-
Notifications
You must be signed in to change notification settings - Fork 0
/
main_per_layer_plotter_large copy.py
640 lines (533 loc) · 24.2 KB
/
main_per_layer_plotter_large copy.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
import random
from random import sample
import argparse
import numpy as np
import os
import pickle
from tqdm import tqdm
from collections import OrderedDict
from sklearn.metrics import roc_auc_score
from sklearn.metrics import roc_curve
from sklearn.metrics import precision_recall_curve
from sklearn.covariance import LedoitWolf
from scipy.spatial.distance import mahalanobis
from scipy.ndimage import gaussian_filter
from skimage import morphology
from skimage.segmentation import mark_boundaries
import matplotlib.pyplot as plt
import matplotlib
import torch
import torch.nn.functional as F
from torch.utils.data import DataLoader
from torchvision.models import wide_resnet50_2, resnet18, resnet50
import datasets.mvtec as mvtec
import sys
# sys.path.append('/home/wonjun/Desktop/PaDiM-Anomaly-Detection-Localization-master-main')
from sklearn.manifold import TSNE
import pdb
import pandas as pd
import time
import logging
import psutil
import os
#Model zoo Version
# # from segmentation.data_loader.segmentation_dataset import SegmentationDataset
# # from segmentation.data_loader.transform import Rescale, ToTensor
# # from segmentation.trainer import Trainer
# # from segmentation.predict import *
# from segmentation.models import all_models
# # from util.logger import Logger
#Segmentation Model
# import segmentation_models_pytorch as smp
from torchvision.models.segmentation import fcn_resnet50
# device setup
use_cuda = torch.cuda.is_available()
device = torch.device('cuda' if use_cuda else 'cpu')
#arguments 지정
def parse_args():
parser = argparse.ArgumentParser('PaDiM')
parser.add_argument('--data_path', type=str, default='datasets/MVtec')
parser.add_argument('--save_path', type=str, default='Result_graduation_new/statistical_result')
parser.add_argument('--selection', type=str, default='')
parser.add_argument('--arch', type=str, choices=['resnet18', 'wide_resnet50_2', 'fcn_resnet50', 'resnet50', 'resnet18_weights'], default='wide_resnet50_2')
parser.add_argument('--layer', nargs='+', type=str, default=['layer1', 'layer2', 'layer3'])
return parser.parse_args()
def sample_points(data, n_samples):
"""
Samples n_samples points from data with maximum distance.
Parameters:
data (numpy array): 1792-dimensional sample points
n_samples (int): number of points to sample
Returns:
numpy array: indices of n_samples points with maximum distance
"""
n_points = data.shape[0]
samples_idx = np.zeros(n_samples, dtype=np.int)
# Initialize first sample randomly
idx = np.random.randint(n_points)
samples_idx[0] = idx
# Calculate distances between each sample point and centroids
for i in range(1, n_samples):
centroids = np.mean(data[samples_idx[:i], :], axis=0)
distances = np.sum((data - centroids)**2, axis=1)
distances = np.sqrt(distances)
samples_idx[i] = np.argmax(distances)
return samples_idx
# if pretrained and fixed_feature: #fine tunning
# params_to_update = model.parameters()
# print("Params to learn:")
# params_to_update = []
# for name, param in model.named_parameters():
# if param.requires_grad == True:
# params_to_update.append(param)
# print("\t", name)
# optimizer = torch.optim.Adadelta(params_to_update)
# else:
def main():
args = parse_args()
# load model
# load model
if args.arch == 'resnet18':
model = resnet18(pretrained=True, progress=True)
t_d = 0
d = 0
#random
#Full Channel
if args.selection == 'full':
if 'layer1' in args.layer:
t_d += 64
d += 64
if 'layer2' in args.layer:
t_d += 128
d += 128
if 'layer3'in args.layer:
t_d += 256
d += 256
else:
if 'layer1' in args.layer:
t_d += 64
d += 16
if 'layer2' in args.layer:
t_d += 128
d += 32
if 'layer3'in args.layer:
t_d += 256
d += 64
elif args.arch == 'resnet50':
model = resnet50(pretrained=True, progress=True)
t_d = 0
d = 0
if args.selection == 'full':
if 'layer1' in args.layer:
t_d += 256
d += 256
if 'layer2' in args.layer:
t_d += 512
d += 512
if 'layer3' in args.layer:
t_d += 1024
d += 1024
else:
if 'layer1' in args.layer:
t_d += 256
d += 64
if 'layer2' in args.layer:
t_d += 512
d += 128
if 'layer3' in args.layer:
t_d += 1024
d += 256
elif args.arch == 'fcn_resnet50':
model = fcn_resnet50(pretrained=True, progress=True)
t_d = 0
d = 0
if 'layer1' in args.layer:
t_d += 256
d += 100
if 'layer2' in args.layer:
t_d += 512
d += 150
if 'layer3' in args.layer:
t_d += 1024
d += 300
# elif args.arch == 'resnet18_weights':
# weights = FCN_ResNet50_Weights.DEFAULT
# model = fcn_resnet50(weights=weights)
# t_d = 448
# d = 100
# elif args.arch == 'wide_resnet50_2':
# model = wide_resnet50_2(pretrained=True, progress=True)
# t_d = 1792
# d = 550
model.to(device)
model.eval()
random.seed(1024)
torch.manual_seed(1024)
if use_cuda:
torch.cuda.manual_seed_all(1024)
idx = torch.tensor(sample(range(0, t_d), d))
# set model's intermediate outputs
outputs = []
def hook(module, input, output):
outputs.append(output)
topk_idx_l = []
if args.arch == 'fcn_resnet50':
if 'layer1' in args.layer:
model.backbone.layer1[-1].register_forward_hook(hook)
if 'layer2' in args.layer:
model.backbone.layer2[-1].register_forward_hook(hook)
if 'layer3' in args.layer:
model.backbone.layer3[-1].register_forward_hook(hook)
else:
if 'layer1' in args.layer:
model.layer1[-1].register_forward_hook(hook)
if 'layer2' in args.layer:
model.layer2[-1].register_forward_hook(hook)
if 'layer3' in args.layer:
model.layer3[-1].register_forward_hook(hook)
lname = ''
if 'layer1' in args.layer:
lname += '1'
if 'layer2' in args.layer:
lname += '2'
if 'layer3' in args.layer:
lname += '3'
os.makedirs(os.path.join(args.save_path, 'temp_%s_L%s' % (args.arch, lname)), exist_ok=True)
fig, ax = plt.subplots(1, 2, figsize=(20, 10))
fig_img_rocauc = ax[0]
fig_pixel_rocauc = ax[1]
total_roc_auc = []
total_pixel_roc_auc = []
#시간 측정
init_time = time.time()
init_memory = psutil.Process(os.getpid()).memory_info().rss
process = psutil.Process(os.getpid())
for class_name in mvtec.CLASS_NAMES:
train_dataset = mvtec.MVTecDataset(args.data_path, class_name=class_name, is_train=True)
train_dataloader = DataLoader(train_dataset, batch_size=32, pin_memory=True)
test_dataset = mvtec.MVTecDataset(args.data_path, class_name=class_name, is_train=False)
test_dataloader = DataLoader(test_dataset, batch_size=1, pin_memory=True)
for fidx in range(0, len(args.layer)):
if fidx == 0:
train_outputs = OrderedDict([(args.layer[fidx], [])])
test_outputs = OrderedDict([(args.layer[fidx], [])])
else:
train_outputs.update([(args.layer[fidx], [])])
test_outputs.update([(args.layer[fidx], [])])
# extract train set features
train_feature_filepath = os.path.join(args.save_path, 'temp_%s_L%s' % (args.arch, lname), 'train_%s.pkl' % class_name)
if not os.path.exists(train_feature_filepath):
for (x, _, _, _) in tqdm(train_dataloader, '| feature extraction | train | %s |' % class_name):
# model prediction
with torch.no_grad():
_ = model(x.to(device))
# get intermediate layer outputs
for k, v in zip(train_outputs.keys(), outputs):
train_outputs[k].append(v.cpu().detach())
# initialize hook outputs
outputs = []
for k, v in train_outputs.items():
train_outputs[k] = torch.cat(v, 0)
# Embedding concat
# embedding_vectors = train_outputs['layer1']
# embedding_vectors = train_outputs['layer2']
# embedding_vectors = train_outputs['layer3']
for fidx in range(0, len(args.layer)): #['layer2', 'layer3']:
if fidx == 0:
embedding_vectors = train_outputs[args.layer[fidx]]
else:
embedding_vectors = embedding_concat(embedding_vectors, train_outputs[args.layer[fidx]])
# plot train vectors
if args.arch == 'resnet18':
lnum = [16, 32, 64]
offset = [0, 64, 128]
elif args.arch == 'resnet50':
lnum = [64, 128, 256]
offset = [0, 256, 768]
plt.close()
for fidx in range(len(args.layer)-1, -1, -1):
mean_t = torch.mean(train_outputs[args.layer[fidx]], dim=0)
C, H, W = mean_t.size()
mean_t = mean_t.view(C, H*W)
#Var mean,
if args.selection == 'var_large':
var_v = torch.var(mean_t, dim=-1)
_, topk_idx_l = torch.topk(var_v, lnum[fidx], largest=True)
elif args.selection == 'var_small':
var_v = torch.var(mean_t, dim=-1)
_, topk_idx_l = torch.topk(var_v, lnum[fidx], largest=False)
elif args.selection == 'mean_large':
mean_v = torch.mean(mean_t, dim=-1)
_, topk_idx_l = torch.topk(mean_v, lnum[fidx], largest=True)
elif args.selection == 'mean_small':
mean_v = torch.mean(mean_t, dim=-1)
_, topk_idx_l = torch.topk(mean_v, lnum[fidx], largest=False)
elif args.selection == 'max_distance':
tsne_points_train = np.array(tsne.fit_transform(np.array(mean_t)))
topk_idx_l = sample_points(tsne_points_train, lnum[fidx])
topk_idx_l = torch.tensor(topk_idx_l, dtype=torch.long)
elif args.selection == 'random':
topk_idx_l = torch.tensor(sample(range(0, C), lnum[fidx]))
# if fidx == 0:
# var_v = torch.var(mean_t, dim=-1)
# _, topk_idx_l = torch.topk(var_v, lnum[fidx], largest=False)
# else:
# mean_v = torch.mean(mean_t, dim=-1)
# _, topk_idx_l = torch.topk(mean_v, lnum[fidx], largest=True)
if fidx == len(args.layer)-1:
topk_idx = topk_idx_l + offset[fidx]
else:
topk_idx = torch.cat((topk_idx, topk_idx_l), dim=0)
tsne_points_train = np.array(tsne.fit_transform(np.array(mean_t)))
plt.scatter(tsne_points_train[:,0], tsne_points_train[:,1], label=fidx)
save_dir = args.save_path + '/' + f'pictures_{args.arch}_L{lname}' + '/tsne/train'
os.makedirs(save_dir, exist_ok=True)
sname = '%s/%s_%s.png' % (save_dir, 'train', class_name)
plt.grid(True)
plt.savefig(sname)
plt.close()
# randomly select d dimension
embedding_vectors = torch.index_select(embedding_vectors, 1, idx)
# calculate multivariate Gaussian distribution
B, C, H, W = embedding_vectors.size()
embedding_vectors = embedding_vectors.view(B, C, H * W)
mean = torch.mean(embedding_vectors, dim=0).numpy()
cov = torch.zeros(C, C, H * W).numpy()
I = np.identity(C)
for i in range(H * W):
# cov[:, :, i] = LedoitWolf().fit(embedding_vectors[:, :, i].numpy()).covariance_
cov[:, :, i] = np.cov(embedding_vectors[:, :, i].numpy(), rowvar=False) + 0.01 * I
# save learned distribution
train_outputs = [mean, cov]
with open(train_feature_filepath, 'wb') as f:
pickle.dump(train_outputs, f)
else:
print('load train set feature from: %s' % train_feature_filepath)
with open(train_feature_filepath, 'rb') as f:
train_outputs = pickle.load(f)
gt_list = []
gt_mask_list = []
test_imgs = []
# extract test set features
for (x, y, mask) in tqdm(test_dataloader, '| feature extraction | test | %s |' % class_name):
#각 클래스 테스트 타임 추가
test_start_time = time.time()
test_imgs.extend(x.cpu().detach().numpy())
gt_list.extend(y.cpu().detach().numpy())
gt_mask_list.extend(mask.cpu().detach().numpy())
# model prediction
with torch.no_grad():
_ = model(x.to(device))
# get intermediate layer outputs
for k, v in zip(test_outputs.keys(), outputs):
test_outputs[k].append(v.cpu().detach())
# initialize hook outputs
outputs = []
for k, v in test_outputs.items():
test_outputs[k] = torch.cat(v, 0)
# Embedding concat
embedding_vectors = test_outputs[args.layer[0]]
for fidx in range(0, len(args.layer)):
if fidx == 0:
embedding_vectors = test_outputs[args.layer[fidx]]
else:
embedding_vectors = embedding_concat(embedding_vectors, test_outputs[args.layer[fidx]])
# plot train vectors
# for lidx in range(0, len(flist)):
# plt.close()
# for fidx in range(len(args.layer)-1, -1, -1):
# mean_t = test_outputs[args.layer[fidx]][lidx]
# C, H, W = mean_t.size()
# mean_t = mean_t.view(C, H*W)
# tsne_points_test = np.array(tsne.fit_transform(np.array(mean_t)))
# plt.scatter(tsne_points_test[:,0], tsne_points_test[:,1], label=fidx)
# save_dir = args.save_path + '/' + f'pictures_{args.arch}_L{lname}' + '/tsne/test'
# os.makedirs(save_dir, exist_ok=True)
# fname_split = flist[lidx][0].split('/')
# fname_split2 = fname_split[-1].split('.')[0]
# sname = '%s/%s_%s_%s.png' % (save_dir, class_name, fname_split[-2], fname_split2)
# plt.grid(True)
# plt.savefig(sname)
# plt.close()
# randomly select d dimension
embedding_vectors = torch.index_select(embedding_vectors, 1, topk_idx)
# calculate distance matrix
B, C, H, W = embedding_vectors.size()
embedding_vectors = embedding_vectors.view(B, C, H * W).numpy()
dist_list = []
for i in range(H * W):
mean = train_outputs[0][:, i]
conv_inv = np.linalg.inv(train_outputs[1][:, :, i])
dist = [mahalanobis(sample[:, i], mean, conv_inv) for sample in embedding_vectors]
dist_list.append(dist)
dist_list = np.array(dist_list).transpose(1, 0).reshape(B, H, W)
# upsample
dist_list = torch.tensor(dist_list)
score_map = F.interpolate(dist_list.unsqueeze(1), size=x.size(2), mode='bilinear',
align_corners=False).squeeze().numpy()
# apply gaussian smoothing on the score map
for i in range(score_map.shape[0]):
score_map[i] = gaussian_filter(score_map[i], sigma=4)
# Normalization
max_score = score_map.max()
min_score = score_map.min()
scores = (score_map - min_score) / (max_score - min_score)
# calculate image-level ROC AUC score
img_scores = scores.reshape(scores.shape[0], -1).max(axis=1)
gt_list = np.asarray(gt_list)
fpr, tpr, _ = roc_curve(gt_list, img_scores)
img_roc_auc = roc_auc_score(gt_list, img_scores)
total_roc_auc.append(img_roc_auc)
print('image ROCAUC: %.3f' % (img_roc_auc))
fig_img_rocauc.plot(fpr, tpr, label='%s img_ROCAUC: %.3f' % (class_name, img_roc_auc))
# get optimal threshold
gt_mask = np.asarray(gt_mask_list)
precision, recall, thresholds = precision_recall_curve(gt_mask.flatten(), scores.flatten())
a = 2 * precision * recall
b = precision + recall
f1 = np.divide(a, b, out=np.zeros_like(a), where=b != 0)
threshold = thresholds[np.argmax(f1)]
# calculate per-pixel level ROCAUC
fpr, tpr, _ = roc_curve(gt_mask.flatten(), scores.flatten())
per_pixel_rocauc = roc_auc_score(gt_mask.flatten(), scores.flatten())
total_pixel_roc_auc.append(per_pixel_rocauc)
print('pixel ROCAUC: %.3f' % (per_pixel_rocauc))
test_end_time = time.time() # Added line
inference_times.append(test_end_time - test_start_time) # Added line
#####################################
"여기에 Log 저장하는 파일 쓰기 "
# https://ddolcat.tistory.com/642
# img_roc_auc
# per_pixel_rocauc
end_time = time.time()
final_memory = psutil.Process(os.getpid()).memory_info().rss
memory_cost = abs(final_memory - start_memory_class)
inference_time = end_time - start_time
avg_inference_time = sum(inference_times) / len(inference_times) # Added line
print(f"Inference time for class {class_name}: {inference_time} seconds.")
print(f"avg.Inference time for class {class_name}: {avg_inference_time} seconds.")
print(f"Memory cost for class {class_name}: {memory_cost / (1024 ** 2)} MB.")
fig_pixel_rocauc.plot(fpr, tpr, label='%s ROCAUC: %.3f' % (class_name, per_pixel_rocauc))
save_dir = args.save_path + '/' + f'pictures_{args.arch}_{args.layer}'
os.makedirs(save_dir, exist_ok=True)
# plot_fig(test_imgs, scores, gt_mask_list, threshold, save_dir, class_name)
plot_fig(test_imgs, scores, gt_mask_list, threshold, save_dir, class_name, test_outputs, args)
#####################################
import datetime
'''
class_name = "example_class"
img_roc_auc = 0.98
per_pixel_rocauc = 0.96
# '''
total_time = time.time() - init_time
total_memory = psutil.Process(os.getpid()).memory_info().rss - init_memory
# sys.stdout = open("test_log.txt", "w")
# for i in range(len(class_name)):
# print('class name : %s / image ROCAUC: %.3f' % (class_name, img_roc_auc))
# print('class name : %s / img_ROCAUC: %.3f' % (class_name, per_pixel_rocauc))
# print("----------------------------------------------------------------")
# sys.stdout.close()
log_dir = os.path.join(args.save_path, '{}_L{}_logfiles'.format(args.arch, lname))
if not os.path.exists(log_dir):
os.makedirs(log_dir)
fname = "%s/%s_L%s_%s_logfile.txt" % (log_dir, args.arch, lname, class_name)
with open(fname, "a") as f:
current_time = str(datetime.datetime.now())
f.write(f"{current_time} - Class Name: {class_name} - Total Inference Time: {total_time:.3f} seconds\n")
f.write(f"{current_time} - Class Name: {class_name} - Average Inference Time: {avg_inference_time:.3f} seconds\n") # Added line
f.write(f"{current_time} - Class Name: {class_name} - Memory Cost: {total_memory / 1024 ** 2:.3f} MB\n")
f.write(f"{current_time} - Class Name: {class_name} - Image ROCAUC: {img_roc_auc:.3f}\n")
f.write(f"{current_time} - Class Name: {class_name} - Per Pixel ROCAUC: {per_pixel_rocauc:.3f}\n")
#####################################
avg_ROCAUC = np.mean(total_roc_auc)
print('Average ROCAUC: %.3f' % avg_ROCAUC)
fig_img_rocauc.title.set_text('Average image ROCAUC: %.3f' % avg_ROCAUC)
fig_img_rocauc.legend(loc="lower right")
pix_ROCAUC = np.mean(total_pixel_roc_auc)
print('Average pixel ROCUAC: %.3f' % pix_ROCAUC)
fig_pixel_rocauc.title.set_text('Average pixel ROCAUC: %.3f' % pix_ROCAUC)
fig_pixel_rocauc.legend(loc="lower right")
fig.tight_layout()
fig.savefig(os.path.join(log_dir, f"{args.arch}_L{lname}_roc_curve.png"), dpi=100)
fname = "%s/%s_L%s_%s_logfile.txt" % (args.save_path, args.arch, lname, class_name)
with open(fname, "w") as f:
current_time = str(datetime.datetime.now())
f.write(f"{current_time} - Class Name: {class_name} - Image ROCAUC: {avg_ROCAUC:.3f}\n")
f.write(f"{current_time} - Class Name: {class_name} - Per Pixel ROCAUC: {pix_ROCAUC:.3f}\n")
def plot_fig(test_img, scores, gts, threshold, save_dir, class_name, test_outputs, args):
num = len(scores)
vmax = scores.max() * 255.
vmin = scores.min() * 255.
for i in range(num):
img = test_img[i]
img = denormalization(img)
gt = gts[i].transpose(1, 2, 0).squeeze()
heat_map = scores[i] * 255
mask = scores[i]
mask[mask > threshold] = 1
mask[mask <= threshold] = 0
kernel = morphology.disk(4)
mask = morphology.opening(mask, kernel)
mask *= 255
vis_img = mark_boundaries(img, mask, color=(1, 0, 0), mode='thick')
fig_img, ax_img = plt.subplots(1, 5, figsize=(12, 3))
fig_img.subplots_adjust(right=0.9)
norm = matplotlib.colors.Normalize(vmin=vmin, vmax=vmax)
for ax_i in ax_img:
ax_i.axes.xaxis.set_visible(False)
ax_i.axes.yaxis.set_visible(False)
ax_img[0].imshow(img)
ax_img[0].title.set_text('Image')
ax_img[1].imshow(gt, cmap='gray')
ax_img[1].title.set_text('GroundTruth')
ax = ax_img[2].imshow(heat_map, cmap='jet', norm=norm)
ax_img[2].imshow(img, cmap='gray', interpolation='none')
ax_img[2].imshow(heat_map, cmap='jet', alpha=0.5, interpolation='none')
ax_img[2].title.set_text('Predicted heat map')
ax_img[3].imshow(mask, cmap='gray')
ax_img[3].title.set_text('Predicted mask')
ax_img[4].imshow(vis_img)
ax_img[4].title.set_text('Segmentation result')
# for fidx in range(len(args.layer)-1, -1, -1):
# mean_t = test_outputs[args.layer[fidx]][i]
# C, H, W = mean_t.size()
# mean_t = mean_t.view(C, H*W)
# tsne_points_test = np.array(tsne.fit_transform(np.array(mean_t)))
# ax_img[5].scatter(tsne_points_test[:,0], tsne_points_test[:,1], s=1, label=fidx)
# ax_img[5].grid(True)
left = 0.92
bottom = 0.15
width = 0.015
height = 1 - 2 * bottom
rect = [left, bottom, width, height]
cbar_ax = fig_img.add_axes(rect)
cb = plt.colorbar(ax, shrink=0.6, cax=cbar_ax, fraction=0.046)
cb.ax.tick_params(labelsize=8)
font = {
'family': 'serif',
'color': 'black',
'weight': 'normal',
'size': 8,
}
cb.set_label('Anomaly Score', fontdict=font)
fig_img.savefig(os.path.join(save_dir, class_name + '_{}'.format(i)), dpi=100)
plt.close()
def denormalization(x):
mean = np.array([0.485, 0.456, 0.406])
std = np.array([0.229, 0.224, 0.225])
x = (((x.transpose(1, 2, 0) * std) + mean) * 255.).astype(np.uint8)
return x
def embedding_concat(x, y):
B, C1, H1, W1 = x.size()
_, C2, H2, W2 = y.size()
s = int(H1 / H2)
x = F.unfold(x, kernel_size=s, dilation=1, stride=s)
x = x.view(B, C1, -1, H2, W2)
z = torch.zeros(B, C1 + C2, x.size(2), H2, W2)
for i in range(x.size(2)):
z[:, :, i, :, :] = torch.cat((x[:, :, i, :, :], y), 1)
z = z.view(B, -1, H2 * W2)
z = F.fold(z, kernel_size=s, output_size=(H1, W1), stride=s)
return z
if __name__ == '__main__':
main()