Skip to content

Latest commit

 

History

History
62 lines (47 loc) · 2.52 KB

README.md

File metadata and controls

62 lines (47 loc) · 2.52 KB

TransAt:Translating Embeddings for Knowledge Graph Completion with Relation Attention Mechanism

TransAt is a translation based embedding model for Knowledge Graph Completion. It implements the algorithm of our IJCAI2018 paper: Translating Embeddings for Knowledge Graph Completion with Relation Attention Mechanism

Benchmark datasets

Datasets are required in the folder data/ in the following format, containing five files:

  • train.txt: training file, format (e1, e2, rel).

  • valid.txt: validation file, same format as train.txt

  • test.txt: test file, same format as train.txt.

  • entity2id.txt: all entities and corresponding ids, one per line.

  • relation2id.txt: all relations and corresponding ids, one per line.

Link prediction performance on WN18

Model MeanRank(Raw) MeanRank(Filter) Hit@10(Raw) Hit@10(Filter)
TransE 263 251 75.4 89.2
TransH(unif/bern) 318/401 303/388 75.4/73.0 86.7/82.3
TransR(unif/bern) 232/238 219/225 78.3/79.8 91.7/92.0
CTransR (unif/bern) 243/231 230/218 78.9/79.4 92.3/92.3
TransD (unif/bern) 242/224 229/212 79.2/79.6 92.5/92.2
TranSparse (share, S, unif/bern) 248/237 236/224 79.7/80.4 93.5/93.6
TranSparse (share, US, unif/bern) 242/233 229/221 79.8/80.5 93.7/93.9
TranSparse (separate, S, unif/bern) 235/224 223/221 79.0/79.8 92.3/92.8
TranSparse (separate, US, unif/bern) 233/223 221/211 79.6/80.1 93.4/93.2
TransAt (bern) 214 202 81.4 95.1
TransAt (asy,bern) 169 157 81.4 95.0

How to use (require tensorflow 1.1.0 and python 2.7 with numpy, sklearn, cPickle)

train on WN18:

  1. change "phase" variable in conf/TransAll_v1_WN18.cfg to be "train".
  2. run "./scripts/TransAll_v1/TransAll_v1_WN18.sh" test on WN18:
  3. change "phase" variable in conf/TransAll_v1_WN18.cfg to be "test".
  4. run "./scripts/TransAll_v1/TransAll_v1_WN18.sh"

Reference

Reference to cite when you use TransAt in a research paper

@inproceedings{qian2018translating,
  title={Translating Embeddings for Knowledge Graph Completion with Relation Attention Mechanism.},
  author={Qian, Wei and Fu, Cong and Zhu, Yu and Cai, Deng and He, Xiaofei},
  booktitle={IJCAI},
  pages={4286--4292},
  year={2018}