forked from microsoft/onnxruntime
-
Notifications
You must be signed in to change notification settings - Fork 0
/
C_Api_Sample.cpp
170 lines (142 loc) · 6.42 KB
/
C_Api_Sample.cpp
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
// Copyright(c) Microsoft Corporation.All rights reserved.
// Licensed under the MIT License.
//
#include <assert.h>
#include <onnxruntime_c_api.h>
#include <cmath>
#include <stdlib.h>
#include <stdio.h>
#include <vector>
const OrtApi* g_ort = OrtGetApiBase()->GetApi(ORT_API_VERSION);
//*****************************************************************************
// helper function to check for status
void CheckStatus(OrtStatus* status)
{
if (status != NULL) {
const char* msg = g_ort->GetErrorMessage(status);
fprintf(stderr, "%s\n", msg);
g_ort->ReleaseStatus(status);
exit(1);
}
}
int main(int argc, char* argv[]) {
//*************************************************************************
// initialize enviroment...one enviroment per process
// enviroment maintains thread pools and other state info
OrtEnv* env;
CheckStatus(g_ort->CreateEnv(ORT_LOGGING_LEVEL_WARNING, "test", &env));
// initialize session options if needed
OrtSessionOptions* session_options;
CheckStatus(g_ort->CreateSessionOptions(&session_options));
g_ort->SetIntraOpNumThreads(session_options, 1);
// Sets graph optimization level
g_ort->SetSessionGraphOptimizationLevel(session_options, ORT_ENABLE_BASIC);
// Optionally add more execution providers via session_options
// E.g. for CUDA include cuda_provider_factory.h and uncomment the following line:
// OrtSessionOptionsAppendExecutionProvider_CUDA(sessionOptions, 0);
//*************************************************************************
// create session and load model into memory
// using squeezenet version 1.3
// URL = https://github.com/onnx/models/tree/master/squeezenet
OrtSession* session;
#ifdef _WIN32
const wchar_t* model_path = L"squeezenet.onnx";
#else
const char* model_path = "squeezenet.onnx";
#endif
printf("Using Onnxruntime C API\n");
CheckStatus(g_ort->CreateSession(env, model_path, session_options, &session));
//*************************************************************************
// print model input layer (node names, types, shape etc.)
size_t num_input_nodes;
OrtStatus* status;
OrtAllocator* allocator;
CheckStatus(g_ort->GetAllocatorWithDefaultOptions(&allocator));
// print number of model input nodes
status = g_ort->SessionGetInputCount(session, &num_input_nodes);
std::vector<const char*> input_node_names(num_input_nodes);
std::vector<int64_t> input_node_dims; // simplify... this model has only 1 input node {1, 3, 224, 224}.
// Otherwise need vector<vector<>>
printf("Number of inputs = %zu\n", num_input_nodes);
// iterate over all input nodes
for (size_t i = 0; i < num_input_nodes; i++) {
// print input node names
char* input_name;
status = g_ort->SessionGetInputName(session, i, allocator, &input_name);
printf("Input %zu : name=%s\n", i, input_name);
input_node_names[i] = input_name;
// print input node types
OrtTypeInfo* typeinfo;
status = g_ort->SessionGetInputTypeInfo(session, i, &typeinfo);
const OrtTensorTypeAndShapeInfo* tensor_info;
CheckStatus(g_ort->CastTypeInfoToTensorInfo(typeinfo, &tensor_info));
ONNXTensorElementDataType type;
CheckStatus(g_ort->GetTensorElementType(tensor_info, &type));
printf("Input %zu : type=%d\n", i, type);
// print input shapes/dims
size_t num_dims;
CheckStatus(g_ort->GetDimensionsCount(tensor_info, &num_dims));
printf("Input %zu : num_dims=%zu\n", i, num_dims);
input_node_dims.resize(num_dims);
g_ort->GetDimensions(tensor_info, (int64_t*)input_node_dims.data(), num_dims);
for (size_t j = 0; j < num_dims; j++)
printf("Input %zu : dim %zu=%jd\n", i, j, input_node_dims[j]);
g_ort->ReleaseTypeInfo(typeinfo);
}
// Results should be...
// Number of inputs = 1
// Input 0 : name = data_0
// Input 0 : type = 1
// Input 0 : num_dims = 4
// Input 0 : dim 0 = 1
// Input 0 : dim 1 = 3
// Input 0 : dim 2 = 224
// Input 0 : dim 3 = 224
//*************************************************************************
// Similar operations to get output node information.
// Use OrtSessionGetOutputCount(), OrtSessionGetOutputName()
// OrtSessionGetOutputTypeInfo() as shown above.
//*************************************************************************
// Score the model using sample data, and inspect values
size_t input_tensor_size = 224 * 224 * 3; // simplify ... using known dim values to calculate size
// use OrtGetTensorShapeElementCount() to get official size!
std::vector<float> input_tensor_values(input_tensor_size);
std::vector<const char*> output_node_names = {"softmaxout_1"};
// initialize input data with values in [0.0, 1.0]
for (size_t i = 0; i < input_tensor_size; i++)
input_tensor_values[i] = (float)i / (input_tensor_size + 1);
// create input tensor object from data values
OrtMemoryInfo* memory_info;
CheckStatus(g_ort->CreateCpuMemoryInfo(OrtArenaAllocator, OrtMemTypeDefault, &memory_info));
OrtValue* input_tensor = NULL;
CheckStatus(g_ort->CreateTensorWithDataAsOrtValue(memory_info, input_tensor_values.data(), input_tensor_size * sizeof(float), input_node_dims.data(), 4, ONNX_TENSOR_ELEMENT_DATA_TYPE_FLOAT, &input_tensor));
int is_tensor;
CheckStatus(g_ort->IsTensor(input_tensor, &is_tensor));
assert(is_tensor);
g_ort->ReleaseMemoryInfo(memory_info);
// score model & input tensor, get back output tensor
OrtValue* output_tensor = NULL;
CheckStatus(g_ort->Run(session, NULL, input_node_names.data(), (const OrtValue* const*)&input_tensor, 1, output_node_names.data(), 1, &output_tensor));
CheckStatus(g_ort->IsTensor(output_tensor, &is_tensor));
assert(is_tensor);
// Get pointer to output tensor float values
float* floatarr;
CheckStatus(g_ort->GetTensorMutableData(output_tensor, (void**)&floatarr));
assert(std::abs(floatarr[0] - 0.000045) < 1e-6);
// score the model, and print scores for first 5 classes
for (int i = 0; i < 5; i++)
printf("Score for class [%d] = %f\n", i, floatarr[i]);
// Results should be as below...
// Score for class[0] = 0.000045
// Score for class[1] = 0.003846
// Score for class[2] = 0.000125
// Score for class[3] = 0.001180
// Score for class[4] = 0.001317
g_ort->ReleaseValue(output_tensor);
g_ort->ReleaseValue(input_tensor);
g_ort->ReleaseSession(session);
g_ort->ReleaseSessionOptions(session_options);
g_ort->ReleaseEnv(env);
printf("Done!\n");
return 0;
}