-
Notifications
You must be signed in to change notification settings - Fork 2
/
Copy pathdemo.m
162 lines (147 loc) · 6.47 KB
/
demo.m
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
clc; clearvars; close all; rng(0);
nRepeats=8;
nn=1;
Lambdas=10.^(-6:2:6);
nVs=1:3;
LN0={'kNN','SVM','BLS','MvBLS'};
LN=cell(1,length(LN0)*length(nVs));
for i=1:length(nVs)
LN(1+(i-1)*length(LN0):i*length(LN0))=strcat(LN0, ['-nV' num2str(nVs(i))]);
end
nAlgs=length(LN);
datasets={'goI08272012-01'}%{'Igo08282012-01'}
% Display results in parallel computing
dqWorker = parallel.pool.DataQueue; afterEach(dqWorker, @(data) fprintf('%d-%d ', data{1},data{2})); % print progress of parfor
[BCAtrain,BCAtune,BCAtest]=deal(cellfun(@(u)nan(length(datasets),nAlgs),cell(nRepeats,1),'UniformOutput',false));
[times,BestLambda]=deal(cellfun(@(u)nan(length(datasets),nAlgs),cell(nRepeats,1),'UniformOutput',false));
BestmIter=cellfun(@(u)ones(length(datasets),nAlgs),cell(nRepeats,1),'UniformOutput',false);
thres=cellfun(@(u)-inf(length(datasets),nAlgs),cell(nRepeats,1),'UniformOutput',false);
delete(gcp('nocreate'))
parpool(nRepeats);
parfor r=1:nRepeats
dataDisp=cell(1,2); dataDisp{1}=r;
for s=1:length(datasets)
dataDisp{2} = s; send(dqWorker,dataDisp); % Display progress in parfor
temp=load(['./' datasets{s} '.mat']);
tX=temp.X; Y=temp.Y;
tX=cellfun(@(x)double(x(:,:)),tX,'UniformOutput',false);
N0=size(tX{1},1);
N=round(N0*.8);
idsTrain=datasample(1:N0,N,'replace',false);
N1=round(N0*.1);
idsTune=datasample(1:(N0-N),N1,'replace',false);
id=0;
for v=nVs
if v>length(tX)
X=cell2mat(tX);
else
X=tX{v};
end
X = zscore(X);
XTrain=X(idsTrain,:); yTrain=Y(idsTrain);
XTest=X; XTest(idsTrain,:)=[];
yTest=Y; yTest(idsTrain)=[];
XTune=XTest(idsTune,:); yTune=yTest(idsTune);
XTest(idsTune,:)=[]; yTest(idsTune)=[];
trainInd=idsTrain;
testInd=1:N0;testInd(idsTrain)=[];
tuneInd=testInd(idsTune);
testInd(idsTune)=[];
MXTrain=mean(XTrain);
XTrain=XTrain-MXTrain; XTune=XTune-MXTrain; XTest=XTest-MXTrain;
MvXTrain=cellfun(@(x)double(x(trainInd,:)),tX,'UniformOutput',false);
MvXTune=cellfun(@(x)double(x(tuneInd,:)),tX,'UniformOutput',false);
MvXTest=cellfun(@(x)double(x(testInd,:)),tX,'UniformOutput',false);
MXTrain=cellfun(@(x)mean(x),MvXTrain,'UniformOutput',false);
MvXTrain=cellfun(@(x,mx)x-mx,MvXTrain,MXTrain,'UniformOutput',false);
MvXTune=cellfun(@(x,mx)x-mx,MvXTune,MXTrain,'UniformOutput',false);
MvXTest=cellfun(@(x,mx)x-mx,MvXTest,MXTrain,'UniformOutput',false);
%% kNN
tic
id=id+1;
model = fitcknn(XTrain,yTrain,'NumNeighbors',nn,'Distance','euclidean','Standardize',1);
BCAtrain{r}(s,id) = CacluateBCA(yTrain,predict(model,XTrain));
BCAtune{r}(s,id) = CacluateBCA(yTune,predict(model,XTune));
BCAtest{r}(s,id) = CacluateBCA(yTest,predict(model,XTest));
times{r}(s,id)=toc;
%% SVM
tic
id=id+1;
for c=Lambdas
SVM = templateSVM('BoxConstraint',c,'KernelFunction','linear','Standardize',1);
model = fitcecoc(XTrain,yTrain,'Learners',SVM);% error-correcting output codes (ECOC)
tmp=CacluateBCA(yTune,predict(model,XTune));
if tmp>BCAtune{r}(s,id)||isnan(BCAtune{r}(s,id))
BCAtune{r}(s,id)=tmp;
BestLambda{r}(s,id)=c;
BCAtrain{r}(s,id) = CacluateBCA(yTrain,predict(model,XTrain));
BCAtest{r}(s,id) = CacluateBCA(yTest,predict(model,XTest));
end
end
times{r}(s,id)=toc;
%% BLS
tic
id=id+1;
[BCAtrain{r}(s,id),testBCA,BestLambda{r}(s,id)]=BLS(XTrain,yTrain,{XTune,XTest},{yTune,yTest},Lambdas);
BCAtune{r}(s,id)=testBCA{1};
BCAtest{r}(s,id)=testBCA{2};
times{r}(s,id)=toc;
%% MvBLS
id=id+1;
if v>length(tX)
tic
[BCAtrain{r}(s,id),testBCA,BestLambda{r}(s,id)]=BLS(MvXTrain,yTrain,{MvXTune,MvXTest},{yTune,yTest},Lambdas);
BCAtune{r}(s,id)=testBCA{1};
BCAtest{r}(s,id)=testBCA{2};
times{r}(s,id)=toc;
else
[BCAtrain{r}(s,id),BCAtune{r}(s,id),BCAtest{r}(s,id),BestLambda{r}(s,id)]=deal(BCAtrain{r}(s,id-1),BCAtune{r}(s,id-1),BCAtest{r}(s,id-1),BestLambda{r}(s,id-1));
end
end
end
end
save('demo.mat','BCAtrain','BCAtune','BCAtest','times','BestLambda','datasets','nAlgs','LN','LN0','Lambdas','nRepeats','nVs');
%% Plot results
clear
load demo
totalHours=nansum(reshape(cat(1,times{:}),1,[]))/3600/8
close all;
lineStyles={'k--','k-','g--','g-','b--','b-','r--','r-','m--','m-','c--','c-'};
ids=1:length(LN0);
figure;
set(gcf,'DefaulttextFontName','times new roman','DefaultaxesFontName','times new roman','defaultaxesfontsize',12);
hold on;
for s=1:length(datasets)
tmpt=cellfun(@(u)squeeze(u(s,:)),BCAtest,'UniformOutput',false);
tmpt=nanmean(cat(3,tmpt{:}),3);
tmpt=reshape(tmpt,length(LN0),length(nVs));
for i=ids
plot(tmpt(i,:),lineStyles{i},'linewidth',2);
end
set(gca,'XTick',nVs);
set(gca,'yscale','log');
xlabel('View'); ylabel('BCA'); box on; axis tight;
title(datasets{s});
end
legend(LN0,'FontSize',12,'NumColumns',2);
ids=1:length(LN);
[tmp,ttmp]=deal(nan(length(datasets),length(LN),nRepeats));
for s=1:length(datasets)
ttmp0=cellfun(@(u)squeeze(u(s,ids)),times,'UniformOutput',false);
ttmp(s,ids,:)=cat(1,ttmp0{:})';
for id=1:length(LN)
try
tmp(s,id,:)=cell2mat(cellfun(@(u,m)squeeze(u(s,id,find(m(s,id,:)==max(m(s,id,:)),1))),BCAtest,BCAtune,'UniformOutput',false));
catch
end
end
end
A=[nanmean(nanmean(tmp(:,ids,:),1),3);
nanstd(nanmean(tmp(:,ids,:),1),[],3);
nanmean(nanmean(ttmp(:,ids,:),1),3);
nanstd(nanmean(ttmp(:,ids,:),1),[],3)];
a=squeeze(nanmean(tmp(:,ids,:),3));
a=[a;nanmean(a,1)]; sa=sort(a,2);
b=a==sa(:,1);c=a==sa(:,2);
at=squeeze(nanmean(ttmp(:,ids,:),3));
al=nanmean(cat(3,BestLambda{:}),3); al=[al;nanmean(al,1)];