tr("mainplot_help1"), em(tr("equal to or more extreme")), tr(" than the statistic calculated on your original data (represented by the dotted red line). The gray area delimits the values of the statistics under which the null hypothesis should be accepted with 5% of chance of error. The proportion of simulations with statistics more extreme than the observed (p-value of) is:")),
h3(textOutput("p"))
)
)
)
)
))