-
Notifications
You must be signed in to change notification settings - Fork 137
/
Copy pathslim_prune_yolov5s_8x.py
302 lines (232 loc) · 13.1 KB
/
slim_prune_yolov5s_8x.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
from modelsori import *
from utils.utils import *
import numpy as np
from copy import deepcopy
from test import test
from terminaltables import AsciiTable
import time
from utils.prune_utils import *
import argparse
import torchvision
import val
from utils.model_transfer import copy_weight_v6,copy_weight_v6x,copy_weight_v6_reverse,copy_weight_v6x_reverse
if __name__ == '__main__':
parser = argparse.ArgumentParser()
parser.add_argument('--cfg', type=str, default='cfg/yolov5s_v6_hand.cfg', help='cfg file path')
parser.add_argument('--data', type=str, default='data/oxfordhand.data', help='*.data file path')
parser.add_argument('--weights', type=str, default='weights/last_v6s.pt', help='sparse model weights')
parser.add_argument('--global_percent', type=float, default=0.6, help='global channel prune percent')
parser.add_argument('--layer_keep', type=float, default=0.01, help='channel keep percent per layer')
parser.add_argument('--img_size', type=int, default=640, help='inference size (pixels)')
opt = parser.parse_args()
print(opt)
img_size = opt.img_size
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
model = Darknet(opt.cfg, (img_size, img_size)).to(device)
modelyolov5 = torch.load(opt.weights, map_location=device)['model'].float() # load FP32 model
stride=32.0
if len(modelyolov5.yaml["anchors"]) == 4:
copy_weight_v6x(modelyolov5, model)
stride=64.0
else:
copy_weight_v6(modelyolov5, model)
if len(modelyolov5.yaml["anchors"]) == 4:
copy_weight_reverse = copy_weight_v6x_reverse
else:
copy_weight_reverse = copy_weight_v6_reverse
eval_modelv2 = lambda model:val.run(opt.data,
model=model,
batch_size=4,
imgsz=img_size,
plots=False,
stride = stride)
eval_model = lambda model:test(model=model,cfg=opt.cfg, data=opt.data, batch_size=4, img_size=img_size,stride=stride)
obtain_num_parameters = lambda model:sum([param.nelement() for param in model.parameters()])
print("\nlet's test the original model first:")
with torch.no_grad():
# origin_model_metric = eval_model(model)
copy_weight_reverse(modelyolov5, model)
origin_model_metric = eval_modelv2(modelyolov5)
origin_nparameters = obtain_num_parameters(model)
CBL_idx, Conv_idx, prune_idx, _, _= parse_module_defs2(model.module_defs)
bn_weights = gather_bn_weights(model.module_list, prune_idx)
sorted_bn = torch.sort(bn_weights)[0]
sorted_bn, sorted_index = torch.sort(bn_weights)
thresh_index = int(len(bn_weights) * opt.global_percent)
thresh = sorted_bn[thresh_index].cuda()
print(f'Global Threshold should be less than {thresh:.4f}.')
#%%
def obtain_filters_mask(model, thre, CBL_idx, prune_idx):
pruned = 0
total = 0
num_filters = []
filters_mask = []
for idx in CBL_idx:
# bn_module = model.module_list[idx][1]
bn_module = model.module_list[idx][1] if type(
model.module_list[idx][1]).__name__ == 'BatchNorm2d' else model.module_list[idx][0]
if idx in prune_idx:
weight_copy = bn_module.weight.data.abs().clone()
if model.module_defs[idx][ 'type'] == 'convolutional_noconv':
channels = weight_copy.shape[0]
channels_half=int(channels/2)
weight_copy1=weight_copy[:channels_half]
weight_copy2 = weight_copy[channels_half:]
min_channel_num = int(channels_half * opt.layer_keep) if int(channels_half * opt.layer_keep) > 0 else 1
mask1 = weight_copy1.gt(thresh).float()
mask2 = weight_copy2.gt(thresh).float()
if int(torch.sum(mask1)) < min_channel_num:
_, sorted_index_weights1 = torch.sort(weight_copy1, descending=True)
mask1[sorted_index_weights1[:min_channel_num]] = 1.
if int(torch.sum(mask2)) < min_channel_num:
_, sorted_index_weights2 = torch.sort(weight_copy2, descending=True)
mask2[sorted_index_weights2[:min_channel_num]] = 1.
# regular
mask_cnt1 = int(mask1.sum())
mask_cnt2 = int(mask2.sum())
if mask_cnt1 % 8 != 0:
mask_cnt1 = int((mask_cnt1 // 8 + 1) * 8)
if mask_cnt2 % 8 != 0:
mask_cnt2 = int((mask_cnt2 // 8 + 1) * 8)
this_layer_sort_bn = bn_module.weight.data.abs().clone()
this_layer_sort_bn1 = this_layer_sort_bn[:channels_half]
this_layer_sort_bn2 = this_layer_sort_bn[channels_half:]
_, sorted_index_weights1 = torch.sort(this_layer_sort_bn1, descending=True)
_, sorted_index_weights2 = torch.sort(this_layer_sort_bn2, descending=True)
mask1[sorted_index_weights1[:mask_cnt1]] = 1.
mask2[sorted_index_weights2[:mask_cnt2]] = 1.
remain1 = int(mask1.sum())
pruned = pruned + mask1.shape[0] - remain1
remain2 = int(mask2.sum())
pruned = pruned + mask2.shape[0] - remain2
mask=torch.cat((mask1,mask2))
remain=remain1+remain2
print(f'layer index: {idx:>3d} \t total channel: {mask.shape[0]:>4d} \t '
f'remaining channel: {remain:>4d}')
else:
channels = weight_copy.shape[0] #
min_channel_num = int(channels * opt.layer_keep) if int(channels * opt.layer_keep) > 0 else 1
mask = weight_copy.gt(thresh).float()
if int(torch.sum(mask)) < min_channel_num:
_, sorted_index_weights = torch.sort(weight_copy,descending=True)
mask[sorted_index_weights[:min_channel_num]]=1.
# regular
mask_cnt = int(mask.sum())
if mask_cnt % 8 !=0:
mask_cnt=int((mask_cnt//8+1)*8)
this_layer_sort_bn = bn_module.weight.data.abs().clone()
_, sorted_index_weights = torch.sort(this_layer_sort_bn,descending=True)
mask[sorted_index_weights[:mask_cnt]]=1.
remain = int(mask.sum())
pruned = pruned + mask.shape[0] - remain
print(f'layer index: {idx:>3d} \t total channel: {mask.shape[0]:>4d} \t '
f'remaining channel: {remain:>4d}')
else:
mask = torch.ones(bn_module.weight.data.shape)
remain = mask.shape[0]
total += mask.shape[0]
num_filters.append(remain)
filters_mask.append(mask.clone())
prune_ratio = pruned / total
print(f'Prune channels: {pruned}\tPrune ratio: {prune_ratio:.3f}')
return num_filters, filters_mask
num_filters, filters_mask = obtain_filters_mask(model, thresh, CBL_idx, prune_idx)
CBLidx2mask = {idx: mask for idx, mask in zip(CBL_idx, filters_mask)}
CBLidx2filters = {idx: filters for idx, filters in zip(CBL_idx, num_filters)}
for i in model.module_defs:
if i['type'] == 'shortcut':
i['is_access'] = False
print('merge the mask of layers connected to shortcut!')
merge_mask_regular(model, CBLidx2mask, CBLidx2filters)
def prune_and_eval(model, CBL_idx, CBLidx2mask):
model_copy = deepcopy(model)
for idx in CBL_idx:
# bn_module = model_copy.module_list[idx][1]
bn_module = model_copy.module_list[idx][1] if type(
model_copy.module_list[idx][1]).__name__ == 'BatchNorm2d' else model_copy.module_list[idx][0]
mask = CBLidx2mask[idx].cuda()
bn_module.weight.data.mul_(mask)
with torch.no_grad():
# mAP = eval_model(model_copy)[0][2]
copy_weight_reverse(modelyolov5, model_copy)
mAP = eval_modelv2(modelyolov5)[0][2]
print(f'mask the gamma as zero, mAP of the model is {mAP:.4f}')
prune_and_eval(model, CBL_idx, CBLidx2mask)
for i in CBLidx2mask:
CBLidx2mask[i] = CBLidx2mask[i].clone().cpu().numpy()
pruned_model = prune_model_keep_size2(model, prune_idx, CBL_idx, CBLidx2mask)
print("\nnow prune the model but keep size,(actually add offset of BN beta to following layers), let's see how the mAP goes")
with torch.no_grad():
# eval_model(pruned_model)
copy_weight_reverse(modelyolov5, pruned_model)
eval_modelv2(modelyolov5)
for i in model.module_defs:
if i['type'] == 'shortcut':
i.pop('is_access')
compact_module_defs = deepcopy(model.module_defs)
for idx in CBL_idx:
assert compact_module_defs[idx]['type'] == 'convolutional' or compact_module_defs[idx][
'type'] == 'convolutional_noconv'
num=CBLidx2filters[idx]
compact_module_defs[idx]['filters'] = str(num)
if compact_module_defs[idx]['type'] == 'convolutional_noconv':
model_def = compact_module_defs[idx - 1] # route
assert compact_module_defs[idx - 1]['type'] == 'route'
from_layers = [int(s) for s in model_def['layers'].split(',')]
assert compact_module_defs[idx - 1 + from_layers[0]]['type'] == 'convolutional_nobias'
assert compact_module_defs[idx - 1 + from_layers[1] if from_layers[1] < 0 else from_layers[1]][
'type'] == 'convolutional_nobias'
half_num = int(len(CBLidx2mask[idx]) / 2)
mask1 = CBLidx2mask[idx][:half_num]
mask2 = CBLidx2mask[idx][half_num:]
remain1 = int(mask1.sum())
remain2 = int(mask2.sum())
compact_module_defs[idx - 1 + from_layers[0]]['filters'] = remain1
compact_module_defs[idx - 1 + from_layers[1] if from_layers[1] < 0 else from_layers[1]]['filters'] = remain2
compact_model = Darknet([model.hyperparams.copy()] + compact_module_defs, (img_size, img_size)).to(device)
compact_nparameters = obtain_num_parameters(compact_model)
init_weights_from_loose_model(compact_model, pruned_model, CBL_idx, Conv_idx, CBLidx2mask)
random_input = torch.rand((1, 3, img_size, img_size)).to(device)
def obtain_avg_forward_time(input, model, repeat=200):
# model.to('cpu').fuse()
# model.module_list.to(device)
model.eval()
start = time.time()
with torch.no_grad():
for i in range(repeat):
output = model(input)[0]
avg_infer_time = (time.time() - start) / repeat
return avg_infer_time, output
print('testing inference time...')
pruned_forward_time, pruned_output = obtain_avg_forward_time(random_input, pruned_model)
compact_forward_time, compact_output = obtain_avg_forward_time(random_input, compact_model)
diff = (pruned_output - compact_output).abs().gt(0.001).sum().item()
if diff > 0:
print('Something wrong with the pruned model!')
print('testing the final model...')
with torch.no_grad():
# compact_model_metric = eval_model(compact_model)
copy_weight_reverse(modelyolov5, compact_model)
compact_model_metric = eval_modelv2(modelyolov5)
metric_table = [
["Metric", "Before", "After"],
["mAP", f'{origin_model_metric[0][2]:.6f}', f'{compact_model_metric[0][2]:.6f}'],
["Parameters", f"{origin_nparameters}", f"{compact_nparameters}"],
["Inference", f'{pruned_forward_time:.4f}', f'{compact_forward_time:.4f}']
]
print(AsciiTable(metric_table).table)
pruned_cfg_name = opt.cfg.replace('/', f'/prune_{opt.global_percent}_keep_{opt.layer_keep}_8x_')
pruned_cfg_file = write_cfg(pruned_cfg_name, [model.hyperparams.copy()] + compact_module_defs)
print(f'Config file has been saved: {pruned_cfg_file}')
compact_model_name = opt.weights.replace('/', f'/prune_{opt.global_percent}_keep_{opt.layer_keep}_8x_')
if compact_model_name.endswith('.pt'):
chkpt = {'epoch': -1,
'best_fitness': None,
'training_results': None,
'model': compact_model.state_dict(),
# 'model': compact_model.module_list, #部署调试加载的模型
'optimizer': None}
torch.save(chkpt, compact_model_name)
compact_model_name = compact_model_name.replace('.pt', '.weights')
# save_weights(compact_model, path=compact_model_name)
print(f'Compact model has been saved: {compact_model_name}')