-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathuncertainty_model.py
686 lines (620 loc) · 34.4 KB
/
uncertainty_model.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
import os
import random
from tabulate import tabulate
from cosine_annealing_warmup import CosineAnnealingWarmupRestarts
import torch
import torch.nn as nn
import torch.nn.functional as F
from torch.utils.tensorboard import SummaryWriter
from torch import optim
from torch.optim.swa_utils import AveragedModel, SWALR
import copy
import numpy as np
from sklearn import metrics
from tqdm import tqdm
import matplotlib.pyplot as plt
def enable_dropout(model):
for m in model.modules():
if m.__class__.__name__.startswith('Dropout'):
m.train()
class AverageMeter(object):
def __init__(self):
self.reset()
def reset(self):
self.val = 0
self.avg = 0
self.sum = 0
self.count = 0
def update(self, val, n=1):
self.val = val
self.sum += val * n
self.count += n
self.avg = self.sum / self.count
class ParallelModel(nn.Module):
def __init__(self, num_stages, num_layers, num_f_maps, dim, num_classes):
super(ParallelModel, self).__init__()
self.branch_1 = MultiStageModel(num_stages, num_layers, num_f_maps, dim, num_classes)
self.branch_2 = MultiStageModel(num_stages, num_layers, num_f_maps, dim, num_classes)
#for name, m in self.branch_1.named_modules():
# if isinstance(m, (nn.Conv1d, nn.Conv2d, nn.Conv3d)):
# nn.init.kaiming_normal_(m.weight, mode='fan_in', nonlinearity='relu')
# elif isinstance(m, nn.Linear):
# nn.init.kaiming_normal_(m.weight, mode='fan_in', nonlinearity='relu')
#for name, m in self.branch_2.named_modules():
# if isinstance(m, (nn.Conv1d, nn.Conv2d, nn.Conv3d)):
# nn.init.kaiming_normal_(m.weight, mode='fan_in', nonlinearity='relu')
# elif isinstance(m, nn.Linear):
# nn.init.kaiming_normal_(m.weight, mode='fan_in', nonlinearity='relu')
def forward(self, data, step=1):
if not self.training:
return self.branch_1(data)
if step == 1:
return self.branch_1(data)
elif step == 2:
return self.branch_2(data)
class MultiStageModel(nn.Module):
def __init__(self, num_stages, num_layers, num_f_maps, dim, num_classes):
super(MultiStageModel, self).__init__()
self.tower_stage = TowerModel(num_layers, num_f_maps, dim, num_classes)
self.single_stages = nn.ModuleList([copy.deepcopy(SingleStageModel(num_layers, num_f_maps, num_classes, num_classes, 3))
for s in range(num_stages-1)])
def forward(self, x, mask):
middle_out, out = self.tower_stage(x, mask)
outputs = out.unsqueeze(0)
for s in self.single_stages:
middle_out, out = s(F.softmax(out, dim=1) * mask[:, 0:1, :], mask)
outputs = torch.cat((outputs, out.unsqueeze(0)), dim=0)
return middle_out, outputs
class TowerModel(nn.Module):
def __init__(self, num_layers, num_f_maps, dim, num_classes):
super(TowerModel, self).__init__()
self.stage1 = SingleStageModel(num_layers, num_f_maps, dim, num_classes, 3)
self.stage2 = SingleStageModel(num_layers, num_f_maps, dim, num_classes, 5)
def forward(self, x, mask):
out1, final_out1 = self.stage1(x, mask)
out2, final_out2 = self.stage2(x, mask)
return out1 + out2, final_out1 + final_out2
class SingleStageModel(nn.Module):
def __init__(self, num_layers, num_f_maps, dim, num_classes, kernel_size):
super(SingleStageModel, self).__init__()
self.conv_1x1 = nn.Conv1d(dim, num_f_maps, 1)
self.layers = nn.ModuleList([copy.deepcopy(DilatedResidualCasualLayer(2 ** i, num_f_maps, num_f_maps, kernel_size))
for i in range(num_layers)])
self.conv_out = nn.Conv1d(num_f_maps, num_classes, 1)
def forward(self, x, mask):
out = self.conv_1x1(x)
for layer in self.layers:
out = layer(out, mask)
final_out = self.conv_out(out) * mask[:, 0:1, :]
return out, final_out
class DilatedResidualLayer(nn.Module):
def __init__(self, dilation, in_channels, out_channels, kernel_size):
super(DilatedResidualLayer, self).__init__()
padding = int(dilation + dilation * (kernel_size - 3) / 2)
self.conv_dilated = nn.Conv1d(in_channels, out_channels, kernel_size, padding=padding, dilation=dilation)
self.conv_1x1 = nn.Conv1d(out_channels, out_channels, 1)
self.dropout = nn.Dropout()
def forward(self, x, mask):
out = F.relu(self.conv_dilated(x))
out = self.conv_1x1(out)
out = self.dropout(out)
return (x + out) * mask[:, 0:1, :]
class DilatedResidualCasualLayer(nn.Module):
def __init__(self, dilation, in_channels, out_channels, kernel_size):
super(DilatedResidualCasualLayer, self).__init__()
self.padding = 2 * int(dilation + dilation * (kernel_size -3) / 2)
self.conv_dilated = nn.Conv1d(in_channels, out_channels, kernel_size, padding=0, dilation=dilation)
self.conv_1x1 = nn.Conv1d(out_channels, out_channels, 1)
self.dropout = nn.Dropout()
def forward(self, x, mask):
out = F.pad(x, [self.padding, 0], 'constant', 0)
out = F.relu(self.conv_dilated(out))
out = self.conv_1x1(out)
out = self.dropout(out)
return (x + out) * mask[:, 0:1, :]
class Trainer:
def __init__(self, test_features, test_gt_path, phase2label, device, num_blocks, num_layers, num_f_maps, dim, num_classes, args):
self.test_features = test_features
self.test_gt_path = test_gt_path
self.phase2label = phase2label
self.device = device
self.model = MultiStageModel(num_blocks, num_layers, num_f_maps, dim, num_classes)
self.num_blocks = num_blocks
self.num_layers = num_layers
self.num_f_maps = num_f_maps
self.dim = dim
self.ce = nn.CrossEntropyLoss(ignore_index=-100)
self.mse = nn.MSELoss(reduction='none')
self.kl = nn.KLDivLoss(reduction='none')
self.num_classes = num_classes
self.pseudo = args.pseudo
self.num_epochs = args.num_epochs
self.noisy = args.noisy
self.uncertainty_warmup_epochs = args.uncertainty_warmup_epochs
self.max_thres = args.max_thres
self.smooth = args.smooth
self.lambda_smooth = args.lambda_smooth
self.entropy = args.entropy
self.lambda_entropy = args.lambda_entropy
self.forward_times = args.forward_times
self.beta = 0.99
self.visualization = args.visualization
def adjust_uncertainty_thres(self, epoch):
if self.num_classes == 7: # cholec80
self.thres = 0.1
else:
self.thres = 0.1
def confidence_loss(self, pred, confidence_mask):
batch_size = pred.size(0)
pred = F.log_softmax(pred, dim=1)
loss = 0
for b in range(batch_size):
num_frame = confidence_mask[b].shape[2]
m_mask = torch.from_numpy(confidence_mask[b]).type(torch.float).to(self.device)
left = pred[b, :, 1:] - pred[b, :, :-1]
left = torch.clamp(left[:, :num_frame] * m_mask[0], min=0)
left = torch.sum(left) / torch.sum(m_mask[0])
loss += left
right = (pred[b, :, :-1] - pred[b, :, 1:])
right = torch.clamp(right[:, :num_frame] * m_mask[1], min=0)
right = torch.sum(right) / torch.sum(m_mask[1])
loss += right
return loss
def class_balanced_loss(self, logit, target):
samples_per_cls = []
for l in range(self.num_classes):
samples_per_cls.append(int(torch.sum(target==l)))
effective_num = 1.0 - np.power(self.beta, samples_per_cls)
weights = (1.0 - self.beta) / np.array(effective_num)
weights = torch.tensor(weights).float().to(self.device)
prob = logit.log_softmax(dim=1)
cb_loss = F.cross_entropy(input=prob, target=target, weight=weights, ignore_index=-100)
return cb_loss
def uncertainty_loss(self, logits, thres):
prob = F.softmax(logits.transpose(2, 1), dim=1)
entropy = torch.sum(- prob * torch.log(prob), dim=2)
mask = entropy < thres
return (entropy * mask).mean()
def uncertainty_loss_star(self, logits, pseudo_label):
prob = F.softmax(logits.transpose(2, 1), dim=2)
entropy = torch.sum(- prob * torch.log(prob), dim=2)
mask = (pseudo_label != -100)
return (entropy*entropy * mask).sum() / mask.sum()
def uncertainty_loss_score(self, logits, scores):
prob = F.softmax(logits.transpose(2, 1), dim=2)
entropy = torch.sum(- prob * torch.log(prob), dim=2)
scores = torch.sigmoid(scores)
return (entropy * scores).sum() / scores.sum()
def entropy_regularization(self, logits, mask):
prob = F.softmax(logits, dim=1)
entropy = torch.sum(-prob * torch.log(prob), dim=1)
entropy = entropy * mask
return torch.sum(entropy) / torch.sum(mask)
def multi_train(self, save_dir, batch_gen, batch_size, learning_rate):
# self.train(save_dir, batch_gen, batch_size, learning_rate)
times = 10
for i in range(times):
self._multi_train(save_dir, batch_gen, batch_size, learning_rate, i)
def label_dropout(self, batch_pseudo_target, p):
pseudo_target = batch_pseudo_target.clone()
for b in range(pseudo_target.size(0)):
for f in range(pseudo_target.size(1)):
if pseudo_target[b, f] != -100:
r = random.random()
pseudo_target[b, f] = -100 if r<=p else pseudo_target[b, f]
return pseudo_target
def add_noisy_labels(self, pseudo_target, timestamps, seq_lengths, noisy_length=10, C=0.5):
from scipy import stats
norm = stats.norm(0, 1)
pseudo_target = pseudo_target.clone()
for b in range(len(pseudo_target)):
timestamp = timestamps[b]
seq_length = seq_lengths[b]
for i in range(len(timestamp)):
pos = timestamp[i]
L = 0 if i==0 else timestamp[i-1]+1
R = seq_length-1 if i==len(timestamp)-1 else timestamp[i+1]-1
left = min(max(0, pos-L-noisy_length), noisy_length)
right = min(max(R-pos-noisy_length, 1), noisy_length)
positions = np.array(list(range(pos-left, pos)) + list(range(pos+1, pos+right)))
if len(positions) == 0:
continue
probabilites = np.array([norm.pdf(np.abs(p - pos) / noisy_length) for p in positions])
probabilites = probabilites / np.sum(probabilites)
choice = np.random.choice(positions, int(len(positions)*C), p=probabilites, replace=False)
pseudo_target[b][choice.tolist()] = int(pseudo_target[b][timestamp[i]])
return pseudo_target
def _multi_train(self, save_dir, batch_gen, batch_size, learning_rate, iter_times):
self.model = MultiStageModel(self.num_blocks, self.num_layers, self.num_f_maps, self.dim, self.num_classes)
self.model.to(self.device)
swa_model = AveragedModel(self.model)
optimizer = optim.Adam(self.model.parameters(), lr=learning_rate)
scheduler = optim.lr_scheduler.CosineAnnealingLR(optimizer, T_max=self.num_epochs, eta_min=0)
swa_start = 45
swa_scheduler = SWALR(optimizer, swa_lr=1e-5)
#scheduler = CosineAnnealingWarmupRestarts(optimizer, first_cycle_steps=self.num_epochs, cycle_mult=1.0, max_lr=learning_rate, min_lr=1e-5, warmup_steps=5, gamma=1.0)
writer = SummaryWriter(save_dir)
total_lengths = 0
labeled_lengths = 0
correct_lengths = 0
self.adjust_uncertainty_thres(iter_times)
batch_gen.save_pseudo_labels(save_dir)
for epoch in range(1, self.num_epochs+1):
#if iter_times == 0:
# batch_gen.update_pseudo_labels_noisy()
self.model.train()
epoch_loss = 0
correct = 0
total = 0
while batch_gen.has_next():
batch_input, batch_target, batch_pseudo_target, mask = batch_gen.next_batch(batch_size)
batch_input, batch_target, batch_pseudo_target, mask = batch_input.to(self.device), batch_target.to(self.device),\
batch_pseudo_target.to(self.device), mask.to(self.device)
optimizer.zero_grad()
_, predictions = self.model(batch_input, mask)
timestamp_mask = batch_gen.get_single_random(batch_input.size(-1)).to(self.device)
_, seq_lengths, timestamps = batch_gen.get_useful_info()
# batch_pseudo_target = self.label_dropout(batch_pseudo_target, 0.5)
if self.noisy:
batch_pseudo_target = self.add_noisy_labels(batch_pseudo_target, timestamps, seq_lengths)
if epoch == self.num_epochs:
total_lengths += sum(seq_lengths)
labeled_lengths += torch.sum(batch_pseudo_target != -100)
for b, seq_length in enumerate(seq_lengths):
correct_lengths += torch.sum(batch_pseudo_target[b, :seq_length] == batch_target[b, :seq_length])
loss = 0
for pi, p in enumerate(predictions):
if self.pseudo == 'uncertainty' or self.pseudo == 'self':
target = batch_pseudo_target
elif self.pseudo == 'uniform':
target = batch_gen.get_average(batch_input.size(2)).to(self.device)
else:
target = batch_target
ce_loss = self.ce(p.transpose(2, 1).contiguous().view(-1, self.num_classes), target.view(-1))
loss += ce_loss
#cb_loss = self.class_balanced_loss(p.transpose(2, 1).contiguous().view(-1, self.num_classes), target.view(-1))
#loss += cb_loss
#print('ce', cs_loss)
if self.smooth:
smooth_loss = self.lambda_smooth * torch.mean(torch.clamp(
self.mse(F.log_softmax(p[:, :, 1:], dim=1), F.log_softmax(p.detach()[:, :, :-1], dim=1)), min=0,
max=16) * mask[:, :, 1:])
#smooth_loss = self.lambda_smooth * torch.mean(
# self.kl(F.log_softmax(p[:, :, 1:], dim=1), F.log_softmax(p.detach()[:, :, :-1], dim=1)) * mask[:, :, 1:])
loss += smooth_loss
if self.entropy:
labeled_mask = target.view(-1) != -100
entropy_loss = 0.1 * self.entropy_regularization(p.transpose(2, 1).contiguous().view(-1, self.num_classes), labeled_mask)
loss += entropy_loss
epoch_loss += loss.item()
loss.backward()
optimizer.step()
_, predicted = torch.max(predictions[-1].data, 1)
correct += ((predicted == batch_target).float()*mask[:, 0, :].squeeze(1)).sum().item()
total += torch.sum(mask[:, 0, :]).item()
if epoch > swa_start:
swa_model.update_parameters(self.model)
swa_scheduler.step()
else:
scheduler.step()
batch_gen.reset()
print('Iter {} Epoch {} training acc :{}'.format(iter_times, epoch, correct / total))
torch.save(self.model.state_dict(), save_dir + "/epoch-" + str(epoch) + ".model")
torch.save(optimizer.state_dict(), save_dir + "/epoch-" + str(epoch) + ".opt")
# self.predict(save_dir, epoch, batch_gen.sample_rate)
print('Pseudo labeling rate: {:.4f}, pseudo labels accuracy: {:.4f}'.format(labeled_lengths / total_lengths, correct_lengths / labeled_lengths))
print('Uncertainty threshold: {:.4f}'.format(self.thres))
self.predict(save_dir, self.num_epochs, batch_gen.sample_rate)
self.model.eval()
'''if self.pseudo == 'self':
with torch.no_grad():
while batch_gen.has_next():
batch_input, _, _, mask = batch_gen.next_batch(batch_size)
batch_input, mask = batch_input.to(self.device), mask.to(self.device)
_, logits = self.model(batch_input, mask)
batch_gen.update_self_labels(logits[-1].detach().transpose(2,1))
batch_gen.reset()
return'''
enable_dropout(self.model)
with torch.no_grad():
while batch_gen.has_next():
batch_input, _, _, mask = batch_gen.next_batch(batch_size)
batch_input, mask = batch_input.to(self.device), mask.to(self.device)
mc_probs = []
for _ in range(self.forward_times):
_, logits = self.model(batch_input, mask)
probs = F.softmax(logits[-1].squeeze(0).detach().transpose(2, 1), dim=2)
mc_probs.append(probs)
mc_probs = torch.stack(mc_probs, dim=0)
std = torch.std(mc_probs, dim=0)
mc_probs = torch.mean(mc_probs, dim=0)
predictions = torch.max(mc_probs, dim=2)[1]
uncertainty_scores = std.gather(2, predictions.unsqueeze(-1))
# uncertainty_scores = torch.sum(-mc_probs * torch.log(mc_probs), dim=2)
batch_gen.update_pseudo_labels(predictions, uncertainty_scores, thres=self.thres)
#batch_gen.update_pseudo_labels_all(predictions, uncertainty_scores, thres=self.thres)
if False and self.visualization:
data_dir = os.path.join(save_dir, 'train_epoch{}_score'.format(epoch))
if not os.path.exists(data_dir):
os.makedirs(data_dir)
vids, seq_lengths, timestamp_pos = batch_gen.get_useful_info()
for b, score in enumerate(uncertainty_scores):
np.save(os.path.join(data_dir, '{}.npy'.format(vids[b])), {'timestamp': timestamp_pos[b], 'score': score[:seq_lengths[b]].cpu().numpy()})
batch_gen.reset()
if iter_times == 4:
self.visualize(batch_gen, save_dir, iter_times, batch_size)
def train(self, save_dir, batch_gen, batch_size, learning_rate):
self.model.to(self.device)
optimizer = optim.Adam(self.model.parameters(), lr=learning_rate)
scheduler = optim.lr_scheduler.CosineAnnealingLR(optimizer, T_max=self.num_epochs, eta_min=1e-5)
#scheduler = CosineAnnealingWarmupRestarts(optimizer, first_cycle_steps=self.num_epochs, cycle_mult=1.0, max_lr=learning_rate, min_lr=1e-5, warmup_steps=5, gamma=1.0)
writer = SummaryWriter(save_dir)
for epoch in range(1, self.num_epochs+1):
self.adjust_uncertainty_thres(epoch)
lr = scheduler.get_lr()[0]
thres = self.thres
print('='*20 + 'Epoch {}'.format(epoch) + '='*20)
print('learning rate = {:.4f}, uncertainty thresold = {:.4f}'.format(lr, thres))
self.model.train()
epoch_loss = 0
correct = 0
total = 0
while batch_gen.has_next():
batch_input, batch_target, batch_pseudo_target, mask = batch_gen.next_batch(batch_size)
batch_input, batch_target, batch_pseudo_target, mask = batch_input.to(self.device), batch_target.to(self.device),\
batch_pseudo_target.to(self.device), mask.to(self.device)
optimizer.zero_grad()
_, predictions = self.model(batch_input, mask)
timestamp_mask = batch_gen.get_single_random(batch_input.size(-1)).to(self.device)
_, seq_lengths, _ = batch_gen.get_useful_info()
total_lengths = sum(seq_lengths)
labeled_lengths = torch.sum(batch_pseudo_target != -100)
loss = 0
for pi, p in enumerate(predictions):
if self.pseudo == 'full':
target = batch_target
else:
target = batch_pseudo_target
#ce_loss = self.ce(p.transpose(2, 1).contiguous().view(-1, self.num_classes), target.view(-1))
#loss += ce_loss
cb_loss = self.class_balanced_loss(p.transpose(2, 1).contiguous().view(-1, self.num_classes), target.view(-1))
loss += cb_loss
#print('ce', cs_loss)
if self.smooth:
smooth_loss = self.lambda_smooth * torch.mean(torch.clamp(
self.mse(F.log_softmax(p[:, :, 1:], dim=1), F.log_softmax(p.detach()[:, :, :-1], dim=1)), min=0,
max=16) * mask[:, :, 1:])
loss += smooth_loss
if self.entropy:
entropy_loss = 0.1 * self.entropy_regularization(p.transpose(2, 1).contiguous().view(-1, self.num_classes))
loss += entropy_loss
#if epoch >= self.start_epoch:
#print('ce loss: {:.4f}, smooth_loss: {:.4f}, uncertainty_loss: {:.4f}'.format(ce_loss, smooth_loss, uncertainty_loss))
epoch_loss += loss.item()
loss.backward()
optimizer.step()
_, predicted = torch.max(predictions[-1].data, 1)
correct += ((predicted == batch_target).float()*mask[:, 0, :].squeeze(1)).sum().item()
total += torch.sum(mask[:, 0, :]).item()
scheduler.step()
batch_gen.reset()
if self.pseudo == 'uncertainty' and epoch % 20 == 0 and epoch != self.num_epochs:
self.model.eval()
enable_dropout(self.model)
with torch.no_grad():
while batch_gen.has_next():
batch_input, _, _, mask = batch_gen.next_batch(batch_size)
batch_input, mask = batch_input.to(self.device), mask.to(self.device)
mc_probs = []
for _ in range(self.forward_times):
_, logits = self.model(batch_input, mask)
probs = F.softmax(logits[-1].squeeze(0).detach().transpose(2, 1), dim=2)
mc_probs.append(probs)
mc_probs = torch.stack(mc_probs, dim=0)
std = torch.std(mc_probs, dim=0)
mc_probs = torch.mean(mc_probs, dim=0)
predictions = torch.max(mc_probs, dim=2)[1]
# uncertainty_scores = std.gather(2, predictions.unsqueeze(-1))
uncertainty_scores = torch.sum(-mc_probs * torch.log(mc_probs), dim=2)
batch_gen.update_pseudo_labels(predictions, uncertainty_scores, thres=self.thres)
#batch_gen.update_pseudo_labels_all(predictions, uncertainty_scores, thres=self.thres)
if self.visualization:
data_dir = os.path.join(save_dir, 'train_epoch{}_score'.format(epoch))
if not os.path.exists(data_dir):
os.makedirs(data_dir)
vids, seq_lengths, timestamp_pos = batch_gen.get_useful_info()
for b, score in enumerate(uncertainty_scores):
np.save(os.path.join(data_dir, '{}.npy'.format(vids[b])), {'timestamp': timestamp_pos[b], 'score': score[:seq_lengths[b]].cpu().numpy()})
batch_gen.reset()
if self.visualization:
self.visualize(batch_gen, save_dir, epoch, batch_size)
torch.save(self.model.state_dict(), save_dir + "/epoch-" + str(epoch) + ".model")
torch.save(optimizer.state_dict(), save_dir + "/epoch-" + str(epoch) + ".opt")
writer.add_scalar('trainLoss', epoch_loss / len(batch_gen.list_of_samples), epoch)
writer.add_scalar('trainAcc', float(correct)/total, epoch)
print("Training loss = %f, acc = %f" % (epoch_loss / len(batch_gen.list_of_samples),
float(correct)/total))
self.predict(save_dir, epoch, batch_gen.sample_rate)
def visualize(self, batch_gen, save_dir, epoch, batch_size):
vis_dir = os.path.join(save_dir, 'train_epoch{}_seg'.format(epoch))
if not os.path.exists(vis_dir):
os.makedirs(vis_dir)
while batch_gen.has_next():
batch_input, batch_target, batch_pseudo_target, mask = batch_gen.next_batch(batch_size)
batch_input, mask = batch_input.to(self.device), mask.to(self.device)
_, logits = self.model(batch_input, mask)
vids, seq_lengths, timestamp_pos = batch_gen.get_useful_info()
for vi in range(len(batch_input)):
seq_length = seq_lengths[vi]
pseudo_target = batch_pseudo_target[vi][:seq_length]
target = batch_target[vi][:seq_length]
predicted = torch.max(logits[-1].data, dim=1)[1][vi].squeeze()[:seq_length]
pseudo_target[pseudo_target==-100] = 8 # 11
target[timestamp_pos[vi]] = 9 # 10
assert len(pseudo_target) == len(target) and len(target) == len(predicted)
self.segment_bars(os.path.join(vis_dir, '{}.png'.format(vids[vi])), ['gt', target], ['pseudo label', pseudo_target], ['predict', predicted])
batch_gen.reset()
def predict(self, model_dir, epoch, sample_rate):
label2phase_dicts = {
'cholec80':{
0: 'Preparation',
1: 'CalotTriangleDissection',
2: 'ClippingCutting',
3: 'GallbladderDissection',
4: 'GallbladderPackaging',
5: 'CleaningCoagulation',
6: 'GallbladderRetraction'},
'm2cai16':{
0: 'TrocarPlacement',
1: 'Preparation',
2: 'CalotTriangleDissection',
3: 'ClippingCutting',
4: 'GallbladderDissection',
5: 'GallbladderPackaging',
6: 'CleaningGoagulation',
7: 'GallbladderRetraction'}
}
res_dir = os.path.join(model_dir, 'predict')
if not os.path.exists(res_dir):
os.makedirs(res_dir)
self.model.eval()
with torch.no_grad():
self.model.to(self.device)
self.model.load_state_dict(torch.load(model_dir + "/epoch-" + str(epoch) + ".model"))
videos = [os.path.join(self.test_features, x) for x in sorted(os.listdir(self.test_features))]
annotations = [os.path.join(self.test_gt_path, x) for x in sorted(os.listdir(self.test_gt_path))]
vis_dir = os.path.join(model_dir, 'epoch{}_test_vis'.format(epoch))
if not os.path.exists(vis_dir):
os.makedirs(vis_dir)
vid_pre = 41 if len(videos) == 40 else 28
label2phase = label2phase_dicts['cholec80' if len(videos)==40 else 'm2cai16']
#all_pred_phase = []
#all_label_phase = []
#correct_phase = 0
#total_phase = 0
Acc = AverageMeter()
Pre = AverageMeter()
Rec = AverageMeter()
Jac = AverageMeter()
for vid, (video, anno) in enumerate(list(zip(videos, annotations))):
# print(vid)
features = np.load(video).transpose()
features = features[:, ::sample_rate]
with open(anno, 'r') as f:
content = f.read().split('\n')
if content[-1] == '':
content = content[:-1]
labels = np.zeros(len(content))
for i in range(len(content)):
labels[i] = self.phase2label[content[i].strip().split()[1]]
labels = torch.Tensor(labels[::sample_rate]).long().to(self.device)
input_x = torch.tensor(features, dtype=torch.float)
input_x.unsqueeze_(0)
input_x = input_x.to(self.device)
_, predictions = self.model(input_x, torch.ones(input_x.size(), device=self.device))
_, predicted = torch.max(predictions[-1].data, 1)
predicted = predicted.squeeze()
self.segment_bars(os.path.join(vis_dir, '{}.png'.format(video.split('/')[-1].split('.')[0])), ['gt', labels], ['predict', predicted])
correct_phase = torch.sum(predicted == labels)
total_phase = len(predicted)
pred_phase = []
label_phase = []
for i in range(len(predicted)):
pred_phase.append(int(predicted.data.cpu()[i]))
for i in range(len(labels)):
label_phase.append(int(labels[i]))
with open(os.path.join(res_dir, f'video{vid+vid_pre}_pred.txt'), 'w') as f:
f.write('Frame\tPhase\n')
for fid, each_pred in enumerate(predicted):
f.write('{}\t{}\n'.format(fid, label2phase[int(each_pred)]))
accuracy = correct_phase / total_phase
precision = metrics.precision_score(label_phase, pred_phase, average='macro')
recall = metrics.recall_score(label_phase, pred_phase, average='macro')
jaccard = metrics.jaccard_score(label_phase, pred_phase, average='macro')
#F1 = metrics.f1_score(label_phase, pred_phase, average='macro')
Acc.update(accuracy)
Pre.update(precision)
Rec.update(recall)
Jac.update(jaccard)
#accuracy = correct_phase / total_phase
#precision = metrics.precision_score(all_label_phase, all_pred_phase, average='macro')
#recall = metrics.recall_score(all_label_phase, all_pred_phase, average='macro')
#jaccard = metrics.jaccard_score(all_label_phase, all_pred_phase, average='macro')
#F1 = metrics.f1_score(all_label_phase, all_pred_phase, average='macro')
print('Evaluating from {} at epoch {}'.format(model_dir, epoch))
print(tabulate([['{:.2f}'.format(Acc.avg*100), '{:.2f}'.format(Jac.avg*100), '{:.2f}'.format(Pre.avg*100), '{:.2f}'.format(Rec.avg*100)]],
headers=['Accuracy', 'Jaccard', 'Precision', 'Recall'], tablefmt='orgtbl'))
#print('F1 score: {:.4f}'.format(F1))
def segment_bars_(self, save_path, *labels):
color_map = [
(255, 0, 0), # red
(255, 165, 0), # orange
(255, 255, 0), # yellow
(0, 255, 0), # green
(0, 127, 255), # cyan
(0, 0, 255), # blue
(139, 0, 255), # purple
(87, 105, 60), # dark green
(0, 0, 0), # black -> background
(255, 255, 255),# white -> timestamp
]
titles, labels = zip(*labels)
labels = [label.detach().cpu().numpy() for label in labels]
nrows = len(labels)
cmap = plt.cm.Paired
barprops = dict(aspect='auto', interpolation='none', cmap=cmap)
figh = 0.15 + 0.15 + (nrows + (nrows-1)*0.15)*0.5
fig, axs = plt.subplots(nrows=nrows, figsize=(7, figh))
fig.subplots_adjust(top=1-.35/figh, bottom=.15/figh, left=0.2, right=0.99)
for ax, title, label in zip(axs, titles, labels):
label = np.vstack([label, label])
#label = (label+0.5) / len(cmap.colors)
ax.text(-.01, .5, title, va='center', ha='right', fontsize=10, transform=ax.transAxes)
ax.imshow(label, **barprops)
ax.set_axis_off()
fig.savefig(save_path)
plt.close(fig)
def segment_bars(self, save_path, *labels):
def scale_lightness(rgb, scale_l):
import colorsys
h, l, s = colorsys.rgb_to_hls(*rgb)
return colorsys.hls_to_rgb(h, min(1, l * scale_l), s=s)
color_map = [
(255, 0, 0), # red
(255, 165, 0), # orange
(255, 255, 0), # yellow
(0, 255, 0), # green
(0, 127, 255), # cyan
(0, 0, 255), # blue
(139, 0, 255), # purple
(87, 105, 60), # dark green
(0, 0, 0), # black -> background
(255, 255, 255),# white -> timestamp
]
color_map = list(plt.cm.Paired.colors[:8])
color_map.append((1, 1, 1))
titles, labels = zip(*labels)
labels = [label.detach().cpu().numpy().astype(np.int32) for label in labels]
nrows = len(labels)
figh = 0.15 + 0.15 + (nrows + (nrows-1)*0.15)*0.5
fig, axs = plt.subplots(nrows=nrows, figsize=(7, figh))
fig.subplots_adjust(top=1-.35/figh, bottom=.15/figh, left=0.2, right=0.99)
for ax, title, label in zip(axs, titles, labels):
#width = 1 / len(label)
#x = np.linspace(width/2, 1-width/2, len(label))
width = 1
x = np.linspace(0.5, len(label)-0.5, len(label))
ax.text(-.01, .5, title, va='center', ha='right', fontsize=10, transform=ax.transAxes)
timestamp = []
for i, (x_, l_) in enumerate(zip(x, label)):
if l_ == 9:
color = color_map[label[i-1] if i>0 else label[i+1]]
timestamp.append((x_, color))
# ax.bar([x_], [1], width=width, color=scale_lightness(color, 1.7))
else:
ax.bar([x_], [1], width=width, color=color_map[l_], alpha=0.6)
for x_, color in timestamp:
ax.bar([x_], [1], width=width*10, color=scale_lightness(color, 0.8))
ax.set_axis_off()
fig.savefig(save_path)
plt.close(fig)