forked from DataXujing/vehicle-license-plate-recognition
-
Notifications
You must be signed in to change notification settings - Fork 0
/
card_seg.py
182 lines (148 loc) · 5.36 KB
/
card_seg.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
import cv2
import numpy as np
from numpy.linalg import norm
import sys
import os
import json
from car_id_detect import *
from svm_train import *
SZ = 20 #训练图片长宽
MAX_WIDTH = 1000 #原始图片最大宽度
Min_Area = 2000 #车牌区域允许最大面积
PROVINCE_START = 1000
svm_model = SVM(C=1, gamma=0.5)
model_1,model_2 = svm_model.train_svm()
def find_waves(threshold, histogram):
'''
根据设定的阈值和图片直方图,找出波峰,用于分隔字符
'''
up_point = -1 #上升点
is_peak = False
if histogram[0] > threshold:
up_point = 0
is_peak = True
wave_peaks = []
for i,x in enumerate(histogram):
if is_peak and x < threshold:
if i - up_point > 2:
is_peak = False
wave_peaks.append((up_point, i))
elif not is_peak and x >= threshold:
is_peak = True
up_point = i
if is_peak and up_point != -1 and i - up_point > 4:
wave_peaks.append((up_point, i))
return wave_peaks
def seperate_card(img, waves):
'''
根据找出的波峰,分隔图片,从而得到逐个字符图片
'''
part_cards = []
for wave in waves:
part_cards.append(img[:, wave[0]:wave[1]])
return part_cards
def Cardseg(rois,colors,save_path):
'''
把一个roi列表和color列表,对应的每个车牌分割成一个一个的字
然后做预测分类
当然也可以考虑OCR的办法,这里使用的是传统的分类问题解决的!!!!
'''
seg_dic = {}
old_seg_dic = {}
for i, color in enumerate(colors):
if color in ("blue", "yello", "green"):
card_img = rois[i]
gray_img = cv2.cvtColor(card_img, cv2.COLOR_BGR2GRAY)
#黄、绿车牌字符比背景暗、与蓝车牌刚好相反,所以黄、绿车牌需要反向
if color == "green" or color == "yello":
gray_img = cv2.bitwise_not(gray_img)
ret, gray_img = cv2.threshold(gray_img, 0, 255, cv2.THRESH_BINARY + cv2.THRESH_OTSU)
#查找水平直方图波峰
x_histogram = np.sum(gray_img, axis=1)
x_min = np.min(x_histogram)
x_average = np.sum(x_histogram)/x_histogram.shape[0]
x_threshold = (x_min + x_average)/2
wave_peaks = find_waves(x_threshold, x_histogram)
if len(wave_peaks) == 0:
# print("peak less 0:")
continue
#认为水平方向,最大的波峰为车牌区域
wave = max(wave_peaks, key=lambda x:x[1]-x[0])
gray_img = gray_img[wave[0]:wave[1]]
#查找垂直直方图波峰
row_num, col_num= gray_img.shape[:2]
#去掉车牌上下边缘1个像素,避免白边影响阈值判断
gray_img = gray_img[1:row_num-1]
y_histogram = np.sum(gray_img, axis=0)
y_min = np.min(y_histogram)
y_average = np.sum(y_histogram)/y_histogram.shape[0]
y_threshold = (y_min + y_average)/5 #U和0要求阈值偏小,否则U和0会被分成两半
wave_peaks = find_waves(y_threshold, y_histogram)
#for wave in wave_peaks:
# cv2.line(card_img, pt1=(wave[0], 5), pt2=(wave[1], 5), color=(0, 0, 255), thickness=2)
#车牌字符数应大于6
if len(wave_peaks) <= 6:
# print("peak less 1:", len(wave_peaks))
continue
wave = max(wave_peaks, key=lambda x:x[1]-x[0])
max_wave_dis = wave[1] - wave[0]
#判断是否是左侧车牌边缘
if wave_peaks[0][1] - wave_peaks[0][0] < max_wave_dis/3 and wave_peaks[0][0] == 0:
wave_peaks.pop(0)
#组合分离汉字
cur_dis = 0
for i,wave in enumerate(wave_peaks):
if wave[1] - wave[0] + cur_dis > max_wave_dis * 0.6:
break
else:
cur_dis += wave[1] - wave[0]
if i > 0:
wave = (wave_peaks[0][0], wave_peaks[i][1])
wave_peaks = wave_peaks[i+1:]
wave_peaks.insert(0, wave)
#去除车牌上的分隔点
point = wave_peaks[2]
if point[1] - point[0] < max_wave_dis/3:
point_img = gray_img[:,point[0]:point[1]]
if np.mean(point_img) < 255/5:
wave_peaks.pop(2)
if len(wave_peaks) <= 6:
# print("peak less 2:", len(wave_peaks))
continue
part_cards = seperate_card(gray_img, wave_peaks)
predict_result = []
for i, part_card in enumerate(part_cards):
#可能是固定车牌的铆钉
if np.mean(part_card) < 255/5:
# print("a point")
continue
part_card_old = part_card
w = abs(part_card.shape[1] - SZ)//2
part_card = cv2.copyMakeBorder(part_card, 0, 0, w, w, cv2.BORDER_CONSTANT, value = [0,0,0]) #用来给图片添加边框
part_card = cv2.resize(part_card, (SZ, SZ), interpolation=cv2.INTER_AREA)
#part_card = deskew(part_card)
part_card = preprocess_hog([part_card])
if i == 0:
resp = model_2.predict(part_card)
charactor = provinces[int(resp[0]) - PROVINCE_START]
else:
resp = model_1.predict(part_card)
charactor = chr(resp[0])
#判断最后一个数是否是车牌边缘,假设车牌边缘被认为是1
if charactor == "1" and i == len(part_cards)-1:
if part_card_old.shape[0]/part_card_old.shape[1] >= 7:#1太细,认为是边缘
continue
predict_result.append(charactor)
# # 保存图片
# cv2.imwrite(os.path.join(save_path,str(i)+".jpg"),part_card)
seg_dic[i] = part_cards
old_seg_dic[i] = part_card_old
return seg_dic, old_seg_dic, predict_result
if __name__ == "__main__":
for pic_file in os.listdir("./test_img"):
roi, label, color = CaridDetect(os.path.join("./test_img",pic_file))
save_path = "./result_seg/"+pic_file.split(".")[0]
if not os.path.exists(save_path):
os.makedirs(save_path)
seg_dict, _ , pre= Cardseg([roi],[color],save_path)
print(pre)