We read every piece of feedback, and take your input very seriously.
To see all available qualifiers, see our documentation.
Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.
By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.
Already on GitHub? Sign in to your account
参考https://blog.csdn.net/VickyChenVC/article/details/107861708
优先读取头文件信息参数。2022年之后的GF1数据应该是改版了。可以用ENVI的国产卫星工具打开,能正常识别参数。或者在https://data.cresda.cn/#/home 查看影像具体信息。可以自行对比头文件在考虑是否修改。
# 传感器类型 自定义 s.geometry = Geometry.User() s.geometry.solar_z = 90-float(dom.getElementsByTagName('SolarZenith')[0].firstChild.data) s.geometry.solar_a = float(dom.getElementsByTagName('SolarAzimuth')[0].firstChild.data) # s.geometry.view_z = float(dom.getElementsByTagName('SatelliteZenith')[0].firstChild.data) # s.geometry.view_a = float(dom.getElementsByTagName('SatelliteAzimuth')[0].firstChild.data) s.geometry.view_z = 0 s.geometry.view_a = 0
考虑调整为:
# 传感器类型 自定义 s.geometry = Geometry.User() # 2022年之后的数据头文件中SolarZenith为太阳天顶角。不需要90- # s.geometry.solar_z = 90-float(dom.getElementsByTagName('SolarZenith')[0].firstChild.data) s.geometry.solar_z = float(dom.getElementsByTagName('SolarZenith')[0].firstChild.data) s.geometry.solar_a = float(dom.getElementsByTagName('SolarAzimuth')[0].firstChild.data) # 读取头文件信息进行计算 s.geometry.view_z = float(dom.getElementsByTagName('SatelliteZenith')[0].firstChild.data) s.geometry.view_a = float(dom.getElementsByTagName('SatelliteAzimuth')[0].firstChild.data) # s.geometry.view_z = 0 # s.geometry.view_a = 0
# 气溶胶类型大陆 s.aero_profile = AtmosProfile.PredefinedType(AeroProfile.Continental) # 下垫面类型 s.ground_reflectance = GroundReflectance.HomogeneousLambertian(0.36) # 550nm气溶胶光学厚度,对应能见度为40km s.aot550 = 0.14497
定标系数以及光谱响应函数下载:https://www.cresda.com/zgzywxyyzx/zlxz/article/20240416163618563132683.html
具体更新方法:https://blog.csdn.net/qq_15038823/article/details/140120644?spm=1001.2101.3001.6650.2&depth_1-utm_source=distribute.pc_relevant.none-task-blog-2%7Edefault%7EYuanLiJiHua%7EPosition-2-140120644-blog-110977519.235%5Ev43%5Epc_blog_bottom_relevance_base7
在“RadiometricCorrectionParameter.json”的相应位置添加不同传感器、不同波段对应的Gain、Offset值,以及高分六号的光谱响应函数(SRF)数值,SRF需要按照官网提供的1nm间隔插值制作为2.5nm间隔的
The text was updated successfully, but these errors were encountered:
感谢大佬的代码
Sorry, something went wrong.
No branches or pull requests
明确参数的意义
参考https://blog.csdn.net/VickyChenVC/article/details/107861708
6S参数的设置
优先读取头文件信息参数。2022年之后的GF1数据应该是改版了。可以用ENVI的国产卫星工具打开,能正常识别参数。或者在https://data.cresda.cn/#/home 查看影像具体信息。可以自行对比头文件在考虑是否修改。
考虑调整为:
其他参数设置
参考https://blog.csdn.net/VickyChenVC/article/details/107861708
json文件更新
定标系数以及光谱响应函数下载:https://www.cresda.com/zgzywxyyzx/zlxz/article/20240416163618563132683.html
具体更新方法:https://blog.csdn.net/qq_15038823/article/details/140120644?spm=1001.2101.3001.6650.2&depth_1-utm_source=distribute.pc_relevant.none-task-blog-2%7Edefault%7EYuanLiJiHua%7EPosition-2-140120644-blog-110977519.235%5Ev43%5Epc_blog_bottom_relevance_base7
The text was updated successfully, but these errors were encountered: