-
Notifications
You must be signed in to change notification settings - Fork 1
/
train_coco.py
88 lines (62 loc) · 2.62 KB
/
train_coco.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
""" Example on how to train on COCO from scratch
"""
import argparse
import matplotlib.pyplot as plt
import tensorflow as tf
import numpy as np
import time
import os
from detr_tf.data.coco import load_coco_dataset
from detr_tf.networks.detr import get_detr_model
from detr_tf.optimizers import setup_optimizers
from detr_tf.optimizers import gather_gradient, aggregate_grad_and_apply
from detr_tf.logger.training_logging import train_log, valid_log
from detr_tf.loss.loss import get_losses
from detr_tf.inference import numpy_bbox_to_image
from detr_tf.training_config import TrainingConfig, training_config_parser
from detr_tf import training
try:
# Should be optional if --log is not set
import wandb
except:
wandb = None
import time
def build_model(config):
""" Build the model with the pretrained weights. In this example
we do not add new layers since the pretrained model is already trained on coco.
See examples/finetuning_voc.py to add new layers.
"""
# Load detr model without weight.
# Use the tensorflow backbone with the imagenet weights
detr = get_detr_model(config, include_top=True, weights=None, tf_backbone=True)
detr.summary()
return detr
def run_finetuning(config):
# Load the model with the new layers to finetune
detr = build_model(config)
# Load the training and validation dataset
train_dt, coco_class_names = load_coco_dataset(
config, config.batch_size, augmentation=True, img_dir="train2017", ann_file="annotations/instances_train2017.json")
valid_dt, _ = load_coco_dataset(
config, 1, augmentation=False, img_dir="val2017", ann_file="annotations/instances_val2017.json")
# Train the backbone and the transformers
# Check the training_config file for the other hyperparameters
config.train_backbone = True
config.train_transformers = True
# Setup the optimziers and the trainable variables
optimzers = setup_optimizers(detr, config)
# Run the training for 100 epochs
for epoch_nb in range(100):
training.eval(detr, valid_dt, config, coco_class_names, evaluation_step=200)
training.fit(detr, train_dt, optimzers, config, epoch_nb, coco_class_names)
if __name__ == "__main__":
physical_devices = tf.config.list_physical_devices('GPU')
if len(physical_devices) == 1:
tf.config.experimental.set_memory_growth(physical_devices[0], True)
config = TrainingConfig()
args = training_config_parser().parse_args()
config.update_from_args(args)
if config.log:
wandb.init(project="detr-tensorflow", reinit=True)
# Run training
run_finetuning(config)