-
Notifications
You must be signed in to change notification settings - Fork 21
/
isaid_eval.py
154 lines (120 loc) · 5.46 KB
/
isaid_eval.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
import argparse
import logging
import torch
import numpy as np
import simplecv as sc
from data.isaid import COLOR_MAP
from data.isaid import ImageFolderDataset
from concurrent.futures import ProcessPoolExecutor
from tensorboardX import SummaryWriter
from module import farseg
from torch.utils.data.dataloader import DataLoader
from simplecv.api.preprocess import comm
from simplecv.api.preprocess import segm
from tqdm import tqdm
from simplecv.data.preprocess import sliding_window
class SegmSlidingWinInference(object):
def __init__(self):
super(SegmSlidingWinInference, self).__init__()
self._h = None
self._w = None
self.device = torch.device('cuda') if torch.cuda.is_available() else torch.device('cpu')
def patch(self, input_size, patch_size, stride, transforms=None):
""" divide large image into small patches.
Returns:
"""
self.wins = sliding_window(input_size, patch_size, stride)
self.transforms = transforms
return self
def merge(self, out_list):
pred_list, win_list = list(zip(*out_list))
num_classes = pred_list[0].size(1)
res_img = torch.zeros(pred_list[0].size(0), num_classes, self._h, self._w, dtype=torch.float32)
res_count = torch.zeros(self._h, self._w, dtype=torch.float32)
for pred, win in zip(pred_list, win_list):
res_count[win[1]:win[3], win[0]: win[2]] += 1
res_img[:, :, win[1]:win[3], win[0]: win[2]] += pred.cpu()
avg_res_img = res_img / res_count
return avg_res_img
def forward(self, model, image_np, **kwargs):
assert self.wins is not None, 'patch must be performed before forward.'
# set the image height and width
self._h, self._w, _ = image_np.shape
return self._forward(model, image_np, **kwargs)
def _forward(self, model, image_np, **kwargs):
self.device = kwargs.get('device', self.device)
size_divisor = kwargs.get('size_divisor', None)
assert self.wins is not None, 'patch must be performed before forward.'
out_list = []
for win in tqdm(self.wins):
x1, y1, x2, y2 = win
image = image_np[y1:y2, x1:x2, :].astype(np.float32)
if self.transforms is not None:
image = self.transforms(image)
h, w = image.shape[2:4]
if size_divisor is not None:
image = sc.preprocess.function.th_divisible_pad(image, size_divisor)
image = image.to(self.device)
with torch.no_grad():
out = model(image)
if size_divisor is not None:
out = out[:, :, :h, :w]
out_list.append((out.cpu(), win))
torch.cuda.empty_cache()
self.wins = None
return self.merge(out_list)
parser = argparse.ArgumentParser()
parser.add_argument('--config_path', default=None, type=str,
help='path to config file')
parser.add_argument('--ckpt_path', default=None, type=str,
help='path to model directory')
parser.add_argument('--image_dir', default=None, type=str,
help='path to image dir')
parser.add_argument('--mask_dir', default=None, type=str,
help='path to mask dir')
parser.add_argument('--vis_dir', default=None, type=str,
help='path to vis_dir')
parser.add_argument('--log_dir', default=None, type=str,
help='path to log')
parser.add_argument('--patch_size', default=896, type=int,
help='patch size')
logger = logging.getLogger('SW-Infer')
logger.setLevel(logging.INFO)
def run():
args = parser.parse_args()
model, global_step = sc.infer_tool.build_and_load_from_file(args.config_path, args.ckpt_path)
model.to(torch.device('cuda'))
segm_helper = SegmSlidingWinInference()
ppe = ProcessPoolExecutor(max_workers=4)
dataset = ImageFolderDataset(image_dir=args.image_dir, mask_dir=args.mask_dir)
palette = np.asarray(list(COLOR_MAP.values())).reshape((-1,)).tolist()
viz_op = sc.viz.VisualizeSegmm(args.vis_dir, palette=palette)
miou_op = sc.metric.NPmIoU(num_classes=16, logdir=args.log_dir)
image_trans = comm.Compose([
segm.ToTensor(True),
comm.THMeanStdNormalize((123.675, 116.28, 103.53), (58.395, 57.12, 57.375)),
comm.CustomOp(lambda x: x.unsqueeze(0))
])
for idx, blob in enumerate(
DataLoader(dataset, 1, shuffle=False, pin_memory=True, num_workers=4, collate_fn=lambda x: x)):
image, mask, filename = blob[0]
h, w = image.shape[:2]
logging.info('Progress - [{} / {}] size = ({}, {})'.format(idx + 1, len(dataset), h, w))
seg_helper = segm_helper.patch((h, w), patch_size=(args.patch_size, args.patch_size), stride=512,
transforms=image_trans)
out = seg_helper.forward(model, image, size_divisor=32)
out = out.argmax(dim=1)
if mask is not None:
miou_op.forward(mask, out)
ppe.submit(viz_op, out.numpy(), filename)
ppe.shutdown()
ious, miou = miou_op.summary()
# tensorboard
sw = SummaryWriter(logdir=args.log_dir)
sw.add_scalar('eval-miou/miou', miou, global_step=global_step)
sw.add_scalar('eval-miou/miou-fg', ious[1:].mean(), global_step=global_step)
for name, iou in zip(list(COLOR_MAP.keys()), ious):
sw.add_scalar('eval-ious/{}'.format(name), iou, global_step=global_step)
sw.close()
if __name__ == '__main__':
run()