forked from ltfschoen/ML-Predictions
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathprediction_config.py
141 lines (134 loc) · 11.5 KB
/
prediction_config.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
import numpy as np
class PredictionConfig(object):
""" Machine Learning configuration """
# Implementation Guide:
#
# Predict the optimum value for a future TARGET_COLUMN value based on TRAINING_COLUMNS
# of a given dataset hosted either remotely DATASET_REMOTE or downloaded locally
# DATASET_LOCAL.
#
# - Manually add a datasets in CSV format local and remote locations to DATASET_LOCATION,
# and add the key of the one to use to DATASET_CHOICE. If the top row of the
# dataset does not already include the Label of each comma separated column, then
# manually add the respective comma separated Labels in the correct order into
# DATASET_LOCATION.labels
# - Manually cleanse relevant columns by converting from string to float and removing
# bad characters so they may be processed as inputs by the ML Model (i.e. $, ?).
# Since there may be a list of columns with the same bad characters (i.e. price)
# they may be added to groups such as "cleanse_columns_price_format".
# All Training and Target Columns must be cleansed since Scikit-Learn only accepts numeric data
# - Manually convert from String to Float64 all Training Features and Target Column
# - Automatically cleanse the dataset by removing any columns containing
# a string or substring indicative of incorrect data (i.e. id or _id) as defined by
# EXCLUDE_TRAINING_COLUMNS_WITH_FULL_TEXT and EXCLUDE_TRAINING_COLUMNS_WITH_PARTIAL_TEXT
# - Manually remove entire columns (features) that are non-numeric,
# non-ordinal, or not specific to the prediction
# - Automatically remove entire columns whose proportion of row
# values (observations) that are NaN (null) is > MAX_MAJOR_INCOMPLETE
# - Automatically retain columns whose proportion of values that are NaN
# is < MAX_MINOR_INCOMPLETE, but remove all rows with NaN value
# Important Note: If NaN values are found to cause errors and prevent processing,
# check the percentage of NaN rows in the columns chosen to being trained and increase the
# value of MAX_MINOR_INCOMPLETE above that percentage
# - Reindex after removing rows to prevent errors subsequent in subsequent loops
# - Automatically normalise the columns containing int, float64, and floating type values
# using mass transformation across the DataFrame to avoid experiencing the Outsized Effect
# when applying the Euclidean Distance equation to largely differing values.
# Important Note: Currently the normalise function deletes any columns that contain string values
# so ensure that this does not occur to Training Features or Target Column by converting to Int or Float prior.
# - Manually configure whether to use either the:
# - Train/Test Validation Process that splits the dataset into two partitions
# Train/Test sets with 75%/25% proportion of rows respectively
# by setting K_FOLD_CROSS_VALIDATION to False. The Training set is
# used to make predictions whilst the Testing set is used to predict values for.
# The Testing percentage proportion is set by TESTING_PROPORTION.
# - K-Fold Cross Validation by setting K_FOLD_CROSS_VALIDATION to True
# to take return more robust results by rotating through different subsets of
# the data to avoid issues of Train/Test Validation by
# setting K_FOLDS to a value >= 2
# - Manually toggle HYPERPARAMETER_OPTIMISATION to True to try different values of 'k' nearest
# neighbors to see comparison plot and find optimum combination of Training set features resulting in lowest MSE
# by setting associated range of 'k' values HYPERPARAMETER_RANGE, or else set to
# False to and defined a fixed 'k' value with HYPERPARAMETER_FIXED
# - Automatically perform prediction and output list of predictions by providing the TRAINING_COLUMNS (all columns
# used if this list is empty) and the TARGET_COLUMN's values to the chosen Machine Learning Model
# ML_MODEL_KNN (with a "manual" value to use the model built manually or optionally
# with a value "scikit" to use the much faster Scikit-Learn Machine Learning library).
# Note that rows of the TRAINING_COLUMNS are used to predict TARGET_COLUMN's values in the Test set.
# Note that if only one TRAINING_COLUMN is used it is known as Univariate, whilst more is Multivariate.
# The ML Model uses Similarity Metrics (by means of the K-Nearest-Neighbors Machine Learning
# algorithm) to iteratively compare columns (features) of two rows (observations) to
# calculate (i.e. using Euclidean Distance equation) and return the distance (difference).
# - Manually use Error Metrics (i.e. Median Average Error, Mean Squared Error, and
# Root Mean Squared Error equations) to check the quality of the predictions.
# Increasing the quantity of relevant TRAINING_COLUMNS (attributes) improves accuracy and lowers the error of
# the model since it allows the model to better identify observations (rows) from the Training set that are
# most similar to the Test set.
def __init__(self, event, context):
self.CONTEXT = context
self.ML_MODEL_KNN = event["model_workflow_config"]["model_workflow_for_knn_algorithm"] # manual or scikit
self.ML_MODEL_LINEAR = event["model_workflow_config"]["model_workflow_for_linear_regression_algorithm_toggle"] # scikit True/False
self.ML_MODEL_LOGISTIC = event["model_workflow_config"]["model_workflow_for_logistic_regression_algorithm_toggle"]
self.MAX_CATEGORIES_TARGET_COLUMN_FOR_ONE_VS_ALL_MULTI_CLASSIFICATION = event["logistic_regression_config"]["max_categories_target_column_for_one_vs_all_multi_classification"]
self.MIN_CATEGORIES_TARGET_COLUMN_FOR_ONE_VS_ALL_MULTI_CLASSIFICATION = event["logistic_regression_config"]["min_categories_target_column_for_one_vs_all_multi_classification"]
self.K_MEANS_CLUSTERING = event["k_means_clustering_config"]["k_means_clustering_toggle"]
self.CENTROIDS_QUANTITY = event["k_means_clustering_config"]["centroids_quantity"]
self.SUPPRESS_ALL_PLOTS = event["plot_config"]["suppress_all_plots"]
self.PLOT_CORRELATION_BETWEEN_TARGET_COLUMN_AND_OTHERS = event["plot_config"]["plot_correlation_between_target_column_and_others"]
self.PLOT_INDIVIDUAL_TRAIN_FEATURES_VS_TARGET = event["plot_config"]["plot_individual_train_features_vs_target_toggle"]
self.PLOT_KMEANS_OUTLIERS = event["plot_config"]["plot_kmeans_outliers"]
self.PLOT_LINEAR_RELATIONSHIP_PREDICTION_VS_ACTUAL_FOR_TRAIN_FEATURES_VS_TARGET = event["plot_config"]["plot_linear_relationship_prediction_vs_actual_for_train_features_vs_target_toggle"]
self.PLOT_LOGISTIC_RELATIONSHIP_PREDICTION_VS_ACTUAL_FOR_TRAIN_FEATURES_VS_TARGET = event["plot_config"]["plot_logistic_relationship_prediction_vs_actual_for_train_features_vs_target_toggle"]
self.PLOT_LOGISTIC_ROC = event["plot_config"]["plot_logistic_roc"]
self.PLOT_HYPERPARAMETER_OPTIMISATION = event["plot_config"]["plot_hyperparameter_optimisation"]
self.HYPERPARAMETER_OPTIMISATION = event["hyperparameter_optimisation_config"]["hyperparameter_optimisation_toggle"] # Toggle to iterate through defined HYPERPARAMETER_RANGE of k values
self.HYPERPARAMETER_RANGE = np.arange(1, int(event["hyperparameter_optimisation_config"]["hyperparameter_range"]) + 1, 1) # 1 to 20
self.HYPERPARAMETER_FIXED = int(event["hyperparameter_optimisation_config"]["hyperparameter_quantity_fixed"]) # Fixed value of hyperparameter k when HYPERPARAMETER_OPTIMISATION is False
self.MIN_FEATURES_COMBO_LEN = int(event["training_config"]["min_training_features"])
self.MAX_MAJOR_INCOMPLETE = float(event["cleansing_config"]["min_percentage_incomplete_observations_to_remove_column"]) # Percentage
self.MAX_MINOR_INCOMPLETE = float(event["cleansing_config"]["max_percentage_incomplete_observations_to_retain_column_and_remove_incomplete_slice"]) # Percentage
self.MIN_PERCENTAGE_CORRELATION_WITH_TARGET_COLUMN = float(event["cleansing_config"]["min_percentage_correlation_with_target_column"])
self.K_FOLD_CROSS_VALIDATION = event["k_fold_cross_validation_config"]["k_fold_cross_validation_toggle"]
# K-Fold Cross-Validation Technique when K_FOLDS >= 3 OR Holdout Validation when K_FOLDS == 2
# Train/Test Validation Process
self.K_FOLDS = int(event["k_fold_cross_validation_config"]["k_folds_quantity"])
# Toggle whether to use use:
# - True - Scikit-Learn's KFold class to generate K Folds and its cross_val_score function
# for training and Cross Validation (without the need to use the "fold" column manually)
# - False - Manually generate a KFolds 'fold' column and manually perform Cross Validation
self.K_FOLDS_BUILTIN = event["k_fold_cross_validation_config"]["k_folds_workflow"] # i.e. manual or scikit
self.TESTING_PROPORTION = self.get_testing_proportion()
self.DATASET_CHOICE = event["dataset_selected"] # "rental-property-listings", "car-listings"
# Important Notes:
# - "labels" - Use empty array when labels already included in dataset
# - "training_columns" - Use empty array to use all as Training Columns except the Target Column
# Example for "rental-property-listings" dataset: # ["accommodates", "bedrooms", "bathrooms", "number_of_reviews"]
# Example for "car-listings" dataset: ["wheel-base", "length", "width", "height", "curb-weight", "engine-size", "bore", "stroke", "compression-ratio", "horsepower", "peak-rpm", "city-mpg", "highway-mpg"],
# Minimum amount of elements to add to this list is the value of "min_training_features"
# Each row value associated with element column in dataset must be numeric or converted prior to usage
# - "remote" - URL to data associated with dataset. Not the URL to information about the dataset
# (i.e. Automobile Dataset information - https://archive.ics.uci.edu/ml/datasets/Automobile)
# - "convert_columns_words_to_digits" - i.e. convert rows from say "four" to 4
self.DATASET_LOCATION = event["dataset_config"]
# TODO - Move into individual dataset config dicts
self.EXCLUDE_TRAINING_COLUMNS_WITH_FULL_TEXT = ["id"]
self.EXCLUDE_TRAINING_COLUMNS_WITH_PARTIAL_TEXT = ["_id", "-id"]
self.validate_config()
def validate_config(self):
""" Override config settings in case user has not configured valid combination """
# Since "manual" mode needs split into Train/Test sets (i.e. training_part and test_part) rather than just a "fold" column
if self.ML_MODEL_KNN == "manual":
self.K_FOLD_CROSS_VALIDATION = False
# Since only implemented K-Fold Cross Validation to work with the Hyperparameter Optimisation process
if self.K_FOLD_CROSS_VALIDATION == True:
self.HYPERPARAMETER_OPTIMISATION = True
def get_testing_proportion(self):
""" Proportion of rows to split into Training and Test set respectively
Returns value between 0 and 1 representing percentage proportion of the Test set. Training set is remainder.
Holdout Validation - 50%/50%
Train/Test Validation - 75%/25%
"""
if self.K_FOLD_CROSS_VALIDATION:
return round((1 / self.K_FOLDS), 2)
else:
return 0.25