forked from MehdiHmidi523/DeepRL-Navigation
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathagentKinematics.py
129 lines (113 loc) · 6.52 KB
/
agentKinematics.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
import cv2
import numpy as np
#机器人类
class RoboticAssistant:
def __init__(self, v_range=60, w_range=90, d=5, wu=9, wv=4, car_w=9, car_f=7, car_r=10, dt=0.1):
#机器人的位姿:坐标和朝向->x, y, theta
self.x = 0
self.y = 0
self.theta = 0
self.record = [] #机器人的位姿记录
#机器人的控制参数:线速度velocity和角速度angular_velocity
self.velocity = 0
self.angular_velocity = 0
#线速度和角速度限幅
self.v_interval = v_range
self.w_interval = w_range
self.delta_time = dt #步进时间
#机器人的几何参数描述,这里将机器人看作一个长方形,通过机器人的几何参数计算长方形的四个顶点的坐标
self.d = d
self.wu = wu
self.wv = wv
self.car_w = car_w
self.car_f = car_f
self.car_r = car_r
self.corps()
#update robot state,计算机器人下一步的状态
def update(self):
#对机器人速度进行限幅
if self.velocity > self.v_interval:
self.velocity = self.v_interval
elif self.velocity < -self.v_interval:
self.velocity = -self.v_interval
if self.angular_velocity > self.w_interval:
self.angular_velocity = self.w_interval
elif self.angular_velocity < -self.w_interval:
self.angular_velocity = -self.w_interval
#计算机器人的下一步坐标与朝向
self.x += self.velocity * np.cos(np.deg2rad(self.theta)) * self.delta_time
self.y += self.velocity * np.sin(np.deg2rad(self.theta)) * self.delta_time
self.theta += self.angular_velocity * self.delta_time
self.theta = self.theta % 360 #归一化
#记录坐标
self.record.append((self.x, self.y, self.theta))
self.corps()#记录机器人轮廓的坐标
def redo(self):
self.x -= self.velocity * np.cos(np.deg2rad(self.theta)) * self.delta_time
self.y -= self.velocity * np.sin(np.deg2rad(self.theta)) * self.delta_time
self.theta -= self.angular_velocity * self.delta_time
self.theta = self.theta % 360
self.record.pop()
def control(self, v, w):
#机器人控制函数,就是对v,w进行限幅,然后使用update函数直接计算下一个坐标位置
self.velocity = v
self.angular_velocity = w
if self.velocity > self.v_interval:
self.velocity = self.v_interval
elif self.velocity < -self.v_interval:
self.velocity = -self.v_interval
if self.angular_velocity > self.w_interval:
self.angular_velocity = self.w_interval
elif self.angular_velocity < -self.w_interval:
self.angular_velocity = -self.w_interval
def corps(self):
#计算机器人轮廓的坐标
p1 = change_direction_vis(self.car_f, self.car_w / 2, -self.theta) + np.array((self.x, self.y))
p2 = change_direction_vis(self.car_f, -self.car_w / 2, -self.theta) + np.array((self.x, self.y))
p3 = change_direction_vis(-self.car_r, self.car_w / 2, -self.theta) + np.array((self.x, self.y))
p4 = change_direction_vis(-self.car_r, -self.car_w / 2, -self.theta) + np.array((self.x, self.y))
self.dimensions = (p1.astype(int), p2.astype(int), p3.astype(int), p4.astype(int))
def render(self, img=np.ones((600, 600, 3))):
#渲染程序,也就是将机器人轨迹和雷达等进行可视化
rm = 1000 #绘制的最大轨迹点数
start = 0 if len(self.record) < rm else len(self.record) - rm #截取绘制的部分
color = (0 / 255, 97 / 255, 255 / 255) #设置历史轨迹颜色
#使用opencv进行描点
for i in range(start, len(self.record) - 1):
cv2.line(img, (int(self.record[i][0]), int(self.record[i][1])),
(int(self.record[i + 1][0]), int(self.record[i + 1][1])), color, 1)
#绘制机器人的轮廓(长方形顶点坐标)
ed1, ed2, ed3, ed4 = self.dimensions
color = (0, 0, 0)#设置颜色
size = 1
cv2.line(img, tuple(ed1.astype(np.int).tolist()), tuple(ed2.astype(np.int).tolist()), color, size)
cv2.line(img, tuple(ed1.astype(np.int).tolist()), tuple(ed3.astype(np.int).tolist()), color, size)
cv2.line(img, tuple(ed3.astype(np.int).tolist()), tuple(ed4.astype(np.int).tolist()), color, size)
cv2.line(img, tuple(ed2.astype(np.int).tolist()), tuple(ed4.astype(np.int).tolist()), color, size)
#朝向箭头的绘制
arrow1 = change_direction_vis(6, 0, -self.theta) + np.array((self.x, self.y))
arrow2 = change_direction_vis(0, 4, -self.theta) + np.array((self.x, self.y))
arrow3 = change_direction_vis(0, -4, -self.theta) + np.array((self.x, self.y))
cv2.line(img, (int(self.x), int(self.y)), (int(arrow1[0]), int(arrow1[1])), (0, 0, 1), 2)
cv2.line(img, (int(arrow2[0]), int(arrow2[1])), (int(arrow3[0]), int(arrow3[1])), (1, 0, 0), 2)
w1 = change_direction_vis(0, self.d, -self.theta) + np.array((self.x, self.y))
w2 = change_direction_vis(0, -self.d, -self.theta) + np.array((self.x, self.y))
img = view_unit(img, int(w1[0]), int(w1[1]), self.wu, self.wv, -self.theta)
img = view_unit(img, int(w2[0]), int(w2[1]), self.wu, self.wv, -self.theta)
img = cv2.line(img, tuple(w1.astype(np.int).tolist()), tuple(w2.astype(np.int).tolist()), (0, 0, 0), 1)
return img
def change_direction_vis(x, y, angle):
#朝向箭头的坐标计算
o = np.deg2rad(angle)
return np.array((x * np.cos(o) + y * np.sin(o), -x * np.sin(o) + y * np.cos(o)))
def view_unit(rendered_unit, x, y, u, v, angle, color=(0, 0, 0), size=1):
#朝向箭头边缘的计算
edge1 = change_direction_vis(-u / 2, -v / 2, angle) + np.array((x, y))
edge2 = change_direction_vis(u / 2, -v / 2, angle) + np.array((x, y))
edge3 = change_direction_vis(-u / 2, v / 2, angle) + np.array((x, y))
edge4 = change_direction_vis(u / 2, v / 2, angle) + np.array((x, y))
cv2.line(rendered_unit, tuple(edge1.astype(np.int).tolist()), tuple(edge2.astype(np.int).tolist()), color, size)
cv2.line(rendered_unit, tuple(edge1.astype(np.int).tolist()), tuple(edge3.astype(np.int).tolist()), color, size)
cv2.line(rendered_unit, tuple(edge3.astype(np.int).tolist()), tuple(edge4.astype(np.int).tolist()), color, size)
cv2.line(rendered_unit, tuple(edge2.astype(np.int).tolist()), tuple(edge4.astype(np.int).tolist()), color, size)
return rendered_unit