-
Notifications
You must be signed in to change notification settings - Fork 16
/
Copy pathutils.py
312 lines (262 loc) · 11.3 KB
/
utils.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
from __future__ import print_function
import numpy as np
import os
import codecs
import logging
from tempfile import mkstemp
from itertools import izip
class AttrDict(dict):
"""
Dictionary whose keys can be accessed as attributes.
"""
def __init__(self, *args, **kwargs):
super(AttrDict, self).__init__(*args, **kwargs)
def __getattr__(self, item):
if type(self[item]) is dict:
self[item] = AttrDict(self[item])
return self[item]
class DataUtil(object):
"""
Util class for creating batches for training and testing.
"""
def __init__(self, config):
self.config = config
self._logger = logging.getLogger('util')
#self.load_vocab()
def load_vocab(self,
src_vocab=None,
dst_vocab=None,
src_vocab_size=None,
dst_vocab_size=None):
"""
Load vocab from disk. The fisrt four items in the vocab should be <PAD>, <UNK>, <S>, </S>
"""
def load_vocab_(path, vocab_size):
vocab = [line.split()[0] for line in codecs.open(path, 'r', 'utf-8')]
vocab = vocab[:vocab_size]
assert len(vocab) == vocab_size
word2idx = {word: idx for idx, word in enumerate(vocab)}
idx2word = {idx: word for idx, word in enumerate(vocab)}
return word2idx, idx2word
if src_vocab and dst_vocab and src_vocab_size and dst_vocab_size:
self._logger.debug('Load set vocabularies as %s and %s.' % (src_vocab, dst_vocab))
self.src2idx, self.idx2src = load_vocab_(src_vocab, src_vocab_size)
self.dst2idx, self.idx2dst = load_vocab_(dst_vocab, dst_vocab_size)
else:
self._logger.debug('Load vocabularies %s and %s.' % (self.config.src_vocab, self.config.dst_vocab))
self.src2idx, self.idx2src = load_vocab_(self.config.src_vocab, self.config.src_vocab_size)
self.dst2idx, self.idx2dst = load_vocab_(self.config.dst_vocab, self.config.dst_vocab_size)
def get_training_batches(self,
shuffle=True,
set_train_src_path=None,
set_train_dst_path=None,
set_batch_size=None,
set_max_length=None):
"""
Generate batches with fixed batch size.
"""
if set_train_src_path and set_train_dst_path:
src_path=set_train_src_path
dst_path=set_train_dst_path
else:
src_path = self.config.train.src_path
dst_path = self.config.train.dst_path
if set_batch_size:
batch_size=set_batch_size
else:
batch_size = self.config.train.batch_size
if set_max_length:
max_length=set_max_length
else:
max_length = self.config.train.max_length
# Shuffle the training files.
if shuffle:
src_shuf_path, dst_shuf_path = self.shuffle([src_path, dst_path])
else:
src_shuf_path = src_path
dst_shuf_path = dst_path
src_sents, dst_sents = [], []
for src_sent, dst_sent in izip(codecs.open(src_shuf_path, 'r', 'utf8'),
codecs.open(dst_shuf_path, 'r', 'utf8')):
# If exceed the max length, abandon this sentence pair.
src_sent = src_sent.split()
dst_sent = dst_sent.split()
if len(src_sent) > max_length or len(dst_sent) > max_length:
continue
src_sents.append(src_sent)
dst_sents.append(dst_sent)
# Create a padded batch.
if len(src_sents) >= batch_size:
yield self.create_batch(src_sents, o='src'), self.create_batch(dst_sents, o='dst')
src_sents, dst_sents = [], []
if src_sents and dst_sents:
yield self.create_batch(src_sents, o='src'), self.create_batch(dst_sents, o='dst')
# Remove shuffled files when epoch finished.
if shuffle:
os.remove(src_shuf_path)
os.remove(dst_shuf_path)
def get_training_batches_with_buckets(self, shuffle=True):
"""
Generate batches according to bucket setting.
"""
buckets = [(i, i) for i in range(10, 100, 5)] + [(self.config.train.max_length, self.config.train.max_length)]
def select_bucket(sl, dl):
for l1, l2 in buckets:
if sl < l1 and dl < l2:
return (l1, l2)
return None
# Shuffle the training files.
src_path = self.config.train.src_path
dst_path = self.config.train.dst_path
if shuffle:
self._logger.debug('Shuffle files %s and %s.' % (src_path, dst_path))
src_shuf_path, dst_shuf_path = self.shuffle([src_path, dst_path])
else:
src_shuf_path = src_path
dst_shuf_path = dst_path
caches = {}
for bucket in buckets:
caches[bucket] = [[], [], 0, 0] # src sentences, dst sentences, src tokens, dst tokens
for src_sent, dst_sent in izip(codecs.open(src_shuf_path, 'r', 'utf8'),
codecs.open(dst_shuf_path, 'r', 'utf8')):
src_sent = src_sent.split()
dst_sent = dst_sent.split()
bucket = select_bucket(len(src_sent), len(dst_sent))
if bucket is None: # No bucket is selected when the sentence length exceed the max length.
continue
caches[bucket][0].append(src_sent)
caches[bucket][1].append(dst_sent)
caches[bucket][2] += len(src_sent)
caches[bucket][3] += len(dst_sent)
if max(caches[bucket][2], caches[bucket][3]) >= self.config.train.tokens_per_batch:
batch = (self.create_batch(caches[bucket][0], o='src'), self.create_batch(caches[bucket][1], o='dst'))
self._logger.debug(
'Yield batch with source shape %s and target shape %s.' % (batch[0].shape, batch[1].shape))
yield batch
caches[bucket] = [[], [], 0, 0]
# Clean remain sentences.
for bucket in buckets:
# Ensure each device at least get one sample.
if len(caches[bucket][0]) > len(self.config.train.devices.split(',')):
batch = (self.create_batch(caches[bucket][0], o='src'), self.create_batch(caches[bucket][1], o='dst'))
self._logger.debug(
'Yield batch with source shape %s and target shape %s.' % (batch[0].shape, batch[1].shape))
yield batch
# Remove shuffled files when epoch finished.
if shuffle:
os.remove(src_shuf_path)
os.remove(dst_shuf_path)
@staticmethod
def shuffle(list_of_files):
tf_os, tpath = mkstemp()
tf = open(tpath, 'w')
fds = [open(ff) for ff in list_of_files]
for l in fds[0]:
lines = [l.strip()] + [ff.readline().strip() for ff in fds[1:]]
print("|||||".join(lines), file=tf)
[ff.close() for ff in fds]
tf.close()
os.system('shuf %s > %s' % (tpath, tpath + '.shuf'))
fds = [open(ff + '.{}.shuf'.format(os.getpid()), 'w') for ff in list_of_files]
for l in open(tpath + '.shuf'):
s = l.strip().split('|||||')
for i, fd in enumerate(fds):
print(s[i], file=fd)
[ff.close() for ff in fds]
os.remove(tpath)
os.remove(tpath + '.shuf')
return [ff + '.{}.shuf'.format(os.getpid()) for ff in list_of_files]
def get_test_batches(self,
set_src_path=None,
set_batch=None,
o='src'):
if set_src_path and set_batch:
src_path=set_src_path
batch_size=set_batch
else:
src_path = self.config.test.src_path
batch_size = self.config.test.batch_size
# Read batches from test files.
src_sents = []
for src_sent in codecs.open(src_path, 'r', 'utf8'):
src_sent = src_sent.split()
src_sents.append(src_sent)
# Create a padded batch.
if len(src_sents) >= batch_size:
yield self.create_batch(src_sents, o=o)
src_sents = []
if src_sents:
yield self.create_batch(src_sents, o=o)
def get_test_batches_with_target(self,
set_test_src_path=None,
set_test_dst_path=None,
set_batch_size=None,
src_o='src',
trg_o='dst'):
"""
Usually we don't need target sentences for test unless we want to compute PPl.
Returns:
Paired source and target batches.
"""
if set_test_src_path and set_test_dst_path and set_batch_size:
src_path=set_test_src_path
dst_path=set_test_dst_path
batch_size=set_batch_size
else:
src_path = self.config.test.src_path
dst_path = self.config.test.dst_path
batch_size = self.config.test.batch_size
# Read batches from test files.
src_sents, dst_sents = [], []
for src_sent, dst_sent in izip(codecs.open(src_path, 'r', 'utf8'),
codecs.open(dst_path, 'r', 'utf8')):
src_sent = src_sent.split()
dst_sent = dst_sent.split()
src_sents.append(src_sent)
dst_sents.append(dst_sent)
# Create a padded batch.
if len(src_sents) >= batch_size:
yield self.create_batch(src_sents, o=src_o), self.create_batch(dst_sents, o=trg_o)
src_sents, dst_sents = [], []
if src_sents:
yield self.create_batch(src_sents, o=src_o), self.create_batch(dst_sents, o=trg_o)
def create_batch(self, sents, o):
# Convert words to indices.
assert o in ('src', 'dst')
word2idx = self.src2idx if o == 'src' else self.dst2idx
indices = []
for sent in sents:
x = [word2idx.get(word, 1) for word in (sent + [u"</S>"])] # 1: OOV, </S>: End of Text
indices.append(x)
# Pad to the same length.
maxlen = max([len(s) for s in indices])
X = np.zeros([len(indices), maxlen], np.int32)
for i, x in enumerate(indices):
X[i, :len(x)] = x
return X
def indices_to_words(self, Y, o='dst'):
assert o in ('src', 'dst')
idx2word = self.idx2src if o == 'src' else self.idx2dst
sents = []
for y in Y: # for each sentence
sent = []
for i in y: # For each word
if i == 3: # </S>
break
w = idx2word[i]
sent.append(w)
sents.append(' '.join(sent))
return sents
def indices_to_words_del_pad(self, Y, o='dst'):
assert o in ('src', 'dst')
idx2word = self.idx2src if o == 'src' else self.idx2dst
pad_index = idx2word
sents=[]
for y in Y:
sent= []
for i in y:
if i > 0:
w = idx2word[i]
sent.append(w)
sents.append(' '.join(sent))
return sents