forked from intel/ai-reference-models
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathpreprocess_coco_val.sh
executable file
·100 lines (86 loc) · 3.83 KB
/
preprocess_coco_val.sh
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
#!/usr/bin/env bash
#
# Copyright (c) 2020 Intel Corporation
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
#
# This script preprocesses the validation images for the COCO Dataset to create
# TF records files. The raw validation images and annotations must be downloaded
# prior to running this script (https://cocodataset.org/#download).
#
# The following vars need to be set:
# VAL_IMAGE_DIR: Points to the raw validation images (extracted from val2017.zip)
# ANNOTATIONS_DIR: Points to the annotations (extracted from annotations_trainval2017.zip)
#
# This is intended to be used with the create_coco_tf_record.py script from the
# TensorFlow Model Garden.
#
# NOTE: This pre-processes the validation images only
# If the DATASET_DIR is set, then ensure it exists and set paths for the images and annotations
if [[ ! -z "${DATASET_DIR}" ]]; then
if [[ ! -d "${DATASET_DIR}" ]]; then
echo "ERROR: The specified DATASET_DIR ($DATASET_DIR) does not exist."
exit 1
fi
VAL_IMAGE_DIR=${DATASET_DIR}/val2017
ANNOTATIONS_DIR=${DATASET_DIR}/annotations
fi
# Verify that the a directory exists for the raw validation images
if [[ ! -d "${VAL_IMAGE_DIR}" ]]; then
echo "ERROR: The VAL_IMAGE_DIR (${VAL_IMAGE_DIR}) does not exist. This var needs to point to the raw coco validation images."
exit 1
fi
# Verify that the a directory exists for the annotations
if [[ ! -d "${ANNOTATIONS_DIR}" ]]; then
echo "ERROR: The ANNOTATIONS_DIR (${ANNOTATIONS_DIR}) does not exist. This var needs to point to the coco annotations directory."
exit 1
fi
# Verify that we have the path to the tensorflow/models code
if [[ ! -d "${TF_MODELS_DIR}" ]]; then
echo "ERROR: The TF_MODELS_DIR var needs to be defined to point to a clone of the tensorflow/models git repo"
exit 1
fi
# Checkout the specified branch for the tensorflow/models code
if [[ ! -z "${TF_MODELS_BRANCH}" ]]; then
cd ${TF_MODELS_DIR}
git checkout ${TF_MODELS_BRANCH}
fi
# Set the PYTHONPATH
cd ${TF_MODELS_DIR}/research
export PYTHONPATH=$PYTHONPATH:`pwd`:`pwd`/slim
# Create empty dir and json for train/test image preprocessing, so that we don't require
# the user to also download train/test images when all that's needed is validation images.
EMPTY_DIR=${DATASET_DIR}/empty_dir
EMPTY_ANNOTATIONS=${DATASET_DIR}/empty.json
mkdir -p ${EMPTY_DIR}
echo "{ \"images\": {}, \"categories\": {}}" > ${EMPTY_ANNOTATIONS}
cd ${TF_MODELS_DIR}/research/object_detection/dataset_tools
python create_coco_tf_record.py --logtostderr \
--train_image_dir="${EMPTY_DIR}" \
--val_image_dir="${VAL_IMAGE_DIR}" \
--test_image_dir="${EMPTY_DIR}" \
--train_annotations_file="${EMPTY_ANNOTATIONS}" \
--val_annotations_file="${ANNOTATIONS_DIR}/instances_val2017.json" \
--testdev_annotations_file="${EMPTY_ANNOTATIONS}" \
--output_dir="${DATASET_DIR}"
# remove dummy directory and annotations file
rm -rf ${EMPTY_DIR}
rm -rf ${EMPTY_ANNOTATIONS}
# since we only grab the validation dataset, the TF records files for train
# and test images are size 0. Delete those to prevent confusion.
rm -f ${DATASET_DIR}/coco_testdev.record
rm -f ${DATASET_DIR}/coco_train.record
# create a copy of the TF record file and rename it to be used for the SSD-ResNet34 model
cp ${DATASET_DIR}/coco_val.record ${DATASET_DIR}/validation-00000-of-00001
echo "TF records is listed in the dataset directory:"
ls -l ${DATASET_DIR}