-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathVikasa.jl
634 lines (499 loc) · 22 KB
/
Vikasa.jl
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
#this is the genetic algorithm program which helps generate meshes for ArvanFlow
using Plots
using Statistics
using StatsBase
using LinearAlgebra
using Printf
using CUDA
using JLD2
#generate a random floating point number
function randfloat(a, b)
return rand() * (b - a) + a
end
#generate a bezier curve
function bezier_curve(control_points, t)
n = length(control_points) - 1
result = [0.0, 0.0]
for i in 0:n
binomial_coefficient = binomial(n, i)
bernstein_polynomial = binomial_coefficient * (1 - t)^(n - i) * t^i
result += bernstein_polynomial * control_points[i + 1]
end
return result
end
#calculates fitness based on objectives and weights
function calculate_fitness(objectives, weights)
fitness = dot(objectives, weights)
return fitness
end
#creates the genes for the population at the start of the simulation
function generate_population(X_start_point, Y_start_point, X_end_point, Y_end_point, genes, pop_size)
X_int_start = Int32(floor(X_start_point*20))
X_int_end = Int32(floor(X_end_point*20))
Y_int_start = Int32(floor(Y_start_point*20))
Y_int_end = Int32(floor(Y_end_point*20))
for p = 1:pop_size
#generate X control points
CP_X_1 = rand( min(X_int_start, X_int_end):max(X_int_start, X_int_end) )/20
CP_X_2 = rand( min(X_int_end, X_int_start):max(X_int_end, X_int_start) )/20
#generate Y control points
CP_Y_1 = rand( min(Y_int_start, Y_int_end):max(Y_int_start, Y_int_end) )/20
CP_Y_2 = rand( min(Y_int_end, Y_int_start):max(Y_int_end, Y_int_start) )/20
#make genes
genes[p,:] = [CP_X_1, CP_Y_1, CP_X_2, CP_Y_2]
end
return genes
end
#mutates the genes of the population
function mutate(mutation_rate, mutation_value, X_start_point, Y_start_point, X_end_point, Y_end_point, genes, pop_size, mutation_type)
#calculate minimum and maximum values of X
min_X = min(X_start_point, X_end_point)
max_X = max(X_start_point, X_end_point)
#calculate minimum and maximu values of Y
min_Y = min(Y_start_point, Y_end_point)
max_Y = max(Y_start_point, Y_end_point)
#iterate through all genes
if cmp(mutation_type, "addsub") == 0
mut_array = rand(pop_size, 4)
mut_array[mut_array .<= mutation_rate] .= mutation_value
mut_array[mut_array .> mutation_rate] .= 0
for g = 1:4
for p = 1:pop_size
mut_array[p,g] = mut_array[p,g]*rand([-1,1])
end
end
genes = genes .+ mut_array
#make sure that the genes are within the domain size
for p = 1:pop_size
for g_x in [1,3]
if genes[p, g_x] < min_X
genes[p, g_x] = min_X
elseif genes[p, g_x] > max_X
genes[p, g_x] = max_X
end
end
for g_y in [2,4]
if genes[p, g_y] < min_Y
genes[p, g_y] = min_Y
elseif genes[p, g_y] > max_Y
genes[p, g_y] = max_Y
end
end
end
end
if cmp(mutation_type, "randreset") == 0
#mutate what controls X
mut_array_X_raw = rand(pop_size, 4)
mut_array_X_ones = ones(size(mut_array_X_raw))
mut_array_X_raw[mut_array_X_raw .> mutation_rate] .= 0
mut_array_X_ones[mut_array_X_raw .== 0] .= 0
mut_array_X = mut_array_X_raw ./ mutation_rate
mut_array_X = Int32.(floor.(20*((mut_array_X.*(max_X - min_X)) .+ min_X*mut_array_X_ones)))./20
#mutate what controls Y
mut_array_Y_raw = rand(pop_size, 4)
mut_array_Y_ones = ones(size(mut_array_Y_raw))
mut_array_Y_raw[mut_array_Y_raw .> mutation_rate] .= 0
mut_array_Y_ones[mut_array_Y_raw .== 0] .= 0
mut_array_Y = mut_array_Y_raw ./ mutation_rate
mut_array_Y = Int32.(floor.(20*((mut_array_Y.*(max_Y - min_Y)) .+ min_Y*mut_array_Y_ones)))./20
#make all irrelevant things 0
mut_array_X[2,:] .= 0
mut_array_X[4,:] .= 0
mut_array_Y[1,:] .= 0
mut_array_Y[3,:] .= 0
#make the genes which are mutated 0
destroyer_X = ones(size(mut_array_X))
destroyer_X[mut_array_X .!= 0] .= 0
destroyer_Y = ones(size(mut_array_Y))
destroyer_Y[mut_array_Y .!= 0] .= 0
#set the values
genes = genes.*destroyer_X.*destroyer_Y
end
return genes
end
#generates the creatures at the start of the simulation
function generate_creatures(X_start_point, Y_start_point, X_end_point, Y_end_point, genes, pop_size, num_points)
fitness = ones(pop_size)
creatures = []
p_0 = [X_start_point, Y_start_point] #start point
p_1 = [X_end_point, Y_end_point] #end point
for p = 1:pop_size
control_points = [[X_start_point, Y_start_point], [genes[p,1], genes[p,3]], [genes[p,2], genes[p,4]], [X_end_point, Y_end_point]]
T = range(0, 1, length = num_points) # Parameter values from 0 to 1
points = [bezier_curve(control_points, t) for t in T]
#To avoid Anys in the array
if p == 1
creatures = [points]
else
creatures = append!(creatures, [points])
end
end
return creatures, fitness
end
#plots a creature curve to show the creature
function plot_creature_curve(creature)
points = hcat(creature...)'
plot(points[:,1], points[:,2])
gui()
readline()
end
#kill a few creatures
function kill_creatures(creatures, fitness, genes, kill_rate, pop_size)
rand_upper_limit = 1.5 #maximum multiple by which a creature's likelihood to die can be increased
rand_lower_limit = 0.5 #maximum multiple by which a creature's likelihood to die can be decreased
maximum_creatures = (1 - kill_rate)*pop_size
kill_count = 0
live_locs = []
k = 0
#find the locations at which to kill creatures
while pop_size > maximum_creatures
for p = 1:pop_size
kill_likelihood = (maximum(fitness) - fitness[p])/maximum(fitness)
adjusted_kill_likelihood = randfloat(0.5, 1.5)*kill_likelihood*kill_rate #to make the likelihood of dying slightly luck based
if rand() < adjusted_kill_likelihood
pop_size = pop_size - 1
kill_count = kill_count + 1
else
if k == 0
live_locs = [p]
else
live_locs = append!(live_locs, p)
end
k = 1
end
end
end
#kill the creatures
creatures_new = []
k = 0
for i = 1:pop_size
if i in live_locs
if k == 0
creatures_new = creatures[i]
else
creatures_new = append!(creatures_new, creatures[i])
end
k = 1
end
end
creatures = creatures_new
#tell the user how many creatures have been killed
return creatures, fitness, genes, pop_size, kill_count
end
#function to generate parent pairs
function select_parents(creatures, fitness, genes, pop_size, selection_type, num_parents)
parents = []
for par = 1:num_parents
if cmp(selection_type, "random") == 0
parentloc1 = rand(1:pop_size)
parentloc2 = rand(1:pop_size)
if par == 1
parents = [[parentloc1, parentloc2]]
else
parents = append!(parents, [parentloc1, parentloc2])
end
end
if cmp(selection_type, "roulette") == 0
parentloc1 = 0
parentloc2 = 0
fitness = fitness .- minimum(fitness)
sum_fitness = sum(fitness)
#parent 1
spinner = randfloat(0, sum_fitness)
partial_sum = 0
for c = 1:pop_size
partial_sum = partial_sum + fitness[c]
if partial_sum > spinner
parenloc1 = c
end
end
#parent 2
spinner = randfloat(0, sum_fitness)
partial_sum = 0
for c = 1:pop_size
partial_sum = partial_sum + fitness[c]
if partial_sum > spinner
parenloc2 = c
break
end
if c == pop_size
c = 1
end
end
#set parents
if par == 1
parents = [[parentloc1, parentloc2]]
else
parents = vcat(parents, [[parentloc1, parentloc2]])
end
end
if cmp(selection_type, "tournament") == 0
parentloc1 = 0
parentloc2 = 0
#parent 1
competitors = sample(1:pop_size, 3, replace = false)
max_val, max_idx = findmax(fitness[competitors])
parentloc1 = competitors[max_idx]
#parent 2
competitors = sample(1:pop_size, 3, replace = false)
max_val, max_idx = findmax(fitness[competitors])
parentloc2 = competitors[max_idx]
if par == 1
parents = [[parentloc1, parentloc2]]
else
parents = vcat(parents, [[parentloc1, parentloc2]])
end
end
end
return parents
end
#function to perform the crossover operation
function crossover(parent_genes, crossover_type)
#takes in two genes, and returns two genes after appropriate crossover operation
new_genes = zeros(2,4)
#this mode splices genes in half and exchanges them
if cmp(crossover_type, "onepoint_half") == 0
#find midpoints of each of the genes
print(parent_genes[1,:])
readline()
midpoint1 = div(length(parent_genes[1,:]), 2)
midpoint2 = div(length(parent_genes[2,:]), 2)
#split the genes into 4 quarters
quarter_1 = parent_genes[1, 1:midpoint1]
quarter_2 = parent_genes[1, (midpoint1+1):end]
quarter_3 = parent_genes[2, 1:midpoint2]
quarter_4 = parent_genes[2, (midpoint2+1):end]
#exchange the quarters of the genes
new_genes[1,:] = vcat( quarter_1, quarter_4)
new_genes[2,:] = vcat( quarter_3, quarter_2)
end
#performs uniform crossover at a random point, works only for equal sized genes
if cmp(crossover_type, "onepoint_random") == 0
#find midpoints of each of the genes
point1 = rand(1:(length(parent_genes[1,:])-1))
point2 = point1+1
#if the points are neither the end nor the start
if point2 != length(parent_genes[1,:]) && point1 != 1
#split the genes into 4 quarters
quarter_1 = parent_genes[1, 1:point1]
quarter_2 = parent_genes[1, point2:end]
quarter_3 = parent_genes[2, 1:point1]
quarter_4 = parent_genes[2, point2:end]
#exchange the quarters of the genes
new_genes[1, :] = vcat( quarter_1, quarter_4)
new_genes[2, :] = vcat( quarter_3, quarter_2)
#if point 2 is the end
elseif point2 == length(parent_genes[1, :])
#split the genes into 4 quarters
quarter_1 = parent_genes[1, 1:point1]
quarter_2 = parent_genes[1, point2]
quarter_3 = parent_genes[2, 1:point1]
quarter_4 = parent_genes[2, point2]
#exchange the quarters of the genes
new_genes[1, :] = vcat( quarter_1, quarter_4)
new_genes[2, :] = vcat( quarter_3, quarter_2)
#if point1 is the start
elseif point1 == 1
#split the genes into 4 quarters
quarter_1 = parent_genes[1, 1]
quarter_2 = parent_genes[1, point2:end]
quarter_3 = parent_genes[2, 1]
quarter_4 = parent_genes[2, point2:end]
#exchange the quarters of the genes
new_genes[1, :] = vcat( quarter_1, quarter_4)
new_genes[2, :] = vcat( quarter_3, quarter_2)
end
end
#switches gene strings at multiple different points
if cmp(crossover_type, "multipoint_random") == 0
print("This functionality is not implemented yet.\n")
end
#selects a random gene for the first offspring between the parents and gives the complement to the other offspring.
if cmp(crossover_type, "uniform_random") == 0
for g = 1:length(parent_genes[1, :])
allele_first, allele_second = sample(1:2, 2, replace = false)
new_genes[1, g] = parent_genes[g, allele_first]
new_genes[2, g] = parent_genes[g, allele_second]
end
end
return new_genes
end
#calculates the length of a creature to find material wastage
function calculate_creature_length(creature)
points = hcat(creature...)'
X = points[:,1]
Y = points[:,2]
distance = 0
for p = 1:(length(X)-1)
distance = distance + sqrt((X[p+1] - X[p])^2 + (Y[p+1] - Y[p])^2)
end
return distance
end
function generate_domain(creature, X_len_real, Y_len_real, X_lat_d, Y_lat_d, X_tube_start, Y_tube_start_top, symmetry_L_Y)
dx = 1/X_lat_d #length scale conversion factor
dy = dx
Nx = Int32(floor(X_len_real * X_lat_d)) #Number of X lattice points
Ny = Int32(floor(Y_len_real * Y_lat_d)) #Number of Y lattice points
SB = zeros(Ny,Nx) #solid body array
FB = ones(Ny,Nx) #fluid body array
points_inlet = hcat(creature...)' #creature inlet points
X_inlet = points_inlet[:,1] #X points
Y_top_inlet = points_inlet[:,2] #Y points
Y_bottom_inlet = -Y_top_inlet .+ 2*symmetry_L_Y
#reflect tube about mirror line
Y_tube_start_bottom = -Y_tube_start_top + 2*symmetry_L_Y
#make the instrument tube
Ny_tube_start_top = Int32(floor(Y_tube_start_top*Y_lat_d)) #Y index of cell where the tube starts, top
Ny_tube_start_bottom = Int32(floor(Y_tube_start_bottom*Y_lat_d)) #Y index of cell where the tube starts, bottom
Nx_tube_start = Int32(floor(X_tube_start*X_lat_d)) #X index of cell where the tube starts
#top of tube
SB[Ny_tube_start_top:Ny, Nx_tube_start:Nx] .= 1
FB[Ny_tube_start_top:Ny, Nx_tube_start:Nx] .= 0
#bottom of tube
SB[1:Ny_tube_start_bottom, Nx_tube_start:Nx] .= 1
FB[1:Ny_tube_start_bottom, Nx_tube_start:Nx] .= 0
#make the inlet
Ny_inlet_top = Int32.(floor.(Y_top_inlet.*Y_lat_d)) #cell locations of top inlet surface
Ny_center = Int32.(floor.(Ny/2))
Ny_inlet_bottom = Int32.(floor.(Y_bottom_inlet.*Y_lat_d)) #cell locations of bottom inlet surface
for i = 1:Nx_tube_start
#top surface
SB[Ny_inlet_top[i]:Ny, i] .= 1
FB[Ny_inlet_top[i]:Ny, i] .= 0
#bottom surface
SB[1:Ny_inlet_bottom[i], i] .= 1
FB[1:Ny_inlet_bottom[i], i] .= 0
#make sure there is a path for the fluid
SB[Ny_center:(Ny_center+10), i] .= 0
SB[(Ny_center-10):(Ny_center), i] .= 0
FB[Ny_center:(Ny_center+10), i] .= 1
FB[(Ny_center-10):(Ny_center), i] .= 0
end
return SB, FB
end
function main()
#global variables
show_creatures = true
mutate_before_start = true
#optimization variables
global_pop_size = 10 #population size every generation
pop_size = global_pop_size #population size within generations
kill_rate = 0.2 #number of creatures to kill
mutation_rate = 0.1 #mutation rate every generation
number_gen = 1000 #number of generations, effectively functions as the number of iterations
mutation_value = 0.05 #value to mutate by
convergence_parameter = 1E-5 #maximum change in fitness between generations to consider solution as converged
#domain variables
X_start_point = 0
Y_start_point = 0.8
X_end_point = 1
Y_end_point = 0.6
X_len_real = 5 #maximum range of X
Y_len_real = 0.8 #maximum range of Y
X_tube_start = X_end_point #X location at which tube starts
Y_tube_start_top = Y_end_point #Y location at which tube starts
symmetry_L_Y = 0.4 #Y coordinate across which symmetry exists
X_lat_d = 100 #lattice density in X direction
Y_lat_d = 100 #lattice density in Y direction
Nx = Int32(floor(X_len_real * X_lat_d)) #Number of X lattice points
Ny = Int32(floor(Y_len_real * Y_lat_d)) #Number of Y lattice points
SB = zeros(Ny,Nx)
SBs = [SB, SB, SB, SB, SB, SB, SB, SB, SB, SB] #solid body meshes
FBs = [SB, SB, SB, SB, SB, SB, SB, SB, SB, SB] #fluid body meshes
t_array = [1.0,0.0,0.0,0.0,0.0]
kill_count = 0
print("[VIKASA 0.1] - Genetic algorithms for flow applications\n")
print("creating genes...\n")
genes = zeros(pop_size, 4)
genes = generate_population(X_start_point, Y_start_point, X_end_point, Y_end_point, genes, pop_size)
print("creating creatures...\n")
creatures, fitness = generate_creatures(X_start_point, Y_start_point, X_end_point, Y_end_point, genes, pop_size, Int32(floor(X_tube_start*X_lat_d)))
if mutate_before_start
print("mutating creatures...\n")
genes = mutate(mutation_rate, mutation_value, X_start_point, Y_start_point, X_end_point, Y_end_point, genes, pop_size, "randreset")
end
for i = 1:number_gen
#generate the domains
for i = 1:pop_size
SBs[i], FBs[i] = generate_domain(creatures[i], X_len_real, Y_len_real, X_lat_d, Y_lat_d, X_tube_start, Y_tube_start_top, symmetry_L_Y)
end
#show the creatures
if show_creatures
print("showing creatures...\n")
for p = 1:pop_size
if p != pop_size
print("press any key to view the next creature.[creature ", p, " of ", pop_size,"]\n")
else
print("press any key to exit.[creature ", p, " of ", pop_size,"]\n")
end
plot_creature_curve(creatures[p])
heatmap(SBs[p], ylimits = (0,Ny), xlimits = (0,Nx), aspect_ratio = :equal, c= :ice)
gui()
readline()
end
end
t = mean(t_array[t_array .> 0])[1]
ttemp = CUDA.@elapsed begin
days = Int32(floor(t*(number_gen-i)/86400))
hours = Int32(floor(t*(number_gen-i)/3600) - 24*days)
minutes = Int32(floor(t*(number_gen-i)/60) - 60*hours - 24*60*days) #calculate time in days, hours & minutes
for i = 1:pop_size
fitness[i] = 2 - calculate_creature_length(creatures[i])
end
average_fitness = mean(fitness)
average_fitness_frmt = @sprintf "%.3f" average_fitness
maximum_fitness = maximum(fitness)
maximum_fitness_frmt = @sprintf "%.3f" maximum_fitness
if minutes == 0 #make minutes 1 just before simulaation finishes
minutes = 1
end
if i%10 == 1
print("\nIteration \tTime \t \tAverage Fitness \tMaximum Fitness \tDeaths \n \n") #show headings every 10 iterations
end
print(Int32(i), "\t \t", days, ":", hours, ":", minutes, "\t \t", average_fitness_frmt, "\t \t \t", maximum_fitness_frmt, "\t \t \t", kill_count, "\n") # display values
if abs((average_fitness - maximum_fitness)/(maximum_fitness)) < convergence_parameter
print("solution has converged at fitness = ", maximum_fitness_frmt, " in ", i, " generations.\n")
readline()
exit()
end
creatures, fitness, genes, pop_size, kill_count = kill_creatures(creatures, fitness, genes, kill_rate, pop_size)
parents = select_parents(creatures, fitness, genes, pop_size, "tournament", Int32(floor(global_pop_size/2)))
new_genes = zeros(global_pop_size, 4)
k = 0
filled = []
for parent_couple in parents
parent1genes = genes[parent_couple[1],:]
parent2genes = genes[parent_couple[2],:]
parent_genes = zeros(2, 4)
parent_genes[1,:] = parent1genes
parent_genes[2,:] = parent2genes
children = crossover(parent_genes, "onepoint_random")
new_genes[parent_couple[1],:] = children[1,:]
new_genes[parent_couple[2],:] = children[2,:]
if k == 0
filled = [parent_couple[1], parent_couple[2]]
else
filled = append!(filled, parent_couple[1])
filled = append!(filled, parent_couple[2])
end
k = 1
end
if pop_size < global_pop_size
for i = 1:global_pop_size
if mean(new_genes[i,:]) == 0
new_genes[i,:] = new_genes[rand(filled),:]
end
end
end
genes = new_genes
pop_size = global_pop_size
genes = mutate(mutation_rate*0.1, mutation_value, X_start_point, Y_start_point, X_end_point, Y_end_point, genes, pop_size, "randreset")
genes = mutate(mutation_rate, mutation_value, X_start_point, Y_start_point, X_end_point, Y_end_point, genes, pop_size, "addsub")
creatures, fitness = generate_creatures(X_start_point, Y_start_point, X_end_point, Y_end_point, genes, pop_size, Int32(floor(X_tube_start*X_lat_d)))
end
t_array = circshift(t_array, 1)
t_array[1] = ttemp
end
readline()
end
main()