-
Notifications
You must be signed in to change notification settings - Fork 0
/
app.py
95 lines (71 loc) · 2.31 KB
/
app.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
# -*- coding: utf-8 -*-
"""
Created on Thu Jun 11 22:34:20 2020
@author: Krish Naik
"""
from __future__ import division, print_function
# coding=utf-8
import sys
import os
import glob
import re
import numpy as np
# Keras
from tensorflow.keras.applications.imagenet_utils import preprocess_input, decode_predictions
from keras.models import model_from_json
from tensorflow.keras.preprocessing import image
# Flask utils
from flask import Flask, redirect, url_for, request, render_template
from werkzeug.utils import secure_filename
#from gevent.pywsgi import WSGIServer
# Define a flask app
app = Flask(__name__)
# Model saved with Keras model.save()
MODEL_PATH ='malaria.h5'
# Load your trained model
json_file = open('model.json', 'r')
loaded_model_json = json_file.read()
json_file.close()
model = model_from_json(loaded_model_json)
model.load_weights('weights.h5')
def model_predict(img_path, model):
img = image.load_img(img_path,color_mode="rgb",target_size=(224, 224))
# Preprocessing the image
x = image.img_to_array(img)
# x = np.true_divide(x, 255)
## Scaling
x = np.expand_dims(x, axis=0)
pred_img= np.vstack([x/255.])
# Be careful how your trained model deals with the input
# otherwise, it won't make correct prediction!
#x = preprocess_input(x)
preds = model.predict(pred_img)
preds=np.argmax(preds, axis=1)
print (preds)
if preds[0]==0:
preds="The Person is Infected With Pneumonia"
else:
preds="The Person is not Infected With Pneumonia"
return preds
@app.route('/', methods=['GET'])
def index():
# Main page
return render_template('index.html')
@app.route('/predict', methods=['GET', 'POST'])
def upload():
if request.method == 'POST':
# Get the file from post request
f = request.files['file']
# Save the file to ./uploads
basepath = os.path.dirname(__file__)
file_path = os.path.join(
basepath, 'uploads', secure_filename(f.filename))
print (file_path)
f.save(file_path)
# Make prediction
preds = model_predict(file_path, model)
result=preds
return result
return None
if __name__ == '__main__':
app.run(debug=True)