This document has instructions for running DIEN training using Intel-optimized TensorFlow.
- Create a virtual environment
venv-tf
usingPython 3.8
:
pip install virtualenv
# use `whereis python` to find the `python3.8` path in the system and specify it. Please install `Python3.8` if not installed on your system.
virtualenv -p /usr/bin/python3.8 venv-tf
source venv-tf/bin/activate
# If git, numactl and wget were not installed, please install them using
yum update -y && yum install -y git numactl wget
- Install Intel optimized TensorFlow
# Install Intel Optimized TensorFlow
pip install intel-tensorflow==2.11.dev202242
pip install keras-nightly==2.11.0.dev2022092907
Note: For
kernel version 5.16
,AVX512_CORE_AMX
is turned on by default. If thekernel version < 5.16
, please set the following environment variable for AMX environment:DNNL_MAX_CPU_ISA=AVX512_CORE_AMX
. To run VNNI, please setDNNL_MAX_CPU_ISA=AVX512_CORE_BF16
.
- Clone Intel Model Zoo repository if you haven't already cloned it.
Script name | Description |
---|---|
training.sh |
Runs training with a batch size of 128 for the specified precisions fp32, bfloat16 and bfloat32. |
Use prepare_data.sh to get a subset of the Amazon book reviews data and process it. Or download and extract the preprocessed data files directly:
wget https://zenodo.org/record/3463683/files/data.tar.gz
wget https://zenodo.org/record/3463683/files/data1.tar.gz
wget https://zenodo.org/record/3463683/files/data2.tar.gz
tar -jxvf data.tar.gz
mv data/* .
tar -jxvf data1.tar.gz
mv data1/* .
tar -jxvf data2.tar.gz
mv data2/* .
Set the DATASET_DIR
to point to the directory with the dataset files when running .
After you've followed the instructions to prepare the dataset using real data, set environment variables to specify the path to the dataset directory, precision to run, and an output directory.
# Set the required environment vars
export PRECISION=<supported precisions are fp32, bfloat16, bfloat32>
export DATASET_DIR=<path to the dataset>
export OUTPUT_DIR=<directory where log files will be written>
Navigate to the models directory to training.
cd models
./quickstart/recommendation/tensorflow/dien/training/cpu/training.sh
Licenses can be found in the model package, in the licenses
directory.