-
Notifications
You must be signed in to change notification settings - Fork 137
/
test_yolov5s.py
355 lines (308 loc) · 15.1 KB
/
test_yolov5s.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
from modelsori import *
from utils.utils import *
import numpy as np
from copy import deepcopy
from test import test
from terminaltables import AsciiTable
import time
from utils.prune_utils import *
import argparse
from models.yolo import Model
import torchvision
def letterboxv5(img, new_shape=(640, 640), color=(114, 114, 114), auto=True, scaleFill=False, scaleup=True):
# Resize image to a 32-pixel-multiple rectangle https://github.com/ultralytics/yolov3/issues/232
shape = img.shape[:2] # current shape [height, width]
if isinstance(new_shape, int):
new_shape = (new_shape, new_shape)
# Scale ratio (new / old)
r = min(new_shape[0] / shape[0], new_shape[1] / shape[1])
if not scaleup: # only scale down, do not scale up (for better test mAP)
r = min(r, 1.0)
# Compute padding
ratio = r, r # width, height ratios
new_unpad = int(round(shape[1] * r)), int(round(shape[0] * r))
dw, dh = new_shape[1] - new_unpad[0], new_shape[0] - new_unpad[1] # wh padding
if auto: # minimum rectangle
# dw, dh = np.mod(dw, 64), np.mod(dh, 64) # wh padding
dw, dh = np.mod(dw, 32), np.mod(dh, 32) # wh padding
elif scaleFill: # stretch
dw, dh = 0.0, 0.0
new_unpad = (new_shape[1], new_shape[0])
ratio = new_shape[1] / shape[1], new_shape[0] / shape[0] # width, height ratios
dw /= 2 # divide padding into 2 sides
dh /= 2
if shape[::-1] != new_unpad: # resize
img = cv2.resize(img, new_unpad, interpolation=cv2.INTER_LINEAR)
top, bottom = int(round(dh - 0.1)), int(round(dh + 0.1))
left, right = int(round(dw - 0.1)), int(round(dw + 0.1))
img = cv2.copyMakeBorder(img, top, bottom, left, right, cv2.BORDER_CONSTANT, value=color) # add border
return img, ratio, (dw, dh)
def box_iou(box1, box2):
# https://github.com/pytorch/vision/blob/master/torchvision/ops/boxes.py
"""
Return intersection-over-union (Jaccard index) of boxes.
Both sets of boxes are expected to be in (x1, y1, x2, y2) format.
Arguments:
box1 (Tensor[N, 4])
box2 (Tensor[M, 4])
Returns:
iou (Tensor[N, M]): the NxM matrix containing the pairwise
IoU values for every element in boxes1 and boxes2
"""
def box_area(box):
# box = 4xn
return (box[2] - box[0]) * (box[3] - box[1])
area1 = box_area(box1.T)
area2 = box_area(box2.T)
# inter(N,M) = (rb(N,M,2) - lt(N,M,2)).clamp(0).prod(2)
inter = (torch.min(box1[:, None, 2:], box2[:, 2:]) - torch.max(box1[:, None, :2], box2[:, :2])).clamp(0).prod(2)
return inter / (area1[:, None] + area2 - inter) # iou = inter / (area1 + area2 - inter)
def non_max_suppressionv5(prediction, conf_thres=0.1, iou_thres=0.6, merge=False, classes=None, agnostic=False):
"""Performs Non-Maximum Suppression (NMS) on inference results
Returns:
detections with shape: nx6 (x1, y1, x2, y2, conf, cls)
"""
if prediction.dtype is torch.float16:
prediction = prediction.float() # to FP32
nc = prediction[0].shape[1] - 5 # number of classes
xc = prediction[..., 4] > conf_thres # candidates
# Settings
min_wh, max_wh = 2, 4096 # (pixels) minimum and maximum box width and height
max_det = 300 # maximum number of detections per image
time_limit = 10.0 # seconds to quit after
redundant = True # require redundant detections
multi_label = nc > 1 # multiple labels per box (adds 0.5ms/img)
t = time.time()
output = [None] * prediction.shape[0]
for xi, x in enumerate(prediction): # image index, image inference
# Apply constraints
# x[((x[..., 2:4] < min_wh) | (x[..., 2:4] > max_wh)).any(1), 4] = 0 # width-height
x = x[xc[xi]] # confidence
# If none remain process next image
if not x.shape[0]:
continue
# Compute conf
x[:, 5:] *= x[:, 4:5] # conf = obj_conf * cls_conf
# Box (center x, center y, width, height) to (x1, y1, x2, y2)
box = xywh2xyxy(x[:, :4])
# Detections matrix nx6 (xyxy, conf, cls)
if multi_label:
i, j = (x[:, 5:] > conf_thres).nonzero(as_tuple=False).T
x = torch.cat((box[i], x[i, j + 5, None], j[:, None].float()), 1)
else: # best class only
conf, j = x[:, 5:].max(1, keepdim=True)
x = torch.cat((box, conf, j.float()), 1)[conf.view(-1) > conf_thres]
# Filter by class
if classes:
x = x[(x[:, 5:6] == torch.tensor(classes, device=x.device)).any(1)]
# Apply finite constraint
# if not torch.isfinite(x).all():
# x = x[torch.isfinite(x).all(1)]
# If none remain process next image
n = x.shape[0] # number of boxes
if not n:
continue
# Sort by confidence
# x = x[x[:, 4].argsort(descending=True)]
# Batched NMS
c = x[:, 5:6] * (0 if agnostic else max_wh) # classes
boxes, scores = x[:, :4] + c, x[:, 4] # boxes (offset by class), scores
i = torchvision.ops.boxes.nms(boxes, scores, iou_thres)
if i.shape[0] > max_det: # limit detections
i = i[:max_det]
if merge and (1 < n < 3E3): # Merge NMS (boxes merged using weighted mean)
try: # update boxes as boxes(i,4) = weights(i,n) * boxes(n,4)
iou = box_iou(boxes[i], boxes) > iou_thres # iou matrix
weights = iou * scores[None] # box weights
x[i, :4] = torch.mm(weights, x[:, :4]).float() / weights.sum(1, keepdim=True) # merged boxes
if redundant:
i = i[iou.sum(1) > 1] # require redundancy
except: # possible CUDA error https://github.com/ultralytics/yolov3/issues/1139
print(x, i, x.shape, i.shape)
pass
output[xi] = x[i]
if (time.time() - t) > time_limit:
break # time limit exceeded
return output
def plot_one_box(x, img, color=None, label=None, line_thickness=None):
# Plots one bounding box on image img
tl = line_thickness or round(0.002 * (img.shape[0] + img.shape[1]) / 2) + 1 # line/font thickness
color = color or [random.randint(0, 255) for _ in range(3)]
c1, c2 = (int(x[0]), int(x[1])), (int(x[2]), int(x[3]))
cv2.rectangle(img, c1, c2, color, thickness=tl, lineType=cv2.LINE_AA)
if label:
tf = max(tl - 1, 1) # font thickness
t_size = cv2.getTextSize(label, 0, fontScale=tl / 3, thickness=tf)[0]
c2 = c1[0] + t_size[0], c1[1] - t_size[1] - 3
cv2.rectangle(img, c1, c2, color, -1, cv2.LINE_AA) # filled
cv2.putText(img, label, (c1[0], c1[1] - 2), 0, tl / 3, [225, 255, 255], thickness=tf, lineType=cv2.LINE_AA)
def copy_conv(conv_src,conv_dst):
conv_dst[0] = conv_src.conv
conv_dst[1] = conv_src.bn
conv_dst[2] = conv_src.act
def copy_weight_v4(modelyolov5,model):
focus = list(modelyolov5.model.children())[0]
copy_conv(focus.conv, model.module_list[1])
conv1 = list(modelyolov5.model.children())[1]
copy_conv(conv1, model.module_list[2])
cspnet1 = list(modelyolov5.model.children())[2]
copy_conv(cspnet1.cv2, model.module_list[3])
copy_conv(cspnet1.cv1, model.module_list[5])
copy_conv(cspnet1.m[0].cv1, model.module_list[6])
copy_conv(cspnet1.m[0].cv2, model.module_list[7])
copy_conv(cspnet1.cv3, model.module_list[10])
conv2 = list(modelyolov5.model.children())[3]
copy_conv(conv2, model.module_list[11])
cspnet2 = list(modelyolov5.model.children())[4]
copy_conv(cspnet2.cv2, model.module_list[12])
copy_conv(cspnet2.cv1, model.module_list[14])
copy_conv(cspnet2.m[0].cv1, model.module_list[15])
copy_conv(cspnet2.m[0].cv2, model.module_list[16])
copy_conv(cspnet2.m[1].cv1, model.module_list[18])
copy_conv(cspnet2.m[1].cv2, model.module_list[19])
copy_conv(cspnet2.m[2].cv1, model.module_list[21])
copy_conv(cspnet2.m[2].cv2, model.module_list[22])
copy_conv(cspnet2.cv3, model.module_list[25])
conv3 = list(modelyolov5.model.children())[5]
copy_conv(conv3, model.module_list[26])
cspnet3 = list(modelyolov5.model.children())[6]
copy_conv(cspnet3.cv2, model.module_list[27])
copy_conv(cspnet3.cv1, model.module_list[29])
copy_conv(cspnet3.m[0].cv1, model.module_list[30])
copy_conv(cspnet3.m[0].cv2, model.module_list[31])
copy_conv(cspnet3.m[1].cv1, model.module_list[33])
copy_conv(cspnet3.m[1].cv2, model.module_list[34])
copy_conv(cspnet3.m[2].cv1, model.module_list[36])
copy_conv(cspnet3.m[2].cv2, model.module_list[37])
copy_conv(cspnet3.cv3, model.module_list[40])
conv4 = list(modelyolov5.model.children())[7]
copy_conv(conv4, model.module_list[41])
spp = list(modelyolov5.model.children())[8]
copy_conv(spp.cv1, model.module_list[42])
model.module_list[43] = spp.m[0]
model.module_list[45] = spp.m[1]
model.module_list[47] = spp.m[2]
copy_conv(spp.cv2, model.module_list[49])
cspnet4 = list(modelyolov5.model.children())[9]
copy_conv(cspnet4.cv2, model.module_list[50])
copy_conv(cspnet4.cv1, model.module_list[52])
copy_conv(cspnet4.m[0].cv1, model.module_list[53])
copy_conv(cspnet4.m[0].cv2, model.module_list[54])
copy_conv(cspnet4.cv3, model.module_list[56])
conv5 = list(modelyolov5.model.children())[10]
copy_conv(conv5, model.module_list[57])
upsample1 = list(modelyolov5.model.children())[11]
model.module_list[58] = upsample1
cspnet5 = list(modelyolov5.model.children())[13]
copy_conv(cspnet5.cv2, model.module_list[60])
copy_conv(cspnet5.cv1, model.module_list[62])
copy_conv(cspnet5.m[0].cv1, model.module_list[63])
copy_conv(cspnet5.m[0].cv2, model.module_list[64])
copy_conv(cspnet5.cv3, model.module_list[66])
conv6 = list(modelyolov5.model.children())[14]
copy_conv(conv6, model.module_list[67])
upsample2 = list(modelyolov5.model.children())[15]
model.module_list[68] = upsample2
cspnet6 = list(modelyolov5.model.children())[17]
copy_conv(cspnet6.cv2, model.module_list[70])
copy_conv(cspnet6.cv1, model.module_list[72])
copy_conv(cspnet6.m[0].cv1, model.module_list[73])
copy_conv(cspnet6.m[0].cv2, model.module_list[74])
copy_conv(cspnet6.cv3, model.module_list[76])
conv7 = list(modelyolov5.model.children())[18]
copy_conv(conv7, model.module_list[80])
cspnet7 = list(modelyolov5.model.children())[20]
copy_conv(cspnet7.cv2, model.module_list[82])
copy_conv(cspnet7.cv1, model.module_list[84])
copy_conv(cspnet7.m[0].cv1, model.module_list[85])
copy_conv(cspnet7.m[0].cv2, model.module_list[86])
copy_conv(cspnet7.cv3, model.module_list[88])
conv8 = list(modelyolov5.model.children())[21]
copy_conv(conv8, model.module_list[92])
cspnet8 = list(modelyolov5.model.children())[23]
copy_conv(cspnet8.cv2, model.module_list[94])
copy_conv(cspnet8.cv1, model.module_list[96])
copy_conv(cspnet8.m[0].cv1, model.module_list[97])
copy_conv(cspnet8.m[0].cv2, model.module_list[98])
copy_conv(cspnet8.cv3, model.module_list[100])
detect = list(modelyolov5.model.children())[24]
model.module_list[77][0] = detect.m[0]
model.module_list[89][0] = detect.m[1]
model.module_list[101][0] = detect.m[2]
def initialize_weights(model):
for m in model.modules():
t = type(m)
if t is nn.Conv2d:
pass # nn.init.kaiming_normal_(m.weight, mode='fan_out', nonlinearity='relu')
elif t is nn.BatchNorm2d:
m.eps = 1e-3
m.momentum = 0.03
elif t in [nn.LeakyReLU, nn.ReLU, nn.ReLU6]:
m.inplace = True
if __name__ == '__main__':
parser = argparse.ArgumentParser()
parser.add_argument('--cfg', type=str, default='cfg/yolov5s_v4.cfg', help='cfg file path')
parser.add_argument('--data', type=str, default='data/coco.data', help='*.data file path')
parser.add_argument('--weights', type=str, default='weights/yolov5s_v4.pt', help='sparse model weights')
parser.add_argument('--img_size', type=int, default=416, help='inference size (pixels)')
opt = parser.parse_args()
print(opt)
img_size = opt.img_size
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
#the way of loading yolov5s
# ckpt = torch.load(opt.weights, map_location=device) # load checkpoint
# modelyolov5 = Model('models/yolov5s_v4.yaml', nc=80).to(device)
# exclude = ['anchor'] # exclude keys
# ckpt['model'] = {k: v for k, v in ckpt['model'].float().state_dict().items()
# if k in modelyolov5.state_dict() and not any(x in k for x in exclude)
# and modelyolov5.state_dict()[k].shape == v.shape}
# modelyolov5.load_state_dict(ckpt['model'], strict=False)
#another way of loading yolov5s
modelyolov5=torch.load(opt.weights, map_location=device)['model'].float().eval()
modelyolov5.model[24].export = False # onnx export
# model=modelyolov5
#load yolov5s from cfg
model = Darknet(opt.cfg, (img_size, img_size)).to(device)
copy_weight_v4(modelyolov5,model)
path='data/images/bus.jpg'
img0 = cv2.imread(path) # BGR
# Padded resize
img = letterboxv5(img0, new_shape=416)[0]
# Convert
img = img[:, :, ::-1].transpose(2, 0, 1) # BGR to RGB, to 3x416x416
img = np.ascontiguousarray(img)
img = torch.from_numpy(img).to(device)
img = img.float()
img /= 255.0 # 0 - 255 to 0.0 - 1.0
if img.ndimension() == 3:
img = img.unsqueeze(0)
# modelyolov5.eval()
model.eval()
pred = model(img)[0]
pred = non_max_suppressionv5(pred, 0.4, 0.5, classes=None,
agnostic=False)
# Process detections
for i, det in enumerate(pred): # detections per image
if det is not None and len(det):
# Rescale boxes from img_size to im0 size
det[:, :4] = scale_coords(img.shape[2:], det[:, :4], img0.shape).round()
# Write results
for *xyxy, conf, cls in det:
label = '%s %.2f' % (str(int(cls)), conf)
plot_one_box(xyxy, img0, label=label, color=[random.randint(0, 255) for _ in range(3)], line_thickness=3)
cv2.imwrite("v5_cfg.jpg", img0)
modelyolov5.eval()
pred = modelyolov5(img)[0]
pred = non_max_suppressionv5(pred, 0.4, 0.5, classes=None,
agnostic=False)
# Process detections
for i, det in enumerate(pred): # detections per image
if det is not None and len(det):
# Rescale boxes from img_size to im0 size
det[:, :4] = scale_coords(img.shape[2:], det[:, :4], img0.shape).round()
# Write results
for *xyxy, conf, cls in det:
label = '%s %.2f' % (str(int(cls)), conf)
plot_one_box(xyxy, img0, label=label, color=[random.randint(0, 255) for _ in range(3)],
line_thickness=3)
cv2.imwrite("v5.jpg", img0)