-
Notifications
You must be signed in to change notification settings - Fork 137
/
Copy pathprune_yolov5s.py
251 lines (200 loc) · 10.2 KB
/
prune_yolov5s.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
from modelsori import *
from utils.utils import *
import numpy as np
from copy import deepcopy
from test import test
from terminaltables import AsciiTable
import time
from utils.prune_utils import *
import argparse
from utils.model_transfer import copy_weight_v6,copy_weight_v6x
if __name__ == '__main__':
parser = argparse.ArgumentParser()
parser.add_argument('--cfg', type=str, default='cfg/yolov5s_v6_hand.cfg', help='cfg file path')
parser.add_argument('--data', type=str, default='data/oxfordhand.data', help='*.data file path')
parser.add_argument('--weights', type=str, default='weights/last_v6s_0.pt', help='sparse model weights')
parser.add_argument('--percent', type=float, default=0.5, help='channel prune percent')
parser.add_argument('--img_size', type=int, default=640, help='inference size (pixels)')
opt = parser.parse_args()
print(opt)
img_size = opt.img_size
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
model = Darknet(opt.cfg, (img_size, img_size)).to(device)
modelyolov5 = torch.load(opt.weights, map_location=device)['model'].float() # load FP32 model
stride=32.0
if len(modelyolov5.yaml["anchors"]) == 4:
copy_weight_v6x(modelyolov5, model)
stride=64.0
else:
copy_weight_v6(modelyolov5, model)
eval_model = lambda model:test(opt.cfg, opt.data,
weights=opt.weights,
batch_size=4,
img_size=img_size,
iou_thres=0.5,
conf_thres=0.001,
nms_thres=0.5,
stride=stride,
save_json=False,
model=model)
obtain_num_parameters = lambda model:sum([param.nelement() for param in model.parameters()])
print("\nlet's test the original model first:")
with torch.no_grad():
origin_model_metric = eval_model(model)
origin_nparameters = obtain_num_parameters(model)
CBL_idx, Conv_idx, prune_idx= parse_module_defs(model.module_defs)
bn_weights = gather_bn_weights(model.module_list, prune_idx)
sorted_bn = torch.sort(bn_weights)[0]
# 避免剪掉所有channel的最高阈值(每个BN层的gamma的最大值的最小值即为阈值上限)
highest_thre = []
for idx in prune_idx:
# highest_thre.append(model.module_list[idx][1].weight.data.abs().max().item())
highest_thre.append(model.module_list[idx][1].weight.data.abs().max().item() if type(model.module_list[idx][1]).__name__ is 'BatchNorm2d' else model.module_list[idx][0].weight.data.abs().max().item())
highest_thre = min(highest_thre)
# 找到highest_thre对应的下标对应的百分比
if len((sorted_bn == highest_thre).nonzero()) > 1:
high_num = (sorted_bn == highest_thre).nonzero()[1]
else:
high_num = (sorted_bn == highest_thre).nonzero()
percent_limit = high_num.item() / len(bn_weights)
# 优化好的模型只有一个极值点,上面代码临时使用以方便调试
# 找到highest_thre对应的下标对应的百分比
# percent_limit = (sorted_bn==highest_thre).nonzero().item()/len(bn_weights)
print(f'Suggested Gamma threshold should be less than {highest_thre:.4f}.')
print(f'The corresponding prune ratio is {percent_limit:.3f}, but you can set higher.')
#%%
def prune_and_eval(model, sorted_bn, percent=.0):
model_copy = deepcopy(model)
thre_index = int(len(sorted_bn) * percent)
thre = sorted_bn[thre_index]
print(f'Gamma value that less than {thre:.4f} are set to zero!')
remain_num = 0
for idx in prune_idx:
bn_module = model_copy.module_list[idx][1] if type(model_copy.module_list[idx][1]).__name__ is 'BatchNorm2d' else model_copy.module_list[idx][0]
mask = obtain_bn_mask(bn_module, thre)
remain_num += int(mask.sum())
bn_module.weight.data.mul_(mask)
print("let's test the current model!")
with torch.no_grad():
mAP = eval_model(model_copy)[0][2]
print(f'Number of channels has been reduced from {len(sorted_bn)} to {remain_num}')
print(f'Prune ratio: {1-remain_num/len(sorted_bn):.3f}')
print(f"mAP of the 'pruned' model is {mAP:.4f}")
return thre
percent = opt.percent
print('the required prune percent is', percent)
threshold = prune_and_eval(model, sorted_bn, percent)
#%%
def obtain_filters_mask(model, thre, CBL_idx, prune_idx):
pruned = 0
total = 0
num_filters = []
filters_mask = []
for idx in CBL_idx:
bn_module = model.module_list[idx][1] if type(model.module_list[idx][1]).__name__ is 'BatchNorm2d' else model.module_list[idx][0]
if idx in prune_idx:
mask = obtain_bn_mask(bn_module, thre).cpu().numpy()
remain = int(mask.sum())
pruned = pruned + mask.shape[0] - remain
if remain == 0:
# print("Channels would be all pruned!")
# raise Exception
max_value = bn_module.weight.data.abs().max()
mask = obtain_bn_mask(bn_module, max_value).cpu().numpy()
remain = int(mask.sum())
pruned = pruned + mask.shape[0] - remain
print(f'layer index: {idx:>3d} \t total channel: {mask.shape[0]:>4d} \t '
f'remaining channel: {remain:>4d}')
else:
mask = np.ones(bn_module.weight.data.shape)
remain = mask.shape[0]
total += mask.shape[0]
num_filters.append(remain)
filters_mask.append(mask.copy())
prune_ratio = pruned / total
print(f'Prune channels: {pruned}\tPrune ratio: {prune_ratio:.3f}')
return num_filters, filters_mask
num_filters, filters_mask = obtain_filters_mask(model, threshold, CBL_idx, prune_idx)
#%%
CBLidx2mask = {idx: mask.astype('float32') for idx, mask in zip(CBL_idx, filters_mask)}
pruned_model = prune_model_keep_size2(model, CBL_idx, CBL_idx, CBLidx2mask)
print("\nnow prune the model but keep size,(actually add offset of BN beta to next layer), let's see how the mAP goes")
with torch.no_grad():
eval_model(pruned_model)
#%%
compact_module_defs = deepcopy(model.module_defs)
for idx, num in zip(CBL_idx, num_filters):
assert compact_module_defs[idx]['type'] == 'convolutional' or compact_module_defs[idx]['type'] == 'convolutional_noconv'
compact_module_defs[idx]['filters'] = str(num)
#%%
compact_model = Darknet([model.hyperparams.copy()] + compact_module_defs, (img_size, img_size)).to(device)
compact_nparameters = obtain_num_parameters(compact_model)
init_weights_from_loose_model(compact_model, pruned_model, CBL_idx, Conv_idx, CBLidx2mask)
#%%
random_input = torch.rand((1, 3, img_size, img_size)).to(device)
def obtain_avg_forward_time(input, model, repeat=200):
model.eval()
start = time.time()
with torch.no_grad():
for i in range(repeat):
output = model(input)[0]
avg_infer_time = (time.time() - start) / repeat
return avg_infer_time, output
print('\ntesting avg forward time...')
pruned_forward_time, pruned_output = obtain_avg_forward_time(random_input, pruned_model)
compact_forward_time, compact_output = obtain_avg_forward_time(random_input, compact_model)
diff = (pruned_output-compact_output).abs().gt(0.001).sum().item()
if diff > 0:
print('Something wrong with the pruned model!')
#%%
# 在测试集上测试剪枝后的模型, 并统计模型的参数数量
print('testing the mAP of final pruned model')
with torch.no_grad():
compact_model_metric = eval_model(compact_model)
#%%
# 比较剪枝前后参数数量的变化、指标性能的变化
metric_table = [
["Metric", "Before", "After"],
["mAP", f'{origin_model_metric[0][2]:.6f}', f'{compact_model_metric[0][2]:.6f}'],
["Parameters", f"{origin_nparameters}", f"{compact_nparameters}"],
["Inference", f'{pruned_forward_time:.4f}', f'{compact_forward_time:.4f}']
]
print(AsciiTable(metric_table).table)
#%%
# 生成剪枝后的cfg文件并保存模型
pruned_cfg_name = opt.cfg.replace('/', f'/prune_{percent}_')
pruned_cfg_file = write_cfg(pruned_cfg_name, [model.hyperparams.copy()] + compact_module_defs)
print(f'Config file has been saved: {pruned_cfg_file}')
compact_model_name = opt.weights.replace('/', f'/prune_{percent}_')
if compact_model_name.endswith('.pt'):
chkpt = {'epoch': -1,
'best_fitness': None,
'training_results': None,
'model': compact_model.state_dict(),
'optimizer': None}
torch.save(chkpt, compact_model_name)
compact_model_name = compact_model_name.replace('.pt', '.weights')
# save_weights(compact_model, compact_model_name)
print(f'Compact model has been saved: {compact_model_name}')
# def initialize_weights(model):
# for m in model.modules():
# t = type(m)
# if t is nn.Conv2d:
# pass # nn.init.kaiming_normal_(m.weight, mode='fan_out', nonlinearity='relu')
# elif t is nn.BatchNorm2d:
# m.eps = 1e-3
# m.momentum = 0.03
# elif t in [nn.LeakyReLU, nn.ReLU, nn.ReLU6]:
# m.inplace = True
#
#
# model_load = Darknet('cfg/prune_0.8_yolov3-spp.cfg', (img_size, img_size)).to(device)
# initialize_weights(model_load)
# model_load.load_state_dict(torch.load('weights/converted.pt')['model'])
# # load_darknet_weights(model_load, 'weights/prune_0.8_yolov3-spp-ultralytics.weights')
# compact_forward_time, compact_output = obtain_avg_forward_time(random_input, compact_model)
# load_forward_time, load_output = obtain_avg_forward_time(random_input, model_load)
#
# diff = (load_output - compact_output).abs().gt(0.001).sum().item()
# if diff > 0:
# print('Something wrong with the load model!')