diff --git a/src/Aardvark.Rendering.Text/PathSegment.fs b/src/Aardvark.Rendering.Text/PathSegment.fs index f034e3cf..f805242b 100644 --- a/src/Aardvark.Rendering.Text/PathSegment.fs +++ b/src/Aardvark.Rendering.Text/PathSegment.fs @@ -48,14 +48,20 @@ module Helpers = elif Fun.ApproximateEquals(t1, t3, epsilon) then check ((t1 + t3) / 2.0) else None + // TODO: check against real implementations let inline arcT (a0 : float) (da : float) (v : float) = - let diff = v - a0 - if da > 0.0 then - if diff >= 0.0 then diff / da - else (Constant.PiTimesTwo + diff) / da + let mutable a0 = a0 + let mutable v = v + + while a0 < 0.0 do a0 <- a0 + Constant.PiTimesTwo + while v < 0.0 do v <- v + Constant.PiTimesTwo + + if da < 0.0 then + if v > a0 + 1E-8 then v <- v - Constant.PiTimesTwo + (v - a0) / da else - if diff < 0.0 then diff / da - else (diff - Constant.PiTimesTwo) / da + if v < a0 - 1E-8 then v <- v + Constant.PiTimesTwo + (v - a0) / da type Ellipse2d with @@ -114,7 +120,8 @@ type PathSegment = | Bezier3Seg of p0 : V2d * p1 : V2d * p2 : V2d * p3 : V2d | ArcSeg of p0 : V2d * p1 : V2d * alpha0 : float * dAlpha : float * e : Ellipse2d -module private PathSegmentIntersections = + +module internal PathSegmentIntersections = let maxArcAngle = 95.0 * Constant.RadiansPerDegree @@ -308,7 +315,7 @@ module private PathSegmentIntersections = else None - if Fun.IsTiny q2 then + if Fun.IsTiny(q2, epsilon) then match test (-b / (2.0 * a)) with | Some t -> [t] | None -> [] @@ -325,7 +332,7 @@ module private PathSegmentIntersections = | Some (t0a, t0b) -> match test t2 with | Some (t1a, t1b) -> - if Fun.ApproximateEquals(t0a, t1a) then [t0a, t0b] + if Fun.ApproximateEquals(t0a, t1a, epsilon) then [t0a, t0b] else [(t0a, t0b); (t1a, t1b)] | None -> [t0a, t0b] @@ -838,9 +845,14 @@ module private PathSegmentIntersections = |> List.map flip |> List.sortBy fst - | ArcSeg(_, _, a0, da, a), ArcSeg(_, _, b0, db, b) -> - arcs eps a0 da a b0 db b - |> List.sortBy fst + | ArcSeg(ap0, ap1, a0, da, a), ArcSeg(bp0, bp1, b0, db, b) -> + if Fun.ApproximateEquals(ap0, bp0, eps) then [0.0, 0.0] + elif Fun.ApproximateEquals(ap0, bp1, eps) then [0.0, 1.0] + elif Fun.ApproximateEquals(ap1, bp0, eps) then [1.0, 0.0] + elif Fun.ApproximateEquals(ap1, bp1, eps) then [1.0, 1.0] + else + arcs eps a0 da a b0 db b + |> List.sortBy fst | ArcSeg _, Bezier3Seg _ -> numeric eps a b @@ -888,7 +900,22 @@ module PathSegment = Ellipse2d(center, a0, a1) - + /// unsafely replaces the start point of a path segment + let withP0 (pt : V2d) (s : PathSegment) = + match s with + | LineSeg(_, p1) -> PathSegment.LineSeg(pt, p1) + | Bezier2Seg(_, p1, p2) -> PathSegment.Bezier2Seg(pt, p1, p2) + | Bezier3Seg(_, p1, p2, p3) -> PathSegment.Bezier3Seg(pt, p1, p2, p3) + | ArcSeg(_, p1, a, da, e) -> PathSegment.ArcSeg(pt, p1, a, da, e) + + /// unsafely replaces the end point of a path segment + let withP1 (pt : V2d) (s : PathSegment) = + match s with + | LineSeg(p0, _) -> PathSegment.LineSeg(p0, pt) + | Bezier2Seg(p0, p1, p2) -> PathSegment.Bezier2Seg(p0, p1, pt) + | Bezier3Seg(p0, p1, p2, p3) -> PathSegment.Bezier3Seg(p0, p1, p2, pt) + | ArcSeg(p0, p1, a, da, e) -> PathSegment.ArcSeg(p0, pt, a, da, e) + /// creates a line segment let line (p0 : V2d) (p1 : V2d) = @@ -900,7 +927,11 @@ module PathSegment = /// creates a quadratic bezier segment let bezier2 (p0 : V2d) (p1 : V2d) (p2 : V2d) = // check if the spline is actually a line - if Fun.IsTiny(p1.PosLeftOfLineValue(p0, p2), epsilon) then + let d = p2 - p0 |> Vec.normalize + let n = V2d(-d.Y, d.X) + + + if Fun.IsTiny(Vec.dot (p1 - p0) n, epsilon) then line p0 p2 else Bezier2Seg(p0, p1, p2) @@ -920,10 +951,15 @@ module PathSegment = let h1 = Vec.dot (p1 - p0) n let h2 = Vec.dot (p2 - p0) n - if Fun.IsTiny(h1, len * epsilon) && Fun.IsTiny(h2, len * epsilon) then + if Fun.IsTiny(h1, epsilon) && Fun.IsTiny(h2, epsilon) then line p0 p1 else - Bezier3Seg(p0, p1, p2, p3) + let f3 = -p0 + 3.0*p1 - 3.0*p2 + p3 + if Fun.IsTiny(f3, epsilon) then + let ctrl = -p0 + 3.0*p1 - 1.5*p2 + 0.5*p3 + bezier2 p0 ctrl p3 + else + Bezier3Seg(p0, p1, p2, p3) @@ -935,7 +971,11 @@ module PathSegment = /// creates a qudratic bezier segment (if not degenerate) let tryBezier2 (p0 : V2d) (p1 : V2d) (p2 : V2d) = // check if the spline is actually a line - if Fun.IsTiny(p1.PosLeftOfLineValue(p0, p2), epsilon) then + let d = p2 - p0 |> Vec.normalize + let n = V2d(-d.Y, d.X) + + + if Fun.IsTiny(Vec.dot (p1 - p0) n, epsilon) then tryLine p0 p2 else Bezier2Seg(p0, p1, p2) |> Some @@ -948,17 +988,40 @@ module PathSegment = let dd = (p3 - p0) let len = Vec.length dd let d03 = dd / len - let d01 = Vec.normalize (p1 - p0) - let d23 = Vec.normalize (p3 - p2) - + let n = V2d(-d03.Y, d03.X) let h1 = Vec.dot (p1 - p0) n let h2 = Vec.dot (p2 - p0) n - if Fun.IsTiny(h1, len * epsilon) && Fun.IsTiny(h2, len * epsilon) then + if Fun.IsTiny(h1, epsilon) && Fun.IsTiny(h2, epsilon) then tryLine p0 p1 - else - Bezier3Seg(p0, p1, p2, p3) |> Some + else + // let f3 = -p0 + 3.0*p1 - 3.0*p2 + p3 + // let f2 = 3.0*p0 - 6.0*p1 + 3.0*p2 + // let f1 = 3.0*p1 - 3.0*p0 + // let f0 = p0 + + + // let g2 = q2 + q0 - 2.0*q1 + // let g1 = 2.0*(q1 - q0) + // let g0 = q0 + + + // f3 = 0 + // => + // q2 + q0 - 2.0*q1 = 3.0*p0 - 6.0*p1 + 3.0*p2 + // 3.0*p1 - 3.0*p0 = 2.0*q1 - 2.0*q0 + // p0 = q0 + + // semantically: q2 = p3 + + // q1 = -p0 + 3*p1 - 1.5*p2 + 0.5*p3 + let f3 = -p0 + 3.0*p1 - 3.0*p2 + p3 + if Fun.IsTiny(f3, epsilon) then + let ctrl = -p0 + 3.0*p1 - 1.5*p2 + 0.5*p3 + tryBezier2 p0 ctrl p3 + else + Bezier3Seg(p0, p1, p2, p3) |> Some let private createArc (force : bool) (p0 : V2d) (p1 : V2d) (alpha0 : float) (dAlpha : float) (ellipse : Ellipse2d) = let newEllipse = createEllipse ellipse.Center ellipse.Axis0 ellipse.Axis1 @@ -984,6 +1047,7 @@ module PathSegment = createArc false p0 p1 alpha0 dAlpha ellipse else None + /// creates an arc using the an angle alpha0 and a (signed) dAlpha. /// in order to avoid precision issues p0,p1 users may redundantly supply p0 and p1. /// the implementation validates that p0~ellipse.GetPoint(alpha0) and p1~ellipse.GetPoint(alpha0+dAlpha) respectively. @@ -1010,51 +1074,58 @@ module PathSegment = /// the tangents are made parallel to (p1-p0) and (p2-p1) respectively. /// since this configuration is ambigous the ellipse with minimal eccentricity is chosen. let tryArcSegment (p0 : V2d) (p1 : V2d) (p2 : V2d) = - // see: https://math.stackexchange.com/questions/2204258/roundest-ellipse-with-specified-tangents - let m = 0.5 * (p0 + p2) - let am = m - p0 - let vm = m - p1 - let va = p1 - p0 + // check if the arc is actually a line + let d = p2 - p0 |> Vec.normalize + let n = V2d(-d.Y, d.X) + + if Fun.IsTiny(Vec.dot (p1 - p0) n, epsilon) then + tryLine p0 p2 + else + // see: https://math.stackexchange.com/questions/2204258/roundest-ellipse-with-specified-tangents + let m = 0.5 * (p0 + p2) + let am = m - p0 + let vm = m - p1 + let va = p1 - p0 - let lam = Vec.length am - let lvm = Vec.length vm - let lva = Vec.length va + let lam = Vec.length am + let lvm = Vec.length vm + let lva = Vec.length va - let lam2 = lam * lam - let lmd = (lam2 + lam*sqrt (lam2 + lvm*lvm)) / lvm - let d = m + vm * (lmd / lvm) + let lam2 = lam * lam + let lmd = (lam2 + lam*sqrt (lam2 + lvm*lvm)) / lvm + let d = m + vm * (lmd / lvm) - let inline ln (v : V2d) = V2d(-v.Y, v.X) - - let pd = Plane2d(ln (am / lam), d) - let pv = Plane2d(ln (va / lva), p0) - let mutable e = V2d.Zero - if pd.Intersects(pv, &e) then - let f = 0.5 * (d + p0) - let ef = f - e - let lef = Vec.length ef - let pef = Plane2d(ln (ef / lef), e) - let pvm = Plane2d(ln (vm / lvm), d) - - let mutable c = V2d.Zero - if pef.Intersects(pvm, &c) then - let lcd = Vec.length (d - c) - let g = c - am * (lcd/lam) - - let ellipse = createEllipse c (d - c) (g - c) - let a0 = ellipse.GetAlpha p0 - let a1 = ellipse.GetAlpha p2 - let da = a1 - a0 - let da1 = if da > Constant.Pi then da - Constant.PiTimesTwo elif da < -Constant.Pi then Constant.PiTimesTwo + da else da + let inline ln (v : V2d) = V2d(-v.Y, v.X) + + let pd = Plane2d(ln (am / lam), d) + let pv = Plane2d(ln (va / lva), p0) + let mutable e = V2d.Zero + if pd.Intersects(pv, &e) then + let f = 0.5 * (d + p0) + let ef = f - e + let lef = Vec.length ef + let pef = Plane2d(ln (ef / lef), e) + let pvm = Plane2d(ln (vm / lvm), d) + + let mutable c = V2d.Zero + if pef.Intersects(pvm, &c) then + let lcd = Vec.length (d - c) + let g = c - am * (lcd/lam) + + let ellipse = createEllipse c (d - c) (g - c) + let a0 = ellipse.GetAlpha p0 + let a1 = ellipse.GetAlpha p2 + let da = a1 - a0 + let da1 = if da > Constant.Pi then da - Constant.PiTimesTwo elif da < -Constant.Pi then Constant.PiTimesTwo + da else da + + ArcSeg(p0, p2, a0, da1, ellipse) |> Some - ArcSeg(p0, p2, a0, da1, ellipse) |> Some + else + tryLine p0 p2 else tryLine p0 p2 - - else - tryLine p0 p2 - + /// creates an arc-segment passing through p0 and p2. /// the tangents are made parallel to (p1-p0) and (p2-p1) respectively. /// since this configuration is ambigous the ellipse with minimal eccentricity is chosen. @@ -1106,10 +1177,10 @@ module PathSegment = let derivative (t : float) (seg : PathSegment) = let t = clamp 0.0 1.0 t match seg with - | LineSeg(p1, p0) -> + | LineSeg(p0, p1) -> p1 - p0 - | ArcSeg(p0, p1, a0, da, e) -> + | ArcSeg(_p0, _p1, a0, da, e) -> let alpha = a0 + t * da (cos alpha * e.Axis1 - sin alpha * e.Axis0) * da @@ -1124,7 +1195,7 @@ module PathSegment = let w = p3 - p2 3.0 * (s*s*u + 2.0*t*s*v + t*t*w) - /// evaluates the curve-derivative for the given parameter (t <- [0;1]) + /// evaluates the second curve-derivative for the given parameter (t <- [0;1]) let secondDerivative (t : float) (seg : PathSegment) = let t = clamp 0.0 1.0 t match seg with @@ -1143,6 +1214,26 @@ module PathSegment = let v = p2 - p1 let w = p3 - p2 6.0 * ((1.0-t)*(v-u) + t*(w-v)) + + /// evaluates the third curve-derivative for the given parameter (t <- [0;1]) + let thirdDerivative (t : float) (seg : PathSegment) = + let t = clamp 0.0 1.0 t + match seg with + | LineSeg _ -> + V2d.Zero + + | ArcSeg(p0, p1, a0, da, e) -> + let alpha = a0 + t * da + da*da*da * (sin alpha * e.Axis0 - cos alpha * e.Axis1) + + | Bezier2Seg(p0, p1, p2) -> + V2d.Zero + + | Bezier3Seg(p0, p1, p2, p3) -> + let u = p1 - p0 + let v = p2 - p1 + let w = p3 - p2 + 6.0 * (u+w - 2.0*v) /// evaluates the curvature for the given parameter (t <- [0;1]). /// the curvature is defined as: c(t) := (x'(t)*y''(t) - y'(t)*x''(t)) / (x'(t)^2 + y'(t)^2)^(3/2). @@ -1153,9 +1244,126 @@ module PathSegment = 0.0 | _ -> + + + //(df.X*ddf.Y - df.Y*ddf.X) / (df.LengthSquared ** 1.5) + + + // f = t^2 * (p0 - 2*p1 + p2) + t*2*(p1 - p0) + p0 + + + // df = 2.0 * ((1-t)*(p1 - p0) + t*(p2 - p1)) + // ddf = 2.0 * (p0 - 2.0*p1 + p2) + + + // df/2 =(p1 - p0)- t*(p1 - p0) + t*(p2 - p1) + + + // df/2 = (p1 - p0) - t*(p1 - p0) + t*(p2 - p1) + // df = t * 2*(p2 - 2*p1 + p0) + 2*(p1 - p0) + // ddf = 2*(p2 - 2*p1 + p0) + + + // c = (df.X*ddf.Y - df.Y*ddf.X) / (df.LengthSquared ** 1.5) + // c^2 = max + + // c^2 = (df.X*ddf.Y - df.Y*ddf.X)^2 / (df.LengthSquared ** 3) + + // a := 2*(p2 - 2*p1 + p0) + // b := 2*(p1 - p0) + + + // df = t*a + b + // ddf = a + + // ((t*a.X + b.X)*a.Y - (t*a.Y + b.Y)*a.X)^2 / ((t*a + b)^2)^3 + + // (t*a.X*a.Y + b.X*a.Y - t*a.Y*a.X - b.Y*a.X)^2 / ((t*a + b)^2)^3 + // c^2 = (b.X*a.Y - b.Y*a.X)^2 * ((t*a + b)^2)^-3 + + // dc^2 / dt = -3 * (b.X*a.Y - b.Y*a.X)^2 * ((t*a + b)^2)^-4 * 2*(t*a + b) * a + + + // (t*a + b) * a = 0 + // t = - / + + + + // d := t0 + // a := 2.0*(p0 - 2*p1 + p2) + + // df = a*t + d + // ddf = a + + // c^2 = [(a.X*t+d.X)*a.Y - (a.Y*t+d.Y)*a.X]^2 * [(a*t+d)^2]^-3 + // c^2 = [t*(a.X*a.Y - a.Y*a.X) + (d.X*a.Y - d.Y*a.X)]^2 * [(a*t+d)^2]^-3 + + // f := a.X*a.Y - a.Y*a.X + // g := d.X*a.Y - d.Y*a.X + + // f = 0 + + // c^2 = [t*f + g]^2 * [(a*t+d)^2]^-3 + + + // c^2 = g^2 * [(a*t+d)^2]^-3 + + // dc^2 / dt = -3*g^2 * [(a*t+d)^2]^-4 + + + // dc^2 / dt = 2*[t*f + g]*f * [(a*t+d)^2]^-3 - 6*[t*f + g]^2 * (a*t+d) * [(a*t+d)^2]^-4 + + // [t*f + g]*f * [(a*t+d)^2]^-3 - 3*[t*f + g]^2 * (a*t+d) * [(a*t+d)^2]^-4 = 0 /// * [(a*t+d)^2]^4 + + // [t*f + g]*f * [(a*t+d)^2] - 3*[t*f + g]^2 * (a*t+d) = 0 + + + + + + + let df = derivative t seg let ddf = secondDerivative t seg - (df.X*ddf.Y - df.Y*ddf.X) / (df.LengthSquared ** 0.75) + (df.X*ddf.Y - df.Y*ddf.X) / (df.LengthSquared ** 1.5) + + /// evaluates the curvature-derivative for the given parameter (t <- [0;1]). + let curvatureDerivative (t : float) (seg : PathSegment) = + match seg with + | LineSeg _ -> + 0.0 + + | _ -> + + // F = df/dt(t) + // G = d2f/dt^2(t) + + // (F.X*G.Y - F.Y*G.X) * (F.X*G.X + F.Y*G.Y) + + // sqr F.X*G.X*G.Y - sqr F.Y*G.X*G.Y - F.X*F.Y*sqr G.X + F.X*F.Y*sqr G.Y + + // G.X*G.Y*(sqr F.X - sqr F.Y) + F.X*F.Y*(sqr G.Y - sqr G.X) + + // (Fx*Gy - Fy*Gx) * (Fx^2 + Fy^2)^(2/3) + + // (Gx*Gy + Fx*Hy - Gy*Gx - Fy*Hx) * (Fx^2 + Fy^2)^(2/3) + + // (Fx*Gy - Fy*Gx) * (4/3) * (Fx^2 + Fy^2)^(-1/3) * (Fx*Gx + Fy*Gy) + + + // (Fx*Hy - Fy*Hx) * (Fx^2 + Fy^2)^(2/3) + + // (4/3) * (Fx*Gy - Fy*Gx) * (Fx*Gx + Fy*Gy) * (Fx^2 + Fy^2)^(-1/3) + + + // (Fx*Hy - Fy*Hx) * (Fx^2 + Fy^2)^(2/3) + (Fx*Gy - Fy*Gx) * (2/3) * (Fx^2 + Fy^2)^(-1/3) * 2*(Fx*Gx + Fy*Gy) + + let F = derivative t seg + let G = secondDerivative t seg + let H = thirdDerivative t seg + let lfSqCbrt = Fun.Cbrt F.LengthSquared + + (F.X*H.Y - F.Y*H.X) * sqr lfSqCbrt + + (4.0/3.0) * (F.X*G.Y - F.Y*G.X) * (F.X*G.X + F.Y*G.Y) / lfSqCbrt + /// finds all parameters t <- [0;1] where the curvature changes its sign. /// note that only Bezier3 segments may have inflection points. @@ -1194,14 +1402,15 @@ module PathSegment = /// gets a normalized tangent at the given parameter (t <- [0;1]) let tangent (t : float) (seg : PathSegment) = match seg with - | LineSeg(p1, p0) -> + | LineSeg(p0, p1) -> p1 - p0 |> Vec.normalize | ArcSeg(p0, p1, a0, da, e) -> let t = clamp 0.0 1.0 t let alpha = a0 + t * da - (cos alpha * e.Axis1 - sin alpha * e.Axis0) |> Vec.normalize - + let n = (cos alpha * e.Axis1 - sin alpha * e.Axis0) |> Vec.normalize + if da > 0.0 then n else -n + | Bezier2Seg(p0, p1, p2) -> if t <= 0.0 then Vec.normalize (p1 - p0) @@ -1213,10 +1422,10 @@ module PathSegment = | Bezier3Seg(p0, p1, p2, p3) -> if t <= 0.0 then - if Fun.ApproximateEquals(p0, p1, epsilon) then Vec.normalize (p2 - p0) + if Fun.ApproximateEquals(p0, p1, 1E-9) then Vec.normalize (p2 - p0) else Vec.normalize (p1 - p0) elif t >= 1.0 then - if Fun.ApproximateEquals(p2, p3, epsilon) then Vec.normalize (p3 - p1) + if Fun.ApproximateEquals(p2, p3, 1E-9) then Vec.normalize (p3 - p1) else Vec.normalize (p3 - p2) else let s = 1.0 - t @@ -1345,46 +1554,40 @@ module PathSegment = tryArc p0 d e | Bezier2Seg _ -> - // t=0 => d0 = 2.0 * (p1 - p0) => p1 = p0 + d0/2.0 - // t=1 => d1 = 2.0 * (p2 - p1) => p1 = p2 - d1/2.0 let p0 = point t0 s let p1 = point t1 s - let d0 = derivative t0 s - let d1 = derivative t1 s + let d0 = tangent t0 s + let d1 = tangent t1 s - let c0 = p0 + d0 / 2.0 - let c1 = p1 - d1 / 2.0 - if not (Fun.ApproximateEquals(c0, c1, epsilon)) then - failwithf "that was unexpected: %A vs %A" c0 c1 - - tryBezier2 p0 c0 p1 + let r0 = Ray2d(p0, d0) + let r1 = Ray2d(p1, -d1) + + let mutable t = 0.0 + if r0.Intersects(r1, &t) then + let c = r0.GetPointOnRay t + tryBezier2 p0 c p1 + else + tryLine p0 p1 | Bezier3Seg _ -> - let p0 = point t0 s - let p1 = point t1 s - let d0 = derivative t0 s - let d1 = derivative t1 s - - //t=0 => d0 = 3.0 * (p1 - p0) - //t=1 => d1 = 3.0 * (p3 - p2) - // p1 = p0 + d0/3.0 - // p2 = p3 - d1/3.0 - - let c0 = p0 + d0 / 3.0 - let c1 = p1 - d1 / 3.0 - tryBezier3 p0 c0 c1 p1 + + match withT0 t0 s with + | Some r -> + withT1 ((t1 - t0) / (1.0 - t0)) r + | None -> + None else None - + + /// tries to split the segment into two new segments having ranges [0;t] and [t;1] respectively. - let split (t : float) (s : PathSegment) = + let splitWithCenterPoint (t : float) (pt : V2d) (s : PathSegment) = if t <= 0.0 then (None, Some s) elif t >= 1.0 then (Some s, None) else match s with | LineSeg(p0, p1) -> - let m = lerp p0 p1 t - tryLine p0 m, tryLine m p1 + tryLine p0 pt, tryLine pt p1 | ArcSeg(p0, p1, a0, da, e) -> @@ -1394,32 +1597,15 @@ module PathSegment = let r0 = a0 + ld let rd = da - ld - let pm = e.GetPoint(a0 + ld) - - let l = ArcSeg(p0, pm, l0, ld, e) - let r = ArcSeg(pm, p1, r0, rd, e) + let l = ArcSeg(p0, pt, l0, ld, e) + let r = ArcSeg(pt, p1, r0, rd, e) Some l, Some r - //let left = - // match tryArc l0 ld e with - // | Some(ArcSeg(_,_,a0,da,e)) -> Some (ArcSeg(p0, pm, a0, da, e)) - // | Some(LineSeg _) -> Some (LineSeg(p0, pm)) - // | o -> o - - //let right = - // match tryArc r0 rd e with - // | Some(ArcSeg(_,_,a0,da,e)) -> Some (ArcSeg(pm, p1, a0, da, e)) - // | Some(LineSeg _) -> Some (LineSeg(pm, p1)) - // | o -> o - - //left, right - | Bezier2Seg(p0, p1, p2) -> let q0 = lerp p0 p1 t let q1 = lerp p1 p2 t - let c = lerp q0 q1 t - tryBezier2 p0 q0 c, tryBezier2 c q1 p2 + tryBezier2 p0 q0 pt, tryBezier2 pt q1 p2 | Bezier3Seg(p0, p1, p2, p3) -> let q0 = lerp p0 p1 t @@ -1427,9 +1613,300 @@ module PathSegment = let q2 = lerp p2 p3 t let m0 = lerp q0 q1 t let m1 = lerp q1 q2 t - let c = lerp m0 m1 t - tryBezier3 p0 q0 m0 c, tryBezier3 c m1 q2 p3 + tryBezier3 p0 q0 m0 pt, tryBezier3 pt m1 q2 p3 + /// tries to split the segment into two new segments having ranges [0;t] and [t;1] respectively. + let split (t : float) (s : PathSegment) = + let pt = point t s + splitWithCenterPoint t pt s + + /// tries to get the t-parameter for a point very near the segment (within eps) + let tryGetT (eps : float) (pt : V2d) (segment : PathSegment) = + + let inline newtonImprove (t : float) = + let mutable t = t + let mutable dt = 1000.0 + let mutable iter = 10 + while iter > 0 && not (Fun.IsTiny (dt, 1E-15)) do + // err^2 = min + // 2*err * err' = 0 + + // f = 2*err * err' + // f' = 2*(err'^2 + err*err'') + + let err = point t segment - pt + let d = derivative t segment + let dd = secondDerivative t segment + + //let v = Vec.lengthSquared err + let dv = 2.0 * Vec.dot err d + let ddv = 2.0 * (Vec.dot d d + Vec.dot err dd) + + + dt <- -dv / ddv + //printfn "%d: %A %A -> %A" iter t dv dt + t <- t + dt + iter <- iter - 1 + + let t = clamp 0.0 1.0 t + let err = point t segment - pt + if Fun.IsTiny(err, eps) then Some t + else None + + match segment with + | LineSeg(p0, p1) -> + if Fun.ApproximateEquals(p0, pt, eps) then Some 0.0 + elif Fun.ApproximateEquals(p1, pt, eps) then Some 1.0 + else + let u = p1 - p0 + let len = Vec.length u + let n = V2d(-u.Y, u.X) / len + let d = Vec.dot (pt - p0) n + if abs d < eps then + let t = Vec.dot (pt - p0) u / sqr len + if t >= 0.0 && t <= 1.0 then Some t + else None + else + None + | Bezier2Seg(p0, p1, p2) -> + if Fun.ApproximateEquals(p0, pt, eps) then Some 0.0 + elif Fun.ApproximateEquals(p2, pt, eps) then Some 1.0 + else + let box = Box2d([p0; p1; p2]).EnlargedBy eps + + if box.Contains pt then + let a = p2 + p0 - 2.0*p1 + let b = 2.0*(p1 - p0) + let c = p0 - pt + + let struct(t0, t1) = + if box.Size.MajorDim = 0 then Polynomial.RealRootsOf(a.X, b.X, c.X) + else Polynomial.RealRootsOf(a.Y, b.Y, c.Y) + + let d0 = if t0 >= 0.0 && t0 <= 1.0 then Vec.length (a * sqr t0 + b * t0 + c) else System.Double.PositiveInfinity + let d1 = if t1 >= 0.0 && t1 <= 1.0 then Vec.length (a * sqr t1 + b * t1 + c) else System.Double.PositiveInfinity + + if d0 < d1 then + newtonImprove t0 + else + if not (System.Double.IsPositiveInfinity d1) then newtonImprove t1 + else None + else + None + + //t^2 * (p2 + p0 - 2*p1) + t * 2*(p1 - p0) + p0 + + | Bezier3Seg(p0, p1, p2, p3) -> + if Fun.ApproximateEquals(p0, pt, eps) then Some 0.0 + elif Fun.ApproximateEquals(p3, pt, eps) then Some 1.0 + else + let box = Box2d([p0; p1; p2; p3]).EnlargedBy eps + + if box.Contains pt then + let a = -p0 + 3.0*p1 - 3.0*p2 + p3 + let b = 3.0*p0 - 6.0*p1 + 3.0*p2 + let c = 3.0*p1 - 3.0*p0 + let d = p0 - pt + + let struct(t0, t1, t2) = + if box.Size.MajorDim = 0 then Polynomial.RealRootsOf(a.X, b.X, c.X, d.X) + else Polynomial.RealRootsOf(a.Y, b.Y, c.Y, d.Y) + + let d0 = if t0 >= 0.0 && t0 <= 1.0 then Vec.length (a * sqr t0 + b * t0 + c) else System.Double.PositiveInfinity + let d1 = if t1 >= 0.0 && t1 <= 1.0 then Vec.length (a * sqr t1 + b * t1 + c) else System.Double.PositiveInfinity + let d2 = if t2 >= 0.0 && t2 <= 1.0 then Vec.length (a * sqr t2 + b * t2 + c) else System.Double.PositiveInfinity + + + if d0 < d1 then + if d0 < d2 then + newtonImprove t0 + else + if not (System.Double.IsPositiveInfinity d2) then newtonImprove t2 + else None + else + if d1 < d2 then + newtonImprove t1 + else + if not (System.Double.IsPositiveInfinity d2) then newtonImprove t2 + else None + + + else + None + | ArcSeg(p0, p1, a, da, e) -> + if Fun.ApproximateEquals(p0, pt, eps) then Some 0.0 + elif Fun.ApproximateEquals(p1, pt, eps) then Some 1.0 + else + let m = M33d.FromCols(V3d(e.Axis0, 0.0), V3d(e.Axis1, 0.0), V3d(e.Center, 1.0)) + + let c = m.Inverse.TransformPos(pt) |> Vec.normalize + let angle = atan2 c.Y c.X + + let t = arcT a da angle + + if Fun.ApproximateEquals(m.TransformPos c, pt, eps) then + newtonImprove t + else + None + + /// tries to merge two segments together resulting in an optional new segment (or None if the segments cannot be merged) + let tryMerge (eps : float) (a : PathSegment) (b : PathSegment) = + match a with + | LineSeg(a0, a1) -> + match b with + | LineSeg(b0, b1) when Fun.ApproximateEquals(a1, b0, eps) -> + if Fun.ApproximateEquals(a0, b1) then + Some None + else + let u = Vec.normalize (b1 - a0) + let n = V2d(-u.Y, u.X) + if Fun.IsTiny (Vec.dot n (b0 - a0), eps) then + Some (tryLine a0 b1) + else + None + | _ -> + None + | Bezier2Seg(a0, a1, a2) -> + match b with + | Bezier2Seg(b0, b1, b2) when Fun.ApproximateEquals(a2, b0, eps) -> + if Fun.ApproximateEquals(a0, b2, eps) then + if Fun.ApproximateEquals(a1, b1, eps) then Some None + else None + else + let ta1 = a2 - a1 |> Vec.normalize + let tb0 = b1 - b0 |> Vec.normalize + + if Fun.ApproximateEquals(ta1, tb0, 1E-9) then + let ra = Ray2d(a0, a1 - a0) + let rb = Ray2d(b2, b2 - b1) + let mutable t = 0.0 + if ra.Intersects(rb, &t) then + let c = ra.GetPointOnRay t + match tryBezier2 a0 c b2 with + | Some res -> + match tryGetT eps a2 res with + | Some _ -> Some (Some res) + | None -> None + | None -> + None + else + None + elif Fun.ApproximateEquals(ta1, -tb0, 1E-9) then + match tryGetT eps b2 a with + | Some _ -> + let ra = Ray2d(a0, a1 - a0) + let rb = Ray2d(b2, b2 - b1) + let mutable t = 0.0 + if ra.Intersects(rb, &t) then + let c = ra.GetPointOnRay t + match tryBezier2 a0 c b2 with + | Some res -> + Some (Some res) + | None -> + None + else + None + | None -> + None + else + None + | _ -> + None + | _ -> + // TODO: proper merge for Arc/Bezier3 + None + + + let private overlapTs = [| 0.25; 0.5; 0.75; 0.333 |] + + /// tries to find the overlapping t-ranges for two segments. The first range will be sorted whereas the second one may not be. + let overlap (eps : float) (a : PathSegment) (b : PathSegment) = + + let isOnLine (p0 : V2d) (p1 : V2d) (p : V2d) = + let u = p1 - p0 + let len = Vec.length u + let n = V2d(-u.Y, u.X) / len + let d = Vec.dot (p - p0) n + if abs d < eps then + let t = Vec.dot (p - p0) u / sqr len + if t >= 0.0 && t <= 1.0 then + let test = lerp p0 p1 t + if not (Fun.ApproximateEquals(test, p, eps)) then printfn "asdsadsad" + Some t + else + None + else + None + + + let inline checkRange ((aRange : Range1d, bRange : V2d) as tup) = + let isOverlapping = + overlapTs |> Array.forall (fun t -> + let ta = lerp aRange.Min aRange.Max t + let tb = lerp bRange.X bRange.Y t + Fun.ApproximateEquals(point ta a, point tb b) + ) + if isOverlapping then + Some tup + else + None + + + let a0 = startPoint a + let a1 = endPoint a + + let b0 = startPoint b + let b1 = endPoint b + + match tryGetT eps b0 a with + | Some tab0 -> + match tryGetT eps b1 a with + | Some tab1 -> + // b is entirely on a + if tab0 < tab1 then + checkRange (Range1d(tab0, tab1), V2d(0.0, 1.0)) + else + checkRange (Range1d(tab1, tab0), V2d(1.0, 0.0)) + | None -> + match tryGetT eps a0 b with + | Some tba0 -> + checkRange (Range1d(0.0, tab0), V2d(tba0, 0.0)) + | None -> + match tryGetT eps a1 b with + | Some tba1 -> + checkRange (Range1d(tab0, 1.0), V2d(0.0, tba1)) + | None -> + None + | None -> + match tryGetT eps b1 a with + | Some tab1 -> + match tryGetT eps a0 b with + | Some tba0 -> + checkRange (Range1d(0.0, tab1), V2d(tba0, 1.0)) + | None -> + match tryGetT eps a1 b with + | Some tba1 -> + checkRange (Range1d(tab1, 1.0), V2d(1.0, tba1)) + | None -> + None + | None -> + match tryGetT eps a0 b with + | Some tba0 -> + match tryGetT eps a1 b with + | Some tba1 -> + checkRange (Range1d(0.0, 1.0), V2d(tba0, tba1)) + | None -> + None + | None -> + None + + /// splits a PathSegment given two ordered ts into possibly three parts (the range must not be empty or invalid) + let splitRange (r : Range1d) (seg : PathSegment) : option * PathSegment * option = + let l, rest = split r.Min seg + let m, r = split ((r.Max - r.Min) / (1.0 - r.Min)) (Option.get rest) + l, Option.get m, r + + /// splits the segment at the given parameter values and returns the list of resulting segments. let splitMany (ts : list) (s : PathSegment) = match ts with @@ -1483,10 +1960,10 @@ module ``PathSegment Public API`` = let (|Line|Bezier2|Bezier3|Arc|) (s : PathSegment) = match s with - | LineSeg(p0, p1) -> Line(p0, p1) - | Bezier2Seg(p0, p1, p2) -> Bezier2(p0, p1, p2) - | Bezier3Seg(p0, p1, p2, p3) -> Bezier3(p0, p1, p2, p3) - | ArcSeg(alpha0, alpha1, a0, da, ellipse) -> Arc(alpha0, alpha1, a0, da, ellipse) + | LineSeg(p0, p1) -> Line(p0, p1) + | Bezier2Seg(p0, p1, p2) -> Bezier2(p0, p1, p2) + | Bezier3Seg(p0, p1, p2, p3) -> Bezier3(p0, p1, p2, p3) + | ArcSeg(alpha0, alpha1, a0, da, ellipse) -> Arc(alpha0, alpha1, a0, da, ellipse) type PathSegment with static member inline Line(p0, p1) = PathSegment.line p0 p1 @@ -1499,6 +1976,15 @@ module ``PathSegment Public API`` = static member ForceBezier3(p0, p1, p2, p3) = Bezier3Seg(p0, p1, p2, p3) static member ForceArc(p0, p1, a0, da, e) = ArcSeg(p0, p1, a0, da, e) + + module PathSegment = + let (|Line|Bezier2|Bezier3|Arc|) (s : PathSegment) = + match s with + | LineSeg(p0, p1) -> Line(p0, p1) + | Bezier2Seg(p0, p1, p2) -> Bezier2(p0, p1, p2) + | Bezier3Seg(p0, p1, p2, p3) -> Bezier3(p0, p1, p2, p3) + | ArcSeg(alpha0, alpha1, a0, da, ellipse) -> Arc(alpha0, alpha1, a0, da, ellipse) + let inline Line(p0, p1) = PathSegment.line p0 p1 let inline Bezier2(p0, p1, p2) = PathSegment.bezier2 p0 p1 p2