-
Notifications
You must be signed in to change notification settings - Fork 2
/
Copy pathextract_dataset_features.py
executable file
·226 lines (190 loc) · 10.2 KB
/
extract_dataset_features.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
#!/usr/bin/env python3
import argparse
import os
import sys
import lmdb
import numpy as np
import torch
from torchvision import transforms
from model.encoder_decoder import FeatureExtractor
from dataset import get_loader, DatasetParams
try:
from tqdm import tqdm
except ImportError as e:
print('WARNING: tqdm module not found. Install it if you want a fancy progress bar :-)')
def tqdm(x, disable=False): return x
# Device configuration
device = torch.device('cuda' if torch.cuda.is_available() else 'cpu')
def main(args):
#
# Image preprocessing
if args.feature_type == 'plain':
if args.extractor == 'resnet152caffe-original':
# Use custom transform:
transform = transforms.Compose([
transforms.Resize((args.crop_size, args.crop_size)),
# Swap color space from RGB to BGR and subtract caffe-specific
# channel values from each pixel
transforms.Lambda(lambda img: np.array(img, dtype=np.float32)
[..., [2, 1, 0]] - [103.939, 116.779, 123.68]),
# Create a torch tensor and put channels first:
transforms.Lambda(lambda img: torch.from_numpy(img).permute(2, 0, 1)),
# Cast tensor to correct type:
transforms.Lambda(lambda img: img.type('torch.FloatTensor'))])
else:
# Default transform
transform = transforms.Compose([
transforms.Resize((args.crop_size, args.crop_size)),
transforms.ToTensor(),
transforms.Normalize((0.485, 0.456, 0.406),
(0.229, 0.224, 0.225))])
elif args.feature_type == 'avg' or args.feature_type == 'max':
# Try with no normalization
# Try with subtracting 0.5 from all values
# See example here: https://pytorch.org/docs/stable/torchvision/transforms.html
if args.normalize == 'default':
transform = transforms.Compose([
transforms.Resize((args.image_size, args.image_size)),
# 10-crop implementation as described in PyTorch documentation:
transforms.TenCrop((args.crop_size, args.crop_size)),
# Apply next two transforms to each crop in turn and then stack them
# to a single tensor:
transforms.Lambda(lambda crops: torch.stack([
transforms.Normalize((0.485, 0.456, 0.406),
(0.229, 0.224, 0.225))(transforms.ToTensor()(crop))
for crop in crops]))])
elif args.normalize == 'skip':
transform = transforms.Compose([
transforms.Resize((args.image_size, args.image_size)),
transforms.TenCrop((args.crop_size, args.crop_size)),
transforms.Lambda(lambda crops: torch.stack([
transforms.ToTensor()(crop)
for crop in crops]))])
elif args.normalize == 'subtract_half':
transform = transforms.Compose([
transforms.Resize((args.image_size, args.image_size)),
transforms.TenCrop((args.crop_size, args.crop_size)),
transforms.Lambda(lambda crops: torch.stack([
transforms.ToTensor()(crop)
for crop in crops]) - 0.5)])
else:
print("Invalid normalization parameter")
sys.exit(1)
else:
print("Invalid feature type specified {}".args.feature_type)
sys.exit(1)
print("Creating features of type: {}".format(args.feature_type))
# Get dataset parameters and vocabulary wrapper:
dataset_configs = DatasetParams(args.dataset_config_file)
dataset_params = dataset_configs.get_params(args.dataset)
# We want to only get the image file name, not the full path:
for i in dataset_params:
i.config_dict['return_image_file_name'] = True
# We ask it to iterate over images instead of all (image, caption) pairs
data_loader, _ = get_loader(dataset_params, vocab=None, transform=transform,
batch_size=args.batch_size, shuffle=False,
num_workers=args.num_workers,
ext_feature_sets=None,
skip_images=False,
iter_over_images=True)
extractor = FeatureExtractor(args.extractor, True).to(device).eval()
# To open an lmdb handle and prepare it for the right size
# it needs to fit the total number of elements in the dataset
# so we set a map_size to a largish value here:
map_size = 1e12
lmdb_path = None
file_name = None
if args.output_file:
file_name = args.output_file
else:
file_name = '{}-{}-{}-normalize-{}.lmdb'.format(args.dataset, args.extractor,
args.feature_type, args.normalize)
os.makedirs(args.output_dir, exist_ok=True)
lmdb_path = os.path.join(args.output_dir, file_name)
# Check that we are not overwriting anything
if os.path.exists(lmdb_path):
print('ERROR: {} exists, please remove it first if you really want to replace it.'.
format(lmdb_path))
sys.exit(1)
print("Preparing to store extracted features to {}...".format(lmdb_path))
print("Starting to extract features from dataset {} using {}...".
format(args.dataset, args.extractor))
show_progress = sys.stderr.isatty()
# If feature shape is not 1-dimensional, store feature shape metadata:
if isinstance(extractor.output_dim, np.ndarray):
with lmdb.open(lmdb_path, map_size=map_size) as env:
with env.begin(write=True) as txn:
txn.put(str('@vdim').encode('ascii'), extractor.output_dim)
for i, (images, _, _,
image_ids, _) in enumerate(tqdm(data_loader, disable=not show_progress)):
images = images.to(device)
# If we are dealing with cropped images, image dimensions are: bs, ncrops, c, h, w
if images.dim() == 5:
bs, ncrops, c, h, w = images.size()
# fuse batch size and ncrops:
raw_features = extractor(images.view(-1, c, h, w))
if args.feature_type == 'avg':
# Average over crops:
features = raw_features.view(bs, ncrops, -1).mean(1).data.cpu().numpy()
elif args.feature_type == 'max':
# Max over crops:
features = raw_features.view(bs, ncrops, -1).max(1)[0].data.cpu().numpy()
# Otherwise our image dimensions are bs, c, h, w
else:
features = extractor(images).data.cpu().numpy()
# Write to LMDB object:
with lmdb.open(lmdb_path, map_size=map_size) as env:
with env.begin(write=True) as txn:
for j, image_id in enumerate(image_ids):
# If output dimension is not a scalar, flatten the array.
# When retrieving this feature from the LMDB, developer must take
# care to reshape the feature back to the correct dimensions!
if isinstance(extractor.output_dim, np.ndarray):
_feature = features[j].flatten()
# Otherwise treat it as is:
else:
_feature = features[j]
txn.put(str(image_id).encode('ascii'), _feature)
# Print log info
if not show_progress and ((i + 1) % args.log_step == 0):
print('Batch [{}/{}]'.format(i + 1, len(data_loader)))
sys.stdout.flush()
if __name__ == '__main__':
parser = argparse.ArgumentParser()
parser.add_argument('--dataset', type=str,
default='coco:train2014',
help='dataset that defines images for which features are needed')
parser.add_argument('--dataset_config_file', type=str,
default='datasets/datasets.conf',
help='location of dataset configuration file')
parser.add_argument('--feature_type', type=str, default='avg',
help='type of a feature output - can be:'
'plain - use the input image as is - no cropping or pooling\n'
'following two feature types use transform.TenCrop - each image is '
'cropped from corners and center, each crop is horizontally flipped:\n'
'avg - elementwise average of features obtained from cropped inputs'
'max - elementwise maximum of features obtained from cropped inputs')
parser.add_argument('--normalize', type=str, default='default',
help='image normalization to apply\n'
'default: applies default PyTorch normalization parameters\n'
'skip: applies no normalization at all\n'
'substract_half: subtracts 0.5 from each pixel value')
parser.add_argument('--image_size', type=int, default=256,
help='resize input images to this size')
parser.add_argument('--crop_size', type=int, default=224,
help='crop size used by "avg" and "max" feature types')
parser.add_argument('--num_crops', type=int, default=12,
help='number of crops to perform for avg and max feature types')
parser.add_argument('--batch_size', type=int, default=128)
parser.add_argument('--num_workers', type=int, default=2)
parser.add_argument('--output_dir', type=str, default='features/',
help='directory for saving image features')
parser.add_argument('--output_file', type=str, default='',
help='file for saving features, if no name specified it '
'defaults to "dataset_name-extractor.lmdb"')
parser.add_argument('--extractor', type=str, default='resnet152',
help='name of the extractor, ex: alexnet, resnet152, densenet201')
parser.add_argument('--log_step', type=int, default=10,
help='How often do we want to log output')
args = parser.parse_args()
main(args=args)