-
Notifications
You must be signed in to change notification settings - Fork 640
/
Copy pathtrainer.py
299 lines (231 loc) · 11.9 KB
/
trainer.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
import math
import scipy
import numpy as np
from scipy.ndimage import grey_dilation, grey_erosion
import torch
import torch.nn as nn
import torch.nn.functional as F
__all__ = [
'supervised_training_iter',
'soc_adaptation_iter',
]
# ----------------------------------------------------------------------------------
# Tool Classes/Functions
# ----------------------------------------------------------------------------------
class GaussianBlurLayer(nn.Module):
""" Add Gaussian Blur to a 4D tensors
This layer takes a 4D tensor of {N, C, H, W} as input.
The Gaussian blur will be performed in given channel number (C) splitly.
"""
def __init__(self, channels, kernel_size):
"""
Arguments:
channels (int): Channel for input tensor
kernel_size (int): Size of the kernel used in blurring
"""
super(GaussianBlurLayer, self).__init__()
self.channels = channels
self.kernel_size = kernel_size
assert self.kernel_size % 2 != 0
self.op = nn.Sequential(
nn.ReflectionPad2d(math.floor(self.kernel_size / 2)),
nn.Conv2d(channels, channels, self.kernel_size,
stride=1, padding=0, bias=None, groups=channels)
)
self._init_kernel()
def forward(self, x):
"""
Arguments:
x (torch.Tensor): input 4D tensor
Returns:
torch.Tensor: Blurred version of the input
"""
if not len(list(x.shape)) == 4:
print('\'GaussianBlurLayer\' requires a 4D tensor as input\n')
exit()
elif not x.shape[1] == self.channels:
print('In \'GaussianBlurLayer\', the required channel ({0}) is'
'not the same as input ({1})\n'.format(self.channels, x.shape[1]))
exit()
return self.op(x)
def _init_kernel(self):
sigma = 0.3 * ((self.kernel_size - 1) * 0.5 - 1) + 0.8
n = np.zeros((self.kernel_size, self.kernel_size))
i = math.floor(self.kernel_size / 2)
n[i, i] = 1
kernel = scipy.ndimage.gaussian_filter(n, sigma)
for name, param in self.named_parameters():
param.data.copy_(torch.from_numpy(kernel))
# ----------------------------------------------------------------------------------
# ----------------------------------------------------------------------------------
# MODNet Training Functions
# ----------------------------------------------------------------------------------
blurer = GaussianBlurLayer(1, 3).cuda()
def supervised_training_iter(
modnet, optimizer, image, trimap, gt_matte,
semantic_scale=10.0, detail_scale=10.0, matte_scale=1.0):
""" Supervised training iteration of MODNet
This function trains MODNet for one iteration in a labeled dataset.
Arguments:
modnet (torch.nn.Module): instance of MODNet
optimizer (torch.optim.Optimizer): optimizer for supervised training
image (torch.autograd.Variable): input RGB image
its pixel values should be normalized
trimap (torch.autograd.Variable): trimap used to calculate the losses
its pixel values can be 0, 0.5, or 1
(foreground=1, background=0, unknown=0.5)
gt_matte (torch.autograd.Variable): ground truth alpha matte
its pixel values are between [0, 1]
semantic_scale (float): scale of the semantic loss
NOTE: please adjust according to your dataset
detail_scale (float): scale of the detail loss
NOTE: please adjust according to your dataset
matte_scale (float): scale of the matte loss
NOTE: please adjust according to your dataset
Returns:
semantic_loss (torch.Tensor): loss of the semantic estimation [Low-Resolution (LR) Branch]
detail_loss (torch.Tensor): loss of the detail prediction [High-Resolution (HR) Branch]
matte_loss (torch.Tensor): loss of the semantic-detail fusion [Fusion Branch]
Example:
import torch
from src.models.modnet import MODNet
from src.trainer import supervised_training_iter
bs = 16 # batch size
lr = 0.01 # learn rate
epochs = 40 # total epochs
modnet = torch.nn.DataParallel(MODNet()).cuda()
optimizer = torch.optim.SGD(modnet.parameters(), lr=lr, momentum=0.9)
lr_scheduler = torch.optim.lr_scheduler.StepLR(optimizer, step_size=int(0.25 * epochs), gamma=0.1)
dataloader = CREATE_YOUR_DATALOADER(bs) # NOTE: please finish this function
for epoch in range(0, epochs):
for idx, (image, trimap, gt_matte) in enumerate(dataloader):
semantic_loss, detail_loss, matte_loss = \
supervised_training_iter(modnet, optimizer, image, trimap, gt_matte)
lr_scheduler.step()
"""
global blurer
# set the model to train mode and clear the optimizer
modnet.train()
optimizer.zero_grad()
# forward the model
pred_semantic, pred_detail, pred_matte = modnet(image, False)
# calculate the boundary mask from the trimap
boundaries = (trimap < 0.5) + (trimap > 0.5)
# calculate the semantic loss
gt_semantic = F.interpolate(gt_matte, scale_factor=1/16, mode='bilinear')
gt_semantic = blurer(gt_semantic)
semantic_loss = torch.mean(F.mse_loss(pred_semantic, gt_semantic))
semantic_loss = semantic_scale * semantic_loss
# calculate the detail loss
pred_boundary_detail = torch.where(boundaries, trimap, pred_detail)
gt_detail = torch.where(boundaries, trimap, gt_matte)
detail_loss = torch.mean(F.l1_loss(pred_boundary_detail, gt_detail))
detail_loss = detail_scale * detail_loss
# calculate the matte loss
pred_boundary_matte = torch.where(boundaries, trimap, pred_matte)
matte_l1_loss = F.l1_loss(pred_matte, gt_matte) + 4.0 * F.l1_loss(pred_boundary_matte, gt_matte)
matte_compositional_loss = F.l1_loss(image * pred_matte, image * gt_matte) \
+ 4.0 * F.l1_loss(image * pred_boundary_matte, image * gt_matte)
matte_loss = torch.mean(matte_l1_loss + matte_compositional_loss)
matte_loss = matte_scale * matte_loss
# calculate the final loss, backward the loss, and update the model
loss = semantic_loss + detail_loss + matte_loss
loss.backward()
optimizer.step()
# for test
return semantic_loss, detail_loss, matte_loss
def soc_adaptation_iter(
modnet, backup_modnet, optimizer, image,
soc_semantic_scale=100.0, soc_detail_scale=1.0):
""" Self-Supervised sub-objective consistency (SOC) adaptation iteration of MODNet
This function fine-tunes MODNet for one iteration in an unlabeled dataset.
Note that SOC can only fine-tune a converged MODNet, i.e., MODNet that has been
trained in a labeled dataset.
Arguments:
modnet (torch.nn.Module): instance of MODNet
backup_modnet (torch.nn.Module): backup of the trained MODNet
optimizer (torch.optim.Optimizer): optimizer for self-supervised SOC
image (torch.autograd.Variable): input RGB image
its pixel values should be normalized
soc_semantic_scale (float): scale of the SOC semantic loss
NOTE: please adjust according to your dataset
soc_detail_scale (float): scale of the SOC detail loss
NOTE: please adjust according to your dataset
Returns:
soc_semantic_loss (torch.Tensor): loss of the semantic SOC
soc_detail_loss (torch.Tensor): loss of the detail SOC
Example:
import copy
import torch
from src.models.modnet import MODNet
from src.trainer import soc_adaptation_iter
bs = 1 # batch size
lr = 0.00001 # learn rate
epochs = 10 # total epochs
modnet = torch.nn.DataParallel(MODNet()).cuda()
modnet = LOAD_TRAINED_CKPT() # NOTE: please finish this function
optimizer = torch.optim.Adam(modnet.parameters(), lr=lr, betas=(0.9, 0.99))
dataloader = CREATE_YOUR_DATALOADER(bs) # NOTE: please finish this function
for epoch in range(0, epochs):
backup_modnet = copy.deepcopy(modnet)
for idx, (image) in enumerate(dataloader):
soc_semantic_loss, soc_detail_loss = \
soc_adaptation_iter(modnet, backup_modnet, optimizer, image)
"""
global blurer
# set the backup model to eval mode
backup_modnet.eval()
# set the main model to train mode and freeze its norm layers
modnet.train()
modnet.module.freeze_norm()
# clear the optimizer
optimizer.zero_grad()
# forward the main model
pred_semantic, pred_detail, pred_matte = modnet(image, False)
# forward the backup model
with torch.no_grad():
_, pred_backup_detail, pred_backup_matte = backup_modnet(image, False)
# calculate the boundary mask from `pred_matte` and `pred_semantic`
pred_matte_fg = (pred_matte.detach() > 0.1).float()
pred_semantic_fg = (pred_semantic.detach() > 0.1).float()
pred_semantic_fg = F.interpolate(pred_semantic_fg, scale_factor=16, mode='bilinear')
pred_fg = pred_matte_fg * pred_semantic_fg
n, c, h, w = pred_matte.shape
np_pred_fg = pred_fg.data.cpu().numpy()
np_boundaries = np.zeros([n, c, h, w])
for sdx in range(0, n):
sample_np_boundaries = np_boundaries[sdx, 0, ...]
sample_np_pred_fg = np_pred_fg[sdx, 0, ...]
side = int((h + w) / 2 * 0.05)
dilated = grey_dilation(sample_np_pred_fg, size=(side, side))
eroded = grey_erosion(sample_np_pred_fg, size=(side, side))
sample_np_boundaries[np.where(dilated - eroded != 0)] = 1
np_boundaries[sdx, 0, ...] = sample_np_boundaries
boundaries = torch.tensor(np_boundaries).float().cuda()
# sub-objectives consistency between `pred_semantic` and `pred_matte`
# generate pseudo ground truth for `pred_semantic`
downsampled_pred_matte = blurer(F.interpolate(pred_matte, scale_factor=1/16, mode='bilinear'))
pseudo_gt_semantic = downsampled_pred_matte.detach()
pseudo_gt_semantic = pseudo_gt_semantic * (pseudo_gt_semantic > 0.01).float()
# generate pseudo ground truth for `pred_matte`
pseudo_gt_matte = pred_semantic.detach()
pseudo_gt_matte = pseudo_gt_matte * (pseudo_gt_matte > 0.01).float()
# calculate the SOC semantic loss
soc_semantic_loss = F.mse_loss(pred_semantic, pseudo_gt_semantic) + F.mse_loss(downsampled_pred_matte, pseudo_gt_matte)
soc_semantic_loss = soc_semantic_scale * torch.mean(soc_semantic_loss)
# NOTE: using the formulas in our paper to calculate the following losses has similar results
# sub-objectives consistency between `pred_detail` and `pred_backup_detail` (on boundaries only)
backup_detail_loss = boundaries * F.l1_loss(pred_detail, pred_backup_detail, reduction='none')
backup_detail_loss = torch.sum(backup_detail_loss, dim=(1,2,3)) / torch.sum(boundaries, dim=(1,2,3))
backup_detail_loss = torch.mean(backup_detail_loss)
# sub-objectives consistency between pred_matte` and `pred_backup_matte` (on boundaries only)
backup_matte_loss = boundaries * F.l1_loss(pred_matte, pred_backup_matte, reduction='none')
backup_matte_loss = torch.sum(backup_matte_loss, dim=(1,2,3)) / torch.sum(boundaries, dim=(1,2,3))
backup_matte_loss = torch.mean(backup_matte_loss)
soc_detail_loss = soc_detail_scale * (backup_detail_loss + backup_matte_loss)
# calculate the final loss, backward the loss, and update the model
loss = soc_semantic_loss + soc_detail_loss
loss.backward()
optimizer.step()
return soc_semantic_loss, soc_detail_loss
# ----------------------------------------------------------------------------------